

COMPUTER SYSTEM,
ORGANISATION AN

ARCHITECTURE

COMPUTER SYSTEM,
ORGANISATION AN

ARCHITECTURE

Alvin Sampson

Computer System, Organisation an Architecture

by Alvin Sampson

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984664334

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Computer System, Organisation an Architecture

199

Contents

Chapter 1 Working of Operating System 1

Chapter 2 Computer Organization 51

Chapter 3 Interconnecting Networks Architecture 81

Chapter 4 Computer Process Architecture 110

Chapter 5 CPU Instructions Design and Architecture 128

1

Working of Operating System

When you turn on your computer, it’s nice to think that

you’re in control. There’s the trusty computer mouse, which

you can move anywhere on the screen, summoning up your
music library or Internet browser at the slightest whim.
Although it’s easy to feel like a director in front of your desktop
or laptop, there’s a lot going on inside, and the real man
behind the curtain handling the necessary tasks is the
operating system.

Most desktop or laptop PCs come pre-loaded with Microsoft
Windows. Macintosh computers come pre-loaded with Mac
OS X. Many corporate servers use the Linux or UNIX
operating systems. The operating system (OS) is the first thing

loaded onto the computer — without the operating system,

a computer is useless.

More recently, operating systems have started to pop up

in smaller computers as well. If you like to tinker with

electronic devices, you’re probably pleased that operating

Computer System, Organisation an Architecture

2

systems can now be found on many of the devices we use

every day, from cell phones to wireless access points.

The computers used in these little devices have gotten so

powerful that they can now actually run an operating system

and applications. The computer in a typical modern cell

phone is now more powerful than a desktop computer from

20 years ago, so this progression makes sense and is a natural

development.

The purpose of an operating system is to organize and

control hardware and software so that the device it lives in

behaves in a flexible but predictable way. In this article, we’ll

tell you what a piece of software must do to be called an

operating system, show you how the operating system in

your desktop computer works and give you some examples

of how to take control of the other operating systems around

you.

Not all computers have operating systems. The computer

that controls the microwave oven in your kitchen, for

example, doesn’t need an operating system. It has one set of

tasks to perform, very straightforward input to expect (a

numbered keypad and a few pre-set buttons) and simple,

never-changing hardware to control. For a computer like this,

an operating system would be unnecessary baggage, driving

up the development and manufacturing costs significantly

and adding complexity where none is required. Instead, the

computer in a microwave oven simply runs a single hard-

wired program all the time.

For other devices, an operating system creates the ability

to:

• Serve a variety of purposes

Computer System, Organisation an Architecture

3

• Interact with users in more complicated ways

• Keep up with needs that change over time

All desktop computers have operating systems. The most

common are the Windows family of operating systems

developed by Microsoft, the Macintosh operating systems
developed by Apple and the UNIX family of operating systems
(which have been developed by a whole history of individuals,
corporations and collaborators). There are hundreds of other
operating systems available for special-purpose applications,
including specializations for mainframes, robotics,
manufacturing, real-time control systems and so on.

In any device that has an operating system, there’s usually
a way to make changes to how the device works. This is far
from a happy accident; one of the reasons operating systems
are made out of portable code rather than permanent physical
circuits is so that they can be changed or modified without
having to scrap the whole device. For a desktop computer
user, this means you can add a new security update, system
patch, new application or even an entirely new operating
system rather than junk your computer and start again with
a new one when you need to make a change. As long as you

understand how an operating system works and how to get

at it, in many cases you can change some of the ways it

behaves. The same thing goes for your phone, too.

FUNCTIONS OF OPERATING SYSTEM
The operating system provides several other functions which

includes:

• System tools (programs) used to monitor computer

performance, debug problems, or maintain parts of

the system.

Computer System, Organisation an Architecture

4

• A set of libraries or functions which programs may

use to perform specific tasks especially relating to

interfacing with computer system components.

The operating system makes these interfacing functions

along with its other functions operate smoothly and these

functions are mostly transparent to the user.

OBJECTIVES OF OPERATING SYSTEMS

Modern Operating systems generally have following three

major goals. Operating systems generally accomplish these

goals by running processes in low privilege and providing

service calls that invoke the operating system kernel in high-

privilege state.

TO HIDE DETAILS OF HARDWARE
BY CREATING ABSTRACTION

An abstraction is software that hides lower level details

and provides a set of higher-level functions. An operating

system transforms the physical world of devices, instructions,

memory, and time into virtual world that is the result of

abstractions built by the operating system. There are several

reasons for abstraction.

First, the code needed to control peripheral devices is not

standardized. Operating systems provide subroutines called

device drivers that perform operations on behalf of programs

for example, input/output operations.

Second, the operating system introduces new functions

as it abstracts the hardware. For instance, operating system

introduces the file abstraction so that programs do not have

to deal with disks.

Computer System, Organisation an Architecture

5

Third, the operating system transforms the computer

hardware into multiple virtual computers, each belonging to

a different programme. Each programme that is running is

called a process. Each process views the hardware through

the lens of abstraction.

Fourth, the operating system can enforce security through

abstraction.

TO ALLOCATE RESOURCES TO PROCESSES
(MANAGE RESOURCES)

An operating system controls how processes (the active

agents) may access resources (passive entities).

PROVIDE A PLEASANT AND EFFECTIVE USER
INTERFACE

The user interacts with the operating systems through the

user interface and usually interested in the “look and feel” of

the operating system. The most important components of

the user interface are the command interpreter, the file

system, on-line help, and application integration. The recent

trend has been toward increasingly integrated graphical user

interfaces that encompass the activities of multiple processes

on networks of computers.

One can view Operating Systems from two points of views:

Resource manager and Extended machines. Form Resource

manager point of view Operating Systems manage the

different parts of the system efficiently and from extended

machines point of view Operating Systems provide a virtual

machine to users that is more convenient to use. The

structurally Operating Systems can be design as a monolithic

system, a hierarchy of layers, a virtual machine system, an

Computer System, Organisation an Architecture

6

exokernel, or using the client-server model. The basic

concepts of Operating Systems are processes, memory

management, I/O management, the file systems, and

security.

HISTORY
Historically operating systems have been tightly related to

the computer architecture, it is good idea to study the history

of operating systems from the architecture of the computers

on which they run. Operating systems have evolved through

a number of distinct phases or generations which

corresponds roughly to the decades.

THE 1940’S - FIRST GENERATIONS

The earliest electronic digital computers had no operating

systems. Machines of the time were so primitive that

programs were often entered one bit at time on rows of

mechanical switches (plug boards). Programming languages

were unknown (not even assembly languages). Operating

systems were unheard of.

THE 1950’S - SECOND GENERATION

By the early 1950’s, the routine had improved somewhat

with the introduction of punch cards. The General Motors

Research Laboratories implemented the first operating

systems in early 1950’s for their IBM 701. The system of the

50’s generally ran one job at a time. These were called single-

stream batch processing systems because programs and data

were submitted in groups or batches.

Computer System, Organisation an Architecture

7

THE 1960’S - THIRD GENERATION
The systems of the 1960’s were also batch processing

systems, but they were able to take better advantage of the

computer’s resources by running several jobs at once. So

operating systems designers developed the concept of

multiprogramming in which several jobs are in main memory

at once; a processor is switched from job to job as needed to

keep several jobs advancing while keeping the peripheral

devices in use.

For example, on the system with no multiprogramming,

when the current job paused to wait for other I/O operation

to complete, the CPU simply sat idle until the I/O finished.

The solution for this problem that evolved was to partition

memory into several pieces, with a different job in each

partition. While one job was waiting for I/O to complete,

another job could be using the CPU.

Another major feature in third-generation operating system

was the technique called spooling (simultaneous peripheral

operations on line). In spooling, a high-speed device like a

disk interposed between a running programme and a low-

speed device involved with the programme in input/output.

Instead of writing directly to a printer, for example, outputs

are written to the disk. Programs can run to completion faster,

and other programs can be initiated sooner when the printer

becomes available, the outputs may be printed.

Note that spooling technique is much like thread being

spun to a spool so that it may be later be unwound as needed.

Another feature present in this generation was time-

sharing technique, a variant of multiprogramming technique,

in which each user has an on-line (i.e., directly connected)

Computer System, Organisation an Architecture

8

terminal. Because the user is present and interacting with

the computer, the computer system must respond quickly

to user requests, otherwise user productivity could suffer.

Timesharing systems were developed to multiprogram large

number of simultaneous interactive users.

FOURTH GENERATION
With the development of LSI (Large Scale Integration)

circuits, chips, operating system entered in the system

entered in the personal computer and the workstation age.

Microprocessor technology evolved to the point that it become

possible to build desktop computers as powerful as the

mainframes of the 1970s. Two operating systems have

dominated the personal computer scene: MS-DOS, written

by Microsoft, Inc. for the IBM PC and other machines using

the Intel 8088 CPU and its successors, and UNIX, which is

dominant on the large personal computers using the Motorola

6899 CPU family.

STRUCTURE OF OPERATING SYSTEMS

As modern operating systems are large and complex careful

engineering is required. There are four different structures

that have shown in this document in order to get some idea

of the spectrum of possibilities. These are by no mean s

exhaustive, but they give an idea of some designs that have

been tried in practice.

MONOLITHIC SYSTEMS
This approach well known as “The Big Mess”. The structure

is that there is no structure. The operating system is written

Computer System, Organisation an Architecture

9

as a collection of procedures, each of which can call any of

the other ones whenever it needs to. When this technique is

used, each procedure in the system has a well-defined

interface in terms of parameters and results, and each one

is free to call any other one, if the latter provides some useful

computation that the former needs.

For constructing the actual object programme of the

operating system when this approach is used, one compiles

all the individual procedures, or files containing the

procedures, and then binds them all together into a single

object file with the linker. In terms of information hiding,

there is essentially none- every procedure is visible to every

other one i.e. opposed to a structure containing modules or

packages, in which much of the information is local to

module, and only officially designated entry points can be

called from outside the module.

However, even in Monolithic systems, it is possible to have

at least a little structure. The services like system calls provide

by the operating system are requested by putting the

parameters in well-defined places, such as in registers or on

the stack, and then executing a special trap instruction

known as a kernel call or supervisor call.

LAYERED SYSTEM
A generalization of the approach as shown below in the

figure for organizing the operating system as a hierarchy of

layers, each one constructed upon the one below it. The

system had 6 layers.

Layer 0 dealt with allocation of the processor, switching

between processes when interrupts occurred or timers

Computer System, Organisation an Architecture

10

expired. Above layer 0, the system consisted of sequential

processes, each of which could be programmed without

having to worry about the fact that multiple processes were

running on a single processor.

In other words, layer 0 provided the basic multiprogramming

of the CPU:

Layer 1: Did the memory management. It allocated

space for processes in main memory and on

a 512k word drum used for holding parts of

processes (pages)for which there was no room

in main memory. Above layer 1, processes

did not have to worry about whether they

were in memory or on the drum; the layer

1 software took care of making sure pages

were brought into memory whenever they

were needed.

Layer 2: Handled communication between each

process and the operator console. Above this

layer each process effectively had its own

operator console. Layer 3 took care of

managing the I/O devices and buffering the

information streams to and from them. Above

layer 3 each process could deal with abstract

I/O devices with nice properties, instead of

real devices with many peculiarities. Layer 4

was where the user programs were found.

They did not have to worry about process,

memory, console, or I/O management. The

system operator process was located I layer

5.

Computer System, Organisation an Architecture

11

VIRTUAL MACHINES
The heart of the system, known as the virtual machine

monitor, runs on the bare hardware and does the

multiprogramming, providing not one, but several virtual

machines to the next layer up.

However, unlike all other operating systems, these virtual

machines are not extended machines, with files and other

nice features. Instead, they are exact copies of the bare

hardware, including kernel/user mod, I/O, interrupts, and

everything else the real machine has.

For reason of Each virtual machine is identical to the true

hardware, each one can run any operating system that will

run directly on the hard ware. Different virtual machines

can, and usually do, run different operating systems. Some

run one of the descendants of OF/360 for batch processing,

while other ones run a single-user, interactive system called

CMS (conversational Monitor System) fro timesharing users.

CLIENT-SERVER MODEL
A trend in modern operating systems is to take this idea of

moving code up into higher layers even further, and remove

as much as possible from the operating system, leaving a

minimal kernel. The usual approach is to implement most

of the operating system functions in user processes. To

request a service, such as reading a block of a file, a user

process (presently known as the client process) sends the

request to a server process, which then does the work and

sends back the answer.

In client-Server Model, all the kernel does is handle the

communication between clients and servers. By splitting the

Computer System, Organisation an Architecture

12

operating system up into parts, each of which only handles

one fact of the system, such as file service, process service,

Terminal service, or memory service, each part becomes

small and manageable; furthermore, because all the servers

run as user-mode processes, and not in kernel mode, they

do not have direct access to the hardware. As a consequence,

if a bug in the file server is triggered, the file service may

crash, but this will not usually bring the whole machine down.

Another advantage of the client-server model is its

adaptability to use in distributed system. If a client

communicates with a server by sending it messages, the client

need not know whether the message is handled locally in

its own machine, or whether it was sent across a network to

a server on a remote machine. As far as the client is

concerned, the same thing happens in both cases: a request

was sent and a reply came back.

KINDS OF OPERATING SYSTEM

REAL-TIME OPERATING SYSTEM
It is a multitasking operating system that aims at

executing real-time applications. Real-time operating

systems often use specialized scheduling algorithms so that

they can achieve a deterministic nature of behaviour. The

main object of real-time operating systems is their quick

and predictable response to events. They either have an

event-driven or a time-sharing design. An event-driven

system switches between tasks based of their priorities while

time-sharing operating systems switch tasks based on clock

interrupts.

Computer System, Organisation an Architecture

13

MULTI-USER AND SINGLE-USER OPERATING
SYSTEMS

The operating systems of this type allow a multiple users

to access a computer system concurrently. Time-sharing

system can be classified as multi-user systems as they enable

a multiple user access to a computer through the sharing of

time. Single-user operating systems, as opposed to a multi-

user operating system, are usable by a single user at a time.

Being able to have multiple accounts on a Windows operating

system does not make it a multi-user system. Rather, only

the network administrator is the real user. But for a Unix-

like operating system, it is possible for two users to login at

a time and this capability of the OS makes it a multi-user

operating system.

MULTI-TASKING AND SINGLE-TASKING
OPERATING SYSTEMS

When a single programme is allowed to run at a time, the

system is grouped under a single-tasking system, while in

case the operating system allows the execution of multiple

tasks at one time, it is classified as a multi-tasking operating

system. Multi-tasking can be of two types namely, pre-

emptive or co-operative.

In pre-emptive multitasking, the operating system slices

the CPU time and dedicates one slot to each of the programs.

Unix-like operating systems such as Solaris and Linux

support pre-emptive multitasking. Cooperative multitasking

is achieved by relying on each process to give time to the

other processes in a defined manner. MS Windows prior to

Windows 95 used to support cooperative multitasking.

Computer System, Organisation an Architecture

14

DISTRIBUTED OPERATING SYSTEM
An operating system that manages a group of independent

computers and makes them appear to be a single computer

is known as a distributed operating system. The development

of networked computers that could be linked and
communicate with each other, gave rise to distributed
computing. Distributed computations are carried out on more
than one machine. When computers in a group work in
cooperation, they make a distributed system.

EMBEDDED SYSTEM
The operating systems designed for being used in

embedded computer systems are known as embedded
operating systems. They are designed to operate on small
machines like PDAs with less autonomy. They are able to
operate with a limited number of resources. They are very
compact and extremely efficient by design. Windows CE,
FreeBSD and Minix 3 are some examples of embedded
operating systems. The most common is the Microsoft suite
of operating systems.

They include from most recent to the oldest:

• Windows XP Professional Edition: A version used by

many businesses on workstations. It has the ability

to become a member of a corporate domain.

• Windows XP Home Edition: A lower cost version of

Windows XP which is for home use only and should

not be used at a business.

• Windows 2000: A better version of the Windows NT

operating system which works well both at home and

as a workstation at a business. It includes technologies

which allow hardware to be automatically detected

and other enhancements over Windows NT.

Computer System, Organisation an Architecture

15

• Windows ME: A upgraded version from windows 98

but it has been historically plagued with programming

errors which may be frustrating for home users.

• Windows 98: This was produced in two main versions.

The first Windows 98 version was plagued with

programming errors but the Windows 98 Second

Edition which came out later was much better with

many errors resolved.

• Windows NT: A version of Windows made specifically

for businesses offering better control over workstation

capabilities to help network administrators.

• Windows 95: The first version of Windows after the

older Windows 3.x versions offering a better interface

and better library functions for programs.

TYPES OF OPERATING SYSTEM

Microsoft Windows isn’t the only operating system for

personal computers, or even the best... it’s just the best-

distributed.

Its inconsistent behaviour and an interface that changes

with every version are the main reasons people find

computers difficult to use. Microsoft adds new bells and

whistles in each release, and claims that this time they’ve

solved the countless problems in the previous versions... but

Computer System, Organisation an Architecture

16

the hype is never really fulfilled. Windows 7 offers little new:

it’s basically Vista without quite so many mistakes built into

it. The upgrade prices serve primarily to keep the cash flowing

to Microsoft, to subsidize their efforts to take over other

markets. A slew of intrusive “features” in the recent versions

benefit Microsoft at the expensive of both your privacy and

your freedom. Switching to Windows Vista or Windows 7

requires buying new hardware and learning a new system,

so instead consider switching to something better. More than

1 in 10 people on the web already have. There’s an exciting

array of interesting operating systems out there, and the

overall quality of them is stronger than ever.

≅ ç If you can’t say “no” to Windows (which is understandable

in many cases), you can still say “no more”. The simplest

alternative to Windows Vista/7 is a previously-installed

version of Windows.

Windows Vista/7 isn’t a simple upgrade; it’s a drastically

different operating system, which may not even run your

existing software, or work properly on hardware just a few

years old, so installing the “upgrade” is a risk. Even if the

package says “for Windows 7”, that’s mostly a Microsoft-

directed marketing ploy; check the fine print to see if earlier

versions of Windows are also supported (XP usually is).

The bottom line: if you already own Windows 98/2000/XP

Computer System, Organisation an Architecture

17

and it works for you, you don’t have to upgrade; you can

continue using it without paying Microsoft another dime.

≅ � �The Mac OS user interface inspired the creation of

Windows, and is still the target Microsoft is trying to equal.
As a popular consumer product, there’s plenty of software
available for it, and it’s moving beyond its traditional niches
of graphic design, education, and home use, into general
business use (after all, Apple Corp. runs on it).

OS X (ten), uses Unix technology, which makes it more
stable and secure than Windows. But the real star is OS X’s
visual interface, which shows the difference between

Microsoft’s guesswork in this area and Apple’s innovative

design work: it’s both beautiful and easy to use.

��

ç�Linux (“LIH-nux”) is a free Unix-like operating system,

originally developed by programmers who who simply love the

challenge of solving problems and producing quality software...

even if that means giving the resulting product away.

Computer System, Organisation an Architecture

18

The main “negative” to Mac OS is that you need to buy

an Apple computer to use it, but that’s not much of a sacrifice:

in addition to being stylish, they’re top-notch in quality, and

both faster and less expensive than you might expect. Apple

has a section of their site for people wondering if they can

switch to Mac OS. Not coincidentally, there’s also a wealth

of free software for it. Unlike proprietary operating systems,

which are usually controlled in every detail by a single

company, Linux has a standard consistent core (called the

“kernel”) around which many varieties (known as

“distributions”) have been produced by various companies

and organisations. Some are aimed at geeks, some focus on

the needs of business users, and some are designed with

typical home users in mind. It has become a popular option

for the makers of inexpensive “netbooks” and laptops to

preinstall. You can test-drive Linux with versions such as

Knoppix which runs directly from a CD without affecting the

OS on your hard drive. Most individuals should start with

one of the mainstream distributions, such as Ubuntu,

Mandriva, or Linspire. Businesses might prefer RedHat/

Fedora, Novell/SUSE, or CentOS. Geeks should check out

Debian, Slackware, and Gentoo. Linux is a first-rate choice

for servers; this site is a Linux system

�

Computer System, Organisation an Architecture

19

ç�Google’s Chrome OS is still vaporware so far, and it’s

arguably just another flavour of Linux, but it promises to be a

viable alternative to Windows on small portable “netbooks”

which will come with it preinstalled. The user interface is going

to be based on Google’s web browser of the same name, and

take advantage of technology to make online apps like Google

Docs work even if you’re not online. It is open-source software,

so netbook manufacturers won’t have to pay to use it.

≅� ç BeOS was designed with multimedia in mind, including

the kinds of features that Microsoft is just recently tacking

onto Windows. Although Microsoft successfully drove Be Corp.
out of business through illegal interference with their marketing
efforts, reports of BeOS’s death are exaggerated: The source
code for BeOS has been licensed to a European software firm
whose Zeta is effectively the much-longed-for BeOS R6. The
free BeOS R5 Personal Edition is still available to download,
and has been packaged with all the latest drivers and free add-
ons as BeOS Max Edition. And the Haiku project is creating an

open duplicate of BeOS R5, which will then be enhanced

Computer System, Organisation an Architecture

20

� ç�FreeBSD is commonly called “the free Unix”. It’s

descended from the classic 1970’s Berkeley Software

Distribution of Unix (from before the OS became “UNIX”®),

making it one of the most mature and stable operating

systems around. It’s “free” as in “free beer” (you can download

it for nothing) and as in “free speech” (you can do pretty

much whatever you like with it... like when Microsoft took

code from it to add better networking to Windows NT). Unlike

the plethora of Linuxes, there’s only one current version of

FreeBSD, with a consistent structure and an easy-to-use

“ports” system for installing software. It can also run most

Linux binaries. Much of the Internet infrastructure was built

on FreeBSD, due to its combination of quality and cost.

�

ç�OpenBSD is “the other free Unix”. It’s similar to FreeBSD

both in the Berkeley code it’s based on, and the licensing

terms. One key advantage it has over its BSD siblings (and

nearly any other OS) is that it’s incredibly secure from attack,

as implied by its blowfish mascot, and made explicit by their

boast of only one remotely-exploitable hole - ever - in their

default installation. (Compare that to Windows’ hundreds.)

“Open” is a reference to their code auditing process, not a

welcome-mat forcrackers. It’s not as speedy as FreeBSD, but

it’s safer. It’s also available for some hardware plaforms

FreeBSD doesn’t support, including Mac 68K, PPC.

Computer System, Organisation an Architecture

21

�

ç�NetBSD is “the other other free Unix”. It’s the work of

another group of volunteer developers using the net to

collaborate (hence the name of their product). Their mission

is to get the OS to run - and run well - on hardware platforms

no other Unix supports. In addition to most of the usual

suspects above, it’s been ported to run on the NeXT box,

MIPSmachines, the good Atari computers, the BeBox, WinCE-

compatible handhelds, ARM processors, and even game

machines like the Playstation 2 or the orphaned Sega

Dreamcast.

ç�Darwin is a cousin of Free/Open/NetBSD, and the free

foundation on which the commercial Mac OS X is built.

Although its development was originally managed rather

tightly by Apple (understandable, because their business

depends on it) they’ve loosened the leash, making

participation in the development more open. Darwin is

Computer System, Organisation an Architecture

22

making progress toward becoming an open-source OS in its

own right. Any Darwin software will run on OS X, but software

written specifically for OS X won’t run on Darwin, because

the Mac interface (and various other proprietary bits) are

not part of Darwin itself. Instead, Darwin typically uses X11

with either TWM or KDE.

ç Syllable is a free alternative OS for standard PCs. It uses

some of the better ideas from Unix, BeOS, AmigaOS, and

others, and is compatible enough with portable software

written for Unix that many have already been ported over to

it. It’s not a full-featured OS yet, but it’s functional enough

to be used with built-in web and e-mail clients, and media

players.

�

Amiga owners used to taunt PC and Mac users with their

smoothly-multitasking graphical operating system, back

when the Macs couldn’t multitask, and PCs weren’t even

graphical. Even though the “classic” Amiga machines are no

longer being produced, there’s been a lot of activity in

Amigaspace in the meantime: The OS has been updated to

Computer System, Organisation an Architecture

23

support current technology with Amiga OS 4, emulation

layers called AmigaOS XL and AMIthlon were created to run

Amiga OS on modern PC hardware, Amiga Forever is an

emulator for Windows and other operating systems, and a

new hardware platform and OS called AmigaOne have been

introduced to try to carry on the Amiga legacy.

�

MorphOS began as a project to port the Amiga OS to the

then-new PowerPC architecture, but has since morphed into

an OS in its own right. It runs on certain PowerPC/G3/G4-

based systems, and has better-than-standard-emulation

support for Amiga OS 3.1 applications as well as native apps

built for MorphOS.

�

RISC OS is the operating system of the former Acorn line

of computers (best known in the UK), which has been revived

and updated for faster performance and to meet current OS

standards (e.g. long filenames, large hard drives). It doesn’t

Computer System, Organisation an Architecture

24

run on standard PCs, but on systems specifically designed

for it (such as the RiscPC and A7000), using the high-speed

StrongARM processors. The OS itself is stored in electronic

ROM rather than having to be loaded into RAM from a hard

drive

ç�GNU’s Not Unix. In fact, that phrase is what G.N.U. is

a (recursive) abbrevation for. It is a Unix-like operating system

being developed as a long-term project by the Free Software

Foundation to offer a fully-free alternative to the commercial

and BSD versions of Unix. Although you’ll find many key

components of GNU used in Linux and BSD packages under

the GNU General Public license (GPL), a fully GNU system

will use the Hurd, GNU’s own free-software kernel. The Hurd

has some design advantages over the Linux kernel, but is

still far from finished, and requires serious expertise with

OS development to install.

Computer System, Organisation an Architecture

25

ç�Minix is an open-source Unix-like operating system

originally developed for educational purposes. Because of its

relative simplicity and ample documentation, its creator says

that a few months studying the source code should teach

you most of how such things work. (It inspired Linus Torvalds

to create Linux.) Versions 1 and 2 serve primarily as teaching

examples, but version 3 has also become useful in its own

right, intended for highly reliable uses on low-end 386-level

hardware.

�

�There are also a bunch of commercial UNIX systems,

which are typically customised to run on expensive, high-

end, proprietary hardware sold by the same vendor. Most of

them have names other than “Unix” due to old trademark

issues. They’re better as alternatives to the server versions

of Windows, not the desktop versions of Windows such as

98/XP/Vista. They include Sun Solaris, HP-UX, IBM AIX,

SGI IRIX, and Mac OS X Server

≅ � IBM’s OS/2warp was once supposed to replace MS

Windows, back when Emperor IBM and Darth Microsoft were

Computer System, Organisation an Architecture

26

planning to rule the galaxy together. Then Darth decided he

didn’t need the Emperor, struck confidential deals with other

hardware vendors and software developers, and made

Windows (just barely) powerful enough to fill OS/2’s intended

role. Windows didn’t really beat OS/2 technically, but it won

the Marketing Wars, which is what mattered. Unfortunately,

IBM has given up on OS/2’s future. A third-party package

called eComStation is a licensed effort to update and maintain

OS/2.

ç Believe it or not, DOS (with or without Windows 3.1) is

still a viable option for many uses. There was an incredible

amount of software developed for it, and it still works. Plus,

DOS runs like a champ, on old hardware that no one else

wants. You can even fit it on a diskette, to boot it on nearly

any PC anywhere.

DESCRIPTION OF OPERATING SYSTEM

For a computer to be able to operate a computer programme

(sometimes known as application or software), the machine

must be able to perform a certain number of preparatory

operations to ensure exchange between the processor, the

memory and the physical resources (peripherals).

