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This book is a culmination of my many years of practice in this field. I attribute the success of this book 
to my support group. I would like to thank my parents who have showered me with unconditional love 
and support and my peers and professors for their constant guidance.

Algebra is primarily concerned with the study of mathematical symbols as well as the rules that operate 
such symbols. It is applied in most of the sub-domains within mathematics. Algebra makes use of 
letters to denote numerical values. Some of the major branches of algebra are elementary algebra and 
abstract algebra. Elementary algebra focuses on the study of variables and polynomials. Abstract algebra 
studies the abstraction such as groups, rings and fields as well as elementary equation solving. It is 
applied in the study of various fields such as algebraic topology and algebraic number theory. This book 
is compiled in such a manner, that it will provide in-depth knowledge about the theory and practice 
of algebra. Some of the diverse topics covered herein address the varied branches that fall under this 
category. Coherent flow of topics, student-friendly language and extensive use of examples make this 
book an invaluable source of knowledge.

The details of chapters are provided below for a progressive learning:

Chapter – What is Algebra?

Algebra is the branch of mathematics which focuses on the study of mathematical symbols along with 
the rules for the manipulation of these symbols. This is an introductory chapter which will introduce 
briefly all the different operations in algebra such as addition, multiplication, subtraction and division.

Chapter – Branches of Algebra

Algebra is divided into different branches namely abstract algebra, elementary algebra, linear algebra, 
universal algebra, Boolean algebra, etc. This chapter closely examines these different branches of algebra 
to provide an extensive understanding of the subject.

Chapter – Algebraic Expressions

Algebraic expressions consist of variables, constants and other algebraic operations such as addition, 
subtraction, etc. There are three main types of algebraic expressions which are monomial expression, 
binomial expression and polynomial expression. This chapter has been carefully written to provide an 
easy understanding of these algebraic expressions.

Chapter – Algebraic Functions and Equations

Algebraic functions can be classified into linear function, quadratic function, cubic function, quartic 
function, etc. Algebraic equations include linear equation, quadratic equation, cubic equation, quantic 
equation, etc. All these algebraic functions and equations have been carefully analyzed in this chapter.

PREFACE
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VIII  Preface

Chapter – Algebraic Number Theory

Algebraic number theory studies the integers, rational numbers and their generalizations with the use 
of abstract algebra. Class field theory and abstract analytic number theory are some of the theories that 
fall under its domain. This chapter discusses in detail these theories related to algebra.

Chapter – Algebraic in Theorems

There are a number of important theorems used in algebra such as Abel–Ruffini theorem, Amitsur–
Levitzki theorem, Bernstein–Kushnirenko theorem, Hilbert’s basis theorem, remainder theorem and 
factor theorem. The topics elaborated in this chapter will help in gaining a better perspective about 
these theorems in algebra.

Kevin Houston
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Algebra is the branch of mathematics which focuses on the study of mathematical symbols along 
with the rules for the manipulation of these symbols. This is an introductory chapter which will in-
troduce briefly all the different operations in algebra such as addition, multiplication, subtraction 
and division.

Algebra is a branch of mathematics that substitutes letters for numbers, and an algebraic equation 
represents a scale where what is done on one side of the scale is also done to the other side of the 
scale and the numbers act as constants. Algebra can include real numbers, complex numbers, ma-
trices, vectors, and many more forms of mathematic representation.

The field of algebra can be further broken into basic concepts known as elementary algebra or the 
more abstract study of numbers and equations known as abstract algebra, where the former is 
used in most mathematics, science, economics, medicine, and engineering while the latter is most-
ly used only in advanced mathematics.

Properties of Algebra

The properties involved in algebra are as follows:

Commutative Property of Addition

Changing the order of addends does not change the sum. The addends may be numbers or expres-
sions. That is (a + b ) = (b + a) where a and b are any scalar.

Example:

Consider the real numbers 5 and 2.

Obtain the value of Left Hand Side (LHS) of the rule.

5 2
7

a b+ = +
=

Obtain the value of Right Hand Side (RHS) of the rule.

2 5
7

b a+ = +
=

Since the sum is same, the commutative property holds for addition.

C
H

A
PTE

R1What is Algebra?
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Example:

Consider the algebraic expression 2 2 where .x x x+ ∈

2 2x x x x+ = +

Substitute x = –1 on both sides.

( ) ( ) ( )( )
( ) ( )

2 21 1 1 1

1 1 1 1
0 0

− + − = − −

+ − = − +

=

Since the sum is same, the commutative property holds for addition.

Commutative Property of Multiplication

Changing the order of factors does not change the product. The factors may be numbers or expres-
sions. That is, ( ) ( )a b b a× = × .

Example:

Consider the real numbers 15, –2.

Obtain the value of Left Hand Side (LHS) of the rule.

( )15 2
30

a b× = × −

= −

Obtain the value of Right Hand Side (RHS) of the rule.

( )2 15
30

b a× = − ×

= −

Since the product is same, the commutative property holds for multiplication.

Example:

Consider the algebraic expression ( )( )2 2 2 1 where .x x x x+ + ∈

( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

2 2

2 2

2 2 1 2 1 2

substitute = 2on both side

2 2 2 2 2 1 2 2 1 2 2 2

4 4 4 1 4 1 4 4

8 5 5 8
40 40

x x x x x x

x

+ + = + +

+ + = + +

+ + = + +

=

=

( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

2 2

2 2

2 2 1 2 1 2

substitute = 2on both side

2 2 2 2 2 1 2 2 1 2 2 2

4 4 4 1 4 1 4 4

8 5 5 8
40 40

x x x x x x

x

+ + = + +

+ + = + +

+ + = + +

=

=

( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

2 2

2 2

2 2 1 2 1 2

substitute = 2on both side

2 2 2 2 2 1 2 2 1 2 2 2

4 4 4 1 4 1 4 4

8 5 5 8
40 40

x x x x x x

x

+ + = + +

+ + = + +

+ + = + +

=

=

Since the product is same, the commutative property holds for multiplication.

( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )

2 2

2 2

2 2 1 2 1 2

substitute = 2on both side

2 2 2 2 2 1 2 2 1 2 2 2

4 4 4 1 4 1 4 4

8 5 5 8
40 40

x x x x x x

x

+ + = + +

+ + = + +

+ + = + +

=

=
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Associativity Property of Addition and Multiplication

The associate property defines that grouping of more than two numbers and performing the ba-
sic arithmetic operations of addition and multiplication does not affect the final result. Note that 
grouping means placing the parenthesis.

Rule for Addition

If a, b, and c are any numbers, then (a + b) + c = a + (b + c) holds true.

Example:

Consider a = –2, b = 4, and c = 5.

Obtain the value of Left Hand Side (LHS) of the rule.

( ) ( )2 4 5
2 5
7

a b c+ + = − + +

= +
=

Obtain the value of Right Hand Side (RHS) of the rule.

( ) ( )2 4 5
2 9

7

a b c+ + = − + +

=− +
=

Since the sum is same, the associative property of addition holds true. Therefore, it can be conclud-
ed that the grouping of numbers in any order does not change the sum.

Example:

Consider the algebraic expression, , , 2 where , .x y x x y x∈

( ) ( )2 2x y x x y x+ + = + +  is holds for addition.

Rule for Multiplication

If a, b, and c are any numbers, then ( ) ( )a b c a b c× × = × ×  holds true.

Example:

Consider a = –2, b = 4, and c = 5.

Obtain the value of Left Hand Side (LHS) of the rule.

( ) ( )( )( )
( )

2 4 5

8 5
40

a b c× × = − ××

= − ×

=−

________________________ WORLD TECHNOLOGIES ________________________
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Obtain the value of Right Hand Side (RHS) of the rule.

( ) ( ) ( )
( )

2 4 5

2 20
40

a b c× × = − ××

= − ×

=−

Example:

( ) ( ) ( )
( )( ) ( ) ( )

2

2 2

Consider the algebraic expression 2 , , 2 where .

2 2 2 2 is holds for multiplication.

x x x x

x x x x x x

+ ∈

+ × × = + × ×



Distributive Property

The distributive property defines that the product of a single term and a sum or difference of two 
or more terms inside the bracket is same as multiplying each addend by the single term and then 
adding or subtracting the products.

( ) ( ) ( )
( ) ( ) ( )

1. If , then it is known as left distributive law.

2.If , then it is known as right distributive law.

⋅ + = ⋅ + ⋅

+ ⋅ = ⋅ + ⋅

a b c a b a c

a b c a c b c

More generally, the property is true for number of addends.

( )
( )

a b c d ab ac ad

a b c d ab ac ad

+ + + = + + +

− − − = − − −

 

 

Rule for Multiplication Over Addition

If a, b and c are any numbers, then ( )a b c a b a c⋅ + = ⋅ + ⋅  holds true. The distribution can be done
in two ways, namely left distribution and right distribution. That is,

( ) ( ) ( )
( ) ( ) ( )

1. If . , then it is known as left distributive law.

2. If , then it is known as right distributive law.

+ = ⋅ + ⋅

+ ⋅ = ⋅ + ⋅

a b c a b a c

a b c a c b c  

Example:

Consider a = 2, b = 4, and c = 9.

Obtain the value of Left Hand Side(LHS) of the rule.

( ) ( )
( )

2 4 9

2 13
26

a b c⋅ + = ⋅ +

=

=

Obtain the value of Right Hand Side (RHS) of the rule.

________________________ WORLD TECHNOLOGIES ________________________
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2 4 2 9
8 18
26

a b a c⋅ + ⋅ = ⋅ + ⋅
= +
=

Since the result is same, the distributive property for multiplication over addition holds true.

That is, ( )2 4 9 2 4 2 9.⋅ + = ⋅ + ⋅

Rule for Multiplication Over Subtraction

If a, b and c are any numbers, then ( )a b c a b a c⋅ − = ⋅ − ⋅  holds true. Similarly over to the addition
rule, the distribution for multiplication over subtraction can be done in two ways, namely left dis-
tribution and right distribution. That is,

( ) ( ) ( )
( ) ( ) ( )

1. If , then it is known as left distributive law.

2.If , then it is known as right distributive law.

⋅ − = ⋅ − ⋅

− ⋅ = ⋅ − ⋅

a b c a b a c

a b c a c b c

Example:

Consider a = 2, b = 4, and c = 9.

Obtain the value of Left Hand Side (LHS) of the rule.

( ) ( )
( )

2 4 9

2 5
10

a b c⋅ − = ⋅ −

= −

= −

Obtain the value of Right Hand Side (RHS) of the rule.

( ) ( )2 4 2 9
8 18

10

a b a c⋅ − ⋅ = ⋅ − ⋅

= −
= −

Since the result is same, the distributive property for multiplication over subtraction holds true. 
That is, ( )2 4 9 2 4 2 9.⋅ − = ⋅ − ⋅

Example:

( ) ( ) ( )
( ) ( ) ( )

2 3

2 3 2 3 3 4

2 3 2 3 3 4

Consider thealgebraicexpression 3 , , .

3 3 3 3 3

3 3 3 3 3

x x x

x x x x x x x x x

x x x x x x x x x

∈

+ = + = +

− = − = −



The property holds for both addition and subtraction.

Additive Identity Property

The additive identity is zero. That is, the sum of any number and zero is the same number. a + 0 = 0 + a.

________________________ WORLD TECHNOLOGIES ________________________
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Example:

Let 5 be a real number such that 5 + 0 = 5.

Let x∈ such that 0 .x x+ =

The Multiplicative Identity Property

The multiplicative identity is 1. That is, the product of any number and 1 is same number, 
1 1a a a× = × = .

Example:

Let 6 be a real number such that 6 × 1 = 6

Let x∈  such that 1 .x x× =

Additive Inverse Property

The additive inverse of a is –a.

For every real number, a + (–a) = 0 = (–a) + a.

Example:

The additive inverse of –7 is –(–7) = 7. That is, –7 + (7) = 0.

Multiplicative Inverse Property

The multiplicative inverse of a non-zero real number 
1 1is That is, 1a a
a a

 ⋅ ⋅ = 
 

Example:

The multiplicative inverse of 
12 is
2

.

A combination of variables, constants, and operators constitute an algebraic expression. The four 
basic operations of mathematics viz. addition, subtraction, multiplication, and division can also 
be performed on algebraic equations or expressions. Addition and subtraction of algebraic ex-
pressions are almost similar to addition and subtraction of numbers. But in the case of algebraic 
expressions, like terms and the unlike terms must be sorted together.

The terms whose variables and their exponents are same are known as like terms and the terms 
having different variables are unlike terms.

The terms whose variables and their exponents are same are known as like terms and the terms 
having different variables are unlike terms.

Example: -5x2 + 12 xy – 3y + 7x2 + xy

In the given algebraic expression, -5x2 and 7x2 are like since both the terms have x2 as the common 
variable. Similarly, 12xy and xy are like terms.

________________________ WORLD TECHNOLOGIES ________________________
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The knowledge of like and unlike terms is crucial while studying addition and subtraction of alge-
braic expressions because the operation of addition and subtraction can only be performed on like 
terms.

Addition and subtraction of Algebraic Expressions:

• Addition of Algebraic expressions

For adding two or more algebraic expression the like terms of both the expressions are grouped to-
gether. The coefficients of like terms are added together using simple addition techniques and the 
variable which is common is retained as it is. The unlike terms are retained as it is and the result 
obtained is the addition of two or more algebraic expressions.

Example: Add 5xy – 3x2 – 12y +5x, xy – 3x – 12yz + 5x3 and y – 6x2 – zy + 5x3

Solution: For adding these three algebraic expressions the like terms are grouped together and 
added as shown below.

2 3

2 3

2 3

2 3

+5xy 3x 12 y 5x 0 yz 0 x
+ xy 0 x +0 y 3x -12 yz 5x
+0 xy 6 x +1y 0 x - yz +5 x

6 xy 9 x 11y 2 x 13yz 10 x

− − + + +
+ − +
− +

− − + − +

Arrange the terms of the given expressions in the same order.

• Subtraction of algebraic expressions

For subtracting two or more algebraic expressions, it’s a better practice to write the expressions to 
be subtracted below the expression from which it is to be subtracted from. Like terms are placed 
below each other. The sign of each term which is to be subtracted is reversed and then the resulting 
expression is added normally.

Example: Subtract x2y –2x2 -zy + 5 and –3x2 +3x3 from y3 +3x2y –6x2 -6zy +7x3

Solution: The like terms of the expressions x2y – 2x2 – zy + 5 and – 3x2 + 3x3 are written below the 
like terms of the expression y3 +3x2y – 6x2 – 6zy + 7x3.

3 2 2 3

2 2 33

3 2 2 3

3 2 2 3

y 3x y 6x 6zy 7x 0
y x y 2x zy 0x 5)(0

(0y 0 x y 3x 0zy 3x 0)

     y 2x y x 5zy 4x 5

+ − − + +
+ − − + +−

− + − + + +

+ − − + −

Multiplication is simply repeated addition. We multiply variables and constants in an algebraic 
expression. For example, the area of a rectangular room is the product of length and breadth. The 
value of area depends on the value chosen for length and breadth. Similarly volume is the product 
of length, breadth and height.

________________________ WORLD TECHNOLOGIES ________________________



WT

8  Algebra: A Comprehensive Course

Multiplication of Monomial by Monomial

1. Multiply 5  with 21  and 32 .x y z

Solution: 5   21   32  1 05   32   3360 .x y z xy z xyz× × = × =  

We multiply the first two monomials and then the resulting monomial to the third monomial.

2. Find the volume of a cuboid whose length is 5ax, breadth is 3by and height is 10cz.

Solution: Volume = length × breadth × height

Therefore, volume = 5   3   10  ax by cz× × =

(5   3  1 0      ) ( ) (  5)  1 0 .ax by cz axbycz× × × × × =

Multiplying a Monomials and Polynomials:

2 2 3 24   2   9  1 0   4   2   4   9   4( ) ( ) ( )   10  8   36  ( )  40a a a a a a a a a a a× + + = × + × + × = + +

3. Simplify the below algebraic expression and obtain its value for x = 3.

  2( )  5x x− +

Solution:   2   5,  .(  3)x x x− + =  

Substituting the value of   3.x=

3  3  2   5 ( ) ( ) 3 1   5   8.× − + = + =

4. Simplify the below algebraic expression and obtain its value for y = −1.

4 2   6  – 3  ( )   (  20)2y y y− − +

Solution: 4 2   6   3   2   20 for  ( ) (  )  1y y y y− − − + = − .

Substituting the value of   1y=− .

4   1 2  1  – 6  – 3 1  2   20
 4 2  6   3

(( ) ) ( )
( ) ( )3   20

 32   9   20  61

× − ×− − − +
=− − − − − +
= + + =

________________________ WORLD TECHNOLOGIES ________________________
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Algebra is divided into different branches namely abstract algebra, elementary algebra, linear alge-
bra, universal algebra, Boolean algebra, etc. This chapter closely examines these different branch-
es of algebra to provide an extensive understanding of the subject.

ABSTRACT ALGEBRA

Abstract algebra is a broad field of mathematics, concerned with algebraic structures such 
as groups, rings, vector spaces, and algebras.

On the 12-hour clock, 9+4=19+4=1, rather than 13 as in usual arithmetic.

Roughly speaking, abstract algebra is the study of what happens when certain properties of num-
ber systems are abstracted out; for instance, altering the definitions of the basic arithmetic opera-
tions result in a structure known as a ring, so long as the operations are consistent.

For example, the 12-hour clock is an example of such an object, where the arithmetic operations are 
redefined to use modular arithmetic (with modulus 12). An even further level of abstraction--where 
only one operation is considered--allows the clock to be understood as a group. In either case, the 
abstraction is useful because many properties can be understood without needing to consider the 
specific structure at hand, which is especially important when considering the relationship(s) be-
tween structures; the concept of a group isomorphism is an example.

Levels of Abstraction in Abstract Algebra

It is possible to abstract away practically all of the properties found in the “usual” number systems, 
the tradeoff being that the resulting object--known as a magma (which consists of a set and a bi-
nary operation, that need not satisfy any properties other than closure)--is simply too general to 
be interesting. On the other extreme, it is possible to abstract out practically no properties, which 
allows for many results to be found, but the resulting object (the usual number systems) is too 
specific to solve more general problems.

C
H

A
PTE

R2Branches of Algebra
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Most of abstract algebra is dedicated to objects that have a reasonable balance between generality 
and structure, most notably groups and rings in which most of the basic properties of arithmetic 
are maintained, but their specifics are left free. Still, some higher levels of abstraction are occa-
sionally useful; quasigroups, for instance, are related to Latin squares, and monoids are often used 
in computer science and are simple examples of categories.

Group Theory

The possible moves on a Rubik’s cube form a (very large) group.

Group theory is useful as an abstract notion of symmetry, which makes it applicable to a wide 
range of areas: the relationship between the roots of a polynomial (as in Galois theory) and the 
solution methods to the Rubik’s cube are both prominent examples.

Informally, a group is a set equipped with a binary operation ο, so that operating on any two ele-
ments of the group also produces an element of the group. For example, the integers form a group 
under addition, and the nonzero real numbers form a group under multiplication. 

The ο operation needs to satisfy a number of properties analogous to the ones it satisfies for these 
“normal” number systems: it should be associative (which essentially means that the order of op-
erations doesn’t matter), and there should be an identity element (0 in the first example above, 
and 1 in the second). More formally, a group is a set equipped with an operation . such that the 
following axioms hold; note that . does not necessarily refer to multiplication; rather, it should be 
viewed as a function on two variables (indeed, . can even refer to addition):

Group Axioms

1. Associativity. For any , , ,x y z G∈  we have ( ).) (x y z x y z⋅ ⋅ = ⋅ ⋅  

________________________ WORLD TECHNOLOGIES ________________________
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2. Identity. There exists an e G∈ , such that e x x e x⋅ = ⋅ =  for any x G∈ . We say that e is an 
identity element of G.

3. Inverse. For any x G∈ , there exists a y G∈  such that x y e y x⋅ = = ⋅ . We say that y is an 
inverse of x.

It is also worth noting the closure axiom for emphasis, as it is important to verify closure when 
working with subgroups (groups contained entirely within another):

4. Closure: For any , ,  is also in .x y G x y G∈ ∗

Additional examples of groups include:

• ,n the set of integers 0,1, 1{ , }n… − with the operation addition modulo n.

• ,nS the set of permutations of 1,2,{ },n…  with the operation of composition.

S3 is worth special note as an example of a group that is not commutative, meaning that a · ·a b b a=
does not generally hold. Formally speaking, S3 is nonabelian (an abelian group is one in which the 
operation is commutative). When the operation is not clear from context, groups are written in the 
form (set, op); e.g. the nonzero reals equipped with multiplication can be written as ( ∗, ⋅).

Much of group theory (and abstract algebra in general) is centered around the concept of a group 
homomorphism, which essentially means a mapping from one group to another that preserves the 
structure of the group. In other words, the mapping of the product of two elements should be the 
same as the product of the two mappings; intuitively speaking, the product of two elements should 
not change under the mapping. Formally, a homomorphism is a function : G Hφ →  such that

1 2 1 2( ) ( ) ( ),H Gg g g gφ φ φ⋅ = ⋅

Where H⋅ is the operation on H  and G⋅ is the operation on G. For example, ( )m( o) dg g nφ =  is an 
example of a group homomorphism from to n  . The concept of potentially differing operations is 
necessary; for example, ( ) gg eφ =  is an example of a group homomorphism from ( ) ( )*, to ,·+  .

Ring Theory

Rings are one of the lowest level of abstraction, essentially obtained by overwriting the addition 
and multiplication functions simultaneously (compared to groups, which uses only one opera-
tion). Thus a ring is--in some sense--a combination of multiple groups, as a ring can be viewed as 
a group over either one of its operations. This means that the analysis of groups is also applicable 
to rings, but rings have additional properties to work with (the tradeoff being that rings are less 
general and require more conditions).

The definition of a ring is similar to that of a group, with the extra condition that the distributive 
law holds as well:

A ring is a set R together with two operations + and ⋅ satisfying the following properties (ring axioms):

1. R is an abelian group under addition. That is, R is closed under addition, there is an addi-
tive identity (called 0), every element a ∈ R has an additive inverse  −a ∈ R, and addition is 
associative and commutative.
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2. R is closed under multiplication, and multiplication is associative: , . , , ( ) ( ) .a b R a b R a b c R a b c a b c∀ ∈ ∈ ∀ ∈ ⋅ ⋅ = ⋅ ⋅ 
, . , , ( ) ( ) .a b R a b R a b c R a b c a b c∀ ∈ ∈ ∀ ∈ ⋅ ⋅ = ⋅ ⋅  

3. Multiplication distributes over addition: ( ) ( ), , and .a b c Ra b c a b a c b c a b a c a∀ ∈ ⋅ + = ⋅ + ⋅ + ⋅ = ⋅ + ⋅ 
( ) ( ), , and .a b c Ra b c a b a c b c a b a c a∀ ∈ ⋅ + = ⋅ + ⋅ + ⋅ = ⋅ + ⋅

A ring is usually denoted by ( ), ,.R + and often it is written only as RR when the operations are 
understood.

For example, the integers Z form a ring, as do the integers modulo n (denoted by n ). Less obviously, 
the square matrices of a given size also form a ring; this ring is noncommutative. Commutative ring 
theory, or commutative algebra, is much better understood than noncommutative rings are.

As in groups, a ring homomorphism can be defined as a mapping preserving the structure 
of both operations.

Rings are used extensively in algebraic number theory, where “integers” are reimagined as slightly 
different objects (for example, Gaussian integers), and the effect on concepts such as prime factor-
ization is analyzed. Of particular interest is the fundamental theorem of arithmetic, which involves 
the concept of unique factorization; in other rings, this may not hold, such as

( )( )6 2 3 1 5 1 5 .= ⋅ = + − − −

Theory developed in this field solves problems ranging from sum of squares theorems to Fermat’s 
last theorem.

Other Applications of Abstract Algebra

Abstract algebra also has heavy application in physics and computer science through the analysis 
of vector spaces. For example, the Fourier transform and differential geometry both have vector 
spaces as their underlying structures; in fact, the Poincare conjecture is (roughly speaking) a state-
ment about whether the fundamental group of a manifold determines if the manifold is a sphere.

Related to vector spaces are modules, which are essentially identical to vector spaces but defined 
over a ring rather than over a field (and are thus more general). Modules are heavily related to rep-
resentation theory, which views the elements of a group as linear transformations of a vector 
space; this is desirable to make an abstract object (a group) somewhat more concrete, in the sense 
that the group is better understood by translating it into a well-understood object in linear alge-
bra (as matrices can be viewed as linear transformations, and vice versa).

The relationships between various algebraic structures are formalized using category theory.

ELEMENTARY ALGEBRA

Elementary algebra encompasses some of the basic concepts of algebra, one of the main branches 
of mathematics. It is typically taught to secondary school students and builds on their understand-
ing of arithmetic. Whereas arithmetic deals with specified numbers, algebra introduces quantities 
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without fixed values, known as variables. This use of variables entails a use of algebraic notation 
and an understanding of the general rules of the operators introduced in arithmetic. Unlike ab-
stract algebra, elementary algebra is not concerned with algebraic structures outside the realm of 
real and complex numbers. 

The use of variables to denote quantities allows general relationships between quantities to be 
formally and concisely expressed, and thus enables solving a broader scope of problems. Many 
quantitative relationships in science and mathematics are expressed as algebraic equations. 

2 4
2

b b acx
a

− ± −
=

The quadratic formula, which is the solution to the quadratic equation 2 0ax bx c+ + =  where 
0.a ≠  Here the symbols a,b,c represent arbitrary numbers, and x is a variable which represents 

the solution of the equation.

Two-dimensional plot (red curve) of the algebraic equation 
2 2y x x= − − .

Algebraic Notation

Algebraic notation describes the rules and conventions for writing mathematical expressions, as 
well as the terminology used for talking about parts of expressions. For example, the expression 

23 2x xy c− + has the following components: 

1. Exponent (power),

2. Coefficient,

3. Term,
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4. Operator,

5. Constant, x, y : variables.

A coefficient is a numerical value, or letter representing a numerical constant, that multiplies a vari-
able (the operator is omitted). A term is an addend or a summand, a group of coefficients, variables,  
constants and exponents that may be separated from the other terms by the plus and minus op-
erators. Letters represent variables and constants. By convention, letters at the beginning of the 
alphabet (e.g. , ,a b c) are typically used to represent constants, and those toward the end of the 
alphabet (e.g. ,x y and z) are used to represent variables. They are usually written in italics. 

Algebraic operations work in the same way as arithmetic operations, such as addition, subtraction, 
multiplication, division and exponentiation. and are applied to algebraic variables and terms. Mul-
tiplication symbols are usually omitted, and implied when there is no space between two variables 
or terms, or when a coefficient is used. For example, 23 x× is written as 23x , and 2 x y× × may be 
written 2xy.

Usually terms with the highest power (exponent), are written on the left, for example, x2 is writ-
ten to the left of x. When a coefficient is one, it is usually omitted (e.g. 1 x2 is written x2). Likewise 
when the exponent (power) is one, (e.g. 13x is written 3x ). When the exponent is zero, the result 
is always 1 (e.g. x0 is always rewritten to 1). However 00, being undefined, should not appear in an 
expression, and care should be taken in simplifying expressions in which variables may appear in 
exponents. 

Alternative Notation

Other types of notation are used in algebraic expressions when the required formatting is not 
available, or can not be implied, such as where only letters and symbols are available. For example, 
exponents are usually formatted using superscripts, e.g. x2. In plain text, and in the TeX mark-up 
language, the caret symbol “^” represents exponents, so x2 is written as “x^2”. In programming 
languages such as Ada, Fortran, Perl, Python  and Ruby, a double asterisk is used, so x2 is written 
as “x**2”. Many programming languages and calculators use a single asterisk to represent the mul-
tiplication symbol, and it must be explicitly used, for example, 3x is written “3*x”. 

Concepts

Variables

Example of variables showing the relationship between a circle’s diameter and its circumference. For any circle, its 
circumference c, divided by its diameter d, is equal to the constant pi, π  (approximately 3.14).

________________________ WORLD TECHNOLOGIES ________________________



WT

CHAPTER 2  Branches of Algebra  15

Elementary algebra builds on and extends arithmetic by introducing letters called variables to 
represent general (non-specified) numbers. This is useful for several reasons: 

1. Variables may represent numbers whose values are not yet known. For example, if the tem-
perature of the current day, C, is 20 degrees higher than the temperature of the previous 
day, P, then the problem can be described algebraically as 20C P= + .

2. Variables allow one to describe general problems, without specifying the values of the 
quantities that are involved. For example, it can be stated specifically that 5 minutes is 
equivalent to 60 5 300× = seconds. A more general (algebraic) description may state that 
the number of seconds, 60s m= × , where m is the number of minutes.

3. Variables allow one to describe mathematical relationships between quantities that may 
vary. For example, the relationship between the circumference, c, and diameter, d, of a 
circle is described by / .c dπ =

4. Variables allow one to describe some mathematical properties. For example, a basic prop-
erty of addition is commutativity which states that the order of numbers being added to-
gether does not matter. Commutativity is stated algebraically as ( ) ( )a b b a+ = + .

Simplifying Expressions

Algebraic expressions may be evaluated and simplified, based on the basic properties of arithmetic 
operations (addition, subtraction, multiplication, division and exponentiation). For example, 

1. Added terms are simplified using coefficients. For example, x x x+ + can be simplified as 
3x (where 3 is a numerical coefficient).

2. Multiplied terms are simplified using exponents. For example, x x x× × is represented as 3x .

3. Like terms are added together, for example, 2 22 3x ab x ab+ − +  is written as 2 4 ,x ab+  be-
cause the terms containing 2x  are added together, and, the terms containing ab  are added 
together. 

4. Brackets can be “multiplied out”, using the distributive property. For example, (2 3)x x +
can be written as ( 2 ) ( 3)x x x× + ×  which can be written as 22 3x x+ .

5. Expressions can be factored. For example, 5 26 3x x+ , by dividing both terms by 23x can be 
written as 2 33 (2 1)x x + .

Equations

An equation states that two expressions are equal using the symbol for equality, = (the equals 
sign). One of the best-known equations describes Pythagoras’ law relating the length of the sides 
of a right angle triangle: 

2 2 2c a b= +

This equation states that 2c , representing the square of the length of the side that is the hypotenuse 
(the side opposite the right angle), is equal to the sum (addition) of the squares of the other two 
sides whose lengths are represented by a and b. 
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An equation is the claim that two expressions have the same value and are equal. Some equa-
tions are true for all values of the involved variables (such as a b b a+ = + ); such equations are 
called identities. Conditional equations are true for only some values of the involved variables, e.g. 

2 1 8x − =  is true only for 3x = and 3x = − . The values of the variables which make the equation 
true are the solutions of the equation and can be found through equation solving. 

Another type of equation is an inequality. Inequalities are used to show that one side of the equation 
is greater, or less, than the other. The symbols used for this are: a b> where > represents ‘greater 
than’, and a b< where < represents ‘less than’. Just like standard equality equations, numbers can 
be added, subtracted, multiplied or divided. The only exception is that when multiplying or divid-
ing by a negative number, the inequality symbol must be flipped. 

Properties of Equality

By definition, equality is an equivalence relation, meaning it has the properties (a) reflexive (i.e. 
b b= ), (b) symmetric (i.e. if a b= then b a= ) (c) transitive (i.e. if a b=  and b c= then a c= ). It 
also satisfies the important property that if two symbols are used for equal things, then one symbol 
can be substituted for the other in any true statement about the first and the statement will remain 
true. This implies the following properties: 

• If a b= and c d= then a c b d+ = + and ac bd= ;

• If a b= then a c b c+ = + and ;ac bc=

• More generally, for any function f, if a b= then ( ) ( ).f a f b=

Properties of Inequality

The relations less than < and > greater than have the property of transitivity: 

• If   a b<   and  b c<    then ;a c<   

• If    a b<  and   c d<   then a c b d+ < + ;

• If    a b<  and    0c >  then ac bc< ;

• If    a b<  and    0c <  then .bc ac<

By reversing the inequation, < and > can be swapped, for example: 

•	 a b< is equivalent to b a> .

Substitution

Substitution is replacing the terms in an expression to create a new expression. Substituting 3 for 
a in the expression a*5 makes a new expression 3*5 with meaning 15. Substituting the terms of a 
statement makes a new statement. When the original statement is true independently of the values 
of the terms, the statement created by substitutions is also true. Hence definitions can be made 
in symbolic terms and interpreted through substitution: if 2 :a a a= ×  is meant as the definition of 

2a  as the product of a with itself, substituting 3 for a informs the reader of this statement that 23  
means 3 × 3 = 9. Often it’s not known whether the statement is true independently of the values of 
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the terms. And, substitution allows one to derive restrictions on the possible values, or show what 
conditions the statement holds under. For example, taking the statement x + 1 = 0, if x is substitut-
ed with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x canot be 1. 

If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc 
= 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0. Then we can substitute again, 
letting x = b and y = c, to show that if bc = 0 then b = 0 or c = 0. Therefore, if abc = 0, then a = 0 
or (b = 0 or c = 0), so abc = 0 implies a = 0 or b = 0 or c = 0. 

If the original fact were stated as “ab = 0 implies a = 0 or b = 0”, then when saying “consider abc = 
0,” we would have a conflict of terms when substituting. Yet the above logic is still valid to show that 
if abc = 0 then a = 0 or b = 0 or c = 0 if, instead of letting a = a and b = bc, one substitutes a for a and 
b for bc (and with bc = 0, substituting b for a and c for b). This shows that substituting for the terms 
in a statement isn’t always the same as letting the terms from the statement equal the substituted 
terms. In this situation it’s clear that if we substitute an expression a into the a term of the original 
equation, the a substituted does not refer to the a in the statement “ab = 0 implies a = 0 or b = 0.” 

Solving Algebraic Equations

A typical algebra problem.

The following sections lay out examples of some of the types of algebraic equations that may be 
encountered:

Linear Equations with One Variable

Linear equations are so-called, because when they are plotted, they describe a straight line. The 
simplest equations to solve are linear equations that have only one variable. They contain only 
constant numbers and a single variable without an exponent. As an example, consider: 

Problem in words: If you double the age of a child and add 4, the resulting answer is 12. 
How old is the child?

Equivalent equation: 2 4 12x + =  where x represent the child’s age.

To solve this kind of equation, the technique is add, subtract, multiply, or divide both sides of the 
equation by the same number in order to isolate the variable on one side of the equation. Once the 
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variable is isolated, the other side of the equation is the value of the variable. This problem and its 
solution are as follows: 

1. Equation to solve: 2 4 12x + =

2. Subtract 4 from both sides: 2 4 4 12 4x + − = −
3. This simplifies to: 2 8x =

4. Divide both sides by 2:
2 8
2 2
x
=

5. This simplifies to the solution: 4x =

In words: the child is 4 years old. 

The general form of a linear equation with one variable, can be written as: ax b c+ = .

Following the same procedure (i.e. subtract b from both sides, and then divide by a), the general 

solution is given by 
c bx

a
−

= .

Linear Equations with Two Variables

Solving two linear equations with a unique solution 
at the point that they intersect.

A linear equation with two variables has many (i.e. an infinite number of) solutions. For example: 

Problem in words: A father is 22 years older than his son. How old are they?

Equivalent equation: 22y x= + where y is the father’s age, x is the son’s age.

This cannot be worked out by itself. If the son’s age was made known, then there would no longer 
be two unknowns (variables), and the problem becomes a linear equation with just one variable, 
that can be solved as described above. 

To solve a linear equation with two variables (unknowns), requires two related equations. For ex-
ample, if it was also revealed that: 
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Problem in Words

In 10 years, the father will be twice as old as his son.

Equivalent Equation

10 2 ( 10)
2 ( 10) 10 Subtract 10 from both sides
2 20 10 Multiple out brackets
2 10 Simplify

y x
y x
y x
y x

+ = × +
= × + −
= + −
= +

Now there are two related linear equations, each with two unknowns, which enables the produc-
tion of a linear equation with just one variable, by subtracting one from the other (called the elim-
ination method): 

22 First equation
2 10 Second equation

y x
y x
= +

 = +

Subtract the first equation from
( ) (2 ) 10 22 the second in order to remove 

0 12 Simplify
12 Add 12 to both sides

12 Rearrange

y y x x y
x
x

x

− = − + −
= −
=
=

In other words, the son is aged 12, and since the father 22 years older, he must be 34. In 10 years 
time, the son will be 22, and the father will be twice his age, 44. This problem is illustrated on the 
associated plot of the equations. 

Quadratic Equations

Quadratic equation plot of 2 3 10y x x= + − showing its roots at 5x = −   
and 2x = , and that the quadratic can be rewritten as ( 5)( 2)y x x= + − .
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A quadratic equation is one which includes a term with an exponent of 2, for example, 2x , and no 
term with higher exponent. The name derives from the Latin quadrus, meaning square. In general, 
a quadratic equation can be expressed in the form 2 0ax bx c+ + = , where a is not zero (if it were 
zero, then the equation would not be quadratic but linear). Because of this a quadratic equation 
must contain the term 2 ,ax  which is known as the quadratic term. Hence 0a ≠ , and so we may 
divide by a and rearrange the equation into the standard form 

2 0x px q+ + =

where 
bp
a

=  and 
cq
a

= . Solving this, by a process known as completing the square, leads to the 

quadratic formula 

2 4 ,
2

b b acx
a

− ± −
=

where the symbol “±” indicates that both 

2 24 4and
2 2

b b ac b b acx x
a a

− + − − − −
= =

are solutions of the quadratic equation. 

Quadratic equations can also be solved using factorization (the reverse process of which is expan-
sion, but for two linear terms is sometimes denoted foiling). As an example of factoring: 

2 3 10 0,x x+ − =

which is the same thing as,

( 5)( 2) 0.x x+ − =

It follows from the zero-product property that either 2or 5x x= = −  are the solutions, since pre-
cisely one of the factors must be equal to zero. All quadratic equations will have two solutions in 
the complex number system, but need not have any in the real number system. For example, 

2 1 0x + =

has no real number solution since no real number squared equals −1. Sometimes a quadratic equa-
tion has a root of multiplicity 2, such as: 

2( 1) 0.x + =

For this equation, −1 is a root of multiplicity 2. This means −1 appears twice, since the equation can 
be rewritten in factored form as,

[ ( 1)][ ( 1)] 0.x x− − − − =

Complex Numbers

All quadratic equations have exactly two solutions in complex numbers (but they may be equal 
to each other), a category that includes real numbers, imaginary numbers, and sums of real and 
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imaginary numbers. Complex numbers first arise in the teaching of quadratic equations and the 
quadratic formula. For example, the quadratic equation: 

2 1 0x x+ + =

has solutions 

1 3 1 3and .
2 2

x x− + − − − −
= =

Since 3− is not any real number, both of these solutions for x are complex numbers. 

Exponential and Logarithmic Equations

The graph of the logarithm to base 2 crosses the x axis (horizontal axis) at 1 and passes through the  
points with coordinates (2, 1), (4, 2), and (8, 3). For example, log2(8) = 3, because 23 = 8.  

The graph gets arbitrarily close to the y axis, but does not meet or intersect t.

An exponential equation is one which has the form xa b= for 0.a >  which has solution 

lnlog
lna

bX b
a

= =

when 0.b >  Elementary algebraic techniques are used to rewrite a given equation in the above way 
before arriving at the solution. For example, if 

13·2 1 10x− + =

then, by subtracting 1 from both sides of the equation, and then dividing both sides by 3 we obtain 

12 3x− =

whence 

21 log 3x − =

or 

2log 3 1.x = +
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A logarithmic equation is an equation of the form ( )alog x b= for 0a > , which has solution 

.bX a=

For example, if 

54 log ( 3) 2 6x − − =

then, by adding 2 to both sides of the equation, followed by dividing both sides by 4, we get 

5log ( 3) 2x − =

whence 

23 5 25x − = =

from which we obtain 

28.x =

Radical Equations
3

32 2x x≡

Radical equation showing two ways to represent the same expression. The triple bar means the 
equation is true for all values of x.

A radical equation is one that includes a radical sign, which includes square roots, x cube roots, 
3 x, and nth roots, n x  Recall that an nth root can be rewritten in exponential format, so that n x

is equivalent to 
1
nx . Combined with regular exponents (powers), then 32 x (the square root of x 

cubed), can be rewritten as 
3
2x . So a common form of a radical equation is n mx a= (equivalent to 

)
m
nx a=  where m and n are integers. It has real solution(s): 

n is odd n is even and 0a ≥ n and m are even and 0a < n is even, m is odd, and 0a <

n mx a=
equivalently 

( )mnx a=

n mx a= ±
equivalently 

( )mnx a= ±

n mx a= ±
no real solution 

For example, if: 

2/3( 5) 4x + =

then 

35 ( 4) ,
5 8,

5 8,

x
x

x

+ = ±
+ = ±

= − ±
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and thus 

3 or 13x x= = −

System of Linear Equations

There are different methods to solve a system of linear equations with two variables. 

Elimination Method

The solution set for the equations 1x y− = − and 3 9x y+ = is the single point (2, 3).

An example of solving a system of linear equations is by using the elimination method: 

4 2 14
2 1.

x y
x y
+ =

 − =

Multiplying the terms in the second equation by 2: 

4 2 14
4 2 2.

x y
x y
+ =
− =

Adding the two equations together to get: 

8 16x =

which simplifies to 

2.x =

Since the fact that 2x = is known, it is then possible to deduce that 3y = by either of the original 
two equations (by using 2 instead of x ) The full solution to this problem is then.
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2
3.

x
y
=
=





This is not the only way to solve this specific system; y could have been solved before x. 

Substitution Method

Another way of solving the same system of linear equations is by substitution. 

4 2 14
2 1.

x y
x y
+ =

 − =

An equivalent for y can be deduced by using one of the two equations. Using the second equation: 

2 1x y− =

Subtracting 2x from each side of the equation: 

2 2 1 2
1 2

x x y x
y x

− − = −
− = −

and multiplying by −1: 

2 1.y x= −

Using this y value in the first equation in the original system: 

4 2(2 1) 14
4 4 2 14

8 2 14

x x
x x

x

+ − =
+ − =

− =

Adding 2 on each side of the equation: 

8 2 2 14 2
8 16

x
x

− + = +
=

which simplifies to 

2x =

Using this value in one of the equations, the same solution as in the previous method is obtained. 

2
3.

x
y
=

 =

This is not the only way to solve this specific system; in this case as well, y could have been solved 
before x. 
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Other Types of Systems of Linear Equations

Inconsistent Systems

The equations 3 2 6x y+ = and 3 2 12x y+ = are parallel  
and cannot intersect, and is unsolvable.

Plot of a quadratic equation (red) and a linear equation (blue)  
that do not intersect, and consequently for which there is no common solution.

In the above example, a solution exists. However, there are also systems of equations which do not 
have any solution. Such a system is called inconsistent. An obvious example is,

1
0 0 2.
x y

x y
+ =

 + =

As 0≠2, the second equation in the system has no solution. Therefore, the system has no solution. 
However, not all inconsistent systems are recognized at first sight. As an example, consider the 
system.

4 2 12
2 4.
x y

x y
+ =

− − = −

Multiplying by 2 both sides of the second equation, and adding it to the first one results in 

0 0 4,x y+ =

which clearly has no solution. 
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Undetermined Systems

There are also systems which have infinitely many solutions, in contrast to a system with a unique 
solution (meaning, a unique pair of values for x and y) For example: 

4 2 12
2 6
x y

x y
+ =

− − = −
Isolating y in the second equation: 

2 6y x= − +

And using this value in the first equation in the system: 
4 2( 2 6) 12

4 4 12 12
12 12

x x
x x

+ − + =
− + =

=
The equality is true, but it does not provide a value for x. Indeed, one can easily verify (by just fill-
ing in some values of x) that for any x there is a solution as long as 2 6y x= − + . There is an infinite 
number of solutions for this system. 

Over- and Underdetermined Systems

Systems with more variables than the number of linear equations are called underdetermined. 
Such a system, if it has any solutions, does not have a unique one but rather an infinitude of them. 
An example of such a system is, 

2 10
2.

x y
y z
+ =

 − =
When trying to solve it, one is led to express some variables as functions of the other ones if any 
solutions exist, but cannot express all solutions numerically because there are an infinite number 
of them if there are any. 

A system with a greater number of equations than variables is called overdetermined. If an overde-
termined system has any solutions, necessarily some equations are linear combinations of the others. 

LINEAR ALGEBRA
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In the three-dimensional Euclidean space, these three planes represent solutions of linear equa-
tions and their intersection represents the set of common solutions: in this case, a unique point. 
The blue line is the common solution of a pair of linear equations.

Linear algebra is the branch of mathematics concerning linear equations such as 

1 1 ,n na x a x b+ + =

linear functions such as 

1 1 1( , , ) ,n n nx x a x a x… +…+

and their representations through matrices and vector spaces. 

Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is funda-
mental in modern presentations of geometry, including for defining basic objects such as lines, 
planes and rotations. Also, functional analysis may be basically viewed as the application of linear 
algebra to spaces of functions. Linear algebra is also used in most sciences and engineering areas, 
because it allows modeling many natural phenomena, and efficiently computing with such models. 
For nonlinear systems, which cannot be modeled with linear algebra, linear algebra is often used 
as a first-order approximation. 

Vector Spaces

Until the 19th century, linear algebra was introduced through systems of linear equations and 
matrices. In modern mathematics, the presentation through vector spaces is generally preferred, 
since it is more synthetic, more general (not limited to the finite-dimensional case), and conceptu-
ally simpler, although more abstract. 

A vector space over a field F (often the field of the real numbers) is a set V equipped with two binary 
operations satisfying the following axioms. Elements of V are called vectors, and elements of F are 
called scalars. The first operation, vector addition, takes any two vectors v and w and outputs a 
third vector v + w. The second operation, scalar multiplication, takes any scalar a and any vector 
v and outputs a new vector av. The axioms that addition and scalar multiplication must satisfy are 
the following. (In the list below, u, v and w are arbitrary elements of V, and a and b are arbitrary 
scalars in the field F.) 

Axiom Signification 

Associativity of addition u + (v + w) = (u + v) + w 

Commutativity of addition u + v = v + u 

Identity element of addition There exists an element 0 in V, called the zero vector (or 
simply zero), such that v + 0 = v for all v in V. 

