

BASIC COMPUTER CODING: JAVA
SCRIPT

2nd Edition

BIBLIOTEX
Digital Library

www.bibliotex.com

BASIC COMPUTER CODING: JAVA SCRIPT

2ND EDITION

BIBLIOTEX
Digital Library

www.bibliotex.com

email: info@bibliotex.com

e-book Edition 2022

ISBN: 978-1-98467-603-0 (e-book)

This book contains information obtained from highly regarded resources.
Reprinted material sources are indicated. Copyright for individual articles
remains with the authors as indicated and published under Creative Commons
License. A Wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and views articulated in the chapters are those of
the individual contributors, and not necessarily those of the editors or
publishers. Editors or publishers are not responsible for the accuracy of the
information in the published chapters or consequences of their use. The
publisher assumes no responsibility for any damage or grievance to the persons or
property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission has not been obtained. If any copyright holder has
not been acknowledged, please write to us so we may rectify.

Notice: Registered trademark of products or corporate names are used only
for explanation and identification without intent of infringement.

© 2022 3G E-learning LLC

In Collaboration with 3G E-Learning LLC. Originally Published in printed
book format by 3G E-Learning LLC with ISBN 978-1-98465-896-8

EDITORIAL BOARD
Aleksandar Mratinković was born on May 5, 1988 in Arandjelovac, Serbia. He has graduated on
Economic high school (2007), The College of Tourism in Belgrade (2013), and also has a master
degree of Psychology (Faculty of Philosophy, University of Novi Sad). He has been engaged
in different fields of psychology (Developmental Psychology, Clinical Psychology, Educational
Psychology and Industrial Psychology) and has published several scientific works.

Dan Piestun (PhD) is currently a startup entrepreneur in Israel working on the interface of
Agriculture and Biomedical Sciences and was formerly president-CEO of the National Institute of
Agricultural Research (INIA) in Uruguay. Dan is a widely published scientist who has received
many honours during his career including being a two-time recipient of the Amit Golda Meir
Prize from the Hebrew University of Jerusalem, his areas of expertise includes stem cell molecular
biology, plant and animal genetics and bioinformatics. Dan’s passion for applied science and
technological solutions did not stop him from pursuing a deep connection to the farmer, his family
and nature. Among some of his interest and practices counts enjoying working as a beekeeper
and onboard fishing.

Hazem Shawky Fouda has a PhD. in Agriculture Sciences, obtained his PhD. From the Faculty
of Agriculture, Alexandria University in 2008, He is working in Cotton Arbitration & Testing
General Organization (CATGO).

Felecia Killings is the Founder and CEO of LiyahAmore Publishing, a publishing company committed
to providing technical and educational services and products to Christian Authors. She operates as
the Senior Editor and Writer, the Senior Writing Coach, the Content Marketing Specialist, Editor-
in-Chief to the company’s quarterly magazine, the Executive and Host of an international virtual
network, and the Executive Director of the company’s online school for Authors. She is a former
high-school English instructor and professional development professor. She possesses a Master
of Arts degree in Education and a Bachelor’s degree in English and African American studies.

Dr. Sandra El Hajj, Ph.D. in Health Sciences from Nova Southeastern University, Florida,
USA is a health professional specialized in Preventive and Global Health. With her 12 years of
education obtained from one of the most prominent universities in Beirut, in addition to two leading
universities in the State of Florida (USA), Dr. Sandra made sure to incorporate interdisciplinary
and multicultural approaches in her work. Her long years of studies helped her create her own
miniature world of knowledge linking together the healthcare field with Medical Research, Statistics,
Food Technology, Environmental & Occupational Health, Preventive Health and most noteworthy
her precious last degree of Global Health. Till today, she is the first and only doctor specialized
in Global Health in the Middle East area.

Igor Krunic 2003-2007 in the School of Economics. After graduating in 2007, he went on to
study at The College of Tourism, at the University of Belgrade where he got his bachelor degree
in 2010. He was active as a third-year student representative in the student parliament.Then he
went on the Faculty of science, at the University of Novi Sad where he successfully defended his
master’s thesis in 2013. The crown of his study was the work titled Opportunities for development
of cultural tourism in Cacak“. Later on, he became part of a multinational company where he got
promoted to a deputy director of logistic. Nowadays he is a consultant and writer of academic
subjects in the field of tourism.

Dr. Jovan Pehcevski obtained his PhD in Computer Science from RMIT University in Melbourne,
Australia in 2007. His research interests include big data, business intelligence and predictive analytics,
data and information science, information retrieval, XML, web services and service-oriented architectures,
and relational and NoSQL database systems. He has published over 30 journal and conference papers
and he also serves as a journal and conference reviewer. He is currently working as a Dean and Associate
Professor at European University in Skopje, Macedonia.

Stephen obtained his PhD from the University of North Carolina at Charlotte in 2013 where his
graduate research focused on cancer immunology and the tumor microenvironment. He received
postdoctoral training in regenerative and translational medicine, specifically gastrointestinal tissue
engineering, at the Wake Forest Institute of Regenerative Medicine. Currently, Stephen is an
instructor for anatomy and physiology and biology at Forsyth Technical Community College.

Michelle holds a Masters of Business Administration from the University of Phoenix, with a
concentration in Human Resources Management. She is a professional author and has had numerous
articles published in the Henry County Times and has written and revised several employee
handbooks for various YMCA organizations throughout the United States.

Fozia Parveen has a Dphil in Sustainable Water Engineering from the University of Oxford. Prior
to this she has received MS in Environmental Sciences from National University of Science and
Technology (NUST), Islamabad Pakistan and BS in Environmental Sciences from Fatima Jinnah
Women University (FJWU), Rawalpindi.

Dr. Tanjina Nur finished her PhD in Civil and Environmental Engineering in 2014 from University
of Technology Sydney (UTS). Now she is working as Post-Doctoral Researcher in the Centre for
Technology in Water and Wastewater (CTWW) and published about eight International journal papers
with 80 citations. Her research interest is wastewater treatment technology using adsorption process.

v

 HOW TO USE THE BOOK

This book has been divided into many chapters. Chapter gives the motivation for this book and the use
of templates. The text is presented in the simplest language. Each paragraph has been arranged under
a suitable heading for easy retention of concept. Keywords are the words that academics use to reveal
the internal structure of an author’s reasoning. Review questions at the end of each chapter ask students
to review or explain the concepts. References provides the reader an additional source through which
he/she can obtain more information regarding the topic.

3G E-LEARNING

4 Basic Computer Coding: Visual Basic

enhancements, including the striking ability of creating web based applications. The
extended support for Visual Basic 6.0 was ceased in the month of March in 2008. The
basic parts of development environment of Visual Basic 6, however, still run in all the
32-bit Microsoft windows, including Windows 8.1.

After the cessation of mainstream and extended support for Visual Basic 6.0 caused
a number of programs to show concern. The community members then created a lobby
of users and a petition was signed by them. The basic aim of this petition was to ensure
that the product remains alive. However, the petition did not attain its aim effectively.

1.1.2 The Importance of Visual Basic Programming Language

Visual Basic is regarded as the third generation event-driven programming language.
It was released in 1987. Being the first visual development tool from Microsoft, it is
considered as one of the most powerful programming languages. As compared to other
computer programming languages, such as, C, C++, it is easy to learn and understand,
provided that one has determination and dedication to do so.

Visual basic programming language allows programmers to create software interface
and codes in an easy to use graphical environment. VB is the combination of different
components that are used on forms having specific attributes and actions with the help
of those components. On the one hand it allows programmers to develop widows based
applications rapidly; on the other hand, it helps greatly in accessing data bases, using
ADO while letting the programmers use ActiveX controls and various objects. While it
is intended more to develop applications, it is also useful for games development for
particular or limited purposes, unlike C++ that is more suitable for developing games.

As compared to other languages, Visual basic may be slower though, yet it is
flexible and it can be rightly said that things that are difficult in other languages are
comparatively easier in visual basic programming language. It may also be said that,
since it is one of the most popular programming languages, lots of related books
and material and other resources are available and can be accessed for developing
programming skills at visual basic programming language conveniently.

One of the most important things to be considered with regard to programming in
Visual basic is that the structure of VB is designed in a way that allows programmers
to create executable code – Exe files. It enables programmers to develop programs that
can be used as front end to databases. Besides, it’s with the help of visual basic tools,
one can change the abstract ideas into programs or into the whole software while it
allows revising and modifying the programs fittingly.

3G E-LEARNING

2 Basic Computer Coding: Visual Basic

a graphical user interface (GUI) which allows programmers
to modify code by simply dragging and dropping objects and
defining their behavior and appearance. VB is derived from
the BASIC programming language and is considered to be
event-driven and object-oriented.

VB is intended to be easy to learn and fast to write
code with; as a result, it is sometimes called a rapid
application development (RAD) system and is used
to prototype an application that will later be written in a
more difficult but efficient language.

The last version of VB, Visual Basic 6, was released in
1998, but has since been replaced by VB .NET, Visual Basic for
applications (VBA) and Visual Stuido .NET. VBA and Visual
Studio are the two frameworks most commonly used today.

1.1 MEANING OF VISUAL BASIC
Visual Basic is a programming language and development
environment created by Microsoft. It is an extension of the
BASIC programming language that combines BASIC functions
and commands with visual controls. Visual Basic provides a
graphical user interface GUI that allows the developer to
drag and drop objects into the program as well as manually
write program code.

Visual Basic, also referred to as “VB,” is designed to
make software development easy and efficient, while still
being powerful enough to create advanced programs. For
example, the Visual Basic language is designed to be “human
readable,” which means the source code can be understood
without requiring lots of comments. The Visual Basic program
also includes features like “IntelliSense” and “Code Snippets,”
which automatically generate code for visual objects added by

 The
 graphical
 user interface
 (GUI), is a type
 of user interface
 that allows users
 to interact with
 electronic devices
 through graphical
 icons and visual
 indicators such
 as secondary
 notation, instead
 of text-based user
 interfaces, typed
 command labels or
text navigation.

Keyword

Introduction to Visual Basic

3G E-LEARNING

3

the programmer. Another feature, called “AutoCorrect,” can
debug the code while the program is running.

Programs created with Visual Basic can be designed to
run on Windows, on the Web, within Office applications, or
on mobile devices. Visual Studio, the most comprehensive
VB development environment, or IDE, can be used to create
programs for all these mediums. Visual Studio .NET provides
development tools to create programs based on the .NET
framework, such as ASP.NET applications, which are often
deployed on the Web.

1.1.1 History of Visual Basic

The first version of visual basic, VB 1.0, was announced in the
year 1991. The creation of user interface through a drag and
drop design was inspired a beta generator that was developed
by Alan Cooper at Tripod, which was Cooper’s company.

Microsoft entered into a contract with Cooper and his
partners to create Tripod into a system that is programmable for
Windows 3.0. This system was developed under the code name
of Ruby, which has no relationship with the Ruby Programming
Language. Tripod did not have any programming language at
all. Microsoft then decided to use Ruby in combination with
basic language to develop visual basic.

The interface of Ruby contributed the “visual” component
of the Visual Basic programming language. This was then
amalgamated with the Embedded BASIC engine that was
developed for the ceased “Omega” database system of
Microsoft.

The introduction of version 5.0, in the month of February
in 1997, Microsoft exclusively released a visual basic that
was compatible with 32-bit Microsoft Windows versions. The
programmers who had a preference for writing programs in
16-bit could do it in versions between 4.0 and 5.0. In addition
to that the programs written Visual Basic 5.0 can be converted
to Version 4.0 programs in an easy manner. The version 5.0
also has the ability of compilation with native execution code
of Windows, and introduction of custom user controls.

The introduction of Visual Basic 6.0 was made in the
middle of 1998. This version also came with a number of

Visual
Basic
is available as
a streamlined
application that
is used primarily
by beginning
developers and
for educational
purposes.

Remember

LEARNING OBJECTIVES
See what you are going to cover and what you
should already know at the start of each chapter

ABOUT THIS CHAPTER
An introduction is a beginning of section which
states the purpose and goals of the topics which
are discussed in the chapter. It also starts the topics
in brief.

“I know blind programmers who work in C and Visual Basic in addition to mainframe languages,
because as long as they can get at a text file, they can do programming. But if the graphical tool kit
you are using requires you to drag and drop items on the screen, you can’t do it.”

–Curtis Chong,

After studying this chapter,
you will be able to:
1. Overview of meaning of

visual basic
2. Discuss the visual basic

environment
3. Describe the building

VB applications

LEARNING
OBJECTIVES

INTRODUCTION
TO VISUAL BASIC

INTRODUCTION
Visual Basic (VB) is an event-driven programming
language and environment from Microsoft that provides

1
CHAPTER

REMEMBER
This revitalizes a must read information of the
topic.

KEYWORDS
This section contains some important definitions
that are discussed in the chapter. A keyword is
an index entry that identifies a specific record
or document. It also gives the extra information
to the reader and an easy way to remember the
word definition.

vi

3G E-LEARNING

6 Basic Computer Coding: Visual Basic

 ■ There are some, fairly minor disadvantages compared
with C. C has better declaration of arrays – its possible
to initialize an array of structures in C at declaration
time; this is impossible in VB.

1.2 VISUAL BASIC ENVIRONMENT
On start up, Visual Basic 6.0 will display the following dialog
box as shown in figure 1. You can choose to start a new
project, open an existing project or select a list of recently
opened programs. A project is a collection of files that make
up your application. There are various types of applications
we could create, however, we shall concentrate on creating
Standard EXE programs (EXE means executable program).
Now, click on the Standard EXE icon to go into the actual
VB programming environment.

Figure 1: The Visual Basic Start-up Dialog Box.

In figure 2, the Visual Basic Environment consists of the
 ■ The Blank Form window which you can design your

application’s interface.
 ■ The Project window displays the files that are created

in your application.
 ■ The Properties window which displays the properties

of various controls and objects that are created in
your applications.

It also includes a Toolbox that consists of all the controls
essential for developing a VB Application. Controls are tools

Visual
Basic 1.0 for DOS
was released in
September 1992.
The language
itself was not
quite compatible
with Visual Basic
for Windows, as
it was actually
the next version
of Microsoft’s
DOS-based
BASIC compilers,
Microsoft
QuickBASIC
compiler and
the BASIC
Professional
Development
System 7.1. The
interface was
barely graphical,
using extended
ASCII characters
to simulate the
appearance of a
GUI.

Did You
Know?

38 Basic Computer Coding: Visual Basic

In each case, the name of the variable and its data type
are provided as part of the declaration.

Visual Basic reserves the amount of memory required
to hold the variable as soon as the declaration statement is
executed. After a variable is declared, it is not possible to
change its data type, although it is quite easy to convert the
value of a variable and assign the converted value to another
variable.

2.2.2 Comparing Implicit and Explicit Variable
Performance

The default data type for Visual Basic variables is the variant.
This means that, unless you specify otherwise, every variable
in your application will be a variant. The data type is not
very efficient. Its data storage requirements are greater than
the equivalent simple data type. The computer spends more
time keeping track of the data type contained in a variant
than for other data types.

 Variable names can’t be duplicated with the same scope. This means, that
 you can’t have two variables of the same name within a procedure. You can,
however, have two variables with the same name in two different procedures.

An explicit declaration statically types the variable it
declares. In a language that requires explicit declaration, you
will get a compilation error for any reference to a variable
that has not been explicitly declared.

By contrast, in a language that supports implicit declaration,
simply using a variable in code implies the declaration. If your
code assigns a string to the variable, then it is declared to be
a string.

Convenient, yes? Not so much. Any time you misspell a
variable name you get a new one and the program moves on,
with incorrect conditional behavior or a wrongly computed
value.

Given the rise of very smart editors like Visual Studio
Code, implicit declaration need not be the menace it was,
at least for languages that support the notion of optional

DID YOU KNOW?
This section equip readers the interesting facts and
figures of the topic.

EXAMPLE
The book cabinets’ examples to illustrate specific
ideas in each chapter.

ROLE MODEL
A biography of someone who has/had acquired
remarkable success in their respective field as
Role Models are important because they give us
the ability to imagine our future selves.

CASE STUDY
This reveals what students need to create and
provide an opportunity for the development of key
skills such as communication, group working and
problem solving.

KNOWLEDGE CHECK
This is given to the students for progress check
at the end of each chapter.

REVIEW QUESTIONS
This section is to analyze the knowledge and ability
of the reader.

REFERENCES
References refer those books which discuss the
topics given in the chapters in almost same man ner.

Introduction to Visual Basic

3G E-LEARNING

19

ROLE MODEL

ALAN COOPER: FATHER OF VISUAL BA-
SIC
 Born in San Francisco in 1952 and raised in Marin
 County, California, Alan Cooper has always taken the path
 less traveled. A rebellious teenager, he dropped out of high
 school, but eventually made his way to the College of Marin
 to pursue his interest in architecture. After an exploratory
 course in programming, it became clear that his future was
 in architecture—software architecture. After getting his
 associate degree and a COBOL programming job, he saw an
 advertisement for one of the first personal computers and
.conceived an idea for a new business venture

In 1976, Cooper founded Structured Systems Group (SSG),
a company Fire in the Valley authors Paul Freiberger and
Michael Swaine said created “the first serious business software
for microcomputers.” In four years, Cooper wrote and shipped
a dozen application programs. SSG became the archetype
for many software startups in the early days of the personal
computer revolution.

During the 1980s, after leaving SSG, Cooper invented,
wrote, and sold three major software packages to prominent
publishers. One of those was the visual programming front-
end code named “Ruby,” for what became Visual BASIC. Bill
Gates purchased it from Cooper in 1988, noting that it would
have significant impact across Microsoft’s entire product line.
Visual BASIC was deemed both a commercial and critical
success, earning Cooper the moniker “Father of Visual BASIC.”
Visual BASIC has influenced integrated development languages
ever since.

In 1990 Cooper became fascinated with the challenge of
making software products that were easy to use and understand.
He and his wife, Susan, founded Cooper Interaction Design
(now “Cooper”) to assist in what Cooper calls “interaction
design.” In the design field, Cooper’s software development
background was unique and, over the next few years, he
invented many of the tools and techniques now standard in
the user experience industry, including personas and scenarios,

3G E-LEARNING

50 Basic Computer Coding: Visual Basic

CASE STUDY

FUJITSU FACILITATES SMOOTH MIGRATION TO VB.NET AT
AN POST
Fujitsu has an excellent technical team, which works closely with our staff. We have
had a good working relationship for many years and Fujitsu has an in-depth knowledge
of our mission-critical application gained from several years’ development and support
work.

Challenge

A Post, one of Ireland’s largest companies, is a major commercial organization providing
a wide range of postal, communication, retail and financial services. With 9,600
employees throughout its national network of retail, processing and delivery points,
the business also provides services to government departments, the National Treasury
Management Agency and its own National Lottery Company. A decade ago, A Post
implemented a new nationwide time and attendance system to calculate and record staff
salary and wages functions. The Staff Remuneration and Administration Management
System (STREAMS) is a bespoke, mission-critical application developed by Fujitsu as
a reliable, scalable client server system using Microsoft technologies. The STREAMS
front-end system gathers information and feeds the data to the company’s HR, payroll
and financial departments. It primarily creates more efficient processes for A Post to
capture data for the weekly payroll run whilst simultaneously minimizing the number
of payroll queries by employees. Following deployment, STREAMS improved cost
center reporting, significantly lowered the time to record pay details and enhanced
the processing of casual staff pay. During this period, Fujitsu provided quality support
and maintenance services and application enhancements to increase functionality,
ensuring the long-term reliability of STREAMS. For instance, as employee numbers
steadily increased to exceed original expectations, Fujitsu boosted system performance
by upgrading the infrastructure and optimizing the software. STREAMS originally
employed Visual Basic (VB), a third-generation event-driven programming language and
integrated development environment (IDE) from Microsoft. IDE provides programmers
with comprehensive facilities for software development and comprises a source code
editor, a compiler and/or an interpreter, build automation tools and a debugger.
However, Microsoft no longer supports VB version 6.0, the edition employed by A
Post. Syl Byrne, IT Manager Remuneration Services, A Post, explains: “To ensure that
our business-critical application is future-proof, we needed to move to a platform that
Microsoft will support for the foreseeable future.” A Post therefore decided to migrate
STREAMS to the VB.NET platform, an object-orientated programming language. This
strategy would protect its investment for the next 10 years by creating a secure, scalable

3G E-LEARNING

22 Basic Computer Coding: Visual Basic

KNOWLEDGE CHECK
1. The Visual Basic Code Editor will automatically detect certain types of errors

as you are entering code.
a. True
b. False

2. Keywords are also referred to as reserved words.
a. True
b. False

3. The divide-and-conquer-method of problem solving breaks a problem into large,
general pieces first, then refines each piece until the problem is manageable.
a. True
b. False

4. Visual Basic responds to events using which of the following?
a. a code procedure
b. an event procedure
c. a form procedure
d. a property

5. When the user clicks a button, _________ is triggered.
a. an event
b. a method
c. a setting
d. a property

6. What property of controls tells the order they receive the focus when the tab
key is pressed during run time?
a. Focus order
b. Focus number
c. Tab index
d. Control order

7. Sizing Handles make it very easy to resize virtually any control when developing
applications with Visual Basic. When working in the Form Designer, how are
these sizing handles displayed?
a. A rectangle with 4 arrows, one in each corner, around your control.
b. A 3-D outline around your control.
c. A rectangle with small squares around your control.

3G E-LEARNING

24 Basic Computer Coding: Visual Basic

REFERENCES
1. Cox, Philip T, Visual Programming Languages. In in Encyclopedia of Computer

Science and Engineering, B.W. Wah (Ed.), John Wiley & Sons Inc., Hoboken,
(June 2008).

2. Kindborg, Mikael, How Children Understand Concurrent Comics: Experiences
from LOFI and HIFI Prototypes. In 2001 IEEE Symposia on Human-Centric
Computing Languages and Environments , Stresa, Italy, September 2001.

3. Ryder, Barbara, Mary Lou Soffa and Margaret Burnett, The Impact of Software
Engineering Research on Modern Programming Languages. In ACM Transactions
on Software Engineering and Methodology, October, 2005. Pages 431 to 477.

4. Störrle, Harald, VMQL: A Generic Visual Model Query Language. In IEEE
Symposium on Visual Languages/Human Centric Computing, Corvallis, Oregon,
September 2009.

5. Zhang, Kang, Visual Languages and Applications. In Research Manuscript,
Springer, 2007.

Introduction to Visual Basic

3G E-LEARNING

23

d. None of the above.
8. The Properties window plays an important role in the development of Visual

Basic applications. It is mainly used
a. to change how objects look and feel.
b. when opening programs stored on a hard drive.
c. to allow the developer to graphically design program components.
d. to set program related options like Program Name, Program Location, etc.

9. Pseudocode is
a. data that have been encoded for security.
b. the incorrect results of a computer program.
c. a program that doesn’t work.
d. the obscure language computer personnel use when speaking.
e. a description of an algorithm similar to a computer language.

10. Which of the properties in a control’s list of properties is used to give the
control a meaningful name?
a. Text
b. ContextMenu
c. ControlName
d. Name

REVIEW QUESTIONS
1. What is visual basic? Why are importance of visual basic programming

language?
2. What is visual basic environment?
3. Describe the structure of a visual basic application.
4. How to creating your first application?
5. Discuss the saving projects in VB.

Check Your Result

1. (a) 2. (a) 3. (a) 4. (b) 5. (a)
6. (c) 7. (c) 8. (a) 9. (e) 10. (d)

TABLE OF

CONTENTS
Preface xv

Chapter 1 Introduction to JavaScript 1
Introduction 1

1.1 Meaning of JavaScript 2

1.1.1 The History of JavaScript 3

1.1.2 Client-side JavaScript 7

1.1.3 Limitations of JavaScript 7

1.1.4 Advantages of CSS 8

1.1.5 JavaScript Disadvantages 9

1.2 Hello World: Writing Your First JavaScript
Program 10

1.2.1 Getting Started: Creating the HTML Framework 10

1.2.2 Adding the JavaScript Code 11

1.2.3 Creating a “Hello World” JavaScript Function 11

1.3 How to Add JavaScript to Your Website Using HTML 12

1.4 JavaScript Tools 16

1.4.1 JavaScript Build tools and Automation Systems 17

1.4.2 JavaScript IDE and editors 18

1.4.3 JavaScript Documentation Tools 19

1.4.4 JavaScript Testing Tools 20

1.4.5 JavaScript Debugging Tools 20

1.4.6 Security Tools 21

1.4.7 Code optimization & analysis tools 22

1.4.8 Version Control Tools 23

1.4.9 Package and Dependency Management Tools 23

viii

Summary 27

Knowledge Check 28

Review Questions 29

References 30

Chapter 2 Language Syntax 31
Introduction 31

2.1 Javascript syntax 32

2.1.1 JavaScript Browser 35

2.1.2 Understanding Syntax and Code Structure in JavaScript 39

2.2 Appearance Of Javascript Basics 46

2.2.1 Syntax Basics 46

2.2.2 Operators 47

2.2.3 Conditional Code 49

2.2.4 Loops 52

2.2.5 Reserved Words 55

2.2.6 Arrays 56

2.2.7 Objects 57

2.2.8 Testing Type 58

2.2.9 The this keyword 59

2.2.10 Scope 61

Summary 65

Knowledge Check 66

Review Questions 67

References 68

Chapter 3 Built In Functions 69
Introduction 69

3.1 Understand Functions In Javascript 70

3.1.1 Defining a Function 71

3.1.2 Function Parameters 72

3.1.3 Returning Values 73

3.1.4 Function Expressions 74

3.1.5 Arrow Functions 75

3.2 Javascript Built-In Functions 76

3.2.1 Number Methods 77

3.2.2 Boolean Methods 78

3.2.3 String Methods 78

ix

3.2.4 String HTML wrappers 80

3.2.5 Array Methods 81

3.2.6 Date Methods 83

3.2.7 Date Static Methods 88

3.2.8 Math Methods 88

3.2.9 RegExp Methods 89

3.2.10 How to use JavaScript’s built-in functions to program with HTML 90

3.3 Understanding Date And Time In Javascript 92

3.3.1 The Date Object 93

3.3.2 Retrieving the Date with get 95

3.3.3 Modifying the Date with set 97

3.3.4 Date Methods with UTC 98

Summary 103

Knowledge Check 104

Review Questions 105

References 106

Chapter 4 HTML Forms 107
Introduction 107

4.1 Forms Basics 108

4.1.1 Form 110

4.1.2 Input 110

4.1.3 Textarea 111

4.1.4 Select 111

4.1.5 Names 112

4.2 HTML Form Elements 113

4.2.1 Text Box Input 114

4.2.2 Password Input 115

4.2.3 Text Area 115

4.2.4 Select Drop Down 115

4.2.5 Check Box 116

4.2.6 Radio Input 117

4.2.7 File Input 117

4.2.8 Submit Button 118

4.3 Styling HTML Forms 118

4.3.1 Search Fields 118

4.3.2 Fonts and Text 119

4.3.3 Box Model 120

x

4.3.4 Positioning 121

Summary 131

Knowledge Check 132

Review Questions 134

References 135

Chapter 5 HTML DOM 137
Introduction 137

5.1 HTML DOM Methods 138

5.1.1 The DOM Programming Interface 138

5.1.2 The getElementById Method 139

5.1.3 The innerHTML Property 139

5.2 HTML DOM Document 140

5.2.1 The HTML DOM Document Object 140

5.2.2 Finding HTML Elements 140

5.2.3 Changing HTML Elements 140

5.2.4 Adding and Deleting Elements 140

5.2.5 Adding Events Handlers 141

5.2.6 Finding HTML Objects 141

5.3 HTML DOM Elements 142

5.3.1 Finding HTML Elements 142

5.3.2 Finding HTML Element by Id 143

5.3.3 Finding HTML Elements by Tag Name 143

5.3.4 Finding HTML Elements by Class Name 143

5.3.5 Finding HTML Elements by CSS Selectors 144

5.3.6 Finding HTML Elements by HTML Object Collections 144

5.4 Changing HTML 145

5.4.1 Changing the HTML Output Stream 145

5.4.2 Changing HTML Content 145

5.4.3 Changing the Value of an Attribute 147

5.5 Changing CSS 147

5.5.1 Changing HTML Style 147

5.5.2 Using Events 148

5.6 HTML DOM Animation 149

5.6.1 A Basic Web Page 149

5.6.2 Create an Animation Container 149

5.6.3 Style the Elements 149

5.6.4 Animation Code 150

xi

5.6.5 Create the Animation Using JavaScript 151

5.7 HTML DOM Events 151

5.7.1 Reacting to Events 151

5.7.2 HTML Event Attributes 152

5.7.3 Assign Events Using the HTML DOM 153

5.7.4 The onload and onunload Events 153

5.8 HTML DOM EventListener 153

5.8.1 The addEventListener() method 154

5.8.2 Syntax 154

5.8.3 Add an Event Handler to an Element 154

5.8.4 Add Many Event Handlers to the Same Element 155

5.8.5 Add an Event Handler to the Window Object 155

5.8.6 Passing Parameters 156

5.8.7 Event Bubbling or Event Capturing? 156

5.8.8 The removeEventListener() method 156

5.9 HTML DOM Navigation 157

5.9.1 DOM Nodes 157

5.9.2 Node Relationships 157

5.9.3 Child Nodes and Node Values 159

5.9.4 DOM Root Nodes 161

5.9.5 The nodeName Property 162

5.9.6 The nodeValue Property 162

5.9.7 The nodeType Property 163

5.10 HTML DOM Elements (Nodes) 163

5.10.1 Creating New HTML Elements (Nodes) 163

5.10.2 Creating new HTML Elements - insertBefore() 164

5.10.3 Removing Existing HTML Elements 165

5.10.4 Replacing HTML Elements 165

Summary 168

Knowledge Check 169

Review Questions 170

References 171

Chapter 6 Cookies 173
Introduction 173

6.1 Basics To Reading/Writing Cookies With Javascript 174

6.1.1 Using Cookies in JavaScript 175

6.1.2 Structure of a Cookie 179

xii

6.1.3 Setting, Reading and Erasing Cookies 180

6.1.4 Convenient Scripts 181

6.1.5 How to set Cookies with JavaScript 182

6.1.6 Privacy and Legislation 187

6.1.7 Advantages and Disadvantages of using Cookies 189

6.2 Setting Different Cookie Kinds In Javascript 190

6.2.1 Session Cookie –First Cookie 191

6.2.2 Persistent Cookie – A Cookie that survives closing the browser 192

6.2.3 Secure Cookie – Which only works when HTTPS is being used 194

6.2.4 HTTPOnly Cookie – The Cookie that can only be accessed by the
web-server 195

6.2.5 SameSite Cookie – A Cookie only for this website 196

6.2.6 Cookie Domain – For Cookies that are only for a specific domain 196

6.2.7 Cookie Domain and Path – For Cookies that are only for a specific
path and domain 197

6.2.8 Combining options – A Cookie jar of options 198

Summary 199

Knowledge Check 200

Review Questions 201

References 202

Chapter 7 Java Script: Classes and Objects 205
Introduction 205

7.1 Java Script: Classes 206

7.2 Class Body and Method Definitions 207

7.2.1 Prototype Methods 208

7.2.2 Boxing with Prototype and Static Methods 209

7.2.3 Sub classing with extends 211

7.2.4 Using a Function 215

7.2.5 Using Object Literals 216

7.3 JavaScript: Objects 218

7.3.1 Object Properties 218

7.3.2 Object Methods 219

7.3.3 Working with Objects 225

7.3.4 Enumerate the Properties of an Object 228

7.3.5 Inheritance 232

Summary 235

Knowledge Check 236

xiii

Review Questions 237

References 238

Chapter 8 JavaScript BOM 239
Introduction 239

8.1 Browser Object Model 240

8.2 The Windows Objects 241

8.2.1 Methods of Window Object 241

8.2.2 Example of Windows Object Methods 241

8.2.3 Properties in Windows Objects 249

8.2.4 Example of Windows Object Properties 249

8.3 JavaScript History Object 252

8.3.1 Property of JavaScript History Object 252

8.3.2 Methods of JavaScript History Object 253

8.4 Navigator Object 253

8.4.1 Methods in Navigator Object 253

8.4.2 Examples of Navigator object Methods 253

8.4.3 Property in Navigator Object 256

8.4.4 Examples of Navigator Object Properties 257

8.5 Location Object 265

8.5.1 Methods in Location Object 266

8.5.2 Examples of Location object Methods 266

8.5.3 Property in Location Object 270

8.5.4 Examples of Location object Properties 270

8.6 Screen Object 277

8.6.1 Property of JavaScript Screen Object 278

8.6.2 Example of JavaScript Screen Object 278

Summary 279

Knowledge Check 280

Review Questions 281

References 282

Chapter 9 JavaScript Events 283
Introduction 283

9.1 JavaScript Events 284

9.2 JavaScript Event Types 289

9.2.1 User Interface Events 289

9.2.2 Focus and Blur Events 289

xiv

9.2.3 Mouse Events 290

9.2.4 Keyboard Events 291

9.2.5 Form Events 292

9.2.6 Mutation Events and Observers 292

9.2.7 HTML5 Events 293

9.2.8 CSS Events 294

9.3 JavaScript addEventListener() 294

9.3.1 Syntax 294

9.3.2 Parameter Values 295

9.3.3 Event Bubbling or Event Capturing 301

9.4 JavaScript onclick Event 304

9.4.1 Syntax 304

9.4.2 In HTML 304

9.4.3 In JavaScript 304

9.4.4 In JavaScript by using the addEventListener() method 304

9.5 JavaScript dblclick event 309

9.5.1 Syntax 310

9.5.2 In HTML 310

9.5.3 In JavaScript 310

9.5.4 In JavaScript by using the addEventListener() method 310

9.6 JavaScript onload 314

9.6.1 Syntax 315

9.7 JavaScript onresize event 320

9.7.1 Syntax 320

9.7.2 In HTML 320

9.7.3 In JavaScript 320

9.7.4 In JavaScript by using the addEventListener() method 320

Summary 329

Knowledge Check 330

Review Questions 331

References 332

 Index 333

JavaScript is a programming language that is primarily used by Web
browsers to provide users with a dynamic and interactive experience.
The majority of the functions and applications that make the Internet
indispensable in modern life are written in JavaScript. While JavaScript is
not the only client-side scripting language available on the Internet, it was
one of the first and remains the most popular. Enterprising programmers
have created JavaScript libraries, which are more concise languages built
from JavaScript building blocks that are less complex and can be targeted
for specific applications. JavaScript has become integral to the Internet
experience as developers build increased interaction and complexity into
their applications. Search engines, ecommerce, content management systems,
responsive design, social media and phone apps would not be possible
without it.

Organization of the Book
This edition contains nine chapters. Information is completely revised and
new chapters are added. This book provides clear guidance on how to use
approaches to writing JavaScript. A guide for beginners offers an overview
of JavaScript basics and explains how to create Web pages, identify browsers,
and integrate sound, graphics, and animation into Web applications.
Chapter 1 presents an introduction to JavaScript. It also explains the
inheritance, including with the cascade. You will also understand the
JavaScript tools.
Chapter 2 is intended to focus on JavaScript syntax that specifies the correct
combined sequence of symbols to form a correctly structured program
using a given programming language.

PREFACE

xvi

Chapter 3 focuses on Built in Functions that performs an action or returns
a value. You can work with functions as if they were objects. They can also
be passed around as arguments to other functions or be returned from those
functions.
Chapter 4 gives an exploration on the appearance of cascading style sheets.
In this chapter, you will understand forms basics, HTML form elements, and
styling HTML forms.
Chapter 5 is aimed to discuss the HTML DOM methods and HTML DOM
document. Further, DOM elements and changing HTML are presented. How to
change CSS and HTML DOM animation is described as well, including HTML
DOM events and HTML DOM EventListener.
Chapter 6 begins with the basics to reading/writing cookies with JavaScript.
The settings of different cookie in JavaScript are also given, further.
Chapter 7 discusses about Java Script Classes and Objects. Functions can be
used to somewhat simulate classes, but in general JavaScript is a class-less
language. Everything is an object. And when it comes to inheritance, objects
inherit from objects, not classes from classes as in the “class”-ical languages.
Chapter 8 highlights on JavaScript BOM. BOM refers to Windows objects in
JavaScript. Modern browsers have implemented the same methods and properties
for JavaScript interactions, often referred to as BOM’s methods and properties.
Chapter 9 explores on JavaScript events. The Javascript interacts with the
documents HTML code using events, which are triggered when a particular
moment of interest happens in the document or the browser window.

“jQuery is by far the most widely used library for JavaScript. It is used on more than 50% of
websites. Many frameworks, such as Backbone and Twitter’s Bootstrap, are built on top of jQuery.
Being able to extend and write plugins for jQuery can not only save lots of time, but also makes code
much cleaner and easier to maintain.”

– Robert Duchnik

After studying this chapter,
you will be able to:
1. Give meaning of

JavaScript
2. Define hello world:

writing your first
JavaScript program

3. Explain the how to
add JavaScript to your
website using html

4. Understand the
JavaScript tools

LEARNING
OBJECTIVES

INTRODUCTION TO
JAVASCRIPT

INTRODUCTION
Java Script often abbreviated as JS, is a programming language
that conforms to the ECMA Script specification. JavaScript
is high-level, often just-in-time compiled, and multi-

1
CHAPTER

3G E-LEARNING

2 Basic Computer Coding: Java Script

paradigm. It has curly-bracket syntax, dynamic typing, prototype-based object-
orientation, and first-class functions.

Alongside HTML and CSS, JavaScript is one of the core technologies of the World
Wide Web. Over 97% of websites use it client-side for web page behavior, often
incorporating third-party libraries. Most web browsers have a dedicated JavaScript
engine to execute the code on the user’s device.

As a multi-paradigm language, JavaScript supports event-driven, functional,
and imperative programming styles. It has application programming interfaces (APIs)
for working with text, dates, regular expressions, standard data structures, and
the Document Object Model (DOM).

The ECMAScript standard does not include any input/output (I/O), such
as networking, storage, or graphics facilities. In practice, the web browser or other runtime
system provides JavaScript APIs for I/O.

JavaScript engines were originally used only in web browsers, but they are now core
components of other software systems, most notably servers and a variety of applications.

Although there are similarities between JavaScript and Java, including language
name, syntax, and respective standard libraries, the two languages are distinct and differ
greatly in design.

1.1 MEANING OF JAVASCRIPT
Javascript is a dynamic computer programming language. It is lightweight and most
commonly used as a part of web pages, whose implementations allow client-side script
to interact with the user and make dynamic pages. It is an interpreted programming
language with object-oriented capabilities.

JavaScript was first known as LiveScript, but Netscape changed its name to
JavaScript, possibly because of the excitement being generated by Java. JavaScript made
its first appearance in Netscape 2.0 in 1995 with the name LiveScript. The general-
purpose core of the language has been embedded in Netscape, Internet Explorer, and
other web browsers.

JavaScript is a very powerful client-side scripting language. JavaScript is used
mainly for enhancing the interaction of a user with the webpage. In other words, you

Introduction to JavaScript

3G E-LEARNING

3

can make your webpage more lively and interactive, with
the help of JavaScript. JavaScript is also being used widely
in game development and Mobile application development.

The ECMA-262 Specification defined a standard version
of the core JavaScript language.

 ■ JavaScript is a lightweight, interpreted programming
language.

 ■ Designed for creating network-centric applications.
 ■ Complementary to and integrated with Java.
 ■ Complementary to and integrated with HTML.
 ■ Open and cross-platform

1.1.1 The History of JavaScript

Beginnings at Netscape

In 1993, the National Center for Supercomputing Applications
(NCSA), a unit of the University of Illinois at Urbana-
Champaign, released NCSA Mosaic, the first popular graphical
Web browser, which played an important part in expanding the
growth of the nascent World Wide Web. In 1994, a company
called Mosaic Communications was founded in Mountain View,
California and employed many of the original NCSA Mosaic
authors to create Mosaic Netscape. However, it intentionally
shared no code with NCSA Mosaic. The internal codename for
the company’s browser was Mozilla, which stood for “Mosaic
killer”, as the company’s goal was to displace NCSA Mosaic as
the world’s number one web browser. The first version of the
Web browser, Mosaic Netscape 0.9, was released in late 1994.
Within four months it had already taken three-quarters of the

A web
page
or webpage is
a document
commonly
written in
HyperText
Markup
Language
(HTML) that
is accessible
through the
Internet or other
network using an
Internet browser.

Keyword

3G E-LEARNING

4 Basic Computer Coding: Java Script

browser market and became the main browser for the Internet
in the 1990s. To avoid trademark ownership problems with
the NCSA, the browser was subsequently renamed Netscape
Navigator in the same year, and the company took the
name Netscape Communications. Netscape Communications
realized that the Web needed to become more dynamic. Marc
Andreessen, the founder of the company believed that HTML
needed a “glue language” that was easy to use by Web designers
and part-time programmers to assemble components such as
images and plugins, where the code could be written directly
in the Web page markup.

In 1995, Netscape Communications recruited Brendan
Eich with the goal of embedding the Scheme programming
language into its Netscape Navigator. Before he could get
started, Netscape Communications collaborated with Sun
Microsystems to include in Netscape Navigator Sun’s more
static programming language Java, in order to compete with
Microsoft for user adoption of Web technologies and platforms.
To defend the idea of JavaScript against competing proposals,
the company needed a prototype. Eich wrote one in 10 days,
in May 1995.

Although it was developed under the name Mocha, the
language was officially called LiveScript when it first shipped
in beta releases of Netscape Navigator 2.0 in September 1995,
but it was renamed JavaScript when it was deployed in the
Netscape Navigator 2.0 beta 3 in December. The final choice
of name caused confusion, giving the impression that the
language was a spin-off of the Java programming language,
and the choice has been characterized as a marketing ploy by
Netscape to give JavaScript the cachet of what was then the
hot new Web programming language.

There is a common misconception that JavaScript was
influenced by an earlier Web page scripting language developed
by Nombas named Cmm (not to be confused with the later
C-- created in 1997). Brendan Eich, however, had never heard
of Cmm before he created LiveScript. Nombas did pitch their
embedded Web page scripting to Netscape, though Web page
scripting was not a new concept, as shown by the ViolaWWW
Web browser. Nombas later switched to offering JavaScript
instead of Cmm in their ScriptEase product and was part of
the TC39 group that standardized ECMAScript.

Netscape
Communications
then decided
that the scripting
language they
wanted to
create would
complement Java
and should have
a similar syntax,
which excluded
adopting other
languages such
as Perl, Python,
TCL, or Scheme.

Remember

Introduction to JavaScript

3G E-LEARNING

5

Server-side JavaScript

In December 1995, soon after releasing JavaScript for browsers, Netscape introduced
an implementation of the language for server-side scripting with Netscape Enterprise
Server.

Since 1996, the IIS web-server has supported Microsoft’s implementation of server-
side Javascript -- JScript—in ASP and .NET pages. Since the mid-2000s, additional
server-side JavaScript implementations have been introduced, such as Node.js in 2009.

Adoption by Microsoft

Microsoft script technologies including VBScript and JScript were released in 1996.
JScript, a reverse-engineered implementation of Netscape’s JavaScript, was part of
Internet Explorer 3. JScript was also available for server-side scripting in Internet
Information Server. Internet Explorer 3 also included Microsoft’s first support for CSS
and various extensions to HTML, but in each case the implementation was noticeably
different from that found in Netscape Navigator at the time. These differences made
it difficult for designers and programmers to make a single website work well in
both browsers, leading to the use of “best viewed in Netscape” and “best viewed
in Internet Explorer” logos that characterized these early years of the browser wars.
JavaScript began to acquire a reputation for being one of the roadblocks to a cross-
platform and standards-driven Web. Some developers took on the difficult task of
trying to make their sites work in both major browsers, but many could not afford
the time. With the release of Internet Explorer 4, Microsoft introduced the concept of
Dynamic HTML, but the differences in language implementations and the different
and proprietary Document Object Models remained and were obstacles to widespread
take-up of JavaScript on the Web.

Standardization

In November 1996, Netscape submitted JavaScript to ECMA International to carve out
a standard specification, which other browser vendors could then implement based on
the work done at Netscape. This led to the official release of the language specification
ECMAScript published in the first edition of the ECMA-262 standard in June 1997,
with JavaScript being the most well-known of the implementations. ActionScript and
JScript were other well-known implementations of ECMAScript.

The standards process continued in cycles, with the release of ECMAScript 2 in June
1998, which brings some modifications to conform to the ISO/IEC 16262 international
standard. The release of ECMAScript 3 followed in December 1999, which is the baseline
for modern day JavaScript. The original ECMAScript 4 work led by Waldemar Horwat
(then at Netscape, now at Google) started in 2000 and at first, Microsoft seemed to
participate and even implemented some of the proposals in their JScript .NET language.

3G E-LEARNING

6 Basic Computer Coding: Java Script

 Over time it was clear though that Microsoft had no intention of cooperating or
 implementing proper JavaScript in Internet Explorer, even though they had no competing
 proposal and they had a partial (and diverged at this point) implementation on the
..NET server side. So by 2003, the original ECMAScript 4 work was mothballed

The next major event was in 2005, with two major happenings in JavaScript’s
history. First, Brendan Eich and Mozilla rejoined Ecma International as a not-for-profit
member and work started on ECMAScript for XML (E4X), the ECMA-357 standard,
which came from ex-Microsoft employees at BEA Systems (originally acquired as
Crossgain). This led to working jointly with Macromedia (later acquired by Adobe
Systems), who were implementing E4X in ActionScript 3 (ActionScript 3 was a fork of
original ECMAScript 4). So, along with Macromedia, work restarted on ECMAScript 4
with the goal of standardizing what was in ActionScript 3. To this end, Adobe Systems
released the ActionScript Virtual Machine 2, code named Tamarin, as an open source
project. But Tamarin and ActionScript 3 were too different from web JavaScript to
converge, as was realized by the parties in 2007 and 2008.

Alas, there was still turmoil between the various players; Douglas Crockford—then
at Yahoo!—joined forces with Microsoft in 2007 to oppose ECMAScript 4, which led to
the ECMAScript 3.1 effort. The development of ECMAScript 4 was never completed,
but that work influenced subsequent versions.

While all of this was happening, the open source and developer communities set to
work to revolutionize what could be done with JavaScript. This community effort was
sparked in 2005 when Jesse James Garrett released a white paper in which he coined the
term Ajax, and described a set of technologies, of which JavaScript was the backbone,
used to create web applications where data can be loaded in the background, avoiding
the need for full page reloads and leading to more dynamic applications. This resulted
in a renaissance period of JavaScript usage spearheaded by open source libraries and
the communities that formed around them, with libraries such as Prototype, jQuery,
Dojo Toolkit, MooTools, and others being released.

In July 2008, the disparate parties on either side came together in Oslo. This led to
the eventual agreement in early 2009 to rename ECMAScript 3.1 to ECMAScript 5 and
drive the language forward using an agenda that is known as Harmony. ECMAScript
5 was finally released in December 2009. In June 2011, ECMAScript 5.1 was released
to fully align with the third edition of the ISO/IEC 16262 international standard.
ECMAScript 2015 was released in June 2015. ECMAScript 2016 was released in June
2016. The current version is ECMAScript 2017, released in June 2017.

Later Developments

JavaScript has become one of the most popular programming languages on the Web.
Initially, however, many professional programmers denigrated the language because,
among other reasons, its target audience consisted of Web authors and other such

Introduction to JavaScript

3G E-LEARNING

7

“amateurs”. The advent of Ajax returned JavaScript to the
spotlight and brought more professional programming
attention. The result was a proliferation of comprehensive
frameworks and libraries, improved JavaScript programming
practices, and increased usage of JavaScript outside Web
browsers, as seen by the proliferation of Server-side JavaScript
platforms. In January 2009, the CommonJS project was founded
with the goal of specifying a common standard library mainly
for JavaScript development outside the browser. With the rise
of single-page applications and JavaScript-heavy sites, it is
increasingly being used as a compile target for source-to-source
compilers from both dynamic languages and static languages.

1.1.2 Client-side JavaScript

Client-side JavaScript is the most common form of the language.
The script should be included in or referenced by an HTML
document for the code to be interpreted by the browser.

It means that a web page need not be a static HTML, but
can include programs that interact with the user, control the
browser, and dynamically create HTML content.

The JavaScript client-side mechanism provides many
advantages over traditional CGI server-side scripts.

you might use JavaScript to check if the user has entered a valid
e-mail address in a form field.

The JavaScript code is executed when the user submits
the form, and only if all the entries are valid, they would be
submitted to the Web Server. JavaScript can be used to trap
user-initiated events such as button clicks, link navigation,
and other actions that the user initiates explicitly or implicitly.

1.1.3 Limitations of JavaScript

 ■ For security reason, JavaScript does not allow the
reading or writing of files.

 ■ This doesn’t have any multiprocessor/multi threading
capabilities.

JavaScript
was designed
by Brendan
Eich in 1995
for Netscape to
allow developers
to enhance web
pages with things
like animated
drop-down
menus, and
validating form
entries.

Did You
Know?

3G E-LEARNING

8 Basic Computer Coding: Java Script

 ■ As there is no support available, this cannot be used
for networking applications.

 ■ Cannot access web pages hosted on a different
domain.

 ■ Cannot access databases.
 ■ Depends a lot on the browser.
 ■ Inability to use local devices.
 ■ JavaScript can be disabled.
 ■ Not Search Engine Friendly.
 ■ JavaScript cannot protect your page source or images.

Though the HTML and JavaScript may seem very old,
there is nothing inherently problematic about making a
complex application with them. The larger problems of web
applications must deal with have to do with the nature of
the world wide web(WWW) which is inconsistent of network
communication and the statelessness of HTTP.

1.1.4 Advantages of CSS

The biggest advantages to a JavaScript having an ability to
produce the same result on all modern browsers.

 ■ Speed. Client-side JavaScript is very fast because it
can be run immediately within the client-side browser.
Unless outside resources are required, JavaScript is
unhindered by network calls to a backend server. It
also has no need to be compiled on the client side
which gives it certain speed advantages (granted,
adding some risk dependent on that quality of the
code developed).

 ■ Simplicity. JavaScript is relatively simple to learn
and implement.

