

BASIC COMPUTER CODING: C++

2nd Edition

BIBLIOTEX
Digital Library

www.bibliotex.com

BASIC COMPUTER CODING: C++

2ND EDITION

BIBLIOTEX
Digital Library

www.bibliotex.com

email: info@bibliotex.com

e-book Edition 2022

ISBN: 978-1-98467-608-5 (e-book)

This book contains information obtained from highly regarded resources.
Reprinted material sources are indicated. Copyright for individual articles
remains with the authors as indicated and published under Creative Commons
License. A Wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and views articulated in the chapters are those of
the individual contributors, and not necessarily those of the editors or
publishers. Editors or publishers are not responsible for the accuracy of the
information in the published chapters or consequences of their use. The
publisher assumes no responsibility for any damage or grievance to the persons or
property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission has not been obtained. If any copyright holder has
not been acknowledged, please write to us so we may rectify.

Notice: Registered trademark of products or corporate names are used only for
explanation and identification without intent of infringement.

© 2022 3G E-learning LLC

In Collaboration with 3G E-Learning LLC. Originally P-ublished in printed
book format by 3G E-Learning LLC with ISBN 978-1-98465901-9

EDITORIAL BOARD
Aleksandar Mratinković was born on May 5, 1988 in Arandjelovac, Serbia. He has graduated on
Economic high school (2007), The College of Tourism in Belgrade (2013), and also has a master
degree of Psychology (Faculty of Philosophy, University of Novi Sad). He has been engaged
in different fields of psychology (Developmental Psychology, Clinical Psychology, Educational
Psychology and Industrial Psychology) and has published several scientific works.

Dan Piestun (PhD) is currently a startup entrepreneur in Israel working on the interface of
Agriculture and Biomedical Sciences and was formerly president-CEO of the National Institute of
Agricultural Research (INIA) in Uruguay. Dan is a widely published scientist who has received
many honours during his career including being a two-time recipient of the Amit Golda Meir
Prize from the Hebrew University of Jerusalem, his areas of expertise includes stem cell molecular
biology, plant and animal genetics and bioinformatics. Dan’s passion for applied science and
technological solutions did not stop him from pursuing a deep connection to the farmer, his family
and nature. Among some of his interest and practices counts enjoying working as a beekeeper
and onboard fishing.

Hazem Shawky Fouda has a PhD. in Agriculture Sciences, obtained his PhD. From the Faculty
of Agriculture, Alexandria University in 2008, He is working in Cotton Arbitration & Testing
General Organization (CATGO).

Felecia Killings is the Founder and CEO of LiyahAmore Publishing, a publishing company committed
to providing technical and educational services and products to Christian Authors. She operates as
the Senior Editor and Writer, the Senior Writing Coach, the Content Marketing Specialist, Editor-
in-Chief to the company’s quarterly magazine, the Executive and Host of an international virtual
network, and the Executive Director of the company’s online school for Authors. She is a former
high-school English instructor and professional development professor. She possesses a Master
of Arts degree in Education and a Bachelor’s degree in English and African American studies.

Dr. Sandra El Hajj, Ph.D. in Health Sciences from Nova Southeastern University, Florida,
USA is a health professional specialized in Preventive and Global Health. With her 12 years of
education obtained from one of the most prominent universities in Beirut, in addition to two leading
universities in the State of Florida (USA), Dr. Sandra made sure to incorporate interdisciplinary
and multicultural approaches in her work. Her long years of studies helped her create her own
miniature world of knowledge linking together the healthcare field with Medical Research, Statistics,
Food Technology, Environmental & Occupational Health, Preventive Health and most noteworthy
her precious last degree of Global Health. Till today, she is the first and only doctor specialized
in Global Health in the Middle East area.

Igor Krunic 2003-2007 in the School of Economics. After graduating in 2007, he went on to
study at The College of Tourism, at the University of Belgrade where he got his bachelor degree
in 2010. He was active as a third-year student representative in the student parliament.Then he
went on the Faculty of science, at the University of Novi Sad where he successfully defended his
master’s thesis in 2013. The crown of his study was the work titled Opportunities for development
of cultural tourism in Cacak“. Later on, he became part of a multinational company where he got
promoted to a deputy director of logistic. Nowadays he is a consultant and writer of academic
subjects in the field of tourism.

Dr. Jovan Pehcevski obtained his PhD in Computer Science from RMIT University in Melbourne,
Australia in 2007. His research interests include big data, business intelligence and predictive analytics,
data and information science, information retrieval, XML, web services and service-oriented architectures,
and relational and NoSQL database systems. He has published over 30 journal and conference papers
and he also serves as a journal and conference reviewer. He is currently working as a Dean and Associate
Professor at European University in Skopje, Macedonia.

Stephen obtained his PhD from the University of North Carolina at Charlotte in 2013 where his
graduate research focused on cancer immunology and the tumor microenvironment. He received
postdoctoral training in regenerative and translational medicine, specifically gastrointestinal tissue
engineering, at the Wake Forest Institute of Regenerative Medicine. Currently, Stephen is an
instructor for anatomy and physiology and biology at Forsyth Technical Community College.

Michelle holds a Masters of Business Administration from the University of Phoenix, with a
concentration in Human Resources Management. She is a professional author and has had numerous
articles published in the Henry County Times and has written and revised several employee
handbooks for various YMCA organizations throughout the United States.

Fozia Parveen has a Dphil in Sustainable Water Engineering from the University of Oxford. Prior
to this she has received MS in Environmental Sciences from National University of Science and
Technology (NUST), Islamabad Pakistan and BS in Environmental Sciences from Fatima Jinnah
Women University (FJWU), Rawalpindi.

Dr. Tanjina Nur finished her PhD in Civil and Environmental Engineering in 2014 from University
of Technology Sydney (UTS). Now she is working as Post-Doctoral Researcher in the Centre for
Technology in Water and Wastewater (CTWW) and published about eight International journal papers
with 80 citations. Her research interest is wastewater treatment technology using adsorption process.

v

 HOW TO USE THE BOOK

This book has been divided into many chapters. Chapter gives the motivation for this book and the use
of templates. The text is presented in the simplest language. Each paragraph has been arranged under
a suitable heading for easy retention of concept. Keywords are the words that academics use to reveal
the internal structure of an author’s reasoning. Review questions at the end of each chapter ask students
to review or explain the concepts. References provides the reader an additional source through which
he/she can obtain more information regarding the topic.

3G E-LEARNING

4 Basic Computer Coding: Visual Basic

enhancements, including the striking ability of creating web based applications. The
extended support for Visual Basic 6.0 was ceased in the month of March in 2008. The
basic parts of development environment of Visual Basic 6, however, still run in all the
32-bit Microsoft windows, including Windows 8.1.

After the cessation of mainstream and extended support for Visual Basic 6.0 caused
a number of programs to show concern. The community members then created a lobby
of users and a petition was signed by them. The basic aim of this petition was to ensure
that the product remains alive. However, the petition did not attain its aim effectively.

1.1.2 The Importance of Visual Basic Programming Language

Visual Basic is regarded as the third generation event-driven programming language.
It was released in 1987. Being the first visual development tool from Microsoft, it is
considered as one of the most powerful programming languages. As compared to other
computer programming languages, such as, C, C++, it is easy to learn and understand,
provided that one has determination and dedication to do so.

Visual basic programming language allows programmers to create software interface
and codes in an easy to use graphical environment. VB is the combination of different
components that are used on forms having specific attributes and actions with the help
of those components. On the one hand it allows programmers to develop widows based
applications rapidly; on the other hand, it helps greatly in accessing data bases, using
ADO while letting the programmers use ActiveX controls and various objects. While it
is intended more to develop applications, it is also useful for games development for
particular or limited purposes, unlike C++ that is more suitable for developing games.

As compared to other languages, Visual basic may be slower though, yet it is
flexible and it can be rightly said that things that are difficult in other languages are
comparatively easier in visual basic programming language. It may also be said that,
since it is one of the most popular programming languages, lots of related books
and material and other resources are available and can be accessed for developing
programming skills at visual basic programming language conveniently.

One of the most important things to be considered with regard to programming in
Visual basic is that the structure of VB is designed in a way that allows programmers
to create executable code – Exe files. It enables programmers to develop programs that
can be used as front end to databases. Besides, it’s with the help of visual basic tools,
one can change the abstract ideas into programs or into the whole software while it
allows revising and modifying the programs fittingly.

3G E-LEARNING

2 Basic Computer Coding: Visual Basic

a graphical user interface (GUI) which allows programmers
to modify code by simply dragging and dropping objects and
defining their behavior and appearance. VB is derived from
the BASIC programming language and is considered to be
event-driven and object-oriented.

VB is intended to be easy to learn and fast to write
code with; as a result, it is sometimes called a rapid
application development (RAD) system and is used
to prototype an application that will later be written in a
more difficult but efficient language.

The last version of VB, Visual Basic 6, was released in
1998, but has since been replaced by VB .NET, Visual Basic for
applications (VBA) and Visual Stuido .NET. VBA and Visual
Studio are the two frameworks most commonly used today.

1.1 MEANING OF VISUAL BASIC
Visual Basic is a programming language and development
environment created by Microsoft. It is an extension of the
BASIC programming language that combines BASIC functions
and commands with visual controls. Visual Basic provides a
graphical user interface GUI that allows the developer to
drag and drop objects into the program as well as manually
write program code.

Visual Basic, also referred to as “VB,” is designed to
make software development easy and efficient, while still
being powerful enough to create advanced programs. For
example, the Visual Basic language is designed to be “human
readable,” which means the source code can be understood
without requiring lots of comments. The Visual Basic program
also includes features like “IntelliSense” and “Code Snippets,”
which automatically generate code for visual objects added by

 The
 graphical
 user interface
 (GUI), is a type
 of user interface
 that allows users
 to interact with
 electronic devices
 through graphical
 icons and visual
 indicators such
 as secondary
 notation, instead
 of text-based user
 interfaces, typed
 command labels or
text navigation.

Keyword

Introduction to Visual Basic

3G E-LEARNING

3

the programmer. Another feature, called “AutoCorrect,” can
debug the code while the program is running.

Programs created with Visual Basic can be designed to
run on Windows, on the Web, within Office applications, or
on mobile devices. Visual Studio, the most comprehensive
VB development environment, or IDE, can be used to create
programs for all these mediums. Visual Studio .NET provides
development tools to create programs based on the .NET
framework, such as ASP.NET applications, which are often
deployed on the Web.

1.1.1 History of Visual Basic

The first version of visual basic, VB 1.0, was announced in the
year 1991. The creation of user interface through a drag and
drop design was inspired a beta generator that was developed
by Alan Cooper at Tripod, which was Cooper’s company.

Microsoft entered into a contract with Cooper and his
partners to create Tripod into a system that is programmable for
Windows 3.0. This system was developed under the code name
of Ruby, which has no relationship with the Ruby Programming
Language. Tripod did not have any programming language at
all. Microsoft then decided to use Ruby in combination with
basic language to develop visual basic.

The interface of Ruby contributed the “visual” component
of the Visual Basic programming language. This was then
amalgamated with the Embedded BASIC engine that was
developed for the ceased “Omega” database system of
Microsoft.

The introduction of version 5.0, in the month of February
in 1997, Microsoft exclusively released a visual basic that
was compatible with 32-bit Microsoft Windows versions. The
programmers who had a preference for writing programs in
16-bit could do it in versions between 4.0 and 5.0. In addition
to that the programs written Visual Basic 5.0 can be converted
to Version 4.0 programs in an easy manner. The version 5.0
also has the ability of compilation with native execution code
of Windows, and introduction of custom user controls.

The introduction of Visual Basic 6.0 was made in the
middle of 1998. This version also came with a number of

Visual
Basic
is available as
a streamlined
application that
is used primarily
by beginning
developers and
for educational
purposes.

Remember

LEARNING OBJECTIVES
See what you are going to cover and what you
should already know at the start of each chapter

ABOUT THIS CHAPTER
An introduction is a beginning of section which
states the purpose and goals of the topics which
are discussed in the chapter. It also starts the topics
in brief.

“I know blind programmers who work in C and Visual Basic in addition to mainframe languages,
because as long as they can get at a text file, they can do programming. But if the graphical tool kit
you are using requires you to drag and drop items on the screen, you can’t do it.”

–Curtis Chong,

After studying this chapter,
you will be able to:
1. Overview of meaning of

visual basic
2. Discuss the visual basic

environment
3. Describe the building

VB applications

LEARNING
OBJECTIVES

INTRODUCTION
TO VISUAL BASIC

INTRODUCTION
Visual Basic (VB) is an event-driven programming
language and environment from Microsoft that provides

1
CHAPTER

REMEMBER
This revitalizes a must read information of the
topic.

KEYWORDS
This section contains some important definitions
that are discussed in the chapter. A keyword is
an index entry that identifies a specific record
or document. It also gives the extra information
to the reader and an easy way to remember the
word definition.

vi

3G E-LEARNING

6 Basic Computer Coding: Visual Basic

 ■ There are some, fairly minor disadvantages compared
with C. C has better declaration of arrays – its possible
to initialize an array of structures in C at declaration
time; this is impossible in VB.

1.2 VISUAL BASIC ENVIRONMENT
On start up, Visual Basic 6.0 will display the following dialog
box as shown in figure 1. You can choose to start a new
project, open an existing project or select a list of recently
opened programs. A project is a collection of files that make
up your application. There are various types of applications
we could create, however, we shall concentrate on creating
Standard EXE programs (EXE means executable program).
Now, click on the Standard EXE icon to go into the actual
VB programming environment.

Figure 1: The Visual Basic Start-up Dialog Box.

In figure 2, the Visual Basic Environment consists of the
 ■ The Blank Form window which you can design your

application’s interface.
 ■ The Project window displays the files that are created

in your application.
 ■ The Properties window which displays the properties

of various controls and objects that are created in
your applications.

It also includes a Toolbox that consists of all the controls
essential for developing a VB Application. Controls are tools

Visual
Basic 1.0 for DOS
was released in
September 1992.
The language
itself was not
quite compatible
with Visual Basic
for Windows, as
it was actually
the next version
of Microsoft’s
DOS-based
BASIC compilers,
Microsoft
QuickBASIC
compiler and
the BASIC
Professional
Development
System 7.1. The
interface was
barely graphical,
using extended
ASCII characters
to simulate the
appearance of a
GUI.

Did You
Know?

38 Basic Computer Coding: Visual Basic

In each case, the name of the variable and its data type
are provided as part of the declaration.

Visual Basic reserves the amount of memory required
to hold the variable as soon as the declaration statement is
executed. After a variable is declared, it is not possible to
change its data type, although it is quite easy to convert the
value of a variable and assign the converted value to another
variable.

2.2.2 Comparing Implicit and Explicit Variable
Performance

The default data type for Visual Basic variables is the variant.
This means that, unless you specify otherwise, every variable
in your application will be a variant. The data type is not
very efficient. Its data storage requirements are greater than
the equivalent simple data type. The computer spends more
time keeping track of the data type contained in a variant
than for other data types.

 Variable names can’t be duplicated with the same scope. This means, that
 you can’t have two variables of the same name within a procedure. You can,
however, have two variables with the same name in two different procedures.

An explicit declaration statically types the variable it
declares. In a language that requires explicit declaration, you
will get a compilation error for any reference to a variable
that has not been explicitly declared.

By contrast, in a language that supports implicit declaration,
simply using a variable in code implies the declaration. If your
code assigns a string to the variable, then it is declared to be
a string.

Convenient, yes? Not so much. Any time you misspell a
variable name you get a new one and the program moves on,
with incorrect conditional behavior or a wrongly computed
value.

Given the rise of very smart editors like Visual Studio
Code, implicit declaration need not be the menace it was,
at least for languages that support the notion of optional

DID YOU KNOW?
This section equip readers the interesting facts and
figures of the topic.

EXAMPLE
The book cabinets’ examples to illustrate specific
ideas in each chapter.

ROLE MODEL
A biography of someone who has/had acquired
remarkable success in their respective field as
Role Models are important because they give us
the ability to imagine our future selves.

CASE STUDY
This reveals what students need to create and
provide an opportunity for the development of key
skills such as communication, group working and
problem solving.

KNOWLEDGE CHECK
This is given to the students for progress check
at the end of each chapter.

REVIEW QUESTIONS
This section is to analyze the knowledge and ability
of the reader.

REFERENCES
References refer those books which discuss the
topics given in the chapters in almost same manner.

Introduction to Visual Basic

3G E-LEARNING

19

ROLE MODEL

ALAN COOPER: FATHER OF VISUAL BA-
SIC
 Born in San Francisco in 1952 and raised in Marin
 County, California, Alan Cooper has always taken the path
 less traveled. A rebellious teenager, he dropped out of high
 school, but eventually made his way to the College of Marin
 to pursue his interest in architecture. After an exploratory
 course in programming, it became clear that his future was
 in architecture—software architecture. After getting his
 associate degree and a COBOL programming job, he saw an
 advertisement for one of the first personal computers and
.conceived an idea for a new business venture

In 1976, Cooper founded Structured Systems Group (SSG),
a company Fire in the Valley authors Paul Freiberger and
Michael Swaine said created “the first serious business software
for microcomputers.” In four years, Cooper wrote and shipped
a dozen application programs. SSG became the archetype
for many software startups in the early days of the personal
computer revolution.

During the 1980s, after leaving SSG, Cooper invented,
wrote, and sold three major software packages to prominent
publishers. One of those was the visual programming front-
end code named “Ruby,” for what became Visual BASIC. Bill
Gates purchased it from Cooper in 1988, noting that it would
have significant impact across Microsoft’s entire product line.
Visual BASIC was deemed both a commercial and critical
success, earning Cooper the moniker “Father of Visual BASIC.”
Visual BASIC has influenced integrated development languages
ever since.

In 1990 Cooper became fascinated with the challenge of
making software products that were easy to use and understand.
He and his wife, Susan, founded Cooper Interaction Design
(now “Cooper”) to assist in what Cooper calls “interaction
design.” In the design field, Cooper’s software development
background was unique and, over the next few years, he
invented many of the tools and techniques now standard in
the user experience industry, including personas and scenarios,

3G E-LEARNING

50 Basic Computer Coding: Visual Basic

CASE STUDY

FUJITSU FACILITATES SMOOTH MIGRATION TO VB.NET AT
AN POST
Fujitsu has an excellent technical team, which works closely with our staff. We have
had a good working relationship for many years and Fujitsu has an in-depth knowledge
of our mission-critical application gained from several years’ development and support
work.

Challenge

A Post, one of Ireland’s largest companies, is a major commercial organization providing
a wide range of postal, communication, retail and financial services. With 9,600
employees throughout its national network of retail, processing and delivery points,
the business also provides services to government departments, the National Treasury
Management Agency and its own National Lottery Company. A decade ago, A Post
implemented a new nationwide time and attendance system to calculate and record staff
salary and wages functions. The Staff Remuneration and Administration Management
System (STREAMS) is a bespoke, mission-critical application developed by Fujitsu as
a reliable, scalable client server system using Microsoft technologies. The STREAMS
front-end system gathers information and feeds the data to the company’s HR, payroll
and financial departments. It primarily creates more efficient processes for A Post to
capture data for the weekly payroll run whilst simultaneously minimizing the number
of payroll queries by employees. Following deployment, STREAMS improved cost
center reporting, significantly lowered the time to record pay details and enhanced
the processing of casual staff pay. During this period, Fujitsu provided quality support
and maintenance services and application enhancements to increase functionality,
ensuring the long-term reliability of STREAMS. For instance, as employee numbers
steadily increased to exceed original expectations, Fujitsu boosted system performance
by upgrading the infrastructure and optimizing the software. STREAMS originally
employed Visual Basic (VB), a third-generation event-driven programming language and
integrated development environment (IDE) from Microsoft. IDE provides programmers
with comprehensive facilities for software development and comprises a source code
editor, a compiler and/or an interpreter, build automation tools and a debugger.
However, Microsoft no longer supports VB version 6.0, the edition employed by A
Post. Syl Byrne, IT Manager Remuneration Services, A Post, explains: “To ensure that
our business-critical application is future-proof, we needed to move to a platform that
Microsoft will support for the foreseeable future.” A Post therefore decided to migrate
STREAMS to the VB.NET platform, an object-orientated programming language. This
strategy would protect its investment for the next 10 years by creating a secure, scalable

3G E-LEARNING

22 Basic Computer Coding: Visual Basic

KNOWLEDGE CHECK
1. The Visual Basic Code Editor will automatically detect certain types of errors

as you are entering code.
a. True
b. False

2. Keywords are also referred to as reserved words.
a. True
b. False

3. The divide-and-conquer-method of problem solving breaks a problem into large,
general pieces first, then refines each piece until the problem is manageable.
a. True
b. False

4. Visual Basic responds to events using which of the following?
a. a code procedure
b. an event procedure
c. a form procedure
d. a property

5. When the user clicks a button, _________ is triggered.
a. an event
b. a method
c. a setting
d. a property

6. What property of controls tells the order they receive the focus when the tab
key is pressed during run time?
a. Focus order
b. Focus number
c. Tab index
d. Control order

7. Sizing Handles make it very easy to resize virtually any control when developing
applications with Visual Basic. When working in the Form Designer, how are
these sizing handles displayed?
a. A rectangle with 4 arrows, one in each corner, around your control.
b. A 3-D outline around your control.
c. A rectangle with small squares around your control.

3G E-LEARNING

24 Basic Computer Coding: Visual Basic

REFERENCES
1. Cox, Philip T, Visual Programming Languages. In in Encyclopedia of Computer

Science and Engineering, B.W. Wah (Ed.), John Wiley & Sons Inc., Hoboken,
(June 2008).

2. Kindborg, Mikael, How Children Understand Concurrent Comics: Experiences
from LOFI and HIFI Prototypes. In 2001 IEEE Symposia on Human-Centric
Computing Languages and Environments , Stresa, Italy, September 2001.

3. Ryder, Barbara, Mary Lou Soffa and Margaret Burnett, The Impact of Software
Engineering Research on Modern Programming Languages. In ACM Transactions
on Software Engineering and Methodology, October, 2005. Pages 431 to 477.

4. Störrle, Harald, VMQL: A Generic Visual Model Query Language. In IEEE
Symposium on Visual Languages/Human Centric Computing, Corvallis, Oregon,
September 2009.

5. Zhang, Kang, Visual Languages and Applications. In Research Manuscript,
Springer, 2007.

Introduction to Visual Basic

3G E-LEARNING

23

d. None of the above.
8. The Properties window plays an important role in the development of Visual

Basic applications. It is mainly used
a. to change how objects look and feel.
b. when opening programs stored on a hard drive.
c. to allow the developer to graphically design program components.
d. to set program related options like Program Name, Program Location, etc.

9. Pseudocode is
a. data that have been encoded for security.
b. the incorrect results of a computer program.
c. a program that doesn’t work.
d. the obscure language computer personnel use when speaking.
e. a description of an algorithm similar to a computer language.

10. Which of the properties in a control’s list of properties is used to give the
control a meaningful name?
a. Text
b. ContextMenu
c. ControlName
d. Name

REVIEW QUESTIONS
1. What is visual basic? Why are importance of visual basic programming

language?
2. What is visual basic environment?
3. Describe the structure of a visual basic application.
4. How to creating your first application?
5. Discuss the saving projects in VB.

Check Your Result

1. (a) 2. (a) 3. (a) 4. (b) 5. (a)
6. (c) 7. (c) 8. (a) 9. (e) 10. (d)

TABLE OF

CONTENTS
Preface	 xiii

Chapter 1	Basics of C++	 1
Introduction	 1

1.1 Concept of C++ 	 2

1.1.1 Use of C++	 3

1.1.2 Feature of Object oriented C++	 4

1.1.3 Benefits of C++ over C Language	 4

1.2 OOPs Concept Basics	 5

1.2.1 Access Control in Classes	 5

1.3 Syntax and Structure of C++ program	 6

1.3.1 First C++ program	 6

1.4 Data Types in C++	 8

1.4.1 Basic Built in types	 8

1.4.2 Enum as Data type	 9

1.5 Variables in C++	 10

1.5.1 Basic types of Variables	 10

1.5.2 Declaration and Initialization	 11

1.5.3 Scope of Variables	 12

1.6 Operators in C++	 13

1.6.1 Types of operators	 14

1.7 sizeof operator in C++	 16

1.7.1 typedef Operator	 17

1.8 Loop Type	 17

1.8.1 While	 18

1.8.2 Do while	 21

1.8.3 For loop	 24

Summary	 30

Knowledge Check	 31

viii

Review Questions	 32

References	 34

Chapter 2	Language Features	 35
Introduction	 35

2.1 Concept of C++ Features	 36

2.2 Difference between C and C++	 38

2.2.1 Key Differences between C and C++	 40

2.3 Variables Declaration in C++	 45

2.3.1 Variables initialization in C++	 47

2.3.2 Rules of Declaring variable in C++	 47

2.3.3 Scope of Variables in C++	 49

2.3.4 Variable declaration syntax in C/C++ language	 54

2.3.5 Variable Declaration Rule in C++	 55

Summary	 59

Knowledge Check	 60

Review Questions	 61

References	 62

Chapter 3	C++ Overloading (Function and Operator)	 63
Introduction	 63

3.1 Concept of Overloading	 64

3.2 Type of Overloading	 67

3.2.1 Constructor Overloading	 67

3.2.2 Operator Overloading	 67

3.2.3 Method Overloading	 68

3.3 Function Overloading in C++	 68

3.3.1 Operators Overloading in C++	 74

3.3.2 Argument Matching	 80

3.3.3 Argument matching and the this pointer	 88

3.3.4 END Microsoft Specific	 89

3.3.5 Declaration Matching	 90

Summary	 93

Knowledge Check	 95

Review Questions	 96

References	 97

ix

Chapter 4	 Inheritance	 99
Introduction	 99

4.1 Concept of Inheritance	 100

4.1.1 Inheritance in C++	 102

4.1.2 Virtual Functions	 106

4.1.3 Dispatching Virtual Functions	 107

4.1.4 Pure Virtual Functions	 116

4.2 Multiple Inheritance	 121

4.2.1 Inheritance and Composition	 127

Summary	 129

Knowledge Check	 131

Review Questions	 133

References	 134

Chapter 5	Polymorphism in C++	 135
Introduction	 135

5.1 Concept of Polymorphism	 136

5.1.1 Compile Time Polymorphism	 139

5.1.2 Runtime Polymorphism	 147

5.2 Importance of Polymorphism	 157

5.3 Implementing Polymorphism C++	 157

5.4 Other Applications of Polymorphism	 159

5.5 Polymorphism Explanation	 160

Summary	 166

Knowledge Check	 167

Review Questions	 168

References	 170

Chapter 6	C++ Exception Handling	 171
Introduction	 171

6.1 Concept of Exception Handling in C++ Programming	 172

6.1.1 Multiple Catch Exception	 173

6.1.2 Catch all Exceptions	 174

6.1.3 Some Useful Facts to Know Before Using C++ Exceptions	 176

6.2 Exception Handling Over Traditional Error Handling	 183

6.2.1 Advantage of C++ Exception Handling	 191

Summary	 193

x

Knowledge Check	 194

Review Questions	 195

References	 197

Chapter 7	 I/O Streams	 199
Introduction	 199

7.1 Basic Input/Output	 202

7.1.1 Standard output (cout)	 203

7.1.2 Standard input (cin)	 205

7.1.3 cin and strings	 206

7.1.4 stringstream	 207

7.2 C++ Class Hierarchy	 208

7.2.1 Interface inheritance	 209

7.2.2 Implementation inheritance	 213

7.3 File Stream	 220

7.3.1 Opening a File	 220

7.3.2 Closing a File	 221

7.3.3 Writing to a File	 222

7.3.4 Reading from a File	 222

7.3.5 Read and Write Example	 222

7.3.6 File Position Pointers	 224

7.4 Text File Handling	 225

7.4.1 FileStream Objects, Header Files, File Access, and Filenames	 225

7.4.2 Creating and Storing Data in a Text File	 225

7.4.3 Reading Data from a Text File	 227

7.4.4 Working with Numbers in a Text File	 229

7.4.5 Appending Data to a File	 230

7.5 Binary File Handling	 231

7.5.1 Searching in C++	 231

7.5.2 Appending Data in C++	 242

7.5.3 C++ Inserting Data in Sorted File	 245

7.5.4 Deleting a Record in C++	 250

7.5.5 Modifying Data in C++	 250

7.6 Error Handling During File Operations	 251

7.6.1 int bad()	 252

7.6.2 int fail()	 253

7.6.3 int eof()	 254

xi

7.6.4 int good()	 255

7.6.5 int clear()	 256

7.7 Overloading << and >> operators	 257

Summary	 262

Knowledge Check	 263

Review Questions	 264

References	 266

Chapter 8	Control Flow	 267
Introduction	 267

8.1 Branching or Conditional Structure	 269

8.1.1 if statement 	 269

8.1.2 if else statements 	 270

8.1.3 switch statements	 272

8.1.4 else if Statement	 274

8.2 Iterative or looping Structure	 276

8.2.1 The for Loop	 276

8.2.2 The while Loop	 279

8.2.3 The do-while loop	 281

8.3 Sequential Control Flow Structure	 282

8.3.1 Jump statements	 282

8.3.2 Break statement	 282

8.3.3 Continue statement	 284

8.3.4 Go to statement	 285

Summary	 307

Knowledge Check	 308

Review Questions	 309

References	 310

	 Index	 311

C++ is an object-oriented programming language. It is an extension to
C programming. C++ is a general purpose, case-sensitive, free-form
programming language that supports object-oriented, procedural and generic
programming. It has imperative, object-oriented and generic programming
features. C++ runs on lots of platform like Windows, Linux, Unix, Mac etc.
It is also popular in communications and gaming. It is used in many other
industries: health care, finances, and even defense. Any program that was
developed in the original C language can easily be moved into C++ without
any major modifications. Because C++ offers flexibility, programmers are
able to create powerful constructs and introduce new conceptual objects
and abstract applications. As a result, C++ allows programmers to directly
control and manipulate hardware resources to produce high functioning
programs.

Organization of the Book
This edition is systematically divided into eight chapters. This book is
designed to equip with C++ programming fundamentals including objects
and classes, language reference, inheritance, templates, exceptions, and
static class members.
Chapter 1 introduces the basics of C++, such as OOPs Concept, syntax and
structure of C++, data types and variables in C++. Operators and size of
operators in C++ is also covered in this chapter.
Chapter 2 starts with the features of C++.The difference between C and
C++ is also given in this chapter, including variables declaration.
Chapter 3 focuses on overloading used to avoid redundant code where
the same method name is used multiple times but with a different set

PREFACE

xiv

of parameters. Overloading provides code clarity, eliminates complexity, and
enhances runtime performance.
Chapter 4 focuses on inheritance concept that allows programmers to define a
class in terms of another class, which makes creating and maintaining application
easier. When writing a new class, instead of writing new data member and
member functions all over again, programmers can make a bonding of the
new class with the old one that the new class should inherit the members of
the existing class.
Chapter 5 takes a look on polymorphism in C++. It illustrates the concept and
importance of polymorphism. Implementing polymorphism in c++ and other
applications of polymorphism are also given.
Chapter 6 is intended to focus on exception handling in C++ Programming.
In handled exceptions, execution of the program will resume at a designated
block of code, called a catch block, which encloses the point of throwing in
terms of program execution.
Chapter 7 focuses on I/O Streams. One of the great strengths of C++ is its I/O
system, IO Streams. The second thing you may notice is that the word “stream”
is used an awful lot. At its most basic, I/O in C++ is implemented with streams.
Chapter 8 is Control Flow. It explains branching or conditional structure.
Moreover, it describes iterative or looping structure.

“C++ protects against accident, not against fraud.”

–Bjarne Stroustrup,

After studying this chapter,
you will be able to:
1.	 Concept of C++
2.	 Discuss about OOPs

Concept Basics
3.	 Focus on syntax

and structure of C++
program

4.	 Define the data types in
C++

5.	 Variables in C++
6.	 Understand the

Operators in C++
7.	 Discuss about sizeof

operator in C++
8.	 Describe the Loop Type

LEARNING
OBJECTIVES

BASICS OF C++

INTRODUCTION
C++ is a general-purpose, object-oriented programming
language. It was created by Bjarne Stroustrup at Bell Labs
circa 1980. C++ is very similar to C (invented by Dennis

1
CHAPTER

3G E-LEARNING

2 Basic Computer Coding: C++

Ritchie in the early 1970s). C++ is so compatible with C that it will probably compile
over 99% of C programs without changing a line of source code. Though C++ is a lot
of well-structured and safer language than C as it OOPs based.
Some computer languages are written for a specific purpose. Like, Java was initially
devised to control toasters and some other electronics. C was developed for programming
OS. Pascal was conceptualized to teach proper programming techniques. But C++ is a
general-purpose language. It well deserves the widely acknowledged nickname “Swiss
Pocket Knife of Languages.”

1.1 CONCEPT OF C++
C++ fully supports object-oriented programming, including the four pillars of object-
oriented development −

■■ Encapsulation
■■ Data hiding
■■ Inheritance
■■ Polymorphism

Standard Libraries

Standard C++ consists of three important parts −
■■ The core language giving all the building blocks including variables, data

types and literals, etc.
■■ The C++ Standard Library giving a rich set of functions manipulating files,

strings, etc.
■■ The Standard Template Library (STL) giving a rich set of methods manipulating

data structures, etc.

The ANSI Standard

The ANSI standard is an attempt to ensure that C++ is portable; that code you write
for Microsoft’s compiler will compile without errors, using a compiler on a Mac, UNIX,
a Windows box, or an Alpha.

The ANSI standard has been stable for a while, and all the major C++ compiler
manufacturers support the ANSI standard.

Learning C++

The most important thing while learning C++ is to focus on concepts.

Basics of C++

3G E-LEARNING

3

The purpose of learning a programming language is to
become a better programmer; that is, to become more effective
at designing and implementing new systems and at maintaining
old ones.

C++ supports a variety of programming styles. You can
write in the style of Fortran, C, Smalltalk, etc., in any language.
Each style can achieve its aims effectively while maintaining
runtime and space efficiency.

1.1.1 Use of C++

C++ is used by programmers to create computer software. It
is used to create general systems software, drivers for various
computer devices, software for servers and software for specific
applications and also widely used in the creation of video
games.

C++ is used by many programmers of different types
and coming from different fields. C++ is mostly used to write
device driver programs, system software, and applications
that depend on direct hardware manipulation under real-time
constraints. It is also used to teach the basics of object-oriented
features because it is simple and is also used in the fields of
research. Also, many primary user interfaces and system files
of Windows and Macintosh are written using C++. So, C++
is really a popular, strong and frequently used programming
language of this modern programming era.

■■ C++ is used by hundreds of thousands of programmers
in essentially every application domain.

■■ C++ is being highly used to write device drivers and
other software that rely on direct manipulation of
hardware under real-time constraints.

■■ C++ is widely used for teaching and research because
it is clean enough for successful teaching of basic
concepts.

■■ Anyone who has used either an Apple Macintosh
or a PC running Windows has indirectly used C++
because the primary user interfaces of these systems
are written in C++.

 A class can
 implement
 more than one
 interface. An
 interface can
 extends another
 interface or
 interfaces (more
 than one interface).

Keyword

3G E-LEARNING

4 Basic Computer Coding: C++

1.1.2 Feature of Object oriented C++

■■ The main focus remains on data rather than procedures.
■■ Object-oriented programs are segmented into parts called objects.
■■ Data structures are designed to categorize the objects.
■■ Data member and functions are tied together as a data structure.
■■ Data can be hidden and cannot be accessed by external functions using access

specified.
■■ Objects can communicate among themselves using functions.
■■ New data and functions can be easily added anywhere within a program

whenever required.
■■ Since this is an object-oriented programming language, it follows a bottom

up approach, i.e. the execution of codes starts from the main which resides
at the lower section and then based on the member function call the working
is done from the classes.

The object-oriented approach is a recent concept among programming paradigms
and has various fields of progress. Object-oriented programming is a technique that
provides a way of modularizing programs by creating memory area as a partition
for both data and functions that can further be used as a template to create copies of
modules on demand.

1.1.3 Benefits of C++ over C Language

The major difference being OOPS concept, C++ is an object oriented language whereas
C language is a procedural language. Apart from this there are many other features
of C++ which gives this language an upper hand on C laguage.

Following features of C++ makes it a stronger language than C,
■■ There is Stronger Type Checking in C++.
■■ All the OOPS features in C++ like Abstraction, Encapsulation, Inheritance etc

makes it more worthy and useful for programmers.
■■ C++ supports and allows user defined operators (i.e Operator Overloading)

and function overloading is also supported in it.
■■ Exception Handling is there in C++.
■■ The Concept of Virtual functions and also Constructors and Destructors for

Objects.
■■ Inline Functions in C++ instead of Macros in C language. Inline functions

make complete function body act like Macro, safely.

Basics of C++

3G E-LEARNING

5

■■ Variables can be declared anywhere in the program in C++, but must be
declared before they are used.

1.2 OOPS CONCEPT BASICS
Object Oriented programming is a programming style that is associated with the
concept of Class, Objects and various other concepts revolving around these two, like
Inheritance, Polymorphism, Abstraction, Encapsulation etc.

1.2.1 Access Control in Classes

Now before studying how to define class and its objects, lets first quickly learn what
are access specifies. Access specifies in C++ class defines the access control rules. C++
has 3 new keywords introduced, namely,

■■ public
■■ private
■■ protected

These access specifies are used to set boundaries for availability of members of
class be it data members or member functions

Access specifies in the program, are followed by a colon. You can use either one,
two or all 3 specifies in the same class to set different boundaries for different class
members. They change the boundary for all the declarations that follow them.

Public

Public, means all the class members declared under public will be available to everyone.
The data members and member functions declared public can be accessed by other

3G E-LEARNING

6 Basic Computer Coding: C++

classes too. Hence there are chances that they might change
them. So the key members must not be declared public.

Private

Private keyword, means that no one can access the class
members declared private outside that class. If someone tries to
access the private member, they will get a compile time error.
By default class variables and member functions are private.

Protected

Protected, is the last access specified, and it is similar to
private, it makes class member inaccessible outside the class.
But they can be accessed by any subclass of that class. (If class
A is inherited by class B, then class B is subclass of class A.
We will learn this later.)

class ProtectedAccess
{
 protected: // protected access specifier
 int x; // Data Member Declaration
 void display(); // Member Function decaration

}

1.3 SYNTAX AND STRUCTURE OF C++
PROGRAM
Here we will discuss one simple and basic C++ program to
print “Hello this is C++” and its structure in parts with details
and uses.

1.3.1 First C++ program

#include <iostream.h>
using namespace std;
int main()
{
cout << “Hello this is C++”;
}

 A member
 function
 of a class is a
 function that has
 its definition or its
 prototype within
 the class definition
 like any other
variable

Keyword

Basics of C++

3G E-LEARNING

7

Header files are included at the beginning just like in C program. Here iostream
is a header file which provides us with input & output streams. Header files contained
predeclared function libraries, which can be used by users for their ease.

Using namespace std, tells the compiler to use standard namespace. Namespace
collects identifiers used for class, object and variables. NameSpace can be used by
two ways in a program, either by the use of using statement at the beginning, like
we did in above mentioned program or by using name of namespace as prefix before
the identifier with scope resolution (::) operator.

Example : std::cout << “A”;
main(), is the function which holds the executing part of program its return type

is int.
cout <<, is used to print anything on screen, same as printf in C language. cin and

cout are same as scanf and printf, only difference is that you do not need to mention
format specifiers like, %d for int etc, in cout & cin.

Comments

For single line comments, use // before mentioning comment, like
cout<<”single line”; // This is single line comment
For multiple line comment, enclose the comment between /* and */
/*this is
 a multiple line
 comment */

Using Classes

Classes name must start with capital letter, and they contain data variables and member
functions. This is a mere introduction to classes,

class Abc
{
 int i; //data variable
 void display() //Member Function
 {
 cout<<”Inside Member Function”;
 }
}; // Class ends here

3G E-LEARNING

8 Basic Computer Coding: C++

int main()
{
 Abc obj; // Creatig Abc class’s object
 obj.display(); //Calling member function using class object
}
This is how class is defined, its object is created and the
member functions are used.

1.4 DATA TYPES IN C++
They are used to define type of variables and contents used.
Data types define the way you use storage in the programs
you write. Data types can be built in or abstract.

Built in Data Types

These are the data types which are predefined and are wired
directly into the compiler. eg: int, char etc.

User defined or Abstract data types

These are the type, that user creates as a class. In C++ these
are classes where as in C it was implemented by structures.

1.4.1 Basic Built in types

char for character storage (1 byte)
int for integral number (2 bytes)
float single precision floating point (4

bytes)
double double precision floating point

numbers (8 bytes)

Example :

char a = ‘A’; // character type
int a = 1; // integer type

Variables
can
be declared
anywhere in the
entire program,
but must be
declared, before
they are used.
Hence, we don’t
need to declare
variable at the
start of the
program.

Remember

Basics of C++

3G E-LEARNING

9

float a = 3.14159; // floating point type
double a = 6e-4; // double type (e is for exponential)

Other Built in types

bool Boolean (True or False)
void Without any Value
wchar_t Wide Character

1.4.2 Enum as Data type

Enumerated type declares a new type-name and a sequence
of value containing identifiers which has values starting from
0 and incrementing by 1 every time.

enum day(mon, tues, wed, thurs, fri) d;
Here an enumeration of days is defined with variable d. mon will hold value 0, tue
will have 1 and so on. We can also explicitly assign values, like, enum day(mon,
tue=7, wed);. Here, mon will be 0, tue is assigned 7, so wed will have value 8.

Modifiers

Specifiers modify the meanings of the predefined built-in data
types and expand them to a much larger set. There are four
data type modifiers in C++, they are:

■■ long
■■ short
■■ signed
■■ unsigned

Below mentioned are some important points you must
know about the modifiers,

■■ long and short modify the maximum and minimum
values that a data type will hold.

■■ A plain int must have a minimum size of short.
■■ Size hierarchy : short int < int < long int

3G E-LEARNING

10 Basic Computer Coding: C++

■■ Size hierarchy for floating point numbers is : float <
double < long double

■■ long float is not a legal type and there are no short
floating point numbers.

■■ Signed types includes both positive and negative
numbers and is the default type.

■■ Unsigned, numbers are always without any sign,
that is always positive.

1.5 VARIABLES IN C++
Variable are used in C++, where we need storage for any value,
which will change in program. Variable can be declared in
multiple ways each with different memory requirements and
functioning. Variable is the name of memory location allocated
by the compiler depending upon the data type of the variable.

1.5.1 Basic types of Variables

Each variable while declaration must be given a datatype, on
which the memory assigned to the variable depends. Following
are the basic types of variables,

bool For variable to store boolean values(True or
False)

char For variables to store character types.
int for variable with integral values

 Compilers
 are a type
 of translator that
 support digital
 devices, primarily
 computers.

Keyword

Basics of C++

3G E-LEARNING

11

 float and
 double are
 also types
 for variables
 with large and
 floating point
values

1.5.2 Declaration and Initialization

Variable must be declared before they are used. Usually it is preferred to declare
them at the starting of the program, but in C++ they can be declared in the middle
of program too, but must be done before using them.

Example :

int i; // declared but not initialised
char c;
int i, j, k; // Multiple declaration

Initialization means assigning value to an already declared variable,

int i; // declaration
i = 10; // initialization
Initialization and declaration can be done in one single step also,

int i=10; //initialization and declaration in same step
int i=10, j=11;

If a variable is declared and not initialized by default it will hold a garbage value.
Also, if a variable is once declared and if try to declare it again, we will get a compile
time error.

int i,j;
i=10;
j=20;
int j=i+j; //compile time error, cannot redeclare a variable in same scope

3G E-LEARNING

12 Basic Computer Coding: C++

1.5.3 Scope of Variables

All the variables have their area of functioning, and out of that boundary they don’t
hold their value, this boundary is called scope of the variable. For most of the cases
it’s between the curly braces, in which variable is declared that a variable exists, not
outside it. We will study the storage classes later, but as of now, we can broadly divide
variables into two main types,

■■ Global Variables
■■ Local variables

Global variables

Global variables are those, which ar once declared and can be used throughout the
lifetime of the program by any class or any function. They must be declared outside
the main() function. If only declared, they can be assigned different values at different
time in program lifetime. But even if they are declared and initialized at the same
time outside the main() function, then also they can be assigned any value at any
point in the program.

