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PREFACE

This book is a culmination of my many years of practice in this field. I attribute the success 
of this book to my support group. I would like to thank my parents who have showered 
me with unconditional love and support and my peers and professors for their constant 
guidance.

Computational biology is concerned with the application and development of theoretical 
and data-analytical methods, computational simulation techniques and mathematical 
modeling to study behavioral, ecological, biological and social systems. Computational 
biology is a broad field which uses principles and concepts from computer science, genetics, 
genomics, biochemistry, biophysics, applied mathematics, molecular biology and statistics. 
Computational anatomy, computational biomodeling, cancer computational biology, 
computational pharmacology and computational neuroscience are a few of the important 
sub-fields of computational biology. It can be used to assist the creation of accurate models 
of the human brain and in modeling biological systems. Computational biology also helps in 
sequencing the human genome. This book provides comprehensive insights into the field of 
computational biology. The various sub-fields within this discipline along with technological 
progress that have future implications are glanced at in it. This book is appropriate for those 
seeking detailed information in this area.

The details of chapters are provided below for a progressive learning:

Chapter – What is Computational Biology?

The development and application of data-analytical and theoretical methods, computational 
simulation techniques and mathematical modeling in order to study the ecological, biological, 
and social systems is referred to as computational biology. This is an introductory chapter 
which will briefly introduce all the significant aspects of computational biology.

Chapter – Subfields of Computational Biology

Computational biology is a vast field that can be categorized into computational anatomy, 
computational genomics, computational neuroscience and computational biomodeling. This 
chapter has been carefully written to provide an easy understanding of these sub-fields of 
computational biology.

Chapter – Bioinformatics

The interdisciplinary field which is concerned with the development of methods and software 
tools used for analyzing and interpreting biological data is known as bioin-formatics. It 
branches into structural bioinformatics which focuses on the analysis and prediction of the 
three-dimensional structure of proteins, RNA and DNA. The topics elaborated in this chapter 
will help in gaining a better perspective about bioinformatics.

____________________ WORLD TECHNOLOGIES ____________________
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VIII Preface

Chapter – Phylogenetics Analysis

The application of computational algorithms, methods, and programs to phylogenetic 
analysis is referred to as computational phylogenetics. The fundamental concepts that come 
under this field are phylogenetic tree, tree alignment, treefinder, etc. This chapter closely 
examines these key concepts related to computational phylogenetics to provide an extensive 
understanding of the subject.

Chapter – Systems Biology: An Integrated Study

The mathematical and computational models that are used for the analysis of complex 
biological systems are referred to as systems biology. Biochemical systems theory, bio-logical 
network inference, BioPAX, cellular model and cancer systems biology are a few concepts 
that come under systems biology. The topics elaborated in this chapter will help in gaining 
a better perspective about systems biology.

Constance Stanton

____________________ WORLD TECHNOLOGIES ____________________



WT
The development and application of data-analytical and theoretical methods, compu-
tational simulation techniques and mathematical modeling in order to study the eco-
logical, biological, and social systems is referred to as computational biology. This is an 
introductory chapter which will briefly introduce all the significant aspects of compu-
tational biology.

What is Computational 
Biology? 1

Computational biology is a branch of biology involving the application of computers 
and computer science to the understanding and modelling of the structures and pro-
cesses of life. It entails the use of computational methods (e.g., algorithms) for the 
representation and simulation of biological systems, as well as for the interpretation of 
experimental data, often on a very large scale.

The beginnings of computational biology essentially date to the origins of computer 
science. British mathematician and logician Alan Turing often called the father of com-
puting, used early computers to implement a model of biological morphogenesis (the 
development of pattern and form in living organisms) in the early 1950s, shortly before 
his death. At about the same time, a computer called MANIAC, built at the Los Alamos 
National Laboratory in New Mexico for weapons research, was applied to such pur-
poses as modelling hypothesized genetic codes. Pioneering computers had been used 
even earlier in the 1950s for numeric calculations in population genetics, but the first 
instances of authentic computational modelling in biology were the work by Turing and 
by the group at Los Alamos.

By the 1960s, computers had been applied to deal with much more varied sets of 
analyses, namely those examining protein structure. These developments marked the 
rise of computational biology as a field and they originated from studies centred on 
protein crystallography, in which scientists found computers indispensable for car-
rying out laborious Fourier analyses to determine the three-dimensional structure of 
proteins.

Starting in the 1950s, taxonomists began to incorporate computers into their work, 
using the machines to assist in the classification of organisms by clustering them 
based on similarities of sets of traits. Such taxonomies have been useful partic-
ularly for phylogenetics (the study of evolutionary relationships). In the 1960s, 
when existing techniques were extended to the level of DNA sequences and amino 
acid sequences of proteins and combined with a burgeoning knowledge of cellular 
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processes and protein structures, a whole new set of computational methods was 
developed in support of molecular phylogenetics. These computational methods 
entailed the creation of increasingly sophisticated techniques for the comparison of 
strings of symbols that benefited from the formal study of algorithms and the study 
of dynamic programming in particular. Indeed, efficient algorithms always have 
been of primary concern in computational biology, given the scale of data avail-
able, and biology has in turn provided examples that have driven much advanced 
research in computer science. Examples include graph algorithms for genome map-
ping (the process of locating fragments of DNA on chromosomes) and for certain 
types of DNA and peptide sequencing methods, clustering algorithms for gene ex-
pression analysis and phylogenetic reconstruction, and pattern matching for vari-
ous sequence search problems.

Beginning in the 1980s, computational biology drew on further developments in com-
puter science, including a number of aspects of artificial intelligence (AI). Among these 
were knowledge representation, which contributed to the development of ontologies 
(the representation of concepts and their relationships) that codify biological knowl-
edge in “computer-readable” form, and natural-language processing, which provid-
ed a technological means for mining information from text in the scientific literature. 
Perhaps most significantly, the subfield of machine learning found wide use in biol-
ogy, from modelling sequences for purposes of pattern recognition to the analysis of 
high-dimensional (complex) data from large-scale gene-expression studies.

Applications of Computational Biology

Initially, computational biology focused on the study of the sequence and structure of 
biological molecules, often in an evolutionary context. Beginning in the 1990s, howev-
er, it extended increasingly to the analysis of function. Functional prediction involves 
assessing the sequence and structural similarity between an unknown and a known 
protein and analyzing the proteins’ interactions with other molecules. Such analyses 
may be extensive, and thus computational biology has become closely aligned with sys-
tems biology, which attempts to analyze the workings of large interacting networks of 
biological components, especially biological pathways.

