

BASIC COMPUTER CODING: RUBY

2nd Edition

BIBLIOTEX
Digital Library

www.bibliotex.com

BASIC COMPUTER CODING: RUBY

2ND EDITION

BIBLIOTEX
Digital Library

www.bibliotex.com

email: info@bibliotex.com

e-book Edition 2022

ISBN: 978-1-98467-605-4 (e-book)

This book contains information obtained from highly regarded resources.
Reprinted material sources are indicated. Copyright for individual articles
remains with the authors as indicated and published under Creative Commons
License. A Wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and views articulated in the chapters are those of
the individual contributors, and not necessarily those of the editors or
publishers. Editors or publishers are not responsible for the accuracy of the
information in the published chapters or consequences of their use. The
publisher assumes no responsibility for any damage or grievance to the persons or
property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission has not been obtained. If any copyright holder has
not been acknowledged, please write to us so we may rectify.

Notice: Registered trademark of products or corporate names are used only for
explanation and identification without intent of infringement.

© 2022 3G E-learning LLC

In Collaboration with 3G E-Learning LLC. Originally Published in printed
book format by 3G E-Learning LLC with ISBN 978-1-98465-898-2

EDITORIAL BOARD
Aleksandar Mratinković was born on May 5, 1988 in Arandjelovac, Serbia. He has graduated on
Economic high school (2007), The College of Tourism in Belgrade (2013), and also has a master
degree of Psychology (Faculty of Philosophy, University of Novi Sad). He has been engaged
in different fields of psychology (Developmental Psychology, Clinical Psychology, Educational
Psychology and Industrial Psychology) and has published several scientific works.

Dan Piestun (PhD) is currently a startup entrepreneur in Israel working on the interface of
Agriculture and Biomedical Sciences and was formerly president-CEO of the National Institute of
Agricultural Research (INIA) in Uruguay. Dan is a widely published scientist who has received
many honours during his career including being a two-time recipient of the Amit Golda Meir
Prize from the Hebrew University of Jerusalem, his areas of expertise includes stem cell molecular
biology, plant and animal genetics and bioinformatics. Dan’s passion for applied science and
technological solutions did not stop him from pursuing a deep connection to the farmer, his family
and nature. Among some of his interest and practices counts enjoying working as a beekeeper
and onboard fishing.

Hazem Shawky Fouda has a PhD. in Agriculture Sciences, obtained his PhD. From the Faculty
of Agriculture, Alexandria University in 2008, He is working in Cotton Arbitration & Testing
General Organization (CATGO).

Felecia Killings is the Founder and CEO of LiyahAmore Publishing, a publishing company committed
to providing technical and educational services and products to Christian Authors. She operates as
the Senior Editor and Writer, the Senior Writing Coach, the Content Marketing Specialist, Editor-
in-Chief to the company’s quarterly magazine, the Executive and Host of an international virtual
network, and the Executive Director of the company’s online school for Authors. She is a former
high-school English instructor and professional development professor. She possesses a Master
of Arts degree in Education and a Bachelor’s degree in English and African American studies.

Dr. Sandra El Hajj, Ph.D. in Health Sciences from Nova Southeastern University, Florida,
USA is a health professional specialized in Preventive and Global Health. With her 12 years of
education obtained from one of the most prominent universities in Beirut, in addition to two leading
universities in the State of Florida (USA), Dr. Sandra made sure to incorporate interdisciplinary
and multicultural approaches in her work. Her long years of studies helped her create her own
miniature world of knowledge linking together the healthcare field with Medical Research, Statistics,
Food Technology, Environmental & Occupational Health, Preventive Health and most noteworthy
her precious last degree of Global Health. Till today, she is the first and only doctor specialized
in Global Health in the Middle East area.

Igor Krunic 2003-2007 in the School of Economics. After graduating in 2007, he went on to
study at The College of Tourism, at the University of Belgrade where he got his bachelor degree
in 2010. He was active as a third-year student representative in the student parliament.Then he
went on the Faculty of science, at the University of Novi Sad where he successfully defended his
master’s thesis in 2013. The crown of his study was the work titled Opportunities for development
of cultural tourism in Cacak“. Later on, he became part of a multinational company where he got
promoted to a deputy director of logistic. Nowadays he is a consultant and writer of academic
subjects in the field of tourism.

Dr. Jovan Pehcevski obtained his PhD in Computer Science from RMIT University in Melbourne,
Australia in 2007. His research interests include big data, business intelligence and predictive analytics,
data and information science, information retrieval, XML, web services and service-oriented architectures,
and relational and NoSQL database systems. He has published over 30 journal and conference papers
and he also serves as a journal and conference reviewer. He is currently working as a Dean and Associate
Professor at European University in Skopje, Macedonia.

Stephen obtained his PhD from the University of North Carolina at Charlotte in 2013 where his
graduate research focused on cancer immunology and the tumor microenvironment. He received
postdoctoral training in regenerative and translational medicine, specifically gastrointestinal tissue
engineering, at the Wake Forest Institute of Regenerative Medicine. Currently, Stephen is an
instructor for anatomy and physiology and biology at Forsyth Technical Community College.

Michelle holds a Masters of Business Administration from the University of Phoenix, with a
concentration in Human Resources Management. She is a professional author and has had numerous
articles published in the Henry County Times and has written and revised several employee
handbooks for various YMCA organizations throughout the United States.

Fozia Parveen has a Dphil in Sustainable Water Engineering from the University of Oxford. Prior
to this she has received MS in Environmental Sciences from National University of Science and
Technology (NUST), Islamabad Pakistan and BS in Environmental Sciences from Fatima Jinnah
Women University (FJWU), Rawalpindi.

Dr. Tanjina Nur finished her PhD in Civil and Environmental Engineering in 2014 from University
of Technology Sydney (UTS). Now she is working as Post-Doctoral Researcher in the Centre for
Technology in Water and Wastewater (CTWW) and published about eight International journal papers
with 80 citations. Her research interest is wastewater treatment technology using adsorption process.

v

 HOW TO USE THE BOOK

This book has been divided into many chapters. Chapter gives the motivation for this book and the use
of templates. The text is presented in the simplest language. Each paragraph has been arranged under
a suitable heading for easy retention of concept. Keywords are the words that academics use to reveal
the internal structure of an author’s reasoning. Review questions at the end of each chapter ask students
to review or explain the concepts. References provides the reader an additional source through which
he/she can obtain more information regarding the topic.

3G E-LEARNING

4 Basic Computer Coding: Visual Basic

enhancements, including the striking ability of creating web based applications. The
extended support for Visual Basic 6.0 was ceased in the month of March in 2008. The
basic parts of development environment of Visual Basic 6, however, still run in all the
32-bit Microsoft windows, including Windows 8.1.

After the cessation of mainstream and extended support for Visual Basic 6.0 caused
a number of programs to show concern. The community members then created a lobby
of users and a petition was signed by them. The basic aim of this petition was to ensure
that the product remains alive. However, the petition did not attain its aim effectively.

1.1.2 The Importance of Visual Basic Programming Language

Visual Basic is regarded as the third generation event-driven programming language.
It was released in 1987. Being the first visual development tool from Microsoft, it is
considered as one of the most powerful programming languages. As compared to other
computer programming languages, such as, C, C++, it is easy to learn and understand,
provided that one has determination and dedication to do so.

Visual basic programming language allows programmers to create software interface
and codes in an easy to use graphical environment. VB is the combination of different
components that are used on forms having specific attributes and actions with the help
of those components. On the one hand it allows programmers to develop widows based
applications rapidly; on the other hand, it helps greatly in accessing data bases, using
ADO while letting the programmers use ActiveX controls and various objects. While it
is intended more to develop applications, it is also useful for games development for
particular or limited purposes, unlike C++ that is more suitable for developing games.

As compared to other languages, Visual basic may be slower though, yet it is
flexible and it can be rightly said that things that are difficult in other languages are
comparatively easier in visual basic programming language. It may also be said that,
since it is one of the most popular programming languages, lots of related books
and material and other resources are available and can be accessed for developing
programming skills at visual basic programming language conveniently.

One of the most important things to be considered with regard to programming in
Visual basic is that the structure of VB is designed in a way that allows programmers
to create executable code – Exe files. It enables programmers to develop programs that
can be used as front end to databases. Besides, it’s with the help of visual basic tools,
one can change the abstract ideas into programs or into the whole software while it
allows revising and modifying the programs fittingly.

3G E-LEARNING

2 Basic Computer Coding: Visual Basic

a graphical user interface (GUI) which allows programmers
to modify code by simply dragging and dropping objects and
defining their behavior and appearance. VB is derived from
the BASIC programming language and is considered to be
event-driven and object-oriented.

VB is intended to be easy to learn and fast to write
code with; as a result, it is sometimes called a rapid
application development (RAD) system and is used
to prototype an application that will later be written in a
more difficult but efficient language.

The last version of VB, Visual Basic 6, was released in
1998, but has since been replaced by VB .NET, Visual Basic for
applications (VBA) and Visual Stuido .NET. VBA and Visual
Studio are the two frameworks most commonly used today.

1.1 MEANING OF VISUAL BASIC
Visual Basic is a programming language and development
environment created by Microsoft. It is an extension of the
BASIC programming language that combines BASIC functions
and commands with visual controls. Visual Basic provides a
graphical user interface GUI that allows the developer to
drag and drop objects into the program as well as manually
write program code.

Visual Basic, also referred to as “VB,” is designed to
make software development easy and efficient, while still
being powerful enough to create advanced programs. For
example, the Visual Basic language is designed to be “human
readable,” which means the source code can be understood
without requiring lots of comments. The Visual Basic program
also includes features like “IntelliSense” and “Code Snippets,”
which automatically generate code for visual objects added by

 The
 graphical
 user interface
 (GUI), is a type
 of user interface
 that allows users
 to interact with
 electronic devices
 through graphical
 icons and visual
 indicators such
 as secondary
 notation, instead
 of text-based user
 interfaces, typed
 command labels or
text navigation.

Keyword

Introduction to Visual Basic

3G E-LEARNING

3

the programmer. Another feature, called “AutoCorrect,” can
debug the code while the program is running.

Programs created with Visual Basic can be designed to
run on Windows, on the Web, within Office applications, or
on mobile devices. Visual Studio, the most comprehensive
VB development environment, or IDE, can be used to create
programs for all these mediums. Visual Studio .NET provides
development tools to create programs based on the .NET
framework, such as ASP.NET applications, which are often
deployed on the Web.

1.1.1 History of Visual Basic

The first version of visual basic, VB 1.0, was announced in the
year 1991. The creation of user interface through a drag and
drop design was inspired a beta generator that was developed
by Alan Cooper at Tripod, which was Cooper’s company.

Microsoft entered into a contract with Cooper and his
partners to create Tripod into a system that is programmable for
Windows 3.0. This system was developed under the code name
of Ruby, which has no relationship with the Ruby Programming
Language. Tripod did not have any programming language at
all. Microsoft then decided to use Ruby in combination with
basic language to develop visual basic.

The interface of Ruby contributed the “visual” component
of the Visual Basic programming language. This was then
amalgamated with the Embedded BASIC engine that was
developed for the ceased “Omega” database system of
Microsoft.

The introduction of version 5.0, in the month of February
in 1997, Microsoft exclusively released a visual basic that
was compatible with 32-bit Microsoft Windows versions. The
programmers who had a preference for writing programs in
16-bit could do it in versions between 4.0 and 5.0. In addition
to that the programs written Visual Basic 5.0 can be converted
to Version 4.0 programs in an easy manner. The version 5.0
also has the ability of compilation with native execution code
of Windows, and introduction of custom user controls.

The introduction of Visual Basic 6.0 was made in the
middle of 1998. This version also came with a number of

Visual
Basic
is available as
a streamlined
application that
is used primarily
by beginning
developers and
for educational
purposes.

Remember

LEARNING OBJECTIVES
See what you are going to cover and what you
should already know at the start of each chapter

ABOUT THIS CHAPTER
An introduction is a beginning of section which
states the purpose and goals of the topics which
are discussed in the chapter. It also starts the topics
in brief.

“I know blind programmers who work in C and Visual Basic in addition to mainframe languages,
because as long as they can get at a text file, they can do programming. But if the graphical tool kit
you are using requires you to drag and drop items on the screen, you can’t do it.”

–Curtis Chong,

After studying this chapter,
you will be able to:
1. Overview of meaning of

visual basic
2. Discuss the visual basic

environment
3. Describe the building

VB applications

LEARNING
OBJECTIVES

INTRODUCTION
TO VISUAL BASIC

INTRODUCTION
Visual Basic (VB) is an event-driven programming
language and environment from Microsoft that provides

1
CHAPTER

REMEMBER
This revitalizes a must read information of the
topic.

KEYWORDS
This section contains some important definitions
that are discussed in the chapter. A keyword is
an index entry that identifies a specific record
or document. It also gives the extra information
to the reader and an easy way to remember the
word definition.

vi

3G E-LEARNING

6 Basic Computer Coding: Visual Basic

 ■ There are some, fairly minor disadvantages compared
with C. C has better declaration of arrays – its possible
to initialize an array of structures in C at declaration
time; this is impossible in VB.

1.2 VISUAL BASIC ENVIRONMENT
On start up, Visual Basic 6.0 will display the following dialog
box as shown in figure 1. You can choose to start a new
project, open an existing project or select a list of recently
opened programs. A project is a collection of files that make
up your application. There are various types of applications
we could create, however, we shall concentrate on creating
Standard EXE programs (EXE means executable program).
Now, click on the Standard EXE icon to go into the actual
VB programming environment.

Figure 1: The Visual Basic Start-up Dialog Box.

In figure 2, the Visual Basic Environment consists of the
 ■ The Blank Form window which you can design your

application’s interface.
 ■ The Project window displays the files that are created

in your application.
 ■ The Properties window which displays the properties

of various controls and objects that are created in
your applications.

It also includes a Toolbox that consists of all the controls
essential for developing a VB Application. Controls are tools

Visual
Basic 1.0 for DOS
was released in
September 1992.
The language
itself was not
quite compatible
with Visual Basic
for Windows, as
it was actually
the next version
of Microsoft’s
DOS-based
BASIC compilers,
Microsoft
QuickBASIC
compiler and
the BASIC
Professional
Development
System 7.1. The
interface was
barely graphical,
using extended
ASCII characters
to simulate the
appearance of a
GUI.

Did You
Know?

38 Basic Computer Coding: Visual Basic

In each case, the name of the variable and its data type
are provided as part of the declaration.

Visual Basic reserves the amount of memory required
to hold the variable as soon as the declaration statement is
executed. After a variable is declared, it is not possible to
change its data type, although it is quite easy to convert the
value of a variable and assign the converted value to another
variable.

2.2.2 Comparing Implicit and Explicit Variable
Performance

The default data type for Visual Basic variables is the variant.
This means that, unless you specify otherwise, every variable
in your application will be a variant. The data type is not
very efficient. Its data storage requirements are greater than
the equivalent simple data type. The computer spends more
time keeping track of the data type contained in a variant
than for other data types.

 Variable names can’t be duplicated with the same scope. This means, that
 you can’t have two variables of the same name within a procedure. You can,
however, have two variables with the same name in two different procedures.

An explicit declaration statically types the variable it
declares. In a language that requires explicit declaration, you
will get a compilation error for any reference to a variable
that has not been explicitly declared.

By contrast, in a language that supports implicit declaration,
simply using a variable in code implies the declaration. If your
code assigns a string to the variable, then it is declared to be
a string.

Convenient, yes? Not so much. Any time you misspell a
variable name you get a new one and the program moves on,
with incorrect conditional behavior or a wrongly computed
value.

Given the rise of very smart editors like Visual Studio
Code, implicit declaration need not be the menace it was,
at least for languages that support the notion of optional

DID YOU KNOW?
This section equip readers the interesting facts and
figures of the topic.

EXAMPLE
The book cabinets’ examples to illustrate specific
ideas in each chapter.

ROLE MODEL
A biography of someone who has/had acquired
remarkable success in their respective field as
Role Models are important because they give us
the ability to imagine our future selves.

CASE STUDY
This reveals what students need to create and
provide an opportunity for the development of key
skills such as communication, group working and
problem solving.

KNOWLEDGE CHECK
This is given to the students for progress check
at the end of each chapter.

REVIEW QUESTIONS
This section is to analyze the knowledge and ability
of the reader.

REFERENCES
References refer those books which discuss the
topics given in the chapters in almost same man ner.

Introduction to Visual Basic

3G E-LEARNING

19

ROLE MODEL

ALAN COOPER: FATHER OF VISUAL BA-
SIC
 Born in San Francisco in 1952 and raised in Marin
 County, California, Alan Cooper has always taken the path
 less traveled. A rebellious teenager, he dropped out of high
 school, but eventually made his way to the College of Marin
 to pursue his interest in architecture. After an exploratory
 course in programming, it became clear that his future was
 in architecture—software architecture. After getting his
 associate degree and a COBOL programming job, he saw an
 advertisement for one of the first personal computers and
.conceived an idea for a new business venture

In 1976, Cooper founded Structured Systems Group (SSG),
a company Fire in the Valley authors Paul Freiberger and
Michael Swaine said created “the first serious business software
for microcomputers.” In four years, Cooper wrote and shipped
a dozen application programs. SSG became the archetype
for many software startups in the early days of the personal
computer revolution.

During the 1980s, after leaving SSG, Cooper invented,
wrote, and sold three major software packages to prominent
publishers. One of those was the visual programming front-
end code named “Ruby,” for what became Visual BASIC. Bill
Gates purchased it from Cooper in 1988, noting that it would
have significant impact across Microsoft’s entire product line.
Visual BASIC was deemed both a commercial and critical
success, earning Cooper the moniker “Father of Visual BASIC.”
Visual BASIC has influenced integrated development languages
ever since.

In 1990 Cooper became fascinated with the challenge of
making software products that were easy to use and understand.
He and his wife, Susan, founded Cooper Interaction Design
(now “Cooper”) to assist in what Cooper calls “interaction
design.” In the design field, Cooper’s software development
background was unique and, over the next few years, he
invented many of the tools and techniques now standard in
the user experience industry, including personas and scenarios,

3G E-LEARNING

50 Basic Computer Coding: Visual Basic

CASE STUDY

FUJITSU FACILITATES SMOOTH MIGRATION TO VB.NET AT
AN POST
Fujitsu has an excellent technical team, which works closely with our staff. We have
had a good working relationship for many years and Fujitsu has an in-depth knowledge
of our mission-critical application gained from several years’ development and support
work.

Challenge

A Post, one of Ireland’s largest companies, is a major commercial organization providing
a wide range of postal, communication, retail and financial services. With 9,600
employees throughout its national network of retail, processing and delivery points,
the business also provides services to government departments, the National Treasury
Management Agency and its own National Lottery Company. A decade ago, A Post
implemented a new nationwide time and attendance system to calculate and record staff
salary and wages functions. The Staff Remuneration and Administration Management
System (STREAMS) is a bespoke, mission-critical application developed by Fujitsu as
a reliable, scalable client server system using Microsoft technologies. The STREAMS
front-end system gathers information and feeds the data to the company’s HR, payroll
and financial departments. It primarily creates more efficient processes for A Post to
capture data for the weekly payroll run whilst simultaneously minimizing the number
of payroll queries by employees. Following deployment, STREAMS improved cost
center reporting, significantly lowered the time to record pay details and enhanced
the processing of casual staff pay. During this period, Fujitsu provided quality support
and maintenance services and application enhancements to increase functionality,
ensuring the long-term reliability of STREAMS. For instance, as employee numbers
steadily increased to exceed original expectations, Fujitsu boosted system performance
by upgrading the infrastructure and optimizing the software. STREAMS originally
employed Visual Basic (VB), a third-generation event-driven programming language and
integrated development environment (IDE) from Microsoft. IDE provides programmers
with comprehensive facilities for software development and comprises a source code
editor, a compiler and/or an interpreter, build automation tools and a debugger.
However, Microsoft no longer supports VB version 6.0, the edition employed by A
Post. Syl Byrne, IT Manager Remuneration Services, A Post, explains: “To ensure that
our business-critical application is future-proof, we needed to move to a platform that
Microsoft will support for the foreseeable future.” A Post therefore decided to migrate
STREAMS to the VB.NET platform, an object-orientated programming language. This
strategy would protect its investment for the next 10 years by creating a secure, scalable

3G E-LEARNING

22 Basic Computer Coding: Visual Basic

KNOWLEDGE CHECK
1. The Visual Basic Code Editor will automatically detect certain types of errors

as you are entering code.
a. True
b. False

2. Keywords are also referred to as reserved words.
a. True
b. False

3. The divide-and-conquer-method of problem solving breaks a problem into large,
general pieces first, then refines each piece until the problem is manageable.
a. True
b. False

4. Visual Basic responds to events using which of the following?
a. a code procedure
b. an event procedure
c. a form procedure
d. a property

5. When the user clicks a button, _________ is triggered.
a. an event
b. a method
c. a setting
d. a property

6. What property of controls tells the order they receive the focus when the tab
key is pressed during run time?
a. Focus order
b. Focus number
c. Tab index
d. Control order

7. Sizing Handles make it very easy to resize virtually any control when developing
applications with Visual Basic. When working in the Form Designer, how are
these sizing handles displayed?
a. A rectangle with 4 arrows, one in each corner, around your control.
b. A 3-D outline around your control.
c. A rectangle with small squares around your control.

3G E-LEARNING

24 Basic Computer Coding: Visual Basic

REFERENCES
1. Cox, Philip T, Visual Programming Languages. In in Encyclopedia of Computer

Science and Engineering, B.W. Wah (Ed.), John Wiley & Sons Inc., Hoboken,
(June 2008).

2. Kindborg, Mikael, How Children Understand Concurrent Comics: Experiences
from LOFI and HIFI Prototypes. In 2001 IEEE Symposia on Human-Centric
Computing Languages and Environments , Stresa, Italy, September 2001.

3. Ryder, Barbara, Mary Lou Soffa and Margaret Burnett, The Impact of Software
Engineering Research on Modern Programming Languages. In ACM Transactions
on Software Engineering and Methodology, October, 2005. Pages 431 to 477.

4. Störrle, Harald, VMQL: A Generic Visual Model Query Language. In IEEE
Symposium on Visual Languages/Human Centric Computing, Corvallis, Oregon,
September 2009.

5. Zhang, Kang, Visual Languages and Applications. In Research Manuscript,
Springer, 2007.

Introduction to Visual Basic

3G E-LEARNING

23

d. None of the above.
8. The Properties window plays an important role in the development of Visual

Basic applications. It is mainly used
a. to change how objects look and feel.
b. when opening programs stored on a hard drive.
c. to allow the developer to graphically design program components.
d. to set program related options like Program Name, Program Location, etc.

9. Pseudocode is
a. data that have been encoded for security.
b. the incorrect results of a computer program.
c. a program that doesn’t work.
d. the obscure language computer personnel use when speaking.
e. a description of an algorithm similar to a computer language.

10. Which of the properties in a control’s list of properties is used to give the
control a meaningful name?
a. Text
b. ContextMenu
c. ControlName
d. Name

REVIEW QUESTIONS
1. What is visual basic? Why are importance of visual basic programming

language?
2. What is visual basic environment?
3. Describe the structure of a visual basic application.
4. How to creating your first application?
5. Discuss the saving projects in VB.

Check Your Result

1. (a) 2. (a) 3. (a) 4. (b) 5. (a)
6. (c) 7. (c) 8. (a) 9. (e) 10. (d)

TABLE OF

CONTENTS
Preface xv

Chapter 1 Ruby Basics 1
Introduction 1

1.1 Concept of Ruby Basics 2

1.1.1 General Concepts 5

1.1.2 Numbers 7

1.1.3 Strings 8

1.1.4 Arrays 9

1.1.5 Hashes 10

1.2 Rails Basics 11

1.2.1 The Structure of a Rails app 12

1.2.2 Important Rails Commands 14

1.2.3 ERB: Embedded Ruby 16

1.2.4 Editor tips 17

1.3 The History of Ruby 18

1.3.1 Toddler Years 18

1.3.2 The Rebellious Teenager 19

1.3.3 The Future 21

Summary 24

Knowledge Check 25

Review Questions 26

References 27

Chapter 2 Working with Strings, Objects, and Variables 29
Introduction 29

2.1 Ruby - Strings 31

2.1.1 Concatenation 31

2.1.2 Case 32

viii

2.1.3 Length 33

2.1.4 Strip 33

2.2 Objects and Methods 34

2.2.1 Objects and Attributes 37

2.3 Variable in Ruby 40

2.3.1 Local Variable 40

2.3.2 Instance Variables 43

2.3.3 Class Variables 44

2.3.4 Global Variables 45

2.3.5 Ruby Constants 46

Summary 52

Knowledge Check 53

Review Questions 54

References 55

Chapter 3 Implementing Conditional Logic 57
Introduction 57

3.1 Conditional Statement 58

3.1.1 The if Statement 58

3.1.2 The case Statement 62

3.1.3 The While Loop 64

3.2 Comparison Operators 68

3.3 Assignment Operators 71

3.4 Logical Operators 72

3.4.1 Logical and 73

3.4.2 Logical or 73

3.4.3 Logical not 74

3.5 Ternary Operator 77

Summary 79

Knowledge Check 80

Review Questions 81

References 82

Chapter 4 Working with loops 83
Introduction 83

4.1 A Simple Loop 84

4.2 Controlling Loop Execution 85

4.3 While Loops 87

ix

4.4 Until Loops 90

4.5 Do/While Loops 91

4.6 For Loops 92

4.7 Conditionals Within Loops 93

4.8 Iterators 95

4.9 Recursion 96

4.10 Ruby Flip-Flop 99

Summary 101

Knowledge Check 102

Review Questions 103

References 105

Chapter 5 Working with Regular Expressions 107
Introduction 107

5.1 Mastering Ruby Regular Expressions 108

5.1.1 Regular-Expression Modifiers 109

5.1.2 Search and Replace 109

5.1.3 Regular-Expression Patterns 111

5.2 Digging Deeper 113

5.2.1 Regular Expression Options 114

5.2.2 Deeper Patterns 116

5.2.3 Literal Characters 116

5.2.4 Character Classes 116

5.2.5 Special Character Classes 120

5.2.6 Repetition Cases 121

5.2.7 Grouping with Parentheses 123

5.2.8 Alternatives 125

5.2.9 Anchors 125

5.2.10 Pattern-Based Substitution 127

5.2.11 Backslash Sequences in the Substitution 128

Summary 130

Knowledge Check 131

Review Questions 132

References 133

Chapter 6 Ruby: Object-Oriented Programming 135
Introduction 135

6.1 Definition of Ruby Class 136

x

6.1.1 Define Ruby Objects 137

6.1.2 The accessor & setter Methods 139

6.1.3 The class Methods and Variables 142

6.1.4 The to_s Method 143

6.1.5 Access Control 144

6.2 Class Inheritance 146

6.2.1 Methods Overriding 148

6.2.2 Operator Overloading 149

6.2.3 Freezing Objects 150

6.2.4 Class Constants 152

6.2.5 Create Object Using Allocate 153

6.2.6 Class Information 154

Summary 156

Knowledge Check 157

Review Questions 158

References 159

Chapter 7 Debugger 161
Introduction 161

7.1 Ruby – Debugger 163

7.1.1 Usage Syntax 163

7.1.2 Ruby Debugger Commands 163

7.2 The Logger 166

7.2.1 What is the Logger? 166

7.2.2 Log Levels 167

7.2.3 Sending Messages 167

7.2.4 Tagged Logging 169

7.2.5 Impact of Logs on Performance 169

7.3 Debugging With the Bye Bug Gem

7.3.1 Setup 170

7.3.2 The Shell 170

7.3.3 The Context 174

7.3.4 Threads 175

7.3.5 Inspecting Variables 176

7.3.6 Step by Step 178

7.3.7 Breakpoints 180

7.3.8 Catching Exceptions 181

xi

7.3.9 Resuming Execution 181

7.3.10 Editing 182

7.3.11 Quitting 182

7.3.12 Settings 182

Summary 184

Knowledge Check 185

Review Questions 186

References 187

Chapter 8 Reflection and Metaprogramming 189
Introduction 189

8.1 Types, Classes, and Modules 190

8.1.1 Ancestry and Modules 191

8.1.2 Defining Classes and Modules 193

8.2 Evaluating Strings and Blocks 194

8.2.1 Bindings and eval 194

8.2.2 instance_eval and class_eval 196

8.2.3 instance_exec and class_exec 197

8.3 Variables and Constants 197

8.3.1 Querying, Setting, and Testing Variables 198

8.4 Methods 200

8.4.1 Listing and Testing 200

8.4.2 Obtaining Method Objects 202

8.4.3 Invoking Method 202

8.4.4 Defining, Undefining, and Aliasing Methods 203

8.4.5 Handling Undefined Methods 205

8.4.6 Setting Method Visibility 206

8.5 Hooks 206

8.6 Tracing 209

8.7 Objectspace and Gc 211

8.8 Custom Control Structures 212

8.8.1 Delaying and Repeating Execution: after and every 212

8.8.2 Thread Safety with Synchronized Blocks 214

8.9 Missing Methods and Missing Constants 215

8.9.1 Unicode Codepoint Constants with const_missing 215

8.9.2 Tracing Method Invocations with method_missing 216

8.9.3 Synchronized Objects by Delegation 219

8.10 Dynamically Creating Methods 220

8.10.1 Defining Methods with class_eval 220

8.10.2 Defining Methods with define_method 222

8.11 Alias Chaining 224

8.11.1 Tracing Files Loaded and Classes Defined 225

8.11.2 Chaining Methods for Thread Safety 227

8.11.3 Chaining Methods for Tracing 229

8.12 Domain-Specific Languages 232

8.12.1 Simple XML Output with method_missing 233

8.12.2 Validated XML Output with Method Generation 236

Summary 245

Knowledge Check 246

Review Questions 247

References 248

Chapter 9 Methods, Prcs, Lambdas, and Closure 251
Introduction 251

9.1 Defining Simple Methods 253

9.1.1 Method Return Value 254

9.1.2 Methods and Exception Handling 255

9.1.3 Invoking a Method on an Object 256

9.1.4 Defining Singleton Methods 256

9.1.5 Undefining Methods 257

9.2 Method Names 258

9.2.1 Operator Methods 259

9.2.2 Method Aliases 259

9.3 Methods and Parentheses 261

9.3.1 Optional Parentheses 261

9.3.2 Required Parentheses 262

9.4 Method Arguments 264

9.4.1 Parameter Defaults 265

9.4.2 Variable-Length Argument Lists and Arrays 266

9.4.3 Mapping Arguments to Parameters 268

9.4.4 Hashes for Named Arguments 268

9.4.5 Block Arguments 270

9.5 Procs and Lambdas 274

9.5.1 Creating Procs 274

9.5.2 Invoking Procs and Lambdas 278

9.5.3 The Arity of a Proc 279

xiii

9.5.4 Proc Equality 279

9.5.5 How Lambdas Differ from Procs 280

9.6 Closures 284

9.6.1 Closures and Shared Variables 285

9.6.2 Closures and Bindings 287

9.7 Method Objects 288

9.7.1 Unbound Method Objects 289

9.8 Functional Programming 290

9.8.1 Applying a Function to an Enumerable 290

9.8.2 Composing Functions 292

9.8.3 Partially Applying Functions 294

9.8.4 Memoizing Functions 295

9.8.5 Symbols, Methods, and Procs 296

Summary 301

Knowledge Check 302

Review Questions 302

References 304

 Index 305

Ruby is a dynamic, reflective, object-oriented, general-purpose programming
language. Ruby is a pure Object-Oriented language developed by Yukihiro
Matsumoto. One of the goals of Ruby is to allow the simple and fast
creation of web applications. The language itself satisfies this goal. Because
of this, there is much less tedious work with this language than many other
programming languages. More specifically, Ruby is a scripting language
designed for front- and back-end web development, as well as other similar
applications. It’s a robust, dynamically typed, object-oriented language, with
high-level syntax that makes programming with it feel almost like coding
in English. In fact, some people feel that they can practically understand
Ruby code before even learning how to program. In the world of computer
programming, there is an infinite amount of information to learn. This
book covers certain topics that are beneficial to the beginner.

Organization of the Book
This edition is systematically divided into nine chapters. This book is
your guide to rapid, real-world software development with this unique
and elegant language. The book will excite students on the capabilities
of computer programming and inspire them to delve deeper into the
computer science discipline. It will give you plenty of practice to commit
basic Ruby syntax to long-term memory so you can focus on solving real-
world problems and building real-world applications.
Chapter 1 presents an introduction to Ruby Basics. It also explains the
strings, arrays, hashes. You will take a look at the general structure of a
Rails application and the important commands used in the terminal.
Chapter 2 shows you how to work with Strings, Objects, and Variables.
There are two kinds of objects: built-in objects and custom objects. Built-
in objects are predefined objects that all programmers can use. They are

PREFACE

xvi

available with the core of the Ruby language or from various libraries. Custom
objects are created by application programmers for their application domains.
Chapter 3 begins with the conditional statement. It also explains sets and files
used in Python. Comparison operators and assignment operators is also given.
Additionally, it also explains the logical operators and ternary operator.
Chapter 4 presents an exploration on working with loops in Ruby used to
execute the same block of code a specified number of times. In this chapter,
the loop statements supported by Ruby are also discussed.
Chapter 5 is aimed to the ruby regular expressions that can be matched against
a string. Regular expression literals may include an optional modifier to control
various aspects of matching.
Chapter 6 will take you through all the major functionalities related to Object
Oriented Ruby. A class is used to specify the form of an object and it combines
data representation and methods for manipulating that data into one neat
package. The data and methods within a class are called members of the class.
Chapter 7 discusses about the debugging process in software development
whereby program analysts comb through computer code looking for “bugs” —
the source of errors, flaws or security holes in the internal program instructions.
Chapter 8 focuses on reflection and metaprogramming. A Ruby program can
dynamically set named variables, invoke named methods, and even define new
classes and new methods.
Chapter 9 sheds light on methods, PRCs, lambdas, and closure Methods are a
fundamental part of Ruby’s syntax, but they are not values that Ruby programs
can operate on. That is, Ruby’s methods are not objects in the way that strings,
numbers, and arrays are. It is possible, however, to obtain a Method object
that represents a given method, and we can invoke methods indirectly through
Method objects.

“Ruby is simple in appearance, but is very complex inside, just like our human body ”

–Matz

After studying this chapter,
you will be able to:
1. Focus on concept of

ruby basics
2. Explain the rails basics
3. Describe the history of

ruby

LEARNING
OBJECTIVES

RUBY BASICS

INTRODUCTION
Ruby is one of the fastest growing languages. Ruby is
an interpreted, high-level, general-purpose programming
language. It was designed and developed in the mid-1990s

1
CHAPTER

3G E-LEARNING

2 Basic Computer Coding: Ruby

by Yukihiro “Matz” Matsumoto in Japan. Websites like GitHub, Scribd, and Shopify
are created with the help of Ruby. So if you have decided to become a developer or
programmer, and are looking for a suitable platform, then Ruby is a great language
to begin with.
Developed by Yukihiro “Matz” Matsumoto, it is a pure object-oriented programming
language. It is a cross-platform language with support for multiple operating systems
such as Windows, macOS, and several versions of UNIX. It is an open-source language
and its latest version is 2.5.
Ruby inherits some features of languages like Smalltalk, Perl, and Python. Hence, it
is widely used as server-side scripting language. It is a general-purpose, interpreted,
and high-level language. It is also used to create Common Gateway Interface (CGI)
scripts and can be easily embedded into languages like HTML. Its syntax is similar
to other languages such as C++ and Perl.
Ruby provides support for multiple programming paradigms, dynamic type system,
and automatic memory management. In addition to this, it also supports several GUI
tools such as OpenGL, GTK, and Tcl/Tk. It also provides support for different databases
such as DB2, MySQL, Oracle, and Sybase.

1.1 CONCEPT OF RUBY BASICS
Ruby is the programming language Ruby on Rails is written in. So most of the time
you will be writing Ruby code. Therefore it is good to grasp the basics of Ruby. If
you just want to play with Ruby, type irb into your console to start interactive ruby.
There you can easily experiment with Ruby. To leave irb, type exit.

This is just a very small selection of concepts. This is especially true later on when
we talk about what Arrays, Strings etc. can do.

Everything is an Object

Everything in Ruby is an Object.
This is a comment
#=> Output will be shown like this
#Everything is an Object of a Class
3.class #=> Fixnum
3.0.class #=> Float
“Hello”.class #=> String
‘hi’.class #=> String
Special values are objects too

Ruby Basics

3G E-LEARNING

3

nil.class #=> NilClass
true.class #=> TrueClass
false.class #=> FalseClass
Basic arithmetic
Ruby uses the standard arithmetic operators:
1 + 1 #=> 2
10 * 2 #=> 20
35 / 5 #=> 7
10.0 / 4.0 #=> 2.5
4 % 3 #=> 1 #Modulus
2 ** 5 #=> 32 #Exponent
Arithmetic is just syntactic sugar for calling a method on

Numeric objects.
1.+(3) #=> 4
10.* 5 #=> 50
The Integer class has some integer-related functions, while

the Math module contains trigonometric and other functions.
2.even? #=> true
12.gcd(8) #=> 4
Equality and Comparisons
#equality
1 == 1 #=> true
2 == 1 #=> false
Inequality
1 != 1 #=> false
2 != 1 #=> true
!true #=> false
!false #=> true
#Logical Operators
3>2 && 2>1 #=> true
2>3 && 2>1 #=> false
2>3 || 2>1 #=> true
#In Ruby, you can also use words
true and false #=> false

 Arithmetic
 operators
 take numerical
 values (either
 literals or variables)
 as their operands
 and return a single
numerical value.

Keyword

3G E-LEARNING

4 Basic Computer Coding: Ruby

true or false #=> true
true and not false => true
apart from false itself, nil is the only other ‘false’ value
!nil #=> true
!false #=> true
!1 #=> false
!0 #=> false
#comparisons
1 < 10 #=> true
1 > 10 #=> false
2 <= 2 #=> true
2 >= 2 #=> true
Challenge
What will the following code return?
true and 0 && !nil and 3 > 2
(Note: don’t use such code in real programs!)
Please sign in or sign up to submit answers.
Alternatively, you can try out Learneroo before signing up.
Variables
x = 25 #=> 25
x #=> 25
Note that assignment returns the value assigned
This means you can do multiple assignment:
x = y = 10 #=> 10
x #=> 10
y #=> 10
Variables can be dynamically assigned to different types
thing = 5 #=> 5
thing = “hello” #=> “hello”
thing = true #=> true
By convention, use snake_case for variable names
snake_case = true
Use descriptive variable names

Interactive Ruby
(IRb) provides
a shell for
experimentation.
Within the IRb
shell, you can
immediately
view expression
results, line by
line.

Remember

Ruby Basics

3G E-LEARNING

5

path_to_project_root = ‘/good/name/’
path = ‘/bad/name/’
Challenge
ab is considered powerful if (and only if) both of the following 2 conditions are met:

 ■ ab >= 2 * b2

 ■ ab >= (a*b)2

return true if ab is powerful and false otherwise.
Please sign in or sign up to submit answers.
Alternatively, you can try out Learneroo before signing up.

1.1.1 General Concepts

Concept Usage Examples Description

Comment # Comment text # This text is a comment

 some.ruby_code # A
comment

some.ignored_ruby_
code

 Ruby ignores everything that is marked
 as a comment. It does not try to execute it.
 Comments are just there for you as information.
 Comments are also commonly used to comment
 out code. That is when you don’t want some
 part of your code to execute but you don’t want
 to delete it just yet, because you are trying
different things out.

Variables variable = some_
value

 name = “Tobi” name #
=> “Tobi”

 sum = 18 + 5 sum #
=> 23

 With a variable you tell Ruby that from now on
 you want to refer to that value by the name you
 gave it. So for the first example, from now on
 when you use name Ruby will know that you
meant “Tobi”.

 Console
output

puts something puts “Hello World”

puts [1, 5, “mooo”]

 Prints its argument to the console. Can be used
 in Rails apps to print something in the console
where the server is running.

3G E-LEARNING

6 Basic Computer Coding: Ruby

 Call a
method

object.
method(arguments)

string.length

array.delete_at(2)

string.gsub(“ae”, “ä”)

 Calling a method is also often referred to as
 sending a message in Ruby. Basically we are
 sending an object some kind of message and
 are waiting for its response. This message may
 have no arguments or multiple arguments,
 depending on the message. So we kindly ask
 the object to do something or give us some
 information. When you «call a method» or
 «send a message» something happens. In the
 first example we ask a String how long it is
 (how many characters it consists of). In the last
 example we substitute all occurrences of «ae” in
the string with the German “ä”.

 Different kinds of objects (Strings, Numbers,
Arrays...) understand different messages.

 Define a
method

 def name(parameter)
method body end

 def greet(name) puts
“Hi there “ + name end

 Methods are basically reusable units of
 behavior. And you can define them yourself
 just like this. Methods are small and focused on
implementing a specific behavior.

 Our example method is focused on greeting
people. You could call it like this: greet(“Tobi”)

Equality object == other true == true # => true

3 == 4 # => false

 “Hello” == «Hello» #
=> true

 “Helo” == “Hello” #
=> false

 With two equal signs you can check if two
 things are the same. If so, true will be returned;
otherwise, the result will be false.

Inequality object != other true != true # => false

3 != 4 # => true

 Inequality is the inverse to equality, e.g. it
 results in true when two values are not the
 same and it results in false when they are the
same.

 Decisions
with if

 if condition #
 happens when true
 else # happens
 when false end

 if input == password
 grant_access else
 deny_access end

 With if-clauses you can decide based upon
 a condition what to do. When the condition
 is considered true, then the code after it is
 executed. If it is considered false, the code after
the «else» is executed.

 In the example, access is granted based upon
 the decision if a given input matches the
password.

Ruby Basics

3G E-LEARNING

7

Constants CONSTANT =
some_value

 PI = 3.1415926535 PI #
=> 3.1415926535

 ADULT_AGE = 18
ADULT_AGE # => 18

 Constants look like variables, just in UPCASE.
 Both hold values and give you a name to refer
 to those values. However while the value a
 variable holds may change or might be of an
 unknown value (if you save user input in a
 variable) constants are different. They have
 a known value that should never change.
 Think of it a bit like mathematical or physical
 constants. These don’t change, they always refer
to the same value.

1.1.2 Numbers

Numbers are what you would expect them to be, normal numbers that you use to
perform basic math operations.

Concept Usage Examples Description

 normal
Number

number_of_your_
choice

0

-11

42

 Numbers are natural for Ruby, you just have
to enter them!

Decimals main.decimal 3.2

-5.0

 You can achieve decimal numbers in Ruby
simply by adding a point.

Basic Math n operator m 2 + 3 # => 5

5 - 7 # => -2

8 * 7 # => 56

84 / 4 # => 21

 In Ruby you can easily use basic math
 operations. In that sense you may use Ruby
as a super-powered calculator.

Comparison n operator m 12 > 3 # =>
true

 12 < 3 # =>
false

 7 >= 7 # =>
true

 Numbers may be compared to determine if
 a number is bigger or smaller than another
 number. When you have the age of a person
 saved in the age variable you can see if that
person is considered an adult in Germany:

age >= 18 # true or false

3G E-LEARNING

8 Basic Computer Coding: Ruby

1.1.3 Strings

Strings are used to hold textual information. They may contain single characters,
words, sentences or a whole book. However you may just think of them as an ordered
collection of characters.

Concept Usage Examples Description

Create ‘A string’ ‘Hello World’

‘a’

 ‘Just characters 129
_!$%^’

‘’

 A string is created by putting
 quotation marks around a character
 sequence. A Ruby style guide
 recommends using single quotes for
simple strings.

Interpolation “A string and an
#{expression}”

“Email: #{user.email}”

“The total is #{2 + 2}”

“A simple string”

 You can combine a string with a
 variable or Ruby expression using
 double quotation marks. This is
 called “interpolation.” It is okay to
 use double quotation marks around
a simple string, too.

Length string.length “Hello”.length # => 5

“”.length # => 0

 You can send a string a message,
 asking it how long it is and it
 will respond with the number of
 characters it consists of. You could
 use this to check if the desired
 password of a user exceeds the
 required minimum length. Notice
 how we add a comment to show the
expected result.

Concatenate string + string2 “Hello “ + “reader” # =>
“Hello reader”

 “a” + “b” + “c” # =>
«abc”

 Concatenates two or more strings
together and returns the result.

Substitute string.gsub(a_string,
substitute)

 “Hae”.gsub(“ae”, “ä”) #
=> “Hä”

 “Hae”.gsub(“b”, “ä”) #
=> “Hae”

 “Greenie”.gsub(“e”,
“u”) # => “Gruuniu”

 gsub stands for «globally substitute».
 It substitutes all occurrences of
 a_string within the string with
substitute.

Access string[position] “Hello”[1] # => “e” Access the character at the given
 position in the string. Be aware that
 the first position is actually position
0.

Ruby Basics

3G E-LEARNING

9

1.1.4 Arrays

An array is an ordered collection of items which is indexed by numbers. So an array
contains multiple objects that are mostly related to each other. So what could you do?
You could store a collection of the names of your favorite fruits and name it fruits.

This is just a small selection of things an Array can do.

Concept Usage Examples Description

Create [contents] []

[“Rails”, “fun”, 5]

 Creates an Array, empty or with the
specified contents.

 Number of
elements

array.size [].size # => 0

[1, 2, 3].size # => 3

 [“foo”, “bar”].size
=> 2

 Returns the number of elements in an
Array.

Access array[position] array = [“hi”, “foo”,
 “bar”] array[0] # =>
 “hi” array[2] # =>
“bar”

 As an Array is a collection of different
 elements, you often want to access a single
 element of the Array. Arrays are indexed
 by numbers so you can use a number to
 access an individual element. Be aware
 that the numbering actually starts with “0”
 so the first element actually is the 0th. And
 the last element of a three element array is
element number 2.

 Adding an
element

array << element array = [1, 2, 3]
 array << 4 array # =>
 [1, 2, 3, 4]

 Adds the element to the end of the array,
increasing the size of the array by one.

Assigning array[number] =
value

 array = [“hi”, “foo”,
 “bar”] array[2] =
 “new” array # =>
[“hi”, “foo”, “new”]

 Assigning new Array Values works a lot
 like accessing them; use an equals sign to
 set a new value. Voila! You changed an
element of the array! Weehuuuuu!

 Delete at
index

array.delete_at(i) array = [0, 14, 55,
79] array.delete_
 at(2) array # => [0,
 14, 79]

 Deletes the element of the array at the
 specified index. Remember that indexing
 starts at 0. If you specify an index larger
 than the number of elements in the array,
nothing will happen.

Iterating array.each do |e|
.. end

 persons.each do |p|
puts p.name end

 numbers.each do
|n| n = n * 2 end

 “Iterating” means doing something for each
 element of the array. Code placed between
 do and end determines what is done to each
element in the array.

 The first example prints the name of every
 person in the array to the console. The
 second example simply doubles every
number of a given array.

3G E-LEARNING

10 Basic Computer Coding: Ruby

1.1.5 Hashes

Hashes associate a key to some value. You may then retrieve the
value based upon its key. This construct is called a dictionary
in other languages, which is appropriate because you use the
key to «look up» a value, as you would look up a definition
for a word in a dictionary. Each key must be unique for a
given hash but values can be repeated.

Hashes can map from anything to anything! You can
map from Strings to Numbers, Strings to Strings, Numbers to
Booleans... and you can mix all of those! Although it is common
that at least all the keys are of the same class. Symbols are
especially common as keys. Symbols look like this: symbol.
A symbol is a colon followed by some characters. You can
think of them as special strings that stand for (symbolize)
something! We often use symbols because Ruby runs faster
when we use symbols instead of strings.

Concept Usage Examples Description

Creating {key =>
value}

 {:hobby =>
«programming»}

 {42 => “answer”,
 “score” => 100,
 :name => “Tobi”}

 You create a hash
 by surrounding the
 key-value pairs with
 curly braces. The
 arrow always goes
 from the key to the
 value depicting the
 meaning: “This key
 points to this value.”.
 Key-value pairs are
 then separated by
commas.

Accessing hash[key] hash = {:key =>
 “value”} hash[:key]
 # => “value”
 hash[foo] # => nil

 Accessing an entry
 in a hash looks a lot
 like accessing it in an
 array. However with
 a hash the key can
 be anything, not just
 numbers. If you try
 to access a key that
 does not exist, the
 value nil is returned,
 which is Ruby’s way
 of saying “nothing”,
 because if it doesn’t
 recognize the key it
 can’t return a value
for it.

 A string
 is called a
 special string if it
 does not contain a
 vowel i.e., (a,e,i,o,u)
 in the first three
 characters or last
three characters

Keyword

Ruby Basics

3G E-LEARNING

11

Assigning hash[key] =
value

 hash = {:a =>
 “b”} hash[:key]
 = “value” hash
 # => {:a=>”b”,
 :key=>”value”}

 Assigning values
 to a hash is similar
 to assigning values
 to an array. With a
 hash, the key can
 be a number or it
 can be a symbol,
 string, number... or
anything, really!

Deleting hash.
delete(key)

 hash = {:a => “b”,
:b => 10} hash.
 delete(:a) hash # =>
 {:b=>10}

 You can delete a
 specified key from
 the hash, so that the
 key and its value can
not be accessed.

1.2 RAILS BASICS
We look at the general structure of a Rails application and
the important commands used in the terminal. If you do not
have Rails installed yet, there is a well maintained guide by
Daniel Kehoe on how to install Rails on different platforms.

Running the ruby command launched the Ruby interpreter. The Ruby
interpreter read the file you specified and evaluated its contents. It
executed the line puts “Hello, World!” by calling the puts function.
The string value of Hello, World! Was passed to the function. In
this example, the string Hello, World! is also called an argument
since it is a value that is passed to a method.

Currently much of the excitement surrounding Ruby can
be attributed to a web development framework called Rails
– popularly known as ‘Ruby on Rails’. While Rails is an
impressive framework, it is not the be-all and end-all of Ruby.
Indeed, if you decide to leap right into Rails development
without first mastering Ruby, you may find that you end up
with an application that you don’t even understand. While
the Little Book of Ruby won’t cover the special features of
Rails, it will give you the grounding you need to understand
Rails code and write your own Rails applications.

 In
 computer
 systems, a
 framework is often
 a layered structure
 indicating what
 kind of programs
 can or should
 be built and
 how they would
 interrelate. Some
 computer system
 frameworks also
 include actual
 programs, specify
 programming
 interfaces, or offer
 programming
 tools for using the
frameworks.

Keyword

3G E-LEARNING

12 Basic Computer Coding: Ruby

Installing and Using Ruby with Ruby in Steel

 Ruby in Steel is a Windows-based IDE which comes with an
 all-in-one installer to install Ruby, Visual Studio, Ruby in Steel
 .and various other optional packages including Rails

Installing Ruby Yourself

 If you are using some other IDE or editor, you will need to
 download the latest version of Ruby from www.ruby-lang.org.
 .Be sure to download the binaries

Running Ruby Programs

It is often useful to keep a Command window open in the
source directory containing your Ruby program files. Assuming
that the Ruby interpreter is correctly pathed on your system,
you will then be able to run programs by entering ruby like
this:

ruby 1helloworld.rb
If you are using Ruby In Steel you can run the programs

in the interactive console by pressing CTRL+F5 or (in some
editions) you may run them in the debugger by pressing F5.

1.2.1 The Structure of a Rails app

Here is an overview of all the folders of a new Rails application,
outlining the purpose of each folder, and describing the most
important files.

Name Description

app This folder contains your application. Therefore it is
 the most important folder in Ruby on Rails and it is
 worth digging into its subfolders. See the following
rows.

app/assets Assets basically are your front-end stuff. This folder
 contains images you use on your website, javascripts for
 all your fancy front-end interaction and stylesheets for
all your CSS making your website absolutely beautiful.

 A
 debugger
 is a computer
 program used by
 programmers to
 test and debug a
target program.