Inverse elements of addition For every v in V, there exists an element −v in V, called 
the additive inverse of v, such that v + (−v) = 0 

Distributivity of scalar multiplication 
with respect to vector addition

a(u + v) = au + av 

Distributivity of scalar multiplication 
with respect to field addition

(a + b)v = av + bv 
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Compatibility of scalar multiplication 
with field multiplication

a(bv) = (ab)v 

Identity element of scalar multiplication 1v = v, where 1 denotes the multiplicative identity of F. 

The first four axioms mean that V is an abelian group under addition. 

Elements of a vector space may have various nature; for example, they can be sequences, functions, 
polynomials or matrices. Linear algebra is concerned with properties common to all vector spaces. 

Linear Maps

Linear maps are mappings between vector spaces that preserve the vector-space structure. Given 
two vector spaces V and W over a field F, a linear map (also called, in some contexts, linear trans-
formation, linear mapping or linear operator) is a map,

T V W→

that is compatible with addition and scalar multiplication, that is 

( ) ( ) ( ), ( ) ( )T u v T u T v T av aT v+ = + =

for any vectors u,v in V and scalar a in F. 

This implies that for any vectors u, v in V and scalars a, b in F, one has 

( ) ( ) ( ) ( ) ( )T au bv T au T bv aT u bT v+ = + = +

When a bijective linear map exists between two vector spaces (that is, every vector from the sec-
ond space is associated with exactly one in the first), the two spaces are isomorphic. Because an 
isomorphism preserves linear structure, two isomorphic vector spaces are “essentially the same” 
from the linear algebra point of view, in the sense that they cannot be distinguished by using vec-
tor space properties. An essential question in linear algebra is testing whether a linear map is an 
isomorphism or not, and, if it is not an isomorphism, finding its range (or image) and the set of 
elements that are mapped to the zero vector, called the kernel of the map. All these questions can 
be solved by using Gaussian elimination or some variant of this algorithm. 

Subspaces, Span and Basis

The study of subsets of vector spaces that are themselves vector spaces for the induced operations 
is fundamental, similarly as for many mathematical structures. These subsets are called linear 
subspaces. More precisely, a linear subspace of a vector space V over a field F is a subset W of V 
such that u + v and au are in W, for every u, v in W, and every a in F. (These conditions suffice for 
implying that W is a vector space).

For example, given a linear map :T V W→ , the image T(V) of V, and the inverse image 1(0)T − of 
0 (called kernel or null space), are linear subspaces of W and V, respectively.

Another important way of forming a subspace is to consider linear combinations of a set S of vec-
tors: the set of all sums 
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1 1 2 2 ,k ka v a v a v+ + +

where v1, v2, ..., vk are in V, and a1, a2, ..., ak are in F form a linear subspace called the span of S. 
The span of S is also the intersection of all linear subspaces containing S. In other words, it is the 
(smallest for the inclusion relation) linear subspace containing S. 

A set of vectors is linearly independent if none is in the span of the others. Equivalently, a set S of 
vector is linearly independent if the only way to express the zero vector as a linear combination of 
elements of S is to take zero for every coefficient .ia

A set of vectors that spans a vector space is called a spanning set or generating set. If a spanning set 
S is linearly dependent (that is not linearly independent), then some element w of S is in the span 
of the other elements of S, and the span would remain the same if one remove w from S. One may 
continue to remove elements of S until getting a linearly independent spanning set. Such a linear-
ly independent set that spans a vector space V is called a basis of V. The importance of bases lies 
in the fact that there are together minimal generating sets and maximal independent sets. More 
precisely, if S is a linearly independent set, and T is a spanning set such that ,S T⊆ then there is 
a basis B such that .S B T⊆ ⊆

Any two bases of a vector space V have the same cardinality, which is called the dimension of V; 
this is the dimension theorem for vector spaces. Moreover, two vector spaces over the same field F 
are isomorphic if and only if they have the same dimension. 

If any basis of V (and therefore every basis) has a finite number of elements, V is a finite-dimen-
sional vector space. If U is a subspace of V, then dim U ≤ dim V. In the case where V is finite-di-
mensional, the equality of the dimensions implies U = V. 

If U1 and U2 are subspaces of V, then 

1 2 1 2 1 2dim( ) dim dim dim( ),U U U U U U+ = + − ∩

where 1 2U U+ denotes the span of 1 2U U∪ . 

Matrices

Matrices allow explicit manipulation of finite-dimensional vector spaces and linear maps. Their 
theory is thus an essential part of linear algebra. 

Let V be a finite-dimensional vector space over a field F, and (v1, v2, ..., vm) be a basis of V (thus m 
is the dimension of V). By definition of a basis, the map 

1 1 1( , , )m m m
m

a a a v a v
F V

… +

→

 

is a bijection from ,mF , the set of the sequences of m elements of F, onto V. This is an isomorphism 
of vector spaces, if ,mF , is equipped of its standard structure of vector space, where vector addition 
and scalar multiplication are done component by component. 
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This isomorphism allows representing a vector by its inverse image under this isomorphism, that 
is by the coordinates vector 1( , , )ma a… or by the column matrix 

1

.

m

a

a

 
 
 
  



If W is another finite dimensional vector space (possibly the same), with a basis ( , , ),w w… a lin-
ear map f from W to V is well defined by its values on the basis elements, that is 1( ( ), , ( )).nf w f w…
Thus, f is well represented by the list of the corresponding column matrices. That is, if 

1, 1 ,( ) ,j j m j mf w a v a v= + +

for j = 1, ..., n, then f is represented by the matrix 

1,1 1,

,1 ,

,
n

m m n

a a

a a

 …
 … 
 … 

 

with m rows and n columns. 

Matrix multiplication is defined in such a way that the product of two matrices is the matrix of the 
composition of the corresponding linear maps, and the product of a matrix and a column matrix is 
the column matrix representing the result of applying the represented linear map to the represent-
ed vector. It follows that the theory of finite-dimensional vector spaces and the theory of matrices 
are two different languages for expressing exactly the same concepts. 

Two matrices that encode the same linear transformation in different bases are called similar. 
Equivalently, two matrices are similar if one can transform one in the other by elementary row 
and column operations. For a matrix representing a linear map from W to V, the row operations 
correspond to change of bases in V and the column operations correspond to change of bases in W. 
Every matrix is similar to an identity matrix possibly bordered by zero rows and zero columns. In 
terms of vector space, this means that, for any linear map from W to V, there are bases such that a 
part of the basis of W is mapped bijectively on a part of the basis of V, and that the remaining basis 
elements of W, if any, are mapped to zero (this is a way of expressing the fundamental theorem 
of linear algebra). Gaussian elimination is the basic algorithm for finding these elementary opera-
tions, and proving this theorem. 

Linear Systems

A finite set of linear equations in a finite set of variables, for example, 1 2, ,..., nx x x or , ,...,x y z is 
called a system of linear equations or a linear system. 

Systems of linear equations form a fundamental part of linear algebra. Historically, linear algebra 
and matrix theory has been developed for solving such systems. In the modern presentation of 
linear algebra through vector spaces and matrices, many problems may be interpreted in terms of 
linear systems. 
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For example, let: 

2 8
3 2 11
2 2 3

x y z
x y z
x y z

+ − =
− − + = −
− + + = −

be a linear system. 

To such a system, one may associate its matrix: 

2 1 1
3 1 2 .
2 1 2

M
− 

 − − 
 − 

and its right member vector: 

8
11 .
3

v
 
 = − 
 − 

Let T be the linear transformation associated to the matrix M. A solution of the system (S) is a 
vector: 

x
X y

z

 
 =  
  

such that,

( ) ,T X v=

that is an element of the preimage of v by T. 

Let (S’) be the associated homogeneous system, where the right-hand sides of the equations are 
put to zero: 

2 0
3 2 0
2 2 0

x y z
x y z
x y z

+ − =
− − + =
− + + =

The solutions of (S’) are exactly the elements of the kernel of T or, equivalently, M. 

The Gaussian-elimination consists of performing elementary row operations on the augmented matrix: 

2 1 1 8
3 1 2 11
2 1 2 3

M
− 

 − − − 
 − − 
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for putting it in reduced row echelon form. These row operations do not change the set of solutions 
of the system of equations. In the example, the reduced echelon form is: 

1 0 0 2
0 1 0 3 ,
0 0 1 1

M
 
 
 
 − 

showing that the system (S) has the unique solution: 

2
3
1.

x
y
z

=
=
= −

It follows from this matrix interpretation of linear systems that the same methods can be applied 
for solving linear systems and for many operations on matrices and linear transformations, which 
include the computation of the ranks, kernels, matrix inverses. 

Endomorphisms and Square Matrices

A linear endomorphism is a linear map that maps a vector space V to itself. If V has a basis of n 
elements, such an endomorphism is represented by a square matrix of size n. 

With respect to general linear maps, linear endomorphisms and square matrices have some spe-
cific properties that make their study an important part of linear algebra, which is used in many 
parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, 
and many other part of mathematics. 

Determinant
The determinant of a square matrix A is de ined to be: 

1 (1) ( )( 1) ,
n

n n
S

a aσ
σ σ

σ∈

−∑ 

where nS  is the group of all permutations of n elements, σ is a permutation, and ( 1)σ− the parity 
of the permutation. A matrix is invertible if and only if the determinant is invertible (i.e., nonzero 
if the scalars belong to a field). 

Cramer’s rule is a closed-form expression, in terms of determinants, of the solution of a system of n 
linear equations in n unknowns. Cramer’s rule is useful for reasoning about the solution, but, except for 
n = 2 or 3, it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm. 

The determinant of an endomorphism is the determinant of the matrix representing the endo-
morphism in terms of some ordered basis. This definition makes sense, since this determinant is 
independent of the choice of the basis. 

Eigenvalues and Eigenvectors

If f is a linear endomorphism of a vector space V over a field F, an eigenvector of f is a nonzero 
vector v of V such that f(v) = av for some scalar a in F. This scalar a is an eigenvalue of f. 
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If the dimension of V is finite, and a basis has been chosen, f and v may be represented, respective-
ly, by a square matrix M and a column matrix z; the equation defining eigenvectors and eigenval-
ues becomes: 

.Mz az=

Using the identity matrix I, whose entries are all zero, except those of the main diagonal, which are 
equal to one, this may be rewritten: 

( ) 0.M aI z− =

As z is supposed to be nonzero, this means that M – aI is a singular matrix, and thus that its deter-
minant det( )M aI− equals zero. The eigenvalues are thus the roots of the polynomial: 

det( ).xI M−

If V is of dimension n, this is a monic polynomial of degree n, called the characteristic polynomial 
of the matrix (or of the endomorphism), and there are, at most, n eigenvalues. 

If a basis exists that consists only of eigenvectors, the matrix of f on this basis has a very simple 
structure: it is a diagonal matrix such that the entries on the main diagonal are eigenvalues, and 
the other entries are zero. In this case, the endomorphism and the matrix are said diagonalizable. 
More generally, an endomorphism and a matrix are also said diagonalizable, if they become diag-
onalizable after extending the field of scalars. In this extended sense, if the characteristic polyno-
mial is square-free, then the matrix is diagonalizable. 

A symmetric matrix is always diagonalizable. There are non-diagonalizable matrices, the simplest 
being,

0 1
0 0
 
 
 

(it cannot be diagonalizable since its square is the zero matrix, and the square of a nonzero diago-
nal matrix is never zero). 

When an endomorphism is not diagonalizable, there are bases on which it has a simple form, al-
though not as simple as the diagonal form. The Frobenius normal form does not need of extending 
the field of scalars and makes the characteristic polynomial immediately readable on the matrix. The 
Jordan normal form requires to extend the field of scalar for containing all eigenvalues, and differs 
from the diagonal form only by some entries that are just above the main diagonal and are equal to 1.

Duality

A linear form is a linear map from a vector space V over a field F to the field of scalars F, viewed as 
a vector space over itself. Equipped by pointwise addition and multiplication by a scalar, the linear 
forms form a vector space, called the dual space of V, and usually denoted V*. 

If 1, , nv v… is a basis of V (this implies that V is finite-dimensional), then one can define, for i = 1, 
..., n, a linear map *

iv such that ( ) 1i iv e∗ = and ( ) 0i jv e∗ = if j ≠ i. These linear maps form a basis of 
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V* called the dual basis of 1, , .nv v… (If V is not finite-dimensional, the *
iv may be defined similarly; 

they are linearly independent, but do not form a basis.) 

For v in V, the map 

( )f f v→

is a linear form on V* This defines the canonical linear map from V into V** the dual of called 
the bidual of V*. This canonical map is an isomorphism if V is finite-dimensional, and this allows 
identifying V with its bidual. (In the infinite dimensional case, the canonical map is injective, but 
not surjective). 

There is thus a complete symmetry between a finite-dimensional vector space and its dual. This 
motivates the frequent use, in this context, of the bra–ket notation 

,f x〈 〉

for denoting f (x). 

Dual Map

Let 

:f V W→

be a linear map. For every linear form h on W, the composite function h ° f is a linear form on V. 
This defines a linear map 

* * *:f W V→

between the dual spaces, which is called the dual or the transpose of f. 

If V and W are finite dimensional, and M is the matrix of f in terms of some ordered bases, then the 
matrix of *f over the dual bases is the transpose M T of M, obtained by exchanging rows and columns.

If elements of vector spaces and their duals are represented by column vectors, this duality may be 
expressed in bra–ket notation by 

, , .h Mv h M v〈 〉 = 〈 〉T T

For highlighting this symmetry, the two members of this equality are sometimes written 

.〈 〉h M vT | |

Inner-product Spaces

Besides these basic concepts, linear algebra also studies vector spaces with additional structure, 
such as an inner product. The inner product is an example of a bilinear form, and it gives the vector 
space a geometric structure by allowing for the definition of length and angles. Formally, an inner 
product is a map 

·,· :V V F〈 〉 × →
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that satisfies the following three axioms for all vectors u, v, w in V and all scalars a in F: 

• Conjugate symmetry:

, , .u v v u〈 〉 = 〈 〉

In R, it is symmetric. 

• Linearity in the first argument:

, , .
, , , .

au v a u v
u v w u w v w
〈 〉 = 〈 〉
〈 + 〉 = 〈 〉 + 〈 〉

• Positive-definiteness:

, 0v v〈 〉 ≥ with equality only for v = 0.

We can define the length of a vector v in V by 

2 , ,= 〈 〉v v v 

and we can prove the Cauchy–Schwarz inequality: 

| , | · .〈 〉 ≤u v u v  

In particular, the quantity 

| , | 1,
·

〈 〉
≤

u v
u v  

and so we can call this quantity the cosine of the angle between the two vectors. 

Two vectors are orthogonal if , 0u v〈 〉 = . An orthonormal basis is a basis where all basis vectors 
have length 1 and are orthogonal to each other. Given any finite-dimensional vector space, an 
orthonormal basis could be found by the Gram–Schmidt procedure. Orthonormal bases are par-
ticularly easy to deal with, since if v = a1 v1 + ... + an vn, then ,i ia v v= 〈 〉 . 

The inner product facilitates the construction of many useful concepts. For instance, given a trans-
form T, we can define its Hermitian conjugate T* as the linear transform satisfying 

*, , .Tu v u T v〈 〉 = 〈 〉

If T satisfies TT* = T*T, we call T normal. It turns out that normal matrices are precisely the ma-
trices that have an orthonormal system of eigenvectors that span V. 

Relationship with Geometry

There is a strong relationship between linear algebra and geometry, which started with the intro-
duction by René Descartes, in 1637, of Cartesian coordinates. In this new (at that time) geometry, 
now called Cartesian geometry, points are represented by Cartesian coordinates, which are se-
quences of three real numbers (in the case of the usual three-dimensional space). The basic objects 
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of geometry, which are lines and planes are represented by linear equations. Thus, computing 
intersections of lines and planes amounts to solving systems of linear equations. This was one of 
the main motivations for developing linear algebra. 

Most geometric transformation, such as translations, rotations, reflections, rigid motions, isome-
tries, and projections transform lines into lines. It follows that they can be defined, specified and 
studied in terms of linear maps. This is also the case of homographies and Möbius transforma-
tions, when considered as transformations of a projective space. 

Until the end of 19th century, geometric spaces were defined by axioms relating points, lines and 
planes (synthetic geometry). Around this date, it appeared that one may also define geometric 
spaces by constructions involving vector spaces. It has been shown that the two approaches are 
 essentially equivalent. In classical geometry, the involved vector spaces are vector spaces over the 
reals, but the constructions may be extended to vector spaces over any field, allowing considering 
geometry over arbitrary fields, including finite fields.

Presently, most textbooks, introduce geometric spaces from linear algebra, and geometry is often 
presented, at elementary level, as a subfield of linear algebra. 

Usage and Applications

Linear algebra is used in almost all areas of mathematics, thus making it relevant in almost all 
scientific domains that use mathematics. These applications may be divided into several wide cat-
egories.

Geometry of our Ambient Space

The modeling of our ambient space is based on geometry. Sciences concerned with this space use 
geometry widely. This is the case with mechanics and robotics, for describing rigid body dynamics; ge-
odesy for describing Earth shape; perspectivity, computer vision, and computer graphics, for describ-
ing the relationship between a scene and its plane representation; and many other scientific domains.

In all these applications, synthetic geometry is often used for general descriptions and a qualita-
tive approach, but for the study of explicit situations, one must compute with coordinates. This 
requires the heavy use of linear algebra. 

Functional Analysis

Functional analysis studies function spaces. These are vector spaces with additional structure, 
such as Hilbert spaces. Linear algebra is thus a fundamental part of functional analysis and its 
applications, which include, in particular, quantum mechanics (wave functions). 

Study of Complex Systems

Most physical phenomena are modeled by partial differential equations. To solve them, one usu-
ally decomposes the space in which the solutions are searched into small, mutually interacting 
cells. For linear systems this interaction involves linear functions. For nonlinear systems, this in-
teraction is often approximated by linear functions. In both cases, very large matrices are generally 
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involved. Weather forecasting is a typical example, where the whole Earth atmosphere is divided 
in cells of, say, 100 km of width and 100 m of height. 

Scientific Computation

Nearly all scientific computations involve linear algebra. Consequently, linear algebra algorithms 
have been highly optimized. BLAS and LAPACK are the best known implementations. For improv-
ing efficiency, some of them configure the algorithms automatically, at run time, for adapting them 
to the specificities of the computer (cache size, number of available cores, etc.). 

Some processors, typically graphics processing units (GPU), are designed with a matrix structure, 
for optimizing the operations of linear algebra. 

Extensions and Generalizations

Module Theory

The existence of multiplicative inverses in fields is not involved in the axioms defining a vector 
space. One may thus replace the field of scalars by a ring R, and this gives a structure called module 
over R, or R-module. 

The concepts of linear independence, span, basis, and linear maps (also called module homomor-
phisms) are defined for modules exactly as for vector spaces, with the essential difference that, if R 
is not a field, there are modules that do not have any basis. The modules that have a basis are the 
free modules, and those that are spanned by a finite set are the finitely generated modules. Module 
homomorphisms between finitely generated free modules may be represented by matrices. The 
theory of matrices over a ring is similar to that of matrices over a field, except that determinants 
exist only if the ring is commutative, and that a square matrix over a commutative ring is invertible 
only if its determinant has a multiplicative inverse in the ring. 

Vector spaces are completely characterized by their dimension (up to an isomorphism). In general, 
there is not such a complete classification for modules, even if one restricts oneself to finitely gen-
erated modules. However, every module is a cokernel of a homomorphism of free modules. 

Modules over the integers can be identified with abelian groups, since the multiplication by an in-
teger may identified to a repeated addition. Most of the theory of abelian groups may be extended 
to modules over a principal ideal domain. In particular, over a principal ideal domain, every sub-
module of a free module is free, and the fundamental theorem of finitely generated abelian groups 
may be extended straightforwardly to finitely generated modules over a principal ring. 

There are many rings for which there are algorithms for solving linear equations and systems of 
linear equations. However, these algorithms have generally a computational complexity that is 
much higher than the similar algorithms over a field. 

Multilinear Algebra and Tensors

In multilinear algebra, one considers multivariable linear transformations, that is, mappings that 
are linear in each of a number of different variables. This line of inquiry naturally leads to the idea 
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of the dual space, the vector space V∗ consisting of linear maps f: V → F where F is the field of sca-
lars. Multilinear maps T: V n → F can be described via tensor products of elements of V∗. 

If, in addition to vector addition and scalar multiplication, there is a bilinear vector product V × V 
→ V, the vector space is called an algebra; for instance, associative algebras are algebras with an 
associate vector product (like the algebra of square matrices, or the algebra of polynomials). 

Topological Vector Spaces

Vector spaces that are not finite dimensional often require additional structure to be tractable. A 
normed vector space is a vector space along with a function called a norm, which measures the 
“size” of elements. The norm induces a metric, which measures the distance between elements, 
and induces a topology, which allows for a definition of continuous maps. The metric also allows 
for a definition of limits and completeness - a metric space that is complete is known as a Banach 
space. A complete metric space along with the additional structure of an inner product (a conju-
gate symmetric sesquilinear form) is known as a Hilbert space, which is in some sense a particular-
ly well-behaved Banach space. Functional analysis applies the methods of linear algebra alongside 
those of mathematical analysis to study various function spaces; the central objects of study in 
functional analysis are Lp spaces, which are Banach spaces, and especially the L2 space of square 
integrable functions, which is the only Hilbert space among them. Functional analysis is of partic-
ular importance to quantum mechanics, the theory of partial differential equations, digital signal 
processing, and electrical engineering. It also provides the foundation and theoretical framework 
that underlies the Fourier transform and related method.

UNIVERSAL ALGEBRA

Universal algebra studies common properties of all algebraic structures, including groups, rings, 
fields, lattices, etc.

A universal algebra is a pair ( )( ),
∈

= i i I
f AA A , where A and I  are sets and for each ,i I∈  A

if  is an 

operation on A. The algebra A is finitary if each of its operations is finitary.

A set of function symbols (or operations) of degree 0n≥  is called a signature (or type). Let ∑ be 
a signature. An algebra A is defined by a domain S (which is called its carrier or universe) and a 
mapping that relates a function : nf S S→  to each n-place function symbol from ∑.

Let Á  and B  be two algebras over the same signature ∑, and their carriers are A and B, respec-
tively. A mapping A Bφ →:  is called a homomorphism from  Á to B  if for every f ∈∑ and all 

1,..., ,nx x A∈

( )( ) ( ) ( )( )1 1,..., ,.., .n nf x x f x xφ φ φ=

If a homomorphism φ  is surjective, then it is called epimorphism. If φ  is an epimorphism, 
then B is called a homomorphic image of A. If the homomorphism φ is a bijection, then it is called 
an isomorphism. On the class of all algebras, define a relation 



 by AA BB if and only if there is an 
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isomorphism from A onto B. Then the relation 


 is an equivalence relation. Its equivalence class-
es are called isomorphism classes, and are typically proper classes.

A homomorphism from Á  to B  is often denoted as : A B→φ . A homomorphism : →φ Α Α  is 
called an endomorphism. An isomorphism :φ Α Α→  is called an automorphism. The notions of 
homomorphism, isomorphism, endomorphism, etc., are generalizations of the respective notions 
in groups, rings, and other algebraic theories.

Identities (or equalities) in algebra Á  over signature ∑ have the form

,s t=

where s and t are terms built up from variables using function symbols from ∑.

An identity ,s t=  is said to hold in an algebra Á  if it is true for all possible values of variables in 
the identity, i.e., for all possible ways of replacing the variables by elements of the carrier. The al-
gebra Á is then said to satisfy the identity ,s t= .

Universal algebra includes algebras such as Boolean algebras, unary algebras, etc.

Boolean Algebra

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the 
values of the variables are the truth values true and false, usually denoted 1 and 0 respectively. 
Instead of elementary algebra where the values of the variables are numbers, and the prime oper-
ations are addition and multiplication, the main operations of Boolean algebra are the conjunction 
and denoted as ∧, the disjunction or denoted as ∨, and the negation not denoted as ¬. It is thus 
a formalism for describing logical operations in the same way that elementary algebra describes 
numerical operations. 

Boolean algebra has been fundamental in the development of digital electronics, and is provided 
for in all modern programming languages. It is also used in set theory and statistics.

Values

Whereas in elementary algebra expressions denote mainly numbers, in Boolean algebra they de-
note the truth values false and true. These values are represented with the bits (or binary digits), 
namely 0 and 1. They do not behave like the integers 0 and 1, for which 1 + 1 = 2, but may be iden-
tified with the elements of the two-element field GF(2), that is, integer arithmetic modulo 2, for 
which 1 + 1 = 0. Addition and multiplication then play the Boolean roles of XOR (exclusive-or) and 
AND (conjunction) respectively, with disjunction x∨y (inclusive-or) definable as x + y - xy. 

Boolean algebra also deals with functions which have their values in the set {0, 1}. A sequence of bits 
is a commonly used such function. Another common example is the subsets of a set E: to a subset F 
of E is associated the indicator function that takes the value 1 on F and 0 outside F. The most general 
example is the elements of a Boolean algebra, with all of the foregoing being instances thereof. 

As with elementary algebra, the purely equational part of the theory may be developed without 
considering explicit values for the variables. 
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Operations

Basic operations

The basic operations of Boolean algebra are as follows: 

• AND (conjunction), denoted x∧y (sometimes x AND y or Kxy), satisfies x∧y = 1 if x = y = 
1, and x∧y = 0 otherwise.

• OR (disjunction), denoted x∨y (sometimes x OR y or Axy), satisfies x∨y = 0 if x = y = 0, 
and x∨y = 1 otherwise.

• NOT (negation), denoted ¬x (sometimes NOT x, Nx or !x), satisfies ¬x = 0 if x = 1 and ¬x 
= 1 if x = 0.

Alternatively the values of x∧y, x∨y, and ¬x can be expressed by tabulating their values with truth 
tables as follows: 

x y x y∧ x y∨ x x¬
0 0 0 0 0 1

1 0 0 1 1 0

0 1 0 1

1 1 1 1

If the truth values 0 and 1 are interpreted as integers, these operations may be expressed with the 
ordinary operations of arithmetic (where x + y uses addition and xy uses multiplication), or by the 
minimum/maximum functions: 

min( , )
max( , )

1

x y xy x y
x y x y xy x y

x x

∧ = =
∨ = + − =
¬ = −

One might consider that only negation and one of the two other operations are basic, because of 
the following identities that allow one to define conjunction in terms of negation and the disjunc-
tion, and vice versa (De Morgan’s laws): 

( )
( )

x y x y
x y x y
∧ = ¬ ¬ ∨¬
∨ = ¬ ¬ ∧¬

Secondary Operations
The three Boolean operations described above are referred to as basic, meaning that they can be 
taken as a basis for other Boolean operations that can be built up from them by composition, the 
manner in which operations are combined or compounded. Operations composed from the basic 
operations include the following examples: 

( ) ¬( ) ( ¬ ) (¬ )
( ) ( ) ( )

x y x y
x y x y x y x y x y
x y x y x y x y

→ =¬ ∨
⊕ = ∨ ∧ ∧ = ∧ ∨ ∧
≡ = ¬ ⊕ = ∧ ∨ ¬ ∧¬
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These definitions give rise to the following truth tables giving the values of these operations for all 
four possible inputs. 

Secondary operations

x y x y→ x y⊕ x y≡

0 0 1 0 1

1 0 0 1 0

0 1 1 1 0

1 1 1 0 1

The first operation, x → y, or Cxy, is called material implication. If x is true then the value of 
x → y is taken to be that of y (e.g. if x is true and y is false, then x → y is also false). But if x is 
false then the value of y can be ignored; however the operation must return some boolean value 
and there are only two choices. So by definition, x → y is true when x is false. (Relevance logic 
suggests this definition by viewing an implication with a false premise as something other than 
either true or false). 

The second operation, x ⊕ y, or Jxy, is called exclusive or (often abbreviated as XOR) to distin-
guish it from disjunction as the inclusive kind. It excludes the possibility of both x and y being 
true: if both are true then result is false. Defined in terms of arithmetic it is addition mod 2 where 
1 + 1 = 0. 

The third operation, the complement of exclusive or, is equivalence or Boolean equality: x ≡ y, or 
Exy, is true just when x and y have the same value. Hence x ⊕ y as its complement can be under-
stood as x ≠ y, being true just when x and y are different. Equivalence’s counterpart in arithmetic 
mod 2 is x + y + 1. 

Given two operands, each with two possible values, there are 22 = 4 possible combinations of in-
puts. Because each output can have two possible values, there are a total of 24 = 16 possible binary 
Boolean operations. Any such operation or function (as well as any Boolean function with more 
inputs) can be expressed with the basic operations from above. Hence the basic operations are 
functionally complete. 

Laws

A law of Boolean algebra is an identity such as x ∨ (y ∨ z) = (x ∨ y) ∨ z between two Boolean terms, 
where a Boolean term is defined as an expression built up from variables and the constants 0 and 
1 using the operations ∧, ∨, and ¬. The concept can be extended to terms involving other Boolean 
operations such as ⊕, →, and ≡, but such extensions are unnecessary for the purposes to which the 
laws are put. Such purposes include the definition of a Boolean algebra as any model of the Bool-
ean laws, and as a means for deriving new laws from old as in the derivation of x∨(y∧z) = x∨(z∧y) 
from y∧z = z∧y as treated in the section on axiomatization. 

Monotone Laws

Boolean algebra satisfies many of the same laws as ordinary algebra when one matches up ∨ with 
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addition and ∧ with multiplication. In particular the following laws are common to both kinds of 
algebra: 

Associativity of ∨ : ( )x y z∨ ∨ ( )x y z= ∨ ∨

Associativity of ∧ : ( )x y z∧ ∧ ( )x y z= ∧ ∧

Commutativity of ∨ : y x= ∨ y x= ∨

Commutativity of ∧ : x y∧ y x= ∧

Distributivity of ∧ over∨ : ( )x y z∧ ∨ ( ) ( )x y x z= ∧ ∨ ∧

Identity for ∨ : 0x∨ x=

Identity for ∧ : 1x ∧ x=

Annihilator for ∧ : 0x ∧ 0=   

The following laws hold in Boolean Algebra, but not in ordinary algebra: 

Annihilator for ∨ : 1x∨ 1=

Idempotence of ∨ : x x∨ x=

Idempotence of ∧ : x x∧ x=

Absorption 1: ( )x x y∧ ∨ x=

Absorption 2: ( )x x y∨ ∧ x=

Distributivity of ∨ over ∧ :  ( )x y z∨ ∧ ( ) ( )x y x z= ∨ ∧ ∨

Taking x = 2 in the third law above shows that it is not an ordinary algebra law, since 2×2 = 4. The re-
maining five laws can be falsified in ordinary algebra by taking all variables to be 1, for example in Ab-
sorption Law 1 the left hand side would be 1(1+1) = 2 while the right hand side would be 1, and so on.

All of the laws treated so far have been for conjunction and disjunction. These operations have the 
property that changing either argument either leaves the output unchanged or the output changes in 
the same way as the input. Equivalently, changing any variable from 0 to 1 never results in the output 
changing from 1 to 0. Operations with this property are said to be monotone. Thus the axioms so far 
have all been for monotonic Boolean logic. Nonmonotonicity enters via complement ¬ as follows.

Nonmonotone Laws

The complement operation is defined by the following two laws: 

Complementation 1 0
Complementation 2 1

x x
x x
∧¬ =
∨¬ =

All properties of negation including the laws below follow from the above two laws alone. 

In both ordinary and Boolean algebra, negation works by exchanging pairs of elements, whence in 
both algebras it satisfies the double negation law (also called involution law).
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Double negation ( )x x¬ ¬ =

But whereas ordinary algebra satisfies the two laws:

( )( )
( ) ( ) ( )

x y xy
x y x y
− − =

− + − = − +

Boolean algebra satisfies De Morgan’s laws: 

De Morgan 1 ( )
De Morgan 2 ( )

x y x y
x y x y

¬ ∧¬ = ¬ ∨
¬ ∨¬ = ¬ ∧

Completeness

The laws listed above define Boolean algebra, in the sense that they entail the rest of the subject. 
The laws Complementation 1 and 2, together with the monotone laws, suffice for this purpose and 
can therefore be taken as one possible complete set of laws or axiomatization of Boolean algebra. 
Every law of Boolean algebra follows logically from these axioms. Furthermore, Boolean algebras 
can then be defined as the models of these axioms as treated in the section thereon. 

To clarify, writing down further laws of Boolean algebra cannot give rise to any new consequences 
of these axioms, nor can it rule out any model of them. In contrast, in a list of some but not all of 
the same laws, there could have been Boolean laws that did not follow from those on the list, and 
moreover there would have been models of the listed laws that were not Boolean algebras. 

This axiomatization is by no means the only one, or even necessarily the most natural given that 
we did not pay attention to whether some of the axioms followed from others but simply chose to 
stop when we noticed we had enough laws, treated further in the section on axiomatizations. Or 
the intermediate notion of axiom can be sidestepped altogether by defining a Boolean law directly 
as any tautology, understood as an equation that holds for all values of its variables over 0 and 1. 
All these definitions of Boolean algebra can be shown to be equivalent. 

Duality Principle

Principle: If {X, R} is a poset, then {X, R(inverse)} is also a poset. 

There is nothing magical about the choice of symbols for the values of Boolean algebra. We could 
rename 0 and 1 to say α and β, and as long as we did so consistently throughout it would still be 
Boolean algebra, albeit with some obvious cosmetic differences. 

But suppose we rename 0 and 1 to 1 and 0 respectively. Then it would still be Boolean algebra, and 
moreover operating on the same values. However it would not be identical to our original Boolean 
algebra because now we find ∨ behaving the way ∧ used to do and vice versa. So there are still some 
cosmetic differences to show that we’ve been fiddling with the notation, despite the fact that we’re 
still using 0s and 1s. 

But if in addition to interchanging the names of the values we also interchange the names of the 
two binary operations, now there is no trace of what we have done. The end product is completely 
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indistinguishable from what we started with. We might notice that the columns for x∧y and x∨y in 
the truth tables had changed places, but that switch is immaterial. 

When values and operations can be paired up in a way that leaves everything important unchanged 
when all pairs are switched simultaneously, we call the members of each pair dual to each other. 
Thus 0 and 1 are dual, and ∧ and ∨ are dual. The Duality Principle, also called De Morgan duality, 
asserts that Boolean algebra is unchanged when all dual pairs are interchanged. 

One change we did not need to make as part of this interchange was to complement. We say that 
complement is a self-dual operation. The identity or do-nothing operation x (copy the input to the 
output) is also self-dual. A more complicated example of a self-dual operation is (x∧y) ∨ (y∧z) ∨ 
(z∧x). There is no self-dual binary operation that depends on both its arguments. A composition of 
self-dual operations is a self-dual operation. For example, if f(x, y, z) = (x∧y) ∨ (y∧z) ∨ (z∧x), then 
f(f(x, y, z), x, t) is a self-dual operation of four arguments x,y,z,t. 

The principle of duality can be explained from a group theory perspective by the fact that there 
are exactly four functions that are one-to-one mappings (automorphisms) of the set of Boolean 
polynomials back to itself: the identity function, the complement function, the dual function and 
the contradual function (complemented dual). These four functions form a group under function 
composition, isomorphic to the Klein four-group, acting on the set of Boolean polynomials. Walter 
Gottschalk remarked that consequently a more appropriate name for the phenomenon would be 
the principle (or square) of quaternality. 

Diagrammatic Representations

Venn Diagrams

A Venn diagram is a representation of a Boolean operation using shaded overlapping regions. 
There is one region for each variable, all circular in the examples here. The interior and exterior 
of region x corresponds respectively to the values 1 (true) and 0 (false) for variable x. The shading 
indicates the value of the operation for each combination of regions, with dark denoting 1 and light 
0 (some authors use the opposite convention). 

The three Venn diagrams in the figure below represent respectively conjunction x∧y, disjunction 
x∨y, and complement ¬x. 

Venn diagrams for conjunction, disjunction, and complement.

For conjunction, the region inside both circles is shaded to indicate that x∧y is 1 when both vari-
ables are 1. The other regions are left unshaded to indicate that x∧y is 0 for the other three com-
binations. 
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The second diagram represents disjunction x∨y by shading those regions that lie inside either or 
both circles. The third diagram represents complement ¬x by shading the region not inside the circle.

While we have not shown the Venn diagrams for the constants 0 and 1, they are trivial, being 
respectively a white box and a dark box, neither one containing a circle. However we could put a 
circle for x in those boxes, in which case each would denote a function of one argument, x, which 
returns the same value independently of x, called a constant function. As far as their outputs are 
concerned, constants and constant functions are indistinguishable; the difference is that a con-
stant takes no arguments, called a zeroary or nullary operation, while a constant function takes 
one argument, which it ignores, and is a unary operation. 

Venn diagrams are helpful in visualizing laws. The commutativity laws for ∧ and ∨ can be seen 
from the symmetry of the diagrams: a binary operation that was not commutative would not have 
a symmetric diagram because interchanging x and y would have the effect of reflecting the diagram 
horizontally and any failure of commutativity would then appear as a failure of symmetry. 

Idempotence of ∧ and ∨ can be visualized by sliding the two circles together and noting that the 
shaded area then becomes the whole circle, for both ∧ and ∨. 

To see the first absorption law, x∧(x∨y) = x, start with the diagram in the middle for x∨y and note 
that the portion of the shaded area in common with the x circle is the whole of the x circle. For the 
second absorption law, x∨(x∧y) = x, start with the left diagram for x∧y and note that shading the 
whole of the x circle results in just the x circle being shaded, since the previous shading was inside 
the x circle. 

The double negation law can be seen by complementing the shading in the third diagram for ¬x, 
which shades the x circle. 

To visualize the first De Morgan’s law, (¬x)∧(¬y) = ¬(x∨y), start with the middle diagram for x∨y 
and complement its shading so that only the region outside both circles is shaded, which is what 
the right hand side of the law describes. The result is the same as if we shaded that region which 
is both outside the x circle and outside the y circle, i.e. the conjunction of their exteriors, which is 
what the left hand side of the law describes. 

The second De Morgan’s law, (¬x)∨(¬y) = ¬(x∧y), works the same way with the two diagrams 
interchanged. 

The first complement law, x∧¬x = 0, says that the interior and exterior of the x circle have no 
overlap. The second complement law, x∨¬x = 1, says that everything is either inside or outside 
the x circle.

Digital Logic Gates

Digital logic is the application of the Boolean algebra of 0 and 1 to electronic hardware con-
sisting of logic gates connected to form a circuit diagram. Each gate implements a Boolean 
operation, and is depicted schematically by a shape indicating the operation. The shapes as-
sociated with the gates for conjunction (AND-gates), disjunction (OR-gates), and complement 
(inverters) are as follows. 
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From left to right: AND, OR, and NOT gates.

The lines on the left of each gate represent input wires or ports. The value of the input is represent-
ed by a voltage on the lead. For so-called “active-high” logic, 0 is represented by a voltage close to 
zero or “ground”, while 1 is represented by a voltage close to the supply voltage; active-low reverses 
this. The line on the right of each gate represents the output port, which normally follows the same 
voltage conventions as the input ports. 

Complement is implemented with an inverter gate. The triangle denotes the operation that 
simply copies the input to the output; the small circle on the output denotes the actual inver-
sion complementing the input. The convention of putting such a circle on any port means that 
the signal passing through this port is complemented on the way through, whether it is an 
input or output port. 

The Duality Principle, or De Morgan’s laws, can be understood as asserting that complementing 
all three ports of an AND gate converts it to an OR gate and vice versa, as shown in Figure  below. 
Complementing both ports of an inverter however leaves the operation unchanged. 

More generally one may complement any of the eight subsets of the three ports of either an AND 
or OR gate. The resulting sixteen possibilities give rise to only eight Boolean operations, namely 
those with an odd number of 1’s in their truth table. There are eight such because the “odd-bit-out” 
can be either 0 or 1 and can go in any of four positions in the truth table. There being sixteen bina-
ry Boolean operations, this must leave eight operations with an even number of 1’s in their truth 
tables. Two of these are the constants 0 and 1 (as binary operations that ignore both their inputs); 
four are the operations that depend nontrivially on exactly one of their two inputs, namely x, y, ¬x, 
and ¬y; and the remaining two are x⊕y (XOR) and its complement x≡y. 

Boolean Algebras

The term “algebra” denotes both a subject, namely the subject of algebra, and an object, namely an 
algebraic structure. 

Concrete Boolean Algebras

A concrete Boolean algebra or field of sets is any nonempty set of subsets of a given set X closed 
under the set operations of union, intersection, and complement relative to X. 

(As an aside, historically X itself was required to be nonempty as well to exclude the degenerate 
or one-element Boolean algebra, which is the one exception to the rule that all Boolean algebras 
satisfy the same equations since the degenerate algebra satisfies every equation. However this ex-
clusion conflicts with the preferred purely equational definition of “Boolean algebra,” there being 
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no way to rule out the one-element algebra using only equations— 0 ≠ 1 does not count, being a ne-
gated equation. Hence modern authors allow the degenerate Boolean algebra and let X be empty). 

Example: The power set 2X of X, consisting of all subsets of X. Here X may be any set: empty, finite, 
infinite, or even uncountable. 

Example: The empty set and X. This two-element algebra shows that a concrete Boolean algebra 
can be finite even when it consists of subsets of an infinite set. It can be seen that every field of sub-
sets of X must contain the empty set and X. Hence no smaller example is possible, other than the 
degenerate algebra obtained by taking X to be empty so as to make the empty set and X coincide.

Example: The set of finite and cofinite sets of integers, where a cofinite set is one omitting only 
finitely many integers. This is clearly closed under complement, and is closed under union because 
the union of a cofinite set with any set is cofinite, while the union of two finite sets is finite. Inter-
section behaves like union with “finite” and “cofinite” interchanged. 

Example: For a less trivial example of the point made by Example 2, consider a Venn diagram 
formed by n closed curves partitioning the diagram into 2n regions, and let X be the (infinite) set 
of all points in the plane not on any curve but somewhere within the diagram. The interior of each 
region is thus an infinite subset of X, and every point in X is in exactly one region. Then the set of 
all 22n possible unions of regions (including the empty set obtained as the union of the empty set 
of regions and X obtained as the union of all 2n regions) is closed under union, intersection, and 
complement relative to X and therefore forms a concrete Boolean algebra. Again we have finitely 
many subsets of an infinite set forming a concrete Boolean algebra, with Example 2 arising as the 
case n = 0 of no curves. 

Subsets as Bit Vectors

A subset Y of X can be identified with an indexed family of bits with index set X, with the bit in-
dexed by x ∈ X being 1 or 0 according to whether or not x ∈ Y. (This is the so-called characteristic 
function notion of a subset.) For example, a 32-bit computer word consists of 32 bits indexed by 
the set {0,1,2,...,31}, with 0 and 31 indexing the low and high order bits respectively. For a smaller 
example, if X = {a,b,c} where a, b, c are viewed as bit positions in that order from left to right, the 
eight subsets {}, {c}, {b}, {b,c}, {a}, {a,c}, {a,b}, and {a,b,c} of X can be identified with the respec-
tive bit vectors 000, 001, 010, 011, 100, 101, 110, and 111. Bit vectors indexed by the set of natural 
numbers are infinite sequences of bits, while those indexed by the reals in the unit interval [0,1] are 
packed too densely to be able to write conventionally but nonetheless form well-defined indexed 
families (imagine coloring every point of the interval [0,1] either black or white independently; the 
black points then form an arbitrary subset of [0,1]). 

From this bit vector viewpoint, a concrete Boolean algebra can be defined equivalently as a non-
empty set of bit vectors all of the same length (more generally, indexed by the same set) and closed 
under the bit vector operations of bitwise ∧, ∨, and ¬, as in 1010∧0110 = 0010, 1010∨0110 = 1110, 
and ¬1010 = 0101, the bit vector realizations of intersection, union, and complement respectively. 

The Prototypical Boolean Algebra

The set {0,1} and its Boolean operations as treated above can be understood as the special case 

________________________ WORLD TECHNOLOGIES ________________________



WT

48  Algebra: A Comprehensive Course

of bit vectors of length one, which by the identification of bit vectors with subsets can also be un-
derstood as the two subsets of a one-element set. We call this the prototypical Boolean algebra, 
justified by the following observation. 

The laws satisfied by all nondegenerate concrete Boolean algebras coincide with those sat-
isfied by the prototypical Boolean algebra.

This observation is easily proved as follows. Certainly any law satisfied by all concrete Boolean al-
gebras is satisfied by the prototypical one since it is concrete. Conversely any law that fails for some 
concrete Boolean algebra must have failed at a particular bit position, in which case that position 
by itself furnishes a one-bit counterexample to that law. Nondegeneracy ensures the existence of 
at least one bit position because there is only one empty bit vector. 

Boolean Algebras

The Boolean algebras we have seen so far have all been concrete, consisting of bit vectors or equiv-
alently of subsets of some set. Such a Boolean algebra consists of a set and operations on that set 
which can be shown to satisfy the laws of Boolean algebra. 

Instead of showing that the Boolean laws are satisfied, we can instead postulate a set X, two binary 
operations on X, and one unary operation, and require that those operations satisfy the laws of 
Boolean algebra. The elements of X need not be bit vectors or subsets but can be anything at all. 
This leads to the more general abstract definition. 

A Boolean algebra is any set with binary operations ∧ and ∨ and a unary operation ¬ there-
on satisfying the Boolean laws.

For the purposes of this definition it is irrelevant how the operations came to satisfy the laws, 
whether by fiat or proof. All concrete Boolean algebras satisfy the laws (by proof rather than fiat), 
whence every concrete Boolean algebra is a Boolean algebra according to our definitions. This 
axiomatic definition of a Boolean algebra as a set and certain operations satisfying certain laws or 
axioms by fiat is entirely analogous to the abstract definitions of group, ring, field etc. characteris-
tic of modern or abstract algebra. 

Given any complete axiomatization of Boolean algebra, such as the axioms for a complemented 
distributive lattice, a sufficient condition for an algebraic structure of this kind to satisfy all the 
Boolean laws is that it satisfy just those axioms. The following is therefore an equivalent definition: 

A Boolean algebra is a complemented distributive lattice.