Biochemical, regulatory, and genetic pathways are highly branched and interleaved, 
as well as dynamic, calling for sophisticated computational tools for their model-
ling and analysis. Moreover, modern technology platforms for the rapid, automated 
(high-throughput) generation of biological data have allowed for an extension from 
traditional hypothesis-driven experimentation to data-driven analysis, by which 
computational experiments can be performed on genome-wide databases of un-
precedented scale. As a result, many aspects of the study of biology have become 
unthinkable without the power of computers and the methodologies of computer 
science.

____________________ WORLD TECHNOLOGIES ____________________



WT

3CHAPTER 1    What is Computational Biology?

Distinctions Among Related Fields

How best to distinguish computational biology from the related field of bioinformatics, 
and to a lesser extent from the fields of mathematical and theoretical biology, has long 
been a matter of debate. The terms bioinformatics and computational biology are of-
ten used interchangeably, even by experts, and many feel that the distinctions are not 
useful. Both fields fundamentally are computational approaches to biology. However, 
whereas bioinformatics tends to refer to data management and analysis using tools that 
are aids to biological experimentation and to the interpretation of laboratory results, 
computational biology typically is thought of as a branch of biology, in the same sense 
that computational physics is a branch of physics. In particular, computational biolo-
gy is a branch of biology that is uniquely enabled by computation. In other words, its 
formation was not defined by a need to deal with scale; rather, it was defined by virtue 
of the techniques that computer science brought to the formulation and solving of chal-
lenging problems, to the representation and examination of domain knowledge, and 
ultimately to the generation and testing of scientific hypotheses.

Computational biology is more easily distinguished from mathematical biology, though 
there are overlaps. The older discipline of mathematical biology was concerned primar-
ily with applications of numerical analysis, especially differential equations, to topics 
such as population dynamics and enzyme kinetics. It later expanded to include the 
application of advanced mathematical approaches in genetics, evolution, and spatial 
modelling. Such mathematical analyses inevitably benefited from computers, especial-
ly in instances involving systems of differential equations that required simulation for 
their solution. The use of automated calculation does not in itself qualify such activi-
ties as computational biology. However, mathematical modelling of biological systems 
does overlap with computational biology, particularly where simulation for purposes of 
prediction or hypothesis generation is a key element of the model. A useful distinction 
in this regard is that between numerical analysis and discrete mathematics; the latter, 
which is concerned with symbolic rather than numeric manipulations, is considered 
foundational to computer science, and in general its applications to biology may be 
considered aspects of computational biology.

Computational biology can also be distinguished from theoretical biology (which it-
self is sometimes grouped with mathematical biology), though again there are signifi-
cant relationships. Theoretical biology often focuses on mathematical abstractions and 
speculative interpretations of biological systems that may or may not be of practical 
use in analysis or amenable to computational implementation. Computational biolo-
gy generally is associated with practical application, and indeed journals and annu-
al meetings in the field often actively encourage the presentation of biological analy-
ses using real data along with theory. On the other hand, important contributions to 
computational biology have arisen through aspects of theoretical biology derived from 
information theory, network theory, and nonlinear dynamical systems (among other 
areas). As an example, advances in the mathematical study of complex networks have 
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increased scientists’ understanding of naturally occurring interactions among genes 
and gene products, providing insight into how characteristic network architectures 
may have arisen in the course of evolution and why they tend to be robust in the face of 
perturbations such as mutations.

Challenges in Computational Biology

While all science proceeds mostly by evolution and not revolution, the imagination 
of the public at large, not to mention that of the scientific community itself, is often 
caught by a few widely publicized events that are seen as landmarks in the evolution 
of a subject. In the area of biology, the mapping of the human genome, announced 
simultaneously by two different groups in February 2001, was one such event. The 
mapping of the human genome is a perfect illustration of both the increased speed and 
decreased cost of biological experimentation. Originally conceived as a ten-year pro-
gram, the mapping of the human genome was in fact completed in just over two years. 
This was followed in quick succession by the mapping of the mouse genome and the 
mosquito genome. These advanced led the public at large to fantasize about designer 
drugs, personalized medicine, and other such futuristic scenarios.

Genbank size as a function of time.

However, the genome of any organism is just “raw data”. In order to be useful, this data 
needs to be turned into “information”. This is the aim of a discipline known earlier as 
“computational biology,” and more recently as “bioinformatics”.

The mathematical and computational problems associated with biology have attract-
ed the attention of some top-notch mathematicians for several decades now. Perhaps 
one of the best examples is S. Karlin, whose book “Stochastic Processes” published in 
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the 1960’s already refers to the relationships between Markov chains and biological 
problems. Karlin is also a co-inventor of a widely used probabilistic method known as 
BLAST (Basic Linear Alignment Search Technique) for aligning two strings defined 
over a common alphabet. Thus, while there has been a long-standing tradition of 
studying biological problems using mathematical approaches, the recent excitement 
about advances in experimental biology has substantially enhanced the interest of 
the mathematical and computer community in the subject of computational biology. 
It is by now realized that, unless some significant advances are made in this area, 
much of the promise of biology will remain unrealized. This is exemplified by the fact 
that, whereas earlier biology was considered to be almost exclusively an experimental 
science, nowadays it is thought of as both an experimental as well as an informa-
tion-based science.

Protein database size as a function of time.

String Alignment

Problem Formulation and Current Status From the preceding discussion, it is clear that 
a central problem in computational biology is string alignment. This problem arises 
in at least two contexts: (i) Matching an RNA fragment with another that is known 
to be a gene, to determine the similarity if any. (ii) Matching an amino acid sequence 
with another whose 3-D structure is known to determine the similarity if any. While 
biologically the two problems are quite distinct, from a computational standpoint both 
problems are quite similar. A general problem formulation that encompasses both can 
be stated as follows: 

Suppose A is the alphabet of interest (either the four-symbol nucleotide alphabet or the 
twenty-symbol amino acid alphabet), and suppose u, v are two strings over A. Suppose 
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to be specific that u is shorter than v. It is straight-forward to determine whether u is a 
perfect substring of v. For this purpose, one can set up a finite state machine with input 
that stops if and only if it encounters the input stream u. Text editors do this kind of 
thing routinely. A slight variation of this approach can be used to determine the longest 
substring of u that is a perfect substring of v.

