

BASIC COMPUTER CODING:
PYTHON

2nd Edition

BIBLIOTEX
Digital Library

www.bibliotex.com

BASIC COMPUTER CODING: PYTHON

2ND EDITION

BIBLIOTEX
Digital Library

www.bibliotex.com

email: info@bibliotex.com

e-book Edition 2022

ISBN: 978-1-98467-604-7 (e-book)

This book contains information obtained from highly regarded resources.
Reprinted material sources are indicated. Copyright for individual articles
remains with the authors as indicated and published under Creative Commons
License. A Wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and views articulated in the chapters are those of
the individual contributors, and not necessarily those of the editors or
publishers. Editors or publishers are not responsible for the accuracy of the
information in the published chapters or consequences of their use. The
publisher assumes no responsibility for any damage or grievance to the persons or
property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission has not been obtained. If any copyright holder has
not been acknowledged, please write to us so we may rectify.

Notice: Registered trademark of products or corporate names are used only for
explanation and identification without intent of infringement.

© 2022 3G E-learning LLC

In Collaboration with 3G E-Learning LLC. Originally Published in printed
book format by 3G E-Learning LLC with ISBN 978-1-98465-897-5

EDITORIAL BOARD
Aleksandar Mratinković was born on May 5, 1988 in Arandjelovac, Serbia. He has graduated on
Economic high school (2007), The College of Tourism in Belgrade (2013), and also has a master
degree of Psychology (Faculty of Philosophy, University of Novi Sad). He has been engaged
in different fields of psychology (Developmental Psychology, Clinical Psychology, Educational
Psychology and Industrial Psychology) and has published several scientific works.

Dan Piestun (PhD) is currently a startup entrepreneur in Israel working on the interface of
Agriculture and Biomedical Sciences and was formerly president-CEO of the National Institute of
Agricultural Research (INIA) in Uruguay. Dan is a widely published scientist who has received
many honours during his career including being a two-time recipient of the Amit Golda Meir
Prize from the Hebrew University of Jerusalem, his areas of expertise includes stem cell molecular
biology, plant and animal genetics and bioinformatics. Dan’s passion for applied science and
technological solutions did not stop him from pursuing a deep connection to the farmer, his family
and nature. Among some of his interest and practices counts enjoying working as a beekeeper
and onboard fishing.

Hazem Shawky Fouda has a PhD. in Agriculture Sciences, obtained his PhD. From the Faculty
of Agriculture, Alexandria University in 2008, He is working in Cotton Arbitration & Testing
General Organization (CATGO).

Felecia Killings is the Founder and CEO of LiyahAmore Publishing, a publishing company committed
to providing technical and educational services and products to Christian Authors. She operates as
the Senior Editor and Writer, the Senior Writing Coach, the Content Marketing Specialist, Editor-
in-Chief to the company’s quarterly magazine, the Executive and Host of an international virtual
network, and the Executive Director of the company’s online school for Authors. She is a former
high-school English instructor and professional development professor. She possesses a Master
of Arts degree in Education and a Bachelor’s degree in English and African American studies.

Dr. Sandra El Hajj, Ph.D. in Health Sciences from Nova Southeastern University, Florida,
USA is a health professional specialized in Preventive and Global Health. With her 12 years of
education obtained from one of the most prominent universities in Beirut, in addition to two leading
universities in the State of Florida (USA), Dr. Sandra made sure to incorporate interdisciplinary
and multicultural approaches in her work. Her long years of studies helped her create her own
miniature world of knowledge linking together the healthcare field with Medical Research, Statistics,
Food Technology, Environmental & Occupational Health, Preventive Health and most noteworthy
her precious last degree of Global Health. Till today, she is the first and only doctor specialized
in Global Health in the Middle East area.

Igor Krunic 2003-2007 in the School of Economics. After graduating in 2007, he went on to
study at The College of Tourism, at the University of Belgrade where he got his bachelor degree
in 2010. He was active as a third-year student representative in the student parliament.Then he
went on the Faculty of science, at the University of Novi Sad where he successfully defended his
master’s thesis in 2013. The crown of his study was the work titled Opportunities for development
of cultural tourism in Cacak“. Later on, he became part of a multinational company where he got
promoted to a deputy director of logistic. Nowadays he is a consultant and writer of academic
subjects in the field of tourism.

Dr. Jovan Pehcevski obtained his PhD in Computer Science from RMIT University in Melbourne,
Australia in 2007. His research interests include big data, business intelligence and predictive analytics,
data and information science, information retrieval, XML, web services and service-oriented architectures,
and relational and NoSQL database systems. He has published over 30 journal and conference papers
and he also serves as a journal and conference reviewer. He is currently working as a Dean and Associate
Professor at European University in Skopje, Macedonia.

Stephen obtained his PhD from the University of North Carolina at Charlotte in 2013 where his
graduate research focused on cancer immunology and the tumor microenvironment. He received
postdoctoral training in regenerative and translational medicine, specifically gastrointestinal tissue
engineering, at the Wake Forest Institute of Regenerative Medicine. Currently, Stephen is an
instructor for anatomy and physiology and biology at Forsyth Technical Community College.

Michelle holds a Masters of Business Administration from the University of Phoenix, with a
concentration in Human Resources Management. She is a professional author and has had numerous
articles published in the Henry County Times and has written and revised several employee
handbooks for various YMCA organizations throughout the United States.

Fozia Parveen has a Dphil in Sustainable Water Engineering from the University of Oxford. Prior
to this she has received MS in Environmental Sciences from National University of Science and
Technology (NUST), Islamabad Pakistan and BS in Environmental Sciences from Fatima Jinnah
Women University (FJWU), Rawalpindi.

Dr. Tanjina Nur finished her PhD in Civil and Environmental Engineering in 2014 from University
of Technology Sydney (UTS). Now she is working as Post-Doctoral Researcher in the Centre for
Technology in Water and Wastewater (CTWW) and published about eight International journal papers
with 80 citations. Her research interest is wastewater treatment technology using adsorption process.

v

 HOW TO USE THE BOOK

This book has been divided into many chapters. Chapter gives the motivation for this book and the use
of templates. The text is presented in the simplest language. Each paragraph has been arranged under
a suitable heading for easy retention of concept. Keywords are the words that academics use to reveal
the internal structure of an author’s reasoning. Review questions at the end of each chapter ask students
to review or explain the concepts. References provides the reader an additional source through which
he/she can obtain more information regarding the topic.

3G E-LEARNING

4 Basic Computer Coding: Visual Basic

enhancements, including the striking ability of creating web based applications. The
extended support for Visual Basic 6.0 was ceased in the month of March in 2008. The
basic parts of development environment of Visual Basic 6, however, still run in all the
32-bit Microsoft windows, including Windows 8.1.

After the cessation of mainstream and extended support for Visual Basic 6.0 caused
a number of programs to show concern. The community members then created a lobby
of users and a petition was signed by them. The basic aim of this petition was to ensure
that the product remains alive. However, the petition did not attain its aim effectively.

1.1.2 The Importance of Visual Basic Programming Language

Visual Basic is regarded as the third generation event-driven programming language.
It was released in 1987. Being the first visual development tool from Microsoft, it is
considered as one of the most powerful programming languages. As compared to other
computer programming languages, such as, C, C++, it is easy to learn and understand,
provided that one has determination and dedication to do so.

Visual basic programming language allows programmers to create software interface
and codes in an easy to use graphical environment. VB is the combination of different
components that are used on forms having specific attributes and actions with the help
of those components. On the one hand it allows programmers to develop widows based
applications rapidly; on the other hand, it helps greatly in accessing data bases, using
ADO while letting the programmers use ActiveX controls and various objects. While it
is intended more to develop applications, it is also useful for games development for
particular or limited purposes, unlike C++ that is more suitable for developing games.

As compared to other languages, Visual basic may be slower though, yet it is
flexible and it can be rightly said that things that are difficult in other languages are
comparatively easier in visual basic programming language. It may also be said that,
since it is one of the most popular programming languages, lots of related books
and material and other resources are available and can be accessed for developing
programming skills at visual basic programming language conveniently.

One of the most important things to be considered with regard to programming in
Visual basic is that the structure of VB is designed in a way that allows programmers
to create executable code – Exe files. It enables programmers to develop programs that
can be used as front end to databases. Besides, it’s with the help of visual basic tools,
one can change the abstract ideas into programs or into the whole software while it
allows revising and modifying the programs fittingly.

3G E-LEARNING

2 Basic Computer Coding: Visual Basic

a graphical user interface (GUI) which allows programmers
to modify code by simply dragging and dropping objects and
defining their behavior and appearance. VB is derived from
the BASIC programming language and is considered to be
event-driven and object-oriented.

VB is intended to be easy to learn and fast to write
code with; as a result, it is sometimes called a rapid
application development (RAD) system and is used
to prototype an application that will later be written in a
more difficult but efficient language.

The last version of VB, Visual Basic 6, was released in
1998, but has since been replaced by VB .NET, Visual Basic for
applications (VBA) and Visual Stuido .NET. VBA and Visual
Studio are the two frameworks most commonly used today.

1.1 MEANING OF VISUAL BASIC
Visual Basic is a programming language and development
environment created by Microsoft. It is an extension of the
BASIC programming language that combines BASIC functions
and commands with visual controls. Visual Basic provides a
graphical user interface GUI that allows the developer to
drag and drop objects into the program as well as manually
write program code.

Visual Basic, also referred to as “VB,” is designed to
make software development easy and efficient, while still
being powerful enough to create advanced programs. For
example, the Visual Basic language is designed to be “human
readable,” which means the source code can be understood
without requiring lots of comments. The Visual Basic program
also includes features like “IntelliSense” and “Code Snippets,”
which automatically generate code for visual objects added by

 The
 graphical
 user interface
 (GUI), is a type
 of user interface
 that allows users
 to interact with
 electronic devices
 through graphical
 icons and visual
 indicators such
 as secondary
 notation, instead
 of text-based user
 interfaces, typed
 command labels or
text navigation.

Keyword

Introduction to Visual Basic

3G E-LEARNING

3

the programmer. Another feature, called “AutoCorrect,” can
debug the code while the program is running.

Programs created with Visual Basic can be designed to
run on Windows, on the Web, within Office applications, or
on mobile devices. Visual Studio, the most comprehensive
VB development environment, or IDE, can be used to create
programs for all these mediums. Visual Studio .NET provides
development tools to create programs based on the .NET
framework, such as ASP.NET applications, which are often
deployed on the Web.

1.1.1 History of Visual Basic

The first version of visual basic, VB 1.0, was announced in the
year 1991. The creation of user interface through a drag and
drop design was inspired a beta generator that was developed
by Alan Cooper at Tripod, which was Cooper’s company.

Microsoft entered into a contract with Cooper and his
partners to create Tripod into a system that is programmable for
Windows 3.0. This system was developed under the code name
of Ruby, which has no relationship with the Ruby Programming
Language. Tripod did not have any programming language at
all. Microsoft then decided to use Ruby in combination with
basic language to develop visual basic.

The interface of Ruby contributed the “visual” component
of the Visual Basic programming language. This was then
amalgamated with the Embedded BASIC engine that was
developed for the ceased “Omega” database system of
Microsoft.

The introduction of version 5.0, in the month of February
in 1997, Microsoft exclusively released a visual basic that
was compatible with 32-bit Microsoft Windows versions. The
programmers who had a preference for writing programs in
16-bit could do it in versions between 4.0 and 5.0. In addition
to that the programs written Visual Basic 5.0 can be converted
to Version 4.0 programs in an easy manner. The version 5.0
also has the ability of compilation with native execution code
of Windows, and introduction of custom user controls.

The introduction of Visual Basic 6.0 was made in the
middle of 1998. This version also came with a number of

Visual
Basic
is available as
a streamlined
application that
is used primarily
by beginning
developers and
for educational
purposes.

Remember

LEARNING OBJECTIVES
See what you are going to cover and what you
should already know at the start of each chapter

ABOUT THIS CHAPTER
An introduction is a beginning of section which
states the purpose and goals of the topics which
are discussed in the chapter. It also starts the topics
in brief.

“I know blind programmers who work in C and Visual Basic in addition to mainframe languages,
because as long as they can get at a text file, they can do programming. But if the graphical tool kit
you are using requires you to drag and drop items on the screen, you can’t do it.”

–Curtis Chong,

After studying this chapter,
you will be able to:
1. Overview of meaning of

visual basic
2. Discuss the visual basic

environment
3. Describe the building

VB applications

LEARNING
OBJECTIVES

INTRODUCTION
TO VISUAL BASIC

INTRODUCTION
Visual Basic (VB) is an event-driven programming
language and environment from Microsoft that provides

1
CHAPTER

REMEMBER
This revitalizes a must read information of the
topic.

KEYWORDS
This section contains some important definitions
that are discussed in the chapter. A keyword is
an index entry that identifies a specific record
or document. It also gives the extra information
to the reader and an easy way to remember the
word definition.

vi

3G E-LEARNING

6 Basic Computer Coding: Visual Basic

 ■ There are some, fairly minor disadvantages compared
with C. C has better declaration of arrays – its possible
to initialize an array of structures in C at declaration
time; this is impossible in VB.

1.2 VISUAL BASIC ENVIRONMENT
On start up, Visual Basic 6.0 will display the following dialog
box as shown in figure 1. You can choose to start a new
project, open an existing project or select a list of recently
opened programs. A project is a collection of files that make
up your application. There are various types of applications
we could create, however, we shall concentrate on creating
Standard EXE programs (EXE means executable program).
Now, click on the Standard EXE icon to go into the actual
VB programming environment.

Figure 1: The Visual Basic Start-up Dialog Box.

In figure 2, the Visual Basic Environment consists of the
 ■ The Blank Form window which you can design your

application’s interface.
 ■ The Project window displays the files that are created

in your application.
 ■ The Properties window which displays the properties

of various controls and objects that are created in
your applications.

It also includes a Toolbox that consists of all the controls
essential for developing a VB Application. Controls are tools

Visual
Basic 1.0 for DOS
was released in
September 1992.
The language
itself was not
quite compatible
with Visual Basic
for Windows, as
it was actually
the next version
of Microsoft’s
DOS-based
BASIC compilers,
Microsoft
QuickBASIC
compiler and
the BASIC
Professional
Development
System 7.1. The
interface was
barely graphical,
using extended
ASCII characters
to simulate the
appearance of a
GUI.

Did You
Know?

38 Basic Computer Coding: Visual Basic

In each case, the name of the variable and its data type
are provided as part of the declaration.

Visual Basic reserves the amount of memory required
to hold the variable as soon as the declaration statement is
executed. After a variable is declared, it is not possible to
change its data type, although it is quite easy to convert the
value of a variable and assign the converted value to another
variable.

2.2.2 Comparing Implicit and Explicit Variable
Performance

The default data type for Visual Basic variables is the variant.
This means that, unless you specify otherwise, every variable
in your application will be a variant. The data type is not
very efficient. Its data storage requirements are greater than
the equivalent simple data type. The computer spends more
time keeping track of the data type contained in a variant
than for other data types.

 Variable names can’t be duplicated with the same scope. This means, that
 you can’t have two variables of the same name within a procedure. You can,
however, have two variables with the same name in two different procedures.

An explicit declaration statically types the variable it
declares. In a language that requires explicit declaration, you
will get a compilation error for any reference to a variable
that has not been explicitly declared.

By contrast, in a language that supports implicit declaration,
simply using a variable in code implies the declaration. If your
code assigns a string to the variable, then it is declared to be
a string.

Convenient, yes? Not so much. Any time you misspell a
variable name you get a new one and the program moves on,
with incorrect conditional behavior or a wrongly computed
value.

Given the rise of very smart editors like Visual Studio
Code, implicit declaration need not be the menace it was,
at least for languages that support the notion of optional

DID YOU KNOW?
This section equip readers the interesting facts and
figures of the topic.

EXAMPLE
The book cabinets’ examples to illustrate specific
ideas in each chapter.

ROLE MODEL
A biography of someone who has/had acquired
remarkable success in their respective field as
Role Models are important because they give us
the ability to imagine our future selves.

CASE STUDY
This reveals what students need to create and
provide an opportunity for the development of key
skills such as communication, group working and
problem solving.

KNOWLEDGE CHECK
This is given to the students for progress check
at the end of each chapter.

REVIEW QUESTIONS
This section is to analyze the knowledge and ability
of the reader.

REFERENCES
References refer those books which discuss the
topics given in the chapters in almost same manner.

Introduction to Visual Basic

3G E-LEARNING

19

ROLE MODEL

ALAN COOPER: FATHER OF VISUAL BA-
SIC
 Born in San Francisco in 1952 and raised in Marin
 County, California, Alan Cooper has always taken the path
 less traveled. A rebellious teenager, he dropped out of high
 school, but eventually made his way to the College of Marin
 to pursue his interest in architecture. After an exploratory
 course in programming, it became clear that his future was
 in architecture—software architecture. After getting his
 associate degree and a COBOL programming job, he saw an
 advertisement for one of the first personal computers and
.conceived an idea for a new business venture

In 1976, Cooper founded Structured Systems Group (SSG),
a company Fire in the Valley authors Paul Freiberger and
Michael Swaine said created “the first serious business software
for microcomputers.” In four years, Cooper wrote and shipped
a dozen application programs. SSG became the archetype
for many software startups in the early days of the personal
computer revolution.

During the 1980s, after leaving SSG, Cooper invented,
wrote, and sold three major software packages to prominent
publishers. One of those was the visual programming front-
end code named “Ruby,” for what became Visual BASIC. Bill
Gates purchased it from Cooper in 1988, noting that it would
have significant impact across Microsoft’s entire product line.
Visual BASIC was deemed both a commercial and critical
success, earning Cooper the moniker “Father of Visual BASIC.”
Visual BASIC has influenced integrated development languages
ever since.

In 1990 Cooper became fascinated with the challenge of
making software products that were easy to use and understand.
He and his wife, Susan, founded Cooper Interaction Design
(now “Cooper”) to assist in what Cooper calls “interaction
design.” In the design field, Cooper’s software development
background was unique and, over the next few years, he
invented many of the tools and techniques now standard in
the user experience industry, including personas and scenarios,

3G E-LEARNING

50 Basic Computer Coding: Visual Basic

CASE STUDY

FUJITSU FACILITATES SMOOTH MIGRATION TO VB.NET AT
AN POST
Fujitsu has an excellent technical team, which works closely with our staff. We have
had a good working relationship for many years and Fujitsu has an in-depth knowledge
of our mission-critical application gained from several years’ development and support
work.

Challenge

A Post, one of Ireland’s largest companies, is a major commercial organization providing
a wide range of postal, communication, retail and financial services. With 9,600
employees throughout its national network of retail, processing and delivery points,
the business also provides services to government departments, the National Treasury
Management Agency and its own National Lottery Company. A decade ago, A Post
implemented a new nationwide time and attendance system to calculate and record staff
salary and wages functions. The Staff Remuneration and Administration Management
System (STREAMS) is a bespoke, mission-critical application developed by Fujitsu as
a reliable, scalable client server system using Microsoft technologies. The STREAMS
front-end system gathers information and feeds the data to the company’s HR, payroll
and financial departments. It primarily creates more efficient processes for A Post to
capture data for the weekly payroll run whilst simultaneously minimizing the number
of payroll queries by employees. Following deployment, STREAMS improved cost
center reporting, significantly lowered the time to record pay details and enhanced
the processing of casual staff pay. During this period, Fujitsu provided quality support
and maintenance services and application enhancements to increase functionality,
ensuring the long-term reliability of STREAMS. For instance, as employee numbers
steadily increased to exceed original expectations, Fujitsu boosted system performance
by upgrading the infrastructure and optimizing the software. STREAMS originally
employed Visual Basic (VB), a third-generation event-driven programming language and
integrated development environment (IDE) from Microsoft. IDE provides programmers
with comprehensive facilities for software development and comprises a source code
editor, a compiler and/or an interpreter, build automation tools and a debugger.
However, Microsoft no longer supports VB version 6.0, the edition employed by A
Post. Syl Byrne, IT Manager Remuneration Services, A Post, explains: “To ensure that
our business-critical application is future-proof, we needed to move to a platform that
Microsoft will support for the foreseeable future.” A Post therefore decided to migrate
STREAMS to the VB.NET platform, an object-orientated programming language. This
strategy would protect its investment for the next 10 years by creating a secure, scalable

3G E-LEARNING

22 Basic Computer Coding: Visual Basic

KNOWLEDGE CHECK
1. The Visual Basic Code Editor will automatically detect certain types of errors

as you are entering code.
a. True
b. False

2. Keywords are also referred to as reserved words.
a. True
b. False

3. The divide-and-conquer-method of problem solving breaks a problem into large,
general pieces first, then refines each piece until the problem is manageable.
a. True
b. False

4. Visual Basic responds to events using which of the following?
a. a code procedure
b. an event procedure
c. a form procedure
d. a property

5. When the user clicks a button, _________ is triggered.
a. an event
b. a method
c. a setting
d. a property

6. What property of controls tells the order they receive the focus when the tab
key is pressed during run time?
a. Focus order
b. Focus number
c. Tab index
d. Control order

7. Sizing Handles make it very easy to resize virtually any control when developing
applications with Visual Basic. When working in the Form Designer, how are
these sizing handles displayed?
a. A rectangle with 4 arrows, one in each corner, around your control.
b. A 3-D outline around your control.
c. A rectangle with small squares around your control.

3G E-LEARNING

24 Basic Computer Coding: Visual Basic

REFERENCES
1. Cox, Philip T, Visual Programming Languages. In in Encyclopedia of Computer

Science and Engineering, B.W. Wah (Ed.), John Wiley & Sons Inc., Hoboken,
(June 2008).

2. Kindborg, Mikael, How Children Understand Concurrent Comics: Experiences
from LOFI and HIFI Prototypes. In 2001 IEEE Symposia on Human-Centric
Computing Languages and Environments , Stresa, Italy, September 2001.

3. Ryder, Barbara, Mary Lou Soffa and Margaret Burnett, The Impact of Software
Engineering Research on Modern Programming Languages. In ACM Transactions
on Software Engineering and Methodology, October, 2005. Pages 431 to 477.

4. Störrle, Harald, VMQL: A Generic Visual Model Query Language. In IEEE
Symposium on Visual Languages/Human Centric Computing, Corvallis, Oregon,
September 2009.

5. Zhang, Kang, Visual Languages and Applications. In Research Manuscript,
Springer, 2007.

Introduction to Visual Basic

3G E-LEARNING

23

d. None of the above.
8. The Properties window plays an important role in the development of Visual

Basic applications. It is mainly used
a. to change how objects look and feel.
b. when opening programs stored on a hard drive.
c. to allow the developer to graphically design program components.
d. to set program related options like Program Name, Program Location, etc.

9. Pseudocode is
a. data that have been encoded for security.
b. the incorrect results of a computer program.
c. a program that doesn’t work.
d. the obscure language computer personnel use when speaking.
e. a description of an algorithm similar to a computer language.

10. Which of the properties in a control’s list of properties is used to give the
control a meaningful name?
a. Text
b. ContextMenu
c. ControlName
d. Name

REVIEW QUESTIONS
1. What is visual basic? Why are importance of visual basic programming

language?
2. What is visual basic environment?
3. Describe the structure of a visual basic application.
4. How to creating your first application?
5. Discuss the saving projects in VB.

Check Your Result

1. (a) 2. (a) 3. (a) 4. (b) 5. (a)
6. (c) 7. (c) 8. (a) 9. (e) 10. (d)

TABLE OF

CONTENTS
Preface	 xv

Chapter 1	 Introduction to Python	 1
Introduction	 1

1.1 Overview of Python	 2

1.1.1 History of Python	 3

1.1.2 Python Features	 3

1.2 Python Environment Setup	 4

1.2.1 Getting Python	 5

1.2.2 Installing Python	 5

1.2.3 Setting up PATH	 6

1.2.4 Python Environment Variables	 7

1.2.5 Running Python	 8

1.3 Basic Syntax of Python	 10

1.3.1 First Python Program	 10

1.3.2 Python Identifiers	 11

1.3.3 Reserved Words	 11

1.3.4 Lines and Indentation	 12

1.3.5 Multi-Line Statements	 13

1.3.6 Quotation in Python	 14

1.3.7 Comments in Python	 14

1.3.8 Using Blank Lines	 15

1.3.9 Waiting for the User	 15

1.3.10 Multiple Statements on a Single Line	 15

1.3.11 Multiple Statement Groups as Suites	 15

1.3.12 Command Line Arguments	 16

1.4 Python Variables	 16

1.4.1 Assigning Values to Variables	 16

1.4.2 Multiple Assignment	 17

viii

1.4.3 Standard Data Types	 17

1.4.4 Data Type Conversion	 22

1.5 Python Basic Operators	 24

1.5.1 Types of Operator	 24

1.5.2 Python Operators Precedence	 28

Summary	 33

Knowledge Check	 34

Review Questions	 35

References	 36

Chapter 2	Python Functions, Modules and Packages	 37
Introduction	 37

2.1 Function in Python	 38

2.1.1 Syntax of Function	 38

2.1.2 Docstring	 39

2.1.3 The Return Statement	 40

2.1.4 How Function works in Python?	 41

2.1.5 Python Function Arguments	 41

2.1.6 The Anonymous Functions	 45

2.1.7 The Return Statement	 46

2.2 Python Modules	 46

2.2.1 More on Modules	 48

2.2.2 Standard Modules	 51

2.3 Python Packages	 54

2.3.1 Importing* From a Package	 56

2.3.2 Intra-package References	 57

2.3.3 Packages in Multiple Directories	 58

Summary	 59

Knowledge Check	 60

Review Questions	 61

References	 62

Chapter 3	Dictionaries, Sets, and Files	 63
Introduction	 63

3.1 Python Dictionaries	 64

3.1.1 Accessing Dictionary Elements	 65

3.1.2 Modifying Dictionaries	 68

ix

3.1.3 The dict() Constructor	 73

3.1.4 Dictionary Methods	 73

3.1.5 Aliasing and Copying	 74

3.2 Python Sets	 75

3.2.1 Defining a Set	 75

3.2.2 Set Size and Membership	 79

3.2.3 Methods for Sets	 79

3.2.4 Creating a Set	 80

3.2.5 Accessing Values in a Set	 81

3.2.6 Adding Items to a Set	 81

3.2.7 Removing Item from a Set	 81

3.2.8 Union of Sets	 82

3.2.9 Intersection of Sets	 82

3.2.10 Difference of Sets	 83

3.2.11 Compare Sets	 83

3.3 Files	 83

3.3.1 The open function	 84

3.3.2 Opening a File that Doesn’t Exist	 86

3.3.3 Reading Data from Files	 86

Summary	 92

Knowledge Check	 93

Review Questions	 94

References	 95

Chapter 4	Exceptions, Unit Testing and Comprehensions	 97
Introduction	 97

4.1 Exceptions	 98

4.1.1 Handling Exceptions	 99

4.1.2 Raising Exceptions	 103

4.1.3 User-defined Exceptions	 104

4.1.4 Defining Clean-up Actions	 106

4.1.5 Predefined Clean-up Actions	 107

4.2 Unit testing	 108

4.2.1 Basic example	 109

4.2.2 Command-Line Interface	 111

4.2.3 Test Discovery	 112

4.2.4 Organizing test code	 113

4.2.5 Re-using old test code	 117

x

4.2.6 Skipping tests and expected failures	 118

4.3 Comprehensions	 120

4.3.1 List Comprehensions	 120

4.3.2 Dict Comprehensions	 121

4.3.3 Set Comprehensions	 121

4.3.4 Generator Comprehensions	 121

Summary 	 129

Knowledge Check	 130

Review Questions	 131

References	 132

Chapter 5	Object Oriented Programming	 133
Introduction	 133

5.1 Introduction of OOPS In Python	 135

5.1.1 Classes in Python	 135

5.1.2 Python Objects (Instances)	 136

5.1.3 Instantiating Objects	 138

5.1.4 Instance Methods	 140

5.1.5 Python Object Inheritance	 141

5.2 Methods of OOPS	 147

5.2.1 Inheritance	 148

5.2.2 Encapsulation	 151

5.2.3 Polymorphism	 155

5.2.4 Abstraction	 159

Summary	 168

Knowledge Check	 169

Review Questions	 170

References	 171

Chapter 6	Python Regular Expression	 173
Introduction	 173

6.1 Regex Search and Match	 174

6.1.1 The Match Function	 176

6.1.2 The Search Function	 177

6.1.3 Matching Versus Searching	 179

6.1.4 Search and Replace	 180

6.2 Regular Expression Modifiers: Option Flags	 180

xi

6.2.1 Regular Expression Patterns	 181

6.2.2 Regular Expression Examples	 184

Summary	 197

Knowledge Check	 198

Review Questions	 199

References	 200

Chapter 7	Python Multithreading	 201
Introduction	 201

7.1 Python Threading – Python Multithreading	 202

7.1.1 Getting Started with Python Multithreading	 203

7.1.2 Python Multithreading Modules for Thread Implementation	 204

7.1.3 Difference between Multiprocessing and Multithreading	 204

7.2 Functions in Python Multithreading	 206

7.2.1 Thread-Local Data	 208

7.2.2 Thread Objects	 209

7.2.3 Lock Objects	 212

7.2.4 RLock Objects	 213

7.2.5 Condition Objects	 214

7.2.6 Semaphore Objects	 216

7.2.7 Event Objects	 218

7.2.8 Timer Objects	 219

7.2.9 Barrier Objects	 220

7.2.10 Using locks, Conditions, and Semaphores in the with-statement	 221

Summary	 224

Knowledge Check	 225

Review Questions	 226

References	 227

Chapter 8	Operations in Python	 229
Introduction	 229

8.1 Python - Decision Making	 230

8.1.1 Python if Statement	 231

8.1.2 Python if-else Statement	 233

8.1.3 Python if-elif ladder	 235

8.1.4 Python Nested if statement	 237

8.2 Python - Loops	 239

8.2.1 The range() function	 241

8.2.2 for loop with else	 243

8.2.3 Loop Control Statements	 244

8.3 Python - Numbers	 244

8.3.1 Number Type Conversion	 246

8.3.2 Mathematical Functions	 246

8.3.3 Random Number Functions	 248

8.3.4 Trigonometric Functions	 248

8.3.5 Mathematical Constants	 249

8.4 Python - Strings	 249

8.4.1 Accessing Values in Strings	 250

8.4.2 Updating Strings	 250

8.4.3 Escape Characters	 250

8.4.4 String Special Operators	 251

8.4.5 String Formatting Operator	 252

8.4.6 Triple Quotes	 253

8.4.7 Unicode String	 255

8.4.8 Built-in String Methods	 255

8.5 Python - Lists	 259

8.5.1 Accessing Values in Lists	 259

8.5.2 Updating Lists	 260

8.5.3 Delete List Elements	 261

8.5.4 Basic List Operations	 261

8.5.5 Indexing, Slicing, and Matrixes	 262

8.5.6 Built-in List Functions & Methods	 262

8.6 Python - Tuples	 263

8.6.1 Accessing Values in Tuples	 264

8.6.2 Updating Tuples	 264

8.6.3 Delete Tuple Elements	 265

8.6.4 Basic Tuples Operations	 266

8.6.5 Indexing, Slicing, and Matrixes	 266

8.6.6 No Enclosing Delimiters	 266

8.6.7 Built-in Tuple Functions	 267

8.7 Python - Date & Time	 267

8.7.1 Getting Current Time	 269

8.7.2 Getting formatted time	 270

8.7.3 Getting calendar for a month	 270

8.7.4 The time Module	 271

8.7.5 The calendar Module	 272

Summary	 275

xiii

Knowledge Check	 276

Review Questions	 277

References	 278

Chapter 9	Python Database Programming	 279
Introduction	 279

9.1 DB-API (SQL-API) for Python	 281

9.1.1 Connection Objects	 281

9.1.2 Cursor objects	 282

9.1.3 Error and Exception Handling in DB-API	 283

9.1.4 Python and MySQL	 285

9.1.5 More SQL operations	 286

9.1.6 Python MySQL – Create Database	 289

9.2 MySQL with Python	 290

9.2.1 Comparing MySQL to Other SQL Databases	 291

9.2.2 Installing MySQL Server and MySQL Connector/Python	 293

9.2.3 Establishing a Connection with MySQL Server	 295

9.3 Creating, Altering, and Dropping a Table	 300

9.3.1 Defining the Database Schema	 301

9.3.2 Creating Tables Using the CREATE TABLE Statement	 302

9.3.3 Showing a Table Schema Using the DESCRIBE Statement	 305

9.3.4 Modifying a Table Schema Using the ALTER Statement	 306

9.3.5 Deleting Tables Using the DROP Statement	 308

9.4 Inserting Records in Tables	 308

9.4.1 Using .execute()	 308

9.4.2 Using .executemany()	 310

9.4.3 Reading Records from the Database	 313

9.4.4 Handling Multiple Tables Using the JOIN Statement	 318

9.5 Updating and Deleting Records from the
Database	 320

9.5.1 Update Command	 320

9.5.2 Delete Command	 328

9.5.3 Other Ways to Connect Python and MySQL	 329

Summary	 332

Knowledge Check	 333

Review Questions	 334

References	 335

	 Index	 337

Python is an interpreted, object-oriented, high-level programming language
with dynamic semantics. Its high-level built in data structures, combined
with dynamic typing and dynamic binding, make it very attractive for
Rapid Application Development, as well as for use as a scripting or glue
language to connect existing components together. Its high-level built in
data structures, combined with dynamic typing and dynamic binding; make
it very attractive for Rapid Application Development, as well as for use
as a scripting or glue language to connect existing components together.
Python has become one of the most popular programming languages in
the world in recent years. It’s used in everything from machine learning
to building websites and software testing. It can be used by developers
and non-developers alike.

Organization of the Book
This edition is organized into nine chapters. This is a comprehensive guide
on how to get started in Python, why you should learn it and how you
can learn it. This hands-on guide takes you through the language a step
at a time, beginning with basic programming concepts including with
functions, recursion, data structures, and object-oriented design.
Chapter 1 presents an introduction to Python. You will learn the Python
environment setup, syntax of Python and Python variables. Basic operators
of Python are also discussed.
Chapter 2 aims to focus on Python functions, modules and packages. In
Python, function is a group of related statements that perform a specific
task. Functions help break our program into smaller and modular parts.
It also describes the python modules and python packages.

PREFACE

xvi

Chapter 3 begins with python dictionaries. It also explains Python sets and
files used in Python. They can be used to read and write text memos, audio
clips, Excel documents, saved email messages, and whatever else you happen
to have stored on your machine.
Chapter 4 gives an overview of how to use the exceptions? Further, it explains
the unit testing used to validate that each unit of the software performs as
designed. In last, the chapter focuses on understanding the comprehensions
that allow sequences to be built from other sequences.
Chapter 5 is aimed to discuss the use of OOPS in python, including various
types of methods of OOPS. The programming challenge was seen as how to
write the logic, not how to define the data. Object-oriented programming takes
the view that what we really care about are the objects we want to manipulate
rather than the logic required to manipulate them.
Chapter 6 focuses on Python regular expression that helps you match or find
other strings or sets of strings, using a specialized syntax held in a pattern.
Chapter 7 discusses about Python Multithreading used to implement
multithreading in python programs and also used to run multiple threads
(tasks, function calls) at the same time.
Chapter 8 focuses on operations in Python. Python is a powerful general-
purpose programming language. It is used in web development, data science,
creating software prototypes, and so on. Fortunately for beginners, Python has
simple easy-to-use syntax. This makes Python an excellent language to learn
to program for beginners.
Chapter 9 sheds light on Python database programming. A database program
is the heart of a business information system and provides file creation, data
entry, update, query and reporting functions.

“Now, it’s my belief that Python is a lot easier than to teach to students programming and teach
them C or C++ or Java at the same time because all the details of the languages are so much harder.
Other scripting languages really don’t work very well there either.”

–Guido van Rossum

After studying this chapter,
you will be able to:
1.	 Overview the Python
2.	 Learn about Python

environment setup
3.	 Describe the basic

syntax of Python
4.	 Understand Python

variables
5.	 Discuss about basic

operators of Python

LEARNING
OBJECTIVES

INTRODUCTION TO
PYTHON

INTRODUCTION
Python is a general-purpose, versatile, and powerful
programming language. It’s a great first language because
it’s concise and easy to read. Whatever you want to do,

1
CHAPTER

3G E-LEARNING

2 Basic Computer Coding: Python

Python can do it. From web development to machine learning to data science, Python
is the language for you.

Python is a high-level, interpreted, interactive and object-oriented scripting language.
Python is designed to be highly readable. It uses English keywords frequently where
as other languages use punctuation, and it has fewer syntactical constructions than
other languages.

Python is a MUST for students and working professionals to become a great
Software Engineer specially when they are working in Web Development Domain. It
will list down some of the key advantages of learning Python:

■■ Python is Interpreted − Python is processed at runtime by the interpreter. You
do not need to compile your program before executing it. This is similar to
PERL and PHP.

■■ Python is Interactive − You can actually sit at a Python prompt and interact
with the interpreter directly to write your programs.

■■ Python is Object-Oriented − Python supports Object-Oriented style or technique
of programming that encapsulates code within objects.

■■ Python is a Beginner’s Language − Python is a great language for the beginner-
level programmers and supports the development of a wide range of applications
from simple text processing to WWW browsers to games.

1.1 OVERVIEW OF PYTHON
Python is a high-level, interpreted, interactive and object-oriented scripting language.
Python is designed to be highly readable. It uses English keywords frequently where
as other languages use punctuation, and it has fewer syntactical constructions than
other languages.

■■ Python is Interpreted − Python is processed at runtime by the interpreter.
You do not need to compile your program before executing it. This is similar
to PERL and PHP.

■■ Python is Interactive − You can actually sit at a Python prompt and interact
with the interpreter directly to write your programs.

■■ Python is Object-Oriented − Python supports Object-Oriented style or technique
of programming that encapsulates code within objects.

■■ Python is a Beginner’s Language − Python is a great language for the beginner-
level programmers and supports the development of a wide range of applications
from simple text processing to WWW browsers to games.

■■

Introduction to Python

3G E-LEARNING

3

1.1.1 History of Python

 Python was developed by Guido van Rossum in the late
 eighties and early nineties at the National Research Institute
.for Mathematics and Computer Science in the Netherlands

Python is derived from many other languages, including
ABC, Modula-3, C, C++, Algol-68, SmallTalk, and Unix shell
and other scripting languages.

Python is copyrighted. Like Perl, Python source code is
now available under the GNU General Public License (GPL).

Python is now maintained by a core development team
at the institute, although Guido van Rossum still holds a vital
role in directing its progress.

1.1.2 Python Features

Python’s features include −
■■ Easy-to-learn − Python has few keywords, simple

structure, and a clearly defined syntax. This allows
the student to pick up the language quickly.

■■ Easy-to-read − Python code is more clearly defined
and visible to the eyes.

■■ Easy-to-maintain − Python’s source code is fairly
easy-to-maintain.

■■ A broad standard library − Python’s bulk of the
library is very portable and cross-platform compatible
on UNIX, Windows, and Macintosh.

■■ Interactive Mode − Python has support for an
interactive mode which allows interactive testing and
debugging of snippets of code.

■■ Portable − Python can run on a wide variety of
hardware platforms and has the same interface on
all platforms.

■■ Extendable − You can add low-level modules
to the Python interpreter. These modules enable
programmers to add to or customize their tools to
be more efficient.

■■ Databases − Python provides interfaces to all major
commercial databases.

 Created
 by Guido van
 Rossum and
 first released in
 1991, Python
 has a design
 philosophy that
 emphasizes
 code readability,
 notably using
 significant
 whitespace.
 It provides
 constructs that
 enable clear
 programming
 on both small
 and large scales.
 In July 2018,
 Van Rossum
 stepped down
 as the leader in
 the language
 community after
30 years.

Did You
Know?

3G E-LEARNING

4 Basic Computer Coding: Python

■■ GUI Programming − Python supports GUI applications
that can be created and ported to many system calls,
libraries and windows systems, such as Windows
MFC, Macintosh, and the X Window system of Unix.

■■ Scalable − Python provides a better structure and
support for large programs than shell scripting.

Apart from the above-mentioned features, Python has a
big list of good features, few are listed below −

■■ It supports functional and structured programming
methods as well as OOP.

■■ It can be used as a scripting language or can be
compiled to byte-code for building large applications.

■■ It provides very high-level dynamic data types and
supports dynamic type checking.

■■ It supports automatic garbage collection.
■■ It can be easily integrated with C, C++, COM, ActiveX,

CORBA, and Java.

1.2 PYTHON ENVIRONMENT SETUP
Python is available on a wide variety of platforms including
Linux and Mac OS X. Let’s understand how to set up our
Python environment.

Open a terminal window and type “python” to find out
if it is already installed and which version is installed.

■■ Unix (Solaris, Linux, FreeBSD, AIX, HP/UX, SunOS,
IRIX, etc.)

■■ Win 9x/NT/2000
■■ Macintosh (Intel, PPC, 68K)
■■ OS/2
■■ DOS (multiple versions)
■■ PalmOS
■■ Nokia mobile phones
■■ Windows CE
■■ Acorn/RISC OS
■■ BeOS
■■ Amiga

 Java is
 a programming
 language that
 produces software
 for multiple
platforms.

Keyword

Introduction to Python

3G E-LEARNING

5

■■ VMS/OpenVMS
■■ QNX
■■ VxWorks
■■ Psion
■■ Python has also been ported to the Java and .NET virtual machines

1.2.1 Getting Python

The most up-to-date and current source code, binaries, documentation, news, etc., is
available on the official website of Python https://www.python.org/

You can download Python documentation from https://www.python.org/doc/. The
documentation is available in HTML, PDF, and PostScript formats.

1.2.2 Installing Python

Python distribution is available for a wide variety of platforms. You need to download
only the binary code applicable for your platform and install Python.

If the binary code for your platform is not available, you need a C compiler to
compile the source code manually. Compiling the source code offers more flexibility
in terms of choice of features that you require in your installation.

Here is a quick overview of installing Python on various platforms −

Unix and Linux Installation

Here are the simple steps to install Python on Unix/Linux machine.
■■ Open a Web browser and go to https://www.python.org/downloads/.
■■ Follow the link to download zipped source code available for Unix/Linux.
■■ Download and extract files.
■■ Editing the Modules/Setup file if you want to customize some options.
■■ run ./configure script
■■ make
■■ make install

This installs Python at standard location /usr/local/bin and its libraries at /usr/local/
lib/pythonXX where XX is the version of Python.

3G E-LEARNING

6 Basic Computer Coding: Python

Windows Installation

Here are the steps to install Python on Windows machine.
■■ Open a Web browser and go to https://www.python.

org/downloads/.
■■ Follow the link for the Windows installer python-XYZ.

msi file where XYZ is the version you need to install.
■■ To use this installer python-XYZ.msi, the Windows

system must support Microsoft Installer 2.0. Save the
installer file to your local machine and then run it to
find out if your machine supports MSI.

■■ Run the downloaded file. This brings up the Python
install wizard, which is really easy to use. Just accept
the default settings, wait until the install is finished,
and you are done.

Macintosh Installation

Recent Macs come with Python installed, but it may be several
years out of date. See http://www.python.org/download/mac/
for instructions on getting the current version along with extra
tools to support development on the Mac. For older Mac OS’s
before Mac OS X 10.3 (released in 2003), MacPython is available.

Jack Jansen maintains it and you can have full access to
the entire documentation at his website − http://www.cwi.
nl/~jack/macpython.html. You can find complete installation
details for Mac OS installation.

1.2.3 Setting up PATH

Programs and other executable files can be in many directories,
so operating systems provide a search path that lists the
directories that the OS searches for executables.

The path is stored in an environment variable, which
is a named string maintained by the operating system. This
variable contains information available to the command shell
and other programs.

The path variable is named as PATH in Unix or Path in
Windows (Unix is case sensitive; Windows is not).
 In Mac OS, the installer handles the path details. To invoke

 Unix is
a multi-
 user operating
 system designed
 for flexibility and
adaptability.

Keyword

Introduction to Python

3G E-LEARNING

7

 the Python interpreter from any particular directory, you must
.add the Python directory to your path

Setting path at Unix/Linux

To add the Python directory to the path for a particular
session in Unix −

■■ In the csh shell − type setenv PATH “$PATH:/usr/
local/bin/python” and press Enter.

■■ In the bash shell (Linux) − type export ATH=”$PATH:/
usr/local/bin/python” and press Enter.

■■ In the sh or ksh shell − type PATH=”$PATH:/usr/
local/bin/python” and press Enter.

■■ Note − /usr/local/bin/python is the path of the Python
directory

Setting path at Windows

 To add the Python directory to the path for a particular session
− in Windows
 At the command prompt − type path %path%;C:\Python
.and press Enter

1.2.4 Python Environment Variables

Here are important environment variables, which can be
recognized by Python −

Sr.No. Variable & Description
1 PYTHONPATH

 It has a role similar to PATH. This variable tells the Python
 interpreter where to locate the module files imported into
 a program. It should include the Python source library
 directory and the directories containing Python source code.
PYTHONPATH is sometimes preset by the Python installer.

2 PYTHONSTARTUP

 It contains the path of an initialization file containing Python
 source code. It is executed every time you start the interpreter.
 It is named as .pythonrc.py in Unix and it contains commands
that load utilities or modify PYTHONPATH.

C:\
 Python is
 the path of the
Python directory

Remember

3G E-LEARNING

8 Basic Computer Coding: Python

3 PYTHONCASEOK

It is used in Windows to instruct Python to find the first case-
 insensitive match in an import statement. Set this variable to
any value to activate it.

4 PYTHONHOME

 It is an alternative module search path. It is usually embedded
 in the PYTHONSTARTUP or PYTHONPATH directories to
make switching module libraries easy.

1.2.5 Running Python

There are three different ways to start Python −

Interactive Interpreter

You can start Python from Unix, DOS, or any other system that provides you a
command-line interpreter or shell window.

Enter python the command line.
Start coding right away in the interactive interpreter.
$python # Unix/Linux
or
python% # Unix/Linux
or
C:> python # Windows/DOS
Here is the list of all the available command line options −

Sr.No. Option & Description
1 -d

It provides debug output.
2 -O

It generates optimized bytecode (resulting in .pyo files).
3 -S

Do not run import site to look for Python paths on startup.
4 -v

verbose output (detailed trace on import statements).

Introduction to Python

3G E-LEARNING

9

5 -X

 disable class-based built-in exceptions (just use strings);
obsolete starting with version 1.6.

6 -c cmd

run Python script sent in as cmd string
7 file

run Python script from given file

Script from the Command-line

A Python script can be executed at command line by invoking
the interpreter on your application, as in the following −

$python script.py # Unix/Linux
or
python% script.py # Unix/Linux
or
C: >python script.py # Windows/DOS
Note − Be sure the file permission mode allows execution.

Integrated Development Environment

You can run Python from a Graphical User Interface (GUI)
environment as well, if you have a GUI application on your
system that supports Python.

■■ Unix − IDLE is the very first Unix IDE for Python.
■■ Windows − PythonWin is the first Windows interface

for Python and is an IDE with a GUI.
■■ Macintosh − The Macintosh version of Python along

with the IDLE IDE is available from the main website,
downloadable as either MacBinary or BinHex’d files.

■■ If you are not able to set up the environment properly,
then you can take help from your system admin.
Make sure the Python environment is properly set
up and working perfectly fine.

Note − All the examples given in subsequent chapters
are executed with Python 2.4.3 version available on CentOS
flavor of Linux.

 Perl is a
 family of
 two high-level,
 general-purpose,
 interpreted,
 dynamic
 programming
 languages, Perl 5
and Perl 6.

Keyword

3G E-LEARNING

10 Basic Computer Coding: Python

We already have set up Python Programming environment online, so that you
can execute all the available examples online at the same time when you are learning
theory. Feel free to modify any example and execute it online.

1.3 BASIC SYNTAX OF PYTHON
The Python language has many similarities to Perl, C, and Java. However, there are
some definite differences between the languages.

1.3.1 First Python Program

Let us execute programs in different modes of programming.

Interactive Mode Programming

Invoking the interpreter without passing a script file as a parameter brings up the
following prompt −

$ python
Python 2.4.3 (#1, Nov 11 2010, 13:34:43)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-48)] on linux2
Type “help”, “copyright”, “credits” or “license” for more information.
>>>
Type the following text at the Python prompt and press the Enter −
>>> print “Hello, Python!”
If you are running new version of Python, then you would need to use print

statement with parenthesis as in print (“Hello, Python!”);. However in Python version
2.4.3, this produces the following result −

Hello, Python!

Script Mode Programming

Invoking the interpreter with a script parameter begins execution of the script and
continues until the script is finished. When the script is finished, the interpreter is no
longer active.

Let us write a simple Python program in a script. Python files have extension .py.
Type the following source code in a test.py file −

print “Hello, Python!”
We assume that you have Python interpreter set in PATH variable. Now, try to

run this program as follows −

Introduction to Python

3G E-LEARNING

11

$ python test.py
This produces the following result −
Hello, Python!
Let us try another way to execute a Python script. Here is the modified test.py file −
#!/usr/bin/python
print “Hello, Python!”
We assume that you have Python interpreter available in /usr/bin directory. Now,

try to run this program as follows −
$ chmod +x test.py # This is to make file executable
$./test.py
This produces the following result −
Hello, Python!

1.3.2 Python Identifiers

A Python identifier is a name used to identify a variable, function, class, module or
other object. An identifier starts with a letter A to Z or a to z or an underscore (_)
followed by zero or more letters, underscores and digits (0 to 9).

Python does not allow punctuation characters such as @, $, and % within identifiers.
Python is a case sensitive programming language. Thus, Manpower and manpower
are two different identifiers in Python.

Here are naming conventions for Python identifiers −
■■ Class names start with an uppercase letter. All other identifiers start with a

lowercase letter.
■■ Starting an identifier with a single leading underscore indicates that the

identifier is private.
■■ Starting an identifier with two leading underscores indicates a strongly private

identifier.
■■ If the identifier also ends with two trailing underscores, the identifier is a

language-defined special name.

1.3.3 Reserved Words

The following list shows the Python keywords. These are reserved words and you
cannot use them as constant or variable or any other identifier names. All the Python
keywords contain lowercase letters only.

3G E-LEARNING

12 Basic Computer Coding: Python

and exec not
assert finally or
break for pass
class from print
continue global raise
def if return
del import try
elif in while
else is with
except lambda yield

1.3.4 Lines and Indentation

Python provides no braces to indicate blocks of code for class
and function definitions or flow control. Blocks of code are
denoted by line indentation, which is rigidly enforced.

The number of spaces in the indentation is variable, but
all statements within the block must be indented the same
amount. For example −

if True:
 print “True”
else:
 print “False”
However, the following block generates an error −
if True:
print “Answer”
print “True”
else:
print “Answer”
print “False”
Thus, in Python all the continuous lines indented with

same number of spaces would form a block. The following
example has various statement blocks −

#!/usr/bin/python
import sys

 Do not
 try to
 understand
 the logic at this
 point of time.
 Just make sure
 you understood
 various blocks
 even if they are
without braces.

Remember

Introduction to Python

3G E-LEARNING

13

try:
 # open file stream
 file = open(file_name, “w”)
except IOError:
 print “There was an error writing to”, file_name
 sys.exit()
print “Enter ‘”, file_finish,
print “’ When finished”
while file_text != file_finish:
 file_text = raw_input(“Enter text: “)
 if file_text == file_finish:
 # close the file
 file.close
 break
 file.write(file_text)
 file.write(“\n”)
file.close()
file_name = raw_input(“Enter filename: “)
if len(file_name) == 0:
 print “Next time please enter something”
 sys.exit()
try:
 file = open(file_name, “r”)
except IOError:
 print “There was an error reading file”
 sys.exit()
file_text = file.read()
file.close()
print file_text

1.3.5 Multi-Line Statements

Statements in Python typically end with a new line. Python does, however, allow the
use of the line continuation character (\) to denote that the line should continue. For

3G E-LEARNING

14 Basic Computer Coding: Python

example −
total = item_one + \
 item_two + \
 item_three
Statements contained within the [], {}, or () brackets do not need to use the line

continuation character. For example −
days = [‘Monday’, ‘Tuesday’, ‘Wednesday’,
 ‘Thursday’, ‘Friday’]

1.3.6 Quotation in Python

Python accepts single (‘), double (“) and triple (‘’’ or “””) quotes to denote string
literals, as long as the same type of quote starts and ends the string.

The triple quotes are used to span the string across multiple lines. For example,
all the following are legal −

word = ‘word’
sentence = “This is a sentence.”
paragraph = “””This is a paragraph. It is
made up of multiple lines and sentences.”””

1.3.7 Comments in Python

A hash sign (#) that is not inside a string literal begins a comment. All characters after
the # and up to the end of the physical line are part of the comment and the Python
interpreter ignores them.

#!/usr/bin/python
First comment
print “Hello, Python!” # second comment
This produces the following result −
Hello, Python!
You can type a comment on the same line after a statement or expression −
name = “Madisetti” # This is again comment
You can comment multiple lines as follows −
This is a comment.
This is a comment, too.

Introduction to Python

3G E-LEARNING

15

This is a comment, too.
I said that already.

1.3.8 Using Blank Lines

A line containing only whitespace, possibly with a comment,
is known as a blank line and Python totally ignores it.

In an interactive interpreter session, you must enter an
empty physical line to terminate a multiline statement.

1.3.9 Waiting for the User

The following line of the program displays the prompt, the
statement saying “Press the enter key to exit”, and waits for
the user to take action −

#!/usr/bin/python
raw_input(“\n\nPress the enter key to exit.”)
Here, “\n\n” is used to create two new lines before

displaying the actual line. Once the user presses the key, the
program ends. This is a nice trick to keep a console window
open until the user is done with an application.

1.3.10 Multiple Statements on a Single Line

The semicolon (;) allows multiple statements on the single
line given that neither statement starts a new code block.
Here is a sample snip using the semicolon −
import sys; x = ‘foo’; sys.stdout.write(x + ‘\n’)

1.3.11 Multiple Statement Groups as Suites

A group of individual statements, which make a single code
block are called suites in Python. Compound or complex
statements, such as if, while, def, and class require a header
line and a suite.

Header lines begin the statement (with the keyword) and
terminate with a colon (:) and are followed by one or more
lines which make up the suite. For example −

if expression :

 Code block
 is a lexical
 structure of source
 code which is
grouped together.

Keyword

3G E-LEARNING

16 Basic Computer Coding: Python

 suite
elif expression :
 suite
else :
 suite

1.3.12 Command Line Arguments

Many programs can be run to provide you with some basic information about how
they should be run. Python enables you to do this with -h −

$ python -h
usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd : program passed in as string (terminates option list)
-d : debug output from parser (also PYTHONDEBUG=x)
-E : ignore environment variables (such as PYTHONPATH)
-h : print this help message and exit

[etc.]
You can also program your script in such a way that it should accept various

options. Command Line Arguments is an advanced topic and should be studied a bit
later once you have gone through rest of the Python concepts.