Keyword

Ruby Basics

3G E-LEARNING

13

app/
controllers

 The controllers subdirectory contains the controllers,
 which handle the requests from the users. It is often
 responsible for a single resource type, such as places,
 users or attendees. Controllers also tie together the
models and the views.

app/helpers Helpers are used to take care of logic that is needed in
 the views in order to keep the views clean of logic and
reuse that logic in multiple views.

app/mailers Functionality to send emails goes here.

app/models The models subdirectory holds the classes that model
 the business logic of our application. It is concerned
 with the things our application is about. Often this
 is data, that is also saved in the database. Examples
 here are a Person, or a Place class with all their typical
behaviour.

app/views The views subdirectory contains the display templates
 that will be displayed to the user after a successful
 request. By default they are written in HTML with
 embedded ruby (.html.erb). The embedded ruby is
 used to insert data from the application. It is then
 converted to HTML and sent to the browser of the
 user. It has subdirectories for every resource of our
 application, e.g. places, persons. These subdirectories
contain the associated view files.

 Files starting with an underscore (_) are called partials.
 Those are parts of a view which are reused in other
 views. A common example is _form.html.erbwhich
 contains the basic form for a given resource. It is
 used in the new and in the edit view since creating
something and editing something looks pretty similar.

config This directory contains the configuration files that
 your application will need, including your database
 configuration (in database.yml) and the particularly
 important routes.rb which decides how web requests
 are handled. The routes.rb file matches a given URL
with the controller which will handle the request.

db Contains a lot of database related files. Most
 importantly the migrations subdirectory, containing all
 your database migration files. Migrations set up your
 database structure, including the attributes of your
 models. With migrations you can add new attributes
 to existing models or create new models. So you could
 add the favorite_color attribute to your Person model so
everyone can specify their favorite color.

doc Contains the documentation you create for your
application. Not too important when starting out.

lib Short for library. Contains code you’ve developed
 that is used in your application and may be used
 elsewhere. For example, this might be code used to get
specific information from Facebook.

3G E-LEARNING

14 Basic Computer Coding: Ruby

log See all the funny stuff that is written in the console
 where you started the Rails server? It is written to your
 development.log. Logs contain runtime information
 of your application. If an error happens, it will be
recorded here.

public Contains static files that do not contain Ruby code,
such as error pages.

script By default contains what is executed when you
 type in the rails command. Seldom of importance to
beginners.

test Contains the tests for your application. With tests you
 make sure that your application actually does what
 you think it does. This directory might also be called
 spec, if you are using the RSpec gem (an alternative
testing framework).

vendor A folder for software code provided by others
 (“libraries”). Most often, libraries are provided as ruby
 gems and installed using the Gemfile. If code is not
 available as a ruby gem then you should put it here.
 This might be the case for jQuery plugins. Probably
won’t be used that often in the beginning.

Gemfile A file that specifies a list of gems that are required to
 run your application. Rails itself is a gem you will find
 listed in the Gemfile. Ruby gems are self-contained
 packages of code, more generally called libraries that
add functionality or features to your application.

 If you want to add a new gem to your application,
 add “gem gem_name” to your Gemfile, optionally
 specifying a version number. Save the file and then
run bundle install to install the gem.

Gemfile.lock This file specifies the exact versions of all gems you
 use. Because some gems depend on other gems, Ruby
 will install all you need automatically. The file also
 contains specific version numbers. It can be used to
 make sure that everyone within a team is working
with the same versions of gems. The file is auto-
generated. Do not edit this file.

1.2.2 Important Rails Commands

Here is a summary of important commands that can be used
as you develop your Ruby on Rails app. You must be in the
root directory of your project to run any of these commands
(with the exception of the rails new command). The project
or application root directory is the folder containing all the
subfolders described above (app, config, etc.).

 A
 command
 is a specific
 instruction given
 to a computer
 application to
 perform some kind
 of task or function.

Keyword

Ruby Basics

3G E-LEARNING

15

Concept Usage Description

 Create a new
app

rails new name Create a new Ruby on Rails
 application with the given name
 here. This will give you the basic
 structure to immediately get started.
 After this command has successfully
 run your application is in a folder
 with the same name you gave the
 application. You have to cd into that
folder.

Start the server rails server You have to start the server in order
 for your application to respond to
 your requests. Starting the server
 might take some time. When
 it is done, you can access your
 application underlocalhost:3000 in
the browser of your choice.

 In order to stop the server, go to the
 console where it is running and press
Ctrl + C

Scaffolding rails generate
 scaffold name
attribute:type

 The scaffold command magically
 generates all the common things
 needed for a new resource for you!
 This includes controllers, models and
 views. It also creates the following
 basic actions: create a new resource,
 edit a resource, show a resource, and
delete a resource.

 That’s all the basics you need. Take
this example:

 rails generate scaffold product
name:string price:integer

 Now you can create new products,
 edit them, view them and delete
 them if you don’t need them
 anymore. Nothing stops you from
 creating a full fledged web shop now
;-)

Run migrations rake
db:migrate

 When you add a new migration, for
 example by creating a new scaffold,
 the migration has to be applied to
 your database. The command is used
to update your database.

 Install
dependencies

bundle install If you just added a new gem to your
 Gemfile you should run bundle
 install to install it. Don’t forget to
restart your server afterwards!

3G E-LEARNING

16 Basic Computer Coding: Ruby

 Check
dependencies

bundle check Checks if the dependencies listed in
 Gemfile are satisfied by currently
installed gems

 Show existing
routes

rake routes Shows complete list of available
routes in your application.

1.2.3 ERB: Embedded Ruby

 In your views (that is, under app/views in your Rails app) you will find .html.erb files.
 ERB stands for Embedded RuBy. This just means that Rails processes some special
.tags in those files and produces HTML output to send back to the user
 There are two ERB tags that you need to remember: <%= ruby_code %> and <%
.ruby_code %>. Notice that the difference is the = in the first tag

Tag Examples Description
<%= %> <%= @product.price %> It runs the Ruby code and

 inserts the result to the HTML
 at that position. You can put any
 kind of Ruby code between <%=
 and%>, for instance, <%= 9 * 3
 %> will translate to 27 in the
 page that the user is viewing.
 However, typically this tag
 is used to display some data
 from a model, such as the price
 of a product, as shown in the
example here.

<% %> <% if user.admin? %>
 <p>Hello Admin!</p> <%
end %>

 The Ruby code between the
 delimiters <% and %> is run but
 the result will not be inserted
 at this point in the HTML.
 Therefore these tags are most
 commonly used for control
 flow structures such as an if
 statement in the example, or
loops.

Ruby Basics

3G E-LEARNING

17

1.2.4 Editor tips

When you write code you will be using a text editor. Of course each text editor is
different and configurable. Here are just some functions and their most general short
cuts. All of them work in Sublime Text 2. Your editor may differ!

The shortcuts listed here are for Linux/Windows. On a Mac you will have to
replace Ctrl with Cmd.

Function Shortcut Description

Save file Ctrl + S Saves the currently open file. If it was a new
file you may also be asked where to save it.

Undo Ctrl + Z Undo the last change you made to the
 current file. Can be applied multiple times in
succession to undo multiple changes.

Redo Ctrl + Y

 or Ctrl + Shift
+ Z

 Redo what you just undid with undo, can also
be done multiple times.

Find in File Ctrl + F Search for a character sequence within the
 currently open file. Hit Enter to progress to
the next match.

 Find in all
Files

 Ctrl + Shift
+ F

 Search for a character sequence in all files of
the project.

Replace Ctrl + H

or Ctrl + R

 Replace occurrences of the supplied character
 sequence with the other supplied character
sequence. Useful when renaming something.

Copy Ctrl + C Copy the currently highlighted text into the
clipboard.

Cut Ctrl + X Copy the highlighted text into the clipboard
but delete it.

Paste Ctrl + V Insert whatever currently is in the clipboard
 (through Copy or Cut) at the current caret
position. Can insert multiple times.

New File Ctrl + N Create a new empty file.

 Search and
open file

Ctrl + P Search for a file giving part of its name (fuzzy
 search). Pressing enter will open the selected
file.

Comment Ctrl + / Marks the selected text as a comment, which
 means that it will be ignored. Useful when
 you want to see how something behaves or
 looks without a specific section of code being
run.

3G E-LEARNING

18 Basic Computer Coding: Ruby

1.3 THE HISTORY OF RUBY
The Ruby language is 21 years old. Its strong community and
adoption by the open source community has kept this language
steady and improving. Ruby has changed drastically over the
years. It has grown from a young child to the strong adult
that it is today. But it didn’t get that way overnight. Let’s take
a look at the life of the Ruby programming language.

)Birth)1993

Ruby was born in 1993, conceived in a discussion between
Yukihiro Matsumoto (“Matz”) and a colleague. They were
discussing the possibility of an object-oriented scripting-
language. Matz stated in ruby-talk: 00382 that he knew Perl,
but did not like it very much; that it had the smell of a “toy”
language. He also discussed that he knew Python, but didn’t
like it because it wasn’t a true object-oriented programming
language.

Matz wanted a language perfect for his needs:
 ■ Syntactically Simple
 ■ Truly Object-Oriented
 ■ Having Iterators and Closures
 ■ Exception Handling
 ■ Garbage Collection
 ■ Portable

1.3.1 Toddler Years

Ruby became a toddler (n.: a young child who is just beginning
to walk) when Ruby 1.0 was released in December, 1996. Ruby
1.1 shortly followed in August of 1997, and the first stable
version of Ruby (1.2) was released in December of 1998.

At this point in time, Ruby was localized to Japan only,
but it would soon spread to other parts of the world…

Primary School Years

In 1998, Matz created a simple English homepage for Ruby.
However, Ruby was still much localized to Japan. In trying

Object-
 oriented
 programming
 (OOP) refers to a
 type of computer
 programming
 (software
 design) in which
 programmers
 define not only
 the data type of
 a data structure,
 but also the types
 of operations
 (functions) that can
 be applied to the
data structure.

Keyword

Ruby 1.8
was released
in 2003. This
release made
large amounts
of changes to the
agile 10-year-old
language.

Did You
Know?

Ruby Basics

3G E-LEARNING

19

to further this expansion, the first English language Ruby
mailing list, Ruby-Talk, was created. Ruby was beginning to
spread beyond Japan.

Ruby-Talk is still very active today, and you can subscribe
to it here.

In October of 1999, Yukihiro Matsumoto and Keiju Ishitsuka
wrote the first book on the Ruby programming language: The
Object-oriented Scripting Language Ruby. Ruby was beginning to
get very popular in Japan, and spreading rapidly to English-
speaking countries.

In 2001, the first English book on Ruby, Programming
Ruby (“The Pickaxe”), was published in 2001. With this new
information on Ruby, many more people were able to learn
the language.

Including:
 ■ Duck Typing (looks like a duck, swims like a duck,

quacks like a duck: it’s a duck)
 ■ Fully Qualified Names (Foo::Bar)
 ■ Native YAML Support
 ■ WEBrick
 ■ StringIO
 ■ open-uri
 ■ PP (Pretty Printer for Hash#inspect)
 ■ ruby -run (UNIX commands for all! ruby -run -e

mkdir foo)
 ■ And many other minor features

In 2004, RubyGems was released to the public. Good
things started happening next…

1.3.2 The Rebellious Teenager

In 2005, Ruby use took off. The reason: Ruby on Rails. This
new framework changed the history of rapid web development.
Ruby had been used in the past to write CGI scripts, but
Ruby on Rails took this a step further. Rails has a Model-
View-Controller structure that focuses on “convention over
configuration”, which is great for developing web applications.

Having
looked
around and
not found a
language suited
for him, Yukihiro
Matsumoto
decided to create
his own. After
spending several
months writing
an interpreter,
Matz finally
published the
first public
version of
Ruby (0.95) to
various Japanese
domestic
newsgroups in
December, 1995.
You can still
download the
infant version
of Ruby here at
your own risk.

Remember

3G E-LEARNING

20 Basic Computer Coding: Ruby

People loved it. So much so that, the Ruby community
was almost taken over by the Rails framework. Ruby in
turn became very popular. In March of 2007, Ruby 1.8.6 was
released, with 1.8.7 following in May of 2008. At this point,
Ruby was at its peak. Mac OS X even began shipping with
it in 2007. At this point, Ruby was 15 years old. Ruby 1.9
(development version) was released in December, 2007, then
stabilized 4 years later (2011) as Ruby 1.9.3. Ruby 1.9.3 was
the production version of 1.9.2. These versions brought new
changes to the language, such as:

 ■ Significant speed improvements
 ■ New methods
 ■ New hash syntax ({ foo: ‘bar’ })
 ■ RubyGems included
 ■ New Socket API (IPv6 support)
 ■ Several random number generators
 ■ Regular Expression improvements
 ■ File loading performance improvements
 ■ Test::Unit Improvements
 ■ New encoding support
 ■ More string formatting tweaks
 ■ And so much more

Ruby was making the transition from a rebellious teenager
to a strong adult as it turned 18 with Ruby 1.9.3.

Strong Adult

Ruby 2.0.0 was released in February 2013 and brought many
stabilizing changes to the language. Among them are:

 ■ More speed improvements
 ■ Refinements (safe monkey patching)
 ■ Keyword arguments
 ■ UTF-8 by default
 ■ New regular expressions engine
 ■ Optimized garbage collection
 ■ The addition of built-in syntax documentation (ri

ruby:syntax)

Ruby
is said
to follow the
principle of least
astonishment
(POLA), meaning
that the language
should behave
in such a way
as to minimize
confusion for
experienced
users.

Remember

Ruby Basics

3G E-LEARNING

21

Unlike 1.9.x, which broke numerous gems with its changes, 2.0.0 was almost
completely backwards compatible with 1.9.3. In addition, Heroku, one of the leading
Ruby/Rails hosts upgraded to 2.0.0 quickly, causing earlier than usual adoption by
new and existing projects. The Ruby language was (and is) in its golden age.

Ruby 2.1.0 was released on Christmas day of 2013. It brought several minor
changes to the language. But the biggest news of 2.1.0 was semantic versioning, a
way to properly version a project without breaking dependencies by accident. Ruby
2.1.1 was released on Ruby’s 21st birthday (February 24, 2014). Ruby is now legally
allowed to drink in the US (not that we’d want it to). This version was mainly speed
improvements and bugfixes. Shortly after 2.1.1, Ruby 2.1.2 was released in May of
2014. 2.1.2 consists of more bugfixes and is the current stable version of Ruby.

1.3.3 The Future

Ruby is a great language. Matz wanted a programming language that suited his
needs, so he built one. This is an inspiring story of software development: if you
can’t find something that you like, program it yourself. From 0.95 to 2.1.2, Ruby has
struck the awe of those who wished to program the way they wanted, not the way
the machine wanted.

We can’t know the future of the Ruby language, but we can predict it based on
the past. We believe that the Ruby language, and its fantastic community will continue
furthering the language above and beyond what others think is possible, and projects
built using it will do the same.

3G E-LEARNING

22 Basic Computer Coding: Ruby

ROLE MODEL

YUKIHIRO MATSUMOTO: JAPANESE
COMPUTER SCIENTIST AND SOFTWARE
PROGRAMMER

“Matsumoto Yukihiro, a.k.a. Matz, is a Japanese computer
scientist and software programmer best known as the chief
designer of the Ruby programming language and its reference
implementation, Matz’s Ruby Interpreter (MRI).

As of 2011, Matsumoto is the Chief Architect of Ruby at
Heroku, an online cloud platform-as-a-service in San Francisco.
He is a fellow of Rakuten Institute of Technology, a research and
development organisation in Rakuten Inc. He was appointed
to the role of technical advisor for VASILY, Inc. starting in
June 2014.

Early life

Born in Osaka Prefecture, Japan, he was raised in Tottori
Prefecture from the age of four. According to an interview
conducted by Japan Inc., he was a self-taught programmer
until the end of high school. He graduated with an information
science degree from University of Tsukuba, where he was
a member of Ikuo Nakata’s research lab on programming
languages and compilers.

Work

He works for the Japanese open source company, netlab.jp.
Matsumoto is known as one of the open source evangelists in
Japan. He has released several open source products, including
cmail, the Emacs-based mail user agent, written entirely in
Emacs Lisp. Ruby is his first piece of software that has become
known outside Japan.

Ruby Basics

3G E-LEARNING

23

Ruby

Matsumoto released the first version of the Ruby programming language on 21 December
1995. He still leads the development of the language’s reference implementation, MRI
(for Matz’s Ruby Interpreter).

MRuby

In April 2012, Matsumoto open-sourced his work on a new implementation of Ruby called
mruby. It is a minimal implementation based on his virtual machine, called ritevm, and is
designed to allow software developers to embed Ruby in other programs while keeping
memory footprint small and performance optimised.

streem

In December 2014, Matsumoto open-sourced his work on a new scripting language
called streem, a concurrent language based on a programming model similar to shell,
with influences from Ruby, Erlang and other functional programming languages.

Treasure Data

Matsumoto has been listed as an investor for Treasure Data; many of the company’s
programs such as Fluentd use Ruby as their primary language.

Recognition

Matsumoto received the 2011 Award for the Advancement of Free Software from the
Free Software Foundation (FSF) at the 2012 LibrePlanet conference at the University
of Massachusetts Boston in Boston

Personal life

Matsumoto is married and has four children. He is a member of The Church of Jesus
Christ of Latter-day Saints, did standard service as a missionary and is now a counselor
in the bishopric in his church ward.

3G E-LEARNING

24 Basic Computer Coding: Ruby

SUMMARY
 ■ Ruby is an interpreted, high-level, general-purpose programming language. It

was designed and developed in the mid-1990s by Yukihiro “Matz” Matsumoto
in Japan.

 ■ Ruby inherits some features of languages like Smalltalk, Perl, and Python.
 ■ Ruby provides support for multiple programming paradigms, dynamic type

system, and automatic memory management.
 ■ Ruby ignores everything that is marked as a comment. It does not try to

execute it. Comments are just there for you as information.
 ■ Numbers are what you would expect them to be, normal numbers that you

use to perform basic math operations.
 ■ Ruby became a toddler (n.: a young child who is just beginning to walk)

when Ruby 1.0 was released in December, 1996.
 ■ Ruby 2.0.0 was released in February 2013 and brought many stabilizing

changes to the language.
 ■ Unlike 1.9.x, which broke numerous gems with its changes, 2.0.0 was almost

completely backwards compatible with 1.9.3.
 ■ In December 2014, Matsumoto open-sourced his work on a new scripting

language called streem, a concurrent language based on a programming
model similar to shell, with influences from Ruby, Erlang and other functional
programming languages.

Ruby Basics

3G E-LEARNING

25

KNOWLEDGE CHECK
1. Ruby was developed in mid

a. 1960s
b. 1970s
c. 1980s
d. 1990s

2. Programming language which is an open-source, object oriented programming
language with simple syntax similar to Perl and Python is
a. C
b. C++
c. Java
d. Ruby

3. A web application development framework written in Ruby language is
a. Rail
b. Ada
c. Pascal
d. Java

4. Ruby on Rails was used to build user’s interface of
a. Twitter
b. Facebook
c. Wikipedia
d. Google

5. Rails’ application framework is called ……………….
a. ActionPack
b. ActiveRecord
c. a web page
d. an object

6. When Whitespace characters such as spaces and tabs cannot ignored in Ruby
code?
a. While using strings
b. While using integer
c. while using float value
d. All of the above

3G E-LEARNING

26 Basic Computer Coding: Ruby

7. Which character is used to give comment in ruby?
a. !
b. @
c. #
d. $

REVIEW QUESTIONS
1. Define the Ruby code.
2. Focus on frameworks for Ruby programming.
3. Define html.erb files.
4. What will the following code return?
 true and 0 && !nil and 3 > 2
5. Explain the strings.

Check Your Result

1. (d) 2. (d) 3. (a) 4. (a) 5. (a)
6. (a) 7. (c)

Ruby Basics

3G E-LEARNING

27

REFERENCES
1. Carlson, Lucas and Richardson, L. (2006) Ruby Cookbook. O’Reilly Media. 2006.
2. Cockburn, Alistair (2007) Agile Software Development: The Cooperative Game.

2nd Edition. Pearson Education Inc.
3. Cooper, S., Dann, W. and Pausch, R. (2000). Alice: a 3-D tool for introductory

programming concepts, Proceedings of the fifth annual CCSC northeastern
conference on The journal of computing in small colleges. Ramapo College of
New Jersey, Mahwah, New Jersey, United States.

4. Cooper, S., Dann, W. and Pausch, R. (2000). Alice: a 3-D tool for introductory
programming concepts, Proceedings of the fifth annual CCSC northeastern
conference on the journal of computing in small colleges. Ramapo College of
New Jersey, Mahwah, New Jersey, United States.

5. Guzdial, Mark (2000) Squeak: Object-Oriented Design with Multimedia
Applications. Prentice Hall.

6. Guzdial, Mark and Kim Rose, Kim (Eds.) (2002) Squeak: Open Personal Computing
and Multimedia. Prentice Hall.

7. Guzdial, Mark and Kim Rose, Kim (Eds.) (2002) Squeak: Open Personal Computing
and Multimedia. Prentice Hall.

8. Kelleher, Caitlin and Pausch, R. (2005) Lowering the Barriers to Programming: A
Taxonomy of Programming Environments and Languages for Novice Programmers,
ACM Computing Surveys, 37(2), 83–137.

9. Kortenkamp, U., Modrow, E., Oldenburg, R., Poloczek, J. and Rabel, M. (2009)
Objektorientierte Modellierung – aber wann und wie?, LOG IN Heft Nr. 160/161,
22–28.

10. Maloney, J., L. Burd, et al. (2005) Scratch: A Sneak Preview. International Conference
on Creating, Connecting, and Collaborating through Computing., Kyoto, Japan.

11. Perrotta, P. (2010) Metaprogramming Ruby. Pragmatic Programmers
12. Reas, C. and Fry, B. (2007) Processing: A Programming Handbook for Visual

Designers and Artists. MIT Press.
13. Smith, D.A., Kay, A., Raab, A. & Reed, D. (2003) Croquet – a collaboration

system architecture. First Conference on Creating, Connecting and Collaborating
through Computing: 2.

14. Thomas, D. (2009). Programming Ruby - The Programmatic Programmer’s Guide.
Pragmatic Programmers.

“Web servers are written in C, and if they’re not, they’re written in Java or C++, which are C
derivatives, or Python or Ruby, which are implemented in C.”

–Rob Pike

After studying this chapter,
you will be able to:
1. Discuss about Ruby –

strings
2. Explain objects and

methods
3. Describe variable in

Ruby

LEARNING
OBJECTIVES

WORKING WITH
STRINGS, OBJECTS,
AND VARIABLES

INTRODUCTION
In Ruby, string is a sequence of one or more characters.
It may consist of numbers, letters, or symbols. Strings are
the objects, and apart from other languages, strings are

2
CHAPTER

3G E-LEARNING

30 Basic Computer Coding: Ruby

mutable, i.e. strings can be changed in place instead of creating new strings. String’s
object holds and manipulates an arbitrary sequence of the bytes that commonly
represents a sequence of characters.

Ruby is a perfect object oriented programming language. The features of the
object-oriented programming language include:

 ■ Data encapsulation
 ■ Data abstraction
 ■ Polymorphism
 ■ Inheritance

An object-oriented program involves classes and objects. A class is the blueprint
from which individual objects are created. In object-oriented terms, we say that your
bicycle is an instance of the class of objects known as bicycles.

Take the example of any vehicle. It comprises wheels, horsepower, and fuel or
gas tank capacity. These characteristics form the data members of the class Vehicle.
You can differentiate one vehicle from the other with the help of these characteristics

A vehicle can also have certain functions, such as halting, driving, and speeding.
Even these functions form the data members of the class Vehicle. You can, therefore,
define a class as a combination of characteristics and functions.

Ruby provides four types of variables:
Local Variables − Local variables are the variables that are defined in a method.

Local variables are not available outside the method. Local variables begin with a
lowercase letter or _.

Instance Variables − Instance variables are available across methods for any particular
instance or object. That means that instance variables change from object to object.
Instance variables are preceded by the at sign (@) followed by the variable name.

Class Variables − Class variables are available across different objects. A class variable
belongs to the class and is a characteristic of a class. They are preceded by the sign
@@ and are followed by the variable name.

Global Variables − Class variables are not available across classes. If you want to
have a single variable, which is available across classes, you need to define a global
variable. The global variables are always preceded by the dollar sign ($)

Objects are instances of the class. You will now learn how to create objects of a
class in Ruby. You can create objects in Ruby by using the method new of the class.

The method new is a unique type of method, which is predefined in the Ruby library.
The new method belongs to the class methods.

Working with Strings, Objects, and Variables

3G E-LEARNING

31

2.1 RUBY - STRINGS
A String object in Ruby holds and manipulates an arbitrary sequence of one or more
bytes, typically representing characters that represent human language.

The simplest string literals are enclosed in single quotes (the apostrophe character).
The text within the quote marks is the value of the string −

‘This is a simple Ruby string literal’
If you need to place an apostrophe within a single-quoted string literal, precede

it with a backslash, so that the Ruby interpreter does not think that it terminates the
string −

‘Won\’t you read O\’Reilly\’s book?’
The backslash also works to escape another backslash, so that the second backslash

is not itself interpreted as an escape character.

2.1.1 Concatenation

One of the most basic things you will find yourself doing with strings is concatenation.
This is where you join two strings together. There are a few different ways to do this
in Ruby.

Firstly you can join two strings together using the + operator:

If you already have a string you can append another string using the ```
operator:

You can also multiple a string by an integer to return three copies of that string
as a new string:

3G E-LEARNING

32 Basic Computer Coding: Ruby

2.1.2 Case

We can convert a string into capital case by calling the capitalize method:

When you call a method on a string, such as capitalize, you will be returned a
new string.

For example, try the following in IRB:

Now if you puts the name variable, what do you think it will be?

When you call a method on a String object it creates a new string, rather than
changing the existing one.

To modify the original instance we can call the same method but with a !:

If you want to convert a string to lowercase you can call the downcase method:

Working with Strings, Objects, and Variables

3G E-LEARNING

33

Alternatively you can covert a string to uppercase using
the upcase method:

2.1.3 Length

If you need to count the number of characters in a string you
can call use the length method:

2.1.4 Strip

Whenever you accept input from a user you should make
sure they haven’t included any whitespace. You can remove
white space using the strip method:

If you want to modify the current instance of the string
rather than create a new string, you should call the method
with a !:

 Uppercase
 characters
 are capital
 letters; lowercase
 characters are small
letters.

Keyword

3G E-LEARNING

34 Basic Computer Coding: Ruby

Alternatively you can only remove whitespace from the
left or the right of the string by calling lstrip or rstrip.

2.2 OBJECTS AND METHODS
“Everything in Ruby is an Object” is something you’ll hear
rather frequently. “Pretty much everything else is a method”
could also be said. The goal here is for you to see the Matrix...
that everything in Ruby is an Object, every object has a class,
and being a part of that class gives the object lots of cool
methods that it can use to ask questions or do things. Being
incredibly object-oriented gives Ruby lots of power and makes
your life easier.

Think of every “thing” in Ruby as a having more than
meets the eye. The number 12 is more than just a number... It’s
an object and Ruby lets you do all kinds of interesting things
to it like adding and multiplying and asking it questions like
> 12.class or > 12+3

Ruby gives all objects a bunch of neat methods. If you
ever want to know what an object’s methods are, just use the
#methods method! Asking > 12345.methods in IRB will return
a whole bunch of methods that you can try out on the number
12345. You’ll also see that the basic operators like + and - and
/ are all methods too (they’re included in that list). You can
call them using the dot > 1.+2 like any other method or, luckily
for you, Ruby made some special shortcuts for them so you
can just use them as you have been: > 1+2

Some methods ask true/false questions, and are usually
named with a question mark at the end like #is_a?, which asks
whether an object is a type of something else, e.g. 1.is_a?Integer
returns true while “hihi”.is_a?Integer returns false You’ll get
used to that naming convention. Methods like #is_a?, which
tell you something about the object itself, are called Reflection
Methods (as in, “the object quietly reflected on its nature and
told me that it is indeed an Integer”). ::class was another one
we saw, where the object will tell you what class it is.

What is a method? A method is just a function or a black
box. You put the thing on the left in, and it spits something
out on the right. Every method returns something, even if it’s
just nil.

 Black
 box is a
 device, system or
 object which can
 be viewed in terms
 of its inputs and
 outputs (or transfer
 characteristics),
 without any
 knowledge of its
internal workings.

Keyword

Working with Strings, Objects, and Variables

3G E-LEARNING

35

Some methods are more useful for their Side Effects than
the thing they actually return, like #puts That’s why when you
say > puts “hi” in IRB, you’ll see a little => nil down below...
the method prints out your string as a “side effect” and then
returns nil after it’s done. When you write your own methods,
if you forget to think about the return statement, sometimes
you’ll get some wierd behavior so always think about what’s
going in and what’s coming out of a method.

Methods can take inputs too, which are included in
parentheses to the right of the method name (though they
can be omitted, as you do with > puts(“hi”) becoming > puts
“hi”.. it’s okay to be lazy, as long as you know what you’re
doing). Going back to the addition example, > 1+2==3 is asking
whether 1+2 will equal 3 (it returns => true), but it can more
explicitly be written > 1.+(2).==(3) So, in this case, you can see
there’s more going on than meets the eye at first.

That example also shows Method Chaining, which is
when you stick a bunch of methods onto each other. It behaves
like you’d expect -- evaluate the thing on the left first, pass
whatever it returns to the method on the right and keep going.
So > 1+2==3 first evaluates 1+2 to be 3 and then evaluates 3==3
which is true This is great because it lets you take what would
normally be many lines of code and combine them into one
elegant expression.

Bang Methods are finished with an exclamation point !
like #sort!, and they actually modify the original object. The
exclamation point lets you know you’re in dangerous territory.

Bang methods save over the original object (they are
“destructive”):

> my_numbers = [1,5,3,2]
=> [1, 5, 3, 2]
> my_numbers.sort
=> [1, 2, 3, 5]
> my_numbers
=> [1, 5, 3, 2] # still unsorted
> my_numbers.sort!
=> [1, 2, 3, 5]
> my_numbers

When
you run a
normal method
in IRB, it will
output whatever
the method
returns but it
will preserve the
original object.

Remember

3G E-LEARNING

36 Basic Computer Coding: Ruby

=> [1, 2, 3, 5] # overwrote the original my_numbers object!
Methods ending with a question mark ? return true or false.
Let’s answer the question, “Where did all those methods come from?” Classes

are like umbrellas that let us give an object general behaviors just based on what it
is. An object is an instance of a class -- you (yes, you) are an instance of the Person
class. There are lots of behaviors (methods) that you can do just by virtue of being a
Person... #laugh, #jump, speak(“hello”) This is really useful in programming because
you often need to create lots of instances of something and it’s silly to have to rewrite
all the methods you want all of them to have anyway, so you write them at the class
level and all the instances get to use them.

Instances of a class get to inherit the behaviors of that class. Inheritance works
for classes too! Your class Person has lots of methods but many of them are inherited
just by virtue of you also being a Mammal or even just a LivingThing You get to use
all the methods of your ancestor classes

An interesting exercise to try in Ruby is to use the method ::superclass to ask a
class what its parent is. If you just keep on going and going, you’ll see that everything
eventually inherits from BasicObject, which originates most of the methods you have
access to in the original object:

> 1.class.superclass.superclass.superclass
=> BasicObject
> BasicObject.methods
=> # giant list of methods
Random Note: Running the ::methods method on a class only returns the class

methods, whereas ::instance_methods will return all methods available to any instance
of that class (so String.methods will return a list of class methods, while “hello”.
methodswill return a longer list that is the same as String.instance_methods).

Other Random Note: Use object_id to see an object’s id, and this can be useful
if you’re running into odd errors where you thought you were modifying and object
but it’s not changing. If you debug and look at the id’s along the way, you may find
that you’re actually only modifying a COPY of that object.

To Write Your Own Methods, just use the syntax def methodname(argument1,
argument2), though the parentheses around the arguments are optional. The method
will return (“spit out”) either whatever follows the return statement or the result of
the last piece of code that was evaluated (an Implicit Return statement). You call the
inputs by whatever name you defined them at the top.

You can write methods in IRB... it will let you use multiple lines if it detects that
you have unfinished business (a def without an end or unclosed parentheses):

> def speak(words)

Working with Strings, Objects, and Variables

3G E-LEARNING

37

> puts words
> return true
> end
=> nil # ignore this
> speak(“hello!”)
hello!
=> true
What if you want to assume that the input to a method

is a particular value if there hasn’t been any supplied? That’s
easy, just specify the Default Input by assigning it to something
where it’s listed as an input:

> def speak(words=”shhhhh”)
> puts words
> end # implicitly returns what puts returns... nil!
=> nil # ignore this
> speak # no input
shhhhh
=> nil

2.2.1 Objects and Attributes

If the object that you’re attempting to bind is neither Serializable
nor Referenceable, then you can still bind it if it has attributes,
provided that binding DirContext objects is a feature
supported by the underlying service provider. Sun’s LDAP
service provider supports this feature.

Interoperability

Binding DirContext objects is especially useful for interoperability
with non-Java applications. An object is represented by a set of
attributes, which can be read and used by non-Java applications
from the directory. The same attributes can also be read and
interpreted by a JNDI service provider, which, in conjunction
with an object factory, converts them into a Java object.

For example, an object might have, as some of its attribute
values, URLs that the JNDI service could use to generate an

 Service
 provider
 can be an
organizational sub-
 unit, it is usually
 a third party or
 outsourced supplier,
including telecom-
 munications service
 providers (TSPs),
 application service
 providers (ASPs),
 storage service
 providers (SSPs),
 and internet service
providers (ISPs).

Keyword

3G E-LEARNING

38 Basic Computer Coding: Ruby

instance of a Java object that the application could use. These same URLs could be
used also by non-Java applications.

Binding an Object by Using Its Attributes

The following example shows a Drink class that implements the DirContext interface.
Most DirContext methods are not used by this example and so simply throw
anOperationNotSupportedException .

public class Drink implements DirContext {
 String type;
 Attributes myAttrs;

 public Drink(String d) {
 type = d;
 myAttrs = new BasicAttributes(true); // Case ignore
 Attribute oc = new BasicAttribute(“objectclass”);
 oc.add(“extensibleObject”);
 oc.add(“top”);

 myAttrs.put(oc);
 myAttrs.put(“drinkType”, d);
 }
 public Attributes getAttributes(String name) throws NamingException {
 if (! name.equals(“”)) {
 throw new NameNotFoundException();
 }
 return (Attributes)myAttrs.clone();
 }

 public String toString() {
 return type;
 }
...

}

Working with Strings, Objects, and Variables

3G E-LEARNING

39

The Drink class contains the “objectclass” and “drinkType”
attributes. The “objectclass” attribute contains two values: “top”
and “extensibleObject”. The “drinkType” attribute is set by
using the string passed to the Drink constructor. For example,
if the instance was created by using new Drink(“water”), then
its “drinkType” attribute will have the value “water”.

The following example creates an instance of Drink and
invokes Context.bind() to add it to the directory.
// Create the object to be bound
Drink dr = new Drink(“water”);
// Perform the bind
ctx.bind(“cn=favDrink”, dr);

When the object is bound, its attributes are extracted and
stored in the directory.

When that object is subsequently looked up from the
directory, its corresponding object factory will be used to
return an instance of the object. The object factory is identified
by theContext.OBJECT_FACTORIES environment property
when the initial context for reading the object is created.

Hashtable env = ...;
// Add property so that the object factory can be found
env.put(Context.OBJECT_FACTORIES, “DrinkFactory”);

// Create the initial context
DirContext ctx = new InitialDirContext(env);

// Read back the object
Drink dr2 = (Drink) ctx.lookup(“cn=favDrink”);
System.out.println(dr2);
This produces the following output, “water”, produced

by Drink.toString().
java DirObj
water
From the perspective of the application using the JNDI, it

is dealing only with bind() and lookup(). The service provider

 Directory
 is a file
 system cataloging
 structure which
 contains references
 to other computer
 files, and possibly
other directories.

Keyword

3G E-LEARNING

40 Basic Computer Coding: Ruby

takes care of getting the attributes from the object and converting them to/from the
actual object itself.

Note that you can store a DirContext object in the directory only if the underlying
service provider supports that.

2.3 VARIABLE IN RUBY
Variable is a symbol or name that stands for a value. Variables locate in memory
locations and are used to store values such as numeric values, characters, character
strings, or memory addresses so that they can be used in any part of the program.

We have discussed the following types of variables and constants supported by Ruby :

 ■ Local Variables
 ■ Instance Variables
 ■ Class Variables
 ■ Global Variables
 ■ Constants

2.3.1 Local Variable

A local variable name must start with a lowercase letter (a-z) or underscore (_) with
the eight-bit set.

Local Variable Scope

A local variable is only accessible from within the block of its initialization. See the
following example:

Working with Strings, Objects, and Variables

3G E-LEARNING

41

In the following example, there are three local variables
called color. One is assigned the value, ‘Red’ within the ‘main
scope’ of the program; two others are assigned integers within
the scope of two separate methods. As each local variable
has a different scope, the assignments have no affect on the
other local variables with the same name in different scopes.
We have verified it by calling the methods at the end of the
program.:

Example:
color = “Red”
def method1
color = 192
puts(“Color Value in method1 : “,color)
end

def method2
color = 255
puts(“Color Value method2: “,color)
end

method1
method2
method1
puts(“Color Value outside methods : “+color)
Copy
Output:
H:\>ruby abc.rb
Color Value in method1 :
192
Color Value method2:
255
Color Value in method1 :
192
Color Value outside methods : Red

Local
variable
names must begin
with either an
underscore or a
lower case letter.

Remember

3G E-LEARNING

42 Basic Computer Coding: Ruby

Local Variables and Methods

In Ruby, local variable names and method names are nearly
identical. If you have not assigned to one of these ambiguous
names ruby will assume you wish to call a method. Once
you have assigned to the name ruby will assume you wish
to reference a local variable.

The local variable is created when the parser encounters
the assignment, not when the assignment occurs:

a = 0 if false # does not assign to a
p local_variables # prints [:a]
p a # prints nil
Copy
def big_calculation
 42 # pretend this takes a long time
end
big_calculation = big_calculation()
Copy
Now any reference to big_calculation is considered a

local variable and will be cached. To call the method, use
self.big_calculation.

You can force a method call by using empty argument
parentheses as shown above or by using an explicit receiver
like self. Using an explicit receiver may raise a NameError if
the method’s visibility is not public.

Another commonly confusing case is when using a
modifier if:

p a if a = 0.zero?
Copy
Rather than printing “true” you receive a NameError,

“undefined local variable or method `a’”. Since ruby parses the
bare a left of the if first and has not yet seen an assignment
to it assumes you wish to call a method. Ruby then sees the
assignment to a and will assume you are referencing a local
method.

The confusion comes from the out-of-order execution of
the expression. First, the local variable is assigned to then
you attempt to call a nonexistent method.

 Parenthesis
 is a tall, curvy
 punctuation mark
 used to set off
 material that isn’t
 fundamental to the
 main topic, like an
 afterthought or an
 aside (or a funny
joke).

Keyword

Working with Strings, Objects, and Variables

3G E-LEARNING

43

2.3.2 Instance Variables

Instance variables are shared across all methods for the same object. The instance
variable name must start with ‘@’ character, otherwise instance variable names follow
the rules as a local variable name.

Syntax:
@insvar
In the following example, Student.new creates a new object - an instance of the

class Student. The instance variables @student_id and @student_name.
class Student
 def initialize(student_id, student_name)
 @student_id = student_id
 @student_name = student_name
 end

 def show
 puts “Student Name and ID : “
 puts(@student_id, @student_name)
 end
end
Student.new(1, “Sara”).show
Student.new(2, “Raju”).show
Copy
Output:
Student Name and ID :
1
Sara
Student Name and ID :
2
Raju
Note : An uninitialized instance variable has a value of nil.

3G E-LEARNING

44 Basic Computer Coding: Ruby

2.3.3 Class Variables

Class variables are shared between a class, its subclasses, and
its instances.

A class variable must start with a @@ (two “at” signs). The
rest of the name follows the same rules as instance variables.

Syntax:
@@classvar
The following example shows that all classes change the

same variable. Class variables behave like global variables
which are visible only in the inheritance tree. Because Ruby
resolves variables by looking up the inheritance tree first,
this can cause problems if two subclasses both add a class
variable with the same name.

Example:
class School

@@no_off_students = 650
end

class V sub-class of School
class V < School
@@no_off_students = 75
end
class VI sub-class of School
class VI < School
@@no_off_students = 80
end
puts School.class_eval(“@@no_off_students”)
puts V.class_eval(“@@no_off_students”)
puts VI.class_eval(“@@no_off_students”)
Copy
Output:
80
80
80

Class
variables
must be
initialized at
creation time.

Remember

Working with Strings, Objects, and Variables

3G E-LEARNING

45

 Using the class variable @@no_of_customers, you can determine the number of
objects that are being created. This enables in deriving the number of customers.

class Customer

 @@no_of_customers = 0

end

2.3.4 Global Variables

In Ruby a global variables start with a $ (dollar sign). The
rest of the name follows the same rules as instance variables.
Global variables are accessible everywhere.

Syntax:
$globalvar
Example:
$global = 0

class C
 puts “in a class: #{$global}”

 def my_method
 puts “in a method: #{$global}”

 $global = $global + 1
 $other_global = 3
 end
end

C.new.my_method

puts “at top-level, $global: #{$global}, $other_global:
#{$other_global}”

Copy
Output:

If we want
to display
floating point
numbers we
need to use %f.
We can specify
the number of
decimal places
we want like this:
%0.2f.

Remember

3G E-LEARNING

46 Basic Computer Coding: Ruby

in a class: 0
in a method: 0
at top-level, $global: 1, $other_global: 3
An uninitialized global variable has a value of nil.
Ruby has some special globals that behave differently

depending on context such as the regular expression match
variables or that have a side-effect when assigned to.

2.3.5 Ruby Constants

A variable whose name begins with an uppercase letter (A-Z)
is a constant. A constant can be reassigned a value after its
initialization, but doing so will generate a warning. Every
class is a constant.

Trying to access an uninitialized constant raises the
NameError exception.

Syntax:
ABCD
Example :
class Student
 NO_Students = 800
end
puts ‘No of students in the school : ‘, Student::NO_

Students
Copy
Here NO_Students is the constant.
Output:
No of students in the school :
800

Table 1: Ruby- Pseudo Variables

Name Description
self Execution context of the current method.
nil Expresses nothing. nil also is considered to be false, and

every other value is considered to be true in Ruby.

 Initialization is
 the assignment of
 an initial value for
 a data object or
variable.

Keyword

Working with Strings, Objects, and Variables

3G E-LEARNING

47

true Expresses true.
false Expresses false.
$1, $2 ... $9 These are contents of capturing groups for regular

 expression matches. They are local to the current thread
and stack frame!

Table 2: Ruby- Pre-defined Variables

Name Description

$! The exception information message set by the last ‘raise’ (last
exception thrown).

$@ Array of the backtrace of the last exception thrown.

$& The string matched by the last successful pattern match in this
scope.

$` The string to the left of the last successful match.

$’ The string to the right of the last successful match.

$+ The last group of the last successful match.

$1 to $9 The Nth group of the last successful regexp match.

$~ The information about the last match in the current scope.

$= The flag for case insensitive, nil by default (deprecated).

$/ The input record separator, newline by default.

$\ The output record separator for the print and IO#write. Default
is nil.

$, The output field separator for the print and Array#join.

$; The default separator for String#split.

$. The current input line number of the last file that was read.

$< An object that provides access to the concatenation of the
 contents of all the files given as command-line arguments, or
$stdin (in the case where there are no arguments). Read only.

$FILENAME Current input file from $<. Same as $<.filename.

$> The destination of output for Kernel.print and Kernel.printf. The
default value is $stdout.

$_ The last input line of the string by gets or readline.

$0 Contains the name of the script being executed. Maybe
assignable.

$* Command line arguments given for the script. Also known as
ARGV

$$ The process number of the Ruby running this script.

$? The status of the last executed child process.

$: Load path for scripts and binary modules by load or require.

$” The array contains the module names loaded by requiring.

$stderr The current standard error output.

The first
public release
of Ruby 0.95
was announced
on Japanese
domestic
newsgroups
on December
21, 1995.
Subsequently,
three more
versions of Ruby
were released in
two days. The
release coincided
with the launch
of the Japanese-
language ruby-
list mailing list,
which was the
first mailing
list for the new
language.

Did You
Know?

3G E-LEARNING

48 Basic Computer Coding: Ruby

$stdin The current standard input.

$stdout The current standard output.

$-d The status of the -d switch. Assignable.

$-K Character encoding of the source code.

$-v The verbose flag, which is set by the -v switch.

$-a True if option -a (“autosplit” mode) is set. Read-only variable.

$-i If an in-place-edit mode is set, this variable holds the extension,
otherwise nil.

$-l True if option -l is set (“line-ending processing” is on). Read-
only variable.

$-p True if option -p is set (“loop” mode is on). Read-only variable.

$-w True if option -w is set.

Table 3: Ruby- Pre-defined Constants

Name Description
__FILE__ Current file.
__LINE__ Current line.
__dir__ Current directory.

Working with Strings, Objects, and Variables

3G E-LEARNING

49

CASE STUDY

RUBY CLASS
For your case study, you will create a Ruby Class called Customer and you will declare
two methods −

display_details − This method will display the details of the customer.
total_no_of_customers − This method will display the total number of customers

created in the system.
#!/usr/bin/ruby
class Customer
 @@no_of_customers = 0
 def initialize(id, name, addr)
 @cust_id = id
 @cust_name = name
 @cust_addr = addr
 end
 def display_details()
 puts “Customer id #@cust_id”
 puts “Customer name #@cust_name”
 puts “Customer address #@cust_addr”
 end
 def total_no_of_customers()
 @@no_of_customers += 1
 puts “Total number of customers: #@@no_of_customers”
 end
end
The display_details method contains three puts statements, displaying the Customer

ID, the Customer name, and the Customer address. The puts statement will display
the text Customer id followed by the value of the variable @cust_id in a single line
as follows −

puts “Customer id #@cust_id”
When you want to display the text and the value of the instance variable in a

single line, you need to precede the variable name with the hash symbol (#) in the
puts statement. The text and the instance variable along with the hash symbol (#)

3G E-LEARNING

50 Basic Computer Coding: Ruby

should be enclosed in double quotation marks.
The second method, total_no_of_customers, is a method that contains the class

variable @@no_of_customers. The expression @@no_of_ customers+=1 adds 1 to the
variable no_of_customers each time the method total_no_of_customers is called. In
this way, you will always have the total number of customers in the class variable.

Now, create two customers as follows −
cust1 = Customer.new(“1”, “John”, “Wisdom Apartments, Ludhiya”)
cust2 = Customer.new(“2”, “Poul”, “New Empire road, Khandala”)
Here, we create two objects of the Customer class as cust1 and cust2 and pass the

necessary parameters with the new method. The initialize method is invoked, and the
necessary properties of the object are initialized.

Once the objects are created, you need to call the methods of the class by using
the two objects. If you want to call a method or any data member, you write the
following −

cust1.display_details()
cust1.total_no_of_customers()
The object name should always be followed by a dot, which is in turn followed

by the method name or any data member. We have seen how to call the two methods
by using the cust1 object. Using the cust2 object, you can call both methods as shown
below −

cust2.display_details()
cust2.total_no_of_customers()

Save and Execute the Code

Now, put all this source code in the main.rb file as follows −
#!/usr/bin/ruby
class Customer
 @@no_of_customers = 0
 def initialize(id, name, addr)
 @cust_id = id
 @cust_name = name
 @cust_addr = addr
 end
 def display_details()
 puts “Customer id #@cust_id”

Working with Strings, Objects, and Variables

3G E-LEARNING

51

 puts “Customer name #@cust_name”
 puts “Customer address #@cust_addr”
 end
 def total_no_of_customers()
 @@no_of_customers += 1
 puts “Total number of customers: #@@no_of_customers”
 end
end

Create Objects
cust1 = Customer.new(“1”, “John”, “Wisdom Apartments, Ludhiya”)
cust2 = Customer.new(“2”, “Poul”, “New Empire road, Khandala”)

Call Methods
cust1.display_details()
cust1.total_no_of_customers()
cust2.display_details()
cust2.total_no_of_customers()
Now, run this program as follows −
$ ruby main.rb
This will produce the following result −
Customer id 1
Customer name John
Customer address Wisdom Apartments, Ludhiya
Total number of customers: 1
Customer id 2
Customer name Poul
Customer address New Empire road, Khandala
Total number of customers: 2

3G E-LEARNING

52 Basic Computer Coding: Ruby

SUMMARY
 ■ In Ruby, string is a sequence of one or more characters. It may consist of

numbers, letters, or symbols.
 ■ String’s object holds and manipulates an arbitrary sequence of the bytes that

commonly represents a sequence of characters.
 ■ Ruby belongs to the family of dynamic languages. Unlike strongly typed

languages like Java, C or Pascal, dynamic languages do not declare a variable
to be of certain data type.

 ■ Bang Methods are finished with an exclamation point ! like #sort!, and they
actually modify the original object.

 ■ Binding DirContext objects is especially useful for interoperability with non-
Java applications.

 ■ Variables locate in memory locations and are used to store values such as
numeric values, characters, character strings, or memory addresses so that
they can be used in any part of the program.

 ■ Class variables are shared between a class, its subclasses, and its instances.
 ■ A variable whose name begins with an uppercase letter (A-Z) is a constant.

A constant can be reassigned a value after its initialization, but doing so will
generate a warning. Every class is a constant.

Working with Strings, Objects, and Variables

3G E-LEARNING

53

KNOWLEDGE CHECK
1. Objects of which class does the integer from the range -2^30 to 2^(30-1) belong

to?
a. Bignum
b. Octal
c. Fixnum
d. Binary

2. What is the sequence of ruby strings?
a. 16-bit bytes
b. 8-bit bytes
c. 10-bit bytes
d. None of the mentioned

3. What is the output of the given code?
 my_string=Ruby
 puts(my_string)
a. Ruby
b. Nil
c. Error
d. None of the mentioned

4. Which of the following is not a valid datatype?
a. Float
b. Integer
c. Binary
d. Timedate

5. What will any variable evaluate to if it is of Boolean data type?
a. True
b. Nil
c. False
d. Either True or False

6. syntax matches with the Ruby’s syntax.
a. Java
b. Perl
c. PHP

3G E-LEARNING

54 Basic Computer Coding: Ruby

d. None of above
7. Which of the following type of comments are valid in ruby?

a. Single line
b. Multiple line
c. Both single and multiple line
d. None of above

REVIEW QUESTIONS
1. What is strings? Explain in detail.
2. Define concatenation. Describe with suitable example.
3. Explain how you define an instance variable, global variable and class variable

in Ruby?
4. How does a symbol differ from a string?
5. What is the difference between a symbol and a variable in Ruby?

Check Your Result

1. (c) 2. (b) 3. (c) 4. (d) 5. (d)
6. (b) 7. (c)

Working with Strings, Objects, and Variables

3G E-LEARNING

55

REFERENCES
1. A. Kalyanpur, D. Pastor, S. Battle, and J. Padget. Automatic mapping of owl

ontologies into java. In SEKE. 2004.
2. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K., 2011.

Cython: The Best of Both Worlds. Comput. Sci. Eng. 13, 31–39. https://doi.
org/10.1109/MCSE.2010.118

3. Catanio, J.J., 2018. Leave the Features: Take the Cannoli. California Polytechnic
State University, San Luis Obispo, California. https://doi.org/10.15368/theses.2018.25

4. D. Schwabe, D. Brauner, D. A. Nunes, and G. Mamede. Hypersd: a semantic
desktop as a semantic web application. In SemDesk in ISWC. 2005.