However, in biological applications it will rarely happen that one string will be a perfect 
substring of another. Rather, it is often necessary to introduce “gaps” in one string or 
the other in order to get a good match. Moreover, one often has to settle for “match-
es” of one symbol in one string against a different (i.e., not identical) symbol in the 
other string. The figure below shows an example of gapped alignment. In this figure, 
by introducing gaps in the two sequences to be aligned, we can ensure that there are 
only two genuine mismatches, namely of two C symbols in u against G symbols in v. 
To formulate this problem precisely, define a “scoring” matrix :    A A× →ℜw . Thus 
if a symbol x ∈ A in one string is aligned against a symbol y ∈ A in the other string, the 
weight assigned to the match is ( ),x yw . Typically ( ),x xw is large and positive, while 

( ),x yw is negative (and either large or small) if x y≠ . In case a gap is introduced in 
one or the other string, one can assign a gap penalty g. 

Example of gapped alignment.

Note that it makes no sense to place gaps in both strings, one against the other. Thus if a 
gap is introduced in one string and then extended, the weight can be twice the gap pen-
alty; alternatively, the penalty for introducing a gap can be larger than the incremental 
penalty for extending a gap. In any case, the sum of all the weights from one end to 
the other is the total score of the alignment. The optimal gapped alignment is one that 
minimizes the total weight. Note that, in any gapped alignment (optimal or otherwise) 
the total length of the gapped strings is always equal, whether or not the original strings 
are of equal length.

____________________ WORLD TECHNOLOGIES ____________________
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The optimal gapped alignment problem can be readily solved using dynamic program-
ming, for the simple reason that an optimal gapped alignment satisfies the principle of 
optimality, that is: a sub-alignment of an optimal alignment is itself optimal. Let B(i, j) 
denote the optimal score when string u is matched up to the i-th location against string 
v up to the j-th location. At this stage, there are only three possibilities, namely: (i) Rhe 
(i + 1)-st symbol of u can be matched against the (j + 1-st symbol of v. (ii) A gap can be 
introduced in string u. (iii) A gap can be introduced in string v. We choose the best of 
these three options. Thus the optimal score satisfies the recursion

( )
( ) ( )
( )
( )

,      1,    1

1,   1  max   1,      

,    1   

γ

γ

+ + +


+ + = + −
 + −

B i j w i j

B i j B i j

B i j

Thus, starting with B(0, 0) = 0, one can fill up the entire n × m matrix of optimal values 
B(i, j), where n and m are respectively the lengths of the strings u and v. Then one can 
trace the optimal path from the corner (0, 0) to the corner n × m.

A dynamic programming solution to the optimal gapped alignment problem is called 
the Needleman Wunsch algorithm. It is clear that the computational complexity of this 
algorithm is O(nm). By a slight modification, the dynamic programming approach can 
also be used to find an optimal gapped alignment between substrings of u and v. This is 
called the SmithWaterman algorithm.

Challenges

There are several interesting problems in string alignment that deserve the attention of 
the research community.

•	 The dynamic programming approach gives an exact optimal alignment. On the 
other hand, in biology it is really not necessary to find an optimal alignment. It 
is necessary only to determine whether or not two strings can be made to resem-
ble each other after the insertion of gaps in both strings. For this purpose, a near 
optimal alignment would be good enough. Thus it would be worthwhile to find 
some alignment algorithms that are suboptimal but in a guaranteed sense, i.e., 
that the score so generated is guaranteed to be within some percentage of the op-
timal value.

•	 As of now, the use of parallel computation for string alignment is in its infancy. 
the insistence on exact optimality is at the heart of the difficulty. If one is will-
ing to settle for guaranteed near-optimality, then some kind of parallelization 
might be possible.

•	 In the same way, it appears that the use of randomized algorithms for alignment 
should be explored.

____________________ WORLD TECHNOLOGIES ____________________
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•	 The computational complexity of the dynamic programming is quadratic in 
the length of the strings being aligned (if their lengths are comparable). How-
ever, if one wishes to align more than two strings, then the complexity is ex-
ponential in terms of the number of strings. Thus adding one more string 
doubles the complexity. Since in biology, it is quite common to attempt the 
alignment of dozens of strings, it is essential to find efficient algorithms for 
this purpose.

Neural Networks for Protein Structure Prediction

Problem Formulation and Current Status

The problem of predicting protein structure starting directly with the primary structure 
(or amino acid sequence) is called ab initio prediction. It is one of the most challenging 
problems in computational biology for this purpose. Because it is too difficult to predict 
the tertiary structure directly, most researchers tackle the problem of predicting the 
secondary structure.

Recall that the secondary structure of a protein is a kind of simplified description, in 
which there are only three types of description, namely: (i) α helix, (ii) β strand (or 
sheet) and (iii) δ coil. Thus the objective is to map the primary structure (which is a 
string over the twenty symbol alphabet of amino acids) into the secondary structure 
(which is a string over the three symbol alphabet {α, β, δ}. One of the complicating 
factors is that there is no obvious relationship between the length of the primary struc-
ture and the length of the secondary structure, other than the rather obvious one that 
if a protein has a very long primary structure sequence, it will in general also have 
a very long secondary structure sequence. However, the relationship is by no means 
monotonic.

Figure shows a feedforward neural network used to predict secondary structure. Out 
of the roughly 100,000 known proteins, the 3-D structure of about 19,000 proteins 
has been determined. This 3-D structure is then simplified into a secondary structure 
description. Some sample of these 19,000 proteins are chosen to “train” a neural net-
work. The input to the neural network consists of a string of amino acid symbols, while 
the output consists of three real numbers between 0 and 1, corresponding to the like-
lihood that locally the structure is as an α helix, a β strand, or a coil. Clearly some kind 
of further processing (e.g., majority polling) is required to process these three numbers 
and come up with an actual prediction. The input to the neural network consists of 
anywhere between 13 to 15 amino acid symbols. For example, suppose the window is 
13 acids long. Then for a protein with known structure, the substring of the amino acid 
sequence consisting of symbols 1 through 13 are fed into the network, while the “de-
sired” output is taken as (1, 0, 0) if the local structure is an α helix, and so on. Then the 
substring consisting of symbols 2 through 14 are fed into the network, then symbols 3 
through 15, and so on.

____________________ WORLD TECHNOLOGIES ____________________
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Feedforward neural network for protein structure prediction.

Clearly, if a protein has N amino acids and the window has size r, then it generates N − r 
+ 1 training inputs. With these training inputs (or some subset thereof), the weights of 
the network are adjusted to match the desired outputs to the training inputs as closely 
as possible. Given that there are about 19,000 proteins with known structure, if we take 
500 to be the average length of a protein sequence, then the number of training inputs 
is roughly 107. However, in practice far fewer inputs are used, as there is a great deal of 
similarity between many of these training inputs.