1.4 PYTHON VARIABLES
Variables are nothing but reserved memory locations to store values. This means that
when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides
what can be stored in the reserved memory. Therefore, by assigning different data
types to variables, you can store integers, decimals or characters in these variables.

1.4.1 Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The
declaration happens automatically when you assign a value to a variable. The equal
sign (=) is used to assign values to variables.

Introduction to Python

3G E-LEARNING

17

The operand to the left of the = operator is the name of the variable and the
operand to the right of the = operator is the value stored in the variable. For example −

#!/usr/bin/python

counter = 100 # An integer assignment
miles = 1000.0 # A floating point
name = “John” # A string

print counter
print miles
print name
Here, 100, 1000.0 and “John” are the values assigned to counter, miles, and name

variables, respectively. This produces the following result −
100
1000.0
John

1.4.2 Multiple Assignment

Python allows you to assign a single value to several variables simultaneously. For
example −

a = b = c = 1
Here, an integer object is created with the value 1, and all three variables are

assigned to the same memory location. You can also assign multiple objects to multiple
variables. For example −

a,b,c = 1,2,”john”
Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value “john” is assigned to the variable c.

1.4.3 Standard Data Types

The data stored in memory can be of many types. For example, a person’s age is stored
as a numeric value and his or her address is stored as alphanumeric characters. Python
has various standard data types that are used to define the operations possible on
them and the storage method for each of them.

3G E-LEARNING

18 Basic Computer Coding: Python

Python has five standard data types −
■■ Numbers
■■ String
■■ List
■■ Tuple
■■ Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when you assign
a value to them. For example −

var1 = 1
var2 = 10
You can also delete the reference to a number object by using the del statement.

The syntax of the del statement is −
del var1[,var2[,var3[....,varN]]]]
You can delete a single object or multiple objects by using the del statement. For

example −
del var
del var_a, var_b
Python supports four different numerical types −

■■ int (signed integers)
■■ long (long integers, they can also be represented in octal and hexadecimal)
■■ float (floating point real values)
■■ complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex
10 51924361L 0.0 3.14j
100 -0x19323L 15.20 45.j
-786 0122L -21.9 9.322e-36j
080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j
-0490 535633629843L -90. -.6545+0J

Introduction to Python

3G E-LEARNING

19

-0x260 -052318172735L -32.54e100 3e+26J
0x69 -4721885298529L 70.2-E12 4.53e-7j

Python allows you to use a lowercase l with long, but it is recommended that
you use only an uppercase L to avoid confusion with the number 1. Python displays
long integers with an uppercase L.

■■ A complex number consists of an ordered pair of real floating-point numbers
denoted by x + yj, where x and y are the real numbers and j is the imaginary
unit.

Python Strings

Strings in Python are identified as a contiguous set of characters represented in the
quotation marks. Python allows for either pairs of single or double quotes. Subsets of
strings can be taken using the slice operator ([] and [:]) with indexes starting at 0 in
the beginning of the string and working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the
repetition operator. For example −

#!/usr/bin/python

str = ‘Hello World!’

print str # Prints complete string
print str[0] # Prints first character of the string
print str[2:5] # Prints characters starting from 3rd to 5th
print str[2:] # Prints string starting from 3rd character
print str * 2 # Prints string two times
print str + “TEST” # Prints concatenated string
This will produce the following result −
Hello World!
H
llo
llo World!
Hello World!Hello World!
Hello World!TEST

3G E-LEARNING

20 Basic Computer Coding: Python

Python Lists

Lists are the most versatile of Python’s compound data
types. A list contains items separated by commas and enclosed
within square brackets ([]). To some extent, lists are similar to
arrays in C. One difference between them is that all the items
belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice
operator ([] and [:]) with indexes starting at 0 in the beginning
of the list and working their way to end -1. The plus (+) sign
is the list concatenation operator, and the asterisk (*) is the
repetition operator. For example −
usr/bin/python/!#

list = [‘abcd’, 786 , 2.23, ‘john’, 70.2]
tinylist = [123, ‘john’]

print list # Prints complete list
print list[0] # Prints first element of the list
print list[1:3] # Prints elements starting from 2nd till 3rd
print list[2:] # Prints elements starting from 3rd element
print tinylist * 2 # Prints list two times
print list + tinylist # Prints concatenated lists
This produce the following result −
[‘abcd’, 786, 2.23, ‘john’, 70.2]
abcd
[786, 2.23]
[2.23, ‘john’, 70.2]
[123, ‘john’, 123, ‘john’]
[‘abcd’, 786, 2.23, ‘john’, 70.2, 123, ‘john’]

Python Tuples

A tuple is another sequence data type that is similar to the list.
A tuple consists of a number of values separated by commas.
Unlike lists, however, tuples are enclosed within parentheses.

 Data
 type is a
 classification of
 data which tells
 the compiler or
 interpreter how
 the programmer
 intends to use the
data.

Keyword

Introduction to Python

3G E-LEARNING

21

The main differences between lists and tuples are: Lists are enclosed in brackets ([]
) and their elements and size can be changed, while tuples are enclosed in parentheses (
()) and cannot be updated. Tuples can be thought of as read-only lists. For example −
usr/bin/python/!#

tuple = (‘abcd’, 786 , 2.23, ‘john’, 70.2)
tinytuple = (123, ‘john’)

print tuple # Prints complete list
print tuple[0] # Prints first element of the list
print tuple[1:3] # Prints elements starting from 2nd till 3rd
print tuple[2:] # Prints elements starting from 3rd element
print tinytuple * 2 # Prints list two times
print tuple + tinytuple # Prints concatenated lists
This produce the following result −
(‘abcd’, 786, 2.23, ‘john’, 70.2)
abcd
(786, 2.23)
(2.23, ‘john’, 70.2)
(123, ‘john’, 123, ‘john’)
(‘abcd’, 786, 2.23, ‘john’, 70.2, 123, ‘john’)
The following code is invalid with tuple, because we attempted to update a tuple,

which is not allowed. Similar case is possible with lists −
#!/usr/bin/python

tuple = (‘abcd’, 786 , 2.23, ‘john’, 70.2)
list = [‘abcd’, 786 , 2.23, ‘john’, 70.2]
tuple[2] = 1000 # Invalid syntax with tuple
list[2] = 1000 # Valid syntax with list

Python Dictionary

Python’s dictionaries are kind of hash table type. They work like associative arrays or
hashes found in Perl and consist of key-value pairs. A dictionary key can be almost

3G E-LEARNING

22 Basic Computer Coding: Python

any Python type, but are usually numbers or strings. Values, on the other hand, can
be any arbitrary Python object.
Dictionaries are enclosed by curly braces ({ }) and values can be assigned and accessed
using square braces ([]). For example −
#!/usr/bin/python

dict = {}
dict[‘one’] = “This is one”
dict[2] = “This is two”

tinydict = {‘name’: ‘john’,’code’:6734, ‘dept’: ‘sales’}

print dict[‘one’] # Prints value for ‘one’ key
print dict[2] # Prints value for 2 key
print tinydict # Prints complete dictionary
print tinydict.keys() # Prints all the keys
print tinydict.values() # Prints all the values
This produce the following result −
This is one
This is two
{‘dept’: ‘sales’, ‘code’: 6734, ‘name’: ‘john’}
[‘dept’, ‘code’, ‘name’]
[‘sales’, 6734, ‘john’]
Dictionaries have no concept of order among elements. It is incorrect to say that the
elements are “out of order”; they are simply unordered.

1.4.4 Data Type Conversion

Sometimes, you may need to perform conversions between the built-in types. To convert
between types, you simply use the type name as a function.

There are several built-in functions to perform conversion from one data type to
another. These functions return a new object representing the converted value.

Introduction to Python

3G E-LEARNING

23

Sr.No. Function & Description
1 int(x [,base])

Converts x to an integer. base specifies the base if x is a string.
2 long(x [,base])

 Converts x to a long integer. base specifies the base if x is a
string.

3 float(x)

Converts x to a floating-point number.
4 complex(real [,imag])

Creates a complex number.
5 str(x)

Converts object x to a string representation.
6 repr(x)

Converts object x to an expression string.
7 eval(str)

Evaluates a string and returns an object.
8 tuple(s)

Converts s to a tuple.
9 list(s)

Converts s to a list.
10 set(s)

Converts s to a set.
11 dict(d)

 Creates a dictionary. d must be a sequence of (key,value)
tuples.

12 frozenset(s)

Converts s to a frozen set.
13 chr(x)

Converts an integer to a character.
14 unichr(x)

Converts an integer to a Unicode character.

3G E-LEARNING

24 Basic Computer Coding: Python

15 ord(x)

Converts a single character to its integer value.
16 hex(x)

Converts an integer to a hexadecimal string.
17 oct(x)

Converts an integer to an octal string.

1.5 PYTHON BASIC OPERATORS
Operators are the constructs which can manipulate the value of operands. Consider
the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

1.5.1 Types of Operator

Python language supports the following types of operators.
■■ Arithmetic Operators
■■ Comparison (Relational) Operators
■■ Assignment Operators
■■ Logical Operators
■■ Bitwise Operators
■■ Membership Operators
■■ Identity Operators

Python Arithmetic Operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example
+ Addition Adds values on either side of the operator. a + b = 30
- Subtraction Subtracts right hand operand from left

hand operand.
a – b = -10

* Multiplication Multiplies values on either side of the
operator

a * b = 200

/ Division Divides left hand operand by right hand
operand

b / a = 2

% Modulus Divides left hand operand by right hand
operand and returns remainder

b % a = 0

Introduction to Python

3G E-LEARNING

25

** Exponent Performs exponential (power) calculation
on operators

 a**b =10 to the
power 20

// Floor Division - The division of operands
 where the result is the quotient in which
 the digits after the decimal point are
 removed. But if one of the operands is
 negative, the result is floored, i.e., rounded
 away from zero (towards negative
infinity) −

 9//2 = 4 and
 9.0//2.0 = 4.0, -11//3
= -4, -11.0//3 = -4.0

Python Comparison Operators

 These operators compare the values on either sides of them and decide the relation
.among them. They are also called Relational operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example
== If the values of two operands are

 equal, then the condition becomes
true.

(a == b) is not true.

!= If values of two operands are not
equal, then condition becomes true.

(a != b) is true.

<> If values of two operands are not
equal, then condition becomes true.

 (a <> b) is true. This is
similar to != operator.

> If the value of left operand is greater
 than the value of right operand, then
condition becomes true.

(a > b) is not true.

< If the value of left operand is less
 than the value of right operand, then
condition becomes true.

(a < b) is true.

>= If the value of left operand is greater
 than or equal to the value of right
operand, then condition becomes true.

(a >= b) is not true.

<= If the value of left operand is less than
 or equal to the value of right operand,
then condition becomes true.

(a <= b) is true.

3G E-LEARNING

26 Basic Computer Coding: Python

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then −

Operator Description Example
= Assigns values from right side operands

to left side operand
 c = a + b assigns
value of a + b into c

+= Add AND It adds right operand to the left operand
and assign the result to left operand

 c += a is equivalent
to c = c + a

 -= Subtract
AND

 It subtracts right operand from the left
 operand and assign the result to left
operand

 c -= a is equivalent
to c = c - a

 *= Multiply
AND

 It multiplies right operand with the left
 operand and assign the result to left
operand

 c *= a is equivalent
to c = c * a

/= Divide AND It divides left operand with the right
 operand and assign the result to left
operand

 c /= a is equivalent
 to c = c / ac /= a is
 equivalent to c =
c / a

 %= Modulus
AND

 It takes modulus using two operands
and assign the result to left operand

 c %= a is
 equivalent to c =
c % a

 **= Exponent
AND

 Performs exponential (power) calculation
 on operators and assign value to the left
operand

 c **= a is equivalent
to c = c ** a

 //= Floor
Division

 It performs floor division on operators
and assign value to the left operand

 c //= a is equivalent
to c = c // a

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60;
and b = 13; Now in binary format they will be as follows −
a = 0011 1100
b = 0000 1101

a&b = 0000 1100
a|b = 0011 1101
a^b = 0011 0001
~a = 1100 0011

There are following Bitwise operators supported by Python language

Introduction to Python

3G E-LEARNING

27

Operator Description Example
& Binary AND Operator copies a bit to

 the result if it exists in both
operands

 (a & b) (means 0000
1100)

| Binary OR It copies a bit if it exists in either
operand.

 (a | b) = 61 (means 0011
1101)

^ Binary XOR It copies the bit if it is set in one
operand but not both.

 (a ^ b) = 49 (means 0011
0001)

 ~ Binary Ones
Complement

 It is unary and has the effect of
‘flipping’ bits.

 (~a) = -61 (means 1100
 0011 in 2’s complement
 form due to a signed
binary number.

 << Binary Left
Shift

 The left operands value is
 moved left by the number of bits
specified by the right operand.

 a << 2 = 240 (means
1111 0000)

 >> Binary Right
Shift

 The left operands value is
 moved right by the number
 of bits specified by the right
operand.

 a >> 2 = 15 (means 0000
1111)

Python Logical Operators

There are following logical operators supported by Python
language. Assume variable a holds 10 and variable b holds
20 then

Used to reverse the logical state of its operand.

Operator Description Example
and Logical AND If both the operands are true

then condition becomes true.
(a and b) is true.

or Logical OR If any of the two operands
 are non-zero then condition
becomes true.

(a or b) is true.

not Logical NOT Used to reverse the logical
state of its operand.

 Not(a and b) is
false.

 Relational
 operators
 are used for
 comparing the
 values. It either
 returns True or
 False according
 to the condition.
 These operators
 are also known
 as Comparison
Operators.

Remember

3G E-LEARNING

28 Basic Computer Coding: Python

Python Membership Operators

Python’s membership operators test for membership in a sequence, such as strings,
lists, or tuples. There are two membership operators as explained below −

Operator Description Example
in Evaluates to true if it finds a

 variable in the specified sequence
and false otherwise.

 x in y, here in results in a 1 if x
is a member of sequence y.

not in Evaluates to true if it does not
 finds a variable in the specified
sequence and false otherwise.

 x not in y, here not in results
 in a 1 if x is not a member of
sequence y.

Python Identity Operators

Identity operators compare the memory locations of two objects. There are two Identity
operators explained below −

Operator Description Example
is Evaluates to true if the

 variables on either side of the
 operator point to the same
object and false otherwise.

 x is y, here is results in 1 if id(x)
equals id(y).

is not Evaluates to false if the
 variables on either side of the
 operator point to the same
object and true otherwise.

 x is not y, here is not results in 1
if id(x) is not equal to id(y).

1.5.2 Python Operators Precedence

The following table lists all operators from highest precedence to lowest.

Operator Description
** Exponentiation (raise to the power)
~ + - Complement, unary plus and minus

 (method names for the last two are +@
and -@)

* / % // Multiply, divide, modulo and floor
division

+ - Addition and subtraction
>> << Right and left bitwise shift

Introduction to Python

3G E-LEARNING

29

& Bitwise ‘AND’td>
^ | Bitwise exclusive ÒR’ and regular ÒR’
<= < > >= Comparison operators
<> == != Equality operators
 = %= /= //=
-= += *= **=

Assignment operators

is is not Identity operators
in not in Membership operators
not or and Logical operators

Operator precedence affects how an expression is evaluated.

 x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher
precedence than +, so it first multiplies 3*2 and then adds into 7.

 Here, operators with the highest precedence appear at the
.top of the table, those with the lowest appear at the bottom

Example

#!/usr/bin/python

a = 20
b = 10
c = 15
d = 5
e = 0

e = (a + b) * c / d #(30 * 15) / 5
print “Value of (a + b) * c / d is “, e

e = ((a + b) * c) / d # (30 * 15) / 5
print “Value of ((a + b) * c) / d is “, e

e = (a + b) * (c / d); # (30) * (15/5)
print “Value of (a + b) * (c / d) is “, e

3G E-LEARNING

30 Basic Computer Coding: Python

e = a + (b * c) / d; # 20 + (150/5)
print “Value of a + (b * c) / d is “, e
When you execute the above program, it produces the following result −
Value of (a + b) * c / d is 90
Value of ((a + b) * c) / d is 90
Value of (a + b) * (c / d) is 90
Value of a + (b * c) / d is 50

Introduction to Python

3G E-LEARNING

31

ROLE MODEL

GUIDO VAN ROSSUM
 Guido van Rossum; born 31 January 1956) is a Dutch programmer
 best known as the author of the Python programming language,
 for which he was the “Benevolent Dictator For Life” (BDFL)
.until he stepped down from the position in July 2018

Education and Life

Van Rossum was born and raised in the Netherlands, where he
received a master’s degree in mathematics and computer science
from the University of Amsterdam in 1982. He has a brother,
Just van Rossum, who is a type designer and programmer who
designed the typeface used in the “Python Powered” logo.

Guido lives in Belmont, California, with his wife, Kim
Knapp, and their son. According to his home page and Dutch
naming conventions, the “van” in his name is capitalized when
he is referred to by surname alone, but not when using his
first and last name together.

Work

While working at the Centrum Wiskunde & Informatica (CWI),
Van Rossum wrote and contributed a glob()routine to BSD Unix
in 1986 and helped develop the ABC programming language.
He once stated, “I try to mention ABC’s influence because I’m
indebted to everything I learned during that project and to
the people who worked on it.” He also created Grail, an early
web browser written in Python, and engaged in discussions
about the HTML standard.

He has worked for various research institutes, including the
Centrum Wiskunde & Informatica (CWI) in the Netherlands,
the U.S. National Institute of Standards and Technology (NIST),
and the Corporation for National Research Initiatives (CNRI).
From 2000 until 2003 he worked for Zope corporation. In
2003 van Rossum left Zope for Elemental Security. While
there he worked on a custom programming language for the
organization. From 2005 to December 2012, he worked at

3G E-LEARNING

32 Basic Computer Coding: Python

Google, where he spent half of his time developing the Python language. In January
2013, he started working for Dropbox.

Python

In December 1989, Van Rossum had been looking for a “’hobby’ programming project
that would keep [him] occupied during the week around Christmas” as his office was
closed when he decided to write an interpreter for a “new scripting language [he]
had been thinking about lately: a descendant of ABC that would appeal to Unix/C
hackers”. He attributes choosing the name “Python” to “being in a slightly irreverent
mood (and [being] a big fan of Monty Python’s Flying Circus)”. He has explained that
Python’s predecessor, ABC, was inspired by SETL, noting that ABC co-developer
Lambert Meertens had “spent a year with the SETL group at NYU before coming up
with the final ABC design”. In July 2018, Van Rossum announced that he would be
stepping down from the position of BDFL of the Python programming language.

Computer Programming for Everybody

In 1999, Van Rossum submitted a funding proposal to DARPA called “Computer
Programming for Everybody,” in which he further defined his goals for Python:

■■ An easy and intuitive language just as powerful as major competitors
■■ Open source, so anyone can contribute to its development
■■ Code that is as understandable as plain English
■■ Suitability for everyday tasks, allowing for short development times

Python has grown to become a popular programming language. As of October
2017, it was the second most popular language on GitHub, a social coding website,
behind Javascript and ahead of Java. According to a programming language popularity
survey it is consistently amongst the top 10 most mentioned languages in job postings.
Furthermore, Python is consistently in the top 10 most popular languages according
to the TIOBE Programming Community Index.

Mondrian

At Google, Van Rossum developed Mondrian, a web-based code review system written
in Python and used within the company. He named the software after the Dutch painter
Piet Mondriaan. He named another related software projectafter Gerrit Rietveld, a
Dutch designer.

Dropbox

In 2013, Van Rossum started working at the cloud file storage company Dropbox.

Introduction to Python

3G E-LEARNING

33

SUMMARY
■■ Python is a general-purpose, versatile, and powerful programming language.

It’s a great first language because it’s concise and easy to read. Whatever you
want to do, Python can do it.

■■ Python is a high-level, interpreted, interactive and object-oriented scripting
language. Python is designed to be highly readable.

■■ Python is a MUST for students and working professionals to become a great
Software Engineer specially when they are working in Web Development
Domain

■■ Python distribution is available for a wide variety of platforms. You need to
download only the binary code applicable for your platform and install Python.

■■ A Python identifier is a name used to identify a variable, function, class,
module or other object.

■■ Python provides no braces to indicate blocks of code for class and function
definitions or flow control.

■■ Statements in Python typically end with a new line. Python does, however,
allow the use of the line continuation character (\) to denote that the line
should continue.

■■ A line containing only whitespace, possibly with a comment, is known as a
blank line and Python totally ignores it.

3G E-LEARNING

34 Basic Computer Coding: Python

KNOWLEDGE CHECK
1. 	 Which of the following is correct about Python?

a.	 Python is a high-level, interpreted, interactive and object-oriented scripting
language.

b.	 Python is designed to be highly readable.
c.	 It uses English keywords frequently where as other languages use punctuation,

and it has fewer syntactical constructions than other languages.
d.	 All of the above.

2. 	 Which of the following is correct about Python?
a.	 It supports functional and structured programming methods as well as OOP.
b.	 It can be used as a scripting language or can be compiled to byte-code for

building large applications.
c.	 It provides very high-level dynamic data types and supports dynamic type

checking.
d.	 All of the above.

3. 	 Which of the following environment variable for Python tells the Python
interpreter where to locate the module files imported into a program?
a.	 Pythonpath
b.	 Pythonstartup
c.	 Pythoncaseok
d.	 Pythonhome

4. 	 Which of the following data types is not supported in python?
a.	 List
b.	 Slice
c.	 String
d.	 Numbers

5. 	 Which of the following is correct about tuples in python?
a.	 A tuple is another sequence data type that is similar to the list.
b.	 A tuple consists of a number of values separated by commas.
c.	 Unlike lists, however, tuples are enclosed within parentheses.
d.	 All of the above.

6. 	 What is the maximum possible length of an identifier?
a.	 16
b.	 32

Introduction to Python

3G E-LEARNING

35

c.	 64
d.	 None of these above

7. 	 Who developed the Python language?
a.	 Zim Den
b.	 Guido van Rossum
c.	 Niene Stom
d.	 Wick van Rossum

8. 	 In which year was the Python language developed?
a.	 1995
b.	 1972
c.	 1981
d.	 1989

REVIEW QUESTIONS
1.	 What is Python? Name some of the features of python.
2.	 What are the purpose of pythonpath, pythonstartup, Pythoncaseok, and

pythonhome environment variable?
3.	 What are the supported data types in python?
4.	 What are python’s dictionaries?
5.	 What is the difference between tuples and lists in python?

Check Your Result

1. (d)		 2. (d)		 3. (a)		 4. (b)		 5. (d)
6. (d)		 7. (b)		 8. (d)

3G E-LEARNING

36 Basic Computer Coding: Python

REFERENCES
1.	 Deily, Ned (28 March 2018). “Python 3.7.0 is now available”. Python Insider. The

Python Core Developers. Retrieved 29 March 2018.
2.	 Downey, Allen B. (May 2012). Think Python: How to Think Like a Computer

Scientist (Version 1.6.6 ed.).
3.	 Guttag, John V. (2016-08-12). Introduction to Computation and Programming

Using Python: With Application to Understanding Data. MIT Press.
4.	 Hamilton, Naomi (5 August 2008). “The A-Z of Programming Languages: Python”.

Computerworld. Archived from the original on 29 December 2008. Retrieved 31
March 2010.

5.	 Peterson, Benjamin (1 May 2018). “Python 2.7.15 released”. Python Insider. The
Python Core Developers. Retrieved 1 May 2018.

6.	 Summerfield, Mark (2009). Programming in Python 3 (2nd ed.). Addison-Wesley
Professional.

“Everyone knows that any scripting language shootout that doesn’t show Python as the best
language is faulty by design.”

–Max M

After studying this chapter,
you will be able to:
1.	 Discuss the function in

python
2.	 Describe the python

modules and python
packages

LEARNING
OBJECTIVES

PYTHON FUNCTIONS,
MODULES AND
PACKAGES

INTRODUCTION
Python Functions is a block of related statements designed
to perform a computational, logical, or evaluative task.
The idea is to put some commonly or repeatedly done

2
CHAPTER

3G E-LEARNING

38 Basic Computer Coding: Python

tasks together and make a function so that instead of writing the same code again
and again for different inputs, we can do the function calls to reuse code contained
in it over and over again.

Functions are the most important aspect of an application. A function can be defined
as the organized block of reusable code, which can be called whenever required.

Python allows us to divide a large program into the basic building blocks known
as a function. The function contains the set of programming statements enclosed by
{}. A function can be called multiple times to provide reusability and modularity to
the Python program.

The Function helps to programmer to break the program into the smaller part.
It organizes the code very effectively and avoids the repetition of the code. As the
program grows, function makes the program more organized.

Python provide us various inbuilt functions like range() or print(). Although, the
user can create its functions, which can be called user-defined functions.

2.1 FUNCTION IN PYTHON
In Python, function is a group of related statements that perform a specific task.
Functions help break our program into smaller and modular chunks. As our program
grows larger and larger, functions make it more organized and manageable.

Furthermore, it avoids repetition and makes code reusable.

2.1.1 Syntax of Function

def function_name(parameters):
 “””docstring”””
 statement(s)
Above shown is a function definition which consists of following components.

■■ Keyword def marks the start of function header.
■■ A function name to uniquely identify it. Function naming follows the same

rules of writing identifiers in Python.
■■ Parameters (arguments) through which we pass values to a function. They

are optional.
■■ A colon (:) to mark the end of function header.
■■ Optional documentation string (docstring) to describe what the function does.
■■ One or more valid python statements that make up the function body.

Statements must have same indentation level (usually 4 spaces).

Python Functions, Modules and Packages

3G E-LEARNING

39

■■ An optional return statement to return a value from
the function.

Example of a function

:)def greet(name
This function greets to””“	
the person passed in as 	
”””parameter 	
)”!print(“Hello, “ + name + “. Good morning 	

?How to call a function in python

Once we have defined a function, we can call it from another
function, program or even the Python prompt. To call a function
we simply type the function name with appropriate parameters.
>>> greet(‘Paul’)

Hello, Paul. Good morning!

2.1.2 Docstring

The first string after the function header is called the docstring
and is short for documentation string. It is used to explain in
brief, what a function does. Although optional, documentation
is a good programming practice. Unless you can remember
what you had for dinner last week, always document your
code.

In the above example, we have a docstring immediately
below the function header. We generally use triple quotes so
that docstring can extend up to multiple lines. This string is
available to us as __doc__ attribute of the function.

For example:
Try running the following into the Python shell to see

the output.
>>> print(greet.__doc__)
This function greets to
	 the person passed into the
	 name parameter

 A
 statement
 is an instruction
 that the Python
 interpreter can
 execute. We
 have only seen
 the assignment
 statement so far.

Keyword

3G E-LEARNING

40 Basic Computer Coding: Python

2.1.3 The Return Statement

The return statement is used to exit a function and go back
to the place from where it was called.

Syntax of Return
return [expression_list]
This statement can contain expression which gets evaluated

and the value is returned. If there is no expression in the
statement or the return statement itself is not present inside
a function, then the function will return the None object.

For example:

>>> print(greet(“May”))
Hello, May. Good morning!
None

Here, None is the returned value.

Example of Return

def absolute_value(num):
	 “””This function returns the absolute
	 value of the entered number”””

	 if num >= 0:
		 return num
	 else:
		 return -num

Output: 2
print(absolute_value(2))

Output: 4
print(absolute_value(-4))

 A
 function
 that does not
 have a return
 statement
 returns
 by default
 something called
.”“None

Remember

Python Functions, Modules and Packages

3G E-LEARNING

41

2.1.4 How Function works in Python?

2.1.5 Python Function Arguments

You can call a function by using the following types of formal
arguments −

■■ Required arguments
■■ Keyword arguments
■■ Default arguments
■■ Variable-length arguments

Required Arguments

Required arguments are the arguments passed to a function
in correct positional order. Here, the number of arguments
in the function call should match exactly with the function
definition.

To call the function printme(), you definitely need to pass
one argument, otherwise it gives a syntax error as follows −

#!/usr/bin/python

Function definition is here
def printme(str):
 “This prints a passed string into this function”
 print str
 return;

Google
began a project
named Unladen
Swallow in 2009
with the aim
of speeding
up the Python
interpreter
fivefold by using
the LLVM, and
of improving its
multithreading
ability to scale
to thousands of
cores.

Did You
Know?

3G E-LEARNING

42 Basic Computer Coding: Python

Now you can call printme function
printme()
When the above code is executed, it produces the following

result −
Traceback (most recent call last):
 File “test.py”, line 11, in <module>
 printme();
TypeError: printme() takes exactly 1 argument (0 given)

Keyword Arguments

Keyword arguments are related to the function calls. When you
use keyword arguments in a function call, the caller identifies
the arguments by the parameter name.

This allows you to skip arguments or place them out
of order because the Python interpreter is able to use the
keywords provided to match the values with parameters. You
can also make keyword calls to the printme() function in the
following ways −

#!/usr/bin/python

Function definition is here
def printme(str):
 “This prints a passed string into this function”
 print str
 return;

Now you can call printme function
printme(str = “My string”)

When the above code is executed, it produces the following
result −

My string

The following example gives more clear picture. Note that the
order of parameters does not matter.

 Parameter
 are
 commonly used,
 and are referred
 to as parameters
 and arguments—or
 more formally as a
 formal parameter
 and an actual
parameter.

Keyword

Python Functions, Modules and Packages

3G E-LEARNING

43

#!/usr/bin/python
Function definition is here
def printinfo(name, age):
 “This prints a passed info into this function”
 print “Name: “, name
 print “Age “, age
 return;
Now you can call printinfo function
printinfo(age=50, name=”miki”)
When the above code is executed, it produces the following result −
Name: miki
Age 50

Default Arguments

A default argument is an argument that assumes a default value if a value is not
provided in the function call for that argument. The following example gives an idea
on default arguments, it prints default age if it is not passed −

#!/usr/bin/python
Function definition is here
def printinfo(name, age = 35):
 “This prints a passed info into this function”
 print “Name: “, name
 print “Age “, age
 return;
Now you can call printinfo function
printinfo(age=50, name=”miki”)
printinfo(name=”miki”)
When the above code is executed, it produces the following result −
Name: miki
Age 50
Name: miki
Age 35

3G E-LEARNING

44 Basic Computer Coding: Python

Variable-length Arguments

You may need to process a function for more arguments than you specified while
defining the function. These arguments are called variable-length arguments and are
not named in the function definition, unlike required and default arguments.
Syntax for a function with non-keyword variable arguments is this −
def functionname([formal_args,] *var_args_tuple):
 “function_docstring”
 function_suite
 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword
variable arguments. This tuple remains empty if no additional arguments are specified
during the function call. Following is a simple example −
#!/usr/bin/python
Function definition is here
def printinfo(arg1, *vartuple):
 “This prints a variable passed arguments”
 print “Output is: “
 print arg1
 for var in vartuple:
 print var
 return;
Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)
When the above code is executed, it produces the following result −
Output is:
10
Output is:
70
60
50

Python Functions, Modules and Packages

3G E-LEARNING

45

2.1.6 The Anonymous Functions

These functions are called anonymous because they are not
declared in the standard manner by using the def keyword.
You can use the lambda keyword to create small anonymous
functions.

Lambda forms can take any number of arguments but
return just one value in the form of an expression. They
cannot contain commands or multiple expressions.

An anonymous function cannot be a direct call to print
because lambda requires an expression

Lambda functions have their own local namespace and
cannot access variables other than those in their parameter
list and those in the global namespace.

Although it appears that lambda’s are a one-line version
of a function, they are not equivalent to inline statements in C
or C++, whose purpose is by passing function stack allocation
during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single
statement, which is as follows −
lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of
function works −

#!/usr/bin/python

Function definition is here
sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function
print “Value of total : “, sum(10, 20)
print “Value of total : “, sum(20, 20)

Anonymous
functions are often
arguments being
passed to higher-
order functions,
or used for
constructing the
result of a higher-
order function
that needs to
return a function.

Remember

3G E-LEARNING

46 Basic Computer Coding: Python

When the above code is executed, it produces the following result −

Value of total : 30
Value of total : 40

2.1.7 The Return Statement

The statement return [expression] exits a function, optionally passing back an expression
to the caller. A return statement with no arguments is the same as return None.
All the above examples are not returning any value. You can return a value from a
function as follows −
#!/usr/bin/python

Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them.”
 total = arg1 + arg2
 print “Inside the function : “, total
 return total;

Now you can call sum function
total = sum(10, 20);
print “Outside the function : “, total

When the above code is executed, it produces the following result −
Inside the function : 30
Outside the function : 30

2.2 PYTHON MODULES
Python has a way to put definitions in a file and use them in a script or in an interactive
instance of the interpreter. Such a file is called a module; definitions from a module
can be imported into other modules or into the main module (the collection of variables
that you have access to in a script executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is
the module name with the suffix .py appended. Within a module, the module’s name

Python Functions, Modules and Packages

3G E-LEARNING

47

(as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create
a file called fibo.py in the current directory with the following
contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while b < n:
 print b,
 a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while b < n:
 result.append(b)
 a, b = b, a+b
 return result
Now enter the Python interpreter and import this module

with the following command:
>>> import fibo
This does not enter the names of the functions defined

in fibo directly in the current symbol table; it only enters the
module name fibo there. Using the module name you can
access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
‘fibo’
If you intend to use a function often you can assign it

to a local name:

 A file name
 is a name
 used to uniquely
 identify a computer
 file stored in a file
system.

Keyword

3G E-LEARNING

48 Basic Computer Coding: Python

>>> fib = fibo.fib
>>> fib(500)

377 233 144 89 55 34 21 13 8 5 3 2 1 1

2.2.1 More on Modules

 A module can contain executable statements as well as function definitions. These
 statements are intended to initialize the module. They are executed only the first time
 the module name is encountered in an import statement. (They are also run if the file
).is executed as a script

Each module has its own private symbol table, which is used as the global symbol
table by all functions defined in the module. Thus, the author of a module can use
global variables in the module without worrying about accidental clashes with a user’s
global variables. On the other hand, if you know what you are doing you can touch
a module’s global variables with the same notation used to refer to its functions,
modname.itemname.

Modules can import other modules. It is customary but not required to place
all import statements at the beginning of a module (or script, for that matter). The
imported module names are placed in the importing module’s global symbol table.

There is a variant of the import statement that imports names from a module
directly into the importing module’s symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
This does not introduce the module name from which the imports are taken in

the local symbol table (so in the example, fibo is not defined).
There is even a variant to import all names that a module defines:
>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
This imports all names except those beginning with an underscore (_).
Note that in general the practice of importing * from a module or package is

frowned upon, since it often causes poorly readable code. However, it is okay to use
it to save typing in interactive sessions.

If the module name is followed by as, then the name following as is bound directly
to the imported module.

>>> import fibo as fib

Python Functions, Modules and Packages

3G E-LEARNING

49

>>> fib.fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377
This is effectively importing the module in the same way

that import fibo will do, with the only difference of it being
available as fib.

It can also be used when utilising from with similar effects:
>>> from fibo import fib as fibonacci
>>> fibonacci(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Executing Modules as Scripts

When you run a Python module with
>python fibo.py <arguments

the code in the module will be executed, just as if you
imported it, but with the __name__ set to “__main__”. That
means that by adding this code at the end of your module:

if __name__ == “__main__”:
 import sys
 fib(int(sys.argv[1]))
you can make the file usable as a script as well as an

importable module, because the code that parses the command
line only runs if the module is executed as the “main” file:

$ python fibo.py 50
1 1 2 3 5 8 13 21 34
If the module is imported, the code is not run:
>>> import fibo
>>>
This is often used either to provide a convenient user

interface to a module, or for testing purposes (running the
module as a script executes a test suite).

The Module Search Path

When a module named spam is imported, the interpreter first
searches for a built-in module with that name. If not found, it

Domestic
robot
is a type of
service robot,
an autonomous
robot that is
primarily used
for household
chores, but may
also be used
for education,
entertainment or
therapy.

Remember

3G E-LEARNING

50 Basic Computer Coding: Python

then searches for a file named spam.py in a list of directories
given by the variable sys.path. sys.path is initialized from
these locations:

the directory containing the input script (or the current
directory).

PYTHONPATH (a list of directory names, with the same
syntax as the shell variable PATH).

the installation-dependent default.
After initialization, Python programs can modify sys.path.

The directory containing the script being run is placed at the
beginning of the search path, ahead of the standard library
path. This means that scripts in that directory will be loaded
instead of modules of the same name in the library directory.
This is an error unless the replacement is intended.

As an important speed-up of the start-up time for short
programs that use a lot of standard modules, if a file called
spam.pyc exists in the directory where spam.py is found, this
is assumed to contain an already-“byte-compiled” version of
the module spam. The modification time of the version of
spam.py used to create spam.pyc is recorded in spam.pyc,
and the .pyc file is ignored if these don’t match.

Normally, you don’t need to do anything to create the
spam.pyc file. Whenever spam.py is successfully compiled,
an attempt is made to write the compiled version to spam.
pyc. It is not an error if this attempt fails; if for any reason
the file is not written completely, the resulting spam.pyc file
will be recognized as invalid and thus ignored later. The
contents of the spam.pyc file are platform independent, so
a Python module directory can be shared by machines of
different architectures.

Some tips for experts:
■■ When the Python interpreter is invoked with the -O

flag, optimized code is generated and stored in .pyo
files. The optimizer currently doesn’t help much; it
only removes assert statements. When -O is used, all
bytecode is optimized; .pyc files are ignored and .py
files are compiled to optimized bytecode.

■■ Passing two -O flags to the Python interpreter
(-OO) will cause the bytecode compiler to perform
optimizations that could in some rare cases result in

Python
convention
encourages the
use of named
functions defined
in the same scope
as one might
typically use
an anonymous
functions in other
languages.

Did You
Know?

Python Functions, Modules and Packages

3G E-LEARNING

51

malfunctioning programs. Currently only __doc__
strings are removed from the bytecode, resulting in
more compact .pyo files. Since some programs may
rely on having these available, you should only use
this option if you know what you’re doing.

■■ A program doesn’t run any faster when it is read
from a .pyc or .pyo file than when it is read from
a .py file; the only thing that’s faster about .pyc or
.pyo files is the speed with which they are loaded.

■■ When a script is run by giving its name on the
command line, the bytecode for the script is never
written to a .pyc or .pyo file. Thus, the startup time
of a script may be reduced by moving most of its
code to a module and having a small bootstrap script
that imports that module. It is also possible to name
a .pyc or .pyo file directly on the command line.

■■ It is possible to have a file called spam.pyc (or spam.
pyo when -O is used) without a file spam.py for the
same module. This can be used to distribute a library
of Python code in a form that is moderately hard to
reverse engineer.

■■ The module compileall can create .pyc files (or .pyo
files when -O is used) for all modules in a directory.

2.2.2 Standard Modules

Python comes with a library of standard modules, described
in a separate document, the Python Library Reference
(“Library Reference” hereafter). Some modules are built into
the interpreter; these provide access to operations that are not
part of the core of the language but are nevertheless built in,
either for efficiency or to provide access to operating system
primitives such as system calls. The set of such modules is a
configuration option which also depends on the underlying
platform. For example, the winreg module is only provided
on Windows systems. One particular module deserves some
attention: sys, which is built into every Python interpreter.
The variables sys.ps1 and sys.ps2 define the strings used as
primary and secondary prompts:

>>> import sys

 The
 compileall
 module finds
 Python source files
 and compiles them
 to the byte-code
 representation,
 saving the results
in .pyc or .pyo files.

Keyword

3G E-LEARNING

52 Basic Computer Coding: Python

>>> sys.ps1
‘>>> ‘
>>> sys.ps2
‘... ‘
>>> sys.ps1 = ‘C> ‘
C> print ‘Yuck!’
Yuck!
C>
These two variables are only defined if the interpreter is in interactive mode.
The variable sys.path is a list of strings that determines the interpreter’s search

path for modules. It is initialized to a default path taken from the environment variable
PYTHONPATH, or from a built-in default if PYTHONPATH is not set. You can modify
it using standard list operations:

>>> import sys
>>> sys.path.append(‘/ufs/guido/lib/python’)
The dir() Function¶
The built-in function dir() is used to find out which names a module defines. It

returns a sorted list of strings:
>>> import fibo, sys
>>> dir(fibo)
[‘__name__’, ‘fib’, ‘fib2’]
>>> dir(sys)
[‘__displayhook__’, ‘__doc__’, ‘__excepthook__’, ‘__name__’, ‘__package__’,
 ‘__stderr__’, ‘__stdin__’, ‘__stdout__’, ‘_clear_type_cache’,
 ‘_current_frames’, ‘_getframe’, ‘_mercurial’, ‘api_version’, ‘argv’,
 ‘builtin_module_names’, ‘byteorder’, ‘call_tracing’, ‘callstats’,
 ‘copyright’, ‘displayhook’, ‘dont_write_bytecode’, ‘exc_clear’, ‘exc_info’,
 ‘exc_traceback’, ‘exc_type’, ‘exc_value’, ‘excepthook’, ‘exec_prefix’,
 ‘executable’, ‘exit’, ‘flags’, ‘float_info’, ‘float_repr_style’,
 ‘getcheckinterval’, ‘getdefaultencoding’, ‘getdlopenflags’,
 ‘getfilesystemencoding’, ‘getobjects’, ‘getprofile’, ‘getrecursionlimit’,
 ‘getrefcount’, ‘getsizeof’, ‘gettotalrefcount’, ‘gettrace’, ‘hexversion’,
 ‘long_info’, ‘maxint’, ‘maxsize’, ‘maxunicode’, ‘meta_path’, ‘modules’,
 ‘path’, ‘path_hooks’, ‘path_importer_cache’, ‘platform’, ‘prefix’, ‘ps1’,

Python Functions, Modules and Packages

3G E-LEARNING

53

 ‘py3kwarning’, ‘setcheckinterval’, ‘setdlopenflags’, ‘setprofile’,
 ‘setrecursionlimit’, ‘settrace’, ‘stderr’, ‘stdin’, ‘stdout’, ‘subversion’,
 ‘version’, ‘version_info’, ‘warnoptions’]

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
[‘__builtins__’, ‘__name__’, ‘__package__’, ‘a’, ‘fib’, ‘fibo’, ‘sys’]
Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list
of those, they are defined in the standard module __builtin__:

>>> import __builtin__
>>> dir(__builtin__)
[‘ArithmeticError’, ‘AssertionError’, ‘AttributeError’, ‘BaseException’,
 ‘BufferError’, ‘BytesWarning’, ‘DeprecationWarning’, ‘EOFError’,
 ‘Ellipsis’, ‘EnvironmentError’, ‘Exception’, ‘False’, ‘FloatingPointError’,
 ‘FutureWarning’, ‘GeneratorExit’, ‘IOError’, ‘ImportError’, ‘ImportWarning’,
 ‘IndentationError’, ‘IndexError’, ‘KeyError’, ‘KeyboardInterrupt’,
 ‘LookupError’, ‘MemoryError’, ‘NameError’, ‘None’, ‘NotImplemented’,
 ‘NotImplementedError’, ‘OSError’, ‘OverflowError’,
 ‘PendingDeprecationWarning’, ‘ReferenceError’, ‘RuntimeError’,
 ‘RuntimeWarning’, ‘StandardError’, ‘StopIteration’, ‘SyntaxError’,
 ‘SyntaxWarning’, ‘SystemError’, ‘SystemExit’, ‘TabError’, ‘True’,
 ‘TypeError’, ‘UnboundLocalError’, ‘UnicodeDecodeError’,
 ‘UnicodeEncodeError’, ‘UnicodeError’, ‘UnicodeTranslateError’,
 ‘UnicodeWarning’, ‘UserWarning’, ‘ValueError’, ‘Warning’,
 ‘ZeroDivisionError’, ‘_’, ‘__debug__’, ‘__doc__’, ‘__import__’,
 ‘__name__’, ‘__package__’, ‘abs’, ‘all’, ‘any’, ‘apply’, ‘basestring’,

3G E-LEARNING

54 Basic Computer Coding: Python

 ‘bin’, ‘bool’, ‘buffer’, ‘bytearray’, ‘bytes’, ‘callable’, ‘chr’,
 ‘classmethod’, ‘cmp’, ‘coerce’, ‘compile’, ‘complex’, ‘copyright’,
 ‘credits’, ‘delattr’, ‘dict’, ‘dir’, ‘divmod’, ‘enumerate’, ‘eval’,
 ‘execfile’, ‘exit’, ‘file’, ‘filter’, ‘float’, ‘format’, ‘frozenset’,
 ‘getattr’, ‘globals’, ‘hasattr’, ‘hash’, ‘help’, ‘hex’, ‘id’, ‘input’,
 ‘int’, ‘intern’, ‘isinstance’, ‘issubclass’, ‘iter’, ‘len’, ‘license’,
 ‘list’, ‘locals’, ‘long’, ‘map’, ‘max’, ‘memoryview’, ‘min’, ‘next’,
 ‘object’, ‘oct’, ‘open’, ‘ord’, ‘pow’, ‘print’, ‘property’, ‘quit’,
 ‘range’, ‘raw_input’, ‘reduce’, ‘reload’, ‘repr’, ‘reversed’, ‘round’,
 ‘set’, ‘setattr’, ‘slice’, ‘sorted’, ‘staticmethod’, ‘str’, ‘sum’, ‘super’,
 ‘tuple’, ‘type’, ‘unichr’, ‘unicode’, ‘vars’, ‘xrange’, ‘zip’]

2.3 PYTHON PACKAGES
Packages are a way of structuring Python’s module namespace by using “dotted
module names”. For example, the module name A.B designates a submodule named
B in a package named A. Just like the use of modules saves the authors of different
modules from having to worry about each other’s global variable names, the use of
dotted module names saves the authors of multi-module packages like NumPy or
Pillow from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform
handling of sound files and sound data. There are many different sound file formats
(usually recognized by their extension, for example: .wav, .aiff, .au), so you may need
to create and maintain a growing collection of modules for the conversion between
the various file formats. There are also many different operations you might want to
perform on sound data (such as mixing, adding echo, applying an equalizer function,
creating an artificial stereo effect), so in addition you will be writing a never-ending
stream of modules to perform these operations. Here’s a possible structure for your
package (expressed in terms of a hierarchical filesystem):

sound/ Top-level package
 __init__.py Initialize the sound package
 formats/ Subpackage for file format conversions
 __init__.py
 wavread.py
 wavwrite.py
 aiffread.py
 aiffwrite.py

Python Functions, Modules and Packages

3G E-LEARNING

55

 auread.py
 auwrite.py
 ...
 effects/ Subpackage for sound effects
 __init__.py
 echo.py
 surround.py
 reverse.py
 ...
 filters/ Subpackage for filters
 __init__.py
 equalizer.py
 vocoder.py
 karaoke.py
 ...
When importing the package, Python searches through the directories on sys.path

looking for the package subdirectory.
The __init__.py files are required to make Python treat the directories as containing

packages; this is done to prevent directories with a common name, such as string, from
unintentionally hiding valid modules that occur later on the module search path. In the
simplest case, __init__.py can just be an empty file, but it can also execute initialization
code for the package or set the __all__ variable, described later.

Users of the package can import individual modules from the package, for example:
import sound.effects.echo
This loads the submodule sound.effects.echo. It must be referenced with its full

name.
sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)
An alternative way of importing the submodule is:
from sound.effects import echo
This also loads the submodule echo, and makes it available without its package

prefix, so it can be used as follows:
echo.echofilter(input, output, delay=0.7, atten=4)
Yet another variation is to import the desired function or variable directly:
from sound.effects.echo import echofilter

3G E-LEARNING

56 Basic Computer Coding: Python

Again, this loads the submodule echo, but this makes its
function echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)
Note that when using from package import item, the item

can be either a submodule (or subpackage) of the package, or
some other name defined in the package, like a function, class
or variable. The import statement first tests whether the item
is defined in the package; if not, it assumes it is a module
and attempts to load it. If it fails to find it, an ImportError
exception is raised.

Contrarily, when using syntax like import item.subitem.
subsubitem, each item except for the last must be a package;
the last item can be a module or a package but can’t be a class
or function or variable defined in the previous item.

2.3.1 Importing* From a Package

Now what happens when the user writes from sound.effects
import *? Ideally, one would hope that this somehow goes out
to the filesystem, finds which submodules are present in the
package, and imports them all. This could take a long time
and importing sub-modules might have unwanted side-effects
that should only happen when the sub-module is explicitly
imported.

The only solution is for the package author to provide an
explicit index of the package. The import statement uses the
following convention: if a package’s __init__.py code defines
a list named __all__, it is taken to be the list of module
names that should be imported when from package import
* is encountered. It is up to the package author to keep this
list up-to-date when a new version of the package is released.
Package authors may also decide not to support it, if they don’t
see a use for importing * from their package. For example, the
file sound/effects/__init__.py could contain the following code:

__all__ = [“echo”, “surround”, “reverse”]
This would mean that from sound.effects import * would

import the three named submodules of the sound package.
If __all__ is not defined, the statement from sound.effects

import * does not import all submodules from the package
sound.effects into the current namespace; it only ensures that

A python
package
is a collection
of modules.
Modules that are
related to each
other are mainly
put in the same
package. When a
module from an
external package
is required in a
program, that
package can be
imported and its
modules can be
put to use.

Remember

Python Functions, Modules and Packages

3G E-LEARNING

57

the package sound.effects has been imported (possibly running any initialization code
in __init__.py) and then imports whatever names are defined in the package. This
includes any names defined (and submodules explicitly loaded) by __init__.py. It
also includes any submodules of the package that were explicitly loaded by previous
import statements. Consider this code:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *
In this example, the echo and surround modules are imported in the current

namespace because they are defined in the sound.effects package when the from...
import statement is executed. (This also works when __all__ is defined.)

Although certain modules are designed to export only names that follow certain
patterns when you use import *, it is still considered bad practice in production code.

Remember, there is nothing wrong with using from Package import specific_
submodule! In fact, this is the recommended notation unless the importing module
needs to use submodules with the same name from different packages.

2.3.2 Intra-package References

The submodules often need to refer to each other. For example, the surround module
might use the echo module. In fact, such references are so common that the import
statement first looks in the containing package before looking in the standard module
search path. Thus, the surround module can simply use import echo or from echo
import echofilter. If the imported module is not found in the current package (the
package of which the current module is a submodule), the import statement looks for
a top-level module with the given name.

When packages are structured into subpackages (as with the sound package in the
example), you can use absolute imports to refer to submodules of siblings packages.
For example, if the module sound.filters.vocoder needs to use the echo module in the
sound.effects package, it can use fromsound.effects import echo.

Starting with Python 2.5, in addition to the implicit relative imports described
above, you can write explicit relative imports with the from module import nameform
of import statement. These explicit relative imports use leading dots to indicate the
current and parent packages involved in the relative import. From the surround module
for example, you might use:

from . import echo
from .. import formats
from ..filters import equalizer

3G E-LEARNING

58 Basic Computer Coding: Python

Note that both explicit and implicit relative imports are based on the name of the
current module. Since the name of the main module is always “__main__”, modules
intended for use as the main module of a Python application should always use
absolute imports.

2.3.3 Packages in Multiple Directories

Packages support one more special attribute, __path__. This is initialized to be a list
containing the name of the directory holding the package’s __init__.py before the code
in that file is executed. This variable can be modified; doing so affects future searches
for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules
found in a package.

Python Functions, Modules and Packages

3G E-LEARNING

59

SUMMARY
■■ Python Functions is a block of related statements designed to perform a

computational, logical, or evaluative task.
■■ Functions are the most important aspect of an application. A function can

be defined as the organized block of reusable code, which can be called
whenever required.

■■ The Function helps to programmer to break the program into the smaller
part. It organizes the code very effectively and avoids the repetition of the
code. As the program grows, function makes the program more organized.

■■ The return statement is used to exit a function and go back to the place from
where it was called.

■■ Required arguments are the arguments passed to a function in correct positional
order.

■■ Keyword arguments are related to the function calls. When you use keyword
arguments in a function call, the caller identifies the arguments by the parameter
name.

■■ A default argument is an argument that assumes a default value if a value
is not provided in the function call for that argument.

■■ Python has a way to put definitions in a file and use them in a script or in
an interactive instance of the interpreter.

3G E-LEARNING

60 Basic Computer Coding: Python

KNOWLEDGE CHECK
1. 	 Which of these definitions correctly describes a module?

a.	 Denoted by triple quotes for providing the specification of certain program
elements

b.	 Design and implementation of specific functionality to be incorporated into
a program

c.	 Defines the specification of how it is to be used
d.	 Any program that reuses code

2. 	 Which of the following is the use of function in python?
a.	 Functions are reusable pieces of programs
b.	 Functions don’t provide better modularity for your application
c.	 you can’t also create your own functions
d.	 All of the mentioned

3. 	 Which keyword is use for function?
a.	 Fun
b.	 Define
c.	 Def
d.	 Function

4. 	 Which of the following is not an advantage of using modules?
a.	 Provides a means of reuse of program code
b.	 Provides a means of dividing up tasks
c.	 Provides a means of reducing the size of the program	
d.	 Provides a means of testing individual parts of the program

5. 	 Program code making use of a given module is called a ……… of the module.
a.	 Client
b.	 Docstring
c.	 Interface
d.	 Modularity

6. 	 In which language is Python written?
a.	 English
c.	 PHP
d.	 C
e.	 All of the above

Python Functions, Modules and Packages

3G E-LEARNING

61

7. 	 Which one of the following is the correct extension of the Python file?
a.	 .py
b.	 .python
c.	 .p
d.	 None of these

8. 	 What is the maximum possible length of an identifier?
a.	 31 characters
b.	 63 characters
c.	 79 characters
d.	 Identifiers can be of any length.

REVIEW QUESTIONS
1.	 How Function works in Python?
2.	 Discuss the python function arguments.
3.	 How to create a Python module.
4.	 How to create a module that is executable as a standalone script.
5.	 What is the difference between a python module and a python package?

Check Your Result

1. (a)		 2. (a)		 3. (c)		 4. (c)		 5. (a)
6. (b)		 7. (a)		 8. (d)

3G E-LEARNING

62 Basic Computer Coding: Python

REFERENCES
1.	 http://codefruxtechnology.com/pdf/PythonSyllabus.pdf
2.	 https://docs.python.org/3/tutorial/modules.html
3.	 https://github.com/PyGithub/PyGithub
4.	 https://realpython.com/python-modules-packages/
5.	 https://www.codesdope.com/python-boolean/
6.	 https://www.geeksforgeeks.org/bool-in-python/
7.	 https://www.programiz.com/python-programming/function-argument
8.	 https://www.programiz.com/python-programming/methods/built-in/bool
9.	 https://www.programiz.com/python-programming/modules
10.	 https://www.tutorialspoint.com/python/python_functions.htm
11.	 https://www.w3schools.com/python/python_functions.asp
12.	 Kuchling, A. M. “Functional Programming HOWTO”. Python v2.7.2 documentation.

