

STATEMENTS AND
LANGUAGE PROGRAMMING

STATEMENTS AND
LANGUAGE PROGRAMMING

Alex Burks

Statements and Language Programming

by Alex Burks

Copyright© 2022 BIBLIOTEX

www.bibliotex.com

All rights reserved. No part of this book may be reproduced or used in any

manner without the prior written permission of the copyright owner, except

for the use brief quotations in a book review.

To request permissions, contact the publisher at info@bibliotex.com

Ebook ISBN: 9781984665225

Published by:

Bibliotex

Canada

Website: www.bibliotex.com

Contents

Chapter 1 Statement (Computer Science) .. 1

Chapter 2 Programming Language .. 16

Chapter 3 Ada, ALGOL and APL.. 44

Chapter 4 Types of Statements ... 98

Chapter 5 BASIC and Assembly Language .. 124

Chapter 1

Statement (Computer Science)

In computer programming, a statement is a syntactic unit of

an imperative programming language that expresses some

action to be carried out. A program written in such a language

is formed by a sequence of one or more statements. A

statement may have internal components (e.g., expressions).

Many programming languages (e.g. Ada, Algol 60, C, Java,

Pascal) make a distinction between statements and

definitions/declarations. A definition or declaration specifies

the data on which a program is to operate, while a statement

specifies the actions to be taken with that data.

Statements which cannot contain other statements are simple;

those which can contain other statements are compound.

The appearance of a statement (and indeed a program) is

determined by its syntax or grammar. The meaning of a

statement is determined by its semantics.

Simple statements

Simple statements are complete in themselves; these include

assignments, subroutine calls, and a few statements which

may significantly affect the program flow of control (e.g. goto,

return, stop/halt). In some languages, input and output,

assertions, and exits are handled by special statements, while

other languages use calls to predefined subroutines.

Statements and Language Programming

2

• assignment

• Fortran: variable = expression

• Pascal, Algol 60, Ada: variable := expression;

• C, C#, C++, PHP, Java: variable = expression;

• call

• Fortran: CALL subroutine name(parameters)

• C, C++, Java, PHP, Pascal, Ada: subroutine

name(parameters);

• assertion

• C, C++, PHP: assert(relational expression);

• Java: assert relational expression;

• goto

• Fortran: GOTO numbered-label

• Algol 60: gotolabel;

• C, C++, PHP, Pascal: gotolabel;

• return

• Fortran: RETURN value

• C, C++, Java, PHP: return value;

• stop/halt/exit

• Fortran: STOP number

• C, C++: exit(expression)

• PHP: exit number;

Compound statements

Compound statements may contain (sequences of) statements,

nestable to any reasonable depth, and generally involve tests

to decide whether or not to obey or repeat these contained

statements.

• Notation for the following examples:

Statements and Language Programming

3

• <statement> is any single statement (could be simple

or compound).

• <sequence> is any sequence of zero or more

<statements>

• Some programming languages provide a general way

of grouping statements together, so that any single

<statement> can be replaced by a group:

• Algol 60: begin<sequence>end

• Pascal: begin <sequence> end

• C, PHP, Java: { <sequence> }

• Other programming languages have a different

special terminator on each kind of compound

statement, so that one or more statements are

automatically treated as a group:

• Ada: if test then <sequence> end if;

Many compound statements are loop commands or choice

commands. In theory only one of each of these types of

commands is required. In practice there are various special

cases which occur quite often; these may make a program

easier to understand, may make programming easier, and can

often be implemented much more efficiently. There are many

subtleties not mentioned here; see the linked articles for

details.

• count-controlled loop:

• Algol 60: for index := 1 step 1 until limit

do<statement> ;

• Pascal: for index := 1 to limit do <statement> ;

• C, Java: for (index = 1; index <= limit; index += 1)

<statement> ;

• Ada: for index in 1..limit loop <sequence> end loop

• Fortran 90:

Statements and Language Programming

4

• DO index = 1,limit

• <sequence>

• END DO

• condition-controlled loop with test at start of loop:

• Algol 60: for index := expression while test

do<statement> ;

• Pascal: while test do <statement> ;

• C, Java: while (test) <statement> ;

• Ada: while test loop <sequence> end loop

• Fortran 90:

• DO WHILE (test)

• <sequence>

• END DO

• condition-controlled loop with test at end of loop:

• Pascal: repeat <sequence> until test; { note reversed

test}

• C, Java: do { <sequence> } while (test) ;

• Ada: loop <sequence> exit when test; end loop;

• condition-controlled loop with test in the middle of

the loop:

• C: do { <sequence> if (test) break; <sequence> } while

(true) ;

• Ada: loop <sequence> exit when test; <sequence> end

loop;

• if-statement simple situation:

• Algol 60:if test then<unconditional statement> ;

• Pascal:if test then <statement> ;

• C, Java: if (test) <statement> ;

• Ada: if test then <sequence> end if;

• Fortran 77+:

• IF (test) THEN

• <sequence>

• END IF

Statements and Language Programming

5

• if-statement two-way choice:

• Algol 60:if test then<unconditional

statement>else<statement> ;

• Pascal:if test then <statement> else <statement> ;

• C, Java: it (test) <statement> else <statement> ;

• Ada: if test then <sequence> else <sequence> end if;

• Fortran 77+:

• IF (test) THEN

• <sequence>

• ELSE

• <sequence>

• END IF

• case/switch statement multi-way choice:

• Pascal: case c of 'a': alert(); 'q': quit(); end;

• Ada: case c is when 'a' => alert(); when 'q' =>

quit(); end case;

• C, Java: switch (c) { case 'a': alert(); break; case

'q': quit(); break; }

• Exception handling:

• Ada: begin protected code except when exception

specification =>exception handler

• Java: try { protected code } catch (exception

specification) { exception handler } finally { cleanup

}

• Python: try: protected code except exception

specification: exception handler else: no exceptions

finally: cleanup

Syntax

Apart from assignments and subroutine calls, most languages

start each statement with a special word (e.g. goto, if, while,

etc.) as shown in the above examples. Various methods have

Statements and Language Programming

6

been used to describe the form of statements in different

languages; the more formal methods tend to be more precise:

• Algol 60 used Backus–Naur form (BNF) which set a

new level for language grammar specification.

• Up until Fortran 77, the language was described in

English prose with examples, From Fortran 90

onwards, the language was described using a variant

of BNF.

• Cobol used a two-dimensional metalanguage.

• Pascal used both syntax diagrams and equivalent

BNF.

BNF uses recursion to express repetition, so various

extensions have been proposed to allow direct indication of

repetition.

Statements and keywords

Some programming language grammars reserve keywords or

mark them specially, and do not allow them to be used as

identifiers. This often leads to grammars which are easier to

parse, requiring less lookahead.

No distinguished keywords

Fortran and PL/1 do not have reserved keywords, allowing

statements like:

• in PL/1:

• IF IF = THEN THEN ... (the second IF and the first THEN

are variables).

• in Fortran:

Statements and Language Programming

7

• IF (A) X = 10... conditional statement (with other

variants)

• IF (A) = 2 assignment to a subscripted variable

named IF

• As spaces were optional up to Fortran 95, a typo

could completely change the meaning of a statement:

• DO 10 I = 1,5 start of a loop with I running from 1 to

5

• DO 10 I = 1.5 assignment of the value 1.5 to the

variable DO10I

Flagged words

In Algol 60 and Algol 68, special tokens were distinguished

explicitly: for publication, in boldface e.g. begin; for

programming, with some special marking, e.g., a flag ('begin),

quotation marks ('begin'), or underlined (begin on the Elliott

503). This is called "stropping".

Tokens that are part of the language syntax thus do not

conflict with programmer-defined names.

Reserved keywords

Certain names are reserved as part of the programming

language and can not be used as programmer-defined names.

The majority of the most popular programming languages use

reserved keywords. Early examples include FLOW-MATIC

(1953) and COBOL (1959). Since 1970 other examples include

Ada, C, C++, Java, and Pascal. The number of reserved words

depends on the language: C has about 30 while COBOL has

about 400.

Statements and Language Programming

8

Semantics

In programming language theory, semantics is the field

concerned with the rigorous mathematical study of the

meaning of programming languages. It does so by evaluating

the meaning of syntactically valid strings defined by a specific

programming language, showing the computation involved. In

such a case that the evaluation would be of syntactically

invalid strings, the result would be non-computation.

Semantics describes the processes a computer follows when

executing a program in that specific language. This can be

shown by describing the relationship between the input and

output of a program, or an explanation of how the program will

be executed on a certain platform, hence creating a model of

computation. The field of formal semantics encompasses all of

the following:

• The definition of semantic models

• The relations between different semantic models

• The relations between different approaches to

meaning

• The relation between computation and the

underlying mathematical structures from fields such

as logic, set theory, model theory, category theory,

etc.

It has close links with other areas of computer science such as

programming language design, type theory, compilers and

interpreters, program verification and model checking.

Statements and Language Programming

9

Approaches

There are many approaches to formal semantics; these belong

to three major classes:

• Denotational semantics, whereby each phrase in

the language is interpreted as a denotation, i.e. a

conceptual meaning that can be thought of

abstractly. Such denotations are often mathematical

objects inhabiting a mathematical space, but it is

not a requirement that they should be so. As a

practical necessity, denotations are described using

some form of mathematical notation, which can in

turn be formalized as a denotational metalanguage.

For example, denotational semantics of functional

languages often translate the language into domain

theory. Denotational semantic descriptions can also

serve as compositional translations from a

programming language into the denotational

metalanguage and used as a basis for designing

compilers.

• Operational semantics, whereby the execution of

the language is described directly (rather than by

translation). Operational semantics loosely

corresponds to interpretation, although again the

"implementation language" of the interpreter is

generally a mathematical formalism. Operational

semantics may define an abstract machine (such as

the SECD machine), and give meaning to phrases by

describing the transitions they induce on states of

the machine. Alternatively, as with the pure lambda

Statements and Language Programming

10

calculus, operational semantics can be defined via

syntactic transformations on phrases of the language

itself;

• Axiomatic semantics, whereby one gives meaning to

phrases by describing the axioms that apply to them.

Axiomatic semantics makes no distinction between a

phrase's meaning and the logical formulas that

describe it; its meaning is exactly what can be

proven about it in some logic. The canonical example

of axiomatic semantics is Hoare logic.

Apart from the choice between denotational, operational, or

axiomatic approaches, most variations in formal semantic

systems arise from the choice of supporting mathematical

formalism.

Variations

Some variations of formal semantics include the following:

• Action semantics is an approach that tries to

modularize denotational semantics, splitting the

formalization process in two layers (macro and

microsemantics) and predefining three semantic

entities (actions, data and yielders) to simplify the

specification;

• Algebraic semantics is a form of axiomatic

semantics based on algebraic laws for describing and

reasoning about program semantics in a formal

manner;

• Attribute grammars define systems that

systematically compute "metadata" (called attributes)

Statements and Language Programming

11

for the various cases of the language's syntax.

Attribute grammars can be understood as a

denotational semantics where the target language is

simply the original language enriched with attribute

annotations. Aside from formal semantics, attribute

grammars have also been used for code generation in

compilers, and to augment regular or context-free

grammars with context-sensitive conditions;

• Categorical (or "functorial") semantics uses

category theory as the core mathematical formalism.

A categorical semantics is usually proven to

correspond to some axiomatic semantics that gives a

syntactic presentation of the categorical structures.

Also, denotational semantics are often instances of a

general categorical semantics,

• Concurrency semantics is a catch-all term for any

formal semantics that describes concurrent

computations. Historically important concurrent

formalisms have included the actor model and

process calculi;

• Game semantics uses a metaphor inspired by game

theory.

• Predicate transformer semantics, developed by

Edsger W. Dijkstra, describes the meaning of a

program fragment as the function transforming a

postcondition to the precondition needed to establish

it.

Describing relationships

For a variety of reasons, one might wish to describe the

relationships between different formal semantics. For example:

• To prove that a particular operational semantics for

a language satisfies the logical formulas of an

Statements and Language Programming

12

axiomatic semantics for that language. Such a proof

demonstrates that it is "sound" to reason about a

particular (operational) interpretation strategy using

a particular (axiomatic) proof system.

• To prove that operational semantics over a high-level

machine is related by a simulation with the

semantics over a low-level machine, whereby the low-

level abstract machine contains more primitive

operations than the high-level abstract machine

definition of a given language. Such a proof

demonstrates that the low-level machine "faithfully

implements" the high-level machine.

It is also possible to relate multiple semantics through

abstractions via the theory of abstract interpretation.

History

Robert W. Floyd is credited with founding the field of

programming language semantics in Floyd (1967).

Robert W. Floyd

Robert W Floyd (June 8, 1936 – September 25, 2001) was a

computer scientist. His contributions include the design of the

Floyd–Warshall algorithm (independently of Stephen Warshall),

which efficiently finds all shortest paths in a graph, Floyd's

cycle-finding algorithm for detecting cycles in a sequence, and

his work on parsing. In one isolated paper he introduced the

important concept of error diffusion for rendering images, also

called Floyd–Steinberg dithering (though he distinguished

Statements and Language Programming

13

dithering from diffusion). He pioneered in the field of program

verification using logical assertions with the 1967 paper

Assigning Meanings to Programs. This was a contribution to

what later became Hoare logic. Floyd received the Turing

Award in 1978.

Life

Born in New York City, Floyd finished high school at age 14. At

the University of Chicago, he received a Bachelor of Arts (B.A.)

in liberal arts in 1953 (when still only 17) and a second

bachelor's degree in physics in 1958. Floyd was a college

roommate of Carl Sagan.

Floyd became a staff member of the Armour Research

Foundation (now IIT Research Institute) at Illinois Institute of

Technology in the 1950s. Becoming a computer operator in the

early 1960s, he began publishing many papers, including on

compilers (particularly parsing). He was a pioneer of operator-

precedence grammars, and is credited with initiating the field

of programming language semantics in Floyd (1967). He was

appointed an associate professor at Carnegie Mellon University

by the time he was 27 and became a full professor at Stanford

University six years later. He obtained this position without a

Doctor of Philosophy (Ph.D.) degree.

He was a member of the International Federation for

Information Processing (IFIP) IFIP Working Group 2.1 on

Algorithmic Languages and Calculi, which specified, maintains,

and supports the programming languages ALGOL 60 and

ALGOL 68.

Statements and Language Programming

14

He was elected a Fellow of the American Academy of Arts and

Sciences in 1974. He received the Turing Award in 1978 "for

having a clear influence on methodologies for the creation of

efficient and reliable software, and for helping to found the

following important subfields of computer science: the theory

of parsing, the semantics of programming languages, automatic

program verification, automatic program synthesis, and

analysis of algorithms".

Floyd worked closely with Donald Knuth, in particular as the

major reviewer for Knuth's seminal book The Art of Computer

Programming, and is the person most cited in that work. He

was co-author, with Richard Beigel, of the textbook The

Language of Machines: an Introduction to Computability and

Formal Languages. Floyd supervised seven Ph.D. graduates.

Floyd married and divorced twice, first with Jana M. Mason

and then computer scientist Christiane Floyd, and he had four

children. In his last years he suffered from Pick's disease, a

neurodegenerative disease, and thus retired early in 1994.

His hobbies included hiking, and he was an avid backgammon

player:

We once were stuck at the Chicago O'Hare airport for hours,

waiting for our flight to leave, owing to a snow storm. As we

sat at our gate, Bob asked me, in a casual manner, "do you

know how to play backgammon?" I answered I knew the rules,

but why did he want to know? Bob said since we had several

hours to wait perhaps we should play a few games, for small

stakes of course. He then reached into his briefcase and

removed a backgammon set.

Statements and Language Programming

15

My Dad taught me many things. One was to be wary of anyone

who suggests a game of pool for money, and then opens a black

case and starts to screw together a pool stick. I figured that

this advice generalized to anyone who traveled with their own

backgammon set. I told Bob that I was not going to play for

money, no way. He pushed a bit, but finally said fine. He

proceeded instead to give me a free lesson in the art and

science of playing backgammon.

I was right to pass on playing him for money—at any stakes.

The lesson was fun. I found out later that for years he had

been working on learning the game. He took playing

backgammon very seriously, studied the game and its

mathematics, and was a near professional. I think it was more

than a hobby. Like his research, Bob took what he did

seriously, and it is completely consistent that he would be

terrific at backgammon.

• —�Richard J. Lipton.

Chapter 2

Programming Language

A programming language is a formal language comprising a

set of strings that produce various kinds of machine code

output. Programming languages are one kind of computer

language, and are used in computer programming to implement

algorithms.

Most programming languages consist of instructions for

computers. There are programmable machines that use a set of

specific instructions, rather than general programming

languages. Since the early 1800s, programs have been used to

direct the behavior of machines such as Jacquard looms,

music boxes and player pianos. The programs for these

machines (such as a player piano's scrolls) did not produce

different behavior in response to different inputs or conditions.

Thousands of different programming languages have been

created, and more are being created every year. Many

programming languages are written in an imperative form (i.e.,

as a sequence of operations to perform) while other languages

use the declarative form (i.e. the desired result is specified, not

how to achieve it).

The description of a programming language is usually split into

the two components of syntax (form) and semantics (meaning).

Some languages are defined by a specification document (for

example, the C programming language is specified by an ISO

Standard) while other languages (such as Perl) have a

dominant implementation that is treated as a reference. Some

Statements and Language Programming

17

languages have both, with the basic language defined by a

standard and extensions taken from the dominant

implementation being common.

Programming language theory is a subfield of computer science

that deals with the design, implementation, analysis,

characterization, and classification of programming languages.

Definitions

A programming language is a notation for writing programs,

which are specifications of a computation or algorithm. Some

authors restrict the term "programming language" to those

languages that can express all possible algorithms. Traits often

considered important for what constitutes a programming

language include:

• Function and target

• A computer programming language is a language used

to write computer programs, which involves a

computer performing some kind of computation or

algorithm and possibly control external devices such

as printers, disk drives, robots, and so on. For

example, PostScript programs are frequently created

by another program to control a computer printer or

display. More generally, a programming language

may describe computation on some, possibly

abstract, machine. It is generally accepted that a

complete specification for a programming language

includes a description, possibly idealized, of a

machine or processor for that language. In most

practical contexts, a programming language involves

Statements and Language Programming

18

a computer; consequently, programming languages

are usually defined and studied this way.

Programming languages differ from natural

languages in that natural languages are only used

for interaction between people, while programming

languages also allow humans to communicate

instructions to machines.

• Abstractions

• Programming languages usually contain abstractions

for defining and manipulating data structures or

controlling the flow of execution. The practical

necessity that a programming language support

adequate abstractions is expressed by the

abstraction principle. This principle is sometimes

formulated as a recommendation to the programmer

to make proper use of such abstractions.

• Expressive power

• The theory of computation classifies languages by

the computations they are capable of expressing. All

Turing-complete languages can implement the same

set of algorithms. ANSI/ISO SQL-92 and Charity are

examples of languages that are not Turing complete,

yet are often called programming languages.

Markup languages like XML, HTML, or troff, which define

structured data, are not usually considered programming

languages. Programming languages may, however, share the

syntax with markup languages if a computational semantics is

defined. XSLT, for example, is a Turing complete language

entirely using XML syntax. Moreover, LaTeX, which is mostly

used for structuring documents, also contains a Turing

complete subset.

Statements and Language Programming

19

The term computer languageis sometimes used interchangeably

with programming language. However, the usage of both terms

varies among authors, including the exact scope of each. One

usage describes programming languages as a subset of

computer languages. Similarly, languages used in computing

that have a different goal than expressing computer programs

are generically designated computer languages. For instance,

markup languages are sometimes referred to as computer

languages to emphasize that they are not meant to be used for

programming.

Another usage regards programming languages as theoretical

constructs for programming abstract machines, and computer

languages as the subset thereof that runs on physical

computers, which have finite hardware resources. John C.

Reynolds emphasizes that formal specification languages are

just as much programming languages as are the languages

intended for execution. He also argues that textual and even

graphical input formats that affect the behavior of a computer

are programming languages, despite the fact they are

commonly not Turing-complete, and remarks that ignorance of

programming language concepts is the reason for many flaws

in input formats.

History

Early developments

Very early computers, such as Colossus, were programmed

without the help of a stored program, by modifying their

circuitry or setting banks of physical controls.

Statements and Language Programming

20

Slightly later, programs could be written in machine language,

where the programmer writes each instruction in a numeric

form the hardware can execute directly. For example, the

instruction to add the value in two memory locations might

consist of 3 numbers: an "opcode" that selects the "add"

operation, and two memory locations. The programs, in decimal

or binary form, were read in from punched cards, paper tape,

magnetic tape or toggled in on switches on the front panel of

the computer. Machine languages were later termed first-

generation programming languages (1GL).

The next step was the development of the so-called second-

generation programming languages (2GL) or assembly

languages, which were still closely tied to the instruction set

architecture of the specific computer. These served to make the

program much more human-readable and relieved the

programmer of tedious and error-prone address calculations.

The first high-level programming languages, or third-generation

programming languages (3GL), were written in the 1950s. An

early high-level programming language to be designed for a

computer was Plankalkül, developed for the German Z3 by

Konrad Zuse between 1943 and 1945. However, it was not

implemented until 1998 and 2000.

John Mauchly's Short Code, proposed in 1949, was one of the

first high-level languages ever developed for an electronic

computer. Unlike machine code, Short Code statements

represented mathematical expressions in understandable form.

However, the program had to be translated into machine code

every time it ran, making the process much slower than

running the equivalent machine code.

Statements and Language Programming

21

At the University of Manchester, AlickGlennie developed

Autocode in the early 1950s. As a programming language, it

used a compiler to automatically convert the language into

machine code. The first code and compiler was developed in

1952 for the Mark 1 computer at the University of Manchester

and is considered to be the first compiled high-level

programming language.

The second autocodewas developed for the Mark 1 by R. A.

Brooker in 1954 and was called the "Mark 1 Autocode".

Brooker also developed an autocode for the Ferranti Mercury in

the 1950s in conjunction with the University of Manchester.

The version for the EDSAC 2 was devised by D. F. Hartley of

University of Cambridge Mathematical Laboratory in 1961.

Known as EDSAC 2 Autocode, it was a straight development

from Mercury Autocode adapted for local circumstances and

was noted for its object code optimisation and source-language

diagnostics which were advanced for the time. A contemporary

but separate thread of development, Atlas Autocodewas

developed for the University of Manchester Atlas 1 machine.

In 1954, FORTRAN was invented at IBM by John Backus. It

was the first widely used high-level general purpose

programming language to have a functional implementation, as

opposed to just a design on paper. It is still a popular language

for high-performance computing and is used for programs that

benchmark and rank the world's fastest supercomputers.

Another early programming language was devised by Grace

Hopper in the US, called FLOW-MATIC. It was developed for the

UNIVAC I at Remington Rand during the period from 1955 until

1959. Hopper found that business data processing customers

Statements and Language Programming

22

were uncomfortable with mathematical notation, and in early

1955, she and her team wrote a specification for an English

programming language and implemented a prototype. The

FLOW-MATIC compiler became publicly available in early 1958

and was substantially complete in 1959. FLOW-MATIC was a

major influence in the design of COBOL, since only it and its

direct descendant AIMACO were in actual use at the time.

Refinement

The increased use of high-level languages introduced a

requirement for low-level programming languages or system

programming languages. These languages, to varying degrees,

provide facilities between assembly languages and high-level

languages. They can be used to perform tasks that require

direct access to hardware facilities but still provide higher-

level control structures and error-checking.

The period from the 1960s to the late 1970s brought the

development of the major language paradigms now in use:

• APL introduced array programming and influenced

functional programming.

• ALGOL refined both structured procedural

programming and the discipline of language

specification; the "Revised Report on the Algorithmic

Language ALGOL 60" became a model for how later

language specifications were written.

• Lisp, implemented in 1958, was the first dynamically

typed functional programming language.

• In the 1960s, Simula was the first language designed

to support object-oriented programming; in the mid-

Statements and Language Programming

23

1970s, Smalltalk followed with the first "purely"

object-oriented language.

• C was developed between 1969 and 1973 as a system

programming language for the Unix operating system

and remains popular.

• Prolog, designed in 1972, was the first logic

programming language.

• In 1978, ML built a polymorphic type system on top

of Lisp, pioneering statically typed functional

programming languages.

Each of these languages spawned descendants, and most

modern programming languages count at least one of them in

their ancestry.

The 1960s and 1970s also saw considerable debate over the

merits of structured programming, and whether programming

languages should be designed to support it. EdsgerDijkstra, in

a famous 1968 letter published in the Communications of the

ACM, argued that Goto statements should be eliminated from

all "higher level" programming languages.

Consolidation and growth

The 1980s were years of relative consolidation. C++ combined

object-oriented and systems programming. The United States

government standardized Ada, a systems programming

language derived from Pascal and intended for use by defense

contractors. In Japan and elsewhere, vast sums were spent

investigating the so-called "fifth-generation" languages that

incorporated logic programming constructs. The functional

languages community moved to standardize ML and Lisp.

Statements and Language Programming

24

Rather than inventing new paradigms, all of these movements

elaborated upon the ideas invented in the previous decades.

One important trend in language design for programming large-

scale systems during the 1980s was an increased focus on the

use of modules or large-scale organizational units of code.

Modula-2, Ada, and ML all developed notable module systems

in the 1980s, which were often wedded to generic programming

constructs.

The rapid growth of the Internet in the mid-1990s created

opportunities for new languages. Perl, originally a Unix

scripting tool first released in 1987, became common in

dynamic websites. Java came to be used for server-side

programming, and bytecode virtual machines became popular

again in commercial settings with their promise of "Write once,

run anywhere" (UCSD Pascal had been popular for a time in

the early 1980s). These developments were not fundamentally

novel; rather, they were refinements of many existing

languages and paradigms (although their syntax was often

based on the C family of programming languages).

