

BASIC COMPUTER CODING: SQL

2nd Edition

BIBLIOTEX
Digital Library

www.bibliotex.com

BASIC COMPUTER CODING: SQL

2ND EDITION

BIBLIOTEX
Digital Library

www.bibliotex.com

email: info@bibliotex.com

e-book Edition 2022

ISBN: 978-1-98467-606-1 (e-book)

This book contains information obtained from highly regarded resources.
Reprinted material sources are indicated. Copyright for individual articles
remains with the authors as indicated and published under Creative Commons
License. A Wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and views articulated in the chapters are those of
the individual contributors, and not necessarily those of the editors or
publishers. Editors or publishers are not responsible for the accuracy of the
information in the published chapters or consequences of their use. The
publisher assumes no responsibility for any damage or grievance to the persons or
property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission has not been obtained. If any copyright holder has
not been acknowledged, please write to us so we may rectify.

Notice: Registered trademark of products or corporate names are used only
for explanation and identification without intent of infringement.

© 2022 3G E-learning LLC

In Collaboration with 3G E-Learning LLC. Originally Published in printed
book format by 3G E-Learning LLC with ISBN 978-1-98465-899-9

EDITORIAL BOARD
Aleksandar Mratinković was born on May 5, 1988 in Arandjelovac, Serbia. He has graduated on
Economic high school (2007), The College of Tourism in Belgrade (2013), and also has a master
degree of Psychology (Faculty of Philosophy, University of Novi Sad). He has been engaged
in different fields of psychology (Developmental Psychology, Clinical Psychology, Educational
Psychology and Industrial Psychology) and has published several scientific works.

Dan Piestun (PhD) is currently a startup entrepreneur in Israel working on the interface of
Agriculture and Biomedical Sciences and was formerly president-CEO of the National Institute of
Agricultural Research (INIA) in Uruguay. Dan is a widely published scientist who has received
many honours during his career including being a two-time recipient of the Amit Golda Meir
Prize from the Hebrew University of Jerusalem, his areas of expertise includes stem cell molecular
biology, plant and animal genetics and bioinformatics. Dan’s passion for applied science and
technological solutions did not stop him from pursuing a deep connection to the farmer, his family
and nature. Among some of his interest and practices counts enjoying working as a beekeeper
and onboard fishing.

Hazem Shawky Fouda has a PhD. in Agriculture Sciences, obtained his PhD. From the Faculty
of Agriculture, Alexandria University in 2008, He is working in Cotton Arbitration & Testing
General Organization (CATGO).

Felecia Killings is the Founder and CEO of LiyahAmore Publishing, a publishing company committed
to providing technical and educational services and products to Christian Authors. She operates as
the Senior Editor and Writer, the Senior Writing Coach, the Content Marketing Specialist, Editor-
in-Chief to the company’s quarterly magazine, the Executive and Host of an international virtual
network, and the Executive Director of the company’s online school for Authors. She is a former
high-school English instructor and professional development professor. She possesses a Master
of Arts degree in Education and a Bachelor’s degree in English and African American studies.

Dr. Sandra El Hajj, Ph.D. in Health Sciences from Nova Southeastern University, Florida,
USA is a health professional specialized in Preventive and Global Health. With her 12 years of
education obtained from one of the most prominent universities in Beirut, in addition to two leading
universities in the State of Florida (USA), Dr. Sandra made sure to incorporate interdisciplinary
and multicultural approaches in her work. Her long years of studies helped her create her own
miniature world of knowledge linking together the healthcare field with Medical Research, Statistics,
Food Technology, Environmental & Occupational Health, Preventive Health and most noteworthy
her precious last degree of Global Health. Till today, she is the first and only doctor specialized
in Global Health in the Middle East area.

Igor Krunic 2003-2007 in the School of Economics. After graduating in 2007, he went on to
study at The College of Tourism, at the University of Belgrade where he got his bachelor degree
in 2010. He was active as a third-year student representative in the student parliament.Then he
went on the Faculty of science, at the University of Novi Sad where he successfully defended his
master’s thesis in 2013. The crown of his study was the work titled Opportunities for development
of cultural tourism in Cacak“. Later on, he became part of a multinational company where he got
promoted to a deputy director of logistic. Nowadays he is a consultant and writer of academic
subjects in the field of tourism.

Dr. Jovan Pehcevski obtained his PhD in Computer Science from RMIT University in Melbourne,
Australia in 2007. His research interests include big data, business intelligence and predictive analytics,
data and information science, information retrieval, XML, web services and service-oriented architectures,
and relational and NoSQL database systems. He has published over 30 journal and conference papers
and he also serves as a journal and conference reviewer. He is currently working as a Dean and Associate
Professor at European University in Skopje, Macedonia.

Stephen obtained his PhD from the University of North Carolina at Charlotte in 2013 where his
graduate research focused on cancer immunology and the tumor microenvironment. He received
postdoctoral training in regenerative and translational medicine, specifically gastrointestinal tissue
engineering, at the Wake Forest Institute of Regenerative Medicine. Currently, Stephen is an
instructor for anatomy and physiology and biology at Forsyth Technical Community College.

Michelle holds a Masters of Business Administration from the University of Phoenix, with a
concentration in Human Resources Management. She is a professional author and has had numerous
articles published in the Henry County Times and has written and revised several employee
handbooks for various YMCA organizations throughout the United States.

Fozia Parveen has a Dphil in Sustainable Water Engineering from the University of Oxford. Prior
to this she has received MS in Environmental Sciences from National University of Science and
Technology (NUST), Islamabad Pakistan and BS in Environmental Sciences from Fatima Jinnah
Women University (FJWU), Rawalpindi.

Dr. Tanjina Nur finished her PhD in Civil and Environmental Engineering in 2014 from University
of Technology Sydney (UTS). Now she is working as Post-Doctoral Researcher in the Centre for
Technology in Water and Wastewater (CTWW) and published about eight International journal papers
with 80 citations. Her research interest is wastewater treatment technology using adsorption process.

v

 HOW TO USE THE BOOK

This book has been divided into many chapters. Chapter gives the motivation for this book and the use
of templates. The text is presented in the simplest language. Each paragraph has been arranged under
a suitable heading for easy retention of concept. Keywords are the words that academics use to reveal
the internal structure of an author’s reasoning. Review questions at the end of each chapter ask students
to review or explain the concepts. References provides the reader an additional source through which
he/she can obtain more information regarding the topic.

3G E-LEARNING

4 Basic Computer Coding: Visual Basic

enhancements, including the striking ability of creating web based applications. The
extended support for Visual Basic 6.0 was ceased in the month of March in 2008. The
basic parts of development environment of Visual Basic 6, however, still run in all the
32-bit Microsoft windows, including Windows 8.1.

After the cessation of mainstream and extended support for Visual Basic 6.0 caused
a number of programs to show concern. The community members then created a lobby
of users and a petition was signed by them. The basic aim of this petition was to ensure
that the product remains alive. However, the petition did not attain its aim effectively.

1.1.2 The Importance of Visual Basic Programming Language

Visual Basic is regarded as the third generation event-driven programming language.
It was released in 1987. Being the first visual development tool from Microsoft, it is
considered as one of the most powerful programming languages. As compared to other
computer programming languages, such as, C, C++, it is easy to learn and understand,
provided that one has determination and dedication to do so.

Visual basic programming language allows programmers to create software interface
and codes in an easy to use graphical environment. VB is the combination of different
components that are used on forms having specific attributes and actions with the help
of those components. On the one hand it allows programmers to develop widows based
applications rapidly; on the other hand, it helps greatly in accessing data bases, using
ADO while letting the programmers use ActiveX controls and various objects. While it
is intended more to develop applications, it is also useful for games development for
particular or limited purposes, unlike C++ that is more suitable for developing games.

As compared to other languages, Visual basic may be slower though, yet it is
flexible and it can be rightly said that things that are difficult in other languages are
comparatively easier in visual basic programming language. It may also be said that,
since it is one of the most popular programming languages, lots of related books
and material and other resources are available and can be accessed for developing
programming skills at visual basic programming language conveniently.

One of the most important things to be considered with regard to programming in
Visual basic is that the structure of VB is designed in a way that allows programmers
to create executable code – Exe files. It enables programmers to develop programs that
can be used as front end to databases. Besides, it’s with the help of visual basic tools,
one can change the abstract ideas into programs or into the whole software while it
allows revising and modifying the programs fittingly.

3G E-LEARNING

2 Basic Computer Coding: Visual Basic

a graphical user interface (GUI) which allows programmers
to modify code by simply dragging and dropping objects and
defining their behavior and appearance. VB is derived from
the BASIC programming language and is considered to be
event-driven and object-oriented.

VB is intended to be easy to learn and fast to write
code with; as a result, it is sometimes called a rapid
application development (RAD) system and is used
to prototype an application that will later be written in a
more difficult but efficient language.

The last version of VB, Visual Basic 6, was released in
1998, but has since been replaced by VB .NET, Visual Basic for
applications (VBA) and Visual Stuido .NET. VBA and Visual
Studio are the two frameworks most commonly used today.

1.1 MEANING OF VISUAL BASIC
Visual Basic is a programming language and development
environment created by Microsoft. It is an extension of the
BASIC programming language that combines BASIC functions
and commands with visual controls. Visual Basic provides a
graphical user interface GUI that allows the developer to
drag and drop objects into the program as well as manually
write program code.

Visual Basic, also referred to as “VB,” is designed to
make software development easy and efficient, while still
being powerful enough to create advanced programs. For
example, the Visual Basic language is designed to be “human
readable,” which means the source code can be understood
without requiring lots of comments. The Visual Basic program
also includes features like “IntelliSense” and “Code Snippets,”
which automatically generate code for visual objects added by

 The
 graphical
 user interface
 (GUI), is a type
 of user interface
 that allows users
 to interact with
 electronic devices
 through graphical
 icons and visual
 indicators such
 as secondary
 notation, instead
 of text-based user
 interfaces, typed
 command labels or
text navigation.

Keyword

Introduction to Visual Basic

3G E-LEARNING

3

the programmer. Another feature, called “AutoCorrect,” can
debug the code while the program is running.

Programs created with Visual Basic can be designed to
run on Windows, on the Web, within Office applications, or
on mobile devices. Visual Studio, the most comprehensive
VB development environment, or IDE, can be used to create
programs for all these mediums. Visual Studio .NET provides
development tools to create programs based on the .NET
framework, such as ASP.NET applications, which are often
deployed on the Web.

1.1.1 History of Visual Basic

The first version of visual basic, VB 1.0, was announced in the
year 1991. The creation of user interface through a drag and
drop design was inspired a beta generator that was developed
by Alan Cooper at Tripod, which was Cooper’s company.

Microsoft entered into a contract with Cooper and his
partners to create Tripod into a system that is programmable for
Windows 3.0. This system was developed under the code name
of Ruby, which has no relationship with the Ruby Programming
Language. Tripod did not have any programming language at
all. Microsoft then decided to use Ruby in combination with
basic language to develop visual basic.

The interface of Ruby contributed the “visual” component
of the Visual Basic programming language. This was then
amalgamated with the Embedded BASIC engine that was
developed for the ceased “Omega” database system of
Microsoft.

The introduction of version 5.0, in the month of February
in 1997, Microsoft exclusively released a visual basic that
was compatible with 32-bit Microsoft Windows versions. The
programmers who had a preference for writing programs in
16-bit could do it in versions between 4.0 and 5.0. In addition
to that the programs written Visual Basic 5.0 can be converted
to Version 4.0 programs in an easy manner. The version 5.0
also has the ability of compilation with native execution code
of Windows, and introduction of custom user controls.

The introduction of Visual Basic 6.0 was made in the
middle of 1998. This version also came with a number of

Visual
Basic
is available as
a streamlined
application that
is used primarily
by beginning
developers and
for educational
purposes.

Remember

LEARNING OBJECTIVES
See what you are going to cover and what you
should already know at the start of each chapter

ABOUT THIS CHAPTER
An introduction is a beginning of section which
states the purpose and goals of the topics which
are discussed in the chapter. It also starts the topics
in brief.

“I know blind programmers who work in C and Visual Basic in addition to mainframe languages,
because as long as they can get at a text file, they can do programming. But if the graphical tool kit
you are using requires you to drag and drop items on the screen, you can’t do it.”

–Curtis Chong,

After studying this chapter,
you will be able to:
1. Overview of meaning of

visual basic
2. Discuss the visual basic

environment
3. Describe the building

VB applications

LEARNING
OBJECTIVES

INTRODUCTION
TO VISUAL BASIC

INTRODUCTION
Visual Basic (VB) is an event-driven programming
language and environment from Microsoft that provides

1
CHAPTER

REMEMBER
This revitalizes a must read information of the
topic.

KEYWORDS
This section contains some important definitions
that are discussed in the chapter. A keyword is
an index entry that identifies a specific record
or document. It also gives the extra information
to the reader and an easy way to remember the
word definition.

vi

3G E-LEARNING

6 Basic Computer Coding: Visual Basic

 ■ There are some, fairly minor disadvantages compared
with C. C has better declaration of arrays – its possible
to initialize an array of structures in C at declaration
time; this is impossible in VB.

1.2 VISUAL BASIC ENVIRONMENT
On start up, Visual Basic 6.0 will display the following dialog
box as shown in figure 1. You can choose to start a new
project, open an existing project or select a list of recently
opened programs. A project is a collection of files that make
up your application. There are various types of applications
we could create, however, we shall concentrate on creating
Standard EXE programs (EXE means executable program).
Now, click on the Standard EXE icon to go into the actual
VB programming environment.

Figure 1: The Visual Basic Start-up Dialog Box.

In figure 2, the Visual Basic Environment consists of the
 ■ The Blank Form window which you can design your

application’s interface.
 ■ The Project window displays the files that are created

in your application.
 ■ The Properties window which displays the properties

of various controls and objects that are created in
your applications.

It also includes a Toolbox that consists of all the controls
essential for developing a VB Application. Controls are tools

Visual
Basic 1.0 for DOS
was released in
September 1992.
The language
itself was not
quite compatible
with Visual Basic
for Windows, as
it was actually
the next version
of Microsoft’s
DOS-based
BASIC compilers,
Microsoft
QuickBASIC
compiler and
the BASIC
Professional
Development
System 7.1. The
interface was
barely graphical,
using extended
ASCII characters
to simulate the
appearance of a
GUI.

Did You
Know?

38 Basic Computer Coding: Visual Basic

In each case, the name of the variable and its data type
are provided as part of the declaration.

Visual Basic reserves the amount of memory required
to hold the variable as soon as the declaration statement is
executed. After a variable is declared, it is not possible to
change its data type, although it is quite easy to convert the
value of a variable and assign the converted value to another
variable.

2.2.2 Comparing Implicit and Explicit Variable
Performance

The default data type for Visual Basic variables is the variant.
This means that, unless you specify otherwise, every variable
in your application will be a variant. The data type is not
very efficient. Its data storage requirements are greater than
the equivalent simple data type. The computer spends more
time keeping track of the data type contained in a variant
than for other data types.

 Variable names can’t be duplicated with the same scope. This means, that
 you can’t have two variables of the same name within a procedure. You can,
however, have two variables with the same name in two different procedures.

An explicit declaration statically types the variable it
declares. In a language that requires explicit declaration, you
will get a compilation error for any reference to a variable
that has not been explicitly declared.

By contrast, in a language that supports implicit declaration,
simply using a variable in code implies the declaration. If your
code assigns a string to the variable, then it is declared to be
a string.

Convenient, yes? Not so much. Any time you misspell a
variable name you get a new one and the program moves on,
with incorrect conditional behavior or a wrongly computed
value.

Given the rise of very smart editors like Visual Studio
Code, implicit declaration need not be the menace it was,
at least for languages that support the notion of optional

DID YOU KNOW?
This section equip readers the interesting facts and
figures of the topic.

EXAMPLE
The book cabinets’ examples to illustrate specific
ideas in each chapter.

ROLE MODEL
A biography of someone who has/had acquired
remarkable success in their respective field as
Role Models are important because they give us
the ability to imagine our future selves.

CASE STUDY
This reveals what students need to create and
provide an opportunity for the development of key
skills such as communication, group working and
problem solving.

KNOWLEDGE CHECK
This is given to the students for progress check
at the end of each chapter.

REVIEW QUESTIONS
This section is to analyze the knowledge and ability
of the reader.

REFERENCES
References refer those books which discuss the
topics given in the chapters in almost same man ner.

Introduction to Visual Basic

3G E-LEARNING

19

ROLE MODEL

ALAN COOPER: FATHER OF VISUAL BA-
SIC
 Born in San Francisco in 1952 and raised in Marin
 County, California, Alan Cooper has always taken the path
 less traveled. A rebellious teenager, he dropped out of high
 school, but eventually made his way to the College of Marin
 to pursue his interest in architecture. After an exploratory
 course in programming, it became clear that his future was
 in architecture—software architecture. After getting his
 associate degree and a COBOL programming job, he saw an
 advertisement for one of the first personal computers and
.conceived an idea for a new business venture

In 1976, Cooper founded Structured Systems Group (SSG),
a company Fire in the Valley authors Paul Freiberger and
Michael Swaine said created “the first serious business software
for microcomputers.” In four years, Cooper wrote and shipped
a dozen application programs. SSG became the archetype
for many software startups in the early days of the personal
computer revolution.

During the 1980s, after leaving SSG, Cooper invented,
wrote, and sold three major software packages to prominent
publishers. One of those was the visual programming front-
end code named “Ruby,” for what became Visual BASIC. Bill
Gates purchased it from Cooper in 1988, noting that it would
have significant impact across Microsoft’s entire product line.
Visual BASIC was deemed both a commercial and critical
success, earning Cooper the moniker “Father of Visual BASIC.”
Visual BASIC has influenced integrated development languages
ever since.

In 1990 Cooper became fascinated with the challenge of
making software products that were easy to use and understand.
He and his wife, Susan, founded Cooper Interaction Design
(now “Cooper”) to assist in what Cooper calls “interaction
design.” In the design field, Cooper’s software development
background was unique and, over the next few years, he
invented many of the tools and techniques now standard in
the user experience industry, including personas and scenarios,

3G E-LEARNING

50 Basic Computer Coding: Visual Basic

CASE STUDY

FUJITSU FACILITATES SMOOTH MIGRATION TO VB.NET AT
AN POST
Fujitsu has an excellent technical team, which works closely with our staff. We have
had a good working relationship for many years and Fujitsu has an in-depth knowledge
of our mission-critical application gained from several years’ development and support
work.

Challenge

A Post, one of Ireland’s largest companies, is a major commercial organization providing
a wide range of postal, communication, retail and financial services. With 9,600
employees throughout its national network of retail, processing and delivery points,
the business also provides services to government departments, the National Treasury
Management Agency and its own National Lottery Company. A decade ago, A Post
implemented a new nationwide time and attendance system to calculate and record staff
salary and wages functions. The Staff Remuneration and Administration Management
System (STREAMS) is a bespoke, mission-critical application developed by Fujitsu as
a reliable, scalable client server system using Microsoft technologies. The STREAMS
front-end system gathers information and feeds the data to the company’s HR, payroll
and financial departments. It primarily creates more efficient processes for A Post to
capture data for the weekly payroll run whilst simultaneously minimizing the number
of payroll queries by employees. Following deployment, STREAMS improved cost
center reporting, significantly lowered the time to record pay details and enhanced
the processing of casual staff pay. During this period, Fujitsu provided quality support
and maintenance services and application enhancements to increase functionality,
ensuring the long-term reliability of STREAMS. For instance, as employee numbers
steadily increased to exceed original expectations, Fujitsu boosted system performance
by upgrading the infrastructure and optimizing the software. STREAMS originally
employed Visual Basic (VB), a third-generation event-driven programming language and
integrated development environment (IDE) from Microsoft. IDE provides programmers
with comprehensive facilities for software development and comprises a source code
editor, a compiler and/or an interpreter, build automation tools and a debugger.
However, Microsoft no longer supports VB version 6.0, the edition employed by A
Post. Syl Byrne, IT Manager Remuneration Services, A Post, explains: “To ensure that
our business-critical application is future-proof, we needed to move to a platform that
Microsoft will support for the foreseeable future.” A Post therefore decided to migrate
STREAMS to the VB.NET platform, an object-orientated programming language. This
strategy would protect its investment for the next 10 years by creating a secure, scalable

3G E-LEARNING

22 Basic Computer Coding: Visual Basic

KNOWLEDGE CHECK
1. The Visual Basic Code Editor will automatically detect certain types of errors

as you are entering code.
a. True
b. False

2. Keywords are also referred to as reserved words.
a. True
b. False

3. The divide-and-conquer-method of problem solving breaks a problem into large,
general pieces first, then refines each piece until the problem is manageable.
a. True
b. False

4. Visual Basic responds to events using which of the following?
a. a code procedure
b. an event procedure
c. a form procedure
d. a property

5. When the user clicks a button, _________ is triggered.
a. an event
b. a method
c. a setting
d. a property

6. What property of controls tells the order they receive the focus when the tab
key is pressed during run time?
a. Focus order
b. Focus number
c. Tab index
d. Control order

7. Sizing Handles make it very easy to resize virtually any control when developing
applications with Visual Basic. When working in the Form Designer, how are
these sizing handles displayed?
a. A rectangle with 4 arrows, one in each corner, around your control.
b. A 3-D outline around your control.
c. A rectangle with small squares around your control.

3G E-LEARNING

24 Basic Computer Coding: Visual Basic

REFERENCES
1. Cox, Philip T, Visual Programming Languages. In in Encyclopedia of Computer

Science and Engineering, B.W. Wah (Ed.), John Wiley & Sons Inc., Hoboken,
(June 2008).

2. Kindborg, Mikael, How Children Understand Concurrent Comics: Experiences
from LOFI and HIFI Prototypes. In 2001 IEEE Symposia on Human-Centric
Computing Languages and Environments , Stresa, Italy, September 2001.

3. Ryder, Barbara, Mary Lou Soffa and Margaret Burnett, The Impact of Software
Engineering Research on Modern Programming Languages. In ACM Transactions
on Software Engineering and Methodology, October, 2005. Pages 431 to 477.

4. Störrle, Harald, VMQL: A Generic Visual Model Query Language. In IEEE
Symposium on Visual Languages/Human Centric Computing, Corvallis, Oregon,
September 2009.

5. Zhang, Kang, Visual Languages and Applications. In Research Manuscript,
Springer, 2007.

Introduction to Visual Basic

3G E-LEARNING

23

d. None of the above.
8. The Properties window plays an important role in the development of Visual

Basic applications. It is mainly used
a. to change how objects look and feel.
b. when opening programs stored on a hard drive.
c. to allow the developer to graphically design program components.
d. to set program related options like Program Name, Program Location, etc.

9. Pseudocode is
a. data that have been encoded for security.
b. the incorrect results of a computer program.
c. a program that doesn’t work.
d. the obscure language computer personnel use when speaking.
e. a description of an algorithm similar to a computer language.

10. Which of the properties in a control’s list of properties is used to give the
control a meaningful name?
a. Text
b. ContextMenu
c. ControlName
d. Name

REVIEW QUESTIONS
1. What is visual basic? Why are importance of visual basic programming

language?
2. What is visual basic environment?
3. Describe the structure of a visual basic application.
4. How to creating your first application?
5. Discuss the saving projects in VB.

Check Your Result

1. (a) 2. (a) 3. (a) 4. (b) 5. (a)
6. (c) 7. (c) 8. (a) 9. (e) 10. (d)

TABLE OF

CONTENTS
Preface xv

Chapter 1 An Overview of SQL 1
Introduction 1

1.1 The SQL Language 2

1.1.1 A Brief History of SQL 2

1.1.2 SQL Process 2

1.1.3 The Role of SQL 6

1.1.4 Applications of SQL (Structured Query Language) 8

1.1.5 Advantages of SQL 9

1.1.6 Disadvantages of SQL 9

1.2 SQL Commands 10

1.2.1 Types of SQL Commands 11

1.3 SQL Server 14

1.3.1 SQL Server Components 14

1.3.2 SQL Server integration with the .NET Framework 16

1.3.3 Features of SQL Server 17

1.3.4 SQL Statements 18

Summary 22

Knowledge Check 23

Review Questions 24

References 25

Chapter 2 SQL in Perspective 27
Introduction 27

2.1 SQL and Database Management 28

2.1.1 Database Management System 29

2.1.2 Operations of DBMS 30

2.2 SQL Standard 38

viii

2.2.1 The ANSI/ISO Standards 39

2.2.2 SQL Standard and Proprietary Extensions 41

2.2.3 SQL Commands and Syntax 41

2.2.4 SQL-on-Hadoop tools 42

2.2.5 ODBC and SQL 45

2.2.6 SQL and Portability 49

Summary 52

Knowledge Check 54

Review Questions 56

References 57

Chapter 3 Retrieving Data 59
Introduction 59

3.1 SQL Data Types 60

3.1.1 MySQL Data Types 61

3.1.2 SQL Server Data Types 64

3.1.3 Microsoft Access Data Types 67

3.2 SQL Expressions 68

3.2.1 Boolean Expressions 69

3.2.2 Numeric Expression 69

3.2.3 Date Expressions 70

3.3 SQL Queries 71

3.3.1 SQL INSERT Query 71

3.3.2 SQL SELECT Query 73

3.3.3 SQL UPDATE Query 75

3.3.4 SQL DELETE Query 77

Summary 81

Knowledge Check 82

Review Questions 84

References 85

Chapter 4 Updating Data 87
Introduction 87

4.1 Adding Data to the Database 88

4.1.1 The Single-Row INSERT Statement 89

4.1.2 The Multirow INSERT Statement 92

4.1.3 Bulk Load Utilities 95

4.2 Deleting Data from the Database 96

ix

4.2.1 The DELETE Statement 97

4.2.2 Deleting All Rows 98

4.2.3 DELETE with Subquery 99

4.3 Modifying Data in the Database 101

4.3.1 The UPDATE Statement 102

4.3.2 Updating All Rows 104

4.3.3 UPDATE with Subquery 104

Summary 108

Knowledge Check 109

Review Questions 111

References 112

Chapter 5 Database Structure 113
Introduction 113

5.1 Database Design 114

5.1.1 The database design process 115

5.1.2 Requirements analysis: identifying the purpose of the database 116

5.1.3 Database structure: the building blocks of a database 117

5.1.4 Creating relationships between entities 119

5.1.5 Database Normalization 121

5.1.6 Multidimensional data 123

5.1.7 Data integrity rules 124

5.1.8 Adding indexes and views 124

5.1.9 Extended properties 125

5.1.10 SQL and UML 125

5.1.11 Database Management Systems 125

5.2 Database Schema Versus Database Instance 125

5.3 Database Models 128

5.3.1 Conceptual Data Model 129

5.3.2 Representational Data Model 129

5.3.3 Physical Data Model 133

Summary 137

Knowledge Check 138

Review Questions 140

References 141

x

Chapter 6 Programming with SQL 143
Introduction 143

6.1 Embedded SQL 144

6.1.1 Concepts for Embedding the SQL Statements 145

6.1.2 Embedded SQL Program Development 146

6.1.3 An Embedded SQL Example in C 147

6.1.4 Error Handling with SQL Code 148

6.2 Dynamic SQL 148

6.2.1 Programming with Dynamic SQL 149

6.2.2 Writing Dynamic SQL 151

6.3 SQL APIs 154

6.3.1 How APIs Work 154

6.3.2 Three Basic Types of APIs 160

6.3.3 Why API Design Matters 161

Summary 165

Knowledge Check 166

Review Questions 168

References 169

Chapter 7 SQL Security 171
Introduction 171

7.1 SQL Security Concept 172

7.1.1 User Ids 173

7.1.2 User Authentication 175

7.1.3 User Groups 177

7.2 SQL Injection (SQLi) 178

7.2.1 SQL Injection Attacks 179

7.2.2 Applications Vulnerable to SQL Injection 181

7.2.3 The challenge with detection 183

7.2.4 Detection at the Web Tier 185

7.2.5 A Better way – a Database Firewall 187

7.2.6 Cleaning Up the Database after an SQL Injection Attack 189

Summary 192

Knowledge Check 193

Review Questions 195

References 196

xi

Chapter 8 SQL Table 197
Introduction 197

8.1 Table 198

8.1.1 SQL TABLE Variable 199

8.2 SQL Create Table 199

8.2.1 SQL CREATE TABLE Example in MySQL 201

8.2.2 SQL CREATE TABLE Example in Oracle 201

8.2.3 SQL CREATE TABLE Example in Microsoft SQLServer 202

8.2.4 Create a Table Using another Table 202

8.2.5 SQL Primary Key with CREATE TABLE Statement 203

8.3 SQL Drop Table 204

8.3.1 SQL DROP TABLE Example in MySQL 205

8.3.2 SQL DROP TABLE Example in Oracle 205

8.3.3 SQL DROP TABLE Example in Microsoft SQLServer 205

8.4 SQL Delete Table 205

8.4.1 Difference between DELETE and TRUNCATE Statements 206

8.4.2 Difference b/w DROP and TRUNCATE Statements 206

8.5 SQL Rename Table 206

8.5.1 Syntax of RENAME Statement in SQL 207

8.5.2 Examples of RENAME Statement in SQL 207

8.5.3 Syntax of ALTER TABLE Statement in SQL 208

8.6 SQL Truncate Table 210

8.6.1 TRUNCATE TABLE Vs DELETE TABLE 210

8.6.2 TRUNCATE TABLE Vs. DROP TABLE 210

8.7 SQL Copy Table 210

8.7.1 Syntax of SELECT INTO statement in SQL 211

8.7.2 Examples of SELECT INTO statement in SQL 211

8.7.3 Syntax of SELECT INTO Statement with WHERE Clause in SQL 214

8.8 SQL Temp Table 216

8.8.1 Local Temp Variable 216

8.8.2 Global Temp Variable 216

8.9 SQL Alter Table 217

8.9.1 Alter Table Add Column Statement in SQL 217

8.9.2 Syntax of Alter Table Add Column Statement in SQL 217

8.9.3 Examples of Alter Table Add Column Statement in SQL 217

8.9.4 Alter Table Modify Column Statement in SQL 218

8.9.5 Syntax of Alter Table Modify Column Statement in SQL 218

8.9.6 Examples of Alter Table Modify Column Statement in SQL 219

8.9.7 Alter Table Drop Column Statement in SQL 220

8.9.8 Syntax of Alter Table Drop Column Statement in SQL 220

8.9.9 Examples of Alter Table Drop Column Statement in SQL 220

8.9.10 Alter Table Rename Column Statement in SQL 222

8.9.11 Syntax of Alter Table Rename Column Statement in SQL 222

8.9.12 Examples of Alter Table Rename Column Statement in SQL 222

Summary 224

Knowledge Check 225

Review Questions 226

References 227

Chapter 9 SQL Clause 229
Introduction 229

9.1 WHERE Clause 230

9.2 SQL AND, OR and NOT Operators 231

9.2.1 SQL AND 231

9.2.2 SQL OR 236

9.3 SQL With Clause 240

9.3.1 SQL SELECT AS 241

9.3.2 Assigning a Temporary Name to a Table 244

9.4 HAVING Clause in SQL 244

9.4.1 Difference between HAVING and WHERE Clause 244

9.4.2 Syntax of HAVING Clause in SQL 245

9.4.3 Examples of HAVING Clause in SQL 245

9.4.4 MIN Function with HAVING Clause 247

9.4.5 MAX Function with HAVING Clause 248

9.5 SQL ORDER BY Clause 250

9.5.1 SQL ORDER BY Syntax 251

9.5.2 SQL ORDER BY Clause with Ascending Order 252

9.5.3 SQL ORDER BY Clause with Descending Order 253

9.5.4 SQL ORDER BY RANDOM 254

9.5.5 SQL ORDER BY LIMIT 256

9.5.6 SQL SORTING on Multiple Columns 257

Summary 258

Knowledge Check 259

Review Questions 260

References 261

xiii

Chapter 10 Database Processing and Stored
Procedural SQL 263
Introduction 263

10.1 Procedural SQL Concepts 265

10.1.1 A Basic Example 267

10.1.2 Using Stored Procedures 269

10.1.3 Advantages of Stored Procedures 297

10.1.4 Stored Procedure Performance 299

10.1.5 System-Defined Stored Procedures 299

10.1.6 External Stored Procedures 300

10.2 Triggers 301

10.2.1 Advantages and Disadvantages of Triggers 302

10.2.2 Triggers in Transact-SQL 303

10.2.3 Triggers in Informix SPL 305

10.2.4 Triggers in Oracle PL/SQL 307

10.2.5 Other Trigger Considerations 309

10.3 Stored Procedures, Functions, Triggers, and the SQL Standard 310

10.3.1 The SQL/PSM Stored Procedures Standard 311

10.3.2 The SQL/PSM Triggers Standard 320

Summary 325

Knowledge Check 326

Review Questions 327

References 328

 Index 329

Basically, SQL stands for Structured Query Language which is basically a
language used by databases. SQL is the standard language for Relational
Database System. All the Relational Database Management Systems (RDMS)
like MySQL, MS Access, Oracle, Sybase, Informix, Postgres and SQL Server
use SQL as their standard database language. It has been around in some
form since the 70s and is just about as ubiquitous as data management
itself. In order to get the most of the mounds of data they collect, many
businesses must become versed in SQL. Now into its third decade of
existence, SQL offers great flexibility to users by supporting distributed
databases, i.e. databases that can be run on several computer networks at
a time. SQL is used in health care, business (inventories, trends analysis),
and education. It even has applications in the defense industry.

Organization of the Book
This updated edition is systematically divided into ten chapters. You’ll
quickly learn how to put the power and flexibility of this language to
work. This book is a guide to SQL covers such topics as retrieving records,
metadata queries, working with strings, data arithmetic, date manipulation,
reporting and warehousing, and hierarchical queries.
Chapter 1 presents an overview of SQL. You will take a look on SQL
commands and SQL server. SQL statements are used to perform tasks such
as update data on a database, or retrieve data from a database.
Chapter 2 is intended to focus on SQL in perspective. In this chapter,
you will learn about the SQL and database management, including with
SQL standards although it is the most widely recognized, the ANSI/ISO
standard is not the only standard for SQL. X/OPEN, a European vendor
group, also adopted SQL as part of its suite of standards for a portable
application environment based on UNIX.

PREFACE

xvi

Chapter 3 aims to data retrieval i.e. obtaining data from a database management
system such as ODBMS. In order to retrieve the desired data the user present
a set of criteria by a query.
Chapter 4 focuses on updating data. The topics, adding data to the database,
deleting data from the database, and modifying data in the database are
discussed in this chapter.
Chapter 5 is aimed to explain the database design, the database schema versus
database instance, and the database models.
Chapter 6 is intended to focus on programming with SQL such as embedded
SQL, dynamic SQL, and SQL APIs.
Chapter 7 is focused on SQL security concept. Security is especially important in
an SQL-based DBMS because interactive SQL makes database access very easy.
Chapter 8 aims to cover SQL Table. The data in a table does not have to be
physically stored in the database. Views also function as relational tables, but
their data are calculated at query time. External tables (in Informix or Oracle,
for example) can also be thought of as views.
Chapter 9 explores on SQL Clause. Clauses are in-built functions available to
us in SQL. With the help of clauses, we can deal with data easily stored in
the table. Clauses help us filter and analyze data quickly. When we have large
amounts of data stored in the database, we use Clauses to query and get data
required by the user.
Chapter 10 is database processing and stored procedural SQL. With the advent
of relational databases and SQL, the DBMS took on expanded responsibilities.
Database searching and sorting were embodied in SQL language clauses and
provided by the DBMS, along with the capability to summarize data.

“SQL Developer does it all. When you need a quick overview of a client database, you plug in your
USB key with SQL Developer on and run it directly from the key. No need for install, no need for
permissions or licenses. It saves a lot of work, when working on different hardware and different
customers, and you need to browse the data dictionary.”

–―Jakob Hammer-Jakobsen

After studying this chapter,
you will be able to:
1. Discuss about the SQL

language
2. Explain SQL commands
3. Describe SQL server

LEARNING
OBJECTIVES

AN OVERVIEW OF SQL

INTRODUCTION
SQL (Structured Query Language) is a domain-specific
language used in programming and designed for managing
data held in a relational database management system

1
CHAPTER

3G E-LEARNING

2 Basic Computer Coding: SQL

(RDBMS), or for stream processing in a relational data stream management system
(RDSMS). It is particularly useful in handling structured data, i.e. data incorporating
relations among entities and variables.

SQL offers two main advantages over older read–write APIs such as ISAM or
VSAM. Firstly, it introduced the concept of accessing many records with one single
command. Secondly, it eliminates the need to specify how to reach a record, e.g. with
or without an index.

Originally based upon relational algebra and tuple relational calculus, SQL consists of many
types of statements, which may be informally classed as sublanguages, commonly: a data query
language (DQL), a data definition language (DDL), a data control language (DCL), and a data
manipulation language (DML). The scope of SQL includes data query, data manipulation (insert,
update and delete), data definition (schema creation and modification), and data access control.
Although SQL is essentially a declarative language (4GL), it also includes procedural elements.

1.1 THE SQL LANGUAGE
SQL stands for Structured Query Language. SQL is used to communicate with a
database. It is the standard language for relational database management systems. SQL
statements are used to perform tasks such as update data on a database, or retrieve
data from a database. Some common relational database management systems that
use SQL are: Oracle, Sybase, Microsoft SQL Server, Access, Ingres, etc. Although most
database systems use SQL, most of them also have their own additional proprietary
extensions that are usually only used on their system. However, the standard SQL
commands such as “Select”, “Insert”, “Update”, “Delete”, “Create”, and “Drop” can
be used to accomplish almost everything that one needs to do with a database.

1.1.1 A Brief History of SQL

1970 − Dr. Edgar F. “Ted” Codd of IBM is known as the father of relational databases.
He described a relational model for databases.

1974 − Structured Query Language appeared.
1978 − IBM worked to develop Codd’s ideas and released a product named System/R.
1986 − IBM developed the first prototype of relational database and standardized

by ANSI. The first relational database was released by Relational Software which later
came to be known as Oracle.

1.1.2 SQL Process

When you are executing an SQL command for any RDBMS, the system determines
the best way to carry out your request and SQL engine figures out how to interpret
the task.

An Overview of SQL

3G E-LEARNING

3

There are various components included in this process.
These components are −

 ■ Query Dispatcher
 ■ Optimization Engines
 ■ Classic Query Engine
 ■ SQL Query Engine, etc.

A classic query engine handles all the non-SQL queries,
but a SQL query engine won’t handle logical files.

Following is a simple diagram showing the SQL
Architecture −

In a distributed database system, a program often referred
to as the database’s “back end” runs constantly on a server,
interpreting data files on the server as a standard relational
database. Programs on client computers allow users to
manipulate that data, using tables, columns, rows, and fields.
To do this, client programs send SQL statements to the server.
The server then processes these statements and returns result
sets to the client program.

SELECT Statements

An SQL SELECT statement retrieves records from a database
table according to clauses (e.g., FROM and WHERE) that
specify criteria. The syntax is:

 Relational
 database
 is a set of formally
 described tables
 from which data
 can be accessed
 or reassembled
 in many different
 ways without
 having to
 reorganize the
database tables.

Keyword

3G E-LEARNING

4 Basic Computer Coding: SQL

In the above SQL statement:
 ■ The SELECT clause specifies one or more columns to

be retrieved; to specify multiple columns, use a comma
and a space between column names. To retrieve all
columns, use the wild card * (an asterisk).

 ■ The FROM clause specifies one or more tables to
be queried. Use a comma and space between table
names when specifying multiple tables.

 ■ The WHERE clause selects only the rows in which
the specified column contains the specified value.
The value is enclosed in single quotes (e.g., WHERE
last_name=’Vader’)

 ■ The semicolon (;) is the statement terminator.
Technically, if you’re sending only one statement to
the back end, you don’t need the statement terminator;
if you’re sending more than one, you need it. It’s best
practice to include it.

Note: SQL is not case sensitive (i.e., SELECT is the same
as select). For readability purposes, some programmers use
uppercase for commands and clauses, and lowercase for
everything else.

Examples

Following are examples of SQL SELECT statements:
 ■ To select all columns from a table (Customers) for

rows where the Last_Name column has Smith for
its value, you would send this SELECT statement to
the server back end:

The server back end would reply with a result set similar
to this:

 Clause is
 a group of
 words that contains
 a verb (and usually
 other components
too).

Keyword

An Overview of SQL

3G E-LEARNING

5

 ■ To return only the Cust_No and First_Name columns, based on the same
criteria as above, use this statement:

The subsequent result set might look like:

To make a WHERE clause find inexact matches, add the pattern-matching operator
LIKE. The LIKE operator uses the % (percent symbol) wild card to match zero or
more characters, and the underscore (_) wild card to match exactly one character.
For example:

 ■ To select the First_Name and Nickname columns from the Friends table for
rows in which the Nicknamecolumn contains the string “brain”, use this
statement:

The subsequent result set might look like:

 ■ To query the same table, retrieving all columns for rows in which the First_
Name column’s value begins with any letter and ends with “en”, use this
statement:

3G E-LEARNING

6 Basic Computer Coding: SQL

The result set might look like:

 ■ If you used the % wild card instead (e.g., ‘%en’) in
the example above, the result set might look like:

1.1.3 The Role of SQL

SQL is not itself a database management system, nor is it a
stand-alone product. You cannot go to a computer retailer or
a web site selling computer software and buy SQL. Instead,
SQL is an integral part of a database management system,
a language and a tool for communicating with the DBMS.
Figure 1 shows some of the components of a typical DBMS
and how SQL links them together.

The database engine is the heart of the DBMS, responsible
for actually structuring, storing, and retrieving the data in the
database. It accepts SQL requests from other DBMS components
(such as a forms facility, report writer, or interactive query
facility), from user-written application programs, and even
from other computer systems. As the figure shows, SQL plays
many different roles:

 ■ SQL is an interactive query language. Users type
SQL commands into an interactive SQL program to
retrieve data and display it on the screen, providing
a convenient, easy-to-use tool for ad hoc database
queries.

SQL can
execute
queries against a
database.

Remember

An Overview of SQL

3G E-LEARNING

7

 ■ SQL is a database programming language. Programmers
embed SQL commands into their application programs
to access the data in a database. Both user-written
programs and database utility programs (such as
report writers and data entry tools) use this technique
for database access.

Figure 1: Components of a typical database management system.

 ■ SQL is a database administration language. The
database administrator responsible for managing a
minicomputer or mainframe database uses SQL to
define the database structure and to control access
to the stored data.

 ■ SQL is a client/server language. Personal computer
programs use SQL to communicate over a network
with database servers that store shared data. This
client/server architecture is used by many popular
enterprise-class applications.

 ■ SQL is an Internet data access language. Internet
web servers that interact with corporate data and
Internet application servers all use SQL as a standard

SQL
became a
standard of
the American
National
Standards
Institute (ANSI)
in 1986, and of
the International
Organization for
Standardization
(ISO) in 1987

Did You
Know?

3G E-LEARNING

8 Basic Computer Coding: SQL

language for accessing corporate databases, often
by embedding SQL database access within popular
scripting languages like PHP or Perl.

 ■ SQL is a distributed database language. Distributed
database management systems use SQL to help
distribute data across many connected computer
systems. The DBMS software on each system uses
SQL to communicate with the other systems, sending
requests for data access.

 ■ SQL is a database gateway language. In a computer
network with a mix of different DBMS products, SQL
is often used in a gateway that allows one brand of
DBMS to communicate with another brand.

SQL has thus emerged as a useful, powerful tool for
linking people, computer programs, and computer systems
to the data stored in a relational database.

1.1.4 Applications of SQL (Structured Query
Language)

Have a look at some main SQL applications:

Data Integration Scripts

The main application of SQL is to write data integration scripts
by the database administrators and developers.

Analytical Queries

The data analysts use structured query language for setting
and running analytical queries on a regular basis.

Retrieve Information

Another popular application of this language is to retrieve
the subsets of information within a database for analytics
applications and transaction processing. The most commonly
used SQL elements are select, insert, update, add, delete,
create, truncate and alter.

Computer
program
is a collection
of instructions
that performs
a specific task
when executed
by a computer.

Keyword

An Overview of SQL

3G E-LEARNING

9

Other Important Applications

The SQL is used for modification of the index structures and database table. Additionally,
the users can add, update and delete the rows of the data by using this language.

1.1.5 Advantages of SQL

There are numerous advantages of Structured Query Language and some of them are
mentioned below:

No Coding Needed

It is very easy to manage the database systems without any need to write the substantial
amount of code by using the standard SQL.

Well Defined Standards

Long established are used by the SQL databases that is being used by ISO and ANSI.
There are no standards adhered by the non-SQL databases.

Portability

SQL can be used in the program in PCs, servers, laptops, and even some of the mobile
phones.

Interactive Language

This domain language can be used for communicating with the databases and receive
answers to the complex questions in seconds.

Multiple data views

With the help of SQL language, the users can make different views of database structure
and databases for the different users.

1.1.6 Disadvantages of SQL

Along with some benefits, the Structured query language also has some certain
disadvantages:

3G E-LEARNING

10 Basic Computer Coding: SQL

Difficult Interface

SQL has a complex interface that makes it difficult for some users to access it.

Partial Control

The programmers who use SQL doesn’t have a full control over the database because
of the hidden business rules.

Implementation

Some of the databases go to the proprietary extensions to standard SQL for ensuring
the vendor lock-in.

Cost

The operating cost of some SQL versions makes it difficult for some programmers to
access it.

1.2 SQL COMMANDS
The standard SQL commands to interact with relational databases are CREATE, SELECT,
INSERT, UPDATE, DELETE and DROP. These commands can be classified into the
following groups based on their nature –

DDL - Data Definition Language

Sr.No. Command & Description
1 CREATE

Creates a new table, a view of a table, or other object in
the database.

2 ALTER
Modifies an existing database object, such as a table.

3 DROP
Deletes an entire table, a view of a table or other objects
in the database.

An Overview of SQL

3G E-LEARNING

11

DML - Data Manipulation Language

Sr.No. Command & Description
1 SELECT

Retrieves certain records from one or more tables.
2 INSERT

Creates a record.
3 UPDATE

Modifies records.
4 DELETE

Deletes records.

DCL - Data Control Language

Sr.No. Command & Description
1 GRANT

Gives a privilege to user.
2 REVOKE

Takes back privileges granted from
user.

1.2.1 Types of SQL Commands

The following sections discuss the basic categories of commands
used in SQL to perform various functions. These functions
include building database objects, manipulating objects,
populating database tables with data, updating existing data in
tables, deleting data, performing database queries, controlling
database access, and overall database administration.

Database
administration
is the function
of managing
and maintaining
database
management
systems (DBMS)
software.

Keyword

3G E-LEARNING

12 Basic Computer Coding: SQL

The main categories are:
 ■ DDL (Data Definition Language)
 ■ DML (Data Manipulation Language)
 ■ DQL (Data Query Language)
 ■ DCL (Data Control Language)
 ■ Data administration commands
 ■ Transactional control commands

Defining Database Structures

Data Definition Language, DDL, is the part of SQL that allows
a database user to create and restructure database objects,
such as the creation or the deletion of a table.

Manipulating Data

Data Manipulation Language, DML, is the part of SQL used
to manipulate data within objects of a relational database.

There are three basic DML commands:
INSERT
UPDATE
DELETE

Selecting Data

Though comprised of only one command, Data Query Language
(DQL) is the most concentrated focus of SQL for modern
relational database users. The base command is as follows:

SELECT
This command, accompanied by many options and clauses,

is used to compose queries against a relational database.
Queries, from simple to complex, from vague to specific, can
be easily created.

A query is an inquiry to the database for information. A
query is usually issued to the database through an application
interface or via a command line prompt.

SQL
can set
permissions
on tables,
procedures, and
views.

Remember

An Overview of SQL

3G E-LEARNING

13

Data Control Language

Data control commands in SQL allow you to control access to
data within the database. These DCL commands are normally
used to create objects related to user access and also control
the distribution of privileges among users. Some data control
commands are as follows:
ALTER PASSWORD
GRANT
REVOKE
CREATE SYNONYM

GRANT
Syntax
GRANT privilege_name
ON object_name

TO {user_name |PUBLIC |role_name}

[WITH GRANT OPTION];

Data Administration Commands

Data administration commands allow the user to perform
audits and perform analyses on operations within the database.
They can also be used to help analyze system performance.
Two general data administration commands are as follows:
START AUDIT
STOP AUDIT

Do not get data administration confused with database
administration. Database administration is the overall
administration of a database, which envelops the use of all
levels of commands. Database administration is much more
specific to each SQL implementation than are those core
commands of the SQL language.

Transactional Control Commands

In addition to the previously introduced categories of
commands, there are commands that allow the user to manage
database transactions.

Database
is an
organized
collection of
data, stored
and accessed
electronically.

Keyword

3G E-LEARNING

14 Basic Computer Coding: SQL

 ■ COMMIT Saves database transactions
 ■ ROLLBACK Undoes database transactions
 ■ SAVEPOINT Creates points within groups of

transactions in which to ROLLBACK
 ■ SET TRANSACTION Places a name on a transaction

1.3 SQL SERVER
SQL Server is Microsoft’s relational database management
system (RDBMS). It is a full-featured database primarily
designed to compete against competitors Oracle Database
(DB) and MySQL.

Like all major RBDMS, SQL Server supports ANSI SQL,
the standard SQL language. However, SQL Server also contains
T-SQL, its own SQL implementation. SQL Server Management
Studio (SSMS) (previously known as Enterprise Manager) is
SQL Server’s main interface tool, and it supports 32-bit and
64-bit environments.

SQL Server is sometimes referred to as MSSQL and
Microsoft SQL Server.

1.3.1 SQL Server Components

SQL Server contains a number of components. Each component
is provided with the specific services and support to the clients
connected to the server.

Most
of the
SQL database
programs also
have their own
proprietary
extensions in
addition to the
SQL standard!

Remember

An Overview of SQL

3G E-LEARNING

15

The following diagram shows the components of the SQL Server

.

The server contains the following components:
 ■ Database Engine
 ■ Integration Services
 ■ Analysis Services
 ■ Reporting Services

Database Engine

The component provides support to store query, process and secure data on the server.
It allows user to create and manage database objects. The following background services
are provided by the engine.

Service Broker

It provides support for asynchronous communication between clients and the database
server. The client sends a request to the server and continues to work. The broker
ensures that the request is processed whenever the server is available.

Replication

It allows the user to copy and distribute data and database objects from one server to
another. The servers can be located at remote locations to provide fast access to users.

Full Text search

It allows the user to implement fast and intelligent search in large databases. It allows
searching records containing words and phrases.

3G E-LEARNING

16 Basic Computer Coding: SQL

Notification services

It allows generating and sending notification messages to the
user or administrators about the event.

Integration Services

The service allows gathering and integrating varied data in
a consistent format in a common database. The database is
known as data warehouse. The warehouse contains integrated
databases, text files or flat files

Analysis Services

The warehouses are designed to facilitate reporting and
analysis. The applications are widely using this data store
for analytical purpose. The applications used for this purpose
are known as BI applications.

Reporting Services

They provide support to generate complete reports on data
in the database engine in the data warehouse. These services
provide a set of tools that help in creating and managing
reports in different formats.

1.3.2 SQL Server integration with the .NET
Framework

The SQL Server is integrated with the .NET framework as
shown in the following figure.

Data
warehouse is
a system used
for reporting
and data
analysis, and
is considered a
core component
of business
intelligence.

Keyword

An Overview of SQL

3G E-LEARNING

17

The .NET framework is an environment used to build, deploy, and execute business
applications. The server used various services provided by the framework. The component
uses the framework services to generate and send notification messages.

The .NET framework consists of the following components:
 ■ Development tools and languages
 ■ Base Class Library
 ■ Common Language Runtime

Development Tools and Language

They are used to create interface for Windows forms, Web forms, and console applications.
They include Visual Studio and Visual C# developer. The languages that can be used
are VB.NET, C#, and F#.

Base Class Library

The framework consists of the class library that acts as a base class for any .NET
language such as VB.NET or C#. The library is object oriented.

Common Language Runtime

It is the most important component in the framework. It provides the following features:
 ■ Automatic memory management: It is used for allocating and de-allocating

the memory of an application.
 ■ Standard type system: It provides the user with some common data types

known as Common Type System (CTS).
 ■ Language Interoperability: It helps the user to create applications that can be

used with many programming languages.
 ■ Platform Independence: It allows the code execution from the platform that

is supported by the CLR.

1.3.3 Features of SQL Server

The features provided by the SQL Server are as mentioned below:
 ■ Scalability: It allows distributing data in the large tables into different file

groups. The server can access the file groups simultaneously.
 ■ CLR integration: It allows user to use the CLR features of the .NET Framework

into the server database.

3G E-LEARNING

18 Basic Computer Coding: SQL

 ■ Service oriented architecture: It provides distributed, asynchronous application
framework for large scale applications.

 ■ Web services support: It allows direct access to the data from web services
by implementing the HTTP endpoints.

 ■ High security: It implements high security by adding policies for log on and
passwords.

 ■ Support for data migration and analysis: It provides tools to migrate data
from data sources to a common database.

 ■ Policy based management: It is used to define a set of policies for configuring
and managing data.

 ■ Resource governor: It is used to manage the workload of the server by
allocating and managing resources.

1.3.4 SQL Statements

The SQL statements can be divided into following categories.

Data Definition Language (DDL)

It is used to define database, data types and data structure and constraints. Such DDL
statements are as follows:

 ■ CREATE: It is used to create a new database object.
 ■ ALTER: It is used to modify the database objects
 ■ DROP: It is used to delete the objects

Data Manipulation Language (DML)

It is used to manipulate the data in the database objects. Some of the DML
statements are as follows:

 ■ INSERT: It is used to insert the new data record into the table
 ■ UPDATE: It is used to modify the existing record in the table
 ■ DELETE: It is used to delete a record from a table

An Overview of SQL

3G E-LEARNING

19

Data Control Language

It is used to control the data access in the database. Some of the DCL statements are
as follows:

 ■ GRANT: It is used to assign the permissions to users to access the objects
 ■ REVOKE: It is used to deny the permissions to users to access the objects

Data Query Language

It is sued to query data from database objects. The SELECT statement is used to select
the data from the database.

3G E-LEARNING

20 Basic Computer Coding: SQL

ROLE MODEL

DONALD D. CHAMBERLIN:
Known For his Fundamental Work on Structured Query
Language (SQL) and Database Architectures

Donald D. Chamberlin (born 21 December 1944) is an
American computer scientist who is best known as one of the
principal designers of the original SQL language specification
with Raymond Boyce. He also made significant contributions
to the development of XQuery.

Biography

Donald D. Chamberlin was born in San Jose, California. After
attending Campbell High School, he studied engineering at
Harvey Mudd College from where he holds a B.S. After
graduating, he went to Stanford University on a National
Science Foundation grant. At Stanford, he studied electrical
engineering and minored in computer science. Chamberlin
holds an M.Sc and a PhD degree in electrical engineering
from Stanford University. After graduating, Chamberlin went
to work for IBM Research at the Yorktown Heights research
facility in New York, where he had previously had a summer
internship.

Chamberlin is probably best known as co-inventor of SQL
(Structured Query Language), the world’s most widely used
database language. Developed in the mid-1970s by Chamberlin
and Raymond Boyce, SQL was the first commercially successful
language for relational databases. Chamberlin also was one
of the managers of IBM’s System R project, which produced
the first SQL implementation and developed much of IBM’s
relational database technology. System R, together with the
Ingres project at U.C. Berkeley, received the ACM Software
System Award in 1988. Until his retirement in 2009 he was
based at the Almaden Research Center. He was appointed an
IBM Fellow in 2003.

In 2000, jointly with Jonathan Robie and Daniela Florescu,
he drafted a proposal for an XML query language called
Quilt. Many ideas from this proposal found their way into

An Overview of SQL

3G E-LEARNING

21

the XQuery language specification, which was developed by W3C with Chamberlin
as an editor. XQuery became a W3C Recommendation in January 2007.

Chamberlin is also an ACM Fellow, IEEE Fellow and a member of the National
Academy of Engineering. In 2005, he was awarded an honorary doctorate by the
University of Zurich.

In 2009, he was made a Fellow of the Computer History Museum “for his fundamental
work on structured query language (SQL) and database architectures.”

3G E-LEARNING

22 Basic Computer Coding: SQL

SUMMARY
 ■ SQL (Structured Query Language) is a domain-specific language used in

programming and designed for managing data held in a relational database
management system (RDBMS), or for stream processing in a relational data
stream management system (RDSMS). It is particularly useful in handling
structured data, i.e. data incorporating relations among entities and variables.

 ■ SQL stands for Structured Query Language. SQL is used to communicate with
a database. It is the standard language for relational database management
systems. SQL statements are used to perform tasks such as update data on a
database, or retrieve data from a database. Some common relational database
management systems that use SQL are: Oracle, Sybase, Microsoft SQL Server,
Access, Ingres, etc.

 ■ The database engine is the heart of the DBMS, responsible for actually
structuring, storing, and retrieving the data in the database. It accepts SQL
requests from other DBMS components (such as a forms facility, report writer,
or interactive query facility), from user-written application programs, and
even from other computer systems.

 ■ The standard SQL commands to interact with relational databases are CREATE,
SELECT, INSERT, UPDATE, DELETE and DROP.