Python Software Foundation. Retrieved 9 February 2012.
13.	 The Python Tutorial. Python Software Foundation. Retrieved 20 February 2012.

It is a mixture of the class mechanisms found in C++ and Modula-3
14.	 Kuchling, A. M. “Functional Programming HOWTO”. Python v2.7.2 documentation.

Python Software Foundation. Retrieved 9 February 2012.
15.	 Steven Lott. Copyright © 2005. Steven F. Lott. https://homepage.mac.com/s_lott/

books/oodesign/oodesign.pdf. Building Skills in Object-Oriented Design. Step-
by-Step Construction of A Complete Application.

16.	 The Python Tutorial. Python Software Foundation. Retrieved 20 February 2012. It is a
mixture of the class mechanisms found in C++ and Modula-3

“Python is an experiment in how much freedom programmers need. Too much freedom and nobody
can read another’s code; too little and expressiveness is endangered.”

–Guido van Rossum

After studying this chapter,
you will be able to:
1.	 Understand python

dictionaries
2.	 Explain python sets
3.	 Discuss about files

LEARNING
OBJECTIVES

DICTIONARIES, SETS,
AND FILES

INTRODUCTION
Python dictionaries are something completely different—
they are not sequences at all, but are instead known as
mappings. Mappings are also collections of other objects,

3
CHAPTER

3G E-LEARNING

64 Basic Computer Coding: Python

but they store objects by key instead of by relative position. In fact, mappings don’t
maintain any reliable left-to-right order; they simply map keys to associated values.
Dictionaries, the only mapping type in Python’s core objects set, are also mutable: like
lists, they may be changed in place and can grow and shrink on demand. Also like
lists, they are a flexible tool for representing collections, but their more mnemonic keys
are better suited when a collection’s items are named or labeled—fields of a database
record, for example.

Sets are constructed from a sequence (or some other iterable object). Since sets
cannot have duplicated, there are usually used to build sequence of unique items
(e.g., set of identifiers).

File objects are Python code’s main interface to external files on your computer.
They can be used to read and write text memos, audio clips, Excel documents, saved
email messages, and whatever else you happen to have stored on your machine. Files
are a core type, but they’re something of an oddball—there is no specific literal syntax
for creating them. Rather, to create a file object, you call the built-in open function,
passing in an external filename and an optional processing mode as strings.

3.1 PYTHON DICTIONARIES
A dictionary is a collection which is unordered, changeable and indexed. In Python
dictionaries are written with curly brackets, and they have keys and values.

Example:
Create and print a dictionary:
thisdict =	 {

Dictionaries, Sets, and Files

3G E-LEARNING

65

 “brand”: “Ford”,
 “model”: “Mustang”,
 “year”: 1964
}
print(thisdict)

3.1.1 Accessing Dictionary Elements

We can call the values of a dictionary by referencing the related keys.

Accessing Data Items with Keys

Because dictionaries offer key-value pairs for storing data, they can be important
elements in your Python program.

If we want to isolate Sammy’s username, we can do so by calling sammy[‘username’].
Let’s print that out:

print(sammy[‘username’])
Output
sammy-shark
Dictionaries behave like a database in that instead of calling an integer to get a

particular index value as you would with a list, you assign a value to a key and can
call that key to get its related value.

By invoking the key ‘username’ we receive the value of that key, which is ‘sammy-
shark’.

The remaining values in the sammy dictionary can similarly be called using the
same format:

sammy[‘followers’]
Returns 987

sammy[‘online’]
Returns True
By making use of dictionaries’ key-value pairs, we can reference keys to retrieve

values.

3G E-LEARNING

66 Basic Computer Coding: Python

Using Methods to Access Elements

In addition to using keys to access values, we can also work
with some built-in methods:

■■ dict.keys() isolates keys
■■ dict.values() isolates values
■■ dict.items() returns items in a list format of (key,

value) tuple pairs
 To return the keys, we would use the dict.keys() method.
 In our example, that would use the variable name and be
 sammy.keys(). Let’s pass that to a print() method and look
:at the output
))(print(sammy.keys
Output
dict_keys([‘followers’, ‘username’, ‘online’])

We receive output that places the keys within an iterable
view object of the dict_keys class. The keys are then printed
within a list format.
This method can be used to query across dictionaries. For
example, we can take a look at the common keys shared
between two dictionary data structures:
sammy = {‘username’: ‘sammy-shark’, ‘online’: True, ‘followers’:
987}
jesse = {‘username’: ‘JOctopus’, ‘online’: False, ‘points’: 723}
for common_key in sammy.keys() & jesse.keys():
 print(sammy[common_key], jesse[common_key])
The dictionary sammy and the dictionary jesse are each a
user profile dictionary.
Their profiles have different keys, however, because Sammy
has a social profile with associated followers, and Jesse has a
gaming profile with associated points. The 2 keys they have
in common are usernameand online status, which we can find
when we run this small program:
Output
sammy-shark JOctopus
True False

 Data
 structure
 is a data
 organization,
 management and
 storage format
 that enables
 efficient access and
modification.

Keyword

Dictionaries, Sets, and Files

3G E-LEARNING

67

We could certainly improve on the program to make the output more user-readable,
but this illustrates that dict.keys() can be used to check across various dictionaries to
see what they share in common or not. This is especially useful for large dictionaries.
Similarly, we can use the dict.values() method to query the values in the sammy
dictionary, which would be constructed as sammy.values(). Let’s print those out:
sammy = {‘username’: ‘sammy-shark’, ‘online’: True, ‘followers’: 987}

print(sammy.values())
Output
dict_values([True, ‘sammy-shark’, 987])
Both the methods keys() and values() return unsorted lists of the keys and values
present in the sammy dictionary with the view objects of dict_keys and dict_values
respectively.
If we are interested in all of the items in a dictionary, we can access them with the
items() method:
print(sammy.items())
Output
dict_items([(‘online’, True), (‘username’, ‘sammy-shark’), (‘followers’, 987)])
The returned format of this is a list made up of (key, value) tuple pairs with the
dict_items view object.
We can iterate over the returned list format with a for loop. For example, we can
print out each of the keys and values of a given dictionary, and then make it more
human-readable by adding a string:
for key, value in sammy.items():
 print(key, ‘is the key for the value’, value)
Output
online is the key for the value True
followers is the key for the value 987
username is the key for the value sammy-shark
The for loop above iterated over the items within the sammy dictionary and printed
out the keys and values line by line, with information to make it easier to understand
by humans.
We can use built-in methods to access items, values, and keys from dictionary data
structures.

3G E-LEARNING

68 Basic Computer Coding: Python

3.1.2 Modifying Dictionaries

Dictionaries are a mutable data structure, so you are able to modify them. In this
section, we will go over adding and deleting dictionary elements.

Adding and Changing Dictionary Elements

Without using a method or function, you can add key-value pairs to dictionaries by
using the following syntax:

dict[key] = value
We’ll look at how this works in practice by adding a key-value pair to a dictionary

called usernames:
usernames = {‘Sammy’: ‘sammy-shark’, ‘Jamie’: ‘mantisshrimp54’}
usernames[‘Drew’] = ‘squidly’
print(usernames)
Output
{‘Drew’: ‘squidly’, ‘Sammy’: ‘sammy-shark’, ‘Jamie’: ‘mantisshrimp54’}
We see now that the dictionary has been updated with the ‘Drew’: ‘squidly’ key-

value pair. Because dictionaries may be unordered, this pair may occur anywhere in
the dictionary output. If we use the usernames dictionary later in our program file, it
will include the additional key-value pair.

Additionally, this syntax can be used for modifying the value assigned to a key.
In this case, we will reference an existing key and pass a different value to it.

Let’s consider a dictionary drew that is one of the users on a given network. We
will say that this user got a bump in followers today, so we need to update the integer
value passed to the ‘followers’ key. We’ll use the print() function to check that the
dictionary was modified.

drew = {‘username’: ‘squidly’, ‘online’: True, ‘followers’: 305}
drew[‘followers’] = 342
print(drew)
Output
{‘username’: ‘squidly’, ‘followers’: 342, ‘online’: True}
In the output, we see that the number of followers jumped from the integer value

of 305 to 342.
We can use this method for adding key-value pairs to dictionaries with user-input.

Let’s write a quick program, usernames.py that runs on the command line and allows
input from the user to add more names and associated usernames:

Dictionaries, Sets, and Files

3G E-LEARNING

69

usernames.py
Define original dictionary
usernames = {‘Sammy’: ‘sammy-shark’, ‘Jamie’: ‘mantisshrimp54’}
Set up while loop to iterate
while True:

 # Request user to enter a name
 print(‘Enter a name:’)

 # Assign to name variable
 name = input()

 # Check whether name is in the dictionary and print feedback
 if name in usernames:
 print(usernames[name] + ‘ is the username of ‘ + name)

 # If the name is not in the dictionary...
 else:

 # Provide feedback
 print(‘I don\’t have ‘ + name + ‘\’s username, what is it?’)

 # Take in a new username for the associated name
 username = input()

 # Assign username value to name key
 usernames[name] = username

 # Print feedback that the data was updated
 print(‘Data updated.’)
Let’s run the program on the command line:
python usernames.py
When we run the program we’ll get something like the following output:

3G E-LEARNING

70 Basic Computer Coding: Python

Output
Enter a name:
Sammy
sammy-shark is the username of Sammy
Enter a name:
Jesse
I don’t have Jesse’s username, what is it?
JOctopus
Data updated.
Enter a name:
When we are done testing the program, we can press CTRL

+ C to escape the program. You can set up a trigger to quit
the program (such as typing the letter q) with a conditional
statement to improve the code.

This shows how you can modify dictionaries interactively.
With this particular program, as soon as you exit the program
with CTRL + C you’ll lose all your data unless you implement
a way to handle reading and writing files.

We can also add and modify dictionaries by using the
dict.update() method. This varies from the append() method
available in lists.

In the jesse dictionary below, let’s add the key ‘followers’
and give it an integer value with jesse.update(). Following
that, let’s print() the updated dictionary.

jesse = {‘username’: ‘JOctopus’, ‘online’: False, ‘points’: 723}
jesse.update({‘followers’: 481})
print(jesse)
Output
{‘followers’: 481, ‘username’: ‘JOctopus’, ‘points’: 723,

‘online’: False}
From the output, we can see that we successfully added

the ‘followers’: 481 key-value pair to the dictionary jesse.
We can also use the dict.update() method to modify an

existing key-value pair by replacing a given value for a specific
key.

 Conditional
 statements are
 those statements
 where a hypothesis
 is followed by
 a conclusion. It
 is also known
 as an “ If-then”
 statement. If the
 hypothesis is true
 and the conclusion
 is false, then
 the conditional
statement is false.

Keyword

Dictionaries, Sets, and Files

3G E-LEARNING

71

Let’s change the online status of Sammy from True to
False in the sammy dictionary:

sammy = {‘username’: ‘sammy-shark’, ‘online’: True,
‘followers’: 987}

sammy.update({‘online’: False})
print(sammy)
Output
{‘username’: ‘sammy-shark’, ‘followers’: 987, ‘online’: False}
The line sammy.update({‘online’: False}) references the

existing key ‘online’ and modifies its Boolean value from True
to False. When we call to print() the dictionary, we see the
update take place in the output.

To add items to dictionaries or modify values, we can use
wither the dict[key] = value syntax or the method dict.update().

Deleting Dictionary Elements

Just as you can add key-value pairs and change values within
the dictionary data type, you can also delete items within a
dictionary.

To remove a key-value pair from a dictionary, we will
use the following syntax:

del dict[key]
Let’s take the jesse dictionary that represents one of the

users. We’ll say that Jesse is no longer using the online platform
for playing games, so we’ll remove the item associated with
the ‘points’ key. Then, we’ll print the dictionary out to confirm

 Syntax
 is the
 grammatical
 structure of
 sentences. The
 format in which
 words and phrases
 are arranged to
 create sentences is
called syntax.

Keyword

3G E-LEARNING

72 Basic Computer Coding: Python

that the item was deleted:
jesse = {‘username’: ‘JOctopus’, ‘online’: False, ‘points’: 723, ‘followers’: 481}

del jesse[‘points’]
print(jesse)
Output
{‘online’: False, ‘username’: ‘JOctopus’, ‘followers’: 481}
The line del jesse[‘points’] removes the key-value pair ‘points’: 723 from the jesse

dictionary.
If we would like to clear a dictionary of all of its values, we can do so with the

dict.clear() method. This will keep a given dictionary in case we need to use it later
in the program, but it will no longer contain any items.

Let’s remove all the items within the jesse dictionary:
jesse = {‘username’: ‘JOctopus’, ‘online’: False, ‘points’: 723, ‘followers’: 481}
jesse.clear()

print(jesse)
Output
{}
The output shows that we now have an empty dictionary devoid of key-value pairs.
If we no longer need a specific dictionary, we can use del to get rid of it entirely:
del jesse
print(jesse)
When we run a call to print() after deleting the jesse dictionary, we’ll receive the

following error:
Output
...
NameError: name ‘jesse’ is not defined
Because dictionaries are mutable data types, they can be added to, modified, and

have items removed and cleared.

Dictionaries, Sets, and Files

3G E-LEARNING

73

The del keyword removes the item with the specified key name:

thisdict = {

 “brand”: “Ford”,

 “model”: “Mustang”,

 “year”: 1964

}

del thisdict[“model”]

print(thisdict)

3.1.3 The dict() Constructor

It is also possible to use the dict() constructor to make a
dictionary:

Example
thisdict = dict(brand=”Ford”, model=”Mustang”, year=1964)
note that keywords are not string literals
note the use of equals rather than colon for the assignment
print(thisdict)

3.1.4 Dictionary Methods

Python has a set of built-in methods that you can use on
dictionaries.

Method Description
clear() Removes all the elements from the dictionary
copy() Returns a copy of the dictionary
fromkeys() Returns a dictionary with the specified keys and

values
get() Returns the value of the specified key
items() Returns a list containing the a tuple for each key

value pair
keys() Returns a list contianing the dictionary’s keys
pop() Removes the element with the specified key

3G E-LEARNING

74 Basic Computer Coding: Python

popitem() Removes the last inserted key-value pair
setdefault() Returns the value of the specified key. If the key does

not exist: insert the key, with the specified value
update() Updates the dictionary with the specified key-value

pairs
values() Returns a list of all the values in the dictionary

3.1.5 Aliasing and Copying

Because dictionaries are mutable, you need to be aware of
aliasing. Whenever two variables refer to the same object,
changes to one affect the other.

If you want to modify a dictionary and keep a copy of
the original, use the copy method. For example, opposites is
a dictionary that contains pairs of opposites:

>>> opposites = {‘up’: ‘down’, ‘right’: ‘wrong’, ‘true’: ‘false’}
>>> an_alias = opposites
>>> a_copy = opposites.copy()
an_alias and opposites refer to the same object; a_copy

refers to a fresh copy of the same dictionary. If we modify
alias, opposites is also changed:

>>> an_alias[‘right’] = ‘left’
>>> opposites[‘right’]
‘left’
If we modify a_copy, opposites is unchanged:
>>> a_copy[‘right’] = ‘privilege’
>>> opposites[‘right’]
‘left’

Although
we just
used a dictionary
to link names to
phone numbers
in this extended
example, we can
use a dictionary
to link any one
type of object to
another type of
object.

Remember

Dictionaries, Sets, and Files

3G E-LEARNING

75

3.2 PYTHON SETS
Sets are a collection of distinct (unique) objects. These are
useful to create lists that only hold unique values in the
dataset. It is an unordered collection but a mutable one, this
is very helpful when going through a huge dataset.

x_set = set(‘CAKE&COKE’)
y_set = set(‘COOKIE’)
print(x_set)
{‘A’, ‘&’, ‘O’, ‘E’, ‘C’, ‘K’}
print(y_set) # Single unique ‘o’
{‘I’, ‘O’, ‘E’, ‘C’, ‘K’}
print(x - y) # All the elements in x_set but not in y_set

NameError Traceback (most
recent call last)

<ipython-input-3-31abf5d98454> in <module>()
----> 1 print(x - y) # All the elements in x_set but not

in y_set

NameError: name ‘x’ is not defined
print(x_set|y_set) # Unique elements in x_set or y_set or

both
{‘C’, ‘&’, ‘E’, ‘A’, ‘O’, ‘K’, ‘I’}
print(x_set & y_set) # Elements in both x_set and y_set
{‘O’, ‘E’, ‘K’, ‘C’}

3.2.1 Defining a Set

You can define a set as simple as by naming all of its elements
in brackets. The only exception is empty set, which can be
created using the function set(). If set(..) has a list, a string
or a tuple as a parameter, it will return a set composed of
its elements.

Sets can
store
anything, not just
strings. It’s just
easiest to illustrate
the set methods
using sets of
strings.

Remember

3G E-LEARNING

76 Basic Computer Coding: Python

Let’s see what all that means, and how you can work with
sets in Python.
A set can be created in two ways. First, you can define a set
with the built-in set() function:
x = set(<iter>)
In this case, the argument <iter> is an iterable—again, for the
moment, think list or tuple—that generates the list of objects to
be included in the set. This is analogous to the <iter>argument
given to the .extend() list method:
>>> x = set([‘foo’, ‘bar’, ‘baz’, ‘foo’, ‘qux’])
>>> x
{‘qux’, ‘foo’, ‘bar’, ‘baz’}

>>> x = set((‘foo’, ‘bar’, ‘baz’, ‘foo’, ‘qux’))
>>> x
{‘qux’, ‘foo’, ‘bar’, ‘baz’}
Strings are also iterable, so a string can be passed to set() as
well. You have already seen that list(s) generates a list of the
characters in the string s. Similarly, set(s) generates a set of
the characters in s:
>>> s = ‘quux’

>>> list(s)
[‘q’, ‘u’, ‘u’, ‘x’]
>>> set(s)
{‘x’, ‘u’, ‘q’}
You can see that the resulting sets are unordered: the original
order, as specified in the definition, is not necessarily preserved.
Additionally, duplicate values are only represented in the set
once, as with the string ‘foo’ in the first two examples and
the letter ‘u’ in the third.

 String
 is traditionally
 a sequence of
 characters, either
 as a literal constant
 or as some kind of
variable.

Keyword

Dictionaries, Sets, and Files

3G E-LEARNING

77

Alternately, a set can be defined with curly braces ({}):
x = {<obj>, <obj>, ..., <obj>}
When a set is defined this way, each <obj> becomes a distinct element of the set, even
if it is an iterable. This behavior is similar to that of the .append() list method.
Thus, the sets shown above can also be defined like this:
>>> x = {‘foo’, ‘bar’, ‘baz’, ‘foo’, ‘qux’}
>>> x
{‘qux’, ‘foo’, ‘bar’, ‘baz’}

>>> x = {‘q’, ‘u’, ‘u’, ‘x’}
>>> x
{‘x’, ‘q’, ‘u’}

To recap:
■■ The argument to set() is an iterable. It generates a list of elements to be

placed into the set.
■■ The objects in curly braces are placed into the set intact, even if they are

iterable.
Observe the difference between these two set definitions:
>>> {‘foo’}
{‘foo’}

>>> set(‘foo’)
{‘o’, ‘f’}
A set can be empty. However, recall that Python interprets empty curly braces

({}) as an empty dictionary, so the only way to define an empty set is with the set()
function:

>>> x = set()
>>> type(x)
<class ‘set’>
>>> x
set()

>>> x = {}
>>> type(x)

3G E-LEARNING

78 Basic Computer Coding: Python

<class ‘dict’>
An empty set is falsy in Boolean context:
>>> x = set()
>>> bool(x)
False
>>> x or 1
1
>>> x and 1
set()
You might think the most intuitive sets would contain

similar objects—for example, even numbers or surnames:
>>> s1 = {2, 4, 6, 8, 10}
>>> s2 = {‘Smith’, ‘McArthur’, ‘Wilson’, ‘Johansson’}
Python does not require this, though. The elements in a

set can be objects of different types:
>>> x = {42, ‘foo’, 3.14159, None}
>>> x
{None, ‘foo’, 42, 3.14159}
Don’t forget that set elements must be immutable. For

example, a tuple may be included in a set:
>>> x = {42, ‘foo’, (1, 2, 3), 3.14159}
>>> x
{42, ‘foo’, 3.14159, (1, 2, 3)}
But lists and dictionaries are mutable, so they can’t be

set elements:
>>> a = [1, 2, 3]
>>> {a}
Traceback (most recent call last):
 File “<pyshell#70>”, line 1, in <module>
 {a}
TypeError: unhashable type: ‘list’

>>> d = {‘a’: 1, ‘b’: 2}
>>> {d}

Earlier
versions of
Python used a
cryptic way to
format strings.
It is considered
deprecated and
will eventually
disappear from
the language.

Did You
Know?

Dictionaries, Sets, and Files

3G E-LEARNING

79

Traceback (most recent call last):
 File “<pyshell#72>”, line 1, in <module>
 {d}
TypeError: unhashable type: ‘dict’

3.2.2 Set Size and Membership

The len() function returns the number of elements in a set, and the in and not inoperators
can be used to test for membership:
>>> x = {‘foo’, ‘bar’, ‘baz’}

>>> len(x)
3

>>> ‘bar’ in x
True
>>> ‘qux’ in x
False

3.2.3 Methods for Sets

add(x) Method
Adds the item x to set if it is not already present in the set.
people = {“Jay”, “Idrish”, “Archil”}
people.add(“Daxit”)
-> This will add Daxit in people set.
union(s) Method
Returns a union of two set.Using the ‘|’ operator between 2 sets is the same as

writing set1.union(set2)
people = {“Jay”, “Idrish”, “Archil”}
vampires = {“Karan”, “Arjun”}
population = people.union(vampires)
OR
population = people|vampires
-> Set population set will have components of both people and vampire

3G E-LEARNING

80 Basic Computer Coding: Python

intersect(s) Method
Returns an intersection of two sets.The ‘&’ operator comes can also be used in

this case.
victims = people.intersection(vampires)
-> Set victims will contain the common element of people and vampire

difference(s) Method
Returns a set containing all the elements of invoking set but not of the second

set. We can use ‘-‘ operator here.
safe = people.difference(vampires)
OR
safe = people – vampires
-> Set safe will have all the elements that are in people but not vampire

clear() Method
Empties the whole set.
victims.clear()
-> Clears victim set
However there are two major pitfalls in Python sets:

■■ The set doesn’t maintain elements in any particular order.
■■ Only instances of immutable types can be added to a Python set.

3.2.4 Creating a Set

A set is created by using the set() function or placing all the elements within a pair
of curly braces.

When the above code is executed, it produces the following result. Please note
how the order of the elements has changed in the result.

Dictionaries, Sets, and Files

3G E-LEARNING

81

3.2.5 Accessing Values in a Set

We cannot access individual values in a set. We can only access all the elements
together as shown above. But we can also get a list of individual elements by looping
through the set.

When the above code is executed, it produces the following result.

3.2.6 Adding Items to a Set

We can add elements to a set by using add() method. Again as discussed there is no
specific index attached to the newly added element.

When the above code is executed, it produces the following result.

3.2.7 Removing Item from a Set

We can remove elements from a set by using discard() method. Again as discussed
there is no specific index attached to the newly added element.

3G E-LEARNING

82 Basic Computer Coding: Python

When the above code is executed, it produces the following
result.

3.2.8 Union of Sets

The union operation on two sets produces a new set containing
all the distinct elements from both the sets. In the below
example the element “Wed” is present in both the sets.

When the above code is executed, it produces the following
result. Please note the result has only one “wed”.

3.2.9 Intersection of Sets

The intersection operation on two sets produces a new set
containing only the common elements from both the sets.
In the below example the element “Wed” is present in both
the sets.

When the above code is executed, it produces the following
result. Please note the result has only one “wed”.

Since
2003, Python
has consistently
ranked in the top
ten most popular
programming
languages in
the TIOBE
Programming
Community
Index where, as
of February 2021,
it is the third
most popular
language (behind
Java, and C).

Did You
Know?

Dictionaries, Sets, and Files

3G E-LEARNING

83

3.2.10 Difference of Sets

The difference operation on two sets produces a new set containing only the elements
from the first set and none from the second set. In the below example the element
“Wed” is present in both the sets so it will not be found in the result set.

When the above code is executed, it produces the following result. Please note
the result has only one “wed”.

3.2.11 Compare Sets

We can check if a given set is a subset or superset of another set. The result is True
or False depending on the elements present in the sets.

When the above code is executed, it produces the following result.
When the above code is executed, it produces the following result.

3.3 FILES
Files are traditionally a part of data structures. And although big data is commonplace
in the data science industry, a programming language without the capability to store
and retrieve previously stored information would hardly be useful. You still have to
make use of the all the data sitting in files across databases and you will learn how
to do this.
 The syntax to read and write files in Python is similar to other programming
 languages but a lot easier to handle. Here are some of the basic functions that will
:help you to work with files using Python

3G E-LEARNING

84 Basic Computer Coding: Python

■■ open() to open files in your system, the filename is
the name of the file to be opened;

■■ read() to read entire files;
■■ readline() to read one line at a time;
■■ write() to write a string to a file, and return the

number of characters written; And
■■ close() to close the file.

File modes (2nd argument): ‘r ’(read), ‘w’(write),
‘a’(appending), ‘r+’(both reading and writing)

f = open(‘file_name’, ‘w’)

Reads entire file
f.read()
Reads one line at a time
f.readline()
Writes the string to the file, returning the number of

char written
f.write(‘Add this line.’)
f.close()
The second argument in the open() function is the file

mode. It allows you to specify whether you want to read (r),
write (w), append (a) or both read and write (r+).

3.3.1 The open function

The open function takes two arguments. The first is the name
of the file, and the second is the mode. Mode ‘w’ means that
we are opening the file for writing. Mode ‘r’ means reading,
and mode ‘a’ means appending.

Let’s begin with an example that shows these three modes
in operation:

 Programming
 language is a
 formal language,
 which comprises a
 set of instructions
 used to produce
 various kinds of
output.

Keyword

Dictionaries, Sets, and Files

3G E-LEARNING

85

Opening a file creates what we call a file descriptor. In
this example, the variable myfile refers to the new descriptor
object. Our program calls methods on the descriptor, and
this makes changes to the actual file which is located in non-
volatile storage.

The first line opens the test.txt for writing. If there is
no file named test.txt on the disk, it will be created. If there
already is one, it will be replaced by the file we are writing
and any previous data in it will be lost.

To put data in the file we invoke the write method on the
file descriptor. We do this three times in the example above,
but in bigger programs, the three separate calls to write will
usually be replaced by a loop that writes many more lines
into the file. The write method returns the number of bytes
(characters) written to the file.

Closing the file handle tells the system that we are done
writing and makes the disk file available for reading by other
programs (or by our own program).

We finish this example by openning test.txt for reading.
We then call the read method, assigning the contents of the
file, which is a string, to a variable named contents, and
finally print contents to see that it is indeed what we wrote
to the file previously.

If we want to add to an already existing file, use the
append mode.

Many
common
files you may
use, such as
Word documents
or Excel
spreadsheets
are NOT text
documents. They
have their own
complicated file
formats. Text files
are ones you can
create in simple
text editors, by
simply typing
regular keys
without any
special features,
such as bolding
text, different
fonts, etc.

Remember

3G E-LEARNING

86 Basic Computer Coding: Python

3.3.2 Opening a File that Doesn’t Exist

If we try to open a file that doesn’t exist, we get an error:

There is nothing wrong with the syntax of the line that
resulted in the error. The error occurred because the file did
not exist. Errors like these are called exceptions. Most modern
programming languages provide support for dealing with
situations like this. The process is called exception handling.

In Python, exceptions are handled with the try ... except
statement.

In this example we try to open the data file for reading. If
it succeeds, we use the read() method to read the file contents
as a string into the variable mydata and close the file. If an
IOError exception occurs, we still create mydata as an empty
string and continue on with the program.

3.3.3 Reading Data from Files

Python file descriptors have three methods for reading in
data from a file. We’ve already seen the read() method, which
returns the entire contents of the file as a single string. For
really big files this may not be what you want.

The readline() method returns one line of the file at a
time. Each time you call it readline() returns the next line.
Calls made to readline() after reaching the end of the file
return an empty string (‘’).

 Error is
 something
 you have
 done which is
 considered to be
 incorrect or wrong,
 or which should
 not have been
done.

Keyword

Dictionaries, Sets, and Files

3G E-LEARNING

87

This is a handy pattern for our toolbox. In bigger programs, we’d squeeze more
extensive logic into the body of the loop at line 8 — for example, if each line of the
file contained the name and email address of one of our friends, perhaps we’d split
the line into some pieces and call a function to send the friend a party invitation.

On line 8 we suppress the newline character that print usually appends to our
strings. Why? This is because the string already has its own newline: the readline
method in line 3 returns everything up to and including the newline character. This also
explains the end-of-file detection logic: when there are no more lines to be read from
the file, readline returns an empty string — one that does not even have a newline at
the end, hence it’s length is 0.

Turning a File into a List of Lines

It is often useful to fetch data from a disk file and turn it into a list of lines. Suppose
we have a file containing our friends and their email addresses, one per line in the file.
But we’d like the lines sorted into alphabetical order. A good plan is to read everything
into a list of lines, then sort the list, and then write the sorted list back to another file:

The readlines method in line 2 reads all the lines and returns a list of the strings.
We could have used the template from the previous section to read each line one-

at-a-time, and to build up the list ourselves, but it is a lot easier to use the method
that the Python implementors gave us!

3G E-LEARNING

88 Basic Computer Coding: Python

An Example

Many useful line-processing programs will read a text file line-at-a-time and do some
minor processing as they write the lines to an output file. They might number the lines
in the output file, or insert extra blank lines after every 60 lines to make it convenient
for printing on sheets of paper, or extract some specific columns only from each line
in the source file, or only print lines that contain a specific substring. We call this
kind of program a filter.

Here is a filter that copies one file to another, omitting any lines that begin with #:

The continue statement at line 9 skips over the remaining lines in the current
iteration of the loop, but the loop will still iterate. This style looks a bit contrived
here, but it is often useful to say “get the lines we’re not concerned with out of the way
early, so that we have cleaner more focussed logic in the meaty part of the loop that might be
written around line 11.”

Thus, if text is the empty string, the loop exits. If the first character of text is a
hash mark, the flow of execution goes to the top of the loop, ready to start processing
the next line. Only if both conditions fail do we fall through to do the processing at
line 11, in this example, writing the line into the new file.

Let’s consider one more case: suppose your original file contained empty lines. At
line 6 above, would this program find the first empty line in the file, and terminate
immediately? No! Recall that readline always includes the newline character in the
string it returns. It is only when we try to read beyond the end of the file that we get
back the empty string of length 0.

Dictionaries, Sets, and Files

3G E-LEARNING

89

CASE STUDY

A SET PARTITIONING PROBLEM
A set partitioning problem determines how the items in one set (S) can be partitioned
into smaller subsets. All items in S must be contained in one and only one partition.
Related problems are:

■■ set packing - all items must be contained in zero or one partitions;
■■ set covering - all items must be contained in at least one partition.

In this case study a wedding planner must determine guest seating allocations
for a wedding. To model this problem the tables are modelled as the partitions and
the guests invited to the wedding are modelled as the elements of S. The wedding
planner wishes to maximize the total happiness of all of the tables.

A set partitioning problem may be modelled by explicitly enumerating each
possible subset. Though this approach does become intractable for large numbers of
items (without using column generation) it does have the advantage that the objective
function co-efficients for the partitions can be non-linear expressions (like happiness)
and still allow this problem to be solved using Linear Programming.

First we use allcombinations() to generate a list of all possible table seatings.
#create list of all possible tables
possible_tables = [tuple(c) for c in pulp.allcombinations(guests,
 max_table_size)]
Then we create a binary variable that will be 1 if the table will be in the solution,

or zero otherwise.

3G E-LEARNING

90 Basic Computer Coding: Python

#create a binary variable to state that a table setting is used
x = pulp.LpVariable.dicts(‘table’, possible_tables,
 lowBound = 0,
 upBound = 1,
 cat = pulp.LpInteger)
We create the LpProblem and then make the objective function. Note that happiness

function used in this script would be difficult to model in any other way.
seating_model = pulp.LpProblem(“Wedding Seating Model”, pulp.LpMinimize)
seating_model += sum([happiness(table) * x[table] for table in possible_tables])
We specify the total number of tables allowed in the solution.
#specify the maximum number of tables
seating_model += sum([x[table] for table in possible_tables]) <= max_tables, \
This set of constraints defines the set partitioning problem by guaranteeing that

a guest is allocated to exactly one table.
#A guest must seated at one and only one table
for guest in guests:
 seating_model += sum([x[table] for table in possible_tables
 if guest in table]) == 1, “Must_seat_%s”%guest
The full file can be found here wedding.py
“””
A set partitioning model of a wedding seating problem

Authors: Stuart Mitchell 2009
“””

import pulp

max_tables = 5
max_table_size = 4
guests = ‘A B C D E F G I J K L M N O P Q R’.split()

def happiness(table):
 “””
 Find the happiness of the table

Dictionaries, Sets, and Files

3G E-LEARNING

91

 - by calculating the maximum distance between the letters
 “””
 return abs(ord(table[0]) - ord(table[-1]))

#create list of all possible tables
possible_tables = [tuple(c) for c in pulp.allcombinations(guests,
 max_table_size)]

#create a binary variable to state that a table setting is used
x = pulp.LpVariable.dicts(‘table’, possible_tables,
 lowBound = 0,
 upBound = 1,
 cat = pulp.LpInteger)

seating_model = pulp.LpProblem(“Wedding Seating Model”, pulp.LpMinimize)

seating_model += sum([happiness(table) * x[table] for table in possible_tables])

#specify the maximum number of tables
seating_model += sum([x[table] for table in possible_tables]) <= max_tables, \
 “Maximum_number_of_tables”

#A guest must seated at one and only one table
for guest in guests:
 seating_model += sum([x[table] for table in possible_tables
 if guest in table]) == 1, “Must_seat_%s”%guest

seating_model.solve()

print(“The choosen tables are out of a total of %s:”%len(possible_tables))
for table in possible_tables:
 if x[table].value() == 1.0:
 print(table)

3G E-LEARNING

92 Basic Computer Coding: Python

SUMMARY
■■ Dictionary in Python is an unordered collection of data values, used to store

data values like a map, which, unlike other Data Types that hold only a single
value as an element, Dictionary holds key: value pair. Key-value is provided
in the dictionary to make it more optimized.

■■ Sets are used to store multiple items in a single variable. Set is one of 4 built-
in data types in Python used to store collections of data, the other 3 are List,
Tuple, and Dictionary, all with different qualities and usage.

■■ A dictionary is a collection which is unordered, changeable and indexed. In
Python dictionaries are written with curly brackets, and they have keys and
values.

■■ If you want to modify a dictionary and keep a copy of the original, use the
copy method.

■■ Sets are a collection of distinct (unique) objects. These are useful to create
lists that only hold unique values in the dataset.

■■ A set is created by using the set() function or placing all the elements within
a pair of curly braces.

■■ The union operation on two sets produces a new set containing all the distinct
elements from both the sets.

■■ The intersection operation on two sets produces a new set containing only
the common elements from both the sets.

Dictionaries, Sets, and Files

3G E-LEARNING

93

KNOWLEDGE CHECK
1.	 Data dictionary is a special file that contains

a.	 the names of all fields in all files
b.	 the data types of all fields of all files
c.	 Both of above
d.	 None of above

2. 	 Physical location of a record in database is determined with the help of
a.	 B tree file
b.	 Indexed file
c.	 Hashed file
d.	 sequential file

3. 	 Which of the following statements create a dictionary?
a.	 d = {}
b.	 d = {“john”:40, “peter”:45}
c.	 d = {40:”john”, 45:”peter”}
d.	 All of the mentioned

4. 	 Read the code shown below carefully and pick out the keys?
d = {“john”:40, “peter”:45}
a.	 “john”, 40, 45, and “peter”
b.	 “john” and “peter”
c.	 40 and 45
d.	 d = (40:”john”, 45:”peter”)

5. 	 Which of the following isn’t true about dictionary keys?
a.	 More than one key isn’t allowed
b.	 Keys must be immutable
c.	 Keys must be integers
d.	 When duplicate keys encountered, the last assignment wins

6. 	 Given a function that does not return any value, What value is thrown by
default when executed in shell.
a.	 Int
b.	 bool
c.	 void
d.	 none

3G E-LEARNING

94 Basic Computer Coding: Python

7. 	 In python we do not specify types, it is directly interpreted by the compiler,
so consider the following operation to be performed.
a.	 x = 13 // 2
b.	 x = int(13 / 2)
c.	 x = 13 % 2
d.	 All of the mentioned

8. 	 What is the value of the following expression?
a.	 (1.0, 4.0)
b.	 (1.0, 1.0)
c.	 (4.0. 1.0)
d.	 (4.0, 4.0)

REVIEW QUESTIONS
1. 	 What is the output of the following code?
	 a={1:”A”,2:”B”,3:”C”}
	 a.setdefault(4,”D”)
	 print(a)
2. 	 Write a program that reads the words in words.txt and stores them as keys

in a dictionary. It doesn’t matter what the values are. Then you can use the
in operator as a fast way to check whether a string is in the dictionary.

3. 	 Write a program that asks the user to enter 10 words and prints out the word
that comes first alphabetically.

4. 	 Generate a set containing each positive integer less than 1000 divisible by 15
and a second set containing each positive integer less than 1000 divisible by
21. Create a set of integers that is divisible by either value, both values and
exactly one value. Print out the contents of each of these resultant sets.

5. 	 What will be the output?
	 a.	 d = {“john”:40, “peter”:45}
	 b.	 “john” in d

Check Your Result

1. (b)		 2. (c)		 3. (d)		 4. (b)		 5. (c)
6. (d)		 7. (d)		 8. (a)

Dictionaries, Sets, and Files

3G E-LEARNING

95

REFERENCES
1.	 http://www.openbookproject.net/books/bpp4awd/ch06.html
2.	 http://www.u.arizona.edu/~erdmann/mse350/topics/list_comprehensions.html
3.	 https://docs.python.org/2/tutorial/controlflow.html#break-and-continue-statements-

and-else-clauses-on-loops
4.	 https://www.digitalocean.com/community/tutorials/understanding-dictionaries-

in-python-3
5.	 https://www.tutorialspoint.com/python/python_sets.htm
6.	 https://www.w3schools.com/python/python_dictionaries.asp
7.	 Holth, Moore (30 March 2014). “PEP 0441 -- Improving Python ZIP Application

Support”. Archived from the original on 26 December 2018. Retrieved 12 November
2015.

8.	 Rossum, Guido Van (20 January 2009). “The History of Python: A Brief Timeline
of Python”. The History of Python. Archived from the original on 5 June 2020.
Retrieved 5 March 2021.

9.	 Schemenauer, Neil; Peters, Tim; Hetland, Magnus Lie (18 May 2001). “PEP 255 –
Simple Generators”. Python Enhancement Proposals. Python Software Foundation.
Archived from the original on 5 June 2020. Retrieved 9 February 2012.

“Abstraction is one of those notions that Python tosses out the window, yet expresses very well”

–Gordon McMillan

After studying this chapter,
you will be able to:
1.	 How to use the

exceptions?
2.	 Explain the unit testing
3.	 Understanding the

comprehensions

LEARNING
OBJECTIVES

EXCEPTIONS, UNIT
TESTING AND
COMPREHENSIONS

INTRODUCTION
An exception is an event, which occurs during the execution
of a program that disrupts the normal flow of the program’s
instructions. In general, when a Python script encounters

4
CHAPTER

3G E-LEARNING

98 Basic Computer Coding: Python

a situation that it cannot cope with, it raises an exception. An exception is a Python
object that represents an error.

A Python program terminates as soon as it encounters an error. In Python, an error
can be a syntax error or an exception. Here, you will see what an exception is and how
it differs from a syntax error. After that, you will learn about raising exceptions and
making assertions. Then, you’ll finish with a demonstration of the try and except block.

Unit testing is a software testing method by which individual units of source
code are put under various tests to determine whether they are fit for use (Source).
It determines and ascertains the quality of your code.

Generally, when the development process is complete, the developer codes criteria,
or the results that are known to be potentially practical and useful, into the test script
to verify a particular unit’s correctness. During test case execution, various frameworks
log tests that fail any criterion and report them in a summary.

The developers are expected to write automated test scripts, which ensures that
each and every section or a unit meets its design and behaves as expected.

Though writing manual tests for your code is definitely a tedious and time-
consuming task, Python’s built-in unit testing framework has made life a lot easier.

4.1 EXCEPTIONS
Even if a statement or expression is syntactically correct, it may cause an error when
an attempt is made to execute it. Errors detected during execution are called exceptions
and are not unconditionally fatal: you will soon learn how to handle them in Python
programs. Most exceptions are not handled by programs, however, and result in error
messages as shown here:

>>>
>>> 10 * (1/0)
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
ZeroDivisionError: division by zero
>>> 4 + spam*3
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
NameError: name ‘spam’ is not defined
>>> ‘2’ + 2
Traceback (most recent call last):

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

99

 Stack
 trace is a
 report of the active
 stack frames at a
 certain point in
 time during the
 execution of a
program.

Keyword

 File “<stdin>”, line 1, in <module>
TypeError: Can’t convert ‘int’ object to str implicitly
The last line of the error message indicates what

happened. Exceptions come in different types, and the type
is printed as part of the message: the types in the example
are ZeroDivisionError, NameError and TypeError. The string
printed as the exception type is the name of the built-in
exception that occurred. This is true for all built-in exceptions,
but need not be true for user-defined exceptions (although it
is a useful convention). Standard exception names are built-in
identifiers (not reserved keywords).

The rest of the line provides detail based on the type of
exception and what caused it.

The preceding part of the error message shows the context
where the exception happened, in the form of a stack trace
back. In general it contains a stack trace back listing source
lines; however, it will not display lines read from standard
input.

4.1.1 Handling Exceptions

It is possible to write programs that handle selected exceptions.
Look at the following example, which asks the user for
input until a valid integer has been entered, but allows the
user to interrupt the program (using Control-Cor whatever
the operating system supports); note that a user-generated
interruption is signalled by raising the KeyboardInterrupt
exception.
>>>
>>> while True:
... try:
... x = int(input(“Please enter a number: “))
... break
... except ValueError:
... print(“Oops! That was no valid number. Try again...”)
...

3G E-LEARNING

100 Basic Computer Coding: Python

The try statement works as follows.
■■ First, the try clause (the statement(s) between the try

and except keywords) is executed.
■■ If no exception occurs, the except clause is skipped

and execution of the try statement is finished.
■■ If an exception occurs during execution of the try

clause, the rest of the clause is skipped. Then if its
type matches the exception named after the except
keyword, the except clause is executed, and then
execution continues after the try statement.

■■ If an exception occurs which does not match the
exception named in the except clause, it is passed
on to outer try statements; if no handler is found, it
is an unhandled exception and execution stops with a
message as shown.

A try statement may have more than one except clause, to
specify handlers for different exceptions. At most one handler
will be executed. Handlers only handle exceptions that occur
in the corresponding try clause, not in other handlers of the
same try statement. An except clause may name multiple
exceptions as a parenthesized tuple, for example:

... except (RuntimeError, TypeError, NameError):

... pass
A class in an except clause is compatible with an exception

if it is the same class or a base class thereof (but not the other
way around — an except clause listing a derived class is not
compatible with a base class). For example, the following code
will print B, C, D in that order:

class B(Exception):
 pass

class C(B):
 pass

class D(C):
 pass

Errors
are the
problems in
a program
due to which
the program
will stop the
execution. On
the other hand,
exceptions are
raised when the
some internal
events occur
which changes
the normal flow
of the program.

Remember

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

101

for cls in [B, C, D]:
 try:
 raise cls()
 except D:
 print(“D”)
 except C:
 print(“C”)
 except B:
 print(“B”)
Note that if the except clauses were reversed (with except B first), it would have

printed B, B, B — the first matching except clause is triggered.
The last except clause may omit the exception name(s), to serve as a wildcard.

Use this with extreme caution, since it is easy to mask a real programming error in
this way! It can also be used to print an error message and then re-raise the exception
(allowing a caller to handle the exception as well):

import sys

try:
 f = open(‘myfile.txt’)
 s = f.readline()
 i = int(s.strip())
except OSError as err:
 print(“OS error: {0}”.format(err))
except ValueError:
 print(“Could not convert data to an integer.”)
except:
 print(“Unexpected error:”, sys.exc_info()[0])
 raise
The try … except statement has an optional else clause, which, when present, must

follow all except clauses. It is useful for code that must be executed if the try clause
does not raise an exception. For example:

for arg in sys.argv[1:]:
 try:
 f = open(arg, ‘r’)

3G E-LEARNING

102 Basic Computer Coding: Python

 except OSError:
 print(‘cannot open’, arg)
 else:
 print(arg, ‘has’, len(f.readlines()), ‘lines’)
 f.close()
The use of the else clause is better than adding additional code to the try clause

because it avoids accidentally catching an exception that wasn’t raised by the code
being protected by the try … except statement.

When an exception occurs, it may have an associated value, also known as the
exception’s argument. The presence and type of the argument depend on the exception
type.

The except clause may specify a variable after the exception name. The variable
is bound to an exception instance with the arguments stored in instance.args. For
convenience, the exception instance defines__str__() so the arguments can be printed
directly without having to reference .args. One may also instantiate an exception first
before raising it and add any attributes to it as desired.

>>>
>>> try:
... raise Exception(‘spam’, ‘eggs’)
... except Exception as inst:
... print(type(inst)) # the exception instance
... print(inst.args) # arguments stored in .args
... print(inst) # __str__ allows args to be printed directly,
... # but may be overridden in exception subclasses
... x, y = inst.args # unpack args
... print(‘x =’, x)
... print(‘y =’, y)
...
<class ‘Exception’>
(‘spam’, ‘eggs’)
(‘spam’, ‘eggs’)
x = spam
y = eggs
If an exception has arguments, they are printed as the last part (‘detail’) of the

message for unhandled exceptions.

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

103

Exception handlers don’t just handle exceptions if they occur immediately in the
try clause, but also if they occur inside functions that are called (even indirectly) in
the try clause. For example:

>>>
>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError as err:
... print(‘Handling run-time error:’, err)
...
Handling run-time error: division by zero

4.1.2 Raising Exceptions

The raise statement allows the programmer to force a specified exception to occur.
For example:

>>>
>>> raise NameError(‘HiThere’)
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
NameError: HiThere
The sole argument to raise indicates the exception to be raised. This must be either

an exception instance or an exception class (a class that derives from Exception). If an
exception class is passed, it will be implicitly instantiated by calling its constructor
with no arguments:

raise ValueError # shorthand for ‘raise ValueError()’
If you need to determine whether an exception was raised but don’t intend to

handle it, a simpler form of the raise statement allows you to re-raise the exception:
>>>
>>> try:
... raise NameError(‘HiThere’)
... except NameError:
... print(‘An exception flew by!’)

3G E-LEARNING

104 Basic Computer Coding: Python

... raise

...
An exception flew by!
Traceback (most recent call last):

 File “<stdin>”, line 2, in <module>
NameError: HiThere

4.1.3 User-defined Exceptions

Programs may name their own exceptions by creating a new
exception class (see Classes for more about Python classes).
Exceptions should typically be derived from the Exception
class, either directly or indirectly.

Exception classes can be defined which do anything any
other class can do, but are usually kept simple, often only
offering a number of attributes that allow information about
the error to be extracted by handlers for the exception. When
creating a module that can raise several distinct errors, a
common practice is to create a base class for exceptions defined
by that module, and subclass that to create specific exception
classes for different error conditions:
class Error(Exception):
 “””Base class for exceptions in this module.”””
 pass
class InputError(Error):
 “””Exception raised for errors in the input.
Live Demo
#!/usr/bin/python

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

105

try:
 fh = open(“testfile”, “w”)
 try:
 fh.write(“This is my test file for exception handling!!”)
 finally:
 print “Going to close the file”
 fh.close()
except IOError:
 print “Error: can\’t find file or read data”

Attributes:
 expression -- input expression in which the error occurred
 message -- explanation of the error
 “””

 def __init__(self, expression, message):
 self.expression = expression
 self.message = message

class TransitionError(Error):
 “””Raised when an operation attempts a state transition that’s not
 allowed.

 Attributes:
 previous -- state at beginning of transition
 next -- attempted new state
 message -- explanation of why the specific transition is not
allowed
 “””

 def __init__(self, previous, next, message):

3G E-LEARNING

106 Basic Computer Coding: Python

 self.previous = previous
 self.next = next
 self.message = message
Most exceptions are defined with names that end in “Error,”
similar to the naming of the standard exceptions.

4.1.4 Defining Clean-up Actions

The try statement has another optional clause which is intended
to define clean-up actions that must be executed under all
circumstances. For example:
>>>
>>> try:
... raise KeyboardInterrupt
... finally:
... print(‘Goodbye, world!’)
...
Goodbye, world!
KeyboardInterrupt
Traceback (most recent call last):
 File “<stdin>”, line 2, in <module>
A finally clause is always executed before leaving the try
statement, whether an exception has occurred or not. When
an exception has occurred in the try clause and has not been
handled by an except clause (or it has occurred in an except
or else clause), it is re-raised after the finally clause has been
executed. The finallyclause is also executed “on the way out”
when any other clause of the try statement is left via a break,
continue or return statement. A more complicated example:
>>>
>>> def divide(x, y):
... try:
... result = x / y
... except ZeroDivisionError:
... print(“division by zero!”)
... else:

 Return
 Statement
 causes execution to
 leave the current
 subroutine and
 resume at the
 point in the code
 immediately
 after where the
 subroutine was
 called, known as its
return address.

Keyword

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

107

... print(“result is”, result)

... finally:

... print(“executing finally clause”)

...
>>> divide(2, 1)
result is 2.0
executing finally clause
>>> divide(2, 0)
division by zero!
executing finally clause
>>> divide(“2”, “1”)
executing finally clause
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
 File “<stdin>”, line 3, in divide

TypeError: unsupported operand type(s) for /: ‘str’ and ‘str’
As you can see, the finally clause is executed in any event.

The TypeError raised by dividing two strings is not handled
by the except clause and therefore re-raised after the finally
clause has been executed.

In real world applications, the finally clause is useful
for releasing external resources (such as files or network
connections), regardless of whether the use of the resource
was successful.

4.1.5 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken
when the object is no longer needed, regardless of whether or
not the operation using the object succeeded or failed. Look
at the following example, which tries to open a file and print
its contents to the screen.

for line in open(“myfile.txt”):
 print(line, end=””)
The problem with this code is that it leaves the file open

for an indeterminate amount of time after this part of the

 String
 a long
 flexible structure
 made from threads
 twisted together,
 which is used to
 tie, bind, or hang
other objects

Keyword

3G E-LEARNING

108 Basic Computer Coding: Python

code has finished executing. This is not an issue in simple
scripts, but can be a problem for larger applications. The with
statement allows objects like files to be used in a way that
ensures they are always cleaned up promptly and correctly.

with open(“myfile.txt”) as f:
 for line in f:
 print(line, end=””)
After the statement is executed, the file f is always closed,

even if a problem was encountered while processing the lines.
Objects which, like files, provide predefined clean-up actions
will indicate this in their documentation.

4.2 UNIT TESTING
The Python unit testing framework, sometimes referred to as
“PyUnit,” is a Python language version of JUnit, by Kent Beck
and Erich Gamma. JUnit is, in turn, a Java version of Kent’s
Smalltalk testing framework. Each is the de facto standard
unit testing framework for its respective language.
unittest supports test automation, sharing of setup and
shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework.
The unittest module provides classes that make it easy to
support these qualities for a set of tests.

To achieve this, unittest supports some important concepts:
test fixture
A test fixture represents the preparation needed to perform

one or more tests, and any associate cleanup actions. This may
involve, for example, creating temporary or proxy databases,
directories, or starting a server process.

test case
A test case is the smallest unit of testing. It checks for a

specific response to a particular set of inputs. unittest provides
a base class, TestCase, which may be used to create new test
cases.

test suite
A test suite is a collection of test cases, test suites, or both.

It is used to aggregate tests that should be executed together.
test runner

 Test
 Automation
 is the use of
 special software
 (separate from the
 software being
 tested) to control
 the execution
 of tests and the
 comparison of
 actual outcomes
 with predicted
outcomes.

Keyword

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

109

A test runner is a component which orchestrates the
execution of tests and provides the outcome to the user. The
runner may use a graphical interface, a textual interface, or
return a special value to indicate the results of executing the
tests.

The test case and test fixture concepts are supported
through the TestCase and FunctionTestCase classes; the former
should be used when creating new tests, and the latter can be
used when integrating existing test code with a unittest-driven
framework. When building test fixtures using TestCase, the
setUp() and tearDown() methods can be overridden to provide
initialization and cleanup for the fixture. With FunctionTestCase,
existing functions can be passed to the constructor for these
purposes. When the test is run, the fixture initialization is run
first; if it succeeds, the cleanup method is run after the test
has been executed, regardless of the outcome of the test. Each
instance of the TestCase will only be used to run a single test
method, so a new fixture is created for each test.

Test suites are implemented by the TestSuite class. This
class allows individual tests and test suites to be aggregated;
when the suite is executed, all tests added directly to the suite
and in “child” test suites are run.

A test runner is an object that provides a single method,
run(), which accepts a TestCase or TestSuite object as a
parameter, and returns a result object. The class TestResult
is provided for use as the result object. unittest provides the
TextTestRunner as an example test runner which reports test
results on the standard error stream by default. Alternate
runners can be implemented for other environments (such as
graphical environments) without any need to derive from a
specific class.

4.2.1 Basic example

The unittest module provides a rich set of tools for constructing
and running tests. This demonstrates that a small subset of
the tools suffices to meet the needs of most users.

Here is a short script to test three string methods:
import unittest

class TestStringMethods(unittest.TestCase):

 Test fixture
 is an
 environment used
 to consistently
 test some item,
 device, or piece of
software.