One of the major drawbacks of the network architecture used in figure is that it is posi-
tion-independent. Thus the same string of 13 to 15 symbols produces exactly the same pre-
diction, whether the string occurs near the beginning of the primary structure, the middle, 
or near the end. However, from a biological standpoint, this is not realistic. To address this 
issue, some researchers use a recurrent neural network of the type shown in figure.

Recurrent neural network for protein structure prediction.

Challenges

One of the characteristic features of the neural network approach is the large num-
ber of weights used. This problem persists whether one uses feedforward networks 
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or recurrent networks. In this approach, one is attempting to represent a symbol-
ic map (from the 20-symbol alphabet of amino acids to {α, β, δ} using numerical 
methods. As a first approximation, it can be said that there is no natural similarity 
or difference between any of the twenty amino acids.2 Hence if we simply number 
the 20 acids as 1 through 20, then we run the risk of artificially imposing a metric 
structure (i.e., acid 1 is “closer” to acid 2 than to acid 8) where none exists in reality. 
To avoid this difficulty, the research community adopts a “unary representation” of 
the proteins, whereby

[ ] [ ]Acid No. 1  1 0 ... 0 ,  Acid No. 2  0 1 ... 0 ,... Acid No. 20 ↔ ↔ ↔

The advantage of this approach is that it is permutation invariant. Because the vectors 
above are at a pairwise Hamming distance of two, even if we shuffle the labels around, 
the resulting training inputs and their labels will get shuffled commensurately. The 
main disadvantage is the huge size of the input vectors. Since each amino acid is repre-
sented by a 20-dimensional vector, if the window of the neural network consists of 13 
acids, then the input vector has dimension 260. It is easy to see that, even with a rela-
tively modest-sized neural network, the number of adjustable parameters is in the hun-
dreds of thousands if not in the millions. We have seen that, even if every known pro-
tein is used as a training input, the total number of training inputs is about 107. Clearly 
it is not reasonable to expect to train a network with 106 parameters using 107 inputs. 
One runs into the problem of simply “memorizing” the data, which is a phenomenon 
well known to the neural network community when the network has too many parame-
ters and too little data. Thus one of the challenges in this area is to come up with an ar-
chitecture for representing symbolic maps that is permutation invariant, and yet does 
not use huge-sized input vectors.

Hidden Markov Models for Protein Classification

Problem Formulation and Current Status

In this section we briefly review some standard material on Markov chains. Then the 
discussion is extended to so-called hidden Markov models (HMM’s). Markov mod-
els are discussed in many standard texts, such as and so on. Hidden Markov mod-
els (HMM’s) are used to separate the coding regions of a Prokaryote gene from the 
non-coding regions, and also to classify a protein into one of a small number of previ-
ously classified protein families.

Suppose { }1 :  ,..., nX s s= is a finite set. A stochastic process { } 0tX t ≥ assuming values 

in X is said to be a Markov chain if

{ } { }1 2 1Pr | ,  ,...   Pr |t t t t t− − −=    

The Markov chain is said to be stationary if the above conditional probability is 
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independent of t. The temporal evolution of a Markov chain is captured by an n × n 
matrix of transition probabilities, defined as follows: 

{ } 1  :  Pr   | ,  .ij t j t si ija s A a− =  = = =   

Thus aij is the probability that the Markov chain is in state sj at the next time instant, 
given that it is in the state si at the current time instant. Obviously the matrix A is col-
umn-stochastic; that is,

1
0 ,  ,  and  1

n

ij ij
j

a i j a i
=

≥ ∀ = ∀∑
One of the main motivations for studying Markov chains is that in some sense they 
have a finite description. The Markov property says that the latest measurement 1  t−
contains all the information contained in all the past measurements. Thus, once the 

observer measures 1  t− , he can throw all past measurements without any loss of infor-

mation. Now what happens if a stochastic process is not Markovian? Hidden Markov 
models (HMM’s) are somewhat more general models for stochastic processes that still 
retain the “finite memory” feature of Markov chains.

Suppose we now have two sets { }1 :  ,..., nX s s= called the state space, and 

{ }1 :  ,..., mY r r= called the output space. Suppose { }t �is a Markov chain. At each time 

t, the state t  induces a probability distribution on the output space Y, as follows:

{ }Pr  |   ,  ,  .t k t j jkr s b j k= = = ∀ 

The stochastic process {Y t} is said to obey a hidden Markov model (HMM). Thus a 
HMM is described by an n × n matrix A of state transition probabilities, and another n 
× m matrix B of readout probabilities.

Suppose we know the matrices A, B, and we have a single sample path { } 0

T
t t

y
≥

 of obser-

vations of the stochastic process{ }t . At this point, one can ask three distinct questions.

•	 Given the matrices A, B, what is the likelihood of this particular sample path? 
This is called the “likelihood question” and requires us to compute the quantity

	 { }Pr ,  given ,  .t yt t A B= ∀�

•	 What is the most likely sequence of states { } 0
?T

t t
x

≥
 This is called the “decoding 

question”.
•	 Assuming that we know only the integer n but not the entries in the matrices 

A and B, can we iteratively compute these entries based on an observation of a 

sample path { } 0
?T

t t
y

≥
This is called the “learning question”.

Answers to these questions have been known for many years.
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At each step along the aligned sequences (which are now viewed as evolving in time, 
rather than along spatial ordering), one computes the frequency of each of the three 
events occuring, namely: deletion of an acid, insertion of an acid, or mutation of one 
acid into another. In each of these states, the 21-dimensional probability vector corre-
sponding to each of the 21 possible outputs is computed as just the actual frequency of 
occurence of these 21 outputs in the observed sequences. This completes the specifica-
tion of the HMM for a particular family. Similar constructions are done for each of the 
small number of protein families.

To classify a new protein sequence, one first does a multiple gapped alignment with all 
the proteins within each family. This generates a sample path corresponding to each 
of the three or four HMM’s. Then the likelihood of the sample path is computed for 
each HMM. The HMM for which the sample path likelihood is maximum is declared as 
the winner, i.e., the new protein sequence is classified as belonging to that particular 
family.

