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Application of Thermodynamics

Entropy is a function of a quantity of heat which shows

the possibility of conversion of that heat into work.

For a thermodynamic system with a fixed number of

particles, the first law of thermodynamics may be stated as:

Q dU Wδ = + δ , or equivalently, ,dU Q W= δ − δ

where δQ is the amount of energy added to the system by

a heating process, δW is the amount of energy lost by the

system due to work done by the system on its surroundings

and dU is the increase in the internal energy of the system.

The δ’s before the heat and work terms are used to

indicate that they describe an increment of energy which

is to be interpreted somewhat differently than the dU

increment of internal energy.

Work and heat are processes which add or subtract

energy, while the internal energy U is a particular form of
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energy associated with the system. Thus the term “heat

energy” for δQ means “that amount of energy added as the

result of heating” rather than referring to a particular form

of energy.

Likewise, the term “work energy” for δW means “that

amount of energy lost as the result of work”. The most

significant result of this distinction is the fact that one can

clearly state the amount of internal energy possessed by a

thermodynamic system, but one cannot tell how much

energy has flowed into or out of the system as a result of

its being heated or cooled, nor as the result of work being

performed on or by the system.

In simple terms, this means that energy cannot be created

or destroyed, only converted from one form to another. For

a simple compressible system, the work performed by the

system may be written

,Q P dVδ =

where P is the pressure and dV is a small change in the

volume of the system, each of which are system variables.

The heat energy may be written

,Q T dSδ =

where T is the temperature and dS is a small change in the

entropy of the system. Temperature and entropy are also

system variables.

Mechanics

In mechanics, conservation of energy is usually stated

as

E = T + V,

where T is kinetic and V potential energy.
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Actually this is the particular case of the more general

conservation law
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where L is the Lagrangian function. For this particular form

to be valid, the following must be true:

• The system is scleronomous (neither kinetic nor

potential energy are explicit functions of time)

• The kinetic energy is a quadratic form with regard to

velocities.

• The potential energy doesn’t depend on velocities.

Noether’s Theorem

in many physical theories. It is understood as a

consequence of Noether’s theorem, which states every

symmetry of a physical theory has an associated conserved

quantity; if the theory’s symmetry is time invariance then

the conserved quantity is called “energy”. In other words,

if the theory is invariant under the continuous symmetry

of time translation then its energy (which is canonical

conjugate quantity to time) is conserved.

Conversely, theories which are not invariant under shifts

in time (for example, systems with time dependent potential

energy) do not exhibit conservation of energy — unless we

consider them to exchange energy with another, external

system so that the theory of the enlarged system becomes

time invariant again.

Since any time-varying theory can be embedded within

a time-invariant meta-theory energy conservation can always

be recovered by a suitable re-definition of what energy is.
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Thus conservation of energy is valid in all modern physical

theories, such as special and general relativity and quantum

theory (including QED).

Relativity

With the invention of special relativity by Albert Einstein,

energy was proposed to be one component of an energy-

momentum 4-vector. Each of the four components (one of

energy and three of momentum) of this vector is separately

conserved in any given inertial reference frame. Also

conserved is the vector length (Minkowski norm), which is

the rest mass.

The relativistic energy of a single massive particle contains

a term related to its rest mass in addition to its kinetic

energy of motion. In the limit of zero kinetic energy (or

equivalently in the rest frame of the massive particle, or the

center-of-momentum frame for objects or systems), the

total energy of particle or object (including internal kinetic

energy in systems) is related to its rest mass via the famous

equation E = mc2.

Thus, the rule of conservation of energy in special

relativity was shown to be a special case of a more

general rule, alternatively called the conservation of mass

and energy, the conservation of mass-energy, the

conservation of energy-momentum, the conservation of

invariant mass or now usually just referred to as

conservation of energy.

In general relativity conservation of energy-momentum

is expressed with the aids of a stress-energy-momentum

pseudotensor.
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Quantum Theory

In quantum mechanics, energy is defined as proportional

to the time derivative of the wave function. Lack of

commutation of the time derivative operator with the time

operator itself mathematically results in an uncertainty

principle for time and energy: the longer the period of time,

the more precisely energy can be defined (energy and time

become a conjugate Fourier pair). However, there is a deep

contradiction between quantum theory’s historical estimate

of the vacuum energy density in the universe and the

vacuum energy predicted by the cosmological constant.

The estimated energy density difference is of the order

of 10^120 times. The consensus is developing that the

quantum mechanical derived zero-point field energy density

does not conserve the total energy of the universe, and does

not comply with our understanding of the expansion of the

universe. Intense effort is going on behind the scenes in

physics to resolve this dilemma and to bring it into

compliance with an expanding universe.

Mathematical Viewpoint

From a mathematical point of view, the energy

conservation law is a consequence of the shift symmetry of

time; energy conservation is implied by the empirical fact

that the laws of physics do not change with time itself.

Philosophically this can be stated as “nothing depends on

time per se”.

The Law of Conservation of Matter/Energy

The first law has been defined as follows: When a closed

system is altered adiabatically, the total work associated
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with the change of state is the same for all possible processes

between the two given equilibrium states.

A more succinct and comprehensible definition might be

something like this: Matter/energy may be altered but not

created (from nothingness) nor destroyed (reduced to

nothingness). The First Law teaches that matter/energy

cannot spring forth from nothing without cause, nor can

it simply vanish.

The First Law, although not formally defined until the

19th century, helps make science possible. Science depends

on the ability to identify cause-effect relationships. If matter/

energy could spontaneously appear (and have effects on

other matter/energy around it), scientists would never know

whether a given observation was due to a rational cause,

or to a spontaneous generation of matter or energy that was

uncaused. Scientific conclusions would be on shaky ground.

The Law of Causality is thus closely linked with the First

Law of Thermodynamics.

The First Law also demands, if we accept it, one of two

possibilities about the nature of the universe. One is that

it has always existed, changing form perhaps but never

having come from nothingness, or returning to the same.

The other possibility is that it did not come from nothingness,

but from a transcendant (that is, outside the universe)

creator who is not subject to the laws within the universe.

First, they have unconsciously granted to the Law of

Causality the very property of self-existence (that is, an

eternal, uncreated nature) that they are presuming God

couldn’t have. A being who created the universe and the

laws within it, who pre-existed them, would not be slave to
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those laws. And since the Law of Causality is a statement

about relationships between multiple entities, the law could

not even exist until one entity began the act of creating

another one (at which point it would implicitly come to

exist).

Finally, most atheists who use this argument grant to

the universe the exact property of self-existence that they

deny God. They either deny the First Law of Thermodynamics

and believe the universe came into existence from

nothingness, or believe that it is itself self-existing.

However, this latter position violates the unity principle

– that a valid law of science that is found to apply anywhere,

applies everywhere and to everything in the universe,

including the universe as a whole.

The only position that appears to be consistent with the

First Law of Thermodynamics, the unity principle and

causality is that the universe was created by a self-existent

external agent not subject to the laws operational in the

universe it created.

First Law of Thermodynamics

The first law of thermodynamics is the application of the

conservation of energy principle to heat and thermodynamic

processes:

The first law makes use of the key concepts of internal

energy, heat, and system work. It is used extensively in the

discussion of heat engines.
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It is typical for chemistry texts to write the first law as

∆U = Q + W. It is the same law, of course - the thermodynamic

expression of the conservation of energy principle. It is just

that W is defined as the work done on the system instead

of work done by the system.

In the context of physics, the common scenario is one

of adding heat to a volume of gas and using the expansion

of that gas to do work, as in the pushing down of a piston

in an internal combustion engine. In the context of chemical

reactions and process, it may be more common to deal with

situations where work is done on the system rather than

by it.

Enthalpy

Four quantities called “thermodynamic potentials” are

useful in the chemical thermodynamics of reactions and

non-cyclic processes. They are internal energy, the enthalpy,

the Helmholtz free energy and the Gibbs free energy. Enthalpy

is defined by

H = U + PV

where P and V are the pressure and volume, and U is

internal energy. Enthalpy is then a precisely measurable

state variable, since it is defined in terms of three other

precisely definable state variables. It is somewhat parallel

to the first law of thermodynamics for a constant pressure

system

Q = ∆U + P∆V since in this case Q =∆H

It is a useful quantity for tracking chemical reactions.

If as a result of an exothermic reaction some energy is

released to a system, it has to show up in some measurable
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form in terms of the state variables. An increase in the

enthalpy H = U + PV might be associated with an increase

in internal energy which could be measured by calorimetry,

or with work done by the system, or a combination of the

two.

The internal energy U might be thought of as the energy

required to create a system in the absence of changes in

temperature or volume.

But if the process changes the volume, as in a chemical

reaction which produces a gaseous product, then work

must be done to produce the change in volume. For a

constant pressure process the work you must do to produce

a volume change ∆V is P∆V.

Then the term PV can be interpreted as the work you

must do to “create room” for the system if you presume it

started at zero volume.

System Work

When work is done by a thermodynamic system, it is

ususlly a gas that is doing the work. The work done by a

gas at constant pressure is:

For non-constant pressure, the work can be visualized

as the area under the pressure-volume curve which

represents the process taking place. The more general

expression for work done is:
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Work done by a system decreases the internal energy of

the system, as indicated in the First Law of Thermodynamics.

System work is a major focus in the discussion of heat

engines.

Description

The first law of thermodynamics basically states that a

thermodynamic system can store or hold energy and that

this internal energy is conserved.  Heat is a process by

which energy is added to a system from a high-temperature

source, or lost to a low-temperature sink. In addition, energy

may be lost by the system when it does mechanical work

on its surroundings, or conversely, it may gain energy as

a result of work done on it by its surroundings.  The first

law states that this energy is conserved: The change in the

internal energy is equal to the amount added by heating

minus the amount lost by doing work on the environment.

The first law can be stated mathematically as:

dU dQ W= − δ

where dU is a small increase in the internal energy of the

system, δQ is a small amount of heat added to the system,

and δW is a small amount of work done by the system.

The δ′s before the heat and work terms are used to

indicate that they describe an increment of energy which

is to be interpreted somewhat differently than the dU

increment of internal energy. Work and heat are processes

which add or subtract energy, while the internal energy U

is a particular form of energy associated with the system.

Thus the term “heat energy” for δQ means “that amount

of energy added as the result of heating” rather than referring

to a particular form of energy.
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Likewise, the term “work energy” for δw means “that

amount of energy lost as the result of work”. The most

significant result of this distinction is the fact that one can

clearly state the amount of internal energy possessed by a

thermodynamic system, but one cannot tell how much

energy has flowed into or out of the system as a result of

its being heated or cooled, nor as the result of work being

performed on or by the system. The first explicit statement

of the first law of thermodynamics was given by Rudolf

Clausius in 1850: “There is a state function E, called ‘energy’,

whose differential equals the work exchanged with the

surroundings during an adiabatic process.”

Note that the above formulation is favored by engineers

and physicists. Chemists prefer a second form, in which the

work term δw is defined as the work done on the system,

and therefore insert a plus sign in the above equation before

the work term. This article will use the first definition

exclusively.

Application of First Law of Thermodynamics

Constant Volume

Consider a system as shown below

In the above figure, the Work output = 0 and Constant

Volume Processes are invariably. All terms in the above

equation are eliminated with the exception of:-
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E1 + QS = E2

i.e. all the heat supplied goes to increasing the Internal

Energy of the WS

Constant Pressure

Consider a system:

Non-Flow system

Force on the Piston = P A

Work Done = P A ι = P(V2 -V1)

In the First Law equation, most terms are eliminated and

left with:-

E1 + QS = E2 + W

∴  QS = (E2 - E1) + P(V2 - V1) = (E2 + P2V2) - (E1 + P1V1)

= H2 - H1

i.e. The Heat Supplied = The Gain in ENTHALPY.

Adiabatic Process

An adiabatic process is one that occurs without the

exchange of heat with the surroundings.

If the gas-piston system were insulated so that heat could

not get in or out, any expansion or compression would occur

adiabatically. 

This is a Process during which there is NO heat transfer of

heat between the WS and the surroundings.

For Non Flow system:

E1 = E2 +W
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Work Done = (E1 - E2) i.e. Loss of Internal Energy

Therefore Work Done = Loss in Enthalpy.

Figure below shows P-V diagrams for these two processes. 

This figure compares two processes that begin with the

same state and involve expansion to the same volume.

For the isothermal process, the product of P·V remains

constant since T remains constant.

Since the temperature decrease in an adiabatic process,

therefore the  pressure is also less.

Steady Flow Energy Equation

The steady flow energy equation relates to open systems

working under steady conditions i.e in which conditions do

not change with time.

The boundary encloses a system through which fluid flows

at a constant rate, and heat transfer occurs and external

work is done all under steady conditions.

The equation for steady flow is written per unit mass as
21

q w h v gz
2

 − = ∆ + +   

q = heat transfer across boundary per unit mass

w = external work done by system per unit mass

z = fluid height

v = fluid velocity
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h = fluid enthalpy ( u (internal energy + pv (pressure.

specific volume)

Consider a system as shown in figure below:

By applying first law of thermodynamics to above system,

we can write equation as: 
2dQ / dt dW / dt m[ h C / 2 Zg]+ = ∆ + ∆ + ∆

Where, 

dQ/dt= Supplied heat to the system per unit time, 

dW/dt= Input work to the system per unit time, 

m= Mass flow rate, 

∆h=h2-h1

h= Specific enthalpy, 

∆C2/2= Difference in kinetic energy between outlet and

inlet, 

Z= Height measured from some reference datum, 

1, 2 = refer to inlet and outlet, respectively.

Steady Flow Energy Equation of Gas Turbine

Consider an example of a turbine as shown in figure 4.3

below. The engine is designed to produce about 84,000 lbs

of thrust at takeoff.
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The fan and low pressure compressor are driven by the

low pressure turbine.

The high pressure compressor is driven by the high

pressure turbine.

f = total pressure ratio across the fan Å 1.4

c = total pressure ratio across the fan + compressor Å 45

Tin let = 300K

Heat transfer from the gas streams is negligible so we write

the First Law equation as:

S T2 T1Q W m(h h )− = −

Now we see that:

S f Tf c Tc

f p Tf c p Tc

W m h m h

m c T m c T

− = ∆ + ∆

= ∆ + ∆

In above equations we obtain the temperature change by

assuming that the compression process is quasi-static and

adiabatic.

So
1

2 2

1 1

T P

T P

γ−

γ  =    

then

( )2

fan

1

1
T

f T
T fan

T
1.1 T 30K

T

γ−

γ

   = π = ⇒ ∆ =   
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( )2

core

1

1
T

core T
T core

T
3.0 T 600K

T

γ−

γ

   = π = ⇒ ∆ =   

S
Kg KgJ J

W 610 30K 1008 120 600K 1008
s KgK s KgK

− = ⋅ ⋅ + ⋅ ⋅

= 91 x 106 Joules/sec

Ws = -91 Megawatts   (Negative sign implies work doneon

the fluid)

Note that 1 Hp = 745 watts

Steady Flow Energy Equation of Nozzle

Consider a  rocket with a chamber and nozzle. In this the

liquid propellants moves inside the chamber, which converts

the chemical energy into thermal energy.

Once the rocket is operating we see that all the flow processes

are steady, hence we can use the steady flow energy equation.

We assume that the gas behaves as an ideal gas, and there

will be no external work.

Then we can write the First Law as

1 2 S1 2 T2 T1q W h h− −− = −

which becomes  hT2 = hT1

or
2 2
c e

p c p e
C C

C T C T
2 2

+ = +

therefore

e p c eC 2C (T T )= −
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If we assume quasi-static, adiabatic expansion then
1

e e

c c

T P

T P

γ−

γ  =    

so
1

e
e p c

c

P
C 2C T 1

P

γ−

γ
 
   = −      
  

Where Tc and pc are conditions in the combustion

chamber and pe is the external static pressure.

Steady Flow Energy Equation of Compressors

An axial compressor is typically made up of many

alternating rows of rotating and blades called as rotors and

stators respectively as shown in Figures. 

The first row is typically called as the inlet guide vanes or

IGV.

Each successive rotor-stator pair is called a compressor

stage. 
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Considering Bernoulli Equation, where PT is the stagnation

pressure, p is the static pressure and velocity (u is radial, v

is tangential, w is axial).
2 2 2

T
1

P p p(u v w )
2

= + + +

In this the rotor increases the energy and angular

momentum by adding to the kinetic energy as 1/2rv2.

We see that a compressor look like as shown in Figure

Note that the IGV adds no energy to the flow.  It is designed

to add swirl in the direction of motion to lower the Mach

number of the flow.
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Heat Source

A heat source is anything that can heat up a spacecraft.

Heat sources can be external or internal.

External Heat

External heat sources include:

• The Sun

• Reflected sunlight from planets and moons

• Heating by friction when traveling through an

atmosphere or gas clouds, and

• Released heat from planets.

Heat source such as engine, stove or melting pot, will

generate a vertical air flow.

Air Velocity

The air velocity is the center of the air flow which is at a

distance above the floor and can be written as

vc = c1 ( 1000 P / l )1/3

where

vc = air velocity in the center of the air flow (m/s)

c1 = constant characterizing the actual application, typical

values between 1 to 2.
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P = heating power from the source (W)

l = distance above the floor and the heat source (m)

Air Flow Volume

The air flow in a distance above the floor can be calculated

as

Q = c2 P1/3 l5/3

where

Q = air flow volume (m3/s)

c2 = constant characterizing the actual application, typical

values between 0.05 to 0.15

Heat Sink

Heat sinks are cooling mechanisms used to draw out

thermal energy from a variety of electronic components.

Heat Sink prevent components from overheating. The most

common heat sink applications are for computer CPU’s,

microprocessor chips and circuit boards.

The materials used to construct a heat sink

are aluminum and copper, because of its high conductivity.

Gold plating is also heat sinks, as it is used to increase the

transfer of thermal energy.

Depending on design, a fan can be used to make heat sink

airflow that benefits the cooling process.

The Second Law of Thermodynamics

In plain English the Second Law states that entropy

always increases or remains constant in a closed system.

(As a practical matter, for any non-trivial system entropy

tends to increase due to irreversible processes.) The entropy

of an entire closed system can never decrease within that

system. Since the universe can be modeled as a closed
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system the universe is considered to be entropic – that is,

running down. The change in entropy (delta S) is equal to

the heat transfer (delta Q) divided by the temperature (T).

delta S = (delta Q) / T

Second Law of Thermodynamics(heat engine): It is

impossible to extract an amount of heat Q H from a hot

reservoir and use it all to do work W . Some amount of heat

Q C must be exhausted to a cold reservoir. This precludes

a perfect heat engine.

Second Law of Thermodynamics(refrigerator): It is not

possible for heat to flow from a colder body to a warmer

body without any work having been done to accomplish this

flow. Energy will not flow spontaneously from a low

temperature object to a higher temperature object. This

precludes a perfect refrigerator

The Third Law of Thermodynamics

The Third Law of Thermodynamics is the lesser known

of the three major thermodynamic laws. Together, these

laws help form the foundations of modern science. The laws

of thermodynamics are absolute physical laws – everything

in the observable universe is subject to them. Like time or

gravity, nothing in the universe is exempt from these laws.

In its simplest form, the Third Law of Thermodynamics

relates the entropy (randomness) of matter to its absolute

temperature.

The Third Law of Thermodynamics refers to a state

known as “absolute zero.” This is the bottom point on the

Kelvin temperature scale. The Kelvin scale is absolute,

meaning 0° Kelvin is mathematically the lowest possible
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temperature in the universe. This corresponds to about -

273.15° Celsius, or -459.7 Fahrenheit .

In actuality, no object or system can have a temperature

of zero Kelvin, because of the Second Law of

Thermodynamics. The Second Law, in part, implies that

heat can never spontaneously move from a colder body to

a hotter body. So, as a system approaches absolute zero,

it will eventually have to draw energy from whatever systems

are nearby. If it draws energy, it can never obtain absolute

zero. So, this state is not physically possible, but is a

mathematical limit of the universe.

In its shortest form, the Third Law of Thermodynamics

says: “The entropy of a pure perfect crystal is zero (0) at

zero Kelvin (0° K).”

Entropy is a property of matter and energy discussed by

the Second Law of Thermodynamics. The Third Law of

Thermodynamics means that as the temperature of a system

approaches absolute zero, its entropy approaches a constant

(for pure perfect crystals, this constant is zero). A pure

perfect crystal is one in which every molecule is identical,

and the molecular alignment is perfectly even throughout

the substance. For non-pure crystals, or those with less-

than perfect alignment, there will be some energy associated

with the imperfections, so the entropy cannot become zero.

The Third Law of Thermodynamics can be visualized by

thinking about water. Water in gas form has molecules that

can move around very freely. Water vapor has very high

entropy (randomness). As the gas cools, it becomes liquid.

The liquid water molecules can still move around, but not

as freely. They have lost some entropy.  When the water
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cools further, it becomes solid ice. The solid water molecules

can no longer move freely, but can only vibrate within the

ice crystals. The entropy is now very low. As the water is

cooled more, closer and closer to absolute zero, the vibration

of the molecules diminishes. If the solid water reached

absolute zero, all molecular motion would stop completely.

At this point, the water would have no entropy (randomness)

at all.

Temperature

Temperature is the property of a body or region of space

that determines whether or not there will be a net flow of

heat into it or out of it from a neighboring body or region

and in which direction the heat will flow. If there is no heat

flow the bodies or regions are said to be in thermal

equilibrium and at the same temperature.

If there is a flow of heat, the direction of the flow is from

the body or region of higher temperature. Broadly, there are

two methods of quantifying this property. The empirical

method is to take two or more reproducible temperature-

dependent events and assign fixed points on a scale of

values to these events. For example, the Celsius temperature

scale uses the freezing point and boiling point of water as

the two fixed points, assigns the values 0 and 100 to them,

respectively, and divides the scale between them into 100

degrees.

This method is serviceable for many practical purposes

but lacking a theoretical basis it is awkward to use in many

scientific contexts. In the 19th century, Lord Kelvin proposed

a thermodynamic method to specify temperature, based on

the measurement of the quantity of heat flowing between
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bodies at different temperatures. This concept relies on an

absolute scale of temperature with an absolute zero of

temperature, at which no body can give up heat. He also

used Sadi Carnot’s concept of an ideal frictionless perfectly

efficient heat engine. This Carnot engine takes in a quantity

of heat q1 at a temperature T1, and exhausts heat q2 at

T2, so that T1/T2 = q1/q2.

If T2 has a value fixed by definition, a Carnot engine can

be run between this fixed temperature and any unknown

temperature T1, enabling T1 to be calculated by measuring

the values of q1 and q2. This concept remains the basis for

defining thermodynamic temperature, quite independently

of the nature of the working substance.

The unit in which thermodynamic temperature is

expressed is the kelvin. In practice, thermodynamic

temperatures cannot be measured directly; they are usually

inferred from measurements with a gas thermometer

containing a nearly ideal gas.

This is possible because another aspect of thermodynamic

temperature is its relationship to the internal energy of a

given amount of substance. This can be shown most simply

in the case of an ideal monatomic gas, in which the internal

energy per mole (U) is equal to the total kinetic energy of

translation of the atoms in one mole of the gas (a monatomic

gas has no rotational or vibrational energy). According to

the kinetic theory, the thermodynamic temperature of such

a gas is given by T = 2U/3R, where R is the universal gas

constant.
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2

Kinetics and Equilibrium

The connection between the equilibrium constant for a

reaction and the rate constants of the elementary steps by

which it occurs is an important one. We begin by stating

the relationship. We will then demonstrate, for a specific

case, that it is true.

The equilibrium constant for a net reaction is the ratio

of the product of the forward rate constants for all steps

in the mechanism to the product of the reverse rate constants

for all steps in the mechanism:

Keq = k1k2k3 ... /k–1 k–2 k–3 ...

We now show for a specific net reaction and a specific

(proposed) mechanism that this statement is true. Consider

again the reaction of NO2 and F2 to produce NO2F, reaction:

2NO2 + F2 ⇔ 2NO2F

We have written the reaction with the double arrow

because we are now interested in the forward and reverse
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rates at equilibrium. At equilibrium, the overall forward rate

and overall reverse rate must be equal:

rate
f
 = rate

r

This must be true regardless of the detailed pathway by

which the reaction occurs. All available experimental evidence

indicates that the mechanism is the two-step process:

 NO2 + F2 ⇔ NO2F + F [k1, k–1]

 NO2 + F → NO2F [k2, k–2]

When the overall reaction is in equilibrium, so must each

elementary step be.

Consequently, we have used double arrows in the

elementary steps as well. The equality of the forward and

reverse rates of the individual steps is expressed

mathematically as follows.

k1[NO2]e[F2]e = k–1[NO2F]e[F]
e

k2[NO2]e [F]
e
 = k–2[NO2F]

e

Eliminating the concentration of the intermediate, F.