Keyword

3G E-LEARNING

110 Basic Computer Coding: Python

 def test_upper(self):
 self.assertEqual(‘foo’.upper(), ‘FOO’)
 def test_isupper(self):
 self.assertTrue(‘FOO’.isupper())
 self.assertFalse(‘Foo’.isupper())
 def test_split(self):
 s = ‘hello world’
 self.assertEqual(s.split(), [‘hello’, ‘world’])
 # check that s.split fails when the separator is not a string
 with self.assertRaises(TypeError):
 s.split(2)

if __name__ == ‘__main__’:
 unittest.main()
A testcase is created by subclassing unittest.TestCase. The three individual tests are
defined with methods whose names start with the letters test. This naming convention
informs the test runner about which methods represent tests.
The crux of each test is a call to assertEqual() to check for an expected result; assertTrue()
or assertFalse() to verify a condition; or assertRaises() to verify that a specific exception
gets raised. These methods are used instead of the assert statement so the test runner
can accumulate all test results and produce a report.
The setUp() and tearDown() methods allow you to define instructions that will be
executed before and after each test method.
The final block shows a simple way to run the tests. unittest.main() provides a
command-line interface to the test script. When run from the command line, the script
produces an output that looks like this:

...
--
Ran 3 tests in 0.000s

OK
Instead of unittest.main(), there are other ways to run the tests with a finer level of
control, less terse output, and no requirement to be run from the command line. For
example, the last two lines may be replaced with:

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

111

suite = unittest.TestLoader().loadTestsFromTestCase(TestStringMethods)
unittest.TextTestRunner(verbosity=2).run(suite)
Running the revised script from the interpreter or another script produces the following
output:
test_isupper (__main__.TestStringMethods) ... ok
test_split (__main__.TestStringMethods) ... ok
test_upper (__main__.TestStringMethods) ... ok

--
Ran 3 tests in 0.001s
OK
The examples show the most commonly used unittest features which are sufficient to
meet many everyday testing needs. The remainder of the documentation explores the
full feature set from first principles.

4.2.2 Command-Line Interface

The unittest module can be used from the command line to run tests from modules,
classes or even individual test methods:

python -m unittest test_module1 test_module2
python -m unittest test_module.TestClass
python -m unittest test_module.TestClass.test_method
You can pass in a list with any combination of module names, and fully qualified

class or method names.
You can run tests with more detail (higher verbosity) by passing in the -v flag:
python -m unittest -v test_module
For a list of all the command-line options:
python -m unittest -h
Changed in version 2.7: In earlier versions it was only possible to run individual

test methods and not modules or classes.

Command-line options

unittest supports these command-line options:
-b, --buffer
The standard output and standard error streams are buffered during the test run.

3G E-LEARNING

112 Basic Computer Coding: Python

Output during a passing test is discarded. Output is echoed
normally on test fail or error and is added to the failure
messages.

-c, --catch
Control-C during the test run waits for the current test to

end and then reports all the results so far. A second Control-C
raises the normal Keyboard Interrupt exception.

See Signal Handling for the functions that provide this
functionality.

-f, --failfast
Stop the test run on the first error or failure.
New in version 2.7: The command-line options -b, -c and

-f were added.
The command line can also be used for test discovery, for

running all of the tests in a project or just a subset.

4.2.3 Test Discovery

Unittest supports simple test discovery. In order to be
compatible with test discovery, all of the test files must be
modules or packages importable from the top-level directory
of the project (this means that their filenames must be valid
identifiers).
Test discovery is implemented in TestLoader.discover(), but
can also be used from the command line. The basic command-
line usage is:
cd project_directory
python -m unittest discover
The discover sub-command has the following options:
-v, --verbose
Verbose output
-s, --start-directory directory
Directory to start discovery (. default)
-p, --pattern pattern
Pattern to match test files (test*.py default)
-t, --top-level-directory directory
Top level directory of project (defaults to start directory)

Test discovering
are the steps that
are taken to find
the tests in your
code-base. This
means you don’t
have to specify
where your tests
are but if the
files contains the
tests follow a
certain location
(filenames,
directories, etc)
then the testing
framework
can find them
automatically.

Remember

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

113

The -s, -p, and -t options can be passed in as positional arguments in that order. The
following two command lines are equivalent:
python -m unittest discover -s project_directory -p “*_test.py”
python -m unittest discover project_directory “*_test.py”
As well as being a path it is possible to pass a package name, for example myproject.
subpackage.test, as the start directory. The package name you supply will then be
imported and its location on the filesystem will be used as the start directory.
Caution: Test discovery loads tests by importing them. Once test discovery has found
all the test files from the start directory you specify it turns the paths into package
names to import. For example foo/bar/baz.py will be imported as foo.bar.baz.
If you have a package installed globally and attempt test discovery on a different copy
of the package, then the import could happen from the wrong place. If this happens
test discovery will warn you and exit.
If you supply the start directory as a package name rather than a path to a directory
then discover assumes that whichever location it imports from is the location you
intended, so you will not get the warning.
Test modules and packages can customize test loading and discovery by through the
load_tests protocol.

4.2.4 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be
set up and checked for correctness. In unittest, test cases are represented by instances
of unittest’s TestCase class. To make your own test cases you must write subclasses
of TestCase, or use FunctionTestCase.

An instance of a TestCase-derived class is an object that can completely run a
single test method, together with optional set-up and tidy-up code.

The testing code of a TestCase instance should be entirely self-contained, such
that it can be run either in isolation or in arbitrary combination with any number of
other test cases.

The simplest TestCase subclass will simply override the runTest() method in order
to perform specific testing code:

import unittest
class DefaultWidgetSizeTestCase(unittest.TestCase):
 def runTest(self):
 widget = Widget(‘The widget’)
 self.assertEqual(widget.size(), (50, 50), ‘incorrect default size’)

3G E-LEARNING

114 Basic Computer Coding: Python

Note that in order to test something, we use one of the
assert*() methods provided by the TestCase base class. If the
test fails, an exception will be raised, and unittest will identify
the test case as a failure. Any other exceptions will be treated
as errors. This helps you identify where the problem is: failures
are caused by incorrect results - a 5 where you expected a 6.
Errors are caused by incorrect code - e.g., a TypeError caused
by an incorrect function call.

The way to run a test case will be described later. For
now, note that to construct an instance of such a test case,
we call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()
Now, such test cases can be numerous, and their set-up

can be repetitive. In the case, constructing a Widget in each
of 100 Widget test case subclasses would mean unsightly
duplication.

Luckily, we can factor out such set-up code by implementing
a method called setUp(), which the testing framework will
automatically call for us when we run the test:

import unittest
class SimpleWidgetTestCase(unittest.TestCase):
 def setUp(self):
 self.widget = Widget(‘The widget’)
class Default WidgetSizeTestCase(SimpleWidgetTestCase):
 def runTest(self):
 self.assertEqual(self.widget.size(), (50,50),
 ‘incorrect default size’)
class Widget Resize Test Case (Simple WidgetTest Case):
 def runTest(self):
 self.widget.resize(100,150)
 self.assertEqual(self.widget.size(), (100,150),
 ‘wrong size after resize’)
If the setUp() method raises an exception while the test is

running, the framework will consider the test to have suffered
an error, and the runTest() method will not be executed.

Similarly, we can provide a tearDown() method that tidies
up after the runTest() method has been run:

 Subclass
 “derived
 class”, heir class,
 or child class is a
 modular, derivative
 class that inherits
 one or more
 language entities
 from one or more
 other classes (called
 superclass, base
 classes, or parent
classes).

Keyword

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

115

import unittest
class SimpleWidgetTestCase(unittest.TestCase):
 def setUp(self):
 self.widget = Widget(‘The widget’)
 def tearDown(self):
 self.widget.dispose()
 self.widget = None
If setUp() succeeded, the tearDown() method will be run whether runTest() succeeded

or not.
Such a working environment for the testing code is called a fixture.
Often, many small test cases will use the same fixture. In this case, we would end

up subclassing SimpleWidgetTestCase into many small one-method classes such as
DefaultWidgetSizeTestCase. This is time-consuming and discouraging, so in the same
vein as JUnit, unittest provides a simpler mechanism:

import unittest
class WidgetTestCase(unittest.TestCase):
 def setUp(self):
 self.widget = Widget(‘The widget’)
 def tearDown(self):
 self.widget.dispose()
 self.widget = None
 def test_default_size(self):
 self.assertEqual(self.widget.size(), (50,50),
 ‘incorrect default size’)
 def test_resize(self):
 self.widget.resize(100,150)
 self.assertEqual(self.widget.size(), (100,150),
 ‘wrong size after resize’)
Here we have not provided a runTest() method, but have instead provided two

different test methods. Class instances will now each run one of the test_*() methods,
with self.widget created and destroyed separately for each instance. When creating
an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase(‘test_default_size’)
resizeTestCase = WidgetTestCase(‘test_resize’)

3G E-LEARNING

116 Basic Computer Coding: Python

Test case instances are grouped together according to the features they test. unittest
provides a mechanism for this: the test suite, represented by unittest’s TestSuite class:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase(‘test_default_size’))
widgetTestSuite.addTest(WidgetTestCase(‘test_resize’))
For the ease of running tests, as we will see later, it is a good idea to provide in

each test module a callable object that returns a pre-built test suite:
def suite ():
 suite = unittest.TestSuite()
 suite.addTest(WidgetTestCase(‘test_default_size’))
 suite.addTest(WidgetTestCase(‘test_resize’))
 return suite
or even:
def suite ():
 tests = [‘test_default_size’, ‘test_resize’]
 return unittest.TestSuite(map(WidgetTestCase, tests))
Since it is a common pattern to create a TestCase subclass with many similarly

named test functions, unittest provides a TestLoader class that can be used to automate
the process of creating a test suite and populating it with individual tests. For example,

suite = unittest.TestLoader().loadTestsFromTestCase(WidgetTestCase)
will create a test suite that will run WidgetTestCase.test_default_size() and

WidgetTestCase.test_resize. TestLoader uses the ‘test’ method name prefix to identify
test methods automatically.

Often it is desirable to group suites of test cases together, so as to run tests for
the whole system at once. This is easy, since TestSuite instances can be added to a
TestSuite just as TestCase instances can be added to a TestSuite:

suite1 = module1.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest.TestSuite([suite1, suite2])
You can place the definitions of test cases and test suites in the same modules

as the code they are to test (such as widget.py), but there are several advantages to
placing the test code in a separate module, such as test_widget.py:

■■ The test module can be run standalone from the command line.
■■ The test code can more easily be separated from shipped code.
■■ There is less temptation to change test code to fit the code it tests without

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

117

a good reason.
■■ Test code should be modified much less frequently than the code it tests.
■■ Tested code can be refactored more easily.
■■ Tests for modules written in C must be in separate modules anyway, so why

not be consistent?
■■ If the testing strategy changes, there is no need to change the source code.

4.2.5 Re-using old test code

Some users will find that they have existing test code that they would like to run from
unittest, without converting every old test function to a TestCase subclass.

For this reason, unittest provides a FunctionTestCase class. This subclass of TestCase
can be used to wrap an existing test function. Set-up and tear-down functions can
also be provided.

Given the following test function:
def testSomething():
 something = makeSomething()
 assert something.name is not None
 # ...
one can create an equivalent test case instance as follows:
testcase = unittest.FunctionTestCase(testSomething)
If there are additional set-up and tear-down methods that should be called as part

of the test case’s operation, they can also be provided like so:
testcase = unittest.FunctionTestCase(testSomething,
 setUp=makeSomethingDB,
 tearDown=deleteSomethingDB)
To make migrating existing test suites easier, unittest supports tests raising

AssertionError to indicate test failure. However, it is recommended that you use the
explicit TestCase.fail*() and TestCase.assert*() methods instead, as future versions of
unittest may treat AssertionError differently.

Note: Even though FunctionTestCase can be used to quickly convert an existing test
base over to a unittest-based system, this approach is not recommended. Taking the
time to set up proper TestCase subclasses will make future test refactorings infinitely
easier.

In some cases, the existing tests may have been written using the doctest module.
If so, doctest provides a DocTestSuite class that can automatically build unittest.
TestSuite instances from the existing doctest-based tests.

3G E-LEARNING

118 Basic Computer Coding: Python

4.2.6 Skipping tests and expected failures

Unittest supports skipping individual test methods and even
whole classes of tests. In addition, it supports marking a test
as an “expected failure,” a test that is broken and will fail,
but shouldn’t be counted as a failure on a TestResult.
Skipping a test is simply a matter of using the skip() decorator
or one of its conditional variants.
Basic skipping looks like this:
class MyTestCase(unittest.TestCase):
 @unittest.skip(“demonstrating skipping”)
 def test_nothing(self):
 self.fail(“shouldn’t happen”)
 @unittest.skipIf(mylib.__version__ < (1, 3),
 “not supported in this library version”)
 def test_format(self):
 # Tests that work for only a certain version of the library.
 pass
 @unittest.skipUnless(sys.platform.startswith(“win”),
“requires Windows”)
 def test_windows_support(self):
 # windows specific testing code
 pass
This is the output of running the example in verbose mode:
test_format (__main__.MyTestCase) ... skipped ‘not supported
in this library version’
test_nothing (__main__.MyTestCase) ... skipped ‘demonstrating
skipping’
test_windows_support (__main__.MyTestCase) ... skipped
‘requires Windows’
--
Ran 3 tests in 0.005s

OK (skipped=3)
Classes can be skipped just like methods:
@unittest.skip(“showing class skipping”)

The
computer algebra
system AXIOM
(1973) has a
similar construct
that processes
streams, but
the first use
of the term
“comprehension”
for such
constructs was in
Rod Burstall and
John Darlington’s
description of
their functional
programming
language NPL
from 1977.

Did You
Know?

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

119

class MySkippedTestCase(unittest.TestCase):
 def test_not_run(self):
 pass
TestCase.setUp() can also skip the test. This is useful when a resource that needs

to be set up is not available.
Expected failures use the expectedFailure() decorator.
class ExpectedFailureTestCase(unittest.TestCase):
 @unittest.expectedFailure
 def test_fail(self):
 self.assertEqual(1, 0, “broken”)
It’s easy to roll your own skipping decorators by making a decorator that calls

skip() on the test when it wants it to be skipped. This decorator skips the test unless
the passed object has a certain attribute:

def skipUnlessHasattr(obj, attr):
 if hasattr(obj, attr):
 return lambda func: func
 return unittest.skip(“{!r} doesn’t have {!r}”.format(obj, attr))
The following decorators implement test skipping and expected failures:

unittest.skip(reason)
Unconditionally skip the decorated test. reason should describe why the test is

being skipped.
unittest.skipIf(condition, reason)
Skip the decorated test if condition is true.
unittest.skipUnless(condition, reason)
Skip the decorated test unless condition is true.
unittest.expectedFailure()
Mark the test as an expected failure. If the test fails when run, the test is not

counted as a failure.
exception unittest.SkipTest(reason)
This exception is raised to skip a test.
Usually you can use TestCase.skipTest() or one of the skipping decorators instead

of raising this directly.

3G E-LEARNING

120 Basic Computer Coding: Python

Skipped tests will not have setUp() or tearDown() run around them. Skipped
classes will not have setUpClass() or tearDownClass() run.

4.3 COMPREHENSIONS
Comprehensions are constructs that allow sequences to be built from other sequences.
Types of comprehensions are supported in both Python 2 and Python 3:

■■ list comprehensions
■■ dictionary comprehensions
■■ set comprehensions
■■ generator comprehensions

We will discuss them one by one. Once you get the hang of using list comprehensions
then you can use any of them easily.

4.3.1 List Comprehensions

List comprehensions provide a short and concise way to create lists. It consists of
square brackets containing an expression followed by a for clause, then zero or more
for or if clauses. The expressions can be anything, meaning you can put in all kinds
of objects in lists. The result would be a new list made after the evaluation of the
expression in context of the if and for clauses.

Blueprint

variable = [out_exp for out_exp in input_list if out_exp == 2]
Here is a short example:

multiples = [i for i in range(30) if i % 3 == 0]
print(multiples)
Output: [0, 3, 6, 9, 12, 15, 18, 21, 24, 27]
This can be really useful to make lists quickly. It is even preferred by some instead

of the filter function. List comprehensions really shine when you want to supply a
list to a method or function to make a new list by appending to it in each iteration
of the for loop.

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

121

For instance you would usually do something like this:

squared = []
for x in range(10):
 squared.append(x**2)
You can simplify it using list comprehensions. For example:
squared = [x**2 for x in range(10)]

4.3.2 Dict Comprehensions

They are used in a similar way. Here is an example which I found recently:
mcase = {‘a’: 10, ‘b’: 34, ‘A’: 7, ‘Z’: 3}
mcase_frequency = {
 k.lower(): mcase.get(k.lower(), 0) + mcase.get(k.upper(), 0)
 for k in mcase.keys()
}
mcase_frequency == {‘a’: 17, ‘z’: 3, ‘b’: 34}
In the example we are combining the values of keys which are same but in different

typecase. You can also quickly switch keys and values of a dictionary:
{v: k for k, v in some_dict.items()}

4.3.3 Set Comprehensions

They are also similar to list comprehensions. The only difference is that they use
braces {}. Here is an example:

squared = {x**2 for x in [1, 1, 2]}
print(squared)
Output: {1, 4}

4.3.4 Generator Comprehensions

They are also similar to list comprehensions. The only difference is that they don’t
allocate memory for the whole list but generate one item at a time, thus more memory
effecient.

3G E-LEARNING

122 Basic Computer Coding: Python

multiples_gen = (i for i in range(30) if i % 3 == 0)
print(multiples_gen)
Output: <generator object <genexpr> at 0x7fdaa8e407d8>
for x in multiples_gen:
 print(x)
 # Outputs numbers

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

123

CASE STUDY

REAL-WORLD PYTHON USE CASES AND APPLICATIONS
Everyone in the web development community knows that Python applications are now
becoming mainstream. The programming language is now one of the most popular
ever and continues to mark its presence in different industries.

The plethora of Python programming uses are proof why it is now a dominating
programming language amongst developers. From web development to machine
learning, the applications of Python are increasing every day.

What makes Python applications so amazing?

Python is a really fascinating programming language. Developers can think that they
have done everything they want, but then it offers more. Businesses now realize how
much they would profit if they build their application in Python. Here’s what makes
Python so amazing:-

Clear syntax

Python has a clear and clean syntax which is easily readable. It allows even beginners
to work with complex software development projects as the team can coordinate easily
on the coding front.

The simple coding syntax facilitates test-driven development for all applications
of Python.

Scalable

Companies love Python for its scalability. Some of the companies implementing the uses
of Python language include Google, Spotify, Netflix, Instagram, and many more that
want scalable applications.

It allows handling a massive amount of traffic with ease.

Versatile

Unlike most programming languages, the practical uses for Python are not limited to
just web or mobile development.

It is a popular choice for building web apps, gaming applications, enterprise-grade
apps, e-commerce applications, ML and AI applications, and much more.

3G E-LEARNING

124 Basic Computer Coding: Python

Why businesses should build applications in Python

If you want to scale your application and expand its customer base, Python
programming is an excellent choice for you. It comes with a vast collection of libraries,
which allow companies to add a lot of features without reducing the load time.

Python programming uses have made their way in every business. The programming
language has a massive community, enabling developers to get all the help they need.

Most of the businesses are hiring Python developers because of the dynamic
applications they can design. Python is now the most preferred programming language
for developers to learn.

Top 10 uses of Python in the real-world

Python is an excellent tool for businesses for web development. But there’s more to
Python than meets the eye. It is a powerful programming language for applications
of the future.

Here are the top 10 uses of Python in the real world:

Web application development

Unarguably, one of the top practical uses for Python is web application development.
Python is now easily the go-to programming language for web applications.

Web development has several uses of Python in the real world. It provides security,
convenience, and scalability to applications.

Python has a lot of web development frameworks like Django and Flask, which
enable rapid app development. Django’s dynamic development capabilities have made
Python a useful tool for web applications. The framework is packed with standard

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

125

libraries, reducing the development time and providing more time-to-market for the
web application.

Data Science

As a highly-demanded skill, Data science is now reaching the top. It is becoming one
of the most important areas with applications of Python programming.
Python libraries like Pandas, NumPy, SciPy, and several others help you to work with
data and extract valuable information and insights.

Data scientists have to know the uses of Python for extracting and processing data.
It allows them to visualize the data through graphs. Matplotlib and Seaborn, both are
used for data visualization.

With increasing popularity, Python is the first thing that data scientists have to
learn. It is preliminary to working with research and data-based companies.

Artificial Intelligence

Probably the most interesting practical uses for Python is in Artificial Intelligence
and Machine Learning. Python is a stable and secure language that can handle the
computations required for developing Machine Learning models.

Machine Learning algorithms are one of the important real life uses of Python.
Developers can write algorithms easily using the programming language.

Python has an extensive collection of libraries for Machine Learning applications.
These include SciPy, Pandas, Keras, TensorFlow, NumPy and many more.

The uses of Python language in AI solutions include advanced computing, data
analytics, image recognition, text & data processing and much more that businesses
can profit from. If you want to learn more about AI and Python, click here.

Game development

Gaming app development is now a prominent industry, and it has many applications
of Python programming. There are libraries which are widely used for interactive
game development.

Some of the real world Python projects in the gaming industry include Battlefield
2, Frets on Fire, World of Tanks, etc. These games use Python libraries like PySoy and
PyGame for development.

Python allows game developers to build tree-based algorithms which are useful
in designing different levels in a game. Games require handling multiple requests at
once, and Python is extremely fantastic at that.

3G E-LEARNING

126 Basic Computer Coding: Python

Python game app development is one of the top 10 uses of Python in the real
world. It offers developers the opportunity to install a 3D game engine that helps in
building powerful games and interfaces.

Internet of Things

Another one of the real life uses of Python is in the internet of things. Python
programming language enables developers to turn any object into an electronic gadget
with the help of Raspberry Pi.

Python is used to create embedded software, allowing high-performance application
of Python on smaller objects which can work with the programming language.

With the help of Raspberry Pi, developers can do high-level computations using
Python applications. By embedding it, developers can turn normal objects into smart
electronics.

In large scale industries, IoT is widely used to track inventory, move machines,
and track order processing along with the status of shipment.

Web Scraping

Web scraping of massive amounts of data is becoming useful for companies for
extraction valuable customer information and making smart decisions.

This real life application of Python includes scraping large amounts of websites
and webpages to extract data for a particular purpose. It could be job listing, price
comparison, detailed information and much more.

Selenium, PythonRequest, MechanicalSoup are some of the tools which are used
to build web scraping applications of Python programming.

Python has simple code, so it doesn’t involve any complexity in writing software
that can provide large amounts of data.

Desktop GUI

Python programming language can work with multiple operating systems and has a
powerful architecture for building applications.

It has rich text processing tools and a clear syntax, allowing developers to code
Desktop GUI applications without any hassle.

PyQT, Kivy, PyGUI are a few toolkits and frameworks offered to get you started
with the practical uses of Python for GUI development.

Developers can create highly functional GUIs with Python and reduce the turnaround
time for development.

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

127

Enterprise applications

Enterprise applications are highly different from regular web applications. They are
designed to serve the needs of an organization rather than individual users.

The applications of Python programming in building enterprise-grade applications
vary from enterprise to enterprise. It is used mostly for scalability, readability, and its
powerful functionality.

Enterprise applications can be complicated as they require a lot of security and
database handling capabilities. Python is a robust language that can handle multiple
database requests at once.

Odoo and Tryton are some of the enterprise application development tools that
enable building apps with Python. Enterprise apps are one of the most significant
uses of Python language.

Improve your efficiency with an enterprise application built with Python at an
affordable price. Get Free Estimate Here.

Image recognition and text processing

Applications built with Python can also enable companies to identify images from a
database of images and also helps in text processing.

With its unique image processing and graphic ensign capabilities, Python allows
developers to design 2D and 3D images through different tools.

Inkscape, GIMP, Paint Shop are a few examples that showcase the real life applications
of Python for designing graphics and images.

Some of the top 3D animation packages use Python in their programming stack,
which includes Blender, Houdini, 3ds Max, Lightwave, and many more.

Education programs

One of the popular Python programming uses is in the development of education
programs and online courses. Python is a really beginner-friendly programming
language with a simple learning curve and a wide variety of resources.

The syntax of Python is similar to English, which makes it the preferred programming
language for beginners. Because of this, education program development at the basic
and advanced level is done using Python.

Professionals all around the world use Python for building education programs
and training courses based on levels. That is why it is one of the best use cases of
Python Development.

3G E-LEARNING

128 Basic Computer Coding: Python

Practical uses of Python

Python can handle almost all types of requests, which makes it highly useful for all
kinds of development activities. From enterprise apps to gaming, the application of
Python now ranges to a wide variety of applications.

Python is becoming a popular tool for building all kinds of applications. At BoTree
Technologies, we have an expert’s team of Python developers who are there to help
you build a Python app.

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

129

SUMMARY
■■ An exception is an event, which occurs during the execution of a program

that disrupts the normal flow of the program’s instructions.
■■ A Python program terminates as soon as it encounters an error. In Python,

an error can be a syntax error or an exception.
■■ Unit testing is a software testing method by which individual units of source

code are put under various tests to determine whether they are fit for use
(Source). It determines and ascertains the quality of your code.

■■ The developers are expected to write automated test scripts, which ensures
that each and every section or a unit meets its design and behaves as expected.

■■ Even if a statement or expression is syntactically correct, it may cause an error
when an attempt is made to execute it. Errors detected during execution are
called exceptions and are not unconditionally fatal: you will soon learn how
to handle them in Python programs.

■■ Exception handlers don’t just handle exceptions if they occur immediately in
the try clause, but also if they occur inside functions that are called (even
indirectly) in the try clause.

3G E-LEARNING

130 Basic Computer Coding: Python

KNOWLEDGE CHECK
1. 	 How many except statements can a try-except block have?

a.	 zero
b.	 one
c.	 more than one
d.	 more than zero

2. 	 When will the else part of try-except-else be executed?
a.	 always
b.	 when an exception occurs
c.	 when no exception occurs
d.	 when an exception occurs in to except block

3. 	 Can one block of except statements handle multiple exception?
a.	 yes, like except TypeError, SyntaxError [,…].
b.	 yes, like except [TypeError, SyntaxError].
c.	 no
d.	 none of the mentioned

4. 	 What is the output of the code shown?
	 l=[1,2,3,4,5]
	 [x&1 for x in l]
a.	 [1, 1, 1, 1, 1]
b.	 [1, 0, 1, 0, 1]
c.	 [1, 0, 0, 0, 0]
d.	 [0, 1, 0, 1, 0]

5. 	 What is the output of the code shown below?
	 l1=[1,2,3]
	 l2=[4,5,6]
	 [x*y for x in l1 for y in l2]

a.	 [4, 8, 12, 5, 10, 15, 6, 12, 18]
b.	 [4, 10, 18]
c.	 [4, 5, 6, 8, 10, 12, 12, 15, 18]
d.	 [18, 12, 6, 15, 10, 5, 12, 8, 4]

6. 	 What will be the output of the following Python code?
max(“what are you”)

Exceptions, Unit Testing and Comprehensions

3G E-LEARNING

131

a.	 error
b.	 u
c.	 t
d.	 y

7. 	 What will be the output of the following Python list comprehension?
[j for i in range(2,8) for j in range(i*2, 50, i)]
a.	 A list of prime numbers up to 50
b.	 A list of numbers divisible by 2, up to 50
c.	 A list of non-prime numbers, up to 50
d.	 Error

8. 	 What will be the output of the following Python code?
l=[2, 3, [4, 5]] l2=l.copy() l2[0]=88 l l2
a.	 [88, 2, 3, [4, 5]] [88, 2, 3, [4, 5]]
b.	 [2, 3, [4, 5]] [88, 2, 3, [4, 5]
c.	 [88, 2, 3, [4, 5]] [2, 3, [4, 5]]
d.	 [2, 3, [4, 5]] [2, 3, [4, 5]]

REVIEW QUESTIONS
1.	 Determine the user defined exception in python.
2.	 What are handling exceptions in Python?
3.	 What is Unit Testing?
4.	 Designing a test case for Python Testing using PyUnit.
5.	 The correct expansion of list_1 = [expr(i) for i in list_0 if func(i)]?

Check Your Result

1. (d)		 2. (c)		 3. (a)		 4. (b)		 5. (c)
6. (d)		 7. (c)		 8. (b)

3G E-LEARNING

132 Basic Computer Coding: Python

REFERENCES
1.	 Batista, Facundo (17 October 2003). "PEP 327 – Decimal Data Type". Python

Enhancement Proposals. Python Software Foundation. Archived from the original
on 4 June 2020. Retrieved 24 November 2008.

2.	 Borderies, Olivier (24 January 2019). "Pythran: Python at C++ speed !". Medium.
Archived from the original on 25 March 2020. Retrieved 25 March 2020.

3.	 Francisco, Thomas Claburn in San. "Google's Grumpy code makes Python Go".
www.theregister.com. Archived from the original on 7 March 2021. Retrieved
20 January 2021.

4.	 Murri, Riccardo (2013). Performance of Python runtimes on a non-numeric scientific
code. European Conference on Python in Science (EuroSciPy). arXiv:1404.6388.

5.	 Yegulalp, Serdar (29 October 2020). "Pyston returns from the dead to speed
Python". InfoWorld. Archived from the original on 27 January 2021. Retrieved
26 January 2021.

“Object-oriented programming offers a sustainable way to write spaghetti code. It lets you accrete
programs as a series of patches.”

–Paul Graham

After studying this chapter,
you will be able to:
1.	 Examine the

introduction of OOPS in
python.

2.	 Define the various types
of methods of OOPS

LEARNING
OBJECTIVES

OBJECT ORIENTED
PROGRAMMING

INTRODUCTION
Object-oriented programming (OOP) is a method of
structuring a program by bundling related properties and
behaviors into individual objects. Conceptually, objects are

5
CHAPTER

3G E-LEARNING

134 Basic Computer Coding: Python

like the components of a system. Think of a program as a factory assembly line of
sorts. At each step of the assembly line a system component processes some material,
ultimately transforming raw material into a finished product.

Python has been an object-oriented language since it existed. Because of this,
creating and using classes and objects are downright easy. This chapter helps you
become an expert in using Python’s object-oriented programming support.

If you do not have any previous experience with object-oriented (OO) programming,
you may want to consult an introductory course on it or at least a tutorial of some
sort so that you have a grasp of the basic concepts.

However, here is small introduction of Object-Oriented Programming (OOP) to
bring you at speed −

■■ Class − A user-defined prototype for an object that defines a set of attributes
that characterize any object of the class. The attributes are data members (class
variables and instance variables) and methods, accessed via dot notation.

■■ Class variable − A variable that is shared by all instances of a class. Class
variables are defined within a class but outside any of the class’s methods.
Class variables are not used as frequently as instance variables are.

■■ Data member − A class variable or instance variable that holds data associated
with a class and its objects.

■■ Function overloading − The assignment of more than one behavior to a
particular function. The operation performed varies by the types of objects
or arguments involved.

■■ Instance variable − A variable that is defined inside a method and belongs
only to the current instance of a class.

■■ Inheritance − The transfer of the characteristics of a class to other classes
that are derived from it.

■■ Instance − An individual object of a certain class. An object obj that belongs
to a class Circle, for example, is an instance of the class Circle.

■■ Instantiation − The creation of an instance of a class.
■■ Method − A special kind of function that is defined in a class definition.
■■ Object − A unique instance of a data structure that’s defined by its class. An

object comprises both data members (class variables and instance variables)
and methods.

■■ Operator overloading − The assignment of more than one function to a
particular operator.

In Python, object-oriented Programming (OOPs) is a programming paradigm that
uses objects and classes in programming. It aims to implement real-world entities like

Object Oriented Programming

3G E-LEARNING

135

inheritance, polymorphisms, encapsulation, etc. in the programming. The main concept
of OOPs is to bind the data and the functions that work on that together as a single
unit so that no other part of the code can access this data.

5.1 INTRODUCTION OF OOPS IN PYTHON
Object-oriented Programming, or OOP for short, is a programming paradigm which
provides a means of structuring programs so that properties and behaviors are bundled
into individual objects.

For instance, an object could represent a person with a name property, age, address,
etc., with behaviors like walking, talking, breathing, and running. Or an email with
properties like recipient list, subject, body, etc., and behaviors like adding attachments
and sending.

Put another way, object-oriented programming is an approach for modeling concrete,
real-world things like cars as well as relations between things like companies and
employees, students and teachers, etc. OOP models real-world entities as software
objects, which have some data associated with them and can perform certain functions.

Another common programming paradigm is procedural programming which
structures a program like a recipe in that it provides a set of steps, in the form of
functions and code blocks, which flow sequentially in order to complete a task.

The key takeaway is that objects are at the center of the object-oriented programming
paradigm, not only representing the data, as in procedural programming, but in the
overall structure of the program as well.

5.1.1 Classes in Python

Focusing first on the data, each thing or object is an instance of some class. The
primitive data structures available in Python, like numbers, strings, and lists are
designed to represent simple things like the cost of something, the name of a poem,
and your favorite colors, respectively. What if you wanted to represent something
much more complicated?

For example, let’s say you wanted to track a number of different animals. If you
used a list, the first element could be the animal’s name while the second element
could represent its age. How would you know which element is supposed to be
which? What if you had 100 different animals? Are you certain each animal has both
a name and an age, and so forth? What if you wanted to add other properties to
these animals? This lacks organization, and it’s the exact need for classes. Classes are
used to create new user-defined data structures that contain arbitrary information
about something. In the case of an animal, we could create an Animal() class to track
properties about the Animal like the name and age. It’s important to note that a class

3G E-LEARNING

136 Basic Computer Coding: Python

just provides structure—it’s a blueprint for how something should be defined, but it
doesn’t actually provide any real content itself. The Animal() class may specify that
the name and age are necessary for defining an animal, but it will not actually state
what a specific animal’s name or age is. It may help to think of a class as an idea for
how something should be defined.

5.1.2 Python Objects (Instances)

While the class is the blueprint, an instance is a copy of the class with actual values,
literally an object belonging to a specific class. It’s not an idea anymore; it’s an actual
animal, like a dog named Roger who’s eight years old.

Put another way, a class is like a form or questionnaire. It defines the needed
information. After you fill out the form, your specific copy is an instance of the class;
it contains actual information relevant to you.

You can fill out multiple copies to create many different instances, but without
the form as a guide, you would be lost, not knowing what information is required.
Thus, before you can create individual instances of an object, we must first specify
what is needed by defining a class.

How to Define a Class in Python

Defining a class is simple in Python:
class Dog:
 pass
You start with the class keyword to indicate that you are creating a class, then you

add the name of the class (using CamelCase notation, starting with a capital letter.)
Also, we used the Python keyword pass here. This is very often used as a place

holder where code will eventually go. It allows us to run this code without throwing
an error.

The above code is correct on Python 3. On Python 2.x (“legacy Python”) you’d
use a slightly different class definition:

Python 2.x Class Definition:
class Dog(object):
 pass
The (object) part in parentheses specifies the parent class that you are inheriting

from. In Python 3 this is no longer necessary because it is the implicit default.

Object Oriented Programming

3G E-LEARNING

137

Instance Attributes

All classes create objects, and all objects contain characteristics called attributes (referred
to as properties in the opening paragraph). Use the __init__() method to initialize (e.g.,
specify) an object’s initial attributes by giving them their default value (or state). This
method must have at least one argument as well as the self variable, which refers to
the object itself (e.g., Dog).
:class Dog
Initializer / Instance Attributes #
:)def __init__(self, name, age
self.name = name
self.age = age
 In the case of our Dog() class, each dog has a specific name and age, which is
 obviously important to know for when you start actually creating different dogs.
 Remember: the class is just for defining the Dog, not actually creating instances of
.individual dogs with specific names and ages; we’ll get to that shortly
 Similarly, the self variable is also an instance of the class. Since instances of a class
 have varying values we could state Dog.name = name rather than self.name = name.
 But since not all dogs share the same name, we need to be able to assign different
 values to different instances. Hence the need for the special self variable, which will
.help to keep track of individual instances of each class
 You will never have to call the __init__() method; it gets called automatically when
.you create a new ‘Dog’ instance

Class Attributes

While instance attributes are specific to each object, class attributes are the same for
all instances—which in this case is all dogs.
class Dog:

 # Class Attribute
 species = ‘mammal’

 # Initializer / Instance Attributes
 def __init__(self, name, age):
 self.name = name
 self.age = age

3G E-LEARNING

138 Basic Computer Coding: Python

So while each dog has a unique name and age, every dog will be a mammal.
Let’s create some dogs…

5.1.3 Instantiating Objects

Instantiating is a fancy term for creating a new, unique instance of a class.
For example:
>>> class Dog:
... pass
...
>>> Dog()
<__main__.Dog object at 0x1004ccc50>
>>> Dog()
<__main__.Dog object at 0x1004ccc90>
>>> a = Dog()
>>> b = Dog()
>>> a == b
False
We started by defining a new Dog() class, then created two new dogs, each

assigned to different objects. So, to create an instance of a class, you use the class
name, followed by parentheses. Then to demonstrate that each instance is actually
different, we instantiated two more dogs, assigning each to a variable, then tested if
those variables are equal.

What do you think the type of a class instance is?
>>> class Dog:
... pass
...
>>> a = Dog()
>>> type(a)
<class ‘__main__.Dog’>
Let’s look at a slightly more complex example…
class Dog:

 # Class Attribute
 species = ‘mammal’

Object Oriented Programming

3G E-LEARNING

139

 # Initializer / Instance Attributes
 def __init__(self, name, age):
 self.name = name
 self.age = age

Instantiate the Dog object
philo = Dog(“Philo”, 5)
mikey = Dog(“Mikey”, 6)

Access the instance attributes
print(“{} is {} and {} is {}.”.format(
 philo.name, philo.age, mikey.name, mikey.age))

Is Philo a mammal?
if philo.species == “mammal”:
 print(“{0} is a {1}!”.format(philo.name, philo.species))

Save this as dog_class.py, then run the program. You should see:
Philo is 5 and Mikey is 6.
Philo is a mammal!

What’s Going On?

We created a new instance of the Dog() class and assigned it to the variable philo.
We then passed it two arguments, “Philo” and 5, which represent that dog’s name
and age, respectively.

These attributes are passed to the __init__ method, which gets called any time
you create a new instance, attaching the name and age to the object. You might be
wondering why we didn’t have to pass in the self argument.

This is Python magic; when you create a new instance of the class, Python
automatically determines what self is (a Dog in this case) and passes it to the __init__
method.

3G E-LEARNING

140 Basic Computer Coding: Python

5.1.4 Instance Methods

Instance methods are defined inside a class and are used to
get the contents of an instance. They can also be used to
perform operations with the attributes of our objects. Like
the __init__ method, the first argument is always self:

class Dog:

Class Attribute #
’species = ‘mammal

Initializer / Instance Attributes #
:)def __init__(self, name, age
self.name = name
self.age = age

instance method #
:)def description(self
)return “{} is {} years old”.format(self.name, self.age

instance method #
:)def speak(self, sound
)return “{} says {}”.format(self.name, sound

Instantiate the Dog object #
mikey = Dog(“Mikey”, 6)

call our instance methods

print(mikey.description())

print(mikey.speak(“Gruff Gruff”))

Save this as dog_instance_methods.py, then run it:

Mikey is 6 years old

 Instance is
 a concrete
 occurrence of any
 object, existing
 usually during
 the runtime of a
 computer program.
 Formally, it is
 synonymous with
 “object” as they are
 each a particular
 value (realization),
 and these may be
 called an instance
 object; “instance”
 emphasizes the
 distinct identity of
the object.

Keyword

Object Oriented Programming

3G E-LEARNING

141

Mikey says Gruff Gruff
In the latter method, speak(), we are defining behavior. What other behaviors

could you assign to a dog? Look back to the beginning paragraph to see some example
behaviors for other objects.

Modifying Attributes

You can change the value of attributes based on some behavior:
>>> class Email:
... def __init__(self):
... self.is_sent = False
... def send_email(self):
... self.is_sent = True
...
>>> my_email = Email()
>>> my_email.is_sent
False
>>> my_email.send_email()
>>> my_email.is_sent
True
Here, we added a method to send an email, which updates the is_sent variable

to True.

5.1.5 Python Object Inheritance

Inheritance is the process by which one class takes on the attributes and methods of
another. Newly formed classes are called child classes, and the classes that child classes
are derived from are called parent classes.

It’s important to note that child classes override or extend the functionality (e.g.,
attributes and behaviors) of parent classes. In other words, child classes inherit all of
the parent’s attributes and behaviors but can also specify different behavior to follow.
The most basic type of class is an object, which generally all other classes inherit as
their parent.

When you define a new class, Python 3 it implicitly uses object as the parent class.
So the following two definitions are equivalent:

class Dog(object):
 pass

3G E-LEARNING

142 Basic Computer Coding: Python

In Python 3, this is the same as:

class Dog:
 pass
In Python 2.x there’s a distinction between new-style and old-style classes. I won’t

go into detail here, but you’ll generally want to specify object as the parent class to
ensure you’re definint a new-style class if you’re writing Python 2 OOP code.

Dog Park Example

Let’s pretend that we’re at a dog park. There are multiple Dog objects engaging
in Dog behaviors, each with different attributes. In regular-speak that means some
dogs are running, while some are stretching and some are just watching other dogs.
Furthermore, each dog has been named by its owner and, since each dog is living
and breathing, each ages.

What’s another way to differentiate one dog from another? How about the dog’s
breed:

>>> class Dog:
... def __init__(self, breed):
... self.breed = breed
...
>>> spencer = Dog(“German Shepard”)
>>> spencer.breed
‘German Shepard’
>>> sara = Dog(“Boston Terrier”)
>>> sara.breed
‘Boston Terrier’
Each breed of dog has slightly different behaviors. To take these into account, let’s

create separate classes for each breed. These are child classes of the parent Dog class.

Extending the Functionality of a Parent Class

Create a new file called dog_inheritance.py:
Parent class
class Dog:

Object Oriented Programming

3G E-LEARNING

143

 # Class attribute
 species = ‘mammal’

 # Initializer / Instance attributes
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # instance method
 def description(self):
 return “{} is {} years old”.format(self.name, self.age)

 # instance method
 def speak(self, sound):
 return “{} says {}”.format(self.name, sound)

Child class (inherits from Dog class)
class RussellTerrier(Dog):
 def run(self, speed):
 return “{} runs {}”.format(self.name, speed)

Child class (inherits from Dog class)
class Bulldog(Dog):
 def run(self, speed):
 return “{} runs {}”.format(self.name, speed)

Child classes inherit attributes and
behaviors from the parent class
jim = Bulldog(“Jim”, 12)
print(jim.description())

3G E-LEARNING

144 Basic Computer Coding: Python

Child classes have specific attributes
and behaviors as well
print(jim.run(“slowly”))
Read the comments aloud as you work through this program to help you understand

what happening, then before you run the program, sees if you can predict the expected
output.

You should see:
Jim is 12 years old
Jim runs slowly
We haven’t added any special attributes or methods to differentiate a RussellTerrier

from a Bulldog, but since they’re now two different classes, we could for instance give
them different class attributes defining their respective speeds.

Parent vs. Child Classes

The isinstance() function is used to determine if an instance is also an instance of a
certain parent class.

Save this as dog_isinstance.py:
Parent class
class Dog:

 # Class attribute
 species = ‘mammal’

 # Initializer / Instance attributes
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # instance method
 def description(self):
 return “{} is {} years old”.format(self.name, self.age)

 # instance method

Object Oriented Programming

3G E-LEARNING

145

 def speak(self, sound):
 return “{} says {}”.format(self.name, sound)

Child class (inherits from Dog() class)
class RussellTerrier(Dog):
 def run(self, speed):
 return “{} runs {}”.format(self.name, speed)

Child class (inherits from Dog() class)
class Bulldog(Dog):
 def run(self, speed):
 return “{} runs {}”.format(self.name, speed)

Child classes inherit attributes and
behaviors from the parent class
jim = Bulldog(“Jim”, 12)
print(jim.description())

Child classes have specific attributes
and behaviors as well
print(jim.run(“slowly”))

Is jim an instance of Dog()?
print(isinstance(jim, Dog))

Is julie an instance of Dog()?
julie = Dog(“Julie”, 100)
print(isinstance(julie, Dog))

Is johnny walker an instance of Bulldog()

3G E-LEARNING

146 Basic Computer Coding: Python

johnnywalker = RussellTerrier(“Johnny Walker”, 4)
print(isinstance(johnnywalker, Bulldog))

Is julie and instance of jim?
print(isinstance(julie, jim))
Output:
(‘Jim’, 12)
Jim runs slowly
True
True
False
Traceback (most recent call last):
 File “dog_isinstance.py”, line 50, in <module>
 print(isinstance(julie, jim))
TypeError: isinstance() arg 2 must be a class, type, or

tuple of classes and types
Make sense? Both jim and julie are instances of the Dog()

class, while johnnywalker is not an instance of the Bulldog()
class. Then as a sanity check, we tested if julie is an instance
of jim, which is impossible since jim is an instance of a class
rather than a class itself—hence the reason for the TypeError.

Overriding the Functionality of a Parent Class

Remember that child classes can also override attributes and
behaviors from the parent class. For examples:>>> class Dog:

... species = ‘mammal’

...
>>> class SomeBreed(Dog):
... pass
...
>>> class SomeOtherBreed(Dog):
... species = ‘reptile’
...
>>> frank = SomeBreed()

 TypeError
 is an
 unintended
 condition which
 might manifest in
 multiple stages
 of a program’s
 development.
 Thus a facility for
 detection of the
 error is needed in
the type system.

Keyword

Object Oriented Programming

3G E-LEARNING

147

>>> frank.species
‘mammal’
>>> beans = SomeOtherBreed()
>>> beans.species
‘reptile’
The SomeBreed() class inherits the species from the parent class, while the

SomeOtherBreed() class overrides the species, setting it to reptile.

5.2 METHODS OF OOPS
Python has been an object-oriented language from day one. Because of this, creating
and using classes and objects are downright easy. If you don’t have any experience
with object-oriented (OO) programming.

Methods are functions defined inside the body of a class. They are used to define
the behaviors of an object.

Creating Methods in Python

class Parrot:

 # instance attributes
 def __init__(self, name, age):
 self.name = name
 self.age = age

 # instance method
 def sing(self, song):
 return “{} sings {}”.format(self.name, song)
 def dance(self):
 return “{} is now dancing”.format(self.name)
instantiate the object
blu = Parrot(“Blu”, 10)
call our instance methods
print(blu.sing(“’Happy’”))
print(blu.dance())
When we run program, the output will be:

3G E-LEARNING

148 Basic Computer Coding: Python

Blu sings ‘Happy’
Blu is now dancing
In the above program, we define two methods i.e sing()

and dance(). These are called instance method because they
are called on an instance object i.e blu.

5.2.1 Inheritance

Inheritance is a way of creating new class for using details of
existing class without modifying it. The newly formed class
is a derived class (or child class). Similarly, the existing class
is a base class (or parent class).

Python Inheritance Syntax
class BaseClass:
 Body of base class
class DerivedClass(BaseClass):
 Body of derived class
Derived class inherits features from the base class, adding

new features to it. This results into re-usability of code.

Use of Inheritance in Python

parent class
class Bird:

 def __init__(self):
 print(“Bird is ready”)

 def whoisThis(self):
 print(“Bird”)

 def swim(self):
 print(“Swim faster”)

child class
class Penguin(Bird):

 Base
 class is
 the parent class
 of a derived class.
 Classes may be
 used to create other
 classes. A class that
 is used to create
 (or derive) another
 class is called the
base class.

Keyword

Object Oriented Programming

3G E-LEARNING

149

 def __init__(self):
 # call super() function
 super().__init__()
 print(“Penguin is ready”)

 def whoisThis(self):
 print(“Penguin”)

 def run(self):
 print(“Run faster”)

peggy = Penguin()
peggy.whoisThis()
peggy.swim()
peggy.run()
When we run this program, the output will be:

■■ Bird is ready
■■ Penguin is ready
■■ Penguin
■■ Swim faster
■■ Run faster

In the above program, we created two classes i.e. Bird (parent class) and Penguin
(child class). The child class inherits the functions of parent class. We can see this
from swim()method. Again, the child class modified the behavior of parent class. We
can see this from whoisThis() method. Furthermore, we extend the functions of parent
class, by creating a new run() method.

Additionally, we use super() function before __init__() method. This is because we
want to pull the content of __init__() method from the parent class into the child class.

To demonstrate the use of inheritance, let us take an example.
A polygon is a closed figure with 3 or more sides. Say, we have a class called

Polygon defined as follows.
class Polygon:
 def __init__(self, no_of_sides):

3G E-LEARNING

150 Basic Computer Coding: Python

 self.n = no_of_sides
 self.sides = [0 for i in range(no_of_sides)]

 def inputSides(self):
 self.sides = [float(input(“Enter side “+str(i+1)+” : “)) for i in range(self.n)]

 def dispSides(self):
 for i in range(self.n):
 print(“Side”,i+1,”is”,self.sides[i])
This class has data attributes to store the number of sides, n and magnitude of

each side as a list, sides.
Method inputSides() takes in magnitude of each side and similarly, dispSides()

will display these properly.
A triangle is a polygon with 3 sides. So, we can created a class called Triangle

which inherits from Polygon. This makes all the attributes available in class Polygon
readily available in Triangle. We don’t need to define them again (code re-usability).
Triangle is defined as follows.

class Triangle(Polygon):
 def __init__(self):
 Polygon.__init__(self,3)

 def findArea(self):
 a, b, c = self.sides
 # calculate the semi-perimeter
 s = (a + b + c) / 2
 area = (s*(s-a)*(s-b)*(s-c)) ** 0.5
 print(‘The area of the triangle is %0.2f’ %area)
However, class Triangle has a new method findArea() to find and print the area

of the triangle. Here is a sample run.
>>> t = Triangle()

>>> t.inputSides()
Enter side 1 : 3
Enter side 2 : 5

Object Oriented Programming

3G E-LEARNING

151

Enter side 3 : 4

>>> t.dispSides()
Side 1 is 3.0
Side 2 is 5.0
Side 3 is 4.0

>>> t.findArea()
The area of the triangle is 6.00
We can see that, even though we did not define methods like inputSides() or

dispSides() for class Triangle, we were able to use them.
If an attribute is not found in the class, search continues to the base class. This

repeats recursively, if the base class is itself derived from other classes.

5.2.2 Encapsulation

Encapsulation is the packing of data and functions operating on that data into a single
component and restricting the access to some of the object’s components. Encapsulation
means that the internal representation of an object is generally hidden from view
outside of the object’s definition.

A class is an example of encapsulation as it encapsulates all the data that is member
functions, variables etc.

Difference between Abstraction and Encapsulation: Abstraction is a mechanism
which represent the essential features without including implementation details.

Encapsulation: — Information hiding.
Abstraction: — Implementation hiding.
Python follows the philosophy of we’re all adults here with respect to hiding

attributes and methods; i.e. you should trust the other programmers who will use
your classes. Use plain attributes whenever possible.

You might be tempted to use getter and setter methods instead of attributes, but
the only reason to use getters and setters is so you can change the implementation later
if you need to. However, Python 2.2 and later allows you to do this with properties:

Protected members

Protected member is accessible only from within the class and it’s subclasses. How to
accomplish this in Python? The answer is — by convention. By prefixing the name of

3G E-LEARNING

152 Basic Computer Coding: Python

your member with a single underscore, you’re telling others
“don’t touch this, unless you’re a subclass”.

Private members

 But there is a method in Python to define Private: Add “__”
 (double underscore) in front of the variable and function
.name can hide them when accessing them from out of class
 Python doesn’t have real private methods, so one underline
 in the beginning of a method or attribute means you shouldn’t
 access this method. But this is just convention. And can still
.access the variables with single underscore
 Also when using double underscore (__).we can still access
the private variables

An example of accessing private member data.(Using name mangling)

class Person:

 def __init__(self):

 self.name = ‘Manjula’

 self.__lastname = ‘Dube’

 def PrintName(self):

 return self.name +’ ‘ + self.__lastname

 #Outside class

P = Person()

print(P.name)

print(P.PrintName())

print(P.__lastname)

#AttributeError: ‘Person’ object has no attribute ‘__lastname’

Object Oriented Programming

3G E-LEARNING

153

ccess public variable out of class, succeed
Access private variable our of class, fail
Access public function but this function access Private

variable __B successfully since they are in the same class.
An example of accessing private member data.(Using

name mangling technique)
class SeeMee:
 def youcanseeme(self):
 return ‘you can see me’

 def __youcannotseeme(self):
 return ‘you cannot see me’

#Outside class
Check = SeeMee()
print(Check.youcanseeme())
you can see me
print(Check.__youcannotseeme())
#AttributeError: ‘SeeMee’ object has no attribute ‘__

youcannotseeme’
If you need to access the private member function
class SeeMee:
 def youcanseeme(self):
 return ‘you can see me’
 def __youcannotseeme(self):
 return ‘you cannot see me’
#Outside class
Check = SeeMee()
print(Check.youcanseeme())
print(Check._SeeMee__youcannotseeme())
#Changing the name causes it to access the function
You can still call the method using its mangled name, so

this feature doesn’t provide much protection.

The
__init__
method is a
constructor and
runs as soon
as an object
of a class is
instantiated. Its
aim is to initialize
the object

Remember

 Private
 variables,
 are variables that
 are visible only to
 the class to which
they belong.

Keyword

3G E-LEARNING

154 Basic Computer Coding: Python

You should know the following for accessing private members and private functions:
■■ When you write to an attribute of an object, that does not exist, the python

system will normally not complain, but just create a new attribute.
■■ Private attributes are not protected by the Python system. That is by design

decision.
■■ Private attributes will be masked. The reason is, that there should be no clashes

in the inheritance chain. The masking is done by some implicit renaming.
Private attributes will have the real name

“__<className>_<attributeName>”
With that name, it can be accessed from outside. When accessed from inside the

class, the name will be automatically changed correctly.

Data Encapsulation in Python

Using OOP in Python, we can restrict access to methods and variables. This prevent
data from direct modification which is called encapsulation. In Python, we denote
private attribute using underscore as prefix i.e single “ _ “ or double “ __“.

class Computer:

 def __init__(self):
 self.__maxprice = 900

 def sell(self):
 print(“Selling Price: {}”.format(self.__maxprice))

 def setMaxPrice(self, price):
 self.__maxprice = price

c = Computer()
c.sell()

change the price
c.__maxprice = 1000
c.sell()

using setter function

Object Oriented Programming

3G E-LEARNING

155

c.setMaxPrice(1000)
c.sell()
When we run this program, the output will be:
Selling Price: 900
Selling Price: 900
Selling Price: 1000
In the above program, we defined a class Computer. We use __init__() method to

store the maximum selling price of computer. We tried to modify the price. However,
we can’t change it because Python treats the __maxprice as private attributes. To change
the value, we used a setter function i.e setMaxPrice() which takes price as parameter.

5.2.3 Polymorphism

Polymorphism means that different types respond to the same function. Polymorphism is
very useful as it makes programming more intuitive and therefore easier. Polymorphism
is a fancy word that just means the same function is defined on objects of different
types. Python provides protocols which is polymorphism under the hood. These
implement consistent behavior for built in objects of different type.

Protocols

When we introspect an object we have a lot of attributes that take this format: __names__.
This section will make many of those clear.

Everything is an object and all actions ultimately mean calling functions defined
on objects.

Protocols are polymorphic functions that are embbedded into python. Most
importantly the interpreter is aware of them.