Programming language evolution continues, in both industry

and research. Current directions include security and

reliability verification, new kinds of modularity (mixins,

delegates, aspects), and database integration such as

Microsoft's LINQ.

Fourth-generation programming languages (4GL) are computer

programming languages that aim to provide a higher level of

abstraction of the internal computer hardware details than

3GLs. Fifth-generation programming languages (5GL) are

programming languages based on solving problems using

Statements and Language Programming

25

constraints given to the program, rather than using an

algorithm written by a programmer.

Elements

All programming languages have some primitive building

blocks for the description of data and the processes or

transformations applied to them (like the addition of two

numbers or the selection of an item from a collection). These

primitives are defined by syntactic and semantic rules which

describe their structure and meaning respectively.

Syntax

A programming language's surface form is known as its syntax.

Most programming languages are purely textual; they use

sequences of text including words, numbers, and punctuation,

much like written natural languages. On the other hand, there

are some programming languages which are more graphical in

nature, using visual relationships between symbols to specify a

program.

The syntax of a language describes the possible combinations

of symbols that form a syntactically correct program. The

meaning given to a combination of symbols is handled by

semantics (either formal or hard-coded in a reference

implementation). Since most languages are textual, this article

discusses textual syntax.

Programming language syntax is usually defined using a

combination of regular expressions (for lexical structure) and

Statements and Language Programming

26

Backus–Naur form (for grammatical structure). Below is a

simple grammar, based on Lisp:

expression ::= atom | list
atom::= number | symbol
number::= [+-]?['0'-'9']+
symbol::= ['A'-'Z''a'-'z'].*
list::= '(' expression* ')'

This grammar specifies the following:

• an expression is either an atom or a list;

• an atom is either a number or a symbol;

• a number is an unbroken sequence of one or more

decimal digits, optionally preceded by a plus or

minus sign;

• a symbol is a letter followed by zero or more of any

characters (excluding whitespace); and

• al ist is a matched pair of parentheses, with zero or

more expressions inside it.

The following are examples of well-formed token sequences in

this grammar: 12345, () and (a b c232 (1)).

Not all syntactically correct programs are semantically correct.

Many syntactically correct programs are nonetheless ill-

formed, per the language's rules; and may (depending on the

language specification and the soundness of the

implementation) result in an error on translation or execution.

In some cases, such programs may exhibit undefined behavior.

Even when a program is well-defined within a language, it may

still have a meaning that is not intended by the person who

wrote it.

Statements and Language Programming

27

Using natural language as an example,it may not be possible to

assign a meaning to a grammatically correct sentence or the

sentence may be false:

• "Colorless green ideas sleep furiously." is

grammatically well-formed but has no generally

accepted meaning.

• "John is a married bachelor." is grammatically well-

formed but expresses a meaning that cannot be true.

The following C language fragment is syntactically correct, but

performs operations that are not semantically defined (the

operation *p >> 4 has no meaning for a value having a complex

type and p->im is not defined because the value of p is the null

pointer):

complex*p=NULL;
complexabs_p=sqrt(*p>>4+p->im);

If the type declaration on the first line were omitted, the

program would trigger an error on undefined variable "p"

during compilation. However, the program would still be

syntactically correct since type declarations provide only

semantic information.

The grammar needed to specify a programming language can be

classified by its position in the Chomsky hierarchy. The syntax

of most programming languages can be specified using a Type-

2 grammar, i.e., they are context-free grammars. Some

languages, including Perl and Lisp, contain constructs that

allow execution during the parsing phase. Languages that have

constructs that allow the programmer to alter the behavior of

the parser make syntax analysis an undecidable problem, and

generally blur the distinction between parsing and execution.

Statements and Language Programming

28

In contrast to Lisp's macro system and Perl's BEGIN blocks,

which may contain general computations, C macros are merely

string replacements and do not require code execution.

Semantics

The term semantics refers to the meaning of languages, as

opposed to their form (syntax).

Static semantics

The static semantics defines restrictions on the structure of

valid texts that are hard or impossible to express in standard

syntactic formalisms. For compiled languages, static semantics

essentially include those semantic rules that can be checked at

compile time. Examples include checking that every identifier

is declared before it is used (in languages that require such

declarations) or that the labels on the arms of a case statement

are distinct.

Many important restrictions of this type, like checking that

identifiers are used in the appropriate context (e.g. not adding

an integer to a function name), or that subroutine calls have

the appropriate number and type of arguments, can be

enforced by defining them as rules in a logic called a type

system. Other forms of static analyses like data flow analysis

may also be part of static semantics.

Newer programming languages like Java and C# have definite

assignment analysis, a form of data flow analysis, as part of

their static semantics.

Statements and Language Programming

29

Dynamic semantics

Once data has been specified, the machine must be instructed

to perform operations on the data. For example, the semantics

may define the strategy by which expressions are evaluated to

values, or the manner in which control structures conditionally

execute statements. The dynamic semantics (also known as

execution semantics) of a language defines how and when the

various constructs of a language should produce a program

behavior. There are many ways of defining execution

semantics. Natural language is often used to specify the

execution semantics of languages commonly used in practice. A

significant amount of academic research went into formal

semantics of programming languages, which allow execution

semantics to be specified in a formal manner. Results from this

field of research have seen limited application to programming

language design and implementation outside academia.

Type system

A type system defines how a programming language classifies

values and expressions into types, how it can manipulate those

types and how they interact. The goal of a type system is to

verify and usually enforce a certain level of correctness in

programs written in that language by detecting certain

incorrect operations. Any decidable type system involves a

trade-off: while it rejects many incorrect programs, it can also

prohibit some correct, albeit unusual programs. In order to

bypass this downside, a number of languages have type

loopholes, usually unchecked casts that may be used by the

programmer to explicitly allow a normally disallowed operation

between different types. In most typed languages, the type

Statements and Language Programming

30

system is used only to type check programs, but a number of

languages, usually functional ones, infer types, relieving the

programmer from the need to write type annotations. The

formal design and study of type systems is known as type

theory.

Typed versus untyped languages

A language is typed if the specification of every operation

defines types of data to which the operation is applicable. For

example, the data represented by "this text between the quotes"

is a string, and in many programming languages dividing a

number by a string has no meaning and will not be executed.

The invalid operation may be detected when the program is

compiled ("static" type checking) and will be rejected by the

compiler with a compilation error message, or it may be

detected while the program is running ("dynamic" type

checking), resulting in a run-time exception. Many languages

allow a function called an exception handler to handle this

exception and, for example, always return "-1" as the result.

A special case of typed languages are the single-typed

languages. These are often scripting or markup languages,

such as REXX or SGML, and have only one data type–—most

commonly character strings which are used for both symbolic

and numeric data.

In contrast, an untyped language, such as most assembly

languages, allows any operation to be performed on any data,

generally sequences of bits of various lengths. High-level

untyped languages include BCPL, Tcl, and some varieties of

Forth.

Statements and Language Programming

31

In practice, while few languages are considered typed from the

type theory (verifying or rejecting all operations), most modern

languages offer a degree of typing. Many production languages

provide means to bypass or subvert the type system, trading

type-safety for finer control over the program's execution (see

casting).

Static versus dynamic typing

In static typing, all expressions have their types determined

prior to when the program is executed, typically at compile-

time. For example, 1 and (2+2) are integer expressions; they

cannot be passed to a function that expects a string, or stored

in a variable that is defined to hold dates.

Statically typed languages can be either manifestly typed or

type-inferred. In the first case, the programmer must explicitly

write types at certain textual positions (for example, at

variable declarations). In the second case, the compiler infers

the types of expressions and declarations based on context.

Most mainstream statically typed languages, such as C++, C#

and Java, are manifestly typed. Complete type inference has

traditionally been associated with less mainstream languages,

such as Haskell and ML. However, many manifestly typed

languages support partial type inference; for example, C++,

Java and C# all infer types in certain limited cases.

Additionally, some programming languages allow for some

types to be automatically converted to other types; for

example, an int can be used where the program expects a float.

Dynamic typing, also called latent typing, determines the type-

safety of operations at run time; in other words, types are

Statements and Language Programming

32

associated with run-time values rather than textual

expressions. As with type-inferred languages, dynamically

typed languages do not require the programmer to write

explicit type annotations on expressions. Among other things,

this may permit a single variable to refer to values of different

types at different points in the program execution. However,

type errors cannot be automatically detected until a piece of

code is actually executed, potentially making debugging more

difficult. Lisp, Smalltalk, Perl, Python, JavaScript, and Ruby

are all examples of dynamically typed languages.

Weak and strong typing

Weak typing allows a value of one type to be treated as

another, for example treating a string as a number. This can

occasionally be useful, but it can also allow some kinds of

program faults to go undetected at compile time and even at

run time.

Strong typing prevents these program faults. An attempt to

perform an operation on the wrong type of value raises an

error. Strongly typed languages are often termed type-safe or

safe.

An alternative definition for "weakly typed" refers to languages,

such as Perl and JavaScript, which permit a large number of

implicit type conversions. In JavaScript, for example, the

expression 2 * x implicitly converts x to a number, and this

conversion succeeds even if x is null, undefined, an Array, or a

string of letters. Such implicit conversions are often useful,

but they can mask programming errors. Strong and staticare

now generally considered orthogonal concepts, but usage in the

Statements and Language Programming

33

literature differs. Some use the term strongly typed to mean

strongly, statically typed, or, even more confusingly, to mean

simply statically typed. Thus C has been called both strongly

typed and weakly, statically typed.

It may seem odd to some professional programmers that C

could be "weakly, statically typed". However, notice that the

use of the generic pointer, the void* pointer, does allow for

casting of pointers to other pointers without needing to do an

explicit cast. This is extremely similar to somehow casting an

array of bytes to any kind of datatype in C without using an

explicit cast, such as (int) or (char).

Standard library and run-time system

Most programming languages have an associated core library

(sometimes known as the 'standard library', especially if it is

included as part of the published language standard), which is

conventionally made available by all implementations of the

language. Core libraries typically include definitions for

commonly used algorithms, data structures, and mechanisms

for input and output.

The line between a language and its core library differs from

language to language. In some cases, the language designers

may treat the library as a separate entity from the language.

However, a language's core library is often treated as part of

the language by its users, and some language specifications

even require that this library be made available in all

implementations. Indeed, some languages are designed so that

the meanings of certain syntactic constructs cannot even be

described without referring to the core library. For example, in

Statements and Language Programming

34

Java, a string literal is defined as an instance of the

java.lang.String class; similarly, in Smalltalk, an anonymous

function expression (a "block") constructs an instance of the

library's BlockContext class. Conversely, Scheme contains

multiple coherent subsets that suffice to construct the rest of

the language as library macros, and so the language designers

do not even bother to say which portions of the language must

be implemented as language constructs, and which must be

implemented as parts of a library.

Design and implementation

Programming languages share properties with natural

languages related to their purpose as vehicles for

communication, having a syntactic form separate from its

semantics, and showing language families of related languages

branching one from another. But as artificial constructs, they

also differ in fundamental ways from languages that have

evolved through usage. A significant difference is that a

programming language can be fully described and studied in

its entirety since it has a precise and finite definition. By

contrast, natural languages have changing meanings given by

their users in different communities. While constructed

languages are also artificial languages designed from the

ground up with a specific purpose, they lack the precise and

complete semantic definition that a programming language

has.

Many programming languages have been designed from

scratch, altered to meet new needs, and combined with other

languages. Many have eventually fallen into disuse. Although

there have been attempts to design one "universal"

Statements and Language Programming

35

programming language that serves all purposes, all of them

have failed to be generally accepted as filling this role. The

need for diverse programming languages arises from the

diversity of contexts in which languages are used:

• Programs range from tiny scripts written by

individual hobbyists to huge systems written by

hundreds of programmers.

• Programmers range in expertise from novices who

need simplicity above all else to experts who may be

comfortable with considerable complexity.

• Programs must balance speed, size, and simplicity

on systems ranging from microcontrollers to

supercomputers.

• Programs may be written once and not change for

generations, or they may undergo continual

modification.

• Programmers may simply differ in their tastes: they

may be accustomed to discussing problems and

expressing them in a particular language.

One common trend in the development of programming

languages has been to add more ability to solve problems using

a higher level of abstraction. The earliest programming

languages were tied very closely to the underlying hardware of

the computer. As new programming languages have developed,

features have been added that let programmers express ideas

that are more remote from simple translation into underlying

hardware instructions. Because programmers are less tied to

the complexity of the computer, their programs can do more

computing with less effort from the programmer. This lets them

write more functionality per time unit.

Statements and Language Programming

36

Natural language programming has been proposed as a way to

eliminate the need for a specialized language for programming.

However, this goal remains distant and its benefits are open to

debate. Edsger W. Dijkstra took the position that the use of a

formal language is essential to prevent the introduction of

meaningless constructs, and dismissed natural language

programming as "foolish". Alan Perlis was similarly dismissive

of the idea. Hybrid approaches have been taken in Structured

English and SQL.

A language's designers and users must construct a number of

artifacts that govern and enable the practice of programming.

The most important of these artifacts are the language

specification and implementation.

Specification

The specification of a programming language is an artifact that

the language users and the implementors can use to agree

upon whether a piece of source code is a valid program in that

language, and if so what its behavior shall be.

A programming language specification can take several forms,

including the following:

• An explicit definition of the syntax, static semantics,

and execution semantics of the language. While

syntax is commonly specified using a formal

grammar, semantic definitions may be written in

natural language (e.g., as in the C language), or a

formal semantics (e.g., as in Standard ML and

Scheme specifications).

Statements and Language Programming

37

• A description of the behavior of a translator for the

language (e.g., the C++ and Fortran specifications).

The syntax and semantics of the language have to be

inferred from this description, which may be written

in natural or a formal language.

• A reference or model implementation, sometimes

written in the language being specified (e.g., Prolog

or ANSI REXX). The syntax and semantics of the

language are explicit in the behavior of the reference

implementation.

Implementation

An implementation of a programming language provides a way

to write programs in that language and execute them on one or

more configurations of hardware and software. There are,

broadly, two approaches to programming language

implementation: compilation and interpretation. It is generally

possible to implement a language using either technique. The

output of a compiler may be executed by hardware or a

program called an interpreter. In some implementations that

make use of the interpreter approach there is no distinct

boundary between compiling and interpreting. For instance,

some implementations of BASIC compile and then execute the

source a line at a time. Programs that are executed directly on

the hardware usually run much faster than those that are

interpreted in software. One technique for improving the

performance of interpreted programs is just-in-time

compilation. Here the virtual machine, just before execution,

translates the blocks of bytecode which are going to be used to

machine code, for direct execution on the hardware.

Statements and Language Programming

38

Proprietary languages

Although most of the most commonly used programming

languages have fully open specifications and implementations,

many programming languages exist only as proprietary

programming languages with the implementation available only

from a single vendor, which may claim that such a proprietary

language is their intellectual property. Proprietary

programming languages are commonly domain specific

languages or internal scripting languages for a single product;

some proprietary languages are used only internally within a

vendor, while others are available to external users. Some

programming languages exist on the border between

proprietary and open; for example, Oracle Corporation asserts

proprietary rights to some aspects of the Java programming

language, and Microsoft's C# programming language, which

has open implementations of most parts of the system, also

has Common Language Runtime (CLR) as a closed

environment.

Many proprietary languages are widely used, in spite of their

proprietary nature; examples include MATLAB, VBScript, and

Wolfram Language. Some languages may make the transition

from closed to open; for example, Erlang was originally an

Ericsson's internal programming language.

Use

Thousands of different programming languages have been

created, mainly in the computing field. Individual software

projects commonly use five programming languages or more.

Statements and Language Programming

39

Programming languages differ from most other forms of human

expression in that they require a greater degree of precision

and completeness. When using a natural language to

communicate with other people, human authors and speakers

can be ambiguous and make small errors, and still expect their

intent to be understood. However, figuratively speaking,

computers "do exactly what they are told to do", and cannot

"understand" what code the programmer intended to write. The

combination of the language definition, a program, and the

program's inputs must fully specify the external behavior that

occurs when the program is executed, within the domain of

control of that program. On the other hand, ideas about an

algorithm can be communicated to humans without the

precision required for execution by using pseudocode, which

interleaves natural language with code written in a

programming language.

A programming language provides a structured mechanism for

defining pieces of data, and the operations or transformations

that may be carried out automatically on that data. A

programmer uses the abstractions present in the language to

represent the concepts involved in a computation. These

concepts are represented as a collection of the simplest

elements available (called primitives). Programming is the

process by which programmers combine these primitives to

compose new programs, or adapt existing ones to new uses or a

changing environment.

Programs for a computer might be executed in a batch process

without human interaction, or a user might type commands in

an interactive session of an interpreter. In this case the

"commands" are simply programs, whose execution is chained

Statements and Language Programming

40

together. When a language can run its commands through an

interpreter (such as a Unix shell or other command-line

interface), without compiling, it is called a scripting language.

Measuring language usage

Determining which is the most widely used programming

language is difficult since the definition of usage varies by

context. One language may occupy the greater number of

programmer hours, a different one has more lines of code, and

a third may consume the most CPU time. Some languages are

very popular for particular kinds of applications. For example,

COBOL is still strong in the corporate data center, often on

large mainframes; Fortran in scientific and engineering

applications; Ada in aerospace, transportation, military, real-

time and embedded applications; and C in embedded

applications and operating systems. Other languages are

regularly used to write many different kinds of applications.

Various methods of measuring language popularity, each

subject to a different bias over what is measured, have been

proposed:

• counting the number of job advertisements that

mention the language

• the number of books sold that teach or describe the

language

• estimates of the number of existing lines of code

written in the language – which may underestimate

languages not often found in public searches

• counts of language references (i.e., to the name of

the language) found using a web search engine.

Statements and Language Programming

41

Combining and averaging information from various internet

sites, stackify.com reported the ten most popular programming

languages as (in descending order by overall popularity): Java,

C, C++, Python, C#, JavaScript, VB .NET, R, PHP, and

MATLAB.

Dialects, flavors and

implementations

A dialect of a programming language or a data exchange

language is a (relatively small) variation or extension of the

language that does not change its intrinsic nature. With

languages such as Scheme and Forth, standards may be

considered insufficient, inadequate or illegitimate by

implementors, so often they will deviate from the standard,

making a new dialect. In other cases, a dialect is created for

use in a domain-specific language, often a subset. In the Lisp

world, most languages that use basic S-expression syntax and

Lisp-like semantics are considered Lisp dialects, although they

vary wildly, as do, say, Racket and Clojure. As it is common for

one language to have several dialects, it can become quite

difficult for an inexperienced programmer to find the right

documentation. The BASIC programming language has many

dialects. The explosion of Forth dialects led to the saying "If

you've seen one Forth... you've seen one Forth."

Taxonomies

There is no overarching classification scheme for programming

languages. A given programming language does not usually

Statements and Language Programming

42

have a single ancestor language. Languages commonly arise by

combining the elements of several predecessor languages with

new ideas in circulation at the time. Ideas that originate in one

language will diffuse throughout a family of related languages,

and then leap suddenly across familial gaps to appear in an

entirely different family.

The task is further complicated by the fact that languages can

be classified along multiple axes. For example, Java is both an

object-oriented language (because it encourages object-

oriented organization) and a concurrent language (because it

contains built-in constructs for running multiple threads in

parallel). Python is an object-oriented scripting language.

In broad strokes, programming languages divide into

programming paradigms and a classification by intended

domain of use, with general-purpose programming languages

distinguished from domain-specific programming languages.

Traditionally, programming languages have been regarded as

describing computation in terms of imperative sentences, i.e.

issuing commands. These are generally called imperative

programming languages. A great deal of research in

programming languages has been aimed at blurring the

distinction between a program as a set of instructions and a

program as an assertion about the desired answer, which is

the main feature of declarative programming. More refined

paradigms include procedural programming, object-oriented

programming, functional programming, and logic programming;

some languages are hybrids of paradigms or multi-

paradigmatic. An assembly language is not so much a

paradigm as a direct model of an underlying machine

architecture. By purpose, programming languages might be

Statements and Language Programming

43

considered general purpose, system programming languages,

scripting languages, domain-specific languages, or

concurrent/distributed languages (or a combination of these).

Some general purpose languages were designed largely with

educational goals.

A programming language may also be classified by factors

unrelated to programming paradigm. For instance, most

programming languages use English language keywords, while

a minority do not. Other languages may be classified as being

deliberately esoteric or not.

Chapter 3

Ada, ALGOL and APL

Ada (programming language)

Ada is a structured, statically typed, imperative, and object-

oriented high-level programming language, extended from

Pascal and other languages. It has built-in language support

for design by contract (DbC), extremely strong typing, explicit

concurrency, tasks, synchronous message passing, protected

objects, and non-determinism. Ada improves code safety and

maintainability by using the compiler to find errors in favor of

runtime errors. Ada is an international technical standard,

jointly defined by the International Organization for

Standardization (ISO), and the International Electrotechnical

Commission (IEC). As of 2020, the standard, called Ada 2012

informally, is ISO/IEC 8652:2012.

Ada was originally designed by a team led by French computer

scientist Jean Ichbiah of CII Honeywell Bull under contract to

the United States Department of Defense (DoD) from 1977 to

1983 to supersede over 450 programming languages used by

the DoD at that time. Ada was named after Ada Lovelace

(1815–1852), who has been credited as the first computer

programmer.

Features

Ada was originally designed for embedded and real-time

systems. The Ada 95 revision, designed by S. Tucker Taft of

Statements and Language Programming

45

Intermetrics between 1992 and 1995, improved support for

systems, numerical, financial, and object-oriented

programming (OOP).

Features of Ada include: strong typing, modular programming

mechanisms (packages), run-time checking, parallel processing

(tasks, synchronous message passing, protected objects, and

nondeterministic select statements), exception handling, and

generics. Ada 95 added support for object-oriented

programming, including dynamic dispatch.

The syntax of Ada minimizes choices of ways to perform basic

operations, and prefers English keywords (such as "or else"

and "and then") to symbols (such as "||" and "&&"). Ada uses

the basic arithmetical operators "+", "-", "*", and "/", but

avoids using other symbols. Code blocks are delimited by

words such as "declare", "begin", and "end", where the "end" (in

most cases) is followed by the identifier of the block it closes

(e.g., if ... end if, loop ... end loop). In the case of conditional

blocks this avoids a dangling else that could pair with the

wrong nested if-expression in other languages like C or Java.

Ada is designed for developing very large software systems. Ada

packages can be compiled separately. Ada package

specifications (the package interface) can also be compiled

separately without the implementation to check for

consistency. This makes it possible to detect problems early

during the design phase, before implementation starts.

A large number of compile-time checks are supported to help

avoid bugs that would not be detectable until run-time in some

other languages or would require explicit checks to be added to

the source code. For example, the syntax requires explicitly

Statements and Language Programming

46

named closing of blocks to prevent errors due to mismatched

end tokens. The adherence to strong typing allows detecting

many common software errors (wrong parameters, range

violations, invalid references, mismatched types, etc.) either

during compile-time, or otherwise during run-time. As

concurrency is part of the language specification, the compiler

can in some cases detect potential deadlocks. Compilers also

commonly check for misspelled identifiers, visibility of

packages, redundant declarations, etc. and can provide

warnings and useful suggestions on how to fix the error.

Ada also supports run-time checks to protect against access to

unallocated memory, buffer overflow errors, range violations,

off-by-one errors, array access errors, and other detectable

bugs. These checks can be disabled in the interest of runtime

efficiency, but can often be compiled efficiently. It also

includes facilities to help program verification. For these

reasons, Ada is widely used in critical systems, where any

anomaly might lead to very serious consequences, e.g.,

accidental death, injury or severe financial loss. Examples of

systems where Ada is used include avionics, air traffic control,

railways, banking, military and space technology.

Ada's dynamic memory management is high-level and type-

safe. Ada has no generic or untyped pointers; nor does it

implicitly declare any pointer type. Instead, all dynamic

memory allocation and deallocation must occur via explicitly

declared access types. Each access type has an associated

storage pool that handles the low-level details of memory

management; the programmer can either use the default

storage pool or define new ones (this is particularly relevant

for Non-Uniform Memory Access). It is even possible to declare

Statements and Language Programming

47

several different access types that all designate the same type

but use different storage pools. Also, the language provides for

accessibility checks, both at compile time and at run time, that

ensures that an access value cannot outlive the type of the

object it points to.

Though the semantics of the language allow automatic garbage

collection of inaccessible objects, most implementations do not

support it by default, as it would cause unpredictable

behaviour in real-time systems. Ada does support a limited

form of region-based memory management; also, creative use of

storage pools can provide for a limited form of automatic

garbage collection, since destroying a storage pool also

destroys all the objects in the pool.

A double-dash ("--"), resembling an em dash, denotes comment

text. Comments stop at end of line, to prevent unclosed

comments from accidentally voiding whole sections of source

code. Disabling a whole block of code now requires the

prefixing of each line (or column) individually with "--". While

clearly denoting disabled code with a column of repeated "--"

down the page this renders the experimental dis/re-

enablement of large blocks a more drawn out process.

The semicolon (";") is a statement terminator, and the null or

no-operation statement is null;. A single ; without a statement

to terminate is not allowed.

Unlike most ISO standards, the Ada language definition (known

as the Ada Reference Manual or ARM, or sometimes the

Language Reference Manual or LRM) is free content. Thus, it is

a common reference for Ada programmers, not only

programmers implementing Ada compilers. Apart from the

Statements and Language Programming

48

reference manual, there is also an extensive rationale

document which explains the language design and the use of

various language constructs. This document is also widely

used by programmers. When the language was revised, a new

rationale document was written.

One notable free software tool that is used by many Ada

programmers to aid them in writing Ada source code is the

GNAT Programming Studio, part of the GNU Compiler

Collection.