Example : Only declared, not initialized
include <iostream>
using namespace std;
int x; // Global variable declared
int main()
{
 x=10; // Initialized once
 cout <<”first value of x = “<< x;
 x=20; // Initialized again
 cout <<”Initialized again with value = “<< x;
}

Local Variables

Local variables are the variables which exist only between the curly braces, in which
its declared. Outside that they are unavailable and leads to compile time error.

Example :

include <iostream>
using namespace std;

Basics of C++

3G E-LEARNING

13

int main()
{
 int i=10;
 if(i<20) // if condition scope starts
 {
 int n=100; // Local variable declared and initialized
 } // if condition scope ends
 cout << n; // Compile time error, n not available here
}

Some Special types of Variable

There are also some special keywords, to impart unique
characteristics to the variables in the program. Following
two are mostly used,

■■ Final - Once initialized, its value can’t be changed.
■■ Static - These variables holds their value between

function calls.

Example :

#include <iostream.h>
using namespace std;
int main()
{
 final int i=10;
 static int y=20;
}

1.6 OPERATORS IN C++
Operators are special type of functions that takes one or more
arguments and produces a new value. For example: addition
(+), subtraction (-), multiplication (*) etc., are all operators.
Operators are used to perform various operations on variables
and constants.

 C Programming
 Operators. C
 programming has
 various operators
 to perform
 tasks including
 arithmetic,
 conditional and
 bitwise operations.
 ... An operator is
 a symbol which
 operates on a value
or a variable.

Keyword

3G E-LEARNING

14 Basic Computer Coding: C++

1.6.1 Types of operators

■■ Assignment Operator
■■ Mathematical Operators
■■ Relational Operators
■■ Logical Operators
■■ Bitwise Operators
■■ Shift Operators
■■ Unary Operators
■■ Ternary Operator
■■ Comma Operator

Assignment Operator (=)

Operates ‘=’ is used for assignment, it takes the right-hand side (called rvalue) and
copy it into the left-hand side (called lvalue). Assignment operator is the only operator
which can be overloaded but cannot be inherited.

Mathematical Operators

There are operators used to perform basic mathematical operations. Addition (+)
, subtraction (-) , diversion (/) multiplication (*) and modulus (%) are the basic
mathematical operators. Modulus operator cannot be used with floating-point numbers.

C++ and C also use a shorthand notation to perform an operation and assignment
at same type. Example,
int x=10;
x += 4 // will add 4 to 10, and hence assign 14 to X.
x -= 5 // will subtract 5 from 10 and assign 5 to x.

Basics of C++

3G E-LEARNING

15

Relational Operators

These operators establish a relationship between operands. The
relational operators are: less than (<) , grater thatn (>) , less
than or equal to (<=), greater than equal to (>=), equivalent
(==) and not equivalent (!=).

You must notice that assignment operator is (=) and there
is a relational operator, for equivalent (==). These two are
different from each other, the assignment operator assigns the
value to any variable, whereas equivalent operator is used to
compare values, like in if-else conditions,

Example

int x = 10; //assignment operator
x=5; // again assignment operator
if(x == 5) // here we have used equivalent relational operator,
for comparison
{
 cout <<”Successfully compared”;
}

Logical Operators

The logical operators are AND (&&) and OR (||). They are
used to combine two different expressions together.

Bitwise Operators

There are used to change individual bits into a number. They
work with only integral data types like char, int and long and
not with floating point values.

■■ Bitwise AND operators &
■■ Bitwise OR operator |
■■ And bitwise XOR operator ^
■■ And, bitwise NOT operator ~

They can be used as shorthand notation too, & = , |= ,
^= , ~= etc.

If two
statement
are connected
using AND
operator, the
validity of both
statements will
be considered,
but if they are
connected using
OR operator, then
either one of them
must be valid.
These operators
are mostly used in
loops (especially
while loop) and in
Decision making.

Remember

3G E-LEARNING

16 Basic Computer Coding: C++

Shift Operators

Shift Operators are used to shift Bits of any variable. It is of three types,
■■ Left Shift Operator <<
■■ Right Shift Operator >>
■■ Unsigned Right Shift Operator >>>

Unary Operators

These are the operators which work on only one operand. There are many unary
operators, but increment ++ and decrement -- operators are most used.

Other Unary Operators: address of &, dereference *, new and delete, bitwise not
~, logical not !, unary minus - and unary plus +.

Ternary Operator

The ternary if-else ? : is an operator which has three operands.
int a = 10;
a > 5 ? cout << “true” : cout << “false”

Comma Operator

This is used to separate variable names and to separate expressions. In case of expressions,
the value of last expression is produced and used.

Example :

int a,b,c; // variables declaration using comma operator
a=b++, c++; // a = c++ will be done.

1.7 SIZEOF OPERATOR IN C++
sizeOf is also an operator not a function, it is used to get information about the
amount of memory allocated for data types & Objects. It can be used to get size of
user defined data types too.

sizeOf operator can be used with and without parentheses. If you apply it to a
variable you can use it without parentheses.

cout << sizeOf(double); //Will print size of double
int x = 2;
int i = sizeOf x;

Basics of C++

3G E-LEARNING

17

1.7.1 typedef Operator

typedef is a keyword used in C language to assign alternative
names to existing types. Its mostly used with user defined
data types, when names of data types get slightly complicated.
Following is the general syntax for using typedef,

typedef existing_name alias_name
Lets take an example and see how typedef actually works.
typedef unsigned long ulong;
The above statement define a term ulong for an unsigned

long type. Now this ulong identifier can be used to define
unsigned long type variables.

ulong i, j;
typedef and Pointers
typedef can be used to give an alias name to pointers

also. Here we have a case in which use of typedef is beneficial
during pointer declaration.

In Pointers * binds to the right and not the left.
int* x, y ;
By this declaration statement, we are actually declaring

x as a pointer of type int, whereas y will be declared as a
plain integer.

typedef int* IntPtr ;
IntPtr x, y, z;
But if we use typedef like in above example, we can

declare any number of pointers in a single statement

1.8 LOOP TYPE
A Computer is used for performing many Repetitive types of
tasks The Process of Repeatedly performing tasks is known
as looping .The Statements in the block may be Executed
any number of times from Zero to Up to the Condition is
True. The Loop is that in which a task is repeated until the
condition is true or we can say in the loop will Executes all
the statements are until the given condition is not to be false.

These are generally used for repeating the statements.
In this There is Either Entry Controlled loop or as Exit

 In
 computer
 science, a pointer
 is a programming
 language object
 that stores the
 memory address
 of another
 value located in
computer memory.

Keyword

3G E-LEARNING

18 Basic Computer Coding: C++

Controlled Loop We know that before Execution of Statements
all Conditions are Checked these are Performed by Entry
Controlled Loops Which First Checks Condition And in Exit
Controlled Loop it Checks Condition for Ending Loop Whether
given Condition is False or not if a Loop First Checks Condition
For Execution then it is called as Entry Controlled Loop and
if a Loop Checks Condition after the Execution of Statement
then they are Called as Exit Controlled Loops.

In The loop generally there are three basic operations are
performed

■■ 1) 	 Initialization
■■ 2) 	 Condition check
■■ 3) 	 Increment

Playing with loops makes programming fun. Before we
try to understand loop, you should be thorough with all the
previous topics of C++.

Suppose, we have to print the first 10 natural numbers.
One way to do this is to print the first 10 natural numbers

individually using cout. But what if you are asked to print
the first 100 natural numbers! You can easily do this with the
help of loops.

■■ 1) 	 while
■■ 2) 	 do-while
■■ 3) 	 for

all these are used for performing the repetitive tasks until
the given condition is not true.

1.8.1 While

While Loop is Known as Entry Controlled Loop because in The
while loop first we initialize the value of variable or Starting
point of Execution and then we check the condition and if
the condition is true then it will execute the statements and
then after it increments or decrements the value of a variable.
But in the while loop if a Condition is false then it will never
Executes the Statement So that For Execution, this is must that
the Condition must be true.

C++ is
considered to be
an intermediate-
level language,
as it encapsulates
both high-
and low-level
language
features. Initially,
the language
was called “C
with classes”
as it had all the
properties of the
C language with
an additional
concept of
“classes.”
However, it was
renamed C++ in
1983.

Did You
Know?

Basics of C++

3G E-LEARNING

19

Let’s first look at the syntax of while loop.
while(condition)
{
 statement(s)
}

while loop checks whether the condition written in () is true or not. If the condition
is true, the statements written in the body of the while loop i.e., inside the braces
{ } are executed. Then again the condition is checked, and if found true, again the
statements in the body of the while loop are executed. This process continues until
the condition becomes false.
An example will make this clear.
#include <iostream>
int main(){
 using namespace std;
 int n = 1;
 while(n <= 10){
 cout << n << endl;
 n++;
 }
 return 0;
}
Output
In our example, firstly, we assigned a value 1 to a variable ‘n’.
while(n <= 10) - checks the condition ‘n <= 10’. Since the value of n is 1 which is less
than 10, the statements within the braces { } are executed.
The value of ‘n’ i.e. 1 is printed and n++ increases the value of ‘n’ by 1. So, now the
value of ‘n’ becomes 2.
Now, again the condition is checked. This time also ‘n <= 10’ is true because the value
of ‘n’ is 2. So, again the value of ‘n’ i.e., 2 gets printed and the value of ‘n’ will be
increased to 3.
When the value of ‘n’ becomes 10, again the condition ‘n <= 10’ is true and 10 gets
printed for the tenth time. Now, n++ increases the value to ‘n’ to 11.
This time, the condition ‘n <= 10’ becomes false and the program terminates.
Quite interesting. Isn’t it !
The following animation will also help you to understand the while loop.

3G E-LEARNING

20 Basic Computer Coding: C++

Let’s see one more example of while loop
#include <iostream>
int main(){
	 using namespace std;
	 int choice = 1;
	 while(choice == 1){
		
		 int a;
		
		 cout << “Enter a number to check even or odd” << endl;
		 cin >> a;		 //input number
		
		 //check whether number is even or odd
		
		 if(a%2 == 0){
			 cout << “Your number is even” << endl;
		 }
		 else{
			 cout << “Your number is odd” << endl;
		 }
		
		 cout << “Want to check more : 1 for yes and 0 for no” << endl;
		

Basics of C++

3G E-LEARNING

21

		 cin >> choice;
	 }
	
	 cout << “I hope you checked all your numbers” << endl;
	
	 return 0;
}

Output

The loop will run until the value of ‘choice’ becomes other than ‘1’. So, for the first
time, it will run since the value of ‘choice’ is ‘1’. Then it will perform the codes inside
the loop. At last, it will ask the user whether he wants to check more or not. This can
change the value of variable ‘choice’ and may terminate the loop.

Initially, the value of ‘choice’ was 1, so, the condition of while got satisfied and
codes inside it got executed. We were asked to give the value of choice and we gave 1
again. Things repeated and after that, we gave choice a value of 0. Now, the condition
of while was not satisfied and the loop terminated.

1.8.2 Do while

This is Also Called as Exit Controlled Loop we know that in The while loop the
condition is check before the execution of the program but if the condition is not true
then it will not execute the statements so for this purpose we use the do while loop
in this first it executes the statements and then it increments the value of a variable
and then last it checks the condition So in this either the condition is true or not it
Execute the statement at least one time.

This is another kind of loop. This is just like while and for loop but the only
difference is that the code in its body is executed once before checking the conditions.

Syntax of do...while loop is:

do{
 statement(s)
}
while(condition);

Consider the same example of printing the first 10 natural numbers for which
we wrote programs using while and for loop. Now, let’s write its program using do...
while loop.

3G E-LEARNING

22 Basic Computer Coding: C++

#include <iostream>
int main(){

 using namespace std;
 int n = 1;
 do{
 	 cout << n << endl;
 	 n++;
 }while(n <= 10);
 return 0;
}
Output
Let’s try to understand this.

At first, the statements inside the body of loop (i.e., within the braces { } following
do) are executed. This will print the value of ‘n’ i.e., 1 and n++ increments the value
of ‘n’ by 1. So now, the value of ‘n’ becomes 2.

Once the code inside the braces { } is executed, condition ‘n <= 10’ is checked.
Since the value of ‘n’ is 2, so the condition is satisfied.

Again the code inside the body of loop is executed and the value of ‘n’ becomes
2. When the value of ‘n’ is 10 and 10 is printed, n++ increases the value of ‘n’ to 11.
After this, the condition becomes false and the loop terminates.

As you have seen, in do while loop, codes inside the loop got executed for the
first time without checking any condition and then it started checking the condition
from the second time.

Nesting of loops

Like ‘if/else’ we can also use one loop inside another. This is called nesting of loop.
See this example to make it clear.

#include <iostream>
int main(){
	 using namespace std;
	 int i;
 	 int j;

Basics of C++

3G E-LEARNING

23

 	 for(i = 12; i <= 14; i++){ /*outer loop*/

 		 cout << “Table of “ << i << endl;

 		 for(j = 1; j <= 10; j++){ /*inner loop*/

 			 cout << i << “*” << j << “=” << (i*j) <<
endl;

 		 }
 	 }
	 return 0;
}
Output
When the first for loop is executed, the value of i is 12 and
“Table of 12” gets printed.
Now coming to the second loop, the value of j is 1 and thus
12*1 = 12 gets printed.
In the second iteration of the inner for loop, while the value
of i is still 12, the value of j becomes 2 and thus 12 * 2 = 24
gets printed.
In the last iteration of the inner for loop, the value of i is still
12 and the value of j becomes 10, thus printing 12 * 10 = 120.

Now after all the iterations of the inner for loop are
complete, there will be the second iteration of the outer for
loop increasing the value of i to 13 and printing Table of 13.
Again the inner for loop will be iterated with i equals 13.
 We can use any loop inside any other loop according to
 the requirement. In the above example, we used one for loop
.inside another

Infinite Loop

There may exist some loops which can iterate or occur infinitely.
These are called Infinite Loop. These loops occur infinitely
because their condition is always true. We can make an infinite

 A loop is
 used for
 executing a block
 of statements
 repeatedly until
 a particular
 condition is
satisfied.

Keyword

3G E-LEARNING

24 Basic Computer Coding: C++

loop by leaving its conditional expression empty (this is one of the many possible
ways). When the conditional expression is empty, it is assumed to be true. Let’s see
an example on how to make a for loop infinite.
>include <iostream#
int main(){
	 using namespace std;
	 for(; ;){
		 cout << “This loop will never end” << endl;
	 }
	 return 0;
}
Output
I told you, it’s fun!

1.8.3 For loop

In This loop all the basic operations like initialization, condition checking and
incrementing or decrementing all these are performed in only one line. This is similar
to the while loop for performing its execution but only different in its syntax.
Another type of loop is for loop.
Let’s go to our first example in which we printed first 10 natural numbers using while
loop. We can also do this with for loop.
Let’s look at the syntax of for loop.
for(initialization; condition; propagation)
{
 statement(s)
}
#include <iostream>
int main(){
	 using namespace std;
	 int n;
	 for(n = 1; n <= 10; n++){
		 cout << n << endl;
	 }
	 return 0;

Basics of C++

3G E-LEARNING

25

}
Output
1
2
3
4
5
6
7
8
9
10

Now let’s see how for loop works.
for(n=1; n<=10; n++)
n=1 - This step is used to initialize a variable and is executed first and only once.
Here, ‘n’ is assigned a value 1.
n<=10 - This is a condition which is evaluated. If the condition is true, the statements
written in the body of the loop are executed. If it is false, the statement just after the
for loop is executed. This is similar to the condition we used in ‹while› loop which
was being checked again and again.
n++ - This is executed after the code in the body of the for loop has been executed. In
this example, the value of ‹n› increases by 1 every time the code in the body of for loop
executes. There can be any expression here which you want to run after every loop.
In the above example, firstly, ‘n=1’ assigns a value 1 to ‘n’.
Then the condition ‘n<=10’ is checked. Since the value of ‹n› is 1, therefore the code in
the body of for loop is executed and thus the current value of ‹n› i.e., 1 gets printed.
Once the codes in the body of for loop are executed, step n++ is executed which
increases the value of ‹n› by 1. So now the value of ‘n’ is 2.
Again the condition ‘n<=10’ is checked which is true because the value of ‘n’ is 2. Again
codes in the body of for loop are executed and 2 gets printed and then the value of
‘n’ is again incremented.
When the value of ‘n’ becomes 10, the condition ‘n <= 10’ is true and 10 gets printed.
Now, when n++ increases the value to ‘n’ to 11, the condition ‘n<=10’ becomes false
and the loop terminates.
Don’t you think it’s just a different form of while loop? Yes, it is actually.

3G E-LEARNING

26 Basic Computer Coding: C++

Let’s see the example of adding 10 numbers.

Let’s see the example of adding 10 numbers.
#include <iostream>
int main(){

	 using namespace std;
	 int sum = 0, i, n;
	
	 for(i = 0; i < 10; i++){
	
		 cout << “Enter number” << endl;
		 cin >> n;
		
		 sum = sum + n;
		
	 }
	 cout << “Sum is “ << sum << endl;
	
	 return 0;
	
}
Output
Initially, the value of the variable sum is 0.
In the first iteration, the value of n is entered 4 and thus the value of sum becomes
4 since sum = sum + n (i.e. sum = 0 + n).
In the second iteration, the value of sum is 4 and we entered the value of n as 3.
Therefore, the expression sum = sum + n gets evaluated as sum = 4 + 3, thus making
the value of sum as 7.
In this way, this loop will add all the 10 numbers entered by the user.
There are other ways also to write program of for loop.
The first example of for loop in which we printed the first 10 natural numbers can
also be written in other ways which are:

int n = 1;

Basics of C++

3G E-LEARNING

27

for(; n <= 10; n++)
{
 cout << n << endl;
}

Another way is shown below.

int n;
for(n = 1; n <= 10;)
{
 cout << n << endl;
 n++;
}
It means that we can also write the for loop by skipping one or more of its three
statements (initialization, condition, propagation) as done above.

3G E-LEARNING

28 Basic Computer Coding: C++

CASE STUDY

REAL-WORLD APPLICATIONS OF C++

1. Games:

C++ overrides the complexities of 3D games, optimizes resource management and
facilitates multiplayer with networking. The language is extremely fast, allows procedural
programming for CPU intensive functions and provides greater control over hardware,
because of which it has been widely used in development of gaming engines. For
instance, the science fiction game Doom 3 is cited as an example of a game that used
C++ well and the Unreal Engine, a suite of game development tools, is written in C++.

2. Graphic User Interface (GUI) based applications:

Many highly used applications, such as Image Ready, Adobe Premier, Photoshop and
Illustrator, are scripted in C++.

3. Web Browsers:

With the introduction of specialized languages such as PHP and Java, the adoption of
C++ is limited for scripting of websites and web applications. However, where speed
and reliability are required, C++ is still preferred. For instance, a part of Google’s back-
end is coded in C++, and the rendering engine of a few open source projects, such as
web browser Mozilla Firefox and email client Mozilla Thunderbird, are also scripted
in the programming language.

4. Advance Computations and Graphics:

C++ provides the means for building applications requiring real-time physical simulations,
high-performance image processing, and mobile sensor applications. Maya 3D software,
used for integrated 3D modeling, visual effects and animation, is coded in C++.

5. Database Software:

C++ and C have been used for scripting MySQL, one of the most popular database
management software. The software forms the backbone of a variety of database-based
enterprises, such as Google, Wikipedia, Yahoo and YouTube etc.

Basics of C++

3G E-LEARNING

29

6. Operating Systems:

C++ forms an integral part of many of the prevalent operating systems including
Apple’s OS X and various versions of Microsoft Windows, and the erstwhile Symbian
mobile OS.

7. Enterprise Software:

C++ finds a purpose in banking and trading enterprise applications, such as those
deployed by Bloomberg and Reuters. It is also used in development of advanced
software, such as flight simulators and radar processing.

8. Medical and Engineering Applications:

Many advanced medical equipments, such as MRI machines, use C++ language for
scripting their software. It is also part of engineering applications, such as high-end
CAD/CAM systems.

9. Compilers:

A host of compilers including Apple C++, Bloodshed Dev-C++, Clang C++ and MINGW
make use of C++ language. C and its successor C++ are leveraged for diverse software
and platform development requirements, from operating systems to graphic designing
applications. Further, these languages have assisted in the development of new languages
for special purposes like C#, Java, PHP, Verilog etc.

3G E-LEARNING

30 Basic Computer Coding: C++

SUMMARY
■■ C++ is a middle-level programming language developed by Bjarne Stroustrup

starting in 1979 at Bell Labs.
■■ The ANSI standard is an attempt to ensure that C++ is portable; that code you

write for Microsoft’s compiler will compile without errors, using a compiler
on a Mac, UNIX, a Windows box, or an Alpha.

■■ The purpose of learning a programming language is to become a better
programmer; that is, to become more effective at designing and implementing
new systems and at maintaining old ones.

■■ C++ is used by programmers to create computer software. It is used to create
general systems software, drivers for various computer devices, software for
servers and software for specific applications and also widely used in the
creation of video games.

■■ Object Oriented programming is a programming style that is associated with
the concept of Class, Objects and various other concepts revolving around
these two, like Inheritance, Polymorphism, Abstraction, Encapsulation etc.

■■ Classes name must start with capital letter, and they contain data variables
and member functions.

■■ Variable is the name of memory location allocated by the compiler depending
upon the data type of the variable.

■■ All the variables have their area of functioning, and out of that boundary they
don’t hold their value, this boundary is called scope of the variable.

■■ Operators are special type of functions that takes one or more arguments and
produces a new value. For example: addition (+), subtraction (-), multiplication
(*) etc., are all operators. Operators are used to perform various operations
on variables and constants.

■■ sizeOf is also an operator not a function, it is used to get information about
the amount of memory allocated for data types & Objects. It can be used to
get size of user defined data types too.

■■ A Computer is used for performing many Repetitive types of tasks The
Process of Repeatedly performing tasks is known as looping .The Statements
in the block may be Executed any number of times from Zero to Up to the
Condition is True.

Basics of C++

3G E-LEARNING

31

KNOWLEDGE CHECK
1. 	 #include<userdefined.h>
	 Which of the following is the correct syntax to add the header file in the C++

program?
a.	 #include<userdefined>
b.	 #include “userdefined.h”
c.	 <include> “userdefined.h”
d.	 Both A and B

2. 	 Which of the following is the correct syntax to print the message in C++ language?
a.	 cout <<”Hello world!”;
b.	 Cout << Hello world! ;
c.	 Out <<”Hello world!;
d.	 None of the above

3.	 Which of the following is the correct identifier?
a.	 $var_name
b.	 VAR_123
c.	 varname@
d.	 None of the above

4. 	 Which of the following is the address operator?
a.	 @
b.	 #
c.	 &
d.	 %

5. 	 Which of the following features must be supported by any programming
language to become a pure object-oriented programming language?
a.	 Encapsulation
b.	 Inheritance
c.	 Polymorphism
d.	 All of the above

6. 	 The programming language that has the ability to create new data types is
called___.
a.	 Overloaded
b.	 Encapsulated

3G E-LEARNING

32 Basic Computer Coding: C++

c.	 Reprehensible
d.	 Extensible

7. 	 Which of the following is the original creator of the C++ language?
a.	 Dennis Ritchie
b.	 Ken Thompson
c.	 Bjarne Stroustrup
d.	 Brian Kernighan

8. 	 Which of the following is the correct syntax to read the single character to
console in the C++ language?
a.	 Read ch()
b.	 Getline vh()
c.	 get(ch)
d.	 Scanf(ch)

9. 	 Which of the following statements is correct about the formal parameters in
C++?
a.	 Parameters with which functions are called
b.	 Parameters which are used in the definition of the function
c.	 Variables other than passed parameters in a function
d.	 Variables that are never used in the function

10.	 The C++ language is ______ object-oriented language.
a.	 Pure Object oriented
b.	 Not Object oriented
c.	 Semi Object-oriented or Partial Object-oriented
d.	 None of the above

REVIEW QUESTIONS
1.	 Define the use of c++.
2.	 What are the benefits of c++ over c language?
3.	 Explain the syntax and structure of c++ program.
4.	 Focus on declaration and initialization.
5.	 Describe the loop type with example.

Basics of C++

3G E-LEARNING

33

Check Your Result

1. (d)		 2. (a)		 3. (b)		 4. (c)		 5. (d)
6. (d)		 7. (c)		 8. (c)		 9. (a)		 10. (c)

3G E-LEARNING

34 Basic Computer Coding: C++

REFERENCES
1.	 A. B. Webber. Modern Programming Languages: A Practical Introduction (Franklin,

Beedle & Associates, 2003).
2.	 B. Meyer. Object-Oriented Software Construction (2nd Edition) (Prentice Hall,

2000).
3.	 D. Parnas. “The Secret History of Information Hiding” (Software Pioneers:

Contributions To Software Engineering, Springer-Verlag New York, 2002).
4.	 D. R. Musser, G. J. Derge, and A. Saini. STL Tutorial and Reference Guide, 2nd

Edition (Addison-Wesley, 2001).
5.	 D. Vandevoorde and N. Josuttis. C++ Templates (Addison-Wesley, 2003).
6.	 K. Henney. “C++ Patterns: Executing Around Sequences” (EuroPLoP 2000

proceedings).
7.	 S. Meyers. “How Non-Member Functions Improve Encapsulation” (C/C++ Users

Journal, 18(2), February 2000).

“Within C++, there is a much smaller and cleaner language struggling to get out.”

–Bjarne Stroustrup

After studying this chapter,
you will be able to:
1.	 Focus on concept of C++

features
2.	 Difference between C

and C++
3.	 Describe the variables

declaration in C++

LEARNING
OBJECTIVES

LANGUAGE FEATURES

INTRODUCTION
C++ is a general-purpose programming language that
was developed with the intention to improve C language
and include an object-oriented paradigm. Object-Oriented

2
CHAPTER

3G E-LEARNING

36 Basic Computer Coding: C++

Programming is a programming in which we design and build our application or
program based on the object. Objects are instances (variables) of class. It is an imperative
and a compiled language. With C++ inheritance, one object obtains all the properties
and behaviours of its parent object automatically. It lets you reuse, extend or modify
the attributes and behaviours defined in other class.

Being a middle-level language, C++ gives it the ability to develop low-level
(drivers, kernels) and even higher-level software like games, GUI, desktop apps,
etc. The main motive of creating C++ programming was to add object orientation to
the C programming language. The main changes that were made are object-oriented
programming methodology, namespace feature, operator overloading, error & exception
handling. The other motive of OOP (object-oriented programming) is to try to understand
the whole system in the form of classes & objects.

With Object-oriented programming, data does not flow freely around the system.
It gets bound more closely to the functions that operate on it and gets protected from
the coincidental change from outside functions. OOP breaks down a complex program
into objects and then builds data and functions around these objects.

2.1 CONCEPT OF C++ FEATURES
C++ is object oriented programming language. It provides a lot of features that are
given below.

Language Features

3G E-LEARNING

37

1) 	 Simple
	 C++ is a simple language in the sense that it provides structured approach

(to break the problem into parts), rich set of library functions, data types etc.
2) 	 Machine Independent or Portable
	 Unlike assembly language, c programs can be executed in many machines

with little bit or no change. But it is not platform-independent.
3) 	 Mid-level programming language
	 C++ is also used to do low level programming. It is used to develop system

applications such as kernel, driver etc. It also supports the feature of high
level language. That is why it is known as mid-level language.

4) 	 Structured programming language
	 C++ is a structured programming language in the sense that we can break the

program into parts using functions. So, it is easy to understand and modify.
5) 	 Rich Library
	 C++ provides a lot of inbuilt functions that makes the development fast.
6)	 Memory Management
	 It supports the feature of dynamic memory allocation. In C++ language, we

can free the allocated memory at any time by calling the free() function.
7) 	 Speed
	 The compilation and execution time of C++ language is fast.
8) 	 Pointer
	 C++ provides the feature of pointers. We can directly interact with the memory

3G E-LEARNING

38 Basic Computer Coding: C++

by using the pointers. We can use pointers for memory,
structures, functions, array etc.

9) 	 Recursion
	 In C++, we can call the function within the function.

It provides code reusability for every function.
10) 	 Extensible
	 C++ language is extensible because it can easily adopt

new features.
11) 	 Object Oriented
	 C++ is object oriented programming language. OOPs

makes development and maintenance easier where
as in Procedure-oriented programming language it
is not easy to manage if code grows as project size
grows.

12) 	 Compiler based
	 C++ is a compiler based programming language, it

means without compilation no C++ program can be
executed. First we need to compile our program using
compiler and then we can execute our program.

2.2 DIFFERENCE BETWEEN C AND C++
The major difference between C and C++ is that C is a
procedural programming language and does not support classes
and objects, while C++ is a combination of both procedural
and object oriented programming language; therefore C++ can
be called a hybrid language. The following table presents
differences between C and C++ in detail.

Difference between C and C++

C C++
 C was developed by Dennis
 Ritchie between 1969 and 1973
at AT&T Bell Labs.

 C++ was developed by Bjarne
 Stroustrup in 1979 with C++’s
predecessor “C with Classes”.

 When compared to C++, C is a
subset of C++.

 C++ is a superset of C. C++ can run
 most of C code while C cannot run
C++ code.

 Hybrid
 language
 is a programming
 language that
 supports multiple
 approaches of
writing programs.

Keyword

Language Features

3G E-LEARNING

39

 C supports procedural
 programming paradigm for
code development.

 C++ supports both procedural
 and object oriented programming
 paradigms; therefore C++ is also
called a hybrid language.

 C does not support object
 oriented programming;
 therefore it has no support for
 polymorphism, encapsulation,
and inheritance.

 Being an object oriented
 programming language C++
 supports polymorphism,
encapsulation, and inheritance.

 In C (because it is a
 procedural programming
 language), data and functions
are separate and free entities.

 In C++ (when it is used as
 object oriented programming
 language), data and functions are
 encapsulated together in form of
 an object. For creating objects class
 provides a blueprint of structure
of the object.

 In C, data are free entities
 and can be manipulated
 by outside code. This is
 because C does not support
information hiding.

 In C++, Encapsulation hides the
 data to ensure that data structures
 and operators are used as
intended.

 C, being a procedural
 programming, it is a function
driven language.

 While, C++, being an object
 oriented programming, it is an
object driven language.

 C does not support function
and operator overloading.

 C++ supports both function and
operator overloading.

 C does not allow functions to
be defined inside structures.

 In C++, functions can be used
inside a structure.

 C does not have namespace
feature.

 C++ uses NAMESPACE which
avoid name collisions.

 A namespace is a declarative
 region that provides a scope to
 the identifiers (the names of types,
 functions, variables, etc) inside it.
 Namespaces are used to organize
 code into logical groups and to
 prevent name collisions that can
 occur especially when your code
 base includes multiple libraries.
 All identifiers at namespace
 scope are visible to one another
 without qualification. Identifiers
 outside the namespace can access
 the members by using the fully
qualified name for each identifier.

3G E-LEARNING

40 Basic Computer Coding: C++

 C uses functions for
 input/output. For
example scanf and printf.

 C++ uses objects for input output.
For example cin and cout.

 C does not support reference
variables.

C++ supports reference variables.

 C has no support for virtual
and friend functions.

 C++ supports virtual and friend
functions.

 C
provides malloc() and calloc()
 functions for dynamic
 memory allocation,
and free() for memory de-
allocation.

 C++ provides new operator
 for memory allocation
 and delete operator for memory
de-allocation.

 C does not provide direct
 support for error handling
 (also called exception
handling)

 C++ provides support for
 exception handling. Exceptions
 are used for “hard” errors that
make the code incorrect.

Hope you have enjoyed reading differences between C
and C++. This comparison of C and C++ explains feature-wise
difference between both programming languages. Please do
write us if you have any suggestion/comment or come across
any error on this page.

2.2.1 Key Differences between C and C++

There are several misconceptions that prevail among
developers regarding the programming languages, C and C++.

Enlisted below are the major set of differences between
the programming languages, C and C++.

 The most
 common
 is that C++ is
 an advanced C
 and one should
 have in-depth
 understanding
 of the latter
 language before
 moving to the
 former one.
 However, this is
 .just a myth

Remember

Language Features

3G E-LEARNING

41

Sl.No Basis Of
Distinction

C C++

1 Nature Of
Language

 C is a structural or
 procedural type
 of programming
language.

 C++ is an object-oriented
 programming language and
 supports Polymorphism, Abstract
 Data Types, Encapsulation,
 among others. Even though C++
 derives basic syntax from C, it
 cannot be classified as a structural
or a procedural language.

2 Point Of
Emphasis

 C lays emphasis
 on the steps or
 procedures that are
 followed to solve a
problem.

 C++ emphasizes the objects and
 not the steps or procedures. It has
higher abstraction level.

3 Compatibility
 With
Overloading

 C does not
 support function
overloading.

 C++ supports function
 overloading, implying that one
 can have name of functions with
varying parameters.

4 Data Types C does not provide
 String or Boolean
 data types. It
 supports primitive
 & built-in data
types.

 C++ provides Boolean or String
data types. It supports both user-
defined and built-in data types.

5 Compatibility
 With
 Exception
Handling

 C does not support
 Exception Handling
 directly. It can be
 done through some
other functions.

 C++ supports Exception
 Exception:Handling can be done
through try & catch block.

6 Compatibility
 With
Functions

 C does not
 support functions
 with default
arrangements

 C++ supports functions with
default arrangements.

7 Compatibility
 With Generic
Programming

C is not compatible C++ is compatible with generic
programming

8 Pointers And
References

 C supports only
Pointers

 C++ supports both pointers and
references.

9 Inline
Function

 C does not have
inline function.

C++ has inline function.

10 Data Security In C programming
 language, the data
is unsecured.

 Data is hidden in C++ and is not
 accessible to external functions.
Hence, is more secure

11 Approach C follows the top-
down approach.

 C++ follows the bottom-up
approach.

3G E-LEARNING

42 Basic Computer Coding: C++

12 Functions
 For Standard
 Input And
Output

scanf and printf cin and cout

13 Time Of
 Defining
Variables

 In C, variable has
 to be defined at the
 beginning, in the
function.

 Variable can be defined anywhere
in the function.

14 Namespace Absent Present
15 Division Of

Programs
 The programs
 in C language
 are divided into
 modules and
functions.

 The programs are divided into
 classes and functions in the C++
programming language.

16 File Extension .C .CPP
17 Function And

 Operator
Overloading

Absent Present

18 Mapping Mapping between
 function and data is
complicated in C.

 Mapping between function and
 data can be done easily using
‘Objects’.

19 Calling Of
Functions

 main() function can
 be called through
other functions.

 main() function cannot be called
through other functions.

20 Inheritance Possible Not possible
21 Functions

 Used For
 Memory
 Allocation
 And
Deallocation

 malloc() and
 calloc for Memory
 Allocation and
 free() function for
Deallocation.

 New and delete operators are
 used for Memory Allocation and
Deallocation in C++.

22 Influences C++, C#,
 Objective-C,
 PHP, Perl, BitC,
 Concurrent C, Java,
 JavaScript, Perl,
csh, awk, D, Limbo

C#, PHP, Java, D, Aikido, Ada 95

23 Influenced By B (BCPL,CPL),
 Assembly, ALGOL
68,

 C, ALGOL 68, Simula, Ada 83,
ML, CLU

24 Level of
Language

Mid-level High-level

25 Classes C uses structures
 thereby, giving
 freedom to use
 internal design
elements

class and structures

Language Features

3G E-LEARNING

43

:Some important differences between the C and C++ structures

■■ Member functions inside structure: Structures in C
cannot have member functions inside structure but
Structures in C++ can have member functions along
with data members.

■■ Direct Initialization: We cannot directly initialize
structure data members in C but we can do it in C++.

// CPP program to initialize data member in c++
#include <iostream>
using namespace std;

struct Record {
 int x = 7;
};

// Driver Program
int main()
{
 Record s;
 cout << s.x << endl;
 return 0;
}
// Output
 7 //

■■ Using struct keyword: In C, we need to use struct to
declare a struct variable. In C++, struct is not necessary.
For example, let there be a structure for Record. In
C, we must use “struct Record” for Record variables.
In C++, we need not use struct and using ‘Record‘
only would work.

■■ Static Members: C structures cannot have static
members but is allowed in C++.

// C++ program with structure static member

 Default
 initialization
 applies when
 no initializer is
 specified at all,
 or when a class
 member is omitted
 from the member
initialization list.

Keyword

3G E-LEARNING

44 Basic Computer Coding: C++

struct Record {
 static int x;
};

// Driver program
int main()
{
 return 0;
}
This will generate an error in C but no error in C++.

■■ Constructor creation in structure: Structures in C cannot have constructor
inside structure but Structures in C++ can have Constructor creation.

// CPP program to initialize data member in c++
#include <iostream>
using namespace std;

struct Student {
 int roll;
 Student(int x)
 {
 roll = x;
 }
};

// Driver Program
int main()
{
 struct Student s(2);
 cout << s.roll;
 return 0;
}
// Output
// 2

Language Features

3G E-LEARNING

45

sizeof operator: This operator will generate 0 for an empty
structure in C whereas 1 for an empty structure in C++.

// C program to illustrate empty structure
#include <stdio.h>

// empty structure
struct Record {
};

// Driver program
int main()
{
 struct Record s;
 printf(“%d\n”, sizeof(s));
 return 0;
}

Output in C:
0
Output in C++:
1

■■ Data Hiding: C structures do not allow concept of
Data hiding but is permitted in C++ as C++ is an
object oriented language whereas C is not.

■■ Access Modifiers: C structures do not have access
modifiers as these modifiers are not supported by
the language. C++ structures can have this concept
as it is inbuilt in the language.

2.3 VARIABLES DECLARATION IN C++
In C++ variable is used to store data in a memory location,
which can be modified or used in the program during program
execution.

 Data
 hiding
 is a software
 development
 technique
 specifically used
 in object-oriented
 programming
 (OOP) to hide
 internal object
 details (data
members).

Keyword

3G E-LEARNING

46 Basic Computer Coding: C++

Variables play a major role in constructing a program,
storing values in memory and dealing with them. Variables
are required in various functions of every program.

 When we check for conditions to execute a block of statements, variables are
 required. Again for iterating or repeating a block of the statement(s) several
 times, a counter variable is set along with a condition, or simply if we store the
 age of an employee, we need an integer type variable. So in every respect, the
 variable is used.

What is Variables?

Variables are used in C++ where you will need to store any
type of values within a program and whose value can be
changed during the program execution. These variables can
be declared in various ways each having different memory
requirements and storing capability. Variables are the name
of memory locations that are allocated by compilers and the
allocation is done based on the data type used for declaring
the variable.

A variable definition means that the programmer writes
some instructions to tell the compiler to create the storage in
a memory location.

The syntax for defining variables is:

Syntax:

data_type variable_name;
data_type variable_name, variable_name, variable_name;
Here data_type means the valid C++ data type which

includes int, float, double, char, wchar_t, bool and variable
list is the lists of variable names to be declared which is
separated by commas.

Example

/* variable definition */int width, height, age;
char letter;
float area;
double d;

 A compiler
 is a
 special program
 that processes
 statements written
 in a particular
 programming
 language and turns
 them into machine
 language or “code”
 that a computer’s
 processor uses.

Keyword

Language Features

3G E-LEARNING

47

2.3.1 Variables initialization in C++

Variables are declared in the above example but none of them has been assigned any
value. Variables can be initialized and the initial value can be assigned along with
their declaration.

Syntax

data_type variable_name = value;

Example

/* variable definition and initialization */int width, height=5, age=32;
char letter=’A’;
float area;
double d;

/* actual initialization */width = 10;
area = 26.5;
There is some rules must be in your knowledge to work with C++ variables.

2.3.2 Rules of Declaring variable in C++

■■ A variable name can consist of Capital letters A-Z, lowercase letters a-z, digits
0-9, and the underscore character.

■■ The first character must be a letter or underscore.
■■ Blank spaces cannot be used in variable names.
■■ Special characters like #, $ are not allowed.
■■ C++ keywords cannot be used as variable names.
■■ Variable names are case-sensitive.
■■ A variable name can be consisting of 31 characters only if we declare a variable

more than 1 characters compiler will ignore after 31 characters.
■■ Variable type can be bool, char, int, float, double, void or wchar_t.

Example

#include <iostream>
using namespace std;

3G E-LEARNING

48 Basic Computer Coding: C++

int main()
{
 int x = 5;
 int y = 2;
 int Result;
 Result = x * y;
 cout << Result;
}
Another program showing how Global variables are declared
and used within a program:
#include <iostream>

using namespace std;

// Global Variable declaration:
int x, y;
float f;

int main()
{
 // Local variable
 int tot;
 float f;
 x = 10;
 y = 20;
 tot = x + y;

 cout << tot;
 cout << endl;
 f = 70.0 / 3.0;
 cout << f;
 cout << endl;

}

 In
 computer
 programming, a
 global variable
 is a variable with
 global scope,
 meaning that it
 is visible (hence
 accessible)
 throughout the
 program, unless
shadowed.

Keyword

Language Features

3G E-LEARNING

49

2.3.3 Scope of Variables in C++

In general, scope is defined as the extent up to which something can be worked with.
In programming also scope of a variable is defined as the extent of the program code
within which the variable can we accessed or declared or worked with. There are
mainly two types of variable scopes as discussed below:

Local Variables

Variables defined within a function or block are said to be local to those functions.
■■ Anything between ‘{‘ and ‘}’ is said to inside a block.
■■ Local variables do not exist outside the block in which they are declared, i.e.

they cannot be accessed or used outside that block.
■■ Declaring local variables: Local variables are declared inside a block

// CPP program to illustrate
// usage of local variables
#include<iostream>
using namespace std;

void func()
{
 // this variable is local to the
 // function func() and cannot be
 // accessed outside this function
 int age=18;
}

int main()
{
 cout<<”Age is: “<<age;

 return 0;
}

Output:

3G E-LEARNING

50 Basic Computer Coding: C++

Error: age was not declared in this scope
The above program displays an error saying “age was not declared in this scope”.

The variable age was declared within the function func () so it is local to that function
and not visible to portion of program outside this function.

Rectified Program: To correct the above error we have to display the value of
variable age from the function func() only. This is shown in the below program:

// CPP program to illustrate
// usage of local variables
#include<iostream>
using namespace std;

void func()
{
 // this variable is local to the
 // function func() and cannot be
 // accessed outside this function
 int age=18;
 cout<<age;
}

int main()
{
 cout<<”Age is: “;
 func();

 return 0;
}
Output:

Age is: 18

Global Variables

As the name suggests, Global Variables can be accessed from any part of the program.
They are available throughout the life time of a program.

Language Features

3G E-LEARNING

51

They are declared at the top of the program outside all of the functions or blocks.
Declaring global variables: Global variables are usually declared outside of all of
the functions and blocks, at the top of the program. They can be accessed from any
portion of the program.
// CPP program to illustrate
// usage of global variables
#include<iostream>
using namespace std;

// global variable
int global = 5;

// global variable accessed from
// within a function
void display()
{
 cout<<global<<endl;
}

// main function
int main()
{
 display();

 // changing value of global
 // variable from main function
 global = 10;
 display();
}

Output:
5
10

3G E-LEARNING

52 Basic Computer Coding: C++

 What if there exists a local variable with the same name
?as that of global variable inside a function

If there is a variable inside a function with the same name
as that of a global variable and if the function tries to access
the variable with that name, then which variable will be given
precedence? Local variable or Global variable? Look at the
below program to understand the question:

// CPP program to illustrate
// scope of local variables
// and global variables together
#include<iostream>
using namespace std;

// global variable
int global = 5;

// main function
int main()
{
 // local variable with same
 // name as that of global variable

 int global = 2;
 cout << global << endl;
}
Look at the above program. The variable “global” declared

at the top is global and stores the value 5 whereas that declared
within main function is local and stores a value 2. So, the
question is when the value stored in the variable named
“global” is printed from the main function then what will be
the output? 2 or 5?