[NO2F]
e
2/[NO2]e[F2]e = k1k2/k–2 k–2 = Keq

The statement made at the outset is thus seen to be true

for this specific case: the equilibrium constant is the ratio

of the product of forward rate constants to the product of

reverse rate constants. For the general overall reaction

occuring by an n-step mechanism,

Keq = k1k2 ... k
n
/k–1 k–2 ... k

–n

Objection is frequently made to the method of derivation

that we have just used, because the mechanism for is not

known with certainty; it is and will remain a hypothesis,

however well based in experiment.
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If it is found that the two step mechanism is indeed NOT

correct, then the relationship is invalid. This is certainly

true. However, even if the mechanism above is incorrect,

Reaction must occur by some mechanism. At equilibrium

each step in the mechanism must be balanced in rate,

enabling us to eliminate concentrations of any and all

intermediates just as we did above, to arrive at a modified

version. The validity of the general relationship is independent

of the details of mechanism.

Thus the intuitively-expected connection between k and

K does indeed exist. In fact, there are many examples in

which the equilibrium constant for a reaction has been

obtained from kinetics studies. This process can never be

reversed however; it is not possible to obtain k by performing

equilibrium studies. Before leaving this matter, we make

one more very important point.

There is a tendency to believe that reactions with large

equilibrium constants are fast, whereas those with small

equilibrium constants are slow. However, neither of these

beliefs is true.

A large value for Keq means that the product of forward

rate constants is much larger than the product of reverse

rate constants. It does not follow, however, that the forward

rate constants are LARGE. It means only that they are

larger than the reverse rate constants.

k1 k2 ... k
n
 >> k–1 k–2 ... k

–n
 does not mean that

k1, k2, ..., k
n
 are large in the absolute sense.

A large Keq can result from the ratio of a slow forward

rate to an even slower reverse rate.
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Catalysis

A number of chemical reactions that ordinarily occur

slowly can be induced to occur more rapidly by the addition

of a suitable substance called a catalyst. We will define a

catalyst as a substance that speeds up a reaction without

itself being consumed or chemically changed in the overall

reaction process. This definition is in practice rather

restrictive, because eventually, all real catalysts become

deactivated by “poisoning” or via irreversible structural

changes; thus they cannot function indefinitely.

For our purposes, here, however, this definition will

serve. The reactant molecule that is affected by the catalyst

is called the substrate. The process by which a catalyst

effects its action is called catalysis. Catalysis is one of the

most intensely studied areas in science because it is of

tremendous biological and industrial importance. We begin

our exploration of catalysts by discussing how they work.

The Mode of Catalyst Function

A catalyst functions either by entering into a slow step

of the uncatalyzed reaction mechanism, or by creating an

entirely new mechanism for the reaction. In either case, it

is thought that the catalyzed pathway has a lower activation

energy than the uncatalyzed path. We can illustrate catalytic

action generically in terms of the following reaction scheme,

where A, B, D, and F are reactants and products in the

overall reaction, and C is a catalyst for the reaction.

A + B → D + F [overall]

Uncatalyzed mechanism:

A + B → AB [slow]
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AB → D + F

Catalyzed mechanism:

A + C → CA [fast]

CA + B → CAB [less slow than first step of uncatalyzed

mechanism]

CAB → D + CF [fast]

CF → C + F [fast]

The effect of the catalyst on the activation energy of the

slow step of the reaction is shown schematically. The catalyst

affects only E
a
; it does not affect the energy of either the

reactants or products of the reaction. The intermediate,

CAB, in which both reactants are bound to the catalyst, is

of particular interest. A possible (and fairly common)

structural motif for this intermediate.

Notice that, although A and B are bound to different sites

on the catalyst, C, they are in proximity and can effectively

interact. Binding of A and B to C causes shifts in electron

density that may facilitate bond breaking within A and/or

B and bond formation between A and B or fragments of

them. Thus the catalyst provides an organizing centre for

A and B, facilitating their interaction. In this manner the

catalyst can overcome the orientation factor discussed earlier.

As soon as the molecule of catalyst is regenerated in the

last step of the 4-step mechanism, it may bind another

molecule of A and proceed once again through the sequence,

converting A and B to D and F. This sequence is repeated

a large number of times, so that generally only a small

amount of catalyst is required to convert a substantial

quantity of reactant to product.
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Chemists call the process by which the catalyst cycles

through the reaction over and over again a catalytic loop.

The unbound form of the catalyst, C, is placed at the 12

oclock position of the loop, and the various forms in which

the catalyst is found are placed more or less evenly around

the remainder of the loop. Arrows show the direction of

reaction around the loop, with reactants brought in from

outside the loop, and products ejected out of the loop.

This is a very effective visual presentation of catalyst

action. The number of times that a molecule of catalyst

cycles through the loop per unit time is called the turnover

number of the catalyst. An effective measure of turnover

number is moles product produced per mole catalyst present

per time.

Let’s look at a specific example of the effect of a catalyst

on a simple reaction, from which we can draw some general

conclusions.

Example: The reaction of ethanol (ethyl alcohol) with

bromide ion to produce ethyl bromide and hydroxide ion.

 C2H5OH + Br– → C2H5Br + OH–

The reaction is quite slow in neutral or basic solution,

but occurs quite rapidly in acidic solution because it is

catalyzed by the hydronium ion, H3O
+. Discuss the

mechanisms for the uncatalyzed and catalyzed processes.

Solution: The uncatalyzed reaction is thought to occur

in a single elementary step, in which bromide ion attacks

the hydroxyl carbon atom of ethanol while the hydroxide

group simultaneously departs:
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Br– + C2H5OH → activated complex → C2H5Br + OH–

Rate = kobs[C2H5OH][Br–]

This mechanism is proposed based on the experimental

rate law, which is overall second order. The observed rate

law for the catalyzed process is

Rate = kobs[Br–][C2H5OH][H3O
+]

The following three-step mechanism is consistent with

this rate law if kobs is identified with k2K1:

 C2H5OH + H3O
+ → C2H5OH2

+ + H2O [fast, K1]

C2H5OH2
+ + Br– → C2H5Br + H2O [slow k2]

2H2O → H3O
+ + OH–

The reaction coordinate diagrams for the uncatalyzed

and catalyzed pathways. Several general statements about

catalysis are evident from this example.

• Because the catalyst does not appear in the overall

equation for the reaction, it does not affect the

equilibrium; it affects only the kinetics. The catalyst

speeds up not only the forward reaction, but also the

reverse, by the same factor. The position of equilibrium

remains the same.

• the activation barrier is lower in the catalyzed

mechanism. Even though the catalyzed path involves

more steps, the overall reaction occurs more rapidly.

• The concentration of the catalyst appears in the rate

law, even though the catalyst does not appear as a

reactant or product in the overall equation.

• Although a catalyst and an intermediate share the

property of not appearing in the overall equation, they
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are different types of things. First, the catalyst appears

in the rate law; an intermediate cannot. Second, the

catalyst appears first as a reactant, then is generated

later as a product. An intermediate appears first as

a product, then later as a reactant.

Examples of Catalysis

We will now briefly discuss several examples of catalysis

that are actually used on a mammoth scale in the chemical

industry. Each of these processes, in its own way, has a

major impact on the quality of our lives.

The Polymerization of Ethylene

Ethylene is a very simple molecule with formula C2H4.

It is a gas, obtained as a byproduct during the catalytic

cracking of petroleum. Under certain conditions, ethylene

molecules can be made to join together end-to-end to form

very long chain-like molecules of polyethylene, so called

because it consists of many (poly) ethylenes. The process

is represented.

TiCl3

             2n CH2 = CH2  → –(CH2CH2CH2CH2)n
–

Even at high temperature and pressure of ethylene, this

process occurs negligibly slowly. In the presence of a small

amount of a modified form of TiCl3 (called tickle-3 in the

plastics industry), however, it occurs rapidly at only moderately

high temperature and pressure. The process is referred to

as Ziegler-Natta catalysis after its two coinventors, who jointly

received the Nobel Prize in Chemistry in 1963. Since the

discovery of this process in the 1950’s, the entire plastics

industry has developed and grown to huge proportions.
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To this day, the mechanism of Ziegler-Natta catalysis is

not fully understood. Mechanistic studies are difficult for

several reasons, one of which is that the process is

heterogeneous; that is, the catalyst (TiCl3) and substrate

(ethylene) are in different phases. The catalytic process

takes place on the surface of crystals of TiCl3, which rapidly

become covered with and blocked from view by the resulting

polyethylene. Much effort is ongoing in the US chemical

industry to develop more efficient and easily handled Ziegler-

Natta catalysts.

The Production of Sulfuric Acid.

Year after year, sulfuric acid ranks first on the list of the

top ten chemical substances produced in the United States:

billions of pounds are produced annually. Sulfuric acid is

synthesized by the so-called Contact Process, which involves

the four sequential steps below:

S + O2 → SO2 [fast]

SO2 + O2 → SO3 [slow, because it occurs by a termolecular

elementary process catalyzed by V2O5]

SO3 + H2SO4 → H2S2O7 [fast]

H2S2O7 + H2O → 2H2SO4 [fast]

The reaction of SO3 with water is very exothermic and

causes extensive spattering and production of a fine mist

of highly acidic water.

For this reason, direct reaction of SO3 with water in the

third step is impractical. Instead, SO3 is bubbled into pure

sulfuric acid, with which it reacts smoothly to give fuming

sulfuric acid, H2S2O7. This can then be treated with the

stoichiometrically correct amount of water to give sulfuric
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acid. The contact process has been so perfected that sulfuric

acid is very inexpensive to produce. Consequently, it is used

in any industrial process requiring acid.

It finds it major uses in the production of phosphate

fertilizers; in paper manufacture; in the petroleum industry;

in steel production; and in the production of detergents.

The importance of these products in our lives is obvious.

Catalytic Converters

For some years now, catalysts have been placed within

the exhaust systems of automobiles to reduce the amount

of poisonous or otherwise harmful emissions. These noble

metal catalysts (based on platinum and palladium) carry

out a dual function. First, they facilitate oxidation of carbon

monoxide, resulting from incomplete hydrocarbon

combustion, to carbon dioxide:

                Pt

CO(g) + 1/2 O2(g) → CO2(g)

Second, they catalyze decomposition of nitric oxide,

produced during engine operation and oxidized rapidly to

toxic NO2 by atmospheric oxygen, to N2 and O2.

Unfortunately, catalytic converters also facilitate oxidation

of SO2 to SO3, which is the precursor of acid rain. Low-

sulfur petroleum distillates are therefore essential.

The Haber Process. Vast quantities of ammonia are

synthesized each year for use as fertilizer. Currently the

most efficient process for ammonia synthesis is the Haber-

Bosch Process, developed during the ten-year period

preceding 1913, in which nitrogen and hydrogen react
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directly at high temperature and pressure and in the

presence of an activated iron catalyst to form ammonia.

         Fe

N2(g) + 3H2(g) → 2NH3(g)

A catalyst and high temperature are necessary to cause

the reaction to go at a reasonable rate. Unfortunately, high

temperature makes the exothermic reaction less favored, so

very high pressure is used to favour products.

Even with conditions optimized, reaction is incomplete,

and unreacted hydrogen gas is recycled for maximum

efficiency of ammonia production. Nitrogen fertilizers

produced from ammonia are largely responsible for the

incredible growth in agricultural production over the decades

since the First World War, when the process was first put

on line in Germany. Ironically, the original motivation for

development of the process was the requirement of explosives

for the war effort.

The processes discussed above have at least three features

in common. First, catalysis is heterogeneous; the catalyst

is in all cases a solid, interacting with the substrate in the

gas phase. Second, the mechanisms for these processes are

incompletely understood. Thus catalysts are used

successfully on a huge scale, even though we do not

understand how they work.

Third, in all cases the catalyst involves a transition

metal, from the D block of the periodic table. Transition

metals are often versatile catalysts because they are flexible

in coordination number (that is, the number of atoms, ions,

or molecules to which they may bind in a Lewis acid-base
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interaction); in stereochemistry (that is, in the shapes that

their adducts assume); and in oxidation state (that is, in

the charge that they carry).

Nature has chosen transition metals to serve as the

centerpieces for many of its catalysts, the enzymes, most

probably for these same reasons.



Thermodynamics Equilibrium

37

3

Thermal Equilibrium

The condition under which two substances in physical

contact with each other exchange no heat energy. Two

substances in thermal equilibrium are said to be at the same

temperature.

Now clearly the collection of atoms in a gas can perform

many different types of motion. We could imagine all the

atoms standing completely still (or as still as they are allowed

by quantum mechanics) or we could imagine half of them at

rest and the other half moving back and forth in oscillatory

motion. These are not the types of states of matter which we

describe through thermodynamics. We wish to describe the

state which ensues in a system of particles after a well defined

set of external conditions have been in effect for sufficiently

long time that these average properties have converged to

their final values. We call this state the state of thermal

equilibrium.
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An example of a thermodynamic system which is not in

thermal equilibrium is a gas which occupies one half of the

volume V which is available to it. Clearly there will be a

macroscopic evolution of the volume of gas to a state where

it occupies all of V at which point the gas may be in its

thermodynamic equilibrium state.

Another example of a system which is not in thermal

equilibrium is a cup of hot coffee on the breakfast table. If

you left it there for several hours it would cool off until it

reached thermodynamic equilibrium with the surroundings.

If there were two cups of coffee on the table and they were

both left to evolve into thermal equilibrium with the same

surroundings then clearly the two cups of coffee would be in

thermal equilibrium with one another as well. This postulate

is sometimes called the zeroth law of thermodynamics.

From the zeroth law of thermodynamics comes the idea of

a thermometer and the concept of temperature. We can

classify the thermodynamic equilibria of even the most

complicated systems in terms of the state of a simple system

with which it is in thermal equilibrium. Thus if we can classify

the thermodynamic state of a simple physical system be a

number then we can use this same number to classify the

thermodynamic equilibrium state of even the most

complicated of systems.

Naturally we have lots of freedom for specifying a

temperature scale. We could for example choose the

temperature to be the length of a bar of a specific material

because as we shall see the dimensions of solids vary with

the thermal equilibrium state of the solid. This so called

thermal expansion effect is however a complicated which

depends on details in the atomic interaction potential which
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we do not want to build into our definition of temperature.

Instead we choose to define the temperature in terms of the

simplest possible system which has a thermal equilibrium.

Specifically the Kelvin temperature scale used in physics is

defined as being proportional to the pressure of a very dilute

gas held at constant volume.

This implies that zero temperature is the temperature of a

dilute gas which is so cold that it exerts a vanishing pressure

on the walls of the volume that contains it. We need a second

fixed point to fully define the temperature scale and for this

physicists have chosen the so-called triple point of water.

The triple point of water is where solid, liquid, and gas of

H2O coexist. It is a common and well defined thermal

equilibrium state which we label by the temperature 273.16

K. The Kelvin temperature scale is thus defined as

T = 273.16K
trip

p

p

where ptrip is the pressure in the fixed volume of gas when it

is in thermal equilibrium with a mixture of water ice and

water vapour at its triple point. It is an advantage of this

definition that it is independent of the detailed properties of

any one material.

Other temperature scales in use for historical reasons are

defined in terms of the Kelvin ideal gas temperature scale.

Specifically the Celsius and Fahrenheit temperature scales

are defined as

Tc= TK – 273.15KTf = 
9

5
TK – 459.67°F

Phase Equilibrium in Solutions

Many of the ideas presented in the discussion of phase

equilibrium of pure substances are also applicable to
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mixtures of pure substances. In this section we discuss the

so-called colligative properties of solutions (homogeneous

mixtures) in terms of phase equilibrium.

Solutions and Concentration Units

 We begin with definitions of some terms that are used in

discussing solutions:

• Solution—a homogeneous mixture. This means that

the components may be blended in any desired

composition, as long as the result is homogeneous.

Homogeneous means that the composition of the

mixture is the same at all points and independent of

time.

• Solvent—the component present in major amount. In

most cases, the solvent is a liquid.

• Solute—a component present in minor amount. In

general a solution may contain more than one solute.

If we add 1.0 g of sugar to 10 mL of water in a beaker, the

sugar falls to the bottom of the beaker where it forms a pile.

Over the period of a few minutes, the pile becomes smaller

until finally no solid sugar remains visible. The sugar has

dissolved in the water. The result is a solution of sugar in

water. Because water is present in major amount, it is the

solvent, and sugar is the solute. The solution is clear and

displays all of the usual properties of a liquid. There is no

cloudiness (opacity) to indicate the presence of the sugar.

In preparing a solution, it is usually important to specify,

as precisely as possible, the amount of solute present per

unit amount of solvent or per unit amount of solution. This

is called the concentration of the solution. The concentration
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is an intensive property of the solution, independent of the

amount of solution present. In this respect, concentration is

similar to density. There are several ways to express

concentration, discussed below.

• Molarity, M. If A represents the solute, the molarity

of the solution is the number of moles of A per liter

of solution. Symbolically,

M
A
 = [A] = moles A/1 L solution

• Molality, m. The molality of a solution of A in some

solvent is the number of moles of A per kilogram of

solvent. Symbolically,

m
A
 = moles A/1 kg solvent

• Mole fraction, X. The mole fraction of A in a solution

containing A and at least one other substance is the

ratio of the number of moles of A to the total number

of moles of all substances. Symbolically,

XA = moles A/total moles

If A is the only solute, then X
A
 = moles A/(moles A + moles

solvent)

There are several other ways to express concentration, but

those above are most common. We will use molarity most

frequently.

Example: How many mL of 0.26 M H2SO4 are required to

react completely with 26.72 mL of 0.18 M NaOH according

to

H2SO4(aq) + 2NaOH(aq) → 2H2O + Na2SO4(aq)

Solution.Moles NaOH = 26.72 mL NaOH * 0.18 mole

NaOH/1000 mL NaOH = 4.810 × 10–3 moles NaOH

From the stoichiometry of the equation,
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Moles H2SO4

= moles NaOH * (1 mole H2SO4/2 mole NaOH)

= 4.810 × 10–3 * 1/2

= 2.405 × 10–3 moles H2SO4

Volume H2SO4

= moles H2SO4 * (1000 mL H2SO4/0.26 mole H2SO4)

= 2.405 × 10–3 × 1000/0.26

= 9.25 mL H2SO4

Suppose that we require 100 mL of a 0.10 M sulfuric acid

solution, but all we have available is commercial concentrated

sulfuric acid, which is 18 M in H2SO4.

We can prepare the required solution by dilution. Dilution

is the process of adding a known volume of a concentrated

solution of a reagent to water (or another solvent) to give a

less concentrated solution.

It is a very frequently-used laboratory technique. The key

to dilution is that the number of moles of H2SO4 in the

required volume of 18 M H2SO4 is the same as the number

of moles in 100 mL of 0.1 M H2SO4. The number of moles is

the product of solution volume and molarity both before and

after dilution. Using subscript “i” for initial quantities and

“f” for final quantities,: ViMi = VfMf .

Here Vi is the volume of concentrated H2SO4, Mi is its

molarity, Vf is the volume of dilute H2SO4, and Mf is its

molarity. Vi can easily be calculated from the known values

of the other 3 quantities. The result is 0.556 mL.

Solutions have some interesting properties called colligative

properties. They depend on the nature of the solvent and

the amount (but not the identity) of the solute. These
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properties may be understood in terms of phase equilibrium.

We begin with the effect of a solute on the vapour pressure

of a liquid solvent.

Raoult’s Law

 Consider a solution of a non-volatile solute, B, in a volatile

solvent, A. A volatile substance has an appreciable vapour

pressure at room temperature; a non-volatile substance has

essentially zero vapour pressure. How is Pvap of the solvent

in the solution related to Pvap of the pure solvent? Raoult

answered this question experimentally in 1886 when he

showed that equation is valid for ideal solutions: PA = XAPA°.

PA = the vapour pressure above the solution due to solvent,

XA = the mole fraction of solvent, and PA° = the vapour

pressure of pure solvent. This equation is called Raoult’s

Law. We can make several statements about this law.

• X
A
 < 1 so the vapour pressure of the solution is less

than that of pure solvent.

• No term in the equation involves any chemical or

physical property of the solute. It doesn’t matter what

the solute is, only that it is non-volatile.

• The equation is ideal because it holds only for ideal

solutions. An ideal solution is one in which

intermolecular forces between A molecules, between

B molecules, and between A and B molecules are the

same. If these forces are the same, there is no enthalpy

change when solute dissolves in solvent. It is important

to realise that Raoult’s Law has very limited

applicability. Very few real solutions even approach

the ideal, and most are definitely NOT ideal. These do
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not obey Raoult’s Law. Some solutions are nearly ideal

when very dilute; thus Raoult’s law approximately

describes the vapour pressures above most dilute

solutions.

• The law is purely statistical. It says that the tendency

for solvent molecules to escape the liquid is in

proportion to the relative abundance (mole fraction)

of solvent molecules at the liquid surface.

Raoult’s Law can be understood physically by considering

the liquid surfaces of pure solvent and solution, shown in Figure.

Fig. Raout’s Law

In pure solvent, all surface molecules are solvent. However,

in the solution, a fraction of molecules at the surface are

solute molecules, which are non-volatile (cannot escape to

the vapour phase). These reduce the surface area available

for escape of solvent molecules, so that the evaporation rate

of solvent is reduced from that in pure solvent. The fraction

of surface area occupied by solvent molecules is directly

related to the mole fraction of solvent.

The evaporation rate, and consequently the vapour

pressure, is reduced by a factor equal to the ratio of surface

areas, which is the mole fraction of solvent. Raoult’s law,

equation, follows.
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Colligative Properties

The extent to which the vapour pressure is lowered depends

quantitatively on the amount of solute present. Defining ∆P

= PA° PA, and substituting for PA using Raoult’s Law, gives

∆P = PA° – XAPA° = PA° (1 – XA) = XBPA°

where XB is the mole fraction of solute.

The vapour pressure lowering, ∆P, is the first of four

colligative properties. The remaining three are consequences

of ∆P, and may be examined in terms of the phase diagrams

for the pure solvent and the solution. These are shown

superimposed in Figure.

Fig. Phase Diagram for a Pure Substance and solution

for which the Substance is the Solvent

The l – v line for the solution (dashed line) is lower at all

temperatures than that for the pure solvent (solid line). It

therefore intersects the P = 1 atm line at a higher temperature.

The boiling point of the solution is higher than that of pure

solvent by an amount ∆Tb, which is called the boiling point

elevation, and is indicated on the diagram.

The boiling point elevation is the second colligative

property. ∆Tb is defined as Tb(solution) – Tb(solvent), which
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makes it a positive number. The boiling point elevation is

directly proportional to the molality of the solute:

DTb = Kb*m

The value of the constant, Kb, called the boiling point

elevation constant for the solvent, depends only on properties

of the solvent. Thus equation is valid for a particular solvent

no matter what the solute is. Because the l – v line for the

solution is lower, it intersects the s – v line at lower T than

does the l – v curve for the pure solvent. The s – l line for the

solution (dashed in the figure) therefore lies to the left of

that for the pure solvent. Consequently the triple point for

the solution is lower than that for the solvent by an amount

∆Tf, indicated on the diagram. Over small ranges of T and P,

the s – l lines are linear and roughly parallel. It follows that

the freezing point for the solution is lower than that for the

solvent by about the same amount, ∆Tf. ∆Tf is called the

freezing point depression, and is defined to be a positive

number: ∆Tf = Tf – Tf(solution). It is the third colligative

property. The freezing point depression is similar to the boiling

point elevation in being directly proportional to the solute

molality:

∆Tf = Kf*m

Kf is the freezing point depression constant and depends

only on properties of the solvent. Table gives values of Kb

and Kf for several common solvents.

Table. Molal Boiling Point and Freezing Point Constants

Solvent T
b
(oC) K

b
T

f
(oC) K

f

acetic acid 118.2 2.93 17 3.90

chloroform 61.2 3.63
naphthalene 80 6.8
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water 100 0.52 0 1.86

camphor 179 40

carbon tetrachloride 76.6 5.03
ethanol 78.6 1.22

n-octane 125.7 4.02

Unlike the vapour pressure lowering, which is usually small

and difficult to measure accurately, ∆Tb and ∆Tf are relatively

easily and accurately measured. The freezing point depression

used to be applied in the determination of molar masses of

unknown substances. However, because molar masses can

now be determined much more accurately using mass

spectrometry, the freezing point method is seldom used.

There are a number of practical uses of the freezing point

depression and boiling point elevation colligative properties.

For example, sodium chloride is often added to water for

cooking, not only for flavour, but to raise the boiling

temperature and accelerate the cooking chemistry. Calcium

chloride is spread on icy roads in winter to lower the freezing

point of the water. And antifreeze (ethylene glycol) is added

to the cooling systems of automobiles to protect against

boilover in the summer and coolant freeze in winter. The

fourth colligative property is called osmotic pressure. It can

be understood in terms of the apparatus, which consists of

two arms, separated by a semi-permeable membrane.

This is a membrane with pores that allow passage of small

molecules (solvent) but block larger molecules (solute). In

the left arm of the apparatus is placed a pure solvent, usually

water. In the right arm is placed a solution of the same

solvent. The dots in the figure represent molecules of solute

present in the solution. Solvent molecules can pass through

the membrane in either direction. However, their passage
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from right to left (from solution to pure solvent) is impeded

somewhat because solute molecules block their access to

some of the pores. More solvent molecules per unit time pass

from solvent to solution than in the reverse direction. The

result is that the amount of solvent in the right arm increases

with time and the solution becomes more dilute.