History

In the 1970s the US Department of Defense (DoD) became

concerned by the number of different programming languages

being used for its embedded computer system projects, many of

which were obsolete or hardware-dependent, and none of which

supported safe modular programming. In 1975, a working

group, the High Order Language Working Group (HOLWG), was

formed with the intent to reduce this number by finding or

creating a programming language generally suitable for the

department's and the UK Ministry of Defence's requirements.

After many iterations beginning with an original Straw man

proposal the eventual programming language was named Ada.

The total number of high-level programming languages in use

for such projects fell from over 450 in 1983 to 37 by 1996.

The HOLWG working group crafted the Steelman language

requirements, a series of documents stating the requirements

they felt a programming language should satisfy. Many existing

languages were formally reviewed, but the team concluded in

1977 that no existing language met the specifications.

Statements and Language Programming

49

Requests for proposals for a new programming language were

issued and four contractors were hired to develop their

proposals under the names of Red (Intermetrics led by

Benjamin Brosgol), Green (CII Honeywell Bull, led by Jean

Ichbiah), Blue (SofTech, led by John Goodenough) and Yellow

(SRI International, led by Jay Spitzen). In April 1978, after

public scrutiny, the Red and Green proposals passed to the

next phase. In May 1979, the Green proposal, designed by Jean

Ichbiah at CII Honeywell Bull, was chosen and given the name

Ada—after Augusta Ada, Countess of Lovelace. This proposal

was influenced by the language LIS that Ichbiah and his group

had developed in the 1970s. The preliminary Ada reference

manual was published in ACM SIGPLAN Notices in June 1979.

The Military Standard reference manual was approved on

December 10, 1980 (Ada Lovelace's birthday), and given the

number MIL-STD-1815 in honor of Ada Lovelace's birth year. In

1981, C. A. R. Hoare took advantage of his Turing Award

speech to criticize Ada for being overly complex and hence

unreliable, but subsequently seemed to recant in the foreword

he wrote for an Ada textbook.

Ada attracted much attention from the programming

community as a whole during its early days. Its backers and

others predicted that it might become a dominant language for

general purpose programming and not only defense-related

work. Ichbiah publicly stated that within ten years, only two

programming languages would remain: Ada and Lisp. Early Ada

compilers struggled to implement the large, complex language,

and both compile-time and run-time performance tended to be

slow and tools primitive. Compiler vendors expended most of

their efforts in passing the massive, language-conformance-

testing, government-required "ACVC" validation suite that was

Statements and Language Programming

50

required in another novel feature of the Ada language effort.

The Jargon File, a dictionary of computer hacker slang

originating in 1975–1983, notes in an entry on Ada that "it is

precisely what one might expect given that kind of

endorsement by fiat; designed by committee...difficult to use,

and overall a disastrous, multi-billion-dollar boondoggle...Ada

Lovelace...would almost certainly blanch at the use her name

has been latterly put to; the kindest thing that has been said

about it is that there is probably a good small language

screaming to get out from inside its vast, elephantine bulk."

The first validated Ada implementation was the NYU Ada/Ed

translator, certified on April 11, 1983. NYU Ada/Ed is

implemented in the high-level set language SETL. Several

commercial companies began offering Ada compilers and

associated development tools, including Alsys, TeleSoft, DDC-I,

Advanced Computer Techniques, Tartan Laboratories, TLD

Systems, and Verdix.

In 1991, the US Department of Defense began to require the

use of Ada (the Ada mandate) for all software, though

exceptions to this rule were often granted. The Department of

Defense Ada mandate was effectively removed in 1997, as the

DoD began to embrace commercial off-the-shelf (COTS)

technology. Similar requirements existed in other NATO

countries: Ada was required for NATO systems involving

command and control and other functions, and Ada was the

mandated or preferred language for defense-related

applications in countries such as Sweden, Germany, and

Canada.

Statements and Language Programming

51

By the late 1980s and early 1990s, Ada compilers had

improved in performance, but there were still barriers to fully

exploiting Ada's abilities, including a tasking model that was

different from what most real-time programmers were used to.

Because of Ada's safety-critical support features, it is now

used not only for military applications, but also in commercial

projects where a software bug can have severe consequences,

e.g., avionics and air traffic control, commercial rockets such

as the Ariane 4 and 5, satellites and other space systems,

railway transport and banking. For example, the Airplane

Information Management System, the fly-by-wire system

software in the Boeing 777, was written in Ada. Developed by

Honeywell Air Transport Systems in collaboration with

consultants from DDC-I, it became arguably the best-known of

any Ada project, civilian or military. The Canadian Automated

Air Traffic System was written in 1 million lines of Ada (SLOC

count). It featured advanced distributed processing, a

distributed Ada database, and object-oriented design. Ada is

also used in other air traffic systems, e.g., the UK's next-

generation Interim Future Area Control Tools Support (iFACTS)

air traffic control system is designed and implemented using

SPARK Ada. It is also used in the French TVM in-cab signalling

system on the TGV high-speed rail system, and the metro

suburban trains in Paris, London, Hong Kong and New York

City.

Standardization

The language became an ANSI standard in 1983 (ANSI/MIL-

STD 1815A), and after translation in French and without any

further changes in English became an ISO standard in 1987

Statements and Language Programming

52

(ISO-8652:1987). This version of the language is commonly

known as Ada 83, from the date of its adoption by ANSI, but is

sometimes referred to also as Ada 87, from the date of its

adoption by ISO.

Ada 95, the joint ISO/ANSI standard (ISO-8652:1995) was

published in February 1995, making Ada 95 the first ISO

standard object-oriented programming language. To help with

the standard revision and future acceptance, the US Air Force

funded the development of the GNAT Compiler. Presently, the

GNAT Compiler is part of the GNU Compiler Collection.

Work has continued on improving and updating the technical

content of the Ada language. A Technical Corrigendum to

Ada 95 was published in October 2001, and a major

Amendment, ISO/IEC 8652:1995/Amd 1:2007 was published

on March 9, 2007. At the Ada-Europe 2012 conference in

Stockholm, the Ada Resource Association (ARA) and Ada-

Europe announced the completion of the design of the latest

version of the Ada language and the submission of the

reference manual to the International Organization for

Standardization (ISO) for approval. ISO/IEC 8652:2012 was

published in December 2012.

Other related standards include ISO 8651-3:1988 Information

processing systems—Computer graphics—Graphical Kernel

System (GKS) language bindings—Part 3: Ada.

Language constructs

Ada is an ALGOL-like programming language featuring control

structures with reserved words such as if, then, else, while,

Statements and Language Programming

53

for, and so on. However, Ada also has many data structuring

facilities and other abstractions which were not included in the

original ALGOL 60, such as type definitions, records, pointers,

enumerations. Such constructs were in part inherited from or

inspired by Pascal.

"Hello, world!" in Ada

A common example of a language's syntax is the Hello world

program: (hello.adb)

withAda.Text_IO;useAda.Text_IO;
procedureHellois
begin
Put_Line("Hello, world!");
endHello;

This program can be compiled by using the freely available

open source compiler GNAT, by executing

gnatmakehello.adb

Data types

Ada's type system is not based on a set of predefined primitive

types but allows users to declare their own types. This

declaration in turn is not based on the internal representation

of the type but on describing the goal which should be

achieved. This allows the compiler to determine a suitable

memory size for the type, and to check for violations of the

type definition at compile time and run time (i.e., range

violations, buffer overruns, type consistency, etc.). Ada

supports numerical types defined by a range, modulo types,

aggregate types (records and arrays), and enumeration types.

Access types define a reference to an instance of a specified

Statements and Language Programming

54

type; untyped pointers are not permitted. Special types

provided by the language are task types and protected types.

For example, a date might be represented as:

typeDay_typeisrange1..31;
typeMonth_typeisrange1..12;
typeYear_typeisrange1800..2100;
typeHoursismod24;
typeWeekdayis(Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday);

typeDateis
record
Day:Day_type;
Month:Month_type;
Year:Year_type;
end record;

Types can be refined by declaring subtypes:

subtypeWorking_HoursisHoursrange0..12;-- at most 12 Hours to work a day
subtypeWorking_DayisWeekdayrangeMonday..Friday;-- Days to work

Work_Load:constantarray(Working_Day)ofWorking_Hours-- implicit type declaration
:=(Friday=>6,Monday=>4,others=>10);-- lookup table for working hours with initialization

Types can have modifiers such as limited, abstract, private etc.

Private types can only be accessed and limited types can only

be modified or copied within the scope of the package that

defines them. Ada 95 adds further features for object-oriented

extension of types.

Control structures

Ada is a structured programming language, meaning that the

flow of control is structured into standard statements. All

standard constructs and deep-level early exit are supported, so

the use of the also supported "go to" commands is seldom

needed.

-- while a is not equal to b, loop.
whilea/=bloop

Statements and Language Programming

55

Ada.Text_IO.Put_Line("Waiting");
endloop;

ifa>bthen
Ada.Text_IO.Put_Line("Condition met");
else
Ada.Text_IO.Put_Line("Condition not met");
endif;

foriin1..10loop
Ada.Text_IO.Put("Iteration: ");
Ada.Text_IO.Put(i);
Ada.Text_IO.Put_Line;
endloop;

loop
a:=a+1;
exitwhena=10;
endloop;

caseiis
when0=>Ada.Text_IO.Put("zero");
when1=>Ada.Text_IO.Put("one");
when2=>Ada.Text_IO.Put("two");
-- case statements have to cover all possible cases:
whenothers=>Ada.Text_IO.Put("none of the above");
endcase;

foraWeekdayinWeekday'Rangeloop-- loop over an enumeration
Put_Line(Weekday'Image(aWeekday));-- output string representation of an enumeration
ifaWeekdayinWorking_Daythen-- check of a subtype of an enumeration
Put_Line(" to work for "&
Working_Hours'Image(Work_Load(aWeekday)));-- access into a lookup table
endif;
endloop;

Packages, procedures and functions

Among the parts of an Ada program are packages, procedures

and functions.

Example: Package specification (example.ads)

packageExampleis
typeNumberisrange1..11;
procedurePrint_and_Increment(j: inoutNumber);
endExample;

Package body (example.adb)

withAda.Text_IO;
packagebodyExampleis

Statements and Language Programming

56

i:Number:=Number'First;

procedurePrint_and_Increment(j: inoutNumber)is

functionNext(k: inNumber)returnNumberis
begin
returnk+1;
endNext;

begin
Ada.Text_IO.Put_Line("The total is: "&Number'Image(j));
j:=Next(j);
endPrint_and_Increment;

-- package initialization executed when the package is elaborated
begin
whilei<Number'Lastloop
Print_and_Increment(i);
endloop;
endExample;

This program can be compiled, e.g., by using the freely

available open-source compiler GNAT, by executing

gnatmake -z example.adb

Packages, procedures and functions can nest to any depth, and

each can also be the logical outermost block.

Each package, procedure or function can have its own

declarations of constants, types, variables, and other

procedures, functions and packages, which can be declared in

any order.

Concurrency

Ada has language support for task-based concurrency. The

fundamental concurrent unit in Ada is a task, which is a built-

in limited type. Tasks are specified in two parts – the task

declaration defines the task interface (similar to a type

declaration), the task body specifies the implementation of the

task. Depending on the implementation, Ada tasks are either

Statements and Language Programming

57

mapped to operating system threads or processes, or are

scheduled internally by the Ada runtime.

Tasks can have entries for synchronisation (a form of

synchronous message passing). Task entries are declared in

the task specification. Each task entry can have one or more

accept statements within the task body. If the control flow of

the task reaches an accept statement, the task is blocked until

the corresponding entry is called by another task (similarly, a

calling task is blocked until the called task reaches the

corresponding accept statement). Task entries can have

parameters similar to procedures, allowing tasks to

synchronously exchange data. In conjunction with select

statements it is possible to define guards on accept statements

(similar to Dijkstra's guarded commands).

Ada also offers protected objects for mutual exclusion.

Protected objects are a monitor-like construct, but use guards

instead of conditional variables for signaling (similar to

conditional critical regions). Protected objects combine the

data encapsulation and safe mutual exclusion from monitors,

and entry guards from conditional critical regions. The main

advantage over classical monitors is that conditional variables

are not required for signaling, avoiding potential deadlocks due

to incorrect locking semantics. Like tasks, the protected object

is a built-in limited type, and it also has a declaration part and

a body.

A protected object consists of encapsulated private data (which

can only be accessed from within the protected object), and

procedures, functions and entries which are guaranteed to be

mutually exclusive (with the only exception of functions, which

Statements and Language Programming

58

are required to be side effect free and can therefore run

concurrently with other functions). A task calling a protected

object is blocked if another task is currently executing inside

the same protected object, and released when this other task

leaves the protected object. Blocked tasks are queued on the

protected object ordered by time of arrival.

Protected object entries are similar to procedures, but

additionally have guards. If a guard evaluates to false, a

calling task is blocked and added to the queue of that entry;

now another task can be admitted to the protected object, as

no task is currently executing inside the protected object.

Guards are re-evaluated whenever a task leaves the protected

object, as this is the only time when the evaluation of guards

can have changed.

Calls to entries can be requeued to other entries with the same

signature. A task that is requeued is blocked and added to the

queue of the target entry; this means that the protected object

is released and allows admission of another task.

The select statement in Ada can be used to implement non-

blocking entry calls and accepts, non-deterministic selection of

entries (also with guards), time-outs and aborts.

The following example illustrates some concepts of concurrent

programming in Ada.

withAda.Text_IO;useAda.Text_IO;

procedureTrafficis

typeAirplane_IDisrange1..10;-- 10 airplanes

tasktypeAirplane(ID: Airplane_ID);-- task representing airplanes, with ID as initialisation
parameter
typeAirplane_AccessisaccessAirplane;-- reference type to Airplane

Statements and Language Programming

59

protectedtypeRunwayis-- the shared runway (protected to allow concurrent access)
entryAssign_Aircraft(ID: Airplane_ID);-- all entries are guaranteed mutually exclusive
entryCleared_Runway(ID: Airplane_ID);
entryWait_For_Clear;
private
Clear:Boolean:=True;-- protected private data - generally more than only a flag...
endRunway;
typeRunway_AccessisaccessallRunway;

-- the air traffic controller task takes requests for takeoff and landing
tasktypeController(My_Runway: Runway_Access)is
-- task entries for synchronous message passing
entryRequest_Takeoff(ID: inAirplane_ID;Takeoff: outRunway_Access);
entryRequest_Approach(ID: inAirplane_ID;Approach: outRunway_Access);
endController;

-- allocation of instances
Runway1:aliasedRunway;-- instantiate a runway
Controller1:Controller(Runway1'Access);-- and a controller to manage it

------ the implementations of the above types ------
protectedbodyRunwayis
entryAssign_Aircraft(ID: Airplane_ID)
whenClearis-- the entry guard - calling tasks are blocked until the condition is true
begin
Clear:=False;
Put_Line(Airplane_ID'Image(ID)&" on runway ");
end;

entryCleared_Runway(ID: Airplane_ID)
whennotClearis
begin
Clear:=True;
Put_Line(Airplane_ID'Image(ID)&" cleared runway ");
end;

entryWait_For_Clear
whenClearis
begin
null;-- no need to do anything here - a task can only enter if "Clear" is true
end;
endRunway;

taskbodyControlleris
begin
loop
My_Runway.Wait_For_Clear;-- wait until runway is available (blocking call)
select-- wait for two types of requests (whichever is runnable first)
whenRequest_Approach'count=0=>-- guard statement - only accept if there are no tasks
queuing on Request_Approach
acceptRequest_Takeoff(ID:inAirplane_ID;Takeoff:outRunway_Access)
do-- start of synchronized part
My_Runway.Assign_Aircraft(ID);-- reserve runway (potentially blocking call if protected
object busy or entry guard false)
Takeoff:=My_Runway;-- assign "out" parameter value to tell airplane which runway
endRequest_Takeoff;-- end of the synchronised part
or
acceptRequest_Approach(ID:inAirplane_ID;Approach:outRunway_Access)do
My_Runway.Assign_Aircraft(ID);

Statements and Language Programming

60

Approach:=My_Runway;
endRequest_Approach;
or-- terminate if no tasks left who could call
terminate;
endselect;
endloop;
end;

taskbodyAirplaneis
Rwy:Runway_Access;
begin
Controller1.Request_Takeoff(ID,Rwy);-- This call blocks until Controller task accepts and
completes the accept block
Put_Line(Airplane_ID'Image(ID)&" taking off...");
delay2.0;
Rwy.Cleared_Runway(ID);-- call will not block as "Clear" in Rwy is now false and no other
tasks should be inside protected object
delay5.0;-- fly around a bit...
loop
select-- try to request a runway
Controller1.Request_Approach(ID,Rwy);-- this is a blocking call - will run on controller
reaching accept block and return on completion
exit;-- if call returned we're clear for landing - leave select block and proceed...
or
delay3.0;-- timeout - if no answer in 3 seconds, do something else (everything in following
block)
Put_Line(Airplane_ID'Image(ID)&" in holding pattern");-- simply print a message
endselect;
endloop;
delay4.0;-- do landing approach...
Put_Line(Airplane_ID'Image(ID)&" touched down!");
Rwy.Cleared_Runway(ID);-- notify runway that we're done here.
end;

New_Airplane:Airplane_Access;

begin
forIinAirplane_ID'Rangeloop-- create a few airplane tasks
New_Airplane:=newAirplane(I);-- will start running directly after creation
delay4.0;
endloop;
endTraffic;

Pragmas

A pragma is a compiler directive that conveys information to

the compiler to allow specific manipulating of compiled output.

Certain pragmas are built into the language, while others are

implementation-specific.

Examples of common usage of compiler pragmas would be to

disable certain features, such as run-time type checking or

array subscript boundary checking, or to instruct the compiler

Statements and Language Programming

61

to insert object code instead of a function call (as C/C++ does

with inline functions).

Generics

Ada has had generics since it was first designed in 1977–1980.

The standard library uses generics to provide many services.

Ada 2005 adds a comprehensive generic container library to

the standard library, which was inspired by C++'s standard

template library.

A generic unit is a package or a subprogram that takes one or

more generic formal parameters.

A generic formal parameter is a value, a variable, a constant, a

type, a subprogram, or even an instance of another,

designated, generic unit. For generic formal types, the syntax

distinguishes between discrete, floating-point, fixed-point,

access (pointer) types, etc. Some formal parameters can have

default values.

• To instantiate a generic unit, the programmer passes

actual parameters for each formal. The generic

instance then behaves just like any other unit. It is

possible to instantiate generic units at run-time, for

example inside a loop.

ALGOL

ALGOL (/�æl��l,-�� � l/; short for "Algorithmic Language") is

a family of imperative computer programming languages

originally developed in 1958. ALGOL heavily influenced many

Statements and Language Programming

62

other languages and was the standard method for algorithm

description used by the Association for Computing Machinery

(ACM) in textbooks and academic sources for more than thirty

years.

In the sense that the syntax of most modern languages is

"Algol-like", it was arguably the most influential of the four

high-level programming languages among which it was roughly

contemporary: FORTRAN, Lisp, and COBOL. It was designed to

avoid some of the perceived problems with FORTRAN and

eventually gave rise to many other programming languages,

including PL/I, Simula, BCPL, B, Pascal, and C.

ALGOL introduced code blocks and the begin...end pairs for

delimiting them. It was also the first language implementing

nested function definitions with lexical scope. Moreover, it was

the first programming language which gave detailed attention

to formal language definition and through the Algol 60 Report

introduced Backus–Naur form, a principal formal grammar

notation for language design.

There were three major specifications, named after the years

they were first published:

• ALGOL 58 – originally proposed to be calledIAL, for

International Algebraic Language.

• ALGOL 60 – first implemented as X1 ALGOL 60 in

mid-1960. Revised 1963.

• ALGOL 68 – introduced new elements including

flexible arrays, slices, parallelism, operator

identification. Revised 1973.

Statements and Language Programming

63

ALGOL 68 is substantially different from ALGOL 60 and was

not well received, so in general "Algol" means ALGOL 60 and its

dialects.

Important implementations

The International Algebraic Language (IAL), renamed ALGOL

58, was highly influential and is generally considered the

ancestor of most modern programming languages (the so-called

Algol-like languages).

ALGOL object code was a simple, compact stack-based

instruction set architecture commonly used in teaching

compiler construction and other high order languages.

History

ALGOL was developed jointly by a committee of European and

American computer scientists in a meeting in 1958 at the

Swiss Federal Institute of Technology in Zurich (cf. ALGOL 58).

It specified three different syntaxes: a reference syntax, a

publication syntax, and an implementation syntax. The

different syntaxes permitted it to use different keyword names

and conventions for decimal points (commas vs periods) for

different languages.

ALGOL was used mostly by research computer scientists in the

United States and in Europe. Its use in commercial

applications was hindered by the absence of standard

input/output facilities in its description and the lack of

interest in the language by large computer vendors other than

Statements and Language Programming

64

Burroughs Corporation. ALGOL 60 did however become the

standard for the publication of algorithms and had a profound

effect on future language development.

John Backus developed the Backus normal form method of

describing programming languages specifically for ALGOL 58.

It was revised and expanded by Peter Naur for ALGOL 60, and

at Donald Knuth's suggestion renamed Backus–Naur form.

Peter Naur: "As editor of the ALGOL Bulletin I was drawn into

the international discussions of the language and was selected

to be member of the European language design group in

November 1959. In this capacity I was the editor of the ALGOL

60 report, produced as the result of the ALGOL 60 meeting in

Paris in January 1960."

The following people attended the meeting in Paris (from 1 to

16 January):

• Friedrich L. Bauer, Peter Naur, Heinz Rutishauser,

Klaus Samelson, Bernard Vauquois, Adriaan van

Wijngaarden, and Michael Woodger (from Europe)

• John W. Backus, Julien Green, Charles Katz, John

McCarthy, Alan J. Perlis, and Joseph Henry Wegstein

(from the USA).

Alan Perlis gave a vivid description of the meeting: "The

meetings were exhausting, interminable, and exhilarating. One

became aggravated when one's good ideas were discarded along

with the bad ones of others. Nevertheless, diligence persisted

during the entire period. The chemistry of the 13 was

excellent."

Statements and Language Programming

65

ALGOL 60 inspired many languages that followed it. Tony

Hoareremarked: "Here is a language so far ahead of its time

that it was not only an improvement on its predecessors but

also on nearly all its successors." The Scheme programming

language, a variant of Lisp that adopted the block structure

and lexical scope of ALGOL, also adopted the wording "Revised

Report on the Algorithmic Language Scheme" for its standards

documents in homage to ALGOL.

ALGOL and programming language research

As Peter Landin noted, ALGOL was the first language to

combine seamlessly imperative effects with the (call-by-name)

lambda calculus. Perhaps the most elegant formulation of the

language is due to John C. Reynolds, and it best exhibits its

syntactic and semantic purity. Reynolds's idealized ALGOL also

made a convincing methodologic argument regarding the

suitability of local effects in the context of call-by-name

languages, in contrast with the global effects used by call-by-

value languages such as ML. The conceptual integrity of the

language made it one of the main objects of semantic research,

along with Programming Computable Functions (PCF) and ML.

Properties

ALGOL 60 as officially defined had no I/O facilities;

implementations defined their own in ways that were rarely

compatible with each other. In contrast, ALGOL 68 offered an

extensive library of transput (input/output) facilities.

ALGOL 60 allowed for two evaluation strategies for parameter

passing: the common call-by-value, and call-by-name. Call-by-

Statements and Language Programming

66

name has certain effects in contrast to call-by-reference. For

example, without specifying the parameters as value or

reference, it is impossible to develop a procedure that will swap

the values of two parameters if the actual parameters that are

passed in are an integer variable and an array that is indexed

by that same integer variable. Think of passing a pointer to

swap(i,

A[i]) in to a function. Now that every time swap is referenced, it

is reevaluated. Say i := 1 and A[i] := 2, so every time swap is

referenced it will return the other combination of the values

([1,2], [2,1], [1,2] and so on). A similar situation occurs with a

random function passed as actual argument.

Call-by-name is known by many compiler designers for the

interesting "thunks" that are used to implement it. Donald

Knuth devised the "man or boy test" to separate compilers that

correctly implemented "recursion and non-local references."

This test contains an example of call-by-name.

ALGOL 68 was defined using a two-level grammar formalism

invented by Adriaan van Wijngaarden and which bears his

name.

Van Wijngaarden grammars use a context-free grammar to

generate an infinite set of productions that will recognize a

particular ALGOL 68 program; notably, they are able to express

the kind of requirements that in many other programming

language standards are labelled "semantics" and have to be

expressed in ambiguity-prone natural language prose, and then

implemented in compilers as ad hoc code attached to the

formal language parser.

Statements and Language Programming

67

Examples and portability issues

Code sample comparisons

ALGOL 60

(The way the bold text has to be written depends on the

implementation, e.g. 'INTEGER'—quotation marks included—for

integer. This is known as stropping.)

procedureAbsmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;
comment The absolute greatest element of the matrix a, of size n by m
is transferred to y, and the subscripts of this element to i and k;
begin
integer p, q;
y := 0; i := k := 1;
for p := 1 step 1 until n do
for q := 1 step 1 until m do
if abs(a[p, q]) > y then
beginy := abs(a[p, q]);
i := p; k := q
end
endAbsmax

Here is an example of how to produce a table using Elliott 803

ALGOL.

 FLOATING POINT ALGOL TEST'
 BEGIN REAL A,B,C,D'

 READ D'

 FOR A:= 0.0 STEP D UNTIL 6.3 DO
 BEGIN
 PRINT PUNCH(3),££L??'
B := SIN(A)'
C := COS(A)'
 PRINT PUNCH(3),SAMELINE,ALIGNED(1,6),A,B,C'
 END'
 END'

PUNCH(3) sends output to the teleprinter rather than the tape

punch.