5. D. Vrandeˇci´c. Deep integration of scripting language and semantic web
technologies. In Scripting for the Semantic Web. 2005.Bebenita, M., Brandner,
F., Fahndrich, M., Logozzo, F., Schulte, W., Tillmann, N., Venter, H., 2010. SPUR:
a trace-based JIT compiler for CIL, in: Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’10. Association for Computing Machinery, Reno/Tahoe, Nevada, USA,
pp. 708–725. https://doi.org/10.1145/1869459.1869517

6. Deliveroo Adopts Rust to Improve Performance in Core Service [WWW Document],
2020. InfoQ. URL https://www.infoq.com/news/2019/03/from-ruby-to-rust-at-
deliveroo/ (accessed 2.16.20).

7. E. Oren, et al. Annotation and navigation in semantic wikis. In SemWiki in
ESWC. 2006.

8. Garbage Collection | Ruby Hacking Guide [WWW Document], 2020. URL https://
rubyhacking guide.github.io/gc.html (accessed 2.16.20).

9. Grimmer, M., Seaton, C., Würthinger, T., Mössenböck, H., 2015. Dynamically
composing languages in a modular way: supporting C extensions for dynamic
languages, in: Proceedings of the 14th International Conference on Modularity,
MODULARITY 2015. Association for Computing Machinery, Fort Collins, CO,
USA, pp. 1–13. https://doi.org/10.1145/2724525.2728790

10. Helix: Native Ruby Extensions Without Fear [WWW Document], 2020. URL
https://usehelix.com/ (accessed 2.20.20).

11. Hunt, J., 2019. Monkey Patching and Attribute Lookup, in: Hunt, J. (Ed.), A
Beginners Guide to Python 3 Programming, Undergraduate Topics in Computer
Science. Springer International Publishing, Cham, pp. 325–336. https://doi.
org/10.1007/978-3-030-20290-3_28

12. Lin, Y., Wang, K., Blackburn, S.M., Hosking, A.L., Norrish, M., 2015. Stop and
go: understanding yieldpoint behavior. ACM SIGPLAN Not. 50, 70–80. https://
doi.org/10.1145/2887746.2754187

3G E-LEARNING

56 Basic Computer Coding: Ruby

13. Ludvigh, R., Rebok, T., Tunka, V., Nguyen, F., 2015. Ruby benchmark tool
using docker, in: 2015 Federated Conference on Computer Science and
Information Systems (FedCSIS). Presented at the 2015 Federated Conference on
Computer Science and Information Systems (FedCSIS), pp. 947–952. https://doi.
org/10.15439/2015F99

14. M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2002.
15. Prokopec, A., Leopoldseder, D., Duboscq, G., Würthinger, T., 2017. Making

collection operations optimal with aggressive JIT compilation, in: Proceedings
of the 8th ACM SIGPLAN International Symposium on Scala, SCALA 2017.
Association for Computing Machinery, Vancouver, BC, Canada, pp. 29–40. https://
doi.org/10.1145/3136000.3136002

16. T. Berners-Lee. Weaving the Web – The Past, Present and Future of the World
Wide Web by its Inventor. Texere, 2000.

“It is not the responsibility of the language to force good looking code, but the language should make
good looking code possible.”

–Yukihiro Matsumoto

After studying this chapter,
you will be able to:
1. Discuss the conditional

statement
2. Define comparison

operators and
assignment operators

3. Explain the logical
operators and ternary
operator

LEARNING
OBJECTIVES

IMPLEMENTING
CONDITIONAL LOGIC

INTRODUCTION
Conditional statements are also known by the name of
conditional processing or conditional expressions. They are
used to perform a certain set of instructions if a specified

3
CHAPTER

3G E-LEARNING

58 Basic Computer Coding: Ruby

condition is met. The conditions are generally of Boolean type
and return either true or false as the result. Conditionals are
formed using if or case with some comparison operators. A
conditional assists data about where to move next. In Ruby, 0
is considered as true whereas in other programming languages
it is considered false.
A conditional is a fork (or many forks) in the road. Your
data approaches a conditional and the conditional then tells
the data where to go based on some defined parameters.
Conditionals are formed using a combination of if statements
and comparison and logical operators (<, >, <=, >=, ==, !=, &&,
||). They are basic logical structures that are defined with
the reserved words if, else, elsif, and end. Note that elsif is
missing an “e”. Enough talking, time to code.

3.1 CONDITIONAL STATEMENT
 Many of Ruby’s control structures, such as if and while, are
 standard fare and quite familiar to programmers, while others,
 like unless and until, are not. Think of control structures,
 which contain conditional statements, as lie detector tests.
 In every instance, when you use a control structure with a
 conditional, you are asking if something is true or false. When
 you get the desired answer—true or false depending on how
 you’ve designed your co0de—the code block associated with
.the control is executed

3.1.1 The if Statement

Let’s start out really simple and build from there.
if 1 == 1 then
 print “True!”
end
If it’s true that 1 equals (==) 1, which it does, then the if

statement returns true, and the code block, consisting only of
a print statement, will execute. (This if statement, by the way,
could be typed out on one line.)

Now you’ll create a variable and compare it with a number.
If the variable and number are equal, the code is executed.

 Conditional
 statement is
 a mechanism
 that allows for
 conditional
 execution of
 instructions based
 upon the outcome
 of a conditional
 statement, which
 can either be true
or false.

Keyword

Implementing Conditional Logic

3G E-LEARNING

59

x = 256
if x == 256
puts “x equals 256”
end
=> x equals 256
Notice that we dropped then from the if statement. You don’t have to use it in

this instance. In addition, you don’t have to use end if you write this code all on one
line, like so:

x = 256
if x == 256 then puts “x equals 256” end
In fact, you can change the order of things, placing if after puts, and you can

drop then and end.
x = 256
puts “x equals 256” if x == 256
When you change the order like this, the if is referred to as a statement modifier.

You can do this with other control structures.
Another way you can lay out an if statement is by replacing the then with a colon

(:), like this:
x = 256
if x == 256: puts “x equals 256” end
Play with that code a little bit. Change the value of x so that it won’t return true

when fed to if. Change the text that the statement outputs. Put something else in the
block. Do this until you feel the code in your soul. Now I’ll show you some other
operators for testing the truth or falsehood of a statement or set of statements. For
example, the && operator means “and.”

ruby = “nifty”
programming = “fun”
if ruby == “nifty” && programming == “fun”
 puts “Keep programming!”
end
=> Keep programming!

In other words, if both these statements are true, execute the code in the block.
You can have more than two statements separated by &&:

if a == 10 && b == 27 && c == 43 && d == -14

3G E-LEARNING

60 Basic Computer Coding: Ruby

 print sum = a + b + c + d
end

If all these statements are true, sum will be printed.
You can also use the keyword and instead of &&.
if ruby == “nifty” and programming == “fun” and weather == “nice”
 puts “Stop programming and go outside for a break!”
end
Another choice is the || operator; a synonym for this operator is or. When you

use || or or, if any of the statements are true, the code executes:
if ruby == “nifty” or programming == “fun”
 puts “Keep programming!”
end
If either of the two statements is true, the string keep programming! will print.

Are more than two statements OK? Of course:
if a == 10 || b == 27 || c = 43 || d = -14
 print sum = a + b + c + d
end

|| and or, and && and and, are considered logical operators. Lots of other operators
are possible, too, such as:
delete_record if record != 0x8ff # not equal to
if amt > 1.00 then desc = “dollars” end # greater than
desc = “cents” if amt < 1.00 # less than
if height >= 6 then print “L or XL” end # greater than or equal to
print “shrimpy” if weight <= 100 # less than or equal to

Two other operators reverse the meaning of a test. They are ! and not.
if !queue then print “The queue is empty.” end
What this is saying is that if queue is not equal to true, the statement evaluates

as true and the print statement prints The queue is empty!.An alternative to ! is the
not keyword.

if not queue then print “The the queue is empty.” end
Using else and elsif

Implementing Conditional Logic

3G E-LEARNING

61

Sometimes you set flags in programming in order to tell
a program to carry out a task. A flag usually just carries a
value of true or false. For example, let’s say your program
had queue and print flags. If the flag is true, then the code
in the block is executed; if false, the block is ignored.

if queue
 pr = true
else
 pr = false
end

start_printer if pr # starts if pr is is true

The else keyword gives if an escape hatch. In other words,
if the if statement does not evaluate true, the code after else
will be executed, and if if evaluates false, the code after else
is ignored.

The following if statement contains several elsif statements;
they are testing to see which language is currently in use via
symbols—English (:en), Spanish (:es), French (:fr), and German
(:de)—to decide how to render dog:

lang = :es
if lang == :en
 print “dog”
elsif lang == :es
 print “perro”
elsif lang == :fr
 print “chien”
elsif lang == :de
 print “Hund”
else
 puts “No language set; default = ‘dog’.”
end
“perro” is assigned to dog

 A Queue
 is a linear
 structure which
 follows a particular
 order in which
 the operations are
performed.

Keyword

The elsif
keyword
provides you
with one or more
intermediate
options after
the initial if,
where you can
test various
statements.

Remember

3G E-LEARNING

62 Basic Computer Coding: Ruby

You can also write this statement a little tighter by using
colons after the symbols:

if lang == :en: print “dog”
 elsif lang == :es: print “perro”
 elsif lang == :fr: print “chien”
 elsif lang == :de: print “Hund”
 else puts “No language set; default = ‘dog’.”

end

3.1.2 The case Statement

Ruby’s case statement provides a way to express conditional
logic in a succinct way. It is similar to using elsifs with colons,
but you use case in place of if, and when in place of elsif.
Here is an example similar to what you saw earlier using lang
with the possible symbols :en, :es, :fr, and :de:
lang = :fr

dog = case lang

when :en: “dog”

when :es: “perro”

when :fr: “chien”

when :de: “Hund”

 else “dog”

end

“chien” is assigned to dog
case/when is more convenient and terse than if/elsif/else
because the logic of == is assumed—you don’t have to keep
retyping == or the variable name: Ruby’s case is similar to
the switch statement, a familiar C construct, but case is more
powerful. One of the annoying things to me about switch
statements in C, C++, and Java, is that you can’t switch on
strings in a straightforward way.

 A switch
 statement
 is a type of
 selection control
 mechanism used
 to allow the value
 of a variable or
 expression to
 change the control
 flow of program
 execution via a
multiway branch.

Keyword

Implementing Conditional Logic

3G E-LEARNING

63

If the lang variable held a string instead of symbols, your
code would look like this:
4lang = “de”

dog = case lang
when “en”: “dog”
when “es”: “perro”
when “fr”: “chien”
when “de”: “Hund”
 else “dog”
end
“Hund” is assigned to dog
The next example uses several ranges to test values. A

range is a range of numbers.
scale = 8
case scale
 when 0: puts “lowest”
 when 1..3: puts “medium-low”
 when 4..5: puts “medium”
 when 6..7: puts “medium-high”
 when 8..9: puts “high”
 when 10: puts “highest”
 else puts “off scale”
end
=> high
The range 1..3 means a range of numbers from 1 to 3,

inclusive. Because scale equals 8, scale matches the range 8..9
and case returns the string high. However, when you use three
dots as in the range 1...5, the ending value 5 is excluded. The
sets of dots, .. and ..., are called range operators; two dots
includes all the numbers in the range, and three dots excludes
the last value in the range. Underneath the hood, case uses the
=== operator from Range to test whether a value is a member
of or included in a range.
case_statement.rb

In 1997,
the first article
about Ruby was
published on the
Web. In the same
year, Matsumoto
was hired by
netlab.jp to work
on Ruby as a full-
time developer.

Did You
Know?

3G E-LEARNING

64 Basic Computer Coding: Ruby

a = 5

case a

when 5

 puts “a is 5”

when 6

 puts “a is 6”

else

 puts “a is neither 5, nor 6”

end

3.1.3 The While Loop

A while loop executes the code it contains as long as its
conditional statement remains true. The following piece of code
initializes a counter i to 0 and sets up an array containing four
elements called breeds (horse breeds).It also creates a temporary
array named temp. The following few paragraphs are fairly
fundamental, and are provided for beginning programmers.
If you already have plenty of programming under your belt,
skip ahead to the code itself.

The while loop will execute as long as its conditional (i
< breeds.size) is true. The i variable starts out its little life
equaling 0, and the size or length of the breeds array is 4. As
you come to the end of the loop, i is incremented by 1, and
then control returns to the top of the loop. In the first loop, i
equals 0, and is fed as 0 as an argument to breeds[i], which
retrieves the first element (numbered 0).This is the string
value quarter. That element is appended via << to the temp
array. The capitalize method from String changes quarter to
Quarter. At this point, 1 is added to i by the += operator, so
i equals 1. And we take it again from the top.

This continues until i equals 4, whereupon the conditional
test for while fails. The Ruby interpreter moves to the next
valid statement, that is, temp.sort!, which sorts the new array
alphabetically. It does not make a copy but changes the array

Implementing Conditional Logic

3G E-LEARNING

65

in place. You know this by the tell-tale ! at the end of the method name (sort!).Then
the contents of temp replace breeds, and we have cleaned up the array.

i = 0
breeds = [“quarter”, “arabian”, “appalosa”, “paint”]
puts breeds.size # => 4
temp = []

while i < breeds.size do
 temp << breeds[i].capitalize
 i +=1
end

temp.sort! # => [“Appalosa”, “Arabian”, “Paint”, “Quarter”]
breeds.replace(temp)
p breeds # => [“Appalosa”, “Arabian”, “Paint”, “Quarter”]

By the way, the do is optional here, so this form of the loop is legitimate, too:
while i < breeds.size
 temp << breeds[i].capitalize
 i +=1
end

Another form you can use is with begin/end:
 temp = 98.3

begin
 print “Your temperature is “ + temp.to_s + “ Fahrenheit. “
 puts “I think you’re okay.”
 temp += 0.1
end while temp < 98.6
puts “Your temperature is “ + temp.to_s + “ Fahrenheit. Are you okay?”

3G E-LEARNING

66 Basic Computer Coding: Ruby

When you use while like this, with while at the end, the statements in the loop are
evaluated once before the conditional is checked. This is like the do/while loop from C.

Also, like if, you can use while as a statement modifier, at the end of a statement:
cash = 100_000.00
sum = 0
cash += 1.00, sum while cash < 1_000_000.00 # underscores ignored
So cash just keeps adding up until it equals $1,000,000.00.
You can break out of a while loop with the keyword break. For example, let’s say

you were just looping along as before, but you wanted to stop processing once you
got to a certain element in the array. You could use break to bust out, like this:

while i < breeds.size
 temp << breeds[i].capitalize
break if temp[i] == “Arabian”
 i +=1
end
p => temp # => [“Quarter”, “Arabian”]
When the if modifier following break found Arabian in the temp array, it broke

out of the loop right then. The next statement (which calls the p method) shows that
we didn’t get very far appending elements to the temp array.

Unless and Until

The unless and until statements are similar to if and while, except they are executed
while their conditionals are false, whereas if and while statements are executed while
their conditionals are true. Of course, if and while are used more frequently than
unless and until, but the nice thing about having them is that Ruby offers you more
expressiveness.

An unless statement is really like a negated if statement. We’ll show you an if
statement first:

if lang == “de”
 dog = “Hund”
else
 dog = “dog”
end
Now I’ll translate it into unless:
unless lang == “de”

Implementing Conditional Logic

3G E-LEARNING

67

 dog = “dog”
else
 dog = “Hund”
end
This example is saying, in effect, that unless the value of lang is de, then dog

will be assigned the value of dog; otherwise, assign dog the value Hund. See how the
statements are reversed? In the if statement, the assignment of Hund to dog comes
first; in the unless example, the assignment of dog to dog comes first. Like if, you can
also use unless as a statement modifier:

puts age += 1 unless age > 29
As unless is a negated form of if, until is really a negated form of while. Compare

the following statements. The first is a while loop:
weight = 150
while weight < 200 do
 puts “Weight: “ + weight.to_s
 weight += 5
end
Here is the same logic expressed with until:
weight = 150
until weight == 200 do
 puts “Weight: “ + weight.to_s
 weight += 5
end
And like while, you have another form you can use with until—that is, with

begin/ end:
weight = 150
begin
 puts “Weight: “ + weight.to_s
 weight += 5
end until weight == 200
In this form, the statements in the loop are evaluated once before the conditional

is checked. And finally, like while, you can also use until as a statement modifier:
puts age += 1 until age > 28

3G E-LEARNING

68 Basic Computer Coding: Ruby

3.2 COMPARISON OPERATORS
Comparison operators take simple values (numbers or strings) as arguments and used to
check for equality between two values. Ruby provides following comparison operators:

Operator Name Example Result
== Equal x==y True if x is exactly equal

to y.
!= Not equal x!=y True if x is exactly not equal

to y.
> Greater than x>y Teue if x is greater than y.
< Less than x<y True if x is less than y.
>= Greater than or equal to x>=y True if x is greater than or

equal to y.
<= Less than or equal to x<=y True if x is less than or

equal to y.
<=> Combined comparison

operator.
x<=>y x <=> y : =

if x < y then return -1

if x =y then return 0

if x > y then return 1

 if x and y are not
comparable then return nil

=== Test equality x===y (10...20) === 9 return false.
.eql? True if two values are

 equal and of the same
type

x.eql? y 1 == 1.0 #=> true

1.eql? 1.0 #=> false
equal? True if two things are

same object.
obj1.
equal?

obj2

val = 10 => 10

val.equal?(10) => true

Example: Equality test

puts (“Test two numbers for equality with ==, !=, or <=>”)
 puts 14 == 16
 puts 14 != 16
 puts 14 <=> 14
 puts 14 <=> 12
 puts 14 <=> 16

Implementing Conditional Logic

3G E-LEARNING

69

Output:
Test two numbers for equality with ==, !=, or <=>
false
true
0
1
-1

Example: eql? and eqlity? operators
irb(main):023:0> 1 == 1.0
=> true
irb(main):024:0> 1.eql?1.0
=> false
irb(main):025:0> obj1 = “123”
=> “123”
irb(main):026:0> obj2 = obj1.dup
=> “123”
irb(main):027:0> obj1 == obj2
=> true
irb(main):028:0> obj1.equal?obj2
=> false
irb(main):029:0> obj1.equal?obj1
=> true
irb(main):030:0>

Example: Equal, less than, or greater than each other
puts (“Test if two numbers are equal, less than, or greater than each other”)
puts 14 < 16
puts 14 < 14
puts 14 <= 14
puts 14.0 > 12.5
puts 14.0 >= 14

3G E-LEARNING

70 Basic Computer Coding: Ruby

Output:
Test if two numbers are equal, less than, or greater than each other
true
false
true
true
true

Example: Spaceship operator returns -1, 0, or 1

puts (“the <=> (spaceship operator) returns -1, 0, or 1,”)
puts 2 <=> 3
puts 2 <=> 2
puts 3 <=> 2

Output:
the <=> (spaceship operator) returns -1, 0, or 1,
-1
0
1

Example: Test the value in a range
puts (“test if a value is in a range”)
puts (12...16) === 8
puts (12...16) === 14
puts (12...16) === 16
puts (12...14) === 12
puts (12...16) === 14

Output:
test if a value is in a range
false
true

Implementing Conditional Logic

3G E-LEARNING

71

false
true
true

3.3 ASSIGNMENT OPERATORS
In Ruby assignment operator is done using the equal operator “=”. This is applicable
both for variables and objects, as strings, floats, and integers are actually objects in
Ruby, you’re always assigning objects.

Operator Name Description Example
= Equal operator

“=”
 Simple assignment
 operator, Assigns values
 from right side operands
to left side operand

 z = x + y will assign
value of a + b into c

+= Add AND Adds right operand to
 the left operand and
 assign the result to left
operand

 x += y is equivalent to
x = x + y

-= Subtract AND Subtracts right operand
 from the left operand
 and assign the result to
left operand

 x -= y is equivalent to
x = x - y

*= Multiply AND Multiplies right operand
 with the left operand and
 assign the result to left
operand

 x *= y is equivalent to
x = x * y

/= Divide AND Divides left operand
 with the right operand
 and assign the result to
left operand

 x /= y is equivalent to
x = x / y

%= Modulus AND Takes modulus using
 two operands and assign
the result to left operand

 x %= y is equivalent
to x = x % y

**= Exponent
AND

 Performs exponential
 calculation on operators
 and assign value to the
left operand

 x **= y is equivalent to
x = x ** y

Example: Ruby assignment operator

puts (“assignment operator in Ruby”)
x = 47
puts (“abbreviated assignment add”)

3G E-LEARNING

72 Basic Computer Coding: Ruby

puts x += 20
puts (“abbreviated assignment subtract”)
puts x -= 20
puts (“abbreviated assignment multiply”)
puts x *= 4
puts (“abbreviated assignment divide”)
puts x /= 4
puts (“abbreviated assignment modulus”)
puts x %= 6
puts (“abbreviated assignment exponent”)
puts x **= 4
Output:
assignment operator in Ruby
abbreviated assignment add
67
abbreviated assignment subtract
47
abbreviated assignment multiply
188
abbreviated assignment divide
47
abbreviated assignment modulus
5
abbreviated assignment exponent
625

3.4 LOGICAL OPERATORS
The standard logical operators and, or and not are supported by Ruby. Logical operators
first convert their operands to boolean values and then perform the respective comparison.

Implementing Conditional Logic

3G E-LEARNING

73

3.4.1 Logical and

The binary “and” operator returns the logical conjunction
of its two operands. The condition becomes true if both the
operands are true. It is the same as “&&” but with a lower
precedence.

This above pictorial helps you to understand the concept of
LOGICAL AND operation with an analogy of taps and water.

In case-1 of the picture, both of the taps are closed, so
the water is not flowing down. Which explains that if both of
conditions are FALSE or 0, the return is FALSE or 0.

In case-2 of the picture, one of the taps are closed, even
then, the water is not flowing down. Which explains that even
if any of conditions are FALSE or 0, the return is FALSE or 0.

case-3 of the picture resembles CASE -2.
In case-4 of the picture, both of the taps are open, so

the water is flowing down. Which explains that if both of
conditions are TRUE or 1, the return is TRUE or 1.

So we can conclude that if and only if, both of the conditions
are TRUE or 1, LOGICAL AND operations returns TRUE or 1.

3.4.2 Logical or

The binary “or” operator returns the logical disjunction of its
two operands. The condition becomes true if both the operands
are true. It is the same as “||” but with a lower precedence.

 Logical
 conjunction is
 an operation
 on two logical
 values, typically
 the values of two
 propositions, that
 produces a value
 of true if and
 only if both of its
operands are true.

Keyword

3G E-LEARNING

74 Basic Computer Coding: Ruby

The above pictorial helps you to understand the concept of LOGICAL OR operation
with an analogy of taps and water.

In case-1 of the picture, both of the taps are closed, so the water is not flowing
down. Which explains that if both of conditions are FALSE or 0, the return is FALSE
or 0.

In case-2 of the picture, one of the taps are closed, and we can see that the water
is flowing down. Which explains that if any of conditions are TRUE or 1, the return
is TRUE or 1.

case-3 of the picture, resembles CASE -2.
In case-4 of the picture, both of the taps are open, so the water is flowing down.

Which explains that if both of conditions are TRUE or 1, the return is TRUE or 1.
So we can conclude that in LOGICAL OR operation, if any of the conditions are

true, the output is TRUE or 1.

3.4.3 Logical not

The logical not or ! operator is used to reverse the logical state of its operand. If a
condition is false, the logical not operator makes it true.

Example: Ruby logical operator

puts (“logical operators in Ruby”)
 ruby = “x”
 programming = “y”
 if ruby == “foo” && programming == “bar”

Implementing Conditional Logic

3G E-LEARNING

75

 puts “&&”
 end

 if ruby == “foo” and programming == “bar”
 puts “&& and”
 end

 p, q, r, s = 1, 2 ,3 , 4
 if p == 1 && q == 2 && r == 3 && s == 4
 puts sum = p + q + r + s
 end

 programming = “ruby”

 if ruby == “foo” || programming == “bar”
 puts “||”
 end

 if ruby == “foo” or programming == “bar”
 puts “|| or”
 end

 ruby = “awesome”
 if ruby == “foo” or programming == “bar”
 puts “|| or”
 else
 puts “sorry!”
 end

 if not (ruby == “foo” || programming == “bar”)
 puts “nothing!”
 end

3G E-LEARNING

76 Basic Computer Coding: Ruby

 if !(ruby == “foo” or programming == “bar”)
 puts “nope!”
 end
Output:
logical operators in Ruby
10
sorry!
nothing!
nope!

Example-1: Ruby operators (&&, and) precedence

irb(main):016:0> foo = :foo
=> :foo
irb(main):017:0> bar = nil
=> nil
irb(main):018:0> x = foo and bar
=> nil
irb(main):019:0> x
=> :foo
irb(main):020:0> x = foo && bar
=> nil
irb(main):021:0> x
=> nil
irb(main):022:0> x = (foo and bar)
=> nil
irb(main):023:0> x
=> nil
irb(main):024:0> (x = foo) && bar
=> nil
irb(main):025:0> x
=> :foo
Example-1: Ruby operators (||, or) precedence
irb(main):001:0> foo = :foo

Implementing Conditional Logic

3G E-LEARNING

77

=> :foo
irb(main):002:0> bar = nil
=> nil
irb(main):003:0> x = foo or bar
=> :foo
irb(main):004:0> x
=> :foo
irb(main):005:0> x = foo || bar
=> :foo
irb(main):006:0> x
=> :foo
irb(main):007:0> x = (foo or bar)
=> :foo
irb(main):008:0> x
=> :foo
irb(main):009:0> (x = foo) || bar
=> :foo
irb(main):010:0> x
=> :foo

3.5 TERNARY OPERATOR
Ternary operator logic uses “(condition) ? (true return value): (false return value)”
statements to shorten your if/else structures. It first evaluates an expression for a true
or false value and then execute one of the two given statements depending upon the
result of the evaluation. Here is the syntax:

test-expression ? if-true-expression : if-false-expression
Advantages of Ternary Logic:
Makes coding simple if/else logic quicker
Makes code shorter
Makes maintaining code quicker, easier
Example-1
var = 5;
var_is_greater_than_three = (var > 3 ? true : false);

3G E-LEARNING

78 Basic Computer Coding: Ruby

puts var_is_greater_than_three
Example-2
score= 50
result = score > 40 ? ‘Pass’ : ‘Fail’
puts result

Example-3
score = 10;
age = 22;
puts “Taking into account your age and score, you are :

“,(age > 10 ? (score < 80 ? ‘behind’ : ‘above average’) : (score
< 50 ? ‘behind’ : ‘above average’));

Example-4
score = 81
puts “Based on your score, you are a “, (score > 80 ?

“genius” : “Not genius”)

Output:
true
Pass
Taking into account your age and score, you are :
behind
Based on your score, you are a
genius

Use Comparison
Operators as the
building blocks
to construct
your conditional
statements. There
are some simple
ones that you
should already
be familiar with:
==, <, >, >=, and
<= != is “not
equal”.

Remember

Implementing Conditional Logic

3G E-LEARNING

79

SUMMARY
 ■ Conditional statements are also known by the name of conditional processing or

conditional expressions. They are used to perform a certain set of instructions
if a specified condition is met.

 ■ In Ruby, 0 is considered as true whereas in other programming languages it
is considered false.

 ■ Sometimes you set flags in programming in order to tell a program to carry
out a task. A flag usually just carries a value of true or false

 ■ The unless and until statements are similar to if and while, except they are
executed while their conditionals are false, whereas if and while statements
are executed while their conditionals are true.

 ■ Comparison operators take simple values (numbers or strings) as arguments
and used to check for equality between two values.

 ■ The standard logical operators and, or and not are supported by Ruby.
 ■ Logical operators first convert their operands to Boolean values and then

perform the respective comparison.

3G E-LEARNING

80 Basic Computer Coding: Ruby

KNOWLEDGE CHECK
1. What is the use of else statement?

a. When the if condition is false then the next else condition will get executed
b. When the if condition is false then the elsif condition will get executed
c. When the if condition is false and if else condition is true then only it will

get executed
d. None of the mentioned

2. Is the following syntax correct?
 if conditional
 code...
 elsif conditional
 code..
 else
 code
 end

a. True
b. False

3. What is the output of the given code?
if 1>2
 puts “false”
 else
 puts “True”
a. False
b. True
c. Syntax error
d. None of the mentioned

4. The expression specified by the when clause is evaluated as the left operand.
If no when clauses match, case executes the code of the else clause.
a. True
b. False

5. What error does the if condition gives if not terminated with end statement?
a. Syntax error
b. Unexpected end

Implementing Conditional Logic

3G E-LEARNING

81

c. Expecting keyword end
d. All of the mentioned

6. The following syntax is correct for if conditional statement.
 if condition
 code
 end
a. True
b. False

7. What is the output of the following?
if 1<2
 print “one is less than two”
 end
a. One is less than two
b. Syntax error
c. 1<2
d. None of the mentioned

REVIEW QUESTIONS
1. Why is case/when somewhat more convenient than if/elsif/else?
2. What is the ternary operator?
3. What is a statement modifier?
4. Why is upto or downto more convenient than a regular for loop?
5. An unless statement is the negated form of what other control structure?
6. What are the synonyms for && and ||?

Check Your Result

1. (c) 2. (a) 3. (c) 4. (a) 5. (d)
6. (a) 7. (a)

3G E-LEARNING

82 Basic Computer Coding: Ruby

REFERENCES
1. A. Inc., “Amazon elastic compute cloud,” Online, 2006, http://aws.amazon.com/

ec2/, last access Jan 2015.
2. Atlassian, “Jira issue tracking product,” Online, 2002, https://www.atlassian.com/

software/jira, last access Jan 2015.
3. C. Olszowka, “Statement coverage for Ruby,” Online, 2010, https://github.com/

colszowka/simplecov, last access Jan 2015.
4. D. Chelimsky, “Behavior driven development for Rbuy,” Online, 2009, https://

github.com/rspec/rspec, last access Jan 2015.
5. G. Kaminski, P. Ammann, and J. Offutt, “Improving logic-based testing,” Journal

of Systems and Software, Elsevier, vol. 86, no. 8, pp. 2002–2012, August 2012.
6. J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate tool

for testing experiments?” in Proceedings of the 27th International Conference on
Software Engineering, St. Louis, Missouri, May 2005.

7. L. Deng, J. Offutt, and N. Li, “Empirical evaluation of the statement deletion
mutation operator,” in 6th IEEE International Conference on Software Testing,
Verification and Validation (ICST 2013), Luxembourg, March 2013.

8. M. E. Delamaro, L. Deng, V. Durelli, N. Li, and J. Offutt, “Experimental evaluation
of sdl and one-op mutation for C,” in Proceedings of the 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation, ser.
ICST ’14, Cleveland, Ohio, USA, 2014.

9. M. Schirp, “Mutation testing tool for Ruby,” Online, 2012, https://github.com/
mbj/mutant, last access Jan 2015.

10. N. Li and J. Offutt, “An empirical analysis of test oracle strategies for model-
based testing,” in Proceedings of the 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation, Cleveland, Ohio, USA, 2014.

11. N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison of
four unit test criteria: Mutation, edge-pair, alluses and prime path coverage,” in
Fourth Workshop on Mutation Analysis, Denver, CO, April 2009.

12. P. R. Mateo and M. P. Usaola, “Parallel mutation testing,” Software Testing,
Verification, and Reliability, vol. 23, no. 4, pp. 315–350, June 2013.

13. R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite evaluation by
developers,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014, Hyderabad, India, 2014, pp. 72–82.

14. W. Shelton, N. Li, P. Ammann, and J. Offutt, “Adding criteriabased tests to test-
driven development,” in Testing: Academic and Industrial Conference - Practice
and Research Techniques, ser. TAIC PART 2012, Montreal, Quebec, April 2012.

“This is one of the reasons Lisp doesn’t get anywhere. The trend to promote features so clever that
you stop thinking about your problem and start thinking about the clever features. CL’s loop is so
powerful that people invented functional programming so that they’d never have to use it”

–G_Morgan in reddit

After studying this chapter,
you will be able to:
1. Explain a simple loop

and discuss how to
control loop execution

2. Understand the while
loops and until loops

3. Discuss the do/while
loops and for loops

4. Define the conditionals
within loops and
iterators

5. Explain the recursion
and ruby flip-flop

LEARNING
OBJECTIVES

WORKING WITH LOOPS

INTRODUCTION
Looping in programming languages is a feature which
clears the way for the execution of a set of instructions or
functions repeatedly when some of the condition evaluates

4
CHAPTER

3G E-LEARNING

84 Basic Computer Coding: Ruby

to true or false. Ruby provides the different types of loop to handle the condition based
situation in the program to make the programmers task simpler. The loops in Ruby are:

 ■ while loop
 ■ for loop
 ■ do..while loop
 ■ until loop

A loop is the repetitive execution of a piece of code for a given amount of
repetitions or until a certain condition is met. We will cover while loops, do/while
loops, and for loops.

Loops are used to execute set of statements repeatedly based on a condition. It
is sometimes necessary to execute set of statements again and again. For example,
checking whether number in an array are prime or not.

4.1 A SIMPLE LOOP
The simplest way to create a loop in Ruby is using the loop method. looptakes a
block, which is denoted by { ... } or do ... end. A loop will execute any code within
the block (again, that’s just between the {} or do ... end) until you manually intervene
with Ctrl + c or insert a break statement inside the block, which will force the loop
to stop and the execution will continue after the loop.
Let’s try an example of a loop by creating a file named loop_example.rb
loop_example.rb #

loop do
“puts “This will keep printing until you hit Ctrl + c
end
.Now we can run ruby loop_example.rb on the terminal and see what happens
 You’ll notice the same statement keeps printing on the terminal. You’ll have to
.interrupt with a Ctrl + c to stop it
This will keep printing until you hit Ctrl + c
This will keep printing until you hit Ctrl + c
This will keep printing until you hit Ctrl + c
This will keep printing until you hit Ctrl + c
:This will keep printing until you hit Ctrl + cInterrupt
‘from (pry):2:in p̀uts
<(pry(main [2]

Working with loops

3G E-LEARNING

85

4.2 CONTROLLING LOOP EXECUTION
You’ll hardly do something like this in a real program as it’s
not very useful and will result in an infinite loop. Eventually
your system will crash.

Let’s look at a more useful example with the break keyword
by creating a file named useful_loop.rb:

useful_loop.rb
i = 0
loop do
 i += 1
 puts i
 break # this will cause execution to exit the loop
end
When you run useful_loop.rb in your terminal, the output

should be:
$ ruby useful_loop.rb

1

The break keyword allows us to exit a loop at any point,
so any code after a break will not be executed.

Next, let’s look at adding conditions within a loop by
printing all even numbers from 0 up to 10. Let’s create a file
named conditional_loop.rb

conditional_loop.rb

i = 0
loop do
 i += 2
 puts i
 if i == 10
 break # this will cause execution to exit the loop
 end
end
Here’s the output when we run the file:

 Infinite
 loop
 is a sequence
 of instructions
 in a computer
 program which
 loops endlessly,
 either due to
 the loop having
 no terminating
 condition, having
 one that can never
 be met, or one that
 causes the loop to
start over.

Keyword

That
break
will not exit the
program, but
only exit the loop
and execution
will continue on
from after the
loop.

Remember

3G E-LEARNING

86 Basic Computer Coding: Ruby

$ ruby conditional_loop.rb
2
4
6
8
10
You can see from the above that break was not executed during the first 4 iterations

through the loop, but on the 5th iteration, the if statement evaluated to true and so
the code within the if statement was executed, which is just break, and execution
exited the loop.

We’ll talk explicitly about using conditionals within a loop later. Similar to how we
use break to exit a loop, we can use the keyword next to skip the rest of the current
iteration and start executing the next iteration. We’ll use the same example as before
to demonstrate. This time we’ll skip 4.

next_loop.rb

i = 0
loop do
 i += 2
 if i == 4
 next # skip rest of the code in this iteration
 end
 puts i
 if i == 10
 break
 end
end
And here’s the output when we run the file.
$ ruby next_loop.rb
2
6
8
10
Notice that the above code did not print out 4, because that was skipped over.

Execution continued to the next iteration of the loop.

Working with loops

3G E-LEARNING

87

break and next are important loop control concepts that
can be used with loop or any other loop construct in Ruby,
which we’ll cover one by one below. When combined with
conditionals, you can start to build simple programs with
interesting behavior.

4.3 WHILE LOOPS
A while loop is given a parameter that evaluates to a boolean
(remember, that’s just true or false). Once that boolean
expression becomes false, the while loop is not executed
again, and the program continues after the while loop. Code
within the while loop can contain any kind of logic that you
would like to perform. Let’s try an example of a while loop
by creating a file named countdown.rb. We want this program
to countdown from any number given by the user and print
to the screen each number as it counts. Here we go!

countdown.rb

x = gets.chomp.to_i

while x >= 0
 puts x
 x = x - 1
end

puts “Done!”
Now go to your terminal and run this program with ruby

countdown.rb. You’ll notice that the program initially waits
for you to put in a number then executes the loop.

Initially the program evaluates the line x >= 0. This
evaluates to true (unless you entered a negative number)
and so the program enters the loop, executing puts x and the
line after that, x = x - 1. Then the program returns to the top,
now with the newly updated value of x and evaluates the
x >= 0 again. This process repeats until the value of x is no
longer greater than or equal to 0. It then exits the loop and
continues with the rest of the program. You can see why it’s
called a loop. It loops over the logic within itself repeatedly.

 Negative
 Number is
 a real number that
is less than zero.

Keyword

3G E-LEARNING

88 Basic Computer Coding: Ruby

We’d also like to take this opportunity to show you a small trick for refactoring
this loop.

countdown.rb

x = gets.chomp.to_i

while x >= 0
 puts x
 x -= 1 # <- refactored this line
end

puts “Done!”
We changed the line x = x - 1 to x -= 1. This is common to many programming

languages and it’s a nice succinct way to say the same thing with less typing. You can
use it with any other operator as well (+, *, /, etc.).

You should also be aware that because we’re using the x >= 0 expression as the
test to see if we should execute the loop, the code within the loop must modify the
variable x in some way. If it does not, then x >= 0 will always evaluate to true and
cause an infinite loop. If you ever find your program unresponsive, it’s possible that
it is stuck in an infinite loop.

Example:

The following codes print the numbers 0 through 10. The condition a < 10 is checked
before the loop is entered, then the body executes, then the condition is checked again.
When the condition results in false the loop is terminated.

x = 1
y = 11
while x < y do
 print x ,”. Ruby while loop.\n”
 x +=1
 end
Copy
Output:

1. Ruby while loop.

Working with loops

3G E-LEARNING

89

2. Ruby while loop.
3. Ruby while loop.
4. Ruby while loop.
5. Ruby while loop.
6. Ruby while loop.
7. Ruby while loop.
8. Ruby while loop.
9. Ruby while loop.
10. Ruby while loop.
Within the while statement, the ‘do’ keyword is optional.

The following loop is equivalent to the loop above:
x = 1
y = 11
while x < y
 print x ,”. Ruby while loop.\n”
 x +=1
 end
Copy

Ruby while modifier:

Like if and unless, while can be used as modifiers.

x = 0
x += 1 while x < 10
p x # prints 10
Copy
You can use begin and end to create a while loop that

runs the body once before the condition:

x = 0
begin
 x += 1
end while x <10
p x # prints 10

Very early
computers, such
as Colossus, were
programmed
without the
help of a stored
program, by
modifying their
circuitry or
setting banks of
physical controls.

Did You
Know?

3G E-LEARNING

90 Basic Computer Coding: Ruby

4.4 UNTIL LOOPS
We didn’t mention the until loop in the introduction paragraph. We do, however, need
to mention them briefly so that you know about them. The until loop is simply the
opposite of the while loop. You can substitute it in order to phrase the problem in a
different way. Let’s look briefly at how it works.

countdown.rb

x = gets.chomp.to_i

until x < 0
 puts x
 x -= 1
end

puts “Done!”
There are instances when using until will allow you to write code that is more

readable and logical. Ruby has many features for making your code more expressive.
The until loop is one of those features.

Example:

The following script prints the numbers 1 through 10. Like a while loop the condition
x > 11 is checked when entering the loop and each time the loop body executes. If the
condition is false the loop will continue to execute.

x = 1
y = 11
until x > y do
 print x ,”. Ruby while loop.\n”
 x +=1
 end
Copy
Output:

1. Ruby while loop.
2. Ruby while loop.

Working with loops

3G E-LEARNING

91

3. Ruby while loop.
4. Ruby while loop.
5. Ruby while loop.
6. Ruby while loop.
7. Ruby while loop.
8. Ruby while loop.
9. Ruby while loop.
10. Ruby while loop.

4.5 DO/WHILE LOOPS
A do/while loop works in a similar way to a while loop; one important difference is
that the code within the loop gets executed one time, prior to the conditional check
to see if the code should be executed. In a “do/while” loop, the conditional check is
placed at the end of the loop as opposed to the beginning. Let’s write some code that
asks if the user wants to perform an action again, but keep prompting if the user
enters ‘Y’. This is a classic use case for a “do/while”, because we want to repeatedly
perform an action based on some condition, but we want the action to be executed at
least one time no matter what.

perform_again.rb
loop do
 puts “Do you want to do that again?”
 answer = gets.chomp
 if answer != ‘Y’
 break
 end
end
Notice that we’re using a simple loop, except the condition to break out of the loop

occurs at the end, therefore ensuring that the loop executes at least once. Try copying
and pasting the above code into irb and playing around with it yourself. Compare
this with a normal “while” loop.

Side note: there’s also another construct in Ruby that supports “do/while” loops,
like this:

begin
 puts “Do you want to do that again?”
 answer = gets.chomp

3G E-LEARNING

92 Basic Computer Coding: Ruby

end while answer == ‘Y’
While the above works, it’s not recommended by Matz,

the creator of Ruby.

4.6 FOR LOOPS
In Ruby, for loops are used to loop over a collection of elements.
Unlike a while loop where if we’re not careful we can cause
an infinite loop, for loops have a definite end since it’s looping
over a finite number of elements. It begins with the for reserved
word, followed by a variable, then the in reserved word, and
then a collection of elements. We’ll show this using an array
and a range. A range is a special type in Ruby that captures
a range of elements. For example 1..3 is a range that captures
the integers 1, 2, and 3.

countdown3.rb
x = gets.chomp.to_i
for i in 1..x do
 puts i
end
puts “Done!”
The odd thing about the for loop is that the loop returns

the collection of elements after it executes, whereas the earlier
while loop examples return nil. Let’s look at another example
using an array instead of a range.

countdown4.rb

x = [1, 2, 3, 4, 5]

for i in x do
 puts i
end

puts “Done!”
You can see there are a lot of ways to loop through

a collection of elements using Ruby. Let’s talk about some
more interesting ways you can use conditions to modify the

 Array is a
 systematic
 arrangement of
 similar objects,
 usually in rows
and columns.

Keyword

Working with loops

3G E-LEARNING

93

behavior of your loops. Most Rubyists forsake for loops and
prefer using iterators instead.

#!/usr/bin/ruby

$i = 0

$num = 5

until $i > $num do

 puts(“Inside the loop i = #$i”)

 $i +=1;

end

4.7 CONDITIONALS WITHIN LOOPS
To make loops more effective and precise, we can add
conditional flow control within them to alter their behavior.
Let’s use an if statement in a while loop to demonstrate.
conditional_while_loop.rb #

x = 0

while x <= 10
 if x.odd?
 puts x
 end
 x += 1
end
This loop uses the odd? method to decide if the current

variable in the loop is odd. If it is, it prints to the screen.
Next,x increments by one, and then the loop proceeds to the
next iteration.

3G E-LEARNING

94 Basic Computer Coding: Ruby

The reserved words next and break can be useful when looping as well.
If you place the next reserved word in a loop, it will jump from that line to the

next loop iteration without executing the code beneath it. If you place the break
reserved word in a loop, it will exit the loop immediately without executing any more
code in the loop.

conditional_while_loop_with_next.rb

x = 0

while x <= 10
 if x == 3
 x += 1
 next
 elsif x.odd?
 puts x
 end
 x += 1
end
We use the next reserved word here to avoid printing the number 3 in our loop.

Let’s try break as well.
conditional_while_loop_with_break.rb

x = 0

while x <= 10
 if x == 7
 break
 elsif x.odd?
 puts x
 end
 x += 1
end
When you run this program you can see that the entire loop exits when the value

of x reaches 7 in the loop. That is why the print out only goes to 5.

Working with loops

3G E-LEARNING

95

 Loops are basic constructs in any programming language,
 .but most Rubyists, where possible, prefer iterators over loops

4.8 ITERATORS
Iterators are methods that naturally loop over a given set of
data and allow you to operate on each element in the collection.

We said earlier that arrays are ordered lists. Let’s say that
you had an array of names and you wanted to print them to
the screen. How could you do that? You could use the each
method for arrays, like this:

practice_each.rb
names = [‘Bob’, ‘Joe’, ‘Steve’, ‘Janice’, ‘Susan’, ‘Helen’]
names.each { |name| puts name }
Isn’t that concise! We’ve got a lot of explaining to do

with this one.
We have called each method using the dot operator (.)

on our array. What this method does is loop through each
element in our array, in order, starting from ‘Bob’. Then it
begins executing the code within the block. The block’s starting
and ending points are defined by the curly braces {}. Each
time we iterate over the array, we need to assign the value
of the element to a variable. In this example we have named
the variable name and placed it in between two pipes |. After
that, we write the logic that we want to use to operate on the
variable, which represents the current array element. In this
case it is simply printing to the screen using puts.

Run this program to see the output.
A block is just some lines of code ready to be executed.

When working with blocks there are two styles you need to
be aware of. By convention, we use the curly braces ({}) when
everything can be contained in one line. We use the words
do and end when we are performing multi-line operations.
Let’s add some functionality to our previous program to try
out this do/end stuff.

practice_each.rb
names = [‘Bob’, ‘Joe’, ‘Steve’, ‘Janice’, ‘Susan’, ‘Helen’]
x = 1

 Programming
 language is a
 formal language,
 which comprises a
 set of instructions
 used to produce
 various kinds
 of output.
 Programming
 languages are used
 to create programs
 that implement
specific algorithms.

Keyword

3G E-LEARNING

96 Basic Computer Coding: Ruby

names.each do |name|
 puts “#{x}. #{name}”
 x += 1
end
We’ve added the counter x to add a number before each name, creating a numbered

list output. The number x is incremented every time we go through the iteration.
Memorizing these small differences in syntax is one of the necessary tasks a Ruby

programmer must go through. Ruby is a very expressive language. Part of what makes
that possible is the ability to do things in more than one way.

There are many other iterator methods in Ruby, and over time, you’ll get to use
a lot of them. For now, know that most Rubyists prefer to use iterators, like each
method, to loop over a collection of elements.

4.9 RECURSION
Recursion is another way to create a loop in Ruby. Recursion is the act of calling a
method from within itself. That probably sounds confusing so let’s look at some actual
code to get a better idea.

A Simple Example

Let’s say you wanted to know what the double of a number was, then the double
of that number, etc. Let’s say you wanted to double the number until the pre-doubled
number is 10 or greater. You could create the following method:

def doubler(start)
 puts start * 2
end
And then you can use it like this:
irb(main):001:0> def doubler(start)
irb(main):002:1> puts start * 2
irb(main):003:1> end
=> :doubler
irb(main):004:0> doubler(2)
4
=> nil
irb(main):005:0> doubler(4)
8

Working with loops

3G E-LEARNING

97

=> nil
irb(main):006:0> doubler(8)
16
=> nil
You can do this much more simply using recursion. Take a look at this version

of the method:
def doubler(start)
 puts start
 if start < 10
 doubler(start * 2)
 end
end
This version of the method calls the doubler method again, passing it the doubled

version of the value stored in the start variable. Once again, here is the declaration
and use of the method using irb:

irb(main):001:0> def doubler(start)
irb(main):002:1> puts start
irb(main):003:1> if start < 10
irb(main):004:2> doubler(start * 2)
irb(main):005:2> end
irb(main):006:1> end
=> :doubler
irb(main):007:0> doubler(2)
2
4
8
16
=> nil
Another Example
We are using a method that uses recursion to calculate the nth number in the

fibonacci sequence. You can learn more about the fibonacci sequence here. Basically,
it is a sequence of numbers in which each number is the sum of the previous two
numbers in the sequence.

Note: This example may take a few reads to really grasp what’s happening at every
point in the program. That’s normal. Just take your time, and you’ll be fine. Also, be

3G E-LEARNING

98 Basic Computer Coding: Ruby

excited! We are getting closer to reading more real-world examples!
Make the following file:
fibonacci.rb

def fibonacci(number)
 if number < 2
 number
 else
 fibonacci(number - 1) + fibonacci(number - 2)
 end
end
puts fibonacci(6)
If you’re panicking, don’t be scared. Soon this will be simple to you. We just have

to take it slow and understand everything that’s going on, line-by-line. Recursion is
a tricky subject for all programmers, so don’t let this frustrate you any more than a
healthy amount. When learning recursion, drawing diagrams can help. We can use
a tree like structure to see what is happening. (We used fto abbreviate fibonacci to
save space.)

Each time the code branches off again you are calling the fibonacci function from
within itself two times. If you take all of those ones and zeros and add them together,
you’ll get the same answer you get when you run the code. You can see why computer
programs are handy now. Think if you had to draw that diagram out every time you
wanted to know the fibonacci respresentation of a number. Yikes!

The key concept with recursion is that there is some baseline condition that returns
a value, which then “unwinds” the recursive calls. You can think of the successive

Working with loops

3G E-LEARNING

99

recursive calls building up, until some value is returned, and
only then can the recursive calls be evaluated.

4.10 Ruby Flip-Flop

The flip-flop is used to process text from ruby one-line programs
used with ruby -n or ruby -p. The form of the flip-flop is an
expression that indicates when the flip-flop turns on, .. (or
...), then an expression that indicates when the flip-flop will
turn off. While the flip-flop is on it will continue to evaluate
to true, and false when off.

The flip-flop must be used inside a conditional such as
if, while, unless, until etc.

Example

In the following example, the on condition is n==12. The flip-
flop is initially off (false) for 10 and 11, but becomes on (true)
for 12 and remains on through 18. After 18 it turns off and
remains off for 19 and 20.
[] = selected

10.upto 20 do |value|
 selected << value if value==12..value==18
end
p selected
Copy
Output:
[12, 13, 14, 15, 16, 17, 18]

There are
naming
conventions
governing
variable names
in Ruby. These
conventions are
not enforced, but
you should stick
by them if you
want people to
like you, since
Ruby is case
sensitive.

Remember

3G E-LEARNING

100 Basic Computer Coding: Ruby

CASE STUDY

NESTED LOOPS
Composing computer programs to solve scientific problems is like writing poetry. You
must choose every word with care and link it with the other words in perfect syntax.
There is no place for verbosity or carelessness. To become fluent in a computer language
demands almost the antithesis of modern loose thinking. It requires many interactive
sessions, the hands-on use of the device. You do not learn a foreign language from a
book, rather you have to live in the country for year to let the language become an
automatic part of you, and the same is true for computer languages. “

Working with loops

3G E-LEARNING

101

SUMMARY
 ■ The simplest way to create a loop in Ruby is using the loop method. looptakes

a block, which is denoted by { ... } or do ... end.
 ■ A while loop is given a parameter that evaluates to a boolean (remember,

that’s just true or false).
 ■ We didn’t mention the until loop in the introduction paragraph. We do,

however, need to mention them briefly so that you know about them.
 ■ A do/while loop works in a similar way to a while loop; one important

difference is that the code within the loop gets executed one time, prior to
the conditional check to see if the code should be executed.

 ■ In Ruby, for loops are used to loop over a collection of elements. Unlike a
while loop where if we’re not careful we can cause an infinite loop, for loops
have a definite end since it’s looping over a finite number of elements.

 ■ To make loops more effective and precise, we can add conditional flow control
within them to alter their behavior.

 ■ Iterators are methods that naturally loop over a given set of data and allow
you to operate on each element in the collection.

 ■ Recursion is another way to create a loop in Ruby. Recursion is the act of
calling a method from within itself.