Representable Boolean Algebras

Although every concrete Boolean algebra is a Boolean algebra, not every Boolean algebra need be 
concrete. Let n be a square-free positive integer, one not divisible by the square of an integer, for 
example 30 but not 12. The operations of greatest common divisor, least common multiple, and di-
vision into n (that is, ¬x = n/x), can be shown to satisfy all the Boolean laws when their arguments 
range over the positive divisors of n. Hence those divisors form a Boolean algebra. These divisors 
are not subsets of a set, making the divisors of n a Boolean algebra that is not concrete according 
to our definitions. 
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However, if we represent each divisor of n by the set of its prime factors, we find that this noncon-
crete Boolean algebra is isomorphic to the concrete Boolean algebra consisting of all sets of prime 
factors of n, with union corresponding to least common multiple, intersection to greatest common 
divisor, and complement to division into n. So this example while not technically concrete is at 
least “morally” concrete via this representation, called an isomorphism. This example is an in-
stance of the following notion: 

A Boolean algebra is called representable when it is isomorphic to a concrete Boolean al-
gebra.

The obvious next question is answered positively as follows: 

Every Boolean algebra is representable.

That is, up to isomorphism, abstract and concrete Boolean algebras are the same thing. This quite 
nontrivial result depends on the Boolean prime ideal theorem, a choice principle slightly weaker 
than the axiom of choice. This strong relationship implies a weaker result strengthening the obser-
vation in the previous subsection to the following easy consequence of representability. 

The laws satisfied by all Boolean algebras coincide with those satisfied by the prototypical 
Boolean algebra.

It is weaker in the sense that it does not of itself imply representability. Boolean algebras are spe-
cial here, for example a relation algebra is a Boolean algebra with additional structure but it is not 
the case that every relation algebra is representable in the sense appropriate to relation algebras. 

Axiomatizing Boolean Algebra

The above definition of an abstract Boolean algebra as a set and operations satisfying “the” Bool-
ean laws raises the question, what are those laws? A simple-minded answer is “all Boolean laws,” 
which can be defined as all equations that hold for the Boolean algebra of 0 and 1. Since there are 
infinitely many such laws this is not a terribly satisfactory answer in practice, leading to the next 
question: does it suffice to require only finitely many laws to hold? 

In the case of Boolean algebras the answer is yes. In particular the finitely many equations we have 
listed above suffice. We say that Boolean algebra is finitely axiomatizable or finitely based. 

Can this list be made shorter yet? Again the answer is yes. To begin with, some of the above laws 
are implied by some of the others. A sufficient subset of the above laws consists of the pairs of asso-
ciativity, commutativity, and absorption laws, distributivity of ∧ over ∨ (or the other distributivity 
law—one suffices), and the two complement laws. In fact this is the traditional axiomatization of 
Boolean algebra as a complemented distributive lattice. 

By introducing additional laws not listed above it becomes possible to shorten the list yet further. 
In 1933, Edward Huntington showed that if the basic operations are taken to be x∨y and ¬x, with 
x∧y considered a derived operation (e.g. via De Morgan’s law in the form x∧y = ¬(¬x∨¬y)), then 
the equation ¬(¬x∨¬y)∨¬(¬x∨y) = x along with the two equations expressing associativity and 
commutativity of ∨ completely axiomatized Boolean algebra. When the only basic operation is the 
binary NAND operation ¬(x∧y), Stephen Wolfram has proposed the single axiom ((xy)z)(x((xz)x)) 
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= z as a one-equation axiomatization of Boolean algebra, where for convenience here xy denotes 
the NAND rather than the AND of x and y. 

Propositional Logic

Propositional logic is a logical system that is intimately connected to Boolean algebra. Many syn-
tactic concepts of Boolean algebra carry over to propositional logic with only minor changes in no-
tation and terminology, while the semantics of propositional logic are defined via Boolean algebras 
in a way that the tautologies (theorems) of propositional logic correspond to equational theorems 
of Boolean algebra. 

Syntactically, every Boolean term corresponds to a propositional formula of propositional logic. 
In this translation between Boolean algebra and propositional logic, Boolean variables x, y... be-
come propositional variables (or atoms) P,Q,..., Boolean terms such as x∨y become propositional 
formulas P∨Q, 0 becomes false or ⊥, and 1 becomes true or T. It is convenient when referring to 
generic propositions to use Greek letters Φ, Ψ,... as metavariables (variables outside the language 
of propositional calculus, used when talking about propositional calculus) to denote propositions. 

The semantics of propositional logic rely on truth assignments. The essential idea of a truth assign-
ment is that the propositional variables are mapped to elements of a fixed Boolean algebra, and 
then the truth value of a propositional formula using these letters is the element of the Boolean 
algebra that is obtained by computing the value of the Boolean term corresponding to the formu-
la. In classical semantics, only the two-element Boolean algebra is used, while in Boolean-valued 
semantics arbitrary Boolean algebras are considered. A tautology is a propositional formula that 
is assigned truth value 1 by every truth assignment of its propositional variables to an arbitrary 
Boolean algebra (or, equivalently, every truth assignment to the two element Boolean algebra).

These semantics permit a translation between tautologies of propositional logic and equational 
theorems of Boolean algebra. Every tautology Φ of propositional logic can be expressed as the 
Boolean equation Φ = 1, which will be a theorem of Boolean algebra. Conversely every theo-
rem Φ = Ψ of Boolean algebra corresponds to the tautologies (Φ∨¬Ψ) ∧ (¬Φ∨Ψ) and (Φ∧Ψ) ∨ 
(¬Φ∧¬Ψ). If → is in the language these last tautologies can also be written as (Φ→Ψ) ∧ (Ψ→Φ), 
or as two separate theorems Φ→Ψ and Ψ→Φ; if ≡ is available then the single tautology Φ ≡ Ψ 
can be used. 

Applications

One motivating application of propositional calculus is the analysis of propositions and deductive 
arguments in natural language. Whereas the proposition “if x = 3 then x+1 = 4” depends on the 
meanings of such symbols as + and 1, the proposition “if x = 3 then x = 3” does not; it is true merely 
by virtue of its structure, and remains true whether “x = 3” is replaced by “x = 4” or “the moon is 
made of green cheese.” The generic or abstract form of this tautology is “if P then P”, or in the lan-
guage of Boolean algebra, “P → P”. 

Replacing P by x = 3 or any other proposition is called instantiation of P by that proposition. The 
result of instantiating P in an abstract proposition is called an instance of the proposition. Thus 
“x = 3 → x = 3” is a tautology by virtue of being an instance of the abstract tautology “P → P”. All 
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occurrences of the instantiated variable must be instantiated with the same proposition, to avoid 
such nonsense as P → x = 3 or x = 3 → x = 4. 

Propositional calculus restricts attention to abstract propositions, those built up from proposition-
al variables using Boolean operations. Instantiation is still possible within propositional calculus, 
but only by instantiating propositional variables by abstract propositions, such as instantiating Q 
by Q→P in P→(Q→P) to yield the instance P→((Q→P)→P). 

(The availability of instantiation as part of the machinery of propositional calculus avoids the need 
for metavariables within the language of propositional calculus, since ordinary propositional vari-
ables can be considered within the language to denote arbitrary propositions. The metavariables 
themselves are outside the reach of instantiation, not being part of the language of propositional 
calculus but rather part of the same language for talking about it that this sentence is written in, 
where we need to be able to distinguish propositional variables and their instantiations as being 
distinct syntactic entities). 

Deductive Systems for Propositional Logic

An axiomatization of propositional calculus is a set of tautologies called axioms and one or more 
inference rules for producing new tautologies from old. A proof in an axiom system A is a finite 
nonempty sequence of propositions each of which is either an instance of an axiom of A or follows 
by some rule of A from propositions appearing earlier in the proof (thereby disallowing circular rea-
soning). The last proposition is the theorem proved by the proof. Every nonempty initial segment of 
a proof is itself a proof, whence every proposition in a proof is itself a theorem. An axiomatization is 
sound when every theorem is a tautology, and complete when every tautology is a theorem.

Sequent Calculus

Propositional calculus is commonly organized as a Hilbert system, whose operations are just those 
of Boolean algebra and whose theorems are Boolean tautologies, those Boolean terms equal to the 
Boolean constant 1. Another form is sequent calculus, which has two sorts, propositions as in ordi-
nary propositional calculus, and pairs of lists of propositions called sequents, such as A∨B, A∧C,... 
A, B→C,.... The two halves of a sequent are called the antecedent and the succedent respectively. 
The customary metavariable denoting an antecedent or part thereof is Γ, and for a succedent Δ; 
thus Γ, A Δ would denote a sequent whose succedent is a list Δ and whose antecedent is a list Γ 
with an additional proposition A appended after it. The antecedent is interpreted as the conjunc-
tion of its propositions, the succedent as the disjunction of its propositions, and the sequent itself 
as the entailment of the succedent by the antecedent. 

Entailment differs from implication in that whereas the latter is a binary operation that returns a 
value in a Boolean algebra, the former is a binary relation which either holds or does not hold. In 
this sense entailment is an external form of implication, meaning external to the Boolean algebra, 
thinking of the reader of the sequent as also being external and interpreting and comparing an-
tecedents and succedents in some Boolean algebra. The natural interpretation of   is as ≤ in the 
partial order of the Boolean algebra defined by x ≤ y just when x∨y = y. This ability to mix external 
implication →and internal implication → in the one logic is among the essential differences be-
tween sequent calculus and propositional calculus. 
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Applications

Boolean algebra as the calculus of two values is fundamental to computer circuits, computer pro-
gramming, and mathematical logic, and is also used in other areas of mathematics such as set 
theory and statistics. 

Computers

In the early 20th century, several electrical engineers intuitively recognized that Boolean alge-
bra was analogous to the behavior of certain types of electrical circuits. Claude Shannon formally 
proved such behavior was logically equivalent to Boolean algebra in his 1937 master’s thesis, A 
Symbolic Analysis of Relay and Switching Circuits. 

Today, all modern general purpose computers perform their functions using two-value Boolean 
logic; that is, their electrical circuits are a physical manifestation of two-value Boolean logic. They 
achieve this in various ways: as voltages on wires in high-speed circuits and capacitive storage  
devices, as orientations of a magnetic domain in ferromagnetic storage devices, as holes in punched 
cards or paper tape, and so on. (Some early computers used decimal circuits or mechanisms in-
stead of two-valued logic circuits). 

Of course, it is possible to code more than two symbols in any given medium. For example, one might 
use respectively 0, 1, 2, and 3 volts to code a four-symbol alphabet on a wire, or holes of different sizes 
in a punched card. In practice, the tight constraints of high speed, small size, and low power combine 
to make noise a major factor. This makes it hard to distinguish between symbols when there are sev-
eral possible symbols that could occur at a single site. Rather than attempting to distinguish between 
four voltages on one wire, digital designers have settled on two voltages per wire, high and low. 

Computers use two-value Boolean circuits for the above reasons. The most common computer ar-
chitectures use ordered sequences of Boolean values, called bits, of 32 or 64 values, e.g. 011010001
10101100101010101001011. When programming in machine code, assembly language, and certain 
other programming languages, programmers work with the low-level digital structure of the data 
registers. These registers operate on voltages, where zero volts represents Boolean 0, and a refer-
ence voltage (often +5V, +3.3V, +1.8V) represents Boolean 1. Such languages support both numer-
ic operations and logical operations. In this context, “numeric” means that the computer treats 
sequences of bits as binary numbers (base two numbers) and executes arithmetic operations like 
add, subtract, multiply, or divide. “Logical” refers to the Boolean logical operations of disjunction, 
conjunction, and negation between two sequences of bits, in which each bit in one sequence is sim-
ply compared to its counterpart in the other sequence. Programmers therefore have the option of 
working in and applying the rules of either numeric algebra or Boolean algebra as needed. A core 
differentiating feature between these families of operations is the existence of the carry operation 
in the first but not the second. 

Two-valued Logic

Other areas where two values is a good choice are the law and mathematics. In everyday relaxed 
conversation, nuanced or complex answers such as “maybe” or “only on the weekend” are accept-
able. In more focused situations such as a court of law or theorem-based mathematics however 
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it is deemed advantageous to frame questions so as to admit a simple yes-or-no answer—is the 
defendant guilty or not guilty, is the proposition true or false—and to disallow any other answer. 
However much of a straitjacket this might prove in practice for the respondent, the principle of 
the simple yes-no question has become a central feature of both judicial and mathematical logic, 
making two-valued logic deserving of organization and study in its own right. 

A central concept of set theory is membership. Now an organization may permit multiple degrees 
of membership, such as novice, associate, and full. With sets however an element is either in or 
out. The candidates for membership in a set work just like the wires in a digital computer: each 
candidate is either a member or a nonmember, just as each wire is either high or low. 

Algebra being a fundamental tool in any area amenable to mathematical treatment, these con-
siderations combine to make the algebra of two values of fundamental importance to computer 
hardware, mathematical logic, and set theory. 

Two-valued logic can be extended to multi-valued logic, notably by replacing the Boolean domain 
{0, 1} with the unit interval [0,1], in which case rather than only taking values 0 or 1, any value 
between and including 0 and 1 can be assumed. Algebraically, negation (NOT) is replaced with 
1 − x, conjunction (AND) is replaced with multiplication ( xy ), and disjunction (OR) is defined 
via De Morgan’s law. Interpreting these values as logical truth values yields a multi-valued logic, 
which forms the basis for fuzzy logic and probabilistic logic. In these interpretations, a value is 
interpreted as the “degree” of truth – to what extent a proposition is true, or the probability that 
the proposition is true. 

Boolean Operations

The original application for Boolean operations was mathematical logic, where it combines the 
truth values, true or false, of individual formulas. 

Natural languages such as English have words for several Boolean operations, in particular con-
junction (and), disjunction (or), negation (not), and implication (implies). But not is synonymous 
with and not. When used to combine situational assertions such as “the block is on the table” and 
“cats drink milk,” which naively are either true or false, the meanings of these logical connectives 
often have the meaning of their logical counterparts. However, with descriptions of behavior such 
as “Jim walked through the door”, one starts to notice differences such as failure of commutativity, 
for example the conjunction of “Jim opened the door” with “Jim walked through the door” in that 
order is not equivalent to their conjunction in the other order, since and usually means and then 
in such cases. Questions can be similar: the order “Is the sky blue, and why is the sky blue?” makes 
more sense than the reverse order. Conjunctive commands about behavior are like behavioral 
assertions, as in get dressed and go to school. Disjunctive commands such love me or leave me 
or fish or cut bait tend to be asymmetric via the implication that one alternative is less preferable. 
Conjoined nouns such as tea and milk generally describe aggregation as with set union while tea 
or milk is a choice. However context can reverse these senses, as in your choices are coffee and tea 
which usually means the same as your choices are coffee or tea (alternatives). Double negation 
as in “I don’t not like milk” rarely means literally “I do like milk” but rather conveys some sort of 
hedging, as though to imply that there is a third possibility. “Not not P” can be loosely interpreted 
as “surely P”, and although P necessarily implies “not not P” the converse is suspect in English, 

________________________ WORLD TECHNOLOGIES ________________________



WT

54  Algebra: A Comprehensive Course

much as with intuitionistic logic. In view of the highly idiosyncratic usage of conjunctions in nat-
ural languages, Boolean algebra cannot be considered a reliable framework for interpreting them. 

Boolean operations are used in digital logic to combine the bits carried on individual wires, there-
by interpreting them over {0,1}. When a vector of n identical binary gates are used to combine two 
bit vectors each of n bits, the individual bit operations can be understood collectively as a single 
operation on values from a Boolean algebra with 2n elements. 

Naive set theory interprets Boolean operations as acting on subsets of a given set X. As we saw ear-
lier this behavior exactly parallels the coordinate-wise combinations of bit vectors, with the union 
of two sets corresponding to the disjunction of two bit vectors and so on. 

The 256-element free Boolean algebra on three generators is deployed in computer displays based 
on raster graphics, which use bit blit to manipulate whole regions consisting of pixels, relying on 
Boolean operations to specify how the source region should be combined with the destination,  
typically with the help of a third region called the mask. Modern video cards offer all 223 = 256 ter-
nary operations for this purpose, with the choice of operation being a one-byte (8-bit) parameter. 
The constants SRC = 0xaa or 10101010, DST = 0xcc or 11001100, and MSK = 0xf0 or 11110000 al-
low Boolean operations such as (SRC^DST)&MSK (meaning XOR the source and destination and 
then AND the result with the mask) to be written directly as a constant denoting a byte calculated 
at compile time, 0x60 in the (SRC^DST)&MSK example, 0x66 if just SRC^DST, etc. At run time 
the video card interprets the byte as the raster operation indicated by the original expression in a 
uniform way that requires remarkably little hardware and which takes time completely indepen-
dent of the complexity of the expression. 

Solid modeling systems for computer aided design offer a variety of methods for building ob-
jects from other objects, combination by Boolean operations being one of them. In this method 
the space in which objects exist is understood as a set S of voxels (the three-dimensional ana-
logue of pixels in two-dimensional graphics) and shapes are defined as subsets of S, allowing 
objects to be combined as sets via union, intersection, etc. One obvious use is in building a 
complex shape from simple shapes simply as the union of the latter. Another use is in sculpt-
ing understood as removal of material: any grinding, milling, routing, or drilling operation 
that can be performed with physical machinery on physical materials can be simulated on the 
computer with the Boolean operation x ∧ ¬y or x − y, which in set theory is set difference, 
remove the elements of y from those of x. Thus given two shapes one to be machined and the 
other the material to be removed, the result of machining the former to remove the latter is 
described simply as their set difference. 

Boolean Searches

Search engine queries also employ Boolean logic. For this application, each web page on the Inter-
net may be considered to be an “element” of a “set”. The following examples use a syntax previous-
ly supported by Google:

• Doublequotes are used to combine whitespace-separated words into a single search term.

• Whitespace is used to specify logical AND, as it is the default operator for joining search 
terms:
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“Search term 1” “Search term 2”

• The OR keyword is used for logical OR:

“Search term 1” OR “Search term 2”

• A prefixed minus sign is used for logical NOT:

“Search term 1” −”Search term 2”

Unary Algebra

A universal algebra ,{ : }iA f i I∈  with a family { : }if i I∈  of unary operations : .if A A→  An 
important example of a unary algebra arises from a group homomorphism : AG Sφ →  from an 
arbitrary group G into the group AS  of all permutations of a set A. Such a homomorphism is 
called an action of the group G  on A. The definition, for each element g G∈ , of a unary operation 

: .gf A A→  as the permutation ( )gφ  in AS  corresponding to the element g  under the homomor-
phism φ  yields a unary algebra ,{ : }A f g g G∈ , in which

( ) ( )( ) ( )1 , , , , .g h ghf x x f f x f x x A g h G= = ∈ ∈

Every module over a ring carries a unary algebra structure. Every deterministic semi-automaton 
(cf. Automaton, algebraic theory of) with set S of states and input symbols 1 ,..., nα α  may also be 
considered as a unary algebra 1, ,.., nS f f , where ( )i if s sα=  is the state onto which the state S is 
mapped by the action of the input symbol iα . 

A unary algebra with a single basic operation is called mono-unary, or a unar. An example of a unar 
is the Peano algebra ,p f , where {1,2,...}P =  and ( ) 1f n n= + .

The identities of an arbitrary unary algebra can only be of the following types:

( ) ( )
( ) ( )
( )
( )

1 1

1 1

1

1

1

1

2

2

3

3

I . ... ... ,

II . ... ... ,

I . ... ,

II . ... ,

I . ,
II . .

k I

k I

k

k

i i j j

i i j j

i i

i i

f f x f f x

f f x f f x

f f x x

f f x y

x x
x y

=

=

=

=

=
=

The identity 2II  is equivalent to II , being satisfied only by a 1-element algebra. A variety of unary 
algebras defined only by identities of the form 1I , 2I  or 3I  is said to be regular. There exists the 
following link between regular varieties of unary algebras and semi-groups.

Let V  be a regular variety of unary algebras given by a set { : }if i I∈ , 0I = / , of function symbols and 
a set ∑  of identities. Each symbol if  corresponds to an element iα , and for every identity of the 
form 1I  from ∑  one writes the defining relation

11 ... ...
Ik j ji iα α α α= .
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Let P  be the semi-group with generators ,i i Iα ∈ , and the above defining relations, and let 1P  be 
the semi-group P with an identity e adjoined. For every relation of the form 2I  in ∑ (if they are any) 
one writes the defining relation as 1 ... ki i eα α = . The semi-group VP  obtained from 1P  by adjoining 
these defining relations is said to be associated with the variety V. There are many ways of char-
acterizing this variety. If ∑ contains only identities of the form 1I , then one may restrict oneself to 
the construction of P. By defining a unary operation ( )i if x xa=  in VP  one obtains a unary algebra 

,{ : }V iP f i I∈ , which is a V-free algebra of rank 1. The group of all automorphisms of the unary 

algebra ,{ : }V iP f i I∈  is isomorphic to the group *
VP  of invertible elements of the semi-group VP .
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Algebraic expressions consist of variables, constants and other algebraic operations such as addi-
tion, subtraction, etc. There are three main types of algebraic expressions which are monomial ex-
pression, binomial expression and polynomial expression. This chapter has been carefully written 
to provide an easy understanding of these algebraic expressions.

An algebraic expression in mathematics is an expression which is made up of variables and con-
stants along with algebraic operations (addition, subtraction, etc.). Expressions are made up of 
terms.

Example of Algebraic Expression

3x+4y -7,  4x – 10 etc.

It is to be noted that, unlike algebraic equation, an algebraic expression has no sides or equal to 
sign. Some of its examples include.

•	 3x+4y -7

•	 4x – 10

•	 2x2−3xy+5

The Terminology used in Algebraic Expressions

In Algebra we work with Variable, Symbols or Letters whose value is unknown to us.

In	the	above	expression	(i.e.	5x	–	3),

•	 x is a Variable, whose value is unknown to us which can take any value.

•	 5	is	known	as	the	Coefficient	of	x,	as	it	is	a	constant	value	used	with	the	variable	term	and	
is	well	defined.

C
H
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R3Algebraic Expressions
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•	 3	is	the	Constant	value	term	which	has	a	definite	value.

The whole expression is known to be the Binomial term, as it has two unlikely terms.

Variables

In mathematics, a variable is a quantity that can change. Letters are used to represent these chang-
ing, unknown quantities.

Einstein’s	famous	equation	E	=	MC2 uses the following variables:

•	 E for the amount of energy produced,

•	 M for the amount of mass used, and

•	 C2 to represent the speed of light squared.

Variables, unknown quantities, are the opposite of constants, which are known, unchanging amounts.

Variables can be independent or dependent. Dependent and independent variables are commonly 
used in statistical studies and to control (to some degree) the outcomes of experiments. In the 
simple equation y = 2x, the letter x can be any real number. The value of y is completely dependent 
on the value chosen for x, and is always twice as much. Thus, x is the independent variable, and y 
is the dependent variable.

It is common for variables to play different roles in the same mathematical formula and names or 
qualifiers	have	been	introduced	to	distinguish	them.	For	example,	the	general	cubic	equation

3 2 0,ax bx cx d+ + + =

is	interpreted	as	having	five	variables:	four,	a, b, c, d, which are taken to be given numbers and 
the	fifth	variable,	x, is understood to be an unknown number. To distinguish them, the variable x 
is called an unknown, and the other variables are called parameters or coefficients, or sometimes 
constants, although this last terminology is incorrect for an equation and should be reserved for 
the	function	defined	by	the	left-hand	side	of	this	equation.	

In the context of functions, the term variable refers commonly to the arguments of the functions. 
This is typically the case in sentences like “function of a real variable”, “x is the variable of the 
function f: x → f(x)”, “f is a function of the variable x” (meaning that the argument of the function 
is referred to by the variable x). 

In the same context, variables that are independent of x	define	constant	functions	and	are	there-
fore called constant.	For	example,	a	constant of integration is an arbitrary constant function that 
is added to a particular antiderivative to obtain the other antiderivatives. Because the strong re-
lationship between polynomials and polynomial function, the term “constant” is often used to 
denote	the	coefficients	of	a	polynomial,	which	are	constant	functions	of	the	indeterminates.	

This use of “constant” as an abbreviation of “constant function” must be distinguished from the 
normal meaning of the word in mathematics. A constant, or mathematical constant is a well and 
unambiguously	defined	number	or	other	mathematical	object,	as,	for	example,	the	numbers	0,	1,	π 
and the identity element of a group. 
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Other	specific	names	for	variables	are:	

•	 An unknown is a variable in an equation which has to be solved for.

•	 An indeterminate is a symbol, commonly called variable, that appears in a polynomial or a 
formal	power	series.	Formally	speaking,	an	indeterminate	is	not	a	variable,	but	a	constant	
in	the	polynomial	ring	or	the	ring	of	formal	power	series.	However,	because	of	the	strong	
relationship	between	polynomials	or	power	series	and	the	functions	that	they	define,	many	
authors consider indeterminates as a special kind of variables.

•	 A parameter is a quantity (usually a number) which is a part of the input of a problem, and 
remains	constant	during	the	whole	solution	of	this	problem.	For	example,	in	mechanics	the	
mass and the size of a solid body are parameters for the study of its movement. In com-
puter science, parameter has a different meaning and denotes an argument of a function.

Free Variables and Bound Variables

•	 A random variable is a kind of variable that is used in probability theory and its applica-
tions.

It should be emphasized that all these denominations of variables are of semantic nature and that 
the way of computing with them (syntax) is the same for all. 

Dependent and Independent Variables

In calculus and its application to physics and other sciences, it is rather common to consider a vari-
able, say y, whose possible values depend on the value of another variable, say x. In mathematical 
terms, the dependent variable y represents the value of a function of x. To simplify formulas, it is 
often useful to use the same symbol for the dependent variable y and the function mapping x onto 
y.	For	example,	the	state	of	a	physical	system	depends	on	measurable	quantities	such	as	the	pres-
sure, the temperature, the spatial position, and all these quantities vary when the system evolves, 
that is, they are function of the time. In the formulas describing the system, these quantities are 
represented by variables which are dependent on the time, and thus considered implicitly as func-
tions of the time. 

Therefore, in a formula, a dependent variable is a variable that is implicitly a function of another 
(or several other) variables. An independent variable is a variable that is not dependent. 

The property of a variable to be dependent or independent depends often of the point of view and 
is	not	intrinsic.	For	example,	in	the	notation	f(x, y, z), the three variables may be all independent 
and the notation represents a function of three variables. On the other hand, if y and z depend 
on x (are dependent variables) then the notation represents a function of the single independent 
variable x. 

Examples:

If	one	defines	a	function	f from the real numbers to the real numbers by,

2( ) sin( 4)f x x x= + +
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then x	is	a	variable	standing	for	the	argument	of	the	function	being	defined,	which	can	be	any	real	
number. In the identity 

2

1 2

n

i

n ni
=

+
=∑

the variable i is a summation variable which designates in turn each of the integers 1, 2, ..., n (it is 
also called index because its variation is over a discrete set of values) while n is a parameter (it does 
not vary within the formula). 

In the theory of polynomials, a polynomial of degree 2 is generally denoted as ax2 + bx + c, where a, 
b and c	are	called	coefficients	(they	are	assumed	to	be	fixed,	i.e.,	parameters	of	the	problem	consid-
ered) while x is called a variable. When studying this polynomial for its polynomial function this x 
stands	for	the	function	argument.	When	studying	the	polynomial	as	an	object	in	itself,	x is taken to 
be an indeterminate, and would often be written with a capital letter instead to indicate this status. 

Constant

In	mathematics,	the	adjective	constant	means	non-varying.	The	noun	constant	may	have	two	dif-
ferent	meanings.	It	may	refer	to	a	fixed	and	well-defined	number	or	other	mathematical	object.	
The term mathematical constant (and also physical constant) is sometimes used to distinguish 
this meaning from the other one. A constant may also refer to a constant function or its value (it is 
a common usage to identify them). Such a constant is commonly represented by a variable which 
does not depend on the main variable(s) of the studied problem. This is the case, for example, for 
a constant of integration which is an arbitrary constant function (not depending on the variable of 
integration) added to a particular antiderivative to get all the antiderivatives of the given function.

For	example,	a	general	quadratic	function	is	commonly	written	as:	

2 ,ax bx c+ +

where a, b and c are constants (or parameters), while x is the variable, a placeholder for the argu-
ment of the function being studied. A more explicit way to denote this function is 

2 ,x ax bx c+ +

which makes the function-argument status of x clear, and thereby implicitly the constant status 
of a, b and c. In this example a, b and c	are	coefficients	of	the	polynomial.	Since	c occurs in a term 
that does not involve x, it is called the constant term of the polynomial and can be thought of as the 
coefficient	of	x0; any polynomial term or expression of degree zero is a constant.

Constant Function

A	constant	may	be	used	to	define	a	constant	function	that	ignores	its	arguments	and	always	gives	
the same value. A constant function of a single variable, such as ( ) 5f x = , has a graph that is a 
horizontal straight line, parallel to the x-axis. Such a function always takes the same value because 
its	argument	does	not	appear	in	the	expression	defining	the	function.	
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Context-dependence

The context-dependent nature of the concept of “constant” can be seen in this example from ele-
mentary calculus: 

0 0

0

2 2 2 12 lim lim 2

2 12 lim since  is constant (i.e. does not depend on )

2 ·constant, whereconstant means not depending on .

+

→ →

→

− −
= =

−
=

=

x h x h
x x

h h

h
x
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x

d
dx h h

x h
h
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“Constant”	means	not	depending	on	some	variable;	not	changing	as	that	variable	changes.	In	the	
first	case	above,	it	means	not	depending	on	h; in the second, it means not depending on x. 

Notable Mathematical Constants

Some	values	occur	frequently	in	mathematics	and	are	conventionally	denoted	by	a	specific	symbol.	
These standard symbols and their values are called mathematical constants. Examples include: 

•	 0 (zero).

•	 1 (one), the natural number after zero.

•	 π	(pi),	the	constant	representing	the	ratio	of	a	circle’s	circumference	to	its	diameter,	ap-
proximately	equal	to	3.141592653589793238462643...

•	 e,	approximately	equal	to	2.718281828459045235360287...

•	 i, the imaginary unit such that i2	=	−1.

•	 2 (square root of 2), the length of the diagonal of a square with unit sides, approximately 
equal	to	1.414213562373095048801688.

•	 φ	(golden	ratio),	approximately	equal	to	1.618033988749894848204586,	or	algebraically,	

1 5 .
2
+

Constants in Calculus

In	calculus,	constants	are	treated	in	several	different	ways	depending	on	the	operation.	For	exam-
ple, the derivative of a constant function is zero. This is because the derivative measures the rate of 
change	of	a	function	with	respect	to	a	variable,	and	since	constants,	by	definition,	do	not	change,	
their	derivative	is	therefore	zero.	Conversely,	when	integrating	a	constant	function,	the	constant	is	
multiplied by the variable of integration. During the evaluation of a limit, the constant remains the 
same as it was before and after evaluation. 

Integration of a function of one variable often involves a constant of integration. This arises be-
cause of the integral operator’s nature as the inverse of the differential operator, meaning the 
aim of integration is to recover the original function before differentiation. The differential of a 
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constant function is zero, as noted above, and the differential operator is a linear operator, so 
functions that only differ by a constant term have the same derivative. To acknowledge this, a 
constant	of	integration	is	added	to	an	indefinite	integral;	this	ensures	that	all	possible	solutions	
are included. The constant of integration is generally written as ‘c’ and represents a constant with 
a	fixed	but	undefined	value.	

Examples:

If f is the constant function such that ( ) 72f x = for every x then,

( ) 0

( ) 72

f x

f x dx x c

′ =

= +∫ .

Coefficient

In	mathematics,	a	coefficient	is	a	multiplicative	factor	in	some	term	of	a	polynomial,	a	series,	or	
any expression; it is usually a number, but may be any expression. In the latter case, the variables 
appearing	in	the	coefficients	are	often	called	parameters,	and	must	be	clearly	distinguished	from	
the other variables. 

For	example,	in	

27 3 1.5 ,x xy y− + +

the	first	two	terms	respectively	have	the	coefficients	7	and	−3.	The	third	term	1.5	is	a	constant	co-
efficient.	The	final	term	does	not	have	any	explicitly	written	coefficient,	but	is	considered	to	have	
coefficient	1,	since	multiplying	by	that	factor	would	not	change	the	term.	

Often	coefficients	are	numbers	as	in	this	example,	although	they	could	be	parameters	of	the	prob-
lem or any expression in these parameters. In such a case one must clearly distinguish between 
symbols	representing	variables	and	symbols	representing	parameters.	Following	René	Descartes,	
the variables are often denoted by x, y, ..., and the parameters by a, b, c, ..., but it is not always the 
case.	For	example,	if	y	is	considered	as	a	parameter	in	the	above	expression,	the	coefficient	of	x is 
−3y,	and	the	constant	coefficient	is	1.5	+	y. 

When one writes 

2 ,ax bx c+ +

it is generally supposed that x is the only variable and that a, b and c are parameters; thus the con-
stant	coefficient	is	c in this case. 

Similarly, any polynomial in one variable x can be written as,

1
1 0

k
ka x a x a+ + +

for some positive integer k, where 1 0,.., ,ka a a are	coefficients;	to	allow	this	kind	of	expression	in	all	
cases	one	must	allow	introducing	terms	with	0	as	coefficient.	For	the	largest	i with 0ia ≠ (if any), 
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ia is	called	the	leading	coefficient	of	the	polynomial.	So	for	example	the	leading	coefficient	of	the	
polynomial 

5 3 24 2x x x+ +

is 4. 

Some	specific	coefficients	that	occur	frequently	in	mathematics	have	received	a	name.	This	is	the	
case	of	the	binomial	coefficients,	the	coefficients	which	occur	in	the	expanded	form	of	( )nx y+ , and 
are	tabulated	in	Pascal’s	triangle.	

Linear Algebra

In	linear	algebra,	the	leading	coefficient	(also	leading	entry)	of	a	row	in	a	matrix	is	the	first	nonzero	
entry in that row. So, for example, given 

1 2 0 6
0 2 9 4

.
0 0 0 4
0 0 0 0

M

 
 
 =
 
 
 

The	leading	coefficient	of	the	first	row	is	1;	2	is	the	leading	coefficient	of	the	second	row;	4	is	the	
leading	coefficient	of	the	third	row,	and	the	last	row	does	not	have	a	leading	coefficient.	

Though	coefficients	are	frequently	viewed	as	constants	 in	elementary	algebra,	they	can	be	vari-
ables	more	generally.	For	example,	the	coordinates	 1 2( , , , )nx x x… of a vector v in a vector space 
with basis 1 2{ , ,..., },ne e e 	are	the	coefficients	of	the	basis	vectors	in	the	expression	

1 1 2 2 .n nv x e x e x e= + + +

Algebraic Expression Example

Simplify the given expressions by combining the like terms and write the type of Algebraic expres-
sion.

i. 3xy3	+	9x2 y3	+	8x3	+	5y3x

ii. 7ab2 c2 + 2a3 b2	−	3abc	–	5ab2 c2 – 2b2 a3 + 2ab

iii. 50x3	–	20x	+	83	+	21x3	–	3x	+	3	+	15x	–	41x3

Solution:

Creating	a	table	to	find	the	solution:

S.no Term Simplification Type of Expression

1 3xy3	+	9x2 y3	+	8x3	+	5y3x 8xy3	+	9x2y3 Binomial

2 7ab2 c2 + 2a3 b2	−	3abc	–	5ab2 c2 – 2b2 a3 + 2ab 2ab2 c2	−	3abc	+	2ab Trinomial

3 50x3	–	20x	+	83	+	21x3	–	3x	+	3	+	15x	–	41x3 3x³ Monomial
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MONOMIAL

In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two 
definitions	of	a	monomial	may	be	encountered:	

• A monomial, also called power product, is a product of powers of variables with nonnega-
tive integer exponents, or, in other words, a product of variables, possibly with repetitions.
The constant 1 is a monomial, being equal to the empty product and x0 for any variable x. If
only a single variable x is considered, this means that a monomial is either 1 or a power xn

of x, with n a positive integer. If several variables are considered, say, , , ,x y z then each can
be given an exponent, so that any monomial is of the form a b cx y z with , ,a b c non-negative
integers (taking note that any exponent 0 makes the corresponding factor equal to 1).

• A	monomial	is	a	monomial	in	the	first	sense	multiplied	by	a	nonzero	constant,	called	the
coefficient	of	the	monomial.	A	monomial	in	the	first	sense	is	a	special	case	of	a	monomial
in	the	second	sense,	where	the	coefficient	 is	1.	For	example,	 in	this	 interpretation	 57x−
and 4 13(3 4 )i x yz− are monomials (in the second example, the variables are , , ,x y z and the
coefficient	is	a	complex	number).

In the context of Laurent polynomials and Laurent series, the exponents of a monomial may be 
negative,	and	in	the	context	of	Puiseux	series,	the	exponents	may	be	rational	numbers.	

Comparison of the Two Definitions

With	either	definition,	 the	set	of	monomials	 is	a	 subset	of	all	polynomials	 that	 is	 closed	under	
multiplication. 

Both uses of this notion can be found, and in many cases the distinction is simply ignored, see for 
instance	examples	for	the	first	and	second	meaning.	In	informal	discussions	the	distinction	is	sel-
dom important, and tendency is towards the broader second meaning. When studying the struc-
ture	of	polynomials	however,	one	often	definitely	needs	a	notion	with	the	first	meaning.	This	is	for	
instance the case when considering a monomial basis of a polynomial ring, or a monomial order-
ing	of	that	basis.	An	argument	in	favor	of	the	first	meaning	is	also	that	no	obvious	other	notion	is	
available to designate these values (the term power product is in use, in particular when monomi-
al	is	used	with	the	first	meaning,	but	it	does	not	make	the	absence	of	constants	clear	either),	while	
the notion term of a polynomial unambiguously coincides with the second meaning of monomial.

Monomial Basis

The	most	obvious	fact	about	monomials	(first	meaning)	is	that	any	polynomial	is	a	linear	combi-
nation of them, so they form a basis of the vector space of all polynomials, called the monomial 
basis - a fact of constant implicit use in mathematics. 

Number

The number of monomials of degree d in n variables is the number of multicombinations of d ele-
ments chosen among the n variables (a variable can be chosen more than once, but order does not 
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matter),	which	is	given	by	the	multiset	coefficient	 .
n
d

  
  
  

 This expression can also be given in the 

form	of	a	binomial	coefficient,	as	a	polynomial	expression	in	d, or using a rising factorial power of 
d + 1: 

11 ( 1) ( 1) ( 2) ( 1) 1 ( 1) .
1 1 2 ( 1) ( 1)!

nn n d d n d d d n d
d d n n n

−  + − + −  + × + × × + −
= = = = +   − × × × −
   
   
   −  





The	latter	forms	are	particularly	useful	when	one	fixes	the	number	of	variables	and	lets	the	degree	
vary.	From	these	expressions	one	sees	that	for	fixed	n, the number of monomials of degree d is a 
polynomial expression in d of degree 1n − with	leading	coefficient	 1

( 1)!n− .

For	 example,	 the	 number	 of	 monomials	 in	 three	 variables	 ( 3n = ) of degree d is 
21 1( 1) ( 1)( 2)

2 2
d d d+ = + + ;	these	numbers	form	the	sequence	1,	3,	6,	10,	15,	of	triangular	numbers.

The	Hilbert	series	is	a	compact	way	to	express	the	number	of	monomials	of	a	given	degree:	the	
number of monomials of degree d in n	variables	is	the	coefficient	of	degree	d of the formal power 
series expansion of, 

1 .
(1 )nt−

The number of monomials of degree at most d in n variables is .
n d n d

n d
   
   
  

=


+ +
This follows 

from the one-to-one correspondence between the monomials of degree d in n+1 variables and the 
monomials of degree at most d in n variables, which consists in substituting by 1 the extra variable. 

Notation

Notation	for	monomials	is	constantly	required	in	fields	like	partial	differential	equations.	If	the	
variables being used form an indexed family like 1 2 3, ,x x x , then multi-index notation is helpful: if
we write, 

( , , )a b cα =

we	can	define	

1 2 3
a b cx x x xα =

for compactness. 

Degree

The	degree	of	a	monomial	is	defined	as	the	sum	of	all	the	exponents	of	the	variables,	including	the	
implicit exponents of 1 for the variables which appear without exponent; e.g., in the example of the 
previous section, the degree is .a b c+ +  The degree of 2xyz is 1+1+2=4. The degree of a nonzero 
constant	is	0.	For	example,	the	degree	of	-7	is	0.	
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The degree of a monomial is sometimes called order, mainly in the context of series. It is also called 
total degree when it is needed to distinguish it from the degree in one of the variables. 

Monomial degree is fundamental to the theory of univariate and multivariate polynomials. Explic-
itly,	it	is	used	to	define	the	degree	of	a	polynomial	and	the	notion	of	homogeneous	polynomial,	as	
well as for graded monomial orderings used in formulating and computing Gröbner bases. Implic-
itly, it is used in grouping the terms of a Taylor series in several variables. 

Geometry

In	algebraic	geometry	the	varieties	defined	by	monomial	equations	 0xα = for	some	set	of	α	have	
special properties of homogeneity. This can be phrased in the language of algebraic groups, in 
terms of the existence of a group action of an algebraic torus (equivalently by a multiplicative 
group of diagonal matrices). This area is studied under the name of torus embeddings. 

BINOMIAL

In algebra, a binomial is a polynomial that is the sum of two terms, each of which is a monomial. It 
is the simplest kind of polynomial after the monomials.

A binomial is a polynomial which is the sum of two monomials. A binomial in a single indetermi-
nate (also known as a univariate binomial) can be written in the form 

,m nax bx−

where a and b are numbers, and m and n are distinct nonnegative integers and x is a symbol which 
is called an indeterminate or, for historical reasons, a variable. In the context of Laurent polyno-
mials, a Laurent binomial, often simply called a binomial,	is	similarly	defined,	but	the	exponents	
m and n may be negative. 

More generally, a binomial may be written as: 

1 1
1 1

i in mn m
i iax x bx x− 

Some examples of binomials are: 

23 2x x−

2xy yx+

3 20.9x yπ+

Operations on Simple Binomials

•	 The binomial x2	−	y2 can be factored as the product of two other binomials:

2 2 ( )( ).x y x y x y− = + −

________________________ WORLD TECHNOLOGIES ________________________



WT

CHAPTER 3  Algebraic Expressions  67

This is a special case of the more general formula: 

1 1

0
( ) .

n
n n k n k

k
x y x y x y+ + −

=

− = − ∑

When working over the complex numbers, this can also be extended to: 

2 2 2 2( ) ( )( ).x y x iy x iy x iy+ = − = − +

•	 The product of a pair of linear binomials (ax + b) and (cx + d) is a trinomial:

2( )( ) ( ) .ax b cx d acx ad bc x bd+ + = + + +

•	 A binomial raised to the nth power, represented as (x + y)n can be expanded by means of 
the	binomial	theorem	or,	equivalently,	using	Pascal’s	triangle.	For	example,	the	square	(x 
+ y)2 of the binomial (x + y) is equal to the sum of the squares of the two terms and twice 
the product of the terms, that is:

2 2 2( ) 2 .x y x xy y+ = + +

The numbers (1, 2, 1) appearing as multipliers for the terms in this expansion are binomial 
coefficients	two	rows	down	from	the	top	of	Pascal’s	triangle.	The	expansion	of	the	nth power 
uses the numbers n rows down from the top of the triangle.

•	 An application of above formula for the square of a binomial is the “(m, n)-formula” for 
generating	Pythagorean	triples:

For	m < n, let a = n2	−	m2, b = 2mn, and c = n2 + m2; then a2 + b2 = c2.

•	 Binomials that are sums or differences of cubes can be factored into lower-order polyno-
mials as follows:

3 3 2 2( )( )x y x y x xy y+ = + − +

3 3 2 2( )( )x y x y x xy y− = − + +

POLYNOMIAL

The graph of a polynomial function of degree 3.
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In mathematics, a polynomial is an expression consisting of variables (also called indeterminates) 
and	 coefficients,	 that	 involves	 only	 the	 operations	 of	 addition,	 subtraction,	multiplication,	 and	
non-negative integer exponents of variables. An example of a polynomial of a single indetermi-
nate, x, is x2	−	4x + 7. An example in three variables is x3 + 2xyz2	−	yz + 1. 

Polynomials	appear	in	many	areas	of	mathematics	and	science.	For	example,	they	are	used	to	form	
polynomial equations, which encode a wide range of problems, from elementary word problems 
to	complicated	scientific	problems;	 they	are	used	to	define	polynomial	 functions,	which	appear	
in settings ranging from basic chemistry and physics to economics and social science; they are 
used in calculus and numerical analysis to approximate other functions. In advanced mathemat-
ics, polynomials are used to construct polynomial rings and algebraic varieties, central concepts in 
algebra and algebraic geometry. 

A polynomial is an expression that can be built from constants and symbols called indeterminates 
or variables by means of addition, multiplication and exponentiation to a non-negative integer 
power. Two such expressions that may be transformed, one to the other, by applying the usu-
al properties of commutativity, associativity and distributivity of addition and multiplication are 
considered	as	defining	the	same	polynomial.	

A polynomial in a single indeterminate x can always be written (or rewritten) in the form 

1 2
1 2 1 0 ,n n

n na x a x a x a x a−
−+ + + + +

where 0 , , na a… are constants and x is the indeterminate. The word “indeterminate” means that x
represents no particular value, although any value may be substituted for it. The mapping that associ-
ates the result of this substitution to the substituted value is a function, called a polynomial function.

This can be expressed more concisely by using summation notation: 

0

n
k

k
k

a x
=
∑

That	is,	a	polynomial	can	either	be	zero	or	can	be	written	as	the	sum	of	a	finite	number	of	non-zero	
terms.	Each	term	consists	of	the	product	of	a	number—called	the	coefficient	of	the	term—and	a	
finite	number	of	indeterminates,	raised	to	nonnegative	integer	powers.	

The x occurring in a polynomial is commonly called either a variable or an indeterminate. When 
the polynomial is considered as an expression, x	is	a	fixed	symbol	which	does	not	have	any	value	
(its	value	is	“indeterminate”).	However,	when	one	considers	the	function	defined	by	the	polyno-
mial, then x represents the argument of the function, and is therefore called a “variable”. Many 
authors use these two words interchangeably.

It is common to use uppercase letters for indeterminates and corresponding lowercase letters for 
the variables (or arguments) of the associated function.