Computer System, Organisation an Architecture

27

The operating system (sometimes referred to by its

abbreviation OS), is responsible for creating the link between

the material resources, the user and the applications (word

processor, video game, etc.). When a programme wants to

access a material resource, it does not need to send specific

information to the peripheral device but it simply sends the

information to the operating system, which conveys it to the

relevant peripheral via its driver. If there are no drivers, each

programme has to recognise and take into account the

communication with each type of peripheral!

The operating system thus allows the “dissociation” of

programmes and hardware, mainly to simplify resource

management and offer the user a simplified Man-machine

interface (MMI) to overcome the complexity of the actual

machine.

ROLES OF OPERATING SYSTEM

The operating system has various roles:

• Management of the processor: The operating system

is responsible for managing allocation of the processor

between the different programmes using ascheduling

algorithm. The type of scheduler is totally dependent

on the operating system, according to the desired

objective.

Computer System, Organisation an Architecture

28

• Management of the random access memory: The

operating system is responsible for managing the

memory space allocated to each application and, where

relevant, to each user. If there is insufficient physical

memory, the operating system can create a memory

zone on the hard drive, known as “virtual memory”.

The virtual memory lets you run applications requiring

more memory than there is available RAM on the

system. However, this memory is a great deal slower.

• Management of input/output: The operating system

allows unification and control of access of programmes

to material resources via drivers (also known as

peripheral administrators or input/output

administrators).

• Management of execution of applications: The operating

system is responsible for smooth execution of

applications by allocating the resources required for

them to operate. This means an application that is

not responding correctly can be “killed”.

COMPONENTS OF OPERATING SYSTEM
The operating system comprises a set of software packages

that can be used to manage interactions with the hardware.

The following elements are generally included in this set of

software:

• The kernel, which represents the operating system’s

basic functions such as management of memory,

processes, files, main inputs/outputs and communi-

cation functionalities.

Computer System, Organisation an Architecture

29

• The shell, allowing communication with the operating

system via a control language, letting the user control

the peripherals without knowing the characteristics

of the hardware used, management of physical

addresses, etc.

• The file system, allowing files to be recorded in a tree

structure.

OPERATING SYSTEMS SERVICES

Following are the five services provided by an operating

systems to the convenience of the users.

PROGRAM EXECUTION
The purpose of a computer systems is to allow the user to

execute programs.

So the operating systems provides an environment where

the user can conveniently run programs. The user does not

have to worry about the memory allocation or multitasking

or anything. These things are taken care of by the operating

systems.

Running a program involves the allocating and deallocating

memory, CPU scheduling in case of multiprocess. These

functions cannot be given to the user-level programs. So

user-level programs cannot help the user to run programs

independently without the help from operating systems.

I/O OPERATIONS
Each program requires an input and produces output. This

involves the use of I/O. The operating systems hides the

user the details of underlying hardware for the I/O. All the

Computer System, Organisation an Architecture

30

user sees is that the I/O has been performed without any

details. So the operating systems by providing I/O makes it

convenient for the users to run programs.

For efficiently and protection users cannot control I/O so

this service cannot be provided by user-level programs.

FILE SYSTEM MANIPULATION
The output of a program may need to be written into new

files or input taken from some files. The operating systems

provides this service. The user does not have to worry about

secondary storage management. User gives a command for

reading or writing to a file and sees his her task accomplished.

Thus operating systems makes it easier for user programs

to accomplished their task.

This service involves secondary storage management. The

speed of I/O that depends on secondary storage management

is critical to the speed of many programs and hence I think

it is best relegated to the operating systems to manage it

than giving individual users the control of it. It is not difficult

for the user-level programs to provide these services but for

above mentioned reasons it is best if this service s left with

operating system.

COMMUNICATIONS
There are instances where processes need to communicate

with each other to exchange information. It may be between

processes running on the same computer or running on the

different computers.

By providing this service the operating system relieves the

user of the worry of passing messages between processes. In

case where the messages need to be passed to processes on

Computer System, Organisation an Architecture

31

the other computers through a network it can be done by

the user programs. The user program may be customized to

the specifics of the hardware through which the message

transits and provides the service interface to the operating

system.

ERROR DETECTION
An error is one part of the system may cause

malfunctioning of the complete system. To avoid such a

situation the operating system constantly monitors the

system for detecting the errors. This relieves the user of the

worry of errors propagating to various part of the system

and causing malfunctioning.

This service cannot allowed to be handled by user programs

because it involves monitoring and in cases altering area of

memory or deallocation of memory for a faulty process. Or

may be relinquishing the CPU of a process that goes into an

infinite loop. These tasks are too critical to be handed over

to the user programs. A user program if given these privileges

can interfere with the correct (normal) operation of the

operating systems.

SYSTEM CALLS AND SYSTEM PROGRAMS
System calls provide an interface between the process an

the operating system. System calls allow user-level processes

to request some services from the operating system which

process itself is not allowed to do.

In handling the trap, the operating system will enter in

the kernel mode, where it has access to privileged

instructions, and can perform the desired service on the

behalf of user-level process. It is because of the critical nature

Computer System, Organisation an Architecture

32

of operations that the operating system itself does them every

time they are needed. For example, for I/O a process involves

a system call telling the operating system to read or write

particular area and this request is satisfied by the operating

system.

System programs provide basic functioning to users so

that they do not need to write their own environment for

program development (editors, compilers) and program

execution (shells). In some sense, they are bundles of useful

system calls.

LAYERED APPROACH DESIGN
In this case the system is easier to debug and modify,

because changes affect only limited portions of the code, and

programmer does not have to know the details of the other

layers. Information is also kept only where it is needed and

is accessible only in certain ways, so bugs affecting that data

are limited to a specific module or layer.

MECHANISMS AND POLICIES
The policies what is to be done while the mechanism

specifies how it is to be done. For instance, the timer construct

for ensuring CPU protection is mechanism. On the other

hand, the decision of how long the timer is set for a particular

user is a policy decision.

The separation of mechanism and policy is important to

provide flexibility to a system. If the interface between

mechanism and policy is well defined, the change of policy

may affect only a few parameters.

On the other hand, if interface between these two is vague

or not well defined, it might involve much deeper change to

Computer System, Organisation an Architecture

33

the system. Once the policy has been decided it gives the

programmer the choice of using his/her own implementation.

Also, the underlying implementation may be changed for a

more efficient one without much trouble if the mechanism

and policy are well defined.

Specifically, separating these two provides flexibility in a

variety of ways. First, the same mechanism can be used to

implement a variety of policies, so changing the policy might

not require the development of a new mechanism, but just a

change in parameters for that mechanism, but just a change

in parameters for that mechanism from a library of

mechanisms. Second, the mechanism can be changed for

example, to increase its efficiency or to move to a new

platform, without changing the overall policy.

FEATURES OF WINDOWS

OPERATING SYSTEM

WINDOWS CE
This operating system is designed for embedded devices

such as Personal Digital Assistants (PDA’s) and desktop boxes

such as Web-TV.

Computer System, Organisation an Architecture

34

General Features of Windows CE:

• Requirements specified by OEM

• Major use is in PDA’s and embedded systems

WINDOWS 95
This operating system is designed for use as a workstation

client or desktop system, primarily for the home or mobile

user. It is not intended to be used a server, but can be used

in simple workgroups to share resources such as printers

and files.

GENERAL FEATURES OF WINDOWS 95

• Easier to use and learn than Windows 3.1

• More reliable than Windows 3.1

• Supports all major networking protocols including

Novell IPX and TCP/IP

• Network clients are faster, more reliable, and use no

conventional memory

• Simplified user interface

• Automated installation for all users and custom

installations

• Remote administration features built in

• Supports multiple users on a single PC with

customized settings for each individual

• Pre-emptive multitasking and multi-threading

• Plug and play support for hardware devices

• Dial-up networking (remote access services)

• Supports existing MS-DOS and Windows drivers and

programs

Computer System, Organisation an Architecture

35

WINDOWS 98
This operating system is designed for use as a workstation

client or desktop system, primarily for the home or remote

user. It is not intended to be used a server, but can be used

in simple workgroups to share resources such as printers

and files. It is an upgraded enhanced version of Windows

95.

General Features of Windows 98:

• FAT32 enhanced file system

• Performance enhancements

• Fast startup and shutdown

• Intelligent update

• Wizards

• System file checker

• New hardware support, Universal Serial Bus

• Integrated browser/shell

WINDOWS NT V4 WORKSTATION
This operating system is designed for serious power users

and desktop workstations, where users demand high

reliability, pre-emptive multitasking of programs and support

for OpenGL graphics applications. It can be used as a server

in a workgroup, where the number of clients it supports is

10 or less.

GENERAL FEATURES OF WINDOWS NT V4
WORKSTATION

• Complete crash protection for 16- and 32-bit

applications

Computer System, Organisation an Architecture

36

• Built-in data protection

• Supports common networks and protocols

• Remote access service [client and/or server]

• Support for applications designed for MS-DOS®,

Windows®, Windows 95, and other operating systems

• Preemptive multitasking

• OpenGL 3-D graphics

• Supports a wide range hardware devices

• Scalable [support for more than one processor]

• Multi-platform [support more than one processor type,

eg, RISC]

WINDOWS NT 4 SERVER
This operating system is designed for robust scalable

networks based on domains. It provides accounts for users

and security logon using usernames and passwords.

Where servers are required to handle more than 10 clients,

NT Server is the best choice of operating system. It has been

especially optimized to give good performance as an

application server, and has additional tools to ease network

administration problems.

GENERAL FEATURES OF WINDOWS NT SERVER

• Exceptional file and print services

• Support for thousands of client/server applications

• Built-in Security and advanced fault tolerance

• Runs on your choice of scaleable hardware including

Intel® x86, Pentium®, Alpha AXP™, MIPS® Rx400,

and PowerPC™

Computer System, Organisation an Architecture

37

• Supports MS-DOS®, Windows®, OS/2®, UNIX and

Macintosh®

• Integrates with NetWare®, LAN Manager, UNIX,

PATHWORKS™, SNA, and other network systems

• Built-in Migration Tool for NetWare

• File & Print Services for NetWare

• Instantly accessible and up-to-date information

• Hardware auto-detect and CD-ROM-based Express

Setup

• Easy-to-use graphical environment

• Directory service that aids in the management and

control of network resources

• TCP/IP, Macintosh support, and Remote Access

Service at no extra charge

WINDOWS 2000 PROFESSIONAL
This is the replacement for Windows NT 4 workstation,

designed for power users, remote users and high performance

workstations. It has all the features of Windows NT 4

combined with the graphical desktop interface of Windows

98.

GENERAL FEATURES OF WINDOWS 2000
PROFESSIONAL

• File protection: Core files are protected from being

overwritten by software applications

• Microsoft Installer: This service helps users install,

configure, upgrade and remove software

• System preparation: Entire computers can be cloned

Computer System, Organisation an Architecture

38

(copied) allowing multiple deployment of similar

configurations to be done quickly and easily

• Personalized menus: The Start menu is adapted to

the preferences of the user

• Troubleshooters: The troubleshooting wizards allow

you to configure, optimize and troubleshoot Windows

2000

• Encryption and security: Files can be encrypted for

greater protection. The standard security model for

NT applies to all files, folders and system resources.

Kerberos is also supported

• Additional device support: Support for USB, smart

cards, remote notebooks (such as hot docking), IrDA,

IEEE 1394, DVD and plug and plug devices

• Networking: Supports peer-to-peer communication

with Windows NT and Windows 9x networks. In

addition, UNIX services allow interoperability with

UNIX networks.

WINDOWS 2000 SERVER
Organizations can use Windows 2000 server to build reliable

scalable networks that support organizational requirements,

such as file and application servers, Web and Intranet servers,

e-mail and remote access servers and print servers.

GENERAL FEATURES OF WINDOWS 2000
SERVER

• Internet information Services 5.0: This provides the

functionality to easily host and manage web sites.

Active Server pages allow the creation of interactive

Computer System, Organisation an Architecture

39

web-based applications and the media services allow

the delivery of multimedia content across the Internet

or corporate Intranet.

• Active directory: The domain database implemented

in Windows NT is expanded to include additional

information and provides a repository for software

applications to store and retrieve information from.

• Terminal services: This allows users to run Windows

based applications on a Terminal server, taking

advantage of the extra processing power, from a remote

PC or Windows-based terminal.

• Remote Access

• Virtual Private Networks

• Disk quotas: This allows administrators to set limits

on disk space usage per user.

WINDOWS 2000 ADVANCED SERVER
Windows 2000 Advanced Server includes all the features

of Windows 2000 Server. It is designed for large-scale

networks requiring high reliability and for the provision of e-

commerce and line-of-business applications.

GENERAL FEATURES OF WINDOWS 2000
ADVANCED SERVER

Includes all the features of Windows 2000 Server plus:

• Support for up to eight processors

• Clustering: Supports both hardware and software

failures by mirroring servers

• Load Balancing: The load on servers can be

dynamically redistributed in the event of server failure

Computer System, Organisation an Architecture

40

OPERATING SYSTEMS WIDELY USED
ON PERSONAL COMPUTERS

The Operating System of a computer must be considered

when selecting Assistive Technology to be used to for

accessing the computer, or accessing information displayed

upon the computer monitor. It can be very frustrating to

have purchased an application— and learn it is not

compatible with the operating system of your computer.

The operating system of a computer performs basic tasks

such as: recognizing information from the keyboard and

mouse, sending information to the monitor, storing of

information to the hard drive, and controlling device

peripherals as printers and flatbed scanners.

Operating systems provide the basis for running common

applications such as word processors and Internet browsers.

Operating systems are also responsible for running Assistive

Technology applications such as screen magnifiers, and

applications that read text aloud.

INTERPROCESS COMMUNICATION

Since processes frequently needs to communicate with

other processes therefore, there is a need for a well-structured

communication, without using interrupts, among processes.

RACE CONDITIONS
In operating systems, processes that are working together share

some common storage (main memory, file etc.) that each process

can read and write. When two or more processes are reading or

writing some shared data and the final result depends on who

runs precisely when, are called race conditions. Concurrently

Computer System, Organisation an Architecture

41

executing threads that share data need to synchronize their

operations and processing in order to avoid race condition on

shared data. Only one ‘customer’ thread at a time should be

allowed to examine and update the shared variable.

CRITICAL SECTION

AVOIDING RACE CONDITIONS
The key to preventing trouble involving shared storage is

find some way to prohibit more than one process from reading

and writing the shared data simultaneously.
That part of the programme where the shared memory is

accessed is called the Critical Section. To avoid race conditions
and flawed results, one must identify codes in Critical Sections
in each thread.

The characteristic properties of the code that form a Critical

Section are:

• Codes that reference one or more variables in a “read-
update-write” fashion while any of those variables is
possibly being altered by another thread.

• Codes that alter one or more variables that are possibly
being referenced in “read-updata-write” fashion by
another thread.

• Codes use a data structure while any part of it is

possibly being altered by another thread.

• Codes alter any part of a data structure while it is

possibly in use by another thread.

MUTUAL EXCLUSION
A way of making sure that if one process is using a shared

modifiable data, the other processes will be excluded from

Computer System, Organisation an Architecture

42

doing the same thing. Formally, while one process executes

the shared variable, all other processes desiring to do so at

the same time moment should be kept waiting; when that

process has finished executing the shared variable, one of the

processes waiting; while that process has finished executing

the shared variable, one of the processes waiting to do so

should be allowed to proceed. In this fashion, each process

executing the shared data (variables) excludes all others from

doing so simultaneously. This is called Mutual Exclusion.

MUTUAL EXCLUSION CONDITIONS
If we could arrange matters such that no two processes were

ever in their critical sections simultaneously, we could avoid

race conditions.

We need four conditions to hold to have a good solution for the

critical section problem (mutual exclusion):

• No two processes may at the same moment inside

their critical sections.

• No assumptions are made about relative speeds of

processes or number of CPUs.

• No process should outside its critical section should

block other processes.

• No process should wait arbitrary long to enter its

critical section.

SEMAPHORES

DEFINITION
A semaphore is a protected variable whose value can be

accessed and altered only by the operations P and V and

Computer System, Organisation an Architecture

43

initialization operation called ‘Semaphoiinitislize’. Binary

Semaphores can assume only the value 0 or the value 1

counting semaphores also called general semaphores can

assume only nonnegative values.

The P (or wait or sleep or down) operation on semaphores

S, written as P(S) or wait (S), operates as follows:

• P(S): IF S > 0

• THEN S: = S-1

• ELSE (wait on S)

The V (or signal or wakeup or up) operation on semaphore

S, written as V(S) or signal (S), operates as follows:

• V(S): IF (one or more process are waiting on S)

• THEN (let one of these processes proceed)

• ELSE S:= S +1

Operations P and V are done as single, indivisible, atomic

action. It is guaranteed that once a semaphore operations

has stared, no other process can access the semaphore until

operation has completed. Mutual exclusion on the

semaphore, S, is enforced within P(S) and V(S). If several

processes attempt a P(S) simultaneously, only process will

be allowed to proceed. The other processes will be kept

waiting, but the implementation of P and V guarantees that

processes will not suffer indefinite postponement.

DEADLOCK

A set of process is in a deadlock state if each process in

the set is waiting for an event that can be caused by only

another process in the set. In other words, each member of

the set of deadlock processes is waiting for a resource that

Computer System, Organisation an Architecture

44

can be released only by a deadlock process. None of the

processes can run, none of them can release any resources,

and none of them can be awakened. It is important to note

that the number of processes and the number and kind of

resources possessed and requested are unimportant. The

resources may be either physical or logical. Examples of

physical resources are Printers, Tape Drivers, Memory Space,

and CPU Cycles. Examples of logical resources are Files,

Semaphores, and Monitors.

PREEMPTABLE AND NONPREEMPTABLE
RESOURCES

Resources come in two flavours: preemptable and

nonpreemptable. A preemptable resource is one that can be

taken away from the process with no ill effects. Memory is

an example of a preemptable resource.

On the other hand, a nonpreemptable resource is one that

cannot be taken away from process (without causing ill effect).

For example, CD resources are not preemptable at an arbitrary

moment.

Reallocating resources can resolve deadlocks that involve

preemptable resources. Deadlocks that involve

nonpreemptable resources are difficult to deal with.

NECESSARY AND SUFFICIENT DEADLOCK
CONDITIONS

Coffman identified four (4) conditions that must hold

simultaneously for there to be a deadlock:

• Mutual Exclusion Condition: The resources involved

are non-shareable.

Computer System, Organisation an Architecture

45

Explanation: At least one resource (thread) must be

held in a non-shareable mode, that is, only one process

at a time claims exclusive control of the resource. If

another process requests that resource, the requesting

process must be delayed until the resource has been

released.

• Hold and Wait Condition: Requesting process hold

already, resources while waiting for requested

resources.

Explanation: There must exist a process that is holding

a resource already allocated to it while waiting for

additional resource that are currently being held by

other processes.

• No-Preemptive Condition: Resources already allocated

to a process cannot be preempted.

Explanation: Resources cannot be removed from the

processes are used to completion or released

voluntarily by the process holding it.

• Circular Wait Condition: The processes in the system

form a circular list or chain where each process in

the list is waiting for a resource held by the next

process in the list. As an example, consider the traffic

deadlock in the following figure

DEALING WITH DEADLOCK PROBLEM
In general, there are four strategies of dealing with deadlock

problem:

• The Ostrich Approach: Just ignore the deadlock

problem altogether.

Computer System, Organisation an Architecture

46

• Deadlock Detection and Recovery: Detect deadlock

and, when it occurs, take steps to recover.

• Deadlock Avoidance: Avoid deadlock by careful

resource scheduling.

• Deadlock Prevention: Prevent deadlock by resource

scheduling so as to negate at least one of the four

conditions.

DEADLOCK DETECTION
Deadlock detection is the process of actually determining

that a deadlock exists and identifying the processes and

resources involved in the deadlock.

The basic idea is to check allocation against resource

availability for all possible allocation sequences to determine

if the system is in deadlocked state a. Of course, the deadlock

detection algorithm is only half of this strategy. Once a

deadlock is detected, there needs to be a way to recover

several alternatives exists:

• Temporarily prevent resources from deadlocked

processes.

• Back off a process to some check point allowing

preemption of a needed resource and restarting the

process at the checkpoint later.

• Successively kill processes until the system is deadlock

free.

These methods are expensive in the sense that each

iteration calls the detection algorithm until the system proves

to be deadlock free. The complexity of algorithm isO(N2)

where N is the number of proceeds. Another potential

problem is starvation; same process killed repeatedly.

Computer System, Organisation an Architecture

47

MEMORY MANAGEMENT

CONCEPT
The memory management subsystem is one of the most

important parts of the operating system. Since the early days
of computing, there has been a need for more memory than
exists physically in a system. Strategies have been developed
to overcome this limitation and the most successful of these
is virtual memory. Virtual memory makes the system appear
to have more memory than it actually has by sharing it
between competing processes as they need it.

LARGE ADDRESS SPACES
The operating system makes the system appear as if it

has a larger amount of memory than it actually has. The
virtual memory can be many times larger than the physical
memory in the system,

PROTECTION
Each process in the system has its own virtual address

space. These virtual address spaces are completely separate
from each other and so a process running one application
cannot affect another. Also, the hardware virtual memory
mechanisms allow areas of memory to be protected against
writing. This protects code and data from being overwritten
by rogue applications.

MEMORY MAPPING
Memory mapping is used to map image and data files into

a processes address space. In memory mapping, the contents

of a file are linked directly into the virtual address space of a

process.

Computer System, Organisation an Architecture

48

FAIR PHYSICAL MEMORY ALLOCATION
The memory management subsystem allows each running

process in the system a fair share of the physical memory of

the system,

SHARED VIRTUAL MEMORY
Although virtual memory allows processes to have separate

(virtual) address spaces, there are times when you need

processes to share memory. For example there could be several

processes in the system running the bash command shell.

Rather than have several copies of bash, one in each processes

virtual address space, it is better to have only one copy in

physical memory and all of the processes running bash share

it. Dynamic libraries are another common example of executing

code shared between several processes.

ABSTRACT MODEL OF VIRTUAL MEMORY
Before considering the methods that Linux uses to support

virtual memory it is useful to consider an abstract model

that is not cluttered by too much detail.

As the processor executes a programme it reads an

instruction from memory and decodes it. In decoding the

instruction it may need to fetch or store the contents of a

location in memory. The processor then executes the

instruction and moves onto the next instruction in the

programme. In this way the processor is always accessing

memory either to fetch instructions or to fetch and store data.

DEMAND PAGING
As there is much less physical memory than virtual

memory the operating system must be careful that it does

Computer System, Organisation an Architecture

49

not use the physical memory inefficiently. One way to save

physical memory is to only load virtual pages that are

currently being used by the executing programme.

For example, a database programme may be run to query

a database. In this case not all of the database needs to be

loaded into memory, just those data records that are being

examined. If the database query is a search query then it

does not make sense to load the code from the database

programme that deals with adding new records. This

technique of only loading virtual pages into memory as they

are accessed is known as demand paging.

SWAPPING
If a process needs to bring a virtual page into physical memory

and there are no free physical pages available, the operating

system must make room for this page by discarding another

page from physical memory. If the page to be discarded from

physical memory came from an image or data file and has not

been written to then the page does not need to be saved. Instead

it can be discarded and if the process needs that page again it

can be brought back into memory from the image or data file.

However, if the page has been modified, the operating

system must preserve the contents of that page so that it

can be accessed at a later time. This type of page is known

as a dirty page and when it is removed from memory it is

saved in a special sort of file called the swap file. Accesses to

the swap file are very long relative to the speed of the

processor and physical memory and the operating system

must juggle the need to write pages to disk with the need to

retain them in memory to be used again.

Computer System, Organisation an Architecture

50

SHARED VIRTUAL MEMORY
Virtual memory makes it easy for several processes to share

memory. All memory access are made via page tables and

each process has its own separate page table. For two

processes sharing a physical page of memory, its physical

page frame number must appear in a page table entry in both

of their page tables shows two processes that each share

physical page frame number 4. For process X this is virtual

page frame number 4 whereas for process Y this is virtual

page frame number 6. This illustrates an interesting point

about sharing pages: the shared physical page does not have

to exist at the same place in virtual memory for any or all of

the processes sharing it.

Computer System, Organisation an Architecture

51

2

Computer Organization

MULTICORE DESIGNS

A different approach to improving a computer’s

performance is to add extra processors, as in symmetric

multiprocessing designs which have been popular in servers

and workstations since the early 1990s. Keeping up with

Moore’s Law is becoming increasingly challenging as chip-

making technologies approach the physical limits of the

technology. In response, the microprocessor manufacturers

look for other ways to improve performance, in order to hold

on to the momentum of constant upgrades in the market.

A multi-core processor is simply a single chip containing

more than one microprocessor core, effectively multiplying

the potential performance with the number of cores (as long

as the operating system and software is designed to take

advantage of more than one processor). Some components,

Computer System, Organisation an Architecture

52

such as bus interface and second level cache, may be

shared between cores. Because the cores are physically very

close they interface at much faster clock rates compared

to discrete multiprocessor systems, improving overall system

performance.

In 2005, the first personal computer dual-core processors

were announced and as of 2009 dual-core and quad-core

processors are widely used in servers, workstations and

PCs while six and eight-core processors will be available for

high-end applications in both the home and professional

environments. Sun Microsystems has released the Niagara

and Niagara 2 chips, both of which feature an eight-core

design. The Niagara 2 supports more threads and operates

at 1.6 GHz. High-end Intel Xeon processors that are on the

LGA771 socket are DP (dual processor) capable, as well as

the Intel Core 2 Extreme QX9775 also used in the Mac Pro

by Apple and the Intel Skulltrail motherboard. With the

transition to the LGA1366 socket and the Intel i7 chip quad

core is now considered mainstream and the upcoming i9

chip will introduce six and possibly dual-die hex-core (12-

cores), processors.

RISC

In the mid-1980s to early-1990s, a crop of new high-

performance Reduced Instruction Set Computer (RISC)

microprocessors appeared, influenced by discrete RISC-like

CPU designs such as the IBM 801 and others. RISC

microprocessors were initially used in special-purpose

machines and Unix workstations, but then gained wide

acceptance in other roles.

Computer System, Organisation an Architecture

53

In 1986, HP released its first system with a PA-RISC

CPU. The first commercial microprocessor design was

released either by MIPS Computer Systems, the 32-bit R2000

(the R1000 was not released) or by Acorn computers, the

32-bit ARM2 in 1987. The R3000 made the design truly

practical, and the R4000 introduced the world’s first

commercially available 64-bit RISC microprocessor.

Competing projects would result in the IBM POWER and

Sun SPARC architectures. Soon every major vendor was

releasing a RISC design, including the AT&T CRISP, AMD

29000, Intel i860 and Intel i960, Motorola 88000, DEC

Alpha. As of 2007, two 64-bit RISC architectures are still

produced in volume for non-embedded applications: SPARC

and Power ISA. The Itanium is produced in smaller quantities.

The vast majority of 64-bit microprocessors are now x86-

64 CISC designs from AMD and Intel.

SPECIAL-PURPOSE DESIGNS

Though the term “microprocessor” has traditionally

referred to a single-or multi-chip CPU or system-on-a-chip

(SoC), several types of specialized processing devices have

followed from the technology. The most common examples

are microcontrollers, digital signal processors (DSP) and

graphics processing units (GPU). Many examples of these

are either not programmable, or have limited programming

facilities. For example, in general GPUs through the 1990s

were mostly non-programmable and have only recently

gained limited facilities like programmable vertex shaders.