 ■ The flip-flop is used to process text from ruby one-line programs used with
ruby -n or ruby -p. The form of the flip-flop is an expression that indicates
when the flip-flop turns on, .. (or ...), then an expression that indicates when
the flip-flop will turn off.

3G E-LEARNING

102 Basic Computer Coding: Ruby

KNOWLEDGE CHECK
1. What is the output of the given code?

for num in 1...5
 puts num
end
a. 1 2 3 4 5
b. 1 2 3 4
c. 2 3 4 5
d. None of the mentioned

2. What does the 1…10 indicate?
a. Inclusive range
b. Exclusive range
c. Both inclusive and exclusive range
d. None of the mentioned

3. What is the output of the given code?
for num in 1..3
 puts num
 for i in 1..2
 puts num*i
 end
end
a. 1 2 3 4 5
b. 1 1 2 2 2 4 3 3 6
c. 2 3 4 5
d. None of the mentioned

4. What is the output of the given code?
m= 0
loop do
 m += 1
 print m
 break if m == 10
end
a. 12345678910

Working with loops

3G E-LEARNING

103

b. 1 2 3 4
c. 2 3 4 5
d. None of the mentioned

5. What is the output of the given code?
for num in 1..5
 puts num*num
end
a. 12345678910
b. 1 2 3 4
c. 1 4 9 16 25
d. None of the mentioned

6. Which of the following is not a type of loop in ruby?
a. For Loop
b. Foreach Loop
c. Until Loop
d. While Loop

7. What is true about while loop?
a. Executes code while conditional is true
b. In while loop increment is not required
c. Executes code while conditional is false
d. None of the above

REVIEW QUESTIONS
1. What is a for loop?
2. What does the each method in the following program return after it is finished

executing?
 x = [1, 2, 3, 4, 5]
 x.each do |a|
 a + 1
 end
3. Write a while loop that takes input from the user, performs an action, and

only stops when the user types “STOP”. Each loop can get info from the user.

3G E-LEARNING

104 Basic Computer Coding: Ruby

4. Use the each_with_index method to iterate through an array of your creation
that prints each index and value of the array.

5. Write a method that counts down to zero using recursion.

Check Your Result

1. (b) 2. (b) 3. (b) 4. (a) 5. (c)
6. (b) 7. (a)

Working with loops

3G E-LEARNING

105

REFERENCES
1. A. Gurtovoy and D. Abrahams, “The Boost C++ metaprogramming library,” Tech.

Rep., Mar. 2002, http://www.boost.org/libs/mpl/doc/paper/mpl paper.pdf.
2. Andreu Carminati, Renan Augusto Starke, and Rômulo Silva de Oliveira. 2017.

Combining loop unrolling strategies and code predication to reduce the worstcase
execution time of real-time software. Applied Computing and Informatics 13, 2
(2017), 184–193.

3. B. Benatallah and al : Representing, Analysing and Managing Web Service
Protocols. Data Knowledge Ingineering. 58 (3): 327-357, 2006.

4. Barhamgi, M., Benslimane, D., Medjahed, B. : A Query Rewriting Approach for
Web Service Composition. IEEE Transactions Services Computing. 3, 206–222
(2010).

5. D. M. Beazley, “Automated scientific software scripting with SWIG,” Future
Generation Computer Systems, vol. 19, no. 5, pp. 599–609, July 2003.

6. im Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2015. The Java
Virtual Machine Specification, Java SE 8 Edition. http://docs.oracle.com/javase/
specs/jvms/se8/jvms8.pdf

7. J. Wedekind, B. Amavasai, and K. Dutton, “Steerable filters generated with the
hypercomplex dual-tree wavelet transform,” in IEEE International Conference
on Signal Processing and Communications, 2007, pp. 1291–1294

8. Laurence Tratt and Roel Wuyts, “Guest editors’ introduction: Dynamically typed
languages,” IEEE Software, vol. 24, no. 5, pp. 28–30, 2007.

9. Marcus Denker and Stephane Ducasse, “Software evolution from the field. an
experience report from the Squeak maintainers,” Electronic Notes in Theoretical
Computer Science, vol. 166, pp. 81–91, 2007.

10. S. Baker and I. Matthew, “Lucas-kanade 20 years on: a unifying framework,”
International Journal of Computer Vision, vol. 56, no. 3, pp. 221–55, Feb. 2004.

11. Zaljko Obrenovic and Dragan Gasevic, “Open source software: All you do is put
it together,” IEEE Software, vol. 24, no. 5, pp. 86–95, 2007.

12. Zhou, L., Chen, H., Wang, H., Zhang,Y. : Semantic Web-Based Data Service
Discovery and Composition. SKG. 213–219 (2008).

“Ruby on Rails is a breakthrough in lowering the barriers of entry to programming. Powerful web
applications that formerly might have taken weeks or months to develop can be produced in a matter
of days.”

–Tim O’Reilly,

After studying this chapter,
you will be able to:
1. Mastering the ruby

regular expressions
2. Learn about the digging

deeper techniques

LEARNING
OBJECTIVES

WORKING WITH
REGULAR EXPRESSIONS

INTRODUCTION
A regular expression is a sequence of characters that define
a search pattern, mainly for use in pattern matching with
strings. Ruby regular expressions i.e. Ruby regex for short,

5
CHAPTER

3G E-LEARNING

108 Basic Computer Coding: Ruby

helps us to find particular patterns inside a string. Two uses of ruby regex are validation
and parsing. Ruby regex can be used to validate an email address and an IP address
too. Ruby regex expressions are declared between two forward slashes.

A Regexp holds a regular expression, used to match a pattern against strings.
Regexps are created using the /.../ and %r{...} literals, and by the Regexp::new constructor.
Regular expressions (regexps) are patterns which describe the contents of a string.
They are used for testing whether a string contains a given pattern, or extracting the
portions that match. They are created with the /pat/ and %r{pat} literals or the Regexp.
new constructor.

5.1 MASTERING RUBY REGULAR EXPRESSIONS
A regular expression is a special sequence of characters that helps you match or find
other strings or sets of strings using a specialized syntax held in a pattern.

A regular expression literal is a pattern between slashes or between arbitrary
delimiters followed by %r as follows −

Syntax
/pattern/
/pattern/im # option can be specified
%r!/usr/local! # general delimited regular expression
Example
#!/usr/bin/ruby

line1 = “Cats are smarter than dogs”;
line2 = “Dogs also like meat”;

if (line1 =~ /Cats(.*)/)
 puts “Line1 contains Cats”
end
if (line2 =~ /Cats(.*)/)
 puts “Line2 contains Dogs”

end

This will produce the following result −
Line1 contains Cats

Working with Regular Expressions

3G E-LEARNING

109

5.1.1 Regular-Expression Modifiers

Regular expression literals may include an optional modifier to
control various aspects of matching. The modifier is specified
after the second slash character, it may be represented by one
of these characters −

Sr.No. Modifier & Description

1 i

Ignores case when matching text.
2 o

 Performs #{} interpolations only once, the first time the
regexp literal is evaluated.

3 x

 Ignores whitespace and allows comments in regular
expressions.

4 m

 Matches multiple lines, recognizing newlines as normal
characters.

5 u,e,s,n

 Interprets the regexp as Unicode (UTF-8), EUC, SJIS, or
 ASCII. If none of these modifiers is specified, the regular
expression is assumed to use the source encoding.

Like string literals delimited with %Q, Ruby allows you
to begin your regular expressions with %r followed by a
delimiter of your choice. This is useful when the pattern you
are describing contains a lot of forward slash characters that
you don’t want to escape −

Following matches a single slash character, no escape
required

%r|/|
Flag characters are allowed with this syntax, too

r[</(.*)>]i%

5.1.2 Search and Replace

Some of the most important String methods that use regular
expressions are sub and gsub, and their in-place variants

The sub
and gsub
returns a new
string, leaving
the original
unmodified
where as sub!
and gsub! modify
the string on
which they are
called.

Remember

3G E-LEARNING

110 Basic Computer Coding: Ruby

sub! and gsub!. All of these methods perform a search-and-replace operation using a
Regexp pattern. The sub & sub! replaces the first occurrence of the pattern and gsub&
gsub! replaces all occurrences.

Following is the example −
#!/usr/bin/ruby

phone = “2004-959-559 #This is Phone Number”

Delete Ruby-style comments
phone = phone.sub!(/#.*$/, “”)
puts “Phone Num : #{phone}”

Remove anything other than digits
phone = phone.gsub!(/\D/, “”)
puts “Phone Num : #{phone}”
This will produce the following result −
Phone Num : 2004-959-559
Phone Num : 2004959559
Following is another example −
#!/usr/bin/ruby

text = “rails are rails, really good Ruby on Rails”

Change “rails” to “Rails” throughout
text.gsub!(“rails”, “Rails”)

Capitalize the word “Rails” throughout
text.gsub!(/\brails\b/, “Rails”)

puts “#{text}”

This will produce the following result −
Rails are Rails, really good Ruby on Rails

Working with Regular Expressions

3G E-LEARNING

111

5.1.3 Regular-Expression Patterns

Except for control characters, (+ ? . * ^ $ () [] { } | \), all
characters match themselves. You can escape a control character
by preceding it with a backslash.

There are many ways of creating a regular expression
pattern. By far the most common is to write it between forward
slashes. Thus, the pattern /cat/ is a regular expression literal
in the same way that “cat” is a string literal.

/cat/ is an example of a simple, but very common, pattern.
It matches any string that contains the substring cat. In fact,
inside a pattern, all characters except ., |, (,), [,], {, }, +, \,
^, $, *, and ? match themselves. So, at the risk of creating
something that sounds like a logic puzzle, here are some
patterns and examples of strings they match and don’t match:

/cat/ Matches “dog and cat” and “catch” but not “Cat”
or “c.a.t.”

/123/ Matches “86512312” and “abc123” but not “1.23”
/t a b/ Matches “hit a ball” but not “table”
If you want to match one of the special characters literally

in a pattern, precede it with a backslash, so /*/ is a pattern
that matches a single asterisk, and /\/ /} is a pattern that
matches a forward slash.

Pattern literals are like double-quoted strings. In particular,
you can use #{...} expression substitutions in the pattern.

Matching Strings with Patterns

The Ruby operator =~ matches a string against a pattern. It
returns the character offset into the string at which the match
occurred:

You can put the string first if you prefer:

 Boolean
 is a subset
 of algebra used
for creating true/
 false statements.
 Boolean
 expressions use the
 operators AND,
 OR, XOR, and NOT
 to compare values
 and return a true or
false result.

Keyword

3G E-LEARNING

112 Basic Computer Coding: Ruby

Because pattern matching returns nil when it fails and because nil is equivalent
to false in a Boolean context, you can use the result of a pattern match as a condition
in statements such as if and while.

produces:
There’s a cat here somewhere
The following code prints lines in testfile that have the string on in them:

produces:

You can test to see whether a pattern does not match a string using !~:

Changing Strings with Patterns

The sub method takes a pattern and some replacement text. If it finds a match for
the pattern in the string, it replaces the matched substring with the replacement text.

str = “Dog and Cat”
new_str = str.sub(/Cat/, “Gerbil”)
puts “Let’s go to the #{new_str} for a pint.”
produces:
Let’s go to the Dog and Gerbil for a pint.
The sub method changes only the first match it finds. To replace all matches, use

gsub. (The g stands for global.)
str = “Dog and Cat”
new_str1 = str.sub(/a/, “*”)
new_str2 = str.gsub(/a/, “*”)
puts “Using sub: #{new_str1}”
puts “Using gsub: #{new_str2}”

Working with Regular Expressions

3G E-LEARNING

113

produces:
Using sub: Dog *nd Cat
Using gsub: Dog *nd C*t
Both sub and gsub return a new string. (If no substitutions

are made, that new string will just be a copy of the original.)
If you want to modify the original string, use the sub!

and gsub! forms:
str = “now is the time”
str.sub!(/i/, “*”)
str.gsub!(/t/, “T”)
puts str
produces:
now *s The Time
Unlike sub and gsub, sub! and gsub! return the string

only if the pattern was matched. If no match for the pattern
is found in the string, they return nil instead. This means it
can make sense (depending on your need) to use the ! forms
in conditions. So, at this point you know how to use patterns
to look for text in a string and how to substitute different
text for those matches. And, for many people, that’s enough.
So if you’re itching to get on to other Ruby topics. At some
point, you’ll likely need to do something more complex with
regular expressions (for example, matching a time by looking
for two digits, a colon, and two more digits).

5.2 DIGGING DEEPER
Like most things in Ruby, regular expressions are just objects—
they are instances of the class Regexp. This means you can
assign them to variables, pass them to methods, and so on:

str = “dog and cat”
pattern = /nd/
pattern =~ str # => 5
str =~ pattern # => 5
You can also create regular expression objects by calling

the Regexp class’s new method or by using the %r{...} syntax.
The %r syntax is particularly useful when creating patterns
that contain forward slashes:

 Regular
 expression
 is a special
 text string for
 describing a
 search pattern.
 You can think
 of regular
 expressions as
 wildcards on
 steroids. You
 are probably
 familiar with
 wildcard
 notations such
 as *.txt to find
 all text files in
 a file manager.
 The regex
equivalent is .*\.
.txt

Keyword

3G E-LEARNING

114 Basic Computer Coding: Ruby

/mm\/dd/ # => /mm\/dd/
Regexp.new(“mm/dd”) # => /mm\/dd/
%r{mm/dd} # => /mm\/dd/

5.2.1 Regular Expression Options

A regular expression may include one or more options that
modify the way the pattern matches strings. If you’re using
literals to create the Regexp object, then the options are one
or more characters placed immediately after the terminator.
If you’re using Regexp.new, the options are constants used
as the second parameter of the constructor.

i Case insensitive. The pattern match will ignore
the case of letters in the pattern and string. (The
old technique of setting $= to make matches case
insensitive no longer works.)

o Substitute once. Any #{...} substitutions in a particular
regular expression literal will be performed just
once, the first time it is evaluated. Otherwise, the
substitutions will be performed every time the literal
generates a Regexp object.

m Multiline mode. Normally, “.” matches any character
except a newline. With the /m option, “.” matches
any character.

x Extended mode. Complex regular expressions can be
difficult to read. The x option allows you to insert
spaces and newlines in the pattern to make it more
readable. You can also use # to introduce comments.

Matching Against Patterns

Once you have a regular expression object, you can match
it against a string using the (Regexp#match(string) method
or the match operators =~ (positive match) and !~ (negative
match). The match operators are defined for both String and
Regexp objects. One operand of the match operator must be
a regular expression

Another
set of
options allows
you to set
the language
encoding of
the regular
expression.
If none of
these options
is specified,
the regular
expression will
have US-ASCII
encoding if it
contains only
7-bit characters.
Otherwise, it
will use the
default encoding
of the source
file containing
the literal: n:
no encoding
(ASCII), e: EUC,
s: SJIS, and u:
UTF-8.

Remember

Working with Regular Expressions

3G E-LEARNING

115

The match operators return the character position at
which the match occurred, while the match method returns
a MatchData object. In all forms, if the match fails, nil is
returned. After a successful match, Ruby sets a whole bunch
of magic variables.

 $& receives the part of the string that was matched by the pattern, $‘ receives the
 part of the string that preceded the match, and $’ receives the string after the match.
 However, these particular variables are considered to be fairly ugly, so most Ruby
 programmers instead use the MatchData object returned from the match method,
 because it encapsulates all the information Ruby knows about the match.

Given a MatchData object, you can call pre_match to
return the part of the string before the match, post_match
for the string after the match, and index using [0] to get
the matched portion. We can use these methods to write
a method, show_regexp, that illustrates where a particular
pattern matches:

def show_regexp(string, pattern)
match = pattern.match(string)
if match
“#{match.pre_match}->#{match[0]}<-#{match.post_match}”
else
“no match”
end
end
We could use this method like this:
show_regexp(‘very interesting’, /t/) # => very in->t<-eresting
show_regexp(‘Fats Waller’, /a/) # => F->a<-ts Waller
show_regexp(‘Fats Waller’, /lle/) # => Fats Wa->lle<-r
show_regexp(‘Fats Waller’, /z/) # => no match

3G E-LEARNING

116 Basic Computer Coding: Ruby

5.2.2 Deeper Patterns

A pattern, all characters match themselves except ., |, (,), [,], {, }, +, \, ^, $, *, and
?. Let’s dig a bit deeper into this. First, always remember that you need to escape
any of these characters with a backslash if you want them to be treated as regular
characters to match:

show_regexp(‘yes | no’, /\|/) # => yes ->|<- no
show_regexp(‘yes (no)’, /\(no\)/) # => yes ->(no)<-
show_regexp(‘are you sure?’, /e\?/) # => are you sur->e?<-
Now let’s see what some of these characters mean if you use them without escaping

them.

5.2.3 Literal Characters

The most basic regular expression consists of a single literal character, e.g.: «a». It
will match the first occurrence of that character in the string. If the string is “Jack is
a boy”, it will match the „a” after the “J”. The fact that this “a” is in the middle of
the word does not matter to the regex engine. If it matters to you, you will need to
tell that to the regex engine by using word boundaries.

Sr.No. Example & Description
1 /ruby/

Matches “ruby”.
2 ¥

 Matches Yen sign. Multibyte characters are
supported in Ruby 1.9 and Ruby 1.8.

5.2.4 Character Classes

With a “character class”, also called “character set”, you can tell the regex engine to
match only one out of several characters. Simply place the characters you want to
match between square brackets. If you want to match an a or an e, use «[ae]». You
could use this in «gr[ae]y» to match either „gray” or „grey”. Very useful if you do
not know whether the document you are searching through is written in American
or British English. A character class matches only a single character. «gr[ae]y» will
not match “graay”, “graey” or any such thing. The order of the characters inside a
character class does not matter. The results are identical.

Working with Regular Expressions

3G E-LEARNING

117

Sr.No. Example & Description
1 /[Rr]uby/

Matches “Ruby” or “ruby”.
2 /rub[ye]/

Matches “ruby” or “rube”.
3 /[aeiou]/

Matches any one lowercase vowel.
4 /[0-9]/

Matches any digit; same as /[0123456789]/.
5 /[a-z]/

Matches any lowercase ASCII letter.
6 /[A-Z]/

Matches any uppercase ASCII letter.
7 /[a-zA-Z0-9]/

Matches any of the above.
8 /[^aeiou]/

 Matches anything other than a lowercase
vowel.

9 /[^0-9]/

Matches anything other than a digit.

A character class is a set of characters between brackets:
[characters] matches any single character between the
brackets, so [aeiou] matches a vowel, [,.:;!?] matches some
punctuation, and so on. The significance of the special regular
expression characters—.|(){+^$*?—is turned off inside the
brackets. However, normal string substitution still occurs, so
(for example) \b represents a backspace character, and \n
represents a newline. In addition, you can use the abbreviations
shown in Figure 1, on the following page, so that \s matches
any whitespace character, not just a literal space:

show_regexp(‘Price $12.’, /[aeiou]/) # => Pr->i<-ce $12.
show_regexp(‘Price $12.’, /[\s]/) # => Price-> <-$12.
show_regexp(‘Price $12.’, /[$.]/) # => Price ->$<-12.

 Abbreviation is a
 shortened form of
 a word or phrase. It
 consists of a group
 of letters taken
 from the word or
phrase.

Keyword

3G E-LEARNING

118 Basic Computer Coding: Ruby

Within the brackets, the sequence c1-c2 represents all the characters from c1 to c2
in the current encoding:
a = ‘see [The PickAxe-page 123]’

show_regexp(a, /[A-F]/) # => see [The Pick->A<-xe-page 123]

show_regexp(a, /[A-Fa-f]/) # => s->e<-e [The PickAxe-page 123]

show_regexp(a, /[0-9]/) # => see [The PickAxe-page ->1<-23]

show_regexp(a, /[0-9][0-9]/) # => see [The PickAxe-page ->12<-3]

 You can negate a character class by putting an up arrow (^, sometimes called a
:caret) immediately after the opening bracket

show_regexp(‘Price $12.’, /[^A-Z]/) # => P->r<-ice $12.

show_regexp(‘Price $12.’, /[^\w]/) # => Price-> <-$12.

show_regexp(‘Price $12.’, /[a-z][^a-z]/) # => Pric->e <-$12.

 The POSIX character classes, correspond to the ctype(3) macros of the same names.
:They can also be negated by putting an up arrow (or caret) after the first colon

show_regexp(‘Price $12.’, /[aeiou]/) # => Pr->i<-ce $12.

show_regexp(‘Price $12.’, /[[:digit:]]/) # => Price $->1<-2.

show_regexp(‘Price $12.’, /[[:space:]]/) # => Price-> <-$12.

show_regexp(‘Price $12.’, /[[:^alpha:]]/) # => Price-> <-$12.

show_regexp(‘Price $12.’, /[[:punct:]aeiou]/) # => Pr->i<-ce $12.

 If you want to include the literal characters] and - within a character class, escape
:\ them with
a = ‘see [The PickAxe-page 123]’

show_regexp(a, /[\]]/) # => see [The PickAxe-page 123->]<-

show_regexp(a, /[0-9\]]/) # => see [The PickAxe-page ->1<-23]

show_regexp(a, /[\d\-]/) # => see [The PickAxe->-<-page 123]

 Some character classes are used so frequently that Ruby provides abbreviations
 for them. These abbreviations are listed in Figure 1, on the following page—they may
be used both within

Working with Regular Expressions

3G E-LEARNING

119

brackets and in the body of a pattern.
show_regexp(‘It costs $12.’, /\s/) # => It-> <-costs $12.
show_regexp(‘It costs $12.’, /\d/) # => It costs $->1<-2.

Figure 1: Character class abbreviations

You can create the intersection of character classes using &&. So, to match all
lowercase ASCII letters that aren’t vowels, you could use this:

str = “now is the time”
str.gsub(/[a-z&&[^aeiou]]/, ‘*’) # => “*o* i* **e *i*e”
The \p construct is new with Ruby 1.9. It gives you an encoding-aware way of

matching a 1.9 character with a particular Unicode property:
encoding: utf-8
string = “∂y/∂x = 2πx”
show_regexp(string, /\p{Alnum}/) # => ∂->y<-/∂x = 2πx
show_regexp(string, /\p{Digit}/) # => ∂y/∂x = ->2<-πx
show_regexp(string, /\p{Space}/) # => ∂y/∂x-> <-= 2πx
show_regexp(string, /\p{Greek}/) # => ∂y/∂x = 2->π<-x
show_regexp(string, /\p{Graph}/) # => ->∂<-y/∂x = 2πx
Finally, a period (.) appearing outside brackets represents any character except a

newline (though in multiline mode it matches a newline, too):
a = ‘It costs $12.’
show_regexp(a, /c.s/) # => It ->cos<-ts $12.
show_regexp(a, /./) # => ->I<-t costs $12.
show_regexp(a, /\./) # => It costs $12->.<-

3G E-LEARNING

120 Basic Computer Coding: Ruby

5.2.5 Special Character Classes

Because we want to do more than simply search for literal pieces of text, we need to
reserve certain characters for special use. In the regex flavors, there are 11 characters
with special meanings: the opening square bracket «[», the backslash «\», the caret
«^», the dollar sign «$», the period or dot «.», the vertical bar or pipe symbol «|»,
the question mark «?», the asterisk or star «*», the plus sign «+», the opening round
bracket «(» and the closing round bracket «)». These special characters are often
called “metacharacters”. If you want to use any of these characters as a literal in a
regex, you need to escape them with a backslash. If you want to match „1+1=2”, the
correct regex is «1\+1=2». Otherwise, the plus sign will have a special meaning. Note
that «1+1=2», with the backslash omitted, is a valid regex. So you will not get an error
message. But it will not match “1+1=2”. It would match „111=2” in “123+111=234”, due
to the special meaning of the plus character.

Sr.No. Example & Description
1 /./

Matches any character except newline.
2 /./m

In multi-line mode, matches newline, too.
3 /\d/

Matches a digit: /[0-9]/.
4 /\D/

Matches a non-digit: /[^0-9]/.
5 /\s/

Matches a whitespace character: /[\t\r\n\f]/.
6 /\S/

Matches non-whitespace: /[^ \t\r\n\f]/.
7 /\w/

Matches a single word character: /[A-Za-z0-9_]/.
8 /\W/

Matches a non-word character: /[^A-Za-z0-9_]/.

Working with Regular Expressions

3G E-LEARNING

121

5.2.6 Repetition Cases

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we
wanted to match a vertical bar surrounded by an arbitrary amount of whitespace. We
now know that the \s sequences match a single whitespace character and \| means
a literal vertical bar, so it seems likely that the asterisks somehow mean “an arbitrary
amount.” In fact, the asterisk is one of a number of modifiers that allow you to match
multiple occurrences of a pattern.

Sr.No. Example & Description
1 /ruby?/

 Matches “rub” or “ruby”: the y is
optional.

2 /ruby*/

Matches “rub” plus 0 or more ys.
3 /ruby+/

Matches “rub” plus 1 or more ys.
4 /\d{3}/

Matches exactly 3 digits.
5 /\d{3,}/

Matches 3 or more digits.
6 /\d{3,5}/

Matches 3, 4, or 5 digits.

If r stands for the immediately preceding regular expression within a pattern, then
r* Matches zero or more occurrences of r
r+ Matches one or more occurrences of r
r? Matches zero or one occurrence of r
r{m,n} Matches at least m and at most n occurrences of r
r{m,} Matches at least m occurrences of r
r{,n} Matches at most n occurrences of r
r{m} Matches exactly m occurrences of r
These repetition constructs have a high precedence—they bind only to the

immediately preceding matching construct in the pattern. /ab+/ matches an a followed
by one or more b’s, not a sequence of ab’s. These patterns are called greedy, because

3G E-LEARNING

122 Basic Computer Coding: Ruby

by default they will match as much of the string as they
can. You can alter this behavior and have them match the
minimum by adding a question mark suffix. The repetition
is then called lazy—it stops once it has done the minimum
amount of work required.

a = “The moon is made of cheese”
show_regexp(a, /\w+/) # => ->The<- moon is made of cheese
show_regexp(a, /\s.*\s/) # => The-> moon is made of

<-cheese
show_regexp(a, /\s.*?\s/) # => The-> moon <-is made of

cheese
show_regexp(a, /[aeiou]{2,99}/) # => The m->oo<-n is made

of cheese
show_regexp(a, /mo?o/) # => The ->moo<-n is made of

cheese
here’s the lazy version
show_regexp(a, /mo??o/) # => The ->mo<-on is made of

cheese
(There’s an additional modifier, +, that makes them greedy

and also stops backtracking.) Be very careful when using the *
modifier. It matches zero or more occurrences. We often forget
about the zero part. In particular, a pattern that contains just
a * repetition will always match, whatever string you pass
it. For example, the pattern /a*/ will always match, because
every string contains zero or more a’s.

a = “The moon is made of cheese”
both of these match an empty substring at the start of

the string
show_regexp(a, /m*/) # => -><-The moon is made of cheese
show_regexp(a, /Z*/) # => -><-The moon is made of cheese
Non-greedy Repetition: This matches the smallest number

of repetitions −

 Suffixes
 are a
 letter or group
 of letters added
 to the ending of
 words to change
 their meaning or
function.

Keyword

Working with Regular Expressions

3G E-LEARNING

123

Sr.No. Example & Description
1 /<.*>/

Greedy repetition: matches “<ruby>perl>”.
2 /<.*?>/

Non-greedy: matches “<ruby>” in “<ruby>perl>”.

5.2.7 Grouping with Parentheses

You can use parentheses to group terms within a regular expression. Everything within
the group is treated as a single regular expression

This matches an ‘a’ followed by one or more ‘n’s
show_regexp(‘banana’, /an+/) # => b->an<-ana
This matches the sequence ‘an’ one or more times
show_regexp(‘banana’, /(an)+/) # => b->anan<-a
a = ‘red ball blue sky’
show_regexp(a, /blue|red/) # => ->red<- ball blue sky
show_regexp(a, /(blue|red) \w+/) # => ->red ball<- blue sky
show_regexp(a, /(red|blue) \w+/) # => ->red ball<- blue sky
show_regexp(a, /red|blue \w+/) # => ->red<- ball blue sky
show_regexp(a, /red (ball|angry) sky/) # => no match
a = ‘the red angry sky’
show_regexp(a, /red (ball|angry) sky/) # => the ->red angry sky<-

Sr.No. Example & Description
1 /\D\d+/

No group: + repeats \d
2 /(\D\d)+/

Grouped: + repeats \D\d pair
3 /([Rr]uby(,)?)+/

Match “Ruby”, “Ruby, ruby, ruby”, etc.

Parentheses also collect the results of pattern matching. Ruby counts opening
parentheses and for each stores the result of the partial match between it and the
corresponding closing parenthesis. You can use this partial match both within the rest

3G E-LEARNING

124 Basic Computer Coding: Ruby

of the pattern and in your Ruby program. Within the pattern, the sequence \1 refers
to the match of the first group, \2 the second group, and so on. Outside the pattern,
the special variables $1, $2, and so on, serve the same purpose.

/(\d\d):(\d\d)(..)/ =~ “12:50am” # => 0
“Hour is #$1, minute #$2” # => “Hour is 12, minute 50”
/((\d\d):(\d\d))(..)/ =~ “12:50am” # => 0
“Time is #$1” # => “Time is 12:50”
“Hour is #$2, minute #$3” # => “Hour is 12, minute 50”
“AM/PM is #$4” # => “AM/PM is am”
If you’re using the MatchData object returned by the match method, you can index

into it to get the corresponding subpatterns:
md = /(\d\d):(\d\d)(..)/.match(“12:50am”)
“Hour is #{md[1]}, minute #{md[2]}” # => “Hour is 12, minute 50”
md = /((\d\d):(\d\d))(..)/.match(“12:50am”)
“Time is #{md[1]}” # => “Time is 12:50”
“Hour is #{md[2]}, minute #{md[3]}” # => “Hour is 12, minute 50”
“AM/PM is #{md[4]}” # => “AM/PM is am”
The ability to use part of the current match later in that match allows you to look

for various forms of repetition:
match duplicated letter
show_regexp(‘He said “Hello”’, /(\w)\1/) # => He said “He->ll<-o”
match duplicated substrings
show_regexp(‘Mississippi’, /(\w+)\1/) # => M->ississ<-ippi
Rather than use numbers, you can also use names to refer to matched content.

You 1.9 give a group a name by placing ? immediately after the opening parenthesis.
You can subsequently refer to this named group using \k (or \k’name’).

match duplicated letter
str = ‘He said “Hello”’
show_regexp(str, /(?<char>\w)\k<char>/) # => He said “He->ll<-o”
match duplicated adjacent substrings
str = ‘Mississippi’
show_regexp(str, /(?<seq>\w+)\k<seq>/) # => M->ississ<-ippi
The named matches in a regular expression are also available as local variables:
/(?<hour>\d\d):(?<min>\d\d)(..)/ =~ “12:50am” # => 0

Working with Regular Expressions

3G E-LEARNING

125

“Hour is #{hour}, minute #{min}” # => “Hour is 12, minute 50”
Once you use named matches in a particular regular

expression, Ruby no longer bothers to capture unnamed groups.

5.2.8 Alternatives

We know that the vertical bar is special, because our line-
splitting pattern had to escape it with a backslash. That’s
because an unescaped vertical bar, as in |, matches either
the construct that precedes it or the construct that follows it:

a = “red ball blue sky”
show_regexp(a, /d|e/) # => r->e<-d ball blue sky
show_regexp(a, /al|lu/) # => red b->al<-l blue sky
show_regexp(a, /red ball|angry sky/) # => ->red ball<-

blue sky
There’s a trap for the unwary here, because | has a very

low precedence. The last example in the previous lines matches
red ball or angry sky, not red ball sky or red angry sky. To
match red ball sky or red angry sky, you’d need to override
the default precedence using grouping.

Sr.No. Example & Description
1 /ruby|rube/

Matches “ruby” or “rube”.
2 /rub(y|le))/

Matches “ruby” or “ruble”.
3 /ruby(!+|\?)/

“ruby” followed by one or more ! or one ?

5.2.9 Anchors

It needs to specify match position. By default, a regular
expression will try to find the first match for the pattern in
a string. Match /iss/ against the string “Mississippi,” and it
will find the substring “iss” starting at position 1 (the second
character in the string). But what if you want to force a pattern
to match only at the start or end of a string?

 String
 is a data
 type used in
 programming,
 such as an integer
 and floating
 point unit, but is
 used to represent
 text rather than
 numbers. It is
 comprised of a
 set of characters
 that can also
 contain spaces and
numbers.

Keyword

3G E-LEARNING

126 Basic Computer Coding: Ruby

Sr.No. Example & Description
1 /^Ruby/

 Matches “Ruby” at the start of a string or
internal line.

2 /Ruby$/

 Matches “Ruby” at the end of a string or
line.

3 /\ARuby/

Matches “Ruby” at the start of a string.
4 /Ruby\Z/

Matches “Ruby” at the end of a string.
5 /\bRuby\b/

Matches “Ruby” at a word boundary.
6 /\brub\B/

 \B is non-word boundary: matches “rub”
in “rube” and “ruby” but not alone.

7 /Ruby(?=!)/

 Matches “Ruby”, if followed by an
exclamation point.

8 /Ruby(?!!)/

 Matches “Ruby”, if not followed by an
exclamation point.

The patterns ^ and $ match the beginning and end of a line, respectively. These
are often used to anchor a pattern match; for example, /^option/ matches the word
option only if it appears at the start of a line. Similarly, the sequence \A matches
the beginning of a string, and \z and \Z match the end of a string. (Actually, \Z
matches the end of a string unless the string ends with \n, in which case it matches
just before the \n.)

str = “this is\nthe time”
show_regexp(str, /^the/) # => this is\n->the<- time
show_regexp(str, /is$/) # => this ->is<-\nthe time
show_regexp(str, /\Athis/) # => ->this<- is\nthe time
show_regexp(str, /\Athe/) # => no match
Similarly, the patterns \b and \B match word boundaries and nonword boundaries,

respectively. Word characters are ASCII letters, numbers, and underscores:

Working with Regular Expressions

3G E-LEARNING

127

show_regexp(“this is\nthe time”, /\bis/) # => this ->is<-\
nthe time

show_regexp(“this is\nthe time”, /\Bis/) # => th->is<- is\
nthe time

5.2.10 Pattern-Based Substitution

We’ve already seen how sub and gsub replace the matched
part of a string with other text. In those previous examples,
the pattern was always fixed text, but the substitution methods
work equally well if the pattern contains repetition, alternation,
and grouping.

a = “quick brown fox”
a.sub(/[aeiou]/, ‘*’) # => “q*ick brown fox”
a.gsub(/[aeiou]/, ‘*’) # => “q**ck br*wn f*x”
a.sub(/\s\S+/, ‘’) # => “quick fox”
a.gsub(/\s\S+/, ‘’) # => “quick”
The substitution methods can take a string or a block. If

a block is used, it is passed the matching substring, and the
block’s value is substituted into the original string.

a = “quick brown fox”
a.sub(/^./) {|match| match.upcase } # => “Quick brown fox”
a.gsub(/[aeiou]/) {|vowel| vowel.upcase } # => “qUIck

brOwn fOx”
Maybe we want to normalize names entered by users into

a web application. They may enter DAVE THOMAS, dave
thomas, or dAvE tHoMas, and we’d like to store it as Dave
Thomas. The following method is a simple first iteration. The
pattern that matches the first character of a word is \b\w—
look for a word boundary followed by a word character.

Combine this with gsub, and we can hack the names:
def mixed_case(name)
name.downcase.gsub(/\b\w/) {|first| first.upcase }
end
mixed_case(“DAVE THOMAS”) # => “Dave Thomas”
mixed_case(“dave thomas”) # => “Dave Thomas”
mixed_case(“dAvE tHoMas”) # => “Dave Thomas”

 Iteration
 is the act
 of repeating a
 process, to generate
 a sequence of
 outcomes, with the
 aim of approaching
 a desired goal,
target or result.

Keyword

Methods
like
String#scan,
String#split,
Enumerable#
grep, and the
“sub” family of
String methods
use regular
expressions and
pattern matching
as a way of
determining
how their actions
should be
applied. Gaining
knowledge
about regular
expressions
gives you
access not only
to relatively
simple matching
methods but
also to a suite of
string-handling
tools that
otherwise would
not be usable.

Remember

3G E-LEARNING

128 Basic Computer Coding: Ruby

There’s an idiomatic way to write the substitution in Ruby,
the symbol to_proc Trick, why it works

def mixed_case(name)
name.downcase.gsub(/\b\w/, &:upcase)
end
mixed_case(“dAvE tHoMas”) # => “Dave Thomas”
You can also give sub and gsub a hash as the replacement

parameter, in which case they will look up matched groups
and use the corresponding values as replacement text:

replacement = { “cat” => “feline”, “dog” => “canine” }
replacement.default = “unknown”
“cat and dog”.gsub(/\w+/, replacement) # => “feline

unknown canine”

5.2.11 Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are
available in the pattern, standing for the nth group matched so
far. The same sequences can be used in the second argument
of sub and gsub.

puts “fred:smith”.sub(/(\w+):(\w+)/, ‘\2, \1’)
puts “nercpyitno”.gsub(/(.)(.)/, ‘\2\1’)
produces:
smith, fred
encryption
You can also reference named groups:
puts “fred:smith”.sub(/(?<first>\w+):(?<last>\w+)/, ‘\

k<last>, \k<first>’)
puts “nercpyitno”.gsub(/(?<c1>.)(?<c2>.)/, ‘\k<c2>\k<c1>’)
produces:
smith, fred
encryption
Additional backslash sequences work in substitution

strings: \& (last match), \+ (last matched group), \‘ (string
prior to match), \’ (string after match), and \\ (a literal
backslash).

Ruby 1.9
was released on
Christmas Day
in 2007. Effective
with Ruby
1.9.3, released
October 31, 2011,
Ruby switched
from being
dual-licensed
under the Ruby
License and the
GPL to being
dual-licensed
under the Ruby
License and the
two-clause BSD
license. Adoption
of 1.9 was slowed
by changes from
1.8 that required
many popular
third party gems
to be rewritten.

Did You
Know?

Working with Regular Expressions

3G E-LEARNING

129

It gets confusing if you want to include a literal backslash in a substitution. The
obvious thing is to write this:

str.gsub(/\\/, ‘\\\\’)
 Clearly, this code is trying to replace each backslash in str with two. The programmer
 doubled up the backslashes in the replacement text, knowing that they’d be converted
 to \\ in syntax analysis. However, when the substitution occurs, the regular expression
 engine performs another pass through the string, converting \\ to \, so the net effect
 is to replace each single backslash with another single backslash. You need to write
!(‘\\\\\\\\\‘ ,/\\/)gsub

str = ‘a\b\c’ # => “a\b\c”
str.gsub(/\\/, ‘\\\\\\\\’) # => “a\\b\\c”
However, using the fact that \& is replaced by the matched string, you could

also write this:
str = ‘a\b\c’ # => “a\b\c”
str.gsub(/\\/, ‘\&\&’) # => “a\\b\\c”
If you use the block form of gsub, the string for substitution is analyzed only

once (during the syntax pass), and the result is what you intended:
str = ‘a\b\c’ # => “a\b\c”
str.gsub(/\\/) { ‘\\\\’ } # => “a\\b\\c”

3G E-LEARNING

130 Basic Computer Coding: Ruby

SUMMARY
 ■ A regular expression is a sequence of characters that define a search pattern,

mainly for use in pattern matching with strings.
 ■ Ruby regular expressions i.e. Ruby regex for short, helps us to find particular

patterns inside a string. Two uses of ruby regex are validation and parsing.
 ■ There are many ways of creating a regular expression pattern. By far the most

common is to write it between forward slashes.
 ■ Because pattern matching returns nil when it fails and because nil is equivalent

to false in a Boolean context, you can use the result of a pattern match as a
condition in statements such as if and while.

 ■ The most basic regular expression consists of a single literal character, e.g.:
«a». It will match the first occurrence of that character in the string.

 ■ You can use parentheses to group terms within a regular expression. Everything
within the group is treated as a single regular expression.

 ■ A character class is a set of characters between brackets: [characters] matches
any single character between the brackets, so [aeiou] matches a vowel, [,.:;!?]
matches some punctuation, and so on.

 ■ Some of the most important String methods that use regular expressions are
sub and gsub, and their in-place variants sub! and gsub!.

Working with Regular Expressions

3G E-LEARNING

131

KNOWLEDGE CHECK
1. Regular expressions are used to represent which language

a. Recursive language
b. Context free language
c. Regular language
d. All of these

2. Which of the following operation can be applied on regular expressions?
a. Union
b. Concatenation
c. Closure
d. All of these

3. Which of the following identity is wrong?
a. R + R = R
b. (R*)* = R*
c. eR = Re = R
d. ØR = RØ = RR*

4. Which of the following statement is true?
a. Every language that is defined by regular expression can also be defined by

finite automata
b. Every language defined by finite automata can also be defined by regular

expression
c. We can convert regular expressions into finite automata
d. All of these

5. L is a regular Language if and only If the set of __________ classes of IL is
finite.
a. Equivalence
b. Reflexive
c. Myhill
d. Nerode

6. Regular expression {0,1} is equivalent to
a. 0 U 1
b. 0/1

3G E-LEARNING

132 Basic Computer Coding: Ruby

c. 0+1
d. Al of the above

7. Which of the following languages have built in regexps support?
a. Ruby
b. Java
c. Python
d. C++

REVIEW QUESTIONS
1. Discuss about the regular-expression modifiers.
2. What are regular-expression patterns?
3. Define the regular expression options.
4. Discuss on the role of character classes.
5. What do you understand by the special character classes?
6. How to group with parentheses in ruby?
7. Determine the pattern-based substitution.

Check Your Result

1. (c) 2. (d) 3. (d) 4. (d) 5. (a)
6. (d) 7. (a)

Working with Regular Expressions

3G E-LEARNING

133

REFERENCES
1. Alfred V. Aho, Monica Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers -

Principles, Techniques and Tools. Addison Wesley, second edition, 2007.
2. B. Chess and G. McGraw. Static analysis for security. Security & Privacy, IEEE,

2(6):76–79, 2004.
3. Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java.

In ACM PLDI. ACM Press, 2000.
4. Gavin Bierman, Matthew Parkinson, and Andrew Pitts. MJ: An imperative core

calculus for Java and Java with effects. Technical report, Cambridge University,
2003.

5. http://web.cse.ohio-state.edu/~joseph.97/courses/3901/lectures/lecture09.pdf
6. http://www.rubyguides.com/2015/06/ruby-regex/
7. https://bitcetera.com/page_attachments/0000/0030/regex_in_a_nutshell.pdf
8. https://dgrisham.github.io/slides/ruby/3-regex/slides.pdf
9. https://doc.lagout.org/programmation/Regular%20Expressions/Regular%20

Expressions%20Cookbook_%20Detailed%20Solutions%20in%20Eight%20
Programming%20Languages%20%282nd%20ed.%29%20%5BGoyvaerts%20%26%20
Levithan%202012-09-06%5D.pdf

10. https://media.pragprog.com/titles/ruby3/ruby3_extract_regular_expressions.pdf
11. https://www.geos.ed.ac.uk/~bmg/software/Perl%20Books/RegExp_perl_python_

java_etc.pdf
12. https://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
13. https://www.tutorialspoint.com/ruby/ruby_regular_expressions.htm
14. J. Berdine, B. Cook, D. Distefano, and P. OHearn. Automatic termination proofs

for programs with shape-shifting heaps. In Computer Aided Verification, pages
386–400. Springer, 2006.

15. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language
Specification, Third Edition. Addison-Wesley, 2005.

16. Russ Cox. Regular Expression Matching Can Be Simple And Fast (but is slow
in Java, Perl, Php, Python, Ruby, ...). Available at http://swtch.com/~rsc/regexp/
regexp1.html, January 2007.

17. Russ Cox. Regular expression matching: the virtual machine approach. Available
at http://swtch.com/~rsc/regexp/regexp2.html, December 2009.

18. Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin Rinard. Region
Inference for an Object-Oriented Language. In ACM PLDI, Washington, 2004.

“This is great stuff! Your descriptions are so vibrant and vivid that I’m rediscovering the truth buried
in OO principles that are otherwise so internalized that I forget to explore them. Your thoughts on
design and knowing the future are especially eloquent.”

–Ian McFarland

After studying this chapter,
you will be able to:
1. Focus on ruby class
2. Discuss about class

inheritance

LEARNING
OBJECTIVES

RUBY: OBJECT-
ORIENTED
PROGRAMMING

INTRODUCTION
Ruby is an object-oriented programming language (OOP)
that uses classes as blueprints for objects. Objects are the
basic building-blocks of Ruby code (everything in Ruby is

6
CHAPTER

3G E-LEARNING

136 Basic Computer Coding: Ruby

an object), and have two main properties: states and behaviors. Ruby classes are the
blueprints that establish what attributes (also known as states) and behaviors (known
in Ruby as methods) that an object should have.
Ruby is a true object oriented language which can be embedded into hypertext markup
language. Everything in Ruby is an object. All the numbers, strings or even class is an
object. The whole Ruby language is basically built on the concepts of object and data.
OOPs is a programming concept that uses objects and their interactions to design
applications and computer programs.

6.1 DEFINITION OF RUBY CLASS
When you define a class, you define a blueprint for a data type. This doesn’t actually
define any data, but it does define what the class name means, that is, what an object
of the class will consist of and what operations can be performed on such an object.

A class definition starts with the keyword class followed by the class name and
is delimited with an end.

For example, we defined the Box class using the keyword class as follows −
class Box
 code
end
The name must begin with a capital letter and by convention names that contain

more than one word are run together with each word capitalized and no separating
characters (CamelCase).

Ruby: Object-Oriented Programming

3G E-LEARNING

137

6.1.1 Define Ruby Objects

A class provides the blueprints for objects, so basically an object is created from a
class. We declare objects of a class using new keyword. Following statements declare
two objects of class Box −
box1 = Box.new
box2 = Box.new

The initialize Method

The initialize method is a standard Ruby class method and works almost same way
as constructor works in other object oriented programming languages. The initialize

3G E-LEARNING

138 Basic Computer Coding: Ruby

method is useful when you want to initialize some class
variables at the time of object creation. This method may take
a list of parameters and like any other ruby method it would
be preceded by def keyword as shown below −

class Box
 def initialize(w,h)
 @width, @height = w, h
 end
end

The instance Variables

The instance variables are kind of class attributes and they
become properties of objects once objects are created using the
class. Every object›s attributes are assigned individually and
share no value with other objects. They are accessed using
the @ operator within the class but to access them outside of
the class we use public methods, which are called accessor
methods. If we take the above defined class Box then @width
and @height are instance variables for the class Box.

class Box
 def initialize(w,h)
 # assign instance variables
 @width, @height = w, h
 end
end

A
constructor
is a special
method that is
used to initialize
a newly created
object and is
called just after
the memory is
allocated for the
object.

Keyword

Ruby: Object-Oriented Programming

3G E-LEARNING

139

6.1.2 The accessor & setter Methods

To make the variables available from outside the class, they must be defined within
accessor methods, these accessor methods are also known as a getter methods. Following
example shows the usage of accessor methods −

#!/usr/bin/ruby -w
define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end
 # accessor methods
 def printWidth
 @width
 end

 def printHeight
 @height
 end
end

create an object
box = Box.new(10, 20)

use accessor methods
x = box.printWidth()
y = box.printHeight()

puts “Width of the box is : #{x}”
puts “Height of the box is : #{y}”
When the above code is executed, it produces the following result −
Width of the box is : 10
Height of the box is: 20

3G E-LEARNING

140 Basic Computer Coding: Ruby

Similar to accessor methods, which are used to access the
value of the variables, Ruby provides a way to set the values of
those variables from outside of the class using setter methods,
which are defined as below #!/usr/bin/ruby -w

define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end

 # accessor methods
 def getWidth
 @width
 end
 def getHeight
 @height
 end

 # setter methods
 def setWidth=(value)
 @width = value
 end

Provide
public
setter and getter
methods to
modify and view
the variables
values.

Keyword

Ruby: Object-Oriented Programming

3G E-LEARNING

141

 def setHeight=(value)
 @height = value
 end
end

create an object
box = Box.new(10, 20)

use setter methods
box.setWidth = 30
box.setHeight = 50

use accessor methods
x = box.getWidth()
y = box.getHeight()

puts “Width of the box is : #{x}”
puts “Height of the box is : #{y}”
When the above code is executed, it produces the following result −
Width of the box is : 30
Height of the box is : 50

The instance Methods

The instance methods are also defined in the same way as we define any other method
using def keyword and they can be used using a class instance only as shown below.
Their functionality is not limited to access the instance variables, but also they can do
a lot more as per your requirement.

#!/usr/bin/ruby -w

define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h

3G E-LEARNING

142 Basic Computer Coding: Ruby

 end
 # instance method
 def getArea
 @width * @height
 end
end

create an object
box = Box.new(10, 20)

call instance methods
a = box.getArea()
puts “Area of the box is : #{a}”
When the above code is executed, it produces the following

result −
Area of the box is : 200

6.1.3 The class Methods and Variables

The class variables is a variable, which is shared between all
instances of a class. In other words, there is one instance of the
variable and it is accessed by object instances. Class variables
are prefixed with two @ characters (@@). A class variable must
be initialized within the class definition as shown below. A
class method is defined using def self.methodname(), which
ends with end delimiter and would be called using the class
name as classname.methodname as shown in the following
example −

#!/usr/bin/ruby -w

A
delimiter
is a sequence
of one or more
characters
used to specify
the boundary
between separate,
independent
regions in plain
text or other data
streams.

Keyword

Ruby: Object-Oriented Programming

3G E-LEARNING

143

class Box
 # Initialize our class variables
 @@count = 0
 def initialize(w,h)
 # assign instance avriables
 @width, @height = w, h

 @@count += 1
 end

 def self.printCount()
 puts “Box count is : #@@count”
 end
end
create two object
box1 = Box.new(10, 20)
box2 = Box.new(30, 100)

call class method to print box count
Box.printCount()
When the above code is executed, it produces the following

result −
Box count is: 2

6.1.4 The to_s Method

Any class you define should have a to_s instance method to
return a string representation of the object. Following is a
simple example to represent a Box object in terms of width
and height −

#!/usr/bin/ruby -w

class Box
 # constructor method
 def initialize(w,h)

In
2001, Laing
and Coleman
examined
several NASA
Goddard Space
Flight Center
applications
(rocket science)
with the express
intention of
finding “a way
to produce
cheaper and
higher quality
software.”

Did You
Know?

3G E-LEARNING

144 Basic Computer Coding: Ruby

 @width, @height = w, h
 end
 # define to_s method
 def to_s
 “(w:#@width,h:#@height)” # string formatting of the object.
 end
end

create an object
box = Box.new(10, 20)

to_s method will be called in reference of string automatically.
puts “String representation of box is : #{box}”
When the above code is executed, it produces the following result −
String representation of box is: (w:10,h: 20)

6.1.5 Access Control

Ruby gives you three levels of protection at instance methods level, which may be
public, private, or protected. Ruby does not apply any access control over instance
and class variables.

 ■ Public Methods: Public methods can be called by anyone. Methods are public
by default except for initialize, which is always private.

Ruby: Object-Oriented Programming

3G E-LEARNING

145

 ■ Private Methods: Private methods cannot be accessed,
or even viewed from outside the class. Only the class
methods can access private members.

 ■ Protected Methods: A protected method can be
invoked only by objects of the defining class and
its subclasses. Access is kept within the family.

Following is a simple example to show the syntax of all
the three access modifiers −

#!/usr/bin/ruby -w
define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end
 # instance method by default it is public
 def getArea
 getWidth() * getHeight
 end
 # define private accessor methods
 def getWidth
 @width
 end
 def getHeight
 @height
 end
 # make them private
 private :getWidth, :getHeight
 # instance method to print area
 def printArea
 @area = getWidth() * getHeight
 puts “Big box area is : #@area”
 end
 # make it protected

If Agile is
correct,
two other things
are also true.
First, there is
absolutely no
point in doing
a Big Up Front
Design (BUFD)
(because it
cannot possibly
be correct), and
second, no one
can predict when
the application
will be done
(because you
don’t know in
advance what it
will eventually
do).