A polynomial P in the indeterminate x is commonly denoted either as P or as P(x).	Formally,	the	
name of the polynomial is P, not P(x), but the use of the functional notation P(x) date from the 
time where the distinction between a polynomial and the associated function was unclear. More-
over, the functional notation is often useful for specifying, in a single phrase, a polynomial and  
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its	indeterminate.	For	example,	“let	P(x) be a polynomial” is a shorthand for “let P be a polynomial 
in the indeterminate x”. On the other hand, when it is not necessary to emphasize the name of the 
indeterminate, many formulas are much simpler and easier to read if the name(s) of the indeter-
minate(s) do not appear at each occurrence of the polynomial. 

The	ambiguity	of	having	two	notations	for	a	single	mathematical	object	may	be	formally	resolved	
by considering the general meaning of the functional notation for polynomials. If a denotes a 
number, a variable, another polynomial, or, more generally any expression, then P(a) denotes, by 
convention, the result of substituting a for x in P. Thus, the polynomial P	defines	the	function	

( ),a P a

which is the polynomial function associated to P.	Frequently,	when	using	this	notation,	one	sup-
poses that a	is	a	number.	However	one	may	use	it	over	any	domain	where	addition	and	multiplica-
tion	are	defined	(that	is,	any	ring).	In	particular,	if	a is a polynomial then P(a) is also a polynomial. 

More	specifically,	when	a is the indeterminate x, then the image of x by this function is the polyno-
mial P itself (substituting x to x does not change anything). In other words, 

( ) ,P x P=

which	justifies	formally	the	existence	of	two	notations	for	the	same	polynomial.	

Classification

The exponent on an indeterminate in a term is called the degree of that indeterminate in that term; 
the degree of the term is the sum of the degrees of the indeterminates in that term, and the degree 
of	a	polynomial	is	the	largest	degree	of	any	one	term	with	nonzero	coefficient.	Because	x = x1, the 
degree of an indeterminate without a written exponent is one. 

A term with no indeterminates and a polynomial with no indeterminates are called, respectively, 
a constant term and a constant polynomial. The degree of a constant term and of a nonzero con-
stant polynomial is 0. The degree of the zero polynomial, 0, (which has no terms at all) is generally 
treated	as	not	defined.		

For	example:	

25x y−

is	a	term.	The	coefficient	is	−5,	the	indeterminates	are	x and y, the degree of x is two, while the 
degree of y is one. The degree of the entire term is the sum of the degrees of each indeterminate in 
it, so in this example the degree is 2 + 1 = 3. 

Forming	a	sum	of	several	terms	produces	a	polynomial.	For	example,	the	following	is	a	polynomial:	



termterm term
1 2

3 5 4 .x x− +

It	consists	of	three	terms:	the	first	is	degree	two,	the	second	is	degree	one,	and	the	third	is	degree	
zero. 
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Polynomials	 of	 small	 degree	have	been	 given	 specific	names.	A	polynomial	 of	 degree	 zero	 is	 a	
constant polynomial or simply a constant.	Polynomials	of	degree	one,	two	or	three	are	respec-
tively linear polynomials, quadratic polynomials and cubic polynomials.	For	higher	degrees	the	
specific	names	are	not	commonly	used,	although	quartic polynomial (for degree four) and quintic 
polynomial	(for	degree	five)	are	sometimes	used.	The	names	for	the	degrees	may	be	applied	to	the	
polynomial	or	to	its	terms.	For	example,	in	x2 + 2x + 1 the term 2x is a linear term in a quadratic 
polynomial. 

The polynomial 0, which may be considered to have no terms at all, is called the zero polynomial. 
Unlike	other	constant	polynomials,	its	degree	is	not	zero.	Rather	the	degree	of	the	zero	polynomial	
is	either	left	explicitly	undefined,	or	defined	as	negative	(either	−1	or	−∞).	These	conventions	are	
useful	when	defining	Euclidean	division	of	polynomials.	The	zero	polynomial	is	also	unique	in	that	
it	is	the	only	polynomial	in	one	indeterminate	having	an	infinite	number	of	roots.	The	graph	of	the	
zero polynomial, f(x) = 0, is the X-axis. 

In the case of polynomials in more than one indeterminate, a polynomial is called homogeneous 
of degree n if all its non-zero terms have degree n. The zero polynomial is homogeneous, and, as 
homogeneous	polynomial,	its	degree	is	undefined.	For	example,	x3y2 + 7x2y3	−	3x5 is homogeneous 
of	degree	5.	

The commutative law of addition can be used to rearrange terms into any preferred order. In 
polynomials with one indeterminate, the terms are usually ordered according to degree, either in 
“descending powers of x”,	with	the	term	of	largest	degree	first,	or	in	“ascending	powers	of	x”. The 
polynomial in the example above is written in descending powers of x.	The	first	term	has	coeffi-
cient 3, indeterminate x,	and	exponent	2.	In	the	second	term,	the	coefficient	is	−5.	The	third	term	
is a constant. Because the degree of a non-zero polynomial is the largest degree of any one term, 
this polynomial has degree two. 

Two terms with the same indeterminates raised to the same powers are called “similar terms” or 
“like	terms”,	and	they	can	be	combined,	using	the	distributive	law,	into	a	single	term	whose	coeffi-
cient	is	the	sum	of	the	coefficients	of	the	terms	that	were	combined.	It	may	happen	that	this	makes	
the	coefficient	0.	Polynomials	can	be	classified	by	the	number	of	terms	with	nonzero	coefficients,	
so that a one-term polynomial is called a monomial, a two-term polynomial is called a binomial, 
and a three-term polynomial is called a trinomial. The term “quadrinomial” is occasionally used 
for a four-term polynomial. 

A	real	polynomial	is	a	polynomial	with	real	coefficients.	When	it	is	used	to	define	a	function,	the	
domain	is	not	so	restricted.	However,	a	real	polynomial	function	is	a	function	from	the	reals	to	the	
reals	that	is	defined	by	a	real	polynomial.	Similarly,	an	integer	polynomial	is	a	polynomial	with	
integer	coefficients,	and	a	complex	polynomial	is	a	polynomial	with	complex	coefficients.	

A polynomial in one indeterminate is called a univariate polynomial, a polynomial in more than 
one indeterminate is called a multivariate polynomial. A polynomial with two indeterminates is 
called a bivariate polynomial. These notions refer more to the kind of polynomials one is gen-
erally working with than to individual polynomials; for instance when working with univariate 
polynomials one does not exclude constant polynomials (which may result, for instance, from the 
subtraction of non-constant polynomials), although strictly speaking constant polynomials do not 

________________________ WORLD TECHNOLOGIES ________________________



WT

CHAPTER 3  Algebraic Expressions  71

contain any indeterminates at all. It is possible to further classify multivariate polynomials as 
bivariate, trivariate, and so on, according to the maximum number of indeterminates allowed. 
Again,	so	that	the	set	of	objects	under	consideration	be	closed	under	subtraction,	a	study	of	trivar-
iate polynomials usually allows bivariate polynomials, and so on. It is common, also, to say simply 
“polynomials in x, y, and z”, listing the indeterminates allowed. 

The evaluation of a polynomial consists of substituting a numerical value to each indeterminate 
and	carrying	out	the	indicated	multiplications	and	additions.	For	polynomials	in	one	indetermi-
nate,	the	evaluation	is	usually	more	efficient	(lower	number	of	arithmetic	operations	to	perform)	
using	Horner’s	method:	

1 2 3 2 1 0((( (( ) ) ) ) ) .n n na x a x a x a x a x a x a− −+ + + + + + + 

Arithmetic

Polynomials	can	be	added	using	the	associative	law	of	addition	(grouping	all	their	terms	together	
into	a	single	sum),	possibly	followed	by	reordering,	and	combining	of	like	terms.	For	example,	if	

2

2 2

3 2 5 2
3 3 4 8

P x x xy
Q x x y
= − + −

= − + + +

then 

2 2 23 2 5 2 3 3 4 8P Q x x xy x x y+ = − + − − + + +

which	can	be	simplified	to,	

25 4 6P Q x xy y+ = + + +

To work out the product of two polynomials into a sum of terms, the distributive law is repeatedly 
applied, which results in each term of one polynomial being multiplied by every term of the other. 
For	example,	if	

2 3 5
2 5 1

P x y
Q x y xy
= + +
= + + +

then 

(2 ·2 ) (2 ·5 ) (2 · ) (2 ·1)
(3 ·2 ) (3 ·5 ) (3 · ) (3 ·1)
(5·2 ) (5·5 ) (5· ) (5·1)

= + + +
+ + + +
+ + + +

PQ x x x y x xy x
y x y y y xy y

x y xy

which	can	be	simplified	to,	

2 2 2 24 21 2 12 15 3 28 5.PQ x xy x y x y xy y= + + + + + + +

Polynomial	evaluation	can	be	used	to	compute	the	remainder	of	polynomial	division	by	a	poly-
nomial of degree one, because the remainder of the division of f(x) by (x	−	a) is f(a). This is more 
efficient	than	the	usual	algorithm	of	division	when	the	quotient	is	not	needed.	
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•	 A sum of polynomials is a polynomial.

•	 A product of polynomials is a polynomial.

•	 A composition of two polynomials is a polynomial, which is obtained by substituting a vari-
able	of	the	first	polynomial	by	the	second	polynomial.

•	 The derivative of the polynomial anxn + an−1x
n−1 + ... + a2x

2 + a1x + a0 is the polynomial 
nanxn−1 + (n	−	1)an−1x

n−2 + ... + 2a2x + a1.	If	the	set	of	the	coefficients	does	not	contain	the	in-
tegers	(for	example	if	the	coefficients	are	integers	modulo	some	prime	number	p), then kak 
should be interpreted as the sum of ak with itself, k	times.	For	example,	over	the	integers	
modulo p, the derivative of the polynomial xp + 1 is the polynomial 0.

•	 A primitive integral or antiderivative of the polynomial anxn + an−1x
n−1 + ⋅⋅⋅ + a2x

2 + a1x + 
a0 is the polynomial anxn+1/(n + 1) + an−1x

n/n + ⋅⋅⋅ + a2x
3/3 + a1x

2/2 + a0x + c, where c is an 
arbitrary	constant.	For	instance,	the	antiderivatives	of	x2 + 1 have the form 1/3x3 + x + c.

As for the integers, two kinds of divisions are considered for the polynomials. The Euclidean divi-
sion of polynomials that generalizes the Euclidean division of the integers. It results in two poly-
nomials, a quotient and a remainder that are characterized by the following property of the poly-
nomials: given two polynomials a and b such that b	≠	0,	there	exists	a	unique	pair	of	polynomials,	
q, the quotient, and r, the remainder, such that a = b q + r and degree(r) < degree(b) (here the 
polynomial zero is supposed to have a negative degree). By hand as well as with a computer, this 
division can be computed by the polynomial long division algorithm. 

All	polynomials	with	coefficients	in	a	unique	factorization	domain	(for	example,	the	integers	or	
a	field)	also	have	a	factored	form	in	which	the	polynomial	is	written	as	a	product	of	irreducible	
polynomials and a constant. This factored form is unique up to the order of the factors and their 
multiplication	by	an	invertible	constant.	In	the	case	of	the	field	of	complex	numbers,	the	irreduc-
ible factors are linear. Over the real numbers, they have the degree either one or two. Over the 
integers	and	the	rational	numbers	the	irreducible	factors	may	have	any	degree.	For	example,	the	
factored form of 

35 5x −

is

( )25( 1) 1x x x− + +

over the integers and the reals and 

1 3 1 35( 1)
2 2
i ix x x

  + −
− + +    

  

over the complex numbers. 

The computation of the factored form, called factorization	is,	in	general,	too	difficult	to	be	done	by	
hand-written	computation.	However,	efficient	polynomial	factorization	algorithms	are	available	in	
most computer algebra systems. 
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A formal quotient of polynomials, that is, an algebraic fraction wherein the numerator and de-
nominator are polynomials, is called a “rational expression” or “rational fraction” and is not, in 
general, a polynomial. Division of a polynomial by a number, however, yields another polynomial. 
For	example,	x3/12 is considered a valid term in a polynomial (and a polynomial by itself) because 
it is equivalent to (1/12)x3	and	1/12	is	just	a	constant.	When	this	expression	is	used	as	a	term,	its	
coefficient	is	therefore	1/12.	For	similar	reasons,	if	complex	coefficients	are	allowed,	one	may	have	
a single term like (2 + 3i) x3; even though it looks like it should be expanded to two terms, the com-
plex number 2 + 3i	is	one	complex	number,	and	is	the	coefficient	of	that	term.	The	expression	1/(x2 
+ 1) is not a polynomial because it includes division by a non-constant polynomial. The expression 
(5	+	y)x is not a polynomial, because it contains an indeterminate used as exponent. 

Because subtraction can be replaced by addition of the opposite quantity, and because positive 
integer exponents can be replaced by repeated multiplication, all polynomials can be constructed 
from constants and indeterminates using only addition and multiplication. 

Polynomial Functions

A polynomial function	 is	a	 function	that	can	be	defined	by	evaluating	a	polynomial.	More	pre-
cisely, a function f of one argument from a given domain is a polynomial function if there exists 
a polynomial, 

1 2
1 2 1 0

n n
n na x a x a x a x a−

−+ + + + +

that evaluates to ( )f x for all x in the domain of f (here, n is a non-negative integer and a0, a1, a2,
..., an	are	constant	coefficients).	

Generally,	unless	otherwise	specified,	polynomial	functions	have	complex	coefficients,	arguments,	
and	values.	In	particular,	a	polynomial,	restricted	to	have	real	coefficients,	defines	a	function	from	
the complex numbers to the complex numbers. If the domain of this function is also restricted to 
the reals, the resulting function maps reals to reals. 

For example, the function f, defined by 

3( ) ,f x x x= −

is	a	polynomial	function	of	one	variable.	Polynomial	functions	of	several	variables	are	similarly	
defined,	using	polynomials	in	more	than	one	indeterminate,	as	in	

3 2 5 2( , ) 2 4 7.f x y x x y xy y= + + + −

According	 to	 the	 definition	 of	 polynomial	 functions,	 there	 may	 be	 expressions	 that	 obviously	
are	not	polynomials	but	nevertheless	define	polynomial	functions.	An	example	is	the	expression	

( )2
21 ,x− which takes the same values as the polynomial 21 x− on the interval [ 1,1],−  and thus

both	expressions	define	the	same	polynomial	function	on	this	interval.	

Every polynomial function is continuous, smooth, and entire. 
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Graphs

Polynomial	of	degree	2:

f(x) = x2	−	x	−	2

= (x + 1)(x	−	2)

Polynomial	of	degree	3:

f(x) = x3/4 + 3x2/4	−	3x/2	−	2

= 1/4 (x + 4)(x + 1)(x	−	2)

Polynomial	of	degree	4:

f(x) = 1/14 (x + 4)(x + 1)(x	−	1)(x	−	3)	

+	0.5
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Polynomial	of	degree	5:

f(x) = 1/20 (x + 4)(x + 2)(x + 1 )(x	−	1)

(x	−	3)+	2

Polynomial	of	degree	6:

f(x) = 1/100 (x6	−	2x 5	−	26x4	+	28x3

+	145x2	-	26x	-	80)

Polynomial	of	degree	7:

f(x) = (x	−	3)(x	−	2)(x	−	1)(x)(x + 1)(x + 2)

(x + 3)
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A polynomial function in one real variable can be represented by a graph. 

•	 The graph of the zero polynomial

f(x) = 0

is the x-axis.

•	 The graph of a degree 0 polynomial

f(x) = a0, where a0	≠	0,

is a horizontal line with y-intercept a0.

•	 The graph of a degree 1 polynomial (or linear function)

f(x) = a0 + a1x , where a1	≠	0,

is an oblique line with y-intercept a0 and slope a1.

•	 The graph of a degree 2 polynomial

f(x) = a0 + a1x + a2x
2, where a2	≠	0

is a parabola.

•	 The graph of a degree 3 polynomial

f(x) = a0 + a1x + a2x
2 + a3x

3, where a3	≠	0

is a cubic curve.

•	 The graph of any polynomial with degree 2 or greater

f(x) = a0 + a1x + a2x
2 + ... + anxn , where an	≠	0	and	n	≥	2

is a continuous non-linear curve.

A	non-constant	polynomial	function	tends	to	infinity	when	the	variable	increases	indefinitely	(in	
absolute value). If the degree is higher than one, the graph does not have any asymptote. It has 
two parabolic branches with vertical direction (one branch for positive x and one for negative x). 

Polynomial	graphs	are	analyzed	in	calculus	using	intercepts,	slopes,	concavity,	and	end	behavior.	

Equations

A polynomial equation, also called algebraic equation, is an equation of the form 

1 2
1 2 1 0 0.n n

n na x a x a x a x a−
−+ + + + + =

For	example,	

23 4 5 0x x+ − =

is a polynomial equation. 
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When considering equations, the indeterminates (variables) of polynomials are also called un-
knowns, and the solutions are the possible values of the unknowns for which the equality is true 
(in general more than one solution may exist). A polynomial equation stands in contrast to a poly-
nomial identity like (x + y)(x	−	y) = x2	−	y2, where both expressions represent the same polynomial 
in different forms, and as a consequence any evaluation of both members gives a valid equality. 

In	elementary	algebra,	methods	such	as	the	quadratic	formula	are	taught	for	solving	all	first	degree	
and second degree polynomial equations in one variable. There are also formulas for the cubic and 
quartic	equations.	For	higher	degrees,	the	Abel–Ruffini	theorem	asserts	that	there	can	not	exist	a	
general	formula	in	radicals.	However,	root-finding	algorithms	may	be	used	to	find	numerical	ap-
proximations of the roots of a polynomial expression of any degree. 

The	number	of	real	solutions	of	a	polynomial	equation	with	real	coefficients	may	not	exceed	the	
degree, and equals the degree when the complex solutions are counted with their multiplicity. This 
fact is called the fundamental theorem of algebra. 

Solving Equations

Every polynomial P in x	defines	a	function	 ( ),x P x called the polynomial function associated to 
P; the equation P(x) = 0 is the polynomial equation associated to P. The solutions of this equation 
are called the roots of the polynomial, or the zeros of the associated function (they correspond to 
the points where the graph of the function meets the x-axis). 

A number a is a root of a polynomial P if and only if the linear polynomial x	−	a divides P, that is 
if there is another polynomial Q such that P = (x – a) Q. It may happen that x	−	a divides P more 
than once: if (x	−	a)2 divides P then a is called a multiple root of P, and otherwise a is called a sim-
ple root of P. If P is a nonzero polynomial, there is a highest power m such that (x	−	a)m divides P, 
which is called the multiplicity of the root a in P. When P is the zero polynomial, the corresponding 
polynomial equation is trivial, and this case is usually excluded when considering roots, as, with 
the	above	definitions,	every	number	is	a	root	of	the	zero	polynomial,	with	an	undefined	multiplic-
ity. With this exception made, the number of roots of P, even counted with their respective multi-
plicities, cannot exceed the degree of P.	The	relation	between	the	coefficients	of	a	polynomial	and	
its roots is described by Vieta’s formulas. 

Some polynomials, such as x2 + 1, do not have any roots among the real numbers. If, however, the 
set of accepted solutions is expanded to the complex numbers, every non-constant polynomial has 
at least one root; this is the fundamental theorem of algebra. By successively dividing out factors 
x	−	a,	one	sees	 that	any	polynomial	with	complex	coefficients	can	be	written	as	a	constant	 (its	
leading	coefficient)	times	a	product	of	such	polynomial	factors	of	degree	1;	as	a	consequence,	the	
number of (complex) roots counted with their multiplicities is exactly equal to the degree of the 
polynomial. 

There may be several meanings of “solving an equation”. One may want to express the solutions 
as explicit numbers; for example, the unique solution of 2x – 1 = 0 is 1/2. Unfortunately, this 
is, in general, impossible for equations of degree greater than one, and, since the ancient times, 
mathematicians have searched to express the solutions as algebraic expression; for example the 
golden ratio (1 5) / 2+ is the unique positive solution of 2 1 0.x x− − = In the ancient times, they 
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succeeded	only	for	degrees	one	and	two.	For	quadratic	equations,	the	quadratic	formula	provides	
such	expressions	of	the	solutions.	Since	the	16th	century,	similar	formulas	(using	cube	roots	in	
addition to square roots), but much more complicated are known for equations of degree three 
and	four.	But	formulas	for	degree	5	and	higher	eluded	researchers	for	several	centuries.	In	1824,	
Niels	Henrik	Abel	proved	the	striking	result	that	there	are	equations	of	degree	5	whose	solutions	
cannot	be	expressed	by	a	(finite)	formula,	involving	only	arithmetic	operations	and	radicals.	In	
1830,	Évariste	Galois	proved	that	most	equations	of	degree	higher	than	four	cannot	be	solved	by	
radicals, and showed that for each equation, one may decide whether it is solvable by radicals, 
and, if it is, solve it. This result marked the start of Galois theory and group theory, two important 
branches of modern algebra. Galois himself noted that the computations implied by his method 
were	impracticable.	Nevertheless,	formulas	for	solvable	equations	of	degrees	5	and	6	have	been	
published. 

When there is no algebraic expression for the roots, and when such an algebraic expression exists 
but is too complicated to be useful, the unique way of solving is to compute numerical approxima-
tions of the solutions. There are many methods for that; some are restricted to polynomials and 
others	may	apply	to	any	continuous	function.	The	most	efficient	algorithms	allow	solving	easily	
(on a computer) polynomial equations of degree higher than 1,000. 

For	polynomials	in	more	than	one	indeterminate,	the	combinations	of	values	for	the	variables	for	
which the polynomial function takes the value zero are generally called zeros instead of “roots”. 
The	study	of	the	sets	of	zeros	of	polynomials	is	the	object	of	algebraic	geometry.	For	a	set	of	poly-
nomial	equations	in	several	unknowns,	there	are	algorithms	to	decide	whether	they	have	a	finite	
number	of	complex	solutions,	and,	if	this	number	is	finite,	for	computing	the	solutions.	

The special case where all the polynomials are of degree one is called a system of linear equations, 
for which another range of different solution methods exist, including the classical Gaussian elim-
ination. 

A polynomial equation for which one is interested only in the solutions which are integers is called 
a Diophantine equation. Solving Diophantine equations is generally a very hard task. It has been 
proved that there cannot be any general algorithm for solving them, and even for deciding whether 
the set of solutions is empty. Some of the most famous problems that have been solved during the 
fifty	last	years	are	related	to	Diophantine	equations,	such	as	Fermat’s	Last	Theorem.	

Generalizations

There are several generalizations of the concept of polynomials. 

Trigonometric Polynomials

A	trigonometric	polynomial	is	a	finite	linear	combination	of	functions	sin(nx) and cos(nx) with n 
taking	on	the	values	of	one	or	more	natural	numbers.	The	coefficients	may	be	taken	as	real	num-
bers, for real-valued functions. 

If sin(nx) and cos(nx) are expanded in terms of sin(x) and cos(x), a trigonometric polynomial be-
comes a polynomial in the two variables sin(x) and cos(x) (using List of trigonometric identities#-
Multiple-angle	 formulae).	Conversely,	every	polynomial	 in	sin(x) and cos(x) may be converted, 
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with	Product-to-sum	identities,	into	a	linear	combination	of	functions	sin(nx) and cos(nx). This 
equivalence explains why linear combinations are called polynomials. 

For	complex	coefficients,	there	is	no	difference	between	such	a	function	and	a	finite	Fourier	series.	

Trigonometric polynomials are widely used, for example in trigonometric interpolation applied to 
the	interpolation	of	periodic	functions.	They	are	used	also	in	the	discrete	Fourier	transform.	

Matrix Polynomials

A matrix polynomial is a polynomial with square matrices as variables. Given an ordinary, sca-
lar-valued polynomial 

2
0 1 2

0
( ) ,

n
i n

i n
i

P x a x a a x a x a x
=

= = + + + +∑ 

this polynomial evaluated at a matrix A is 

2
0 1 2

0
( ) ,

n
i n

i n
i

P A a A a I a A a A a A
=

= = + + + +∑ 

where I is the identity matrix. 

A matrix polynomial equation is an equality between two matrix polynomials, which holds for the 
specific	matrices	in	question.	A	matrix	polynomial	identity	is	a	matrix	polynomial	equation	which	
holds for all matrices A	in	a	specified	matrix	ring	Mn(R). 

Laurent Polynomials

Laurent polynomials are like polynomials, but allow negative powers of the variable(s) to occur. 

Rational Functions

A rational fraction is the quotient (algebraic fraction) of two polynomials. Any algebraic expression 
that can be rewritten as a rational fraction is a rational function. 

While	polynomial	functions	are	defined	for	all	values	of	the	variables,	a	rational	function	is	defined	
only for the values of the variables for which the denominator is not zero. 

The rational fractions include the Laurent polynomials, but do not limit denominators to powers 
of an indeterminate. 

Power Series

Formal	power	series	are	like	polynomials,	but	allow	infinitely	many	non-zero	terms	to	occur,	so	
that	they	do	not	have	finite	degree.	Unlike	polynomials	they	cannot	in	general	be	explicitly	and	
fully	written	down	(just	like	irrational	numbers	cannot),	but	the	rules	for	manipulating	their	terms	
are the same as for polynomials. Non-formal power series also generalize polynomials, but the 
multiplication of two power series may not converge. 
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Other Examples

•	 A bivariate polynomial where the second variable is substituted by an exponential function 
applied	to	the	first	variable,	for	example	P(x, ex), may be called an exponential polynomial.

Applications

Calculus

The simple structure of polynomial functions makes them quite useful in analyzing general func-
tions using polynomial approximations. An important example in calculus is Taylor’s theorem, 
which roughly states that every differentiable function locally looks like a polynomial function, 
and	 the	Stone–Weierstrass	 theorem,	which	 states	 that	 every	 continuous	 function	defined	on	 a	
compact interval of the real axis can be approximated on the whole interval as closely as desired 
by a polynomial function. 

Calculating	derivatives	and	integrals	of	polynomial	functions	is	particularly	simple.	For	the	poly-
nomial function, 

0

n
i

i
i

a x
=
∑

the derivative with respect to x is,

1

1

n
i

i
i

a ix −

=
∑

and	the	indefinite	integral	is:	

1

0
.

1

n
ii

i

a x c
i

+

=

+
+∑

Abstract Algebra

In abstract algebra, one distinguishes between polynomials and polynomial functions. A polyno-
mial f in one indeterminate x over a ring R	is	defined	as	a	formal	expression	of	the	form:	

1 1 0
1 1 0

n n
n nf a x a x a x a x−

−= + + + +

where n	is	a	natural	number,	the	coefficients	a0, . . ., an are elements of R, and x is a formal sym-
bol, whose powers xi	are	just	placeholders	for	the	corresponding	coefficients	ai, so that the given 
formal	expression	is	 just	a	way	to	encode	the	sequence	(a0, a1, . . .), where there is an n such 
that ai = 0 for all i > n. Two polynomials sharing the same value of n are considered equal if and 
only	if	the	sequences	of	their	coefficients	are	equal;	furthermore	any	polynomial	is	equal	to	any	
polynomial with greater value of n	obtained	from	it	by	adding	terms	in	front	whose	coefficient	is	
zero.	These	polynomials	can	be	added	by	simply	adding	corresponding	coefficients	(the	rule	for	
extending	by	terms	with	zero	coefficients	can	be	used	to	make	sure	such	coefficients	exist).	Thus	
each polynomial is actually equal to the sum of the terms used in its formal expression, if such 
a term aix

i	is	interpreted	as	a	polynomial	that	has	zero	coefficients	at	all	powers	of	x other than 
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xi.	Then	to	define		multiplication,	it	suffices	by	the	distributive	law	to	describe	the	product	of	any	
two such terms, which is given by the rule k l k lax bx abx +=  for all elements a, b of the ring R and 
all natural numbers k and l.

Thus	the	set	of	all	polynomials	with	coefficients	in	the	ring	R forms itself a ring, the ring of poly-
nomials over R, which is denoted by R[x]. The map from R to R[x] sending r to rx0	is	an	injective	
homomorphism of rings, by which R is viewed as a subring of R[x]. If R is commutative, then R[x] 
is an algebra over R. 

One can think of the ring R[x] as arising from R by adding one new element x to R, and extending 
in a minimal way to a ring in which x	satisfies	no	other	relations	than	the	obligatory	ones,	plus	
commutation with all elements of R (that is xr = rx). To do this, one must add all powers of x and 
their linear combinations as well. 

Formation	of	the	polynomial	ring,	together	with	forming	factor	rings	by	factoring	out	ideals,	are	
important	tools	for	constructing	new	rings	out	of	known	ones.	For	instance,	the	ring	(in	fact	field)	
of complex numbers, which can be constructed from the polynomial ring R[x] over the real num-
bers by factoring out the ideal of multiples of the polynomial x2 + 1. Another example is the con-
struction	of	finite	fields,	which	proceeds	similarly,	starting	out	with	the	field	of	integers	modulo	
some	prime	number	as	the	coefficient	ring	R. 

If R is commutative, then one can associate to every polynomial P in R[x], a polynomial function f 
with domain and range equal to R (more generally one can take domain and range to be the same 
unital associative algebra over R). One obtains the value f(r) by substitution of the value r for the 
symbol x in P. One reason to distinguish between polynomials and polynomial functions is that 
over some rings different polynomials may give rise to the same polynomial function. This is not 
the case when R is the real or complex numbers, whence the two concepts are not always distin-
guished in analysis. An even more important reason to distinguish between polynomials and poly-
nomial functions is that many operations on polynomials (like Euclidean division) require looking 
at what a polynomial is composed of as an expression rather than evaluating it at some constant 
value for x. 

Divisibility

In	commutative	algebra,	one	major	 focus	of	study	 is	divisibility among polynomials. If R is an 
integral domain and f and g are polynomials in R[x], it is said that f divides g or f is a divisor of g 
if there exists a polynomial q in R[x] such that f q = g. One can show that every zero gives rise to a 
linear divisor, or more formally, if f is a polynomial in R[x] and r is an element of R such that f(r) 
= 0, then the polynomial (x	−	r) divides f. The converse is also true. The quotient can be computed 
using the polynomial long division. 

If F	is	a	field	and	f and g are polynomials in F[x] with g	≠	0,	then	there	exist	unique	polynomials	q 
and r in F[x] with, 

f qg r= +

and such that the degree of r is smaller than the degree of g (using the convention that the polyno-
mial 0 has a negative degree). The polynomials q and r are uniquely determined by f and g. This 
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is called Euclidean division, division with remainder or polynomial long division and shows that 
the ring F[x] is a Euclidean domain. 

Analogously, prime polynomials (more correctly, irreducible polynomials)	 can	 be	 defined	 as	
non-zero polynomials which cannot be factorized into the product of two non-constant polyno-
mials.	In	the	case	of	coefficients	in	a	ring,	“non-constant” must be replaced by “non-constant or 
non-unit”	(both	definitions	agree	in	the	case	of	coefficients	in	a	field).	Any	polynomial	may	be	de-
composed into the product of an invertible constant by a product of irreducible polynomials. If the 
coefficients	belong	to	a	field	or	a	unique	factorization	domain	this	decomposition	is	unique	up	to	
the order of the factors and the multiplication of any non-unit factor by a unit (and division of the 
unit	factor	by	the	same	unit).	When	the	coefficients	belong	to	integers,	rational	numbers	or	a	finite	
field,	there	are	algorithms	to	test	irreducibility	and	to	compute	the	factorization	into	irreducible	
polynomials. These algorithms are not practicable for hand-written computation, but are available 
in any computer algebra system. Eisenstein’s criterion can also be used in some cases to determine 
irreducibility. 

Positional Notation

In modern positional numbers systems, such as the decimal system, the digits and their positions 
in	the	representation	of	an	integer,	for	example,	45,	are	a	shorthand	notation	for	a	polynomial	in	
the radix or base, in this case, 4 × 101	+	5	×	100.	As	another	example,	in	radix	5,	a	string	of	digits	
such	as	132	denotes	the	(decimal)	number	1	×	52	+	3	×	51	+	2	×	50 = 42. This representation is 
unique. Let b be a positive integer greater than 1. Then every positive integer a can be expressed 
uniquely in the form,

1
1 1 0 ,m m

m ma r b r b rb r−
−= + + + +

where m is a nonnegative integer and the r’s are integers such that: 

0 < rm < b	and	0	≤	ri < b for i = 0, 1, . . . , m	−	1.

Other Applications

Polynomials	serve	to	approximate	other	functions,	such	as	the	use	of	splines.	

Polynomials	are	frequently	used	to	encode	information	about	some	other	object.	The	characteristic	
polynomial of a matrix or linear operator contains information about the operator’s eigenvalues. 
The	minimal	polynomial	of	an	algebraic	element	records	the	simplest	algebraic	relation	satisfied	
by that element. The chromatic polynomial of a graph counts the number of proper colourings of 
that graph.

The	term	“polynomial”,	as	an	adjective,	can	also	be	used	for	quantities	or	functions	that	can	be	
written	 in	polynomial	 form.	For	example,	 in	computational	complexity	theory	the	phrase	poly-
nomial time means that the time it takes to complete an algorithm is bounded by a polynomial 
function of some variable, such as the size of the input. 

In computer graphics they are used to interpolate between values to evaluate animation of dynam-
ic	graphical	objects.
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ZEROES OF POLYNOMIAL

A polynomial having value zero (0) is known as zero polynomial. Actually, the term 0 is itself zero 
polynomial.	It	is	a	constant	polynomial	whose	all	the	coefficients	are	equal	to	0.	For	a	polynomial,	
there may be few (one or more) values of the variable for which the polynomial may result in zero. 
These values are known as zeros of a polynomial. We can say that the zeroes of a polynomial are 
defined	as	the	points	where	the	polynomial	equals	to	zero	on	the	whole.

If	 the	 coefficients	 of	 following	 the	 form	of	 the	polynomial: 1 2 2
1 2 2 1 0....n n n

n n na x a x a x a x a x a− −
− −+ + + + + + 

1 2 2
1 2 2 1 0....n n n

n n na x a x a x a x a x a− −
− −+ + + + + + are zero, then it will become zero polynomial. i.e 1 2 ... 0n n n oa a a a− −= = = = = . Thus, 

the	polynomial	will	become	0	and	may	be	written	as	P(x)=0.

Zero Polynomial Function

The zero polynomial function is	defined	as	the	polynomial	function	with	the	value	of	zero.	i.e.	the	
function whose value is 0, is termed as a zero polynomial function. Zero polynomial does not have 
any	nonzero	term.	It	is	represented	as:	P(x)	=	0.	Thus,	we	can	say	that	a	polynomial	function	which	
is equal to zero, is called zero polynomial function. It also is known as zero map. The graph of the 
zero polynomial is X axis.

Zero Quadratic Polynomial

The	quadratic	polynomial	having	all	the	coefficients	equal	to	zero	is	known	as	zero	quadratic	poly-
nomial. The general term of a quadratic polynomial is: ( ) 2 .P x ax bx c= + +  If in above quadratic
polynomial,	the	coefficients	are	zero;	i.e.	a	=	b	=	c	=	0,	then	the	polynomial	is	termed	as	a	zero	
quadratic polynomial.

1. 20. 0. 0x x+ +  is a zero quadractic polynomial whose values are zero.

2. Find	the	additive	identities	of	the	following	polynomials:	1)	x-3	and	2)	
2 3 5x x− +

Solution: 1. Additive identity = 0.x+0 and 2. Additive identity = 20. 0. 0x x+ + .

Finding Zeroes of a Polynomial

1. The zero of a polynomial is the value of the which polynomial gives zero. Thus, in order
to	find	zeros	of	the	polynomial,	we	simply	equate	polynomial	to	zero	and	find	the	possible
values of variables.

2. Let	P(x)	be	a	given	polynomial.	To	find	zeros,	set	this	polynomial	equal	to	zero.	i.e.	P(x)	=
0. Now,	this	becomes	a	polynomial	equation.	Solve	this	equation	and	find	all	the	possible
values of variables by factorizing the polynomial equation.

3. These are the values of x which make polynomial equal to zero; hence are called zeros
of	polynomial	P(x).	A	number	z	is	said	to	be	a	zero	of	a	polynomial	P(x)	if	and	only	if	P(z)
= 0.
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Real and Complex Zeroes of Polynomials

When the roots of a polynomial are in the form of the real number, they are known as real zeros 
whereas complex numbers are written as a ±  ib, where a is called real part and b is known as the 
imaginary part. The complex zeros are found in pairs, such as a + ib and a – ib.

1.	Find	the	zeroes	of	polynomial	 26 7 2x x+ − .

Solution:	To	find	zeros,	set	the	polynomial	equal	to	zero	P(x)=0	i.e.	 26 7 2 0x x+ − =

26 4 3 2 0x x x+ − − =  then, 2x(3x+2)-1(3x+2)=0

(3x+2)(2x-1)=0, x
2 1,
3 2

= − .

2.	Find	the	zeroes	of	polynomial	 ( )23 4x − + .

Solution:	To	find	zeros,	set	the	polynomial	equal	to	zero	P(x)=0	i.e.	 ( )23 4 0x − + =

( )23 4x − + −  then, 3 2x i− =± and 3 2x i= ±

Thus, two zeros are 3 + 2i and 3 – 2i.
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Algebraic functions can be classified into linear function, quadratic function, cubic function, quar-
tic function, etc. Algebraic equations include linear equation, quadratic equation, cubic equation, 
quantic equation, etc. All these algebraic functions and equations have been carefully analyzed in 
this chapter.

ALGEBRAIC FUNCTION

A function ( )1,.., ny f x x=  of the variables 1,.., nx x  that satisfies an equation

( ), ,.., 0,F y x x

where F  is an irreducible polynomial in 1, ,.., ny x x  with coefficients in some field K , known as 
the field of constants. The algebraic function is said to be defined over this field, and is called an 
algebraic function over the field K. The polynomial ( )1, ,.., nF y x x  is often written in powers of the 
variable y, so that equation ( )1, ,.., 0,nF y x x =  assumes the form

( ) ( )
( )

1
1 1 1

10

,.., ,.., ...

,.., 0,

k k
k n k n

n

P x x y P x x y

P x x

−
−+ + +

+ =

where ( ) ( )1 0 1,.., ,.., ,..,k n nP x x P x x  are polynomials in 1,.., nx x , and with ( )1,.., 0.k nP x x ≡/  The num-
ber k is the degree of F with respect to y, and is called the degree of the algebraic function. If 1k = , 
 an algebraic function may be represented as a quotient

( )
( )

0 1

1 1

,..,
= -

,..,
n

n

P x x
y

P x x

of polynomials, and is called a rational function of 1,.., . For =2,3,4nx x k , an algebraic function can 
be expressed as square and cube roots of rational functions in the variables 1,.., if 4nx x k >  this is 
impossible in general.

The theory of algebraic functions was studied in the past from three different points of view: the 
function-theoretical point of view taken, in particular, by N.H. Abel, K. Weierstrass and B. Rie-
mann; the arithmetic-algebraic point of view taken by R. Dedekind, H. Weber and K. Hensel; 
and the algebraic-geometrical point of view, which originated with the studies of A. Clebsch, M. 
Noether and others. The first direction of the theory of algebraic functions of a single variable is 
connected with the study of algebraic functions over the field of complex numbers, in which they 

C
H

A
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are regarded as meromorphic functions on Riemann surfaces and complex manifolds; the most 
important methods applied are the geometrical and topological methods of the theory of analytic 
functions. The arithmetic-algebraic approach involves the study of algebraic functions over arbi-
trary fields. The methods employed are purely algebraic. The theory of valuations and extensions 
of fields are especially important. In the algebraic-geometrical approach algebraic functions are 
considered to be rational functions on an algebraic variety, and are studied by methods of alge-
braic geometry. These three points of view originally differed not only in their methods and their 
ways of reasoning, but also in their terminology. This differentiation has by now become largely 
arbitrary, since function-theoretical studies involve the extensive use of algebraic methods, while 
many results obtained at first using function-theoretical and topological methods can be success-
fully applied to more general fields using algebraic analogues of these methods.

Algebraic Functions of One Variable

Over the field C of complex numbers, an algebraic function of one variable ( ) ( )ory f x y x=  for
short) is a k-valued analytic function. If D(x) is the discriminant of the polynomial,

( ) ( ) ( ) ( )
( )

1 0, ... ,

x 0,

k
k

k

F x y P x y P x y P x

P

= + + +

≡/

(i.e. of the polynomial for which ( )( ) ), 0F x f x = , which is obtained by eliminating y from the
equations,

( ) ( ),
. 0, 0

F x y
F x y

y
∂

= =
∂

to yield the equation,

( ) ( ) 0,kP x D x =

then the roots ,..,x x  of this last equation are known as the critical values of ( )y f x= . The com-
plementary set 1\{ ,.., }mG C x x=  is known as the non-critical set. For any point 0x G∈  equation 
( ) ( ) ( ) ( )1 0, ... ,k

kF x y P x y P x y P x= + + + has k different roots 1
0 0,.., ky y  and the condition,

( )0 0,
0, 1,.., ,

jx y
F j k

y
∂ ≠ =

∂

is satisfied. According to the implicit function theorem, in a neighbourhood of the point 0x  there 
exist k single-valued analytic functions ( ) ( )1

0 0,.., kf x f x  which satisfy the conditions,

( ) ( )( )0 0 0, 00 = =j j jf x y F x f x

and which can be decomposed into a convergent series,

( ) ( ) ( )2
0 0 1 2 0 ....0

j j j jf x y x x x xα α= + − + − +

Thus, for each point 0x G∈  one can construct k elements of an analytic function, known as 
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the function elements with centre at the point 0x . For any two points 1 2,x x G∈ , any elements 
( ) ( )1 2andi if x f x  with centres at x1 and x2, respectively, are derived from each other by analytic 

continuation along some curve in G; in particular, any two elements with the same centres are also 
connected in this way. If 0x  is a critical point of an algebraic function, then two cases are possible: 
1) 0x  is a root of the discriminant, i.e. ( ) ( ) ( )0 0 00, but 0;or 2) 0.= ≠ =k kD x P x P x  

Case: Let 0K  be a small disc with centre at 0x  which does not contain other critical points, and 
let ( ) ( )1 ,.., kf x f x′ ′  be a system of regular elements with centre at 0x K′∈ , 0x x′ ≠ . These functions 
remain bounded as 0x x→ . Furthermore, let D be the circle with centre 0x  passing through x′
; it is completely contained inside K0. The analytic continuation of some given element, e.g. 
( )1f x′ , along D (in, say, the clockwise direction), yields an element ( )f x′  which also belongs 

to the system of elements with centre x′. This system consists of k elements, and a minimum 
required finite number 1 kα ≤  of such turns yield the initial element ( )1f x′ . One obtains a subsys-
tem ( ) ( )

11 ,..,f x f xα′ ′  of elements with centre x′; each one of these elements may be obtained by 
analytic continuation of the other by a number of turns around the point 0x ; such a subsystem 
is known as a cycle. Any system ( ) ( )1 ,.., kf x f x  can be decomposed into a number of non-inter-
secting cycles,

( ) ( )
( ) ( )

( ) ( )

1

1 1 2

1 1

1

...

1 ...

{ ,.., }

{ 1 ,.., },...,

{ ... 1 ,.., },
ss

f x f x

f x f x

f x f x

α

α α α

α α αα
+

− + +

′ ′

′ ′+

′ ′+ +

1 1... . If 1,S kα α α+ = > then the element ( )1f x′  is not a single-valued function of ( )1f x′  in the disc K0, but 
is a single-valued analytic function of the parameter ( ) 11

0
ατ = −x x  in a neighbourhood of 0τ = . In a 

certain neighbourhood of this point the elements ( ) ( )
11 ,..., α′ ′f x f x  of the first cycle can be represent-

ed as convergent series,

( ) ( )

( ) ( )

1

11 1

1

/1 1
1 0

0 0

/
0

0 0

,

;

α

αα α
α

α τ α

α τ α

∞ ∞

= =

∞ ∞

= =

′ = = −

′ = = −

∑ ∑

∑ ∑

ii
i i

i i

ii
i i

i i

f x x x

f x x x

and similar expansions also take place for the elements of other cycles. Such expansions of elements 
by fractional degrees of the difference 0x x− , where 0x  is a critical point, are known as Puiseux se-
ries. The transformation 2 /, ;i

rr eτ τ π α→ =  which corresponds to one turn around 0x , converts the 
Puiseux series of elements in one cycle into each other in cyclic order, i.e. there is a cyclic permuta-
tion of the series and of the corresponding elements. To turns around the critical point correspond 
permutations of the elements with centre at this point; these permutations consist of cycles of the 
orders, 1,.., s i kα α α∑ = . The permutations defined in this way constitute the monodromy group of the 
algebraic function. If at least one element αi  is greater than 1, the critical point 0x  is called an alge-
braic branch point of the algebraic function; the numbers αi  (sometimes 1 1α − ) are called the branch 
indices (or branch orders) of the algebraic function.
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Case: If ( )kP x y  is substituted for Y one returns to case above; one obtains expansions similar to 

( ) ( ) 1/1
1 0

0
... ;αα

∞

=

′ = −∑ i
i

i
f x x x ; which may contain a finite number of terms with negative indices:

( ) ( ) /
0

ii
i i

i p i p
f x x x αα τ α

∞ ∞

=− =−

= = −∑ ∑ .

If 0p > , the point X0 is a pole of order P of the algebraic function. An algebraic function is usually 
considered on the Riemann sphere S , i.e. on the complex plane completed by the point at infinity 
x =∞ . The introduction of the variable 1/ xτ =  reduces this case to the previous case; in a neigh-
bourhood of the point ( )0 xτ = = ∞  one has the expansion:

( ) / /j j

j r j r
y x j j xα αα τ α

∞ ∞
−

=− =−

= =∑ ∑ .

If 0r > , then the point x =∞  is called a pole of order r.

The parameter of the expansion in the series ( ) ( ) ( )2
0 0 1 2 0 ....0

j j j jf x y x x x xα α= + − + − + ,

( ) ( ) 1/1
1 0

0
... ;αα

∞

=

′ = −∑ i
i

i
f x x x ; ( ) ( ) /

0
ii

i i
i p i p

f x x x αα τ α
∞ ∞

=− =−

= = −∑ ∑ , ( ) / /j j

j r j r
y x j j xα αα τ α

∞ ∞
−

=− =−

= =∑ ∑  

is called the local uniformizing parameter for the algebraic function. If 0x  is a non-critical point of 
the algebraic function, then 0x xτ = −  can be taken as parameter; if, on the other hand, is a critical 
point, the root ( ) 1/

0x x α−  (where α is a positive integer) can be taken as such a parameter. The 
population of all elements of an algebraic function described above forms the complete algebraic 
function in the sense of Weierstrass. Algebraic functions have no singularities other than algebraic 
branch points and poles. The converse proposition is also true: A function ( )y f x=  which is an-
alytic, is not more than s-valued at all points of the Riemann sphere except for a finite number of 
points 1,.., mx x  and x =∞, and has at such points only poles or algebraic branch points, is an alge-
braic function of degree k s≤ .