Protocols enable:
■■ consistency - programmers can rely on intuition
■■ special syntax - interpreter translates nice syntax to functions on objects.
■■ We will look at two protocols: __contains__ and __iter__

__add__
x + y resolves to x.__add__(y)
>>> 1 + 2
3
>>> one = 1
>>> one.__add__(2)

3G E-LEARNING

156 Basic Computer Coding: Python

3
>>> ‘1’ + ‘2’
‘12’
>>> ‘1’.__add__(‘2’)
‘12’
Any object that implements the __add__ function will work

with the <object> + x syntax.

__contains__
__contains__ is the built in protocol for membership.
x in y resolves to y.__contains__(x)
When the interpreter encounters ‘b’ in [‘a’, ‘b’] it knows to

look for the __contains__ function on the object to the right of
in and pass it the object to the left of in as parameter.

A list object has that function defined and the interpreter
then executes the corresponding code block.

All data structures have the concept of membership defined:
>>> ‘b’ in [‘a’, ‘b’]
True
>>> ‘b’ in (‘a’, ‘b’)
True
>>> ‘b’ in {‘a’: 1, ‘b’: 2}
True
>>> ‘b’ in {‘a’, ‘b’}
True
Demonstrating __contains__:
>>> [‘a’, ‘b’].__contains__(‘b’)
True
>>> (‘a’, ‘b’).__contains__(‘b’)
True
>>> {‘a’: 1, ‘b’: 2}.__contains__(‘b’)
True
>>> {‘a’, ‘b’}.__contains__(‘b’)
True

 Parameter
 is any
 characteristic
 that can help
 in defining or
 classifying a
 particular system.
 That is, a parameter
 is an element of
 a system that is
 useful, or critical,
 when identifying
 the system, or
 when evaluating
 its performance,
 status, condition,
etc.

Keyword

Object Oriented Programming

3G E-LEARNING

157

Any object that implements the __contains__ function will work with the x in
<object> syntax.

__iter__
__iter__ is how iteration is implemented in Python. This protocol is a bit more

involved than the protocols.
Taking this code:
>>> number = [1, 2]
>>> for i in [1, 2]:
... print(i)
...
1
2
Roughly here is the sequence of events: * interpreter calls __iter__ on the list object,

* an object of type iterator is returned. * interpreter then calls __next__ repeatedly on
the iterator * interpreter actions the code in the for loop * interpreter interrupts the
loop if a StopIteration Exception occurs.

To illustrate:
>>> itr_obj = [1, 2].__iter__()
>>> type(itr_obj)
<class ‘list_iterator’>
>>> itr_obj.__next__()
1
>>> itr_obj.__next__()
2
>>> itr_obj.__next__()
Traceback (most recent call last):
 File “<stdin>”, line 1, in <module>
StopIteration
Any object that implements the __iter__ function will work with the for x in

<object>: ... syntax.

3G E-LEARNING

158 Basic Computer Coding: Python

Exercise

Boolean Operators

Using introspection functions, which protocol functions do the following syntax resolve
to:

■■ 3 > 2
■■ 3 < 2
■■ 3 <= 2
■■ 3 >= 2

String representations

What function gets called when we get results in the interpreter? Is it the same that
gets called when we type print(x)?

len() implementation

len() works on many object types:
>>> len(‘hi’)
2
>>> len([1, 2])
2
Which protocol function is called by the function len on the object it is passed?
Polymorphism is an ability (in OOP) to use common interface for multiple form (data
types). Suppose, we need to color a shape, there are multiple shape option (rectangle,
square, circle). However we could use same method to color any shape. This concept
is called Polymorphism.

Using Polymorphism in Python

class Parrot:

 def fly(self):
 print(“Parrot can fly”)

 def swim(self):
 print(“Parrot can’t swim”)

Object Oriented Programming

3G E-LEARNING

159

class Penguin:

 def fly(self):
 print(“Penguin can’t fly”)

 def swim(self):
 print(“Penguin can swim”)

common interface
def flying_test(bird):
 bird.fly()

#instantiate objects
blu = Parrot()
peggy = Penguin()

passing the object
flying_test(blu)
flying_test(peggy)
When we run above program, the output will be:
Parrot can fly
Penguin can’t fly
In the above program, we defined two classes Parrot and Penguin. Each of them

have common method fly() method. However, their functions are different. To allow
polymorphism, we created common interface i.e flying_test() function that can take
any object. Then, we passed the objects blu and peggy in the flying_test() function,
it ran effectively.

5.2.4 Abstraction

Data abstraction and encapsulation both are often used as synonyms. Both are nearly
synonym because data abstraction is achieved through encapsulation.

Abstraction is used to hide internal details and show only functionalities. Abstracting
something means to give names to things, so that the name captures the core of what

3G E-LEARNING

160 Basic Computer Coding: Python

a function or a whole program does. As we consider the wide
set of things in the world that we would like to represent in
our programs, we find that most of them have compound
structure. A date has a year, a month, and a day; a geographic
position has a latitude and a longitude. To represent positions,
we would like our programming language to have the capacity
to “glue together” a latitude and longitude to form a pair --- a
compound data value --- that our programs could manipulate in
a way that would be consistent with the fact that we regard
a position as a single conceptual unit, which has two parts.

The use of compound data also enables us to increase the
modularity of the programs. If we can manipulate geographic
positions directly as objects in their own right, then we can
separate the part of our program that deals with values per
se from the details of how those values may be represented.
The general technique of isolating the parts of a program
that deal with how data are represented from the parts of a
program that deal with how those data are manipulated is
a powerful design methodology called data abstraction. Data
abstraction makes programs much easier to design, maintain,
and modify.

Data abstraction is similar in character to functional
abstraction. When we create a functional abstraction, the
details of how a function is implemented can be suppressed,
and the particular function itself can be replaced by any other
function with the same overall behavior. In other words, we
can make an abstraction that separates the way the function
is used from the details of how the function is implemented.
Analogously, data abstraction is a methodology that enables
us to isolate how a compound data object is used from the
details of how it is constructed.

The basic idea of data abstraction is to structure programs
so that they operate on abstract data. That is, our programs
should use data in such a way as to make as few assumptions
about the data as possible. At the same time, a concrete data
representation is defined, independently of the programs
that use the data. The interface between these two parts of
our system will be a set of functions, called selectors and
constructors, that implement the abstract data in terms of the
concrete representation. To illustrate this technique, we will
consider how to design a set of functions for manipulating

 Modularity is
 the degree to
 which a system’s
 components may
 be separated and
 recombined, often
 with the benefit
 of flexibility and
variety in use.

Keyword

Object Oriented Programming

3G E-LEARNING

161

rational numbers. As you read the next few sections, keep in mind that most Python
code written today uses very high-level abstract data types that are built into the
language, like classes, dictionaries, and lists. Since we’re building up an understanding
of how these abstractions work, we can’t use them yet ourselves. As a consequence,
we will write some code that isn’t Pythonic --- it’s not necessarily the typical way to
implement our ideas in the language. What we write is instructive, however, because
it demonstrates how these abstractions can be constructed! Remember that computer
science isn’t just about learning to use programming languages, but also learning how
they work.

Example: Arithmetic on Rational Numbers

Recall that a rational number is a ratio of integers, and rational numbers constitute an
important sub-class of real numbers. A rational number like 1/3 or 17/29 is typically
written as:

<numerator>/<denominator>
where both the <numerator> and <denominator> are placeholders for

integer values. Both parts are needed to exactly characterize the value of the rational
number.

Rational numbers are important in computer science because they, like integers,
can be represented exactly. Irrational numbers (like pi or e or sqrt(2)) are instead
approximated using a finite binary expansion. Thus, working with rational numbers
should, in principle, allow us to avoid approximation errors in our arithmetic.

However, as soon as we actually divide the numerator by the denominator, we
can be left with a truncated decimal approximation (a float).

>>> 1/3
0.3333333333333333
and the problems with this approximation appear when we start to conduct tests:
>>> 1/3 == 0.333333333333333300000 # Beware of approximations
True
How computers approximate real numbers with finite-length decimal expansions

is a topic for another class. The important idea here is that by representing rational
numbers as ratios of integers, we avoid the approximation problem entirely. Hence, we
would like to keep the numerator and denominator separate for the sake of precision,
but treat them as a single unit.

We know from using functional abstractions that we can start programming
productively before we have an implementation of some parts of our program. Let
us begin by assuming that we already have a way of constructing a rational number
from a numerator and a denominator. We also assume that, given a rational number,

3G E-LEARNING

162 Basic Computer Coding: Python

we have a way of extracting (or selecting) its numerator and its denominator. Let us
further assume that the constructor and selectors are available as the following three
functions:

■■ make_rat(n, d) returns the rational number with numerator n and denominator
d.

■■ numer(x) returns the numerator of the rational number x.
■■ denom(x) returns the denominator of the rational number x.

We are using here a powerful strategy of synthesis: wishful thinking. We haven’t
yet said how a rational number is represented, or how the functions numer, denom,
and make_rat should be implemented. Even so, if we did have these three functions,
we could then add, multiply, and test equality of rational numbers by calling them:

>>> def add_rat(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return make_rat(nx * dy + ny * dx, dx * dy)
>>> def mul_rat(x, y):
 return make_rat(numer(x) * numer(y), denom(x) * denom(y))
>>> def eq_rat(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)
Now we have the operations on rational numbers defined in terms of the selector

functions numer and denom, and the constructor function make_rat, but we haven’t
yet defined these functions. What we need is some way to glue together a numerator
and a denominator into a unit.

Tuples

To enable us to implement the concrete level of our data abstraction, Python provides
a compound structure called a tuple, which can be constructed by separating values by
commas. Although not strictly required, parentheses almost always surround tuples.

>>> (1, 2)
(1, 2)
The elements of a tuple can be unpacked in two ways. The first way is via our

familiar method of multiple assignment.
>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair

Object Oriented Programming

3G E-LEARNING

163

>>> x
1
>>> y
2
In fact, multiple assignment has been creating and

unpacking tuples all along.
A second method for accessing the elements in a tuple is

by the indexing operator, written as square brackets.
>>> pair[0]
1
>>> pair[1]
2
Tuples in Python (and sequences in most other programming

languages) are 0-indexed, meaning that the index 0 picks out
the first element, index 1 picks out the second, and so on.
One intuition that underlies this indexing convention is that
the index represents how far an element is offset from the
beginning of the tuple.

The equivalent function for the element selection operator
is called getitem, and it also uses 0-indexed positions to select
elements from a tuple.

>>> from operator import getitem
>>> getitem(pair, 0)
1
Tuples are native types, which means that there are built-in

Python operators to manipulate them. We’ll return to the full
properties of tuples shortly. At present, we are only interested
in how tuples can serve as the glue that implements abstract
data types.

Representing Rational Numbers. Tuples offer a natural
way to implement rational numbers as a pair of two integers:
a numerator and a denominator. We can implement our
constructor and selector functions for rational numbers by
manipulating 2-element tuples.

>>> def make_rat(n, d):
 return (n, d)
>>> def numer(x):

 Operator
 is a
 symbol that tells
 the compiler to
 perform specific
 mathematical
 or logical
manipulations.

Keyword

3G E-LEARNING

164 Basic Computer Coding: Python

 return getitem(x, 0)
>>> def denom(x):
 return getitem(x, 1)
A function for printing rational numbers completes our implementation of this

abstract data type.
>>> def str_rat(x):
 “””Return a string ‘n/d’ for numerator n and denominator d.”””
 return ‘{0}/{1}’.format(numer(x), denom(x))
Together with the arithmetic operations we defined earlier, we can manipulate

rational numbers with the functions we have defined.
>>> half = make_rat(1, 2)
>>> str_rat(half)
‘1/2’
>>> third = make_rat(1, 3)
>>> str_rat(mul_rat(half, third))
‘1/6’
>>> str_rat(add_rat(third, third))
‘6/9’
As the final example shows, our rational-number implementation does not reduce

rational numbers to lowest terms. We can remedy this by changing make_rat. If we
have a function for computing the greatest common denominator of two integers,
we can use it to reduce the numerator and the denominator to lowest terms before
constructing the pair. As with many useful tools, such a function already exists in the
Python Library.

>>> from fractions import gcd
>>> def make_rat(n, d):
 g = gcd(n, d)
 return (n//g, d//g)
The double slash operator, //, expresses integer division, which rounds down the

fractional part of the result of division. Since we know that g divides both n and d
evenly, integer division is exact in this case. Now we have

>>> str_rat(add_rat(third, third))
‘2/3’
as desired. This modification was accomplished by changing the constructor without

changing any of the functions that implement the actual arithmetic operations.

Object Oriented Programming

3G E-LEARNING

165

Abstraction Barriers

Before continuing with more examples of compound data
and data abstraction, let us consider some of the issues raised
by the rational number example. We defined operations in
terms of a constructor make_rat and selectors numer and
denom. In general, the underlying idea of data abstraction
is to identify for each type of value a basic set of operations
in terms of which all manipulations of values of that type
will be expressed, and then to use only those operations in
manipulating the data.

We can envision the structure of the rational number
system as a series of layers.

The horizontal lines represent abstraction barriers that
isolate different levels of the system. At each level, the barrier
separates the functions (above) that use the data abstraction
from the functions (below) that implement the data abstraction.
Programs that use rational numbers manipulate them solely
in terms of the their arithmetic functions: add_rat, mul_rat,
and eq_rat. These, in turn, are implemented solely in terms
of the constructor and selectors make_rat, numer, and denom,
which themselves are implemented in terms of tuples. The
details of how tuples are implemented are irrelevant to the
rest of the layers as long as tuples enable the implementation
of the selectors and constructor.

At each layer, the functions within the box enforce the
abstraction boundary because they are the only functions that
depend upon both the representation above them (by their use)
and the implementation below them (by their definitions). In
this way, abstraction barriers are expressed as sets of functions.
Abstraction barriers provide many advantages. One advantage

The
str_rat
implementation
above uses
format strings,
which contain
placeholders
for values. The
details of how
to use format
strings and the
format method
appear in the
formatting
strings section of
Dive Into Python
3.

Remember

3G E-LEARNING

166 Basic Computer Coding: Python

is that they makes programs much easier to maintain and to modify. The fewer functions
that depend on a particular representation, the fewer changes are required when one
wants to change that representation.

The Properties of Data

We began the rational-number implementation by implementing arithmetic operations
in terms of three unspecified functions: make_rat, numer, and denom. At that point, we
could think of the operations as being defined in terms of data objects --- numerators,
denominators, and rational numbers --- whose behavior was specified by the latter
three functions.

But what exactly is meant by data? It is not enough to say “whatever is implemented
by the given selectors and constructors.” We need to guarantee that these functions
together specify the right behavior. That is, if we construct a rational number x from
integers n and d, then it should be the case that numer(x)/denom(x) is equal to n/d.

In general, we can think of an abstract data type as defined by some collection
of selectors and constructors, together with some behavior conditions. As long as the
behavior conditions are met (such as the division property above), these functions
constitute a valid representation of the data type.

This point of view can be applied to other data types as well, such as the two-
element tuple that we used in order to implement rational numbers. We never actually
said much about what a tuple was, only that the language supplied operators to create
and manipulate tuples. We can now describe the behavior conditions of two-element
tuples, also called pairs, that are relevant to the problem of representing rational
numbers.

In order to implement rational numbers, we needed a form of glue for two integers,
which had the following behavior:

■■ If a pair p was constructed from values x and y, then getitem_pair(p, 0) returns
x, and getitem_pair(p, 1) returns y.

We can implement functions make_pair and getitem_pair that fulfill this description
just as well as a tuple.

>>> def make_pair(x, y):
 “””Return a function that behaves like a pair.”””
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y

Object Oriented Programming

3G E-LEARNING

167

 return dispatch
>>> def getitem_pair(p, i):
 “””Return the element at index i of pair p.”””
 return p(i)
With this implementation, we can create and manipulate

pairs.
>>> p = make_pair(1, 2)
>>> getitem_pair(p, 0)
1
>>> getitem_pair(p, 1)
2
This use of functions corresponds to nothing like our

intuitive notion of what data should be. Nevertheless, these
functions suffice to represent compound data in our programs.

The subtle point to notice is that the value returned
by make_pair is a function called dispatch, which takes an
argument m and returns either x or y. Then, getitem_pair calls
this function to retrieve the appropriate value.

The point of exhibiting the functional representation of
a pair is not that Python actually works this way (tuples are
implemented more directly, for efficiency reasons) but that it
could work this way. The functional representation, although
obscure, is a perfectly adequate way to represent pairs, since
it fulfills the only conditions that pairs need to fulfill. This
example also demonstrates that the ability to manipulate
functions as values automatically provides us the ability to
represent compound data.

Terminology
invoking
“objects” and
“oriented” in the
modern sense of
object-oriented
programming
made its first
appearance at
MIT in the late
1950s and early
1960s. In the
environment
of the artificial
intelligence
group, as early
as 1960, “object”
could refer to
identified items
(LISP atoms)
with properties
(attributes) Alan
Kay was later to
cite a detailed
understanding of
LISP internals as
a strong influence
on his thinking in
1966.

Did You
Know?

3G E-LEARNING

168 Basic Computer Coding: Python

SUMMARY
■■ Object-oriented programming (OOP) is a method of structuring a program by

bundling related properties and behaviors into individual objects. Conceptually,
objects are like the components of a system. Think of a program as a factory
assembly line of sorts.

■■ Object-oriented programming is a programming paradigm that provides a
means of structuring programs so that properties and behaviors are bundled
into individual objects.

■■ The key takeaway is that objects are at the center of object-oriented programming
in Python, not only representing the data, as in procedural programming, but
in the overall structure of the program as well.

■■ Python has been an object-oriented language since it existed. Because of this,
creating and using classes and objects are downright easy. This chapter helps
you become an expert in using Python’s object-oriented programming support.

■■ Instance methods are defined inside a class and are used to get the contents
of an instance.

■■ Inheritance is the process by which one class takes on the attributes and
methods of another.

■■ Python has been an object-oriented language from day one. Because of this,
creating and using classes and objects are downright easy. If you don’t have
any experience with object-oriented (OO) programming.

■■ Inheritance is a way of creating new class for using details of existing class
without modifying it. The newly formed class is a derived class (or child class).

■■ A class is an example of encapsulation as it encapsulates all the data that is
member functions, variables etc.

■■ Python follows the philosophy of we’re all adults here with respect to hiding
attributes and methods; i.e. you should trust the other programmers who will
use your classes.

■■ Data abstraction and encapsulation both are often used as synonyms. Both are
nearly synonym because data abstraction is achieved through encapsulation.

Object Oriented Programming

3G E-LEARNING

169

KNOWLEDGE CHECK
1. 	 Which is private member functions access scope?

a.	 Member functions which can only be used within the class
b.	 Member functions which can used outside the class
c.	 Member functions which are accessible in derived class
d.	 Member functions which can’t be accessed inside the class

2. 	 Which among the following is true?
a.	 The private members can’t be accessed by public members of the class
b.	 The private members can be accessed by public members of the class
c.	 The private members can be accessed only by the private members of the

class
d.	 The private members can’t be accessed by the protected members of the class

3. 	 Which member can never be accessed by inherited classes?
a.	 Private member function
b.	 Public member function
c.	 Protected member function
d.	 All can be accessed

4. 	 Which syntax among the following shows that a member is private in a class?
a.	 private: functionName(parameters)
b.	 private(functionName(parameters))
c.	 private functionName(parameters)
d.	 private::functionName(parameters)

5. 	 How many private member functions are allowed in a class?
a.	 Only 1
b.	 Only 7
c.	 Only 255
d.	 As many as required

6. 	 Which of the following language was developed as the first purely object
programming language?
a.	 SmallTalk
b.	 C++
c.	 Kotlin
d.	 Java

3G E-LEARNING

170 Basic Computer Coding: Python

7. 	 Who developed object-oriented programming?
a.	 Adele Goldberg
b.	 Dennis Ritchie
c.	 Alan Kay
d.	 Andrea Ferro

8.	 Which of the following is not an OOPS concept?
a.	 Encapsulation
b.	 Polymorphism
c.	 Exception
d.	 Abstraction

REVIEW QUESTIONS
1.	 What are the classes and objects (instances) in python?
2.	 How to instantiating the objects? Explain with suitable example.
3.	 Discuss on the concept of inheritance.
4.	 What is the mechanism of encapsulation in OOPS?
5.	 Write a program to using polymorphism in python.

Check Your Result

1. (a)		 2. (b)		 3. (a)		 4. (c)		 5. (d)
6. (a)		 7. (c)		 8. (c)

Object Oriented Programming

3G E-LEARNING

171

REFERENCES
1.	 Beal, V. (2016). What is Polymorphism? Webopedia Definition. [online] Webopedia.

com. Available at: http:// www.webopedia.com/TERM/P/polymorphism.html
2.	 Derek Coleman, et. al. Object-Oriented Development - The Fusion Method.

Prentice-Hall Object-Oriented Series.
3.	 E. Colbert. The Object-Oriented Software Development Method: a practical

approach to object-oriented development. Tri-Ada Proc., New York.
4.	 Lambert, S. (2012). Quick Tip: The OOP Principle of Encapsulation. [online] Game

Development Envato Tuts+. Available at: http://gamedevelopment.tutsplus.com/
tutorials/quick-tip-the-oop-principle-of-encapsulation-- gamedev-2187

5.	 Lau, Yun-Tung, Ph.D. The Art of Objects: Object-Oriented Design and Architecture.
Addison-Wesley, 2001.

6.	 Obbayi, R. (2016). Compare Structured and Object-Oriented Programming: What
Are the Real Differences?. [online] Bright Hub. Available at: http://www.brighthub.
com/ internet/web-development/articles/82024.aspx

“In this beginner-friendly book, called ‘Learn to Program with Minecraft,’ you will learn how to
do cool things in Minecraft using the Python programming language. No prior programming
experience is needed.”

–Mark Frauenfelder

After studying this chapter,
you will be able to:
1.	 Understand the regex

search and match
2.	 Learn about regular

expression modifiers in
case of option flags

LEARNING
OBJECTIVES

PYTHON REGULAR
EXPRESSION

INTRODUCTION
Regular expressions (called REs, or regexes, or regex
patterns) are essentially a tiny, highly specialized
programming language embedded inside Python and made

6
CHAPTER

3G E-LEARNING

174 Basic Computer Coding: Python

available through the re module. Using this little language,
you specify the rules for the set of possible strings that you
want to match; this set might contain English sentences, or
e-mail addresses, or TeX commands, or anything you like.
You can then ask questions such as “Does this string match
the pattern?”, or “Is there a match for the pattern anywhere
in this string?”. You can also use REs to modify a string or
to split it apart in various ways.

Regular expression patterns are compiled into a series
of bytecodes which are then executed by a matching engine
written in C. For advanced use, it may be necessary to pay
careful attention to how the engine will execute a given RE,
and write the RE in a certain way in order to produce bytecode
that runs faster. Optimization isn’t covered in this document,
because it requires that you have a good understanding of
the matching engine’s internals.

The regular expression language is relatively small and
restricted, so not all possible string processing tasks can be
done using regular expressions. There are also tasks that can
be done with regular expressions, but the expressions turn
out to be very complicated. In these cases, you may be better
off writing Python code to do the processing; while Python
code will be slower than an elaborate regular expression, it
will also probably be more understandable.

6.1 REGEX SEARCH AND MATCH
Python is a high level open source scripting language. Python’s
built-in “re” module provides excellent support for regular
expressions, with a modern and complete regex flavor. The
only significant features missing from Python’s regex syntax
are atomic grouping, possessive quantifiers, and Unicode
properties.

The first thing to do is to import the regexp module into
your script with import re.

Call re.search(regex, subject) to apply a regex pattern to
a subject string. The function returns None if the matching
attempt fails, and a Match object otherwise. Since None
evaluates to False, you can easily use re.search() in an if
statement. The Match object stores details about the part of

 Constant
 is a value
 that cannot
 be altered by
 the program
 during normal
 execution, i.e.,
 the value is
constant.

Keyword

Python Regular Expression

3G E-LEARNING

175

the string matched by the regular expression pattern. You can
set regex matching modes by specifying a special constant as a
third parameter to re.search(). re.I or re.IGNORECASE applies
the pattern case insensitively. re.S or re.DOTALL makes the
dot match newlines. re.Mor re.MULTILINE makes the caret
and dollar match after and before line breaks in the subject
string. There is no difference between the single-letter and
descriptive options, except for the number of characters you
have to type in. To specify more than one option, “or” them
together with the | operator: re.search(“^a”, “abc”, re.I | re.M).

By default, Python’s regex engine only considers the letters
A through Z, the digits 0 through 9, and the underscore as
“word characters”. Specify the flag re.L or re.LOCALE to make
\w match all characters that are considered letters given the
current locale settings. Alternatively, you can specify re.U
or re.UNICODE to treat all letters from all scripts as word
characters. The setting also affects word boundaries.

Do not confuse re.search() with re.match(). Both functions
do exactly the same, with the important distinction that
re.search() will attempt the pattern throughout the string,
until it finds a match. re.match() on the other hand, only
attempts the pattern at the very start of the string. Basically,
re.match(“regex”, subject) is the same as re.search(“\Aregex”,
subject).

Python 3.4 adds a new re.fullmatch() function. This
function only returns a Match object if the regex matches the
string entirely. Otherwise it returns None. re.fullmatch(“regex”,
subject) is the same as re.search(“\Aregex\Z”, subject). This is
useful for validating user input. If subject is an empty string
then fullmatch() evaluates to True for any regex that can find
a zero-length match.

To get all matches from a string, call re.findall(regex,
subject). This will return an array of all non-overlapping
regex matches in the string. “Non-overlapping” means that
the string is searched through from left to right, and the next
match attempt starts beyond the previous match. If the regex
contains one or more capturing groups, re.findall() returns
an array of tuples, with each tuple containing text matched
by all the capturing groups. The overall regex match is not
included in the tuple, unless you place the entire regex inside
a capturing group.

re.match()
does
not require the
regex to match
the entire string.
re.match(“a”,
“ab”) will
succeed.

Remember

3G E-LEARNING

176 Basic Computer Coding: Python

More efficient than re.findall() is re.finditer(regex, subject). It returns an iterator
that enables you to loop over the regex matches in the subject string: for m in
re.finditer(regex, subject). The for-loop variable m is a Match object with the details
of the current match.

Unlike re.search() and re.match(), re.findall() and re.finditer() do not support an
optional third parameter with regex matching flags. Instead, you can use global mode
modifiers at the start of the regex. E.g. “(?i)regex” matches regex case insensitively.

6.1.1 The Match Function

This function attempts to match RE pattern to string with optional flags.
Here is the syntax for this function −
re.match(pattern, string, flags=0)
Here is the description of the parameters −

Sr.No. Parameter & Description
1 pattern

This is the regular expression to be matched.
2 string

 This is the string, which would be searched to match the
pattern at the beginning of string.

3 flags

 You can specify different flags using bitwise OR (|). These are
modifiers, which are listed in the table below.

The re.match function returns a match object on success, None on failure. We use
group(num) or groups() function of match object to get matched expression.

Sr.No. Match Object Method & Description
1 group(num=0)

This method returns entire match (or specific subgroup num)
2 groups()

 This method returns all matching subgroups in a tuple (empty
if there weren’t any)

Python Regular Expression

3G E-LEARNING

177

#!/usr/bin/python

import re

line = “Cats are smarter than dogs”

matchObj = re.match(r’(.*) are (.*?) .*’, line, re.M|re.I)

if matchObj:

 print “matchObj.group() : “, matchObj.group()

 print “matchObj.group(1) : “, matchObj.group(1)

 print “matchObj.group(2) : “, matchObj.group(2)

else:

 print “No match!!”

When the above code is executed, it produces following result −

matchObj.group() : Cats are smarter than dogs

matchObj.group(1) : Cats

matchObj.group(2) : smarter

6.1.2 The Search Function

This function searches for first occurrence of RE pattern within
string with optional flags.

Here is the syntax for this function −
re.search(pattern, string, flags=0)
Here is the description of the parameters −

Sr.No. Parameter & Description
1 pattern

This is the regular expression to be matched.

If zero or
more characters
at the beginning
of string match
the regular
expression
pattern, return
a corresponding
match object.
Return None if
the string does
not match the
pattern; note that
this is different
from a zero-
length match.

Did You
Know?

3G E-LEARNING

178 Basic Computer Coding: Python

2 string

 This is the string, which would be searched to
match the pattern anywhere in the string.

3 flags

 You can specify different flags using bitwise OR
 (|). These are modifiers, which are listed in the
table below.

The re.search function returns a match object on success, none on failure. We use
group(num) or groups() function of match object to get matched expression.

Sr.No. Match Object Methods & Description
1 group(num=0)

 This method returns entire match (or specific subgroup
num)

2 groups()

 This method returns all matching subgroups in a tuple
(empty if there weren’t any)

Example

usr/bin/python/!#
import re

line = “Cats are smarter than dogs”;

searchObj = re.search(r’(.*) are (.*?) .*’, line, re.M|re.I)

if searchObj:
 print “searchObj.group() : “, searchObj.group()
 print “searchObj.group(1) : “, searchObj.group(1)
 print “searchObj.group(2) : “, searchObj.group(2)
else:
 print “Nothing found!!”
When the above code is executed, it produces following result −

Python Regular Expression

3G E-LEARNING

179

searchObj.group() : Cats are smarter than dogs
searchObj.group(1) : Cats
searchObj.group(2) : smarter

6.1.3 Matching Versus Searching

Python offers two different primitive operations based on
regular expressions: match checks for a match only at the
beginning of the string, while search checks for a match
anywhere in the string (this is what Perl does by default).

Example

#!/usr/bin/python
import re

line = “Cats are smarter than dogs”;

matchObj = re.match(r’dogs’, line, re.M|re.I)
if matchObj:
 print “match --> matchObj.group() : “, matchObj.group()
else:
 print “No match!!”

searchObj = re.search(r’dogs’, line, re.M|re.I)
if searchObj:
 print “search --> searchObj.group() : “, searchObj.group()
else:
 print “Nothing found!!”

When the above code is executed, it produces the following
result −

No match!!
search --> matchObj.group() : dogs

 String
 is traditionally
 a sequence of
 characters, either
 as a literal constant
 or as some kind of
variable.

Keyword

3G E-LEARNING

180 Basic Computer Coding: Python

6.1.4 Search and Replace

One of the most important re methods that use regular
expressions is sub.

Syntax

)re.sub(pattern, repl, string, max=0
 This method replaces all occurrences of the RE pattern
 in string with repl, substituting all occurrences unless max
.provided. This method returns modified string

Example

usr/bin/python/!#
import re
”phone = “2004-959-559 # This is Phone Number

Delete Python-style comments #
)num = re.sub(r’#.*$’, “”, phone
print “Phone Num : “, num

Remove anything other than digits #
)num = re.sub(r’\D’, “”, phone
print “Phone Num : “, num
 When the above code is executed, it produces the following
− result
Phone Num : 2004-959-559
Phone Num : 2004959559

6.2 REGULAR EXPRESSION MODIFIERS:
OPTION FLAGS
Regular expression literals may include an optional modifier to
control various aspects of matching. The modifiers are specified
as an optional flag. You can provide multiple modifiers using
exclusive OR (|), as shown previously and may be represented
by one of these –

Regular
expressions
originated in
1951, when
mathematician
Stephen Cole
Kleene described
regular languages
using his
mathematical
notation called
regular sets.
These arose
in theoretical
computer science,
in the subfields
of automata
theory (models of
computation) and
the description
and classification
of formal
languages.

Did You
Know?

 Regular
 expression
 is a sequence of
 characters that
 define a search
pattern.

Keyword

Python Regular Expression

3G E-LEARNING

181

Sr.No. Modifier & Description
1 re.I

Performs case-insensitive matching.
2 re.L

 Interprets words according to the current locale. This
 interpretation affects the alphabetic group (\w and \W), as
well as word boundary behavior(\b and \B).

3 re.M

 Makes $ match the end of a line (not just the end of the string)
 and makes ^ match the start of any line (not just the start of the
string).

4 re.S

Makes a period (dot) match any character, including a newline.
5 re.U

 Interprets letters according to the Unicode character set. This
flag affects the behavior of \w, \W, \b, \B.

6 re.X

 Permits “cuter” regular expression syntax. It ignores whitespace
 (except inside a set [] or when escaped by a backslash) and
treats unescaped # as a comment marker.

6.2.1 Regular Expression Patterns

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match themselves.
You can escape a control character by preceding it with a backslash.

Following table lists the regular expression syntax that is available in Python −

Sr.No. Pattern & Description
1 ^

Matches beginning of line.
2 $

Matches end of line.
3 .

Matches any single character except newline.
Using m option allows it to match newline as well.

3G E-LEARNING

182 Basic Computer Coding: Python

4 [...]
Matches any single character in brackets.

5 [^...]
Matches any single character not in brackets

6 re*
Matches 0 or more occurrences of preceding
expression.

7 re+
Matches 1 or more occurrence of preceding
expression.

8 re?
Matches 0 or 1 occurrence of preceding expression.

9 re{ n}
Matches exactly n number of occurrences of
preceding expression.

10 re{ n,}
Matches n or more occurrences of preceding
expression.

11 re{ n, m}
Matches at least n and at most m occurrences of
preceding expression.

12 a| b
Matches either a or b.

13 (re)
Groups regular expressions and remembers
matched text.

14 (?imx)
Temporarily toggles on i, m, or x options within
a regular expression. If in parentheses, only that
area is affected.

15 (?-imx)
Temporarily toggles off i, m, or x options within
a regular expression. If in parentheses, only that
area is affected.

Python Regular Expression

3G E-LEARNING

183

16 (?: re)
Groups regular expressions without remembering
matched text.

17 (?imx: re)
Temporarily toggles on i, m, or x options within
parentheses.

18 (?-imx: re)
Temporarily toggles off i, m, or x options within
parentheses.

19 (?#...)
Comment.

20 (?= re)
Specifies position using a pattern. Doesn’t have
a range.

21 (?! re)
Specifies position using pattern negation. Doesn’t
have a range.

22 (?> re)
Matches independent pattern without backtracking.

23 \w
Matches word characters.

24 \W
Matches nonword characters.

25 \s
Matches whitespace. Equivalent to [\t\n\r\f].

26 \S
Matches nonwhitespace.

27 \d
Matches digits. Equivalent to [0-9].

28 \D
Matches nondigits.

29 \A
Matches beginning of string.

3G E-LEARNING

184 Basic Computer Coding: Python

30 \Z
Matches end of string. If a newline exists, it
matches just before newline.

31 \z
Matches end of string.

32 \G
Matches point where last match finished.

33 \b
Matches word boundaries when outside brackets.
Matches backspace (0x08) when inside brackets.

34 \B
Matches nonword boundaries.

35 \n, \t, etc.
Matches newlines, carriage returns, tabs, etc.

36 \1...\9
Matches nth grouped subexpression.

37 \10
Matches nth grouped subexpression if it matched
already. Otherwise refers to the octal representation
of a character code.

6.2.2 Regular Expression Examples

Literal characters

Sr.No. Example & Description
1 python

Match “python”.

The
Python
module re
provides full
support for
Perl-like regular
expressions in
Python. The re
module raises the
exception re.error
if an error occurs
while compiling
or using a regular
expression.

Remember

Python Regular Expression

3G E-LEARNING

185

Character classes

Sr.No. Example & Description
1 [Pp]ython

Match “Python” or “python”
2 rub[ye]

Match “ruby” or “rube”
3 [aeiou]

Match any one lowercase vowel
4 [0-9]

Match any digit; same as [0123456789]
5 [a-z]

Match any lowercase ASCII letter
6 [A-Z]

Match any uppercase ASCII letter
7 [a-zA-Z0-9]

Match any of the above
8 [^aeiou]

 Match anything other than a lowercase
vowel

9 [^0-9]

Match anything other than a digit

Special Character Classes

Sr.No. Example & Description
1 .

Match any character except newline
2 \d

Match a digit: [0-9]

 Digit is
 a single
 character in a
 numeric system.
 For example, 0, 1, 2,
 3, 4, 5, 6, 7, 8, 9 are
all digits.

Keyword

3G E-LEARNING

186 Basic Computer Coding: Python

3 \D

Match a nondigit: [^0-9]
4 \s

Match a whitespace character: [\t\r\
n\f]

5 \S

Match nonwhitespace: [^ \t\r\n\f]
6 \w

 Match a single word character:
[A-Za-z0-9_]

7 \W

 Match a nonword character:
[^A-Za-z0-9_]

Repetition Cases

Sr.No. Example & Description
1 ruby?

Match “rub” or “ruby”: the y is optional
2 ruby*

Match “rub” plus 0 or more ys
3 ruby+

Match “rub” plus 1 or more ys
4 \d{3}

Match exactly 3 digits
5 \d{3,}

Match 3 or more digits
6 \d{3,5}

Match 3, 4, or 5 digits

Python Regular Expression

3G E-LEARNING

187

Nongreedy repetition

This matches the smallest number of repetitions −

Sr.No. Example & Description
1 <.*>

Greedy repetition: matches “<python>perl>”
2 <.*?>

Nongreedy: matches “<python>” in “<python>perl>”

Grouping with Parentheses

Sr.No. Example & Description
1 \D\d+

No group: + repeats \d
2 (\D\d)+

Grouped: + repeats \D\d pair
3 ([Pp]ython(,)?)+

Match “Python”, “Python, python, python”, etc.

Backreferences

This matches a previously matched group again −

Sr.No. Example & Description
1 ([Pp])ython&\1ails

Match python&pails or Python&Pails
2 ([‘”])[^\1]*\1

 Single or double-quoted string. \1 matches whatever the
 1st group matched. \2 matches whatever the 2nd group
matched, etc.

3G E-LEARNING

188 Basic Computer Coding: Python

Alternatives

Sr.No. Example & Description
1 python|perl

Match “python” or “perl”
2 rub(y|le))

Match “ruby” or “ruble”
3 Python(!+|\?)

“Python” followed by one or more ! or one ?

Anchors

This needs to specify match position.

Sr.No. Example & Description
1 ^Python

Match “Python” at the start of a string or internal line
2 Python$

Match “Python” at the end of a string or line
3 \APython

Match “Python” at the start of a string
4 Python\Z

Match “Python” at the end of a string
5 \bPython\b

Match “Python” at a word boundary
6 \brub\B

\B is nonword boundary: match “rub” in “rube” and “ruby” but not alone
7 Python(?=!)

Match “Python”, if followed by an exclamation point.
8 Python(?!!)

Match “Python”, if not followed by an exclamation point.

Python Regular Expression

3G E-LEARNING

189

Special Syntax with Parentheses

Sr.No. Example & Description
1 R(?#comment)

Matches “R”. All the rest is a comment
2 R(?i)uby

Case-insensitive while matching “uby”
3 R(?i:uby)

Same as above
4 rub(?:y|le))

Group only without creating \1 backreference

3G E-LEARNING

190 Basic Computer Coding: Python

CASE STUDY

PYTHON
Python is an interpreted, dynamically-typed, object-oriented scripting language with
a host of built-in data types. It is implemented in C, but in a very object-oriented
fashion. The design is a good model for language implementation.

The Python interpreter works by loading a source file or reading a line typed at the
keyboard, parsing it into an abstract syntax tree, compiling the tree into bytecode, and
executing the bytecode. We will concentrate mainly on how the bytecode is executed,
such as how inheritance and environments are implemented.

Parsing

The parsing process is fairly standard. The basic idea is to first convert the input
characters into a more abstract representation like name: x, integer: 7, string: “hello”,
less-than-or-equal, etc. The abstracted characters are called tokens. (There are utilities,
such as lex, for automatically generating tokenizers, but Python does not use one.)
The tokenization process is fully described in the language reference.

For example, the statement
while(x <= 3):
 f(x)
might be tokenized as
keyword: while
left-paren
name: x
leq
int: 3
right-paren
colon
indent
name: f
left-paren
name: x
right-paren
Then the tokens are assembled into expressions, statements, function definitions,

class definitions, etc. Since function definitions contain statements which contain

Python Regular Expression

3G E-LEARNING

191

expressions which may contain nested expressions, and so on, the resulting data
structure of tokens is a tree, called a parse tree or abstract syntax tree. The tokens above
might be parsed into this tree:

There are standard utilities, such as yacc, which aid in generating parsers, but
Python does not use one. Instead, it uses nested DFAs, which is a recursive tokenizer
that fills the tree out downward. A similar technique was used in the book Essentials
of Programming Languages. You can learn more about tokenizing, parsing, and
compilation in MIT course 6.035 or from various books such as Crafting a Compiler in
C or Compilers: Principles, Techniques, and Tools.

Once you have a parse tree, you can do type checking, type reconstruction, constant
folding, liveness analysis, and many other kinds of optimizations and analysis. Python
only uses it for compilation.

Compilation

The parse tree is then compiled into bytecode by a recursive walk. For example, a
while syntax node contains an expression node for the test and a compound statement
node for the body. A while node is compiled into:

loop:
(code for test)
jump_if_false done
(code for body)
jump loop
done:

3G E-LEARNING

192 Basic Computer Coding: Python

where the test and body nodes are compiled recursively. Virtually all of the
compilation rules can be described as rewrites like this. Compilation has the opposite
structure of parsing: it flattens the tree, converting it back to bytes.

Bytecode is virtual machine instructions are packed into an array of bytes. The
instructions are based on stack manipulation. Some instructions have no arguments
and take up one byte, e.g. BINARY_ADD (pop two values from the stack and push
their sum), while other instructions have an additional two-byte integer argument, e.g.
LOAD_NAME i (push the value of the i-th variable name). The full list of bytecodes
is here. Bytecode is paired with a symbol table and constant pool so that names and
literals can be referenced by number in the instructions.

The bytecode for the above parse tree is something like:
loop:

load-name 1 (x)
load-const 1 (3)
compare-op le

jump_if_false done

load-name 2 (f)
load-name 1 (x)
call-function 1

jump loop
done:
Python does not perform much optimization on the bytecode, except for speeding-

up local variable access. The reasons for this are tied to how the interpreter works
and will be discussed later.

This conversion pattern, where the input is abstracted, processed, then specialized,
is a common one in many varieties of programs and is also presented in Abstraction
and Specification in Program Development.

Execution

At face value, the execution algorithm is straightforward: fetch the next instruction,
perform the required stack manipulation or, in the case of a jump, reposition the
instruction pointer. However, much of the real functionality is hidden in the value

Python Regular Expression

3G E-LEARNING

193

objects. For example, there is only one BINARY_ADD instruction, yet Python must do
very different things when adding integers, floats, strings, or user-defined objects.

Value objects

The trick is to decouple the kinds of values in the language from the interpreter
core. This is allows Python to have many built-in data types without a complexity
explosion. Each value supports the same interface, some of which is listed here:

add(v)
Add yourself to v and return the result as a new object. It corresponds to x + v.
cmp(v)
Compare yourself to v and return -1, 0, or 1 (a la strcmp). It corresponds to x == v.
repr()
Return a string representation of yourself.
getattr(name), getitem(v)
Subscript yourself by name or arbitrary value v. getattr corresponds to x.name and

getitem corresponds to x[v].
call(args, keywords)
Call yourself with positional arguments args and keyword arguments keywords. It

corresponds to x(1, 2, 3, foo = 4, bar = 5).
Each method in this interface has a bytecode counterpart which invokes it, e.g.

BINARY_ADD. The stack is simply an array of value objects, which each know how
to add themselves. Numerical Python takes advantage of this open-ended design to
add multi-dimensional arrays, e.g. matrices, to the language.

New kinds of values can even be defined from within Python. An object with a
method called __cmp__ will use that method for comparison instead of the default
object comparison method. All methods in the value interface can be overrided in
this way (including the getattr method which is used to look up object methods in
the first place).

The built-in value objects are:
Primitives
Integer/Long
Float
String
File
Function
Composites

3G E-LEARNING

194 Basic Computer Coding: Python

Tuple
List
Dictionary
Class
Class instance
Module
Note that functions are simply values that implement the call method. Thus

classes and their instances can just associate names with arbitrary values, i.e. act like
dictionaries.

Inheritance

Classes and instances differ slightly from dictionaries, however, in that instances
inherit from classes and classes can inherit from other classes. The inheritance is such
that changes to classes are immediately visible in their descendants and instances, as
illustrated in this example:
class p:
 x = 3

class c(p):
 y = “hello”

i = c()
i.y (prints “hello”)
i.x (prints 3)
p.x = 4
c.x (prints 4)
i.x (prints 4)
Thus classes and instances differ from dictionaries in that if a read cannot be resolved,
the request is passed to the parent class. Since classes can change at run-time, this
makes the inheritance process highly dynamic. This is a recurring pattern called a
Chain of Responsibility. The object diagram for the above example is thus:

Python Regular Expression

3G E-LEARNING

195

Note that if Python hadn’t provided inheritance, we could recreate it by providing
a __getattr__ method to do the forwarding. The parent class would be stored explicitly
in a variable. This would have the interesting side-effect that inheritance links could
be changed at run-time by modifying this variable. The Chain of Responsibility pattern
fully supports such changes.

What happens on a write? If requests were forwarded up the Chain, as with a
read, there would be no way to override a slot in a parent class. In the above example,
c.x = 5 would be the same as p.x = 5. (If the variable turns out to be unbound, then
the object written to would gain a new slot.) If requests were not forwarded, then the
object written to would always gain a new slot, shadowing the ancestor slot. Python
chooses the latter, so that parent methods can be overrided in children. Thus we get:

c.x = 5
p.x (prints 4)
i.x (prints 5)

i.x = i.x
c.x = 6
i.x (prints 5)
Note that i.x = i.x performs useful work under this design choice.
Does Python need to distinguish between classes and instances? Both are essentially

dictionaries and have the same read/write and inheritance mechanism. Perhaps it’s
for efficiency reasons: there are usually far fewer classes than instances, so certain
optimizations can be applied to classes but not instances.

3G E-LEARNING

196 Basic Computer Coding: Python

Variable scope

Python variable environments, aka “stack frames”, have many of the qualities of
objects. They are dictionaries of names with the same kind of inheritance semantics.
That is, variables used in a function by default refer to global names, but if a variable
is assigned to in the function, it becomes local. The same applies to class definitions.

One can imagine also designing variable scope with a Chain of Responsibility. In
fact, some languages do this, even ones which don’t have the corresponding notion
of inheritance. Structure and Interpretation of Computer Programs uses it to describe
Scheme’s method of variable scope. The Self language actually treats environments as
objects and uses inheritance to implement lexical scope!

However, Python does not take this approach, probably for efficiency reasons.
Python does not allow more than two simultaneous environments (the global and the
local), as noted in the PLE exercise on nested scopes. This allows certain optimizations,
like the LOAD_FAST bytecode, but can confuse programmers used to lexical scoping.
The following C++ fragment has no equivalent in Python:

int x = 1;
if(x > y) {
 int x = 2;
 cout << x; // prints 2
}
cout << x; // prints 1
Scheme programmers may wonder: then how does Python implement lambda?

The escape was to abandon lexical scoping for lambda. The body of a lambda only
has the global and local environments.

Python Regular Expression

3G E-LEARNING

197

SUMMARY
■■ Regular expressions (called REs, or regexes, or regex patterns) are essentially

a tiny, highly specialized programming language embedded inside Python
and made available through the re module.

■■ Regular expression patterns are compiled into a series of bytecodes which
are then executed by a matching engine written in C. For advanced use, it
may be necessary to pay careful attention to how the engine will execute a
given RE, and write the RE in a certain way in order to produce bytecode
that runs faster.

■■ The regular expression language is relatively small and restricted, so not all
possible string processing tasks can be done using regular expressions. There
are also tasks that can be done with regular expressions, but the expressions
turn out to be very complicated.

■■ Python is a high level open source scripting language. Python’s built-in “re”
module provides excellent support for regular expressions, with a modern
and complete regex flavor.

■■ Python offers two different primitive operations based on regular expressions:
match checks for a match only at the beginning of the string, while search
checks for a match anywhere in the string (this is what Perl does by default).

■■ Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match
themselves. You can escape a control character by preceding it with a backslash.

3G E-LEARNING

198 Basic Computer Coding: Python

KNOWLEDGE CHECK
1.	 The character Dot (that is, ‘.’) in the default mode, matches any character other

than ………………
a.	 caret
b.	 ampersand
c.	 percentage symbol
d.	 newline

2. 	 The expression a{5} will match ……………… characters with the previous regular
expression.
a.	 5 or less
b.	 exactly 5
c.	 5 or more
d.	 exactly 4

3. 	 Choose the function whose output can be: <_sre.SRE_Match object; span=(4, 8),
match=’aaaa’>.
a.	 >>> re.search(‘aaaa’, “alohaaaa”, 0)
b.	 >>> re.match(‘aaaa’, “alohaaaa”, 0)
c.	 >>> re.match(‘aaa’, “alohaaa”, 0)
d.	 >>> re.search(‘aaa’, “alohaaa”, 0)

4. 	 Which of the following functions clears the regular expression cache?
a.	 re.sub()
b.	 re.pos()
c.	 re.purge()
d.	 re.subn()

5. 	 Which of the following functions results in case insensitive matching?
a.	 re.A
b.	 re.U
c.	 re.I
d.	 re.X

6. 	 Which of the following creates a pattern object?
a.	 re.create(str)
b.	 re.regex(str)

Python Regular Expression

3G E-LEARNING

199

c.	 re.compile(str)
d.	 re.assemble(str)

7.	 What does the function re.match do?
a.	 matches a pattern at the start of the string
b.	 matches a pattern at any position in the string
c.	 such a function does not exist
d.	 none of the mentioned

8. 	 What does the function re.search do?
a.	 matches a pattern at the start of the string
b.	 matches a pattern at any position in the string
c.	 such a function does not exist
d.	 none of the mentioned

REVIEW QUESTIONS
1.	 What is the match function?
2.	 What is the search function?
3.	 Discuss about search and replace.
4.	 Discuss about regular expression modifiers: option flags.
5.	 Describe the regular expression patterns.

Check Your Result

1. (d)		 2. (b)		 3. (a)		 4. (c)		 5. (d)
6. (c)		 7. (a)		 8. (b)

3G E-LEARNING

200 Basic Computer Coding: Python

REFERENCES
1.	 A.M. Kuchling (2001-12-21). “PEP 255: Simple Generators”. What’s New in Python

2.2. Python Foundation. Retrieved 2008-09-05.
2.	 Barry Warsaw (2011-11-09). “PEP 404 -- Python 2.8 Un-release Schedule”. Retrieved

2012-10-07.
3.	 Guido van Rossum (January 20, 2009). “The History of Python”. Retrieved March

3, 2018.
4.	 Neal Norwitz; Barry Warsaw (2006-06-29). “PEP 361 -- Python 2.6 and 3.0 Release

Schedule”. Retrieved 2012- 10-07.
5.	 Rossum, Guido van van. “Python 3000 FAQ”. artima. com. Retrieved December

27, 2016.

“The main languages out of which web applications are built - whether it›s Perl or Python or PHP
or any of the other languages - those are all open source languages. So the infrastructure of the web
is open source the web as we know it is completely dependent on open source. ”

–Mitch Kapor

After studying this chapter,
you will be able to:
1.	 Discuss on python

threading and python
multithreading

2.	 Determine the useful
functions in python
multithreading

LEARNING
OBJECTIVES

PYTHON
MULTITHREADING

INTRODUCTION
Multithreading is a threading technique in Python
programming to run multiple threads concurrently by
rapidly switching between threads with a CPU help (called

7
CHAPTER

3G E-LEARNING

202 Basic Computer Coding: Python

context switching). Besides, it allows sharing of its data space with the main threads
inside a process that share information and communication with other threads easier
than individual processes. Multithreading aims to perform multiple tasks simultaneously,
which increases performance, speed and improves the rendering of the application.

Following are the benefits to create a multithreaded application in Python, as
follows:

■■ It ensures effective utilization of computer system resources.
■■ Multithreaded applications are more responsive.
■■ It shares resources and its state with sub-threads (child) which makes it more

economical.
■■ It makes the multiprocessor architecture more effective due to similarity.
■■ It saves time by executing multiple threads at the same time.
■■ The system does not require too much memory to store multiple threads.

It is a very useful technique for time-saving and improving the performance of an
application. Multithreading allows the programmer to divide application tasks into sub-tasks
and simultaneously run them in a program. It allows threads to communicate and share
resources such as files, data, and memory to the same processor. Furthermore, it increases the
user’s responsiveness to continue running a program even if a part of the application is the
length or blocked.

7.1 PYTHON THREADING – PYTHON MULTITHREADING
Python threading module is used to implement multithreading in python programs.
Threading in python is used to run multiple threads (tasks, function calls) at the same
time. Note that this does not mean that they are executed on different CPUs. Python
threads will not make your program faster if it already uses 100 % CPU time. In
that case, you probably want to look into parallel programming. If you are interested
in parallel programming with python. Python multiprocessing is one of the similar
module that we looked into sometime back.

Python Multithreading

3G E-LEARNING

203

The threading module builds on the low-level features of
thread to make working with threads even easier and more
pythonic. Using threads allows a program to run multiple
operations concurrently in the same process space. In Computer
Science, threads are defined as the smallest unit of work which
is scheduled to be done by an Operating System. Some points
to consider about Threads are:

■■ Threads exists inside a process.
■■ Multiple threads can exist in a single process.
■■ Threads in same process share the state and memory

of the parent process.
This was just a quick overview of Threads in general. This

post will mainly focus on the threading module in Python.

7.1.1 Getting Started with Python
Multithreading

Running several threads is similar to running several different
programs concurrently, but with the following benefits −

■■ Multiple threads within a process share the same data
space with the main thread and can therefore share
information or communicate with each other more
easily than if they were separate processes.

■■ Threads sometimes called light-weight processes and
they do not require much memory overhead; they
are cheaper than processes.

A thread has a beginning, an execution sequence, and a
conclusion. It has an instruction pointer that keeps track of
where within its context it is currently running.

■■ It can be pre-empted (interrupted)
■■ It can temporarily be put on hold (also known as

sleeping) while other threads are running - this is
called yielding.

Let us start by creating a Python module, named download.
 py. This file will contain all the functions necessary to fetch
 the list of images and download them. We will split these
:functionalities into three separate functions

■■ get_links

Python
2.0 was released
on 16 October
2000 and had
many major
new features,
including
a cycle-detecting
garbage
collector and
support for
Unicode. With
this release, the
development
process
became more
transparent and
community-
backed.

Did You
Know?

3G E-LEARNING

204 Basic Computer Coding: Python

■■ download_link
■■ setup_download_dir

The third function, setup_download_dir, will be used to
create a download destination directory if it does not already
exist.

Imgur’s API requires HTTP (Hypertext Transfer Protocol)
requests to bear the Authorization header with the client ID.
You can find this client ID from the dashboard of the application
that you have registered on Imgur, and the response will be
JSON encoded. We can use Python’s standard JSON library
to decode it. Downloading the image is an even simpler task,
as all you have to do is fetch the image by its URL and write
it to a file.

7.1.2 Python Multithreading Modules for Thread
Implementation

Python offers two modules to implement threads in programs.
■■ <thread> module and
■■ <threading> module.