Statements and Language Programming

68

SAMELINE suppresses the carriage return + line feed normally

printed between arguments.

ALIGNED(1,6) controls the format of the output with 1 digit

before and 6 after the decimal point.

ALGOL 68

The following code samples are ALGOL 68 versions of the above

ALGOL 60 code samples.

ALGOL 68 implementations used ALGOL 60's approaches to

stropping. In ALGOL 68's case tokens with the bold typeface

are reserved words, types (modes) or operators.

proc abs max = ([,]real a, refreal y, refinti, k)real:
comment The absolute greatest element of the matrix a, of size �a by 2�a
is transferred to y, and the subscripts of this element to i and k; comment
begin
real y := 0; i := �a; k := 2�a;
for p from�a to�a do
for q from 2�a to 2�a do
ifabs a[p, q] > y then
y := abs a[p, q];
i := p; k := q
fi
od
od;
y
end # abs max #

Note: lower (�) and upper (�) bounds of an array, and array

slicing, are directly available to the programmer.

floating point algol68 test:
(
reala,b,c,d;

 # printf - sends output to the filestand out. #
 # printf(p); – selects a new page #
printf((pg,"Enter d:"));
read(d);

for step from 0 while a:=step*d; a <= 2*pi do

Statements and Language Programming

69

printf(l); # l - selects a new line. #
b := sin(a);
c := cos(a);
printf(($z-d.6d$,a,b,c)) # formats output with 1 digit before and 6 after the decimal point. #
od
)

Timeline: Hello world

The variations and lack of portability of the programs from one

implementation to another is easily demonstrated by the

classic hello world program.

ALGOL 58 (IAL)

ALGOL 58 had no I/O facilities.

ALGOL 60 family

Since ALGOL 60 had no I/O facilities, there is no portable

hello world program in ALGOL. The next three examples are in

Burroughs Extended Algol. The first two direct output at the

interactive terminal they are run on. The first uses a character

array, similar to C. The language allows the array identifier to

be used as a pointer to the array, and hence in a REPLACE

statement.

BEGIN
FILEF(KIND=REMOTE);
EBCDICARRAYE[0:11];
REPLACEEBY"HELLO WORLD!";
WRITE(F,*,E);
END.

A simpler program using an inline format:

BEGIN
FILEF(KIND=REMOTE);
WRITE(F,<"HELLO WORLD!">);
END.

Statements and Language Programming

70

An even simpler program using the Display statement. Note

that its output would end up at the system console ('SPO'):

BEGINDISPLAY("HELLO WORLD!")END.

An alternative example, using Elliott Algol I/O is as follows.

Elliott Algol used different characters for "open-string-quote"

and "close-string-quote":

programHiFolks;
begin
print 'Hello world';
end;

Here is a version for the Elliott 803 Algol (A104) The standard

Elliott 803 used 5 hole paper tape and thus only had upper

case. The code lacked any quote characters so £ (UK Pound

Sign) was used for open quote and ? (Question Mark) for close

quote. Special sequences were placed in double quotes (e.g.

££L?? produced a new line on the teleprinter).

 HIFOLKS'
 BEGIN
 PRINT £HELLO WORLD£L??'
 END'

The ICT 1900 series Algol I/O version allowed input from paper

tape or punched card. Paper tape 'full' mode allowed lower

case. Output was to a line printer. The open and close quote

characters were represented using '(' and ') ' and spaces by %.

 'BEGIN'
 WRITE TEXT('('HELLO%WORLD')');
 'END'

ALGOL 68

• Main article: ALGOL 68

Statements and Language Programming

71

ALGOL 68 code was published with reserved words typically in

lowercase, but bolded or underlined.

begin
printf((gl,"Hello, world!"))
end

In the language of the "Algol 68 Report" the input/output

facilities were collectively called the "Transput".

Timeline of ALGOL special characters

The ALGOLs were conceived at a time when character sets were

diverse and evolving rapidly; also, the ALGOLs were defined so

that only uppercase letters were required.

1960: IFIP – The Algol 60 language and report included several

mathematical symbols which are available on modern

computers and operating systems, but, unfortunately, were

unsupported on most computing systems at the time. For

instance: ×, ÷, �, �, �, ¬, �, �, �, �, � and •.

1961 September: ASCII – The ASCII character set, then in an

early stage of development, had the \ (Back slash) character

added to it in order to support ALGOL's boolean operators /\

and \/.

1962: ALCOR – This character set included the unusual "�"

runic cross character for multiplication and the "•" Decimal

Exponent Symbol for floating point notation.

1964: GOST – The 1964 Soviet standard GOST 10859 allowed

the encoding of 4-bit, 5-bit, 6-bit and 7-bit characters in

ALGOL.

Statements and Language Programming

72

1968: The "Algol 68 Report" – used extant ALGOL characters,

and further adopted �, �, �, 	, �, �, �, �,
, 	, and ¢ characters

which can be found on the IBM 2741 keyboard with typeball (or

golf ball) print heads inserted (such as the APL golf ball).

These became available in the mid-1960s while ALGOL 68 was

being drafted.

The report was translated into Russian, German, French, and

Bulgarian, and allowed programming in languages with larger

character sets, e.g., Cyrillic alphabet of the Soviet BESM-4. All

ALGOL's characters are also part of the Unicode standard and

most of them are available in several popular fonts.

2009 October: Unicode – The � (Decimal Exponent Symbol) for

floating point notation was added to Unicode 5.2 for backward

compatibility with historic Buran programme ALGOL software.

APL (programming language)

APL (named after the book A Programming Language) is a

programming language developed in the 1960s by Kenneth E.

Iverson. Its central datatype is the multidimensional array. It

uses a large range of special graphic symbols to represent most

functions and operators, leading to very concise code.

It has been an important influence on the development of

concept modeling, spreadsheets, functional programming, and

computer math packages. It has also inspired several other

programming languages.

Statements and Language Programming

73

History

Mathematical notation

A mathematical notation for manipulating arrays was

developed by Kenneth E. Iverson, starting in 1957 at Harvard

University. In 1960, he began work for IBM where he developed

this notation with Adin Falkoff and published it in his book A

Programming Language in 1962. The preface states its premise:

Applied mathematics is largely concerned with the design and

analysis of explicit procedures for calculating the exact or

approximate values of various functions. Such explicit

procedures are called algorithms or programs. Because an

effective notation for the description of programs exhibits

considerable syntactic structure, it is called a programming

language.

This notation was used inside IBM for short research reports

on computer systems, such as the Burroughs B5000 and its

stack mechanism when stack machines versus register

machines were being evaluated by IBM for upcoming

computers.

Iverson also used his notation in a draft of the chapter A

Programming Language, written for a book he was writing with

Fred Brooks, Automatic Data Processing, which would be

published in 1963.

In 1979, Iverson received the Turing Award for his work on

APL.

Statements and Language Programming

74

Development into a computer programming language

As early as 1962, the first attempt to use the notation to

describe a complete computer system happened after Falkoff

discussed with William C. Carter his work to standardize the

instruction set for the machines that later became the IBM

System/360 family.

In 1963, Herbert Hellerman, working at the IBM Systems

Research Institute, implemented a part of the notation on an

IBM 1620 computer, and it was used by students in a special

high school course on calculating transcendental functions by

series summation. Students tested their code in Hellerman's

lab. This implementation of a part of the notation was called

Personalized Array Translator (PAT).

In 1963, Falkoff, Iverson, and Edward H. Sussenguth Jr., all

working at IBM, used the notation for a formal description of

the IBM System/360 series machine architecture and

functionality, which resulted in a paper published in IBM

Systems Journal in 1964. After this was published, the team

turned their attention to an implementation of the notation on

a computer system. One of the motivations for this focus of

implementation was the interest of John L. Lawrence who had

new duties with Science Research Associates, an educational

company bought by IBM in 1964. Lawrence asked Iverson and

his group to help use the language as a tool to develop and use

computers in education.

After Lawrence M. Breed and Philip S. Abrams of Stanford

University joined the team at IBM Research, they continued

their prior work on an implementation programmed in

Statements and Language Programming

75

FORTRAN IV for a part of the notation which had been done for

the IBM 7090 computer running on the IBSYS operating

system. This work was finished in late 1965 and later named

IVSYS (for Iverson system). The basis of this implementation

was described in detail by Abrams in a Stanford University

Technical Report, "An Interpreter for Iverson Notation" in 1966,

the academic aspect of this was formally supervised by Niklaus

Wirth. Like Hellerman's PAT system earlier, this

implementation did not include the APL character set but used

special English reserved words for functions and operators.

The system was later adapted for a time-sharing system and,

by November 1966, it had been reprogrammed for the IBM

System/360 Model 50 computer running in a time sharing

mode and was used internally at IBM.

Hardware

A key development in the ability to use APL effectively, before

the wide use of cathode ray tube (CRT) terminals, was the

development of a special IBM Selectric typewriter

interchangeable typing element with all the special APL

characters on it. This was used on paper printing terminal

workstations using the Selectric typewriter and typing element

mechanism, such as the IBM 1050 and IBM 2741 terminal.

Keycaps could be placed over the normal keys to show which

APL characters would be entered and typed when that key was

struck. For the first time, a programmer could type in and see

proper APL characters as used in Iverson's notation and not be

forced to use awkward English keyword representations of

them. Falkoff and Iverson had the special APL Selectric typing

elements, 987 and 988, designed in late 1964, although no APL

computer system was available to use them. Iverson cited

Statements and Language Programming

76

Falkoff as the inspiration for the idea of using an IBM Selectric

typing element for the APL character set.

Many APL symbols, even with the APL characters on the

Selectric typing element, still had to be typed in by over-

striking two extant element characters. An example is the

grade up character, which had to be made from a delta (shift-

H) and a Sheffer stroke (shift-M). This was necessary because

the APL character set was much larger than the 88 characters

allowed on the typing element, even when letters were

restricted to upper-case (capitals).

Commercial availability

The first APL interactive login and creation of an APL

workspace was in 1966 by Larry Breed using an IBM 1050

terminal at the IBM Mohansic Labs near Thomas J. Watson

Research Center, the home of APL, in Yorktown Heights, New

York.

IBM was chiefly responsible for introducing APL to the

marketplace. APL was first available in 1967 for the IBM 1130

as APL\1130. It would run in as little as 8k 16-bit words of

memory, and used a dedicated 1 megabyte hard disk.

APL gained its foothold on mainframe timesharing systems

from the late 1960s through the early 1980s, in part because it

would support multiple users on lower-specification systems

that had no dynamic address translation hardware. Additional

improvements in performance for selected IBM System/370

mainframe systems included the APL Assist Microcode in which

some support for APL execution was included in the

processor's firmware, as distinct from being implemented

Statements and Language Programming

77

entirely by higher-level software. Somewhat later, as suitably

performing hardware was finally growing available in the mid-

to late-1980s, many users migrated their applications to the

personal computer environment.

Early IBM APL interpreters for IBM 360 and IBM 370 hardware

implemented their own multi-user management instead of

relying on the host services, thus they were their own

timesharing systems. First introduced in 1966, the APL\360

system was a multi-user interpreter. The ability to

programmatically communicate with the operating system for

information and setting interpreter system variables was done

through special privileged "I-beam" functions, using both

monadic and dyadic operations.

In 1973, IBM released APL.SV, which was a continuation of the

same product, but which offered shared variables as a means

to access facilities outside of the APL system, such as

operating system files. In the mid-1970s, the IBM mainframe

interpreter was even adapted for use on the IBM 5100 desktop

computer, which had a small CRT and an APL keyboard, when

most other small computers of the time only offered BASIC. In

the 1980s, the VSAPL program product enjoyed wide use with

Conversational Monitor System (CMS), Time Sharing Option

(TSO), VSPC, MUSIC/SP, and CICS users.

In 1973–1974, Patrick E. Hagerty directed the implementation

of the University of Maryland APL interpreter for the 1100 line

of the Sperry UNIVAC 1100/2200 series mainframe computers.

At the time, Sperry had nothing. In 1974, student Alan

Stebbenswas assigned the task of implementing an internal

function. Xerox APL was available from June 1975 for Xerox

Statements and Language Programming

78

560 and Sigma 6, 7, and 9 mainframes running CP-V and for

Honeywell CP-6.

In the 1960s and 1970s, several timesharing firms arose that

sold APL services using modified versions of the IBM APL\360

interpreter. In North America, the better-known ones were I. P.

Sharp Associates, Scientific Time Sharing Corporation (STSC),

Time Sharing Resources (TSR), and The Computer Company

(TCC). CompuServe also entered the market in 1978 with an

APL Interpreter based on a modified version of Digital

Equipment Corp and Carnegie Mellon's, which ran on DEC's KI

and KL 36-bit machines. CompuServe's APL was available both

to its commercial market and the consumer information

service. With the advent first of less expensive mainframes

such as the IBM 4300, and later the personal computer, by the

mid-1980s, the timesharing industry was all but gone.

Sharp APL was available from I. P. Sharp Associates, first as a

timesharing service in the 1960s, and later as a program

product starting around 1979. Sharp APL was an advanced APL

implementation with many language extensions, such as

packages (the ability to put one or more objects into a single

variable), file system, nested arrays, and shared variables.

APL interpreters were available from other mainframe and

mini-computer manufacturers also, notably Burroughs, Control

Data Corporation (CDC), Data General, Digital Equipment

Corporation (DEC), Harris, Hewlett-Packard (HP), Siemens AG,

Xerox, and others.

Garth Foster of Syracuse University sponsored regular

meetings of the APL implementers' community at Syracuse's

Minnowbrook Conference Center in Blue Mountain Lake, New

Statements and Language Programming

79

York. In later years, Eugene McDonnell organized similar

meetings at the Asilomar Conference Grounds near Monterey,

California, and at Pajaro Dunes near Watsonville, California.

The SIGAPL special interest group of the Association for

Computing Machinery continues to support the APL

community.

Microcomputers

On microcomputers, which became available from the mid

1970s onwards, BASIC became the dominant programming

language. Nevertheless, some microcomputers provided APL

instead - the first being the Intel 8008-based MCM/70 which

was released in 1974 and which was primarily used in

education. Another machine of this time was the VideoBrain

Family Computer, released in 1977, which was supplied with

its dialect of APL called APL/S.

The Commodore SuperPET, introduced in 1981, included an

APL interpreter developed by the University of Waterloo.

In 1976, Bill Gates claimed in his Open Letter to Hobbyists

that Microsoft Corporation was implementing APL for the Intel

8080 and Motorola 6800 but had "very little incentive to make

[it] available to hobbyists" because of software piracy. It was

never released.

APL2

Starting in the early 1980s, IBM APL development, under the

leadership of Jim Brown, implemented a new version of the APL

language that contained as its primary enhancement the

concept of nested arrays, where an array can contain other

Statements and Language Programming

80

arrays, and new language features which facilitated integrating

nested arrays into program workflow. Ken Iverson, no longer in

control of the development of the APL language, left IBM and

joined I. P. Sharp Associates, where one of his major

contributions was directing the evolution of Sharp APL to be

more in accord with his vision.

As other vendors were busy developing APL interpreters for

new hardware, notably Unix-based microcomputers, APL2 was

almost always the standard chosen for new APL interpreter

developments. Even today, most APL vendors or their users cite

APL2 compatibility, as a selling point for those products.

APL2 for IBM mainframe computers is still available. IBM cites

its use for problem solving, system design, prototyping,

engineering and scientific computations, expert systems, for

teaching mathematics and other subjects, visualization and

database access and was first available for CMS and TSO in

1984. The APL2 Workstation edition (Windows, OS/2, AIX,

Linux, and Solaris) followed much later in the early 1990s.

Modern implementations

Various implementations of APL by APLX, Dyalog, et al.,

include extensions for object-oriented programming, support

for .NET Framework, XML-array conversion primitives,

graphing, operating system interfaces, and lambda calculus

expressions.

Derivative languages

APL has formed the basis of, or influenced, the following

languages:

Statements and Language Programming

81

• A and A+, an alternative APL, the latter with

graphical extensions.

• FP, a functional programming language.

• Ivy, an interpreter for an APL-like language

developed by Rob Pike, and which uses ASCII as

input.

• J, which was also designed by Iverson, and which

uses ASCII with digraphs instead of special symbols.

• K, a proprietary variant of APL developed by Arthur

Whitney.

• LYaPAS, a Soviet extension to APL.

• MATLAB, a numerical computation tool.

• Nial, a high-level array programming language with a

functional programming notation.

• Polymorphic Programming Language, an interactive,

extensible language with a similar base language.

• S, a statistical programming language (usually now

seen in the open-source version known as R).

• Speakeasy, a numerical computing interactive

environment.

• Wolfram Language, the programming language of

Mathematica.

Language characteristics

Character set

APL has been both criticized and praised for its choice of a

unique, non-standard character set. Some who learn it become

ardent adherents, suggesting that there is some weight behind

Iverson's idea that the notation used does make a difference.

Statements and Language Programming

82

In the 1960s and 1970s, few terminal devices and even display

monitors could reproduce the APL character set. The most

popular ones employed the IBM Selectric print mechanism

used with a special APL type element. One of the early APL line

terminals (line-mode operation only, not full screen) was the

Texas Instruments TI Model 745 (circa 1977) with the full APL

character set which featured half and full duplex

telecommunications modes, for interacting with an APL time-

sharing service or remote mainframe to run a remote computer

job, called an RJE.

Over time, with the universal use of high-quality graphic

displays, printing devices and Unicode support, the APL

character font problem has largely been eliminated. However,

entering APL characters requires the use of input method

editors, keyboard mappings, virtual/on-screen APL symbol

sets, or easy-reference printed keyboard cards which can

frustrate beginners accustomed to other programming

languages. With beginners who have no prior experience with

other programming languages, a study involving high school

students found that typing and using APL characters did not

hinder the students in any measurable way.

In defense of APL use, APL requires less coding to type in, and

keyboard mappings become memorized over time. Also, special

APL keyboards are manufactured and in use today, as are

freely available downloadable fonts for operating systems such

as Microsoft Windows. The reported productivity gains assume

that one will spend enough time working in APL to make it

worthwhile to memorize the symbols, their semantics, and

keyboard mappings, not to mention a substantial number of

idioms for common tasks.

Statements and Language Programming

83

Design

Unlike traditionally structured programming languages, APL

code is typically structured as chains of monadic or dyadic

functions, and operators acting on arrays. APL has many

nonstandard primitives (functions and operators) that are

indicated by a single symbol or a combination of a few

symbols. All primitives are defined to have the same

precedence, and always associate to the right. Thus, APL is

read or best understood from right-to-left.

Early APL implementations (circa 1970 or so) had no

programming loop-flow control structures, such as do orwhile

loops, and if-then-else constructs. Instead, they used array

operations, and use of structured programming constructs was

often not necessary, since an operation could be performed on

a full array in one statement. For example, the iota function (�)

can replace for-loop iteration: �N when applied to a scalar

positive integer yields a one-dimensional array (vector), 1 2 3

... N. More recent implementations of APL generally include

comprehensive control structures, so that data structure and

program control flow can be clearly and cleanly separated.

The APL environment is called a workspace. In a workspace the

user can define programs and data, i.e., the data values exist

also outside the programs, and the user can also manipulate

the data without having to define a program. In the examples

below, the APL interpreter first types six spaces before

awaiting the user's input. Its own output starts in column one.

APL uses a set of non-ASCII symbols, which are an extension

of traditional arithmetic and algebraic notation. Having single

Statements and Language Programming

84

character names for single instruction, multiple data (SIMD)

vector functions is one way that APL enables compact

formulation of algorithms for data transformation such as

computing Conway's Game of Life in one line of code. In nearly

all versions of APL, it is theoretically possible to express any

computable function in one expression, that is, in one line of

code.

Because of the unusual character set, many programmers use

special keyboards with APL keytops to write APL code.

Although there are various ways to write APL code using only

ASCII characters, in practice it is almost never done. (This may

be thought to support Iverson's thesis about notation as a tool

of thought.) Most if not all modern implementations use

standard keyboard layouts, with special mappings or input

method editors to access non-ASCII characters. Historically,

the APL font has been distinctive, with uppercase italic

alphabetic characters and upright numerals and symbols. Most

vendors continue to display the APL character set in a custom

font.

Advocates of APL claim that the examples of so-called write-

only code (badly written and almost incomprehensible code) are

almost invariably examples of poor programming practice or

novice mistakes, which can occur in any language. Advocates

also claim that they are far more productive with APL than

with more conventional computer languages, and that working

software can be implemented in far less time and with far fewer

programmers than using other technology.

They also may claim that because it is compact and terse, APL

lends itself well to larger-scale software development and

Statements and Language Programming

85

complexity, because the number of lines of code can be

reduced greatly. Many APL advocates and practitioners also

view standard programming languages such as COBOL and

Java as being comparatively tedious. APL is often found where

time-to-market is important, such as with trading systems.

Terminology

APL makes a clear distinction between functions and operators.

Functions take arrays (variables or constants or expressions)

as arguments, and return arrays as results. Operators (similar

to higher-order functions) take functions or arrays as

arguments, and derive related functions. For example, the sum

function is derived by applying the reduction operator to the

addition function. Applying the same reduction operator to the

maximum function (which returns the larger of two numbers)

derives a function which returns the largest of a group (vector)

of numbers. In the J language, Iverson substituted the terms

verb for function and adverb or conjunction for operator.

APL also identifies those features built into the language, and

represented by a symbol, or a fixed combination of symbols, as

primitives. Most primitives are either functions or operators.

Coding APL is largely a process of writing non-primitive

functions and (in some versions of APL) operators. However a

few primitives are considered to be neither functions nor

operators, most noticeably assignment.

Syntax

APL has explicit representations of functions, operators, and

syntax, thus providing a basis for the clear and explicit

Statements and Language Programming

86

statement of extended facilities in the language, and tools to

experiment on them.

Examples

Hello, World

This displays "Hello, world":

'Hello, world'

A design theme in APL is to define default actions in some

cases that would produce syntax errors in most other

programming languages.

The 'Hello, world' string constant above displays, because

display is the default action on any expression for which no

action is specified explicitly (e.g. assignment, function

parameter).

Exponentiation

Another example of this theme is that exponentiation in APL is

written as "2*3", which indicates raising 2 to the power 3 (this

would be written as "2^3" in some other languages and "2**3" in

FORTRAN and Python): many languages use * to signify

multiplication as in 2*3 but APL uses 2×3 for that. However, if

no base is specified (as with the statement "*3" in APL, or "^3"

in other languages), in most other programming languages one

would have a syntax error. APL however assumes the missing

base to be the natural logarithm constant e (2.71828....), and

so interpreting "*3" as "2.71828*3".

Statements and Language Programming

87

Simple statistics

Suppose that X is an array of numbers. Then (+/X)÷�X gives its

average. Reading right-to-left, �X gives the number of elements

in X, and since ÷ is a dyadic operator, the term to its left is

required as well. It is in parenthesis since otherwise X would

be taken (so that the summation would be of X÷�X, of each

element of X divided by the number of elements in X), and +/X

adds all the elements of X. Building on this, ((+/((X-

(+/X)÷�X)*2))÷�X)*0.5 calculates the standard deviation. Further,

since assignment is an operator, it can appear within an

expression, so

SD�((+/((X-AV�(T�+/X)÷�X)*2))÷�X)*0.5

would place suitable values into T, AV and SD. Naturally, one

would make this expression into a function for repeated use

rather than retyping it each time.

Pick 6 lottery numbers

This following immediate-mode expression generates a typical

set of Pick 6 lottery numbers: six pseudo-random integers

ranging from 1 to 40, guaranteed non-repeating, and displays

them sorted in ascending order:

x[�x�6?40]

The above does a lot, concisely; although it seems complex to a

new APLer. It combines the following APL functions (also called

primitives and glyphs):

• The first to be executed (APL executes from

rightmost to leftmost) is dyadic function ?

Statements and Language Programming

88

(nameddeal when dyadic) that returns a vector

consisting of a select number (left argument: 6 in

this case) of random integers ranging from 1 to a

specified maximum (right argument: 40 in this case),

which, if said maximum � vector length, is

guaranteed to be non-repeating; thus,

generate/create 6 random integers ranging from 1-

40.

• This vector is then assigned (�) to the variable x,

because it is needed later.

• This vector is then sorted in ascending order by a

monadic � function, which has as its right argument

everything to the right of it up to the next

unbalanced close-bracket or close-parenthesis. The

result of � is the indices that will put its argument

into ascending order.

• Then the output of � is used to index the variable x,

which we saved earlier for this purpose, thereby

selecting its items in ascending sequence.

Since there is no function to the left of the left-most x to tell

APL what to do with the result, it simply outputs it to the

display (on a single line, separated by spaces) without needing

any explicit instruction to do that.

?also has a monadic equivalent called roll, which simply

returns one random integer between 1 and its sole operand [to

the right of it], inclusive. Thus, a role-playing game program

might use the expression ?20 to roll a twenty-sided die.

Statements and Language Programming

89

Prime numbers

The following expression finds all prime numbers from 1 to R.

In both time and space, the calculation complexity is (in

Big O notation).

(~R
R�.×R)/R�1��R

Executed from right to left, this means:

• Iota� creates a vector containing integers from 1 to R

(if R= 6 at the start of the program, �R is 1 2 3 4 5 6)

• Drop first element of this vector (� function), i.e., 1.