 ■ Data Definition Language, DDL, is the part of SQL that allows a database
user to create and restructure database objects, such as the creation or the
deletion of a table.

 ■ Data Manipulation Language, DML, is the part of SQL used to manipulate
data within objects of a relational database.

 ■ SQL Server is Microsoft’s relational database management system (RDBMS). It
is a full-featured database primarily designed to compete against competitors
Oracle Database (DB) and MySQL.

 ■ SQL Server contains a number of components. Each component is provided
with the specific services and support to the clients connected to the server.

 ■ The .NET framework is an environment used to build, deploy, and execute
business applications. The server used various services provided by the
framework. The component uses the framework services to generate and send
notification messages.

An Overview of SQL

3G E-LEARNING

23

KNOWLEDGE CHECK
1. You can add a row using SQL in a database with which of the following?

a. ADD
b. CREATE
c. INSERT
d. MAKE

2. The command to remove rows from a table ‘CUSTOMER’ is:
a. REMOVE FROM CUSTOMER ...
b. DROP FROM CUSTOMER ...
c. DELETE FROM CUSTOMER WHERE ...
d. UPDATE FROM CUSTOMER ...

3. The SQL WHERE clause:
a. limits the column data that are returned.
b. limits the row data are returned.
c. Both A and B are correct.
d. Neither A nor B are correct.

4. Which of the following is the original purpose of SQL?
a. To specify the syntax and semantics of SQL data definition language
b. To specify the syntax and semantics of SQL manipulation language
c. To define the data structures
d. All of the above.

5. The wildcard in a WHERE clause is useful when?
a. An exact match is necessary in a SELECT statement.
b. An exact match is not possible in a SELECT statement.
c. An exact match is necessary in a CREATE statement.
d. An exact match is not possible in a CREATE statement.

6. What is the full form of SQL?
a. Structured Query List
b. Structure Query Language
c. Sample Query Language
d. None of these.

3G E-LEARNING

24 Basic Computer Coding: SQL

7. Which of the following is not a valid SQL type?
a. FLOAT
b. NUMERIC
c. DECIMAL
d. CHARACTER

8. Which of the following is not a DDL command?
a. TRUNCATE
b. ALTER
c. CREATE
d. UPDATE

9. Which is the subset of SQL commands used to manipulate Oracle Database
structures, including tables?
a. Data Definition Language(DDL)
b. Data Manipulation Language(DML)
c. DDL and DML
d. None of the Mentioned

10. Which of the following are TCL commands?
a. COMMIT and ROLLBACK
b. UPDATE and TRUNCATE
c. SELECT and INSERT
d. GRANT and REVOKE

REVIEW QUESTIONS
1. What is SQL? Write its applications.
2. What is the SQL CASE statement used for? Explain with an example?
3. What is the difference between DELETE and TRUNCATE commands?
4. What is an ALIAS command?
5. What port does SQL server run on?

Check Your Result

1. (c) 2. (c) 3. (b) 4. (d) 5. (b)
6. (b) 7. (c) 8. (d) 9. (a) 10. (a)

An Overview of SQL

3G E-LEARNING

25

REFERENCES
1. http://whatisdbms.com/what-is-sql-applications-advantages-and-disadvantages/
2. http://www.informit.com/articles/article.aspx?p=29583&seqNum=3
3. https://searchsqlserver.techtarget.com/definition/SQL
4. https://www.c-sharpcorner.com/blogs/types-of-sql-statements-with-example
5. https://www.tutorialspoint.com/sql/sql-overview.htm
6. Itzik Ben-Gan. Inside Microsoft SQL Server 2008: T-SQL Querying: Microsoft

Press, 2009
7. Joe Celko. SQL for Smarties: Advanced SQL Programming. -2nd Edition. - Morgan

Kaufmann Publishers, 2000
8. Kalen Delaney. Inside Microsoft SQL Server 2005: The Storage Engine (Microsoft

Press, 2006) ISBN 978-0735621053
9. Muthusamy Anantha Kumar. SQL Server and Collation, 2004

“Computing should be taught as a rigorous - but fun - discipline covering topics like programming,
database structures, and algorithms. That doesn’t have to be boring.”

―Geoff Mulgan

After studying this chapter,
you will be able to:
1. Learn about the

SQL and database
management

2. Discuss on SQL standard

LEARNING
OBJECTIVES

SQL IN PERSPECTIVE

INTRODUCTION
A perspective is a definition that allows users to see a
cube in a simpler way. A perspective is a subset of the
features of a cube. A perspective enables administrators to

2
CHAPTER

3G E-LEARNING

28 Basic Computer Coding: SQL

create views of a cube, helping users to focus on the most relevant data for them. A
perspective contains subsets of all objects from a cube. A perspective cannot include
elements that are not defined in the parent cube.

A simple Perspective object is composed of: basic information, dimensions, measure
groups, calculations, KPIs, and actions. Basic information includes the name and the
default measure of the perspective. The dimensions are a subset of the cube dimensions.
The measure groups are a subset of the cube measure groups. The calculations are a
subset of the cube calculations. The KPIs are a subset of the cube KPIs. The actions
are a subset of the cube actions.

SQL is a standardized query language for requesting information from a database.
The original version called SEQUEL (structured English query language) was designed
by an IBM research center in 1974 and 1975. SQL was first introduced as a commercial
database system in 1979 by Oracle Corporation.

Historically, SQL has been the favorite query language for database management
systems running on minicomputers and mainframes. Increasingly, however, SQL is
being supported by PC database systems because it supports distributed databases
(databases that are spread out over several computer systems). This enables several
users on a local-area network to access the same database simultaneously.

2.1 SQL AND DATABASE MANAGEMENT
Database is a systematic collection of data. Databases support storage and manipulation
of data. Databases make data management easy. Let’s discuss few examples. An online
telephone directory would definitely use database to store data pertaining to people,
phone numbers, other contact details, etc. Your electricity service provider is obviously
using a database to manage billing, client related issues, to handle fault data, etc. Let’s
also consider the Facebook. It needs to store, manipulate and present data related to
members, their friends, member activities, messages, advertisements and lot more.

We can provide countless number of examples for usage of databases.
One of the major tasks of a computer system is to store and manage data. To

handle this task, specialized computer programs known as database management
systems began to appear in the late 1960s and early 1970s. A database management
system, or DBMS, helped computer users to organize and structure their data and
allowed the computer system to play a more active role in managing the data. Although
database management systems were first developed on large mainframe systems,
their popularity quickly spread to minicomputers, and then to personal computers
and workstations. Today, many database management systems operate on specialized
server computers. Database management has also played a key role in the explosion of
computer networking and the Internet. Early database systems ran on large, monolithic
computer systems, where the data, the database management software, and the user

SQL In Perspective

3G E-LEARNING

29

or application program accessing the database all operated on the same system. The
1980s and 1990s saw the explosion of a new client/server model for database access,
in which a user or an application program running on a personal computer accesses
a database on a separate computer system using a network. In the late 1990s, the
increasing popularity of the Internet and the World Wide Web intertwined the worlds
of networking and data management even further. Now users require little more
than a web browser to access and interact with databases, not only within their own
organizations, but around the world. Often, these Internet-based architectures involve
three or more separate computer systems—one computer that runs the web browser
and interacts with the user, connected to a second system that runs an application
program or application server, which is in turn connected to a third system that runs
the database management system.

Today, database management is very big business. Independent software companies
and computer vendors ship billions of dollars’ worth of database management products
every year. The vast majority of enterprise-class computer applications that support
the daily operation of large companies and other organizations use databases. These
applications include some of the fastest-growing application categories, such as Enterprise
Resource Planning (ERP), Customer Relationship Management (CRM), Supply Chain
Management (SCM), Sales Force Automation (SFA), and financial applications. Computer
manufacturers develop and deliver server computers that are specially configured
as database servers; these systems constitute a multibillion-dollar-per-year market of
their own. Databases provide the intelligence behind most transaction-oriented web
sites, and they are used to capture and to analyze user interactions with web sites.
Database management thus touches every segment of the computer market. Since the
late 1980s a specific type of DBMS, called a relational database management system
(RDBMS), has become so popular that it is the standard database form. Relational
databases organize data in a simple, tabular form and provide many advantages over
earlier types of databases. SQL is specifically a relational database language used to
work with relational databases.

2.1.1 Database Management System

As one of the oldest components associated with computers, the database management
system, or DBMS, is a computer software program that is designed as the means of
managing all databases that are currently installed on a system hard drive or network.
Different types of database management systems exist, with some of them designed for
the oversight and proper control of databases that are configured for specific purposes.

As the tool that is employed in the broad practice of managing databases, the
DBMS is marketed in many forms. Some of the more popular examples of these
solutions include Microsoft Access, FileMaker, DB2, and Oracle. All these products
provide for the creation of a series of rights or privileges that can be associated with

3G E-LEARNING

30 Basic Computer Coding: SQL

a specific user. This means that it is possible to designate
one or more database administrators who may control each
function, as well as provide other users with various levels of
administration rights. This flexibility makes the task of using
DBMS methods to oversee a system something that can be
centrally controlled, or allocated to several different people.

There are four essential elements that are found with
just about every example of DBMS currently on the market.
The first is the implementation of a modeling language that
serves to define the language of each database that is hosted
via the system. There are several approaches currently in use,
with hierarchical, network, relational, and object examples.
Essentially, the modeling language ensures the ability of the
databases to communicate with the DBMS and thus operate
on the system.

Second, data structures also are administered by the DBMS.
Examples of data that are organized by this function are
individual profiles or records, files, fields and their definitions,
and objects such as visual media. Data structures are what
allows these systems to interact with the data without causing
damage to the integrity of the data itself.

A third component of DBMS software is the data query
language. This element is involved in maintaining the security
of the database, by monitoring the use of login data, the
assignment of access rights and privileges, and the definition of
the criteria that must be employed to add data to the system.
The data query language works with the data structures to
make sure it is harder to input irrelevant data into any of the
databases in use on the system.

Last, a mechanism that allows for transactions is an
essential basic for any DBMS. This helps to allow multiple and
concurrent access to the database by multiple users, prevents
the manipulation of one record by two users at the same time,
and preventing the creation of duplicate records.

2.1.2 Operations of DBMS

The database is a kind of data collection. It stores data, which
is in connection with the given task, orderly. The access to the
data is also taken care of by the database. Besides, it guarantees
the protection of the data, and also protects the integration of

Modeling
language
is any artificial
language that
can be used
to express
information or
knowledge or
systems in a
structure that
is defined by a
consistent set of
rules.

Keyword

SQL In Perspective

3G E-LEARNING

31

the data. The management of the data was also made easier by database management
systems. The ANSI/SPARC model shows the connection between the user and of the
physically stored data on the computer’s mass storage. We distinguish three levels,
based on that:

 ■ Outer level, alias user view, which examines the data from user’s point of view.
 ■ Conceptual level, which includes all of the user views. In this level the database

is given with logical schema.
 ■ Inner level, alias physical level, it means the actual presentation of the data

on the current computer.
When we talk about ANSI/SPARC model it is important to mention two things.

These are the logical data independence and the physical independence. Physical
independence means that if we change anything in the inner level it will not effect
anything on the logical schema.

So, we will not have to perform changes on them. If any changes occur in the
storage of data it will have no effect on the upper levels. The logical data independence
is data independence between outer level and conceptual level.

Those program systems which are responsible for guaranteeing access to the database
are called database management systems. Furthermore, the database management
system takes care of the tasks of the inner maintenance of the database such as

 ■ Create database
 ■ Defining the content of the database
 ■ Data storage
 ■ Querying data
 ■ Data protection
 ■ Data encryption
 ■ Access rights management
 ■ Physical organization of the data structure

We must keep in mind how the architecture of the database has changed.
Furthermore, it is also important how we can put these together. It is very important
for the programmers, because they are in a situation where they have to choose what
they are going to working with after they have got the order. Because, those are not
good programmers or software developers who can only use one database management
system, or those who can write programs only in one programming language. That is
the expectation of an elementary school. If you get a task it is good if you can decide
which route is the one you have to start. What database manager you should use and
in which programming language you are going to write your program. Of course, one
could not say that know all of the existing programming languages by heart. We will
talk about two or three of them. But everybody knows who have tried to make web

3G E-LEARNING

32 Basic Computer Coding: SQL

pages that it might not be a good idea to start a webpage development for example
with an aspx.net. In one hand, it is possible in the case of a bigger task that aspx.
net is good. On the other hand, one could possibly do a smaller task with html code
without putting any dynamism in it, or maybe in php the things could be done easier.
These are specific things. Returning to the database architectures, now the question is
in which environment certain database managers can do good performance. Because,
it is not true that every database manager can satisfy our needs in all environments.

Local database

The first such architectural level is the local database: these are the “best”. It contains
a computer, a database, a user, nobody has any problem. The story started sometime
around 1980s. Database managers have appeared in the computers. It was the world
of the dBase, which was based on the Dos. (From the beginning, DOS did not allow
multi users and to run on more paths.) Back then there were no such problems as
web collusion or concurrent access. Such database were dBase 3, 4, 5, the developed
version of this were Paradox 4, 5, 7, which had more stable data table management,
but in return we have got a more damageable index table. The following things were
true for all of them: one database - one file; one index - one file; one descriptor table
- one file; one check term for a table – one file. If we had a database with 100 tables
then there was created 100 files in a directory. These were managed by a database
management engine. It worked on file levels, moved bytes and managed blocks. As it
worked on file level it was damageable. There were a lot of files. So, there were already
a big possibility of damage and big possibility of delete on the level of the operation
system. If there was a power shortage, it was necessary to call the programmer, because
the whole system has turned upside down. Something for something. I always say
that these are dangerous systems, especially, if we do not use them in local database
system. Nowadays, it would be very hard to use local database. The MS Access is also
belonging to there. It is only more modern, because of the fact that all of the tools,
data and descriptive tools are stored in the same file. From there it knows it knows
the same as Paradox or dBase. It could become very damageable if we want to use
under bigger stress. They are perfect for teaching (ECDL, for final examination). The
LibreOffice also has the Base database. That is similar to Access. It is also free, and
it is good for familiarization and teaching. These database managers have limits. In a
traffic table the numbers of records are continuously growing. It can easily reach the
quantity of 100000. It may seem to be more, however if somebody write a system that
is also being used, it turns out to be few. One could not say that up to 100000 it works
well, but at 100001 the whole system fall apart. It works well two to three hundred-
thousand, but after it more and more error occurs. The system is start slowing down
and index damages are coming up. So, the efficiency of the local, file-based systems

SQL In Perspective

3G E-LEARNING

33

has the volume of 100000. If we know that and if we know the kind of work they
want to give us then it is not a problem to use them. If we have to make a database
for Marika’s flower shop where she would put her data. For example, she wants to
store that she has got 10 tulips and 30 roses and that she has sold 9 tulips and 34
roses, and nothing more. In this case the Access is more than enough for her. Don’t
try to convince her that she needs Oracle.

File – server architecture

The file server system brought a complete change in implementation of the computer
architecture from the mainframe. In this system, the application logic was now executed
on the client workstation instead of the server. These servers also provided access to
computing resources like printers and large hard drives. The complete File Server
Architecture is illustrated in the figure shown below.

The advantage of the file server system is the low cost entry point with flexible
arrangement. Computer resources can be added or reduced as and when necessary
using this system.

The drawback of the file server architecture is that all application logic is executed
on the client machine. The job of the server is to provide files only to store the data.
Though the application’s file might be located on the server, the application runs in
the client machine’s memory space using the client’s processor. This results in the client
machine’s need for large amount of power to run the application.

Taking into account the disadvantages of the centralized system and file server system
architectures, the client-server architecture made its advent.

3G E-LEARNING

34 Basic Computer Coding: SQL

Client – server architecture

Client/server architecture is a computing model in which the
server hosts, delivers and manages most of the resources and
services to be consumed by the client. This type of architecture
has one or more client computers connected to a central server
over a network or internet connection. This system shares
computing resources.

Client/server architecture is also known as a networking
computing model or client/server network because all the
requests and services are delivered over a network.

Client/server architecture is a producer/consumer
computing architecture where the server acts as the producer
and the client as a consumer. The server houses and provides
high-end, computing-intensive services to the client on demand.
These services can include application access, storage, file
sharing, printer access and/or direct access to the server’s raw
computing power.

Client/server architecture works when the client computer
sends a resource or process request to the server over the
network connection, which is then processed and delivered
to the client. A server computer can manage several clients
simultaneously, whereas one client can be connected to several
servers at a time, each providing a different set of services.
In its simplest form, the internet is also based on client/server
architecture where web servers serve many simultaneous users
with website data.

Client-server architecture, architecture of a computer
network in which many clients (remote processors) request
and receive service from a centralized server (host computer).
Client computers provide an interface to allow a computer
user to request services of the server and to display the results
the server returns. Servers wait for requests to arrive from
clients and then respond to them. Ideally, a server provides
a standardized transparent interface to clients so that clients
need not be aware of the specifics of the system (i.e., the
hardware and software) that is providing the service. Clients
are often situated at workstations or on personal computers,
while servers are located elsewhere on the network, usually on
more powerful machines. This computing model is especially
effective when clients and the server each have distinct tasks

 Networking is a
 process that fosters
 the exchange of
 information and
 ideas among
 individuals or
 groups that share a
 common interest. It
 may be for social or
 business purposes.
 Professionals
 connect their
 business network
 through a series of
 symbolic ties and
contacts.

Keyword

SQL In Perspective

3G E-LEARNING

35

that they routinely perform. In hospital data processing, for example, a client computer
can be running an application program for entering patient information while the
server computer is running another program that manages the database in which the
information is permanently stored. Many clients can access the server’s information
simultaneously, and, at the same time, a client computer can perform other tasks, such
as sending e-mail. Because both client and server computers are considered intelligent
devices, the client-server model is completely different from the old “mainframe”
model, in which a centralized mainframe computer performed all the tasks for its
associated “dumb” terminals.

Multi-Tier

Multitier architecture (often referred to as n-tier architecture) or multilayered architecture
is a client–server architecture in which presentation, application processing, and data
management functions are physically separated. The most widespread use of multitier
architecture is the three-tier architecture.

N-tier application architecture provides a model by which developers can create
flexible and reusable applications. By segregating an application into tiers, developers
acquire the option of modifying or adding a specific layer, instead of reworking the
entire application. A three-tier architecture is typically composed of a presentation tier,
a domain logic tier, and a data storage tier.

While the concepts of layer and tier are often used interchangeably, one fairly
common point of view is that there is indeed a difference. This view holds that a
layer is a logical structuring mechanism for the elements that make up the software
solution, while a tier is a physical structuring mechanism for the system infrastructure.
For example, a three-layer solution could easily be deployed on a single tier, such as
a personal workstation.

Thin client

The thin client is a client minimal tool. This type of client uses the required sources of
energy at remote (host) computers. The task of the thin client is mainly get exhausted
in showing graphic data send by the application server.

A thin client is a stateless, fanless desktop terminal that has no hard drive. All
features typically found on the desktop PC, including applications, sensitive data,
memory, etc., are stored back in the data center when using a thin client.

A thin client running Remote Desktop Protocols (RDP), like Citrix ICA and Windows
Terminal Services, and/or virtualization software, accesses hard drives in the data center
stored on servers, blades, etc. Thin clients, software services, and backend hardware
make up thin client computing, a virtual desktop computing model.

3G E-LEARNING

36 Basic Computer Coding: SQL

Thin clients are used as a PC replacement technology
to help customers immediately access any virtual desktop
or virtualized application. Thin clients provide businesses a
cost-effective way to create a virtual desktop infrastructure
(VDI). Thin clients are utilized in various industries and
enterprises worldwide that all have different requirements
but share common goals. The cost, security, manageability,
and scalability benefits of thin clients are all reasons that IT
personnel are exploring –and switching– to thin clients.

Cost-wise, the price per seat of a thin client deployment
has dropped to the point where it is more cost effective than
regular PCs. This has been a claim that many in the thin
client industry have made in the past, but the fact is that the
technology that has been developed within the past year has
made it a definitive reality.

Basic structures

Schema: every database has an inner structure that includes
the description of all data elements and the connection among
them. This structure is called the schema of the database.

The most significant metadata contains the definition of the
data’s type and references to what connections and relations
are between data. Furthermore, they contain information in
connection with the administration of the database. So, with
their help can store structural information besides the actual
data.

The construction of the database be different. It depends on
the applied model. However, there are some general principles
which are almost used in every application based on database.
These are:

 ■ The table, or data table is a two dimensional table
which demonstrate logically closely connected data.
The table consists of columns and rows.

 ■ The record is a row of the database. We store in a
record those data which are depending on each other.
The rows of the table contain the concrete values of
single features.

 Virtual
 desktop
 infrastructure
 (VDI) is the
 practice of
 hosting a desktop
 operating system
 within a virtual
 machine (VM)
 running on a
centralized server

Keyword

SQL In Perspective

3G E-LEARNING

37

 ■ The field is a column of the table. Every single column
means the feature of the certain thing which has
name and type.

 ■ The elementary data are the values in cell of the table
that are the concrete attributes of the entity.

 ■ The entity is what we would like to describe and
whose data we would like to store and collect in the
database. We consider entity for example a person.
We call those things or objects entity that can be well
separated from and from which we store data, and
what we feature with attributes. For example, entity
can be the payment of a worker, a material, a person,
etc. In this form the entity function as abstract notion.
We can also say that the entity is the abstraction of
concrete things. It is a habit to use the expression of
entity type to abstract entities.

 ■ The attribute is one of the features of the entity. The
entity can be featured by the sum of attributes. For
example, the name of a person can be a feature. The
entity type is the sum of given features related to
entity. For example, a person can be described jointly
by name, date of birth, height, the color of hair and
the color of eyes.

 ■ The entity occurrence is the given concrete features of
entity. For example, Koltai Lea Kiara is 5 years old.
She has brown hair, blue eyes, her height is 110 cm,
and she is in nursery schools. The occurrences of the
entity are corresponding to the records. In practice,
the entity type also can be called record type (record
type or structure type).

When we store data in more than one place then we
talk about data redundancy. Because, it is almost impossible
to avoid the redundancy we have to endeavor to minimize
the multiple occurrences. The method of that is to pick the
repeated data out during the designing of the database, and
store them separately referring to it in the right place.

Content
management
is an ongoing
process and
you should
update your
website
frequently. You
should gather
a possible list
of topics and
make those
into separate
pages.

Remember

3G E-LEARNING

38 Basic Computer Coding: SQL

2.2 SQL STANDARD
SQL (Structured Query Language) is a standardized
programming language used for managing relational
databases and performing various operations on the data in
them. Initially created in the 1970s, SQL is regularly used
by database administrators, as well as by developers writing
data integration scripts and data analysts looking to set up
and run analytical queries.

The uses of SQL include modifying database table and
index structures; adding, updating and deleting rows of data;
and retrieving subsets of information from within a database
for transaction processing and analytics applications. Queries
and other SQL operations take the form of commands written
as statements -- commonly used SQL statements include select,
add, insert, update, delete, create, alter and truncate.

SQL became the de facto standard programming language
for relational databases after they emerged in the late 1970s
and early 1980s. Also known as SQL databases, relational
systems comprise a set of tables containing data in rows and
columns. Each column in a table corresponds to a category of
data -- for example, customer name or address -- while each
row contains a data value for the intersecting column.

One of the most important developments in the market
acceptance of SQL is the emergence of SQL standards.
References to “the SQL standard” usually mean the official
standard adopted by the American National Standards Institute
(ANSI) and the International Standards Organization (ISO).
However, there are other important SQL standards, including
the de facto standard for some parts of the SQL language that
have been defined by IBM’s DB2 product family, and Oracle’s
SQL dialect, which has a dominant installed-base market share.

Other SQL Standards

Although it is the most widely recognized, the ANSI/ISO
standard is not the only standard for SQL. X/OPEN, a European
vendor group, also adopted SQL as part of its suite of standards
for a portable application environment based on UNIX. The
X/OPEN standards have played a major role in the European
computer market, where portability among computer systems
from different vendors is a key concern. Unfortunately, the X/

Relational
database is a
set of formally
described tables
from which data
can be accessed
or reassembled
in many
different ways
without having
to reorganize
the database
tables.

Keyword

SQL In Perspective

3G E-LEARNING

39

OPEN standard differs from the ANSI/ISO standard in several areas. IBM also included
SQL in the specification of its bold 1990s Systems Application Architecture (SAA)
blueprint, promising that all of its SQL products would eventually move to this SAA
SQL dialect. Although SAA failed to achieve its promise of unifying the IBM product
line, the momentum toward a unified IBM SQL continued. With its mainframe DB2
database as the flagship, IBM introduced DB2 implementations for OS/2, its personal
computer operating system, and for its RS/6000 line of UNIX-based workstations and
servers. By 1997, IBM had moved DB2 beyond its own product line and shipped
versions of DB2-Universal Database for systems made by rival manufacturers Sun
Microsystems, Hewlett-Packard, and Silicon Graphics, and for Windows NT. IBM
further shored up its database software position on non-IBM hardware platforms
with its 2001 acquisition of the Informix database. With IBM’s historical leadership in
relational database technology, the SQL dialect supported by DB2 is a very powerful
de facto standard.

2.2.1 The ANSI/ISO Standards

Work on the official SQL standard began in 1982, when ANSI charged its X31-
12 committee with defining a standard relational database language. At first, the
committee debated the merits of various proposed database languages. However, as
IBM’s commitment to SQL increased and SQL emerged as a de facto standard in the
market, the committee selected SQL as their relational database language and turned
their attention to standardizing it. The resulting ANSI standard for SQL was largely
based on DB2 SQL, although it contains some major differences from DB2. After several
revisions, the standard was officially adopted as ANSI standard X3.135 in 1986, and as
an ISO standard in 1987. The ANSI/ISO standard has since been adopted as a Federal
Information Processing Standard (FIPS) by the U.S. government. This standard, slightly
revised and expanded in 1989, is usually called the SQL-89 or SQL1 standard. Many of
the ANSI and ISO standards committee members were representatives from database
vendors who had existing SQL products, each implementing a slightly different SQL
dialect like dialects of human languages, the SQL dialects were generally very similar
to one another but were incompatible in their details. In many areas, the committee
simply sidestepped these differences by omitting some parts of the language from the
standard and specifying others as “implementor-defined.” These decisions allowed
existing SQL implementations to claim broad adherence to the resulting ANSI/ ISO
standard but made the standard relatively weak. To address the holes in the original
standard, the ANSI committee continued its work, and drafts for a new, more rigorous
SQL2 standard were circulated. Unlike the 1989 standard, the SQL2 drafts specified
features considerably beyond those found in current commercial SQL products. Even
more far-reaching changes were proposed for a follow-on SQL3 standard. In addition,
the draft standards attempted to officially standardize parts of the SQL language
where different proprietary standards had long since been set by the various major

3G E-LEARNING

40 Basic Computer Coding: SQL

DBMS brands. As a result, the proposed SQL2 and SQL3 standards were a good deal
more controversial than the initial SQL standard. The SQL2 standard weaved its way
through the ANSI approval process and was finally approved in October 1992. While
the original 1986 standard took less than 100 pages, the SQL2 standard (officially
called SQL-92) takes nearly 600 pages. The SQL2 standards committee acknowledged
the large step from SQL] to SQL2 by explicitly creating three levels of SQL2 standards
compliance. The lowest compliance level (Entry-Level) requires only minimal additional
capability beyond the SQL-89 standard. The middle compliance level (Intermediate-
Level) was created as an achievable major step beyond SQL-89, but one that avoids
the most complex and most system-dependent and DBMS brand-dependent issues. The
third compliance level (Full) requires a full implementation of all SQL2 capabilities.
Throughout the 600 pages of the standard, each description of each feature includes
a definition of the specific aspects of that feature that must be supported to achieve
Entry, Intermediate, or Full compliance.

Despite the existence of a SQL2 standard for more than ten years, popular commercial
SQL products do not, in practice, fully implement the SQL2 specification, and no two
commercial SQL products support exactly the same SQL dialect. Moreover, as database
vendors introduce new capabilities, they continually expand their SQL dialects and
move them slightly further apart. The central core of the SQL language has become
fairly standardized, however. Where it could be done without hurting existing customers
or features, vendors have brought their products into conformance with the SQL-89
standard, and with the most useful capabilities of the SQL2 standard. In the meantime,
work continues on standards beyond SQL2. The SQL3 effort effectively fragmented
into separate standardization efforts and focused on different extensions to SQL. Some
of these, such as stored procedure capabilities, are already found in many commercial
SQL products and pose the same standardization challenges faced by SQL2. Others,
such as proposed object extensions to SQL, are not yet widely available or fully
implemented, but have generated a great deal of controversy. With most vendors
only recently implementing major SQL2 capabilities, and with the diversity of SQL
extensions now available in commercial products, work on SQL3 has taken on less
commercial importance.

The “real” SQL standard, of course, is the SQL implemented in products that are
broadly accepted by the marketplace. For the most part, programmers and users tend
to stick with those parts of the language that are fairly similar across a broad range of
products. The innovation of the database vendors continues to drive the invention of
new SQL capabilities; some products remain years later only for backward compatibility,
and some find commercial success and move into the mainstream.

SQL In Perspective

3G E-LEARNING

41

2.2.2 SQL Standard and Proprietary Extensions

An official SQL standard was adopted by the American
National Standards Institute (ANSI) in 1986 and then by
the International Organization for Standardization, known
as ISO, in 1987. More than a half-dozen joint updates to the
standard have been released by the two standards development
bodies since then; as of this writing, the most recent version
is SQL:2011, approved that year.

Microsoft offers a set of extensions called Transact-SQL (T-SQL), while
Oracle’s extended version of the standard is PL/SQL. As a result, the
different variants of SQL offered by vendors aren’t fully compatible with
one another.

Both proprietary and open source relational database
management systems built around SQL are available for
use by organizations. They include Microsoft SQL Server,
Oracle Database, IBM DB2, SAP HANA, SAP Adaptive
Server, MySQL (now owned by Oracle) and PostgreSQL.
However, many of these database products support SQL with
proprietary extensions to the standard language for procedural
programming and other functions.

2.2.3 SQL Commands and Syntax

SQL commands are divided into several different types,
among them data manipulation language (DML) and data
definition language (DDL) statements, transaction controls and
security measures. The DML vocabulary is used to retrieve and
manipulate data, while DDL statements are for defining and
modifying database structures. The transaction controls help
manage transaction processing, ensuring that transactions are
either completed or rolled back if errors or problems occur.
The security statements are used to control database access
as well as to create user roles and permissions.

SQL syntax is the coding format used in writing statements.
Figure 1 shows an example of a DDL statement written in
Microsoft’s T-SQL to modify a database table in SQL Server
2016:

Data Definition
Language (DDL)
is a standard
for commands
that define
the different
structures in a
database. DDL
statements
create, modify,
and remove
database objects
such as tables,
indexes, and
users. Common
DDL statements
are CREATE,
ALTER, and
DROP.

Keyword

3G E-LEARNING

42 Basic Computer Coding: SQL

Figure 1. An example of T-SQL code in SQL Server 2016. This is the code for the ALTER TABLE
WITH (ONLINE = ON | OFF) option.

2.2.4 SQL-on-Hadoop tools

SQL-on-Hadoop query engines are a newer offshoot of SQL that enable organizations
with big data architectures built around Hadoop systems to take advantage of it
instead of having to use more complex and less familiar languages -- in particular, the
MapReduce programming environment for developing batch processing applications.

More than a dozen SQL-on-Hadoop tools have become available through Hadoop
distribution providers and other vendors; many of them are open source software or
commercial versions of such technologies. In addition, the Apache Spark processing
engine, which is often used in conjunction with Hadoop, includes a Spark SQL module
that similarly supports SQL-based programming.

In general, SQL-on-Hadoop is still an emerging technology, and most of the available
tools don’t support all of the functionality offered in relational implementations of
SQL. But they’re becoming a regular component of Hadoop deployments as companies
look to get developers and data analysts with SQL skills involved in programming
big data applications.

Within the big data landscape there are multiple approaches to accessing, analyzing,
and manipulating data in Hadoop. Each depends on key considerations such as latency,
ANSI SQL completeness (and the ability to tolerate machine-generated SQL), developer
and analyst skillsets, and architecture tradeoffs. Below is a discussion segmented by
broad latency characteristics of each approach.

SQL In Perspective

3G E-LEARNING

43

Batch SQL: Technologies such as Hive are designed for batch queries on Hadoop
by providing a declarative abstraction layer (HiveQL), which uses the MapReduce
processing framework in the background. Hive is used primarily for queries on very
large data sets and large ETL jobs. The queries can take anywhere between a few
minutes to several hours depending on the complexity of the job. The Apache Tez project
aims to provide targeted performance improvements for Hive to deliver interactive
query capabilities. MapR ships and supports Apache Hive today and provides an early
Developer Preview of Apache Tez.

Interactive SQL: Technologies such as Impala and Apache Drill provide interactive
query capabilities to enable traditional business intelligence and analytics on Hadoop-
scale datasets. The response times vary between milliseconds to minutes depending on
the query complexity. Users expect SQL-on-Hadoop technologies to support common
BI tools such as Tableau and MicroStrategy (to name a couple) for reporting and ad-
hoc queries. MapR supports customers using both Apache Drill and Impala on the
MapR Converged Data Platform.

In-Memory SQL: In-memory computing has enabled new ecosystem projects such
as Apache Spark to further accelerate query processing. Spark SQL uses in-memory
computing while retaining full Hive compatibility to provide 100x faster queries than
Hive. MapR customers are using Spark with the MapR Converged Data Platform today.

Operational SQL: Unlike batch and interactive queries that are used by business
teams for decision making and operate as read-only operations on large datasets
(OLAP), point queries are typically done by OLTP and web applications, operating
over smaller datasets and typically include insert, update, and deletes. The expected
latency is usually very low (e.g., milliseconds) due to the high volume of requests from
these applications. MapR ships and supports operational SQL capabilities by providing
Apache HBase support on the MapR Converged Enterprise Edition.

Interactive SQL-on-Hadoop Technology Landscape SQL technologies complement
traditional data warehouse and analytical environments for:

 ■ Interactive and ad-hoc queries on large-scale data
 ■ Data exploration to discover new insights worth modeling into a data warehouse

schema

3G E-LEARNING

44 Basic Computer Coding: SQL

 ■ Interactive queries on more or new types of data
 ■ Queries for online data archives in Hadoop vs. backing up to tape

Technologies and approaches for interactive SQL vary and include (but are not
limited to)

 ■ Querying the data using connectors from Hadoop to analytic platforms (upfront
or at query run time with external tables)

 ■ Running traditional SQL engines side by side on every node of the Hadoop
cluster

 ■ Providing purpose-built SQL engines directly on top of Hadoop (native SQL
options)

 ■ Efforts to improve MapReduce performance to make it suitable for interactive
queries

Options (1) and (2) excel at SQL support, performance optimizations, and overall
enterprise readiness. However, native SQL-on-Hadoop options (3) are evolving as
cost-effective alternatives because they have stronger compatibility with the Hadoop
ecosystem (e.g., use Hadoop native file formats and common metadata store through
Hive)

SQL technologies available on MapR

The table below describes at a high level some of the key considerations for picking
the right SQL-on-Hadoop technology. Please contact us for specific questions about
your use case.

Drill Hive Impala Spark SQL
Key Use Cases Self-service

Data
Exploration
Interactive
BI / Ad-hoc
queries

Batch/
ETL/ Long-
running
jobs

Interactive
BI / Ad-hoc
queries

SQL as part
of Spark
pipelines /
Advanced
analytic
workflows

Data Sources Files
Support

Parquet,
JSON, Text,
all Hive file
formats

Yes (all
Hive file
formats)

Yes (Parquet,
Sequence,
RC, Text,
AVRO ...)

Parquet,
JSON, Text,
all Hive file
formats

HBase/
MapR-DB

Yes Yes Yes Yes

SQL In Perspective

3G E-LEARNING

45

Beyond
Hadoop

Yes No No Yes

Data Types Relational Yes Yes Yes Yes
Complex/
Nested

Yes Limited No Limited

Metadata Schema-
less/
Dynamic
schema

Yes No No Limited

Hive Meta
store

Yes Yes Yes Yes

SQL / BI tools SQL
support

ANSI SQL HiveQL HiveQL ANSI SQL
(limited) &
HiveQL

Client
support

ODBC/JDBC ODBC/
JDBC

ODBC/JDBC ODBC/JDBC

Beyond
Memory

Yes Yes Yes Yes

Optimizer Limited Limited Limited Limited

Platform Latency Low Medium Low Low (in-
memory) /
Medium

Concurrency High Medium High Medium
Decentralized
Granular
Security

Yes No No No

2.2.5 ODBC and SQL

An important area of database technology not addressed by official standards is
database interoperability—the methods by which data can be exchanged among different
databases, usually over a network. In 1989, a group of vendors formed the SQL. Access
Group to address this problem. The resulting SQL Access Group specification for Remote
Database Access (RDA) was published in 1991. Unfortunately, the RDA specification
was closely tied to the OSI protocols, which were never widely implemented, so it
had little impact. Transparent interoperability among different vendors’ databases
remains an elusive goal. A second standard from the SQL Access Group had far more
market impact. At Microsoft’s urging and insistence, the SQL Access Group expanded

3G E-LEARNING

46 Basic Computer Coding: SQL

its focus to include a call-level interface for SQL. Based on a
draft from Microsoft, the resulting Call-Level Interface (CLI)
specification was published in 1992. Microsoft’s own Open
Database Connectivity (ODBC) specification, based on the CLI
standard, was published the same year. With the market power
of Microsoft behind it, and the “open standards” blessing of
the SQL Access Group, ODBC has emerged as the de facto
standard interface for PC access to SQL databases. Apple
and Microsoft announced an agreement to support ODBC on
Macintosh and Windows in the spring of 1993, giving ODBC
industry standard status in both popular graphical user interface
environments. ODBC implementations for UNIX-based systems
soon followed. In 1995, the ODBC interface effectively became
an ANSI/ISO standard, with the publication of the SQL/Call-
Level Interface (CLI) standard. Today, ODBC is in its fourth
major revision as a cross-platform database access standard.
ODBC support is available for all major DBMS brands. Most
packaged application programs that have database access as
an important part of their capabilities support ODBC, and they
range from multimillion-dollar enterprise-class applications
like Enterprise Resource Planning (ERP) and Supply Chain
Management (SCM) to PC applications such as spreadsheets,
query tools, and reporting programs. Microsoft’s focus has
moved beyond ODBC to higher-level interfaces (such as OLE/
DB) and more recently to Active/X Data Objects (ADO), but
these new interfaces are layered on top of ODBC for relational
database access, and it remains a key cross-platform database
access technology.

Role of Open Database Connectivity

Open Database Connectivity (ODBC) is an interface between
computer applications and databases. This interface provides
a buffer layer in between the database and the software used
to access it. This means that any software may connect to any
database regardless of platform or method as long as both
systems use ODBC. Essentially, the two programs speak in
their own languages and the Open Database Connectivity
routines translate the information.

The original Open Database Connectivity system was
developed by Microsoft® in 1992. This system operated
very well in some circumstances, but not in others. In 1995,

 Enterprise
 resource
 planning (ERP) is
 business process
 management
 software that
 allows an
 organization
 to use a system
 of integrated
 applications
 to manage the
 business and
 automate many
 back office
 functions related
 to technology,
 services and
human resources.

Keyword

SQL In Perspective

3G E-LEARNING

47

Microsoft® released Version 3 of the system, which coincided with it being adopted
as a base standard for structured query language (SQL). As part of the SQL standard,
the interface became widely used for all sorts of different database purposes.

Before the adoption of Open Database Connectivity, database-using programs needed
coded methods for talking to different styles of databases. Programmers believed these
systems would need access to three different types of databases; then, three different
commands for each function were programmed into the system. Databases had the
same redundancy; each program required the information be sent out in a specific
manor. If either of these programs were off in syntax or encountered an unfamiliar
system, no communication was possible.

This all changed with the development and implementation of Open Database
Connectivity. This essentially works as a translator. The programmers of the database
and applications write up the methods they use in the syntax used by ODBC. When
the application requires information, it sends the query, and ODBC translates its syntax
to the methods used by the database. The database sends the answer back, and ODBC
translates it back into the syntax required by the application.

This process works via an installed set of drivers. Each database has a specific
Open Database Connectivity driver associated with it. This driver does the actual
translation between the database and the outside world. If changes to the specification
make the driver obsolete, then only the driver needs changing; the rest of the database
may remain unaltered. This allows updates to the interface without a lot of additional
coding work.

Applications essentially have Open Database Connectivity drivers built into them.
These drivers are part of the programming for the application. They may be updated as
the program receives patches, but they are separate from the standard ODBC system.

The real communication happens between these driver sets. The program’s drivers
translate the information before it is actually sent. The database’s drivers receive the
request in its own language, get the information and send it out, still in the ODBC
syntax. The program’s drivers take the information back in and translate it back to the
program’s language. This two-layer system creates an interface that is nearly foolproof,
as the actual designers of the systems make their own interfaces.

ODBC Driver

An ODBC driver uses the Open Database Connectivity (ODBC) interface by Microsoft
that allows applications to access data in database management systems (DBMS) using
SQL as a standard for accessing the data.

An ODBC driver uses the Open Database Connectivity (ODBC) interface by Microsoft
that allows applications to access data in database management systems (DBMS) using
SQL as a standard for accessing the data. ODBC permits maximum interoperability,
which means a single application can access different DBMS. Application end users

3G E-LEARNING

48 Basic Computer Coding: SQL

can then add ODBC database drivers to link the application
to their choice of DBMS.

The ODBC driver interface defines:
 ■ A library of ODBC function calls of two types:

 - Core functions that are based on the X/Open
and SQL Access Group

 - Call Level Interface specification
 - Extended functions that support additional

functionality, including scrollable cursors
 ■ SQL syntax based on the X/Open and SQL Access

Group SQL CAE specification (1992)
 ■ A standard set of error codes
 ■ A standard way to connect and logon to a DBMS
 ■ A standard representation for data types

The ODBC solution for accessing data led to ODBC
database drivers, which are dynamic-link libraries on Windows
and shared objects on Linux/UNIX. These drivers allow an
application to gain access to one or more data sources.

Establish an ODBC Connection to the SQL Database

Windows 7 includes an ODBC manager that lets you connect
from your desktop to a SQL server. You create a data source
name (DSN) to save database setup information, so you can
open a connection to the SQL Server database without re-
entering the server information. The ODBC manager in the
Control Panel stores the connection for future use.

 ■ Click the Windows “Start” button and select “Control
Panel.” Click “System and Security,” then click
“Administrative Tools.” Double-click the icon labeled
“Data Sources (ODBC).” A list of current database
connections displays.

 ■ Click the “Add” button to create a new connection and
start the connection wizard. Click the “SQL Native
Client” in the list of drivers. The SQL client is included
with the Windows 7 operating system. Click “Finish.”

 ■ Type the SQL server information in the window that
opens. You must type the SQL server name and a
display name for the saved connection. Click “Next.”

ODBC
provides
a standard
interface
to allow
application
developers
and vendors of
database drivers
to exchange
data between
applications and
data sources.

Remember

SQL In Perspective

3G E-LEARNING

49

 ■ Type your username and password to access the SQL server. Click the option
labeled “With SQL Server authentication.” This option uses the separate SQL
server username and password instead of logging you in with the Windows
7 account information. Click “Next.”

 ■ Type the default database name and click “Next.” In the final window, leave the
default settings and click “Finish.” Return to the list of database connections,
and the new SQL server connection displays

2.2.6 SQL and Portability

The existence of published SQL standards has spawned quite a few exaggerated claims
about SQL and applications portability. Diagrams such as the one in Figure 2 are
frequently drawn to show how an application using SQL can work interchangeably
with any SQL-based database management system. In fact, the holes in the SQL-89
standard and the current differences between SQL dialects are significant enough that an
application must always be modified when moved from one SQL database to another.

Figure 2. The SQL Portability myth.

These differences, many of which were eliminated by the SQL2 standard but have
not yet been implemented in commercial products, include:

 ■ Error codes. The SQL-89 standard does not specify the error codes to be returned
when SQL detects an error, and all of the commercial implementations use
their own set of error codes. The SQL2 standard specifies standard error codes.

 ■ Data types. The SQL-89 standard defines a minimal set of data types, but
it omits some of the most popular and useful types, such as variable-length
character strings, dates and times, and money data. The SQL2 standard
addresses these, but not “new” data types such as graphics and multimedia
objects.

3G E-LEARNING

50 Basic Computer Coding: SQL

 ■ System tables. The SQL-89 standard is silent about
the system tables that provide information regarding
the structure of the database itself. Each vendor has
its own structure for these tables, and even IBM’s
four SQL implementations differ from one another.
The tables are standardized in SQL2, but only at
the higher levels of compliance, which are not yet
provided by most vendors.

 ■ Interactive SQL. The standard specifies only the
programmatic SQL used by an application program,
not interactive SQL. For example, the SELECT
statement used to query the database in interactive
SQL is absent from the SQL-89 standard. Again, the
SQL2 standard addressed this issue, but long after
all of the major DBMS vendors had well-established
interactive SQL capabilities.

 ■ Programmatic interface. The original standard
specifies an abstract technique for using SQL from
within an applications program written in COBOL,
C, FORTRAN, and other programming languages. No
commercial SQL product uses this technique, and there
is considerable variation in the actual programmatic
interfaces used. The SQL2 standard specifies an
embedded SQL interface for popular programming
languages but not a call-level interface. The 1995 SQL/
CLI standard finally addressed programmatic SQL
access, but not before commercial DBMS products
had popularized proprietary interfaces and deeply
embedded them in hundreds of thousands of user
applications and application packages.

 ■ Dynamic SQL. The SQL-89 standard does not include
the features required to develop general-purpose
database front-ends, such as query tools and report
writers. These features, known as dynamic SQL, are
found in virtually all SQL database systems, but
they vary significantly from product to product.
SQL2 includes a standard for dynamic SQL. But
with hundreds of thousands of existing applications
dependent on backward compatibility, DBMS vendors
have not implemented it.

ODBC 1.0
was released in
September 1992.
At the time, there
was little direct
support for SQL
databases (versus
ISAM), and early
drivers were
noted for poor
performance.
Some of this was
unavoidable
due to the path
that the calls
took through
the Jet-based
stack; ODBC
calls to SQL
databases were
first converted
from Simba
Technologies’s
SQL dialect to
Jet’s internal
C-based format,
then passed
to a driver for
conversion back
into SQL calls for
the database.

Did You
Know?

SQL In Perspective

3G E-LEARNING

51

 ■ Semantic differences. Because the standards specify certain details as
implementer-defined, it’s possible to run the same query against two different
conforming SQL implementations and produce two different sets of query
results. These differences occur in the handling of NULL values, column
functions, and duplicate row elimination.

 ■ Collating sequences. The SQL-89 standard does not address the collating
(sorting) sequence of characters stored in the database. The results of a sorted
query will be different if the query is run on a personal computer (with ASCII
characters) and a mainframe (with EBCDIC characters). The SQL2 standard
includes an elaborate specification for how a program or a user can request
a specific collating sequence, but it is an advanced-level feature that is not
typically supported in commercial products.

 ■ Database structure. The SQL-89 standard specifies the SQL language to be
used once a particular database has been opened and is ready for processing.
The details of database naming and how the initial connection to the database
is established vary widely and are not portable. The SQL2 standard creates
more uniformity but cannot completely mask these details.

Despite these differences, commercial database tools boasting portability across
several different brands of SQL databases began to emerge in the early 1990s. In every
case, however, the tools require a special adapter for each supported DBMS, which
generates the appropriate SQL dialect, handles data type conversion, translates error
codes, and so on. Transparent portability across different DBMS brands based on
standard SQL is the major goal of SQL2 and ODBC, and significant progress has been
made. Today, virtually all programs that support multiple databases include specific
drivers for communicating with each of the major DBMS brands, and usually include
an ODBC driver for accessing the others.

3G E-LEARNING

52 Basic Computer Coding: SQL

SUMMARY
 ■ A perspective is a definition that allows users to see a cube in a simpler way. A

perspective is a subset of the features of a cube. A perspective enables administrators
to create views of a cube, helping users to focus on the most relevant data for them.
A perspective contains subsets of all objects from a cube. A perspective cannot include
elements that are not defined in the parent cube.

 ■ A simple Perspective object is composed of: basic information, dimensions, measure
groups, calculations, KPIs, and actions. Basic information includes the name and the
default measure of the perspective. The dimensions are a subset of the cube dimensions.

 ■ SQL is a standardized query language for requesting information from a database. The
original version called SEQUEL (structured English query language) was designed by
an IBM research center in 1974 and 1975. SQL was first introduced as a commercial
database system in 1979 by Oracle Corporation.

 ■ Database is a systematic collection of data. Databases support storage and manipulation
of data. Databases make data management easy.

 ■ The database is a kind of data collection. It stores data, which is in connection with
the given task, orderly. The access to the data is also taken care of by the database.
Besides, it guarantees the protection of the data, and also protects the integration of
the data. The management of the data was also made easier by database management
systems.

 ■ Client/server architecture is a computing model in which the server hosts, delivers
and manages most of the resources and services to be consumed by the client. This
type of architecture has one or more client computers connected to a central server
over a network or internet connection.

 ■ Multitier architecture (often referred to as n-tier architecture) or multilayered
architecture is a client–server architecture in which presentation, application processing,
and data management functions are physically separated. The most widespread use
of multitier architecture is the three-tier architecture.

 ■ The thin client is a client minimal tool. This type of client uses the required sources of
energy at remote (host) computers. The task of the thin client is mainly get exhausted
in showing graphic data send by the application server.

 ■ SQL (Structured Query Language) is a standardized programming language used
for managing relational databases and performing various operations on the data in
them. Initially created in the 1970s, SQL is regularly used by database administrators,
as well as by developers writing data integration scripts and data analysts looking
to set up and run analytical queries.

 ■ SQL commands are divided into several different types, among them data manipulation
language (DML) and data definition language (DDL) statements, transaction controls
and security measures. The DML vocabulary is used to retrieve and manipulate data,
while DDL statements are for defining and modifying database structures.

SQL In Perspective

3G E-LEARNING

53

 ■ SQL-on-Hadoop query engines are a newer offshoot of SQL that enable organizations
with big data architectures built around Hadoop systems to take advantage of it
instead of having to use more complex and less familiar languages -- in particular, the
MapReduce programming environment for developing batch processing applications.

3G E-LEARNING

54 Basic Computer Coding: SQL

KNOWLEDGE CHECK
1. Which one of the following is used to define the structure of the relation

,deleting relations and relating schemas ?
a. DML(Data Manipulation Language)
b. DDL(Data Definition Language)
c. Query
d. Relational Schema

2. To remove a relation from an SQL database, we use the ______ command.
a. Delete
b. Purge
c. Remove
d. Drop table

3. In the SQL given there is an error. Identify the error.
a. Dept_name
b. Employee
c. “Comp Sci”
d. From

4. Which of the following is used to store movie and image files ?
a. Clob
b. Blob
c. Binary
d. Image

5. The user defined data type can be created using
a. Create data type
b. Create data
c. Create define type
d. Create type

6. _________ command makes the updates performed by the transaction permanent
in the database?
a. ROLLBACK
b. COMMIT
c. TRUNCATE
d. DELETE

SQL In Perspective

3G E-LEARNING

55

7. Which of the following options are correct regarding these three keys (Primary
Key, Super Key, and Candidate Key) in a database?
I. Minimal super key is a candidate key
II. Only one candidate key can be a primary key
III. All super keys can be a candidate key
IV. We cannot find a primary key from the candidate key
a. I and II
b. II and III
c. I and III
d. II and IV

8. ________ is a program that performs some common action on database data and
also stored in the database.
a. Stored Procedure
b. Trigger
c. Stored Function
d. None of the above

9. Which of the following are the DATETIME data types that can be used in
column definitions?
a. TIMESTAMP
b. INTERVAL MONTH TO DAY
c. INTERVAL YEAR TO MONTH
d. TIMESTAMP WITH DATABASE TIMEZONE
e. Both a and c

10. Using which language can a user request information from a database?
a. Query
b. Relational
c. Structural
d. Compiler

3G E-LEARNING

56 Basic Computer Coding: SQL

REVIEW QUESTIONS
1. What do you understand by the database management system?
2. Discuss on ANSI/ISO standards.
3. Define the features of SQL standard and proprietary extensions.
4. Write the SQL commands and syntax.
5. What is the relationship between ODBC and SQL?

Check Your Result

1. (b) 2. (d) 3. (c) 4. (b) 5. (d)
6. (b) 7. (a) 8. (a) 9. (e) 10. (a)

SQL In Perspective

3G E-LEARNING

57

REFERENCES
1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System

Concepts, McGraw-Hill Education (Asia), Fifth Edition, 2006.
2. C. J. Date, A. Kannan and S. Swamynathan, An Introduction to Database Systems,

Pearson Education, Eighth Edition, 2009.
3. http://aries.ektf.hu/~dream/e107/e107_files/downloads/dbms.pdf
4. http://www.devonit.com/thin-client-education
5. http://www.kciti.edu/wp-content/uploads/2017/07/dbms_tutorial.pdf
6. https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-models-

olap-logical-cube-objects/perspectives?view=sql-server-2017
7. https://mapr.com/why-hadoop/sql-hadoop/sql-hadoop-details/
8. https://nptel.ac.in/courses/106106095/pdf/4_The_SQL_Standard.pdf
9. https://searchnetworking.techtarget.com/definition/thin-client
10. https://searchsqlserver.techtarget.com/definition/SQL
11. https://smallbusiness.chron.com/establish-odbc-connection-sql-database-28127.html
12. https://www.britannica.com/technology/client-server-architecture
13. https://www.freetutes.com/learn-vb6/lesson22-2.2.html
14. https://www.guru99.com/introduction-to-database-sql.html
15. https://www.progress.com/faqs/datadirect-odbc-faqs/what-is-an-odbc-driver
16. https://www.techopedia.com/definition/438/clientserver-architecture

“The causes and severity of NSA infractions vary widely. One in 10 incidents is attributed to a
typographical error in which an analyst enters an incorrect query and retrieves data about U.S
phone calls or emails.”

―Barton Gellman

After studying this chapter,
you will be able to:
1. Discuss about SQL data

types
2. Understand the SQL

expressions
3. Learn about SQL queries

LEARNING
OBJECTIVES

RETRIEVING DATA

INTRODUCTION
Data retrieval means obtaining data from a database
management system such as ODBMS. In this case, it is
considered that data is represented in a structured way,
and there is no ambiguity in data.

3
CHAPTER

3G E-LEARNING

60 Basic Computer Coding: SQL

In order to retrieve the desired data the user present a
set of criteria by a query. Then the Database Management
System (DBMS), software for managing databases, selects the
demanded data from the database. The retrieved data may be
stored in a file, printed, or viewed on the screen.

A query language, such as Structured Query Language
(SQL), is used to prepare the queries. SQL is an American
National Standards Institute (ANSI) standardized query
language developed specifically to write database queries.
Each DBMS may have its own language, but most relational.

Reports and queries are the two primary forms of the
retrieved data from a database. There are some overlaps
between them, but queries generally select a relatively small
portion of the database, while reports show larger amounts
of data. Queries also present the data in a standard format
and usually display it on the monitor; whereas reports allow
formatting of the output however you like and is normally
printed.

3.1 SQL DATA TYPES
SQL Data Type is an attribute that specifies the type of data
of any object. Each column, variable and expression has a
related data type in SQL. You can use these data types while
creating your tables. You can choose a data type for a table
column based on your requirement.

A data type defines what kind of value a column can
hold: integer data, character data, monetary data, date and
time data, binary strings, and so on.

Each column in a database table is required to have a
name and a data type.

An SQL developer must decide what type of data that
will be stored inside each column when creating a table. The
data type is a guideline for SQL to understand what type of
data is expected inside of each column, and it also identifies
how SQL will interact with the stored data

Data
types
might have
different names
in different
database. And
even if the name
is the same, the
size and other
details may
be different!
Always check the
documentation!

Remember

Retrieving Data

3G E-LEARNING

61

3.1.1 MySQL Data Types

In MySQL there are three main data types: text, number, and date.