Remember

3G E-LEARNING

146 Basic Computer Coding: Ruby

 protected :printArea
end
create an object
box = Box.new(10, 20)
call instance methods
a = box.getArea()
puts “Area of the box is : #{a}”

try to call protected or methods
box.printArea()
When the above code is executed, it produces the following

result. Here, first method is called successfully but second
method gave a problem.

Area of the box is : 200
test.rb:42: protected method `printArea’ called for #
<Box:0xb7f11280 @height = 20, @width = 10> (NoMethodError)

6.2 CLASS INHERITANCE
One of the most important concepts in object-oriented
programming is that of inheritance. Inheritance allows us
to define a class in terms of another class, which makes it
easier to create and maintain an application. Inheritance also
provides an opportunity to reuse the code functionality and
fast implementation time but unfortunately Ruby does not
support multiple levels of inheritances but Ruby supports
mixins. A mixin is like a specialized implementation of multiple
inheritance in which only the interface portion is inherited.

Ruby also supports the concept of sub classing, i.e.,
inheritance and following example explains the concept. The
syntax for extending a class is simple. Just add a < character
and the name of the superclass to your class statement. For
example, following define a class BigBox as a subclass of Box −

When
creating a class,
instead of writing
completely new
data members
and member
functions, the
programmer can
designate that
the new class
should inherit
the members of
an existing class.
This existing
class is called
the base class or
superclass, and
the new class is
referred to as the
derived class or
sub-class.

Did You
Know?

Ruby: Object-Oriented Programming

3G E-LEARNING

147

#!/usr/bin/ruby -w
define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end
 # instance method
 def getArea
 @width * @height
 end
end
define a subclass
class BigBox < Box

 # add a new instance method
 def printArea
 @area = @width * @height
 puts “Big box area is : #@area”
 end
end
create an object
box = BigBox.new(10, 20)

3G E-LEARNING

148 Basic Computer Coding: Ruby

print the area
box.printArea()
When the above code is executed, it produces the following

result −
Big box area is: 200

6.2.1 Methods Overriding

Though you can add new functionality in a derived class,
but sometimes you would like to change the behavior of
already defined method in a parent class. You can do so
simply by keeping the method name same and overriding the
functionality of the method as shown below in the example −

#!/usr/bin/ruby -w
define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end
 # instance method
 def getArea
 @width * @height
 end
end

define a subclass
class BigBox < Box

 # change existing getArea method as follows
 def getArea
 @area = @width * @height
 puts “Big box area is : #@area”
 end
end

Overriding
is a
feature that
allows a subclass
or child class to
provide a specific
implementation of
a method that is
already provided
by one of its
super-classes or
parent classes.

Keyword

Ruby: Object-Oriented Programming

3G E-LEARNING

149

create an object
box = BigBox.new(10, 20)

print the area using overriden method.
box.getArea()

6.2.2 Operator Overloading

We’d like the + operator to perform vector addition of two Box objects using +, the *
operator to multiply a Box width and height by a scalar, and the unary - operator to
do negate the width and height of the Box. Here is a version of the Box class with
mathematical operators defined −

class Box
 def initialize(w,h) # Initialize the width and height
 @width,@height = w, h
 end

 def +(other) # Define + to do vector addition
 Box.new(@width + other.width, @height + other.height)
 end

 def -@ # Define unary minus to negate width and height
 Box.new(-@width, -@height)
 end

 def *(scalar) # To perform scalar multiplication
 Box.new(@width*scalar, @height*scalar)
 end
end

3G E-LEARNING

150 Basic Computer Coding: Ruby

6.2.3 Freezing Objects

Sometimes, we want to prevent an object from being changed. The freeze method in
Object allows us to do this, effectively turning an object into a constant. Any object
can be frozen by invoking Object.freeze. A frozen object may not be modified: you
can’t change its instance variables.

You can check if a given object is already frozen or not using Object.frozen?method,
which returns true in case the object is frozen otherwise a false value is return.
Following example clears the concept −

#!/usr/bin/ruby -w

define a class
class Box
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end

 # accessor methods
 def getWidth
 @width
 end
 def getHeight
 @height
 end

 # setter methods
 def setWidth=(value)

Ruby: Object-Oriented Programming

3G E-LEARNING

151

 @width = value
 end
 def setHeight=(value)
 @height = value
 end
end

create an object
box = Box.new(10, 20)

let us freez this object
box.freeze
if(box.frozen?)
 puts “Box object is frozen object”
else
 puts “Box object is normal object”
end

now try using setter methods
box.setWidth = 30
box.setHeight = 50

use accessor methods
x = box.getWidth()
y = box.getHeight()

puts “Width of the box is : #{x}”
puts “Height of the box is : #{y}”
When the above code is executed, it produces the following result −
Box object is frozen object
test.rb:20:in `setWidth=’: can’t modify frozen object (TypeError)
 from test.rb:39

3G E-LEARNING

152 Basic Computer Coding: Ruby

6.2.4 Class Constants

You can define a constant inside a class by assigning a direct
numeric or string value to a variable, which is defined without
using either @ or @@. By convention, we keep constant names
in upper case. Once a constant is defined, you cannot change
its value but you can access a constant directly inside a class
much like a variable but if you want to access a constant outside
of the class then you would have to use class name::constant
as shown in the below example.

#!/usr/bin/ruby -w
define a class
class Box
 BOX_COMPANY = “TATA Inc”
 BOXWEIGHT = 10
 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end
 # instance method
 def getArea
 @width * @height
 end
end

create an object
box = Box.new(10, 20)

 A
 convention, in the
 sense of a meeting,
 is a gathering
 of individuals
 who meet at an
 arranged place and
 time in order to
 discuss or engage
 in some common
 interest.

Keyword

Ruby: Object-Oriented Programming

3G E-LEARNING

153

call instance methods
a = box.getArea()
puts “Area of the box is : #{a}”
puts Box::BOX_COMPANY
puts “Box weight is: #{Box::BOXWEIGHT}”
When the above code is executed, it produces the following

result −
Area of the box is : 200
TATA Inc
Box weight is: 10
Class constants are inherited and can be overridden like

instance methods.

6.2.5 Create Object Using Allocate

There may be a situation when you want to create an object
without calling its constructor initialize i.e. using new
method, in such case you can call allocate, which will create
an uninitialized object for you as in the following example −

#!/usr/bin/ruby -w

define a class
class Box
 attr_accessor :width, :height

 # constructor method
 def initialize(w,h)
 @width, @height = w, h
 end

 # instance method
 def getArea
 @width * @height
 end
end

Classes
are
defined using the
class keyword
followed by the
end keyword
and must be
given a name by
which they can
be referenced.
This name is a
constant so must
begin with a
capital letter.

Remember

3G E-LEARNING

154 Basic Computer Coding: Ruby

create an object using new
box1 = Box.new(10, 20)

create another object using allocate
box2 = Box.allocate

call instance method using box1
a = box1.getArea()
puts “Area of the box is : #{a}”

call instance method using box2
a = box2.getArea()
puts “Area of the box is : #{a}”
When the above code is executed, it produces the following result −
Area of the box is : 200
test.rb:14: warning: instance variable @width not initialized
test.rb:14: warning: instance variable @height not initialized
test.rb:14:in `getArea’: undefined method `*’
 for nil:NilClass (NoMethodError) from test.rb:29

6.2.6 Class Information

If class definitions are executable code, this implies that they execute in the context
of some object: self must reference something. Let’s find out what it is.

Ruby: Object-Oriented Programming

3G E-LEARNING

155

#!/usr/bin/ruby -w

class Box
 # print class information
 puts “Type of self = #{self.type}”
 puts “Name of self = #{self.name}”
end
When the above code is executed, it produces the following result −
Type of self = Class
Name of self = Box
This means that a class definition is executed with that class as the current object.

This means that methods in the met class and its super classes will be available during
the execution of the method definition.

3G E-LEARNING

156 Basic Computer Coding: Ruby

SUMMARY
 ■ Ruby is an object-oriented programming language (OOP) that uses classes as

blueprints for objects.
 ■ Ruby classes are the blueprints that establish what attributes (also known as

states) and behaviors (known in Ruby as methods) that an object should have.
 ■ A class definition starts with the keyword class followed by the class name

and is delimited with an end.
 ■ A class provides the blueprints for objects, so basically an object is created

from a class.
 ■ The initialize method is useful when you want to initialize some class variables

at the time of object creation.
 ■ The instance variables are kind of class attributes and they become properties

of objects once objects are created using the class.
 ■ The class variables is a variable, which is shared between all instances of a

class.
 ■ Ruby gives you three levels of protection at instance methods level, which

may be public, private, or protected.
 ■ Inheritance allows us to define a class in terms of another class, which makes

it easier to create and maintain an application.
 ■ A mixin is like a specialized implementation of multiple inheritance in which

only the interface portion is inherited.

Ruby: Object-Oriented Programming

3G E-LEARNING

157

KNOWLEDGE CHECK
1. In a class, member variables are often called its _________, and its member

functions are sometimes referred to as its behaviour, or ____________.
a. attributes, methods
b. none of these
c. values, morals
d. data, activities
e. attributes, activities

2. Which of these keywords are access specifiers?
a. near and far
b. opened and closed
c. table and row
d. none of these
e. private and public

3. True/False: An Object can be declared prior to the class definition.
a. True
b. False

4. Use of __________ protects data from inadvertent modifications.
a. protect() member function
b. private access specifier
c. class protection operator, @
d. none of these
e. public access specifier

5. You can redefine the way _______ work when used with objects.
a. none of these
b. white space characters
c. standard operators
d. pre-processor directives
e. undefined variables

6. Which of the following is supported by Ruby?
a. Multiple Programming Paradigms
b. Dynamic Type System

3G E-LEARNING

158 Basic Computer Coding: Ruby

c. Automatic Memory Management
d. All of the above

7. What is the extension used for saving the ruby file?
a. .ruby extension
b. .rb extension
c. .rrb extension
d. None of the mentioned

REVIEW QUESTIONS
1. Define Ruby Objects.
2. Focus on class methods and variables in Ruby.
3. Ruby does not apply any access control over instance and class variables,

Explain.
4. Discuss about freezing objects.
5. How can you say that initialize method is a standard Ruby class method?

Explain.

Check Your Result

1. (a) 2. (e) 3. (b) 4. (b) 5. (c)
6. (d) 7. (b)

Ruby: Object-Oriented Programming

3G E-LEARNING

159

REFERENCES
1. Bista, R., Bajracharya, L., & Dongol, D. (2015). A New Approach To Enhance

Efficiency of Object Oriented Programming. Technia, 8(1), 1058.
2. Booch, G., Maksimchuk, R. A., Engle, M. W., Young, B. J., Conallen, J., & Houston,

K. A. (2007). Object-Oriented Analysis and Design with Applications (3rd ed.).
Boston, MA: AddisonWesley Professional.

3. Booch, G., Rumbaugh, J., & Jacobson, I. (2005, May). The Unified Modeling
Language User Guide. Addison-Wesley.

4. D. Beckett. The design and implementation of the Redland RDF application
framework. Computer Networks, 39(5):577–588, 2002.

5. David Barnes and Michael Kölling. Objects First with Java: A practical introduction
using BlueJ (Prentice Hall, 2004)

6. Deborah J. Armstrong. 2006. The quarks of object-oriented development. Commun.
ACM 49, 2 (February 2006), 123-128. DOI: http://doi.acm.org/10.1145/1113034.1113040

7. Deitel, P., & Deitel, H. (2012). Java How to Program (9th ed.). Pearson Education
Limited.

8. Dennis, A., Wixom, B. H., & Tegarden, D. (2015, April). System Analysis & Design:
An Object-Oriented Approach with UML (5th ed.). Academic Pres.

9. Erdebilli (B.D.Rouyendegh) B. (2011), Selecting the high - performing departments
within universities applying the fuzzy MADM methods, Scientific Research and
Essays (SRE) , 6, 2646-2654

10. Fong-Gong Wu, F.G., & Ying-Jye Lee, Y.J., & Ming-Chyuan Lin, C.M. (2004),
Using the Fuzzy Analytic Hierarchy Process on Optimum Spatial Allocation,
International Journal of Industrial Ergonomics, 33, 553-569.

11. Harel, D., Marron, A., & Weiss, G. (2010, June). Programming coordinated behavior
in java. In European Conference on Object-Oriented Programming (pp. 250-274).
Springer Berlin Heidelberg.

12. Jens Bennedsen and Michael E. Caspersen. 2004. Programming in Context – A
Model-First Approach to CS1, In Proceedings of the 35th SIGCSE technical
symposium on Computer science education (SIGCSE '04). ACM, New York, NY,
USA, 477-481. DOI: http://doi.acm.org/10.1145/971300.971461, 477-481.

13. Sandy Garner, Patricia Haden, and Anthony Robins. 2005. My program is correct
but it doesn't run: a preliminary investigation of novice programmers' problems.
In Proceedings of the 7th Australasian conference on Computing education -
Volume 42 (ACE '05), Alison Young and Denise Tolhurst (Eds.), Vol. Australian
Computer Society, Inc., Darlinghurst, Australia, Australia, 173-180.

14. T. Berners-Lee. Weaving the Web – The Past, Present and Future of the World
Wide Web by its Inventor. Texere, 2000.

“Debugging itu adalah sebuah metode yang dilakukan oleh para programmer untuk mencari jarum
di tumpukan jerami”

–Harly Umboh

After studying this chapter,
you will be able to:
1. Explain the Ruby

debugger
2. Understand the logger
3. Discuss how to debug

with the bye bug gem

LEARNING
OBJECTIVES

DEBUGGER

INTRODUCTION
A debugger or debugging tool is a computer program used
to test and debug other programs (the “target” program).
The main use of a debugger is to run the target program

7
CHAPTER

3G E-LEARNING

162 Basic Computer Coding: Ruby

under controlled conditions that permit the programmer to track its operations in
progress and monitor changes in computer resources (most often memory areas
used by the target program or the computer’s operating system) that may indicate
malfunctioning code. Typical debugging facilities include the ability to run or halt
the target program at specific points, display the contents of memory, CPU registers
or storage devices (such as disk drives), and modify memory or register contents in
order to enter selected test data that might be a cause of faulty program execution.

The code to be examined might alternatively be running on an instruction set
simulator (ISS), a technique that allows great power in its ability to halt when specific
conditions are encountered, but which will typically be somewhat slower than executing
the code directly on the appropriate (or the same) processor. Some debuggers offer
two modes of operation, full or partial simulation, to limit this impact.

Typically, debuggers offer a query processor, a symbol resolver, an expression
interpreter, and a debug support interface at its top level. Debuggers also offer more
sophisticated functions such as running a program step by step (single-stepping or
program animation), stopping (breaking) (pausing the program to examine the current
state) at some event or specified instruction by means of a breakpoint, and tracking the
values of variables. Some debuggers have the ability to modify program state while
it is running. It may also be possible to continue execution at a different location in
the program to bypass a crash or logical error.

The same functionality which makes a debugger useful for correcting bugs allows
it to be used as a software cracking tool to evade copy protection, digital rights
management, and other software protection features. It often also makes it useful
as a general verification tool, fault coverage, and performance analyzer, especially if
instruction path lengths are shown. Early microcomputers with disk-based storage often
benefitted from the ability to diagnose and recover corrupted directory or registry data
records, to “undelete” files marked as deleted, or to crack file password protection.

Most mainstream debugging engines, such as gdb and dbx, provide console-based
command line interfaces. Debugger front-ends are popular extensions to debugger
engines that provide IDE integration, program animation, and visualization features.

Typically, when you compile a program and there’s an error, it does not give any
meaningful explanation about the error. In such cases, it can be hard to locate and
resolve the problem.

 ■ Syntax error
 ■ Logical error

A syntax error does not let you compile the code until you fix the syntax. With a
logical error, the code compiles without any issues, but when you execute the program,
it gives unexpected results.

A debugger helps us locate and fix logical errors efficiently that, in some cases,
would be a nightmare to fix without a debugger.

Debugger

3G E-LEARNING

163

7.1 RUBY – DEBUGGER
It doesn’t matter how easy a language is to use, it usually
contains some bugs if it is more than a few lines long. To help
deal with bugs, the standard distribution of Ruby includes a
debugger.

In order to start the Ruby debugger, load the debug library
using the command-line option -r debug. The debugger stops
before the first line of executable code and asks for the input
of user commands.

7.1.1 Usage Syntax

Here is the usage syntax to use ruby debugger −
$ ruby -r debug filename [, ...]

7.1.2 Ruby Debugger Commands

Here is a complete list of commands, which you can use
while debugging your program. Here, it is not necessary to
use complete keyword to give a command, part given inside
[...] is option.

Sr.No. Command & Description
1 b[reak] [< file| class>:]< line| method>

Sets breakpoint to some position. Breakpoint is a place
where you want to pause program execution for debugging
purpose.

2 wat[ch] expression
Sets watchpoints.

3 cat[ch] (exception|off)
Sets catchpoint to an exception.

4 b[reak]
Displays breakpoints and watchpoints.

5 del[ete] [n]
Deletes breakpoints.

6 disp[lay] expression
Displays value of expression.

 Command
 is a
 directive to
 a computer
 program acting
 as an interpreter
 of some kind to
 perform a specific
task.

Keyword

3G E-LEARNING

164 Basic Computer Coding: Ruby

7 undisp[lay] [n]
Removes display of n

8 c[ont]
Continues execution.

9 s[tep] [n]
Executes next n lines stepping into methods.

10 n[ext] [n]
Executes next n lines stepping over methods.

11 w[here]
Displays stack frame

12 f[rame]
Synonym for where.

13 l[ist][<-| n- m>]
Displays source lines from n to m.

14 up [n]
Moves up n levels in the stack frame.

15 down [n]
Moves down n levels in the stack frame.

16 fin[ish]
Finishes execution of the current method.

17 tr[ace] [on|off]
Toggles trace mode on and off.

18 q[uit]
Exits debugger.

19 v[ar] g[lobal]
Displays global variables.

20 v[ar] l[ocal]
Displays local variables.

21 v[ar] i[instance] object
Displays instance variables of object

22 v[ar] c[onst] object
Displays constants of object.

23 m[ethod] i[instance] object
Displays instance methods of object.

Debugger

3G E-LEARNING

165

24 m[ethod] class| module
Displays instance methods of the class or module.

25 th[read] l[ist]
Displays threads.

26 th[read] c[ur[rent]]
Displays current thread.

27 th[read] n
Stops specified thread.

28 th[read] stop >
Synonym for th[read] n.

29 th[read] c[ur[rent]] n>
Synonym for th[read] n

30 th[read] resume >
Resumes thread n

31 p expression
Evaluates the expression

32 h[elp]
Displays help message

33 everything else
Evaluates.

Example
Consider the following file hello.rb, which needs to be debugged −
#!/usr/bin/env ruby
class Hello
 def initialize(hello)
 @hello = hello
 end
 def hello
 @hello
 end
end
salute = Hello.new(“Hello, Mac!”)
puts salute.hello
Here is one interactive session captured. Given commands are written in bold −

3G E-LEARNING

166 Basic Computer Coding: Ruby

[root@ruby]# ruby -r debug hello.rb
Debug.rb
Emacs support available.

hello.rb:3:class Hello
(rdb:1) v l
 salute => nil
(rdb:1) b 10
Set breakpoint 1 at hello.rb:10
(rdb:1) c
Hello, Mac!
[root@ruby]#

7.2 THE LOGGER
It can also be useful to save information to log files at runtime. Rails maintains a
separate log file for each runtime environment.

7.2.1 What is the Logger?

Rails makes use of the ActiveSupport::Logger class to write log information. Other
loggers, such as Log4r, may also be substituted.

You can specify an alternative logger in config/application.rb or any other
environment file, for example:

config.logger = Logger.new(STDOUT)
config.logger = Log4r::Logger.new(“Application Log”)
Or in the Initializer section, add any of the following
Rails.logger = Logger.new(STDOUT)
Rails.logger = Log4r::Logger.new(“Application Log”)
By default, each log is created under Rails.root/log/ and the log file is named after

the environment in which the application is running.

Debugger

3G E-LEARNING

167

If your program makes use of a framework like Rails or Sinatra your
stacktrace might be quite convoluted. It might be useful to filter the stack
trace by your project name.
puts caller.select { |line| line.include? ‘project_name’ }
or

puts caller.select { |line| line[‘project_name’] }

7.2.2 Log Levels

When something is logged, it’s printed into the corresponding
log if the log level of the message is equal to or higher than
the configured log level. If you want to know the current log
level, you can call the Rails.logger.level method.

The available log levels are: :debug, :info, :warn, :error,
:fatal, and :unknown, corresponding to the log level numbers
from 0 up to 5, respectively. To change the default log level, use

config.log_level = :warn # In any environment initializer, or
Rails.logger.level = 0 # at any time
This is useful when you want to log under development or

staging without flooding your production log with unnecessary
information.

The default Rails log level is debug in all environments.

7.2.3 Sending Messages

To write in the current log use the logger.
(debug|info|warn|error|fatal) method from within a controller,
model or mailer:

logger.debug “Person attributes hash: #{@person.attributes.
inspect}”

logger.info “Processing the request...”
logger.fatal “Terminating application, raised unrecoverable

error!!!”
Here’s an example of a method instrumented with extra

logging:
class ArticlesController < ApplicationController
 # ...
 def create

Controller
is a chip,
an expansion
card, or a stand-
alone device that
interfaces with a
peripheral device.

Keyword

3G E-LEARNING

168 Basic Computer Coding: Ruby

 @article = Article.new(article_params)
 logger.debug “New article: #{@article.attributes.inspect}”
 logger.debug “Article should be valid: #{@article.valid?}”

 if @article.save
 logger.debug “The article was saved and now the user is going to be redirected...”
 redirect_to @article, notice: ‘Article was successfully created.’
 else
 render :new
 end
 end

 # ...

 private
 def article_params
 params.require(:article).permit(:title, :body, :published)
 end
end
Here’s an example of the log generated when this controller action is executed:
Started POST “/articles” for 127.0.0.1 at 2017-08-20 20:53:10 +0900
Processing by ArticlesController#create as HTML
 Parameters: {“utf8”=>”✓”, “authenticity_token”=>”xhuIbSBFytHCE1agHgvrlKn

SVIOGD6jltW2tO+P6a/ACjQ3igjpV4OdbsZjIhC98QizWH9YdKokrqxBCJrtoqQ==”, “ar
ticle”=>{“title”=>”Debugging Rails”, “body”=>”I’m learning how to print in logs!!!”,
“published”=>”0”}, “commit”=>”Create Article”}

New article: {“id”=>nil, “title”=>”Debugging Rails”, “body”=>”I’m learning how to
print in logs!!!”, “published”=>false, “created_at”=>nil, “updated_at”=>nil}

Article should be valid: true
 (0.1ms) BEGIN
 SQL (0.4ms) INSERT INTO “articles” (“title”, “body”, “published”, “created_at”,

“updated_at”) VALUES ($1, $2, $3, $4, $5) RETURNING “id” [[“title”, “Debugging
Rails”], [“body”, “I’m learning how to print in logs!!!”], [“published”, “f”], [“created_at”,
“2017-08-20 11:53:10.010435”], [“updated_at”, “2017-08-20 11:53:10.010435”]]

 (0.3ms) COMMIT

Debugger

3G E-LEARNING

169

The article was saved and now the user is going to be redirected...
Redirected to http://localhost:3000/articles/1
Completed 302 Found in 4ms (ActiveRecord: 0.8ms)
Adding extra logging like this makes it easy to search for unexpected or unusual

behavior in your logs. If you add extra logging, be sure to make sensible use of log
levels to avoid filling your production logs with useless trivia.

7.2.4 Tagged Logging

When running multi-user, multi-account applications, it’s often useful to be able to
filter the logs using some custom rules. TaggedLogging in Active Support helps you
do exactly that by stamping log lines with subdomains, request ids, and anything else
to aid debugging such applications.

logger = ActiveSupport::TaggedLogging.new(Logger.new(STDOUT))
logger.tagged(“BCX”) { logger.info “Stuff” } # Logs “[BCX]

Stuff”
logger.tagged(“BCX”, “Jason”) { logger.info “Stuff” } # Logs “[BCX]

[Jason] Stuff”
logger.tagged(“BCX”) { logger.tagged(“Jason”) { logger.info “Stuff” } } # Logs

“[BCX] [Jason] Stuff”

7.2.5 Impact of Logs on Performance

Logging will always have a small impact on the performance of your Rails app,
particularly when logging to disk. Additionally, there are a few subtleties:

Using the: debug level will have a greater performance penalty than: fatal, as a far
greater number of strings are being evaluated and written to the log output (e.g. disk).

Another potential pitfall is too many calls to Logger in your code:
logger.debug “Person attributes hash: #{@person.attributes.inspect}”
In the example, there will be a performance impact even if the allowed output

level doesn’t include debug. The reason is that Ruby has to evaluate these strings,
which includes instantiating the somewhat heavy String object and interpolating the
variables. Therefore, it’s recommended to pass blocks to the logger methods, as these
are only evaluated if the output level is the same as — or included in — the allowed
level (i.e. lazy loading). The same code rewritten would be:

logger.debug {“Person attributes hash: #{@person.attributes.inspect}”}
The contents of the block, and therefore the string interpolation, are only evaluated

if debug is enabled. This performance savings are only really noticeable with large
amounts of logging, but it’s a good practice to employ.

3G E-LEARNING

170 Basic Computer Coding: Ruby

7.3 DEBUGGING WITH THE BYE BUG
GEM

 When your code is behaving in unexpected ways, you can
 try printing to logs or the console to diagnose the problem.
 Unfortunately, there are times when this sort of error tracking
 is not effective in finding the root cause of a problem. When
 you actually need to journey into your running source code,
.the debugger is your best companion

7.3.1 Setup

You can use the byebug gem to set breakpoints and step
through live code in Rails. To install it, just run:

$ gem install byebug
Inside any Rails application you can then invoke the

debugger by calling the byebug method.
Here’s an example:
class PeopleController < ApplicationController
 def new
 byebug
 @person = Person.new
 end
end

7.3.2 The Shell

As soon as your application calls the byebug method, the
debugger will be started in a debugger shell inside the terminal
window where you launched your application server, and
you will be placed at the debugger’s prompt (byebug). Before
the prompt, the code around the line that is about to be run
will be displayed and the current line will be marked by ‘=>’,
like this:

[1, 10] in /PathTo/project/app/controllers/articles_controller.
rb

 3:
 4: # GET /articles

Console
is the text
entry and display
device for system
administration
messages,
particularly those
from the BIOS or
boot loader, the
kernel, from the
init system and
from the system
logger.

Keyword

Debugger

3G E-LEARNING

171

 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }
(byebug)
If you got there by a browser request, the browser tab

containing the request will be hung until the debugger has
finished and the trace has finished processing the entire request.

For example

=> Booting Puma
=> Rails 5.1.0 application starting in development on

http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
Puma starting in single mode...
* Version 3.4.0 (ruby 2.3.1-p112), codename: Owl Bowl

Brawl
* Min threads: 5, max threads: 5
* Environment: development
* Listening on tcp://localhost:3000
Use Ctrl-C to stop
Started GET “/” for 127.0.0.1 at 2014-04-11 13:11:48 +0200
 ActiveRecord::SchemaMigration Load (0.2ms) SELECT

“schema_migrations”.* FROM “schema_migrations”
Processing by ArticlesController#index as HTML
[3, 12] in /PathTo/project/app/controllers/articles_controller.

rb
 3:
 4: # GET /articles
 5: # GET /articles.json

HTML
is the
standard markup
language for
creating web
pages and web
applications.

Keyword

3G E-LEARNING

172 Basic Computer Coding: Ruby

 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }
(byebug)
Now it’s time to explore your application. A good place to start is by asking the

debugger for help. Type: help
(byebug) help
 break -- Sets breakpoints in the source code
 catch -- Handles exception catchpoints
 condition -- Sets conditions on breakpoints
 continue -- Runs until program ends, hits a breakpoint or reaches a line
 debug -- Spawns a subdebugger
 delete -- Deletes breakpoints
 disable -- Disables breakpoints or displays
 display -- Evaluates expressions every time the debugger stops
 down -- Moves to a lower frame in the stack trace
 edit -- Edits source files
 enable -- Enables breakpoints or displays
 finish -- Runs the program until frame returns
 frame -- Moves to a frame in the call stack
 help -- Helps you using byebug
 history -- Shows byebug’s history of commands
 info -- Shows several informations about the program being debugged
 interrupt -- Interrupts the program
 irb -- Starts an IRB session
 kill -- Sends a signal to the current process
 list -- Lists lines of source code
 method -- Shows methods of an object, class or module
 next -- Runs one or more lines of code

Debugger

3G E-LEARNING

173

 pry -- Starts a Pry session
 quit -- Exits byebug
 restart -- Restarts the debugged program
 save -- Saves current byebug session to a file
 set -- Modifies byebug settings
 show -- Shows byebug settings
 source -- Restores a previously saved byebug session
 step -- Steps into blocks or methods one or more times
 thread -- Commands to manipulate threads
 tracevar -- Enables tracing of a global variable
 undisplay -- Stops displaying all or some expressions when program stops
 untracevar -- Stops tracing a global variable
 up -- Moves to a higher frame in the stack trace
 var -- Shows variables and its values
 where -- Displays the backtrace

(byebug)
To see the previous ten lines you should type list- (or l-).
(byebug) l-
[1, 10] in /PathTo/project/app/controllers/articles_controller.rb
 1 class ArticlesController < ApplicationController
 2 before_action :set_article, only: [:show, :edit, :update, :destroy]
 3
 4 # GET /articles
 5 # GET /articles.json
 6 def index
 7 byebug
 8 @articles = Article.find_recent
 9
 10 respond_to do |format|
This way you can move inside the file and see the code above the line where you

added the byebug call. Finally, to see where you are in the code again you can type list=
=byebug) list)

3G E-LEARNING

174 Basic Computer Coding: Ruby

in /PathTo/project/app/controllers/articles_controller.rb [12 ,3]
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles }
(byebug)

7.3.3 The Context

When you start debugging your application, you will be placed in different contexts
as you go through the different parts of the stack.

The debugger creates a context when a stopping point or an event is reached. The
context has information about the suspended program which enables the debugger
to inspect the frame stack, evaluate variables from the perspective of the debugged
program, and know the place where the debugged program is stopped

At any time you can call the backtrace command (or its alias where) to print the
backtrace of the application. This can be very helpful to know how you got where
you are. If you ever wondered about how you got somewhere in your code, then
backtrace will supply the answer.

(byebug) where
--> #0 ArticlesController.index
 at /PathToProject/app/controllers/articles_controller.rb:8
 #1 ActionController::BasicImplicitRender.send_action(method#String, *args#Array)
 at /PathToGems/actionpack-5.1.0/lib/action_controller/metal/basic_implicit_

render.rb:4
 #2 AbstractController::Base.process_action(action#NilClass, *args#Array)
 at /PathToGems/actionpack-5.1.0/lib/abstract_controller/base.rb:181
 #3 ActionController::Rendering.process_action(action, *args)
 at /PathToGems/actionpack-5.1.0/lib/action_controller/metal/rendering.rb:30

Debugger

3G E-LEARNING

175

...
The current frame is marked with -->. You can move anywhere you want in this

trace (thus changing the context) by using the frame n command, where n is the
specified frame number. If you do that, byebug will display your new context.

(byebug) frame 2
[176, 185] in /PathToGems/actionpack-5.1.0/lib/abstract_controller/base.rb
 176: # is the intended way to override action dispatching.
 177: #
 178: # Notice that the first argument is the method to be dispatched
 179: # which is *not* necessarily the same as the action name.
 180: def process_action(method_name, *args)
=> 181: send_action(method_name, *args)
 182: end
 183:
 184: # Actually call the method associated with the action. Override
 185: # this method if you wish to change how action methods are called,
(byebug)
The available variables are the same as if you were running the code line by line.

After all, that’s what debugging is.
You can also use up [n] and down [n] commands in order to change the context n

frames up or down the stack respectively. n defaults to one. Up in this case is towards
higher-numbered stack frames, and down is towards lower-numbered stack frames.

7.3.4 Threads

The debugger can list, stop, resume and switch between running threads by using
the thread command (or the abbreviated th). This command has a handful of options:

thread: shows the current thread.
thread list: is used to list all threads and their statuses. The current thread is

marked with a plus (+) sign.
thread stop n: stops thread n.
thread resume n: resumes thread n.
thread switch n: switches the current thread context to n.
This command is very helpful when you are debugging concurrent threads and

need to verify that there are no race conditions in your code.

3G E-LEARNING

176 Basic Computer Coding: Ruby

7.3.5 Inspecting Variables

Any expression can be evaluated in the current context. To evaluate an expression,
just type it!

This example shows how you can print the instance variables defined within the
current context:

[3, 12] in /PathTo/project/app/controllers/articles_controller.rb
 3:
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: byebug
=> 8: @articles = Article.find_recent
 9:
 10: respond_to do |format|
 11: format.html # index.html.erb
 12: format.json { render json: @articles
(byebug) instance_variables
[:@_action_has_layout, :@_routes, :@_request, :@_response, :@_lookup_context,
 :@_action_name, :@_response_body, :@marked_for_same_origin_verification,
 :@_config]
As you may have figured out, all of the variables that you can access from a

controller are displayed. This list is dynamically updated as you execute code. For
example, run the next line using next.

(byebug) next
[5, 14] in /PathTo/project/app/controllers/articles_controller.rb
 5 # GET /articles.json
 6 def index
 7 byebug
 8 @articles = Article.find_recent
 9
=> 10 respond_to do |format|
 11 format.html # index.html.erb

Debugger

3G E-LEARNING

177

 12 format.json { render json: @articles }
 13 end
 14 end
 15
(byebug)
And then ask again for the instance_variables:
(byebug) instance_variables
[:@_action_has_layout, :@_routes, :@_request, :@_response, :@_lookup_context,
 :@_action_name, :@_response_body, :@marked_for_same_origin_verification,
 :@_config, :@articles]
Now @articles is included in the instance variables, because the line defining it

was executed.
You can also step into irb mode with the command irb (of course!). This will start

an irb session within the context you invoked it.
The var method is the most convenient way to show variables and their values.

Let’s have byebug help us with it.
(byebug) help var
 [v]ar <subcommand>
 Shows variables and its values
 var all -- Shows local, global and instance variables of self.
 var args -- Information about arguments of the current scope
 var const -- Shows constants of an object.
 var global -- Shows global variables.
 var instance -- Shows instance variables of self or a specific object.
 var local -- Shows local variables in current scope.
This is a great way to inspect the values of the current context variables. For

example, to check that we have no local variables currently defined:
(byebug) var local
(byebug)
You can also inspect for an object method this way:
(byebug) var instance Article.new
@_start_transaction_state = {}
@aggregation_cache = {}
@association_cache = {}

3G E-LEARNING

178 Basic Computer Coding: Ruby

@attributes = #<ActiveRecord::AttributeSet:0x007fd0682a
9b18 @attributes={“id”=>#<ActiveRecord::Attribute::FromData
base: 0x007fd0682a9a00 @ name=”id”, @value_be...

@destroyed = false
@destroyed_by_association = nil
@marked_for_destruction = false
@new_record = true
@readonly = false
@transaction_state = nil
You can also use display to start watching variables. This

is a good way of tracking the values of a variable while the
execution goes on.

(byebug) display @articles
1: @articles = nil
The variables inside the displayed list will be printed with

their values after you move in the stack. To stop displaying
a variable use undisplay n where n is the variable number (1
in the last example).

7.3.6 Step by Step

Now you should know where you are in the running trace
and be able to print the available variables. But let’s continue
and move on with the application execution.

Use step (abbreviated s) to continue running your program
until the next logical stopping point and return control to
the debugger. next is similar to step, but while step stops at
the next line of code executed, doing just a single step, next
moves to the next line without descending inside methods.

For example, consider the following situation:
Started GET “/” for 127.0.0.1 at 2014-04-11 13:39:23 +0200
Processing by ArticlesController#index as HTML
[1, 6] in /PathToProject/app/models/article.rb
 1: class Article < ApplicationRecord
 2: def self.find_recent(limit = 10)
 3: byebug
=> 4: where(‘created_at > ?’, 1.week.ago).limit(limit)

Prior to the
development of
alphanumeric CRT
system consoles,
some computers
such as the IBM
1620 had console
typewriters and
front panels while
the very first
programmable
computer, the
Manchester
Baby, used a
combination of
electro-mechanical
switches and
a CRT to
provide console
functions—the
CRT displaying
memory contents
in binary by
mirroring the
machine’s
Williams-Kilburn
tube CRT-based
RAM.

Did You
Know?

Debugger

3G E-LEARNING

179

 5: end
 6: end
(byebug)
If we use next, we won’t go deep inside method calls. Instead, byebug will go

to the next line within the same context. In this case, it is the last line of the current
method, so byebug will return to the next line of the caller method.

(byebug) next
[4, 13] in /PathToProject/app/controllers/articles_controller.rb
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: @articles = Article.find_recent
 8:
=> 9: respond_to do |format|
 10: format.html # index.html.erb
 11: format.json { render json: @articles }
 12: end
 13: end
(byebug)
If we use step in the same situation, byebug will literally go to the next Ruby

instruction to be executed -- in this case, Active Support’s week method.
(byebug) step
[49, 58] in /PathToGems/activesupport-5.1.0/lib/active_support/core_ext/numeric/

time.rb
 49:
 50: # Returns a Duration instance matching the number of weeks provided.
 51: #
 52: # 2.weeks # => 14 days
 53: def weeks
=> 54: ActiveSupport::Duration.weeks(self)
 55: end
 56: alias: week: weeks
 57:

3G E-LEARNING

180 Basic Computer Coding: Ruby

 58: # Returns a Duration instance matching the number
of fortnights provided.

(byebug)
This is one of the best ways to find bugs in your code.
You can also use step n or next n to move forward n

steps at once.

7.3.7 Breakpoints

A breakpoint makes your application stop whenever a
certain point in the program is reached. The debugger shell
is invoked in that line

You can add breakpoints dynamically with the command
break (or just b). There are 3 possible ways of adding
breakpoints manually:

break n: set breakpoint in line number n in the current
source file.

break file: n [if expression]: set breakpoint in line number
n inside file named file. If an expression is given it must have
evaluated to true to fire up the debugger.

break class (.|\#)method [if expression]: set breakpoint in
method (. and # for class and instance method respectively)
defined in class. The expression works the same way as with
file: n.

For example, in the previous situation
[4, 13] in /PathToProject/app/controllers/articles_controller.

rb
 4: # GET /articles
 5: # GET /articles.json
 6: def index
 7: @articles = Article.find_recent
 8:
=> 9: respond_to do |format|
 10: format.html # index.html.erb
 11: format.json { render json: @articles }
 12: end
 13: end

If you
don’t
want to run
the program
manually in
debug mode,
you can press the
“Resume Button”
on the tools panel
to run to the
next breakpoint,
or finish the
debug if there
are no more
breakpoints.

Remember

Debugger

3G E-LEARNING

181

(byebug) break 11
Successfully created breakpoint with id 1
Use info breakpoints to list breakpoints. If you supply

a number, it lists that breakpoint. Otherwise it lists all
breakpoints.

(byebug) info breakpoints
Num Enb What
1 y at /PathToProject/app/controllers/articles_controller.

rb:11
To delete breakpoints: use the command delete n to remove

the breakpoint number n. If no number is specified, it deletes
all breakpoints that are currently active.

(byebug) delete 1
(byebug) info breakpoints
No breakpoints.
You can also enable or disable breakpoints:
enable breakpoints [n [m [...]]]: allows a specific breakpoint

list or all breakpoints to stop your program. This is the default
state when you create a breakpoint.

disable breakpoints [n [m [...]]]: make certain (or all)
breakpoints have no effect on your program.

7.3.8 Catching Exceptions

The command catch exception-name (or just cat exception-
name) can be used to intercept an exception of type exception-
name when there would otherwise be no handler for it.

To list all active catch points use catch.

7.3.9 Resuming Execution

There are two ways to resume execution of an application
that is stopped in the debugger:

continue [n]: resumes program execution at the address
where your script last stopped; any breakpoints set at that
address are bypassed. The optional argument n allows you
to specify a line number to set a one-time breakpoint which
is deleted when that breakpoint is reached.

Proper
use of
the debugger
is essential to
finding semantic
(logical) errors
in how your
program
behaves. The
debugger should
be considered
your best
friend while
programming
(that is, unless
you can perfectly
visualize how
your program
will run in your
head).

Remember

3G E-LEARNING

182 Basic Computer Coding: Ruby

finish [n]: execute until the selected stack frame returns. If no frame number is
given, the application will run until the currently selected frame returns. The currently
selected frame starts out the most-recent frame or 0 if no frame positioning (e.g up,
down or frame) has been performed. If a frame number is given it will run until the
specified frame returns.

7.3.10 Editing

Two commands allow you to open code from the debugger into an editor:
edit [file:n]: edit file named file using the editor specified by the EDITOR environment
variable. A specific line n can also be given.

7.3.11 Quitting

To exit the debugger, use the quit command (abbreviated to q). Or, type q! to bypass
the Really quit? (y/n) prompt and exit unconditionally.

A simple quit tries to terminate all threads in effect. Therefore your server will
be stopped and you will have to start it again.

7.3.12 Settings

byebug has a few available options to tweak its behavior:
(byebug) help se
 set <setting> <value>
 Modifies byebug settings
 Boolean values take “on”, “off”, “true”, “false”, “1” or “0”. If you
 don’t specify a value, the boolean setting will be enabled. Conversely,
 you can use “set no<setting>” to disable them.
 You can see these environment settings with the “show” command.
 List of supported settings:
 autosave -- Automatically save command history record on exit
 autolist -- Invoke list command on every stop
 width -- Number of characters per line in byebug’s output
 autoirb -- Invoke IRB on every stop
 basename -- <file>:<line> information after every stop uses short paths
 linetrace -- Enable line execution tracing
 autopry -- Invoke Pry on every stop

Debugger

3G E-LEARNING

183

 stack_on_error -- Display stack trace when `eval` raises an exception
 fullpath -- Display full file names in backtraces
 histfile -- File where cmd history is saved to. Default: ./.byebug_history
 listsize -- Set number of source lines to list by default
 post_mortem -- Enable/disable post-mortem mode
 callstyle -- Set how you want method call parameters to be displayed
 histsize -- Maximum number of commands that can be stored in byebug

history
 savefile -- File where settings are saved to. Default: ~/.byebug_save
You can save these settings in an .byebugrc file in your home directory. The

debugger reads these global settings when it starts. For example:
set callstyle short
set listsize 25

3G E-LEARNING

184 Basic Computer Coding: Ruby

SUMMARY
 ■ A debugger or debugging tool is a computer program used to test and debug

other programs (the "target" program).
 ■ The main use of a debugger is to run the target program under controlled

conditions that permit the programmer to track its operations in progress
and monitor changes in computer resources (most often memory areas used
by the target program or the computer's operating system) that may indicate
malfunctioning code.

 ■ Typical debugging facilities include the ability to run or halt the target program
at specific points, display the contents of memory, CPU registers or storage
devices (such as disk drives), and modify memory or register contents in order
to enter selected test data that might be a cause of faulty program execution.

 ■ A debugger helps us locate and fix logical errors efficiently that, in some
cases, would be a nightmare to fix without a debugger.

 ■ TaggedLogging in Active Support helps you do exactly that by stamping log
lines with subdomains, request ids, and anything else to aid debugging such
applications.

 ■ The debugger creates a context when a stopping point or an event is reached.
 ■ The context has information about the suspended program which enables the

debugger to inspect the frame stack, evaluate variables from the perspective
of the debugged program, and know the place where the debugged program
is stopped

 ■ The optional argument n allows you to specify a line number to set a one-
time breakpoint which is deleted when that breakpoint is reached.

 ■ To stop displaying a variable use undisplay n where n is the variable number
(1 in the last example).

Debugger

3G E-LEARNING

185

KNOWLEDGE CHECK
1. Which of the following is supported by Ruby?

a. Multiple Programming Paradigms
b. Dynamic Type System
c. Automatic Memory Management
d. All of the Mentioned

2. Which of the following features does the 2.0 version of ruby supports?
a. Method keyword arguments
b. New literals
c. Security fixes
d. All of the mentioned

3. Which of the following languages syntax matches with the Ruby’s syntax?
a. Perl
b. PHP
c. Java
d. Jquery

4. What is the extension used for saving the ruby file?
a. .ruby extension
b. .rb extension
c. .rrb extension
d. None of the mentioned

5. Which of the following are valid floating point literal?
a. .5
b. 2
c. 0.5
d. None of the mentioned

6. A step by step instruction used to solve a problem is known as …………………..?
a. Sequential structure
b. A List
c. An Algorithm
d. A plan

3G E-LEARNING

186 Basic Computer Coding: Ruby

7. Some incorrect word sequence in a program would generate
a. Semantics error
b. Syntax error
c. Runtime error
d. Logical error

REVIEW QUESTIONS
1. Start the server without --debug, then call debugger in the code, and observe

the output.
2. Start the server with --debug and add a breakpoint to a controller method.

Trigger that breakpoint and experiment with each of these commands:
 • eval
 • list
 • next
 • step
 • continue
3. Debugger is just a method. Try combining it with a conditional branch to

only execute on a certain pathway through your code (like a nil input, for
example).

4. What you’re looking for is a debugger. With ruby 1.8, the ruby-debug gem
provides the canonical one, and in ruby 1.9, the debugger gem provides a
version of its successor that is well-maintained.

5. Start your program with the gem loaded, for example ruby -rdebugger yourfile.
rb, and you’ll have access to the debugger.

Check Your Result

1. (d) 2. (d) 3. (a) 4. (b) 5. (c)
6. (c) 7. (b)

Debugger

3G E-LEARNING

187

REFERENCES
1. Alfred V.Aho,Monica S.Lam, Ravi Sethi and Jeffrey D.Ullman, Compilers

(Principles, Techniques and Tools), Second Edition,2006.
2. Aspect oriented programming (article series). Commun. ACM, 44(10), Oct. 2001.
3. Dave Thomas, Chad Fowler and Andy Hunt, Programming Ruby The Pragmatic

Programmer’s Guide, Second Edition, 2004.
4. Dave Thomas, David Hansson, Leon Breedt, Mike Clark, James Duncan Davidson,

Justin Gehtland and Andreas Schwarz, Agile Web Development With Rails, 2nd
Edition, 2006.

5. G. H. Cooper and S. Krishnamurthi. FrTime: Functional reactive programming
in PLT Scheme. Technical Report cs03-20, Brown University, 2003.

6. K. Anderson, T. J. Hickey, and P. Norvig. Silk: A playful combination of Scheme
and Java. In Proceedings of the Workshop on Scheme and Functional Programming,
pages 13–22, 2000.

7. KO, Andrew J.; MYERS, Brad A. Designing the Whyline: A Debugging Interface
for Asking Questions about Program Behavior. In. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: Vienna, Austria — April
24 - 29, 2004. New York, NY, USA: ACM Press, 2004, pp. 151–158. ISBN 1-58113-
702-8

8. KO, Andrew J.; MYERS, Brad A.; COBLENZ, Michael J.; AUNG, Htet Htet.
An Exploratory Study of How Developers Seek, Relate, and Collect Relevant
Information During Software Maintenance Tasks. IEEE Trans. Softw. Eng. 2006,
vol. 32, no. 12, pp. 971–987. Available also from WWW: hhttp://dx.doi.org/10.1109/
TSE.2006. 116i. ISSN 0098-5589

9. LATOZA, Thomas D.; MYERS, Brad A. Developers Ask Reachability Questions.
In. 2010 ACM IEEE 32nd International Conference on Software Engineering. New
York, NY, USA: ACM Press, 2010.

10. Linda Dailey Paulson, Developers Shift to dynamic langauges, IEEE Computer
Society February 2007.

11. M. Auguston, C. Jeffery, and S. Underwood. A framework for automatic debugging.
In Automated Software Engineering, 2002.

12. M. de Sousa Dias and D. J. Richardson. Issues on software monitoring. Technical
report, ICS, 2002.

13. R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler,
and M. Felleisen. DrScheme: A programming environment for Scheme. Journal
of Functional Programming, 12(2):159–182, 2002.

“Most programming languages are decidedly inferior to mathematical notation and are little used as
tools of thought in ways that would be considered significant by, say, an applied mathematician. “

–Kenneth E. Iverson

After studying this chapter, you will
be able to:

1. Discuss the types, classes, and
modules

2. Evaluate strings and blocks

3. Define variables and constants

4. Explain the methods for listing,
querying, and invoking

5. Describe callback methods or
hooks

6. Discuss how to trace the
execution of a program

7. Deal with objectspace module

8. Describe custom control
structures

9. Focus on missing methods and
missing constants

10. Explain dynamically creating
methods and alias chaining

11. Define domain-specific
languages

LEARNING
OBJECTIVES

REFLECTION AND
METAPROGRAMMING

INTRODUCTION
Ruby is a very dynamic language; you can insert new
methods into classes at runtime, create aliases for existing
methods, and even define methods on individual objects.

8
CHAPTER

3G E-LEARNING

190 Basic Computer Coding: Ruby

In addition, it has a rich API for reflection. Reflection, also called introspection, simply
means that a program can examine its state and its structure. A Ruby program can,
for example, obtain the list of methods defined by the Hash class, query the value of a
named instance variable within a specified object, or iterate through all Regexp objects
currently defined by the interpreter. The reflection API actually goes further and allows
a program to alter its state and structure. A Ruby program can dynamically set named
variables, invoke named methods, and even define new classes and new methods.

Ruby’s reflection API—along with its generally dynamic nature, its blocks-and-
iterators control structures, and its parentheses-optional syntax—makes it an ideal
language for metaprogramming. Loosely defined, metaprogramming is writing programs
(or frameworks) that help you write programs. To put it another way, metaprogramming
is a set of techniques for extending Ruby’s syntax in ways that make programming
easier. Metaprogramming is closely tied to the idea of writing domain specific languages,
or DSLs. DSLs in Ruby typically use method invocations and blocks as if they were
keywords in a task-specific extension to the language.

We introduce Ruby’s reflection API. This API is surprisingly rich and consists of
quite a few methods. These methods are defined, for the most part, by Kernel, Object,
and Module.

Keep in mind that reflection is not, by itself, metaprogramming. Metaprogramming
typically extends the syntax or the behavior of Ruby in some way, and often involves
more than one kind of reflection.

8.1 TYPES, CLASSES, AND MODULES
The most commonly used reflective methods are those for determining the type of an
object—what class it is an instance of and what methods it responds to.

Reflection and Metaprogramming

3G E-LEARNING

191

o.class
Returns the class of an object o.

c.superclass
Returns the superclass of a class c.

o.instance_of? C
Determines whether the object o.class == c.

o.is_a? c
Determines whether o is an instance of c, or of any of its

subclasses. If c is a module,
this method tests whether o.class (or any of its ancestors)

includes the module.
o.kind_of? c
kind_of? is a synonym for is_a?.

c === o
For any class or module c, determines if o.is_a?(c).

o.respond_to? Name
Determines whether the object o has a public or protected

method with the specified name. Passes true as the second
argument to check private methods as well.

8.1.1 Ancestry and Modules

In addition to these methods, there are a few related reflective
methods for determining the ancestors of a class or module
and for determining which modules are included by a class
or module. These methods are easy to understand when
demonstrated:
module A; end # Empty module
module B; include A; end; # Module B includes A
class C; include B; end; # Class C includes module B

Subclasses
are classes
that can be derived
from a parent
class by adding
some functionality,
such as new object
variables or new
methods.