For your information, <thread> module is deprecated in
Python 3 and renamed to <_thread> module for backward
compatibility. But we will explain both methods because many
of the users still use legacy Python versions.

The key difference between the two modules is that the
module <thread> implements a thread as a function. On the
other hand, the module <threading> offers an object-oriented
approach to enable thread creation.

 IronPython, a Python implementation using the .NET framework, does not have a
 GIL, and neither does Jython, the Java-based implementation. You can find a list
.of working Python implementations

7.1.3 Difference between Multiprocessing and
Multithreading

Multiprocessing and Multithreading both adds performance
to the system. Multiprocessing is adding more number of or

 HTTP is an
 application
 protocol for
 distributed,
 collaborative,
 and hypermedia
 information
 systems.
 HTTP is the
 foundation of data
 communication for
 the World Wide
Web.

Keyword

Python Multithreading

3G E-LEARNING

205

CPUs/processors to the system which increases the computing speed of the system.
Multithreading is allowing a process to create more threads which increase the
responsiveness of the system.

Comparison Chart

 BASIS FOR
COMPARISON

MULTIPROCESSING MULTITHREADING

Basic Multiprocessing adds
 CPUs to increase
computing power.

 Multithreading creates multiple
 threads of a single process to
increase computing power.

Execution Multiple processes are
executed concurrently.

 Multiple threads of a
 single process are executed
concurrently.

Creation Creation of a process
 is time-consuming and
resource intensive.

 Creation of a thread is
 economical in both sense time
and resource.

Classification Multiprocessing
 can be symmetric or
asymmetric.

Multithreading is not classified.

Key Differences between Multiprocessing and Multithreading

■■ The key difference between multiprocessing and multithreading is that
multiprocessing allows a system to have more than two CPUs added to the
system whereas multithreading lets a process generate multiple threads to
increase the computing speed of a system.

■■ Multiprocessing system executes multiple processes simultaneously whereas, the
multithreading system let execute multiple threads of a process simultaneously.

■■ Creating a process can consume time and even exhaust the system resources.
However creating threads is economical as threads belonging to the same
process share the belongings of that process.

■■ Multiprocessing can be classified into symmetric multiprocessing and
asymmetric multiprocessing whereas, multithreading is not classified further.

The benefits of multithreading can be gradually increased in multiprocessing
environment as multithreading on a multiprocessing system increases parallelism.

3G E-LEARNING

206 Basic Computer Coding: Python

7.2 FUNCTIONS IN PYTHON
MULTITHREADING
The module ‘threading’, for Python, helps us with thread-
based parallelism. It constructs higher-level threading interfaces
on top of the lower level _thread module. Where _thread is
missing, we cannot use threading. For such situations, we
have dummy_threading.

We have the following functions in the Python
Multithreading module:

a. active_count()
This returns the number of alive(currently) Thread objects.

This is equal to the length the of the list that enumerate()
returns.

>>> threading.active_count()
2
b. current_thread()
Based on the caller’s thread of control, this returns the

current Thread object. If this thread of control is not through
‘threading’, it returns a dummy thread object with limited
functionality.

>>> threading.current_thread()

<_MainThread(MainThread, started 14352)>
c. get_ident()
get_ident() returns the current thread’s identifier, which

is a non-zero integer. We can use this to index a dictionary of
thread-specific data. Apart from that, it has no special meaning.

The fork function
creates a copy of
the process, all
memory pages
are copied, open
file descriptors
are copied etc.
All this stuff
is intuitive
for a UNIX
programmer.
One important
thing that differs
the child process
from the parent
is that the child
has only one
thread. Cloning
the whole
process with all
threads would
be problematic
and in most
cases not what
the programmer
wants.

Remember

Python Multithreading

3G E-LEARNING

207

When one thread exits and another creates, Python recycles such an identifier.
>>> threading.get_ident()
14352
d. enumerate()
This returns a list of all alive(currently) Thread objects. This includes the main

thread, daemonic threads, and dummy thread objects created by current_thread(). This
obviously does not include terminated threads as well as those that have not begun yet.

>>> threading.enumerate()
[<_MainThread(MainThread, started 14352)>, <Thread(SockThread, started daemon

9864)>
e. main_thread()
This method returns the main Thread object. Normally, it is that thread which

started the interpreter.
>>> threading.main_thread()
<_MainThread(MainThread, started 14352)>
f. settrace(func)
settrace() traces a function for all threads we started using ‘threading’. The argument

func passes to sys.settrace() for each thread before it calls its run() method.
>>> def sayhi():
print(“Hi”)
>>> threading.settrace(sayhi)
>>>
g. setprofile(func)
This method sets a profile function for all threads we started from ‘threading’. It

passes func to sys.setprofile() for each thread before it calls its run() method.
>>> threading.setprofile(sayhi)

1.1>>>

h. stack_size([size])
stack_size() returns the stack size of a thread when creating new threads. size is the
stack size we want to use for subsequently created threads. This must be equal to 0 or
a positive integer of value at least 32,768 (32KiB). When not specified, it uses 0. And
if it does not support changing thread stack size, it raises a RuntimeError.

When we pass an invalid stack size, it raises a ValueError, and does not modify
it. The minimum stack size it currently supports to guarantee enough stack space for
the interpreter itself is 32KiB. Some platforms may need a minimum stack size of

3G E-LEARNING

208 Basic Computer Coding: Python

greater than 32KiB. Others may need to allocate in multiples
of system memory page size.

>>> threading.stack_size()
0
Apart from functions, ‘threading’ also defines a constant.
h. TIMEOUT_MAX
This holds the maximum allowed value for this constant,

the timeout parameter for blocking functions like Lock.acquire(),
Condition.wait(), RLock.acquire(), and others. If we denote a
timeout greater than this, it raises an OverflowError.

>>> threading.TIMEOUT_MAX
4294967.0
In Java, locks and condition variables are the basic behavior

of every object. Whereas in Python, they are individual objects.
Here, the class Thread supports some of the functionality of
class Thread in Java. However, currently, we have no thread
groups, priorities, and we cannot destroy, stop, suspend,
resume, or interrupt threads. When we implement the static
methods from Java’s Thread, they map to module-level
functions. This way, ‘threading’ is much like Java’s threading
model in design.

7.2.1 Thread-Local Data

That data for which the values are thread-specific, is thread-
local. To manage such data, we can create an instance of local/a
subclass, and then store attributes on it.

>>> mydata=threading.local()
>>> mydata.x=7
>>>
These instance values differ for each thread. We have the

following class denoting thread-local data:
class threading.local
A class that represents thread-local data.

 Thread of
 execution
 is the smallest
 sequence of
 programmed
 instructions that
 can be managed
 independently by
 a scheduler, which
 is typically a part
 of the operating
system.

Keyword

Python Multithreading

3G E-LEARNING

209

7.2.2 Thread Objects

 The Thread class that we mentioned earlier in this blog denotes
 an activity running in a separate thread of control. We can
 represent this activity either by passing a callable object to the
 constructor, ot by overriding the method run() in a subclass.
 You must make sure to not override other methods in a
 subclass, except for the constructor. In short, only override a
.class’ __init__() and run() methods

Once the interpreter creates a thread object, we must start
its activity by calling its start() method. This will invoke its
run() method in a separate thread of control. Once this happens,
we consider the thread to be ‘alive’. When run() terminates
normally or raising an exception we did not handle, it is no
longer alive. To test whether a thread is alive, we may use
the method is_alive().

A thread may call another’s join() method. This will block
the calling thread until the other terminates.

Threads have names, and we can pass these names to the
constructor, and even read or modify them.

We can flag a thread as a ‘daemon thread’. This means that
the whole program exits when only the daemon threads remain.
This initial value comes from the creating thread. We can set
this flag via the property ‘daemon’, or via the constructor
argument ‘daemon’. Daemons abruptly stop at shutdown, and
they may not properly release all the resources held. These
resources may include open files, database transactions, and
others. To stop our threads gracefully, we must make them
non-daemonic. It is also preferable to use a suitable signaling
process, like an Event.

The ‘main thread’ object pertains to the initial thread of
control in our program; it is not a daemon.

Finally, it is possible that the interpreter creates ‘dummy
thread objects’. These are ‘alien threads’ (threads of control
started outside ‘threading’, for ex, directly from C code). Such
objects have limited functionality, and are always live and
daemonic. We cannot join() them. We can also never delete
them since it is impossible to detect when they terminate.

Constructor is
a block of codes
similar to the
method. It is
called when an
instance of the
class is created.

Keyword

3G E-LEARNING

210 Basic Computer Coding: Python

This is the class:
class threading.Thread(group=None, target=None, name=None, args=(), kwargs={},

*, daemon=None)
Take note:

■■ Always call the constructor with keyword arguments. It has the following
arguments:

■■ group must be None. Python reserves this for future extension when we
implement a ThreadGroup class.

■■ target is a callable object that run() will invoke. The default for this is None,
which means it calls nothing.

■■ name is the name of the thread. The default for this is “Thread-N”. Here, N
is a small decimal number.

■■ args is an argument tuple. It helps invoke the target. The default for this is ().
■■ Kwargs is a dictionary holding keyword arguments. Even this helps invoke

the target. The default for this is {}.
■■ daemon decides whether the thread is daemonic. When None, it inherits the

daemonic property from the current thread. The default for this is None.
■■ Ensure that you invoke the base class constructor(Thread.__init__()) first if

the subclass overrides the constructor.
Thread has the following methods:
a. start()
This starts thread activity. For a thread object, we can call it maximum once; if

we call it again, it raises a RuntimeError. This lets run() for the object invoke in a
separate thread of control.

■■ >>> threading.Thread.start(threading.current_thread())
■■ Traceback (most recent call last):
■■ File “<pyshell#135>”, line 1, in <module>
■■ threading.Thread.start(threading.current_thread())

RuntimeError: threads can only be started once
b. run()
This method explains the thread’s activity. It invokes the callable object we passed

to the object’s constructor as the target argument, if it exists. This is with keyword
and sequential arguments from kwargs and args.

We can override run() in a subclass.
c. join(timeout=None)

Python Multithreading

3G E-LEARNING

211

For join() to work, we must wait until the thread terminates. Because when that
happens, it blocks the calling thread until the one on which we call join() terminates
normally or via an exception we did not handle, or until timeout occurs.

When you do provide a timeout (other than None), make sure it is a floating point
number. This is so you can pass a timeout in seconds or fractions.

So, what is the return value? Well, join() always returns None. Hence, you will
need to call is_alive() after calling join() to determine if a timeout happened. If we
find out that it is indeed still alive, then we infer that the join() call timed out.

However, if timeout is None, or if we did not pass it, this blocks the operation
until the thread terminates. We can join() a thread many times.

Finally, join() will raise a RuntimeError if we try to join the current thread, because
that causes a deadlock. To join() a thread before we start it also causes an error.

■■ >>> threading.Thread.join(threading.current_thread())
■■ Traceback (most recent call last):
■■ File “<pyshell#138>”, line 1, in <module>
■■ threading.Thread.join(threading.current_thread())

RuntimeError: cannot join current thread
d. name

 This is a string we use for identification; it has no meaning. We can also give the
.same meaning to multiple threads. The constructor sets the initial name

■■ >>> threading.Thread.name=’First’

>>>
e. getName() and setName()

.These are old getter and setter APIs for name. We use them directly as properties
f. ident
If we started the thread, this returns its identifier. Otherwise, it returns None.

Note that it is a non-zero integer, like in the get_ident() function. Python may recycle
identifiers when one thread exits and another creates. Such identifiers exist even after
a thread exits.

g. is_alive()
This returns whether the thread is alive. is_alive() returns true from just before

run() starts until just after it terminates.
>>> threading.Thread.is_alive(threading.current_thread())
True
h. daemon

3G E-LEARNING

212 Basic Computer Coding: Python

daemon is a Boolean value that tells us whether the thread
is a daemon. If it is, it returns True. We must set it before
we call start(). Otherwise, it raises a RuntimeError. Its initial
value comes from the creating thread. The main thread is
not a daemon; hence, all threads in the main thread have a
default of False for daemon.

When only daemon threads remain, the whole program
exits.

i. isDaemon() and setDaemon()
These are old getter and setter APIs for daemon. You can

use them directly as properties.

7.2.3 Lock Objects

A synchronization primitive, a primitive lock does not belong
to a certain thread when locked. This is the lowest-level
synchronization primitive we currently have in Python, and
we implement it using the extension module _thread.

Such a lock can be in one of two states: ‘locked’ and
‘unlocked’. When we create a lock, it is in the ‘unlocked’
state. It also has two methods- acquire() and release(). When
we want to lock it, acquire() changes its state to ‘locked’, and
immediately returns it. If it was ‘locked’ instead, then acquire()
blocks until another thread calls release(). This changes the
state to ‘unlocked’. Finally, acquire() resets it to ‘locked’, and
then returns immediately.

If you try to release a lock that is already unlocked, it
raises a RuntimeError.

These locks also support the CMP(Context Management
Protocol).

When acquire() blocks more than one thread, only one
thread continues when release() resets the state to ‘unlocked’.
Which one, you ask? Well, we cannot say.

Also, all methods execute atomically.
This is the class:
class threading.Lock
This call implements primitive lock objects. Once a thread

acquires a lock, the interpreter blocks further attempts to

Whenever
a function
wants to modify
a variable,
it locks that
variable. When
another function
wants to use
a variable, it
must wait until
that variable is
unlocked.

Remember

Python Multithreading

3G E-LEARNING

213

acquire it. Only after it releases, does any other thread have a chance in acquiring it.
Any thread may release a lock.

a. acquire(blocking=True, timeout=-1)
This method acquires a blocking or non-blocking lock. When blocking=True, it blocks

until the lock unlocks. Then, it changes its state to ‘locked’, and returns True. And
when it is False, it does not block. A call with blocking=True that blocks, immediately
returns False. Otherwise, it sets the lock to ‘locked’ and returns True.

timeout is a floating-point argument. When it has a positive value, it blocks for a
maximum of timeout number of seconds; as long as the lock is not acquirable. When
it is -1, it denotes an unbounded wait.

When blocking is False, we cannot specify timeout.
Also, if the lock acquires successfully, it returns True; otherwise, False, like

when timeout expires.
b. release()
This method releases a lock. You can call it from any thread. This means that any

thread can release a lock, no matter which thread has acquired it.
When ‘locked’, release() resets it to ‘unlocked’, and returns. If other threads wait

for it to unlock, only one gets to continue once it unlocks.
When we call release() on an ‘unlocked’ lock, it raises a RuntimeError.
release() does not return any value.

7.2.4 RLock Objects

RLock is very important topic when you learn Python Multithreading. An RLock is
a reentrant lock. It is a synchronization primitive that a certain thread can acquire
again and again. It does so using concepts like ‘owning thread’ and ‘recursion level’,
and locked/unlocked states. When locked, an RLock belongs to a certain thread; but
when unlocked, no thread owns it.

Now, how does this work? To lock, a thread calls acquire(). Now that this thread
owns the lock, it returns. To unlock it, a thread calls release(). It is also possible to
nest acquire()/release() pairs. The outermost release() resets the lock to the ‘unlocked’
state. It also lets another blocked thread to continue.

Reentrant locks also support CMP(Context Management Protocol).
This is the class:
class threading.RLock
RLock implements reentrant lock objects. Such a lock only release by the thread

holding it. A thread can acquire it again without blocking. However, it must release
it once each time it acquires it.

3G E-LEARNING

214 Basic Computer Coding: Python

It has two methods:
a. acquire(blocking=True, timeout=-1)
acquire() lets us acquire a blocking or non-blocking lock.

Without arguments, if the thread already owns the lock, this
method ups the recursion level by one, and then returns. If it
does not already own it, and another thread owns it, it blocks
until the lock ‘unlocks’. And once unlocked, and if it does not
belong to any other thread, acquire() declares ownership and
sets recursion level to 1, and then returns. If more than one
thread waits blocked, at once, only one will get ownership.

This method returns no value. Finally, when we
set blocking to True, it does the same things we discussed,
and then returns True.

When blocking is False, however, it doe not block. When
a call without arguments blocks, it returns False. Otherwise,
it does what it does for a call without arguments, and then
returns True. And when we call acquire() with timeout, which
is a floating-point number, with a positive value, this blocks
for a maximum of timeout number of seconds, as long as we
cannot acquire the lock. If a thread has acquired it, it returns
True; if timeout has elapsed, it returns False.

b. release()
This method releases a lock and decrements the recursion

level. Once the decrement is 0, it resets the lock to the ‘unlocked’
state. This means no thread owns it. If other threads are
blocked, only one of them may continue. If the decrement is
non-zero, the lock stays in the ‘locked’ state, and belongs to
the calling thread.

You should only call release() when the calling thread
actually owns the lock. If it is already ‘unlocked’, this raises
a RuntimeError.

release() returns no value.
Now lets come to Condition Objects in Python

Multithreading.

7.2.5 Condition Objects

A condition variable always pertains to a lock, and we can
pass it in, or it creates by default. When several such condition

Context
management
is a dynamic
computer
process that
uses ‘subjects’
of data in one
application,
to point to
data resident
in a separate
application also
containing the
same subject

Remember

Python Multithreading

3G E-LEARNING

215

variables must share a lock, we can pass it in. But we do not need to exclusively track
a lock; it is a part of the condition object. A condition variable follows CMP (Context
Management Protocol) in that it uses the with-statement to acquire the associated lock
as long as the enclosed block is alive. acquire() and release() call the lock’s methods.

For other methods, we must call them with the associated lock the thread holds.
Once wait() releases the lock, it blocks until another thread wakes it up with a call
to notify() or notify_all(). After this, wait() acquires the lock again, and then returns.
We can also specify a timeout.

While notify() awakens one waiting thread, if any, notify_all() awakens all threads
waiting for the condition variable. Note that these two methods do not release the lock.
So, the threads awakened do not return from wait() immediately. They return only
when the calling thread for notify() or notify_all() gives up ownership for the lock.

This is the class:
class threading.Condition(lock=None)
Condition implements condition variable objects. A condition variable lets any

number of threads wait until another thread notifies them.
If lock is not None, and we do pass it, make sure it is a Lock or RLock object. This

should also serve as the underlying lock, otherwise this creates a new RLock object.
It has the following methods:
a. acquire(*args)
This acquires the underlying lock. It calls the corresponding method on it, and

returns what that method returns.
b. release()
This releases the underlying lock. It calls the corresponding method on it, and

returns nothing.
c. wait(timeout=None)
This method waits until a timeout happens or until someone notifies it. If at the time

of calling wait(), the calling thread does not own the lock, this raises a RuntimeError.
wait() releases the underlying lock, then blocks until a notify()/notify_all() call for

the same condition variable in another thread wakes it up, or until timeout happens.
And once this happens, it acquires the lock again, and then returns.

When we do pass timeout, and that is not None, make sure it is a floating point
number denoting a timeout for the operation in seconds or fractions.

If the underlying lock is an RLock, its release() method does not release it, because
this does not necessarily unlock it if it was acquired multiple times recursively. So,
what do we do? We use an internal interface of the RLock class. This unlocks it even
when it was recursively acquired many times. Then, we use another internal interface
to restore the recursion level when the thread acquires the lock again.

3G E-LEARNING

216 Basic Computer Coding: Python

wait() returns False if timeout expires. Otherwise, it returns
True.

d. wait_for(predicate, timeout=None)
This method waits until a condition becomes True.

The predicate is a callable with a Boolean result. We may
provide a timeout to specify a maximum time to wait.

wait_for() is a utility method, and it can repeatedly make
a call to wait() until the predicate satisfies, or until a timeout
happens. It returns the predicate’s last return value, and returns
False if the method times out.
 With this method, the same rules apply as do to wait(). When we
 call it, the lock must be held, and acquires again on return. This
evaluates the predicate with the lock held.

)e. notify(n=1
notify() wakes up a thread waiting on this condition, if

there is any. When we call it, if the calling thread does not own
the lock, this raises a RuntimeError. It wakes up a maximum
of n threads that wait for the condition variable. If no threads
wait, then it is a no-operation(NOP).

If at least n threads wait, this implementation will wake
exactly n threads up. But we cannot rely on this behavior. An
optimized implementation can occasionally wake more than
n threads up.

f. notify_all()
This wakes up all threads that wait on this condition. So,

this is like notify(), except that it wakes all waiting threads
instead of exactly one. If at the time of calling it, if the calling
thread does not own the lock, this raises a RuntimeError.

7.2.6 Semaphore Objects

Early Dutch computer scientist Edsger W. Dijkstra invented one
of the oldest synchronization primitives. Instead of acquire()
and release(), he used P() and V().

What is a semaphore? It is a primitive that lets us manage
an internal counter. Each call to acquire() decrements, and
each call to release() decrements it. But let us tell you, the
counter never goes below zero. When it is 0, acquire() blocks,
and waits until a thread makes a call to release().

 Recursion
 occurs
 when a thing is
 defined in terms
 of itself or of its
 type. Recursion is
 used in a variety of
 disciplines ranging
 from linguistics to
logic.

Keyword

Python Multithreading

3G E-LEARNING

217

Semaphores in Python Multithreading support CMP(Context Management Protocol).
This is the class we have:
class threading.Semaphore(value=1)
It implements semaphore objects. A semaphore holds an atomic counter denoting

the count of release() calls minus the count of acquire() calls, added to an initial value.
acquire() blocks if needed until it can leave the counter non-negative and still return.
The default value for the counter is 1.

This class implements semaphore objects. A semaphore manages an atomic counter
representing the number of release() calls minus the number of acquire() calls, plus
an initial value. The acquire() method blocks if necessary until it can return without
making the counter negative. If not given, value defaults to 1.

value can serve as an initial value for the internal counter. The default for this is
1. If we pass a value less than 0, this raises a ValueError.

It has the following methods:
)a. acquire(blocking=True, timeout=None

This acquires a semaphore. When we pass a timeout value other than None, it
blocks for a maximum of timeout seconds. If in that interval, acquire() does not complete
successfully, it returns False. Otherwise, it returns True.

When we call it without arguments, the following cases may be:
■■ If, on entry, the internal counter is greater than zero, it decrements it by one,

and then returns.
■■ If, on entry, the internal counter is zero, it blocks until a call to release() wakes

it up. Now that the counter is greater than 0, it decrements it by 1, and then
returns True. Each call to release() wakes exactly one thread. We cannot say
what order this happens in.

■■ When we call it with blocking with a value of False, it does not block. And if
a call without arguments blocks, then it returns False. Otherwise, it does the
same as when called without arguments, and then returns True.

b. release()
This method releases a semaphore, and increments the internal counter by 1. When,

on entry, it is 0, and another thread waits for it to grow again, it wakes that thread up.
We also have bounded semaphores:
class threading.BoundedSemaphore(value=1)
This class implements bounded semaphore objects. Such objects ensure that their

current values do not exceed their initial values. It this happens, this raises a ValueError.
Mostly, semaphores guard resources with limited capacity, for ex., a database server.
Where the resource size is fixed, use a bounded semaphore. But if it releases the

3G E-LEARNING

218 Basic Computer Coding: Python

semaphore way too many times, then you may have a bug in your code. The default
for this is 1.

Let’s take an example. The main thread initializes the semaphore before spawning
any worker threads:

>>> maxconnections=5
>>> pool_sema=threading.Bounded Semaphore (value = maxconnections)
Now that it is spawned, the worker threads call acquire() and release() when they

must connect to the server:
■■ >>>with pool_sema:
■■ conn=connectdb()
■■ try:
■■ #use connection
■■ finally:
■■ conn.close()
■■ Using a bounded semaphore lessens the chances of programming errors.

7.2.7 Event Objects

An extremely simple tool in Python Multithreading to communicate, it lets one thread
play an event, and the other must wait for it. An event object deals an internal flag.
The methods set() and clear() allow us to set and reset it to True and False, respectively.
Until flag is True, wait() blocks.
:This is the class
class threading.Event
This class implements event objects. An event handles a flag, and we can use the
methods set() and clear() to set and reset it to True and False, respectively. Initially,
the flag is False. wait() blocks it until it becomes True.
It has the following methods:
a. is_set()
If the internal flag is True, it returns True.
b. set()
This method sets the internal flag to True, and wakes all threads waiting for it to
become True. Once it is True, waiting threads do not block at all.
c. clear()
This resets the internal flag to False. Eventually, waiting threads block until somebody
calls set() to set the internal flag to True yet again.

Python Multithreading

3G E-LEARNING

219

d. wait(timeout=None)
Until the internal flag is True, this method blocks. On entry,
if it is True, it returns immediately. Otherwise, it blocks until
another thread makes a call to set() to set the flag to True, or
until timeout happens.
When timeout exists, and is not Now, make sure it is a floating-
point number denoting a timeout for the operation in seconds
or fractions.
It returns True only if the internal flag is True- either before
the call to wait(), or after. This way, wait() always returns
True. However, if timeout exists and the operation times out,
it returns False.

7.2.8 Timer Objects

Timer denotes an action that should run only after a given
amount of time; it is a timer in Python Multithreading. This
is a subclass of Thread, and we can also use it to learn how
to create our own threads.

When we call start() on a thread, a timer start with it. We
can stop it before it begins, if we call cancel() on it. Before
executing, a timer waits for some interval; this may differ
from the interval we specify.

Take an example:
>>> def hello():
print(“Hello”)
>>> t=threading.Timer(30.0,hello)
>>> t.start()
This is the class:

 class threading.Timer(interval, function, args=None,
)kwargs=None

It creates a timer that runs a function(with arguments args
and kwargs) after intervalseconds. When args is None, it uses
an empty list. This is the default. And when kwargs is None,
it uses an empty dict. This is a default too.

It has one method:
a. cancel()

 Synchronization
 refers to one of
 two distinct but
 related concepts:
 synchronization
 of processes, and
 synchronization of
Data.

Keyword

3G E-LEARNING

220 Basic Computer Coding: Python

This stops the timer, and then cancels its action. This only works if the timer is
waiting.

Now the last in Python Multithreading is Barrier Objects.

7.2.9 Barrier Objects

Barrier is a simple synchronization primitive to a fixed number of threads that must
wait for each other. Each thread tries to pass the barrier by making a call to wait; it
blocks until all threads have done this. Then, the threads release simultaneously.
 You can reuse a barrier any number of times for the same number of threads.
.Let’s take an example
:A way to synchronize a client and server thread is

>>> b=threading.Barrier(2,timeout=5)
>>> def server():
start_server()
b.wait()
while True:
connection = accept_connection()
process_server_connection(connection)
>>> def client():
b.wait()
while True:
connection = make_connection()
process_client_connection(connection)
This is the class:
class threading.Barrier(parties, action=None, timeout=None)
Barrier creates a barrier object for parties number of threads. When we do pass action,

it is a callable that a thread will call when we release it. Finally, timeout is a default
value for timeout if we do not specify the same for wait().

It has the following methods:
a. wait(timeout=None)
wait() passes the barrier. Once all thread parties have called wait(), they all release

together. If we do pass a value for timeout, it uses this one, no matter whether we
provided a value for the same to the class constructor.

It returns any integer value from 0 to parties-1. This is different for each thread.
You can use this to choose a thread to do special housekeeping. Take an example:

Python Multithreading

3G E-LEARNING

221

>>> i=barrier.wait()
>>> if i==0:
#Only one thread must print this
print(“passed the barrier”)
If we provided an action to the constructor, one thread calls it before releasing.

If this raises an error, the barrier sinks into a ‘broken’ state. The same happens if the
call times out.

Finally, wait() may raise a BrokenBarrierError if the barrier breaks or resets as a
thread waits.

b. reset()
This function resets the barrier to its default, empty state. Any waiting threads

receive a BrokenBarrierError.
reset() may need external synchronization if other threads with unknown states

exist. If it breaks a barrier, just create a new one.
c. abort()
abort() puts a barrier into a ‘broken’ state. Consequently, active/future calls to

wait() fail with a BrokenBarrierError. To avoid deadlocking an application, we may
need to abort it. This is one use-case.

Try to create the barrier with a sensible value for timeout so it automatically guards
against a thread going haywire.

d. parties
This returns the number of threads we need to pass the barrier.
e. n_waiting
This returnd the number of threads that currently wait in the barrier.
f. broken
This is a Boolean value that is True if the barrier is in a ‘broken’ state.
Check out this exception that Barrier may raise:
exception threading.BrokenBarrierError
This is a subclass of RuntimeError, and it raises if a Barrier object resets or breaks.

7.2.10 Using locks, Conditions, and Semaphores in the with-
statement

If an object in this module has acquire() and release(), we can use it as a context-
manager for a with-statement. When it enters the block, it calls acquire(), and when
it exits it, it calls release().

3G E-LEARNING

222 Basic Computer Coding: Python

This is the syntax for the same:
with some_lock:
#do something
This is the same as:
>>> some_lock.acquire()
>>> try:
#do something
finally:
some_lock.release()
We can currently use Lock, RLock, Condition, Semaphore, and BoundedSemaphore

objects as context-managers for with-statements.

Python Multithreading

3G E-LEARNING

223

ROLE MODEL

EDSGER DIJKSTRA: DUTCH COMPUTER
SCIENTIST

 Edsger Dijkstra, in full Edsger Wybe Dijkstra, (born May 11,
 1930, Rotterdam, Neth.—died Aug. 6, 2002, Nuenen), Dutch
 computer scientist. He received a Ph.D. from the University
 of Amsterdam while working at Amsterdam’s Mathematical
 Center (1952–62). He taught at the Technical University
 of Eindhoven from 1963 to 1973 and at the University of
 Texas from 1984. He was widely known for his 1959 solution
 to the shortest-path problem; his algorithm is still used to
 determine the fastest way between two points, as in the routing
 of communication networks and in flight planning. His research
 on the idea of mutual exclusion in communications led him to
 suggest in 1968 the concept of computer semaphores, which
 are used in virtually every modern operating system. A letter
 he wrote in 1968 was extremely influential in the development
 of structured programming. He received the Turing Award in
.1972

3G E-LEARNING

224 Basic Computer Coding: Python

SUMMARY
■■ Multithreading is a threading technique in Python programming to run multiple

threads concurrently by rapidly switching between threads with a CPU help
(called context switching). Besides, it allows sharing of its data space with
the main threads inside a process that share information and communication
with other threads easier than individual processes.

■■ Multithreading allows the programmer to divide application tasks into sub-tasks
and simultaneously run them in a program. It allows threads to communicate
and share resources such as files, data, and memory to the same processor.

■■ Python threading module is used to implement multithreading in python
programs. Threading in python is used to run multiple threads (tasks, function
calls) at the same time.

■■ Multiple threads within a process share the same data space with the main
thread and can therefore share information or communicate with each other
more easily than if they were separate processes.

■■ Multiprocessing and Multithreading both adds performance to the system.
Multiprocessing is adding more number of or CPUs/processors to the system
which increases the computing speed of the system.

■■ The Thread class that we mentioned earlier in this blog denotes an activity
running in a separate thread of control. We can represent this activity either
by passing a callable object to the constructor, ot by overriding the method
run() in a subclass.

■■ A synchronization primitive, a primitive lock does not belong to a certain thread
when locked. This is the lowest-level synchronization primitive we currently
have in Python, and we implement it using the extension module _thread.

Python Multithreading

3G E-LEARNING

225

KNOWLEDGE CHECK
1. 	 A thread can be created by using ……………….. class.

a.	 MultiThread
b.	 Thread
c.	 Threading
d.	 SuperThread

2. 	 Which Java feature enables to handle multiple tasks simultaneously?
a.	 Class and Object
b.	 Platform Independent
c.	 Dynamic Object Initialization
d.	 Multi Threading

3. 	 Which method is used to schedule a thread for execution?
a.	 start()
b.	 init()
c.	 run()
d.	 resume()

4. 	 What is called when a function is defined inside a class?
a.	 Module
b.	 Class
c.	 Another Function
d.	 Method

5. 	 Which of the following is the use of id() function in python?
a.	 Id returns the identity of the object
b.	 Every object does not have a unique id
c.	 All of the mentioned
d.	 None of the mentioned

6.	 _______ makes it possible for two or more activities to execute in parallel on a
single processor.
a.	 Multithreading
b.	 Threading
c.	 SingleThreading
d.	 Both Multithreading and SingleThreading

3G E-LEARNING

226 Basic Computer Coding: Python

7. 	 In ______ an object of type Thread in the namespace System.Threading represents
and controls one thread.
a.	 . PY
b.	 .SAP
c.	 .NET
d.	 .EXE

8. 	 The method will be executed once the thread’s ______ method is called.
a.	 EventBegin
b.	 EventStart
c.	 Begin
d.	 Start

REVIEW QUESTIONS
1.	 What do you understand by multithreading?
2.	 How to use the thread module to create threads.
3.	 How to use Python Multi-threading Modules for Thread Implementation?
4.	 Differentiate between multiprocessing and multithreading.
5.	 Explain the functions in python multithreading.
6.	 Write the difference between Lock objects and RLock objects.

Check Your Result

1. (b)		 2. (d)		 3. (d)		 4. (d)		 5. (a)
6. (a)		 7. (c)		 8. (d)

Python Multithreading

3G E-LEARNING

227

REFERENCES
1.	 Bini, Ola (2007). Practical JRuby on Rails Web 2.0 Projects: bringing Ruby on

Rails to the Java platform. Berkeley: APress. p. 3. ISBN 978-1-59059-881-8.
2.	 Holth, Moore (30 March 2014). “PEP 0441 -- Improving Python ZIP Application

Support”. Retrieved 12 November 2015.
3.	 Rauschmayer, Axel. “Chapter 3: The Nature of JavaScript; Influences”. O’Reilly,

Speaking JavaScript. Retrieved 15 May 2015.
4.	 Smith, Kevin D.; Jewett, Jim J.; Montanaro, Skip; Baxter, Anthony (2 September

2004). “PEP 318 – Decorators for Functions and Methods”. Python Enhancement
Proposals. Python Software Foundation. Retrieved 24 February 2012.

“Python is a truly wonderful language. When somebody comes up with a good idea it takes about 1
minute and five lines to program something that almost does what you want. Then it takes only an
hour to extend the script to 300 lines, after which it still does almost what you want.”

–Jack Jansen

After studying this chapter,
you will be able to:
1.	 Discuss on python -

decision making
2.	 Give an overview on

loops, numbers, strings
and lists in python

3.	 Learn about the python
tuples

4.	 Define python - date &
time

LEARNING
OBJECTIVES

OPERATIONS IN
PYTHON

INTRODUCTION
Python is a powerful general-purpose programming
language. It is used in web development, data science,
creating software prototypes, and so on. Fortunately for

8
CHAPTER

3G E-LEARNING

230 Basic Computer Coding: Python

beginners, Python has simple easy-to-use syntax. This makes Python an excellent
language to learn to program for beginners.

Python is an interpreted, object-oriented programming language similar to PERL
that has gained popularity because of its clear syntax and readability. Python is said
to be relatively easy to learn and portable, meaning its statements can be interpreted
in a number of operating systems, including UNIX-based systems, Mac OS, MS-DOS,
OS/2, and various versions of Microsoft Windows 98. Python was created by Guido
van Rossum, a former resident of the Netherlands, whose favorite comedy group at
the time was Monty Python’s Flying Circus. The source code is freely available and
open for modification and reuse. Python has a significant number of users.

Below are some facts about Python Programming Language:
■■ Python is currently the most widely used multi-purpose, high-level

programming language.
■■ Python allows programming in Object-Oriented and Procedural paradigms.
■■ Python programs generally are smaller than other programming languages like

Java. Programmers have to type relatively less and indentation requirement
of the language, makes them readable all the time.

■■ Python language is being used by almost all tech-giant companies like –
Google, Amazon, Facebook, Instagram, Dropbox, Uber… etc.

■■ The biggest strength of Python is huge collection of standard library which
can be used for the following:

-- Machine Learning
-- GUI Applications (like Kivy, Tkinter, PyQt etc.)
-- Web frameworks like Django (used by YouTube, Instagram, Dropbox)
-- Image processing (like OpenCV, Pillow)
-- Web scraping (like Scrapy, BeautifulSoup, Selenium)
-- Test frameworks
-- Multimedia
-- Scientific computing
-- Text processing and many more.

8.1 PYTHON - DECISION MAKING
Decisions in a program are used when the program has conditional choices to execute
a code block. Let’s take an example of traffic lights, where different colors of lights
lit up in different situations based on the conditions of the road or any specific rule.

Operations in Python

3G E-LEARNING

231

It is the prediction of conditions that occur while executing
a program to specify actions. Multiple expressions get evaluated
with an outcome of either TRUE or FALSE. These are logical
decisions, and Python also provides decision-making statements
that to make decisions within a program for an application
based on the user requirement.

There comes a point in your life where you need to decide
what steps should be taken and based on that you decide
your next decisions.

In programming, we often have this similar situation where
we need to decide which block of code should be executed
based on a condition.

Let’s take a simple example.
Suppose you are writing a program for a game. So at

every step, we need to take decisions like:
■■ If the user presses ‘w’ key, then the character will

move forward.
■■ If the user presses ‘spacebar’, then the character will

jump.
■■ If the character runs into an obstacle, then the game

is over otherwise we continue playing.
Decisions like these are required everywhere in

programming and they decide the direction of flow of program
execution.

Python has the following decision-making statements:
■■ if statements
■■ if-else statements
■■ if-elif ladder
■■ Nested statements

Let’s discuss these decision making statements in Python
in detail.

8.1.1 Python if Statement

if statement is the most simple form of decision-making
statement. It takes an expression and checks if the expression
evaluates to True then the block of code in if statement will
be executed.

Decision
making
statements allow
you to decide the
order of execution
of specific
statements in your
program. You can
set up a condition
and tell the
compiler to take a
particular action
if the condition is
met.

Keyword

3G E-LEARNING

232 Basic Computer Coding: Python

If the expression evaluates to False, then the block of code is skipped.
Syntax:
if (expression):
Statement 1
Statement 2
.
Statement n

Example 1:
a = 20 ; b = 20
if (a == b):
print(“a and b are equal”)
print(“If block ended”)

Output:
a and b are equal
If block ended

Operations in Python

3G E-LEARNING

233

Example 2:

num = 5

if (num >= 10):

print(“num is greater than 10”)

print(“if block ended”)

Output:

If block ended

In example 1, we see that the condition a==b evaluates to True. Therefore, the
block of code inside if statement is executed.

In example 2, the condition evaluates to False, therefore, the print statement was
not executed and the only statement that got executed was because it was outside
the if block.

Note: Don’t forget to add a colon(:) after if statement and indent the statements
properly that are executed when a condition is True.

8.1.2 Python if-else Statement

From the name itself, we get the clue that the if-else statement checks the expression
and executes the if block when the expression is True otherwise it will execute the else
block of code. The else block should be right after if block and it is executed when
the expression is False.
Syntax:

if(expression):

Statement

else:

Statement

3G E-LEARNING

234 Basic Computer Coding: Python

Example:

number1 = 20 ; number2 = 30

if(number1 >= number2):

print(“number 1 is greater than number 2”)

else:

print(“number 2 is greater than number 1”)

Output:

number 2 is greater than number 1

Note: Only one else statement is followed by an if statement. If you use two else statements
after an if statement, then you get the following error.

Example:

if (5>10):

print(5)

else:

print(10)

Operations in Python

3G E-LEARNING

235

else:

print(“End”)

Output:

SyntaxError: invalid syntax

8.1.3 Python if-elif ladder

You might have heard of the else-if statements in other languages like C/C++ or Java.
In Python, we have an elif keyword to chain multiple conditions one after another.

With elif ladder, we can make complex decision-making statements.
The elif statement helps you to check multiple expressions and it executes the

code as soon as one of the conditions evaluates to True.
Syntax:

if(expression1):

statement

elif (expression2) :

statement

elif(expression3):

statement

.

.

else:

statement

3G E-LEARNING

236 Basic Computer Coding: Python

Example:

print(“Select your ride:”)

print(“1. Bike”)

print(“2. Car”)

print(“3. SUV”)

choice = int(input())

if(choice == 1):

print(“You have selected Bike”)

elif(choice == 2):

print(“You have selected Car”)

elif(choice == 3):

print(“You have selected SUV”)

else:

print(“Wrong choice!“)

Operations in Python

3G E-LEARNING

237

Output:

Select your ride:

1. Bike

2. Car

3. SUV

3

You have selected SUV

Output:

Select your ride:

1. Bike

2. Car

3. SUV

10

Wrong choice!

Note: Core Python doesn’t support switch-case statements
that are available in other programming languages but we
can use the elif ladder instead of switch cases.

8.1.4 Python Nested if statement

In very simple words, Nested if statements is an if statement
inside another if statement. Python allows us to stack any
number of if statements inside the block of another if statements.
They are useful when we need to make a series of decisions.
Syntax:

if (expression):

if(expression):

Statement of nested if

Programming
languages are one
kind of computer
language, and are
used in computer
programming
to implement
algorithms. Most
programming
languages consist
of instructions for
computers.

Keyword

3G E-LEARNING

238 Basic Computer Coding: Python

else:

Statement of nested if else

Statement of outer if

Statement outside if block

Example:

num1 = int(input())

num2 = int(input())

if(num1>= num2):

if(num1 == num2):

print(f’{num1} and {num2} are equal’)

else:

print(f’{num1} is greater than {num2}’)

else:

print(f’{num1} is smaller than {num2}’)

Operations in Python

3G E-LEARNING

239

Output 1:

10

20

10 is smaller than 20

Output 2:

5

5

5 and 5 are equal

8.2 PYTHON - LOOPS
In general, statements are executed sequentially: The first statement in a function is
executed first, followed by the second, and so on. There may be a situation when you
need to execute a block of code several number of times.

Programming languages provide various control structures that allow for more
complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple
times. The following diagram illustrates a loop statement −

Python programming language provides following types of loops to handle looping
requirements.

3G E-LEARNING

240 Basic Computer Coding: Python

Sr.No. Loop Type & Description
1 while loop

Repeats a statement or group of statements while a given condition is TRUE. It tests
the condition before executing the loop body.

2 for loop

Executes a sequence of statements multiple times and abbreviates the code that
manages the loop variable.

3 nested loops

You can use one or more loop inside any another while, for or do..while loop.

The for loop in Python is used to iterate over a sequence (list, tuple, string) or
other iterable objects. Iterating over a sequence is called traversal.

Syntax of for Loop
for val in sequence:
 loop body
Here, val is the variable that takes the value of the item inside the sequence on

each iteration.
Loop continues until we reach the last item in the sequence. The body of for loop

is separated from the rest of the code using indentation.

Flowchart of for Loop

Figure. Flowchart of for Loop in Python.

Operations in Python

3G E-LEARNING

241

Example: Python for Loop

Program to find the sum of all numbers stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

 sum = sum+val

print(“The sum is”, sum)

When you run the program, the output will be:

The sum is 48

8.2.1 The range() function

We can generate a sequence of numbers using range() function.
range(10) will generate numbers from 0 to 9 (10 numbers).

We can also define the start, stop and step size as
range(start, stop,step_size). step_size defaults to 1 if not
provided.

The range object is “lazy” in a sense because it doesn’t
generate every number that it “contains” when we create it.
However, it is not an iterator since it supports in, len and
__getitem__ operations.

If the else
statement
is used with a
for loop, the
else statement
is executed
when the loop
has exhausted
iterating the list.

Remember

3G E-LEARNING

242 Basic Computer Coding: Python

This function does not store all the values in memory; it would be inefficient. So
it remembers the start, stop, step size and generates the next number on the go.

To force this function to output all the items, we can use the function list().
The following example will clarify this.

print(range(10))

print(list(range(10)))

print(list(range(2, 8)))

print(list(range(2, 20, 3)))

Output

range(0, 10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

[2, 3, 4, 5, 6, 7]

[2, 5, 8, 11, 14, 17]

We can use the range() function in for loops to iterate through a sequence of
numbers. It can be combined with the len() function to iterate through a sequence
using indexing. Here is an example.

Program to iterate through a list using indexing

genre = [‘pop’, ‘rock’, ‘jazz’]

iterate over the list using index

for i in range(len(genre)):

 print(“I like”, genre[i])

Output

I like pop

I like rock

I like jazz

Operations in Python

3G E-LEARNING

243

8.2.2 for loop with else

A for loop can have an optional else block as well. The else part is executed if the
items in the sequence used in for loop exhausts.

The break keyword can be used to stop a for loop. In such cases, the else part is
ignored.

Hence, a for loop’s else part runs if no break occurs.
Here is an example to illustrate this.

digits = [0, 1, 5]

for i in digits:

 print(i)

else:

 print(“No items left.”)

When you run the program, the output will be:

0

1

5

No items left.

Here, the for loop prints items of the list until the loop exhausts. When the for
loop exhausts, it executes the block of code in the else and prints No items left.

This for...else statement can be used with the break keyword to run the else block
only when the break keyword was not executed. Let’s take an example:

program to display student’s marks from record

student_name = ‘Soyuj’

marks = {‘James’: 90, ‘Jules’: 55, ‘Arthur’: 77}

3G E-LEARNING

244 Basic Computer Coding: Python

for student in marks:

 if student == student_name:

 print(marks[student])

 break

else:

 print(‘No entry with that name found.’)

Output

No entry with that name found.

8.2.3 Loop Control Statements

Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed.

Let us go through the loop control statements briefly

Sr.No. Control Statement & Description
1 break statement

Terminates the loop statement and transfers execution to the statement immediately
following the loop.

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its condition
prior to reiterating.

3 pass statement

The pass statement in Python is used when a statement is required syntactically but you
do not want any command or code to execute.

8.3 PYTHON - NUMBERS
Number data types store numeric values. They are immutable data types, means that
changing the value of a number data type results in a newly allocated object.

Number objects are created when you assign a value to them. For example −
var1 = 1

Operations in Python

3G E-LEARNING

245

var2 = 10
You can also delete the reference to a number object by

using the del statement. The syntax of the del statement is −
del var1[,var2[,var3[....,varN]]]]
You can delete a single object or multiple objects by using

the del statement. For example −
del var
del var_a, var_b
Python supports four different numerical types −

■■ int (signed integers) − They are often called just
integers or ints, are positive or negative whole
numbers with no decimal point.

■■ long (long integers) − Also called longs, they are
integers of unlimited size, written like integers and
followed by an uppercase or lowercase L.

■■ float (floating point real values) − Also called floats,
they represent real numbers and are written with
a decimal point dividing the integer and fractional
parts. Floats may also be in scientific notation, with
E or e indicating the power of 10 (2.5e2 = 2.5 x 102
= 250).

■■ complex (complex numbers) − are of the form a + bJ,
where a and b are floats and J (or j) represents the
square root of -1 (which is an imaginary number).
The real part of the number is a, and the imaginary
part is b. Complex numbers are not used much in
Python programming.

Examples
Here are some examples of numbers

int long float complex
10 51924361L 0.0 3.14j
100 -0x19323L 15.20 45.j
-786 0122L -21.9 9.322e-36j
080 0xDEFABCECBDAECBFBAEL 32.3+e18 .876j
-0490 535633629843L -90. -.6545+0J
-0x260 -052318172735L -32.54e100 3e+26J
0x69 -4721885298529L 70.2-E12 4.53e-7j

Complex
number
is a number that
can be expressed
in the form a + bi,
where a and b are
real numbers, and
i is a symbol called
the imaginary unit,
and satisfying the
equation i² = −1.

Keyword

3G E-LEARNING

246 Basic Computer Coding: Python

Python allows you to use a lowercase L with long,
but it is recommended that you use only an uppercase
L to avoid confusion with the number 1. Python
displays long integers with an uppercase L.

■■ A complex number consists of an ordered pair of real
floating point numbers denoted by a + bj, where a
is the real part and b is the imaginary part of the
complex number.

8.3.1 Number Type Conversion

Python converts numbers internally in an expression containing
mixed types to a common type for evaluation. But sometimes,
you need to coerce a number explicitly from one type to
another to satisfy the requirements of an operator or function
parameter.

■■ Type int(x) to convert x to a plain integer.
■■ Type long(x) to convert x to a long integer.
■■ Type float(x) to convert x to a floating-point number.
■■ Type complex(x) to convert x to a complex number

with real part x and imaginary part zero.
■■ Type complex(x, y) to convert x and y to a complex

number with real part x and imaginary part y. x and
y are numeric expressions

8.3.2 Mathematical Functions

Python includes following functions that perform mathematical
calculations.

Sr.No. Function & Returns (description)
1 abs(x)

The absolute value of x: the (positive) distance between x
and zero.

2 ceil(x)

The ceiling of x: the smallest integer not less than x

Numeric
expression
is a combination of
numeric elements
(such as numbers,
variables, and
functions) and
operators that
evaluates to a
numeric value.
You can perform
additional
mathematical
operations using
math functions.

Keyword

Operations in Python

3G E-LEARNING

247

3 cmp(x, y)

-1 if x < y, 0 if x == y, or 1 if x > y
4 exp(x)

The exponential of x: ex

5 fabs(x)

The absolute value of x.
6 floor(x)

The floor of x: the largest integer not greater than x
7 log(x)

The natural logarithm of x, for x> 0
8 log10(x)

The base-10 logarithm of x for x> 0.
9 max(x1, x2,...)

The largest of its arguments: the value closest to positive
infinity

10 min(x1, x2,...)

The smallest of its arguments: the value closest to negative
infinity

11 modf(x)

The fractional and integer parts of x in a two-item tuple.
Both parts have the same sign as x. The integer part is
returned as a float.

12 pow(x, y)

The value of x**y.
13 round(x [,n])

x rounded to n digits from the decimal point. Python
rounds away from zero as a tie-breaker: round(0.5) is 1.0
and round(-0.5) is -1.0.

14 sqrt(x)

The square root of x for x > 0

3G E-LEARNING

248 Basic Computer Coding: Python

8.3.3 Random Number Functions

Random numbers are used for games, simulations, testing, security, and privacy
applications. Python includes following functions that are commonly used.

Sr.No. Function & Description
1 choice(seq)

A random item from a list, tuple, or string.
2 randrange ([start,] stop [,step])

A randomly selected element from range(start, stop, step)
3 random()

A random float r, such that 0 is less than or equal to r and r is less
than 1

4 seed([x])

Sets the integer starting value used in generating random numbers.
Call this function before calling any other random module function.
Returns None.

5 shuffle(lst)

Randomizes the items of a list in place. Returns None.
6 uniform(x, y)

A random float r, such that x is less than or equal to r and r is less
than y

8.3.4 Trigonometric Functions

Python includes following functions that perform trigonometric calculations.

Sr.No. Function & Description
1 acos(x)

Return the arc cosine of x, in radians.
2 asin(x)

Return the arc sine of x, in radians.
3 atan(x)

Return the arc tangent of x, in radians.

Operations in Python

3G E-LEARNING

249

4 atan2(y, x)

Return atan(y / x), in radians.
5 cos(x)

Return the cosine of x radians.
6 hypot(x, y)

Return the Euclidean norm, sqrt(x*x + y*y).
7 sin(x)

Return the sine of x radians.
8 tan(x)

Return the tangent of x radians.
9 degrees(x)

Converts angle x from radians to degrees.
10 radians(x)

Converts angle x from degrees to radians.

8.3.5 Mathematical Constants

The module also defines two mathematical constants −

Sr.No. Constants & Description
1 pi

The mathematical constant pi.
2 e

The mathematical constant e.

8.4 PYTHON - STRINGS
Strings are amongst the most popular types in Python. We can create them simply by
enclosing characters in quotes. Python treats single quotes the same as double quotes.
Creating strings is as simple as assigning a value to a variable. For example −
var1 = ‘Hello World!’

var2 = “Python Programming”

3G E-LEARNING

250 Basic Computer Coding: Python

8.4.1 Accessing Values in Strings

Python does not support a character type; these are treated
as strings of length one, thus also considered a substring.

To access substrings, use the square brackets for slicing
along with the index or indices to obtain your substring. For
example −

#!/usr/bin/python

var1 = ‘Hello World!’
var2 = “Python Programming”

print “var1[0]: “, var1[0]
print “var2[1:5]: “, var2[1:5]
When the above code is executed, it produces the following

result −
var1[0]: H
var2[1:5]: ytho

8.4.2 Updating Strings

You can “update” an existing string by (re)assigning a variable
to another string. The new value can be related to its previous
value or to a completely different string altogether. For example
−

#!/usr/bin/python

var1 = ‘Hello World!’
print “Updated String :- “, var1[:6] + ‘Python’
When the above code is executed, it produces the following

result −
Updated String :- Hello Python

8.4.3 Escape Characters

Following table is a list of escape or non-printable characters
that can be represented with backslash notation.

A string
datatype is
a datatype
modeled on the
idea of a formal
string. Strings
are such an
important and
useful datatype
that they are
implemented
in nearly every
programming
language.

Did You
Know?

Operations in Python

3G E-LEARNING

251

An escape character gets interpreted; in a single quoted as well as double quoted
strings.

Backslash
notation

Hexadecimal
character

Description

\a 0x07 Bell or alert
\b 0x08 Backspace
\cx Control-x
\C-x Control-x
\e 0x1b Escape
\f 0x0c Formfeed
\M-\C-x Meta-Control-x
\n 0x0a Newline
\nnn Octal notation, where n is in the range

0.7
\r 0x0d Carriage return
\s 0x20 Space
\t 0x09 Tab
\v 0x0b Vertical tab
\x Character x
\xnn Hexadecimal notation, where n is in the

range 0.9, a.f, or A.F

8.4.4 String Special Operators

Assume string variable a holds ‘Hello’ and variable b holds ‘Python’, then −

Operator Description Example
+ Concatenation - Adds values on either side

of the operator
a + b will give HelloPython

* Repetition - Creates new strings,
concatenating multiple copies of the same
string

a*2 will give -HelloHello

[] Slice - Gives the character from the given
index

a[1] will give e

[:] Range Slice - Gives the characters from the
given range

a[1:4] will give ell

3G E-LEARNING

252 Basic Computer Coding: Python

in Membership - Returns true if a character
exists in the given string

H in a will give 1

not in Membership - Returns true if a character
does not exist in the given string

M not in a will give 1

r/R Raw String - Suppresses actual meaning
of Escape characters. The syntax for raw
strings is exactly the same as for normal
strings with the exception of the raw string
operator, the letter “r,” which precedes the
quotation marks. The “r” can be lowercase
(r) or uppercase (R) and must be placed
immediately preceding the first quote
mark.

print r’\n’ prints \n and print
R’\n’prints \n

% Format - Performs String formatting See at next section

8.4.5 String Formatting Operator

One of Python’s coolest features is the string format operator %. This operator is
unique to strings and makes up for the pack of having functions from C’s printf()
family. Following is a simple example −

#!/usr/bin/python

print “My name is %s and weight is %d kg!” % (‘Zara’, 21)

When the above code is executed, it produces the following result −

My name is Zara and weight is 21 kg!