Text Data Types

Data type Description
CHAR(size) Holds a fixed length string (can contain letters, numbers,

and special characters). The fixed size is specified in
parenthesis. Can store up to 255 characters

VARCHAR(size) Holds a variable length string (can contain letters,
numbers, and special characters). The maximum size is
specified in parenthesis. Can store up to 255 characters.
Note: If you put a greater value than 255 it will be
converted to a TEXT type

TINYTEXT Holds a string with a maximum length of 255 characters
TEXT Holds a string with a maximum length of 65,535

characters
BLOB For BLOBs (Binary Large OBjects). Holds up to 65,535

bytes of data
MEDIUMTEXT Holds a string with a maximum length of 16,777,215

characters
MEDIUMBLOB For BLOBs (Binary Large OBjects). Holds up to 16,777,215

bytes of data
LONGTEXT Holds a string with a maximum length of 4,294,967,295

characters
LONGBLOB For BLOBs (Binary Large OBjects). Holds up to

4,294,967,295 bytes of data
ENUM(x,y,z,etc.) Let you enter a list of possible values. You can list up

to 65535 values in an ENUM list. If a value is inserted
that is not in the list, a blank value will be inserted.
Note: The values are sorted in the order you enter them.
You enter the possible values in this format:
ENUM(‘X’,’Y’,’Z’)

SET Similar to ENUM except that SET may contain up to 64
list items and can store more than one choice

3G E-LEARNING

62 Basic Computer Coding: SQL

Number Data Types

Data type Description
TINYINT(size) -128 to 127 normal. 0 to 255 UNSIGNED*. The

maximum number of digits may be specified
in parenthesis

SMALLINT(size) -32768 to 32767 normal. 0 to 65535 UNSIGNED*.
The maximum number of digits may be specified
in parenthesis

MEDIUMINT(size) -8388608 to 8388607 normal. 0 to 16777215
UNSIGNED*. The maximum number of digits
may be specified in parenthesis

INT(size) -2147483648 to 2147483647 normal. 0 to
4294967295 UNSIGNED*. The maximum number
of digits may be specified in parenthesis

BIGINT(size) -9223372036854775808 to 9223372036854775807
normal. 0 to 18446744073709551615 UNSIGNED*.
The maximum number of digits may be specified
in parenthesis

FLOAT(size,d) A small number with a floating decimal point.
The maximum number of digits may be specified
in the size parameter. The maximum number
of digits to the right of the decimal point is
specified in the d parameter

DOUBLE(size,d) A large number with a floating decimal point.
The maximum number of digits may be specified
in the size parameter. The maximum number
of digits to the right of the decimal point is
specified in the d parameter

DECIMAL(size,d) A DOUBLE stored as a string, allowing for a
fixed decimal point. The maximum number of
digits may be specified in the size parameter.
The maximum number of digits to the right of
the decimal point is specified in the d parameter

*The integer types have an extra option called UNSIGNED. Normally, the integer
goes from an negative to positive value. Adding the UNSIGNED attribute will move
that range up so it starts at zero instead of a negative number.

Retrieving Data

3G E-LEARNING

63

Date Data Types

Data type Description
DATE() A date. Format: YYYY-MM-DD

Note: The supported range is from ‘1000-01-01’
to ‘9999-12-31’

DATETIME() *A date and time combination. Format: YYYY-
MM-DD HH:MI:SS
Note: The supported range is from ‘1000-01-01
00:00:00’ to ‘9999-12-31 23:59:59’

TIMESTAMP() *A timestamp. TIMESTAMP values are stored
as the number of seconds since the Unix epoch
(‘1970-01-01 00:00:00’ UTC). Format: YYYY-MM-
DD HH:MI:SS
Note: The supported range is from ‘1970-01-01
00:00:01’ UTC to ‘2038-01-09 03:14:07’ UTC

TIME() A time. Format: HH:MI:SS
Note: The supported range is from ‘-838:59:59’
to ‘838:59:59’

YEAR() A year in two-digit or four-digit format.
Note: Values allowed in four-digit format: 1901
to 2155. Values allowed in two-digit format: 70
to 69, representing years from 1970 to 2069

*Even if DATETIME and TIMESTAMP return the same
format, they work very differently. In an INSERT or UPDATE
query, the TIMESTAMP automatically set itself to the current
date and time. TIMESTAMP also accepts various formats, like
YYYYMMDDHHMISS, YYMMDDHHMISS, YYYYMMDD, or
YYMMDD.

Integer is
a datum
of integral data
type, a data type
that represents
some range of
mathematical
integers.

Keyword

3G E-LEARNING

64 Basic Computer Coding: SQL

3.1.2 SQL Server Data Types

String Data Types

Data type Description Max size Storage
char(n) Fixed width

character string
8,000 characters Defined

width
varchar(n) Variable width

character string
8,000 characters 2 bytes +

number of
chars

varchar(max) Variable width
character string

1,073,741,824
characters

2 bytes +
number of
chars

text Variable width
character string

2GB of text data 4 bytes +
number of
chars

nchar Fixed width Unicode
string

4,000 characters Defined
width x 2

nvarchar Variable width
Unicode string

4,000 characters

nvarchar(max) Variable width
Unicode string

536,870,912
characters

ntext Variable width
Unicode string

2GB of text data

binary(n) Fixed width binary
string

8,000 bytes

varbinary Variable width
binary string

8,000 bytes

varbinary(max) Variable width
binary string

2GB

image Variable width
binary string

2GB

Retrieving Data

3G E-LEARNING

65

Number Data Types

Data type Description Storage
bit Integer that can be 0, 1, or NULL
tinyint Allows whole numbers from 0 to 255 1 byte
smallint Allows whole numbers between -32,768

and 32,767
2 bytes

int Allows whole numbers between
-2,147,483,648 and 2,147,483,647

4 bytes

bigint Allows whole numbers between
-9,223,372,036,854,775,808 and
9,223,372,036,854,775,807

8 bytes

decimal(p,s) Fixed precision and scale numbers.
Allows numbers from -10^38 +1 to 10^38
–1.
The p parameter indicates the maximum
total number of digits that can be stored
(both to the left and to the right of the
decimal point). p must be a value from
1 to 38. Default is 18.
The s parameter indicates the maximum
number of digits stored to the right of
the decimal point. s must be a value
from 0 to p. Default value is 0

5-17 bytes

numeric(p,s) Fixed precision and scale numbers.
Allows numbers from -10^38 +1 to 10^38
–1.
The p parameter indicates the maximum
total number of digits that can be stored
(both to the left and to the right of the
decimal point). p must be a value from
1 to 38. Default is 18.
The s parameter indicates the maximum
number of digits stored to the right of
the decimal point. s must be a value
from 0 to p. Default value is 0

5-17 bytes

smallmoney Monetary data from -214,748.3648 to
214,748.3647

4 bytes

3G E-LEARNING

66 Basic Computer Coding: SQL

money Monetary data from
-922,337,203,685,477.5808 to
922,337,203,685,477.5807

8 bytes

float(n) Floating precision number data from
-1.79E + 308 to 1.79E + 308.
The n parameter indicates whether the
field should hold 4 or 8 bytes. float(24)
holds a 4-byte field and float(53) holds
an 8-byte field. Default value of n is 53.

4 or 8
bytes

real Floating precision number data from
-3.40E + 38 to 3.40E + 38

4 bytes

Date Data Types

Data type Description Storage
datetime From January 1, 1753 to December

31, 9999 with an accuracy of 3.33
milliseconds

8 bytes

datetime2 From January 1, 0001 to December
31, 9999 with an accuracy of 100
nanoseconds

6-8 bytes

smalldatetime From January 1, 1900 to June 6, 2079
with an accuracy of 1 minute

4 bytes

date Store a date only. From January 1,
0001 to December 31, 9999

3 bytes

time Store a time only to an accuracy of
100 nanoseconds

3-5 bytes

datetimeoffset The same as datetime2 with the
addition of a time zone offset

8-10 bytes

timestamp Stores a unique number that gets
updated every time a row gets
created or modified. The timestamp
value is based upon an internal clock
and does not correspond to real
time. Each table may have only one
timestamp variable

Retrieving Data

3G E-LEARNING

67

Other Data Types

Data type Description
sql_variant Stores up to 8,000 bytes of data of various data

types, except text, ntext, and timestamp
uniqueidentifier Stores a globally unique identifier (GUID)
xml Stores XML formatted data. Maximum 2GB
cursor Stores a reference to a cursor used for database

operations
table Stores a result-set for later processing

3.1.3 Microsoft Access Data Types

Data type Description Storage
Text Use for text or combinations of

text and numbers. 255 characters
maximum

Memo Memo is used for larger
amounts of text. Stores up to
65,536 characters. Note:You
cannot sort a memo field.
However, they are searchable

Byte Allows whole numbers from 0
to 255

1 byte

Integer Allows whole numbers between
-32,768 and 32,767

2 bytes

Long Allows whole numbers between
-2,147,483,648 and 2,147,483,647

4 bytes

Single Single precision floating-point.
Will handle most decimals

4 bytes

Double Double precision floating-point.
Will handle most decimals

8 bytes

Currency Use for currency. Holds up to
15 digits of whole dollars, plus
4 decimal places. Tip: You can
choose which country’s currency
to use

8 bytes

3G E-LEARNING

68 Basic Computer Coding: SQL

AutoNumber AutoNumber fields automatically
give each record its own
number, usually starting at 1

4 bytes

Date/Time Use for dates and times 8 bytes
Yes/No A logical field can be displayed

as Yes/No, True/False, or On/
Off. In code, use the constants
True and False (equivalent to -1
and 0). Note: Null values are not
allowed in Yes/No fields

1 bit

Ole Object Can store pictures, audio, video,
or other BLOBs (Binary Large
OBjects)

up to
1GB

Hyperlink Contain links to other files,
including web pages

Lookup
Wizard

Let you type a list of options,
which can then be chosen from a
drop-down list

4 bytes

3.2 SQL EXPRESSIONS
An expression is a combination of one or more values,
operators and SQL functions that evaluate to a value. These
SQL EXPRESSIONs are like formulae and they are written in
query language. You can also use them to query the database
for a specific set of data.

Syntax

Consider the basic syntax of the SELECT statement as follows −
SELECT column1, column2, columnN
FROM table_name
WHERE [CONDITION|EXPRESSION];

There are different types of SQL expressions, which are
mentioned below −

 ■ Boolean
 ■ Numeric
 ■ Date

Datetime
has 3.33
milliseconds
accuracy whereas
smalldatetime
has 1 minute
accuracy.

Remember

Retrieving Data

3G E-LEARNING

69

3.2.1 Boolean Expressions

SQL Boolean Expressions fetch the data based on matching a
single value. Following is the syntax −
SELECT column1, column2, columnN
FROM table_name
WHERE SINGLE VALUE MATCHING EXPRESSION;
Consider the CUSTOMERS table having the following records −
SQL> SELECT * FROM CUSTOMERS;
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+				
7 rows in set (0.00 sec)				
The following table is a simple example showing the usage				
of various SQL Boolean Expressions −				
SQL> SELECT * FROM CUSTOMERS WHERE SALARY = 10000;				
+----+-------+-----+---------+----------+				
ID	NAME	AGE	ADDRESS	SALARY
+----+-------+-----+---------+----------+				
7	Muffy	24	Indore	10000.00
+----+-------+-----+---------+----------+
1 row in set (0.00 sec)

3.2.2 Numeric Expression

These expressions are used to perform any mathematical
operation in any query. Following is the syntax −

Database
is an
organized
collection of
data, stored
and accessed
electronically.

Cursor is
a control
structure that
enables traversal
over the records
in a database.

Keyword

Keyword

3G E-LEARNING

70 Basic Computer Coding: SQL

SELECT numerical_expression as OPERATION_NAME
[FROM table_name
WHERE CONDITION];
Here, the numerical_expression is used for a mathematical
expression or any formula. Following is a simple example
showing the usage of SQL Numeric Expressions –
SQL> SELECT (15 + 6) AS ADDITION
+----------+
| ADDITION |
+----------+
| 21 |
+----------+
1 row in set (0.00 sec)

There are several built-in functions like avg(), sum(),
count(), etc., to perform what is known as the aggregate data
calculations against a table or a specific table column.
SQL> SELECT COUNT(*) AS “RECORDS” FROM CUSTOMERS;
+---------+
| RECORDS |
+---------+
| 7 |
+---------+
1 row in set (0.00 sec)

3.2.3 Date Expressions

Date Expressions return current system date and time values −
SQL> SELECT CURRENT_TIMESTAMP;
+---------------------+
| Current_Timestamp |
+---------------------+
| 2009-11-12 06:40:23 |
+---------------------+
1 row in set (0.00 sec)
Another date expression is as shown below −

Mathematical
expression
is a finite
combination of
symbols that
is well-formed
according
to rules that
depend on the
context.

Keyword

Retrieving Data

3G E-LEARNING

71

SQL> SELECT GETDATE();;
+-------------------------+
| GETDATE |
+-------------------------+
| 2009-10-22 12:07:18.140 |
+-------------------------+
1 row in set (0.00 sec)

3.3 SQL QUERIES
The SQL queries are the most common and essential SQL
operations. Via an SQL query, one can search the database
for the information needed. SQL queries are executed with
the “SELECT” statement. An SQL query can be more specific,
with the help of several clauses:

 ■ FROM - it indicates the table where the search will
be made.

 ■ WHERE - it’s used to define the rows, in which the
search will be carried. All rows, for which the WHERE
clause is not true, will be excluded.

 ■ ORDER BY - this is the only way to sort the results
in SQL. Otherwise, they will be returned in a random
order.

3.3.1 SQL INSERT Query

The SQL INSERT INTO Statement is used to add new rows
of data to a table in the database.

Syntax

There are two basic syntaxes of the INSERT INTO statement
which are shown below.

INSERT INTO TABLE_NAME (column1, column2,
column3,...columnN)

VALUES (value1, value2, value3,...valueN);
Here, column1, column2, column3,...columnN are the

names of the columns in the table into which you want to
insert the data.

In 1854,
George Boole
published
his work “An
Investigation
into the Laws of
thought,” where
he described
a system for
symbolic and
logical reasoning.
This system
was later called
“Boolean logic”.
Presently,
Boolean logic
is the basis for
computer and
program design

Did You
Know?

3G E-LEARNING

72 Basic Computer Coding: SQL

You may not need to specify the column(s) name in the SQL query if you are
adding values for all the columns of the table. But make sure the order of the values
is in the same order as the columns in the table.

The SQL INSERT INTO syntax will be as follows −
INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN);

Example

The following statements would create six records in the CUSTOMERS table.
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1, ‘Ramesh’, 32, ‘Ahmedabad’, 2000.00);
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (2, ‘Khilan’, 25, ‘Delhi’, 1500.00);
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3, ‘kaushik’, 23, ‘Kota’, 2000.00);
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (4, ‘Chaitali’, 25, ‘Mumbai’, 6500.00);
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (5, ‘Hardik’, 27, ‘Bhopal’, 8500.00);
INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (6, ‘Komal’, 22, ‘MP’, 4500.00);
You can create a record in the CUSTOMERS table by using the second syntax as
shown below.
INSERT INTO CUSTOMERS
VALUES (7, ‘Muffy’, 24, ‘Indore’, 10000.00);
All the above statements would produce the following records in the CUSTOMERS
table as shown below.
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00

Retrieving Data

3G E-LEARNING

73

| 6 | Komal | 22 | MP | 4500.00 |
| 7 | Muffy | 24 | Indore | 10000.00 |
+----+----------+-----+-----------+----------+

Populate One Table Using another Table

You can populate the data into a table through the select
statement over another table; provided the other table has a
set of fields, which are required to populate the first table.
Here is the syntax −
INSERT INTO first_table_name [(column1, column2, ...
columnN)]
 SELECT column1, column2, ...columnN
 FROM second_table_name
 [WHERE condition];

3.3.2 SQL SELECT Query

Select is the most commonly used statement in SQL. The
SELECT Statement in SQL is used to retrieve or fetch data from
a database. We can fetch either the entire table or according
to some specified rules. The data returned is stored in a result
table. This result table is also called result-set.

With the SELECT clause of a SELECT command statement,
we specify the columns that we want to be displayed in the
query result and, optionally, which column headings we prefer
to see above the result table.

The select clause is the first clause and is one of the
last clauses of the select statement that the database server
evaluates. The reason for this is that before we can determine
what to include in the final result set, we need to know all
of the possible columns that could be included in the final
result set.

Result
set is a
set of rows from
a database, as
well as metadata
about the query
such as the
column names,
and the types
and sizes of
each column.

Keyword

3G E-LEARNING

74 Basic Computer Coding: SQL

Sample Table

Syntax

The basic syntax of the SELECT statement is as follows −
SELECT column1, column2, columnN FROM table_name;
Here, column1, column2... are the fields of a table whose
values you want to fetch. If you want to fetch all the fields
available in the field, then you can use the following syntax.
SELECT * FROM table_name;

Example

Consider the CUSTOMERS table having the following records −
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

The following code is an example, which would fetch
the ID, Name and Salary fields of the customers available in
CUSTOMERS table.
SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS;

The
semicolon
character is
required to
indicate the
end of a SQL
statement.
Alternatively,
you can use the
go command or
\g to tell mysql
to execute a
query.

Remember

Retrieving Data

3G E-LEARNING

75

This would produce the following result −
+----+----------+----------+
| ID | NAME | SALARY |
+----+----------+----------+
1	Ramesh	2000.00
2	Khilan	1500.00
3	kaushik	2000.00
4	Chaitali	6500.00
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
+----+----------+----------+

If you want to fetch all the fields of the CUSTOMERS table, then you should use
the following query.

SQL> SELECT * FROM CUSTOMERS;
This would produce the result as shown below.

+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

3.3.3 SQL UPDATE Query

The SQL UPDATE Query is used to modify the existing records in a table. You can
use the WHERE clause with the UPDATE query to update the selected rows, otherwise
all the rows would be affected.

3G E-LEARNING

76 Basic Computer Coding: SQL

Syntax

The basic syntax of the UPDATE query with a WHERE clause is as follows −
UPDATE table_name
SET column1 = value1, column2 = value2...., columnN = valueN
WHERE [condition];
You can combine N number of conditions using the AND or the OR operators.

Example

Consider the CUSTOMERS table having the following records −
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

The following query will update the ADDRESS for a customer whose ID number
is 6 in the table.
SQL> UPDATE CUSTOMERS
SET ADDRESS = ‘Pune’
WHERE ID = 6;
Now, the CUSTOMERS table would have the following records −
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00

Retrieving Data

3G E-LEARNING

77

5	Hardik	27	Bhopal	8500.00
6	Komal	22	Pune	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

If you want to modify all the ADDRESS and the SALARY
column values in the CUSTOMERS table, you do not need
to use the WHERE clause as the UPDATE query would be
enough as shown in the following code block.
SQL> UPDATE CUSTOMERS
SET ADDRESS = ‘Pune’, SALARY = 1000.00;
Now, CUSTOMERS table would have the following records −
+----+----------+-----+---------+---------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+---------+---------+
1	Ramesh	32	Pune	1000.00
2	Khilan	25	Pune	1000.00
3	kaushik	23	Pune	1000.00
4	Chaitali	25	Pune	1000.00
5	Hardik	27	Pune	1000.00
6	Komal	22	Pune	1000.00
7	Muffy	24	Pune	1000.00
+----+----------+-----+---------+---------+

3.3.4 SQL DELETE Query

The SQL DELETE Query is used to delete the existing records
from a table.

You can use the WHERE clause with a DELETE query
to delete the selected rows, otherwise all the records would
be deleted.

Syntax

The basic syntax of the DELETE query with the WHERE
clause is as follows −
DELETE FROM table_name

Code
block is a
lexical structure
of source
code which
is grouped
together.

Keyword

3G E-LEARNING

78 Basic Computer Coding: SQL

WHERE [condition];
You can combine N number of conditions using AND or OR operators.
Example
Consider the CUSTOMERS table having the following records −
+----+----------+-----+-----------+----------+
| ID | NAME | AGE | ADDRESS | SALARY |
+----+----------+-----+-----------+----------+
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
6	Komal	22	MP	4500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+				
The following code has a query, which will DELETE a customer, whose ID is 6.				
SQL> DELETE FROM CUSTOMERS				
WHERE ID = 6;				
Now, the CUSTOMERS table would have the following records.				
+----+----------+-----+-----------+----------+				
ID	NAME	AGE	ADDRESS	SALARY
+----+----------+-----+-----------+----------+				
1	Ramesh	32	Ahmedabad	2000.00
2	Khilan	25	Delhi	1500.00
3	kaushik	23	Kota	2000.00
4	Chaitali	25	Mumbai	6500.00
5	Hardik	27	Bhopal	8500.00
7	Muffy	24	Indore	10000.00
+----+----------+-----+-----------+----------+

If you want to DELETE all the records from the CUSTOMERS table, you do not
need to use the WHERE clause and the DELETE query would be as follows −

SQL> DELETE FROM CUSTOMERS;
Now, the CUSTOMERS table would not have any record.

Retrieving Data

3G E-LEARNING

79

ROLE MODEL

RAYMOND F. BOYCE
Raymond F. Boyce (1947–1974) was an American computer
scientist who was known for his research in relational databases.
He is best known for his work co-developing the SQL database
language and Boyce-Codd normal form.

Biography

Boyce grew up in New York, and went to college at Providence
College, from which he graduated in 1968. He earned his
PhD in computer science at Purdue in 1972. His wife Sandy,
whom he met in college, was a nurse. After leaving Purdue
he worked on database projects for IBM in Yorktown Heights,
New York. In the short period that he had, which was not
quite two years long, he co-developed Boyce–Codd normal
form. Together with Donald D. Chamberlin, he co-developed
Structured Query Language (SQL) while managing the Relation
Database development group for IBM in San Jose, California.
He died in 1974 as a result of an aneurysm, leaving behind
his wife Sanndy and his infant daughter Kristin.

SQL

SQL was initially co-developed at IBM by Boyce alongside
Donald D. Chamberlin in the early 1970s. Initially called
SEQUEL (Structured English Query Language) and based on
their original language called SQUARE (Specifying Queries As
Relational Expressions). SEQUEL was designed to manipulate
and retrieve data in relational databases. By 1974, Chamberlin
and Boyce published “SEQUEL: A Structured English Query
Language” which detailed their refinements to SQUARE and
introduced us to the data retrieval aspects of SEQUEL.[1] It was
one of the first languages to use Edgar F. Codd’s relational
model. SEQUEL was later renamed to SQL by dropping the
vowels, because SEQUEL was a trade mark registered by the
Hawker Siddeley aircraft company.[1] Today, SQL has become
the most widely used relational database language.

3G E-LEARNING

80 Basic Computer Coding: SQL

Boyce-Codd Normal Form

Boyce–Codd normal form (or BCNF) was developed in 1974 by Boyce and Edgar F.
Codd. It is a type of normal form that is used in database normalization. The goal of
relational database design is to generate a set of database schemas that store information
without unnecessary redundancy. Boyce-Codd accomplishes this and allows users to
retrieve information easily. Using BCNF, databases will have all redundancy removed
based on functional dependencies. It is a slightly stronger version of the third normal
form.

Retrieving Data

3G E-LEARNING

81

SUMMARY
 ■ Data retrieval means obtaining data from a database management system

such as ODBMS. In this case, it is considered that data is represented in a
structured way, and there is no ambiguity in data.

 ■ A query language, such as Structured Query Language (SQL), is used to
prepare the queries. SQL is an American National Standards Institute (ANSI)
standardized query language developed specifically to write database queries.
Each DBMS may have its own language, but most relational.

 ■ Reports and queries are the two primary forms of the retrieved data from
a database. There are some overlaps between them, but queries generally
select a relatively small portion of the database, while reports show larger
amounts of data.

 ■ SQL Data Type is an attribute that specifies the type of data of any object.
Each column, variable and expression has a related data type in SQL.

 ■ An expression is a combination of one or more values, operators and SQL
functions that evaluate to a value. These SQL EXPRESSIONs are like formulae
and they are written in query language.

 ■ The SQL queries are the most common and essential SQL operations. Via
an SQL query, one can search the database for the information needed. SQL
queries are executed with the “SELECT” statement.

 ■ The SQL INSERT INTO Statement is used to add new rows of data to a table
in the database.

 ■ Select is the most commonly used statement in SQL. The SELECT Statement
in SQL is used to retrieve or fetch data from a database. We can fetch either
the entire table or according to some specified rules. The data returned is
stored in a result table. This result table is also called result-set.

 ■ The SQL UPDATE Query is used to modify the existing records in a table. You
can use the WHERE clause with the UPDATE query to update the selected
rows, otherwise all the rows would be affected.

3G E-LEARNING

82 Basic Computer Coding: SQL

KNOWLEDGE CHECK
1. Consider the following schema −

 STUDENTS(student_code, first_name, last_name, email,
 phone_no, date_of_birth, honours_subject, percentage_of_marks);
 Which of the following query would display all the students where the second

letter in the first name is ‘i’?
a. select first_name from students where first_name like ‘_i%’;
b. select first_name from students where first_name like ‘%i_’;
c. select first_name from students where first_name like ‘%i%’;
d. select first_name from students where first_name like ‘_i_’;

2. Consider the following schema −
STUDENTS(student_code, first_name, last_name, email,
 phone_no, date_of_birth, honours_subject, percentage_of_marks);
 Which of the following query would correctly display the students’ first name,

last name, honours subject and date of birth, born between July 1st 1996, and
30th June 1999.

a. select first_name, last name, honours_subject, date_of_birth from students
where date_of_birth between ’30-JUN-1999’ and ’01-JUL-1996’;

b. select first_name, last name, honours_subject, date_of_birth from students
where date_of_birth in (’30-JUN-1999’ , ’01-JUL-1996’);

c. select first_name, last name, honours_subject, date_of_birth from students
where date_of_birth like ’30-JUN-1999’ and ’01-JUL-1996’;

d. select first_name, last name, honours_subject, date_of_birth from students
where date_of_birth between ’01-JUL-1996’ and ’30-JUN-1999’;

3. Consider the following schema −
 STUDENTS(student_code, first_name, last_name, email,
 phone_no, date_of_birth, honours_subject, percentage_of_marks);
 Which query will display the names and honours subjects of all students

and if a student has not yet been given a honours subject yet, then it should
display ‘No Honours Yet’.

a. select first_name, last name, nvl(honours_subject, ‘No Honours Yet’) from
students;

b. select first_name, last name, nvl2(honours_subject, ‘No Honours Yet’) from
students;

Retrieving Data

3G E-LEARNING

83

c. select first_name, last name, honours_subject, from students;
d. select first_name, last name, nullif(honours_subject, ‘No Honours Yet’) from

students;
4. Consider the following schema −

 HONOURS_SUBJECT(subject_code, subject_name, department_head);
 LOCATIONS(subject_code, department_name, location_id, city);
 Select the right query for retrieving records from the tables HONOURS_

SUBJECT and LOCATIONS with a left outer join
a. select h.subject_name, l.department_name, h.department_head, l.city from

honours_subject h left outer join location l on(h.subject_code = l.subject_code);
b. select h.subject_name, l.department_name, h.department_head, l.city from

honours_subject h left outer join location l on(subject_code);
c. select h.subject_name, l.department_name, h.department_head, l.city from

honours_subject h left join location l on(h.subject_code = l.subject_code);
d. None of the above.

5. Consider the following schema −
 STUDENTS(student_code, first_name, last_name, email,
 phone_no, date_of_birth, honours_subject, percentage_of_marks);
 Which of the following query will correctly list the average percentage of

marks in each honours subject, when the average is more than 50 percent?
a. select honours_subject, avg(percentage_of_marks) from students where

avg(percentage_of_marks) > 50.0 group by honours_subject;
b. select honours_subject, avg(percentage_of_marks) from students having

avg(percentage_of_marks) > 50.0 group by honours_subject;
c. select honours_subject, avg(percentage_of_marks) from students group by

honours_subject having avg(percentage_of_marks) > 50.0;
d. None of the above.

6. Creating a table in Base using _______ gives more flexibility and control.
a. SQL
b. Design View
c. Wizard
d. Functions

7. ______ is a standard language used to query a relational database.
a. SQL
b. Design View

3G E-LEARNING

84 Basic Computer Coding: SQL

c. Wizard
d. Functions

8. The SQL queries are in the form of _______
a. Commands
b. Statements
c. List
d. Functions

9. The SQL option can be found under _______ menu.
a. File
b. Edit
c. Tools
d. Help

10. The dialog box for writing SQL statements is called _______.
a. Text for SQL Commands dialog box
b. Execute SQL Statement dialog box
c. Statements for SQL dialog box
d. Command to Execute dialog box

REVIEW QUESTIONS
1. Discuss about MySQL data types.
2. Describe the Microsoft access data types.
3. What are the different types of SQL expressions?
4. What do you understand by SQL query?
5. Discuss about the SQL select query.

Check Your Result

1. (a) 2. (d) 3. (a) 4. (a) 5. (b)
6. (a) 7. (a) 8. (b) 9. (c) 10. (b)

Retrieving Data

3G E-LEARNING

85

REFERENCES
1. Abraham Silberschatz; Henry Korth; S. Sudarshan (2010). Database System

Concepts (6th ed.). McGraw-Hill. pp. 187–192. ISBN 978-0-07-352332-3.
2. Beaulieu, Alan (April 2009). Mary E Treseler, ed. Learning SQL (2nd ed.).

Sebastapol, CA, USA: O’Reilly. ISBN 978-0-596-52083-0.
3. C. J. Date (2011). SQL and Relational Theory: How to Write Accurate SQL Code

(2nd ed.). O’Reilly Media. pp. 159–163. ISBN 978-1-4493-1640-2.
4. Capron, H. L.; J. A. Johnson (2004). Computers: Tools for an Information Age (8

ed.). Pearson/Prentice Hall. ISBN 0-13-122723-8.
5. E.g. for Java see Brogden, William B.; Green, Marcus (2003), Java 2 Programmer,

Que Publishing, p. 45, ISBN 9780789728616.
6. Hector Garcia-Molina; Jeffrey D. Ullman; Jennifer Widom (2009). Database systems:

the complete book (2nd ed.). Pearson Prentice Hall. pp. 437–445. ISBN 978-0-
13-187325-4.

7. http://www.informit.com/articles/article.aspx?p=482319
8. https://www.geeksforgeeks.org/sql-select-query/
9. https://www.tutorialspoint.com/sql/sql-data-types.htm
10. https://www.tutorialspoint.com/sql/sql-insert-query.htm
11. Padron-McCarthy, Thomas; Tore Risch (2005). Databasteknik. Studentlitteratur.

ISBN 91-44-04449-6.
12. Raghu Ramakrishnan; Johannes Gehrke (2003). Database management systems

(3rd ed.). McGraw-Hill. ISBN 978-0-07-246563-1. Chapter 24.
13. van Melkebeek, Dieter (2000), Randomness and Completeness in Computational

Complexity, Lecture Notes in Computer Science, 1950, Springer, p. 22, ISBN
9783540414926.

“Database means a tables collected different information, so one site is a result of a collected tables”

―Deyth Banger

After studying this chapter,
you will be able to:
1. Discuss the adding data

to the database
2. Explain the deleting

data from the database
3. Understand the

modifying data in the
database

LEARNING
OBJECTIVES

UPDATING DATA

INTRODUCTION
SQL is a complete data manipulation language that is
used not only for database queries, but also to modify and
update data in the database. Compared to the complexity
of the SELECT statement, which supports SQL queries,

4
CHAPTER

3G E-LEARNING

88 Basic Computer Coding: SQL

the SQL statements that modify database contents are extremely simple. However,
database updates pose some challenges for a DBMS beyond those presented by database
queries. The DBMS must protect the integrity of stored data during changes, ensuring
that only valid data is introduced into the database, and that the database remains
self-consistent, even in the event of system failures. The DBMS must also coordinate
simultaneous updates by multiple users, ensuring that the users and their changes do
not interfere with one another.

4.1 ADDING DATA TO THE DATABASE
A new row of data is typically added to a relational database when a new entity
represented by the row appears in the outside world. For example, in the sample
database:

 ■ When you hire a new salesperson, a new row must be added to the SALESREPS
table to store the salesperson’s data.

 ■ When a salesperson signs a new customer, a new row must be added to the
CUSTOMERS table, representing the new customer.

 ■ When a customer places an order, a new row must be added to the ORDERS
table to contain the order data.

In each case, the new row is added to maintain the database as an accurate model
of the real world. The smallest unit of data that can be added to a relational database
is a single row. In general, a SQL-based DBMS provides three ways to add new rows
of data to a database:

 ■ Single-row INSERT. A single-row INSERT statement adds a single new row
of data to a table. It is commonly used in daily applications—for example,
data entry programs.

 ■ Multi-row INSERT. A multirow INSERT statement extracts rows of data from
another part of the database and adds them to a table. It is commonly used in
end-of-month or end-of-year processing when old rows of a table are moved
to an inactive table.

 ■ Bulk load. A bulk load utility adds data to a table from a file that is outside
of the database. It is commonly used to initially load the database or to
incorporate data downloaded from another computer system or collected
from many sites.

Updating Data

3G E-LEARNING

89

4.1.1 The Single-Row INSERT Statement

The single-row INSERT statement, shown in Figure 1, adds
a new row to a table. The INTO clause specifies the table
that receives the new row (the target table), and the VALUES
clause specifies the data values that the new row will contain.
The column list indicates which data value goes into which
column of the new row.

Figure 1: Single-row INSERT statement syntax diagram.

Suppose you just hired a new salesperson, Henry Jacobsen,
with the following personal data:

Here is the INSERT statement that adds Mr. Jacobsen to
the sample database:

Add Henry Jacobsen as a new salesperson.

A
relational
database is a
set of formally
described tables
from which data
can be accessed
or reassembled
in many
different ways
without having
to reorganize
the database
tables.

Keyword

3G E-LEARNING

90 Basic Computer Coding: SQL

Figure 2 graphically illustrates how SQL carries out this INSERT statement.
Conceptually, the INSERT statement builds a single row of data that matches the
column structure of the table, fills it with the data from the VALUES clause, and then
adds the new row to the table. The rows of a table are unordered, so there is no notion
of inserting the row at the top, at the bottom, or between two rows of the table. After
the INSERT statement, the new row is simply a part of the table. A subsequent query
against the SALESREPS table will include the new row, but it may appear anywhere
among the rows of query results.

Suppose Mr. Jacobsen now receives his first order, from InterCorp, a new customer
who is assigned customer number 2126. The order is for 20 ACI-41004 widgets, for a
total price of $2340, and has been assigned order number 113069. Here are the INSERT
statements that add the new customer and the order to the database:

Figure 2: Inserting a single row.

Insert a new customer and order for Mr. Jacobsen.

Updating Data

3G E-LEARNING

91

the INSERT statement can become lengthy if there are many columns of data, but its
format is still very straightforward. The second INSERT statement uses the system
constant CURRENT DATE in its VALUES clause, causing the current date to be
inserted as the order date. This system constant is specified in the SQL2 standard and
is supported by many of the popular SQL products. Other brands of DBMS provide
other system constants or built-in functions to obtain the current date and time.

You can use the INSERT statement with interactive SQL to add rows to a table
that grows very rarely, such as the OFFICES table. In practice, however, data about a
new customer, order, or salesperson is almost always added to a database through a
formsoriented data entry program. When the data entry is complete, the application
program inserts the new row of data using programmatic SQL. Regardless of whether
interactive or programmatic SQL is used, however, the INSERT statement is the same.
The table name specified in the INSERT statement is normally an unqualified table
name, specifying a table that you own. To insert data into a table owned by another
user, you can specify a qualified table name. Of course, you must also have permission
to insert data into the table, or the INSERT statement will fail.

The purpose of the column list in the INSERT statement is to match the data
values in the VALUES clause with the columns that are to receive them. The list of
values and the list of columns must both contain the same number of items, and the
data type of each value must be compatible with the data type of the corresponding
column, or an error will occur. The ANSI/ISO standard mandates unqualified column
names in the column list, but many implementations allow qualified names. There
can be no ambiguity in the column names anyway, because they must all reference
columns of the target table.

Inserting NULL Values

When SQL inserts a new row of data into a table, it automatically assigns a NULL
value to any column whose name is missing from the column list in the INSERT
statement. In this INSERT statement, which added Mr. Jacobsen to the SALESREPS
table, the QUOTA and MANAGER columns were omitted:

The newly added row has a NULL value in the QUOTA and MANAGER columns,
as shown in Figure 2. You can make the assignment of a NULL value more explicit
by including these columns in the column list and specifying the keyword NULL in
the values list. This INSERT statement has exactly the same effect as the previous one:

3G E-LEARNING

92 Basic Computer Coding: SQL

Inserting All Columns

As a convenience, SQL allows you to omit the column list from
the INSERT statement. When the column list is omitted, SQL
automatically generates a column list consisting of all columns
of the table, in left-to-right sequence. This is the same column
sequence generated by SQL when you use a SELECT * query.
Using this shortcut, the previous INSERT statement could be
rewritten equivalently as:

When you omit the column list, the NULL keyword must
be used in the values list to explicitly assign NULL values to
columns, as shown in the example. In addition, the sequence
of data values must correspond exactly to the sequence of
columns in the table. Omitting the column list is convenient
in interactive SQL because it reduces the length of the INSERT
statement you must type. For programmatic SQL, the column
list should always be specified because it makes the program
easier to read and understand. In addition, table structures
often change over time to include new columns or drop
columns that are no longer used. A program that contains
an INSERT statement without an explicit column list may
work correctly for months or years, and then suddenly begin
producing errors if the number of columns or data types of
columns is changed by a database administrator.

4.1.2 The Multirow INSERT Statement

The second form of the INSERT statement, shown in Figure
3, adds multiple rows of data to its target table. In this form
of the INSERT statement, the data values for the new rows
are not explicitly specified within the statement text. Instead,
the source of new rows is a database query, specified in the
statement.

Database
administrators
(DBAs) use
specialized
software to
store and
organize data.
The role may
include capacity
planning,
installation,
configuration,
database design,
migration,
performance
monitoring,
security,
troubleshooting,
as well as
backup and data
recovery.

Keyword

Updating Data

3G E-LEARNING

93

Figure 3: Multirow INSERT statement syntax diagram.

Adding rows whose values come from within the database itself may seem strange
at first, but it’s very useful in some special situations. For example, suppose you want
to copy the order number, date, and amount of all orders placed before January 1,
1990, from the ORDERS table into another table, called OLDORDERS. The multirow
INSERT statement provides a concise, efficient way to copy the data:

Copy old orders into the OLDORDERS table.

This INSERT statement looks complicated, but it’s really very simple. The statement
identifies the table to receive the new rows (OLDORDERS) and the columns to receive
the data, just like the single-row INSERT statement. The remainder of the statement
is a query that retrieves data from the ORDERS table. Figure 4 graphically illustrates
the operation of this INSERT statement. Conceptually, SQL first performs the query
against the ORDERS table and then inserts the query results, row by row, into the
OLDORDERS table.

Figure 4: Inserting multiple rows.

3G E-LEARNING

94 Basic Computer Coding: SQL

Here’s another situation where you could use the multirow INSERT statement.
Suppose you want to analyze customer buying patterns by looking at which customers
and salespeople are responsible for big orders—those over $15,000. The queries that
you will be running will combine data from the CUSTOMERS, SALESREPS, and
ORDERS tables. These three-table queries will execute fairly quickly on the small
sample database, but in a real corporate database with many thousands of rows, they
would take a long time. Rather than running many long, three-table queries, you could
create a new table named BIGORDERS to contain the required data, defined as follows:

Once you have created the BIGORDERS table, this multirow INSERT statement
can be used to populate it:

Load data into the BIGORDERS table for analysis.

In a large database, this INSERT statement may take a while to execute because it
involves a three-table query. When the statement is complete, the data in the BIGORDERS
table will duplicate information in other tables. In addition, the BIGORDERS table won’t
be automatically kept up to date when new orders are added to the database, so its
data may quickly become outdated. Each of these factors seems like a disadvantage.
However, the subsequent data analysis queries against the BIGORDERS table can be
expressed very simply—they become single-table queries.

Furthermore, each of those queries will run much faster than if it were a three
table join. Consequently, this is probably a good strategy for performing the analysis,
especially if the three original tables are large. In this situation, it’s likely that the
BIGORDERS table will be used as a temporary table for doing the analysis. It will be
created and populated with data, representing a snapshot of the order status in time,
the analysis programs will be run, and then the table will be emptied or dropped.

Updating Data

3G E-LEARNING

95

The SQL1 standard specifies several logical restrictions on the
query that appears within the multirow INSERT statement:

 ■ The query cannot contain an ORDER BY clause. It’s
useless to sort the query results anyway, because
they’re being inserted into a table that is, like all
tables, unordered.

 ■ The query results must contain the same number of
columns as the column list in the INSERT statement
(or the entire target table, if the column list is omitted),
and the data types must be compatible, column by
column.

 ■ The query cannot be the UNION of several different
SELECT statements. Only a single SELECT statement
may be specified.

 ■ The target table of the INSERT statement cannot
appear in the FROM clause of the query or any
subqueries that it contains. This prohibits inserting
part of a table into itself.

The first two restrictions are structural, but the latter two
were included in the standard simply to avoid complexity. As
a result, these restrictions were relaxed in the SQL2 standard.
The standard now allows UNION and JOIN operations and
expressions in the query, basically allowing the results of a
general database query to be retrieved and then inserted into
a table with the INSERT statement. It also allows various
forms of self-insertion, where the source table for the data to
be inserted and the destination table are the same.

4.1.3 Bulk Load Utilities

Data to be inserted into a database is often downloaded from
another computer system or collected from other sites and
stored in a sequential file. To load the data into a table, you
could write a program with a loop that reads each record of
the file and uses the single-row INSERT statement to add the
row to the table. However, the overhead of having the DBMS
repeatedly execute single-row INSERT statements may be quite
high. If inserting a single row takes half a second under a
typical system load that is probably acceptable performance for
an interactive program. But that performance quickly becomes

SQL
was adopted as
a standard by
the American
National
Standards
Institute (ANSI)
in 1986 as SQL-
86 and the
International
Organization for
Standardization
(ISO) in 1987.

Did You
Know?

3G E-LEARNING

96 Basic Computer Coding: SQL

unacceptable when applied to the task of bulk loading 50,000
rows of data. In this case, loading the data would require
over six hours.

For this reason, most commercial DBMS products include
a bulk load feature that loads data from a file into a table at
high speed. The ANSI/ISO SQL standard does not address
this function, and it is usually provided as a stand-alone
utility program rather than as part of the SQL language. Each
vendor’s utility provides a slightly different set of features,
functions, and commands.

When SQL is used from within an application program,
another technique is frequently provided for more efficiently
inserting a large amount of data into a database. The standard
programmatic INSERT statement inserts a single row of data,
just like the interactive single-row INSERT statements in the
preceding examples. But many commercial DBMS products
allow data from two or more rows (often up to hundreds of
rows) to be supplied as part of a single bulk INSERT statement.
All of the supplied data must be for new rows of the single
table that is the target of the INSERT statement, and named
in the INTO clause. Executing a bulk INSERT statement for
100 rows of data has exactly the same effect as executing
100 individual single-row INSERT statements. However, it is
usually much more efficient, because it involves only one call
to the DBMS. Efficiency gains from 20% to 30% and up to
300% or more times over single-row INSERT statements are
common, depending on the DBMS brand and the particular
kind of data being inserted.

4.2 Deleting Data from the Database

A row of data is typically deleted from a database when the
entity represented by the row disappears from the outside
world. For example, in the sample database:

 ■ When a customer cancels an order, the corresponding
row of the ORDERS table must be deleted.

 ■ When a salesperson leaves the company, the
corresponding row of the SALESREPS table must
be deleted.

A sequential
file is one that
contains and
stores data in
chronological
order. The
data itself may
be ordered
or unordered
within the file.

Keyword

Updating Data

3G E-LEARNING

97

 ■ When a sales office is closed, the corresponding row of the OFFICES table
must be deleted. If the salespeople in the office are terminated, their rows
should be deleted from the SALESREPS table as well. If they are reassigned,
their REP_ OFFICE columns must be updated.

In each case, the row is deleted to maintain the database as an accurate model of
the real world. The smallest unit of data that can be deleted from a relational database
is a single row.

4.2.1 The DELETE Statement

The DELETE statement, shown in Figure 5, removes selected rows of data from a single
table. The FROM clause specifies the target table containing the rows. The WHERE
clause specifies which rows of the table are to be deleted. Suppose Henry Jacobsen,
has just decided to leave the company. The DELETE statement that removes his row
from the SALESREPS table is shown next.

Figure 5: DELETE statement syntax diagram.

Remove Henry Jacobsen from the database.

Recall that search conditions in the WHERE clause of a SELECT statement can specify

a single row or an entire set of rows, depending on the specific search condition. The
same is true of the WHERE clause in a DELETE statement. Suppose, for example, that
Mr. Jacobsen’s customer, InterCorp (customer number 2126) has called to cancel all its
orders. Here is the DELETE statement that removes the orders from the ORDERS table:

Remove all orders for InterCorp (customer number 2126).

DELETE FROM ORDERS
WHERE CUST = 2126

3G E-LEARNING

98 Basic Computer Coding: SQL

2 rows deleted.

The WHERE clause selects several rows of the ORDERS table, and SQL removes all
of the selected rows from the table. Conceptually, SQL applies the WHERE clause to
each row of the ORDERS table, deleting those where the search condition yields a
TRUE result and retaining those where the search condition yields a FALSE or NULL
result. Because this type of DELETE statement searches through a table for the rows to
be deleted, it is sometimes called a searched DELETE statement. This term is used to
contrast it with another form of the DELETE statement, called the positioned DELETE
statement, which always deletes a single row.

Here are some additional examples of searched DELETE statements:

Delete all orders placed before November 15, 1989.

Delete all rows for customers served by Bill Adams, Mary Jones, or Dan Roberts
(employee numbers 105, 109, and 101).

Delete all salespeople hired before July 1988 who have not yet been assigned a
quota.

4.2.2 Deleting All Rows

The WHERE clause in a DELETE statement is optional, but it is almost always present.
If the WHERE clause is omitted from a DELETE statement, all rows of the target table
are deleted, as in this example:
Delete all orders.

Updating Data

3G E-LEARNING

99

DELETE FROM ORDERS
30 rows deleted.

Although this DELETE statement produces an empty table,
it does not erase the ORDERS table from the database. The
definition of the ORDERS table and its columns is still stored
in the database. The table still exists, and new rows can still
be inserted into the ORDERS table with the INSERT statement.
To erase the definition of the table from the database, the
DROP TABLE statement must be used.

Because of the potential damage from such a DELETE
statement, be careful to always specify a search condition,
and be sure that it actually selects the rows you want. When
using interactive SQL, it’s a good idea first to use the WHERE
clause in a SELECT statement to display the selected rows.
Make sure they are the ones you want to delete, and only
then use the WHERE clause in a DELETE statement.

4.2.3 DELETE with Subquery

DELETE statements with simple search conditions, such as
those in the previous examples, select rows for deletion based
solely on the contents of the rows themselves. Sometimes the
selection of rows must be made based on data from other
tables. For example, suppose you want to delete all orders
taken by Sue Smith. Without knowing her employee number,
you can’t find the orders by consulting the ORDERS table
alone. To find the orders, you could use a two-table query:

Find the orders taken by Sue Smith.

 Interactive
 SQL
 (dbisql) is a utility
 for entering SQL
 statements. If you
 use Interactive
 SQL to work with
 your database
 schema, instead of
 executing the SQL
 statements one at a
 time, build up the
 set of commands in
 a dbisql command
file.

Keyword

3G E-LEARNING

100 Basic Computer Coding: SQL

But you can’t use a join in a DELETE statement. The parallel DELETE statement
is illegal:

The way to handle the request is with one of the subquery search conditions. Here
is a valid form of the DELETE statement that handles the request:

Delete the orders taken by Sue Smith.

The subquery finds the employee number for Sue Smith, and the WHERE clause
then selects the orders with a matching value. As this example shows, subqueries can
play an important role in the DELETE statement because they let you delete rows based
on information in other tables. Here are two more examples of DELETE statements
that use subquery search conditions:

Delete customers served by salespeople whose sales are less than 80% of quota.

Delete any salesperson whose current orders total less than 2 percent of their quota.

Subqueries in the WHERE clause can be nested just as they can be in the WHERE
clause of the SELECT statement. They can also contain outer references to the target
table of the DELETE statement. In this respect, the FROM clause of the DELETE
statement functions like the FROM clause of the SELECT statement. Here is an example
of a deletion request that requires a subquery with an outer reference:

Delete customers who have not ordered since November 10, 1989.

Updating Data

3G E-LEARNING

101

Conceptually, this DELETE statement operates by going through the CUSTOMERS
table, row by row, and checking the search condition. For each customer, the subquery
selects any orders placed by that customer before the cutoff date. The reference to the
CUST_NUM column in the subquery is an outer reference to the customer number in
the row of the CUSTOMERS table currently being checked by the DELETE statement.

Outer references will often be found in subqueries of a DELETE statement, because
they implement the join between the table(s) in the subquery and the target table of
the DELETE statement. In the SQL1 standard, a restriction on the use of subqueries
in a DELETE statement prevents the target table from appearing in the FROM clause
of a subquery or any of its subqueries at any level of nesting. This prevents the
subqueries from referencing the target table (some of whose rows may already have
been deleted), except for outer references to the row currently being tested by the
DELETE statement’s search condition. The SQL2 standard eliminates this restriction
by specifying that the DELETE statement should treat such a subquery as applying to
the entire target table, before any rows have been deleted. This places more overhead
on the DBMS (which must handle the subquery processing and row deletion more
carefully), but the behavior of the statement is well defined by the standard.

4.3 MODIFYING DATA IN THE DATABASE
Typically, the values of data items stored in a database are modified when corresponding
changes occur in the outside world. For example, in the sample database:

 ■ When a customer calls to change the quantity on an order, the QTY column
in the appropriate row of the ORDERS table must be modified.

 ■ When a manager moves from one office to another, the MGR column in the
OFFICES table and the REP_OFFICE column in the SALESREPS table must
be changed to reflect the new assignment.

 ■ When sales quotas are raised by 5% in the New York sales office, the QUOTA
column of the appropriate rows in the SALESREPS table must be modified.

In each case, data values in the database are updated to maintain the database as
an accurate model of the real world. The smallest unit of data that can be modified
in a database is a single column of a single row.

3G E-LEARNING

102 Basic Computer Coding: SQL

4.3.1 The UPDATE Statement

The UPDATE statement, shown in Figure 6, modifies the
values of one or more columns in selected rows of a single
table. The WHERE clause selects the rows of the table to be
modified. The SET clause specifies which columns are to be
updated and calculates the new values for them. Here is a
simple UPDATE statement that changes the credit limit and
salesperson for a customer:

Raise the credit limit for Acme Manufacturing to $60,000
and reassign them to Mary Jones (employee number 109).

Figure 6: UPDATE statement syntax diagram.

In this example, the WHERE clause identifies a single row
of the CUSTOMERS table, and the SET clause assigns new
values to two of the columns in that row. The WHERE clause is
exactly the same one you would use in a DELETE or SELECT
statement to identify the row. In fact, the search conditions that
can appear in the WHERE clause of an UPDATE statement
are exactly the same as those available in the SELECT and
DELETE statements. Like the DELETE statement, the UPDATE
statement can update several rows at once with the proper
search condition, as in this example:

Transfer all salespeople from the Chicago office (number
12) to the New York office (number 11), and lower their quotas
by 10 percent.

The target
table to
be updated is
named in the
statement, and
you must have
the required
permission to
update the table
as well as each
of the individual
columns that will
be modified.

Remember

Updating Data

3G E-LEARNING

103

The WHERE clause selects several rows of the SALESREPS
table, and the value of the REP_OFFICE and QUOTA columns
are modified in all of them. Conceptually, SQL processes the
UPDATE statement by going through the SALESREPS table row
by row, updating those rows for which the search condition
yields a TRUE result and skipping over those for which the
search condition yields a FALSE or NULL result. Because
it searches the table, this form of the UPDATE statement is
sometimes called a searched UPDATE statement. This term
distinguishes it from a different form of the UPDATE statement,
called a positioned UPDATE statement, which always updates
a single row.

Here are some additional examples of searched UPDATE
statements:
Reassign all customers served by employee numbers 105, 106,
or 107 to employee number 102.

Assign a quota of $100,000 to any salesperson who
currently has no quota.

UPDATE SALESREPS
SET QUOTA = 100000.00
WHERE QUOTA IS NULL
1 row updated.
The SET clause in the UPDATE statement is a list of

assignments separated by commas. Each assignment identifies
a target column to be updated and specifies how to calculate
the new value for the target column. Each target column
should appear only once in the list; there should not be
two assignments for the same target column. The ANSI/
ISO specification mandates unqualified names for the target

UPDATE
statement
changes the data
of one or more
records in a table.
Either all the rows
can be updated,
or a subset may
be chosen using a
condition.

Keyword

3G E-LEARNING

104 Basic Computer Coding: SQL

columns, but some SQL implementations allow qualified column names. There can be
no ambiguity in the column names anyway, because they must refer to columns of the
target table. The expression in each assignment can be any valid SQL expression that
yields a value of the appropriate data type for the target column. The expression must
be computable based on the values of the row currently being updated in the target
table. In most DBMS implementations, the expression may not include any column
functions or subqueries.

If an expression in the assignment list references one of the columns of the target
table, the value used to calculate the expression is the value of that column in the
current row before any updates are applied. The same is true of column references
that occur in the WHERE clause. For example, consider this (somewhat contrived)
UPDATE statement:

Before the update, Bill Adams had a QUOTA value of $350,000 and a SALES value
of $367,911. After the update, his row has a SALES value of $350,000, not $400,000.
The order of the assignments in the SET clause is thus immaterial; the assignments
can be specified in any order.

4.3.2 Updating All Rows

The WHERE clause in the UPDATE statement is optional. If the WHERE clause is
omitted, then all rows of the target table are updated, as in this example:

Raise all quotas by 5 percent.

Unlike the DELETE statement, in which the WHERE clause is almost never omitted,
the UPDATE statement without a WHERE clause performs a useful function. It basically
performs a bulk update of the entire table, as demonstrated in the preceding example.

4.3.3 UPDATE with Subquery

As with the DELETE statement, subqueries can play an important role in the UPDATE
statement because they let you select rows to update based on information contained
in other tables. Here are several examples of UPDATE statements that use subqueries:

Updating Data

3G E-LEARNING

105

Raise by $5000 the credit limit of any customer who has placed an order for more
than $25,000.

Reassign all customers served by salespeople whose sales are less than 80 percent
of their quota.

Have all salespeople who serve over three customers report directly to Sam Clark
(employee number 106).

As in the DELETE statement, subqueries in the WHERE clause of the UPDATE
statement can be nested to any level and can contain outer references to the target
table of the UPDATE statement. The column EMPL_NUM in the subquery of the
preceding example is such an outer reference; it refers to the EMPL_NUM column in
the row of the SALESREPS table currently being checked by the UPDATE statement.

Outer references will often be found in subqueries of an UPDATE statement,
because they implement the join between the table(s) in the subquery and the target
table of the UPDATE statement. The same SQL1 restriction applies as for the DELETE
statement: the target table cannot appear in the FROM clause of any subquery at any
level of nesting. This prevents the subqueries from referencing the target table (some
of whose rows may have already been updated). Any references to the target table
in the subqueries are thus outer references to the row of the target table currently
being tested by the UPDATE statement’s WHERE clause. The SQL2 standard again
removed this restriction and specifies that a reference to the target table in a subquery
is evaluated as if none of the target table had been updated.

3G E-LEARNING

106 Basic Computer Coding: SQL

CASE STUDY

COMMONWEALTH SWIMMING
New Zealand sent a team of 18 swimmers to the Melbourne 2006 Commonwealth
Games. Information about the swimmers, the events they competed in, and the results
of their races are shown in Figure 1.
first last length stroke gender stage time place
------ ----- ------ ------------ ------ ----- ------ -----
Zoe Baker 50 Breaststroke female heat 31.7 4
Zoe Baker 50 Breaststroke female semi 31.84 5
Zoe Baker 50 Breaststroke female final 31.45 4
Lauren Boyle 200 Freestyle female heat 121.11 8
Lauren Boyle 200 Freestyle female semi 120.9 8
Lauren Boyle 100 Freestyle female heat 56.7 10
Lauren Boyle 100 Freestyle female semi 56.4 9
...

Figure 1: A subset of the data recorded for New Zealand swimmers at the Melbourne 2006
Commonwealth Games, including the name and gender of each swimmer and the distance,
stroke, stage, and result for each event that they competed in.

These data have been stored in a database with six tables.
The swimmer_table has one row for each swimmer and contains the first and last

name of each swimmer. Each swimmer also has a unique numeric identifier.
swimmer_table (ID [PK], first, last)
There are four tables that define the set of valid events: the distances are 50m,

100m, and 200m; the swim strokes are breaststroke (Br), freestyle (Fr), butterfly (Bu),
and backstroke (Ba); the genders are male (M) and female (F); and the possible race
stages are heats (heat), semifinals (semi), and finals (final).

stroke_table (ID [PK], stroke)
gender_table (ID [PK], gender)
stage_table (stage [PK])
The result_table contains information on the races swum by individual swimmers.

Each row specifies a swimmer and the type of race (distance, stroke, gender, and
stage). In addition, the swimmer’s time and position in the race (place) are recorded.

result_table (swimmer [PK] [FK swimmer_table.ID],

Updating Data

3G E-LEARNING

107

 distance [PK] [FK distance_table.length],
 stroke [PK] [FK stroke_table.ID],
 gender [PK] [FK gender_table.ID],
 stage [PK] [FK stage_table.stage],
 time, place)
The database design is illustrated in the diagram below.

As an example of the information stored in this database, the following code
shows that the swimmer with an ID of 1 is called Zoe Baker. This SQL query, and the
next, are not joins, they are just simple one-table queries to show what sort of data
is contained in the database.
> SELECT * FROM swimmer_table
 WHERE ID = 1;
ID first last
-- ----- -----
1 Zoe Baker

Notice the use of * in this query to denote that we want all columns from the
table in our result.