Usually when two variable with same name are defined
then the compiler produces a compile time error. But if the
variables are defined in different scopes then the compiler
allows it.

 A local
 variable
 is a variable which
 is either a variable
 declared within the
 function or is an
 argument passed to
 a function.

Keyword

Language Features

3G E-LEARNING

53

Whenever there is a local variable defined with same
name as that of a global variable then the compiler will give
precedence to the local variable.

Here in the above program also, the local variable named
“global” is given precedence. So the output is 2.

How to access a global variable when there is a local variable
with same name?

To solve this problem we will need to use the scope resolution
operator. Below program explains how to do this with the
help of scope resolution operator.

// C++ program to show that we can access a global
// variable using scope resolution operator:: when
// there is a local variable with same name
#include<iostream>
using namespace std;

// Global x
int x = 0;

int main()
{
 // Local x
 int x = 10;
 cout << “Value of global x is “ << ::x;
 cout<< “\nValue of local x is “ << x;
 return 0;
}

Output:
Value of global x is 0
Value of local x is 10

If
storage
classis “static”,
initialization
value must be
provided.

Remember

3G E-LEARNING

54 Basic Computer Coding: C++

2.3.4 Variable declaration syntax in C/C++
language

A variable is the name of memory blocks, whose value can
be changed at any time (runtime), we can declare a variable
by using following syntax:
[storage_class] data_type variable_name [=value];
Here, [storage-class] and [=value] are optional.

Declaration Example 1:

auto int age = 10;
age is an automatic integer variable (learn more about auto
(automatic): storage classes in C language), it’s initial value is
10, which can be changed at any time. (i.e. you may change
the value of age at any time).

Declaration Example 2:

int age=10;
If we do not specify storage class, variable’s default storage
class will be an automatic (auto). Thus, declaration example
1 and 2 are same.

Declaration Example 3:

int age;
This declaration is same as declaration example 1 and 2 without
initial value, age will have either 0 or garbage value based
on the different compilers.
Other examples:
float percentage; //a float variable
char gender; //a character variable
//an array of characters, maximum number of characters will
be 100
char name [100];
int marks [5]; //an array of integers to store marks of 5 subjects

 Garbage
 value is a
 waste or unused
 values which
 are available in
 memory during
 declaration of
 variables.

Keyword

Language Features

3G E-LEARNING

55

2.3.5 Variable Declaration Rule in C++

To declare any variable in C++ you need to follow rules and
regulation of C++ Language, which is given below;

■■ Every variable name should start with alphabets or
underscore (_).

■■ No spaces are allowed in variable declaration.
■■ Except underscore (_) no special symbol are allowed

in the middle of the variable declaration.
■■ Maximum length of variable is 8 characters depend

on compiler and operation system.
■■ Every variable name always should exist in the left

hand side of assignment operator.
■■ No keyword should access variable name.

Note: In a c program variable name always can be used
to identify the input or output data.

C++ is
standardized by
the International
Organization for
Standardization
(ISO), with the
latest standard
version ratified
and published by
ISO in December
2017 as ISO/
IEC 14882:2017
(informally known
as C++17)

Did You
Know?

3G E-LEARNING

56 Basic Computer Coding: C++

ROLE MODEL

ALAN KAY: BEST KNOWN FOR HIS
PIONEERING WORK ON OBJECT-ORI-
ENTED PROGRAMMING AND WINDOW-
ING GRAPHICAL USER INTERFACE
DESIGN.

BIOGRAPHY

Alan Kay, (born May 17, 1940, Springfield, Mass., U.S.),
American computer scientist and winner of the 2003 A.M.
Turing Award, the highest honor in computer science, for
his contributions to object-oriented programming languages,
including Smalltalk.

Kay received a doctorate in computer science from
the University of Utah in 1969. In 1972 he joined Xerox
Corporation’s Palo Alto Research Center and continued work
on the first object-oriented programming language (Smalltalk)
for educational applications. He contributed to the development
of Ethernet, laser printing, and client-server architecture. He
left Xerox in 1983 and became a fellow at Apple Computer,
Inc. (now Apple Inc.), in 1984. His design of a graphical user
interface for operating systems (OS) was used in Apple’s Mac
OS and later in Microsoft Corporation’s Windows OS. He was
a fellow at the Walt Disney Company (1996–2001) and the
Hewlett-Packard Company (2002–05).

Recent work and Recognition

From 1981 to 1984, Kay was Atari’s Chief Scientist. He became
an Apple Fellow in 1984. Following the closure of the company’s
Advanced Technology Group in 1997, he was recruited by
his friend Bran Ferren, head of research and development at
Disney, to join Walt Disney Imagineering as a Disney Fellow. He
remained there until Ferren left to start Applied Minds Inc with
Imagineer Danny Hillis, leading to the cessation of the Fellows
program. In 2001, he founded Viewpoints Research Institute,
a non-profit organization dedicated to children, learning, and

Language Features

3G E-LEARNING

57

advanced software development. For its first ten years, Kay and his Viewpoints group
were based at Applied Minds in Glendale, California, where he and Ferren continued
to work together on various projects. Kay was also a Senior Fellow at Hewlett-Packard
until HP disbanded the Advanced Software Research Team on July 20, 2005.

Kay taught a Fall 2011 class, “Powerful Ideas: Useful Tools to Understand the
World”, at New York University’s Interactive Telecommunications Program (ITP)
along with full-time ITP faculty member Nancy Hechinger. The goal of the class was
to devise new forms of teaching/learning based on fundamental, powerful concepts
rather than traditional rote learning.

Squeak, Etoys, and Croquet

In December 1995, while still at Apple, Kay collaborated with many others to start
the open source Squeak version of Smalltalk, and he continues to work on it. As part
of this effort, in November 1996, his team began research on what became the Etoys
system. More recently he started, along with David A. Smith, David P. Reed, Andreas
Raab, Rick McGeer, Julian Lombardi and Mark McCahill, the Croquet Project, an open
source networked 2D and 3D environment for collaborative work.

Tweak

In 2001, it became clear that the Etoy architecture in Squeak had reached its limits in
what the Morphic interface infrastructure could do. Andreas Raab was a researcher
working in Kay’s group, then at Hewlett-Packard. He proposed defining a “script
process” and providing a default scheduling mechanism that avoids several more
general problems. The result was a new user interface, proposed to replace the Squeak
Morphic user interface in the future. Tweak added mechanisms of islands, asynchronous
messaging, players and costumes, language extensions, projects, and tile scripting. Its
underlying object system is class-based, but to users (during programming) it acts like
it is prototype-based. Tweak objects are created and run in Tweak project windows.

Awards and Honors

Alan Kay has received many awards and honors. Among them:
2001: UdK 01-Award in Berlin, Germany for pioneering the GUI; J-D Warnier Prix
D’Informatique; NEC C&C Prize
2002: Telluride Tech Festival Award of Technology in Telluride, Colorado
2003: ACM Turing Award “For pioneering many of the ideas at the root of contemporary
object-oriented programming languages, leading the team that developed Smalltalk,
and for fundamental contributions to personal computing.”

3G E-LEARNING

58 Basic Computer Coding: C++

2004: Kyoto Prize; Charles Stark Draper Prize with Butler W. Lampson, Robert W.
Taylor and Charles P. Thacker
2012: UPE Abacus Award awarded to individuals who have provided extensive support
and leadership for student-related activities in the computing and information disciplines,

Language Features

3G E-LEARNING

59

SUMMARY
■■ C++ is object oriented programming language.
■■ The major difference between C and C++ is that C is a procedural programming

language and does not support classes and objects, while C++ is a combination
of both procedural and object oriented programming language; therefore C++
can be called a hybrid language.

■■ Structures in C cannot have constructor inside structure but Structures in C++
can have Constructor creation.

■■ In C++ variable is used to store data in a memory location, which can be
modified or used in the program during program execution.

■■ Variables are used in C++ where you will need to store any type of values
within a program and whose value can be changed during the program
execution.

■■ Variables can be initialized and the initial value can be assigned along with
their declaration.

■■ In general, scope is defined as the extent up to which something can be
worked with. In programming also scope of a variable is defined as the extent
of the program code within which the variable can we accessed or declared
or worked with.

3G E-LEARNING

60 Basic Computer Coding: C++

KNOWLEDGE CHECK
1. 	 What are the actual parameters in C++?

a.	 Parameters with which functions are called
b.	 Parameters which are used in the definition of a function
c.	 Variables other than passed parameters in a function
d.	 Variables that are never used in the function

2. 	 What are the formal parameters in C++?
a.	 Parameters with which functions are called
b.	 Parameters which are used in the definition of the function
c.	 Variables other than passed parameters in a function
d.	 Variables that are never used in the function

3. 	 Which function is used to read a single character from the console in C++?
a.	 cin.get(ch)
b.	 getline(ch)
c.	 read(ch)
d.	 scanf(ch)

4. 	 Which function is used to write a single character to console in C++?
a.	 cout.put(ch)
b.	 cout.putline(ch)
c.	 write(ch)
d.	 printf(ch)

5. 	 What are the escape sequences?
a.	 Set of characters that convey special meaning in a program
b.	 Set of characters that whose use are avoided in C++ programs
c.	 Set of characters that are used in the name of the main function of the program
d.	 Set of characters that are avoided in cout statements

6. 	 Which of the following escape sequence represents carriage return?
a.	 \r
b.	 \n
c.	 \n\r
d.	 \c

Language Features

3G E-LEARNING

61

7. 	 Which of the following escape sequence represents tab?
a.	 \t
b.	 \t\r
c.	 \b
d.	 \a

8. 	 Who created C++?
a.	 Bjarne Stroustrup
b.	 Dennis Ritchie
c.	 Ken Thompson
d.	 Brian Kernighan

9. 	 Which of the following is called insertion/put to operator?
a.	 <<
b.	 >>
c.	 >
d.	 <

10. 	 Which of the following is called extraction/get from operator?
a.	 <<
b.	 >>
c.	 >
d.	 <

REVIEW QUESTIONS
1.	 What is variable declaration and initialization?
2.	 What are variables in C++?
3.	 What are variables List C++ rules for variable naming?
4.	 What is a declaration in C++?
5.	 How to declare variables in c++?
6.	 What if we want to access global variable when there is a local variable with

same name?

Check Your Result

1. (a)		 2. (b)		 3. (a)		 4. (a)		 5. (a)

6. (a)		 7. (a)		 8. (a)		 9. (a)		 10. (b)

3G E-LEARNING

62 Basic Computer Coding: C++

REFERENCES
1.	 Abrahams, David; Gurtovoy, Aleksey (2005). C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond. Addison-Wesley. ISBN
0-321-22725-5.

2.	 Alexandrescu, Andrei (2001). Modern C++ Design: Generic Programming and
Design Patterns Applied. Addison-Wesley. ISBN 0-201-70431-5.

3.	 Alexandrescu, Andrei; Sutter, Herb (2004). C++ Design and Coding Standards:
Rules and Guidelines for Writing Programs. Addison-Wesley. ISBN 0-321-11358-6.

4.	 Becker, Pete (2006). The C++ Standard Library Extensions : A Tutorial and
Reference. Addison-Wesley. ISBN 0-321-41299-0.

5.	 Brokken, Frank (2010). C++ Annotations. University of Groningen. ISBN 978-90-
367-0470-0. Archived from the original on 28 April 2010. Retrieved 28 April 2010.

6.	 Dewhurst, Stephen C. (2005). C++ Common Knowledge: Essential Intermediate
Programming. Addison-Wesley. ISBN 0-321-32192-8.

7.	 Information Technology Industry Council (15 October 2003). Programming
languages – C++ (Second ed.). Geneva: ISO/IEC. 14882:2003(E).

8.	 Josuttis, Nicolai M. (2012). The C++ Standard Library, A Tutorial and Reference
(Second ed.). Addison-Wesley. ISBN 978-0-321-62321-8.

9.	 Koenig, Andrew; Moo, Barbara E. (2000). Accelerated C++ – Practical Programming
by Example. Addison-Wesley. ISBN 0-201-70353-X.

10.	 Lippman, Stanley B.; Lajoie, Josée; Moo, Barbara E. (2011). C++ Primer (Fifth
ed.). Addison-Wesley. ISBN 978-0-321-71411-4.

11.	 Meyers, Scott (2005). Effective C++ (Third ed.). Addison-Wesley. ISBN 0-321-33487-6.
12.	 Stroustrup, Bjarne (2013). The C++ Programming Language (Fourth ed.). Addison-

Wesley. ISBN 978-0-321-56384-2.
13.	 Stroustrup, Bjarne (2014). Programming: Principles and Practice Using C++ (Second

ed.). Addison-Wesley. ISBN 978-0-321-99278-9.
14.	 Sutter, Herb (2001). More Exceptional C++: 40 New Engineering Puzzles,

Programming Problems, and Solutions. Addison-Wesley. ISBN 0-201-70434-X.
15.	 Sutter, Herb (2004). Exceptional C++ Style. Addison-Wesley. ISBN 0-201-76042-8.
16.	 Vandevoorde, David; Josuttis, Nicolai M. (2003). C++ Templates: The complete

Guide. Addison-Wesley. ISBN 0-201-73484-2.

“The problem with using C++ ... is that there’s already a strong tendency in the language to require
you to know everything before you can do anything. ”

–Larry Wall

After studying this chapter,
you will be able to:
1.	 Define the concept of

overloading
2.	 Explain the type of

overloading
3.	 Describe the function

overloading in C++

LEARNING
OBJECTIVES

C++ OVERLOADING
(FUNCTION AND
OPERATOR)

INTRODUCTION
Two or more functions can have the same name but different
parameters; such functions are called function overloading.
C++ has many features, and one of the most important

3
CHAPTER

3G E-LEARNING

64 Basic Computer Coding: C++

features is function overloading. It is a code with more than
one function with the same name having various types of
argument lists. This argument list includes the data type of
arguments and the sequence of the arguments.

The function overloading feature is used to improve the
readability of the code. It is used so that the programmer
does not have to remember various function names. If any
class has multiple functions with different parameters having
the same name, they are said to be overloaded. If we have to
perform a single operation with different numbers or types
of arguments, we need to overload the function.

In OOP, function overloading is known as a function of
polymorphism. The function can perform various operations
best on the argument list. It differs by type or number of
arguments they hold. By using a different number of arguments
or different types of arguments, the function can be redefined.

3.1 CONCEPT OF OVERLOADING
Overloading refers to the ability to use a single identifier to
define multiple methods of a class that differ in their input
and output parameters. Overloaded methods are generally
used when they conceptually execute the same task but with
a slightly different set of parameters.

Overloading is a concept used to avoid redundant code
where the same method name is used multiple times but
with a different set of parameters. The actual method that
gets called during runtime is resolved at compile time, thus
avoiding runtime errors. Overloading provides code clarity,
eliminates complexity, and enhances runtime performance.

Overloading is used in programming languages that enforce
type-checking in function calls during compilation. When a
method is overloaded, the method chosen will be selected at
compile time. This is not the same as virtual functions where
the method is defined at runtime.

Unlike Java, C# allows operators to be overloaded, in
addition to methods, by defining static members using the
operator keyword. This feature helps to extend and customize
the semantics of operators relevant to user-defined types so that
they can be used to manipulate object instances with operators.

 The term
 parameter
 (sometimes called
 formal parameter)
 is often used to
 refer to the variable
 as found in the
 function definition,
 while argument
 (sometimes called
 actual parameter)
 refers to the actual
 input supplied at
function call.

Keyword

C++ Overloading (Function and Operator)

3G E-LEARNING

65

The overload resolution in C# is the method by which the right function is selected
on the basis of arguments passed and the list of candidate function members that have
the same name. The different contexts in which the overload resolution is used include:

■■ Invocation of a method in an expression
■■ Constructor during object creation
■■ Indexer access or through an element access and predefined or user-defined

operator expression
It is recommended to avoid overloading across inheritance boundaries because

it can cause confusion. Overloading can become cumbersome to developers if it is
used excessively and with user-defined types as parameters because it can reduce the
readability and maintainability of code.

Overloading is the reuse of the same symbol or function name for two or more
distinct operations or functions. Whilst this may sound confusing, used carefully it
helps to keep code transparent. Overloading can be used with operators and functions.

Operators

FORTRAN used a limited form of operator overloading, for example:-

 1 + 2
and

 1. + 2.
Here the plus sign stands for addition, but in the first example, the addition is

integer arithmetic whilst in the second it is floating point. As they both perform the
same logical operation, and the compiler can be relied on to pick the appropriate
physical operation, the overloading of the plus sign is far better than inventing separate

3G E-LEARNING

66 Basic Computer Coding: C++

symbols for each physical operation. In C++, this concept is pushed much further. It
has a large operator set and almost all of them can be overloaded by user functions
when involving expressions with objects. So it would be possible to develop a matrix
class and then define addition, multiplication and so forth for it. C++ considers [] array
and () - function call as operators.
So it is possible to write constructions like:-

 MyObj[]
and MyObj()
and have C++ treat this as a call to MyObj’s member functions. One place where the
function operator is overloaded is in ROOT’s TIter class. It not uncommon to see code
similar to this:-
TIter(MyCollection) next;

... next() ...
In this class the function operator just calls the Next member function so next() is the
same as next.Next(), but looks less odd (possibly).

Functions

FORTRAN also overloads generic functions. For example MAX stands for a family of
maximum functions, with the compiler selecting the right one depending on context. So:-
max(3, 5)
and
max(3. ,5.)
in one case selecting the largest integer and in the other the largest real. Again C++
extends the overloading concept, allowing the user to overload functions. We have
already seen a simple example of this in the OO topic Constructors & Destructors in
which our Track class had 2 constructors:-
 Track::Track(Float_t mass, Float_t energy);
 Track::Track();

Constructors are frequently overloaded. C++ requires a default i.e. one to be used
without any arguments, but many interesting constructors require the user to qualify
the initial state. Sometimes a single constructor can serve both functions as C++ allows
default arguments. We could declare our track constructor as:-
 Track::Track(Float_t mass = 0., Float_t energy = 0.);
and then create a track with:-

C++ Overloading (Function and Operator)

3G E-LEARNING

67

Track MyTrack(0.135);
and have the compiler call the constructor function with energy
= 0. As it stands we would now be in trouble if we did:-
Track MyTrack;
as the compiler has a choice: either use the default constructor,
or the other with both arguments set to zero.

3.2 TYPE OF OVERLOADING
Overloading: When a single Object has multiple behaviors.
Then it is called as Overloading. Overloading is that in which a
Single Object has a same name and Provides Many Functions.
In Overloading followings things denotes Overloading:-

■■ When an Object has Same Name.
■■ Difference is Return type.
■■ Difference in Function, with Multiple Arguments.
■■ Difference in Data Type.

3.2.1 Constructor Overloading

Constructor overloading is that in which a Constructor has
a same name and has multiple Functions, then it is called as
Constructor Overloading. As we Know that Constructor are of
Default, Parameterized and Copy Constructors. So that when
we are creating a Single Constructor with Multiple Arguments
then it is called as Constructor Overloading.

3.2.2 Operator Overloading

As we know that Operators are used for Performing Operations
on the Operands. But Each and Every Operator has Some
Limitations Means an Operator which is also called as Binary
are used for Performing Operations on the two Operands
and Unary Operators performs their Operation on the single
Operand.

So with the help of Operator Overloading, we can Change
the Operation of the Operator. Means With the help of Operators
we can Change the Operation of the Operators.

 A
 constructor
 is automatically
 called when an
object is created.

Keyword

3G E-LEARNING

68 Basic Computer Coding: C++

But With the help of Operator Overloading we can Change
the behavior of the unary Operator means we can perform
Operations means we can Increase or Decrease the values
of two or more Operands at a Time. And With the Help of
Comparison Operators we can also compare the Two Objects
Means all the Data Members of one Object can be compared
with the Data Members of the Other Object. Without the help
of Operator Overloading this is not possible to compare two
Objects. So with the help of Comparison Operators we can
compare two Objects.

 The help of Binary Operators we can add two Objects Means not only
 the two Data Members of the Class, This will add all the Data Members
 of the Class. So Like this Way we can Also Change the Behavior of the
 Unary Operator Means Unary Operators are used for Performing the
 .Operation on the Single Operand

3.2.3 Method Overloading

Method Overloading is also called as Function Overloading.
Overloading Means a Functions has many Behaviors occurred
When in class when a functions has same name but different
behaviors A Functions said to be overloaded When :-

■■ Function has same Name but Different Return Type
■■ Difference in No of Arguments
■■ Different Return Type in Arguments

When We Pass a Call for Execution then it will match
the Criteria of Function like Number of Arguments and Data
types etc.

3.3 FUNCTION OVERLOADING IN C++
You can have multiple definitions for the same function name
in the same scope.

Following is the example where same function print ()
is being used to print different data types −

C++ Overloading (Function and Operator)

3G E-LEARNING

69

#include <iostream>
using namespace std;

class printData {
 public:
 void print(int i) {
 cout << “Printing int: “ << i << endl;
 }
 void print(double f) {
 cout << “Printing float: “ << f << endl;
 }
 void print(char* c) {
 cout << “Printing character: “ << c << endl;
 }
};

int main(void) {
 printData pd;

 // Call print to print integer
 pd.print(5);

 // Call print to print float
 pd.print(500.263);

 // Call print to print character
 pd.print(“Hello C++”);

 return 0;
}
When the above code is compiled and executed, it produces the following result −

3G E-LEARNING

70 Basic Computer Coding: C++

Printing int: 5
Printing float: 500.263
Printing character: Hello C++

Function overloading is a feature in C++ where two or more
functions can have the same name but different parameters.
Function overloading can be considered as an example of
polymorphism feature in C++.
Following is a simple C++ example to demonstrate function
overloading.

#include <iostream>
using namespace std;

void print(int i) {
 cout << “ Here is int “ << i << endl;
}
void print(double f) {
 cout << “ Here is float “ << f << endl;
}
void print(char* c) {
 cout << “ Here is char* “ << c << endl;
}

int main() {
 print(10);
 print(10.10);
 print(“ten”);
 return 0;
}

Output:
Here is int 10
Here is float 10.1
 Here is char* ten

 The word
 polymorphism
 means having
 many forms.
 Typically,
 polymorphism
 occurs when there
 is a hierarchy of
 classes and they
 are related by
inheritance

Keyword

C++ Overloading (Function and Operator)

3G E-LEARNING

71

Two or more functions having same name but different
argument(s) are known as overloaded functions. You will learn
about function overloading with examples.

Function refers to a segment that groups code to perform
a specific task.

In C++ programming, two functions can have same name
if number and/or type of arguments passed are different.

These functions having different number or type (or both)
of parameters are known as overloaded functions. For example:

int test() { }
int test(int a) { }
float test(double a) { }
int test(int a, double b) { }
Here, all 4 functions are overloaded functions because

argument(s) passed to these functions are different.
Notice that, the return type of all these 4 functions are not

same. Overloaded functions may or may not have different
return type but it should have different argument(s).

// Error code
int test(int a) { }
double test(int b){ }
The number and type of arguments passed to these two

functions are same even though the return type is different.
Hence, the compiler will throw error.

Example 1: Function Overloading

#include <iostream>
using namespace std;

The
definition
of the function
must differ from
each other by
the types and/
or the number
of arguments in
the argument
list. You cannot
overload function
declarations that
differ only by
return type.

Remember

3G E-LEARNING

72 Basic Computer Coding: C++

void display(int);
void display(float);
void display(int, float);

int main() {

 int a = 5;
 float b = 5.5;

 display(a);
 display(b);
 display(a, b);

 return 0;
}

void display(int var) {
 cout << “Integer number: “ << var << endl;
}

void display(float var) {
 cout << “Float number: “ << var << endl;
}

void display(int var1, float var2) {
 cout << “Integer number: “ << var1;
 cout << “ and float number:” << var2;
}
Output
Integer number: 5
Float number: 5.5
Integer number: 5 and float number: 5.5

C++ Overloading (Function and Operator)

3G E-LEARNING

73

Here, the display() function is called three times with different type or number of
arguments.
The return type of all these functions are same but it’s not necessary.

Example 2: Function Overloading

// Program to compute absolute value
// Works both for integer and float

#include <iostream>
using namespace std;

int absolute(int);
float absolute(float);

int main() {
 int a = -5;
 float b = 5.5;

 cout << “Absolute value of “ << a << “ = “ << absolute(a) << endl;
 cout << “Absolute value of “ << b << “ = “ << absolute(b);
 return 0;
}

int absolute(int var) {
 if (var < 0)
 var = -var;
 return var;
}
float absolute(float var){
 if (var < 0.0)
 var = -var;
 return var;
}

3G E-LEARNING

74 Basic Computer Coding: C++

Output

Absolute value of -5 = 5
Absolute value of 5.5 = 5.5
In the above example, two functions absolute () are overloaded.
Both functions take single argument. However, one function
takes integer as an argument and other takes float as an
argument.
When absolute() function is called with integer as an argument,
this function is called:
int absolute(int var) {
 if (var < 0)
 var = -var;
 return var;
}
When absolute() function is called with float as an argument,
this function is called:
float absolute(float var){
 if (var < 0.0)
 var = -var;
 return var;
}

3.3.1 Operators Overloading in C++

You can redefine or overload most of the built-in operators
available in C++. Thus, a programmer can use operators with
user-defined types as well.

Overloaded operators are functions with special names: the
keyword “operator” followed by the symbol for the operator
being defined. Like any other function, an overloaded operator
has a return type and a parameter list.

Box operator+(const Box&);

declares the addition operator that can be used to add two
Box objects and returns final Box object. Most overloaded
operators may be defined as ordinary non-member functions

 In
 programming,
 operator
 overloading,
 sometimes termed
 operator ad hoc
 polymorphism, is
 a specific case of
 polymorphism,
 where different
 operators
 have different
 implementations
 depending on their
arguments.

Keyword

C++ Overloading (Function and Operator)

3G E-LEARNING

75

or as class member functions. In case we define above function
as non-member function of a class then we would have to
pass two arguments for each operand as follows −

Box operator+(const Box&, const Box&);

Following is the example to show the concept of operator over
loading using a member function. Here an object is passed
as an argument whose properties will be accessed using this
object, the object which will call this operator can be accessed
using this operator as explained below –
#include <iostream>
using namespace std;

class Box {
 public:
 double getVolume(void) {
 return length * breadth * height;
 }
 void setLength(double len) {
 length = len;
 }
 void setBreadth(double bre) {
 breadth = bre;
 }
 void setHeight(double hei) {
 height = hei;
}

 // Overload + operator to add two Box objects.
 Box operator+(const Box& b) {
 Box box;
 box.length = this->length + b.length;
 box.breadth = this->breadth + b.breadth;
 box.height = this->height + b.height;

In 1983,
“C with Classes”
was renamed to
“C++” (++ being
the increment
operator in C),
adding new
features that
included virtual
functions,
function name
and operator
overloading,
references,
constants,
type-safe free-
store memory
allocation (new/
delete), improved
type checking,
and BCPL style
single-line
comments with
two forward
slashes (//).

Did You
Know?

3G E-LEARNING

76 Basic Computer Coding: C++

 return box;
 }

 private:
 double length; // Length of a box
 double breadth; // Breadth of a box
 double height; // Height of a box
};

// Main function for the program
int main() {
 Box Box1; // Declare Box1 of type Box
 Box Box2; // Declare Box2 of type Box
 Box Box3; // Declare Box3 of type Box
 double volume = 0.0; // Store the volume of a box here

 // box 1 specification
 Box1.setLength(6.0);
 Box1.setBreadth(7.0);
 Box1.setHeight(5.0);

 // box 2 specification
 Box2.setLength(12.0);
 Box2.setBreadth(13.0);
 Box2.setHeight(10.0);

 // volume of box 1
 volume = Box1.getVolume();
 cout << “Volume of Box1 : “ << volume <<endl;

 // volume of box 2
 volume = Box2.getVolume();
 cout << “Volume of Box2 : “ << volume <<endl;

C++ Overloading (Function and Operator)

3G E-LEARNING

77

 // Add two object as follows:
 Box3 = Box1 + Box2;

 // volume of box 3
 volume = Box3.getVolume();
 cout << “Volume of Box3 : “ << volume <<endl;

 return 0;
}
When the above code is compiled and executed, it produces the following result −
Volume of Box1 : 210
Volume of Box2 : 1560
Volume of Box3 : 5400

Overloadable/Non-overloadableOperators

Following is the list of operators which can be overloaded −

+ - * / % ^
& | ~ ! , =
< > <= >= ++ --
<< >> == != && ||
+= -= /= %= ^= &=
|= *= <<= >>= [] ()
-> ->* new new [] delete delete []

Following is the list of operators, which can not be overloaded −

:: .* . ?:

Operator Overloading Examples

Here are various operator overloading examples to help you in understanding the
concept.

3G E-LEARNING

78 Basic Computer Coding: C++

Sr.No Operators & Example
1 Unary Operators Overloading
2 Binary Operators Overloading
3 Relational Operators Overloading
4 Input/Output Operators Overloading
5 ++ and -- Operators Overloading
6 Assignment Operators Overloading
7 Function call () Operator Overloading
8 Subscripting [] Operator Overloading
9 Class Member Access Operator -> Overloading

Example
The following example illustrates how overloading can be used.
// function_overloading.cpp
// compile with: /EHsc
#include <iostream>
#include <math.h>

// Prototype three print functions.
int print(char *s); // Print a string.
int print(double dvalue); // Print a double.
int print(double dvalue, int prec); // Print a double with a
// given precision.
using namespace std;
int main(int argc, char *argv[])
{
const double d = 893094.2987;
if(argc < 2)
 {
// These calls to print invoke print(char *s).
print(“This program requires one argument.”);
print(“The argument specifies the number of”);
print(“digits precision for the second number”);
print(“printed.”);
exit(0);

C++ Overloading (Function and Operator)

3G E-LEARNING

79

 }

// Invoke print(double dvalue).
print(d);

// Invoke print(double dvalue, int prec).
print(d, atoi(argv[1]));
}

// Print a string.
int print(char *s)
{
cout << s << endl;
return cout.good();
}

// Print a double in default precision.
int print(double dvalue)
{
cout << dvalue << endl;
return cout.good();
}

// Print a double in specified precision.
// Positive numbers for precision indicate how many digits
// precision after the decimal point to show. Negative
// numbers for precision indicate where to round the number
// to the left of the decimal point.
int print(double dvalue, int prec)
{
// Use table-lookup for rounding/truncation.
static const double rgPow10[] = {
10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0,

3G E-LEARNING

80 Basic Computer Coding: C++

10E1, 10E2, 10E3, 10E4, 10E5, 10E6
 };
const int iPowZero = 6;
// If precision out of range, just print the number.
if(prec < -6 || prec > 7)
return print(dvalue);
// Scale, truncate, then rescale.
dvalue = floor(dvalue / rgPow10[iPowZero - prec]) *
rgPow10[iPowZero - prec];
cout << dvalue << endl;
return cout.good();
}

The preceding code shows overloading of the print function in file scope.
The default argument is not considered part of the function type. Therefore, it is not
used in selecting overloaded functions. Two functions that differ only in their default
arguments are considered multiple definitions rather than overloaded functions.

Default arguments cannot be supplied for overloaded operators.

3.3.2 Argument Matching

Overloaded functions are selected for the best match of function declarations in the
current scope to the arguments supplied in the function call. If a suitable function is
found, that function is called. “Suitable” in this context means one of the following:

■■ An exact match was found.
■■ A trivial conversion was performed.
■■ An integral promotion was performed.
■■ A standard conversion to the desired argument type exists.
■■ A user-defined conversion (either conversion operator or constructor) to the

desired argument type exists.
■■ Arguments represented by an ellipsis were found.

The compiler creates a set of candidate functions for each argument. Candidate
functions are functions in which the actual argument in that position can be converted
to the type of the formal argument.

A set of “best matching functions” is built for each argument, and the selected
function is the intersection of all the sets. If the intersection contains more than one

C++ Overloading (Function and Operator)

3G E-LEARNING

81

function, the overloading is ambiguous and generates an error. The function that is
eventually selected is always a better match than every other function in the group for
at least one argument. If this is not the case (if there is no clear winner), the function
call generates an error.

Consider the following declarations (the functions are marked Variant 1, Variant
2, and Variant 3, for identification in the following discussion):

Fraction &Add(Fraction &f, long l); // Variant 1
Fraction &Add(long l, Fraction &f); // Variant 2
Fraction &Add(Fraction &f, Fraction &f); // Variant 3

Fraction F1, F2;
Consider the following statement:
F1 = Add(F2, 23);
The preceding statement builds two sets:

 Set 1: Candidate Functions
 That Have First Argument of
Type Fraction

 Set 2: Candidate Functions
 Whose Second Argument Can Be
Converted to Type int

Variant 1 Variant 1 (int can be converted to
long using a standard conversion)

Variant 3

Functions in Set 2 are functions for which there are implicit conversions from
actual parameter type to formal parameter type, and among such functions there is
a function for which the “cost” of converting the actual parameter type to its formal
parameter type is the smallest.

The intersection of these two sets is Variant 1. An example of an ambiguous
function call is:

F1 = Add(3, 6);
The preceding function call builds the following sets:

 Set 1: Candidate Functions That Have
First Argument of Type int

 Set 2: Candidate Functions That
 Have Second Argument of Type
int

 Variant 2 (int can be converted to long
using a standard conversion)

 Variant 1 (int can be converted to
long using a standard conversion)

Note that the intersection between these two sets is empty. Therefore, the compiler
generates an error message.

3G E-LEARNING

82 Basic Computer Coding: C++

 For argument matching, a function with n default
 arguments is treated as n+1 separate functions, each with a
.different number of arguments

The ellipsis (...) acts as a wildcard; it matches any actual
argument. This can lead to many ambiguous sets, if you do
not design your overloaded function sets with extreme care.

Argument Type Differences

Overloaded functions differentiate between argument types
that take different initializers. Therefore, an argument of a
given type and a reference to that type are considered the
same for the purposes of overloading. They are considered
the same because they take the same initializers. For example,
max (double, double) is considered the same as max(double
&, double &). Declaring two such functions causes an error.

For the same reason, function arguments of a type modified
by const or volatile are not treated differently than the base
type for the purposes of overloading.

However, the function overloading mechanism can
distinguish between references that are qualified by const
and volatile and references to the base type. This makes code
such as the following possible:

// argument_type_differences.cpp
// compile with: /EHsc /W3
// C4521 expected
#include <iostream>

using namespace std;
class Over {
public:
 Over() { cout << “Over default constructor\n”; }
 Over(Over &o) { cout << “Over&\n”; }
 Over(const Over &co) { cout << “const Over&\n”; }
 Over(volatile Over &vo) { cout << “volatile Over&\n”; }
};

 When a
 function is
 called, the values
 (expressions) that
 are passed in the
 call are called
 the arguments or
 actual parameters
 (both terms mean
 the same thing).
 At the time of the
 call each actual
 parameter is
 assigned to the
 corresponding
 formal parameter
 in the function
definition.

Keyword

C++ Overloading (Function and Operator)

3G E-LEARNING

83

int main() {
 Over o1; // Calls default constructor.
 Over o2(o1); // Calls Over(Over&).
 const Over o3; // Calls default constructor.
 Over o4(o3); // Calls Over(const Over&).
 volatile Over o5; // Calls default constructor.
 Over o6(o5); // Calls Over(volatile Over&).
}

Output
Over default constructor
Over&
Over default constructor
const Over&
Over default constructor
volatile Over&
Pointers to const and volatile objects are also considered different from pointers

to the base type for the purposes of overloading.

Argument matching and conversions

When the compiler tries to match actual arguments against the arguments in function
declarations, it can supply standard or user-defined conversions to obtain the correct
type if no exact match can be found. The application of conversions is subject to these
rules:

■■ Sequences of conversions that contain more than one user-defined conversion
are not considered.

■■ Sequences of conversions that can be shortened by removing intermediate
conversions are not considered.

The resultant sequence of conversions, if any, is called the best matching sequence.
There are several ways to convert an object of type int to type unsigned long using
standard conversions (described in Standard Conversions):

■■ Convert from int to long and then from long to unsigned long.
■■ Convert from int to unsigned long.

The first sequence, although it achieves the desired goal, is not the best matching
sequence — a shorter sequence exists.

3G E-LEARNING

84 Basic Computer Coding: C++

The following table shows a group of conversions, called trivial conversions,
which have a limited effect on determining which sequence is the best matching. The
instances in which trivial conversions affect choice of sequence are discussed in the
list following the table.

Trivial Conversions

Convert from Type Convert to Type
type-name type-name &
type-name & type-name
type-name [] type-name*
type-name (argument-list) (*type-name) (argument-list)
type-name const type-name
type-name volatile type-name
type-name* const type-name*
type-name* volatile type-name*

The sequence in which conversions are attempted is as follows:
■■ Exact match. An exact match between the types with which the function is

called and the types declared in the function prototype is always the best
match. Sequences of trivial conversions are classified as exact matches. However,
sequences that do not make any of these conversions are considered better
than sequences that convert:

-- From pointer, to pointer to const (type * to const type *).
-- From pointer, to pointer to volatile (type * to volatile type *).
-- From reference, to reference to const (type & to const type &).
-- From reference, to reference to volatile (type & to volatile type &).

■■ Match using promotions. Any sequence not classified as an exact match that
contains only integral promotions, conversions from float to double, and
trivial conversions is classified as a match using promotions. Although not
as good a match as any exact match, a match using promotions is better than
a match using standard conversions.

■■ Match using standard conversions. Any sequence not classified as an exact
match or a match using promotions that contains only standard conversions
and trivial conversions is classified as a match using standard conversions.
Within this category, the following rules are applied:

-- Conversion from a pointer to a derived class, to a pointer to a direct or
indirect base class is preferable to converting to void * or const void *.

C++ Overloading (Function and Operator)

3G E-LEARNING

85

-- Conversion from a pointer to a derived class,
to a pointer to a base class produces a better
match the closer the base class is to a direct
base class. Suppose the class hierarchy is as
shown in the following figure.

Figure 1: Graph illustrating preferred conversions.

Conversion from type D* to type C* is preferable to
conversion from type D* to type B*. Similarly, conversion
from type D* to type B* is preferable to conversion from type
D* to type A*.

This same rule applies to reference conversions. Conversion
from type D& to type C& is preferable to conversion from
type D& to type B&, and so on.

This same rule applies to pointer-to-member conversions.
Conversion from type T D::* to type T C::* is preferable to
conversion from type T D::*to type T B::*, and so on (where
T is the type of the member).

The preceding rule applies only along a given path of
derivation. Consider the graph shown in the following figure.

Figure 2: Multiple-inheritance graph illustrating preferred conversions.

Conversion from type C* to type B* is preferable to
conversion from type C* to type A*. The reason is that they

 In
 computer
 programming,
 a function
 prototype or
 function interface
 is a declaration
 of a function
 that specifies the
 function’s name
 and type signature
 (arity, data types
 of parameters, and
 return type), but
 omits the function
body.

Keyword

3G E-LEARNING

86 Basic Computer Coding: C++

are on the same path, and B* is closer. However, conversion from type C* to type D* is
not preferable to conversion to type A*; there is no preference because the conversions
follow different paths.

■■ Match with user-defined conversions. This sequence cannot be classified as an
exact match, a match using promotions, or a match using standard conversions.

■■ Match with an ellipsis. Any sequence that matches an ellipsis in the declaration
is classified as a match with an ellipsis. This is considered the weakest match.

User-defined conversions are applied if no built-in promotion or conversion exists.
These conversions are selected on the basis of the type of the argument being matched.
Consider the following code:

// argument_matching1.cpp
class UDC
{
public:
 operator int()
 {
 return 0;
 }
 operator long();
};

void Print(int i)
{
};

UDC udc;

int main()
{
 Print(udc);
}

The available user-defined conversions for class UDC are from type int and type
long. Therefore, the compiler considers conversions for the type of the object being
matched: UDC. A conversion to int exists, and it is selected.

C++ Overloading (Function and Operator)

3G E-LEARNING

87

During the process of matching arguments, standard conversions can be applied
to both the argument and the result of a user-defined conversion. Therefore, the
following code works:

void LogToFile(long l);
...
UDC udc;
LogToFile(udc);

In the preceding example, the user-defined conversion, operator long, is invoked to
convert udc to type long. If no user-defined conversion to type long had been defined,
the conversion would have proceeded as follows: Type UDC would have been converted
to type int using the user-defined conversion. Then the standard conversion from type
int to type long would have been applied to match the argument in the declaration.
If any user-defined conversions are required to match an argument, the standard
conversions are not used when evaluating the best match. This is true even if more
than one candidate function requires a user-defined conversion; in such a case, the
functions are considered equal. For example:
// argument_matching2.cpp
// C2668 expected
class UDC1
{
public:
 UDC1(int); // User-defined conversion from int.
};

class UDC2
{
public:
 UDC2(long); // User-defined conversion from long.
};

void Func(UDC1);
void Func(UDC2);

int main()
{

3G E-LEARNING

88 Basic Computer Coding: C++

 Func(1);
}

Both versions of Func require a user-defined conversion
to convert type int to the class type argument. The possible
conversions are:

■■ Convert from type int to type UDC1 (a user-defined
conversion).

■■ Convert from type int to type long; then convert to
type UDC2 (a two-step conversion).

Even though the second of these requires a standard
conversion, as well as the user-defined conversion, the two
conversions are still considered equal.

3.3.3 Argument matching and the this pointer

Class member functions are treated differently, depending on
whether they are declared as static. Because nonstatic functions
have an implicit argument that supplies the pointer, nonstatic
functions are considered to have one more argument than
static functions; otherwise, they are declared identically.

These nonstatic member functions require that the implied
this pointer match the object type through which the function
is being called, or, for overloaded operators, they require that
the first argument match the object on which the operator is
being applied.

Unlike other arguments in overloaded functions, no
temporary objects are introduced and no conversions are
attempted when trying to match the this pointer argument.

When the – > member-selection operator is used to access
a member function, the this pointer argument has a type of
class-name * const. If the members are declared as const or
volatile, the types are const class-name``* const and volatile
class-name * const, respectively.

The member-selection operator works exactly the same
way, except that an implicit & (address-of) operator is prefixed
to the object name. The following example shows how this
works:

// Expression encountered in code

The
sequence
must contain
only user-defined
conversions,
standard
conversions,
or trivial
conversions to
be classified as
a match with
user-defined
conversions.
A match with
user-defined
conversions is
considered a
better match than
a match with
an ellipsis but
not as good a
match as a match
with standard
conversions.

Remember

C++ Overloading (Function and Operator)

3G E-LEARNING

89

obj.name

// How the compiler treats it
(&obj)->name

The left operand of the –>* and .* (pointer to member) operators are treated the same
way as the . and –> (member-selection) operators with respect to argument matching.

Restrictions

Several restrictions govern an acceptable set of overloaded functions:
■■ Any two functions in a set of overloaded functions must have different

argument lists.
■■ Overloading functions with argument lists of the same types, based on return

type alone, is an error.
Microsoft Specific
You can overload operator new solely on the basis of return type — specifically,

on the basis of the memory-model modifier specified.

3.3.4 END Microsoft Specific

■■ Member functions cannot be overloaded solely on the basis of one being static
and the other nonstatic.

■■ typedef declarations do not define new types; they introduce synonyms for
existing types. They do not affect the overloading mechanism. Consider the
following code:

-- typedef char * PSTR;
-- void Print(char *szToPrint);
-- void Print(PSTR szToPrint);

The preceding two functions have identical argument lists. PSTR is a synonym
for type char *. In member scope, this code generates an error.

■■ Enumerated types are distinct types and can be used to distinguish between
overloaded functions.

■■ The types “array of “ and “pointer to” are considered identical for the purposes
of distinguishing between overloaded functions. This is true only for singly
dimensioned arrays. Therefore, the following overloaded functions conflict
and generate an error message:

3G E-LEARNING

90 Basic Computer Coding: C++

■■ void Print(char *szToPrint);
■■ void Print(char szToPrint[]);

For multiply dimensioned arrays, the second and all succeeding dimensions
are considered part of the type. Therefore, they are used in distinguishing between
overloaded functions:

void Print(char szToPrint[]);
void Print(char szToPrint[][7]);
void Print(char szToPrint[][9][42]);

3.3.5 Declaration Matching

Any two function declarations of the same name in the same scope can refer to the
same function, or to two discrete functions that are overloaded. If the argument lists
of the declarations contain arguments of equivalent types (as described in the previous
section), the function declarations refer to the same function. Otherwise, they refer to
two different functions that are selected using overloading.