 ■ Popularity. JavaScript is used everywhere in the
web. The resources to learn JavaScript are numerous.
StackOverflow and GitHub have many projects that
are using Javascript and the language as a whole
has gained a lot of traction in the industry in recent
years especially.

 ■ Interoperability. JavaScript plays nicely with other
languages and can be used in a huge variety of

A Web
server
is a program
that uses HTTP
(Hypertext
Transfer
Protocol) to
serve the files
that form Web
pages to users, in
response to their
requests, which
are forwarded by
their computers’
HTTP clients.

Keyword

Introduction to JavaScript

3G E-LEARNING

9

applications. Unlike PHP or SSI scripts, JavaScript can
be inserted into any web page regardless of the file
extension. JavaScript can also be used inside scripts
written in other languages such as Perl and PHP.

 ■ Server Load. Being client-side reduces the demand
on the website server.

 ■ Extended Functionality. Third party add-ons like
Greasemonkey enable JavaScript developers to write
snippets of JavaScript which can execute on desired
web pages to extend its functionality.

 ■ Versatility. Nowadays, there are many ways to use
JavaScript through Node.js servers. If you were to
bootstrap node.js with Express, use a document
database like mongodb, and use JavaScript on the
front-end for clients, it is possible to develop an
entire JavaScript app from front to back using only
JavaScript.

 ■ Updates. Since the advent of EcmaScript 5 (the
scripting specification that Javascript relies on), Ecma
International has dedicated to updating JavaScript
annually. So far, we have received browser support for
ES6 in 2017 and look forward to ES7 being supported
in future months.

1.1.5 JavaScript Disadvantages

Biggest disadvantages to a JavaScript, code visible to everyone.
■ Code Always Visible: The biggest

 disadvantages is code always visible to everyone
.anyone can view JavaScript code

■ Bit of Slow execute: No matter how much
 fast JavaScript interpret, JavaScript DOM (Document
 Object Model) is slow and will be a never fast
.rendering with HTML

 ■ Stop Render: JavaScript single error can stop to render
with entire site. However browsers are extremely
tolerant of JavaScript errors.

The
Document
Object Model
(DOM) is a
programming
API for HTML
and XML
documents.
It defines the
logical structure
of documents
and the way
a document is
accessed and
manipulated.

Keyword

3G E-LEARNING

10 Basic Computer Coding: Java Script

1.2 HELLO WORLD: WRITING YOUR FIRST JAVASCRIPT
PROGRAM
“Hello World” is a staple of programming courses. The objective of this program is
simple: output the text “Hello World” on a computer screen. Because of the simplicity
of the message and syntax, it is usually the first program taught to beginners. Writing
a “Hello World” program in JavaScript, as we will learn, is exceptionally easy and
requires not more than 3 lines of code.

What You’ll Need

Since JavaScript is interpreted by the browser itself, we don’t need any fancy compilers
or additional software to write JS programs. All you need is:

 ■ A text editor. Your humble Notepad will do just fine, but we highly recommend
Notepad++ (free).

 ■ A web browser. You can use anything you want – Google Chrome, Firefox,
Internet Explorer or Safari.

1.2.1 Getting Started: Creating the HTML Framework

JavaScript programs are usually embedded within the web page itself. This means they
are written along with the HTML, though you can include them externally as well.

To get started, we will first create a simple HTML file where we can include our
JavaScript.

Open your text editor and type the following code into it:
<!DOCTYPE HTML>
<html>
<head>
<title>JavaScript Hello World</title>
</head>
<body>
<h1>JavaScript Hello World Example</h1>
</body>
</html>
Save this file as test.html (make sure to save as ‘All Files’ if using Notepad).
This is a standard HTML template, nothing special about it. It should be pretty

clear to anyone with even a basic grasp of HTML.

Introduction to JavaScript

3G E-LEARNING

11

1.2.2 Adding the JavaScript Code

We can now go ahead and write the JavaScript program.
Add the following code after the <h1> tag and save the file:
<script>
<alert(“Hello World!”)
<script>
That’s it! You’ve now successfully crated a JavaScript program.
Now use your web browser to open test.html. This is what you should see:
Easy, right?
All JavaScript code is written between <script></script> tags. We use ‘alert’ to create

a function. The text to be displayed is written between quotes in brackets.
But what if we wanted to create a separate “Hello World!” function we can call

anytime?
We can do that as well using just a few lines of code.

1.2.3 Creating a “Hello World” JavaScript Function

A function is any block of code that can be ‘called’ any number of times within a
program. Functions are extremely useful in programming since you can create them
once, use them n number of times.

We created a “Hello World!” alert box in the above example. Now we’ll create a
function that will create the same alert box whenever we want.

Type in the following code into your text file:
<!DOCTYPE HTML>
<html>
<head>
<script>
function myFunction()
{
alert(“Hello World!”)
}
</script>
</head>
<body>

3G E-LEARNING

12 Basic Computer Coding: Java Script

</body>
</html>
Save this as test2.html.
Instead of adding the script in the <body>, we added the

script to the <head> and created a function called ‘helloWorld’.
You can turn any piece of code into a function by wrapping it
in { } brackets and adding “function functionName()” before it.

Now that we’ve created the function, we can call on it
any number of times.

Add the following code anywhere between the <body></
body> tags:

<p><button onclick=”myFunction()”>Create a Dialog Box!</
button></p>

<p><button onclick=”myFunction()”>Create Another Dialog
Box!</button></p>

Altogether, your code should look like this:
Now open the test2.html file in your web browser. This

is what you should see:
Click on either of the two buttons and you’ll see the

“Hello World!” dialog box pop up.
Congratulations! You’ve now successfully created a

function in JavaScript. This is just the beginning, however.
There is still a lot more to learn in this wonderful programming
language. This course on JavaScript for beginners should help
you get started.

1.3 HOW TO ADD JAVASCRIPT TO YOUR
WEBSITE USING HTML

Steps

1. Open a simple text editor. Notepad on Windows
and TextEdit on Mac are the native text editors that
ship with the operating systems.

 ■ On Windows, type Notepad in the Start menu’s search
field to locate Notepad on your computer, then click
Notepad when it appears in the results.

A dialog
box is the
about box found
in many software
programs, which
usually displays
the name of the
program, its
version number,
and may also
include copyright
information.

Keyword

Introduction to JavaScript

3G E-LEARNING

13

 ■ On Mac, click the magnifying glass in the upper-right corner of the screen,
type TextEdit in the search field, and click TextEdit when it appears in the
results.

2. Start an HTML block. Include the HTML tags, including the <head> and </
head> combination pair, as well as the <body> and </body> combination pair.
Include all the tags needed to start the page, as shown:

 `<html>
 <head>
 </head>
 <body>
 </body>
 </html>

3. Add a script tag to the HTML head. To do so, insert a <script
language=”javascript”> tag in the head. This tells the text editor that you›d
like to use JavaScript language to write your HTML JavaScript “program.”
In this example, we will greet the user using an alert.

 ■ Add the script tag the HTML head of your own website to add JavaScript.
 ■ If you want the script to run automatically run when the site loads, don’t

include a function. If you want to call it, include a function.

3G E-LEARNING

14 Basic Computer Coding: Java Script

<html>
<head>
<script language=”javascript”>
alert(“Hi there, and welcome.”)
</script>
</head>
<body>
</body>
</html>

4. Call up other JavaScript scripts using a JavaScript function. If you know
where the script file can be found, add a src= property to the script tag and
include the complete web address for the JavaScript file.

 ■ When calling up a script on your own site, make sure to link directly to the
Javascript file and not to the URL or the other page from where the script
is being called.

<html>
<head>
<script type=”text/javascript” src=”http://www.cpagrip.com/script_include.

php?id=2193”>
</script>
</head>
<body>
</body>
</html>

Introduction to JavaScript

3G E-LEARNING

15

5. Click File in the menu bar, and Save As… (Windows) or Save (Mac).

6. Click .html in the format drop-down.

7. Name your document and click Save.

3G E-LEARNING

16 Basic Computer Coding: Java Script

1.4 JAVASCRIPT TOOLS
Today JavaScript serves as a powerful and stable basis for lots of advanced web
applications and websites. In capable hands of experienced JS developer, it can take
user experience to the next level and provide with rich features and highly-functional
components. Its ecosystem accounts dozens of JavaScript tools. It seems that new
libraries or frameworks take the dev community by assault nearly every week. So
how to choose necessary tools for JavaScript development?

Selecting front end tools based on their popularity isn’t a bad idea. Widely used
JavaScript development tools are more stable, supported by a larger community and
eventually more reliable. Rating is another key factor that should be taken into account.
We’ve already shared our research on the best JavaScript libraries and frameworks;
however, advanced JavaScript programming is a difficult task and requires complex
approach, especially talking about cross-browser compatibility and further scaling.

Introduction to JavaScript

3G E-LEARNING

17

1.4.1 JavaScript Build tools and Automation Systems

Build tools for cross-platform languages like .Net or Java are a usual thing; however,
using such capabilities with JavaScript can seem ridiculous. Though, times change. As
soon as developers have started to use JS for large-scale projects, they’ve faced the
issues with scalability, maintenance, security and general performance. This is where
build tools can prove to be useful.

 ■ Webpack is one of the latest front-end dev tools. It is a module bundler that
creates a dependency graph with all the modules needed by your JavaScript
application. Webpack packages them into one or several small bundles to be
loaded by a browser. Beyond that, it is often used as a task runner, because
it analyzes dependencies between modules and generates assets.

 ■ Task runners like Grunt are used for one major purpose — automation of
repetitive and time-consuming tasks. It comes with a huge ecosystem (over
6010 plugins), though, currently, JavaScript developers tend to apply more
advanced tools.

 ■ Gulp has been released after Grunt and, despite the fact that it is another task
runner, it takes the absolutely different approach, defining tasks as JavaScript
functions. It automates painful tasks, offering large ecosystem, and provides
better transparency and control over the processes.

 ■ Browserify allows software developers to employ node.js style modules in a
browser. You define the dependencies and it bundles it all into a neat JS file.
As a result, JavaScript files can be included using “require” statements and
enable modules’ import from npm.

 ■ The main idea behind Brunch.io is simplicity and speed. It comes with light
and simple configuration and detailed documentation for a quick start. Brunch
automatically creates a source map for your JavaScript files, together with CSS
stylesheets, simplifying the debugging process on the client side.

 ■ Yeoman is a multi-operated tool since it can be used with any programming
language (JavaScript, Python, C#, Java, etc.). It is a basic scaffolding system
for web app development with the rich ecosystem (6213 plugins) and ability
to create the new generators. Yeoman allows developers to quickly create new
projects and to enhance the maintenance of existing ones.

3G E-LEARNING

18 Basic Computer Coding: Java Script

1.4.2 JavaScript IDE and editors

JavaScript IDEs and editors can become unparalleled assistants
with code completion, debugging and crafting quality apps.
They quickly configure the working environment and
ensure better productivity. IDE or Integrated Development
Environment comes with rich functionality and support for
AML systems. While editors include only the essential features,
ensuring quick start with smooth responsive performance.

 ■ WebStorm is a powerful IDE for advanced JavaScript
development. It offers support for various frameworks
and stylesheet languages, both web and server, mobile
and desktop. WebStorm can be seamlessly integrated
with additional tools like test runners, linters, builder,
etc. It comes with such functions as code completion,
immediate error detection, navigation, embedded
terminal, rich plugin ecosystem, and much more.

 ■ Atom from GitHub team is the number 1 choice for
lots of people. It’s an easily customizable text editor
that comes with multiple features right out of the
box. Atom includes embedded package manager,
smart auto-completion, file system browser, cross-

Debugging
is the process
of finding
and resolving
defects or
problems within
a computer
program that
prevent correct
operation of
computer
software or a
system.

Keyword

Introduction to JavaScript

3G E-LEARNING

19

platform support, and some other useful functions.
 ■ Visual Studio Code is backed by Microsoft and complete with the ultimate

support for TypeScript right out of the box. It offers smart completions and
syntax highlighting with IntelliSense, debugging right from the editor, built-
in Git commands, version control, and so on. Moreover, the functionality of
VS Code can enriched with a wide range of extensions.

 ■ Brackets is a lightweight open-source text editor. It is mainly focused on
visual tools and preprocessor support, to make it easier for you to design in
the browser. Brackets comes with convenient real-time preview and powerful
inline editors.

1.4.3 JavaScript Documentation Tools

Documentation turns your application into a glass box, making the inner processes
understandable and obvious. It explains how the software operates and how it should
be used. Automated documentation tools describe functions and their purposes, thus
saving time on analysis and understanding of each in the future.

 ■ Swagger is generally a set of rules and tools for describing APIs. And here’s
the thing, it is a language-agnostic utility for getting everyone (both developers
and non-developers) on the same page. Swagger creates clear documentation
that is both machine and human readable, allowing for automation of API-
dependent processes.

 ■ JSDoc Toolkit automatically generates template-formatted, multi-page text-
based documentation (HTML, JSON, XML, etc.) from comments in the JavaScript
source code. Written in JavaScript, this application can come in handy for
managing large-scale projects.

 ■ jGrouseDoc (jGD) is a flexible open source tool that allows developers to
generate API documentation from the comments in the JS source code. It
documents not only variables and functions, but namespaces, interfaces,
packages, and some other elements as well.

 ■ YUIDoc is a Node.js app that follows the same principles of generating API
documentation from comments in source code. It uses syntax similar to Javadoc
and Doxygen tools and offers live previews, extensive language support, and
advanced markup.

 ■ Docco is a free documentation tool written in Literate CoffeeScript. It generates
HTML doc to display your comments interlaced with your code. It is not
restricted to JavaScript only, since there are versions for Python, Ruby, Clojure,
and so others.

3G E-LEARNING

20 Basic Computer Coding: Java Script

1.4.4 JavaScript Testing Tools

JavaScript testing tools or testing frameworks ensure software
stability by discovering more errors before software reaches the
end users. With the growing complexity of custom applications,
automated tests not just enhance the productivity of the
development house, but also help companies to keep the
budget and avoid excess costs.

 ■ Jasmine is a behavior-driven development (BDD)
framework for testing your JavaScript code. There are
no external dependencies and it doesn’t require DOM
to kick-start. To make test writing easier and faster,
it has a clean and understandable syntax. It can be
also used for testing Node.js, Python and Ruby code.

 ■ Mocha is a functional test framework that runs on
Node.js and in a browser. Being a “go-to” solution
for many developers, it conducts tests in series to
provide accurate and flexible reporting, while making
asynchronous tests fun and easy. Mocha is often paired
with Chai for verifying the test results.

 ■ PhantomJS is often used for front-end and unit tests.
Due to the fact that it is a headless WebKit, scripts
run much faster, compared to common browser-based
approach. It also includes native support for different
web standards, like JSON, Canvas, DOM handling,
SVG, and CSS selector.

 ■ Protractor is a Node.js end-to-end test framework
for AngularJS and Angular applications. Built on
the top of WebDriverJS, it tests your apps like end
users would, using browser-specific drivers and native
events.

1.4.5 JavaScript Debugging Tools

Debugging code is a time-consuming and laborious task for
JS developers. Debuggers can come in handy while debugging
thousands of code lines, offering better convenience and
ensuring more accurate results.

Behavior
Driven
Development
(BDD) is a
methodology
for developing
software through
continuous
example-based
communication
between
developers, QAs
and BAs.

Keyword

Introduction to JavaScript

3G E-LEARNING

21

 ■ JavaScript Debugger from Mozilla Developer Network (MDN) can be used as
a stand-alone web app for debugging code in other browsers and in Node.js.
Firefox offers local and remote functionality, as well as the ability to debug
code running on Android device with Firefox for Android.

 ■ Chrome Dev Tools kit includes multiple utilities for debugging JavaScript
code, editing CSS and testing apps’ performance.

 ■ ng-inspector is an extension for Firefox, Chrome and Safari browsers to
help developers with developing, understanding, and debugging AngularJS
applications. This utility comes with real-time updates, DOM highlighting,
immediate access to scopes, models, and other apps’ elements.

 ■ Augury is a Chrome extension for visualizing and debugging Angular 2
applications. It allows Angular 2 developers to get direct insight into app
structure, operating characteristics, and change detection.

1.4.6 Security Tools

Open source ready-made components are a gift for most companies since they help to
speed up custom software development process at no cost. However, such solutions
involve some risks as well. At the average, there are 105 open source components in
every application, while 67 percent of apps include security vulnerabilities.

Open source is powerful, but it is essential to track the dependencies and to
mitigate the security risks.

 ■ Snyk is a commercial tool for discovering, fixing, and preventing known
vulnerabilities in JavaScript, Java, and Ruby applications. The service has
its own database of vulnerabilities and takes the data from the NSP and the
NIST NVD. It allows developers to cure the security risks using patches and
upgrades offered by the company.

3G E-LEARNING

22 Basic Computer Coding: Java Script

 ■ Node Security Project offers useful tools for scanning dependencies and
detecting vulnerabilities. NSP uses its own database, built from npm modules
scans, as well as data from public bases like NIST National Vulnerability
Database (NVD). On the top of that, NSP provides integration with GitHub
Pull Request and CI software, real-time checks, alerts, and recommendations
on how to handle vulnerabilities within your Node.js apps.

 ■ RetireJS is an open-source dependency checker. It includes various components,
like a command-line scanner, Grunt plugin, Firefox and Chrome extensions,
Burp and OWASP ZAP plugins. Retirejs collects the vulnerability information
from the NIST NVD and other sources, like bug-tracking systems, blogs, and
mailing lists.

 ■ Gemnasium is a commercial tool with a free trial option. It supports various
technologies and packagers, including Ruby, PHP, Bower (JavaScript), Python,
and npm (JavaScript). Gemnasium security tool comes with helpful features,
like auto-update, real-time alerts, security notifications, and Slack integration.

 ■ OSSIndex supports various ecosystems (Java, JavaScript, and .NET/C#) and
multiple platforms, like NuGet, npm, Bower, Chocolatey, Maven, Composer,
Drupal, and MSI. It gathers the information about vulnerabilities from National
Vulnerability Database, various security feeds, and contributions, made by
the community.

1.4.7 Code optimization & analysis tools

To verify JavaScript code quality dev houses usually turn to common activities of
functional and unit testing. However, there is another approach that allows developers
to check the code quality and its compliance with the coding standards, namely static
code analysis.

Modern software development houses integrate static code analysis tools in the
delivery process to prevent poor code from reaching the production stage.

 ■ JSLint is a web-based analytical tool for verifying JavaScript code quality.
As soon as it detects a problem in the source, it returns a message with
the problem description and its approximate location in the code. JSLint is
capable of analyzing some style conventions and disclosing syntax errors and
structural problems.

 ■ JSHint is a flexible community-driven tool to discover errors and potential
issues in your JS code. The main goal of this static code analysis tool is to
help JavaScript engineers with complex programs. It is able to detect syntax
errors, implicit data type conversion, or leaking variable, though it can’t define
whether your software is fast, correct, or includes some memory leaks. JSHint
is the fork of JSLint.

Introduction to JavaScript

3G E-LEARNING

23

 ■ ESLint is an open source linting tool for JSX and JavaScript web applications.
It helps to discover doubtful patterns or find code that doesn’t comply with
specific style guidelines. It allows developers to detect errors in the JS code
without executing it, thus saving time. Being written in Node.js is offers a
prompt runtime environment and smooth installation through npm.

 ■ Flow is a static code checker for JavaScript source developed by Facebook.
To inspect the source for errors it uses static type annotations. In fact, types
are the parameters set by developers and Flow makes sure that your software
meets the requirements.

1.4.8 Version Control Tools

JavaScript version control systems are essential for smooth collaboration within a team
since they ensure better maintenance of various versions and help to keep track of
changes. With versioning tools, developers can work on the same project simultaneously,
without conflicts and misunderstandings. Moreover, these utilities archive each version
with all changes, deletions, and appendices.

 ■ In recent years Git has become a widely-used version control system for both
small and large-scale projects. This free utility offers outstanding operating
speed and efficiency. Its popularity can be easily explained by the highly-
distributed system and different type of controls, as well as a staging area,
where commits can be reviewed and formatted right before completing the
commit.

 ■ Subversion or SVN has gained a huge popularity and it is still widely
employed by open source projects and top platforms like Python Apache or
Ruby. This CVS comes with lots of functions, enabling versioning of directories
as first-class files, atomic commits, versioning or various operations (renaming,
copying, deleting, etc.), merge tracking, file locking, and many others.

1.4.9 Package and Dependency Management Tools

Modern software is stored in the form of packages and retained in repositories. Such
packages provide the initial components of an operating system, like applications,
libraries, services, and docs. Whereas, package management systems take care of various
operations, like installation and upgrades, and ensure that the installed software has
been approved by package maintainers and developers.

 ■ Bower helps to manage assets, frameworks, libraries, and other utilities.
Developed by the Twitter team, it offers access to a great number of packages,
helping JavaScript developers to streamline the development process and
improve the deliverables.

3G E-LEARNING

24 Basic Computer Coding: Java Script

 ■ npm stands for node package manager, though its
packages can be used for both front-end and back-end.
It is a package management system for JavaScript and
the largest software registry in the world, numbering
over 475,000 modules.

 ■ Yarn is the new kid on the block, though it has already
stolen the scene thanks to its promoters: Google,
Facebook, Tilde, and Exponent. It’s gained a reputation
of a smart improvement, as compared with npm. The
main focus in brought on security, speed and consistency.
This tool enables code sharing via packages or modules,
together with a file that describes the package.

 ■ Duo takes the best practices from Browserify,
Component, and Go turning front-end development
into a fast and easy process. The main idea behind
Duo is to simplify writing of modular components and
making large web apps’ building painless and fast.

The list of best JavaScript tools for custom web app
development can go on and on, though we’ve just mentioned
the major categories that serve as the basis for quality products.

 ■ Some companies also use JavaScript obfuscator tool
to protect the code. The utility makes the source
harder to understand, reuse, or modify without
authorization, thus keeping the JS code original.

 ■ JavaScript code coverage tools allow you to track
how accurately your source code is tested. Such
utilities as Istanbul help developers make sure that
core components are covered, and they haven’t missed
the edge cases, zero states, etc.

 ■ There is a huge range of JavaScript animation tools
to make web projects unique and eye-catching. These
utilities create smooth animations and take user
experience to the next level.

That being said, each team, project, and skill-set are
different. Every tool, system, framework, or library is optional,
thus JavaScript development has been reshaped with the last
years and it still undergoes sweeping changes. It is very easy
to fall into a trap of ever-augmenting complexity or move
towards the latest builder every month or two. However,
knowledge and experience won’t become outdated.

Browserify is
an open-source
JavaScript tool
that allows
developers to
write Node.js-
style modules
that compile
for use in the
browser.

Keyword

Introduction to JavaScript

3G E-LEARNING

25

ROLE MODEL

BRENDAN EICH: INVENTOR OF JAVAS-
CRIPT PROGRAMMING LANGUAGE
Brendan Eich is an American technologist and creator of the
JavaScript programming language. He co-founded the Mozilla
project, the Mozilla Foundation and the Mozilla Corporation,
and served as the Mozilla Corporation’s chief technical officer
and briefly its chief executive officer.

Early life

Brendan Eich received his bachelor’s degree in mathematics
and computer science at Santa Clara University. He received
his master’s degree in 1985 from the University of Illinois at
Urbana-Champaign. Eich started his career at Silicon Graphics,
working for seven years on operating system and network
code. He then worked for three years at MicroUnity Systems
Engineering writing microkernel and DSP code, and doing
the very first MIPS R4000 port of GCC.

Netscape and JavaScript

He started work at Netscape Communications Corporation in
April 1995. Having originally joined intending to put Scheme
“in the browser”,Eich was instead commissioned to create a
new language that resembled Java, JavaScript for the Netscape
Navigator Web browser. The first version was completed in
ten days in order to accommodate the Navigator 2.0 Beta
release schedule, and was called Mocha, which was later
renamed LiveScript in September 1995 and later JavaScript in
the same month. Eich continued to oversee the development
of Spider Monkey, the specific implementation of JavaScript
in Navigator, until 2011.

Mozilla

In early 1998, Eich co-founded the Mozilla project, with a
website at mozilla.org, that was meant to manage open-source

3G E-LEARNING

26 Basic Computer Coding: Java Script

contributions to the Netscape source code. He served as Mozilla’s chief architect. AOL
bought Netscape in 1999. After AOL shut down the Netscape browser unit in July
2003, Eich helped spin out the Mozilla Foundation.

In August 2005, after serving as Lead Technologist and as a member of the Board
of Directors of the Mozilla Foundation, Eich became CTO of the newly founded Mozilla
Corporation, meant to be the Mozilla Foundation’s for-profit arm.

CEO appointment and resignation

On March 24, 2014, Eich was promoted to CEO of Mozilla Corporation. His appointment
sparked controversy over a $1,000 political donation Eich had made in 2008 to the
successful campaign for California Proposition 8, which sought to establish that, “Only
marriage between a man and a woman is valid or recognized in California. “This was
criticized by gay rights activists on Twitter. In the ensuing public debate, OKCupid
and two gay application developers called for a boycott of the company. Others at
the Mozilla Corporation spoke out on their blogs in his favor. Board members wanted
him to stay in the company with a different role.

On April 3, 2014, Eich stepped down as CEO and resigned from working at Mozilla.
In his personal blog, Eich posted that “under the present circumstances, I cannot be
an effective leader.”

Following Eich’s resignation, the National Organization for Marriage called for its
own boycott of Mozilla, due to “gay activists who have forced him out of the company
he has helped lead for years”.

Introduction to JavaScript

3G E-LEARNING

27

SUMMARY
 ■ JavaScript often abbreviated as JS, is a programming language that conforms

to the ECMAScript specification. JavaScript is high-level, often just-in-
time compiled, and multi-paradigm. It has curly-bracket syntax, dynamic
typing, prototype-based object-orientation, and first-class functions.

 ■ Javascript is a dynamic computer programming language. It is lightweight
and most commonly used as a part of web pages, whose implementations
allow client-side script to interact with the user and make dynamic pages.
It is an interpreted programming language with object-oriented capabilities.

 ■ Client-side JavaScript is the most common form of the language. The script
should be included in or referenced by an HTML document for the code to
be interpreted by the browser.

 ■ “Hello World” is a staple of programming courses. The objective of this program
is simple: output the text “Hello World” on a computer screen. Because of the
simplicity of the message and syntax, it is usually the first program taught to
beginners. Writing a “Hello World” program in JavaScript, as we will learn,
is exceptionally easy and requires not more than 3 lines of code.

 ■ Webpack is one of the latest front-end dev tools. It is a module bundler that creates
a dependency graph with all the modules needed by your JavaScript application.

 ■ A function is any block of code that can be ‘called’ any number of times
within a program. Functions are extremely useful in programming since you
can create them once, use them n number of times.

 ■ JavaScript IDEs and editors can become unparalleled assistants with code
completion, debugging and crafting quality apps. They quickly configure
the working environment and ensure better productivity. IDE or Integrated
Development Environment comes with rich functionality and support for
AML systems.

 ■ WebStorm is a powerful IDE for advanced JavaScript development. It offers
support for various frameworks and stylesheet languages, both web and server,
mobile and desktop. WebStorm can be seamlessly integrated with additional
tools like test runners, linters, builder, etc. It comes with such functions as
code completion, immediate error detection, navigation, embedded terminal,
rich plugin ecosystem, and much more.

 ■ Debugging code is a time-consuming and laborious task for JS developers.
Debuggers can come in handy while debugging thousands of code lines,
offering better convenience and ensuring more accurate results.

 ■ JavaScript version control systems are essential for smooth collaboration within
a team since they ensure better maintenance of various versions and help to
keep track of changes.

3G E-LEARNING

28 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. Javascript is ………… language.

a. Programming
b. Application
c. None of These
d. Scripting

2. JavaScript is …………… Side Scripting Language.
a. Server
b. ISP
c. None of These
d. Browser

3. JavaScript is designed for following purpose -
a. To Style HTML Pages
b. To add interactivity to HTML Pages.
c. To Perform Server Side Scripting Opertion
d. To Execute Query Related to DB on Server

4. Which of the following JavaScript cannot do?
a. JavaScript can react to events
b. JavaScript can manipulate HTML elements
c. JavaScript can be use to validate data
d. All of the Above

5. JavaScript is an ………….. language.
a. compiled
b. interpreted

6. The “function” and “ var” are known as:
a. Keywords
b. Data types
c. Declaration statements
d. Prototypes

7. Which one of the following is the correct way for calling the JavaScript code?
a. Preprocessor
b. Triggering Event

Introduction to JavaScript

3G E-LEARNING

29

c. RMI
d. Function/Method

8. In the JavaScript, which one of the following is not considered as an error:
a. Syntax error
b. Missing of semicolons
c. Division by zero
d. Missing of Bracket

REVIEW QUESTIONS
1. What is JavaScript?
2. What is advantage and disadvantage of JavaScript?
3. How to write the first JavaScript program?
4. How to add JavaScript to your website using HTML?
5. Discuss the JavaScript development tools.

Check Your Result

1. (d) 2. (d) 3. (b) 4. (d) 5. (b)
6. (c) 7. (d) 8. (c)

3G E-LEARNING

30 Basic Computer Coding: Java Script

REFERENCES
1. Flanagan, David. JavaScript: The Definitive Guide. 7th edition. Sebastopol,

California: O’Reilly, 2020.
2. Haverbeke, Marijn. Eloquent JavaScript. 3rd edition. No Starch Press, 2018.

472 pages. ISBN 978-1593279509.(download)
3. Zakas, Nicholas. Principles of Object-Oriented JavaScript, 1st edition. No

Starch Press, 2014. 120 pages. ISBN 978-1593275402.

“A novelist can never be his own reader, except when he is ridding his manuscript of syntax errors,
repetitions, or the occasional superfluous paragraph.”

– Patrick Modiano

After studying this chapter,
you will be able to:
1. Learn about the

JavaScript syntax
2. Discuss on the

appearance of JavaScript

LEARNING
OBJECTIVES

LANGUAGE SYNTAX

INTRODUCTION
The syntax of a computer language is the set of rules that
defines the combinations of symbols that are considered
to be correctly structured statements or expressions in

2
CHAPTER

3G E-LEARNING

32 Basic Computer Coding: Java Script

that language. This applies both to programming languages, where the document
represents source code, and to markup languages, where the document represents data.

The syntax of a language defines its surface form. Text-based computer languages
are based on sequences of characters, while visual programming languages are based
on the spatial layout and connections between symbols (which may be textual or
graphical). Documents that are syntactically invalid are said to have a syntax error.
When designing the syntax of a language, a designer might start by writing down
examples of both legal and illegal strings, before trying to figure out the general rules
from these examples.

Syntax therefore refers to the form of the code, and is contrasted with semantics –
the meaning. In processing computer languages, semantic processing generally comes
after syntactic processing; however, in some cases, semantic processing is necessary for
complete syntactic analysis, and these are done together or concurrently. In a compiler,
the syntactic analysis comprises the frontend, while the semantic analysis comprises
the backend (and middle end, if this phase is distinguished).

2.1 JAVASCRIPT SYNTAX
JavaScript can be implemented using JavaScript statements that are placed within the
<script>... </script>.

You can place the <script> tags, containing your JavaScript, anywhere within your
web page, but it is normally recommended that you should keep it within the <head>
tags.

The <script> tag alerts the browser program to start interpreting all the text between
these tags as a script. A simple syntax of your JavaScript will appear as follows.

<script ...>

Language Syntax

3G E-LEARNING

33

 JavaScript code
</script>
The script tag takes two important attributes −

 ■ Language − This attribute specifies what scripting
language you are using. Typically, its value will be
javascript. Although recent versions of HTML (and
XHTML, its successor) have phased out the use of
this attribute.

 ■ Type − This attribute is what is now recommended
to indicate the scripting language in use and its value
should be set to “text/javascript”.

So your JavaScript segment will look like −
<script language=”javascript” type=”text/javascript”>
 JavaScript code
</script>

The First JavaScript Script

 Let us take a sample example to print out “Hello World”.
 We added an optional HTML comment that surrounds our
 JavaScript code. This is to save our code from a browser
 that does not support JavaScript. The comment ends with
 a “//-->”. Here “//” signifies a comment in JavaScript, so we
 add that to prevent a browser from reading the end of the
 HTML comment as a piece of JavaScript code. Next, we call
 a function document.write which writes a string into our
.HTML document
 This function can be used to write text, HTML, or both.
.Take a look at the following code
<html>
<body>
<“script language=”javascript” type=”text/javascript>
--!>
(“!document.write(“Hello World
<--//
<script/>
<body/>

Care
should
be taken while
writing variable
and function
names in
JavaScript.

Remember

3G E-LEARNING

34 Basic Computer Coding: Java Script

<html/>
This code will produce the following result −
Hello World!

Whitespace and Line Breaks

JavaScript ignores spaces, tabs, and newlines that appear in JavaScript programs. You
can use spaces, tabs, and newlines freely in your program and you are free to format
and indent your programs in a neat and consistent way that makes the code easy to
read and understand.

Semicolons are Optional

Simple statements in JavaScript are generally followed by a semicolon character, just
as they are in C, C++, and Java. JavaScript, however, allows you to omit this semicolon
if each of your statements are placed on a separate line. For example, the following
code could be written without semicolons.

<script language=”javascript” type=”text/javascript”>
 <!--
 var1 = 10
 var2 = 20
 //-->
</script>
But when formatted in a single line as follows, you must use semicolons −
<script language=”javascript” type=”text/javascript”>
 <!--
 var1 = 10; var2 = 20;
 //-->
</script>
It is a good programming practice to use semicolons.

Case Sensitivity

JavaScript is a case-sensitive language. This means that the language keywords, variables,
function names, and any other identifiers must always be typed with a consistent
capitalization of letters.

So the identifiers Time and TIME will convey different meanings in JavaScript.

Language Syntax

3G E-LEARNING

35

Comments in JavaScript

JavaScript supports both C-style and C++-style comments, Thus −
 ■ Any text between a // and the end of a line is treated as a comment and is

ignored by JavaScript.
 ■ Any text between the characters /* and */ is treated as a comment. This may

span multiple lines.
 ■ JavaScript also recognizes the HTML comment opening sequence <!--. JavaScript

treats this as a single-line comment, just as it does the // comment.
 ■ The HTML comment closing sequence --> is not recognized by JavaScript so

it should be written as //-->.

Example

The following example shows how to use comments in JavaScript.
<script language=”javascript” type=”text/javascript”>
 <!--

 // This is a comment. It is similar to comments in C++

 /*
 * This is a multiline comment in JavaScript
 * It is very similar to comments in C Programming
 */

 //-->
</script>

2.1.1 JavaScript Browser

JavaScript was initially created to “make webpages alive”. The programs in this language
are called scripts. They can be written right in the HTML and execute automatically as
the page loads. Scripts are provided and executed as a plain text. They don’t need a
special preparation or a compilation to run. In this aspect, JavaScript is very different
from another language called Java.

At present, JavaScript can execute not only in the browser, but also on the server,
or actually on any device where there exists a special program called the JavaScript
engine.

3G E-LEARNING

36 Basic Computer Coding: Java Script

The browser has an embedded engine, sometimes it’s also
called a “JavaScript virtual machine”.

Different engines have different “codenames”, for example:
 ■ V8 – in Chrome and Opera.
 ■ SpiderMonkey – in Firefox.
 ■ There are other codenames like “Trident”, “Chakra”

for different versions of IE, “ChakraCore” for Microsoft
Edge, “Nitro” and “SquirrelFish” for Safari etc.

The terms above are good to remember, because they are
used in developer articles on the internet. We’ll use them too.

If “a feature X is supported by V8”, then it probably works in
Chrome and Opera.

What can in-browser JavaScript do?

The modern JavaScript is a “safe” programming language. It
does not provide low-level access to memory or CPU, because
it was initially created for browsers which do not require it.

The capabilities greatly depend on the environment that
runs JavaScript. For instance, Node.JS supports functions that
allow JavaScript to read/write arbitrary files, perform network
requests etc.

In-browser JavaScript can do everything related to webpage
manipulation, interaction with the user and the webserver.

For instance, in-browser JavaScript is able to:
 ■ Add new HTML to the page, change the existing

content, modify styles.
 ■ React to user actions, run on mouse clicks, pointer

movements, key presses.
 ■ Send requests over the network to remote servers,

download and upload files (so-called AJAX and
COMET technologies).

 ■ Get and set cookies, ask questions to the visitor, show
messages.

 ■ Remember the data on the client-side (“local storage”).

Language Syntax

3G E-LEARNING

37

What CAN’T in-browser JavaScript do?

JavaScript’s abilities in the browser are limited for the sake of the user’s safety. The
aim is to prevent an evil webpage from accessing private information or harming the
user’s data.

The examples of such restrictions are:
 ■ JavaScript on a webpage may not read/write arbitrary files on the hard disk,

copy them or execute programs. It has no direct access to OS system functions.
Modern browsers allow it to work with files, but the access is limited and only

provided if the user does certain actions, like “dropping” a file into a browser window
or selecting it via an <input> tag.

There are ways to interact with camera/microphone and other devices, but they
require a user’s explicit permission. So a JavaScript-enabled page may not sneakily
enable a web-camera, observe the surroundings and send the information to the NSA.

 ■ Different tabs/windows generally do not know about each other. Sometimes
they do, for example when one window uses JavaScript to open the other
one. But even in this case, JavaScript from one page may not access the other
if they come from different sites (from a different domain, protocol or port).

This is called the “Same Origin Policy”. To work around that, both pages must
contain a special JavaScript code that handles data exchange.

The limitation is again for user’s safety. A page from http://anysite.com which a
user has opened must not be able to access another browser tab with the URL http://
gmail.com and steal information from there.

 ■ JavaScript can easily communicate over the net to the server where the current
page came from. But its ability to receive data from other sites/domains is
crippled. Though possible, it requires explicit agreement (expressed in HTTP
headers) from the remote side. Once again, that’s safety limitations.

3G E-LEARNING

38 Basic Computer Coding: Java Script

Such limits do not exist if JavaScript is used outside of
the browser, for example on a server. Modern browsers also
allow installing plugin/extensions which may get extended
permissions.

What makes JavaScript unique?

There are at least three great things about JavaScript:
 ■ Full integration with HTML/CSS.
 ■ Simple things done simply.
 ■ Supported by all major browsers and enabled by

default.
Combined, these three things exist only in JavaScript and

no other browser technology.
That’s what makes JavaScript unique. That’s why it’s the

most widespread tool to create browser interfaces.
While planning to learn a new technology, it’s beneficial to

check its perspectives. So let’s move on to the modern trends
that include new languages and browser abilities.

Languages “over” JavaScript

The syntax of JavaScript does not suit everyone’s needs.
Different people want different features.

That’s to be expected, because projects and requirements
are different for everyone. So recently a plethora of new
languages appeared, which are transpiled (converted) to
JavaScript before they run in the browser.

Modern tools make the transpilation very fast and
transparent, actually allowing developers to code in another
language and autoconverting it “under the hood”.

Examples of such languages:
 ■ CoffeeScript is a “syntactic sugar” for JavaScript, it

introduces shorter syntax, allowing to write more
precise and clear code. Usually Ruby devs like it.

 ■ TypeScript is concentrated on adding “strict data
typing”, to simplify development and support of
complex systems. It is developed by Microsoft.

Interface
in the Java
programming
language is an
abstract type that
is used to specify
a behavior that
classes must
implement.
They are similar
to protocols.
Interfaces are
declared using
the interface
keyword, and
may only contain
method signature
and constant
declarations.

Keyword

Language Syntax

3G E-LEARNING

39

 ■ Dart is a standalone language that has its own engine that runs in non-
browser environments (like mobile apps). It was initially offered by Google
as a replacement for JavaScript, but as of now, browsers require it to be
transpiled to JavaScript just like the ones above.

There are more. Of course even if we use one of those languages, we should also
know JavaScript, to really understand what we’re doing.

2.1.2 Understanding Syntax and Code Structure in JavaScript

Before learning to write in a spoken language, you must first learn the rules of grammar.
Here are a few examples of rules you might find in the English language:

 ■ A sentence starts with a capital letter.
 ■ A sentence ends in a period.
 ■ A new paragraph is indented.
 ■ Spoken dialogue is placed inside double quotation marks.

Similarly, all programming languages must adhere to specific rules in order to
function. This set of rules that determine the correct structure of programming languages
is known as syntax. Many programming languages consist largely of similar concepts
with variations in syntax.

Functionality and Readability

Functionality and readability are two important reasons to focus on syntax as you
begin to work with JavaScript.

There are some syntax rules that are mandatory for JavaScript functionality. If they
are not followed, the console will throw an error and the script will cease execution.

Consider a syntax error in the “Hello, World!” program:
broken.js
// Example of a broken JavaScript program
console.log(“Hello, World!”
This code sample is missing the closing parenthesis, and instead of printing the

expected “Hello, World!” to the console, the following error will appear:
Output
Uncaught SyntaxError: missing) after argument list
The missing) must be added before the script will continue to run. This is an

example of how a mistake in JavaScript syntax can break the script, as correct syntax
must be followed in order for code to run.

3G E-LEARNING

40 Basic Computer Coding: Java Script

Some aspects of JavaScript syntax and formatting are based on different schools of
thought. That is, there are stylistic rules or choices that are not mandatory and will not
result in errors when the code is run. However, there are many common conventions
that are sensible to follow, as developers between projects and codebases will be more
familiar with the style. Adhering to common conventions leads to improved readability.

Consider the following three examples of variable assignment.
const greeting=”Hello”; // no whitespace between variable & string
const greeting = “Hello”; // excessive whitespace after assignment
const greeting = “Hello”; // single whitespace between variable & string
Although all three of the examples above will function exactly the same in the

output, the third option of greeting = “Hello” is by far the most commonly used, and
the most readable way of writing the code, especially when considering it within the
context of a larger program. It is important to keep your entire coding project’s style
consistent. From one organization to another, you will encounter different guidelines
to follow, so you must also be flexible. We’ll go over some code examples below for
you to familiarize yourself with the syntax and structure of JavaScript code.

Whitespace

Whitespace in JavaScript consists of spaces, tabs, and newlines (pressing ENTER
on the keyboard). As demonstrated earlier, excessive whitespace outside of a string
and the spaces between operators and other symbols are ignored by JavaScript. This
means the following three examples of variable assignment will have the exact same
computed output:

const userLocation = “New York City, “ + “NY”;
const userLocation=”New York City, “+”NY”;
const userLocation = “New York City, “ + “NY”;
userLocation will represent «New York City, NY» no matter which of these styles

are written in the script, nor will it make a difference to JavaScript whether the
whitespace is written with tabs or spaces.

A good rule of thumb to be able to follow the most common whitespace conventions
is to follow the same rules as you are used to in math and language grammar.

For example, let x = 5 * y is more readable than let x=5*y.
One notable exception to this style you may see is during assignment of multiple

variables. Note the position of = in the following example:
const companyName = “DigitalOcean”;
const companyHeadquarters = “New York City”;
const companyHandle = “digitalocean”;

Language Syntax

3G E-LEARNING

41

All the assignment operators (=) are lined up, with the whitespace after the variable.
This type of organization structure is not used by every codebase, but can be used to
improve readability.

Excess newlines are also ignored by JavaScript. Generally, an extra newline will
be inserted above a comment and after a code block.

Parentheses

For keywords such as if, switch, and for, spaces are usually added before and after
the parentheses. Observe the following examples of comparison and loops.

// An example of if statement syntax
if () { }

// Check math equation and print a string to the console
if (4 < 5) {
 console.log(“4 is less than 5.”);
}

// An example of for loop syntax
for () { }

// Iterate 10 times, printing out each iteration number to the console
for (let i = 0; i <= 10; i++) {
 console.log(i);
}
As demonstrated, the if statement and for loop have whitespace on each side of

the parentheses (but not inside the parentheses).
When the code pertains to a function, method or class, the parentheses will be

touching the respective name.
// An example function
function functionName() {}

// Initialize a function to calculate the volume of a cube
function cube(number) {
 return Math.pow(number, 3);

3G E-LEARNING

42 Basic Computer Coding: Java Script

}

// Invoke the function
cube(5);
In the above example, cube() is a function, and the pair

of parentheses () will contain the parameters or arguments.
In this case, the parameters are number or 5, respectively.
Although cube () with an extra space is valid in that the code
will execute as expected, it is almost never seen. Keeping
them together helps easily associate the function name to the
parentheses pair and any associated passed arguments.

Semicolons

JavaScript programs consist of a series of instructions known
as statements, just as written paragraphs consist of a series of
sentences. While a sentence will end with a period, a JavaScript
statement often ends in a semicolon (;).

// A single JavaScript statement
const now = new Date();
If two or more statements are next to each other, it is

obligatory to separate them with a semicolon.
// Get the current timestamp and print it to the console
const now = new Date(); console.log(now);
If statements are separated by a newline, the semicolon

is optional.
// Two statements separated by newlines
const now = new Date()
console.log(now)
A safe and common convention is to separate statements

with a semicolon regardless of newlines. Generally, it is
considered good practice to include them to reduce the
probability of errors.

// Two statements separated by newlines and semicolons
const now = new Date();
console.log(now);
Semicolons are also required between the initialization,

Parameter
is any
characteristic
that can help
in defining
or classifying
a particular
system. That is,
a parameter is
an element of a
system that is
useful, or critical,
when identifying
the system, or
when evaluating
its performance,
status, condition,
etc.

Keyword

Language Syntax

3G E-LEARNING

43

condition, and increment or decrement of a forloop.
for (initialization; condition; increment) {
 // run the loop
}
Semicolons are not included after any sort of block statement, such as if, for,

do, while, class, switch, and function. These block statements are contained in curly
brackets {}. Note the examples below.

// Initialize a function to calculate the area of a square
function square(number) {
 return Math.pow(number, 2);
}

// Calculate the area of a number greater than 0
if (number > 0) {
 square(number);
}
Be careful, as not all code encased in curly brackets will end without a semicolon.

Objects are encased in curly brackets, and should end in a semicolon.
// An example object
const objectName = {};

// Initialize triangle object
const triangle = {
 type: “right”,
 angle: 90,
 sides: 3,
};
It is widely accepted practice to include semicolons after every JavaScript statement

except block statements, which end in curly brackets.

Indentation

 A complete JavaScript program can technically be written on a single line. However,
 this would quickly become very difficult to read and maintain. Instead, we use newlines
.and indentation

3G E-LEARNING

44 Basic Computer Coding: Java Script

 Here’s an example of a conditional if/else statement, written on either one line or
.with newlines and indentation

// Conditional statement written on one line

if (x === 1) { /* execute code if true */ } else { /* execute code if false */ }

// Conditional statement with indentation

if (x === 1) {

 // execute code if true

} else {

 // execute code if false

}

 Notice that any code included within a block is indented. The indentation can be
 done with two spaces, four spaces, or by pressing the tab character. Whether tabs or
 spaces are used is dependent on either your personal preference (for a solo project)
.(or your organization’s guidelines (for a collaborative project
 Including the opening brace at the end of the first line, as in the above example,
 is the conventional way to structure JavaScript block statements and objects. Another
.way you may see block statements written is with the braces on their own lines

// Conditional statement with braces on newlines

if (x === 1)

{

 // execute code if true

}

else

{

 // execute code if false

}

Language Syntax

3G E-LEARNING

45

 This style is much less common in JavaScript as it is in other languages, but not
.unheard of
.Any nested block statement will be indented further

// Initialize a function

function isEqualToOne(x) {

 // Check if x is equal to one

 if (x === 1) {

 // on success, return true

 return true;

 } else {

 return false;

 }

}

 Proper indentation of your code is imperative to maintain readability and to mitigate
 confusion. One exception to this rule to keep in mind is that compressed libraries will
 have unnecessary characters removed, therefore rendering file sizes smaller to enable
.(faster page load times (as in jquery.min.js and d3.min.js

Identifiers

 The name of a variable, function, or property is known as an identifier in JavaScript.
 Identifiers consist of letters and numbers, but they cannot include any symbol outside
.of $ and _, and cannot begin with a number

Case Sensitive

 These names are case sensitive. The following two examples, myVariable and myvariable
.would refer to two distinct variables
var myVariable = 1;

var myvariable = 2;

 The convention of JavaScript names is that they are written in camelCase, meaning
 the first word is lowercase but every following word starts with an uppercase letter.

3G E-LEARNING

46 Basic Computer Coding: Java Script

 You may also see global variables or constants written in all uppercase, separated by
.underscores
const INSURANCE_RATE = 0.4;

 The exception to this rule is class names, which are often written with every word
.(starting in an uppercase letter (PascalCase

// Initialize a class
class ExampleClass {
 constructor() { }
}
In order to ensure that code is readable, it is best to use clearly different identifiers

throughout your program files.

Reserved Keywords

Identifiers also must not consist of any reserved keywords. Keywords are words in
the JavaScript language that have a built-in functionality, such as var, if, for, and this.

You would not, for example, be able to assign a value to a variable named var.
var var = “Some value”;
Since JavaScript understands var to be a keyword, this will result in a syntax error:
Output
SyntaxError: Unexpected token (1:4)

2.2 APPEARANCE OF JAVASCRIPT BASICS
JavaScript is a rich and expressive language in its own right. While it will be of
particular value to people with no programming experience, even people who have
used other programming languages may benefit from learning about some of the
peculiarities of JavaScript.

2.2.1 Syntax Basics

Understanding statements, variable naming, whitespace, and other basic JavaScript
syntax.

A simple variable declaration

Whitespace has no meaning outside of quotation marks

Language Syntax

3G E-LEARNING

47

Parentheses indicate precedence

Tabs enhance readability, but have no special meaning

2.2.2 Operators

JavaScript operators are used to assign values, compare values, perform arithmetic
operations, and more. Basic operators allow you to manipulate values.

Concatenation

Multiplication and division

Incrementing and decrementing

 var i = 1;
var j = ++i; // pre - increment : j equals 2; i equals 2
var k = i ++; // post - increment : k equals 2; i equals 3
Operations on Numbers and Strings: In JavaScript, numbers and strings will occasionally

behave in ways you might not expect.

Addition vs. concatenation

3G E-LEARNING

48 Basic Computer Coding: Java Script

Forcing a string to act as a number

The Number constructor, when called as a function (like above) will have the effect
of casting its argument into a number. You could also use the unary plus operator,
which does the same thing:

Forcing a string to act as a number (using the unary-plus operator)

Logical Operators

Logical operators allow you to evaluate a series of operands using AND and OR
operations.