The following code shows that Zoe Baker swam in three races--a heat, a semifinal
and the final of the women’s 50m breaststroke--and she came $4^{\rm th}$ in the final
in a time of 31.45 seconds.
> SELECT * FROM result_table
 WHERE swimmer = 1;
swimmer distance stroke gender stage time place
------- -------- ------ ------ ----- ----- -----
1 50 Br F final 31.45 4
1 50 Br F heat 31.7 4
1 50 Br F semi 31.84 5

3G E-LEARNING

108 Basic Computer Coding: SQL

SUMMARY
 ■ SQL is a complete data manipulation language that is used not only for database

queries, but also to modify and update data in the database. Compared to
the complexity of the SELECT statement, which supports SQL queries, the
SQL statements that modify database contents are extremely simple. However,
database updates pose some challenges for a DBMS beyond those presented
by database queries.

 ■ A new row of data is typically added to a relational database when a new
entity represented by the row appears in the outside world.

 ■ A single-row INSERT statement adds a single new row of data to a table. It
is commonly used in daily applications—for example, data entry programs.

 ■ A multirow INSERT statement extracts rows of data from another part of the
database and adds them to a table. It is commonly used in end-of-month or
end-of-year processing when old rows of a table are moved to an inactive table.

 ■ A bulk load utility adds data to a table from a file that is outside of the
database. It is commonly used to initially load the database or to incorporate
data downloaded from another computer system or collected from many sites.

 ■ A row of data is typically deleted from a database when the entity represented
by the row disappears from the outside world.

 ■ The UPDATE statement modifies the values of one or more columns in selected
rows of a single table. The WHERE clause selects the rows of the table to
be modified. The SET clause specifies which columns are to be updated and
calculates the new values for them.

Updating Data

3G E-LEARNING

109

KNOWLEDGE CHECK
1. Which statement is used for updating existing information in the table?

a. Update
B. Where
C. Modify
D. Alter

2. In SQL, which command is used to add new rows to a table?
a. Alter Table
b. Add row
c. Insert
d. Append

3. A table that displays data redundancies yields ……………… anomalies.
a. Update
b. Insertion
c. Deletion
d. All of the Mentioned

4. In the following query how many rows will be updated?
 UPDATE person
 SET lname=’s’,
 Fname=’p’,
 WHERE person_id<10;
 /* person_id is a primary key */
a. 0-9
b. 1-6
c. No row
d. None of the mentioned

5. “INSERT” is same as “UPDATE”?
a. NO
b. YES
c. May be
d. None of the mentioned

3G E-LEARNING

110 Basic Computer Coding: SQL

6. Which one is correct syntax for Update Statement?
a. Update Table Columns(Col1, Col2,Col3);
b. Update into (Col1, Col2,Col3) VALUES (Val1,Val2,Val3);
c. Update Set Col_name=Value;
d. None of the above.

7. Which of the following SQL clauses is used to DELETE tuples from a database
table?
a. DELETE
b. REMOVE
c. DROP
d. CLEAR

8. Which of the following is not a DDL command?
a. UPDATE
b. TRUNCATE
c. ALTER
d. None of the Mentioned

9. Which of the following command makes the updates performed by the transaction
permanent in the database?
a. ROLLBACK
b. COMMIT
c. TRUNCATE
d. DELETE

10. The result of a SQL SELECT statement is a ______.
a. file
b. report
c. table
d. form

Updating Data

3G E-LEARNING

111

REVIEW QUESTIONS
1. What is relational database?
2. When is the UPDATE_STATISTICS command used?
3. Discuss the Multirow INSERT statement.
4. What is DELETE statements?
5. Describe the modifying data in the database.

Check Your Result

1. (a) 2. (c) 3. (d) 4. (a) 5. (a)
6. (c) 7. (a) 8. (a) 9. (b) 10. (c)

3G E-LEARNING

112 Basic Computer Coding: SQL

REFERENCES
1. Bernhard Thalheim, Klaus-Dieter Schewe (2011). “NULL ‘Value’ Algebras and

Logics”. Frontiers in Artificial Intelligence and Applications. 225 (Information
Modelling and Knowledge Bases XXII). doi:10.3233/978-1-60750-690-4-354.

2. Claude Rubinson, Nulls, Three-Valued Logic, and Ambiguity in SQL: Critiquing
Date’s Critique, SIGMOD Record, December 2007 (Vol. 36, No. 4)

3. Date, C.J. (2000). The Database Relational Model: A Retrospective Review and
Analysis: A Historical Account and Assessment of E. F. Codd’s Contribution to the
Field of Database Technology. Addison Wesley Longman. ISBN 978-0-201-61294-3.

4. Drake, Mark (August 9, 2019). “A Comparison of NoSQL Database Management
Systems and Models”. Digital Ocean. Retrieved 2021-02-26.

5. Enrico Franconi and Sergio Tessaris, On the Logic of SQL Nulls, Proceedings
of the 6th Alberto Mendelzon International Workshop on Foundations of Data
Management, Ouro Preto, Brazil, June 27–30, 2012. pp. 114–128

6. John Grant, Null Values in SQL. SIGMOD Record, September 2008 (Vol. 37, No. 3)
7. Rosenberg, Burton. “Relational Databases”. University of Miami. Retrieved 2021-

02-26.
8. Waraporn, Narongrit, and Kriengkrai Porkaew. “Null semantics for subqueries

and atomic predicates”. IAENG International Journal of Computer Science 35.3
(2008): 305-313.

“Web pages are designed for people. For the Semantic Web, we need to look at existing databases”.

—Tim Berners-Lee

After studying this chapter,
you will be able to:
1. Explain the database

design
2. Define the database

schema versus database
instance

3. Understanding the
database models

LEARNING
OBJECTIVES

DATABASE STRUCTURE

INTRODUCTION
A database is an organized collection of data stored and
accessed electronically from a computer system. Where
databases are more complex they are often developed
using formal design and modeling techniques.

5
CHAPTER

3G E-LEARNING

114 Basic Computer Coding: SQL

The database management system (DBMS) is the software that interacts with
end users, applications, and the database itself to capture and analyze the data. The
DBMS software additionally encompasses the core facilities provided to administer the
database. The sum total of the database, the DBMS and the associated applications can
be referred to as a “database system”. Often the term “database” is also used loosely
to refer to any of the DBMS, the database system or an application associated with
the database.

Computer scientists may classify database-management systems according to the
database models that they support. Relational databases became dominant in the 1980s.
These model data as rows and columns in a series of tables, and the vast majority
use SQL for writing and querying data. In the 2000s, non-relational databases became
popular, referred to as NoSQL because they use different query languages.

Database Structure,” deals with creating and administering a SQL-based database. It
describes the SQL security scheme that prevents unauthorized access to data, and the SQL
system catalog that describes the structure of a database. This part also discusses the significant
differences between the database structures supported by various SQL-based DBMS products.

5.1 DATABASE DESIGN
Database design, as the name might suggest, is much like house design, though the
term also can be used to refer to actual database construction. The design process is
something of a blueprint that outlines a database’s details, from relationships between
tables to what information is important and how the data will be implemented. Aside
from helping the builder know what tables and information to collect, a design uses
naming conventions, and spelling errors are checked before the database is completed.
The database also goes through normalization, which seeks to remove redundancy,
during the design process. Without first working out a design, a database creator can
easily mess up the order of tables or the primary key for tables, or simply miss a few
sections, among a slew of other potential errors.

The first step of database design is to know the purpose of the database. There are
no diagrams or abstract representations; the designer just thinks about the database’s
objectives. Some information may be written down, but generally the designer simply
considers the best way to organize and use the database.

Next, the designer creates four data models. The conceptual model is a simple
diagram that shows table names. After this, the logical data model is created, filling the
tables with primary key and information to be collected. A primary key is a title for a
column that makes it unique and tells users the purpose of the column. Relationships
between tables also are detailed during this database design stage.

Database Structure

3G E-LEARNING

115

In the entity-relationship model, the designer focuses more
on relationships and less on the primary keys. This model
may sometimes be skipped, but it helps during database
creation to show how the entities interact with one another.
In the physical data model, live information is fed into the
database design.

During each model stage, the spelling of the tables and
primary keys must be checked. Naming conventions also are
employed, so users know how to enter data. For example, a
table could be named “ThisTable,” “This_Table,” “This-Table,”
or “This.Table”, based on the naming convention picked by
the database designer. Spelling has to be checked, because
an error can cause relationship issues when the database is
constructed.

The rules of normalization also are applied to the database
model. These rules eliminate repeating data, dissolve large
tables into small tables and ensure that relationships are
optimized. Normalizing the database design is the last step
and will aid the designer in determining if the database is
functional or if it needs to be rearranged or reworked.

5.1.1 The database design process

A well-structured database:
 ■ Saves disk space by eliminating redundant data.
 ■ Maintains data accuracy and integrity.
 ■ Provides access to the data in useful ways.

Designing an efficient, useful database is a matter of
following the proper process, including these phases:

 ■ Requirements analysis, or identifying the purpose of
your database

 ■ Organizing data into tables
 ■ Specifying primary keys and analyzing relationships
 ■ Normalizing to standardize the tables

Let’s take a closer look at each step. Note that this guide
deals with Edgar Codd’s relational database model as written
in SQL (rather than the hierarchical, network, or object data
models). To learn more about database models, read our
guide here.

SQL is a
domain-
specific
language used
in programming
and designed
for managing
data held in
a relational
database
management
system
(RDBMS), or
for stream
processing in
a relational
data stream
management
system
(RDSMS).

Keyword

3G E-LEARNING

116 Basic Computer Coding: SQL

5.1.2 Requirements analysis: identifying the purpose of the
database

Understanding the purpose of your database will inform your choices throughout
the design process. Make sure you consider the database from every perspective. For
instance, if you were making a database for a public library, you’d want to consider
the ways in which both patrons and librarians would need to access the data.

Here are some ways to gather information before creating the database:
 ■ Interview the people who will use it
 ■ Analyze business forms, such as invoices, timesheets, surveys
 ■ Comb through any existing data systems (including physical and digital files)

Start by gathering any existing data that will be included in the database. Then
list the types of data you want to store and the entities, or people, things, locations,
and events, that those data describe, like this:

Customers
 ■ Name
 ■ Address
 ■ City, State, Zip
 ■ Email address

Products
 ■ Name
 ■ Price
 ■ Quantity in stock
 ■ Quantity on order

Orders
 ■ Order ID
 ■ Sales representative
 ■ Date
 ■ Product(s)
 ■ Quantity
 ■ Price
 ■ Total

This information will later become part of the data dictionary, which outlines the
tables and fields within the database. Be sure to break down the information into
the smallest useful pieces. For instance, consider separating the street address from

Database Structure

3G E-LEARNING

117

the country so that you can later filter individuals by their
country of residence. Also, avoid placing the same data point
in more than one table, which adds unnecessary complexity.

Once you know what kinds of data the database will
include, where that data comes from, and how it will be
used, you’re ready to start planning out the actual database.

5.1.3 Database structure: the building blocks
of a database

The next step is to lay out a visual representation of your
database. To do that, you need to understand exactly how
relational databases are structured.

Within a database, related data are grouped into tables,
each of which consists of rows (also called tuples) and columns,
like a spreadsheet.

To convert your lists of data into tables, start by creating a
table for each type of entity, such as products, sales, customers,
and orders. Here’s an example: Each row of a table is called
a record. Records include data about something or someone,
such as a particular customer. By contrast, columns (also known
as fields or attributes) contain a single type of information
that appears in each record, such as the addresses of all the
customers listed in the table.

 SQL-based databases citizens use every day include banking systems,
.computerized medical records, and online shopping to name just a few

First Name Last Name Age ZIP Code
Roger Williams 43 34760
Jerrica Jorgensen 32 97453
Samantha Hopkins 56 64829

To keep the data consistent from one record to the next,
assign the appropriate data type to each column. Common
data types include:

 ■ CHAR - a specific length of text
 ■ VARCHAR - text of variable lengths
 ■ TEXT - large amounts of text

3G E-LEARNING

118 Basic Computer Coding: SQL

 ■ INT - positive or negative whole number
 ■ FLOAT, DOUBLE - can also store floating point

numbers
 ■ BLOB - binary data

Some database management systems also offer the Auto
number data type, which automatically generates a unique
number in each row.

For the purposes of creating a visual overview of the
database, known as an entity-relationship diagram, you won’t
include the actual tables. Instead, each table becomes a box
in the diagram. The title of each box should indicate what
the data in that table describes, while attributes are listed
below, like this:

Student
Student ID
Birth Date
Grade level

Finally, you should decide which attribute or attributes
will serve as the primary key for each table, if any. A primary
key (PK) is a unique identifier for a given entity, meaning
that you could pick out an exact customer even if you only
knew that value.

Attributes chosen as primary keys should be unique,
unchanging, and always present (never NULL or empty).
For this reason, order numbers and usernames make good
primary keys, while telephone numbers or street addresses
do not. You can also use multiple fields in conjunction as the
primary key (this is known as a composite key).

When it comes time to create the actual database, you’ll
put both the logical data structure and the physical data
structure into the data definition language supported by your
database management system. At that point, you should also
estimate the size of the database to be sure you can get the
performance level and storage space it will require.

 Primary
 Key is
 a specific choice
 of a minimal
 set of attributes
 (columns) that
 uniquely specify
 a tuple (row) in a
relation (table).

Keyword

Database Structure

3G E-LEARNING

119

5.1.4 Creating relationships between entities

With your database tables now converted into tables, you’re ready to analyze the
relationships between those tables. Cardinality refers to the quantity of elements that
interact between two related tables. Identifying the cardinality helps make sure you’ve
divided the data into tables most efficiently.

Each entity can potentially have a relationship with every other one, but those
relationships are typically one of three types:

One-to-one relationships

When there’s only one instance of Entity A for every instance of Entity B, they are
said to have a one-to-one relationship (often written 1:1). You can indicate this kind
of relationship in an ER diagram with a line with a dash on each end:

Unless you have a good reason not to, a 1:1 relationship usually indicates that
you’d be better off combining the two tables’ data into a single table.

However, you might want to create tables with a 1:1 relationship under a particular
set of circumstances. If you have a field with optional data, such as “description,” that
is blank for many of the records, you can move all of the descriptions into their own
table, eliminating empty space and improving database performance.

To guarantee that the data matches up correctly, you’d then have to include at
least one identical column in each table, most likely the primary key.

One-to-many relationships

These relationships occur when a record in one table is associated with multiple
entries in another. For example, a single customer might have placed many orders,
or a patron may have multiple books checked out from the library at once. One-to-
many (1:M) relationships are indicated with what’s called “Crow’s foot notation,” as
in this example:

To implement a 1:M relationship as you set up a database, simply add the primary
key from the “one” side of the relationship as an attribute in the other table. When
a primary key is listed in another table in this manner, it’s called a foreign key. The

3G E-LEARNING

120 Basic Computer Coding: SQL

table on the “1” side of the relationship is a considered a parent table to the child
table on the other side.

Many-to-many relationships

When multiple entities from a table can be associated with multiple entities in another
table, they are said to have a many-to-many (M: N) relationship. This might happen
in the case of students and classes, since a student can take many classes and a class
can have many students.

In an ER diagram, these relationships are portrayed with these lines:

Unfortunately, it’s not directly possible to implement this kind of relationship in
a database. Instead, you have to break it up into two one-to-many relationships.

To do so, create a new entity between those two tables. If the M: N relationship
exists between sales and products, you might call that new entity “sold_products,”
since it would show the contents of each sale. Both the sales and products tables would
have a 1:M relationship with sold_products. This kind of go-between entity is called
a link table, associative entity, or junction table in various models.

Each record in the link table would match together two of the entities in the
neighboring tables (it may include supplemental information as well). For instance, a
link table between students and classes might look like this:

Mandatory or not?

Another way to analyze relationships is to consider which side of the relationship has
to exist for the other to exist. The non-mandatory side can be marked with a circle on
the line where a dash would be. For instance, a country has to exist for it to have a
representative in the United Nations, but the opposite is not true:

Database Structure

3G E-LEARNING

121

Two entities can be mutually dependent (one could not
exist without the other).

Recursive relationships

Sometimes a table points back to itself. For example, a table
of employees might have an attribute “manager” that refers
to another individual in that same table. This is called a
recursive relationship.

Redundant relationships

A redundant relationship is one that is expressed more than
once. Typically, you can remove one of the relationships
without losing any important information. For instance, if an
entity “students” has a direct relationship with another called
“teachers” but also has a relationship with teachers indirectly
through “classes,” you’d want to remove the relationship
between “students” and “teachers.” It’s better to delete that
relationship because the only way that students are assigned
to teachers is through classes.

5.1.5 Database Normalization

Once you have a preliminary design for your database, you can
apply normalization rules to make sure the tables are structured
correctly. Think of these rules as the industry standards.

That said, not all databases are good candidates for
normalization. In general, online transaction processing (OLTP
for short) databases, in which users are concerned with creating,
reading, updating, and deleting records, should be normalized.

Online analytical processing (OLAP) databases which
favor analysis and reporting might fare better with a degree of
denormalization, since the emphasis is on speed of calculation.

 Online
 analytical
 processing is
 an approach to
answering multi-
 dimensional
 analytical (MDA)
 queries swiftly in
computing.

Keyword

3G E-LEARNING

122 Basic Computer Coding: SQL

These include decision support applications in which data needs to be analyzed quickly
but not changed.

Each form, or level of normalization, includes the rules associated with the lower
forms.

First normal form

The first normal form (abbreviated as 1NF) specifies that each cell in the table can
have only one value, never a list of values, so a table like this does not comply:

ProductID Color Price
1 brown, yellow $15
2 red, green $13
3 blue, orange $11

You might be tempted to get around this by splitting that data into additional
columns, but that’s also against the rules: a table with groups of repeated or closely
related attributes does not meet the first normal form. The table below, for example,
fails to comply:

Product
Color1
Color2
Color3
Price

Instead, split the data into multiple tables or records until each cell holds only
one value and there are no extra columns. At that point, the data is said to be atomic,
or broken down to the smallest useful size. For the table above, you could create an
additional table called “Sales details” that would match specific products with sales.
“Sales” would then have a 1:M relationship with “Sales details.”

Second normal form

The second normal form (2NF) mandates that each of the attributes should be fully
dependent on the entire primary key. That means each attribute should depend directly
on the primary key, rather than indirectly through some other attribute.

For instance, an attribute “age” that depends on “birthdate” which in turn depends
on “studentID” is said to have a partial functional dependency, and a table containing
these attributes would fail to meet the second normal form.

Database Structure

3G E-LEARNING

123

Furthermore, a table with a primary key made up of multiple fields violates the
second normal form if one or more of the other fields do not depend on every part
of the key.

Thus, a table with these fields wouldn’t meet the second normal form, because the
attribute “product name” depends on the product ID but not on the order number:

 ■ Order number (primary key)
 ■ Product ID (primary key)
 ■ Product name

Third normal form

The third normal form (3NF) adds to these rules the requirement that every non-key
column be independent of every other column. If changing a value in one non-key
column causes another value to change, that table does not meet the third normal form.

This keeps you from storing any derived data in the table, such as the “tax”
column below, which directly depends on the total price of the order:

Order Price Tax
14325 $40.99 $2.05
14326 $13.73 $.69
14327 $24.15 $1.21

Additional forms of normalization have been proposed, including the Boyce-Codd
normal form, the fourth through sixth normal forms, and the domain-key normal form,
but the first three are the most common.

While these forms explain the best practices to follow generally, the degree of
normalization depends on the context of the database.

5.1.6 Multidimensional data

Some users may want to access multiple dimensions of a single type of data, particularly
in OLAP databases. For instance, they may want to know the sales by customer, state,
and month. In this situation, it’s best to create a central fact table that other customer,
state, and month tables can refer to, like this:

3G E-LEARNING

124 Basic Computer Coding: SQL

5.1.7 Data integrity rules

You should also configure your database to validate the data according to the appropriate
rules. Many database management systems, such as Microsoft Access, enforce some
of these rules automatically.

The entity integrity rule says that the primary key can never be NULL. If the key
is made up of multiple columns, none of them can be NULL. Otherwise, it could fail
to uniquely identify the record.

The referential integrity rule requires each foreign key listed in one table to be
matched with one primary key in the table it references. If the primary key changes or
is deleted, those changes will need to be implemented wherever that key is referenced
throughout the database.

Business logic integrity rules make sure that the data fits within certain logical
parameters. For instance, an appointment time would have to fall within normal
business hours.

5.1.8 Adding indexes and views

An index is essentially a sorted copy of one or more columns, with the values either
in ascending or descending order. Adding an index allows users to find records more
quickly. Instead of re-sorting for each query, the system can access records in the order
specified by the index. Although indexes speed up data retrieval, they can slow down
inserting, updating, and deleting, since the index has to be rebuilt whenever a record
is changed.

A view is simply a saved query on the data. They can usefully join data from
multiple tables or else show part of a table.

Database Structure

3G E-LEARNING

125

5.1.9 Extended properties

Once you have the basic layout completed, you can refine
the database with extended properties, such as instructional
text, input masks, and formatting rules that apply to a
particular schema, view, or column. The advantage is that,
because these rules are stored in the database itself, the
presentation of the data will be consistent across the multiple
programs that access the data.

5.1.10 SQL and UML

The Unified Modeling Language (UML) is another visual way
of expressing complex systems created in an object-oriented
language. Several of the concepts mentioned in this guide are
known in UML under different names. For instance, an entity
is known as a class in UML.

UML is not used as frequently today as it once was. Today,
it is often used academically and in communications between
software designers and their clients.

5.1.11 Database Management Systems

Many of the design choices you will make depend on which
database management system you use. Some of the most
common systems include:

 ■ Oracle DB
 ■ MySQL
 ■ Microsoft SQL Server
 ■ PostgreSQL
 ■ IBM DB2

When given the choice, pick an appropriate database
management system based on cost, operating systems

5.2 DATABASE SCHEMA VERSUS
DATABASE INSTANCE
While working with any data model, it is necessary to
distinguish between the overall design or description of the

 Unified
 Modeling
 Language (UML) is
 a general-purpose,
 developmental,
 modeling
 language in the
 field of software
 engineering, that
 is intended to
 provide a standard
 way to visualize
 the design of a
system.

Keyword

3G E-LEARNING

126 Basic Computer Coding: SQL

database (database schema) and the database itself. As discussed, the overall design
or description of the database is known as database schema or simply schema. The
database schema is also known as intension of the database, and is specified while
designing the database. Figure 1 shows the database schema for online book database.

Figure 1: Database schema for online book database.

The data in the database at a particular point of time is known as database
instance or database state or snapshot. The database state is also called an extension
of the schema.

The various states of the database are given here:
Empty State: When a new database is defined, only its schema is specified. At

this point, the database is said to be in empty state as it contains no data.
Initial State: When the database is loaded with data for the first time, it is said

to be in initial state.
Current State: The data in the database is updated frequently. Thus, at any point

of time, the database is said to be in the current state.
The DBMS is responsible to check whether the database state is valid state. Thus,

each time the database is updated, DBMS ensures that the database remains in the
valid state. The DBMS refers to DBMS catalog where the metadata is stored in order
to check whether the database state satisfies the structure and constraints specified in
the schema. Table 1 shows an example of an instance for PUBLISHER schema.

Database Structure

3G E-LEARNING

127

Table 1: An example of instance PUBLISH

P_ID Pname Address State Phone Email_id
P001 Hills

Publications
12, Park
street,
Atlanta

Georgia 7134019 h_pub@hills.
com

P002 Sunshine
Publishers Ltd.

45, Second
street,
Newark

New
Jersey

6548909 Null

P003 Bright
Publications

123, Main
street,
Honolulu

Hawai 6548142 bright@
bp.com

P004 Paramount
Publishing
House

789, Oak
street, New
York

New
York

5683452 param_
house@
param.com

P005 Wesley
Publications

456, First
street, Las
Vegas

Nevada 9254834 Null

The schema and instance can be compared with a program
written in a programming language. The database schema is
similar to a variable declared along with the type description
in a program. The variable contains a value at a given point
of time. This value of a variable corresponds to an instance
of a database schema.

A subschema is the applications programmer’s view of the
data within the database pertinent to the specific application.
A subschema has access to those areas, set types, record types,
data items, and data aggregates of interest in the pertinent
application to which it was designed. Naturally, a software
system usually has more than one programmer assigned and
includes more than one application. This means there are
usually many different subschemas for each schema.

The following are a few of the many reasons subschemas
are used:

A subschema is a subset of the schema and inherits the
same property that a schema has. The plan (or scheme) for
a view is often called subschema. Subschema refers to an
application programmer’s (user’s) view of the data item types
and record types, which he or she uses. It gives the users a
window through which he or she can view only that part of

This
description is
in terms of
the names and
characteristics of
the data items,
data aggregates,
records, areas,
and sets
included in the
database, and
the relationships
that exist
and must be
maintained
between
occurrences of
those elements
in the database.

Remember

3G E-LEARNING

128 Basic Computer Coding: SQL

the database, which is of interest to him. Therefore, different
application programs can have different view of data.

Subschemas provide different views of the data to the
user and the programmer, who do not need to know all the
data contained in the entire database. Subschemas enhance
security factors and prohibit data compromise. Subschemas
aid the DBA while assuring data integrity. Each data item
included in the subschema will be assigned a location in the
user working area (UWA).The UWA is conceptually a loading
and unloading zone, where all data provided by the DBMS in
response to a CALL for data is delivered. It is also where all
data to be picked up by the DBMS must be placed. Schema
data definition language (DDL) the schema data definition
language (DDL) is used for describing a database, which may
be shared by many programs written in many languages.

Data Item: A data item is an occurrence of the smallest
unit of named data. It is represented in a database by a value.

Data Aggregate: A data aggregate is an occurrence of a
named collection of data items within a record.

There are two kinds-vectors and repeating groups. A vector
is a one-dimensional sequence of data items, all of which have
identical characteristics. A repeating group is a collection of
data that occurs a number of times within a record occurrence
collection may consist of data items, vectors repeating groups.

5.3 DATABASE MODELS
The main objective of database system is to highlight only the
essential features and to hide the storage and data organization
details from the user. This is known as data abstraction. A
database model provides the necessary means to achieve data
abstraction. A database model or simply a data model is an
abstract model that describes how the data is represented and
used. A data model consists of a set of data structures and
conceptual tools that is used to describe the structure (data
types, relationships, and constraints) of a database.

A data model not only describes the structure of the data;
it also defines a set of operations that can be performed on the
data. A data model generally consists of data model theory,
which is a formal description of how data may be structured

 Data
 Definition
 Language (DDL)
 is a syntax similar
 to a computer
 programming
 language for
 defining data
 structures,
 especially database
schemas.

 Data
 Definition
 Language is a
 standard for
 commands that
 define the different
 structures in a
 database. DDL
 statements create,
 modify, and
 remove database
 objects such as
 tables, indexes, and
users.

Keyword

Keyword

Database Structure

3G E-LEARNING

129

and used, and data model instance, which is a practical data model designed for a
particular application. The process of applying a data model theory to create a data
model instance is known as data modeling.

Depending on the concept they use to model the structure of the database, the data
models are categorized into three types, namely, high-level or conceptual data models,
representational or implementation data models and low-level or physical data models.

5.3.1 Conceptual Data Model

Conceptual data model describes the information used by an organization in a way
that is independent of any implementation-level issues and details. The main advantage
of conceptual data model is that it is independent of implementation details and hence,
can be understood even by the end users having non-technical background. The most
popular conceptual data model, that is, entity-relationship (E-R) model.

5.3.2 Representational Data Model

The representational or implementation data models hide some data storage details from
the users; however, can be implemented directly on a computer system. Representational
data models are used most frequently in all traditional commercial DBMS.

The various representational data models are:

Hierarchical Data Model

The hierarchical data model is the oldest type of data model, developed by IBM in
1968. This data model organizes the data in a tree-like structure, in which each child
node (also known as dependents) can have only one parent node. The database based
on the hierarchical data model comprises a set of records connected to one another
through links. The link is an association between two or more records. The top of the
tree structure consists of a single node that does not have any parent and is called
the root node.

The root may have any number of dependents; each of these dependents may have
any number of lower level dependents. Each child node can have only one parent
node and a parent node can have any number of (many) child nodes. It, therefore,
represents only one-to-one and one-to-many relationships. The collection of same type
of records is known as a record type. Figure 2 shows the hierarchical model of Online
Book database. It consists of three record types, namely, PUBLISHER, BOOK, and
REVIEW. For simplicity, only few fields of each record type are shown. One complete
record of each record type represents a node.

3G E-LEARNING

130 Basic Computer Coding: SQL

Figure 2: Hierarchical data model for Online Book database.

The main advantage of the hierarchical data model is that the data access is quite
predictable in the structure and, therefore, both the retrieval and updates can be highly
optimized by the DBMS. However, the main drawback of this model is that the links
are ‘hard coded’ into the data structure, that is, the link is permanently established and
cannot be modified. The hard coding makes the hierarchical model rigid. In addition,
the physical links make it difficult to expand or modify the database and the changes
require substantial redesigning efforts.

Figure 3: Data modeling.

Database Structure

3G E-LEARNING

131

Network Data Model

In a network model the data is also represented by a collection of records, and
relationships among data are represented by links. However, the link in a network
data model represents an association between precisely two records. Like hierarchical
data model, each record of a particular record type represents a node. However, unlike
hierarchical data model, all the nodes are linked to each other without any hierarchy.
The main advantage of network data model is that a parent node can have many
child nodes and a child can also have many parent nodes. Thus, the network model
permits the modeling of many-to-many relationships in data. The main limitation of
the network data model is that it can be quite complicated to maintain all the links
and a single broken link can lead to problems in the database. In addition, since there
are no restrictions on the number of relationships, the database design can become
complex. Figure 4 shows the network model of Online Book database.

Figure 4: Network data model for online book database.

Relational Data Model

In the relational data model, unlike the hierarchical and network models, there are
no physical links. All data is maintained in the form of tables (generally, known as
relations) consisting of rows and columns. Each row (record) represents an entity and
a column (field) represents an attribute of the entity. The relationship between the two
tables is implemented through a common attribute in the tables and not by physical
links or pointers. This makes the querying much easier in a relational database system
than in the hierarchical or network database systems. Thus, the relational model has
become more programmers friendly and much more dominant and popular in both
industrial and academic scenarios. Oracles, Sybase, DB2, Ingres, and Informix, MS-SQL
Server are few of the popular relational DBMSs.

3G E-LEARNING

132 Basic Computer Coding: SQL

Object-based Data Model

In the recent years, the object-oriented paradigm has been
applied to database technology, creating two new data models
known as object-oriented data model and object-relational data
model. The object-oriented data model extends the concepts
of object-oriented programming language with persistence,
versioning, concurrency control, data recovery, security, and
other database capabilities. On the other hand, the object-
relational data model is an extension of relational data model.
It combines the features of both the relational data model and
object-oriented data model.

Semi Structured Data Model

Unlike other data models, where every data item of a particular
type must have the same set of attributes, the semi structured
data model allows individual data items of the same type to
have different set of attributes. In semi structured data model,
the information about the description of the data (schema) is
contained within the data itself, which is sometimes called self-
describing data. In such databases there is no clear separation
between the data and the schema and thus, allowing data of
any type.

Semi structured data model has recently emerged as an
important topic of study for different reasons given as:

 ■ There are data sources such as the Web, which is
to be treated as databases; however, they cannot be
constrained by a schema.

 ■ The need of flexible format for data exchange between
heterogeneous databases.

 ■ To facilitate browsing of data.
Semi structured data model facilitates data exchange

among heterogeneous data sources. It helps to discover new
data easily and store it. It also facilitates querying the database
without knowing the data types. However, it loses the data
type information.

The
concept of the
data definition
language and its
name was first
introduced in
relation to the
Codasyl database
model, where
the schema of
the database
was written in a
language syntax
describing the
records, fields,
and sets of the
user data model.
Later it was
used to refer
to a subset of
Structured Query
Language (SQL)
for declaring
tables, columns,
data types and
constraints.

Did You
Know?

Database Structure

3G E-LEARNING

133

5.3.3 Physical Data Model

Physical data model describes the data in terms of a collection of files, indices, and
other storage structures such as record formats, record ordering, and access paths.
This model specifies how the database will be executed in a particular DBMS software
such as Oracle, Sybase, etc., by taking into account the facilities and constraints of a
given database management system. It also describes how the data is stored on disk
and what access methods are available to it.

3G E-LEARNING

134 Basic Computer Coding: SQL

CASE STUDY

HOSPITAL MANAGEMENT SYSTEM
Aim: XYZ hospital is a multi specialty hospital that includes a number of departments,
rooms, doctors, nurses, compounders, and other staff working in the hospital. Patients
having different kinds of ailments come to the hospital and get checkup done from
the concerned doctors. If required they are admitted in the hospital and discharged
after treatment.

The aim of this case study is to design and develop a database for the hospital
to maintain the records of various departments, rooms, and doctors in the hospital. It
also maintains records of the regular patients, patients admitted in the hospital, the
check up of patients done by the doctors, the patients that have been operated, and
patients discharged from the hospital.

Description: In hospital, there are many departments like Orthopedic, Pathology,
Emergency, Dental, Gynecology, Anesthetics, I.C.U., Blood Bank, Operation Theater,
Laboratory, M.R.I., Neurology, Cardiology, Cancer Department, Corpse, etc. There is
an OPD where patients come and get a card (that is, entry card of the patient) for
check up from the concerned doctor. After making entry in the card, they go to the
concerned doctor’s room and the doctor checks up their ailments. According to the
ailments, the doctor either prescribes medicine or admits the patient in the concerned
department. The patient may choose either private or general room according to his/
her need. But before getting admission in the hospital, the patient has to fulfill certain
formalities of the hospital like room charges, etc. After the treatment is completed, the
doctor discharges the patient. Before discharging from the hospital, the patient again
has to complete certain formalities of the hospital like balance charges, test charges,
operation charges (if any), blood charges, doctors’ charges, etc

Next we talk about the doctors of the hospital. There are two types of the doctors
in the hospital, namely, regular doctors and call on doctors. Regular doctors are those
doctors who come to the hospital daily. Calls on doctors are those doctors who are
called by the hospital if the concerned doctor is not available.

Table Description:
Following are the tables along with constraints used in Hospital Management

database.
1. DEPARTMENT: This table consists of details about the various departments in

the hospital. The information stored in this table includes department name,
department location, and facilities available in that department.

 Constraint: Department name will be unique for each department.

Database Structure

3G E-LEARNING

135

2. ALL_DOCTORS: This table stores information about all the doctors working
for the hospital and the departments they are associated with. Each doctor
is given an identity number starting with DR or DC prefixes only.

 Constraint: Identity number is unique for each doctor and the corresponding
department should exist in DEPARTMENT table.

3. DOC_REG: This table stores details of regular doctors working in the hospital.
Doctors are referred to by their doctor number. This table also stores personal
details of doctors like name, qualification, address, phone number, salary, date
of joining, etc.

 Constraint: Doctor’s number entered should contain DR only as a prefix and
must exist in ALL_DOCTORS table.

4. DOC_ON_CALL: This table stores details of doctors called by hospital when
additional doctors are required. Doctors are referred to by their doctor number.
Other personal details like name, qualification, fees per call, payment due,
address, phone number, etc., are also stored.

 Constraint: Doctor’s number entered should contain DC only as a prefix and
must exist in ALL_DOCTORS table.

5. PAT_ENTRY: The record in this table is created when any patient arrives in the
hospital for a check up. When patient arrives, a patient number is generated
which acts as a primary key. Other details like name, age, sex, address, city,
phone number, entry date, name of the doctor referred to, diagnosis, and
department name are also stored. After storing the necessary details patient
is sent to the doctor for checkup.

 Constraint: Patient number should begin with prefix PT. Sex should be M or
F only. Doctor’s name and department referred must exist.

6. PAT_CHKUP: This table stores the details about the patients who get treatment
from the doctor referred to. Details like patient number from patient entry
table, doctor number, date of check up, diagnosis, and treatment are stored.
One more field status is used to indicate whether patient is admitted, referred
for operation or is a regular patient to the hospital. If patient is admitted,
further details are stored in PAT_ADMIT table. If patient is referred for
operation, the further details are stored in PAT_OPR table and if patient is
a regular patient to the hospital, the further details are stored in PAT_REG
table.

 Constraint: Patient number should exist in PAT_ENTRY table and it should
be unique.

7. PAT_ADMIT: When patient is admitted, his/her related details are stored in
this table. Information stored includes patient number, advance payment, mode
of payment, room number, department, date of admission, initial condition,

3G E-LEARNING

136 Basic Computer Coding: SQL

diagnosis, treatment, number of the doctor under whom treatment is done,
attendant name, etc.

 Constraint: Patient number should exist in PAT_ENTRY table. Department,
doctor number, room number must be valid.

8. PAT_DIS: An entry is made in this table whenever a patient gets discharged
from the hospital. Each entry includes details like patient number, treatment
given, treatment advice, payment made, mode of payment, date of discharge,
etc.

 Constraint: Patient number should exist in PAT_ENTRY table.
9. PAT_REG: Details of regular patients are stored in this table. Information

stored includes date of visit, diagnosis, treatment, medicine recommended,
status of treatment, etc.

 Constraint: Patient number should exist in patient entry table. There can be
multiple entries of one patient as patient might be visiting hospital repeatedly
for check up and there will be entry for patient’s each visit.

10. PAT_OPR: If patient is operated in the hospital, his/her details are stored in
this table. Information stored includes patient number, date of admission, date
of operation, number of the doctor who conducted the operation, number of
the operation theater in which operation was carried out, type of operation,
patient’s condition before and after operation, treatment advice, etc.

 Constraint: Patient number should exist in PAT_ENTRY table. Department,
doctor number should exist or should be valid.

11. ROOM_DETAILS: It contains details of all rooms in the hospital. The details
stored in this table include room number, room type (general or private),
status (whether occupied or not), if occupied, then patient number, patient
name, charges per day, etc. Constraint: Room number should be unique. Room
type can only be G or P and status can only be Y or N

Database Structure

3G E-LEARNING

137

SUMMARY
 ■ Database design, as the name might suggest, is much like house A database

is an organized collection of data stored and accessed electronically from a
computer system. Where databases are more complex they are often developed
using formal design and modeling techniques.

 ■ The database management system (DBMS) is the software that interacts with
end users, applications, and the database itself to capture and analyze the
data. The DBMS software additionally encompasses the core facilities provided
to administer the database.

 ■ A redundant relationship is one that is expressed more than once. Typically, you
can remove one of the relationships without losing any important information.

 ■ An index is essentially a sorted copy of one or more columns, with the values
either in ascending or descending order. Adding an index allows users to
find records more quickly.

 ■ A view is simply a saved query on the data. They can usefully join data from
multiple tables or else show part of a table.

 ■ The Unified Modeling Language (UML) is another visual way of expressing
complex systems created in an object-oriented language.

 ■ The database schema is also known as intension of the database, and is
specified while designing the database.

 ■ A subschema is the applications programmer’s view of the data within the
database pertinent to the specific application. A subschema has access to those
areas, set types, record types, data items, and data aggregates of interest in
the pertinent application to which it was designed.

 ■ A data item is an occurrence of the smallest unit of named data. It is represented
in a database by a value.

 ■ A data aggregate is an occurrence of a named collection of data items within
a record.

3G E-LEARNING

138 Basic Computer Coding: SQL

KNOWLEDGE CHECK
1. Database is collection of …………..

a. None of these
b. Data
c. Modules
d. Programs

2. ……………………is collection of interrelated data and set of program to access
them.
a. Programming language
b. Database Management System
c. Database
d. Data Structure

3. DBMS should provide following feature(s) …………………...
a. Authorized access
b. All of these
c. Safety of the information stored
d. Protect data from system crash

4. Before use of DBMS information was stored using ………………….
a. Cloud Storage
b. Data System
c. File Management System
d. None of these

5. Which of the following is considered as DBMS?
a. All of these
b. Access
c. Oracle
d. Foxpro

Database Structure

3G E-LEARNING

139

6. A Database Management System is a type of _________software.
a. It is a type of system software
b. It is a kind of application software
c. It is a kind of general software
d. Both a and c

7. A huge collection of the information or data accumulated form several different
sources is known as ________:
a. Data Management
b. Data Mining
c. Data Warehouse
d. Both b and c

8. Which one of the following refers to the copies of the same data (or information)
occupying the memory space at multiple places.
a. Data Repository
b. Data Inconsistency
c. Data Mining
d. Data Redundancy

9. The term “Data” refers to:
a. The electronic representation of the information(or data)
b. Basic information
c. Row Facts and figures
d. Both a and c

10. Which of the following commands is used to save any transaction permanently
into the database?
a. Commit
b. Rollback
c. Savepoint
d. None of the above

3G E-LEARNING

140 Basic Computer Coding: SQL

REVIEW QUESTIONS
1. What is second normal form?
2. Why database design is important?
3. What is database design?
4. What is normalization?
5. What is physical data model in DBMS?

Check Your Result

1. (b) 2. (b) 3. (b) 4. (c) 5. (a)
6. (a) 7. (c) 8. (d) 9. (c) 10. (a)

Database Structure

3G E-LEARNING

141

REFERENCES
1. An Introduction to Database Systems”, C. J. Date, A. Kannan and S. Swamynathan,

Pearson Education, Eighth Edition, 2009.
2. Aqda, M.F., Hamidi, F., & Rahimi, M. (2011). The comparative effect of computer-

aided instruction and
3. Database System Concepts”, Abraham Silberschatz, Henry F. Korth and S.

Sudarshan, McGraw-Hill Education (Asia), Fifth Edition, 2006.
4. Database Systems Design, Implementation and Management”, Peter Rob and

Carlos Coronel, Thomson Learning-Course Technology, Seventh Edition, 2007.
5. Database Systems, Design, Implementation and Management”, Carlos Cornol

and Steven Morris, 12th edition, 2016.
6. Transactional Information Systems”, Gerhard Weikum, Gottfried Vossen, Elsevier,

ISBN 1-55860-508-8, 2001.

“Every successful application starts with a strong data model. Oracle SQL Developer Data Modeler
not only provides a graphical way to develop data models, but an effective way to communicate
existing data models to application developers.”

―Mike Hichwa

After studying this chapter,
you will be able to:
1. Discuss about embedded

SQL
2. Explain dynamic SQL
3. Understand SQL APIs

LEARNING
OBJECTIVES

PROGRAMMING WITH
SQL

INTRODUCTION
SQL is a language to operate databases; it includes database
creation, deletion, fetching rows, modifying rows, etc.
SQL is an ANSI (American National Standards Institute)
standard language, but there are many different versions of

6
CHAPTER

3G E-LEARNING

144 Basic Computer Coding: SQL

the SQL language. In addition to its role as an interactive data
access language, SQL supports database access by application
programs.

Programming with SQL describes how application
programs use SQL for database access. It discusses the
embedded SQL specified by the ANSI standard and used by
IBM, Oracle, Ingres, Informix, and many other SQL-based
DBMS products. It also describes the dynamic SQL interface
that is used to build general-purpose database tables, such
as report writers and database browsing programs. Finally,
this describes the popular SQL APIs, including ODBC, the
ISO-standard Call-Level Interface, and JDBC, the standard
call-level interface for Java, as well as proprietary call-level
interfaces such as Oracle’s OCI API.

6.1 EMBEDDED SQL
Embedded SQL is a method of inserting inline SQL statements
or queries into the code of a programming language, which is
known as a host language. Because the host language cannot
parse SQL, the inserted SQL is parsed by an embedded SQL
preprocessor.

Embedded SQL is a robust and convenient method of
combining the computing power of a programming language
with SQL’s specialized data management and manipulation
capabilities.

Embedded SQL is not supported by all relational database
management systems (RDBMS). Oracle DB and PostgreSQL
provide embedded SQL support. MySQL, Sybase and SQL
Server 2008 do not, although support was provided by earlier
versions of SQL Server (2000 and 2005).

 Information
 system (IS) is an
 organized system
 for the collection,
 organization,
 storage and
 communication of
information.

Keyword

Programming with SQL

3G E-LEARNING

145

The C programming language is commonly used for
embedded SQL implementation. For example, a commercial
bank’s information system (IS) has a front-end user interface
created in the C language, and the IS interfaces with a back-end
Oracle DB database. One of the front-end interface modules
allows quick viewing and commission calculation for sales
agents during specified periods. An inefficient approach to
handling this process would be to store each commission value
in a database table. However, a more effective solution is to
calculate and return commission values based on unique user
requests on specified dates. The application accomplishes this
by embedding a SQL query within the C code, as follows:

SELECT 0.2*SALE_AMOUNT FROM TOTAL_SALES
WHERE SALE_DATE=’MM/DD’YYYY’ AND AGENT_NO=xx

In this example, the SQL statement calculates and returns
20 percent of the sale amount from a TOTAL_SALES table,
while the user is expected to input the SALE_DATE and
AGENT_NO values. This SQL query is then inserted inline
into the C code of the front-end module. The C code and SQL
query work together to deliver seamless user results.

6.1.1 Concepts for Embedding the SQL
Statements

We can mix the SQL statements directly into general purpose
programming language like C, Java or Pascal. There are some
techniques to embed SQL statements in the programming
languages.

 ■ The programming language in which the SQL
statements are embedded is called the host language.
The SQL statements and host language statements
make the source program which is fed to a SQL
precompiler for processing the SQL statements

 ■ The host programming languages variables can be
referenced in the embedded SQL statements, which
allows values calculated by the programs to be used
by SQL statements.

 ■ There are some special program variables which are
used to assign null values to database columns. These
program variables support the retrieval of null values
from the database.

The embedded
SQL statements
are contained in
a package that
must be bound
to the target
database server.

Remember

3G E-LEARNING

146 Basic Computer Coding: SQL

6.1.2 Embedded SQL Program Development

Since the embedded SQL is a mixture of SQL and programming language, so it cannot
be fed directly to a general purpose programming language compiler. Actually the
program execution is a multi-step which is as follows.

 ■ First, the embedded SQL source code is fed to the SQL precompiler. The
precompiler scans the program and processes the embedded SQL statements
present in the code. There can be different precompilers for different type of
programming languages.

 ■ After processing the source code, the precompiler produces 2 files as its
output. The first file contains the source program without embedded SQL
statements and the second file contains all the embedded SQL statements
used in the program.

 ■ The first file prodiced by precompiler (that contains the source program) is
fed to the compiler for the host programming language (like C compiler). The
compiler processes the source code and produces object code as its output.

 ■ Now the linker takes the object modules produced by the compiler and link
them with various library routines and produces an executable program.

 ■ The database request modules, produced by the precompiler (in steps) are
submitted to a special BIND program. The BIND program examines the SQL

Programming with SQL

3G E-LEARNING

147

statements, parse them, validates them, optimizes them and finally produces
an application plan for each statement. The result is a combined application
plan for the entire program, that represents a DBMS-executable version of its
embedded SQL statements. The BIND program stores the plan in the database,
usually assigning it the name of the application program that has created it.

6.1.3 An Embedded SQL Example in C

Although the SQL statements can be embedded in any general purpose programming
language, still we just take an example in C language so that a clear picture can be
drawn. We just take an interactive SQL statement and see how it can be embedded
in C language.

Increase the salary of teacher by 10% who are B.Tech
update teacher set salary=1.1*salary where qualification=’B.Tech’;
The embedded SQL program for above written SQL statement will be:
main()

 exec sql include sqlca;
 exec sql declare table teacher (tid char(6) not null,tname char(20),sex
char(1),age number(3),qualification char(7),salary number(7),city varchar(15));

 //Display a message to user
 printf(“updating teacher salary who are B.Techn”);
 //this code executes the SQL statement
 exec sql update teacher set salary=1.1*salary where qualification=’B.Tech’;
 printf(update done”);

 exit();
}

Explanation

Although the above shown program is very easy to understand, still we would like
to discuss some very basic features of embedded SQL.

 ■ The embedded SQL statement can be written in any case (lower or upper).
Although we should follow the convention of that programming language in
which we are embedding the SQL statements. For e.g., COBOL and FORTRAN
are written in upper case so, the SQL statements are also written in upper

3G E-LEARNING

148 Basic Computer Coding: SQL

case, while in C, the SQL statements are written in
lower case as shown in above program.

 ■ Each embedded SQL statement begins with an
introducer which indicates that it is a SQL statement.
For most of the programming language EXEC SQL
is used as an introducer.

 ■ Each embedded SQL statement ends with a terminator.
There can be different terminators for different
programming languages. For example, there is END
EXEC for COBOL and a semicolon (;) for C.

 ■ The DECLARE TABLE statement is used to declare a
table. With the use of DECLARE TABLE statement our
program specifies the column and data type explicitly.

 ■ When we type SQL statement, we may make an error.
This error is displayed by the interactive SQL program
and we are prompted to type a new statement. There
can be two types of errors: compile time and runtime.

6.1.4 Error Handling with SQL Code

In this scheme the DBMS communicates the status to the
embedded SQL program through an area of program storage
called the SQL communication are or SQLCA. The SQLCA
is a data structure that contains the error variables and the
status indicators. By examining the SQLCA, the application
program can determine the success or failure of its embedded
SQL statements and can take actions accordingly.

6.2 DYNAMIC SQL
Dynamic SQL refers to SQL statements that are constructed
and executed at run-time. Dynamic is the opposite of static.
Static SQL refers to SQL statements that are fixed at the time
a program is compiled. Dynamic PL/SQL refers to entire PL/
SQL blocks of code that are constructed dynamically, then
compiled and executed.

 Data
 type or
 simply type is a
 classification of
 data which tells
 the compiler or
 interpreter how
 the programmer
 intends to use the
data.

Keyword

Programming with SQL

3G E-LEARNING

149

Ever since Oracle7 Release 1, we PL/SQL developers have
been able to use the built-in DBMS_SQL package to execute
dynamic SQL . In Oracle8i Database, we were given a second
option for executing dynamically constructed SQL statements:
native dynamic SQL (NDS). NDS is a native part of the PL/SQL
language; it is much easier to use than DBMS_SQL, and, for
many applications, it will execute more efficiently.

6.2.1 Programming with Dynamic SQL

For the sake of consistency, this section discusses dynamic
SQL mainly from the perspective of PL/SQL. To process most
dynamic SQL statements, you use the EXECUTE IMMEDIATE
statement. To process a multi-row query in a PL/SQL procedure,
you use the OPEN-FOR, FETCH, and CLOSE statements.

Oracle Database enables you to implement dynamic SQL
in a PL/SQL application in the following ways:

 ■ Using native dynamic SQL, which involves placing
dynamic SQL statements directly into PL/SQL blocks

 ■ Calling procedures in the DBMS_SQL package
Although this section discusses PL/SQL support for

dynamic SQL, you can call dynamic SQL from other languages:
 ■ If you use C/C++, you can call dynamic SQL with the

Oracle Call Interface (OCI), or you can use the Pro*C/
C++ precompiler to add dynamic SQL extensions to
your C code.

 ■ If you use COBOL, you can use the Pro*COBOL
precompiler to add dynamic SQL extensions to your
COBOL code.

You can
use dynamic
SQL to build a
SQL statement
that optimizes
execution by
concatenating
hints into a
dynamic SQL
statement.
This technique
enables you
change the hints
based on your
current database
statistics without
recompiling.

Did You
Know?

3G E-LEARNING

150 Basic Computer Coding: SQL

 ■ If you use Java, you can develop applications that
use dynamic SQL with JDBC.

If you have a program that uses OCI, Pro*C/C++, or
Pro*COBOL to execute dynamic SQL, consider switching to
native dynamic SQL inside PL/SQL stored procedures and
functions. The network round-trips required to perform
dynamic SQL operations from client-side applications might
hurt performance. Stored procedures can reside on the server,
eliminating network overhead. You can call the PL/SQL stored
procedures and stored functions from the OCI, Pro*C/C++, or
Pro*COBOL application.

Example :Using SELECT . . . TABLE in Dynamic SQL
-- Create an object t_emp and a datatype t_emplist as a table of type t_emp
CREATE TYPE t_emp AS OBJECT (id NUMBER, name VARCHAR2(20))
/
CREATE TYPE t_emplist AS TABLE OF t_emp
/
-- Create a table with a nested table of type t_emplist
CREATE TABLE dept_new (id NUMBER, emps t_emplist)
 NESTED TABLE emps STORE AS emp_table;
-- Populate the dept_new table with data
INSERT INTO dept_new VALUES
(
 10,
 t_emplist
 (
 t_emp(1, ‘SCOTT’),
 t_emp(2, ‘BRUCE’)
)
);
-- Write a PL/SQL block that queries table dept_new and nested table emps
-- SELECT ... FROM ... TABLE is not allowed in static SQL in PL/SQL
DECLARE
 v_deptid NUMBER;
 v_ename VARCHAR2(20);
BEGIN

Programming with SQL

3G E-LEARNING

151

 EXECUTE IMMEDIATE ‘SELECT d.id, e.name
 FROM dept_new d, TABLE(d.emps) e
 WHERE e.id = 1’
 INTO v_deptid, v_ename;
END;

6.2.2 Writing Dynamic SQL

Coding effective routines that provide performance and
simplification of tasks requires that we understand the intent
of the tool. If misused, any tool can be a hindrance, but when
applied correctly to a problem for which it was intended,
Dynamics SQL really shines. In this section, we will look at
how SQL Server allows us to execute Dynamic SQL, and some
techniques for writing effective code.

EXEC

You have seen the EXECUTE command used to run stored
procedures, but it can also be used to execute a character
string. For example the simple statement to list sales by title
can be called like this:
EXEC (‘SELECT title_id, count(*) FROM sales GROUP BY
title_id’)

We are not limited to executing static strings using the
EXEC command. We can generate a SQL statement based on
the current environment and execute that statement as well.
If we need to summarize data by the frequency of values on
a particular column we could declare a local variable, set
the value equal to the command we want to run. In this case
we use concatenation to build the command string, and we
declare a variable to hold the name of the column to group by:
DECLARE @col VARCHAR (50)
DECLARE @cmd VARCHAR(4000)
SET @col = ‘stor_id’
SET @cmd = ‘SELECT ‘+@col+’, count(*) FROM sales GROUP
BY ‘+@col
EXEC (@cmd)

 Local
 variable
 is a variable which
 is either a variable
 declared within the
 function or is an
 argument passed to
a function.

Keyword

3G E-LEARNING

152 Basic Computer Coding: SQL

This could be run from Query Analyzer as its own batch, or it could be part of a
larger stored procedure. Using variables to hold names of columns or tables that may
need to be changed simplifies support and maintenance of the code.

One consideration to keep in mind is that every time the database processes an
EXEC command it treats the statement as a new command that needs to be treated
in its own scope. This means that any variables declared within the command string
being run are not visible to the calling batch, and likewise variables that are in the
scope of the calling batch are not visible within the EXEC’d command.

The statement below will result in an error because the context of the variable @
table is the calling batch of statements, and there is no table with the name “@table”
in the database.

DECLARE @table VARCHAR(50)
SET @table = ‘authors’
EXEC (‘SELECT * FROM master..sysobjects WHERE name = @table’) -- BOOM!
If you change the database context with the USE command the effects do not last

beyond the end of the statement. This is important to keep in mind when you are
working with multiple databases and don’t fully qualify the tables with the database.
owner.tablename syntax.

Use pubs
go
declare @cmd varchar (4000)
set @cmd = ‘EXEC spCurrDB’
set @cmd = ‘select ‘’The current database is: [‘’+d.name+’’]’’’
+ ‘ from master..sysdatabases d, master..sysprocesses p ‘
+ ‘ where p.spid = @@SPID and p.dbid = d.dbid ‘
EXEC (@cmd)
EXEC (N’Use master;’+@cmd)
EXEC (@cmd)
This example will return the name of the current database by using the @@SPID

which returns the current process id and then joining the system tables sysprocesses
and sysdatabases on the database id column (dbid) and then filtering the results to the
row that matches our id. When you run it the first EXEC shows current context to be
pubs, the second master and the third is back to pubs. When the second EXEC runs,
it changes the database context just for the duration of that EXEC call, and doesn’t

Programming with SQL

3G E-LEARNING

153

change the calling batch’s context. The database engine treats
each EXEC as separate batches, which have no knowledge of
the other.

If the first three characters following the EXEC statement
are sp_, it assumes that you are running a system stored
procedure and will search the master catalog of procedures
before it looks at the current database. For that reason, it is
a good idea to use a different naming standard for your own
stored procedures. The performance gain might be small, but
why waste resources if you don’t have to?

sp_executesql

Using sp_executesql to run dynamic statements gives us a
couple advantages over EXEC that are worth noting. The first
is that while both evaluate the SQL statement at the point
of execution, sp_executesql will store and potentially reuse
execution plans while EXEC does not. The other benefit is that
sp_executesql supports parameter substitution and allows you
to better integrate the statements into your program.

The calling syntax for sp_executesql is as follows:
sp_executesql <@stmt> [<@param1 data_type>,<@param2

data_type>, ...]
The @stmt parameter is a Unicode string containing valid

SQL commands, and the parameters are specified with a name
and type. We can specify the parameters for both input and
output. In this example we are going to return as output the
count of books where the author is contained in the variable
au_name. The output type @retType is passed as the second
parameter to sp_executesql, and the variable @retVal that will
be set to the returned value is passed as the third parameter.

declare @cmd nvarchar(4000)
declare @retType nvarchar(50)

declare @retVal nvarchar(20)

declare @au_name varchar(50)
set @@au_name = ‘Ringer’
set @retType = N’@cnt varchar(20) OUTPUT’
set @cmd = N’SELECT @cnt = convert(varchar(20), count(*)) ‘

 Catalog
 can be any
 compilation of
 items organized
 in a systematic
manner.