The Riemann surface of a complete algebraic function is compact and is a k-sheeted covering of the 
Riemann sphere, branch points can be the critical points and the point x =∞. Algebraic functions 
are the only class of functions with a compact Riemann surface. The genus of the Riemann surface 
of an algebraic function is important; it is called the genus of the algebraic function. It can be calcu-
lated by the Riemann–Hurwitz formula. The genus of a rational function is zero, and its Riemann 
surface is the Riemann sphere. The Riemann surface of an elliptic function that satisfies a third- or 
fourth-degree equation is a torus; the genus of such a function is one.

The universal covering Riemann surface of an algebraic function is a simply-connected two-di-
mensional manifold, i.e. it has a trivial fundamental group and is conformally equivalent either to 
the Riemann sphere, the complex plane or the interior of the unit disc. In the first case the alge-
braic function is a rational, in the second case it is an elliptic, while in the third case it is a general 
function.

The uniformization problem of algebraic functions is closely connected with the theory of Rie-
mann surfaces of algebraic functions. The function ( )y f x=  can be uniformized if y and x are rep-
resentable as single-valued analytic functions
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( ) ( ),y y t x x t= =

of a parameter t, which identically satisfy equation ( ) ( ) ( ) ( )1 0
, ... ,k

kF x y P x y P x y P x= + + + . The 

uniformization problem is locally solved by a local uniformizing parameter; however, it is the solu-
tion “in the large” that is of interest. If 1k = , i.e. if ( )y x  is a rational function of x, this parameter 
may be the variable 0x x− ; if 2k = , then uniformization is attained with the aid of a rational or a 
trigonometric function. For instance, if ( )y x  satisfies the equation,

2 2 1y x− =

one can take,

2

2 2

1 2,
1 1

t ty x
t t
+

= =
− −

or

sec , tg .y t x t= =

If 3,4k =  in the case of an algebraic function of genus one, uniformization is achieved using el-
liptic functions. Finally, if 4k >  and the genus of the algebraic function is higher than one, uni-
formization is realized using automorphic functions.

Algebraic Functions of Several Variables

If f is an algebraic function in the variables 1,.., nx x , then the set of all rational functions ( )1, ,.., nR y x x  forms 
a field fK , coinciding with the field of rational functions on the algebraic hypersurface in ( )1n + -di-
mensional space defined by the equation ( )1, ,.., 0nF y x x = . If the field of constants k is the field of 
complex numbers C and if 1n = , then fK  is identical with the field of meromorphic functions on the 
Riemann surface of the algebraic function. The field fK  is an extension of finite type of the field of 
constants k of transcendence degree n (cf. Extension of a field). In particular, any n+1 elements of this 
field are connected by an algebraic equation, so that each of them defines an algebraic function of the 
remaining elements. Any extension K of finite type of a field k of transcendence degree n is known as 
an algebraic function field in n variables (or, sometimes, as a function field). Each such field contains a 
purely transcendence extension ( )1,.., nk x x  of the field k (called the field of rational functions in n vari-
ables). Any element y K∈  satisfies some algebraic equation ( )1, ,.., 0ny x xΦ = , and can be considered 
as an algebraic function in the variables 1,.., nx x . Each field K  of algebraic functions in n variables is 
isomorphic to the field of rational functions on some algebraic variety of dimension n, which is called 
a model of K . If the field of constants k is algebraically closed and of characteristic zero, then each al-
gebraic function field has a non-singular projective model. Let S be the set of all non-trivial valuations 
of an algebraic function field K  which are non-negative on the field of constants. If provided with the 
natural topology, it is known as the abstract Riemann surface of the field K. In the case of algebraic 
functions in one variable, the Riemann surface coincides with the set of non-singular projective mod-
els, which in this case is uniquely defined up to an isomorphism. Many concepts and results in algebraic 
geometry on the model of a field K  can be restated in the language of the theory of valuations of fields. A 
particularly close analogy holds for algebraic functions in one variable, the theory of which is practically 
identical with the theory of algebraic curves.
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Each algebraic function field in one variable is the field of fractions of a Dedekind ring, so that many 
results and concepts of the theory of divisibility in algebraic number fields can be applied to function 
fields. Many problems and constructions in algebraic number theory motivate similar problems and 
constructions in fields of algebraic functions and vice versa. For instance, the application of a Puiseux 
expansion to the theory of algebraic numbers led to the genesis of the P-adic method in number 
theory, due to Hensel. Class field theory, which had originally belonged to the domain of algebraic 
numbers, was subsequently applied to functions. An especially close analogy exists between algebraic 
number fields and algebraic function fields over a finite field of constants. For instance, the concept of 
a zeta-function is defined for the latter and the analogue of the Riemann hypothesis has been demon-
strated for algebraic function fields.

LINEAR FUNCTION

In mathematics, the term linear function refers to two distinct but related notions: 

• In calculus and related areas, a linear function is a function whose graph is a straight line, 
that is a polynomial function of degree one or zero.

• In linear algebra, mathematical analysis, and functional analysis, a linear function is a lin-
ear map. In this case, and in case of possible ambiguity, the name affine function is often 
used for the concept above. 

As a Polynomial Function

Graphs of two linear (polynomial) functions.

In calculus, analytic geometry and related areas, a linear function is a polynomial of degree one or 
less, including the zero polynomial (the latter not being considered to have degree zero). 

When the function is of only one variable, it is of the form 

( ) ,f x ax b= +

where a and b are constants, often real numbers. The graph of such a function of one variable is a 
nonvertical line. a is frequently referred to as the slope of the line, and b as the intercept. 
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For a function 1( , , )kf x x… of any finite number of independent variables, the general formula is 

1 1 1( , , ) ,k k kf x x b a x a x… = + +…+

and the graph is a hyperplane of dimension k. 

A constant function is also considered linear in this context, as it is a polynomial of degree zero or 
is the zero polynomial. Its graph, when there is only one independent variable, is a horizontal line. 

In this context, the other meaning (a linear map) may be referred to as a homogeneous linear func-
tion or a linear form. In the context of linear algebra, this meaning (polynomial functions of degree 
0 or 1) is a special kind of affine map. 

As a Linear Map

The integral of a function is a linear map from the  
vector space of integrable functions to the real numbers.

In linear algebra, a linear function is a map f between two vector spaces that preserves vector ad-
dition and scalar multiplication: 

(x y) (x) (y)
( x) (x).
+ = +
=

f f f
f a af

Here a denotes a constant belonging to some field K of scalars (for example, the real numbers) and 
x and y are elements of a vector space, which might be K itself. 

Some authors use “linear function” only for linear maps that take values in the scalar field; these 
are also called linear functionals. 

The “linear functions” of calculus qualify as “linear maps” when (and only when) 0.b = , or, equiv-
alently, when the constant ([0, ,0]) 0,f … = . Geometrically, the graph of the function must pass 
through the origin.

QUADRATIC FUNCTION

In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a 
quadratic, is a polynomial function with one or more variables in which the highest-degree term 
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is of the second degree. For example, a quadratic function in three variables x, y, and z contains 
exclusively terms x2, y2, z2, xy, xz, yz, x, y, z, and a constant: 

2 2 2( , , ) ,f x y z ax by cz dxy exz fyz gx hy iz j= + + + + + + + + +

with at least one of the coefficients a, b, c, d, e, or f of the second-degree terms being non-zero. 

A quadratic polynomial with two real roots (crossings of the x axis) and hence no complex roots. 
Some other quadratic polynomials have their minimum above the x axis, in which case there are 
no real roots and two complex roots.

A univariate (single-variable) quadratic function has the form, 

2( ) , 0f x ax bx c a= + + ≠

in the single variable x. The graph of a univariate quadratic function is a parabola whose axis of 
symmetry is parallel to the y-axis.

If the quadratic function is set equal to zero, then the result is a quadratic equation. The solutions 
to the univariate equation are called the roots of the univariate function. 

The bivariate case in terms of variables x and y has the form, 

2 2( , )f x y ax by cxy dx ey f= + + + + +

with at least one of a, b, c not equal to zero, and an equation setting this function equal to zero gives 
rise to a conic section (a circle or other ellipse, a parabola, or a hyperbola). 

In general there can be an arbitrarily large number of variables, in which case the resulting surface 
is called a quadric, but the highest degree term must be of degree 2, such as x2, xy, yz, etc. 

Terminology

Coefficients

The coefficients of a polynomial are often taken to be real or complex numbers, but in fact, a poly-
nomial may be defined over any ring. 
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Degree

When using the term “quadratic polynomial”, authors sometimes mean “having degree exactly 2”, 
and sometimes “having degree at most 2”. If the degree is less than 2, this may be called a “degen-
erate case”. Usually the context will establish which of the two is meant. 

Sometimes the word “order” is used with the meaning of “degree”, e.g. a second-order polynomial. 

Variables

A quadratic polynomial may involve a single variable x (the univariate case), or multiple variables 
such as x, y, and z (the multivariate case). 

The One-variable Case

Any single-variable quadratic polynomial may be written as: 

2 ,ax bx c+ +

where x is the variable, and a, b, and c represent the coefficients. In elementary algebra, such 
polynomials often arise in the form of a quadratic equation 2 0.ax bx c+ + =  The solutions to this 
equation are called the roots of the quadratic polynomial, and may be found through factorization, 
completing the square, graphing, Newton’s method, or through the use of the quadratic formula. 
Each quadratic polynomial has an associated quadratic function, whose graph is a parabola. 

Bivariate Case

Any quadratic polynomial with two variables may be written as: 

2 2( , ) ,f x y ax by cxy dx ey f= + + + + +

where x and y are the variables and a, b, c, d, e, and f are the coefficients. Such polynomials are 
fundamental to the study of conic sections, which are characterized by equating the expression for 
f (x, y) to zero. Similarly, quadratic polynomials with three or more variables correspond to quad-
ric surfaces and hypersurfaces. In linear algebra, quadratic polynomials can be generalized to the 
notion of a quadratic form on a vector space. 

Forms of a Univariate Quadratic Function

A univariate quadratic function can be expressed in three formats: 

• 2( )f x ax bx c= + + is called the standard form,

• 1 2( ) ( )( )f x a x r x r= − − is called the factored form, where r1 and r2 are the roots of the qua-
dratic function and the solutions of the corresponding quadratic equation.

• 2( ) ( )f x a x h k= − + is called the vertex form, where h and k are the x and y coordinates of
the vertex, respectively.

The coefficient a is the same value in all three forms. To convert the standard form to factored form, 
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one needs only the quadratic formula to determine the two roots r1 and r2. To convert the standard 
form to vertex form, one needs a process called completing the square. To convert the factored form (or 
vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.

Graph of the Univariate Function

Regardless of the format, the graph of a univariate quadratic function 2( )f x ax bx c= + + is a pa-
rabola. Equivalently, this is the graph of the bivariate quadratic equation 2y ax bx c= + + . 

• If a > 0, the parabola opens upwards.

• If a < 0, the parabola opens downwards.

2
{0.1,0.3,1,3}( ) |af x ax ==

The coefficient a controls the degree of curvature of the graph; a larger magnitude of a gives the 
graph a more closed (sharply curved) appearance. 

The coefficients b and a together control the location of the axis of symmetry of the parabola (also 
the x-coordinate of the vertex) which is at 

.
2
bx
a

= −

The coefficient c controls the height of the parabola; more specifically, it is the height of the parab-
ola where it intercepts the y-axis. 

Vertex
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2
{1,2,3,4}( ) |bf x x bx == +

The vertex of a parabola is the place where it turns; hence, it is also called the turning point. If 
the quadratic function is in vertex form, the vertex is (h, k). Using the method of completing the 
square, one can turn the standard form 

2( )f x ax bx c= + +

into 

2

2

2 2

( )
( )

,
2 4

f x ax bx c
a x h k

b ba x c
a a

= + +

= − +

 − = − + −  
   

so the vertex, (h, k), of the parabola in standard form is 

2

, .
2 4
b bc
a a

 
− − 
 

If the quadratic function is in factored form 

1 2( ) ( )( )f x a x r x r= − −

the average of the two roots, i.e., 

1 2

2
r r+

is the x-coordinate of the vertex, and hence the vertex (h, k) is 

1 2 1 2

2 2
, .  

  
 

+ +



r r r rf

The vertex is also the maximum point if a < 0, or the minimum point if a > 0. 

The vertical line 

2
bx h
a

= = −

that passes through the vertex is also the axis of symmetry of the parabola. 
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Maximum and Minimum Points

2
{ 1, 2, 3, 4}( ) |bf x x bx = − − − −= +

Using calculus, the vertex point, being a maximum or minimum of the function, can be obtained 
by finding the roots of the derivative: 

2( ) ( ) 2 .f x ax bx c f x ax b′= + + ⇒ = +

x is a root of f ‘(x) if f ‘(x) = 0 resulting in 

2
bx
a

= −

with the corresponding function value 

2 2

( ) ,
2 2 4
b b bf x a b c c
a a a

   = − + − + = −   
   

so again the vertex point coordinates, (h, k), can be expressed as 

2

, .
2 4
b bc
a a

 
− − 
 

Roots of the Univariate Function
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Graph of y = ax2 + bx + c, where a and the discriminant b2 − 4ac are positive, with

• Roots and y-intercept in red.

• Vertex and axis of symmetry in blue.

• Focus and directrix in pink.

Visualisation of the complex roots of y = ax2 + bx + c: the parabola is rotated 180° about its vertex 
(orange). Its x-intercepts are rotated 90° around their mid-point, and the Cartesian plane is inter-
preted as the complex plane (green).

Exact Roots

The roots (or zeros), r1 and r2, of the univariate quadratic function 

2

1 2

( )
( )( ),

f x ax bx c
a x r x r

= + +
= − −

are the values of x for which f(x) = 0. 

When the coefficients a, b, and c, are real or complex, the roots are 

2

1

2

2

4 ,
2

4 .
2

b b acr
a

b b acr
a

− − −
=

− + −
=

Upper Bound on the Magnitude of the Roots

The modulus of the roots of a quadratic 2ax bx c+ + can be no greater than max(| |,| |,| |) ,
| |

a b c
a

φ×

where φ is the golden ratio 1 5 .
2
+
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The Square Root of a Univariate Quadratic Function

The square root of a univariate quadratic function gives rise to one of the four conic sections, al-
most always either to an ellipse or to a hyperbola. 

If 0a > then the equation 2y ax bx c= ± + + describes a hyperbola, as can be seen by squaring 
both sides. The directions of the axes of the hyperbola are determined by the ordinate of the min-
imum point of the corresponding parabola 2

py ax bx c= + + . If the ordinate is negative, then the 
hyperbola’s major axis (through its vertices) is horizontal, while if the ordinate is positive then the 
hyperbola’s major axis is vertical. 

If 0a < then the equation 2y ax bx c= ± + + describes either a circle or other ellipse or nothing 
at all. If the ordinate of the maximum point of the corresponding parabola 2

py ax bx c= + + is 
positive, then its square root describes an ellipse, but if the ordinate is negative then it describes 
an empty locus of points. 

Iteration

To iterate a function 2( )f x ax bx c= + + , one applies the function repeatedly, using the output 
from one iteration as the input to the next. 

One cannot always deduce the analytic form of ( ) ( )nf x , which means the nth iteration of ( )f x . (The 
superscript can be extended to negative numbers, referring to the iteration of the inverse of ( )f x
if the inverse exists). But there are some analytically tractable cases. 

For example, for the iterative equation, 

2( ) ( )f x a x c c= − +

one has, 

2 ( 1)( ) ( ) ( ( ( ))),f x a x c c h g h x−= − + =

where,

2 and( ) ( ) .g x ax h x x c= = −

So by induction, 

( ) ( 1) ( )( ) ( ( ( )))n nf x h g h x−=

can be obtained, where ( ) ( )ng x can be easily computed as: 

( ) 2 1 2( ) .
n nng x a x−=

Finally, we have: 

( ) 2 1 2( ) ( )
n nnf x a x c c−= − +

as the solution. 
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The logistic map, 

1 0(1 ), 0 1n n nx rx x x+ = − ≤ <

with parameter 2<r<4 can be solved in certain cases, one of which is chaotic and one of which is 
not. In the chaotic case r=4 the solution is: 

2sin (2 )n
nx θπ=

where the initial condition parameter  is given by 1 1/2
0

1 sin ( )xθ
π

−= . For rational θ , after a finite 

number of iterations nx maps into a periodic sequence. But almost all θ are irrational, and, for ir-
rational θ , nx never repeats itself – it is non-periodic and exhibits sensitive dependence on initial 
conditions, so it is said to be chaotic. 

The solution of the logistic map when r=2 is: 

2
0

1 1 (1 2 )
2 2

n

nx x= − −

for 0 [0,1).x ∈  Since 0(1 2 ) ( 1,1)x− ∈ − for any value of 0x other than the unstable fixed point 0, the 
term 2

0(1 2 )
n

x− goes to 0 as n goes to infinity, so nx goes to the stable fixed point 1
2 .

Bivariate (Two Variable) Quadratic Function

A bivariate quadratic function is a second-degree polynomial of the form: 

2 2( , )f x y Ax By Cx Dy Exy F= + + + + +

where A, B, C, D, and E are fixed coefficients and F is the constant term. Such a function describes 
a quadratic surface. Setting ( , )f x y equal to zero describes the intersection of the surface with the 
plane 0z = , which is a locus of points equivalent to a conic section. 

Minimum/Maximum

If 24 0AB E− < the function has no maximum or minimum; its graph forms an hyperbolic paraboloid.

If 24 0AB E− > the function has a minimum if A>0, and a maximum if A<0; its graph forms an 
elliptic paraboloid. In this case the minimum or maximum occurs at ( , )m mx y where: 

2

2

2 ,
4
2 .
4

m

m

BC DEx
AB E
AD CEy
AB E

−
= −

−
−

= −
−

If 24 0AB E− = and 2 2 0DE CB AD CE− = − ≠ the function has no maximum or minimum; its 
graph forms a parabolic cylinder. 

If 24 0AB E− = and 2 2 0DE CB AD CE− = − = the function achieves the maximum/minimum at 
a line—a minimum if A>0 and a maximum if A<0; its graph forms a parabolic cylinder. 
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CUBIC FUNCTION

A cubic function has the standard form of f(x) = ax3 + bx2 + cx + d. The “basic” cubic function is f(x) = 
x3. You can see it in the graph below. In a cubic function, the highest power over the x variable(s) is 3.

Critical and Inflection Points

The roots, turning points, stationary points, inflection point and concavity of a cubic polynomial 
x3 − 3x2 − 144x + 432 (black line) and its first and second derivatives (red and blue).

The critical points of a cubic function are its stationary points, that is the points where the slope of 
the function is zero. Thus the critical points of a cubic function f defined by 

f(x) = ax3 + bx2 + cx + d,

occur at values of x such that the derivative 

23 2 0ax bx c+ + =

of the cubic function is zero. 

The solutions of that equation are the critical points of the cubic equation and are given, using the 
quadratic formula, by 

2

critical
3 .

3
b b acx

a
− ± −

=

The expression inside the square root, 

2
0 3 ,b ac∆ = −
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determines what type of critical points the function has. If Δ0 > 0, then the cubic function has a 
local maximum and a local minimum. If Δ0 = 0, then the cubic’s inflection point is the only critical 
point. If Δ0 < 0, then there are no critical points. In cases where Δ0 ≤ 0, the cubic function is strictly 
monotonic. The adjacent diagram is an example of the case where Δ0 > 0. The other two cases do 
not have the local maximum or the local minimum but still have an inflection point. 

The value of Δ0 also plays an important role in determining the nature of the roots of the cubic 
equation and in the calculation of those roots. 

The inflection point of a function is where that function changes concavity. The inflection point of 
our cubic function occurs at: 

inflection ,
3
bx
a

= −

a value that is also important in solving the cubic equation. The cubic function has point symmetry 
about its inflection point. 

All of the above assumes that the coefficients are real as well as the variable x. 

QUARTIC FUNCTION

In mathematics, a quartic function, is a function of the form where a is nonzero, which is de-
fined by a polynomial of degree four, called quartic polynomial. Sometimes the term biquadratic 
is used instead of quartic, but, usually, biquadratic function refers to a quadratic function of 
a square, having the form A quartic equation, or equation of the fourth degree, is an equation 
consisting in equating to zero a quartic polynomial, of the form where a ≠ 0. The derivative of a 
quartic function is a cubic function. Since a quartic function is defined by a polynomial of even 
degree, it has the same infinite limit when the argument goes to positive or negative infinity. If 
a is positive, then the function increases to positive infinity at both sides; and thus the function 
has a global minimum. Likewise, if a is negative, it decreases to negative infinity and has a global 
maximum. In both cases it may have, but not always, another local maximum and another local 
minimum. The degree four is the highest degree such that every polynomial equation can be 
solved by radicals.

Quartic function, the fourth degree polynomial ( ) 4 3 2
4 3 2 1 0   f x a x a x a x a x a+ + + +

Transformation of the quartic polynomial from the general to the source form.

To get the source quartic function we plug the coordinates of translations:

( )
4 2 2 3

1 3 3 4 3 2 4 3 1 4 0
0 0 0 3

4 4

3 16 64 256and
4 256

n

n

a a a a a a a a a a ax y f x
n a a a

− − + − +
= = − = =

⋅

(with changed signs) into general form of the quartic polynomial,

( ) ( ) ( ) ( )4 3 2
0 4 0 3 0 2 0 1 0 0             ,+ = + + + + + + + +y y a x x a x x a x x a x x a
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after expanding and reducing obtained is the source quartic function

3 22
3 4 3 2 4 14 2 3 24

4 2 1 2 1 2
4 4

4 83 8where, and
8 8

α α α α α αα α αα α α α α
α α

− +− +
= + =y x x x .

The basic classification criteria applied to the source quartic polynomial shows the diagram.

4 2
4 2 1α α α= + +y x x x

Thus, there are ten types (different shapes of graphs) of quartic functions. Applying additional cri-
teria defined are the conditions remaining six types of the quartic polynomial functions to appear.

Observe that the basic criteria of the classification separates even and odd nth degree polynomials 
called the power functions or monomials as the first type, since all coefficients a of the source func-
tion vanish. 

Therefore, the first type of the qurtic polynomial.

( )44 3 2
4 3 2 1 0 0 4 0 2 1or , 0and 0.α α α α α α α α= + + + + − = − = =y x x x x y y x x

If 4 0 0α ⋅ ≤y then the roots are 041,2 0
4α

= ± −
yx x . The turning point T(x0 , y0 ).

QUINTIC FUNCTION

In algebra, a quintic function is a function of the form

5 4 3 2( ) ,g x ax bx cx dx ex f= + + + + +
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where a, b, c, d, e and f are members of a field, typically the rational numbers, the real numbers or 
the complex numbers, and a is nonzero. In other words, a quintic function is defined by a polyno-
mial of degree five.

Graph of a polynomial of degree 5,  
with 3 real zeros (roots) and 4 critical points.

If a is zero but one of the coefficients b, c, d, or e is non-zero, the function is classified as either 
a quartic function, cubic function, quadratic function or linear function.

Because they have an odd degree, normal quintic functions appear similar to normal cubic func-
tions when graphed, except they may possess an additional local maximum and local minimum 
each. The derivative of a quintic function is a quartic function.

Setting g(x) = 0 and assuming a ≠ 0 produces a quintic equation of the form:

5 4 3 2 0.ax bx cx dx ex f+ + + + + =

Solving quintic equations in terms of radicals was a major problem in algebra, from the 16th centu-
ry, when cubic and quartic equations were solved, until the first half of the 19th century, when the 
impossibility of such a general solution was proved (Abel–Ruffini theorem).

ALGEBRAIC EQUATIONS

An algebraic equation in n variables is an polynomial equation of the form.

( ) 1 2

1 2

1

1 2 , ,.., 1 2
,..,

, ,..., ... 0,n

n
n

ee e
n e e e n

e e
f x x x c x x x= =∑

where the coefficients 
1 2, ,.., ne e ec  are integers (where the exponents ie  are nonnegative integers and 

the sum is finite).

Examples of algebraic equations are given in the following table.

Curve Equation

Cayley’s sextic ( ) ( )3 22 2 2 24 27 0x y x x y+ − − + =

Eight curve ( )4 2 2 0x x y− − =

Line through ( ) ( )1,0 and 0,1 1 0x y+ − =
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Plane through ( )1,0,0 , 1 0x y z+ + − =

( ) ( )0,1,0 , and 0,0,1

Unit circle 2 2 1 0x y− − =

Unit sphere 2 2 2 1 0x y z− + − =

The roots of an algebraic equation in one variable are known as algebraic numbers.

Solving Algebraic Equations

For theoretical work and applications one often needs to find numbers that, when substituted for 
the unknown, make a certain polynomial equal to zero. Such a number is called a “root” of the 
polynomial. For example, the polynomial.

−16t2 + 88t + 48

represents the height above Earth at t seconds of a projectile thrown straight up at 88 feet per sec-
ond from the top of a tower 48 feet high. (The 16 in the formula comes from one-half the accelera-
tion of gravity, 32 feet per second per second.) By setting the equation equal to zero and factoring it 
as (4t − 24)(−4t − 2) = 0, the equation’s one positive root is found to be 6, meaning that the object 
will hit the ground about 6 seconds after it is thrown. (This problem also illustrates the important 
algebraic concept of the zero factor property: if ab = 0, then either a = 0 or b = 0).

The theorem that every polynomial has as many complex roots as its degree is known as the fun-
damental theorem of algebra and was first proved in 1799 by the German mathematician Carl 
Friedrich Gauss. Simple formulas exist for finding the roots of the general polynomials of degrees 
one and two, and much less simple formulas exist for polynomials of degrees three and four. The 
French mathematician Évariste Galois discovered, shortly before his death in 1832, that no such 
formula exists for a general polynomial of degree greater than four. Many ways exist, however, of 
approximating the roots of these polynomials.

Liner and quadratic formulas

2
2

0

4
0

2

bax b x
a

b b ac
ax bx c x

a

−
+ = ⇒ =

− ± −
+ + = ⇒ =

2
2

0

4
0

2

bax b x
a

b b ac
ax bx c x

a

−
+ = ⇒ =

− ± −
+ + = ⇒ =

Solving Systems of Algebraic Equations

An extension of the study of single equations involves multiple equations that are solved simulta-
neously—so-called systems of equations. For example, the intersection of two straight lines, ax + b
y = c and Ax + By = C, can be found algebraically by discovering the values of x and y that simulta-
neously solve each equation. The earliest systematic development of methods for solving systems 
of equations occurred in ancient China. An adaptation of a problem from the 1st-century-AD Chi-
nese classic Nine Chapters on the Mathematical Procedures illustrates how such systems arise. 
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Imagine there are two kinds of wheat and that you have four sheaves of the first type and five 
sheaves of the second type. Although neither of these is enough to produce a bushel of wheat, you 
can produce a bushel by adding three sheaves of the first type to five of the second type, or you can 
produce a bushel by adding four sheaves of the first type to two of the second type. What fraction 
of a bushel of wheat does a sheaf of each type of wheat contain?

Using modern notation, suppose we have two types of wheat, respectively, and x and y represent 
the number of bushels obtained per sheaf of the first and second types, respectively. Then the 
problem leads to the system of equations:

3x + 5y = 1 (bushel)

4x + 2y = 1 (bushel)

A simple method for solving such a system is first to solve either equation for one of the variables. 
For example, solving the second equation for y yields y = 1/2 − 2x. The right side of this equation 
can then be substituted for y in the first equation (3x + 5y = 1), and then the first equation can be 
solved to obtain x (= 3/14). Finally, this value of x can be substituted into one of the earlier equa-
tions to obtain y (= 1/14). Thus, the first type yields 3/14 bushels per sheaf and the second type 
yields 1/14. Note that the solution (3/14, 1/14) would be difficult to discern by graphing techniques. 
In fact, any precise value based on a graphing solution may be only approximate; for example, the 
point (0.0000001, 0) might look like (0, 0) on a graph, but even such a small difference could have 
drastic consequences in the real world.

Rather than individually solving each possible system of two equations in two unknowns, the gen-
eral system can be solved. To return to the general equations given above:

ax + by = c

Ax + By = C

The solutions are given by x = (Bc − bC)/(aB − Ab) and y = (Ca − cA)/(aB − Ab). Note that the denom-
inator of each solution, (aB − Ab), is the same. It is called the determinant of the system, and systems 
in which the denominator is equal to zero have either no solution (in which case the equations repre-
sent parallel lines) or infinitely many solutions (in which case the equations represent the same line).

One can generalize simultaneous systems to consider m equations in n unknowns. In this case, one 
usually uses subscripted letters x1, x2, …, xn for the unknowns and a1, 1, …, a1, n; a2, 1, …, a2, n; …; am, 

1, …, am, n for the coefficients of each equation, respectively. When n = 3 one is dealing with planes 
in three-dimensional space, and for higher values of n one is dealing with hyperplanes in spaces of 
higher dimension. In general, n equations in m unknowns have infinitely many solutions when m < n 
and no solutions when m > n. The case m = n is the only case where there can exist a unique solution.

LINEAR EQUATION

In mathematics, a linear equation is an equation that may be put in the form: 

1 1 0,n na x a x b+ + + =
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where 1, , nx x… are the variables (or unknowns or indeterminates), and 1, , , nb a a… are the coef-
ficients, which are often real numbers. The coefficients may be considered as parameters of the 
equation, and may be arbitrary expressions, provided they do not contain any of the variables. To 
yield a meaningful equation, the coefficient s 1, , na a… are required to not be all zero. 

In other words, a linear equation is obtained by equating to zero a linear polynomial over some 
field, from which the coefficients are taken (the symbols used for the variables are supposed to not 
denote any element of the field). 

The solutions of such an equation are the values that, when substituted for the unknowns, make 
the equality true. 

In the case of just one variable, there is exactly one solution (provided that 1 0)a ≠ . Often, the term 
linear equation refers implicitly to this particular case, in which the variable is sensibly called the 
unknown. 

In the case of two variables, each solution may be interpreted as the Cartesian coordinates of a 
point of the Euclidean plane. The solutions of a linear equation form a line in the Euclidean plane, 
and, conversely, every line can be viewed as the set of all solutions of a linear equation in two vari-
ables. This is the origin of the term linear for describing this type of equations. More generally, the 
solutions of a linear equation in n variables form a hyperplane (a subspace of dimension n − 1) in 
the Euclidean space of dimension n. 

Linear equations occur frequently in all mathematics and their applications in physics and engi-
neering, partly because non-linear systems are often well approximated by linear equations. 

One Variable

Frequently the term linear equation refers implicitly to the case of just one variable. 

In this case, the equation can be put in the form 

0,ax b+ =

and it has a unique solution 

bx
a

= −

in the general case where a ≠ 0. In this case, the name unknown is sensibly given to the variable x. 

If a = 0, there are two cases. Either b equals also 0, and every number is a solution. Otherwise b ≠ 
0, and there is no solution. In this latter case, the equation is said to be inconsistent. 

Two Variables

In the case of two variables, any linear equation can be put in the form 

0,ax by c+ + =

where the variables are x and y, and the coefficients are a, b and c. 
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An equivalent equation (that is an equation with exactly the same solutions) is 

,Ax By C+ =

with A = a, B = b, and C = –c.

These equivalent variants are sometimes given generic names, such as general form or standard 
form. 

There are other forms for a linear equation, which can all be transformed in the standard form 
with simple algebraic manipulations, such as adding the same quantity to both members of the 
equation, or multiplying both members by the same nonzero constant. 

Linear Function

If b ≠ 0, the equation 

0ax by c+ + =

is a linear equation in the single variable y for every value of x. It has therefore a unique solution 
for y, which is given by 

.a cy x
b b

= − −

This defines a function. The graph of this function is a line with slope a
b

−  and y-intercept .c
b

−

The functions whose graph is a line are generally called linear functions in the context of calculus. 
However, in linear algebra, a linear function is a function that maps a sum to the sum of the im-
ages of the summands. So, for this definition, the above function is linear only when c = 0, that is 
when the line passes through the origin. For avoiding confusion, the functions whose graph is an 
arbitrary line are often called affine functions. 

Geometric Interpretation

Vertical line of equation x = a. Horizontal line of equation y = b.

Each solution (x, y) of a linear equation 

0ax by c+ + =
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may be viewed as the Cartesian coordinates of a point in the Euclidean plane. With this interpreta-
tion, all solutions of the equation form a line, provided that a and b are not both zero. Conversely, 
every line is the set of all solutions of a linear equation. 

The phrase “linear equation” takes its origin in this correspondence between lines and equations: 
a linear equation in two variables is an equation whose solutions form a line. 

If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding section. If b 

= 0, the line is a vertical line (that is a line parallel to the y-axis) of equation ,cx
a

= − which is not 
the graph of a function of x. 

Similarly, if a ≠ 0, the line is the graph of a function of y, and, if a = 0, one has a horizontal line of 

equation .cy
b

= −

Equation of a Line

There are various ways of defining a line. In the following subsections, a linear equation of the line 
is given in each case. 

Slope–intercept Form

A non-vertical line can be defined by its slope (mathematics) m, and its y-intercept y0 (the y coor-
dinate of its intersection with the y-axis). In this case its linear equation can be written 

0.y mx y= +

If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x0. In this 
case, its equation can be written 

0( ),y m x x= −

or, equivalently, 

0.y mx mx= −

These form rely on the habit of considering a non vertical line as the graph of a function. For a line 
given by an equation 

0+ + =ax by c

these forms can be easily deduced from the relations 

0

0

,

,

.

am
b
cx
a
cy
b

= −

= −

= −
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Point–slope Form

A non-vertical line can be defined by its slope (mathematics) m, and the coordinates 1 1,x y of any 
point of the line. In this case, a linear equation of the line is 

1 1

1 1

or
( ),

.

y y m x x

y mx y mx

= + −

= + −

or
1 1

1 1

or
( ),

.

y y m x x

y mx y mx

= + −

= + −

This equation can also be written 

1 1( )y y m x x− = −

for emphasizing that the slope of a line can be computed from the coordinates of any two points. 

Intercept Form

A line that is not parallel to an axis and does not passes through origin cuts the axes in two differ-
ent points. The intercept values x0 and y0 of these two points are nonzero, and an equation of the 
line is

0 0

1.x y
x y
+ =

(It easy to verify that the line defined by this equation has x0 and y0 as intercept values). 

Two-point Form

Given two different points (x1, y1) and (x2, y2), there is exactly one line that passes through them. 
There are several ways to write a linear equation of is line.

If x1 ≠ x2, the slope of the line is 2 1

2 1

.y y
x x
−
−

 Thus, a point-slope form is 

2 1
1 1

2 1

( ).y yy y x x
x x
−

− = −
−

By clearing denominators, one gets the equation 

2 1 1 2 1 1( )( ) ( )( ) 0,x x y y y y x x− − − − − =

which is valid also when x1 = x2 (for verifying this, it suffices to verify that the two given points 
satisfy the equation). 

This form is not symmetric in the two given points, but a symmetric form can be obtained by re-
grouping the constant terms: 

1 2 2 1 1 2 2 1( ) ( ) ( ) 0y y x x x y x y x y− + − + − =

(exchanging the two points changes the sign of the left-hand side of the equation). 
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Determinant Form

The two-point form of the equation of a line can be expressed simply in terms of a determinant. 
There are two common ways for that. 

The equation 2 1 1 2 1( )( ) ( )( ) 0jx x y y y y x x− − − − − =  is the result of expanding the determinant in 
the equation 

1 1

2 1 2 1

0.
x x y y
x x y y
− −

=
− −

The equation 1 2 2 1 1 2 2 1( ) ( ) ( ) 0y y x x x y x y x y− + − + − = can be obtained be expanding with respect 
to its first row the determinant in the equation 

1 1

2 2

1
1 0.
1

x y
x y
x y

=

Beside being very simple and mnemonic, this form has the advantage of being a special case of 
the more general equation of a hyperplane passing through n points in a space of dimension n – 1. 
These equations rely on the condition of linear dependence of points in a projective space. 

More than two Variables

A linear equation with more than two variables may always be assumed to have the form 

1 1 2 2 0.n na x a x a x b+ + + + =

The coefficient b, often denoted a0 is called the constant term, sometimes the absolute term. De-
pending of the context, the term coefficient can be reserved for the ai with i > 0. 

When dealing with 3n = variables, it is common to use x,y and z instead of indexed variables. 

A solution of such an equation is a n-tuples such that substituting each element of the tuple for the 
corresponding variable transforms the equation into a true equality. 

For an equation to be meaningful, the coefficient of at least one variable must be non-zero. In fact, 
if every variable has a zero coefficient, then, as mentioned for one variable, the equation is either 
inconsistent (for b ≠ 0) as having no solution, or all n-tuples are solutions. 

The n-tuples that are solutions of a linear equation in n variables are the Cartesian coordinates of 
the points of an (n − 1)-dimensional hyperplane in an n-dimensional Euclidean space (or affine 
space if the coefficients are complex numbers or belong to any field). In the case of three variable, 
this hyperplane is a plane. 

If a linear equation is given with aj ≠ 0, then the equation can be solved for xj, yelding 

{1, , },
.i

j i
i n i jj j

abx x
a a∈ … ≠

= − − ∑
If the coefficients are real numbers, this defines a real-valued function of n real variables. 
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QUADRATIC EQUATION

2 4
2

b b acx
a

− ± −
=

The quadratic formula for the roots of the general quadratic equation.

In algebra, a quadratic equation is any equation having the form 

2 0,ax bx c+ + =

where x represents an unknown, and a, b, and c represent known numbers, with a ≠ 0. If a= 0, 
then the equation is linear, not quadratic, as there is no 2ax term. The numbers a, b, and c are the 
coefficients of the equation and may be distinguished by calling them, respectively, the quadratic 
coefficient, the linear coefficient and the constant or free term. 

The values of x that satisfy the equation are called solutions of the equation, and roots or zeros 
of its left-hand side. A quadratic equation has at most two solutions. If there is no real solution, 
there are two complex solutions. If there is only one solution, one says that it is a double root. So 
a quadratic equation has always two roots, if complex roots are considered, and if a double root is 
counted for two. If the two solutions are denoted r and s (possibly equal), one has 

2 ( )( ).ax bx c a x r x s+ + = − −

Thus, the process of solving a quadratic equation is also called factorizing or factoring. Com-
pleting the square is the standard method for that, which results in the quadratic formula, which 
express the solutions in terms of a, b, and c. Graphing may also be used for getting an approximate 
value of the solutions. Solutions to problems that may be expressed in terms of quadratic equa-
tions were known as early as 2000 BC. 

Because the quadratic equation involves only one unknown, it is called “univariate”. The quadratic 
equation only contains powers of x that are non-negative integers, and therefore it is a polynomial 
equation. In particular, it is a second-degree polynomial equation, since the greatest power is two.

Solving the Quadratic Equation

Plots of quadratic function y = ax2 + bx + c, varying each coefficient  
separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0).
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A quadratic equation with real or complex coefficients has two solutions, called roots. These two 
solutions may or may not be distinct, and they may or may not be real. 

Factoring by Inspection

It may be possible to express a quadratic equation ax2 + bx + c = 0 as a product (px + q)(rx + s) = 
0. In some cases, it is possible, by simple inspection, to determine values of p, q, r, and s that make 
the two forms equivalent to one another. If the quadratic equation is written in the second form, 
then the “Zero Factor Property” states that the quadratic equation is satisfied if px + q = 0 or rx + 
s = 0. Solving these two linear equations provides the roots of the quadratic. 

For most students, factoring by inspection is the first method of solving quadratic equations to 
which they are exposed. If one is given a quadratic equation in the form x2 + bx + c = 0, the sought 
factorization has the form (x + q)(x + s), and one has to find two numbers q and s that add up to b 
and whose product is c (this is sometimes called “Vieta’s rule” and is related to Vieta’s formulas). 
As an example, x2 + 5x + 6 factors as (x + 3)(x + 2). The more general case where a does not equal 
1 can require a considerable effort in trial and error guess-and-check, assuming that it can be fac-
tored at all by inspection. 

Except for special cases such as where b = 0 or c = 0, factoring by inspection only works for qua-
dratic equations that have rational roots. This means that the great majority of quadratic equations 
that arise in practical applications cannot be solved by factoring by inspection.

Completing the Square

For the quadratic function y = x2 − x − 2, the points where the graph crosses the  
x-axis, x = −1 and x = 2, are the solutions of the quadratic equation x2 − x − 2 = 0.

The process of completing the square makes use of the algebraic identity,

2 2 22 ( ) ,x hx h x h+ + = +

which represents a well-defined algorithm that can be used to solve any quadratic equation.  
Starting with a quadratic equation in standard form, ax2 + bx + c = 0.

1. Divide each side by a, the coefficient of the squared term.

2. Subtract the constant term c/a from both sides.
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3. Add the square of one-half of b/a, the coefficient of x, to both sides. This “completes the 
square”, converting the left side into a perfect square.

4. Write the left side as a square and simplify the right side if necessary.

5. Produce two linear equations by equating the square root of the left side with the positive 
and negative square roots of the right side.

6. Solve the two linear equations.

We illustrate use of this algorithm by solving 2x2 + 4x − 4 = 0 

21) 2 2 0x x+ − =

22) 2 2x x+ =

23) 2 1 2 1x x+ + = +

( )24) 1 3x + =

5) 1 3x + = ±

6) 1 3x = − ±

The plus-minus symbol “±” indicates that both x = −1 + 3 and x = −1 − 3  are solutions of the 
quadratic equation. 

Quadratic Formula and its Derivation

Completing the square can be used to derive a general formula for solving quadratic equations, called 
the quadratic formula. The mathematical proof will now be briefly summarized. It can easily be seen, 
by polynomial expansion, that the following equation is equivalent to the quadratic equation:

2 2

2

4
2 4

− + = 
 

b b acx
a a

.

Taking the square root of both sides, and isolating x, gives: 

2 4 .
2

b b acx
a

− ± −
=

Some sources, particularly older ones, use alternative parameterizations of the quadratic equation 
such as ax2 + 2bx + c = 0 or ax2 − 2bx + c = 0, where b has a magnitude one half of the more com-
mon one, possibly with opposite sign. These result in slightly different forms for the solution, but 
are otherwise equivalent. 

A number of alternative derivations can be found in the literature. These proofs are simpler than 
the standard completing the square method, represent interesting applications of other frequently 
used techniques in algebra, or offer insight into other areas of mathematics. 
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A lesser known quadratic formula, as used in Muller’s method provides the same roots via the 
equation: 

2

2 .
4

cx
b b ac

=
− ± −

This can be deduced from the standard quadratic formula by Vieta’s formulas, which assert that 
the product of the roots is c/a. 

One property of this form is that it yields one valid root when a = 0, while the other root contains 
division by zero, because when a = 0, the quadratic equation becomes a linear equation, which has 
one root. By contrast, in this case, the more common formula has a division by zero for one root and 
an indeterminate form 0/0 for the other root. On the other hand, when c = 0, the more common for-
mula yields two correct roots whereas this form yields the zero root and an indeterminate form 0/0.

Reduced Quadratic Equation

It is sometimes convenient to reduce a quadratic equation so that its leading coefficient is one. This 
is done by dividing both sides by a, which is always possible since a is non-zero. This produces the 
reduced quadratic equation: 

2 0,x px q+ + =

where p = b/a and q = c/a. This monic equation has the same solutions as the original. 

The quadratic formula for the solutions of the reduced quadratic equation, written in terms of its 
coefficients, is: 

( )21 4 ,
2

x p p q= − ± −

or equivalently: 

2

.
2 2
p px q = − ± − 

 

Discriminant

Discriminant signs.
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In the quadratic formula, the expression underneath the square root sign is called the discriminant of 
the quadratic equation, and is often represented using an upper case D or an upper case Greek delta:

2 4 .b ac∆ = −

A quadratic equation with real coefficients can have either one or two distinct real roots, or two 
distinct complex roots. In this case the discriminant determines the number and nature of the 
roots. There are three cases: 

• If the discriminant is positive, then there are two distinct roots

and ,
2 2

b b
a a

− + ∆ − − ∆

both of which are real numbers. For quadratic equations with rational coefficients, if the 
discriminant is a square number, then the roots are rational—in other cases they may be 
quadratic irrationals.

• If the discriminant is zero, then there is exactly one real root

,
2
b
a

−

sometimes called a repeated or double root.

• If the discriminant is negative, then there are no real roots. Rather, there are two distinct 
(non-real) complex roots

Ä Äand ,
2 2 2 2
b bi i
a a a a

− −
+ − −

which are complex conjugates of each other. In these expressions i is the imaginary unit.

Thus the roots are distinct if and only if the discriminant is non-zero, and the roots are real if and 
only if the discriminant is non-negative. 

Geometric Interpretation

________________________ WORLD TECHNOLOGIES ________________________



WT

116  Algebra: A Comprehensive Course

Graph of y = ax2 + bx + c, where a and the discriminant b2 − 4ac are positive, with

• Roots and y-intercept in red.

• Vertex and axis of symmetry in blue.

• Focus and directrix in pink.

Visualisation of the complex roots of y = ax2 + bx + c: the parabola is rotated 180°  
about its vertex (orange). Its x-intercepts are rotated 90° around their mid-point,  

and the Cartesian plane is interpreted as the complex plane (green).

The function f(x) = ax2 + bx + c is the quadratic function. The graph of any quadratic function has 
the same general shape, which is called a parabola. The location and size of the parabola, and how 
it opens, depend on the values of a, b, and c. As shown in figure, if a > 0, the parabola has a mini-
mum point and opens upward. If a < 0, the parabola has a maximum point and opens downward. 
The extreme point of the parabola, whether minimum or maximum, corresponds to its vertex. 
The x-coordinate of the vertex will be located at 2 ,b

ax −=  and the y-coordinate of the vertex may be 

found by substituting this x-value into the function. The y-intercept is located at the point (0, c). 