There is no universal consensus on what defines a

“microprocessor”, but it is usually safe to assume that the

Computer System, Organisation an Architecture

54

term refers to a general-purpose CPU of some sort and not

a special-purpose processor unless specifically noted.

MARKET STATISTICS

In 2003, about $44 billion (USD) worth of microprocessors

were manufactured and sold. Although about half of that

money was spent on CPUs used in desktop or laptop personal

computers, those count for only about 0.2% of all CPUs

sold.

About 55% of all CPUs sold in the world are 8-bit

microcontrollers, over two billion of which were sold in

1997. As of 2002, less than 10% of all the CPUs sold in

the world are 32-bit or more. Of all the 32-bit CPUs sold,

about 2% are used in desktop or laptop personal computers.

Most microprocessors are used in embedded control

applications such as household appliances, automobiles,

and computer peripherals. Taken as a whole, the average

price for a microprocessor, microcontroller, or DSP is just

over $6. About ten billion CPUs were manufactured in

2008. About 98% of new CPUs produced each year are

embedded.

MICROCONTROLLER

A microcontroller (also microcontroller unit, MCU or μC)

is a small computer on a single integrated circuit consisting

of a relatively simple CPU combined with support functions

such as a crystal oscillator, timers, watchdog timer, serial

and analog I/O etc. Program memory in the form of NOR

flash or OTP ROM is also often included on chip, as well

as a typically small amount of RAM. Microcontrollers are

Computer System, Organisation an Architecture

55

designed for small or dedicated applications. Thus, in

contrast to the microprocessors used in personal computers

and other high-performance or general purpose applications,

simplicity is emphasized. Some microcontrollers may operate

at clock rate frequencies as low as 4 kHz, as this is adequate

for many typical applications, enabling low power

consumption (milliwatts or microwatts). They will generally

have the ability to retain functionality while waiting for an

event such as a button press or other interrupt; power

consumption while sleeping (CPU clock and most peripherals

off) may be just nanowatts, making many of them well

suited for long lasting battery applications. Other

microcontrollers may serve performance-critical roles, where

they may need to act more like a digital signal processor

(DSP), with higher clock speeds and power consumption.

Microcontrollers are used in automatically controlled

products and devices, such as automobile engine control

systems, remote controls, office machines, appliances, power

tools, and toys. By reducing the size and cost compared to

a design that uses a separate microprocessor, memory, and

input/output devices, microcontrollers make it economical

to digitally control even more devices and processes. Mixed

signal microcontrollers are common, integrating analog

components needed to control non-digital electronic systems.

EMBEDDED DESIGN

A microcontroller can be considered a self-contained

system with a processor, memory and peripherals and can

be used with an embedded system. (Only the software needs

be added.) The majority of computer systems in use today

Computer System, Organisation an Architecture

56

are embedded in other machinery, such as automobiles,

telephones, appliances, and peripherals for computer

systems. These are called embedded systems. While some

embedded systems are very sophisticated, many have

minimal requirements for memory and program length,

with no operating system, and low software complexity.

Typical input and output devices include switches, relays,

solenoids, LEDs, small or custom LCD displays, radio

frequency devices, and sensors for data such as temperature,

humidity, light level etc. Embedded systems usually have

no keyboard, screen, disks, printers, or other recognizable

I/O devices of a personal computer, and may lack human

interaction devices of any kind.

INTERRUPTS

Microcontrollers must provide real time (predictable,

though not necessarily fast) response to events in the

embedded system they are controlling. When certain events

occur, an interrupt system can signal the processor to

suspend processing the current instruction sequence and

to begin an interrupt service routine (ISR, or “interrupt

handler”). The ISR will perform any processing required

based on the source of the interrupt before returning to the

original instruction sequence. Possible interrupt sources

are device dependent, and often include events such as an

internal timer overflow, completing an analog to digital

conversion, a logic level change on an input such as from

a button being pressed, and data received on a

communication link. Where power consumption is important

as in battery operated devices, interrupts may also wake

Computer System, Organisation an Architecture

57

a microcontroller from a low power sleep state where the

processor is halted until required to do something by a

peripheral event.

MULTIPROCESSING AND MULTITHREADING

Computer architects have become stymied by the growing

mismatch in CPU operating frequencies and DRAM access

times. None of the techniques that exploited instruction-

level parallelism within one program could make up for the

long stalls that occurred when data had to be fetched from

main memory. Additionally, the large transistor counts and

high operating frequencies needed for the more advanced

ILP techniques required power dissipation levels that could

no longer be cheaply cooled. For these reasons, newer

generations of computers have started to exploit higher

levels of parallelism that exist outside of a single program

or program thread. This trend is sometimes known as

throughput computing. This idea originated in the mainframe

market where online transaction processing emphasized

not just the execution speed of one transaction, but the

capacity to deal with massive numbers of transactions.

With transaction-based applications such as network routing

and website serving greatly increasing in the last decade,

the computer industry has re-emphasized capacity and

throughput issues.

One technique of how this parallelism is achieved is

through multiprocessing systems, computer systems with

multiple CPUs. Once reserved for high-end mainframes and

supercomputers, small scale (2-8) multiprocessors servers

have become commonplace for the small business market.

Computer System, Organisation an Architecture

58

For large corporations, large scale (16-256) multiprocessors

are common. Even personal computers with multiple CPUs

have appeared since the 1990s.

With further transistor size reductions made available

with semiconductor technology advances, multicore CPUs

have appeared where multiple CPUs are implemented on

the same silicon chip. Initially used in chips targeting

embedded markets, where simpler and smaller CPUs would

allow multiple instantiations to fit on one piece of silicon.

By 2005, semiconductor technology allowed dual high-end

desktop CPUs CMP chips to be manufactured in volume.

Some designs, such as Sun Microsystems’ UltraSPARC T1

have reverted back to simpler (scalar, in-order) designs in

order to fit more processors on one piece of silicon.

Another technique that has become more popular recently

is multithreading. In multithreading, when the processor

has to fetch data from slow system memory, instead of

stalling for the data to arrive, the processor switches to

another program or program thread which is ready to

execute. Though this does not speed up a particular

program/thread, it increases the overall system throughput

by reducing the time the CPU is idle.

Conceptually, multithreading is equivalent to a context

switch at the operating system level. The difference is that

a multithreaded CPU can do a thread switch in one CPU

cycle instead of the hundreds or thousands of CPU cycles

a context switch normally requires. This is achieved by

replicating the state hardware (such as the register file and

program counter) for each active thread. A further

Computer System, Organisation an Architecture

59

enhancement is simultaneous multithreading. This

technique allows superscalar CPUs to execute instructions

from different programs/threads simultaneously in the same

cycle.

MICROPROCESSOR

A microprocessor incorporates most or all of the functions

of a central processing unit (CPU) on a single integrated

circuit (IC). The first microprocessors emerged in the early

1970s and were used for electronic calculators, using binary-

coded decimal (BCD) arithmetic on 4-bit words. Other

embedded uses of 4-and 8-bit microprocessors, such as

terminals, printers, various kinds of automation etc, followed

rather quickly. Affordable 8-bit microprocessors with 16-bit

addressing also led to the first general purpose

microcomputers in the mid-1970s.

Computer processors were for a long period constructed

out of small and medium-scale ICs containing the equivalent

of a few to a few hundred transistors. The integration of the

whole CPU onto a single chip therefore greatly reduced the

cost of processing capacity. From their humble beginnings,

continued increases in microprocessor capacity have

rendered other forms of computers almost completely

obsolete, with one or more microprocessor as processing

element in everything from the smallest embedded systems

and handheld devices to the largest mainframes and

supercomputers.

Since the early 1970s, the increase in capacity of

microprocessors has been known to generally follow Moore’s

Law, which suggests that the complexity of an integrated

Computer System, Organisation an Architecture

60

circuit, with respect to minimum component cost, doubles

every two years. In the late 1990s, and in the high-

performance microprocessor segment, heat generation (TDP),

due to switching losses, static current leakage, and other

factors, emerged as a leading developmental constraint.

HISTORY

FIRST TYPES

Three projects arguably delivered a complete

microprocessor at about the same time, namely Intel’s 4004,

the Texas Instruments (TI) TMS 1000, and Garrett

AiResearch’s Central Air Data Computer (CADC). Intel’s

4004 is considered the first microprocesor, and cost in the

thousands of dollars. The first known advertisement for the

4004 is dated to November 1971; it appeared in Electronic

News. The project that produced the 4004 originated in

1969, when Busicom, a Japanese calculator manufacturer,

asked Intel to build a chipset for high-performance desktop

calculators. Busicom’s original design called for a dozen

different logic and memory chips. Ted Hoff, the Intel engineer

assigned to the project, believed the design was not cost

effective. His solution was to simplify the design and produce

a programmable processor capable of creating a set of

complex special-purpose calculator chips. Together with

Masatoshi Shima and Federico Faggin, later the founder of

Zilog, Hoff came up with a four-chip design; a ROM for

custom application programs, a RAM for processing data,

an I/O device, and an unnamed 4-bit central processing

unit which would become known as a “microprocessor.”

Computer System, Organisation an Architecture

61

The Smithsonian Institution says TI engineers Gary Boone

and Michael Cochran succeeded in creating the first

microcontroller (also called a microcomputer) in 1971. The

result of their work was the TMS 1000 which went

commercial in 1974.

In early 1971 Pico Electronics. and General Instrument

introduced their first collaboration in ICs, a complete single

chip calculator IC for the Monroe Royal Digital III calculator.

This IC could also arguably lay claim to be one of the first

microprocessors or microcontrollers having ROM, RAM and

a RISC instruction set on-chip. Pico was a spinout by five

GI design engineers whose vision was to create single chip

calculator ICs. They had significant previous design

experience on multiple calculator chipsets with both GI and

Marconi-Elliott. Pico and GI went on to have significant

success in the burgeoning handheld calculator market.

The design engineer Ray Holt, a graduate of California

Polytechnical University in 1968, began his computer design

career with the F14 CADC. The central air data computer

was shrouded in secrecy for over 30 years from its creation

(the year being 1968), it was not publicly known until 1998

at which time, at the request of Mr. Ray Holt, the US Navy

allowed the documents into the public domain. Since then

many debates have argued that this was, in fact, the first

microprocessor. The scientific papers and literature

published around 1971 reveal that the MP944 digital

processor used for the F-14 Tomcat aircraft of the US Navy

qualifies as the “first microprocessor”. Although interesting,

it was not a single-chip processor, and was not general

purpose – it was more like a set of parallel building blocks

Computer System, Organisation an Architecture

62

you could use to make a special-purpose DSP form. It

indicates that today’s industry theme of converging DSP-

microcontroller architectures was started in 1971. This

convergence of DSP and microcontroller architectures is

known as a Digital Signal Controller.

In 1968, Garrett AiResearch, with designer Ray Holt and

Steve Geller, were invited to produce a digital computer to

compete with electromechanical systems then under

development for the main flight control computer in the US

Navy’s new F-14 Tomcat fighter. The design was complete

by 1970, and used a MOS-based chipset as the core CPU.

The design was significantly (approximately 20 times) smaller

and much more reliable than the mechanical systems it

competed against, and was used in all of the early Tomcat

models. This system contained a “a 20-bit, pipelined, parallel

multi-microprocessor”. However, the system was considered

so advanced that the Navy refused to allow publication of

the design until 1997. For this reason the CADC, and the

MP944 chipset it used, are fairly unknown even today. TI

developed the 4-bit TMS 1000, and stressed pre-programmed

embedded applications, introducing a version called the

TMS1802NC on September 17, 1971, which implemented

a calculator on a chip. The Intel chip was the 4-bit 4004,

released on November 15, 1971, developed by Federico

Faggin and Ted Hoff. The manager of the design team was

Leslie L. Vadász.

TI filed for the patent on the microprocessor. Gary Boone

was awarded U.S. Patent 3,757,306 for the single-chip

microprocessor architecture on September 4, 1973. It may

never be known which company actually had the first working

Computer System, Organisation an Architecture

63

microprocessor running on the lab bench. In both 1971 and

1976, Intel and TI entered into broad patent cross-licensing

agreements, with Intel paying royalties to TI for the

microprocessor patent. A nice history of these events is

contained in court documentation from a legal dispute

between Cyrix and Intel, with TI as intervenor and owner

of the microprocessor patent.

Interestingly, a third party (Gilbert Hyatt) was awarded

a patent which might cover the “microprocessor”. See a

webpage claiming an invention pre-dating both TI and Intel,

describing a “microcontroller”. According to a rebuttal and

a commentary, the patent was later invalidated, but not

before substantial royalties were paid out.

A computer-on-a-chip is a variation of a microprocessor

which combines the microprocessor core (CPU), some

memory, and I/O (input/output) lines, all on one chip.It is

also called as micro-controller. The computer-on-a-chip

patent, called the “microcomputer patent” at the time, U.S.

Patent 4,074,351, was awarded to Gary Boone and Michael

J. Cochran of TI. Aside from this patent, the standard

meaning of microcomputer is a computer using one or more

microprocessors as its CPU(s), while the concept defined in

the patent is perhaps more akin to a microcontroller.

According to A History of Modern Computing, (MIT Press),

pp. 220–21, Intel entered into a contract with Computer

Terminals Corporation, later called Datapoint, of San Antonio

TX, for a chip for a terminal they were designing. Datapoint

later decided not to use the chip, and Intel marketed it as

the 8008 in April, 1972. This was the world’s first 8-bit

microprocessor. It was the basis for the famous “Mark-8”

Computer System, Organisation an Architecture

64

computer kit advertised in the magazine Radio-Electronics

in 1974. The 8008 and its successor, the world-famous

8080, opened up the microprocessor component

marketplace.

NOTABLE 8-BIT DESIGNS

The 4004 was later followed in 1972 by the 8008, the

world’s first 8-bit microprocessor. These processors are the

precursors to the very successful Intel 8080 (1974), Zilog

Z80 (1976), and derivative Intel 8-bit processors. The

competing Motorola 6800 was released August 1974 and

the similar MOS Technology 6502 in 1975 (designed largely

by the same people). The 6502 rivaled the Z80 in popularity

during the 1980s.

A low overall cost, small packaging, simple computer bus

requirements, and sometimes circuitry otherwise provided

by external hardware (the Z80 had a built in memory

refresh) allowed the home computer “revolution” to accelerate

sharply in the early 1980s, eventually delivering such

inexpensive machines as the Sinclair ZX-81, which sold for

US$99.

The Western Design Centre, Inc. (WDC) introduced the

CMOS 65C02 in 1982 and licensed the design to several

firms. It was used as the CPU in the Apple IIc and IIe

personal computers as well as in medical implantable grade

pacemakers and defibrilators, automotive, industrial and

consumer devices. WDC pioneered the licensing of

microprocessor designs, later followed by ARM and other

microprocessor Intellectual Property (IP) providers in the

1990’s.

Computer System, Organisation an Architecture

65

Motorola introduced the MC6809 in 1978, an ambitious

and thought through 8-bit design source compatible with

the 6800 and implemented using purely hard-wired logic.

(Subsequent 16-bit microprocessors typically used microcode

to some extent, as design requirements were getting too

complex for purely hard-wired logic only.)

Another early 8-bit microprocessor was the Signetics

2650, which enjoyed a brief surge of interest due to its

innovative and powerful instruction set architecture.

A seminal microprocessor in the world of spaceflight was

RCA’s RCA 1802 (aka CDP1802, RCA COSMAC) (introduced

in 1976) which was used in NASA’s Voyager and Viking

spaceprobes of the 1970s, and onboard the Galileo probe

to Jupiter (launched 1989, arrived 1995). RCA COSMAC

was the first to implement C-MOS technology. The CDP1802

was used because it could be run at very low power, and

because its production process (Silicon on Sapphire) ensured

much better protection against cosmic radiation and

electrostatic discharges than that of any other processor of

the era. Thus, the 1802 is said to be the first radiation-

hardened microprocessor.

The RCA 1802 had what is called a static design, meaning

that the clock frequency could be made arbitrarily low,

even to 0 Hz, a total stop condition. This let the Voyager/

Viking/Galileo spacecraft use minimum electric power for

long uneventful stretches of a voyage. Timers and/or

sensors would awaken/improve the performance of the

processor in time for important tasks, such as navigation

updates, attitude control, data acquisition, and radio

communication.

Computer System, Organisation an Architecture

66

16-BIT DESIGNS

The first multi-chip 16-bit microprocessor was the

National Semiconductor IMP-16, introduced in early 1973.

An 8-bit version of the chipset was introduced in 1974 as

the IMP-8. During the same year, National introduced the

first 16-bit single-chip microprocessor, the National

Semiconductor PACE, which was later followed by an NMOS

version, the INS8900.

Other early multi-chip 16-bit microprocessors include

one used by Digital Equipment Corporation (DEC) in the

LSI-11 OEM board set and the packaged PDP 11/03

minicomputer, and the Fairchild Semiconductor MicroFlame

9440, both of which were introduced in the 1975 to 1976

timeframe.

The first single-chip 16-bit microprocessor was TI’s TMS

9900, which was also compatible with their TI-990 line of

minicomputers. The 9900 was used in the TI 990/4

minicomputer, the TI-99/4A home computer, and the TM990

line of OEM microcomputer boards. The chip was packaged

in a large ceramic 64-pin DIP package, while most 8-bit

microprocessors such as the Intel 8080 used the more

common, smaller, and less expensive plastic 40-pin DIP. A

follow-on chip, the TMS 9980, was designed to compete

with the Intel 8080, had the full TI 990 16-bit instruction

set, used a plastic 40-pin package, moved data 8 bits at

a time, but could only address 16 KB. A third chip, the TMS

9995, was a new design. The family later expanded to

include the 99105 and 99110. The Western Design Centre,

Inc. (WDC) introduced the CMOS 65816 16-bit upgrade of

the WDC CMOS 65C02 in 1984. The 65816 16-bit

Computer System, Organisation an Architecture

67

microprocessor was the core of the Apple IIgs and later the

Super Nintendo Entertainment System, making it one of

the most popular 16-bit designs of all time.

Intel followed a different path, having no minicomputers

to emulate, and instead “upsized” their 8080 design into the

16-bit Intel 8086, the first member of the x86 family which

powers most modern PC type computers. Intel introduced

the 8086 as a cost effective way of porting software from

the 8080 lines, and succeeded in winning much business

on that premise. The 8088, a version of the 8086 that used

an external 8-bit data bus, was the microprocessor in the

first IBM PC, the model 5150. Following up their 8086 and

8088, Intel released the 80186, 80286 and, in 1985, the

32-bit 80386, cementing their PC market dominance with

the processor family’s backwards compatibility.

The integrated microprocessor memory management unit

(MMU) was developed by Childs et al. of Intel, and awarded

US patent number 4,442,484.

32-BIT DESIGNS

The most significant of the 32-bit designs is the MC68000,

introduced in 1979. The 68K, as it was widely known, had

32-bit registers but used 16-bit internal data paths and a

16-bit external data bus to reduce pin count, and supported

only 24-bit addresses. Motorola generally described it as a

16-bit processor, though it clearly has 32-bit architecture.

The combination of high performance, large (16 megabytes

or 224 bytes) memory space and fairly low cost made it the

most popular CPU design of its class. The Apple Lisa and

Macintosh designs made use of the 68000, as did a host

Computer System, Organisation an Architecture

68

of other designs in the mid-1980s, including the Atari ST

and Commodore Amiga.

The world’s first single-chip fully-32-bit microprocessor,

with 32-bit data paths, 32-bit buses, and 32-bit addresses,

was the AT&T Bell Labs BELLMAC-32A, with first samples

in 1980, and general production in 1982. After the divestiture

of AT&T in 1984, it was renamed the WE 32000 (WE for

Western Electric), and had two follow-on generations, the

WE 32100 and WE 32200. These microprocessors were

used in the AT&T 3B5 and 3B15 minicomputers; in the

3B2, the world’s first desktop supermicrocomputer; in the

“Companion”, the world’s first 32-bit laptop computer; and

in “Alexander”, the world’s first book-sized

supermicrocomputer, featuring ROM-pack memory

cartridges similar to today’s gaming consoles. All these

systems ran the UNIX System V operating system.

Intel’s first 32-bit microprocessor was the iAPX 432,

which was introduced in 1981 but was not a commercial

success. It had an advanced capability-based object-oriented

architecture, but poor performance compared to

contemporary architectures such as Intel’s own 80286

(introduced 1982), which was almost four times as fast on

typical benchmark tests. However, the results for the iAPX432

was partly due to a rushed and therefore suboptimal Ada

compiler.

Motorola’s success with the 68000 led to the MC68010,

which added virtual memory support. The MC68020,

introduced in 1985 added full 32-bit data and address

busses. The 68020 became hugely popular in the Unix

supermicrocomputer market, and many small companies

Computer System, Organisation an Architecture

69

(e.g., Altos, Charles River Data Systems) produced desktop-

size systems. The MC68030 was introduced next, improving

upon the previous design by integrating the MMU into the

chip. The continued success led to the MC68040, which

included an FPU for better math performance. A 68050

failed to achieve its performance goals and was not released,

and the follow-up MC68060 was released into a market

saturated by much faster RISC designs. The 68K family

faded from the desktop in the early 1990s.

Other large companies designed the 68020 and follow-

ons into embedded equipment. At one point, there were

more 68020s in embedded equipment than there were Intel

Pentiums in PCs. The ColdFire processor cores are derivatives

of the venerable 68020.

During this time (early to mid 1980s), National

Semiconductor introduced a very similar 16-bit pinout, 32-

bit internal microprocessor called the NS 16032 (later

renamed 32016), the full 32-bit version named the NS

32032, and a line of 32-bit industrial OEM microcomputers.

By the mid-1980s, Sequent introduced the first symmetric

multiprocessor (SMP) server-class computer using the NS

32032. This was one of the design’s few wins, and it

disappeared in the late 1980s.

The MIPS R2000 (1984) and R3000 (1989) were highly

successful 32-bit RISC microprocessors. They were used in

high-end workstations and servers by SGI, among others.

Other designs included the interesting Zilog Z8000, which

arrived too late to market to stand a chance and disappeared

quickly.

Computer System, Organisation an Architecture

70

In the late 1980s, “microprocessor wars” started killing

off some of the microprocessors. Apparently, with only one

major design win, Sequent, the NS 32032 just faded out

of existence, and Sequent switched to Intel microprocessors.

From 1985 to 2003, the 32-bit x86 architectures became

increasingly dominant in desktop, laptop, and server

markets, and these microprocessors became faster and

more capable. Intel had licensed early versions of the

architecture to other companies, but declined to license the

Pentium, so AMD and Cyrix built later versions of the

architecture based on their own designs. During this span,

these processors increased in complexity (transistor count)

and capability (instructions/second) by at least three orders

of magnitude. Intel’s Pentium line is probably the most

famous and recognizable 32-bit processor model, at least

with the public at large.

64-BIT DESIGNS IN PERSONAL COMPUTERS

While 64-bit microprocessor designs have been in use

in several markets since the early 1990s, the early 1990s.

saw the introduction of 64-bit microprocessors targeted at

the PC market.

With AMD’s introduction of a 64-bit architecture

backwards-compatible with x86, x86-64 (now called AMD64),

in September 2003, followed by Intel’s near fully compatible

64-bit extensions (first called IA-32e or EM64T, later renamed

Intel 64), the 64-bit desktop era began. Both versions can

run 32-bit legacy applications without any performance

penalty as well as new 64-bit software. With operating

systems Windows XP x64, Windows Vista x64, Linux, BSD

Computer System, Organisation an Architecture

71

and Mac OS X that run 64-bit native, the software is also

geared to fully utilize the capabilities of such processors.

The move to 64 bits is more than just an increase in register

size from the IA-32 as it also doubles the number of general-

purpose registers.

The move to 64 bits by PowerPC processors had been

intended since the processors’ design in the early 90s and

was not a major cause of incompatibility. Existing integer

registers are extended as are all related data pathways, but,

as was the case with IA-32, both floating point and vector

units had been operating at or above 64 bits for several

years. Unlike what happened when IA-32 was extended to

x86-64, no new general purpose registers were added in 64-

bit PowerPC, so any performance gained when using the

64-bit mode for applications making no use of the larger

address space is minimal.

RELATION TO INSTRUCTION SET
ARCHITECTURE

The ISA is roughly the same as the programming model

of a processor as seen by an assembly language programmer

or compiler writer. The ISA includes the execution model,

processor registers, address and data formats among other

things. The microarchitecture includes the constituent parts

of the processor and how these interconnect and interoperate

to implement the ISA.

The microarchitecture of a machine is usually represented

as (more or less detailed) diagrams that describe the

interconnections of the various microarchitectual elements

of the machine, which may be everything from single gates

Computer System, Organisation an Architecture

72

and registers, to complete ALUs and even larger elements.

These diagrams generally separate the data path (where

data is placed) and the control path (which can be said to

steer the data). Machines with different microarchitectures

may have the same instruction set architecture, and thus

be capable of executing the same programs. New

microarchitectures and/or circuitry solutions, along with

advances in semiconductor manufacturing, are what allows

newer generations of processors to achieve higher

performance while using the same ISA.

ASPECTS OF MICROARCHITECTURE

The pipelined datapath is the most commonly used

datapath design in microarchitecture today. This technique

is used in most modern microprocessors, microcontrollers,

and DSPs. The pipelined architecture allows multiple

instructions to overlap in execution, much like an assembly

line. The pipeline includes several different stages which are

fundamental in microarchitecture designs. Some of these

stages include instruction fetch, instruction decode, execute,

and write back. Some architectures include other stages

such as memory access. The design of pipelines is one of

the central microarchitectural tasks.

Execution units are also essential to microarchitecture.

Execution units include arithmetic logic units (ALU), floating

point units (FPU), load/store units, branch prediction, and

SIMD. These units perform the operations or calculations

of the processor. The choice of the number of execution

units, their latency and throughput is a central

microarchitectural design task. The size, latency, throughput

Computer System, Organisation an Architecture

73

and connectivity of memories within the system are also

microarchitectural decisions. System-level design decisions

such as whether or not to include peripherals, such as

memory controllers, can be considered part of the

microarchitectural design process. This includes decisions

on the performance-level and connectivity of these

peripherals. Unlike architectural design, where achieving a

specific performance level is the main goal,

microarchitectural design pays closer attention to other

constraints. Since microarchitecture design decisions directly

affect what goes into a system, attention must be paid to

such issues as:

• chip area/cost

• power consumption

• logic complexity

• ease of connectivity

• manufacturability

• ease of debugging

• testability.

MICROARCHITECTURAL CONCEPTS

In general, all CPUs, single-chip microprocessors or multi-

chip implementations run programs by performing the

following steps:

1. read an instruction and decode it

2. find any associated data that is needed to process the

instruction

3. process the instruction

4. write the results out.

Computer System, Organisation an Architecture

74

Complicating this simple-looking series of steps is the

fact that the memory hierarchy, which includes caching,

main memory and non-volatile storage like hard disks,

(where the program instructions and data reside) has always

been slower than the processor itself. Step (2) often

introduces a lengthy (in CPU terms) delay while the data

arrives over the computer bus. A considerable amount of

research has been put into designs that avoid these delays

as much as possible. Over the years, a central goal was to

execute more instructions in parallel, thus increasing the

effective execution speed of a program. These efforts

introduced complicated logic and circuit structures. Initially

these techniques could only be implemented on expensive

mainframes or supercomputers due to the amount of

circuitry needed for these techniques. As semiconductor

manufacturing progressed, more and more of these

techniques could be implemented on a single semiconductor

chip.

What follows is a survey of micro-architectural techniques

that are common in modern CPUs.