Keyword

3G E-LEARNING

154 Basic Computer Coding: SQL

+ ‘ from titles t, titleauthor ta, authors a, sales s ‘
+ ‘ where a.au_id = ta.au_id ‘
+ ‘ and ta.title_id = t.title_id ‘
+ ‘ and s.title_id = t.title_id ‘
+ ‘ and a.au_lname like ‘’’ + @@au_name + N’’’’
exec sp_executesql @cmd, @retType, @retVal OUTPUT
select @retVal

6.3 SQL APIS
An application program interface (API) is code that allows
two software programs to communicate with each other.

The API defines the correct way for a developer to write
a program that requests services from an operating system
(OS) or other application. APIs are implemented by function
calls composed of verbs and nouns. The required syntax is
described in the documentation of the application being called.

6.3.1 How APIs Work

APIs are made up of two related elements. The first is a
specification that describes how information is exchanged
between programs, done in the form of a request for processing
and a return of the necessary data. The second is a software
interface written to that specification and published in some
way for use.

 When
 placing
 your Dynamic
 SQL code into
 production
 (typically
 in stored
 procedures), be
 careful about
 concatenating
 alphanumeric
 parameters
 directly because
.of SQL injection

Remember

Programming with SQL

3G E-LEARNING

155

The software that wants to access the features and
capabilities of the API is said to call it, and the software that
creates the API is said to publish it.

A database application programming interface (database
API) is a library of functions to carry out database operations.
Each database management system provides a library of its
own. For example, Oracle has a library called Oracle Call Level
Interface (Oracle CLI). This is actually the library used in the
calls generated by the embedded SQL pre-compiler. Database
management system specific libraries are called native APIs.

There are also libraries, for example ODBC (Microsoft
Open Database Connection) and JDBC (for Java), that are
independent of database management systems. These libraries
make it possible to use various database management systems,
even within one program. On the programmers point of
view these libraries provide a common interface for database
programming. However, to use a certain type of database,
a driver for that particular type is needed. For example, an
Oracle driver is needed in order to use Oracle databases. In the
following we outline the use of database in Java programming
language using JDBC -API.

JDBC is a class library that provides classes and methods
for using a database. The kernel classes of the library are

 ■ DriverManager,
 ■ Connection,
 ■ Statement and PreparedStatement, and
 ■ ResultSet.

DriverManager

DriverManager class provides services to attach a database
management system specific driver to the application. This
driver is a class library that should be obtained from the
databases management system supplier. It is necessary in order
to be able to communicate with the database management
system. DriverManager has the method ‘registerDriver’ for
making the attachment. Database drivers are able to register
themselves to the DriverManager. Thus it’s usually enough to
load the driver into the Java engine.

 Java is a
general-
purpose computer-
 programming
 language that
 is concurrent,
 class-based,
 object-oriented,
 and specifically
 designed to
 have as few
 implementation
 dependencies as
possible.

Keyword

3G E-LEARNING

156 Basic Computer Coding: SQL

Connection

Connection is a class devoted for taking care of a database
session. It provides services for logging in and out as a database
user and for building up and controlling database transactions.
All operations on the database rely on the existence of a
connection. DriverManager establishes a connection by creating
an instance of the Connection class. For example the following
program, first loads the driver and then establishes a connection
to the Oracle database test in computer bodbacka.cs.helsinki.fi
via port 1521 on the account scott and password tiger.
final String dbDriver=”oracle.jdbc.OracleDriver”;
final String dbServer= “jdbc:oracle:thin:@bodbacka.cs.helsinki.
fi:1521:test”;
final String dbUser=”scott”;
final String dbPassword)”tiger”;

try{
 Class.forName(dbDriver); // load driver
} catch (ClassNotFoundException e) {
 out.println(“Couldn’t find driver “+dbDriver);
 return null;
}
Connection con=null;
try {
 con = DriverManager.getConnection(dbServer,dbUser,d
bPassword);
} catch (SQLException se) {
 out.println(“Couldn\’t get connection to “+dbServer+
“ for “+ dbUser+”
”);
 out.println(se.getMessage());

A connection should be closed (using close-method) when
it’s no longer needed. Closing a connection releases resources
in both the client workstation and in the database server.

 Database
 server is
 a server which
 houses a database
 application
 that provides
 database services
 to other computer
 programs or to
 computers, as
 defined by the
 client–server
model.

Keyword

Programming with SQL

3G E-LEARNING

157

Statement

Statement class provides the mechanism for passing operation requests to the database
server and returning their results to the application. It provides services like

 ■ executeQuery and
 ■ executeUpdate.

A connection instance is needed for creating statements.

ResultSet

A ResultSet instance contains the answer for a query and provides means to get the
data out of the answer for use in the program. It also provides information about the
answer. Instances of class ResultSet are created by Statement.executeQuery method.
The actual query to be executed is given as a parameter to this method.
String eQuery = “select EMPNO, ENAME, JOB, “+
 “MGR, to_char(HIREDATE,’DD.MM.YYYY’) HIREDATE, SAL, “+
 “COMM, DEPTNO “+
 “From EMP “+
 “ORDER BY ENAME “;

Statement stmt= con.createStatement();
ResultSet rs= stmt.executeQuery(equery);
ResultSet provides methods for processing the answer of the query. Boolean

function next() activates the next row of the answer table. When it is called the first
time it activates the first row. It returns the value ‘false’ when there are no more rows
to activate. Otherwise it returns true.

Originally ResultSet did not provide any means for proceeding in reverse direction.
It could be used only for one way forward pass through the answer rows. However,
new versions implement a technique known as scroll cursor. This makes also reverse
proceeding possible.

ResultSet provides a collection of data type specific functions, for example, getString,
getBoolean, getInt, getDate, etc. to retrieve data from the active row. These functions
use either the name of the column or the sequence number of the column as their
parameter.

 String name= rs.getString(“ename”); // column ename
 Int pno= rs.getInt(1); // first column
The get-functions are able to perform some data type conversions, for example,

from string to integer or vice versa. If the conversion fails, an exception (SQLException)
is raised. Similar exception is raised also in other error conditions. Each database

3G E-LEARNING

158 Basic Computer Coding: SQL

operation may result in some type of error. The program should be constructed so
that it catches the exceptions and provides the error messages.

SQL-queries may return NULL-values. Some get-operations, for example getString,
return Java nulls for null values, but some return real values, for example, getInt
returns a zero (0). Method wasNull may be used for checking whether the returned
value was null.
The answer of a query is processed within a loop in a program. The following program
prints an employee list as an HTML-table and finds out the biggest employee number.
// list the employees
 out.println(“<H2>Current employees</H2>”);
 out.println(“<table border=1>”+
 “<tr>”+
 “<th “+HDC+”>NAME</th><th “+HDC+”>EMPNO</TH><TH “+HDC+”>JOB</th>”+
 “<TH “+HDC+”>MGR</TH><TH “+HDC+”>HIREDATE</TH><TH “+HDC+”>SAL</
TH><TH “+HDC+
 “>COMM</TH><TH “+HDC+”>DEPTNO”+
 “</TH></TR>”);

 int bigNo=0; // the biggest empno
 int curNo=0;
 try {
 stmt = con.createStatement();
 rs = stmt.executeQuery(eQuery);
 // list the employees
 while(rs.next()) {
 out.println(“<TR>”);
 out.println(“<TD>”+rs.getString(“ENAME”)+”</TD>”);
 curNo= rs.getInt(“EMPNO”);
 if (curNo>bigNo)
 bigNo=curNo;
 out.println(“<TD>”+curNo+”</TD>”);
 out.println(“<TD>”+rs.getString(“JOB”)+”</TD>”);
 out.println(“<TD>”+rs.getString(“MGR”)+”</TD>”);
 out.println(“<TD>”+rs.getString(“HIREDATE”)+”</TD>”);

Programming with SQL

3G E-LEARNING

159

 out.println(“<TD>”+rs.getString(“SAL”)+”</TD>”);
 out.println(“<TD>”+rs.getString(“COMM”)+”</TD>”);
 out.println(“<TD>”+rs.getString(“DEPTNO”)+”</TD>”);
 out.println(“</TR>”);
 }
 out.println(“</table><p><hr>”);
 } catch (SQLException ex) { /* report about error */ }

Operations that change the contents or the structure of the database are executed using
the method Statement.executeUpdate. For example,
 stmt.executeUpdate(“update emp “ +
 “set sal= sal + 10000 “ +
 “ where ename= ‘Laine’”);
gives a small rise of salary to an employee.

PreparedStatement

Class PreparedStatement is used instead of Statement when we need parameterized
operations. Above we have discussed about simple cases where the requested database
operation is directly given as the parameter of the execute-methods. Programs often
use database operations that differ only by some constant values provided by the
user. For example, the user may provide names of persons and a database query is
made for each of them to provide information about this person. We may, of course,
programmatically build up a query for each person, but it is usually more efficient
and safe to use parameterized queries instead.

Parameterized queries are prepared for use, i.e. compiled to be executed repeatedly.
JDBC contains the class PreparedStatement that is a subclass of Statement. This
class provides the services for working with parametrized database operations. A
parameterized SQL-operation is given as a parameter to the function Connection.
prepareStatement that creates an instance of class PreparedStatement.

 PreparedStatement pst = con.prepareStatement(
 “select ename,hiredate,sal”+
 “from emp”+
 “where ename like ?”);
A question mark (?) in the SQL-operation indicates a parameter. Parameters must

be assigned values before the operation is executed. PreparedStatement provides data

3G E-LEARNING

160 Basic Computer Coding: SQL

type specific set-functions for assigning these values (setInt,
setString, setDate, etc). Set-functions have two parameters: the
sequence number of the parameter (question mark) and the
value to be assigned for the parameter. For example,

 pst.setString(1,”Smi%;%”);
assigns the value ‘Smi%’ to the first parameter of the

query in pst. so that when executed the query will be
 select ename,hiredate,sal
 from emp

 where ename like ‘Smi%’
The operation is executed using executeQuery or

executeUpdate methods of PreparedStatetement. These
methods do not require parameters.

It is also possible to use dynamic SQL. This is used, for
example, when the programmer does not know what kind
of answer is obtained as the result of a query (what are the
columns in the answer). To find this out, the programmer
may use functions that provide information about the answer
(metadata) and then use this information for retrieving data
out of the answer.

6.3.2 Three Basic Types of APIs

APIs take three basic forms: local, web-like and program-like.
Local APIs are the original form, from which the name

came. They offer OS or middleware services to application
programs. Microsoft’s .NET APIs, the TAPI (Telephony API)
for voice applications, and database access APIs are examples
of the local API form.

Web APIs are designed to represent widely used resources
like HTML pages and are accessed using a simple HTTP
protocol. Any web URL activates a web API. Web APIs are
often called REST (representational state transfer) or RESTful
because the publisher of REST interfaces doesn’t save any data
internally between requests. As such, requests from many
users can be intermingled as they would be on the internet.

Program APIs are based on remote procedure call (RPC)
technology that makes a remote program component appear
to be local to the rest of the software. Service oriented

 To
 connect
 to a database, a
 program must
 use a library
 specific to
 that database
manager.

Remember

Programming with SQL

3G E-LEARNING

161

architecture (SOA) APIs, such as Microsoft’s WS-series of
APIs, are program APIs.

APIs take three basic forms: local, web-like and program-
like. Here’s a look at each type.

6.3.3 Why API Design Matters

Traditionally the applications that publish APIs have to be
written in a programming language, but because APIs are
increasingly generalized, additional validation of an API’s
structure is important.

Good API design is critical for successful API use, and
software architects spend considerable time reviewing all the
possible applications of an API and the most logical way for
it to be used.

The data structures and parameter values are of particular
importance because they must match between the caller of an
API and its publisher.

REST and the Web

Although applications that call APIs have traditionally been
written in programming languages, the internet and the
cloud are changing that. Web APIs can be called through
any programming languages, but can also be accessed by
webpages created in HTML or application generator tools.

The increased role the web plays in our lives and business
activities has resulted in an explosion in the REST model and
the use of simple programming tools, or even no programming
at all, for API access.

API Examples in the Developer Community

Operating systems and middleware tools expose their
features through collections of APIs usually called “toolkits,”
and two different sets of tools that support the same API
specifications are interchangeable to programmers, which is the
basis for compatibility and interoperability claims. Microsoft’s
.NET API specifications are the basis for an open source Linux
equivalent middleware package now supported by Microsoft,
for example.

Service-
 oriented
 architecture
 (SOA) is a style of
 software design
 where services are
 provided to the
 other components
 by application
 components,
 through a
 communication
 protocol over a
network.

Keyword

3G E-LEARNING

162 Basic Computer Coding: SQL

The internet is currently the primary driver for APIs, and companies like Facebook,
Google and Yahoo publish APIs to encourage developers to build on their capabilities.
These APIs have given us everything from new internet features that browse the sites
of other services, to mobile device apps that offer easy access to web resources.

New features, such as content delivery, augmented reality and novel applications
of wearable technology, are created in large part though these APIs.

APIs Trends in the Cloud

Cloud computing introduces new capabilities in dividing software into reusable
components, connecting components to requests and scaling the number of copies of
software as demand changes.

These cloud capabilities have already begun to shift the focus of APIs from simple
RPC-programmer-centric models to RESTful web-centric models, and even to what is
called “functional programming” or “lambda models” of services that can be instantly
scaled as needed in the cloud.

APIs as Services

The trend to think of APIs as representing general resources has changed terminology.
Whereas APIs are expected to be used as a general tool by many applications and users,
they are said to be services, and will normally require more controlled development
and deployment. SOA and microservices are examples of service APIs. Services are
the hottest trend in APIs, to the point where it’s possible that all APIs in the future
will be seen as representing services.

API Testing

Like all software, APIs have to be tested. The purpose of testing is validation of
the published APIs against the specifications, which users of those APIs will use in
formatting their requests.

This testing is usually done as a part of application lifecycle management (ALM),
both for the software that publishes the APIs and for all the software that uses them.
APIs also have to be tested in their published form to ensure that they can be accessed
properly.

API Management

API management is a step beyond what’s normally associated with software development.
It’s the set of activities associated with publishing the API for use, making it possible
for users to find it and its specifications and regulating access to the API based on
owner-defined permissions or policies.

Programming with SQL

3G E-LEARNING

163

CASE STUDY

ORACLE9I IN ACTION: ORACLE E-BUSINESS SUITE
The database component of the E-Business Suite has about 46 thousand PL/SQL objects,
due mainly to packages and their bodies. There are about 23 thousand packages.
(This number is growing: it was 24.5 at the last count!). This corresponds to about
20 million lines of PL/SQL source code The performance improvement due to Native
Compilation was investigated using the standard concurrent programs Order Import,
Payroll, and Auto Invoice.

Hardware Specification

The testing was purposely carried out on a lower-end system in order to determine
if the run-time performance improvement justified the increase in compilation time.

 ■ • Server Class: Sun Ultra E450
 ■ • CPU Speed: 296 MHz
 ■ • Number of CPUs: 4
 ■ • Main Memory: 4 GB
 ■ • Operating System: Solaris 2.6 with Patch 105181-33

On this system, the recompilation of the whole database took approx. 22hr for
Native and approx. 8hr for Interpreted.

Software Versions and Configuration

 ■ • Oracle Applications 11i Release 11.5.7
 ■ • Oracle9i Release 2, Version 9.2.0.1 (production release)
 ■ • Sun Workshop 6, Update 1
 ■ • Sun Workshop C Compiler Version 5.2

The whole database was compiled Native, producing about 46 thousand .so files
on a single directory (the plsql_native_library_subdir_count initialization parameter
was set to zero).

Results

Order Import is a PL/SQL intensive program. It was tested through the entire order
to cash cycle. Its performance is characterized by the number of order lines processed
per hour. Payroll consists mainly of a PRO*C client. However, the PRO*C client

3G E-LEARNING

164 Basic Computer Coding: SQL

makes calls to PL/SQL server side packages including fast formulas. Its performance
is characterized by the number of assignments processed per hour. Auto Invoice again
consists mainly of a PRO*C client. Again, the PRO*C client makes calls to PL/SQL
server side packages including the tax engine and auto accounting. Its performance
is characterized by the number of invoice lines processed per hour.

Table 1: Throughput in items per hour

Interpreted Native Improvement
Order Import 3,015 3,983 32%
Payroll 26,105 27,342 5%
Auto Invoice 1,007,633 1,102,088 9%

The average CPU utilization was measure during the tests. It was 94% for the
Interpreted case, and 89% for the Native case. The reduced CPU utilization in the Native
case improves performance and scalability. In the Interpreted case, CPU utilization
often reached 100%, and was continuously sporadic. In the Native case it was much
more uniform and stable.

E-Business Suite Case Study: Conclusion

The overall performance improvement provided by Native PL/SQL Compilation varies
from module to module depending on the amount of PL/SQL processing within the
module. In some of the modules such as Order Import, a 30% performance improvement
was observed while other modules resulted in less gain. Native Compilation is transparent
to Oracle Applications including patching. When patches are installed, the PL/SQL unit
will automatically be compiled as a native unit.

The results of this performance study demonstrate the value of the PL/SQL Native
Compilation feature. Oracle Corporation recommends it to customers to improve
performance and scalability of their E-Business Suite environment.

Programming with SQL

3G E-LEARNING

165

SUMMARY
 ■ SQL is a language to operate databases; it includes database creation, deletion,

fetching rows, modifying rows, etc. SQL is an ANSI (American National
Standards Institute) standard language, but there are many different versions
of the SQL language.

 ■ Embedded SQL is a method of inserting inline SQL statements or queries into
the code of a programming language, which is known as a host language.
Because the host language cannot parse SQL, the inserted SQL is parsed by
an embedded SQL preprocessor.

 ■ Embedded SQL is a robust and convenient method of combining the computing
power of a programming language with SQL’s specialized data management
and manipulation capabilities.

 ■ Dynamic SQL refers to SQL statements that are constructed and executed at
run-time. Dynamic is the opposite of static. Static SQL refers to SQL statements
that are fixed at the time a program is compiled. Dynamic PL/SQL refers to
entire PL/SQL blocks of code that are constructed dynamically, then compiled
and executed.

 ■ An application program interface (API) is code that allows two software
programs to communicate with each other.

 ■ The API defines the correct way for a developer to write a program that
requests services from an operating system (OS) or other application. APIs are
implemented by function calls composed of verbs and nouns. The required
syntax is described in the documentation of the application being called.

 ■ DriverManager class provides services to attach a database management system
specific driver to the application. This driver is a class library that should
be obtained from the databases management system supplier. It is necessary
in order to be able to communicate with the database management system.

 ■ Connection is a class devoted for taking care of a database session. It provides
services for logging in and out as a database user and for building up and
controlling database transactions.

 ■ API management is a step beyond what’s normally associated with software
development. It’s the set of activities associated with publishing the API for
use, making it possible for users to find it and its specifications and regulating
access to the API based on owner-defined permissions or policies.

3G E-LEARNING

166 Basic Computer Coding: SQL

KNOWLEDGE CHECK
1. In database management systems, record which contains all data regarding

tuples of database is called
a. statement record
b. environment record
c. description record
d. connection record

2. Type of iterator which is used to list types of attributes that are included in
query result is called
a. positional iterator
b. named iterator
c. unnamed iterator
d. non-positioned iterator

3. Variable in DBMS used to communicate error conditions between database
management system and program are
a. SQLCODE
b. SQLSECTION
c. SQLSTATE
d. both b and c

4. In database management system, if cursor is to be moved to next rows in queries
result then command is classified as
a. OPEN CURSOR command
b. FETCH command
c. UPDATE command
d. CLOSE CURSOR command

5. General purpose programming languages such as COBOL and ADA is classified
as
a. server language
b. client language
c. host language
d. referential language

Programming with SQL

3G E-LEARNING

167

6. The technique in which source program are replaced by database management
generated code is classified as
a. referential SQL
b. embedded SQL
c. interpreted SQL
d. embossed SQL

7. The database interface in which the data is directly entered into the monitor
is classified as
a. interactive interface
b. direct interface
c. monitored interface
d. command interface

8. The device which scans program code and extract them from database management
system for processing is classified as
a. foreign processor
b. secondary processor
c. preprocessor
d. primary processor

9. Programming languages normally operate on a
a. Instances
b. Variable
c. Tuple
d. Attributes

10. Which of the following is used to access the database server at the time of
executing the program and get the data from the server accordingly?
a. Embedded SQL
b. Dynamic SQL
c. SQL declarations
d. SQL data analysis

3G E-LEARNING

168 Basic Computer Coding: SQL

REVIEW QUESTIONS
1. Differentiate between embedded SQL and dynamic SQL.
2. What is an ALIAS command?
3. Does SQL support programming language features?
4. Name different types of case manipulation functions available in SQL.
5. What is the SQL CASE statement used for? Explain with an example?
6. List and explain the different types of JOIN clauses supported in ANSI-

standard SQL.

Check Your Result

1. (c) 2. (a) 3. (d) 4. (b) 5. (c)
6. (b) 7. (a) 8. (c) 9. (b) 10. (b)

Programming with SQL

3G E-LEARNING

169

REFERENCES
1. Discusses SQL history and syntax, and describes the addition of INTERSECT

and EXCEPT constructs into PostgreSQL. Prepared as a Master’s Thesis with the
support of O. Univ. Prof. Dr. Georg Gottlob and Univ. Ass. Mag. Katrin Seyr at
Vienna University of Technology.

2. http://zetcode.com/db/mysqlc/
3. https://searchmicroservices.techtarget.com/definition/application-program-

interface-API
4. https://www.cs.helsinki.fi/u/laine/tikas/material/jdbc.html
5. https://www.thecrazyprogrammer.com/2014/11/embedded-sql-static-sql-in-dbms.

html
6. SQL Server 2000 Design and T-SQL Programming (McGraw-Hill Professional, 2000)
7. Zelaine Fong, The design and implementation of the POSTGRES query optimizer,

University of California, Berkeley, Computer Science Department.

“Securing a computer system has traditionally been a battle of wits: the penetrator tries to find the
holes, and the designer tries to close them.”

―Gosser

After studying this chapter,
you will be able to:
1. Understand the SQL

security concept
2. Learn about the SQL

injection (SQLi)

LEARNING
OBJECTIVES

SQL SECURITY

INTRODUCTION
Security is the degree of resistance to, or protection from,
harm. It applies to any vulnerable and valuable asset, such
as a person, dwelling, community, nation, or organization.

7
CHAPTER

3G E-LEARNING

172 Basic Computer Coding: SQL

When you entrust your data to a database management system, the security, of the
stored data is a major concern. Security is especially important in an SQL-based DBMS
because interactive SQL makes database access very easy. The security requirements
of a typical production database are many and varied:

 ■ The data in any given table should be accessible to some users, but access
by other users should be prevented.

 ■ Some users should be allowed to update data in a particular table; others
should be allowed only to retrieve data.

 ■ For some tables, access should be restricted on a column-by-column basis.
 ■ Some users should be denied interactive SQL access to a table but should be

allowed to use application programs that update the table.

7.1 SQL SECURITY CONCEPT
Implementing a security scheme and enforcing security restrictions are the responsibility
of the DBMS software. The SQL language defines an overall framework for database
security, and SQL statements are used to specify security restrictions. The SQL security
scheme is based on three central concepts:

Users. The actors in the database. Each time the DBMS retrieves, inserts, deletes,
or updates data, it does so on behalf of some user. The DBMS permits or prohibits
the action depending on which user is making the request.

Database objects. The items to which SQL security protection can be applied. Security
is usually applied to tables and views, but other objects such as forms, application
programs, and entire databases can also be protected. Most users will have permission
to use certain database objects but will be prohibited from using others.

Privileges. The actions that a user is permitted to carry out for a given database
object. A user may have permission to SELECT and INSERT rows in a certain table,
for example, but may lack permission to DELETE or UPDATE rows of the table. A
different user may have a different set of privileges.

Figure 1 shows how these security concepts might be used in a security scheme for
the sample database. To establish a security scheme for a database, you use the SQL
GRANT statement to specify which users have which privileges on which database
objects. For example, here is a GRANT statement that lets Sam Clark retrieve and
insert data in the OFFICES table of the sample database:

SQL Security

3G E-LEARNING

173

Figure 1. A security scheme for the sample database.

Let Sam Clark retrieve and insert data in the OFFICES
table.

GRANT SELECT, INSERT
 ON OFFICES
 TO SAM
The GRANT statement specifies a combination of a user-id

(SAM), an object (the OFFICES table), and privileges (SELECT
and INSERT). Once granted, the privileges can be rescinded
later with this REVOKE statement:

Take away the privileges granted earlier to Sam Clark.
REVOKE SELECT, INSERT
 ON OFFICES
 FROM SAM

7.1.1 User Ids

User ID is a feature in Matomo (Piwik) that lets you connect
together a given user’s data collected from multiple devices
and multiple browsers. In this guide you will learn how User
ID works and the steps a developer must take to implement
User ID on your website and/or app. As a result, when your
users connect to your website or app on their smartphone,
tablet and their laptop then Matomo will be able to connect
together these visits and report them under the same unique
use.

 Database is
 a collection
 of information that
 is organized so
 that it can be easily
 accessed, managed
 and updated. Data
 is organized into
 rows, columns
 and tables, and
 it is indexed to
 make it easier
 to find relevant
information.

Keyword

3G E-LEARNING

174 Basic Computer Coding: SQL

Each user of a SQL-based database is typically assigned
a user-id, a short name that identifies the user to the DBMS
software. The user-id is at the heart of SQL security. Every SQL
statement executed by the DBMS is carried out on behalf of a
specific user-id. The user-id determines whether the statement
will be permitted or prohibited by the DBMS. In a production
database, user-ids are assigned by the database administrator.
A personal computer database may have only a single user-id,
identifying the user who created and who owns the database.
In special-purpose databases (for example, those designed to be
embedded within an application or a special-purpose system),
there may be no need for the additional overhead associated
with SQL security. These databases typically operate as if there
were a single user-id. In practice, the restrictions on the names
that can be chosen as user-ids vary from implementation to
implementation. The SQL1 standard permitted user-ids of up
to 18 characters and required them to be valid SQL names. In
some mainframe DBMS systems, user-ids may have no more
than eight characters. In Sybase and SQL Server, user-ids may
have up to 30 characters. If portability is a concern, it’s best
to limit user-ids to eight or fewer characters. Figure 2 shows
various users who need access to the sample database and
typical user-ids assigned to them.

Figure 2. User Ids assignments for sample database.

The ANSI/ISO SQL standard uses the term authorization-
id instead of user-id, and you will occasionally find this term
used in other SQL documentation. Technically, authorization-
id is a more accurate term because the role of the ID is to
determine authorization or privileges in the database. There

 All of
 the users
in the order-
 processing
 department can
 be assigned the
 same user-id
 because they are
 to have identical
 privileges in the
database.

Remember

SQL Security

3G E-LEARNING

175

are situations, as in Figure 2, where it makes sense to assign
the same user-id to different users. In other situations, a
single person may use two or three different user-ids. In a
production database, authorization-ids may be associated with
programs and groups of programs, rather than with human
users. In each of these situations, authorization-id is a more
precise and less confusing term than user-id. However, the
most common practice is to assign a different user-id to each
person, and most SQL-based DBMS use the term user-id in
their documentation.

7.1.2 User Authentication

User authentication is a process that allows a device to
verify the identify of someone who connects to a network
resource. There are many technologies currently available
to a network administrator to authenticate users. Fireware
operates with frequently used applications, including RADIUS,
Windows Active Directory, LDAP, and token-based SecurID.
The Firebox also has its own authentication server. You can
use the Firebox authentication features to monitor and control
connections through the Firebox.

 When you type SQL statements into an interactive SQL utility, how does the
 DBMS determine which user-id is associated with the statements? If you use
 a forms-based data entry or query program, how does the DBMS determine
 your user-id? On a database server, a report-generating program might be
 scheduled to run at a preset time every evening; what is the user-id in this
 situation, where there is no human user? Finally, how are user-ids handled
 when you access a database across a network, where your user-id on the system
 where you are actively working might be different than the user-id established
on the system where the database resides?

Authentication is very important when you use dynamic
IP addressing (DHCP) for computers on the trusted or optional
network. It is also important if you must identify your users
before you let them connect to resources on the external
network. Because the Firebox® associates a user name to an
IP address, we do not recommend that you use authentication
features in a network with multi-user computers such as
Unix servers, terminal servers or Citrix servers. The Firebox
authenticates one user per computer.

3G E-LEARNING

176 Basic Computer Coding: SQL

The SQL standard specifies that user-ids provide database security; however, the
specific mechanism for associating a user-id with a SQL statement is outside the scope
of the standard because a database can be accessed in many different ways.

Most commercial SQL implementations establish a user-id for each database session.
In interactive SQL, the session begins when you start the interactive SQL program,
and it lasts until you exit the program. In an application program using programmatic
SQL, the session begins when the application program connects to the DBMS, and it
ends when the application program terminates. All of the SQL statements used during
the session are associated with the user-id specified for the session. Usually, you must
supply both a user-id and an associated password at the beginning of a session. The
DBMS checks the password to verify that you are, in fact, authorized to use the user-
id that you supply. Although user-ids and passwords are common across most SQL
products, the specific techniques used to specify the user-id and password vary from
one product to another.

Some DBMS brands, especially those that are available on many different operating
system platforms, implement their own user-id/password security. For example, when
you use Oracle’s interactive SQL program, called SQL PLUS, you specify a user name
and associated password in the command that starts the program, like this:
SQLPLUS SCOTT/TIGER
The Sybase interactive SQL program, called ISQL, also accepts a user name and
password, using this command format:
ISQL /USER=SCOTT /PASSWORD=TIGER
In each case, the DBMS validates the user-id (SCOTT) and the password (TIGER)
before beginning the interactive SQL session. Many other DBMS brands, including
Ingres and Informix, use the user names of the host computer’s operating system as
database user-ids. For example, when you log in to a UNIX-based computer system,
you must supply a valid UNIX user name and password to gain access. To start the
Ingres interactive SQL utility, you simply give the command:

ISQL SALESDB
where SALESDB is the name of the Ingres database you want to use. Ingres

automatically obtains your UNIX user name and makes it your Ingres user-id for the
session. Thus, you don’t have to specify a separate database user-id and password.
DB2’s interactive SQL, running under MVS/TSO, uses a similar technique. Your TS0
login name automatically becomes your DB2 user-id for the interactive SQL session.
SQL security also applies to programmatic access to a database, so the DBMS must
determine and authenticate the user-id for every application program that tries to
access the database. Again, the techniques and rules for establishing the user-id vary
from one brand of DBMS to another. For widely used utility programs, such as a
data entry or an inquiry program, it is common for the program to ask the user for
a user-id and password at the beginning of the session, via a screen dialog. For more

SQL Security

3G E-LEARNING

177

specialized or custom-written programs, the appropriate user-
id may be obvious from the application to be performed and
hard-wired into the program.

The SQL2 standard also allows a program to use an
authorization-id associated with a specific set of SQL statements
(called a module), rather than the user-id of the particular
person running the program. With this mechanism, a program
may be given the ability to perform very specific operations
on a database on behalf of many different users, even if those
users are not otherwise authorized to access the target data.
This is a convenient capability that is finding its way into
mainstream SQL implementations.

7.1.3 User Groups

A large production database often has groups of users with
similar needs. In the sample database, for example, the three
people in the order-processing department form a natural
user group, and the two people in the accounts receivable
department form another natural group. Within each group,
all of the users have identical needs for data access and should
have identical privileges. Under the ANSI/ISO SQL security
scheme, you can handle groups of users with similar needs
in one of two ways:

 ■ You can assign the same user-id to every person
in the group, as shown in Figure 2. This scheme
simplifies security administration because it allows
you to specify data access privileges once for the
single user-id. However, under this scheme, the people
sharing the user-id cannot be distinguished from
one another in system operator displays and DBMS
reports.

 ■ You can assign a different user-id to every person in
the group. This scheme lets you differentiate between
the users in reports produced by the DBMS, and it lets
you establish different privileges for the individual
users later. However, you must specify privileges for
each user individually, making security administration
tedious and error-prone.

The scheme you choose depends on the trade-offs in your
particular database and application.

 Authorization is
 the function of
 specifying access
 rights/privileges to
 resources related
 to information
 security and
 computer security
 in general and to
 access control in
particular.

Keyword

3G E-LEARNING

178 Basic Computer Coding: SQL

Several DBMS brands, including Sybase and SQL Server,
offer a third alternative for dealing with groups of similar
users. They support group-ids, which identify groups of related
user-ids. Privileges can be granted both to individual user-ids
and to group-ids, and a user may carry out a database action
if it is permitted by either the user-id or group-id privileges.
Group-ids thus simplify the administration of privileges given
to groups of users. However, they are nonstandard, and a
database design using them may not be portable to another
DBMS brand.

DB2 also supports groups of users but takes a different
approach. The DB2 database administrator can configure DB2
so that when you first connect to DB2 and supply your user-id
(known as your primary authorization-id), DBZ automatically
looks up a set of additional user-ids (known as secondary
authorization-ids) that you may use.

When DB2 later checks your privileges, it checks the
privileges for all of your authorization-ids, primary and
secondary. On an IBM mainframe system, the DB2 database
administrator normally sets up the secondary authorization-ids
so that they are the same as the user group names used by
Resource Access Control Facility (RACF), the IBM mainframe
security facility. Thus, the DBZ approach effectively provides
group-ids but does so without adding to the user-id mechanism.

7.2 SQL INJECTION (SQLI)
SQL injection is a type of security exploit in which the attacker
adds Structured Query Language (SQL) code to a Web form
input box to gain access to resources or make changes to data.
An SQL query is a request for some action to be performed on
a database. Typically, on a Web form for user authentication,
when a user enters their name and password into the text
boxes provided for them, those values are inserted into a
SELECT query. If the values entered are found as expected, the
user is allowed access; if they aren’t found, access is denied.
However, most Web forms have no mechanisms in place to
block input other than names and passwords. Unless such
precautions are taken, an attacker can use the input boxes to
send their own request to the database, which could allow
them to download the entire database or interact with it in
other illicit ways.

 Resource
 Access
 Control Facility
 (RACF) provides
 software access
 control measures
 that can be used
 to enhance data
 security in a
computing system.

Keyword

SQL Security

3G E-LEARNING

179

The risk of SQL injection exploits is on the rise because of automated tools. In
the past, the danger was somewhat limited because an exploit had to be carried
out manually: an attacker had to actually type their SQL statement into a text box.
However, automated SQL injection programs are now available, and as a result, both
the likelihood and the potential damage of an exploit has increased enormously. In an
interview with Security Wire Perspectives, Caleb Sima, CTO of SPI Dynamics spoke of
the potential danger: “This technology being publicly released by some black hat will
give script-kiddies the ability to pick up a freeware tool, point it at a Web site and
automatically download a database without any knowledge whatsoever. I think that
makes things a lot more critical and severe. The automation of SQL injection gives
rise to the possibility of a SQL injection worm, which is very possible..

According to security experts, the reason that SQL injection and many other
exploits, such as cross-site scripting, are possible is that security is not sufficiently
emphasized in development. To protect the integrity of Web sites and applications,
experts recommend simple precautions during development such as controlling the
types and numbers of characters accepted by input boxes.

7.2.1 SQL Injection Attacks

An SQL Injection Attack is probably the easiest attack to prevent, while being one
of the least protected against forms of attack. The core of the attack is that an SQL
command is appended to the back end of a form field in the web or application front
end (usually through a website), with the intent of breaking the original SQL Script and
then running the SQL script that was injected into the form field. This SQL injection
most often happens when you have dynamically generated SQL within your front-end
application. These attacks are most common with legacy Active Server Pages (ASP) and
Hypertext Preprocessor (PHP) applications, but they are still a problem with ASP.NET
web-based applications. The core reason behind an SQL Injection attack comes down
to poor coding practices both within the front-end application and within the database
stored procedures. Many developers have learned better development practices since
ASP.NET was released, but SQL Injection is still a big problem between the number of
legacy applications out there and newer applications built by developers who didn’t
take SQL Injection seriously while building the application.

As an example, assume that the front-end web application creates a dynamic SQL
Script that ends up executing an SQL Script similar to that shown in Example 1.

SELECT * FROM Orders WHERE OrderId=25
Example 1: A simple dynamic SQL statement as expected from the application.
This SQL Script is created when the customer goes to the sales order history portion

of the company’s website. The value passed in as the OrderId is taken from the query
string in the URL, so the query shown above is created when the customer goes to

3G E-LEARNING

180 Basic Computer Coding: SQL

the URL http://www.yourcompany.com/orders/orderhistory.
aspx?Id=25. Within the .NET code, a simple string concatenation
is done to put together the SQL Query. So any value that is
put at the end of the query string is passed to the database at
the end of the select statement. If the attacker were to change
the query string to something like “/orderhistory.aspx?id=25;
delete from Orders,” then the query sent to the SQL Server
will be a little more dangerous to run as shown in Example 2.

SELECT * FROM Orders WHERE ORderId=25; delete
from Orders;

Example 2: A dynamic SQL String that has had a delete
statement concatenated to the end of it.

The way the query in Example 2 works is that the SQL
database is told via the semicolon “;” that the statement has
ended and that there is another statement that should be run.
The SQL Server then processes the next statement as instructed.
While the initial query is run as normal now, and without
any error being generated but when you look at the Orders
table, you won’t see any records in the Orders table because
the second query in that batch will have executed against the
database as well. Even if the attacker omits the value that the
query is expecting, they can pass in “; delete from Orders;”
and while the first query attempting to return the data from
the Orders table will fail, the batch will continue moving on
to the next statement, which will delete all the records in the
Orders table.

Many people will inspect the text of the parameters looking
for various key words in order to prevent these SQL Injection
attacks. However, this only provides the most rudimentary
protection as there are many, many ways to force these attacks
to work. Some of these techniques include passing in binary
data, having the SQL Server convert the binary data back to
a text string, and then executing the string.
DECLARE @v varchar(255)
SELECT @v = cast(0x73705F68656C706462 as varchar(255))
EXEC (@v)

These new, unanticipated requests cause the database to
perform the task the attacker intends. To clarify, consider the
following simple example. Assume we have an application
whose Web page contains a simple form with input fields for

 SQL
 injection
 attacks are
 initiated by
 manipulating
 the data input
 on a Web
 form such that
 fragments of
 SQL instructions
 are passed
 to the Web
 application. The
 Web application
 then combines
 these rogue SQL
 fragments with
 the proper SQL
 dynamically
 generated by the
 application, thus
 creating valid
 .SQL requests

Remember

SQL Security

3G E-LEARNING

181

username and password. With these credentials the user can get a list of all credit card
accounts they hold with a bank. Further assume that the bank’s application was built
with no consideration of SQL injection attacks. As such, it is reasonable to assume the
application merely takes the input the user types and places it directly into an SQL
query constructed to retrieve that user’s information. In PHP that query string would
look something like this:

$query = “select accountName, accountNumber from
creditCardAccounts where username=’”.$_POST[“username”].”’

and password=’”.$_POST[“password”].”’”
Normally this would work properly as a user entered their credentials, say johnSmith
and myPassword, and formed the query:
$query = “select accountName, accountNumber from
creditCardAccounts where username=’johnSmith’ and
password=’myPassword’
This query would return one or more accounts linked to Mr. Smith. Now consider
someone with a devious intent. This person decides they want to see if they can access
the account information of one or more of the bank’s customers. To accomplish this
they enter the following credential into the form:
‘ or 1=1 -- and anyThingsAtAll
When this SQL fragment is inserted into the SQL query by the application it becomes:
$query = “select accountName, accountNumber from
creditCardAccounts where username=’’ or 1=1 -- and
password= anyThingsAtAll

The injection of the term, ‘ or 1=1 --, accomplishes two things. First, it causes the
first term in the SQL statement to be true for all rows of the query; second, the -- causes
the rest of the statement to be treated as a comment and, therefore, ignored during
run time. The result is that all the credit cards in the database, up to the limit the
Web page will list, are returned and the attacker has stolen the valuable information
they were seeking.

It should be noted that this simple example is just one of literally an infinite
number of variations that could be used to accomplish the same attack. Further, there
are many other ways to exploit a vulnerable application. We will discuss more of these
attacks as we delve into the efficacy of various attack mitigation techniques.

7.2.2 Applications Vulnerable to SQL Injection

There are a number of factors that conspire to make securely written applications a
rarity. First, many applications were written at a time when Web security was not a

3G E-LEARNING

182 Basic Computer Coding: SQL

major consideration. This is especially true of SQL injection.
While recently SQL injection is being discussed at security
conferences and other settings, the attack frequency of SQL
injection only five or so years ago was low enough that most
developers were simply not aware.

In addition, the application may have been initially written
as an internal application with a lower security threshold
and subsequently exposed to the Web without considering
the security ramifications. Even applications being written
and deployed today often inadequately address security
concerns. IBM’s X-Force project recently found that 47% of
all vulnerabilities that result in unauthorized disclosures are
Web application vulnerabilities. Cross-Site Scripting & SQL
injection vulnerabilities continue to dominate as the attack
vector of choice. Note that these reported vulnerabilities are
for packaged applications from commercial software vendors.
Vulnerabilities in custom applications were not reported. Since
this software is generally not as carefully vetted for security
robustness, it is reasonable to assume the problem is actually
much bigger. According to Neira Jones, head of payment
security for Barclays, 97% of data breaches worldwide are still
due to an SQL injection somewhere along the line.

Interestingly, modern environments and development
approaches create a subtle vulnerability. With the advent of
Web 2.0 there has been a shift in how developers treat user
input. In these applications input is rarely provided by a simple
form that directly transmits the information into the Web server
for processing. In many cases, the JavaScript portion of the
application performs input validation so the feedback to the
user is handled more smoothly. This often creates the sense
that the application is protected because of this very specific
input validation; therefore, the validation on the server side
is largely neglected. Unfortunately, attackers won’t use the
application to inject their input into the server component of
the application. Rather, they leverage intermediate applications
to capture the client-side input and allow them to manipulate
it. Since the majority of the input validation is bypassed, the
attacker can simply enter the SQL fragments needed to change
the behavior of the database to accomplish their intent.

 JavaScript
is a high-
 level, interpreted
 programming
 language. It is a
 language which is
 also characterized
 as dynamic, weakly
typed, prototype-
based and multi-
paradigm.

Keyword

SQL Security

3G E-LEARNING

183

7.2.3 The challenge with detection

Effective Security

The goal of any security technology is to provide a robust threat detection and avoidance
mechanism that requires little or no setup, configuration or tuning. Further, if that
technology relies on learning or training to determine what is normal or to improve
its ability to detect threats, those learning periods must be short and well-defined. This
is needed to expedite installation and minimize the risk of attacks contaminating the
learned dataset. Keep in mind the longer the learning period, the more likely an attack
will occur and the larger the dataset you need to review to ensure that an attack has
not occurred. Finally, given that few Web applications remain static, effective protection
must be easy to maintain in the face of on-going changes to the Web application.

Types of attacks

A simple attack on a vulnerable application was described to illustrate how a SQL
Injection attack can occur. The general class of attacks that the simple example falls
into can be described as Tautological attacks. Tautologies are statements composed of
simpler statements in such a way that makes the statement true regardless if simpler
statements are true or false. For example, the statement “Either it will rain tomorrow
or it will not rain tomorrow” is a tautology. The complexity of detecting SQL injection
can best be understood through a variety of examples demonstrating the various SQL
injection attack classifications. This list is not exhaustive, but rather provides a sample
of the most common injections seen in real deployments.

Tautologies

This attack works by inserting an “always true” statement into a WHERE clause of the
SQL statement to extract data. These are often used in combination with the insertion
of a -- to cause the remainder of a statement to be ignored ensuring extraction of
largest amount of data. Tautological injections can include techniques to further mask
SQL expression snippets, as demonstrated by the following example:
‘ or ‘simple’ like ‘sim%’ --
‘ or ‘simple’ like ‘sim’ || ‘ple’ --
The || in the example is used to concatenate strings, when evaluated the text ‘sim’
|| ‘ple’ becomes ‘simple’.

3G E-LEARNING

184 Basic Computer Coding: SQL

Union Query

This attack exploits a vulnerable parameter by injecting a statement of the form
foo’UNION SELECT <rest of injected query>
 The attacker can insert any appropriate query to retrieve information from a table
different from the one that was the target of the original statement. The database
returns a dataset that is the union of the results of the original first query and the
results of the injected second query.

Illegal/Logically Incorrect Queries

Attackers use this approach to gather important information about the type of database
and its structure. Attacks of this nature are often used in the initial reconnaissance
phase to gather critical knowledge used in other attacks. Returned error pages that are
not filtered can be very instructive. Even if the application sanitizes error messages,
the fact that an error is returned or not returned can reveal vulnerable or injectable
parameters. Syntax errors identify injectable parameters; type errors help decipher
data types of certain columns; logical errors, if returned to the user, can reveal table
or column names.

The specific attacks within this class are largely the same as those used in a
Tautological attack. The difference is that these are intended to determine how the
system responds to different attacks by looking at the response to a normal input, an
input with a logically true statement appended (typical tautological attack), an input
with a logically false statement appended (to catch the response to failure) and an
invalid statement to see how the system responds to bad SQL. This will often allow
the attacker to see if an attack got through to the database even if the application does
not allow the output from that statement to be displayed.

There are a myriad of examples. In fact, the attacker may initially use a bot to detect
a vulnerable web site and then recursively use this class of attack forensically to learn
application and database specifics. The key point in listing this classification is that
WAFs are unable to detect such attacks if the injections fall outside of the signatures
created by the WAF learning process. As well, the WAF may not be exposed to error
messages that the application (and a Database Firewall) will receive.

Stored Procedure Attacks

These attacks attempt to execute database stored procedures. The attacker initially
determines the database type (potentially using illegal/logically incorrect queries) and
then uses that knowledge to determine what stored procedures might exist. Contrary
to popular belief using stored procedures does not make the database invulnerable
to SQL injection attacks. Stored procedures can be susceptible to privilege escalation,
buffer overflows, and even provide access to the operating system.

SQL Security

3G E-LEARNING

185

Alternate Encoding Obfuscation

In this case, text is injected as to avoid detection by defensive coding practices. It can
also be very difficult to generate rules for a WAF to detect encoded input. Encodings,
in fact, can be used in combination with other attack classifications. Since databases
parse comments out of an SQL statement prior to processing it, comments are often
used in the middle of an attack to hide the attack’s pattern.

Scanning and detection techniques, including those used in WAFs, have not been
effective against alternate encodings or comment based obfuscation because all possible
encodings must be considered. Note that these attacks may have no SQL keywords
embedded as plain text, though it could run arbitrary SQL.

Combination Attacks

Many attack vectors may be employed in combination:
 ■ Learn information useful in generating additional successful injections (illegal/

logically incorrect)
 ■ Gain access to systems other than the initial database accessed by the application

(stored procedures)
 ■ Evade detection by masking intent of injection (alternate encoding)

7.2.4 Detection at the Web Tier

Detecting SQL Injection Challenges

Given the large variation in the form or pattern of SQL attacks, it can be very challenging
to detect them from a point in front of the Web server. At this network location the
Web Application Firewall is attempting to identify a possible snippet of SQL in the
input stream of a Web application.

Why is it difficult to detect input injections at the Web tier? Remember, the WAF is
not inspecting the SQL request as sent to the database by the application tier. Rather,
it has URL’s, cookies and form inputs (POSTs and GETs) to inspect. Inspecting each
set of input values, a WAF must consider the wide range of acceptable input against
what is considered unacceptable for each input field on each form.

Although many attacks use special characters that may not be expected in a typical
form, two problems complicate detection. With no prior knowledge of the application
it is not possible to know with certainty what characters are expected in any given
field. Furthermore, in some cases the characters used do, in fact, occur in normal input
and blocking them at the character level is not possible. Consider the single quote
often used to delimit a string. Unfortunately, this character appears in names such as

3G E-LEARNING

186 Basic Computer Coding: SQL

O’Brien or in possessive expressions like Steve’s; therefore,
single quotes are valid in some input fields.

As a result larger patterns must be considered, which
are more demonstrative of an actual attack, to bring the false
positives down to a reasonable rate. And this is where the
problem begins. The choice then becomes: use a very general
set of patterns such as checking for a single quote or the word
“like” or possibly “or” to catch every conceivable attack or use
a more complicated pattern that reduces the false positive rate.

Since there is a reasonable likelihood that general patterns
exist in normal input, the WAF must then inspect all form
input (in learning or training mode) for an extended period
of time before it can determine which of these simple patterns
can reliably be used to validate each form and each input field
in the Web application. Considering the complexity, range and
limited structure within the natural language used in forms, it
can take a very long time to ensure that an adequate sample
size has been gathered to confirm that selected detection
patterns are not found in legitimate input. Complicating this
further is the fact that some sections of an application are often
used infrequently, extending even further the training time. An
example would be business logic exercised according to the
business cycle. Add it all up and you can see this approach
requires an extensive time period to ensure that the learning
cycle has adequately considered all the variations of valid
input for each field on each form of the Web application.

Alternatively, as mentioned above, much more complex
patterns that are clearly indicative of an attack can be used.
Unfortunately, as we demonstrated in our discussion of the
attack types, the number and variation of possible attacks is so
large that it is impossible to effectively cover all possible attack
patterns. Creating the initial pattern set, keeping up with the
evolving attacks and verifying that they are sufficiently unique
as to not show up in some fields is an almost impossible task.
And now, consider that the applications are also changing and
evolving over time, requiring further, time consuming learning.

Web Tier Detection in Practice

So how are WAF’s used in the real world? One way is to use
a combination of approaches, each aimed at reducing the

SQL
injection
attacks allow
attackers to
spoof identity,
tamper with
existing
data, cause
repudiation
issues such
as voiding
transactions
or changing
balances, allow
the complete
disclosure of
all data on
the system,
destroy the
data or make
it otherwise
unavailable,
and become
administrators
of the database
server.

Remember

SQL Security

3G E-LEARNING

187

negative effects of the other approach. These negative effects include limited capability
to detect a SQL injection versus high number of false positives, complex configurations,
and long training times. Specifically, a large set of patterns ranging from relatively
simple to much more complex are used. Some patterns are configured to be applied
to all input sources regardless of what is learned during training; some patterns are
configured such that they will be removed, for a given input field, if they are contained
within the training data. Some rules and patterns also attempt to classify the range of
input by length and character set, for example, numerical fields.

The WAF is then placed into learning mode and allowed to learn until it is
believed that a large enough set of each input field has been examined to reduce
subsequent false positives. The resulting sets are then reviewed to determine if the
learned set for some fields is considered too small, requiring additional learning time
or manual manipulation. Other fields, whose default rule set have been reduced too
far, are reviewed to determine what hand crafted rules can be constructed to increase
the coverage.

This manual inspection process on top of the long learning cycle, while more
effective than any one approach in isolation, is far from efficient. However, it still
suffers the weaknesses of an administrator having to make decisions, configuring a
significant number of rule/pattern sets for fields not effectively configured through
training. This can be true even after a substantial learning period has been used.

This, in a nutshell, is why WAFs have been ineffective in curtailing SQL injection
attacks. It’s self-evident, had WAFs been effective the size and scope of SQL injection
attacks would not be increasing year over year.

7.2.5 A Better way – a Database Firewall

Thus far we have described the method of detecting SQL injection attacks at the Web tier
interface. A more effective and efficient method is to analyze the actual SQL generated
by the application and presented to the database. The Database Firewall monitors the
networks between the application servers and databases (see Figure 3). Why is this
more effective and more efficient? The simple answer is that while the input into the
Web tier has an enormous pattern set with very little structure associated with each
input field, an application creates a comparatively small set of SQL statements (ignoring
the literal values associated with those statements). In addition the structure of SQL
statement lends themselves to structured analysis. Both of these factors make analysis
more determinant than the rudimentary input pattern validation of a WAF. We will
discuss how to deal with the variation of the literal values (the actual intended user
input) below.

3G E-LEARNING

188 Basic Computer Coding: SQL

Figure 3. Placement of Database Firewall.

At the database interface, an SQL statement can be
processed in much the same way the database itself processes it
– breaking it down into the statement structure and separating
out the literals. Once this is done the very first use of any
given input will generate the unique SQL statements associated
with that input – as opposed to needing a large sample set
to determine what patterns are not present.

As a result the sample set for learning is already reduced
from that required for a WAF to a much smaller set needed
to train a device inspecting traffic between the application
and database. Once a working training set is developed it
can be used to analyze all subsequent SQL statements and
any structure differs from the known set can be immediately
flagged. By inspecting traffic at the interface to the database, it
is clear which commands are leveraging stored procedures and
it is easy to analyze the strings passed to stored procedures
to determine if they contain any attacks. Several techniques
can be applied in this analysis, such as observing the lack of
delimiting special characters within literal strings.

Although analyzing the stream of SQL statements as
described above provides a significant improvement over
a WAF sitting at the Web tier, a true Database Firewall
requires additional capabilities. As pointed out during the
discussion about training a WAF, many of the input fields
within an application may not be exercised often during
normal operations. Fortunately, most modern applications build
their SQL from a set of logic that operates much like a code
generator. This fact means that, using a relatively small sample
set, it is possible to construct a model of how an application

 Code
 generator
 is a tool or resource
 that generates a
 particular sort of
 code or computer
 programming
language.

Keyword

SQL Security

3G E-LEARNING

189

builds statements. An Adaptive Database Firewall can then
use that knowledge to analyze newly discovered statements
and assess their likeliness of being an attack.

In addition, given the fact that an SQL injection attack must
be constructed out of an existing statement in the application
further simplifies the analysis. If a new statement can be created
wholly by inserting a string into the literal field of an existing
statement, then it becomes highly suspect. Combining these
concepts provides a means of assessing any new statement
using algorithms that determine:

 ■ Uniqueness relative to other statements previously
seen

 ■ Ability for that statement to have been constructed
from a previously known statement

 ■ Likelihood that the statement could have been
generated within the application itself

Although an Adaptive Database Firewall uses a number
of other important algorithms for analyzing incoming SQL
against the learned model (for each application), the three
algorithms highlighted above demonstrate the substantial
value of operating at the interface to the database. No other
approach can come close to the accuracy provided with this
architecture. Furthermore, no other solution can be deployed
with as little configuration and as short a training interval.

7.2.6 Cleaning Up the Database after an SQL
Injection Attack

There are a few different attacks that an attacker can perform
against an SQL Server database. Delete commands can be
passed into the SQL engine. However, other commands can
be executed as well. Usually, attackers don’t want to delete
data or take a system offline; they instead want to use the SQL
database to help launch other attacks. A simple method is to
identify tables and columns that are used to display data on
the website that uses the database as a backend. Then extra
data is included in the columns of the database, which will
allow attacking code to be executed against the database. This
can be done using an update statement that puts an HTML
iframe tag into each row of a table. This way when customers

SQL
injection (SQLI)
was considered
one of the
top 10 web
application
vulnerabilities of
2007 and 2010
by the Open
Web Application
Security Project.
In 2013, SQLI
was rated the
number one
attack on the
OWASP top ten.

Did You
Know?

3G E-LEARNING

190 Basic Computer Coding: SQL

view the website, they get the iframe put into their web browser, which could be set
to a height of 0 so that it isn’t visible. This hidden iframe could then install viruses
or spyware on the user’s computer without their knowledge.

Once this attack has occurred and viruses or spyware have been installed on the
customer’s computer, the most important thing now is to stop additional users’ computers
from being attacked. This means going through every record of every table looking for
the attack code that is pushing the iframe to the customer’s web browser. Obviously,
you can go through each table manually looking for the records in question, or you
can use the included sample code, which searches through each column in every table
for the problem code and removes it. All you need to do is supply the variable with
the attack code. The only columns that are not cleaned by this code are columns that
use the TEXT or NTEXT data types. This is because the TEXT and NTEXT data types
require special attention as they do not support the normal search functions.

DECLARE @injected_value NVARCHAR(1000)
SET @injected_value = ‘Put the code which has been injected here.’
/)Change nothing below this line.)/
SET @injected_value = REPLACE(@injected_value, ‘’’’, ‘’’’’’)
CREATE TABLE #ms_ver (indexid INT, name sysname, internal_value
INT, character_value VARCHAR(50))
INSERT INTO #ms_ver
EXEC xp_msver ‘ProductVersion’
DECLARE @database_name sysname, @table_schema sysname,
@table_name sysname, @column_name sysname, @cmd NVARCHAR
(4000),
@internal_value INT
SELECT @internal_value = internal_value
FROM #ms_ver
DECLARE cur CURSOR FOR SELECT TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME, COLUMN_NAME
FROM INFORMATION_SCHEMA.columns c

JOIN systypes st ON c.DATA_TYPE = st.name
WHERE xtype IN (97, 167, 175, 231, 239, 241)
OPEN cur
FETCH NEXT FROM cur INTO @database_name, @table_schema,
@table_name, @column_name

SQL Security

3G E-LEARNING

191

WHILE @@FETCH_STATUS = 0
BEGIN
SET @cmd = ‘SELECT NULL
WHILE @@ROWCOUNT <> 0
BEGIN
‘
IF @internal_value > 530000
SET @cmd = @cmd þ ‘ SET ROWCOUNT 1000
UPDATE’
ELSE
SET @cmd = @cmd þ ‘ UPDATE TOP (1000)’
SET @cmd = @cmd þ ‘ [‘ þ @database_name þ ‘].[‘ þ @table_
schema þ ‘].[‘ þ @table_name þ ‘]
SET [‘ þ @column_name þ ‘] = REPLACE([‘ þ @column_name þ ‘], ‘
‘’ þ @injected_value þ ‘’’, ‘’’’)
WHERE [‘ þ @column_name þ ‘] LIKE ‘’%’ þ @injected_value þ ‘%’’
END’
exec (@cmd)
FETCH NEXT FROM cur INTO @database_name, @table_schema,
@table_name, @column_name
END
CLOSE cur
DEALLOCATE cur
DROP TABLE #ms_ver

3G E-LEARNING

192 Basic Computer Coding: SQL

SUMMARY
 ■ Security is the degree of resistance to, or protection from, harm. It applies to

any vulnerable and valuable asset, such as a person, dwelling, community,
nation, or organization.