So 1��R is 2 3 4 5 6

• SetR to the new vector (�, assignment primitive), i.e.,

2 3 4 5 6

• The /replicate operator is dyadic (binary) and the

interpreter first evaluates its left argument (fully in

parentheses):

• Generate outer product of R multiplied by R, i.e., a

matrix that is the multiplication table of R by R (°.×

operator), i.e.,

• Build a vector the same length as R with 1 in each

place where the corresponding number in R is in the

outer product matrix (�, set inclusion or element of or

Epsilon operator), i.e., 0 0 1 0 1

• Logically negate (not) values in the vector (change

zeros to ones and ones to zeros) (
, logical not or

Tilde operator), i.e., 1 1 0 1 0

• Select the items in R for which the corresponding

element is 1 (/replicate operator), i.e., 2 3 5

Statements and Language Programming

90

(Note, this assumes the APL origin is 1, i.e., indices start with

1. APL can be set to use 0 as the origin, so that �6 is 0 1 2 3 4

5, which is convenient for some calculations.)

Sorting

The following expression sorts a word list stored in matrix X

according to word length:

X[�X+.�' ';]

Game of Life

The following function "life", written in Dyalog APL, takes a

boolean matrix and calculates the new generation according to

Conway's Game of Life. It demonstrates the power of APL to

implement a complex algorithm in very little code, but it is also

very hard to follow unless one has advanced knowledge of APL.

life�{�1��.�34=+/,¯101�.�¯101�.
�
��}

HTML tags removal

In the following example, also Dyalog, the first line assigns

some HTML code to a variable txt and then uses an APL

expression to remove all the HTML tags (explanation):

txt�'<html><body><p>This is emphasized text.</p></body></html>'
{�/�~{���\�}�
'<>'}txt
Thisisemphasizedtext.

Use

APL is used for many purposes including financial and

insurance applications, artificial intelligence, neural networks

Statements and Language Programming

91

and robotics. It has been argued that APL is a calculation tool

and not a programming language; its symbolic nature and

array capabilities have made it popular with domain experts

and data scientists who do not have or require the skills of a

computer programmer.

APL is well suited to image manipulation and computer

animation, where graphic transformations can be encoded as

matrix multiplications. One of the first commercial computer

graphics houses, Digital Effects, produced an APL graphics

product named Visions, which was used to create television

commercials and animation for the 1982 film Tron. Latterly,

the Stormwind boating simulator uses APL to implement its

core logic, its interfacing to the rendering pipeline middleware

and a major part of its physics engine.

Today, APL remains in use in a wide range of commercial and

scientific applications, for example investment management,

asset management, health care, and DNA profiling, and by

hobbyists.

Notable implementations

APL\360

The first implementation of APL using recognizable APL

symbols was APL\360 which ran on the IBM System/360, and

was completed in November 1966 though at that time remained

in use only within IBM. In 1973 its implementors, Larry Breed,

Dick Lathwell and Roger Moore, were awarded the Grace

Murray Hopper Award from the Association for Computing

Machinery (ACM). It was given "for their work in the design and

Statements and Language Programming

92

implementation of APL\360, setting new standards in

simplicity, efficiency, reliability and response time for

interactive systems."

In 1975, the IBM 5100 microcomputer offered APL\360 as one

of two built-in ROM-based interpreted languages for the

computer, complete with a keyboard and display that

supported all the special symbols used in the language.

Significant developments to APL\360 included CMS/APL,

which made use of the virtual storage capabilities of CMS and

APLSV, which introduced shared variables, system variables

and system functions. It was subsequently ported to the IBM

System/370 and VSPC platforms until its final release in 1983,

after which it was replaced by APL2.

APL\1130

In 1968, APL\1130 became the first publicly available APL

system, created by IBM for the IBM 1130. It became the most

popular IBM Type-III Library software that IBM released.

APL*Plus and Sharp APL

APL*Plus and Sharp APL are versions of APL\360 with added

business-oriented extensions such as data formatting and

facilities to store APL arrays in external files. They were jointly

developed by two companies, employing various members of the

original IBM APL\360 development team.

The two companies were I. P. Sharp Associates (IPSA), an

APL\360 services company formed in 1964 by Ian Sharp, Roger

Moore and others, and STSC, a time-sharing and consulting

Statements and Language Programming

93

service company formed in 1969 by Lawrence Breed and

others. Together the two developed APL*Plus and thereafter

continued to work together but develop APL separately as

APL*Plus and Sharp APL. STSC ported APL*Plus to many

platforms with versions being made for the VAX 11, PC and

UNIX, whereas IPSA took a different approach to the arrival of

the Personal Computer and made Sharp APL available on this

platform using additional PC-XT/360 hardware. In 1993,

Soliton Incorporated was formed to support Sharp APL and it

developed Sharp APL into SAX (Sharp APL for Unix). As of

2018, APL*Plus continues as APL2000 APL+Win.

In 1985, Ian Sharp, and Dan Dyer of STSC, jointly received the

Kenneth E. Iverson Award for Outstanding Contribution to

APL.

APL2

APL2 was a significant re-implementation of APL by IBM which

was developed from 1971 and first released in 1984. It provides

many additions to the language, of which the most notable is

nested (non-rectangular) array support. As of 2018 it is

available for mainframe computers running z/OS or z/VM and

workstations running AIX, Linux, Sun Solaris, and Microsoft

Windows.

The entire APL2 Products and Services Team was awarded the

Iverson Award in 2007.

APLGOL

In 1972, APLGOL was released as an experimental version of

APL that added structured programming language constructs

Statements and Language Programming

94

to the language framework. New statements were added for

interstatement control, conditional statement execution, and

statement structuring, as well as statements to clarify the

intent of the algorithm. It was implemented for Hewlett-

Packard in 1977.

Dyalog APL

Dyalog APL was first released by British company Dyalog Ltd.

in 1983 and, as of 2018, is available for AIX, Linux (including

on the Raspberry Pi), macOS and Microsoft Windows platforms.

It is based on APL2, with extensions to support object-oriented

programming and functional programming. Licences are free

for personal/non-commercial use.

In 1995, two of the development team - John Scholes and Peter

Donnelly - were awarded the Iverson Award for their work on

the interpreter. Gitte Christensen and Morten Kromberg were

joint recipients of the Iverson Award in 2016.

NARS2000

NARS2000 is an open-source APL interpreter written by Bob

Smith, a prominent APL developer and implementor from STSC

in the 1970s and 1980s. NARS2000 contains advanced features

and new datatypes and runs natively on Microsoft Windows,

and other platforms under Wine.

APLX

APLX is a cross-platform dialect of APL, based on APL2 and

with several extensions, which was first released by British

Statements and Language Programming

95

company MicroAPL in 2002. Although no longer in development

or on commercial sale it is now available free of charge from

Dyalog.

GNU APL

GNU APL is a free implementation of Extended APL as specified

in ISO/IEC 13751:2001 and is thus an implementation of

APL2. It runs on Linux (including on the Raspberry Pi), macOS,

several BSD dialects, and on Windows (either using Cygwin for

full support of all its system functions or as a native 64-bit

Windows binary with some of its system functions missing).

GNU APL uses Unicode internally and can be scripted. It was

written by Jürgen Sauermann.

Richard Stallman, founder of the GNU Project, was an early

adopter of APL, using it to write a text editor as a high school

student in the summer of 1969.

Interpretation and compilation of

APL

APL is traditionally an interpreted language, having language

characteristics such as weak variable typing not well suited to

compilation. However, with arrays as its core data structure it

provides opportunities for performance gains through

parallelism, parallel computing, massively parallel

applications, and very-large-scale integration (VLSI), and from

the outset APL has been regarded as a high-performance

language - for example, it was noted for the speed with which

it could perform complicated matrix operations "because it

Statements and Language Programming

96

operates on arrays and performs operations like matrix

inversion internally". Nevertheless, APL is rarely purely

interpreted and compilation or partial compilation techniques

that are, or have been, used include the following:

Idiom recognition

Most APL interpreters support idiom recognition and evaluate

common idioms as single operations. For example, by

evaluating the idiom BV/��A as a single operation (where BV is a

Boolean vector and A is an array), the creation of two

intermediate arrays is avoided.

Optimised bytecode

Weak typing in APL means that a name may reference an array

(of any datatype), a function or an operator. In general, the

interpreter cannot know in advance which form it will be and

must therefore perform analysis, syntax checking etc. at run-

time.

However, in certain circumstances, it is possible to deduce in

advance what type a name is expected to reference and then

generate bytecode which can be executed with reduced run-

time overhead. This bytecode can also be optimised using

compilation techniques such as constant folding or common

subexpression elimination.

The interpreter will execute the bytecode when present and

when any assumptions which have been made are met. Dyalog

APL includes support for optimised bytecode.

Statements and Language Programming

97

Compilation

Compilation of APL has been the subject of research and

experiment since the language first became available; the first

compiler is considered to be the Burroughs APL-700 which was

released around 1971.

In order to be able to compile APL, language limitations have to

be imposed. APEX is a research APL compiler which was

written by Robert Bernecky and is available under the GNU

Public License.

The STSC APL Compiler is a hybrid of a bytecode optimiser and

a compiler - it enables compilation of functions to machine

code provided that its sub-functions and globals are declared,

but the interpreter is still used as a runtime library and to

execute functions which do not meet the compilation

requirements.

Standards

APL has been standardized by the American National

Standards Institute (ANSI) working group X3J10 and

International Organization for Standardization (ISO) and

International Electrotechnical Commission (IEC), ISO/IEC

Joint Technical Committee 1 Subcommittee 22 Working Group

3.

The Core APL language is specified in ISO 8485:1989, and the

Extended APL language is specified in ISO/IEC 13751:2001.

Chapter 4

Types of Statements

Press release

A press release is an official statement delivered to members

of the news media for the purpose of providing information,

creating an official statement, or making an announcement

directed for public release. Press releases are also considered a

primary source, meaning they are original informants for

information. A press release is traditionally composed of nine

structural elements, including a headline, dateline,

introduction, body, and other components. Press releases are

typically delivered to news media electronically, ready to use,

and often subject to "do not use before" time, known as an

news embargo.

A special example of a press release is a communiqué

(/k��mju � n�ke�/), which is a brief report or statement

released by a public agency. A communiqué is typically issued

after a high-level meeting of international leaders.

Using press release material can benefit media corporations

because they help decrease costs and improve the amount of

material a media firm can output in a certain amount of time.

Due to the material being pre-packaged, press releases save

journalists time, not only in writing a story, but also the time

and money it would have taken to capture the news firsthand.

Although using a press release can thus save a news outlet

time and money, it constrains the format and style of its

Statements and Language Programming

99

content. In addition, press releases are favorable towards the

organization that commissioned them, framing the topic

according to its preferred criteria. In the digital age,

consumers want to get their information instantly, bringing

about pressure on the news media to output as much material

as possible. This may cause news media companies to heavily

rely on press releases to create stories.

Elements

Any information deliberately sent to a reporter or media source

is considered a press release. This information is released by

the act of being sent to the media. Public relations

professionals often follow a standard professional format for

press releases. Additional communication methods that

journalists employ include pitch letters and media advisories.

Generally, a press release body consists of four to five

paragraphs with a word limit ranging from 400 to 500. Press

release length can range from 300 to 800 words.

Common structural elements include:

• Letterhead or Logo

• Media Contact Information – name, phone number,

email address, mailing address, or other contact

information for the public relation (PR) or other

media relations contact person.

• Headline – used to grab the attention of journalists

and briefly summarize the news in one to six words.

• Dek – a sub-headline that describes the headline in

more detail.

Statements and Language Programming

100

• Dateline – contains the release date and usually the

originating city of the press release. If the date listed

is after the date that the information was actually

sent to the media, then the sender is requesting a

news embargo.

• Introduction – first paragraph in a press release,

that generally gives basic answers to the questions of

who, what, when, where and why.

• Body – further explanation, statistics, background,

or other details relevant to the news.

• Boilerplate – generally a short "about" section,

providing independent background on the issuing

company, organization, or individual.

• Close – in North America, traditionally the symbol "-

30-" appears after the boilerplate or body and before

the media contact information, indicating to media

that the release has ended. A more modern

equivalent has been the "###" symbol. In other

countries, other means of indicating the end of the

release may be used, such as the text "ends".

As the Internet has assumed growing prominence in the news

cycle, press release writing styles have evolved. Editors of

online newsletters, for instance, often lack the staff to convert

traditional press release prose into the print-ready copy.

Distribution models

In the traditional distribution model, the business, political

campaign, or other entity releasing information to the media

hires a publicity agency to write and distribute written

Statements and Language Programming

101

information to the newswires. The newswire then scatters the

information as it is received or as investigated by a journalist.

Thus, resulting the information or announcement becoming

public knowledge.

An alternative model is the self-published press release. In this

approach, press releases are either sent directly to local

newspapers or to free and paid distribution services. The

distribution service then provides the content, as-is, to their

media outlets for publication which is usually communicated

via online. This approach is often used by political

institutions, for example. Another instance would be,

Constitutional Courts in Europe, U.S. Supreme Court, and the

U.S. State Supreme Courts issue press releases about their

own decisions and the news media use these self-published

releases for their reporting.

Video

Some public relations firms send out video news releases

(VNRs) which are pre-taped video programs or clips that can be

aired intact by TV stations.

Video news releases may include interviews of movie-stars.

These interviews, which have been taped on a set, are located

at the movie studio and decorated with the movie's logo.

Video news releases can be in the form of full-blown

productions as well. This costs tens of thousands or even

hundreds of thousands of dollars to be produced. Video news

releases can also be in the format of TV news, or even

produced specifically for the web.

Statements and Language Programming

102

Some broadcast news outlets have discouraged the use of video

news releases because of citing a poor public perception. It

could also be viewed as a desire to increase their credibility.

Furthermore, VNRs can be turned into podcasts and then

posted onto newswires. A story can also be kept running longer

by simply engaging "community websites". "Community

websites" are monitored and commented on by many

journalists and feature writers.

Embargoes

If a press release is distributed before the information is

intended to be released to the public it is considered

embargoed. An embargo requests that news organizations not

report the story until a specified date or time. Unless the

journalist has signed a legally binding non-disclosure

agreement agreeing to honor the embargo in advance, the

journalist has no legal obligation to withhold the information.

However, violating the embargo risks damaging their

relationship with the issuing organization and their reputation

as a writer or journalist. News organizations are sometimes

blacklisted after breaking an embargo.

History

Ivy Lee, known as the father of modern public relations, was

the first to make a press release. The press release was made

in October of 1906. The first press release, covered by Lee, was

of a railroad accident involving the Pennsylvania Railroad. The

accident caused the death of fifty people in Atlantic City, New

Statements and Language Programming

103

Jersey (known as the Atlantic City train wreck) . Lee

documented the accident and gave out reports to fellow

reporters. The biggest turning point was the honesty that Lee

wrote regarding the accident and how truthful it was. Lee's

words were so impactful and precise that the New York Times

distributed his exact statement and observations. Lee was, and

still is, one of the biggest influences and front runners in

public relations and press releases. On the account of Lee,

press releases have evolved into a necessity for key details

among companies to disclose to the public. Since then, press

releases have been used to inform other journalists, PR's, and

other media relation people of important events, statistics, and

announcements.

Other sources

• Electronic press kit (EPK)

• List of press release agencies

• Mat release

• News conference

• Spokesman

• Press service

• Submission software

Special education in the United

Kingdom

Special educational needs (SEN), also known as special

educational needs and disabilities (SEND) in the United

Kingdom refers to the education of children with disabilities.

Statements and Language Programming

104

Definition

The definition of SEN is set out in the Education Act 1996 and

was amended in the Special Educational Needs and Disability

Bill of 2001. Currently, a child or young person is considered

to have SEN if they have a disability or learning difficulty that

means they need special educational provision. Special

educational provision means that the child needs support that

would not generally be provided to a child of the same age in a

mainstream school.

Some examples of SEN include:

• A condition which affects behaviour or social skills,

such as ADHD or autism

• A condition that affects the ability to read and write,

such as dyslexia or another specific learning

difficulty

• A condition which affects the ability to learn, such

as a learning disability

• A physical impairment, including a visual

impairment, hearing impairment, a chronic health

condition or poor mobility.

Support available

There are numerous types of support available depending on

the child or young person's disability. Some support offered

includes:

Statements and Language Programming

105

• Following a different learning programme from the

rest of the class

• Extra help from a teaching assistant or the class

teacher

• Extra supervision in the classroom or at break time

• Working in a smaller group

• Support to communicate with other pupils

• Help with personal care (such as eating or using the

toilet)

• Encouragement to complete tasks the pupil struggles

with

Public examinations

Some support available for children with SEN include:

• Extra time to complete the examination

• Rest breaks

• Alternative formats for exam papers

• Use of a reader

• Use of a scribe

• Use of a live speaker for exams that include audio

recordings

• Use of a prompter

• Use of a communication professional (a person who

can translate questions into British Sign Language

or International Sign Language)

• Use of a practical assistant

• Use of a word processor

• Completing the examination in a separate room or

venue from other candidates at the school

• Exemption from certain parts of the qualification.

Statements and Language Programming

106

SEN legal regulations

• "SENCO" redirects here. For the geographical place,

see Senco.

The SEN systems vary in each nation of the United Kingdom.

England

The current regulations for SEN are set out in the Children

and Families Act 2014. Different levels of support are given to

children depending on how much support is required. Most

children with SEN are given school-level support, known as

SEN support. An Education, Health and Care Plan (EHCP) is

given to children and young people who are considered to have

complex needs. They can be used for children and young

people aged 2–25. Children and young people with an EHCP are

entitled to a personal budget. Every school must have a Special

Educational Needs Co-Ordinator (SENCO), who is responsible

for overseeing the support of pupils with SEN. Children with

SEN in the UK can attend mainstream or special schools, but

legally, local authorities are obliged to educate children in

mainstream schools where possible. If a family feels that their

child is not receiving sufficient support, they may take their

local authority to the Special Educational Needs and Disability

Tribunal to appeal any decisions the local authority has made

on a child's support.

Local offer

A Local Offer (or LO) is a statement detailing the pattern of

support which a local authority expects to be available for

Statements and Language Programming

107

children and young people with special educational needs

(SEN) and/or disabilities within their area. It must include

information about education, health and care provision. It

should also tell families about training, employment and

independent living options available for young people with

special educational needs and/or disabilities. In accordance

with the SEND Code of Practice, every local authority must

publish a Local Offer. The Local Offer or LO should

• provide clear, comprehensive, accessible and up-to-

date information about the available provision and

how to access it,

• make provision more responsive to local needs and

aspirations by directly involving disabled children

and those with SEN and their parents, and disabled

young people and those with SEN, and service

providers in its development and review.

Scotland

In Scotland, the term additional support needsis used instead

of SEN. As well as children with disabilities, this also

encompasses children who may need support for reasons other

than disability, such as children who are being bullied or who

are in foster care. The Education (Additional Support for

Learning) (Scotland) Act 2004 redefined the law relating to the

provision of special education to children with additional needs

by establishing a framework for the policies of inclusion and

generally practicing the "presumption of mainstreaming" in

education. Children with complex needs who require support

from external organisationsare given a co-ordinated support

plan. Families who are not satisfied with the support given are

Statements and Language Programming

108

entitled to take the education authority Additional Support

Needs for Scotland Tribunal.

Northern Ireland

Regulations for SEN in Northern Ireland are currently governed

by the Special Educational Needs and Disability Act (Northern

Ireland) 2016. In Northern Ireland, there are five stages of SEN

support. Stages 1 to 3 are known as school-based stages. Stage

1 is when concerns are first raised about a child having SEN,

and support is given within the classroom, such as

differentiated work or different teaching strategies. If the

child's difficulties improve at this stage, the child is no longer

classed as having SEN. However, if they do not improve, the

child will be moved to stage 2. At stage 2, advice from the

child's GP or the school doctor is sought and an education

plan is drawn up by the SENCO, which describes the

difficulties the child has and the support they need. If the

child does not make good progress at stage 2, they move on to

stage 3.

At stage 3, external specialists, such as educational

psychologists are involved in the child's support. If a child

does not make progress while on stage 3, they are referred to

stage 4. Stage 4 is also known as Statutory Assessment.

Children who have very significant disabilities are referred

straight to Statutory Assessment without having to go through

the school-based stages. Stage 5 is when a SEN statement is

issued. The SEN statement sets out the child's difficulties and

the support they require, as well as which school the child

should attend (this can be a mainstream or special school).

Statements and Language Programming

109

History

Local authorities became responsible for the education of Deaf

children and blind children in 1893. The education of children

with disabilities became mandatory in the Education Act 1918.

The prevailing attitude at the time was that disabled children

should be sent to residential schools rather than attending

mainstream schools. The 1944 Education Act created provision

for children with disabilities to receive "special educational

treatment" in special schools. Children were required to have a

medical assessment to be eligible for this. Some children were

classified as uneducable, and were not required to attend

school. The 1970 Education (Handicapped Children) Act

removed uneducable category, which allowed all disabled

children to receive an education. SEN statements were

introduced in 1978 and parents of children with disabilities

were given the right to appeal decisions made by local

authorities about decisions on their child's education The

1981 Education Act stated that children should be taught in

mainstream schools whenever possible. The 1993 Education

Act set out guidelines for identifying pupils with SEN and

assessing their needs. The 2001 Special Educational Needs and

Disability Act outlawed discrimination against disabled pupils

in schools, colleges and other education settings. It also

introduced the Special Educational Needs and Disability

Tribunal.

Prior to the Children and Families Act 2014, there were three

levels of support in England and Wales:

• school action- for pupils with relatively low-level

needs who can be supported with additional support

Statements and Language Programming

110

provided within school, such as the use of specialist

teaching materials in lessons.

• school action plus- for pupils who need additional

support from an external support service. For

example, a speech and language therapist or an

educational psychologist.

• SEN statement-for pupils with more complex needs.

In the English law case of Skipper v Calderdale Metropolitan

Borough School (2006) EWCA Civ 238, the Court of Appeal

allowed the appellant could claim against her former school for

failing to diagnose and treat her Dyslexia.

Criticisms

Underfunding

Funding provision for pupils with Special Education Needs and

Disabilities, (SEND) is inadequate and as of 2018 £536 million

more was needed from the central government. Many parents of

SEND children are complaining that their children are not

getting the education they need and some have taken legal

action to try and force councils to provide for their SEND

children. Councils are unable to carry out their statutory

duties towards SEND children due to lack of funding from the

central government. Educators also complain that they cannot

educate SEND pupils as effectively as they would like due to

lack of funding. Councils complain they are overstretched due

to rising demand and insufficient funding. Antoinette Bramble

of the Local Government Association said, “We face a looming

crisis in meeting the unprecedented rise in demand for support

Statements and Language Programming

111

from children with special educational needs and disabilities.

Parents rightly expect and aspire to see that their child has the

best possible education and receives the best possible support.

Councils have pulled out all the stops to try and do this but

are reaching the point where the money is simply not there to

keep up with demand.” General education spending is also

severely stretched making it hard for councils or schools to

fund SEND provision out of the general education budget.

In 2019 the Education Select Committee of the House of

Commons published a report stating reforms introduced in

2014 had been badly implemented damaging many SEND

pupils. Children had to do without support they needed, which

affected their mental health as well as their education,

children suffered anxiety, depression and self har, children as

young as nine had attempted suicide. Children's families had

to try and cope with a bureaucracy. The report also criticised a

funding shortfall and called for greater accountability in the

system. More rigorous inspection systems were called for

together with clear consequences following failure. Parents and

schools should be able to appeal directly to the DfE if Local

Authorities did not meet their legal obligations. School

inspections should focus more on SEND, social care

ombudsmen and Local Authorities should have greater powers.

Robert HalfonMP said, “The DfE cannot continue with a

piecemeal and reactive approach to supporting children with

Send. Rather than making do with sticking plasters, what is

needed is a transformation, a more strategic oversight and

fundamental change to ensure a generation of children is no

longer let down.” Kevin Courtney of the National Education

Union said, “Schools and local authorities want to provide the

best possible support for SEND pupils, but the tools needed

Statements and Language Programming

112

are generally no longer available due to cuts to local services.”

The Local Government Association stated, “Councils support

the reforms set out in the Children and Families Act in 2014,

but we were clear at the time that the cost of implementing

them had been underestimated by the government.”

In the UK local authorities have been cutting special needs

provision for children due to austerity. Some children fail to

attend school due to severe anxiety, ADHD, autism and similar

problems. These children are not getting the special provision

they need, they are not getting a diagnosis. Instead the

children are treated as truants and their parents are taken to

court. A group of parents are mounting a legal challenge to

this.

Exclusions and off-rolling

Children with SEN are much more likely to be formally

excluded from school or off-rolled. Off-rolling is where a pupil

is removed from a school's register, often shortly before GCSEs

are due to be taken, which can cause the child's education to

be discontinued. There have been claims that children with

SEN who are unlikely to achieve the national target of five

GCSEs at grades 4 to 9 are being excluded or off-rolled to raise

a school's position in league tables. Anne Longfield, the

children's commissioner, said “I have become more and more

convinced that some schools are seeking to improve their

overall exam results by removing vulnerable children from the

school roll...sadly this can include children with Send, who

have no option but to go into inappropriate alternative

provision or home education.”

Statements and Language Programming

113

Over-identification

There have been claims that affluent families will push for

their child to be identified as having SEN so that the child can

access additional support when the child may not genuinely

have any disability. The number of children identified as

having SEN has increased. Figures published in 2009 showed

that 17.8% of pupils in English schools have SEN an increase

from 14.9% in 2005, leading to claims that schools are

labelling too many children as having SEN. Lorraine Petersen,

the former chief executive of the National Association of

Special Educational Needs, has said “they [parents] feel a label

will give the child and perhaps the family additional support

that they may not get without it; access to benefits, for

instance, or support with exams or a place in a specialist

setting.” In other cases, schools have been accused of

identifying non-disabled children as having SEN to hide poor

teaching standards.

Under-identification

Conversely, some people argue that there is a problem with

children with disabilities not being identified as needing

additional support. This is said to be especially difficult for

low-income families, who may not be able to afford private

diagnostic assessments for conditions such as dyslexia.