It is possible to prevent the net flow of solvent from left to

right by applying pressure to the top of the liquid column in

the right arm of the apparatus. The applied pressure

increases the rate of passage of solvent from solution to

solvent until it is equal to the rate of passage in the other

direction. Under these conditions, the system is in

equilibrium and the concentration of the solution does not

change with time. The pressure that must be applied to stop

the net flow of solvent is called the osmotic pressure,

symbolized P. Its magnitude is directly proportional to the

temperature and the molarity of the solution. The ideal gas

constant, R, is the proportionality constant:

Π = M*R*T

Realizing that molarity is moles of solute per unit volume

of solution, expressed in liters, we can convert equation to a

form analogous to the ideal gas law:

ΠV = n*R*T

It may seem odd that the ideal gas constant appears in an

equation that describes a property of a liquid solution.

However, a non-volatile solute dissolved in a solvent behaves

much like a gas, because the solute molecules are far apart

and are free to roam over the entire solution volume. This

similarity between a gas and a dissolved solute causes

osmotic pressure to obey a gas-law type equation.
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Fig. Osmotic Pressure

The similarity in fact extends further. The osmotic pressure

calculated from equation has exactly the same value as the

pressure of a sample of gas occupying the same volume at

the same temperature. We know that the gas will expand if

the pressure exerted on it is less than the pressure that it

exerts. In the same way, the solution in Figure tends to

“expand” (increase in volume) by dilution when in contact

with pure solvent unless an external pressure equal to its

osmotic (internal) pressure is applied.

A simple calculation using equation shows that

concentrations as low as 10–4 M give readily measureable

osmotic pressure. The osmotic pressure is therefore much

more sensitive to the presence of solute than the other

colligative properties. It can be used to determine the molar

masses of huge molecules like proteins, which dissolve in

water to give solutions that may be concentrated in terms of

weight per cent, but are of very small molarity due to the

large molar masses (on the order of 10000 µ).
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Example: A solution of 0.0720 g of the blood protein,

hemoglobin, in 100 mL water has an osmotic pressure of

2.10 torr at 300 K. What is the molar mass of hemoglobin?

Solution: Calculate the concentration in moles hemoglobin

per liter using the osmotic pressure. Then equate the moles

per liter with the grams per liter to get molar mass.

C = Π/RT = (2.10 torr/760 torr per atm)/(0.08206 atm-L/

Mole-K) (300 K)

= 1.13 × 10–4 moles/L

Since 100 mL of solution contains 0.0720 g, a liter would

contain 0.720 g. Thus

MM = 0.720 g/1.13 × 10–4 moles = 64000 g/mole

You might think about whether freezing point depression

or boiling point elevation measurements would be useful in

determining this MM.

It may not be clear that osmotic pressure, the tendency

for solvent to flow spontaneously from solvent to solution

across the barrier, is a consequence of the vapour pressure

lowering of the solvent in the solution. Figure shows two

beakers, one containing pure solvent, the other the same

solution that is in the right arm of the apparatus.

Fig. New Flow of Solvent to Solution via Gas Phase

The beakers are placed in a closed container. Solvent begins

to evaporate from each beaker in an attempt to establish the

equilibrium vapour pressure. However, this pressure is less
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for the solution than for the pure solvent. As pure solvent

evaporates from the left beaker in an attempt to establish

the vapour pressure, P°vap, it condenses in the right beaker

as the solution tries to lower the vapour pressure to its

equilibrium value, Pvap. The solution gradually becomes more

dilute due to spontaneous “flow” of solvent into it. The origin

of the osmotic pressure phenomenon in the solvent vapour

pressure lowering is clear.

Mechanical Equilibrium

We are now ready to consider objects in equilibrium. There

are two conditions to equilibrium for most objects.

The first condition is stated by Newton’s first law:


r

F = 0

The second condition of equilibrium is

τ
r

= 0

Basically, we say that a body is in equilibrium if the vector

sum of the forces and torques are zero.

Usually, we will need to look at both translational

equilibrium and rotational equilibrium. The rule of thumb is

that if the body is a point source, or all of the forces act at

the same point on the body, then we do not need to consider

rotational equilibrium. If the forces act at different points on

the body, then we must take rotation into account.

Centre of Mass

In order to simplify our calculations, it is convenient to

talk in terms of the centre of mass, or centre of gravity, of a

body.

We define the centre of mass to be the weighed average of

the components of the body



Thermodynamics Equilibrium

52

r

CMX = =
 


r

i i i i

i

m x m x

m M

If the object is a continuous mass distribution, we replace

the summation with an integral. Also, notice that the centre

of mass is a vector.

The usefulness of the centre of mass is that we will often

need to calculate the torque of the centre of mass about

some point. It can be shown that in terms of the centre of

mass, the equilibrium conditions reduce to


r

extF = 0

τ
r

ext = × =
r r

ext 0R F

where Fext is all of the forces external to the body, and R is

the distance from the centre of mass.

Example

Locate the centre of mass of the machine part in the

diagram below

By symmetry, the centre of mass lies along the axis and

the centre of mass of each part is midway between its ends.

The volume of the disk is 8p cm3 and that of the rod is 12p

cm3. Since the weights of the two parts are proportional to

their volumes,
disk

rod

W

W

π
= =

π

8 2

12 3

Taking the origin to be at the left face of the disc on the

axis, we have

x1 = 1 cm x2 = 8 cm
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and so

XCM

+
=

+
disk 1 rod 2

disk rod

W X W X

W W

+
=

+

rod rod

rod rod

2
(1 cm) (8 cm)

3
2

3

W W

W W

= 5.2 cm

Example

A 5 m long rigid rod whose own weight is negligible is

pivoted at a point 2 m from the left end. A mass of m1 = 25 kg

is attached to the left end.

What must the mass be of a block attached to the right

end so that the rod is in equilibrium? What is the force of the

pivot on the rod?

There are no forces in the x direction. The forces in the y

direction are

m1g + m2g – P = 0

The torque about the pivot is (taking counterclockwise to

be positive)

m1g(l0) – m2g(l – l0) = 0

Solving this for m2 yields

 m2 =
−
0

1

0

l
m

l l

=
−

(5 )
(25kg)

(5 2 )

m

m m

= 41.67 kg.
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Thus, the force of the pivot must be

P = m1g + m2g

= (m1 + m2)g

= (24 kg + 41.67 kg)
 
 
 

2
9.8

m

s
= 653.37 N.

Example

A 40 kg ladder is 10 m long. It leans in equilibrium against

a frictionless vertical wall and makes an angle of 60° with

the horizontal. Find the magnitude and direction of the force

that the floor and wall exert against the ladder.

Since the wall is frictionless, the force from the wall is

horizontal. The force from the floor consists of two parts: a

normal component that is vertical, and a friction force that

is horizontal. Setting up the force components

x component: f – Nw = 0

y component: Nf – mg = 0

Similarly, since the forces act at different locations on the

ladder, there will also be a torque. Taking the torque to be

positive in the counterclockwise direction around the point

on the floor, the torques is

torques: Nwlsinq – mg(l/2)cosq = 0

where l is the length of the ladder. So we need to find Nw, Nf

and f. From the y component equation, we see that

Nf = mg

while the x component yields
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f = Nw

Similarly, from the torque equation, we have

F1= mg/2tanq

Thus,

F1
=

θ2tan

mg

( )

 
 
 =

°

2
(40 kg) 9.8

2tan 60

m

s

= 113.2N

f = 113.2 N

N = mg

 
=  

 
2

(40 kg) 9.8
m

s

= 392 N.

So, the total force from the floor is

F = +2 2

fN f

( ) ( )= +
2 2

392 113.2N N

= 408 N

Q  −  
=  

 

1tan
fN

f

−= 1 (392 )
tan

(113.2 )

N

N

= 73.9°

Chemical Equilibrium

Chemical equilibrium, state of balance in which two

opposing reversible chemical reactions proceed at constant

equal rates with no net change in the system.

For example:

When hydrogen gas, H2, and iodine gas, I2, are mixed, and

gaseous hydrogen iodide, HI, is formed according to the



Thermodynamics Equilibrium

56

equation H2 + I2 → 2HI, no matter how long the reaction is

allowed to proceed some quantity of hydrogen and iodine

will remain unreacted. The reason reactants in a reversible

reaction are never completely converted to product is that

an opposing reaction is taking place simultaneously, i.e.,

some of the newly formed HI is being converted back into

hydrogen and iodine.

For any particular temperature, a point of equilibrium is

reached at which the rates of the two opposing reactions are

equal and there is no further change in the system. This

equilibrium point is characterized by specific relative

concentrations of reactants and products and will also be

reached from the opposite direction, i.e., if one starts with

hydrogen iodide and allows it to decompose into hydrogen

and iodine. The equilibrium point can be described by the

mass action expression, which defines the equilibrium

constant, Keq, in terms of the ratio of the molar concentrations

of the products to those of the reactants.

For the reversible reaction used as an example, the

equilibrium constant is

Keq =[HI]2/[H2][I2]

for the general reversible reaction nA + mB + · · · pC + qD + ·

· ·, the equilibrium constant is: where [A], [B], [C], [D], … are

the molar concentrations of the substances and n, m, p, q, …

are the coefficients of the balanced chemical equation. The

larger the equilibrium constant for a given reaction, the more

the reaction is favoured, since a larger value of Keq means

larger concentrations of the products relative to the reactants.

The equilibrium constant is related to the change in the

standard free energy, G°, of the system by the equation
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∆G° = –RT. ln Keq, where R is a constant, T is the temperature

in degrees Kelvin, and ln Keq is the natural logarithm of the

equilibrium constant.

Chemical equilibrium can be defined for many types of

chemical processes, such as dissociation of a weak acid in

solution, solubility of slightly soluble salts, and oxidation-

reduction reactions. In all of these cases, the equilibrium

constant or its analogue is defined for certain conditions of

temperature and other factors. If any of these factors change,

the system will respond to establish a new equilibrium, in

accordance with Le Chbtelier’s principle.

Chemical equilibrium applies to reactions that can occur

in both directions. In a reaction such as:

CH4(g) + H2O(g) <—> CO(g) + 3H2(g)

The reaction can happen both ways. So after some of the

products are created the products begin to react to form the

reactants. At the beginning of the reaction, the rate that the

reactants are changing into the products is higher than the

rate that the products are changing into the reactants.

Therefore, the net change is a higher number of products.

Even though the reactants are constantly forming products

and vice-versa the amount of reactants and products does

become steady. When the net change of the products and

reactants is zero the reaction has reached equilibrium. The

equilibrium is a dynamic equilibrium. The definition for a

dynamic equilibrium is when the amount of products and

reactants are constant.

Chemical Equilibrium—A General Concept

The results of experiments on many different reactions

over many years allow us to generalize as follows. For the
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generic reaction, in which the participating species are gases,

the partial pressures at equilibrium obey the simple

expression, independent of the initial pressures of the gases.

aA + bB → dD + fF

Keq = PD
dPF 

f/PA
aPB

b

In words, the equation says that if we divide the product

of the pressures of the products, each raised to the power of

its stoichiometric coefficient in the equation for the reaction,

by a similar product of reactant pressures, the result is a

constant, Keq, that depends only on temperature.

Every chemical reaction, simple or complex, obeys an

equilibrium constant expression of the form of equation

above.

This is a very simple result that makes possible calculations

involving the direction and extent of reaction. If the value of

Keq for a reaction is large, the pressures of products will be

large relative to those of reactants at equilibrium — the

equilibrium lies to the right.

If Keq is small, pressures of products will be small relative

to those of reactants at equilibrium — the equilibrium lies to

the left.Our conclusions are not restricted to gas phase

reactions. An expression analogous to equation applies to

reactions in solution, except that molarities must be used in

place of pressures.

In fact, when we recognize that gas pressure is proportional

to n/V (molarity) through the ideal gas law, we realise the

equivalence of expressions in terms of pressure and molar

concentration. Equation therefore applies to all reactions, in

the gas phase, in solution, or in some combination:

Keq = [∆]∆[F]f/[A]a[B]b
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The brackets signify molarity. One caution is in order for

gas phase reactions. The numerical value and the units of

the equilibrium constant depend on whether pressures or

molarities are used. If Keq is specified in units of bar, pressures

are used in calculations; if in moles/L, concentrations are

used. If Keq has no units, either pressure or molarity may be

used.

Rules for Writing Equilibrium Constant

Expressions

It is important to become facile in writing and using

equilibrium constant expressions for reactions. Several

guidelines will help in this regard.

Conventions for expressing reagent concentrations:

• Partial pressure in bar is used for gaseous reagents;

• Molarity is used for a reagent dissolved in a solvent;

• Concentrations for pure liquids and solids are not

written explicitly in Keq expressions. The concentration

of a pure liquid or solid is its density, which at a given

temperature is constant for a condensed phase. It is

usually included in the equilibrium constant rather

than being explicitly written.

Example: Write the equilibrium constant expression for

the reaction

N2(g) + 3H2(g) → 2NH3(g)

Solution: All species are gases, so we use their partial

pressures:

Keq = PNH3
2/PH2

3PN2

Example: Write the equilibrium constant expression for

the reaction
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Fe(s) + 2Fe3+(aq) → 3Fe2+(aq)

Solution: Only a pure solid and dissolved species are

involved. We leave the pure solid out and use molarity for

the ions:

Keq = [Fe2+]3/[Fe3+]2

Example: The reaction of hydrogen and oxygen to form

water may be written in many equivalent ways, two of which

are

H2(g) + 1/2 O2(g) → H2O(g) K1 = PH2O/PH2PO2
1/2

2H2(g) + O2(g) → 2H2O(g) K2 = PH2O
2/PH2

2 PO2

How are K1 and K2 related?

Solution: Reaction (b) is clearly twice reaction (a). We see

that K2 is K1
2. Generally,

If reaction (2) = n reaction (1), then K2 = K1
n

Reversing a reaction. If a reaction is reversed (turned

around), its equilibrium constant is reciprocated (inverted).

Example: Write the equilibrium constant expression for

the “reaction”

H2O(l) → H2O(g)

Solution: Although this is not a chemical reaction, since

no new substances are produced, we can treat it by the same

rules. In writing the equilibrium constant expression, we leave

out the pure liquid and use the partial pressure of the water

vapour:

Keq = PH2O(v) = Pvap

Thus the equilibrium vapour pressure of a pure liquid (or

solid) is a special case of an equilibrium constant.

Multiplication of a reaction by a constant: If all of the

stoichiometric coefficients of an equation are multiplied by

the same constant, the new equilibrium constant expression
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is obtained by raising the old one to a power equal to the

constant. This is better appreciated by example.

Example: The reaction of nitrogen and hydrogen to form

ammonia may be written in either direction:

(1) N2 + 3H2 → 2NH3 K1 = PNH3
2/PN2PH2

3

(2) 2NH3 → N2 + 3H2 K2 = PN2PH2
3/PNH3

2

How are the two Keq’s related?

Solution: Reaction (b) is the negative of reaction (a):

(b) = –(a). At the same time, K2 = 1/K1. This is a special case

of equation.

Combining reactions by addition or subtraction: We use

Hess’s Law to obtain a desired reaction by adding

(subtracting) two or more other reactions. How is Keq for the

sum related to the Keq’s of the combined reactions? Again,

example illustrates this clearly.

Example: The third reaction below can be obtained by

adding the first two reactions.

(1) C(s) + 1/2 O2(g) → CO(g)

K1 = PCO/PO2
1/2

(2) CO(g) + 1/2 O2(g) → CO2(g)

K2 = PCO2/PCOPO2
1/2

(3) = (1) + (2) C(s) + O2(g) → CO2(g)

K3 = PCO2/PO2

How is K3 related to K1 and K2?

Solution: Inspection of the equilibrium constant

expressions shows that K3 is the product of K1 and K2.

Generalizing, when two reactions are added to give a

third, their Keq’s must be multiplied to obtain Keq for

the third:

(3) = (1) + (2) K3 = K1K2
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Units of equilibrium constants: These are easily obtained

from the equilibrium constant expression and the units of

concentration used in the expression.

Example: What are the units of the Keq expression for the

reaction

2H2(g) + O2(g) → 2H2O(g)

Keq = PH2O
2/PH2

2PO2

Solution: For pressures in atm, the units of the numerator

of Keq are atm2, while those of the denominator are atm3.

The overall units are thus atm-1.

Example: What are the units of Keq for the reaction

H2(g) + I2(g) → 2HI(g) Keq = PHI
2/PH2PI2

Solution: Units of both the numerator and denominator

are bar2, so Keq is dimensionless. In general, Keq is

dimensionless when the total moles of gas (or dissolved

species) is the same in reactants and products. Unless Keq is

dimensionless, we must use concentration units consistent

with the specified units of Keq.
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4

Liquid-Vapour Equilibrium

The concept of vapour pressure by means of a thought

experiment. Our observation following injection of water into

the box was that the pressure rose gradually from zero to

23.8 torr at a temperature of 25°C, where it levelled off and

remained constant indefinitely.

The pressure resulted from formation of water vapour by

evaporation of some of the liquid water. We address two

interesting questions: 1) Why does evaporation occur? 2) Why

does the pressure rise to 23.8 torr, then stop changing? We

take first a macroscopic, then a molecular, view. Consider

the process in equation:

H2O(l) → H2O(g)

∆PE > 0 favors liquid

∆S > 0 favors gas

The drive to minimum energy favors the liquid phase.

However, the drive to increased disorder favors the gas phase.
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Two natural tendencies try to drive the process in equation

in opposite directions. The result is a compromise in which

some water is present as liquid and some as vapour. This is

our macroscopic interpretation of the vapour pressure

phenomenon. We now seek an understanding at the

molecular level.

An important result from our models of the gas, liquid,

and solid phases can be stated succinctly as follows: at a

given temperature, all molecules have the same average

kinetic energy, whether they are present in the solid, liquid,

or gas phase. Further, the distribution of kinetic energies

follows the Maxwell-Boltzmann distribution, regardless of

phase. The general form of the Maxwell-Boltzmann

distribution is reproduced. In the ensuing discussion, we

will apply this plot to the liquid phase of a pure substance.

As the curve indicates, at any moment there are some

molecules moving very slowly, a large number moving with

intermediate (near-average) kinetic energies, and a few

molecules with very high kinetic energy. We focus now on

the molecules near the surface of the liquid, because it is

these that have a chance to escape from the liquid into the

space above. Molecules near the surface possess a range of

kinetic energies, like those in the bulk.

A molecule near the surface and moving toward the surface

will escape the liquid if its kinetic energy is sufficient to

overcome the attractive forces of nearby molecules in the

liquid. In other words, the kinetic energy must be at least

equal in magnitude to the depth of the liquid potential well.

We will call this minimum required kinetic energy the escape

kinetic energy. The number of liquid molecules having at
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least this kinetic energy is proportional to the area under

the curve to the right of a vertical line passing through the

escape KE.

When liquid water is injected into an evacuated box, it

spreads out on the bottom and molecules begin to evaporate

at a rate depending on two quantities. First, the number of

molecules that evaporate per unit time is proportional to the

number having at least the escape kinetic energy.

Second, the evaporation rate is proportional to the number

of molecules at the surface — i.e., to the exposed liquid

surface area. In equation form,

RE = kE(T)*A

RE  = evaporation rate, with units of amount per time

A = liquid surface area

kE(T) = rate constant for evaporation, with units of amount

per unit area per unit time.

(The constant, kE, is called a rate constant. It is a

proportionality constant relating the evaporation rate to

macroscopic variables on which rate depends. In this case,

surface area is the only variable of importance, as long as

temperature is constant. The size of the rate constant

depends upon the fraction of molecules with KE greater than

the escape KE. Because this depends on temperature, kE is

temperature-dependent.

This is indicated in the equation.) Evaporation leads to a

buildup of molecules in the vapour phase over time. These

exert pressure on the container walls, which increases directly

as the number of molecules. Further, they collide occasionally

with the liquid surface, where they may once again be captured

by the intermolecular forces of the closely packed molecules



Thermodynamics Equilibrium

66

at the liquid surface — in other words, they condense. The

rate of condensation is proportional to the exposed surface area

of liquid and to the number of molecules in the vapour phase.

This number is directly proportional to the pressure exerted by

the vapour. The rate of condensation, in equation form, is

RC = kC*A*P

RC = condensation rate, with units of amount per time

kC = rate constant for condensation, a proportionality

constant that is independent of T, with units amount per

time per area per unit pressure.

As the number of molecules in the vapour phase continues

to increase as a result of a steady rate of evaporation, a point

is eventually reached at which

RE = RC

Although both evaporation and condensation still occur,

they occur at equal rates. There will be no further change in

the number of molecules in the vapour phase, hence no

further change in pressure. We describe this situation as a

state of phase equilibrium. Attainment of phase equilibrium

is shown graphically in Figure.

Fig. Phase Equilibrium

Equal rates of evaporation and condensation: equilibrium:

Equation  is used to represent the equilibrium between liquid

and gas phases:
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l ⇔ v

The double arrow indicates that the two processes,

evaporation and condensation, occur simultaneously and at

equal rates. Phase equilibrium is dynamic, rather than static,

because although it appears at the macroscopic level that

nothing is happening (vapour pressure is constant), there is

a lot of action at the molecular level.

This can be easily substantiated by starting with a system

consisting of H2O in the liquid phase and D2O (deuterium

oxide) in the vapour phase.

After some time has elapsed, both forms of water will be

found (by, for example, mass spectrometry) in both phases,

indicating that evaporation and condensation are

continuously occurring.

The pressure exerted by the vapour at equilibrium is called

the equilibrium vapour pressure of the liquid, symbolized

Pvap. Equations  can be used to obtain an expression for Pvap

in terms of the constants, kE and kC.

Since at equilibrium, RE and RC are equal, we write

kE(T)A = kCAPvap

Solving for Pvap and cancelling the surface area terms in

numerator and denominator gives equation.

Pvap = kE(T)/kC

This equation shows that for a particular liquid at a fixed

temperature, Pvap is constant, in agreement with experiment.

The vapour pressure of a pure liquid provides the first

example of an equilibrium constant, denoted Keq. For a liquid

in equilibrium with vapour, Pvap = Keq. Keq is a ratio of rate

constants.



Thermodynamics Equilibrium

68

Each liquid has a characteristic vapour pressure at a given

T whose value depends primarily on kE. The greater the

intermolecular forces, the greater the escape KE, and the

smaller the value of kE. Small kE means smaller Pvap.

Since the constant kC does not depend on the potential

well depth, it is almost the same for all liquids. Equilibrium

vapour pressures for several common laboratory liquids at

25°C are given in Table.

Table. Equilibrium P
vap

 at 25°C

Substance P
vap

 (torr)

water (H
2
O) 24

ethanol (H2O) 65
chloroform (H

2
O) 215

diethylether (H2O) 545

Example: A sample of liquid of molecular weight 46.0 g/

mole and density 1.04 g/mL is injected into a 150-mL closed

container and spreads out to provide a surface area of 25

cm2.

Over a period of 1.0 minute, the pressure due to vapour

rises to an equilibrium value of 45 torr at 297 K. Calculate the

average net rate of evaporation of liquid in moles/s, molecules/

s, and mL/s.

Solution: Use the ideal gas law to calculate the moles of

gas present in the gas phase at the end of the 1 minute

period:

n = PV/RT = (45/760 atm)(0.150 L)/(0.08206 L-atm/K-

mole) (297 K) = 3.64 × 10-4 moles

This corresponds to nNo = 2.20 × 1020 molecules.

The volume of liquid converted to vapour is calculated by

multiplying the moles of liquid by the molar mass, then

dividing by density to convert to mL:
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V of liquid = n(MM)/ρ mL

= (3.64 × 10–4)

(46.0 g/mole)/(1.04 g/mL)

= 0.0161 mL

The average evaporation rates in moles/s, molecules/s,

and mL/s can now be calculated by dividing the amount

evaporated by the total time required, which is 60 s:

Evaporation rate

= 3.64 × 10–4 moles/60 s = 6.10 × 10–6 moles/s

= 2.20 × 1020 molecules/60 s = 3.67 × 1018 molecules/s

= 0.0161 mL/60 s = 2.68 × 10–4 mL/s

The Temperature Dependence of Vapour Pressure

When the temperature of a liquid-vapour equilibrium

system is increased, the equilibrium vapour pressure

increases. There are two reasons for this.

• The pressure due to the molecules already in the gas

phase increases by the ideal gas law. This makes a

small contribution to the vapour pressure increase.

• More molecules enter the gas phase. This is by far the

larger contribution.

We now attempt to justify these statements at the molecular

level. An increase in temperature means that the kinetic

energy of the molecules increases in both phases. Molecules

at the liquid surface jiggle more vigorously, and a greater

number of them have sufficient KE to escape the potential

well of the liquid and enter the vapour phase. The increase

in the number of molecules in the vapour phase results in

an increased vapour pressure. The effect of increased

temperature on the Maxwell-Boltzmann kinetic energy
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distribution. As the curve shifts right with increasing T, the

area under the curve to the right of the escape KE increases

exponentially. Pvap therefore increases exponentially with T.