Logical AND and OR operators

Though it may not be clear from the example, the || operator returns the value
of the first truthy operand, or, in cases where neither operand is truthy, it’ll return the
last of both operands. The && operator returns the value of the first false operand,
or the value of the last operand if both operands are truthy. Be sure to consult the
section called “Truthy and Falsy Things” for more details on which values evaluate
to true and which evaluate to false.

You’ll sometimes see developers use these logical operators for flow control instead
of using if statements. For example:

// do something with foo if foo is truthy
foo && doSomething (foo);
// set bar to baz if baz is truthy ;
// otherwise , set it to the return
// value of createBar ()

Language Syntax

3G E-LEARNING

49

var bar = baz || createBar ();
This style is quite elegant and pleasantly terse; that said, it can be really hard to

read, especially for beginners. I bring it up here so you’ll recognize it in code you
read, but I don’t recommend using it until you’re extremely comfortable with what it
means and how you can expect it to behave.

Comparison Operators

Comparison operators allow you to test whether values are equivalent or whether
values are identical.

var foo = 1;
var bar = 0;
var baz = ’1 ’;
var bim = 2;

foo == bar ; // returns false
foo != bar ; // returns true
foo == baz ; // returns true ; careful !

foo === baz ; // returns false
foo !== baz ; // returns true
foo === parseInt (baz); // returns true

foo > bim ; // returns false
bim > baz ; // returns true
foo <= baz ; // returns true

2.2.3 Conditional Code

Sometimes you only want to run a block of code under certain conditions. Flow
control — via if and else blocks — lets you run code only under certain conditions.

3G E-LEARNING

50 Basic Computer Coding: Java Script

Flow control

var foo = true ;
var bar = false ;
if (bar) {
// this code will never run
console . log (’ hello ! ’);

}

if (bar) {

// this code won ’t run

} else {

if (foo) {

// this code will run

} else {

// this code would run if foo and bar were both false

}

}

 Truthy and Falsy

Things In order to use flow control successfully, it’s important
to understand which kinds of values are “truthy” and which
kinds of values are “falsy.” Sometimes, values that seem like
they should evaluate one way actually evaluate another.

Values that evaluate to true

’0 ’;
’any string ’;
[]; // an empty array
{}; // an empty object
1; // any non - zero number

While
curly
braces aren’t
strictly required
around single-
line if statements,
using them
consistently, even
when they aren’t
strictly required,
makes for vastly
more readable
code. Be mindful
not to define
functions with
the same name
multiple times
within separate
if/else blocks, as
doing so may
not have the
expected result.

Remember

Language Syntax

3G E-LEARNING

51

Values that evaluate to false

0;
’ ’; // an empty string
NaN ; // JavaScript ’s ”not -a- number ” variable
null ;
undefined ; // be careful -- undefined can be redefined !

Conditional Variable Assignment with the Ternary Operator

Sometimes you want to set a variable to a value depending on
some condition. You could use an if/else statement, but in many
cases the ternary operator is more convenient. [Definition: The
ternary operator tests a condition; if the condition is true, it
returns a certain value, otherwise it returns a different value.]

The ternary operator

// set foo to 1 if bar is true ;
// otherwise , set foo to 0
var foo = bar ? 1 : 0;
While the ternary operator can be used without assigning

the return value to a variable, this is generally
discouraged.

Switch Statements

Rather than using a series of if/else if/else blocks, sometimes
it can be useful to use a switch statement instead. [Definition:
Switch statements look at the value of a variable or expression,
and run different blocks of code depending on the value.]

switch (foo) {
case ’bar ’:
alert (’ the value was bar -- yay ! ’);
break ;
case ’baz ’:
alert (’ boo baz :(’);
break ;

Ternary
operator
is an operator
that takes three
arguments. The
first argument
is a comparison
argument, the
second is the
result upon a
true comparison,
and the third is
the result upon a
false comparison.
If it helps you
can think of
the operator as
shortened way of
writing an if-else
statement.

Keyword

3G E-LEARNING

52 Basic Computer Coding: Java Script

default :
alert (’ everything else is just ok ’);
break ;
}
Switch statements have somewhat fallen out of favor in JavaScript, because often

the same behavior can be accomplished by creating an object that has more potential
for reuse, testing, etc. For example:

var stuffToDo = {
’bar ’ : function () {
alert (’ the value was bar -- yay ! ’);
} ,
’baz ’ : function () {
alert (’ boo baz :(’);
} ,
’default ’ : function () {
alert (’ everything else is just ok ’);
}
};
if (stuffToDo [foo]) {
stuffToDo [foo]();
} else {
stuffToDo [’ default ’]();
}

2.2.4 Loops

A loop is a sequence of instruction s that is continually repeated until a certain
condition is reached. Typically, a certain process is done, such as getting an item of
data and changing it, and then some condition is checked such as whether a counter
has reached a prescribed number. If it hasn’t, the next instruction in the sequence
is an instruction to return to the first instruction in the sequence and repeat the
sequence. If the condition has been reached, the next instruction “falls through” to
the next sequential instruction or branches outside the loop. A loop is a fundamental
programming idea that is commonly used in writing programs.

Loops let you run a block of code a certain number of times.
// logs ’try 0 ’ , ’try 1 ’ , ... , ’try 4 ’

Language Syntax

3G E-LEARNING

53

for (var i =0; i <5; i ++) {
console . log (’ try ’ + i);
}

The for loop

A for loop is made up of four statements and has the following
structure:

for ([initialisation]; [conditional]; [iteration])
[loopBody]
The initialization statement is executed only once, before

the loop starts. It gives you an opportunity to prepare or
declare any variables.

The conditional statement is executed before each iteration,
and its return value decides whether or not the loop is to
continue. If the conditional statement evaluates to a falsey
value then the loop stops.

The iteration statement is executed at the end of each
iteration and gives you an opportunity to change the state of
important variables. Typically, this will involve incrementing
or decrementing a counter and thus bringing the loop ever
closer to its end.

The loopBody statement is what runs on every iteration. It
can contain anything you want. You’ll typically have multiple
statements that need to be executed and so will wrap them
in a block ({...}).

Here’s a typical for loop:

A typical for loop

for (var i = 0 , limit = 100; i < limit ; i ++) {
// This block will be executed 100 times
console . log (’ Currently at ’ + i);
// Note : the last log will be ” Currently at 99”
}

Iteration
statements
cause embedded
statements to
be executed a
number of times,
subject to the
loop-termination
criteria. These
statements are
executed in
order, except
when a jump
statement is
encountered.

Keyword

3G E-LEARNING

54 Basic Computer Coding: Java Script

The while loop

A while loop is similar to an if statement, except that its body will keep executing
until the condition evaluates to false.

while ([conditional]) [loopBody]
Here’s a typical while loop:

A typical while loop

var i = 0;
while (i < 100) {
// This block will be executed 100 times
console . log (’ Currently at ’ + i);
i ++; // increment i
}
You’ll notice that we’re having to increment the counter within the loop’s body.

It is possible to combine the conditional and incrementer, like so:
A while loop with a combined conditional and incrementer
var i = -1;
while (++ i < 100) {
// This block will be executed 100 times
console . log (’ Currently at ’ + i);
}
Notice that we’re starting at -1 and using the prefix incrementer (++i).

The do-while loop

This is almost exactly the same as the while loop, except for the fact that the loop’s
body is executed at least once before the condition is tested.

do [loopBody] while ([conditional])
Here’s a do-while loop:
A do-while loop
do {
// Even though the condition evaluates to false
// this loop ’s body will still execute once .
alert (’Hi there ! ’);

Language Syntax

3G E-LEARNING

55

} while (false);
These types of loops are quite rare since only few situations require a loop that

blindly executes at least once. Regardless, it’s good to be aware of it.

Breaking and continuing

Usually, a loop’s termination will result from the conditional statement not evaluating
to true, but it is possible to stop a loop in its tracks from within the loop’s body with
the break statement.

Stopping a loop
for (var i = 0; i < 10; i ++) {
 if (something) {
 break ;
 }
}
You may also want to continue the loop without executing more of the loop’s

body. This is done using the continue statement.

Skipping to the next iteration of a loop

2.2.5 Reserved Words

Reserved words are terms or phrases appropriated for special use that may not be
utilized in the creation of variable names. For example, “print” is a reserved word
because it is a function in many languages to show text on the screen.

Reserved words are used in operating systems as a method of identifying a device
file or other service. Below is a listing of Microsoft reserved words in MS-DOS and
Windows operating systems. When attempting to use any of the below reserved words
as a name of a file, or in a command you may encounter and unusual response. For
example, attempting to save a file as CON or CON.txt may generate a reserved file
name or access denied error or say the file already exists.

JavaScript has a number of “reserved words,” or words that have special meaning
in the language. You should avoid using these words in your code except when using
them with their intended meaning.

3G E-LEARNING

56 Basic Computer Coding: Java Script

2.2.6 Arrays

Arrays are zero-indexed lists of values. They are a handy
way to store a set of related items of the same type (such as
strings), though in reality, an array can include multiple types
of items, including other arrays. Objects allow to store keyed
collections of values. That’s fine. But quite often we find that
we need an ordered collection, where we have a 1st, a 2nd,
a 3rd element and so on. For example, we need that to store
a list of something: users, goods, HTML elements etc. It is
not convenient to use an object here, because it provides no
methods to manage the order of elements. We can’t insert a
new property “between” the existing ones. Objects are just
not meant for such use.

A simple array
var myArray = [’hello ’ , ’world ’];
Accessing array items by index
var myArray = [’hello ’ , ’world ’ , ’foo ’ , ’bar ’];
console . log (myArray [3]); // logs ’bar ’
Testing the size of an array
var myArray = [’hello ’ , ’world ’];
console . log (myArray . length); // logs 2
Changing the value of an array item
var myArray = [’hello ’ , ’world ’];
myArray [1] = ’changed ’;

Operating
system (OS) is
system software
that manages
computer
hardware
and software
resources
and provides
common services
for computer
programs.

Keyword

Language Syntax

3G E-LEARNING

57

While it’s possible to change the value of an array item as shown in “Changing
the value of an array item”, it’s generally not advised.

Adding elements to an array
var myArray = [’hello ’ , ’world ’];
myArray . push (’new ’);
Working with arrays
var myArray = [’h’ , ’e’ , ’l’ , ’l’ , ’o’];
var myString = myArray . join (’ ’); // ’hello ’
var mySplit = myString . split (’ ’); // [’h’ , ’e’ , ’l’ , ’l’ , ’o’]

2.2.7 Objects

Objects contain one or more key-value pairs. The key portion can be any string. The
value portion can be any type of value: a number, a string, an array, a function, or
even another object. [Definition: When one of these values is a function, it’s called a
method of the object.] Otherwise, they are called properties. As it turns out, nearly
everything in JavaScript is an object — arrays, functions, numbers, even strings — and
they all have properties and methods.

Creating an “object literal”
var myObject = {
sayHello : function () {
console . log (’hello ’);
} ,
myName : ’Rebecca ’
};
myObject . sayHello (); // logs ’hello ’
console . log (myObject . myName); // logs ’Rebecca ’
When creating object literals, you should note that the key portion of each key-

value pair can be written as any valid JavaScript identifier, a string (wrapped in
quotes) or a number:

var myObject = {
validIdentifier : 123 ,
’some string ’: 456 ,
99999: 789
};

3G E-LEARNING

58 Basic Computer Coding: Java Script

2.2.8 Testing Type

JavaScript offers a way to test the “type” of a variable. However, the result can be
confusing — for example, the type of an Array is “object”. It’s common practice to use
the typeof operator when trying to determining the type of a specific value.

Testing the type of various variables
var myFunction = function () {
console . log (’hello ’);
};
var myObject = {
foo : ’bar ’
};
var myArray = [’a’ , ’b’ , ’c’];
var myString = ’hello ’;
var myNumber = 3;
typeof myFunction ; // returns ’function ’
typeof myObject ; // returns ’object ’
typeof myArray ; // returns ’object ’ -- careful !
typeof myString ; // returns ’string ’;
typeof myNumber ; // returns ’number ’
typeof null ; // returns ’object ’ -- careful !
if (myArray . push && myArray . slice && myArray . join) {
// probably an array
// (this is called ” duck typing ”)
}
if (Object . prototype . toString . call (myArray) === ’[object Array] ’) {
// Definitely an array !
// This is widely considered as the most robust way
// to determine if a specific value is an Array .
}
jQuery offers utility methods to help you determine the type of an arbitrary value.

Language Syntax

3G E-LEARNING

59

2.2.9 The this keyword

In JavaScript, as in most object-oriented programming
languages, this is a special keyword that is used within methods
to refer to the object on which a method is being invoked.
The value of this is determined using a simple series of steps:

1. If the function is invoked using Function.call or
Function.apply, this will be set to the first argument
passed to call/apply. If the first argument passed to
call/apply is null or undefined, this will refer to the
global object (which is the window object in Web
browsers).

2. If the function being invoked was created using
Function.bind, this will be the first argument that
was passed to bind at the time the function was
created.

3. If the function is being invoked as a method of an
object, this will refer to that object.

4. Otherwise, the function is being invoked as a
standalone function not attached to any object, and
this will refer to the global object.

A function invoked using Function.call
var myObject = {
sayHello : function () {
console . log (’Hi! My name is ’ + this . myName);
} ,
myName : ’Rebecca ’
};
var secondObject = {
myName : ’Colin ’
};
myObject . sayHello (); // logs ’Hi! My name is Rebecca ’
myObject . sayHello . call (secondObject); // logs ’Hi!

My name is Colin ’
A function created using Function.bind
var myName = ’the global object ’ ,
sayHello = function () {

Web browser
is a software
application
for accessing
information
on the World
Wide Web. Each
individual web
page, image,
and video
is identified
by a distinct
URL, enabling
browsers to
retrieve and
display them on
the user’s device.

Keyword

3G E-LEARNING

60 Basic Computer Coding: Java Script

console . log (’Hi! My name is ’ + this . myName);
} ,
myObject = {
myName : ’Rebecca ’
};
var myObjectHello = sayHello . bind (myObject);
sayHello (); // logs ’Hi! My name is the global object ’
myObjectHello (); // logs ’Hi! My name is Rebecca ’
A function being attached to an object at runtime
var myName = ’the global object ’ ,
sayHello = function () {
console . log (’Hi! My name is ’ + this . myName);
} ,
myObject = {
myName : ’Rebecca ’
} ,
secondObject = {
myName : ’Colin ’
};
myObject . sayHello = sayHello ;
secondObject . sayHello = sayHello ;
sayHello (); // logs ’Hi! My name is the global object ’
myObject . sayHello (); // logs ’Hi! My name is Rebecca ’
secondObject . sayHello (); // logs ’Hi! My name is Colin ’
It is important not to do this with instance methods as

this will cause the value of this within the function to change,
leading to incorrect code operation. For instance:

var myNamespace = {
myObject : {
sayHello : function () {
console . log (’Hi! My name is ’ + this . myName);
} ,
myName : ’Rebecca ’
}

When
invoking
a function deep
within a long
namespace, it is
often tempting
to reduce the
amount of code
you need to type
by storing a
reference to the
actual function as
a single, shorter
variable.

Remember

Language Syntax

3G E-LEARNING

61

};
var hello = myNamespace . myObject . sayHello ;
hello (); // logs ’Hi! My name is undefined ’
You can, however, safely reduce everything up to the object on which the method

is invoked:
var myNamespace = {
myObject : {
sayHello : function () {
console . log (’Hi! My name is ’ + this . myName);
} ,
myName : ’Rebecca ’
}
};
var obj = myNamespace . myObject ;
obj . sayHello (); // logs ’Hi! My name is Rebecca ’

2.2.10 Scope

“Scope” refers to the variables that are available to a piece of code at a given time. A
lack of understanding of scope can lead to frustrating debugging experiences.

When a variable is declared inside of a function using the var keyword, it is only
available to code inside of that function — code outside of that function cannot access
the variable. On the other hand, functions defined inside that function will have access
to to the declared variable.

Furthermore, variables that are declared inside a function without the var keyword
are not local to the function — JavaScript will traverse the scope chain all the way
up to the window scope to find where the variable was previously defined. If the
variable wasn’t previously defined, it will be defined in the global scope, which can
have extremely unexpected consequences;

Functions have access to variables defined in the same scope
var foo = ’hello ’;
var sayHello = function () {
console . log (foo);
};

3G E-LEARNING

62 Basic Computer Coding: Java Script

sayHello (); // logs ’hello ’
console . log (foo); // also logs ’hello ’
Code outside the scope in which a variable was defined does not have access to

the variable
var sayHello = function () {
var foo = ’hello ’;
console . log (foo);
};
sayHello (); // logs ’hello ’
console . log (foo); // doesn ’t log anything
Variables with the same name can exist in different scopes with different values
var foo = ’world ’;
var sayHello = function () {
var foo = ’hello ’;
console . log (foo);
};
sayHello (); // logs ’hello ’
console . log (foo); // logs ’world ’
Functions can “see” changes in variable values after the function is defined
var myFunction = function () {
var foo = ’hello ’;
var myFn = function () {
console . log (foo);
};
foo = ’world ’;
return myFn ;
};
var f = myFunction ();
f (); // logs ’world ’ -- uh oh

Scope insanity

// a self - executing anonymous function
(function () {

Language Syntax

3G E-LEARNING

63

var baz = 1;
var bim = function () { alert (baz); };
bar = function () { alert (baz); };
})();
console . log (baz); // baz is not defined outside of the function
bar (); // bar is defined outside of the anonymous function
// because it wasn ’t declared with var ; furthermore ,
// because it was defined in the same scope as baz ,
// it has access to baz even though other code
// outside of the function does not
bim (); // bim is not defined outside of the anonymous function ,
// so this will result in an error

Closures

Closures are an extension of the concept of scope — functions have access to variables
that were available in the scope where the function was created. If that’s confusing,
don’t worry: closures are generally best understood by example.

In Functions can see changes in variable values after the function is defined”, we
saw how functions have access to changing variable values. The same sort of behavior
exists with functions defined within loops — the function “sees” the change in the
variable’s value even after the function is defined, resulting in all clicks alerting 5.

How to lock in the value of i?
/* this won ’t behave as we want it to; */
/* every click will alert 5 */
for (var i =0; i <5; i ++) {
$(’ <p> click me </p > ’). appendTo (’body ’). click (function () {
alert (i);
});
}
Locking in the value of i with a closure
/* fix : ’close ’ the value of i inside
createFunction , so it won ’t change */
var createFunction = function (i) {
return function () { alert (i); };

3G E-LEARNING

64 Basic Computer Coding: Java Script

};
for (var i =0; i <5; i ++) {
$(’ <p> click me </p > ’). appendTo (’body ’). click (

createFunction (i));
}
Closures can also be used to resolve issues with the this

keyword, which is unique to each scope:
Using a closure to access inner and outer object instances

simultaneously
var outerObj = {
myName : ’outer ’ ,
outerFunction : function () {
// provide a reference to outerObj
// through innerFunction ’s closure
var self = this ;
var innerObj = {
myName : ’inner ’ ,
innerFunction : function () {
// logs ’outer inner ’
console . log (self . myName , this . myName);
}
};
innerObj . innerFunction ();
console . log (this . myName); // logs ’outer ’
}
};
outerObj . outerFunction ();
This mechanism can be particularly useful when dealing

with callbacks, though in those cases, it is often better to use
Function.bind, which will avoid any overhead associated with
scope traversal.

Since
1996, the IIS
web-server
has supported
Microsoft’s
implementation
of server-side
Javascript --
JScript—in ASP
and .NET pages.

Did You
Know?

Language Syntax

3G E-LEARNING

65

SUMMARY
 ■ The syntax of a computer language is the set of rules that defines

the combinations of symbols that are considered to be correctly
structured statements or expressions in that language. This applies both
to programming languages, where the document represents source code, and
to markup languages, where the document represents data.

 ■ The syntax of a language defines its surface form. Text-based computer
languages are based on sequences of characters, while visual programming
languages are based on the spatial layout and connections between symbols
(which may be textual or graphical).

 ■ JavaScript is a case-sensitive language. This means that the language keywords,
variables, function names, and any other identifiers must always be typed
with a consistent capitalization of letters.

 ■ The modern JavaScript is a “safe” programming language. It does not provide
low-level access to memory or CPU, because it was initially created for
browsers which do not require it.

 ■ JavaScript’s abilities in the browser are limited for the sake of the user’s safety.
The aim is to prevent an evil webpage from accessing private information or
harming the user’s data.

 ■ The name of a variable, function, or property is known as an identifier in
JavaScript. Identifiers consist of letters and numbers, but they cannot include
any symbol outside of $ and _, and cannot begin with a number.

 ■ JavaScript is a rich and expressive language in its own right. While it will be
of particular value to people with no programming experience, even people
who have used other programming languages may benefit from learning
about some of the peculiarities of JavaScript.

 ■ JavaScript operators are used to assign values, compare values, perform
arithmetic operations, and more.

 ■ Arrays are zero-indexed lists of values. They are a handy way to store a set
of related items of the same type (such as strings), though in reality, an array
can include multiple types of items, including other arrays.

 ■ “Scope” refers to the variables that are available to a piece of code at a given
time. A lack of understanding of scope can lead to frustrating debugging
experiences.

3G E-LEARNING

66 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. JavaScript Code is written inside file having extension __________.

a. .jvs
b. .javascript
c. .js
d. .jsc

2. Why JavaScript is called as Lightweight Programming Language ?
a. because JS is available free of cost.
b. because JS is client side scripting
c. because we can add programming functionality inside JS
d. because JS can provide programming functionality inside but up to certain

extend.
3. Choose appropriate Option(s) : JavaScript is also called as _____________.

a. None of These
b. Server Side Scripting Language
c. Client Side Scripting Language
d. Browser Side Scripting Language

4. Local Browser used for validations on the Web Pages uses __________.
a. Java
b. CSS
c. HTML
d. JS

5. JavaScript Code can be called by using _________.
a. Function / Method
b. RMI
c. Triggering Event
d. Preprocessor

6. Which of the following is the correct syntax to print a page using JavaScript?
a. print();
b. print();
c. print();
d. print();

Language Syntax

3G E-LEARNING

67

7. Which of the following syntax is correct to refer to an external script called “LFC.
js”?
a. <script source=”LFC.js”>
b. <script ref=”LFC.js”>
c. <script src=”LFC.js”>
d. <script type=”LFC.js”>

8. Which of the following syntax can be used to write “Hello World” in an alert
box?
a. alertBox(“Hello World”);
b. msgBox(“Hello World”);
c. alert(“Hello World”);
d. msg(“Hello World”);

REVIEW QUESTIONS
1. What can in-browser JavaScript do?
2. Define the syntax and code structure in JavaScript.
3. Explain the various types of operators.
4. Write a program on conditional code.
5. Discuss on the JavaScript loops.

Check Your Result

1. (c) 2. (d) 3. (c) 4. (d) 5. (c)
6. (b) 7. (c) 8. (c)

3G E-LEARNING

68 Basic Computer Coding: Java Script

REFERENCES
1. Douglas Crockford. Javascript: The world’s most misunderstood programming

language. http://javascript.crockford.com/javascript.html, 2001. Accessed May
24, 2008.

2. Douglas Crockford. JavaScript: The world’s most misunderstood programming
language has become the world’s most popular programming language. http://
javascript.crockford.com/popular.html, 2008. Accessed May 24, 2008.

3. http://www.damits.ac.in/library_doc/javascript_tutorial.pdf
4. https://autotelicum.github.io/Smooth-CoffeeScript/literate/js-intro.pdf
5. https://javascript.info/array
6. https://javascript.info/intro#what-can-in-browser-javascript-do
7. https://whatis.techtarget.com/definition/loop
8. https://www.computerhope.com/jargon/r/reseword.htm
9. https://www.digitalocean.com/community/tutorials/understanding-syntax-and-

code-structure-in-javascript
10. https://www.techopedia.com/definition/3959/syntax
11. https://www.tutorialspoint.com/javascript/javascript_ifelse.htm
12. https://www.w3schools.com/jsref/jsref_operators.asp
13. Maximiliano Firtman. jQuery Mobile: Up and Running. O’Reilly. 2012. ISBN

1-4493-9765-4.
14. Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource identifier

(URI): Generic syntax. http://tools.ietf.org/html/rfc3986, January 2005. Accessed
on July 7, 2010.

Node.js is a tumor on the programming community, in that not only is it completely braindead, but
the people who use it go on to infect other people who cannot think for themselves.

– Ted Dziuba

After studying this chapter,
you will be able to:
1. Understand functions in

JavaScript
2. Discuss about JavaScript

built-in functions
3. Understand date and

time in JavaScriptt

LEARNING
OBJECTIVES

BUILT IN FUNCTIONS

INTRODUCTION
A function is a block of code that performs an action or
returns a value. Functions are custom code defined by
programmers that are reusable, and can therefore make

3
CHAPTER

3G E-LEARNING

70 Basic Computer Coding: Java Script

your programs more modular and efficient. JavaScript has several “top-level” built-in
functions. JavaScript also has four built-in objects: Array, Date, Math, and String. Each
object has special-purpose properties and methods associated with it. JavaScript also
has constructors for Boolean and Number types.

In JavaScript, functions are objects. You can work with functions as if they were
objects. For example, you can assign functions to variables, to array elements, and to
other objects. They can also be passed around as arguments to other functions or be
returned from those functions.

3.1 UNDERSTAND FUNCTIONS IN JAVASCRIPT
A function (also known as a method) is a self-contained piece of code that performs a
particular “function”, then returns a value. You can recognize a function by its format
— it is a piece of descriptive text, followed by open and close brackets.

Like this:
function displayWelcomeMessage() {
 ...code goes here...
}
The code that goes into a function can be as simple or as complex as you need

it to be. Regardless of the code’s complexity inside the function, when you call the
function, you do not need to know anything about the code inside.

All you need to know is the name of the function, and any arguments that you
might need to supply. For example, take JavaScript’s built-in alert() function. You can
call that function from within your code without knowing how the function is written.

All you need to know is what the function does and how to call it. In this section,
we will learn several ways to define a function, call a function, and use function
parameters in JavaScript.

Built in Functions

3G E-LEARNING

71

3.1.1 Defining a Function

 Functions are defined, or declared, with the function keyword.
.Below is the syntax for a function in JavaScript

function nameOfFunction() {
 // Code to be executed
}
The declaration begins with the function keyword, followed

by the name of the function. Function names follow the
same rules as variables — they can contain letters, numbers,
underscores and dollar signs, and are frequently written in
camel case. The name is followed by a set of parentheses,
which can be used for optional parameters. The code of the
function is contained in curly brackets, just like a for statement
or an if statement.

In our first example, we will make a function declaration
to print a greeting statement to the console.

// Initialize greeting function
function greet() {
 console.log(“Hello, World!”);
}
Here we have the code to print Hello, World! to the console

contained inside the greet() function. However, nothing will
happen and no code will execute until we invoke, or call the
function. You can invoke a function by writing the name of
the function followed by the parentheses.

// Invoke the function
greet();
Now we will put those together, defining our function

and invoking it.
greet.js
// Initialize greeting function
function greet() {
 console.log(“Hello, World!”);
}
// Invoke the function
greet();

Parentheses
allow a writer
to provide
additional
information. The
parenthetical
material might
be a single word,
a fragment,
or multiple
complete
sentences.

Keyword

In
1995, Netscape
Communications
recruited Brendan
Eich with the goal
of embedding
the Scheme
programming
language into
its Netscape
Navigator. Before
he could get
started, Netscape
Communications
collaborated with
Sun Microsystems
to include
in Netscape
Navigator Sun’s
more static
programming
language Java, in
order to compete
with Microsoft for
user adoption of
Web technologies
and platforms.

Did You
Know?

3G E-LEARNING

72 Basic Computer Coding: Java Script

With the call for greet();, the function will run and we will receive the Hello,
World! as the program’s output.

Output
Hello, World!
Now we have our greet() code contained in a function, and can reuse it as many

times as we want. Using parameters, we can make the code more dynamic.

3.1.2 Function Parameters

JavaScript is a functional language meaning that functions are the primary modular
units of execution. Functions are obviously very important in JavaScript. When talking
about functions, the terms parameters and arguments are often interchangeably used
as if it were one and the same thing but there is a very subtle difference.

 ■ Parameters are variables listed as a part of the function definition.
 ■ Arguments are values passed to the function when it is invoked.

In our greet.js file, we created a basic function that prints Hello, World to the
console. Using parameters, we can add additional functionality that will make the
code more flexible. Parameters are input that get passed into functions as names and
behave as local variables.

When a user logs in to an application, we may want the program to greet them
by name, instead of just saying, “Hello, World!”. We will add a parameter into our
function, called name, to represent the name of the person being greeted.

// Initialize custom greeting function
function greet(name) {
 console.log(`Hello, ${name}!`);
}
The name of the function is greet, and now we have a single parameter inside the

parentheses. The name of the parameter follows the same rules as naming a variable.
Inside of the function, instead of a static string consisting of Hello, World, we have
a template literal string containing our parameter, which is now behaving as a local
variable.

You will notice we have not defined our name parameter anywhere. We assign it
a value when we invoke our function. Assuming our user is named Sammy, we will
call the function and place the username as the argument. The argument is the actual
value that gets passed into the function, in this case it is the string “Sammy”.

// Invoke greet function with “Sammy” as the argument
greet(“Sammy”);

Built in Functions

3G E-LEARNING

73

The value of “Sammy” is being passed into the function through the name parameter.
Now every time name is used throughout the function, it will represent the “Sammy”
value. Here is the whole code.

greetSammy.js
// Initialize custom greeting function
function greet(name) {
 console.log(`Hello, ${name}!`);
}
// Invoke greet function with “Sammy” as the argument
greet(“Sammy”);
When we run the program above, we will receive the following output.
Output
Hello, Sammy!
Now we have an example of how a function can be reused. In a real world example,

the function would pull the username from a database instead of directly supplying
the name as an argument value.

In addition to parameters, variables can be declared inside of functions. These
variables are known as local variables, and will only exist inside the scope of their
own function block. Variable scope determines variables’ accessibility; variables that
are defined inside of a function are not accessible from outside of the function, but
they can be used as many times as their function is used throughout a program.

3.1.3 Returning Values

More than one parameter can be used in a function. We can pass multiple values into
a function and return a value. We will create a function to find the sum of two values,
represented by x and y.

sum.js
// Initialize add function
function add(x, y) {
 return x + y;
}

// Invoke function to find the sum
add(9, 7);

3G E-LEARNING

74 Basic Computer Coding: Java Script

In the program above, we defined a function with the parameters x and y, and
then passed the values of 9 and 7 to the function. When we run the program, we will
receive the sum of those numbers as the output.

Output
16
In this case, with 9 and 7 passed to the sum() function, the program returned 16.
When the return keyword is used, the function ceases to execute and the value of

the expression is returned. Although in this case the browser will display the value in
the console, it is not the same as using console.log() to print to the console. Invoking
the function will output the value exactly where the function was invoked. This value
can be used immediately or placed into a variable.

3.1.4 Function Expressions

In the last section, we used a function declaration to get the sum of two numbers and
return that value. We can also create a function expression by assigning a function to
a variable. Using our same add function example, we can directly apply the returned
value to a variable, in this case sum.

functionExpression.js
// Assign add function to sum constant
const sum = function add(x, y) {
 return x + y;
}

// Invoke function to find the sum
sum(20, 5);
Output
25
Now the sum constant is a function. We can make this expression more concise

by turning it into an anonymous function, which is an unnamed function. Currently,
our function has the name add, but with function expressions it is not necessary to
name the function and the name is usually omitted.

anonymousExpression.js
// Assign function to sum constant
const sum = function(x, y) {
 return x + y;

Built in Functions

3G E-LEARNING

75

}
// Invoke function to find the sum
sum(100, 3);
Output
103
In this example, we have removed the name of the function, which was add, and

turned it into an anonymous function. A named function expression could be used to
aid in debugging, but it is usually omitted.

3.1.5 Arrow Functions

So far, we have gone through how to define functions using the function keyword.
However, there is a newer, more concise method of defining a function known as arrow
function expressions as of ECMAScript 6. Arrow functions, as they are commonly
known, are represented by an equals sign followed by a greater than sign: =>. Arrow
functions are always anonymous functions and a type of function expression. We can
create a basic example to find the product of two numbers.

arrowFunction.js
// Define multiply function
const multiply = (x, y) => {
 return x * y;
}

// Invoke function to find product
multiply(30, 4);
Output
120
Instead of writing out the keyword function, we use the => arrow to indicate a

function. Otherwise, it works similarly to a regular function expression. In the case of
only one parameter, the parentheses can be excluded. In this example, we are squaring
x, which only requires one number to be passed as an argument. The parentheses
have been omitted.

// Define square function
const square = x => {
 return x * x;
}

3G E-LEARNING

76 Basic Computer Coding: Java Script

// Invoke function to find product
square(8);
Output
64

 With these particular examples that only consist of a return
 statement, arrow functions allow the syntax to be reduced
 even further. If the function is only a single line return, both
 the curly brackets and the return statement can be omitted,
.as seen in the example below

// Define square function
const square = x => x * x;
// Invoke function to find product
square(10);
Output
100
All three of these types of syntax result in the same

output. It is generally a matter of preference or company
coding standards to decide how you will structure your own
functions. In this section, we covered function declarations
and function expressions, returning values from functions,
assigning function values to variables.

3.2 JAVASCRIPT BUILT-IN FUNCTIONS
JavaScript, first introduced by Netscape, changed the static
fate of the HTML web pages. Before JavaScript came into
existence, HTML pages were just used to render static content.
Inserting JavaScript to a web page, can give it a significant
degree of interactivity and functionality. It lets you control
the behavior of the web browser and how the elements of
the web page are displayed. Most web browsers have a built
in JavaScript interpreter. When a browser downloads an html
file that contains JavaScript, the JavaScript interpreter reacts
to any script.

In the
case of
no parameters,
an empty set of
parentheses () is
required in the
arrow functions.

Remember

Syntax is
the set of
rules, principles,
and processes
that govern the
structure of
sentences in a
given language,
usually including
word order.

Keyword

Built in Functions

3G E-LEARNING

77

JavaScript is an object oriented programming language.
It supports the concept of objects in the form of attributes. If
an object attribute consists of function, then it is a method of
that object, or if an object attribute consists of values, then it
is a property of that object.

Some browsers encounter problems using the example from the local
drive. Chrome displays a blank page when you access Customers2.XML
from the local drive. To test this technique in a way that works for most
browsers, copy the files to your web server and then access the XML file
from the web server.

3.2.1 Number Methods

The Number object contains only the default methods that are
part of every object’s definition. The Boolean object corresponds
to the number primitive type.

Sr. No Method & Description
1 constructor()

 Returns the function that created this object’s instance. By default,
this is the Number object.

2 toExponential()

 Forces a number to display in exponential notation, even if the
 number is in the range in which JavaScript normally uses standard
notation.

3 toFixed()

 Formats a number with a specific number of digits to the right of
the decimal.

4 toLocaleString()

 Returns a string value version of the current number in a format
that may vary according to a browser’s locale settings.

3G E-LEARNING

78 Basic Computer Coding: Java Script

5 toPrecision()

 Defines how many total digits (including digits to the left and right
of the decimal) to display of a number.

6 toString()

Returns the string representation of the number’s value.
7 valueOf()

Returns the number’s value.

3.2.2 Boolean Methods

The Boolean object represents a primitive Boolean value. Here is a list of each method
and its description.

Sr. No Method & Description

1 toSource()

 Returns a string containing the source of the Boolean object; you can use this
string to create an equivalent object.

2 toString()

 Returns a string of either “true” or “false” depending upon the value of the
object.

3 valueOf()

Returns the primitive value of the Boolean object.

3.2.3 String Methods

Here is a list of each method and its description.

Sr. No Method & Description

1 charAt()

Returns the character at the specified index.
2 charCodeAt()

 Returns a number indicating the Unicode value of the character at the given
index.

Built in Functions

3G E-LEARNING

79

3 concat()

Combines the text of two strings and returns a new string.
4 indexOf()

 Returns the index within the calling String object of the first occurrence of
the specified value, or -1 if not found.

5 lastIndexOf()

 Returns the index within the calling String object of the last occurrence of the
specified value, or -1 if not found.

6 localeCompare()

 Returns a number indicating whether a reference string comes before or after
or is the same as the given string in sort order.

7 length()

Returns the length of the string.
8 match()

Used to match a regular expression against a string.
9 replace()

 Used to find a match between a regular expression and a string, and to
replace the matched substring with a new substring.

10 search()

 Executes the search for a match between a regular expression and a specified
string.

11 slice()

Extracts a section of a string and returns a new string.
12 split()

 Splits a String object into an array of strings by separating the string into
substrings.

13 substr()

 Returns the characters in a string beginning at the specified location through
the specified number of characters.

14 substring()

Returns the characters in a string between two indexes into the string.
15 toLocaleLowerCase()

 The characters within a string are converted to lower case while respecting
the current locale.

3G E-LEARNING

80 Basic Computer Coding: Java Script

16 toLocaleUpperCase()

 The characters within a string are converted to upper case while respecting
the current locale.

17 toLowerCase()

Returns the calling string value converted to lower case.
18 toString()

Returns a string representing the specified object.
19 toUpperCase()

Returns the calling string value converted to uppercase.
20 valueOf()

Returns the primitive value of the specified object.

3.2.4 String HTML wrappers

A String is an object representing a series of characters. Here is a list of each method
which returns a copy of the string wrapped inside the appropriate HTML tag.

Sr. No Method & Description
1 anchor()

Creates an HTML anchor that is used as a hypertext target.
2 big()

 Creates a string to be displayed in a big font as if it were in a
<big> tag.

3 blink()

Creates a string to blink as if it were in a <blink> tag.
4 bold()

Creates a string to be displayed as bold as if it were in a tag.
5 fixed()

 Causes a string to be displayed in fixed-pitch font as if it were in
a <tt> tag

6 fontcolor()

 Causes a string to be displayed in the specified color as if it were
in a tag.

Built in Functions

3G E-LEARNING

81

7 fontsize()

 Causes a string to be displayed in the specified font size as if it
were in a tag.

8 italics()

Causes a string to be italic, as if it were in an <i> tag.
9 link()

Creates an HTML hypertext link that requests another URL.
10 small()

 Causes a string to be displayed in a small font, as if it were in a
<small> tag.

11 strike()

 Causes a string to be displayed as struck-out text, as if it were in
a <strike> tag.

12 sub()

 Causes a string to be displayed as a subscript, as if it were in a
<sub> tag

13 sup()

 Causes a string to be displayed as a superscript, as if it were in a
<sup> tag

3.2.5 Array Methods

JavaScript arrays are a special kind of object, and are created dynamically. An array
object contains a number of variables. The number of variables may be zero, in which
case the array is said to be empty. The variables contained in an array have no names;
instead they are referenced by array access expressions that use nonnegative integer
index values. These variables are called the components of the array. If an array has
n components, we say n is the length of the array; the components of the array are
referenced using integer indices from 0 to n-1, inclusive.

Unlike Java, the components of an array do not necessarily have the same type.
An array component can itself be an array, to create essentially multi-dimensional
arrays. If, starting from any array type, one considers its component type, and then
(if that is also an array type) the component type of that type, and so on, eventually
one must reach a component type that is not an array type; the components at this
level of the data structure are called the elements of the original array.

3G E-LEARNING

82 Basic Computer Coding: Java Script

Here is a list of each method and its description.

Sr. No Method & Description

1 concat()

 Returns a new array comprised of this array joined with other array(s) and/or
value(s).

2 every()

Returns true if every element in this array satisfies the provided testing function.
3 filter()

 Creates a new array with all of the elements of this array for which the provided
filtering function returns true.

4 forEach()

Calls a function for each element in the array.
5 indexOf()

 Returns the first (least) index of an element within the array equal to the specified
value, or -1 if none is found.

6 join()

Joins all elements of an array into a string.
7 lastIndexOf()

 Returns the last (greatest) index of an element within the array equal to the
specified value, or -1 if none is found.

8 map()

 Creates a new array with the results of calling a provided function on every
element in this array.

9 pop()

Removes the last element from an array and returns that element.
10 push()

 Adds one or more elements to the end of an array and returns the new length of
the array.

11 reduce()

Apply a function simultaneously against two values of the array (from left-to-
right) as to reduce it to a single value.

12 reduceRight()

Apply a function simultaneously against two values of the array (from right-to-
left) as to reduce it to a single value.

Built in Functions

3G E-LEARNING

83

13 reverse()

 Reverses the order of the elements of an array -- the first becomes the last, and the
last becomes the first.

14 shift()

Removes the first element from an array and returns that element.
15 slice()

Extracts a section of an array and returns a new array.
16 some()

 Returns true if at least one element in this array satisfies the provided testing
function.

17 toSource()

Represents the source code of an object
18 sort()

Sorts the elements of an array.
19 splice()

Adds and/or removes elements from an array.
20 toString()

Returns a string representing the array and its elements.
21 unshift()

 Adds one or more elements to the front of an array and returns the new length of
the array.

3.2.6 Date Methods

The Date object provides a system-independent abstraction
of dates and times. Dates may be constructed from a year,
month, day of the month, hour, minute, and second, and
those six components, as well as the day of the week, may
be extracted from a date. Dates may also be compared and
converted to a readable string form. A Date is represented
to a precision of one millisecond.The way JavaScript handles
dates is very similar to the way Java handles dates: both
languages have many of the same date methods, and both
store dates internally as the number of milliseconds since
January 1, 1970 00:00:00. Dates prior to 1970 are not allowed.

Abstraction is
a fundamental
concept to
computer science
and software
development.
The process of
abstraction can
also be referred to
as modeling and
is closely related
to the concepts of
theory and design.

Keyword

3G E-LEARNING

84 Basic Computer Coding: Java Script

Here is a list of each method and its description.

Sr. No Method & Description
1 Date()

Returns today’s date and time
2 getDate()

 Returns the day of the month for the specified date
according to local time.

3 getDay()

 Returns the day of the week for the specified date
according to local time.

4 getFullYear()

 Returns the year of the specified date according to local
time.

5 getHours()

 Returns the hour in the specified date according to local
time.

6 getMilliseconds()

 Returns the milliseconds in the specified date according to
local time.

7 getMinutes()

 Returns the minutes in the specified date according to
local time.

8 getMonth()

 Returns the month in the specified date according to local
time.

9 getSeconds()

 Returns the seconds in the specified date according to local
time.

10 getTime()

 Returns the numeric value of the specified date as the
 number of milliseconds since January 1, 1970, 00:00:00
UTC.

11 getTimezoneOffset()

 Returns the time-zone offset in minutes for the current
locale.

Built in Functions

3G E-LEARNING

85

12 getUTCDate()

 Returns the day (date) of the month in the specified date
according to universal time.

13 getUTCDay()

 Returns the day of the week in the specified date according
to universal time.

14 getUTCFullYear()

 Returns the year in the specified date according to
universal time.

15 getUTCHours()

 Returns the hours in the specified date according to
universal time.

16 getUTCMilliseconds()

 Returns the milliseconds in the specified date according to
universal time.

17 getUTCMinutes()

 Returns the minutes in the specified date according to
universal time.

18 getUTCMonth()

 Returns the month in the specified date according to
universal time.

19 getUTCSeconds()

 Returns the seconds in the specified date according to
universal time.

20 getYear()

 Deprecated - Returns the year in the specified date
according to local time. Use getFullYear instead.

21 setDate()

 Sets the day of the month for a specified date according to
local time.

22 setFullYear()

 Sets the full year for a specified date according to local
time.

23 setHours()

Sets the hours for a specified date according to local time.

3G E-LEARNING

86 Basic Computer Coding: Java Script

24 setMilliseconds()

 Sets the milliseconds for a specified date according to local
time.

25 setMinutes()

 Sets the minutes for a specified date according to local
time.

26 setMonth()

Sets the month for a specified date according to local time.
27 setSeconds()

 Sets the seconds for a specified date according to local
time.

28 setTime()

 Sets the Date object to the time represented by a number of
milliseconds since January 1, 1970, 00:00:00 UTC.

29 setUTCDate()

 Sets the day of the month for a specified date according to
universal time.

30 setUTCFullYear()

 Sets the full year for a specified date according to universal
time.

31 setUTCHours()

 Sets the hour for a specified date according to universal
time.

32 setUTCMilliseconds()

 Sets the milliseconds for a specified date according to
universal time.

33 setUTCMinutes()

 Sets the minutes for a specified date according to universal
time.

34 setUTCMonth()

 Sets the month for a specified date according to universal
time.

35 setUTCSeconds()

 Sets the seconds for a specified date according to universal
time.

Built in Functions

3G E-LEARNING

87

36 setYear()

 Deprecated - Sets the year for a specified date according to
local time. Use setFullYear instead.

37 toDateString()

Returns the “date” portion of the Date as a human-
readable string.

38 toGMTString()

 Deprecated - Converts a date to a string, using the Internet
GMT conventions. Use toUTCString instead.

39 toLocaleDateString()

 Returns the “date” portion of the Date as a string, using
the current locale’s conventions.

40 toLocaleFormat()

Converts a date to a string, using a format string.
41 toLocaleString()

 Converts a date to a string, using the current locale’s
conventions.

42 toLocaleTimeString()

 Returns the “time” portion of the Date as a string, using
the current locale’s conventions.

43 toSource()

 Returns a string representing the source for an equivalent
Date object; you can use this value to create a new object.

44 toString()

Returns a string representing the specified Date object.
45 toTimeString()

Returns the “time” portion of the Date as a human-
readable string.

46 toUTCString()

 Converts a date to a string, using the universal time
convention.

47 valueOf()

Returns the primitive value of a Date object.

3G E-LEARNING

88 Basic Computer Coding: Java Script

3.2.7 Date Static Methods

In addition to the many instance methods listed previously, the Date object also defines
two static methods. These methods are invoked through the Date() constructor itself.

Sr. No Method & Description

1 Date.parse()

 Parses a string representation of a date and time and
returns the internal millisecond representation of that date.

2 Date.UTC()

 Returns the millisecond representation of the specified
UTC date and time.

3.2.8 Math Methods

The built-in Math object has properties and methods for mathematical constants and
functions, respectively. Here is a list of each method and its description.

Sr. No Method & Description

1 abs()

Returns the absolute value of a number.
2 acos()

Returns the arccosine (in radians) of a number.
3 asin()

Returns the arcsine (in radians) of a number.
4 atan()

Returns the arctangent (in radians) of a number.
5 atan2()

Returns the arctangent of the quotient of its arguments.
6 ceil()

Returns the smallest integer greater than or equal to a number.

Built in Functions

3G E-LEARNING

89

7 cos()

Returns the cosine of a number.
8 exp()

 Returns EN, where N is the argument, and E is Euler’s constant,
the base of the natural logarithm.

9 floor()

Returns the largest integer less than or equal to a number.
10 log()

Returns the natural logarithm (base E) of a number.
11 max()

Returns the largest of zero or more numbers.
12 min()

Returns the smallest of zero or more numbers.
13 pow()

Returns base to the exponent power, that is, base exponent.
14 random()

Returns a pseudo-random number between 0 and 1.
15 round()

Returns the value of a number rounded to the nearest integer.
16 sin()

Returns the sine of a number.
17 sqrt()

Returns the square root of a number.
18 tan()

Returns the tangent of a number.
19 toSource()

Returns the string “Math”.

3.2.9 RegExp Methods

Here is a list of each method and its description.

3G E-LEARNING

90 Basic Computer Coding: Java Script

Sr. No Method & Description
1 exec()

Executes a search for a match in its string parameter.
2 test()

Tests for a match in its string parameter.
3 toSource()

 Returns an object literal representing the specified object; you
can use this value to create a new object.

4 toString()

Returns a string representing the specified object.

3.2.10 How to use JavaScript’s built-in
functions to program with HTML

JavaScript gives you access a number of built-in functions,
including the prompt() function, which lets you ask the user
for written input. As with the confirm() function, you provide
a text prompt to ask the user to provide a value. On return,
you set the output of the function equal to the prompt()
function and use the data in your application.

Methods help you perform specific tasks with certain
types of data. Using these methods makes it easier for you
to create robust applications. Of all the methods provided by
objects, these methods are the most common and likely the
most important for many situations:

 ■ length(): Returns the number of something. For
example, when working with a string, length() returns
the number of characters in the string. Likewise, when
working with an array, length() returns the number
of elements in the array. This method also appears
as a property in some cases.

Simply
displaying data
with locale in
mind does not
perform any data
conversion. For
example, the
strings you create
will not suddenly
appear in French
if you natively
speak English.
There’s nothing
magic about
locale-specific
methods. All that
these methods
do is change the
presentation of
the data as you
provide it.

Remember

Built in Functions

3G E-LEARNING

91

 ■ toLocaleString(): Outputs the value of an object as a
locale-specific string. For example, when the locale
uses a comma for the decimal point, the viewer will
see a comma, rather than a period, even if you use a
period in your code. It is essential that you provide
this support for people from other countries that
visit your site.

 ■ toString(): Outputs the value of the object as a string.
This method is often used for display purposes.

 ■ valueOf(): Returns a native version of the object value.
You need this method in situations where an object
could cause problems. For example, when saving data
to disk, you want the value, not the object, stored.

JavaScript also includes the concept of global functions.
These functions are available without regard to any object from
any place you use JavaScript on a page. The following list
provides an overview of the most common global functions:

 ■ decodeURI(): Decodes a Uniform Resource Identifier
(URI).

 ■ decodeURIComponent(): Decodes a URI component,
rather than the entire URI.

 ■ URIs normally have between three or five standard
components:

 - Protocol: The set of transport rules used to access
the resource, such as HTTP, HTTPS, FTP, SMTP,
or NNTP.

 - Host: The name of the server used to
provide access to the resource, such as blog.
johnmuellerbooks.com.

 - Port number: The port used to access the resource.
In general, you do not provide this component
because most sites use standard ports, which are
assumed by the browser. For example, HTTP
relies on port 80 for communication. When the
server uses port 80, you do not need to include
the port number as part of the URI.