INSTRUCTION SET CHOICE

Instruction sets have shifted over the years, from originally

very simple to sometimes very complex (in various respects).

In recent years, load-store architectures, VLIW and EPIC

types have been in fashion. Architectures that are dealing

with data parallelism include SIMD and Vectors. Some

labels used to denote classes of CPU architectures are not

particularity descriptive, especially so the CISC label; many

early designs, retroactively denoted “CISC” are in fact

Computer System, Organisation an Architecture

75

significantly simpler than modern RISC processors (in several

respects). However, the choice of instruction set architecture

may greatly affect the complexity of implementing high

performance devices. The prominent strategy, used to develop

the first RISC processors, was to simplify instructions to

a minimum of individual semantic complexity combined

with high encoding regularity and simplicity. Such uniform

instructions were easily fetched, decoded and executed in

a pipelined fashion and a simple strategy to reduce the

number of logic levels in order to reach high operating

frequencies; instruction cache-memories compensated for

the higher operating frequency and inherently low code

density while large register sets were used to factor out as

much of the (slow) memory accesses as possible.

INSTRUCTION PIPELINING

One of the first, and most powerful, techniques to improve

performance is the use of the instruction pipeline. Early

processor designs would carry out all of the steps above for

one instruction before moving onto the next. Large portions

of the circuitry were left idle at any one step; for instance,

the instruction decoding circuitry would be idle during

execution and so on.

Pipelines improve performance by allowing a number of

instructions to work their way through the processor at the

same time. In the same basic example, the processor would

start to decode (step 1) a new instruction while the last one

was waiting for results. This would allow up to four

instructions to be “in flight” at one time, making the processor

look four times as fast. Although any one instruction takes

Computer System, Organisation an Architecture

76

just as long to complete (there are still four steps) the CPU

as a whole “retires” instructions much faster and can be

run at a much higher clock speed.

RISC make pipelines smaller and much easier to construct

by cleanly separating each stage of the instruction process

and making them take the same amount of time — one

cycle. The processor as a whole operates in an assembly

line fashion, with instructions coming in one side and

results out the other. Due to the reduced complexity of the

Classic RISC pipeline, the pipelined core and an instruction

cache could be placed on the same size die that would

otherwise fit the core alone on a CISC design. This was the

real reason that RISC was faster. Early designs like the

SPARC and MIPS often ran over 10 times as fast as Intel

and Motorola CISC solutions at the same clock speed and

price.

Pipelines are by no means limited to RISC designs. By

1986 the top-of-the-line VAX implementation (VAX 8800)

was a heavily pipelined design, slightly predating the first

commercial MIPS and SPARC designs. Most modern CPUs

(even embedded CPUs) are now pipelined, and microcoded

CPUs with no pipelining are seen only in the most area-

constrained embedded processors. Large CISC machines,

from the VAX 8800 to the modern Pentium 4 and Athlon,

are implemented with both microcode and pipelines.

Improvements in pipelining and caching are the two major

microarchitectural advances that have enabled processor

performance to keep pace with the circuit technology on

which they are based.

Computer System, Organisation an Architecture

77

CACHE

It was not long before improvements in chip

manufacturing allowed for even more circuitry to be placed

on the die, and designers started looking for ways to use

it. One of the most common was to add an ever-increasing

amount of cache memory on-die. Cache is simply very fast

memory, memory that can be accessed in a few cycles as

opposed to “many” needed to talk to main memory. The CPU

includes a cache controller which automates reading and

writing from the cache, if the data is already in the cache

it simply “appears,” whereas if it is not the processor is

“stalled” while the cache controller reads it in.

RISC designs started adding cache in the mid-to-late

1980s, often only 4 KB in total. This number grew over time,

and typical CPUs now have at least 512 KB, while more

powerful CPUs come with 1 or 2 or even 4, 6, 8 or 12 MB,

organized in multiple levels of a memory hierarchy. Generally

speaking, more cache means more performance, thanks to

reduced stalling. Caches and pipelines were a perfect match

for each other. Previously, it didn’t make much sense to

build a pipeline that could run faster than the access

latency of off-chip memory. Using on-chip cache memory

instead, meant that a pipeline could run at the speed of the

cache access latency, a much smaller length of time. This

allowed the operating frequencies of processors to increase

at a much faster rate than that of off-chip memory.

BRANCH PREDICTION

One barrier to achieving higher performance through

instruction-level parallelism stems from pipeline stalls and

Computer System, Organisation an Architecture

78

flushes due to branches. Normally, whether a conditional

branch will be taken isn’t known until late in the pipeline

as conditional branches depend on results coming from a

register. From the time that the processor’s instruction

decoder has figured out that it has encountered a conditional

branch instruction to the time that the deciding register

value can be read out, the pipeline needs to be stalled for

several cycles, or if it’s not and the branch is taken, the

pipeline needs to be flushed. As clock speeds increase the

depth of the pipeline increases with it, and some modern

processors may have 20 stages or more. On average, every

fifth instruction executed is a branch, so without any

intervention, that’s a high amount of stalling.

Techniques such as branch prediction and speculative

execution are used to lessen these branch penalties. Branch

prediction is where the hardware makes educated guesses

on whether a particular branch will be taken. In reality one

side or the other of the branch will be called much more

often than the other. Modern designs have rather complex

statistical prediction systems, which watch the results of

past branches to predict the future with greater accuracy.

The guess allows the hardware to prefect instructions without

waiting for the register read. Speculative execution is a

further enhancement in which the code along the predicted

path is not just perfected but also executed before it is

known whether the branch should be taken or not. This

can yield better performance when the guess is good, with

the risk of a huge penalty when the guess is bad because

instructions need to be undone.

Computer System, Organisation an Architecture

79

SUPERSCALAR

Even with all of the added complexity and gates needed

to support the concepts outlined above, improvements in

semiconductor manufacturing soon allowed even more logic

gates to be used.

In the outline above the processor processes parts of a

single instruction at a time. Computer programs could be

executed faster if multiple instructions were processed

simultaneously. This is what superscalar processors achieve,

by replicating functional units such as ALUs. The replication

of functional units was only made possible when the die

area of a single-issue processor no longer stretched the

limits of what could be reliably manufactured. By the late

1980s, superscalar designs started to enter the market

place.

In modern designs it is common to find two load units,

one store (many instructions have no results to store), two

or more integer math units, two or more floating point

units, and often a SIMD unit of some sort. The instruction

issue logic grows in complexity by reading in a huge list of

instructions from memory and handing them off to the

different execution units that are idle at that point. The

results are then collected and re-ordered at the end.

OUT-OF-ORDER EXECUTION

The addition of caches reduces the frequency or duration

of stalls due to waiting for data to be fetched from the

memory hierarchy, but does not get rid of these stalls

entirely. In early designs a cache miss would force the cache

controller to stall the processor and wait. Of course there

Computer System, Organisation an Architecture

80

may be some other instruction in the program whose data

is available in the cache at that point. Out-of-order execution

allows that ready instruction to be processed while an older

instruction waits on the cache, then re-orders the results

to make it appear that everything happened in the

programmed order. This technique is also used to avoid

other operand dependency stalls, such as an instruction

awaiting a result from a long latency floating-point operation

or other multi-cycle operations.

REGISTER RENAMING

Register renaming refers to a technique used to avoid

unnecessary serialized execution of program instructions

because of the reuse of the same registers by those

instructions. Suppose we have two groups of instruction

that will use the same register, one set of instruction is

executed first to leave the register to the other set, but if

the other set is assigned to a different similar register both

sets of instructions can be executed in parallel.

Computer System, Organisation an Architecture

81

3

Interconnecting Networks
Architecture

The authors created architecture for interconnecting

independent networks that could then be federated into a

seamless whole without changing any of the underlying

networks. This was the genesis of the Internet, as we know

it today. In order to work properly, the architecture required

a global addressing mechanism (or Internet address) to

enable computers on any network to reference and

communicate with computers on any other network in the

federation.

Internet addresses fill essentially the same role as

telephone numbers do in telephone networks. The design of

the Internet assumed first that the individual networks could

not be changed to accommodate new architectural

requirements; but this was largely a pragmatic assumption

Computer System, Organisation an Architecture

82

to facilitate progress. The networks also had varying degrees

of reliability and speed. Host computers would have to be

able to put disordered packets back into the correct order

and discard duplicate packets that had been generated along

the way.

This was a major change from the virtual circuit-like

service provided by ARPANET and by then contemporary

commercial data networking services such as Tymnet and

Telenet. In these networks, the underlying network took

responsibility for keeping all information in order and for

re-sending any data that might have been lost. The Internet

design made the computers responsible for tending to these

network problems.

A key architectural construct was the introduction of

gateways (now called routers) between the networks to handle

the disparities such as different data rates, packet sizes, error

conditions, and interface specifications. The gateways would

also check the destination Internet addresses of each packet

to determine the gateway to which it should be forwarded.

These functions would be combined with certain end-

end functions to produce the reliable communication from

source to destination. A draft paper by the authors describing

this approach was given at a meeting of the International

Network Working Group in 1973 in Sussex, England and

the final paper was subsequently published by the Institute

for Electrical and Electronics Engineers, the leading

professional society for the electrical engineering profession,

in its Transactions on Communications in May, 1974.

DARPA contracted with Cerf's group at Stanford to carry out

the initial detailed design of the TCP software and, shortly

Computer System, Organisation an Architecture

83

thereafter, with BBN and University College London to build

independent implementations of the TCP protocol (as it was

then called - it was later split into TCP and IP) for different

machines.

BBN also had a contract to build a prototype version of

the gateway. These three sites collaborated in the development

and testing of the initial protocols on different machines. Cerf,

then a professor at Stanford, provided the day-to-day

leadership in the initial TCP software design and testing. BBN

deployed the gateways between the ARPANET and the PRNET

and also with SATNET. During this period, under Kahn's

overall leadership at DARPA, the initial feasibility of the

Internet Architecture was demonstrated.

The TCP/IP protocol suite was developed and refined over

a period of four more years and, in 1980, it was adopted as

a standard by the U.S. Department of Defence. On January

1, 1983 the ARPANET converted to TCP/IP as its standard

host protocol. Gateways (or routers) were used to pass

packets to and from host computers on "local area networks."

Refinement and extension of these protocols and many

others associated with them continues to this day by way of

the Internet Engineering Task Force.

MODERN USES OF INTERNET

The Internet is allowing greater flexibility in working

hours and location, especially with the spread of unmetreed

high-speed connections and web applications. The Internet

can now be accessed almost anywhere by numerous means,

especially through mobile Internet devices.

Computer System, Organisation an Architecture

84

Mobile phones, datacards, handheld game consoles and

cellular routers allow users to connect to the Internet from

anywhere there is a wireless network supporting that device’s

technology. Within the limitations imposed by small screens

and other limited facilities of such pocket-sized devices,

services of the Internet, including e-mail and the web, may

be available.

Service providers may restrict the services offered and

wireless data transmission charges may be significantly

higher than other access methods. Educational material at

all levels from pre-school to post-doctoral is available from

websites. Examples range from CBeebies, through school

and high-school revision guides, virtual universities, to

access to top-end scholarly literature through the likes of

Google Scholar. In distance education, help with homework

and other assignments, self-guided learning, whiling away

spare time, or just looking up more detail on an interesting

fact, it has never been easier for people to access educational

information at any level from anywhere.

The Internet in general and the World Wide Web in

particular are important enablers of both formal and informal

education. The low cost and nearly instantaneous sharing

of ideas, knowledge, and skills has made collaborative work

dramatically easier, with the help of collaborative software.

Not only can a group cheaply communicate and share ideas,

but the wide reach of the Internet allows such groups to

easily form in the first place. An example of this is the free

software movement, which has produced, among other

programmes, Linux, Mozilla Firefox, and OpenOffice.org.

Internet “chat”, whether in the form of IRC chat rooms or

Computer System, Organisation an Architecture

85

channels, or via instant messaging systems, allow colleagues

to stay in touch in a very convenient way when working at

their computers during the day.

Messages can be exchanged even more quickly and

conveniently than via e-mail. Extensions to these systems

may allow files to be exchanged, “whiteboard” drawings to

be shared or voice and video contact between team members.

Version control systems allow collaborating teams to work

on shared sets of documents without either accidentally

overwriting each other’s work or having members wait until

they get “sent” documents to be able to make their

contributions.

Business and project teams can share calendars as well

as documents and other information. Such collaboration

occurs in a wide variety of areas including scientific research,

software development, conference planning, political activism

and creative writing. Social and political collaboration is also

becoming more widespread as both Internet access and

computer literacy grow. From the flash mob ‘events’ of the

early 2000s to the use of social networking in the 2009

Iranian election protests, the Internet allows people to work

together more effectively and in many more ways than was

possible without it.

The Internet allows computer users to remotely access

other computers and information stores easily, wherever they

may be across the world. They may do this with or without

the use of security, authentication and encryption

technologies, depending on the requirements. This is

encouraging new ways of working from home, collaboration

and information sharing in many industries. An accountant

Computer System, Organisation an Architecture

86

sitting at home can audit the books of a company based in

another country, on a server situated in a third country that

is remotely maintained by IT specialists in a fourth. These

accounts could have been created by home-working

bookkeepers, in other remote locations, based on information

e-mailed to them from offices all over the world.

Some of these things were possible before the widespread

use of the Internet, but the cost of private leased lines would

have made many of them infeasible in practice. An office

worker away from their desk, perhaps on the other side of

the world on a business trip or a holiday, can open a remote

desktop session into his normal office PC using a secure

Virtual Private Network (VPN) connection via the Internet.

This gives the worker complete access to all of his or her

normal files and data, including e-mail and other

applications, while away from the office.

This concept has been referred to among system

administrators as the Virtual Private Nightmare, because it

extends the secure perimetre of a corporate network into its

employees’ homes.

INTERNET SERVICES

INFORMATION
Many people use the terms Internet and World Wide Web,

or just the Web, interchangeably, but the two terms are not

synonymous. The World Wide Web is a global set of

documents, images and other resources, logically interrelated

by hyperlinks and referenced with Uniform Resource

Identifiers (URIs).

Computer System, Organisation an Architecture

87

URIs allow providers to symbolically identify services and

clients to locate and address web servers, file servers, and

other databases that store documents and provide resources

and access them using the Hypertext Transfer Protocol

(HTTP), the primary carrier protocol of the Web. HTTP is only

one of the hundreds of communication protocols used on

the Internet. Web services may also use HTTP to allow

software systems to communicate in order to share and

exchange business logic and data. World Wide Web browser

software, such as Microsoft’s Internet Explorer, Mozilla

Firefox, Opera, Apple’s Safari, and Google Chrome, let users

navigate from one web page to another via hyperlinks

embedded in the documents.

These documents may also contain any combination of

computer data, including graphics, sounds, text, video,

multimedia and interactive content including games, office

applications and scientific demonstrations. Through

keyword-driven Internet research using search engines like

Yahoo! and Google, users worldwide have easy, instant access

to a vast and diverse amount of online information.

Compared to printed encyclopedias and traditional

libraries, the World Wide Web has enabled the decentrali-

zation of information. The Web has also enabled individuals

and organizations to publish ideas and information to a

potentially large audience online at greatly reduced expense

and time delay. Publishing a web page, a blog, or building

a website involves little initial cost and many cost-free

services are available.

Publishing and maintaining large, professional web sites

with attractive, diverse and up-to-date information is still a

Computer System, Organisation an Architecture

88

dif ficult and expensive proposition, however. Many

individuals and some companies and groups use web logs

or blogs, which are largely used as easily updatable online

diaries. Some commercial organizations encourage staff to

communicate advice in their areas of specialization in the

hope that visitors will be impressed by the expert knowledge

and free information, and be attracted to the corporation as

a result.

One example of this practice is Microsoft, whose product

developers publish their personal blogs in order to pique the

public’s interest in their work. Collections of personal web

pages published by large service providers remain popular,

and have become increasingly sophisticated. Whereas

operations such as Angelfire and GeoCities have existed since

the early days of the Web, newer offerings from, for example,

Facebook and MySpace currently have large followings. These

operations often brand themselves as social network services

rather than simply as web page hosts. Advertising on popular

web pages can be lucrative, and e-commerce or the sale of

products and services directly via the Web continues to grow.

In the early days, web pages were usually created as sets of

complete and isolated HTML text files stored on a web server.

More recently, websites are more often created using content

management or wiki software with, initially, very little

content.

Contributors to these systems, who may be paid staff,

members of a club or other organization or members of the

public, fill underlying databases with content using editing

pages designed for that purpose, while casual visitors view

and read this content in its final HTML form. There may or

Computer System, Organisation an Architecture

89

may not be editorial, approval and security systems built

into the process of taking newly entered content and making

it available to the target visitors.

COMMUNICATION
E-mail is an important communications service available

on the Internet. The concept of sending electronic text

messages between parties in a way analogous to mailing

letters or memos predates the creation of the Internet. Today

it can be important to distinguish between internet and

internal e-mail systems. Internet e-mail may travel and be

stored unencrypted on many other networks and machines

out of both the sender’s and the recipient’s control. During

this time it is quite possible for the content to be read and

even tampered with by third parties, if anyone considers it

important enough.

Purely internal or intranet mail systems, where the

information never leaves the corporate or organization’s

network, are much more secure, although in any

organization there will be IT and other personnel whose job

may involve monitoring, and occasionally accessing, the e-

mail of other employees not addressed to them. Pictures,

documents and other files can be sent as e-mail attachments.

E-mails can be cc-ed to multiple e-mail addresses. Internet

telephony is another common communications service made

possible by the creation of the Internet. VoIP stands for Voice-

over-Internet Protocol, referring to the protocol that underlies

all Internet communication. The idea began in the early

1990s with walkie-talkie-like voice applications for personal

computers.

Computer System, Organisation an Architecture

90

In recent years many VoIP systems have become as easy

to use and as convenient as a normal telephone. The benefit

is that, as the Internet carries the voice traffic, VoIP can be

free or cost much less than a traditional telephone call,

especially over long distances and especially for those with

always-on Internet connections such as cable or ADSL. VoIP

is maturing into a competitive alternative to traditional

telephone service. Interoperability between different providers

has improved and the ability to call or receive a call from a

traditional telephone is available. Simple, inexpensive VoIP

network adapters are available that eliminate the need for a

personal computer.

Voice quality can still vary from call to call but is often

equal to and can even exceed that of traditional calls.

Remaining problems for VoIP include emergency telephone

number dialling and reliability. Currently, a few VoIP

providers provide an emergency service, but it is not

universally available.

Traditional phones are line-powered and operate during

a power failure; VoIP does not do so without a backup power

source for the phone equipment and the Internet access

devices. VoIP has also become increasingly popular for

gaming applications, as a form of communication between

players. Popular VoIP clients for gaming include Ventrilo and

Teamspeak. Wii, PlayStation 3, and Xbox 360 also offer VoIP

chat features.

DATA TRANSFER
File sharing is an example of transferring large amounts

of data across the Internet. A computer file can be e-mailed

Computer System, Organisation an Architecture

91

to customers, colleagues and friends as an attachment. It

can be uploaded to a website or FTP server for easy download

by others. It can be put into a “shared location” or onto a

file server for instant use by colleagues.

The load of bulk downloads to many users can be eased

by the use of “mirror” servers or peer-to-peer networks. In

any of these cases, access to the file may be controlled by

user authentication, the transit of the file over the Internet

may be obscured by encryption, and money may change

hands for access to the file. The price can be paid by the

remote charging of funds from, for example, a credit card

whose details are also passed—usually fully encrypted—

across the Internet.

The origin and authenticity of the file received may be

checked by digital signatures or by MD5 or other message

digests. These simple features of the Internet, over a

worldwide basis, are changing the production, sale, and

distribution of anything that can be reduced to a computer

file for transmission. This includes all manner of print

publications, software products, news, music, film, video,

photography, graphics and the other arts. This in turn has

caused seismic shifts in each of the existing industries that

previously controlled the production and distribution of these

products.

Streaming media refers to the act that many existing

radio and television broadcasters promote Internet “feeds”

of their live audio and video streams (for example, the BBC).

They may also allow time-shift viewing or listening such as

Preview, Classic Clips and Listen Again features. These

providers have been joined by a range of pure Internet

Computer System, Organisation an Architecture

92

“broadcasters” who never had on-air licenses.

This means that an Internet-connected device, such as

a computer or something more specific, can be used to access

on-line media in much the same way as was previously

possible only with a television or radio receiver. The range of

available types of content is much wider, from specialized

technical webcasts to on-demand popular multimedia

services. Podcasting is a variation on this theme, where—

usually audio—material is downloaded and played back on

a computer or shifted to a portable media player to be listened

to on the move. These techniques using simple equipment

allow anybody, with little censorship or licensing control, to

broadcast audio-visual material worldwide.

Webcams can be seen as an even lower-budget extension

of this phenomenon. While some webcams can give full-

frame-rate video, the picture is usually either small or

updates slowly. Internet users can watch animals around

an African waterhole, ships in the Panama Canal, traffic at

a local roundabout or monitor their own premises, live and

in real time.

Video chat rooms and video conferencing are also popular

with many uses being found for personal webcams, with and

without two-way sound. YouTube was founded on 15

February 2005 and is now the leading website for free

streaming video with a vast number of users. It uses a flash-

based web player to stream and show video files. Registered

users may upload an unlimited amount of video and build

their own personal profile. YouTube claims that its users

watch hundreds of millions, and upload hundreds of

thousands of videos daily.

Computer System, Organisation an Architecture

93

PROCESS OF TROUBLESHOOTING

Outbound e-mail uses a process called SMTP (simple mail

transport protocol). SMTP is the standard for e-mail

transmissions across the Internet. SMTP is generally used

to send messages from a mail client (Thunderbird) to a mail

server. The e-mail is stored on the server until retrieved by

another e-mail client using a POP3 or IMAP retrieval protocol.

Outbound e-mail problems can be frustrating to deal with

because you rarely see an indicator as to what might be

causing the problem. However, there are fewer factors

involved when setting up the SMTP section in Thunderbird,

so isolating the problem can be much simpler. Unlike setting

up an e-mail retrieval for inbound e-mail, with SMTP, a single

SMTP setup can be used to cover all of your e-mail addresses,

regardless of how many different ISPs are involved.

Most SMTP mail servers are set up to allow e-mail

accounts from other ISPs to be run through them.

Thunderbird identifies the first SMTP account that you set

up as being the default account. That is because in most

cases it can be shared by all of your e-mail accounts.

Most of the configuration issues with sending e-mail can

be resolved in the Server Settings section in Thunderbird.

• Select Account Settings from the Tools menu.

• Scroll down to the bottom of the list if e-mail

accounts.

• Select Outgoing Server (SMTP).

When you are sure that this information is correct, click

the OK button, shut down Thunderbird and then start it up

again to make sure that any new settings are loaded. If you

Computer System, Organisation an Architecture

94

have multiple e-mail accounts and you know that inbound

e-mail is working, try sending a test message to another of

your e-mail addresses. If it still does not work or you see an

error, make sure that you Internet access is active. If you

can access the Internet using your browser, you should be

able to send e-mail messages once the SMTP information is

correct. If you are still having trouble connecting to the SMTP

server, Thunderbird will usually display a message, but

depending on the type of error, sometimes it does not. Most

of the time the User Name is just the account name, but

some configurations may require a complete e-mail address.

If one way does not work, try the other. If your SMTP server

requires a secure connection, you may have to check the

SSL box. I sometimes use the SMTP server at my AT&T

account. AT&T connections usually require that you check

the SSL box. If you are having connections problems, post

your issues in the Comments below. Try to give us as much

information as you can and we will see if we can help you to

get connected.

INTERNET EVOLVED AS AN

EXPERIMENTAL SYSTEM

THE DOMAIN NAME SYSTEM
The Internet evolved as an experimental system during

the 1970s and early 1980s. It then flourished after the TCP/

IP protocols were made mandatory on the ARPANET and

other networks in January 1983; these protocols thus

became the standard for many other networks as well.

Computer System, Organisation an Architecture

95

Indeed, the Internet grew so rapidly that the existing

mechanisms for associating the names of host computers

(e.g. UCLA, USC-ISI) to Internet addresses (known as IP

addresses) were about to be stretched beyond acceptable

engineering limits. Most of the applications in the Internet

referred to the target computers by name.

These names had to be translated into Internet addresses

before the lower level protocols could be activated to support

the application. For a time, a group at SRI International in

Menlo Park, CA, called the Network Information Centre (NIC),

maintained a simple, machine-readable list of names and

associated Internet addresses which was made available on

the net. Hosts on the Internet would simply copy this list,

usually daily, so as to maintain a local copy of the table.

This list was called the "host.txt" file (since it was simply a

text file). The list served the function in the Internet that

directory services (e.g. 411 or 703-555-1212) do in the US

telephone system - the translation of a name into an address.

As the Internet grew, it became harder and harder for

the NIC to keep the list current. Anticipating that this

problem would only get worse as the network expanded,

researchers at USC Information Sciences Institute launched

an effort to design a more distributed way of providing this

same information. The end result was the Domain Name

System (DNS) which allowed hundreds of thousands of

"name servers" to maintain small portions of a global

database of information associating IP addresses with the

names of computers on the Internet.

The naming structure was hierarchical in character. For

example, all host computers associated with educational

Computer System, Organisation an Architecture

96

institutions would have names like "stanford.edu" or

"ucla.edu". Specific hosts would have names like

"cs.ucla.edu" to refer to a computer in the computer science

department of UCLA, for example. A special set of computers

called "root servers" maintained information about the names

and addresses of other servers that contained more detailed

name/address associations. The designers of the DNS also

developed seven generic "top level" domains, as follows:

• Education: EDU

• Government: GOV

• Military: MIL

• International: INT

• Network: NET

• (non-profit) Organization: ORG

• Commercial: COM

Under this system, for example, the host name "UCLA"

became "UCLA.EDU" because it was operated by an

educational institution, while the host computer for "BBN"

became "BBN.COM" because it was a commercial

organization. Top-level domain names also were created for

every country: United Kingdom names would end in ".UK,"

while the ending ".FR" was created for the names of France.

The Domain Name System (DNS) was and continues to

be a major element of the Internet architecture, which

contributes to its scalability. It also contributes to

controversy over trademarks and general rules for the

creation and use of domain names, creation of new top-level

domains and the like. At the same time, other resolution

schemes exist as well. One of the authors (Kahn) has been

involved in the development of a different kind of standard

Computer System, Organisation an Architecture

97

identification and resolution scheme that, for example, is

being used as the base technology by book publishers to

identify books on the Internet by adapting various

identification schemes for use in the Internet environment.

For example, International Standard Book Numbers

(ISBNs) can be used as part of the identifiers. The identifiers

then resolve to state information about the referenced books,

such as location information (e.g. multiple sites) on the

Internet that is used to access the books or to order them.

These developments are taking place in parallel with the more

traditional means of managing Internet resources. They offer

an alternative to the existing Domain Name System with

enhanced functionality.

The growth of Web servers and users of the Web has been

remarkable, but some people are confused about the

relationship between the World Wide Web and the Internet.

The Internet is the global information system that includes

communication capabilities and many high level

applications. The Web is one such application.

The existing connectivity of the Internet made it possible

for users and servers all over the world to participate in this

activity. Electronic mail is another important application.

As of today, over 60 million computers take part in the

Internet and about 3.6 million web sites were estimated to

be accessible on the net. Virtually every user of the net has

access to electronic mail and web browsing capability. Email

remains a critically important application for most users of

the Internet, and these two functions largely dominate the

use of the Internet for most users.