Here is the list of complete set of symbols which can be used along with % −

Format Symbol Conversion
%c character
%s string conversion via str() prior to formatting
%i signed decimal integer
%d signed decimal integer
%u unsigned decimal integer
%o octal integer
%x hexadecimal integer (lowercase letters)
%X hexadecimal integer (UPPERcase letters)
%e exponential notation (with lowercase ‘e’)

Operations in Python

3G E-LEARNING

253

%E exponential notation (with UPPERcase ‘E’)
%f floating point real number
%g the shorter of %f and %e
%G the shorter of %f and %E

Other supported symbols and functionality are listed in the following table −

Symbol Functionality
* argument specifies width or precision
- left justification
+ display the sign
<sp> leave a blank space before a positive number
add the octal leading zero (‘0’) or hexadecimal leading ‘0x’ or

‘0X’, depending on whether ‘x’ or ‘X’ were used.
0 pad from left with zeros (instead of spaces)
% ‘%%’ leaves you with a single literal ‘%’
(var) mapping variable (dictionary arguments)
m.n. m is the minimum total width and n is the number of digits to

display after the decimal point (if appl.)

8.4.6 Triple Quotes

Python’s triple quotes comes to the rescue by allowing strings to span multiple lines,
including verbatim NEWLINEs, TABs, and any other special characters.

The syntax for triple quotes consists of three consecutive single or double quotes.
#!/usr/bin/python

para_str = “””this is a long string that is made up of
several lines and non-printable characters such as
TAB (\t) and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [\n], or just a NEWLINE within
the variable assignment will also show up.
“””
print para_str

3G E-LEARNING

254 Basic Computer Coding: Python

When the above code is executed, it produces the following
result. Note how every single special character has been
converted to its printed form, right down to the last NEWLINE
at the end of the string between the “up.” and closing triple
quotes. Also note that NEWLINEs occur either with an explicit
carriage return at the end of a line or its escape code (\n) −

this is a long string that is made up of
several lines and non-printable characters such as
TAB () and they will show up that way when displayed.
NEWLINEs within the string, whether explicitly given like
this within the brackets [
], or just a NEWLINE within
the variable assignment will also show up.
Raw strings do not treat the backslash as a special character

at all. Every character you put into a raw string stays the way
you wrote it –

#!/usr/bin/python

print ‘C:\\nowhere’

When the above code is executed, it produces the following
result −

C:\nowhere

Now let’s make use of raw string. We would put expression
in r’expression’ as follows −

#!/usr/bin/python

print r’C:\\nowhere’

When the above code is executed, it produces the following
result −

C:\\nowhere

Special
character
is one that is
not considered
a number or
letter. Symbols,
accent marks, and
punctuation marks
are considered
special characters.

Keyword

Operations in Python

3G E-LEARNING

255

8.4.7 Unicode String

Normal strings in Python are stored internally as 8-bit ASCII, while Unicode strings are
stored as 16-bit Unicode. This allows for a more varied set of characters, including special
characters from most languages in the world. I’ll restrict my treatment of Unicode strings
to the following −

#!/usr/bin/python

print u’Hello, world!’

When the above code is executed, it produces the following result −
Hello, world!

As you can see, Unicode strings use the prefix u, just as raw strings use the prefix r.

8.4.8 Built-in String Methods

Python includes the following built-in methods to manipulate strings −

Sr.No. Methods with Description
1 capitalize()

Capitalizes first letter of string
2 center(width, fillchar)

Returns a space-padded string with the original string centered to a
total of width columns.

3 count(str, beg= 0,end=len(string))

Counts how many times str occurs in string or in a substring of
string if starting index beg and ending index end are given.

4 decode(encoding=’UTF-8’,errors=’strict’)

Decodes the string using the codec registered for encoding. encoding
defaults to the default string encoding.

5 encode(encoding=’UTF-8’,errors=’strict’)

Returns encoded string version of string; on error, default is to raise
a ValueError unless errors is given with ‘ignore’ or ‘replace’.

3G E-LEARNING

256 Basic Computer Coding: Python

6 endswith(suffix, beg=0, end=len(string))

Determines if string or a substring of string (if starting index beg
and ending index end are given) ends with suffix; returns true if so
and false otherwise.

7 expandtabs(tabsize=8)

Expands tabs in string to multiple spaces; defaults to 8 spaces per
tab if tabsize not provided.

8 find(str, beg=0 end=len(string))

Determine if str occurs in string or in a substring of string if starting
index beg and ending index end are given returns index if found
and -1 otherwise.

9 index(str, beg=0, end=len(string))

Same as find(), but raises an exception if str not found.
10 isalnum()

Returns true if string has at least 1 character and all characters are
alphanumeric and false otherwise.

11 isalpha()

Returns true if string has at least 1 character and all characters are
alphabetic and false otherwise.

12 isdigit()

Returns true if string contains only digits and false otherwise.
13 islower()

Returns true if string has at least 1 cased character and all cased
characters are in lowercase and false otherwise.

14 isnumeric()

Returns true if a unicode string contains only numeric characters
and false otherwise.

15 isspace()

Returns true if string contains only whitespace characters and false
otherwise.

16 istitle()

Returns true if string is properly “titlecased” and false otherwise.

Operations in Python

3G E-LEARNING

257

17 isupper()

Returns true if string has at least one cased character and all cased
characters are in uppercase and false otherwise.

18 join(seq)

Merges (concatenates) the string representations of elements in
sequence seq into a string, with separator string.

19 len(string)

Returns the length of the string
20 ljust(width[, fillchar])

Returns a space-padded string with the original string left-justified
to a total of width columns.

21 lower()

Converts all uppercase letters in string to lowercase.
22 lstrip()

Removes all leading whitespace in string.
23 maketrans()

Returns a translation table to be used in translate function.
24 max(str)

Returns the max alphabetical character from the string str.
25 min(str)

Returns the min alphabetical character from the string str.
26 replace(old, new [, max])

Replaces all occurrences of old in string with new or at most max
occurrences if max given.

27 rfind(str, beg=0,end=len(string))

Same as find(), but search backwards in string.
28 rindex(str, beg=0, end=len(string))

Same as index(), but search backwards in string.
29 rjust(width,[, fillchar])

Returns a space-padded string with the original string right-justified
to a total of width columns.

3G E-LEARNING

258 Basic Computer Coding: Python

30 rstrip()

Removes all trailing whitespace of string.
31 split(str=””, num=string.count(str))

Splits string according to delimiter str (space if not provided) and
returns list of substrings; split into at most num substrings if given.

32 splitlines(num=string.count(‘\n’))

Splits string at all (or num) NEWLINEs and returns a list of each line
with NEWLINEs removed.

33 startswith(str, beg=0,end=len(string))

Determines if string or a substring of string (if starting index beg
and ending index end are given) starts with substring str; returns
true if so and false otherwise.

34 strip([chars])

Performs both lstrip() and rstrip() on string.
35 swapcase()

Inverts case for all letters in string.
36 title()

Returns “titlecased” version of string, that is, all words begin with
uppercase and the rest are lowercase.

37 translate(table, deletechars=””)

Translates string according to translation table str(256 chars),
removing those in the del string.

38 upper()

Converts lowercase letters in string to uppercase.
39 zfill (width)

Returns original string leftpadded with zeros to a total of width
characters; intended for numbers, zfill() retains any sign given (less
one zero).

40 isdecimal()

Returns true if a unicode string contains only decimal characters
and false otherwise.

Operations in Python

3G E-LEARNING

259

8.5 PYTHON - LISTS
Lists are used to store multiple items in a single variable.
Lists are one of 4 built-in data types in Python used to store
collections of data, the other 3 are Tuple, Set, and Dictionary,
all with different qualities and usage.

The most basic data structure in Python is the sequence.
Each element of a sequence is assigned a number - its position
or index. The first index is zero, the second index is one, and
so forth.

There are certain things you can do with all sequence
types. These operations include indexing, slicing, adding,
multiplying, and checking for membership. In addition, Python
has built-in functions for finding the length of a sequence and
for finding its largest and smallest elements.

The list is a most versatile datatype available in Python
which can be written as a list of comma-separated values
(items) between square brackets. Important thing about a list
is that items in a list need not be of the same type.

Creating a list is as simple as putting different comma-
separated values between square brackets. For example −

list1 = [‘physics’, ‘chemistry’, 1997, 2000];

list2 = [1, 2, 3, 4, 5];

list3 = [“a”, “b”, “c”, “d”]

Similar to string indices, list indices start at 0, and lists
can be sliced, concatenated and so on.

8.5.1 Accessing Values in Lists

To access values in lists, use the square brackets for slicing
along with the index or indices to obtain value available at
that index. For example −

#!/usr/bin/python

list1 = [‘physics’, ‘chemistry’, 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

Data
type is
an attribute
associated
with a piece of
data that tells a
computer system
how to interpret
its value.
Understanding
data types
ensures that data
is collected in the
preferred format
and the value of
each property is
as expected.

Remember

3G E-LEARNING

260 Basic Computer Coding: Python

print “list1[0]: “, list1[0]

print “list2[1:5]: “, list2[1:5]

When the above code is executed, it produces the following result −

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

8.5.2 Updating Lists

You can update single or multiple elements of lists by giving the slice on the left-
hand side of the assignment operator, and you can add to elements in a list with the
append() method. For example −

#!/usr/bin/python

list = [‘physics’, ‘chemistry’, 1997, 2000];

print “Value available at index 2 : “

print list[2]

list[2] = 2001;

print “New value available at index 2 : “

print list[2]

Note − append() method is discussed in subsequent section.

When the above code is executed, it produces the following result −

Value available at index 2 :

1997

New value available at index 2 :

2001

Operations in Python

3G E-LEARNING

261

8.5.3 Delete List Elements

To remove a list element, you can use either the del statement if you know exactly
which element(s) you are deleting or the remove() method if you do not know. For
example −

#!/usr/bin/python

list1 = [‘physics’, ‘chemistry’, 1997, 2000];

print list1

del list1[2];

print “After deleting value at index 2 : “

print list1

When the above code is executed, it produces following result −

[‘physics’, ‘chemistry’, 1997, 2000]

After deleting value at index 2 :

[‘physics’, ‘chemistry’, 2000]

Note − remove() method is discussed in subsequent section.

8.5.4 Basic List Operations

Lists respond to the + and * operators much like strings; they mean concatenation and
repetition here too, except that the result is a new list, not a string.

In fact, lists respond to all of the general sequence operations we used on strings
in the prior chapter.

Python Expression Results Description
len([1, 2, 3]) 3 Length
[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation
[‘Hi!’] * 4 [‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’] Repetition
3 in [1, 2, 3] True Membership
for x in [1, 2, 3]: print x, 1 2 3 Iteration

3G E-LEARNING

262 Basic Computer Coding: Python

8.5.5 Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they
do for strings.

Assuming following input −
L = [‘spam’, ‘Spam’, ‘SPAM!’]

Python Expression Results Description
L[2] SPAM! Offsets start at zero
L[-2] Spam Negative: count from the right
L[1:] [‘Spam’, ‘SPAM!’] Slicing fetches sections

8.5.6 Built-in List Functions & Methods

Python includes the following list functions −

Sr.No. Function with Description
1 cmp(list1, list2)

Compares elements of both lists.
2 len(list)

Gives the total length of the list.
3 max(list)

Returns item from the list with max value.
4 min(list)

Returns item from the list with min value.
5 list(seq)

Converts a tuple into list.

Python includes following list methods

Sr.No. Methods with Description
1 list.append(obj)

Appends object obj to list

Operations in Python

3G E-LEARNING

263

2 list.count(obj)

Returns count of how many times obj occurs
in list

3 list.extend(seq)

Appends the contents of seq to list
4 list.index(obj)

Returns the lowest index in list that obj
appears

5 list.insert(index, obj)

Inserts object obj into list at offset index
6 list.pop(obj=list[-1])

Removes and returns last object or obj from
list

7 list.remove(obj)

Removes object obj from list
8 list.reverse()

Reverses objects of list in place
9 list.sort([func])

Sorts objects of list, use compare func if given

8.6 PYTHON - TUPLES
A tuple is a collection of objects which ordered and immutable. Tuples are sequences,
just like lists. The differences between tuples and lists are, the tuples cannot be changed
unlike lists and tuples use parentheses, whereas lists use square brackets.

Creating a tuple is as simple as putting different comma-separated values. Optionally
you can put these comma-separated values between parentheses also. For example −

tup1 = (‘physics’, ‘chemistry’, 1997, 2000);

tup2 = (1, 2, 3, 4, 5);

tup3 = “a”, “b”, “c”, “d”;

The empty tuple is written as two parentheses containing nothing −

tup1 = ();

3G E-LEARNING

264 Basic Computer Coding: Python

To write a tuple containing a single value you have to include a comma, even though there
is only one value −

tup1 = (50,);

Like string indices, tuple indices start at 0, and they can be sliced, concatenated, and so on.

8.6.1 Accessing Values in Tuples

To access values in tuple, use the square brackets for slicing along with the index or
indices to obtain value available at that index. For example −

#!/usr/bin/python

tup1 = (‘physics’, ‘chemistry’, 1997, 2000);

tup2 = (1, 2, 3, 4, 5, 6, 7);

print “tup1[0]: “, tup1[0];

print “tup2[1:5]: “, tup2[1:5];

When the above code is executed, it produces the following result −

tup1[0]: physics

tup2[1:5]: [2, 3, 4, 5]

8.6.2 Updating Tuples

Tuples are immutable which means you cannot update or change the values of tuple
elements. You are able to take portions of existing tuples to create new tuples as the
following example demonstrates −

#!/usr/bin/python

tup1 = (12, 34.56);

tup2 = (‘abc’, ‘xyz’);

Operations in Python

3G E-LEARNING

265

Following action is not valid for tuples

tup1[0] = 100;

So let’s create a new tuple as follows

tup3 = tup1 + tup2;

print tup3;

When the above code is executed, it produces the following result −

(12, 34.56, ‘abc’, ‘xyz’)

8.6.3 Delete Tuple Elements

Removing individual tuple elements is not possible. There is, of course, nothing wrong
with putting together another tuple with the undesired elements discarded.
To explicitly remove an entire tuple, just use the del statement. For example −

#!/usr/bin/python

tup = (‘physics’, ‘chemistry’, 1997, 2000);

print tup;

del tup;

print “After deleting tup : “;

print tup;

This produces the following result. Note an exception raised, this is because after
del tup tuple does not exist any more −

(‘physics’, ‘chemistry’, 1997, 2000)

After deleting tup :

Traceback (most recent call last):
 File “test.py”, line 9, in <module>

 print tup;

NameError: name ‘tup’ is not defined

3G E-LEARNING

266 Basic Computer Coding: Python

8.6.4 Basic Tuples Operations

Tuples respond to the + and * operators much like strings;
they mean concatenation and repetition here too, except that
the result is a new tuple, not a string.

In fact, tuples respond to all of the general sequence
operations we used on strings in the prior chapter −

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

(‘Hi!’,) * 4 (‘Hi!’, ‘Hi!’, ‘Hi!’, ‘Hi!’) Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

8.6.5 Indexing, Slicing, and Matrixes

Because tuples are sequences, indexing and slicing work the
same way for tuples as they do for strings. Assuming following
input −

L = (‘spam’, ‘Spam’, ‘SPAM!’)

Python Expression Results Description

L[2] ‘SPAM!’ Offsets start at zero

L[-2] ‘Spam’ Negative: count from
the right

L[1:] [‘Spam’, ‘SPAM!’] Slicing fetches sections

8.6.6 No Enclosing Delimiters

Any set of multiple objects, comma-separated, written without
identifying symbols, i.e., brackets for lists, parentheses for

Tuple is
one of
4 built-in data
types in Python
used to store
collections of
data, the other
3 are List, Set,
and Dictionary,
all with different
qualities and
usage.

Remember

Operations in Python

3G E-LEARNING

267

tuples, etc., default to tuples, as indicated in these short examples −
#!/usr/bin/python

print ‘abc’, -4.24e93, 18+6.6j, ‘xyz’;

x, y = 1, 2;

print “Value of x , y : “, x,y;

When the above code is executed, it produces the following result −

abc -4.24e+93 (18+6.6j) xyz

Value of x , y : 1 2

8.6.7 Built-in Tuple Functions

Python includes the following tuple functions −

Sr.No. Function with Description
1 cmp(tuple1, tuple2)

Compares elements of both tuples.
2 len(tuple)

Gives the total length of the tuple.
3 max(tuple)

Returns item from the tuple with max value.
4 min(tuple)

Returns item from the tuple with min value.
5 tuple(seq)

Converts a list into tuple.

8.7 PYTHON - DATE & TIME
A Python program can handle date and time in several ways. Converting between
date formats is a common chore for computers. Python’s time and calendar modules
help track dates and times.

3G E-LEARNING

268 Basic Computer Coding: Python

What is Tick?
Time intervals are floating-point numbers in units of seconds. Particular instants

in time are expressed in seconds since 00:00:00 hrs January 1, 1970(epoch).
There is a popular time module available in Python which provides functions for

working with times, and for converting between representations. The function time.
time() returns the current system time in ticks since 00:00:00 hrs January 1, 1970(epoch).

Example
#!/usr/bin/python

import time; # This is required to include time module.

ticks = time.time()

print “Number of ticks since 12:00am, January 1, 1970:”, ticks

This would produce a result something as follows −
Number of ticks since 12:00am, January 1, 1970: 7186862.73399
Date arithmetic is easy to do with ticks. However, dates before the epoch cannot

be represented in this form. Dates in the far future also cannot be represented this
way - the cutoff point is sometime in 2038 for UNIX and Windows.

What is TimeTuple?

Many of Python’s time functions handle time as a tuple of 9 numbers, as shown below −

Index Field Values

0 4-digit year 2008

1 Month 1 to 12

2 Day 1 to 31

3 Hour 0 to 23

4 Minute 0 to 59

5 Second 0 to 61 (60 or 61 are leap-seconds)

6 Day of Week 0 to 6 (0 is Monday)

7 Day of year 1 to 366 (Julian day)

8 Daylight savings -1, 0, 1, -1 means library determines DST

Operations in Python

3G E-LEARNING

269

The above tuple is equivalent to struct_time structure. This structure has following
attributes −

Index Attributes Values

0 tm_year 2008

1 tm_mon 1 to 12

2 tm_mday 1 to 31

3 tm_hour 0 to 23

4 tm_min 0 to 59

5 tm_sec 0 to 61 (60 or 61 are leap-seconds)

6 tm_wday 0 to 6 (0 is Monday)

7 tm_yday 1 to 366 (Julian day)

8 tm_isdst -1, 0, 1, -1 means library determines DST

8.7.1 Getting Current Time

To translate a time instant from a seconds since the epoch floating-point value into a
time-tuple, pass the floating-point value to a function (e.g., localtime) that returns a
time-tuple with all nine items valid.

#!/usr/bin/python

import time;

localtime = time.localtime(time.time())

print “Local current time :”, localtime

This would produce the following result, which could be formatted in any other
presentable form −

Local current time : time.struct_time(tm_year=2013, tm_mon=7,

tm_mday=17, tm_hour=21, tm_min=26, tm_sec=3, tm_wday=2, tm_yday=198, tm_
isdst=0)

3G E-LEARNING

270 Basic Computer Coding: Python

8.7.2 Getting formatted time

You can format any time as per your requirement, but simple method to get time in
readable format is asctime() −

#!/usr/bin/python

import time;

localtime = time.asctime(time.localtime(time.time()))

print “Local current time :”, localtime

This would produce the following result −

Local current time : Tue Jan 13 10:17:09 2009

8.7.3 Getting calendar for a month

The calendar module gives a wide range of methods to play with yearly and monthly
calendars. Here, we print a calendar for a given month (Jan 2008) −

#!/usr/bin/python

import calendar

cal = calendar.month(2008, 1)

print “Here is the calendar:”

print cal

This would produce the following result −

Here is the calendar:

 January 2008

Mo Tu We Th Fr Sa Su

Operations in Python

3G E-LEARNING

271

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

8.7.4 The time Module

There is a popular time module available in Python which provides functions for
working with times and for converting between representations. Here is the list of all
available methods −

Sr.No. Function with Description
1 time.altzone

The offset of the local DST timezone, in seconds west of UTC, if one
is defined. This is negative if the local DST timezone is east of UTC
(as in Western Europe, including the UK). Only use this if daylight is
nonzero.

2 time.asctime([tupletime])

Accepts a time-tuple and returns a readable 24-character string such
as ‘Tue Dec 11 18:07:14 2008’.

3 time.clock()

Returns the current CPU time as a floating-point number of seconds.
To measure computational costs of different approaches, the value of
time.clock is more useful than that of time.time().

4 time.ctime([secs])

Like asctime(localtime(secs)) and without arguments is like asctime()
5 time.gmtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a
time-tuple t with the UTC time. Note : t.tm_isdst is always 0

6 time.localtime([secs])

Accepts an instant expressed in seconds since the epoch and returns
a time-tuple t with the local time (t.tm_isdst is 0 or 1, depending on
whether DST applies to instant secs by local rules).

3G E-LEARNING

272 Basic Computer Coding: Python

7 time.mktime(tupletime)

Accepts an instant expressed as a time-tuple in local time and returns
a floating-point value with the instant expressed in seconds since the
epoch.

8 time.sleep(secs)

Suspends the calling thread for secs seconds.
9 time.strftime(fmt[,tupletime])

Accepts an instant expressed as a time-tuple in local time and returns
a string representing the instant as specified by string fmt.

10 time.strptime(str,fmt=’%a %b %d %H:%M:%S %Y’)

Parses str according to format string fmt and returns the instant in
time-tuple format.

11 time.time()

Returns the current time instant, a floating-point number of seconds
since the epoch.

12 time.tzset()

Resets the time conversion rules used by the library routines. The
environment variable TZ specifies how this is done.

Let us go through the functions briefly −
There are following two important attributes available with time module −

Sr.No. Attribute with Description
1 time.timezone

Attribute time.timezone is the offset in seconds of the local time zone (without
DST) from UTC (>0 in the Americas; <=0 in most of Europe, Asia, Africa).

2 time.tzname

Attribute time.tzname is a pair of locale-dependent strings, which are the names of
the local time zone without and with DST, respectively.

8.7.5 The calendar Module

The calendar module supplies calendar-related functions, including functions to print
a text calendar for a given month or year.

By default, calendar takes Monday as the first day of the week and Sunday as the
last one. To change this, call calendar.setfirstweekday() function.

Operations in Python

3G E-LEARNING

273

Here is a list of functions available with the calendar module −

Sr.No. Function with Description
1 calendar.calendar(year,w=2,l=1,c=6)

Returns a multiline string with a calendar for year year formatted into three columns
separated by c spaces. w is the width in characters of each date; each line has length
21*w+18+2*c. l is the number of lines for each week.

2 calendar.firstweekday()

Returns the current setting for the weekday that starts each week. By default, when
calendar is first imported, this is 0, meaning Monday.

3 calendar.isleap(year)

Returns True if year is a leap year; otherwise, False.
4 calendar.leapdays(y1,y2)

Returns the total number of leap days in the years within range(y1,y2).
5 calendar.month(year,month,w=2,l=1)

Returns a multiline string with a calendar for month month of year year, one line per
week plus two header lines. w is the width in characters of each date; each line has
length 7*w+6. l is the number of lines for each week.

6 calendar.monthcalendar(year,month)

Returns a list of lists of ints. Each sublist denotes a week. Days outside month month
of year year are set to 0; days within the month are set to their day-of-month, 1 and up.

7 calendar.monthrange(year,month)

Returns two integers. The first one is the code of the weekday for the first day of the
month month in year year; the second one is the number of days in the month. Weekday
codes are 0 (Monday) to 6 (Sunday); month numbers are 1 to 12.

8 calendar.prcal(year,w=2,l=1,c=6)

Like print calendar.calendar(year,w,l,c).
9 calendar.prmonth(year,month,w=2,l=1)

Like print calendar.month(year,month,w,l).
10 calendar.setfirstweekday(weekday)

Sets the first day of each week to weekday code weekday. Weekday codes are 0 (Monday)
to 6 (Sunday).

3G E-LEARNING

274 Basic Computer Coding: Python

11 calendar.timegm(tupletime)

The inverse of time.gmtime: accepts a time instant in time-tuple form and returns the
same instant as a floating-point number of seconds since the epoch.

12 calendar.weekday(year,month,day)

Returns the weekday code for the given date. Weekday codes are 0 (Monday) to 6
(Sunday); month numbers are 1 (January) to 12 (December).

Operations in Python

3G E-LEARNING

275

SUMMARY
■■ Python is a powerful general-purpose programming language. It is used in

web development, data science, creating software prototypes, and so on.
■■ Python is an interpreted, object-oriented programming language similar to

PERL that has gained popularity because of its clear syntax and readability.
■■ Decisions in a program are used when the program has conditional choices to

execute a code block. Let’s take an example of traffic lights, where different
colors of lights lit up in different situations based on the conditions of the
road or any specific rule.

■■ if statement is the most simple form of decision-making statement. It takes
an expression and checks if the expression evaluates to True then the block
of code in if statement will be executed.

■■ In very simple words, Nested if statements is an if statement inside another
if statement. Python allows us to stack any number of if statements inside
the block of another if statements. They are useful when we need to make a
series of decisions.

■■ In general, statements are executed sequentially: The first statement in a
function is executed first, followed by the second, and so on. There may be a
situation when you need to execute a block of code several number of times.

■■ Loop control statements change execution from its normal sequence. When
execution leaves a scope, all automatic objects that were created in that scope
are destroyed.

3G E-LEARNING

276 Basic Computer Coding: Python

KNOWLEDGE CHECK
1. 	 How to output the string “May the odds favor you” in Python?

a.	 print(“May the odds favor you”)
b.	 echo(“May the odds favor you”)
c.	 System.out(“May the odds favor you”)
d.	 printf(“May the odds favor you”)

2. 	 In which year was the Python 3.0 version developed?
a.	 2005
b.	 2000
c.	 2010
d.	 2008

3. 	 Which character is used in Python to make a single line comment?
a.	 /
b.	 //
c.	 #
d.	 ?

4.	 Python is often described as a:
a.	 Batteries excluded language
b.	 Gear included language
c.	 Batteries included language
d.	 Gear excluded language

5. 	 What do we use to define a block of code in Python language?
a.	 Indentation
b.	 Key
c.	 Brackets
d.	 None of these

6. 	 Mathematical operations can be performed on a string in Python? State whether
true or false:
a.	 False
b.	 True

7. 	 Which one of the following is not a python’s predefined data type?
a.	 List
b.	 Dictionary

Operations in Python

3G E-LEARNING

277

c.	 Tuple
d.	 Class

8. 	 Which of the following has more precedence?
a.	 +
b.	 ()
c.	 /
d.	 –

REVIEW QUESTIONS
1.	 Discuss on python if statement.
2.	 Define the loop control statements.
3.	 What do you understand by the random number functions?
4.	 How to accessing values in strings?
5.	 What is unicode string?

Check Your Result

1. (a)		 2. (d)		 3. (c)		 4. (c)
5. (a)		 6. (a)		 7. (d)		 8. (b)

3G E-LEARNING

278 Basic Computer Coding: Python

REFERENCES
1.	 Christopher Ramsay Holdgraf, Wendy de Heer, Brian N. Pasley, Jochem W.

Rieger, Nathan Crone, Jack J. Lin, Robert T. Knight, and Frédéric E. Theunissen.
Rapid tuning shifts in human auditory cortex enhance speech intelligibility.
Nature Communications, 7(May):13654, 2016. URL: http://www.nature.com/
doifinder/10.1038/ncomms13654, doi:10.1038/ncomms13654.

2.	 Fernando Perez, Brian E Granger, and John D Hunter. Python: an ecosystem for
scientific computing. Computing in Science \\& Engineering, 13(2):13–21, 2011.

3.	 Hammond, Mark, and Andy Robinson. Python: Programming on Win32.
Sebastopol, CA: O’Reilly, 2000.

4.	 J Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic
D Bushman, Elizabeth K Costello, Noah Fierer, Antonio Gonzalez Pena, Julia K
Goodrich, Jeffrey I Gordon, and others. Qiime allows analysis of high-throughput
community sequencing data. Nature methods, 7(5):335–336, 2010.

5.	 John Stachurski and Takashi Kamihigashi. Stochastic stability in monotone
economies. Theoretical Economics, 2014.

“Computing should be taught as a rigorous - but fun - discipline covering topics like programming,
database structures, and algorithms. That doesn’t have to be boring.”

–Geoff Mulgan

After studying this chapter,
you will be able to:
1.	 Learn about the DB-API

(SQL-API) for python
2.	 Discuss on MySQL with

Python
3.	 Creating, altering, and

dropping a table
4.	 Inserting Records in

Tables
5.	 Updating and Deleting

Records from the
Database

LEARNING
OBJECTIVES

PYTHON DATABASE
PROGRAMMING

INTRODUCTION
A database program is the heart of a business information
system and provides file creation, data entry, update, query
and reporting functions. The traditional term for database

9
CHAPTER

3G E-LEARNING

280 Basic Computer Coding: Python

software is “database management system”. Database programs let users create and
edit single files interactively at the keyboard. However, as soon as they want data in
one file to automatically update another, programming has to be done. That is where
the faint of heart take their leave, and the techies take over.

The database is a collection of organized information that can easily be used,
managed, update, and they are classified according to their organizational approach.

From a construction firm to a stock exchange, every organization depends on large
databases. These are essentially collections of tables, and’ connected with each other
through columns. These database systems support SQL, the Structured Query Language,
which is used to create, access and manipulate the data. SQL is used to access data,
and also to create and exploit the relationships between the stored data. Additionally,
these databases support database normalization rules for avoiding redundancy of data.
The Python programming language has powerful features for database programming.
Python supports various databases like MySQL, Oracle, Sybase, PostgreSQL, etc.
Python also supports Data Definition Language (DDL), Data Manipulation Language
(DML) and Data Query Statements. For database programming, the Python DB API
is a widely used module that provides a database application programming interface.

There are many good reasons to use Python for programming database applications:
■■ Programming in Python is arguably more efficient and faster compared to

other languages.

Python Database Programming

3G E-LEARNING

281

■■ Python is famous for its portability.
■■ It is platform independent.
■■ Python supports SQL cursors.
■■ In many programming languages, the application developer needs to take

care of the open and closed connections of the database, to avoid further
exceptions and errors. In Python, these connections are taken care of.

■■ Python supports relational database systems.
■■ Python database APIs are compatible with various databases, so it is very

easy to migrate and port database application interfaces.

9.1 DB-API (SQL-API) FOR PYTHON
Python DB-API is independent of any database engine, which enables you to write
Python scripts to access any database engine. The Python DB API implementation for
MySQL is MySQLdb. For PostgreSQL, it supports psycopg, PyGresQL and pyPgSQL
modules. DB-API implementations for Oracle are dc_oracle2 and cx_oracle. Pydb2 is
the DB-API implementation for DB2. Python’s DB-API consists of connection objects,
cursor objects, standard exceptions and some other module contents, all of which we
will discuss.

9.1.1 Connection Objects

Connection objects create a connection with the database and these are further used
for different transactions. These connection objects are also used as representatives of
the database session.

3G E-LEARNING

282 Basic Computer Coding: Python

A connection is created as follows:
>>>conn = MySQLdb.connect(‘library’, user=’suhas’,

password=’python’)
You can use a connection object for calling methods like

commit(), rollback() and close() as shown below:
>>>cur = conn.cursor() //creates new cursor object for

executing SQL statements
>>>conn.commit() //Commits the transactions
>>>conn.rollback() //Roll back the transactions
>>>conn.close() //closes the connection
>>>conn.callproc(proc,param) //call stored procedure for

execution
>>>conn.getsource(proc) //fetches stored procedure code

9.1.2 Cursor objects

Cursor is one of the powerful features of SQL. These are objects
that are responsible for submitting various SQL statements to a
database server. There are several cursor classes in MySQLdb.
cursors:

■■ BaseCursor is the base class for Cursor objects.
■■ Cursor is the default cursor class. CursorWarningMixIn,

CursorStoreResultMixIn, CursorTupleRowsMixIn, and
BaseCursor are some components of the cursor class.

■■ CursorStoreResultMixIn uses the mysql_store_result()
function to retrieve result sets from the executed
query. These result sets are stored at the client side.

■■ CursorUseResultMixIn uses the mysql_use_result()
function to retrieve result sets from the executed
query. These result sets are stored at the server side.

Database
server is
a server which
uses a database
application
that provides
database services
to other computer
programs or to
computers, as
defined by the
client–server
model.

Keyword

Python Database Programming

3G E-LEARNING

283

The following example illustrates the execution of SQL commands using cursor
objects. You can use execute to execute SQL commands like SELECT. To commit all
SQL operations you need to close the cursor as cursor.close().

>>>cursor.execute(‘SELECT * FROM books’)
>>>cursor.execute(‘’’SELECT * FROM books WHERE book_name = ‘python’ AND

book_author = ‘Mark Lutz’)
>>>cursor.close()

9.1.3 Error and Exception Handling in DB-API

Exception handling is very easy in the Python DB-API module. We can place warnings
and error handling messages in the programs. Python DB-API has various options to
handle this, like Warning, InterfaceError, DatabaseError, IntegrityError, InternalError,
NotSupportedError, OperationalError and ProgrammingError. Let’s take a look at them
one by one:

■■ IntegrityError: Let’s look at integrity error in detail. In the following example,
we will try to enter duplicate records in the database. It will show an integrity
error, _mysql_exceptions.IntegrityError, as shown below:

	 >>> cursor.execute(‘insert books values (%s,%s,%s,%s)’,(‘Py9098’,’Programmi
ng With Perl’,120,100))

	 Traceback (most recent call last):
	 File “<stdin>”, line 1, in ?
	 File “/usr/lib/python2.3/site-packages/MySQLdb/cursors.py”, line 95, in execute
	 return self._execute(query, args)
	 File “/usr/lib/python2.3/site-packages/MySQLdb/cursors.py”, line 114, in _

execute

3G E-LEARNING

284 Basic Computer Coding: Python

	 self.errorhandler(self, exc, value)
	 raise errorclass, errorvalue
	 _mysql_exceptions.IntegrityError: (1062, “Duplicate entry ‘Py9098’ for key 1”)

■■ OperationalError: If there are any operation errors like no databases selected,
Python DB-API will handle this error as OperationalError, shown below:

>>> cursor.execute(‘Create database Library’)

>>> q=’select name from books where cost>=%s order by name’

>>>cursor.execute(q,[50])

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

File “/usr/lib/python2.3/site-packages/MySQLdb/cursors.py”, line 95, in execute

return self._execute(query, args)

File “/usr/lib/python2.3/site-packages/MySQLdb/cursors.py”, line 114, in _execute

self.errorhandler(self, exc, value)

File “/usr/lib/python2.3/site-packages/MySQLdb/connections.py”, line 33, in
defaulterrorhandler

raise errorclass, errorvalue

_mysql_exceptions.OperationalError: (1046, ‘No Database Selected’)

■■ ProgrammingError: If there are any programming errors like duplicate database
creations, Python DB-API will handle this error as ProgrammingError, shown
below:

>>> cursor.execute(‘Create database Library’)

Traceback (most recent call last):>>> cursor.execute(‘Create database Library’)

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

File “/usr/lib/python2.3/site-packages/MySQLdb/cursors.py”, line 95, in execute

return self._execute(query, args)

Python Database Programming

3G E-LEARNING

285

File “/usr/lib/python2.3/site-packages/MySQLdb/cursors.py”, line 114, in _execute

self.errorhandler(self, exc, value)

File “/usr/lib/python2.3/site-packages/MySQLdb/connections.py”, line 33, in
defaulterrorhandler

raise errorclass, errorvalue

_mysql_exceptions.ProgrammingError: (1007, “Can’t create database ‘Library’.
Database exists”)

9.1.4 Python and MySQL

Python and MySQL are a good combination to develop database applications. After
starting the MySQL service on Linux, you need to acquire MySQLdb, a Python DB-
API for MySQL to perform database operations. You can check whether the MySQLdb
module is installed in your system with the following command:

>>>import MySQLdb

If this command runs successfully, you can now start writing scripts for your
database.

To write database applications in Python, there are five steps to follow:
■■ Import the SQL interface with the following command:

	 >>> import MySQLdb
■■ Establish a connection with the database with the following command:

	 >>> conn=MySQLdb.connect(host=’localhost’,user=’root’,passwd=’’)
	 …where host is the name of your host machine, followed by the username

3G E-LEARNING

286 Basic Computer Coding: Python

and password. In case of the root, there is no need to provide a password.
■■ Create a cursor for the connection with the following command:

	 >>>cursor = conn.cursor()
■■ Execute any SQL query using this cursor as shown below—here the outputs

in terms of 1L or 2L show a number of rows affected by this query:
	 >>> cursor.execute(‘Create database Library’)
	 1L // 1L Indicates how many rows affected
	 >>> cursor.execute(‘use Library’)
	 >>>table=’create table books(book_accno char(30) primary key, book_name
	 char(50),no_of_copies int(5),price int(5))’
	 >>> cursor.execute(table)
	 0L

■■ Finally, fetch the result set and iterate over this result set. In this step, the
user can fetch the result sets as shown below:

	 >>> cursor.execute(‘select * from books’)
	 2L
	 >>> cursor.fetchall()
	 ((‘Py9098’, ‘Programming With Python’, 100L, 50L), (‘Py9099’, ‘Programming

With Python’, 100L, 50L))
In this example, the fetchall() function is used to fetch the result sets.

9.1.5 More SQL operations

We can perform all SQL operations with Python DB-API. Insert, delete, aggregate and
update queries can be illustrated as follows.

■■ Insert SQL Query
	 >>>cursor.execute(‘insert books values (%s,%s,%s,%s)’,(‘Py9098’,’Programmi

ng With Python’,100,50))
lL // Rows affected.

>>> cursor.execute(‘insert books values (%s,%s,%s,%s)’,(‘Py9099’,’Programming With
Python’,100,50))

1L //Rows affected.

Python Database Programming

3G E-LEARNING

287

If the user wants to insert duplicate entries for a book’s
accession number, the Python DB-API will show an error as
it is the primary key. The following example illustrates this:

>>> cursor.execute(‘insert books values (%s,%s,%s,%s)’,(‘
Py9099’,’Programming With Python’,100,50))

>>>cursor.execute(‘insert books values (%s,%s,%s,%s)’,(‘
Py9098’,’Programming With Perl’,120,100))

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

File “/usr/lib/python2.3/site-packages/MySQLdb/
cursors.py”, line 95, in execute

return self._execute(query, args)

File “/usr/lib/python2.3/site-packages/MySQLdb/
cursors.py”, line 114, in _execute

self.errorhandler(self, exc, value)

File “/usr/lib/python2.3/site-packages/MySQLdb/
connections.py”, line 33, in defaulterrorhandler

raise errorclass, errorvalue

_mysql_exceptions.IntegrityError: (1062, “Duplicate
entry ‘Py9098’ for key 1”)

■■ The Update SQL query can be used to update existing
records in the database as shown below:

>>> cursor.execute(‘update books set price=%s where
no_of_copies<=%s’,[60,101])

2L

>>> cursor.execute(‘select * from books’)

2L

>>> cursor.fetchall()

((‘Py9098’, ‘Programming With Python’, 100L, 60L),

Accession
number
is a sequential
number assigned
to each record
or item as it is
added to a to a
library collection
or database and
which indicates the
chronological order
of its acquisition.

Keyword

3G E-LEARNING

288 Basic Computer Coding: Python

(‘Py9099’, ‘Programming With Python’, 100L, 60L))

1.	 The Delete SQL query can be used to delete existing records in the database as shown
below:

>>> cursor.execute(‘delete from books where no_of_copies<=%s’,[101])

2L

>>> cursor.execute(‘select * from books’)

0L

>>> cursor.fetchall()

()

>>> cursor.execute(‘select * from books’)

3L

>>> cursor.fetchall() ((‘Py9099’, ‘Python-Cookbook’, 200L, 90L), (‘Py9098’, ‘Programming
With Python’, 100L, 50L), (‘Py9097’, ‘Python-Nut shell’, 300L, 80L))

■■ Aggregate functions can be used with Python DB-API in the database as
shown below:

>>> cursor.execute(‘select * from books’)

4L

>>> cursor.fetchall()

((‘Py9099’, ‘Python-Cookbook’, 200L, 90L), (‘Py9098’, ‘Programming With Python’,
100L, 50L), (‘Py9097’, ‘Python-Nut shell’, 300L, 80L), (‘Py9096’, ‘Python-Nut shell’,
400L, 90L))

>>> cursor.execute(“select sum(price),avg(price) from books where book_name=’Python-
Nut shell’”)

1L

>>> cursor.fetchall()

((170.0, 85.0),)

Python Database Programming

3G E-LEARNING

289

9.1.6 Python MySQL – Create Database

Python Database API (Application Program Interface) is the Database interface for the
standard Python. This standard is adhered to by most Python Database interfaces.
There are various Database servers supported by Python Database such as MySQL,
GadFly, mSQL, PostgreSQL, Microsoft SQL Server 2000, Informix, Interbase, Oracle,
Sybase etc. To connect with MySQL database server from Python, we need to import
the mysql.connector interface.

Syntax:
CREATE DATABASE DATABASE_NAME
Example:

importing required libraries

import mysql.connector

dataBase = mysql.connector.connect(

 host =”localhost”,

 user =”user”,

 passwd =”gfg”

)

 # preparing a cursor object

cursorObject = dataBase.cursor()

 # creating database

cursorObject.execute(“CREATE DATABASE geeks4geeks”)

3G E-LEARNING

290 Basic Computer Coding: Python

Output:

The above program illustrates the creation of MySQL database geeks4geeks in
which host-name is localhost, the username is user and password is gfg.

Let’s suppose we want to create a table in the database, then we need to connect
to a database. Below is a program to create a table in the geeks4geeks database which
was created in the above program.

9.2 MYSQL WITH PYTHON
MySQL is one of the most popular database management systems (DBMSs) on the market
today. It ranked second only to the Oracle DBMS in this year’s DB-Engines Ranking.
As most software applications need to interact with data in some form, programming
languages like Python provide tools for storing and accessing these data sources.

You’ll be able to efficiently integrate a MySQL database with a Python application.
You’ll develop a small MySQL database for a movie rating system and learn how to
query it directly from your Python code.

Python Database Programming

3G E-LEARNING

291

Structured Query Language is a standard Database
language which is used to create, maintain and retrieve the
relational database. Following are some interesting facts about
SQL.

■■ SQL is case insensitive. But it is a recommended
practice to use keywords (like SELECT, UPDATE,
CREATE, etc) in capital letters and use user defined
things (liked table name, column name, etc) in small
letters.

■■ We can write comments in SQL using “–” (double
hyphen) at the beginning of any line.

■■ SQL is the programming language for relational
databases (explained below) like MySQL, Oracle,
Sybase, SQL Server, Postgre, etc. Other non-relational
databases (also called NoSQL) databases like
MongoDB, DynamoDB, etc do not use SQL

■■ Although there is an ISO standard for SQL, most of
the implementations slightly vary in syntax. So we
may encounter queries that work in SQL Server but
do not work in MySQL.

9.2.1 Comparing MySQL to Other SQL
Databases

SQL stands for Structured Query Language and is a widely used
programming language for managing relational databases. You
may have heard of the different flavors of SQL-based DBMSs.
The most popular ones include MySQL, PostgreSQL, SQLite,
and SQL Server. All of these databases are compliant with
the SQL standards but with varying degrees of compliance.

Being open source since its inception in 1995, MySQL
quickly became a market leader among SQL solutions.
MySQL is also a part of the Oracle ecosystem. While its core
functionality is completely free, there are some paid add-ons
as well. Currently, MySQL is used by all major tech firms,
including Google, LinkedIn, Uber, Netflix, Twitter, and others.

Apart from a large open source community for support,
there are many other reasons for MySQL’s success:

■■ Ease of installation: MySQL was designed to be user-
friendly. It’s quite straightforward to set up a MySQL

MySQL
is free
and open-
source software
under the terms
of the GNU
General Public
License, and is
also available
under a variety
of proprietary
licenses. MySQL
was owned and
sponsored by
the Swedish
company MySQL
AB, which was
bought by Sun
Microsystems
(now Oracle
Corporation).

Remember

3G E-LEARNING

292 Basic Computer Coding: Python

database, and several widely available third-party tools, like phpMyAdmin,
further streamline the setup process. MySQL is available for all major operating
systems, including Windows, macOS, Linux, and Solaris.

■■ Speed: MySQL holds a reputation for being an exceedingly fast database
solution. It has a relatively smaller footprint and is extremely scalable in the
long run.

■■ User privileges and security: MySQL comes with a script that allows you
to set the password security level, assign admin passwords, and add and
remove user account privileges. This script uncomplicates the admin process
for a web hosting user management portal. Other DBMSs, like PostgreSQL,
use config files that are more complicated to use.

While MySQL is famous for its speed and ease of use, you can get more advanced
features with PostgreSQL. Also, MySQL isn’t fully SQL compliant and has certain
functional limitations, like no support for FULL JOIN clauses.

You might also face some issues with concurrent reading and writing in MySQL.
If your software has many users writing data to it at once, then PostgreSQL might be
a more suitable choice.

Note: For a more in-depth comparison of MySQL and PostgreSQL in a real-world
context, check out Why Uber Engineering Switched from Postgres to MySQL.

SQL Server is also a very popular DBMS and is known for its reliability, efficiency,
and security. It’s preferred by companies, especially in the banking domain, who
regularly deal with large traffic workloads. It’s a commercial solution and is one of
the systems that are most compatible with Windows services.

In 2010, when Oracle acquired Sun Microsystems and MySQL, many were worried
about MySQL’s future. At the time, Oracle was MySQL’s biggest competitor. Developers
feared that this was a hostile takeover from Oracle with the aim of destroying MySQL.

Several developers led by Michael Widenius, the original author of MySQL, created
a fork of the MySQL code base and laid the foundation of MariaDB. The aim was to
secure access to MySQL and keep it free forever.

To date, MariaDB remains fully GPL licensed, keeping it completely in the public
domain. Some features of MySQL, on the other hand, are available only with paid
licenses. Also, MariaDB provides several extremely useful features that aren’t supported
by MySQL server, like distributed SQL and columnar storage. You can find more
differences between MySQL and MariaDB listed on MariaDB’s website.

MySQL uses a very similar syntax to the Standard SQL. There are, however, some
notable differences mentioned in the official documentation.

Python Database Programming

3G E-LEARNING

293

9.2.2 Installing MySQL Server and MySQL Connector/Python

Now, to start working through this tutorial, you need to set up two things: a MySQL
server and a MySQL connector. MySQL server will provide all the services required
for handling your database. Once the server is up and running, you can connect your
Python application with it using MySQL Connector/Python.

Installing MySQL Server

The official documentation details the recommended way to download and install
MySQL server. You’ll find instructions for all popular operating systems, including
Windows, macOS, Solaris, Linux, and many more.

For Windows, the best way is to download MySQL Installer and let it take care
of the entire process. The installation manager also helps you configure the security
settings of the MySQL server. On the Accounts and Roles page, you need to enter
a password for the root (admin) account and also optionally add other users with
varying privileges:

While you must specify credentials for the root account during setup, you can
modify these settings later on. Remember the hostname, username, and password as
these will be required to establish a connection with the MySQL server later on.

Although you only need the MySQL server for this tutorial, you can also set up
other helpful tools like MySQL Workbench using these installers. If you don’t want
to install MySQL directly in your operating system, then deploying MySQL on Linux
with Docker is a convenient alternative.

3G E-LEARNING

294 Basic Computer Coding: Python

Installing MySQL Connector/Python

A database driver is a piece of software that allows an application to connect and
interact with a database system. Programming languages like Python need a special
driver before they can speak to a database from a specific vendor.

These drivers are typically obtained as third-party modules. The Python Database
API (DB-API) defines the standard interface with which all Python database drivers
must comply. These details are documented in PEP 249. All Python database drivers,
such as sqlite3 for SQLite, psycopg for PostgreSQL, and MySQL Connector/Python for
MySQL, follow these implementation rules.

Note: MySQL’s official documentation uses the term connector instead of driver.
Technically, connectors are associated only with connecting to a database, not interacting
with it. However, the term is often used for the entire database access module comprising
the connector and the driver.

To maintain consistency with the documentation, you’ll see the term connector
whenever MySQL is mentioned.

Many popular programming languages have their own database API. For example,
Java has the Java Database Connectivity (JDBC) API. If you need to connect a Java
application to a MySQL database, then you need to use the MySQL JDBC connector,
which follows the JDBC API.

Similarly, in Python you need to install a Python MySQL connector to interact
with a MySQL database. Many packages follow the DB-API standards, but the most
popular among them is MySQL Connector/Python. You can get it with pip:

■■ $ pip install mysql-connector-python
pip installs the connector as a third-party module in the currently active virtual

environment. It’s recommended that you set up an isolated virtual environment for
the project along with all the dependencies.

To test if the installation was successful, type the following command on your
Python terminal:

>>>

>>> import mysql.connector

Python Database Programming

3G E-LEARNING

295

If the above code executes with no errors, then mysql.
connector is installed and ready to use. If you encounter any
errors, then make sure you’re in the correct virtual environment
and you’re using the right Python interpreter.

Make sure that you’re installing the correct mysql-connector-
python package, which is a pure-Python implementation.
Beware of similarly named but now depreciated connectors
like mysql-connector.

9.2.3 Establishing a Connection with MySQL
Server

MySQL is a server-based database management system. One
server might contain multiple databases. To interact with a
database, you must first establish a connection with the server.
The general workflow of a Python program that interacts with
a MySQL-based database is as follows:

■■ Connect to the MySQL server.
■■ Create a new database.
■■ Connect to the newly created or an existing database.
■■ Execute a SQL query and fetch results.
■■ Inform the database if any changes are made to a table.
■■ Close the connection to the MySQL server.

Java
Database
Connectivity
(JDBC) is an
application
programming
interface
(API) for the
programming
language Java,
which defines
how a client may
access a database.
It is a Java-based
data access
technology used
for Java database
connectivity.
It is part of the
Java Standard
Edition platform,
from Oracle
Corporation.

Did You
Know?

3G E-LEARNING

296 Basic Computer Coding: Python

This is a generic workflow that might vary depending on the individual application.
But whatever the application might be, the first step is to connect your database with
your application.

Establishing a Connection

The first step in interacting with a MySQL server is to establish a connection. To do
this, you need connect() from the mysql.connector module. This function takes in
parameters like host, user, and password and returns a MySQLConnection object.
You can receive these credentials as input from the user and pass them to connect():

from getpass import getpass

from mysql.connector import connect, Error

try:

 with connect(

 host=”localhost”,

 user=input(“Enter username: “),

 password=getpass(“Enter password: “),

) as connection:

 print(connection)

except Error as e:

 print(e)

The code above uses the entered login credentials to establish a connection with
your MySQL server. In return, you get a MySQLConnection object, which is stored in
the connection variable. From now on, you’ll use this variable to access your MySQL
server.

There are several important things to notice in the code above:
■■ You should always deal with the exceptions that might be raised while

establishing a connection to the MySQL server. This is why you use a try
… except block to catch and print any exceptions that you might encounter.

■■ You should always close the connection after you’re done accessing the
database. Leaving unused open connections can lead to several unexpected

Python Database Programming

3G E-LEARNING

297

errors and performance issues. The above code takes advantage of a context
manager using with, which abstracts away the connection cleanup process.

■■ You should never hard-code your login credentials, that is, your username and
password, directly in a Python script. This is a bad practice for deployment
and poses a serious security threat. The code above prompts the user for
login credentials. It uses the built-in getpass module to hide the password.
While this is better than hard-coding, there are other, more secure ways to
store sensitive information, like using environment variables.

You’ve now established a connection between your program and your MySQL
server, but you still need to either create a new database or connect to an existing
database inside the server.

Creating a New Database

Here you established a connection with your MySQL server. To create a new database,
you need to execute a SQL statement:

CREATE DATABASE books_db;

The above statement will create a new database with the name books_db.
In MySQL, it’s mandatory to put a semicolon (;) at the end of a statement, which

denotes the termination of a query. However, MySQL Connector/Python automatically
appends a semicolon at the end of your queries, so there’s no need to use it in your
Python code.

To execute a SQL query in Python, you’ll need to use a cursor, which abstracts
away the access to database records. MySQL Connector/Python provides you with

3G E-LEARNING

298 Basic Computer Coding: Python

the MySQLCursor class, which instantiates objects that can execute MySQL queries in
Python. An instance of the MySQLCursor class is also called a cursor.

cursor objects make use of a MySQLConnection object to interact with your MySQL
server. To create a cursor, use the .cursor() method of your connection variable:

cursor = connection.cursor()

The above code gives you an instance of the MySQLCursor class.

A query that needs to be executed is sent to cursor.execute() in string format. In this
particular occasion, you’ll send the CREATE DATABASE query to cursor.execute():

from getpass import getpass

from mysql.connector import connect, Error

try:

 with connect(

 host=”localhost”,

 user=input(“Enter username: “),

 password=getpass(“Enter password: “),

) as connection:

 create_db_query = “CREATE DATABASE online_movie_rating”

 with connection.cursor() as cursor:

 cursor.execute(create_db_query)

except Error as e:

 print(e)

After executing of the code above, you’ll have a new database called online_movie_
rating in your MySQL server.

The CREATE DATABASE query is stored as a string in the create_db_query variable
and then passed to cursor.execute() for execution. The code uses a context manager
with the cursor object to handle the cleanup process.

Python Database Programming

3G E-LEARNING

299

You might receive an error here if a database with the
same name already exists in your server. To confirm this, you
can display the name of all databases in your server. Using
the same MySQLConnection object from earlier, execute the
SHOW DATABASES statement:

>>>

>>> show_db_query = “SHOW DATABASES”

>>> with connection.cursor() as cursor:

... cursor.execute(show_db_query)

... for db in cursor:

... print(db)

...

(‘information_schema’,)

(‘mysql’,)

(‘online_movie_rating’,)

(‘performance_schema’,)

(‘sys’,)

The above code prints the names of all the databases
currently in your MySQL server. The SHOW DATABASES
command also outputs some databases that you didn’t create
in your server, like information_schema, performance_schema,
and so on. These databases are generated automatically by
the MySQL server and provide access to a variety of database
metadata and MySQL server settings.

You created a new database in this section by executing
the CREATE DATABASE statement. In the next section, you’ll
see how to connect to a database that already exists.

Connecting to an Existing Database

In the last section, you created a new database called online_
movie_rating. However, you still haven’t connected to it. In

Cursor
object is
an object that is
used to make the
connection for
executing SQL
queries. It acts
as middleware
between SQLite
database
connection and
SQL query.