 - Path: The fully defined location of the resource
on the server. In some cases, you do not provide

Data is
measured,
collected and
reported, and
analyzed,
whereupon it
can be visualized
using graphs,
images or other
analysis tools.

Keyword

3G E-LEARNING

92 Basic Computer Coding: Java Script

a path, which means that the server provides the resource found on the
default path.

 - Query string: Name and value pairs that define additional information
required to obtain the resource you want on the server.

 ■ encodeURI(): Encodes a URI.
 ■ encodeURIComponent(): Encodes a URI component rather than the entire URI.
 ■ escape(): Encodes a string using the same techniques used for a URI. For

example, escape(“This string is encoded!”) outputs This%20string%20is%20
encoded%21.

 ■ eval(): Accepts a string that contains a script and then executes the string
content as a script. Many developers use this function to create self-modifying
applications that provide good flexibility.

 - Using evaluated code opens your application to potential security
problems through injection attacks.

 - Debugging evaluated code is incredibly hard because none of the normal
debugging tools will work.

 - Evaluated code runs more slowly because the browser cannot compile
and then cache it.

 ■ isFinite(): Returns true when a value is a finite, legal number.
 ■ isNaN(): Returns true when a value is an illegal number.
 ■ Number(): Changes an object’s value to a native number.
 ■ parseFloat(): Parses a string and returns a floating point number.
 ■ parseInt(): Parses a string and returns an integer.
 ■ String(): Converts an object’s value to a string. This function provides the

same output as the toString() method provided by most objects.
 ■ unescape(): Decodes an encoded string by using the same techniques used

for a URI.

3.3 UNDERSTANDING DATE AND TIME IN JAVASCRIPT
Date and time are a regular part of our everyday lives and therefore feature prominently
in computer programming. In JavaScript, you might have to create a website with a
calendar, a train schedule, or an interface to set up appointments. These applications
need to show relevant times based on the user’s current time zone, or perform
calculations around arrivals and departures or start and end times. Additionally, you
might need to use JavaScript to generate a report at a certain time every day, or filter
through currently open restaurants and establishments.

Built in Functions

3G E-LEARNING

93

 To achieve all of these objectives and more, JavaScript
 comes with the built in Date object and related methods. This
 section will go over how to format and use date and time in
.JavaScript

3.3.1 The Date Object

The Date object is a built-in object in JavaScript that stores
the date and time. It provides a number of built-in methods
for formatting and managing that data. By default, a new
Date instance without arguments provided creates an object
corresponding to the current date and time. This will be
created according to the current computer’s system settings.

To demonstrate JavaScript’s Date, let’s create a variable
and assign the current date to it. This section is being written
on Wednesday, October 18th in London (GMT), so that is the
current date, time, and time zone that is represented below.

now.js
// Set variable to current date and time
const now = new Date();
// View the output
now;
Output
Wed Oct 18 2017 12:41:34 GMT+0000 (UTC)
Looking at the output, we have a date string containing

the following:

 Day of the
Week

Month Day Year Hour Minute Second Time zone

Wed Oct 18 2017 12 41 34 GMT+0000
(UTC)

The date and time is broken up and printed in a way
that we can understand as humans. JavaScript, however,

Time
zone
is a region of
the globe that
observes a
uniform standard
time for legal,
commercial, and
social purposes.

Keyword

Encoding
replaces
whitespace
characters, such
as a space, with
whitespace
equivalent
values, such as
%20. In addition,
Unicode
characters that
would normally
cause parsing
problems, such
as those with
diacritical marks,
are replaced with
their Unicode
equivalents.

Remember

3G E-LEARNING

94 Basic Computer Coding: Java Script

understands the date based on a timestamp derived from Unix time, which is a value
consisting of the number of milliseconds that have passed since midnight on January
1st, 1970. We can get the timestamp with the getTime() method.

// Get the current timestamp
now.getTime();
Output
1508330494000
The large number that appears in our output for the current timestamp represents

the same value as above, October 18th, 2017.
Epoch time, also referred to as zero time, is represented by the date string 01

January, 1970 00:00:00 Universal Time (UTC), and by the 0 timestamp. We can test
this in the browser by creating a new variable and assigning to it a new Date instance
based on a timestamp of 0.

epoch.js
// Assign the timestamp 0 to a new variable
const epochTime = new Date(0);
epochTime;
Output
01 January, 1970 00:00:00 Universal Time (UTC)
Epoch time was chosen as a standard for computers to measure time by in earlier

days of programming, and it is the method that JavaScript uses. It is important to
understand the concept of both the timestamp and the date string, as both may be
used depending on the settings and purpose of an application.

So far, we learned how to create a new Date instance based on the current time,
and how to create one based on a timestamp. In total, there are four formats by which
you can create a new Date in JavaScript. In addition to the current time default and
timestamp, you can also use a date string, or specify particular dates and times.

Date Creation Output

new Date() Current date and time

new Date(timestamp) Creates date based on milliseconds
since Epoch time

new Date(date string) Creates date based on date string

 new Date(year, month, day, hours,
minutes, seconds, milliseconds)

 Creates date based on specified date
and time

To demonstrate the different ways to refer to a specific date, we will create new
Date objects that will represent July 4th, 1776 at 12:30pm GMT in three different ways.

Built in Functions

3G E-LEARNING

95

usa.js
// Timestamp method
new Date(-6106015800000);
// Date string method
new Date(“January 31 1980 12:30”);
// Date and time method
new Date(1776, 6, 4, 12, 30, 0, 0);
The three examples above all create a date containing

the same information.
You will notice the timestamp method has a negative

number; any date prior to Epoch time will be represented
as a negative number.

In the date and time method, our seconds and milliseconds
are set to 0. If any number is missing from the Date creation,
it will default to 0. However, the order cannot be changed, so
keep that in mind if you decide to leave off a number. You
may also notice that the month of July is represented by 6,
not the usual 7. This is because the date and time numbers
start from 0, as most counting in programming does. See the
next section for a more detailed chart.

3.3.2 Retrieving the Date with get

Once we have a date, we can access all the components of
the date with various built-in methods. The methods will
return each part of the date relative to the local time zone.
Each of these methods starts with get, and will return the
relative number. Below is a detailed table of the get methods
of the Date object.

Date/Time Method Range Example
Year getFullYear() YYYY 1970
Month getMonth() 0-11 0 = January
 Day (of the
month)

getDate() 1-31 1 = 1st of the
month

Day (of the week) getDay() 0-6 0 = Sunday
Hour getHours() 0-23 0 = midnight
Minute getMinutes() 0-59

Date
object
is used to work
with dates and
times. You create
an instance of
the Date object
with the «new»
keyword.

Keyword

3G E-LEARNING

96 Basic Computer Coding: Java Script

Second getSeconds() 0-59
Millisecond getMilliseconds() 0-999
Timestamp getTime() Milliseconds

 since Epoch
time

Let’s make a new date, based on July 31, 1980, and assign it to a variable.
harryPotter.js
// Initialize a new birthday instance
const birthday = new Date(1980, 6, 31);
Now we can use all our methods to get each date component, from year to

millisecond.
getDateComponents.js
birthday.getFullYear(); // 1980
birthday.getMonth(); // 6
birthday.getDate(); // 31
birthday.getDay(); // 4
birthday.getHours(); // 0
birthday.getMinutes(); // 0
birthday.getSeconds(); // 0
birthday.getMilliseconds(); // 0
birthday.getTime(); // 333849600000 (for GMT)
Sometimes it may be necessary to extract only part of a date, and the built-in

get methods are the tool you will use to achieve this. For an example of this, we can
test the current date against the day and month of October 3rd to see whether it is
October 3rd or not.

oct3.js

// Get today’s date
const today = new Date();

// Compare today with October 3rd
if (today.getDate() === 3 && today.getMonth() === 9) {
 console.log(“It is October 3rd.”);
} else {
 console.log(“It is not October 3rd.”);

Built in Functions

3G E-LEARNING

97

}
Output
It is not October 3rd.
Since, at the time of writing, it is not October 3rd, the console reflects that. The

built-in Date methods that begin with get allow us to access date components that
return the number associated with what we are retrieving from the instantiated object.

3.3.3 Modifying the Date with set

For all the get methods that we learned about above, there is a corresponding set
method. Where get is used to retrieve a specific component from a date, set is used
to modify components of a date. Below is a detailed chart of the set methods of the
Date object.

Date/Time Method Range Example
Year setFullYear() YYYY 1970
Month setMonth() 0-11 0 = January
Day (of the month) setDate() 1-31 1 = 1st of the month
Day (of the week) setDay() 0-6 0 = Sunday
Hour setHours() 0-23 0 = midnight
Minute setMinutes() 0-59
Second setSeconds() 0-59
Millisecond setMilliseconds() 0-999
Timestamp setTime() Milliseconds

 since Epoch
time

We can use these set methods to modify one, more, or all of the components of
a date. For example, we can change the year of our birthday variable from above to
be 1997 instead of 1980.

harryPotter.js

// Change year of birthday date
birthday.setFullYear(1997);

birthday;
Output
Thu Jul 31 1997 00:00:00 GMT+0000 (UTC)

3G E-LEARNING

98 Basic Computer Coding: Java Script

We see in the example above that when we call the birthday variable we receive
the new year as part of the output. The built-in methods beginning with set let us
modify different parts of a Date object.

3.3.4 Date Methods with UTC

The get methods discussed above retrieve the date components based on the user’s
local time zone settings. For increased control over the dates and times, you can use
the getUTC methods, which are exactly the same as the get methods, except they
calculate the time based on the UTC (Coordinated Universal Time) standard. Below
is a table of the UTC methods for the JavaScript Date object.

Date/Time Method Range Example
Year getUTCFullYear() YYYY 1970
Month getUTCMonth() 0-11 0 = January
Day (of the month) getUTCDate() 1-31 1 = 1st of the month
Day (of the week) getUTCDay() 0-6 0 = Sunday
Hour getUTCHours() 0-23 0 = midnight
Minute getUTCMinutes() 0-59
Second getUTCSeconds() 0-59
Millisecond getUTCMilliseconds() 0-999

To test the difference between local and UTC get methods, we can run the following
code.

UTC.js

// Assign current time to a variable
const now = new Date();

// Print local and UTC timezones
console.log(now.getHours());
console.log(now.getUTCHours());
Running this code will print out the current hour, and the hour of the UTC time

zone. If you are currently in the UTC time zone the numbers that are output from
running the program above will be the same. UTC is useful in that it provides an
international time standard reference and can therefore keep your code consistent
across time zones if that is applicable to what you are developing.

Built in Functions

3G E-LEARNING

99

CASE STUDY

JAVASCRIPT DESIGN PATTERNS

Background

Documenting the path, struggle and findings as I am doing Udacity’s JavaScript Design
Patterns course. The starting project was to build a Cat clicker where every time you
click on a cat, the number next to it is incremented. I hate cats, so I did Butterfly
clicker (couldn’t find cute elephants pics). First it was just one cat, then requirements
changed and it was 2 cats and we were asked not to hard-code data.

At this point, my code looked like this:
<div id=”main”>
 <h1>Butterfly Clicker</h1>
 <div id=”insertButterflies”>
 </div>
</div>
#main { max-width: 80%; margin: 0 auto; }
#insertButterflies label { display: block; margin: 10px 0; font-weight: bold; }
$(document).ready(function () {
 buttterFlyClicker.init();
});

var buttterFlyClicker = {
 catObjects: [{ “name”: “Orange”, “imageUrl”: “images/Orange.jpg”, “clickCount”:

7 }, { “name”: “Browny”, “imageUrl”: “images/Browny.jpg”, “clickCount”: 23 }],
 init: function(){
 for (var i = 0; i < buttterFlyClicker.catObjects.length; i++) {
 var butterfly = buttterFlyClicker.catObjects[i];
 $(“#insertButterflies”).append(‘<div><h2>’ + butterfly.name + ‘</h2><img src=”’

+ butterfly.imageUrl + ‘” onclick=\”buttterFlyClicker.updateCount(this);\” /><label>’ +
butterfly.clickCount + ‘</label></div>’);

 }
 },
 updateCount: function (id) {

3G E-LEARNING

100 Basic Computer Coding: Java Script

 var lbl = $(id).next();
 var num = parseInt($(lbl).html());
 num++;
 $(lbl).html(num);
 }
};
Here the instructor pointed out a bug that we can come across with respect to

closures.
Let’s say you have an array of elements and you are looping through them and

want to alert the number when that number element is clicked
var nums = [1,2,3];

for (var i = 0; i < nums.length; i++) {
 var num = nums[i];
 var elem = document.createElement(‘div’);
 elem.textContent = num;

 elem.addEventListener(‘click’, function() {
 alert(num);
 });
 document.body.appendChild(elem);
};
We might expect to see 1, 2 and 3 alerted but we get the last number 3 all the

time we click.
This is because the value of num keeps changing in the for loop but the event

handler function is executed when the element is clicked by which num would have
been set to last element 3.

The fix involves use of closures. We can create an inner scope to hold the value
of num at the exact time the event handler is added.

elem.addEventListener(‘click’, (function(numCopy) {
 return function() {
 alert(numCopy)
 };
})(num));

Built in Functions

3G E-LEARNING

101

The outer function is immediately invoked by passing num into numCopy, so
even if num changes numCopy won’t be affected.

Next step the requirements changed again, this time to have a list of cats and
clicking on any to update the display area with the selected cat. At this point my
code was working but not scalable/readable, involved inline event listeners and not
meeting industry standards. I needed to learn better organizational techniques so my
applications are stable, bug-free, cleanly written and they scale well and are extensible.

Spaghetti code is easily avoidable once we know how to avoid it. The problem
is things get really messy when you connect things together. And an application is
ultimately all about connecting pieces of code to each other. But if we connect all the
pieces to all the other pieces, suddenly you can’t move anything around anymore.

Separation of Concerns:

We can separate our code into fundamentally different pieces. No matter how the
size of the application, programmers like to organize everything into buckets: Model,
View and Controller

Model: All the data is stored here which includes data from the server and from
the user.

View: This is all the stuff user see and interacts with includes DOM elements,
input elements, buttons and images. This is user’s interface to the application both
for giving and ready data.

Controller: Connects Model and View. Controller provides the separation of
concerns that is needed when we’re building applications. This holds things together
but also keeps them separate enough to allow changes in individual pieces without
disturbing the rest i.e., view can be changed without disturbing the model or we can
change the way we store data in the model without disturbing the view.

At this point we started with this pizza repository code to learn separation on
concerns.

Using this I attempted to redo my butterfly clicker code and will be noting each
point.

<meta charset=”utf-8”>
The editors generally plug this in and we kind of know what it is but can’t really

tell the proper definition. This meta tag specifies what character set is your website
written with.

Definition of UTF-8: UTF-8 (U from Universal Character Set + Transformation
Format—8-bit) is a character encoding capable of encoding all possible characters (called
code points) in Unicode. The encoding is variable-length and uses 8-bit code units.

<meta name=”viewport” content=”width=device-width, initial-scale=1”>

3G E-LEARNING

102 Basic Computer Coding: Java Script

This is used to make your site responsive i.e., the browser will (probably) render
the width of the page at the width of its own screen. So if that screen is 320px wide,
the browser window will be 320px wide, rather than way zoomed out and showing
960px (or whatever that device does by default, in lieu of a responsive meta tag).

JavaScript Templating

JavaScript Templating is useful when you have dynamic content but don’t have server-
side templating available. It also arguably minimize the amount of data returned to
the client (ex. data as an object or JSON instead of the entire markup) making sites
faster and servers more responsive by lowering bandwidth and load.

Built in Functions

3G E-LEARNING

103

SUMMARY
 ■ A function is a block of code that performs an action or returns a value.

Functions are custom code defined by programmers that are reusable, and
can therefore make your programs more modular and efficient. JavaScript has
several “top-level” built-in functions. JavaScript also has four built-in objects:
Array, Date, Math, and String.

 ■ A function (also known as a method) is a self-contained piece of code that
performs a particular “function”, then returns a value. You can recognize a
function by its format — it is a piece of descriptive text, followed by open
and close brackets.

 ■ JavaScript is a functional language meaning that functions are the primary
modular units of execution. Functions are obviously very important in JavaScript.

 ■ JavaScript, first introduced by Netscape, changed the static fate of the HTML
web pages. Before JavaScript came into existence, HTML pages were just
used to render static content. Inserting JavaScript to a web page, can give it
a significant degree of interactivity and functionality.

 ■ JavaScript is an object oriented programming language. It supports the concept
of objects in the form of attributes. If an object attribute consists of function,
then it is a method of that object, or if an object attribute consists of values,
then it is a property of that object.

 ■ JavaScript arrays are a special kind of object, and are created dynamically.
An array object contains a number of variables. The number of variables may
be zero, in which case the array is said to be empty. The variables contained
in an array have no names; instead they are referenced by array access
expressions that use nonnegative integer index values. These variables are
called the components of the array.

 ■ The Date object provides a system-independent abstraction of dates and times.
Dates may be constructed from a year, month, day of the month, hour, minute,
and second, and those six components, as well as the day of the week, may
be extracted from a date. Dates may also be compared and converted to a
readable string form. A Date is represented to a precision of one millisecond.

 ■ JavaScript gives you access a number of built-in functions, including the
prompt() function, which lets you ask the user for written input. As with
the confirm() function, you provide a text prompt to ask the user to provide
a value. On return, you set the output of the function equal to the prompt()
function and use the data in your application.

3G E-LEARNING

104 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. Functions are invoked as functions or as methods with an …………….

a. invocation statement
b. invocation expression
c. invocation function
d. invocation method

2. An ……………… consists of a function expression that evaluates to a function
object followed by an open parenthesis, a comma separated list of zero or more
argument expressions and a close parenthesis.
a. invocation statement
b. invocation expression
c. invocation function
d. invocation method

3. If a function or method invocation preceded by the keyword new, then it is a
……………
a. constructor invocation
b. new invocation
c. indirect invocation
d. direct invocation

4. In ………………. you can invoke any function as a method of any object, even
if it is not actually a method of that object.
a. constructor invocation
b. new invocation
c. indirect invocation
d. direct invocation

5. Both call() and apply() methods allow you to explicitly specify the ……………..
value for the invocation.
a. this
b. me
c. that
d. new

Built in Functions

3G E-LEARNING

105

6. Which one of the following is used for the calling a function or a method in
the JavaScript:
a. Property Access Expression
b. Functional expression
c. Invocation expression
d. Primary expression

7. Which of the following function of the String object returns the character in the
string starting at the specified position via the specified number of characters?
a. slice()
b. split()
c. substr()
d. search()

8. Which of the following number object function returns the value of the number?
a. toString()
b. valueOf()
c. toLocaleString()
d. toPrecision()

REVIEW QUESTIONS
1. What do you understand by function in JavaScript?
2. How to define function parameters.
3. What do you mean by number methods?
4. Discuss about string HTML wrappers method.
5. Define the array methods in JavaScript.
6. Explain date and time in JavaScript. Briefly.

Check Your Result

1. (b) 2. (b) 3. (a) 4. (c) 5. (a)
6. (c) 7. (c) 8. (b)

3G E-LEARNING

106 Basic Computer Coding: Java Script

REFERENCES
1. Eich, Brendan (21 June 2011). “New JavaScript Engine Module Owner”. brendaneich.

com. Retrieved 16 July 2016.
2. Flanagan, David. JavaScript - The definitive guide (6 ed.). p. 1. JavaScript is part of

the triad of technologies that all Web developers must learn: HTML to specify
the content of web pages, CSS to specify the presentation of web pages, and
JavaScript to specify the behavior of web pages.

3. http://hepunx.rl.ac.uk/~adye/jsspec11/builtin.htm
4. http://www.programming-free.com/2012/07/javascript-built-in-functions-with.html
5. https://codeburst.io/parameters-arguments-in-javascript-eb1d8bd0ef04
6. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
7. https://javascript.info/native-prototypes
8. https://medium.com/@_bengarrison/javascript-es6-exploring-the-new-built-in-

methods-b62583b0a8e6
9. https://medium.freecodecamp.org/here-are-the-new-built-in-methods-and-

functions-in-javascript-8f4d2fd794fa
10. ht tps : / /openclassrooms.com/en/courses/3523231- learn-to-code-with-

javascript/3685856-write-functions
11. https://www.digitalocean.com/community/tutorials/how-to-define-functions-in-

javascript
12. https://www.digitalocean.com/community/tutorials/understanding-date-and-time-

in-javascript
13. https://www.dofactory.com/tutorial/javascript-function-objects
14. https://www.dummies.com/web-design-development/html/how-to-use-javascripts-

built-in-functions-to-program-with-html/
15. https://www.scribd.com/document/237949356/Javascript-Bibliography
16. https://www.tutorialride.com/javascript/javascript-built-in-functions.htm
17. https://www.tutorialspoint.com/javascript/javascript_builtin_functions.htm
18. https://www.w3schools.com/jsref/jsref_obj_global.asp
19. McCracken, Harry (16 September 2010). “The Unwelcome Return of “Best Viewed

with Internet Explorer””. technologizer.com. Retrieved 16 July 2016.
20. Robert Nyman, Getters And Setters With JavaScript – Code Samples And Demos,

Robertnyman.com, published 29 May 2009, accessed 2 January 2010.
21. Severance, Charles (February 2012). “JavaScript: Designing a Language in 10

Days”. Computer. IEEE Computer Society. 45 (2): 7–8. doi:10.1109/MC.2012.57.
Retrieved 23 March 2013.

“When you decide to put your business online it is a little bet tricky step for novice computer users
because they want to keep data safe & secure. This problem developed from companies which did not
take security seriously.”

– Mohamed Saad

After studying this chapter,
you will be able to:
1. Understand forms basics
2. Identify Html form

elements
3. Discuss about styling

html forms

LEARNING
OBJECTIVES

HTML FORMS

INTRODUCTION
HTML Forms are one of the main points of interaction
between a user and a web site or application. They allow
users to send data to the web site. Most of the time that

4
CHAPTER

3G E-LEARNING

108 Basic Computer Coding: Java Script

data is sent to the web server, but the web page can also intercept it to use it on its
own. An HTML Form is made of one or more widgets. Those widgets can be text fields
(single line or multiline), select boxes, buttons, checkboxes, or radio buttons. Most of
the time those widgets are paired with a label that describes their purpose — properly
implemented labels are able to clearly instruct both sighted and blind users on what
to enter into a form input.

The main difference between a HTML form and a regular HTML document is that
most of the time, the data collected by the form is sent to a web server. In that case,
you need to set up a web server to receive and process the data.

4.1 FORMS BASICS
Web forms are used by virtually all websites for a wide range of purposes. Users
of forums and social networks use forms to add content and interact with other
users. Websites that can be customized to create a personalized experience, such as
customizable newsfeeds, use forms to allow users to control the content that appears
on the page. And nearly every website uses forms to allow website visitors to contact
the organization or person administering the website. Web forms are made possible
by the integration of multiple technologies:

 ■ HTML to create the form fields and labels and accept user input.
 ■ CSS to style the presentation of the form.
 ■ JavaScript to validate form input and provide Ajax-enabled interactions.
 ■ Server-side languages such as PHP to process form data.

HTML Forms

3G E-LEARNING

109

HTML Form is a document which stores information of a user on a web server
using interactive controls. An HTML form contains different kind of information such
as username, password, contact number, email id etc.

The elements used in an HTML form are check box, input box, radio buttons,
submit buttons etc. Using these elements the information of an user is submitted on
a web server.

The form tag is used to create an HTML form.
Example of an HTML Form:
<!DOCTYPE html>
<html>
<body>

<form>
 Username:

 <input type=”text” name=”username”>

 Email id:

 <input type=”text” name=”email_id”>

 <input type=”submit” value=”Submit”>
</form>

</body>
</html>

3G E-LEARNING

110 Basic Computer Coding: Java Script

The basic tags used in the actual HTML of forms are form,
input, textarea, select and option.

4.1.1 Form

form defines the form and within this tag, if you are using a
form for a user to submit information (which we are assuming
at this level), an actionattribute is needed to tell the form
where its contents will be sent to.

The method attribute tells the form how the data in it is
going to be sent and it can have the value get, which is default,
and latches the form information onto a web address, or post,
which (essentially) invisibly sends the form’s information.

get is used for shorter chunks of non-sensitive information
- you might see the information you have submitted in a web
site’s search to appear in the web address of its search results
page, for example, post is used for lengthier, more secure
submissions, such as in contact forms.

So a form element will look something like this:
<form action=”processingscript.php” method=”post”>
</form>

4.1.2 Input

The input tag is the daddy of the form world. It can take a
multitude of guises, the most common of which are outlined
below:

 ■ <input type=”text”> or simply <input> is a standard
textbox. This can also have a value attribute, which
sets the initial text in the textbox.

 ■ <input type=”password”> is similar to the textbox, but
the characters typed in by the user will be hidden.

Web
address,
or domain name,
is an address
where you can be
found online.

Keyword

HTML Forms

3G E-LEARNING

111

 ■ <input type=”checkbox”> is a checkbox, which can be
toggled on and off by the user. This can also have a
checked attribute (<input type=”checkbox” checked>
- the attribute doesn’t require a value), and makes
the initial state of the check box to be switched on,
as it were.

 ■ <input type=”radio”> is similar to a checkbox, but
the user can only select one radio button in a group.
This can also have a checked attribute.

 ■ <input type=”submit”> is a button that when selected
will submit the form. You can control the text that
appears on the submit button with the value attribute,
for example <input type=”submit” value=”Ooo. Look.
Text on a button. Wow”>.

4.1.3 Textarea

textarea is, basically, a large, multi-line textbox. The anticipated
number of rows and columns can be defined with rows and
cols attributes, although you can manipulate the size to your
heart’s content using CSS.

<textarea rows=”5” cols=”20”>A big load of text</textarea>
Any text you choose to place between the opening and

closing tags (in this case “a big load of text”) will form the
initial value of the text area.

4.1.4 Select

The select tag works with the option tag to make drop-down
select boxes.

<select>
 <option>Option 1</option>
 <option>Option 2</option>
 <option value=”third option”>Option 3</option>
</select>
When the form is submitted, the value of the selected

option will be sent. This value will be the text between the
selected opening and closing option tag unless an explicit value

Like img
and br
tags, the input
tag, which
doesn’t surround
any content,
doesn’t require a
closing tag.

Remember

3G E-LEARNING

112 Basic Computer Coding: Java Script

is specified with the value attribute, in which case this will
be sent instead. So, in the above example, if the first item is
selected, “Option 1” will be sent, if the third item is selected,
“third option” will be sent.

Similar to the checked attribute of checkboxes and radio
buttons, an option tag can also have a selected attribute, to
start off with one of the items already being selected, eg.
<option selected>Rodent</option> would pre-select “Rodent”
from the items.

4.1.5 Names

All of the tags mentioned above will look very nice presented
on the page but if you hook up your form to a form-handling
script, they will all be ignored. This is because the form
fields need names. So to all of the fields, the attribute
name needs to be added, for example <input type=»text»
name=»talkingsponge»>.

A contact form for Noah’s Ark, for example, might look
something like the one below. (Note: this form will not work
unless there is a “contactus.php” file, which is stated in the
action attribute of the form tag, to handle the submitted data).

<form action=”contactus.php” method=”post”>
 <p>Name:</p>
 <p><input type=”text” name=”name” value=”Your

name”></p>

 <p>Species:</p>
 <p><input name=”species”></p>
 <!-- remember: ‘type=”text”’ isn’t actually necessary -->

 <p>Comments: </p>
 <p><textarea name=”comments” rows=”5” cols=”20”>Your

comments</textarea></p>

 <p>Are you:</p>
 <p><input type=”radio” name=”areyou” value=”male”>

Male</p>

Attribute
is a
characteristic of
a page element,
such as a font.
An HTML user
can set font
attributes, such
as size and color,
to different
values.

Keyword

HTML Forms

3G E-LEARNING

113

 <p><input type=”radio” name=”areyou” value=”female”> Female</p>
 <p><input type=”radio” name=”areyou” value=”hermaphrodite”> An

hermaphrodite</p>
 <p><input type=”radio” name=”areyou” value=”asexual”> Asexual</p>

 <p><input type=”submit”></p>

</form>

4.2 HTML FORM ELEMENTS
HTML forms are an awesome and professional tool for collecting user data. However,
these forms, just like everything else in HTML, wouldn’t work without some proper
HTML form elements.

HTML forms can help you with getting to know your users and their suggestions
for you. With a list of HTML form elements, you will be able to create an excellent user
experience on your website, maintain quality and add functionality. There is nothing
better while developing a website than having satisfied users and proper results.

HTML form elements are used to capture user input. There are many different
types of form elements such as the text box, check box, drop down, submit button,
and much more.

Take a look at an example form with a few input elements below:
The form elements above are the most common used form elements. We will go

into further detail on each of these form elements:
 ■ Text Box Input
 ■ Password Input

3G E-LEARNING

114 Basic Computer Coding: Java Script

 ■ Text Area
 ■ Select Drop Down
 ■ Check Box
 ■ Radio Input
 ■ File Input
 ■ Submit Button

4.2.1 Text Box Input

The text box input is used to capture text such as a name,
email, address, or any other type of text. To create an HTML
text box we will use the input tag and specify that the type
attribute to be text.

Take a look at how to create a text box in HTML:
<input type=”text” name=”first_name”>
Notice the name attribute. This is the name that will be

sent to the server when the form is submitted, so our server
side code would get this text box value by referencing the
first_nameform element.
 Let’s take another quick example of how a text box looks
:in HTML

Notice we have text above the text box which says First
Name, this is referred to as a label and is a way of describing
what the user should input in the form element. A basic HTML
label will look like the following:

<label for=”first_name”>First Name</label>
<label> tags are very common when using HTML forms.

Notice the forattribute contains the value first_name this
matches the name of your input. So since our input has a
name of name=”first_name” our label will have an attribute
of for=”first_name”. Easy Peasy, right. Let’s move on to the
password input.

Email
address
identifies an
email box to
which messages
are delivered.

Keyword

HTML Forms

3G E-LEARNING

115

4.2.2 Password Input

The password input is essentially the same thing as the Text
Box input; however, it does not show the text as the user
types. Try it out in the example below:

And this is how you will create a password input:
<input type=”password” name=”password”>

4.2.3 Text Area

To create a Text Area where a large amount of text can be
entered by the user we can use the <textarea> tag. Take a
look at an example of how to create a Text Area in HTML:

<textarea name=”comment”></textarea>
And a Text Area would look like the following:

4.2.4 Select Drop Down

A Drop Down is a specific list of options that a user can
choose when selecting a Drop Down menu. To create a
Select Dropdown in HTML you would represent this inside
of <select></select> tags, then each option that you want to
allow your user, you will specify with an <option></option>
tag inside the select tags. Take a look at the following example:

<select name=”weapon”>
 <option value=”throwing_stars”>Throwing Stars</

option>
 <option value=”sword”>Sword</option>

The
characters
in a password
field are masked
(shown as
asterisks or
circles).

Remember

3G E-LEARNING

116 Basic Computer Coding: Java Script

 <option value=”staff”>Staff</option>
</select>
And this will give you the following result:

4.2.5 Check Box

Checkboxes should be used in cases where one or many
options may be selected. A checkboxes may also be used in
cases where the user may wish to ‘opt in’ or enable an action
or setting. Checkboxes may be used in relation to other form
elements as well.

If there is a parent-child relationship of associated checkboxes
there should be some visual distinction for the user between
“some” checked and “all” checked, in the event that the child
elements are hidden from view as in an expandable section.Checkboxes let

a user select
ZERO or MORE
options of a
limited number
of choices.

Remember

HTML Forms

3G E-LEARNING

117

4.2.6 Radio Input

Radio buttons should be used in cases of ‘yes’ or ‘no’. The pair of radio buttons may
be arranged either vertically or horizontally. Radio buttons may often have a default
or preferred selection. This preferred selection should be the first button of the pair
whenever possible. In some instances when only a single selection may be made but
there are several options to choose from, all of the radio button in the set may appear
un-selected or ‘empty’. Once a user has made a selection however the selected state
should be evident and be visible henceforth, even if the user changes the selection - it
cannot be returned to the initial ‘un-selected’ state.

4.2.7 File Input

A File input is used to allow users to upload images or files. To create a File input
element we will use the input element and give it a type of file like the following:

<input type=”file” name=”image”>
This will give us the following results:

When clicking on the Choose File button above the user will then be prompted
with a window to specify which file they would like to upload.

3G E-LEARNING

118 Basic Computer Coding: Java Script

4.2.8 Submit Button

Lastly we are going to need a way to submit our form with
all the data. This is what the submit button is used for. In
order to use the submit button we will use another input
element with a type of submit:

<input type=”submit” value=”Submit The Form”>
And our Submit button will look like the following:

That’s a lot of form element. But don’t get overwhelmed
they are all really easy to use and integrate. Allowing user
input with forms is very common and it allows for our web
site to provide more functionality for our user.

4.3 STYLING HTML FORMS
To style elements that are easy to style with CSS, you should
not face any difficulties, since they mostly behave like any
other HTML element. However, the user-agent style sheet of
every browser can be a little inconsistent, so there are a few
tricks that can help you style them in an easier way.

4.3.1 Search Fields

Search boxes are the only kind of text fields that can be a little
tricky to style. On WebKit based browsers (Chrome, Safari,
etc.), you’ll have to tweak it with the -webkit-appearance
proprietary property.

User
Agent
Style sheets
simply refer to
the default styles
that browsers
apply to web
pages. It is
of the lowest
importance
considering
User Styles and
Author styles
will overwrite
these. Each
browser is a
little different in
how it displays
“unstyled” html.

Keyword

HTML Forms

3G E-LEARNING

119

Example

<form>
 <input type=”search”>
</form>
input[type=search] {
 border: 1px dotted #999;
 border-radius: 0;
 -webkit-appearance: none;
}

As you can see on this screenshot of the search field on
Chrome, the two fields have a border set as in our example. The
first field is rendered without using the -webkit-appearance
property, whereas the second is rendered using -webkit-
appearance:none. This difference is noticeable.

4.3.2 Fonts and Text

CSS font and text features can be used easily with any widget
(and yes, you can use @font-face with form widgets). However,
browsers’ behaviors are often inconsistent. By default, some
widgets do not inherit font-family and font-sizefrom their parents.
Many browsers use the system default appearance instead. To
make your forms’ appearance consistent with the rest of your
content, you can add the following rules to your stylesheet:

button, input, select, textarea {
 font-family : inherit;
 font-size : 100%;
}
The screenshot below shows the difference; on the left is

the default rendering of the element in Firefox on Mac OS
X, with the platform’s default font style in use. On the right
are the same elements, with our font harmonization style
rules applied.

Forms are
usually combined
with programs
written in various
programming
language to
allow developers
to create dynamic
web sites. The
most popular
languages
include both
client-side and/
or server-side
languages.

Did You
Know?

3G E-LEARNING

120 Basic Computer Coding: Java Script

There’s a lot of debate as to whether forms look better using the system default
styles, or customized styles designed to match your content. This decision is yours to
make, as the designer of your site, or Web application.

4.3.3 Box Model

All text fields have complete support for every property related to the CSS box model (width,
height, padding, margin, and border). As before, however, browsers rely on the system
default styles when displaying these widgets. It is up to you to define how you wish to
blend them into your content. If you want to keep the native look and feel of the widgets,
you’ll face a little difficulty if you want to give them a consistent size. This is because each
widget has their own rules for border, padding and margin. So if you want to give the same
size to several different widgets, you have to use the box-sizing property:

input, textarea, select, button {
 width : 150px;
 margin: 0;
 -webkit-box-sizing: border-box; /* For legacy WebKit based browsers */
 -moz-box-sizing: border-box; /* For legacy (Firefox <29) Gecko based browsers */
 box-sizing: border-box;
}

HTML Forms

3G E-LEARNING

121

In the screenshot above, the left column is built without
box-sizing, while the right column uses this property with the
value border-box. Notice how this lets us ensure that all of
the elements occupy the same amount of space, despite the
platform’s default rules for each kind of widget.

4.3.4 Positioning

Positioning of HTML form widgets is generally not a problem;
however, there are two elements you should take special note
of:

legend

The <legend> element is okay to style, except for positioning. In
every browser, the <legend> element is positioned on top of the
top border of its <fieldset>parent. There is absolutely no way to
change it to be positioned within the HTML flow, away from the top
border. You can, however, position it absolutely or relatively, using
the position property. But otherwise it is part of the fieldset border.
Because the <legend> element is very important for accessibility
reasons, it will be spoken by assistive technologies as part of the
label of each form element inside the fieldset, it’s quite often paired
with a title, and then hidden in an accessible way.

textarea

HTML
<fieldset>
 <legend>Hi!</legend>
 <h1>Hello</h1>
</fieldset>
CSS
legend {
 width: 1px;
 height: 1px;
 overflow: hidden;
}

3G E-LEARNING

122 Basic Computer Coding: Java Script

By default, all browsers consider the <textarea> element to be an inline block,
aligned to the text bottom line. This is rarely what we actually want to see. To change
from inline-block to block, it›s pretty easy to use the display property. But if you want
to use it inline, it›s common to change the vertical alignment:

textarea {
 vertical-align: top;
}

Example

Let’s look at a concrete example of how to style an HTML form. This will help make
a lot of these ideas clearer. We will build the following “postcard” contact form:

If you want to follow along with this example, make a local copy of our postcard-
start.html file, and follow the below instructions.

The HTML

The HTML is only slightly more involved than the example we used earlier; it just
has a few extra IDs and a title.

<form>
 <h1>to: Mozilla</h1>

 <div id=”from”>
 <label for=”name”>from:</label>
 <input type=”text” id=”name” name=”user_name”>
 </div>

HTML Forms

3G E-LEARNING

123

 <div id=”reply”>
 <label for=”mail”>reply:</label>
 <input type=”email” id=”mail” name=”user_email”>
 </div>

 <div id=”message”>
 <label for=”msg”>Your message:</label>
 <textarea id=”msg” name=”user_message”></textarea>
 </div>

 <div class=”button”>
 <button type=”submit”>Send your message</button>
 </div>
</form>
Add the above code into the body of your HTML.

Organizing Your Assets

Before we start coding, we need three additional assets:
 ■ The postcard background
 ■ A typewriter font
 ■ A handdrawn font

Your fonts need some more processing before you start:
 ■ Go to the fontsquirrel Webfont Generator.
 ■ Using the form, upload both your font files and

generate a webfont kit. Download the kit to your
computer.

 ■ Unzip the provided zip file.
 ■ Inside the unzipped contents you will find two .woff

files and two .woff2files. Copy these four files into
a directory called fonts, in the same directory as
before. We are using two different files for each font
to maximise browser compatibility.

Coding
refers
to creating
computer
programming
code.

Keyword

3G E-LEARNING

124 Basic Computer Coding: Java Script

The CSS

Now we can dig into the CSS for the example. Add all the code blocks shown below
inside the <style> element, one after another.

First, we prepare the ground by defining our @font-face rules, all the basics on
the <body> element, and the <form> element:

@font-face {
 font-family: ‘handwriting’;
 src: url(‘fonts/journal-webfont.woff2’) format(‘woff2’),
 url(‘fonts/journal-webfont.woff’) format(‘woff’);
 font-weight: normal;
 font-style: normal;
}

@font-face {
 font-family: ‘typewriter’;
 src: url(‘fonts/veteran_typewriter-webfont.woff2’) format(‘woff2’),
 url(‘fonts/veteran_typewriter-webfont.woff’) format(‘woff’);
 font-weight: normal;
 font-style: normal;
}
body {
 font : 21px sans-serif;

 padding : 2em;
 margin : 0;

 background : #222;
}

form {
 position: relative;

 width : 740px;

HTML Forms

3G E-LEARNING

125

 height : 498px;
 margin : 0 auto;

 background: #FFF url(background.jpg);
}
Now we can position our elements, including the title and all the form elements:
h1 {
 position : absolute;
 left : 415px;
 top : 185px;

 font : 1em “typewriter”, sans-serif;
}

#from {
 position: absolute;
 left : 398px;
 top : 235px;
}

#reply {
 position: absolute;
 left : 390px;
 top : 285px;
}

#message {
 position: absolute;
 left : 20px;
 top : 70px;
}
That’s where we start working on the form elements themselves. First, let’s ensure

that the <label>s are given the right font:

3G E-LEARNING

126 Basic Computer Coding: Java Script

label {
 font : .8em “typewriter”, sans-serif;
}
The text fields require some common rules. Simply put,

we remove their borders and backgrounds, and redefine their
padding and margin:

input, textarea {
 font : .9em/1.5em “handwriting”, sans-serif;

 border : none;
 padding : 0 10px;
 margin : 0;
 width : 240px;

 background: none;
}
When one of these fields gains focus, we highlight them

with a light grey, transparent, background. Note that it’s
important to add the outline property, in order to remove
the default focus highlight added by some browsers:

input:focus, textarea:focus {
 background : rgba(0,0,0,.1);
 border-radius: 5px;
 outline : none;
}
Now that our text fields are complete, we need to adjust

the display of the single and multiple line text fields to match,
since they won’t typically look the same using the defaults.

The single-line text field needs some tweaks to render
nicely in Internet Explorer. Internet Explorer does not define
the height of the fields based on the natural height of the font
(which is the behavior of all other browsers). To fix this, we
need to add an explicit height to the field, as follows:

input {
 height: 2.5em; /* for IE */

Depending on
browser support,
the url field can
be automatically
validated when
submitted.

Remember

HTML Forms

3G E-LEARNING

127

 vertical-align: middle; /* This is optional but it makes legacy IEs look better */
}
<textarea> elements default to being rendered as a block element. The two important

things here are the resize and overflow properties. Because our design is a fixed-size
design, we will use the resize property to prevent users from resizing our multi-line
text field. The overflow property is used to make the field render more consistently
across browsers. Some browsers default to the value auto, while some default to the
value scroll. In our case, it’s better to be sure every one will use auto:

textarea {
 display : block;

 padding : 10px;
 margin : 10px 0 0 -10px;
 width : 340px;
 height : 360px;

 resize : none;
 overflow: auto;
}
The <button> element is really convenient with CSS; you can do whatever you

want, even using pseudo-elements:
button {
 position : absolute;
 left : 440px;
 top : 360px;

 padding : 5px;

 font : bold .6em sans-serif;
 border : 2px solid #333;
 border-radius: 5px;
 background : none;

 cursor : pointer;

3G E-LEARNING

128 Basic Computer Coding: Java Script

-webkit-transform: rotate(-1.5deg);
 -moz-transform: rotate(-1.5deg);
 -ms-transform: rotate(-1.5deg);
 -o-transform: rotate(-1.5deg);
 transform: rotate(-1.5deg);
}

button:after {
 content: “ >>>”;
}

button:hover,
button:focus {
 outline : none;
 background: #000;
 color : #FFF;
}

HTML Forms

3G E-LEARNING

129

CASE STUDY

CREATING A FORM
The first step to form validation is of course creating the actual form: For this case
study we will be using a DVD Hire business as an example.

Design Notes

1. Create the following files
 ■ vmv_js-index.html = main html file
 ■ vmv_js-style.css = cascading style sheet file
 ■ vmv_js-index.js = File containing JavaScripts
 ■ vmv_js-NewReleases.html = html page describing New Releases

2. Add the following to the head section of the main html file (To link the css
and js files)

 <link rel=”stylesheet” type=”text/css” href=”vmv_js-style.css”>
 <script type=”text/javascript” src=”vmv_js-index.js”> </script>
3. “Welcome to ..” is h1
4. “Customer details”, “Totals”, etc.. are h4
5. Use the following styles to vmv_js-index.css. Floating BOTH left will make

sure that the two columns flow correctly.
.col1 {
 background: #93A5C4; float:left;

3G E-LEARNING

130 Basic Computer Coding: Java Script

 padding: 10px 5px 10px 5px;
 border: 1px solid #666;}
.col2 {
 background: #93A5C4; float:left;
 padding: 10px 5px 10px 5px;
 border: 1px solid #666; }
6. Use a style to space out the field names (e.g. “Name (Last, First)”)
.lbl120 { padding-left: 10px; width: 120px; float:left;}
7. Put txt in front of the field names and use CamelCase, for example
<input name=”txtFullName” type=”text” style=”width: 186px”>
8. Put btn in front of the button names and use Camel Case, for example:
<input name=”btnChkForm” type=”button” value=”Check Data”

onclick=”fnCheckData()”>
9. For the buttons onclick call the following functions
Check Data = fnCheckData()
Display Rental List = fnDisplayForm()

 - New Release = fnNewReleases()
10. Today’s Date will be called using a function fnDisplayTodaysDate();
11. The Add Item button will be called using a function called fnAddItem();
12. Use the following code for the Rental List table
<h4>Rental list</h4>
<table id=”myTable” border=”1” style=” border-collapse: collapse;”>
 <tr><th>Type</th><th>Title</th><th>Rental Price</th></tr>
</table>

Notes

The JavaScript is used to Validate the Form data which is done before sending to the
server so cuts down on Server traffic. To actually work with the data we would sent
the Form data to an Internet Server which would process that data using a Server Side
Language (such as PHP or ASP.NET) and this would put the data into a DataBase
(e.g. MySQL, MS-SQL, Oracle).

HTML Forms

3G E-LEARNING

131

SUMMARY
 ■ HTML Forms are one of the main points of interaction between a user

and a web site or application. They allow users to send data to the
web site. Most of the time that data is sent to the web server, but the
web page can also intercept it to use it on its own.

 ■ An HTML Form is made of one or more widgets. Those widgets can be
text fields (single line or multiline), select boxes, buttons, checkboxes,
or radio buttons. Most of the time those widgets are paired with a
label that describes their purpose — properly implemented labels are
able to clearly instruct both sighted and blind users on what to enter
into a form input.

 ■ Web forms are used by virtually all websites for a wide range of
purposes. Users of forums and social networks use forms to add content
and interact with other users.

 ■ HTML Form is a document which stores information of a user on a
web server using interactive controls. An HTML form contains different
kind of information such as username, password, contact number, email
id etc.

 ■ textarea is, basically, a large, multi-line textbox. The anticipated number
of rows and columns can be defined with rows and cols attributes,
although you can manipulate the size to your heart’s content using CSS.

 ■ HTML forms are an awesome and professional tool for collecting user
data. However, these forms, just like everything else in HTML, wouldn’t
work without some proper HTML form elements.

 ■ HTML form elements are used to capture user input. There are many
different types of form elements such as the text box, check box, drop
down, submit button, and much more.

 ■ The text box input is used to capture text such as a name, email, address,
or any other type of text. To create an HTML text box we will use the
input tag and specify that the type attribute to be text.

3G E-LEARNING

132 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. In HTML form <input type=”text”> is used for

a. One line text
b. Block of text
c. One paragraph
d. None

2. The attribute of <form> tag
a. Method
b. Action
c. Both (a)&(b)
d. None of these

3. Correct HTML tag for the largest heading is
a. <head>
b. <h6>
c. <heading>
d. <h1>

4. For defining a submit button which tag is used?
a. <button>
b. <submit button>
c. <submit>
d. <action submit>

5. When form data contains sensitive or personal information than which method
is more preferable?
a. Get method
b. Post method
c. Host method
d. Put method

6. Action attribute in HTML forms specifies that
a. Which HTTP method is used
b. Which action is going on
c. Where to submit form
d. The auto completion of form

HTML Forms

3G E-LEARNING

133

7. Choose the correct option.
a. HTML form elements are used for taking user input.
b. HTML form elements are defined inside <for> tag.
c. HTML form elements can be of different types.
d. All of these.

8. Which one of the following is a form element?
a. text box.
b. radio button.
c. submit button.
d. All of these.

9. Choose the incorrect option.
a. radio button allows to choose only one option from the given options.
b. default option can be chosen using attribute “selected” in radio button
c. default option can be chosen using attribute “checked” in radio button
d. checkbox allows to choose one or more than one options from the given

options.
10. How more than one option can be selected in drop down?

a. Use of multiple attribute inside <option> tag.
b. Use of multiple attribute inside <select> tag.
c. use of multiple attribute inside <text> tag.
d. It is not possible to select more than one option in drop down.

3G E-LEARNING

134 Basic Computer Coding: Java Script

REVIEW QUESTIONS
1. Write down the main purpose of HTML forms.
2. Write the difference between radio buttons and checkboxes.
3. Is the size of the text a user can enter in a text field limited by the value of

the SIZE attribute in the <INPUT> tag?
4. What attribute must be included in a <TEXTAREA> tag to ensure a horizontal

scroll bar is included in a multiline text field?
5. How do you set the initial state of a check box?

Check Your Result

1. (a) 2. (c) 3. (d) 4. (c) 5. (b)
6. (c) 7. (d) 8. (d) 9. (b) 10. (b)

HTML Forms

3G E-LEARNING

135

REFERENCES
1. “Forms – HTML5”. w3.org. W3C. Retrieved 2014-02-20.
2. “HTML/Elements/label”. w3.org wiki.
3. “input type=color – color-well control”. w3.org. W3C. Retrieved 2014-10-31.
4. “Radio Buttons”. Windows Dev Center. Retrieved 14 September 2016.
5. Garofalo, Josh. “Intro to Online Forms and Form Builders”. Blitzen Blog.
6. http://jkorpela.fi/forms/present.html
7. http://www.htmldog.com/guides/html/beginner/forms/
8. http://www-db.deis.unibo.it/courses/TW/DOCS/w3schools/html/html_form_input_

types.asp.html
9. https://devdocs.magento.com/guides/v2.2/pattern-library/getting-user-input/form_

elements/form_elements.html
10. https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms
11. https://html.com/forms/
12. https://marksheet.io/html-forms.html
13. Jarrett and Gaffney. Forms That Work: Designing Web Forms For Usability,

Morgan Kaufmann, 2008.
14. Jumašev, Alex. “The history of a radio-button”. JitBit Founders Blog. Retrieved

14 September 2016.
15. Satrom, Brandon (November 2011). “Better Web Forms with HTML5 Forms”.

MSDN Magazine. Microsoft. Retrieved 2014-02-20.
16. Wroblewski, Luke and, Spool, Jared. Web Form Design: Filling in the Blanks,

Rosenfeld Media, 2008.

“JavaScript’s global scope is like a public toilet. You can’t avoid going in there, but try to limit your
contact with surfaces when you do.”