Class scope is strictly observed; therefore, a function declared in a base class is not
in the same scope as a function declared in a derived class. If a function in a derived
class is declared with the same name as a function in the base class, the derived-class
function hides the base-class function instead of causing overloading.

Block scope is strictly observed; therefore, a function declared in file scope is not
in the same scope as a function declared locally. If a locally declared function has the
same name as a function declared in file scope, the locally declared function hides the
file-scoped function instead of causing overloading. For example:

// declaration_matching1.cpp
// compile with: /EHsc
#include <iostream>

using namespace std;
void func(int i)
{
 cout << “Called file-scoped func : “ << i << endl;
}

void func(char *sz)
{

C++ Overloading (Function and Operator)

3G E-LEARNING

91

 cout << “Called locally declared func : “ << sz << endl;
}

int main()
{
 // Declare func local to main.
 extern void func(char *sz);

 func(3); // C2664 Error. func(int) is hidden.
 func(“s”);
}

The preceding code shows two definitions from the function func. The definition
that takes an argument of type char * is local to main because of the extern statement.
Therefore, the definition that takes an argument of type int is hidden, and the first
call to func is in error.

For overloaded member functions, different versions of the function can be given
different access privileges. They are still considered to be in the scope of the enclosing
class and thus are overloaded functions. Consider the following code, in which the
member function Deposit is overloaded; one version is public, the other, private.

The intent of this sample is to provide an Account class in which a correct password
is required to perform deposits. This is accomplished using overloading.

Note that the call to Deposit in Account::Deposit calls the private member function.
This call is correct because Account::Deposit is a member function and therefore has
access to the private members of the class.

// declaration_matching2.cpp
class Account
{
public:
 Account()
 {
 }
 double Deposit(double dAmount, char *szPassword);

private:

3G E-LEARNING

92 Basic Computer Coding: C++

 double Deposit(double dAmount)
 {
 return 0.0;
 }
 int Validate(char *szPassword)
 {
 return 0;
 }

};

int main()
{
 // Allocate a new object of type Account.
 Account *pAcct = new Account;

 // Deposit $57.22. Error: calls a private function.
 // pAcct->Deposit(57.22);

 // Deposit $57.22 and supply a password. OK: calls a
 // public function.
 pAcct->Deposit(52.77, “pswd”);
}

double Account::Deposit(double dAmount, char *szPassword)
{
 if (Validate(szPassword))
 return Deposit(dAmount);
 else
 return 0.0;

}

C++ Overloading (Function and Operator)

3G E-LEARNING

93

SUMMARY
■■ Overloading refers to the ability to use a single identifier to define multiple

methods of a class that differ in their input and output parameters. Overloaded
methods are generally used when they conceptually execute the same task
but with a slightly different set of parameters.

■■ Unlike Java, C# allows operators to be overloaded, in addition to methods,
by defining static members using the operator keyword. This feature helps
to extend and customize the semantics of operators relevant to user-defined
types so that they can be used to manipulate object instances with operators.

■■ Overloading is the reuse of the same symbol or function name for two or
more distinct operations or functions.

■■ FORTRAN also overloads generic functions. For example MAX stands for
a family of maximum functions, with the compiler selecting the right one
depending on context.

■■ Overloading: When a single Object has multiple behaviors. Then it is called as
Overloading. Overloading is that in which a Single Object has a same name
and Provides Many Functions.

■■ Constructor overloading is that in which a Constructor has a same name and
has multiple Functions, then it is called as Constructor Overloading.

■■ Function overloading is a feature in C++ where two or more functions can
have the same name but different parameters. Function overloading can be
considered as an example of polymorphism feature in C++.

■■ In C++ programming, two functions can have same name if number and/or
type of arguments passed are different.

■■ Overloaded operators are functions with special names: the keyword “operator”
followed by the symbol for the operator being defined. Like any other function,
an overloaded operator has a return type and a parameter list.

■■ Overloaded functions are selected for the best match of function declarations
in the current scope to the arguments supplied in the function call.

■■ Overloaded functions differentiate between argument types that take different
initializers. Therefore, an argument of a given type and a reference to that type
are considered the same for the purposes of overloading. They are considered
the same because they take the same initializers.

■■ Class member functions are treated differently, depending on whether they
are declared as static. Because nonstatic functions have an implicit argument
that supplies the pointer, nonstatic functions are considered to have one more
argument than static functions; otherwise, they are declared identically.

3G E-LEARNING

94 Basic Computer Coding: C++

■■ Any two function declarations of the same name in the same scope can refer
to the same function, or to two discrete functions that are overloaded. If the
argument lists of the declarations contain arguments of equivalent types (as
described in the previous section), the function declarations refer to the same
function. Otherwise, they refer to two different functions that are selected
using overloading.

C++ Overloading (Function and Operator)

3G E-LEARNING

95

KNOWLEDGE CHECK
1. 	 Which is the correct statement anout operator overloading in C++?.

a.	 Only arithmetic operators can be overloaded
b.	 Associativity and precedence of operators does not change
c.	 Precedence of operators are changed after overlaoding
d.	 Only non-arithmetic operators can be overloaded

2. 	 Which of the following operators cannot be overloaded?
a.	 .* (Pointer-to-member Operator)
b.	 :: (Scope Resolution Operator)
c.	 .* (Pointer-to-member Operator)
d.	 All of the above

3. 	 While overloading binary operators using member function, it requires ___
argument?
a.	 2
b.	 1
c.	 0
d.	 3

4. 	 Which of the following operators should be preferred to overload as a global
function rather than a member method?
a.	 Postfix ++
b.	 Comparison Operator
c.	 Insertion Operator <<
d.	 prefix ++

5. 	 Which of the following operator functions cannot be global, i.e., must be a
member function.
a.	 new
b.	 delete
c.	 Converstion Operator
d.	 All of the above

6. 	 Which of the following is correct option?
a.	 x = 5, y = 10
b.	 x = 10, y = 5
c.	 Compile Error
d.	 x = 5, y = 5

3G E-LEARNING

96 Basic Computer Coding: C++

7. 	 Which of the following is correct option?
a.	 x = 15, y = 3
b.	 x = 3, y = 15
c.	 Compile Error
d.	 x = 15, y = 15

8. 	 Which of the following is correct option?
a.	 lets(int) called
b.	 lets(lfc 2) called
c.	 Compiler Error: Ambiguous call to lets()
d.	 No error and No output

9. 	 Which of the following is the correct order involves in the process of operator
overloading. i) Define the operator function to implement the required operations.
ii) Create a class that defines the data type that is to be used in the overloading
operation. iii) Declare the operator function op() in the public part of the class.
a.	 1-i, 2-ii, 3-iii
b.	 1-ii, 2-iii, 3-i
c.	 1-ii, 2-i, 2-iii
d.	 1-iii, 2-ii, 3-i

10.	 Which of the following is correct option?
a.	 Compiler Error
b.	 8 10
c.	 8 8
d.	 10 8

REVIEW QUESTIONS
1.	 What’s the deal with operator overloading?
2.	 What are the benefits of operator overloading?
3.	 What are some examples of operator overloading?
4.	 Focus on function overloading and return type.
5.	 Differentiate between function overloading vs function overriding in c++.

Check Your Result

1. (b)		 2. (d)		 3. (b)		 4. (c)		 5. (c)
6. (a)		 7. (b)		 8. (c)		 9. (b)		 10. (b)

C++ Overloading (Function and Operator)

3G E-LEARNING

97

REFERENCES
1.	 Bracha, Gilad (3 September 2009). “Systemic Overload”. Room 101.
2.	 Drayton, Peter; Albahari, Ben; Neward, Ted (2003). C# in a Nutshell. O’Reilly

Media, Inc. ISBN 978-0-596-00526-9.
3.	 Fisher, Charles N. (2008). “Issues in Overloading” (PDF). University of Wisconsin–

Madison.
4.	 Meyer, Bertrand (October 2001). “Overloading vs Object Technology” (pdf). Eiffel

column. Journal of Object-Oriented Programming. 101 Communications LLC. 14
(4): 3–7. Retrieved 27 August 2020.

5.	 Smith, Chris (9 October 2012). Programming F# 3.0: A Comprehensive Guide
for Writing Simple Code to Solve Complex Problems. O’Reilly Media, Inc. ISBN
978-1-4493-2604-3.

6.	 Stroustrup, Bjarne. “Operator Overloading”. C++ FAQ. Archived from the original
on 14 August 2011. Retrieved 27 August 2020.

“Estate planning is an important and everlasting gift you can give your family. And setting up a
smooth inheritance isn’t as hard as you might think.”

–Suze Orman

After studying this chapter,
you will be able to:
1.	 Concept of inheritance
2.	 Multiple inheritance

LEARNING
OBJECTIVES

INHERITANCE

INTRODUCTION
In C++, it is possible to inherit attributes and methods from
one class to another. We group the “inheritance concept”
into two categories:

4
CHAPTER

3G E-LEARNING

100 Basic Computer Coding: C++

derived class (child) - the class that inherits from another class
base class (parent) - the class being inherited from
To inherit from a class, use the : symbol.
In the example below, the Car class (child) inherits the attributes and methods from
the Vehicle class (parent):
Example:
// Base class
class Vehicle {
 public:
 string brand = “Ford”;
 void honk() {
 cout << “Tuut, tuut! \n” ;
 }
};

// Derived class
class Car: public Vehicle {
 public:
 string model = “Mustang”;
};

int main() {
 Car myCar;
 myCar.honk();
 cout << myCar.brand + “ “ + myCar.model;
 return 0;
}

4.1 CONCEPT OF INHERITANCE
 A class can inherit from zero or more base classes. A class with at least one base
 class is said to be a derived class. A derived class inherits all the data members and
 member functions of all of its base classes and all of their base classes, and so on.
 A class’s immediate base classes are called direct base classes. Their base classes are

Inheritance

3G E-LEARNING

101

 indirect base classes. The complete set of direct and indirect base classes is sometimes
 .called the ancestor classes

A class can derive directly from any number of base classes. The base-class names
follow a colon and are separated by commas. Each class name can be prefaced by an
access specifier. The same class cannot be listed more than once as a direct base class,
but it can appear more than once in the inheritance graph. For example, derived3 in
the following code has base2 twice in its inheritance tree, once as a direct base class,
and once as an indirect base class (through derived2):

class base1 { ... };
class derived1 : public base1 { ... };
class base2 { ... }
class derived2 : public derived1, public base2 { ... }
class derived3 : protected derived2, private base2 { ... }

A derived class can access the members that it inherits from an ancestor class,
provided the members are not private. To look up a name in class scope, the compiler
looks first in the class itself, then in direct base classes, then in their direct base classes,
and so on.

To resolve overloaded functions, the compiler finds the first class with a matching
name and then searches for overloads in that class. An object with a derived-class
type can usually be converted to a base class, in which case the object is sliced. The
members of the derived class are removed, and only the base class members remain:

struct file {

 std::string name;

};

struct directory : file {

 std::vector<file*> entries;

};

3G E-LEARNING

102 Basic Computer Coding: C++

directory d;

file f;

f = d; // Only d.name is copied to f; entries are lost.
Slicing usually arises from a programming error. Instead,

you should probably use a pointer or reference to cast from
a derived class to a base class. In that case, the derived-class
identity and members are preserved.

For example:

directory* dp = new directory;

file* fp;

fp = dp; // Keeps entries and identity as a directory object

4.1.1 Inheritance in C++

When someone tells you, ‘You’ve inherited your mom’s looks!’,
it means that you got some of your features from her. In the
programming world, the word inheritance basically means
the same thing. There is a parent class or base class, which
denotes a class from which a child class or a derived class
inherits its features from. But why would we want to use
inheritance in programming? Well, in the same way that a
lot of DNA is shared between a mother and a child, a lot of
code can be shared, or rather, reused.

The general syntax of inheritance in C++ is as follows:
■■ class DerivedClass : accessSpecifier BaseClass

Types of inheritance
■■ Single Inheritance

In this type of inheritance, we define one base class and
one derived class.

 Overload
is a six-
 degree-of-freedom
 shooter from the
 creators of Descent
 with intuitive
 controls, amazing
 lighting and
 graphics, and the
best zero-G robot-
 blasting combat
ever devised.

Keyword

Inheritance

3G E-LEARNING

103

Single level inheritance

//Base Class
class A
{
public void fooA()
{
//Inside base class
 }{
}
//Derived Class
class B : A
{
public void fooB()
 {
//Inside derived class
 }
}
Multilevel Inheritance

3G E-LEARNING

104 Basic Computer Coding: C++

Multievel inheritance

In this type of inheritance, a derived class is itself derived from by another class.
//Base Class
class A {
public void fooA()
{
 //Inside base class
 }
//Derived Class
class B : A
{
public void fooB()
 {
//Inside derived class
 }
//Derived Class
class C : B
{
public void fooC()
 {
//Inside derived class
 }
}
Multiple Inheritance

Inheritance

3G E-LEARNING

105

In this type of inheritance, a derived class derives from
two or more base classes.

Multiple inheritance

//Base Class
class A
{
public void fooA()
 {
 //Inside base class
 }
}//Base Class
class B
{
public void fooB()
{
 //Inside base class
 }
 }
//Derived Class
class C : A, B
{
public void fooC()
{
 //Inside derived class
 }
}

Inheritance was
invented in 1969
for Simula.

Did You
Know?

3G E-LEARNING

106 Basic Computer Coding: C++

4.1.2 Virtual Functions

A nonstatic member function can be declared with the virtual
function specifier, and is then known as a virtual function.
A virtual function can be overridden in a derived class. To
override a virtual function, declare it in a derived class with
the same name and parameter types. The return type is usually
the same but does not have to be identical. The virtual specifier
is optional in the derived class but is recommended as a hint
to the human reader. A constructor cannot be virtual, but a
destructor can be. A virtual function cannot be static.

A class that has at least one virtual function is polymorphic.
This form of polymorphism is more precisely known as type
polymorphism. (C++ also supports parametric polymorphism
with templates; Most programmers mean type polymorphism
when they talk about object-oriented programming.
struct base {

 virtual void func();

};

struct derived : base {

 virtual void func(); // Overload

};

base* b = new derived; // Static type of b is base*.

 // Dynamic type is derived*.

b->func(); // Calls dynamic::func()

When any function is called, the compiler uses the static type
to pick a function signature. If the function is virtual, the
compiler generates a virtual function call. Then, at runtime,

Polymorphism is
the ability of an
object to take on
many forms.

Keyword

Inheritance

3G E-LEARNING

107

the object’s dynamic type determines which function is actually callednamely, the
function in the most-derived class that overrides the virtual function. This is known
as a polymorphic function call.

4.1.3 Dispatching Virtual Functions

Virtual functions are most commonly implemented using virtual function tables,
or vtables. Each class that declares at least one virtual function has a hidden data
member (e.g., _ _vtbl). The _ _vtbl member points to an array of function pointers.
Every derived class has a copy of the table. Every instance of a class shares a common
table. Each entry in the table points to a function in a base class, or if the function is
overridden, the entry points to the derived class function. Any new virtual functions
that the derived class declares are added at the end of the table.

When an object is created, the compiler sets its _ _vtbl pointer to the vtable for
its dynamic class. A call to a virtual function is compiled into an index into the table
and into a call to the function at that index. Note that the dynamic_cast<> operator
can use the same mechanism to identify the dynamic type of the object.

Multiple inheritance complicates matters slightly, yet the basic concept remains
the same: indirection through a table of pointers.

Compilers do not have to use vtables, but they are used so widely, the term
“vtable” has entered the common parlance of many C++ programmers.

An object’s dynamic type can differ from its static type only if the object is accessed
via a pointer or reference. Thus, to call a virtual function, you typically access the
target object via a pointer (e.g., ptr->func()). Inside a member function, if you call a
virtual member function using its unqualified name, that is the same as calling the
function via this->, so the function is called virtually. If a nonpointer, nonreference
object calls a virtual function, the compiler knows that the static type and dynamic
type always match, so it can save itself the lookup time and call the function in a
nonvirtual manner.

Example shows a variety of virtual functions for implementing a simple calculator.
A parser constructs a parse tree of expr nodes, in which each node can be a literal
value or an operator. The operator nodes point to operand nodes, and an operand
node, in turn, can be any kind of expr node. The virtual evaluate function evaluates
the expression in the parse tree, returning a double result. Each kind of node knows
how to evaluate itself. For example, a node can return a literal value or add the values
that result from evaluating two operands.

Example. Declaring and using virtual functions
class expr {

3G E-LEARNING

108 Basic Computer Coding: C++

public:

 virtual ~expr() {}

 virtual double evaluate() const = 0;

 std::string as_string() const {

 std::ostringstream out;

 print(out);

 return out.str();

 }

 virtual void print(std::ostream& out) const {}

 virtual int precedence() const = 0;

 template<typename charT, typename traits>

 static std::auto_ptr<expr> parse(

 std::basic_istream<charT,traits>& in);

};

// cout << *expr prints any kind of expression because expr->print() is virtual.

template<typename charT, typename traits>

std::basic_ostream<charT,traits>&

Inheritance

3G E-LEARNING

109

 operator<<(std::basic_ostream<charT,traits>& out, const expr& e)

{
 e.print(out);

 return out;

}

class literal : public expr {

public:

 literal(double value) : value_(value) {}

 virtual double evaluate() const { return value_; }

 virtual void print(std::ostream& out) const {

 out << value_;

 }

 virtual int precedence() const { return 1; }

private:

 double value_;

};

// Abstract base class for all binary operators

3G E-LEARNING

110 Basic Computer Coding: C++

class binop : public expr {

public:

 binop(std::auto_ptr<expr> left, std::auto_ptr<expr> right)

 : left_(left), right_(right) {}

 virtual double evaluate() const {

 return eval(left_->evaluate(), right_->evaluate());

 }

 virtual void print(std::ostream& out) const {

 if (left_->precedence() > precedence())

 out << ‘(‘ << *left_ << ‘)’;

 else

 out << *left_;

 out << op();

 if (right_->precedence() > precedence())

 out << ‘(‘ << *right_ << ‘)’;

Inheritance

3G E-LEARNING

111

 else

 out << *right_;

 }

 // Reminder that derived classes must override precedence

 virtual int precedence() const = 0;

protected:

 virtual double eval(double left, double right) const = 0;

 virtual const char* op() const = 0;

private:

 // No copying allowed (to avoid messing up auto_ptr<>s)

 binop(const binop&);

 void operator=(const binop&);

 std::auto_ptr<expr> left_;

 std::auto_ptr<expr> right_;

};

// Example binary operator.

3G E-LEARNING

112 Basic Computer Coding: C++

class plus : public binop {

public:

 plus(std::auto_ptr<expr> left, std::auto_ptr<expr> right)

 : binop(left, right) {}

 virtual int precedence() const { return 3; }

protected:

 virtual double eval(double left, double right) const {

 return left + right;

 }

 virtual const char* op() const { return “+”; }

};

int main()

{

 while(std::cin) {

 std::auto_ptr<expr> e(expr::parse(std::cin));

Inheritance

3G E-LEARNING

113

 std::cout << *e << ‘\n’;

 std::cout << e->evaluate() << ‘\n’;

 }

}
Sometimes you do not want to take advantage of the

virtualness of a function. Instead, you may want to call the
function as it is defined in a specific base class. In such a case,
qualify the function name with the base-class name, which
tells the compiler to call that class’s definition of the function:

literal* e(new literal(2.0));

e->print(std::cout); // Calls literal::print

e->expr::print(std::cout); // Calls expr::print

Covariant Return Types

The return type of an overriding virtual function must be the
same as that of the base function, or it must be covariant.
In a derived class, a covariant return type is a pointer or
reference to a class type that derives from the return type
used in the base class. Note that the return type classes do
not necessarily have to match the classes that contain the
functions, but they often do. The return type in the derived
class can have additional const or volatile qualifiers that are
not present in the base-class return type.

In a function call, the actual return value is implicitly cast
to the static type used in the function call. Example shows
one typical use of covariant types.

Example. Covariant return types
struct shape {

 virtual shape* clone() = 0;

 A base
 class is
 the parent class
 of a derived class.
 Classes may be
 used to create other
classes.

Keyword

3G E-LEARNING

114 Basic Computer Coding: C++

};

struct circle : shape {

 virtual circle* clone() {

 return new circle(*this);

 }

 double radius() const { return radius_; }

 void radius(double r) { radius_ = r; }

private:

 double radius_;

 point center_;

};

struct square : shape {

 virtual square* clone() {

 return new square(*this);

 }

private:

A class
that has
at least one
virtual function
should also
have a virtual
destructor. If a
delete expression
deletes a
polymorphic
pointer (for
which the
dynamic type
does not match
the static type),
the static
class must
have a virtual
destructor.
Otherwise, the
behavior is
undefined.

Remember

Inheritance

3G E-LEARNING

115

 double size_;

 point corners_[4];

};

circle unit_circle;

circle* big_circle(double r)

{

 circle* result = unit_circle.clone();

 result->radius(r);

 return result;

}

int main()

{

 shape* s = big_circle(42.0);

 shape* t = s->clone();

3G E-LEARNING

116 Basic Computer Coding: C++

 delete t;

 delete s;

}

4.1.4 Pure Virtual Functions

A virtual function can be declared with the pure specifier (=0)
after the function header. Such a function is a pure virtual
function (sometimes called an abstract function). The syntax
for a pure specifier requires the symbols = 0. You cannot use
an expression that evaluates to 0.

Even though a function is declared pure, you can still
provide a function definition (but not in the class definition).
A definition for a pure virtual function allows a derived class
to call the inherited function without forcing the programmer
to know which functions are pure.

A derived class can override a pure virtual function and
provide a body for it, override it and declare it pure again,
or simply inherit the pure function.

Example shows some typical uses of pure virtual functions.
A base class, shape, defines several pure virtual functions
(clone, debug, draw, andnum_sides). The shape class has no
behavior of its own, so its functions are pure virtual.

Example. Pure virtual functions

class shape {

public:

 virtual ~shape();

 virtual void draw(graphics* context) = 0;

 virtual size_t num_sides() const = 0;

 A
 debugger
 or debugging tool
 is a computer
 program that
 is used to test
 and debug other
 programs (the
 “target” program).

Keyword

Inheritance

3G E-LEARNING

117

 virtual shape* clone() const = 0;

 virtual void debug(ostream& out) const = 0;

};

class circle : public shape {

public:

 circle(double r) : radius_(r) {}

 virtual void draw(graphics* context);

 virtual size_t num_sides() const { return 0; }

 virtual circle* clone() const { return new circle(radius(
)); }

 virtual void debug(ostream& out) const {

 shape::debug(out);

 out << “radius=” << radius_ << ‘\n’;

 }

 double radius() const { return radius_; }

private:

A pure
destructor
must have
a definition
because a
derived-class
destructor always
calls the base-
class destructor.

Remember

3G E-LEARNING

118 Basic Computer Coding: C++

 double radius_;

};

class filled_circle : public circle {

public:

 filled_circle(double r, ::color c) : circle(r), color_(c) {}

 virtual filled_circle* clone() const {

 return new filled_circle (radius(), color());

 }

 virtual void draw(graphics* context);

 virtual void debug(ostream& out) const {

 circle::debug(out);

 out << “color=” << color_ << ‘\n’;

 }

 ::color color() const { return color_;}

private:

Inheritance

3G E-LEARNING

119

 color color_;

};

void shape::debug(ostream& out)

const

{}
Even though shape::debug is pure, it has a function body. Derived classes must

override shape::debug, but they can also call it, which permits uniform implementation
of the various debug functions. In other words, every implementation of debug starts
by calling the base class debug. Classes that inherit directly from shape do not need
to implement debug differently from classes that inherit indirectly.

Abstract Classes

An abstract class declares at least one pure virtual function or inherits a pure virtual
function without overriding it. A concrete class has no pure virtual functions (or all
inherited pure functions are overridden). You cannot create an object whose type is
an abstract class. Instead, you must create objects of concrete type. In other words,
a concrete class that inherits from an abstract class must override every pure virtual
function.

Abstract classes can be used to define a pure interface class, that is, a class with all
pure virtual functions and no nonstatic data members. Java and Delphi programmers
recognize this style of programming because it is the only way these languages support
multiple inheritance. Example shows how interface classes might be used in C++.

Example. Using abstract classes as an interface specification

struct Runnable {

 virtual void run() = 0;

};

3G E-LEARNING

120 Basic Computer Coding: C++

struct Hashable {

 virtual size_t hash() = 0;

};

class Thread : public Runnable, public Hashable {

public:

 Thread() { start_thread(*this); }

 Thread(const Runnable& thread) { start_thread(thread); }

 virtual void run();

 virtual size_t hash() const { return thread_id(); }

 size_t thread_id() const;

 ...

private:

 static void start_thread(const Runnable&);

};

// Derived classes can override run to do something useful.

void Thread::run()
{}

Inheritance

3G E-LEARNING

121

4.2 MULTIPLE INHERITANCE
A class can derive from more than one base class. You cannot
name the same class more than once as a direct base class, but
a class can be used more than once as an indirect base class, or
once as a direct base class and one or more times as an indirect
base class. Some programmers speak of inheritance trees or
hierarchies, but with multiple base classes, the organization
of inheritance is a directed acyclic graph, not a tree. Thus,
C++ programmers sometimes speak of inheritance graphs.
If multiple base classes declare the same name, the derived
class must qualify references to the name or else the compiler
reports an ambiguity error:

struct base1 { int n; };

struct base2 { int n; };

struct derived : base1, base2 {

 int get_n() { return base1::n; } // Plain n is an error.

};

Objects of a derived-class type contain separate sub objects
for each instance of every base class to store the base class’s
no static data members. To refer to a member of a particular
sub object, qualify its name with the name of its base class.
Static members, nested types, and enumerators are shared
among all instances of a repeated base class, so they can be
used without qualification (unless the derived class hides a
name with its own declaration), as shown in Example.

Example. Multiple inheritance

struct base1 {

 Compilers
 are a type
 of translator that
 support digital
 devices, primarily
 computers.

Keyword

3G E-LEARNING

122 Basic Computer Coding: C++

 int n;

};

struct base2 {

 enum color { black, red };

 int n;

};

struct base3 : base2 {

 int n; // Hides base2::n

};

struct derived : base1, base2, base3 {

 color get_color(); // OK: unambiguous use of base2::color

 int get_n() { return n; } // Error: ambiguous

 int get_n1() { return base2::n; } // Error: which base2?

 int get_n2() { return base3::n; } // OK

 int get_n3() { // OK: another way to get to a specific member n

 base3& b3 = *this;

 base2& b2 = b3;

Inheritance

3G E-LEARNING

123

 return b2.n;

 }

};

A well-designed inheritance graph avoids problems with
ambiguities by ensuring that names are unique throughout
the graph, and that a derived class inherits from each base
class no more than once. Sometimes, however, a base class
must be repeated in an inheritance graph. Figure illustrates
the organization of multiple base classes, modeled after the
standard I/O stream classes. Because basic_iostream derives
from basic_istream and from basic_ostream, it inherits two
sets of flags, two sets of buffers, and so on, even though it
should have only one set of each.

Inheritance can be done in a number of ways. Till now, we
have come across different types of inheritances in different
examples.

The different types of inheritances which we have come
across are:

Single Inheritance

single inheritance in C++
In single inheritance, a class inherits another class.

Basic_
 ostream
 defines a number
 of member function
 signatures that
 assist in formatting
 and writing output
 to sequences
 controlled by a
stream buffer.

Keyword

3G E-LEARNING

124 Basic Computer Coding: C++

Multilevel Inheritance

multiple inheritance in C++
In this type of inheritance, one class inherits from another class. This base class inherits
from some other class.

Hierarchical Inheritance

hierarchial in C++
In hierarchical inheritance, more than one class inherit from a base class.
In multiple inheritance, a class can inherit from more than one classes. In simple
words, a class can have more than one parent classes. This type of inheritance is not
present in Java.
Suppose we have to make two classes A and B as the parent classes of class C, then
we have to define class C as follows.
class C: public A, public B
{
 // code
};

Let’s see an example of multiple inheritance

#include <iostream>

using namespace std;

class Area
{
	 public:
		 int getArea(int l, int b)
		 {
			 return l * b;
		 }
};

class Perimeter

Inheritance

3G E-LEARNING

125

{
	 public:
		 int getPerimeter(int l, int b)
		 {
			 return 2*(l + b);
		 }
};

class Rectangle : public Area, public Perimeter
{
	 int length;
	 int breadth;
	 public:
		 Rectangle()
		 {
			 length = 7;
			 breadth = 4;
		 }
		 int area()
		 {
			 return Area::getArea(length, breadth);
		 }
		 int perimeter()
		 {
			 return Perimeter::getPerimeter(length, breadth);
		 }
};

int main()
{
	 Rectangle rt;
	 cout << “Area : “ << rt.area() << endl;
	 cout << “Perimeter : “ << rt.perimeter() << endl;

3G E-LEARNING

126 Basic Computer Coding: C++

	 return 0;
}
Output
In this example, class Rectangle has two parent classes Area and Perimeter. Class

‘Area’ has a function getArea(int l, int b) which returns area. Class ‘Perimeter’ has a
function getPerimeter(int l, int b) which returns the perimeter.

When we created the object ‘rt’ of class Rectangle, its constructor got called and
assigned the values 7 and 4 to its data members length and breadth respectively. Then
we called the function area() of the class Rectangle which returned getArea(length,
breadth) of the class Area, thus calling the function getArea(int l, int b) and assigning
the values 7 and 4 to l and b respectively. This function returned the area of the
rectangle of length 7 and breadth 4.

Similarly, we returned the perimeter of the rectangle by the class Perimeter.

Let’s see one more example.

#include <iostream>

using namespace std;

class P1
{
	 public:
		 P1()
		 {
			 cout << “Constructor of P1” << endl;
		 }
};

class P2
{
	 public:
		 P2()
		 {
			 cout << “Constructor of P2” << endl;

Inheritance

3G E-LEARNING

127

		 }
};

class A : public P2, public P1
{
	 public:
		 A()
		 {
			 cout << “Constructor of A” << endl;
		 }
};

int main()
{
	 A a;
	 return 0;
}
Output
Here, when we created the object ‘a’ of class ‘A’, its

constructor got called. As seen before, the compiler first calls
the constructor of the parent class. Since class ‘A’ has two parent
classes ‘P1’ and ‘P2’, so the constructors of both these classes
will be called before executing the body of the constructor
of ‘A’. The order in which the constructors of the two parent
classes are called depends on the following code.

class A : public P2, public P1
The order in which the constructors are called depends

on the order in which their respective classes are inherited.
Since we wrote ‘public P2’ before ‘public P1’, therefore the
constructor of P2 will be called before that of P1.

4.2.1 Inheritance and Composition

The classes you have seen so far are complete classes: you
can create an instance of the class on the free store or the
stack. You can do this because the data members of the class

 Overloaded
 constructors
 have the same
 name (name of
 the class) but
 different number of
arguments.

Keyword

3G E-LEARNING

128 Basic Computer Coding: C++

have been defined and so it is possible to calculate how much memory is needed for
the object, and you have provided the full functionality of the class. These are called
concrete classes.

If you have a routine in a class that proves useful and you want to reuse in a new
class, you have a few choices. The first is called composition. With composition you
add an instance of your utility class as a data member of the classes that will use the
routine. A simple example is the string class--this provides all the functionality that you
want from a string. It will allocate memory according to how many characters have
to be stored and deal locate the memory it uses when the string object is destroyed.
Your class uses the functionality of a string, but it is not a string itself, hence it has
the string as a data member.

What are the advantages of using inheritance in C++ Programming

The main advantages of inheritance are code reusability and readability. When child
class inherits the properties and functionality of parent class, we need not to write
the same code again in child class. This makes it easier to reuse the code, makes we
write the less code and the code becomes much more readable.

Lets take a real life example to understand this: Let’s assume that Human is a
class that has properties such as height, weight, color etc. and functionality such as
eating (), sleeping (), dreaming (), working () etc.

Now we want to create Male and Female class, these classes are different but
since both Male and Female are humans they share some common properties and
behaviors (functionality) so they can inherit those properties and functionality from
Human class and rest can be written in their class separately. This approach makes us
write less code as both the classes inherited several properties and functions from base
class thus we didn’t need to re-write them. Also, this makes it easier to read the code.

Inheritance

3G E-LEARNING

129

SUMMARY
■■ A class can inherit from zero or more base classes. A class with at least one

base class is said to be a derived class.
■■ A class can derive directly from any number of base classes. The base-class

names follow a colon and are separated by commas. Each class name can be
prefaced by an access specifier.

■■ A derived class can access the members that it inherits from an ancestor class,
provided the members are not private. To look up a name in class scope, the
compiler looks first in the class itself, then in direct base classes, then in their
direct base classes, and so on.

■■ Slicing usually arises from a programming error. Instead, you should probably
use a pointer or reference to cast from a derived class to a base class. In that
case, the derived-class identity and members are preserved.

■■ In the programming world, the word inheritance basically means the same
thing. There is a parent class or base class, which denotes a class from which
a child class or a derived class inherits its features from.

■■ A nonstatic member function can be declared with the virtual function specifier,
and is then known as a virtual function. A virtual function can be overridden
in a derived class.

■■ Virtual functions are most commonly implemented using virtual function
tables, or vtables. Each class that declares at least one virtual function has a
hidden data member (e.g., _ _vtbl).

■■ The return type of an overriding virtual function must be the same as that
of the base function, or it must be covariant. In a derived class, a covariant
return type is a pointer or reference to a class type that derives from the
return type used in the base class.

■■ A virtual function can be declared with the pure specifier (=0) after the
function header. Such a function is a pure virtual function (sometimes called
an abstract function).

■■ An abstract class declares at least one pure virtual function or inherits a pure
virtual function without overriding it.

■■ A class can derive from more than one base class. You cannot name the same
class more than once as a direct base class, but a class can be used more than
once as an indirect base class, or once as a direct base class and one or more
times as an indirect base class.

■■ A well-designed inheritance graph avoids problems with ambiguities by
ensuring that names are unique throughout the graph, and that a derived
class inherits from each base class no more than once.

3G E-LEARNING

130 Basic Computer Coding: C++

■■ The main advantages of inheritance are code reusability and readability. When
child class inherits the properties and functionality of parent class, we need
not to write the same code again in child class. This makes it easier to reuse
the code, makes we write the less code and the code becomes much more
readable.

Inheritance

3G E-LEARNING

131

KNOWLEDGE CHECK
1. 	 When the inheritance is private, the private methods in base class are __________

in the derived class (in C++).
a.	 Inaccessible
b.	 Accessible
c.	 Protected
d.	 Public

2. 	 Which design patterns benefit from the multiple inheritances?
a.	 Adapter and observer pattern
b.	 Code pattern
c.	 Glue pattern
d.	 None of the mentioned

3. 	 What is meant by multiple inheritance?
a.	 Deriving a base class from derived class
b.	 Deriving a derived class from base class
c.	 Deriving a derived class from more than one base class
d.	 None of the mentioned

4. 	 What will be the order of execution of base class constructors in the following
method of inheritance.class a: public b, public c {...};
a.	 b(); c(); a();
b.	 c(); b(); a();
c.	 a(); b(); c();
d.	 b(); a(); c();

5. 	 Inheritance allow in C++ Program?
a.	 Class Re-usability
b.	 Creating a hierarchy of classes
c.	 Extendibility
d.	 All of the above

6. 	 Can we pass parameters to base class constructor though derived class or derived
class constructor?
a.	 Yes
b.	 No
c.	 May Be
d.	 Can’t Say

3G E-LEARNING

132 Basic Computer Coding: C++

7. 	 What are the things are inherited from the base class?
a.	 Constructor and its destructor
b.	 Operator=() members
c.	 Friends
d.	 All of the above

8. 	 Which of the following advantages we lose by using multiple inheritance?
a.	 Dynamic binding
b.	 Polymorphism
c.	 Both Dynamic binding & Polymorphism
d.	 None of the mentioned

9. 	 What will be the output of the following program?

Note:Includes all required header files
class find {
public:
 void print() { cout <<” In find”; }
};

class course : public find {
public:
 void print() { cout <<” In course”; }
};

class tech: public course { };

int main(void)
{
 tech t;
 t.print();
 return 0;
}
a.	 In find
b.	 In course

Inheritance

3G E-LEARNING

133

c.	 Compiler Error: Ambiguous call to print()
d.	 None of the above

10. 	 Which symbol is used to create multiple inheritance?
a.	 Dot
b.	 Comma
c.	 Dollar
d.	 None of the above

REVIEW QUESTIONS
1.	 Discuss about inheritance in C++.
2.	 What are the different types of inheritance?
3.	 Focus on virtual functions.
4.	 What is inheritance example?
5.	 Discuss about multiple inheritance.

Check Your Result

1. (a)		 2. (a)		 3. (c)		 4. (a)		 5. (d)
6. (a)		 7. (d)		 8. (c)		 9. (b)		 10. (b)

3G E-LEARNING

134 Basic Computer Coding: C++

REFERENCES
1.	 Dr. K. R. Venugopal, Rajkumar Buyya (2013). Mastering C++. Tata McGrawhill

Education Private Limited. p. 609. ISBN 9781259029943.
2.	 E Balagurusamy (2010). Object Orientedprogramming With C++. Tata McGrawhill

Education Pvt. Ltd. p. 213. ISBN 978-0-07-066907-9.
3.	 Herbert Schildt (2003). The complete reference C++. Tata McGrawhill Education

Private Limited. p. 417. ISBN 978-0-07-053246-5.
4.	 Holub, Allen (1 August 2003). "Why extends is evil". Retrieved 10 March 2015.
5.	 Mike Mintz, Robert Ekendahl (2006). Hardware Verification with C++: A

Practitioner's Handbook. United States of America: Springer. p. 22. ISBN 978-0-
387-25543-9.

6.	 Mitchell, John (2002). "10 "Concepts in object-oriented languages"". Concepts in
programming language. Cambridge, UK: Cambridge University Press. p. 287.
ISBN 978-0-521-78098-8.

7.	 Tempero, Ewan; Yang, Hong Yul; Noble, James (2013). What programmers do
with inheritance in Java (PDF). ECOOP 2013–Object-Oriented Programming. pp.
577–601.

“I invented the term Object-Oriented, and I can tell you I did not have C++ in mind. ”

–Alan Kay

After studying this chapter,
you will be able to:
1.	 Describe the concept of

polymorphism
2.	 Define the importance of

polymorphism
3.	 Understand the

implementing
polymorphism c++

4.	 Explain the other
applications of
polymorphism

5.	 Focus on polymorphism
explanation

LEARNING
OBJECTIVES

POLYMORPHISM IN C++

INTRODUCTION
In C++, polymorphism causes a member function to
behave differently based on the object that calls/invokes
it. Polymorphism is a Greek word that means to have many

5
CHAPTER

3G E-LEARNING

136 Basic Computer Coding: C++

forms. It occurs when you have a hierarchy of classes related through inheritance.
For example, suppose we have the function makeSound(). When a cat calls this

function, it will produce the meow sound. When a cow invokes the same function, it
will provide the moow sound.

Though we have one function, it behaves differently under different circumstances.
The function has many forms; hence, we have achieved polymorphism.

5.1 CONCEPT OF POLYMORPHISM
Simply speaking, polymorphism is the ability of something to be displayed in multiple
forms. Let’s take a real life scenario; a person at the same time can perform several
duties as per demand, in the particular scenario. Such as, a man at a same time can
serve as a father, as a husband, as a son, and as an employee. So, single person
possess different behaviors in respective situations. This is the real life example of
polymorphism. Polymorphism is one of the important features of OOP (Object Oriented
Programming).

In C++ Polymorphism is mainly divided into two types
1) 	 Compile Time Polymorphism and
2) 	 Runtime Polymorphism

C++ Runtime Polymorphism Example
Let’s see a simple example of runtime polymorphism in C++.
#include <iostream>

Polymorphism in C++

3G E-LEARNING

137

using namespace std;
class Animal {
 public:
void eat(){
cout<<”Eating...”;
 }
};
class Dog: public Animal
{
 public:
 void eat()
 {
 cout<<”Eating bread...”;
 }
};
int main(void) {
 Dog d = Dog();
 d.eat();
 return 0;
}
Output:

Eating bread...

C++ Runtime Polymorphism Example: By using two derived class. Let’s see another
example of runtime polymorphism in C++ where we are having two derived classes.

#include <iostream>
using namespace std;
class Shape {
 public:
virtual void draw(){
cout<<”drawing...”<<endl;

3G E-LEARNING

138 Basic Computer Coding: C++

 }
};
class Rectangle: public Shape
{
 public:
 void draw()
 {
 cout<<”drawing rectangle...”<<endl;
 }
};
class Circle: public Shape
{
 public:
 void draw()
 {
 cout<<”drawing circle...”<<endl;
 }
};
int main(void) {
 Shape *s;
 Shape sh;
 Rectangle rec;
 Circle cir;
 s=&sh;
 s->draw();
 s=&rec;
 s->draw();
 s=○
 s->draw();
}
Output:

drawing...

Polymorphism in C++

3G E-LEARNING

139

drawing rectangle...
drawing circle...

Runtime Polymorphism with Data Members

Runtime Polymorphism can be achieved by data members in
C++. Let’s see an example where we are accessing the field by
reference variable which refers to the instance of derived class.

#include <iostream>
using namespace std;
class Animal {
 public:
 string color = “Black”;
};
class Dog: public Animal
{
 public:
 string color = “Grey”;
};
int main(void) {
 Animal d= Dog();
 cout<<d.color;
}
Output:

Black

5.1.1 Compile Time Polymorphism

This type of polymorphism is also known as static
polymorphism and is achieved by overloading a function/
method or an operator.

 A
 reference
 variable is an
 alias, that is,
 another name
 for an already
 existing variable.
 Once a reference
 is initialized with
 a variable, either
 the variable name
 or the reference
 name may be used
 to refer to the
variable.

Remember

3G E-LEARNING

140 Basic Computer Coding: C++

Function Overloading in Compile Time

When multiple functions are used at different places with same name but different
parameters then these functions are known as overloaded function. Functions can be
overloaded in two ways:
By change in number of arguments
By change in type of arguments.
Let’s consider an example.
Example of function overloading in C++C++
#include <iostream.h>
using namespace std;
class mycplus
{
 public:
 // function # 01: with 1 parameter of type int
 void function(int a)
 {
 cout << “value of a is “ << a << endl;
 }
 // function # 02: having same name but a double parameter
 void function(double a)
 {
 cout << “value of a is “ << a << endl;
 }
 // function # 03: with same name but 2 int parameters
 void function(int a, int b)

Polymorphism in C++

3G E-LEARNING

141

 {
 cout << “value of a and b is “ << a << “, “ << b << endl;
 }
};

int main() {

 mycplus obj;
 // The call of function will depend on the type of parameters
 // passed
 //The first ‘function with one int parameter’ is called
 obj.function(3);
 // The second ‘function with a double parameter’ is called
 obj.function(6.456);
 // The third ‘function with 2 int parameters’ is called
 obj.function(8,71);
 return 0;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

3G E-LEARNING

142 Basic Computer Coding: C++

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <iostream.h>
using namespace std;
class mycplus
{
 public:
 // function # 01: with 1 parameter of type int
 void function(int a)
 {
 cout << “value of a is “ << a << endl;
 }
 // function # 02: having same name but a double parameter
 void function(double a)
 {

Polymorphism in C++

3G E-LEARNING

143

 cout << “value of a is “ << a << endl;
 }
 // function # 03: with same name but 2 int parameters
 void function(int a, int b)
 {
 cout << “value of a and b is “ << a << “, “ << b << endl;
 }
};

int main() {

 mycplus obj;
 // The call of function will depend on the type of parameters
 // passed
 //The first ‘function with one int parameter’ is called
 obj.function(3);
 // The second ‘function with a double parameter’ is called
 obj.function(6.456);
 // The third ‘function with 2 int parameters’ is called
 obj.function(8,71);
 return 0;
}
Output:

value of a is 3

value of a is 6.456

value of a and b is 8, 71

The above example perfectly explains the concept of function
overloading, a single function/method named function acts
differently in 3 different situations which is the property of
polymorphism.