The solutions of the quadratic equation ax2 + bx + c = 0 correspond to the roots of the function f(x) 
= ax2 + bx + c, since they are the values of x for which f(x) = 0. As shown in figure, if a, b, and c are 
real numbers and the domain of f is the set of real numbers, then the roots of f are exactly the x-co-
ordinates of the points where the graph touches the x-axis. As shown in figure, if the discriminant 
is positive, the graph touches the x-axis at two points; if zero, the graph touches at one point; and 
if negative, the graph does not touch the x-axis. 

Quadratic Factorization

The term 

x r−
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is a factor of the polynomial 
2ax bx c+ +

if and only if r is a root of the quadratic equation 

2 0.ax bx c+ + =

It follows from the quadratic formula that 

2 2
2 4 4 .

2 2
b b ac b b acax bx c a x x

a a

  − + − − − −
+ + = − −    

  

In the special case b2 = 4ac where the quadratic has only one distinct root (i.e. the discriminant is 
zero), the quadratic polynomial can be factored as 

2
2 .

2
bax bx c a x
a

 + + = + 
 

Graphical Solution

Graphing calculator computation of one of the two roots of the quadratic equation  
2x2 + 4x − 4 = 0. Although the display shows only five significant figures of accuracy,  
the retrieved value of xc is 0.732050807569, accurate to twelve significant figures.

A quadratic function without real root: y = (x − 5)2 + 9. The “3” is the imaginary part  
of the x-intercept. The real part is the x-coordinate of the vertex. Thus the roots are 5 ± 3i.
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The solutions of the quadratic equation 

ax bx c+ + =

may be deduced from the graph of the quadratic function 

2 ,y ax bx c= + +

which is a parabola. 

If the parabola intersects the x-axis in two points, there are two real roots, which are the x-coordi-
nates of these two points (also called x-intercept). 

If the parabola is tangent to the x-axis, there is a double root, which is the x-coordinate of the con-
tact point between the graph and parabola. 

If the parabola does not intersect the x-axis, there are two complex conjugate roots. Although these 
roots cannot be visualized on the graph, their real and imaginary parts can be. 

Let h and k be respectively the x-coordinate and the y-coordinate of the vertex of the parabola (that 
is the point with maximal or minimal y-coordinate. The quadratic function may be rewritten 

2( ) .y a x h k= − +

Let d be the distance between the point of y-coordinate 2k on the axis of the parabola, and a point 
on the parabola with the same y-coordinate. Then the real part of the roots is h, and their imagi-
nary part are ±d. That is, the roots are 

and ,h id x id+ −

or in the case of the example of the figure 

5 3 and 5 3 .i i+ −

Avoiding Loss of Significance

Although the quadratic formula provides an exact solution, the result is not exact if real numbers 
are approximated during the computation, as usual in numerical analysis, where real numbers are 
approximated by floating point numbers (called “reals” in many programming languages). In this 
context, the quadratic formula is not completely stable. 

This occurs when the roots have different order of magnitude, or, equivalently, when b2 and 
b2 − 4ac are close in magnitude. In this case, the subtraction of two nearly equal numbers will 
cause loss of significance or catastrophic cancellation in the smaller root. To avoid this, the root 
that is smaller in magnitude, r, can be computed as ( / ) /c a R where R is the root that is bigger 
in magnitude.

A second form of cancellation can occur between the terms b2 and 4ac of the discriminant, that is 
when the two roots are very close. This can lead to loss of up to half of correct significant figures 
in the roots. 
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Examples and Applications

The trajectory of the cliff jumper is parabolic because horizontal displacement is a linear function 
of time xx v t= , while vertical displacement is a quadratic function of time 21

2 yy at v t h= + + . As a 
result, the path follows quadratic equation 2

2
2

y

xx

va
vv

y x x h= + + , where xv and yv are horizontal and 
vertical components of the original velocity, a is gravitational acceleration and h is original height. 
The a value should be considered negative here, as its direction (downwards) is opposite to the 
height measurement (upwards).

The golden ratio is found as the positive solution of the quadratic equation 2 1 0.x x− − =

The equations of the circle and the other conic sections—ellipses, parabolas, and hyperbolas—are 
quadratic equations in two variables. 

Given the cosine or sine of an angle, finding the cosine or sine of the angle that is half as large in-
volves solving a quadratic equation. 

The process of simplifying expressions involving the square root of an expression involving the 
square root of another expression involves finding the two solutions of a quadratic equation. 

Descartes’ theorem states that for every four kissing (mutually tangent) circles, their radii satisfy a 
particular quadratic equation. 

The equation given by Fuss’ theorem, giving the relation among the radius of a bicentric quadrilat-
eral’s inscribed circle, the radius of its circumscribed circle, and the distance between the centers 
of those circles, can be expressed as a quadratic equation for which the distance between the two 
circles’ centers in terms of their radii is one of the solutions. The other solution of the same equa-
tion in terms of the relevant radii gives the distance between the circumscribed circle’s center and 
the center of the excircle of an ex-tangential quadrilateral. 

Alternative Methods of Root Calculation

Vieta’s Formulas
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Graph of the difference between Vieta’s approximation for the smaller of the two roots of the qua-
dratic equation x2 + bx + c = 0 compared with the value calculated using the quadratic formula. 
Vieta’s approximation is inaccurate for small b but is accurate for large b. The direct evaluation 
using the quadratic formula is accurate for small b with roots of comparable value but experienc-
es loss of significance errors for large b and widely spaced roots. The difference between Vieta’s 
approximation versus the direct computation reaches a minimum at the large dots, and rounding 
causes squiggles in the curves beyond this minimum.

Vieta’s formulas give a simple relation between the roots of a polynomial and its coefficients. In the 
case of the quadratic polynomial, they take the following form: 

1 2
bx x
a

+ = −

and 

1 2 .cx x
a

=

These results follow immediately from the relation: 

( )( ) ( )2
1 2 1 2 1 2 0,x x x x x x x x x x− − = − + + =

which can be compared term by term with 

2 ( / ) / 0.x b a x c a+ + =

The first formula above yields a convenient expression when graphing a quadratic function. Since 
the graph is symmetric with respect to a vertical line through the vertex, when there are two real 
roots the vertex’s x-coordinate is located at the average of the roots (or intercepts). Thus the x-co-
ordinate of the vertex is given by the expression, 

1 2 .
2 2V

x x bx
a

+
= = −

The y-coordinate can be obtained by substituting the above result into the given quadratic equa-
tion, giving, 

2 2 4 .
4 4V
b b acy c
a a

−
= − + = −

As a practical matter, Vieta’s formulas provide a useful method for finding the roots of a quadratic 
in the case where one root is much smaller than the other. If | x 2| << | x 1|, then x 1 + x 2 ≈ x 1, and
we have the estimate: 

1 .bx
a

≈ −

The second Vieta’s formula then provides: 

2
1

.c cx
ax b

= ≈ −
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These formulas are much easier to evaluate than the quadratic formula under the condition of one 
large and one small root, because the quadratic formula evaluates the small root as the difference 
of two very nearly equal numbers (the case of large b), which causes round-off error in a numerical 
evaluation. As the linear coefficient b increases, initially the quadratic formula is accurate, and the 
approximate formula improves in accuracy, leading to a smaller difference between the methods 
as b increases. However, at some point the quadratic formula begins to lose accuracy because of 
round off error, while the approximate method continues to improve. Consequently, the difference 
between the methods begins to increase as the quadratic formula becomes worse and worse. 

This situation arises commonly in amplifier design, where widely separated roots are desired to 
ensure a stable operation.

Trigonometric Solution

In the days before calculators, people would use mathematical tables—lists of numbers showing 
the results of calculation with varying arguments—to simplify and speed up computation. Spe-
cialized tables were published for applications such as astronomy, celestial navigation and statis-
tics. Methods of numerical approximation existed, called prosthaphaeresis, that offered shortcuts 
around time-consuming operations such as multiplication and taking powers and roots. Astron-
omers, especially, were concerned with methods that could speed up the long series of computa-
tions involved in celestial mechanics calculations. 

It is within this context that we may understand the development of means of solving quadratic 
equations by the aid of trigonometric substitution. Consider the following alternate form of the 
quadratic equation, 

2 0,ax bx c+ ± =

where the sign of the ± symbol is chosen so that a and c may both be positive. By substituting 

/ tanx c a

and then multiplying through by cos2 θ, we obtain 

2 2sin sin cos cos 0.b
ac

θ θ θ θ+ ± =

Introducing functions of 2θ and rearranging, we obtain 

tan 2 2 ,n
ac
b

θ = +

sin 2 2 ,p
ac
b

θ = −

where the subscripts n and p correspond, respectively, to the use of a negative or positive 
sign in equation 2 0,ax bx c+ ± = . Substituting the two values of θn or θp found from equa-

tions tan 2 2 ,n
ac
b

θ = + or sin 2 2 ,p
ac
b

θ = −  into / tanx c a θ=  gives the required roots of 
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2 0,ax bx c+ ± = . Complex roots occur in the solution based on equation if the absolute value of sin 
2θp exceeds unity. The amount of effort involved in solving quadratic equations using this mixed 
trigonometric and logarithmic table look-up strategy was two-thirds the effort using logarithmic 
tables alone. Calculating complex roots would require using a different trigonometric form. 

To illustrate, let us assume we had available seven-place logarithm and trigonometric tables, and 
wished to solve the following to six-significant-figure accuracy: 

24.16130 9.15933 11.4207 0x x+ − =

1. A seven-place lookup table might have only 100,000 entries, and computing intermediate 
results to seven places would generally require interpolation between adjacent entries.

2. log 0.6192290, log 0.9618637, log 1.0576927a b c= = =

3. (0.6192290 1.0576927)/2 0.96186372 / 2 10 1.505314ac b + −= × =

4. 1(tan 1.505314) / 2 28.20169  or 61.79831θ − ° °= = −

5. log | tan | 0.2706462 or 0.2706462θ = −

6. log / (1.0576927 0.6192290) / 2 0.2192318c a = − =

7. 0.2192318 0.2706462
1 10 0.888353x −= =  (rounded to six significant figures)

0.2192318 0.2706462
2 10 3.08943x += − = −

Solution for Complex Roots in Polar Coordinates

If the quadratic equation 2 0ax bx c+ + = with real coefficients has two complex roots—the case 
where 2 4 0,b ac− < requiring a and c to have the same sign as each other—then the solutions for 
the roots can be expressed in polar form as 

1 2, (cos sin ),θ θ= ±x x r i

where = c
ar  and ( )1

2cos .θ − −= b
ac

Geometric Solution

Geometric solution of ax2 + bx + c = 0 using Lill’s method.  
Solutions are −AX1/SA, −AX2/SA.
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The quadratic equation may be solved geometrically in a number of ways. One way is via Lill’s 
method. The three coefficients a, b, c are drawn with right angles between them as in SA, AB, and 
BC in Figure . A circle is drawn with the start and end point SC as a diameter. If this cuts the middle 
line AB of the three then the equation has a solution, and the solutions are given by negative of the 
distance along this line from A divided by the first coefficient a or SA. If a is 1 the coefficients may 
be read off directly. Thus the solutions in the diagram are −AX1/SA and −AX2/SA. 

Carlyle circle of the quadratic equation x2 − sx + p = 0.

The Carlyle circle, named after Thomas Carlyle, has the property that the solutions of the quadratic 
equation are the horizontal coordinates of the intersections of the circle with the horizontal axis. 
Carlyle circles have been used to develop ruler-and-compass constructions of regular polygons. 

Generalization of Quadratic Equation

The formula and its derivation remain correct if the coefficients a, b and c are complex numbers, 
or more generally members of any field whose characteristic is not 2. (In a field of characteristic 2, 
the element 2a is zero and it is impossible to divide by it).

The symbol, 

2 4b ac± −

in the formula should be understood as “either of the two elements whose square is b2 − 4ac, if 
such elements exist”. In some fields, some elements have no square roots and some have two; only 
zero has just one square root, except in fields of characteristic 2. Even if a field does not contain 
a square root of some number, there is always a quadratic extension field which does, so the qua-
dratic formula will always make sense as a formula in that extension field. 

Characteristic 2

In a field of characteristic 2, the quadratic formula, which relies on 2 being a unit, does not hold. 
Consider the monic quadratic polynomial, 

2x bx c+ +

over a field of characteristic 2. If b = 0, then the solution reduces to extracting a square root, so the 
solution is, 

x c=
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and there is only one root since, 

2 .c c c c− = − + =

In summary, 

2 2( ) .x c x c+ = +

In the case that b ≠ 0, there are two distinct roots, but if the polynomial is irreducible, they cannot 
be expressed in terms of square roots of numbers in the coefficient field. Instead, define the 2-root 
R(c) of c to be a root of the polynomial x2 + x + c, an element of the splitting field of that polyno-
mial. One verifies that R(c) + 1 is also a root. In terms of the 2-root operation, the two roots of the 
(non-monic) quadratic ax2 + bx + c are, 

2

b acR
a b

 
 
 

and

2 1 .b acR
a b
   +    

For example, let a denote a multiplicative generator of the group of units of F4, the Galois field of 
order four (thus a and a + 1 are roots of x2 + x + 1 over F4. Because (a + 1)2 = a, a + 1 is the unique 
solution of the quadratic equation x2 + a = 0. On the other hand, the polynomial x2 + ax + 1 is ir-
reducible over F4, but it splits over F16, where it has the two roots ab and ab + a, where b is a root 
of x2 + x + a in F16. 

This is a special case of Artin–Schreier theory. 

Imaginary Unit

i in the complex or cartesian plane. Real numbers lie on the horizontal axis,  
and imaginary numbers lie on the vertical axis.

The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x2 + 1 = 0. 
Although there is no real number with this property, i can be used to extend the real numbers to 
what are called complex numbers, using addition and multiplication. A simple example of the use 
of i in a complex number is 2 + 3i. 
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Imaginary numbers are an important mathematical concept, which extend the real number system 
 to the complex number system , which in turn provides at least one root for every nonconstant 
polynomial P(x). The term “imaginary” is used because there is no real number having a negative 
square. 

There are two complex square roots of −1, namely i and −i, just as there are two complex square 
roots of every real number other than zero, which has one double square root. 

In contexts where i is ambiguous or problematic, j or the Greek ι is sometimes used. In the disciplines 
of electrical engineering and control systems engineering, the imaginary unit is normally denoted by 
j instead of i, because i is commonly used to denote electric current.

The powers of i return cyclic values: 
... (repeats the pattern from blue area) 

i−3 = i 
i−2 = −1 
i−1 = −i 
i0 = 1 
i1 = i 

i2 = −1 
i3 = −i 
i4 = 1 
i5 = i 

i6 = −1 
... (repeats the pattern from the blue area) 

The imaginary number i is defined solely by the property that its square is −1: 

2 1.i = −

With i defined this way, it follows directly from algebra that i and −i are both square roots of −1. 

Although the construction is called “imaginary”, and although the concept of an imaginary number 
may be intuitively more difficult to grasp than that of a real number, the construction is perfectly 
valid from a mathematical standpoint. Real number operations can be extended to imaginary and 
complex numbers by treating i as an unknown quantity while manipulating an expression, and 
then using the definition to replace any occurrence of i2 with −1. Higher integral powers of i can 
also be replaced with −i, 1, i, or −1: 

3 2

4 3 2

5 4

( 1)
( ) ( ) ( 1) 1
(1)

i i i i i
i i i i i i
i i i i i

= = − = −

= = − = − = − − =

= = =

Similarly, as with any non-zero real number: 

0 1 1 1 1 1 1 1 1ii i i i i i
i i i

− −= = = = = =
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As a complex number, i is represented in rectangular form as 0 + 1⋅i, with a zero real compo-
nent and a unit imaginary component. In polar form, i is represented as 1⋅eiπ/2 (or just eiπ/2), 
with an absolute value (or magnitude) of 1 and an argument (or angle) of π/2. In the complex 
plane (also known as the Argand plane), which is a special interpretation of a Cartesian plane, 
i is the point located one unit from the origin along the imaginary axis (which is orthogonal to 
the real axis). 

i and −i

Being a quadratic polynomial with no multiple root, the defining equation x2 = −1 has two dis-
tinct solutions, which are equally valid and which happen to be additive and multiplicative in-
verses of each other. More precisely, once a solution i of the equation has been fixed, the value −i, 
which is distinct from i, is also a solution. Since the equation is the only definition of i, it appears 
that the definition is ambiguous (more precisely, not well-defined). However, no ambiguity re-
sults as long as one or other of the solutions is chosen and labelled as “i”, with the other one then 
being labelled as −i. This is because, although −i and i are not quantitatively equivalent (they 
are negatives of each other), there is no algebraic difference between i and −i. Both imaginary 
numbers have equal claim to being the number whose square is −1. If all mathematical text-
books and published literature referring to imaginary or complex numbers were rewritten with 
−i replacing every occurrence of +i (and therefore every occurrence of −i replaced by −(−i) = 
+i), all facts and theorems would continue to be equivalently valid. The distinction between the 
two roots x of x2 + 1 = 0 with one of them labelled with a minus sign is purely a notational relic; 
neither root can be said to be more primary or fundamental than the other, and neither of them 
is “positive” or “negative”. 

The issue can be a subtle one. The most precise explanation is to say that although the complex 
field, defined as   [x]/(x2 + 1), is unique up to isomorphism, it is not unique up to a unique iso-
morphism — there are exactly two field automorphisms of   [x]/(x2 + 1) which keep each real 
number fixed: the identity and the automorphism sending x to −x. 

Matrices

(x,y) is confined by hyperbola xy = –1 for an imaginary unit matrix.
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A similar issue arises if the complex numbers are interpreted as 2 × 2 real matrices (see matrix 
representation of complex numbers), because then both 

0 1
1 0

X
− 

=  
 

    and     
0 1
1 0

X  
=  − 

are solutions to the matrix equation 

2 1 0 1 0
.

0 1 0 1
X I

−   
= − = − =   −   

In this case, the ambiguity results from the geometric choice of which “direction” around the unit 
circle is “positive” rotation. A more precise explanation is to say that the automorphism group of 
the special orthogonal group SO(2,  ) has exactly two elements—the identity and the automor-
phism which exchanges “CW” (clockwise) and “CCW” (counter-clockwise) rotations. 

All these ambiguities can be solved by adopting a more rigorous definition of complex number, 
and explicitly choosing one of the solutions to the equation to be the imaginary unit. For example, 
the ordered pair (0, 1), in the usual construction of the complex numbers with two-dimensional 
vectors. 

Consider the matrix equation 
2 1 0

.
0 1

z x
y z

−   
=   − −   

Then 2 1z xy+ = − so the product xy is negative because 2  (1 ),xy z=− + thus the point (x, y) lies in 
quadrant II or IV. Furthermore, 

2 (1 ) 0 1z xy xy= − + ≥ ⇒ ≤ − so (x,y) is bounded by the hyperbola xy = –1.

Proper Use

The imaginary unit is sometimes written 1−  in advanced mathematics contexts (as well as in less 
advanced popular texts). However, great care needs to be taken when manipulating formulas in-
volving radicals. The radical sign notation is reserved either for the principal square root function, 
which is only defined for real x ≥ 0, or for the principal branch of the complex square root function. 
Attempting to apply the calculation rules of the principal (real) square root function to manipulate 
the principal branch of the complex square root function can produce false results: 

1 · 1· 1 ( 1)·( 1) 1 1i i− = = − − = − − = =  (incorrect).

Similarly: 

1 1 1 1 1
1 11

i
i

−
= = = = − =

−−
 (incorrect).

The calculation rules 

· ·a b a b=
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and 

a a
bb

=

are only valid for real, non-negative values of a and b. 

These problems are avoided by writing and manipulating expressions like i 7 , rather than 7 . 

Properties

Square Roots

The two square roots of i in the complex plane. The three cube roots of i in the complex plane.

i has two square roots, just like all complex numbers (except zero, which has a double root). These 
two roots can be expressed as the complex numbers:

2 2 2 (1 ).
2 2 2

i i
 

± + = ± +  
 

Indeed, squaring both expressions: 

2 2

2

2

2 2(1 ) (1 )
2 2

1 (1 2 )
2
1 (1 2 1)
2
.

i i

i i

i

i

   
± + = ± +      
   

= + +

= + −

=

Using the radical sign for the principal square root gives: 

2 (1 ).
2

i i= +
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Cube Roots

The three cube roots of i are: 

,

3 ,
2 2

3 .
2 2

i

i

i

−

+

− +

Similar to all of the roots of 1, all of the roots of i are the vertices of regular polygons inscribed 
within the unit circle in the complex plane. 

Multiplication and Division

Multiplying a complex number by i gives: 

2( ) .i a bi ai bi b ai+ = + = − +

(This is equivalent to a 90° counter-clockwise rotation of a vector about the origin in the complex 
plane). 

Dividing by i is equivalent to multiplying by the reciprocal of i: 

2

1 1· .
1

i i i i
i i i i
= = = = −

−

Using this identity to generalize division by i to all complex numbers gives: 

2( ) .a bi i a bi ai bi b ai
i
+

= − + = − − = −

(This is equivalent to a 90° clockwise rotation of a vector about the origin in the complex plane). 

Powers

The powers of i repeat in a cycle expressible with the following pattern, where n is any integer: 

4 1ni =
4 1ni i+ =
4 2 1ni + = −
4 3 ,ni i+ = −

This leads to the conclusion that: 

mod 4n ni i=
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where mod represents the modulo operation. Equivalently: 

cos( / 2) sin( / 2)ni n i nπ π= +

i Raised to the Power of i

Making use of Euler’s formula, ii is 

( ) 2( /2 2 ) ( /2 2 ) ( /2 2 )ii i k i k ki e e eπ π π π π π+ + − += = =

where ,k∈  the set of integers. 

The principal value (for k = 0) is e−π/2 or approximately 0.207879576... 

Factorial

The factorial of the imaginary unit i is most often given in terms of the gamma function evaluated 
at 1 + i: 

! (1 ) 0.4980 0.1549 .i i i= Γ + ≈ −

Also, 

| !|
sinh

i π
π

=

Other Operations

Many mathematical operations that can be carried out with real numbers can also be carried out 
with i, such as exponentiation, roots, logarithms, and trigonometric functions. All of the following 
functions are complex multi-valued functions, and it should be clearly stated which branch of the 
Riemann surface the function is defined on in practice. Listed below are results for the most com-
monly chosen branch. 

A number raised to the ni power is: 

cos( ln ) sin( ln ).nix n x i n x= +

The nith root of a number is: 

ln lncos sin .ni x xx i
n n

   = −   
   

The imaginary-base logarithm of a number is: 

2lnlog ( ) .i
xx

iπ
=

As with any complex logarithm, the log base i is not uniquely defined. 
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The cosine of i is a real number: 

21/ 1cos cosh1 1.54308064
2 2

e e ei
e

+ +
= = = ≈ …

And the sine of i is purely imaginary: 

21/ 1sin sinh1 (1.17520119 ) .
2 2

e e ei i i i i
e

− −
= = = ≈ …

Alternative Notations

• In electrical engineering and related fields, the imaginary unit is normally denoted by j to 
avoid confusion with electric current as a function of time, traditionally denoted by i(t) or 
just i. The Python programming language also uses j to mark the imaginary part of a com-
plex number. MATLAB associates both i and j with the imaginary unit, although 1i or 1j is 
preferable, for speed and improved robustness.

• Some texts use the Greek letter iota (ι) for the imaginary unit, to avoid confusion, especially 
with index and subscripts.

• Each of i, j, and k is an imaginary unit in the quaternions. In bivectors and biquaternions 
an additional imaginary unit h is used.

CUBIC EQUATION

Cubic equations and the nature of their roots.

A cubic equation has the form

3 2       0ax bx cx d+ + + =

It must have the term in x3 or it would not be cubic (and so a 0a ≠ ), but any or all of b, c and d can 
be zero. For instance, 

3 2 3 36  11 6 0,  4 57 0,  9 0x x x x x x− + − = + = + =

are all cubic equations.

Just as a quadratic equation may have two real roots, so a cubic equation has possibly three. But 
unlike a quadratic equation which may have no real solution, a cubic equation always has at least 
one real root. We will see why this is the case later. If a cubic does have three roots, two or even all 
three of them may be repeated. This gives us four possibilities which are illustrated in the following 
examples.

1. Suppose we wish to solve the equation

3 26 11 6 0x x x− + − =
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This equation can be factorised to give

( )( )( )1 2 3 0x x x− − − =

This equation has three real roots, all different - the solutions are 1, 2,and 3.x x x= = =  In figure 
we show the graph of 3 26 11 6.y x x x= − + −

3

2

1

-1

-2

-3

1 2 3-1

y

x

Figure 1. The graph of y = x3 − 6x2 + 11x − 6.The graph of 3 26 11 6.y x x x= − + −

Notice that it starts low down on the left, because as x gets large and negative so does x 3 and it 
finishes higher to the right because as x gets large and positive so does x3 . The curve crosses the 
x-axis three times, once where x = 1, once where x = 2 and once where x = 3. This gives us our three 
separate solutions.

2. Suppose we wish to solve the equation 3 25  8 4 0.x x x− + − =

This equation can be factorised to give

( )( )21 2 0x x− − =

In this case we do have three real roots but two of them are the same because of the term (x−2)2. So 
we only have two distinct solutions. Figure shows a graph of y = x 3 − 5x 2 + 8x – 4.

3

2

1

-1

-2

-3

1 2 3-1

y

x

Figure 2. The graph of y = x3 − 5x2 + 8x − 4.The graph of y = x3 − 5x2 + 8x – 4.

Again the curve starts low to the left and goes high to the right. It crosses the x-axis once and then 
just touches it at x = 2. So we have our two roots x = 1 and x = 2.

3. Suppose we wish to solve the equation 3 23 3 1 0.x x x− + − =

This equation can be factorised to give
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( )31 0x − =

So although there are three factors, they are all the same and we only have a single solution x = 1. 
The corresponding curve is 3 23 3 1y x x x= − + − and is shown in figure.

3

2

1

-1

-2

-3

1 2 3-1 x

y

Figure 3. The graph of y = x3 − 3x2 + 3x − 1.
The graph of 3 23 3 1.y x x x= − + −

As with all the cubics we have seen so far, it starts low down on the left and goes high up to the 
right. Notice that the curve does cross the x-axis at the point x = 1 but the x-axis is also a tangent to 
the curve at this point. This is indicative of the fact that there are three repeated roots. 

4. Suppose we wish to solve the equation 3 2  3 0. x x x+ + − =

This equation can be factorised to give

( )( ) 21 2 3 0 x x x− + + =

The quadratic 2 2 3 0x x+ + = has no real solutions, so the only solution to the cubic equation is 
obtained by putting x − 1 = 0, giving the single real solution x = 1.

The graph 3 2   3y x x x= + + − is shown in figure.

2

1

-1

-2

-3

1 2 3-1 x

y

3

-2

-4

Figure 4. The graph of y = x3 + x2 + x − 3.The graph of 3 2  3.y x x x= + + −

You can see that the graph crosses the x-axis in one place only.

From these graphs you can see why a cubic equation always has at least one real root. The graph 
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either starts large and negative and finishes large and positive (when the coefficient of x 3 is posi-
tive), or it will start large and positive and finish off large and negative (when the coefficient of x3 
is negative).

The graph of a cubic must cross the x-axis at least once giving you at least one real root. So, any 
problem you get that involves solving a cubic equation will have a real solution.

Solving Cubic Equations

Now let us move on to the solution of cubic equations. Like a quadratic, a cubic should always be 
re-arranged into its standard form, in this case.

3 2 0ax bx cx d+ + + =

The equation

2 64 1x x
x

+ − =

is a cubic, though it is not written in the standard form. We need to multiply through by x, giving us

3 24 6 x x x+ − =

This is now in the standard form

When solving cubics it helps if you know one root to start with.

1. Suppose we wish to solve

3 25 2 24 0x x x− − + =

given that x = −2 is a solution.

There is a theorem called the Factor Theorem which we do not prove here. It states that if x = 
−2 is a solution of this equation, then x+2 is a factor of this whole expression. This means that 

3 2 5 2 24 0x x x− − + = can be written in the form

( )( )22 0x x ax b+ + + =

Where a and b are numbers. 

Our task now is to find a and b, and we do this by a process called synthetic division. This involves 
looking at the coefficients of the original cubic equation, which are 1, −5, −2 and 24. These are 
written down in the first row of a table, the starting layout for which is

1 5 2 24 2
 1

x− − =−

Notice that to the right of the vertical line we write down the known root x = −2. We have left a 
blank line which will be filled in shortly. In the first position on the bottom row we have brought 
down the number 1 from the first row.
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The next step is to multiply the number 1, just brought down, by the known root, −2, and write the 
result, −2, in the blank row in the position shown.

1 5 2 24 2
2  

1

x− − = −
−

The numbers in the second column are then added, −5 + −2 = −7, and the result written in the 
bottom row as shown.

1 5 2 24 2
2  

1 7

x− − = −
−
−

Then, the number just written down, −7, is multiplied by the known root, −2, and we write the 
result, 14, in the blank row in the position shown.

1 5 2 24 2
2 14  

1 7

x− − = −
−
−

Then the numbers in this column are added:

1 5 2 24 2
2 14  

1 7 12

x− − = −
−
−

The process continues:

1 5 2 24 2
2 14 24  

1 7 12 0

x− − = −
− −
−

Note that the final number in the bottom row (obtained by adding 24 and −24) is zero. This is 
confirmation that x = −2 is a root of the original cubic. If this value turns out to be non-zero then 
we do not have a root.

At this stage the coefficients in the quadratic that we are looking for are the first three numbers in 
the bottom row. So the quadratic is

2  7   12x x− +

So we have reduced our cubic to

( )( )22 7 12 0x x x+ − + =
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The quadratic term can be factorised to give

( )( )( )  2   3   4   0x x x+ − − =

giving us the solutions 2,  3 or 4x = −

In the previous Example we were given one of the roots. If a root is not known it’s always worth 
trying a few simple values.

2. Suppose we wish to solve

3 7 6 0x x− − =

A very simple value we might try is x = 1. Substituting x = 1 in the left-hand side we find

( )31 7 1 6− −

Which equals −12, so this value is clearly not a solution. Suppose we try the value x = −1:

( ) ( )31 7 1 6− − − −

which does equal zero, so x = −1 is a solution. This means that x + 1 is a factor and the cubic can be 
written in the form

( )( )21 0x x ax b+ + + =

We can perform synthetic division to find the other factors. 

As before, we take the coefficients of the original cubic equation, which are 1, 0, −7 and −6. These 
are written down in the first row of a table, the starting layout for which is

1 0 7 -6 1
 1

x− = −

To the right of the vertical line we write down the known root x = −1. In the first position on the 
bottom row we have brought down the number 1 from the first row. 

The next step is to multiply the number 1, just brought down, by the known root, −1, and write the 
result, −1, in the blank row in the position shown.

1 0 7 6 1
1  

1

x− − = −
−

To the right of the vertical line we write down the known root x = −1. In the first position on the 
bottom row we have brought down the number 1 from the first row.

The numbers in the second column are then added, 0 + −1 = −1, and the result written in the bot-
tom row as shown.
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1 0 7 6 1
1  

1 1

x− − = −
−
−

Then, the number just written down, −1, is multiplied by the known root, −1, and we write the re-
sult, 1, in the blank row in the position shown.

1 0 7 6 1
1  

1 1

x− − = −
−
−

Then the numbers in this column are added:

1 0 7 6 1
1 1  

1 1 6

x− − = −
−
− −

The process continues:

1 0 7 6 1
1 1 6  

1 1 6 0

x− − = −
−
− −

At this stage the coefficients in the quadratic that we are looking for are the first three numbers in 
the bottom row. So the quadratic is

2  6x x− −

So we now need to solve the equation

( )( )21  6 0x x x+ − − =

which factorises to give

( )( )( )1 3 2 0 x x x+ − + =

and the three solutions to the cubic equation are 2, 1or 3.= − −x

Sometimes you may be able to spot a factor as shown in the following Example.

3. Suppose we wish to solve the equation 3 24 9  36 0.x x x− − + =

Observe that the first two terms in the cubic can be factorised as ( )3 2 24 4x x x x− = − . The second 
pair of terms can be factorised as 9 36 9  4)(x x− + = − − . This sort of observation can only be made 
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when you have had sufficient practice and experience of handling expressions like this. However, 
the observation enables us to proceed as follows:

( ) ( )

3 2

2

4 9 36  0 
4 9 4  0

x x x
x x x
− − + =

− − − =

The common factor of (x − 4) can be extracted to give

( )( )2 9 4 0 x x− − −

and the difference of two squares can be factorised giving

( )( )( )3 3 4 0x x x+ − − =

giving us solutions 3,  3 or 4 x = −

You may have noticed that in each example we have done, every root is a factor of the constant 
term in the equation. In the last Example, −3, 3 and 4 all divide into the constant term 36. As long 
as the coefficient of x3 in the cubic equation is 1 this must be the case. This is because, referring 
to equation ( )( )( )3 3 4 0x x x+ − − =  for example, the constant term arises from multiplying the 
numbers 3, −3 and −4. This gives us another possible approach.

4. Suppose we wish to solve the equation

3 26 6 7 0x x x− − − =

If there is to be a solution, then because the coefficient of x 3 is 1, it is going to be an integer and it’s 
going to be a factor of 7. This leaves us with only four possibilities: 1, −1, 7, and −7. So we can try 
each of them in turn. You can see fairly quickly that 1 and −1 don’t work. So we will try 7. Rather 
than substitute x = 7 into the cubic equation we shall immediately try to synthetically divide this 
expression by 7.

1 6 6 7 7
7 7 7  

1 1 1 0

x− − − =

Because the fourth number in the last row is zero it follows that x = 7 is indeed a root. Had this 
number not been zero then x = 7 would not have been a root. So 7 is indeed a root, and the resulting 
quadratic is

2  1 0x x+ + =

Now you will find that if you try to solve it that the quadratic equation x2 + x + 1 = 0 has no real 
solutions, so the only possible solution to this cubic is 7x = .

Certain basic identities which you may wish to learn can help in factorising both cubic and qua-
dratic equations.

5. Suppose we wanted to solve the equation 3 23 3  1 0. x x x+ + + =
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This has the widely-known factorisation (x + 1)3 = 0 from which we have the root x = −1 repeated 
three times.

Using Graphs to Solve Cubic Equations

If you cannot find a solution by these methods then draw an accurate graph of the cubic expres-
sion. The points where it crosses the x-axis will give you the solutions to the equation but their 
accuracy will be limited to the accuracy of your graph.

You may indeed find that the graph crosses the x-axis at a point that would suggest a factor. for 

instance, if you draw a graph that appears to cross the x-axis at, say, 
1 
2

x = then it’s worth trying 

to find out whether 
1 
2

x = 
 

is indeed a factor.

1. Suppose we wished to solve 3 24  5 0. x x x+ + − =

Now this equation will not yield a factor by any of the methods that we have discussed. So a graph 
of 3 24 5y x x x= + + − has been drawn as shown in figure.

-2-3 1 2 3-1 x

y

4-4

Figure 5. A graph of y = x3 + 4x2 + x − 5
A graph of 3 24 5y x x x= + + − .

It crosses the x-axis at three places and hence there are three real roots. As we stated before their 
accuracy will be limited to the accuracy of the graph. From the graph we find the approximate 
solutions 3.2, 1.7,0.9.x ≈ − −

QUARTIC EQUATION

A quartic equation is a fourth-order polynomial equation of the form

4 3 2
3 2 1 0 0.z a z a z a z a+ + + + =

While some authors use the term “biquadratic equation” as a synonym for quartic equation, others 
reserve the term for a quartic equation having no cubic term, i.e., a quadratic equation in 2x .

Ferrari was the first to develop an algebraic technique for solving the general quartic, which was 
stolen and published in Cardano’s Ars Magna in 1545. The Wolfram Language can solve quar-
tic equations exactly using the built-in command Solve 4 4 3 3 2 2[ , ].θ θ+ + + + ==a x a x a x ax a x   
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The solution can also be expressed in terms of Wolfram Language algebraic root objects by first 
issuing Set Options[Roots, Quartics -> False].

The roots of this equation satisfy Vieta’s formulas:

1 2 3 4 3

1 2 1 3 1 4 2 3 2 4 3 4 2

1 2 3 2 3 4 1 2 4 1 3 4 1

1 2 3 4 0 ,

x x x x a
x x x x x x x x x x x x a

x x x x x x x x x x x x a
x x x x a

+ + + = −
+ + + + + =

+ + + = −

=

where the denominators on the right side are all 4 1a ≡ . Writing the quartic in the standard form

4 2 0,x px qx r+ + + =

the properties of the symmetric polynomials appearing in Vieta’s formulas then give

2 2 2 2
1 2 3 4
3 3 3 3
1 2 3 4
4 4 4 4 2
1 2 3 4
5 5 5 5
1 2 3 4

2

3

2 4

5 .

z z z z p
z z z z q
z z z z p r
z z z z pq

+ + + = −

+ + + = −

+ + + = −

+ + + = −

Eliminating p, q, and r, respectively, gives the relations

( )
( )

2 2
1 2 1 1 2 2

2
1 2 1 2 1

3
2 2

0

0

0,

z z p z z z z r

z z z z q z r

q pz z

+ + + − =

+ − − =

+ + =

as well as their cyclic permutations.

Ferrari was the first to develop an algebraic technique for solving the general quartic. He applied 
his technique (which was stolen and published by Cardano) to the equation.

4 26 60 36 0x x x+ − + =

The 3x  term can be eliminated from the general quartic (◇) by making a substitution of the form

( ) ( )
( ) ( )

4 3 2 2
3 2 3

2 3 2 3 4
1 2 3 1 2 3

,
so

4 3 6

2 3 4 .o

z x

x a x a a x

a a a x a a a a

λ

λ λ λ

λ λ λ λ λ λ λ

≡ −

+ − + − +

+ − + − + − + − +

so

( ) ( )
( ) ( )

4 3 2 2
3 2 3

2 3 2 3 4
1 2 3 1 2 3

,
so

4 3 6

2 3 4 .o

z x

x a x a a x

a a a x a a a a

λ

λ λ λ

λ λ λ λ λ λ λ

≡ −

+ − + − +

+ − + − + − + − +

Letting  3 / 4aλ = so

3
1
4

z x a≡ −
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then gives the standard form

4 2

2
2 3

3
1 2 3 3

2 4
0 1 3 2 3 3

0,
Where

3
8
1 1
2 8
1 1 3 .
4 16 256

x px qx r

p a a

q a a a a

r a a a a a a

+ + + =

≡ −

≡ − +

≡ − + −

where

4 2

2
2 3

3
1 2 3 3

2 4
0 1 3 2 3 3

0,
Where

3
8
1 1
2 8
1 1 3 .
4 16 256

x px qx r

p a a

q a a a a

r a a a a a a

+ + + =

≡ −

≡ − +

≡ − + −

The quartic can be solved by writing it in a general form that would allow it to be algebraically fac-
torable and then finding the condition to put it in this form. The equation that must be solved to 
make it factorable is called the resolvent cubic. To do this, note that the quartic will be factorable 
if it can be written as the difference of two squared terms,

( )( )2 2 .P Q P Q P Q− = + −

It turns out that a factorization of this form can be obtained by adding and subtracting 2 2 / 4x u u+  
(where u is for now an arbitrary quantity, but which will be specified shortly) to equation (◇) to obtain

4 2 2 2 2 21 1 0.
4 4

x x u u x u u px qx r + + − − + + + = 
 

This equation can be rewritten:

( )
2

2 2 21 1 0
2 4

x u u p x qx u r    + − − − + − =        
.

Note that the first term is immediately a perfect square P2 with

2 1 ,
2

P x u≡ +

and the second term will be a perfect square Q2 if u is chosen to that the square can be completed in

( )
2

2 2

1
4 .

u rqQ u p x x
u p u p

 − 
= − − + − − 

 
This means we want

( )

2
2

2

1
4

u r
Q u p x

u p

 
− 

 = − −
− 
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which requires that

2

2

1
4 ,

u r q
u p u p

−
=

− −

or

( )2 214 .
4

q u p u r = − − 
 

This is the resolvent cubic.

Since an analytic solution to the cubic is known, we can immediately solve algebraically for 

one of the three solution of equation ( )2 214
4

q u p u r = − − 
 

, say u1, and plugging equation 

( )2 2q u p u r = − − 
 

into equation ( )
2

2 2

1
4 .

u rqQ u p x x
u p u p

 − 
= − − + − − 

 

 then gives

2
qQ A x
A

= −

with

1 .A u p≡ −

Q therefore is linear in x and P is quadratic in x, so each term P + Q and P - Q is quadratic and can 
be solved using the quadratic formula, thus giving all four solutions to the original quartic.

Explicitly, plugging p, q, and r back into (◇) gives

3 2 2 4 2
3 2 3 2 3 1 3 0

6 4 3 2 2
3 2 3 1 3 0 3 0 2 1

3 3 1 4
8 64 4
1 1 1 3 4 .

512 64 8 2

u a a u a a a a a a u

a a a a a a a a a a

   + − + − + − +   
   
 − + − + − 
 

This can be simplified by making the substitution

2
3

1 ,
8

u y a= −

which gives the resolvent cubic equation

( ) ( )3 2 2 2
2 1 3 0 2 0 1 3 04 4 0y a y a a a y a a a a a− + − + − − = .

Let y1 be a real root of (34), then the four roots of the original quartic are given by the roots of the 
equation
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( ) ( )2 2 2
3 3 2 1 1 1 0

1 14 4 4 0,
2 2

x a a a y x y y a+ ± − + + ± − =

which are

1 3

2 3

3 3

4 3

1 1 1
4 2 2
1 1 1
4 2 2
1 1 1
4 2 2
1 1 1 ,
4 2 2

z a R D

z a R D

z a R E

z a R E

= − + +

= − + −

= − − +

= − − −

where

( )

( )

2 2 3 1
3 2 3 2 1 3

2 2
3 2 1 0

2 2 3 1
3 2 3 2 1 3

2 2
3 2 1 0

2
3 2 1

3 12 4 8 for 0
4 4

3 2 2 4 for 04

3 12 4 8 for 04 4

3 2 2 4 for 04

1
4

a R a a a a a R R

a a y a R

a R a a a a a R R

a a y a R

R a a y

D

E

−

−

− − + − − ≠

− + − ≠

− − − − − ≠

− − − ≠

≡ − +




≡





≡ 



Another approach to solving the quartic (◇) defines

( )( ) ( )
( )( ) ( )
( )( ) ( )

2
1 2 3 4 1 2

2
1 3 2 4 1 3

2
1 4 2 3 2 3 ,

x x x x x x

x x x x x x

x x x x x x

α

β

γ

≡ + + = − +

≡ + + = − +

≡ + + = − +

where the second forms follow from

1 2 3 4 3 0,x x x x a+ + + = − =

and defining

( ) ( )
( )3 2

( ) ( )

( ) .x x

x x x x

x

h α β γ

α β αβ α β αβγ γ γ γ= − + + + + + −

≡ − + − −

This equation can be written in terms of the original coefficients , p q ,and r as

( )3 2 2 2( ) 4 .2h x x p x p r x q= − + − +
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The roots of this cubic equation then give ,α β , and ,y  and the equations (◇) to (◇) can be solved 
for the four roots x1 of the original quartic.

QUINTIC EQUATION

Unlike quadratic, cubic, and quartic polynomials, the general quintic cannot be solved algebraically 
in terms of a finite number of additions, subtractions, multiplications, divisions, and root ex-
tractions, as rigorously demonstrated by Abel (Abel’s impossibility theorem) and Galois. However, 
certain classes of quintic equations can be solved in this manner.

Irreducible quintic equations can be associated with a Galois group, which may be a symmetric 
group Sn, metacyclic group Mn, dihedral group Dn, alternating group An, or cyclic group Cn, as illus-
trated above. Solvability of a quintic is then predicated by its corresponding group being a solvable 
group. An example of a quintic equation with solvable cyclic group is

5 4 3 21024 2816 2816 1232 220 11 0,x x x x x− + − + − =

which arises in the computation of ( )sin /11π .

In the case of a solvable quintic, the roots can be found using the formulas found in 1771 by Mal-
fatti, who was the first to “solve” the quintic using a resolvent of sixth degree.

The general quintic can be solved in terms of Jacobi theta functions, as was first done by Hermite 
in 1858. Kronecker subsequently obtained the same solution more simply, and Brioschi also de-
rived the equation. To do so, reduce the general quintic

5 4 3 2
5 4 3 2 1 0 0a x a x a x a x a x a+ + + + + =

into Bring quintic form

5 0.x x ρ− + =
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Defining,

( )
( )

( )
( )

1
2

1/82

3/4 2

1 16tan sin
4 25 5

sgn I for R 0
sgn R for R 0

,
2 5 1

ρ

ρ ρ
ρ ρ

−

      

      

  
≡   

   
− =

≡ ≠

=
⋅ −

k

s

s k
b

k k

where k is the elliptic modulus, the roots of the original quintic are then given by

( ) ( ) ( ){ }
[ ]( ) ( ){ } ( ) ( ) ( ){ }

( ) ( ){ }
( ) ( )

1/8 1/83/4 2 /5 1/5 2 /5 1/5

1/8 1/8 1/81/8 1/84 /5 1/5 4 /5 1/5 1/5 5/8 5 5
1

1/8 1/81/5 3 /4 2 /5 1/5

1/83 /4 2 /5 1/5 4 /5 1/5
2

1 i i

i i

i i

i i i

b m e q i m e q

x m e q m e q m q q q m q

b m q e m e q

x e m e q i m e q

− π π

−− π π

π π

− π − π π

   − +   

     = + +     

   − + ×   

   = +  { }
( ) ( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

( ) ( ) ( ){ }
( )

1/8

1/8 1/81/84 /5 1/5 5/8 5 5

1/83 /4 2 /5 1/5 4 /5 1/5 1/8

1/8 1/81/5 4 /5 1/5
3

1/8 1/81/83 /4 2 /5 1/5 5/8 5 5

1/81/5 4 /5

i

i i i

i

i i

i

i m e q q q m q

b e m e q i m e q

x m q i m e q

e m e q q q m q

b m q i m e q

−− π

− π − π − π

π

−π π

− π



   +   

   − ×   

   = − − ×   

   +   

  −  ( ){ }
( ) ( ){ }

( ) ( ) ( ){ }
( ) ( ){ }

( ) ( ){ }

1/5 1/8

1/8 1/83 /5 1/5 2 /5 1/5 4 /5 1/5
4

1/8 1/81/8-3 /4 2 /5 1/5 5/8 5 5

1/81/5 3 /4 2 /5 1/5 1/8

1/8 1/83 /4 2 /5 1/5 4 /5 1/5
5

i i i

i i

i i

i i i

x e q m e q i m e q

e m e q q q m q

b m q e m e q

x e m e q i m e q

π π π

−π − π

− π − π

π π − π

  × 

   = − −   

   +   

   − ×   

   = − +   

( ) ( ) ( ){ }1/8 1/81/84 /5 1/5 5/8 5 5 .ii m e q q q m q
−π   − +   
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where

( ) ( )
( )

4
2
4
3

0,
0,

q
m q

q
ϑ
ϑ

=

is the inverse nome, which is expressible as a ratio of Jacobi theta functions.