Computer System, Organisation an Architecture

98

PROCESS OF INTERNET STANDARDS

Internet standards were once the output of research

activity sponsored by DARPA. The principal investigators on

the internetting research effort essentially determined what

technical features of the TCP/IP protocols would become

common. The initial work in this area started with the joint

effort of the two authors, continued in Cerf's group at

Stanford, and soon thereafter was joined by engineers and

scientists at BBN and University College London. This

informal arrangement has changed with time and details

can be found elsewhere. At present, the standards efforts

for Internet are carried out primarily under the auspices of

the Internet Society (ISOC). The Internet Engineering Task

Force (IETF) operates under the leadership of its Internet

Engineering Steering Group (IESG), which is populated by

appointees approved by the Internet Architecture Board (IAB)

which is, itself, now part of the Internet Society.

The IETF comprises over one hundred working groups

categorized and managed by Area Directors specializing in

specific categories. There are other bodies with considerable

interest in Internet standards or in standards that must

interwork with the Internet.

Examples include the International Telecommunications

Union Telecommunicationsstandards group (ITU-T), the

International Institute of Electrical and Electronic Engineers

(IEEE) local area network standards group (IEEE 801), the

Organization for International Standardization (ISO), the

American National Standards Institute (ANSI), the World

Wide Web Consortium (W3C), and many others.

Computer System, Organisation an Architecture

99

As Internet access and services are provided by existing

media such as telephone, cable and broadcast, interactions

with standards bodies and legal structures formed to deal

with these media will become an increasingly complex matter.

The intertwining of interests is simultaneously fascinating

and complicated, and has increased the need for thoughtful

cooperation among many interested parties.

MANAGING THE INTERNET
Perhaps the least understood aspect of the Internet is

its management. In recent years, this subject has become

the subject of intense commercial and international interest,

involving multiple governments and commercial organiza-

tions, and recently congressional hearings. At issue is how

the Internet will be managed in the future, and, in the

process, what oversight mechanisms will insure that the

public interest is adequately served. In the 1970s, managing

the Internet was easy. Since few people knew about the

Internet, decisions about almost everything of real policy

concern were made in the offices of DARPA. It became clear

in the late 1970s, however, that more community

involvement in the decision-making processes was essential.

In 1979, DARPA formed the Internet Configuration

Control Board (ICCB) to insure that knowledgeable members

of the technical community discussed critical issues,

educated people outside of DARPA about the issues, and

helped others to implement the TCP/IP protocols and

gateway functions. At the time, there were no companies

that offered turnkey solutions to getting on the Internet. It

would be another five years or so before companies like Cisco

Computer System, Organisation an Architecture

100

Systems were formed, and while there were no PCs yet, the

only workstations available were specially built and their

software was not generally configured for use with external

networks; they were certainly considered expensive at the

time.

In 1983, the small group of roughly twelve ICCB members

was reconstituted (with some substitutions) as the Internet

Activities Board (IAB), and about ten "Task Forces" were

established under it to address issues in specific technical

areas. The attendees at Internet Working Group meetings

were invited to become members of as many of the task forces

as they wished.

The management of the Domain Name System offers a

kind of microcosm of issues now frequently associated with

overall management of the Internet's operation and evolution.

Someone had to take responsibility for overseeing the

system's general operation. In particular, top-level domain

names had to be selected, along with persons or

organizations to manage each of them. Rules for the

allocation of Internet addresses had to be established. DARPA

had previously asked the late Jon Postel of the USC

Information Sciences Institute to take on numerous

functions related to administration of names, addresses and

protocol related matters.

With time, Postel assumed further responsibilities in this

general area on his own, and DARPA, which was supporting

the effort, gave its tacit approval. This activity was generally

referred to as the Internet Assigned Numbers Authority

(IANA). In time, Postel became the arbitrator of all

controversial matters concerning names and addresses until

Computer System, Organisation an Architecture

101

his untimely death in October 1998. It is helpful to consider

separately the problem of managing the domain name space

and the Internet address space. These two vital elements of

the Internet architecture have rather different characteristics

that colour the manage-ment problems they generate.

Domain names have semantics that numbers may not

imply; and thus a means of determining who can use what

names is needed. As a result, speculators on Internet names

often claim large numbers of them without intent to use them

other than to resell them later. Alternate resolution

mechanisms, if widely adopted, could significantly change

the landscape here.

The rapid growth of the Internet has triggered the design

of a new and larger address space (the so-called IP version 6

address space); today's Internet uses IP version 4. However,

little momentum has yet developed to deploy IPv6 widely.

Despite concerns to the contrary, the IPv4 address space

will not be depleted for some time.

Further, the use of Dynamic Host Configuration Protocol

(DHCP) to dynamically assign IP addresses has also cut down

on demand for dedicated IP addresses. Nevertheless, there

is growing recognition in the Internet technical community

that expansion of the address space is needed, as is the

development of transition schemes that allow interoperation

between IPv4 and IPv6 while migrating to IPv6.

In 1998, the Internet Corporation for Assigned Names

and Numbers (ICANN) was formed as a private sector, non-

profit, organization to oversee the orderly progression in use

of Internet names and numbers, as well as certain protocol

related matters that required oversight.

Computer System, Organisation an Architecture

102

The birth of this organization, which was selected by the

Department of Commerce for this function, has been difficult,

embodying as it does many of the inherent conflicts in

resolving discrepancies in this arena. However, there is a

clear need for an oversight mechanism for Internet domain

names and numbers, separate from their day-to-day

management. Many questions about Internet management

remain.

They may also prove difficult to resolve quickly. Of specific

concern is what role the U.S. government and indeed

governments around the world need to play in its continuing

operation and evolution. This is clearly a subject for another

time.

ADVANTAGES OF INTERNET
There are many advantages of using the Internet, such

as:

GLOBAL AUDIENCE
Content published on the World Wide Web is immediately

available to a global audience of users. This makes the World

Wide Web a very cost-effective medium to publish information.

Reaching more than 190 countries.

OPERATES 24 HOURS AND 365 DAYS
You don't need to wait until resources are available to

conduct business. From a consumer's perspective as well

as a provider's business can be consummated at any time.

The fact that the Internet is operational at all times makes

it the most efficient business machine to date.

Computer System, Organisation an Architecture

103

RELATIVELY INEXPENSIVE
It is relatively inexpensive to publish information on the

Internet. At a fraction of the cost to publish information by

traditional methods, various organizations and individuals

can now distribute information to millions of users. It costs

only a few thousand dollars to establish an Internet presence

and publish content on the Internet.

PRODUCT ADVERTISING
You can use the World Wide Web to advertise various

products. Before purchasing a product, customers will be

able to look up various product specification sheets and find

out additional information. You can use the multimedia

capabilities of the World Wide Web to make available not

only various product specification sheets but also audio files,

images, and even video clips of products in action. The beauty

of the Web is that it allows customers to explore products in

as much detail as they desire.

If the client just wants a general overview, he or she can

look at the advertising information. For those wanting more

in depth information, you can provide white papers and

product descriptions for download. The Web allows a

business to provide timely information, you can simply place

the information on the Web page and it is available

immediately for your customers.

DISTRIBUTE PRODUCT CATALOGS
The World Wide Web is a very effective medium for

distributing product catalogs. In the old days, putting

together a product catalog used to be very costly in terms of

time and money needed to publish and distribute it.

Computer System, Organisation an Architecture

104

The World Wide Web changes all this by allowing content

developers to put together a sales catalog and make it

available to millions of users immediately. Furthermore,

unlike printed product catalogs that are usually updated

around once a month, product catalogs on the World Wide

Web can be updated as needed to respond to various

changing market conditions.

ONLINE SURVEYS
Traditional methods of performing surveys are often

relatively slow and expensive compared to online surveys

conducted on the Internet. For example, in order to fill out

various needs of customers or what they would like to see

in a future product, it's often necessary to compile a list of

address and mail a questionnaire to many customers.

The success of such an attempt is not always guaranteed

and can be very costly in terms of mailing the questionnaires

and entering responses to a databases and analyzing it. On

the other hand, you can use the World Wide Web to automate

the whole process. For example, you can set up a CGI script

to conduct online surveys. Results of such a survey can be

automatically updated to a database. This database can then

be used to keep a pulse on various opinions and needs of

customers.

ANNOUNCEMENTS
With the World Wide Web, you can distribute various

announcements to millions of users in a timely manner.

Because there is virtually no time lag from the time it takes

to publish information to making the information available

to users, the Web is an ideal medium to publicize announce-

Computer System, Organisation an Architecture

105

ments. As more people discover the virtues of the Web and

get connected to the Internet, the Web will become the

medium of choice for many organizations and individuals to

publicize various announcements.

PROVIDE TECHNICAL SUPPORT
You can also use Web site to provide technical support

to users. Because Web pages can be updated immediately

with new information, various technical support literature

can be immediately modified in light of new findings and

developments. This can be accomplished without having to

distribute changes to all users affected by any changes using

traditional mediums of information distribution, which are

often quite costly compared to the World Wide Web.

CREATE ONLINE DISCUSSION FORUMS
By using applications such as WebBoard, it's possible to

set up online discussion forums on the Web.

OBTAIN CUSTOMER FEEDBACK
The interactive nature of the World Wide Web is ideal for

obtaining customer feedback. You can easily set up a CGI

script to obtain customer feedback about a product or

service. Because customer feedback submitted by customers

can be read immediately, it's possible to respond to various

customer concerns in a timely manner, increasing customer

satisfaction and quality of customer service.

IMMEDIATE DISTRIBUTION OF INFORMATION
When information is added to a Web site, it's immediately

available for browsing by millions of Internet users. The World

Computer System, Organisation an Architecture

106

Wide Web is an ideal medium of information distribution

because it takes away the time lag associated with publishing

content and actually making it available to users

EASY INTEGRATION WITH INTERNAL
INFORMATION SYSTEMS

Internet information systems deployed on the Internet

can be easily integrated with internal information systems

managed with office productivity applications such as

Microsoft Office.

POWERFUL CONTENT PUBLISHING TOOLS
A new breed of Internet aware applications will start

emerging in software stores by the time you read this. These
applications will enable users to develop content for the World
Wide Web by simply saving as an HTML file.

In addition to software developers making existing
applications Internet aware, various new, powerful, and easy-
to use Internet content publishing applications are also being
developed. These applications will make the task of
publishing content on the Internet even easier. Most of these
applications are developed for Windows users.

MULTIMEDIA
The capability to incorporate multimedia into Web pages is

a major advantage of using World Wide Web to publish
information. For example, many Web sites use sounds and video

clips to make the content easier and more interesting to browse.

FORMATTING CAPABILITIES
Content published on the World Wide Web can be richly

formatted by using various HTML tags and graphic formats.

Computer System, Organisation an Architecture

107

The capability to do this is a major reason for the success of

the World Wide Web. In addition to using HTML tags and

various multimedia formats in Web pages, various interactive

controls can also be added to a web page.

This capability allows Web site content developers to

create "active" Web sites. For example, before a user sends

some information to a Web server for processing, a VBScript

or JavaScript subroutine can be used to verify information

typed in by the user. Various formatting capabilities, along

with technologies such as Java and VBScript, make the

World Wide Web a richly interactive medium that you can

use to distribute information to millions of users.

DISADVANTAGES OF INTERNET
Many fear the Internet because of its disadvantages. They

claim to not use the Internet because they are afraid of the

possible consequences or are simply not interested. People

who have yet connected to the Internet claim they are not

missing anything . Today's technological society must realise,

it is up to them to protect themselves on the Internet .

Children using the Internet has become a big concern.

Most parents do not realise the dangers involved when their

children log onto the Internet. When children are online,

they can easily be lured into something dangerous. When

children talk to others online, they do not realise they could

actually be talking to a harmful person. In addition, children

may also receive pornography online by mistake; therefore,

causing concern among parents everywhere.

Whether surfing the Web, reading newsgroups, or using

email, children can be exposed to extremely inappropriate

Computer System, Organisation an Architecture

108

material. Pornographic sites tend to make sure they are the

first sites to be listed in any search area. Some critics say

that parents are responsible for their own children on the

Internet because there are available services to protect

children.

To keep children safe, parents and teachers must be

aware of the dangers. They must actively guide and guard

their children online.There are a number of tools available

today that may help keep the Internet environment safer

for children.

Musicians are also concerned with disadvantages to the

Net such as, accessibility and freedom. They are upset

because the Internet provides their music online at no charge

to consumers. File-sharing software, such Kazaa, Emule and

may others provides copyrighted songs to all Internet users.

The main concern is - the music is free! Musicians feel "they

are not getting paid for their work". It is almost impossible

to close down all file-sharing services; there are too many of

them to count. Another major disadvantage of the Internet

is privacy. Electronic messages sent over the Internet can

be easily snooped and tracked, revealing who is talking to

whom and what they are talking about.

As people surf the Internet, they are constantly giving

information to web sites. People should become aware that

the collection, selling, or sharing of the information they

provide online increases the chances that their information

will fall into the wrong hands. When giving personal

information on the Internet, people should make sure the

Web site is protected with a recognizable security symbol.

On the other hand, this does not mean they are fully

Computer System, Organisation an Architecture

109

protected because anyone may obtain a user's information.

Today, not only are humans getting viruses, but computers

are also.

Computers are mainly getting these viruses from the

Internet; yet, viruses may also be transmitted through floppy

disks. However, people should mainly be concerned about

receiving viruses from the Internet. Some of these dangerous

viruses destroy the computer's entire hard drive, meaning

that the user can no longer access the computer. Virus

protection is highly recommended. In conclusion, today's

society is in the middle of a technological boom. People can

either choose to take advantage of this era, or simply let it

pass them by. The Internet is a very powerful tool. It has

many advantages; however, people need to be extremely

aware of the disadvantages as well.

Computer System, Organisation an Architecture

110

4

Computer Process Architecture

Process architecture is the structural design of general

process systems and applies to fields such as computers

(software, hardware, networks, etc.), business processes

(enterprize architecture, policy and procedures, logistics,

project management, etc.), and any other process system

of varying degrees of complexity. Processes are defined as

having inputs, outputs and the energy required to transform

inputs to outputs. Use of energy during transformation also

implies a passage of time: a process takes real time to

perform its associated action. A process also requires space

for input/output objects and transforming objects to exist:

a process uses real space. A process system is a specialized

system of processes. Processes are composed of processes.

Complex processes are made up of several processes that

are in turn made up of several processes. This results in

an overall structural hierarchy of abstraction. If the process

Computer System, Organisation an Architecture

111

system is studied hierarchically, it is easier to understand

and manage; therefore, process architecture requires the

ability to consider process systems hierarchically.

Leading examples of such process architectures include

CCS and the ð-calculus. Process systems are a dualistic

phenomenon of change/no-change or form/transform and

as such, are well-suited to being modelled by the bipartite

Petri Nets modelling system and in particular, process-class

Dualistic Petri nets where processes can be simulated and

studied hierarchically.

SOFTWARE ARCHITECTURE
The software architecture of a system is the set of

structures needed to reason about the system, which

comprise software elements, relations among them, and

properties of both. The term also refers to documentation

of a system’s software architecture. Documenting software

architecture facilitates communication between stakeholders,

documents early decisions about high-level design, and

allows reuse of design components and patterns between

projects.

OVERVIEW
The field of computer science has come across problems

associated with complexity since its formation. Earlier

problems of complexity were solved by developers by choosing

the right data structures, developing algorithms, and by

applying the concept of separation of concerns. Although

the term “software architecture” is relatively new to the

industry, the fundamental principles of the field have been

Computer System, Organisation an Architecture

112

applied sporadically by software engineering pioneers since

the mid 1980s. Early attempts to capture and explain

software architecture of a system were imprecise and

disorganized, often characterized by a set of box-and-line

diagrams. During the 1990s there was a concentrated effort

to define and codify fundamental aspects of the discipline.

Initial sets of design patterns, styles, best practices,

description languages, and formal logic were developed

during that time. The software architecture discipline is

centered on the idea of reducing complexity through

abstraction and separation of concerns. To date there is still

no agreement on the precise definition of the term “software

architecture”. As a maturing discipline with no clear rules

on the right way to build a system, designing software

architecture is still a mix of art and science. The “art” aspect

of software architecture is because a commercial software

system supports some aspect of a business or a mission.

How a system supports key business drivers is described

via scenarios as non-functional requirements of a system,

also known as quality attributes, determine how a system

will behave.

Every system is unique due to the nature of the business

drivers it supports, as such the degree of quality attributes

exhibited by a system such as fault-tolerance, backward

compatibility, extensibility, reliability, maintainability,

availability, security, usability, and such other –ilities will

vary with each implementation. To bring a software

architecture user’s perspective into the software architecture,

it can be said that software architecture gives the direction

to take steps and do the tasks involved in each such user’s

Computer System, Organisation an Architecture

113

speciality area and interest e.g. the stakeholders of software

systems, the software developer, the software system

operational support group, the software maintenance

specialists, the deployer, the tester and also the business

end user. In this sense software architecture is really the

amalgamation of the multiple perspectives a system always

embodies. The fact that those several different perspectives

can be put together into a software architecture stands as

the vindication of the need and justification of creation of

software architecture before the software development in a

project attains maturity.

HISTORY
The origin of software architecture as a concept was first

identified in the research work of Edsger Dijkstra in 1968

and David Parnas in the early 1970s. These scientists

emphasized that the structure of a software system matters

and getting the structure right is critical. The study of the

field increased in popularity since the early 1990s with

research work concentrating on architectural styles

(patterns), architecture description languages, architecture

documentation, and formal methods. Research institutions

have played a prominent role in furthering software

architecture as a discipline. Mary Shaw and David Garlan

of Carnegie Mellon wrote a book titled Software Architecture:

Perspectives on an Emerging Discipline in 1996, which

brought forward the concepts in Software Architecture,

such as components, connectors, styles and so on. The

University of California, Irvine’s Institute for Software

Research’s efforts in software architecture research is

Computer System, Organisation an Architecture

114

directed primarily in architectural styles, architecture

description languages, and dynamic architectures. The IEEE

1471: ANSI/IEEE 1471-2000: Recommended Practice for

Architecture Description of Software-Intensive Systems is

the first formal standard in the area of software architecture,

and was adopted in 2007 by ISO as ISO/IEC 42010:2007.

SOFTWARE ARCHITECTURE TOPICS

ARCHITECTURE DESCRIPTION LANGUAGES
Architecture description languages (ADLs) are used to

describe a Software Architecture. Several different ADLs

have been developed by different organizations, including

AADL (SAE standard), Wright (developed by Carnegie Mellon),

Acme (developed by Carnegie Mellon), xADL (developed by

UCI), Darwin (developed by Imperial College London), DAOP-

ADL (developed by University of Málaga), and ByADL

(University of L’Aquila, Italy). Common elements of an ADL

are component, connector and configuration.

VIEWS
Software architecture is commonly organized in views,

which are analogous to the different types of blueprints

made in building architecture. A view is a representation

of a set of system components and relationships among

them. Within the ontology established by ANSI/IEEE 1471-

2000, views are responses to viewpoints, where a viewpoint

is a specification that describes the architecture in question

from the perspective of a given set of stakeholders and their

concerns. The viewpoint specifies not only the concerns

Computer System, Organisation an Architecture

115

addressed but the presentation, model kinds used,

conventions used and any consistency (correspondence)

rules to keep a view consistent with other views. Some

possible views (actually, viewpoints in the 1471 ontology)

are:

• Functional/logic view

• Code/module view

• Development/structural view

• Concurrency/process/runtime/thread view

• Physical/deployment/install view

• User action/feedback view

• Data view/data model

Several languages for describing software architectures

(‘architecture description language’ in ISO/IEC 42010 /

IEEE-1471 terminology) have been devised, but no consensus

exists on which symbol-set or language should be used to

describe each architecture view. The UML is a standard that

can be used “for analysis, design, and implementation of

software-based systems as well as for modeling business

and similar processes.” Thus, the UML is a visual language

that can be used to create software architecture views.

ARCHITECTURE FRAMEWORKS
Frameworks related to the domain of software architecture

are:

• 4+1

• RM-ODP (Reference Model of Open Distributed

Processing)

• Service-Oriented Modeling Framework (SOMF)

Computer System, Organisation an Architecture

116

Other architectures such as the Zachman Framework,

DODAF, and TOGAF relate to the field of Enterprize

architecture.

THE DISTINCTION FROM FUNCTIONAL DESIGN
The IEEE Std 610.12-1990 Standard Glossary of Software

Engineering Terminology defines the following distinctions:

• Architectural Design: the process of defining a

collection of hardware and software components and

their interfaces to establish the framework for the

development of a computer system.

• Detailed Design: the process of refining and expanding

the preliminary design of a system or component to

the extent that the design is sufficiently complete to

begin implementation.

• Functional Design: the process of defining the working

relationships among the components of a system.

• Preliminary Design: the process of analyzing design

alternatives and defining the architecture,

components, interfaces, and timing/sizing estimates

for a system or components.

Software architecture, also described as strategic design,

is an activity concerned with global requirements governing

how a solution is implemented such as programming

paradigms, architectural styles, component-based software

engineering standards, architectural patterns, security, scale,

integration, and law-governed regularities. Functional design,

also described as tactical design, is an activity concerned

with local requirements governing what a solution does such

as algorithms, design patterns, programming idioms,

Computer System, Organisation an Architecture

117

refactorings, and low-level implemenation. According to the

Intension/Locality Hypothesis, the distinction between

architectural and detailed design is defined by the Locality

Criterion, according to which a statement about software

design is non-local (architectural) if and only if a programme

that satisfies it can be expanded into a programme which

does not. For example, the client–server style is architectural

(strategic) because a programme that is built on this principle

can be expanded into a programme which is not client–

server; for example, by adding peer-to-peer nodes. Architecture

is design but not all design is architectural. In practice, the

architect is the one who draws the line between software

architecture (architectural design) and detailed design (non-

architectural design). There aren’t rules or guidelines that fit

all cases. Examples of rules or heuristics that architects (or

organizations) can establish when they want to distinguish

between architecture and detailed design include:

• Architecture is driven by non-functional requirements,

while functional design is driven by functional

requirements.

• Pseudo-code belongs in the detailed design document.

• UML component, deployment, and package diagrams

generally appear in software architecture documents;

UML class, object, and behaviour diagrams appear

in detailed functional design documents.

EXAMPLES OF ARCHITECTURAL STYLES AND
PATTERNS

There are many common ways of designing computer

software modules and their communications, among them:

Computer System, Organisation an Architecture

118

• Blackboard

• Client–server model (2-tier, n-tier, peer-to-peer, cloud

computing all use this model)

• Database-centric architecture (broad division can be

made for programmes which have database at its

center and applications which don’t have to rely on

databases, E.g. desktop application programmes,

utility programmes etc.)

• Distributed computing

• Event-driven architecture

• Front end and back end

• Implicit invocation

• Monolithic application

• Peer-to-peer

• Pipes and filters

• Plug-in (computing)

• Representational State Transfer

• Rule evaluation

• Search-oriented architecture (A pure SOA implements

a service for every data access point.)

• Service-oriented architecture

• Shared nothing architecture

• Software componentry

• Space based architecture

• Structured (module-based but usually monolithic

within modules)

• Three-tier model (An architecture with Presentation,

Business Logic and Database tiers)

Computer System, Organisation an Architecture

119

SOFTWARE ENGINEERING
Software engineering (SE) is a profession dedicated to

designing, implementing, and modifying software so that it

is of higher quality, more affordable, maintainable, and

faster to build. It is a “systematic approach to the analysis,

design, assessment, implementation, test, maintenance and

reengineering of software, that is, the application of

engineering to software.” The term software engineering

first appeared in the 1968 NATO Software Engineering

Conference, and was meant to provoke thought regarding

the perceived “software crisis” at the time. The IEEE

Computer Society’s Software Engineering Body of Knowledge

defines “software engineering” as the application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software, and

the study of these approaches; that is, the application of

engineering to software. It is the application of Engineering

to software because it integrates significant mathematics,

computer science and practices whose origins are in

Engineering. Software development, a much used and more

generic term, does not necessarily subsume the engineering

paradigm. Although it is questionable what impact it has

had on actual software development over the last more than

40 years, the field’s future looks bright according to Money

Magazine and Salary.com, which rated “software engineer”

as the best job in the United States in 2006.

HISTORY
When the first modern digital computers appeared in the

early 1940s, the instructions to make them operate were

Computer System, Organisation an Architecture

120

wired into the machine. Practitioners quickly realized that

this design was not flexible and came up with the “stored

programme architecture” or von Neumann architecture.

Thus the first division between “hardware” and “software”

began with abstraction being used to deal with the complexity

of computing. Programming languages started to appear in

the 1950s and this was also another major step in

abstraction. Major languages such as Fortran, ALGOL, and

COBOL were released in the late 1950s to deal with scientific,

algorithmic, and business problems respectively. E.W.

Dijkstra wrote his seminal paper, “Go To Statement

Considered Harmful”, in 1968 and David Parnas introduced

the key concept of modularity and information hiding in

1972 to help programmers deal with the ever increasing

complexity of software systems. A software system for

managing the hardware called an operating system was also

introduced, most notably by Unix in 1969. In 1967, the

Simula language introduced the object-oriented

programming paradigm. These advances in software were

met with more advances in computer hardware. In the mid

1970s, the microcomputer was introduced, making it

economical for hobbyists to obtain a computer and write

software for it.

This in turn led to the now famous Personal Computer

(PC) and Microsoft Windows. The Software Development Life

Cycle or SDLC was also starting to appear as a consensus

for centralized construction of software in the mid 1980s.

The late 1970s and early 1980s saw the introduction of

several new Simula-inspired object-oriented programming

languages, including Smalltalk, Objective-C, and C++. Open-

Computer System, Organisation an Architecture

121

source software started to appear in the early 90s in the

form of Linux and other software introducing the “bazaar”

or decentralized style of constructing software. Then the

World Wide Web and the popularization of the Internet hit

in the mid 90s, changing the engineering of software once

again. Distributed systems gained sway as a way to design

systems, and the Java programming language was

introduced with its own virtual machine as another step in

abstraction. Programmers collaborated and wrote the Agile

Manifesto, which favoured more lightweight processes to

create cheaper and more timely software. The current

definition of software engineering is still being debated by

practitioners today as they struggle to come up with ways

to produce software that is “cheaper, better, faster”. Cost

reduction has been a primary focus of the IT industry since

the 1990s. Total cost of ownership represents the costs of

more than just acquisition. It includes things like productivity

impediments, upkeep efforts, and resources needed to

support infrastructure.

PROFESSION
Legal requirements for the licensing or certification of

professional software engineers vary around the world. In

the UK, the British Computer Society licenses software

engineers and members of the society can also become

Chartered Engineers (CEng), while in some areas of Canada,

such as Alberta, Ontario, and Quebec, software engineers

can hold the Professional Engineer (P.Eng)designation and/

or the Information Systems Professional (I.S.P.) designation;

however, there is no legal requirement to have these

Computer System, Organisation an Architecture

122

qualifications. The IEEE Computer Society and the ACM,

the two main professional organizations of software

engineering, publish guides to the profession of software

engineering. The IEEE’s Guide to the Software Engineering

Body of Knowledge - 2004 Version, or SWEBOK, defines the

field and describes the knowledge the IEEE expects a

practicing software engineer to have. The IEEE also

promulgates a “Software Engineering Code of Ethics”.