Bernadette John, the SEN director of The Good Schools Guide,

says: "There’s a good reason why middle-class parents are

better able to get a special needs diagnosis for their child:

cash. There is a dire shortage of educational psychologists in

local authorities, and children can expect a wait of at least a

year to see one for a diagnosis."

Statements and Language Programming

114

Witness statement

A witness statement is a signed document recording the

evidence of a witness. A definition used in England and Wales

is "a written statement signed by a person which contains the

evidence which that person would be allowed to give orally".

The United States Federal Rules of Criminal Procedure defines

a witness statement as: "(1) a written statement that the

witness makes and signs, or otherwise adopts or approves; (2)

a substantially verbatim, contemporaneously recorded recital

of the witness's oral statement that is contained in any

recording or any transcription of a recording; or (3) the

witness's statement to a grand jury, however taken or

recorded, or a transcription of such a statement."

Financial statement

Financial statements (or financial reports) are formal records

of the financial activities and position of a business, person, or

other entity.

Relevant financial information is presented in a structured

manner and in a form which is easy to understand. They

typically include four basic financial statements accompanied

by a management discussion and analysis:

• A balance sheet or statement of financial position,

reports on a company's assets, liabilities, and

owners equity at a given point in time.

Statements and Language Programming

115

• An income statement—or profit and loss report

(P&L report), or statement of comprehensive

income, or statement of revenue & expense—

reports on a company's income, expenses, and

profits over a stated period. A profit and loss

statement provides information on the operation of

the enterprise. These include sales and the various

expenses incurred during the stated period.

• A statement of changes in equity or statement of

equity, or statement of retained earnings, reports

on the changes in equity of the company over a

stated period.

• A cash flow statement reports on a company's cash

flow activities, particularly its operating, investing

and financing activities over a stated period.

• A comprehensive income statement involves those

other comprehensive income items which are not

included while determining net income.

(Notably, a balance sheet represents a single point in time,

where the income statement, the statement of changes in

equity, and the cash flow statement each represent activities

over a stated period.)

For large corporations, these statements may be complex and

may include an extensive set of footnotes to the financial

statements and management discussion and analysis. The

notes typically describe each item on the balance sheet, income

statement and cash flow statement in further detail. Notes to

financial statements are considered an integral part of the

financial statements.

Statements and Language Programming

116

Purpose for financial statements

"The objective of financial statements is to provide information

about the financial position, performance and changes in

financial position of an enterprise that is useful to a wide

range of users in making economic decisions." Financial

statements should be understandable, relevant, reliable and

comparable. Reported assets, liabilities, equity, income and

expenses are directly related to an organization's financial

position.

Financial statements are intended to be understandable by

readers who have "a reasonable knowledge of business and

economic activities and accounting and who are willing to

study the information diligently." Financial statements may be

used by users for different purposes:

• Owners and managers require financial statements

to make important business decisions that affect its

continued operations. Financial analysisis then

performed on these statements to provide

management with a more detailed understanding of

the figures. These statements are also used as part

of management's annual report to the stockholders.

• Employees also need these reports in making

collective bargaining agreements (CBA) with the

management, in the case of labor unions or for

individuals in discussing their compensation,

promotion and rankings.

• Prospective investors make use of financial

statements to assess the viability of investing in a

business. Financial analyses are often used by

Statements and Language Programming

117

investors and are prepared by professionals

(financial analysts), thus providing them with the

basis for making investment decisions.

• Financial institutions (banks and other lending

companies) use them to decide whether to grant a

company with fresh working capital or extend debt

securities (such as a long-term bank loan or

debentures) to finance expansion and other

significant expenditures.

Consolidated

Consolidated financial statements are defined as "Financial

statements of a group in which the assets, liabilities, equity,

income, expenses and cash flows of the parent (company) and

its subsidiaries are presented as those of a single economic

entity", according to International Accounting Standard 27

"Consolidated and separate financial statements", and

International Financial Reporting Standard 10 "Consolidated

financial statements".

Government

The rules for the recording, measurement and presentation of

government financial statements may be different from those

required for business and even for non-profit organizations.

They may use either of two accounting methods: accrual

accounting, or cost accounting, or a combination of the two

(OCBOA). A complete set of chart of accountsis also used that

is substantially different from the chart of a profit-oriented

business.

Statements and Language Programming

118

Personal

Personal financial statements may be required from persons

applying for a personal loan or financial aid. Typically, a

personal financial statement consists of a single form for

reporting personally held assets and liabilities (debts), or

personal sources of income and expenses, or both. The form to

be filled out is determined by the organization supplying the

loan or aid.

Audit and legal implications

Although laws differ from country to country, an audit of the

financial statements of a public company is usually required

for investment, financing, and tax purposes. These are usually

performed by independent accountants or auditing firms.

Results of the audit are summarized in an audit report that

either provide an unqualified opinion on the financial

statements or qualifications as to its fairness and accuracy.

The audit opinion on the financial statements is usually

included in the annual report.

There has been much legal debate over who an auditor is liable

to. Since audit reports tend to be addressed to the current

shareholders, it is commonly thought that they owe a legal

duty of care to them. But this may not be the case as

determined by common law precedent. In Canada, auditors are

liable only to investors using a prospectus to buy shares in the

primary market. In the United Kingdom, they have been held

liable to potential investors when the auditor was aware of the

potential investor and how they would use the information in

Statements and Language Programming

119

the financial statements. Nowadays auditors tend to include in

their report liability restricting language, discouraging anyone

other than the addressees of their report from relying on it.

Liability is an important issue: in the UK, for example,

auditors have unlimited liability.

In the United States, especially in the post-Enron era there has

been substantial concern about the accuracy of financial

statements. Corporate officers—the chief executive officer

(CEO) and chief financial officer (CFO)—are personally

responsible for fair financial reporting that provides an

accurate sense of the organization to those reading the report.

Standards and regulations

Different countries have developed their own accounting

principles over time, making international comparisons of

companies difficult. To ensure uniformity and comparability

between financial statements prepared by different companies,

a set of guidelines and rules are used. Commonly referred to as

Generally Accepted Accounting Principles (GAAP), these set of

guidelines provide the basis in the preparation of financial

statements, although many companies voluntarily disclose

information beyond the scope of such requirements.

Recently there has been a push towards standardizing

accounting rules made by the International Accounting

Standards Board ("IASB"). IASB develops International

Financial Reporting Standards that have been adopted by

Australia, Canada and the European Union (for publicly quoted

companies only), are under consideration in South Africa and

other countries. The United StatesFinancial Accounting

Statements and Language Programming

120

Standards Board has made a commitment to converge the U.S.

GAAP and IFRS over time.

Inclusion in annual reports

To entice new investors, public companies assemble their

financial statements on fine paper with pleasing graphics and

photos in an annual report to shareholders, attempting to

capture the excitement and culture of the organization in a

"marketing brochure" of sorts. Usually the company's chief

executive will write a letter to shareholders, describing

management's performance and the company's financial

highlights.

In the United States, prior to the advent of the internet, the

annual report was considered the most effective way for

corporations to communicate with individual shareholders.

Blue chip companies went to great expense to produce and

mail out attractive annual reports to every shareholder. The

annual report was often prepared in the style of a coffee table

book.

Notes

Additional information added to the end of financial statements

that help explain specific items in the statements as well as

provide a more comprehensive assessment of a company's

financial condition are known as notes (or "notes to financial

statements").

Statements and Language Programming

121

Notes to financial statements can include information on debt,

accounts, contingent liabilities, on going concern criteria, or

on contextual information explaining the financial numbers

(e.g. to indicate a lawsuit). The notes clarify individual

statement line-items. Notes are also used to explain the

accounting methods used to prepare the statements and they

support valuations for how particular accounts have been

computed. As an example: If a company lists a loss on a fixed

asset impairment line in their income statement, the notes may

state the reason for the impairment by describing how the

asset became impaired.

In consolidated financial statements, all subsidiariesare listed

as well as the amount of ownership (controlling interest) that

the parent company has in the subsidiaries.

Any items within the financial statements that are valuated by

estimation are part of the notes if a substantial difference

exists between the amount of the estimate previously reported

and the actual result. Full disclosure of the effects of the

differences between the estimate and actual results should be

included.

Management discussion and

analysis

Management discussion and analysis or MD&A is an integrated

part of a company's annual financial statements. The purpose

of the MD&A is to provide a narrative explanation, through the

eyes of management, of how an entity has performed in the

past, its financial condition, and its future prospects. In so

Statements and Language Programming

122

doing, the MD&A attempt to provide investors with complete,

fair, and balanced information to help them decide whether to

invest or continue to invest in an entity.

The section contains a description of the year gone by and

some of the key factors that influenced the business of the

company in that year, as well as a fair and unbiased overview

of the company's past, present, and future.

MD&A typically describes the corporation's liquidity position,

capital resources, results of its operations, underlying causes

of material changes in financial statement items (such as asset

impairment and restructuring charges), events of unusual or

infrequent nature (such as mergers and acquisitions or share

buybacks), positive and negative trends, effects of inflation,

domestic and international market risks, and significant

uncertainties.

Move to electronic statements

Financial statements have been created on paper for hundreds

of years. The growth of the Web has seen more and more

financial statements created in an electronic form which is

exchangeable over the Web. Common forms of electronic

financial statements are PDF and HTML. These types of

electronic financial statements have their drawbacks in that it

still takes a human to read the information in order to reuse

the information contained in a financial statement.

More recently a market driven global standard, XBRL

(Extensible Business Reporting Language), which can be used

for creating financial statements in a structured and computer

Statements and Language Programming

123

readable format, has become more popular as a format for

creating financial statements. Many regulators around the

world such as the U.S. Securities and Exchange Commission

have mandated XBRL for the submission of financial

information.

The UN/CEFACT created, with respect to Generally Accepted

Accounting Principles, (GAAP), internal or external financial

reportingXML messages to be used between enterprises and

their partners, such as private interested parties (e.g. bank)

and public collecting bodies (e.g. taxation authorities). Many

regulators use such messages to collect financial and economic

information.

Political statement

The term political statementis used to refer to any act or non-

verbal form of communication that is intended to influence a

decision to be made for or by a political party.

A political statement can vary from a mass demonstration to

the wearing of a badge with a political slogan. It was a term

popularised in the 1960s but still has some currency.

The term has also been used to describe negotiated statements

such as the Seville Statement on Violence or the Waldorf

Statement, or extempore utterances with political implications.

Chapter 5

BASIC and Assembly Language

BASIC

BASIC (Beginners' All-purpose Symbolic Instruction Code) is

a family of general-purpose, high-level programming languages

whose design philosophy emphasizes ease of use. The original

version was designed by John G. Kemeny and Thomas E. Kurtz

and released at Dartmouth College in 1964. They wanted to

enable students in fields other than science and mathematics

to use computers. At the time, nearly all use of computers

required writing custom software, which was something only

scientists and mathematicians tended to learn.

In addition to the language itself, Kemeny and Kurtz developed

the Dartmouth Time Sharing System (DTSS), which allowed

multiple users to edit and run BASIC programs at the same

time. This general model became very popular on minicomputer

systems like the PDP-11 and Data General Nova in the late

1960s and early 1970s. Hewlett-Packard produced an entire

computer line for this method of operation, introducing the

HP2000 series in the late 1960s and continuing sales into the

1980s. Many early video games trace their history to one of

these versions of BASIC.

The emergence of early microcomputers in the mid-1970s led to

the development of a number of BASIC dialects, including

Microsoft BASIC in 1975. Due to the tiny main memory

available on these machines, often 4 KB, a variety of Tiny

Statements and Language Programming

125

BASIC dialects was also created. BASIC was available for

almost any system of the era, and naturally became the de

facto programming language for the home computer systems

that emerged in the late 1970s. These machines almost always

had a BASIC interpreter installed by default, often in the

machine's firmware or sometimes on a ROM cartridge.

BASIC fell from use in the early 1990s, as newer machines

with far greater capabilities came to market and other

programming languages (such as Pascal and C) became

tenable. In 1991, Microsoft released Visual Basic, combining a

greatly updated version of BASIC with a visual forms builder.

This reignited use of the language and "VB" remains a major

programming language in the form of VB.NET.

Origin

John G. Kemeny was the math department chairman at

Dartmouth College. Based largely on his reputation as an

innovator in math teaching, in 1959 the school won an Alfred

P. Sloan Foundation award for $500,000 to build a new

department building. Thomas E. Kurtz had joined the

department in 1956, and from the 1960s Kemeny and Kurtz

agreed on the need for programming literacy among students

outside the traditional STEM fields. Kemeny later noted that

"Our vision was that every student on campus should have

access to a computer, and any faculty member should be able

to use a computer in the classroom whenever appropriate. It

was as simple as that."

Kemeny and Kurtz had made two previous experiments with

simplified languages, DARSIMCO (Dartmouth Simplified Code)

Statements and Language Programming

126

and DOPE (Dartmouth Oversimplified Programming

Experiment). These did not progress past a single freshman

class. New experiments using Fortran and ALGOL followed, but

Kurtz concluded these languages were too tricky for what they

desired. As Kurtz noted, Fortran had numerous oddly-formed

commands, notably an "almost impossible-to-memorize

convention for specifying a loop: 'DO 100, I = 1, 10, 2'. Is it '1,

10, 2' or '1, 2, 10', and is the comma after the line number

required or not?"

Moreover, the lack of any sort of immediate feedback was a key

problem; the machines of the era used batch processing and

took a long time to complete a run of a program. While Kurtz

was visiting MIT, John McCarthy suggested that time-sharing

offered a solution; a single machine could divide up its

processing time among many users, giving them the illusion of

having a (slow) computer to themselves. Small programs would

return results in a few seconds. This led to increasing interest

in a system using time-sharing and a new language specifically

for use by non-STEM students.

Kemeny wrote the first version of BASIC. The acronymBASIC

comes from the name of an unpublished paper by Thomas

Kurtz. The new language was heavily patterned on FORTRAN II;

statements were one-to-a-line, numbers were used to indicate

the target of loops and branches, and many of the commands

were similar or identical to Fortran. However, the syntaxwas

changed wherever it could be improved. For instance, the

difficult to remember DO loop was replaced by the much easier

to remember FOR I = 1 TO 10 STEP 2, and the line number used

in the DO was instead indicated by the NEXT I. Likewise, the

cryptic IF statement of Fortran, whose syntax matched a

Statements and Language Programming

127

particular instruction of the machine on which it was originally

written, became the simpler IF I=5 THEN GOTO 100. These

changes made the language much less idiosyncratic while still

having an overall structure and feel similar to the original

FORTRAN.

The project received a $300,000 grant from the National

Science Foundation, which was used to purchase a GE-225

computer for processing, and a Datanet-30 realtime processor

to handle the Teletype Model 33teleprinters used for input and

output. A team of a dozen undergraduates worked on the

project for about a year, writing both the DTSS system and the

BASIC compiler. The first version BASIC language was released

on 1 May 1964. One of the graduate students on the

implementation team was Mary Kenneth Keller, one of the first

people in the United States to earn a Ph.D. in computer

science and the first woman to do so.

Initially, BASIC concentrated on supporting straightforward

mathematical work, with matrix arithmetic support from its

initial implementation as a batch language, and character

string functionality being added by 1965. Usage in the

university rapidly expanded, requiring the main CPU to be

replaced by a GE-235, and still later by a GE-635. By the early

1970s there were hundreds of terminals connected to the

machines at Dartmouth, some of them remotely.

Wanting use of the language to become widespread, its

designers made the compiler available free of charge. In the

1960s, software became a chargeable commodity; until then, it

was provided without charge as a service with the very

expensive computers, usually available only to lease. They also

Statements and Language Programming

128

made it available to high schools in the Hanover, New

Hampshire area and regionally throughout New England on

Teletype Model 33 and Model 35 teleprinter terminals

connected to Dartmouth via dial-up phone lines, and they put

considerable effort into promoting the language. In the

following years, as other dialects of BASIC appeared, Kemeny

and Kurtz's original BASIC dialect became known as Dartmouth

BASIC.

New Hampshire recognized the accomplishment in 2019 when

it erected a highway historical marker in Hanover describing

creation of "the first user-friendly programming language".

Spread on time-sharing services

The emergence of BASIC took place as part of a wider

movement towards time-sharing systems. First conceptualized

during the late 1950s, the idea became so dominant in the

computer industry by the early 1960s that its proponents were

speaking of a future in which users would "buy time on the

computer much the same way that the average household buys

power and water from utility companies".

General Electric, having worked on the Dartmouth project,

wrote their own underlying operating system and launched an

online time-sharing system known as Mark I. It featured BASIC

as one of its primary selling points. Other companies in the

emerging field quickly followed suit; Tymshare introduced

SUPER BASIC in 1968, CompuServe had a version on the DEC-

10 at their launch in 1969, and by the early 1970s BASIC was

largely universal on general-purpose mainframe computers.

Statements and Language Programming

129

Even IBM eventually joined the club with the introduction of

VS-BASIC in 1973.

Although time-sharing services with BASIC were successful for

a time, the widespread success predicted earlier was not to be.

The emergence of minicomputers during the same period, and

especially low-cost microcomputers in the mid-1970s, allowed

anyone to purchase and run their own systems rather than buy

online time which was typically billed at dollars per minute.

Spread on minicomputers

BASIC, by its very nature of being small, was naturally suited

to porting to the minicomputer market, which was emerging at

the same time as the time-sharing services. These machines

had very small main memory, perhaps as little as 4 KB in

modern terminology, and lacked high-performance storage like

hard drives that make compilers practical. On these systems,

BASIC was normally implemented as an interpreter rather than

a compiler due to the reduced need for working memory.

A particularly important example was HP Time-Shared BASIC,

which, like the original Dartmouth system, used two computers

working together to implement a time-sharing system. The

first, a low-end machine in the HP 2100 series, was used to

control user input and save and load their programs to tape or

disk. The other, a high-end version of the same underlying

machine, ran the programs and generated output. For a cost of

about $100,000, one could own a machine capable of running

between 16 and 32 users at the same time. The system,

bundled as the HP 2000, was the first mini platform to offer

time-sharing and was an immediate runaway success,

Statements and Language Programming

130

catapulting HP to become the third-largest vendor in the

minicomputer space, behind DEC and Data General (DG).

DEC, the leader in the minicomputer space since the mid-

1960s, had initially ignored BASIC. This was due to their work

with RAND Corporation, who had purchased a PDP-6 to run

their JOSS language, which was conceptually very similar to

BASIC. This led DEC to introduce a smaller, cleaned up version

of JOSS known as FOCAL, which they heavily promoted in the

late 1960s. However, with timesharing systems widely offering

BASIC, and all of their competition in the minicomputer space

doing the same, DEC's customers were clamoring for BASIC.

After management repeatedly ignored their pleas, David H. Ahl

took it upon himself to buy a BASIC for the PDP-8, which was

a major success in the education market. By the early 1970s,

FOCAL and JOSS had been forgotten and BASIC had become

almost universal in the minicomputer market. DEC would go

on to introduce their updated version, BASIC-PLUS, for use on

the RSTS/E time-sharing operating system.

During this period a number of simple text-based games were

written in BASIC, most notably Mike Mayfield's Star Trek.

David Ahl collected these, some ported from FOCAL, and

published them in an educational newsletter he compiled. He

later collected a number of these into book form, 101 BASIC

Computer Games, published in 1973. During the same period,

Ahl was involved in the creation of a small computer for

education use, an early personal computer. When management

refused to support the concept, Ahl left DEC in 1974 to found

the seminal computer magazine, Creative Computing. The book

remained popular, and was re-published on several occasions.

Statements and Language Programming

131

Explosive growth: the home

computer era

The introduction of the first microcomputers in the mid-1970s

was the start of explosive growth for BASIC. It had the

advantage that it was fairly well known to the young designers

and computer hobbyists who took an interest in

microcomputers, many of whom had seen BASIC on minis or

mainframes. Despite Dijkstra's famous judgement in 1975, "It

is practically impossible to teach good programming to

students that have had a prior exposure to BASIC: as potential

programmers they are mentally mutilated beyond hope of

regeneration", BASIC was one of the few languages that was

both high-level enough to be usable by those without training

and small enough to fit into the microcomputers of the day,

making it the de facto standard programming language on early

microcomputers.

The first microcomputer version of BASIC was co-written by

Bill Gates, Paul Allen and Monte Davidoff for their newly

formed company, Micro-Soft. This was released by MITS in

punch tape format for the Altair 8800 shortly after the

machine itself, immediately cementing BASIC as the primary

language of early microcomputers. Members of the Homebrew

Computer Club began circulating copies of the program,

causing Gates to write his Open Letter to Hobbyists,

complaining about this early example of software piracy.

Partially in response to Gates's letter, and partially to make an

even smaller BASIC that would run usefully on 4 KB machines,

Bob Albrecht urged Dennis Allison to write their own variation

Statements and Language Programming

132

of the language. How to design and implement a stripped-down

version of an interpreter for the BASIC language was covered in

articles by Allison in the first three quarterly issues of the

People's Computer Company newsletter published in 1975 and

implementations with source code published in Dr. Dobb's

Journal of Tiny BASIC Calisthenics & Orthodontia: Running

Light Without Overbyte. This led to a wide variety of Tiny

BASICs with added features or other improvements, with

versions from Tom Pittman and Li-Chen Wangbecoming

particularly well known.

Micro-Soft, by this time Microsoft, ported their interpreter for

the MOS 6502, which quickly become one of the most popular

microprocessors of the 8-bit era. When new microcomputers

began to appear, notably the "1977 trinity" of the TRS-80,

Commodore PET and Apple II, they either included a version of

the MS code, or quickly introduced new models with it. By

1978, MS BASIC was a de facto standard and practically every

home computer of the 1980s included it in ROM. Upon boot, a

BASIC interpreter in direct modewas presented.

Commodore Business Machines included Commodore BASIC,

based on Microsoft BASIC. The Apple II and TRS-80 each had

two versions of BASIC, a smaller introductory version

introduced with the initial releases of the machines and an

MS-based version introduced as interest in the platforms

increased. As new companies entered the field, additional

versions were added that subtly changed the BASIC family. The

Atari 8-bit family had its own Atari BASIC that was modified in

order to fit on an 8 KB ROM cartridge. Sinclair BASICwas

introduced in 1980 with the Sinclair ZX80, and was later

extended for the Sinclair ZX81 and the Sinclair ZX Spectrum.

Statements and Language Programming

133

The BBC published BBC BASIC, developed by Acorn Computers

Ltd, incorporating many extra structured programming

keywords and advanced floating-point operation features.

As the popularity of BASIC grew in this period, computer

magazines published complete source code in BASIC for video

games, utilities, and other programs. Given BASIC's

straightforward nature, it was a simple matter to type in the

code from the magazine and execute the program. Different

magazines were published featuring programs for specific

computers, though some BASIC programs were considered

universal and could be used in machines running any variant

of BASIC (sometimes with minor adaptations). Many books of

type-in programs were also available, and in particular, Ahl

published versions of the original 101 BASIC games converted

into the Microsoft dialect and published it from Creative

Computing as BASIC Computer Games. This book, and its

sequels, provided hundreds of ready-to-go programs that could

be easily converted to practically any BASIC-running platform.

The book reached the stores in 1978, just as the home

computer market was starting off, and it became the first

million-selling computer book. Later packages, such as Learn

to Program BASIC would also have gaming as an introductory

focus. On the business-focused CP/Mcomputers which soon

became widespread in small business environments, Microsoft

BASIC (MBASIC) was one of the leading applications.

In 1978, David Lien published the first edition of The BASIC

Handbook: An Encyclopedia of the BASIC Computer Language,

documenting keywords across over 78 different computers. By

1981, the second edition documented keywords from over 250

Statements and Language Programming

134

different computers, showcasing the explosive growth of the

microcomputer era.

IBM PC and compatibles

When IBM was designing the IBM PC they followed the

paradigm of existing home computers in wanting to have a

built-in BASIC. They sourced this from Microsoft – IBM

Cassette BASIC – but Microsoft also produced several other

versions of BASIC for MS-DOS/PC DOS including IBM Disk

BASIC (BASIC D), IBM BASICA (BASIC A), GW-BASIC (a

BASICA-compatible version that did not need IBM's ROM) and

QBasic, all typically bundled with the machine. In addition

they produced the Microsoft BASIC Compiler aimed at

professional programmers. Turbo Pascal-publisher Borland

published Turbo Basic 1.0 in 1985 (successor versions are still

being marketed by the original author under the name

PowerBASIC). Microsoft wrote the windowed AmigaBASIC that

was supplied with version 1.1 of the pre-emptive multitasking

GUI Amiga computers (late 1985 / early 1986), although the

product unusually did not bear any Microsoft marks.

These later variations introduced many extensions, such as

improved string manipulation and graphics support, access to

the file system and additional data types. More important were

the facilities for structured programming, including additional

control structures and proper subroutines supporting local

variables. However, by the latter half of the 1980s, users were

increasingly using pre-made applications written by others

rather than learning programming themselves; while

professional programmers now had a wide range of more

advanced languages available on small computers. C and later

Statements and Language Programming

135

C++ became the languages of choice for professional "shrink

wrap" application development.

Visual Basic

In 1991, Microsoft introduced Visual Basic, an evolutionary

development of QuickBASIC. It included constructs from that

language such as block-structured control statements,

parameterized subroutines and optional static typing as well as

object-oriented constructs from other languages such as "With"

and "For Each". The language retained some compatibility with

its predecessors, such as the Dim keyword for declarations,

"Gosub"/Return statements and optional line numbers which

could be used to locate errors. An important driver for the

development of Visual Basic was as the new macro language

for Microsoft Excel, a spreadsheet program. To the surprise of

many at Microsoft who still initially marketed it as a language

for hobbyists, the language came into widespread use for small

custom business applications shortly after the release of VB

version 3.0, which is widely considered the first relatively

stable version.