Keyword

3G E-LEARNING

192 Basic Computer Coding: Ruby

C < B # => true: C includes B
B < A # => true: B includes A
C < A # => true
Fixnum < Integer # => true: all fixnums are integers
Integer <Comparable # => true: integers are comparable
Integer < Fixnum # => false: not all integers are fixnums
String < Numeric # => nil: strings are not numbers

A.ancestors # => [A]
B.ancestors # => [B, A]
C.ancestors # => [C, B, A, Object, Kernel]
String.ancestors # => [String, Enumerable, Comparable, Object, Kernel]
Note: in Ruby 1.9 String is no longer Enumerable

C.include?(B) # => true
C.include?(A) # => true
B.include?(A) # => true
A.include?(A) # => false
A.include?(B) # => false

A.included_modules # => []
B.included_modules # => [A]
C.included_modules # => [B, A, Kernel]

This code demonstrates include?, which is a public instance method defined by the
Module class. But it also features two invocations of the include method (without the
question mark), which is a private instance method of Module. As a private method,
it can only be invoked implicitly on self, which restricts its usage to the body of a
class or module definition. This use of the method include as if it were a keyword is
a metaprogramming example in Ruby’s core syntax.

Reflection and Metaprogramming

3G E-LEARNING

193

A method related to the private include method is the
public Object.extend. This method extends an object by making
the instance methods of each of the specified modules into
singleton methods of the object:
module Greeter; def hi; “hello”; end; end # A silly module
s = “string object”
s.extend(Greeter) # Add hi as a singleton
 method to s
s.hi # => “hello”
String.extend(Greeter) # Add hi as a class
 method of String
String.hi # => “hello”

The class method Module.nesting is not related to module
inclusion or ancestry; instead, it returns an array that specifies
the nesting of modules at the current location. Module.
nesting[0] is the current class or module, Module.nesting[1]
is the containing class or module, and so on:

module M
 class C
Module.nesting # => [M::C, M]
 end
end

8.1.2 Defining Classes and Modules

Classes and modules are instances of the Class and Module
classes. As such, you can create them dynamically:
M = Module.new # Define a new module M
C = Class.new # Define a new class C
D = Class.new(C) { # Define a subclass of C
 include M # that includes module M

}
D.to_s # => “D”: class gets constant name by magic

One nice feature of Ruby is that when a dynamically
created anonymous module or class is assigned to a constant,
the name of that constant is used as the name of the module
or class (and is returned by its name and to_s methods).

Metaprogramming
is a programming
technique in
which computer
programs have
the ability to treat
other programs as
their data.

Keyword

3G E-LEARNING

194 Basic Computer Coding: Ruby

8.2 EVALUATING STRINGS AND BLOCKS
One of the most powerful and straightforward reflective
features of Ruby is its eval method. If your Ruby program
can generate a string of valid Ruby code, the Kernel.eval
method can evaluate that code:

x = 1
eval “x + 1” # => 2

eval is a very powerful function, but unless you are actually
writing a shell program (like irb) that executes lines of Ruby
code entered by a user you are unlikely to really need it. (And
in a networked context, it is almost never safe to call eval
on text received from a user, as it could contain malicious
code.) Inexperienced programmers sometimes end up using
eval as a crutch. If you find yourself using it in your code,
see if there is not a way to avoid it. Having said that, there
are some more useful ways to use eval and eval-like methods.

8.2.1 Bindings and eval

A Binding object represents the state of Ruby’s variable
bindings at some moment. The Kernel.binding object returns
the bindings in effect at the location of the call. You may pass
a Binding object as the second argument to eval, and the string
you specify will be evaluated in the context of those bindings.
If, for example, we define an instance method that returns a
Binding object that represents the variable bindings inside an
object, then we can use those bindings to query and set the
instance variables of that object.

Malicious
code is
unwanted files
or programs that
can cause harm
to a computer
or compromise
data stored on a
computer

Keyword

Reflection and Metaprogramming

3G E-LEARNING

195

We might accomplish this as follows:
class Object # Open Object to add a new method
 def bindings # Note plural on this method
 binding # This is the predefined Kernel method
 end
end

class Test # A simple class with an instance variable
 def initialize(x); @x = x; end
end

t = Test.new(10) # Create a test object
eval(“@x”, t.bindings) # => 10: We have peeked inside t
Note that it is not actually necessary to define an Object.bindings method of this

sort to peek at the instance variables of an object. Several other methods described
shortly offer easier ways to query (and set) the value of the instance variables of an
object.

The Proc object defines a public binding method that returns a Binding object
representing the variable bindings in effect for the body of that Proc. Furthermore,
the eval method allows you to pass a Proc object instead of a Binding object as the
second argument.

Ruby 1.9 defines an eval method on Binding objects, so instead of passing a Binding
as the second argument to the global eval, you can instead invoke the eval method
on a Binding. Which one you choose is purely a stylistic matter; the two techniques
are equivalent.

3G E-LEARNING

196 Basic Computer Coding: Ruby

8.2.2 instance_eval and class_eval

The Object class defines a method named instance_eval,
and the Module class defines a method named class_eval.
(module_eval is a synonym for class_eval.) Both of these
methods evaluate Ruby code, like eval does, but there are
two important differences. The first difference is that they
evaluate the code in the context of the specified object or in
the context of the specified module—the object or module is
the value of self while the code is being evaluated.

Here are some examples:
o.instance_eval(“@x”) # Return the value of o’s instance

variable @x
Define an instance method len of String to return string

length
String.class_eval(“def len; size; end”)

Here’s another way to do that
The quoted code behaves just as if it was inside “class

String” and “end”
String.class_eval(“alias len size”)

Use instance_eval to define class method String.empty
Note that quotes within quotes get a little tricky...

Object
class is the
parent class of all
the classes in java
by default.

Keyword

Reflection and Metaprogramming

3G E-LEARNING

197

String.instance_eval(“def empty; ‘’; end”)
Note the subtle but crucial difference between instance_eval and class_eval when

the code being evaluated contains a method definition. instance_eval defines singleton
methods of the object (and this results in class methods when it is called on a class
object). class_eval defines regular instance methods.

The second important difference between these two methods and the global eval is
that instance_eval and class_eval can accept a block of code to evaluate. When passed
a block instead of a string, the code in the block is executed in the appropriate context.
Here, therefore, are alternatives to the previously shown invocations:

o.instance_eval { @x }
String.class_eval {
 def len
 size
 end
}
String.class_eval { alias len size }
String.instance_eval { def empty; “”; end }

8.2.3 instance_exec and class_exec

Ruby 1.9 defines two more evaluation methods: instance_exec and class_exec (and its
alias, module_exec). These methods evaluate a block (but not a string) of code in the
context of the receiver object, as instance_eval and class_eval do. The difference is that
the exec methods accept arguments and pass them to the block. Thus, the block of
code is evaluated in the context of the specified object, with parameters whose values
come from outside the object.

8.3 VARIABLES AND CONSTANTS
Kernel, Object, and Module define reflective methods for listing the names (as strings)
of all defined global variables, currently defined local variables, all instance variables
of an object, all class variables of a class or module, and all constants of a class or
module:

global_variables # => [“$DEBUG”, “$SAFE”, ...]
x = 1 # Define a local variable
local_variables # => [“x”]

3G E-LEARNING

198 Basic Computer Coding: Ruby

Define a simple class
class Point
 def initialize(x,y); @x,@y = x,y; end # Define instance variables
 @@classvar = 1 # Define a class variable
 ORIGIN = Point.new(0,0) # Define a constant
end
Point::ORIGIN.instance_variables # => [“@y”, “@x”]
Point.class_variables # => [“@@classvar”]
Point.constants # => [“ORIGIN”]

The global_variables, instance_variables, class_variables, and constants methods
return arrays of strings in Ruby 1.8 and arrays of symbols in Ruby 1.9. The local_
variables method returns an array of strings in both versions of the language.

8.3.1 Querying, Setting, and Testing Variables

In addition to listing defined variables and constants, Ruby
Object and Module also define reflective methods for querying,
setting, and removing instance variables, class variables, and
constants. There are no special purpose methods for querying
or setting local variables or global variables, but you can use
the eval method for this purpose:

x = 1
varname = “x”
eval(varname) # => 1
eval(“varname = ‘$g’”) # Set varname to “$g”
eval(“#{varname} = x”) # Set $g to 1
eval(varname) # => 1
Note that eval evaluates its code in a temporary scope.

eval can alter the value of instance variables that already
exist. But any new instance variables it defines are local to the
invocation of eval and cease to exist when it returns. (It is as
if the evaluated code is run in the body of a block—variables
local to a block do not exist outside the block.)

eval is a
function
which evaluates a
string as though it
were an expression
and returns a
result; in others, it
executes multiple
lines of code as
though they had
been included
instead of the line
including the eval.

Keyword

Reflection and Metaprogramming

3G E-LEARNING

199

You can query, set, and test the existence of instance variables on any object and
of class variables and constants on any class or module:

o = Object.new
o.instance_variable_set(:@x, 0) # Note required @ prefix
o.instance_variable_get(:@x) # => 0

o.instance_variable_defined?(:@x) # => true
Object.class_variable_set(:@@x, 1) # Private in Ruby 1.8
Object.class_variable_get(:@@x) # Private in Ruby 1.8
Object.class_variable_defined?(:@@x) # => true; Ruby 1.9 and later

Math.const_set(:EPI, Math::E*Math::PI)
Math.const_get(:EPI) # => 8.53973422267357
Math.const_defined? :EPI # => true
In Ruby 1.9, you can pass false as the second argument to const_get and const_

defined? to specify that these methods should only look at the current class or module
and should not consider inherited constants.

The methods for querying and setting class variables are private in Ruby 1.8. In
that version, you can invoke them with class_eval:

String.class_eval { class_variable_set(:@@x, 1) } # Set @@x in String
String.class_eval { class_variable_get(:@@x) } # => 1

Object and Module define private methods for undefining instance variables, class
variables, and constants. They all return the value of the removed variable or constant.
Because these methods are private, you cannot invoke them directly on an object, class,
or module, and you must use an eval method or the send method:

o.instance_eval { remove_instance_variable :@x }
String.class_eval { remove_class_variable(:@@x) }
Math.send :remove_const, :EPI # Use send to invoke private method
The const_missing method of a module is invoked, if there is one, when a reference

is made to an undefined constant. You can define this method to return the value of
the named constant. (This feature can be used, for example, to implement an autoload
facility in which classes or modules are loaded on demand.) Here is a simpler example:

3G E-LEARNING

200 Basic Computer Coding: Ruby

def Symbol.const_missing(name)
 name # Return the constant name as a symbol
end
Symbol::Test # => :Test: undefined constant evaluates to

a Symbol

8.4 METHODS
The Object and Module classes define a number of methods
for listing, querying, invoking, and defining methods. We will
consider each category in turn.

8.4.1 Listing and Testing

For Methods Object defines methods for listing the names of
methods defined on the object. These methods return arrays
of methods names. Those name are strings in Ruby 1.8 and
symbols in Ruby 1.9:
o = “a string”
o.methods # => [names of all public methods]
o.public_methods # => the same thing
o.public_methods(false) # Exclude inherited methods
o.protected_methods # => []: there aren’t any
o.private_methods # => array of all private methods
o.private_methods(false) # Exclude inherited private methods
def o.single; 1; end # Define a singleton method
o.singleton_methods # => [“single”] (or [:single] in 1.9)

Metaprogramming
was popular in the
1970s and 1980s
using list processing
languages such as
LISP. LISP hardware
machines were
popular in the
1980s and enabled
applications that
could process
code. They were
frequently used for
artificial intelligence
applications.

Did You
Know?

Reflection and Metaprogramming

3G E-LEARNING

201

It is also possible to query a class for the methods it defines rather than querying
an instance of the class. The following methods are defined by Module. Like the Object
methods, they return arrays of strings in Ruby 1.8 and arrays of symbols in 1.9:

String.instance_methods == “s”.public_methods # => true
String.instance_methods(false) == “s”.public_methods(false) # => true
String.public_instance_methods == String.instance_methods # => true
String.protected_instance_methods # => []
String.private_instance_methods(false) # => [“initialize_copy”,
 # “initialize”]

Recall that the class methods of a class or module are singleton methods of the
Class or Module object. So to list class methods, use Object.singleton_methods:

Math.singleton_methods # => [“acos”, “log10”, “atan2”, ...]

3G E-LEARNING

202 Basic Computer Coding: Ruby

In addition to these listing methods, the Module class
defines some predicates for testing whether a specified class
or module defines a named instance method:

String.public_method_defined? :reverse # => true
String.protected_method_defined? :reverse # => false
String.private_method_defined? :initialize # => true
String.method_defined? :upcase! # => true

Module.method_defined? checks whether the named
method is defined as a public or protected method. It serves
essentially the same purpose as Object.respond_to?. In Ruby
1.9, you can pass false as the second argument to specify that
inherited methods should not be considered.

8.4.2 Obtaining Method Objects

To query a specific named method, call method on any object
or instance_method on any module. The former returns a
callable Method object bound to the receiver, and the latter
returns an UnboundMethod. In Ruby 1.9, you can limit your
search to public methods by calling public_method and public_
instance_method.

“s”.method(:reverse) # => Method object String.instance_
method(:reverse) # => UnboundMethod object

8.4.3 Invoking Method

You can use the method method of any object to obtain a
Method object that represents a named method of that object.
Method objects have a call method just like Proc objects do;
you can use it to invoke the method.

Usually, it is simpler to invoke a named method of a
specified object with send:
“hello”.send :upcase # => “HELLO”: invoke an
instance method
Math.send(:sin, Math::PI/2) # => 1.0: invoke a class method
send invokes on its receiver the method named by its first
argument, passing any remaining arguments to that method.
The name “send” derives from the objectoriented idiom in

Proc
object is
an encapsulation
of a block of code,
which can be
stored in a local
variable, passed
to a method or
another Proc, and
can be called. Proc
is an essential
concept in Ruby
and a core of
its functional
programming
features.

Keyword

Reflection and Metaprogramming

3G E-LEARNING

203

which invoking a method is called “sending a message” to an object.
send can invoke any named method of an object, including private and protected
methods. We saw send used earlier to invoke the private method remove_const of a
Module object. Because global functions are really private methods of Object, we can
use send to invoke these methods on any object (though this is not anything that we’d
ever actually want to do):

“hello”.send :puts, “world” # prints “world”
Ruby 1.9 defines public_send as an alternative to send. This method works like

send, but will only invoke public methods, not private or protected methods:

“hello”.public_send :puts, “world” # raises NoMethodError

send is a very fundamental method of Object, but it has a common name that might
be overridden in subclasses. Therefore, Ruby defines __send__ as a synonym, and
issues a warning if you attempt to delete or redefine __send__.

8.4.4 Defining, Undefining, and Aliasing Methods

If you want to define a new instance method of a class or module, use define_method.
This instance method of Module takes the name of the new method (as a Symbol)
as its first argument. The body of the method is provided either by a Method object
passed as the second argument or by a block. It is important to understand that
define_method is private. You must be inside the class or module you want to use it
on in order to call it:

Add an instance method named m to class c with body b
def add_method(c, m, &b)
 c.class_eval {
 define_method(m, &b)
 }
end

add_method(String, :greet) { “Hello, “ + self }
“world”.greet # => “Hello, world”
To define a class method (or any singleton method) with define_method, invoke

it on the eigenclass:
def add_class_method(c, m, &b)

3G E-LEARNING

204 Basic Computer Coding: Ruby

 eigenclass = class << c; self; end
 eigenclass.class_eval {
 define_method(m, &b)
 }
end
add_class_method(String, :greet) {|name| “Hello, “ + name }
String.greet(“world”) # => “Hello, world”

In Ruby 1.9, you can more easily use define_singleton_method, which is a method
of Object

String.define_singleton_method(:greet) {|name| “Hello, “ + name }
One shortcoming of define_method is that it does not allow you to specify a method

body that expects a block. If you need to dynamically create a method that accepts a
block, you will need to use the def statement with class_eval. And if the method you
are creating is sufficiently dynamic, you may not be able to pass a block to class_eval
and will instead have to specify the method definition as a string to be evaluated.

To create a synonym or an alias for an existing method, you can normally use
the alias statement:

alias plus + # Make “plus” a synonym for the + operator
When programming dynamically, however, you sometimes need to use alias_method

instead. Like define_method, alias_method is a private method of Module. As a method,
it can accept two arbitrary expressions as its arguments, rather than requiring two
identifiers to be hardcoded in your source code. (As a method, it also requires a comma
between its arguments.) alias_method is often used for alias chaining existing methods.

Create an alias for the method m in the class (or module) c
def backup(c, m, prefix=”original”)
 n = :”#{prefix}_#{m}” # Compute the alias
 c.class_eval { # Because alias_method is private
alias_method n, m # Make n an alias for m
 }
end
backup(String, :reverse)
“test”.original_reverse # => “tset”

Reflection and Metaprogramming

3G E-LEARNING

205

You can use the undef statement to undefine a method. This works only if you can
express the name of a method as a hardcoded identifier in your program. If you need
to dynamically delete a method whose name has been computed by your program,
you have two choices: remove_method or undef_method. Both are private methods
of Module. remove_method removes the definition of the method from the current
class. If there is a version defined by a superclass, that version will now be inherited.
undef_method is more severe; it prevents any invocation of the specified method
through an instance of the class, even if there is an inherited version of that method.

If you define a class and want to prevent any dynamic alterations to it, simply
invoke the freeze method of the class. Once frozen, a class cannot be altered.

8.4.5 Handling Undefined Methods

When the method name resolution algorithm fails to find a method, it looks up a method
named method_missing instead. When this method is invoked, the first argument is a
symbol that names the method that could not be found. This symbol is followed by
all the arguments that were to be passed to the original method. If there is a block
associated with the method invocation, that block is passed to method_missing as well.

The default implementation of method_missing, in the Kernel module, simply
raises a NoMethodError. This exception, if uncaught, causes the program to exit with
an error message, which is what you would normally expect to happen when you try
to invoke a method that does not exist.

Defining your own method_missing method for a class allows you an opportunity
to handle any kind of invocation on instances of the class. The method_missing hook
is one of the most powerful of Ruby’s dynamic capabilities, and one of the most
commonly used metaprogramming techniques. For now, the following example code
adds a method_missing method to the Hash class. It allows us to query or set the
value of any named key as if the key were the name of a method:

class Hash
 # Allow hash values to be queried and set as if they were attributes.
 # We simulate attribute getters and setters for any key.
 def method_missing(key, *args)
 text = key.to_s
 if text[-1,1] == “=” # If key ends with = set a value

self[text.chop.to_sym] = args[0] # Strip = from key
 else # Otherwise...
 self[key] # ...just return the key value

3G E-LEARNING

206 Basic Computer Coding: Ruby

 end
 end
end
h = {} # Create an empty hash object
h.one = 1 # Same as h[:one] = 1
puts h.one # Prints 1. Same as puts h[:one]

8.4.6 Setting Method Visibility

We introduced public, protected, and private. These look like language keywords but
are actually private instance methods defined by Module. These methods are usually
used as a static part of a class definition. But, with class_eval, they can also be used
dynamically:

String.class_eval { private :reverse }
“hello”.reverse # NoMethodError: private method ‘reverse’
private_class_method and public_class_method are similar, except that they operate

on class methods and are themselves public:

Make all Math methods private
Now we have to include Math in order to invoke its methods
Math.private_class_method *Math.singleton_methods

8.5 HOOKS
Module, Class, and Object implement several callback methods, or hooks. These methods
are not defined by default, but if you define them for a module, class, or object, then
they will be invoked when certain events occur. This gives you an opportunity to
extend Ruby’s behavior when classes are subclassed, when modules are included, or
when methods are defined. Hook methods have names that end in “ed.”

When a new class is defined, Ruby invokes the class method inherited on the
superclass of the new class, passing the new class object as the argument. This allows
classes to add behavior to or enforce constraints on their descendants. Recall that class
methods are inherited, so that the an inherited method will be invoked if it is defined
by any of the ancestors of the new class. Define Object.inherited to receive notification
of all new classes that are defined:

def Object.inherited(c)

Reflection and Metaprogramming

3G E-LEARNING

207

 puts “class #{c} < #{self}”
end

When a module is included into a class or into another module, the included class
method of the included module is invoked with the class or module object into which
it was included as an argument. This gives the included module an opportunity to
augment or alter the class in whatever way it wants—it effectively allows a module
to define its own meaning for include. In addition to adding methods to the class into
which it is included, a module with an included method might also alter the existing
methods of that class, for example:

module Final # A class that includes Final can’t be subclassed
 def self.included(c) # When included in class c
 c.instance_eval do # Define a class method of c
 def inherited(sub) # To detect subclasses
 raise Exception, # And abort with an exception
 “Attempt to create subclass #{sub} of Final class #{self}”
 end
 end
 end
end

Similarly, if a module defines a class method named extended, that method will
be invoked any time the module is used to extend an object (with Object.extend). The
argument to the extended method will be the object that was extended, of course, and
the extended method can take whatever actions it wants on that object.

In addition to hooks for tracking classes and the modules they include, there are
also hooks for tracking the methods of classes and modules and the singleton methods
of arbitrary objects. Define a class method named method_added for any class or module
and it will be invoked when an instance method is defined for that class or module:

def String.method_added(name)
 puts “New instance method #{name} added to String”
end

3G E-LEARNING

208 Basic Computer Coding: Ruby

Note that the method_added class method is inherited by subclasses of the class
on which it is defined. But no class argument is passed to the hook, so there is no way
to tell whether the named method was added to the class that defines method_added
or whether it was added to a subclass of that class. A workaround for this problem
is to define an inherited hook on any class that defines a method_added hook. The
inherited method can then define a method_added method for each subclass.

When a singleton method is defined for any object, the method singleton_method_
added is invoked on that object, passing the name of the new method. Remember that
for classes, singleton methods are class methods:

def String.singleton_method_added(name)
 puts “New class method #{name} added to String”
end

Interestingly, Ruby invokes this singleton_method_added hook when the hook
method itself is first defined. Here is another use of the hook. In this case, singleton_
method_added is defined as an instance method of any class that includes a module.
It is notified of any singleton methods added to instances of that class:

Including this module in a class prevents instances of that class
from having singleton methods added to them. Any singleton methods added
are immediately removed again.
module Strict
 def singleton_method_added(name)
 STDERR.puts “Warning: singleton #{name} added to a Strict object”
 eigenclass = class << self; self; end
 eigenclass.class_eval { remove_method name }
 end
end

In addition to method_added and singleton_method_added, there are hooks for
tracking when instance methods and singleton methods are removed or undefined.
When an instance method is removed or undefined on a class or module, the class
methods method_removed and method_undefined are invoked on that module. When
a singleton method is removed or undefined on an object, the methods singleton_
method_removed and singleton_method_undefined are invoked on that object.

Reflection and Metaprogramming

3G E-LEARNING

209

8.6 TRACING
Ruby defines a number of features for tracing the execution of a program. These are
mainly useful for debugging code and printing informative error messages. Two of
the simplest features are actual language keywords: __FILE__ and __LINE__. These
keyword expressions always evaluate to the name of the file and the line number
within that file on which they appear, and they allow an error message to specify the
exact location at which it was generated:

STDERR.puts “#{__FILE__}:#{__LINE__): invalid data”

As an aside, note that the methods Kernel.eval, Object.instance_eval, and Module.
class_eval all accept a filename (or other string) and a line number as their final two
arguments. If you are evaluating code that you have extracted from a file of some
sort, you can use these arguments to specify the values of __FILE__ and __LINE__
for the evaluation.

You have undoubtedly noticed that when an exception is raised and not handled,
the error message printed to the console contains filename and line number information.
This information is based on __FILE__ and __LINE__, of course. Every Exception object
has a backtrace associated with it that shows exactly where it was raised, where the
method that raised the exception was invoked, where that method was invoked, and

3G E-LEARNING

210 Basic Computer Coding: Ruby

so on. The Exception.backtrace method returns an array of strings containing this
information. The first element of this array is the location at which the exception
occurred, and each subsequent element is one stack frame higher. You need not raise
an exception to obtain a current stack trace, however. The Kernel.caller method returns
the current state of the call stack in the same form as

Stack traces returned by Exception.backtrace and Kernel.caller also include method
names. Prior to Ruby 1.9, you must parse the stack trace strings to extract method names.
In Ruby 1.9, however, you can obtain the name (as a symbol) of the currently executing
method with Kernel.__method__ or its synonym, Kernel.__callee__. __method__ is
useful in conjunction with __FILE__ and __LINE__:

raise “Assertion failed in #{__method__} at #{__FILE__}:#{__LINE__}”

Note that __method__ returns the name by which a method was originally defined,
even if the method was invoked through an alias.

Instead of simply printing the filename and number at which an error occurs,
you can take it one step further and display the actual line of code. If your program
defines a global constant named SCRIPT_LINES__ and sets it equal to a hash, then the
require and load methods add an entry to this hash for each file they load. The hash
keys are filenames and the values associated with those keys are arrays that contain
the lines of those files. If you want to include the main file (rather than just the files
it requires) in the hash, initialize it like this:

SCRIPT_LINES__ = {__FILE__ => File.readlines(__FILE__)}

If you do this, then you can obtain the current line of source code anywhere in
your program with this expression:

SCRIPT_LINES__[__FILE__][__LINE__-1]
Ruby allows you to trace assignments to global variables with Kernel.trace_var.

Pass this method a symbol that names a global variable and a string or block of code.
When the value of the named variable changes, the string will be evaluated or the
block will be invoked. When a block is specified, the new value of the variable is
passed as an argument.

Reflection and Metaprogramming

3G E-LEARNING

211

To stop tracing the variable, call Kernel.untrace_var. In the following, note the use of caller[1] to
determine the program location at which the variable tracing block was invoked:

Print a message every time $SAFE changes

trace_var(:$SAFE) {|v|

 puts “$SAFE set to #{v} at #{caller[1]}”

}

The final tracing method is Kernel.set_trace_func, which
registers a Proc to be invoked after every line of a Ruby
program. set_trace_func is useful if you want to write a
debugger module that allows line-by-line stepping through
a program, but we will not cover it in any detail here.

8.7 OBJECTSPACE AND GC
The ObjectSpace module defines a handful of low-level
methods that can be occasionally useful for debugging or
metaprogramming. The most notable method is each_object,
an iterator that can yield every object (or every instance of a
specified class) that the interpreter knows about:

Print out a list of all known classes
ObjectSpace.each_object(Class) {|c| puts c }

ObjectSpace._id2ref is the inverse of Object.object_id: it
takes an object ID as its argument and returns the corresponding
object, or raises a RangeError if there is no object with that ID.

ObjectSpace.define_finalizer allows the registration of a
Proc or a block of code to be invoked when a specified object
is garbage collected. You must be careful when registering
such a finalizer, however, as the finalizer block is not allowed
to use the garbage collected object.

The final ObjectSpace method is ObjectSpace.garbage_
collect, which forces Ruby’s garbage collector to run. Garbage
collection functionality is also available through the GC module.
GC.start is a synonym for ObjectSpace.garbage_collect. Garbage
collection can be temporarily disabled with GC.disable, and
it can be enabled again with GC.enable.

Any
values
required to
finalize the
object must be
captured in the
scope of the
finalizer block,
so that they are
available without
dereferencing
the object. Use
ObjectSpace.
undefine_
finalizer to delete
all finalizer
blocks registered
for an object.

Remember

3G E-LEARNING

212 Basic Computer Coding: Ruby

The combination of the _id2ref and define_finalizer methods allows the definition
of “weak reference” objects, which hold a reference to a value without preventing the
value from being garbage collected if they become otherwise unreachable. See the
WeakRef class in the standard library (in lib/weakref.rb) for an example.

8.8 CUSTOM CONTROL STRUCTURES
Ruby’s use of blocks, coupled with its parentheses-optional syntax, make it very easy
to define iterator methods that look like and behave like control structures. The loop
method of Kernel is a simple example.

8.8.1 Delaying and Repeating Execution: after and every

Example 1 defines global methods named after and every. Each takes a numeric argument
that represents a number of seconds and should have a block associated with it after
creates a new thread and returns the Thread object immediately. The newly created
thread sleeps for the specified number of seconds and then calls (with no arguments)
the block you provided. Every is similar, but it calls the block repeatedly, sleeping
the specified number of seconds between calls. The second argument to every is a
value to pass to the first invocation of the block. The return value of each invocation
becomes the value passed for the next invocation. The block associated with every
can use break to prevent any future invocations.

Here is some example code that uses after and every:
require ‘afterevery’
1.upto(5) {|i| after i { puts i} } # Slowly print the numbers 1 to 5
sleep(5) # Wait five seconds
every 1, 6 do |count| # Now slowly print 6 to 10
 puts count
 break if count == 10
 count + 1 # The next value of count
end
sleep(6) 1 # Give the above time to run

Example 1. The after and every methods
#
Define Kernel methods after and every for deferring blocks of code.
Examples:

Reflection and Metaprogramming

3G E-LEARNING

213

#
after 1 { puts “done” }
every 60 { redraw_clock }
#
Both methods return Thread objects. Call kill on the returned objects
to cancel the execution of the code.
#
Note that this is a very naive implementation. A more robust
implementation would use a single global timer thread for all tasks,
would allow a way to retrieve the value of a deferred block, and would
provide a way to wait for all pending tasks to complete.
#
Execute block after sleeping the specified number of seconds.
def after(seconds, &block)
 Thread.new do # In a new thread...
 sleep(seconds) # First sleep
 block.call # Then call the block

end # Return the Thread object right away
end
Repeatedly sleep and then execute the block.
Pass value to the block on the first invocation.
On subsequent invocations, pass the value of the previous invocation.
def every(seconds, value=nil, &block)
 Thread.new do # In a new thread...
 loop do # Loop forever (or until break in block)
 sleep(seconds) # Sleep
 value = block.call(value) # And invoke block
 end # Then repeat..
 end # every returns the Thread
end

3G E-LEARNING

214 Basic Computer Coding: Ruby

8.8.2 Thread Safety with Synchronized Blocks

When writing programs that use multiple threads, it is important that two threads
do not attempt to modify the same object at the same time. One way to do this is
to place the code that must be made thread-safe in a block associated with a call to
the synchronize method of a Mutex object. In Example 2 we take this a step further,
and emulate Java’s synchronized keyword with a global method named synchronized.
This synchronized method expects a single object argument and a block. It obtains a
Mutex associated with the object, and uses Mutex.synchronize to invoke the block. The
tricky part is that Ruby’s object, unlike Java’s objects, do not have a Mutex associated
with them. So Example 2 also defines an instance method named mutex in Object.
Interestingly, the implementation of this mutex method uses synchronized in its new
keyword-style form!

Example 2. Simple synchronized blocks
require ‘thread’ # Ruby 1.8 keeps Mutex in this library
Obtain the Mutex associated with the object o, and then evaluate
the block under the protection of that Mutex.
This works like the synchronized keyword of Java.
def synchronized(o)
 o.mutex.synchronize { yield }
end

Object.mutex does not actually exist. We’ve got to define it.
This method returns a unique Mutex for every object, and
always returns the same Mutex for any particular object.
It creates Mutexes lazily, which requires synchronization for
thread safety.
class Object
 # Return the Mutex for this object, creating it if necessary.
 # The tricky part is making sure that two threads don’t call
 # this at the same time and end up creating two different mutexes.
 def mutex
 # If this object already has a mutex, just return it
 return @__mutex if @__mutex

Otherwise, we’ve got to create a mutex for the object.

Reflection and Metaprogramming

3G E-LEARNING

215

 # To do this safely we’ve got to synchronize on our class object.
 synchronized(self.class) {
 # Check again: by the time we enter this synchronized block,
 # some other thread might have already created the mutex.
 @__mutex = @__mutex || Mutex.new
 }
 # The return value is @__mutex
 end
end

The Object.mutex method defined above needs to lock the class
if the object doesn’t have a Mutex yet. If the class doesn’t have
its own Mutex yet, then the class of the class (the Class object)
will be locked. In order to prevent infinite recursion, we must
ensure that the Class object has a mutex.
Class.instance_eval { @__mutex = Mutex.new }

8.9 MISSING METHODS AND MISSING CONSTANTS
The method_missing method is a key part of Ruby’s method lookup algorithm and
provides a powerful way to catch and handle arbitrary invocations on an object. The
const_missing method of Module performs a similar function for the constant lookup
algorithm and allows us to compute or lazily initialize constants on the fly. The
examples that follow demonstrate both of these methods.

8.9.1 Unicode Codepoint Constants with const_missing

Example 3 defines a Unicode module that appears to define a constant (a UTF-8 encoded
string) for every Unicode codepoint from U+0000 to U+10FFFF. The only practical way
to support this many constants is to use the const_missing method. The code makes
the assumption that if a constant is referenced once, it is likely to be used again, so
the const_missing method calls Module.const_set to define a real constant to refer to
each value it computes.

Example 3. Unicode codepoint constants with const_missing
This module provides constants that define the UTF-8 strings for
all Unicode codepoints. It uses const_missing to define them lazily.

3G E-LEARNING

216 Basic Computer Coding: Ruby

Examples:
copyright = Unicode::U00A9
euro = Unicode::U20AC
infinity = Unicode::U221E
module Unicode
 # This method allows us to define Unicode codepoint constants lazily.
 def self.const_missing(name) # Undefined constant passed as a symbol
 # Check that the constant name is of the right form.
 # Capital U followed by a hex number between 0000 and 10FFFF.
 if name.to_s =~ /^U([0-9a-fA-F]{4,5}|10[0-9a-fA-F]{4})$/
 # $1 is the matched hexadecimal number. Convert to an integer.

codepoint = $1.to_i(16)
 # Convert the number to a UTF-8 string with the magic of Array.pack.
 utf8 = [codepoint].pack(“U”)
 # Make the UTF-8 string immutable.
 utf8.freeze
 # Define a real constant for faster lookup next time, and return
 # the UTF-8 text for this time.
 const_set(name, utf8)
 else
 # Raise an error for constants of the wrong form.
 raise NameError, “Uninitialized constant: Unicode::#{name}”
 end
 end
end

8.9.2 Tracing Method Invocations with method_missing

We demonstrated an extension to the Hash class using method_missing. Now, in
Example 4, we demonstrate the use of method_missing to delegate arbitrary calls on
one object to another object. In this example, we do this in order to output tracing
messages for the object.

Reflection and Metaprogramming

3G E-LEARNING

217

Example 4 defines an Object.trace instance method and a TracedObject class. The
trace method returns an instance of TracedObject that uses method_missing to catch
invocations, trace them, and delegate them to the object being traced. You might use
it like this:

a = [1,2,3].trace(“a”)
a.reverse
puts a[2]
puts a.fetch(3)

This produces the following tracing output:
Invoking: a.reverse() at trace1.rb:66
Returning: [3, 2, 1] from a.reverse to trace1.rb:66
Invoking: a.fetch(3) at trace1.rb:67
Raising: IndexError:index 3 out of array from a.fetch

Notice that in addition to demonstrating method_missing, Example 4 also
demonstrates Module.instance_methods, Module.undef_method, and Kernel.caller.

Example 4. Tracing method invocations with method_missing
Call the trace method of any object to obtain a new object that
behaves just like the original, but which traces all method calls
on that object. If tracing more than one object, specify a name to
appear in the output. By default, messages will be sent to STDERR,
but you can specify any stream (or any object that accepts strings # as arguments

to <<).
class Object
 def trace(name=””, stream=STDERR)
 # Return a TracedObject that traces and delegates everything else to us.
 TracedObject.new(self, name, stream)
end
end

This class uses method_missing to trace method invocations and
then delegate them to some other object. It deletes most of its own

3G E-LEARNING

218 Basic Computer Coding: Ruby

instance methods so that they don’t get in the way of method_missing.
Note that only methods invoked through the TracedObject will be traced.
If the delegate object calls methods on itself, those invocations
will not be traced.

class TracedObject
 # Undefine all of our noncritical public instance methods.
 # Note the use of Module.instance_methods and Module.undef_method.
 instance_methods.each do |m|
 m = m.to_sym # Ruby 1.8 returns strings, instead of symbols
 next if m == :object_id || m == :__id__ || m == :__send__
 undef_method m
 end

Initialize this TracedObject instance.
 def initialize(o, name, stream)
 @o = o # The object we delegate to
 @n = name # The object name to appear in tracing messages
 @trace = stream # Where those tracing messages are sent
 End

This is the key method of TracedObject. It is invoked for just
 # about any method invocation on a TracedObject.
 def method_missing(*args, &block)
 m = args.shift # First arg is the name of the method
 begin
 # Trace the invocation of the method.
 arglist = args.map {|a| a.inspect}.join(‘, ‘)
 @trace << “Invoking: #{@n}.#{m}(#{arglist}) at #{caller[0]}\n”
 # Invoke the method on our delegate object and get the return value.
 r = @o.send m, *args, &block
 # Trace a normal return of the method.
 @trace << “Returning: #{r.inspect} from #{@n}.#{m} to #{caller[0]}\n”

Reflection and Metaprogramming

3G E-LEARNING

219

 # Return whatever value the delegate object returned.
 r

rescue Exception => e
 # Trace an abnormal return from the method.
 @trace << “Raising: #{e.class}:#{e} from #{@n}.#{m}\n”
 # And re-raise whatever exception the delegate object raised.
 raise
 end
 end

Return the object we delegate to.
 def __delegate
 @o
 end
end

8.9.3 Synchronized Objects by Delegation

In Example 2, we saw a global method synchronized, which accepts an object and
executes a block under the protection of the Mutex associated with that object. Most
of the example consisted of the implementation of the Object.mutex method. The
synchronized method was trivial:

def synchronized(o)
 o.mutex.synchronize { yield }
end
Example 5 modifies this method so that, when invoked without a block, it returns

a SynchronizedObject wrapper around the object. SynchronizedObject is a delegating
wrapper class based on method_missing. It is much like the TracedObject class of
Example 4, but it is written as a subclass of Ruby 1.9’s BasicObject, so there is no need
to explicitly delete the instance methods of Object. Note that the code in this example
does not stand alone; it requires the Object.mutex method defined earlier.

Example 5. Synchronizing methods with method_missing
def synchronized(o)
 if block_given?
 o.mutex.synchronize { yield }

3G E-LEARNING

220 Basic Computer Coding: Ruby

 else
 SynchronizedObject.new(o)
 end
end

A delegating wrapper class using method_missing for thread safety
Instead of extending Object and deleting our methods we just extend
BasicObject, which is defined in Ruby 1.9. BasicObject does not
inherit from Object or Kernel, so the methods of a BasicObject cannot
invoke any top-level methods: they are just not there.
class SynchronizedObject < BasicObject
 def initialize(o); @delegate = o; end
 def __delegate; @delegate; end
 def method_missing(*args, &block)
 @delegate.mutex.synchronize {
 @delegate.send *args, &block
 }
 end
end

8.10 DYNAMICALLY CREATING METHODS
One important metaprogramming technique is the use of methods that create methods.
The attr_reader and attr_accessor methods are examples. These private instance methods
of Module are used like keywords within class definitions. They accept attribute names
as their arguments, and dynamically create methods with those names.

The examples that follow are variants on these attribute accessor creation methods
and demonstrate two different ways to dynamically create methods like this.

8.10.1 Defining Methods with class_eval

Example 6 defines private instance methods of Module named readonly and readwrite.
These methods work like attr_reader and attr_accessor do, and they are here to
demonstrate how those methods are implemented. The implementation is actually quite
simple: readonly and readwrite first build a string of Ruby code containing the def
statements required to define appropriate accessor methods. Next, they evaluate that

Reflection and Metaprogramming

3G E-LEARNING

221

string of code using class_eval. Using class_eval like this incurs the slight overhead of
parsing the string of code. The benefit, however, is that the methods we define need
not use any reflective APIs themselves; they can query or set the value of an instance
variable directly.

Example 6. Attribute methods with class_eval
class Module
 private # The methods that follow are both private
 # This method works like attr_reader, but has a shorter name
 def readonly(*syms)
 return if syms.size == 0 # If no arguments, do nothing
 code = “” # Start with an empty string of code
 # Generate a string of Ruby code to define attribute reader methods.
 # Notice how the symbol is interpolated into the string of code.
 syms.each do |s| # For each symbol
 code << “def #{s}; @#{s}; end\n” # The method definition

 end

 # Finally, class_eval the generated code to create instance methods.
 class_eval code
 end

This method works like attr_accessor, but has a shorter name.
 def readwrite(*syms)
 return if syms.size == 0

3G E-LEARNING

222 Basic Computer Coding: Ruby

 code = “”
 syms.each do |s|
 code << “def #{s}; @#{s} end\n”
 code << “def #{s}=(value); @#{s} = value; end\n”
 end
 class_eval code
 end
end

8.10.2 Defining Methods with define_method

Example 7 is a different take on attribute accessors. The attributes method is something
like the readwrite method defined in Example 6. Instead of taking any number of
attribute names as arguments, it expects a single hash object. This hash should have
attribute names as its keys, and should map those attribute names to the default
values for the attributes. The class_attrs method works like attributes, but defines class
attributes rather than instance attributes.

Remember that Ruby allows the curly braces to be omitted around hash literals
when they are the final argument in a method invocation. So the attributes method
might be invoked with code like this:

class Point
 attributes :x => 0, :y => 0
end
In Ruby 1.9, we can use the more succinct hash syntax:
class Point
 attributes x:0, y:0
end

This is another example that leverages Ruby’s flexible syntax to create methods
that behave like language keywords.

The implementation of the attributes method in Example 7 is quite a bit different
than that of the readwrite method in Example 6. Instead of defining a string of Ruby
code and evaluating it with class_eval, the attributes method defines the body of the
attribute accessors in a block and defines the methods using define_method. Because

Reflection and Metaprogramming

3G E-LEARNING

223

this method definition technique does not allow us to interpolate identifiers directly
into the method body, we must rely on reflective methods such as instance_variable_get.
Because of this, the accessors defined with attributes are likely to be less efficient than
those defined with readwrite.

An interesting point about the attributes method is that it does not explicitly
store the default values for the attributes in a class variable of any kind. Instead, the
default value for each attribute is captured by the scope of the block used to define
the method.

The class_attrs method defines class attributes very simply: it invokes attributes
on the eigenclass of the class. This means that the resulting methods use class instance
variables instead of regular class variables.

Example 7. Attribute methods with define_method
class Module
 # This method defines attribute reader and writer methods for named
 # attributes, but expects a hash argument mapping attribute names to
 # default values. The generated attribute reader methods return the
 # default value if the instance variable has not yet been defined.
 def attributes(hash)
 hash.each_pair do |symbol, default| # For each attribute/default pair
 getter = symbol # Name of the getter method
 setter = :”#{symbol}=” # Name of the setter method
 variable = :”@#{symbol}” # Name of the instance variable
 define_method getter do # Define the getter method
 if instance_variable_defined? variable

instance_variable_get variable # Return variable, if defined
 else
 default # Otherwise return default
 end
 end
 define_method setter do |value| # Define setter method
 instance_variable_set variable, # Set the instance variable
 value # To the argument value

 end

3G E-LEARNING

224 Basic Computer Coding: Ruby

 end
 end

This method works like attributes, but defines class methods instead
 # by invoking attributes on the eigenclass instead of on self.
 # Note that the defined methods use class instance variables
 # instead of regular class variables.
 def class_attrs(hash)
 eigenclass = class << self; self; end
 eigenclass.class_eval { attributes(hash) }
 end
 # Both methods are private
 private :attributes, :class_attrs
end

8.11 ALIAS CHAINING
Metaprogramming in Ruby often involves the dynamic definition of methods. Just
as common is the dynamic modification of methods. Methods are modified with a
technique we’ll call alias chaining.* It works like this:

 ■ First, create an alias for the method to be modified. This alias provides a
name for the unmodified version of the method.

 ■ Next, define a new version of the method. This new version should call the
unmodified version through the alias, but it can add whatever functionality
is needed before and after it does that.

Note that these steps can be applied repeatedly (as long as a different alias is used

Reflection and Metaprogramming

3G E-LEARNING

225

each time), creating a chain of methods and aliases. We include three alias chaining
examples. The first performs the alias chaining statically; i.e., using regular alias and
def statements. The second and third examples are more dynamic; they alias chain
arbitrarily named methods using alias_method, define_method, and class_eval.

8.11.1 Tracing Files Loaded and Classes Defined

Example 8 is code that keeps track of all files loaded and all classes defined in a program.
When the program exits, it prints a report. You can use this code to “instrument” an
existing program so that you better understand what it is doing. One way to use this
code is to insert this line at the beginning of the program:

require ‘classtrace’
An easier solution, however, is to use the -r option to your Ruby interpreter:
ruby -rclasstrace my_program.rb --traceout /tmp/trace

The -r option loads the specified library before it starts running the program.

Example 8 uses static alias chaining to trace all invocations of the Kernel.require
and Kernel.load methods. It defines an Object.inherited hook to track definitions of
new classes. And it uses Kernel.at_exit to execute a block of code when the program
terminates. Besides alias chaining require and load and defining Object.inherited, the
only modification to the global namespace made by this code is the definition of a
module named ClassTrace. All state required for tracing is stored in constants within
this module, so that we do not pollute the namespace with global variables.

Example 8. Tracing files loaded and classes defined
We define this module to hold the global state we require, so that
we don’t alter the global namespace any more than necessary.
module ClassTrace
 # This array holds our list of files loaded and classes defined.
 # Each element is a subarray holding the class defined or the
 # file loaded and the stack frame where it was defined or loaded.
 T = [] # Array to hold the files loaded

Now define the constant OUT to specify where tracing output goes.
 # This defaults to STDERR, but can also come from command-line arguments

3G E-LEARNING

226 Basic Computer Coding: Ruby

 if x = ARGV.index(“--traceout”) # If argument exists
 OUT = File.open(ARGV[x+1], “w”) # Open the specified file
 ARGV[x,2] = nil # And remove the arguments
 else
 OUT = STDERR # Otherwise default to STDERR
 end
end

Alias chaining step 1: define aliases for the original methods
alias original_require require
alias original_load load
Alias chaining step 2: define new versions of the methods
def require(file)
 ClassTrace::T << [file,caller[0]] # Remember what was loaded where
 original_require(file) # Invoke the original method
end

def load(*args)
 ClassTrace::T << [args[0],caller[0]] # Remember what was loaded where
 original_load(*args) # Invoke the original method
end

This hook method is invoked each time a new class is defined
def Object.inherited(c)
 ClassTrace::T << [c,caller[0]] # Remember what was defined where
end

Kernel.at_exit registers a block to be run when the program exits
We use it to report the file and class data we collected
at_exit {
 o = ClassTrace::OUT
 o.puts “=”*60
 o.puts “Files Loaded and Classes Defined:”

Reflection and Metaprogramming

3G E-LEARNING

227

 o.puts “=”*60
 ClassTrace::T.each do |what,where|
 if what.is_a? Class # Report class (with hierarchy) defined
 o.puts “Defined: #{what.ancestors.join(‘<-’)} at #{where}”
 else # Report file loaded
 o.puts “Loaded: #{what} at #{where}”
 end
 end
}

8.11.2 Chaining Methods for Thread Safety

Example 2 defined a synchronized method (based on an Object.mutex method) that
executed a block under the protection of a Mutex object. Then, Example 5 redefined
the synchronized method so that when it was invoked without a block, it would return
a SynchronizedObject wrapper around an object, protecting access to any methods
invoked through that wrapper object. Now, in Example 9, we augment the synchronized
method again so that when it is invoked within a class or module definition, it alias
chains the named methods to add synchronization.

The alias chaining is done by our method Module.synchronize_method, which in
turn uses a helper method Module.create_alias to define an appropriate alias for any
given method (including operator methods like +).

After defining these new Module methods, Example 9 redefines the synchronized
method again. When the method is invoked within a class or a module, it calls
synchronize_method on each of the symbols it is passed. Interestingly, however, it
can also be called with no arguments; when used this way, it adds synchronization
to whatever instance method is defined next. (It uses the method_added hook to
receive notifications when a new method is added.) Note that the code in this example
depends on the Object.mutex method of Example 2 and the SynchronizedObject class
of Example 5.

Example 9. Alias chaining for thread safety
Define a Module.synchronize_method that alias chains instance methods
so they synchronize on the instance before running.
class Module
 # This is a helper function for alias chaining.
 # Given a method name (as a string or symbol) and a prefix, create

3G E-LEARNING

228 Basic Computer Coding: Ruby

 # a unique alias for the method, and return the name of the alias
 # as a symbol. Any punctuation characters in the original method name
 # will be converted to numbers so that operators can be aliased.
 def create_alias(original, prefix=”alias”)
 # Stick the prefix on the original name and convert punctuation
 aka = “#{prefix}_#{original}”
 aka.gsub!(/([\=\|\&\+\-*\/\^\!\?\~\%\<\>\[\]])/) {
 num = $1[0] # Ruby 1.8 character -> ordinal
 num = num.ord if num.is_a? String # Ruby 1.9 character -> ordinal
 ‘_’ + num.to_s
 }
Keep appending underscores until we get a name that is not in use
 aka += “_” while method_defined? aka or private_method_defined? aka
 aka = aka.to_sym # Convert the alias name to a symbol
 alias_method aka, original # Actually create the alias
 aka # Return the alias name
 end

Alias chain the named method to add synchronization
 def synchronize_method(m)
 # First, make an alias for the unsynchronized version of the method.
 aka = create_alias(m, “unsync”)
 # Now redefine the original to invoke the alias in a synchronized block.
 # We want the defined method to be able to accept blocks, so we
 # can’t use define_method, and must instead evaluate a string with
 # class_eval. Note that everything between %Q{ and the matching }
 # is a double-quoted string, not a block.
 class_eval %Q{
 def #{m}(*args, &block)
 synchronized(self) { #{aka}(*args, &block) }
 end
 }
 end

Reflection and Metaprogramming

3G E-LEARNING

229

end

This global synchronized method can now be used in three different ways.
def synchronized(*args)
 # Case 1: with one argument and a block, synchronize on the object
 # and execute the block
 if args.size == 1 && block_given?
 args[0].mutex.synchronize { yield }

Case two: with one argument that is not a symbol and no block
 # return a SynchronizedObject wrapper
 elsif args.size == 1 and not args[0].is_a? Symbol and not block_given?
 SynchronizedObject.new(args[0])

Case three: when invoked on a module with no block, alias chain the
 # named methods to add synchronization. Or, if there are no arguments,
 # then alias chain the next method defined.
 elsif self.is_a? Module and not block_given?
 if (args.size > 0) # Synchronize the named methods
 args.each {|m| self.synchronize_method(m) }
 else

Case 4: any other invocation is an error
 else
 raise ArgumentError, “Invalid arguments to synchronize()”
 end
end

8.11.3 Chaining Methods for Tracing

Example 10 is a variant on Example 4 that supports tracing of named methods of
an object. Example 4 used delegation and method_missing to define an Object.trace
method that would return a traced wrapper object. This version uses chaining to alter

3G E-LEARNING

230 Basic Computer Coding: Ruby

methods of an object in place. It defines trace! and untrace! to chain and unchain
named methods of an object.

The interesting thing about this example is that it does its chaining in a different
way from Example 9; it simply defines singleton methods on the object and uses super
within the singleton to chain to the original instance method definition. No method
aliases are created.