Keyword

3G E-LEARNING

300 Basic Computer Coding: Python

many situations, you’ll already have a MySQL database that you want to connect with
your Python application.
You can do this using the same connect() function that you used earlier by sending an
additional parameter called database:

from getpass import getpass

from mysql.connector import connect, Error

try:

 with connect(

 host=”localhost”,

 user=input(“Enter username: “),

 password=getpass(“Enter password: “),

 database=”online_movie_rating”,

) as connection:

 print(connection)

except Error as e:

 print(e)

The above code is very similar to the connection script that you used earlier.
The only change here is an additional database parameter, where the name of your
database is passed to connect(). Once you execute this script, you’ll be connected to
the online_movie_rating database.

9.3 CREATING, ALTERING, AND DROPPING A TABLE
In this section, you’ll learn how to perform some basic DDL queries like CREATE,
DROP, and ALTER with Python. You’ll get a quick look at the MySQL database that
you’ll use in the rest of this tutorial. You’ll also create all the tables required for the
database and learn how to perform modifications on these tables later on.

Python Database Programming

3G E-LEARNING

301

9.3.1 Defining the Database Schema

You can start by creating a database schema for an online movie rating system. The
database will consist of three tables:

■■ movies contains general information about movies and has the following
attributes:

-- id
-- title
-- release_year
-- genre
-- collection_in_mil

■■ reviewers contains information about people who posted reviews or ratings
and has the following attributes:

-- id
-- first_name
-- last_name

■■ ratings contains information about ratings that have been posted and has the
following attributes:

-- movie_id (foreign key)
-- reviewer_id (foreign key)
-- rating

A real-world movie rating system, like IMDb, would need to store a bunch of
other attributes, like emails, movie cast lists, and so on. If you want, you can add
more tables and attributes to this database. But these three tables will suffice for the
purpose of this tutorial.

The image below depicts the database schema:

Figure 1. Schema Diagram for an Online Movie Rating System.

3G E-LEARNING

302 Basic Computer Coding: Python

The tables in this database are related to each other,
movies and reviewers will have a many-to-many relationship
since one movie can be reviewed by multiple reviewers and
one reviewer can review multiple movies. The ratings table
connects the movies table with the reviewers table.

9.3.2 Creating Tables Using the CREATE TABLE
Statement

Now, to create a new table in MySQL, you need to use the
CREATE TABLE statement. The following MySQL query will
create the movies table for your online_movie_rating database:

CREATE TABLE movies(

 id INT AUTO_INCREMENT PRIMARY KEY,

 title VARCHAR(100),

 release_year YEAR(4),

 genre VARCHAR(100),

 collection_in_mil INT

);

If you’ve looked at SQL statements before, then most of the
above query might make sense. But there are some differences
in the MySQL syntax that you should be aware of.

MySQL has a wide variety of data types for your perusal, including YEAR, INT,
BIGINT, and so on. Also, MySQL uses the AUTO_INCREMENT keyword when a
column value has to be incremented automatically on the insertion of new records.

To create a new table, you need to pass this query to
cursor.execute(), which accepts a MySQL query and executes
the query on the connected MySQL database:

create_movies_table_query = “””

CREATE TABLE movies(

 id INT AUTO_INCREMENT PRIMARY KEY,

Python Database Programming

3G E-LEARNING

303

 title VARCHAR(100),

 release_year YEAR(4),

 genre VARCHAR(100),

 collection_in_mil INT

)

“””

with connection.cursor() as cursor:

 cursor.execute(create_movies_table_query)

 connection.commit()

Now you have the movies table in your database. You
pass create_movies_table_query to cursor.execute(), which
performs the required execution.

In MySQL, modifications mentioned in a transaction occur
only when you use a COMMIT command in the end. Always
call this method after every transaction to perform changes
in the actual table.

As you did with the movies table, execute the following
script to create the reviewers table:

create_reviewers_table_query = “””

CREATE TABLE reviewers (

 id INT AUTO_INCREMENT PRIMARY KEY,

 first_name VARCHAR(100),

 last_name VARCHAR(100)

)

“””

with connection.cursor() as cursor:

 cursor.execute(create_reviewers_table_query)

 connection.commit()

The
connection
variable refers
to the MySQL
Connection
object that
was returned
when you
connected to
your database.
Also, notice
the connection.
commit()
statement at
the end of the
code. By default,
your MySQL
connector
doesn’t
autocommit
transactions.

Remember

3G E-LEARNING

304 Basic Computer Coding: Python

If required, you could add more information about a reviewer, such as their
email ID or demographic information. But first_name and last_name will serve your
purpose for now.
Finally, you can create the ratings table using the following script:

create_ratings_table_query = “””

CREATE TABLE ratings (

 movie_id INT,

 reviewer_id INT,

 rating DECIMAL(2,1),

 FOREIGN KEY(movie_id) REFERENCES movies(id),

 FOREIGN KEY(reviewer_id) REFERENCES reviewers(id),

 PRIMARY KEY(movie_id, reviewer_id)

)

“””

with connection.cursor() as cursor:

 cursor.execute(create_ratings_table_query)

 connection.commit()

Python Database Programming

3G E-LEARNING

305

The implementation of foreign key relationships in MySQL is slightly different and
limited as compared to the standard SQL. In MySQL, both the parent and the child
in the foreign key constraint must use the same storage engine.

A storage engine is the underlying software component that a database management
system uses for performing SQL operations. In MySQL, storage engines come in two
different flavors:

■■ Transactional storage engines are transaction safe and allow you to roll back
transactions using simple commands like rollback. Many popular MySQL
engines, including InnoDB and NDB, belong to this category.

■■ Nontransactional storage engines depend on elaborate manual code to undo
statements committed on a database. MyISAM, MEMORY, and many other
MySQL engines are nontransactional.

InnoDB is the default and most popular storage engine. It helps maintain data
integrity by supporting foreign key constraints. This means that any CRUD operation
on a foreign key is checked to ensure that it doesn’t lead to inconsistencies across
different tables.

Also, note that the ratings table uses the columns movie_id and reviewer_id, both
foreign keys, jointly as the primary key. This step ensures that a reviewer can’t rate
the same movie twice.

You may choose to reuse the same cursor for multiple executions. In that case,
all executions would become one atomic transaction rather than multiple separate
transactions. For example, you can execute all CREATE TABLE statements with one
cursor and then commit your transaction only once:

with connection.cursor() as cursor:

 cursor.execute(create_movies_table_query)

 cursor.execute(create_reviewers_table_query)

 cursor.execute(create_ratings_table_query)

 connection.commit()

The above code will first execute all three CREATE statements. Then it will send
a COMMIT command to the MySQL server that commits your transaction. You can
also use .rollback() to send a ROLLBACK command to the MySQL server and remove
all data changes from the transaction.

9.3.3 Showing a Table Schema Using the DESCRIBE Statement

Now, that you’ve created all three tables, you can look at their schema using the
following SQL statement:

3G E-LEARNING

306 Basic Computer Coding: Python

DESCRIBE <table_name>;

To get some results back from the cursor object, you need to use cursor.fetchall().
This method fetches all rows from the last executed statement. Assuming you already
have the MySQLConnection object in the connection variable, you can print out all
the results fetched by cursor.fetchall():

>>>

>>> show_table_query = “DESCRIBE movies”

>>> with connection.cursor() as cursor:

... cursor.execute(show_table_query)

... # Fetch rows from last executed query

... result = cursor.fetchall()

... for row in result:

... print(row)

...

(‘id’, ‘int(11)’, ‘NO’, ‘PRI’, None, ‘auto_increment’)

(‘title’, ‘varchar(100)’, ‘YES’, ‘’, None, ‘’)

(‘release_year’, ‘year(4)’, ‘YES’, ‘’, None, ‘’)

(‘genre’, ‘varchar(100)’, ‘YES’, ‘’, None, ‘’)

(‘collection_in_mil’, ‘int(11)’, ‘YES’, ‘’, None, ‘’)

Once you execute the above code, you should receive a table containing information
about all the columns in movies table. For each column, you’ll receive details like the
column’s data type, whether the column is a primary key, and so on.

9.3.4 Modifying a Table Schema Using the ALTER Statement

In the movies table, you have a column called collection_in_mil, which contains a
movie’s box office collection in millions of dollars. You can write the following MySQL
statement to modify the data type of collection_in_mil attribute from INT to DECIMAL:

ALTER TABLE movies MODIFY COLUMN collection_in_mil DECIMAL(4,1);

Python Database Programming

3G E-LEARNING

307

DECIMAL(4,1) means a decimal number that can have a maximum of 4 digits,
of which 1 is decimal, such as 120.1, 3.4, 38.0, and so on. After executing the ALTER
TABLE statement, you can show the updated table schema using DESCRIBE:

>>>

>>> alter_table_query = “””

... ALTER TABLE movies

... MODIFY COLUMN collection_in_mil DECIMAL(4,1)

... “””

>>> show_table_query = “DESCRIBE movies”

>>> with connection.cursor() as cursor:

... cursor.execute(alter_table_query)

... cursor.execute(show_table_query)

... # Fetch rows from last executed query

... result = cursor.fetchall()

... print(“Movie Table Schema after alteration:”)

... for row in result:

... print(row)

...

Movie Table Schema after alteration

(‘id’, ‘int(11)’, ‘NO’, ‘PRI’, None, ‘auto_increment’)

(‘title’, ‘varchar(100)’, ‘YES’, ‘’, None, ‘’)

(‘release_year’, ‘year(4)’, ‘YES’, ‘’, None, ‘’)

(‘genre’, ‘varchar(100)’, ‘YES’, ‘’, None, ‘’)

(‘collection_in_mil’, ‘decimal(4,1)’, ‘YES’, ‘’, None, ‘’)

As shown in the output, the collection_in_mil attribute is now of type DECIMAL(4,1).
Also note that in the code above, you call cursor.execute() twice. But cursor.fetchall()

3G E-LEARNING

308 Basic Computer Coding: Python

fetches rows from only the last executed query, which is the show_table_query.

9.3.5 Deleting Tables Using the DROP Statement

To delete a table, you need to execute the DROP TABLE statement in MySQL. Deleting
a table is an irreversible process. If you execute the code below, then you’ll need to call
the CREATE TABLE query again to use the ratings table in the upcoming sections.

To delete the ratings table, send drop_table_query to cursor.execute():

drop_table_query = “DROP TABLE ratings”

with connection.cursor() as cursor:

 cursor.execute(drop_table_query)

If you execute the above code, you will have successfully deleted the ratings table.

9.4 INSERTING RECORDS IN TABLES
Earlier you created three tables in your database: movies, reviewers, and ratings. Now
you need to populate these tables with data. This section will cover two different ways
to insert records in the MySQL Connector for Python.

The first method, .execute(), works well when the number of records is small and
the records can be hard-coded. The second method, .executemany(), is more popular
and is better suited for real-world scenarios.

9.4.1 Using .execute()

The first approach uses the same cursor.execute() method that you’ve been using until
now. You write the INSERT INTO query in a string and pass it to cursor.execute().
You can use this method to insert data into the movies table.

For reference, the movies table has five attributes:
■■ id
■■ title
■■ release_year
■■ genre
■■ collection_in_mil

You don’t need to add data for id as the AUTO_INCREMENT automatically
calculates id for you. The following script inserts records into the movies table:

insert_movies_query = “””

Python Database Programming

3G E-LEARNING

309

INSERT INTO movies (title, release_year, genre, collection_in_mil)

VALUES

 (“Forrest Gump”, 1994, “Drama”, 330.2),

 (“3 Idiots”, 2009, “Drama”, 2.4),

 (“Eternal Sunshine of the Spotless Mind”, 2004, “Drama”, 34.5),

 (“Good Will Hunting”, 1997, “Drama”, 138.1),

 (“Skyfall”, 2012, “Action”, 304.6),

 (“Gladiator”, 2000, “Action”, 188.7),

 (“Black”, 2005, “Drama”, 3.0),

 (“Titanic”, 1997, “Romance”, 659.2),

 (“The Shawshank Redemption”, 1994, “Drama”,28.4),

 (“Udaan”, 2010, “Drama”, 1.5),

 (“Home Alone”, 1990, “Comedy”, 286.9),

 (“Casablanca”, 1942, “Romance”, 1.0),

 (“Avengers: Endgame”, 2019, “Action”, 858.8),

 (“Night of the Living Dead”, 1968, “Horror”, 2.5),

 (“The Godfather”, 1972, “Crime”, 135.6),

 (“Haider”, 2014, “Action”, 4.2),

 (“Inception”, 2010, “Adventure”, 293.7),

 (“Evil”, 2003, “Horror”, 1.3),

 (“Toy Story 4”, 2019, “Animation”, 434.9),

 (“Air Force One”, 1997, “Drama”, 138.1),

 (“The Dark Knight”, 2008, “Action”,535.4),

 (“Bhaag Milkha Bhaag”, 2013, “Sport”, 4.1),

3G E-LEARNING

310 Basic Computer Coding: Python

 (“The Lion King”, 1994, “Animation”, 423.6),

 (“Pulp Fiction”, 1994, “Crime”, 108.8),

 (“Kai Po Che”, 2013, “Sport”, 6.0),

 (“Beasts of No Nation”, 2015, “War”, 1.4),

 (“Andadhun”, 2018, “Thriller”, 2.9),

 (“The Silence of the Lambs”, 1991, “Crime”, 68.2),

 (“Deadpool”, 2016, “Action”, 363.6),

 (“Drishyam”, 2015, “Mystery”, 3.0)

“””

with connection.cursor() as cursor:

 cursor.execute(insert_movies_query)

 connection.commit()

The movies table is now loaded with thirty records. The code calls connection.
commit() at the end. It’s crucial to call .commit() after preforming any modifications
to a table.

9.4.2 Using .executemany()

The previous approach is more suitable when the number of records is fairly small and
you can write these records directly into the code. But this is rarely true. You’ll often
have this data stored in some other file, or the data will be generated by a different
script and will need to be added to the MySQL database.

This is where .executemany() comes in handy. It accepts two parameters:
■■ A query that contains placeholders for the records that need to be inserted
■■ A list that contains all records that you wish to insert

The following example inserts records for the reviewers table:
■■ insert_reviewers_query = “””
■■ INSERT INTO reviewers
■■ (first_name, last_name)
■■ VALUES (%s, %s)

Python Database Programming

3G E-LEARNING

311

“””

reviewers_records = [

 (“Chaitanya”, “Baweja”),

 (“Mary”, “Cooper”),

 (“John”, “Wayne”),

 (“Thomas”, “Stoneman”),

 (“Penny”, “Hofstadter”),

 (“Mitchell”, “Marsh”),

 (“Wyatt”, “Skaggs”),

 (“Andre”, “Veiga”),

 (“Sheldon”, “Cooper”),

 (“Kimbra”, “Masters”),

 (“Kat”, “Dennings”),

 (“Bruce”, “Wayne”),

 (“Domingo”, “Cortes”),

 (“Rajesh”, “Koothrappali”),

 (“Ben”, “Glocker”),

 (“Mahinder”, “Dhoni”),

 (“Akbar”, “Khan”),

 (“Howard”, “Wolowitz”),

 (“Pinkie”, “Petit”),

 (“Gurkaran”, “Singh”),

 (“Amy”, “Farah Fowler”),

 (“Marlon”, “Crafford”),

3G E-LEARNING

312 Basic Computer Coding: Python

]

with connection.cursor() as cursor:

 cursor.executemany(insert_reviewers_query, reviewers_records)

 connection.commit()

In the script above, you pass both the query and the list of records as arguments
to .executemany(). These records could have been fetched from a file or from the user
and stored in the reviewers_records list.

The code uses %s as a placeholder for the two strings that had to be inserted in
the insert_reviewers_query. Placeholders act as format specifiers and help reserve a
spot for a variable inside a string. The specified variable is then added to this spot
during execution.

You can similarly use .executemany() to insert records in the ratings table:
insert_ratings_query = “””

INSERT INTO ratings

(rating, movie_id, reviewer_id)

VALUES (%s, %s, %s)

“””

ratings_records = [

 (6.4, 17, 5), (5.6, 19, 1), (6.3, 22, 14), (5.1, 21, 17),

 (5.0, 5, 5), (6.5, 21, 5), (8.5, 30, 13), (9.7, 6, 4),

 (8.5, 24, 12), (9.9, 14, 9), (8.7, 26, 14), (9.9, 6, 10),

 (5.1, 30, 6), (5.4, 18, 16), (6.2, 6, 20), (7.3, 21, 19),

 (8.1, 17, 18), (5.0, 7, 2), (9.8, 23, 3), (8.0, 22, 9),

 (8.5, 11, 13), (5.0, 5, 11), (5.7, 8, 2), (7.6, 25, 19),

 (5.2, 18, 15), (9.7, 13, 3), (5.8, 18, 8), (5.8, 30, 15),

 (8.4, 21, 18), (6.2, 23, 16), (7.0, 10, 18), (9.5, 30, 20),

 (8.9, 3, 19), (6.4, 12, 2), (7.8, 12, 22), (9.9, 15, 13),

Python Database Programming

3G E-LEARNING

313

 (7.5, 20, 17), (9.0, 25, 6), (8.5, 23, 2), (5.3, 30, 17),

 (6.4, 5, 10), (8.1, 5, 21), (5.7, 22, 1), (6.3, 28, 4),

 (9.8, 13, 1)

]

with connection.cursor() as cursor:

 cursor.executemany(insert_ratings_query, ratings_records)

 connection.commit()

All three tables are now populated with data. You now have a fully functional
online movie rating database. The next step is to understand how to interact with
this database.

9.4.3 Reading Records from the Database

Until now, you’ve been building your database. Now it’s time to perform some queries
on it and find some interesting properties from this dataset. In this section, you’ll learn
how to read records from database tables using the SELECT statement.

Reading Records Using the SELECT Statement

To retrieve records, you need to send a SELECT query to cursor.execute(). Then you use
cursor.fetchall() to extract the retrieved table in the form of a list of rows or records.

Try writing a MySQL query to select all records from the movies table and send
it to .execute():

>>>

>>> select_movies_query = “SELECT * FROM movies LIMIT 5”

>>> with connection.cursor() as cursor:

... cursor.execute(select_movies_query)

... result = cursor.fetchall()

... for row in result:

... print(row)

...

3G E-LEARNING

314 Basic Computer Coding: Python

(1, ‘Forrest Gump’, 1994, ‘Drama’, Decimal(‘330.2’))

(2, ‘3 Idiots’, 2009, ‘Drama’, Decimal(‘2.4’))

(3, ‘Eternal Sunshine of the Spotless Mind’, 2004, ‘Drama’,
Decimal(‘34.5’))

(4, ‘Good Will Hunting’, 1997, ‘Drama’, Decimal(‘138.1’))

(5, ‘Skyfall’, 2012, ‘Action’, Decimal(‘304.6’))

The result variable holds the records returned from using
.fetchall(). It’s a list of tuples representing individual records
from the table.

In the query above, you use the LIMIT clause to constrain
the number of rows that are received from the SELECT
statement. Developers often use LIMIT to perform pagination
when handling large volumes of data.

In MySQL, the LIMIT clause takes one or two nonnegative
numeric arguments. When using one argument, you specify
the maximum number of rows to return. Since your query
includes LIMIT 5, only the first 5 records are fetched. When
using both arguments, you can also specify the offset of the
first row to return:

SELECT * FROM movies LIMIT 2,5;
The first argument specifies an offset of 2, and the second

argument constrains the number of returned rows to 5. The
above query will return rows 3 to 7.

You can also query for selected columns:
>>>

>>> select_movies_query = “SELECT title, release_year
FROM movies LIMIT 5”

>>> with connection.cursor() as cursor:

... cursor.execute(select_movies_query)

... for row in cursor.fetchall():

... print(row)

...

Pagination
is the
process of dividing
a document into
discrete pages,
either electronic
pages or printed
pages.

Keyword

Python Database Programming

3G E-LEARNING

315

(‘Forrest Gump’, 1994)

(‘3 Idiots’, 2009)

(‘Eternal Sunshine of the Spotless Mind’, 2004)

(‘Good Will Hunting’, 1997)

(‘Skyfall’, 2012)

Now, the code outputs values only from the two specified columns: title and
release_year.

Filtering Results Using the WHERE Clause

You can filter table records by specific criteria using the WHERE clause. For example,
to retrieve all movies with a box office collection greater than $300 million, you could
run the following query:

SELECT title, collection_in_mil

FROM movies

WHERE collection_in_mil > 300;

You can also use ORDER BY clause in the last query to sort the results from the
highest to the lowest earner:

>>>

>>> select_movies_query = “””

... SELECT title, collection_in_mil

... FROM movies

... WHERE collection_in_mil > 300

... ORDER BY collection_in_mil DESC

... “””

>>> with connection.cursor() as cursor:

... cursor.execute(select_movies_query)

... for movie in cursor.fetchall():

3G E-LEARNING

316 Basic Computer Coding: Python

... print(movie)

...

(‘Avengers: Endgame’, Decimal(‘858.8’))

(‘Titanic’, Decimal(‘659.2’))

(‘The Dark Knight’, Decimal(‘535.4’))

(‘Toy Story 4’, Decimal(‘434.9’))

(‘The Lion King’, Decimal(‘423.6’))

(‘Deadpool’, Decimal(‘363.6’))

(‘Forrest Gump’, Decimal(‘330.2’))

(‘Skyfall’, Decimal(‘304.6’))

MySQL offers a plethora of string formatting operations like CONCAT for
concatenating strings. Often, websites will show the movie title along with its release
year to avoid confusion. To retrieve the titles of the top five grossing movies, concatenated
with their release years, you can write the following query:

>>>

>>> select_movies_query = “””

... SELECT CONCAT(title, “ (“, release_year, “)”),

... collection_in_mil

... FROM movies

... ORDER BY collection_in_mil DESC

... LIMIT 5

... “””

>>> with connection.cursor() as cursor:

... cursor.execute(select_movies_query)

... for movie in cursor.fetchall():

... print(movie)

Python Database Programming

3G E-LEARNING

317

...

(‘Avengers: Endgame (2019)’, Decimal(‘858.8’))

(‘Titanic (1997)’, Decimal(‘659.2’))

(‘The Dark Knight (2008)’, Decimal(‘535.4’))

(‘Toy Story 4 (2019)’, Decimal(‘434.9’))

(‘The Lion King (1994)’, Decimal(‘423.6’))

If you don’t want to use the LIMIT clause and you don’t need to fetch all the
records, then the cursor object has .fetchone() and .fetchmany() methods as well:

■■ .fetchone() retrieves either the next row of the result, as a tuple, or None if
no more rows are available.

■■ .fetchmany() retrieves the next set of rows from the result as a list of tuples.
It has a size argument, which defaults to 1, that you can use to specify the
number of rows you need to fetch. If no more rows are available, then the
method returns an empty list.

Try retrieving the titles of the five highest-grossing movies concatenated with their
release years again, but this time use .fetchmany():

>>>

>>> select_movies_query = “””

... SELECT CONCAT(title, “ (“, release_year, “)”),

... collection_in_mil

... FROM movies

... ORDER BY collection_in_mil DESC

... “””

>>> with connection.cursor() as cursor:

... cursor.execute(select_movies_query)

... for movie in cursor.fetchmany(size=5):

... print(movie)

... cursor.fetchall()

3G E-LEARNING

318 Basic Computer Coding: Python

...

(‘Avengers: Endgame (2019)’, Decimal(‘858.8’))

(‘Titanic (1997)’, Decimal(‘659.2’))

(‘The Dark Knight (2008)’, Decimal(‘535.4’))

(‘Toy Story 4 (2019)’, Decimal(‘434.9’))

(‘The Lion King (1994)’, Decimal(‘423.6’))

The output with .fetchmany() is similar to what you received when you used the
LIMIT clause. You might have noticed the additional cursor.fetchall() call at the end.
You do this to clean all the remaining results that weren’t read by .fetchmany().

It’s necessary to clean all unread results before executing any other statements
on the same connection. Otherwise, an InternalError: Unread result found exception
will be raised.

9.4.4 Handling Multiple Tables Using the JOIN Statement

If you found the queries in the last section to be quite straightforward, don’t worry.
You can make your SELECT queries as complex as you want using the same methods
from the last section.

Let’s look at some slightly more complex JOIN queries. If you want to find out
the name of the top five highest-rated movies in your database, then you can run the
following query:

>>>

>>> select_movies_query = “””

... SELECT title, AVG(rating) as average_rating

... FROM ratings

... INNER JOIN movies

... ON movies.id = ratings.movie_id

... GROUP BY movie_id

... ORDER BY average_rating DESC

... LIMIT 5

Python Database Programming

3G E-LEARNING

319

... “””

>>> with connection.cursor() as cursor:

... cursor.execute(select_movies_query)

... for movie in cursor.fetchall():

... print(movie)

...

(‘Night of the Living Dead’, Decimal(‘9.90000’))

(‘The Godfather’, Decimal(‘9.90000’))

(‘Avengers: Endgame’, Decimal(‘9.75000’))

(‘Eternal Sunshine of the Spotless Mind’, Decimal(‘8.90000’))

(‘Beasts of No Nation’, Decimal(‘8.70000’))

As shown above, Night of the Living Dead and The Godfather are tied as the
highest-rated movies in your online_movie_rating database.

To find the name of the reviewer who gave the most ratings, write the following
query:

>>>

>>> select_movies_query = “””

... SELECT CONCAT(first_name, “ “, last_name), COUNT(*) as num

... FROM reviewers

... INNER JOIN ratings

... ON reviewers.id = ratings.reviewer_id

... GROUP BY reviewer_id

... ORDER BY num DESC

... LIMIT 1

... “””

>>> with connection.cursor() as cursor:

3G E-LEARNING

320 Basic Computer Coding: Python

... cursor.execute(select_movies_query)

... for movie in cursor.fetchall():

... print(movie)

...

(‘Mary Cooper’, 4)

Mary Cooper is the most frequent reviewer in this database. As seen above, it
doesn’t matter how complicated the query is because it’s ultimately handled by the
MySQL server. Your process for executing a query will always remain the same: pass
the query to cursor.execute() and fetch the results using .fetchall().

9.5 UPDATING AND DELETING RECORDS FROM THE
DATABASE
In this section, you’ll be updating and deleting records from the database. Both of
these operations can be performed on either a single record or multiple records in
the table. You’ll select the rows that need to be modified using the WHERE clause.

9.5.1 UPDATE Command

One of the reviewers in your database, Amy Farah Fowler, is now married to Sheldon
Cooper. Her last name has now changed to Cooper, so you need to update your
database accordingly. For updating records, MySQL uses the UPDATE statement:

update_query = “””

UPDATE

 reviewers

SET

 last_name = “Cooper”

WHERE

 first_name = “Amy”

“””

with connection.cursor() as cursor:

Python Database Programming

3G E-LEARNING

321

 cursor.execute(update_query)

 connection.commit()

The code passes the update query to cursor.execute(), and
.commit() brings the required changes to the reviewers table.

Note: In the UPDATE query, the WHERE clause helps
specify the records that need to be updated. If you don’t use
WHERE, then all records will be updated!

Suppose you need to provide an option that allows
reviewers to modify ratings. A reviewer will provide three
values, movie_id, reviewer_id, and the new rating. The
code will display the record after performing the specified
modification.

Assuming that movie_id = 18, reviewer_id = 15, and the
new rating = 5.0, you can use the following MySQL queries
to perform the required modification:

UPDATE

 ratings

SET

 rating = 5.0

WHERE

 movie_id = 18 AND reviewer_id = 15;

SELECT *

FROM ratings

WHERE

 movie_id = 18 AND reviewer_id = 15;

The above queries first update the rating and then display
it. You can create a complete Python script that establishes
a connection with the database and allows the reviewer to
modify a rating:

Python
script is
basically a file
containing code
written in Python.
The file containing
python script has
the extension ‘.py’
or can also have the
extension ‘.pyw’ if
it is being run on a
windows machine.

Keyword

3G E-LEARNING

322 Basic Computer Coding: Python

from getpass import getpass

from mysql.connector import connect, Error

movie_id = input(“Enter movie id: “)

reviewer_id = input(“Enter reviewer id: “)

new_rating = input(“Enter new rating: “)

update_query = “””

UPDATE

 ratings

SET

 rating = “%s”

WHERE

 movie_id = “%s” AND reviewer_id = “%s”;

SELECT *

FROM ratings

WHERE

 movie_id = “%s” AND reviewer_id = “%s”

“”” % (

 new_rating,

 movie_id,

 reviewer_id,

 movie_id,

 reviewer_id,

Python Database Programming

3G E-LEARNING

323

)

try:

 with connect(

 host=”localhost”,

 user=input(“Enter username: “),

 password=getpass(“Enter password: “),

 database=”online_movie_rating”,

) as connection:

 with connection.cursor() as cursor:

 for result in cursor.execute(update_query, multi=True):

 if result.with_rows:

 print(result.fetchall())

 connection.commit()

except Error as e:

 print(e)

Save this code to a file named modify_ratings.py. The above code uses %s
placeholders to insert the received input in the update_query string. For the first time in
this tutorial, you have multiple queries inside a single string. To pass multiple queries
to a single cursor.execute(), you need to set the method’s multi argument to True.

If multi is True, then cursor.execute() returns an iterator. Each item in the iterator
corresponds to a cursor object that executes a statement passed in the query. The above
code runs a for loop on this iterator and then calls .fetchall() on each cursor object.

Note: Running .fetchall() on all cursor objects is important. To execute a new
statement on the same connection, you must ensure that there are no unread results
from previous executions. If there are unread results, then you’ll receive an exception.

If no result set is fetched on an operation, then .fetchall() raises an exception.
To avoid this error, in the code above you use the cursor.with_rows property, which
indicates whether the most recently executed operation produced rows.

3G E-LEARNING

324 Basic Computer Coding: Python

While this code should solve your purpose, the WHERE clause is a prime target
for web hackers in its current state. It’s vulnerable to what is called a SQL injection
attack, which can allow malicious actors to either corrupt or misuse your database.

Warning: Don’t try the below inputs on your database! They will corrupt your
table and you’ll need to recreate it.

For example, if a user sends movie_id=18, reviewer_id=15, and the new rating=5.0
as input, then the output looks like this:

$ python modify_ratings.py

Enter movie id: 18

Enter reviewer id: 15

Enter new rating: 5.0

Enter username: <user_name>

Enter password:

[(18, 15, Decimal(‘5.0’))]

The rating with movie_id=18 and reviewer_id=15 has been changed to 5.0. But if
you were hacker, then you might send a hidden command in your input:

$ python modify_ratings.py

Enter movie id: 18

Enter reviewer id: 15”; UPDATE reviewers SET last_name = “A

Enter new rating: 5.0

Enter username: <user_name>

Enter password:

[(18, 15, Decimal(‘5.0’))]

Again, the output shows that the specified rating has been changed to 5.0. What’s
changed?

The hacker sneaked in an update query while entering the reviewer_id. The update
query, update reviewers set last_name = “A, changes the last_name of all records in the
reviewers table to “A”. You can see this change if you print out the reviewers table:

>>>

Python Database Programming

3G E-LEARNING

325

>>> select_query = “””

... SELECT first_name, last_name

... FROM reviewers

... “””

>>> with connection.cursor() as cursor:

... cursor.execute(select_query)

... for reviewer in cursor.fetchall():

... print(reviewer)

...

(‘Chaitanya’, ‘A’)

(‘Mary’, ‘A’)

(‘John’, ‘A’)

(‘Thomas’, ‘A’)

(‘Penny’, ‘A’)

(‘Mitchell’, ‘A’)

(‘Wyatt’, ‘A’)

(‘Andre’, ‘A’)

(‘Sheldon’, ‘A’)

(‘Kimbra’, ‘A’)

(‘Kat’, ‘A’)

(‘Bruce’, ‘A’)

(‘Domingo’, ‘A’)

(‘Rajesh’, ‘A’)

(‘Ben’, ‘A’)

3G E-LEARNING

326 Basic Computer Coding: Python

(‘Mahinder’, ‘A’)

(‘Akbar’, ‘A’)

(‘Howard’, ‘A’)

(‘Pinkie’, ‘A’)

(‘Gurkaran’, ‘A’)

(‘Amy’, ‘A’)

(‘Marlon’, ‘A’)

The above code displays the first_name and last_name for all records in the
reviewers table. The SQL injection attack corrupted this table by changing the last_name
of all records to “A”.

There’s a quick fix to prevent such attacks. Don’t add the query values provided
by the user directly to your query string. Instead, update the modify_ratings.py script
to send these query values as arguments to .execute():

from getpass import getpass

from mysql.connector import connect, Error

movie_id = input(“Enter movie id: “)

reviewer_id = input(“Enter reviewer id: “)

new_rating = input(“Enter new rating: “)

update_query = “””

UPDATE

 ratings

SET

 rating = %s

WHERE

 movie_id = %s AND reviewer_id = %s;

Python Database Programming

3G E-LEARNING

327

SELECT *

FROM ratings

WHERE

 movie_id = %s AND reviewer_id = %s

“””

val_tuple = (

 new_rating,

 movie_id,

 reviewer_id,

 movie_id,

 reviewer_id,

)

try:

 with connect(

 host=”localhost”,

 user=input(“Enter username: “),

 password=getpass(“Enter password: “),

 database=”online_movie_rating”,

) as connection:

 with connection.cursor() as cursor:

 for result in cursor.execute(update_query, val_tuple, multi=True):

 if result.with_rows:

3G E-LEARNING

328 Basic Computer Coding: Python

 print(result.fetchall())

 connection.commit()

except Error as e:

 print(e)

Notice that the %s placeholders are no longer in string quotes. Strings passed
to the placeholders might contain some special characters. If necessary, these can be
correctly escaped by the underlying library.

cursor.execute() makes sure that the values in the tuple received as argument are
of the required data type. If a user tries to sneak in some problematic characters, then
the code will raise an exception:

$ python modify_ratings.py

Enter movie id: 18

Enter reviewer id: 15”; UPDATE reviewers SET last_name = “A

Enter new rating: 5.0

Enter username: <user_name>

Enter password:

1292 (22007): Truncated incorrect DOUBLE value: ‘15”;

UPDATE reviewers SET last_name = “A’

cursor.execute() will raise an exception if it finds any unwanted characters in the user
input. You should use this approach whenever you incorporate user input in a query.
There are other ways of preventing SQL injection attacks as well.

9.5.2 DELETE Command

Deleting records works very similarly to updating records. You use the DELETE
statement to remove selected records.

Note: Deleting is an irreversible process. If you don’t use the WHERE clause, then
all records from the specified table will be deleted. You’ll need to run the INSERT
INTO query again to get back the deleted records.

It’s recommended that you first run a SELECT query with the same filter to make
sure that you’re deleting the right records. For example, to remove all ratings given
by reviewer_id = 2, you should first run the corresponding SELECT query:

Python Database Programming

3G E-LEARNING

329

>>>
>>> select_movies_query = “””
... SELECT reviewer_id, movie_id FROM ratings
... WHERE reviewer_id = 2
... “””
>>> with connection.cursor() as cursor:
... cursor.execute(select_movies_query)
... for movie in cursor.fetchall():
... print(movie)
...
(2, 7)
(2, 8)
(2, 12)
(2, 23)
The above code snippet outputs the reviewer_id and movie_id for records in the

ratings table where reviewer_id = 2. Once you’ve confirmed that these are the records
that you need to delete, you can run a DELETE query with the same filter:

delete_query = “DELETE FROM ratings WHERE reviewer_id = 2”

with connection.cursor() as cursor:

 cursor.execute(delete_query)

 connection.commit()

With this query, you remove all ratings given by the reviewer with reviewer_id
= 2 from the ratings table.

9.5.3 Other Ways to Connect Python and MySQL

In this tutorial, you saw MySQL Connector/Python, which is the officially recommended
means of interacting with a MySQL database from a Python application. There are
two other popular connectors:

■■ mysqlclient is a library that is a close competitor to the official connector and
is actively updated with new features. Because its core is written in C, it has
better performance than the pure-Python official connector. A big drawback
is that it’s fairly difficult to set up and install, especially on Windows.

■■ MySQLdb is a legacy software that’s still used in commercial applications. It’s

3G E-LEARNING

330 Basic Computer Coding: Python

written in C and is faster than MySQL Connector/
Python but is available only for Python 2.

These connectors act as interfaces between your program
and a MySQL database, and you send your SQL queries
through them. But many developers prefer using an object-
oriented paradigm rather than SQL queries to manipulate data.

Object-relational mapping (ORM) is a technique that
allows you to query and manipulate data from a database
directly using an object-oriented language. An ORM library
encapsulates the code needed to manipulate data, which
eliminates the need to use even a tiny bit of SQL.

Here are the most popular Python ORMs for SQL-based
databases:

■■ SQLAlchemy is an ORM that facilitates communication
between Python and other SQL databases. You can
create different engines for different databases like
MySQL, PostgreSQL, SQLite, and so on. SQLAlchemy
is commonly used alongside the pandas library to
provide complete data-handling functionality.

■■ peewee is a lightweight and fast ORM that’s quick to
set up. This is quite useful when your interaction with
the database is limited to extracting a few records.
For example, if you need to copy selected records
from a MySQL database into a CSV file, then peewee
might be your best choice.

■■ Django ORM is one of the most powerful features
of Django and is supplied alongside the Django web
framework. It can interact with a variety of databases
such as SQLite, PostgreSQL, and MySQL. Many
Django-based applications use the Django ORM for
data modeling and basic queries but often switch to
SQLAlchemy for more complex requirements.

Object–
relational
mapping in
computer science
is a programming
technique for
converting
data between
incompatible type
systems using
object-oriented
programming
languages.

Keyword

Python Database Programming

3G E-LEARNING

331

ROLE MODEL

DAVID AXMARK: ONE OF THE FOUNDERS
OF MYSQL AB AND A DEVELOPER OF THE
FREE DATABASE SERVER, MYSQL.

Biography

David Axmark is one of the founders of MySQL AB and a
developer of the free database server, MySQL. He has been
involved with MySQL development from its beginning along
with the fellow co-founder Michael Widenius. He studied at
Uppsala University between 1980 and 1984

Scroll Down and find everything about the David Axmark
you need to know, latest relationships update, Family and
how qualified he is. David Axmark’s Estimated Net Worth,
Age, Biography, Career, Social media accounts i.e. Instagram,
Facebook, Twitter, Family, Wiki. Also, learn details Info
regarding the Current Net worth of David Axmark as well
as David Axmark ‘s earnings, Worth, Salary, Property, and
Income.

David Axmark, better known by the Family name David
Axmark, is a popular Engineer. He was born on 28 May 1962,
in Sweden.

David‘s estimated net worth, monthly and yearly salary,
primary source of income, cars, lifestyle, and much more
information have been updated below.

David who brought in $3 million and $5 million Networth
David collected most of his earnings from his Yeezy sneakers While
he had exaggerated over the years about the size of his business,
the money he pulled in from his profession real–enough to rank as
one of the biggest celebrity cashouts of all time. His Basic income
source is mostly from being a successful Engineer.

3G E-LEARNING

332 Basic Computer Coding: Python

SUMMARY
■■ A database program is the heart of a business information system and provides

file creation, data entry, update, query and reporting functions.
■■ The database is a collection of organized information that can easily be used,

managed, update, and they are classified according to their organizational
approach.

■■ Python DB-API is independent of any database engine, which enables you to
write Python scripts to access any database engine.

■■ Connection objects create a connection with the database and these are further
used for different transactions. These connection objects are also used as
representatives of the database session.

■■ Cursor is one of the powerful features of SQL. These are objects that are
responsible for submitting various SQL statements to a database server.

■■ Exception handling is very easy in the Python DB-API module. We can place
warnings and error handling messages in the programs.

■■ Python and MySQL are a good combination to develop database applications.
After starting the MySQL service on Linux, you need to acquire MySQLdb,
a Python DB-API for MySQL to perform database operations.

■■ Python Database API (Application Program Interface) is the Database interface
for the standard Python. This standard is adhered to by most Python Database
interfaces.

■■ MySQL is one of the most popular database management systems (DBMSs)
on the market today. It ranked second only to the Oracle DBMS in this year’s
DB-Engines Ranking. As most software applications need to interact with data
in some form, programming languages like Python provide tools for storing
and accessing these data sources.

■■ SQL Server is also a very popular DBMS and is known for its reliability,
efficiency, and security. It’s preferred by companies, especially in the banking
domain, who regularly deal with large traffic workloads.

Python Database Programming

3G E-LEARNING

333

KNOWLEDGE CHECK
1. 	 What is the output of this code?
	 a,b=1,0

a.	 a=a^b
b.	 b=a^b
c.	 a=a^b
d.	 print(a)

2. 	 What is the value of this expression?
	 2**2**3**1

a.	 12
b.	 64
c.	 128
d.	 256
e.	 This code will raise an exception

3. 	 Which of the following is generally used for performing tasks like creating the
structure of the relations, deleting relation?
a.	 DML(Data Manipulation Language)
b.	 Query
c.	 Relational Schema
d.	 DDL(Data Definition Language)

4. 	 Which of the following provides the ability to query information from the
database and insert tuples into, delete tuples from, and modify tuples in the
database?
a.	 DML(Data Manipulation Language)
b.	 DDL(Data Definition Language)
c.	 Query
d.	 Relational Schema

5. 	 Which one of the following given statements possibly contains the error?
a.	 select * from emp where empid = 10003;
b.	 select empid from emp where empid = 10006;
c.	 select empid from emp;
d.	 select empid where empid = 1009 and Lastname = ‘GELLER’;

3G E-LEARNING

334 Basic Computer Coding: Python

6. 	 What do you mean by one to many relationships?
a.	 One class may have many teachers
b.	 One teacher can have many classes
c.	 Many classes may have many teachers
d.	 Many teachers may have many classes

7. 	 A Database Management System is a type of _________software.
a.	 It is a type of system software
b.	 It is a kind of application software
c.	 It is a kind of general software
d.	 Both A and C

8. 	 The term “FAT” is stands for_____
a.	 File Allocation Tree
b.	 File Allocation Table
c.	 File Allocation Graph
d.	 All of the above

REVIEW QUESTIONS
1.	 What is cursor objects?
2.	 How to create database in python MySQL?
3.	 How to installing MySQL server and MySQL connector/python?
4.	 Access and establishing a connection with MySQL server.
5.	 How to modifying a table schema using the alter statement?

Check Your Result

1. (a)		 2. (d)		 3. (d)		 4. (a)
5. (d)		 6. (b)		 7. (a)		 8. (b)

Python Database Programming

3G E-LEARNING

335

REFERENCES
1.	 Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System

Concepts, McGraw-Hill Education (Asia), Fifth Edition, 2006.
2.	 C. J. Date, A. Kannan and S. Swamynathan, An Introduction to Database Systems,

Pearson Education, Eighth Edition, 2009.
3.	 Patrick O’Neil and Elizabeth O’Neil, Database Principles, Programming and

Performance, Harcourt Asia Pte. Ltd., First Edition, 2001.
4.	 Peter Norton, Alex Samuel, David Aitel, Eric Foster-Johnson, Leonard Richardson,

Jason Diamond, Aleatha Parker, Michael Roberts, Begining Python, 2005.
5.	 Peter Rob and Carlos Coronel, Database Systems Design, Implementation and

Management, Thomson Learning-Course Technology, Seventh Edition, 2007.
6.	 Shio Kumar Singh, Database Systems Concepts, Designs and Application, Pearson

Education, Second Edition, 2011.

Index

A

Accession number 287
aliasing 74
Anonymous functions 45
Application programming interface 280,
295
atomic grouping 174

B

Backreferences 187
Blueprint 136
Business information system 279, 332

C

C 1, 3, 4, 5, 7, 8, 9, 10, 20, 32
Character classes 185
characters 175, 179, 180, 181, 183, 190, 198
Chronological order 287
CMP(Context Management Protocol) 212,
213, 217
Computer Science 203
Condition object 215
Connection object 281, 332

D

Database engine 281, 332
Database management system 280, 295,
305
Database server 282, 289, 331, 332
Data Definition Language (DDL) 280
Data Manipulation Language (DML) 280
Data Query Statement 280
data structures 66, 67, 83
data type 16, 20, 22, 34
Decision-making statement 231, 235
Default arguments 41

E

Encapsulation 151, 154
Exception handling 283, 332
Execution 203, 208, 225

F

File objects 64
Files 64, 83, 86

G

General Public License (GPL) 3
Graphical User Interface (GUI) 9

3G E-LEARNING

338 Basic Computer Coding: Python

H

High-level programming language 230
HTTP (Hypertext Transfer Protocol) 204

I

Image processing 230
Indexing 242, 259, 262, 266
Inheritance 141, 148
Instance attribute 137, 139, 147
Instance method 140
intersection operation 82

J

Java 1, 4, 5, 10, 32

K

keys 64, 65, 66, 67, 73, 85, 93, 94
Keyword arguments 41, 42

L

Library Reference 51
Literal characters 184
Loop exhaust 243
Loop statement 239, 244

M

Machine Learning 230
Mac OS 4, 6
Mappings 63
Match Function 176
Multimedia 230
Multiprocessing 204, 205
mutable data structure 68
MySQL 279, 280, 281, 285, 289, 290, 291,
292, 293, 294, 295, 296, 297, 298, 299, 300,
302, 303, 305, 306, 308, 310, 313, 314, 316,
320, 321, 329, 330, 331, 332, 334

N

Nongreedy repetition 187
No-operation(NOP) 216
Normalization 280

O

Object-oriented programming language
230, 275
Object-Oriented style 2
open function 64, 84
Operating System 203
optional flags 176, 177

P

Parallel programming 202
Parent class 136, 141, 142, 143, 144, 145,
146, 147, 148, 149
Parentheses 136, 138, 162
pattern 174, 175, 176, 177, 178, 180, 183,
192, 194, 195
PERL 2
possessive quantifiers 174
programming languages 83, 86
Programming paradigm 135
Python 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28,
31, 32, 34, 35, 63, 64, 65, 73, 76, 77, 78, 80, 83,
86, 87, 173, 174, 175, 179, 180, 181, 185, 187,
188, 190, 191, 192, 193, 195, 196
Python code 51, 290, 297
Python Database interface 289, 332
Python directory 7
Python implementation 204
Python interpreter 39, 41, 42, 47, 50, 51
Python magic 139
Python module 203
Python programming language 239
Python’s module 54

Index

3G E-LEARNING

339

Python’s regex syntax 174
Python support 280, 281
Python threading 202

R

Rating system 290, 301
Recursion 213, 214, 216
regex 173, 174, 175, 176
Regular expressions 180
Return statement 39, 40, 46
re.UNICODE 175

S

Search Function 177
Self variable 137
Sets 63, 64, 75, 79, 82, 83
Software prototype 229, 275
Stock exchange 280

string 67, 73, 75, 76, 84, 85, 86, 87, 88, 94,
174, 175, 176, 177, 178, 179, 180, 181, 183,
184, 187, 188, 190, 193
Structured Query Language 280, 291
Synchronization 212, 213, 216, 220, 221
syntax 64, 68, 71, 83, 86

T

Thread 204, 206, 207, 208, 209, 210, 211,
219, 225
TypeError 146

U

Unicode properties 174

V

Variables 7, 16

	Cover

	Title Page

	Copyright

	EDITORIAL BOARD

	TABLE OF CONTENTS

	Preface
	Chapter 1 Introduction to Python
	Introduction
	1.1 Overview of Python
	1.1.1 History of Python
	1.1.2 Python Features

	1.2 Python Environment Setup
	1.2.1 Getting Python
	1.2.2 Installing Python
	1.2.3 Setting up PATH
	1.2.4 Python Environment Variables
	1.2.5 Running Python

	1.3 Basic Syntax of Python
	1.3.1 First Python Program
	1.3.2 Python Identifiers
	1.3.3 Reserved Words
	1.3.4 Lines and Indentation
	1.3.5 Multi-Line Statements
	1.3.6 Quotation in Python
	1.3.7 Comments in Python
	1.3.8 Using Blank Lines
	1.3.9 Waiting for the User
	1.3.10 Multiple Statements on a Single Line
	1.3.11 Multiple Statement Groups as Suites
	1.3.12 Command Line Arguments

	1.4 Python Variables
	1.4.1 Assigning Values to Variables
	1.4.2 Multiple Assignment
	1.4.3 Standard Data Types
	1.4.4 Data Type Conversion

	1.5 Python Basic Operators
	1.5.1 Types of Operator
	1.5.2 Python Operators Precedence

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 2 Python Functions, Modules and Packages
	Introduction
	2.1 Function in Python
	2.1.1 Syntax of Function
	2.1.2 Docstring
	2.1.3 The Return Statement
	2.1.4 How Function works in Python?
	2.1.5 Python Function Arguments
	2.1.6 The Anonymous Functions
	2.1.7 The Return Statement

	2.2 Python Modules
	2.2.1 More on Modules
	2.2.2 Standard Modules

	2.3 Python Packages
	2.3.1 Importing* From a Package
	2.3.2 Intra-package References
	2.3.3 Packages in Multiple Directories

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 3 Dictionaries, Sets, and Files
	Introduction
	3.1 Python Dictionaries
	3.1.1 Accessing Dictionary Elements
	3.1.2 Modifying Dictionaries
	3.1.3 The dict() Constructor
	3.1.4 Dictionary Methods
	3.1.5 Aliasing and Copying

	3.2 Python Sets
	3.2.1 Defining a Set
	3.2.2 Set Size and Membership
	3.2.3 Methods for Sets
	3.2.4 Creating a Set
	3.2.5 Accessing Values in a Set
	3.2.6 Adding Items to a Set
	3.2.7 Removing Item from a Set
	3.2.8 Union of Sets
	3.2.9 Intersection of Sets
	3.2.10 Difference of Sets
	3.2.11 Compare Sets

	3.3 Files
	3.3.1 The open function
	3.3.2 Opening a File that Doesn’t Exist
	3.3.3 Reading Data from Files

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 4 Exceptions, Unit Testing and Comprehensions
	Introduction
	4.1 Exceptions
	4.1.1 Handling Exceptions
	4.1.2 Raising Exceptions
	4.1.3 User-defined Exceptions
	4.1.4 Defining Clean-up Actions
	4.1.5 Predefined Clean-up Actions

	4.2 Unit testing
	4.2.1 Basic example
	4.2.2 Command-Line Interface
	4.2.3 Test Discovery
	4.2.4 Organizing test code
	4.2.5 Re-using old test code
	4.2.6 Skipping tests and expected failures

	4.3 Comprehensions
	4.3.1 List Comprehensions
	4.3.2 Dict Comprehensions
	4.3.3 Set Comprehensions
	4.3.4 Generator Comprehensions

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 5 Object Oriented Programming
	Introduction
	5.1 Introduction of OOPS In Python
	5.1.1 Classes in Python
	5.1.2 Python Objects (Instances)
	5.1.3 Instantiating Objects
	5.1.4 Instance Methods
	5.1.5 Python Object Inheritance

	5.2 Methods of OOPS
	5.2.1 Inheritance
	5.2.2 Encapsulation
	5.2.3 Polymorphism
	5.2.4 Abstraction

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 6 Python Regular Expression
	Introduction
	6.1 Regex Search and Match
	6.1.1 The Match Function
	6.1.2 The Search Function
	6.1.3 Matching Versus Searching
	6.1.4 Search and Replace

	6.2 Regular Expression Modifiers: Option Flags
	6.2.1 Regular Expression Patterns
	6.2.2 Regular Expression Examples

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 7 Python Multithreading
	Introduction
	7.1 Python Threading – Python Multithreading
	7.1.1 Getting Started with Python Multithreading
	7.1.2 Python Multithreading Modules for Thread Implementation
	7.1.3 Difference between Multiprocessing and Multithreading

	7.2 Functions in Python Multithreading
	7.2.1 Thread-Local Data
	7.2.2 Thread Objects
	7.2.3 Lock Objects
	7.2.4 RLock Objects
	7.2.5 Condition Objects
	7.2.6 Semaphore Objects
	7.2.7 Event Objects
	7.2.8 Timer Objects
	7.2.9 Barrier Objects
	7.2.10 Using locks, Conditions, and Semaphores in the with-statement

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 8 Operations in Python
	Introduction
	8.1 Python - Decision Making
	8.1.1 Python if Statement
	8.1.2 Python if-else Statement
	8.1.3 Python if-elif ladder
	8.1.4 Python Nested if statement

	8.2 Python - Loops
	8.2.1 The range() function
	8.2.2 for loop with else
	8.2.3 Loop Control Statements

	8.3 Python - Numbers
	8.3.1 Number Type Conversion
	8.3.2 Mathematical Functions
	8.3.3 Random Number Functions
	8.3.4 Trigonometric Functions
	8.3.5 Mathematical Constants

	8.4 Python - Strings
	8.4.1 Accessing Values in Strings
	8.4.2 Updating Strings
	8.4.3 Escape Characters
	8.4.4 String Special Operators
	8.4.5 String Formatting Operator
	8.4.6 Triple Quotes
	8.4.7 Unicode String
	8.4.8 Built-in String Methods

	8.5 Python - Lists
	8.5.1 Accessing Values in Lists
	8.5.2 Updating Lists
	8.5.3 Delete List Elements
	8.5.4 Basic List Operations
	8.5.5 Indexing, Slicing, and Matrixes
	8.5.6 Built-in List Functions & Methods

	8.6 Python - Tuples
	8.6.1 Accessing Values in Tuples
	8.6.2 Updating Tuples
	8.6.3 Delete Tuple Elements
	8.6.4 Basic Tuples Operations
	8.6.5 Indexing, Slicing, and Matrixes
	8.6.6 No Enclosing Delimiters
	8.6.7 Built-in Tuple Functions

	8.7 Python - Date & Time
	8.7.1 Getting Current Time
	8.7.2 Getting formatted time
	8.7.3 Getting calendar for a month
	8.7.4 The time Module
	8.7.5 The calendar Module

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 9 Python Database Programming
	Introduction
	9.1 DB-API (SQL-API) for Python
	9.1.1 Connection Objects
	9.1.2 Cursor objects
	9.1.3 Error and Exception Handling in DB-API
	9.1.4 Python and MySQL
	9.1.5 More SQL operations
	9.1.6 Python MySQL – Create Database

	9.2 MySQL with Python
	9.2.1 Comparing MySQL to Other SQL Databases
	9.2.2 Installing MySQL Server and MySQL Connector/Python
	9.2.3 Establishing a Connection with MySQL Server

	9.3 Creating, Altering, and Dropping a Table
	9.3.1 Defining the Database Schema
	9.3.2 Creating Tables Using the CREATE TABLE Statement
	9.3.3 Showing a Table Schema Using the DESCRIBE Statement
	9.3.4 Modifying a Table Schema Using the ALTER Statement
	9.3.5 Deleting Tables Using the DROP Statement

	9.4 Inserting Records in Tables
	9.4.1 Using .execute()
	9.4.2 Using .executemany()
	9.4.3 Reading Records from the Database
	9.4.4 Handling Multiple Tables Using the JOIN Statement

	9.5 Updating and Deleting Records from the Database
	9.5.1 Update Command
	9.5.2 Delete Command
	9.5.3 Other Ways to Connect Python and MySQL

	Summary
	Knowledge Check
	Review Questions
	References

	Index
	Back Cover