– Dmitry Baranovskiy

After studying this chapter,
you will be able to:
1. Discuss the HTML DOM

methods and HTML
DOM document

2. Learn HTML DOM
elements and changing
HTML

3. How to changing
CSS and HTML DOM
animation

4. Explain the HTML DOM
events and HTML DOM
eventlistener

5. Describe the HTML
DOM navigation and
HTML DOM elements
(nodes)

LEARNING
OBJECTIVES

HTML DOM

INTRODUCTION
The Document Object Model (DOM) is a cross-
platform and language-independent interface that treats
an XML or HTML document as a tree structure wherein

5
CHAPTER

3G E-LEARNING

138 Basic Computer Coding: Java Script

each node is an object representing a part of the document.
The DOM represents a document with a logical tree. Each
branch of the tree ends in a node, and each node contains
objects. DOM methods allow programmatic access to the tree;
with them one can change the structure, style or content of a
document. Nodes can have event handlers attached to them.
Once an event is triggered, the event handlers get executed.

The principal standardization of the DOM was handled by
the World Wide Web Consortium (W3C), which last developed a
recommendation in 2004. WHATWG took over the development
of the standard, publishing it as a living document. The W3C
now publishes stable snapshots of the WHATWG standard.

5.1 HTML DOM METHODS
HTML DOM methods are actions you can perform (on HTML
Elements).

HTML DOM properties are values (of HTML Elements)
that you can set or change.

5.1.1 The DOM Programming Interface

The HTML DOM can be accessed with JavaScript (and with
other programming languages).
.In the DOM, all HTML elements are defined as objects

The programming interface is the properties and methods
of each object.

The innerHTML
property can
be used to get
or change any
HTML element,
including <html>
and <body>.

Remember

HTML DOM

3G E-LEARNING

139

A property is a value that you can get or set (like changing
the content of an HTML element).

A method is an action you can do (like add or deleting
an HTML element).

Example

The following example changes the content (the innerHTML)
of the <p> element with id=”demo”:

Example
<html>
<body>
<p id=”demo”></p>
<script>
document.getElementById(“demo”).innerHTML = «Hello

World!»;
</script>
</body>
</html>
In the example above, getElementById is a method, while

innerHTML is a property.

5.1.2 The getElementById Method

The most common way to access an HTML element is to use
the id of the element.

In the example above the getElementById method used
id=”demo” to find the element.

5.1.3 The innerHTML Property

The easiest way to get the content of an element is by using
the innerHTML property.
 The innerHTML property is useful for getting or replacing
.the content of HTML elements

HTML
element
is an individual
component of an
HTML document
or web page,
once this has
been parsed into
the Document
Object Model.

Keyword

3G E-LEARNING

140 Basic Computer Coding: Java Script

5.2 HTML DOM DOCUMENT
HTML DOM document object is the owner of all other objects in your web page.

5.2.1 The HTML DOM Document Object

The document object represents your web page.
If you want to access any element in an HTML page, you always start with

accessing the document object.
Below are some examples of how you can use the document object to access and

manipulate HTML.

5.2.2 Finding HTML Elements

Method Description

document.getElementById(id) Find an element by element id

document.getElementsByTagName(name) Find elements by tag name

document.getElementsByClassName(name) Find elements by class name

5.2.3 Changing HTML Elements

Method Description
 element.innerHTML = new html
content

Change the inner HTML of an element

element.attribute = new value Change the attribute value of an HTML
element

 element.setAttribute(attribute,
value)

 Change the attribute value of an HTML
element

element.style.property = new style Change the style of an HTML element

5.2.4 Adding and Deleting Elements

Method Description
document.createElement(element) Create an HTML element
document.removeChild(element) Remove an HTML element

HTML DOM

3G E-LEARNING

141

document.appendChild(element) Add an HTML element

document.replaceChild(element) Replace an HTML element
document.write(text) Write into the HTML output stream

5.2.5 Adding Events Handlers

Method Description

document.
 getElementById(id).onclick =
function(){code}

Adding event handler code to an onclick event

5.2.6 Finding HTML Objects

The first HTML DOM Level 1 (1998), defined 11 HTML objects, object collections, and
properties. These are still valid in HTML5.

Later, in HTML DOM Level 3, more objects, collections, and properties were added.

Property Description DOM
document.anchors Returns all <a> elements that have a name

attribute
1

document.applets Returns all <applet> elements (Deprecated
in HTML5)

1

document.baseURI Returns the absolute base URI of the
document

3

document.body Returns the <body> element 1
document.cookie Returns the document’s cookie 1
document.doctype Returns the document’s doctype 3
document.
documentElement

Returns the <html> element 3

document.
documentMode

Returns the mode used by the browser 3

document.
documentURI

Returns the URI of the document 3

document.domain Returns the domain name of the
document server

1

document.domConfig Obsolete. Returns the DOM configuration 3
document.embeds Returns all <embed> elements 3
document.forms Returns all <form> elements 1

3G E-LEARNING

142 Basic Computer Coding: Java Script

document.head Returns the <head> element 3
document.images Returns all elements 1

document.
implementation

Returns the DOM implementation 3

document.
inputEncoding

 Returns the document’s encoding
(character set)

3

document.
lastModified

 Returns the date and time the document
was updated

3

document.links Returns all <area> and <a> elements that
have a href attribute

1

document.readyState Returns the (loading) status of the
document

3

document.referrer Returns the URI of the referrer (the
linking document)

1

document.scripts Returns all <script> elements 3
document.
strictErrorChecking

Returns if error checking is enforced 3

document.title Returns the <title> element 1
document.URL Returns the complete URL of the

document
1

<html>
<body>

<script type=”text/javascript”>
document.write(“Hello World!”);
</script>

</body>
</html>

5.3 HTML DOM ELEMENTS
This page you how to find and access HTML elements in an
HTML page.

5.3.1 Finding HTML Elements

Often, with JavaScript, you want to manipulate HTML elements.
 To do so, you have to find the elements first. There are

HTML DOM

3G E-LEARNING

143

:a couple of ways to do this
 ■ Finding HTML elements by id
 ■ Finding HTML elements by tag name
 ■ Finding HTML elements by class name
 ■ Finding HTML elements by CSS selectors
 ■ Finding HTML elements by HTML object collections

5.3.2 Finding HTML Element by Id

The easiest way to find an HTML element in the DOM, is by using the element id.
This example finds the element with id=”intro”:

Example

var myElement = document.getElementById(“intro”);
If the element is found, the method will return the element as an object (in

myElement).
If the element is not found, myElement will contain null.

5.3.3 Finding HTML Elements by Tag Name

This example finds all <p> elements:

Example

var x = document.getElementsByTagName(“p”);
This example finds the element with id=”main”, and then finds all <p> elements

inside “main”:

Example

var x = document.getElementById(“main”);
var y = x.getElementsByTagName(“p”);

5.3.4 Finding HTML Elements by Class Name

If you want to find all HTML elements with the same class name, use
getElementsByClassName().

3G E-LEARNING

144 Basic Computer Coding: Java Script

This example returns a list of all elements with class=”intro”.

Example

var x = document.getElementsByClassName(“intro”);
Finding elements by class name does not work in Internet

Explorer 8 and earlier versions.

5.3.5 Finding HTML Elements by CSS Selectors

If you want to find all HTML elements that matches a specified
CSS selector (id, class names, types, attributes, values of
attributes, etc), use the querySelectorAll() method.
 This example returns a list of all <p> elements with
.“class=”intro

Example

var x = document.querySelectorAll(“p.intro”);
The querySelectorAll() method does not work in Internet

Explorer 8 and earlier versions.

5.3.6 Finding HTML Elements by HTML Object
Collections

This example finds the form element with id=”frm1”, in the
forms collection, and displays all element values:

Example

var x = document.forms[“frm1”];
var text = “”;
var i;
for (i = 0; i < x.length; i++) {

;“<text += x.elements[i].value + “<br
}
document.getElementById(“demo”).innerHTML = text;

Internet
Explorer
is a series
of graphical
web browsers
developed by
Microsoft and
included in
the Microsoft
Windows line
of operating
systems, starting
in 1995.

Keyword

HTML DOM

3G E-LEARNING

145

5.4 CHANGING HTML
The HTML DOM allows JavaScript to change the content of HTML elements.

5.4.1 Changing the HTML Output Stream

In JavaScript, document.write() can be used to write directly to the HTML output stream:

Example

<!DOCTYPE html>
<html>
<body>
<script>
document.write(Date());
</script>

</body>
</html>

5.4.2 Changing HTML Content

The easiest way to modify the content of an HTML element is by using the innerHTML
property.

To change the content of an HTML element, use this syntax:
document.getElementById(id).innerHTML = new HTML
This example changes the content of a <p> element:

Example

<html>
<body>
<p id=”p1”>Hello World!</p>
<script>
document.getElementById(“p1”).innerHTML = “New text!”;
</script>

3G E-LEARNING

146 Basic Computer Coding: Java Script

</body>
</html>
Example explained:

 ■ The HTML document above contains a <p> element
with id=”p1”

 ■ We use the HTML DOM to get the element with
id=”p1”

 ■ A JavaScript changes the content (innerHTML) of
that element to “New text!”

This example changes the content of an <h1> element:

Example

<!DOCTYPE html>
<html>
<body>

<h1 id=”id01”>Old Heading</h1>

<script>
var element = document.getElementById(“id01”);
element.innerHTML = “New Heading”;
</script>

</body>
</html>
Example explained:

 ■ The HTML document above contains an <h1> element
with id=”id01”

 ■ We use the HTML DOM to get the element with
id=”id01”

 ■ A JavaScript changes the content (innerHTML) of
that element to “New Heading”

JavaScript often
abbreviated as
JS, is a high-
level, interpreted
programming
language.

Keyword

HTML DOM

3G E-LEARNING

147

5.4.3 Changing the Value of an Attribute

To change the value of an HTML attribute, use this syntax:
document.getElementById(id).attribute = new value
This example changes the value of the src attribute of an element:

Example

<!DOCTYPE html>
<html>
<body>

<script>
document.getElementById(“myImage”).src = “landscape.jpg”;
</script>

</body>
</html>

5.5 CHANGING CSS
The HTML DOM allows JavaScript to change the style of HTML elements.

5.5.1 Changing HTML Style

To change the style of an HTML element, use this syntax:
document.getElementById(id).style.property = new style
The following example changes the style of a <p> element:

Example

<html>
<body>

<p id=”p2”>Hello World!</p>

3G E-LEARNING

148 Basic Computer Coding: Java Script

<script>
document.getElementById(“p2”).style.color = “blue”;
</script>

<p>The paragraph above was changed by a script. </p>

</body>
</html>

5.5.2 Using Events

The HTML DOM allows you to execute code when an event occurs.
Events are generated by the browser when “things happen” to HTML elements:

 ■ An element is clicked on
 ■ The page has loaded
 ■ Input fields are changed

This example changes the style of the HTML element with id=”id1”, when the
user clicks a button:

Example

<!DOCTYPE html>
<html>
<body>
<h1 id=”id1”>My Heading 1</h1>
<button type=”button”
onclick=”document.getElementById(‘id1’).style.color = ‘red’”>
Click Me!</button>

</body>
</html>

HTML DOM

3G E-LEARNING

149

5.6 HTML DOM ANIMATION
Learn to create HTML animations using JavaScript.

5.6.1 A Basic Web Page

To demonstrate how to create HTML animations with JavaScript, we will use a simple
web page:

Example

<!DOCTYPE html>
<html>
<body>

<h1>My First JavaScript Animation</h1>

<div id=”animation”>My animation will go here</div>

</body>
</html>

5.6.2 Create an Animation Container

All animations should be relative to a container element.

Example

<div id =”container”>
 <div id =”animate”>My animation will go here</div>
</div>

5.6.3 Style the Elements

The container element should be created with style = “position: relative”.

The animation element should be created with style = “position: absolute”.

3G E-LEARNING

150 Basic Computer Coding: Java Script

Example

#container {
 width: 400px;
 height: 400px;
 position: relative;
 background: yellow;
}
#animate {
 width: 50px;
 height: 50px;
 position: absolute;
 background: red;
}

5.6.4 Animation Code

JavaScript animations are done by programming gradual changes in an element’s style.
The changes are called by a timer. When the timer interval is small, the animation

looks continuous.
The basic code is:

Example

var id = setInterval(frame, 5);
function frame() {
 if (/* test for finished */) {
 clearInterval(id);
 } else {
 /* code to change the element style */
 }
}

HTML DOM

3G E-LEARNING

151

5.6.5 Create the Animation Using JavaScript

Example

function myMove() {
 var elem = document.getElementById(“animate”);
 var pos = 0;
 var id = setInterval(frame, 5);
 function frame() {
 if (pos == 350) {
 clearInterval(id);
 } else {
 pos++;
 elem.style.top = pos + ‘px’;
 elem.style.left = pos + ‘px’;
 }
 }
}

5.7 HTML DOM EVENTS
HTML DOM allows JavaScript to react to HTML events:

5.7.1 Reacting to Events

A JavaScript can be executed when an event occurs, like when a user clicks on an
HTML element.

To execute code when a user clicks on an element, add JavaScript code to an
HTML event attribute:

onclick=JavaScript
Examples of HTML events:

 ■ When a user clicks the mouse
 ■ When a web page has loaded
 ■ When an image has been loaded
 ■ When the mouse moves over an element

3G E-LEARNING

152 Basic Computer Coding: Java Script

 ■ When an input field is changed
 ■ When an HTML form is submitted
 ■ When a user strokes a key

In this example, the content of the <h1> element is changed when a user clicks on it:

Example

<!DOCTYPE html>
<html>
<body>
<h1 onclick=”this.innerHTML = ‘Ooops!’”>Click on this text!</h1>
</body>
</html>
In this example, a function is called from the event handler:

Example

<!DOCTYPE html>
<html>
<body>

<h1 onclick=”changeText(this)”>Click on this text!</h1>

<script>
function changeText(id) {
 id.innerHTML = “Ooops!”;
}
</script>

</body>
</html>

5.7.2 HTML Event Attributes

To assign events to HTML elements you can use event attributes.

HTML DOM

3G E-LEARNING

153

Example

Assign an onclick event to a button element:
<button onclick=”displayDate()”>Try it</button>
In the example above, a function named displayDate will

be executed when the button is clicked.

5.7.3 Assign Events Using the HTML DOM

The HTML DOM allows you to assign events to HTML elements
using JavaScript:

Example

Assign an onclick event to a button element:
<script>
document.getElementById(“myBtn”).onclick = displayDate;
</script>
In the example above, a function named displayDate is

assigned to an HTML element with the id=”myBtn”.
The function will be executed when the button is clicked.

5.7.4 The onload and onunload Events

The onload and onunload events are triggered when the
user enters or leaves the page.

The onload event can be used to check the visitor’s browser
type and browser version, and load the proper version of the
web page based on the information.

The onload and onunload events can be used to deal
with cookies.

Example

<body onload=”checkCookies()”>

5.8 HTML DOM EVENTLISTENER
The addEventListener() method attaches an event handler to
the specified element.

Web
Page is a
document that
is suitable for
the World Wide
Web and web
browsers.

Keyword

3G E-LEARNING

154 Basic Computer Coding: Java Script

5.8.1 The addEventListener() method

Example

Add an event listener that fires when a user clicks a button:
document.getElementById(“myBtn”).addEventListener(“click”, displayDate);
The addEventListener() method attaches an event handler to the specified element.
The addEventListener() method attaches an event handler to an element without

overwriting existing event handlers.
You can add many event handlers to one element.
You can add many event handlers of the same type to one element, i.e two “click”

events.
You can add event listeners to any DOM object not only HTML elements. i.e the

window object.
The addEventListener() method makes it easier to control how the event reacts

to bubbling.
When using the addEventListener() method, the JavaScript is separated from the

HTML markup, for better readability and allows you to add event listeners even when
you do not control the HTML markup.

You can easily remove an event listener by using the removeEventListener() method.

5.8.2 Syntax

element.addEventListener(event, function, useCapture);
The first parameter is the type of the event (like “click” or “mousedown”).
The second parameter is the function we want to call when the event occurs.
The third parameter is a boolean value specifying whether to use event bubbling

or event capturing. This parameter is optional.

5.8.3 Add an Event Handler to an Element

Example

Alert “Hello World!” when the user clicks on an element:
element.addEventListener(“click”, function(){ alert(“Hello World!”); });
You can also refer to an external “named” function:

HTML DOM

3G E-LEARNING

155

Example

Alert “Hello World!” when the user clicks on an element:
element.addEventListener(“click”, myFunction);
function myFunction() {
 alert (“Hello World!”);
}

5.8.4 Add Many Event Handlers to the Same
Element

The addEventListener() method allows you to add many events
to the same element, without overwriting existing events:

Example

element.addEventListener(“click”, myFunction);
element.addEventListener(“click”, mySecondFunction);

:You can add events of different types to the same element

Example

element.addEventListener(“mouseover”, myFunction);
element.addEventListener(“click”, mySecondFunction);
element.addEventListener(“mouseout”, myThirdFunction);

5.8.5 Add an Event Handler to the Window
Object

The addEventListener() method allows you to add event
listeners on any HTML DOM object such as HTML elements,
the HTML document, the window object, or other objects that
support events, like the xmlHttpRequest object.

Example

Add an event listener that fires when a user resizes the
window:

HTML
is the
standard markup
language for
creating web
pages and web
applications.

Keyword

3G E-LEARNING

156 Basic Computer Coding: Java Script

window.addEventListener(“resize”, function(){
 document.getElementById(“demo”).innerHTML = sometext;
});

5.8.6 Passing Parameters

When passing parameter values, use an “anonymous function” that calls the specified
function with the parameters:

Example

element.addEventListener(“click”, function(){ myFunction(p1, p2); });

5.8.7 Event Bubbling or Event Capturing?

There are two ways of event propagation in the HTML DOM, bubbling and
capturing.

Event propagation is a way of defining the element order when an event occurs.
If you have a <p> element inside a <div> element, and the user clicks on the <p>
element, which element’s “click” event should be handled first?

In bubbling the inner most element’s event is handled first and then the outer: the
<p> element’s click event is handled first, then the <div> element’s click event.

In capturing the outer most element’s event is handled first and then the inner:
the <div> element’s click event will be handled first, then the <p> element’s click event.

With the addEventListener() method you can specify the propagation type by
using the “useCapture” parameter:

addEventListener(event, function, useCapture);
The default value is false, which will use the bubbling propagation, when the

value is set to true, the event uses the capturing propagation.

Example

document.getElementById(“myP”).addEventListener(“click”, myFunction, true);
document.getElementById(“myDiv”).addEventListener(“click”, myFunction, true);

5.8.8 The removeEventListener() method

The removeEventListener() method removes event handlers that have been attached
with the addEventListener() method:

HTML DOM

3G E-LEARNING

157

Example

element.removeEventListener(“mousemove”, myFunction);

5.9 HTML DOM NAVIGATION
With the HTML DOM, you can navigate the node tree using
node relationships.

5.9.1 DOM Nodes

According to the W3C HTML DOM standard, everything in
an HTML document is a node:

 ■ The entire document is a document node
 ■ Every HTML element is an element node
 ■ The text inside HTML elements are text nodes
 ■ Every HTML attribute is an attribute node (deprecated)
 ■ All comments are comment nodes

 New nodes can be created, and all nodes can be modified
.or deleted

5.9.2 Node Relationships

The nodes in the node tree have a hierarchical relationship
to each other.

The terms parent, child, and sibling are used to describe
the relationships.

The
history of the
Document
Object Model
is intertwined
with the history
of the “browser
wars” of the late
1990s between
Netscape
Navigator
and Microsoft
Internet Explorer,
as well as with
that of JavaScript
and JScript, the
first scripting
languages
to be widely
implemented in
the JavaScript
engines of web
browsers.

Did You
Know?

Node is
a basic
unit of a data
structure, such
as a linked list
or tree data
structure.

Keyword

3G E-LEARNING

158 Basic Computer Coding: Java Script

 ■ In a node tree, the top node is called the root (or root node)
 ■ Every node has exactly one parent, except the root (which has no parent)
 ■ A node can have a number of children
 ■ Siblings (brothers or sisters) are nodes with the same parent

<html>

 <head>
 <title>DOM Tutorial</title>
 </head>

 <body>
 <h1>DOM Lesson one</h1>
 <p>Hello world!</p>
 </body>

</html>

From the HTML above you can read:
 ■ <html> is the root node
 ■ <html> has no parents
 ■ <html> is the parent of <head> and <body>

HTML DOM

3G E-LEARNING

159

 ■ <head> is the first child of <html>
 ■ <body> is the last child of <html>

and:
 ■ <head> has one child: <title>
 ■ <title> has one child (a text node): “DOM Tutorial”
 ■ <body> has two children: <h1> and <p>
 ■ <h1> has one child: “DOM Lesson one”
 ■ <p> has one child: “Hello world!”
 ■ <h1> and <p> are siblings

5.9.3 Child Nodes and Node Values

A common error in DOM processing is to expect an element node to contain text.

Example:

<title id=”demo”>DOM Tutorial</title>

The element node <title> (in the example above) does not contain text.
It contains a text node with the value “DOM Tutorial”.
The value of the text node can be accessed by the node’s innerHTML property:
var myTitle = document.getElementById(“demo”).innerHTML;
Accessing the innerHTML property is the same as accessing the nodeValue of the

first child:
var myTitle = document.getElementById(“demo”).firstChild.nodeValue;
Accessing the first child can also be done like this:
var myTitle = document.getElementById(“demo”).childNodes[0].nodeValue;
All the (3) following examples retrieves the text of an <h1> element and copies it

into a <p> element:

Example

<html>
<body>

<h1 id=”id01”>My First Page</h1>

3G E-LEARNING

160 Basic Computer Coding: Java Script

<p id=”id02”></p>
<script>
document.getElementById(“id02”).innerHTML = document.getElementById(“id01”).

innerHTML;
</script>

</body>
</html>

Example
<html>
<body>

<h1 id=”id01”>My First Page</h1>
<p id=”id02”></p>

<script>
document.getElementById(“id02”).innerHTML = document.getElementById(“id01”).

firstChild.nodeValue;
</script>
</body>
</html>

Example
<html>
<body>

<h1 id=”id01”>My First Page</h1>
<p id=”id02”>Hello!</p>

<script>
document.getElementById(“id02”).innerHTML = document.getElementById(“id01”).

childNodes[0].nodeValue;
</script>

HTML DOM

3G E-LEARNING

161

</body>
</html>

5.9.4 DOM Root Nodes

There are two special properties that allow access to the full document:
 ■ document.body - The body of the document
 ■ document.documentElement - The full document

Example

<html>
<body>

<p>Hello World!</p>
<div>
<p>The DOM is very useful!</p>
<p>This example demonstrates the document.body property.</p>
</div>

<script>
alert(document.body.innerHTML);
</script>
</body>
</html>

Example
<html>
<body>

<p>Hello World!</p>
<div>
<p>The DOM is very useful!</p>
<p>This example demonstrates the document.documentElement property.</

p>

3G E-LEARNING

162 Basic Computer Coding: Java Script

</div>

<script>
alert(document.documentElement.innerHTML);
</script>

</body>
</html>

5.9.5 The nodeName Property

The nodeName property specifies the name of a node.
 ■ nodeName is read-only
 ■ nodeName of an element node is the same as the tag name
 ■ nodeName of an attribute node is the attribute name
 ■ nodeName of a text node is always #text
 ■ nodeName of the document node is always #document

Example

<h1 id=”id01”>My First Page</h1>
<p id=”id02”></p>

<script>
document.getElementById(“id02”).innerHTML = document.getElementById(“id01”).
nodeName;
</script>

5.9.6 The nodeValue Property

The nodeValue property specifies the value of a node.
 ■ nodeValue for element nodes is undefined
 ■ nodeValue for text nodes is the text itself
 ■ nodeValue for attribute nodes is the attribute value

HTML DOM

3G E-LEARNING

163

5.9.7 The nodeType Property

The nodeType property is read only. It returns the type of a node.

Example

<h1 id=”id01”>My First Page</h1>
p id=”id02”></p>

<script>
document.getElementById(“id02”).innerHTML = document.getElementById(“id01”).

nodeType;
</script>

5.10 HTML DOM ELEMENTS (NODES)
Adding and Removing Nodes (HTML Elements)

5.10.1 Creating New HTML Elements (Nodes)

To add a new element to the HTML DOM, you must create the element (element node)
first, and then append it to an existing element.

Example

<div id=”div1”>
<p id=”p1”>This is a paragraph. </p>
<p id=”p2”>This is another paragraph. </p>
</div>

<script>
var para = document.createElement(“p”);
var node = document.createTextNode(“This is new.”);
para.appendChild(node);
var element = document.getElementById(“div1”);
element.appendChild(para);
</script>

3G E-LEARNING

164 Basic Computer Coding: Java Script

Example Explained

This code creates a new <p> element:
var para = document.createElement(“p”);
To add text to the <p> element, you must create a text node first. This code creates

a text node:
var node = document.createTextNode(“This is a new paragraph.”);
Then you must append the text node to the <p> element:
para.appendChild(node);
Finally you must append the new element to an existing element.
This code finds an existing element:
var element = document.getElementById(“div1”);
This code appends the new element to the existing element:
element.appendChild(para);

5.10.2 Creating new HTML Elements - insertBefore()

The appendChild() method in the previous example, appended the new element as
the last child of the parent.

If you don’t want that you can use the insertBefore() method:

Example

<div id=”div1”>
<p id=”p1”>This is a paragraph. </p>
<p id=”p2”>This is another paragraph. </p>
</div>
<script>
var para = document.createElement(“p”);
var node = document.createTextNode(“This is new.”);
para.appendChild(node);

var element = document.getElementById(“div1”);
var child = document.getElementById(“p1”);
element.insertBefore(para, child);
</script>

HTML DOM

3G E-LEARNING

165

5.10.3 Removing Existing HTML Elements

To remove an HTML element, you must know the parent of the element:

Example

<div id=”div1”>
<p id=”p1”>This is a paragraph. </p>
<p id=”p2”>This is another paragraph. </p>
</div>

<script>
var parent = document.getElementById(“div1”);
var child = document.getElementById(“p1”);
parent.removeChild(child);
</script>

5.10.4 Replacing HTML Elements

To replace an element to the HTML DOM, use the replaceChild() method:

Example

<div id=”div1”>
<p id=”p1”>This is a paragraph. </p>
<p id=”p2”>This is another paragraph. </p>
</div>
<script>
var para = document.createElement(“p”);
var node = document.createTextNode(“This is new.”);
para.appendChild(node);
var parent = document.getElementById(“div1”);
var child = document.getElementById(“p1”);
parent.replaceChild(para, child);
</script>

3G E-LEARNING

166 Basic Computer Coding: Java Script

CASE STUDY

DOCUMENT OBJECT MODEL
The history of the Document Object Model, known as the DOM, is tightly coupled
with the beginning of the JavaScript and JScript scripting languages.

JavaScript

The LiveScript language was designed at Netscape Communications to make the Java support
in Netscape Navigator more accessible to non-Java programmers. LiveScript, like any scripting
language, is a loosely-typed language. It is intended for a large audience of Web
designers and developers.

In December 1995, LiveScript was renamed JavaScript and released as part of
Netscape Navigator 2.0. Except for marketing purposes, JavaScript has nothing to do
with the Java language developed and maintained by Sun Microsystems. The Web
community started then to manipulate the content of Web documents, in order to
bring interactivity and typography to the formerly static Web.

JScript

In July 1996, Microsoft released Internet Explorer 3.0 with a port of JavaScript called
JScript.

ECMAScript

In June 1997, ECMA adopted a hybrid version of the scripting languages called
ECMAScript. The International Organization for Standardization (ISO) followed suit
in 1998. Unfortunately, ECMAScript arrived too late for the 4.0 releases of Netscape
Navigator and Internet Explorer. Each introduced their own document object model,
DHTML and dHTML, that came to be called Dynamic HTML.

ECMA-262, released in December 1999, is still not followed by Microsoft and
their Internet Explorer. Netscape claims to support ECMA-262 in Netscape Navigator
versions 6 and 7.

The World Wide Web Consortium

In 1994, Tim Berners-Lee, inventor of the World Wide Web, created the World Wide
Web Consortium (W3C) to lead the Web to its full potential. At the beginning of 1997,
the companies involved in this consortium — including Netscape Communications

HTML DOM

3G E-LEARNING

167

and Microsoft — decided to find a consensus around their object models to access
and manipulate documents. While trying to stay as backward compatible as possible
with the original browser object models, the W3C’s Document Object Model (DOM)
provided a better object representation of HTML documents.

HTML and XML

In 1996, a new markup language, the Extensible Markup Language (XML), was
developed in the W3C as well. Meant to remove the HTML language’s extensibility
restrictions, the idea of developing an object model for XML quickly became another
goal of the DOM effort.

3G E-LEARNING

168 Basic Computer Coding: Java Script

SUMMARY
 ■ The Document Object Model (DOM) is a cross-platform and language-

independent interface that treats an XML or HTML document as a tree
structure wherein each node is an object representing a part of the document.
The DOM represents a document with a logical tree. Each branch of the tree
ends in a node, and each node contains objects.

 ■ HTML DOM methods are actions you can perform (on HTML Elements).
 ■ HTML DOM properties are values (of HTML Elements) that you can set or

change.
 ■ A property is a value that you can get or set (like changing the content of

an HTML element).
 ■ HTML DOM document object is the owner of all other objects in your web

page.
 ■ The HTML DOM allows JavaScript to change the content of HTML elements.
 ■ The HTML DOM allows JavaScript to change the style of HTML elements.
 ■ JavaScript animations are done by programming gradual changes in an

element’s style.

HTML DOM

3G E-LEARNING

169

KNOWLEDGE CHECK
1. What is the reason for avoiding the attributes property in the HTML DOM?

a. Found unnecessary
b. Attributes don’t have attributes
c. Attributes have attributes
d. None of the mentioned

2. What is the purpose of the method nodeMap.setNamedItem()?
a. Sets ID
b. Sets attribute node
c. Sets element name
d. None of the mentioned

3. How is everything treated in HTML DOM?
a. Node
b. Attributes
c. Elements
d. All of the mentioned

4. What does the NamedNodeMap object represent in the HTML DOM?
a. Unordered collection of elements
b. Unordered collection of attributes
c. Unordered collection of nodes
d. All of the mentioned

5. What is the purpose of the Attr object in the HTML DOM?
a. Used to focus on a particular part of the HTML page
b. HTML Attribute
c. Used to arrange elements
d. None of the mentioned

6. What is DOM?
a. Dynamic Object Model
b. Document Object Model
c. Distributed Object Model
d. None of these

3G E-LEARNING

170 Basic Computer Coding: Java Script

7. In how many defferent parts is the DOM divided ?
a. 2
b. 4
c. 3
d. 1

8. You can find the element you want to manipulate in ________ way ?
a. getElementById()
b. getElementsByTagName()
c. All of these
d. None of these

9. Every node has some properties that contain some information about the node.
The properties are__________ .
a. nodeName
b. nodeValue
c. nodeType
d. All of these.

10. The History object is actually a ________ object.
a. JavaScript
b. HTML DOM
c. XML DOM
d. Core DOM

REVIEW QUESTIONS
1. Use HTML DOM to change the value of the input field.
2. Use HTML DOM to change the value of the image’s SRC attribute.
3. Change the (text) color of the p element to “red”.
4. Use the eventListener to assign an onclick event to the button element.
5. Write the convenient function removeElement which removes the DOM node

it is given as an argument from its parent node.

Check Your Result

1. (b) 2. (b) 3. (a) 4. (d) 5. (b)
6. (b) 7. (c) 8. (c) 9. (d) 10. (a)

HTML DOM

3G E-LEARNING

171

REFERENCES
1. David Flanagan. JavaScript: The Definitive Guide, Sixth Edition. O’Reilly. 2011.
2. Douglas Crockford. JavaScript: The good parts. O’Reilly Media, 2008.
3. Douglas Crockford. Javascript: The world’s most misunderstood programming

language.
4. Douglas Crockford. JSLint: The JavaScript verifier.http://www.jslint.com/, 2002.

Accessed August 4, 2008.
5. Jonathan Stark. Building iPhone Apps with HTML, CSS, and JavaScript. O’Reilly. 2010.
6. Maximiliano Firtman. Programming the Mobile Web. O’Reilly. 2010.

“The strength of JavaScript is that you can do anything. The weakness is that you will.”

– Reg Braithwaite

After studying this chapter,
you will be able to:
1. Understand the basics to

reading/writing cookies
with JavaScript

2. Explain the setting
different cookie kinds in
JavaScript

LEARNING
OBJECTIVES

COOKIES

INTRODUCTION
A cookie is an item of data that a web server saves to
your computer’s hard disk via a web browser. A cookie
is a piece of data that is stored on your computer to be

6
CHAPTER

3G E-LEARNING

174 Basic Computer Coding: Java Script

accessed by your browser. You also might have enjoyed the
benefits of cookies knowingly or unknowingly. Have you
ever saved your Facebook password so that you do not have
to type it each and every time you try to login? If yes, then
you are using cookies. Cookies are saved as key/value pairs.

A computer cookie, also referred to as an “HTTP cookie,”
is a small text file that contains a unique ID tag, placed
on the user’s computer by a website. In this file, various
information can be stored, from pages visited on the site,
to information voluntarily given to the site. These tiny files
provide practical benefits to both users and website operators,
and generally make surfing the net a smoother experience than
it otherwise would be. Nevertheless, privacy advocates tend
to be wary of them, since many users are unaware of exactly
what information is collected, and how the information may
be used or shared.

The communication between a web browser and server
happens using a stateless protocol named HTTP. Stateless
protocol treats each request independent. So, the server does
not keep the data after sending it to the browser. But in many
situations, the data will be required again. Here come cookies
into a picture. With cookies, the web browser will not have to
communicate with the server each time the data is required.
Instead, it can be fetched directly from the computer.

6.1 BASICS TO READING/WRITING
COOKIES WITH JAVASCRIPT
Cookies are relatively small text files that a web browser
embeds on a user’s computer. Cookies allow otherwise stateless
HTTP communications to emulate state (i.e., memory). Cookies
are being replaced by somewhat newer technologies such as
local storage and session storage; however, cookies are still
widely used by many major websites today. For that reason

Web
browser
is a software
application
for accessing
information on
the World Wide
Web.

Keyword

Cookies

3G E-LEARNING

175

alone, it is a good idea for you to familiarize yourself with
how cookies work. Additionally, it is fun to see how you
yourself can use JavaScript to read from and write to the your
browser’s cookie API.

One user registration ends after completing many pages. But how to
maintain users’ session information across all the web pages.

Cookies were originally invented by Netscape to give
‘memory’ to web servers and browsers. The HTTP protocol,
which arranges for the transfer of web pages to your browser
and browser requests for pages to servers, is state-less, which
means that once the server has sent a page to a browser
requesting it, it does not remember a thing about it. So if
you come to the same web page a second, third, hundredth
or millionth time, the server once again considers it the very
first time you ever came there. This can be annoying in a
number of ways. The server cannot remember if you identified
yourself when you want to access protected pages, it cannot
remember your user preferences, it cannot remember anything.
As soon as personalization was invented, this became a major
problem. Cookies were invented to solve this problem. There
are other ways to solve it, but cookies are easy to maintain
and very versatile.

6.1.1 Using Cookies in JavaScript

Cookies are the name given to the small text files your browser
stores on your computer, which contain information relevant
to the sites you have visited in the past. Using JavaScript you
can write to these text files and then extract data from them
whenever your reader returns to your site. Cookies are variables

The
computer cookie
dates back to
1994. In that year,
it was adapted
as a tool for the
World Wide Web
by Leo Montulli
from a similar
technique, called
“magic cookie,”
which was
used in UNIX®
systems. This is
also the origin of
the term itself.
It was not for
another couple of
years, however,
that the cookies
became widely
known to the
general public.

Did You
Know?

3G E-LEARNING

176 Basic Computer Coding: Java Script

that can be stored on a user’s computer and be picked up by any other web pages in
the correct domain and path. Cookies are set to expire after a certain length of time.
They are limited to storing string values only. Be warned that many users (including
me) will not permit cookies on their computers. Do not make your web sites rely on
them. The reason for this is that many web sites only use cookies as part of advert
tracing systems, which they use to track your movement around the Internet. We would
not want anyone to follow me around a city while you was shopping, taking notes of
every shop we visit and whether you look in the lingerie section, as that would be an
invasion of our privacy. Many people feel the same applies to the Internet. You may
find it helps to firstly display a message saying what you are going to use the cookie
for, for example to store a username and password for the next time they visit the site.

Note also that European law requires sites to gain explicit permission before
using cookies, unless those cookies are essential to the operation of the site (such as
a shopping basket). Some browsers will have a limit to how many cookies they can
store, usually 300 cookies or more, of which there may be 20 cookies per domain name.
A total of 4 KB (after encoding) of cookies can be stored for any domain or path.
The document.cookie object is a string representation of all cookies available to the
current web page. The document.cookie object is somewhat unusual in that when you
assign string values to it, it does not become the value that you assign to it. Instead,
it takes a part of that value and appends its current value to that, so making a string
containing several pairs of variableName=variableValue.

Why we use Cookies

Cookies are necessary because the HTTP protocol that is used to transfer webpages
around the web is state-less. This means that web servers cannot remember information
about users throughout their travels, and so everyone becomes anonymous. If you

Cookies

3G E-LEARNING

177

ever return to a site you have visited previously, you are treated as if it was your first
visit. This is especially unsatisfactory for sites which ask their users to log in — if you
leave and return just a few minutes later, you will have to log in again. The server
does not remember anything about your visit or your preferred settings. So, cookies
were invented to give memory, of a sort, to web servers.

What Kinds of Data Can Be Stored in a Cookie?

A cookie is basically a string of text characters not longer than 4 KB. Cookies are
set in name=value pairs, separated by semi-colons. For example, a cookie might be a
string like the following:

“theme=blue; max-age=60; path=/; domain=thesitewizard.com”
This example cookie has 4 variable/value pairs:

 ■ max-age, which is set to 60,
 ■ path, which is set to the slash character “/”,
 ■ domain, which is set to “thesitewizard.com”,
 ■ and theme, which is set to “blue”.

The variables “max-age”, “path” and “domain” are special variable names that
are recognized by the browser to control things like the lifespan of the cookie and
the URLs for which the cookie is valid. Only the “theme” variable in your example
contains the real data that you wish to set. You can create any variable name you want,
and set it to whatever value you wish, subject to the following constraints:

 ■ max-age
Cookies have, by default, a lifespan of the current browser session. As soon as

your visitor closes his browser, your cookie disappears. To make it last longer, you
will need to set the max-age variable to contain the number of seconds (yes, seconds)
you want the cookie to last.

For example, if you want your cookie to last 30 days, set it to 2,592,000. Actually
instead of pre-calculating this and putting it into your script, you can have the JavaScript
interpreter calculate it for you at run time, and simply encode it as

“theme=blue; max-age=” + 60*60*24*30 + “; path=/; domain=thesitewizard.com”
This is superior to writing a huge number that you will forget the meaning of in

the future.
 ■ path

By default cookies are valid only for web pages in the directory of the current
web page that stored them, as well as its descendants. That is, if a cookie is set by
http://example.com/abc/webpage.html, it will be valid for http://example.com/abc/yet-
another-page.html as well as http://example.com/abc/Sub-Folder/index.html, but not

3G E-LEARNING

178 Basic Computer Coding: Java Script

for http://example.com/index.html.
If you want the cookie to be valid in some other directory,

say, http://example.com/special/, you will need to set the path
variable to contain the value “/special”. If you want the cookie
to be valid everywhere on your site, set it to the root of your
web directory, that is, “/”.

 ■ domain
Another special variable name that you may want to take

note of is the domain variable. Cookies set in sub-domains
like www.example.com will only be valid for that subdomain.
If you want it to be valid for all sub-domains of example.
com, you will need to set the domain to point to “example.
com”. The cookie will then be valid for “www.example.com”,
“blog.example.com”, and whatever other subdomains that
you may have.

 ■ secure
There’s another variable that has special meaning: secure.

This variable should not be assigned any value. Including
it means that the cookie will only be sent if your visitor is
visiting your website over a secure connection.

 ■ expires
The expires variable is obsolete although still supported

by today’s browsers. Use the max-age variable instead, since
it is easier to use. Be careful not to use “expires” as a variable
name to store your data as well.

 ■ No spaces, commas, semi-colons
Your cookie values cannot have any embedded whitespaces,

commas or semi-colons. If you have any, they must be converted
to its “encoded” equivalent. The easiest way to do this is to
use the encodeURIComponent() function to encode it, and
the decodeURIComponent() function to decode it when you
read the cookie.

Expanding on your earlier example, if you want to set
a “theme” variable to “blue theme”, you can do it this way:

“theme=” + encodeURIComponent(“blue theme”) + “; max-
age=” + 60*60*24*30 + “; path=/; domain=thesitewizard.com”

Of course in the above case, since there is only one space
character to encode, you can do it manually as “blue%20
theme” as well.

that for
security
reasons, if
your domain is
example.com,
browsers will not
accept a cookie
for a different
domain, like
google.com.

Remember

Cookies

3G E-LEARNING

179

 ■ Cookie Limits
Although different browsers may implement different limits for cookies, the bare

minimum that they are supposed to support is as follows:
 - Cookie length: 4 KB. The total length of your string, including all the

variables with special meaning, should not be more than 4,096 characters.
 - Maximum number of cookies per web server: 20.
 - Total number of cookies supported by the browser: 300. This includes

cookies stored by other websites.

6.1.2 Structure of a Cookie

Cookies are no more than simple text files — usually found in your browser cache, or
‘Temporary Internet files’ — which contain one or more entries. Each entry is made
up of

 ■ A name-value pair which stores whatever data you want to save.
 ■ An expiry date, after which time the entry will be deleted.
 ■ The web domain and path that the entry should be associated with.

You can use JavaScript to read or write a new entry to the cookie file. The process
of creating an entry is often referred to as ‘writing a cookie’, but this is misleading.
The cookie is the text file which contains all of your entries, while the individual
entries themselves hold the data. Each domain name on the web can have a cookie
file associated with it, and each cookie can hold multiple entries.

When you request a file from a server that you have used previously, the data in
the relevant cookie is sent to the server along with your request. This way, server-side
scripts, such as those written in Perl or » PHP, can read your cookie and figure out
whether you have permission to view a certain page, for instance. Cookies can also
be used for somewhat more malicious purposes, usually by advertising companies to
track your behavior online. Most modern browsers include good measures that allow
you to block cookies from certain sites, so which sites you disclose information to is
now at your discretion.

3G E-LEARNING

180 Basic Computer Coding: Java Script

The name-value pair part of the entry is very similar to declaring a variable —
when you want to retrieve information you ask for the value that is associated with
a name that you provide. The expiry date is expressed in an unfriendly UTC format;
though fortunately there are methods for generating a suitable date. If a date is not
set, the entry is deleted when you close your browser.

The domain and path that you associate your cookie with have to be part of the
same domain that your site belongs to. For instance, you can set your cookie to be
active for www.yourhtmlsource.com, the default; or to yourhtmlsource.com, which will
cover any and all subdomains you set up for the site. You cannot, however, set it to
yahoo.com, for obvious security reasons. Using the path you can restrict a cookie to
be valid for only a certain directory. Usually you will want it to be available to any
page in the domain, so this is set to /, the root directory.

6.1.3 Setting, Reading and Erasing Cookies

The document has an object in JavaScript called document.cookie, which is used to
read and retrieve cookie data. It is a repository of Strings (though not an array). You
can create new entries, read out an existing name-value pair, or erase an entry through
JavaScript. To create a cookie for your site, you write

document.cookie =
“testvalue1=Yes; expires=Fri, 13 Jul 2004 05:28:21 UTC; path=/”;
The whole entry is supplied as one quoted String with segments set apart with

semicolons — first the name-value pair, then the expiry date in the correct format, and
finally the path. This syntax is fixed, and you should not go rearranging the elements.
Write this entry now. To test out the cookie›s contents, we can use a simple script like

alert(document.cookie);
Which will yield this result. You may see another value in there too, which is

used by our Stylesheet-switcher. Now we can write another entry to the cookie, using
a different name, as so:

document.cookie =
“testvalue2=Nah; expires=Fri, 13 Jul 2004 05:28:21 UTC; path=/”;
Checking on the cookie›s contents now, we can see that our first value is still in

there. Had we used the same name, the first value would have been overwritten; but
since we used a different name, the new entry has been added in with the first.

Erasing cookie entries is easy — just set a new value and give an expiry date
before today, as in

document.cookie =
“testvalue2=Whatever; expires=Fri, 13 Jul 2001 05:28:21 UTC; path=/”;

Cookies

3G E-LEARNING

181

You can also give the entry an expiry date of -1, and it will be erased immediately.
Erase test values 1 and 2 now, if you have the heart.

6.1.4 Convenient Scripts

To easily tinker with cookies ourselves, we will be using some great scripts which were
originally coded by » Scott Andrew. They will take much of the pain out of the process;
especially reading the values out of a cookie, which is a bit complicated. Here are the functions:

function createCookie(name, value, days)
{
 if (days) {
 var date = new Date();
 date.setTime(date.getTime()+(days*24*60*60*1000));
 var expires = “; expires=”+date.toGMTString();
 }
 else var expires = “”;
 document.cookie = name+”=”+value+expires+”; path=/”;
}

function readCookie(name)
{
 var ca = document.cookie.split(‘;’);
 var nameEQ = name + “=”;
 for(var i=0; i < ca.length; i++) {
 var c = ca[i];
 while (c.charAt(0)==’ ‘) c = c.substring(1, c.length); //delete spaces
 if (c.indexOf(nameEQ) == 0) return c.substring(nameEQ.length, c.length);
 }
 return null;
}

function eraseCookie(name)
{
 createCookie(name, “”, -1);
}

3G E-LEARNING

182 Basic Computer Coding: Java Script

These are some nicely coded scripts, and do not require
too much explanation. The function we use to create cookies
takes three arguments, which make up the name-value pair
and the amount of days to retain the cookie. The last argument
is converted into a valid date by adding its value in hours
to the current time before being annexed into the line which
creates the cookie.

The cookie reading function is the most difficult one
here. First it splits the available cookie String (what we have
been reading out in the alert earlier on this page) at every
occurrence of the separating semicolon. This creates a new
array, with each index holding an entry pair. We loop through
these looking for the String ‘name=’. When we find this, we
read out whatever else makes up this index, which will be
the value associated with the name we passed to the function
at the beginning. Erasing an entry is easy — simply recreate
a cookie with its expiration date set to -1.

6.1.5 How to set Cookies with JavaScript

Cookies are an important part of modern browsers. Without
them, we could not browse websites that require authentication,
such as social networks since we would be asked for our
password on every page we would browse. We would not be
able to write a simple e-mail, or purchase stuff online. Website
usage would be limited to browsing only static websites. In
this section we will focus only on creating and editing cookies
using jQuery.

Step 1 - HTML first

We create a DIV and inside it we add two messages. One that
will be displayed only once, when the page is loaded, and

Loop is
a programming
function that
iterates a
statement or
condition based
on specified
boundaries.

Keyword

Cookies

3G E-LEARNING

183

the other will be displayed after the first one was shown. Whether to show the first
or second message is the job of CSS:

<div class=”message change-message--on-load hide--second”>
 <p>This message is displayed only the first time you visit this page. Refresh

your page to hide it!</p>
 <p>This is shown only after the before message was shown in the last visit. Even

when you refresh the page, the browser remembers your option.</p>
</div>

Step 2 - CSS

With CSS we tell the browser to hide the first message if the div’s class is .hide--first
or hide the second message if the div’s class is .hide--second:

.hide--first > *:first-child {
 display: none;
}
.hide--second > *:last-child {

 display: none;
}

Step 3 - Initializing

For faster loading times, add your JavaScript to the bottom of the page, before closing
the </body> tag. First, we need to call jQuery.

<script type=”text/javascript” src=”http://ajax.googleapis.com/ajax/libs/jquery/1.6.4/
jquery.min.js”></script>

Next we call the cookie script. Make sure you add the correct URL pointing to
the script.

<script type=”text/javascript” src=”cookie.js”></script>
Below it, we add an empty script tag and we can start coding:
<script type=”text/JavaScript”>
</script>

Step 4 - JavaScript

First we add the cookie code. There are two parts to this: one that checks if cookie
exists, and the other part is the one that adds the cookie. First, we will check for the

3G E-LEARNING

184 Basic Computer Coding: Java Script

cookie. If the cookie is true, hide the initial message and show the other one (with
CSS) by changing the class of the <div>:

 if ($.cookie(‘hide-after-load’) == ‘yes’) {
 $(‘.change-message--on-load’).removeClass(‘hide--second’);
 $(‘.change-message--on-load’).addClass(‘hide--first’);
 }
Before we close the script tag, we have to add the cookie that will hide the first

message. We add it to the end, because if we were to add it before the code that checks
(see above) the cookie, it would hide the first message from the start. Adding it at
the end ensures that the message will be hidden the next time the page is loaded. It
is set to expire in 7 days.