In
computer
programming,
two notions of
parameter are
commonly used,
and are referred
to as parameters
and arguments—
or more formally
as a formal
parameter and an
actual parameter.

Remember

3G E-LEARNING

144 Basic Computer Coding: C++

Operator Overloading in Compile Time

 The second method of compile time polymorphism is operator overloading. For example,
 we can make the operator (‘+’) for string class to concatenate two strings. The general
 concept regarding “+” operator is that it is an addition operator whose task is to sum
.up two operands. But here in polymorphism, it will be used for a different purpose

So, a single operator ‘+’ when placed between strings, concatenate them and when
placed between integer operands, adds them. Let’s take an example of illustrating
Operator Overloading using C++.

C++ example to illustrate Operator OverloadingC++

#include<iostream>
using namespace std;
class Testop {
private:
 int real, imag;
public:
 Testop(int r = 0, int i =0): real(r), imag(i) {}
 // The following function will automatically called when ‘+’
// is used with between two Testop objects
 Testop operator + (Testop const &obj) {
 Testop obj1;
 obj1.real = real + obj.real;
 obj1.imag = imag + obj.imag;
 return obj1;
 }
 void print()
{
cout << “The result of adding two complex numbers by operator overloading is

“ << real << “ + i” << imag << endl;
}
};

int main()

Polymorphism in C++

3G E-LEARNING

145

{
 Testop t1(12, 15), t2(1, 6);
 Testop t3 = t1 + t2; // call to “operator +”
 t3.print();
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include<iostream>

3G E-LEARNING

146 Basic Computer Coding: C++

using namespace std;
class Testop {
private:
 int real, imag;
public:
 Testop(int r = 0, int i =0): real(r), imag(i) {}
 // The following function will automatically called

when ‘+’
// is used with between two Testop objects
 Testop operator + (Testop const &obj) {
 Testop obj1;
 obj1.real = real + obj.real;
 obj1.imag = imag + obj.imag;
 return obj1;
 }
 void print()
{
cout << “The result of adding two complex numbers by

operator overloading is “ << real << “ + i” << imag << endl;
}
};

int main()
{

 Testop t1(12, 15), t2(1, 6);
 Testop t3 = t1 + t2; // call to “operator +”
 t3.print();
}
Output:

The result of adding two complex numbers by operator
overloading is 13 + i21

 Operator
 overloading
 (less commonly
 known as ad-hoc
 polymorphism)
 is a specific case
 of polymorphism
 (part of the OO
 nature of the
 language) in
 which some or all
 operators like +, =
 or == are treated
 as polymorphic
 functions and
 as such have
 different behaviors
 depending on
 the types of its
arguments.

Keyword

Polymorphism in C++

3G E-LEARNING

147

In above mentioned example the “+” operator is overloaded. Here the operator is
made to perform addition of two complex numbers.

Testop operator + (Testop const &obj) is called automatically when the operator
“+” is used in the main function.

Here it is important to mention that, operator overloading can be done on both
unary as well as binary operators.

5.1.2 Runtime Polymorphism

This is the second type of polymorphism. It can be achieved by Function Overriding.

Function Overriding in Runtime

Function overriding is giving another definition to an existing method with same
parameters or we can say that a method has same prototype in base as well as derived
class.

For example: when an inherited class in c++ has a different definition for one of
functions of the base class then here the function of base class is said to be overridden.

Example of function overriding in C++C++

 #include <bits/stdc++.h>
using namespace std;
 // Parent class
class Base
{
 public:
 void result()
 {

3G E-LEARNING

148 Basic Computer Coding: C++

 cout << “Result method of Base class is called” << endl;
 }
};

// Following is the Derived class having similar result() method as of
//base class
class Derive : public Base
{
 public:

 // definition of a result method already exists in Base class
 void result()
 {
 cout << “The result method of derived class is called “ << endl;
 }

};

int main()
{
 //instantiating object of Base class
 Base obj;
 //object of child class
 Derive obj1 = Derive();

 // obj will call the result method in Base Class
 obj1.result();

 // obj1 will override the result method in Base
 // and call the result method in Derive class
 Obj1.result();
 return 0;
}

Polymorphism in C++

3G E-LEARNING

149

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

3G E-LEARNING

150 Basic Computer Coding: C++

34
35
36
37
38
39
40
41
 #include <bits/stdc++.h>
using namespace std;
 // Parent class
class Base
{
 public:
 void result()
 {
 cout << “Result method of Base class is called” << endl;
 }
};

// Following is the Derived class having similar result() method as of
//base class
class Derive : public Base
{
 public:

 // definition of a result method already exists in Base class
 void result()
 {
 cout << “The result method of derived class is called “ << endl;
 }

};

Polymorphism in C++

3G E-LEARNING

151

int main()
{
 //instantiating object of Base class
 Base obj;
 //object of child class
 Derive obj1 = Derive();

 // obj will call the result method in Base Class
 obj1.result();

 // obj1 will override the result method in Base
 // and call the result method in Derive class
 Obj1.result();
 return 0;
}
Output:

Result method of Base class is called

The result method of derived class is called

In the above-mentioned example, the result () method of
base class is overridden and redefined in the base class.

Runtime Polymorphism using Virtual Functions

Runtime polymorphism can also be achieved by virtual
functions. A virtual Function is the member of base class
and is overrided in the derived class. The syntax of a virtual
function is to precede its declaration with keyword “Virtual”.

Here are some c programs to demonstrate how virtual
pointers, virtual tables and virtual functions work in C++

Virtual function actually tells the compiler to perform
Dynamic Binding (resolves function call at runtime) on it.

 A derived
 class is
 a class created
 or derived from
 another existing
 class. The existing
 class from which
 the derived class
 is created through
 the process of
 inheritance is
 known as a base
class or superclass.

Keyword

3G E-LEARNING

152 Basic Computer Coding: C++

#include <iostream>

using namespace std;

class Polygon {

 protected:

 int w , h;

 public:
 void set_values (int x, int y)
 {

 w=x; h=y;

 }

 virtual int area ()
 {
 return 0;

 }
};

class Rect: public Polygon {

 public:

 int area ()
 {

Polymorphism in C++

3G E-LEARNING

153

 return w * h;
 }
};

class Tri: public Polygon {
 public:
 int area ()
 {

 return (w * h / 2);

 }
};

int main () {
 Rect rec;
 Tri trg;
 Polygon poly;
 Polygon * ppoly1 = &rec;
 Polygon * ppoly2 = &trg;
 Polygon * ppoly3 = &poly;
 ppoly1->set_values (11,25);
 ppoly2->set_values (11,25);
 ppoly3->set_values (11,25);
 cout << ppoly1->area() << ‘\n’;
 cout << ppoly2->area() << ‘\n’;
 cout << ppoly3->area() << ‘\n’;

 return 0;
}
Output:

275

3G E-LEARNING

154 Basic Computer Coding: C++

137

In the above-amentioned example, there are three classes
in all (Polygon, Rectangle and Triangle) and all have the same
functions set_values and area and same members: w, h.

Function main declares three pointers, ppoly1, ppoly2
and ppoly3 to Polygon. The first two pointers are assigned
the addresses of rec and trg that are objects of Rect and Tri.
This type of assignment is valid, as both classes Rect and Tri
are derived from Polygon.

*ppoly1 and *ppoly2 is dereferencing of both pointers and
enables us to access the members of their pointed objects. To
understand the concept, consider the following example,

ppoly1->set_values (11,25); is equivalent to rec.
set_values (11,25);

In base class, the member function “area” is declared as
virtual and is later redefined in both of the derived classes
Rect and Tri. So, it allows us to access the non-virtual members
of derived classes via a reference of the base class. But if the
keyword “virtual” is removed from the declaration of area in
the base class, all three calls to area would return zero.

The virtual keyword allows the members of a derived
class to be called appropriately who have the same name as
one of the member of the base class. More accurately when
the type of the pointer is a pointer to the parent class, which
is pointing to an instance of the derived class, as you can see
in the above example.

)Ad-hoc Polymorphism (Overloading

 Ad-hoc polymorphism allows functions with the same name
 act differently for each type. For example, given two ints and
 the + operator, it adds them together. Given two std::strings it
.concatenates them together. This is called overloading

 Row
 polymorphism
 is a similar, but
 distinct concept
 from subtyping.
 It deals with
 structural
 types. It allows
 the usage
 of all values
 whose types
 have certain
 properties,
 without
 losing the
 remaining type
.information

Did You
Know?

Polymorphism in C++

3G E-LEARNING

155

Here is a concrete example that implements function add for ints and strings,

#include <iostream>
#include <string>

int add(int a, int b) {
 return a + b;
}

std::string add(const char *a, const char *b) {
 std::string result(a);
 result += b;
 return result;
}

int main() {
 std::cout << add(5, 9) << std::endl;
 std::cout << add(“hello “, “world”) << std::endl;
}
Ad-hoc polymorphism also appears in C++ if you specialize templates.

template <>
const char *max(const char *a, const char *b) {
 return strcmp(a, b) > 0 ? a : b;
}
Now you can call ::max(“foo”, “bar”) to find maximum of strings “foo” and “bar”.

Coercion Polymorphism (Casting)

Coercion happens when an object or a primitive is cast into another object type or
primitive type. For example,

float b = 6; // int gets promoted (cast) to float implicitly
int a = 9.99 // float gets demoted to int implicitly
Explicit casting happens when you use C’s type-casting expressions, such as (unsigned

3G E-LEARNING

156 Basic Computer Coding: C++

int *) or (int) or C++’s static_cast, const_cast, reinterpret_cast,
or dynamic_cast.

Coercion also happens if the constructor of a class isn’t
explicit, for example,

#include <iostream>

class A {
 int foo;
public:
 A(int ffoo) : foo(ffoo) {}
 void giggidy() { std::cout << foo << std::endl; }
};

void moo(A a) {
 a.giggidy();
}

int main() {
 moo(55); // prints 55
}
If you made the constructor of A explicit, that would

no longer be possible. It’s always a good idea to make your
constructors explicit to avoid accidental conversions.

Also if a class defines conversion operator for type T, then it
can be used anywhere where type T is expected.

For example,

class CrazyInt {
 int v;
public:
 CrazyInt(int i) : v(i) {}

 Conversion
 functions (C++
 only) You can
 define a member
 function of a class,
 called a conversion
 function, that
 converts from the
 type of its class to
 another specified
 type. ... Classes,
 enumerations,
 typedef names,
 function types,
 or array types
 cannot be declared
 or defined in the
conversion_type.

Keyword

Polymorphism in C++

3G E-LEARNING

157

 operator int() const { return v; } // conversion from CrazyInt
to int
};
The CrazyInt defines a conversion operator to type int. Now
if we had a function, let’s say, print_int that took int as an
argument, we could also pass it an object of type CrazyInt,
#include <iostream>

void print_int(int a) {
 std::cout << a << std::endl;
}

int main() {
 CrazyInt b = 55;
 print_int(999); // prints 999
 print_int(b); // prints 55
}

5.2 IMPORTANCE OF POLYMORPHISM
 Polymorphism saves the programmer a lot of time in re-creating
 code. You don’t want to have to write completely different
 .modules for every possible permutation

 If you had methods for tree growth, it would be hard to have to write
 a specific growth method for maple, spruce, pine, etc. Instead, you can
 have a growth function that spans across all three types, and tweak it as
 you see fit for each possible tree. We can all understand the concept of
 growth, and understand there are variation in growth, depending on the
.object (tree) we are working with

5.3 IMPLEMENTING POLYMORPHISM C++
Polymorphism allows you to create a pointer to a derived class
which is also compatible with the base class. Still confused?
Let’s look at an example of how this would look.

Below is code for a Container base (parent) class. The
derived (child) classes are Cylinder and Sphere. Create the

3G E-LEARNING

158 Basic Computer Coding: C++

following in your compiler:
#include <iostream>
#include <cmath>
using namespace std;
const float PI = 3.1415927;
class Container {
 protected:
 float height;
 float width;
 float radius;
 public:
 void set_volume (float h, float w, float r) {
 height = h;
 width = w;
 radius = r;
 }
};
class Sphere: public Container {
 public:
 float volume() {
 float v = ((4/3) * PI * pow(radius, 3));
 return v;
 }

};
class Cylinder: public Container {
 public:
 float volume() {
 float v = PI * pow(radius, 2) * height;
 return v;
 }
};
int main() {

Polymorphism in C++

3G E-LEARNING

159

}
Next, in the main function we will create an instance of

a Sphere (sphere) and an instance of a Cylinder (cylinder).
We will also create pointers from the parent/base class of
Container, that point to each of these instances.

 Sphere sphere;
 Cylinder cylinder;
 Container *ptrContainer1 = &sphere;
 Container *ptrContainer2 = &cylinder;
 ptrContainer1 -> set_volume(33.53, 25.11, 0);
 ptrContainer2 -> set_volume(13, 15, 0);
 cout << sphere.volume() << endl;
 cout << cylinder.volume() << endl;
Notice how each pointer calls the set_volume function. The

key here is that, because of polymorphism, we can have any
number of set_volume functions, but used a little differently.
Recall that polymorphism really means multiple forms.

5.4 OTHER APPLICATIONS OF
POLYMORPHISM
Let’s take a look at some more examples of polymorphism
in C++

Overloading

This is a prime example of polymorphism.
In our volume example, we could add a second function

for setting volume with only two parameters, and one with
three. When you call the function, C++ is smart enough to
know which one to use, based on the number of parameters
that you send.

 void set_volume (float h, float r, float w) {
 height = h;
 width = w;
 radius = r;
 }

 Before
 digging
 into
 polymorphism
 in C++, you
 should have a
 good sense of
 pointers and
 how inheritance
 works in C++.
 Additionally, in
 other lesson we
 learned about
 derived and
 base classes.
 If you are still
 unclear, please
 review lessons
 which speaks on
.that subject

Remember

3G E-LEARNING

160 Basic Computer Coding: C++

 void set_volume (float h, float w) {
 height = h;
 width = w;
 }
In the main function, you would call the function differently, depending on the

need:

Square square;
square.set_volume (22.5, 17, 38.5);
Tester test;
test.set_volume(33,8.35);

5.5 POLYMORPHISM EXPLANATION
A polymorphic function or operator has many forms. For example, in c++ the division
operator is polymorphic. If the arguments to the division operator are integral, then
integer division is used. However, if one or both arguments are floating –point
then floating –point division is used.object oriented programming language support
polymorphism, which is characterized by the phrases, “ONE INTERFACE MULTIPLE
METHODS”.A real world example of polymorphism is a thermostat. no matter what
type of furnace your house has (gas, oil, electric etc.)

In your program, you will create three specific version of these function one for
each type of stack, but names of the function will be the same.

In C++, a function name or operator can be overloaded. A function is called based
on its signature which is the list of argument types in its parameter list.

Polymorphism Explanation with Example

For example, in the division expression
a/b the result depends on the arguments being automatically coerced to the widest

type. so if both arguments are integer, the result is an integer division. But if one or
both arguments are floating-point, the result is floating-point.

Another example is the output statement
cout<<a;
Where the shift operator << is invoking a function that is able to output an object

of the type. A technique for implementing a package of routines to provide a shape
type could rely on a comprehensive structural description of any shape

Polymorphism in C++

3G E-LEARNING

161

for instance,

Struct shape
{
 enum {
 circle, rectangle, ?.
 } e - val;
 double center, radius;

 // other code
};
would have all the members necessary for any shape currently drawable in our system..
It would also have an enumerator value so that it could be identified. The area routine
would then be written as:

double area(shape *s) {
 switch (s->e - val) {
 case circle:return (PI * s > radius * s > radius);
 case rectangle:return (s > height * s > width);
 // other code
 }
};
An additional case in the code body and additional members in the structure are
needed. Unfortunately, these would have ripple effects throughout our entire code body.

C++ code following this design uses shape as an abstract class containing one or more
pure virtual functions, as shown in the following code.

//shape is an abstract base class

class shape {
public:
 virtual double area() = 0;
};

3G E-LEARNING

162 Basic Computer Coding: C++

class rectangle : public shape
{
public:
 rectangle double area()
 {
 return (height * width)
 }
private:
 double height, width;
};

class circle : public shape
{
public:
 double area()
 {
 return (3.14159 * radius * radius);
 }
private:
 double radius;
};
the client code for computing an arbitrary area is

polymorphic the appropriate area() function is selected at
run time.

shape * ptr _shape;
cout << “area =” << ptr_shape->area();
Now imagine is improving our hierarchy of types by

developing a square class:

Class square : public rectangle
{
public:

Hierarchical
design should
minimize
interface
parameter
passing. Each
layer tends to
absorb, within its
implementation,
state detail
that is affected
by function
invocation.

Remember

Polymorphism in C++

3G E-LEARNING

163

 square(double h) : rectangle(h, h)
 {

 }
 double area()
 {
 return (rectangle::area());
 }
};
The client code remains unchanged. This was not the case with the non-oops code.
This practice is almost universally condemned because it leads to opaque side-effect-
style coding that is difficult to debug, revise and maintain. It is the compiler’s job to
select the specific action as it applies to each situation.
The first object -oriented programming language were interpreters, polymorphism was,
of course, supported at run-time. However,c++ is a compiled language. Therefore, in
c++, both run-time and compile-time polymorphism are supported.

3G E-LEARNING

164 Basic Computer Coding: C++

ROLE MODEL

JOHN C. REYNOLDS: DESIGNER OF PRO-
GRAMMING LANGUAGES AND LANGUAG-
ES FOR SPECIFYING PROGRAM BEHAV-
IOR

Despite his responsibilities as a prominent faculty member at
Carnegie Mellon University, John C. Reynolds managed to find
time outside the classroom to nurture the ideas of students,
junior faculty and other developing academics.

A research colleague said he discovered that when he was
invited as a visiting graduate student nearly a quarter-century
ago to stay in Mr. Reynolds’ home in Shadyside and found
the man willing to spend hours engaging him in his ideas.
He also found it later in life as the two worked together on
cutting-edge research.

“For me, this was an amazing experience, talking to one
of the greatest minds computer science has known,” Peter
O’Hearn, who now works at University College London,
recalled Thursday in an email. “He was sharp but forgiving.
He caught my mistakes but always met them with a more
positive suggestion of new possibilities.”

Mr. Reynolds, a computer science professor at Carnegie
Mellon since 1986, died Sunday at Forbes Hospice of cancer
and congestive heart disease. He was 77 and continued to
teach until retiring in January of this year.

He and Mr. O’Hearn went on to collaborate a decade
ago on what Carnegie Mellon said was some of the most
influential published works done by Mr. Reynolds, whose
interests centered around designing programming languages
and developing tools and methods for uses, including
verification of program correctness.

According to Carnegie Mellon, the pair created “a
framework for reasoning about programs called separation
logic.” The university said their work has blossomed into a
sizable area of research.

Polymorphism in C++

3G E-LEARNING

165

There were others at Carnegie Mellon who recalled Mr. Reynolds’ nurturing side,
among them Frank Pfenning, head of the Computer Science Department, who was a
postdoctoral student there when he met Mr. Reynolds in 1986.

He recalled how Mr. Reynolds counseled against chasing after trends and urged
researchers to trust their instincts. Mr. Pfenning said that when Mr. Reynolds would
be asked about whether to publish a paper on a particular topic, “He would say, ‘Well,
do you think it’s worth publishing?’ He would put things back to you. It made you
see things in a different light.”

Mr. Reynolds was raised in Glen Ellyn, Ill. He completed his undergraduate
studies at Purdue University. He received a doctoral degree in theoretical physics from
Harvard University in 1961.

He and his future wife, Mary Allen, met while he attended Harvard. She said he
liked to discuss ideas with colleagues. “They would have some heated discussions,
but what came out of it became very important and influential work.”

He was employed by Argonne National Laboratory for nine years starting in 1961.
He also was a visiting junior faculty member at Stanford University. He also worked
part time at the University of Chicago.

He was a professor of computer and information science at Syracuse University
for 16 years starting in 1970 and then moved to Carnegie Mellon.

His professional titles included editor of the Communications of the Association
for Computing Machinery. Among the awards he received was Lovelace Medal of the
British Computer Society in 2010 and Carnegie Mellon’s Dana Scott Distinguished
Research Career Award in 2006.

In addition to his wife of 52 years, Mr. Reynolds is survived by two sons, Edward
of Syracuse, N.Y., and Matthew of Seattle.

Arrangements are being handled by John A. Freyvogel Sons, Shadyside. Carnegie
Mellon said a memorial service will take place May 11 at 11 a.m. at Allegheny Cemetery
Mausoleum. In lieu of flowers, donations can be directed to East End Cooperative
Ministry, 250 N. Highland Ave., Pittsburgh 15206.

3G E-LEARNING

166 Basic Computer Coding: C++

SUMMARY
■■ The word polymorphism means having many forms. In simple words, Simply

speaking, polymorphism is the ability of something to be displayed in multiple
forms.

■■ Runtime Polymorphism can be achieved by data members in C++.
■■ When multiple functions are used at different places with same name but

different parameters then these functions are known as overloaded function.
■■ The second method of compile time polymorphism is operator overloading.
■■ Function overriding is giving another definition to an existing method with

same parameters or we can say that a method has same prototype in base
as well as derived class.

■■ Runtime polymorphism can also be achieved by virtual functions. A virtual
Function is the member of base class and is overrided in the derived class.
The syntax of a virtual function is to precede its declaration with keyword
“Virtual”.

■■ Function main declares three pointers, ppoly1, ppoly2 and ppoly3 to Polygon.
The first two pointers are assigned the addresses of rec and trg that are objects
of Rect and Tri. This type of assignment is valid, as both classes Rect and Tri
are derived from Polygon.

■■ The virtual keyword allows the members of a derived class to be called
appropriately who have the same name as one of the member of the base class.

■■ Ad-hoc polymorphism allows functions with the same name act differently
for each type. For example, given two ints and the + operator, it adds them
together. Given two std::strings it concatenates them together. This is called
overloading.

■■ Coercion happens when an object or a primitive is cast into another object
type or primitive type.

■■ Polymorphism saves the programmer a lot of time in re-creating code. You
don’t want to have to write completely different modules for every possible
permutation.

■■ Polymorphism allows you to create a pointer to a derived class which is also
compatible with the base class.

■■ A polymorphic function or operator has many forms. For example, in c++ the
division operator is polymorphic. If the arguments to the division operator
are integral, then integer division is used.

Polymorphism in C++

3G E-LEARNING

167

KNOWLEDGE CHECK
1. 	 Polymorphism is achieved through ___

a.	 Heritance
b.	 Poly programming
c.	 Encapsulation
d.	 Overloading

2. 	 The word polymorphism means ____
a.	 Many programs
b.	 Two forms
c.	 Single form
d.	 Many shapes

3. 	 The mechanism of giving special meaning to an operator is called ____
a.	 Object
b.	 Inheritance
c.	 Function overloading
d.	 Operator Overloading

4. 	 In function overloading do not use the ___ function name for two unrelated
functions.
a.	 Same
b.	 Different
c.	 Similar
d.	 Complement

5. 	 Strcat() function is used for ____
a.	 Substring
b.	 String calculation
c.	 String comparison
d.	 String concatenation

6. 	 While invoking functions, if the C++ compiler does not find the exact match of
the function call statement then ___
a.	 Looks for the next nearest match
b.	 Deletes the function
c.	 Generates an error
d.	 It will ignore the function call

3G E-LEARNING

168 Basic Computer Coding: C++

7. 	 The functionality of operator like ‘+’ can be extended using ___
a.	 Operator precedence
b.	 Operator overloading
c.	 Operator definition
d.	 None of the given

8. 	 Binary operators overloaded through a member function take one ____ argument.
a.	 Default
b.	 Complete
c.	 Implicit
d.	 Explicit

9. 	 The operator function must be ____
a.	 A member function
b.	 A friend function
c.	 Either member or friend function
d.	 None of the given

10. 	 ____ Promotions are purely compiler oriented.
a.	 Constant
b.	 Integral
c.	 Floating point
d.	 Character

REVIEW QUESTIONS
1. 	 Discuss about polymorphism.
2.	 What is the meaning of polymorphism in OOP?
3.	 What is polymorphism and its types in C++?
4. 	 When you should use virtual inheritance?
5. 	 What is the output of the following code:

>include <iostream# 	

{)][int main(int argc, const char * argv 	

;}int a[] = {1, 2, 3, 4, 5, 6 	

;]std::cout << (1 + 3)[a] - a[0] + (a + 1)[2 	

}	

Polymorphism in C++

3G E-LEARNING

169

Check Your Result

1. (d)		 2. (d)		 3. (d)		 4. (a)		 5. (d)
6. (a)		 7. (b)		 8. (d)		 9. (c)		 10. (b)

3G E-LEARNING

170 Basic Computer Coding: C++

REFERENCES
1.	 Booch, et al 2007 Object-Oriented Analysis and Design with Applications. Addison-

Wesley.
2.	 Christopher Strachey. Fundamental Concepts in Programming Languages (PDF).

www.itu.dk. Kluwer Academic Publishers. Archived from the original (PDF) on
2017-08-12. Retrieved 2012-10-13.

3.	 Pierce, B. C. 2002 Types and Programming Languages. MIT Press.
4.	 Ralf Lammel and Joost Visser, “Typed Combinators for Generic Traversal”, in

Practical Aspects of Declarative Languages: 4th International Symposium (2002),
p. 153.

5.	 Allen B. Tucker (28 June 2004). Computer Science Handbook, Second Edition.
Taylor & Francis. pp. 91–. ISBN 978-1-58488-360-9.

6.	 Bjarne Stroustrup (February 19, 2007). “Bjarne Stroustrup’s C++ Glossary”.
polymorphism – providing a single interface to entities of different types.

“Programming is like sex: It may give some concrete results, but that is not why we do it.”

– Bjarne Stroustrup

After studying this chapter,
you will be able to:
1.	 Exception handling in

C++ programming
2.	 Exception handling

over traditional error
handling

LEARNING
OBJECTIVES

C++ EXCEPTION
HANDLING

INTRODUCTION
An exception is a problem that arises during the execution of
a program. A C++ exception is a response to an exceptional

6
CHAPTER

3G E-LEARNING

172 Basic Computer Coding: C++

circumstance that arises while a program is running, such as an attempt to divide by
zero.

Exceptions provide a way to transfer control from one part of a program to another.
C++ exception handling is built upon three keywords: try, catch, and throw.

throw − A program throws an exception when a problem shows up. This is done
using a throw keyword.

catch − A program catches an exception with an exception handler at the place in
a program where you want to handle the problem. The catch keyword indicates the
catching of an exception.

try − A try block identifies a block of code for which particular exceptions will be
activated. It’s followed by one or more catch blocks.

Assuming a block will raise an exception, a method catches an exception using
a combination of the try and catch keywords. A try/catch block is placed around the
code that might generate an exception. Code within a try/catch block is referred to as
protected code, and the syntax for using try/catch as follows −

try {
 // protected code
} catch(ExceptionName e1) {
 // catch block
} catch(ExceptionName e2) {
 // catch block
} catch(ExceptionName eN) {
 // catch block
}
You can list down multiple catch statements to catch different type of exceptions

in case your try block raises more than one exception in different situations.

6.1 CONCEPT OF EXCEPTION HANDLING IN C++
PROGRAMMING
Exceptions are runtime anomalies that a program encounters during execution. It is a
situation where a program has an unusual condition and the section of code containing
it can’t handle the problem. Exception includes condition such as division by zero,
accessing an array outside its bound, running out of memory, etc.

In order to handle these exceptions, exception handling mechanism is used which
identifies and deal with such condition.

C++ Exception Handling

3G E-LEARNING

173

Exception handling mechanism consists of following parts:
■■ Find the problem (Hit the exception)
■■ Inform about its occurrence (Throw the exception)
■■ Receive error information (Catch the exception)
■■ Take proper action (Handle the exception)

C++ consists of 3 keywords for handling the exception. They are
■■ try: Try block consists of the code that may generate exception. Exception are

thrown from inside the try block.
■■ throw: Throw keyword is used to throw an exception encountered inside try

block. After the exception is thrown, the control is transferred to catch block.
■■ catch: Catch block catches the exception thrown by throw statement from try

block. Then, exception are handled inside catch block.
Syntax
try
{
 statements;

 throw exception;
}

catch (type argument)
{
 statements;

}

6.1.1 Multiple Catch Exception

Multiple catch exception statements are used when a user wants to handle different
exceptions differently. For this, a user must include catch statements with different
declaration.

Syntax
try
{

3G E-LEARNING

174 Basic Computer Coding: C++

 body of try block
}

catch (type1 argument1)
{
 statements;

}

catch (type2 argument2)
{
 statements;

}
...
...
catch (typeN argumentN)
{
 statements;

}

6.1.2 Catch all Exceptions

Sometimes, it may not be possible to design a separate catch
block for each kind of exception. In such cases, we can use
a single catch statement that catches all kinds of exceptions.

Syntax
catch (...)
{
 statements;

}

 Each catch
 block is an
 exception handler
 that handles the
 type of exception
 indicated by its
 argument.

Keyword

C++ Exception Handling

3G E-LEARNING

175

Note: A better way is to use catch (...) as a default statement along with other catch
statement so that it can catch all those exception which are not handled by other catch
statements.

Example of exception handling

C++ program to divide two numbers using try catch block.

#include <iostream>
#include <conio.h>
using namespace std;

int main()
{
 int a,b;
 cout << “Enter 2 numbers: “;
 cin >> a >> b;
 try
 {
 if (b != 0)
 {
 float div = (float)a/b;
 if (div < 0)
 throw ‘e’;
 cout << “a/b = “ << div;
 }
 else
 throw b;

 }
 catch (int e)
 {
 cout << “Exception: Division by zero”;
 }

3G E-LEARNING

176 Basic Computer Coding: C++

 catch (char st)
 {
 cout << “Exception: Division is less than 1”;
 }
 catch(...)
 {
 cout << “Exception: Unknown”;
 }
 getch();
 return 0;
}
This program demonstrate how exception are handled in C++. This program performs
division operation. Two numbers are entered by user for division operation. If the
dividend is zero, then division by zero will cause exception which is thrown into catch
block. If the answer is less than 0, then exception “Division is less than 1” is thrown.
All other exceptions are handled by the last catch block throwing “Unknown” exception.
Output

Enter 2 numbers: 8 5
a/b = 1.6

Enter 2 numbers: 9 0
Exception: Division by zero

Enter 2 numbers: -1 10
Exception: Division is less than 1

6.1.3 Some Useful Facts to Know Before Using C++ Exceptions

Exceptions provide many benefits over error codes for error handling. Some of these
benefits are:

Exceptions cannot be silently ignored whereas checking the error code of a method
can be ignored by the method caller.

Exceptions propagate automatically over method boundaries, but error codes do not.

C++ Exception Handling

3G E-LEARNING

177

Exception handling removes error handling and recovery
from the main line of control flow that makes code more
readable and maintainable.

Exceptions are the best way to report errors from
constructors and operators.

Despite these benefits, most people still do not prefer
to use exceptions due to its overhead. Depending on the
implementation, this overhead comes in two forms: time
overhead (increased execution time) and space overhead
(increased executable size and memory consumption). From
these two, most are concerned about time overhead. However,
in a good C++ exception implementation, unless an exception
is thrown, no run-time overhead is incurred. The real issue
with C++ exceptions is not in their execution performance, but
how to use them correctly. Following are some useful facts to
know in order to use C++ exceptions correctly.

1. Exceptions Should Not Be Thrown From Destructors

Consider the following code:
try
{
 MyClass1 Obj1;
 Obj1.DosomeWork();
 ...
}
catch(std::exception & ex)
{
 //do error handling
}
If an exception is thrown from the MyClass1::
DosomeWork() method, before execution moves out from the
try block, the destructor of obj1 needs to be called as obj1 is
a properly constructed object. What if an exception is also
thrown from the destructor of MyClass1? This exception
occurred while another exception was active. If an exception
is thrown while another exception is active, the C++ behavior
is to call the terminate() method, which halts the execution

 Constructors in
 C++ Constructor
 has same name
 as the class itself.
 Constructors don’t
 have return type.
 A constructor
 is automatically
 called when an
 object is created.

Keyword

3G E-LEARNING

178 Basic Computer Coding: C++

of the application. Therefore, to avoid two exceptions being
active at the same time, destructors must not throw exceptions.

2. Objects Thrown as Exceptions Are Always Copied

When an exception is thrown, a copy of the exception object
always needs to be created as the original object goes out of
the scope during the stack unwinding process. Therefore, the
exception object’s copy constructor will always be called. C++
provides a copy constructor by default if we don’t provide one.
But there may be cases where the default copy constructor
doesn’t work; especially when the class members are pointers.

The most important thing about copying objects in C++ is
that the copy constructor is always called based on the static
type, not the dynamic type. Consider the following code [1].

class Widget { ... };
class SpecialWidget: public Widget { ... };
void passAndThrowWidget()
{
 SpecialWidget localSpecialWidget;
 ...
 Widget& rw = localSpecialWidget; // rw refers to a

SpecialWidget
 throw rw; // this throws an exception of type

Widget!
}
In the above code, the throw statement throws an object

of type Widget, rw’s static type is Widget. This might not be
the behavior that we want to execute.

3. Exceptions Should Be Caught by Reference

There are three ways to catch exceptions in the catch clause:
■■ 1.	 Catch exception by value.
■■ 2.	 Catch exception as a pointer.
■■ 3.	 Catch exception by reference.

Catching exceptions by value is costly and it suffers from
the slicing problem. It is costly because it needs to create two

If we
use such
objects as
exception objects
we should make
sure that our
exception classes
have proper copy
constructors.

Remember

C++ Exception Handling

3G E-LEARNING

179

exception objects every time. When an exception is thrown, a
copy of the exception object needs to be created no matter how
we catch it, because when the stack unwinds the original object
would go out the scope. If the exception was caught by value,
another copy is made to pass it to the catch clause. Therefore,
if the exception was caught by value, two exception objects
are created, making the exception throwing process slower.

The slicing problem comes into effect when the catch
clause is declared to catch a super class type and a derived
class object is thrown as an exception. In that case, the catch
clause only receives a copy of the super class object, which
lacks the attributes of the original exception object. Therefore,
catching exceptions by value must be avoided.

If exceptions were caught as pointers, the code would be
as follows;
void doSomething()
{
 try
 {
 someFunction(); // might throw an exception*
 }
 catch (exception* ex)
 { // catches the exception*;
 ... // no object is copied
 }
}

In order to catch the exception as a pointer, the pointer
to the exception object should be thrown and the throwing
party must ensure that the exception object will be kept alive
even after the stack unwinding, as a result of the throw. Even
though a copy of the exception object will be created, it is
a copy of the pointer in this case. Therefore, other measures
should be taken to keep the exception object alive after the
throw. This can be achieved by passing the pointer to a global
or a static object, or creating the exception object in the heap.

Nevertheless, the user who catches the exception has no
idea about how the exception object was created, and thus

Catching
exceptions
by reference
doesn’t have
any of these
issues that
are observable
in ‘catch as a
pointer’ or ‘catch
by value.’ The
user doesn’t need
to worry about
the deletion of the
exception object.
No additional
exception object
will be copied, as
a reference to the
original exception
object is passed.
Pass by reference
doesn’t have the
slicing problem.
Therefore, the
exception should
be caught by
reference for
proper and
efficient operation.

Remember

3G E-LEARNING

180 Basic Computer Coding: C++

they are uncertain about whether to delete the receiving pointer at the catch clause
or not. Therefore, catching the exception as a pointer is sub-optimal.

4. Prevent Resource Leaks in Case of Exceptions

Consider the following code:
void SomeFunction()
{
 SimpleObject* pObj = new SimpleObject();
 pObj->DoSomeWork();//could throw exceptions
 delete pObj;
}
In this method new SimpleObject is created, then some work has been done through
SimpleObject::DoSomeWork() method and finally the object is destroyed. But what
if Object::DoSomeWork() threw an exception? In that case we don’t get a chance to
delete the pObj. This introduces a memory leak. This is a simple example to illustrate
that exceptions could lead to resource leaks and of course this can be eliminated by
putting a simple try catch block. But in real life this scenario could happen from points
of code where we can’t figure out the leak at first glance. One remedy for this type
of cases is to use auto pointers from standard library (std::auto_ptr) [1].

5. When throwing an exception, do not leave the object in an inconsistent state

Consider the following example code [4]:
template <class T>
class Stack
{
 unsigned nelems;
 int top;
 T* v;
 public:
 void push(T);
 T pop();
 Stack();
 ~Stack();
};
template <class T>

C++ Exception Handling

3G E-LEARNING

181

void Stack<T>::push(T element)
{
 top++;
 if(top == nelems-1)
 {
 T* new_buffer = new (nothrow) T[nelems+=10];
 if(new_buffer == 0)
 throw “out of memory”;
 for(int i = 0; i < top; i++)
 new_buffer[i] = v[i];
 delete [] v;
 v = new_buffer;
 }
 v[top] = element;
}
If the exception “out of memory” was thrown, the Stack::push () method leaves
the Stack object in an inconsistent state, because the top of the stack has been incremented
without pushing any element. Of course, this code can be modified so that it won’t
happen. However, special care needs to be taken when throwing an exception so that
the object which throws the exception will be in a valid state even after the exception.
In the following naïve implementation of ThreadSafeQueue::Pushback() method,
if an exception was thrown from the DoPushBack() method, _mutex will be kept
locked, leaving the ThreadSafeQueue object in an inconsistent state. To overcome this
situation, lock_guards can be used, as auto pointers are used to prevent memory leaks.
It should be noted that lock_guard has only been available in standard libraries since
C++11, yet one can easily implement a lock_guard class.
template <class T>
void ThreadSafeQueue::Pushback(T element)
{
 _mutex.Lock();
 DoPushBack(T);
 _mutex.Unlock();
}

3G E-LEARNING

182 Basic Computer Coding: C++

6. Exception Specification Should Be Used Carefully

If a method throws an exception not listed in its exception
specification, that fault is detected at runtime, and the special
function unexpected()is automatically invoked. The default
behavior for unexpected is to call terminate(), and the default
behavior for terminate() is to call abort(). Therefore, the default
behavior for a program with a violated exception specification
is to halt. Consider the following code:
void f1(); // might throw anything
void f2() throw(int); //throws only int
void f2() throw(int)
{
 ...
 f1(); // legal even though f1 might throw
 // something besides an int
 ...
}

The above code is legal because this kind of situation
might arise when integrating old code that lacks exception
specification, with new code. But if f1() throws something
other than int the program will terminate because f2() is not
allowed throw anything other than int. It is a bit hard to
stop this problem from arising, but there are many ways to
handle this if it does. Reference 1: Item 14 details remedies
for this problem.

7. Exceptions Should Be Re-Thrown With Re-Throw

There are two ways to propagate a caught exception to callers.
Consider the following two code blocks:
catch (Widget& w) // catch Widget exceptions
{
 ... // handle the exception
 throw; // rethrow the exception so it
continues to propagate
}
catch (Widget& w) // catch Widget exceptions

A function
with
no exception
specification
allows all
exceptions. A
function with
an exception
specification that
has an empty
type_id_list,
throw (), does
not allow any
exceptions to
be thrown.
An exception
specification
is not part of a
function’s type.

Remember

C++ Exception Handling

3G E-LEARNING

183

{
 ... // handle the exception
 throw w; // propagate a copy of the
}
The only difference between these two blocks is that the first one re-throws the current
exception, while the second one throws a new copy of the current exception. There
are two problems with the second case. One is the performance cost because of the
copy operation. The other thing is the slicing problem. If the exception object is a child
type of Widget, only the Widget part of the exception object is re-thrown as the copy
is always based on the static type.

8. Catch Clause for the Base Class Should Be Placed After the Catch Clause for the
Derived Class

When an exception is thrown, catch clauses are matched in the order they appear in
the code. An exception object’s type also matches with its super types in catch clauses,
because child type is also a subset of super type. Therefore, when a child object’s
exception is thrown, if a super type catch clause appears first in the code that will
be executed, even though the catch clause for the child type is there after the super
type’s catch clause.

6.2 EXCEPTION HANDLING OVER TRADITIONAL ERROR
HANDLING
Following are main advantages of exception handling over traditional error handling.

1) 	 Separation of Error Handling code from Normal Code: In traditional error handling
codes, there are always if else conditions to handle errors. These conditions
and the code to handle errors get mixed up with the normal flow. This makes
the code less readable and maintainable. With try catch blocks, the code for
error handling becomes separate from the normal flow.

2) 	 Functions/Methods can handle any exceptions they choose: A function can throw
many exceptions, but may choose to handle some of them. The other exceptions
which are thrown, but not caught can be handled by caller. If the caller
chooses not to catch them, then the exceptions are handled by caller of the
caller. In C++, a function can specify the exceptions that it throws using the
throw keyword. The caller of this function must handle the exception in some
way (either by specifying it again or catching it).

3) 	 Grouping of Error Types: In C++, both basic types and objects can be thrown as
exception. We can create a hierarchy of exception objects, group exceptions
in namespaces or classes, categorize them according to types.

3G E-LEARNING

184 Basic Computer Coding: C++

Following Example

1) 	 Following is a simple example to show exception handling in C++. The output
of program explains flow of execution of try/catch blocks.

#include <iostream>
using namespace std;

int main()
{
 int x = -1;

 // Some code
 cout << “Before try \n”;
 try {
 cout << “Inside try \n”;
 if (x < 0)
 {
 throw x;
 cout << “After throw (Never executed) \n”;
 }
 }
 catch (int x) {
 cout << “Exception Caught \n”;
 }

 cout << “After catch (Will be executed) \n”;
 return 0;
}
Run on IDE

Output:

Before try
Inside try

C++ Exception Handling

3G E-LEARNING

185

Exception Caught
After catch (Will be executed)

2) 	 There is a special catch block called ‘catch all’ catch (…) that can be used to
catch all types of exceptions. For example, in the following program, an int
is thrown as an exception, but there is no catch block for int, so catch(…)
block will be executed.

#include <iostream>
using namespace std;

int main()
{
 try {
 throw 10;
 }
 catch (char *excp) {
 cout << “Caught “ << excp;
 }
 catch (...) {
 cout << “Default Exception\n”;
 }
 return 0;
}
Run on IDE

Output:
Default Exception

3) 	 Implicit type conversion doesn’t happen for primitive types. For example, in
the following program ‘a’ is not implicitly converted to int

#include <iostream>
using namespace std;

int main()
{
 try {

3G E-LEARNING

186 Basic Computer Coding: C++

 throw ‘a’;
 }
 catch (int x) {
 cout << “Caught “ << x;
 }
 catch (...) {
 cout << “Default Exception\n”;
 }
 return 0;
}
Run on IDE

Output:

Default Exception
4) 	 If an exception is thrown and not caught anywhere,

the program terminates abnormally. For example, in
the following program, a char is thrown, but there
is no catch block to catch a char.

 >include <iostream#
using namespace std;

int main()
{
 try {
 throw ‘a’;
 }
 catch (int x) {
 cout << “Caught “;
 }
 return 0;
}
Run on IDE

iostream
uses the
objects cin , cout
, cerr , and clog
for sending data
to and from the
standard streams
input, output,
error (unbuffered),
and log (buffered)
respectively.

Keyword

C++ Exception Handling

3G E-LEARNING

187

Output:

terminate called after throwing an instance of ‘char’

This application has requested the Runtime to terminate it in an
unusual way. Please contact the application’s support team for
more information.
We can change this abnormal termination behavior by writing our own unexpected
function.

5) 	 A derived class exception should be caught before a base class exception. See
this for more details.

6) 	 Like Java, C++ library has a standard exception class which is base class for
all standard exceptions. All objects thrown by components of the standard
library are derived from this class. Therefore, all standard exceptions can be
caught by catching this type

7) 	 Unlike Java, in C++, all exceptions are unchecked. Compiler doesn’t check
whether an exception is caught or not (See this for details). For example,
in C++, it is not necessary to specify all uncaught exceptions in a function
declaration. Although it’s a recommended practice to do so. For example, the
following program compiles fine, but ideally signature of fun () should list
unchecked exceptions.