Example 8. Chaining with singleton methods for tracing
Define trace! and untrace! instance methods for all objects.
trace! “chains” the named methods by defining singleton methods
that add tracing functionality and then use super to call the original.
untrace! deletes the singleton methods to remove tracing.
class Object
 # Trace the specified methods, sending output to STDERR.
 def trace!(*methods)
 @_traced = @_traced || [] # Remember the set of traced methods

If no methods were specified, use all public methods defined
 # directly (not inherited) by the class of this object
 methods = public_methods(false) if methods.size == 0
methods.map! {|m| m.to_sym } # Convert any strings to

symbols
 methods -= @_traced # Remove methods that are already

traced
 return if methods.empty? # Return early if there is nothing to

do
 @_traced |= methods # Add methods to set of traced

methods

Trace the fact that we’re starting to trace these methods
 STDERR << “Tracing #{methods.join(‘, ‘)} on #{object_id}\n”

Singleton methods are defined in the eigenclass
 eigenclass = class << self; self; end

Reflection and Metaprogramming

3G E-LEARNING

231

methods.each do |m| # For each method m
 # Define a traced singleton version of the method m.
 # Output tracing information and use super to invoke the
 # instance method that it is tracing.
 # We want the defined methods to be able to accept blocks, so we
 # can’t use define_method, and must instead evaluate a string.
 # Note that everything between %Q{ and the matching } is a
 # double-quoted string, not a block. Also note that there are
 # two levels of string interpolations here. #{} is interpolated
 # when the singleton method is defined. And \#{} is interpolated
 # when the singleton method is invoked.
 eigenclass.class_eval %Q{
 def #{m}(*args, &block)
begin
 STDERR << “Entering: #{m}(\#{args.join(‘, ‘)})\n”
 result = super
 STDERR << “Exiting: #{m} with \#{result}\n”
 result
 rescue
 STDERR << “Aborting: #{m}: \#{$!.class}: \#{$!.message}”
 raise
 end
 end
 }
 end
 end

Untrace the specified methods or all traced methods
 def untrace!(*methods)
 if methods.size == 0 # If no methods specified untrace
 methods = @_traced # all currently traced methods
 STDERR << “Untracing all methods on #{object_id}\n”
 else # Otherwise, untrace

3G E-LEARNING

232 Basic Computer Coding: Ruby

 methods.map! {|m| m.to_sym } # Convert string to symbols
 methods &= @_traced # all specified methods that are traced
 STDERR << “Untracing #{methods.join(‘, ‘)} on #{object_id}\n”
 end
@_traced -= methods # Remove them from our set of traced methods
 # Remove the traced singleton methods from the eigenclass
 # Note that we class_eval a block here, not a string
 (class << self; self; end).class_eval do

methods.each do |m|
 remove_method m # undef_method would not work correctly
 end
 end
 # If no methods are traced anymore, remove our instance var
 if @_traced.empty?
 remove_instance_variable :@_traced
 end
 end
end

8.12 DOMAIN-SPECIFIC LANGUAGES
The goal of metaprogramming in Ruby is often the creation of domain-specific languages,
or DSLs. A DSL is just an extension of Ruby’s syntax (with methods that look like
keywords) or API that allows you to solve a problem or represent data more naturally
than you could otherwise. For our examples, we will take the problem domain to be
the output of XML formatted data, and we will define two DSLs—one very simple
and one more clever—to tackle this problem.

Reflection and Metaprogramming

3G E-LEARNING

233

8.12.1 Simple XML Output with method_missing

We begin with a simple class named XML for generating XML output. Here’s an
example of how the XML can be used:

pagetitle = “Test Page for XML.generate”
XML.generate(STDOUT) do
 html do
 head do
 title { pagetitle }
 comment “This is a test”
 end
 body do
 h1(:style => “font-family:sans-serif”) { pagetitle }
 ul :type=>”square” do
 li { Time.now }
 li { RUBY_VERSION }
 end
 end
 end
end

3G E-LEARNING

234 Basic Computer Coding: Ruby

This code does not look like XML, and it only sort of looks like Ruby. Here’s the
output it generates (with some line breaks added for legibility):

<html><head>
Test Page for XML.generate</little>
<!-- This is a test -->
</head><body>
< h1 style=’font-family:sans-serif’ > Test Page for XML.generate</h1>
<ul type=’square’>
2007-08-19 16:19:58 -0700
1.9.0
</body></html>
To implement this class and the XML generation syntax it supports, we rely on:

 ■ Ruby’s block structure
 ■ Ruby’s parentheses-optional method invocations
 ■ Ruby’s syntax for passing hash literals to methods without curly braces
 ■ The method_missing method

Example 11 shows the implementation for this simple DSL.

Example 11. A simple DSL for generating XML output
class XML
 # Create an instance of this class, specifying a stream or object to
 # hold the output. This can be any object that responds to <<(String).

4 def initialize(out)

 @out = out # Remember where to send our output
 end

Output the specified object as CDATA, return nil.
 def content(text)
 @out << text.to_s
 nil
 end

Reflection and Metaprogramming

3G E-LEARNING

235

Output the specified object as a comment, return nil.
 def comment(text)
 @out << “<!-- #{text} -->”

 nil

 end

Output a tag with the specified name and attributes.
 # If there is a block invoke it to output or return content.
 # Return nil.
 def tag(tagname, attributes={})
 # Output the tag name
 @out << “<#{tagname}”

Output the attributes
 attributes.each {|attr,value| @out << “ #{attr}=’#{value}’” }

 if block_given?
 # This block has content
 @out << ‘>’ # End the opening tag
 content = yield # Invoke the block to output or return content
 if content # If any content returned
 @out << content.to_s # Output it as a string
 End
 @out << “</#{tagname}>” # Close the tag

else
 # Otherwise, this is an empty tag, so just close it.
 @out << ‘/>’
 end
 nil # Tags output themselves, so they don’t return any content
 end
 # The code below is what changes this from an ordinary class into a DSL.

3G E-LEARNING

236 Basic Computer Coding: Ruby

 # First: any unknown method is treated as the name of a tag.
 alias method_missing tag
 # Second: run a block in a new instance of the class.
 def self.generate(out, &block)
 XML.new(out).instance_eval(&block)
 end
end

8.12.2 Validated XML Output with Method Generation

The XML class of Example 11 is helpful for generating well-formed XML, but it does
no error checking to ensure that the output is valid according to any particular XML
grammar. In the next example, Example 12, we add some simple error checking (though
not nearly enough to ensure complete validity—that would require a much longer
example). This example is really two DSLs in one. The first is a DSL for defining an
XML grammar: a set of tags and the allowed attributes for each tag. You use it like this:

class HTMLForm < XMLGrammar
 element :form, : action => REQ,
 : method => “GET”,
 : enctype => “application/x-www-form-urlencoded”,
 : name => OPT
 element :input, : type => “text”, :name => OPT, :value => OPT,
 : maxlength => OPT, :size => OPT, :src => OPT,
 : checked => BOOL, :disabled => BOOL, :readonly => BOOL
 element :textarea, : rows => REQ, :cols => REQ, :name => OPT,
 : disabled => BOOL, :readonly => BOOL
 element :button, :name => OPT, :value => OPT,
 : type => “submit”, :disabled => OPT
end

This first DSL is defined by the class method XMLGrammar.element. You use it by
subclassing XMLGrammar to create a new class. The element method expects the name
of a tag as its first argument and a hash of legal attributes as the second argument.
The keys of the hash are attribute names. These names may map to default values
for the attribute, to the constant REQ for required attributes, or to the constant OPT

Reflection and Metaprogramming

3G E-LEARNING

237

for optional attributes. Calling element generates a method with the specified name
in the subclass you are defining.

The subclass of XMLGrammar you define is the second DSL, and you can use
it to generate XML output that is valid according to the rules you specified. The
XMLGrammar class does not have a method_missing method so it won’t allow you
to use a tag that is not part of the grammar. And the tag method for outputting tags
performs error checking on your attributes. Use the generated grammar subclass like
the XML class of

Example 11:
HTMLForm.generate(STDOUT) do
 comment “This is a simple HTML form”
 form : name => “registration”,
 : action => “http://www.example.com/register.cgi” do
 content “Name:”
 input :name => “name”
 content “Address:”
 textarea :name => “address”, :rows=>6, :cols=>40 do
 “Please enter your mailing address here”
 end
 button { “Submit” }
 end
end

Example 12 shows the implementation of the XMLGrammar class.

Example 12. A DSL for validated XML output
class XMLGrammar
 # Create an instance of this class, specifying a stream or object to
 # hold the output. This can be any object that responds to <<(String).
 def initialize(out)
 @out = out # Remember where to send our output
 End

Invoke the block in an instance that outputs to the specified stream.

3G E-LEARNING

238 Basic Computer Coding: Ruby

 def self.generate(out, &block)
 new(out).instance_eval(&block)
 end

Define an allowed element (or tag) in the grammar.
 # This class method is the grammar-specification DSL
 # and defines the methods that constitute the XML-output DSL.
 def self.element(tagname, attributes={})
 @allowed_attributes ||= {}
 @allowed_attributes[tagname] = attributes

class_eval %Q{
 def #{tagname}(attributes={}, &block)
 tag(:#{tagname},attributes,&block)
 end
 }
 End

These are constants used when defining attribute values.
 OPT =: opt # for optional attributes
 REQ =: req # for required attributes
 BOOL =: bool # for attributes whose value is their own name
 def self.allowed_attributes
 @allowed_attributes
 end

Output the specified object as CDATA, return nil.
 def content(text)
 @out << text.to_s
 nil
 end

Output the specified object as a comment, return nil.

Reflection and Metaprogramming

3G E-LEARNING

239

 def comment(text)
 @out << “<!-- #{text} -->”
 nil
 end

Output a tag with the specified name and attribute.
 # If there is a block, invoke it to output or return content.
 # Return nil.
 def tag(tagname, attributes={})
 # Output the tag name
 @out << “<#{tagname}”

Get the allowed attributes for this tag.
 allowed = self.class.allowed_attributes[tagname]
 # First, make sure that each of the attributes is allowed.
 # Assuming they are allowed, output all of the specified ones.
 attributes.each_pair do |key,value|
 raise “unknown attribute: #{key}” unless allowed.include?(key)
 @out << “ #{key}=’#{value}’”
 end

Now look through the allowed attributes, checking for
 # required attributes that were omitted and for attributes with
 # default values that we can output.
 allowed.each_pair do |key,value|
 # If this attribute was already output, do nothing.
 next if attributes.has_key? key
 if (value == REQ)
 raise “required attribute ‘#{key}’ missing in <#{tagname}>”
 elsif value.is_a? String
 @out << “ #{key}=’#{value}’”
 end
 end

3G E-LEARNING

240 Basic Computer Coding: Ruby

if block_given?
 # This block has content
 @out << ‘>’ # End the opening tag
 content = yield # Invoke the block to output or return content
 if content # If any content returned
 @out << content.to_s # Output it as a string
 end
 @out << “</#{tagname}>” # Close the tag
 else
 # Otherwise, this is an empty tag, so just close it.
 @out << ‘/>’
 end
nil # Tags output themselves, so they don’t return any content.
 end
end

Reflection and Metaprogramming

3G E-LEARNING

241

ROLE MODEL

DENNIS RITCHIE: AMERICAN COMPUTER
SCIENTIST
Dennis MacAlistair Ritchie was an American computer scientist.
He created the C programming language and, with long-time
colleague Ken Thompson, the Unix operating system and B
programming language. Ritchie and Thompson were awarded
the Turing Award from the ACM in 1983, the Hamming Medal
from the IEEE in 1990 and the National Medal of Technology
from President Bill Clinton in 1999. Ritchie was the head of
Lucent Technologies System Software Research Department
when he retired in 2007. He was the “R” in K&R C, and
commonly known by his username dmr.

Personal life and career

Dennis Ritchie was born in Bronxville, New York. His father
was Alistair E. Ritchie, a longtime Bell Labs scientist and co-
author of The Design of Switching Circuits on switching circuit
theory. As a child, Dennis moved with his family to Summit,
New Jersey, where he graduated from Summit High School.

In 1967, Ritchie began working at the Bell Labs Computing
Sciences Research Center, and in 1968, he defended his PhD
thesis on “Computational Complexity and Program Structure”
at Harvard under the supervision of Patrick C. Fischer.
However, Ritchie never officially received his PhD degree
as he did not submit a bound copy of his dissertation to the
Harvard library, a requirement for the degree. In 2020, the
Computer History museum worked with Ritchie’s family and
Fischer’s family and found a copy of the lost dissertation.

During the 1960s, Ritchie and Ken Thompson worked
on the Multics operating system at Bell Labs. Thompson
then found an old PDP-7 machine and developed his own
application programs and operating system from scratch, aided
by Ritchie and others. In 1970, Brian Kernighan suggested the
name “Unix”, a pun on the name “Multics”. To supplement
assembly language with a system-level programming language,
Thompson created B. Later, B was replaced by C, created by
Ritchie, who continued to contribute to the development of

3G E-LEARNING

242 Basic Computer Coding: Ruby

Unix and C for many years. During the 1970s, Ritchie collaborated with James Reeds
and Robert Morris on a ciphertext-only attack on the M-209 US cipher machine that
could solve messages of at least 2000–2500 letters. Ritchie relates that, after discussions
with the National Security Agency, the authors decided not to publish it, as they were
told that the principle was applicable to machines still in use by foreign governments.

Ritchie was also involved with the development of the Plan 9 and Inferno operating
systems, and the programming language Limbo.

As part of an AT&T restructuring in the mid-1990s, Ritchie was transferred to
Lucent Technologies, where he retired in 2007 as head of System Software Research
Department.

C and Unix

Ritchie is best known as the creator of the C programming language, a key developer
of the Unix operating system, and co-author of the book The C Programming Language;
he was the ‘R’ in K&R (a common reference to the book’s authors Kernighan and
Ritchie). Ritchie worked together with Ken Thompson, who is credited with writing
the original version of Unix; one of Ritchie’s most important contributions to Unix was
its porting to different machines and platforms. They were so influential on Research
Unix that Doug McIlroy later wrote, “The names of Ritchie and Thompson may safely
be assumed to be attached to almost everything not otherwise attributed.”

Ritchie liked to emphasize that he was just one member of a group. He suggested
that many of the improvements he introduced simply “looked like a good thing to
do,” and that anyone else in the same place at the same time might have done the
same thing.

Nowadays, the C language is widely used in application, operating system, and
embedded system development, and its influence is seen in most modern programming
languages. C fundamentally changed the way computer programs were written. For the
first time C enabled the same program to work on different machines. Much modern
software[which?] is written using one of C’s more evolved dialects.[citation needed]
Apple has used Objective-C in macOS (derived from NeXTSTEP) and Microsoft uses
C#, and Java is used by Android. Ritchie and Thompson used C to write UNIX. Unix
has been influential establishing computing concepts and principles that have been
widely adopted.

In an interview from 1999, Ritchie clarified that he saw Linux and BSD operating
systems as a continuation of the basis of the Unix operating system, and as derivatives
of Unix:

I think the Linux phenomenon is quite delightful, because it draws so strongly
on the basis that Unix provided. Linux seems to be among the healthiest of the direct
Unix derivatives, though there are also the various BSD systems as well as the more

Reflection and Metaprogramming

3G E-LEARNING

243

official offerings from the workstation and mainframe manufacturers.
In the same interview, he stated that he viewed both Unix and Linux as “the

continuation of ideas that were started by Ken and me and many others, many years
ago.”

Awards

In 1983, Ritchie and Thompson received the Turing Award “for their development
of generic operating systems theory and specifically for the implementation of the
UNIX operating system”. Ritchie’s Turing Award lecture was titled “Reflections on
Software Research”. In 1990, both Ritchie and Thompson received the IEEE Richard
W. Hamming Medal from the Institute of Electrical and Electronics Engineers (IEEE),
“for the origination of the UNIX operating system and the C programming language”.

In 1997, both Ritchie and Thompson were made Fellows of the Computer History
Museum, “for co-creation of the UNIX operating system, and for development of the
C programming language.”

On April 21, 1999, Thompson and Ritchie jointly received the National Medal of
Technology of 1998 from President Bill Clinton for co-inventing the UNIX operating
system and the C programming language which, according to the citation for the
medal, “led to enormous advances in computer hardware, software, and networking
systems and stimulated growth of an entire industry, thereby enhancing American
leadership in the Information Age”.

In 2005, the Industrial Research Institute awarded Ritchie its Achievement Award
in recognition of his contribution to science and technology, and to society generally,
with his development of the Unix operating system.

In 2011, Ritchie, along with Thompson, was awarded the Japan Prize for Information
and Communications for his work in the development of the Unix operating system.

Death

Ritchie was found dead on October 12, 2011, at the age of 70 at his home in Berkeley
Heights, New Jersey, where he lived alone. First news of his death came from his
former colleague, Rob Pike. He had been in frail health for several years following
treatment for prostate cancer and heart disease. News of Ritchie’s death was largely
overshadowed by the media coverage of the death of Apple co-founder Steve Jobs,
which occurred the week before.

Legacy

Following Ritchie’s death, computer historian Paul E. Ceruzzi stated:

3G E-LEARNING

244 Basic Computer Coding: Ruby

Ritchie was under the radar. His name was not a household name at all, but... if you had
a microscope and could look in a computer, you’d see his work everywhere inside.

In an interview shortly after Ritchie’s death, long time colleague Brian Kernighan
said Ritchie never expected C to be so significant. Kernighan told The New York
Times “The tools that Dennis built—and their direct descendants—run pretty much
everything today.” Kernighan reminded readers of how important a role C and Unix
had played in the development of later high-profile projects, such as the iPhone. Other
testimonials to his influence followed.

Reflecting upon his death, a commentator compared the relative importance of Steve
Jobs and Ritchie, concluding that “[Ritchie’s] work played a key role in spawning the
technological revolution of the last forty years—including technology on which Apple
went on to build its fortune.” Another commentator said, “Ritchie, on the other hand,
invented and co-invented two key software technologies which make up the DNA of
effectively every single computer software product we use directly or even indirectly
in the modern age. It sounds like a wild claim, but it really is true.” Another said,
“many in computer science and related fields knew of Ritchie’s importance to the
growth and development of, well, everything to do with computing,...”

The Fedora 16 Linux distribution, which was released about a month after he
died, was dedicated to his memory. FreeBSD 9.0, released January 12, 2012 was also
dedicated in his memory.

Asteroid 294727 Dennisritchie, discovered by astronomers Tom Glinos and David
H. Levy in 2008, was named in his memory. The official naming citation was published
by the Minor Planet Center on 7 February 2012 (M.P.C. 78272).

Reflection and Metaprogramming

3G E-LEARNING

245

SUMMARY
 ■ Ruby is a very dynamic language; you can insert new methods into classes

at runtime, create aliases for existing methods, and even define methods on
individual objects.

 ■ Ruby’s reflection API—along with its generally dynamic nature, its blocks-
and-iterators control structures, and its parentheses-optional syntax—makes
it an ideal language for metaprogramming.

 ■ Metaprogramming is closely tied to the idea of writing domain specific
languages, or DSLs. DSLs in Ruby typically use method invocations and
blocks as if they were keywords in a task-specific extension to the language.

 ■ A method related to the private include method is the public Object.extend.
This method extends an object by making the instance methods of each of
the specified modules into singleton methods of the object.

 ■ A Binding object represents the state of Ruby’s variable bindings at some
moment. The Kernel.binding object returns the bindings in effect at the
location of the call.

 ■ The Object class defines a method named instance_eval, and the Module class
defines a method named class_eval. (module_eval is a synonym for class_eval.)

 ■ The Object and Module classes define a number of methods for listing,
querying, invoking, and defining methods.

 ■ Ruby defines a number of features for tracing the execution of a program.
These are mainly useful for debugging code and printing informative error
messages.

 ■ The ObjectSpace module defines a handful of low-level methods that can be
occasionally useful for debugging or metaprogramming.

 ■ Ruby’s use of blocks, coupled with its parentheses-optional syntax, make it
very easy to define iterator methods that look like and behave like control
structures.

 ■ Ruby’s use of blocks, coupled with its parentheses-optional syntax, make it
very easy to define iterator methods that look like and behave like control
structures.

 ■ The method_missing method is a key part of Ruby’s method lookup algorithm
and provides a powerful way to catch and handle arbitrary invocations on
an object.

 ■ One important metaprogramming technique is the use of methods that create
methods. The attr_reader and attr_accessor methods are examples.

3G E-LEARNING

246 Basic Computer Coding: Ruby

KNOWLEDGE CHECK
1. What is a way of passing arguments into a method that pairs a key that functions

as the argument name, with its value?
a. Arguments
b. Mass Assignment
c. Keyword Arguments
d. Keyword Parameters

2. Which of the following is supports by Ruby?
a. Multiple programming paradigms
b. Dynamics type of system
c. Automatic memory management
d. All of the above

3. It is must for Ruby to use a compiler.
a. True
b. False

4. Which of the following statement is not a feature of ruby?
a. Ruby cannot be connected to Database
b. Ruby is interpreted programming language
c. Ruby can be embedded into HTML.
d. None of the above

5. Which of the following is not a valid datatype in Ruby?
a. Integer
b. String
c. Timedate
d. Float

Reflection and Metaprogramming

3G E-LEARNING

247

REVIEW QUESTIONS
1. Which methods are used to determine the type of an object? Explain.
2. How to evaluate strings and blocks? Describe.
3. Discuss about thread safety with synchronized blocks.
4. Focus on tracing method invocations with method_missing.
5. Describe chaining methods for thread safety.

Check Your Result

1. (c) 2. (d) 3. (b) 4. (a) 5. (c)

3G E-LEARNING

248 Basic Computer Coding: Ruby

REFERENCES
1. Anonymous. (2018). Ruby ProgrammingLanguage Tutorials Point. Available at

https://store.tutorialspoint.com
2. Anonymous. (2019). How Ruby Interprets and Runs Your Programs. Available

at https://www.honeybadger.io/. Last access 18/04/2019.
3. Anonymous. (2019). Learn Ruby Programming Language. Available at https://

www.tutorialspoint.com/ruby/ last access 20/04/2019.
4. Anonymous. (2019). Ruby programming tutorial. Available at https://ruby-lang.

co/what-are-the-disadvantages-of-ruby/. Last access 18/04/2019
5. B. Daloze, C. Seaton, D. Bonetta, and H. Mossenb ¨ ock. Techniques ¨ and

applications for guest-language safepoints. In Proceedings of the 10th International
Conference on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages and Tools, 2015.

6. C. Humer, C. Wimmer, C. Wirth, A. Woß, and T. W ¨ urthinger. ¨ A domain-
specific language for building self-optimizing AST interpreters. In Proceedings
of the International Conference on Generative Programming: Concepts and
Experiences, 2014.

7. David Flanagan and Yukihiro Matsumoto.(2008).The Ruby Programming Language.
First edition

8. G. Duboscq, T. Wurthinger, L. Stadler, C. Wimmer, D. Simon, and ¨ H. Mossenb ¨
ock. An intermediate representation for speculative ¨ optimizations in a dynamic
compiler. In VMIL ’13: Proceedings of the 7th ACM workshop on Virtual machines
and intermediate languages, 2013.

9. Huw Collingbourne. (2008). The Little Book of Rubysecond edition.
10. Marr, C. Seaton, and S. Ducasse. Zero-overhead metaprogramming: Reflection

and metaobject protocols fast and without compromises. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2015.

11. Robert W. Sebesta. (2012). Concepts of Programming Languages 11th Edition.
University of Colorado at Colorado Springs.

12. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at Full Speed. In
Proceedings of the 8th Workshop on Dynamic Languages and Applications
(DYLA), 2014.

13. Seaton. Specialising Dynamic Techniques for Implementing The Ruby Programming
Language. PhD thesis, The University of Manchester, 2015.

14. T. Wurthinger, A. W ¨ oß, L. Stadler, G. Duboscq, D. Simon, and ¨ C. Wimmer.
Self-optimizing AST interpreters. In Proceedings of the 8th Symposium on
Dynamic languages, 2013b.

Reflection and Metaprogramming

3G E-LEARNING

249

15. T. Wurthinger, C. Wimmer, A. W ¨ oß, L. Stadler, G. Duboscq, ¨ C. Humer, G.
Richards, D. Simon, and M. Wolczko. One VM to rule them all. In Onward!
’13: Proceedings of the 2013 ACM international symposium on New ideas, new
paradigms, and reflections on programming & software, 2013a.

16. Woß, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and ¨ H. Mossenb ¨ ock. An
object storage model for the Truffle lan- ¨ guage implementation framework. In
Proceedings of the 2014 International Conference on Principles and Practices of
Programming on the Java platform: Virtual machines, Languages, and Tools, 2014.

“The only way to learn a new programming language is by writing programs in it.”

–Dennis Ritchie

After studying this chapter, you will
be able to:

1. Define simple methods

2. Describe method names and
how it is used

3. Discuss on methods and
parentheses

4. Explain the concept of method
arguments

5. Describe how to create proc
objects in both proc and
lambda forms

6. Define closures and shared
variables

7. Deal with unbound method
objects

8. Explain the concept of
functional programming

LEARNING
OBJECTIVES

METHODS, PRCS,
LAMBDAS, AND
CLOSURE

INTRODUCTION
A method is a named block of parameterized code associated
with one or more objects. A method invocation specifies
the method name, the object on which it is to be invoked

9
CHAPTER

3G E-LEARNING

252 Basic Computer Coding: Ruby

(sometimes called the receiver), and zero or more argument values that are assigned
to the named method parameters. The value of the last expression evaluated in the
method becomes the value of the method invocation expression.

Many languages distinguish between functions, which have no associated object,
and methods, which are invoked on a receiver object. Because Ruby is a purely object-
oriented language, all methods are true methods and are associated with at least one
object. We have not covered class definitions in Ruby yet, so the example methods
defined look like global functions with no associated object. In fact, Ruby implicitly
defines and invokes them as private methods of the Object class.

Methods are a fundamental part of Ruby’s syntax, but they are not values that
Ruby programs can operate on. That is, Ruby’s methods are not objects in the way
that strings, numbers, and arrays are. It is possible, however, to obtain a Method
object that represents a given method, and we can invoke methods indirectly through
Method objects.

Methods are not Ruby’s only form of parameterized executable code. Blocks,
which we introduced, are executable chunks of code and may have parameters. Unlike
methods, blocks do not have names, and they can only be invoked indirectly through
an iterator method.

Blocks, like methods, are not objects that Ruby can manipulate. But it’s possible to
create an object that represents a block, and this is actually done with some frequency
in Ruby programs. A Proc object represents a block. Like a Method object, we can
execute the code of a block through the Proc that represents it. There are two varieties
of Proc objects, called procs and lambdas, which have slightly different behavior.
Both procs and lambdas are functions rather than methods invoked on an object. An
important feature of procs and lambdas is that they are closures: they retain access
to the local variables that were in scope when they were defined, even when the proc
or lambda is invoked from a different scope.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

253

9.1 DEFINING SIMPLE METHODS
You have seen many method invocations in examples
throughout this book, and method invocation syntax was
described. Now we turn to the syntax for defining methods.
We explain more advanced material and are relevant to both
method definition and method invocation.

Methods are defined with the def keyword. This is followed
by the method name and an optional list of parameter names
in parentheses. The Ruby code that constitutes the method
body follows the parameter list, and the end of the method
is marked with the end keyword. Parameter names can be
used as variables within the method body, and the values
of these named parameters come from the arguments to a
method invocation.

Here is an example method:
Define a method named ‘factorial’ with a single parameter

‘n’
def factorial(n)
 if n < 1 # Test the argument value for

validity
 raise “argument must be > 0”

 elsif n == 1 # If the argument is 1
1 # then the value of the method invocation is 1
else # Otherwise, the factorial of n is n times

 n * factorial(n-1) # the factorial of n-1
 end

Method
invocation
refers to how a
method is called
in a program.
The process of
invoking a method
in Ruby is quite
easy since the use
of parenthesis is
optional

Keyword

3G E-LEARNING

254 Basic Computer Coding: Ruby

end

This code defines a method named factorial. The method has a single parameter
named n. The identifier n is used as a variable within the body of the method. This is
a recursive method, so the body of the method includes an invocation of the method.
The invocation is simply the name of the method followed by the argument value in
parentheses.

9.1.1 Method Return Value

Methods may terminate normally or abnormally. Abnormal termination occurs when the
method raises an exception. The factorial method shown earlier terminates abnormally
if we pass it an argument less than 1. If a method terminates normally, then the value
of the method invocation expression is the value of the last expression evaluated
within the method body. In the factorial method, that last expression will either be 1
or n*factorial(n-1).

The return keyword is used to force a return prior to the end of the method. If an
expression follows the return keyword, then the value of that expression is returned.
If no expression follows, then the return value is nil. In the following variant of the
factorial method, the return keyword is required:

def factorial(n)
 raise “bad argument” if n < 1
return 1 if n == 1
 n * factorial(n-1)
end

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

255

We could also use return on the last line of this method body to emphasize that
this expression is the method’s return value. In common practice, however, return is
omitted where it is not required.

Ruby methods may return more than one value. To do this, use an explicit return
statement, and separate the values to be returned with commas:

Convert the Cartesian point (x,y) to polar (magnitude, angle) coordinates
def polar(x,y)
 return Math.hypot(y,x), Math.atan2(y,x)
end
When there is more than one return value, the values are collected into an array,

and the array becomes the single return value of the method. Instead of using the return
statement with multiple values, we can simply create an array of values ourselves:

Convert polar coordinates to Cartesian coordinates
def cartesian(magnitude, angle)
 [magnitude*Math.cos(angle), magnitude*Math.sin(angle)]
end
Methods of this form are typically intended for use with parallel assignment so

that each return value is assigned to a separate variable:

distance, theta = polar(x,y)
x,y = cartesian(distance,theta)

9.1.2 Methods and Exception Handling

A def statement that defines a method may include exception-handling code in the
form of rescue, else, and ensure clauses, just as a begin statement can. These exception
handling clauses go after the end of the method body but before the end of the def
statement. In short methods, it can be particularly tidy to associate your rescue clauses
with the def statement. This also means you don’t have to use a begin statement and
the extra level of indentation that comes with it.

3G E-LEARNING

256 Basic Computer Coding: Ruby

9.1.3 Invoking a Method on an Object

Methods are always invoked on an object. (This object is
sometimes called the receiver in a reference to an object-
oriented paradigm in which methods are called “messages” and
are “sent to” receiver objects.) Within the body of a method,
the keyword self refers to the object on which the method
was invoked. If we do not specify an object when invoking a
method, then the method is implicitly invoked on self.

Notice, however, that you have already seen examples of
invoking methods on objects, in code like this:

Like most object-oriented languages, Ruby uses. to separate
the object from the method to be invoked on it. This code
passes the value of the variable pattern to the method named
index of the object stored in the variable text, and stores the
return value in the variable first.

9.1.4 Defining Singleton Methods

The methods we have defined so far are all global methods. If
we place a def statement like the ones shown earlier inside a
class statement, then the methods that are defined are instance
methods of the class; these methods are defined on all objects
that are instances of the class. It is also possible, however, to
use the def statement to define a method on a single specified
object. Simply follow the def keyword with an expression that
evaluates to an object. This expression should be followed
by a period and the name of the method to be defined. The
resulting method is known as a singleton method because it
is available only on a single object:

Exception
handling
is the process of
responding to
the occurrence
of exceptions
– anomalous
or exceptional
conditions
requiring special
processing – during
the execution of a
program.

Keyword

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

257

o = “message” # A string is an object
def o.printme # Define a singleton method for this object
 puts self
end
o.printme # Invoke the singleton

Class methods such as Math.sin and File.delete are actually singleton methods.
Math is a constant that refers to a Module object, and File is a constant that refers
to a Class object. These two objects have singleton methods named sin and delete,
respectively.

Ruby implementations typically treat Fixnum and Symbol values as immediate
values rather than as true object references For this reason, singleton methods may
not be defined on Fixnum and Symbol objects. For consistency, singletons are also
prohibited on other Numeric objects.

9.1.5 Undefining Methods

Methods are defined with the def statement and may be undefined with the undef
statement:

def sum(x,y); x+y; end # Define a method
puts sum(1,2) # Use it
undef sum # And undefine it

In this code, the def statement defines a global method, and undef undefines
it. undef also works within classes to undefine the instance methods of the class.
Interestingly, undef can be used to undefine inherited methods, without affecting
the definition of the method in the class from which it is inherited. Suppose class A
defines a method m, and class B is a subclass of A and therefore inherits m. If you
do not want to allow instances of class B to be able to invoke m, you can use undef
m within the body of the subclass.

undef is not a commonly used statement. In practice, it is much more common to
redefine a method with a new def statement than it is to undefine or delete the method.

Note that the undef statement must be followed by a single identifier that specifies
the method name. It cannot be used to undefine a singleton method in the way that
def can be used to define such a method.

3G E-LEARNING

258 Basic Computer Coding: Ruby

Within a class or module, you can also use undef_method
(a private method of Module) to undefine methods. Pass a
symbol representing the name of the method to be undefined.

9.2 METHOD NAMES
By convention, method names begin with a lowercase letter.
(Method names can begin with a capital letter, but that makes
them look like constants.) When a method name is longer than
one word, the usual convention is to separate the words with
underscore like_this rather than using mixed case likeThis.

Method names may (but are not required to) end with
an equals sign, a question mark, or an exclamation point. An
equals sign suffix signifies that the method is a setter that can
be invoked using assignment syntax. The question mark and
exclamation point suffixes have no special meaning to the
Ruby interpreter, but they are allowed because they enable
two extraordinarily useful naming conventions.

The first convention is that any method whose name
ends with a question mark returns a value that answers
the question posed by the method invocation. The empty?
method of an array, for example, returns true if the array has
no elements. Methods like these are called predicates and.
Predicates typically return one of the Boolean values true or
false, but this is not required, as any value other than false
or nil works like true when a Boolean value is required. (The
Numeric method nonzero?, for example, returns nil if the
number it is invoked on is zero, and just returns the number
otherwise.)

The second convention is that any method whose name
ends with an exclamation mark should be used with caution.

The array object has a sort method that makes a copy of the array, and then sorts
that copy. It also has a sort! method that sorts the array in place. The exclamation
mark indicates that you need to be more careful when using that version of the
method.

Often, methods that end with an exclamation mark are
mutators, which alter the internal state of an object. But this is
not always the case; there are many mutators that do not end

Numerical
method
is a mathematical
tool designed to
solve numerical
problems. The
implementation
of a numerical
method with
an appropriate
convergence check
in a programming
language is called
a numerical
algorithm.

Keyword

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

259

with an exclamation mark, and a number of nonmutators that do. Mutating methods
(such as Array.fill) that do not have a nonmutating variant do not typically have an
exclamation point.

Consider the global function exit: it makes the Ruby program stop running in a
controlled way. There is also a variant named exit! that aborts the program immediately
without running any END blocks or shutdown hooks registered with at_exit. exit!
isn’t a mutator; it’s the “dangerous” variant of the exit method and is flagged with !
to remind a programmer using it to be careful.

9.2.1 Operator Methods

Many of Ruby’s operators, such as +, *, and even the array index operator [], are
implemented with methods that you can define in your own classes. You define an
operator by defining a method with the same “name” as the operator. (The only
exceptions are the unary plus and minus operators, which use method names +@ and
-@.) Ruby allows you to do this even though the method name is all punctuation. You
might end up with a method definition like this:

def +(other) # Define binary plus operator: x+y is x.+(y)
 self.concatenate(other)
end
Methods that define a unary operator are passed no arguments. Methods that

define binary operators are passed one argument and should operate on self and
the argument. The array access operators [] and []= are special because they can be
invoked with any number of arguments. For []=, the last argument is always the value
being assigned.

9.2.2 Method Aliases

It is not uncommon for methods in Ruby to have more than one name. The language
has a keyword alias that serves to define a new name for an existing method. Use it
like this:

alias aka also_known_as # alias new_name existing_name

3G E-LEARNING

260 Basic Computer Coding: Ruby

After executing this statement, the identifier aka will refer to the same method
thats also_known_as does.

Method aliasing is one of the things that makes Ruby an expressive and natural
language. When there are multiple names for a method, you can choose the one that
seems most natural in your code. The Range class, for example, defines a method for
testing whether a value falls within the range. You can call this method with the name
include? or with the name member?. If you are treating a range as a kind of set, the
name member? may be the most natural choice.

A more practical reason for aliasing methods is to insert new functionality into a
method. The following is a common idiom for augmenting existing methods:

def hello # A nice simple method
 puts “Hello World” # Suppose we want to augment it...
end
alias original_hello hello # Give the method a backup name
def hello # Now we define a new method with the

old name
 puts “Your attention please” # That does some stuff
 original_hello # Then calls the original method
 puts “This has been a test” # Then does some more stuff
end

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

261

In this code, we are working on global methods. It is more common to use alias
with the instance methods of a class. In this situation, alias must be used within the
class whose method is to be renamed. Classes in Ruby can be “reopened”—which
means that your code can take an existing class, ‘open’ it with a class statement, and
then use alias as shown in the example to augment or alter the existing methods of
that class.

9.3 METHODS AND PARENTHESES
Ruby allows parentheses to be omitted from most method invocations. In simple
cases, this results in clean-looking code. In complex cases, however, it causes syntactic
ambiguities and confusing corner cases. We will \ consider these as follow.

9.3.1 Optional Parentheses

Parentheses are omitted from method invocations in many common Ruby idioms. The
following two lines of code, for example, are equivalent:

puts “Hello World”
puts(“Hello World”)
In the first line, puts looks like a keyword, statement, or command built in to the

language. The equivalent second line demonstrates that it is simply the invocation of
a global method, with the parentheses omitted. Although the second form is clearer,
the first form is more concise, more commonly used, and arguably more natural.

Next, consider this code:
greeting = “Hello”
size = greeting.length
If you are accustomed to other object-oriented languages, you may think that

length is a property, field, or variable of string objects. Ruby is strongly object oriented,
however, and its objects are fully encapsulated; the only way to interact with them
is by invoking their methods. In this code, greeting.length is a method invocation.
The length method expects no arguments and is invoked without parentheses. The
following code is equivalent:

size = greeting.length()
Including the optional parentheses emphasizes that a method invocation is occurring.

Omitting the parentheses in method invocations with no arguments gives the illusion
of property access, and is a very common practice.

Parentheses are very commonly omitted when there are zero or one arguments
to the invoked method. Although it is less common, the parentheses may be omitted
even when there are multiple arguments, as in the following code:

3G E-LEARNING

262 Basic Computer Coding: Ruby

x = 3 # x is a number
x.between? 1,5 # same as x.between?(1,5)
Parentheses may also be omitted around the parameter list in method definitions,

though it is hard to argue that this makes your code clearer or more readable. The
following code, for example, defines a method that returns the sum of its arguments:

def sum x, y
 x+y
end

9.3.2 Required Parentheses

Some code is ambiguous if the parentheses are omitted, and here Ruby requires that
you include them. The most common case is nested method invocations of the form
f g x, y. In Ruby, invocations of that form mean f(g(x,y)). Ruby 1.8 issues a warning,
however, because the code could also be interpreted as f(g(x),y). The warning has
been removed in Ruby 1.9. The following code, using the sum method defined above,
prints 4, but issues a warning in Ruby 1.8:

puts sum 2, 2
To remove the warning, rewrite the code with parentheses around the arguments:

puts sum(2,2)
Note that using parentheses around the outer method invocation does not resolve

the ambiguity:

puts(sum 2,2) # Does this mean puts(sum(2,2)) or puts(sum(2), 2)?

An expression involving nested function calls is only ambiguous when there is
more than one argument. The Ruby interpreter can only interpret the following code
in one way:

puts factorial x # This can only mean puts(factorial(x))
Despite the lack of ambiguity here, Ruby 1.8 still issues a warning if you omit

the parentheses around the x.
Sometimes omitting parentheses is a true syntax error rather than a simple warning.

The following expressions, for example, are completely ambiguous without parentheses,
and Ruby doesn’t even attempt to guess what you mean:

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

263

puts 4, sum 2,2 # Error: does the second comma go with
the 1st or 2nd method?
[sum 2,2] # Error: two array elements or one?

There is another wrinkle that arises from the fact that
parentheses are optional. When you do use parentheses in a
method invocation, the opening parenthesis must immediately
follow the method name, with no intervening space. This is
because parentheses do double-duty: they can be used around
an argument list in a method invocation, and they can be used
for grouping expressions.

Consider the following two expressions, which differ only
by a single space:

square(2+2)*2 # square(4)*2 = 16*2 = 32
square (2+2)*2 # square(4*2) = square(8) = 64
In the first expression, the parentheses represent method

invocation. In the second, they represent expression grouping.
To reduce the potential for confusion, you should always
use parentheses around a method invocation if any of the
arguments use parentheses. The second expression would be
written more clearly as:

square((2+2)*2)

We’ll end this discussion of parentheses with one final
twist. Recall that the following expression is ambiguous and
causes a warning:

puts(sum 2,2) # Does this mean puts(sum(2,2)) or
puts(sum(2), 2)?

The best way to resolve this ambiguity is to put parentheses
around the arguments to the sum method. Another way is to
add a space between puts and the opening parenthesis:

puts (sum 2,2)

Parenthesis or
parenthetical
phrase is an
explanatory or
qualifying word,
clause, or sentence
inserted into a
passage.

Keyword

3G E-LEARNING

264 Basic Computer Coding: Ruby

Adding the space converts the method invocation parentheses into expression
grouping parentheses. Because these parentheses group a subexpression, the comma
can no longer be interpreted as an argument delimiter for the puts invocation.

9.4 METHOD ARGUMENTS
Simple method declarations include a comma-separated list of argument names (in
optional parentheses) after the method name. But there is much more to Ruby’s method
arguments.

 ■ How to declare an argument that has a default value, so that the argument
can be omitted when the method is invoked

 ■ How to declare a method that accepts any number of arguments
 ■ How to simulate named method arguments with special syntax for passing

a hash to a method
 ■ How to declare a method so that the block associated with an invocation of

the method is treated as a method argument

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

265

9.4.1 Parameter Defaults

When you define a method, you can specify default values for some or all of the
parameters. If you do this, then your method may be invoked with fewer argument
values than the declared number of parameters. If arguments are omitted, then the
default value of the parameter is used in its place. Specify a default value by following
the parameter name with an equals sign and a value:

def prefix(s, len=1)
 s[0,len]
end

This method declares two parameters, but the second one has a default. This
means that we can invoke it with either one argument or two:

prefix(“Ruby”, 3) # => “Rub”
prefix(“Ruby”) # => “R”

Argument defaults need not be constants: they may be arbitrary expressions, and
can be referred to instance variables and to previous parameters in the parameter list.
For example:

Return the last character of s or the substring from index to the end
def suffix(s, index=s.size-1)
 s[index, s.size-index]
end

Parameter defaults are evaluated when a method is invoked rather than when it is
parsed. In the following method, the default value [] produces a new empty array on
each invocation, rather than reusing a single array created when the method is defined:

Append the value x to the array a, return a.
If no array is specified, start with an empty one.
def append(x, a=[])
 a << x

3G E-LEARNING

266 Basic Computer Coding: Ruby

end
In Ruby 1.8, method parameters with default values must appear after all ordinary

parameters in the parameter list. Ruby 1.9 relaxes this restriction and allows ordinary
parameters to appear after parameters with defaults. It still requires all parameters
with defaults to be adjacent in the parameter list—you can’t declare two parameters
with default values with an ordinary parameter between them, for example. When a
method has more than one parameter with a default value, and you invoke the method
with an argument for some, but not all, of these parameters, they are filled in from
left to right. Suppose a method has two parameters, and both of those parameters
have defaults. You can invoke this method with zero, one, or two arguments. If you
specify one argument, it is assigned to the first parameter and the second parameter
uses its default value. There is no way, however, to specify a value for the second
parameter and use the default value of the first parameter.

9.4.2 Variable-Length Argument Lists and Arrays

Sometimes we want to write methods that can accept an arbitrary number of arguments.
To do this, we put an * before one of the method’s parameters. Within the body of the
method, this parameter will refer to an array that contains the zero or more arguments
passed at that position. For example:

Return the largest of the one or more arguments passed
def max(first, *rest)
 # Assume that the required first argument is the largest
 max = first
 # Now loop through each of the optional arguments looking for bigger ones
 rest.each {|x| max = x if x > max }
 # Return the largest one we found
 max
end

The max method requires at least one argument, but it may accept any number
of additional arguments. The first argument is available through the first parameter.
Any additional arguments are stored in the rest array. We can invoke max like this:

max(1) # first=1, rest=[]
max(1,2) # first=1, rest=[2]

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

267

max(1,2,3) # first=1, rest=[2,3]
Note that in Ruby, all Enumerable objects automatically

have a max method, so the method defined here is not
particularly useful.

No more than one parameter may be prefixed with an
*. In Ruby 1.8, this parameter must appear after all ordinary
parameters and after all parameters with defaults specified.
It should be the last parameter of the method, unless the
method also has a parameter with an & prefix. In Ruby
1.9, a parameter with an * prefix must still appear after any
parameters with defaults specified, but it may be followed
by additional ordinary parameters. It must also still appear
before any &-prefixed parameter.

Passing arrays to methods

We have seen how * can be used in a method declaration to
cause multiple arguments to be gathered or coalesced into
a single array. It can also be used in a method invocation
to scatter, expand, or explode the elements of an array (or
range or enumerator) so that each element becomes a separate
method argument. The * is sometimes called the splat operator,
although it is not a true operator.

Suppose we wanted to find the maximum value in an
array (and that we did not know that Ruby arrays have a
built-in max method!). We could pass the elements of the
array to the max method like this:

data = [3, 2, 1]
m = max(*data) # first = 3, rest=[2,1] => 3

Consider what happens without the *:
m = max(data) # first = [3,2,1], rest=[] => [3,2,1]

In this case, we hare passing an array as the first and only
argument, and our max method returns that first argument
without performing any comparisons on it.

The * can also be used with methods that return arrays
to expand those arrays for use in another method invocation.
Consider the polar and cartesian methods defined:

Ruby
arrays are
ordered collections
of objects. They can
hold objects like
integer, number,
hash, string,
symbol or any
other array.

Keyword

3G E-LEARNING

268 Basic Computer Coding: Ruby

Convert the point (x,y) to Polar coordinates, then back to Cartesian
x,y = cartesian(*polar(x, y))

In Ruby 1.9, enumerators are splattable objects. To find the largest letter in a string,
for example, we could write:

max(*”hello world”.each_char) # => ‘w’

9.4.3 Mapping Arguments to Parameters

When a method definition includes parameters with default values or a parameter
prefixed with an *, the assignment of argument values to parameters during method
invocation gets a little bit tricky.

In Ruby 1.8, the position of the special parameters is restricted so that argument
values are assigned to parameters from left to right. The first arguments are assigned
to the ordinary parameters. If there are any remaining arguments, they are assigned
to the parameters that have defaults. And if there are still more arguments, they are
assigned to the array argument.

Ruby 1.9 has to be more clever about the way it maps arguments to parameters
because the order of the parameters is no longer constrained. Suppose we have a
method that is declared with o ordinary parameters, d parameters with default values,
and one array parameter prefixed with *. Now assume that we invoke this method
with a arguments.

If a is less than o, an ArgumentError is raised; we have not supplied the minimum
required number of arguments.

If a is greater than or equal to o and less than or equal to o+d, then the leftmost
a–o parameters with defaults will have arguments assigned to them. The remaining
(to the right) o+d–a parameters with defaults will not have arguments assigned to
them, and will just use their default values.

If a is greater than o+d, then the array parameter whose name is prefixed with an
* will have a–o–d arguments stored in it; otherwise, it will be empty.

Once these calculations are performed, the arguments are mapped to parameters
from left to right, assigning the appropriate number of arguments to each parameter.

9.4.4 Hashes for Named Arguments

When a method requires more than two or three arguments, it can be difficult for the
programmer invoking the method to remember the proper order for those arguments.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

269

Some languages allow you to write method invocations that explicitly specify a
parameter name for each argument that is passed. Ruby does not support this method
invocation syntax, but it can be approximated if you write a method that expects a
hash as its argument or as one of its arguments:

This method returns an array a of n numbers. For any index i, 0 <= i < n,
the value of element a[i] is m*i+c. Arguments n, m, and c are passed
as keys in a hash, so that it is not necessary to remember their order.
def sequence(args)
 # Extract the arguments from the hash.
 # Note the use of the || operator to specify defaults used
 # if the hash does not define a key that we are interested in.
 n = args[:n] || 0
 m = args[:m] || 1
 c = args[:c] || 0

a = [] # Start with an empty array
 n.times {|i| a << m*i+c } # Calculate the value of each array element

3G E-LEARNING

270 Basic Computer Coding: Ruby

 a # Return the array
end

You might invoke this method with a hash literal argument like this:
sequence({:n=>3, :m=>5}) # => [0, 5, 10]

In order to better support this style of programming, Ruby allows you to omit
the curly braces around the hash literal if it is the last argument to the method (or
if the only argument that follows it is a block argument, prefixed with &). A hash
without braces is sometimes called a bare hash, and when we use one it looks like
we are passing separate named arguments, which we can reorder however we like:

sequence(:m=>3, :n=>5) # => [0, 3, 6, 9, 12]

As with other ruby methods, we can omit the parentheses, too:

Ruby 1.9 hash syntax
sequence c:1, m:3, n:5 # => [1, 4, 7, 10, 13]

If you omit the parentheses, then you must omit the curly braces. If curly braces
follow the method name outside of parentheses, Ruby thinks you are passing a block
to the method:

sequence {:m=>3, :n=>5} # Syntax error!

9.4.5 Block Arguments

A block is a chunk of Ruby code associated with a method invocation, and that an
iterator is a method that expects a block. Any method invocation may be followed by
a block, and any method that has a block associated with it may invoke the code in
that block with the yield statement. To refresh your memory, the following code is a
block-oriented variant on the sequence method:

Generate a sequence of n numbers m*i + c and pass them to the block
def sequence2(n, m, c)
 i = 0
 while(i < n) # loop n times

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

271

 yield i*m + c # pass next element of the sequence to the block
 i += 1
 end
end
Here is how you might use this version of the method
sequence2(5, 2, 2) {|x| puts x } # Print numbers 2, 4, 6, 8, 10
One of the features of blocks is their anonymity. They are not passed to the method

in a traditional sense, they have no name, and they are invoked with a keyword
rather than with a method. If you prefer more explicit control over a block (so that
you can pass it on to some other method, for example), add a final argument to your
method, and prefix the argument name with an ampersand.* If you do this, then that
argument will refer to the block—if any—that is passed to the method. The value of
the argument will be a Proc object, and instead of using yield, you invoke the call
method of the Proc:

def sequence3(n, m, c, &b) # Explicit argument to get block as a Proc
 i = 0
 while(i < n)
 b.call(i*m + c) # Invoke the Proc with its call method
 i += 1
 end
end
Note that the block is still passed outside of the parentheses
sequence3(5, 2, 2) {|x| puts x }

Notice that using the ampersand in this way changes only the method definition.
The method invocation remains the same. We end up with the block argument being
declared inside the parentheses of the method definition, but the block itself is still
specified outside the parentheses of the method invocation.

A special kind of parameter must be the last one in the parameter list. Block
arguments prefixed with ampersands must really be the last one. Because blocks are
passed unusually in method invocations, named block arguments are different and
do not interfere with array or hash parameters in which the brackets and braces have
been omitted. The following two methods are legal, for example:

def sequence5(args, &b) # Pass arguments as a hash and follow with a block

3G E-LEARNING

272 Basic Computer Coding: Ruby

 n, m, c = args[:n], args[:m], args[:c]
 i = 0
 while(i < n)
 b.call(i*m + c)
 i += 1
 end
end

Expects one or more arguments, followed by a block
def max(first, *rest, &block)
 max = first
 rest.each {|x| max = x if x > max }
 block.call(max)
 max
end
These methods work fine, but notice that you can avoid the complexity of these

cases by simply leaving your blocks anonymous and calling them with yield.
It is also worth noting that the yield statement still works in a method defined with

an & parameter. Even if the block has been converted to a Proc object and passed as
an argument, it can still be invoked as an anonymous block, as if the block argument
was not there.

Using & in method invocation

We saw earlier that you can use * in a method definition to specify that multiple
arguments should be packed into an array, and that you can use * in a method
invocation to specify that an array should be unpacked so that its elements become
separate arguments. & can also be used in definitions and invocations. We’ve just
seen that & in a method definition allows an ordinary block associated with a method
invocation to be used as a named Proc object inside the method. When & is used
before a Proc object in a method invocation, it treats the Proc as if it was an ordinary
block following the invocation.

Consider the following code which sums the contents of two arrays:

a, b = [1,2,3], [4,5] # Start with some data.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

273

sum = a.inject(0) {|total,x| total+x } # => 6. Sum elements of a.
sum = b.inject(sum) {|total,x| total+x } # => 15. Add the elements of b in.