 $.cookie(‘hide-after-load’, ‘yes’, {expires: 7 });
The complete code for the first example:
<script type=”text/JavaScript”>
 $(document).ready(function() {
 if ($.cookie(‘hide-after-load’) == ‘yes’) {
 $(‘.change-message--on-load’).removeClass(‘hide--second’);
 $(‘.change-message--on-load’).addClass(‘hide--first’);
 }

 $.cookie(‘hide-after-load’, ‘yes’, {expires: 7 });
 });
</script>

Step 5 - Add cookie on click

In the demo page, you saw that the second container would hide the first message
and show the other one, only after you clicked on the “×” icon. First we need to add
an empty href tag for the icon to our HTML:

<p>You can only hide this message, by clicking the × on the right of this
box ×</p>

To position the “×” icon to the top-right of the container, we use the absolute
inside relative container trick in the CSS:

.message {
 position: relative
}

Cookies

3G E-LEARNING

185

.close {
 color: #f00;
 position: absolute;
 text-transform: lowercase;
 right: 20px;
 font-size: 1.5em;
 top: 10px;
 line-height: 1;
 border: none !important;
}
Inside the JavaScript tag, we add the code to do something once the icon is

clicked. In this case, return nothing so that the URL is not populated with the empty
href hash (#) symbol:

$(‘.close’).click(function() {
 return false;
})
Once the user has clicked on the icon, we need to check whether the parent

container of the icon is displaying the first message or the second. If it displays the
first message, hide it by changing its class. Finally, we also add a cookie with the
variable yes so that this option is remembered next time.

if (!$(‘.change-message--on-click’).is(‘hide--first’)) {
 $(‘.change-message--on-click’).removeClass(‘hide--second’);
 $(‘.change-message--on-click’).addClass(‘hide--first’);

 // add cookie setting that user has clicked
 $.cookie(‘hide-after-click’, ‘yes’, {expires: 7 });
}
The complete script when clicking the icon looks like this:
 $(‘.close’).click(function() {
 if (!$(‘.change-message--on-click’).is(‘hide--first’)) {
 $(‘.change-message--on-click’).removeClass(‘hide--second’);
 $(‘.change-message--on-click’).addClass(‘hide--first’);

3G E-LEARNING

186 Basic Computer Coding: Java Script

 $.cookie(‘hide-after-click’, ‘yes’, {expires: 7 });
 }
 return false;
 })
But wait, we are not done! We also need to check if the clicked cookie has the

yes variable attached to it. If it does, show the second message, and hide the first:
if ($.cookie(‘hide-after-click’) == ‘yes’) {
 $(‘.change-message--on-click’).removeClass(‘hide--second’);
 $(‘.change-message--on-click’).addClass(‘hide--first’);
}
The complete code for the second example:
<script type=”text/JavaScript”>
 $(document).ready(function() {
 // COOKIES
 // if the cookie is true, hide the initial message and show the other one
 if ($.cookie(‘hide-after-click’) == ‘yes’) {
 $(‘.change-message--on-click’).removeClass(‘hide--second’);
 $(‘.change-message--on-click’).addClass(‘hide--first’);
 }

 // when clicked on “X” icon do something
 $(‘.close’).click(function() {
 // check that “X” icon was not cliked before (hidden)
 if (!$(‘.change-message--on-click’).is(‘hide--first’)) {
 $(‘.change-message--on-click’).removeClass(‘hide--second’);
 $(‘.change-message--on-click’).addClass(‘hide--first’);

 // add cookie setting that user has clicked
 $.cookie(‘hide-after-click’, ‘yes’, {expires: 7 });
 }
 return false;
 })
 });

<script/>

Cookies

3G E-LEARNING

187

Cookies can be used in many ways. Now you know how
to create your own Hellobar. You could take it a step further
and figure out how to authenticate users (remember login
details) and save entire sessions in the cookies (sign up process
does not get lost in case you refresh the page).

6.1.6 Privacy and Legislation

Cookies can only be read by the site that created them, or a
site ‘underneath’ the site that created them. This prevents other
websites from stealing cookies. When cookies were fairly new,
there was a lot of controversy about their ability to track users
browsing ‘all around the web’. This is not really the case, due
to sites only being able to read their own cookies; however,
for affiliated companies, such as advertising companies, it is
true that cookies could be placed in banners such that any site
showing a banner could aid the banner company in tracking
every website the banner viewer visited on their network.

Therefore as more paranoid users may feel the need to
disable their cookies, Composr does not require them: session
details may be relayed by URL in Composr. The obvious
disadvantage is that automatic login is not possible in this
situation, and there is an additional disadvantage that JavaScript
will be thought to be disabled, as Composr needs to use cookies
to detect it. The first problem may be ameliorated by the web
browser ‘auto-fill’ feature, which can be used to automatically
remember how forms, such as login forms, were filled in. The
developers recommend that users do have cookies enabled,
but that they possibly disable ‘third party cookies’ if they are
concerned about privacy so that advertisers can not track the
advertising sites that they view.

EU legislation

The EU require tracking cookies be declared for organizations
operating inside the EU. The Composr “Cookie notice”
configuration option implements this. It is not on by default
because Composr’s cookies are heavily minimized to what
we consider reasonable compliance without special notice.
However, use of something like Adsense strictly requires you

Privacy
is the
ability of an
individual or
group to seclude
themselves, or
information
about
themselves, and
thereby express
themselves
selectively.

Keyword

3G E-LEARNING

188 Basic Computer Coding: Java Script

enable the cookie notice.

20 things you did not know about cookies (for programmers)

1. All cookies have an expiry time. A cookie that has expired in the past will be
deleted once the web browser is closed. Cookies can also be deleted explicitly.

2. It is this expiry behavior that leads to ‘session cookies’. Session cookies have
no actual definition beyond that they are defined to expire in the past from
the very time that they are created. The emergent behavior is that they act
as temporary cookies, existent only for a browser session.

3. Session cookie XSS prevention security is lost if web browser tabs are used:
the cookies do not expire because the browser is never closed.

4. Cookie expiry time is measured in GMT UNIX timestamp seconds, hence client/
server time is theoretically the same – but care is still needed as computer
clocks may be fast/slow

5. A third-party cookie is a cookie that is set onto a domain name that the
main page document cannot read. This is possible only because a document
may reference images on other servers, and these images may themselves
set cookies (any URL can generate cookies). Some browser privacy settings
disable these.

6. While cookies are sometimes disabled by people for privacy concerns, session
cookies are usually allowed as an exception – so it is not the end of the world
if session cookies are required – but it is better to be able to store session IDs
in the URL. Some popular websites do require cookies to be enabled though
(Tesco.com, New York Times, …).

7. Full cookie data is sent with all web requests that the cookies are scoped
under, even image requests – so it is inefficient to store a lot of cookies.

8. Cookies must be set against a domain name. This is either done by putting
.domain as the cookie domain, or by leaving the domain blank when setting
the cookie; the domain should never be defined as domain as it will not work
properly.

9. Cookies work with an elaborate but confusing precedence system. Only cookies
underneath a matched domain/path combination will be sent to a server URL
(for privacy reasons), and they will be given precedence based on ‘most specific
gets priority’. To change a cookie the server must set it against the domain/
path combination it was created with. The variables a cookie was defined
under are not available server-side, which means that anyone modifying the
cookie must know these in advance, or guess wildly.

10. There is a legitimate privacy concern with cookies when ads are concerned.
Banner rotations run from centralized sites, and hence have the ability to

Cookies

3G E-LEARNING

189

effectively track users from this centralised site but with regard any site that
they visit that uses the rotation. Nevertheless, such tracking could happen
regardless of cookies, via server logging and cross-server messaging – so
blaming cookies is simplistic.

11. Microsoft made a great extension to Netscape’s original cookie spec, allowing
‘HTTP only’ cookies (cookies that JavaScript cannot read). Use of this prevents
XSS many vulnerabilities.

12. At the protocol level, cookies are sent to the server in a single Cookie HTTP
header, but set from the server using individual Set-Cookie headers.

13. Cookies just store names and values, and never any data that a web server
or normal JavaScript would not have been able to discern – because it is the
web server or browser that sets the cookie.

14. JavaScript provides its cookie support by a virtual variable, document.cookie.
The variable can be set and read, but the process is not actually direct.

15. A common server-side coding mistake is to set a cookie and then refer to
the cookie value within the same server response – yet the cookie would not
have been activated until the response had been sent.

16. Some web servers (including Apache) restrict cookie data length, refusing to
server data if the length is exceeded.

17. Cookie names should not contain certain special characters like ‘=’ as these have
special meanings within HTTP and there is no standard escaping mechanism
for cookie names. (Unexpected bugs may happen if you attempt to set such
cookies)

18. Cookies were invented by Netscape, not by the usual standards bodies (the
IETF or W3C).

19. On some web servers it is not possible to set a cookie at the same time as
doing an HTTP redirect.

20. The name ‘cookie’ was given for no particular reason, but is the origin of
endless bad jokes.

6.1.7 Advantages and Disadvantages of using Cookies

A cookie is a small bit of text that accompanies requests and pages as they go between
the Web server and browser.

Advantages of using cookies

Here are some of the advantages of using cookies to store session state.
 ■ Cookies are simple to use and implement.

3G E-LEARNING

190 Basic Computer Coding: Java Script

 ■ Occupies less memory, do not require any server resources and are stored on
the user’s computer so no extra burden on server.

 ■ We can configure cookies to expire when the browser session ends (session
cookies) or they can exist for a specified length of time on the client’s computer
(persistent cookies).

 ■ Cookies persist a much longer period of time than Session state.

Disadvantages of using cookies

Here are some of the disadvantages:
 ■ Cookies are not secure as they are stored in clear text they may pose a

possible security risk as anyone can open and tamper with cookies. You
can manually encrypt and decrypt cookies, but it requires extra coding and
can affect application performance because of the time that is required for
encryption and decryption

 ■ Several limitations exist on the size of the cookie text (4kb in general), number
of cookies(20 per site in general), etc.

 ■ User has the option of disabling cookies on his computer from browser’s setting.
 ■ Cookies will not work if the security level is set to high in the browser.
 ■ Users can delete a cookies.
 ■ Users browser can refuse cookies, so your code has to anticipate that possibility.
 ■ Complex type of data not allowed (e.g. dataset etc.). It allows only plain text

(i.e. cookie allows only string content)

6.2 SETTING DIFFERENT COOKIE KINDS IN
JAVASCRIPT
A cookie is a named piece of data, created and used by a certain website for a certain
viewing user, and sent from the user’s web browser to the web server each time a page
is viewed. In this section we will show you how to create different kind of cookies,
in JavaScript.

Originally there was no way to identify a user on the web that was viewing a
website with a user that had previously visited, unless they had an account on the
website and logged in each time. It was possible to identify a user within a visit, without

Cookies

3G E-LEARNING

191

them being logged-in, by storing additional information in
URLs: however this is unwieldy. Cookies were designed to
resolve this problem, and another one:

 ■ it would allow server-side web applications to identify
a specific user by the computer they accessed with

 ■ it would allow client-side web applications to have
a memory, which was otherwise impossible

6.2.1 Session Cookie –First Cookie

A session identifies a user, even if they are not a member. It
is a unique number attached to a user and stored in a ‘session
cookie’ or their URLs. A session cookie is a special kind of
cookie that is automatically deleted when a user closes their
web browser. We will start with the most basic cookie: the
Session cookie. This would be simplest cookie you can create
and is referred to as a “Session Cookie” since it does not live
outside of a session, so it gets deleted automatically when
you close the browser. Information of a cookie is stored in
value pairs, and it is most simple form would look something
like this:

username=Hans;
Storing sensitive information like usernames and such,

in a cookie, is not really a BAD idea – here it just serves as
an example. Below the JavaScript code which you can paste
in JSFiddle;

document.cookie = “username=Hans”;
Obviously, we did not see anything exciting happen, so

use the web developer tools of your browser to see that the
cookie has actually been set. You can use the “Inspect” option
from Google Chrome on the JSFiddle page as well.

Client-
side refers
to operations that
are performed
by the client in
a client–server
relationship
in a computer
network.

Keyword

3G E-LEARNING

192 Basic Computer Coding: Java Script

If you would prefer to not use the browsers web developer
tools, you could also use an alert, which would look something
like this:

document.cookie = “username=Hans”;
alert(document.cookie);
The result should be a popup, showing something like this:

Alrighty then we have the basics kind-a under control,
so now time to do some more advanced things by adding
options. These options are stored as value pairs as well, in
the same document.cookie property. Let’s go through them
one at a time.

Sessions have the following advantages over conventional
cookies:

 ■ they allow remembering of guests
 ■ they can be used to force explicit login for a member

■ they can be used even when cookies are
disabled

Note that IP addresses could never be used instead of
sessions because they are often shared between multiple users,
and because a single user’s dynamic IP address may often
change. Composr has an added layer of security, in that it
only allows a session cookie to work if it was created for a
similar IP address: this reduces the security risk of ‘session
stealing’ if a hacker somehow managed to find another user’s
session (which should not be possible in itself).

6.2.2 Persistent Cookie – A Cookie that
survives closing the browser

A persistent cookie is a data file capable of providing websites
with user preferences, settings and information for future
visits. Persistent cookies provide convenient and rapid access
to familiar objects, which enhances the user experience (UX).
A persistent cookie is also known as a stored or permanent

Session
for guests
are actually
using normal
cookies, not
session cookies.
This is because
they may need
to be identified
between visits
if Composr has
been extended
with features
such as a
shopping cart
system.

Remember

Cookies

3G E-LEARNING

193

cookie. When users visit a website and set choices or preferences, persistent cookies
may be used to remember these options. Persistent cookies can help isolate and identify
a specific client and are capable of traversing a user’s path toward a website. They
are stored as text files on the hard drive of a computer and usually have expiration
dates of one to two years. Persistent cookies facilitate setting the following preferences:

 ■ Favorites or internal bookmarks
 ■ User authentication
 ■ Login details
 ■ Menu preferences
 ■ Theme selection, if applicable
 ■ Language preferences

Persistent cookies are also capable of providing the browsing behavior of users.
As mentioned before, we can make a cookie persistent by defining it is expiration

date and time, which would look like something like the example below:
username=Hans; Expires=Sun, 22 Oct 2017 08:00:00 UTC;
This will also be used to delete a cookie, by setting the expiration date to a date

in the past – your browser will remove the cookie based on that alone.
 ■ The date format for cookies must be in a UTC/GMT format (i.g. Sun, 22 Oct

2017 08:00:00 UTC), so correct for your timezone if needed.
 ■ UTC versus GMT: both indicate the same time, however: UTC is a time

standard, whereas GMT is a timezone. UTC is preferred.
OK, ready for an example – here it can be very helpful to look at the earlier

mentioned “Inspect” (web developer) tools, since it lists these properties as well. Our
JavaScript will look something like this (remember to change the date here if you are
trying this after Oct 22nd 2017 8 AM UTC):

Example

document.cookie = “username=Hans; Expires=Sun, 22 Oct 2017 08:00:00 UTC;”;
alert(document.cookie);
And when inspecting the cookies with Google Chrome (for example), we will see

something like this:

3G E-LEARNING

194 Basic Computer Coding: Java Script

Here we can see the name, value, domain, path, expiration
date/time, size (number of characters of name + value),
HTTPOnly, Secure and SameSite. The alert on the other hand
only shows “username=Hans”.

A few things to note here, and the alert() message kind-a
points in that direction as well this:

 ■ document.cookie only holds the name-value pairs
that we are allowed to see,

 ■ properties of a value pair (like expiration) is not
returned to use when we read document.cookie.

The fact that we can see this info in the web developer
tool, is because these tools are part of your browser and allow
looking into the inner workings – which is great for developers
and for us while we are learning more about cookies.

6.2.3 Secure Cookie – Which only works when
HTTPS is being used

A secure cookie, also known as httpOnly cookie, is a type
of cookie that only works with HTTP/HTTPS and does not
work for scripting languages like JavaScript. Since it is only
used in storing information and used for hypertext transfer
protocol requests and data over the internet, exploits and
hacks made through scripting are unable to access them. So
a secure cookie’s main benefit is that it can stop theft through
cross-site scripting (XSS).

Making a cookie secure is pretty easy as well, we simply
add the option “Secure”.

username=Hans; Secure;
This one can be a tricky one to test with a local file or

your own web-server, since this one would only work over
a HTTPS connection which typically is not the case. JSFiddle
on the other hand uses HTTPS so it will work there;

document.cookie = “username=Hans; Secure;”;
alert(document.cookie);
The “Inspect” option in Google Chrome, might require

you to click the refresh button in the web developer tools
(as indicated before). You will now see a checkmark in the
“secure” column as well.

Whether
the cookie
must use a secure
connection
(https://). If this
value is TRUE,
the cookie can be
transferred only
across a secure
connection. The
default is FALSE.

Remember

Internet
is the
global system of
interconnected
computer
networks that
use the Internet
protocol suite
(TCP/IP) to
link devices
worldwide.

Keyword

Cookies

3G E-LEARNING

195

A secure cookie always has the secure attribute activated,
so it is used mostly via HTTPS and securely transmitted with
encrypted connections. The httpOnly flag in the secure cookie
header ensures that JavaScript or any non-HTTP methods cannot
access the cookie. The cookie works through the assistance of
two headers: set-cookie and cookie. The job of the set-cookie
header is to create a secured cookie on the user’s system in
response to an http request. While the cookie header is part
of the application with an http request sent to the server to
validate if there is a secure cookie that matches the domain and
path requested. The secure attribute and httpOnly flag work
together to ensure that the browser is able to restrict access to
the secure cookie data from malicious scripts that may have
infected the browser or the network. This mitigates many of
the damages that many XSS attacks can cause, specifically
those that target cookies.

6.2.4 HTTPOnly Cookie – The Cookie that can
only be accessed by the web-server

HttpOnly is a flag added to cookies that tell the browser not
to display the cookie through client-side scripts (document.
cookie and others). The agenda behind HttpOnly is not to spill
out cookies when an XSS flaw exists, as a hacker might be
able to run their script but the fundamental benefit of having
an XSS vulnerability (the ability steal cookies and hijack a
currently established session) is lost.

When you set a cookie with the HttpOnly flag, it informs
the browser that this special cookie should only be accessed
by the server. Any try to access the cookie from client side
script is strictly forbidden. Of course, this presumes you have:
A modern web browser. HttpOnly cookies were first presented
in Microsoft’s Internet Explorer 6 SP1, and as of now, this has
become a popular practice while setting session cookies.

The same goes for making a HTTPOnly cookie, we just
add “HttpCookie” – before doing so, you might want to delete
all cookies in the web developer tools of your browser.

document.cookie = “username=Hans; HttpOnly;”;
alert(document.cookie);

Whether
the cookie
must use the
HTTP protocol.
If this value is
TRUE, scripting
languages such
as JavaScript
cannot access
the cookie. The
default is FALSE.

Remember

3G E-LEARNING

196 Basic Computer Coding: Java Script

Now refreshing the cookies in the web developer tools should not show a cookie, and
neither does the “alert()” … which is correct. The cookie exists, but we just are not
allowed to access it with JavaScript.

6.2.5 SameSite Cookie – A Cookie only for this website

SameSite prevents the browser from sending this cookie along with cross-site requests.
The main goal is mitigate the risk of cross-origin information leakage. It also provides
some protection against cross-site request forgery attacks. SameSite cookies, if supported
by the browser, knows two variants: strict and lax. Here strict is the preferred setting,
since it closes down all cross domain access.

document.cookie = “username=Hans; SameSite = strict;”;
alert(document.cookie);
When you want to allow “some” cross domain access:
document.cookie = “username=Hans; SameSite = lax;”;
alert(document.cookie);
This again is a tricky one, since it might only show something with your local

web-server. A file or JSFiddle might not show anything in the “alert()”, but the web
developer tools will show that the cookie actually does exist.

6.2.6 Cookie Domain – For Cookies that are only for a specific
domain

The cookie domain is an important security feature, probably even more important
than the secure flag. It tells the browser that this cookie must only be sent to matching
domains. We can define a domain and path in which a cookie can be accessed. To limit
a cookie to a certain domain, you can try the following two examples. The first one
will use a random domain, example.com. The second example will use the domain
jshell.net – which is the domain used by JSFiddle.

Note: when entering “example.com” as the domain, the cookie can only be accessed
from that exact domain, but not from sub domains. When adding a period in front
of the domain, for example “.example.com” then the cookie can be accessed from sub
domains as well (i.e. forum.example.com, email.example.com, www.example.com, etc).

document.cookie = “username=Hans; domain = .example.com;”;
alert(document.cookie);
You will notice that there is no cookie and the alert is not showing anything

either – which again is correct since we are not allowed access to these cookies, since
we are working in the wrong domain (not example.com).

Cookies

3G E-LEARNING

197

document.cookie = “username=Hans; domain = .jshell.net;”;
alert(document.cookie);

This second example will generate a cookie that is visible
and the alert will show the cookie as well (when testing this
in JSFiddle, since JSFiddle runs in the jshell.net domain).

6.2.7 Cookie Domain and Path – For Cookies
that are only for a specific path and domain

We can narrow this down by adding a path, which would only
allow access to this cookie if we are in the right domain and
path (if Domain is not defined, the current domain will be
used). The following example the following tells the browser
to only access this cookie when we are in the path /secretdata
(on the current domain). So if we would be working on the
server with domain example.com, this would work for pages in
for example http://example.com/secretdata and it is sub paths
like for example http://example.com/secretdata/morestuff.
Obviously this is a little trickier to test – and you might not
need this ever.

It is recommended to add the “Path” to your cookies so
the browser will not get confused too much. By default the
cookie will be relative to the page path you are working with.
But if you want to access the cookie from another page on
your website, then the cookie might actually not be accessible.
If the cookie should be readable throughout your entire dome
then always add: “Path=/;“.

document.cookie = “username=Hans; path = /secretdata;”;
alert(document.cookie);
To illustrate how things get confusing, try the following

code. The first “username” cookie will be relative to this page,
the second “username” relative to the entire site. Since one
was defined without path (relative to this page) and one with
path (relative to the website), suddenly the browser has 2
cookies with the same name – which obviously might result
in unexpected behavior when trying to read the cookie.

Website
is a
collection of
related web
pages, including
multimedia
content, typically
identified with
a common
domain name,
and published on
at least one web
server.

Keyword

3G E-LEARNING

198 Basic Computer Coding: Java Script

1

2

3

4

5

6

7

document.cookie=”username=Hans”;

alert(document.cookie);

document.cookie=”username=John; Path=/;”;

alert(document.cookie);

document.cookie=”username=Banana;”;

alert(document.cookie);

In the example above: first we create the cookie username=Hans relative to this
page and the alert confirms this. The next cookie however is defined as a new (!)
cookies username=John with Path=\ (entire domain). The alert now actually shows 2
cookies with the same name: username=Hans; username=John. So which one do we use
in our code? In the 3rd part we change the value of one of the page relative cookies,
for example because we forgot to add the path, and guess what things become messy
real quick. Here you can see how important it can be to properly define the path.

6.2.8 Combining options – A Cookie jar of options

All these options can be combined in a single line as well, separated by semi colons,
even when it might make little or no sense:

document.cookie = “username=Hans;Path=/; Domain=email.example.com;
Expires=Sun, 22 Oct 2017 08:00:00 UTC; Secure; HttpOnly; SameSite = strict;”;

alert(document.cookie);
So this cookie holds the username=Hans value pair, can be used until Sunday

October 22nd, 8 AM UTC (GMT), and only be accessed in the email.example.com
domain with the path /secretdata, cross domain use is prohibited (SameSite), HTTPS is
required (secure) and it is a HTTPOnly cookie (which can only be read by the server).

Cookies

3G E-LEARNING

199

SUMMARY
 ■ A cookie is an item of data that a web server saves to your computer’s hard

disk via a web browser. A cookie is a piece of data that is stored on your
computer to be accessed by your browser.

 ■ A computer cookie, also referred to as an “HTTP cookie,” is a small text file
that contains a unique ID tag, placed on the user ’s computer by a website.

 ■ Cookies are relatively small text files that a web browser embeds on a
user’s computer. Cookies allow otherwise stateless HTTP communications to
emulate state (i.e., memory). Cookies are being replaced by somewhat newer
technologies such as local storage and session storage; however, cookies are
still widely used by many major websites today.

 ■ Cookies are necessary because the HTTP protocol that is used to transfer
webpages around the web is state-less. This means that web servers cannot
remember information about users throughout their travels, and so everyone
becomes anonymous.

 ■ The document has an object in JavaScript called document.cookie, which is
used to read and retrieve cookie data. It is a repository of Strings (though
not an array).

 ■ A cookie is a small bit of text that accompanies requests and pages as they
go between the Web server and browser.

 ■ A cookie is a named piece of data, created and used by a certain website
for a certain viewing user, and sent from the user’s web browser to the web
server each time a page is viewed.

 ■ A persistent cookie is a data file capable of providing websites with user
preferences, settings and information for future visits. Persistent cookies
provide convenient and rapid access to familiar objects, which enhances
the user experience (UX). A persistent cookie is also known as a stored or
permanent cookie.

 ■ A secure cookie, also known as httpOnly cookie, is a type of cookie that
only works with HTTP/HTTPS and does not work for scripting languages
like JavaScript.

 ■ HttpOnly is a flag added to cookies that tell the browser not to display the
cookie through client-side scripts (document.cookie and others).

3G E-LEARNING

200 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. Cookies were originally designed for

a. Client-side programming
b. Server-side programming
c. Both Client-side & Server-side programming
d. None of the mentioned

2. The Cookie manipulation is done using which property?
a. cookie
b. cookies
c. manipulate
d. none of the mentioned

3. Which of the following explains Cookies nature?
a. Non Volatile
b. Volatile
c. Intransient
d. Transient

4. Which attribute is used to extend the lifetime of a cookie?
a. higher-age
b. increase-age
c. max-age
d. lifetime

5. Which of the following defines the Cookie visibility?
a. document Path
b. localStorage
c. sessionStorage
d. all of the mentioned

6. Which of the following can be used to configure the scope of the Cookie visibility?
a. path
b. domain
c. both path and domain
d. server

Cookies

3G E-LEARNING

201

7. How can you set a Cookie visibility scope to localStorage?
a. /
b. %
c. *
d. //

8. Which of the following is a boolean cookie attribute?
a. bool
b. secure
c. `lookup
d. domain

9. Which of the following function is used as a consequence of not including
semicolons, commas or whitespace in the Cookie value?
a. encodeURIComponent()
b. encodeURI()
c. encodeComponent()
d. encode()

10. What is the constraint on the data per cookie?
a. 2 KB
b. 1 KB
c. 4 KB
d. 3 KB

REVIEW QUESTIONS
1. Write the use of cookies in JavaScript.
2. What is the structure of a cookie?
3. Discuss about setting, reading and erasing cookies.
4. How to set cookies with JavaScript.
5. Define the privacy and legislation of cookies.
6. Write the advantages and disadvantages of using cookies.

Check Your Result

1. (b) 2. (a) 3. (d) 4. (c) 5. (d)
6. (c) 7. (a) 8. (b) 9. (a) 10. (c)

3G E-LEARNING

202 Basic Computer Coding: Java Script

REFERENCES
1. Eckersley, Peter (17 May 2010). “How Unique Is Your Web Browser?” (PDF).

eff.org. Electronic Frontier Foundation. Archived from the original (PDF) on 15
October 2014. Retrieved 23 July 2014.

2. http://clubmate.fi/setting-and-reading-cookies-with-javascript/
3. http://notes.corewebprogramming.com/student/JavaScript.pdf
4. http://www.cs.toronto.edu/~mashiyat/csc309/Lectures/Session_Cookies.pdf
5. http://www.dis.uniroma1.it/~damore/was/slides2015/cookies.pdf
6. http://www.howtocreate.co.uk/tutorials/javascript/cookies
7. http://www.javascripter.net/faq/settinga.htm
8. http://www.javascriptkit.com/javatutors/cookiedetect.shtml
9. http://www.splessons.com/lesson/javascript-cookies/
10. http://www.webtoolkit.info/javascript_cookies.html#.W6srF2gzbIU
11. https://alexcican.com/post/set-cookies-javascript/
12. https://appendto.com/2017/01/cookies-with-javascript/
13. https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
14. https://plainjs.com/javascript/utilities/set-cookie-get-cookie-and-delete-cookie-5/
15. https://resources.infosecinstitute.com/securing-cookies-httponly-secure-flags/#gref
16. https://stackoverflow.com/questions/14573223/set-cookie-and-get-cookie-with-

javascript
17. https://tech.findmypast.com/creating-cookies-in-javascript/
18. https://wanago.io/2018/06/18/cookies-explaining-document-cookie-and-the-set-

cookie-header/
19. https://way2tutorial.com/javascript/javascript_cookies.php
20. https://www.bitdegree.org/learn/what-are-cookies/
21. https://www.codexpedia.com/javascript/javascript-create-read-and-delete-cookies/
22. https://www.guru99.com/cookies-in-javascript-ultimate-guide.html
23. https://www.ics.uci.edu/~lopes/teaching/inf212W15/lectures/EPS-OOP-JavaScript.

pdf
24. https://www.javatpoint.com/javascript-cookies
25. https://www.perlscriptsjavascripts.com/js/cookies.html
26. https://www.quackit.com/javascript/tutorial/javascript_functions.cfm
27. https://www.thesitewizard.com/javascripts/cookies.shtml
28. https://www.thonky.com/javascript-and-css-guide/set-cookie

Cookies

3G E-LEARNING

203

29. https://www.tutorialspoint.com/javascript/javascript_cookies.htm
30. https://www.tweaking4all.com/web-development/generic-web-design/cookies-in-ja

vascript/#UpdatingaCookiewithJavaScript
31. https://www.webcodeexpert.com/2013/03/what-is-cookie-advantages-and.html
32. https://www.wisegeek.com/what-are-computer-cookies.htm
33. https://www.yourhtmlsource.com/javascript/cookies.html

“Java is to JavaScript as ham is to hamster.”

– Jeremy Keith

After studying this chapter,
you will be able to:
1. Understand Java Script:

Classes
2. Discuss about Class

Body and Method
Definitions

3. Identify JavaScript:
Objects

LEARNING
OBJECTIVES

JAVA SCRIPT: CLASSES
AND OBJECTS

INTRODUCTION
JavaScript classes, introduced in ECMA Script 2015, are
primarily syntactical sugar over JavaScript’s existing
prototype-based inheritance. The class syntax does not

7
CHAPTER

3G E-LEARNING

206 Basic Computer Coding: Java Script

introduce a new object-oriented inheritance model to JavaScript.
JavaScript is a very flexible object-oriented language when it
comes to syntax. In this chapter you can find three ways of
defining and instantiating an object. Even if you have already
picked your favorite way of doing it, it helps to know some
alternatives in order to read other people’s code. It’s important
to note that there are no classes in JavaScript. Functions can be
used to somewhat simulate classes, but in general JavaScript
is a class-less language. Everything is an object. And when it
comes to inheritance, objects inherit from objects, not classes
from classes as in the “class”-ical languages.

7.1 JAVA SCRIPT: CLASSES
Classes are in fact “special functions”, and just as you

can define function expressions and function declarations,
the class syntax has two components: class expressions and
class declarations.

class Rectangle {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
}

Hoisting

An important difference between function declarations and
class declarations is that function declarations are hoisted
and class declarations are not. You first need to declare your
class and then access it, otherwise code like the following will
throw a Reference Error:

const p = new Rectangle(); // ReferenceError

class Rectangle {}

Class expressions

A class expression is another way to define a class. Class
expressions can be named or unnamed. The name given to a

Function
Declaration
defines a named
function variable
without requiring
variable
assignment.

Keyword

The class
expression
is one way to
define a class
in ECMAScript
2015. Similar
to function
expressions,
class expressions
can be named
or unnamed.
If named, the
name of the
class is local to
the class body
only. JavaScript
classes use
prototype-based
inheritance.

Keyword

Java Script: Classes and Objects

3G E-LEARNING

207

named class expression is local to the class’s body. (it can be
retrieved through the class’s (not an instance’s) .name property,
though)

// unnamed
let Rectangle = class {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
};
console.log(Rectangle.name);
// output: “Rectangle”

// named
let Rectangle = class Rectangle2 {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
};
console.log(Rectangle.name);
// output: “Rectangle2”

7.2 CLASS BODY AND METHOD
DEFINITIONS
The body of a class is the part that is in curly brackets {}.
This is where you define class members, such as methods or
constructor.

Strict mode

The body of a class is executed in strict mode, i.e., code written
here is subject to stricter syntax for increased performance,

In
computer
science, a syntax
error is an error
in the syntax
of a sequence
of characters
or tokens that
is intended to
be written in
a particular
programming
language.

Keyword

3G E-LEARNING

208 Basic Computer Coding: Java Script

some otherwise silent errors will be thrown, and certain keywords are reserved for
future versions of ECMAScript.

Constructor

The constructor method is a special method for creating and initializing an object created
with a class. There can only be one special method with the name «constructor” in a class. A
Syntax Error will be thrown if the class contains more than one occurrence of a constructor
method. A constructor can use the super keyword to call the constructor of the super class.

7.2.1 Prototype Methods

See also method definitions.
class Rectangle {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
 // Getter
 get area() {
 return this.calcArea();
 }
 // Method
 calcArea() {
 return this.height * this.width;
 }
}

const square = new Rectangle(10, 10);

console.log(square.area); // 100

Static methods

The static keyword defines a static method for a class. Static methods are called without
instantiating their class and cannot be called through a class instance. Static methods
are often used to create utility functions for an application.

Java Script: Classes and Objects

3G E-LEARNING

209

class Point {
 constructor(x, y) {
 this.x = x;
 this.y = y;
 }

 static distance(a, b) {
 const dx = a.x - b.x;
 const dy = a.y - b.y;

 return Math.hypot(dx, dy);
 }
}

const p1 = new Point(5, 5);
const p2 = new Point(10, 10);

console.log(Point.distance(p1, p2)); // 7.0710678118654755

7.2.2 Boxing with Prototype and Static Methods

When a static or prototype method is called without a value
for this, the value will be undefined inside the method. This
behavior will be the same even if the “use strict” directive
isn’t present, because code within the class body’s syntactic
boundary is always executed in strict mode.

class Animal {
 speak() {
 return this;
 }
 static eat() {
 return this;
 }
}

Strict
Mode is
a new feature
in ECMAScript
5 that allows
you to place a
program, or a
function, in a
“strict” operating
context.

Keyword

3G E-LEARNING

210 Basic Computer Coding: Java Script

let obj = new Animal();
obj.speak(); // Animal {}
let speak = obj.speak;
speak(); // undefined

Animal.eat() // class Animal
let eat = Animal.eat;
eat(); // undefined

If the above is written using traditional function-based syntax, then autoboxing
in method calls will happen in non–strict mode based on the initial this value. If the
initial value is undefined, this will be set to the global object.

Autoboxing will not happen in strict mode, the value remains as passed.
function Animal() { }

Animal.prototype.speak = function() {
 return this;
}

Animal.eat = function() {
 return this;
}

let obj = new Animal();
let speak = obj.speak;
speak(); // global object

let eat = Animal.eat;
eat(); // global object

Java Script: Classes and Objects

3G E-LEARNING

211

Instance Properties

Instance properties must be defined inside of class methods:
class Rectangle {
 constructor(height, width) {
 this.height = height;
 this.width = width;
 }
}
Static class-side properties and prototype data properties must be defined outside

of the ClassBody declaration:
Rectangle.staticWidth = 20;
Rectangle.prototype.prototypeWidth = 25;

7.2.3 Sub classing with extends

The extends keyword is used in class declarations or class expressions to create a class
as a child of another class.

class Animal {
 constructor(name) {
 this.name = name;
 }

 speak() {
 console.log(this.name + ‘ makes a noise.’);
 }
}

class Dog extends Animal {
 constructor(name) {
 super(name); // call the super class constructor and pass in the name parameter
 }

 speak() {
 console.log(this.name + ‘ barks.’);

3G E-LEARNING

212 Basic Computer Coding: Java Script

 }
}

let d = new Dog(‘Mitzie’);
d.speak(); // Mitzie barks.

If there is a constructor present in the subclass, it needs
to first call super () before using “this”.

One may also extend traditional function-based “classes”:
function Animal (name) {
 this.name = name;
}

Animal.prototype.speak = function () {
 console.log(this.name + ‘ makes a noise.’);
}

class Dog extends Animal {
 speak() {
 console.log(this.name + ‘ barks.’);
 }
}

let d = new Dog(‘Mitzie’);
d.speak(); // Mitzie barks.

Note that classes cannot extend regular (non-constructible)
objects. If you want to inherit from a regular object, you can
instead use Object.setPrototypeOf():

const Animal = {
 speak() {
 console.log(this.name + ‘ makes a noise.’);
 }

Those
substances
which have fixed
geometrical
shape are called
regular objects.

Keyword

Java Script: Classes and Objects

3G E-LEARNING

213

};

class Dog {
 constructor(name) {
 this.name = name;
 }
}

// If you do not do this you will get a TypeError when you invoke speak
Object.setPrototypeOf(Dog.prototype, Animal);
let d = new Dog(‘Mitzie’);
d.speak(); // Mitzie makes a noise.

Species

You might want to return Array objects in your derived array class MyArray. The
species pattern lets you override default constructors.

For example, when using methods such as map() that returns the default constructor,
you want these methods to return a parent Array object, instead of the MyArray object.
The Symbol.species symbol lets you do this:

class MyArray extends Array {
 // Overwrite species to the parent Array constructor
 static get [Symbol.species]() { return Array; }
}

let a = new MyArray(1,2,3);
let mapped = a.map(x => x * x);

console.log(mapped instanceof MyArray); // false
console.log(mapped instanceof Array); // true

Super class calls with super

The super keyword is used to call corresponding methods of super class. This is one
advantage over prototype-based inheritance.

3G E-LEARNING

214 Basic Computer Coding: Java Script

class Cat {
 constructor(name) {
 this.name = name;
 }

 speak() {
 console.log(`${this.name} makes a noise.`);
 }
}

class Lion extends Cat {
 speak() {
 super.speak();
 console.log(`${this.name} roars.`);
 }
}

let l = new Lion(‘Fuzzy’);
l.speak();
// Fuzzy makes a noise.
// Fuzzy roars.

Mix-ins

Abstract subclasses or mix-ins are templates for classes. An ECMAScript class can only
have a single superclass, so multiple inheritance from tooling classes, for example, is
not possible. The functionality must be provided by the superclass.

A function with a superclass as input and a subclass extending that superclass as
output can be used to implement mix-ins in ECMAScript:

let calculatorMixin = Base => class extends Base {
 calc() { }
};

let randomizerMixin = Base => class extends Base {
 randomize() { }

Java Script: Classes and Objects

3G E-LEARNING

215

};

A class that uses these mix-ins can then be written like this:
class Foo { }
class Bar extends calculatorMixin(randomizerMixin(Foo))

{ }

7.2.4 Using a Function

This is probably one of the most common ways. You define a
normal JavaScript function and then create an object by using
the new keyword. To define properties and methods for an
object created using function(), you use the this keyword, as
seen in the following example.

function Apple (type) {
 this.type = type;
 this.color = “red”;
 this.getInfo = getAppleInfo;
}

// anti-pattern! keep reading...
function getAppleInfo() {
 return this.color + ‘ ‘ + this.type + ‘ apple’;
}
To instantiate an object using the Apple constructor

function, set some properties and call methods you can do
the following:

var apple = new Apple(‘macintosh’);
apple.color = “reddish”;
alert(apple.getInfo());

Methods defined Internally

In the example above you see that the method getInfo() of the
Apple “class” was defined in a separate function getAppleInfo().
While this works fine, it has one drawback – you may end up
defining a lot of these functions and they are all in the “global

A
JavaScript
function is
defined with
the function
keyword,
followed by a
name, followed
by parentheses ().
Function names
can contain
letters, digits,
underscores,
and dollar signs
(same rules as
variables).

Keyword

3G E-LEARNING

216 Basic Computer Coding: Java Script

namespece”. This means you may have naming conflicts if you
(or another library you are using) decide to create another
function with the same name. The way to prevent pollution
of the global namespace, you can define your methods within
the constructor function, like this:

function Apple (type) {
 this.type = type;
 this.color = “red”;
 this.getInfo = function() {
 return this.color + ‘ ‘ + this.type + ‘ apple’;
 };
}
Using this syntax changes nothing in the way you

instantiate the object and use its properties and methods.

Methods Added To the Prototype

A drawback of is that the method getInfo() is recreated every
time you create a new object. Sometimes that may be what
you want, but it’s rare. A more inexpensive way is to add
getInfo() to the prototype of the constructor function.

function Apple (type) {
 this.type = type;
 this.color = “red”;
}

Apple.prototype.getInfo = function() {
 return this.color + ‘ ‘ + this.type + ‘ apple’;
};

7.2.5 Using Object Literals

Literals are shorter way to define objects and arrays in
JavaScript. To create an empty object using you can do:

var o = {};

In the
place of
number, if you
provide any
non-number
argument, then
the argument
cannot be
converted into
a number, it
returns NaN
(Not-a-Number).

Remember

Java Script: Classes and Objects

3G E-LEARNING

217

instead of the “normal” way:
var o = new Object();
For arrays you can do:
var a = [];
instead of:
var a = new Array();
So you can skip the class-like stuff and create an instance (object) immediately.

Here’s the same functionality as described in the examples, but using object literal
syntax this time:

var apple = {
 type: “macintosh”,
 color: “red”,
 getInfo: function () {
 return this.color + ‘ ‘ + this.type + ‘ apple’;
 }
}
In this case you don’t need to (and cannot) create an instance of the class, it already

exists. So you simply start using this instance.
apple.color = “reddish”;
alert(apple.getInfo());
Such an object is also sometimes called singleton. In “classical” languages such

as Java, singleton means that you can have only one single instance of this class at
any time, you cannot create more objects of the same class. In JavaScript (no classes,
remember?) this concept makes no sense anymore since all objects are singletons to
begin with.

Singleton using a Function

The third way presented in this article is a combination of the other two you already
saw. You can use a function to define a singleton object. Here’s the syntax:

var apple = new function() {
 this.type = “macintosh”;
 this.color = “red”;
 this.getInfo = function () {
 return this.color + ‘ ‘ + this.type + ‘ apple’;
 };

3G E-LEARNING

218 Basic Computer Coding: Java Script

}
apple.color = “reddish”;
alert(apple.getInfo());
new function(){...} does two things at the same time: define

a function (an anonymous constructor function) and invoke it
with new. It might look a bit confusing if you’re not used to
it and it’s not too common, but hey, it’s an option, when you
really want a constructor function that you’ll use only once
and there’s no sense of giving it a name.

7.3 JAVASCRIPT: OBJECTS
JavaScript is an Object Oriented Programming (OOP) language.
A programming language can be called object-oriented if it
provides four basic capabilities to developers −

 ■ Encapsulation − the capability to store related
information, whether data or methods, together in
an object.

 ■ Aggregation − the capability to store one object inside
another object.

 ■ Inheritance − the capability of a class to rely upon
another class (or number of classes) for some of its
properties and methods.

 ■ Polymorphism − the capability to write one function
or method that works in a variety of different ways.

Objects are composed of attributes. If an attribute contains
a function, it is considered to be a method of the object,
otherwise the attribute is considered a property.

7.3.1 Object Properties

Object properties can be any of the three primitive data types,
or any of the abstract data types, such as another object. Object
properties are usually variables that are used internally in the
object’s methods, but can also be globally visible variables that
are used throughout the page.

The syntax for adding a property to an object is −
objectName.objectProperty = propertyValue;

Object-
oriented
programming
(OOP): Object-
oriented
programming
(OOP) is a
programming
language model
organized
around objects
rather than
“actions” and
data rather than
logic.

Keyword

Java Script: Classes and Objects

3G E-LEARNING

219

For example − The following code gets the document title using the “title” property
of the document object.

var str = document.title;

7.3.2 Object Methods

Methods are the functions that let the object do something or let something be done
to it. There is a small difference between a function and a method – at a function
is a standalone unit of statements and a method is attached to an object and can be
referenced by the this keyword.

Methods are useful for everything from displaying the contents of the object to the
screen to performing complex mathematical operations on a group of local properties
and parameters.

For example − Following is a simple example to show how to use the write()
method of document object to write any content on the document.

document.write(“This is test”);

User-Defined Objects

All user-defined objects and built-in objects are descendants of an object called Object.
The new Operator
The new operator is used to create an instance of an object. To create an object,

the new operator is followed by the constructor method.
In the following example, the constructor methods are Object(), Array(), and Date().

These constructors are built-in JavaScript functions.
var employee = new Object();
var books = new Array(“C++”, “Perl”, “Java”);
var day = new Date(“August 15, 1947”);

The Object() Constructor

A constructor is a function that creates and initializes an object. JavaScript provides
a special constructor function called Object () to build the object. The return value of
the Object () constructor is assigned to a variable.

The variable contains a reference to the new object. The properties assigned to the
object are not variables and are not defined with the var keyword.

Example 1
Try the following example; it demonstrates how to create an Object.

3G E-LEARNING

220 Basic Computer Coding: Java Script

<html>
 <head>
 <title>User-defined objects</title>

 <script type=”text/javascript”>
 var book = new Object(); // Create the object
 book.subject = “Perl”; // Assign properties to the object
 book.author = “Mohtashim”;
 </script>

 </head>

 <body>

 <script type=”text/javascript”>
 document.write(“Book name is : “ + book.subject + “
”);
 document.write(“Book author is : “ + book.author + “
”);
 </script>

 </body>
</html>

Output

Book name is : Perl
Book author is : Mohtashim

Example 2

This example demonstrates how to create an object with a User-Defined Function.
Here this keyword is used to refer to the object that has been passed to a function.

<html>
 <head>

Java Script: Classes and Objects

3G E-LEARNING

221

 <title>User-defined objects</title>

 <script type=”text/javascript”>
 function book(title, author){
 this.title = title;
 this.author = author;
 }
 </script>

 </head>
 <body>

 <script type=”text/javascript”>
 var myBook = new book(“Perl”, “Mohtashim”);
 document.write(“Book title is : “ + myBook.title + “
”);
 document.write(“Book author is : “ + myBook.author + “
”);
 </script>

 </body>
</html>

Output

Book title is : Perl
Book author is : Mohtashim

Defining Methods for an Object

The previous examples demonstrate how the constructor creates the object and assigns
properties. But we need to complete the definition of an object by assigning methods
to it.

Example
Try the following example; it shows how to add a function along with an object.
<html>

3G E-LEARNING

222 Basic Computer Coding: Java Script

 <head>
 <title>User-defined objects</title>

 <script type=”text/javascript”>
 // Define a function which will work as a method
 function addPrice(amount){
 this.price = amount;
 }

 function book(title, author){
 this.title = title;
 this.author = author;
 this.addPrice = addPrice; // Assign that method as property.
 }
 </script>

 </head>
 <body>

 <script type=”text/javascript”>
 var myBook = new book(“Perl”, “Mohtashim”);
 myBook.addPrice(100);

 document.write(“Book title is : “ + myBook.title + “
”);
 document.write(“Book author is : “ + myBook.author + “
”);
 document.write(“Book price is : “ + myBook.price + “
”);
 </script>

 </body>
</html>

Output

Book title is : Perl

Java Script: Classes and Objects

3G E-LEARNING

223

Book author is : Mohtashim
Book price is : 100
The ‘with’ Keyword
The ‘with’ keyword is used as a kind of shorthand for referencing an object’s

properties or methods. The object specified as an argument to with becomes the default
object for the duration of the block that follows. The properties and methods for the
object can be used without naming the object.

Syntax
The syntax for with object is as follows −
with (object){
 properties used without the object name and dot
}
Example
Try the following example.
<html>
 <head>
 <title>User-defined objects</title>

 <script type=”text/javascript”>
 // Define a function which will work as a method
 function addPrice(amount){
 with(this){
 price = amount;
 }
 }

 function book(title, author){
 this.title = title;
 this.author = author;
 this.price = 0;
 this.addPrice = addPrice; // Assign that method as property.
 }
 </script>

3G E-LEARNING

224 Basic Computer Coding: Java Script

 </head>
 <body>

 <script type=”text/javascript”>
 var myBook = new book(“Perl”, “Mohtashim”);
 myBook.addPrice(100);

 document.write(“Book title is : “ + myBook.title + “
”);
 document.write(“Book author is : “ + myBook.author + “
”);
 document.write(“Book price is : “ + myBook.price + “
”);
 </script>

 </body>
</html>

Output

Book title is : Perl
Book author is : Mohtashim
Book price is : 100
JavaScript Native Objects
JavaScript has several built-in or native objects. These objects are accessible anywhere

in your program and will work the same way in any browser running in any operating
system.

Here is the list of all important JavaScript Native Objects −
 ■ JavaScript Number Object
 ■ JavaScript Boolean Object
 ■ JavaScript String Object
 ■ JavaScript Array Object
 ■ JavaScript Date Object
 ■ JavaScript Math Object
 ■ JavaScript RegExp Object

Java Script: Classes and Objects

3G E-LEARNING

225

7.3.3 Working with Objects

JavaScript is designed on a simple object-based paradigm.
An object is a collection of properties, and a property is an
association between a name (or key) and a value. A property’s
value can be a function, in which case the property is known
as a method. In addition to objects that are predefined in the
browser, you can define your own objects. It chapter describes
how to use objects, properties, functions, and methods, and
how to create your own objects.

Objects overview

Objects in JavaScript, just as in many other programming
languages, can be compared to objects in real life. The concept
of objects in JavaScript can be understood with real life, tangible
objects.

In JavaScript, an object is a standalone entity, with properties and type.
Compare it with a cup, for example. A cup is an object, with properties. A
cup has a color, a design, weight, a material it is made of, etc. The same way,
JavaScript objects can have properties, which define their characteristics.

Objects and Properties

 A JavaScript object has properties associated with it. A property
 of an object can be explained as a variable that is attached
 to the object. Object properties are basically the same as
 ordinary JavaScript variables, except for the attachment to
 objects. The properties of an object define the characteristics
 of the object. You access the properties of an object with a
:simple dot-notation

objectName.propertyName
Like all JavaScript variables, both the object name (which

could be a normal variable) and property name are case
sensitive. You can define a property by assigning it a value.
For example, let’s create an object named myCar and give it
properties named make, model, and year as follows:

var myCar = new Object();

An
operating
system (OS) is
system software
that manages
computer
hardware
and software
resources
and provides
common services
for computer
programs.