While many advanced programmers still scoffed at its use, VB

met the needs of small businesses efficiently as by that time,

computers running Windows 3.1 had become fast enough that

many business-related processes could be completed "in the

blink of an eye" even using a "slow" language, as long as large

amounts of data were not involved. Many small business

owners found they could create their own small, yet useful

applications in a few evenings to meet their own specialized

needs. Eventually, during the lengthy lifetime of VB3,

knowledge of Visual Basic had become a marketable job skill.

Statements and Language Programming

136

Microsoft also produced VBScript in 1996 and Visual Basic

.NET in 2001. The latter has essentially the same power as C#

and Java but with syntax that reflects the original Basic

language. The IDE, with its event-drivenGUI builder, was also

influential on other tools, most notably Borland Software's

Delphi for Object Pascal and its own descendants such as

Lazarus.

Mainstream support for the final version 6.0 of the original

Visual Basic ended on March 31, 2005, followed by extended

support in March 2008. On March 11, 2020, Microsoft

announced that evolution of the VB.NET language had also

concluded, although it was still supported. Meanwhile,

competitors exist such as Xojo and Gambas.

Post-1990 versions and dialects

Many other BASIC dialects have also sprung up since 1990,

including the open sourceQB64 and FreeBASIC, inspired by

QBasic, and the Visual Basic-styled RapidQ, Basic ForQt and

Gambas. Modern commercial incarnations include PureBasic,

PowerBASIC, Xojo, Monkey X and True BASIC (the direct

successor to Dartmouth BASIC from a company controlled by

Kurtz).

Several web-based simple BASIC interpreters also now exist,

including Microsoft's Small Basic. Many versions of BASIC are

also now available for smartphones and tablets via the Apple

App Store, or Google Play store for Android. On game consoles,

an application for the Nintendo 3DS and Nintendo DSi called

Petit Computer allows for programming in a slightly modified

Statements and Language Programming

137

version of BASIC with DS button support. A version has also

been released for Nintendo Switch.

Calculators

Variants of BASIC are available on graphing and otherwise

programmable calculators made by Texas Instruments, HP,

Casio, and others.

Windows command-line

QBasic, a version of Microsoft QuickBASIC without the linker

to make EXE files, is present in the Windows NT and DOS-

Windows 95 streams of operating systems and can be obtained

for more recent releases like Windows 7 which do not have

them. Prior to DOS 5, the Basic interpreter was GW-Basic.

QuickBasic is part of a series of three languages issued by

Microsoft for the home and office power user and small-scale

professional development; QuickC and QuickPascal are the

other two. For Windows 95 and 98, which do not have QBasic

installed by default, they can be copied from the installation

disc, which will have a set of directories for old and optional

software; other missing commands like Exe2Bin and others are

in these same directories.

Other

The various Microsoft, Lotus, and Corel office suites and

related products are programmable with Visual Basic in one

form or another, including LotusScript, which is very similar to

Statements and Language Programming

138

VBA 6. The Host Explorer terminal emulator uses WWB as a

macro language; or more recently the programme and the suite

in which it is contained is programmable in an in-house Basic

variant known as Hummingbird Basic. The VBScript variant is

used for programming web content, Outlook 97, Internet

Explorer, and the Windows Script Host. WSH also has a Visual

Basic for Applications (VBA) engine installed as the third of the

default engines along with VBScript, JScript, and the

numerous proprietary or open source engines which can be

installed like PerlScript, a couple of Rexx-based engines,

Python, Ruby, Tcl, Delphi, XLNT, PHP, and others; meaning

that the two versions of Basic can be used along with the other

mentioned languages, as well as LotusScript, in a WSF file,

through the component object model, and other WSH and VBA

constructions. VBScript is one of the languages that can be

accessed by the 4Dos, 4NT, and Take Command enhanced

shells. SaxBasic and WWB are also very similar to the Visual

Basic line of Basic implementations. The pre-Office 97 macro

language for Microsoft Word is known as WordBASIC. Excel 4

and 5 use Visual Basic itself as a macro language. Chipmunk

Basic, an old-school interpreter similar to BASICs of the

1970s, is available for Linux, Microsoft Windows and macOS.

Legacy

The ubiquity of BASIC interpreters on personal computers was

such that textbooks once included simple "Try It In BASIC"

exercises that encouraged students to experiment with

mathematical and computational concepts on classroom or

home computers. Popular computer magazines of the day

typically included type-in programs.

Statements and Language Programming

139

Futurist and sci-fi writer David Brin mourned the loss of

ubiquitous BASIC in a 2006 Salonarticle as have others who

first used computers during this era. In turn, the article

prompted Microsoft to develop and release Small Basic; it also

inspired similar projects like Basic-256. Dartmouth held a

50th anniversary celebration for BASIC on 1 May 2014, as did

other organisations; at least one organisation of VBA

programmers organised a 35th anniversary observance in

1999.

Dartmouth College celebrated the 50th anniversary of the

BASIC language with a day of events on April 30, 2014. A short

documentary film was produced for the event.

Syntax

Typical BASIC keywords

Data manipulation

• LET

• assigns a value (which may be the result of an

expression) to a variable. In most dialects of BASIC,

LET is optional, and a line with no other identifiable

keyword will assume the keyword to be LET.

• DATA

• holds a list of values which are assigned sequentially

using the READ command.

• READ

• reads a value from a DATA statement and assigns it to

a variable. An internal pointer keeps track of the last

Statements and Language Programming

140

DATA element that was read and moves it one position

forward with each READ.

• RESTORE

• resets the internal pointer to the first DATA

statement, allowing the program to begin READing

from the first value.

Program flow control

• IF ... THEN ... {ELSE}

• used to perform comparisons or make decisions. ELSE

was not widely supported, especially in earlier

versions.

• FOR ... TO ... {STEP} ... NEXT

• repeat a section of code a given number of times. A

variable that acts as a counter is available within the

loop.

• WHILE ... WEND and REPEAT ... UNTIL

• repeat a section of code while the specified condition

is true. The condition may be evaluated before each

iteration of the loop, or after. Both of these

commands are found mostly in later dialects.

• DO ... LOOP {WHILE} or {UNTIL}

• repeat a section of code indefinitely or while/until

the specified condition is true. The condition may be

evaluated before each iteration of the loop, or after.

Similar to WHILE, these keywords are mostly found in

later dialects.

• GOTO

• jumps to a numbered or labelled line in the program.

• GOSUB

Statements and Language Programming

141

• jumps to a numbered or labelled line, executes the

code it finds there until it reaches a RETURN

command, on which it jumps back to the statement

following the GOSUB, either after a colon, or on the

next line. This is used to implement subroutines.

• ON ... GOTO/GOSUB

• chooses where to jump based on the specified

conditions. See Switch statement for other forms.

• DEF FN

• a pair of keywords introduced in the early 1960s to

define functions. The original BASIC functions were

modelled on FORTRAN single-line functions. BASIC

functions were one expression with variable

arguments, rather than subroutines, with a syntax

on the model of DEF FND(x) = x*x at the beginning of a

program. Function names were originally restricted

to FN, plus one letter, i.e., FNA, FNB ...

Input and output

• LIST

• displays the full source code of the current program.

• PRINT

• displays a message on the screen or other output

device.

• INPUT

• asks the user to enter the value of a variable. The

statement may include a prompt message.

• TAB

• used with PRINT to set the position where the next

character will be shown on the screen or printed on

paper. AT is an alternative form.

Statements and Language Programming

142

• SPC

• prints out a number of space characters. Similar in

concept to TAB but moves by a number of additional

spaces from the current column rather that moving

to a specified column.

Mathematical functions

• ABS

• Absolute value

• ATN

• Arctangent (result in radians)

• COS

• Cosine (argument in radians)

• EXP

• Exponential function

• INT

• Integer part (typically floor function)

• LOG

• Natural logarithm

• RND

• Random number generation

• SIN

• Sine (argument in radians)

• SQR

• Square root

• TAN

• Tangent (argument in radians)

Miscellaneous

• REM

Statements and Language Programming

143

• holds a programmer's comment or REMark; often

used to give a title to the program and to help

identify the purpose of a given section of code.

• USR

• transfers program control to a machine language

subroutine, usually entered as an alphanumeric

string or in a list of DATA statements.

• CALL

• alternative form of USR found in some dialects. Does

not require an artificial parameter to complete the

function-like syntax of USR, and has a clearly defined

method of calling different routines in memory.

• TRON

• turns on display of each line number as it is run

("TRace ON"). This was useful for debugging or

correcting of problems in a program.

• TROFF

• turns off the display of line numbers.

• ASM

• some compilers such as Freebasic, Purebasic, and

Powerbasic also support inline assembly language,

allowing the programmer to intermix high-level and

low-level code, typically prefixed with "ASM" or "!"

statements.

Data types and variables

Minimal versions of BASIC had only integer variables and one-

or two-letter variable names, which minimized requirements of

limited and expensive memory (RAM). More powerful versions

had floating-point arithmetic, and variables could be labelled

with names six or more characters long. There were some

Statements and Language Programming

144

problems and restrictions in early implementations; for

example, Applesoft BASIC allowed variable names to be several

characters long, but only the first two were significant, thus it

was possible to inadvertently write a program with variables

"LOSS" and "LOAN", which would be treated as being the same;

assigning a value to "LOAN" would silently overwrite the value

intended as "LOSS". Keywords could not be used in variables in

many early BASICs; "SCORE" would be interpreted as "SC" OR

"E", where OR was a keyword. String variables are usually

distinguished in many microcomputer dialects by having $

suffixed to their name as a sigil, and values are often identified

as strings by being delimited by "double quotation marks".

Arrays in BASIC could contain integers, floating point or string

variables.

Some dialects of BASIC supported matrices and matrix

operations, useful for the solution of sets of simultaneous

linear algebraic equations. These dialects would directly

support matrix operations such as assignment, addition,

multiplication (of compatible matrix types), and evaluation of a

determinant. Many microcomputer BASICs did not support this

data type; matrix operations were still possible, but had to be

programmed explicitly on array elements.

Examples

Unstructured BASIC

New BASIC programmers on a home computer might start with

a simple program, perhaps using the language's PRINT

statement to display a message on the screen; a well-known

Statements and Language Programming

145

and often-replicated example is Kernighan and Ritchie's "Hello,

World!" program:

10PRINT"Hello, World!"
20END

An infinite loopcould be used to fill the display with the

message:

10PRINT"Hello, World!"
20GOTO10

Note that the END statement is optional and has no action in

most dialects of BASIC. It was not always included, as is the

case in this example. This same program can be modified to

print a fixed number of messages using the common FOR...NEXT

statement:

10LETN=10
20FORI=1TON
30PRINT"Hello, World!"
40NEXTI

Most first-generation BASIC versions, such as MSX BASIC and

GW-BASIC, supported simple data types, loop cycles, and

arrays. The following example is written for GW-BASIC, but will

work in most versions of BASIC with minimal changes:

10INPUT"What is your name: ";U$
20PRINT"Hello ";U$
30INPUT"How many stars do you want: ";N
40S$=""
50FORI=1TON
60S$=S$+"*"
70NEXTI
80PRINTS$
90INPUT"Do you want more stars? ";A$
100IFLEN(A$)=0THENGOTO90
110A$=LEFT$(A$,1)
120IFA$="Y"ORA$="y"THENGOTO30
130PRINT"Goodbye ";U$
140END

The resulting dialog might resemble:

Statements and Language Programming

146

What is your name: Mike
Hello Mike
How many stars do you want: 7

Do you want more stars? yes
How many stars do you want: 3

Do you want more stars? no
Goodbye Mike

The original Dartmouth Basic was unusual in having a matrix

keyword, MAT. Although not implemented by most later

microprocessor derivatives, it is used in this example from the

1968 manual which averages the numbers that are input:

5LETS=0
10MATINPUTV
20LETN=NUM
30IFN=0THEN99
40FORI=1TON
45LETS=S+V(I)
50NEXTI
60PRINTS/N
70GOTO5
99END

Structured BASIC

Second-generation BASICs (for example, VAX Basic,

SuperBASIC, True BASIC, QuickBASIC, BBC BASIC, Pick

BASIC, PowerBASIC, Liberty BASIC and (arguably) COMAL)

introduced a number of features into the language, primarily

related to structured and procedure-oriented programming.

Usually, line numberingis omitted from the language and

replaced with labels (for GOTO) and procedures to encourage

easier and more flexible design. In addition keywords and

structures to support repetition, selection and procedures with

local variables were introduced.

The following example is in Microsoft QuickBASIC:

REM QuickBASIC example

Statements and Language Programming

147

REM Forward declaration - allows the main code to call a
REM subroutine that is defined later in the source code
DECLARESUBPrintSomeStars(StarCount!)

REM Main program follows
INPUT"What is your name: ",UserName$
PRINT"Hello ";UserName$
DO
INPUT"How many stars do you want: ",NumStars
CALLPrintSomeStars(NumStars)
DO
INPUT"Do you want more stars? ",Answer$
LOOPUNTILAnswer$<>""
Answer$=LEFT$(Answer$,1)
LOOPWHILEUCASE$(Answer$)="Y"
PRINT"Goodbye ";UserName$
END

REM subroutine definition
SUBPrintSomeStars(StarCount)
REMThisprocedureusesalocalvariablecalledStars$
Stars$=STRING$(StarCount,"*")
PRINTStars$
ENDSUB

Object-oriented BASIC

Third-generation BASIC dialects such as Visual Basic, Xojo,

Gambas, StarOffice Basic, BlitzMax and PureBasic introduced

features to support object-oriented and event-driven

programming paradigm. Most built-in procedures and

functions are now represented as methods of standard objects

rather than operators. Also, the operating system became

increasingly accessible to the BASIC language.

The following example is in Visual Basic .NET:

PublicModuleStarsProgram
PrivateFunctionAsk(promptAsString)AsString
Console.Write(prompt)
ReturnConsole.ReadLine()
EndFunction

PublicSubMain()
DimuserName=Ask("What is your name: ")
Console.WriteLine("Hello {0}",userName)

DimanswerAsString

Statements and Language Programming

148

Do
DimnumStars=CInt(Ask("How many stars do you want: "))
DimstarsAsNewString("*"c,numStars)
Console.WriteLine(stars)

Do
answer=Ask("Do you want more stars? ")
LoopUntilanswer<>""
LoopWhileanswer.StartsWith("Y",StringComparison.OrdinalIgnoreCase)

Console.WriteLine("Goodbye {0}",userName)
EndSub
EndModule

Standards

• ANSI/ISO/IEC Standard for Minimal BASIC:

• ANSI X3.60-1978 "For minimal BASIC"

• ISO/IEC 6373:1984 "Data Processing—Programming

Languages—Minimal BASIC"

• ECMA-55 Minimal BASIC (withdrawn, similar to ANSI

X3.60-1978)

• ANSI/ISO/IEC Standard for Full BASIC:

• ANSI X3.113-1987 "Programming Languages Full

BASIC"

• INCITS/ISO/IEC 10279-1991 (R2005) "Information

Technology – Programming Languages – Full BASIC"

• ANSI/ISO/IEC Addendum Defining Modules:

• ANSI X3.113 Interpretations-1992 "BASIC Technical

Information Bulletin # 1 Interpretations of ANSI

03.113-1987"

• ISO/IEC 10279:1991/ Amd 1:1994 "Modules and

Single Character Input Enhancement"

• ECMA-116 BASIC (withdrawn, similar to ANSI

X3.113-1987)

Statements and Language Programming

149

Assembly language

In computer programming, assembly language (or assembler

language), sometimes abbreviated asm, is any low-level

programming language in which there is a very strong

correspondence between the instructions in the language and

the architecture'smachine codeinstructions. Because assembly

depends on the machine code instructions, every assembly

language is designed for exactly one specific computer

architecture. Assembly language may also be calledsymbolic

machine code.

Assembly code is converted into executable machine code by a

utility program referred to as an assembler. The conversion

process is referred to as assembly, as in assembling the source

code. Assembly language usually has one statement per

machine instruction (1:1), but constants, comments, assembler

directives, symbolic labels of program and memory locations,

and macrosare generally also supported.

The term "assembler" is generally attributed to Wilkes, Wheeler

and Gill in their 1951 book The Preparation of Programs for an

Electronic Digital Computer, who, however, used the term to

mean "a program that assembles another program consisting of

several sections into a single program".

Each assembly language is specific to a particular computer

architecture and sometimes to an operating system. However,

some assembly languages do not provide specific syntax for

operating system calls, and most assembly languages can be

used universally with any operating system, as the language

provides access to all the real capabilities of the processor,

Statements and Language Programming

150

upon which all system call mechanisms ultimately rest. In

contrast to assembly languages, most high-level programming

languages are generally portable across multiple architectures

but require interpreting or compiling, a much more

complicated task than assembling.

The computational step when an assembler is processing a

program is calledassembly time.

Assembly language syntax

Assembly language uses a mnemonic to represent each low-

level machine instruction or opcode, typically also each

architectural register, flag, etc. Many operations require one or

more operands in order to form a complete instruction. Most

assemblers permit named constants, registers, and labels for

program and memory locations, and can calculate expressions

for operands. Thus, programmers are freed from tedious

repetitive calculations and assembler programs are much more

readable than machine code. Depending on the architecture,

these elements may also be combined for specific instructions

or addressing modes using offsets or other data as well as fixed

addresses. Many assemblers offer additional mechanisms to

facilitate program development, to control the assembly

process, and to aid debugging.

Terminology

• A macro assembler is an assembler that includes a

macroinstruction facility so that (parameterized)

assembly language text can be represented by a

Statements and Language Programming

151

name, and that name can be used to insert the

expanded text into other code.

• A cross assembler (see also cross compiler) is an

assembler that is run on a computer or operating

system (the host system) of a different type from the

system on which the resulting code is to run (the

target system). Cross-assembling facilitates the

development of programs for systems that do not

have the resources to support software development,

such as an embedded system or a microcontroller. In

such a case, the resulting object code must be

transferred to the target system, via read-only

memory (ROM, EPROM, etc.), a programmer (when

the read-only memory is integrated in the device, as

in microcontrollers), or a data link using either an

exact bit-by-bit copy of the object code or a text-

based representation of that code (such as Intel hex

or Motorola S-record).

• A high-level assembler is a program that provides

language abstractions more often associated with

high-level languages, such as advanced control

structures (IF/THEN/ELSE, DO CASE, etc.) and

high-level abstract data types, including

structures/records, unions, classes, and sets.

• A microassembler is a program that helps prepare a

microprogram, called firmware, to control the low

level operation of a computer.

• A meta-assembler is "a program that accepts the

syntactic and semantic description of an assembly

language, and generates an assembler for that

language". "Meta-Symbol" assemblers for the SDS 9

Series and SDS Sigma series of computers are meta-

Statements and Language Programming

152

assemblers. Sperry Univac also provided a Meta-

Assembler for the UNIVAC 1100/2200 series.

• inline assembler (or embedded assembler) is

assembler code contained within a high-level

language program. This is most often used in

systems programs which need direct access to the

hardware.

Key concepts

Assembler

An assembler program creates object code by translating

combinations of mnemonics and syntax for operations and

addressing modes into their numerical equivalents. This

representation typically includes an operation code ("opcode")

as well as other control bits and data. The assembler also

calculates constant expressions and resolves symbolic names

for memory locations and other entities. The use of symbolic

references is a key feature of assemblers, saving tedious

calculations and manual address updates after program

modifications. Most assemblers also include macro facilities for

performing textual substitution – e.g., to generate common

short sequences of instructions as inline, instead of

calledsubroutines.

Some assemblers may also be able to perform some simple

types of instruction set-specific optimizations. One concrete

example of this may be the ubiquitous x86 assemblers from

various vendors. Called jump-sizing, most of them are able to

perform jump-instruction replacements (long jumps replaced

Statements and Language Programming

153

by short or relative jumps) in any number of passes, on

request. Others may even do simple rearrangement or insertion

of instructions, such as some assemblers for RISCarchitectures

that can help optimize a sensible instruction scheduling to

exploit the CPU pipeline as efficiently as possible.

Assemblers have been available since the 1950s, as the first

step above machine language and before high-level

programming languages such as Fortran, Algol, COBOL and

Lisp. There have also been several classes of translators and

semi-automatic code generators with properties similar to both

assembly and high-level languages, with Speedcode as perhaps

one of the better-known examples.

There may be several assemblers with different syntax for a

particular CPU or instruction set architecture. For instance, an

instruction to add memory data to a register in a x86-family

processor might be add eax,[ebx], in original Intel syntax,

whereas this would be written addl (%ebx),%eax in the AT&T

syntax used by the GNU Assembler. Despite different

appearances, different syntactic forms generally generate the

same numeric machine code. A single assembler may also have

different modes in order to support variations in syntactic

forms as well as their exact semantic interpretations (such as

FASM-syntax, TASM-syntax, ideal mode, etc., in the special

case of x86 assembly programming).

Number of passes

There are two types of assemblers based on how many passes

through the source are needed (how many times the assembler

reads the source) to produce the object file.

Statements and Language Programming

154

• One-pass assemblers go through the source code

once. Any symbol used before it is defined will

require "errata" at the end of the object code (or, at

least, no earlier than the point where the symbol is

defined) telling the linker or the loader to "go back"

and overwrite a placeholder which had been left

where the as yet undefined symbol was used.

• Multi-pass assemblers create a table with all

symbols and their values in the first passes, then

use the table in later passes to generate code.

In both cases, the assembler must be able to determine the

size of each instruction on the initial passes in order to

calculate the addresses of subsequent symbols. This means

that if the size of an operation referring to an operand defined

later depends on the type or distance of the operand, the

assembler will make a pessimistic estimate when first

encountering the operation, and if necessary, pad it with one

or more "no-operation" instructions in a later pass or the

errata. In an assembler with peephole optimization, addresses

may be recalculated between passes to allow replacing

pessimistic code with code tailored to the exact distance from

the target.

The original reason for the use of one-pass assemblers was

memory size and speed of assembly – often a second pass

would require storing the symbol table in memory (to handle

forward references), rewinding and rereading the program

source on tape, or rereading a deck of cards or punched paper

tape. Later computers with much larger memories (especially

disc storage), had the space to perform all necessary

processing without such re-reading. The advantage of the

Statements and Language Programming

155

multi-pass assembler is that the absence of errata makes the

linking process (or the program load if the assembler directly

produces executable code) faster.

Example: in the following code snippet, a one-pass assembler

would be able to determine the address of the backward

reference BKWD when assembling statement S2, but would not

be able to determine the address of the forward reference FWD

when assembling the branch statement S1; indeed, FWD may

be undefined. A two-pass assembler would determine both

addresses in pass 1, so they would be known when generating

code in pass 2.

S1 B FWD
 ...
FWD EQU *
 ...
BKWD EQU *
 ...
S2 B BKWD

High-level assemblers

More sophisticated high-level assemblers provide language

abstractions such as:

• High-level procedure/function declarations and

invocations

• Advanced control structures (IF/THEN/ELSE,

SWITCH)

• High-level abstract data types, including

structures/records, unions, classes, and sets

• Sophisticated macro processing (although available

on ordinary assemblers since the late 1950s for, e.g.,

the IBM 700 series and IBM 7000 series, and since

Statements and Language Programming

156

the 1960s for IBM System/360 (S/360), amongst

other machines)

• Object-oriented programming features such as

classes, objects, abstraction, polymorphism, and

inheritance

See Language design below for more details.

Assembly language

A program written in assembly language consists of a series of

mnemonic processor instructions and meta-statements (known

variously as directives, pseudo-instructions, and pseudo-ops),

comments and data. Assembly language instructions usually

consist of an opcode mnemonic followed by an operand, which

might be a list of data, arguments or parameters. Some

instructions may be "implied," which means the data upon

which the instruction operates is implicitly defined by the

instruction itself—such an instruction does not take an

operand. The resulting statement is translated by an assembler

into machine language instructions that can be loaded into

memory and executed.

For example, the instruction below tells an x86/IA-32

processor to move an immediate 8-bit value into a register. The

binary code for this instruction is 10110 followed by a 3-bit

identifier for which register to use. The identifier for the AL

register is 000, so the following machine code loads the AL

register with the data 01100001.

10110000 01100001

Statements and Language Programming

157

This binary computer code can be made more human-readable

by expressing it in hexadecimal as follows.

B0 61

Here, B0 means 'Move a copy of the following value into AL, and

61 is a hexadecimal representation of the value 01100001,

which is 97 in decimal. Assembly language for the 8086 family

provides the mnemonicMOV (an abbreviation of move) for

instructions such as this, so the machine code above can be

written as follows in assembly language, complete with an

explanatory comment if required, after the semicolon. This is

much easier to read and to remember.

MOVAL,61h; Load AL with 97 decimal (61 hex)

In some assembly languages (including this one) the same

mnemonic, such as MOV, may be used for a family of related

instructions for loading, copying and moving data, whether

these are immediate values, values in registers, or memory

locations pointed to by values in registers or by immediate

(a.k.a direct) addresses. Other assemblers may use separate

opcode mnemonics such as L for "move memory to register", ST

for "move register to memory", LR for "move register to

register", MVI for "move immediate operand to memory", etc.

If the same mnemonic is used for different instructions, that

means that the mnemonic corresponds to several different

binary instruction codes, excluding data (e.g. the 61h in this

example), depending on the operands that follow the

mnemonic. For example, for the x86/IA-32 CPUs, the Intel

assembly language syntax MOV AL, AH represents an instruction

that moves the contents of register AH into register AL. The

hexadecimal form of this instruction is:

Statements and Language Programming

158

88 E0

The first byte, 88h, identifies a move between a byte-sized

register and either another register or memory, and the second

byte, E0h, is encoded (with three bit-fields) to specify that both

operands are registers, the source is AH, and the destination is

AL.