Mathematically, the T-dependence of Pvap can be understood

in terms of equation. The minimum KE requirement for

escape from the liquid is imbedded in the constant kE, which

depends markedly on T. kC has almost no temperature

dependence because no minimum KE is required for a

molecule to fall into a potential well. The temperature

dependence of Pvap therefore parallels that of kE, which

directly reflects the shift in the Maxwell-Boltzmann

distribution.

It can be shown, both experimentally and theoretically,

that vapour pressure varies with temperature according to

equation:

Pvap = e−∆H°/RTe∆S°/R

This is usually written in logarithmic form as the Clausius-

Clapeyron equation, equation:

ln Pvap = –∆H°vap/RT + ∆S°vap/R

∆H°vap and ∆S°vap are the standard molar enthalpy and

entropy of vaporization, respectively. Equation suggests that

a plot of ln Pvap vs. 1/T should yield the enthalpy of

vaporization, ∆H°vap, from the slope, and the entropy of

vaporization, ∆S°vap, from the intercept. This is a convenient

experimental approach to the measurement of these

quantities. The form of the Clausius-Clapeyron equation is

general in physical science; all molecular processes exhibit

temperature dependence of this form.

The vapour pressure is plotted against temperature for

several common laboratory liquids. The magnitude of Pvap
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for a liquid at a particular temperature and the rate of change

of Pvap with temperature depend on the magnitude of the

intermolecular forces in the liquid phase. The stronger the

forces, the lower Pvap at a given T and the steeper the rise in

the curve, water clearly has the largest intermolecular forces,

due to strong hydrogen bonding.

Having seen how Pvap depends on T, we consider a problem

involving conceptual aspects of l-v phase equilibrium.

Example: In the system, the liquid and vapour of a pure

substance are in equilibrium at some temperature, in a

cylinder fitted with a moveable piston. Under these

conditions, rates of evaporation and condensation are equal.

We carry out two sequential processes that perturb the

equilibrium and examine how the system reattains

equilibrium.

At time t1, T is instantly increased. The system returns to

equilibrium while the piston is held at position A throughout.

What effect will the T increase have on the equilibrium?

Increasing T will cause RE to immediately increase (the

Maxwell-Boltzmann distribution). However, because kC is

independent of temperature, RC will be unaffected by the

increase of T. Therefore, immediately following the T increase,

RE will exceed RC; the system is no longer at equilibrium.

There will be a net flow of molecules from liquid to vapour.

As the number of molecules in the vapour phase increases,

the vapour pressure increases, causing RC to increase, until

RE and RC are once again equal. The system eventually

reaches a new equilibrium, with a higher Pvap. It is important

to realise that it takes time for the population of molecules

in the gas phase to build up. Thus RC adjusts much more
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slowly to the T change than does RE. At time t2, the piston is

instantly pulled up to position B. The system returns to

equilibrium. T is constant throughout.

Moving the piston has no effect on the rate of evaporation,

which depends only on temperature. However, the increase

in volume of the vapour space causes an instantaneous

decrease in the vapour pressure and RC. There is again an

imbalance of rates that results in a net flow of molecules

from liquid to vapour. As the number of molecules in the

vapour builds up, RC increases correspondingly. This change

is gradual, but eventually RC again becomes equal to RE.

Equilibrium is reestablished with the original values of RE

and RC, but with a larger amount of vapour.

Note that the liquid (RE) is unaffected by movement of the

piston and adjusts instantly to a temperature change; the

vapour (RC) is affected by both processes, and is slow to adjust

after they are carried out. The shape of the Pvap-time curve

during adjustment is a typical kinetics curve, or dynamics

curve. The slope of the curve is steep at first, far from

equilibrium, and gradually decreases as the Pvap tapers

smoothly and continuously to its equilibrium value.

Boiling — The Boiling Point

The boiling point of a liquid is the temperature at which

the vapour pressure of the liquid is equal to the pressure

above the liquid. The normal boiling point is the temperature

at which the vapour pressure is 1 atm, the “normal” value of

pressure above a liquid when it stands open to the

atmosphere.

When a liquid boils, pockets of vapour form in the liquid

and rise to its surface, where the vapour escapes to the
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atmosphere. The bubbles are not bubbles of air — they are

pockets of the gaseous form of the substance. At

temperatures where the vapour pressure of liquid is less than

the pressure above the liquid, pockets cannot form because

they are immediately collapsed by the greater outside

pressure. Only when the vapour pressure becomes equal to

the outside pressure do the pockets become self-supporting.

Under these conditions, boiling can occur.

The temperature at which a liquid boils can be lowered by

reducing the pressure above it. Under these conditions the

pockets become self-supporting at a lower value of Pvap , hence

at a lower temperature. A plot of Pvap versus T such as those

in Figure shows how the boiling point changes with external

pressure.

Fig. Vapour Pressure Versus Temperature

A practical manifestation of this phenomenon is the longer

cooking time required at high altitude, where atmospheric

pressure is substantially less than 1 atm. The boiling point

of water is less than 100°C, so food takes longer to cook

than at lower altitude. If you wanted to boil water at room

temperature (25°C), to what value would you have to lower

the pressure above it?
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A thought experiment in which a liquid is boiled under

controlled conditions will illustrate the volume-temperature

characteristics of the process. We begin with a sample of a

pure liquid in a cylinder fitted with a piston, at an initial

temperature Ti which is below the normal boiling point, Tb,

of the liquid. The outside pressure on the piston is 1 atm.

This situation is pictured in Figure.

Fig. Liquid in Cylinder/Piston

At Ti, Pvap of the liquid is less than 1 atm so vapour cannot

exist in the cylinder. We justify this statement as follows.

Suppose there were some vapour above the liquid in the

cylinder. It would exert a pressure Pvap on the piston.

Because Pvap < 1 atm, the piston would begin to move in. In

response, vapour would condense to maintain the

equilibrium value of Pvap. This would cause the piston to

move further in. This process of vapour condensation and

inward movement of the piston would continue until there

was no vapour left. Thus in the beginning, there can be no

vapour present.

We now slowly heat the liquid to its normal boiling point,

and boil it. As long as T < Tb, Pvap < 1 atm and the piston will

not move. But at the T where Pvap becomes equal to 1 atm,

vapour begins to form in the cylinder, and the piston begins

to recede. More and more liquid evaporates in order to

maintain Pvap at 1 atm until all of the liquid disappears.
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Fig. Volume Change During Heating and Boiling

At this point only vapour will be present in the cylinder.

Finally, we continue heating the vapour. The volume of vapour

increases with T according to the ideal gas law. A plot of the

volume of the system as a function of T for the boiling process

is shown in above figure. Several features of the plot are

important:

• At T > T
i
 but < T

b
, the system volume remains essentially

constant and small, because in this T range no vapour

exists in the system, and the volume of the liquid does

not vary much with T.

• Once T reaches T
b
, the liquid begins to boil. Throughout

the boiling process, T remains constant because all

added heat is used to overcome the intermolecular

forces in the liquid, increasing the PE of the molecules,

and to push back the atmosphere. The KE of the

molecules does not change.

• When all liquid has evaporated, added heat is used

to increase the KE of the vapour molecules. T and V

increase in a manner consistent with the ideal gas

law.
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5

Thermodynamics in
Rotational Dynamics

The physical objects that we encounter in the world

consist of collections of atoms that are bound together to

form systems of particles. When forces are applied, the

shape of the body may be stretched or compressed like a

spring, or sheared like jello. In some systems the constituent

particles are very loosely bound to each other as in fluids

and gasses, and the distances between the constituent

particles will vary. We shall begin our study of extended

objects by restricting ourselves to an ideal category of objects,

rigid bodies, which do not stretch, compress, or shear.

A body is called a rigid body if the distance between any

two points in the body does not change in time. Rigid bodies,

unlike point masses, can have forces applied at different

points in the body. For most objects, treating as a rigid body

is an idealization, but a very good one. In addition to forces
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applied at points, forces may be distributed over the entire

body. Distributed forces are difficult to analyze; however, for

example, we regularly experience the effect of the gravitational

force on bodies. Based on our experience observing the

effect of the gravitational force on rigid bodies, we note that

the gravitational force can be concentrated at a point in the

rigid body called the center of gravity, which for small bodies

(so that g
r may be taken as constant within the body) is

identical to the center of mass of the body.

Let’s consider a rigid rod thrown in the air so that the

rod is spinning as its center of mass moves with velocity

cmv
r . Rigid bodies, unlike point-like objects, can have forces

applied at different points in the body. We have explored

the physics of translational motion; now, we wish to

investigate the properties of rotation exhibited in the rod’s

motion, beginning with the notion that every particle is

rotating about the center of mass with the same angular

(rotational) velocity.

Fig. The Center of Mass of a thrown Rigid Rod follows a Parabolic Trajectory

while the Rod Rotates about the Center of Mass.

We can use Newton’s Second Law to predict how the

center of mass will move. Since the only external force on

the rod is the gravitational force (neglecting the action of

air resistance), the center of mass of the body will move in

a parabolic trajectory.
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How was the rod induced to rotate? In order to spin the

rod, we applied a torque with our fingers and wrist to one

end of the rod as the rod was released. The applied torque

is proportional to the angular acceleration. The constant of

proportionality is called the moment of inertia. When external

forces and torques are present, the motion of a rigid body

can be extremely complicated while it is translating and

rotating in space. We shall begin our study of rotating

objects by considering the simplest example of rigid body

motion, rotation about a fixed axis.

Fixed Axis Rotation: Rotational Kinematics

Fixed Axis Rotation

Static equilibrium, we demonstrated the need for two

conditions: The total force acting on an object is zero, as

is the total torque acting on the object. If the total torque

is non-zero, then the object will start to rotate.

A simple example of rotation about a fixed axis is the

motion of a compact disc in a CD player, which is driven

by a motor inside the player. In a simplified model of this

motion, the motor produces angular acceleration, causing

the disc to spin. As the disc is set in motion, resistive forces

oppose the motion until the disc no longer has any angular

acceleration, and the disc now spins at a constant angular

velocity. Throughout this process, the CD rotates about an

axis passing through the center of the disc, and is

perpendicular to the plane of the disc. This type of motion

is called fixed-axis rotation.
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Fig. Rotation of a Compact Disc about a Fixed Axis.

When we ride a bicycle forward, the wheels rotate about

an axis passing through the center of each wheel and

perpendicular to the plane of the wheel. As long as the

bicycle does not turn, this axis keeps pointing in the same

direction. This motion is more complicated than our spinning

CD because the wheel is both moving (translating) with

some center of mass velocity, cmv
r , and rotating.

Fig. Fixed Axis Rotation and Center of

Mass Translation for a Bicycle Wheel.

When we turn the bicycle’s handlebars, we change the

bike’s trajectory and the axis of rotation of each wheel

changes direction. Other examples of non-fixed axis rotation

are the motion of a spinning top, or a gyroscope, or even

the change in the direction of the earth’s rotation axis.

This type of motion is much harder to analyze. Angular

Velocity and Angular Acceleration. When we considered the

rotational motion of a point-like object an angle coordinate

è, and then defined the angular velocity as
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,
d

dt

θ
≡ω

and angular acceleration (Equation 6.3.4) as
2

2
.

d

dt

θ
≡α

For a rigid body undergoing fixed-axis rotation, we can

divide the body up into small volume elements with mass

∆mi. Each of these volume elements is moving in a circle

of radius r1, i, about the axis of rotation

Fig. Coordinate System for Fixed-axis Rotation.

We will adopt the notation implied and denote the vector

from the axis to the point where the mass element is located

as ir⊥
r with ir⊥

r = ir⊥
r ,

Because the body is rigid, all the volume elements will

have the same angular velocity ù and hence the same

angular acceleration á. If the bodies did not have the same

angular velocity, the volume elements would “catch up to”

or “pass” each other, precluded by the rigid-body assumption.

Angular Velocity and Angular Acceleration

Suppose we choose ∆ to be increasing in the

counterclockwise direction as
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Fig. Sign Conventions for Rotational Motion.

If the rigid body rotates in the counterclockwise direction,

then the angular velocity is positive, If the rigid body rotates

in the clockwise direction, then the angular velocity is

negative,

• If the rigid body increases its rate of rotation in the

counterclockwise (positive) direction then the angular

acceleration is positive, α ≡ ºd2θ/dt2 = dω/dt > 0.

• If the rigid body decreases its rate of rotation in the

counterclockwise (positive) direction then the angular

acceleration is negative, α ≡ ºd2θ/dt2 = dω/dt > 0.

• If the rigid body increases its rate of rotation in the

clockwise (negative) direction then the angular

acceleration is negative, α ≡ ºd2θ/dt2 = dω/dt > 0.

• If the rigid body decreases its rate of rotation in the

clockwise (negative) direction then the angular

acceleration is positive,

To phrase this more generally, if á and ù have the same

sign, the body is speeding up; if opposite signs, the body

is slowing down. This general result is independent of the

choice of positive direction of rotation.

Tangential Velocity and Tangential Acceleration

Since the small volume ∆mi element of mass is moving

in a circle of radius i ir r⊥ ⊥=
r with angular velocity ù, the
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element has a tangential velocity component

tan, , .i ir⊥ν = ω

If the magnitude of the tangential velocity is changing,

the volume element undergoes a tangential acceleration

given by

tan, , .i ia r⊥= α

that the volume element is always accelerating inward with

magnitude 2
tan, 2

tan, ,
,

.i
i i

i

a r
r

⊥
⊥

ν
= = ω

Torque

A torque (τ) in physics, also called a moment (of force),

is a pseudo-vector that measures the tendency of a force

to rotate an object about some axis (center). The magnitude

of a torque is defined as the product of a force and the

length of the lever arm (radius). Just as a force is a push

or a pull, a torque can be thought of as a twist.

The SI unit for torque is the newton meter (N m). In U.S.

customary units, it is measured in foot pounds (ft·lbf) (also

known as ‘pound feet’). The symbol for torque is τ, the Greek

letter tau. The concept of torque, also called moment or

couple, originated with the studies of Archimedes on levers.

The rotational analogues of force, mass, and acceleration

are torque, moment of inertia, and angular acceleration,

respectively.

Explanation

The force applied to a lever multiplied by its distance

from the lever’s fulcrum, the length of the lever arm, is its

torque. A force of three newtons applied two meters from
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the fulcrum, for example, exerts the same torque as one

newton applied six meters from the fulcrum.

This assumes the force is in a direction at right angles

to the straight lever. The direction of the torque can be

determined by using the right hand grip rule: curl the

fingers of your right hand the direction of rotation and stick

your thumb out so it is aligned with the axis of rotation.

Your thumb points in the direction of the torque vector.

Mathematically, the torque on a particle (which has the

position r in some reference frame) can be defined as the

cross product:

r Fτ = ×

where

r is the particle’s position vector relative to the fulcrum

F is the force acting on the particle.

The torque on a body determines the rate of change of

its angular momentum,
dL

dt
τ =

where

L is the angular momentum vector

t stands for time.

As can be seen from either of these relationships, torque

is a vector, which points along the axis of the rotation it

would tend to cause.

Units

Torque has dimensions of force times distance and the

SI unit of torque is the “newton meter” (N m). Even though
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the order of “newton” and “meter” are mathematically

interchangeable, the BIPM (Bureau International des Poids

et Mesures) specifies that the order should be N m not m

N. N·m is also acceptable.

The joule, which is the SI unit for energy or work, is also

defined as 1 N m, but this unit is not used for torque. Since

energy can be thought of as the result of “force times

distance”, energy is always a scalar whereas torque is “force

cross distance” and so is a (pseudo) vector-valued quantity.

The dimensional equivalence of these units, of course, is not

simply a coincidence: a torque of 1 N m applied through

a full revolution will require an energy of exactly 2ð joules.

Mathematically,

E = τθ

where

E is the energy

τ is torque

θ is the angle moved, in radians.

Other non-SI units of torque include “pound-force-feet”

or “foot-pounds-force” or “ounce-force-inches” or “meter-

kilograms-force” or “kilogrammeter” (kgm).

Extended units in relation with rotation angles

As a consequence of the previous equation, if you

introduce the radian (rad) as part of the dimensional units

in the SI units system, the torque could be measured using

“newton meters per radian” (N m/rad), or “joules per radian”

(J/rad), while the energy needed and spent to perform the

rotation would be measured simply in “newton meters” or

“joules”.
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In the strict SI system, angles are not given any

dimensional unit, because they do not designate physical

quantities, despite the fact that they are measurable

indirectly simply by dividing two distances (the arc length

and the radius): one way to conciliate the two systems

would be to say that arc lengths are not measures of

distances (given they are not measured over a straight line,

and a full circle rotation returns to the same position, i.e.

a null distance).

So arc lengths should be measured in “radian meter”

(rad·m), differently from straight segment lengths in “meters”

(m). In such extended SI system, the perimeter of a circle

whose radius is one meter, will be two pi rad·m, and not

just two pi meters.

If you apply this measure to a rotating wheel in contact

with a plane surface, the center of the wheel will move

across a distance measured in meters with the same value,

only if the contact is efficient and the wheel does not slide

on it: this does not happen in practice, unless the surface

of contact is constrained and is then not perfectly plane

(and can resist to the horizontal linear forces applied to the

irregularities of the pseudo-plane surface of movement and

to the surface of the pseudo-circular rotating wheel); but

then the system generates friction that loses some energy

spent by the engine: this lost energy does not change the

measurement of the torque or the total energy spent in the

system but the effective distance that has been made by

the center of the wheel.

The difference between the efficient energy spent by the

engine and the energy produced in the linear movement is
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lost in friction and sliding, and this explains why, when

applying the same non-null torque constantly to the wheel,

so that the wheel moves at a constant speed according to

the surface in contact, there may be no acceleration of the

center of the wheel: in that case, the energy spent will be

directly proportional to the distance made by the center of

the wheel, and equal to the energy lost in the system by

friction and sliding. For this reason, when measuring the

effective power produced by a rotating engine and the energy

spent in the system to generate a movement, you will often

need to take into account the angle of rotation, and then,

adding the radian in the unit system is necessary as well

as making a difference between the measurement of arcs

(in radian meter) and the measurement of straight segment

distances (in meters), as a way to effectively compute the

efficiency of the mobile system and the capacity of a motor

engine to convert between rotational power (in radian watt)

and linear power (in watts): in a friction-free ideal system,

the two measurements would have equal value, but this

does not happen in practice, each conversion losing energy

in friction (it’s easier to limit all losses of energy caused by

sliding, by introducing mechanical constraints of forms on

the surfaces of contacts).

Depending on works, the extended units including radians

as a fundamental dimension may or may not be used.

Special cases and other facts

Moment Arm Formula

A very useful special case, often given as the definition

of torque in fields other than physics, is as follows:
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|τ|= (moment arm) . force

The construction of the “moment arm” along with the

vectors r and F mentioned above.

The problem with this definition is that it does not

give the direction of the torque but only the magnitude,

and hence it is difficult to use in three-dimensional

cases.

Fig. Moment Arm Diagram

If the force is perpendicular to the displacement vector

r, the moment arm will be equal to the distance to the

centre, and torque will be a maximum for the given force.

The equation for the magnitude of a torque arising from a

perpendicular force:

|τ|= (distance to center) . force

For example, if a person places a force of 10 N on a

spanner (wrench) which is 0.5 m long, the torque will be

5 N m, assuming that the person pulls the spanner by

applying force perpendicular to the spanner.

Force at an Angle

If a force of magnitude F is at an angle θ from the

displacement arm of length r (and within the plane
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perpendicular to the rotation axis), then from the definition

of cross product, the magnitude of the torque arising is:

τ = rFsinθ

Static Equilibrium

For an object to be in static equilibrium, not only must

the sum of the forces be zero, but also the sum of the

torques (moments) about any point. For a two-dimensional

situation with horizontal and vertical forces, the sum of the

forces requirement is two equations: ΣH = 0 and ΣV = 0,

and the torque a third equation: Στ = 0. That is, to solve

statically determinate equilibrium problems in two-

dimensions, we use three equations.

Torque as a Function of Time

The torque caused by the two opposing forces Fg and -

Fg causes a change in the angular momentum L in the

direction of that torque. This causes the top to precess.

Torque is the time-derivative of angular momentum, just as

force is the time derivative of linear momentum:
dL

dt
τ =

where

L is angular momentum.
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Angular momentum on a rigid body can be written in

terms of its moment of inertia I and its angular velocity ω:

L = I ω

so if I is constant,
d

I I
dt

τ = α
ω

where á is angular acceleration, a quantity usually measured

in radians per second squared.

Machine torque

Torque is part of the basic specification of an engine: the

power output of an engine is expressed as its torque

multiplied by its rotational speed of the axis. Internal-

combustion engines produce useful torque only over a limited

range of rotational speeds (typically from around 1,000–

6,000 rpm for a small car). The varying torque output over

that range can be measured with a dynamometer, and

shown as a torque curve. The peak of that torque curve

usually occurs somewhat below the overall power peak. The

torque peak cannot, by definition, appear at higher rpm

than the power peak.

Understanding the relationship between torque, power

and engine speed is vital in automotive engineering,

concerned as it is with transmitting power from the engine

through the drive train to the wheels. Power is typically a

function of torque and engine speed. The gearing of the

drive train must be chosen appropriately to make the most

of the motor’s torque characteristics. Steam engines and

electric motors tend to produce maximum torque close to

zero rpm, with the torque diminishing as rotational speed

rises (due to increasing friction and other constraints).
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Therefore, these types of engines usually have quite different

types of drivetrains from internal combustion engines.

Torque is also the easiest way to explain mechanical

advantage in just about every simple machine.

Relationship between torque, power and energy

If a force is allowed to act through a distance, it is doing

mechanical work. Similarly, if torque is allowed to act through

a rotational distance, it is doing work. Power is the work

per unit time. However, time and rotational distance are

related by the angular speed where each revolution results

in the circumference of the circle being travelled by the force

that is generating the torque. The power injected by the

applied torque may be calculated as:

Power = torque . angular speed

On the right hand side, this is a scalar product of two

vectors, giving a scalar on the left hand side of the equation.

Mathematically, the equation may be rearranged to compute

torque for a given power output. Note that the power injected

by the torque depends only on the instantaneous angular

speed - not on whether the angular speed increases,

decreases, or remains constant while the torque is being

applied (this is equivalent to the linear case where the power

injected by a force depends only on the instantaneous speed

- not on the resulting acceleration, if any).

In practice, this relationship can be observed in power

stations which are connected to a large electrical power grid.

In such an arrangement, the generator’s angular speed is

fixed by the grid’s frequency, and the power output of the

plant is determined by the torque applied to the generator’s
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axis of rotation. Consistent units must be used. For metric

SI units power is watts, torque is newton meters and angular

speed is radians per second (not rpm and not revolutions

per second).

Also, the unit newton meter is dimensionally equivalent

to the joule, which is the unit of energy. However, in the

case of torque, the unit is assigned to a vector, whereas for

energy, it is assigned to a scalar.

Conversion to other Units

For different units of power, torque, or angular speed,

a conversion factor must be inserted into the equation. Also,

if rotational speed (revolutions per time) is used in place of

angular speed (radians per time), a conversion factor of 2ð

must be added because there are 2ð radians in a revolution:

Power = torque × 2π × rotational speed,

where rotational speed is in revolutions per unit time.

Useful formula in SI units:
torque(N.m)×2 × rotational speed (rpm)

Power(kW)
60000

π
=

where 60,000 comes from 60 seconds per minute times

1000 watts per kilowatt.

Some people (e.g. American automotive engineers) use

horsepower (imperial mechanical) for power, foot-pounds

(lbf·ft) for torque and rpm (revolutions per minute) for angular

speed. This results in the formula changing to:
torque(lbf.ft) × 2 × rotational speed (rpm)

Power(hp)
33000

π
=

The constant below in, ft·lbf./min, changes with the

definition of the horsepower; for example, using metric

horsepower, it becomes ~32,550.
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Use of other units (e.g. BTU/h for power) would require

a different custom conversion factor.

Derivation

For a rotating object, the linear distance covered at the

circumference in a radian of rotation is the product of the

radius with the angular speed. That is: linear speed = radius

x angular speed. By definition, linear distance=linear speed

x time=radius x angular speed x time.

By the definition of torque: torque=force x radius. We

can rearrange this to determine force=torque/radius.

These two values can be substituted into the definition

of power:

( )torque
r ( angular speed )force linear distance

Power
time

r t

t

× × ××
= =

=torque × angular speed

The radius r and time t have dropped out of the equation.

However angular speed must be in radians, by the assumed

direct relationship between linear speed and angular speed

at the beginning of the derivation. If the rotational speed

is measured in revolutions per unit of time, the linear speed

and distance are increased proportionately by 2ð in the

above derivation to give:

Power = toqrque × 2π × rotational speed

If torque is in lbf·ft and rotational speed in revolutions

per minute, the above equation gives power in ft·lbf/min.