 ■ When you entrust your data to a database management system, the security,
of the stored data is a major concern. Security is especially important in an
SQL-based DBMS because interactive SQL makes database access very easy.

 ■ Implementing a security scheme and enforcing security restrictions are the
responsibility of the DBMS software. The SQL language defines an overall
framework for database security, and SQL statements are used to specify
security restrictions.

 ■ User ID is a feature in Matomo (Piwik) that lets you connect together a given
user’s data collected from multiple devices and multiple browsers.

 ■ User authentication is a process that allows a device to verify the identify of
someone who connects to a network resource. There are many technologies
currently available to a network administrator to authenticate users.

 ■ SQL injection is a type of security exploit in which the attacker adds Structured
Query Language (SQL) code to a Web form input box to gain access to resources
or make changes to data. An SQL query is a request for some action to be
performed on a database.

 ■ An SQL Injection Attack is probably the easiest attack to prevent, while being
one of the least protected against forms of attack. The core of the attack is
that an SQL command is appended to the back end of a form field in the
web or application front end (usually through a website), with the intent of
breaking the original SQL Script and then running the SQL script that was
injected into the form field.

SQL Security

3G E-LEARNING

193

KNOWLEDGE CHECK
1. Which of the following condition in the where clause will return the login

identification name of the user?
a. UserName = SUSER_NAME()
b. UserName = SUSER_SNAME()
c. UserName = CURRENT_USER()
d. UserName = USER()

2. Point out the correct statement:
a. Implementing row level security based on security labels is possible in SQL

Server 2008
b. A security label is a marking that describes the securable content of an item
c. Row-level permissions are used for applications that store information in a

single table
d. None of the mentioned

3. View that contains the list of all the security labels present in the database:
a. vwVisibleLabels
b. VisibleLabels
c. vwVisibleLabel
d. All of the mentioned

4. Which of the following retrieves a SecurityLabel instance describing the subject
label of the current database user?
a. fn_Dominates
b. usp_GetUserLabel
c. usp_GetCurrentUserLabel
d. usp_GetSecLabelDetails

5. Point out the wrong statement :
a. usp_EnableCellVisibility opens all the symmetric keys that are mapped to

security labels
b. usp_DisableCellVisibility opens all the symmetric keys that were previously

opened
c. On SQL Server 2012 you can use the Contained Database feature to create a

user without a login
d. No arguments are available for usp_EnableCellVisibility

3G E-LEARNING

194 Basic Computer Coding: SQL

6. QL injection is an attack in which _________ code is inserted into strings that
are later passed to an instance of SQL Server.
a. malicious
b. redundant
c. clean
d. non malicious

7. Any user-controlled parameter that gets processed by the application includes
vulnerabilities like ___________
a. Host-related information
b. Browser-related information
c. Application parameters included as part of the body of a POST request
d. All of the mentioned

8. Which of the stored procedure is used to test the SQL injection attack?
a. xp_write
b. xp_regwrite
c. xp_reg
d. all of the mentioned

9. If xp_cmdshell has been disabled with sp_dropextendedproc, we can simply
inject the following code?
a. sp_addextendedproc ‘xp_cmdshell’,’xp_log70.dll’
b. sp_addproc ‘xp_cmdshell’,’xp_log70.dll’
c. sp_addextendedproc ‘xp_cmdshell’,’log70.dll’
d. none of the mentioned

10. _______________ is time based SQL injection attack.
a. Quick detection
b. Initial Exploitation
c. Blind SQL Injection
d. Inline Comments

SQL Security

3G E-LEARNING

195

REVIEW QUESTIONS
1. Give an overview on user ids and user authentication.
2. Discuss on the effect of SQL injection attacks.
3. How to applications are vulnerable to SQL injection?
4. What are the better way of a database firewall?
5. How to cleaning up the database after an SQL injection attack?

Check Your Result

1. (b) 2. (c) 3. (a) 4. (c) 5. (b)
6. (a) 7. (d) 8. (b) 9. (a) 10. (c)

3G E-LEARNING

196 Basic Computer Coding: SQL

REFERENCES
1. Database Benchmarking: Practical methods for Oracle & SQL Server by Bert

Scalzo, Kevin E. Kline, Donald K. Burleson, Mike Ault, Claudia Fernandez
2. https://cdn.ttgtmedia.com/rms/pdf/Cherry_Securing_SQL_Chap6.pdf
3. https://crypto.stanford.edu/cs142/lectures/16-sql-inj.pdf
4. https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/sql/overview-of-

sql-server-security
5. https://downloads.mysql.com/docs/mysql-security-excerpt-5.5-en.pdf
6. https://matomo.org/docs/user-id/#about-user-id
7. https://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/

SQL%20Injection.pdf
8. https://searchsecurity.techtarget.com/definition/user-authentication
9. https://searchsoftwarequality.techtarget.com/definition/SQL-injection
10. https://www.acunetix.com/websitesecurity/sql-injection/
11. https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-hotchkies/bh-us-04-

hotchkies.pdf
12. https://www.dbcybertech.com/pdf/sql-injection-detection-web-environment.pdf
13. https://www.netsparker.com/blog/web-security/sql-injection-vulnerability/
14. https://www.watchguard.com/training/fireware/82/authent2.htm
15. Pro SQL Server 2008 Relational Database Design and Implementation by Louis

Davidson, Kevin E. Kline
16. Michael Zino (May 1, 2008). “ASCII Encoded/Binary String Automated SQL

Injection Attack”. Archived from the original on June 1, 2008.
17. Sumner Lemon, IDG News Service (May 19, 2008). “Mass SQL Injection Attack

Targets Chinese Web Sites”. PCWorld. Retrieved May 27, 2008.

“In order to have a decentralised database, you need to have security. In order to have security, you
need to - you need to have incentives. “

― Vitalik Buterin

After studying this chapter,
you will be able to:
1. Describe the use of table

variable in SQL
2. Explain how to create a

table using SQL query
3. Discuss how to drop a

table
4. Describe how to delete

all the records of a table
5. Explain how to rename,

truncate, copy a table
6. Learn about the types of

temp tables
7. Discuss about ALTER

table

LEARNING
OBJECTIVES

SQL TABLE

INTRODUCTION
A table is a collection of related data held in a table format
within a database. It consists of columns and rows.

8
CHAPTER

3G E-LEARNING

198 Basic Computer Coding: SQL

In relational databases, and flat file databases, a table
is a set of data elements (values) using a model of vertical
columns (identifiable by name) and horizontal rows, the cell
being the unit where a row and column intersect. A table has
a specified number of columns, but can have any number of
rows. Each row is identified by one or more values appearing
in a particular column subset. A specific choice of columns
which uniquely identify rows is called the primary key.

“Table” is another term for “relation”; although there is
the difference in that a table is usually a multiset (bag) of
rows where a relation is a set and does not allow duplicates.
Besides the actual data rows, tables generally have associated
with them some metadata, such as constraints on the table or
on the values within particular columns.

The data in a table does not have to be physically stored
in the database. Views also function as relational tables, but
their data are calculated at query time. External tables (in
Informix or Oracle, for example) can also be thought of as
views. In many systems for computational statistics, such as
R and Python’s pandas, a data frame or data table is a data
type supporting the table abstraction. Conceptually, it is a list
of records or observations all containing the same fields or
columns. The implementation consists of a list of arrays or
vectors, each with a name.

8.1 TABLE
Table is a collection of data, organized in terms of rows and
columns. In DBMS term, table is known as relation and row
as tuple.

Table is the simple form of data storage. A table is also
considered as a convenient representation of relations.

Let’s see an example of an employee table:

Employee
EMP_NAME ADDRESS SALARY
Ankit Lucknow 15000
Raman Allahabad 18000
Mike New York 20000

Data
storage
is a technology
consisting
of computer
components and
recording media
that are used
to retain digital
data.

Keyword

SQL Table

3G E-LEARNING

199

In the above table, “Employee” is the table name, “EMP_
NAME”, “ADDRESS” and “SALARY” are the column names.
The combination of data of multiple columns forms a row
e.g. “Ankit”, “Lucknow” and 15000 are the data of one row.

8.1.1 SQL TABLE Variable

The SQL Table variable is used to create, modify, rename, copy
and delete tables. Table variable was introduced by Microsoft.

It is a variable where we temporary store records and
results. This is same like temp table but in the case of temp
table we need to explicitly drop it.

Table variables are used to store a set of records. So
declaration syntax generally looks like CREATE TABLE syntax.

1. create table “tablename”

2. (“column1” “data type”,

3. “column2” “data type”,

4. ...

5. “columnN” “data type”);

When a transaction rolled back the data associated with
table variable is not rolled back.

A table variable generally uses lesser resources than a
temporary variable.

Table variable cannot be used as an input or an output
parameter.

8.2 SQL CREATE TABLE
SQL CREATE TABLE statement is used to create table in a
database.

If you want to create a table, you should name the table
and define its column and each column’s data type.

Let’s see the simple syntax to create the table.
1. create table “tablename”

2. (“column1” “data type”,

A table
has a
specified number
of columns, but
can have any
number of rows.

Remember

Table
variable was
introduced
with SQL server
2000 to be an
alternative of
temporary tables.

Did You
Know?

3G E-LEARNING

200 Basic Computer Coding: SQL

3. “column2” “data type”,

4. “column3” “data type”,

5. ...

6. “columnN” “data type”);

The data type of the columns may vary from one database
to another.

NUMBER is supported in Oracle database for integer value whereas INT is
supported in MySQL.

Let us take an example to create a STUDENTS table with
ID as primary key and NOT NULL are the constraint showing
that these fields cannot be NULL while creating records in
the table.

1. SQL> CREATE TABLE STUDENTS (

2. ID INT NOT NULL,

3. NAME VARCHAR (20) NOT NULL,

4. AGE INT NOT NULL,

5. ADDRESS CHAR (25),

6. PRIMARY KEY (ID)

7.);

You can verify it, if you have created the table successfully
by looking at the message displayed by the SQL Server, else
you can use DESC command as follows:

SQL> DESC STUDENTS;

FIELD TYPE NULL KEY DEFAULT EXTRA
ID Int(11) NO PRI
NAME Varchar(20) NO
AGE Int(11) NO
ADDRESS Varchar(25) YES NULL

SQL Table

3G E-LEARNING

201

4 rows in set (0.00 sec)
Now you have the STUDENTS table available in your

database and you can use to store required information related
to students.

8.2.1 SQL CREATE TABLE Example in MySQL

Let’s see the command to create a table in MySQL database.
1. CREATE TABLE Employee

2. (

3. EmployeeID int,

4. FirstName varchar(255),

5. LastName varchar(255),

6. Email varchar(255),

7. AddressLine varchar(255),

8. City varchar(255)

9.);

8.2.2 SQL CREATE TABLE Example in Oracle

Let’s see the command to create a table in Oracle database.
1. CREATE TABLE Employee

2. (

3. EmployeeID number(10),

4. FirstName varchar2(255),

5. LastName varchar2(255),

6. Email varchar2(255),

7. AddressLine varchar2(255),

Oracle
Database
is a multi-
model database
management
system produced
and marketed
by Oracle
Corporation.

Keyword

3G E-LEARNING

202 Basic Computer Coding: SQL

8. City varchar2(255)

9.);

8.2.3 SQL CREATE TABLE Example in Microsoft SQLServer

Let’s see the command to create a table in SQLServer database. It is same as MySQL
and Oracle.

1. CREATE TABLE Employee

2. (

3. EmployeeID int,

4. FirstName varchar(255),

5. LastName varchar(255),

6. Email varchar(255),

7. AddressLine varchar(255),

8. City varchar(255)

9.);

8.2.4 Create a Table Using another Table

We can create a copy of an existing table using the create table command. The new
table gets the same column signature as the old table. We can select all columns or
some specific columns.

If we create a new table using an old table, the new table will be filled with the
existing value from the old table.

The basic syntax for creating a table with the other table is:
1. CREATE TABLE table_name AS

2. SELECT column1, column2,...

3. FROM old_table_name WHERE ;

4. The following SQL creates a copy of the employee table.

5. CREATE TABLE EmployeeCopy AS

SQL Table

3G E-LEARNING

203

6. SELECT EmployeeID, FirstName, Email

7. FROM Employee;

8.2.5 SQL Primary Key with CREATE TABLE
Statement

The following query creates a PRIMARY KEY on the “D”
column when the “Employee” table is created.

MySQL

1. CREATE TABLE Employee(

2. EmployeeID NOT NULL,

3. FirstName varchar(255) NOT NULL,

4. LastName varchar(255),

5. City varchar(255),

6. PRIMARY KEY (EmployeeID)

7.);

SQL Server / Oracle / MS Access

1. CREATE TABLE Employee(

2. EmployeeID NOT NULL PRIMARY KEY,

3. FirstName varchar(255) NOT NULL,

4. LastName varchar(255),

5. City varchar(255)

6.);

Use the following query to define a PRIMARY KEY
constraints on multiple columns, and to allow naming of a
PRIMARY KEY constraints.

Primary
key is a
specific choice
of a minimal
set of attributes
(columns) that
uniquely specify
a tuple (row) in a
relation (table).

Keyword

3G E-LEARNING

204 Basic Computer Coding: SQL

For MySQL / SQL Server /Oracle / MS Access

1. CREATE TABLE Employee(

2. EmployeeID NOT NULL,

3. FirstName varchar(255) NOT NULL,

4. LastName varchar(255),

5. City varchar(255),

6. CONSTRAINT PK_Employee PRIMARY KEY (EmployeeID, FirstName)

7.);

8.3 SQL DROP TABLE
A SQL DROP TABLE statement is used to delete a table definition and all data from
a table.

This is very important to know that once a table is deleted all the information
available in the table is lost forever, so we have to be very careful when using this
command.

Let’s see the syntax to drop the table from the database.
 ■ DROP TABLE “table_name”;

Let us take an example:
First we verify STUDENTS table and then we would delete it from the database.

 ■ SQL> DESC STUDENTS;

FIELD TYPE NULL KEY DEFAULT EXTRA
ID Int(11) NO PRI
NAME Varchar(20) NO
AGE Int(11) NO
ADDRESS Varchar(25) YES NULL

4 rows in set (0.00 sec)
This shows that STUDENTS table is available in the database, so we can drop it

as follows:
1. SQL>DROP TABLE STUDENTS;

SQL Table

3G E-LEARNING

205

Now, use the following command to check whether table exists or not.
1. SQL> DESC STUDENTS;

1. Query OK, 0 rows affected (0.01 sec)

As you can see, table is dropped so it doesn’t display it.

8.3.1 SQL DROP TABLE Example in MySQL

Let’s see the command to drop a table from the MySQL database.
1. DROP TABLE table_name;

8.3.2 SQL DROP TABLE Example in Oracle

Let’s see the command to drop a table from Oracle database. It is same as MySQL.
1. DROP TABLE table_name;

8.3.3 SQL DROP TABLE Example in Microsoft SQLServer

Let’s see the command to drop a table from SQLServer database. It is same as MySQL.
1. DROP TABLE table_name;

8.4 SQL DELETE TABLE
The DELETE statement is used to delete rows from a table. If you want to remove a
specific row from a table you should use WHERE condition.

1. DELETE FROM table_name [WHERE condition];

But if you do not specify the WHERE condition it will remove all the rows from
the table.

1. DELETE FROM table_name;

There are some more terms similar to DELETE statement like as DROP statement
and TRUNCATE statement but they are not exactly same there are some differences
between them.

3G E-LEARNING

206 Basic Computer Coding: SQL

8.4.1 Difference between DELETE and TRUNCATE Statements

There is a slight difference b/w delete and truncate statement. The DELETE statement
only deletes the rows from the table based on the condition defined by WHERE clause
or delete all the rows from the table when condition is not specified.

But it does not free the space containing by the table.
The TRUNCATE statement: it is used to delete all the rows from the table and

free the containing space.
Let’s see an “employee” table.

Emp_id Name Address Salary
1 Aryan Allahabad 22000
2 Shurabhi Varanasi 13000
3 Pappu Delhi 24000

Execute the following query to truncate the table:
1. TRUNCATE TABLE employee;

8.4.2 Difference b/w DROP and TRUNCATE Statements

When you use the drop statement it deletes the table’s row together with the table’s
definition so all the relationships of that table with other tables will no longer be valid.

When you drop a table:
 ■ Table structure will be dropped
 ■ Relationship will be dropped
 ■ Integrity constraints will be dropped
 ■ Access privileges will also be dropped

On the other hand when we TRUNCATE a table, the table structure remains the
same, so you will not face any of the above problems.

8.5 SQL RENAME TABLE
In some situations, database administrators and users want to change the name of the
table in the SQL database because they want to give a more relevant name to the table.

SQL Table

3G E-LEARNING

207

Any database user can easily change the name by using the
RENAME TABLE and ALTER TABLE statement in Structured
Query Language.

The RENAME TABLE and ALTER TABLE syntax help in
changing the name of the table.

8.5.1 Syntax of RENAME Statement in SQL

1. RENAME old_table _name To new_table_name ;

8.5.2 Examples of RENAME Statement in SQL

Here, we have taken the following two different SQL examples,
which will help you how to change the name of the SQL table
in the database using RENAME statement:

Example 1: Let’s take an example of a table named Cars:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

o Suppose, you want to change the above table name
into “Car_2021_Details”. For this, you have to type the
following RENAME statement in SQL:

1. RENAME Cars To Car_2021_Details ;

o After this statement, the table “Cars” will be changed
into table name “Car_2021_Details”.

Database
administrators
use specialized
software to store
and organize
data.

Rename
refers to the
altering of a
name of a file.
This can be
done manually
by using a shell
command such
as ren or mv,
or by using
batch renaming
software that
can automate
the renaming
process.

Keyword

Keyword

3G E-LEARNING

208 Basic Computer Coding: SQL

Example 2: Let’s take an example of a table named Employee:

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

o Suppose, you want to change the name of the above table into the “Coding_
Employees”. For this, you have to type the following RENAME statement in SQL:

1. RENAME Employee To Coding_Employees ;

o After this statement, the table “Employee” will be changed into the table name
“Coding_Employees”.

8.5.3 Syntax of ALTER TABLE Statement in SQL

1. ALTER TABLE old_table_name RENAME TO new_table_name;

In the Syntax, we have to specify the RENAME TO keyword after the old name
of the table.

Examples of ALTER TABLE Statement in SQL

Here, we have taken the following three different SQL examples, which will help
you how to change the name of the table in the SQL database using ALTER TABLE
statement:

Example 1: Let’s take an example of a table named Bikes:

Table: Bikes

Bike_Name Bike_Color Bike_Cost
KTM DUKE Black 185,000
Royal Enfield Black NULL
Pulsar Red 90,0000

SQL Table

3G E-LEARNING

209

Apache White NULL
Livo Black 80,000
KTM RC Red 195,000

o Suppose, you want to change the name of the above table into “Bikes_Details” using
ALTER TABLE statement. For this, you have to type the following query in SQL:

1. ALTER TABLE Bikes RENAME TO Bikes_Details ;

After this statement, the table “Bikes” will be changed into the table name “Bikes_
Details”.

Example 2: Let’s take an example of a table named Student:

Table: Student

Stu_ID Stu_Name Stu_Marks
1001 Abhay 85
1002 Ankit 75
1003 Bheem 60
1004 Ram 79
1005 Sumit 80

o Suppose, you want to change the name of the above table into “MCA_Student_
Details” using ALTER TABLE statement. For this, you have to type the following
query in SQL:

1. ALTER TABLE Student RENAME TO MCA_Student_Details ;

After this statement, the table “Student” will be changed into table name “MCA_
Student_Details”.

Example 3: Let’s take an example of a table named Employee:

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

3G E-LEARNING

210 Basic Computer Coding: SQL

o Suppose, you want to change the name of the above table
into the “Coding_Employees” using an ALTER TABLE
statement. For this, you have to type the following query
in SQL:

1. ALTER TABLE Employee RENAME To Coding_
Employees ;

After this statement, the table “Employee” will be changed
into the table name “Coding_Employees”.

8.6 SQL TRUNCATE TABLE
A truncate SQL statement is used to remove all rows (complete
data) from a table. It is similar to the DELETE statement with
no WHERE clause.

8.6.1 TRUNCATE TABLE Vs DELETE TABLE

Truncate table is faster and uses lesser resources than DELETE
TABLE command.

8.6.2 TRUNCATE TABLE Vs. DROP TABLE

Drop table command can also be used to delete complete table
but it deletes table structure too. TRUNCATE TABLE doesn’t
delete the structure of the table.
Let’s see the syntax to truncate the table from the database.

1. TRUNCATE TABLE table_name;

For example, you can write following command to truncate
the data of employee table

1. TRUNCATE TABLE Employee;

8.7 SQL COPY TABLE
If you want to copy the data of one SQL table into another
SQL table in the same SQL server, then it is possible by using
the SELECT INTO statement in SQL.

The
rollback
process is not
possible after
truncate table
statement. Once
you truncate a
table you cannot
use a flashback
table statement
to retrieve the
content of the
table.

Remember

SQL Table

3G E-LEARNING

211

The SELECT INTO statement in Structured Query Language copies the content
from one existing table into the new table. SQL creates the new table by using the
structure of the existing table.

8.7.1 Syntax of SELECT INTO statement in SQL

1. SELECT * INTO New_table_name FROM old_table_name;

8.7.2 Examples of SELECT INTO statement in SQL

In this section, we have taken the following three different SQL examples which will
help you how to copy the content of one table into another table in SQL:

Example 1: In this example, we have a table called Cars with three columns:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

o Suppose you want to copy the content of the above Car table into the new table
Car_Details. For this, you have to type the following query in SQL:

1. SELECT * INTO Car_Details FROM Cars;

o Let’s check the Car_Details table is created successfully or not in the database:

1. SELECT * FROM Car_Details;

Table: Car_Details

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000

3G E-LEARNING

212 Basic Computer Coding: SQL

Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

Example 2: In this example, we have a table called Employee with four columns:

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

Suppose you want to copy the record of the above Employee table into the new
table Coding_Employees. For this, you have to type the following query in SQL:

1. SELECT * INTO Coding_Employees FROM Employee;

o Let’s check the Coding_Employees table is created successfully or not in the
database:

1. SELECT * FROM Coding_Employees;

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

Table: Coding_Employees

Example 3: In this example, we have a table called Student with four columns:

Table: Student

RollNo Name Marks Age
1001 Bhanu 88 17
1002 Raman 82 16

SQL Table

3G E-LEARNING

213

1003 Sumit 80 16
1004 Shobhit 95 15
1005 Akash 85 16

o Suppose you want to copy the record of the above Student table into the new table
Class_12_Students. For this, you have to type the following query in SQL:

1. SELECT * INTO Class_12_Students FROM Student;

o Let’s check the table is Class_12_Students table created successfully or not in the
database:

1. SELECT * FROM Class_12_Students;

RollNo Name Marks Age
1001 Bhanu 88 17
1002 Raman 82 16
1003 Sumit 80 16
1004 Shobhit 95 15
1005 Akash 85 16

Table: Class_12_Students

Example 4: In this example, we have a table called Cars with three columns:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

o Suppose you want to copy Car_Color and Car_Name columns of the above Cars
table into the new table Car_Color. For this, you have to type the following query
in SQL:

1. SELECT Car_Name, Car_Color INTO Car_Color FROM Cars;

3G E-LEARNING

214 Basic Computer Coding: SQL

o Let’s check the Car_Color table is created successfully or not in the database:

1. SELECT * FROM Car_Color;

Table: Car_Color

Car Name Car Color
Hyundai Creta White
Hyundai Venue White
Hyundai i20 Red
Kia Sonet White
Kia Seltos Black
Swift Dezire Red

8.7.3 Syntax of SELECT INTO Statement with WHERE Clause in SQL

1. SELECT * INTO New_table_name FROM old_table_name WHERE [condition] ;

Examples of SELECT INTO Statement with WHERE Clause in SQL

Here, we have taken the following three different SQL examples, which will help you
how to copy the content of one table into another table with a specific condition in SQL:

Example 1: In this example, we have a table called Cars with three columns:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta Black 10,85,000
Hyundai Venue Black 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

Suppose we want to copy only the record of those cars whose color is black. For
this, we have to type the following query in SQL:

SQL Table

3G E-LEARNING

215

1. SELECT * INTO Black_Car_Details FROM Cars WHERE Car_Color = ‘Black’;

o Let’s check the Black_Car_Details table is created successfully or not in the database:

1. SELECT * FROM Black_Car_Details;

Table: Black_Car_Details

Car Name Car Color Car Cost
Hyundai Creta Black 10,85,000
Hyundai Venue Black 9,50,000
Kia Seltos Black 8,00,000

Example 2: In this example, we have a table called Employee with four columns:

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 45000 Goa
202 Ankit 45000 Delhi
203 Bheem 38000 Goa
204 Ram 49000 Goa
205 Sumit 40000 Delhi

o Suppose we want to copy only the record of those employees whose Salary is more
than 40,000. For this, we have to type the following query in SQL:

1. SELECT * INTO Emp_Salary_40000 FROM Cars WHERE Emp_Salary > 40000;

o Let’s check the Emp_Salary_40000 table created successfully or not in the database:

1. SELECT * FROM Emp_Salary_40000;

Table: Emp_Salary_40000

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 45000 Goa
202 Ankit 45000 Delhi
204 Ram 49000 Goa

3G E-LEARNING

216 Basic Computer Coding: SQL

8.8 SQL TEMP TABLE
The concept of temporary table is introduced by SQL server. It helps developers in
many ways:

Temporary tables can be created at run-time and can do all kinds of operations
that a normal table can do. These temporary tables are created inside tempdb database.

There are two types of temp tables based on the behavior and scope.
 ■ Local Temp Variable
 ■ Global Temp Variable

8.8.1 Local Temp Variable

Local temp tables are only available at current connection time. It is automatically
deleted when user disconnects from instances. It is started with hash (#) sign.

Exception Handling in Java - Javatpoint
1. CREATE TABLE #local temp table (

2. User id int,

3. Username varchar (50),

4. User address varchar (150)

5.)

8.8.2 Global Temp Variable

Global temp tables name starts with double hash (##). Once this table is created, it is
like a permanent table. It is always ready for all users and not deleted until the total
connection is withdrawn.

1. CREATE TABLE ##new global temp table (

2. User id int,

3. User name varchar (50),

4. User address varchar (150)

5.)

SQL Table

3G E-LEARNING

217

8.9 SQL ALTER TABLE
The ALTER TABLE statement in Structured Query Language allows you to add, modify,
and delete columns of an existing table. This statement also allows database users to
add and remove various SQL constraints on the existing tables.

Any user can also change the name of the table using this statement.

8.9.1 ALTER TABLE ADD Column Statement in SQL

In many situations, you may require to add the columns in the existing table. Instead
of creating a whole table or database again you can easily add single and multiple
columns using the ADD keyword.

8.9.2 Syntax of ALTER TABLE ADD Column Statement in SQL

1. ALTER TABLE table_name ADD column_name column-definition;

The above syntax only allows you to add a single column to the existing table. If
you want to add more than one column to the table in a single SQL statement, then
use the following syntax:

1. ALTER TABLE table_name

2. ADD (column_Name1 column-definition,

3. column_Name2 column-definition,

4.

5. column_NameN column-definition);

8.9.3 Examples of ALTER TABLE ADD Column Statement in SQL

Here, we have taken the following two different SQL examples, which will help you
how to add the single and multiple columns in the existing table using ALTER TABLE
statement:

Example 1: Let’s take an example of a table named Cars:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000

3G E-LEARNING

218 Basic Computer Coding: SQL

Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

o Suppose, you want to add the new column Car_Model in the above table. For this,
you have to type the following query in the SQL:

1. ALTER TABLE Cars ADD Car_Model Varchar(20);

This statement will add the Car_Model column to the Cars table.
Example 2: Let’s take an example of a table named Employee:

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

o Suppose, you want to add two columns, Emp_ContactNo. and Emp_EmailID, in
the above Employee table. For this, you have to type the following query in the
SQL:

1. ALTER TABLE Employee ADD (Emp_ContactNo. Number(13), Emp_EmailID
varchar(50) ;

This statement will add Emp_ContactNo. and Emp_EmailID columns to the
Employee table.

8.9.4 ALTER TABLE MODIFY Column Statement in SQL

The MODIFY keyword is used for changing the column definition of the existing table.

8.9.5 Syntax of ALTER TABLE MODIFY Column Statement in SQL

1. ALTER TABLE table_name MODIFY column_name column-definition;

SQL Table

3G E-LEARNING

219

This syntax only allows you to modify a single column of the existing table. If
you want to modify more than one column of the table in a single SQL statement,
then use the following syntax:

1. ALTER TABLE table_name

2. MODIFY (column_Name1 column-definition,

3. column_Name2 column-definition,

4.

5. column_NameN column-definition);

8.9.6 Examples of ALTER TABLE MODIFY Column Statement in SQL

Here, we have taken the following two different SQL examples, which will help you
how to modify single and multiple columns of the existing table using ALTER TABLE
statement:

Example 1: Let’s take an example of a table named Cars:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

o Suppose, you want to modify the datatype of the Car_Color column of the above
table. For this, you have to type the following query in the SQL:

1. ALTER TABLE Cars ADD Car_Color Varchar(50);

Example 2: Let’s take an example of a table named Employee:

3G E-LEARNING

220 Basic Computer Coding: SQL

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

o Suppose, you want to modify the datatypes of two columns Emp_ContactNo. and
Emp_EmailID of the above Employee table. For this, you have to type the following
query in the SQL:

1. ALTER TABLE Employee ADD (Emp_ContactNo. Int, Emp_EmailID varchar(80) ;

8.9.7 ALTER TABLE DROP Column Statement in SQL

In many situations, you may require to delete the columns from the existing table.
Instead of deleting the whole table or database you can use DROP keyword for deleting
the columns.

8.9.8 Syntax of ALTER TABLE DROP Column Statement in SQL

1. ALTER TABLE table_name DROP Column column_name ;

8.9.9 Examples of ALTER TABLE DROP Column Statement in SQL

Here, we have taken the following two different SQL examples, which will help you
how to delete a column from the existing table using ALTER TABLE statement:

Example 1: Let’s take an example of a table named Cars:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000

SQL Table

3G E-LEARNING

221

Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

o Suppose, you want to delete the Car_Color column from the above table. For this,
you have to type the following query in the SQL:

1. ALTER TABLE Cars DROP COLUMN Car_Color ;

o Let’s check using the following statement that the Car_Color column is deleted
from the table or not:

1. SELECT * FROM Cars;

Table: Cars

Car Name Car Cost
Hyundai Creta 10,85,000
Hyundai Venue 9,50,000
Hyundai i20 9,00,000
Kia Sonet 10,00,000
Kia Seltos 8,00,000
Swift Dezire 7,95,000

Example 2: Let’s take an example of a table named Employee:

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

o Suppose, you want to delete the Emp_Salary and Emp_City column from the above
Employee table. For this, you have to type the following two different queries in the
SQL:

1. ALTER TABLE Cars DROP COLUMN Emp_Salary ;

3G E-LEARNING

222 Basic Computer Coding: SQL

2. ALTER TABLE Cars DROP COLUMN Emp_City ;

8.9.10 ALTER TABLE RENAME Column Statement in SQL

The RENAME keyword is used for changing the name of columns or fields of the
existing table.

8.9.11 Syntax of ALTER TABLE RENAME Column Statement in SQL

1. ALTER TABLE table_name RENAME COLUMN old_name to new_name;

8.9.12 Examples of ALTER TABLE RENAME Column Statement in
SQL

Here, we have taken the following two different SQL examples, which will help you how
to change the name of a column of the existing table using ALTER TABLE statement:

Example 1: Let’s take an example of a table named Cars:

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

o Suppose, you want to change the name of the Car_Color column of the above Cars
table. For this, you have to type the following query in the SQL:

1. ALTER TABLE Cars RENAME COLUMN Car_Color to Colors;

This statement will change the name of a column of the Cars table. To see the
changes, you have to type the following query:

1. SELECT * FROM Cars;

SQL Table

3G E-LEARNING

223

Table: Cars

Car Name Car Color Car Cost
Hyundai Creta White 10,85,000
Hyundai Venue White 9,50,000
Hyundai i20 Red 9,00,000
Kia Sonet White 10,00,000
Kia Seltos Black 8,00,000
Swift Dezire Red 7,95,000

Example 2: Let’s take an example of a table named Employee:

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

Suppose, you want to change the name of the Emp_City column of the above
Employee table. For this, you have to type the following query in the SQL:

1. ALTER TABLE Employee RENAME COLUMN Emp_City to Emp_Address;

This statement will change the name of a column of the Employee table. To see
the changes, you have to type the following query:

1. SELECT * FROM Employee;

Table: Employee

Emp_Id Emp_Name Emp_Salary Emp_Address
201 Abhay 25000 Goa
202 Ankit 45000 Delhi
203 Bheem 30000 Goa
204 Ram 29000 Goa
205 Sumit 40000 Delhi

3G E-LEARNING

224 Basic Computer Coding: SQL

SUMMARY
 ■ A table is a set of data elements (values) using a model of vertical columns

(identifiable by name) and horizontal rows, the cell being the unit where a
row and column intersect.

 ■ Table is another term for “relation”; although there is the difference in that
a table is usually a multiset (bag) of rows where a relation is a set and does
not allow duplicates. Besides the actual data rows, tables generally have
associated with them some metadata, such as constraints on the table or on
the values within particular columns.

 ■ Table is a collection of data, organized in terms of rows and columns. In
DBMS term, table is known as relation and row as tuple.

 ■ The SQL Table variable is used to create, modify, rename, copy and delete
tables. Table variable was introduced by Microsoft.

 ■ SQL CREATE TABLE statement is used to create table in a database.
 ■ A SQL DROP TABLE statement is used to delete a table definition and all

data from a table.
 ■ The DELETE statement only deletes the rows from the table based on the

condition defined by WHERE clause or delete all the rows from the table
when condition is not specified.

 ■ The TRUNCATE statement: it is used to delete all the rows from the table
and free the containing space.

 ■ Database administrators and users want to change the name of the table in the
SQL database because they want to give a more relevant name to the table.

 ■ A truncate SQL statement is used to remove all rows (complete data) from a
table. It is similar to the DELETE statement with no WHERE clause.

 ■ Local temp tables are only available at current connection time. It is automatically
deleted when user disconnects from instances. It is started with hash (#) sign.

 ■ Global temp tables name starts with double hash (##). Once this table is
created, it is like a permanent table. It is always ready for all users and not
deleted until the total connection is withdrawn.

 ■ The ALTER TABLE statement in Structured Query Language allows you to
add, modify, and delete columns of an existing table. This statement also
allows database users to add and remove various SQL constraints on the
existing tables.

SQL Table

3G E-LEARNING

225

KNOWLEDGE CHECK
1. Which statement is used to delete all rows in a table without having the action

logged?
a. DELETE
b. REMOVE
c. DROP
d. TRUNCATE

2. How many Primary keys can have in a table?
a. Only 1
b. Only 2
c. Depends on no of Columns
d Depends on DBA

3. Which of the following statement is true?
a. TRUNCATE free the table space while DELETE does not.
b. Both TRUNCATE and DELETE statements free the table’s space.
c. Both TRUNCATE and DELETE statement does not free the table’s space.
d. DELETE free the table space while TRUNCATE does not.

4. Which command is used to change the definition of a table in SQL?
a CREATE
b. UPDATE
c. ALTER
d. SELECT

5. Why we need to create an index if the primary key is already present in a table?
a. Index improves the speed of data retrieval operations on a table.
b. Indexes are special lookup tables that will be used by the database search

engine.
c. Indexes are synonyms of a column in a table.
d. All of the above

3G E-LEARNING

226 Basic Computer Coding: SQL

REVIEW QUESTIONS
1. What TABLE variable can do?

2. How to copy a table?

3. What is temporary table? What are the advantage of temporary table?

4. How to add, modify, rename and drop column.

5. What are the difference between DELETE and TRUNCATE statements?

Check Your Result

1. (d) 2. (a) 3. (a) 4. (c) 5. (a)

SQL Table

3G E-LEARNING

227

REFERENCES
1. Bryla, Bob; Thomas, Biju (2006). OCP: Oracle 10g New Features for Administrators

Study Guide: Exam 1Z0-040. John Wiley & Sons. p. 90. ISBN 9780782150858.
Retrieved 2015-08-14.

2. Drake, Mark (August 9, 2019). “A Comparison of NoSQL Database Management
Systems and Models”. Digital Ocean. Retrieved 2021-02-26.

“Forging differs from hoaxing, inasmuch as in the later the deceit is intended to last for a time,
and then be discovered, to the ridicule of those who have credited it; whereas the forger is one who,
wishing to acquire a reputation for science, records observations which he has never made.”

― Charles Babbage

After studying this chapter,
you will be able to:
1. Understand the use of

WHERE clause
2. Describe the AND, OR

and NOT operators in
SQL

3. Learn about WITH
clause in SQL

4. Discuss about HAVING
Clause in SQL

5. Know the ORDER BY
clause in SQL

LEARNING
OBJECTIVES

SQL CLAUSE

INTRODUCTION
SQL is a query language which queries and returns the
desired data from the database. We use SQL for multiple

9
CHAPTER

3G E-LEARNING

230 Basic Computer Coding: SQL

operations related to data, some of them being viewing the
data and analyzing the data.

Clauses are in-built functions available to us in SQL. With
the help of clauses, we can deal with data easily stored in
the table.

Clauses help us filter and analyze data quickly. When we
have large amounts of data stored in the database, we use
Clauses to query and get data required by the user.

Some of the examples of clauses are – where, and, or,
with, as, etc.

9.1 WHERE CLAUSE
A WHERE clause in SQL is a data manipulation language
statement. WHERE clauses are not mandatory clauses of SQL
DML statements. But it can be used to limit the number of
rows affected by a SQL DML statement or returned by a query.

Actually, it filters the records. It returns only those queries
which fulfill the specific conditions.

WHERE clause is used in SELECT, UPDATE, DELETE
statement etc.

Let’s see the syntax for sql where:
1. SELECT column1, column 2, ... column n

2. FROM table_name

3. WHERE [conditions]

WHERE clause uses some conditional selection

= equal
> greater than
< less than
>= greater than or equal
<= less than or equal
< > not equal to

Data
manipulation
language (DML)
is a computer
programming
language used
for adding
(inserting),
deleting, and
modifying
(updating) data
in a database.

Keyword

SQL Clause

3G E-LEARNING

231

9.2 SQL AND, OR AND NOT OPERATORS
The WHERE clause can be combined with AND, OR, and NOT operators.

The AND and OR operators are used to filter records based on more than one
condition:

 ■ The AND operator displays a record if all the conditions separated by AND
are TRUE.

 ■ The OR operator displays a record if any of the conditions separated by OR
is TRUE.

The NOT operator displays a record if the condition(s) is NOT TRUE.

9.2.1 SQL AND

 ■ The SQL AND condition is used in SQL query to create two or more conditions
to be met.

 ■ It is used in SQL SELECT, INSERT, UPDATE and DELETE
 ■ Let’s see the syntax for SQL AND:
 ■ SELECT columns FROM tables WHERE condition 1 AND condition 2;
 ■ The SQL AND condition require that both conditions should be met.
 ■ The SQL AND condition also can be used to join multiple tables in a SQL

statement.
 ■ To understand this concept practically, let us see some examples.

Consider we have an employee table created into the database with the following
data:

ID First_
Name

Last_
Name

Department Location

1 Harshad Kuwar Marketing Pune
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Pune
6 Roshni Jadhav Finance Bangalore
7 Sandhya Jain Finance Bangalore

3G E-LEARNING

232 Basic Computer Coding: SQL

SQL “AND” example with “SELECT” statement

This is how an SQL “AND” condition can be used in the SQL
SELECT statement.

Example 1:
Write a query to get the records from emp tables in which

department of the employee is IT and location is Chennai.
Query:

 ■ mysql> SELECT *FROM emp WHERE Department
= “IT” AND Location = “Chennai”;

ID First_Name Last_Name Department Location
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai

In the emp table, there are three employees whose
department is IT. But we have specified the AND condition
according to which the employee’s location should not be
other than Chennai. So, there are only two employees whose
department is IT and Location is Chennai.

Example 2:
Write a query to get the records from emp tables in which

department of the employee is IT and location is Mumbai.
Query:

 ■ mysql> SELECT *FROM emp WHERE Department
= “IT” AND Location = “Mumbai”;

ID First_
Name

Last_
Name

Department Location

2 Anurag Rajput IT Mumbai

In the emp table, there are three employees whose
department is IT. Among these three employees, there is
only one employee whose location is Mumbai. Due to the
presence of the AND operator used in the query, a record
must satisfy both conditions.

Employee is an
individual who
was hired by an
employer to do
a specific job.

Keyword

SQL Clause

3G E-LEARNING

233

SQL “AND” example with “UPDATE” statement

This is how the “AND” condition can be used in the SQL
UPDATE statement.

Example 1:
Write a query to update the records in emp tables in which

department of the employee is Marketing, and the first name
is Suraj. For that particular employee, set the updated value
of the location as Delhi.

Query:
 ■ mysql> UPDATE emp SET Location = “Delhi”

WHERE Department = “Marketing” AND First_Name
= “Suraj”;

We will use the SELECT query to verify the updated
record.

 ■ mysql> SELECT *FROM emp;

ID First_
Name

Last_
Name

Department Location

1 Harshad Kuwar Marketing Pune
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Delhi
6 Roshni Jadhav Finance Bangalore
7 Sandhya Jain Finance Bangalore

In the emp table, there are three employees whose
department is IT. Among these three employees, there is only
one employee whose location is Mumbai. Due to the presence
of the AND operator used in the query, a record must satisfy
both conditions.

Operators
are
constructs
defined within
programming
languages which
behave generally
like functions,
but which differ
syntactically or
semantically.

Keyword

3G E-LEARNING

234 Basic Computer Coding: SQL

Example 2:
Write a query to update the records in the emp table in

which department of the employee is Finance and ID is 7.
For that particular employee, set the updated value of the
department as HR.

Query:
 ■ mysql> UPDATE emp SET Department = “HR”

WHERE Department = “Finance” AND ID = 7;

We will use the SELECT query to verify the updated record.
 ■ mysql> SELECT *FROM emp;

ID First_Name Last_Name Department Location
1 Harshad Kuwar Marketing Pune
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Delhi
6 Roshni Jadhav Finance Bangalore
7 Sandhya Jain HR Bangalore

In the emp table, there are two employees whose
department is Finance. Among these two employees, there
is only one employee whose ID is 7. Due to the presence
of AND operator used in the query, a record must have the
department as Finance and ID as 7.

SQL “AND” Example with “DELETE” Statement

This is how an SQL “AND” condition can be used in the SQL
DELETE statement.

Example 1:
Write a query to delete the records from the emp table in

which the last name of the employee is Jain, and the Location
is Bangalore.

Finance
is a term
for matters
regarding the
management,
creation, and
study of money
and investments.

Keyword

SQL Clause

3G E-LEARNING

235

Query:
 ■ mysql> DELETE FROM emp WHERE Last_Name = ‘Jain’ AND Location =

‘Bangalore’;

We will use the SELECT query to verify the deleted record.
 ■ mysql> SELECT *FROM emp;

ID First_Name Last_Name Department Location
1 Harshad Kuwar Marketing Pune
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Delhi
6 Roshni Jadhav Finance Bangalore

There is only one record in the emp table whose last name is Jain. But still, due
to the presence of AND operator, the second condition will also be checked according
to which employee’s location should be Bangalore. So, only that particular record is
deleted.

Example 2:
Write a query to delete the records from the emp table in which department of

the employee is IT and Location is Mumbai.
Query:

 ■ mysql> DELETE FROM emp WHERE Department = ‘IT’ AND Location =
‘Mumbai’;

We will use the SELECT query to verify the deleted record.
1. mysql> SELECT *FROM emp;

ID First_Name Last_Name Department Location
1 Harshad Kuwar Marketing Pune
3 Chaitali Tarle IT Chennai

3G E-LEARNING

236 Basic Computer Coding: SQL

4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Delhi
6 Roshni Jadhav Finance Bangalore

There are three records in the emp table whose department is IT. But only one
record is deleted from the emp table, which contains a total of 6 records. This happened
because of the AND operator according to which the employee’s location should
mandatorily be Mumbai. Therefore there is only one record that satisfies both the
conditions. Hence, it is deleted.

9.2.2 SQL OR

The SQL OR condition is used in SQL query to create a SQL statement where records
are returned when any one condition met. It can be used in a SELECT statement,
INSERT statement, UPDATE statement or DELETE statement.

Let’s see the syntax for the OR condition:
 ■ SELECT columns FROM tables WHERE condition 1 OR condition 2;

ID First_
Name

Last_
Name

Department Location

1 Harshad Kuwar Marketing Pune
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Pune
6 Roshni Jadhav Finance Bangalore
7 Sandhya Jain Finance Bangalore

SQL “OR” example with SQL SELECT
This is how an SQL “OR” condition can be used in the SQL SELECT statement.
Example 1:
Write a query to get the records from emp tables in which department of the

employee is IT or location is Chennai.
Query:

 ■ mysql> SELECT *FROM emp WHERE Department = “IT” OR Location =
“Chennai”;

SQL Clause

3G E-LEARNING

237

ID First_
Name

Last_
Name

Department Location

2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai

In the emp table, there are three employees whose
department is IT. But there are only two records whose location
is Chennai. Still, all three records are displayed. This happened
because we have specified OR operator in the query, according
to which the record will be considered in the result set even
any one condition is met.

Example 2:
Write a query to get the records from emp tables in which

department of the employee is Marketing or location is Noida.
Query:

 ■ mysql> SELECT *FROM emp WHERE Department
= “Marketing” OR Location = “Noida”;

ID First_
Name

Last_
Name

Department Location

1 Harshad Kuwar Marketing Pune
5 Suraj Tripathi Marketing Pune
7 Sandhya Jain Finance Bangalore

There are two employees whose department is Marketing
in the emp table, but still, three records are displayed. This
happened because of the use of the OR operator in the query.
Among the three records displayed above, the first two
records satisfy condition 1; the second record satisfies both
the conditions and the third record satisfies only condition 1.
Due to the OR operator, even if anyone condition is satisfied,
the record is considered in the result-set.

 ■ SQL “OR” example with SQL UPDATE
This is how the “OR” condition can be used in the SQL

UPDATE statement.
Example 1:
Write a query to update the records in emp tables in which

department of the employee is Marketing, or the last name

Marketing refers
to the process
an organization
undertakes
to engage its
target audience,
build strong
relationships to
create value in
order to capture
value in return.

Keyword

3G E-LEARNING

238 Basic Computer Coding: SQL

is Tarle. For that particular employee, set the updated value of the location as Delhi.
Query:

 ■ mysql> UPDATE emp SET Location = “Delhi” WHERE Department =
“Marketing” OR Last_Name = “Tarle”;

We will use the SELECT query to verify the updated record.
 ■ mysql> SELECT *FROM emp;

ID First_Name Last_Name Department Location
1 Harshad Kuwar Marketing Pune
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Pune
6 Roshni Jadhav Finance Bangalore
7 Sandhya Jain Finance Bangalore

There are two employees whose department is ‘Marketing’ and one record whose
last name is ‘Tarle’ in the emp table. Though only one condition is still met, that record
is considered and updated in the table due to the OR operator.

Example 2:
Write a query to update the records in the emp table in which department of the

employee is Finance, or the first name is Sandhya. For that particular employee, set
the updated value of the department as HR.

Query:
 ■ mysql> UPDATE emp SET Department = “HR” WHERE Department =

“Finance” OR First_Name = “Sandhya”;

We will use the SELECT query to verify the updated record.
 ■ mysql> SELECT *FROM emp;

SQL Clause

3G E-LEARNING

239

ID First_Name Last_Name Department Location
1 Harshad Kuwar Marketing Delhi
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Delhi
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Delhi
6 Roshni Jadhav HR Bangalore
7 Sandhya Jain HR Noida

There are two employees whose department is ‘Finance,’ and among these two
records, one record satisfies both the conditions in the emp table. However, both the
records are considered and updated in the table due to the OR operator.

 ■ SQL “OR” example with SQL DELETE
This is how an SQL “OR” condition can be used in the SQL DELETE statement.
Example 1:
Write a query to delete the records from the emp table in which the last name of

the employee is Jain or Location is Bangalore.
Query:

 ■ mysql> DELETE FROM emp WHERE Last_Name = ‘Jain’ OR Location =
‘Bangalore’;

We will use the SELECT query to verify the deleted record.
 ■ mysql> SELECT *FROM emp;

ID First_Name Last_Name Department Location
1 Harshad Kuwar Marketing Pune
2 Anurag Rajput IT Mumbai
3 Chaitali Tarle IT Chennai
4 Pranjal Patil IT Chennai
5 Suraj Tripathi Marketing Pune

There is only one record in the emp table whose last name is Jain and one record
whose location is Bangalore. But still, due to the presence of an OR operator, even if
anyone condition is satisfied, that particular record is deleted.

3G E-LEARNING

240 Basic Computer Coding: SQL

Example 2:
Write a query to delete the records from the emp table in which department of

the employee is marketing and Location is Delhi.
Query:

 ■ mysql> DELETE FROM emp WHERE Department = ‘Marketing’ OR Location
= ‘Delhi’;

We will use the SELECT query to verify the deleted record.
1. mysql> SELECT *FROM emp;

ID First_Name Last_Name Department Location
2 Anurag Rajput IT Mumbai
4 Pranjal Patil IT Chennai

There is only one record in the emp table whose department is Marketing and
one record whose location is Delhi. But still, due to the presence of an OR operator,
even if anyone condition is satisfied, that particular record is deleted.

9.3 SQL WITH CLAUSE
The SQL WITH clause is used to provide a sub-query block which can be referenced
in several places within the main SQL query. It was introduced by oracle in oracle 9i
release2 database.

There is an example of employee table:
Syntax for the SQL WITH clause -
This syntax is for SQL WITH clause using a single sub-query alias.

 ■ WITH <alias_name> AS (sql_sub-query_statement)
 ■ SELECT column_list FROM <alias_name> [table name]
 ■ [WHERE <join_condition>]

When you use multiple sub-query aliases, the syntax will be as follows.
 ■ WITH <alias_name_A> AS (sql_sub-query_statement)
 ■ <alias_name_B> AS (sql_sub-query_statement_from_alias_name_A
 ■ Or sql_sub-query_statement)

SQL Clause

3G E-LEARNING

241

 ■ SELECT <column_list>
 ■ FROM <alias_name_A >,< alias_name_B >, [tablenames]
 ■ [WHERE < join_condition>]

9.3.1 SQL SELECT AS

 ■ SQL ‘AS’ is used to assign a new name temporarily to a table column or
even a table.

 ■ It makes an easy presentation of query results and allows the developer to
label results more accurately without permanently renaming table columns
or even the table itself.

 ■ Let’s see the syntax of select as:
1. SELECT Column_Name1 AS New_Column_Name, Column_Name2 As New_

Column_Name FROM Table_Name;

Here, the Column_Name is the name of a column in the original table, and the
New_Column_Name is the name assigned to a particular column only for that specific
query. This means that New_Column_Name is a temporary name that will be assigned
to a query.

Assigning a temporary name to the column of a table:
Let us take a table named orders, and it contains the following data:

Day_of_order Customer Product Quantity
11-09-2001 Ajeet Mobile 2
13-12-2001 Mayank Laptop 20
26-12-2004 Balaswamy Water cannon 35

Example:
Suppose you want to rename the ‘day_of_order’ column and the ‘customer’ column

as ‘Date’ and ‘Client’, respectively.
Query:

 ■ SELECT day_of_order AS ‘Date’, Customer As ‘Client’, Product, Quantity
FROM orders;

3G E-LEARNING

242 Basic Computer Coding: SQL

The result will be shown as this table:

Day_of_order Customer Product Quantity
11-09-2001 Ajeet Mobile 2
13-12-2001 Mayank Laptop 20
26-12-2004 Balaswamy Water cannon 35

From the above results, we can see that temporarily the
‘Day_of_order’ is renamed as ‘date’ and ‘customer’ is renamed
as ‘client’.

Let us take another example. Consider we have a students
table with the following data.

Student_
RollNo

Student_
Name

Student_
Gender

Student_
Mobile
Number

Student_
Home Town

Student_
Age

Student_
Percentage

1 Rohit More Male 9890786123 Lucknow 23 75

2 Kunal Shah Male 7789056784 Chandigarh 20 92

3 Kartik
Goenka

Male 9908743576 Ahemdabad 22 89

4 Anupama
Shah

Female 8890907656 Chennai 24 92

5 Snehal Jain Female 8657983476 Surat 21 94

Example 1:
Write a query to get the student name and the average

of the percentage of the student under the temporary column
name ‘Student’ and ‘Student_Percentage’, respectively.

Query:
1. SELECT Student_Name AS Student, AVG (Student_

Percentage) AS Average_Percentage FROM students;

Here, to calculate the average, we have used AVG ()
function. Further, the calculated average value of the percentage
will be stored under the temporary name ‘Average_Percentage’.

The result will be shown as this table:

Student Average_Percentage
Rohit More 88.4000

SQL AS is
the same
as SQL ALIAS.

Remember

SQL Clause

3G E-LEARNING

243

Example 2:
Write a query to get the student roll number and the student mobile number under

the temporary column name ‘Roll No’ and ‘Mobile Number’, respectively.
Query:

1. mysql> SELECT Student_RollNo AS ‘Roll No’, Student_PhoneNumber AS ‘Mobile
Number’ FROM students;

The result will be shown as this table:

Roll No Mobile Number
1 9890786123
2 7789056784
3 9908743576
4 8890907656
5 8657983476

Example 3:
Write a query to get the student roll number and the student phone number, home

town under the temporary column name ‘Roll No’ and ‘Student_Info’, respectively.
Query:

 ■ mysql> SELECT Student_RollNo AS ‘Roll No’, CONCAT (Student_
PhoneNumber, ‘, ‘, Student_HomeTown) AS Student_Info FROM students;

Here, the CONCAT () function combines two different columns, student phone
number and the home town, together in a single column. Further, the combined values
of both these columns are stored under the temporarily assigned name ‘Student_Info’.

The result will be shown as this table:

Roll No Mobile Number
1 9890786123, Lucknow
2 7789056784, Chandigarh
3 9908743576, Ahemdabad
4 8890907656, Chennai
5 8657983476, Surat

3G E-LEARNING

244 Basic Computer Coding: SQL

9.3.2 Assigning a Temporary Name to a Table

Instead of remembering the table names, we can create an alias of them. We can assign
a temporary name to the columns of a table; similarly, we can create an alias of a table.

Let’s understand it with the help of an example.
Write a query to create an alias of a table named ‘students’.
Query:

 ■ mysql> SELECT s.Student_RollNo, s.Student_Name, s.Student_Gender,
s.Student_PhoneNumber, s.Student_HomeTown FROM students AS s WHERE
s.Student_RollNo = 3;

Here, ‘s’ is the alias, i.e., the temporary name assigned to the ‘students’ table.
The result will be shown as this table:

Student_
RollNo

Student_
Name

Student_
Gender

Student_
MobileNumber

Student_
HomeTown

3 Kartik
Goenka

Male 9908743576 Ahemdabad

9.4 HAVING CLAUSE IN SQL
The HAVING clause places the condition in the groups defined by the GROUP BY
clause in the SELECT statement.

This SQL clause is implemented after the ‘GROUP BY’ clause in the ‘SELECT’
statement.

This clause is used in SQL because we cannot use the WHERE clause with the
SQL aggregate functions. Both WHERE and HAVING clauses are used for filtering
the records in SQL queries.

9.4.1 Difference between HAVING and WHERE Clause

The difference between the WHERE and HAVING clauses in the database is the most
important question asked during an IT interview.

The following table shows the comparisons between these two clauses, but the
main difference is that the WHERE clause uses condition for filtering records before
any groupings are made, while HAVING clause uses condition for filtering values
from a group.

SQL Clause

3G E-LEARNING

245

HAVING WHERE
1. The HAVING clause is used in
database systems to fetch the data/values
from the groups according to the given
condition.

1. The WHERE clause is used in database systems
to fetch the data/values from the tables according
to the given condition.