EMPLOYMENT
In 2004, the U. S. Bureau of Labor Statistics counted

760,840 software engineers holding jobs in the U.S.; in the

same time period there were some 1.4 million practitioners

employed in the U.S. in all other engineering disciplines

combined. Due to its relative newness as a field of study,

formal education in software engineering is often taught as

part of a computer science curriculum, and many software

engineers hold computer science degrees. Many software

engineers work as employees or contractors. Software

engineers work with businesses, government agencies

(civilian or military), and non-profit organizations. Some

software engineers work for themselves as freelancers. Some

organizations have specialists to perform each of the tasks

in the software development process. Other organizations

require software engineers to do many or all of them. In

large projects, people may specialize in only one role. In

small projects, people may fill several or all roles at the

same time. Specializations include: in industry (analysts,

architects, developers, testers, technical support, middleware

analysts, managers) and in academia (educators,

Computer System, Organisation an Architecture

123

researchers). Most software engineers and programmers

work 40 hours a week, but about 15 percent of software

engineers and 11 percent of programmers worked more

than 50 hours a week in 2008. Injuries in these occupations

are rare. However, like other workers who spend long periods

in front of a computer terminal typing at a keyboard,

engineers and programmers are susceptible to eyestrain,

back discomfort, and hand and wrist problems such as

carpal tunnel syndrome.

CERTIFICATION
The Software Engineering Institute offers certifications

on specific topics like Security, Process improvement and

Software architecture. Apple, IBM, Microsoft and other

companies also sponsor their own certification examinations.

Many IT certification programmes are oriented toward specific

technologies, and managed by the vendors of these

technologies. These certification programmes are tailored to

the institutions that would employ people who use these

technologies. Broader certification of general software

engineering skills is available through various professional

societies. As of 2006, the IEEE had certified over 575 software

professionals as a Certified Software Development

Professional (CSDP). In 2008 they added an entry-level

certification known as the Certified Software Development

Associate (CSDA). In the U.K. the British Computer Society

has developed a legally recognized professional certification

called Chartered IT Professional (CITP), available to fully

qualified Members (MBCS). In Canada the Canadian

Information Processing Society has developed a legally

Computer System, Organisation an Architecture

124

recognized professional certification called Information

Systems Professional (ISP). The ACM had a professional

certification programme in the early 1980s, which was

discontinued due to lack of interest. The ACM examined the

possibility of professional certification of software engineers

in the late 1990s, but eventually decided that such

certification was inappropriate for the professional industrial

practice of software engineering.

IMPACT OF GLOBALIZATION
The initial impact of outsourcing, and the relatively lower

cost of international human resources in developing third

world countries led to the dot com bubble burst of the 1990s.

This had a negative impact on many aspects of the software

engineering profession. For example, some students in the

developed world avoid education related to software

engineering because of the fear of offshore outsourcing

(importing software products or services from other countries)

and of being displaced by foreign visa workers. Although

statistics do not currently show a threat to software

engineering itself; a related career, computer programming

does appear to have been affected. Nevertheless, the ability

to smartly leverage offshore and near-shore resources via the

[follow-the-sun] workflow has improved the overall operational

capability of many organizations. When North Americans are

leaving work, Asians are just arriving to work. When Asians

are leaving work, Europeans are arriving to work. This provides

a continuous ability to have human oversight on business-

critical processes 24 hours per day, without paying overtime

compensation or disrupting key human resource sleep patterns.

Computer System, Organisation an Architecture

125

EDUCATION
A knowledge of programming is a pre-requisite to becoming

a software engineer. In 2004 the IEEE Computer Society

produced the SWEBOK, which has been published as ISO/

IEC Technical Report 19759:2004, describing the body of

knowledge that they believe should be mastered by a graduate
software engineer with four years of experience. Many software
engineers enter the profession by obtaining a university
degree or training at a vocational school. One standard
international curriculum for undergraduate software
engineering degrees was defined by the CCSE, and updated
in 2004. A number of universities have Software Engineering
degree programmes; as of 2010, there were 244 Campus
programmes, 70 Online programmes, 230 Masters-level
programmes, 41 Doctorate-level programmes, and 69
Certificate-level programmes in the United States. In addition
to university education, many companies sponsor internships

for students wishing to pursue careers in information

technology. These internships can introduce the student to

interesting real-world tasks that typical software engineers

encounter every day. Similar experience can be gained through

military service in software engineering.

COMPARISON WITH OTHER DISCIPLINES
Major differences between software engineering and other

engineering disciplines, according to some researchers, result

from the costs of fabrication.

SUB-DISCIPLINES
Software engineering can be divided into ten

subdisciplines. They are:

Computer System, Organisation an Architecture

126

• Software requirements: The elicitation, analysis,

specification, and validation of requirements for

software.

• Software architecture: The elicitation, analysis,

specification, definition and design, and validation

and control of software architecture requirements.

• Software design: The design of software is usually

done with Computer-Aided Software Engineering

(CASE) tools and use standards for the format, such

as the Unified Modeling Language (UML).

• Software development: The construction of software

through the use of programming languages.

• Software testing

• Software maintenance: Software systems often have

problems and need enhancements for a long time

after they are first completed. This subfield deals

with those problems.

• Software configuration management: Since software

systems are very complex, their configuration (such

as versioning and source control) have to be managed

in a standardized and structured method.

• Software engineering management: The management

of software systems borrows heavily from project

management, but there are nuances encountered in

software not seen in other management disciplines.

• Software development process: The process of building

software is hotly debated among practitioners; some

of the better-known processes are the Waterfall Model,

the Spiral Model, Iterative and Incremental

Development, and Agile Development.

Computer System, Organisation an Architecture

127

• Software engineering tools, see Computer Aided

Software Engineering

• Software quality

RELATED DISCIPLINES
Software engineering is a direct subfield of computer

science and has some relations with management science.

It is also considered a part of overall systems engineering.

SYSTEMS ENGINEERING
Systems engineers deal primarily with the overall system

design, specifically dealing more with physical aspects which

include hardware design. Those who choose to specialize

in computer hardware engineering may have some training

in software engineering.

COMPUTER SOFTWARE ENGINEERS
Computer Software Engineers are usually systems level

(software engineering, information systems) computer science

or software level computer engineering graduates. This term

also includes general computer science graduates with a

few years of practical on the job experience involving software

engineering.

Computer System, Organisation an Architecture

128

5

CPU Instructions Design and
Architecture

INSTRUCTION

As you can see from the processor block diagrams, the

next stage, once an instruction is decoded, is in Athlon’s

case the Instruction Control Unit. This Unit can hold up to

72 MOps (because a MOp can equal an x86 instruction, this

means Athlon can have up to 72 in-flight instructions) before

they’re dispatched to the schedulers. This is a lot more than

the 20 μ-Ops (if you take an average of say 1.5 uOPs per

instructions, then the P6 archtecture has approximately 13

in-flight instructions) that can be held in Intel’s Reservation

Station, which is already the next advantage of Athlon over

PIII, but let’s not even count that. The next step is where it

gets really interesting.

Computer System, Organisation an Architecture

129

EXECUTION PORTS
You certainly agree that the most important thing a

microprocessor has to do is to actually execute the

instructions of the software it’s running. Thus it’s about time

that we are getting to this stage.

���������������������������	
��
�����������������������	�

You cannot really see it in the block diagrams, but

Pentium III has 11 (+1) parallel execution units, Athlon has

even more. Those units are executing the OPs, and since

it’s so many in parallel, you can imagine why we are talking

of ‘out-of-order’ execution here. Executing one OP after

another would obviously not make any use of parallel

execution units. To make sure that the out-of-order

execution is actually working, Intel is using the ‘Renamer

& Allocator’ as well as the ‘Reorder-Unit’. The ‘Integer/FP

Renamer/Allocator’ is found before the Reservation Station,

and as the name already says it, this unit is responsible for

integer as well as FP and multimedia OPs. Athlon does this

work a bit more sophisticated. The units that take care of

the out-of-order execution are the Integer Scheduler and

the FP Scheduler, both able to hold a quite impressive

number of OPs (18/36).

Computer System, Organisation an Architecture

130

���������������������������	
��
���
�������������������
���������������������	�

The control unit is the part of a computer that controls

the computer’s operation. Basically, each part of the computer

requires control signals to arrive at particular times for each

instruction of the computer’s software. The control unit

provides those control signals. In modern computers, each

of these subsystems may have its own subsidiary controller,

but the control unit is the top dog that controls the computer

overall.

A control unit for a CISC ISA can ... have to deal with

instructions that involve tens and even hundreds of minor

states. There would thus be thousands of logic expressions

to generate the control signals. CAD tools can simplify and

minimize these and even lay them out on the silicon

automatically, but it is still a large block of irregular logic on

the chip. The control unit is a finite state machine that takes

as its inputs the IR, the status register (which is partly filled

by the status output from the ALU), and the current major

state of the cycle. Its rules are encoded either in random

logic, a Programmable Logic Array (PLA), or Read-Only

Memory (ROM), and its outputs are sent across the processor

to each point requiring coordination or direction for the

control unit.

Computer System, Organisation an Architecture

131

For example the outputs needed for the portion of the

instruction/data path shown in Discussion 13 are Jump/

Branch/NextPC, IR Latch, Read Control, Load Control, ALU

Function Select, Load/Reg-Reg, Reg R/W.

The ALU function select takes the instruction op code and

translates it into a given function of the ALU (either one line

per ALU function or a compact binary code for the function).

The Jump/Branch/PC depends on the instruction type and

in a RISC architecture these may be directly coded in the op

code. Read control occurs at the start of an instruction cycle.

IR latch and occurs at the end of the fetch state. Load control

happens at the end of the data fetch state of a load

instruction. Load Reg/Reg again depends on the op-code.

Register R/W is in the start of the data fetch stage and at the

write back stage of an operation. It thus depends on the

major state and the instruction.

A CISC architecture typically uses a more complex control

unit. As we’ve noted before, the IR is often multiple words,

and the control unit has to look at different parts of the IR at

different stages of execution. In fact, the entire IR may not

be available at once, requiring interlocks with fetch logic to

ensure the contents of the IR are valid.

There are many more control signals coming out of a CISC

control unit, partly to control the more complex addressing

Computer System, Organisation an Architecture

132

logic, but also to directly connect to the many special purpose

registers. In a RISC architecture, the registers are accessed

uniformly in a block so a simple decoder in the register file

can select the particular register. In a CISC architecture,

there are restrictions on the particular registers that can be

used by a given instruction and these are enforced by the

control unit.

To begin the design of a control unit, we start by listing

every control signal in the instruction/data path of the

processor. This becomes a list of the control unit’s outputs.

As input, it has the instruction register, any status

information (such as branch flags, interrupts, etc.) from the

processor, and a “major state” which simply keeps track of

where we are in the execution of an instruction. We always

begin an instruction with state 0, which corresponds to Fetch.

During that state, the control unit outputs the necessary

signals to route the contents of the PC to the memory address

port, to select and clock the memory until it responds with

data from that location, and then cause this data to be latched

into the IR.

In a CISC architecture, the Fetch may only retrieve the

first part of an instruction, and (depending on bits in the IR

that are then decoded by the control unit) more words may

need to be fetched. In a RISC architecture, a single Fetch

retrieves a complete instruction, so we may proceed to the

next major state, which is usually to begin fetching data

from the registers, while we decode the instruction.

In a RISC architecture, “decoding an instruction” mainly

means that the instruction type field determines what the

control unit will do for the remainder of the instructions. If

Computer System, Organisation an Architecture

133

you think of the CU as a finite state machine, the bits in the

type field select the next state following the decode.

In terms of a program’s logic, this is like selecting a branch

in a Switch statement – each branch of the Switch contains

the series of steps to be performed for one type of instruction.

For example, after decoding a Jump instruction, the control

unit outputs the signals required to combine the address

portion of the instruction with the upper bits of the PC and

load the result back into the PC. The CU then returns to the

Fetch step. Thus, a Jump has three major states (Fetch,

Decode, Complete). For a memory Load instruction, the CU

first sends one of the selected register values (the address)

to the address port of the memory (via a multiplexer) and

signals the memory to fetch this location. When the memory

returns the value, then the CU sends signals to the necessary

multiplexer(s) and the register file so that the memory data

goes over the Dest bus and is stored in the designated register.

Thus, a Load has four major states (Fetch, Decode, Memory,

Write Back).

So, for each type of instruction, and for each major state

in each type of instruction, we look at the list of control signals

and decide what value each signal must have. In some cases,

the value doesn’t matter (e.g., if memory isn’t selected, it

doesn’t matter whether it is set to read or write, because it

simply won’t do anything in either case). You can think of

this as a large 2-dimensional table indexed by instruction

type and major state. Within each cell of the table is a list of

the control signal and their values.

One last bit of control output that we’ve neglected is the

control of the major state itself. This is usually a register, as

Computer System, Organisation an Architecture

134

shown above, that is input to the CU. But it also receives its

next value on each clock from the CU. In the above example,

the Jump proceeds from State 0 (Fetch) to State 1 (Decode)

to State 3 (Complete) and then goes back to State 0. While a

Load adds a State 4. In some designs, the state register also

encodes the instruction type. Thus, it is really referring to

the different states of the finite state machine (FSM) rather

than the major steps of the instructions. So, for example,

the FSM states for a Load might be the sequence 0, 1, 12,

13. The latter two distinguish Memory and Write Back from

the Complete stage of the Jump. In other designs, we might

see Jump going through states 0, 1, 2, and Load going

through 0, 1, 2, 3, with the type field used to distinguish the

different behaviour of the latter states. This is all just a matter

of using somewhat different ways of naming the same things.

The important point is just that the CU has the inputs it

needs to know what it is supposed to be doing on the present

clock and what it will do next. In the CU design process, this

translate to ensuring that one of the control signals on the

list is the “next state” signal, and that we always specify this

in every cell of our table.

CONTROL FOR MULTI CYCLE DATA PATH
The text shows how this data path can be controlled by a

finite state machine with just nine states. Unlike the way

this is drawn in the text, it is quite obvious here that each

level of the controller’s finite state machine corresponds to a

clock cycle (or major state). This view clearly shows the

commonality of the first two major states, prior to the

decoding of the instruction. The third stage is a typical

Computer System, Organisation an Architecture

135

fanning out of the finite state machine to deal with the

different cases of the instruction types. Thus, we can see

that the machine is arranged in a table where the rows are

major states, and the columns are major instruction types.

Because the new PC values have been computed, the Jump

and Branch types can be finished early. The memory read

takes the longest (5 major states).

Each of these states produces a set of control signals that

cause the multiplexers to select the appropriate inputs, and

the various registers to latch at the proper time. This is

determined by looking at each device requiring control and

determining for each state whether it is necessary to issue a

signal on that particular control line.

Note that in the text, the circuitry controlled by the status

from the ALU is shown external to the control for simplicity.

But in a more general controller that must handle multiple

conditions, this logic would not be separated. Because there

are ten distinct states, and the book chooses to encode the

instruction type in the major state (really the FSM state

number) the state register for this machine must have four

bits.

One common approach to implementing a controller is to

have the major state be implemented by a counter register

and within each of these states the different columns are

represented by the state register (which in a RISC architecture

could just be the instruction type code). The major state

counter simply increments on each clock cycle, and when a

column of states finishes early, its last state generates a reset

signal to the major state counter. Another issue that is not

addressed here is what happens when there is a memory

Computer System, Organisation an Architecture

136

delay. We are still assuming that memory returns in a single

cycle. The simplest case is to stall the finite state machine

until the fetch is complete. This is done by having a memory

wait signal that is input to the finite state machine. Each

memory fetch state has a next state arc that loops back to

itself whenever memory wait is asserted.

SIMPLE DATA PATH EXAMPLE: PDP-8
The DEC PDP-8 is a frequently cited example of an almost

trivial datapath. We’ll quickly take a look at it and note some

differences in the implementation approach. The PDP-8 is a

12-bit word machine with a single register (called the

Accumulator). It thus falls into the class of single address

computers. The majority of the instructions are specified by

the upper 3 bits of a 12-bit word.

There are thus 8 major instruction types:

0xxx Logical AND location xxx with Accumulator

1xxx Add location xxx to Accumulator

2xxx Increment location xxx and skip next instruction if

the result is 0

3xxx Store Accumulator in location xxx and clear

Accumulator

4xxx Subroutine jump to xxx + 1 and store return address

in xxx

5xxx Unconditional jump to xxx

6xxx I/O value in Accumulator with device according to

xxx

7xxx Subinstruction code specified by xxx

In the DEC scheme, the high order bit is number 0 and

the low order bit is 11. Operations 0 through 5 use an

Computer System, Organisation an Architecture

137

addressing scheme in which bit 3 determines whether the

address is direct or indirect, and bit 4 determines whether it

refers to an address in the current 128-word “page” or the

page that starts at address 0.

The processor has three major states: Fetch, Defer (Indirect

address fetch), and Execute. Here is an example of an

instruction execution:

1077 — add location 77 directly to the accumulator

Major State 1 (Fetch)

Minor State 1 MAR <- PC

Minor State 2 MBR <- Mem(MAR), PC <- PC + 1

Minor State 3 Latch MBR into IR

Minor State 4 Decode Instruction = Add, Mode = Direct

(no defer), Page = 0, Max St, No defer

Major State 2 (Execute)

Minor State 1 MAR <- 00000 + IR6..IR11

Minor State 2 MBR <- Mem(MAR), ALU Function = Add

Minor State 3 Acc <- ALU result, Max St

Now let’s look at some of these control lines to see what

logic expressions drive them:

No defer = (Major State = 1) AND (IR5 = 0)

Latch MBR = (Major State = 1) AND (Minor State = 3)

Increment PC = (Major State = 1) AND (Minor State = 2)

IR address/MBR = (IR0..IR2 = 4 or 5) AND (IR3 = 1)

Load PC = (Major State = 3) AND (Minor State = 3) AND

(IR0..IR2 = 4 or 5)

Memory Data/ALU = (Major State = 3) AND (IR0..IR2 = 3)

MBR Latch = ((Major State = 1) AND (Minor State =

2)(OR)(Major State = 2) AND (Minor State = 2)(OR ((Major

State = 3) AND (Minor State = 2) AND (IR0..IR2 < 4))

Computer System, Organisation an Architecture

138

And so on. Essentially for each of the control signals we

identify all of the conditions that could cause it to be asserted

and add them to the expression for the given signal.

MICROCODE
In many CISC architectures the control unit can feed back

to the major (and minor) states and has internal registers

and a ROM. It can thus cause portions of an instruction to

be extended or repeated as necessary. The minor states,

registers. additional control logic, and ROM form a finite state

machine called a microcode engine. In the microcode engine,

the op-code from the IR becomes a jump address into the

ROM. A micro-PC can be used to step through a series of

fetches from the ROM starting at that point, with each fetch

resulting in control signals being sent out and providing

feedback to the major and minor state values.

An alternative to using a micro-PC is to have each

instruction explicitly specify the address of its successor.

Thus, one of the fields in the micro-op may be the address of

the next instruction. This allows jumps to be used anywhere

in the microcode with no time penalty — consider that if a

separate instruction had to be employed for a jump, it would

add a cycle to the execution of the ISA instruction.

The microcode instruction set can contain a subroutine

jump so that common sequences of control outputs can be

reused. This is typically present in systems that employ a

micro-PC rather than a next instruction field. There is

typically just one subroutine return register, so nesting of

subroutines is not allowed. Thus, the subroutine jump may

be implemented as a normal jump with a signal issued that

stores the current micro-PC value into the return register.

Computer System, Organisation an Architecture

139

And the subroutine ends with a Return operation rather than

a jump to another location. The Return operation issues a

signal that loads the return register back into the micro-PC.

In a system with an explicit next instruction field, the current

address plus one is stored into the return register and it is

implicit that the next location holds the next instruction

following the subroutine call. (An alternative is to have both

a subroutine jump address and a next instruction address,

and simply return to the same instruction, but this requires

the instruction format to be larger than necessary for most

operations.

MICROINSTRUCTION FORMAT DESIGN
From the preceding discussion of how sequential execution,

jumps, and calls are executed we can gather that the

microinstruction needs to include control information for the

microengine itself. But what else does it store?

In the simplest microinstruction formats, each bit

represents a control signal that is sent out to the datapath.

Thus, when a microinstruction is fetched, the bits in the

instruction are connected to control wires and cause actions

to occur in the datapath. For example, in our PDP-8 example,

there are 14 control signals that are driven by a single bit,

and three others that each require multiple bits, for a total

of 23 bits. Thus, we might use a microinstruction format

such as:

Each of the first 20 bits of this microinstruction

corresponds to a control signal in the PDP-8. For example,

Computer System, Organisation an Architecture

140

bit 0 might be the Halt, bit 1 the No defer, bit 2 the Max St.,

bit 3 Acc. Load, bit 4 Acc. clear, etc. This simple representation

is effective but inefficient. For example, it uses 4 bits to select

the ALU function but only one of those bits should be asserted

at any time. Thus, we can save some memory by storing the

number of the active bit and using an external “decoder”

circuit to translate the two bits into the four lines that control

the ALU.

In a simple design such as the PDP-8, it may seem that

this (two bit) savings is trivial, but in a CISC ISA, the number

of control signals can be quite large and it is important to

minimize the number of bits in the microinstruction format.

Every location in the microcode memory has to store the

same set of bits, so any waste of bits is multiplied by the

number of words.

Microinstruction format designs are often classified by the

width of the word employed. One approach is to have a very

wide word that contains all of the control signals necessary

to drive the system. Such a design is referred to as a

“horizontal” microinstruction format. Another approach is

to use a narrower word, with a sequence of microinstructions

being required to drive all of the control signals. This is called

a “vertical” microinstruction format.

At first glance, it appears that a vertical microinstruction

is inherently slower — it takes a sequence of operations to

accomplish what the horizontal microinstruction can do in

a single cycle. But consider that in many cases, individual

control lines are asserted only in certain minor states. If all

of these are grouped together by minor state, then they can

reuse some of the bits of the microword by having their

Computer System, Organisation an Architecture

141

outputs first fed to a “demultiplexer” that steers them to the

proper signal lines according to the current minor state

(which may itself be part of the instruction). In effect the

microinstruction format is using multiple instruction formats

to reduce redundancy.

Horizontal microcode has been employed in massively

parallel array processors where every processor in the system

shares a single controller. Often the controller is itself a full-

fledged computer, and so the microinstruction both contains

traditional machine code for the controller itself as well as

the control signals that are distributed to the processors that

make up the array. A typical horizontal microinstruction for

this type of machine is 128 bits wide (16 bytes). Thus, every

effort is made to reduce the number of words required. It is

important to note, however, that this is an unusual

application of microcode.

One other problem with horizontal microcode is that it is

dif ficult to drive such a large number of signals

simultaneously. The switching of so many drivers at once

can cause the power supply voltage to sag momentarily (the

same as when your lights dim as you turn on a big appliance).

This in turn causes noise to appear on signal lines that can

cause erroneous behaviour in other parts of the computer.

Computer System, Organisation an Architecture

142

Avoiding this requires careful circuit design and sometimes

clever tricks, such as ensuring that the signals are asserted

in a series of slightly offset time steps.

MICROCODE
Of course, the whole reason for using microcode is to

manage the complexity of a CISC ISA’s control unit. Most

RISC designs, even those that have fairly complex

implementations, are still sufficiently regular that their

control units can be directly constructed from a FSM built

with combinational logic. (The advantage of using

combinational logic is that it is easier to build a fast decoder

with it than with a microcode ROM.) However, for a CISC

ISA, the speed decrease resulting from the use of microcode

is often outweighted by the need to manage the complexity

of controlling the architecture (a slow processor is, after all,

more useful than a faster one that doesn’t work). In a CISC

architecture there may be a large number of instruction types,

each with different fields referring to a wide range of registers

that have asymmetrical functions, or referring to one or more

memory operands with as many as 20 different addressing

modes. (The DEC VAX, Intel 80X86/Pentium, and Intel iAPX

432 are prime examples).

A control unit for a CISC ISA can thus have to deal with

instructions that involve tens and even hundreds of minor

states. There would thus be thousands of logic expressions

to generate the control signals. CAD tools can simplify and

minimize these and even lay them out on the silicon

automatically, but it is still a large block of irregular logic on

the chip.

Computer System, Organisation an Architecture

143

More importantly, if a mistake is discovered later (i.e., one

of the logic expressions is wrong), then it may be necessary

to resimplify the entire design and lay it out again, which

could mean a redesign of the rest of the chip to accommodate

a change in the size of the control unit. This is obviously a

very costly error. Unfortunately, it is also common. Even with

the best design and simulation tools, several commercial

chips have gone into production with errors that were

discovered later. An early 68000 design had a bug that would

cause the processor to hang in certain cases, Intel shipped

half a million Pentium processors with an error in the floating-

point division instruction before it was caught, and has had

bugs in earlier processors.

Since errors do occur, manufacturers of CISC processors

use microcode to reduce the cost of correcting the errors

(and to help simplify the initial design, which in itself helps

to reduce errors). A bug-fix in a microcoded controller is just

a matter of changing the ROM, which does not affect the size

of the controller at all. It is a very low-cost correction. In

addition, a microcoded design is easier to enhance because

unused op-codes can be turned into new machine

instructions by simply extending the microcode. This

simplicity of extension may be another factor that has lead

to the increasingly complex ISAs produced by CISC

manufacturers.

At one point, it was even thought that allowing the user to

add to the microcode was a good idea. If a user has a

particular operation that they want to accelerate, they can

code it up as a new instruction in the microcode. Such

machines were said to have “writeable control stores.” The

Computer System, Organisation an Architecture

144

VAX 11/780, the first model in the VAX line, was one of the

most widely sold of these machines. However, the feature

was rarely used for two reasons: first, the compilers could

not take advantage of the custom instructions so the user

had to program in assembly language; second, the microcode

is tied to the machine implementation (it refers to the

particular control signals in the design) so it is not even

portable to another model of the same architecture.

NANOCODE
In some cases, such as the Motorola 68000, there is also a

nanocode engine. The 68000 uses 544 17-bit words in its

microengine and 336 68-bit words in its nanocode engine. It

thus has 32,096 bits of ROM. If everything had been done

with 68-bit words, it would have required 36,992 bits. The

M68000 microcode is very unusual in that the microcode

implicitly calls the nanocode. Each microcode instruction

causes a corresponding nanocode engine instruction to be

fetched automatically. The nanocode bits are actually the

control signals that get distributed across the machine. The

microcode instructions thus have only to determine what

the next instruction will be. They have two formats, one for

an unconditional jump (perhaps just to the next location) or

a conditional jump (two bits of the jump address are reserved

for the result of the conditional test). This would seem to

imply that there are as many nanocode instructions as

microcode instructions. Yet we can see that there are 208

fewer.

This is accomplished by carefully assigning the addresses

so that common nanocode operations can have multiple

Computer System, Organisation an Architecture

145

microcode locations corresponding to them. The address

space allows for 1024 instructions, and they are arranged so

that if a bit (or several) is ignored, the same nanocode address

is produced. Essentially the engineers mapped the microcode

operations into locations so that certain of the address bits

are “don’t cares” and all of those locations are then mapped

to the same nanocode address. The don’t cares are achieved

by removing selected transistors in the address decoders of

the nanocode ROM.

COMPARISON OF SOME MICROCODE ENGINES
• Motorola 68000: 544 17-bit microwords, plus 336 68-

bit nanowords

• DEC LSI-11: 2048 22-bit microwords

• IBM 3033 Mainframe: 2048 108-bit microwords plus

2048 126-bit microwords

• Texas Instruments 8800: 32K 128-bit microwords in

user-programmable RAM

• UMass/Hughes IUA-2: 64K 128-bit microwords in

RAM.

The STARTECH SD6 tuning kit consists of a computer-

controlled auxiliary control unit. Thanks to an included

model-specific wire harness and detailed installation

instructions the plug-and-play module can be installed in

less than 30 minutes by any authorized Chrysler/Jeep dealer.