The horsepower form of the equation is then derived by

applying the conversion factor 33,000 ft·lbf/min per

horsepower:

power = torque × 2π × rotational speed.
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horse power torque RPMft .lbf
ft .lbfmin 525233000.
min

×
× ≈

because 5252.113122... = 
33,000

.
2π

Moment of inertia

Newton’s second law, Force = mass x acceleration, relates

the acceleration that an object of a certain mass experiences

when subject to a given force. There is an analogous relation

between torque and angular acceleration, which introduces

the concept of moment of inertia:

Torque = moment of inertia × angular acceleration

Just as mass is a measure of how readily an object

accelerates due to a given force, the moment of inertia of

an object measures how easily an object rotates about a

particular point of rotation.

Thus, objects with a larger moment of inertia about a

given point will be harder to rotate with a set torque.

Correspondingly, a larger torque will cause a larger

acceleration on a particular body.

The moment of inertia of a body, which is always

measured relative to a point of rotation, depends in general

on the object’s mass and on its shape. It is perhaps evident

that for a single mass going in a circle of fixed radius, the

greater the radius the harder it is to change the angular

velocity.

This is because the actual displacement, and hence

linear velocity of the mass is proportional to the radius, so

greater radius, for a given angular displacement means

greater linear displacement.
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In an extended object the parts that are further from the

axis of rotation contribute more to the moment of inertia

than the parts closer to the axis. So as a general rule, for

two objects with the same total mass, the object with more

of the mass located further from the axis will have a greater

moment of inertia.

For example, the moment of inertia of a solid cylinder

of mass M and radius R about a line passing through its

center is MR2, whereas a hollow cylinder with the same

mass and radius has a moment of inertia of MR2.

Similarly when a spinning figure skater pulls her arms

in to her body she places more of her body weight closer

to the axis of rotation and decreases her moment of inertia.

Rotational kinetic energy

Recall that an object of a certain mass moving with

particular speed will have an associated kinetic energy
1
2

mass x speed2. An object spinning about an axis will also

have associated with it a kinetic energy, composed of the

kinetic energies of each individual part of the object. These

individual contributions may be summed up to give an

expression for the total kinetic energy of the spinning

object:

Kinetic energy = 1
2 moment of inertia × (angular speed)2

As with linear motion, where a force did work on an

object and led to a change in the object’s kinetic energy,

for rotational motion the work done by a torque:

Work = torque × angular distance

goes into changing the rotational kinetic energy of an object:

Work done = change in kinetic energy
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The rotational kinetic energy is treated like any other form

of energy, in that it can be transformed into other forms (eg,

potential), and also it is a component of the (conserved) total

energy of a system. Sometimes objects rotate about an axis

that is itself in motion. For example, if you roll a cylinder

down a ramp without any slipping, the axis about which it

rotates (the center of the cylinder) moves down the ramp. In

this case the total kinetic energy of the cylinder is the sum

of its rotational kinetic energy plus its translational kinetic

energy. It is therefore easy to see that an object with a higher

moment of inertia will take longer to roll down the ramp. As

a specific case consider a solid cylinder and a hollow cylinder

with the same mass and radius starting at rest and rolling

down the same ramp side by side. Which do you expect will

reach the bottom first? We know that the moment of inertia

of the hollow cylinder is greater, so that for a given angular

velocity it has more rotational kinetic energy.

Moreover, if they both roll without slipping the linear

velocity (and hence linear kinetic energy) is the same for

both cylinders when their angular velocity is the same. In

addition, the change in gravitational potential energy is the

same for both cylinders (the weight of the cylinder times the

height of the ramp), so both cylinders must have the same

total kinetic energy at the bottom of the ramp.

This necessarily implies that the angular velocity (and

linear velocity) of the hollow cylinder must be less at the

bottom of the ramp than that of solid cylinder (otherwise

it would have more kinetic energy). Consequently we can

conclude that the hollow cylinder moves slower and the

solid cylinder arrives at the bottom first.
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Angular momentum

Recall for linear motion that we introduced the concept

of (linear) momentum, mass x velocity, by equating the force

exerted on an object to the change in the object’s momentum.

An analogous quantity called angular momentum can be

introduced in the same way. For an object rotating about

an axis, the angular momentum is defined as

Angular momentum = moment of inertia × angular velcity

which leads to the net torque exerted on the object being

expressed as

Torque = moment of inertia × angular acceleration

= change in angular momentum

Conservation of linear momentum is a powerful tool in

analyzing, for example, collisions between objects undergoing

linear motion.

Similarly, conservation of angular momentum is very

useful in many situations. Consider again the ice skater

spinning around. If she draws her arms inwards, she

decreases her moment of inertia. Conservation of angular

momentum requires that the skater’s moment of inertia

times her angular velocity remain constant.

Thus if her moment of inertia decreases, her angular

velocity must increase, and this is what we observe: when

the skater pulls in her arms, she immediately starts to

rotate faster.

It is also worth noting that just like linear momentum,

conservation of angular momentum is associated with a

symmetry of the laws of physics. In this case, the relevant

symmetry has to do with rotations about any axis.
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The Parallel Axis Theorem

The swingweight of a racquet is measured by the Babolat

RDC using an axis of rotation 10 cm from the butt.  To find

the swingweight about the axis used on the stroke requires

application of the Parallel Axis Theorem. 

Swingweight, also known as moment of inertia and

rotational inertia, is the resistance to change in the speed

of the rotation about the axis of rotation.  High swingweight

means that the racquet is hard to get rotating, but once it

gets going it will not be pushed around so much on impact

with the ball and will tend to produce better pace and spin. 

Swingweight is the infinite sum of all infinitely small mass

elements times the square of their distance from the axis

of rotation.  Or in mathematical terms,
2I r dm= 

Call the known swingweight I and the unknown

swingweight (about the axis of rotation used in the stroke)

will be called I’. The swingweight of the racquet about its

mass center will be called Ic.

The distance of the mass center (balance point of the

racquet) from the axis of rotation for the known swingweight

is r, and the racquet mass is M. The distance of the mass

center from the new axis of rotation is r + x. The Parallel

Axis Theorem (from first year physics) tells us that the

swingweight is the sum of the swingweight about the mass

center (Ic) plus the product of the mass (M) and the square

of the distance (r) from the axis of rotation to the mass

center. 

I  =  Ic + Mr2
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So once we know the RDC swingweight about the 10 cm

axis, we can find the swingweight about any other parallel

axis by another application of the Parallel Axis Theorem.

The first step is finding the swingweight about an axis

through the mass center (Ic).

I =  Ic + Mr2

⇒ Ic= I – Mr2

The same holds for the unknown swingweight, which is

about a parallel axis that is a distance r + x from the mass

center: 

I′ = Ic + M(r + x)2

Now substitute what we’ve already found is equal to Ic:

I′ = (I - Mr2) + M(r + x)2

= (I - Mr2) + M(r2 + 2rx + x2)

Simplifying, we get a general formula for finding the

unknown swingweight (I′) about a different axis (r + x):

I′ = I + M(2rx + x2)

For the First Benchmark Condition (groundstroke), the

axis of rotation for the stroke is at 7 cm from the handle

end, so x is 3.  And in the Second Benchmark Condition

(serve), the axis is even farther away, and x is 5. The variable

r is the published balance point minus 10 cm, but in our

formulas we use r, which is the published balance point

minus 7 or 5 cm according to which benchmark condition

we are using, so we need to substitute in the above formula

so we can use r instead of r.  We will use another variable

(a) to denote the axis used.  So:

x = 10 – a

r = r + (10 – a) ⇒  r = r – (10 – a)
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When we substitute in the above formula, we get:

I’ = I + M(2rx + x2) = I + M[2(r – (10 – a))(10 – a) + (10

– a)2]

Now simplifying the expression in the brackets:

[2(r – (10 – a))(10 – a) + (10 – a)2]

= –2ar + 20a – 2a2 + 20r – 200 + 20a + 100 – 20a +

a2

= –2ar + 20a – a2 + 20r – 100

= 20r – 2ar – 100 + 20a – a2

= 2r(10 – a) – (10 – a)2

So in the formulas, the variable I, which represents the

swingweight about the axis used on the stroke, where a is

the distance from the butt to the axis, I10 is the RDC

swingweight about the axis 10 cm from the butt, and r is

the distance in cm from the mass center (balance point) to

the axis used in the stroke:

I = Ia = I10 + M*[2*(10 – a)*r – (10 – a)^2]

The simple pendulum

Consider a mass suspended from a light inextensible

string of length , such that the mass is free to swing from

side to side in a vertical plane. This setup is known as a

simple pendulum. Let be the angle subtended between the

string and the downward vertical. Obviously, the equilibrium

state of the simple pendulum corresponds to the situation

in which the mass is stationary and hanging vertically down

(i.e., ). The angular equation of motion of the pendulum is

simply
..

. ..
,I θ = τ
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where is the moment of inertia of the mass, and is the

torque acting on the system. For the case in hand, given

that the mass is essentially a point particle, and is situated

a distance from the axis of rotation (i.e., the pivot point),

it is easily seen that I = ml2.

Fig. A Simple Pendulum.

The two forces acting on the mass are the downward

gravitational force, mg, and the tension, T, in the string.

Note, however, that the tension makes no contribution to

the torque, since its line of action clearly passes through

the pivot point.

From simple trigonometry, the line of action of the

gravitational force passes a distance from the pivot point.

Hence, the magnitude of the gravitational torque is mg l

sin θ. Moreover, the gravitational torque is a restoring

torque: i.e., if the mass is displaced slightly from its

equilibrium state (i.e., θ = 0) then the gravitational force

clearly acts to push the mass back toward that state.

Thus, we can write

sin .mglτ = − θ
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Combining the previous two equations, we obtain the

following angular equation of motion of the pendulum:

sin .l gθ = − θ&&

Unfortunately, this is not the simple harmonic equation.

Indeed, the above equation possesses no closed solution

which can be expressed in terms of simple functions.

Suppose that we restrict our attention to relatively small

deviations from the equilibrium state. In other words,

suppose that the angle θ is constrained to take fairly small

values. We know, from trigonometry, that for |θ| less than

about 6° it is a good approximation to write

sin .θ θ�

Hence, in the small angle limit, Eq. reduces to

,l gθ = − θ&&

which is in the familiar form of a simple harmonic equation.

Comparing with our original simple harmonic equation,

Eq.  and its solution, we conclude that the angular frequency

of small amplitude oscillations of a simple pendulum is

given by

.
g

l
=ω

In this case, the pendulum frequency is dependent only

on the length of the pendulum and the local gravitational

acceleration, and is independent of the mass of the pendulum

and the amplitude of the pendulum swings (provided that

sin θ � θ remains a good approximation). Historically, the

simple pendulum was the basis of virtually all accurate

time-keeping devices before the advent of electronic clocks.

Simple pendulums can also be used to measure local

variations ing.
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6

Ideal Monatomic Gases

Let us now practice calculating thermodynamic relations

using the partition function by considering an example with

which we are already quite familiar: i.e., an ideal monatomic

gas. Consider a gas consisting of Nidentical monatomic

molecules of mass m enclosed in a container of volume V.

Let us denote the position and momentum vectors of the

ith molecule by ri and pi, respectively.

Since the gas is ideal, there are no interatomic forces,

and the total energy is simply the sum of the individual

kinetic energies of the molecules:
2

1

,
2

N
i

i

p
E

m=

=

where pi
2 = pi . pi.

Let us treat the problem classically. In this approach, we

divide up phase-space into cells of equal volume h0
f. Here,

f is the number of degrees of freedom, and h0 is a small
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constant with dimensions of angular momentum which

parameterizes the precision to which the positions and

momenta of molecules are determined. Each cell in phase-

space corresponds to a different state. The partition function

is the sum of the Boltzmann factor exp (– β Er) over all

possible states, where Er is the energy of state τ. Classically,

we can approximate the summation over cells in phase-

space as an integration over all phase-space. Thus,
3 3 3 3

1 1
3

0

exp( ) ,N PN
N

d r d r d p d
Z E

h
= −β 

L L
L

where 3N is the number of degrees of freedom of a monatomic

gas containing N molecules. Making use of Eq. the above

expression reduces to

2 3 2 3
1 13

0

exp[ / 2 ) ] exp[ ( / 2 ) ] .
N

N PNN

V
Z m p d p m p d

h
= −β − β L L

Note that the integral over the coordinates of a given

molecule simply yields the volume of the container, V, since

the energy E is independent of the locations of the molecules

in an ideal gas. There are N such integrals, so we obtain

the factor VN in the above expression. Note, also, that each

of the integrals over the molecular momenta in Eq. are

identical: they differ only by irrelevant dummy variables of

integration. It follows that the partition function Z of the gas

is made up of the product of N identical factors: i.e.,

,NZ = ζ

where
2 3

3
0

exp[ ( / 2 ) ]
V

m p d p
h

ζ = − β

is the partition function for a single molecule. Of course,

this result is obvious, since we have already shown that the

partition function for a system made up of a number of
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weakly interacting subsystems is just the product of the

partition functions of the subsystems.

The integral in Eq. is easily evaluated:
2 3exp[ ( / 2 ) ]m p d p− β  = 2exp[ ( / 2 ) ]x xm p dp

∞

−∞
− β

2exp[ ( / 2 ) ]y ym p dp
∞

−∞
− β  × 2exp[ ( / 2 ) ]z zm p dp

∞

−∞
− β

=
3

2
,

m π
 

β 

where use has been made of Eq. Thus,

ζ = V 
3 / 2

2
0

2
,

m

h

π 
 β 

and

2
0

3 3
ln ln ln ln ln .

2 2

m
Z N N V

h

2π  
= ζ = − β +  

  

The expression for the mean pressure yields
1 ln 1

,
Z N

p
V V

∂
= =

β ∂ β

which reduces to the ideal gas equation of state

,pV NkT vRT= =

where use has been made of N = vNA and R = NAk. According

to Eq. the mean energy of the gas is given by
ln 3 3

.
2 2

Z N
E v RT

∂
= − = =

∂β β

Note that the internal energy is a function of temperature

alone, with no dependence on volume.

The molar heat capacity at constant volume of the gas

is given by
1 3

,
2

v
V

E
c R

v T

 ∂
= = 

∂ 

so the mean energy can be written

.vE v c T=
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We have seen all of the above results before. Let us now

use the partition function to calculate a new result. The

entropy of the gas can be calculated quite simply from the

expression

(ln )S k Z E= + β .

Thus,

2
0

3 3 2 3
ln ln ln ,

2 2 2

m
S vR V

h

π  = − β + +  
  

or
3

ln ln ,
2

S vR V T
 

= + + σ  

where

2
0

3 2 3
ln .

2 2

mk

h

π 
σ = + 

 

The above expression for the entropy of an ideal gas is

certainly new. Unfortunately, it is also quite obviously

incorrect.

Gibb’s paradox

What has gone wrong? First of all, let us be clear why

Eq. is incorrect.

We can see that S → — ∞ as T → 0, which contradicts

the third law of thermodynamics. However, this is not a

problem. Equation  was derived using classical physics,

which breaks down at low temperatures. Thus, we would

not expect this equation to give a sensible answer close to

the absolute zero of temperature.

Equation  is wrong because it implies that the entropy

does not behave properly as an extensive quantity.

Thermodynamic quantities can be divided into two groups,
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extensive and intensive. Extensive quantities increase by a

factor α when the size of the system under consideration

is increased by the same factor. Intensive quantities stay

the same. Energy and volume are typical extensive quantities.

Pressure and temperature are typical intensive quantities.

Entropy is very definitely an extensive quantity. We have

shown that the entropies of two weakly interacting systems

are additive. Thus, if we double the size of a system we

expect the entropy to double as well. Suppose that we have

a system of volume V containing v moles of ideal gas at

temperature T. Doubling the size of the system is like joining

two identical systems together to form a new system of

volume 2V containing 2v moles of gas at temperature T. Let
3

ln ln
2

S vR V T
 

= + + σ  

denote the entropy of the original system, and let
3

2 ln 2 ln
2

S vR V T
 

′ = + + σ  

denote the entropy of the double-sized system. Clearly, if

entropy is an extensive quantity (which it is!) then we

should have

2 .S S′ =

But, in fact, we find that

2 2 ln 2.S S vR′ − =

So, the entropy of the double-sized system is more than

double the entropy of the original system.

Where does this extra entropy come from? Well, let us

consider a little more carefully how we might go about

doubling the size of our system. Suppose that we put another

identical system adjacent to it, and separate the two systems

by a partition.



Thermodynamics Equilibrium

107

Let us now suddenly remove the partition. If entropy is

a properly extensive quantity then the entropy of the overall

system should be the same before and after the partition

is removed. It is certainly the case that the energy (another

extensive quantity) of the overall system stays the same.

However, according to Eq. the overall entropy of the system

increases by 2vR ln 2 after the partition is removed. Suppose,

now, that the second system is identical to the first system

in all respects except that its molecules are in some way

slightly different to the molecules in the first system, so that

the two sets of molecules are distinguishable. In this case,

we would certainly expect an overall increase in entropy

when the partition is removed. Before the partition is

removed, it separates type 1 molecules from type 2 molecules.

After the partition is removed, molecules of both types

become jumbled together.

This is clearly an irreversible process. We cannot imagine

the molecules spontaneously sorting themselves out again.

The increase in entropy associated with this jumbling is

called entropy of mixing, and is easily calculated. We know

that the number of accessible states of an ideal gas varies

with volume like Ω ∝ VN. The volume accessible to type 1

molecules clearly doubles after the partition is removed, as

does the volume accessible to type 2 molecules. Using the

fundamental formula S = k ln Ω, the increase in entropy

due to mixing is given by

2 ln 2 ln 2 ln 2.
f f

i i

V
S k Nk v R

V

Ω
= = =

Ω

It is clear that the additional entropy 2vR ln 2, which

appears when we double the size of an ideal gas system by
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joining together two identical systems, is entropy of mixing

of the molecules contained in the original systems. But, if

the molecules in these two systems are indistinguishable,

why should there be any entropy of mixing? Well, clearly,

there is no entropy of mixing in this case.

At this point, we can begin to understand what has gone

wrong in our calculation. We have calculated the partition

function assuming that all of the molecules in our system

have the same mass and temperature, but we have never

explicitly taken into account the fact that we consider the

molecules to be indistinguishable.

In other words, we have been treating the molecules in

our ideal gas as if each carried a little license plate, or a

social security number, so that we could always tell one

from another. In quantum mechanics, which is what we

really should be using to study microscopic phenomena, the

essential indistinguishability of atoms and molecules is

hard-wired into the theory at a very low level. Our problem

is that we have been taking the classical approach a little

too seriously. It is plainly silly to pretend that we can

distinguish molecules in a statistical problem, where we do

not closely follow the motions of individual particles. A

paradox arises if we try to treat molecules as if they were

distinguishable. This is called Gibb’s paradox, after the

American physicist Josiah Gibbs who first discussed it. The

resolution of Gibb’s paradox is quite simple: treat all

molecules of the same species as if they were

indistinguishable. In our previous calculation of the ideal

gas partition function, we inadvertently treated each of the

N molecules in the gas as distinguishable.
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Because of this, we overcounted the number of states

of the system. Since the N! possible permutations of the

molecules amongst themselves do not lead to physically

different situations, and, therefore, cannot be counted as

separate states, the number of actual states of the system

is a factor N! less than what we initially thought. We can

easily correct our partition function by simply dividing by

this factor, so that

.
!

N

Z
N

ζ
=

This gives

ln ln !,Z N N= ζ −

or

ln ln ln ,Z N N N N= ζ − +

using Stirling’s approximation. Note that our new version

of ln Z differs from our previous version by an additive term

involving the number of particles in the system. This explains

why our calculations of the mean pressure and mean energy,

which depend on partial derivatives of ln Z with respect to

the volume and the temperature parameter β, respectively,

came out all right. However, our expression for the entropy

S is modified by this additive term. The new expression is

2
0

23 3 3
ln ln ln ( ln ).

2 2 2

mk
S vR V k N N N

h

π  
= − β + + + − +  

  

This gives

0
3

ln ln
2

V
S vR T

N

 
= + + σ  

where

0 2
0

23 5
ln .

2 2

mk

h

π 
σ = + 
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It is clear that the entropy behaves properly as an

extensive quantity in the above expression: i.e., it is multiplied

by a factor α when v, V, and N are multiplied by the same

factor.

The equipartition theorem

The internal energy of a monatomic ideal gas containing

N particles. This means that each particle possess, on

average, units of energy. Monatomic particles have only

three translational degrees of freedom, corresponding to

their motion in three dimensions. They possess no internal

rotational or vibrational degrees of freedom. Thus, the mean

energy per degree of freedom in a monatomic ideal gas is.

In fact, this is a special case of a rather general result. Let

us now try to prove this.

Suppose that the energy of a system is determined by

some generalized coordinates and corresponding generalized

momenta Pk, so that

1 1( ,..., , ,..., ).f fE E q q p p=

Suppose further that:

The total energy splits additively into the form

1( ) ( ,..., ),i i fE p E q p=∈ + ′

where ∈i involves only one variable pi, and the remaining

part E′ does not depend on pi .

The function ∈i is quadratic in pi, so that
2( ) ,i i ip bp∈ +

where b is a constant.

The most common situation in which the above

assumptions are valid is where pi is a momentum. This is
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because the kinetic energy is usually a quadratic function

of each momentum component, whereas the potential energy

does not involve the momenta at all. However, if a coordinate

qi were to satisfy assumptions 1 and 2 then the theorem

we are about to establish would hold just as well.

What is the mean value of ∈i in thermal equilibrium if

conditions 1 and 2 are satisfied? If the system is in

equilibrium at absolute temperature T ≡ (kβ)–1then it is

distributed according to the Boltzmann distribution. In the

classical approximation, the mean value of ∈i is expressed

in terms of integrals over all phase-space:

i∈ =  
1 1

1 1

exp[ ( ,..., )] ...
.

exp[ ( ,..., )] ...

f i f

f f

E q p dq dp

E q p dq dp

∞

−∞
∞

−∞

−β ∈

−β




Condition 1 gives

i∈ = 
1

1

exp[ ( )] ...

exp[ ( )] ...

i i f

i f

E dq dp

E dq dp

∞

−∞
∞

−∞

−β ∈ + ′ ∈

−β ∈ + ′





= 
1

1

exp( ) exp( ) ...
,

exp( ) exp ( ) ...

i i i f

i i f

dp E dq dp

dp E dq dp

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

−β∈ ∈ −β ′

−β∈ −β ′

 

 
where use has been made of the multiplicative property of

the exponential function, and where the last integrals in

both the numerator and denominator extend over all variables

qkand pk except pi. These integrals are equal and, thus,

cancel. Hence,

exp( )
.

exp( )

i i i

i

i i

dq

dp

∞

−∞
∞

−∞

−β∈ ∈
∈ =

−β∈




This expression can be simplified further since

exp( ) exp( ) ,i i i i idp dp
∞ ∞

−∞ −∞

θ  −β∈ ∈ ≡ − −β∈  ∂β 
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so

ln exp( ) .i i idp
∞

−∞

∂  ∈ = − −β∈  ∂β 

According to condition 2,

where y = β  pi. Thus,
21

ln exp( ) ln ln exp( ) .
2

i idp by dy
∞ ∞

−∞ −∞
−β∈ = − β + − 

Note that the integral on the right-hand side does not

depend on β at all. It follows from Eq. that
1 1

ln ,
2 2

i
∂  

∈ = − − β = 
∂β   β

giving
1

.
2

i kT∈ =

This is the famous equipartition theorem of classical

physics. It states that the mean value of every independent

quadratic term in the energy is equal to (1/2)kT. If all terms

in the energy are quadratic then the mean energy is spread

equally over all degrees of freedom (hence the name

“equipartition”).

Harmonic oscillators

Our proof of the equipartition theorem depends crucially

on the classical approximation. To see how quantum effects

modify this result, let us examine a particularly simple

system which we know how to analyze using both classical

and quantum physics: i.e., a simple harmonic oscillator.

Consider a one-dimensional harmonic oscillator in

equilibrium with a heat reservoir at temperature T. The

energy of the oscillator is given by
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2
21

,
2 2

p
E kx

m
= +

where the first term on the right-hand side is the kinetic

energy, involving the momentum p and mass m, and the

second term is the potential energy, involving the

displacement x and the force constant k. Each of these

terms is quadratic in the respective variable. So, in the

classical approximation the equipartition theorem yields:
2

2

p

m
= 

1
,

2
kT

21

2
kx = 

1
.

2
kT

That is, the mean kinetic energy of the oscillator is equal

to the mean potential energy which equals (1/2)kT. It follows

that the mean total energy is
1 1

.
2 2

E kT kT kT= + =

According to quantum mechanics, the energy levels of

a harmonic oscillator are equally spaced and satisfy

( 1/ 2) ,nE n= + ωh

where n is a non-negative integer, and

.
m

=
k

ω

The partition function for such an oscillator is given by

0 0

exp( ) exp[ (1/ 2) ] exp(n
n n

Z E n
∞ ∞

= =

= −β = − β − β h hω ω).