Euler reduced the general quintic to

5 210 0.x q x p− − =

A quintic also can be algebraically reduced to principal quintic form

5 2
2 1 0 0.x a x a x a− + + =

By solving a quartic, a quintic can be algebraically reduced to the Bring quintic form, as was first 
done by Jerrard. Runge and Cadenhad and Young found a parameterization of solvable quintics 
in the form

5 0.x ax b− + =

by showing that all irreducible solvable quintics with coefficients of 4x , 3x , and 2x  missing have 
the following form

( ) ( )( )4 5
5

2 2

5 4 3 4 2 1 4 3
0,

1 1
v v v

x x
y y

µ µ+ + +
+ + =

+ +

where µ  and v are rational.

Spearman and Williams showed that an irreducible quintic of the form 5 0.x ax b− + =  having ratio-
nal coefficients is solvable by radicals iff there exist rational numbers 1, 0c∈= ± ≥ , and 0e≠  such 
that

( )

( )

4

2

5

2

5 3 4
1

4 11 2
1

e c
a

c
e c

b
c

− ∈
=

+

− ∈+
=

+

The roots are then

( )2 3 4
1 2 3 4 ,j j j j

jx e u u u uω ω ω ω= + + +

where

2
1/51 3

1 2

2
1/53 4

2 2

2
1/52 1

3 2

2
1/54 2

4 2

1

2

3

4

2 1.

v vu
D

v vu
D

v vu
D

v vu
D

v D D D

v D D D

v D D D

v D D D

D c

 
=  
 
 

=  
 
 

=  
 
 

=  
 

= + −∈

=− − +∈

= − + +∈

= − −∈

= +
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2
1/51 3

1 2

2
1/53 4

2 2

2
1/52 1

3 2

2
1/54 2

4 2

1

2

3

4

2 1.

v vu
D

v vu
D

v vu
D

v vu
D

v D D D

v D D D

v D D D

v D D D

D c

 
=  
 
 

=  
 
 

=  
 
 

=  
 

= + −∈

=− − +∈

= − + +∈

= − −∈

= +

Felix Klein used a Tschirnhausen transformation to reduce the general quintic to the form

5 25 5 0.y a y b y c+ + + =

He then solved the related icosahedral equation

( ) ( )
( ) ( )

55 5 10

230 10 20 5 25

, , 1 11

1 10005 522 0,

I z I Z z z z

z z z z z Z

= − + +

 − + − + + − + = 

where Z is a function of radicals of a, b , and c. The solution of this equation can be given in terms 
of hypergeometric functions as

1/60
2 1

11/60
2 1

1 29 4, , ,1728
60 60 5 .

11 41 6, , ,1728
60 60 5

Z F Z

Z F Z

−  − 
 
 
 
 

Another possible approach uses a series expansion, which gives one root of the Bring quintic form. 
All five roots can be derived using differential equations. Let

( ) ( )

( )

( )

( )

1 2

4
2 34

4
3 4 3

4
4 4 3

1 2 3 4 1 3 5 3125, , , ; , , ; ,
5 5 5 5 2 4 4 256
9 13 17 21 3 5 3 3125, , , , , , ; ,
20 20 20 20 4 4 2 256
7 9 11 13 5 3 7 3125, , , , , , ; , ,

10 10 10 10 4 2 4 256

F F

F F

F F

F F

ρ ρ

ρ ρ

ρ ρ

ρ ρ

=

 =  
 
 =  
 
 =  
 

then the roots are
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4
1 34

2 3
2 1 2 3 4

2 3
3 1 2 3 4

2 3
4 1 2 3 4

2 3
5 1 2 3 4

1 2 3 4 1 3 5 3125, , , , , , , ,
5 5 5 5 2 4 4 256

1 5 5
4 32 32
1 5 5
4 32 32
1 5 5
4 32 32

1 5 5 .
4 32 32

t F

t F F F F

t F F F F

t i F F i F F

t i F F i F F

ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ

 =−  
 

=− + + +

= − + − +

=− + − −

= + + −

This technique gives closed form solutions in terms of hypergeometric functions in one variable for 
any polynomial equation which can be written in the form

.p qx bx c+ +

Consider the quantic

( )
4

4
1 2

0

0,j j

j

x u uω ω
=

 − + = ∏

where 2 /5e iπω =  and 1u  and 2u  are complex numbers, which is related to de Moivre’s quintic, and 
generalize it to

( )
4

2 3 4
1 2 3 4

0

0.j j j j

j

x u u u uω ω ω ω
=

 − + + + = ∏

Expanding,

( )
( ) ( )
( ) ( )

52 3 4
1 2 3 4

3 22 3 4 2 3 4
1 2 3 4 1 2 3 4

2 3 4
1 2 3 4

5 5

5 5 0,

j j j j

j j j j j j j j

j j j j

u u u u

U u u u u V u u u u

W u u u u X Y Z

ω ω ω ω

ω ω ω ω ω ω ω ω

ω ω ω ω

+ + + −

+ + + − + + + +

+ + + + − − =  

Where

1 4 2 3
2 2 2 2

1 2 2 4 3 1 4 3
2 2 2 2 3 3 3 3
1 4 2 3 1 2 2 4 3 1 4 3 1 2 3 4
3 3 3 3
1 3 4 2 1 3 3 2 4 4 1 2

2 2 2 2 2 2 2 2
1 3 4 2 1 3 3 2 4 4 1 2
5 5 5 5
1 2 3 4

U u u u u
V u u u u u u u u
W u u u u u u u u u u u u u u u u
X u u u u u u u u u u u u
Y u u u u u u u u u u u u
Z u u u u

= +

= + + +

= + − − − − −

= + + +

= + + +

= + + +
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The ui s satisfy

( ) ( )
( )

1 4 2 3
2 2 2 2

1 2 2 4 3 1 4 3
2 2 2 2 3 3 3 3
1 4 2 3 1 2 2 4 3 1 4 3 1 2 3 4

3 3 3 3 2 2 2 2 2 2 2 2
1 3 4 2 1 3 3 3 4 4 1 2 1 3 4 2 1 3 3 2 4 4 1 2

5 5 5 5
1 2 3 4

0

0

1
5

5

u u u u
u u u u u u u u
u u u u u u u u u u u u u u u u

a

u u u u u u u u u u u u u u u u u u u u u u u u

u u u u b

+ =

+ + + =

+ − − − − −

=

 + + + − + + + 

− + =
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Algebraic number theory studies the integers, rational numbers and their generalizations with 
the use of abstract algebra. Class field theory and abstract analytic number theory are some of 
the theories that fall under its domain. This chapter discusses in detail these theories related 
to algebra. 

ALGEBRAIC NUMBER

An algebraic number is any real number that is a solution of some single-variable polynomial 
equation whose coefficient s are all integer s.

A complex (sometimes, real) number that is a root of a polynomial

1 0( ) n
nf x a x a x a= +…+ +

with rational coefficients, not all of which are zero. If α is an algebraic number, then, among all 
polynomials with rational coefficients and αα as a root, there exists a unique polynomial ( )xφ  
of lowest degree with leading coefficient equal to one, which is therefore irreducible. It is called 
the irreducible, or minimal, polynomial of the algebraic number α. The degree n of the minimal 
polynomial ( )xφ  is also called the degree of the algebraic number α. The existence of irreducible 
polynomials of any degree n implies the existence of algebraic numbers of degree n. All ratio-
nal numbers, and only such numbers, are algebraic numbers of the first degree. The number ii is 
an algebraic number of the second degree, since it is a root of the polynomial 2 1x + , while 1/2 n, 
where n is any positive integer, is an algebraic number of degree n, being a root of the irreducible 
polynomial 2nx − .

The roots 1, , nα α…  αn of the irreducible polynomial are called the conjugates of α, and are also 
algebraic numbers of degree n. All numbers conjugate with α are distinct. Apart from its degree, 
another important characteristic of an algebraic number is its height, which is the analogue of the 
denominator of a rational fraction. The height of an algebraic number α is the greatest absolute 
value of the coefficients of the irreducible and primitive polynomial with integral rational coeffi-
cients that has αα as a root (cf. Primitive polynomial). The sum, the difference, the product and the 
quotient of two algebraic numbers (except for division by zero) are algebraic numbers; this means 
that the set of all algebraic numbers is a field. A root of a polynomial with algebraic coefficients is 
an algebraic number.

It was shown in 1872 by G. Cantor that the set of all algebraic numbers is denumerable, and this 
implied the existence of transcendental numbers (cf. Transcendental number).
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An algebraic number is called an algebraic integer if all the coefficients of its minimal polynomial 
are rational integers. For instance, i and 1 2+  are algebraic integers, being roots of the polynomi-
als 2 1x +  and  2 2 1x x− − .

The concept of an algebraic integer is a generalization of the concept of a rational integer (a ratio-
nal integer mm is an algebraic integer, being the root of the polynomial x−m). Many properties of 
rational integers are also displayed by algebraic integers. Thus, the algebraic integers form a ring; 
on the other hand, the real algebraic integers form an everywhere-dense set in R, while the rational 
integers form a discrete set.

A root of any (not necessarily irreducible) polynomial with rational integer coefficients and lead-
ing coefficient one is an algebraic integer. Moreover, a root of a polynomial with algebraic integer 
coefficients and with leading coefficient one is an algebraic integer. In particular the k-th degree 
root of an algebraic integer is an algebraic integer. For any algebraic number α there exists a posi-
tive integer r such that rα is an algebraic integer (in analogy with rational numbers). The smallest 
possible number r is the modulus of the leading coefficient of the irreducible primitive polynomial 
with rational integer coefficients that has α as a root. All conjugates of an algebraic integer are also 
algebraic integers.

One says that an algebraic integer β is divisible by an algebraic integer α, α ≠ 0, if there exists an 
algebraic integer γ  such that β=γ  α  Many divisibility characteristics of rational integers also hold 
for algebraic integers.

An algebraic integer ∈ is called an algebraic unit (or unit for short) if it is a divisor of 1, that is, 
if 1/∈ is an algebraic integer. A unit is a divisor of any algebraic integer. The inverse of a unit is a 
unit; the numbers conjugate to a unit are units; all divisors of a unit are units; a product of a finite 
number of units is a unit. An algebraic integer is a unit if and only if the product of all its conjugates 
is ±1. The k-th roots of unity are units, each one having modulus 1. There exists an infinite set of 
other units which do not have modulus 1. For instance, the numbers 2 3−  and 2 3+ are units, 
being the roots of the polynomial 2 4 1x x− + . Moreover, their powers constitute units which may 
be arbitrary large or small. The field of rational numbers contains only two units — +1 and −1.

Two algebraic integers are called associated if they differ by a factor which is a unit. There is an-
other important difference between the ring of algebraic integers and the ring of rational integers. 
The concept of an irreducible integer (in analogy to a prime number) cannot be introduced into 
the former. This may be seen from the fact that a root of an algebraic integer is an algebraic in-
teger. The concept of an irreducible number (apart from the class of associated numbers) can be 
introduced in certain subfields of the field of all algebraic numbers, the so-called algebraic number 
fields. It turns out, however, that the decomposition of an algebraic integer into irreducible factors 
is not always unique.

Algebraic numbers cannot be very closely approximated by rational and algebraic numbers (Liou-
ville’s theorem). It is this fact which led in 1844 to a proof of the existence of transcendental num-
bers. The problem of approximation of algebraic numbers by rational numbers is one of the more 
difficult problems in number theory; attempts to solve it yielded very important results, including 
the Thue, Thue–Siegel and Thue–Siegel–Roth theorems, but its ultimate solution is still nowhere 
in sight. Another very difficult problem is the expansion of algebraic numbers into continued  
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fractions. Real algebraic numbers of the second degree (quadratic irrationalities) can be repre-
sented as infinite periodic continued fractions. Nothing is known so far about the expansion of real 
algebraic numbers of degree at least three into ordinary continued fractions.

A complex number is called an algebraic number over a field P ⊂ C if it is a root of a polynomial 
??? with coefficients from P. The minimal polynomial, the degree over P and the conjugate num-
bers over P for algebraic numbers over P are defined in a similar manner. A root of a polynomial 
with coefficients that are algebraic numbers over P is an algebraic number over P.

An algebraic number of arbitrary degree n does not necessarily exist over any field P. For instance, 
only algebraic numbers of the first degree exist over the field of complex numbers: the numbers of 
the field themselves. A given algebraic number can be of different degrees with respect to different 
fields; thus, the number ii is an algebraic number of the second degree, but it is of the first degree 
with respect to the field of complex numbers. The set of all algebraic numbers over a field P forms 
a number field.

Algebraic numbers, and algebraic number fields, were first systematically studied by C.F. Gauss 
(Gaussian numbers of the form a + b i , where a and b are rational numbers). Gauss developed the 
arithmetic of Gaussian integers as a base for the theory of biquadratic residues. In their study of 
the theory of cubic residues, C.G.J. Jacobi and F.G. Eisenstein created the arithmetic of numbers 
of the form a + bρ, where ρ=(−1+ 3)/ 2 is a cubic root of unity, while a and b are rational num-
bers. His attempts to produce a proof of the Fermat theorem led E. Kummer to conduct a deep 
study of cyclotomic fields (cf. Cyclotomic field), to introduce the concept of an ideal, and to create 
the elements of the theory of algebraic numbers. The theory of algebraic numbers was further 
developed by P. Dirichlet, L. Kronecker, D. Hilbert and others. Russian mathematicians — E.I. 
Zolotarev (theory of ideals), G.F. Voronoi (cubic irrationalities, units of cubic fields), A.A. Markov 
(cubic fields), Yu.V. Sokhotskii (theory of ideals) and others — also made significant contributions.

The concept of an algebraic number and the related concept of an algebraic number field are very 
important ideas in number theory and algebra. Algebraic numbers, which are a generalization of 
rational numbers, form subfields of algebraic numbers in the fields of real and complex numbers 
with special algebraic properties. The development of the theory of algebraic numbers greatly in-
fluenced the creation and development of the general theory of rings and fields.

Algebraic numbers have found numerous applications in various branches of number theory, al-
gebra and other branches of mathematics: the theory of forms, Diophantine equations, Diophan-
tine approximations, transcendental numbers, geometry of numbers, algebraic geometry, Galois 
theory, etc.

An algebraic integer is an algebraic number that is a root of a polynomial with integer coefficients 
with leading coefficient 1 (a monic polynomial).

with coefficients in   (the set of integers). The set of all algebraic integers, A, is closed under 
addition, subtraction and multiplication and therefore is a commutative subring of the complex 
numbers. The ring A is the integral closure of regular integers  in complex numbers. 

The ring of integers of a number field K, denoted by OK, is the intersection of K and A: it can also 
be characterised as the maximal order of the field K. Each algebraic integer belongs to the ring of 
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integers of some number field. A number α is an algebraic integer if and only if the ring   [α] is 
finitely generated as an Abelian group, which is to say, as a  -module. 

The following are equivalent definitions of an algebraic integer. Let K be a number field (i.e., a 
finite extension of 


, the set of rational numbers), in other words, K =  (θ) for some algebraic 

number θ ∈


 by the primitive element theorem. 

• α ∈ K is an algebraic integer if there exists a monic polynomial f(x) ∈ 


[x] such that f(α) 
= 0.

• α ∈ K is an algebraic integer if the minimal monic polynomial of α over  is in  [x].

• α ∈ K is an algebraic integer if  [α] is a finitely generated  -module.

• α ∈ K is an algebraic integer if there exists a non-zero finitely generated  -submodule  
M ⊂   such that αM ⊆ M.

Algebraic integers are a special case of integral elements of a ring extension. In particular, an alge-
braic integer is an integral element of a finite extension K/. 

Examples:

• The only algebraic integers which are found in the set of rational numbers are the integers. 

In other words, the intersection of   and A is exactly . The rational number a
b

is not an 

algebraic integer unless b divides a. Note that the leading coefficient of the polynomial bx 
− a is the integer b. As another special case, the square root n of a nonnegative integer n 
is an algebraic integer, but is irrational unless n is a perfect square.

• If d is a square-free integer then the extension ( )K d= is a quadratic field of rational 

numbers. The ring of algebraic integers OK contains d  since this is a root of the monic 

polynomial x2 − d. Moreover, if d ≡ 1 mod 4, then the element ( )1 1 
2

d+  is also an algebraic  

integer. It satisfies the polynomial ( )2 1 1 
4

x x d− + −  where the constant term 1
4

(1 − d) 

is an integer. The full ring of integers is generated by ( )1or 1 
2

d d+ respectively. See 
quadratic integers for more.

• The ring of integers of the field [ ] 3F  , mα α= =Q , has the following integral basis, writing 
m = hk2 for two square-free coprime integers h and k:

2 2 2

2

1, , 1mod9
3

1, , otherwise

k k m
k

k

α αα

αα

 ± +
≡ ±





• If ζn is a primitive nth root of unity, then the ring of integers of the cyclotomic field  (ζn) 
is precisely  [ζn].
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• If α is an algebraic integer then n aβ = is another algebraic integer. A polynomial for β  is 
obtained by substituting xn in the polynomial for α.

Non-example:

• If P(x) is a primitive polynomial which has integer coefficients but is not monic, and P is 
irreducible over , then none of the roots of P are algebraic integers (but are algebraic num-
bers). Here primitive is used in the sense that the highest common factor of the set of coeffi-
cients of P is 1; this is weaker than requiring the coefficients to be pairwise relatively prime.

• The sum, difference and product of two algebraic integers is an algebraic integer. In gener-
al their quotient is not. The monic polynomial involved is generally of higher degree than 
those of the original algebraic integers, and can be found by taking resultants and factor-
ing. For example, if x2 − x − 1, y3 − y − 1 and z = xy, then eliminating x and y from z − xy 
and the polynomials satisfied by x and y using the resultant gives z6 − 3z4 − 4z3 + z2 + z − 1, 
which is irreducible, and is the monic polynomial satisfied by the product. (To see that the 
xy is a root of the x-resultant of z − xy and x2 − x − 1, one might use the fact that the resul-
tant is contained in the ideal generated by its two input polynomials).

• Any number constructible out of the integers with roots, addition, and multiplication is 
therefore an algebraic integer; but not all algebraic integers are so constructible: in a naïve 
sense, most roots of irreducible quintics are not. This is the Abel–Ruffini theorem.

• Every root of a monic polynomial whose coefficients are algebraic integers is itself an alge-
braic integer. In other words, the algebraic integers form a ring which is integrally closed 
in any of its extensions.

• The ring of algebraic integers is a Bézout domain, as a consequence of the principal ideal 
theorem.

• If the monic polynomial associated with an algebraic integer has constant term 1 or -1, then 
the reciprocal of that algebraic integer is also an algebraic integer, and is a unit, an element 
of the group of units of the ring of algebraic integers.

ALGEBRAIC NUMBER THEORY

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra 
to study the integers, rational numbers, and their generalizations. Number-theoretic questions are 
expressed in terms of properties of algebraic objects such as algebraic number fields and their rings 
of integers, finite fields, and function fields. These properties, such as whether a ring admits unique 
factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of prima-
ry importance in number theory, like the existence of solutions to Diophantine equations.

Basic Notions

Failure of Unique Factorization

An important property of the ring of integers is that it satisfies the fundamental theorem of 
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 arithmetic, that every (positive) integer has a factorization into a product of prime numbers, and 
this factorization is unique up to the ordering of the factors. This may no longer be true in the ring 
of integers O of an algebraic number field K. 

A prime element is an element p of O such that if p divides a product ab, then it divides one of the 
factors a or b. This property is closely related to primality in the integers, because any positive inte-
ger satisfying this property is either 1 or a prime number. However, it is strictly weaker. For exam-
ple, −2 is not a prime number because it is negative, but it is a prime element. If factorizations into 
prime elements are permitted, then, even in the integers, there are alternative factorizations such as 

6 2·3 ( 2)·( 3).= = − −

In general, if u is a unit, meaning a number with a multiplicative inverse in O, and if p is a prime 
element, then up is also a prime element. Numbers such as p and up are said to be associate. In the 
integers, the primes p and −p are associate, but only one of these is positive. Requiring that prime 
numbers be positive selects a unique element from among a set of associated prime elements. 
When K is not the rational numbers, however, there is no analog of positivity. For example, in the 
Gaussian integers Z[i], the numbers 1 + 2i and −2 + i are associate because the latter is the product 
of the former by i, but there is no way to single out one as being more canonical than the other. 
This leads to equations such as 

5 (1 2 )(1 2 ) (2 )(2 ),i i i i= + − = + −

which prove that in Z[i], it is not true that factorizations are unique up to the order of the factors. 
For this reason, one adopts the definition of unique factorization used in unique factorization do-
mains (UFDs). In a UFD, the prime elements occurring in a factorization are only expected to be 
unique up to units and their ordering. 

However, even with this weaker definition, many rings of integers in algebraic number fields do not 
admit unique factorization. There is an algebraic obstruction called the ideal class group. When 
the ideal class group is trivial, the ring is a UFD. When it is not, there is a distinction between a 
prime element and an irreducible element. An irreducible element x is an element such that if x = 
yz, then either y or z is a unit. These are the elements that cannot be factored any further. Every 
element in O admits a factorization into irreducible elements, but it may admit more than one. 
This is because, while all prime elements are irreducible, some irreducible elements may not be 
prime. For example, consider the ring Z[√-5]. In this ring, the numbers 3, 2 + √-5 and 2 - √-5 are 
irreducible. This means that the number 9 has two factorizations into irreducible elements,

29 3 (2 5)(2 5).= = + − − −

This equation shows that 3 divides the product (2 + √-5)(2 - √-5) = 9. If 3 were a prime element, 
then it would divide 2 + √-5 or 2 - √-5, but it does not, because all elements divisible by 3 are of the 
form 3a + 3b√-5. Similarly, 2 + √-5 and 2 - √-5 divide the product 32, but neither of these elements 
divides 3 itself, so neither of them are prime. As there is no sense in which the elements 3, 2 + √-5 
and 2 - √-5 can be made equivalent, unique factorization fails in Z[√-5]. Unlike the situation with 
units, where uniqueness could be repaired by weakening the definition, overcoming this failure 
requires a new perspective. 
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Factorization into Prime Ideals

If I is an ideal in O, then there is always a factorization 

1
1 ,tee

tI = p p

where each ip is a prime ideal, and where this expression is unique up to the order of the factors. In 
particular, this is true if I is the principal ideal generated by a single element. This is the strongest 
sense in which the ring of integers of a general number field admits unique factorization. In the 
language of ring theory, it says that rings of integers are Dedekind domains. 

When O is a UFD, every prime ideal is generated by a prime element. Otherwise, there are prime 
ideals which are not generated by prime elements. In Z[√-5], for instance, the ideal (2, 1 + √-5) is 
a prime ideal which cannot be generated by a single element. 

Historically, the idea of factoring ideals into prime ideals was preceded by Ernst Kummer’s in-
troduction of ideal numbers. These are numbers lying in an extension field E of K. This extension 
field is now known as the Hilbert class field. By the principal ideal theorem, every prime ideal of O 
generates a principal ideal of the ring of integers of E. A generator of this principal ideal is called 
an ideal number. Kummer used these as a substitute for the failure of unique factorization in cy-
clotomic fields. These eventually led Richard Dedekind to introduce a forerunner of ideals and to 
prove unique factorization of ideals. 

An ideal which is prime in the ring of integers in one number field may fail to be prime when ex-
tended to a larger number field. Consider, for example, the prime numbers. The corresponding 
ideals pZ are prime ideals of the ring Z. However, when this ideal is extended to the Gaussian 
integers to get pZ[i], it may or may not be prime. For example, the factorization 2 = (1 + i)(1 − i) 
implies that 

22Z[ ] (1 )Z[ ]·(1 )Z[ ] ((1 )Z[ ]) ;= + − = +i i i i i i i

note that because 1 + i = (1 − i) ⋅ i, the ideals generated by 1 + i and 1 − i are the same. A complete 
answer to the question of which ideals remain prime in the Gaussian integers is provided by Fer-
mat’s theorem on sums of two squares. It implies that for an odd prime number p, pZ[i] is a prime 
ideal if p ≡ 3 (mod 4) and is not a prime ideal if p ≡ 1 (mod 4). This, together with the observation 
that the ideal (1 + i)Z[i] is prime, provides a complete description of the prime ideals in the Gauss-
ian integers. Generalizing this simple result to more general rings of integers is a basic problem in 
algebraic number theory. Class field theory accomplishes this goal when K is an abelian extension 
of Q (i.e. a Galois extension with abelian Galois group). 

Ideal Class Group

Unique factorization fails if and only if there are prime ideals that fail to be principal. The object 
which measures the failure of prime ideals to be principal is called the ideal class group. Defining 
the ideal class group requires enlarging the set of ideals in a ring of algebraic integers so that they 
admit a group structure. This is done by generalizing ideals to fractional ideals. A fractional ideal 
is an additive subgroup J of K which is closed under multiplication by elements of O, meaning that 
xJ ⊆ J if x ∈ O. All ideals of O are also fractional ideals. If I and J are fractional ideals, then the set 
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IJ of all products of an element in I and an element in J is also a fractional ideal. This operation 
makes the set of non-zero fractional ideals into a group. The group identity is the ideal (1) = O, and 
the inverse of J is a (generalized) ideal quotient, J−1 = (O : J) = { x ∈ K : xJ ⊆ O }. 

The principal fractional ideals, meaning the ones of the form Ox where x ∈ K×, form a subgroup of 
the group of all non-zero fractional ideals. The quotient of the group of non-zero fractional ideals 
by this subgroup is the ideal class group. Two fractional ideals I and J represent the same element 
of the ideal class group if and only if there exists an element x ∈ K such that xI = J. Therefore, the 
ideal class group makes two fractional ideals equivalent if one is as close to being principal as the 
other is. The ideal class group is generally denoted Cl K, Cl O, or Pic O (with the last notation iden-
tifying it with the Picard group in algebraic geometry). 

The number of elements in the class group is called the class number of K. The class number of 
Q(√-5) is 2. This means that there are only two ideal classes, the class of principal fractional ideals, 
and the class of a non-principal fractional ideal such as (2, 1 + √-5). 

The ideal class group has another description in terms of divisors. These are formal objects which 
represent possible factorizations of numbers. The divisor group Div K is defined to be the free 
abelian group generated by the prime ideals of O. There is a group homomorphism from K×, the 
non-zero elements of K up to multiplication, to Div K. Suppose that x ∈ K satisfies 

1
1( ) .tee

tx = p p

Then div x is defined to be the divisor 

1
div [ ].

t

i i
i

x e
=

=∑ p

The kernel of div is the group of units in O, while the cokernel is the ideal class group. In the lan-
guage of homological algebra, this says that there is an exact sequence of abelian groups (written 
multiplicatively), 

div1 Div Cl 1.O K K K× ×→ → → → →

Real and Complex Embeddings

Some number fields, such as Q(√2), can be specified as subfields of the real numbers. Others, such 
as Q(√−1), cannot. Abstractly, such a specification corresponds to a field homomorphism K → R or 
K → C. These are called real embeddings and complex embeddings, respectively. 

A real quadratic field Q(√a), with a ∈ R, a > 0, and a not a perfect square, is so-called because it 
admits two real embeddings but no complex embeddings. These are the field homomorphisms 
which send √a to √a and to −√a, respectively. Dually, an imaginary quadratic field Q(√−a) admits 
no real embeddings but admits a conjugate pair of complex embeddings. One of these embeddings 
sends √−a to √−a, while the other sends it to its complex conjugate, −√−a. 

Conventionally, the number of real embeddings of K is denoted r1, while the number of conjugate 
pairs of complex embeddings is denoted r2. The signature of K is the pair (r1, r2). It is a theorem 
that r1 + 2r2 = d, where d is the degree of K. 
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Considering all embeddings at once determines a function 

1 22: R C .→ ⊕r rM K

This is called the Minkowski embedding. The subspace of the codomain fixed by complex con-
jugation is a real vector space of dimension d called Minkowski space. Because the Minkowski  
embedding is defined by field homomorphisms, multiplication of elements of K by an element x ∈ 
K corresponds to multiplication by a diagonal matrix in the Minkowski embedding. The dot prod-
uct on Minkowski space corresponds to the trace form , Tr( ).x y xy〈 〉 =

The image of O under the Minkowski embedding is a d-dimensional lattice. If B is a basis for this 
lattice, then det BTB is the discriminant of O. The discriminant is denoted Δ or D. The covolume of 
the image of O is | |∆ . 

Places

Real and complex embeddings can be put on the same footing as prime ideals by adopting a per-
spective based on valuations. Consider, for example, the integers. In addition to the usual absolute 
value function |·| : Q → R, there are p-adic absolute value functions |·|p : Q → R, defined for each 
prime number p, which measure divisibility by p. Ostrowski’s theorem states that these are all pos-
sible absolute value functions on Q (up to equivalence). Therefore, absolute values are a common 
language to describe both the real embedding of Q and the prime numbers. 

A place of an algebraic number field is an equivalence class of absolute value functions on K. There are 
two types of places. There is a p-adic absolute value for each prime ideal p of O, and, like the p-adic 
absolute values, it measures divisibility. These are called finite places. The other type of place is speci-
fied using a real or complex embedding of K and the standard absolute value function on R or C. These 
are infinite places. Because absolute values are unable to distinguish between a complex embedding 
and its conjugate, a complex embedding and its conjugate determine the same place. Therefore, there 
are r1 real places and r2 complex places. Because places encompass the primes, places are sometimes 
referred to as primes. When this is done, finite places are called finite primes and infinite places are 
called infinite primes. If v is a valuation corresponding to an absolute value, then one frequently 
writes ∞v to mean that v is an infinite place and v ∞ to mean that it is a finite place. 

Considering all the places of the field together produces the adele ring of the number field. The 
adele ring allows one to simultaneously track all the data available using absolute values. This pro-
duces significant advantages in situations where the behavior at one place can affect the behavior 
at other places, as in the Artin reciprocity law. 

Units

The integers have only two units, 1 and −1. Other rings of integers may admit more units. The Gauss-
ian integers have four units, the previous two as well as ±i. The Eisenstein integers Z[exp(2πi / 3)] 
have six units. The integers in real quadratic number fields have infinitely many units. For example, 
in Z[√3], every power of 2 + √3 is a unit, and all these powers are distinct. 

In general, the group of units of O, denoted O×, is a finitely generated abelian group. The funda-
mental theorem of finitely generated abelian groups therefore implies that it is a direct sum of a 
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torsion part and a free part. Reinterpreting this in the context of a number field, the torsion part 
consists of the roots of unity that lie in O. This group is cyclic. The free part is described by Dir-
ichlet’s unit theorem. This theorem says that rank of the free part is r1 + r2 − 1. Thus, for example, 
the only fields for which the rank of the free part is zero are Q and the imaginary quadratic fields. 
A more precise statement giving the structure of O× ⊗Z Q as a Galois module for the Galois group 
of K/Q is also possible. 

The free part of the unit group can be studied using the infinite places of K. Consider the function 

1 2: R +× → r rL K

defined by 

( ) (log | | ) ,v vL x x=

where v varies over the infinite places of K and |·|v is the absolute value associated with v. The 
function L is a homomorphism from K× to a real vector space. It can be shown that the image of 
O× is a lattice that spans the hyperplane defined by 

1 21 0r rx x ++ + = . The covolume of this lattice 
is the regulator of the number field. One of the simplifications made possible by working with the 
adele ring is that there is a single object, the idele class group, that describes both the quotient by 
this lattice and the ideal class group. 

Zeta Function

The Dedekind zeta function of a number field, analogous to the Riemann zeta function is an ana-
lytic object which describes the behavior of prime ideals in K. When K is an abelian extension of Q, 
Dedekind zeta functions are products of Dirichlet L-functions, with there being one factor for each 
Dirichlet character. The trivial character corresponds to the Riemann zeta function. When K is a 
Galois extension, the Dedekind zeta function is the Artin L-function of the regular representation 
of the Galois group of K, and it has a factorization in terms of irreducible Artin representations of 
the Galois group. 

The zeta function is related to the other invariants described above by the class number formula. 

Local Fields

Completing a number field K at a place w gives a complete field. If the valuation is archimedean, 
one gets R or C, if it is non-archimedean and lies over a prime p of the rationals, one gets a finite 
extension Kw/Qp: a complete, discrete valued field with finite residue field. This process simplifies 
the arithmetic of the field and allows the local study of problems. For example, the Kronecker–We-
ber theorem can be deduced easily from the analogous local statement. The philosophy behind the 
study of local fields is largely motivated by geometric methods. In algebraic geometry, it is com-
mon to study varieties locally at a point by localizing to a maximal ideal. Global information can 
then be recovered by gluing together local data. This spirit is adopted in algebraic number theory. 
Given a prime in the ring of algebraic integers in a number field, it is desirable to study the field 
locally at that prime. Therefore, one localizes the ring of algebraic integers to that prime and then 
completes the fraction field much in the spirit of geometry. 
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Major Results

Finiteness of the Class Group

One of the classical results in algebraic number theory is that the ideal class group of an algebraic 
number field K is finite. The order of the class group is called the class number, and is often denot-
ed by the letter h. 

Dirichlet’s Unit Theorem

Dirichlet’s unit theorem provides a description of the structure of the multiplicative group of units 
O× of the ring of integers O. Specifically, it states that O× is isomorphic to G × Zr, where G is the 
finite cyclic group consisting of all the roots of unity in O, and r = r1 + r2 − 1 (where r1 (respectively, 
r2) denotes the number of real embeddings (respectively, pairs of conjugate non-real embeddings) 
of K). In other words, O× is a finitely generated abelian group of rank r1 + r2 − 1 whose torsion con-
sists of the roots of unity in O. 

Reciprocity Laws

In terms of the Legendre symbol, the law of quadratic reciprocity for positive odd primes states 

1 1
2 2( 1) .

p qp q
q p

− −  
= −  

  

A reciprocity law is a generalization of the law of quadratic reciprocity. 

There are several different ways to express reciprocity laws. The early reciprocity laws found in 
the 19th century were usually expressed in terms of a power residue symbol (p/q) generalizing the 
quadratic reciprocity symbol, that describes when a prime number is an nth power residue modulo 
another prime, and gave a relation between (p/q) and (q/p). Hilbert reformulated the reciprocity 
laws as saying that a product over p of Hilbert symbols (a,b/p), taking values in roots of unity, is 
equal to 1. Artin’s reformulated reciprocity law states that the Artin symbol from ideals (or ideles) 
to elements of a Galois group is trivial on a certain subgroup. Several more recent generalizations 
express reciprocity laws using cohomology of groups or representations of adelic groups or alge-
braic K-groups, and their relationship with the original quadratic reciprocity law can be hard to see.

Class Number Formula

The class number formula relates many important invariants of a number field to a special value 
of its Dedekind zeta function. 

CLASS FIELD THEORY

In mathematics, class field theory is the branch of algebraic number theory concerned with the 
abelian extensions of number fields, global fields of positive characteristic, and local fields. The 
theory had its origins in the proof of quadratic reciprocity by Gauss at the end of 18th century. 
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These ideas were developed over the next century, giving rise to a set of conjectures by Hilbert that 
were subsequently proved by Takagi and Artin. These conjectures and their proofs constitute the 
main body of class field theory. 

One major result states that, given a number field F, and writing K for the maximal abelian unram-
ifed extension of F, the Galois group of K over F is canonically isomorphic to the ideal class group of 
F. This statement can be generalized to the Artin reciprocity law; writing CF for the idele class group 
of F, and taking L to be any finite abelian extension of F, this law gives a canonical isomorphism 

/ /: / ( ) Gal( / ),L F F L F LC N C L Fθ →

where /L FN denotes the idelic norm map from L to F. This isomorphism is then called the reci-
procity map. The existence theorem states that the reciprocity map can be used to give a bijection 
between the set of abelian extensions of F and the set of closed subgroups of finite index of .FC

A standard method for developing global class field theory since the 1930s is to develop local class 
field theory, which describes abelian extensions of local fields, and then use it to construct global 
class field theory. This was first done by Artin and Tate using the theory of group cohomology, and 
in particular by developing the notion of class formations. More recently, Neukrich has found a 
proof of the main statements of global class field theory without using cohomological ideas. 

Class field theory also encompasses the explicit construction of maximal abelian extensions of 
number fields in the few cases where such constructions are known. Currently, this portion of the 
theory consists of Kronecker-Weber theorem, which can be used to construct the abelian exten-
sions of  and the theory of complex multiplication, which can be used to construct the abelian 
extensions of CM-fields. 

The Langlands program gives one approach for generalizing class field theory to non-abelian ex-
tensions. This generalization is mostly still conjectural. For number fields, class field theory and 
the results related to the modularity theorem are the only cases known. 

Formulation in Contemporary Language

In modern mathematical language class field theory can be formulated as follows. Consider the 
maximal abelian extension A of a local or global field K. It is of infinite degree over K; the Galois 
group G of A over K is an infinite pro-finite group, so a compact topological group, and it is abelian. 
The central aims of class field theory are: to describe G in terms of certain appropriate topological 
objects associated to K, to describe finite abelian extensions of K in terms of open subgroups of 
finite index in the topological object associated to K. In particular, one wishes to establish a one-
to-one correspondence between finite abelian extensions of K and their norm groups in this topo-
logical object for K. This topological object is the multiplicative group in the case of local fields with 
finite residue field and the idele class group in the case of global fields. The finite abelian extension 
corresponding to an open subgroup of finite index is called the class field for that subgroup, which 
gave the name to the theory. 

The fundamental result of general class field theory states that the group G is naturally isomorphic 
to the profinite completion of CK, the multiplicative group of a local field or the idele class group 
of the global field, with respect to the natural topology on CK related to the specific structure of 
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the field K. Equivalently, for any finite Galois extension L of K, there is an isomorphism (the Artin 
reciprocity map) 

ab
/Gal( / ) / ( )K L K LL K C N C→

of the abelianization of the Galois group of the extension with the quotient of the idele class group 
of K by the image of the norm of the idele class group of L. 

For some small fields, such as the field of rational numbers  or its quadratic imaginary extensions 
there is a more detailed very explicit but too specific theory which provides more information. For 
example, the abelianized absolute Galois group G of 


is (naturally isomorphic to) an infinite prod-

uct of the group of units of the p-adic integers taken over all prime numbers p, and the correspond-
ing maximal abelian extension of the rationals is the field generated by all roots of unity. This is 
known as the Kronecker–Weber theorem, originally conjectured by Leopold Kronecker. In this case 
the reciprocity isomorphism of class field theory (or Artin reciprocity map) also admits an explicit 
description due to the Kronecker–Weber theorem. However, principal constructions of such more 
detailed theories for small algebraic number fields are not extendable to the general case of alge-
braic number fields, and different conceptual principles are in use in the general class field theory. 

The standard method to construct the reciprocity homomorphism is to first construct the local 
reciprocity isomorphism from the multiplicative group of the completion of a global field to the 
Galois group of its maximal abelian extension (this is done inside local class field theory) and then 
prove that the product of all such local reciprocity maps when defined on the idele group of the 
global field is trivial on the image of the multiplicative group of the global field. The latter proper-
ty is called the global reciprocity law and is a far reaching generalization of the Gauss quadratic 
reciprocity law.

One of the methods to construct the reciprocity homomorphism uses class formation which de-
rives class field theory from axioms of class field theory. This derivation is purely topological group 
theoretical, while to establish the axioms one has to use the ring structure of the ground field. 

There are methods which use cohomology groups, in particular the Brauer group, and there are 
methods which do not use cohomology groups and are very explicit and fruitful for applications. 

Applications

Class field theory is used to prove Artin-Verdier duality. Very explicit class field theory is used in 
many subareas of algebraic number theory such as Iwasawa theory and Galois modules theory. 

Most main achievements in the Langlands correspondence for number fields, the BSD conjecture 
for number fields, and Iwasawa theory for number fields are using very explicit but narrow class 
field theory methods or their generalizations. The open question is therefore to use generalizations 
of general class field theory in these three directions. 

Generalizations of Class Field Theory

There are three main generalizations, each of great interest on its own. They are: the Langlands 
program, anabelian geometry, and higher class field theory. 
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Often, the Langlands correspondence is viewed as a nonabelian class field theory. If/when ful-
ly established, it would contain a certain theory of nonabelian Galois extensions of global fields. 
However, the Langlands correspondence does not include as much arithmetical information about 
finite Galois extensions as class field theory does in the abelian case. It also does not include an 
analog of the existence theorem in class field theory, i.e. the concept of class fields is absent in the 
Langlands correspondence. There are several other nonabelian theories, local and global, which 
provide alternative to the Langlands correspondence point of view. 

Another generalization of class field theory is anabelian geometry which studies algorithms to re-
store the original object (e.g. a number field or a hyperbolic curve over it) from the knowledge of 
its full absolute Galois group of algebraic fundamental group.

ABSTRACT ANALYTIC NUMBER THEORY

The central concept in abstract analytic number theory is that of an arithmetical semi-group G (de-
fined below). It turns out that the study of such semi-groups and of (real- or complex-valued) func-
tions on them makes it possible on the one hand to apply methods of classical analytic number 
theory in a unified way to a variety of asymptotic enumeration questions for isomorphism classes 
of different kinds of explicit mathematical objects. On the other hand, these procedures also lead 
to abstract generalizations and analogues of ordinary analytic number theory, which may then be 
applied in a unified way to further enumeration questions about the (mostly non-arithmetical) 
concrete types of mathematical objects just alluded to.

Arithmetical Semi-groups

An arithmetical semi-group is, by definition, a commutative semi-group G with identity element 1, 
which contains a countable subset P such that every element a ≠1 in G admits a unique factoriza-
tion into a finite product of powers of elements of PP, together with a real-valued mapping |⋅| on G 
such that:

i. |1| 1, 1for ;

ii. | | | | | | for all ,

| |

;

= > ∈

= ⋅ ∈

p p P

ab a b a b G

iii. The total number of elements a with | |a x<  is finite, for each 0x > .

The elements of P are called the primes of G, and |⋅| is called the norm mapping on G. It is obvious 
that, corresponding to any fixed c>1, the definition ( ) log | |ca a∂ =  yields a mapping on G such 
that:

i. (1) 0, ( ) 0p∂ = ∂ > for p P∈ ;

ii. ( ) ( ) ( )ab a b∂ ∂ ∂= +  for all ,a b G∈ ;

iii. The total number of elements a with ( )a x∂ ≤ is finite, for each 0x > .

Conversely, any real-valued mapping ∂ with the properties A)–C) yields a norm on G, if one defines 
( )| | aa c∂= . In cases where such a mapping ∂ is of primary interest, G together with ∂ is called an 
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additive arithmetical semi-group, and one refers to ∂ as the degree mapping on G. In most con-
crete examples of interest, it turns out that the norm or degree mappings represent natural “size” 
or “dimension” measures which are integer-valued. With an eye to applications to natural exam-
ples there is therefore little loss in henceforth restricting attention to either a single integer-valued 
norm mapping |⋅|, or a single integer-valued degree mapping ∂, on G. Depending on which case is 
being considered, special interest then attaches to the basic counting functions (for n ∈ Z)

( ) {
( ) #{ : | |

|# : | }
}= ∈ =

= ∈ =
G n a G a n
P n p P p n

or ( ) #{ : ( ) }, ( ) #{ : ( ) }G n a G a n P n p P p n∂ ∂= ∈ = = ∈ =  in the additive case).

The prototype of all arithmetical semi-groups is of course the multiplicative semi-group   of all 
positive integers {1,2,3,…} with its subset PN of all rational prime numbers 2,3,5{ ,7, }… Here one 
may define the norm of an integer |n| to be n, so that the number ( ) 1n =  for 1n ≥ .

The asymptotic behaviour of N( ) ( )
n x

X P nπ
≤

=∑  for large xx forms the content of the famous prime 
number theorem, which states that

 as 
log

( ) xx x
x

π ∼ →∞

A suitably generalized form of this theorem holds for many other naturally-occurring arith-
metical semi-groups. For example, it is true for the multiplicative semi-group GK of all non-zero 
ideals in the ring ( )R R K=  of all algebraic integers in a given algebraic number field K, with 
| | ( / )I card R I=  for any non-zero ideal I in R. Here, the prime ideals act as prime elements of the 
semi-group GK.

A simple but nevertheless interesting example of an additive arithmetical semi-group is provided 
by the multiplicative semi-group G−q of all monic polynomials in one indeterminate X over a fi-
nite field q  with q elements, with dega a∂ =  and the set P q of prime elements represented by the 
irreducible polynomials. Here, ( ) n

qG n q= , and it can be proved that

|

/( ) ( )1 n r
q

r n
P n r q

n
µ= ∑

where μ is the classical Möbius function on .

Up to isomorphism, Gq is the simplest special case of the semi-group GR of all non-zero ideals in 
the ring R=R(K) of all integral functions in an algebraic function field K in one variable K over q .

Arithmetical Categories of Semi-groups

Many interesting examples of concrete, but non-classical, arithmetical semi-groups can be found 
by considering certain specific classes of mathematical objects, such as groups, rings, topologi-
cal spaces, and so on, together with appropriate “direct product” operations and isomorphism 
relations for those classes. It is convenient, though admittedly not quite precise, to temporarily 
ignore the corresponding morphisms and refer to such classes of objects as “categories”.
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Now consider some category C which admits a direct “product” (or “sum” ) operation × on its 
objects. Suppose that this operation × preserves C-isomorphisms, is commutative and associa-
tive up to C-isomorphism, and that C contains a “zero” object 0 (unique up to C-isomorphism) 
such that 0A A× ≅  for all objects A in C. Then suppose that a theorem of Krull–Schmidt type is 
valid for C, i.e., suppose that every object A can be expressed as a finite ×-product 1 kA P P≅ × ×  
of objects Pi that are indecomposable with respect to ×, in a way that is unique up to permu-
tation of terms and C-isomorphism. In most natural situations at least, one may reformulate 
these conditions on C by stating that the various isomorphism classes A  of objects A in C form 
a set GC that is

i. a commutative semi-group with identity with respect to the multiplication operation 
A B A B× = × ;

ii. a semi-group with the unique factorization property with respect to the isomorphism class-
es of the indecomposable objects in C.