Challenges

The above method has a number of drawbacks. For one thing, the underlying Markov 
chain is reducible. This is because there is no path from a state at time i to a state at 
time j < i. In reality, this reducibility comes about because the HMM is actually trying 
to simulate a nonstationary stochastic process as a stationary process. The second thing 
to notice about the HMM is that it has a huge number of parameters to be estimated. 
Suppose the length of the various proteins after gapped alignment is N. Then the total 
number of states in the Markov chain is 3N+2. For each of these states (except the start 
and the end states), we need to compute a 21-dimensional probability vector that the 
20 amino acid symbols or the gap symbol is the output. Thus the total number of pa-
rameters to be estimated is 21× 3N = 63N. Taking N = 300 as a typical value, the total 
number of parameters to be estimated is 69, 000. At each state, we need to estimate a 
21-dimensional probability vector. However, the number of proteins in each family is 
typically of the order of 100. Clearly it is not meaningful to try and estimate a 21-dimen-
sional probability vector on the basis of 100 sample points.

the reducibility of the Markov chain comes about because one is attempting to model a 
nonstationary stochastic process using a very large stationary Markov chain. It would 
be desirable to tackle this problem directly. Also, it would be desirable to determine 
the number of states of a HMM based on the data, rather than on the basis of ad hoc 
methods. The paper makes a beginning in this direction, though it does not provide a 
complete solution.
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Computational biology is a vast field that can be categorized into computational anato-
my, computational genomics, computational neuroscience and computational biomod-
eling. This chapter has been carefully written to provide an easy understanding of these 
sub-fields of computational biology. 

Subfields of 
Computational Biology 2
•	 Computational Anatomy

•	 Computational Genomics

•	 Computational Neuroscience

•	 Computational Biomodelling

Computational Anatomy

Computational anatomy (CA) is the mathematical study of anatomy I ∈ I  = Iα ○G
, an orbit under groups of diffeomorphisms (i.e., smooth invertible mappings) g ∈ G  
of anatomical exemplars Iα ∈I . The observable images are the output of medical im-
aging devices. There are three components that CA examines: (i) constructions of the 
anatomical submanifolds, (ii) comparison of the anatomical manifolds via estimation 
of the underlying diffeomorphisms g ∈G  defining the shape or geometry of the ana-
tomical manifolds, and (iii) generation of probability laws of anatomical variation P(·) 
on the images I  for inference and disease testing within anatomical models.

Group Actions in Computational Anatomy

Group actions are central to Riemannian geometry and defining orbits (control theory). 
The orbits of computational anatomy consist of anatomical shapes and medical images; 
the anatomical shapes are submanifolds of differential geometry consisting of points, 
curves, surfaces and subvolumes,. This generalized the ideas of the more familiar orbits 
of linear algebra which are linear vector spaces. Medical images are scalar and tensor 
images from medical imaging. The group actions are used to define models of human 
shape which accommodate variation. These orbits are deformable templates as origi-
nally formulated more abstractly in pattern theory.
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The Orbit Model of Computational Anatomy

The central model of human anatomy in computational anatomy is a Groups and group 
action, a classic formulation from differential geometry. The orbit is called the space 
of shapes and forms. The space of shapes are denoted ,m∈ , with the group ( , )°
with law of composition  ; the action of the group on shapes is denoted ·g m , where the 
action of the group · ,g m m∈ ∈  is defined to satisfy:

( )· ·( · ) .g g m g g m′ ′° = ∈

The orbit M of the template becomes the space of all shapes:

 temp{ · , }.m g m g= ∈   

Several Group Actions in Computational Anatomy

The central group in CA defined on volumes in Diff are the diffeomorphism 
group which are mappings with 3-components  , law of composition of functions 
( )· ·( · ) .g g m g g m′ ′° = ∈ , with inverse temp{ · , }.m g m g= ∈ 

Submanifolds: Organs, Subcortical Structures, Charts  
and Immersions

For sub-manifolds 3X ⊂ ∈  , parametrized by a chart or immersion ( ), ,m u u U∈  
the diffeomorphic action the flow of the position: 

· ( ) ( ), .m u m u u Uφ φ° ∈

Scalar Images such as MRI, CT, PET
Most popular are scalar images, 3( ,),I x x∈  with action on the right via the inverse: 

1 3.· ( ) ( ),I x I x xφ φ−= ° ∈

Oriented Tangents on Curves, Eigenvectors of Tensor Matrices

Many different imaging modalities are being used with various actions. For images 
such that ( )I x is a three-dimensional vector then: 

1· (( ) ) ,I D Iϕ ϕ ϕ−= °

1 1(( ) )TI D Iϕ ϕ ϕ− −= ° .

Tensor Matrices

Researchers examined actions for mapping MRI images measured via diffusion tensor 
imaging and represented via there principle eigenvector. For tensor fields a positively 
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oriented orthonormal basis 1 2 3( ) ( ( ), ( ), ( ))I x I x I x I x= of 3


, termed frames, vector 
cross product denoted 1 2I I× then: 

1 1
13 1 31

1 1
1 3 1 3

( ) ( )· , , ,
( ) ( )

T T

T T

D I D I D ID II
D I D I D I D I

ϕ ϕ ϕϕϕ ϕ
ϕ ϕ ϕ ϕ

− −
−

− −

 ×
= ° || || || × || || ＼

The Fr\’enet frame of three orthonormal vectors, 1I deforms as a tangent, 3I deforms 

like a normal to the plane generated by 1 2 ,I I× , and 3I . H is uniquely constrained by 

the basis being positive and orthonormal. For 3 3× non-negative symmetric matrices, 
an action would become 1· ( .)TI D IDϕ ϕ ϕ ϕ−= °
For mapping MRI DTI images (tensors), then eigenvalues are preserved with the dif-
feomorphism rotating eigenvectors and preserves the eigenvalues. Given eigenele-
ments { , , 1, 2,3},i ie iλ =  then the action becomes: 

1
1 1 1 2 2 2 3 3 3ˆ ˆ ˆ ˆ ˆ ˆ· ( )T T TI e e e e e eϕ λ λ λ ϕ−+ + °

1 2 1 2 1
1 2 3 1 2

1 2 1 2 1

ˆ ˆ, (ˆ ˆ ˆ ˆ ˆ, , .
ˆ ˆ, (

D e D e e D e ee e e e e
D e D e e D e e
ϕ ϕ ϕ
ϕ ϕ ϕ

− 〈 〉
= = ×
|| || || − 〈 〉 ||



Orientation Distribution Function and High  
Angular Resolution HARDI
Orientation distribution function (ODF) characterizes the angular profile of the dif-
fusion probability density function of water molecules and can be reconstructed from 
High Angular Resolution Diffusion Imaging (HARDI). The ODF is a probability density 
function defined on a unit sphere, 2.  In the field of information geometry, the space 
of ODF forms a Riemannian manifold with the Fisher rao metric. For the purpose of 
LDDMM ODF mapping, the square-root representation is chosen because it is one of 
the most efficient representations found to date as the various Riemannian operations, 
such as geodesics, exponential maps, and logarithm maps, are available in closed form. 