Now,

0

exp( = 1 + exp( ) exp( 2 )
n

n
∞

=

− β −β + − β + h h h Lω) ω ω

is simply the sum of an infinite geometric series, and can

be evaluated immediately,
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0

1
exp( = .

1 exp( )n

n
∞

=

− β
− −β

 h

h

ω)
ω

Thus, the partition function takes the form
exp[ (1/ 2) ]

,
1 exp( )

Z
− β

=
− −β

h

h

ω

ω

and
1

ln ln[1 exp( )].
2

Z = − β − − −βh hω ω

The mean energy of the oscillator is given by Eq.
exp( )1

ln ,
2 1 exp( )

E Z
−β∂  

= − = − − − ∂β − −β 

h h
h

h

ω ω
ω

ω

or
1 1

.
2 exp( ) 1

E  = − + β − 
h

h
ω

ω

Consider the limit

1,
kT

β <<
h

h
ω

ω =

in which the thermal energy kT is large compared to the

separation hω between the energy levels. In this limit,

exp ( ) 1 ,β + βh � hω ω

so
1

,E    +   β β   
� h � h

h h

1 1
ω ω

2 ω ω

giving

.E kT=
β

�
1

Thus, the classical result (470) holds whenever the

thermal energy greatly exceeds the typical spacing between

quantum energy levels.

Consider the limit

1,
kT

β >>
h

h
ω

ω
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in which the thermal energy is small compared to the

separation between the energy levels. In this limit,

exp ( ) 1,β >>hω

Thus, if the thermal energy is much less than the spacing

between quantum states then the mean energy approaches

that of the ground-state (the so-called zero point energy).

Clearly, the equipartition theorem is only valid in the former

limit, where kT >> hω , and the oscillator possess sufficient

thermal energy to explore many of its possible quantum

states.

Specific heats

We have discussed the internal energies and entropies

of substances (mostly ideal gases) at some length.

Unfortunately, these quantities cannot be directly measured.

Instead, they must be inferred from other information. The

thermodynamic property of substances which is the easiest

to measure is, of course, the heat capacity, or specific heat.

In fact, once the variation of the specific heat with

temperature is known, both the internal energy and entropy

can be easily reconstructed via

E(T, V)= 
0

( , ) (0, ),
T

Vv c T V dT E V+
S(T, V) =

Here, use has been made of dS = d /Q T, and the third law

of thermodynamics. Clearly, the optimum way of verifying

the results of statistical thermodynamics is to compare the

theoretically predicted heat capacities with the experimentally

measured values.

Classical physics, in the guise of the equipartition

theorem, says that each independent degree of freedom
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associated with a quadratic term in the energy possesses

an average energy (1/2)kT in thermal equilibrium at

temperature T. Consider a substance made up of N molecules.

Every molecular degree of freedom contributes (1/2)N k T,

or (1/2) vRT, to the mean energy of the substance (with the

tacit proviso that each degree of freedom is associated with

a quadratic term in the energy). Thus, the contribution to

the molar heat capacity at constant volume (we wish to

avoid the complications associated with any external work

done on the substance) is
1 1 [(1/ 2) ] 1

,
2V

E vRT
R

v T v T

∂ ∂ 
= = 

∂ ∂ 

per molecular degree of freedom. The total classical heat

capacity is therefore
,

2
V

g
c R=

where g is the number of molecular degrees of freedom.

Since large complicated molecules clearly have very many

more degrees of freedom than small simple molecules, the

above formula predicts that the molar heat capacities of

substances made up of the former type of molecules should

greatly exceed those of substances made up of the latter.

In fact, the experimental heat capacities of substances

containing complicated molecules are generally greater than

those of substances containing simple molecules, but by

nowhere near the large factor predicted by Eq. 

This equation also implies that heat capacities are

temperature independent. In fact, this is not the case for

most substances. Experimental heat capacities generally

increase with increasing temperature. These two

experimental facts pose severe problems for classical physics.
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Incidentally, these problems were fully appreciated as far

back as 1850. Stories that physicists at the end of the

nineteenth century thought that classical physics explained

absolutely everything are largely apocryphal.

The equipartition theorem (and the whole classical

approximation) is only valid when the typical thermal energy

kT greatly exceeds the spacing between quantum energy

levels. Suppose that the temperature is sufficiently low that

this condition is not satisfied for one particular molecular

degree of freedom. In fact, suppose that kT is much less

than the spacing between the energy levels.

In this situation the degree of freedom only contributes

the ground-state energy, E0, say, to the mean energy of the

molecule. The ground-state energy can be a quite complicated

function of the internal properties of the molecule, but is

certainly not a function of the temperature, since this is a

collective property of all molecules. It follows that the

contribution to the molar heat capacity is

0[ ]1
0.

v

N E

v T

∂ 
= 

∂ 

Thus, if kT is much less than the spacing between the

energy levels then the degree of freedom contributes nothing

at all to the molar heat capacity. We say that this particular

degree of freedom is frozen out. Clearly, at very low temperatures

just about all degrees of freedom are frozen out. As the

temperature is gradually increased, degrees of freedom

successively “kick in,” and eventually contribute their full (1/

2)R to the molar heat capacity, as kT approaches, and then

greatly exceeds, the spacing between their quantum energy

levels. We can use these simple ideas to explain the behaviours
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of most experimental heat capacities. To make further progress,

we need to estimate the typical spacing between the quantum

energy levels associated with various degrees of freedom. We

can do this by observing the frequency of the electromagnetic

radiation emitted and absorbed during transitions between

these energy levels. If the typical spacing between energy

levels is ∆E then transitions between the various levels are

associated with photons of frequency v, where hv = ∆E.

We can define an effective temperature of the radiation

via hv = kTrad. If T >>Tradthen kT >> ∆E, and the degree of

freedom makes its full contribution to the heat capacity. On

the other hand, if T << Trad then kT << ∆E, and the degree

of freedom is frozen out. The “temperatures” of various

different types of radiation. It is clear that degrees of freedom

which give rise to emission or absorption of radio or

microwave radiation contribute their full (1/2)R to the molar

heat capacity at room temperature.

Degrees of freedom which give rise to emission or

absorption in the visible, ultraviolet, X–ray, or γ–ray regions

of the electromagnetic spectrum are frozen out at room

temperature. Degrees of freedom which emit or absorb

infrared radiation are on the border line.
Table. Effective “Temperatures” of Various

Types of Electromagnetic Radiation

Radiation type Frequency (Hz) Trad (°K)

Radio < 109 < 0.05

Microwave 109 – 1011 < 0.05

Infrared 1011 – 1014 5. 5000

Visible 5 ×1014 2 ×104

Ultraviolet 1015 – 1017 5 ×104 5 ×105

X-ray 1017 – 1020 5 × 106 5 × 109

g-ray > 1020 > 5 ×1093
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Specific Heats of Gases

Let us now investigate the specific heats of gases. Consider,

first of all, translational degrees of freedom. Every molecule

in a gas is free to move in three dimensions. If one particular

molecule has mass m and momentum p = mv then its

kinetic energy of translation is

( )2 2 21
.

2
x y zK p p p

m
= + +

The kinetic energy of other molecules does not involve

the momentum P of this particular molecule. Moreover, the

potential energy of interaction between molecules depends

only on their position coordinates, and, thus, certainly does

not involve P. Any internal rotational, vibrational, electronic,

or nuclear degrees of freedom of the molecule also do not

involve P.

Hence, the essential conditions of the equipartition

theorem are satisfied (at least, in the classical approximation).

Since Eq. contains three independent quadratic terms, there

are clearly three degrees of freedom associated with

translation (one for each dimension of space), so the

translational contribution to the molar heat capacity of

gases is

translation
3

( ) .
2

Vc R=

Suppose that our gas is contained in a cubic enclosure

of dimensions L. According to Schrödinger’s equation, the

quantized translational energy levels of an individual

molecule are given by

( )
2 2

2 2 2
1 2 32

,
2

E n n n
mL

π
= + +
h

where n1, n2, and n3 are positive integer quantum numbers.
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Clearly, the spacing between the energy levels can be made

arbitrarily small by increasing the size of the enclosure. This

implies that translational degrees of freedom can be treated

classically, so that Eq. is always valid (except very close to

absolute zero). We conclude that all gases possess a minimum

molar heat capacity of (3/2) R due to the translational

degrees of freedom of their constituent molecules.

The electronic degrees of freedom of gas molecules (i.e., the

possible configurations of electrons orbiting the atomic nuclei)

typically give rise to absorption and emission in the ultraviolet

or visible regions of the spectrum. It follows from electronic

degrees of freedom are frozen out at room temperature.

Similarly, nuclear degrees of freedom (i.e., the possible

configurations of protons and neutrons in the atomic nuclei)

are frozen out because they are associated with absorption

and emission in the X–ray and γ–ray regions of the

electromagnetic spectrum. In fact, the only additional degrees

of freedom we need worry about for gases are rotational and

vibrational degrees of freedom. These typically give rise to

absorption lines in the infrared region of the spectrum.

The rotational kinetic energy of a molecule tumbling in

space can be written
1 1 1

,
2 2 2

x x y y z zK I I I= + +2 2 2ω ω ω

where the x –, y–, and z–axes are the so called principle axes

of inertia of the molecule (these are mutually perpendicular),

ωx, ωy, and ωz are the angular velocities of rotation about

these axes, and Ix, Iy, and Iz are the moments of inertia of

the molecule about these axes. No other degrees of freedom

depend on the angular velocities of rotation.
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Since the kinetic energy of rotation is the sum of three

quadratic terms, the rotational contribution to the molar

heat capacity of gases is

rotation
3

( ) ,
2

Vc R=

according to the equipartition theorem. Note that the typical

magnitude of a molecular moment of inertia is md2, where

m is the molecular mass, and d is the typical interatomic

spacing in the molecule. A special case arises if the molecule

is linear (e.g. if the molecule is diatomic).

In this case, one of the principle axes lies along the line

of centers of the atoms. The moment of inertia about this

axis is of order ma2, where a is a typical nuclear dimension

(remember that nearly all of the mass of an atom resides

in the nucleus). Since a ~10–5 d,it follows that the moment

of inertia about the line of centres is minuscule compared

to the moments of inertia about the other two principle

axes. In quantum mechanics, angular momentum is

quantized in units of h. The energy levels of a rigid rotator

are written
2

( 1),
2

E J J
I

= +
h

where I is the moment of inertia and J is an integer. Note

the inverse dependence of the spacing between energy levels

on the moment of inertia.

It is clear that for the case of a linear molecule, the

rotational degree of freedom associated with spinning along

the line of centres of the atoms is frozen out at room

temperature, given the very small moment of inertia along

this axis, and, hence, the very widely spaced rotational

energy levels.
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Classically, the vibrational degrees of freedom of a

molecule are studied by standard normal mode analysis of

the molecular structure. Each normal mode behaves like

an independent harmonic oscillator, and, therefore,

contributes R to the molar specific heat of the gas [(1/2) R

from the kinetic energy of vibration and (1/2)R from the

potential energy of vibration].

A molecule containing n atoms has n–1 normal modes

of vibration. For instance, a diatomic molecule has just one

normal mode (corresponding to periodic stretching of the

bond between the two atoms). Thus, the classical contribution

to the specific heat from vibrational degrees of freedom is

vibration( ) ( 1) .Vc n R= −

The rotational and vibrational degrees of freedom actually

make a contribution to the specific heats of gases at room

temperature, once quantum effects are taken into

consideration? We can answer this question by examining

just one piece of data. The infrared absorption spectrum of

Hydrogen Chloride. The absorption lines correspond to

simultaneous transitions between different vibrational and

rotational energy levels.

Hence, this is usually called a vibration-rotation spectrum.

The missing line at about 3.47 microns corresponds to a

pure vibrational transition from the ground-state to the first

excited state (pure vibrational transitions are forbidden:

HCl molecules always have to simultaneously change their

rotational energy level if they are to couple effectively to

electromagnetic radiation).

The longer wavelength absorption lines correspond to

vibrational transitions in which there is a simultaneous
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decrease in the rotational energy level. Likewise, the shorter

wavelength absorption lines correspond to vibrational

transitions in which there is a simultaneous increase in the

rotational energy level.

It is clear that the rotational energy levels are more

closely spaced than the vibrational energy levels. The pure

vibrational transition gives rise to absorption at about 3.47

microns, which corresponds to infrared radiation of frequency

8.5 ×1011 hertz with an associated radiation “temperature”

of 4400 degrees kelvin.

We conclude that the vibrational degrees of freedom of

HCl, or any other small molecule, are frozen out at room

temperature. The rotational transitions split the vibrational

lines by about 0.2 microns.

This implies that pure rotational transitions would be

associated with infrared radiation of frequency 5 × 1012

hertz and corresponding radiation “temperature” 260 degrees

kelvin. We conclude that the rotational degrees of freedom

of HCl, or any other small molecule, are not frozen out at

room temperature, and probably contribute the classical

(1/2)R to the molar specific heat. There is one proviso,

however. Linear molecules (like HCl) effectively only have

two rotational degrees of freedom (instead of the usual

three), because of the very small moment of inertia of such

molecules along the line of centres of the atoms.

We are now in a position to make some predictions

regarding the specific heats of various gases. Monatomic

molecules only possess three translational degrees of

freedom, so monatomic gases should have a molar heat

capacity (3/2)R = 12.47 joules/degree/mole.
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The ratio of specific heats γ = Cp/CV = (CV + R)/CV should

be 5/3 = 1.667. It can be seen from both of these predictions

are borne out pretty well for Helium and Argon.

Diatomic molecules possess three translational degrees

of freedom and two rotational degrees of freedom (all other

degrees of freedom are frozen out at room temperature).

Thus, diatomic gases should have a molar heat capacity (5/

2)R = 20.8 joules/degree/mole.

The ratio of specific heats should be 7/5 = 1.4 It can be

seen from these are pretty accurate predictions for Nitrogen

and Oxygen. The freezing out of vibrational degrees of freedom

becomes gradually less effective as molecules become heavier

and more complex.

This is partly because such molecules are generally less

stable, so the force constant k is reduced, and partly because

the molecular mass is increased.

Both these effect reduce the frequency of vibration of the

molecular normal modes and, hence, the spacing between

vibrational energy levels.

This accounts for the obviously non-classical [i.e., not a

multiple of (1/2)R] specific heats of Carbon Dioxide and

Ethane. In both molecules, vibrational degrees of freedom

contribute to the molar specific heat (but not the full R

because the temperature is not high enough).

The variation of the molar heat capacity at constant

volume (in units of R) of gaseous hydrogen with temperature.

The expected contribution from the translational degrees of

freedom is (3/2)R (there are three translational degrees of

freedom per molecule).
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Fig. The Molar Heat Capacity at Constant Volume.

The expected contribution at high temperatures from the

rotational degrees of freedom is R (there are effectively two

rotational degrees of freedom per molecule). Finally, the

expected contribution at high temperatures from the

vibrational degrees of freedom is R (there is one vibrational

degree of freedom per molecule). It can be seen that as the

temperature rises the rotational, and then the vibrational,

degrees of freedom eventually make their full classical

contributions to the heat capacity.

Specific Heats of Solids

Consider a simple solid containing N atoms. Now, atoms

in solids cannot translate (unlike those in gases), but are

free to vibrate about their equilibrium positions. Such

vibrations are called lattice vibrations, and can be thought

of as sound waves propagating through the crystal lattice.

Each atom is specified by three independent position

coordinates, and three conjugate momentum coordinates.

Let us only consider small amplitude vibrations. In this

case, we can expand the potential energy of interaction
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between the atoms to give an expression which is quadratic

in the atomic displacements from their equilibrium positions.

It is always possible to perform a normal mode analysis of

the oscillations. In effect, we can find 3N independent modes

of oscillation of the solid.

Each mode has its own particular oscillation frequency,

and its own particular pattern of atomic displacements. Any

general oscillation can be written as a linear combination

of these normal modes.

Let qi be the (appropriately normalized) amplitude of the

ith normal mode, and pithe momentum conjugate to this

coordinate. In normal mode coordinates, the total energy

of the lattice vibrations takes the particularly simple form
3

2 2 2

1

1
( ),

2

N

i i i
i

E p q
=

= + ω

where ωi is the (angular) oscillation frequency of the ith

normal mode. It is clear that in normal mode coordinates,

the linearized lattice vibrations are equivalent to 3N

independent harmonic oscillators (of course, each oscillator

corresponds to a different normal mode).

The typical value of ωi is the (angular) frequency of a

sound wave propagating through the lattice. Sound wave

frequencies are far lower than the typical vibration

frequencies of gaseous molecules.

In the latter case, the mass involved in the vibration is

simply that of the molecule, whereas in the former case the

mass involved is that of very many atoms (since lattice

vibrations are non-localized).

The strength of interatomic bonds in gaseous molecules

is similar to those in solids, so we can use the estimate ω
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~ / mk (k is the force constant which measures the strength

of interatomic bonds, and m is the mass involved in the

oscillation) as proof that the typical frequencies of lattice

vibrations are very much less than the vibration frequencies

of simple molecules.

It follows from ∆E = hω that the quantum energy levels of

lattice vibrations are far more closely spaced than the

vibrational energy levels of gaseous molecules. Thus, it is

likely (and is, indeed, the case) that lattice vibrations are

not frozen out at room temperature, but, instead, make

their full classical contribution to the molar specific heat

of the solid.

If the lattice vibrations behave classically then, according

to the equipartition theorem, each normal mode of oscillation

has an associated mean energy kTin equilibrium at

temperature T [(1/2)kT resides in the kinetic energy of the

oscillation, and (1/2)kT resides in the potential energy].

Thus, the mean internal energy per mole of the solid is

3 3 .E NkT vRT= =

It follows that the molar heat capacity at constant

volume is

1
3V

V

E
c R

v T

 ∂
= = 

∂ 

for solids. This gives a value of 24.9 joules/mole/degree. In

fact, at room temperature most solids (in particular, metals)

have heat capacities which lie remarkably close to this

value. This fact was discovered experimentally by Dulong

and Petite at the beginning of the nineteenth century, and

was used to make some of the first crude estimates of the

molecular weights of solids (if we know the molar heat
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capacity of a substance then we can easily work out how

much of it corresponds to one mole, and by weighing this

amount, and then dividing the result by Avogadro’s number,

we can obtain an estimate of the molecular weight).

The experimental molar heat capacities Cp at constant

pressure for various solids. The heat capacity at constant

volume is somewhat less than the constant pressure value,

but not by much, because solids are fairly incompressible.

It can be seen that Dulong and Petite’s law (i.e., that all

solids have a molar heat capacities close to 24.9 joules/

mole/degree) holds pretty well for metals. However, the law

fails badly for diamond. This is not surprising.

As is well-known, diamond is an extremely hard

substance, so its intermolecular bonds must be very strong,

suggesting that the force constant k is large. Diamond is

also a fairly low density substance, so the mass m involved

in lattice vibrations is comparatively small. Both these facts

suggest that the typical lattice vibration frequency of diamond

( ~ /k mω ) is high. In fact, the spacing between the different

vibration energy levels (which scales like hω ) is sufficiently

large in diamond for the vibrational degrees of freedom to

be largely frozen out at room temperature.

This accounts for the anomalously low heat capacity of

diamond.
Table. Values of (Joules/Mole/Degree)

For Some Solids at T = 298° K. K. From Reif.

Solid Cp Solid Cp

Copper 24.5 Aluminium 24.4

Silver 25.5 Tin (white) 26.4

Lead 26.4 Sulphur (rhombic) 22.4

Zinc 25.4 Carbon (diamond) 6.1
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Dulong and Petite’s law is essentially a high temperature

limit. The molar heat capacity cannot remain a constant as

the temperature approaches absolute zero, since, by Eq. this

would imply S → ∞, which violates the third law of

thermodynamics. We can make a crude model of the

behaviour of CV at low temperatures by assuming that all

the normal modes oscillate at the same frequency, ω, say.

According to Eq. the solid acts like a set of 3N independent

oscillators which, making use of Einstein’s approximation,

all vibrate at the same frequency. We can use the quantum

mechanical result for a single oscillator to write the mean

energy of the solid in the form
1

3 .
exp( ) 1

E N  = + β − 
h

h

1
ω

2 ω

The molar heat capacity is defined

2

1 1 1
,V

V V V

E E E
c

v T v T T TvkT

     ∂ ∂ ∂β ∂
= = = −     

∂ ∂ ∂ ∂     

giving

2 2

3 exp( )
,

[exp( ) 1]

A
V

N
c

kT

β 
= − − β − 

h h

h

ω ω

ω

which reduces to
2

2

exp( / )
3 .

[exp( / ) 1]

EE
V

E

T
c R

T T

θθ =  
  θ −

Here,

E
k

θ =
hω

is called the Einstein temperature. If the temperature is

sufficiently high that T>> θE
 then kT >> hω , and the above

expression reduces to CV = 3R,, after expansion of the

exponential functions. Thus, the law of Dulong and Petite

is recovered for temperatures significantly in excess of the
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Einstein temperature. On the other hand, if the temperature

is sufficiently low that T<< θE then the exponential factors

in Eq. become very much larger than unity, giving

~ 3 exp( / ).E
V EC R T

T

θ 
−θ 

 

So, in this simple model the specific heat approaches

zero exponentially as T → 0.

In reality, the specific heats of solids do not approach

zero quite as quickly as suggested by Einstein’s model when

T → 0. The experimentally observed low temperature

behaviour is more like CV ∝ T3. The reason for this

discrepancy is the crude approximation that all normal

modes have the same frequency. In fact, long wavelength

modes have lower frequencies than short wavelength modes,

so the former are much harder to freeze out than the latter

(because the spacing between quantum energy levels, hω ,

is smaller in the former case).

The molar heat capacity does not decrease with

temperature as rapidly as suggested by Einstein’s model

because these long wavelength modes are able to make a

significant contribution to the heat capacity even at very low

temperatures.

A more realistic model of lattice vibrations was developed

by the Dutch physicist Peter Debye in 1912. In the Debye

model, the frequencies of the normal modes of vibration are

estimated by treating the solid as an isotropic continuous

medium. This approach is reasonable because the only

modes which really matter at low temperatures are the long

wavelength modes: i.e., those whose wavelengths greatly

exceed the interatomic spacing. It is plausible that these
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modes are not particularly sensitive to the discrete nature

of the solid: i.e., the fact that it is made up of atoms rather

than being continuous.

Consider a sound wave propagating through an isotropic

continuous medium. The disturbance varies with position

vector r and time t like exp[–i (k.r – ωt)], where the wave-

vector k and the frequency of oscillation ω satisfy the

dispersion relation for sound waves in an isotropic medium:

= .skCω

Here, CS is the speed of sound in the medium. Suppose,

for the sake of argument, that the medium is periodic in the

x–, y–, and z–directions with periodicity lengths Lx, Ly, and

Lz, respectively. In order to maintain periodicity we need

( ) 2 ,x x x xk x L k n+ = + π

where nxis an integer. There are analogous constraints on

ky and kz. It follows that in a periodic medium the components

of the wave-vector are quantized, and can only take the

values

kx= 
2

,x
x

n
L

π

ky= 
2

y
y

n
L

π
,

kz= 
2

,z
z

n
L

π

where nx, ny, and nz are all integers. It is assumed that Lx,

Ly, and Lz are macroscopic lengths, so the allowed values

of the components of the wave-vector are very closely spaced.

For given values of ky and kz, the number of allowed values

of kx which lie in the range kx to kx + dkx is given by

2
2
x

x x

L
n k∆ =

π
.
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It follows that the number of allowed values of k (i.e., the

number of allowed modes) when kx lies in the range kz to

kz + dkz, kz, + ky lies in the range ky to ky + dky, and kz

lies in the range kz to kz + dkz, is

3
3

,
2 2 2 (2 )

yx z
x y z x y z

LL L V
d k dk dk dk dk dk dk

    
ρ = =   

π π π    π

where V = LxLyLz is the periodicity volume, and d3k ≡

dkxdkydkz. The quantity ρ is called the density of modes.

Note that this density is independent of k, and proportional

to the periodicity volume.

Thus, the density of modes per unit volume is a constant

independent of the magnitude or shape of the periodicity

volume. The density of modes per unit volume when the

magnitude of k lies in the range k to k + dk is given by

multiplying the density of modes per unit volume by the

“volume” in k-space of the spherical shell lying between

radii k and k + dk. Thus,
2 2

2

4
.

(2 ) 2
k

k dk V
dk dkρ

π
= =

π π

Consider an isotropic continuous medium of volume V.

According to the above relation, the number of normal

modes whose frequencies lie between ω and ω + dω (which

is equivalent to the number of modes whose k values lie in

the range ω/Cs to ω/Cs + dω/Cs) is
2 2

2
2 2 3

( ) 3 3 .
2 2

C
S

k V V
d dk d

C
σ = =

π π
ω ω ω ω

The factor of 3 comes from the three possible polarizations

of sound waves in solids. For every allowed wavenumber (or

frequency) there are two independent torsional modes, where

the displacement is perpendicular to the direction of



Thermodynamics Equilibrium

133

propagation, and one longitudinal mode, where the

displacement is parallel to the direction of propagation.