Keyword

3G E-LEARNING

226 Basic Computer Coding: Java Script

myCar.make = ‘Ford’;
myCar.model = ‘Mustang’;
myCar.year = 1969;
Unassigned properties of an object are undefined (and not null).
myCar.color; // undefined
Properties of JavaScript objects can also be accessed or set using a bracket notation

(for more details see property accessors). Objects are sometimes called associative
arrays, since each property is associated with a string value that can be used to access
it. So, for example, you could access the properties of the myCar object as follows:

myCar[‘make’] = ‘Ford’;
myCar[‘model’] = ‘Mustang’;
myCar[‘year’] = 1969;
An object property name can be any valid JavaScript string, or anything that can

be converted to a string, including the empty string. However, any property name that
is not a valid JavaScript identifier (for example, a property name that has a space or a
hyphen, or that starts with a number) can only be accessed using the square bracket
notation. This notation is also very useful when property names are to be dynamically
determined (when the property name is not determined until runtime). Examples are
as follows:

// four variables are created and assigned in a single go,
// separated by commas
var myObj = new Object(),
 str = ‘myString’,
 rand = Math.random(),
 obj = new Object();

myObj.type = ‘Dot syntax’;
myObj[‘date created’] = ‘String with space’;
myObj[str] = ‘String value’;
myObj[rand] = ‘Random Number’;
myObj[obj] = ‘Object’;
myObj[‘’] = ‘Even an empty string’;

console.log(myObj);

Java Script: Classes and Objects

3G E-LEARNING

227

Please note that all keys in the square bracket notation
are converted to String type, since objects in JavaScript can
only have String type as key type. For example, in the above
code, when the key obj is added to the myObj, JavaScript will
call the obj.toString() method, and use this result string as
the new key. You can also access properties by using a string
value that is stored in a variable:

var propertyName = ‘make’;
myCar[propertyName] = ‘Ford’;

propertyName = ‘model’;
myCar[propertyName] = ‘Mustang’;

You can use the bracket notation with for...in to iterate
over all the enumerable properties of an object. To illustrate
how this works, the following function displays the properties
of the object when you pass the object and the object›s name
as arguments to the function:

function showProps(obj, objName) {
 var result = ‘’;
 for (var i in obj) {
 // obj.hasOwnProperty() is used to filter out properties

from the object’s prototype chain
 if (obj.hasOwnProperty(i)) {
 result += objName + ‘.’ + i + ‘ = ‘ + obj[i] + ‘\n’;
 }
 }
 return result;
}
So, the function call showProps(myCar, “myCar”) would

return the following:
myCar.make = Ford
myCar.model = Mustang
myCar.year = 1969

Since
the mid-2000s,
additional server-
side JavaScript
implementations
have been
introduced, such
as Node.js in
2009.

Did You
Know?

3G E-LEARNING

228 Basic Computer Coding: Java Script

7.3.4 Enumerate the Properties of an Object

Starting with ECMAScript 5, there are three native ways to
list/traverse object properties:

for...in loops
This method traverses all enumerable properties of an

object and its prototype chain
Object.keys(o)
This method returns an array with all the own (not in

the prototype chain) enumerable properties’ names (“keys”)
of an object o.

Object.getOwnPropertyNames(o)
This method returns an array containing all own properties’

names (enumerable or not) of an object o.
Before ECMAScript 5, there was no native way to list all

properties of an object. However, this can be achieved with
the following function:

function listAllProperties(o) {
 var objectToInspect;
 var result = [];

 for(objectToInspect = o; objectToInspect !== null;

objectToInspect = Object.getPrototypeOf(objectToInspect)) {
 result = result.concat(Object.getOwnPropertyNames

(objectToInspect));
 }

 return result;
}
This can be useful to reveal “hidden” properties (properties

in the prototype chain which are not accessible through the
object, because another property has the same name earlier
in the prototype chain). Listing accessible properties only can
easily be done by removing duplicates in the array.

Enumerable
properties are
those properties
whose internal
enumerable
flag is set to
true, which
is the default
for properties
created
via simple
assignment or
via a property
initializer
(properties
defined
via Object.
defineProperty
and such default
enumerable to
false).

Keyword

Java Script: Classes and Objects

3G E-LEARNING

229

Creating New Objects

JavaScript has a number of predefined objects. In addition, you can create your own
objects. You can create an object using an object initializer. Alternatively, you can first
create a constructor function and then instantiate an object invoking that function in
conjunction with the new operator.

Using object Initializers

In addition to creating objects using a constructor function, you can create objects
using an object initializer. Using object initializers is sometimes referred to as creating
objects with literal notation. “Object initializer” is consistent with the terminology
used by C++.

The syntax for an object using an object initializer is:
var obj = { property_1: value_1, // property_# may be an identifier...
 2: value_2, // or a number...
 // ...,
 ‘property n’: value_n }; // or a string
where obj is the name of the new object, each property_i is an identifier (either

a name, a number, or a string literal), and each value_i is an expression whose value
is assigned to the property_i. The obj and assignment is optional; if you do not need
to refer to this object elsewhere, you do not need to assign it to a variable. (Note that
you may need to wrap the object literal in parentheses if the object appears where a
statement is expected, so as not to have the literal be confused with a block statement.)

Object initializers are expressions, and each object initializer results in a new object
being created whenever the statement in which it appears is executed. Identical object
initializers create distinct objects that will not compare to each other as equal. Objects
are created as if a call to new Object() were made; that is, objects made from object
literal expressions are instances of Object.

The following statement creates an object and assigns it to the variable x if and
only if the expression cond is true:

if (cond) var x = {greeting: ‘hi there’};
The following example creates myHonda with three properties. Note that the

engineproperty is also an object with its own properties.
var myHonda = {color: ‘red’, wheels: 4, engine: {cylinders: 4, size: 2.2}};
You can also use object initializers to create arrays.

3G E-LEARNING

230 Basic Computer Coding: Java Script

Using a constructor function

Alternatively, you can create an object with these two steps:
 ■ Define the object type by writing a constructor

function. There is a strong convention, with good
reason, to use a capital initial letter.

 ■ Create an instance of the object with new.
To define an object type, create a function for the object

type that specifies its name, properties, and methods. For
example, suppose you want to create an object type for cars.
You want this type of object to be called Car, and you want
it to have properties for make, model, and year. To do this,
you would write the following function:

function Car(make, model, year) {
 this.make = make;
 this.model = model;
 this.year = year;
}
Notice the use of this to assign values to the object’s

properties based on the values passed to the function.
Now you can create an object called mycar as follows:

var mycar = new Car(‘Eagle’, ‘Talon TSi’, 1993);

This statement creates mycar and assigns it the specified
values for its properties. Then the value of mycar.make is
the string «Eagle», mycar.year is the integer 1993, and so on.

You can create any number of Car objects by calls to new.
For example,

var kenscar = new Car(‘Nissan’, ‘300ZX’, 1992);
var vpgscar = new Car(‘Mazda’, ‘Miata’, 1990);
An object can have a property that is itself another object.

For example, suppose you define an object called person as
follows:

function Person(name, age, sex) {
 this.name = name;
 this.age = age;

Add an
image
inside a container
and add inputs
(with a matching
label) for each
field. Wrap a
<form> element
around them
to process the
input. You can
learn more about
how to process
input in our PHP
tutorial.

Remember

Java Script: Classes and Objects

3G E-LEARNING

231

 this.sex = sex;
}
and then instantiate two new person objects as follows:

var rand = new Person(‘Rand McKinnon’, 33, ‘M’);
var ken = new Person(‘Ken Jones’, 39, ‘M’);
Then, you can rewrite the definition of Car to include an owner property that

takes a person object, as follows:
function Car(make, model, year, owner) {
 this.make = make;
 this.model = model;
 this.year = year;
 this.owner = owner;
}
To instantiate the new objects, you then use the following:
var car1 = new Car(‘Eagle’, ‘Talon TSi’, 1993, rand);
var car2 = new Car(‘Nissan’, ‘300ZX’, 1992, ken);
Notice that instead of passing a literal string or integer value when creating the

new objects, the above statements pass the objects rand and ken as the arguments
for the owners. Then if you want to find out the name of the owner of car2, you can
access the following property:

car2.owner.name
Note that you can always add a property to a previously defined object. For

example, the statement
car1.color = ‘black’;
adds a property color to car1, and assigns it a value of “black.” However, this

does not affect any other objects. To add the new property to all objects of the same
type, you have to add the property to the definition of the Car object type.

Using the Object. Create Method

Objects can also be created using the Object.create() method. This method can be very
useful, because it allows you to choose the prototype object for the object you want
to create, without having to define a constructor function.

// Animal properties and method encapsulation
var Animal = {

3G E-LEARNING

232 Basic Computer Coding: Java Script

 type: ‘Invertebrates’, // Default value of properties
 displayType: function() { // Method which will display type of Animal
 console.log(this.type);
 }
};

// Create new animal type called animal1
var animal1 = Object.create(Animal);
animal1.displayType(); // Output:Invertebrates

// Create new animal type called Fishes
var fish = Object.create(Animal);
fish.type = ‘Fishes’;
fish.displayType(); // Output:Fishes

7.3.5 Inheritance

All objects in JavaScript inherit from at least one other object. The object being inherited
from is known as the prototype, and the inherited properties can be found in the
prototype object of the constructor.

Indexing Object Properties

You can refer to a property of an object either by its property name or by its ordinal
index. If you initially define a property by its name, you must always refer to it by
its name, and if you initially define a property by an index, you must always refer
to it by its index.This restriction applies when you create an object and its properties
with a constructor function (as we did previously with the Car object type) and when
you define individual properties explicitly (for example, myCar.color = “red”). If you
initially define an object property with an index, such as myCar[5] = “25 mpg”, you
subsequently refer to the property only as myCar[5].

The exception to this rule is array-like object reflected from HTML, such as the
forms array-like object. You can always refer to objects in these array-like objects by
either their ordinal number (based on where they appear in the document) or their
name (if defined). For example, if the second <FORM> tag in a document has a NAME
attribute of “myForm”, you can refer to the form as document.forms[1] or document.
forms[“myForm”] or document.forms.myForm.

Java Script: Classes and Objects

3G E-LEARNING

233

Defining properties for an object type

You can add a property to a previously defined object type by using the prototype
property. This defines a property that is shared by all objects of the specified type, rather
than by just one instance of the object. The following code adds a color property to all
objects of type Car, and then assigns a value to the color property of the object car1.

Car.prototype.color = null;
car1.color = ‘black’;

Creating Objects with Constructor Functions

Object literal notation, such as var x = {}, is preferred if all you need is a single object
and there is no need for multiple instances. However, if you need multiple instances,
it is better to use a constructor function. Here is an example of a book constructor
function.

1. function Book(isbn) {
2. this.isbn = isbn;
3. this.getIsbn = function () {
4. return “Isbn is “ + this.isbn;
5. };
6. }
Properties, including methods, are assigned to the ‘this’ value in the function’s body.

In the above example a property and a function are assigned. Also notice that this
function is capitalized (i.e. Book); constructor functions are capitalized by convention
in JavaScript

To create a new object with this function you use the new operator followed by a
function invocation. A function that is invoked this way is called a constructor function
whose main purpose is to create and initialize a new object. Here we are creating a
new book object:

1. var book = new Book(“901-3865”);
2. alert(book.getIsbn()); // => Isbn is 901-3865
When new Book() is invoked, JavaScript creates a new empty Object and sets an

internal property which specifies that the new object’s prototype is Book, that is, the
newly created object inherits the prototype of the function. It then passes the Book()
function two arguments: the new object as this (as a hidden parameter) and the “901-
3865” as isbn. The function, in turn, sets the object’s isbn property to «901-3865» and
also adds the getIsbn() method to the object. JavaScript returns the newly created object
to the caller which then assigns the new object to the book variable.

3G E-LEARNING

234 Basic Computer Coding: Java Script

Each time you invoke new Book(), a new getIsbn method is created which is
a rather inefficient because the method is the same for all book instances. A better
approach is to let all instances share a single method which can be accomplished by
adding getIsbn to the prototype of Book rather than the Book function itself. Here is
how this is done:

1. function Book(isbn) {
2. this.isbn = isbn;
3. }
4. Book.prototype.getIsbn = function () {
5. return “Isbn is “ + this.isbn;
6. };
7. var book = new Book(“901-3865”);
8. lert(book.getIsbn()); // => Isbn is 901-3865

Java Script: Classes and Objects

3G E-LEARNING

235

SUMMARY
 ■ JavaScript classes, introduced in ECMA Script 2015, are primarily JavaScript

classes, introduced in ECMA Script 2015, are primarily syntactical sugar over
JavaScript’s existing prototype-based inheritance. The class syntax does not
introduce a new object-oriented inheritance model to JavaScript. JavaScript is
a very flexible object-oriented language when it comes to syntax.

 ■ Classes are in fact “special functions”, and just as you can define function
expressions and function declarations, the class syntax has two components:
class expressions and class declarations.

 ■ A class expression is another way to define a class. Class expressions can be
named or unnamed.

 ■ The body of a class is the part that is in curly brackets {}. This is where you
define class members, such as methods or constructor.

 ■ The static keyword defines a static method for a class. Static methods are called
without instantiating their class and cannot be called through a class instance.
Static methods are often used to create utility functions for an application.

 ■ A constructor is a function that creates and initializes an object. JavaScript
provides a special constructor function called Object () to build the object.
The return value of the Object () constructor is assigned to a variable.

 ■ JavaScript is designed on a simple object-based paradigm. An object is a
collection of properties, and a property is an association between a name
(or key) and a value. A property’s value can be a function, in which case the
property is known as a method.d.

3G E-LEARNING

236 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. An object’s ……………………….. is a reference to another object from which

properties are inherited.
a. Characteristics
b. Prototype
c. Class
d. Extensible flag

2. An object’s …………………… is a string that categorizes the type of an object.
a. Characteristics
b. Prototype
c. Class
d. Extensible flag

3. An object’s ………………………. specifies whether new properties may be added
to the object.
a. Characteristics
b. Prototype
c. Class
d3. Extensible flag

4. A ……………………… is an object or class or objects defined by the ECMAScript
specification which includes arrays, functions, dates and regular expressions.
a. native object
b. host object
c. user defined object
d. remote object

5. A ……………………. object is any object created by the execution of JavaScript
code.
a. native
b. host
c. user defined
d. remote

6. Every object contains three object attributes that are _______.
a. Prototype, class, object’s extensible flag
b. Prototype, class, objects’ parameters

Java Script: Classes and Objects

3G E-LEARNING

237

c. Class, parameters, object’s extensible flag
d. Native object, Classes and Interfaces and Object’s extensible flag

7. `The linkage of a set of prototype objects is known as______
a. prototype stack
b. prototype
c. prototype class
d. prototype chain

8. To know about an object, whether the object is a prototype (or a part of a
prototype chain) of another object, the user can use_______
a. ==operator
b. equals() method
c. === operator
d. isPrototypeOf() method

REVIEW QUESTIONS
1. How to use classes in JavaScript.
2. How to create an object with a User-defined function.
3. How the constructor creates the object and assigns properties.
4. Focus on the object () constructor.
5. Discuss about JavaScript native objects.

Check Your Result

1. (b) 2. (c) 3. (d) 4. (a) 5. (c)
6. (a) 7. (d) 8. (d)

3G E-LEARNING

238 Basic Computer Coding: Java Script

REFERENCES
1. Bruce, Kim B. (2002). Foundations of Object-Oriented Languages: Types and

Semantics. Cambridge, MA: MIT Press. ISBN 978-0-262-02523-2.
2. Jamrich, Parsons, June (2015-06-22). New perspectives computer concepts, 2016.

Comprehensive. Boston, MA. ISBN 9781305271616. OCLC 917155105.
3. Thomas; Hunt. “Classes, Objects, and Variables”. Programming Ruby: The

Pragmatic Programmer’s Guide. Ruby-Doc.org. Retrieved 2012-04-26.
4. Thomas; Hunt. “Classes and Objects”. Programming Ruby: The Pragmatic

Programmer’s Guide. Ruby-Doc.org. Retrieved 2012-05-08.

“Technically, web browsers can control what users see, and sites using Javascript can overwrite
anything coming from the original authors. Browsers heavily utilize Javascript to create an interactive
Internet; sites like YouTube, Facebook, and Gmail could be crippled without it.”

– — Ben Shapiro

After studying this chapter,
you will be able to:
1. Browser Object Model
2. the windows objects
3. javascript history object
4. navigator object
5. location object
6. screen object

LEARNING
OBJECTIVES

JAVASCRIPT BOM

INTRODUCTION
BOM refers to the browser object model in JavaScript. BOM
is used on the Windows screen and communicates with
the browser. BOM refers to Windows objects in JavaScript.

8
CHAPTER

3G E-LEARNING

240 Basic Computer Coding: Java Script

Modern browsers have implemented the same methods and
properties for JavaScript interactions, often referred to as BOM’s
methods and properties. A window object is automatically
created by the browser.

Various types of BOM (Browser Object Model)
 ■ Windows Object
 ■ History Object
 ■ Navigator Object
 ■ Location Object
 ■ Screen Object
 ■ Storage Object

8.1 BROWSER OBJECT MODEL
The Browser Object Model (BOM) is used to interact with
the browser.

The default object of browser is window means you can
call all the functions of window by specifying window or
directly. For example:

1. window.alert(“hello javatpoint”);

is same as:

1. alert(“hello javatpoint”);

You can use a lot of properties (other objects) defined
underneath the window object like document, history, screen,
navigator, location, inner Height, innerWidth,

In 2020,
an estimated 4.9
billion people
used a browser.

Did You
Know?

The
document
object represents
an html
document. It
forms DOM
(Document
Object Model).

Remember

JavaScript BOM

3G E-LEARNING

241

8.2 THE WINDOWS OBJECTS
The window object represents a window in browser. An object
of window is created automatically by the browser.

Window is the object of browser, it is not the object of
javascript. The javascript objects are string, array, date etc.

8.2.1 Methods of Window Object

The important methods of window object are as follows:

Methods Description
Alert () It displays the popup messages with the ok

button.
Confirm () It displays the message on the alert box with

the OK and cancel button.
Prompt () It gets input from the user to display a text

message in the dialog box.
Open () Opens the current window.
Close () Closes the current window.
moveTO () Moves the current window.
resizeTo () Resizes the current window.
setTimeout
()

It performs an action after a specified time, like
calling a function, evaluating expressions, etc.

8.2.2 Example of Windows Object Methods

We can see the example for all methods, one by one.

The alert () method

This method is used to display an alert message to the user.
It displays the alert box containing a message with the ok
button to proceed. The alert () method takes a single parameter,
which is the text displayed in the popup box.

Example

Try it yourself:
1. <!DOCTYPE html>

Browser
is
application
software for
accessing the
World Wide Web.

Message
is
an object of
communication.

Keyword

Keyword

If html
document
contains frame or
iframe, browser
creates additional
window objects
for each frame.

Remember

3G E-LEARNING

242 Basic Computer Coding: Java Script

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5.

6. <title>Alert Method</title>

7. </head>

8. <body>

9. <h2>BOM Windows alert () method</h2>

10. <script type=”text/javascript”>

11. function atl()

12. {

13. alert(“Welcome to C-sharp Cornner”); //alert method

14. }

15. </script>

16. <input type=”button” value=”click_Here” onclick=”atl();”>

17. </body>

18. </html>

Output

JavaScript BOM

3G E-LEARNING

243

The confirm () method

This method is used to display an alert message to the user and verify or accept
something. It displays the alert box containing a message with two buttons, OK and
cancel button to proceed. When the user clicks OK, the box returns true. If the user
clicks Cancel, the box is invalid.

Example

Try it yourself:
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>Confirm Message</title>

6. </head>

7. <body>

8. <h3>BOM windows objectconfirm () method</h3>

9. <script type=”text/javascript”>

10. function msg(){

11. var confm= confirm(“Are u sure?”); //confirmation

12. if(v==true)

13. {

14. alert(“ok”);

15. }

16. else

17. {

18. alert(“cancel”);

19. }

3G E-LEARNING

244 Basic Computer Coding: Java Script

20. }

21. </script>

22. <input type=”button” value=”Back” onclick=”msg();”/>

23. </body>

24. </html>

Output

The Prompt () Method

The box on a line is often used to evaluate user input before
entering a page. When the Instant Box pops up, the user must
click OK or Cancel to enter the input value and proceed. It
has a message and text field. When the user clicks OK, the
box returns the input value. When the user clicks Cancel, it
returns null.

Example

Try it yourself:
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title>Prompt </title>

5. </head>

User is
a person
who utilizes a
computer or
network service.

Keyword

JavaScript BOM

3G E-LEARNING

245

6. <body>

7. <h3>BOM windows Object Prompt () Method</h3>

8. <script type=”text/javascript”>

9. function pmpt()

10. {

11. var input= prompt(“Who are you?”);// input box

12. alert(“I am “+input);

13. }

14. </script>

15. <input type=”button” value=”click” onclick=”pmpt();”>

16. </body>

17. </html>

Output

Afterward, enter a name and the dialog box will be displayed.

3G E-LEARNING

246 Basic Computer Coding: Java Script

The Open () Method

This displays its content in a new tab or window. In the below
example, click the button and it will redirect the new window.

Example

Try it yourself:
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>BOM Open () Method</title>

6. </head>

7. <body>

8. <h3>Open () Method</h3>

9. <script type=”text/javascript”>

10. function msg()

11. {

12. open(“https:www.c-sharpcorner.com”); //open the link
next window

13. }

Window
is an
opening in
a wall, door,
roof, or vehicle
that allows the
passage of light
and may also
allow the passage
of sound and
sometimes air.

Keyword

JavaScript BOM

3G E-LEARNING

247

14. </script>

15. <input type=”button” value=”Click_to_Next” onclick=”msg()”/>

16. </body>

17. </html>

Output

The setTimeout () Method

This method is performing the action on after the given milliseconds, like calling
function, evaluating expressions etc.

Example

Try it yourself:
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

3G E-LEARNING

248 Basic Computer Coding: Java Script

5. <title>Windows Methods</title>

6. </head>

7. <body>

8. <h2>Windows Objects SetTimeout() Methods </h2>

9. <script type=”text/javascript”>

10. function msg()

11. {

12. setTimeout(

13. function()

14. {

15. alert(“Welcome to C-sharp corner after 2 seconds”)

16. },2000);

17. }

18. </script>

19. <input type=”button” value=”click” onclick=”msg()”>

20. </body>

21. </html>

Output

JavaScript BOM

3G E-LEARNING

249

8.2.3 Properties in Windows Objects

Property Descriptions
innerHeight It returns the height of the browser window.
innerWidth It returns the width of the browser window.
name Specifies the name of the window.

8.2.4 Example of Windows Object Properties

The innerHeight and innerWidth

The windows object properties return the height and width of the browser content.
We cannot change in height and width as these properties are read-only.

Syntax

1. windows.innerHeight

2. windows.innerWidth

Example

Try it yourself,
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>BOM property</title>

6. </head>

7. <body>

8. <h2>Browser Object Model (BOM) properties</h2>

9. <script type=”text/javascript”>

3G E-LEARNING

250 Basic Computer Coding: Java Script

10. function prpt()

11. {

12. document.write(“The innerHeight is :”+window.innerHeight+”
”); //inner
height

13. document.write(“The innerWidth is :”+window.innerWidth); // inner width

14. }

15. </script>

16. <input type=”button” value=”innerHeight_Width” onclick=”prpt()”>

17. </body>

18. </html>

Output

The Name Property

The name property will return the name of the windows. This property is often used
to change the name of the window after the window is created.

JavaScript BOM

3G E-LEARNING

251

Example

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>BOM property</title>

6. </head>

7. <body>

8. <h2>Browser Object Model (BOM) name properties</
h2>

9. <script type=”text/javascript”>

10. function prt()

11. {

12. window.name = “c-sharp corner”;

13. document.write(“The Name is :”+window.name); //
windows name

14. }

15. </script>

16. <input type=”button” value=”Click_window_name”
onclick=”prt()”>

17. </body>

18. </html>

Property
is a
special sort of
class member,
intermediate in
functionality
between a field
(or data member)
and a method.

Keyword

3G E-LEARNING

252 Basic Computer Coding: Java Script

Output

8.3 JAVASCRIPT HISTORY OBJECT
The JavaScript history object represents an array of URLs
visited by the user. By using this object, you can load previous,
forward or any particular page.

The history object is the window property, so it can be
accessed by:

1. window.history

Or,

1. history

Let’s see the different usage of history object.

1. history.back();//for previous page

2. history.forward();//for next page

3. history.go(2);//for next 2nd page

4. history.go(-2);//for previous 2nd page

8.3.1 Property of JavaScript History Object

There are only 1 property of history object.

JavaScript BOM

3G E-LEARNING

253

No. Property Description
1 length returns the length of the history URLs.

8.3.2 Methods of JavaScript History Object

There are only 3 methods of history object.

No. Method Description
1 forward() loads the next page.
2 back() loads the previous page.
3 go() loads the given page number.

8.4 NAVIGATOR OBJECT
Navigator object is used for browser detection. It can be used to get browser information
such as version and browser type.

In the Navigator object has the two features,
 ■ Methods and
 ■ Properties

8.4.1 Methods in Navigator Object

The following table contains the methods of the Navigator object in JavaScript.
 ■ Methods
 ■ Description
 ■ javaEnabled ()

It Specifies whether or not Java is enabled in the browser.

 ■ taintEnabled ()
It Specifies whether the data field is enabled in the browser.

8.4.2 Examples of Navigator object Methods

We can see the examples of location methods one by one,

3G E-LEARNING

254 Basic Computer Coding: Java Script

The javaEnabled () Method

The Navigator javaEnabled () method is used to return a Boolean value that indicates
whether or not Java is enabled in a browser. If Java is enabled in the browser it returns
true else it returns false.

Syntax

navigator.javaEnabled ()

Example

The following programs illustrate the navigator javaEnabled () method in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>Navigator object Methods</title>

6. </head>

7. <body>

8. <h2>The javaEnabled () Method</h2>

9. <button ondblclick=”java()”>Click_To_Check</button>

10. <p id=”javaEnabled”></p>

11. <script type=”text/javascript”>

12. function java() {

13. var ch =”Java Enabled is : “ + navigator.javaEnabled();

14. document.getElementById(“javaEnabled”).innerHTML = ch;

15. }

16. </script>

17. </body>

JavaScript BOM

3G E-LEARNING

255

18. </html>

Output

The taintEnabled ()Method

The Navigator taintEnable () method was best avoided in Javascript version 1.5, and
was later removed to prevent future run-time errors. It returns a Boolean value false
value, specifying whether the data-tainting feature is enabled in the browser.

Syntax

navigator.taintEnabled ()

Example

The following programs illustrate the navigator taintEnabled () method in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>Navigator object Methods</title>

6. </head>

7. <body>

8. <h2>The taintEnabled () Method</h2>

9. <input type=”button”value=”Click to check” onClick=”taint()”>

10.

3G E-LEARNING

256 Basic Computer Coding: Java Script

11. <script language=”JavaScript”>

12. function taint() {

13. var temp = navigator.taintEnabled();

14. alert(window.navigator.taintEnabled());

15. }

16. </script>

17. </body>

18. </html>

Output

8.4.3 Property in Navigator Object

The following table contains the properties of the Navigator object in JavaScript.

Properties Descriptions
appName It specifies the name of the browser.
appVersion It specifies the version of the browser being.
appcodeName It specifies code name of the browser
cookieEnabled It specifies whether cookies are enabled in the browser or not
onLine It returns true if the browser is online otherwise false.
geoLocation It provides a geolocation object that can be used to track the user’s status
language It returns the browser language
platform It returns which platform browser complied

JavaScript BOM

3G E-LEARNING

257

8.4.4 Examples of Navigator Object Properties

We can see the examples of location properties one by one,

The appName property

It is used to return the name of the browser. This is a read-only property and the
values it provides vary from browser to browser.

Syntax

navigator.appName

Example

The following programs illustrate the navigator appName property in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>appName</title>

6. </head>

7. <body>

8. <h2>BOM Windows object Navigator appName property in JavaScript</h2>

9. <script>

10. document.write(“Navigator.appName: “+navigator.appName);

11. </script>

12. </body>

13. </html>

3G E-LEARNING

258 Basic Computer Coding: Java Script

Output

The appcodeName property

It is used to return the code name of the browser. This is a read-only property and
all modern browsers provide.

Syntax

navigator.appcodeName

Example

The following programs illustrate the navigator appcodeName property in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>appcodeName</title>

6. </head>

7. <body>

8. <h2>BOM Windows object Navigator appcodeName property in JavaScript</h2>

9. <script>

10. document.write(“Navigator.appCodeName: “+navigator.appCodeName);

11. </script>

12. </body>

13. </html>

JavaScript BOM

3G E-LEARNING

259

Output

The appversion property

In Navigator appVersion specifies the version of the browser. It returns a string
representing the version information of the browser.

Syntax

navigator.appversion

Example

The following programs illustrate the navigator appversion property in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>appversion</title>

6. </head>

7. <body>

8. <h2>BOM Windows object Navigator appversion property in JavaScript</h2>

9. <script>

10. document.write(“Navigator.appVersion: “+navigator.appVersion);

11. </script>

12. </body>

3G E-LEARNING

260 Basic Computer Coding: Java Script

13. </html>

Output

The cookieEnabled property

It returns true if the Navigator cookie is enabled, otherwise it is false. It returns a
Boolean value that indicates whether or not the browser has enabled cookies.

Syntax

navigator. cookieEnabled

Example

The following programs illustrates the navigator cookieEnabled property in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>cookieEnabled</title>

6. </head>

7. <body>

8. <h2>BOM Windows object Navigator cookieEnabled property in JavaScript</h2>

9. <script>

10. document.write(“Navigator.cookieEnabled: “+navigator.cookieEnabled);

11. </script>

JavaScript BOM

3G E-LEARNING

261

12. </body>

13. </html>

Output

The onLine property

The Navigator Online property is used to return a Boolean value indicating whether
a browser is online or false.

Syntax

navigator.onLine

Example

The following programs illustrate the navigator onLine property in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>onLine</title>

6. </head>

7. <body>

8. <h2>BOM Windows object Navigator onLine property in JavaScript</h2>

9. <script>

3G E-LEARNING

262 Basic Computer Coding: Java Script

10. document.write(“Navigator.onLine: “+navigator.onLine);

11. </script>

12. </body>

13. </html>

Output

The geoLocation property

The Navigator geoLocation property provides a geolocation object that can be used
to track the user’s status.

Syntax

navigator. geoLocation

Example

The following programs illustrate the navigator geolocation property in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>geoLocation</title>

6. </head>

7. <body>

JavaScript BOM

3G E-LEARNING

263

8. <h2>BOM Windows object Navigator geoLocation property in JavaScript</h2>

9. <script>

10. document.write(“Navigator.appName: “+navigator.geolocation);

11. </script>

12. </body>

13. </html>

Output

The language property

TheNavigator language property is used to return the language version of the browser.
E.g. en-us, fr, en, de.

Syntax

navigator. language

Example

The following programs illustrate the navigator language property in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>language</title>

3G E-LEARNING

264 Basic Computer Coding: Java Script

6. </head>

7. <body>

8. <h2>BOM Windows object Navigator language property in JavaScript</h2>

9. <script>

10. document.write(“Navigator.language: “+navigator.language);

11. </script>

12. </body>

13. </html>

Output

The platform property

The Navigator Platform property is used to redirect the browser to the compiled site.
It returns a string representing the browser’s site. E.g. win32, win16, linuxi686

Syntax

navigator. platform

Example

The following programs illustrate the navigator platform property in HTML.
1. <!DOCTYPE html>

2. <html>

JavaScript BOM

3G E-LEARNING

265

3. <head>

4. <meta charset=”utf-8”>

5. <title>platform</title>

6. </head>

7. <body>

8. <h2>BOM Windows object Navigator platform property in JavaScript</h2>

9. <script>

10. document.write(“Navigator.platform: “+navigator.platform);

11. </script>

12. </body>

13. </html>

Output

8.5 LOCATION OBJECT
The Location object window in JavaScript enables it to save the information about
the current page location or address (URL), and redirect the browser to a new page.

A location object is part of the window object, it accesses through the windows.
location. There is no general standard for the location object, but all major browsers
support the location object.

The location object has two features:
 ■ Methods and
 ■ Properties

3G E-LEARNING

266 Basic Computer Coding: Java Script

8.5.1 Methods in Location Object

The following table contains the methods of location objects in JavaScript.

Methods Description
assign () It Loads a new document on a web page.
reload () Using location.href property, reload the current

document.
replace () This replaces the current document with the specified

new document. Not possible to go back to the
previous document using your browser ‘back’ button.

8.5.2 Examples of Location object Methods

We can see the examples of location methods one by one:

The assign () Method

The location assign () method is used for loading a new document in a new page. It
is not possible to go back to the previous document using your browser ‘back’ button.
Syntax

1. location.assign (URL)

Example

The following programs illustrate the location assign () method in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>assign()</title>

6. </head>

7. <body>

8. <h2>Location assign() Method</h2>

JavaScript BOM

3G E-LEARNING

267

9. <button ondblclick=”assign()”></button>

10. <script>

11. function assign() {

12. location.assign(“www.c-sharpcorner.com”); //loads a new page

13. }

14. </script>

15. </body>

16. </html>

17.

Output

The reload () Method

This method reloads the current document, used in the location.href property. It’s like
the refresh button in the browser.

Syntax

1. location.reload(URL)

Example

The following programs illustrate the location reload () method in HTML.
1. <!DOCTYPE html>

3G E-LEARNING

268 Basic Computer Coding: Java Script

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>reload()</title>

6. </head>

7. <body>

8. <h2>reload() Method</h2>

9. <button onlclick=”reload()”>reload</button>

10. <script>

11. function reload() {

12. location.reload(); //reload a page

13. }

14. </script>

15. </body>

16. </html>

17.

Output

JavaScript BOM

3G E-LEARNING

269

The replace () Method

This replaces the current document with the specified new document. The replace ()
method in the location object is used to replace the current page with another page.

Syntax

1. location.replace(URL)

Example

The following programs illustrate the location replace () method in HTML.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset=”utf-8”>

5. <title>replace()</title>

6. </head>

7. <body>

8. <h2>replace() Method</h2>

9. <button onlclick=”replace()”>replace</button>

10. <script>

11. function replace() {

12. location.replace(“https://www.c-sharpcorner.com”); //replace the current
page to new page

13. }

14. </script>

15. </body>

16. </html>

17.

3G E-LEARNING

270 Basic Computer Coding: Java Script

Output

8.5.3 Property in Location Object

The following table contains the properties of location objects in JavaScript.

Properties Description
herf The location href property in HTML is used to set or redirect the current (URL) of the

current page.

hash The string beginning with # specifies an anchor name in an HTTP URL.

host It refers to a string that includes the hostname and port strings

hostname It Provides the domain name, sub-domain name and server name of the web host.
search It specifies the search area of the URL.
port It returns the port number of the current page.
pathname It returns the pathname (URL) and file name (URL) of the current page.

8.5.4 Examples of Location object Properties

We can see the below examples of location object properties.

The href property

The location href property in HTML is used to set or redirect the current (URL) of the
current page. The location href returns the full URL of the page and protocol.

Syntax

1. location.href = URL

JavaScript BOM

3G E-LEARNING

271

Example

The following programs illustrate the location href property.

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title>href Property</title>

5. </head>

6. <body>

7. <h2>DOM Location href Property</h2>

8. <p>

9. The location href property in HTML is used to set or redirect the current (URL)
of the current page.

10. </p>

11. <button ondblclick=”myhref()”>return URL</button>

12. <p id=”value”></p>

13. <script>

14. function myhref() {

15. var href = location.href;

16. document.getElementById(“value”).innerHTML = herf; //get the location in
the current document

17. }

18. </script>

19. </body>

20. </html>

3G E-LEARNING

272 Basic Computer Coding: Java Script

Output

The hash property

The location hash property string beginning with # specifies an anchor name in an
HTTP URL.

Syntax

1. location.hash

Example

The following programs illustrate the location hash property.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title>hash Property</title>

5. </head>

6. <body>

7. <h2>Anchor hash Property</h2>

8. <p id=”hash”>The location hash property string beginning with # specifies an
anchor name in an HTTP URL</p>

9. <button onclick=”myhash()”>Click_here</button>

10. <p id=”hash1”> </p>

11. <script>

JavaScript BOM

3G E-LEARNING

273

12. function myhash()

13. {

14. var has =document.getElementById(“hash”).hash;

15. document.getElementById(“hash1”).innerHTML = has;;

16. }

17. </script>

18. </body>

19. </html>

Output

The hostname property

The location hostname property is used to return the hostname of the current URL.
It contains the server name, domain name, IP address of a URL.

Example

The following programs illustrate the location hostname property.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title>hostname Property</title>

5. </head>

3G E-LEARNING

274 Basic Computer Coding: Java Script

6. <body>

7. <h2>hostname Property</h2>

8. <button onclick=”host()”>Click_here</button>

9. <p id=”host1”> </p>

10. <script>

11. function host()

12. {

13. var host2 =location.hostname;

14. document.getElementById(“host1”).innerHTML = host2;;

15. }

16. </script>

17. </body>

18. </html>

Output

The pathname property

The location pathname property is used to find the path name and file name of the
current page.

Syntax

1. Location.pathname = path

JavaScript BOM

3G E-LEARNING

275

Example

The following programs illustrate the location pathname property.

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title>pathname Property</title>

5. </head>

6. <body>

7. <h2>Location pathname Property</h2>

8. <button ondblclick=”mypath()”>Click_here</button>

9. <p id=”path”></p>

10. <script>

11. function mypath()

12. {

13. var p1 = location.pathname;

14. document.getElementById(“path”).innerHTML = p1;

15. }

16. </script>

17. </body>

18. </html>

3G E-LEARNING

276 Basic Computer Coding: Java Script

Output

The Port Property

The location port property returns the port number of the current URL.

Syntax

1. location.port

2. location.port = 8090

Example

The following programs illustrate the location hash property.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title>Port Property</title>

5. </head>

6. <body>

7. <h2>Location port Property</h2>

8. <p>Note: If the port number is default (80 for http and 443 for https)</p>

9.

10. <button ondblclick=”port()”>Click_here</button>

11. <p id=”path”></p>

JavaScript BOM

3G E-LEARNING

277

12. <script>

13. function port()

14. {

15. var port2 = location.port;

16. var p1 = location.port = 8080;

17. document.getElementById(“path”).innerHTML = port2;

18. document.write(p1);

19. }

20. </script>

21. </body>

22. </html>

Output

8.6 SCREEN OBJECT
The JavaScript screen object holds information of browser screen. It can be used to
display screen width, height, colorDepth, pixelDepth etc.

The navigator object is the window property, so it can be accessed by:
1. window.screen

Or,

1. screen

3G E-LEARNING

278 Basic Computer Coding: Java Script

8.6.1 Property of JavaScript Screen Object

There are many properties of screen object that returns information of the browser.

No. Property Description
1 width returns the width of the screen
2 height returns the height of the screen
3 availWidth returns the available width
4 availHeight returns the available height
5 colorDepth returns the color depth
6 pixelDepth returns the pixel depth.

8.6.2 Example of JavaScript Screen Object

Let’s see the different usage of screen object.
1. <script>

2. document.writeln(“
screen.width: “+screen.width);

3. document.writeln(“
screen.height: “+screen.height);

4. document.writeln(“
screen.availWidth: “+screen.availWidth);

5. document.writeln(“
screen.availHeight: “+screen.availHeight);

6. document.writeln(“
screen.colorDepth: “+screen.colorDepth);

7. document.writeln(“
screen.pixelDepth: “+screen.pixelDepth);

8. </script>

Test it Now

screen.width: 1366
screen.height: 768
screen.availWidth: 1366
screen.availHeight: 728
screen.colorDepth: 24
screen.pixelD

JavaScript BOM

3G E-LEARNING

279

SUMMARY
 ■ BOM refers to the browser object model in JavaScript. BOM is used on the

Windows screen and communicates with the browser. BOM refers to Windows
objects in JavaScript.

 ■ The window object represents a window in browser. An object of window is
created automatically by the browser.

 ■ The windows object properties return the height and width of the browser
content. We cannot change in height and width as these properties are read-
only.

 ■ The name property will return the name of the windows. This property is
often used to change the name of the window after the window is created.

 ■ The JavaScript history object represents an array of URLs visited by the user.
By using this object, you can load previous, forward or any particular page.

 ■ Navigator object is used for browser detection. It can be used to get browser
information such as version and browser type.

 ■ The Navigator javaEnabled () method is used to return a Boolean value that
indicates whether or not Java is enabled in a browser. If Java is enabled in
the browser it returns true else it returns false.

 ■ The Navigator taintEnable () method was best avoided in Javascript version
1.5, and was later removed to prevent future run-time errors. It returns a
Boolean value false value, specifying whether the data-tainting feature is
enabled in the browser.

 ■ The Navigator geoLocation property provides a geolocation object that can
be used to track the user’s status.

 ■ The Location object window in JavaScript enables it to save the information
about the current page location or address (URL), and redirect the browser
to a new page.

 ■ A location object is part of the window object, it accesses through the windows.
location. There is no general standard for the location object, but all major
browsers support the location object.

 ■ The location assign () method is used for loading a new document in a new
page. It is not possible to go back to the previous document using your
browser ‘back’ button.

 ■ The location href property in HTML is used to set or redirect the current
(URL) of the current page. The location href returns the full URL of the page
and protocol.

 ■ The JavaScript screen object holds information of browser screen. It can be
used to display screen width, height, colorDepth, pixelDepth etc.

3G E-LEARNING

280 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. What is the full form of BOM?

a. Browser Object Method
b. Browser Object Model
c. Browser Oriented Method
d. Browser Oriented M

2. Which is window method is used to move the current window?
a. Move()
b. Move to()
c. Window move()
d. Window.move to()

3. The URL property belongs to which of the following object?
a. Document
b. Element
c. Location
d. Event

4. What does the location property represent?
a. Current DOM object
b. Current URL
c. Both DOM object and URL
d. Document

5. Which among the following is not a property of the Location object?
a. protocol
b. host
c. hostee
d. hostname

6. What is the return type of the hash property?
a. Query string
b. Packets
c. String
d. Fragment identifier

JavaScript BOM

3G E-LEARNING

281

7. Which is the method that removes the current document from the browsing
history before loading the new document?
a. modify()
b. assign()
c. replace()
d. remove()

8. Why is the replace() method better than the assign() method?
a. Reliable
b. Highly manageable
c. More efficient
d. Handles unconditional loading

9. What is the purpose of the assign() method?
a. Only loading
b. Loading of window and display
c. Displays already present window
d. Unloading of window

10. The history property belongs to which object?
a. Element
b. Window
c. History
d. Location

REVIEW QUESTIONS
1. What is the full form of BOM browser?
2. What are different types of window object?
3. Which is the method of history object?
4. What is the navigator object?
5. What are two methods of location object?

Check Your Result

1. (b) 2. (d) 3. (a) 4. (b) 5. (c)
6. (d) 7. (c) 8. (d) 9. (b) 10. (c)

3G E-LEARNING

282 Basic Computer Coding: Java Script

REFERENCES
1. Enzer, Larry (31 August 2018). “The Evolution of the Web Browsers”. Monmouth

Web Developers. Retrieved 31 August 2018.
2. Gillies, James; Cailliau, R. (2000). How the Web was Born: The Story of the World

Wide Web. Oxford University Press. pp. 6. ISBN 0192862073.
3. Stewart, William. “Web Browser History”. Archived from the original on 20

January 2011.

“JavaScript is the only language that I’m aware of that people feel they don’t need to learn before
they start using it.”

— Douglas Crockford

After studying this chapter,
you will be able to:
1. Discuss about javascript

events
2. Describe the types of

javascript event
3. Understand

the javascript
addEventListener()

4. Learn about javascript
onclick event

5. Understand the
javascript dblclick event

6. Know the javascript
onload

7. Learn about javascript
onresize event

LEARNING
OBJECTIVES

JAVASCRIPT EVENTS

INTRODUCTION
The Javascript interacts with the documents HTML code
using events, which are triggered when a particular moment
of interest happens in the document or the browser window.

9
CHAPTER

3G E-LEARNING

284 Basic Computer Coding: Java Script

Javascript Events makes the webpages interactive and
responsive. These events are asynchronous (i.e it can occur
anytime). Most events are triggered by user action but there
are some exceptions like the event load.

When an event occurs there are some default action which
the browser takes (like clicking on a link open up the location
specified in attribute href).An event may be a click, mouseover,
keystroke etc.

Javascript responds to events by calling a function which
performs some task as defined in the function.

As of today, Javascript has three event models for
programming events: the inline model, the Scripting Model
and the DOM2 Model

Javascript can respond to the following type of events:
Mouse Actions, Keyboard Actions, Form Actions, Page Loads,
Time Intervals and Errors.

9.1 JAVASCRIPT EVENTS
The change in the state of an object is known as an Event.
In html, there are various events which represents that some
activity is performed by the user or by the browser. When
javascript code is included in HTML, js react over these events
and allow the execution. This process of reacting over the
events is called Event Handling. Thus, js handles the HTML
events via Event Handlers.

When a user clicks over the browser, add js code, which will execute the task to
be performed on the event.

Some of the HTML events and their event handlers are:
 ■ Mouse Events

JavaScript Events

3G E-LEARNING

285

Event Performed Event Handler Description
click onclick When mouse click on an element
mouseover onmouseover When the cursor of the mouse

comes over the element
mouseout onmouseout When the cursor of the mouse

leaves an element
mousedown onmousedown When the mouse button is pressed

over the element
mouseup onmouseup When the mouse button is released

over the element
mousemove onmousemove When the mouse movement takes

place.

Click Event

1. <html>

2. <head> Javascript Events </head>

3. <body>

4. <script language=”Javascript” type=”text/Javascript”>

5. <!--

6. function clickevent()

7. {

8. document.write(“This is JavaTpoint”);

9. }

10. //-->

11. </script>

12. <form>

13. <input type=”button” onclick=”clickevent()” value=”Who’s this?”/>

14. </form>

15. </body>

16. </html>

3G E-LEARNING

286 Basic Computer Coding: Java Script

MouseOver Event

1. <html>

2. <head>

3. <h1> Javascript Events </h1>

4. </head>

5. <body>

6. <script language=”Javascript” type=”text/Javascript”>

7. <!--

8. function mouseoverevent()

9. {

10. alert(“This is JavaTpoint”);

11. }

12. //-->

13. </script>

14. <p onmouseover=”mouseoverevent()”> Keep cursor over me</p>

15. </body>

16. </html>

 ■ Keyboard Events

Event Performed Event Handler Description
Keydown &
Keyup

onkeydown &
onkeyup

When the user press and
then release the key

Keydown Event

1. <html>

2. <head> Javascript Events</head>

JavaScript Events

3G E-LEARNING

287

3. <body>

4. <h2> Enter something here</h2>

5. <input type=”text” id=”input1” onkeydown=”keydownevent()”/>

6. <script>

7. <!--

8. function keydownevent()

9. {

10. document.getElementById(“input1”);

11. alert(“Pressed a key”);

12. }

13. //-->

14. </script>

15. </body>

16. </html>

 ■ Form Events

Event
Performed

Event
Handler

Description

focus onfocus When the user focuses on an element
submit onsubmit When the user submits the form
blur onblur When the focus is away from a form

element
change onchange When the user modifies or changes

the value of a form element

Focus Event

1. <html>

2. <head> Javascript Events</head>

3G E-LEARNING

288 Basic Computer Coding: Java Script

3. <body>

4. <h2> Enter something here</h2>

5. <input type=”text” id=”input1” onfocus=”focusevent()”/>

6. <script>

7. <!--

8. function focusevent()

9. {

10. document.getElementById(“input1”).style.background=” aqua”;

11. }

12. //-->

13. </script>

14. </body>

15. </html>

 ■ Window/Document Events

Event
Performed

Event Handler Description

load onload When the browser finishes the loading
of the page

unload onunload When the visitor leaves the current
webpage, the browser unloads it

resize onresize When the visitor resizes the window
of the browser

Load Event

1. <html>

2. <head>Javascript Events</head>

3. </br>

4. <body onload=”window.alert(‘Page successfully loaded’);”>

JavaScript Events

3G E-LEARNING

289

5. <script>

6. <!--

7. document.write(“The page is loaded successfully”);

8. //-->

9. </script>

10. </body>

11. </html>

9.2 JAVASCRIPT EVENT TYPES
These are the top 8 types of JavaScript Event discussed below:

9.2.1 User Interface Events

These occur as the result of any interaction with the browser window rather than the
HTML page. In these events, we attach the event listener to the window object, not
the document object. The various UI events are as follows.

 ■ load: The load event fires when the webpage finishes loading. It can also fire
on nodes of elements like images, scripts, or objects.

 ■ unload: This event fires before the users leave the page, i.e., the webpage is
unloading. Page unloading usually happens because a new page has been
requested.

 ■ error: This event fires when the browser encounters a JavaScript error or an
asset that doesn’t exist.

 ■ resize: It fires when we resize the browser window. But browsers repeatedly
fire this event, so avoid using this event to trigger complicated code; it might
make the page less responsive.

 ■ scroll: This event fires when the user scrolls up/down on the browser window.
It can relate to the entire page or a specific element on the page.

9.2.2 Focus and Blur Events

These events fire when the HTML elements you can interact with gain/ lose focus.
They are most commonly used in forms and especially helpful when you want to do
the following tasks:

3G E-LEARNING

290 Basic Computer Coding: Java Script

 ■ To show tips or feedback to users as they interact
with an element within a form. The tips are usually
shown in the elements other than the one the user
is interacting with.

 ■ To trigger form validation as a user moves from one
control to the next without waiting to submit the form.

The different focus and blur events are as follows:
 ■ focus: This event fires, for a specific DOM node,

when an element gains focus.
 ■ blur: This fires, for a specific DOM node, when an

element loses focus.
 ■ focusin: This event is the same as the focus event.

But Firefox doesn’t yet support the focusin event.
 ■ focusout: This is the same event as the blur event.

This is a new event type in JavaScript, thus not
supported in Firefox right now.

The focus and blur events use the capture approach, while
the focusin and focusout events use both capture and bubble
approach of the event flow.

9.2.3 Mouse Events

These events fire when the mouse moves or the user clicks
a button. All the elements of the page support these events
and use the bubbling approach. These actions work differently
on touchscreen devices. Preventing the default behavior of
mouse events can cause unexpected results. The various mouse
events of JavaScript are as follows:

 ■ click: This event fires when the user clicks on the
primary mouse button (usually the left button). This
event also fires if the user presses the Enter key on
the keyboard when an element has focus.

Touch-screen: A tap on the screen acts like a single left-
click.

 ■ dblclick: This event fires when the user clicks the
primary mouse button, in quick succession, twice.

Touch-screen: A double-tap on the screen acts like a
double left-click.

Touchscreen is
the assembly of
both an input
(‘touch panel’)
and output
(‘display’) device.