In the following, denote square-root ODF ( ODF) ) as ( )ψ s , where ( )ψ s is non-nega-

tive to ensure uniqueness and 
2

2 ( ) 1.dψ
∈

=∫s s s


Denote diffeomorphic transformation as φ . Group action of diffeomorphism on 

( ) ,ψ φ ψ⋅s , needs to guarantee the non-negativity and 
2

2 ( ) 1dφ ψ
∈

⋅ =∫s s s


. Based on 
the derivation in, this group action is defined as: 

1 1

1
1

1 1
1 1

3 11

det (
( ) ( ) , ( ) ,

(

( ) )
)( )

D D
D x x

DD

φ φ

φφ

φ φ
φ ψ φ ψ φ

φφ

− −

−
−

− −

− −

−−

 
 ° =
 || 

s

ss ||

where ( )Dφ is the Jacobian of φ . 
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Diffeomorphometry

Diffeomorphometry is the metric study of imagery, shape and form in the discipline 
of computational anatomy (CA) in medical imaging. The study of images in computa-
tional anatomy rely on high-dimensional diffeomorphism groups { · }VI Diffϕ ϕ∈ |

which generate orbits of the form I ∈ , in which images { · Diff },VMϕ ϕ∈ | can 

be dense scalar magnetic resonance or computed axial tomography images. For de-
formable shapes these are the collection of manifolds ( , ) ·I Iϕ ϕ , points, curves and 
surfaces. The diffeomorphisms move the images and shapes through the orbit accord-
ing to , [0,1], Difft t Vtφ φ∈ ∈ which are defined as the group actions of computational 
anatomy.

The orbit of shapes and forms is  made into a metric space by inducing a metric on the 
group of diffeomorphisms. The study of metrics on groups of diffeomorphisms and 
the study of metrics between manifolds and surfaces has been an area of significant 
investigation. In Computational anatomy, the diffeomorphometry metric measures 
how close and far two shapes or images are from each other. Informally, the metric 
is constructed by defining a flow of diffeomorphisms , Difϕ ψ ∈ which connect the 
group elements from one to another, so for then 0 1 .,φ ϕ φ ψ= =  The metric between 
two coordinate systems or diffeomorphisms is then the shortest length or geodesic flow 

connecting them. The metric on the space associated with the geodesics is given by

0 1:

1

0,
( , ) inf .

tt dtφφ φ ϕ φ ψ
ρ ϕ ψ φ

= =
= ∫ || ||  The metrics on the orbits ,  are inherited from the 

metric induced on the diffeomorphism group.

The group DiffVϕ∈ is thusly made into a smooth Riemannian manifold with Rieman-

nian metric · ϕ|| ||  associated with the tangent spaces at all DiffVϕ∈ . The Riemannian 

metric satisfies at every point of the manifold DiffVφ ∈ there is an inner product induc-

ing the norm on the tangent space 
tt φφ|| ||
 
that varies smoothly across Diff .V

Oftentimes, the familiar Euclidean metric is not directly applicable because the patterns 
of shapes and im ages don’t form a vector space. In the Riemannian orbit model of Com-
putational anatomy, diffeomorphisms acting on the forms · , Diff ,VI Mϕ ϕ∈ ∈ ∈ 

don’t act linearly. There are many ways to define metrics, and for the sets associated 
with shapes the Hausdorff metric is another. The method used to induce the Rieman-
nian metric is to induce the metric on the orbit of shapes by defining it in terms of the 
metric length between diffeomorphic coordinate system transformations of the flows. 
Measuring the lengths of the geodesic flow between coordinates systems in the orbit of 
shapes is called diffeomorphometry. 
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The Diffeomorphisms Group Generated as Lagrangian  
and Eulerian Flows

The diffeomorphisms in computational anatomy are generated to satisfy the Lagrang-
ian and Eulerian specification of the flow fields, , [0 1 ,, ]t tϕ ∈  generated via the ordinary 
differential equation:

0, id;    t t t
d v
dt
ϕ ϕ ϕ= ° =  (Lagrangian flow)

with the Eulerian vector fields 1 2 3( , , )v v v v in 3
 for 1, [0, .1]t t tv tϕ ϕ−= ° ∈  The in-

verse for the flow is given by and the 3 3× Jacobian matrix for flows in 3
 given as:

.i

j

D
x
ϕϕ

 ∂
  ∂ 


To ensure smooth flows of diffeomorphisms with inverse, the vector fields 3
 must be 

at least 1-time continuously differentiable in space which are modelled as elements of 
the Hilbert space ( , · )VV |||| using the Sobolev embedding theorems so that each element 

3
0 , 1, 2,3,iv H i∈ = has 3-square-integrable derivatives thusly implies ( , · )VV |||| embeds 

smoothly in 1-time continuously differentiable functions. The diffeomorphism group 
are flows with vector fields absolutely integrable in Sobolev norm:

1

1 0 0
Diff { : , id, } .V t t t t Vv v dtϕ ϕ ϕ ϕ ϕ= = ° = < ∞∫

 || ||  (Diffeomorphism Group)

The Riemannian Orbit Model

Shapes in Computational Anatomy (CA) are studied via the use of diffeomorphic map-
ping for establishing correspondences between anatomical coordinate systems. In this 
setting, 3-dimensional medical images are modelled as diffemorphic transformations 

of some exemplar, termed the template tempI , resulting in the observed images to be 

elements of the random orbit model of CA. For images these are defined as:

{ , }temp VI I I Diffϕ ϕ∈ = ∈  , 

with for charts representing sub-manifolds denoted as: 

{ · : }Difftemp Vϕ ϕ∈

The Riemannian Metric
The orbit of shapes and forms in Computational Anatomy are generated by the group 
action { · : Diff },VIϕ ϕ∈ { · : Diff }VMϕ ϕ∈ . These are made into a Rieman-
nian orbits by introducing a metric associated with each point and associated tangent 
space. For this a metric is defined on the group which induces the metric on the orbit. 
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Take as the metric for Computational anatomy at each element of the tangent space 
DiffVϕ∈ in the group of diffeomorphisms: 

1 ,V Vvϕϕ ϕ ϕ−|| || || ° || =|| || 


with the vector fields modelled to be in a Hilbert space with the norm in the Hilbert 
space ( ,||· .|| )VV  We model V as a reproducing kernel Hilbert space (RKHS) defined 

by a 1-1, differential operator *,:A V V→  where *V is the dual-space. In general, 
*Av Vσ ∈ is a generalized function or distribution, the linear form associated with 

the inner-product and norm for generalized functions are interpreted by integration by 
parts according to for ,v w V∈ , 

2, · , || || · , , .V VX X
v w Av wdx v Av vdx v w V〈 〉 ∈∫ ∫ 

When ,Av dxµ , a vector density, 
3

1
· · .i i

i
Av vdx vdx v dxµ µ

=

=∑∫ ∫
The differential operator is selected so that the Green’s kernel associated with the in-
verse is sufficiently smooth so that the vector fields support 1-continuous derivative. 
The Sobolev embedding theorem arguments were made in demonstrating that 1-con-
tinuous derivative is required for smooth flows. The Green’s operator generated from 
the Green’s function(scalar case) associated with the differential operator smooths. 