At one time control units were ad-hoc logic, and they were

difficult to design. Now they are designed as a microprogram

that is stored in a control store. Words of the microprogram

are selected by a sequencer and the bits from those words

directly control the different parts of the computer, including

Computer System, Organisation an Architecture

146

the registers, arithmetic and logic unit, instruction register,

bus, input/output and computer storage.

FORMATS

CLAIMS
1. A disk controller for a disk having spirally formed

tracks, comprising: Buffer memory for temporarily

storing write data to be recorded on said disk or read

data derived from said disk, a first register for

temporarily storing current sector information

representative of a sector currently accessible, said

current sector information being changed each time

a currently accessible sector varies in accordance with

rotation of said disk, a second register for temporarily

storing target sector information representative of a

sector from which a data read/write operation starts,

comparator means for comparing said current sector

information with said target sector information and

for producing a coincident signal when said current

sector information coincides with said target sector

information, monitor means coupled to said buffer

memory for producing a ready signal when said write

data is stored in said buffer memory or when said

buffer memory has a vacancy for accepting said read

data, and control means coupled to said comparator

means and said monitor means for generating a jump

back signal when said coincident signal is produced

while said ready signal is not being produced, said

control means further generating said jump back

Computer System, Organisation an Architecture

147

signal when said monitor means stops producing said

ready signal after said data read/write operation on

said disk starts.

2. The disk controller as claimed comprises of: Third

register loaded with the current sector information

stored in said first register each time said jump back

signal is generated, the current sector information

stored in said first register being thereafter changed,

and means for generating an additional coincident

signal when the contents of said first and third

registers become equal to each other, said control

means generating said jump back signal again when

said additional coincident signal is generated while

said ready signal is not being produced.

3. The disk controller as claimed in claim 2, further

comprising selector means responsive to said control

means for selecting the contents of said second or

third register for comparing with the contents of said

first register, the contents of said first register being

selected prior to said jump back signal being generated

and the contents of said third register being selected

after such time as said jump back signal is generated.

4. The disk controller as claimed in claim 2, wherein

said disk controller performs a write-verify operation

in which data written on the disk in response to a

write command is thereafter read from the disk and

the data read out is checked for errors, said control

means comprising counter means for causing said

jump back signal to be generated a number of times

to return the read/write head to a track at which

Computer System, Organisation an Architecture

148

data recorded in response to said write command

began to be recorded.

5. The disk controller as claimed in claim 4, wherein

said counter means comprises: Sector register means

for temporarily storing a number corresponding to a

number of sectors to be subjected to data recording

in response to said write command; first down counter

means initially loaded with the number temporarily

stored in said sector register means for counting down

to zero in response to data being recorded in a sector;

track register means for temporarily storing a number

corresponding to a number of tracks to be backed up

upon completion of data recording for a write

command; and second down counter means initially

loaded with the number temporarily stored in said

track register means for counting down to zero in

response to said jump back signal being repeatedly

generated.

6. In a disk controller for a disk having spirally formed

tracks and driven by a servo controller which moves

a read/write head to one of said tracks in response

to control information supplied by a drive controller,

said drive controller being responsive to seek

information generated by a system controller from data

read and write commands, said disk controller

comprising: Buffer memory means for temporarily

storing write data to be recorded on said disk or read

data derived from said disk, First register means for

temporarily storing current sector information

representative of a sector currently accessible, said

Computer System, Organisation an Architecture

149

current sector information being changed each time

a currently accessible sector varies in accordance with

rotation of said disk, Second register means for

temporarily storing target sector information

representative of a sector from which a data read/

write operation starts, Comparator means for

comparing said current sector information with said

target sector information and for producing a

coincident output signal taking an active level when

said current sector information coincides with said

target sector information, Monitor means coupled to

said buffer memory for producing a ready signal when

said write data is stored in said buffer memory means

or when said buffer memory means has a vacancy

for accepting said read data.

Control means coupled to said comparator means and

said monitor means for generating a jump back signal

when said coincident signal is produced while said

ready signal is not being produced, said control means

further generating said jump back signal when said

monitor means stops producing said ready signal after

said data read/write operation on said disk starts,

said jump back signal being supplied directly to said

servo controller without intervention of the system

controller and the drive controller, said servo controller

responding directly to the jump back signal to perform

a jump back operation.

7. A disk controller for a disk apparatus which includes

a disk having spirally formed tracks each containing

a plurality of sectors, head circuit means for tracing

Computer System, Organisation an Architecture

150

each track to perform a data recording operation for

recording write data supplied thereto to each sector

or a data reading-out operation for reproducing read

data from each sector, said head circuit means further

producing current sector information indicative of a

sector currently accessible and updating said current

sector information each time the sector currently

accessible varies, and a servo control unit for

controlling, in response to a jump back signal supplied

thereto, said head circuit means such that said head

circuit means jumps back from a track currently being

traced to a track precedent thereto, said disk controller

comprising: Buffer memory means for temporarily

storing said write data to be supplied to said head

circuit means or said read data reproduced from each

sector, memory control unit coupled to said buffer

memory for producing a ready signal when said write

data is actually stored in said buffer memory or when

said buffer memory has a vacancy for accepting said

read data, register for temporarily storing target sector

information indicative of a target sector from which

said data recording operation or said data reading-

out operation starts, and a control circuit coupled to

said head circuit means, said memory control unit

and said register for allowing said head circuit means

to start said data recording operation or said data

reading-out operation when the current sector

information from said head circuit means becomes

equal to said target sector information while said ready

signal is being produced and for generating and

Computer System, Organisation an Architecture

151

supplying said jump back signal to said servo control

unit to thereby inhibit said head circuit means from

starting said data recording operation or said data

reading-out operation when the current sector

information from said head circuit means becomes

equal to said target sector information while said ready

signal is not being produced.

8. The disk controller wherein said control circuit

includes an additional register loaded with and

temporarily storing the current sector information

each time said head circuit means updates the current

sector information and a comparator for comparing

the current sector information stored in said additional

register with said target sector information to detect

that the current sector information becomes equal to

said target sector information.

9. A disk controller for a disk apparatus which includes

a disk having spirally formed tracks each containing

a plurality of sectors, head circuit means for tracing

each track to perform a data recording operation for

recording write data supplied thereto on each sector

or a data reading-out operation for reproducing read

data from each sector, said head circuit means

producing current sector information indicative of a

sector currently accessible and updating said current

sector information each time the sector currently

accessible varies, and a servo control unit for

controlling, in response to a jump back signal supplied

thereto, said head circuit means such that said head

circuit means jumps back from a track currently being

Computer System, Organisation an Architecture

152

traced to a track precedent thereto, said disk controller

comprising: A buffer memory for temporarily storing

said write data to be supplied to said head circuit

means or said read data reproduced from said disk,

a memory control unit coupled to said buffer memory

for producing a ready signal when said buffer memory

actually stores said write data or when said buffer

memory has a vacancy for accepting said read data,

a register for temporarily storing suspended sector

information indicative of a suspended sector at which

said data recording operation or said data reading-

out operation is suspended, and a control circuit

coupled to said head circuit means, said memory

control unit and said register for allowing said head

circuit means to resume the suspended data recording

operation or the suspended reading-out operation

when the current sector information from said head

circuit means becomes equal to said suspended sector

information while said ready signal is being produced

and for generating and supplying said jump back

signal to said servo control means to thereby inhibit

said head circuit means from resuming the suspended

data recording operation or the suspended data

reading-out operation when the current sector

information from said head circuit mean becomes

equal to said suspended sector information while said

ready signal is not being produced.

10. The disk controller as claimed in claim 9, wherein

said control circuit includes an additional register

loaded with and temporarily storing the current sector

Computer System, Organisation an Architecture

153

information each time said head circuit means

updates the current sector information and a

comparator comparing the current sector information

stored in said additional register with said suspended

sector information to detect that the current sector

information becomes equal to said suspended sector

information.

DISK CONTROLLER INCLUDING FORMAT
The present invention relates to a disk controller and, more

particularly, to an optical disk controller for an optical disk

having a spirally formed track. An optical disk is employed
as one of the data storage units in an information processing
system. An optical disk controller performs a data transfer
operation between the disk and a host processor.

The optical disk controller includes in general a buffer
memory for temporarily storing write data from the host
processor and read data from the disk, a format control unit
for converting the write data from the buffer memory into
data to be recorded on the disk and the data reproduced
from the disk into the read data, and a system controller for
responding to commands from the host processor to control
the data transfer flow. Further included in the disk controller
are a servo controller for controlling the focus and tracking
of an optical beam on the disk and a drive controller for
ordering, under the control of the system controller, the servo
controller to perform a seek operation in which the optical

beam moves to a target track and a jump operation in which

the optical beam jumps to the adjacent track.

When the system controller receives a data transfer

command from the host processor, it requests the seek

Computer System, Organisation an Architecture

154

operation of the drive controller, so that the optical beam

moves rapidly to the target track. At a time when a target

sector on that track is searched, the format controller starts

to operate in a data write mode to record the write data from

the buffer memory on the disk and in a data read mode to

supply the buffer memory with the read data responsive to

the data recorded on the disk.

In the data write mode, the write data is transferred from

the host processor to the buffer memory, and in the data

read mode, the read data is transferred from the buffer

memory to the host processor. Thus, the data transfer is

executed between the disk and the host processor.

However, sometimes in the data write mode no write data

has been transferred to the buffer memory at a time the

target sector is searched and that the write data transfer to

the buffer memory is suspended. Also in the data read mode,

the buffer memory is often filled with the read data which

are not transferred to the host processor yet.

In such cases, the data read/write operation is of course

suspended until the write data arrives in the buffer memory

or until the buffer memory has a vacancy for accepting the

read data. On the other hand, the disk continues to rotate.

Since the track on the disk is formed spirally, therefore, the

accessible sector advances in sequence, so that the target

sector is not searched again even when the write data is

transferred to the buffer memory or the vacancy for the read

data is formed in the buffer memory. Therefore, the format

controller informs the system controller of a fact that the

data read/write operation is suspended due to the above

reason. In response thereto, the system controller requests

Computer System, Organisation an Architecture

155

the jump operation of the drive controller to back the optical

beam up by one track. To back the optical beam up is called

hereinafter “jump back”. However, this jump back operation

is performed after the response time of the system controller

and the drive controller has elapsed, resulting in lowering in

an access speed. Moreover, the system controller must be

designed to handle the request from the format controller,

and hence the load thereof is made large.

INVENTION
Therefore, an object of the present invention is to provide

an improved disk controller. Another object of the present

invention is to provide a disk controller which can prevent

lowering the access speed even when a data read/write

operation is suspended. Still another object of the present

invention is to provide a disk controller which can achieve a

jump back processing operation without increasing the

loading of the system controller. A disk controller according

to the present invention is characterized in that a format

control unit generates directly a jump back signal and a servo

controller responds directly to that signal to perform a jump

back operation.

More specifically, the format control unit comprises a first

register for temporarily storing current sector information

which indicates a currently accessible sector on a disk and

is changed in accordance with the location of the disk, a

second register for temporarily storing target sector

information indicative of a target sector from which a data

read/write operation starts, comparator means for comparing

the information stored in the first register with the

Computer System, Organisation an Architecture

156

information stored in the second register to produce a

comparison output signal taking an active level when the

former information coincides with the latter information, and

a sequence controller receiving the comparison output signal

and a ready signal which takes an active level when write

data is already stored in a buffer memory or when the buffer

memory has a vacancy for accepting read data and generating

the jump back signal when the ready signal is in an inactive

level when the comparison output signal takes the active

level, the sequence controller further generating, after the

comparison output signal takes the active level, the jump

back signal when the ready signal is in the inactive level

when the information stored in the first register is changed.

Thus, the format control unit initiates the jump back

operation to prevent lowering the access speed due to the

delay of system and drive controllers. When the sequence

controller generates the jump back signal, the sector

information at that time is temporarily retained, and the

comparator means thereafter compares the current sector

information with the retained sector information. The

generation of the jump back signal is then controlled in

response to the comparison output signal and the ready

signal.

INSTRUCTION CYCLES AND SUB CYCLES

In order to program at an elementary level, it is not

necessary to understand in detail the internal structure of

the processor that one is using. However, in order to do

efficient programming, such an understanding is required.

The purpose of this chapter is to present the basic hardware

Computer System, Organisation an Architecture

157

concepts necessary for understanding the operation of the

Z80 system. The complete microcomputer system includes

not only the microprocessor unit (here the Z80), but also

other components.

We will review here the basic architecture of the

microcomputer system, then study more closely the internal

organization of the Z80. We will examine, in particular, the

various registers.

We will then study the program execution and sequencing

mechanism. From a hardware standpoint, this chapter is

only a simplified presentation. The Z80 was designed as a

replacement for the Intel 8080, and to offer additional

capabilities. A number of references will be made in this

chapter to the 8080 design.

SYSTEM ARCHITECTURE
The architecture of the microcomputer system appears in

Figure. The microprocessor unit (MPU), which will be a Z80

here, appears on the left of the illustration. It implements

the functions of a central-processing unit (CPU) within one

chip: it includes an arithmetic-logical unit (ALU), plus its

internal registers, and acontrol unit (CU), in charge of

sequencing the system. Its operation will be explained in

this chapter.

The MPU creates three buses: An 8-bit bidirectional data

bus, which appears at the top of the illustration, a 16-bit

unidirectional address bus, and a control bus, which appears

at the bottom of the illustration. Let us describe the function

of each of the buses. The data bus carries the data being

exchanged by the various elements of the system. Typically,

it will carry data from the memory to the MPU or from the

Computer System, Organisation an Architecture

158

MPU to the memory or from the MPU to an input/output

chip. (An input/output chip is a component in charge of

communicating with an external device.)

���

The address bus carries an address generated by the MPU,

which will select one internal register within one of the chips

attached to the system. This address specifies the source, or

the destination, of the data which will transit along the data

bus.

The control bus carries the various synchronization signals

required by the system. Having described the purpose of the

buses, let us now connect the additional components required

for a complete system.

Every MPU requires a precise timing reference, which is

supplied by a clock and a crystal. In most “older”

microprocessors, the clock-oscilator is external to the MPU

and requires an extra chip. In most recent microprocessors,

the clock-oscilator is usually incorporated within the MPU.

The quartz crystal, however, because of its bulk, is always

external to the system. The crystal and the clock appear on

the left of the MPU box in Figure.

Computer System, Organisation an Architecture

159

Let us now turn our attention to the other elements of the

system. Going from the left to right on the illustration, we

distinguish:

The ROM is the read-only memory and contains the

program for the system. The advantage of the ROM memory

is that its contents are permanent and do not disappear

whenever the system is turned off. The ROM, therefore,

always contains a bootstrap or a monitor program (their

function will be explained later) to permit initial system

operation. In a process-control environment, nearly all the

programs will reside in ROM, as they will probably never be

changed. In such a case, the industrial user has to protect

the system against power failure; programs must not be

volatile. They must be in ROM.

However, in a hobbyist environment, or in a program-

development environment (when the programmer tests his

program), most of the programs will reside in RAM, so that

they can be easily changed. Later, they may remain in RAM,

or be transferred into ROM, if desired. RAM, however, is

volatile. Its contents are lost when power is turned off.

The RAM (random-access memory) is the read/write

memory for the system. In the case of a control system, the

amount of RAM will typically be small (for data only). On the

other hand, in a program development environment, the

amount of RAM will be large, as if will contain programs plus

development software. All RAM contents must be loaded prior

to use from an external device.

Finally the system will contain one or more interface chips

so that it may communicate with the external world. The

most frequently used interface chip is the PIO or parallel

Computer System, Organisation an Architecture

160

input/output chip. It is the one shown on the illustration.

This PIO, like all other chips in the system, connects to all

three buses and provides at least two 8-bit ports for

communication with the outside world. All the chips are

connected to all three buses, including the control bus. The

functional modules which have been described need not

necessarily reside on a single LSI chip. In fact, we could use

combination chips, which may include both PIO and a limited

amount of ROM or RAM. Still more components will be

required to build a real system. In particular, the buses need

to be buffered. Also decoding logic may be used for the memory

RAM chips, and, finally, some signals may need to be

amplified by drivers. These auxiliary circuits will not be

described here as they are not relevant to programming.

INSIDE A MICROPROCESSOR
The large majority of all microprocessor chips on the market

today implement the same architecture. This “standard”

architecture will be described here. It is shown in Figure

below. The modules of this standard microprocessor will now

be detailed, from right to left.

��������������������� ��������!������"������������	���������

Computer System, Organisation an Architecture

161

The control box on the right represents the control unit

which synchronizes the entire system. Its role will be clarified

within the remainder of this chapter. The ALU performs
arithmetic and logic operations. A special register equips one
of the inputs of the ALU, the left input here. It is called the
accumulator. (Several accumulators may be provided.) The
accumulator may be referenced as input and output (source
and destination) within the same instruction.

The ALU must also provide shift and rotate facilities.
A shift operation consists of moving the contents of a byte

by one or more positions to the left or to the right. This is

illustrated in Figure. Each bit has been moved to the left by

one position. The details of shifts and rotations will be

presented in the next chapter.

����������������������	�#������$������

The shifter may be on the ALU output, as illustrated in

Figure, or may be on the accumulator input. To the left of

the ALU, the flags or status register appear. Their role is to

store exceptional conditions within the microprocessor. The

contents of the flags registers may be tested by specialized

instructions, or may be read on the internal data bus. A

conditional instruction will cause the execution of a new

program, depending on the value of one of these bits. The

role of the status bits in the Z80 will be examined later in

this chapter.

Computer System, Organisation an Architecture

162

SETTING FLAGS
Most of the instructions executed by the processor will

modify some or all of the flags. It is important to always refer

to the chart provided by the manufacturer listing which bits

will be modified by the instructions. This is essential in

understanding the way a program is being executed. Such a

chart for the Z80 is shown in Figure.

THE REGISTERS
Let us look now at above Figure. On the left of the

illustration, the registers of the microprocessor appear.

Conceptually, one can distinguish the general-purpose

registers and the address registers.

THE GENERAL-PURPOSE REGISTERS
General-purpose registers must be provided in order for

the ALU to manipulate data at high speed. Because of

restrictions on the number of bits which is reasonable to

provide within an instruction, the number of (directly

addressable) registers is usually limited to fewer than eight.

Each of these registers is a set of eight flip-flops, connected

to the bidirectional internal data bus. These eight bits can

be transferred simultaneously to or from the data bus. The

implementation of these registers in MOS flip-flops provide

the fastest level of memory available, and their contents can

be accessed within tens of nanoseconds.

Internal registers are usually labeled from 0 to n. The role

of these registers is not defined in advance: they are said to

be “general-purpose.” They may contain any data used by

the program.

Computer System, Organisation an Architecture

163

These general-purpose registers will normally be used to

store eight-bit data. On some microprocessors, facilities exist

to manipulate two of these registers at a time. They are then

called “register pairs.” This arrangement facilitates the storage

of 16-bit quantities, whether data or addresses.

THE ADDRESS REGISTERS
Address registers are 16-bit registers intended for the

storage of addresses. They are also often called data counters

or pointers. They are double registers, i.e., two eight-bit

registers. Their essential characteristic is to be connected to

the address bus. The address registers create the address

bus. The address bus appears on the left and the bottom

part of the illustration in Figure below.

���������������������%	��&'()�����������$���������*�������	����������+���

The only way to load the contents of these 16-bit registers

is via the data bus. Two transfers will be necessary along the

data bus in order to transfer 16 bits. In order to differentiate

between the lower half and the higher half of each register,

they are usually labelled as L (low) or H (high), denoting bits

0 through 7, and 8 through 15, respectively. This label is

used whenever it is necessary to differentiate the halves of

Computer System, Organisation an Architecture

164

these registers. At least two address registers are present

within most microprocessors. “MUX” in Figure stands for

multiplexer.

PROGRAM COUNTER (PC)
The program counter must be present in any processor. It

contains the address of the next instruction to be executed.

The presence of the program counter is indispensable and

fundamental to program execution. The mechanism of

program execution and the automatic sequencing

implemented with the program counter will be described in

the next section. Briefly, execution of a program is normally

sequential. In order to access the next instruction, it is

necessary to bring it from the memory into the

microprocessor. The contents of the PC will be deposited on

the address bus, and transmitted towards the memory. The

memory will then read the contents specified by this address

and send back the corresponding word to the MPU. This is

the instruction. In a few exceptional microprocessors, such

as the two-chip F8, there is no PC on the microprocessor.

This does not mean that the system does not have a program

counter. The PC happens to be implemented directly on the

memory chip, for reasons of efficiency.

STACK POINTER (SP)
The stack has not been introduced yet and will be described

in the next section. In most powerful, general-purpose

microprocessors, the stack is implemented in “software”, i.e.,

within the memory. In order to keep track of the top of this

stack within the memory, a 16-bit register is dedicated to

the stack pointer or SP. The SP contains the address of the

Computer System, Organisation an Architecture

165

top of the stack within the memory. It will be shown that the

stack is indispensable for interrupts and for subroutines.

INDEX REGISTER
Indexing is a memory-addressing facility which is not

always provided in microprocessors. Indexing is a facility for

accessing blocks of data in the memory with a single

instruction. An index register will typically contain a

displacement which will be automatically added to a base

(or it might contain a base which would be added to a

displacement). In short, indexing is used to access any word

within a block of data.

THE STACK
A stack is formally called an LIFO structure (last-in, first-

out). A stack is a set of registers, or memory locations,

allocated to this data structure. The essential characteristic

of this structure is that it is a chronological structure. This

first element introduced into the stack is always at the bottom

of the stack. The element most recently deposited in the stack

is on top of the stack. The analogy can be drawn with a stack

of plates on a restaurant counter. There is a hole in the

counter with a spring in the bottom. Plates are piled up in

the hole. With this organization, it is guaranteed that the

plate which has been put first in the stack (the oldest) is

always at the bottom.

The one that has been placed most recently on the stack

is the one which is on top of it. This example also illustrates

another characteristic of the stack. In normal use, a stack is

only accessible via two instructions: “push” and “pop” (or

“pull”). The push operation results in depositing one element

Computer System, Organisation an Architecture

166

on top of the stack (two in case of the Z80). The pull operation

consists of removing one element from the stack. In the case

of a microprocessor, it is the accumulator that will be

deposited on top of the stack. The pop will result in a transfer

of the top element of the stack into the accumulator. Other

specialized instructions may exist to transfer the top of the

stack between other specialized registers, such as the status
register. The Z80 is more versatile than most in this respect.

The availability of a stack is required to implement three
programming facilities within the computer system:
subroutines, interrupts, and temporary data storage. Finally,
the role of the stack in saving data at high speed will be
explained during specific application programs. We will simply
assume at this point that the stack is a required facility in
every computer system.

A stack may be implemented in two ways:
1. A fixed number of registers may be provided within

the microprocessor itself. This is a “hardware stack.”
It has the advantage of high speed. However, it has
the disadvantage of a limited number of registers.

2. Most general-purpose microprocessors choose another
approach, the software stack, in order not to restrict
the stack to a very small number of registers. This is
the approach chosen in the Z80. In the software
approach, a dedicated register within the
microprocessor, here register SP, stores the stack

pointer, i.e., the address of the top element of the

stack (or, sometimes, the address of the top element

of the stack plus one). The stack is then implemented

as an area of memory. The stack pointer will therefore

require 16 bits to point anywhere in the memory.

Computer System, Organisation an Architecture

167

���������������������%	��%,������-(����"�
�������������������

INSTRUCTION EXECUTION CYCLE
Let us now refer to Figure below:

�������������������������	�������������������#�����	���������

The microprocessor unit appears on the left, and the

memory appears on the right. The memory chip may be a

ROM or a RAM, or any other chip which happens to contain

memory. The memory is used to store instructions and data.

Here, we will fetch one instruction from the memory to

illustrate the role of the program counter. We assume that

the program counter has valid contents. It now holds a 16-

bit address which is the address of the next instruction to

fetch in the memory. Every processor proceeds in three cycles.

FETCH
Let us now follow the sequence. In the first cycle, the

contents of the program counter are deposited on the address

bus and gated to the memory (on the address bus).

Simultaneously, a read signal may be issued on the control

Computer System, Organisation an Architecture

168

bus of the system, if required. The memory will receive the

address. This address is used to specify one location within

the memory. Upon receiving the read signal, the memory

will decode the address it has received, through internal

decoders, and will select the location specified by the address.

A few hundred nanoseconds later, the memory will deposit

the eight-bit data corresponding to the specified address on

its data bus. This eight-bit word is the instruction that we

want to fetch. In our illustration, this instruction will be

deposited on the data bus on top of the MPU box.

���������������������������������.��������

Let us briefly summarize the sequencing: the contents of

the program counter are output on the address bus. A read

signal is generated. The memory cycles, and perhaps 300

nanoseconds later, the instruction at the specified address

is deposited on the data bus (assuming a single byte

instruction). The microprocessor then reads the data bus

and deposits its contents into a specialized internal register,

the IR register. The IR is the instruction register: It is eight-

Computer System, Organisation an Architecture

169

bits wide and is used to contain the instruction just fetched

from the memory. The fetch cycle is now completed. The 8

bits of the instruction are now physically in the special

internal register of the MPU, the IR register. The IR appears

on the left of Figure above. It is not accessible to the

programmer.

DECODING AND EXECUTION
Once the instruction is contained in IR, the control unit of

the microprocessor will decode the contents and will be able

to generate the correct sequence of internal and external

signals for the execution of the specified instruction. There

is, therefore, a short decoding delay followed by an execution

phase, the length of which depends on the nature of the

instruction specified. Some instructions will execute entirely

within the MPU.

Other instructions will fetch or deposit data from or into

the memory. This is why the various instructions of the MPU

require various length of time to execute. This duration is

expressed as a number of (clock) cycles. Since various clock

rates may be used, speed of execution is normally expressed

in number of cycles rather than in number of nanoseconds.

FETCHING THE NEXT INSTRUCTION
We have described now, using the program counter, an

instruction can be fetched from the memory. During the

execution of a program, instructions are fetched in sequence

from the memory. An automatic mechanism must therefore

be provided by a simple incrementer attached to the program

counter. Every time that the contents of the program counter

(at the bottom of the illustration) are placed on the address

Computer System, Organisation an Architecture

170

bus, its contents will be incremented and written back into

the program counter.

As an example, if the program counter contained the value

“0”, the value “0” would be output on the address bus. Then

the contents of the program counter would be incremented

and the value “1” would be written back into the program

counter. In this way, the next time that the program counter

is used, it is the instruction at address 1 that will be fetched.

We have just implemented an automatic mechanism for

sequencing instructions. It must be stressed that the above

descriptions are simplified. In reality, some instructions may

be two- or even three-bytes long, so that successive bytes

will be fetched in this manner from memory. However, the

mechanism is identical. The program counter is used to fetch

successive bytes of an instruction as well as to fetch

successive instructions themselves. The program counter,

together with its incrementer, provides an automatic

mechanism for pointing to successive memory locations.

We will now execute an instruction within the MPU. A

typical instruction will be, for example: R0 = R0 + R1. This

means: -ADD the contents of R0 and R1, and store the results

in R0.” To perform this operation, the contents of R0 will be

read from register R0, carried via the single bus to the left

input of the ALU, and stored in the buffer register there.

R1 then will be selected and its contents will be read onto

the bus, then transferred to the right input of the ALU. This

sequence is illustrated in Figures. At this point, the right

input of the ALU is conditioned by R1, and the left input of

the ALU is conditioned by the buffer register, containing the

previous value of R0.