For this reason, one may call the C-isomorphism classes iP  of indecomposable objects P the 
“primes” of C or GC.

In many interesting cases (some of which are illustrated below), the category C also admits a “norm” 
function |⋅| on objects which is invariant under C-isomorphism and has the following properties:

i. | 0 | 1, 1|P= >  for every indecomposable object P;

ii. | | | |.A B A B× =  for all objects A, B;

iii. the total number of C-isomorphism classes of objects A of norm | |A x≤  is finite, for each 
real 0x > .

Obviously, in such circumstances, the definition | |A A= provides a norm function on GC satisfy-
ing the required conditions for an arithmetical semi-group. For these reasons, a category C with 
such further properties may be called an arithmetical category.

Now consider some concrete illustrations for the above concepts, taken from [a2], [a3]:

• One of the simplest non-trivial examples of an arithmetical category is provided by the 
category A of all finite Abelian groups, together with the usual direct product operation 
and the norm function |A|=card(A). Here, the Krull–Schmidt theorem reduces to the well-
known fundamental theorem on finite Abelian groups, the indecomposable objects of this 
kind being simply the various cyclic groups npC  of prime-power order pn.

• The category of all semi-simple associative rings of finite cardinality.

• The category of all semi-simple finite-dimensional associate algebras over a given field FF.

• The category of all semi-simple finite-dimensional Lie algebras over a given field F.

• The category of all compact simply-connected globally symmetric Riemannian manifolds.

• The category T of topological spaces of finite cardinality with the property that a space Y lies 
in T if and only if each connected component of Y lies in T.
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Zeta-functions and Enumeration Problems

For a given arithmetical semi-group G, information on the basic counting functions ( ) ( ),G n P n
can often be obtained, algebraically or with the aid of analysis, via a certain series-production re-
lation called the Euler product formula for G.

Indeed, ignoring questions of convergence for the moment, note that (by the unique factorization 
into prime elements of G) the series

( ) ( )

( )
( )

( )

1

1
1

1

1

1
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As a function of ( ), Gz zζ  is called the zeta-function of G. If G is an additive arithmetical semi-group 

with c αα ∂=  for some integer 1c > , one may substitute the symbol Y for zc−  and obtain the modi-

fied Euler product formula:

( ) ( )# #

0 1

1 ;mn m

n m

G n y y P
∞∞

= =

= − −∑ ∏

Then  ( ) ( )#
0

n
G n

Z y G n y∞

=
=∑  is called the modified zeta-function (or generating function) of G.

Some explicit illustrations of zeta-functions and Euler products are given below.

The Riemann Zeta-function

For the basic semi-group N of positive integers, the zeta-function is

( )
1

;z

n
z nζ

∞
−

=

=∑

it is called the Riemann zeta-function, and the classical Euler product formula reads:

( ) ( ) 12

primesp of N

1z pζ
−−= −∏
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The Dedekind Zeta-function

Let kG  denote the (above-mentioned) arithmetical semi-group of all non-zero “integral” ideals in 
a given algebraic number field K. The zeta-function for kG  is then

where ( )K n  denotes the total number of ideals of norm n in kG ; it is known as the Dedekind  
zeta-function of K. 

( ) ( )
1

,
K

z z
K

I G n
z I K n nζ

∞
− −

∈ =

= =∑ ∑

Monic Polynomials Over a Finite Field

For the additive arithmetical semi-group qG  of all monic polynomials in one indeterminate X over 
Fq, the generating function may be written as:

( ) ( ) 1

0
1 ,n n

q
n

Z y q y qy
∞

−

=

= = −∑

and the above-mentioned explicit formula for ( )#
qP n  can be deduced as an algebraic consequence 

of the Euler product for qG .

Finite Abelian Groups

For the category A of all finite Abelian groups, the zeta-function may be written as:

( ) ( )
1

,z

n
z n nζ α

∞
−

=

=∑A

where α (n)  denotes the total number of isomorphism classes of Abelian groups of order n. The
discussion of “primes” in A given above shows that here the Euler product may be written as a 
double product,

( ) ( ) ( )1

1, 1
prime N

1 ,rz

r r
s p

z p rzζ ζ
∞

−−

≥ =
∈

= − =∏ ∏A

by the Euler product formula for the Riemann zeta-function.

For the subcategory ( )pA  of all finite Abelian P -groups, where P is a fixed prime number (cf.
also P-group), it is natural to regard ( )pA  as an additive arithmetical category, with degree map-
ping defined by,

( ) ( )log card .pA A∂ =

In that case, ( )pA  has exactly one prime of degree r for each 1,2,...r = . Therefore the Euler prod-
uct formula implies that A ( p) has the generating function,

( ) ( ) ( )
1

1

1 p ,r n
p

n or

Z y y n y
∞ ∞−

==

= − =∑∏
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where ( ) ( )p nn pα=  is the total number of isomorphism classes of Abelian groups of degree n in 
the above sense. In fact, for ( )0.pn n>  equals the total number of ways of partitioning n into a 
sum of positive integers, which is also the number of pseudo-metrizable finite topological spaces 
of cardinality n. Thus, the corresponding latter category P (say) has the same generating function 
as ( )pA .

Types of Arithmetical Semi-groups

Bearing in mind the emphasis on concrete realizations of arithmetical semi-groups in a variety of 
areas of mathematics, it is reasonable to classify them and to base further investigations according 
to common features which may be exhibited by the initial enumeration theorems for particular 
sets of examples. In that way, further questions and enumeration problems may be investigated 
uniformly under suitable covering assumptions or “axioms” appropriate for particular natural sets 
of examples. On this basis, a small number of special types of arithmetical semi-groups have so far 
(2000) been found to predominate amongst natural concrete examples.

Classical and Axiom-A Type Semi-groups

The strictly classical arithmetical semi-groups of analytic number theory are the multiplicative 
semi-group of all positive integers and the multiplicative semi-group of all non-zero ideals in the 
ring of all algebraic integers in a given algebraic number field. For example, H. Weber and E. Lan-
dau proved theorems to the effect that 

( ) ( )as ,K
k K x

n x
G n A O x xη

≤

= + →∞∑

where GK is the semi-group of all “integral” ideals in a given algebraic number field K. Landau 
in particular used (a1) in order to extend many asymptotic results about arithmetical functions 
on N to similar functions on GK.

In quite a different direction, P. Erdős and G. Szekeres proved in 1934 for the category A  of all 
finite Abelian groups that

( ) ( )1 as ,
n x

n A x O x xα
≤

= + →∞∑

where ( )1 2 2.29...rA rζ≤= =∏ .

At a later stage, for the category S  of semi-simple finite rings, I.G. Connell and J. Knopfmacher 
independently proved that

( ) ( )2 as ,
n x

S n A x O x x
≤

= + →∞∑

where ( )2
2

2 2 2.49...
rm

A rmζ≥= =∏ ..

Strong concrete motivation was available for unifying certain further developments under the  
umbrella of general studies of an abstract arithmetical semi-group G satisfying the so-called  
axiom A: There exist constants 0, 0 andGA δ η δ> > <  (all depending on G), such that
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( ) ( )as .Gx
n x

G n A O x xηδ

≤

= + →∞∑

Theorems based on the assumption of axiom A often simultaneously generalize earlier results for 
N.  and KG GA, and provide additional asymptotic enumeration theorems for a variety of arithmeti-
cal categories like S and many others.

Axiom A# Type Semi-groups

Consideration of the examples of multiplicative semi-groups of monic polynomials in one indeter-
minate, and also of enumeration theorems for some infinite families of explicit additive arithmeti-
cal categories connected with rings of integral functions in algebraic function fields over Fq , pro-
vides a wealth of motivation for studying an abstract additive arithmetical semi-group G satisfying 
axiom #A : There exist constants 0. 1GA q> >  and V < 1 (all depending on G) such that

( ) ( )# as .n
vn

Gq
G n A O q n= + →∞

With this axiom as a basis instead of axiom A, problems similar to those outlined above may be 
investigated, with similar motivation to those stimulating the axiom- A type studies. It then turns 
out that the ensuing results and methods of proof sometimes but not always possess parallels to 
those subject to axiom A.

A curious illustration of a non-parallel result arises with the abstract prime number theorem (or 
abstract prime element theorem) subject to axiom #A . In 1976, Knopfmacher derived such a the-
orem, on the initial foundation of some plausible-looking lemmas parallel to ones under axiom A. 
However, in 1989 and later, other authors independently found and then closed certain gaps in 
those lemmas. The combined efforts of various authors then led to a final theorem with two cases, 
depending on whether or not ( )1 0GZ q−− = ; contributions to this were made by S.D. Cohen, K.-H. 

Indlekofer, E. Manstavičius, R. Warlimont and W.-B. Zhang.

A strange point about this result is that the case ( )1 0GZ q −− ≠  holds for all the natural examples 

which initially motivated axiom #A . Although ingenious examples in which ( )1 0GZ q−− =  have 

also been constructed, those found up to now might be viewed as somewhat pathological or con-
trived. Therefore, in terms of the “natural-example-based approach” to this subject outlined in the 
beginning, it would not be unreasonable to continue the present (2000) direction of investigation 
under the combined assumption of axiom #A  with the additional axiom

( )1 0.GZ q −− ≠

In fact many consequences of axiom #A  are unrelated to the value of ( )1
GZ q −− , and so the sim-

plifying additional axiom would only sometimes become relevant (but nevertheless reasonable to 
then assume at such a stage).

Axiom C

The examples listed earlier included many involving an additive arithmetical category C for 
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which ( )#
CG n  and ( )#

CP n  have quite a different behaviour from that given by axiom #A . Here, 
although the objects in C may sometimes be rather complicated, the presently (as of 2000) 
known structure theorems for those objects often lead to a relatively simple estimation for 

( ) ( ) ( )# # #or .π = ≤∑C C n CP n x x P n Surprisingly perhaps, it turns out that sharp asymptotic informa-

tion can then be deduced about ( ) ( ) ( )# # #orC C x Cn
G n N x G n≤=∑ by methods of classical-type ar-

ithmetical partition theory, which were initiated by G.H. Hardy and G. Ramanujan in 1917. These 
methods belong to a quite different branch of classical analytic number theory from those involved 
in the earlier discussion of axiom A.

On the basis of these new types of examples as motivation, one is led to investigations of an ad-
ditive arithmetical semi-group G satisfying axiom C: There exist constants, 0. 0C κ> >  and v (all 
depending on G) such that

( ) ( )# ~ log as .π →∞v
C x Cx x xκ

A simple example of axiom C is provided when C denotes either the category ( )pA 3of finite Abe-
lian P-groups, or the category P  of pseudo-metrizable finite topological spaces.

Similar formulas hold for the categories of compact simply-connected Lie groups, or semi-simple 
finite-dimensional Lie algebras over an algebraically closed field F of characteristic zero.

Asymptotic deductions about ( ) ( ) ( )# # #or ,G nG n N x xG n= ≤∑  subject to axiom C, could perhaps
be referred to as “inverse additive abstract prime number theorems” . Based on methods of gener-
alized arithmetical partition theory, various theorems of this kind can be derived, as well as results 
about “average values” of arithmetical functions on G, and on asymptotic “densities” of certain 
subsets of G, subject to axiom C.

Axiom G1

Yet another natural class of additive arithmetical semi-groups G is provided by those satisfying 

axiom G1: “Almost all” elements of G are prime, in the sense that ( )# 0G n >  for sufficiently large
( ) ( )# #, and ~ as n P n G n n→∞ .

It is known that various classes Γ of finite graphs define arithmetical semi-groups with this slight-
ly surprising property. It is also known that, when 1k > , the multiplicative semi-group ,k qG  of all 
monic polynomials in k indeterminates 1,.., KX X  over a finite field Fq has the property stipulated
in axiom.
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There are a number of important theorems used in algebra such as Abel–Ruffini theorem, Amit-
sur–Levitzki theorem, Bernstein–Kushnirenko theorem, Hilbert’s basis theorem, remainder theo-
rem and factor theorem. The topics elaborated in this chapter will help in gaining a better perspec-
tive about these theorems in algebra.

FUNDAMENTAL THEOREM OF ALGEBRA

The Fundamental theorem of algebra states that any nonconstant polynomial with complex coeffi-
cients has at least one complex root. The theorem implies that any polynomial with complex coef-
ficients of degree n has n complex roots, counted with multiplicity. A field F with the property that 
every nonconstant polynomial with coefficients in F has a root in F is called algebraically closed, so 
the fundamental theorem of algebra states that

The field C  of complex numbers is algebraically closed.

The polynomial 2 1x +  has no real roots, but it has two complex roots i and -.−i.

The polynomial 2x i+  has two complex roots, namely 
1

2
i−

± .

One might expect that polynomials with complex coefficients have issues with nonexistence of 
roots similar to those of real polynomials; that is, it is not unreasonable to guess that some poly-
nomial like

3 2 1( )x ix i x eπ+ − + −

will not have a complex root, and finding such a root will require looking in some larger field con-
taining the complex numbers. The fundamental theorem of algebra says that this is not the case: 
all the roots of a polynomial with complex coefficients can be found living inside the complex 
numbers already.

Factoring

This section gives a more precise statement of the different equivalent forms of the fundamental 
theorem of algebra. This requires a definition of the multiplicity of a root of a polynomial.

The multiplicity of a root r of a polynomial f(x) is the largest positive integer k such that ( )kx r−  di-
vides f (x). Equivalently, it is the smallest positive integer k such that ( ) ( 0)kf r ≠ , where ( )kf  de-
notes the thk  derivative of f.

C
H

A
PTE

R6Algebraic in Theorems
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Theorem

Let F be a field. The following are equivalent:

1. Every nonconstant polynomial with coefficients in F has a root in F.

2. Every nonconstant polynomial of degree n with coefficients in F has n roots in F, counted 
with multiplicity.

3. Every nonconstant polynomial with coefficients in F splits completely as a product of linear 
factors with coefficients in F.

Proof:

Clearly (3) (2) (1)⇒ ⇒ , so the only nontrivial part is (1) (3)⇒ . To see this, induct on the degree n of  
( )f x . The base case n=1 is clear. Now suppose the result holds for polynomials of degree n−1. Then 

let ( )f x  be a polynomial of degree n. By (1), ( )f x  has a root a.a. A standard division algorithm ar-
gument shows that x−a is a factor of ( )f x .

Divide  by( )  f x x a−  to get ( ) ( ) ( )f x x a q x r= − + , where r is a constant polynomial. Plugging in a to 
both sides gives 0 = ( ) ( ) ( ), so 0( ) ) So( .  a a q a r r f x x a q x− + = = −  But ( )q x  is a polynomial of 
degree n−1, so it splits into a product of linear factors by the inductive hypothesis. Therefore 

( )f x  does as well. So the result is proved by induction.

The fundamental theorem of algebra says that the field \mathbb CC of complex numbers has prop-
erty (1), so by the theorem above it must have properties (1), (2), and (3).

Example:

If 4 3( ) 1f x x x x= − − + , then complex roots can be factored out one by one until the polynomial is 
factored completely: 4 3 3(1) 0,so 1 ( 1)( 1).f x x x x x= − − + = − − Then 1 is a root of 3 1x − , so

4 3 2( ) ( ) (1 1 1)1 ,x x x x x x x− − + = − − + +

and now 2 1x x+ +  has two complex roots, namely the primitive third roots of unity 2andω ω , where 
2 /3ie πω = . So

4 3 22( ) ( )( )1 1 .x x x x x xω ω− − + = − − −

There are three distinct roots, but four roots with multiplicity, since the root 1 has multiplicity 2.

Applications of the Theorem

The ability to factor any polynomial over the complex numbers reduces many difficult nonlinear 
problems over other fields (e.g. the real numbers) to linear ones over the complex numbers. For 
example, every square matrix over the complex numbers has a complex eigenvalue, because the 
characteristic polynomial always has a root. This is not true over the real numbers, e.g. the matrix

0 1
,

1 0
 
 − 

which rotates the real coordinate plane by 90°, has no real eigenvalues.
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Another general application is to the field of algebraic geometry, or the study of solutions to poly-
nomial equations. The assumption that the coefficients of the polynomial equations lie in an alge-
braically closed field is essential for simplifying and strengthening the theory, as it guarantees that 
the field is “big enough” to contain roots of polynomials. For example, the set of complex solutions 
to a polynomial equation with real coefficients often has more natural and useful properties than 
the set of real solutions.

Another application worth mentioning briefly is to integration with partial fractions. Over the real 
numbers, there are awkward cases involving irreducible quadratic factors of the denominator. The 
algebra is simplified by using partial fractions over the complex numbers (with the caveat that 
some complex analysis is required to interpret the resulting integrals).

Polynomials over the Real Numbers

Let p(x) be a polynomial with real coefficients. It is true that p(x) can be factored into linear factors 
over the complex numbers, but the factorization is slightly more complicated if the factors are re-
quired to have real coefficients.

For instance, the polynomial 2 1x +  can be factored as ( ) ( )x i x i− +  over the complex numbers, but 
over the real numbers it is irreducible: it cannot be written as a product of two nonconstant poly-
nomials with real coefficients.

Theorem

Every polynomial  p(x) with real coefficients can be factored into a product of linear and irreduc-
ible quadratic factors with real coefficients.

Proof:

Induct on n. The base cases are n=1 and ,n=2, which are trivial. Now suppose the theorem is true 
for polynomials of degree n−2 and n−1. Let  f(x) be a polynomial of degree n, and let a be a complex 
root of  f(x) (which exists by the fundamental theorem of algebra). There are two cases.

If a is real, then  f(x) = (x−a) q(x) for a polynomial  q(x) with real coefficients of degree n−1. By 
the inductive hypothesis, q(x) can be factored into a product of linear and irreducible quadratic 
factors, so f(x) can as well.

If a is not real, then let a  be the complex conjugate of a. Note that .a a≠  Write f(x) = 

1 0( ,) n
nf x c x c x c= + + +  then

1 0

1 0

1 0

1 0

( )

( )

= + + +

= + + +

= + + +

= + + +
=

n
n

n
n

n

n
n

n

x c x c x c

c x c x c

c x c x c

c x c x c
x

f

f
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by properties of the complex conjugate (and because the c i are real numbers). So if ( ) 0f a = , then 0
0 0.( ) ( )f f aa = = =  The conclusion is that non-real roots of polynomials with real coefficients 

come in complex conjugate pairs.

Write ( ) ( ) ( )f x x a q x= − , where q(x) has complex coefficients, and plug in a  to both sides. 
Then ( ) 0q a = . (This is where the argument uses that .)a a≠  So ( ) ( ) ( )q x x a h x= − , so 

( ) ( ) ( ), so ( ) ( )( ) ( ).q x x a h x f x x a x a h x= − = − −  Write the product of the first two factors 
as g(x), then g(x) is a quadratic irreducible polynomial with real coefficients. Since g(x) di-
vides f(x) over the complex numbers, and both polynomials are real, g(x) must divide f(x) over 
the real numbers. (Proof: use the division algorithm over the real numbers, f = f g j k= + , with k 
=0 or de( ) ( )gk g< , and then over the complex numbers g divides f and ,gj, so must divide k; so 
k=0).

So h(x) is a polynomial of degree n−2 with real coefficients, which factors as expected by the induc-
tive hypothesis, so f(x) does as well. This completes the proof.

Proof of the Theorem

There are no “elementary” proofs of the theorem. The easiest proofs use basic facts from complex 
analysis. Here is a proof using Liouville’s theorem that a bounded holomorphic function on the 
entire plane must be constant, along with a basic fact from topology about compact sets.

Let 0( ) n
np z a z a= + +  be a polynomial with complex coefficients, and suppose that ( ) 0p z ≠  ev-

erywhere. (So of course a 0 0a ≠ .) Then 
1
( )p z

  is holomorphic everywhere.

Now lim ( ) .
z

p z
→∞

= ∞  for instance, because

( )1
1 0( ) n n

n np z a z a z a−
−≥ − + +

by the triangle inequality. So for large enough ( ) 0,say , .z z R p z a> >

But in the disc | | ,z R≤  the function ( )p z  attains its minimum value (because the disc is compact). 
Call this value m. Note that m>0.

Then ( )0min( ,)p z m a>  for all z, so

( ) ( )0

1 1
min ,p z m a

<

for all z, so it is a bounded holomorphic function on the entire plane, so it must be constant by 
Liouville’s theorem. But then p(z) is constant.

So the argument has shown that any nonconstant polynomial with complex coefficients has a com-
plex root, as desired.
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POLYNOMIAL REMAINDER THEOREM

In algebra, the polynomial remainder theorem or little Bézout’s theorem (named after Étienne 
Bézout) is an application of Euclidean division of polynomials. It states that the remainder of the 
division of a polynomial ( )f x  by a linear polynomial x r−  is equal to ( )f r  In particular, x r− is a 
divisor of ( )f x  if and only if ( ) 0f r =  a property known as the factor theorem.

Examples:

1. Let 3 2( ) 12 42f x x x= − − . Polynomial division of ( )f x by ( 3)x −  gives the quotient 2 9 27x x− −
and the remainder 123− . Therefore, (3) 123.f = −  

2. Show that the polynomial remainder theorem holds for an arbitrary second degree polynomial 
2( )f x ax bx c= + +  by using algebraic manipulation: 

2

2

2

( )

( ) ( )

( )( ) ( )

( )

f x ax bx c
x r x r

ax arx arx bx c
x r

ax x r b ar x c
x r

b ar x r c r b arax
x r

c r b arax b ar
x r

ar br cax b ar
x r

+ +
=

− −
− + + +

=
−

− + + +
=

−
+ − + + +

= +
−

+ +
= + + +

−
+ +

= + + +
−

Multiplying both sides by (x − r) gives 

2 2( ) ( )( )f x ax bx c ax b ar x r ar br c= + + = + + − + + + .

Since 2R ar br c= + + is the remainder, we have indeed shown that ( )f r R= . 

Proof:

The polynomial remainder theorem follows from the theorem of Euclidean division, which, given 
two polynomials f(x) (the dividend) and g(x) (the divisor), asserts the existence (and the unique-
ness) of a quotient Q(x) and a remainder R(x) such that 

( ) ( ) ( ) ( ) and ( ) 0  or deg( ) deg( ).f x Q x g x R x R x R g= + = <

If the divisor is ( )g x x r= −  then either R(x) = 0 or its degree is zero; in both cases, R(x) is a 
constant that is independent of x; that is 

( ) ( )( ) .f x q x x r R= − +
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Setting x r= in this formula, we obtain: 

( )f r R=

A slightly different proof, which may appear to some people as more elementary, starts with an 
observation that ( ) ( )f x f r−  is a linear combination of terms of the form k kx r− each of which is 
divisible by x r− since 1 2 2 1( )( )k k k k k kx r x r x x r xr r− − − −− = − + +…+ + .

Applications

The polynomial remainder theorem may be used to evaluate ( )f r by calculating the remainder,  
R. Although polynomial long division is more difficult than evaluating the function itself, synthetic 
division is computationally easier. Thus, the function may be more “cheaply” evaluated using syn-
thetic division and the polynomial remainder theorem. 

The factor theorem is another application of the remainder theorem: if the remainder is zero, then 
the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize 
the polynomial.

FACTOR THEOREM

In algebra, the factor theorem is a theorem linking factors and zeros of a polynomial. It is a special 
case of the polynomial remainder theorem. 

The factor theorem states that a polynomial ( )f x has a factor ( )x k− if and only if ( ) 0f k =  (i.e. 
k is a root). 

Factorization of Polynomials

Two problems where the factor theorem is commonly applied are those of factoring a polynomial 
and finding the roots of a polynomial equation; it is a direct consequence of the theorem that these 
problems are essentially equivalent. 

The factor theorem is also used to remove known zeros from a polynomial while leaving all un-
known zeros intact, thus producing a lower degree polynomial whose zeros may be easier to find. 
Abstractly, the method is as follows: 

1. “Guess” a zero a of the polynomial f . (In general, this can be very hard, but maths text-
book problems that involve solving a polynomial equation are often designed so that some 
roots are easy to discover.)

2. Use the factor theorem to conclude that ( )x a− is a factor of ( )f x .

3. Compute the polynomial ( ) ( ) ( )/g x f x x a= − , for example using polynomial long division 
or synthetic division.

4. Conclude that any root x a≠ of ( ) 0f x = is a root of ( ) 0g x = . Since the polynomial degree 
of g is one less than that of f , it is “simpler” to find the remaining zeros by studying g.
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Example:

Find the factors of 

3 27 8 2x x x+ + +

To do this one would use trial and error (or the rational root theorem) to find the first x value that 
causes the expression to equal zero. To find out if ( 1)x − is a factor, substitute 1x = into the poly-
nomial above: 

3 2 3 27 8 2 (1) 7(1) 8(1) 2x x x+ + + = + + +

1 7 8 2= + + +

18.=

As this is equal to 18 and not 0 this means ( 1)x − is not a factor of 3 27 8 2.x x x+ + +  So, we next try 
( 1)x +  (substituting 1x = − into the polynomial): 

3 2( 1) 7( 1) 8( 1) 2.− + − + − +

This is equal to 0. Therefore ( 1)x − − , which is to say 1x + , is a factor, and -1 is a root of 
3 27 8 2.x x x+ + +

The next two roots can be found by algebraically dividing 3 27 8 2x x x+ + + by ( 1)x + to get a qua-
dratic: 

3 2
27 8 2 6 2,

1
x x x x x

x
+ + +

= + +
+

and therefore ( 1)x + and 2 6 2x x+ + are factors of 3 27 8 2.x x x+ + + Of these the quadratic fac-
tor can be further factored using the quadratic formula, which gives as roots of the quadratic 

3 7.− ±  Thus the three irreducible factors of the original polynomial are 1x + , ( 3 7)x − − +  and

( 3 7).x − − −

ABEL–RUFFINI THEOREM

In algebra, the Abel–Ruffini theorem (also known as Abel’s impossibility theorem) states that 
there is no general algebraic solution—that is, solution in radicals— to polynomial equations of 
degree five or higher. The theorem is named after Paolo Ruffini, who made an incomplete proof in 
1799, and Niels Henrik Abel, who provided a proof in 1823. Évariste Galois independently proved 
the theorem in a work that was posthumously published in 1846.

Interpretation

The content of this theorem is frequently misunderstood. It does not assert that higher-degree 
polynomial equations are unsolvable. In fact, the opposite is true: every non-constant poly-
nomial equation in one unknown, with real or complex coefficients, has at least one complex 
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number as solution; this is the fundamental theorem of algebra. Although the solutions cannot 
always be expressed exactly with radicals, they can be computed to any desired degree of accu-
racy using numerical methods such as the Newton–Raphson method or Laguerre method, and 
in this way they are no different from solutions to polynomial equations of the second, third, or 
fourth degrees.

The theorem only concerns the form that such a solution must take. The theorem says that not all 
solutions of higher-degree equations can be obtained by starting with the equation’s coefficients 
and rational constants, and repeatedly forming sums, differences, products, quotients, and radicals 
(n-th roots, for some integer n) of previously obtained numbers. This clearly excludes the possibili-
ty of having any formula that expresses the solutions of an arbitrary equation of degree 5 or higher 
in terms of its coefficients, using only those operations, or even of having different formulas for 
different roots or for different classes of polynomials, in such a way as to cover all cases. (In princi-
ple one could imagine formulas using irrational numbers as constants, but even if a finite number 
of those were admitted at the start, not all roots of higher-degree equations could be obtained.) 
However some polynomial equations, of arbitrarily high degree, are solvable with such operations. 
Indeed, if the roots happen to be rational numbers, they can trivially be expressed as constants. The 
simplest nontrivial example is the equation ,nx a= where a  is a positive real number, which has n  
solutions, given by:

2 /. , 0,1,..., 1.i k nnx a e k nπ= = −

Here the expression 2 /i k ne π which appears to involve the use of the exponential function, in fact just 
gives the different possible values of 1n (the n-th roots of unity), so it involves only extraction of 
radicals.

Lower-degree Polynomials

The solutions of any second-degree polynomial equation can be expressed in terms of addition, 
subtraction, multiplication, division, and square roots, using the familiar quadratic formula: The 
roots of the following equation are shown below:

2

2

0, 0

4 .
2

ax bx c a

b b acx
a

+ + = ≠

− ± −
=

Analogous formulas for third- and fourth-degree equations, using cube roots and fourth roots, had 
been known since the 16th century.

Quintics and Higher

The Abel–Ruffini theorem says that there are some fifth-degree equations whose solution cannot be so 
expressed. The equation 5 1 0x x− + = is an example. Some other fifth degree equations can be solved 
by radicals, for example 5 4 1 0x x x− − + = which factorizes to ( )( )( )( )( )1 1 1 0.x x x x i x i− − + + − =
The precise criterion that distinguishes between those equations that can be solved by radicals 
and those that cannot was given by Évariste Galois and is now part of Galois theory: a polynomial 
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 equation can be solved by radicals if and only if its Galois group (over the rational numbers, or 
more generally over the base field of admitted constants) is a solvable group.

Today, in the modern algebraic context, we say that second, third and fourth degree polynomial 
equations can always be solved by radicals because the symmetric groups S2, S3 and S4 are solvable 
groups, whereas Sn is not solvable for n ≥ 5. This is so because for a polynomial of degree n with 
indeterminate coefficients (i.e., given by symbolic parameters), the Galois group is the full sym-
metric group Sn (this is what is called the “general equation of the n-th degree”). This remains true 
if the coefficients are concrete but algebraically independent values over the base field. 

Proof:

The following proof is based on Galois theory. Historically, Ruffini and Abel’s proofs precede Ga-
lois theory.

One of the fundamental theorems of Galois theory states that an equation is solvable in radicals if 
and only if it has a solvable Galois group, so the proof of the Abel–Ruffini theorem comes down to 
computing the Galois group of the general polynomial of the fifth degree.

Let 1y  be a real number transcendental over the field of rational numbers Q  and let 2y  be a real num-

ber transcendental over ( )1Q y  and so on to 5y  which is transcendental over ( )1 2 3 4, , ,Q y y y y These 

numbers are called independent transcendental elements over Q. Let ( )1 2 3 4 5, , , ,E Q y y y y y= and let

( ) ( )( )( )( )( ) [ ]1 2 3 4 5 .f x x y x y x y x y x y E x= − − − − − ∈ =

Multiplying ( )f x out yields the elementary symmetric functions of the ny :

1 1 2 3 4 5

2 1 2 1 3 1 4 1 5 2 3 2 5 3 4 3 5 4 5

3 1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5

4 1 2 3 4 1 2 3 5 1 2 4 5 1 3 4 5 2 3 4 5

5 1 2 3 4 5.

s y y y y y
s y y y y y y y y y y y y y y y y y y
s y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y
s y y y y y y y y y y y y y y y y y y y y
s y y y y y

= + + + +
= + + + + + + + +
= + + + + + + + + +
= + + + +
=

The coefficient of nx in ( )f x is thus ( )5
51 .n

ns−
−− Because our independent transcendentals ny act 

as indeterminates over Q ,every permutationσ in the symmetric group on 5 letters 5S  induces an 
automorphism σ ′ on E that leaves Q fixed and permutes the elements ny .Since an arbitrary rear-
rangement of the roots of the product form still produces the same polynomial, e.g.:

( )( )( )( )( )3 1 2 5 4y y y y y y y y y y− − − − −

is still the same polynomial as

( )( )( )( )( )1 2 3 4 5y y y y y y y y y y− − − − −

the automorphismsσ ′ also leave E fixed, so they are elements of the Galois group ( )/G E Q Now, 
since 5 5!S = it must be that ( )/ 5!G E Q ≥ as there could possibly be automorphisms there that 
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are not in 5S However, since the relative automorphisms Q for splitting field of a quintic polynomi-
al has at most 5! elements, ( )/ 5!G E Q = and so ( )/G E Q must be isomorphic to 5S Generalizing 
this argument shows that the Galois group of every general polynomial of degree n is isomorphic 
to nS

And what of 5?S The only composition series of { }5 5 5isS S A e≥ ≥ (where 5A is the alternating group 
on five letters, also known as the icosahedral group). However, the quotient group { }5 /A e (isomor-
phic to 5A itself) is not an abelian group, and so 5S is not solvable, so it must be that the general poly-
nomial of the fifth degree has no solution in radicals. Since the first nontrivial normal subgroup of the 
symmetric group on n letters is always the alternating group on n letters, and since the alternating 
groups on n letters for 5n ≥ are always simple and non-abelian, and hence not solvable, it also says 
that the general polynomials of all degrees higher than the fifth also have no solution in radicals.

Note that the above construction of the Galois group for a fifth degree polynomial only applies to 
the general polynomial, specific polynomials of the fifth degree may have different Galois groups 
with quite different properties, e.g. 5 1x −  has a splitting field generated by a primitive 5th root of 
unity, and hence its Galois group is abelian and the equation itself solvable by radicals. However, 
since the result is on the general polynomial, it does say that a general “quintic formula” for the 
roots of a quintic using only a finite combination of the arithmetic operations and radicals in terms 
of the coefficients is impossible.

AMITSUR–LEVITZKI THEOREM

In algebra, the Amitsur–Levitzki theorem states that the algebra of n by n matrices satisfies a cer-
tain identity of degree 2n. It was proved by Amitsur and Levitsky. In particular matrix rings are 
polynomial identity rings such that the smallest identity they satisfy has degree exactly 2n. 

The standard polynomial of degree n is 

1 (1) ( )( , , ) sgn( )
n

n n n
S

S x x x xσ σ
σ

σ
∈

… = ∑ 

in non-commutative variables x1,...,xn, where the sum is taken over all n! elements of the symmet-
ric group Sn. 

The Amitsur–Levitzki theorem states that for n by n matrices A1,...,A2n then 

2 1 2( , , ) 0 .n nS A A… =

Proofs:

Amitsur and Levitzki gave the first proof. 

Kostant deduced the Amitsur–Levitzki theorem from the Koszul–Samelson theorem about primi-
tive cohomology of Lie algebras. 

Swan and Swan gave a simple combinatorial proof as follows. By linearity it is enough to prove the 
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theorem when each matrix has only one nonzero entry, which is 1. In this case each matrix can be 
encoded as a directed edge of a graph with n vertices. So all matrices together give a graph on n 
vertices with 2n directed edges. The identity holds provided that for any two vertices A and B of 
the graph, the number of odd Eulerian paths from A to B is the same as the number of even ones. 
(Here a path is called odd or even depending on whether its edges taken in order give an odd or 
even permutation of the 2n edges.) Swan showed that this was the case provided the number of 
edges in the graph is at least 2n, thus proving the Amitsur–Levitzki theorem. 

Razmyslov gave a proof related to the Cayley–Hamilton theorem. 

Rosset gave a short proof using the exterior algebra of a vector space of dimension 2n. 

Procesi gave another proof, showing that the Amitsur–Levitzki Theorem is the Cayley–Hamilton 
identity for the generic Grassman matrix. 

BERNSTEIN–KUSHNIRENKO THEOREM

Bernstein–Kushnirenko theorem (also known as BKK theorem or Bernstein–Khovanskii–Kushni-
renko theorem), proven by David Bernstein and Anatoli Kushnirenko [ru] in 1975, is a theorem in 
algebra. It states that the number of non-zero complex solutions of a system of Laurent polynomial 
equations 1 0nf f= = =

 is equal to the mixed volume of the Newton polytopes of the polynomi-
als 1, , nf f… , assuming that all non-zero coefficients of nf  are generic. A more precise statement is 
as follows: 

Theorem Statement

Let A be a finite subset of n
  Consider the subspace AL  of the Laurent polynomial algebra 

1 1
1 , , nx x± ± … 

 consisting of Laurent polynomials whose exponents are in A. That is: 

| ( ) , ,A
A

L f f x c x cα
α α

α∈

 = = ∈ 
 

∑ 

where for each 1( , , ) n
na aα = … ∈ we have used the shorthand notation xα to denote the mono-

mial 1
1 .

naa
nx x

Now take n  finite subsets 1, , nA A… with the corresponding subspaces of Laurent polynomials 

1
, , .

nA AL L… Consider a generic system of equations from these subspaces, that is: 

1( ) ( ) 0,nf x f x= = =

where each if is a generic element in the (finite dimensional vector space) .
iAL

The Bernstein–Kushnirenko theorem states that the number of solutions ( \ 0)nx∈  of such a 
system is equal to 

1! ( , , ),nn V ∆ … ∆
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where V denotes the Minkowski mixed volume and for each ,∆ii is the convex hull of the finite set 
of points iA .Clearly i∆ is a convex lattice polytope. It can be interpreted as the Newton polytope of 
a generic element of the subspace 

iAL .

In particular, if all the sets iA are the same 1 ,nA A A= = = then the number of solutions of a ge-
neric system of Laurent polynomials from AL is equal to 

!vol( ),n ∆

where ∆ is the convex hull of A and vol is the usual n -dimensional Euclidean volume. Note that 
even though the volume of a lattice polytope is not necessarily an integer, it becomes an integer 
after multiplying by !n . 

CARTAN–BRAUER–HUA THEOREM

In abstract algebra, the Cartan–Brauer–Hua theorem (named after Richard Brauer, Élie Cartan, 
and Hua Luogeng) is a theorem pertaining to division rings. It says that given two division rings 

   K D⊆  such that xKx−1 is contained in K for every x not equal to 0 in D, either K is contained in 
the center of D, or K = D. In other words, if the unit group of K is a normal subgroup of the unit 
group of D, then either K = D or K is central

Proof:

Any Element Inside Commutes with any Element Outside

For nonzero elements *,x y L∈ , we denote by [ , ]x y  the multiplicative commutator 1 1xyx y− −  and 
by ( )xc y  the element 1xyx− .

We denote by xc  the map 1y xyx−
 . Here, *,x L∈  but y  is allowed to be zero.

Given: *g K∈  and \a L K∈ .

To prove: [ , ] 1g a = .

Proof: The key idea is to play off the additive and the multiplicative structure against each other, 
and use the fact that the map 1y xyx−


 is an automorphism of both the additive and the multi-

plicative structure.

Step 
no.

Assertion/construction Given data/
assumptions 

used

Previous 
steps used

Explanation Commentary

1 , , 1g a a +  are all in *L , so 
the notations gc , [ , ]g a , and 
[ , 1]g a +  make sense.

* , \g K a L K∈ ∈ 
* , \g K a L K∈ ∈ .

*g K∈ , so *g L∈ . Further, 
\a L K∈ , so a is nonzero too. 

Further, since a K∉ , we know 
that 1a ≠ −  (since 1−  would 
be in any skew field) and hence 

1 0a + ≠ .

The choice of a and 
1a +  allows us to 

play on addition.
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2 *[ , ]g a K∈  and *[ , 1]g a K+ ∈ . *K  is normal 
in *L

Step (1) The commutator of any element 
in a normal subgroup with an 
element in the whole group lies 
in the normal subgroup. This is 
one of the equivalent definitions 
of normal subgroup.

3 ( ) [ , ]gc a g a a=  and 

( 1) [ , 1]( 1)gc a g a a+ = + + 

( 1) [ , 1]( 1)gc a g a a+ = + +

Step (1) Just follows from defini-
tions: 1 1[ , ]g a gag a− −=  and 

1( )gc a gag −= . The same logic 

applies replacing a by 1a + .

The multiplicative 
commutator is not 
convenient because 
it is not additive/
linear in either vari-
able. So, we rewrite 
it in terms of gc , 
which preserves the 
additive structure.

4 ( 1) ( ) 1g gc a c a+ = + Step (1) Just follows from definitions: 
1 1 1 1( 1) ( 1) 1 1gc a g a g gag g g gag− − − −+ = + = + = +,  

1 1 1 1( 1) ( 1) 1 1gc a g a g gag g g gag− − − −+ = + = + = +

which is ( ) 1gc a + .

More manipulation.

5 [ , 1]( 1) [ , ] 1g a a g a a+ + = + , 
 or equivalently, ([ , 1] [ , ]) 1 [ , 1]g a g a a g a+ − = − +

([ , 1] [ , ]) 1 [ , 1]g a g a a g a+ − = − +

Steps (3) 
and (4)

We plug in expressions for 
( 1)gc a +  and ( )gc a  from step (3) 

into the expression for step (4).

More manipulation.

6 The assumption 
[ , 1] [ , ]g a g a+ ≠  would lead 
to a contradiction, hence we 
must have [ , 1] [ , ]g a g a+ = .

a K∉ . Also, 
every nonze-
ro element 
is invertible 
because L  is 
a skew field.

Steps (2), 
(5)

If [ , 1] [ , ]g a g a+ ≠ , then the dif-
ference [ , 1] [ , ]g a g a+ −  is inv- 
ertible. Multiplying the second  
formulation of step (5) on the  
left by the inverse of [ , 1] [ , ]g a g a+ −  

[ , 1] [ , ]g a g a+ − and simplifying, we get 
( ) 1[ , 1] [ , ] (1 [ , 1])a g a g a g a−= + − − +

( ) 1[ , 1] [ , ] (1 [ , 1])a g a g a g a−= + − − + . Both [ , 1]g a +  and 
[ , ]g a  are in *K  by step (2). Thus, 
the right side is an expression 
involving terms in K  and hence 
must be in K . This contradicts 
the assumption that a K∉ .

More manipulation.

7 Plugging [ , 1] [ , ]g a g a+ =  in 
the result of step (5) gives 
[ , ] 1g a = .

Step (5) We get [ , ]( 1) [ , ] 1+ = +g a a g a a . 
Cancel out [ , ]g a a  additively 
form both sides, and we get 
[ , ] 1g a = .

The Finishing Touch

Now, if K  is a proper subset of L, we will show that *K  is contained inside the center. We already 
know that every element of *K  commutes with every element of \L K . So it suffices to show that 
any two elements of *K  commute.

Let *,g h K∈ . Then take any \a L K∈ . Then, \a h L K+ ∈ . Thus, g  commutes with both a h+  and 
a. Hence g  must commute with the difference, which is h.
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HILBERT’S BASIS THEOREM

Hilbert’s Basis Theorem is a result concerning Noetherian rings. It states that if A  is a (not nec-
essarily commutative) Noetherian ring, then the ring of polynomials 1 2[ , , , ]nA x x x  is also a No-
etherian ring. (The converse is evidently true as well).

Note that n  must be finite; if we adjoin infinitely many variables, then the ideal generated by these 
variables is not finitely generated.

The theorem is named for David Hilbert, one of the great mathematicians of the late nineteenth 
and twentieth centuries. He first stated and proved the theorem in 1888, using a nonconstructive 
proof that led Paul Gordan to declare famously, “Das ist nicht Mathematik. Das ist Theologie. [This 
is not mathematics. This is theology.]” In time, though, the value of nonconstructive proofs was 
more widely recognized.

Proof

By induction, it suffices to show that if A  is a Noetherian ring, then so is [ ]A x .

To this end, suppose that 0 1  ⊂ ⊂a a  is an ascending chain of (two-sided) ideals of [ ]A x .

Let ,i jc  denote the set of elements a  of A  such that there is a polynomial in ia  with degree at most
i  and with a  as the coefficient of jx . Then ,i jc  is a two-sided ideal of A; furthermore, for any i i′ ≥ ,
j j′ ≥ ,

, , ,,i j i j i j′ ′⊂c c c

Since A is Noetherian, it follows that for every 0≥ , the chain 

,0 ,1i i⊂ ⊂c c

Stabilizes to some ideal im . Furthermore, the ascending chain 

0 1, ,m m  

also stabilizes to some ideal ,A B=m c . Then for any i A≥  and any 0j ≥ , 

, , .i j A j=c c

We claim that the chain 0( )k k
∞
=a  stabilizes at Aa . For this, it suffices to show that for all k A≥ ,

k A⊂a a . We will thus prove that all polynomials of degree n  in ka  are also elements of Aa , by in-
duction on n.

For our base case, we note that ,0 ,0k M=c c , and these ideals are the sets of degree-zero polynomials 
in ka  and Ma , respectively.

Now, suppose that all of ka ’s elements of degree  or lower are also elements of Ma . Let p be 
an element of degree n  in ka . Since

, , ,k n A n=c c

 n - l=====
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there exists some element Aq∈a  with the same leading coefficient as p. Then by inductive hypothesis,

,Ap q− ∈a

So

,Ap∈a

as desired.
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PERMISSIONS 

All chapters in this book are published with permission under the Creative Commons Attribution Share 
Alike License or equivalent. Every chapter published in this book has been scrutinized by our experts. 
Their significance has been extensively debated. The topics covered herein carry significant information 
for a comprehensive understanding. They may even be implemented as practical applications or may be 
referred to as a beginning point for further studies.

We would like to thank the editorial team for lending their expertise to make the book truly unique. 
They have played a crucial role in the development of this book. Without their invaluable contributions 
this book wouldn’t have been possible. They have made vital efforts to compile up to date information 
on the varied aspects of this subject to make this book a valuable addition to the collection of many 
professionals and students.

This book was conceptualized with the vision of imparting up-to-date and integrated information in 
this field. To ensure the same, a matchless editorial board was set up. Every individual on the board 
went through rigorous rounds of assessment to prove their worth. After which they invested a large 
part of their time researching and compiling the most relevant data for our readers.

The editorial board has been involved in producing this book since its inception. They have spent rigorous 
hours researching and exploring the diverse topics which have resulted in the successful publishing 
of this book. They have passed on their knowledge of decades through this book. To expedite this 
challenging task, the publisher supported the team at every step. A small team of assistant editors was 
also appointed to further simplify the editing procedure and attain best results for the readers.

Apart from the editorial board, the designing team has also invested a significant amount of their time 
in understanding the subject and creating the most relevant covers. They scrutinized every image to 
scout for the most suitable representation of the subject and create an appropriate cover for the book.

The publishing team has been an ardent support to the editorial, designing and production team. Their 
endless efforts to recruit the best for this project, has resulted in the accomplishment of this book. They 
are a veteran in the field of academics and their pool of knowledge is as vast as their experience in 
printing. Their expertise and guidance has proved useful at every step. Their uncompromising quality 
standards have made this book an exceptional effort. Their encouragement from time to time has been 
an inspiration for everyone.

The publisher and the editorial board hope that this book will prove to be a valuable piece of knowledge 
for students, practitioners and scholars across the globe.
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