#include <iostream>
using namespace std;

// This function signature is fine by the compiler, but not recommended.
// Ideally, the function should specify all uncaught exceptions and function
// signature should be “void fun(int *ptr, int x) throw (int *, int)”
void fun(int *ptr, int x)
{
 if (ptr == NULL)
 throw ptr;
 if (x == 0)
 throw x;
 /* Some functionality */
}

3G E-LEARNING

188 Basic Computer Coding: C++

int main()
{
 try {
 fun(NULL, 0);
 }
 catch(...) {
 cout << “Caught exception from fun()”;
 }
 return 0;
}
Run on IDE

Output:

Caught exception from fun()
8) 	 In C++, try-catch blocks can be nested. Also, an exception can be re-thrown
using “throw; ”
#include <iostream>
using namespace std;

int main()
{
 try {
 try {
 throw 20;
 }
 catch (int n) {
 cout << “Handle Partially “;
 throw; //Re-throwing an exception
 }
 }
 catch (int n) {

C++ Exception Handling

3G E-LEARNING

189

 cout << “Handle remaining “;
 }
 return 0;
}
Run on IDE

Output:
Handle Partially Handle remaining

A function can also re-throw a function using same “throw; “. A function can handle
a part and can ask the caller to handle remaining.

9) When an exception is thrown, all objects created inside the enclosing try block are
destructed before the control is transferred to catch block.

#include <iostream>
using namespace std;

class Test {
public:
 Test() { cout << “Constructor of Test “ << endl; }
 ~Test() { cout << “Destructor of Test “ << endl; }
};

int main() {
 try {
 Test t1;
 throw 10;
 } catch(int i) {
 cout << “Caught “ << i << endl;
 }
}
Run on IDE

3G E-LEARNING

190 Basic Computer Coding: C++

Output:

Constructor of Test
Destructor of Test
Caught 10

Example shows handling of division by zero exception.

#include<iostream>

using namespace std;

double division(int var1, int var2)

{

 if (var2 == 0) {

 throw “Division by Zero.”;

 }

 return (var1 / var2);

}

int main()

{

 int a = 30;

 int b = 0;

 double d = 0;

 try {

 d = division(a, b);

C++ Exception Handling

3G E-LEARNING

191

 cout << d << endl;

 }

 catch (const char* error) {

 cout << error << endl;

 }

 return 0;

}

6.2.1 Advantage of C++ Exception Handling

Exception Handling in C++ is a process to handle runtime
errors. We perform exception handling so the normal flow of
the application can be maintained even after runtime errors.

In C++, exception is an event or object which is thrown at
runtime. All exceptions are derived from std::exception class.
It is a runtime error which can be handled. If we don’t handle
the exception, it prints exception message and terminates the
program.

C++ Exception Classes

In C++ standard exceptions are defined in <exception> class
that we can use inside our programs. The arrangement of
parent-child class hierarchy is shown below:

 Standard
 exceptions:
 The C++ Standard
 library provides
 a base class
 specifically
 designed to
 declare objects
 to be thrown as
exceptions.

Keyword

3G E-LEARNING

192 Basic Computer Coding: C++

All the exception classes in C++ are derived from std::exception class. Let’s see the
list of C++ common exception classes.

Exception Description
std::exception It is an exception and parent class of all standard C++

exceptions.
std::logic_failure It is an exception that can be detected by reading a code.
std::runtime_error It is an exception that cannot be detected by reading a

code.
std::bad_exception It is used to handle the unexpected exceptions in a c++

program.
std::bad_cast This exception is generally be thrown by dynamic_cast.
std::bad_typeid This exception is generally be thrown by typeid.
std::bad_alloc This exception is generally be thrown by new.

C++ Exception Handling

3G E-LEARNING

193

SUMMARY
■■ Exceptions are runtime anomalies that a program encounters during execution.

It is a situation where a program has an unusual condition and the section
of code containing it can’t handle the problem.

■■ Multiple catch exception statements are used when a user wants to handle
different exceptions differently.

■■ Sometimes, it may not be possible to design a separate catch block for each
kind of exception. In such cases, we can use a single catch statement that
catches all kinds of exceptions.

■■ Exceptions provide many benefits over error codes for error handling. Some
of these benefits are:

■■ Exceptions cannot be silently ignored whereas checking the error code of a
method can be ignored by the method caller.

■■ A function can also re-throw a function using same “throw; “. A function can
handle a part and can ask the caller to handle remaining.

■■ Exception Handling in C++ is a process to handle runtime errors.
■■ In C++, exception is an event or object which is thrown at runtime. All

exceptions are derived from std::exception class. It is a runtime error which
can be handled. If we don’t handle the exception, it prints exception message
and terminates the program.

3G E-LEARNING

194 Basic Computer Coding: C++

KNOWLEDGE CHECK
1. 	 Which keyword is used to handle the expection?

a.	 Try
b.	 Throw
c.	 Catch
d.	 None of the above

2. 	 Which is used to throw a exception?
a.	 Try
b.	 Throw
c.	 Catch
d.	 None of the above

3. 	 Which exception is thrown by dynamic_cast?
a.	 bad_cast
b.	 bad_typeid
c.	 bad_exception
d.	 bad_alloc

4. 	 How do define the user-defined exceptions?
a.	 Inherting & overriding exception class functionlity
b.	 Overriding class functionlity
c.	 Inherting class functionlity
d.	 None of the above

5. 	 We can prevent a function from throwing any exceptions.
a.	 TRUE
b.	 FALSE
c.	 May Be
d.	 Can’t Say

6. 	 In nested try block, if inner catch handler gets executed, then __________?
a.	 Program execution stops immediately.
b.	 Outer catch handler will also get executed.
c.	 Compiler will jump to the outer catch handler and then executes remaining

executable statements of main().
d.	 Compiler will execute remaining executable statements of outer try block and

then the main().

C++ Exception Handling

3G E-LEARNING

195

7. 	 Return type of uncaught_exception() is ___________.
a.	 int
b.	 bool
c.	 char *
d.	 double

8. 	 Which of the following statements are true about Catch handler? i) It must be
placed immediately after try block T. ii) It can have multiple parameters. iii)
There must be only one catch handler for every try block. iv) There can be
multiple catch handler for a try block T. v) Generic catch handler can be placed
anywhere after try block.
a.	 Only i, iv, v
b.	 Only i, ii, iii
c.	 Only i, iv
d.	 Only i, ii

9. 	 If inner catch handler is not able to handle the exception then__________ .
a.	 Compiler will look for outer try handler
b.	 Program terminates abnormally
c.	 Compiler will check for appropriate catch handler of outer try block
d.	 None of the above

10. 	 Which type of program is recommended to include in try block?
a.	 Static memory allocation
b.	 Dynamic memory allocation
c.	 Const reference
d.	 Pointer

REVIEW QUESTIONS
1. 	 Describe Exception handling concept with an example.
2. 	 Explain how we implement exception handling in C++.
3. 	 What is the advantage of exception handling?
4. 	 Explain terminate () and unexpected () function - C++.
5. 	 What is the output of this program?
 #include <iostream>
 using namespace std;
 int main()

3G E-LEARNING

196 Basic Computer Coding: C++

 {
 char* ptr;
 unsigned long int Test = sizeof(size_t(0) / 3);
 cout << Test << endl;
 try
 {
 ptr = new char[size_t(0) / 3];
 delete[] ptr;
 }
 catch (bad_alloc &thebadallocation)
 {
 cout << thebadallocation.what() << endl;
 };
 return 0;
 }

Check Your Result

1. (c)		 2. (b)		 3. (a)		 4. (a)		 5. (a)
6. (d)		 7. (b)		 8. (c)		 9. (c)		 10. (b)

C++ Exception Handling

3G E-LEARNING

197

REFERENCES
1.	 Bloch, Joshua (2008). “Item 57: Use exceptions only for exceptional situations”.

Effective Java (Second edition). Addison-Wesley. p. 241. ISBN 978-0-321-35668-0.
2.	 Graham Hutton, Joel Wright, “Compiling Exceptions Correctly Archived 2014-

09-11 at the Wayback Machine”. Proceedings of the 7th International Conference
on Mathematics of Program Construction, 2004.

3.	 John Hauser (1996). “Handling Floating-Point Exceptions in Numeric Programs,
ACM Transactions on Programming Languages and Systems 18(2)”: 139–174.

4.	 Kiniry, J. R. (2006). “Exceptions in Java and Eiffel: Two Extremes in Exception
Design and Application”. Advanced Topics in Exception Handling Techniques.
Lecture Notes in Computer Science. 4119. pp. 288–300. doi:10.1007/11818502_16.
ISBN 978-3-540-37443-5.

5.	 W.Kahan (July 5, 2005). “A Demonstration of Presubstitution for ∞/∞” (PDF).
Archived (PDF) from the original on March 10, 2012.

6.	 Weimer, W; Necula, G.C. (2008). “Exceptional Situations and Program Reliability”
(PDF). ACM Transactions on Programming Languages and Systems. 30 (2).
Archived (PDF) from the original on 2015-09-23.

“More good code has been written in languages denounced as “bad” than in languages proclaimed
“wonderful” -- much more.”

– Bjarne Stroustrup

After studying this chapter,
you will be able to:
1.	 Understand basic input/

output
2.	 Explain C++ class

hierarchy
3.	 Describe file stream
4.	 Perform text file

handling
5.	 Know binary file

handling
6.	 Discuss about error

handling during file
operations

7.	 Focus on overloading <<
and >> operators

LEARNING
OBJECTIVES

I/O STREAMS

INTRODUCTION
One of the great strengths of C++ is its I/O system, IO
Streams. As Bjarne Stroustrup says in his book “The C++

7
CHAPTER

3G E-LEARNING

200 Basic Computer Coding: C++

Programming Language”, “Designing and implementing a general input/output facility
for a programming language is notoriously difficult”. He did an excellent job, and the
C++ IOstreams library is part of the reason for C++’s success. IO streams provide an
incredibly flexible yet simple way to design the input/output routines of any application.

Input and output functionality is not defined as part of the core C++ language,
but rather is provided through the C++ standard library (and thus resides in the std
namespace).

The iostream library

When you include the iostream header, you gain access to a whole hierarchy of classes
responsible for providing I/O functionality (including one class that is actually named
iostream). The class hierarchy for the non-file-I/O classes looks like this:

The first thing you may notice about this hierarchy is that it uses multiple inheritance
(that thing we told you to avoid if at all possible). However, the iostream library has
been designed and extensively tested in order to avoid any of the typical multiple
inheritance problems, so you can use it freely without worrying.

I/O Streams

3G E-LEARNING

201

Streams

The second thing you may notice is that the word “stream” is used an awful lot. At
its most basic, I/O in C++ is implemented with streams. Abstractly, a stream is just a
sequence of bytes that can be accessed sequentially. Over time, a stream may produce
or consume potentially unlimited amounts of data.

Typically we deal with two different types of streams. Input streams are used
to hold input from a data producer, such as a keyboard, a file, or a network. For
example, the user may press a key on the keyboard while the program is currently
not expecting any input. Rather than ignore the users keypress, the data is put into
an input stream, where it will wait until the program is ready for it.

Conversely, output streams are used to hold output for a particular data consumer,
such as a monitor, a file, or a printer. When writing data to an output device, the
device may not be ready to accept that data yet -- for example, the printer may still
be warming up when the program writes data to its output stream. The data will sit
in the output stream until the printer begins consuming it.

Some devices, such as files and networks, are capable of being both input and
output sources.

The nice thing about streams is the programmer only has to learn how to interact
with the streams in order to read and write data to many different kinds of devices.
The details about how the stream interfaces with the actual devices they are hooked
up to is left up to the environment or operating system.

Input/output in C++

Although the ios class is generally derived from ios_base, ios is typically the most
base class you will be working directly with. The ios class defines a bunch of stuff
that is common to both input and output streams.

The istream class is the primary class used when dealing with input streams.
With input streams, the extraction operator (>>) is used to remove values from the
stream. This makes sense: when the user presses a key on the keyboard, the key code
is placed in an input stream. Your program then extracts the value from the stream
so it can be used.

The ostream class is the primary class used when dealing with output streams.
With output streams, the insertion operator (<<) is used to put values in the stream.
This also makes sense: you insert your values into the stream, and the data consumer
(eg. monitor) uses them.

The iostream class can handle both input and output, allowing bidirectional I/O.
Finally, there are a bunch of classes that end in “_withassign”. These stream classes

are derived from istream, ostream, and iostream (respectively) with an assignment

3G E-LEARNING

202 Basic Computer Coding: C++

operator defined, allowing you to assign one stream to another. In most cases, you
won’t be dealing with these classes directly.

Standard streams in C++

A standard stream is a pre-connected stream provided to a computer program by
its environment. C++ comes with four predefined standard stream objects that have
already been set up for your use. The first three, you have seen before:

■■ cin -- an istream_withassign class tied to the standard input (typically the
keyboard)

■■ cout -- an ostream_withassign class tied to the standard output (typically the
monitor)

■■ cerr -- an ostream_withassign class tied to the standard error (typically the
monitor), providing unbuffered output

■■ clog -- an ostream_withassign class tied to the standard error (typically the
monitor), providing buffered output

Unbuffered output is typically handled immediately, whereas buffered output is
typically stored and written out as a block. Because clog isn’t used very often, it is
often omitted from the list of standard streams.

IOstreams can be used for a wide variety of data manipulations thanks to the
following features:

■■ A ‘stream’ is internally nothing but a series of characters. The characters may
be either normal characters (char) or wide characters (wchar_t). Streams provide
you with a universal character-based interface to any type of storage medium
(for example, a file), without requiring you to know the details of how to
write to the storage medium. Any object that can be written to one type of
stream, can be written to all types of streams. In other words, as long as an
object has a stream representation, any storage medium can accept objects
with that stream representation.

■■ Streams work with built-in data types, and you can make user-defined types
work with streams by overloading the insertion operator (<<) to put objects
into streams, and the extraction operator (>>) to read objects from streams.

■■ The stream library’s unified approach makes it very friendly to use. Using
a consistent interface for outputting to the screen and sending files over a
network makes life easier. The programs below will show you what is possible.

7.1 BASIC INPUT/OUTPUT
C++ uses a convenient abstraction called streams to perform input and output operations
in sequential media such as the screen, the keyboard or a file. A stream is an entity where

I/O Streams

3G E-LEARNING

203

a program can either insert or extract characters to/from. There is no need to know
details about the media associated to the stream or any of its internal specifications.
All we need to know is that streams are a source/destination of characters, and that
these characters are provided/accepted sequentially (i.e., one after another).

The standard library defines a handful of stream objects that can be used to
access what are considered the standard sources and destinations of characters by the
environment where the program runs:

stream description
cin standard input stream
cout standard output stream
cerr standard error (output) stream
clog standard logging (output) stream

We are going to see in more detail only cout and cin (the standard output and
input streams); cerr and clog are also output streams, so they essentially work like
cout, with the only difference being that they identify streams for specific purposes:
error messages and logging; which, in many cases, in most environment setups, they
actually do the exact same thing: they print on screen, although they can also be
individually redirected.

7.1.1 Standard output (cout)

On most program environments, the standard output by default is the screen, and the
C++ stream object defined to access it is cout.

For formatted output operations, cout is used together with the insertion operator,
which is written as << (i.e., two “less than” signs).

The << operator inserts the data that follows it into the stream that precedes it. In
the examples above, it inserted the literal string Output sentence, the number 120, and
the value of variable x into the standard output stream cout. Notice that the sentence
in the first statement is enclosed in double quotes (“) because it is a string literal,
while in the last one, x is not. The double quoting is what makes the difference; when
the text is enclosed between them, the text is printed literally; when they are not, the
text is interpreted as the identifier of a variable, and its value is printed instead. For
example, these two sentences have very different results:

3G E-LEARNING

204 Basic Computer Coding: C++

Multiple insertion operations (<<) may be chained in a single statement:

This last statement would print the text This is a single C++ statement. Chaining
insertions is especially useful to mix literals and variables in a single statement:

Assuming the age variable contains the value 24 and the zipcode variable contains
90064, the output of the previous statement would be:

I am 24 years old and my zipcode is 90064
What cout does not do automatically is add line breaks at the end, unless instructed

to do so. For example, take the following two statements inserting into cout:
cout << “This is a sentence.”;
cout << “This is another sentence.”;
The output would be in a single line, without any line breaks in between. Something

like:
This is a sentence.This is another sentence.
To insert a line break, a new-line character shall be inserted at the exact position

the line should be broken. In C++, a new-line character can be specified as \n (i.e., a
backslash character followed by a lowercase n). For example:

This produces the following output:
First sentence.
Second sentence.
Third sentence.
Alternatively, the endl manipulator can also be used to break lines. For example:

This would print:
First sentence.
Second sentence.

I/O Streams

3G E-LEARNING

205

The endl manipulator produces a newline character, exactly
as the insertion of ‘\n’ does; but it also has an additional
behavior: the stream’s buffer (if any) is flushed, which means
that the output is requested to be physically written to the
device, if it wasn’t already. This affects mainly fully buffered
streams, and cout is (generally) not a fully buffered stream. Still,
it is generally a good idea to use endl only when flushing the
stream would be a feature and ‘\n’ when it would not. Bear
in mind that a flushing operation incurs a certain overhead,
and on some devices it may produce a delay.

7.1.2 Standard input (cin)

In most program environments, the standard input by default
is the keyboard, and the C++ stream object defined to access
it is cin.

For formatted input operations, cin is used together with
the extraction operator, which is written as >> (i.e., two “greater
than” signs). This operator is then followed by the variable
where the extracted data is stored. For example:

The first statement declares a variable of type int called
age, and the second extracts from cin a value to be stored in
it. This operation makes the program wait for input from cin;
generally, this means that the program will wait for the user
to enter some sequence with the keyboard. In this case, note
that the characters introduced using the keyboard are only
transmitted to the program when the ENTER (or RETURN) key
is pressed. Once the statement with the extraction operation
on cin is reached, the program will wait for as long as needed
until some input is introduced.

The extraction operation on cin uses the type of the
variable after the >> operator to determine how it interprets
the characters read from the input; if it is an integer, the
format expected is a series of digits, if a string a sequence of
characters, etc.

The
iostream library
is an object-
oriented library
that provides
input and output
functionality
using streams.

Did You
Know?

3G E-LEARNING

206 Basic Computer Coding: C++

As you can see, extracting from cin seems to make the task of getting input from
the standard input pretty simple and straightforward. But this method also has a big
drawback. What happens in the example above if the user enters something else that
cannot be interpreted as an integer? Well, in this case, the extraction operation fails.
And this, by default, lets the program continue without setting a value for variable i,
producing undetermined results if the value of i is used later.

This is very poor program behavior. Most programs are expected to behave in an
expected manner no matter what the user types, handling invalid values appropriately.
Only very simple programs should rely on values extracted directly from cin without
further checking. A little later we will see how stringstreams can be used to have better
control over user input.

Extractions on cin can also be chained to request more than one datum in a single
statement:

This is equivalent to:

In both cases, the user is expected to introduce two values, one for variable a, and
another for variable b. Any kind of space is used to separate two consecutive input
operations; this may either be a space, a tab, or a new-line character.

7.1.3 cin and strings

The extraction operator can be used on cin to get strings of characters in the same
way as with fundamental data types:

However, cin extraction always considers spaces (whitespaces, tabs, new-line...) as
terminating the value being extracted, and thus extracting a string means to always

I/O Streams

3G E-LEARNING

207

extract a single word, not a phrase or an entire sentence.
To get an entire line from cin, there exists a function,

called getline, that takes the stream (cin) as first argument,
and the string variable as second. For example:

Notice how in both calls to getline, we used the same
string identifier (mystr). What the program does in the second
call is simply replace the previous content with the new one
that is introduced.

The standard behavior that most users expect from a
console program is that each time the program queries the
user for input, the user introduces the field, and then presses
ENTER (or RETURN). That is to say, input is generally expected
to happen in terms of lines on console programs, and this can
be achieved by using getline to obtain input from the user.
Therefore, unless you have a strong reason not to, you should
always use getline to get input in your console programs
instead of extracting from cin.

7.1.4 stringstream

The standard header <sstream> defines a type called
stringstream that allows a string to be treated as a stream,
and thus allowing extraction or insertion operations from/to
strings in the same way as they are performed on cin and
cout. This feature is most useful to convert strings to numerical
values and vice versa. For example, in order to extract an
integer from a string we can write:

getline() is
a standard
library function
that is used to
read a string or a
line from an input
stream.

Keyword

3G E-LEARNING

208 Basic Computer Coding: C++

This declares a string with initialized to a value of “1204”,
and a variable of type int. Then, the third line uses this
variable to extract from a stringstream constructed from the
string. This piece of code stores the numerical value 1204 in
the variable called myint.

In this example, we acquire numeric values from the
standard input indirectly: Instead of extracting numeric values
directly from cin, we get lines from it into a string object
(mystr), and then we extract the values from this string into
the variables price and quantity. Once these are numerical
values, arithmetic operations can be performed on them, such
as multiplying them to obtain a total price.

With this approach of getting entire lines and extracting
their contents, we separate the process of getting user input
from its interpretation as data, allowing the input process to
be what the user expects, and at the same time gaining more
control over the transformation of its content into useful data
by the program.

7.2 C++ CLASS HIERARCHY
A class hierarchy represents a set of hierarchically organized
concepts. Base classes act typically as interfaces. They are two
uses for interfaces. One is called implementation inheritance
and the other interface inheritance.

Do not
confuse
between stream
extraction
operator(>>) and
stream insertion
operator(<<).

Remember

I/O Streams

3G E-LEARNING

209

7.2.1 Interface inheritance

One use of multiple inheritance that is not controversial pertains to interface inheritance.
In C++, all inheritance is implementation inheritance, because everything in a base class,
interface and implementation, becomes part of a derived class. It is not possible to
inherit only part of a class (the interface alone, say). Private and protected inheritance
make it possible to restrict access to members inherited from base classes when used
by clients of a derived class object, but this doesn t affect the derived class; it still
contains all base class data and can access all non-private base class members.

Interface inheritance, on the other hand, only adds member function declarations
to a derived class interface and is not directly supported in C++. The usual technique
to simulate interface inheritance in C++ is to derive from an interface class, which is a
class that contains only declarations (no data or function bodies). These declarations
will be pure virtual functions, except for the destructor. Here is an example:

//: C09:Interfaces.cpp
// Multiple interface inheritance.
#include <iostream>
#include <sstream>
#include <string>
using namespace std;

class Printable {
public:
virtual ~Printable() {}
virtual void print(ostream&) const = 0;
};

class Intable {
public:
virtual ~Intable() {}
virtual int toInt() const = 0;
};

class Stringable {
public:
virtual ~Stringable() {}

3G E-LEARNING

210 Basic Computer Coding: C++

virtual string toString() const = 0;
};

class Able : public Printable, public Intable,
public Stringable {
int myData;
public:
Able(int x) { myData = x; }
void print(ostream& os) const { os << myData; }
int toInt() const { return myData; }
string toString() const {
ostringstream os;
os << myData;
return os.str();
}
};

void testPrintable(const Printable& p) {
p.print(cout);
cout << endl;
}

void testIntable(const Intable& n) {
cout << n.toInt() + 1 << endl;
}

void testStringable(const Stringable& s) {
cout << s.toString() + “th” << endl;
}

int main() {
Able a(7);
testPrintable(a);

I/O Streams

3G E-LEARNING

211

testIntable(a);
testStringable(a);
} ///:~

The class Able implements the interfaces Printable, Intable, and Stringable because

it provides implementations for the functions they declare. Because Able derives from
all three classes, Able objects have multiple is-a relationships. For example, the object
a can act as a Printable object because its class, Able, derives publicly from Printable
and provides an implementation for print(). The test functions have no need to know
the most-derived type of their parameter; they just need an object that is substitutable
for their parameter s type.

As usual, a template solution is more compact:
//: C09:Interfaces2.cpp
// Implicit interface inheritance via templates.
#include <iostream>
#include <sstream>
#include <string>
using namespace std;

class Able {
int myData;
public:
Able(int x) { myData = x; }
void print(ostream& os) const { os << myData; }
int toInt() const { return myData; }
string toString() const {
ostringstream os;
os << myData;
return os.str();
}
};

template<class Printable>
void testPrintable(const Printable& p) {

3G E-LEARNING

212 Basic Computer Coding: C++

p.print(cout);
cout << endl;
}

template<class Intable>
void testIntable(const Intable& n) {
cout << n.toInt() + 1 << endl;
}

template<class Stringable>
void testStringable(const Stringable& s) {
cout << s.toString() + “th” << endl;
}

int main() {
Able a(7);
testPrintable(a);
testIntable(a);
testStringable(a);
} ///:~

The names Printable, Intable, and Stringable are now just template parameters

that assume the existence of the operations indicated in their respective contexts.
In other words, the test functions can accept arguments of any type that provides a
member function definition with the correct signature and return type; deriving from
a common base class in not necessary. Some people are more comfortable with the first
version because the type names guarantee by inheritance that the expected interfaces
are implemented. Others are content with the fact that if the operations required
by the test functions are not satisfied by their template type arguments, the error is
still caught at compile time. The latter approach is technically a weaker form of type
checking than the former (inheritance) approach, but the effect on the programmer
(and the program) is the same. This is one form of weak typing that is acceptable to
many of today s C++ programmers.

I/O Streams

3G E-LEARNING

213

7.2.2 Implementation inheritance

As we stated earlier, C++ provides only implementation
inheritance, meaning that you always inherit everything from
your base classes. This can be good because it frees you from
having to implement everything in the derived class, as we
had to do with the interface inheritance examples earlier. A
common use of multiple inheritance involves using mixin
classes, which are classes that exist to add capabilities to other
classes through inheritance. Mixin classes are not intended
to be instantiated by themselves.
As an example, suppose we are clients of a class that supports
access to a database. In this scenario, you only have a header
file available part of the point here is that you don t have access
to the source code for the implementation. For illustration,
assume the following implementation of a Database class:
//: C09:Database.h
// A prototypical resource class.
#ifndef DATABASE_H
#define DATABASE_H
#include <iostream>
#include <stdexcept>
#include <string>

struct DatabaseError : std::runtime_error {
DatabaseError(const std::string& msg)
: std::runtime_error(msg) {}
};

class Database {
std::string dbid;
public:
Database(const std::string& dbStr) : dbid(dbStr) {}
virtual ~Database() {}
void open() throw(DatabaseError) {
std::cout << “Connected to “ << dbid << std::endl;

Inheritance is
defined as the
capability of a class
to derive properties
and characteristics
from another class .

Keyword

3G E-LEARNING

214 Basic Computer Coding: C++

}
void close() {
std::cout << dbid << “ closed” << std::endl;
}
// Other database functions...
};
#endif // DATABASE_H ///:~

We re leaving out actual database functionality (storing, retrieving, and so on), but
that s not important here. Using this class requires a database connection string and
that you call Database::open() to connect and Database::close() to disconnect:
//: C09:UseDatabase.cpp
#include “Database.h”

int main() {
Database db(“MyDatabase”);
db.open();
// Use other db functions...
db.close();
}
/* Output:
connected to MyDatabase
MyDatabase closed
*/ ///:~

In a typical client-server situation, a client will have multiple objects sharing a connection
to a database. It is important that the database eventually be closed, but only after
access to it is no longer required. It is common to encapsulate this behavior through
a class that tracks the number of client entities using the database connection and to
automatically terminate the connection when that count goes to zero. To add reference
counting to the Database class, we use multiple inheritance to mix a class named
Countable into the Database class to create a new class, DBConnection. Here s the
Countable mixin class:
//: C09:Countable.h
// A “mixin” class.

I/O Streams

3G E-LEARNING

215

#ifndef COUNTABLE_H
#define COUNTABLE_H
#include <cassert>

class Countable {
long count;
protected:
Countable() { count = 0; }
virtual ~Countable() { assert(count == 0); }
public:
long attach() { return ++count; }
long detach() {
return (--count > 0) ? count : (delete this, 0);
}
long refCount() const { return count; }
};
#endif // COUNTABLE_H ///:~

It is evident that this is not a standalone class because its constructor is protected;
it requires a friend or a derived class to use it. It is important that the destructor is
virtual, because it is called only from the delete this statement in detach(), and we
want derived objects to be properly destroyed.[122]
The DBConnection class inherits both Database and Countable and provides a static
create() function that initializes its Countable subobject. This is an example of the
Factory Method design pattern:
//: C09:DBConnection.h
// Uses a “mixin” class.
#ifndef DBCONNECTION_H
#define DBCONNECTION_H
#include <cassert>
#include <string>
#include “Countable.h”
#include “Database.h”
using std::string;

3G E-LEARNING

216 Basic Computer Coding: C++

class DBConnection : public Database, public Countable {
DBConnection(const DBConnection&); // Disallow copy
DBConnection& operator=(const DBConnection&);
protected:
DBConnection(const string& dbStr) throw(DatabaseError)
: Database(dbStr) { open(); }
~DBConnection() { close(); }
public:
static DBConnection*
create(const string& dbStr) throw(DatabaseError) {
DBConnection* con = new DBConnection(dbStr);
con->attach();
assert(con->refCount() == 1);
return con;
}
// Other added functionality as desired...
};
#endif // DBCONNECTION_H ///:~

We now have a reference-counted database connection without modifying the Database
class, and we can safely assume that it will not be surreptitiously terminated. The
opening and closing is done using the Resource Acquisition Is Initialization (RAII)
idiom via the DBConnection constructor and destructor. This makes the DBConnection
easy to use:
//: C09:UseDatabase2.cpp
// Tests the Countable “mixin” class.
#include <cassert>
#include “DBConnection.h”

class DBClient {
DBConnection* db;
public:
DBClient(DBConnection* dbCon) {

I/O Streams

3G E-LEARNING

217

db = dbCon;
db->attach();
}
~DBClient() { db->detach(); }
// Other database requests using db
};

int main() {
DBConnection* db = DBConnection::create(“MyDatabase”);
assert(db->refCount() == 1);
DBClient c1(db);
assert(db->refCount() == 2);
DBClient c2(db);
assert(db->refCount() == 3);
// Use database, then release attach from original create
db->detach();
assert(db->refCount() == 2);
} ///:~

The call to DBConnection::create() calls attach(), so when we re finished, we must
explicitly call detach() to release the original hold on the connection. Note that the
DBClient class also uses RAII to manage its use of the connection. When the program
terminates, the destructors for the two DBClient objects will decrement the reference
count (by calling detach(), which DBConnection inherited from Countable), and the
database connection will be closed (because of Countable s virtual destructor) when
the count reaches zero after the object c1 is destroyed.
A template approach is commonly used for mixin inheritance, allowing the user to
specify at compile time which flavor of mixin is desired. This way you can use different
reference-counting approaches without explicitly defining DBConnection twice. Here
s how it s done:
//: C09:DBConnection2.h
// A parameterized mixin.
#ifndef DBCONNECTION2_H
#define DBCONNECTION2_H
#include <cassert>

3G E-LEARNING

218 Basic Computer Coding: C++

#include <string>
#include “Database.h”
using std::string;

template<class Counter>
class DBConnection : public Database, public Counter {
DBConnection(const DBConnection&); // Disallow copy
DBConnection& operator=(const DBConnection&);
protected:
DBConnection(const string& dbStr) throw(DatabaseError)
: Database(dbStr) { open(); }
~DBConnection() { close(); }
public:
static DBConnection* create(const string& dbStr)
throw(DatabaseError) {
DBConnection* con = new DBConnection(dbStr);
con->attach();
assert(con->refCount() == 1);
return con;
}
// Other added functionality as desired...
};
#endif // DBCONNECTION2_H ///:~

The only change here is the template prefix to the class
definition (and renaming Countable to Counter for clarity).
We could also make the database class a template parameter
(had we multiple database access classes to choose from), but
it is not a mixin since it is a standalone class. The following
example uses the original Countable as the Counter mixin type,
but we could use any type that implements the appropriate
interface (attach(), detach(), and so on):

A database
is an
organized
collection of
structured
information,
or data,
typically stored
electronically in a
computer system.

Keyword

I/O Streams

3G E-LEARNING

219

//: C09:UseDatabase3.cpp
// Tests a parameterized “mixin” class.
#include <cassert>
#include “Countable.h”
#include “DBConnection2.h”

class DBClient {
DBConnection<Countable>* db;
public:
DBClient(DBConnection<Countable>* dbCon) {
db = dbCon;
db->attach();
}
~DBClient() { db->detach(); }
};

int main() {
DBConnection<Countable>* db =
DBConnection<Countable>::create(“MyDatabase”);
assert(db->refCount() == 1);
DBClient c1(db);
assert(db->refCount() == 2);
DBClient c2(db);
assert(db->refCount() == 3);
db->detach();
assert(db->refCount() == 2);
} ///:~

The general pattern for multiple parameterized mixins is simply
template<class Mixin1, class Mixin2, , class MixinK>
class Subject : public Mixin1,
public Mixin2,
public MixinK { };

3G E-LEARNING

220 Basic Computer Coding: C++

7.3 FILE STREAM
File streams in C++ are basically the libraries that are used in the due course of
programming. The programmers generally use the iostream standard library in the
C++ programming as it provides the cin and cout methods that are used for reading
from the input and writing to the output respectively.

In order to read and write from a file, the programmers are generally using the
standard C++ library that is known as the fstream.

So far, we have been using the iostream standard library, which provides cin
and cout methods for reading from standard input and writing to standard output
respectively.

This section will teach you how to read and write from a file. This requires another
standard C++ library called fstream, which defines three new data types −

Sr.No Data Type & Description
1 ofstream

This data type represents the output file stream and is used to create files and to
write information to files.

2 ifstream

This data type represents the input file stream and is used to read information
from files.

3 fstream

This data type represents the file stream generally, and has the capabilities of
both ofstream and ifstream which means it can create files, write information to
files, and read information from files.

To perform file processing in C++, header files <iostream> and <fstream> must be
included in your C++ source file.

7.3.1 Opening a File

A file must be opened before you can read from it or write to it. Either ofstream or
fstream object may be used to open a file for writing. And ifstream object is used to
open a file for reading purpose only.

Following is the standard syntax for open() function, which is a member of fstream,
ifstream, and ofstream objects.
void open(const char *filename, ios::openmode mode);

Here, the first argument specifies the name and location of the file to be opened

I/O Streams

3G E-LEARNING

221

and the second argument of the open() member function defines the mode in which
the file should be opened.

Sr.No Mode Flag & Description
1 ios::app

Append mode. All output to that file to be appended to the end.
2 ios::ate

Open a file for output and move the read/write control to the end of the file.
3 ios::in

Open a file for reading.
4 ios::out

Open a file for writing.
5 ios::trunc

If the file already exists, its contents will be truncated before opening the file.

You can combine two or more of these values by ORing them together. For example
if you want to open a file in write mode and want to truncate it in case that already
exists, following will be the syntax −

ofstream outfile;
outfile.open(“file.dat”, ios::out | ios::trunc);
Similar way, you can open a file for reading and writing purpose as follows −
fstream afile;
afile.open(“file.dat”, ios::out | ios::in);

7.3.2 Closing a File

When a C++ program terminates it automatically flushes all the streams, release all
the allocated memory and close all the opened files. But it is always a good practice
that a programmer should close all the opened files before program termination.

Following is the standard syntax for close() function, which is a member of fstream,
ifstream, and ofstream objects.

void close();

3G E-LEARNING

222 Basic Computer Coding: C++

7.3.3 Writing to a File

While doing C++ programming, you write information to a file from your program
using the stream insertion operator (<<) just as you use that operator to output
information to the screen. The only difference is that you use an ofstream or fstream
object instead of the cout object.

7.3.4 Reading from a File

You read information from a file into your program using the stream extraction operator
(>>) just as you use that operator to input information from the keyboard. The only
difference is that you use an ifstream or fstream object instead of the cin object.

7.3.5 Read and Write Example

Following is the C++ program which opens a file in reading and writing mode. After
writing information entered by the user to a file named afile.dat, the program reads
information from the file and outputs it onto the screen −
#include <fstream>
#include <iostream>
using namespace std;

int main () {
 char data[100];

 // open a file in write mode.
 ofstream outfile;
 outfile.open(“afile.dat”);

 cout << “Writing to the file” << endl;
 cout << “Enter your name: “;
 cin.getline(data, 100);

 // write inputted data into the file.
 outfile << data << endl;

 cout << “Enter your age: “;

I/O Streams

3G E-LEARNING

223

 cin >> data;
 cin.ignore();

 // again write inputted data into the file.
 outfile << data << endl;

 // close the opened file.
 outfile.close();

 // open a file in read mode.
 ifstream infile;
 infile.open(“afile.dat”);

 cout << “Reading from the file” << endl;
 infile >> data;

 // write the data at the screen.
 cout << data << endl;

 // again read the data from the file and display it.
 infile >> data;
 cout << data << endl;

 // close the opened file.
 infile.close();

 return 0;
}
When the above code is compiled and executed, it produces the following sample
input and output −
$./a.out
Writing to the file
Enter your name: Zara

3G E-LEARNING

224 Basic Computer Coding: C++

Enter your age: 9
Reading from the file
Zara
9
Above examples make use of additional functions from cin
object, like getline() function to read the line from outside
and ignore() function to ignore the extra characters left by
previous read statement.

7.3.6 File Position Pointers

Both istream and ostream provide member functions for
repositioning the file-position pointer. These member functions
are seekg (“seek get”) for istream and seekp (“seek put”) for
ostream.
The argument to seekg and seekp normally is a long integer.
A second argument can be specified to indicate the seek
direction. The seek direction can be ios::beg (the default) for
positioning relative to the beginning of a stream, ios::cur for
positioning relative to the current position in a stream or
ios::end for positioning relative to the end of a stream.

The file-position pointer is an integer value that specifies
the location in the file as a number of bytes from the file’s
starting location. Some examples of positioning the “get”
file-position pointer are −

// position to the nth byte of fileObject (assumes ios::beg)
fileObject.seekg(n);

// position n bytes forward in fileObject
fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject
fileObject.seekg(n, ios::end);

// position at end of fileObject
fileObject.seekg(0, ios::end);

The
IStream
interface lets you
read and write data
to stream objects.
Stream objects
contain the data
in a structured
storage object,
where storages
provide the
structure.

Keyword

I/O Streams

3G E-LEARNING

225

7.4 TEXT FILE HANDLING
C++ has the capability of creating, accessing, and editing text
files. In this section we will demonstrate how to do this.

7.4.1 FileStream Objects, Header Files, File
Access, and Filenames

C++ uses a file stream abstraction for handling text files. A file
stream is data that is either going into a text file to be stored
or going out of a text file to be loaded into a program. The
input (>>) and the output (<<) operators are used to stream
data either into a file or into a program.

To perform file input (receiving data from a file), you
must include the ifstream header file in your program. To
perform file output (send data to a file) you must include the
ofstream header file in your program.

There are two primary ways of accessing files from a
program — sequential access and random access. When a file
is accessed using random access, the program can move back
and forth through the file at random. This means a program
can read the first record in a file and then immediately move
to the fifth record, or the hundredth record.

When a file is accessed sequentially, on the other hand,
the program can only move forward through the file, one
record at a time. This means that if you want to read the fifth
record in the file, you have to read the first through fourth
records first.

Sequential file access is easier to work with than random
access so we will be working exclusively with sequential files.

7.4.2 Creating and Storing Data in a Text File

Our first task is to create and store data in a text file. The
ofstream library includes a function for creating a new file
— open, which takes a string argument consisting of the file
name you wan to use.

Files are created in two steps. The first step is to declare
the file name and the second step is to call the open function
from the new file. Here are the lines needed to create a text file:

Files are
represented
on your disk by a
file name. Because
we are working with
text files, the file
names should have a
.txt extension so the
system recognizes
them as text files and
not some other type
of file.

Remember

3G E-LEARNING

226 Basic Computer Coding: C++

ofstream outFile;
outFile.open(“myfile.txt”);
The argument to the open function is the full path to the output file you are

writing. If you just include the filename, your file will be written in the same file your
program resides in. Otherwise, specify a full path before the filename if want the file
written somewhere else.

The next step is to write data to the file. Of course, this step will depend on the
task you are trying to perform. This next part of the program has the user enter text
at a prompt and then writes that data to the file using the file name as the target of
the output stream. Here is the code:

string quit = “n”;
string line;
while (quit != “y”) {
 cout << “Enter a line of text: “;
 getline(cin, line);
 outFile << line << endl;
 cout << “Stop entering text (y/n)? “;
 getline(cin, quit);
}
The last step, and an important one, is to close the file. While you probably won’t

lose data if the program ends before the output file is closed, it is a good programming
practice to close files after you are finished with them.

Here is the complete program for creating a file and writing data to that file:
#include <iostream>
#include <fstream>using namespace std;int main()
{
 ofstream outFile;
 outFile.open(“myfile.txt”);
 string quit = “n”;
 string line;
 while (quit != “y”) {
 cout << “Enter a line of text: “;
 getline(cin, line);
 outFile << line << endl;
 cout << “Stop entering text (y/n)? “;

I/O Streams

3G E-LEARNING

227

 getline(cin, quit);
 }
 outFile.close();
 return 0;
}
Once you’ve closed a file you are finished with it until

you want to open it in order to read the data from it.

7.4.3 Reading Data from a Text File

To read data from a text file, you have to open the file for
input. The first thing you need to do is declare an ifstream
object to represent an input file. Then you need to open the
file by providing the path to the file.

You need to be careful when specifying the file path
because if the path has backslashes in it, you have to escape
the backslashes so that C++ won’t interpret part of the file
path as an escaped character.

For example, if the file path includes a \t in the name,
C++ will interpret this as the tab character and the system will
throw an error. You need to double backslash your paths so
that this doesn’t happen.

In the example we will show, the file path is:
c:\users\mmcmi\documents\words.txt
Instead, write the path like this:
c:\\users\\mmcmi\\documents\\words.txt.
After the file is open, you can loop through the file and

read each line. The file object can act as the condition of the
loop, meaning that while there is data in the file to read, the
file name returns true (1), and when there is no more data
to read, the file name returns false (0).

The last step is to close the file to maintain good software
engineering practices, though if you don’t do this the operating
system will close the file automatically.

Now we’re ready to view a complete program that reads a
text file from a hard disk and displays all the data in the file.
The file we are opening and reading is a dictionary of words.

A hard
disk is an
electro-mechanical
data storage
device that stores
and retrieves
digital data using
magnetic storage
and one or more
rigid rapidly
rotating platters
coated with
magnetic material.

Keyword

3G E-LEARNING

228 Basic Computer Coding: C++

Here is the program:
#include <iostream>
#include <fstream>using namespace std;int main()
{
 ifstream inFile;
 inFile.open(“c:\\users\\mmcmi\\documents\\words.txt”);
 string word;
 while (inFile) {
 getline(inFile, word);
 cout << word << endl;
 }
 inFile.close();
 return 0;
}
Here is a partial display of the output from this file:
…
bloggers
blogging
blogs
blond
blonde
blood
bloody
bloom
bloomberg
blow
blowing
…
A more concise way to write the program above is to combine the file check in the
condition with getting the next word from the file. Here’s how that looks:
int main()
{
 ifstream inFile;

I/O Streams

3G E-LEARNING

229

 inFile.open(“c:\\users\\mmcmi\\documents\\words.txt”);
 string word;
 while (getline(inFile, word)) {
 cout << word << endl;
 }
 inFile.close();
 return 0;
}
When the loop reaches the end of the file, getline will essentially return a false value
and the loop stops.