Computer System, Organisation an Architecture

171

�������������������������
�(+������	���������

The operation can be performed. The addition is performed

by the ALU, and the result appears on the ALU output, in
the lower right-hand corner of Figure. The result will be
deposited on the single bus, and will be propagated back to
R0. This means, in practice, that the input latch of R0 will
be enabled, so that data can be written into it. Execution of
the instruction is now complete. The results of the addition
are in R0. It should be noted that the contents of R1 have

not been modified by this operation. This is general principle:

the contents of a register, or any read/write memory, are not

modified by a read operation.

������������������������������������#�������������(�$��������**�

Computer System, Organisation an Architecture

172

������������������������������(��������$��������$&�������/0�

���������������������$���
�����1�������������1���������$��

The buffer register on the left input of the ALU was

necessary in order to memorize the contents of R0, so that

the single bus could be used again for another transfer.

However, a problem remains.

CRITICAL RACE PROBLEM
The simple organization shown in Figure above will not

function correctly.

Question: What is the timing problem?

Answer: The problem is that the result which will be

propagated out of the ALU will be deposited back on the

single bus. It will not just propagate in the direction of R0,

but along all of the bus. In particular, it will recondition the

Computer System, Organisation an Architecture

173

right input of the ALU, changing the result coming out of it a

few nanoseconds later. This is acritical race. The output of

the ALU must be isolated from its input.

Several solutions are possible which will isolate the input

of the ALU from the output. A buffer register must be used.

The buffer register could be placed on the output of the ALU,

or on its input. It is usually placed on the input of the ALU.

Here it would be placed on its right input. The buffering of

the system is now sufficient for a correct operation. It will be

shown later in this chapter that if the left register which

appears in this illustration is to be used as an accumulator

(permitting the use of one-byte long instructions), then the

accumulator will require a buffer too, as shown.

INTERNAL ORGANIZATION OF Z80
The terms necessary in order to understand the internal

elements of the microprocessor have been defined. We will

now examine in more detail the Z80 itself, and describe its

capabilities. The internal organization of the Z80 is shown

in figure below. This diagram presents a logical description

of the device. Additional interconnections may exist but are

not shown. Let us examine the diagram from right to left.

On the right part of the illustration, the arithmetic-logical

unit (the ALU) may be recognized by its characteristic “V”

shape. The accumulator register, which has been described

in the previous section, is identified as A on the right input

path of the ALU. It has been shown in the previous section

that the accumulator should be equipped with a buffer

register. This is the register labeled ACT (temporary

accumulator). Here, the left input of the ALU is also equipped

Computer System, Organisation an Architecture

174

with a temporary register, called TMP. The operation of the

ALU will become clear in the next section, where we will

describe the execution of actual instructions.

���������������������$��	������2��������
�����3�����4������5�/0��������������������	����������,��
�6

The flags register is called “F” in the Z80, and is shown on

the right of the accumulator register. The contents of the

flags register are essentially conditioned by the ALU, but it

will be shown that some of its bits may also be conditioned

by other modules or events. The accumulator and the flags

registers are shown as double registers labeled respectively

A, A’ and F, F’. This is because the Z80 is equipped internally

with two sets of registers A + F, and A’ + F’.

Computer System, Organisation an Architecture

175

However, only one set of these registers may be used at

any one time. A special instruction is provided to exchange

the contents of A and F with A’ and F’. In order to simplify

the explanations, only A and F will be shown on most of the

diagrams which follow. The reader should remember that he

has the option of switching to the alternate register set A’

and F’ if desired.

���������������������*�����2��������
�����3�����4������5$��������+
��-6

A large block of registers is shown at the center of the

illustration. On top of the block of registers, two identical

groups can be recognized. Each one includes six registers

labeled B, C, D, E, H, L. These are the general-purpose eight-

bit registers of the Z80. There are two peculiarities of the Z80

with respect to standard microprocessors which has been

Computer System, Organisation an Architecture

176

described at the beginning of this chapter.

First, the Z80 is equipped with two banks of register, i.e.,

two identical groups of 6 registers. Only six may be used at

any one time. However, special instructions are provided to

switch between the two banks of registers. One bank,

therefore, behaves as an internal memory, while the other

one behaves as a working set of internal registers. The

possible uses of the special facility will be described in the

next chapter. Conceptually, it will be assumed, for the time

being, that there are only six working registers, B, C, D, E,

H, and L, and the second register bank will temporarily be

ignored, in order to avoid confusion.

The MUX symbol which appears above the memory bank

is an abbreviation for multiplexer. The data coming from the

internal data bus will be gated through the multiplexer to

the selected register. However, only one of these registers

can be connected to the internal data bus at any one time.

A second characteristic of these six registers, in addition

to being general-purpose eight-bit registers, is that they are

equipped with a connection to the address bus. This is why

they have been grouped in pairs. For example, the contents

of B and C can be gated simultaneously onto the 16-bits

address bus which appears at the bottom of the illustration.

As a result, this group of 6 registers may be used to store

either eight-bit data or else 16-bit pointers for memory

addressing.

The third group of registers, which appears below the two

previous ones in the middle of figure above, contains four

“pure” address registers. As in any microprocessor, we find

the program counter (PC) and the stack pointer (SP). Recall

Computer System, Organisation an Architecture

177

that the program counter contains the address of the next

instruction to be executed. The stack pointer points to the

top of the stack in the memory. In the case of the Z80, the

stack pointer points to the last actual entry in the stack. (In

other microprocessors, the stack pointer points just above

the last entry.) Also, the stack grows “downwards” i.e.

towards the lower addresses.

This means that the stack pointer must be decremented

any time a new word is pushed on the stack. Conversely,

whenever a word is removed (popped) from the stack, the

stack pointer must be incremented by one. In the case of the

Z80, the “push” and “pop” always involve two words at the

same time, so that the contents of the stack pointer will be

decremented or incremented by two.

Looking at the remaining two registers of this group of

four registers, we find a new type of register which has not

been described yet: two index registers, labeled IX (Index

Register X) and IY (Index Register Y). These two registers are

equipped with a special adder shown as a miniature V-shaped

ALU on the right of these registers in Figure. A byte brought

along the internal data bus may be added to the contents of

IX or IY. This byte is called the displacement, when using an

indexed instruction. Special instructions are provided which

will automatically add this displacement to the contents of

IX or IY and generate an address. This is called indexing. It

allows convenient access to any sequential block of data.

Finally, a special box labeled “+/-1” appears below and to

the left of the block of registers. This is an increment/

decrement. The contents of any of the register pairs SP, PC,

BC, DE, HL (the “pure address” registers) may be

Computer System, Organisation an Architecture

178

automatically incremented or decremented every time they

deposit an address on the internal address bus. This is an

essential facility for implementing automated program loops

which will be described in the next section. Using this feature

it will be possible to access successive memory locations

conveniently.

���������������������/�#������2��������
�����3�����4������5*�����
��������6

Let us move to the left side of the illustration. One register

pair is shown, isolated on the left: I and R. The I register is

called the interrupt page address register. Its rol will be

described in the section on interrupts of Chapter (Input/

Output Techniques). It is used only in a special mode where

an indirect call to a memory location is generated in response

to an interrupt. The I register is used to store the high-order

Computer System, Organisation an Architecture

179

part of the indirect address. The lower part of the address is

supplied by the device which generated the interrupt. The R

register is the memory-refresh register. It is provided to refresh

dynamic memories automatically. Such a register has

traditionally been located outside the microprocessor, since

it is associated with the dynamic memory. It is a convenient

feature which minimizes the amount of external hardware

for some types of dynamic memories. It will not be used here

for programming purposes, as it is essentially a hardware

feature. However, it is possible to use it as a software clock,

for example.

Let us move now to the far left of the illustration. There

the control section of the microprocessor is located. From

top to bottom, we find first the instruction register IR, which

will contain the instruction to be executed. The IR register is

totally distinct from the “I, R” register pair described above.

The instruction is received from the memory via the data

bus, is transmitted along the internal data bus and is finally

deposited into the instruction register. Below the instruction

register appears the decoder which will send signals to the

controller-sequencer and cause the execution of the

instruction within the microprocessor and outside it. The

control ection generates and manages the control bus which

appears at the bottom part of the illustration.

The three buses managed or generated by the system, i.e.,

the data bus, the address bus, and the control bus, propagate

outside the microprocessor through its pins. The external

connections are shown on the right-most part of the

illustration. The buses are isolated from the outside through

buffers shown in Figure above.

Computer System, Organisation an Architecture

180

All the logical elements in the Z80 have now been described.

It is not essential to understand the detailed operation of the

Z80 in order to start writing programs. However, for the

programmer who wishes to write efficient codes, the speed

of a program and its size will depend upon the correct choice

of registers as well as the correct choice of techniques. To

make a correct choice, it is necessary to understand how

instructions are executed within the microprocessor. We will

therefore examine here the execution of typical instructions

inside the Z80 to demonstrate the role and use of the internal

registers and buses.

INSTRUCTION FORMATS
Z80 instructions may be formated in one, two, three or

four bytes. An instruction specifies the operation to be

performed by the microprocessor. From a simplified

standpoint, every instruction may be represented as an

opcode followed by an optional literal or address field,

comprising one or two words. The opcode field specifies the

operation to be carried out. In strict computer terminology,

the opcode represents only those bits which specify the

operation to be performed, exclusive of the register pointers

which it might incorporate. In the microprocessor world, it

is convenient to call opcode the operation code itself, as well

as any register pointers which it might incorporate. This

“generalized opcode” must reside in an eight-bit word for

efficiency (this is the limiting factor on the number of

instructions available in a microprocessor).

The 8080 uses instructions which may be one, two, or

three bytes long. However, the Z80 is equipped with additional

Computer System, Organisation an Architecture

181

indexed instructions, which require one more byte. In the

case of the Z80, opcodes are, in general, one byte long, except

for special instructions which require a two-byte opcode.

Some instructions require that one byte of data follow the

opcode. In such a case, the instruction will be a two-byte

instruction, the second byte of which is data (except for

indexing, which adds an extra byte). In other cases, the

instruction might require the specification of an address. An

address requires 16 bits and, therefore, two bytes. In that

case, the instruction will be a three-byte or a four-byte

instruction.

For each byte of the instruction, the control unit will have

to perform a memory fetch, which will require four clock

cycles. The shorter the instruction, the faster the execution.

���������������������%�"���
���������������������

ONE-WORD INSTRUCTION
One-word instructions are, in principle, fastest and are

favored by the programmer. A typical such instruction for

the Z80 is:

LD R,R’
This instruction means: “Transfer the contents of register

r’ into r.” This is a typical “register-to-register” operation.

Every microprocessor must be equipped with such

Computer System, Organisation an Architecture

182

instructions, which allow the programmer to transfer

information from any of the machine’s registers into another

one. Instructions referencing special registers of the machine,

such as the accumulator or other special-purpose registers,

may have a special opcode.

After execution of the above instruction, the contents of r

will be equal to the contents of r’. The contents of r’ will not

have been modified by the read operation. Every instruction

must be represented internally in a binary format. The above

representation “LD r,r’ “ is symbolic or mnemonic. It is called

the assembly-language representation of an instruction. It

is simply meant as a convenient symbolic representation of

the actual binary encoding for that instruction. The binary

code which will represent this instruction inside the memory

is: 0 1 D D D S S S (bits 0 to 7).

This representation is still partially symbolic. Each of the

letters S and D stands for a binary bit. The three D’s, “D D

D”, represent the three bits pointing to the destination

register. Three bits allow selection of one out of eight possible

registers. The codes for these registers appear in figure. For

example, the code for register B is “0 0 0”, the code for register

C is “0 0 1”, and so on.

Similarly, “S S S” represents the three bits pointing to the

source register. The convention here is that register r’ is the

source, and that register r is the destination. The placement

of bits in the binary representation of an instruction is not

meant for the convenience of the programmer, but for the

convenience of the control section of the microprocessor,

which must decode and execute the instruction. The

assembly-language representation, however, is meant for the

Computer System, Organisation an Architecture

183

convenience of the programmer. It could be argued that LD

r,r’ should really mean: “Transfer contents of r into r’.”

However, the convention has been chosen in order to

maintain compatibility with the binary representation in this

case. It is naturally arbitrary.

Exercise: Write below the binary code which will transfer

the contents of register C into register B. Consult Figure for

the codes corresponding to C and B.

Code Register Code Register
0 0 0 B 1 0 0 H
0 0 1 C 1 0 1 L
0 1 0 D 1 1 0 - (Memory)
0 1 1 E 1 1 1 A

TWO-WORD INSTRUCTION

ADD A, N
This simple two-word instruction will add the contents of

the second byte of the instruction to the accumulator. The

contents of the second word of the instruction are said to be

a “literal.” They are data and are treated as eight bits without

any particular significance. They could happen to be a

character or numerical data. This is irrelevant to the

operation. The code for this instruction is:

1 1 0 0 0 1 1 0 FOLLOWED BY THE 8-BIT BYTE
“N”

This is an immediate operation. “Immediate,” in most

programming languages, means that the next word, or words,

within the instruction contains a piece of data which should

not be interpreted (the way an opcode is). It means that the

next one or two words are to be treated as a literal.

Computer System, Organisation an Architecture

184

The control unit is programmed to “know” how many words

each instruction has. It will, therefore, always fetch and execute

the right number of words for each instruction. However, the

longer the possible number of words for the instruction, the

more complex it is for the control unit to decode.

THREE-WORD INSTRUCTION

LD A, (NN)
The instruction requires three words. It means: “Load the

accumulator from the memory address specified in the next

two bytes of the instruction.” Since addresses are 16-bits

long, they require two words. In binary, this instruction is

represented by:

0 0 1 1 1 0 1 0:8 bits for the opcode

Low address: 8 bits for the lower part of the address

High address: 8 bits for the upper part of the address.

EXECUTION OF INSTRUCTIONS IN Z80
We have seen that all instructions are executed in three

phases: FETCH, DECODE, EXECUTE. We now need to

introduce some definitions. Each of these phases will require

several clock cycles. The Z80 executes each phase in one or

more logical cycles, called a “machine cycle.” The shortest

machine cycle lasts three clock cycles. Accessing the memory

requires three cycles for any operands, four clock cycles for

the initial fetch. Since each instruction must be fetched first

from memory, the fastest instruction will require four clock

cycles. Most instruction will require more. Each machine

cycle is labeled M1, M2, etc., and will require three or more

clock cycles, or “states,” labeled T1, T2, etc.

Computer System, Organisation an Architecture

185

FETCH PHASE
The FETCH phase of an instruction is implemented during

the first three states of machine cycle M1; they are called

T1, T2, and T3. These three states are common to all

instructions of the microprocessor, as all instructions must

be fetched prior to execution. The FETCH mechanism is the

following:

T1: PC OUT
The first step is to present the address of the next

instruction to the memory. This address is contained in the

program counter (PC). As the first step of any instruction

fetch, the contents of PC are placed on the address bus. At

this point, an address is presented to the memory, and the

memory address decoders will decode this address in order

to select the appropriate location within the memory. Several

hundred ns (a nanosecond is 10-9 second) will elapse before

the contents of the selected memory location become available

on the output pins of the memory, which are connected to

the data bus. It is standard computer design to use the

memory read time to perform an operation within the

microprocessor. The operation is the incrementation of the

program counter:

T2: PC = PC + 1

While the memory is reading, the contents of the PC are

incremented by 1. At the end of state T2, the contents of the

memory are available and can be transferred within the

microprocessor:

Computer System, Organisation an Architecture

186

�������������������������������������	�(�5�*6�������������	���������

����������������������*����������������

DECODE AND EXECUTE PHASES
During state T3, the instruction which has been read out

of the memory is deposited on the data bus and transferred

into the instruction register of the Z80, from which point it

is decoded.

Computer System, Organisation an Architecture

187

���������������������%	������������������7���#�����	���������������$�

It should be noted that states T4 of M1 will always be

required. Once the instruction has been deposited into IR

during T3, it is necessary to decode and execute it. This will

require at least one machine state, T4.

A few instructions require an extra state of M1 (state T5).

It will be skipped by the processor for most instructions.

Whenever the execution of an instruction requires more than

M1, i.e., M1, M2 or more cycles, the transition will be directly

from state T4 of M1 into T1 of M2. Let us examine an example.

The detailed internal sequencing for each example is shown

in the tables of figure. As these tables have not been released

for the Z80, the 8080 tables are used instead. They provide

an indepth understanding of the instruction execution.

LD D, C
This corresponds to MOV r1,r2 for the 8080. Refer to item

1 of Figure. By coincidence, the destination register in this

example happens to be named “D”. The transfer is illustrated

Computer System, Organisation an Architecture

188

in Figure below. This instruction has been described in the

previous section. It transfers the contents of register C,

denoted by “C”, into register D.

���������������������%����#�������*������8�

The first three states of cycle M1 are used to fetch the

instruction from the memory. At the end of T3, the instruction

is in IR, the Instruction Register, from which point it can be

decoded.

During T4: (S S S) →TMP

The contents of C are deposited into TMP.

���������������������%	��*���������#�*�����8�"������������%��

During T5: (TMP) → DDD

The contents of TMP are deposited into D. This is shown

in Figure below.

Computer System, Organisation an Architecture

189

���������������������%	��*���������#�%�������8�"������������8�

Execution of the instruction is now complete. The contents

of register C have been transferred into the specified

destination register D. This terminates execution of the

instruction. The other machine cycles M2, M3, M4, and M5

will not be necessary and execution stops with M1. It is

possible to compute the duration of this instruction easily.

The duration of every state for standard Z80 is the duration

of the clock: 500 ns. The duration of this instruction is the

duration of five states, or 5 × 500 = 2500 ns = 2.5 us. With a

400 ns clock, 5 × 400 = 2000 ns = 2.0 us.

EXAMPLE
At this point, it is highly recommended that the user review

himself the sequencing of this simple instruction before we

proceed to more complex ones. For this purpose, go back to

Figure above. Assemble a few small-sized “symbols” such as

matches, paperclips, etc. Then move the symbols on Figure

Computer System, Organisation an Architecture

190

above to simulate the flow of data from the registers into the

buses. For example, deposit a symbol into PC. T1 will move

the symbol contained in PC out on the address bus towards

the memory. Continue simulated execution in this fashion

until you feel comfortable with the transfer along the buses

and between the registers. At this point, you should be ready

to proceed. Progressively more complex instructions will now

be studied:

ADD A, R
This instruction means: “Add the contents of register r

(specified by a binary code S S S) to the accumulator (A), and

deposit the result in the accumulator.” This is an implicit

instruction. It is called implicit as it does not explicitly

reference a second register.

The instruction explicitly refers only to register r. It implies

that the other register involved in the operation is the
accumulator. The accumulator, when used in such an implicit
instruction, is referenced both as source and destination.
The advantage of such an implicit instruction is that its
complete opcode is only eight bits in length. It requires only
a three-bit register field for the specification of r. This is a
fast way to perform an addition operation.

Other implicit instructions exist in the system which will
reference other specialized registers. More complex examples
of such implicit instructions are, for example, the PUSH and
POP operations, which will transfer information between the
top of the stack and the accumulator, and will at the same

time update the stack pointer (SP), decrementing it or

incrementing it. They implicitly manipulate the SP register.

The execution of the ADD A, r instruction will now be

Computer System, Organisation an Architecture

191

examined in detail. This instruction will require two machine

cycles, M1 and M2. As usual, during the first three states of

M1, the instruction is fetched from the memory and deposited

in the IR register. At the beginning of T4, it is decoded and

can be executed. It will be assumed here that register B is

added to the accumulator. The code for the instruction will

then be 1 0 0 0 0 0 0 0 (the code for register B is 0 0 0). The

8080 equivalent is ADD r.

T4: (S S S) → TMP, (A) → ACT

���������������������%,��%����#����3���������
�������
��

Two transfers will be executed simultaneously. First, the

contents of the specified register (here B) are transferred into

TMP, i.e., to the right input of the ALU. At the same time, the

contents of the accumulator are transferred to the temporary

accumulator (ACT).

By inspecting Figure, you will ascertain that those can

occur in parallel. They use different paths within the system.

Computer System, Organisation an Architecture

192

The transfer from B to TMP uses the internal data bus. The

transfer from A to ACT uses a short internal path independent

of this data bus. In order to gain time, both transfers are

done simultaneously. At this point, both the left and the

right input of the ALU are correctly conditioned.

The left input of the ALU is now conditioned by the

accumulator contents, and the right input of the ALU is

conditioned by the contents of register B. We are ready to

perform the addition. We would normally expect to see the

addition take place during state T5 of M1. However, this state

is simply not used. The addition is not performed! We enter

machine cycle M2. During state T1, nothing happens! It is

only in state T2 of M2 that the addition takes place (refer to

ADD r in Figure below):

T2 of M2: (ACT) + (TMP) → A

The contents of ACT are added to the contents of TMP,

and the result is finally deposited in the accumulator. See

Figure below. The operation is now complete.

������������������������������#��88��

Computer System, Organisation an Architecture

193

Question: Why was the completion of the addition deferred

until state T2 of machine cycle M2, rather than taking place

during state T5 of M1? (This is a difficult question, which

requires an understanding of CPU design. However, the

technique involved is fundamental to clock-synchronous CPU

design. Try to see what happens.)

Answer: This is a standard design “trick” used in most

CPU’s. It is called “fetch/execute overlap.” The basic idea is

the following: looking back at Figure it can be seen that the

actual execution of the addition will only require the use of

the ALU and of the data bus. In particular, it will not access

the register RAM (register block). We (or the control unit)

know that the next three states which will be executed after

the completion of any instruction will be T1, T2, T3 of machine

cycle M1 of the next instruction. Looking back at the

execution of these three states, it can be seen that their

execution will only require access to the program counter

(PC) and the use of the address bus. Access to the program

counter will require access to the register RAM. (This explains

why the same trick would not be used in the instruction LD

r,r’.) It is therefore possible to use simultaneously the shaded

area in Figure.

The data bus is used during state T1 of M1 to carry status

information out. It cannot be used for the addition that we

wish to perform. For that reason, it becomes necessary to

wait until state T2 before the addition can be effectively

carried out. This is what occurred in the chart: the addition

is completed during state T2 of M2. The mechanism has now

been explained. The advantage of this approach should now

be clear. Let us assume that we had implemented a

Computer System, Organisation an Architecture

194

straightforward scheme, and performed the addition during

state T5 of machine cycle M1.

�����������������������%*9(�:�*0%��37��
�"��������%&(%;�

The duration of the ADD instruction would have been 5 ×

500 ns = 2500 ns. With the overlap approach which has been

implemented, once state T4 has been executed, the next

instruction is initiated. In a manner that is invisible to this
next instruction, the “clever” control unit will use state T2 to
carry out the end of the addition. On the chart T2 is shown as
part of M2. Conceptually, M2 will be the second machine cycle
of the addition. In fact, this M2 will be overlapped, i.e., be
identical to machine cycle M1 of the next instruction. For the
programmer, the delay introduced by ADD will be only four
states, i.e. 4 × 500 = 2000 ns, instead of 2500 ns using the
“straightforward” approach. The speed improvement is 500
ns, or 20%! The overlap technique is illustrated in Figure above.
It is used whenever possible to increase the appearent
execution speed of the microprocessor. Naturally, it is not
possible to overlap in all cases. Required buses or facilities
must be available without conflict. The control unit “knows”
whether an overlap is possible.

Notes:
1. The first memory cycle (M1) is always an instruction

fetch; the first (or only) byte, containing the op code,

is fetched during this cycle.

Computer System, Organisation an Architecture

195

2. If the READY input from memory is not high during

T2 of each memory cycle, the processor will enter a

wait state (TW) until READY is sampled as high.

3. States T4 and T5 are present, as required, for

operations which are completely internal to the CPU.

The contents of the internal bus during T4 and T5

are available as the data bus; this is designed for

testing purposes only. An “X” denotes that the state

is present, but only used for such internal operations

as instruction decoding.

4. Only register pairs rp = B (registers B and C) or rp =

D (registers D and E) may be specified.

5. These states are skipped.

6. Memory read sub-cycles; an instruction or data word

will be read.

7. Memory write sub-cycle.

8. The READY signal is not required during the second

and third sub-cycles (M2 and M3). The HOLD signal

is accepted during M2 and M3. The SYNC signal is

not generated during M2 and M3. During the

execution of DAD, M2 and M3 are required for an

internal register-pair add; memory is not referenced.

9. The results of these arithmetic, logical or rotate

instructions are not moved into the accumulator (A)

until state T2 of the next instruction cycle. That is, A

is loaded while the next instruction is being fetched;

this overlapping of operations allows for faster

processing.

10. If the value of the least significant 4-bits of the

accumulator is greater than 9, or if the auxiliary carry

Computer System, Organisation an Architecture

196

bit is set, 6 is added to the accumulator. If the value

of the most significant 4-bits of the accumulator is

now greater than 9, or if the carry bit is set, 6 is

added to the most significant 4-bits of the

accumulator.

11. This represents the first sub-cycle (the instruction
fetch) of the next instruction cycle.

12. If the condition was met, the contents of register pair
WZ are output on the address lines (A0-15) instead
of the contents of the program counter (PC).

13. If the condition was not met, sub-cycles M4 and M5
are skipped; the processor instead proceeds
immediately to the instruction fetch (M1) of the next
instruction cycle.

14. If the condition was not met, sub-cycles M2 and M3
are skipped; the processor instead proceeds
immediately to the instruction fetch (M1) of the next
instruction cycle.

15. Stack read sub-cycle.
16. Stack write sub-cycle.
17. CONDITION CCC

NZ - not zero (Z = 0)000
Z - zero (Z = 1) 001
NC - no carry (CY = 0)010
C - carry (CY = 1) 011
PO - parity odd (P = 0)100
PE - paritty even (P = 1) 101

P - plus (S = 0) 110

M - minus (S = 1) 111

18. I/O sub-cycle: The I/O port’s 8-bit select code is

duplicated on address lines 0-7 (A0-7) and 8-15 (A8-

15).

Computer System, Organisation an Architecture

197

19. Output sub-cycle.

20. The processor will remain idle in the halt state until

an interrupt, a reset or a hold is accepted. When a

hold request is accepted, the CPU enters the hold

mode; after the hold mode is terminated, the processor

returns to the halt state. After a reset is accepted,

the processor begins executing at memory location

zero. After an interrupt is accepted, the processor

executes the instruction forced onto the data bus

(usually a restart instruction).

SSS or DDD Value rp Value
A 111 B 00
B 000 D 01
C 001 H 10
D 010 SP 11
E 011
H 100
L 101

The following abbreviations are used for operations:

+ addition

- subtraction

^ logical AND

v logical OR

x logical XOR

_ logical NOT (underlined)

Question: Would it be possible to go further using this

scheme, and to also use state T3 of M3 if we have to execute

a longer instruction?

Answer: No. During T3 of M1 the first byte of an instruction

is sent over the internal data bus to the instruction register

IR, while most instructions that use T3 in M2, M3, or later,

also use the data bus in some way. E.g., LD r,(HL) puts the

data received from the memory location “(HL)” into the

Computer System, Organisation an Architecture

198

general-purpose register "r" using the data bus. In order to

clarify the internal sequencing mechanism, it is suggested

that you examine Figure above, which shows the detailed

instruction execution for the 8080. The Z80 includes all 8080

instructions, and more. The information represented in

Figure above is not available for the Z80. It is shown here for

its educational value in understanding the internal operation

of this microprocessor. The equivalence between Z80 and

8080 instructions is shown in Appendices F and G.

	Cover

	Title Page

	Copyright

	Contents

	Chapter 1 Working of Operating System
	Chapter 2 Computer Organization
	Chapter 3 Interconnecting Networks Architecture
	Chapter 4 Computer Process Architecture
	Chapter 5 CPU Instructions Design and Architecture