In a case like this where the same mnemonic can represent

more than one binary instruction, the assembler determines

which instruction to generate by examining the operands. In

the first example, the operand 61h is a valid hexadecimal

numeric constant and is not a valid register name, so only the

B0 instruction can be applicable. In the second example, the

operand AH is a valid register name and not a valid numeric

constant (hexadecimal, decimal, octal, or binary), so only the

88 instruction can be applicable.

Assembly languages are always designed so that this sort of

unambiguousness is universally enforced by their syntax. For

example, in the Intel x86 assembly language, a hexadecimal

constant must start with a numeral digit, so that the

hexadecimal number 'A' (equal to decimal ten) would be written

as 0Ah or 0AH, not AH, specifically so that it cannot appear to be

the name of register AH. (The same rule also prevents

ambiguity with the names of registers BH, CH, and DH, as well

as with any user-defined symbol that ends with the letter H

and otherwise contains only characters that are hexadecimal

digits, such as the word "BEACH".)

Returning to the original example, while the x86 opcode

10110000 (B0) copies an 8-bit value into the AL register,

Statements and Language Programming

159

10110001 (B1) moves it into CLand 10110010 (B2) does so into

DL. Assembly language examples for these follow.

MOVAL,1h; Load AL with immediate value 1
MOVCL,2h; Load CL with immediate value 2
MOVDL,3h; Load DL with immediate value 3

The syntax of MOV can also be more complex as the following

examples show.

MOVEAX,[EBX] ; Move the 4 bytes in memory at the address contained in EBX into EAX
MOV[ESI+EAX],CL; Move the contents of CL into the byte at address ESI+EAX
MOVDS,DX; Move the contents of DX into segment register DS

In each case, the MOV mnemonic is translated directly into one

of the opcodes 88-8C, 8E, A0-A3, B0-BF, C6 or C7 by an

assembler, and the programmer normally does not have to

know or remember which.

Transforming assembly language into machine code is the job

of an assembler, and the reverse can at least partially be

achieved by a disassembler. Unlike high-level languages, there

is a one-to-one correspondence between many simple assembly

statements and machine language instructions. However, in

some cases, an assembler may provide pseudoinstructions

(essentially macros) which expand into several machine

language instructions to provide commonly needed

functionality. For example, for a machine that lacks a "branch

if greater or equal" instruction, an assembler may provide a

pseudoinstruction that expands to the machine's "set if less

than" and "branch if zero (on the result of the set instruction)".

Most full-featured assemblers also provide a rich macro

language (discussed below) which is used by vendors and

programmers to generate more complex code and data

sequences. Since the information about pseudoinstructions

and macros defined in the assembler environment is not

Statements and Language Programming

160

present in the object program, a disassembler cannot

reconstruct the macro and pseudoinstruction invocations but

can only disassemble the actual machine instructions that the

assembler generated from those abstract assembly-language

entities. Likewise, since comments in the assembly language

source file are ignored by the assembler and have no effect on

the object code it generates, a disassembler is always

completely unable to recover source comments.

Each computer architecture has its own machine language.

Computers differ in the number and type of operations they

support, in the different sizes and numbers of registers, and in

the representations of data in storage. While most general-

purpose computers are able to carry out essentially the same

functionality, the ways they do so differ; the corresponding

assembly languages reflect these differences.

Multiple sets of mnemonics or assembly-language syntax may

exist for a single instruction set, typically instantiated in

different assembler programs. In these cases, the most popular

one is usually that supplied by the CPU manufacturer and

used in its documentation.

Two examples of CPUs that have two different sets of

mnemonics are the Intel 8080 family and the Intel 8086/8088.

Because Intel claimed copyright on its assembly language

mnemonics (on each page of their documentation published in

the 1970s and early 1980s, at least), some companies that

independently produced CPUs compatible with Intel instruction

sets invented their own mnemonics. The Zilog Z80 CPU, an

enhancement of the Intel 8080A, supports all the 8080A

instructions plus many more; Zilog invented an entirely new

Statements and Language Programming

161

assembly language, not only for the new instructions but also

for all of the 8080A instructions. For example, where Intel uses

the mnemonics MOV, MVI, LDA, STA, LXI, LDAX, STAX, LHLD,

and SHLD for various data transfer instructions, the Z80

assembly language uses the mnemonic LD for all of them. A

similar case is the NEC V20 and V30 CPUs, enhanced copies of

the Intel 8086 and 8088, respectively. Like Zilog with the Z80,

NEC invented new mnemonics for all of the 8086 and 8088

instructions, to avoid accusations of infringement of Intel's

copyright. (It is questionable whether such copyrights can be

valid, and later CPU companies such as AMD and Cyrix

republished Intel's x86/IA-32 instruction mnemonics exactly

with neither permission nor legal penalty.) It is doubtful

whether in practice many people who programmed the V20 and

V30 actually wrote in NEC's assembly language rather than

Intel's; since any two assembly languages for the same

instruction set architecture are isomorphic (somewhat like

English and Pig Latin), there is no requirement to use a

manufacturer's own published assembly language with that

manufacturer's products.

Language design

Basic elements

There is a large degree of diversity in the way the authors of

assemblers categorize statements and in the nomenclature that

they use. In particular, some describe anything other than a

machine mnemonic or extended mnemonic as a pseudo-

operation (pseudo-op). A typical assembly language consists of

Statements and Language Programming

162

3 types of instruction statements that are used to define

program operations:

• Opcode mnemonics

• Data definitions

• Assembly directives

Opcode mnemonics and extended mnemonics

Instructions (statements) in assembly language are generally

very simple, unlike those in high-level languages. Generally, a

mnemonic is a symbolic name for a single executable machine

language instruction (an opcode), and there is at least one

opcode mnemonic defined for each machine language

instruction. Each instruction typically consists of an operation

or opcode plus zero or more operands. Most instructions refer

to a single value or a pair of values. Operands can be

immediate (value coded in the instruction itself), registers

specified in the instruction or implied, or the addresses of data

located elsewhere in storage. This is determined by the

underlying processor architecture: the assembler merely

reflects how this architecture works. Extended mnemonics are

often used to specify a combination of an opcode with a

specific operand, e.g., the System/360 assemblers use B as an

extended mnemonic for BC with a mask of 15 and NOP ("NO

OPeration" – do nothing for one step) for BC with a mask of 0.

Extended mnemonicsare often used to support specialized uses

of instructions, often for purposes not obvious from the

instruction name. For example, many CPU's do not have an

explicit NOP instruction, but do have instructions that can be

used for the purpose. In 8086 CPUs the instruction xchgax,ax is

Statements and Language Programming

163

used for nop, with nop being a pseudo-opcode to encode the

instruction xchgax,ax. Some disassemblers recognize this and

will decode the xchgax,ax instruction as nop. Similarly, IBM

assemblers for System/360 and System/370 use the extended

mnemonics NOP and NOPR for BC and BCR with zero masks. For the

SPARC architecture, these are known as synthetic instructions.

Some assemblers also support simple built-in macro-

instructions that generate two or more machine instructions.

For instance, with some Z80 assemblers the instruction ldhl,bc

is recognized to generate ldl,c followed by ldh,b. These are

sometimes known as pseudo-opcodes.

Mnemonics are arbitrary symbols; in 1985 the IEEE published

Standard 694 for a uniform set of mnemonics to be used by all

assemblers. The standard has since been withdrawn.

Data directives

There are instructions used to define data elements to hold

data and variables. They define the type of data, the length and

the alignment of data. These instructions can also define

whether the data is available to outside programs (programs

assembled separately) or only to the program in which the data

section is defined. Some assemblers classify these as pseudo-

ops.

Assembly directives

Assembly directives, also called pseudo-opcodes, pseudo-

operations or pseudo-ops, are commands given to an assembler

"directing it to perform operations other than assembling

instructions". Directives affect how the assembler operates and

Statements and Language Programming

164

"may affect the object code, the symbol table, the listing file,

and the values of internal assembler parameters". Sometimes

the term pseudo-opcodeis reserved for directives that generate

object code, such as those that generate data.

The names of pseudo-ops often start with a dot to distinguish

them from machine instructions. Pseudo-ops can make the

assembly of the program dependent on parameters input by a

programmer, so that one program can be assembled in

different ways, perhaps for different applications. Or, a

pseudo-op can be used to manipulate presentation of a

program to make it easier to read and maintain. Another

common use of pseudo-ops is to reserve storage areas for run-

time data and optionally initialize their contents to known

values.

Symbolic assemblers let programmers associate arbitrary

names (labels or symbols) with memory locations and various

constants. Usually, every constant and variable is given a

name so instructions can reference those locations by name,

thus promoting self-documenting code. In executable code, the

name of each subroutine is associated with its entry point, so

any calls to a subroutine can use its name. Inside subroutines,

GOTO destinations are given labels. Some assemblers support

local symbols which are often lexically distinct from normal

symbols (e.g., the use of "10$" as a GOTO destination).

Some assemblers, such as NASM, provide flexible symbol

management, letting programmers manage different

namespaces, automatically calculate offsets within data

structures, and assign labels that refer to literal values or the

result of simple computations performed by the assembler.

Statements and Language Programming

165

Labels can also be used to initialize constants and variables

with relocatable addresses.

Assembly languages, like most other computer languages,

allow comments to be added to program source code that will

be ignored during assembly. Judicious commenting is essential

in assembly language programs, as the meaning and purpose of

a sequence of binary machine instructions can be difficult to

determine. The "raw" (uncommented) assembly language

generated by compilers or disassemblers is quite difficult to

read when changes must be made.

Macros

Many assemblers support predefined macros, and others

support programmer-defined (and repeatedly re-definable)

macros involving sequences of text lines in which variables and

constants are embedded. The macro definition is most

commonly a mixture of assembler statements, e.g., directives,

symbolic machine instructions, and templates for assembler

statements. This sequence of text lines may include opcodes or

directives. Once a macro has been defined its name may be

used in place of a mnemonic. When the assembler processes

such a statement, it replaces the statement with the text lines

associated with that macro, then processes them as if they

existed in the source code file (including, in some assemblers,

expansion of any macros existing in the replacement text).

Macros in this sense date to IBM autocoders of the 1950s.

In assembly language, the term "macro" represents a more

comprehensive concept than it does in some other contexts,

such as the pre-processor in the C programming language,

Statements and Language Programming

166

where its #define directive typically is used to create short

single line macros. Assembler macro instructions, like macros

in PL/I and some other languages, can be lengthy "programs"

by themselves, executed by interpretation by the assembler

during assembly.

Since macros can have 'short' names but expand to several or

indeed many lines of code, they can be used to make assembly

language programs appear to be far shorter, requiring fewer

lines of source code, as with higher level languages. They can

also be used to add higher levels of structure to assembly

programs, optionally introduce embedded debugging code via

parameters and other similar features.

Macro assemblers often allow macros to take parameters. Some

assemblers include quite sophisticated macro languages,

incorporating such high-level language elements as optional

parameters, symbolic variables, conditionals, string

manipulation, and arithmetic operations, all usable during the

execution of a given macro, and allowing macros to save

context or exchange information. Thus a macro might generate

numerous assembly language instructions or data definitions,

based on the macro arguments. This could be used to generate

record-style data structures or "unrolled" loops, for example,

or could generate entire algorithms based on complex

parameters. For instance, a "sort" macro could accept the

specification of a complex sort key and generate code crafted

for that specific key, not needing the run-time tests that would

be required for a general procedure interpreting the

specification. An organization using assembly language that

has been heavily extended using such a macro suite can be

considered to be working in a higher-level language since such

Statements and Language Programming

167

programmers are not working with a computer's lowest-level

conceptual elements. Underlining this point, macros were used

to implement an early virtual machine in SNOBOL4 (1967),

which was written in the SNOBOL Implementation Language

(SIL), an assembly language for a virtual machine. The target

machine would translate this to its native code using a macro

assembler. This allowed a high degree of portability for the

time.

Macros were used to customize large scale software systems for

specific customers in the mainframe era and were also used by

customer personnel to satisfy their employers' needs by making

specific versions of manufacturer operating systems. This was

done, for example, by systems programmers working with

IBM's Conversational Monitor System / Virtual Machine

(VM/CMS) and with IBM's "real time transaction processing"

add-ons, Customer Information Control System CICS, and

ACP/TPF, the airline/financial system that began in the 1970s

and still runs many large computer reservation systems (CRS)

and credit card systems today.

It is also possible to use solely the macro processing abilities

of an assembler to generate code written in completely different

languages, for example, to generate a version of a program in

COBOL using a pure macro assembler program containing lines

of COBOL code inside assembly time operators instructing the

assembler to generate arbitrary code. IBM OS/360 uses macros

to perform system generation. The user specifies options by

coding a series of assembler macros. Assembling these macros

generates a job stream to build the system, including job

control language and utility control statements.

Statements and Language Programming

168

This is because, as was realized in the 1960s, the concept of

"macro processing" is independent of the concept of

"assembly", the former being in modern terms more word

processing, text processing, than generating object code. The

concept of macro processing appeared, and appears, in the C

programming language, which supports "preprocessor

instructions" to set variables, and make conditional tests on

their values. Unlike certain previous macro processors inside

assemblers, the C preprocessor is not Turing-complete because

it lacks the ability to either loop or "go to", the latter allowing

programs to loop.

Despite the power of macro processing, it fell into disuse in

many high level languages (major exceptions being C, C++ and

PL/I) while remaining a perennial for assemblers.

Macro parameter substitution is strictly by name: at macro

processing time, the value of a parameter is textually

substituted for its name. The most famous class of bugs

resulting was the use of a parameter that itself was an

expression and not a simple name when the macro writer

expected a name. In the macro:

foo: macro a
load a*b

the intention was that the caller would provide the name of a

variable, and the "global" variable or constant b would be used

to multiply "a". If foo is called with the parameter a-c, the

macro expansion of load a-c*b occurs. To avoid any possible

ambiguity, users of macro processors can parenthesize formal

parameters inside macro definitions, or callers can

parenthesize the input parameters.

Statements and Language Programming

169

Support for structured programming

Packages of macros have been written providing structured

programming elements to encode execution flow. The earliest

example of this approach was in the Concept-14 macro set,

originally proposed by Harlan Mills (March 1970), and

implemented by Marvin Kessler at IBM's Federal Systems

Division, which provided IF/ELSE/ENDIF and similar control

flow blocks for OS/360 assembler programs. This was a way to

reduce or eliminate the use of GOTO operations in assembly

code, one of the main factors causing spaghetti code in

assembly language. This approach was widely accepted in the

early 1980s (the latter days of large-scale assembly language

use). IBM's High Level Assembler Toolkit includes such a

macro package.

A curious design was A-natural, a "stream-oriented" assembler

for 8080/Z80, processors from Whitesmiths Ltd. (developers of

the Unix-like Idris operating system, and what was reported to

be the first commercial Ccompiler). The language was classified

as an assembler because it worked with raw machine elements

such as opcodes, registers, and memory references; but it

incorporated an expression syntax to indicate execution order.

Parentheses and other special symbols, along with block-

oriented structured programming constructs, controlled the

sequence of the generated instructions. A-natural was built as

the object language of a C compiler, rather than for hand-

coding, but its logical syntax won some fans.

There has been little apparent demand for more sophisticated

assemblers since the decline of large-scale assembly language

development. In spite of that, they are still being developed

Statements and Language Programming

170

and applied in cases where resource constraints or

peculiarities in the target system's architecture prevent the

effective use of higher-level languages.

Assemblers with a strong macro engine allow structured

programming via macros, such as the switch macro provided

with the Masm32 package (this code is a complete program):

include\masm32\include\masm32rt.inc ; use the Masm32 library

.code
demomain:
REPEAT20
 switchrv(nrandom,9) ; generate a number between 0 and 8
 movecx,7
 case0
 print"case 0"
 caseecx ; in contrast to most other programming
languages,
 print"case 7" ; the Masm32 switch allows "variable cases"
 case1..3
 .ifeax==1
 print"case 1"
 .elseifeax==2
 print"case 2"
 .else
 print"cases 1 to 3: other"
 .endif
 case4,6,8
 print"cases 4, 6 or 8"
 default
 movebx,19 ; print 20 stars
 .Repeat
 print"*"
 decebx
 .UntilSign? ; loop until the sign flag is set
 endsw
 printchr$(13,10)
ENDM
exit
enddemomain

Use of assembly language

Historical perspective

Assembly languages were not available at the time when the

stored-program computerwas introduced. Kathleen Booth "is

Statements and Language Programming

171

credited with inventing assembly language" based on

theoretical work she began in 1947, while working on the ARC2

at Birkbeck, University of London following consultation by

Andrew Booth (later her husband) with mathematician John

von Neumann and physicist Herman Goldstine at the Institute

for Advanced Study.

In late 1948, the Electronic Delay Storage Automatic

Calculator (EDSAC) had an assembler (named "initial orders")

integrated into its bootstrap program. It used one-letter

mnemonics developed by David Wheeler, who is credited by the

IEEE Computer Society as the creator of the first "assembler".

Reports on the EDSAC introduced the term "assembly" for the

process of combining fields into an instruction word. SOAP

(Symbolic Optimal Assembly Program) was an assembly

language for the IBM 650 computer written by Stan Poley in

1955.

Assembly languages eliminate much of the error-prone,

tedious, and time-consuming first-generation programming

needed with the earliest computers, freeing programmers from

tedium such as remembering numeric codes and calculating

addresses.

Assembly languages were once widely used for all sorts of

programming. However, by the 1980s (1990s on

microcomputers), their use had largely been supplanted by

higher-level languages, in the search for improved

programming productivity. Today, assembly language is still

used for direct hardware manipulation, access to specialized

processor instructions, or to address critical performance

Statements and Language Programming

172

issues. Typical uses are device drivers, low-level embedded

systems, and real-time systems.

Historically, numerous programs have been written entirely in

assembly language. The Burroughs MCP (1961) was the first

computer for which an operating system was not developed

entirely in assembly language; it was written in Executive

Systems Problem Oriented Language (ESPOL), an Algol dialect.

Many commercial applications were written in assembly

language as well, including a large amount of the IBM

mainframe software written by large corporations. COBOL,

FORTRAN and some PL/I eventually displaced much of this

work, although a number of large organizations retained

assembly-language application infrastructures well into the

1990s.

Most early microcomputers relied on hand-coded assembly

language, including most operating systems and large

applications. This was because these systems had severe

resource constraints, imposed idiosyncratic memory and

display architectures, and provided limited, buggy system

services. Perhaps more important was the lack of first-class

high-level language compilers suitable for microcomputer use.

A psychological factor may have also played a role: the first

generation of microcomputer programmers retained a hobbyist,

"wires and pliers" attitude.

In a more commercial context, the biggest reasons for using

assembly language were minimal bloat (size), minimal

overhead, greater speed, and reliability.

Typical examples of large assembly language programs from

this time are IBM PC DOS operating systems, the Turbo Pascal

Statements and Language Programming

173

compiler and early applications such as the spreadsheet

program Lotus 1-2-3. Assembly language was used to get the

best performance out of the Sega Saturn, a console that was

notoriously challenging to develop and program games for. The

1993 arcade game NBA Jam is another example.

Assembly language has long been the primary development

language for many popular home computers of the 1980s and

1990s (such as the MSX, SinclairZX Spectrum, Commodore 64,

Commodore Amiga, and Atari ST). This was in large part

because interpreted BASIC dialects on these systems offered

insufficient execution speed, as well as insufficient facilities to

take full advantage of the available hardware on these systems.

Some systems even have an integrated development

environment (IDE) with highly advanced debugging and macro

facilities. Some compilers available for the Radio ShackTRS-80

and its successors had the capability to combine inline

assembly source with high-level program statements. Upon

compilation, a built-in assembler produced inline machine

code.

Current usage

There have always been debates over the usefulness and

performance of assembly language relative to high-level

languages.

Although assembly language has specific niche uses where it is

important (see below), there are other tools for optimization.

As of July 2017, the TIOBE index of programming language

popularity ranks assembly language at 11, ahead of Visual

Basic, for example. Assembler can be used to optimize for

Statements and Language Programming

174

speed or optimize for size. In the case of speed optimization,

modern optimizing compilersare claimed to render high-level

languages into code that can run as fast as hand-written

assembly, despite the counter-examples that can be found. The

complexity of modern processors and memory sub-systems

makes effective optimization increasingly difficult for

compilers, as well as for assembly programmers. Moreover,

increasing processor performance has meant that most CPUs

sit idle most of the time, with delays caused by predictable

bottlenecks such as cache misses, I/O operations and paging.

This has made raw code execution speed a non-issue for many

programmers.

There are some situations in which developers might choose to

use assembly language:

• Writing code for systems with older processors that

have limited high-level language options such as the

Atari 2600, Commodore 64, and graphing

calculators. Programs for these computers of 1970s

and 1980s are often written in the context of

demoscene or retrogaming subcultures.

• Code that must interact directly with the hardware,

for example in device drivers and interrupt handlers.

• In an embedded processor or DSP, high-repetition

interrupts require the shortest number of cycles per

interrupt, such as an interrupt that occurs 1000 or

10000 times a second.

• Programs that need to use processor-specific

instructions not implemented in a compiler. A

common example is the bitwise rotation instruction

at the core of many encryption algorithms, as well as

Statements and Language Programming

175

querying the parity of a byte or the 4-bit carry of an

addition.

• A stand-alone executable of compact size is required

that must execute without recourse to the run-time

components or libraries associated with a high-level

language. Examples have included firmware for

telephones, automobile fuel and ignition systems,

air-conditioning control systems, security systems,

and sensors.

• Programs with performance-sensitive inner loops,

where assembly language provides optimization

opportunities that are difficult to achieve in a high-

level language. For example, linear algebra with

BLAS or discrete cosine transformation (e.g. SIMD

assembly version from x264).

• Programs that create vectorized functions for

programs in higher-level languages such as C. In the

higher-level language this is sometimes aided by

compiler intrinsic functions which map directly to

SIMD mnemonics, but nevertheless result in a one-

to-one assembly conversion specific for the given

vector processor.

• Real-time programs such as simulations, flight

navigation systems, and medical equipment. For

example, in a fly-by-wiresystem, telemetry must be

interpreted and acted upon within strict time

constraints. Such systems must eliminate sources of

unpredictable delays, which may be created by

(some) interpreted languages, automatic garbage

collection, paging operations, or preemptive

multitasking. However, some higher-level languages

incorporate run-time components and operating

Statements and Language Programming

176

system interfaces that can introduce such delays.

Choosing assembly or lower level languages for such

systems gives programmers greater visibility and

control over processing details.

• Cryptographic algorithms that must always take

strictly the same time to execute, preventing timing

attacks.

• Modify and extend legacy code written for IBM

mainframe computers.

• Situations where complete control over the

environment is required, in extremely high-security

situations where nothing can be taken for granted.

• Computer viruses, bootloaders, certain device

drivers, or other items very close to the hardware or

low-level operating system.

• Instruction set simulators for monitoring, tracing

and debugging where additional overhead is kept to a

minimum.

• Situations where no high-level language exists, on a

new or specialized processor for which no cross

compiler is available.

• Reverse-engineering and modifying program files

such as:

• existingbinaries that may or may not have originally

been written in a high-level language, for example

when trying to recreate programs for which source

code is not available or has been lost, or cracking

copy protection of proprietary software.

• Video games (also termed ROM hacking), which is

possible via several methods. The most widely

employed method is altering program code at the

assembly language level.

Statements and Language Programming

177

Assembly language is still taught in most computer science

and electronic engineering programs. Although few

programmers today regularly work with assembly language as a

tool, the underlying concepts remain important. Such

fundamental topics as binary arithmetic, memory allocation,

stack processing, character set encoding, interrupt processing,

and compiler design would be hard to study in detail without a

grasp of how a computer operates at the hardware level. Since

a computer's behavior is fundamentally defined by its

instruction set, the logical way to learn such concepts is to

study an assembly language. Most modern computers have

similar instruction sets. Therefore, studying a single assembly

language is sufficient to learn: I) the basic concepts; II) to

recognize situations where the use of assembly language might

be appropriate; and III) to see how efficient executable code

can be created from high-level languages.

Typical applications

• Assembly language is typically used in a system's

boot code, the low-level code that initializes and

tests the system hardware prior to booting the

operating system and is often stored in ROM. (BIOS

on IBM-compatible PC systems and CP/M is an

example.)

• Assembly language is often used for low-level code,

for instance for operating system kernels, which

cannot rely on the availability of pre-existing system

calls and must indeed implement them for the

particular processor architecture on which the

system will be running.

Statements and Language Programming

178

• Some compilers translate high-level languages into

assembly first before fully compiling, allowing the

assembly code to be viewed for debugging and

optimization purposes.

• Some compilers for relatively low-level languages,

such as Pascal or C, allow the programmer to embed

assembly language directly in the source code (so

called inline assembly). Programs using such

facilities can then construct abstractions using

different assembly language on each hardware

platform. The system's portable code can then use

these processor-specific components through a

uniform interface.

• Assembly language is useful in reverse engineering.

Many programs are distributed only in machine code

form which is straightforward to translate into

assembly language by a disassembler, but more

difficult to translate into a higher-level language

through a decompiler. Tools such as the Interactive

Disassembler make extensive use of disassembly for

such a purpose. This technique is used by hackers to

crack commercial software, and competitors to

produce software with similar results from competing

companies.

• Assembly language is used to enhance speed of

execution, especially in early personal computers

with limited processing power and RAM.

• Assemblers can be used to generate blocks of data,

with no high-level language overhead, from formatted

and commented source code, to be used by other

code.

	Cover
	Title Page
	Copyright
	Contents
	Chapter 1 Statement (Computer Science)
	Chapter 2 Programming Language
	Chapter 3 Ada, ALGOL and APL
	Chapter 4 Types of Statements
	Chapter 5 BASIC and Assembly Language