7.4.4 Working with Numbers in a Text File

When numbers are stored in a texts file they are stored as strings, so when they are
read into a program they have to be converted to the proper numeric data type. Here
is an example that reads a set of test grades from a text file and computes the average
of the grades:
#include <iostream>
#include <fstream>
#include <string>using namespace std;int main()
{
 ifstream inFile;
 inFile.open(“grades.txt”);
 string strGrade;
 int grade, total, numGrades;
 total = 0;
 numGrades = 0;
 while (getline(inFile, strGrade)) {
 cout << strGrade << “ “;
 numGrades++;
 grade = stoi(strGrade);
 total += grade;
 }
 inFile.close();
 double average = static_cast<double>(total) / numGrades;

3G E-LEARNING

230 Basic Computer Coding: C++

 cout << endl << endl << “The average test grade is: “
 << average << endl;
 return 0;
}
This program uses the stoi function to convert the string grade into an integer.
Working with a file that contains the grades — 82, 91, 77, 84, 91, 63 — the output
from this program is:
82 91 77 84 91 63The average test grade is: 81.3333

7.4.5 Appending Data to a File

Besides opening a file for input or output, you can also open a file in order to append
new data to it. You do this by adding the constant ios::app as a second argument to
the open function. The following program demonstrates how to append data to an
existing file of grades, the same file we used in the immediate example above:
int main()
{
 ofstream outFile;
 outFile.open(“grades.txt”, ios::app);
 int grade1 = 91;
 int grade2 = 87;
 int grade3 = 93;
 outFile << grade1 << endl;
 outFile << grade2 << endl;
 outFile << grade3 << endl;
 outFile.close();
 ifstream inFile;
 inFile.open(“grades.txt”);
 int grade;
 while (inFile >> grade) {
 cout << grade << “ “;
 }
 inFile.close();
 return 0;
}

I/O Streams

3G E-LEARNING

231

7.5 BINARY FILE HANDLING
Let’s now learn about basic operations on files. The operations that you have learnt
so far are applicable on both text and binary files. The only difference is that while
working with binary files, you do need to prefix file modes with ios::binary at the
time of opening the file. You have learnt how to create files (open them in ios::out or
ios::app mode which will create a file if it doesn’t exist already), how to read records
from binary files (call read() function through stream object to which file is attached),
how to write records in binary files (call write() function through stream object which
file is attached.).

Here, in this section, we will perform the following basic operations on binary files:
■■ searching
■■ appending data
■■ inserting data in sorted file
■■ deleting a record
■■ modifying data

Let’s start with searching operation.

7.5.1 Searching in C++

We can perform search in a binary file opened in input mode by reading each record
then checking whether it is our desired record or not. For instance, if you want to
search for a record for a student having rollno as 1 in file marks.dat, you can implement
this search process in C++ in two manners :

■■ with records implemented through structures.
■■ with records implemented through classes.

When records are implemented through structures, you can perform search as
demonstrated in the following examples :

struct student
{
	 int rollno;
	 char name[20];
	 char branch[3];
	 float marks;
	 char grade;
}stud1;

3G E-LEARNING

232 Basic Computer Coding: C++

ifstream fin(“marks.dat”, ios::in | ios::binary);
: 		 // Read rollno to be searched for

while(!fin.eof())
{
	 fin.read((char *)&stud1, sizeof(stud1)); // read record
	 if(stud1.rollno == rn) // if true, record is found
	 {
		 : // process desired record here
		
		 found = ‘y’; // after processing you may jump from the
		 break; // loop employed form searching purpose
	 }
}

if(found == ‘n’) // record not found
{
	 : // display error message here or process as desired
}
Let’s take an example for complete understanding on searching operation in C++.

C++ Searching Example
Here is an example program, demonstrating the searching operation on binary

files in C++.
/* C++ Basic Operations on Binary Files
 * This program demonstrates the searching
 * operation in a C++ program. Here the
 * searching operations performed, on
 * the records implemented through structures
 */

#include<fstream.h>
#include<conio.h>

I/O Streams

3G E-LEARNING

233

#include<stdlib.h>

class student
{
	 int rollno;
	 char name[20];
	 char branch[3];
	 float marks;
	 char grade;

	 public:
		 void getdata()
		 {
			 cout<<”Rollno: “;
			 cin>>rollno;
			 cout<<”Name: “;
			 cin>>name;
			 cout<<”Branch: “;
			 cin>>branch;
			 cout<<”Marks: “;
			 cin>>marks;

			 if(marks>=75)
			 {
				 grade = ‘A’;
			 }
			 else if(marks>=60)
			 {
				 grade = ‘B’;
			 }
			 else if(marks>=50)
			 {
				 grade = ‘C’;

3G E-LEARNING

234 Basic Computer Coding: C++

			 }
			 else if(marks>=40)
			 {
				 grade = ‘D’;
			 }
			 else
			 {
				 grade = ‘F’;
			 }
		 }

		 void putdata()
		 {
			 cout<<”Rollno: “<<rollno<<”\tName: “<<name<<”\n”;
			 cout<<”Marks: “<<marks<<”\tGrade: “<<grade<<”\n”;
		 }

		 int getrno()
		 {
			 return rollno;
		 }
}stud1;

void main()
{
	 clrscr();

	 fstream fio(“marks.dat”, ios::in | ios::out);
	 char ans=’y’;
	 while(ans==’y’ || ans==’Y’)
	 {
		 stud1.getdata();
		 fio.write((char *)&stud1, sizeof(stud1));

I/O Streams

3G E-LEARNING

235

		 cout<<”Record added to the file\n”;
		 cout<<”\nWant to enter more ? (y/n)..”;
		 cin>>ans;
	 }

	 clrscr();
	 int rno;
	 long pos;
	 char found=’f’;

	 cout<<”Enter rollno of student to be search for: “;
	 cin>>rno;

	 fio.seekg(0);
	 while(!fio.eof())
	 {
		 pos=fio.tellg();
		 fio.read((char *)&stud1, sizeof(stud1));
		 if(stud1.getrno() == rno)
		 {
			 stud1.putdata();
			 fio.seekg(pos);
			 found=’t’;
			 break;
		 }
	 }
	 if(found==’f’)
	 {
		 cout<<”\nRecord not found in the file..!!\n”;
		 cout<<”Press any key to exit...\n”;
		 getch();
		 exit(2);
	 }

3G E-LEARNING

236 Basic Computer Coding: C++

 fio.close();
 getch();
}
Here are the sample run of the above C++ program:

After entering the three records, press n and then ENTER. Now to search for a
specific roll number. Enter the roll number of a student and press enter to perform
searching operation. Here is the sample run:

When the records are implemented through classes, then you may need to add
an additional accessor function in public: section of the class, that returns the value
of the data member to which the user-specified search value is to be compared. With
structures, this was not required as all the data members were public by default and
hence accessible through structure variable. On the other hand, through an object,
private data members can’t be accessed. Therefore, to read value of a private data

I/O Streams

3G E-LEARNING

237

member, a function is added in the public section, that returns this value. The rest
of the processing is just similar to that of the structures. Here is an example code
fragment demonstrates this:

class student
{
	 int rollno;
	 char name[20];
	 char branch[3];
	 float marks;
	 char grade;

	 public:
		 void getdata();
		 void putdata();
		 int getrno()	 // this function returns the value of private member rollno
		 {
			 return rollno;
		 }
}stud1;

ifstream fin(“marks.dat”, ios::in);
:		 // read rollno to be search for

while(!fin.eof())
{
	 fin.read((char *)&stud1, sizeof(stud1));
	 if(stud1.getrno() == rno)		 // retrieve value of private member and

compare
	 {
		 :		 // process desired record here
		
		 found = ‘t’;
		 break;
	 }

3G E-LEARNING

238 Basic Computer Coding: C++

}
if(found==’n’) // if record not found
{
	 :		 // display message for not found
}
Let’s take an example for the complete understanding on the searching operations

on the records implemented through classes in C++.
/* C++ Basic Operations on Binary Files
 * This program demonstrates the searching
 * operation in a C++ program. Here the
 * searching operations performed, on
 * the records implemented through classes
 */

#include<fstream.h>
#include<conio.h>
#include<stdlib.h>

class student
{
	 int rollno;
	 char name[20];
	 char branch[3];
	 float marks;
	 char grade;

	 public:
		 void getdata()
		 {
			 cout<<”Rollno: “;
			 cin>>rollno;
			 cout<<”Name: “;
			 cin>>name;

I/O Streams

3G E-LEARNING

239

			 cout<<”Branch: “;
			 cin>>branch;
			 cout<<”Marks: “;
			 cin>>marks;

			 if(marks>=75)
			 {
				 grade = ‘A’;
			 }
			 else if(marks>=60)
			 {
				 grade = ‘B’;
			 }
			 else if(marks>=50)
			 {
				 grade = ‘C’;
			 }
			 else if(marks>=40)
			 {
				 grade = ‘D’;
			 }
			 else
			 {
				 grade = ‘F’;
			 }
		 }

		 void putdata()
		 {
			 cout<<name<<”, rollno “<<rollno<<” has “;
			 cout<<marks<<”% marks and “<<grade<<” grade.”<<”\n”;
		 }

3G E-LEARNING

240 Basic Computer Coding: C++

		 int getrno()
		 {
			 return rollno;
		 }
}stud1;

void main()
{
	 clrscr();

	 ofstream fout(“marks.dat”, ios::out);
	 char ans=’y’;
	 while(ans==’y’ || ans==’Y’)
	 {
		 stud1.getdata();
		 fout.write((char *)&stud1, sizeof(stud1));
		 cout<<”Record added to the file\n”;
		 cout<<”\nWant to enter more ? (y/n)..”;
		 cin>>ans;
	 }
	 fout.close();

	 clrscr();
	 int rno;
	 char found;
	 ifstream fin(“marks.dat”, ios::in);

	 found = ‘n’;
	 cout<<”Enter rollno to be searched for: “;
	 cin>>rno;

	 while(!fin.eof()) // end-of-file used here
	 {

I/O Streams

3G E-LEARNING

241

		 fin.read((char *)&stud1, sizeof(stud1));
		 if(stud1.getrno() == rno)
		 {
			 cout<<”Record found at roll number “<<rno<<”. Here is the

record\n”;

			 stud1.putdata();
			 found = ‘t’;
			 break;
		 }
	 }
	 if(found==’n’)
	 {
		 cout<<”\nRecord not found at this roll number..!!\n”;
		 cout<<”Press any key to exit...\n”;
		 getch();
		 exit(2);
	 }

	 fin.close();
	 cout<<”\nPress any key to exit...\n”;
	 getch();
}
Here are the sample runs of the above C++ program:

3G E-LEARNING

242 Basic Computer Coding: C++

7.5.2 Appending Data in C++

To append data in a file, the file is opened with the following
two specifications :

■■ file is opened in output mode
■■ file is opened in ios::app mode

Once the file gets opened in ios::app mode, the previous
records/information is retained and new data gets appended
to the file.

Let’s see the following code fragment that appends new
records to file marks.dat :

class student
{
	 :
}stud1;
ofstream fout;
fout.open(“marks.dat”, ios::app } ios::binary);
/* Repeat following lines as many times */
{
	 stud1.getdata(); // Read Record
	 fout.write((char *) & stud1, sizeof(stud1)); // record
appended
}

C++ Appending Data Example

Here is an example program demonstrates, how to append
data in a file in C++.
/* C++ Basic Operations on Binary Files

Code
fragments
are pieces of code
that occur regularly
in programs and
for that reason
have been collected
for reuse.

Keyword

I/O Streams

3G E-LEARNING

243

 * This program demonstrates, how to
 * append data in a file in C++ */

#include<fstream.h>
#include<conio.h>
#include<stdlib.h>

class student
{
	 int rollno;
	 char name[20];
	 char branch[3];
	 float marks;
	 char grade;

	 public:
		 void getdata()
		 {
			 cout<<”Rollno: “;
			 cin>>rollno;
			 cout<<”Name: “;
			 cin>>name;
			 cout<<”Branch: “;
			 cin>>branch;
			 cout<<”Marks: “;
			 cin>>marks;

			 if(marks>=75)
			 {
				 grade = ‘A’;
			 }
			 else if(marks>=60)
			 {

3G E-LEARNING

244 Basic Computer Coding: C++

				 grade = ‘B’;
			 }
			 else if(marks>=50)
			 {
				 grade = ‘C’;
			 }
			 else if(marks>=40)
			 {
				 grade = ‘D’;
			 }
			 else
			 {
				 grade = ‘F’;
			 }
		 }

		 void putdata()
		 {
			 cout<<name<<”, rollno “<<rollno<<” has “;
			 cout<<marks<<”% marks and “<<grade<<” grade.”<<”\n”;
		 }

		 int getrno()
		 {
			 return rollno;
		 }
}stud1;

void main()
{
	 clrscr();

	 ofstream fout(“marks.dat”, ios::app);

I/O Streams

3G E-LEARNING

245

	 char ans=’y’;
	 while(ans==’y’ || ans==’Y’)
	 {
		 stud1.getdata();
		 fout.write((char *)&stud1, sizeof(stud1));
		 cout<<”Data appended in the file successfully..!!\n”;
		 cout<<”\nWant to enter more ? (y/n)..”;
		 cin>>ans;
	 }

	 fout.close();
	 cout<<”\nPress any key to exit...\n”;
	 getch();
}
Here is the sample run of this C++ program:

7.5.3 C++ Inserting Data in Sorted File

To insert data in a sorted file, firstly, its appropriated position is determined and
then records in the file prior to this determined position are copied to temporary file,
followed by the new record to be inserted and then the rest of the records from the
file are also copied.

For example, records in marks.dat are sorted in ascending order on the basis of
rollno. Assuming that there are about 10 records in the file marks.dat. Now a new
record with rollno 5 is to be inserted. It will be accomplished as follows :

3G E-LEARNING

246 Basic Computer Coding: C++

(i) 	 Determining the appropriate position. If the rollno of new record say NREC
in which rollno 5 is lesser than the rollno of very first record, then the
position is 1, where the new record is to be inserted as it will be inserted in
the beginning of the file to maintain the sorted order.

If the rollno of new record (5 here) satisfies following condition for two consecutive
records say (pth and (p + 1)th)

if prev.getrno() <= NREC.getrno() && (NREC.getrno() <= next.getrno())
then the appropriate position will be position of prev + 1 i.e, p + 1.
And if the rollno of the new record is more than the rollno of last record (say nth

record) then the appropriate position will be n+1.
(ii) Copy the records prior to determined position to a temporary file say temp.dat.
(iii) Append the new record in the temporary file temp.dat.
(iv) Now append the rest of the records in temporary file temp.dat.
(v) Delete the file marks.dat by using the following code.
remove(“marks.dat”);
(vi) Now, rename the file temp.dat as marks.dat as follows :
rename(“temp.dat”, “marks.dat”);
Let’s take an example for the complete understanding on inserting data in a sorted

file in C++.

C++ Inserting Data in Sorted File Example
Here is an example program demonstrating, how to insert data in a sorted file

in C++
/* C++ Basic Operations on Binary Files
 * This program demonstrates how to insert
 * data in a sorted file in C++ */

#include<fstream.h>
#include<conio.h>
#include<stdio.h>
#include<stdlib.h>

class student
{
	 int rollno;

I/O Streams

3G E-LEARNING

247

	 char name[20];
	 char branch[3];
	 float marks;
	 char grade;

	 public:
		 void getdata()
		 {
			 cout<<”Rollno: “;
			 cin>>rollno;
			 cout<<”Name: “;
			 cin>>name;
			 cout<<”Branch: “;
			 cin>>branch;
			 cout<<”Marks: “;
			 cin>>marks;

			 if(marks>=75)
			 {
				 grade = ‘A’;
			 }
			 else if(marks>=60)
			 {
				 grade = ‘B’;
			 }
			 else if(marks>=50)
			 {
				 grade = ‘C’;
			 }
			 else if(marks>=40)
			 {
				 grade = ‘D’;
			 }

3G E-LEARNING

248 Basic Computer Coding: C++

			 else
			 {
				 grade = ‘F’;
			 }
		 }

		 void putdata()
		 {
			 cout<<”Rollno: “<<rollno<<”\tName: “<<name<<”\n”;
			 cout<<”Marks: “<<marks<<”\tGrade: “<<grade<<”\n”;
		 }

		 int getrno()
		 {
			 return rollno;
		 }
}stud1, stud;

void main()
{
	 clrscr();
	 ifstream fin(“marks.dat”, ios::in);
	 ofstream fout(“temp.dat”, ios::out);
	 char last=’y’;
	 cout<<”Enter details of student whose record is to be inserted\n”;
	 stud1.getdata();
	 while(!fin.eof())
	 {
		 fin.read((char *)&stud, sizeof(stud));
		 if(stud1.getrno()<=stud.getrno())
		 {
			 fout.write((char *)&stud1, sizeof(stud1));
			 last = ‘n’;

I/O Streams

3G E-LEARNING

249

			 break;
		 }
		 else
		 {
			 fout.write((char *)&stud, sizeof(stud));
		 }
	 }
	 if(last == ‘y’)
	 {
		 fout.write((char *)&stud1, sizeof(stud1));
	 }
	 else if(!fin.eof())
	 {
		 while(!fin.eof())
		 {
			 fin.read((char *)&stud, sizeof(stud));
			 fout.write((char *)&stud, sizeof(stud));
		 }
	 }
	 fin.close();
	 fout.close();
	 remove(“marks.dat”);
	 rename(“temp.dat”, “marks.dat”);
	 fin.open(“marks.dat”, ios::in);
	 cout<<”File now contains:\n”;
	 while(!fin.eof())
	 {
		 fin.read((char *)&stud, sizeof(stud));
		 if(fin.eof())
		 {
			 break;
		 }
		 stud.putdata();

3G E-LEARNING

250 Basic Computer Coding: C++

	 }
	 fin.close();
	 getch();
}
Here is the sample run of the above C++ program:

7.5.4 Deleting a Record in C++

To delete a record, following procedure is carried out :
(i) 	 Firstly, determine the position of the record to be deleted, by performing a

search in the file.
(ii) 	 Keep copying the records other than the record to be delete in a temporary

file say temp.dat.
(iii)	 Do not copy the record to be deleted to temporary file, temp.dat.
(iv)	 Copy rest of the records to temp.dat.
(v) 	 Delete original file say marks.dat as :
remove(“marks.dat”);
(vi) 	Rename temp.dat as marks.dat as :

rename(“temp.dat”, “marks.dat”);

For example program, just copy the above code, and make changes as told in the
above steps to process the deletion of record.

7.5.5 Modifying Data in C++

To modify a record, the file is opened in I/O mode and an important step is performed
that gives the beginning address of record being modified. After the record is modified
in memory, the file pointer is once again placed at the beginning position of this record
and then record is rewritten. Following code illustrates it :

I/O Streams

3G E-LEARNING

251

class student
{
	 :
	 void modify();
}stud1;

fstream fio(“marks.dat”, ios::in | ios::out);
/* Read rollno whose data is to be modified */
long pos;
while(!fio.eof())
{
	 pos = fio.tellg() // determine the beginning position of record
	 fio.read((char *) & stud1, sizeof(stud1));
	 if(stud1.getrno() == rn) // this is the record to be modified
	 {
		 stud1.modify(); // get the new data
		 fio.seekg(pos); // place file pointer at the beginning record position
		 fio.write((char *) & stud1, sizeof(stud1)); // now write the modified
record
	 }
}
For example program, just copy the above code, and make changes, as shown in the
above code fragment to process the modification of data in a file.

7.6 ERROR HANDLING DURING FILE OPERATIONS
It’s quite common that errors may occur during file operations. There may have
different reasons for arising errors while working with files. The following are the
common problems that lead to errors during file operations.

■■ When trying to open a file for reading might not exist.
■■ When trying to read from a file beyond its total number of characters.
■■ When trying to perform a read operation from a file that has opened in write

mode.
■■ When trying to perform a write operation on a file that has opened in reading

mode.

3G E-LEARNING

252 Basic Computer Coding: C++

■■ When trying to operate on a file that has not been open.
During the file operations in C++, the status of the current file stream stores in

an integer flag defined in ios class. The following are the file stream flag states with
meaning.

Flag Bit Meaning
badbit 1 when a fatal I/O error has occurred, 0 otherwise.
failbit 1 when a non-fatal I/O error has occurred, 0 otherwise
goodbit 1 when no error has occurred, 0 otherwise
eofbit 1 when end-of-file is encountered, 0 otherwise.

We use the above flag bits to handle the errors during the file operations.
The C++ programming language provides several built-in functions to handle

errors during file operations.
The following are the built-in functions to handle file errors.

Function Return Value
int bad() It returns a non-zero (true) value if an invalid operation is attempted or an

unrecoverable error has occurred. Returns zero if it may be possible to recover from
any other error reported and continue operations.

int fail() It returns a non-zero (true) value when an input or output operation has failed.
int good() It returns a non-zero (true) value when no error has occurred; otherwise returns

zero (false).
int eof() It returns a non-zero (true) value when end-of-file is encountered while reading;

otherwise returns zero (false).

7.6.1 int bad()

The bad() function returns a non-zero (true) value if an invalid operation is attempted
or an unrecoverable error has occurred. Returns zero if it may be possible to recover
from any other error reported and continue operations.
Let’s look at the following code.
Example - Code to illustrate the bad() function
#include <iostream>
#include <fstream>

using namespace std;

I/O Streams

3G E-LEARNING

253

int main()
{
 fstream file;
 file.open(“my_file.txt”, ios::out);

 string data;

 file >> data;

 if(!file.bad()){
 cout << “Operation not success!!!” << endl;
 cout << “Status of the badbit: “ << file.bad() << endl;
 }
 else {
 cout << “Data read from file - “ << data << endl;
 }

 return 0;
}
Output

7.6.2 int fail()

The fail() function returns a non-zero value when an input or output operation has
failed.
Let’s look at the following code.
Example - Code to illustrate the fail() function
#include <iostream>
#include <fstream>

3G E-LEARNING

254 Basic Computer Coding: C++

using namespace std;

int main()
{
 fstream file;
 file.open(“my_file.txt”, ios::out);

 string data;

 file >> data;

 if(file.fail()){
 cout << “Operation not success!!!” << endl;
 cout << “Status of the failbit: “ << file.fail() << endl;
 }
 else {
 cout << “Data read from file - “ << data << endl;
 }

 return 0;
}
Output

7.6.3 int eof()

The eof() function returns a non-zero (true) value when end-of-file is encountered
while reading; otherwise returns zero (false).
Let’s look at the following code.
Example - Code to illustrate the eof() function

I/O Streams

3G E-LEARNING

255

#include <iostream>
#include <fstream>

using namespace std;

int main()
{
 fstream file;
 file.open(“my_file.txt”, ios::in);

 string data;

 while(!file.eof()){
 file >> data;
 cout << “data read: “ << data << “ | eofbit: “ << file.eof() << endl;
 }

 return 0;
}
Output

7.6.4 int good()

The good() function returns a non-zero (true) value when no error has occurred;
otherwise returns zero (false).
Let’s look at the following code.
Example - Code to illustrate the good() function
#include <iostream>
#include <fstream>

3G E-LEARNING

256 Basic Computer Coding: C++

using namespace std;

int main()
{
 fstream file;
 file.open(“my_file.txt”, ios::in);

 cout << “goodbit: “ << file.good() << endl;

 string data;

 cout << endl << “Data read from file:” << endl;
 while(!file.eof()){
 file >> data;
 cout << data << “ “;
 }
 cout << endl;

 return 0;
}
Output

7.6.5 int clear()

The clear() function used to reset the error state so that further operations can be
attempted.

■■ The above functions can be summarized as eof() returns true if eofbit is set;
bad() returns true if badbit is set. The fail() function returns true if failbit is
set; the good() returns true there are no errors. Otherwise, they return false.

I/O Streams

3G E-LEARNING

257

■■ All the built-in function returns either non-zero to
indicate true or zero to indicate false.

7.7 OVERLOADING << AND >>
OPERATORS
C++ is able to input and output the built-in data types using the
stream extraction operator >> and the stream insertion operator
<<. The stream insertion and stream extraction operators also
can be overloaded to perform input and output for user-defined
types like an object.
Here, it is important to make operator overloading function a
friend of the class because it would be called without creating
an object.
Following example explains how extraction operator >> and
insertion operator <<.
#include <iostream>
using namespace std;

class Distance {
 private:
 int feet; // 0 to infinite
 int inches; // 0 to 12

 public:
 // required constructors
 Distance() {
 feet = 0;
 inches = 0;
 }
 Distance(int f, int i) {
 feet = f;
 inches = i;
 }
 friend ostream &operator<<(ostream &output, const
Distance &D) {

To check
for such
errors and to
ensure smooth
processing, C++
file streams
inherit ‘stream-
state’ members
from the ios class
that store the
information on
the status of a
file that is being
currently used.

Remember

3G E-LEARNING

258 Basic Computer Coding: C++

 output << “F : “ << D.feet << “ I : “ << D.inches;
 return output;
 }

 friend istream &operator>>(istream &input, Distance &D) {
 input >> D.feet >> D.inches;
 return input;
 }
};

int main() {
 Distance D1(11, 10), D2(5, 11), D3;

 cout << “Enter the value of object : “ << endl;
 cin >> D3;
 cout << “First Distance : “ << D1 << endl;
 cout << “Second Distance :” << D2 << endl;
 cout << “Third Distance :” << D3 << endl;

 return 0;
}
When the above code is compiled and executed, it produces the following result −
$./a.out
Enter the value of object :
70
10
First Distance : F : 11 I : 10
Second Distance :F : 5 I : 11
Third Distance :F : 70 I : 10

I/O Streams

3G E-LEARNING

259

ROLE MODEL

BJARNE STROUSTRUP: COMPUTER WIZ-
ARD AND CREATOR OF C++ LANGUAGE
Best known for designing and implementing the C++
programming language which is widely in use today, this
computer scientist is also managing director at Morgan Stanley,
NY.
Born in a working class family in Aarhus, Denmark, on
December 30, 1950, Stroustrup received early education
in local schools. In 1969, he joined Aarhus University and
graduated with master’s degree in mathematics and computer
science in 1975. Interested in microprogramming and machine
architecture, he learned the fundamentals of object-oriented
programming from its inventor, Norwegian computer scientist
Kristen Nygaard. In 1979, he received PhD in computer science
from the University of Cambridge, UK. He is an honorary
professor at Aarhus University and an honorary fellow of
Churchill College.

Career

In 1979, Stroustrup began his career with the Computer Science
Research Center of Bell Labs in Murray Hill, New Jersey, USA,
where he began work on C++ and programming techniques.

He headed AT&T Bell Labs’ large-scale programming
research department since its creation until late 2002. In 1993,
he was made a Bell Lab’s fellow and in 1996, an AT&T Fellow.
He is also associated with AT&T Labs – Research and is a
member of its Information and Systems Software Research
Lab. He works as a visiting faculty in the Computer Science
Department of Columbia University and is also a member of
the US National Academy of Engineering (NAE), and fellow
of the Institute of Electrical and Electronics Engineers (IEEE)
and Association for Computing Machinery (ACM).

3G E-LEARNING

260 Basic Computer Coding: C++

C++

In 1979, he began developing C++ (initially called C with Classes). C++ is a language
for defining and using light-weight abstractions. It has significant strengths in areas
where hardware must be handled effectively and there is considerable complexity to
cope with. C++ was made available in 1985. In the same year, he also published a
textbook titled The C++ Programming Language.

Stroustrup documented his principles guiding the design of C++ and evolution of
the language in his 1994 book The Design and Evolution of C++ and two papers for
ACM’s History of Programming Languages conferences.

Personal life and legacy

Stroustrup lives in New York with his wife. Their daughter is a medical doctor and
son a research professor in systems biology.

Apart from research, he is interested in light literature, general history, travelling,
music, photography, and hiking and running. He was elected as the member of the
NAE in 2004.

Awards

Stroustrup has received numerous honours including the William Procter Prize for
Scientific Achievement in 2005, Computer Entrepreneur Award by IEEE in 2004, ACM’s
Grace Murray Hopper Award (1993), the 2018 Charles Stark Draper Prize from US
National Academy of Engineering (NAE), the Grace Murray Hopper Award (1993),
the 2017 IET Faraday Medal and Dr. Dobb’s Excellence in Programming award (2008).

He received fellowships from the ACM and IEEE and was elected member of the
NAE. In 2013, he was elected to the Electronic Design Hall of Fame.

Stroustrup has authored a large number of books such as A Tour of C++,
Programming: Principles and Practice Using C++, The C++ Programming Language,
and The Design and Evolution of C++.

He was awarded an honorary doctorate from the University Carlos III, Spain in
2019.

I/O Streams

3G E-LEARNING

261

Interesting Facts

■■ In 2013, he received the Golden Abacus Award from Upsilon Pi Epsilon that
is given to one who has gained professional fame and provided support and
leadership in computing and information disciplines.

■■ In 1990, Bjarne Stroustrup was named one of America’s 12 top young scientists
by Fortune Magazine. Its recipients include Claude Shannon, mathematician,
engineer and cryptographer.

■■ He applied programming techniques in areas like general systems programming,
switching, simulation, graphics, user-interfaces, embedded systems and scientific
computation.

■■ Stroustrup was made a Fellow of the Computer History Museum in 2015. His
book titled The C++ Programming Language was translated into 19 languages
and is one of the most widely read books of its kind.

■■ In 2018, he received the John Scott Legacy Medal and Premium from The
Franklin Institute and the City Council of Philadelphia. It is the second oldest
US award for scientific accomplishments.

3G E-LEARNING

262 Basic Computer Coding: C++

SUMMARY
■■ C++ uses a convenient abstraction called streams to perform input and output

operations in sequential media such as the screen, the keyboard or a file. A
stream is an entity where a program can either insert or extract characters
to/from.

■■ On most program environments, the standard output by default is the screen,
and the C++ stream object defined to access it is cout.

■■ In most program environments, the standard input by default is the keyboard,
and the C++ stream object defined to access it is cin.

■■ To get an entire line from cin, there exists a function, called getline, that takes
the stream (cin) as first argument, and the string variable as second.

■■ The standard header <sstream> defines a type called stringstream that allows
a string to be treated as a stream, and thus allowing extraction or insertion
operations from/to strings in the same way as they are performed on cin
and cout.

■■ A class hierarchy represents a set of hierarchically organized concepts. Base
classes act typically as interfaces.

■■ File streams in C++ are basically the libraries that are used in the due course
of programming. The programmers generally use the iostream standard
library in the C++ programming as it provides the cin and cout methods that
are used for reading from the input and writing to the output respectively.

■■ C++ has the capability of creating, accessing, and editing text files.
■■ C++ uses a file stream abstraction for handling text files. A file stream is data

that is either going into a text file to be stored or going out of a text file to
be loaded into a program. The input (>>) and the output (<<) operators are
used to stream data either into a file or into a program.

■■ It’s quite common that errors may occur during file operations. There may
have different reasons for arising errors while working with files.

■■ The C++ programming language provides several built-in functions to handle
errors during file operations.

■■ C++ is able to input and output the built-in data types using the stream
extraction operator >> and the stream insertion operator <<. The stream
insertion and stream extraction operators also can be overloaded to perform
input and output for user-defined types like an object.

I/O Streams

3G E-LEARNING

263

KNOWLEDGE CHECK
1. 	 Which header file is required to use file I/O operations?

a.	 <ifstream>
b.	 <ostream>
c.	 <fstream>
d.	 <iostream>

2. 	 Which stream class is to only write on files?
a.	 ofstream
b.	 ifstream
c.	 iostream
d.	 fstream

3. 	 Which of the following is used to create an output stream?
a.	 ofstream
b.	 ifstream
c.	 iostream
d.	 fstream

4. 	 Which of the following is used to create a stream that performs both input and
output operations?
a.	 ofstream
b.	 ifstream
c.	 iostream
d.	 fstream

5. 	 Which of the following is not used as a file opening mode?
a.	 ios::trunc
b.	 ios::binary
c.	 ios::in
d.	 ios::ate

6. 	 Which of the following statements are correct?
1) It is not possible to combine two or more file opening mode in open() method.
2) It is possible to combine two or more file opening mode in open() method.
3) ios::in and ios::out are input and output file opening mode respectively.
a.	 1, 3
b.	 2, 3

3G E-LEARNING

264 Basic Computer Coding: C++

c.	 3 only
d.	 1, 2

7. 	 By default, all the files in C++ are opened in _________ mode.
a.	 Text
b.	 Binary
c.	 ISCII
d.	 VTC

8. 	 What is the use of ios::trunc mode?
a.	 To open a file in input mode
b.	 To open a file in output mode
c.	 To truncate an existing file to half
d.	 To truncate an existing file to zero

9. 	 Which of the following is the default mode of the opening using the ofstream
class?
a.	 ios::in
b.	 ios::out
c.	 ios::app
d.	 ios::trunc

10. 	 What is the return type open() method?
a.	 int
b.	 char
c.	 bool
d.	 float

REVIEW QUESTIONS
1.	 What is meant by I O streams?

2.	 What are the types of I O streams?

3.	 What is class hierarchy example?

4.	 What is class hierarchy explain how inheritance helps in building class hierarchy?

5.	 What is stream in C++ with example?

6.	 Why fstream is used in C++?

I/O Streams

3G E-LEARNING

265

7.	 How do text files work in C++?

8.	 How we read and write a binary file with example?

9.	 What are the error handling functions during I O operations?

Check Your Result

1. (c)		 2. (a)		 3. (a)		 4. (d)		 5. (a)
6. (a)		 7. (a)		 8. (d)		 9. (b)		 10. (c)

3G E-LEARNING

266 Basic Computer Coding: C++

REFERENCES
1.	 A. Alexandrescu. “Traits on Steroids” (C++ Report, 12(6), June 2000).
2.	 A. Alexandrescu. “Traits: The else-if-then of Types” (C++ Report, 12(4), April 2000).
3.	 Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. “FormatGuard: Automatic

Protection From printf Format String Vulnerabilities” (Proceedings of the 2001
USENIX Security Symposium, August 2001, Washington, D.C.).

4.	 Fowler, Glenn S.; Korn, David G.; Vo, Kiem-Phong (2000). Extended Formatting
with Sfio. Proc. Summer USENIX Conf.

5.	 Holzner, Steven (2001). C++ : Black Book. Scottsdale, Ariz.: Coriolis Group. p.
584. ISBN 1-57610-777-9. ...endl, which flushes the output buffer and sends a
newline to the standard output stream.

6.	 S. Dewhurst. C++ Gotchas (Addison-Wesley, 2003).

“Always think about how a piece of code should be used: good interfaces are the essence of good code.
You can hide all kinds of clever and dirty code behind a good interface if you really need such code.”

– Bjarne Stroustrup

After studying this chapter,
you will be able to:
1.	 Explain branching or

conditional structure
2.	 Describe iterative or

looping structure
3.	 Focus on sequential

control flow structure

LEARNING
OBJECTIVES

CONTROL FLOW

INTRODUCTION
When a program is run, the CPU begins execution at the
top of main(), executes some number of statements (in

8
CHAPTER

3G E-LEARNING

268 Basic Computer Coding: C++

sequential order by default), and then the program terminates at the end of main().
The specific sequence of statements that the CPU executes is called the program’s
execution path (or path, for short).
Consider the following program:

#include <iostream>

int main()
{
 std::cout << “Enter an integer: “;

 int x{};
 std::cin >> x;

 std::cout << “You entered “ << x;

 return 0;
}
COPY
The execution path of this program includes lines 5, 7, 8, 10, and 12, in that order.

This is an example of a straight-line program. Straight-line programs take the same
path (execute the same statements in the same order) every time they are run.

However, often this is not what we desire. For example, if we ask the user for
input, and the user enters something invalid, ideally we’d like to ask the user to make
another choice. This is not possible in a straight-line program. In fact, the user may
repeatedly enter invalid input, so the number of times we might need to ask them to
make another selection isn’t knowable until runtime.

Fortunately, C++ provides a number of different control flow statements (also
called flow control statements), which are statements that allow the programmer to
change the normal path of execution through the program. You’ve already seen an
example of this with if statements that let us execute a statement only if a conditional
expression is true.

When a control flow statement causes point of execution to change to a non-
sequential statement, this is called branching.

Control Flow

3G E-LEARNING

269

8.1 BRANCHING OR CONDITIONAL
STRUCTURE
In the normal state, execution of the program is gradual
execution. When the Sequential Execution of the program
is blocked by the selected Statements, it is called Branches
Execution.

Control of the program requires a condition to block
selected statements. That is, the control of the program is
done by blocking the selected statements based on a condition,
then the statement used in it is called Conditional Statement.

C ++ consists of three Conditional Statements –

8.1.1 if statement

The if statement is a control statement that is used to test a
particular condition. In this, the condition is executed only
once when the condition is true.

If the condition is true in the statement then the statement
is Execute.

Syntax

if(condition)
{
statements
}

Program,
a set of
instructions that
describes how to
perform a specific
task to a computer.

Keyword

3G E-LEARNING

270 Basic Computer Coding: C++

Example

#include <iostream>
using namespace std;

int main(){

int a=100, b=200;
 if (a < b)
 {
 cout<<“a is less than b”;
 }
return 0;
}
note – this program run in c++ IDE compiler

Output

8.1.2 if else statements

The if-else statement is used to test a particular condition. If
the condition is true then the if statement is executed if the
condition is false then the else statement is executed.

An else
statement
is an alternative
statement that is
executed if the
result of a previous
test condition
evaluates to false.

Keyword

Control Flow

3G E-LEARNING

271

Syntax

if(condition)
{
statement
}
else
{
statement
}
Example

#include <iostream>
using namespace std;

int main(){

int a=10, b=10;

if(a == b)
{

 cout<<“a is equal to b”;
}
else
{
 cout<<“a is not equal to b”;
}
return 0;

note – this program run in c++ IDE compiler

3G E-LEARNING

272 Basic Computer Coding: C++

Output

8.1.3 switch statements

This statement is also a selection statement that defines various paths for the execution
of a program.
This serves as an alternative to the if-else statement.
Switch case statement has expression and some cases related to it. The case which
matches that expression or declares variable is printed in the output.
If no case matches the expression then it will print the default statement in the output.
You have to break after every statement, that means it will print only the statement
before it.
If you do not break, then it will print both the first and the second statement. Do not
break after the default case.

Syntax

switch(variable)
{
case constant 1;
statements(s);
break:
case constant 2;
statement(s);
break;
case constant 3;
statement(s);

Control Flow

3G E-LEARNING

273

break;
———–
default
statement(s);
}
Example

#include <iostream>
using namespace std;

int main(){

char Day=’A’;

switch(Day){

 case ‘A’ :
 cout<<“Today is Sunday”;
 break;

 case ‘B’ :
 cout<<“Today is Monday”;
 break;

 case ‘C’ :
 cout<<“Today is Tuesday”;
 break;

 case ‘D’ :

 case ‘E’ :
 cout<<“Today is Wednesday”;
 break;

3G E-LEARNING

274 Basic Computer Coding: C++

 case ‘F’ :
 cout<<“Today is Thurday”;
 break;

 case ‘G’ :
 cout<<“Today is Friday”;
 break;

 case ‘H’ :
 cout<<“Today is Saturday”;
 break;

 default :
 cout<<“Day is Not Found”;
}
return 0;

}

Output

8.1.4 else if Statement

The condition of if is true in else_if statement then statement of if is executed.
The condition of if is false, then it goes to the next condition and checks.
condition is true, then it executes its statement.
no condition is true, then it executes the statement of else.

Control Flow

3G E-LEARNING

275

Syntax for else if Statement

if(condition){

 statement(s);

}else if(condition){

statement(s);

}else{

statement(s);

}

Example

#include<iostream>
using namespace std;

int main(){

int a=100, b=20;

if(a < b){
 cout<<“a is less than b”;
}else if(a > b){
 cout<<“a is greater than b”;
}else{
 cout<<“a is equal to b”;
}
return 0;

}

3G E-LEARNING

276 Basic Computer Coding: C++

Output

8.2 ITERATIVE OR LOOPING STRUCTURE
The statements that cause a set of statements to be executed
repeatedly either for a specific number of times or until some
condition is satisfied are known as iteration statements. That is,
as long as the condition evaluates to True, the set of statement(s)
is executed. The various iteration statements used in C++ are
for loop, while loop and do while loop.

Through loops, we can execute anyone’s statement or
many abstract statements more than once until the condition
is achieved.

8.2.1 The for Loop

The for loop is one of the most widely used loops in C++. The
for loop is a deterministic loop in nature, that is, the number
of times the body of the loop is executed is known in advance.

The syntax of the for loop is

Iteration
statements
cause statements
(or compound
statements) to
be executed zero
or more times,
subject to some
loop-termination
criteria. When
these statements
are compound
statements, they
are executed in
order, except when
either the break
statement or the
continue statement
is encountered.

Keyword

Control Flow

3G E-LEARNING

277

1

2

3

for(initialize; condition; update) {

 //body of the for loop

}

Note that initialize, condition and update are optional expressions and are always
specified in parentheses. All the three expressions are separated by semicolons. The
semicolons are mandatory and hence cannot be excluded even if all the three expressions
are omitted.

To understand the concept of the for statement, consider this example.
Example: A program to display a countdown using for loop

1

2

3

4

5

6

7

8

9

10

#include<iostream>

using namespace std;

int main() {

 int n;

 for(n=l; n<=10; n++)

 cout<<n<<” “; // body of the loop

 cout<<”\n This is an example of for loop!! !”;

 //next statement in sequence

return 0;

}

The output of this program is
1 2 3 4 5 6 7 8 9 10

This is an example of for loop!! !

for loop using comma operator: for loop allows multiple variables to control the loop
using comma operator. That is, two or more variables can be used in the initialize and
the update parts of the loop. For example, consider this statement.

1 for (i=1,j=50 ;i<10;i++, j- -)

This statement initializes two variables, namely i and j and updates them. Note
that for loop can have only one condition.

3G E-LEARNING

278 Basic Computer Coding: C++

■■ Scenario 1: Copying (Cloning)
// Rust
let v = vec![“a”.to_string(), “b”.to_string(), “c”.to_string()];
for e.clone() in &v {
 println!(“{}”, e);
}
// C++
#include <iostream>
#include <vector>
std::vector<std::string> a{“a”, “b”, “c”};
for (auto s : a) // s has type `std::string`
{
 std::cout << s << std::endl;
}
Note how Rust makes it crystal clear that copying during
iteration and using String for instead of &str for static strings
are anti-patterns and how C++ makes it easy to write such
inefficient code.

■■ Scenario 2: As Reference (Borrowing)
// Rust
let v = vec![1, 2, 3, 4, 5];
for e in &v {
 println!(“{}”, *e);
}
// C++
#include <iostream>
#include <vector>
std::vector<int> a{1, 2, 3, 4, 5};
for (auto& num : a)
{
 printf(“%d “, num); // no asterisk!
}

■■ Scenario 3: Mutation
// Rust

A
procedure for
solving a problem
in terms of the
actions to be
executed and
the order in
which these
actions should be
executed is called
an algorithm.

Did You
Know?

Control Flow

3G E-LEARNING

279

let mut v = vec![1, 2, 3, 4, 5];
for e in &mut v {
 *e = *e + 1;
}
assert_eq!(v, vec![2, 3, 4, 5, 6]);
// C++
#include <vector>
#include <cassert>
std::vector<int> a{1, 2, 3, 4, 5};
for (auto &num : a)
{
 num++;
}
assert(a == (std::vector<int>{2, 3, 4, 5, 6}));
Note the parentheses surrounding the second argument of assert, without which we
would get an error. This is because assert is a so called #define macro, which simply
parses its arguments as comma-separated identifiers and does text replacement. Since
std::vector<int>{2, 3, 4, 5, 6} contains commas, it has to be escaped with parentheses.1
This macro is actually defined in assert.h which is part of C’s std, and its more or less
copied verbatim into C++’s cassert.

8.2.2 The while Loop

The while loop is used to perform looping operations in situations where the number
of iterations is not known in advance. That is, unlike the for loop, the while loop is
non deterministic in nature.

The syntax of the while loop is

1

2

3

while(condition) {

 // body of while loop

}

These points should be noted about the while loop.
■■ Unlike for loops where explicit initialize and update expressions are specified,

while loops do not specify any explicit initialize and update expressions. This
implies that the control variable must be declared and initialized before the
while loop and needs to be updated within the body of the while loop .

3G E-LEARNING

280 Basic Computer Coding: C++

■■ The while loop executes as long as condition evaluates to True. If condition
evaluates to False in the first iteration, then the body of while loop never
executes.

■■ while loop can have more than one expression in its condition. However, such
multiple expressions must be separated by commas and are executed in the
order of their appearance.