Torsion waves are vaguely analogous to electromagnetic

waves (these also have two independent polarizations). The

longitudinal mode is very similar to the compressional sound

wave in gases. Of course, torsion waves can not propagate

in gases because gases have no resistance to deformation

without change of volume.

The Debye approach consists in approximating the actual

density of normal modes σ(ω) by the density in a continuous

medium σC(ω), not only at low frequencies (long wavelengths)

where these should be nearly the same, but also at higher

frequencies where they may differ substantially.

Suppose that we are dealing with a solid consisting of

N atoms. We know that there are only 3N independent

normal modes. It follows that we must cut off the density

of states above some critical frequency, ωD say, otherwise

we will have too many modes. Thus, in the Debye

approximation the density of normal modes takes the form

σD(ω) = σC(ω) for ω < ωD

σD(ω) = 0 for ω < ωD

Here, ωD is the Debye frequency. This critical frequency

is chosen such that the total number of normal modes is

3N, so

0 0
( ) ( ) 3 .

D

C Cd d N
∞

σ = σ = 
ω

ω ω ω ω

Substituting Eq. into the previous formula yields

3
2 3 2 30

3 3
3 .

2 2

D

D
s s

V V
d N

C C
= =

π π
ω

ω ω
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This implies that
1/ 3

26 .D s
N

C
V

 
= π 

 
ω

Thus, the Debye frequency depends only on the sound

velocity in the solid and the number of atoms per unit

volume. The wavelength corresponding to the Debye

frequency is 2π Cs/ωD, which is clearly on the order of the

interatomic spacing a ~ (V/N)1/3.

It follows that the cut-off of normal modes whose

frequencies exceed the Debye frequency is equivalent to a

cut-off of normal modes whose wavelengths are less than

the interatomic spacing. Of course, it makes physical sense

that such modes should be absent.

Compares the actual density of normal modes in diamond

with the density predicted by Debye theory. Not surprisingly,

there is not a particularly strong resemblance between

these two curves, since Debye theory is highly idealized.

Nevertheless, both curves exhibit sharp cut-offs at high

frequencies, and coincide at low frequencies. Furthermore,

the areas under both curves are the same. This is sufficient

to allow Debye theory to correctly account for the

temperature variation of the specific heat of solids at low

temperatures.

We can use the quantum mechanical expression for the

mean energy of a single oscillator, Eq. to calculate the mean

energy of lattice vibrations in the Debye approximation. We

obtain

0

1
( )

exp( ) 1
DE d

∞  = σ + β − 
 h

h

1
ω ω ω.

2 ω
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According to Eq. the molar heat capacity takes the form

2 20

exp( )1
( )

[exp( ) 1]
V DC d

vkT

∞ β 
= σ  β − 


h h

h

h

ω ω
ω ω ω.

ω

Substituting in Eq. we find that

D
2

2
2 2 30

exp( )( ) 3

[exp( ) 1] 2
V

s

k V
C d

v C

β β
=

β − π
h h

h

ω ω ω
ω ω,

ω

giving
4

2 3 20

exp3
,

2 ( ) (exp 1)

D

V
s

xVk
C x dx

v C x

β
=

π β −
h

h

ω

in terms of the dimensionless variable x = β hω. According

to Eq. the volume can be written
3

26 ,
D

Cs
V N

 
= π  

 ω

so the heat capacity reduces to

D3 ( ) 3 ( / ),V D D DC Rf Rf T= β = θhω

where the Debye function is defined
4

3 20

exp3
( ) .

(exp 1)

y

D

x
f y x dx

y x
≡

−

We have also defined the Debye temperature θD as

.D Dkθ = hω

Consider the asymptotic limit in which T >> θD. For small

y, we can approximate exp x as 1 + x in the integrand of

Eq. so that
2

3 0

3
( ) 1.

y

Df y x dx
y

→ =

Thus, if the temperature greatly exceeds the Debye

temperature we recover the law of Dulong and Petite that

CV = 3R. Consider, now, the asymptotic limit in which T <<

θD. For large y,
4

4 4
2 20 0

exp exp 4
.

15(exp 1) (exp 1)

y x x
x dx x dx

x x

∞ π
=

− − �
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 Thus, in the low temperature limit
4

3

4 1
( ) .

5
Df y

y

π
→

This yields
3412

5
V

D

T
c R

π  
 θ 

�

in the limit T << θD: i.e., cV varies with temperature like T3.
Table. Comparison of Debye Temperatures (In Degrees Kelvin)

Solid θD from low temp. θD from sound speed

NaCl 308 320

KCl 230 246

Ag 225 216

Zn 308 305

The fact that cV goes like T3 at low temperatures is quite

well verified experimentally, although it is sometimes

necessary to go to temperatures as low as 0.02 θD to obtain

this asymptotic behaviour.

Theoretically, θD should be calculable from Eq. in terms

of the sound speed in the solid and the molar volume.

A comparison of Debye temperatures evaluated by this

means with temperatures obtained empirically by fitting

the law to the low temperature variation of the heat

capacity.

It can be seen that there is fairly good agreement between

the theoretical and empirical Debye temperatures.

This suggests that the Debye theory affords a good,

thought not perfect, representation of the behaviour of cV

in solids over the entire temperature range.
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Fig. The Molar Heat Capacity of Various Solids.

Finally, the actual temperature variation of the molar

heat capacities of various solids as well as that predicted

by Debye’s theory. The prediction of Einstein’s theory is also

show for the sake of comparison. Note that 24.9 joules/

mole/degree is about 6 calories/gram-atom/degree (the latter

are chemist’s units).
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7

Heat Capacity

The heat capacity of a substance is a measure of how

well the substance stores heat. Whenever we supply heat to

a material, it will necessarily cause an increase in the

material’s temperature. The heat capacity is defined as the

amount of heat required per unit increase in temperature,

so that

Heat added = heat capacity × (change in temperature)

Thus, materials with large heat capacities, like water, hold

heat well - their temperature won’t rise much for a given

amount of heat - whereas materials with small heat

capacities, like copper, don’t hold heat well - their temperature

will rise significantly when heat is added.

Heat capacity (usually denoted by a capital C, often with

subscripts) is a measurable physical quantity that

characterizes the ability of a body to store heat as it changes

in temperature. It is defined as the rate of change of
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temperature as heat is added to a body at the given conditions

and state of the body (foremost its temperature).

In the International System of Units, heat capacity is

expressed in units of joules per kelvin. It is termed an

“extensive quantity” because it is sensitive to the size of the

object (for example, a bathtub of water has a greater heat

capacity than a cup of water). Dividing heat capacity by the

body’s mass yields a specific heat capacity (also called more

properly “mass-specific heat capacity” or more loosely

“specific heat”), which is an “intensive quantity,” meaning it

is no longer dependent on amount of material, and is now

more dependent on the type of material, as well as the

physical conditions of heating.

Heat capacity is mathematically defined as the ratio of a

small amount of heat δQ added to the body, to the

corresponding small increase in its temperature dT:

C = 
. .cond cond

Q dS
T

dT dT

δ   
=   

   

For thermodynamic systems with more than one physical

dimension, the above definition does not give a single, unique

quantity unless a particular infinitesimal path through the

system’s phase space has been defined (this means that one

needs to know at all times where all parts of the system are,

how much mass they have, and how fast they are moving).

This information is used to account for different ways that

heat can be stored as kinetic energy (energy of motion) and

potential energy (energy stored in force fields), as an object

expands or contracts.

 For all real systems, the path though these changes must

be explicitly defined, since the value of heat capacity depends
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on which path from one temperature to another, is chosen.

Of particular usefulness in this context are the values of

heat capacity for constant volume, CV, and constant

pressure, CP. These will be defined below.

Heat Capacity of Fluids

The state of a simple fluids with fixed mass is described

by two thermodynamic parameters such as temperature T

and pressure P. Therefore as mentioned above, one may

distinguish between heat capacity at constant volume, CV,

and heat capacity at constant pressure, C
P
:

C
V
 = 

V V

Q S
T

dT T

δ ∂   
=   

∂   

C
P 
=

 
P P

Q S
T

dT T

δ ∂   
=   

∂   

where δQ is the infinitesimal amount of heat added, and dT

is the subsequent rise in temperature.

The increment of internal energy is the heat added and

the work added:

dU = T dS – P dV

So the heat capacity at constant volume is

C
V
 = 

V

U

T

∂ 
 

∂ 

The enthalpy is defined by H = U + PV. The increment of

enthalpy is

dH = dU + (PdV + VdP)

which at dP=0, reduces to:

dH = T dS + V dP
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So the heat capacity at constant pressure is

C
P
 = 

P

H

T

∂ 
 

∂ 

Note that this last “definition” is a bit circular, since the

concept of “enthalpy” itself was invented to be a measure of

heat absorbed or produced at constant pressures (the

conditions in which chemists usually work). As such,

enthalpy merely accounts for the extra heat which is

produced or absorbed by pressure-volume work at constant

pressure. Thus, it is not surprising that constant-pressure

heat capacities may be defined in terms of enthalpy, since

“enthalpy” was defined in the first place to make this so.

Specific Heat Capacity

The specific heat capacity of a material is

c = 
C

m

∂

∂

which in the absence of phase transitions is equivalent

to

c = c
m
 =

C C

m Vρ
=

• C is the heat capacity of a body made of the

material in question (J·K–1)

• m is the mass of the body (kg)

• V is the volume of the body (m3)

• δ = mV–1 is the density of the material (kg·m–3)

For gases, and also for other materials under high

pressures, there is need to distinguish between different

boundary conditions for the processes under consideration

(since values differ significantly between different conditions).
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Typical processes for which a heat capacity may be defined

include isobaric (constant pressure, dP = 0) and isochoric

(constant volume, dV = 0) processes, and one conventionally

writes for gases:

c
P 
= 

P

C

m

∂ 
 

∂ 

c
V
 =

V

C

m

∂ 
 

∂ 

Units shown are SI units but, of course, any consistent

set of units may be used.

A related parameter to c is CV–1, the volumetric heat

capacity, (J·m–3·K–1 in SI units). In engineering practice, cV

for solids or liquids often signifies a volumetric heat capacity,

rather than a constant-volume one. In such cases, the mass-

specific heat capacity (specific heat) is often explicitly written

with the subscript m, as cm. Of course, from the above

relationships, for solids one writes:

c
m
 = 

VcC

m ρ
=

Dimensionless Heat Capacity

The dimensionless heat capacity of a material is

C* = 
C C

nR Nk
=

where

• C is the heat capacity of a body made of the

material in question (J·K–1)

• n is the amount of matter in the body (mol)

• R is the gas constant (J·K–1·mol–1)

• nR=Nk is the amount of matter in the body (J·K–1)
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• N is the number of molecules in the body.

(dimensionless)

• k is Boltzmann’s constant (J·K–1·molecule–1)

Gas Phase

According to the equipartition theorem from classical

statistical mechanics, for a system made up of independent

and quadratic degrees of freedom, any input of energy into a

closed system composed of N molecules is evenly divided

among the degrees of freedom available to each molecule. It

can be shown that, in the classical limit of statistical

mechanics, for each independent and quadratic degree of

freedom, that

E
i
 = 

2

Bk T

where

E
i
 is the mean energy (measured in joules) associated

with degree of freedom i.

T is the temperature (measured in Kelvin)

k
B
 is Boltzmann’s constant, (1.380 6505(24) × 10–23 J K–1)

In the case of a monatomic gas such as helium under

constant volume, if it assumed that no electronic or nuclear

quantum excitations occur, each atom in the gas has only 3

degrees of freedom, all of a translational type. No energy

dependence is associated with the degrees of freedom which

define the position of the atoms. While, in fact, the degrees

of freedom corresponding to the momenta of the atoms are

quadratic, and thus contribute to the heat capacity. There

are N atoms, each of which has 3 components of momentum,

which leads to 3N total degrees of freedom. This gives:
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C
V
=

3 3

2 2
B

V

U
N k n R

T

∂ 
= = 

∂ 

C
V
, m=

3
1.5

2

VC
R R

n
= =

where

C
V
 is the heat capacity at constant volume of the gas

C
V,m

 is the molar heat capacity at constant volume of the gas

N is the total number of atoms present in the container

n is the number of moles of atoms present in the container

(n is the ratio of N and Avogadro’s number)

R is the ideal gas constant, (8.314570[70] J K–1mol–1). R

is equal to the product of Boltzmann’s constant kB and

Avogadro’s number

In the somewhat more complex case of an ideal gas of

diatomic molecules, the presence of internal degrees of

freedom are apparent. In addition to the three translational

degrees of freedom, there are rotational and vibrational

degrees of freedom. In general, the number of degrees of

freedom, f, in a molecule with n
a
 atoms is 3n

a
:

f = 3na

Mathematically, there are a total of three rotational

degrees of freedom, one corresponding to rotation about each

of the axes of three dimensional space. However, in practice

we shall only consider the existence of two degrees of

rotational freedom for linear molecules. This approximation

is valid because the moment of inertia about the internuclear

axis is vanishingly small with respect other moments of

inertia in the molecule (this is due to the extremely small

radii of the atomic nuclei, compared to the distance between
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them in a molecule). Quantum mechanically, it can be shown

that the interval between successive rotational energy

eigenstates is inversely proportional to the moment of inertia

about that axis. Because the moment of inertia about the

internuclear axis is vanishingly small relative to the other

two rotational axes, the energy spacing can be considered so

high that no excitations of the rotational state can possibly

occur unless the temperature is extremely high. We can easily

calculate the expected number of vibrational degrees of

freedom (or vibrational modes). There are three degrees of

translational freedom, and two degrees of rotational freedom,

therefore

fvib = f – ftrans – frot = 6 – 3 – 2 =1

Each rotational and translational degree of freedom will

contribute R/2 in the total molar heat capacity of the gas.

Each vibrational mode will contribute R to the total molar

heat capacity, however. This is because for each vibrational

mode, there is a potential and kinetic energy component.

Both the potential and kinetic components will contribute

R/2 to the total molar heat capacity of the gas. Therefore, we

expect that a diatomic molecule would have a molar constant-

volume heat capacity of

C
V,m

 = 
3 7

3.5
2 2

R R
R R R+ + = =

where the terms originate from the translational, rotational,

and vibrational degrees of freedom, respectively. However,

as the atoms composing the molecules become heavier, the

heat capacities move closer to their expected values. One of

the reasons for this phenomenon is the quantization of

vibrational, and to a lesser extent, rotational states. In fact,
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if it is assumed that the molecules remain in their lowest

energy vibrational state because the inter-level energy

spacings are large, the predicted molar constant volume heat

capacity for a diatomic molecule becomes

C
V,m

 = 
3 5

2.5
2 2

R R
R R+ = =

which is a fairly close approximation of the heat capacities

of the lighter molecules in the above table. If the quantum

harmonic oscillator approximation is made, it turns out that

the quantum vibrational energy level spacings are actually

inversely proportional to the square root of the reduced mass

of the atoms composing the diatomic molecule. Therefore, in

the case of the heavier diatomic molecules, the quantum

vibrational energy level spacings become finer, which allows

more excitations into higher vibrational levels at a fixed

temperature.

Solid Phase

The dimensionless heat capacity divided by three, as a

function of temperature as predicted by the Debye model

and by Einstein’s earlier model. The horizontal axis is the
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temperature divided by the Debye temperature. Note that,

as expected, the dimensionless heat capacity is zero at

absolute zero, and rises to a value of three as the temperature

becomes much larger than the Debye temperature. The red

line corresponds to the classical limit of the Dulong-Petit

law

For matter in a crystalline solid phase, the Dulong-Petit

law, which was discovered empirically, states that the

dimensionless specific heat capacity assumes the value 3.

Indeed, for solid metallic chemical elements at room

temperature, heat capacities range from about 2.8 to 3.4

(beryllium being a notable exception at 2.0).

The theoretical maximum heat capacity for larger and

larger multi-atomic gases at higher temperatures, also

approaches the Dulong-Petit limit of 3R, so long as this is

calculated per mole of atoms, not molecules. The reason is

that gases with very large molecules, in theory have almost

the same high-temperature heat capacity as solids, lacking

only the (small) heat capacity contibution that comes from

potential energy that cannot be stored between separate

molecules in a gas.

The Dulong-Petit “limit” results from the equipartition

theorem, and as such is only valid in the classical limit of a

microstate continuum, which is a high temperature limit.

For light and non-metallic elements, as well as most of the

common molecular solids based on carbon compounds at

standard ambiant temperature, quantum effects may also

play an important role, as they do in multi-atomic gases.

These effects usually combine to give heat capacities lower

than 3 R per mole of atoms in the solid, although heat
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capacities calculated per mole of molecules in molecular

solids may be more than 3 R. For example, the heat capacity

of water ice at the melting point is about 4.6 R per mole of

molecules, but only 1.5 R per mole of atoms. The lower

number results from the “freezing out” of possible vibration

modes for light atoms at suitably low temperatures, just as

in many gases. These effects are seen in solids more often

than liquids: for example the heat capacity of liquid water is

again close to the theoretical 3 R/mole of atoms of the Dulong-

Petit theoretical maximum.

Heat Capacity at Absolute Zero

From the definition of entropy

TdS = δQ

we can calculate the absolute entropy by integrating from

zero temperature to the final temperature Tf

S(T
f
) = 

0 0 0
( )

j f fT T T

T

Q Q T dT
C T

T dT T T

δ δ δ
=

= =  

The heat capacity must be zero at zero temperature in

order for the above integral not to yield an infinite absolute

entropy, thus violating the third law of thermodynamics. One

of the strengths of the Debye model is that (unlike the

preceding Einstein model) it predicts an approach of heat

capacity toward zero as zero temperature is approached, and

also predicts the proper mathematical form of this approach.

Standard states

Changes in energy content of a system are most easily

compared if everyone agrees on a set of reference conditions.

There are several conventions, but the commonly used set
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refers changes in chemical systems to defined standard

states. The primary reference is to the standard states of the

elements.

The standard state and the zero reference energy

level

Elements in their standard states are considered to have

chemical potentials and enthalpies of 0, or

µo
element = 0

The standard state of an element is its natural state at 1

atms pressure, 25oC.

By defining the free energy of the elements in this way,

we can regard any compound as having a chemical potential

(partial free enrgy), or an enthalpy of formation, composed

of the sum of all changes in chemical potential (or of enthalpy)

for the reactions leading to its formation, by any convenient

path.

Since free energy and enthalpy are variables of state, the

value is a unique function of the state, so this approach can

be used to define the the relative energy content of any

chemical system by reference to the work needed to get there

starting from the elements.

Standard states of Solutes and Gases, and

Free Energy Changes of Reaction

In order to compare free energies for chemical processes,

it is convenient to normalize free energy changes so as to

eliminate differences in reaction volume. This is achieved by

using ∆Go, the molar free energy change, and a standard

state for reactants in solution.
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Under normal temperature and pressure (NTP) of 25oC

and1 atms pressure:

Solutes are in their standard states when they have an

activity of 1 M.

Gases are in their standard states when they are at a

pressure of 1 atms.

Standard state of the Solvent

Treatment of the solvent represents a tricky issue. By

convention, the solvent is assumed to have a standard state

of 1 M (the units being necessary to avoid dimensions in

logaritmic terms), which does not change under the conditions

of biochemical reaction (solutes at dilute solution). In the case

of aqueous solutions, this may seem odd, because the activity

of liquid water is 55.35 M (at NTP). This convention is adopted

because the interactions with the solvent are subsumed under

the standard chemical potentials of the solutes (which are

referred to the standard state of a 1 M solution), and under

the activity coefficients relating activities to concentrations.

For reactions, the interactions are subsumed under ∆Go, since

this is derived by summation of values for µo. The convention

allows one to ignore interactions between solute and solvent;

this is usually appropriate since they are not significantly

affected by changes in the solvent. In effect, for biochemical

reactions in which water is a substrate or product (mainly

hydrolysis and lyase reactions), water is omitted from the

thermodynamic equation. Thus for ATP hydrolysis:

ATP + H2O ⇔  ADP + Pi

( ) ( )
( )

0'
.

' ln
ADP Pi

G G RT
ATP

∆ =∆ +
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8

Work Transfer

Work is defined as force acting upon an object to cause

a displacement. There are three key words in this

definition - force, displacement, and cause. In order for a

force to qualify as having done work on an object, there

must be a displacement and the force must cause the

displacement.

There are several good examples of work which can be

observed in everyday life - a horse pulling a plow through

the fields, a father pushing a grocery cart down the aisle of a

grocery store, a freshman lifting a backpack full of books

upon her shoulder, a weightlifter lifting a barbell above her

head, an Olympian launching the shot-put, etc. In each case

described here there is a force exerted upon an object to

cause that object to be displaced.

Mathematically, work can be expressed by the following

equation.
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W = F × d × cos θ

where F = force, d = displacement, and the angle (theta) is

defined as the angle between the force and the displacement

vector. Perhaps the most difficult aspect of the above equation

is the angle “theta.”. The angle measure is defined as the

angle between the force and the displacement. To gather an

idea of its meaning, consider the following three casses.

• A: A force acts rightward upon an object as it is

displaced rightward. In such an instance, the force

vector and the displacement vector are in the same

direction. Thus, the angle between F and d is 0

degrees.

• B: A force acts leftward upon an object which is

displaced rightward. In such an instance, the force

vector and the displacement vector are in the

opposite direction. Thus, the angle between F and

d is 180 degrees.

• C: A force acts upward upon an object as it is

displaced rightward. In such an instance, the force

vector and the displacement vector are at right

angles to each other. Thus, the angle between F

and d is 90 degrees.

Let’s consider case C above in more detail. case C involves

a situation similar to the waiter who carried a tray full of

meals above his head by one arm straight across the room

at constant speed. The force supplied by the waiter on the

tray is an upward force and the displacement of the tray is a

horizontal displacement. As such, the angle between the force

and the displacement is 90 degrees. If the work done by the

waiter on the tray were to be calculated, then the results
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would be 0. Regardless of the magnitude of the force and

displacement, F × d ×cosine 90 degrees is 0 (since the cosine

of 90 degrees is 0). A vertical force can never cause a

horizontal displacement; thus, a vertical force does not do

work on a horizontally displaced object.

It can be accurately noted that the waiter’s hand did

push forward on the tray for a brief period of time to

accelerate it from rest to a final walking speed. But once up

to speed, the tray will stay in its straight-line motion at a

constant speed without a forward force. And if the only force

exerted upon the tray during the constant speed stage of

its motion is upward, then no work is done upon the tray.

Again, a vertical force does not do work on a horizontally

displaced object.

The equation for work lists three variables - each variable

is associated with one of the three key words mentioned in

the definition of work (force, displacement, and cause). The

angle theta in the equation is associated with the amount

of force which causes a displacement. When a force is

exerted on an object at an angle to the horizontal, only a

part of the force contributes to (or causes) a horizontal

displacement.

The Meaning of Theta

When determining the measure of the angle in the work

equation, it is important to recognize that the angle has a

precise definition - it is the angle between the force and the

displacement vector. For instance, consider the activity

performed in the given figure. A force was applied to a cart to

pull it up an incline at constant speed. Several incline
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angles were used; yet, the force was always applied parallel

to the incline. The displacement of the cart was also parallel

to the incline. Since F and d were in the same direction, the

angle was 0 degrees. The angle in the equation is defined as

the angle between the force and the displacement vector.

Units

In the case of work (and also energy), the standard metric

unit is the Joule (abbreviated "J"). One Joule is equivalent to

one Newton of force causing a displacement of one meter. In

other words,

The Joule is the unit of work.

1 Joule = 1 Newton × 1 meter

1 J = 1 Nm

In fact, any unit of force times any unit of displacement is

equivalent to a unit of work. Some nonstandard units for work

are shown below. Notice that when analysed, each set of units

is equivalent to a force unit times a displacement unit.

Non-SI units of work include the erg, the foot-pound, the

foot-poundal, and the liter-atmosphere.

Fluid

A fluid is any substance that conforms to the shape of its

container. It may be either a liquid or a gas. A fluid is anything
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that would spill or float away if it weren’t in a container (unless

it’s big enough to be held together by gravity like a star). If

you can stir it up with a spoon or blow it through a straw,

it’s a fluid. Water is a fluid and so is air. In fact, all liquids

and gases are fluids. In space and inside stars there’s also

another kind of fluid called a plasma.

The molecules in a solid are stuck together, but in a fluid

they’re free to move past each other. So if you had very small

hands you could push one molecule of a fluid one way and

another molecule the other way and off they would go in the

direction you pushed them.

Compressibility of Fluids

All fluids are compressible. However, under some range

of conditions, it is often possible to make the approximation

that a fluid is incompressible. Water, for example, only

changes its volume very slightly under extreme pressure.