For proper choice of A then ( ,||·|| )VV  is an RKHS with the operator 1 *: .K A V V−= →  

The Green’s kernels associated with the differential operator smooths since for con-

trolling enough derivatives in the square-integral sense the kernel (·,·)k is continuous-
ly differentiable in both variables implying: 

3
( ) ( , ) ( ) .i ij j

j
KAv x k x y Av y dy V∈∑∫





The Diffeomorphometry of the Space of Shapes and Forms

The Right-invariant Metric on Diffeomorphisms

The metric on the group of diffeomorphisms is defined by the distance as defined on 
pairs of elements in the group of diffeomorphisms according to: 

( )1/21

Diff 0 10
( , ) inf · : , , .

V
t

t t t t tXv
d Av v dxdt vψ ϕ φ ψ φ ϕ φ φ= = = = °∫ ∫   (metric-diffeomorphisms)

This distance provides a right-invariant metric of diffeomorphometry, invariant to rep-
arameterization of space since for all f ,Dif Vφ ∈

Diff Diff( , ) ( , ).
V V

d dψ ϕ ψ φ ϕ φ= ° °
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The Metric on Shapes and Forms

The distance on images, ,:d +× →    

:
( , ) inf ( , ) ;

V
V

DiffDiff I J
d I J d id

φ φ
φ

∈ ⋅ =
=  (metric-shapes-forms)

The distance on shapes and forms, ,:d +× →   , 

DiffDiff : ·
( , ) in  f (id, ) .

V
V M N

d M N d
φ φ

φ
∈ =

=  
(metric-shapes-forms) 

The Metric on Geodesic Flows of Landmarks, Surfaces and Volumes 
within the Orbit

For calculating the metric, the geodesics are a dynamical system, the flow of coordinates 
Difft Vt φ ∈ and the control the vector field tt v V∈ related via 0· , idt t tvφ φ φ= =

The Hamiltonian view reparameterizes the momentum distribution *Av V∈ in terms 

of the Hamiltonian momentum, a Lagrange multiplier : ( )p pφ φ 

 | constraining the 
Lagrangian velocity .t t tvφ φ= °  accordingly:

1( , , ) ·( ) · .
2t t t t t t t tX X

H p v p v dx Av v dxφ φ= ° −∫ ∫
The Pontryagin maximum principle gives the Hamiltonian ( , ) max ( , , ) .t t v t tH p H p vφ φ

The optimizing vector field argmax ( , , )t v t tv H p vφ with dynamics: 

( , ) ( , ),t t t t
t t

H p H pp
p

∂ φ ∂ φφ
∂ ∂φ

= = −



Along the geodesic the Hamiltonian is constant: 0 0 0
1( , ) ( , )
2t t X

H p H id p p v dxφ = = ⋅∫ . 

The metric distance between coordinate systems connected via the geodesic deter-
mined by the induced distance between identity and group element: 

Diff 0 0(id, ) 2 (id, )
V Vd v H pϕ =|| || =

Landmark or Pointset Geodesics

For landmarks, , 1, ,ix i n= … , the Hamiltonian momentum: 

( ), 1, ,p i i n= …

with Hamiltonian dynamics taking the form: 

1( , ) ( )· ( ( ), ( )) ( )
2t t t t i t j tj i

H p p i K x x p jφ φ φ= ∑ ∑
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with 

( )|

(·, ( )) ( ),

( ) ( ) ( ), 1, 2, ,
xt i

t t i ti
T

t t t

v K x p i

p i Dv p i i n
φ

φ =
 = − = …

∑


The metric between landmarks 2
0 0( )· ( , ) ( ).i ji j

d p i K x x p j=∑ ∑
The dynamics associated with these geodesics is shown in the accompanying figure. 

Surface Geodesics

For surfaces, the Hamiltonian momentum is defined across the surface has Hamiltonian: 

1( , ) ( ) ( ( ( )), ( ( ))) ( )
2t t t t tU U

H p pt u K m u m v p v dudvφ φ φ= ⋅∫ ∫
and dynamics: 

( ( ))|

( , ( ( ))) ( )  ,

( ) ( ) ( ),
m ut

t tU
T

t t t

tv K m u p u du

p u Dv p u u U
φ

φ= ⋅

= − ∈





∫


The metric between surface coordinates: 

2
0 0 0 0( ) ( )· ( ( ), ( )) ( )

U U
d p v p u K m u m u p u dudu′ ′ ′= = ∫ ∫|

Volume Geodesics

For volumes the Hamiltonian: 

3 3

1( , ) ( )· ( ( ), ( )) ( )
2t t t t t tH p p x K x y p y dxdyφ φ φ= ∫ ∫

 

with dynamics: 

( )

3
|

( , ( )) ( )  ,

( ) ( ) ( ),
xt

t t tX
T

t t t

v K x p x dx

p x Dv p x x
φ

φ= ⋅

= − ∈





∫
 

The metric between volumes 
3 3

2
0 0 0 0( ) ( )· .( , ) ( )d p v p x K x y p y dydx= = ∫ ∫

 

| .

Riemannian Metric and Lie Bracket in Computational Anatomy
Computational anatomy (CA) is the study of shape and form in medical imaging. The 
study of deformable shapes in computational anatomy rely on high-dimensional diffeo-
morphism groups DiffVϕ∈ which generate orbits of the form { · Diff }.Vmϕ ϕ∈ |  
In CA, this orbit is in general considered a smooth Riemannian manifold since at ev-
ery point of the manifold m∈ there is an inner product inducing the norm ||·||m on 
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the tangent space that varies smoothly from point to point in the manifold of shapes 
.m∈ . This is generated by viewing the group of diffeomorphisms DiffVϕ∈ as a 

Riemannian manifold with · ,ϕ|| ||  associated with the tangent space at DiffVϕ∈ . This 

induces the norm and metric on the orbit m∈under the action from the group of 
diffeomorphisms.