To understand the concept of the while loop, consider this example.
Example : A program to determine the sum of first n consecutive positive integers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#include<iostream>

using namespace std;

int main() {

 int n,i,sum; // i is the control variable

 cout<<” Enter the number of consecutive positive”<<

 “\n integers(starting from 1): “;

 cin>>n;

 sum=0;

 i=l; // initialize expression

 while (i<=n) {

 sum+=i;

 ++i; //update expression

}

cout<<”\nThe sum is “<<sum;

return 0;

}

The output of the program is
Enter the number of consecutive positive integers(starting from 1): 9
The sum is : 45

Control Flow

3G E-LEARNING

281

8.2.3 The do-while loop

In a while loop, the condition is evaluated at the beginning of the loop and if the
condition evaluates to False, the body of the loop is not executed even once. However,
if the body of the loop is to be executed at least once, no matter whether the initial
state of the condition is True or False, the do-while loop is used. This loop places the
condition to be evaluated at the end of the loop.

The syntax of the do-while loops is given here.

1

2

3

do {

 //body of do while loop

}while(condition) ;

To understand the concept of do-while loop, consider this example.
Example : A program to calculate the sum of an Arithmetic Progression (AP)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include<iostream>
using namespace std;
int main () {
 int a,d,n,sum,term=0; /*a is the first term , d is
 the common difference, n is the number of terms to be summed */
 cout<<”Enter the first term, common difference,”
 <<”and the number of terms to be summed”
 <<”respectively:\n”;
 cin>>a>>d>>n;
 sum=0;
 int i=1;
 cout<<”\nThe terms are “;
 do //do-while loop {
 term= a+ (i-1)*d;
 sum+=term; //Adding each term to ‘sum’
 cout<<term<<” “;
 ++i;
}
while (i<=n) ;
cout<<”\nThe sum of A.P. is “<<sum;
return 0;
}

3G E-LEARNING

282 Basic Computer Coding: C++

The output of the program is
Enter the first term, common difference, and the number of
terms to be summed respectively:
3
6
5
The terms are 3 9 15 21 27
The sum of A.P. is 75
Note that, all the three loops (for, while and do-while) can
be nested within the body of another loop

8.3 SEQUENTIAL CONTROL FLOW
STRUCTURE
The statements written in the program are implemented one
after the other.

The statements are executed in the order in which the
compiler is received.

This execution of the program is called serial execution.

8.3.1 Jump statements

Jump statements are used to interrupt the normal flow of
program.

8.3.2 Break statement

This statement is used to end a sequence of statements in a
switch statement and to immediately exit a loop.

Control
instructions
make your code
powerful and
versatile.

Remember

Control Flow

3G E-LEARNING

283

The execution of the loops and switch cases of the Break
Statement Program stops at any condition.
syntax:- break;

Example

#include <iostream>

using namespace std;

int main() {

 for (int i = 1; i <= 10; i++)

 {

 if (i == 5)

 {

 break;

 }

 cout<<i<<“\n”;

 }

}

Output

The break
statement,
when executed
in one of the
repetition
structures (for,
while and do/
while), causes
immediate
exit from the
structure.

Remember

3G E-LEARNING

284 Basic Computer Coding: C++

8.3.3 Continue statement

The continue statement is used when we want to run the loop continues with the next
iteration and skip other statements in the loop for the current iteration.
Depending on the condition of the loops of the Continue Statement program, skip the
middle statements, and execute the subsequent statements.
syntax:- continue;
Example

#include <iostream>

using namespace std;

int main()

{

 for(int i=1;i<=10;i++){

 if(i==5){

 continue;

 }

 cout<<i<<“\n”;

 }

}
note – this program run in c++ IDE compiler

Output

Control Flow

3G E-LEARNING

285

8.3.4 Go to statement

Go to is the statement of C ++ Programming. Labels are used
in this.
There are two types of Go to Statements.
Forward
Backward
When a goto statement executes its next statement except
for some statement, it is called Forward goto statement and
goes to its previous label to execute any previous or executed
statement again, it is called Backward goto statement.

Syntax for Forward and Backward goto Statement
Syntax for Forward
goto label ;
statement ;
———–
label ;

Syntax for Backward
label ;
statement ;
———–
goto label ;

Example

The
continue
statement, when
executed in one
of the repetition
structures (for,
while and do/
while), skips
any remaining
statements in
the body of the
structure and
proceeds with
the next iteration
of the loop.

Remember

3G E-LEARNING

286 Basic Computer Coding: C++

#include <iostream>
using namespace std;
int main()
{
 int num; cout<<“Enter a number: “;
 cin>>num;
 if (num % 2==0){
 goto print;
 }
 else {
 cout<<“Odd Number”;
 }

 print:
 cout<<“Even Number”;
 return 0;
}

Output

Any
nonzero
value implicitly
converts to true;
0 (zero) implicitly
converts to false.

Remember

Control Flow

3G E-LEARNING

287

ROLE MODEL

JOSEPH MARIE JACQUARD
Innovator of the loom that bears his name, Joseph Marie
Jacquard (1752-1834) developed the first loom to weave designs
into cloth. It was also recognized as the first machine to employ
the punch-card technology, that would eventually program
the computer of the mid-twentieth century.

In the 1700s, the European textile industry and specifically
weaving, had not changed for hundreds of years. Using a
loom, a weaver created woven fabrics by interlacing two
sets of threads—taut lengthwise or “warp” threads that were
crosswise, and “weft” or “filling” threads, at right angles. To
create wide finished textiles, such as those used for window
coverings, narrow lengths of fabric had to be woven by hand.
Warp threads were then tautly stretched across the loom’s
frame, and raised and lowered by the loom’s harness, to allow
the weft threads to be woven between them. These intricately
textured patterns, as well as multi-colored designs were time-
consuming. Even so, with its generations of skilled weavers,
by the mid-1800s, France was known around the world for
the quality of its woven silks.

As ever-larger mechanized looms replaced skilled hand
weavers in the 1790s, an explosion of woven goods appeared
in European and American trade markets. These goods were
inexpensive due to being mass-produced. However, these new,
mechanized looms could not compete with the skilled manual
labor required to create fabrics containing anything other than
a plain or simple, woven pattern, such as a check or stripe.

It would be the invention of a Frenchman named Joseph
Marie Jacquard that would spread mass production to these
more complicated, and costly, textile designs, allowing even
intricate patterns to be automatic ally woven into the cloth
at much the same rate as a plain length of fabric could be
generated.

Son Of A Silk Weaver

Born July 7, 1752, in the southern French city of Lyon, Jacquard
spent much of his life in the silk textile industry. Like his

3G E-LEARNING

288 Basic Computer Coding: C++

parents had before him, young Joseph went to work at a silk mill in Lyon. Along with
many young boys of his generation and economic status, he grew up working 10-hour
days within the factory. His first task as a young worker was to serve as a draw-boy.

Sitting on a perch above the heavy, massive loom and working quickly in advance
of each passage of the flying shuttle carrying the weft thread, he would lift and re-
position warp threads of various colors in different spots to create the pattern desired
by the Master weaver who operated the loom. This tedious and sometimes dangerous
task was given to children because their smaller fingers were more capable of setting
the fine silk, wool, or cotton threads used.

The Industrial Revolution heralded what would be a long, gradual shift from a
farming economy, to an industrial, trade-based economy. As fewer peasants made
their living off the land, they migrated to the cities, where factories sought workers
in response to foreign demands for their trade goods. Throughout France, the textile
industry flourished.

Poverty Leads To Revolution

Unfortunately, this new economic growth and the growth of a new entrepreneurial class
came at some expense. The citizens of Lyon, as well as other industrial cities, were
overworked, yet still poor and lacking food. The “curse” of the Industrial Revolution was
that the upper middle-class factory owners profited from the rise in foreign trade,
while the lower classes suffered crowded living conditions and little pay.

By the time Jacquard had entered adulthood, France was entering one of the most
tumultuous periods of its history: the French Revolution. And in Lyons, one of the
country’s most densely inhabited cities, this unrest— particularly that caused by the
shift in political power from the wealthy nobility into the hands of the masses—was
felt by all. Changes in the status quo were happening on all levels, including political,
social, economic, and technological areas.

As early as 1775, French Controller-General Anne-Robert Turgot had encouraged free
trade by inhibiting the restrictive guild system and subsidizing innovations in those
industries he believed would one day make France an economic rival with her
nemesis, Great Britain. Following the execution of Turgot’s employer, King Louis XVI,
and the rise of a revolutionary government, innovations among the French citizenry
continued to be encouraged and the inventive spirit was rewarded with government
grants. This trend would continue following the Revolution, as Emperor Napoleon
Bonaparte himself encouraged technological advances in his every-growing republic.

This encouragement by the government drew the interest of young men such as
Jacquard, who had grown up and advanced to the position of mill mechanic in Lyon.
Reflecting on his childhood job, Jacquard set about to find an alternative to the position
of draw-boy in the silk industry.

Control Flow

3G E-LEARNING

289

A concept developed by fellow Frenchman Jacques de Vaucanson in 1745, that
utilized a perforated roll of paper to control the weaving process, served as Jacquard’s
starting point. Given one of Vaucanson’s looms to restore, Jacquard set to work on
correcting Vaucanson’s unworkable design. Absorbed by his project for several years,
Jacquard created an operative prototype of his loom by 1790.

By 1793, the Revolution was in full swing, forcing Jacquard to abandon his project;
instead he joined the republican lower classes in mounting their historic attack on
the French nobility. After fighting alongside his fellow citizens in defense of the new
French republic, Jacquard resumed his work in 1801, shortly after Napoleon’s rise to
power. His improved draw-loom, displayed that same year at an industrial exhibition
in the Louvre in Paris, earned Jacquard a bronze medal.

Three years later, in the fall of 1803, the inventor was again summoned to Paris,
this time to demonstrate a second version of his original loom design. This version had
attached to the top of its frame the “Jacquard mechanism” or “Jacquard attachment,”
which was a device connecting the wooden loom to an interchangeable continuous
roll of connected punch cards. This remarkably innovative method of “programming”
a machine allowed the Jacquard loom to produce tapestries, brocades, damasks, and
other intricately woven silk fabrics far more quickly than had the manual technology
of the past.

The Technology Of Jacquard Weaving

The innovation underlying Jacquard’s loom was the use of encoded punch cards
to control the action of the weaving process, allowing any desired pattern to be
reproduced automatically. The required design is encoded onto a series of connected
pasteboard cards as a group of punched holes, each card containing a single line
of holes representing a single row of weave. Each series of rectangular cards, when
connected, creates a grid of rows and columns.

Jacquard’s mechanism allowed each warp thread to operate independently, much
like a player piano, where each note is sounded by a hole on a music roll as it passes
over a certain opening. In the Jacquard mechanism, a specific combination of holes
punched in a row through an individual card allowed selected sprung rods or needles
to pass through the card and pick up certain threads. The connected cards create a
continuous loop allowing for repeated patterns; when all the cards have been used,
the sequence begins again.

Combining any number of connected cards in a loop, Jacquard’s loom was able
to weave patterns of great complexity, and these became popular for tablecloths and
bed coverings. In addition to textile designs featuring smallscale, repeated patterns,
Jacquard became known for intricate representational coverlets featuring a single large
design, woven in a variety of colors.

3G E-LEARNING

290 Basic Computer Coding: C++

One remarkable example of his craft that still exists is a black-and-white silk
portrait of Jacquard himself, which was woven using a strip of ten thousand cards.
Also important is the course his technology would take. Jacquard’s open hole/closed
hole system was the first use of the binary system that would be translated into a
basic computer over a century later. In addition, computer operators would refer to his
concept of sequencing individual cards in a specific order to create a specific pattern,
as sequencing commands to create a “program.”

Innovation Gave Rise To Computer

Jacquard’s invention was immediately recognized as something that would revolutionize
the French textile industry. Ironically, the impoverished factory mechanic, who had
also risked his life in defense of his country, would earn no money directly from his
invention. Instead, in an agreement with the city of Lyon, the patent for his Jacquard
mechanism reverted to the city, which declared his invention public property in 1806.
Fortunately, Jacquard was awarded a state pension by Emperor Napoleon that allowed
him to profit from his innovation; in addition he received royalties on each loom sold
and put into operation.

Perhaps more significant that its revolution of the textile industry, Jacquard’s
innovative use of the punched card mechanism greatly influenced other inventors.
English inventor Charles Babbage used Jacquard’s technology in his development of
the analytical engine, a simple form of a calculator. American statistician Herman
Hollerith adopted punchcards as a means of entering data into his census collator.
His collator, developed in 1890, was used through the 1960s to tabulate results of
the United States census.

Repercussions Of Progress

Like many labor-saving developments that occurred during the Industrial Revolution,
Jacquard’s technology was not immediately embraced by silk weavers and others in
weaving trades. They saw it as a threat to their jobs and protested its use. As early
as 1801, riots broke out in Lyon over changes to the traditional loom. In 1804, after
Jacquard’s revised loom was introduced, the violence escalated. In addition to trying
to destroy any Jacquard looms that were in use in Lyon, attempts were made on
Jacquard’s life.

However, the advantages of his looms eventually won out over the opposition. In
1800, only 3,500 working looms were in use in Lyon’s silk industry. Within a decade,
the number of working looms in the city reached 11,000. One textile mill owner even
had thousands of workers on his payroll.

Control Flow

3G E-LEARNING

291

By 1810, France had become competitive with its longstanding rival, Great Britain,
in the textile industry. In 1819, Jacquard was awarded the Legion of Honor Cross, as
well as a gold medal, for his role in his nation’s economic success. During the 1820s,
his name became known worldwide as use of the Jacquard loom spread to England.

Jacquard died in Oullins, France on August 7, 1834. Over 160 years later, the
technology that bears his name is still in use around the world.

3G E-LEARNING

292 Basic Computer Coding: C++

CASE STUDY

THINKING ABOUT OBJECTS: IDENTIFYING THE CLASSES IN
A PROBLEM
Now we begin our optional, object-oriented design/implementation case study. This
case study will provide you with a substantial, carefully paced, complete design and
implementation experience. We present this case study in a fully solved format. This
is not an exercise; rather it is an endto-end learning experience that concludes with a
detailed walkthrough of the C++ code. We have provided this case study so you can
become accustomed to the kinds of substantial problems that are attacked in industry.
We hope you enjoy this experience.

Problem Statement

A company intends to build a two-floor office building and equip it with an elevator.
The company wants you to develop an object-oriented software simulator in C++ that
models the operation of the elevator to determine whether or not it will meet their
needs.

Your simulator should include a clock that begins with its time, in seconds, set to
zero. The clock ticks (increments the time by one) every second; it does not keep track
of hours and minutes. Your simulator should also include a scheduler that begins the
day by randomly scheduling two times: the time when a person will step onto floor 1
and press the button on the floor to summon the elevator, and the time when a person
will step onto floor 2 and press the button on the floor to summon the elevator. Each
of these times is a random integer in the range of 5 to 20, inclusive (i.e., 5, 6, 7, ...,
20). When the clock time equals the earlier of these two times, the scheduler creates
a person, who then walks onto the appropriate floor and presses the floor button.
[Note: It is possible that these two randomly scheduled times will be identical, in
which case people will step onto both floors and press both floor buttons at the same
time.] The floor button illuminates, indicating that it has been pressed. [Note: The
illumination of the floor button occurs automatically when the button is pressed and
needs no programming; the light built into the button turns off automatically when
the button is reset.] The elevator starts the day waiting with its door closed on floor
1. To conserve energy, the elevator moves only when necessary. The elevator alternates
directions between moving up and moving down.

For simplicity, the elevator and each of the floors have a capacity of one person.
The scheduler first verifies that a floor is unoccupied before creating a person to walk
onto that floor. If the floor is occupied, the scheduler delays creating the person by
one second (thus giving the elevator an opportunity to pick up the person and clear
the floor). After a person walks onto a floor, the scheduler creates the next random

Control Flow

3G E-LEARNING

293

time (between 5 and 20 seconds into the future) for a person to walk onto that floor
and press the floor button.

When the elevator arrives at a floor, it resets the elevator button and sounds the
elevator bell (which is inside the elevator). The elevator then signals its arrival to the
floor. The floor, in response, resets the floor button and turns on the floor’s elevator
arrival light. The elevator then opens its door. [Note: The door on the floor opens
automatically with the elevator door and needs no programming.] The elevator’s
passenger, if there is one, exits the elevator, and a person, if there is one waiting
on that floor, enters the elevator. Although each floor has a capacity of one person,
assume there is enough room on each floor for a person to wait on that floor while
the elevator’s passenger, if there is one, exits.

A person entering the elevator presses the elevator button, which illuminates
(automatically, without programming) when pressed and turns off when the elevator
arrives on the floor and resets the elevator button. [Note: Because there are only two
floors, only one elevator button is necessary; this button simply tells the elevator to
move to the other floor.] Next, the elevator closes its door and begins moving to the
other floor. When the elevator arrives at a floor, if a person does not enter the elevator
and the floor button on the other floor has not been pressed, the elevator closes its
door and remains on that floor until a button on a floor is pressed.

For simplicity, assume that all the activities that happen once the elevator reaches
a floor, and until the elevator closes its door, take zero time. [Note: Although these
activities take zero time, they still occur sequentially, e.g., the elevator door must
open before the passenger exits the elevator.] The elevator takes five seconds to move
from either floor to the other. Once per second, the simulator provides the time to the
scheduler and to the elevator. The scheduler and elevator use the time to determine what
actions each needs to take at that particular time, e.g., the scheduler may determine
that it is time to create a person; and the elevator, if moving, may determine that it
is time to arrive at its destination floor.

The simulator should display messages on the screen describing the activities
that occur in the system. These include a person pressing a floor button, the elevator
arriving on a floor, the clock ticking, a person entering the elevator, etc. The output
should resemble the following:

Enter run time: 30
(scheduler schedules next person for floor 1 at time 5)
(scheduler schedules next person for floor 2 at time 17)
*** ELEVATOR SIMULATION BEGINS ***
TIME: 1
elevator at rest on floor 1
TIME: 2

3G E-LEARNING

294 Basic Computer Coding: C++

elevator at rest on floor 1
TIME: 3
elevator at rest on floor 1
TIME: 4
elevator at rest on floor 1
TIME: 5
scheduler creates person 1
person 1 steps onto floor 1
person 1 presses floor button on floor 1
floor 1 button summons elevator
(scheduler schedules next person for floor 1 at time 20)
elevator resets its button
elevator rings its bell
floor 1 resets its button
floor 1 turns on its light
elevator opens its door on floor 1
person 1 enters elevator from floor 1
person 1 presses elevator button
elevator button tells elevator to prepare to leave
floor 1 turns off its light
elevator closes its door on floor 1
elevator begins moving up to floor 2 (arrives at time 10)
TIME: 6
elevator moving up
TIME: 7
elevator moving up
TIME: 8
elevator moving up
TIME: 9
elevator moving up
TIME: 10
elevator arrives on floor 2
elevator resets its button

Control Flow

3G E-LEARNING

295

elevator rings its bell
floor 2 resets its button
floor 2 turns on its light
elevator opens its door on floor 2
person 1 exits elevator on floor 2
floor 2 turns off its light
elevator closes its door on floor 2
elevator at rest on floor 2
TIME: 11
elevator at rest on floor 2
TIME: 12
elevator at rest on floor 2
TIME: 13
elevator at rest on floor 2
TIME: 14
elevator at rest on floor 2
TIME: 15
elevator at rest on floor 2
TIME: 16
elevator at rest on floor 2
TIME: 17
scheduler creates person 2
person 2 steps onto floor 2
person 2 presses floor button on floor 2
floor 2 button summons elevator
(scheduler schedules next person for floor 2 at time 34)
elevator resets its button
elevator rings its bell
floor 2 resets its button
floor 2 turns on its light
elevator opens its door on floor 2
person 2 enters elevator from floor 2
person 2 presses elevator button

3G E-LEARNING

296 Basic Computer Coding: C++

elevator button tells elevator to prepare to leave
floor 2 turns off its light
elevator closes its door on floor 2
elevator begins moving down to floor 1 (arrives at time 22)
TIME: 18
elevator moving down
TIME: 19
elevator moving down
TIME: 20
scheduler creates person 3
person 3 steps onto floor 1
person 3 presses floor button on floor 1
floor 1 button summons elevator
(scheduler schedules next person for floor 1 at time 26)
elevator moving down
TIME: 21
elevator moving down
TIME: 22
elevator arrives on floor 1
elevator resets its button
elevator rings its bell
floor 1 resets its button
floor 1 turns on its light
elevator opens its door on floor 1
person 2 exits elevator on floor 1
person 3 enters elevator from floor 1
person 3 presses elevator button
elevator button tells elevator to prepare to leave
floor 1 turns off its light
elevator closes its door on floor 1
elevator begins moving up to floor 2 (arrives at time 27)
TIME: 23
elevator moving up

Control Flow

3G E-LEARNING

297

TIME: 24
elevator moving up
TIME: 25
elevator moving up
TIME: 26
scheduler creates person 4
person 4 steps onto floor 1
person 4 presses floor button on floor 1
floor 1 button summons elevator
(scheduler schedules next person for floor 1 at time 35)
elevator moving up
TIME: 27
elevator arrives on floor 2
elevator resets its button
elevator rings its bell
floor 2 resets its button
floor 2 turns on its light
elevator opens its door on floor 2
person 3 exits elevator on floor 2
floor 2 turns off its light
elevator closes its door on floor 2
elevator begins moving down to floor 1 (arrives at time 32)
TIME: 28
elevator moving down
TIME: 29
elevator moving down
TIME: 30
elevator moving down
*** ELEVATOR SIMULATION ENDS ***
Our goal is to implement a working software simulator that models the operation

of the elevator for the number of seconds entered by simulator user.

3G E-LEARNING

298 Basic Computer Coding: C++

Analyzing and Designing the System

In this and the next several “Thinking About Objects” sections, we perform the steps
of an object-oriented design process for the elevator system. The UML is designed
for use with any OOAD process—many such processes exist. One popular method is
the Rational Unified Process™ developed by Rational Software Corporation. For this
case study, we present our own simplified design process for your first OOD/UML
experience.

Before we begin, we must examine the nature of simulations. A simulation consists
of two portions. One contains all the elements that belong to the world we want to
simulate. These elements include the elevator, the floors, the buttons, the lights, etc.
Let us call this the world portion. The other portion contains all the elements needed
to simulate this world. These elements include the clock and the scheduler. We call
this the controller portion. We will keep these two portions in mind as we design our
system.

Use Case Diagrams

When developers begin a project, they rarely start with a detailed problem statement,
such as the one we have provided at the beginning of this section. This document
and others are usually the result of the object-oriented analysis (OOA) phase. In this
phase you interview the people who want you to build the system and the people who
will eventually use the system. You use the information gained in these interviews
to compile a list of system requirements. These requirements guide you and your
fellow developers as you design the system. In our case study, the problem statement
contains the system requirements for the elevator system. The output of the analysis
phase is intended to specify clearly what the system is supposed to do. The output of
the design phase is intended to clearly specify how the system should be constructed
to do what is needed.

The UML provides the use case diagram to facilitate the process of requirements
gathering. The use case diagram models the interactions between the system’s external
clients and the use cases of the system. Each use case represents a different capability
that the system provides the client. For example, an automated teller machine has
several use cases, including “Deposit,” “Withdraw” and “Transfer Funds.”

Figure 1 shows the use case diagram for the elevator system. The stick figure
represents an actor. Actors are any external entities such as people, robots, other
systems, etc., that use the system. The only actors in our system are the people who
want to ride the elevator. We therefore model one actor called “Person.” The actor’s
“name” appears underneath the stick figure.

Control Flow

3G E-LEARNING

299

Figure 1: Use case diagram for elevator system.

The system box (i.e., the enclosing rectangle in the figure) contains the use cases
for the system. Notice that the box is labeled “Elevator System.” This title shows that
this use case model focuses on the behaviors of the system we want to simulate (i.e.,
elevator transporting people), as opposed to the behaviors of the simulation (i.e.,
creating people and scheduling arrivals). The UML models each use case as an oval.
In our simple system, actors use the elevator for only one purpose: to move to another
floor. The system provides only one capability to its users; therefore, “Move to other
floor” is the only use case in our elevator system.

As you build your system, you rely on the use case diagram to ensure that all the
clients’ needs are met. Our case study contains only one use case. In larger systems,
use case diagrams are indispensable tools that help systems designers remain focused
on satisfying the users’ needs. The goal of the use case diagram is to show the kinds of
interactions users have with a system without providing the details of those interactions.

Identifying the Classes in a System

The next step of our OOD process is to identify the classes in our problem. We will
eventually describe these classes in a formal way and implement them in C++. First
we review the problem statement and locate all the nouns; with high likelihood, these
represent most of the classes (or instances of classes) necessary to implement the
elevator simulator. Figure 2 is a list of these nouns.

3G E-LEARNING

300 Basic Computer Coding: C++

List of nouns in the problem statement
company

building

elevator

simulator

clock

time

scheduler

person

floor 1

floor button

floor 2

elevator door

energy

capacity

elevator button

elevator bell

floor’s elevator arrival light

person waiting on a floor

elevator’s passenger

Figure 2: List of nouns in problem statement

We choose only the nouns that perform important duties in our system. For this
reason we omit the following:

■■ company
■■ simulator
■■ time
■■ energy
■■ capacity

Control Flow

3G E-LEARNING

301

We do not need to model “company” as a class, because the company is not part of
the simulation; the company simply wants us to model the elevator. The “simulator” is
our entire C++ program, not an individual class. The “time” is a property of the clock,
not an entity itself. We do not model “energy” in our simulation (although electric,
gas or oil companies might certainly be interested in doing so in their simulation
programs) and, finally, “capacity” is a property of the elevator and of the floor—not
a separate entity itself.

We determine the classes for our system by filtering the remaining nouns into
categories. Each remaining noun from Fig. 2 refers to one or more of the following
categories:

■■ building
■■ elevator
■■ clock
■■ scheduler
■■ person (person waiting on a floor, elevator’s passenger)
■■ floor (floor 1, floor 2)
■■ floor button
■■ elevator button
■■ bell
■■ light
■■ door

These categories are likely to be the classes we will need to implement for our
system. Notice that we create one category for the buttons on the floors and one
category for the button on the elevator. The two types of buttons perform different
duties in our simulation—the buttons on the floors summon the elevator, and the
button in the elevator tells the elevator to begin moving to the other floor.

We can now model the classes in our system based on the categories we derived. By
convention, we will capitalize class names. If the name of a class contains more than one
word, we run the words together and capitalize each word (e.g., MultipleWordName).
Using this convention, we create classes Elevator, Clock, Scheduler, Person, Floor, Door,
Building, FloorButton, ElevatorButton, Bell and Light. We construct our system using
all of these classes as building blocks. Before we begin building the system, however,
we must gain a better understanding of how the classes relate to one another.

Class Diagrams

The UML enables us to model the classes in the elevator system and their relationships
via the class diagram. Figure 3 shows how to represent a class using the UML. Here,

3G E-LEARNING

302 Basic Computer Coding: C++

we model class Elevator. In a class diagram, each class is modeled as a rectangle. This
rectangle can then be divided into three parts. The top part contains the name of the
class. The middle part contains the class’s attributes. The bottom contains the class’s
operations. Classes relate to one another via associations. Figure 4 shows how our
classes Building, Elevator and Floor relate to one another. Notice that the rectangles
in this diagram are not subdivided into three sections. The UML allows the truncation
of class symbols in this manner in order to create more readable diagrams.

Figure 3: Representing a class in the UML.

Figure 4: Associations between classes in a class diagram.

In this class diagram, a solid line that connects classes represents an association.
An association is a relationship between classes. The numbers near the lines express
multiplicity values. Multiplicity values indicate how many objects of a class participate
in the association. From the diagram, we see that two objects of class Floor participate
in the association with one object of class Building. Therefore, class Building has a one-
totwo relationship with class Floor; we can also say that class Floor has a two-to-one
relationship with class Building. From the diagram, you can see that class Building
has a one-to-one relationship with class Elevator and vice versa. Using the UML, we
can model many types of multiplicity. Figure 5 shows the multiplicity types and how
to represent them.

An association can be named. For example, the word “Services” above the line
connecting classes Floor and Elevator indicates the name of that association—the arrow
shows the direction of the association. This part of the diagram reads: “one object of
class Elevator services two objects of class Floor.”

Control Flow

3G E-LEARNING

303

The solid diamond attached to the association lines of class Building indicates
that class Building has a composition relationship with classes Floor and Elevator.
Composition implies a whole/part relationship. The class that has the composition
symbol (the solid diamond) on its end of the association line is the whole (in this
case, Building), and the class on the other end of the association line is the part (i.e.,
Floor and Elevator).

Figure 5: Multiplicity table.

Figure 6 shows the full class diagram for the elevator system. All the classes we
created are modeled, as well as the associations between these classes.

3G E-LEARNING

304 Basic Computer Coding: C++

Figure 6: Full class diagram for elevator simulation.

Class Building is represented near the top of the diagram and is composed of four
classes, including Clock and Scheduler. These two classes make up the controller portion
of the simulation. Class Building is also composed of class Elevator and class Floor
(notice the one-to-two relationship between class Building and class Floor). Classes Floor
and Elevator are modeled near the bottom of the diagram. Class Floor is composed of
one object each of classes Light and FloorButton. Class Elevator is composed of one
object each of classes ElevatorButton, class Door and class Bell. The classes involved
in an association can also have roles. Roles help clarify the relationship between two
classes. For example, class Person plays the “waiting passenger” role in its association
with class Floor (because the person is waiting for the elevator.) Class Person plays the
passenger role in its association with class Elevator. In a class diagram, the name of
a class’s role is placed on either side of the association line, near the class’s rectangle.
Each class in an association can play a different role.

The association between class Floor and class Person indicates that an object
of class Floor can relate to zero or one objects of class Person. Class Elevator also
relates to zero or one objects of class Person. The dashed line that bridges these two
association lines indicates a constraint on the relationship between classes Person,
Floor and Elevator. The constraint says that an object of class Person can participate
in a relationship with an object of class Floor or with an object of class Elevator, but
not both objects at the same time. The notation for this relationship is the word “xor”
(which stands for “exclusive or”) placed inside braces. The association between class

Control Flow

3G E-LEARNING

305

Scheduler and class Person states that one object of class Scheduler creates zero or
more objects of class Person.

Object Diagrams

The UML also defines object diagrams, which are similar to class diagrams, except
that they model objects and links—links are relationships between objects. Like class
diagrams, object diagrams model the structure of the system. Object diagrams present
a snapshot of the structure while the system is running—this provides information
about which objects are participating in the system at a specific point in time.

Figure 7 models a snapshot of the system when no one is in the building (i.e.,
no objects of class Person exist in the system at this point in time). Object names are
usually written in the form: objectName : ClassName. The first word in an object name
is not capitalized, but subsequent words are. All object names in an object diagram
are underlined. We omit the object name for some of the objects in the diagram (e.g.,
objects of class FloorButton). In large systems, many names of objects will be used in
the model. This can cause cluttered, hard-to-read diagrams. If the name of a particular
object is unknown or if it is not necessary to include the name (i.e., we only care about
the type of the object), we can leave the object name out. In this instance, we simply
display the colon and the class name.

Figure 7: Object diagram of empty building.

Now we have identified the classes for this system (although we may discover others
in later phases of the design process). We have also examined the system’s use case.

3G E-LEARNING

306 Basic Computer Coding: C++

Questions
1.	 How might you decide whether the elevator is able to handle the anticipated traffic volume?

2.	 Why might it be more complicated to implement a three-story (or taller) building?

3.	 It is common for large buildings to have many elevators. Once we have created one eleva-
tor object, it is easy to create as many as we want. What problems or opportunities do you
foresee in having several elevators, each of which may pick up and discharge passengers at
every floor in a large building?

4.	 For simplicity, we have given our elevator and each floor a capacity of one passenger. What
problems or opportunities do you foresee in being able to increase these capacities?

Control Flow

3G E-LEARNING

307

SUMMARY
■■ In the normal state, execution of the program is gradual execution. When the

Sequential Execution of the program is blocked by the selected Statements, it
is called Branches Execution.

■■ The if statement is a control statement that is used to test a particular condition.
In this, the condition is executed only once when the condition is true.

■■ The if-else statement is used to test a particular condition. If the condition is
true then the if statement is executed if the condition is false then the else
statement is executed.

■■ Switch case statement has expression and some cases related to it. The case
which matches that expression or declares variable is printed in the output.

■■ The condition of if is true in else_if statement then statement of if is executed.
■■ The statements that cause a set of statements to be executed repeatedly either

for a specific number of times or until some condition is satisfied are known
as iteration statements. That is, as long as the condition evaluates to True,
the set of statement(s) is executed. The various iteration statements used in
C++ are for loop, while loop and do while loop.

■■ The for loop is one of the most widely used loops in C++. The for loop is
a deterministic loop in nature, that is, the number of times the body of the
loop is executed is known in advance.

■■ The while loop is used to perform looping operations in situations where the
number of iterations is not known in advance. That is, unlike the for loop,
the while loop is non deterministic in nature.

■■ The statements written in the program are implemented one after the other.
■■ Jump statements are used to interrupt the normal flow of program.
■■ The execution of the loops and switch cases of the Break Statement Program

stops at any condition.
■■ The continue statement is used when we want to run the loop continues with

the next iteration and skip other statements in the loop for the current iteration.
■■ When a goto statement executes its next statement except for some statement,

it is called Forward goto statement and goes to its previous label to execute
any previous or executed statement again, it is called Backward goto statement.

3G E-LEARNING

308 Basic Computer Coding: C++

KNOWLEDGE CHECK
1. 	 Which of the following can replace a simple if-else construct?

a.	 Ternary operator
b.	 while loop
c.	 do-while loop
d.	 for loop

2. 	 Which of the following is an entry-controlled loop?
a.	 do-while loop
b.	 while loop
c.	 for loop
d.	 Both (B) and (C)

3. 	 Which of the following is most suitable for a menu-driven program?
a.	 do-while loop
b.	 while loop
c.	 for loop
d.	 All of these

4. 	 Consider the following loop :
for(int i=0; i<5; i++) ;
What will be the value of i after this loop?
a.	 It will give compilation error.
b.	 5
c.	 6
d.	 Some Garbage value

5. 	 A switch construct can be used with which of the following types of variable?
a.	 int
b.	 int, char
c.	 int, float, char
d.	 Any basic datatype

6. 	 Which of the following must be present in switch construct?
a.	 Expression in () after switch
b.	 default
c.	 case followed by value
d.	 All of these

Control Flow

3G E-LEARNING

309

7. 	 What is the effect of writing a break statement inside a loop?
a.	 It cancels remaining iterations.
b.	 It skips a particular iteration.
c.	 The program terminates immediately.
d.	 Loop counter is reset.

8. 	 What is the effect of writing a continue statement inside a loop?
a.	 It cancels remaining iterations.
b.	 It skips execution of statements which are written below it.
c.	 The program terminates immediately.
d.	 Loop counter is reset.

9. 	 If the variable count exceeds 100, a single statement that prints “Too many” is
a.	 if (count<100) cout << “Too many”;
b.	 if (count>100) cout >> “Too many”;
c.	 if (count>100) cout << “Too many”;
d.	 None of these.

10.	 The break statement causes an exit
a.	 from the innermost loop only.
b.	 only from the innermost switch.
c.	 from all loops & switches.
d.	 from the innermost loop or switch.

REVIEW QUESTIONS
1.	 What is control flow explain with example?
2.	 How many types of control flow are there in CPP?
3.	 What is the difference between looping and iteration?
4.	 What are iterative or looping statements?
5.	 What is meant by iterative structure?
6.	 What is sequential control structure in C++?

Check Your Result

1. (a)		 2. (d)		 3. (a)		 4. (b)		 5. (b)
6. (a)		 7. (a)		 8. (b)		 9. (c)		 10. (d)

3G E-LEARNING

310 Basic Computer Coding: C++

REFERENCES
1.	 David Anthony Watt; William Findlay (2004). Programming language design

concepts. John Wiley & Sons. p. 228. ISBN 978-0-470-85320-7.
2.	 Kozen, Dexter (2008). “The Böhm–Jacopini Theorem Is False, Propositionally”.

Mathematics of Program Construction (PDF). Lecture Notes in Computer Science.
5133. pp. 177–192. CiteSeerX 10.1.1.218.9241. doi:10.1007/978-3-540-70594-9_11.
ISBN 978-3-540-70593-2.

Index

A

Abstraction 4, 5, 30
Appending 230, 242
Arguments 140, 160, 166

B

Backward goto statement 285, 307
Binary File 231
Boolean 41
Branches Execution 269, 307
Break statement 282

C

Catch block 173, 174, 175, 176, 180, 185,
186, 189, 193
Class Hierarchy 208
Compiler 38, 46, 47, 52, 53, 55, 187
Compile Time Polymorphism 136, 139
Conditional Statement 269
Constructor 178
Constructor creation 44
Constructors 127
Continue Statement program 284
control flow statements 268
Current exception 183

D

Database 213, 214, 215, 216, 218
Demand 4
Direct base classes 100, 101, 129
do while loop 276, 307

E

Error 251
Exception 171, 172, 173, 175, 176, 177, 182,
183, 184, 185, 186, 191, 192, 193, 195
Exception handling 173, 177, 195
Exception implementation 177

F

File streams 220, 262
for loop 276, 277, 279, 307, 308
Forward goto statement 285, 307
fstream 220, 221, 222, 226, 228, 229, 232,
234, 238, 243, 246, 251, 252, 253, 254, 255,
256, 263, 264
Function Overriding 147

G

Generic functions 66, 93
Global Variables 50

3G E-LEARNING

312 Basic Computer Coding: C++

H

Handle remaining 189

I

if-else statement 270, 272, 307
if statement 269, 270, 274, 307
ifstream 220, 221, 222, 223, 225, 227, 228,
229, 230, 232, 237, 240, 248, 263
Implementation inheritance 213
Inheritance 2, 4, 5, 30
Inheritance graph 101, 123, 129
Inherit indirectly 119
Interface inheritance 209
iteration statements 276, 307

J

Jump statements 282, 307

M

Memory location 10, 45, 46, 59
Middle-level programming language 30
Mixin classes 213

O

Object Oriented programming 5, 30
Object oriented programming language 36,
38, 39
ofstream 220, 221, 222, 225, 226, 230, 240,
242, 244, 248, 263, 264
Operator Overloading 67, 68, 77, 78
Overhead 177
Overloaded function 82
Overloading 257
Overload resolution 65

P

Parameter 140, 141, 142, 143, 160, 162
Pointers 151, 154, 159, 166
Polymorphic 106, 107, 114

Polymorphism 2, 5, 30, 106, 135, 136, 154,
155, 157, 159, 160, 166
Programming languages 64

R

Readability 128, 130
Resource Acquisition Is Initialization (RAII)
216
Runtime Polymorphism 136, 137, 139, 147,
151, 166

S

Searching 231, 232
Sequential Execution 269, 307
serial execution 282
Standard input (cin) 205
Standard output (cout) 203
Standard Template Library (STL) 2
Straight-line programs 268
stream 199, 201, 202, 203, 205, 207, 208, 220,
222, 224, 225, 226, 231, 252, 257, 262, 263,
264, 266
strings 206, 207, 229, 262
stringstream 207, 208, 262
Switch case statement 272, 307

T

Text File 225, 227, 229

U

Unary Operators performs 67
UNIX 2, 30

V

Violated exception 182
Virtual function 106, 107, 113, 114, 116, 119,
129, 151, 166

W

while loop 276, 279, 280, 281, 307, 308

	Cover

	Title Page

	Copyright

	EDITORIAL BOARD

	TABLE OF CONTENTS

	Preface
	Chapter 1 Basics of C++
	Introduction
	1.1 Concept of C++
	1.1.1 Use of C++
	1.1.2 Feature of Object oriented C++
	1.1.3 Benefits of C++ over C Language

	1.2 OOPs Concept Basics
	1.2.1 Access Control in Classes

	1.3 Syntax and Structure of C++ program
	1.3.1 First C++ program

	1.4 Data Types in C++
	1.4.1 Basic Built in types
	1.4.2 Enum as Data type

	1.5 Variables in C++
	1.5.1 Basic types of Variables
	1.5.2 Declaration and Initialization
	1.5.3 Scope of Variables

	1.6 Operators in C++
	1.6.1 Types of operators

	1.7 sizeof operator in C++
	1.7.1 typedef Operator

	1.8 Loop Type
	1.8.1 While
	1.8.2 Do while
	1.8.3 For loop

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 2 Language Features
	Introduction
	2.1 Concept of C++ Features
	2.2 Difference between C and C++
	2.2.1 Key Differences between C and C++

	2.3 Variables Declaration in C++
	2.3.1 Variables initialization in C++
	2.3.2 Rules of Declaring variable in C++
	2.3.3 Scope of Variables in C++
	2.3.4 Variable declaration syntax in C/C++ language
	2.3.5 Variable Declaration Rule in C++

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 3 C++ Overloading (Function and Operator)
	Introduction
	3.1 Concept of Overloading
	3.2 Type of Overloading
	3.2.1 Constructor Overloading
	3.2.2 Operator Overloading
	3.2.3 Method Overloading

	3.3 Function Overloading in C++
	3.3.1 Operators Overloading in C++
	3.3.2 Argument Matching
	3.3.3 Argument matching and the this pointer
	3.3.4 END Microsoft Specific
	3.3.5 Declaration Matching

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 4 Inheritance
	Introduction
	4.1 Concept of Inheritance
	4.1.1 Inheritance in C++
	4.1.2 Virtual Functions
	4.1.3 Dispatching Virtual Functions
	4.1.4 Pure Virtual Functions

	4.2 Multiple Inheritance
	4.2.1 Inheritance and Composition

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 5 Polymorphism in C++
	Introduction
	5.1 Concept of Polymorphism
	5.1.1 Compile Time Polymorphism
	5.1.2 Runtime Polymorphism

	5.2 Importance of Polymorphism
	5.3 Implementing Polymorphism C++
	5.4 Other Applications of Polymorphism
	5.5 Polymorphism Explanation
	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 6 C++ Exception Handling
	Introduction
	6.1 Concept of Exception Handling in C++ Programming
	6.1.1 Multiple Catch Exception
	6.1.2 Catch all Exceptions
	6.1.3 Some Useful Facts to Know Before Using C++ Exceptions

	6.2 Exception Handling Over Traditional Error Handling
	6.2.1 Advantage of C++ Exception Handling

	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 7 I/O Streams
	Introduction
	7.1 Basic Input/Output
	7.1.1 Standard output (cout)
	7.1.2 Standard input (cin)
	7.1.3 cin and strings
	7.1.4 stringstream

	7.2 C++ Class Hierarchy
	7.2.1 Interface inheritance
	7.2.2 Implementation inheritance

	7.3 File Stream
	7.3.1 Opening a File
	7.3.2 Closing a File
	7.3.3 Writing to a File
	7.3.4 Reading from a File
	7.3.5 Read and Write Example
	7.3.6 File Position Pointers

	7.4 Text File Handling
	7.4.1 FileStream Objects, Header Files, File Access, and Filenames
	7.4.2 Creating and Storing Data in a Text File
	7.4.3 Reading Data from a Text File
	7.4.4 Working with Numbers in a Text File
	7.4.5 Appending Data to a File

	7.5 Binary File Handling
	7.5.1 Searching in C++
	7.5.2 Appending Data in C++
	7.5.3 C++ Inserting Data in Sorted File
	7.5.4 Deleting a Record in C++
	7.5.5 Modifying Data in C++

	7.6 Error Handling During File Operations
	7.6.1 int bad()
	7.6.2 int fail()
	7.6.3 int eof()
	7.6.4 int good()
	7.6.5 int clear()

	7.7 Overloading << and >> operators
	Summary
	Knowledge Check
	Review Questions
	References

	Chapter 8 Control Flow
	Introduction
	8.1 Branching or Conditional Structure
	8.1.1 if statement
	8.1.2 if else statements
	8.1.3 switch statements
	8.1.4 else if Statement

	8.2 Iterative or looping Structure
	8.2.1 The for Loop
	8.2.2 The while Loop
	8.2.3 The do-while loop

	8.3 Sequential Control Flow Structure
	8.3.1 Jump statements
	8.3.2 Break statement
	8.3.3 Continue statement
	8.3.4 Go to statement

	Summary
	Knowledge Check
	Review Questions
	References

	Index
	Back Cover