Gases are much more compressible. The compressibility

of air, for example, is part of our common experience. By

blocking off a bicycle pump and pushing down on the handle,

we can easily decrease the volume of the air by 50per cent,

so that its density increases by a factor of two (the mass of

air is constant). If we assume that the temperature remains

constant (somehow), we know from the perfect gas law,

p = ρRT

that the pressure must also increase by a factor of two. If

the initial air was at atmospheric pressure, the pressure will

rise by one atmosphere (14.696 psi, or 101,325 Pa). If we

assume a pump diameter of 1.25 inch, then a force of 18.1

lbf will be required. This is not a large force, so that raising
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the pressure by two atmospheres above ambient pressure is

easily done. We call pressures relative to zero pressure

absolute pressure. This is the pressure that appears in the

perfect gas law. Pressures measured relative to atmospheric

pressure are called gauge pressures. The pressure measured

by the most common types of pressure instruments is a gauge

pressure since these instruments indicate the pressure

relative to atmospheric pressure. A tire gauge, for instance,

measures the pressure in a tire over and above the local

atmospheric pressure. A vacuum gauge, in contrast, will

measure the pressure below atmospheric: in common

parlance a “vacuum” is any pressure lower than the ambient

atmospheric pressure.

Even though gases are much more compressible than

liquids (by perhaps a factor of 104), if the pressures are

small the changes in density are also small. For example,

if a 1per cent change in density is tolerated, then at

constant temperature we can allow a 1per cent change in

pressure. For air this corresponds to a change in altitude

of about 85 meters, so that for changes in height of the

order of tall buildings we can usually neglect the

compressibility of air.

The compressibility of gases is also often discussed in

terms of the parameter called the Mach number, which is

the ratio of the fluid velocity to the speed of sound (the speed

of sound for air at 20ºC is 343 m/s = 1,126 ft/s = 768 mph).

When a fluid increases its speed, there is a corresponding

decrease in pressure. If the fluid velocity is small relative to

the speed of sound (that is, the flow has a low Mach number),

then the change in pressure when a fluid increases its velocity
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from zero to V is given by 1/2 the density times the velocity

squared (in the absence of friction). This quantity is called

the dynamic pressure:

dynamic pressure = 21

2
Vρ

If we again use a 1per cent level as a tolerable change in

density, then if the temperature remains constant the allowed

change in pressure is also equal to 1per cent (the process is

more likely to be isentropic, but that does not change the

argument very much). This requires a dynamic pressure less

than 1per cent of the ambient pressure, so that at sea level

where the density of air is about 1.2 kg/m^3 we are limited

to velocities less than 40 m/s (132 ft/s or 90 mph), which

corresponds to a Mach number of about 0.12. When we

consider the flow of air over bicycles, we can always assume

that the fluid has a constant density, and that the Mach

number is not important. 

Constant Pressure Process

Applying the first law of thermodynamics to the process

dU = dQ – dW

Replacing dW with the reversible work

dU = dQ – PdV
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The volume will change as the gas is heated at constant

pressure. To make calculations more straight forward, use

ENTHALPY, H

H = U + PV

dH = dU + PdV + VdP

rearrange for dU

dU = dH – PdV – VdP

and substitute into the first law

dH – PdV – VdP = dQ – PdV

the PdV terms cancel out and since pressure is constant

dP = 0, so that

dH = dQ

The definition of the specific heat at constant pressure

CP = 
dH

dT

is used to replace dH in the first law

nC pdT = dQ
2

1

T

p

T

Q n C dT= 

During a constant pressure process, heat is added or

removed and the temperature and volume change. T

he volume at the end of the process can be found using

the ideal gas law and the work calculated from

W = P∆V

Entropy Change

Starting with the first law expression for the process

dH = dQ
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and replacing dH from the definition of specific heat at

constant pressure and Dq from the definition of entropy

nCpdT = TdS
2

1

T

p

T

C
S n dT

T
∆ = 

Constant Volume Process

Applying the first law of thermodynamics to the process

 dU = dQ – dW

Replacing dW with the reversible work

dU = dQ – PdV

since the volume is constant dV = 0 and

dU = dQ

using the definition of the specific heat at constant volume

v

dU
C

dT
=

to replace dU in the first law

dQ = nCvdT
2

1

T

V

T

Q n C dT= 

For a constant volume process, the addition or removal

of heat will lead to a change in the temperature and pressure

of the gas, as shown on the two graphs above
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Entropy Change

 To find the Entropy change, start with the expression

derived from the first law

dU = dQ

and replace dU using the definition of specific heat at

constant volume and dQ using the definition of entropy

nC VdT = TdS
2

1

T

V

T

C
S n dT

T
∆ = 

Effects of Pressure Changes on Fluid Properties

The predominant effect of an increase in pressure in a

compressible fluid, such as a gas, is an increase in the density

of the fluid. An increase in the pressure of an incompressible

fluid will not have a significant effect on the density. For

example, increasing the pressure of 100 °F water from 15

psia to 15,000 psia will only increase the density by

approximately 6per cent. Therefore, in engineering

calculations, it is assumed that incompressible fluids’ density

remain constant.

Effects of Temperature Changes on Fluid Properties

An increase in temperature will tend to decrease the

density of any fluid. If the fluid is confined in a container of

fixed volume, the effect of a temperature change will depend

on whether the fluid is compressible.

If the fluid is a gas, it will respond to a temperature change

in a manner predicted by the ideal gas laws. A 5per cent

increase in absolute temperature will result in a 5per cent

increase in the absolute pressure.
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If the fluid is an incompressible liquid in a closed

container, an increase in the temperature will have a

tremendously greater and potentially catastrophic effect.

As the fluid temperature increases, it tries to expand,

but expansion is prevented by the walls of the container.

Because the fluid is incompressible, this results in a

tremendous increase in pressure for a relatively minor

temperature change. The change in specific volume for a

given change in temperature is not the same at various

beginning temperatures.

Resultant pressure changes will vary. A useful thumb

rule for water is that pressure in a water-solid system will

increase about 100 psi for every 1 °F increase in temperature.

Non Flow Energy Equation

Let a system boundary enclose only the water that is

inside the reservoir. The underlying principle is that the net

rate at which energy is transferred and transported into the

system equals the rate of change of the energy of the system.

Internal energy is transported into and out of the system

with the water flows and is lost from the system as heat

transfer to the surroundings. When the relevant simplifying

assumptions are made the situation is described by a first

order differential equation in temperature. This can be

integrated from the initial temperature of the water in the

reservoir at time zero to give the temperature of the water at

any future time. The flow rate of water into the system is

steady. There is no flow out of the system until the overflow

level is reached. Thereafter the flow rate out of the system is

steady and equals the flow rate in. After a finite time the
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temperature of the water leaving will be within a specified

tolerance of the eventual (infinite time) steady state value.

You may or may not agree with the simplifying

assumptions mentioned here.

• The water can be regarded as an incompressible

liquid.

• The specific heat of the water can be taken as

constant.

• Kinetic energy of the water streams and the water

in the reservoir can be neglected.

• Potential energy changes can also be neglected;

they have no influence on the temperatures in this

problem.

• Flow work terms (commonly dealt with by the use

of the enthalpy property to include both flow work

transfer and internal energy transport) and

displacement work terms associated with the

change in volume of the system boundary cancel

out and do not affect the temperatures.

• A reservoir such as this may be subject to

stratification and significant temperature

variations may exist within it. For analysis

purposes complete and continuous mixing of the

water in the reservoir (without fluid friction) will

be assumed.

• As a consequence of the ongoing mixing, the

temperature of the water coming out of the

reservoir is equal to the temperature of the water

in the reservoir.
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• From the mass balance point of view the loss of

water from the surface can be neglected. However,

the evapourative effect at the surface will be

significant in energy terms (unless the air above

the surface is saturated). It is common practice

to deal with this as heat transfer between the

water surface and the air.

• The rate of heat transfer from the water in the

reservoir to the surroundings can be described and

evaluated in terms of the temperature of the water,

the temperature of the surroundings and the water

level (if there is heat transfer through the side

walls of the reservoir).

The non flow energy equation for the system can be

written as follows:
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The following expressions describe the specific internal

energy of the water, the rate of heat transfer out of the system

to the surroundings and the mass of water in the system:

ref

out surr

0 in out

( )

( )

( )

u c T T

Q k T T

m m m m t

= −

= −

= + −& &

The differential equation describing the rate of change of

the temperature reduces to:
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Where

T =Temperature

t =Time

m =Mass

U = Internal energy

u =Specific internal energy  

Q =Heat transfer

c =Specific heat capacity

k =Heat transfer coefficient

surr =Surroundings

ref =Reference zero state for u
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9

The Carnot Cycle

All standard heat engines (steam, gasoline, diesel) work

by supplying heat to a gas, the gas then expands in a cylinder

and pushes a piston to do its work.  The catch is that the

heat and/or the gas must somehow then be dumped out of

the cylinder to get ready for the next cycle. We examine the

first step, the expansion, then go on to the full cycle—Carnot’s

analysis.  Carnot’s aim was to figure out how to maximize

the efficiency of a heat engine, and then work out what that

efficiency was, that is, how much of the heat supplied was

actually converted into the mechanical work done by the

engine.  Remember that he had in mind the analogy of the

water wheel, at that time still a main driving force of industry. 

He knew that the most efficient water wheels were those

that operated smoothly, the water went into the buckets at

the top from the same level, it didn’t fall through any height,

and didn’t splash around.  In the limit of a frictionless wheel,

with gentle flow on and off the wheel, the machine would be
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reversible—turning it in reverse to raise the water back would

take the same amount of work the wheel had delivered as

the water fell.  This was clearly perfect efficiency, so these

were to conditions to emulate in the heat engine. The analog

to having the water flow into buckets at the same height,

with no wasteful drop, is to have the heat from the heat

supply flow into the gas at the same temperature. There must

of course be a slight drop in temperature for the heat to flow

at all, but this must be minimized.  This means that as the

heat is supplied and the gas expands, the temperature of

the gas stays the same as that of the heat supply (the “heat

reservoir”) and the gas is expanding isothermally.  

Isothermal Expansion

So the first question is: how much work is done by an

isothermally expanding gas?  Taking the temperature of the

heat reservoir to be TH  (H for hot), the expanding gas follows

the isothermal path  in the (P, V) plane.

The work done by the gas in a small volume expansion

is just , the area under the curve.Hence the work done

in expanding isothermally from volume Va to Vb is the total

area under the curve between those values, 

Since the gas is at constant temperature TH, there is no

change in its internal energy during this expansion, so the

total heat supplied must be , the same as the

external work the gas has done.

In fact, this isothermal expansion is only the first step:

the gas is at the temperature of the heat reservoir, hotter

than its other surroundings, and will be able to continue
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expanding even if the heat supply is cut off.  To ensure that

this further expansion is also reversible, the gas must not

be losing heat to the surroundings.  That is, after the heat

supply is cut off, there must be no further heat exchange

with the surroundings, the expansion must be adiabatic. 

Adiabatic Expansion

The work done in an adiabatic expansion is like that done

in allowing a compressed spring to expand against a force—

equal to the work needed to compress the spring in the first

place, for a perfect spring, and an adiabatically enclosed gas

is essentially perfect in this respect.  In other words, adiabatic

expansion is reversible.

To find the work the gas does in expanding adiabatically

from Vb to Vc, say, the above analysis is repeated with the

isotherm  replaced by the adiabat 

Again, this is the area under the curve, in this case under

the adiabat, from b to c in the (P, V) plane.

Since points b, c are on the same adiabat,  and

the expression can be written more neatly:

This is a useful expression for the work done since we are

plotting in the (P, V) plane, but note that from the gas law

 the numerator is just , and from

this , as of course it must be—this is the

loss of internal energy that has been expended by the gas on

expanding against external pressure.
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We’ve looked in detail at the work a gas does in expanding

as heat is supplied (isothermally) and when there is no heat

exchange (adiabatically). 

These are the two initial steps in a heat engine, but it is

equally necessary for the engine to get back to where it began,

for the next cycle.  The general idea is that the piston drives

a wheel, which continues to turn and pushes the gas back

to the original volume. 

But it is also essential for the gas to be as cold as possible

on this return leg, because the wheel is now having to expend

work on the gas, and we want that to be as little work as

possible—it’s costing us.  The colder the gas, the less pressure

the wheel is pushing against.

To ensure that the engine is as efficient as possible, this

return path to the starting point must also be

reversible.  We can’t just retrace the path taken in the first

two legs, that would take all the work the engine did along

those legs, and leave us with no net output.  Now the gas

cooled during the adiabatic expansion from b to c, from TH

to TC, say, so we can go some distance back along the

reversible colder isotherm TC. 

But this won’t get us back to , because that’s on the

TH isotherm.  The simplest option—the one chosen by

Carnot—is to proceed back along the cold isotherm to the

point where it intersects the adiabat through a, then follow

that isotherm back to a.  (One could follow a more

complicated path: provided it was composed of segments each

being adiabatic or isothermal, it would be reversible.)

 Carnot’s cycle is around that curved quadrilateral having

these four curves as its sides.
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Efficiency of the Carnot Engine

In a complete cycle of Carnot’s heat engine, the gas traces

the path abcd.  The important question is: what fraction of

the heat supplied from the hot reservoir (along the red top

isotherm) is turned into mechanical work?  This fraction is

called the efficiency of the engine.

The work output along any curve in the (P, V) plane is just

—the area under the curve, but it will be negative if the

volume is decreasing!  So the work done by the engine during

the hot isothermal segment is the area abfh, then the

adiabatic expansion adds the area bcef, but as the gas is

compressed back, the wheel has to do work on the gas

equal to the area cdge as heat is dumped into the cold

reservoir, then dahg as the gas is recompressed to the

starting point. 

The bottom line is that the total work done by the gas is

the area bounded by the four paths: the curved

“parallelogram” in the picture above.  We could compute this

area by finding for each segment, but that is

unnecessary—on completing the cycle, the gas is back to its

initial temperature, so has the same internal energy. 

Therefore, the work done by the engine must be just the

difference between the heat supplied at TH and that dumped

at TC.

Now the heat supplies along the initial hot isothermal path

ab, equal to the work done along that leg, is (from the

paragraph above on isothermal expansion):
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and the heat dumped into the cold reservoir along cd is

The difference between these two is the net work output.

This can be simplified using the adiabatic equations for the

other two sides of the cycle:

Dividing the first of these equations by the second,

and using that in the preceding equation for QC,

The work done can now be written simply:

Therefore the efficiency of the engine, defined as the fraction

of the ingoing heat energy that is converted to available work,

is

These temperatures are of course in degrees Kelvin, so for

example the efficiency of a Carnot engine having a hot

reservoir of boiling water and a cold reservoir ice cold water

will be , just over a quarter of the heat energy

is transformed into useful work.

The Second Law of Thermodynamics

After all the effort to construct an efficient heat engine,

making it reversible to eliminate “friction” losses, etc., it is

perhaps somewhat disappointing to find this figure of 27per

cent efficiency when operating between 0 and 100 degrees
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Celsius.  Surely we can do better than that? After all, the

heat energy of hot water is the kinetic energy of the moving

molecules, can’t we find some device to channel all that energy

into useful work?  Well, we can do better than 27per cent, by

having a colder cold reservoir, or a hotter hot one.  But there’s

a limit: we can never reach 100per cent efficiency, because

we cannot have a cold reservoir at  and even if we did

after the first cycle the heat dumped into it would warm it up! 

The Second Law of Thermodynamics states that we cannot

devise an engine, working in a cycle, that simply extracts heat

from a hot reservoir and delivers mechanical work.

This means any engine that takes heat and delivers work

also dumps out some of the initial heat to a reservoir at a

lower temperature. 

It’s important to note that the First Law of Thermodynamics,

the conservation of total energy including heat, would not

be violated by an engine that powered a ship by extracting

heat energy from the surrounding water.  This Second Law

is saying something new. And, this Second Law does not

follow from the First by logical deduction—it comes (like the

First) from experiment and observation.

The Most Efficient Engine

An important consequence of the second Law is that no

engine can be more efficient than the Carnot cycle.  Essentially,

this is because a “super efficient” engine, if one existed, could

be used to drive a Carnot cycle in reverse, which would pump

back to the hot reservoir the heat the super efficient engine

dumped in the cold reservoir, and the net effect of the two

coupled engines would be to take heat from the hot reservoir

and do work, contradicting the Second Law.
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To see this, we plot the heat/energy flow for the Carnot

cycle:

Here (all expressed in Joules, of course).

Since the engine is reversible, it can also be run backwards

(this would be a refrigerator: outside work is supplied, and

heat is extracted from a cold reservoir and dumped into a

hot reservoir:

Suppose now we have a super efficient engine, represented

by the first diagram above, and dumping the same heat per

cycle QC into the cold reservoir, but taking in more heat energy

 Joules from the hot reservoir, and performing

work .  Now, we hook up our super efficient engine to

the “Carnot refrigerator” in the diagram above. The

refrigerator sucks out of the cold reservoir all the heat the

super efficient engine dumped there, and needs W  Joules of

work per cycle to do it.  The super efficient engine can provide

this, and there are still  Joules of work to spare. Of course,

the Carnot refrigerator has also dumped QH Joules of heat

in the hot reservoir.  But the bottom line is that between

them, the super efficient engine and the Carnot refrigerator

have extracted  Joules of heat from the hot reservoir and

performed  Joules of work—contradicting the Second Law.

The Second Law therefore forces the conclusion that no

amount of machine design will produce an engine more

efficient than the Carnot cycle.  The rather low ultimate

efficiencies this dictated came as a shock to nineteenth

century engineers.

Molecular Collisions

In analyzing the gas so far, we’ve ignored collisions between

molecules, and in fact for air at ordinary temperatures the
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relationship between pressure, volume and temperature

came out correctly.  Furthermore, Maxwell’s speed

distribution can be used to find what fraction of the molecules

in a planet’s atmosphere are moving at above escape velocity,

so we can predict what gases will remain surrounding a

planet, given the gravitational force near the surface, and

the temperature. 

But there are other phenomena for which an

understanding of collisions is all-important.  For example, if

two different gases, say oxygen and nitrogen, in a container

at the same pressure and temperature are separated by a

partition, how quickly will they mix once the partition is

removed?  Assuming room temperature, the molecules will

be moving at hundreds of meters per second, so one might

imagine the mixing will be over in hundredths of a second. 

But that is not the case at all—observationally, it might take

an hour, for a box holding a few liters. This surprisingly slow

penetration of one gas by another is called diffusion. The

reason it takes the gases so long to mix becomes evident on

tracking one molecule as it enters the other gas.  Think of

an oxygen molecule moving into nitrogen.  We’ll take O2 and

N2 to be little spheres of diameter d. So now visualize the

little O2 sphere shooting into this space where all these other

spheres are moving around.  Temporarily, for ease of

visualization, let’s imagine all the other spheres to be at rest.

How far can we expect the O2 to get before it hits an N2? 

The average distance before a collision is called the mean

free path.  Let’s try to picture how much room there is to fly

between these fixed N2 spheres.   We do know that if it were

liquid nitrogen, there would be very little room: liquids are
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just about incompressible, so the molecules must be

touching.  Roughly speaking, a molecule of diameter d will

occupy a cubical volume of about d3 (there has to be some

space left over—we can pack cubes to fill space, but not

spheres.)  We also know that liquid nitrogen weighs about

800 kg per cubic meter, whereas N2 gas at room temperature

(and pressure) weighs about 1.2 kg per cubic meter, a ratio

of 670.  This means that on average each molecule in the gas

has 670 times more room—that is, it has a space 670 times

the volume d3 we gave it in the liquid.  So in the gas, the

average center-to-center separation of the molecules will be

the cube root of 670, which is about 8.75d.  So the picture is

a gas of spheres of diameter d, placed at random, but

separated on average by distances of order 10d.  It’s clear

that shooting an oxygen molecule into this it will get quite a

way.

We now try to estimate just how far an O2 will get, on

average, as it shoots into this forest of spheres.  Picture the

motion of the center of the oxygen molecule.  Before any

collision, it will be moving on a straight-line path.  Just how

close does the O2 center have to get to an N2 center for a

hit?  Taking both O2, N2 to be spheres of diameter d, if an N2

center lies within d of the O2 center’s path, there will be a

hit.  So we can think of the O2 as sweeping out a volume, a

cylinder of radius d centered on its path, hitting and deflecting

if it encounters an N2 centered within that cylinder.  So how

far will it get, on average, before a hit?  In traveling a distance

x, it sweeps out a volume .  Now picture it going through

the gas for some considerable length of time, so there are

many collisions.  The volume swept out will look like a
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stovepipe, long straight cylindrical sections connected by

elbows at the collisions.  The total volume of this stovepipe

(ignoring tiny corrections from the elbows) will be just ,

L  being the total length, that is, the total distance the

molecule traveled.  If the density of the nitrogen is n molecules

per cubic meter, the number of N2’s in this stovepipe volume

will be , in other words, this will be the number of

collisions.  Therefore, the average distance between collisions,

the mean free path l, is given by:

So what is n?  We estimated above that each molecule has

space 670d 3 to itself, so n is just how many of those volumes

there are in one cubic meter, that is, .

Therefore, the mean free path is given by

Notice that this derivation of the mean free path in terms

of the molecular diameter depends only on knowing the ratio

of the gas density to the liquid density—it does not depend on

the actual size of the molecules!  But it does mean that if we

can somehow measure the mean free path, by measuring

how fast one gas diffuses into another, for example, we can

deduce the size of the molecules, and historically this was

one of the first ways the size of molecules was determined,

and so Avogadro’s number was found.

Let us now put in some numbers to find this mean free

path: for O2, N2, , so the mean free path , or

  The speed of the molecules at room temperature v

is approximately 500 meters per sec., so the molecule has of

order 1010 collisions per second!
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Actually, there is one further correction we should make. 

We took the N2 molecules to be at rest, whereas in fact they’re

moving as fast as the oxygen molecule, approximately.  This

means that even if the O2 is temporarily at rest, it can undergo

a collision as an N2 comes towards it.  Clearly, what really

counts in the collision rate is the relative velocity of the

molecules.  Defining the average velocity as the root mean

square velocity, if the O2 has velocity and the N2   , then

the square of the relative velocity

, since  must average to zero, the relative

directions being random.  So the average square of the relative

velocity is twice the average square of the velocity, and

therefore the average root-mean-square velocity is up by a

factor “2, and the collision rate is increased by this factor. 

Consequently, the mean free path is decreased by a factor of

“2 when we take into account that all the molecules are

moving.

Our final result, then, is that the mean free path

.

Finding the mean free path is—literally—the first step in

figuring out how rapidly the oxygen atoms will diffuse into

the nitrogen gas, and of course vice versa. 

What we really want to know is just how much we can

expect the gases to have intermingled after a given period of

time.  We’ll just follow the one molecule, and estimate how

far it gets. To begin with, let’s assume for simplicity that it

tales steps all of the same length l, but after each collision it

bounces off in a random direction.  So after N steps, it will

have moved to a point
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,

where each vector  has length l, but the vectors all point in

random different directions.

If we now imagine many of the oxygen molecules following

random paths like this, how far on average can we expect

them to have drifted after N steps?  (note that they could

with equal likelihood be going backwards!)  The appropriate

measure is the root-mean-square distance,

Since the direction after each collision is completely

random, , and the root-mean-square distance

.

If we allow steps of different lengths, the same argument

works, but now l is the root-mean-square path length.

The important factor here is the . Recall from above

that , or  and there are of order 1010

collisions per second.  This means that the average distance

diffused in one second is , say half a centimeter. 

The average distance in one hour would be only 60 times

this, or 30 cm., one foot, and in a day about five feet—the

average distance traveled is only increasing as the square

root of the time elapsed!

This is a very general result.  For example, suppose we

have a gas in which the mean free path is l and the average

speed of the molecules is v.  Then the average time between

collisions .  The number of collisions in time t will be

 so the average distance a molecule moves in time t will

be .

A famous mystery cleared up by arguments like this was

that Newton predicted the speed of sound would be given
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by , as we discussed earlier in the course, with B the

bulk modulus.  But when B was measured carefully by slowly

compressing air, the result was in error by about 30per cent! 

The speed of sound predicted a higher (stiffer) bulk modulus.  

The explanation turned out to be that in a slow

measurement of the bulk modulus, the gas stays at the same

temperature—the heating caused by slow compression leaks

away.  But if the compression is rapid, the gas heats up and

so the pressure goes up more than if it had stayed at the

same temperature.  So the question is whether the

compression and decompression as a sound wave passes

through is so rapid that the heated-up gas doesn’t have time

to spread to the cooled regions. For sound at say 1000Hz,

the wavelength is 34 cm.   If compression heats gas locally,

the hot molecules will diffuse away in a similar manner to

that discussed above. They will be slightly faster than the

average molecules.  In 1/1000 th of a second, they will have

107 collisions, so will travel about .  This

tiny distance compared with the wavelength of the sound

wave means that during the compression/decompression

cycles as the wave passes through, the heat has no chance

to dissipate—so, effectively, it’s like compressing a gas in an

insulated container, it’s harder to compress than it would be

if the heat generated could flow away, and the bulk modulus

is higher by an amount (around 30per cent) we shall work

out in a forthcoming lecture.
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