2. The HAVING clause is always
executed with the GROUP BY clause.

2. The WHERE clause can be executed without
the GROUP BY clause.

3. The HAVING clause can include
SQL aggregate functions in a query or
statement.

3. We cannot use the SQL aggregate function with
WHERE clause in statements.

4. We can only use SELECT statement
with HAVING clause for filtering the
records.

4. Whereas, we can easily use WHERE clause
with UPDATE, DELETE, and SELECT statements.

5. The HAVING clause is used in SQL
queries after the GROUP BY clause.

5. The WHERE clause is always used before the
GROUP BY clause in SQL queries.

6. We can implements this SQL clause in
column operations.

6. We can implements this SQL clause in row
operations.

7. It is a post-filter. 7. It is a pre-filter.
8. It is used to filter groups. 8. It is used to filter the single record of the table.

9.4.2 Syntax of HAVING Clause in SQL

 ■ SELECT column_Name1, column_Name2,, column_NameN aggregate_
function_name(column_Name) FROM table_name GROUP BY column_Name1
HAVING condition;

9.4.3 Examples of HAVING Clause in SQL

In this article, we have taken the following four different examples which will help
you how to use the HAVING clause with different SQL aggregate functions:

Example 1: Let’s take the following Employee table, which helps you to analyze
the HAVING clause with SUM aggregate function:

Emp_Id Emp_Name Emp_Salary Emp_City
201 Abhay 2000 Goa
202 Ankit 4000 Delhi
203 Bheem 8000 Jaipur
204 Ram 2000 Goa
205 Sumit 5000 Delhi

3G E-LEARNING

246 Basic Computer Coding: SQL

If you want to add the salary of employees for each city, you have to write the
following query:

SELECT SUM(Emp_Salary), Emp_City FROM Employee GROUP BY Emp_City;
The output of the above query shows the following output:

SUM(Emp_Salary) Emp_City
4000 Goa
9000 Delhi
8000 Jaipur

Now, suppose that you want to show those cities whose total salary of employees is
more than 5000. For this case, you have to type the following query with the HAVING
clause in SQL:

 ■ SELECT SUM(Emp_Salary), Emp_City FROM Employee GROUP BY Emp_City
HAVING SUM(Emp_Salary)>5000;

The output of the above SQL query shows the following table in the output:

SUM(Emp_Salary) Emp_City
9000 Delhi
8000 Jaipur

Example 2: Let’s take the following Student_details table, which helps you to
analyze the HAVING clause with the COUNT aggregate function:

Roll_No Name Marks Age
1 Rithik 91 20
2 Kapil 60 19
3 Arun 82 17
4 Ram 92 18
5 Anuj 50 20
6 Suman 88 18
7 Sheetal 57 19
8 Anuj 64 20

Suppose, you want to count the number of students from the above table according
to their age. For this, you have to write the following query:

 ■ SELECT COUNT(Roll_No), Age FROM Student_details GROUP BY Age ;
The above query will show the following output:

SQL Clause

3G E-LEARNING

247

Count(Roll_No) Age
3 20
2 19
1 17
2 18

Now, suppose that you want to show the age of those students whose roll number
is more than and equals 2. For this case, you have to type the following query with
the HAVING clause in SQL:

 ■ SELECT COUNT(Roll_No), Age FROM Student_details GROUP BY Age
HAVING COUNT(Roll_No) >= 2 ;

The output of the above SQL query shows the following table in the output:

Count(Roll_No) Age
3 20
2 19
2 18

Example 3: Let’s take the following Employee table, which helps you to analyze
the HAVING clause with MIN and MAX aggregate function:

Emp_ID Name Emp_Salary Emp_Dept
1001 Anuj 9000 Finance
1002 Saket 4000 HR
1003 Raman 3000 Coding
1004 Renu 6000 Coding
1005 Seenu 5000 HR
1006 Mohan 10000 Marketing
1007 Anaya 4000 Coding
1008 Parul 8000 Finance

9.4.4 MIN Function with HAVING Clause

If you want to show each department and the minimum salary in each department,
you have to write the following query:

 ■ SELECT MIN(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_
Dept;

3G E-LEARNING

248 Basic Computer Coding: SQL

The output of the above query shows the following output:

MIN(Emp_Salary) Emp_Dept
8000 Finance
4000 HR
3000 Coding
10000 Marketing

Now, suppose that you want to show only those departments whose minimum
salary of employees is greater than 4000. For this case, you have to type the following
query with the HAVING clause in SQL:

SELECT MIN(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_Dept
HAVING MIN(Emp_Salary) > 4000 ;

The above SQL query shows the following table in the output:

MIN(Emp_Salary) Emp_Dept
8000 Finance
10000 Marketing

9.4.5 MAX Function with HAVING Clause

In the above employee table, if you want to list each department and the maximum
salary in each department. For this, you have to write the following query:

 ■ SELECT MAX(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_
Dept;

The above query will show the following output:

MAX(Emp_Salary) Emp_Dept
9000 Finance
5000 HR
6000 Coding
10000 Marketing

Now, suppose that you want to show only those departments whose maximum
salary of employees is less than 8000. For this case, you have to type the following
query with the HAVING clause in SQL:

SQL Clause

3G E-LEARNING

249

 ■ SELECT MAX(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_
Dept HAVING MAX(Emp_Salary) < 8000 ;

The output of the above SQL query shows the following table in the output:

MAX(Emp_Salary) Emp_Dept
5000 HR
6000 Coding

Example 4: Let’s take the following Employee_Dept table, which helps you to
analyze the HAVING clause with AVG aggregate function:

Emp_ID Name Emp_Salary Emp_Dept
1001 Anuj 8000 Finance
1002 Saket 4000 HR
1003 Raman 3000 Coding
1004 Renu 6000 Coding
1005 Seenu 5000 HR
1006 Mohan 10000 Marketing
1007 Anaya 4000 Coding
1008 Parul 6000 Finance

If you want to find the average salary of employees in each department, you have
to write the following query:

 ■ SELECT AVG(Emp_Salary), Emp_Dept FROM Employee_Dept GROUP BY
Emp_Dept;

The above query will show the following output:

AVG(Emp_Salary) Emp_Dept
7000 Finance
4500 HR
6500 Coding
10000 Marketing

Now, suppose that you want to show those departments whose average salary is
more than and equals 6500. For this case, you have to type the following query with
the HAVING clause in SQL:

 ■ SELECT AVG(Emp_Salary), Emp_Dept FROM Employee_Dept GROUP BY
Emp_Dept HAVING AVG(Emp_Salary) > 6500 ;

3G E-LEARNING

250 Basic Computer Coding: SQL

The above SQL query will show the following table in
the output:

AVG(Emp_Salary) Emp_Dept
7000 Finance
6500 Coding
10000 Marketing

9.5 SQL ORDER BY CLAUSE
An ORDER BY clause in SQL specifies that a SQL SELECT
statement returns a result set with the rows being sorted by
the values of one or more columns. The sort criteria do not
have to be included in the result set. The sort criteria can be
expressions, including column names, user-defined functions,
arithmetic operations, or CASE expressions. The expressions
are evaluated and the results are used for the sorting, i.e., the
values stored in the column or the results of the function call.

ORDER BY is the only way to sort the rows in the result
set. Without this clause, the relational database system may
return the rows in any order.

Although some database systems allow the specification
of an ORDER BY clause in subselects or view definitions, the
presence there has no effect. A view is a logical relational
table, and the relational model mandates that a table is a
set of rows, implying no sort order whatsoever. The only
exception are constructs like ORDER BY ORDER OF ... (not
standardized in SQL:2003) which allow the propagation of
sort criteria through nested subselects.

The SQL standard’s core functionality does not explicitly
define a default sort order for Nulls. With the SQL:2003
extension T611, “Elementary OLAP operations”, nulls can be
sorted before or after all data values by using the NULLS FIRST
or NULLS LAST clauses of the ORDER BY list, respectively.
Not all DBMS vendors implement this functionality, however.
Vendors who do not implement this functionality may specify
different treatments for Null sorting in the DBMS.

Structure ORDER BY ... DESC will order in descending
order, otherwise ascending order is used.

If an
ordering
is required, the
ORDER BY must
be provided
in the SELECT
statement sent by
the application.

Remember

SQL Clause

3G E-LEARNING

251

The SQL ORDER BY clause is used for sorting data in
ascending and descending order based on one or more columns.

Some databases sort query results in ascending order by
default.

9.5.1 SQL ORDER BY Syntax

1. SELECT expressions

2. FROM tables

3. WHERE conditions

4. ORDER BY expression [ASC | DESC];

Let us take a CUSTOMERS table having the following
records:

ID NAME AGE ADDRESS SALARY
1 Himani gupta 21 Modinagar 22000
2 Shiva tiwari 22 Bhopal 21000
3 Ajeet bhargav 45 Meerut 65000
4 Ritesh yadav 36 Azamgarh 26000
5 Balwant singh 45 Varanasi 36000
6 Mahesh sharma 26 Mathura 22000

This is an example that would sort the result in ascending
order by NAME and SALARY.

1. SELECT * FROM CUSTOMERS

2. ORDER BY NAME, SALARY;

This would produce the following result.

ID NAME AGE ADDRESS SALARY
3 Ajeet bhargav 45 Meerut 65000
5 Balwant singh 45 Varanasi 36000
1 Himani gupta 21 Modinagar 22000
6 Mahesh sharma 26 Mathura 22000
4 Ritesh yadav 36 Azamgarh 26000

SQL:2003
is the fourth
revision of the
SQL database
query language.
The standard
consists of 9
parts which are
described in
detail in SQL. It
was updated by
SQL:2006.

Did You
Know?

3G E-LEARNING

252 Basic Computer Coding: SQL

2 Shiva tiwari 22 Bhopal 21000

This is an example to sort the result in descending order by NAME.
 ■ SELECT * FROM CUSTOMERS
 ■ ORDER BY NAME DESC;

This would produce the following result.

ID NAME AGE ADDRESS SALARY
2 Shiva tiwari 22 Bhopal 21000
4 Ritesh yadav 36 Azamgarh 26000
6 Mahesh sharma 26 Mathura 22000
1 Himani gupta 21 Modinagar 22000
5 Balwant singh 45 Varanasi 36000
3 Ajeet bhargav 45 Meerut 65000

9.5.2 SQL ORDER BY Clause with Ascending Order

This statement is used to sort data in ascending order. If you miss the ASC attribute,
SQL ORDER BY query takes ascending order by default.

Let’s take an example of supplier
1. SELECT supplier_city

2. FROM suppliers

3. WHERE supplier_name = ‘IBM’

4. ORDER BY supplier_city;

Let us take a CUSTOMERS table having the following records:

ID NAME AGE ADDRESS SALARY
1 Himani gupta 21 Modinagar 22000
2 Shiva tiwari 22 Bhopal 21000
3 Ajeet bhargav 45 Meerut 65000
4 Ritesh yadav 36 Azamgarh 26000
5 Balwant singh 45 Varanasi 36000
6 Mahesh sharma 26 Mathura 22000

SQL Clause

3G E-LEARNING

253

This is an example to sort the result in ascending order by NAME and SALARY.
Features of Java - Javatpoint

 ■ SELECT * FROM CUSTOMERS
 ■ ORDER BY NAME, SALARY;

This would produce the following result.

ID NAME AGE ADDRESS SALARY
3 Ajeet bhargav 45 Meerut 65000
5 Balwant singh 45 Varanasi 36000
1 Himani gupta 21 Modinagar 22000
6 Mahesh sharma 26 Mathura 22000
4 Ritesh yadav 36 Azamgarh 26000
2 Shiva tiwari 22 Bhopal 21000

9.5.3 SQL ORDER BY Clause with Descending Order

This statement is used to sort data in descending order. You should use the DESC
attribute in your ORDER BY clause as follows.

 ■ SELECT supplier_city
 ■ FROM suppliers
 ■ WHERE supplier_name = ‘IBM’
 ■ ORDER BY supplier_city DESC;

Let’s see an example of an employee table:

ID NAME AGE ADDRESS SALARY
1 Himani gupta 21 Modinagar 22000
2 Shiva tiwari 22 Bhopal 21000
3 Ajeet bhargav 45 Meerut 65000
4 Ritesh yadav 36 Azamgarh 26000
5 Balwant singh 45 Varanasi 36000
6 Mahesh sharma 26 Mathura 22000

This is an example to sort the result in descending order by NAME.
 ■ SELECT * FROM CUSTOMERS
 ■ ORDER BY NAME DESC;

3G E-LEARNING

254 Basic Computer Coding: SQL

This would produce the following result.

ID NAME AGE ADDRESS SALARY
2 Shiva tiwari 22 Bhopal 21000
4 Ritesh yadav 36 Azamgarh 26000
6 Mahesh sharma 26 Mathura 22000
1 Himani gupta 21 Modinagar 22000
5 Balwant singh 45 Varanasi 36000
3 Ajeet bhargav 45 Meerut 65000

9.5.4 SQL ORDER BY RANDOM

If you want the resulting record to be ordered randomly, you should use the following
codes according to several databases.

Here is a question: what is the need to fetch a random record or a row from a
database?

Sometimes you may want to display random information like articles, links, pages,
etc., to your user.

If you want to fetch random rows from any of the databases, you have to use
some altered queries according to the databases.

 ■ Select a random row with MySQL:
If you want to return a random row with MY SQL, use the following syntax:

1. SELECT column FROM table ORDER BY RAND () LIMIT 1;

o Select a random row with Postgre SQL:

1. SELECT column FROM table ORDER BY RANDOM () LIMIT 1;

o Select a random row with SQL Server:

1. SELECT TOP 1 column FROM table ORDER BY NEWID ();

o Select a random row with oracle:

1. SELECT column FROM (SELECT column FROM table ORDER BY dbms_
random.value) WHERE rownum = 1;

o Select a random row with IBM DB2:

1. SELECT column RAND () as IDX FROM table ORDER BY IDX FETCH FIRST 1

SQL Clause

3G E-LEARNING

255

ROWS ONLY;

To understand this concept practically, let us see some examples using the MySQL
database. Consider we have a table items created into the database with the following
data:

Table: items

ID Item_Name Item_
Quantity

Item_Price Purchase_
Date

1 Soap 5 200 2021-
07-08

2 Toothpaste 2 80 2021-07-10
3 Pen 10 50 2021-07-12
4 Bottle 1 250 2021-07-13
5 Brush 3 90 2021-07-15

Suppose we want to retrieve any random record from the items table.
We will write the query as follows:

 ■ mysql> SELECT * FROM items ORDER BY RAND () LIMIT 1;
We may get the following results:

ID Item_
Name

Item_
Quantity

Item_
Price

Purchase_
Date

3 Pen 10 20 2021-07-12

Now let us try executing the same query one more time.
1. mysql> SELECT * FROM items ORDER BY RAND () LIMIT 1;

We may get the following results:

ID Item_
Name

Item_
Quantity

Item_
Price

Purchase_
Date

5 Brush 3 90 2021-07-15

From the above results, we can conclude that we get different records as output both
times even though we executed the same query twice. RAND () function has selected
random records both times for the same query from a single table. Therefore, even
we execute the same query again, we will get different output every time. There is a
rare possibility of getting the same record consecutively using the RAND () function.

3G E-LEARNING

256 Basic Computer Coding: SQL

Now, suppose you want all the records of the table to be fetched randomly.
To do so, we need to execute the following query:

 ■ mysql> SELECT * FROM items ORDER BY RAND ();
We may get the following results:

ID Item_Name Item_
Quantity

Item_
Price

Purchase_
Date

4 Bottle 1 250 2021-07-13
5 Brush 3 90 2021-07-15
1 Soap 5 200 2021-07-08
2 Toothpaste 2 80 2021-07-10
3 Pen 10 50 2021-07-12

There is also a possibility of getting some different arrangements of records if we
execute the RAND () function again on the employees table.

9.5.5 SQL ORDER BY LIMIT

We can retrieve limited rows from the database. I can be used in pagination where
are forced to show only limited records like 10, 50, 100 etc.

LIMIT Clause for ORACLE SQL

If you want to use LIMIT clause with SQL, you have to use ROWNUM queries because
it is used after result are selected.

You should use the following code:
1. SELECT name, age

2. FROM

3. (SELECT name, age, ROWNUM r

4. FROM

5. (SELECT name, age, FROM employee_data

6. ORDER BY age DESC

7.)

8. WHERE ROWNUM <=40

SQL Clause

3G E-LEARNING

257

9.)

10. WHERE r >= 21;

This query will give you 21th to 40th rows.

9.5.6 SQL SORTING on Multiple Columns

Let’s take an example of customer table which has many columns, the following
SQL statement selects all customers from the table named “customer”, stored by the
“country” and “Customer-Name” columns:

1. SELECT * FROM customers

2. ORDER BY country, Customer-Name;

3G E-LEARNING

258 Basic Computer Coding: SQL

SUMMARY
 ■ Clauses are in-built functions available to us in SQL. With the help of clauses,

we can deal with data easily stored in the table.
 ■ Clauses help us filter and analyze data quickly. When we have large amounts

of data stored in the database, we use Clauses to query and get data required
by the user.

 ■ A WHERE clause in SQL is a data manipulation language statement. WHERE
clauses are not mandatory clauses of SQL DML statements. But it can be used
to limit the number of rows affected by a SQL DML statement or returned
by a query.

 ■ The SQL OR condition is used in SQL query to create a SQL statement where
records are returned when any one condition met. It can be used in a SELECT
statement, INSERT statement, UPDATE statement or DELETE statement.

 ■ The SQL WITH clause is used to provide a sub-query block which can be
referenced in several places within the main SQL query. It was introduced
by oracle in oracle 9i release2 database.

 ■ The HAVING clause places the condition in the groups defined by the GROUP
BY clause in the SELECT statement.

 ■ An ORDER BY clause in SQL specifies that a SQL SELECT statement returns
a result set with the rows being sorted by the values of one or more columns.
The sort criteria do not have to be included in the result set. The sort criteria
can be expressions, including column names, user-defined functions, arithmetic
operations, or CASE expressions.

 ■ ORDER BY is the only way to sort the rows in the result set. Without this
clause, the relational database system may return the rows in any order.

 ■ The SQL ORDER BY clause is used for sorting data in ascending and descending
order based on one or more columns.

SQL Clause

3G E-LEARNING

259

KNOWLEDGE CHECK
1. If we have not specified ASC or DESC after a SQL ORDER BY clause, the

following is used by default
a. DESC
b. ASC
c. There is no default value
d. None of the mentioned

2. Which of the following is true about the HAVING clause?
a. Similar to the WHERE clause but is used for columns rather than groups.
b. Similar to WHERE clause but is used for rows rather than columns.
c. Similar to WHERE clause but is used for groups rather than rows.
d. Acts exactly like a WHERE clause.

3. _______ clause creates temporary relation for the query on which it is defined.
a. WITH
b. FROM
c. WHERE
d. SELECT

4. Which of the following is true about the SQL AS clause?
a. The AS clause in SQL is used to change the column name in the output or

assign a name to a derived column.
b. The SQL AS clause can only be used with the JOIN clause.
c. The AS clause in SQL is used to defines a search condition.
d. All of the mentioned

5. When the wildcard in a WHERE clause is useful?
a. When an exact match is required in a SELECT statement.
b. When an exact match is not possible in a SELECT statement.
c. When an exact match is required in a CREATE statement.
d. When an exact match is not possible in a CREATE statement.

3G E-LEARNING

260 Basic Computer Coding: SQL

REVIEW QUESTIONS
1. What is the WHERE clause used for?

2. What are the difference between HAVING and WHERE clause?

3. What is order SQL?

4. How to select data from database in ascending order and descending order?

5. How to sort data on multiple columns?

Check Your Result

1. (b) 2. (c) 3. (a) 4. (a) 5. (b)

SQL Clause

3G E-LEARNING

261

REFERENCES
1. Chatham, Mark (2012). Structured Query Language By Example - Volume I: Data

Query Language. p. 8. ISBN 978-1-29119951-2.
2. Christian S. Jensen; Torben Bach Pedersen; Christian Thomsen (2010).

Multidimensional Databases and Data Warehousing. Morgan & Claypool
Publishers. p. 26. ISBN 978-1-60845-537-9.

3. Eisenberg, Andrew; et al. (March 2004). “SQL:2003 Has Been Published”. SIGMOD
Record. 33 (1): 119. doi:10.1145/974121.974142. Archived from the original (pdf)
on 2007-11-11. Retrieved 2007-08-14.

4. Norbert E. Fuchs; Kaarel Kaljurand; Gerold Schneider (2006). “Attempto
Controlled English Meets the Challenges of Knowledge Representation, Reasoning,
Interoperability and User Interfaces” (PDF). FLAIRS 2006.

“Relational databases just could not meet the [data volume] requirements, so we turned to in-
memory databases.”

―Michael Gross

After studying this chapter,
you will be able to:
1. Describe the procedural

SQL concepts
2. Learn about triggers
. Discuss about stored

procedures, functions,
triggers, and the SQL
standard

LEARNING
OBJECTIVES

DATABASE PROCESSING
AND STORED
PROCEDURAL SQL

INTRODUCTION
The long-term trend in the database market is for databases
to take on a progressively larger role in the overall data

10
CHAPTER

3G E-LEARNING

264 Basic Computer Coding: SQL

processing architecture. The pre-relational database systems basically handled only data
storage and retrieval; application programs were responsible for navigating their way
through the database, sorting and selecting data, and handling all processing of the
data. With the advent of relational databases and SQL, the DBMS took on expanded
responsibilities. Database searching and sorting were embodied in SQL language clauses
and provided by the DBMS, along with the capability to summarize data. Explicit
navigation through the database became unnecessary. Subsequent SQL enhancements
such as primary key, foreign key (referential), and check constraints continued the
trend, taking over data validation and data integrity functions that had remained the
sole responsibility of application programs with earlier SQL implementations. At each
step, having the DBMS take on more responsibility provided more centralized control
and reduced the possibility of data corruption due to application programming errors.

In many information technology (IT) departments within large companies and
organizations, this DBMS trend paralleled an organizational trend. The corporate
database and the data it contains came to be viewed as a major corporate asset,
and in many IT departments, a dedicated database administration (DBA) group
emerged, with responsibility for maintaining the database, defining (and in some
cases updating) the data it contained, and providing structured access to it. Other
groups within the IT department, or elsewhere within the company, could develop
application programs, reports, queries, or other logic that accessed the database. In
most organizations, application programs, and the businesspeople using them, have
had primary responsibility for updating the data within the database. However, the
DBA group sometimes has had responsibility for updating reference (lookup) table
data and for assisting with scripts and utilities to perform tasks such as the bulk
loading of newly acquired data. But the security of the database, the permitted forms
of access, and in general, everything within the realm of the database, became the
province of the DBA.

Three important features of modern enterprise-scale relational databases—stored
procedures, functions, and triggers—have been a part of this trend. Stored procedures
can perform database-related application processing within the database itself. For
example, a stored procedure might implement the application’s logic to accept a
customer order or to transfer money from one bank account to another. Functions are
stored SQL programs that return only a single value for each row of data. Unlike stored
procedures, functions are invoked by referencing them in SQL statements in almost
any clause where a column name can be used. This makes them ideal for performing
calculations and data transformations on data to be displayed in query results or used
in search conditions. Nearly all relational DBMS products come with a set of vendor-
supplied functions for general use, and therefore functions added by local database
users are often called user-defined functions. Triggers are used to automatically invoke
the processing capability of a stored procedure based on conditions that arise within the

Database Processing and Stored Procedural SQL

3G E-LEARNING

265

database. For example, a trigger might automatically transfer
funds from a savings account to a checking account if the
checking account becomes overdrawn. This chapter describes
the core concepts behind stored procedures, functions, and
triggers, and their implementation in several popular DBMS
brands.

10.1 PROCEDURAL SQL CONCEPTS
In its original form, SQL was not envisioned as a complete
programming language. It was designed and implemented
as a language for expressing database operations—creating
database structures, entering data into the database, updating
database data—and especially for expressing database queries
and retrieving the answers. SQL could be used interactively
by typing SQL statements at a keyboard, one by one. In this
case, the sequence of database operations was determined by
the human user. SQL could also be embedded within another
programming language, such as COBOL or C. In this case, the
sequence of database operations was determined by the flow
of control within the COBOL or C program.

With stored procedural SQL, the SQL language is extended
with several capabilities normally associated with programming
languages. Sequences of extended SQL statements are grouped
together to form SQL programs or procedures. (For simplicity,
we refer to stored procedures, functions, and triggers
collectively as SQL procedures.) The specifics vary from one
implementation to another, but generally, these capabilities
are provided:

 ■ Conditional execution An IF…THEN…ELSE structure
allows a SQL procedure to test a condition and to
carry out different operations depending on the result.

 ■ Looping A WHILE or FOR loop or similar structure
allows a sequence of SQL operations to be performed
repeatedly, until some terminating condition is met.
Some implementations provide a special cursor-based
looping structure to process each row of query results.

 ■ Block structure A sequence of SQL statements can
be grouped into a single block and used in other
flow-of-control constructs as if the statement block
were a single statement.

COBOL
was designed
in 1959 by
CODASYL
and was partly
based on the
programming
language FLOW-
MATIC designed
by Grace Hopper.
It was created
as part of a US
Department of
Defense effort to
create a portable
programming
language for data
processing.

Did You
Know?

3G E-LEARNING

266 Basic Computer Coding: SQL

 ■ Named variables A SQL procedure may store a value
that it has calculated, retrieved from the database, or
derived in some other way into a program variable,
and later retrieve the stored value for use in subsequent
calculations.

 ■ Named procedures A sequence of SQL statements
may be grouped together, given a name, and assigned
formal input and output parameters, like a subroutine
or function in a conventional programming language.
Once defined in this way, the procedure may be called
by name, passing it appropriate values for its input
parameters. If the procedure is a function returning
a value, it may be used in SQL value expressions.

Collectively, the structures that implement these capabilities
form a stored procedural language (SPL).

Stored procedures were first introduced by Sybase in the
original Sybase SQL Server product. Much of the original
enthusiasm for stored procedures was because of their
performance advantages in a client/server database architecture.
Without stored procedures, every SQL operation requested
by an application program (running on the client computer
system) would be sent across the network to the database
server and would wait for a reply message to be returned
across the network. If a logical transaction required six SQL
operations, six network round trips were required. With stored
procedures, the sequence of six SQL operations could be
programmed into a procedure and stored in the database.
The application program would simply request the execution
of the stored procedure and await the results. In this way,
six network round trips could be cut to one round trip—the
request and reply for executing the stored procedure.

Stored procedures proved to be a natural fit for the client/
server model, and Sybase used them to establish an early
lead with this architecture. A competitive response quickly
followed from many of the other DBMS vendors. Today,
most enterprise DBMS products provide a stored procedure
capability, and the benefits of stored procedures in corporate

Programming
language is a
formal language
comprising a set
of strings that
produce various
kinds of machine
code output.

Keyword

Database Processing and Stored Procedural SQL

3G E-LEARNING

267

databases has expanded considerably beyond the early focus
on network performance. Stored procedures are less relevant
for other types of specialized DBMS systems, such as data
warehousing systems or in-memory databases. Some DBMS
products have modeled their SPL structures on C or Pascal
language constructs. Others have tried to match the style of the
SQL Data Manipulation Language (DML) and Data Definition
Language (DDL) statements. Oracle, on the other hand, based
its SPL (PL/SQL) on the Ada programming language, because
it was the standard language of its large U.S. government
customers. While stored procedure concepts are very similar
from one SQL dialect to another, the specific syntax varies
considerably.

10.1.1 A Basic Example

It’s easiest to explain the basics of stored procedures through
an example. Consider the process of adding a customer to the
sample database. Here are the steps that may be involved:

 ■ Obtain the customer number, name, credit limit, and
target sales amount for the customer, as well as the
assigned salesperson and office.

 ■ Add a row to the customer table containing the
customer’s data.

 ■ Update the row for the assigned salesperson, raising
the quota target by the specified amount.

 ■ Update the row for the office, raising the sales target
by the specified amount.

 ■ Commit the changes to the database, if all previous
statements were successful.

Without a stored procedure capability, here is a SQL
statement sequence that does this work for XYZ Corporation,
new customer number 2137, with a credit limit of $30,000 and
first-year target sales of $50,000 to be assigned to Paul Cruz
(employee #103) of the Chicago office:

Data
definition
language (DDL)
is a syntax for
creating and
modifying
database objects
such as tables,
indices, and
users.

Keyword

3G E-LEARNING

268 Basic Computer Coding: SQL

With a stored procedure, all of this work can be embedded into a single defined
SQL routine. Figure 1 shows a stored procedure for this task, expressed in Oracle’s PL/
SQL stored procedure dialect. The procedure is named ADD_CUST, and it accepts six
parameters—the customer name, number, credit limit, and target sales, the employee
number of the assigned salesperson, and the city where the assigned sales office is
located. Once this procedure has been created in the database, a statement like this one:

calls the stored procedure and passes it the six specified values as its parameters.
The DBMS executes the stored procedure, carrying out each SQL statement in the
procedure definition one by one. If the ADD_CUST procedure completes its execution
successfully, a committed transaction has been carried out within the DBMS. If not,
the returned error code and message indicates what went wrong.

Database Processing and Stored Procedural SQL

3G E-LEARNING

269

Figure 1. A basic stored procedure in PL/SQL.

10.1.2 Using Stored Procedures

A stored procedure is a set of Structured Query Language (SQL) statements with an
assigned name, which are stored in a relational database management system (RDBMS)
as a group, so it can be reused and shared by multiple programs.

Stored procedures can access or modify data in a database, but it is not tied to a
specific database or object, which offers a number of advantages.

The procedure defined in Figure 1 illustrates several of the basic structures common
to all SPL dialects. Nearly all dialects use a CREATE PROCEDURE statement to initially
define a stored procedure. A corresponding DROP PROCEDURE statement is used to
discard procedures that are no longer needed. The CREATE PROCEDURE statement
defines the following:

 ■ The name of the stored procedure
 ■ The number and data types of its parameters
 ■ The names and data types of any local variables used by the procedure
 ■ The sequence of statements executed when the procedure is called

The following sections describe these elements and the special SQL statements
that are used to control the flow of execution within the body of a stored procedure.

3G E-LEARNING

270 Basic Computer Coding: SQL

Creating a Stored Procedure

In many common SPL dialects, the CREATE PROCEDURE statement is used to create a
stored procedure and to specify how it operates. The CREATE PROCEDURE statement
assigns the newly defined procedure a name, which is used to call it. The name must
typically follow the rules for SQL identifiers. (The procedure in Figure 1 is named
ADD_CUST.) A stored procedure accepts zero or more parameters as its arguments.
(This one has six parameters: C_NAME, C_NUM, CRED_LIM, TGT_SLS, C_REP, and
C_OFFC.) In all of the common SPL dialects, the values for the parameters appear in
a comma-separated list, enclosed in parentheses, following the procedure name when
the procedure is called. The header of the stored procedure definition specifies the
names of the parameters and their data types. The same SQL data types supported
by the DBMS for columns within the database can be used as parameter data types.

In Figure 1, all of the parameters are input parameters (signified by the IN
keyword in the procedure header in the Oracle PL/SQL dialect). When the procedure
is called, the parameters are assigned the values specified in the procedure call, and
the statements in the procedure body begin to execute. The parameter names may
appear within the procedure body (and particularly within standard SQL statements
in the procedure body) anywhere that a constant may appear. When a parameter name
appears, the DBMS uses its current value. In Figure 1, the parameters are used in
the INSERT statement and the UPDATE statement, both as data values to be used in
column calculations and as search conditions. In addition to input parameters, some
SPL dialects also support output parameters.

These allow a stored procedure to pass back values that it calculates during
its execution. Output parameters provide an important capability for passing back
information from one stored procedure to another stored procedure that calls it, and
can also be useful for debugging stored procedures using interactive SQL. Some SPL
dialects support parameters that operate as both input and output parameters. In this
case, the parameter passes a value to the stored procedure, and any changes to the
value during the procedure execution are reflected in the calling procedure.

Figure 2 shows the same ADD_CUST procedure definition, expressed in the
Sybase Transact-SQL dialect. (The Transact-SQL dialect is also used by Microsoft SQL
Server; its basics are largely unchanged since the original Sybase SQL Server version,
which was the foundation for both the Microsoft and Sybase product lines.) Note the
differences from the Oracle dialect:

 ■ The keyword PROCEDURE can be abbreviated to PROC.
 ■ No parenthesized list of parameters follows the procedure name. Instead, the

parameter declarations immediately follow the name of the stored procedure.
 ■ The parameter names all begin with an “at” sign (@), both when they are

declared at the beginning of the procedure and when they appear within SQL
statements in the procedure body.

Database Processing and Stored Procedural SQL

3G E-LEARNING

271

 ■ There is no formal end-of-procedure body marker. Instead, the procedure body
is a single Transact-SQL statement. If more than one statement is needed, the
TransactSQL block structure is used to group the statements.

Figure 2. The ADD_CUST stored procedure in Transact-SQL.

Figure 3 shows the ADD_CUST procedure again, this time expressed in the
Informix stored procedure dialect. The declaration of the procedure head itself and the
parameters more closely follow the Oracle dialect. Unlike the Transact-SQL example,
the local variables and parameters use ordinary SQL identifiers as their names, without

3G E-LEARNING

272 Basic Computer Coding: SQL

any special identifying symbols. The procedure definition is formally ended with an
END PROCEDURE clause, which makes the syntax less error-prone.

In all dialects that use the CREATE PROCEDURE statement, the procedure can
be dropped when no longer needed by using a corresponding DROP PROCEDURE
statement:

Figure 3. The ADD_CUST stored procedure in Informix SPL.

Database Processing and Stored Procedural SQL

3G E-LEARNING

273

Calling a Stored Procedure

Once defined by the CREATE PROCEDURE statement, a stored
procedure can be used. An application program may request
execution of the stored procedure, using the appropriate SQL
statement. Another stored procedure may call it to perform a
specific function. The stored procedure may also be invoked
through an interactive SQL interface.

The various SQL dialects differ in the specific syntax used
to call a stored procedure. Here is a call to the ADD_CUST
procedure in the PL/SQL dialect:

The values to be used for the procedure’s parameters are
specified, in order, in a list that is enclosed by parentheses.
When called from within another procedure or a trigger, the
EXECUTE statement may be omitted, and the call becomes
simply:

The procedure may also be called using named parameters,
in which case the parameter values can be specified in any
sequence. Here is an example:

In the Transact-SQL dialect, the call to the stored procedure
becomes

The parentheses aren’t required, and the values to be used
for parameters again form a comma-separated list. The keyword
EXECUTE can be abbreviated to EXEC, and the parameter
names can be explicitly specified in the call, allowing you to
specify the parameter values in any order you wish. Here is
an alternative, equivalent Transact-SQL call to the ADD_CUST
stored procedure:

Trigger
is procedural
code that is
automatically
executed in
response to
certain events
on a particular
table or view in a
database.

Keyword

3G E-LEARNING

274 Basic Computer Coding: SQL

The Informix SPL form of the same EXECUTE command is

Again, the parameters are enclosed in a comma-separated,
parenthesized list. This form of the EXECUTE statement may
be used in any context. For example, it may be used by
an embedded SQL application program to invoke a stored
procedure. Within a stored procedure itself, another stored
procedure can be called using this equivalent statement:

Stored Procedure Variables

In addition to the parameters passed into a stored procedure,
it’s often convenient or necessary to define other variables to
hold intermediate values during the procedure’s execution.
All stored procedure dialects provide this capability. Usually,
the variables are declared at the beginning of the procedure
body, just after the procedure header and before the list of SQL
statements. The data types of the variables can be any of the
SQL data types supported as column data types by the DBMS.

Figure 4 shows a simple Transact-SQL stored procedure
fragment that computes the total outstanding order amount for
a specific customer number, and sets up one of two messages
depending on whether the total order amount is under $30,000.

Transact-
SQL local
variable names,
like parameter
names, begin
with an “@” sign.

Remember

Database Processing and Stored Procedural SQL

3G E-LEARNING

275

Figure 4. Using local variables in Transact-SQL

The DECLARE statement declares the local variables for this procedure. In this
case, there are two variables: one with the MONEY data type and one VARCHAR.

In Transact-SQL, the SELECT statement assumes the additional function of assigning
values to variables. A simple form of this use of SELECT is the assignment of the
message text:

The assignment of the total order amount at the beginning of the procedure body
is a more complex example, where the SELECT is used both to assign a value and as
the introducer of the query that generates the value to be assigned.

Figure 5 shows the Informix SPL version of the same stored procedure. There are
several differences from the Transact-SQL version:

 ■ Local variables are declared using the DEFINE statement. This example shows
only a very limited subset of the options that are available.

3G E-LEARNING

276 Basic Computer Coding: SQL

 ■ Variable names are ordinary SQL identifiers; there is no special first character.
 ■ A specialized SELECT…INTO statement is used within SPL to assign the

results of a singleton SELECT statement into a local variable.
 ■ The LET statement provides simple assignment of variable values.

Figure 5. Using local variables in Informix SPL.

Figure 6 shows the Oracle PL/SQL version of the same stored procedure. Again,
there are several differences to note from the Transact-SQL and Informix SPL examples:

 ■ The SELECT...INTO statement has the same form as the Informix procedure;
it is used to select values from a single-row query directly into local variables.

 ■ The assignment statements use Pascal-style (:=) notation instead of a separate
LET statement.

Database Processing and Stored Procedural SQL

3G E-LEARNING

277

Figure 6. Using local variables in Oracle PL/SQL.

Local variables within a stored procedure can be used as a source of data within
SQL expressions anywhere that a constant may appear. The current value of the
variable is used in the execution of the statement. In addition, local variables may
be destinations for data derived from SQL expressions or queries, as shown in the
preceding examples.

Statement Blocks

In all but the very simplest stored procedures, it is often necessary to group a sequence
of SQL statements together so that they will be treated as if they were a single
statement. For example, in the IF…THEN…ELSE structure typically used to control
the flow of execution within a stored procedure, most stored procedure dialects expect
a single statement following the THEN keyword. If a procedure needs to perform a
sequence of several SQL statements when the tested condition is true, it must group
the statements together as a statement block, and this block will appear after THEN.

3G E-LEARNING

278 Basic Computer Coding: SQL

In Transact-SQL, a statement block has this simple structure:

The sole function of the BEGIN…END pair is to create a statement block; they
do not impact the scope of local variables or other database objects. The Transact-SQL
procedure definition, conditional execution, and looping constructs, and others, are all
designed to operate with single SQL statements, so statement blocks are frequently
used in each of these contexts to group statements together as a single unit.

In Informix SPL, a statement block includes not only a statement sequence, but
also may optionally declare local variables for use within the block and exception
handlers to handle errors that may occur within the block. Here is the structure of
an Informix SQL statement block:

The variable declaration section is optional; we have already seen an example of
it in the Informix stored procedure body in Figure 5. The exception-handling section
is also optional; its role is described later in the “Handling Error Conditions” section.
The BEGIN… END sequence performs the same function as it does for Transact-SQL.
Informix also allows a single statement to appear in this position if the block consists
of just the other two components and a single SQL or SPL statement.

The Informix SQL structures don’t require the use of statement blocks as often as
the Transact-SQL structures. In the Informix dialect, the looping conditional execution
statements each include an explicit termination (IF…END IF, WHILE…END WHILE,
FOR… END FOR). Within the structure, a single SQL statement or a sequence of
statements (each ending with a semicolon) may appear. As a result, an explicit block
structure is not always needed simply to group together a sequence of SQL statements.

Database Processing and Stored Procedural SQL

3G E-LEARNING

279

The Oracle PL/SQL block structure has the same capabilities as the Informix
structure. It offers the capability to declare variables and exception conditions, using
this format:

All three sections of the block structure are optional. It’s common to see the
structure used with only the BEGIN…END sequence to define a statement sequence,
or with a DECLARE…BEGIN…END sequence to declare variables and a sequence of
statements. As with Informix, the Oracle structures that specify conditional execution
and looping have a self-defining end-of-statement marker, so sequences of statements
within these structures do not necessarily need an explicit BEGIN…END statement
block structure.

Functions

In addition to stored procedures, most SPL dialects support a stored function capability.
The distinction is that a function returns a single thing (such as a data value, an
object, or an XML document) each time it is invoked, while a stored procedure can
return many things or nothing at all. Support for returned values varies by SPL
dialect. Functions are commonly used as column expressions in SELECT statements,
and thus are invoked once per row in the result set, allowing the function to perform
calculations, data conversion, and other processes to produce the returned value for
the column. Following is a simple example of a stored function. Assume you want to
define a stored procedure that, given a customer number, calculates the total current
order amount for that customer. If you define the SQL procedure as a function, the
total amount can be returned as its value.

Figure 7 shows an Oracle function that calculates the total amount of current
orders for a customer, given the customer number.

3G E-LEARNING

280 Basic Computer Coding: SQL

In most DBMS products, if you enter a function call via
the interactive SQL capability, the function value is displayed
in response. Within a stored procedure, you can call a stored
function and use its return value in calculations or store it
in a variable.

Figure 7. An Oracle PL/SQL function.

Many SPL dialects also allow you to use a function as a
user-defined function within SQL value expressions. This is
true of the Oracle PL/SQL dialect, so this use of the function
defined in Figure 7 within a search condition is legal.

As the DBMS evaluates the search condition for each row
of prospective query results, it uses the customer number of
the current candidate row as an argument to the GET_TOT_
ORDS function and checks to see if it exceeds the $10,000
threshold. This same query could be expressed as a grouped
query, with the ORDERS table also included in the FROM
clause, and the results grouped by customer and salesperson.
In many implementations, the DBMS carries out the grouped
query more efficiently than the preceding one, which probably
forces the DBMS to process the orders table once for each
customer.

Figure 8 shows the Informix SPL definition for the same
stored function shown in Figure 7. Except for stylistic variations,
it differs very little from the Oracle version.

The
RETURN
clause in the
procedure
definition, which
tells the DBMS
the data type of
the value being
returned.

Remember

User-
defined
function is
a function
provided by
the user of a
program or
environment, in a
context where the
usual assumption
is that functions
are built into
the program or
environment.

Keyword

Database Processing and Stored Procedural SQL

3G E-LEARNING

281

The Transact-SQL dialect used in Microsoft SQL Server
and Sybase Adaptive Server Enterprise (ASE) has a stored
(user-defined) function capability similar to the one illustrated
in Figures 7 and 8.

Figure 8. An Informix SPL function.

Returning Values via Parameters

Functions provide only the ability to return a single thing from
a stored routine. Several stored procedure dialects provide a
method for returning more than one value (or other thing), by
passing the values back to the calling routine through output
parameters. The output parameters are listed in the stored
procedure’s parameter list, just like the input parameters seen
in the previous examples. However, instead of being used to
pass data values into the stored procedure when it is called,
the output parameters are used to pass data back out of the
stored procedure to the calling procedure.

Figure 9 shows a PL/SQL stored procedure to retrieve the
name of a customer, his or her salesperson, and the sales office
to which the customer is assigned, given a supplied customer

PL/SQL
is Oracle
Corporation’s
procedural
extension for
SQL and the
Oracle relational
database.

Keyword

3G E-LEARNING

282 Basic Computer Coding: SQL

number. The procedure has four parameters. The first one, CNUM, is an input parameter
and supplies the requested customer number. The other three parameters are output
parameters, used to pass the retrieved data values back to the calling procedure.

Figure 9. PL/SQL stored procedure with output parameters

In this simple example, the SELECT...INTO form of the query places the returned
variables directly into the output parameters. In a more complex stored procedure,
the returned values might be calculated and placed into the output parameters with
a PL/SQL assignment statement.

When a stored procedure with output parameters is called, the value passed for
each output parameter must be an acceptable target that can receive the returned data
value. The target may be a local variable, for example, or a parameter of a higher-
level procedure that is calling a lower-level procedure to do some work for it. Here
is an Oracle PL/SQL anonymous (unnamed) block that makes an appropriate call to
the GET_CUST_INFO procedure in Figure 9:

Of course, it would be unusual to call this procedure with a literal customer number,
but it’s perfectly legal since that is an input parameter. The remaining three parameters

Database Processing and Stored Procedural SQL

3G E-LEARNING

283

have acceptable data assignment targets (in this case, they are PL/SQL variables) passed
to them so that they can receive the returned values. The following call to the same
procedure is illegal because the second parameter is an output parameter and thus
cannot receive a literal value:

In addition to input and output parameters, Oracle allows you to specify procedure
parameters that are both input and output (INOUT) parameters. They must obey the
same previously cited restrictions for output parameters, but in addition, their values
are used as input by the procedure.

Figure 10 shows a version of the GET_CUST_INFO procedure defined in the
TransactSQL dialect. The way in which the output parameters are identified in the
procedure header differs slightly from the Oracle version, variable names begin with
the “@” sign, and the single-row SELECT statement has a different form. Otherwise,
the structure of the procedure and its operation are identical to the Oracle example.

Figure 10. Transact-SQL stored procedure with output parameters.

When this procedure is called from another Transact-SQL procedure, the fact that
the second, third, and fourth parameters are output parameters must be indicated in
the call to the procedure, as well as in its definition. Here is the Transact-SQL syntax
for calling the procedure in Figure 10:

3G E-LEARNING

284 Basic Computer Coding: SQL

Figure 11 shows the Informix SPL version of the same stored procedure example.
Informix takes a different approach to handling multiple return values. Instead of
output parameters, Informix extends the definition of a stored function to allow
multiple return values. Thus, the GET_CUST_INFO procedure becomes a function for
the Informix dialect. The multiple return values are specified in the RETURNING clause
of the procedure header, and they are actually returned by the RETURN statement.

Figure 11. Informix stored function with multiple return values

The Informix CALL statement that invokes the stored function uses a special
RETURNING clause to receive the returned values:

Database Processing and Stored Procedural SQL

3G E-LEARNING

285

As in the Transact-SQL dialect, Informix also allows a version of the CALL statement
that passes the parameters by name:

Conditional Execution

One of the most basic features of stored procedures is an IF…THEN…ELSE construct for
decision making within the procedure. Look back at the original ADD_CUST procedure
defined in Figure 1 for adding a new customer. Suppose that the rules for adding new
customers are modified so that there is a cap on the amount by which a salesperson’s
quota should be increased for a new customer. If the customer’s anticipated first-year
orders are $20,000 or less, that amount should be added to the quota, but if they are
more than $20,000, the quota should be increased by only $20,000. Figure 12 shows
a modified procedure that implements this new policy. The IF…THEN…ELSE logic
operates exactly as it does in any conventional programming language.

3G E-LEARNING

286 Basic Computer Coding: SQL

Figure 12. Conditional logic in a stored procedure.

All of the stored procedure dialects allow nested IF statements for more complex
decision making. Several provide extended conditional logic to streamline multiway
branching. For example, suppose you wanted to do three different things within the
ADD_ CUST stored procedure, depending on whether the customer’s anticipated
first-year orders are under $20,000, between $20,000 and $50,000, or over $50,000. In
Oracle’s PL/SQL, you could express the three-way decision this way:

Database Processing and Stored Procedural SQL

3G E-LEARNING

287

In the Informix dialect, the same multiway branch structure is supported. The
keyword ELSIF becomes ELIF, but all other aspects remain the same.

Repeated Execution

Another feature common to almost all stored procedure dialects is a construct for
repeated execution of a group of statements (looping). Depending on the dialect,
there may be support for Basic-style FOR loops (where an integer loop control value
is counted up or counted down) or for C-style WHILE loops, with a test condition
executed at the beginning or end of the loop.

In the sample database, it’s hard to come up with an uncontrived example of simple
loop processing. Assume you want to process some group of statements repeatedly,
while the value of a loop-control variable, named ITEM_NUM, ranges from 1 to 10.
Here is an Oracle PL/SQL loop that handles this situation:

The statements in the body of the loop are normally executed ten times, each time
with a larger integer value of the ITEM_NUM variable. The EXIT statement provides
the capability to exit an Oracle PL/SQL loop early. It can be unconditional, or it can
be used with a built-in test condition, as in this example.

3G E-LEARNING

288 Basic Computer Coding: SQL

Here is the same loop structure expressed in Informix SPL, showing some of its
additional capabilities and the dialectic differences from PL/SQL:

The other common form of looping is when a sequence of statements is executed
repeatedly while a certain condition exists or until a specified condition exists. Here is
an Oracle PL/SQL loop construct that repeats indefinitely. Such a loop must, of course,
provide a test within the body of the loop that detects a loop-terminating condition
(in this case, a match of two variable values) and that explicitly exits the loop:

A more common looping construct is one that builds the test into the loop structure
itself. The loop is repeatedly executed as long as the test is true. For example, suppose
you want to reduce targets for the offices in the sample database until the total of
the targets is less than $24 million. Each office’s target is to be reduced by the same
amount, which should be a multiple of $10,000. Here is a (not very efficient) Transact-
SQL stored procedure loop that gradually lowers office targets until the total is below
the threshold:

The BEGIN…END block in this WHILE loop isn’t strictly necessary, but most
TransactSQL WHILE loops include one. Transact-SQL repeats the single SQL statement
following the test condition as the body of the WHILE loop. If the body of the loop

Database Processing and Stored Procedural SQL

3G E-LEARNING

289

consists of more than one statement, you must use a BEGIN…END block to group
the statements.

Here is the Oracle PL/SQL version of the same loop:

The subquery-style version of the SELECT statement from Transact-SQL has been
replaced by the PL/SQL SELECT...INTO form of the statement, with a local variable
used to hold the total of the office targets. Each time the loop is executed, the OFFICES
table is updated, and then the total of the targets is recalculated.

Here is the same loop once more, expressed using Informix SPL’s WHILE statement:

Other variants of these loop-processing constructs are provided by the various
dialects, but the capabilities and syntax are similar to these examples.

Other Flow-of-Control Constructs

Some stored procedure dialects provide statements to control looping and alter the
flow of control. In Informix, for example, the EXIT statement interrupts the normal
flow within a loop and causes execution to resume with the next statement following
the loop itself. The CONTINUE statement interrupts the normal flow within the loop
but causes execution to resume with the next loop iteration. Both of these statements
have three forms, depending on the type of loop being interrupted:

3G E-LEARNING

290 Basic Computer Coding: SQL

In Transact-SQL, a single statement, BREAK, provides the equivalent of the Informix
EXIT statement variants, and there is a single form of the CONTINUE statement as
well. In Oracle, the EXIT statement performs the same function as for Informix, and
there is no CONTINUE statement.

Additional control over the flow of execution within a stored procedure is provided
by statement labels and the GOTO statement. In most dialects, the statement label
is an identifier, followed by a colon. The GOTO statement names the label to which
control should be transferred.

There is typically a restriction that you cannot transfer control out of a loop or
a conditional testing statement, and always a prohibition against transferring control
into the middle of such a statement. As in structured programming languages, the use
of GOTO statements is discouraged, because it makes stored procedure code harder
to understand and debug

Cursor-Based Repetition

One common need for repetition of statements within a stored procedure is when
the procedure executes a query and needs to process the query results, row by row.
All of the major dialects provide a structure for this type of processing. Conceptually,
the structures parallel the DECLARE CURSOR, OPEN CURSOR, FETCH, and CLOSE
CURSOR statements in embedded SQL or in the corresponding SQL API calls. However,
instead of fetching the query results into the application program, in this case, they
are being fetched into the stored procedure, which is executing within the DBMS
itself. Instead of retrieving the query results into application program variables (host
variables), the stored procedure retrieves them into local stored procedure variables.

To illustrate this capability, assume that you want to populate two tables with data
from the ORDERS table. One table, named BIGORDERS, should contain customer name
and order size for any orders over $10,000. The other, SMALLORDERS, should contain
the salesperson’s name and order size for any orders under $1000. The best and most
efficient way to do this would be to use two separate SQL INSERT statements with
subqueries, but for purposes of illustration, consider this method instead:

 ■ Execute a query to retrieve the order amount, customer name, and salesperson
name for each order.

Database Processing and Stored Procedural SQL

3G E-LEARNING

291

 ■ For each row of query results, check the order amount to see whether it falls
into the proper range for including in the BIGORDERS or SMALLORDERS
tables.

 ■ Depending on the amount, INSERT the appropriate row into the BIGORDERS
or SMALLORDERS table.

 ■ Repeat Steps 2 and 3 until all rows of query results are exhausted.
 ■ Commit the updates to the database.

Figure 13 shows an Oracle stored procedure that carries out this method. The
cursor that defines the query is defined early in the procedure and assigned the
name O_CURSOR. The variable CURS_ROW is defined as an Oracle row type. It
is a structured Oracle row variable with individual components (like a C-language
structure). By declaring it as having the same row type as the cursor, the individual
components of CURS_ROW have the same data types and names as the cursor’s query
results columns.

3G E-LEARNING

292 Basic Computer Coding: SQL

Figure 13. A cursor-based FOR loop in PL/SQL

The query described by the cursor is actually carried out by the cursor-based
FOR loop. It basically tells the DBMS to carry out the query described by the cursor
(equivalent to the OPEN statement in embedded SQL) before starting the loop processing.
The DBMS then executes the FOR loop repeatedly, by fetching a row of query results
at the top of the loop, placing the column values into the CURS_ROW variable, and
then executing the statements in the loop body. When no more rows of query results
are to be fetched, the cursor is closed, and processing continues after the loop.

Figure 14 shows an equivalent stored procedure with the specialized FOR loop
structure of Informix SPL. In this case, the query results are retrieved into ordinary
local variables; there is no special row data type used. The FOREACH statement
incorporates several different functions. It defines the query to be carried out, through
the SELECT expression that it contains. It marks the beginning of the loop that is to
be executed for each row of query results. (The end of the loop is marked by the END
FOREACH statement.)

Database Processing and Stored Procedural SQL

3G E-LEARNING

293

Figure 14. A cursor-based FOREACH loop in Informix SPL.

When the FOREACH statement is executed, it carries out the query and then
fetches rows of query results repeatedly, putting their column values into the local
variables as specified in the statement. After each row is fetched, the body of the loop
is executed. When there are no more rows of query results, the cursor is automatically
closed, and execution continues with the next statement following the FOREACH. Note
that in this example, the cursor isn’t even assigned a specific name because all cursor
processing is tightly specified within the single FOREACH statement.

The Transact-SQL dialect doesn’t have a specialized FOR loop structure for
cursorbased query results processing. Instead, the DECLARE CURSOR, OPEN, FETCH,
and CLOSE statements of embedded SQL have direct counterparts within the Transact-
SQL language. Figure 15 shows a Transact-SQL version of the sort_orders procedure.
Note the separate DECLARE, OPEN, FETCH, and CLOSE statements for the cursor.
Loop control is provided by testing the system variable @@SQLSTATUS, which is the
Transact-SQL equivalent of the SQLSTATE code. It receives a value of zero when a
fetch is successful, and a nonzero value when there are no more rows to fetch.

3G E-LEARNING

294 Basic Computer Coding: SQL

Figure 15 A cursor-based WHILE loop in Transact-SQL

Database Processing and Stored Procedural SQL

3G E-LEARNING

295

Handling Error Conditions

When an application program uses embedded SQL or a SQL API for database processing,
the application program is responsible for handling errors that arise. Error status
codes are returned to the application program, and more error information is typically
available through additional API calls or access to an extended diagnostics area. When
database processing takes place within a stored procedure, the procedure itself must
handle errors.

Transact-SQL provides error handling through a set of global system variables.
The specific error-handling variables are only a few of well over 100 system variables
that provide information on the state of the server, transaction state, open connections,
and other database configuration and status information. The two most useful global
variables for error handling are

 ■ @@ERROR Contains error status of the most recently executed statement batch
 ■ @@SQLSTATUS Contains status of the last fetch operation

The normal completion values for both variables are zero; other values indicate
various errors and warnings. The global variables can be used in the same way as local
variables within a Transact-SQL procedure. Specifically, their values can be checked
for branching and loop control.

Oracle’s PL/SQL provides a different style of error handling. The Oracle DBMS
provides a set of system-defined exceptions, which are errors or warning conditions
that can arise during SQL statement processing. Within an Oracle stored procedure
(actually, any Oracle statement block), the EXCEPTION section tells the DBMS how
it should handle any exception conditions that occur during the execution of the
procedure. There are over a dozen different predefined Oracle-detected exception
conditions. In addition, you can define your own exception conditions.

Most of the previous examples in this chapter don’t provide any real error-handling
capability. Figure 16 shows a revised version of the Oracle stored function in Figure
7. This improved version detects the specific situation where the supplied customer
number does not have any associated orders (that is, where the query to calculate
total orders returns a NO_DATA_FOUND exception). It responds to this situation by
signaling back to the application program an application-level error and associated
message. Any other exception conditions that arise are caught by the WHEN OTHERS
exception handler

3G E-LEARNING

296 Basic Computer Coding: SQL

Figure 16. PL/SQL function with error handling.

The Informix SPL takes a similar approach to exception handling. Figure 17 shows
the Informix version of the stored function, with Informix-style exception handling.
The ON EXCEPTION statement is a declarative statement and specifies the sequence

Database Processing and Stored Procedural SQL

3G E-LEARNING

297

of SQL statements to be executed when a specific exception arises. A comma-separated
list of exception numbers may be specified.

Figure 17. Informix SPL function with condition handling.

10.1.3 Advantages of Stored Procedures

Stored procedures offer several advantages, both for database users and database
administrators, including

 ■ Runtime performance Many DBMS brands compile stored procedures (either
automatically or at the user’s request) into an internal representation that can
be executed very efficiently by the DBMS at runtime. Executing a precompiled
stored procedure can be much faster than running the equivalent SQL statements
through the PREPARE/EXECUTE process.