If you do not remember, you can look up its documentation with ri Enumerable.
inject. The important thing to notice about this example is that the two blocks are
identical. Rather than having the Ruby interpreter parse the same block twice, we can
create a Proc to represent the block, and use the single Proc object twice:

a, b = [1,2,3], [4,5] # Start with some data.
summation = Proc.new {|total,x| total+x } # A Proc object for summations.
sum = a.inject(0, &summation) # => 6
sum = b.inject(sum, &summation) # => 15

If you use & in a method invocation, it must appear before the last argument in
the invocation. Blocks can be associated with any method call, even when the method
is not expecting a block, and never uses yield. In the same way, any method invocation
may have an & argument as its last argument.

In a method invocation an & typically appears before a Proc object. But it is
actually allowed before any object with a to_proc method. The Method class has such
a method, so Method objects can be passed to iterators just as Proc objects can.

In Ruby 1.9, the Symbol class defines a to_proc method, allowing symbols to
be prefixed with & and passed to iterators. When a symbol is passed like this, it is
assumed to be the name of a method. The Proc object returned by the to_proc method
invokes the named method of its first argument, passing any remaining arguments to
that named method. The canonical case is this: given an array of strings, create a new
array of those strings, converted to uppercase. Symbol.to_proc allows us to accomplish
this elegantly as follows:

words = [‘and’, ‘but’, ‘car’] # An array of words
uppercase = words.map &:upcase # Convert to uppercase with String.

upcase
upper = words.map {|w| w.upcase } # This is the equivalent code with a

block

3G E-LEARNING

274 Basic Computer Coding: Ruby

9.5 PROCS AND LAMBDAS
Blocks are syntactic structures in Ruby; they are not objects, and cannot be manipulated
as objects. It is possible, however, to create an object that represents a block. Depending
on how the object is created, it is called a proc or a lambda. Procs have block-like
behavior and lambdas have method-like behavior. Both, however, are instances of
class Proc.

 ■ How to create Proc objects in both proc and lambda forms
 ■ How to invoke Proc objects
 ■ How to determine how many arguments a Proc expects
 ■ How to determine if two Proc objects are the same
 ■ How procs and lambdas differ from each other

9.5.1 Creating Procs

We have already seen one way to crfate a Proc object: by associating a block with a
method that is defined with an ampersand-prefixed block argument. There is nothing
preventing such a method from returning the Proc object for use outside the method:

This method creates a proc from a block
def makeproc(&p) # Convert associated block to a Proc and store in p

With a makeproc method like this defined, we can create a Proc object for ourselves:
adder = makeproc {|x,y| x+y }

The variable adder now refers to a Proc object. Proc objects created in this way
are procs, not lambdas. All Proc objects have a call method that, when invoked, runs
the code contained by the block from which the proc was created. For example:

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

275

sum = adder.call(2,2) # => 4

In addition to being invoked, Proc objects can be passed to
methods, stored in data structures and otherwise manipulated
like any other Ruby object.

As well as creating procs by method invocation, there are
three methods that create Proc objects (both procs and lambdas)
in Ruby. These methods are commonly used, and it is not
actually necessary to define a makeproc method like the one
shown earlier. In addition to these Proc-creation methods, Ruby
1.9 also supports a new literal syntax for defining lambdas.

Proc.new

This is the normal new method that most classes support,
and it’s the most obvious way to create a new instance of the
Proc class. Proc.new expects no arguments, and returns a Proc
object that is a proc (not a lambda). When you invoke Proc.
new with an associated block, it returns a proc that represents
the block. For example:

p = Proc.new {|x,y| x+y }
If Proc.new is invoked without a block from within a

method that does have an associated block, then it returns
a proc representing the block associated with the containing
method. Using Proc.new in this way provides an alternative
to using an ampersandprefixed block argument in a method
definition. The following two methods are equivalent, for
example:

def invoke(&b) def invoke
 b.call Proc. new.call
end end

Kernel.lambda

Another technique for creating Proc objects is with the lambda
method. lambda is a method of the Kernel module, so it

lambdas
allow you
to encapsulate
logic and data in an
eminently portable
variable. A lambda
function can be
passed to object
methods, stored
in data structures,
and executed when
needed.

Keyword

3G E-LEARNING

276 Basic Computer Coding: Ruby

behaves like a global function. As its name suggests, the Proc object returned by this
method is a lambda rather than a proc.

lambda expects no arguments, but there must be a block associated with the
invocation:

is_positive = lambda {|x| x > 0 }

Kernel.proc

In Ruby 1.8, the global proc method is a synonym for lambda. Despite its name, it
returns a lambda, not a proc. Ruby 1.9 fixes this; in that version of the language, proc
is a synonym for Proc.new.

Because of this ambiguity, you should never use proc in Ruby 1.8 code. The behavior
of your code might change if the interpreter was upgraded to a newer version. If you
are using Ruby 1.9 code and are confident that it will never be run with a Ruby 1.8
interpreter, you can safely use proc as a more elegant shorthand for Proc.new.

Lambda Literals

Ruby 1.9 supports an entirely new syntax for defining lambdas as literals. We will
begin with a Ruby 1.8 lambda, created with the lambda method:

succ = lambda {|x| x+1}
In Ruby 1.9, we can convert this to a literal as follows:

 ■ Replace the method name lambda with the punctuation ->.
 ■ Move the list of arguments outside of and just before the curly braces.
 ■ Change the argument list delimiters from || to ().

With these changes, we get a Ruby 1.9 lambda literal:
succ = ->(x){ x+1 }

succ now holds a Proc object, which we can use just like any other:
succ.call(2) # => 3
The introduction of this syntax into Ruby was controversial, and it takes some

getting used to. Note that the arrow characters -> are different from those used in
hash literals. A lambda literal uses an arrow made with a hyphen, whereas a hash
literal uses an arrow made with an equals sign.

As with blocks in Ruby 1.9, the argument list of a lambda literal may include
the declaration of block-local variables that are guaranteed not to overwrite variables

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

277

with the same name in the enclosing scope. Simply follow the parameter list with a
semicolon and a list of local variables:

This lambda takes 2 args and declares 3 local vars
f = ->(x,y; i,j,k) { ... }

One benefit of this new lambda syntax over the traditional block-based lambda
creation methods is that the Ruby 1.9 syntax allows lambdas to be declared with
argument defaults, just as methods can be:

zoom = ->(x,y,factor=2) { [x*factor, y*factor] }

As with method declarations, the parentheses in lambda literals are optional, because
the parameter list and local variable lists are completely delimited by the ->, ;, and {.

We could rewrite the three lambdas above like this:

succ = ->x { x+1 }
f = -> x,y; i,j,k { ... }
zoom = ->x,y,factor=2 { [x*factor, y*factor] }

Lambda parameters and local variables are optional, of course, and a lambda
literal can omit this altogether. The minimal lambda, which takes no arguments and
returns nil, is the following:

->{}

One benefit of this new syntax is its succinctness. It can be helpful when you want
to pass a lambda as an argument to a method or to another lambda:

def compose(f,g) # Compose 2 lambdas
 ->(x) { f.call(g.call(x)) }
end
succOfSquare = compose(->x{x+1}, ->x{x*x})
succOfSquare.call(4) # => 17: Computes (4*4)+1

3G E-LEARNING

278 Basic Computer Coding: Ruby

Lambda literals create Proc objects and are not the same thing as blocks. If you
want to pass a lambda literal to a method that expects a block, prefix the literal with
&, just as you would with any other Proc object. Here is how we might sort an array
of numbers into descending order using both a block and a lambda literal:

data.sort {|a,b| b-a } # The block version
data.sort &->(a,b){ b-a } # The lambda literal version

In this case, as you can see, regular block syntax is simpler.

9.5.2 Invoking Procs and Lambdas

Procs and lambdas are objects, not methods, and they cannot be invoked in the same
way that methods are. If p refers to a Proc object, you cannot invoke p as a method.
But because p is an object, you can invoke a method of p. We have already mentioned
that the Proc class defines a method named call. Invoking this method executes the code
in the original block. The arguments you pass to the call method become arguments
to the block, and the return value of the block becomes the return value of the call
method:

f = Proc.new {|x,y| 1.0/(1.0/x + 1.0/y) }
z = f.call(x,y)

The Proc class also defines the array access operator to work the same way as
call. This means that you can invoke a proc or lambda using a syntax that is like
method invocation, where parentheses have been replaced with square brackets. The
proc invocation above, for example, could be replaced with this code:

z = f[x,y]

Ruby 1.9 offers an additional way to invoke a Proc object; as an alternative to
square brackets, you can use parentheses prefixed with a period:

z = f.(x,y)

.() looks like a method invocation missing the method name. This is not an operator
that can be defined, but rather is syntactic-sugar that invokes the call method. It can
be used with any object that defines a call method and is not limited to Proc objects.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

279

9.5.3 The Arity of a Proc

The arity of a proc or lambda is the number of arguments it expects. (The word is
derived from the “ary” suffix of unary, binary, ternary, etc.) Proc objects have an arity
method that returns the number of arguments they expect. For example:

lambda{||}.arity # => 0. No arguments expected
lambda{|x| x}.arity # => 1. One argument expected
lambda{|x,y| x+y}.arity # => 2. Two arguments expected

The notion of arity gets confusing when a Proc accepts an arbitrary number of
arguments in an *-prefixed final argument. When a Proc allows optional arguments,
the arity method returns a negative number of the form -n-1. A return value of this
form indicates that the Proc requires n arguments, but it may optionally take additional
arguments as well. -n-1 is known as the one’s-complement of n, and you can invert it
with the ~ operator. So if arity returns a negative number m, then ~m (or -m-1) gives
you the number of required arguments:

lambda {|*args|}.arity # => -1. ~-1 = -(-1)-1 = 0 arguments required
lambda {|first, *rest|}.arity # => -2. ~-2 = -(-2)-1 = 1 argument required

There is one final wrinkle to the arity method. In Ruby 1.8, a Proc declared without
any argument clause at all (that is, without any || characters) may be invoked with
any number of arguments (and these arguments are ignored). The arity method returns
–1 to indicate that there are no required arguments. This has changed in Ruby 1.9: a
Proc declared like this has an arity of 0. If it is a lambda, then it is an error to invoke
it with any arguments:

puts lambda {}.arity # –1 in Ruby 1.8; 0 in Ruby 1.9

9.5.4 Proc Equality

The Proc class defines an == method to determine whether two Proc objects are equal.
It is important to understand, however, that merely having the same source code is
not enough to make two procs or lambdas equal to each other:

lambda {|x| x*x } == lambda {|x| x*x } # => false
The == method only returns true if one Proc is a clone or duplicate of the other:

3G E-LEARNING

280 Basic Computer Coding: Ruby

p = lambda {|x| x*x }
q = p.dup
p == q # => true: the two procs are equal
p.object_id == q.object_id # => false: they are not the same object

9.5.5 How Lambdas Differ from Procs

A proc is the object form of a block, and it behaves like a block. A lambda has slightly
modified behavior and behaves more like a method than a block. Calling a proc is
like yielding to a block, whereas calling a lambda is like invoking a method. In Ruby
1.9, you can determine whether a Proc object is a proc or a lambda with the instance
method lambda?. This predicate returns true for lambdas and false for procs.

Return in blocks, procs, and lambdas

The return statement returns from the lexically enclosing method, even when the
statement is contained within a block. The return statement in a block does not just
return from the block to the invoking iterator, it returns from the method that invoked
the iterator. For example:

def test
 puts “entering method”
 1.times { puts “entering block”; return } # Makes test method return
 puts “exiting method” # This line is never executed
end
test

A proc is like a block, so if you call a proc that executes a return statement, it
attempts to return from the method that encloses the block that was converted to the
proc. For example:

def test
 puts “entering method”
 p = Proc.new { puts “entering proc”; return }
 p.call # Invoking the proc makes method return
 puts “exiting method” # This line is never executed

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

281

end
test

Using a return statement in a proc is tricky, however, because procs are often
passed around between methods. By the time a proc is invoked, the lexically enclosing
method may already have returned:

def procBuilder(message) # Create and return a proc
 Proc.new { puts message; return } # return returns from procBuilder
 # but procBuilder has already returned here!
end

def test
 puts “entering method”
 p = procBuilder(“entering proc”)
 p.call # Prints “entering proc” and raises LocalJumpError!
 puts “exiting method” # This line is never executed
end
test

By converting a block into an object, we are able to pass that object around and
use it “out of context.” If we do this, we run the risk of returning from a method
that has already returned, as was the case here. When this happens, Ruby raises a
LocalJumpError.

The fix for this contrived example is to remove the unnecessary return statement,
of course. But a return statement is not always unnecessary, and another fix is to use
a lambda instead of a proc. As we said earlier, lambdas work more like methods than
blocks. A return statement in a lambda, therefore, returns from the lambda itself, not
from the method that surrounds the creation site of the lambda:

def test
 puts “entering method”
 p = lambda { puts “entering lambda”; return }
 p.call # Invoking the lambda does not make the method return

3G E-LEARNING

282 Basic Computer Coding: Ruby

 puts “exiting method” # This line *is* executed now
end
test

The fact that return in a lambda only returns from the lambda itself means that
we never have to worry about LocalJumpError:

def lambdaBuilder(message) # Create and return a lambda
 lambda { puts message; return } # return returns from the lambda
end
def test
 puts “entering method”
 l = lambdaBuilder(“entering lambda”)
 l.call # Prints “entering lambda”
 puts “exiting method” # This line is executed
end
test

Break in blocks, procs and lambdas

We illustrated the behavior of the break statement in a block; it causes the block to
return to its iterator and the iterator to return to the method that invoked it. Because
procs work like blocks, we expect break to do the same thing in a proc. We can’t easily
test this, however. When we create a proc with Proc.new, Proc.new is the iterator that
break would return from. And by the time we can invoke the proc object, the iterator
has already returned. So it never makes sense to have a top-level break statement in
a proc created with Proc.new:

def test
 puts “entering test method”
 proc = Proc.new { puts “entering proc”; break }
 proc.call # LocalJumpError: iterator has already returned
 puts “exiting test method”
end
test

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

283

If we create a proc object with an & argument to the iterator method, then we
can invoke it and make the iterator return:

def iterator(&proc) puts “entering iterator” proc.call # invoke the proc puts “exiting
iterator” # Never executed if the proc breaks end def test iterator { puts “entering
proc”; break } end test

Lambdas are method-like, so putting a break statement at the top-level of a lambda,
without an enclosing loop or iteration to break out of, doesn’t actually make any sense!
We might expect the following code to fail because there is nothing to break out of
in the lambda. In fact, the top-level break just acts like a return:

def test
 puts “entering test method”
 lambda = lambda { puts “entering lambda”; break; puts “exiting lambda” }
 lambda.call
 puts “exiting test method”
end
test

Other control-flow statements

A top-level next statement works the same in a block, proc, or lambda: it causes the
yield statement or call method that invoked the block, proc, or lambda to return. If
next is followed by an expression, then the value of that expression becomes the return
value of the block, proc, or lambda.

redo also works the same in procs and lambdas: it transfers control back to the
beginning of the proc or lambda.’

retry is never allowed in procs or lambdas: using it always results in a
LocalJumpError.

raise behaves the same in blocks, procs, and lambdas. Exceptions always propagate
up the call stack. If a block, proc, or lambda raises an exception and there is no local
rescue clause, the exception first propagates to the method that invoked the block with
yield or that invoked the proc or lambda with call.

3G E-LEARNING

284 Basic Computer Coding: Ruby

Argument passing to procs and lambdas

Invoking a block with yield is similar to, but not the same as, invoking a method.
There are differences in the way argument values in the invocation are assigned to the
argument variables declared in the block or method. The yield statement uses yield
semantics, whereas method invocation uses invocation semantics. As you might expect,
invoking a proc uses yield semantics and invoking a lambda uses invocation semantics:

p = Proc.new {|x,y| print x,y }
p.call(1) # x,y=1: nil used for missing rvalue: Prints 1nil
p.call(1,2) # x,y=1,2: 2 lvalues, 2 rvalues: Prints 12
p.call(1,2,3) # x,y=1,2,3: extra rvalue discarded: Prints 12
p.call([1,2]) # x,y=[1,2]: array automatically unpacked: Prints 12

This code demonstrates that the call method of a proc handles the arguments it
receives flexibly: silently discarding extras, silently adding nil for omitted arguments,
and even unpacking arrays. (Or, not demonstrated here, packing multiple arguments
into a single array when the proc expects only a single argument.)

Lambdas are not flexible in this way; like methods, they must be invoked with
precisely the number of arguments they are declared with:

l = lambda {|x,y| print x,y }
l.call(1,2) # This works
l.call(1) # Wrong number of arguments
l.call(1,2,3) # Wrong number of arguments
l.call([1,2]) # Wrong number of arguments
l.call(*[1,2]) # Works: explicit splat to unpack the array

9.6 CLOSURES
In Ruby, procs and lambdas are closures. The term “closure” comes from the early
days of computer science; it refers to an object that is both an invocable function and
a variable binding for that function. When you create a proc or a lambda, the resulting
Proc object holds not just the executable block but also bindings for all the variables
used by the block.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

285

You already know that blocks can use local variables and method arguments that
are defined outside the block. In the following code, for example, the block associated
with the collect iterator uses the method argument n:

multiply each element of the data array by n
def multiply(data, n)
 data.collect {|x| x*n }
end
puts multiply([1,2,3], 2) # Prints 2,4,6

What is more interesting, and possibly even surprising, is that if the block were
turned into a proc or lambda, it could access n even after the method to which it is
an argument had returned. The following code demonstrates:

Return a lambda that retains or “closes over” the argument n
def multiplier(n)
 lambda {|data| data.collect{|x| x*n } }
end
doubler = multiplier(2) # Get a lambda that knows how to double
puts doubler.call([1,2,3]) # Prints 2,4,6

The multiplier method returns a lambda. Because this lambda is used outside of
the scope in which it is defined, we call it a closure; it encapsulates or “closes over”
(or just retains) the binding for the method argument n.

9.6.1 Closures and Shared Variables

It is important to understand that a closure does not just retain the value of the variables
it refers to—it retains the actual variables and extends their lifetime. Another way to
say this is that the variables used in a lambda or proc are not statically bound when
the lambda or proc is created. Instead, the bindings are dynamic, and the values of
the variables are looked up when the lambda or proc is executed.

As an example, the following code defines a method that returns two lambdas.
Because the lambdas are defined in the same scope, they share access to the variables
in that scope. When one lambda alters the value of a shared variable, the new value
is available to the other lambda:

3G E-LEARNING

286 Basic Computer Coding: Ruby

Return a pair of lambdas that share access to a local variable.
def accessor_pair(initialValue=nil)
 value = initialValue # A local variable shared by the returned lambdas.
 getter = lambda { value } # Return value of local variable.
 setter = lambda {|x| value = x } # Change value of local variable.
 return getter,setter # Return pair of lambdas to caller.
end

getX, setX = accessor_pair(0) # Create accessor lambdas for initial value 0.
puts getX[] # Prints 0. Note square brackets instead of call.
setX[10] # Change the value through one closure.
puts getX[] # Prints 10. The change is visible through the other.’’

The fact that lambdas created in the same scope share access to variables can be
a feature or a source of bugs. Any time you have a method that returns more than
one closure, you should pay particular attention to the variables they use. Consider
the following code:

Return an array of lambdas that multiply by the arguments
def multipliers(*args)
 x = nil
 args.map {|x| lambda {|y| x*y }}
end
double,triple = multipliers(2,3)
puts double.call(2) # Prints 6 in Ruby 1.8

This multipliers method uses the map iterator and a block to return an array of
lambdas (created inside the block). In Ruby 1.8, block arguments are not always local
to the block, and so all of the lambdas that are created end up sharing access to x,
which is a local variable of the multipliers method. As noted above, closures do not
capture the current value of the variable: they capture the variable itself. Each of the
lambdas created here share the variable x. That variable has only one value, and all of
the returned lambdas use that same value. That is why the lambda we name double
ends up tripling its argument instead of doubling it.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

287

In this particular code, the issue goes away in Ruby 1.9 because block arguments
are always block-local in that version of the language. Still, you can get yourself in
trouble any time you create lambdas within a loop and use a loop variables (such as
an array index) within the lambda.

9.6.2 Closures and Bindings

The Proc class defines a method named binding. Calling this method on a proc or
lambda returns a Binding object that represents the bindings in effect for that closure.

A Binding object doesn’t have interesting methods of its own, but it can be used
as the second argument to the global eval function, providing a context in which to
evaluate a string of Ruby code. In Ruby 1.9, Binding has its own eval method, which
you may prefer to use. (Use ri to learn more about Kernel.eval and Binding.eval.)

The use of a Binding object and the eval method gives us a back door through
which we can manipulate the behavior of a closure. Take another look at this code
from earlier:

Return a lambda that retains or “closes over” the argument n
def multiplier(n)
 lambda {|data| data.collect{|x| x*n } }
end
doubler = multiplier(2) # Get a lambda that knows how to double
puts doubler.call([1,2,3]) # Prints 2,4,6

Now suppose we want to alter the behavior of doubler:
eval(“n=3”, doubler.binding) # Or doubler.binding.eval(“n=3”) in Ruby 1.9
puts doubler.call([1,2,3]) # Now this prints 3,6,9!

As a shortcut, the eval method allows you to pass a Proc object directly instead
of passing the Binding object of the Proc. So we could replace the eval invocation
above with:

eval(“n=3”, doubler)
Bindings are not only a feature of closures. The Kernel.binding method returns

a Binding object that represents the bindings in effect at whatever point you happen
to call it.

3G E-LEARNING

288 Basic Computer Coding: Ruby

9.7 METHOD OBJECTS
Ruby’s methods and blocks are executable language constructs,
but they are not objects. Procs and lambdas are object versions of
blocks; they can be executed and also manipulated as data. Ruby
has powerful metaprogramming (or reflection) capabilities, and
methods can actually be represented as instances of the Method
class.

The Object class defines a method named method. Pass
it a method name, as a string or a symbol, and it returns a
Method object representing the named method of the receiver
(or throws a NameError if there is no such method).

For example:

m = 0.method(:succ) # A Method representing the succ
method of Fixnum 0

In Ruby 1.9, you can also use public_method to obtain a
Method object. It works like method does but ignores protected
and private methods.

The Method class is not a subclass of Proc, but it behaves
much like it. Method objects are invoked with the call method
(or the [] operator), just as Proc objects are. And Method
defines an arity method just like the arity method of Proc.
To invoke the Method m:

puts m.call # Same as puts 0.succ. Or use puts m[].

Invoking a method through a Method object does not
change the invocation semantics, nor does it alter the meaning
of control-flow statements such as return and break. The call
method of a Method object uses method-invocation semantics,
not yield semantics. Method objects, therefore, behave more
like lambdas than like procs.

Method objects work very much like Proc objects and
can usually be used in place of them. When a true Proc is
required, you can use Method.to_proc to convert a Method

You
should
note that
invoking a
method through
a Method object
is less efficient
than invoking it
directly. Method
objects are not
typically used as
often as lambdas
and procs.

Remember

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

289

to a Proc. This is why Method objects can be prefixed with an ampersand and passed
to a method in place of a block.

For example: def square(x); x*x; end
puts (1..10).map(&method(:square))

One important difference between Method objects and Proc objects is that Method
objects are not closures. Ruby’s methods are intended to be completely self-contained,
and they never have access to local variables outside of their own scope. The only
binding retained by a Method object, therefore, is the value of self—the object on
which the method is to be invoked.

In Ruby 1.9, the Method class defines three methods that are not available in 1.8:
name returns the name of the method as a string; owner returns the class in which the
method was defined; and receiver returns the object to which the method is bound.
For any method object m, m.receiver.class must be equal to or a subclass of m.owner.

9.7.1 Unbound Method Objects

In addition to the Method class, Ruby also defines an UnboundMethod class. As its
name suggests, an UnboundMethod object represents a method, without a binding to
the object on which it is to be invoked. Because an UnboundMethod is unbound, it
cannot be invoked, and the UnboundMethod class does not define a call or [] method.

To obtain an UnboundMethod object, use the instance_method method of any
class or module:

unbound_plus = Fixnum.instance_method(“+”)

In Ruby 1.9, you can also use public_instance_method to obtain an UnboundMethod
object. It works like instance_method does, but it ignores protected and private methods.

In order to invoke an unbound method, you must first bind it to an object using
the bind method:

plus_2 = unbound_plus.bind(2) # Bind the method to the object 2

The bind method returns a Method object, which can be invoked with its call
method:

3G E-LEARNING

290 Basic Computer Coding: Ruby

sum = plus_2.call(2) # => 4

Another way to obtain an UnboundMethod object is with the unbind method of
the Method class:

plus_3 = plus_2.unbind.bind(3)

In Ruby 1.9, UnboundMethod has name and owner methods that work just as
they do for the Method class.

9.8 FUNCTIONAL PROGRAMMING
Ruby is not a functional programming language in the way that languages like Lisp
and Haskell are, but Ruby’s blocks, procs, and lambdas lend themselves nicely to a
functional programming style. Any time you use a block with an Enumerable iterator
like map or inject, you’re programming in a functional style. Here are examples using
the map and inject iterators:

Compute the average and standard deviation of an array of numbers
mean = a.inject {|x,y| x+y } / a.size
sumOfSquares = a.map{|x| (x-mean)**2 }.inject{|x,y| x+y }
standardDeviation = Math.sqrt(sumOfSquares/(a.size-1))

If the functional programming style is attractive to you, it is easy to add features
to Ruby’s built-in classes to facilitate functional programming.

9.8.1 Applying a Function to an Enumerable

map and inject are two of the most important iterators defined by Enumerable. Each
expects a block. If we are to write programs in a function-centric way, we might
like methods on our functions that allow us to apply those functions to a specified
Enumerable object:

This module defines methods and operators for functional programming.
module Functional
 # Apply this function to each element of the specified Enumerable,

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

291

 # returning an array of results. This is the reverse of Enumerable.map.
Use | as an operator alias. Read “|” as “over” or “applied over”.
 #
 # Example:
 # a = [[1,2],[3,4]]
 # sum = lambda {|x,y| x+y}
 # sums = sum|a # => [3,7]
 def apply(enum)
 enum.map &self
 end
 alias | apply

 # Use this function to “reduce” an enumerable to a single quantity.
 # This is the inverse of Enumerable.inject.
 # Use <= as an operator alias.
 # Mnemonic: <= looks like a needle for injections
 # Example:
 # data = [1,2,3,4]
 # sum = lambda {|x,y| x+y}
 # total = sum<=data # => 10
 def reduce(enum)
 enum.inject &self
 end
 alias <= reduce
end

Add these functional programming methods to Proc and Method classes.
class Proc; include Functional; end
class Method; include Functional; end

Notice that we define methods in a module named Functional, and then we include
this module into both the Proc and Method classes. In this way, apply and reduce
work for both proc and method objects. Most of the methods that follow also define
methods in this Functional module, so that they work for both Proc and Method.

3G E-LEARNING

292 Basic Computer Coding: Ruby

With apply and reduce defined as above, we could refactor
our statistical computations as follows:

sum = lambda {|x,y| x+y } # A function to add
two numbers

mean = (sum<=a)/a.size # Or sum.
reduce(a) or a.inject(&sum)

deviation = lambda {|x| x-mean } # Function to
compute difference from mean

square = lambda {|x| x*x } # Function to square
a number

standardDeviation = Math.sqrt((sum<=square|(deviation
|a))/(a.size-1))

Notice that the last line is succinct but that all the
nonstandard operators make it hard to read. Also notice
that the | operator is left-associative, even when we define
it ourselves. The syntax, therefore, for applying multiple
functions to an Enumerable requires parentheses. That is, we
must write square|(deviation|a) instead of square|deviation|a.

9.8.2 Composing Functions

If we have two functions f and g, we sometimes want to
define a new function h which is f(g()), or f composed with
g. We can write a method that performs function composition
automatically, as follows:

module Functional
 # Return a new lambda that computes self[f[args]].
 # Use * as an operator alias for compose.
 # Examples, using the * alias for this method.
 #
 # f = lambda {|x| x*x }
 # g = lambda {|x| x+1 }
 # (f*g)[2] # => 9

The
first functional
programming
language, LISP,
was developed in
the late 1950s for
the IBM 700/7000
series of scientific
computers by
John McCarthy
while at
Massachusetts
Institute of
Technology
(MIT). LISP
functions
were defined
using Church’s
lambda notation,
extended with a
label construct to
allow recursive
functions.

Did You
Know?

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

293

 # (g*f)[2] # => 5
 #
 # def polar(x,y)
 # [Math.hypot(y,x), Math.atan2(y,x)]
 # end
 # def cartesian(magnitude, angle)
 # [magnitude*Math.cos(angle), magnitude*Math.sin(angle)]
 # end
 # p,c = method :polar, method :cartesian
 # (c*p)[3,4] # => [3,4]
 #
 def compose(f)
 if self.respond_to?(:arity) && self.arity == 1
 lambda {|*args| self[f[*args]] }
 else
 lambda {|*args| self[*f[*args]] }
 end
 end
 # * is the natural operator for function composition.
 alias * compose
end

The example code in the comment demonstrates the use of compose with Method
objects as well as lambdas. We can use this new * function composition operator to
slightly simplify our computation of standard deviation. Using the same definitions
of the lambdas sum, square, and deviation, the computation becomes:

standardDeviation = Math.sqrt((sum<=square*deviation|a)/(a.size-1))

The difference is that we compose square and deviation into a single function
before applying it to the array a.

3G E-LEARNING

294 Basic Computer Coding: Ruby

9.8.3 Partially Applying Functions

In functional programming, partial application is the process of taking a function and
a partial set of argument values and producing a new function that is equivalent to
the original function with the specified arguments fixed. For example:

product = lambda {|x, y| x*y } # A function of two arguments
double = lambda {|x| product(2,x) } # Apply one argument

Partial application can be simplified with appropriate methods (and operators) in our
Functional module:

module Functional
 #
 # Return a lambda equivalent to this one with one or more initial
 # arguments applied. When only a single argument
 # is being specified, the >> alias may be simpler to use.
 # Example:
 # product = lambda {|x,y| x*y}
 # doubler = lambda >> 2
 #
 def apply_head(*first)
 lambda {|*rest| self[*first.concat(rest)]}
 end

#
 # Return a lambda equivalent to this one with one or more final arguments
 # applied. When only a single argument is being specified,
 # the << alias may be simpler.
 # Example:
 # difference = lambda {|x,y| x-y }
 # decrement = difference << 1
 #
 def apply_tail(*last)

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

295

 lambda {|*rest| self[*rest.concat(last)]}
 end
 # Here are operator alternatives for these methods. The angle brackets
 # point to the side on which the argument is shifted in.
 alias >> apply_head # g = f >> 2 -- set first arg to 2
 alias << apply_tail # g = f << 2 -- set last arg to 2
end

Using these methods and operators, we can define our double function simply as
product>>2. We can use partial application to make our standard deviation computation
somewhat more abstract, by building our deviation function from a more generalpurpose
difference function:

difference = lambda {|x,y| x-y } # Compute difference of two numbers
deviation = difference<<mean # Apply second argument

9.8.4 Memoizing Functions

Memoization is a functional programming term for caching the results of a function
invocation. If a function always returns the same value when passed the same arguments,
if there is reason to believe that the same arguments will be used repeatedly, and
if the computation it performs is somewhat expensive, then memoization may be a
useful optimization. We can automate memoization for Proc and Method objects with
the following method:

module Functional
 #
 # Return a new lambda that caches the results of this function and
 # only calls the function when new arguments are supplied.
 #
 def memoize
 cache = {} # An empty cache. The lambda captures this in its closure.
 lambda {|*args|
 # notice that the hash key is the entire array of arguments!
 unless cache.has_key?(args) # If no cached result for these args
 cache[args] = self[*args] # Compute and cache the result

3G E-LEARNING

296 Basic Computer Coding: Ruby

 end
 cache[args] # Return result from cache
 }
 end
 # A (probably unnecessary) unary + operator for memoization
 # Mnemonic: the + operator means “improved”
 alias +@ memoize # cached_f = +f
end

Here’s how we might use the memoize method or the unary + operator:
A memoized recursive factorial function
factorial = lambda {|x| return 1 if x==0; x*factorial[x-1]; }.memoize
Or, using the unary operator syntax
factorial = +lambda {|x| return 1 if x==0; x*factorial[x-1]; }

Note that the factorial function here is a recursive function. It calls the memorized
version of itself, which produces optimal caching. It would not work as well if you
defined a recursive nonmemoized version of the function and then defined a distinct
memoized version of that:

factorial = lambda {|x| return 1 if x==0; x*factorial[x-1]; }
cached_factorial = +factorial # Recursive calls aren’t cached!

9.8.5 Symbols, Methods, and Procs

There is a close relationship between the Symbol, Method, and Proc classes. We’ve
already seen the method method, which takes a Symbol argument and returns a Method
object. Ruby 1.9 adds a useful to_proc method to the Symbol class. This method allows
a symbol to be prefixed with & and passed as a block to an iterator. The symbol is
assumed to name a method. When the Proc created with this to_proc method is invoked,
it calls the named method of its first argument, passing any remaining arguments to
that named method. Here’s how you might use it:

Increment an array of integers with the Fixnum.succ method

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

297

[1,2,3].map(&:succ) # => [2,3,4]
Without Symbol.to_proc, we’d have to be slightly more verbose:
[1,2,3].map {|n| n.succ }

Symbol.to_proc was originally devised as an extension for Ruby 1.8, and it is typically
implemented like this:
class Symbol
 def to_proc
 lambda {|receiver, *args| receiver.send(self, *args)}
 end
end

This implementation uses the send method to invoke a method named by a symbol.
We could also do it like this:
class Symbol
 def to_proc
 lambda {|receiver, *args| receiver.method(self)[*args]}
 end
end

In addition to to_proc, we can define some related and possibly useful utilities. Let’s
start with the Module class:

class Module
 # Access instance methods with array notation. Returns UnboundMethod,
 alias [] instance_method
end

Here, we’re simply defining a shorthand for the instance_method method of the
Module class. Recall that that method returns an UnboundMethod object, that cannot
be invoked until bound to a particular instance of its class. Here’s an example using
this new notation (notice the appeal of indexing a class with the names of its methods!):

String[:reverse].bind(“hello”).call # => “olleh”

3G E-LEARNING

298 Basic Computer Coding: Ruby

Binding an unbound method can also be made simpler with a bit of the same syntactic
sugar:

gar:
class UnboundMethod
 # Allow [] as an alternative to bind.
 alias [] bind
end

With this alias in place, and using the existing [] alias for calling a method, this code
becomes:

String[:reverse][“hello”][] # => “olleh”

The first pair of brackets indexes the method, the second pair binds it, and the third
pair calls it.

Next, if we’re going to use the [] operator for looking up the instance methods of a
class, how about using []= for defining instance methods:

class Module
 # Define a instance method with name sym and body f.
 # Example: String[:backwards] = lambda { reverse }
 def []=(sym, f)
self.instance_eval { define_method(sym, f) }
 end
end

The definition of this []= operator may be confusing—this is advanced Ruby. define_
method is a private method of Module. We use instance_eval (a public method of
Object) to run a block (including the invocation of a private method) as if it were
inside the module on which the method is being defined.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

299

Let’s use this new []= operator to define a new Enumerable.average method:
Enumerable[:average] = lambda do
 sum, n = 0.0, 0
 self.each {|x| sum += x; n += 1 }
 if n == 0
 nil
 else
 sum/n
 end
end
We’ve used the [] and []= operators here to get and set instance methods of a class or
module. We can do something similar for the singleton methods of an object (which
include the class methods of a class or module). Any object can have a singleton
method, but it does not make sense to define an [] operator on the Object class, as so
many subclasses define that operator. For singleton methods, therefore, we could take
the opposite approach and define operators on the Symbol class:

#
Add [] and []= operators to the Symbol class for accessing and setting
singleton methods of objects. Read : as “method” and [] as “of”.
So :m[o] reads “method m of o”.
#
class Symbol
 # Return the Method of obj named by this symbol. This may be a singleton
 # method of obj (such as a class method) or an instance method defined
 # by obj.class or inherited from a superclass.
 # Examples:
 # creator = :new[Object] # Class method Object.new
 # doubler = :*[2] # * method of Fixnum 2
 #
 def [](obj)
 obj.method(self)
 end

3G E-LEARNING

300 Basic Computer Coding: Ruby

 # Define a singleton method on object o, using Proc or Method f as its body.
 # This symbol is used as the name of the method.
 # Examples:
 #
 # :singleton[o] = lambda { puts “this is a singleton method of o” }
 # :class_method[String] = lambda { puts “this is a class method” }
 #
 # Note that you can’t create instance methods this way. See Module.[]=
#
 def []=(o,f)
 # We can’t use self in the block below, as it is evaluated in the
 # context of a different object. So we have to assign self to a variable.
 sym = self
 # This is the object we define singleton methods on.
 eigenclass = (class << o; self end)
 # define_method is private, so we have to use instance_eval to execute it.
 eigenclass.instance_eval { define_method(sym, f) }
 end
end

With this Symbol.[] method defined, along with the Functional module, we can write
clever (and unreadable) code like this:

dashes = :*[‘-’] # Method * of ‘-’
puts dashes[10] # Prints “----------”

y = (:+[1]*:*[2])[x] # Another way to write y = 2*x + 1

The definition of []= for Symbol is like that of []= for Module, in that it uses instance_
eval to invoke the define_method method. The difference is that singleton methods are
not defined within a class, as instance methods are, but in the eigenclass of the object.

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

301

SUMMARY
 ■ A method is a named block of parameterized code associated with one or

more objects. A method invocation specifies the method name, the object on
which it is to be invoked (sometimes called the receiver), and zero or more
argument values that are assigned to the named method parameters.

 ■ Many languages distinguish between functions, which have no associated
object, and methods, which are invoked on a receiver object.

 ■ A def statement that defines a method may include exception-handling code
in the form of rescue, else, and ensure clauses, just as a begin statement can.

 ■ An equals sign suffix signifies that the method is a setter that can be invoked
using assignment syntax.

 ■ Method aliasing is one of the things that makes Ruby an expressive and natural
language. When there are multiple names for a method, you can choose the
one that seems most natural in your code.

 ■ Ruby allows parentheses to be omitted from most method invocations. In
simple cases, this results in clean-looking code.

 ■ Simple method declarations include a comma-separated list of argument
names (in optional parentheses) after the method name.

 ■ A block is a chunk of Ruby code associated with a method invocation, and
that an iterator is a method that expects a block.

 ■ A proc is the object form of a block, and it behaves like a block. A lambda
has slightly modified behavior and behaves more like a method than a block.

 ■ The return statement returns from the lexically enclosing method, even when
the statement is contained within a block.

 ■ Ruby’s methods and blocks are executable language constructs, but they are
not objects. Procs and lambdas are object versions of blocks; they can be
executed and also manipulated as data

3G E-LEARNING

302 Basic Computer Coding: Ruby

KNOWLEDGE CHECK
1. Which of the following is not a valid datatype in Ruby?

a. Float
b. Integer
c. Binary
d. Timedate

2. Which of the following are valid floating point literal?
a. 5
b. 2
c. 0.5
d. None of the mentioned

3. Why do we use =begin and =end?
a. To mark the start and end of multiline comment
b. To comment multiple lines
c. To avoid the use of # again and again
d. All of above

4. How do you express error messages in a form (do |f|)?
a. ruby make
b. f.error_messages
c. for ad in @ads
d. underscores

5. What is naming convention for classes?
a. ActionPack
b. CamelCase
c. ruby make
d. a web page

REVIEW QUESTIONS
1. What do you understand by method return value? Discuss.
2. How to invoke a method on an object.
3. How to declare an argument that has a default value, so that the argument

can be omitted when the method is invoked?

Methods, Prcs, Lambdas, and Closure

3G E-LEARNING

303

4. Give a detailed overview on functional programming
5. How lambdas differ from procs?

Check Your Result

1. (d) 2. (c) 3. (d) 4. (b) 5. (b)

3G E-LEARNING

304 Basic Computer Coding: Ruby

REFERENCES
1. Abran, A., Lopez, M., and Habra, N. 2004. An Analysis of the McCabe Cyclomatic

Complexit Number, Proceedings of the 14th International Workshop on
Software Measurement (IWSM) IWSM-Metrikon, 2004, Magdeburg, Germany:
SpringerVerlag, 391-405.

2. Bin Tang, C., 2015. Explore MQTT and the Internet of Things service on IBM
Bluemix. http://ibm.co/1LDiJFD

3. Harrison, W. 2000. N=1, an Alternative for Software Engineering Research? Proc.
Workshop Beg, Borrow, or Steal: Using Multidisciplinary Approaches in Empirical
Software Eng. Research, Int’l Conf. Software Eng., Aug. 2000.

4. Khare, S., Tambe, S., An, K., Gokhale, A. and Pazandak, P. 2015. Functional
Reactive Stream Processing for Data-centric Publish/Subscribe Systems. http://
bit.ly/1Y CDz15.

5. Namiot, D. and Sneps-Sneppe, M. 2014. On IoT Programming, International
Journal of Open Information Technologies 2(10).

6. Newton, R. and Welsh, M. 2004. Region streams: functional macroprogramming
for sensor networks, Proceeedings of the 1st international workshop on Data
management for sensor networks: in conjunction with VLDB, 78-87.

7. Ray, B., Posnett, D., Filkov, V. and Devanbu, P. T. 2014. “A Large Scale Study of
Programming Languages and Code Quality in Github” Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering.

8. Reese, L. 2015. A Comparison of Open Source Hardware: Intel Galileo vs. Raspberry
Pi. Technical Report. Mouser Electronics. http://bit.ly/1Opw3np.

9. Schneier, B. 2010. The Dangers of a Software Monoculture. Information Security
Magazine, November 2010.

10. Sivieri, A., Mottola, L. and Cugola, G. 2012. Drop the Phone and Talk to the
Physical World: Programming the Internet of Things with Erlang, SESENA ‘12
Proceedings of the Third International Workshop on Software Engineering for
Sensor Network Applications.

11. Subramaniam, V. 2014. Functional Programming in Java: Harnessing the Power
of Java 8 Lambda Expressions, O’Reilly.

12. Wortmann, F. and Flüchter, K. 2015. Internet of Things - Technology and Value
Added, Business & Information Systems Engineering 57(3): 221-224.

13. Zhou, C. and Zhang, X., 2014. Toward the Internet of Things Application and
Management: A Practical Approach, WOWMOM, 2014, 2014 IEEE 15th International
Symposium on “A World of Wireless, Mobile and Multimedia Networks”
(WoWMoM).

Index

A

Accessor creation methods 220
Arbitrary delimiters 108
Array 6, 9, 10, 11
Assignment operator 71, 72

B

Bang Methods 35
Binding objects 195
Blueprints 137
boolean values 72
Breakpoint 163, 166, 172, 180, 181, 186

C

Callback methods 206
capitalize method 32
Character class 116, 117, 118
Classes 36
Class variables 44, 142, 199
Collection of different elements 9
Comparison operators 68
concatenation 31, 47
Conditional statements 58

D

Debugger 12
Debugging 161, 168
Debugging code 209
downcase method 32
Duck Typing 19
Dynamic alterations 205
Dynamic language 189
Dynamic modification 224

E

Executable code 154
Extended method 207

F

Fibonacci sequence 97
Finite number 92, 101
For loops 83, 92, 93, 101

G

Global variable 210
global variables 44, 45

H

Hashes 10

3G E-LEARNING

306 Basic Computer Coding: Ruby

I

Impressive framework 11
Informative error messages 209
Instance variables 43, 138, 141, 150

L

length method 33
local variable 40, 41, 42, 43
Logical operators 57, 60, 72, 74, 76
Lookup algorithm 215

M

Mathematical operators 149
Metaprogramming 189, 190, 193, 200, 224,
245
Metaprogramming technique 220
Met class 155
Method Chaining 35
Method_missing method 215
Modifier 109, 122
Mutex method 214

N

Numeric argument 212

O

Object-oriented programming 146
Object oriented programming languages
137
ObjectSpace module 211, 245
Operator 138, 149, 157

P

Parentheses-optional syntax 190, 212
Pattern literal 111
Pattern matching 112, 123
Programming language 2, 18, 19, 21, 22, 23,
25

Public instance method 192

R

Rails app 169
Rails application 11, 12, 15
Rails maintains 166
Reflection Methods 34
Regex engine 116
Regular expression 108, 109, 111, 113, 114,
116, 117, 121, 123, 124, 125, 129, 131, 132
Replacement text 112, 128, 129
Ruby 163, 169, 179, 185
Ruby code 194, 196, 220, 221, 222
Ruby language 18, 21, 25
Ruby operator 111
Ruby programmer 96
Ruby topics 113

S

Separating characters 136
Singleton methods 193, 197
String 31, 32, 36, 47
String method 109
String representation 143, 144
Super classes 155
Symbol 10, 11

T

Task-specific extension 190
Terminating application 167
Terminator 114

U

Until loop 90, 101
upcase method 33

V

Value 138, 140, 141, 150, 151, 152
Variables 40, 42, 43, 44, 45, 46, 47

Index

3G E-LEARNING

307

W

While loop 64, 66, 67, 87, 88, 89, 90, 91, 92,
93, 101, 103
While statements 66
Whitespace character 117, 120, 121

X

XML formatted data 232
XML grammar 236

	Cover
	Title Page
	Copyright
	EDITORIAL BOARD
	TABLE OF CONTENTS
	Preface
	Chapter 1 Ruby Basics
	Introduction
	1.1 Concept of Ruby Basics
	1.1.1 General Concepts
	1.1.2 Numbers
	1.1.3 Strings
	1.1.4 Arrays
	1.1.5 Hashes

	1.2 Rails Basics
	1.2.1 The Structure of a Rails app
	1.2.2 Important Rails Commands
	1.2.3 ERB: Embedded Ruby
	1.2.4 Editor tips

	1.3 The History of Ruby
	1.3.1 Toddler Years
	1.3.2 The Rebellious Teenager
	1.3.3 The Future

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 2 Working with Strings, Objects, and Variables
	Introduction
	2.1 Ruby - Strings
	2.1.1 Concatenation
	2.1.2 Case
	2.1.3 Length
	2.1.4 Strip

	2.2 Objects and Methods
	2.2.1 Objects and Attributes

	2.3 Variable in Ruby
	2.3.1 Local Variable
	2.3.2 Instance Variables
	2.3.3 Class Variables
	2.3.4 Global Variables
	2.3.5 Ruby Constants

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 3 Implementing Conditional Logic
	Introduction
	3.1 Conditional Statement
	3.1.1 The if Statement
	3.1.2 The case Statement
	3.1.3 The While Loop

	3.2 Comparison Operators
	3.3 Assignment Operators
	3.4 Logical Operators
	3.4.1 Logical and
	3.4.2 Logical or
	3.4.3 Logical not

	3.5 Ternary Operator
	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 4 Working with loops
	Introduction
	4.1 A Simple Loop
	4.2 Controlling Loop Execution
	4.3 While Loops
	4.4 Until Loops
	4.5 Do/While Loops
	4.6 For Loops
	4.7 Conditionals Within Loops
	4.8 Iterators
	4.9 Recursion
	4.10 Ruby Flip-Flop
	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 5 Working with Regular Expressions
	Introduction
	5.1 Mastering Ruby Regular Expressions
	5.1.1 Regular-Expression Modifiers
	5.1.2 Search and Replace
	5.1.3 Regular-Expression Patterns

	5.2 Digging Deeper
	5.2.1 Regular Expression Options
	5.2.2 Deeper Patterns
	5.2.3 Literal Characters
	5.2.4 Character Classes
	5.2.5 Special Character Classes
	5.2.6 Repetition Cases
	5.2.7 Grouping with Parentheses
	5.2.8 Alternatives
	5.2.9 Anchors
	5.2.10 Pattern-Based Substitution
	5.2.11 Backslash Sequences in the Substitution

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 6 Ruby: Object-Oriented Programming
	Introduction
	6.1 Definition of Ruby Class
	6.1.1 Define Ruby Objects
	6.1.2 The accessor & setter Methods
	6.1.3 The class Methods and Variables
	6.1.4 The to_s Method
	6.1.5 Access Control

	6.2 Class Inheritance
	6.2.1 Methods Overriding
	6.2.2 Operator Overloading
	6.2.3 Freezing Objects
	6.2.4 Class Constants
	6.2.5 Create Object Using Allocate
	6.2.6 Class Information

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 7 Debugger
	Introduction
	7.1 Ruby – Debugger
	7.1.1 Usage Syntax
	7.1.2 Ruby Debugger Commands

	7.2 The Logger
	7.2.1 What is the Logger?
	7.2.2 Log Levels
	7.2.3 Sending Messages
	7.2.4 Tagged Logging
	7.2.5 Impact of Logs on Performance

	7.3 Debugging With the Bye Bug Gem
	7.3.1 Setup
	7.3.2 The Shell
	7.3.3 The Context
	7.3.4 Threads
	7.3.5 Inspecting Variables
	7.3.6 Step by Step
	7.3.7 Breakpoints
	7.3.8 Catching Exceptions
	7.3.9 Resuming Execution
	7.3.10 Editing
	7.3.11 Quitting
	7.3.12 Settings

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 8 Reflection and Metaprogramming
	Introduction
	8.1 Types, Classes, and Modules
	8.1.1 Ancestry and Modules
	8.1.2 Defining Classes and Modules

	8.2 Evaluating Strings and Blocks
	8.2.1 Bindings and eval
	8.2.2 instance_eval and class_eval
	8.2.3 instance_exec and class_exec

	8.3 Variables and Constants
	8.3.1 Querying, Setting, and Testing Variables

	8.4 Methods
	8.4.1 Listing and Testing
	8.4.2 Obtaining Method Objects
	8.4.3 Invoking Method
	8.4.4 Defining, Undefining, and Aliasing Methods
	8.4.5 Handling Undefined Methods
	8.4.6 Setting Method Visibility

	8.5 Hooks
	8.6 Tracing
	8.7 Objectspace and Gc
	8.8 Custom Control Structures
	8.8.1 Delaying and Repeating Execution: after and every
	8.8.2 Thread Safety with Synchronized Blocks

	8.9 Missing Methods and Missing Constants
	8.9.1 Unicode Codepoint Constants with const_missing
	8.9.2 Tracing Method Invocations with method_missing
	8.9.3 Synchronized Objects by Delegation

	8.10 Dynamically Creating Methods
	8.10.1 Defining Methods with class_eval
	8.10.2 Defining Methods with define_method

	8.11 Alias Chaining
	8.11.1 Tracing Files Loaded and Classes Defined
	8.11.2 Chaining Methods for Thread Safety
	8.11.3 Chaining Methods for Tracing

	8.12 Domain-Specific Languages
	8.12.1 Simple XML Output with method_missing
	8.12.2 Validated XML Output with Method Generation

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 9 Methods, Prcs, Lambdas, and Closure
	Introduction
	9.1 Defining Simple Methods
	9.1.1 Method Return Value
	9.1.2 Methods and Exception Handling
	9.1.3 Invoking a Method on an Object
	9.1.4 Defining Singleton Methods
	9.1.5 Undefining Methods

	9.2 Method Names
	9.2.1 Operator Methods
	9.2.2 Method Aliases

	9.3 Methods and Parentheses
	9.3.1 Optional Parentheses
	9.3.2 Required Parentheses

	9.4 Method Arguments
	9.4.1 Parameter Defaults
	9.4.2 Variable-Length Argument Lists and Arrays
	9.4.3 Mapping Arguments to Parameters
	9.4.4 Hashes for Named Arguments
	9.4.5 Block Arguments

	9.5 Procs and Lambdas
	9.5.1 Creating Procs
	9.5.2 Invoking Procs and Lambdas
	9.5.3 The Arity of a Proc
	9.5.4 Proc Equality
	9.5.5 How Lambdas Differ from Procs

	9.6 Closures
	9.6.1 Closures and Shared Variables
	9.6.2 Closures and Bindings

	9.7 Method Objects
	9.7.1 Unbound Method Objects

	9.8 Functional Programming
	9.8.1 Applying a Function to an Enumerable
	9.8.2 Composing Functions
	9.8.3 Partially Applying Functions
	9.8.4 Memoizing Functions
	9.8.5 Symbols, Methods, and Procs

	Summary
	Knowledge Check
	Review Questions
	References

	Index
	Back Cover