Keyword

JavaScript Events

3G E-LEARNING

291

Accessibility: You can add the above two events to any element, but it’s better to
apply it only on the items that are usually clicked, or it will not be accessible through
keyboard navigation. All the mouse events discussed below cannot be triggered by
the keyboard.

 ■ mousedown: It fires when the user clicks down on any mouse button.
Touch-screen: You can use the touchstart event.

 ■ Mouseup: It fires when the user releases a mouse button.
Touch-screen: You can use the touchend event.
We have separate mousedown and mouseup events to add drag-and-drop

functionality or controls in game development. Don’t forget a click event is the
combination of mousedown and mouseup events.

 ■ mouseover: It fires when the user moves the cursor, which was outside an
element before, inside the element. We can say that it fires when we move
the cursor over the element.

 ■ mouseout: It fires when the user moves the cursor, which was inside an
element before, outside the element. We can say that it fires when the cursor
moves off the element.

The mouseover and mouseout events usually change the appearance of graphics
on our webpage. A preferred alternative to this is to use the CSS: hover pseudo-class.

 ■ mousemove: It fires when the user moves the cursor around the element. This
event is frequently triggered.

9.2.4 Keyboard Events

These events fire on any kind of device when a user interacts with a keyboard.
 ■ input: This event fires when the value of an <input> or a <textarea> changes

(doesn’t fire for deleting in IE9). You can use keydown as a fallback in older
browsers.

 ■ keydown: It fires when the user presses any key in the keyboard. If the user
holds down the key, this event fires repeatedly.

 ■ keypress: It fires when the user presses a key that results in printing a character
on the screen. This event fires repeatedly if the user holds down the key. This
event will not fire for the enter, tab, or arrow keys; the keydown event would.

 ■ keyup: The keyup event fires when the user releases a key on the keyboard.
The keydown and keypress events fire before a character appears on the screen,

the keyup fires after it shows.

3G E-LEARNING

292 Basic Computer Coding: Java Script

To know the key pressed when you use the keydown and
keypress events, the event object has a keyCode property. This
property, instead of returning the letter for that key, returns
the ASCII code of the lowercase for that key.

9.2.5 Form Events

These events are common while using forms on a webpage. In
particular, we see the submit event mostly in form of validation
(checking form values). As described in our tutorial; Features
of JavaScript, if the users miss any required information or
enter incorrect input, validation before sending the data to
the server is faster. The list below explains the different form
of events available to the user.

 ■ submit: This event fires on the node representing the
<form> element when a user submits a form.

 ■ change: It fires when the status of various form
elements change. This is a better option than using
the click event because clicking is not the only way
users interact with the form.

 ■ input: The input event is very common with the
<input> and the <textarea> elements.

We often use the focus and blur events with forms, but
they are also available in conjunction with other elements
like links.

9.2.6 Mutation Events and Observers

Whenever the structure of the DOM tree changes, it triggers
a mutation event. The change in the tree may be due to the
addition or removal of a DOM node through your script. But
these have an alternative that will replace them: mutation
observers. The following are the numerous mutation events
in JavaScript.

 ■ DOMNodeInserted: It fires when the script inserts
a new node in the DOM tree using appendChild(),
replaceChild(), insertBefore(), etc.

 ■ DOMNodeRemoved: This event fires when the
script removes an existing node from the tree using
removeChild(), replaceChild(), etc.

Earlier,
Herman
Hollerith
developed the
first keypunch
devices, which
soon evolved
to include keys
for text and
number entry
akin to normal
typewriters by
the 1930s.

Did You
Know?

Webpage
is a
hypertext
document
provided by
a website and
displayed to a
user in a web
browser.

Keyword

JavaScript Events

3G E-LEARNING

293

 ■ DOMSubtreeModified: It fires when the structure of the DOM tree changes
i.e. the above two events occur.

 ■ DOMNodeInsertedIntoDocument: This event fires when the script inserts
a node in the DOM tree as the descendant of another node already in the
document.

 ■ DOMNodeRemovedFromDocument: This event fires when the script removes
a node from the DOM tree as the descendant of another node already in the
document.

The problem with the mutation events is that lots of changes to your page can
make your page feel slow or unresponsive. These can also trigger other event listeners,
modifying DOM and leading to more mutation events firing. This is the reason for
introducing mutation observers to the script.

Mutation observers wait until the script finishes its current task before reacting,
then reports the changes in a batch (not one at a time). This reduces the number of
events that fire when you change the DOM tree through your script. You can also
specify which changes in the DOM you want them to react to.

9.2.7 HTML5 Events

These are the page-level events included in the versions of the HTML5 specialization.
New events support more recent devices like phones and tablets. They respond to
events such as gestures and movements. You will understand them better after you
master the above concepts, thus they are not discussed for now. Work with the events
below for now and when you are a better developer, you can search for other events
available. The three HTML5 events we will learn are as follows:

 ■ DOMContentLoaded: This event triggers when the DOM tree forms i.e. the
script is loading. Scripts start to run before all the resources like images, CSS,
and JavaScript loads. You can attach this event either to the window or the
document objects.

 ■ hashchange: It fires when the URL hash changes without refreshing the entire
window. Hashes (#) link specific parts (known as anchors) within a page. It
works on the window object; the event object contains both the oldURL and
the newURL properties holding the URLs before and after the hashchange.

 ■ beforeunload: This event fires on the window object just before the page
unloads. This event should only be helpful for the user, not encouraging
them to stay on the page. You can add a dialog box to your event, showing
a message alerting the users like their changes are not saved.

3G E-LEARNING

294 Basic Computer Coding: Java Script

9.2.8 CSS Events

These events trigger when the script encounters a CSS element.
As CSS is a crucial part of web development, the developers
decided to add these events to js to make working with CSS
easier. Some of the most common CSS events are as follows:

 ■ transitionend: This event fires when a CSS transition
ends in a program. It is useful to notify the script of
the end of transition so that it can take further action.

 ■ animationstart: These events fire when CSS animation
starts in the program.

 ■ animationiteration: This event occurs when any CSS
animation repeats itself. With this event, we can
determine the number of times an animation iterates
in the script.

 ■ animationend: It fires when the CSS animation comes
to an end in the program. This is useful when we
want to act just after the animation process finishes.

9.3 JAVASCRIPT ADDEVENTLISTENER()
The addEventListener() method is used to attach an event
handler to a particular element. It does not override the
existing event handlers. Events are said to be an essential part
of the JavaScript. A web page responds according to the event
that occurred. Events can be user-generated or generated by
API’s. An event listener is a JavaScript’s procedure that waits
for the occurrence of an event.

The addEventListener() method is an inbuilt function of
JavaScript. We can add multiple event handlers to a particular
element without overwriting the existing event handlers.

9.3.1 Syntax

element.addEventListener(event, function, useCapture);
Although it has three parameters, the parameters event

and function are widely used. The third parameter is optional
to define. The values of this function are defined as follows.

Animation is
a method in
which figures
are manipulated
to appear as
moving images.

Event
handler
is a callback
subroutine that
handles inputs
received in a
program (called
a listener in Java
and JavaScript).

Keyword

Keyword

JavaScript Events

3G E-LEARNING

295

9.3.2 Parameter Values

event: It is a required parameter. It can be defined as a string
that specifies the event’s name.
function: It is also a required parameter. It is a JavaScript
function which responds to the event occur.
useCapture: It is an optional parameter. It is a Boolean type
value that specifies whether the event is executed in the
bubbling or capturing phase. Its possible values are true and
false. When it is set to true, the event handler executes in the
capturing phase. When it is set to false, the handler executes
in the bubbling phase. Its default value is false.

Let’s see some of the illustrations of using the
addEventListener() method.

Example

It is a simple example of using the addEventListener() method.
We have to click the given HTML button to see the effect.

1. <!DOCTYPE html>

2. <html>

3. <body>

4. <p> Example of the addEventListener() method. </p>

5. <p> Click the following button to see the effect. </p>

6. <button id = “btn”> Click me </button>

7. <p id = “para”></p>

8. <script>

9. d o c u m e n t . g e t E l e m e n t B y I d (“ b t n ”) .
addEventListener(“click”, fun);

10. function fun() {

11. document.getElementById(“para”).innerHTML = “Hello
World” + “
” + “Welcome to the javaTpoint.com”;

12. }

Do not
use any
prefix such as
“on” with the
parameter value.
For example, Use
“click” instead of
using “onclick”.

Remember

3G E-LEARNING

296 Basic Computer Coding: Java Script

13. </script>

14. </body>

15. </html>

Output

After clicking the given HTML button, the output will be -

Now, in the next example we will see how to add many events to the same element
without overwriting the existing events.

Example

In this example, we are adding multiple events to the same element.
1. <!DOCTYPE html>

2. <html>

3. <body>

4. <p> This is an example of adding multiple events to the same element. </p>

5. <p> Click the following button to see the effect. </p>

JavaScript Events

3G E-LEARNING

297

6. <button id = “btn”> Click me </button>

7. <p id = “para”></p>

8. <p id = “para1”></p>

9. <script>

10. function fun() {

11. alert(“Welcome to the javaTpoint.com”);

12. }

13.

14. function fun1() {

15. document.getElementById(“para”).innerHTML = “This is second function”;

16.

17. }

18. function fun2() {

19. document.getElementById(“para1”).innerHTML = “This is third function”;

20. }

21. var mybtn = document.getElementById(“btn”);

22. mybtn.addEventListener(“click”, fun);

23. mybtn.addEventListener(“click”, fun1);

24. mybtn.addEventListener(“click”, fun2);

25. </script>

26. </body>

27. </html>

3G E-LEARNING

298 Basic Computer Coding: Java Script

Output

Now, when we click the button, an alert will be displayed. After clicking the given
HTML button, the output will be -

When we exit the alert, the output is -

Example

In this example, we are adding multiple events of a different type to the same element.
1. <!DOCTYPE html>

2. <html>

3. <body>

JavaScript Events

3G E-LEARNING

299

4. <p> This is an example of adding multiple events of different type to the same
element. </p>

5. <p> Click the following button to see the effect. </p>

6. <button id = “btn”> Click me </button>

7. <p id = “para”></p>

8. <script>

9. function fun() {

10. btn.style.width = “50px”;

11. btn.style.height = “50px”;

12. btn.style.background = “yellow”;

13. btn.style.color = “blue”;

14. }

15.

16. function fun1() {

17. document.getElementById(“para”).innerHTML = “This is second function”;

18.

19. }

20. function fun2() {

21. btn.style.width = “”;

22. btn.style.height = “”;

23. btn.style.background = “”;

24. btn.style.color = “”;

25. }

26. var mybtn = document.getElementById(“btn”);

27. mybtn.addEventListener(“mouseover”, fun);

3G E-LEARNING

300 Basic Computer Coding: Java Script

28. mybtn.addEventListener(“click”, fun1);

29. mybtn.addEventListener(“mouseout”, fun2);

30. </script>

31. </body>

32. </html>

Output

When we move the cursor over the button, the output will be -

After clicking the button and leave the cursor, the output will be -

JavaScript Events

3G E-LEARNING

301

9.3.3 Event Bubbling or Event Capturing

Now, we understand the use of the third parameter of
JavaScript’s addEventListener(), i.e., useCapture.

In HTML DOM, Bubbling and Capturing are the two
ways of event propagation. We can understand these ways
by taking an example.

Suppose we have a div element and a paragraph element
inside it, and we are applying the “click” event to both of
them using the addEventListener() method. Now the question
is on clicking the paragraph element, which element’s click
event is handled first.

So, in Bubbling, the event of paragraph element is handled
first, and then the div element’s event is handled. It means
that in bubbling, the inner element’s event is handled first,
and then the outermost element’s event will be handled.

In Capturing the event of div element is handled first,
and then the paragraph element’s event is handled. It means
that in capturing the outer element’s event is handled first,
and then the innermost element’s event will be handled.

addEventListener(event, function, useCapture);

We can specify the propagation using the useCapture
parameter. When it is set to false (which is its default value),
then the event uses bubbling propagation, and when it is set
to true, there is the capturing propagation.

We can understand the bubbling and capturing using an
illustration.

Example

In this example, there are two div elements. We can see the
bubbling effect on the first div element and the capturing
effect on the second div element.

When we double click the span element of the first div
element, then the span element’s event is handled first than
the div element. It is called bubbling.

But when we double click the span element of the second
div element, then the div element’s event is handled first than
the span element. It is called capturing.

Event
bubbling
is a type of event
propagation
where the event
first triggers on
the innermost
target element,
and then
successively
triggers on
the ancestors
(parents) of the
target element
in the same
nesting hierarchy
till it reaches
the outermost
DOM element or
document object.

Keyword

3G E-LEARNING

302 Basic Computer Coding: Java Script

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <style>

5. div{

6. background-color: lightblue;

7. border: 2px solid red;

8. font-size: 25px;

9. text-align: center;

10. }

11. span{

12. border: 2px solid blue;

13. }

14. </style>

15. </head>

16. <body>

17. <h1> Bubbling </h1>

18. <div id = “d1”>

19. This is a div element.

20.

21. This is a span element.

22. </div>

23. <h1> Capturing </h1>

24. <div id = “d2”> This is a div element.

JavaScript Events

3G E-LEARNING

303

25.

26. This is a span element.

27. </div>

28.

29. <script>

30. document.getElementById(“d1”).addEventListener(“dblclick”, function()
{alert(‘You have double clicked on div element’)}, false);

31. document.getElementById(“s1”).addEventListener(“dblclick”, function()
{alert(‘You have double clicked on span element’)}, false);

32. document.getElementById(“d2”).addEventListener(“dblclick”, function()
{alert(‘You have double clicked on div element’)}, true);

33. document.getElementById(“s2”).addEventListener(“dblclick”, function()
{alert(‘You have double clicked on span element’)}, true);

34. </script>

35. </body>

36. </html>

Output

We have to double click the specific elements to see the effect.

3G E-LEARNING

304 Basic Computer Coding: Java Script

9.4 JAVASCRIPT ONCLICK EVENT
The onclick event generally occurs when the user clicks on an element. It allows the
programmer to execute a JavaScript’s function when an element gets clicked. This event
can be used for validating a form, warning messages and many more.

Using JavaScript, this event can be dynamically added to any element. It supports
all HTML elements except <html>, <head>, <title>, <style>, <script>, <base>, <iframe>,
<bdo>,
, <meta>, and <param>. It means we cannot apply the onclick event on
the given tags.

In HTML, we can use the onclick attribute and assign a JavaScript function to it.
We can also use the JavaScript’s addEventListener() method and pass a click event to
it for greater flexibility.

9.4.1 Syntax

Now, we see the syntax of using the onclick event in HTML and in javascript (without
addEventListener() method or by using the addEventListener() method).

9.4.2 In HTML

<element onclick = “fun()”>

9.4.3 In JavaScript

object.onclick = function() { myScript };

9.4.4 In JavaScript by using the addEventListener() method

object.addEventListener(“click”, myScript);
Let’s see how to use onclick event by using some illustrations. Now, we will see

the examples of using the onclick event in HTML, and in JavaScript.

Example1 - Using onclick attribute in HTML

In this example, we are using the HTML onclick attribute and assigning a JavaScript’s
function to it. When the user clicks the given button, the corresponding function will
get executed, and an alert dialog box will be displayed on the screen.

1. <!DOCTYPE html>

2. <html>

JavaScript Events

3G E-LEARNING

305

3. <head>

4. <script>

5. function fun() {

6. alert(“Welcome to the javaTpoint.com”);

7. }

8. </script>

9. </head>

10. <body>

11. <h3> This is an example of using onclick attribute in HTML. </h3>

12. <p> Click the following button to see the effect. </p>

13. <button onclick = “fun()”>Click me</button>

14. </body>

15. </html>

Output

After clicking the given button, the output will be -

3G E-LEARNING

306 Basic Computer Coding: Java Script

Example2 - Using JavaScript

In this example, we are using JavaScript’s onclick event. Here we are using the onclick
event with the paragraph element.

When the user clicks on the paragraph element, the corresponding function will
get executed, and the text of the paragraph gets changed. On clicking the <p> element,
the background color, size, border, and color of the text will also get change.

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <title> onclick event </title>

5. </head>

6. <body>

7. <h3> This is an example of using onclick event. </h3>

8. <p> Click the following text to see the effect. </p>

9. <p id = “para”>Click me</p>

10. <script>

11. document.getElementById(“para”).onclick = function() {

12. fun()

13. };

14. function fun() {

JavaScript Events

3G E-LEARNING

307

15. document.getElementById(“para”).innerHTML = “Welcome to the javaTpoint.
com”;

16. document.getElementById(“para”).style.color = “blue”;

17. document.getElementById(“para”).style.backgroundColor = “yellow”;

18. document.getElementById(“para”).style.fontSize = “25px”;

19. document.getElementById(“para”).style.border = “4px solid red”;

20. }

21. </script>

22.

23. </body>

24. </html>

Output

After clicking the text Click me, the output will be -

3G E-LEARNING

308 Basic Computer Coding: Java Script

Example3 - Using addEventListener() method

In this example, we are using JavaScript’s addEventListener() method to attach a click
event to the paragraph element. When the user clicks the paragraph element, the text
of the paragraph gets changed.

On clicking the paragraph, the background color and font-size of elements will
also change.

1. <!DOCTYPE html>

2. <html>

3. <head>

4. </head>

5. <body>

6. <h3> This is an example of using click event. </h3>

7. <p> Click the following text to see the effect. </p>

8. <p id = “para”>Click me</p>

9. <script>

10. document.getElementById(“para”).onclick = function() {

11. fun()

12. };

13. function fun() {

14. document.getElementById(“para”).innerHTML = “Welcome to the javaTpoint.
com”;

15. document.getElementsByTagName(“body”)[0].style.color = “blue”;

16. document.getElementsByTagName(“body”)[0].style.backgroundColor =
“lightgreen”;

17. document.getElementsByTagName(“body”)[0].style.fontSize = “25px”;

18. document.getElementById(“para”).style.border = “4px solid red”;

19. }

JavaScript Events

3G E-LEARNING

309

20. </script>

21.

22. </body>

23. </html>

Output

On clicking the text Click me, the output will be -

9.5 JAVASCRIPT DBLCLICK EVENT
The dblclick event generates an event on double click the element. The event fires
when an element is clicked twice in a very short span of time. We can also use the
JavaScript’s addEventListener() method to fire the double click event.

In HTML, we can use the ondblclick attribute to create a double click event.

3G E-LEARNING

310 Basic Computer Coding: Java Script

9.5.1 Syntax

Now, we see the syntax of creating double click event in HTML and in javascript
(without using addEventListener() method or by using the addEventListener() method).

9.5.2 In HTML

<element ondblclick = “fun()”>

9.5.3 In JavaScript

object.ondblclick = function() { myScript };

9.5.4 In JavaScript by using the addEventListener() method

object.addEventListener(“dblclick”, myScript);

Let’s see some of the illustrations to understand the double click event.

Example - Using ondblclick attribute in HTML

In this example, we are creating the double click event using the HTML ondblclick
attribute.

1. <!DOCTYPE html>

2. <html>

3. <head>

4. </head>

5.

6. <body>

7. <h1 id = “heading” ondblclick = “fun()”> Hello world :):) </h1>

8. <h2> Double Click the text “Hello world” to see the effect. </h2>

9. <p> This is an example of using the ondblclick attribute. </p>

10. <script>

JavaScript Events

3G E-LEARNING

311

11. function fun() {

12. document.getElementById(“heading”).innerHTML = “ Welcome to the javaTpoint.
com “;

13. }

14. </script>

15. </body>

16. </html>

Output

After the execution of the above code, the output will be -

After double-clicking the text “Hello world”, the output will be -

Now, we will see how to create double click event using JavaScript.

Example - Using JavaScript

1. <!DOCTYPE html>

3G E-LEARNING

312 Basic Computer Coding: Java Script

2. <html>

3. <head>

4. </head>

5.

6. <body>

7. <h1 id = “heading”> Hello world :):) </h1>

8. <h2> Double Click the text “Hello world” to see the effect. </h2>

9. <p> This is an example of creating the double click event using JavaScript. </p>

10. <script>

11. document.getElementById(“heading”).ondblclick = function() { fun() };

12. function fun() {

13. document.getElementById(“heading”).innerHTML = “ Welcome to the javaTpoint.
com “;

14. }

15. </script>

16. </body>

17.

18. </html>

Output

JavaScript Events

3G E-LEARNING

313

After double-clicking the text “Hello world”, the output will be -

Example - Using JavaScript’s addEventListener() method

1. <!DOCTYPE html>

2. <html>

3. <head>

4. </head>

5.

6. <body>

7. <h1 id = “heading”> Hello world :):) </h1>

8. <h2> Double Click the text “Hello world” to see the effect. </h2>

9. <p> This is an example of creating the double click event using the
addEventListener() method . </p>

10. <script>

11. document.getElementById(“heading”).addEventListener(“dblclick”, fun);

12. function fun() {

13. document.getElementById(“heading”).innerHTML = “ Welcome to the javaTpoint.
com “;

14. }

15. </script>

3G E-LEARNING

314 Basic Computer Coding: Java Script

16. </body>

17.

18. </html>

Output

After double-clicking the text “Hello world”, the output will be -

9.6 JAVASCRIPT ONLOAD
In JavaScript, this event can apply to launch a particular function when the page is fully
displayed. It can also be used to verify the type and version of the visitor’s browser.
We can check what cookies a page uses by using the onload attribute.

In HTML, the onload attribute fires when an object has been loaded. The purpose
of this attribute is to execute a script when the associated element loads.

In HTML, the onload attribute is generally used with the <body> element to execute
a script once the content (including CSS files, images, scripts, etc.) of the webpage
is completely loaded. It is not necessary to use it only with <body> tag, as it can be
used with other HTML elements.

JavaScript Events

3G E-LEARNING

315

The difference between the document.onload and window.
onload is: document.onload triggers before the loading of
images and other external content. It is fired before the window.
onload. While the window.onload triggers when the entire
page loads, including CSS files, script files, images, etc.

9.6.1 Syntax

window.onload = fun()

Let’s understand this event by using some examples.

Example1

In this example, there is a div element with a height of 200px
and a width of 200px. Here, we are using the window.onload()
to change the background color, width, and height of the div
element after loading the web page.

The background color is set to ‘red’, and width and height
are set to 300px each.

1. <!DOCTYPE html>

2. <html>

3. <head>

4. <meta charset = “ utf-8”>

5. <title> window.onload() </title>

6. <style type = “text/css”>

7. #bg{

8. width: 200px;

9. height: 200px;

10. border: 4px solid blue;

11. }

12. </style>

13. <script type = “text/javascript”>

onload
attribute
is not necessary
to use it only
with <body> tag,
as it can be used
with other HTML
elements.

Remember

3G E-LEARNING

316 Basic Computer Coding: Java Script

14. window.onload = function(){

15. document.getElementById(“bg”).style.backgroundColor = “red”;

16. document.getElementById(“bg”).style.width = “300px”;

17. document.getElementById(“bg”).style.height = “300px”;

18. }

19. </script>

20. </head>

21. <body>

22. <h2> This is an example of window.onload() </h2>

23. <div id = “bg”></div>

24. </body>

25. </html>

Output

After the execution of the code and loading of the page, the output will be -

JavaScript Events

3G E-LEARNING

317

Example2

In this example, we are implementing a simple animation by using the properties of the
DOM object and functions of javascript. We use the JavaScript function getElementById()
for getting the DOM object and then assign that object into a global variable.

1. <html>

2. <head>

3. <script type = “text/javascript”>

4.

5. var img = null;

6. function init(){

7. img = document.getElementById(‘myimg’);

8. img.style.position = ‘relative’;

9. img.style.left = ‘50px’;

10. }

11. function moveRight(){

12. img.style.left = parseInt(

13. img.style.left) + 100 + ‘px’;

14. }

15. window.onload = init;

16.

17. </script>

18. </head>

19.

20. <body>

21. <form>

3G E-LEARNING

318 Basic Computer Coding: Java Script

22.

23. <center>

24. <p>Click the below button to move the image right</p>

25. <input type = “button” value = “Click Me” onclick = “moveRight();” />

26. </center>

27. </form>

28. </body>

29.

30. </html>

Output

After the successful execution of the above code, the output will be -

Now, there is an example in which we will use the HTML onload attribute and
the JavaScript functions.

Example3

It is a simple example of using the HTML onload attribute with the function defined
in JavaScript. In this example, the alert() function gets called whenever the document
refresh.

1. <!DOCTYPE html>

JavaScript Events

3G E-LEARNING

319

2. <html>

3. <head>

4. <style>

5. </style>

6. <script>

7. function fun() {

8. alert(“Hello World!!, Welcome to the javaTpoint.com”);

9. }

10. </script>

11. </head>

12. <body onload = “fun()”>

13. <h1> Example of the HTML onload attribute </h1>

14. <p> Try to refresh the document to see the effect. </p>

15. </body>

16. </html>

Output

After the execution of the above code, the output will be -

3G E-LEARNING

320 Basic Computer Coding: Java Script

9.7 JAVASCRIPT ONRESIZE EVENT
The onresize event in JavaScript generally occurs when the window has been resized. To
get the size of the window, we can use the JavaScript’s window.outerWidth and window.
outerHeight events. We can also use the JavaScript’s properties such as innerWidth,
innerHeight, clientWidth, ClientHeight, offsetWidth, offsetHeight to get the size of an element.

In HTML, we can use the onresize attribute and assign a JavaScript function to it.
We can also use the JavaScript’s addEventListener() method and pass a resize event
to it for greater flexibility.

9.7.1 Syntax

Now, we see the syntax of using the onresize event in HTML and in javascript (without
addEventListener() method or by using the addEventListener() method).

9.7.2 In HTML

<element onresize = “fun()”>

9.7.3 In JavaScript

object.onresize = function() { myScript };

9.7.4 In JavaScript by using the addEventListener() method

object.addEventListener(“resize”, myScript);

Let’s see some of the illustrations to understand the onresize event.

Example

In this example, we are using the HTML onresize attribute. Here, we are using the
window.outerWidth and window.outerHeight events of JavaScript to get the height
and width of the window.

When the user resizes the window, the updated width and height of the window
will be displayed on the screen. It will also display how many times the user tried to
resize the window. When we change the height of the window, the updated height will
change accordingly. Similarly, when we change the width of the window, the updated
width will change accordingly.

1. <!DOCTYPE html>

JavaScript Events

3G E-LEARNING

321

2. <html>

3. <head>

4. <script>

5. var i = 0;

6.

7. function fun() {

8. var res = “Width = “ + window.outerWidth + “
” + “Height = “ + window.
outerHeight;

9. document.getElementById(“para”).innerHTML = res;

10.

11. var res1 = i += 1;

12. document.getElementById(“s1”).innerHTML = res1;

13. }

14. </script>

15. </head>

16. <body onresize = “fun()”>

17. <h3> This is an example of using onresize attribute. </h3>

18. <p> Try to resize the browser’s window to see the effect. </p>

19.

20. <p id = “para”> </p>

21. <p> You have resized the window 0 times.</p>

22. </body>

23. </html>

3G E-LEARNING

322 Basic Computer Coding: Java Script

Output

After the execution of the above code, the output will be -

When we try to resize the window, the output will be -

Example - Using JavaScript

In this example, we are using JavaScript’s onresize event.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. </head>

5. <body>

6. <h3> This is an example of using JavaScript’s onresize event. </h3>

7. <p> Try to resize the browser’s window to see the effect. </p>

JavaScript Events

3G E-LEARNING

323

8.

9. <p id = “para”> </p>

10. <p> You have resized the window 0 times.</p>

11. <script>

12. document.getElementsByTagName(“BODY”)[0].onresize = function() {fun()};

13. var i = 0;

14.

15. function fun() {

16. var res = “Width = “ + window.outerWidth + “
” + “Height = “ + window.
outerHeight;

17. document.getElementById(“para”).innerHTML = res;

18.

19. var res1 = i += 1;

20. document.getElementById(“s1”).innerHTML = res1;

21. }

22. </script>

23. </body>

24. </html>

Output

After the execution of the above code, the output will be -

3G E-LEARNING

324 Basic Computer Coding: Java Script

When we try to resize the window, the output will be -

Example - Using addEventListener() method

In this example, we are using JavaScript’s addEventListener() method.
1. <!DOCTYPE html>

2. <html>

3. <head>

4. </head>

5. <body>

6. <h3> This is an example of using JavaScript’s addEventListener() method. </h3>

7. <p> Try to resize the browser’s window to see the effect. </p>

8.

9. <p id = “para”> </p>

10. <p> You have resized the window 0 times.</p>

JavaScript Events

3G E-LEARNING

325

11. <script>

12. window.addEventListener(“resize”, fun);

13. var i = 0;

14.

15. function fun() {

16. var res = “Width = “ + window.outerWidth + “
” + “Height = “ + window.
outerHeight;

17. document.getElementById(“para”).innerHTML = res;

18.

19. var res1 = i += 1;

20. document.getElementById(“s1”).innerHTML = res1;

21. }

22. </script>

23. </body>

24. </html>

Output

After the execution of the above code, the output will be -

When we try to resize the window, the output will be -

3G E-LEARNING

326 Basic Computer Coding: Java Script

JavaScript Events

3G E-LEARNING

327

ROLE MODEL

DOUGLAS CROCKFORD
Douglas Crockford is an American computer programmer
and entrepreneur who is involved in the development of the
JavaScript language. He popularized the data format JSON
(JavaScript Object Notation), and has developed various
JavaScript related tools such as JSLint and JSMin. He was a
senior JavaScript architect at PayPal until 2019, and is also
a writer and speaker on JavaScript, JSON, and related web
technologies.

Education

Crockford earned a degree in Radio and Television from San
Francisco State University in 1975. He took classes in FORTRAN
and worked with a university lab’s computer.

Career

Crockford purchased an Atari 8-bit computer in 1980 and wrote
the game Galahad and the Holy Grail for the Atari Program
Exchange (APX), which resulted in Chris Crawford hiring him
at Atari, Inc. While at Atari, Crockford wrote another game,
Burgers!, for APX and a number of experimental audio/visual
demos that were freely distributed.

After Warner Communications sold the company, he joined
National Semiconductor. In 1984 Crockford joined Lucasfilm,
and later Paramount Pictures. He became known on video game
oriented listservs in the early 1990s after he posted his memoir
“The Expurgation of Maniac Mansion” to a videogaming
bulletin board. The memoir documented his efforts to censor
the computer game Maniac Mansion to Nintendo’s satisfaction
so that they could release it as a cartridge, and Crockford’s
mounting frustrations as Nintendo’s demands became more
obscure and confusing.

Together with Randy Farmer and Chip Morningstar,
Crockford founded Electric Communities and was its CEO
from 1994 to 1995. He was involved in the development of
the programming language E.

3G E-LEARNING

328 Basic Computer Coding: Java Script

Crockford was the founder of State Software (also known as Veil Networks) and
its CTO from 2001 to 2002.

During his time at State Software, Crockford popularized the JSON data format,
based upon existing JavaScript language constructs, as a lightweight alternative to
XML. He obtained the domain name json.org in 2002, and put up his description of
the format there. In July 2006, he specified the format officially, as RFC 4627.

“Good, not Evil”

In 2002, in reference to President George Bush’s war on “evildoers”, Crockford started
releasing his JSMin software under a custom license, which he created by adding the
requirement “The Software shall be used for Good, not Evil” to the open source MIT
License. This clause was carried over to JSMin-PHP, a variation of JSMin by Ryan
Grove. This software was hosted on Google Code until December 2009 when, due to
the additional clause, Google determined that the license was not compliant with the
definition of free and open source software, which does not permit any restriction on
how software may be used. JSMin-PHP was forced to migrate to a new hosting provider.

Crockford’s license has caused problems for some open source projects who
mistook the license for an open source variant of the MIT license. Affected open source
developers have asked Crockford to change the license, but he has continued to use
it. He has, however, granted “IBM, its customers, partners, and minions” permission
“to use JSLint for evil”, a solution which appeared to satisfy IBM’s lawyers.

In Media

Books

 ■ Crockford is listed in the acknowledgements of the 1995 hardcover edition of
The Diamond Age, by Neal Stephenson as Douglas (Carl Hollywood) Crockford.

JavaScript Events

3G E-LEARNING

329

SUMMARY
 ■ The Javascript interacts with the documents HTML code using events, which

are triggered when a particular moment of interest happens in the document
or the browser window.

 ■ Javascript Events makes the webpages interactive and responsive. These events
are asynchronous (i.e it can occur anytime).Most events are triggered by user
action but there are some exceptions like the event load

 ■ When an event occurs there are some default action which the browser
takes(like clicking on a link open up the location specified in attribute href).
An event may be a click, mouseover, keystroke etc.

 ■ The change in the state of an object is known as an Event. In html, there are
various events which represents that some activity is performed by the user
or by the browser. When javascript code is included in HTML, js react over
these events and allow the execution. This process of reacting over the events is
called Event Handling. Thus, js handles the HTML events via Event Handlers.

 ■ The addEventListener() method is used to attach an event handler to a particular
element. It does not override the existing event handlers. Events are said to
be an essential part of the JavaScript. A web page responds according to the
event that occurred. Events can be user-generated or generated by API’s. An
event listener is a JavaScript’s procedure that waits for the occurrence of an
event.

 ■ The onclick event generally occurs when the user clicks on an element. It
allows the programmer to execute a JavaScript’s function when an element
gets clicked. This event can be used for validating a form, warning messages
and many more.

 ■ The dblclick event generates an event on double click the element. The event
fires when an element is clicked twice in a very short span of time. We can also
use the JavaScript’s addEventListener() method to fire the double click event.

 ■ The onload attribute fires when an object has been loaded. The purpose of
this attribute is to execute a script when the associated element loads.

 ■ The onload attribute is generally used with the <body> element to execute
a script once the content (including CSS files, images, scripts, etc.) of the
webpage is completely loaded. It is not necessary to use it only with <body>
tag, as it can be used with other HTML elements.

 ■ The onresize event in JavaScript generally occurs when the window has been
resized. To get the size of the window, we can use the JavaScript’s window.
outerWidth and window.outerHeight events. We can also use the JavaScript’s
properties such as innerWidth, innerHeight, clientWidth, ClientHeight, offsetWidth,
offsetHeight to get the size of an element.

3G E-LEARNING

330 Basic Computer Coding: Java Script

KNOWLEDGE CHECK
1. In general, event handler is nothing but ____________

a. function
b. interface
c. event
d. handler

2. When will the browser invoke the handler?
a. Program begins
b. Any event occurs
c. Specified event occurs
d. Webpage loads

3. The process by which the browser decides which objects to trigger event handlers
on is ____________
a. Event Triggering
b. Event Listening
c. Event Handling
d. Event propagation

4. Which form of event propagation handles the registered container elements?
a. Event Propagation
b. Event Registration
c. Event Capturing
d. Default Actions

5. In which events/scenarios, A function name gets optional in JavaScript?
a. When a function is defined as a looping statement
b. When the function is called
c. When a function is defined as expressions
d. When the function is predefined

JavaScript Events

3G E-LEARNING

331

REVIEW QUESTIONS
1. Describe the types of JavaScript event.

2. What does addEventListener do in JavaScript?

3. What is onclick event in JavaScript?

4. What is dblclick in JavaScript?

5. Distinguish between event bubbling and event capturing.

Check Your Result

1. (a) 2. (c) 3. (d) 4. (c) 5. (c)

3G E-LEARNING

332 Basic Computer Coding: Java Script

REFERENCES
1. Fedortsova, Irina (June 2012). “Concurrency in JavaFX”. JavaFX Documentation

Home. Oracle. Retrieved 4 January 2018.
2. Mössenböck, Hanspeter (2002-03-25). “Advanced C#: Variable Number of

Parameters” (PDF). Institut für Systemsoftware, Johannes Kepler Universität
Linz, Fachbereich Informatik. p. 26. Retrieved 2011-08-05.

3. Samek, Miro (11 March 2009). “State Machines for Event-Driven Systems”.
Retrieved 19 March 2013.

4. Vivek Gupta, Ethan Jackson, Shaz Qadeer and Sriram Rajamani (November
2012). “P: Safe Asynchronous Event-Driven Programming”. Microsoft Research.
Retrieved 20 February 2017.

Index

A

Abstraction 83
addEventListener() method 292, 293, 299,
302, 306, 307, 308, 311, 318, 322, 327
array 239, 250, 277
assign () method 264, 277
attribute 110, 111, 112, 114, 132, 134

B

blur events 288, 290
Boolean 70, 77, 78
Boolean value 252, 253, 258, 259, 277
Browser Object Model (BOM) 238, 247, 249
browsers 118, 119, 120, 122, 126, 127
browser window 281, 287, 327
Bubbling 299, 300

C

Calendar 92
Capturing 299, 300, 328
Case-sensitive language 34
Checkboxes 116
Chrome 118, 119
click event 289, 290, 299, 302, 306, 307, 308,
309, 310, 311, 327
Color property 231
Computer programming 92

Constructor 204, 205, 206, 207, 209, 210,
211, 212, 213, 214, 216, 217, 219, 227, 228,
229, 230, 231, 235
Cross-site scripting (XSS) 192
CSS events 292

D

date 239
Date object 93, 95, 97, 98
dblclick event 281, 307, 327
DOM (Document Object Model) 9
Drop Down 114, 115

E

Email 194, 196
Embedded engine 36
Event 282, 283, 284, 285, 286, 287, 292, 299,
302, 327, 328, 330
event flow 288
Event Handlers 282, 327
Event Handling 282, 327, 328
event listener 287, 292, 327
event load 282, 327
Execution 72

F

File input 117

3G E-LEARNING

334 Basic Computer Coding: Java Script

Firefox 10, 21, 22
form 107, 108, 109, 110, 111, 112, 113, 114,
116, 118, 119, 121, 122, 123, 124, 125, 129,
132
Function 69, 70, 71, 72, 73, 74, 75, 76, 77, 82,
83, 90, 92, 104, 105, 106
Function declarations 204
Function expressions 204

G

geoLocation property 260, 261, 277

H

history object 237, 250, 251, 279
href property 264, 265, 268, 269, 277
HTML5 events 291
HTML elements 136, 137, 140, 141, 142,
145, 146, 150, 152, 153, 155
HTML Forms 107, 135
HTML page 138, 140, 167, 287
HTML tags 13
HTTP (Hypertext Transfer Protocol) 8

I

Inheritance model 204
innerHTML 136, 137, 138, 142, 143, 144,
150, 153, 157, 158, 159, 160, 161
Integer value 229
Integrated Development Environment 18
Internet 192
Internet Explorer 2, 5, 6, 10, 142, 155, 193

J

javaEnabled () method 252, 277
JavaScript 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28,
29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 51, 52, 55, 57, 58, 59, 61, 66, 67,
68, 108, 130, 135, 136, 140, 142, 143, 144, 145,

146, 147, 148, 149, 150, 152, 155, 169, 203,
204, 213, 214, 215, 216, 217, 222, 223, 224,
225, 227, 230, 231, 233, 234, 235
JavaScript classes 203, 204, 233
JavaScript development 7, 16, 18, 24, 29
JavaScript error 287
JavaScript history object 250, 277
JavaScript libraries 16
javascript objects 239
JavaScript screen object 275, 277
JavaScript string 224

K

keypress events 289, 290

L

Location object 263, 264, 268, 277, 278
Location object window 263, 277

M

mouse events 288, 289
mouse moves 288
Mozilla Developer Network (MDN) 21
mutation event 290
mutation observers 290, 291

N

name property 248, 277
National Center for Supercomputing Ap-
plications (NCSA) 3
National Vulnerability Database (NVD) 22
Navigator object 251, 252, 253, 254, 277

O

Object initializer 227
Object Oriented Programming (OOP) 216
onclick event 281, 302, 304, 327, 329
Online property 259
onload attribute 312, 313, 316, 317, 327

Index

3G E-LEARNING

335

onresize event 281, 318, 320, 327

P

Parameter 72, 73, 75, 90
Platform property 262
Prototype-based inheritance 203, 204, 211
Python Apache 23

R

Radio buttons 117
replace () method 267
Root directory 178

S

Search boxes 118
select tag 111
Semicolon 34, 42, 43
Server 77, 91, 92
Server-side languages 108
Session storage 172
Static methods 206
String 70, 78, 79, 80, 92
submit button 111, 113, 118, 132
Syntax 71, 76

T

taintEnable () method 253, 277
textarea 110, 111, 112, 115, 119, 120, 121,
122, 123, 126, 127
Time zone 92, 93, 95, 98

U

Uniform Resource Identifier (URI) 91
Universal Time (UTC) 94
user-agent style sheet 118
User experience (UX) 190
users 107, 108, 113, 117, 127

W

Web browsers 2
Web forms 108
Web pages 2, 7, 8, 9
Web server 171, 177, 187, 188
web site 107, 110, 118
widget 119, 120, 121
window object 238, 239, 263, 277, 279
Windows screen 237, 277
World wide web(WWW) 8

	Cover
	Title Page
	Copyright
	EDITORIAL BOARD
	TABLE OF CONTENTS
	Preface
	Chapter 1 Introduction to JavaScript
	Introduction
	1.1 Meaning of JavaScript
	1.1.1 The History of JavaScript
	1.1.2 Client-side JavaScript
	1.1.3 Limitations of JavaScript
	1.1.4 Advantages of CSS
	1.1.5 JavaScript Disadvantages

	1.2 Hello World: Writing Your First JavaScript Program
	1.2.1 Getting Started: Creating the HTML Framework
	1.2.2 Adding the JavaScript Code
	1.2.3 Creating a “Hello World” JavaScript Function

	1.3 How to Add JavaScript to Your Website Using HTML
	1.4 JavaScript Tools
	1.4.1 JavaScript Build tools and Automation Systems
	1.4.2 JavaScript IDE and editors
	1.4.3 JavaScript Documentation Tools
	1.4.4 JavaScript Testing Tools
	1.4.5 JavaScript Debugging Tools
	1.4.6 Security Tools
	1.4.7 Code optimization & analysis tools
	1.4.8 Version Control Tools
	1.4.9 Package and Dependency Management Tools

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 2 Language Syntax
	Introduction
	2.1 Javascript syntax
	2.1.1 JavaScript Browser
	2.1.2 Understanding Syntax and Code Structure in JavaScript

	2.2 Appearance Of Javascript Basics
	2.2.1 Syntax Basics
	2.2.2 Operators
	2.2.3 Conditional Code
	2.2.4 Loops
	2.2.5 Reserved Words
	2.2.6 Arrays
	2.2.7 Objects
	2.2.8 Testing Type
	2.2.9 The this keyword
	2.2.10 Scope

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 3 Built In Functions
	Introduction
	3.1 Understand Functions In Javascript
	3.1.1 Defining a Function
	3.1.2 Function Parameters
	3.1.3 Returning Values
	3.1.4 Function Expressions
	3.1.5 Arrow Functions

	3.2 Javascript Built-In Functions
	3.2.1 Number Methods
	3.2.2 Boolean Methods
	3.2.3 String Methods
	3.2.4 String HTML wrappers
	3.2.5 Array Methods
	3.2.6 Date Methods
	3.2.7 Date Static Methods
	3.2.8 Math Methods
	3.2.9 RegExp Methods
	3.2.10 How to use JavaScript’s built-in functions to program with HTML

	3.3 Understanding Date And Time In Javascript
	3.3.1 The Date Object
	3.3.2 Retrieving the Date with get
	3.3.3 Modifying the Date with set
	3.3.4 Date Methods with UTC

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 4 HTML Forms
	Introduction
	4.1 Forms Basics
	4.1.1 Form
	4.1.2 Input
	4.1.3 Textarea
	4.1.4 Select
	4.1.5 Names

	4.2 HTML Form Elements
	4.2.1 Text Box Input
	4.2.2 Password Input
	4.2.3 Text Area
	4.2.4 Select Drop Down
	4.2.5 Check Box
	4.2.6 Radio Input
	4.2.7 File Input
	4.2.8 Submit Button

	4.3 Styling HTML Forms
	4.3.1 Search Fields
	4.3.2 Fonts and Text
	4.3.3 Box Model
	4.3.4 Positioning

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 5 HTML DOM
	Introduction
	5.1 HTML DOM Methods
	5.1.1 The DOM Programming Interface
	5.1.2 The getElementById Method
	5.1.3 The innerHTML Property

	5.2 HTML DOM Document
	5.2.1 The HTML DOM Document Object
	5.2.2 Finding HTML Elements
	5.2.3 Changing HTML Elements
	5.2.4 Adding and Deleting Elements
	5.2.5 Adding Events Handlers
	5.2.6 Finding HTML Objects

	5.3 HTML DOM Elements
	5.3.1 Finding HTML Elements
	5.3.2 Finding HTML Element by Id
	5.3.3 Finding HTML Elements by Tag Name
	5.3.4 Finding HTML Elements by Class Name
	5.3.5 Finding HTML Elements by CSS Selectors
	5.3.6 Finding HTML Elements by HTML Object Collections

	5.4 Changing HTML
	5.4.1 Changing the HTML Output Stream
	5.4.2 Changing HTML Content
	5.4.3 Changing the Value of an Attribute

	5.5 Changing CSS
	5.5.1 Changing HTML Style
	5.5.2 Using Events

	5.6 HTML DOM Animation
	5.6.1 A Basic Web Page
	5.6.2 Create an Animation Container
	5.6.3 Style the Elements
	5.6.4 Animation Code
	5.6.5 Create the Animation Using JavaScript

	5.7 HTML DOM Events
	5.7.1 Reacting to Events
	5.7.2 HTML Event Attributes
	5.7.3 Assign Events Using the HTML DOM
	5.7.4 The onload and onunload Events

	5.8 HTML DOM EventListener
	5.8.1 The addEventListener() method
	5.8.2 Syntax
	5.8.3 Add an Event Handler to an Element
	5.8.4 Add Many Event Handlers to the Same Element
	5.8.5 Add an Event Handler to the Window Object
	5.8.6 Passing Parameters
	5.8.7 Event Bubbling or Event Capturing?
	5.8.8 The removeEventListener() method

	5.9 HTML DOM Navigation
	5.9.1 DOM Nodes
	5.9.2 Node Relationships
	5.9.3 Child Nodes and Node Values
	5.9.4 DOM Root Nodes
	5.9.5 The nodeName Property
	5.9.6 The nodeValue Property
	5.9.7 The nodeType Property

	5.10 HTML DOM Elements (Nodes)
	5.10.1 Creating New HTML Elements (Nodes)
	5.10.2 Creating new HTML Elements - insertBefore()
	5.10.3 Removing Existing HTML Elements
	5.10.4 Replacing HTML Elements

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 6 Cookies
	Introduction
	6.1 Basics To Reading/Writing Cookies With Javascript
	6.1.1 Using Cookies in JavaScript
	6.1.2 Structure of a Cookie
	6.1.3 Setting, Reading and Erasing Cookies
	6.1.4 Convenient Scripts
	6.1.5 How to set Cookies with JavaScript
	6.1.6 Privacy and Legislation
	6.1.7 Advantages and Disadvantages of using Cookies

	6.2 Setting Different Cookie Kinds In Javascript
	6.2.1 Session Cookie –First Cookie
	6.2.2 Persistent Cookie – A Cookie that survives closing the browser
	6.2.3 Secure Cookie – Which only works when HTTPS is being used
	6.2.4 HTTPOnly Cookie – The Cookie that can only be accessed by the web-server
	6.2.5 SameSite Cookie – A Cookie only for this website
	6.2.6 Cookie Domain – For Cookies that are only for a specific domain
	6.2.7 Cookie Domain and Path – For Cookies that are only for a specific path and domain
	6.2.8 Combining options – A Cookie jar of options

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 7 Java Script: Classes and Objects
	Introduction
	7.1 Java Script: Classes
	7.2 Class Body and Method Definitions
	7.2.1 Prototype Methods
	7.2.2 Boxing with Prototype and Static Methods
	7.2.3 Sub classing with extends
	7.2.4 Using a Function
	7.2.5 Using Object Literals

	7.3 JavaScript: Objects
	7.3.1 Object Properties
	7.3.2 Object Methods
	7.3.3 Working with Objects
	7.3.4 Enumerate the Properties of an Object
	7.3.5 Inheritance

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 8 JavaScript BOM
	Introduction
	8.1 Browser Object Model
	8.2 The Windows Objects
	8.2.1 Methods of Window Object
	8.2.2 Example of Windows Object Methods
	8.2.3 Properties in Windows Objects
	8.2.4 Example of Windows Object Properties

	8.3 JavaScript History Object
	8.3.1 Property of JavaScript History Object
	8.3.2 Methods of JavaScript History Object

	8.4 Navigator Object
	8.4.1 Methods in Navigator Object
	8.4.2 Examples of Navigator object Methods
	8.4.3 Property in Navigator Object
	8.4.4 Examples of Navigator Object Properties

	8.5 Location Object
	8.5.1 Methods in Location Object
	8.5.2 Examples of Location object Methods
	8.5.3 Property in Location Object
	8.5.4 Examples of Location object Properties

	8.6 Screen Object
	8.6.1 Property of JavaScript Screen Object
	8.6.2 Example of JavaScript Screen Object

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 9 JavaScript Events
	Introduction
	9.1 JavaScript Events
	9.2 JavaScript Event Types
	9.2.1 User Interface Events
	9.2.2 Focus and Blur Events
	9.2.3 Mouse Events
	9.2.4 Keyboard Events
	9.2.5 Form Events
	9.2.6 Mutation Events and Observers
	9.2.7 HTML5 Events
	9.2.8 CSS Events

	9.3 JavaScript addEventListener()
	9.3.1 Syntax
	9.3.2 Parameter Values
	9.3.3 Event Bubbling or Event Capturing

	9.4 JavaScript onclick Event
	9.4.1 Syntax
	9.4.2 In HTML
	9.4.3 In JavaScript
	9.4.4 In JavaScript by using the addEventListener() method

	9.5 JavaScript dblclick event
	9.5.1 Syntax
	9.5.2 In HTML
	9.5.3 In JavaScript
	9.5.4 In JavaScript by using the addEventListener() method

	9.6 JavaScript onload
	9.6.1 Syntax

	9.7 JavaScript onresize event
	9.7.1 Syntax
	9.7.2 In HTML
	9.7.3 In JavaScript
	9.7.4 In JavaScript by using the addEventListener() method

	Summary
	Knowledge Check
	Review Questions
	References

	Index
	Back Cover