 ■ Reusability Once a stored procedure has been defined for a specific function,
that procedure may be called from many different application programs that
need to perform the function, permitting very easy reuse of application logic
and reducing the risk of application programmer error.

 ■ Reduced network traffic In a client/server configuration, sending a stored
procedure call across the network and receiving the results in a reply message

3G E-LEARNING

298 Basic Computer Coding: SQL

generates much less network traffic than using a network round trip for each
individual SQL statement. This can improve overall system performance
considerably in a network with heavy traffic or one that has lower-speed
connections.

 ■ Security In most DBMS brands, the stored procedure is treated as a trusted
entity within the database and executes with its own privileges. The user
executing the stored procedure needs to have only permission to execute it,
not permission on the underlying tables that the stored procedure may access
or modify. Thus, the stored procedure allows the database administrator to
maintain tighter security on the underlying data, while still giving individual
users the specific data update or data access capabilities they require.

 ■ Encapsulation Stored procedures are a way to achieve one of the core objectives
of object-oriented programming—the encapsulation of data values, structures,
and access within a set of very limited, well-defined external interfaces. In
object terminology, stored procedures can be the methods through which
the objects in the underlying RDBMS are exclusively manipulated. To fully
attain the object-oriented approach, all direct access to the underlying data via
SQL must be disallowed through the RDBMS security system, leaving only
the stored procedures for database access. In practice, few if any production
relational databases operate in this restricted manner.

 ■ Simplicity of access In a large enterprise database, a collection of stored
procedures may be the main way in which application programs access the
database. The stored procedures form a well-defined set of transactions and
queries that applications can perform on the database. For most application
programmers, a call to a simple, predefined function that checks an account
balance, given a customer number, or one that adds an order, given a customer
number, quantity, and product-id, is easier to understand than the corresponding
SQL statements.

 ■ Business rules enforcement The conditional processing capabilities of stored
procedures are often used to place business rules into the database. For
example, a stored procedure used to add an order to the database might
contain logic to check the credit of the customer placing the order and check
whether there is enough inventory on hand to fill the order, and reject the
order if these conditions cannot be met. A large company could quite easily
have several different ways in which orders are taken and entered into the
corporate database—one program for use by direct salespeople, one for people
in the telesales department, another that accepts orders placed via the Web, and
so on. Each of these would typically have its own orderacceptance program,
usually written by different programmers at different times. But if all of the
programs are forced to use the same stored procedure to add an order, the

Database Processing and Stored Procedural SQL

3G E-LEARNING

299

company can be assured that the business rules in that procedure are being
uniformly enforced, no matter where the order originated.

10.1.4 Stored Procedure Performance

Different DBMS brands vary in the way they actually implement stored procedures. In
several brands, the stored procedure text is stored within the database and is interpreted
when the procedure is executed. This has the advantage of creating a very flexible
stored procedure language, but it creates significant runtime overhead for complex
stored procedures. The DBMS must read the statements that make up the stored
procedure at runtime, parse and analyze them, and determine what to do on the fly.

Because of the overhead in the interpreted approach, some DBMS brands compile
stored procedures into an intermediate form that is much more efficient to execute.
Compilation may be automatic when the stored procedure is created, or the DBMS
may provide the ability for the user to request stored procedure compilation. The
disadvantage of compiled stored procedures is that the exact technique used to carry
out the stored procedure is fixed when the procedure is compiled. Suppose, for example,
that a stored procedure is created and compiled soon after a database is first created,
and later some useful indexes are defined on the data. The compiled queries in the
stored procedure won’t take advantage of these indexes, and as a result, they may
run much more slowly than if they were recompiled.

To deal with stale compiled procedures, some DBMS brands automatically mark
any compiled procedures that may be affected by subsequent database changes as
being in need of recompilation. The next time the procedure is called, the DBMS
notices the mark and recompiles the procedure before executing it. Normally, this
approach provides the best of both worlds—the performance benefits of precompilation
while keeping the compiled procedure up to date. Its disadvantage is that it can yield
unpredictable stored procedure execution times. When no recompile is necessary, the
stored procedure may execute quickly; when a recompile is activated, it may produce
a significant delay; and in most cases, the recompile delay is much longer than the
disadvantage of using the old compiled version.

To determine the stored procedure compilation capabilities of a particular DBMS, you
can examine its CREATE PROCEDURE and EXECUTE PROCEDURE statement options,
or look for other procedure management statements such as ALTER PROCEDURE.

10.1.5 System-Defined Stored Procedures

DBMS brands that support stored procedures sometimes provide built-in, system-
defined stored procedures to automate database processing or management functions.
Sybase SQL Server pioneered this use of system stored procedures. Today, hundreds
of Transact-SQL system stored procedures provide functions such as managing users,

3G E-LEARNING

300 Basic Computer Coding: SQL

database roles, job execution, distributed servers, replication,
and others. Most Transact-SQL system procedures follow this
naming convention:

 ■ sp_add_something Adds a new object (user, server,
replica, etc.)

 ■ sp_drop_something Drops an existing object
 ■ sp_help_something Gets information about an object

or objects
For example, the sp_helpuser procedure returns information

about the valid users of the current database. You will notice
that in Microsoft SQL Server, the names of TransactSQL system
stored procedures often have underscores between words
except for the one included in the name prefix (sp_). Also, since
the vendors use the prefix sp_ to distinguish their supplied
system stored procedures, it’s a good idea to avoid using that
prefix in procedures that users add to the database.

Oracle uses the prefix DBMS_ for procedures provided with
its namesake DBMS. Most of these procedures are bundled
into packages by functional category.

The package DBMS_LOB contains general purpose routines (stored procedures
and functions) for operations on large objects (LOBs).

10.1.6 External Stored Procedures

Although stored procedures written in the extended SQL
dialects of the major enterprise DBMS brands can be quite
powerful, they have limitations. One major limitation is that
they do not provide access to features outside the DBMS, such
as the features of the operating system or other applications
running on the same computer system. The extended SQL
dialects also tend to be fairly high-level languages, with limited
capability for the lower-level programming usually done in
C or C++. To overcome these limitations, some DBMS brands
provide access to external stored procedures.

An external stored procedure is a procedure written in
a conventional programming language (such as C or Pascal)
and compiled outside the DBMS itself. The DBMS is given

Database Processing and Stored Procedural SQL

3G E-LEARNING

301

a definition of the procedure’s name and its parameters, along with other essential
information such as the calling conventions used by the programming language in
which the stored procedure was written. Once defined to the DBMS, the external stored
procedure can be called as if it were a SQL stored procedure. The DBMS handles the
call, turns over control to the external procedure, and then receives any return values
and parameters.

Microsoft SQL Server provides a set of system-defined external stored procedures
that provide access to selected operating system capabilities. The xp_sendmail procedure
can be used to send electronic mail to users, based on conditions within the DBMS:

Similarly, the xp_cmdshell external procedure can be called to pass commands
to the underlying operating system on which SQL Server is operating. Beyond these
predefined external procedures, SQL Server allows a user-written external procedure
to be stored in a dynamic-linked library (DLL) and called from within SQL Server
stored procedures.

Informix provides basic access to underlying operating system capabilities with a
special SYSTEM statement. In addition, it supports user-written external procedures
through its CREATE PROCEDURE statement. Where the statement block comprising the
body of an Informix SPL procedure would appear, an EXTERNAL clause specifies the
name, location, and language of the externally written procedure. With the procedure
defined in this way, it can be called in the same way as native Informix SPL procedures.
Newer versions of Oracle (Oracle8 and later) provide the same capability, also via the
CREATE PROCEDURE statement. IBM’s DB2 database family provides the same set
of capabilities.

10.2 Triggers

A trigger is a special set of stored procedural code whose activation is caused by
modifications to the database contents. Unlike stored procedures, a trigger is not
activated by a CALL or EXECUTE statement. Instead, the trigger is associated with
a database table. When the data in the table is changed by an INSERT, DELETE, or
UPDATE statement, the trigger is fired, which means that the DBMS executes the SQL
statements that make up the body of the trigger. Some DBMS brands allow definition of
specific updates that cause a trigger to fire. Also, some DBMS brands, notably Oracle,
allow triggers to be based on system events such as users connecting to the database
or execution of a database shutdown command.

Triggers can be used to cause automatic updates of information within a database.
For example, suppose you wanted to set up the sample database so that any time a

3G E-LEARNING

302 Basic Computer Coding: SQL

new salesperson is inserted into the SALESREPS table, the sales target for the office
where the salesperson works is raised by the new salesperson’s quota. Here is an
Oracle PL/SQL trigger that accomplishes this goal:

The CREATE TRIGGER statement is used by most DBMS brands that support triggers
to define a new trigger within the database. It assigns a name to the trigger (UPD_TGT
for this one) and identifies the table the trigger is associated with (SALESREPS) and
the update action(s) on that table that will cause the trigger to be executed (INSERT
in this case). The body of this trigger tells the DBMS that for each new row inserted
into the table, it should execute the specified UPDATE statement for the OFFICES
table. The QUOTA value from the newly inserted SALESREPS row is referred to as
:NEW.QUOTA within the trigger body.

10.2.1 Advantages and Disadvantages of Triggers

 ■ Auditing changes A trigger can detect and disallow specific updates and
changes that should not be permitted in the database.

 ■ Cascaded operations A trigger can detect an operation within the database
(such as deletion of a customer or salesperson) and automatically cascade
the impact throughout the database (such as adjusting account balances or
sales targets).

 ■ Enforce interrelationships A trigger can enforce more complex interrelationships
among the data in a database than those that can be expressed by simple
referential integrity constraints or check constraints, such as those that require
a sequence of SQL statements or IF…THEN…ELSE processing.

 ■ Stored procedure invocation A trigger can call one or more stored procedures
or even invoke actions outside the DBMS itself through external procedure
calls in response to database updates.

 ■ Detecting system events For DBMSs that support triggers based on system
events, the trigger can audit or monitor such events, such as tracing a particular
user whenever they connect to the database.

Database Processing and Stored Procedural SQL

3G E-LEARNING

303

In each of these cases, a trigger embodies a set of business rules that govern the
data in the database and modifications to that data. The rules are embedded in a single
place in the database (the trigger definition). As a result, they are uniformly enforced
across all applications that access the database. When they need to be changed, they
can be changed once with the assurance that the change will be applied uniformly.

The major disadvantage of triggers is their potential performance impact. If a trigger
is set on a particular table, then every database operation that attempts to change that
table’s data in the manner defined in the trigger (an insert, delete, or update to one
or more columns) causes the DBMS to execute the trigger procedure. For a database
that requires very high data insertion or update rates, the overhead of this processing
can be considerable. This is especially true for bulk load operations, where the data
may have already been prechecked for integrity. To deal with this disadvantage, some
DBMS brands allow triggers to be selectively enabled and disabled, as appropriate.

10.2.2 Triggers in Transact-SQL

Transact-SQL provides triggers through a CREATE TRIGGER statement in both its
Microsoft SQL Server and Sybase Adaptive Server dialects. Here is a Transact-SQL
trigger definition for the sample database, which implements the same trigger as the
preceding Oracle PL/ SQL example:

The first clause names the trigger (UPD_TGT). The second clause is required
and identifies the table to which the trigger applies. The third clause is also required
and tells which database update operations cause the trigger to be fired. In this case,
only an INSERT statement causes the trigger to fire. You can also specify UPDATE or
DELETE operations, or a combination of two or three of these operations in a comma-

3G E-LEARNING

304 Basic Computer Coding: SQL

separated list. Transact-SQL restricts triggers so that only one trigger may be defined
on a particular table for each of the three data modification operations. The body of
the trigger follows the AS keyword. To understand the body of a trigger like this one,
you need to understand how Transact-SQL treats the rows in the target table during
database modification operations.

For purposes of trigger operation, Transact-SQL defines two logical tables whose
column structure is identical to the target table on which the trigger is defined. One
of these logical tables is named DELETED, and the other is named INSERTED. These
logical tables are populated with rows from the target table, depending on the data
modification statement that caused the trigger to fire, as follows:

 ■ DELETE Each target table row that is deleted by the DELETE statement is
placed into the DELETED table. The INSERTED table is empty.

 ■ INSERT Each target table row that is added by the INSERT statement is also
placed into the INSERTED table. The DELETED table is empty.

 ■ UPDATE For each target table row that is changed by the UPDATE statement,
a copy of the row before any modifications is placed into the DELETED table.
A copy of the row after all modifications is placed into the INSERTED table.

These two logical tables can be referenced within the body of the trigger, and
the data in them can be combined with data from other tables during the trigger’s
operation. In this Transact-SQL trigger, the trigger body first tests to make sure that
only a single row of the SALESREPS table has been inserted, by checking the system
variable @@ROWCOUNT. If this is true, then the QUOTA column from the INSERTED
logical table is added to the appropriate row of the OFFICES table. The appropriate
row is determined by joining the logical table to the OFFICES table based on matching
office numbers.

Here is a different trigger that detects a different type of data integrity problem.
In this case, it checks for an attempt to delete a customer when there are still orders
outstanding in the database for that customer. If it detects this situation, the trigger
automatically rolls back the entire transaction, including the DELETE statement that
fired the trigger:

Database Processing and Stored Procedural SQL

3G E-LEARNING

305

Transact-SQL triggers can be specified to fire on any UPDATE for a target table, or just for
updates of selected columns. This trigger fires on inserts or updates to the SALESREPS
table and does different processing depending on whether the QUOTA or SALES column
has been updated:

10.2.3 Triggers in Informix SPL

Informix also supports triggers through a CREATE TRIGGER statement. As in the
TransactSQL dialect, the beginning of the CREATE TRIGGER statement defines the
trigger name, the table on which the trigger is being defined, and the triggering actions.
Here are statement fragments that show the syntax:

3G E-LEARNING

306 Basic Computer Coding: SQL

The last example is a trigger that fires only when two specific columns of the
SALESREPS table are updated.

Informix allows you to specify that a trigger should operate at three distinct times
during the processing of a triggered change to the target table:

 ■ BEFORE The trigger fires before any changes take place. No rows of the
target table have yet been modified.

 ■ AFTER The trigger fires after all changes take place. All affected rows of the
target table have been modified.

 ■ FOR EACH ROW The trigger fires repeatedly, once as each row affected by
the change is being modified. Both the old and new data values for the row
are available to the trigger.

An individual trigger definition can specify actions to be taken at one or more
of these steps. For example, a trigger could execute a stored procedure to calculate
the sum of all orders BEFORE an update, monitor updates to each ORDERS row as
they occur with a second action, and then calculate the revised order total AFTER
the update with a call to another stored procedure. Here is a trigger definition that
does all of this:

Database Processing and Stored Procedural SQL

3G E-LEARNING

307

The BEFORE clause in this trigger specifies that a stored procedure named ADD_
ORDERS is to be called before any UPDATE statement processing occurs. Presumably,
this procedure calculates the total orders and returns the total value into the local
variable OLD_TOTAL. Similarly, the AFTER clause specifies that a stored procedure
(in this case, the same one) is to be called after all UPDATE statement processing is
complete. This time, the total orders amount is placed into a different local variable,
NEW_TOTAL.

The FOR EACH ROW clause specifies the action to be taken as each affected row is
updated. In this case, the requested action is an INSERT into one of two order-tracking
tables, depending on whether the order amount is being increased or decreased. These
tracking tables contain the customer number, date, and both the old and new order
amounts. To obtain the required values, the trigger must be able to refer to both the
old (prechange) and the new (postchange) values of each row.

The REFERENCING clause provides names by which these two states of the
row currently being modified in the ORDERS table can be used. In this example, the
prechange values of the columns are available through the column name qualifier PRE,
and the postchange values are available through the column name qualifier POST.
These are not special names; any names can be used.

Informix is more limited than some other DBMS brands in the actions that can be
specified within the trigger definition itself. These statements are available:

 ■ INSERT
 ■ DELETE
 ■ UPDATE
 ■ EXECUTE PROCEDURE

In practice, the last option provides quite a bit of flexibility. The called procedure
can perform almost any processing that could be done inline within the trigger body
itself.

10.2.4 Triggers in Oracle PL/SQL

Oracle provides a more complex trigger facility than either the Informix or Transact-
SQL facility described in the preceding sections. It uses a CREATE TRIGGER statement
to specify triggered actions. As in the Informix facility, a trigger can be specified to
fire at specific times during specific update operations:

3G E-LEARNING

308 Basic Computer Coding: SQL

 ■ Statement-level trigger A statement-level trigger fires once for each data
modification statement. It can be specified to fire either before the statement
is executed or after the statement has completed its action.

 ■ Row-level trigger A row-level trigger fires once for each row being modified
by a statement. In Oracle’s structure, this type of trigger may also fire either
before the row is modified or after it is modified.

 ■ Instead-of trigger An instead-of trigger takes the place of an attempted data
modification statement. It provides a way to detect an attempted UPDATE,
INSERT, or DELETE operation by a user or procedure, and to substitute
other processing instead. You can specify that a trigger should be executed
instead of a statement, or that it should be executed instead of each attempted
modification of a row.

 ■ System event trigger A trigger that fires when a particular system event
takes place, such as a user connecting to the database, or entry of a database
shutdown command.

The following code is a PL/SQL trigger definition that implements the same
processing as in the complex Informix example from the previous section. It has
been split into three separate Oracle CREATE TRIGGER statements; one each for the
BEFORE and AFTER statement-level triggers and one trigger that is executed for each
update row.

Database Processing and Stored Procedural SQL

3G E-LEARNING

309

These trigger structures and their options provide 14 different valid Oracle trigger
types (12 resulting from a choice of INSERT/DELETE/UPDATE triggers for BEFORE or
AFTER processing at the row or statement level (3×2×2), and two more from instead-
of triggers at the statement or row level). In practice, relational databases built using
Oracle don’t tend to use instead-of triggers; they were introduced in Oracle8 to support
some of its newer object-oriented features.

10.2.5 Other Trigger Considerations

Triggers pose some of the same issues for DBMS processing that UPDATE and DELETE
rules present. For example, triggers can cause a cascaded series of actions. Suppose a
user’s attempt to update a table causes a trigger to fire, and within the body of that
trigger is an UPDATE statement for another table. A trigger on that table causes the
UPDATE of still another table, and so on. The situation is even worse if one of the fired
triggers attempts to update the original target table that caused the firing of the trigger
sequence in the first place! In this case, an infinite loop of fired triggers could result.

3G E-LEARNING

310 Basic Computer Coding: SQL

Various DBMS systems deal with this issue in different ways. Some impose
restrictions on the actions that can be taken during execution of a trigger. Others
provide built-in functions that allow a trigger’s body to detect the level of nesting at
which the trigger is operating. Some provide a system setting that controls whether
cascaded trigger processing is allowed. Finally, some provide a limit on the number
of levels of nested triggers that can fire.

One additional issue associated with triggers is the overhead that can result
during very heavy database usage, such as when bulk data is being loaded into a
database. Some DBMS brands provide the ability to selectively enable and disable
trigger processing to handle this situation. Oracle, for example, provides this form of
the ALTER TRIGGER statement:

A similar capability is provided within the CREATE TRIGGER statement of Informix.

10.3 STORED PROCEDURES, FUNCTIONS, TRIGGERS,
AND THE SQL STANDARD
The development of DBMS stored procedures, functions, and triggers has been largely
driven by DBMS vendors and the competitive dynamics of the database industry.
Sybase’s initial introduction of stored procedures and triggers in SQL Server triggered a
competitive response, and by the mid-1990s, many of the enterprise-class systems had
added their own proprietary procedural extensions to SQL. Stored procedures were
not a focus of the SQL standard, but became a part of the standardization agenda after
the 1992 publication of the SQL2 standard. The work on stored procedure standards
was split off from the broader object-oriented extensions that were proposed for SQL3,
and was focused on a set of procedural extensions to the SQL language.

The result was a new part of the SQL standard, published in 1996 as SQL/Persistent
Stored Modules (SQL/PSM), International Standard ISO/IEC 9075-4. The actual form
of the standard specification is a collection of additions, edits, new paragraphs, and
replacement paragraphs to the 1992 SQL2 standard (ISO/IEC 9075:1992). In addition
to being a modification of the SQL standard, SQL/PSM was also drafted as a part
of the planned followon standard, which was called SQL3 during its drafting. The
development of the follow-on standard took longer than expected, but SQL/PSM
eventually took its place as Part 4 of the SQL3 standard, officially known as SQL:1999.
The SQL Call-Level Interface (CLI) standard was treated the same way; it is now Part
3 of the SQL standard.

When the SQL:1999 standard was published, selected parts of SQL/PSM that are used
by other parts of the standard were moved to the core SQL/Foundation specification
(Part 1). The SQL/PSM standard published in 1996 addressed only stored procedures

Database Processing and Stored Procedural SQL

3G E-LEARNING

311

and functions; it explicitly did not provide a specification of a trigger facility for the
ISO SQL standard. The standardization of trigger functions was considered during the
development of the SQL2 and SQL/PSM standards, but the standards groups determined
that triggers were too closely tied to other object-oriented extensions proposed for
SQL3. The SQL:1999 standard that resulted from the SQL3 work finally provided an
ANSI/ISO standard trigger facility.

The publication of the SQL/PSM and SQL:1999 standards lagged the first commercial
implementation of stored procedures and triggers by many years. By the time the
standard was adopted, most enterprise DBMS vendors had responded to user enthusiasm
and competitive pressure by introducing stored procedure and trigger capabilities
in their products. Unlike some other SQL extensions where IBM’s clout and a DB2
implementation had set a de facto standard, the major DBMS vendors implemented
stored procedures and triggers in different, proprietary ways, and in some cases,
competed with one another based on unique features of their implementations. As
a result, the ANSI/ISO standardization of stored procedures and triggers has had
little impact on the DBMS market to date. It’s reasonable to expect that ANSI/ ISO
implementations will find their way into major DBMS products over time, but as a
complement to, rather than a replacement for, the proprietary implementations.

10.3.1 The SQL/PSM Stored Procedures Standard

The capabilities specified in the SQL/PSM standard parallel the core features of the
proprietary stored procedure capabilities of today’s DBMS systems. They include SQL
language constructs to:

 ■ Define and name procedures and functions written in the extended SQL
language

 ■ Invoke (call) a previously-defined procedure or function
 ■ Pass parameters to a called procedure or function, and obtain the results of

its execution
 ■ Declare and use local variables within the procedure or function
 ■ Group a block of SQL statements together for execution
 ■ Conditionally execute SQL statements (IF…THEN…ELSE)
 ■ Repeatedly execute a group of SQL statements (looping)

The SQL/PSM standard specifies two types of SQL-invoked routines. A SQL-
procedure is a routine that can return any number of values or no value at all. It is
called with a CALL statement:

3G E-LEARNING

312 Basic Computer Coding: SQL

As with the proprietary stored procedure languages illustrated in the previous
examples throughout this chapter, SQL/PSM stored procedures accept parameters passed
via the CALL statement. SQL/PSM stored procedures can also pass data back to their
caller via output parameters, again mirroring the capabilities of the proprietary stored
procedure languages. SQL/PSM also supports combined input/output parameters, like
some of the proprietary languages.

A SQL function does return a value. It is called just like a built-in SQL function
within a value expression:

SQL/PSM restricts SQL functions to only returning a single value through the
functioncall mechanism. Output parameters and input/output parameters are not
allowed in SQL functions.

SQL routines are objects within the database structure described in the SQL
standard. SQL/PSM allows the creation of routines within a SQL schema (a schema-level
routine), where it exists along with the tables, views, assertions, and other objects. It
also allows the creation of routines within a SQL module, which is the SQL procedure
model carried forward from the SQL1 standard.

Creating a SQL Routine

Following the practice of most DBMS brands, the SQL/PSM standard uses the CREATE
PROCEDURE and CREATE FUNCTION statements to specify the definitions of stored
procedures and functions. Figure 18 shows syntax for the CREATE PROCEDURE
statement, and Figure 19 shows the syntax for the CREATE FUNCTION statement.
In addition to the capabilities shown in the figure, the standard provides a capability
to define external stored procedures, specifying the language they are written in,
whether they can read or modify data in the database, their calling conventions, and
other characteristics.

Database Processing and Stored Procedural SQL

3G E-LEARNING

313

Figure 18. The SQL/PSM CREATE PROCEDURE syntax diagram.

Figure 19. The SQL/PSM CREATE FUNCTION syntax diagram

Flow-of-Control Statements

The SQL/PSM standard specifies the common programming structures that are found
in most stored procedure dialects to control the flow of execution. Figure 20 shows the
conditional branching and looping syntax. Note that the SQL statement lists specified for
each structure consist of a sequence of SQL statements, each ending with a semicolon.
Thus, explicit block structures are not required for simple multistatement sequences
that appear in an IF…THEN…ELSE statement or in a LOOP statement. The looping
structures provide a great deal of flexibility for loop processing. There are forms that

3G E-LEARNING

314 Basic Computer Coding: SQL

place the test at the top of the loop or at the bottom of the loop, as well as a form
that provides infinite looping and requires the explicit coding of a test to break loop
execution. Each of the program control structures is explicitly terminated by an END
flag that matches the type of structure, making programming debugging easier.

Cursor Operations

The SQL/PSM standard extends the cursor manipulation capabilities specified in
the SQL2 standard for embedded SQL into SQL routines. The DECLARE CURSOR,
OPEN, FETCH, and CLOSE statements retain their roles and functions. Instead of
using application program host variables to supply parameter values and to receive
retrieved data, SQL routine parameters and variables can be used for these functions.

Figure 20. The SQL/PSM flow-of-control statements syntax diagram.

The SQL/PSM standard introduces one new cursor-controlled looping structure,
shown in Figure 21. Like the similar structures in the Oracle and Informix dialects
described in the “Cursor-Based Repetition” section earlier in this chapter, it combines
the cursor definition and the OPEN, FETCH, and CLOSE statements into a single loop
definition that also specifies the processing to be performed for each row of retrieved
query results.

Database Processing and Stored Procedural SQL

3G E-LEARNING

315

Figure 21. The SQL/PSM cursor-controlled loop syntax diagram.

Block Structure

Figure 22 shows the block structure specified by the SQL/PSM standard. It is quite a
comprehensive structure, providing the following capabilities:

 ■ Labels the block of statements with a statement label
 ■ Declares local variables for use within the block
 ■ Declares local user-defined error conditions
 ■ Declares cursors for queries to be executed within the block
 ■ Declares handlers to process error conditions that arise
 ■ Defines the sequence of SQL statements to be executed

3G E-LEARNING

316 Basic Computer Coding: SQL

Figure 22. The SQL/PSM statement block syntax diagram.

These capabilities resemble some of those described earlier in the “Statement Blocks”
section of this chapter for the Informix and Oracle dialect stored procedure dialects.

Local variables within SQL/PSM procedures and functions (actually, within statement
blocks) are declared using the DECLARE statement. Values are assigned using the SET
statement. Functions return a value using the RETURN statement. Here is a statement
block that might appear within a stored function, with examples of these statements:

Error Handling

The block structure specified by the SQL/PSM standard provides fairly comprehensive
support for error handling. The standard specifies predefined conditions that can be
detected and handled, including

 ■ SQLWARNING One of the warning conditions specified in the SQL standard
 ■ NOT FOUND The condition that normally occurs when the end of a set of

query results is reached with a FETCH statement
 ■ SQLSTATE value A test for specific SQLSTATE error codes

Database Processing and Stored Procedural SQL

3G E-LEARNING

317

 ■ User-defined condition A condition named by the stored procedure
Conditions are typically defined in terms of SQLSTATE values. Rather than using

numerical SQLSTATE codes, you can assign the condition a symbolic name. You can
also specify your own user-defined condition:

Once the condition has been defined, you can force the condition to occur through
the execution of a SQL routine with the SIGNAL statement:

To handle error conditions that may arise, SQL/PSM allows you to declare a
condition handler. The declaration specifies the list of conditions that are to be handled
and the action to be taken. It also specifies the type of condition handling. The types
differ in what happens to the flow of control after the handler is finished with its work:

 ■ CONTINUE type After the condition handler completes its work, control
returns to the next statement following the one that caused the condition.
That is, execution continues with the next statement.

 ■ EXIT type After the condition handler completes its work, control returns
to the end of the statement block containing the statement that caused the
condition. That is, execution effectively exits the block.

 ■ UNDO type After the condition handler completes its work, all modifications
are undone to data in the database caused by statements within the same
statement block as the statement causing the error. The effect is the same as
if a transaction had been initiated at the beginning of the statement block
and was being rolled back.

Here are some examples that show the structure of the handler definition:

3G E-LEARNING

318 Basic Computer Coding: SQL

Error handling can get quite complex, and it’s possible for errors to arise during
the execution of the handler routine itself. To avoid infinite recursion on errors, the
normal condition signaling does not apply during the execution of a condition handler.
The standard allows you to override this restriction with the RESIGNAL statement.
It operates just like the SIGNAL statement, but is used exclusively within condition-
handler routines.

Routine Name Overloading

The SQL/PSM standard permits overloading of stored procedure and function names.
Overloading is a common attribute in object-oriented systems and is a way to make
stored routines more flexible in handling a wide variety of data types and situations.
Using the overloading capability, several different routines can be given the same
routine name. The multiple routines defined with the same name must differ from
one another in the number of parameters that they accept or in the data types of the
individual parameters. For example, you might define these three stored functions:

The first COMBO function combines two integers by adding them and returns the
sum. The second COMBO function combines three integers the same way. The third
COMBO function combines two character strings by concatenating them. The standard
allows all of these functions named COMBO to be defined at the same time within the

Database Processing and Stored Procedural SQL

3G E-LEARNING

319

database. When the DBMS encounters a reference to the COMBO function, it examines
the number of arguments in the reference and their data types, and determines which
version of the COMBO function to call. Thus, the overloading capability allows a SQL
programmer to create a family of routines that logically perform the same function and
have the same name, even though the specifics of their usage for different data types
is different. In object-oriented terms, overloading is sometimes called polymorphism,
meaning literally that the same function can take many different forms.

To simplify the management of a family of routines that share an overloaded
name, the SQL/PSM standard has the concept of a specific name: a second name that
is assigned to the routine that is unique within the database schema or module. It
uniquely identifies a specific routine. The specific name is used to drop the routine,
and it is reflected in the information schema views that describe stored routines. The
specific name is not used to call the routine; that would defeat the primary purpose of
the overloaded routine name. Support for specific names or some similar mechanism
is a practical requirement for any system that permits overloading or polymorphism
for objects and provides a capability to manage them by dropping or changing their
definitions, since the system must be able to determine which specific object is being
modified.

External Stored Procedures

The bulk of the SQL/PSM standard is concerned with the extensions to the SQL
language that are used to define SQL procedures and functions. Note, however, that the
method used to invoke a procedure (the CALL statement) or a function (a reference to
the function by name within a SQL statement) is not particular to procedures defined
in the SQL language. In fact, the SQL/PSM standard provides for external stored
procedures and functions, written in some other programming language such as C or
Pascal. For external procedures, the CREATE PROCEDURE and CREATE FUNCTION
statements are still used to define the procedure to the DBMS, specifying its name and
the parameters that it accepts or returns. A special clause of the CREATE statement
specifies the language in which the stored procedure or function is written, so that
the DBMS may perform the appropriate conversion of data types and call the routine
appropriately.

Other Stored Procedure Capabilities

The SQL/PSM standard treats procedures and functions as managed objects within the
database, using extensions to the SQL statements used to manage other objects. You
use a variation of the DROP statement to delete routines when they are no longer
needed, and a variation of the ALTER statement to change the definition of a function
or procedure. The SQL standard permissions mechanism is similarly extended with
additional privileges. The EXECUTE privilege gives a user the ability to execute a

3G E-LEARNING

320 Basic Computer Coding: SQL

stored procedure or function. It is managed by the GRANT and REVOKE statements
in the same manner as other database privileges.

Because the stored routines defined by SQL/PSM are defined within SQL schemas,
many routines can be defined in many different schemas throughout the database.
When calling a stored routine, the routine name can be fully qualified to uniquely
identify the routine within the database. The SQL/PSM standard provides an alternative
method of searching for the definition of unqualified routine names through a new
PATH concept. The PATH is the sequence of schema names that should be searched
to resolve a routine reference. A default PATH can be specified as part of the schema
header in the CREATE SCHEMA statement. The PATH can also be dynamically modified
during a SQL session through the SET PATH statement.

The SQL/PSM standard also lets the author of a stored procedure or function
give the DBMS some hints about its operation to improve the efficiency of execution.
One example is the ability to define a stored routine as DETERMINISTIC or NOT
DETERMINISTIC. A DETERMINISTIC routine will always return the same results when
it is called with the same parameter values. If the DBMS observes that a DETERMINISTIC
routine is called repeatedly, it may choose to keep a copy of the results that it returns.
Later, when the routine is called again, the DBMS does not need to actually execute
the routine; it can simply return the same results that it returned the last time.

Another form of hint tells the DBMS whether an external stored procedure or
function reads database contents and whether it modifies database contents. This not
only allows the DBMS to optimize database access, but can also impose a security
restriction on external routines from other sources. Other hints determine whether a
function should be called if one of its parameters has a NULL value, and control how
the DBMS selects the specific function or procedure to be executed when overloading
is used.

10.3.2 The SQL/PSM Triggers Standard

Triggers were addressed for standardization as part of the SQL3 effort, which led to the
eventual publication of the SQL:1999 ANSI/ISO standard. By that time, many commercial
DBMS products had already implemented triggers, and the standard synthesized the
specific capabilities that had proven useful in practice. Like the commercial products,
ANSI/ISO standard triggers are defined for a single, specific table. The standard permits
trigger definitions only on tables, not on views.

The proprietary SQL Server, Oracle, and Informix trigger mechanisms shown in
the examples throughout this chapter provide a context for examining the ANSI/ISO
standard mechanism. The standard does not provide any radical departure from the
capabilities already described for the various DBMS products. Here is how the standard
compares with them:

Database Processing and Stored Procedural SQL

3G E-LEARNING

321

 ■ Naming The standard treats triggers as named objects within the database.
 ■ Types The standard provides INSERT, DELETE, and UPDATE triggers; UPDATE

triggers can be associated with the update of a specific column or group of
columns.

 ■ Timing The standard provides for triggers that operate before a database
update statement or after the statement.

 ■ Row-level or statement-level operation The standard provides for both
statement-level triggers (executed once per database-updating statement)
and rowlevel triggers (executed repeatedly for each row of the table that is
modified).

 ■ Aliases Access to the “before” and “after” values in a modified row or table
is provided via an alias mechanism, like the table aliases used in the FROM
clause.

You use the CREATE TRIGGER statement, shown in Figure 23, to define a trigger.
The statement clauses are familiar from the proprietary trigger examples throughout
the earlier sections of this chapter.

Figure 23. The SQL standard CREATE TRIGGER syntax diagram.

One very useful extension provided by the standard is the WHEN clause that can
be specified as part of a triggered action. The WHEN clause is optional, and it operates
like a WHERE clause for determining whether a triggered action will be carried out.
When the DBMS executes the particular type of statement specified in the trigger

3G E-LEARNING

322 Basic Computer Coding: SQL

definition, it evaluates the search condition specified in the WHEN clause. The form
of the search condition is exactly like the search condition in a WHERE clause, and it
will produce either a TRUE or FALSE result. The triggered action is carried out only
if the result is TRUE.

To provide security for triggers, the SQL standard establishes a new TRIGGER
privilege that may be granted for specific tables to specific users. With this privilege,
a user may establish a trigger on the table. The owner of a table is always allowed
to establish triggers

Database Processing and Stored Procedural SQL

3G E-LEARNING

323

ROLE MODEL

BOB MINER
Robert Nimrod Miner (December 23, 1941 – November 11,
1994) was an American businessman. He was the co-founder
of Oracle Corporation and the producer of Oracle’s relational
database management system.

From 1977 until 1992, Bob Miner led product design and
development for the Oracle relational database management
system. In Dec., 1992, he left that role and spun off a small,
advanced technology group within Oracle. He was an Oracle
board member until Oct., 1993.

Early Life

Bob Miner was born on Dec 23, 1941 in Cicero, Illinois, to an
Assyrian family. Both of his parents came from Ada, a village
in West Azerbaijan Province, northwest Iran, and had migrated
to the US in the 1920s. He was their fifth child of five. Bob
Miner graduated in 1963 with a degree in mathematics from
the University of Illinois at Urbana-Champaign.

Career

In 1977 Bob Miner met Larry Ellison at Ampex, where he was
Larry’s supervisor. Bob Miner left Ampex soon thereafter to
found a company called Software Development Laboratories
with Ed Oates and Bruce Scott, with Larry Ellison joining
the company several months later. It was at this time that Ed
Oates introduced Miner and Ellison to a paper by E. F. Codd
on the relational model for database management. IBM was
slow to see the commercial value of Codd’s relational database
management system (RDBMS), allowing Miner and Ellison to
beat them to the market.

In the start-up days of Oracle Bob Miner was the lead
engineer, programming the majority of Oracle Version 3 by
himself. As head of engineering Bob Miner’s management
style was in stark contrast to Larry Ellison, who cultivated
Oracle’s hard-driving sales culture. Although he expected his

3G E-LEARNING

324 Basic Computer Coding: SQL

engineers to produce, he did not agree with the demands laid upon them by Ellison.
He thought it was wrong for people to work extremely late hours and that they should
have the chance to see their families. According to Ellison, Miner was “loyal to the
people before the company.”

Personal Life

Bob Miner was diagnosed in 1993 with pleural mesothelioma, a rare form of lung
cancer caused by exposure to asbestos. He died on Friday, 11 November 1994 at the
age of 52, surrounded by his wife Mary and their three children, Nicola, Justine, and
Luke. His wife Mary is the founder and owner of Oakville Ranch Vineyards, a Napa
winery. His daughter Nicola Miner is married to author Robert Mailer Anderson.

Miner family’s charitable foundation has donated to various San Francisco arts
and education institutions. The SFJAZZ Center’s auditorium is named after Miner.

Database Processing and Stored Procedural SQL

3G E-LEARNING

325

SUMMARY
 ■ The long-term trend in the database market is for databases to take on a

progressively larger role in the overall data processing architecture.
 ■ A stored procedure is a set of Structured Query Language (SQL) statements

with an assigned name, which are stored in a relational database management
system (RDBMS) as a group, so it can be reused and shared by multiple
programs.

 ■ The CREATE PROCEDURE statement is used to create a stored procedure
and to specify how it operates. The CREATE PROCEDURE statement assigns
the newly defined procedure a name, which is used to call it. The name must
typically follow the rules for SQL identifiers.

 ■ Different DBMS brands vary in the way they actually implement stored
procedures. In several brands, the stored procedure text is stored within the
database and is interpreted when the procedure is executed. This has the
advantage of creating a very flexible stored procedure language, but it creates
significant runtime overhead for complex stored procedures.

 ■ A trigger is a special set of stored procedural code whose activation is caused
by modifications to the database contents. Unlike stored procedures, a trigger
is not activated by a CALL or EXECUTE statement.

 ■ The trigger is associated with a database table. When the data in the table is
changed by an INSERT, DELETE, or UPDATE statement, the trigger is fired,
which means that the DBMS executes the SQL statements that make up the
body of the trigger.

 ■ The SQL/PSM standard specifies the common programming structures that
are found in most stored procedure dialects to control the flow of execution.

 ■ The SQL/PSM standard extends the cursor manipulation capabilities specified
in the SQL2 standard for embedded SQL into SQL routines. The DECLARE
CURSOR, OPEN, FETCH, and CLOSE statements retain their roles and functions.

 ■ The SQL/PSM standard permits overloading of stored procedure and function
names. Overloading is a common attribute in object-oriented systems and is
a way to make stored routines more flexible in handling a wide variety of
data types and situations.

3G E-LEARNING

326 Basic Computer Coding: SQL

KNOWLEDGE CHECK
1. A __________ is a special kind of a store procedure that executes in response

to certain action on the table like insertion, deletion or updation of data.
a. Procedures
b. Triggers
c. Functions
d. None of the mentioned

2. Triggers are supported in
a. Delete
b. Update
c. Views
d. All of the mentioned

3. The CREATE TRIGGER statement is used to create the trigger. THE _____ clause
specifies the table name on which the trigger is to be attached. The ______
specifies that this is an AFTER INSERT trigger.
a. for insert, on
b. On, for insert
c. For, insert
d. None of the mentioned

4. What are the after triggers?
a. Triggers generated after a particular operation
b. These triggers run after an insert, update or delete on a table
c. These triggers run after an insert, views, update or delete on a table
d. All of the mentioned

5. The variables in the triggers are declared using
a. –
b. @
c. /
d. /@

6. A stored procedure in SQL is a___________
a. Block of functions
b. Group of SQL statements.
c. None

Database Processing and Stored Procedural SQL

3G E-LEARNING

327

7. Advantage of SQL stored procedure
a. Maintainability
b. Re-use of code
c. Security
d. All

8. Which statement(S) is/are incorrect
a. Stored procedure may return a value and function must return a value.
b. Function has only IN parameter.
c. Try and Catch can be used with both stored procedure and function.
d. Stored procedure has IN and OUT parameter.

9. Which statement(S) is/are incorrect
a. Stored procedure can be shared by multiple programs
b. Stored procedures are in compiled form.
c. Stored procedure is a group of SQL statements
d. All are correct.

10. PL/SQL stands for -
a. Portable Language/SQL
b. Programming Language/SQL
c. Procedural Language/SQL
d. none of these

REVIEW QUESTIONS
1. What is stored procedures in database?

2. What are the advantages of stored procedures?

3. Describe the advantages and disadvantages of triggers.

4. What is trigger in Oracle PL SQL?

5. Distinguish between row level trigger and statement level trigger.

Check Your Result

1. (b) 2. (c) 3. (b) 4. (b) 5. (b)
6. (b) 7. (d) 8. (c) 9. (d) 10. (c)

3G E-LEARNING

328 Basic Computer Coding: SQL

REFERENCES
1. Allen, Grant (2010). The Definitive Guide to SQLite. Apresspod. Mike Owens (2

ed.). Apress. pp. 90–91. ISBN 9781430232254. Retrieved 2012-10-02.
2. Feuerstein, Steven; Bill Pribyl (2014). Oracle PL/SQL Programming (6th ed.).

O’Reilly & Associates. ISBN 978-1449324452.
3. Gupta, Saurabh K. (2016) [2012]. “5: Using Advanced Interface Methods”.

Advanced Oracle PL/SQL Developer’s Guide. Professional experience distilled
(2 ed.). Birmingham: Packt Publishing Ltd. p. 143. ISBN 9781785282522. Retrieved
2017-06-08.

4. Laudenschlager, Douglas; Milener, Gene; Guyer, Craig; Byham, Rick. “Transactions
(Transact-SQL)”. Microsoft Docs. Microsoft. Retrieved 12 November 2018.

5. Nanda, Arup; Burleson, Donald K. (2003). “9”. In Burleson, Donald K. (ed.).
Oracle Privacy Security Auditing: Includes Federal Law Compliance with HIPAA,
Sarbanes Oxley and the Gramm Leach Bliley Act GLB. Oracle in-focus series.
47. Kittrell, North Carolina: Rampant TechPress. p. 511. ISBN 9780972751391.
Retrieved 2018-04-17.

6. Nanda, Arup; Feuerstein, Steven (2005). Oracle PL/SQL for DBAs. O’Reilly Series.
O’Reilly Media, Inc. pp. 122, 429. ISBN 978-0-596-00587-0. Retrieved 2011-01-11.

7. Naudé, Frank (June 9, 2005). “Oracle PL/SQL FAQ rev 2.08”.

Index

A

Active Server Pages (ASP) 179
ALTER TABLE statement 207, 208, 209,
210, 217, 219, 220, 222, 224
American National Standards Institute
(ANSI) 60
AND operator 231, 232, 233, 234, 235, 236
application lifecycle management (ALM)
162
Application program 176
application program interface (API) 154
Architectural level 32
ascending order 250, 251, 252, 253, 260
Authorization 174, 175, 177, 178

B

binary strings 60
Boolean Expressions 69

C

C 265, 267, 270, 287, 291, 300, 319
Call-Level Interface (CLI) 310
catalog 153
character data 60
Classic Query Engine 3
Clauses 230, 258
Client machine’s 33

COBOL 265
Common Type System (CTS) 17
Computer resources 33
Computer system 88, 95
Computing model 34, 35
Customer Relationship Management
(CRM) 29

D

Data administration commands 12, 13
database administration (DBA) 264
database application programming inter-
face (database API) 155
Database design 114
Database Management System (DBMS) 60
database market 263, 325
Database searching 264
database server 145, 156, 157
Data collection 30
Data control commands 13
Data Definition Language (DDL) 267
data elements 198, 224
Data Manipulation Language (DML) 267
data processing architecture 264, 325
Data Query Language (DQL) 12
Data retrieval 59
data storage 264

3G E-LEARNING

330 Basic Computer Coding: SQL

Data structure 30
data table 198
data warehouse 16
date and time data 60
Date Data Types 63, 66
Date Expressions 70
Degree of resistance 171
DELETE query 77, 78
DELETE statement 205, 206, 210, 224, 225
descending order 250, 251, 252, 253, 258,
260
Design process 114, 115, 116
Dynamic IP addressing (DHCP) 175
Dynamic SQL 148, 149, 150, 151, 154

E

Embedded SQL 144, 146, 147
Enterprise Resource Planning (ERP) 29, 46
Entity-relationship model 115

F

fetch data 73
File server system 33

G

Global temp tables 216, 224

H

HAVING clause 244, 245, 246, 247, 248,
249, 258, 259
Hypertext Preprocessor (PHP) 179

I

information system (IS) 145
information technology (IT) 264
INSERT Query 71
instead-of trigger 308
integer data 60

L

Local database 32
Local temp tables 216, 224

M

mathematical expression 70
mathematical operation 69
Microsoft Access Data Types 67
Modeling language 30
monetary data 60
multiple operations 230
multiset 198, 224
MySQL database 201, 205

N

native dynamic SQL (NDS) 149
NOT operator 231
Number Data Types 62, 65
Numeric Expressions 70

O

operating system (OS) 154
Optimization Engines 3
Oracle Call Level Interface (Oracle CLI)
155
Oracle database 200, 201, 205
ORDER BY clause 229, 250, 251, 253, 258,
259
Order-processing department 174, 177
OR operator 231, 237, 238, 239, 240

P

PL/SQL 267, 268, 269, 270, 273, 276, 277,
279, 280, 281, 282, 283, 286, 287, 288, 289,
292, 295, 296, 302, 307, 308, 327, 328
precompiler 145, 146, 149
pre-relational database systems 264
Primary Key 200, 203, 204

Index

3G E-LEARNING

331

programming language 144, 145, 146, 147,
148, 155, 161, 168, 265, 266, 267, 285, 300,
319

Q

Queries 8, 12
Query Dispatcher 3
query language 229, 251

R

random record 254, 255
relation 198, 203, 224
Relational database 88, 89, 97
Relational database management system
(RDBMS) 29
Relational Software 2
remote procedure call (RPC) 160
RENAME TABLE 206, 207
Resource Access Control Facility (RACF)
178
result-set 67, 73
result table 73
retrieval 264
row-level trigger 308
rows 197, 198, 199, 201, 204, 205, 206, 210,
224, 225

S

Sales Force Automation (SFA) 29
Security scheme 172, 173, 177
SELECT Statement 73
Service oriented architecture (SOA) 161
Software system 127
sorting 264
SQL commands 1, 2, 6, 7, 10
SQL CREATE TABLE statement 199, 224
SQL databases 9
SQL Data Type 60
SQL DROP TABLE statement 204, 224
SQL EXPRESSIONs 68

SQL functions 68
SQL queries 59, 71, 87
SQL Server 2, 14, 15, 16, 17, 25
SQL Server Management Studio (SSMS) 14
SQL Table 197, 199, 224
SQL Table variable 199, 224
statement-level trigger 308
stored procedure 264, 266, 267, 268, 269,
270, 271, 272, 273, 274, 275, 276, 277, 278,
279, 280, 281, 282, 283, 284, 286, 287, 288,
289, 290, 291, 292, 295, 297, 298, 299, 300,
306, 307, 310, 311, 312, 313, 316, 317, 318,
319, 320, 325, 326, 327
String Data Types 64
Structured English query language 28
Structured Query Language (SQL) 60, 79,
178
Supply Chain Management (SCM) 29, 46
Systematic collection 28
Systems Application Architecture (SAA) 39

T

Text Data Types 61
trigger 265, 273, 301, 302, 303, 304, 305, 306,
307, 308, 309, 310, 311, 320, 321, 322, 325,
326, 327
truncate SQL statement 210, 224
TRUNCATE statement 205, 206, 224

U

UPDATE query 63, 75, 76, 77
User ID 173
User working area (UWA) 128

W

Web page 180, 181
WHERE clause 229, 230, 231, 244, 245, 258,
259, 260
WITH clause 229, 240, 258

	Cover
	Title Page
	Copyright
	EDITORIAL BOARD
	TABLE OF CONTENTS
	Preface
	Chapter 1 An Overview of SQL
	Introduction
	1.1 The SQL Language
	1.1.1 A Brief History of SQL
	1.1.2 SQL Process
	1.1.3 The Role of SQL
	1.1.4 Applications of SQL (Structured Query Language)
	1.1.5 Advantages of SQL
	1.1.6 Disadvantages of SQL

	1.2 SQL Commands
	1.2.1 Types of SQL Commands

	1.3 SQL Server
	1.3.1 SQL Server Components
	1.3.2 SQL Server integration with the .NET Framework
	1.3.3 Features of SQL Server
	1.3.4 SQL Statements

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 2 SQL in Perspective
	Introduction
	2.1 SQL and Database Management
	2.1.1 Database Management System
	2.1.2 Operations of DBMS

	2.2 SQL Standard
	2.2.1 The ANSI/ISO Standards
	2.2.2 SQL Standard and Proprietary Extensions
	2.2.3 SQL Commands and Syntax
	2.2.4 SQL-on-Hadoop tools
	2.2.5 ODBC and SQL
	2.2.6 SQL and Portability

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 3 Retrieving Data
	Introduction
	3.1 SQL Data Types
	3.1.1 MySQL Data Types
	3.1.2 SQL Server Data Types
	3.1.3 Microsoft Access Data Types

	3.2 SQL Expressions
	3.2.1 Boolean Expressions
	3.2.2 Numeric Expression
	3.2.3 Date Expressions

	3.3 SQL Queries
	3.3.1 SQL INSERT Query
	3.3.2 SQL SELECT Query
	3.3.3 SQL UPDATE Query
	3.3.4 SQL DELETE Query

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 4 Updating Data
	Introduction
	4.1 Adding Data to the Database
	4.1.1 The Single-Row INSERT Statement
	4.1.2 The Multirow INSERT Statement
	4.1.3 Bulk Load Utilities

	4.2 Deleting Data from the Database
	4.2.1 The DELETE Statement
	4.2.2 Deleting All Rows
	4.2.3 DELETE with Subquery

	4.3 Modifying Data in the Database
	4.3.1 The UPDATE Statement
	4.3.2 Updating All Rows
	4.3.3 UPDATE with Subquery

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 5 Database Structure
	Introduction
	5.1 Database Design
	5.1.1 The database design process
	5.1.2 Requirements analysis: identifying the purpose of the database
	5.1.3 Database structure: the building blocks of a database
	5.1.4 Creating relationships between entities
	5.1.5 Database Normalization
	5.1.6 Multidimensional data
	5.1.7 Data integrity rules
	5.1.8 Adding indexes and views
	5.1.9 Extended properties
	5.1.10 SQL and UML
	5.1.11 Database Management Systems

	5.2 Database Schema Versus Database Instance
	5.3 Database Models
	5.3.1 Conceptual Data Model
	5.3.2 Representational Data Model
	5.3.3 Physical Data Model

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 6 Programming with SQL
	Introduction
	6.1 Embedded SQL
	6.1.1 Concepts for Embedding the SQL Statements
	6.1.2 Embedded SQL Program Development
	6.1.3 An Embedded SQL Example in C
	6.1.4 Error Handling with SQL Code

	6.2 Dynamic SQL
	6.2.1 Programming with Dynamic SQL
	6.2.2 Writing Dynamic SQL

	6.3 SQL APIs
	6.3.1 How APIs Work
	6.3.2 Three Basic Types of APIs
	6.3.3 Why API Design Matters

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 7 SQL Security
	Introduction
	7.1 SQL Security Concept
	7.1.1 User Ids
	7.1.2 User Authentication
	7.1.3 User Groups

	7.2 SQL Injection (SQLi)
	7.2.1 SQL Injection Attacks
	7.2.2 Applications Vulnerable to SQL Injection
	7.2.3 The challenge with detection
	7.2.4 Detection at the Web Tier
	7.2.5 A Better way – a Database Firewall
	7.2.6 Cleaning Up the Database after an SQL Injection Attack

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 8 SQL Table
	Introduction
	8.1 Table
	8.1.1 SQL TABLE Variable

	8.2 SQL Create Table
	8.2.1 SQL CREATE TABLE Example in MySQL
	8.2.2 SQL CREATE TABLE Example in Oracle
	8.2.3 SQL CREATE TABLE Example in Microsoft SQLServer
	8.2.4 Create a Table Using another Table
	8.2.5 SQL Primary Key with CREATE TABLE Statement

	8.3 SQL Drop Table
	8.3.1 SQL DROP TABLE Example in MySQL
	8.3.2 SQL DROP TABLE Example in Oracle
	8.3.3 SQL DROP TABLE Example in Microsoft SQLServer

	8.4 SQL Delete Table
	8.4.1 Difference between DELETE and TRUNCATE Statements
	8.4.2 Difference b/w DROP and TRUNCATE Statements

	8.5 SQL Rename Table
	8.5.1 Syntax of RENAME Statement in SQL
	8.5.2 Examples of RENAME Statement in SQL
	8.5.3 Syntax of ALTER TABLE Statement in SQL

	8.6 SQL Truncate Table
	8.6.1 TRUNCATE TABLE Vs DELETE TABLE
	8.6.2 TRUNCATE TABLE Vs. DROP TABLE

	8.7 SQL Copy Table
	8.7.1 Syntax of SELECT INTO statement in SQL
	8.7.2 Examples of SELECT INTO statement in SQL
	8.7.3 Syntax of SELECT INTO Statement with WHERE Clause in SQL

	8.8 SQL Temp Table
	8.8.1 Local Temp Variable
	8.8.2 Global Temp Variable

	8.9 SQL Alter Table
	8.9.1 Alter Table Add Column Statement in SQL
	8.9.2 Syntax of Alter Table Add Column Statement in SQL
	8.9.3 Examples of Alter Table Add Column Statement in SQL
	8.9.4 Alter Table Modify Column Statement in SQL
	8.9.5 Syntax of Alter Table Modify Column Statement in SQL
	8.9.6 Examples of Alter Table Modify Column Statement in SQL
	8.9.7 Alter Table Drop Column Statement in SQL
	8.9.8 Syntax of Alter Table Drop Column Statement in SQL
	8.9.9 Examples of Alter Table Drop Column Statement in SQL
	8.9.10 Alter Table Rename Column Statement in SQL
	8.9.11 Syntax of Alter Table Rename Column Statement in SQL
	8.9.12 Examples of Alter Table Rename Column Statement in SQL

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 9 SQL Clause
	Introduction
	9.1 WHERE Clause
	9.2 SQL AND, OR and NOT Operators
	9.2.1 SQL AND
	9.2.2 SQL OR

	9.3 SQL With Clause
	9.3.1 SQL SELECT AS
	9.3.2 Assigning a Temporary Name to a Table

	9.4 HAVING Clause in SQL
	9.4.1 Difference between HAVING and WHERE Clause
	9.4.2 Syntax of HAVING Clause in SQL
	9.4.3 Examples of HAVING Clause in SQL
	9.4.4 MIN Function with HAVING Clause
	9.4.5 MAX Function with HAVING Clause

	9.5 SQL ORDER BY Clause
	9.5.1 SQL ORDER BY Syntax
	9.5.2 SQL ORDER BY Clause with Ascending Order
	9.5.3 SQL ORDER BY Clause with Descending Order
	9.5.4 SQL ORDER BY RANDOM
	9.5.5 SQL ORDER BY LIMIT
	9.5.6 SQL SORTING on Multiple Columns

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 10 Database Processing and Stored Procedural SQL
	Introduction
	10.1 Procedural SQL Concepts
	10.1.1 A Basic Example
	10.1.2 Using Stored Procedures
	10.1.3 Advantages of Stored Procedures
	10.1.4 Stored Procedure Performance
	10.1.5 System-Defined Stored Procedures
	10.1.6 External Stored Procedures

	10.2 Triggers
	10.2.1 Advantages and Disadvantages of Triggers
	10.2.2 Triggers in Transact-SQL
	10.2.3 Triggers in Informix SPL
	10.2.4 Triggers in Oracle PL/SQL
	10.2.5 Other Trigger Considerations

	10.3 Stored Procedures, Functions, Triggers, and the SQL Standard
	10.3.1 The SQL/PSM Stored Procedures Standard
	10.3.2 The SQL/PSM Triggers Standard

	Summary
	Knowledge Check
	Review Questions
	References

	Index
	Back Cover