The Diffeomorphisms Group Generated as Lagrangian and 
Eulerian Flows

The diffeomorphisms in computational anatomy are generated to satisfy the Lagrang-
ian and Eulerian specification of the flow fields, , [0 1 ,, ]t tϕ ∈ , generated via the ordinary 
differential equation: 

0, id; t t t
d v
dt
ϕ ϕ ϕ= ° = (Lagrangian Flow)

with the Eulerian vector fields 1 2 3( , , )v v v v in 3
 for 1, [0, ,1]t t tv tϕ ϕ−= ° ∈ , with the in-

verse for the flow given by: 

1 1 1
0( ) , i   d,t t t

d D v
dt
ϕ ϕ ϕ− − −= − = (Eulerianflow)

and the 3 3× Jacobian matrix for flows in 3
 given as .i

j

D
x
ϕϕ

 ∂
  ∂ 


To ensure smooth flows of diffeomorphisms with inverse, the vector fields 3
 must 

be at least 1-time continuously differentiable in space which are modelled as elements 
of the Hilbert space ( , )VV || ⋅ || using the Sobolev embedding theorems so that each el-

ement 3
0 , 1, 2,3,iv H i∈ = has 3-square-integrable derivatives thusly implies ( , · )VV || ||

embeds smoothly in 1-time continuously differentiable functions. The diffeomorphism 
group are flows with vector fields absolutely integrable in Sobolev norm:

1

1 0
0

Diff { : , id, } .V t t t t Vv v dtϕ ϕ ϕ ϕ ϕ= = ° = < ∞∫
 || ||  (Diffeomorphism Group)

The Riemannian Orbit Model

Shapes in Computational Anatomy (CA) are studied via the use of diffeomorphic 
mapping for establishing correspondences between anatomical coordinate systems. 
In this setting, 3-dimensional medical images are modelled as diffemorphic transfor-
mations of some exemplar, termed the template tempI , resulting in the observed imag-
es to be elements of the random orbit model of CA. For images these are defined as 

{ , }temp VI I I Diffϕ ϕ∈ = ∈  , with for charts representing sub-manifolds denoted:

as { · : }.Difftemp Vmϕ ϕ∈
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The Riemannian Metric

The orbit of shapes and forms in Computational Anatomy are generated by the group 
action { : }Vm Diffϕ ϕ⋅ ∈ . This is made into a Riemannian orbit by introducing a 
metric associated with each point and associated tangent space. For this a metric is 
defined on the group which induces the metric on the orbit. Take as the metric for 
Computational anatomy at each element of the tangent space DiffVϕ∈ in the group of 
diffeomorphisms: 

1 ,V Vvϕϕ ϕ ϕ−|| || || ° || =|| || 


with the vector fields modelled to be in a Hilbert space with the norm in the Hilbert 
space ( , · )VV || || . We model *.:A V V→ as a reproducing kernel Hilbert space (RKHS) 

defined by a 1-1, differential operator. For *( )v Av Vσ ∈  a distribution or generalized 

function, the linear form 
3

( ) ( ) ( )i i
i

w w x dxσ σ∑∫


| determines the norm:and inner 

product for v V∈ according to: 

2, · , · , , .V V
XX

v w Av wdx v Av vdx v w V〈 〉 || || ∈∫ ∫ 

where the integral is calculated by integration by parts for Av V ∗∈ a generalized func-
tion the dual-space. The differential operator is selected so that the Green’s kernel as-
sociated with the inverse is sufficiently smooth so that the vector fields support 1-con-
tinuous derivative. 

The Right-invariant Metric on Diffeomorphisms

The metric on the group of diffeomorphisms is defined by the distance as defined on 
pairs of elements in the group of diffeomorphisms according to: 

	

1 1/2
0 10

1( , ) inf (  : , , )  .
2V

t
Diff t t t t tXv

d Av v dx dt vψ ϕ ϕ ψ ϕ ϕ ϕ ϕ= ⋅ = = =∫ ∫ 


 

�
(Metric-diffeomorphisms)

This distance provides a right-invariant metric of diffeomorphometry, invariant to rep-
arameterization of space since for all f ,Dif Vϕ∈

Diff Diff( , ) ( , ).
V V

d dψ ϕ ψ ϕ ϕ ϕ= ° °

The Lie Bracket in the Group of Diffeomorphisms

The Lie bracket gives the adjustment of the velocity term resulting from a perturbation 
of the motion in the setting of curved spaces. Using Hamilton’s principle of least-action 
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derives the optimizing flows as a critical point for the action integral of the integral of 
the kinetic energy. The Lie bracket for vector fields in Computational Anatomy was first 
introduced in Miller, Trouve and Younes. The derivation calculates the perturbation 

vδ on the vector fields v v vε εδ= + in terms of the derivative in time of the group per-
turbation adjusted by the correction of the Lie bracket of vector fields in this function 
setting involving the Jacobian matrix, unlike the matrix group case: 

:vad V V given by ( ) ( ) ( ) , , .vad w Dv w Dw v v w V− ∈ � (adjoint-Lie-bracket)

Proof: Proving Lie bracket of vector fields take a first order perturbation of the flow at 
point VDiffϕ∈ . 

Lie bracket of vector fields.

The Lie bracket gives the first order variation of the vector field with respect to first 
order variation of the flow: 

( ) (( ) ( ) ) .
tt t v t t t t t t

d dv w ad w w Dv w Dw v
dt dt

δ = − = − −

The Generalized Euler–lagrange Equation for the Metric on  
Diffeomorphic Flows

The Euler–lagrange equation can be used to calculate geodesic flows through the group 
which form the basis for the metric. The action integral for the Lagrangian of the kinetic 
energy for Hamilton’s principle becomes: 

1

0

1 12 1 2 1 1

0 0

1 1 1( ) ( )·( ) .
2 2 2tt t t V t t t tX

J dt dt A dxdtϕϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− − −|| || = || ° || = ° °∫ ∫ ∫∫   


� (Hamilton’s Action Integral)

The action integral in terms of the vector field corresponds to integrating the kinetic 
energy: 

1
1 2

0
0

1 1( ) · .
2 2t V t t

X

J v v dt Av v dx dt|| || =∫ ∫ ∫

The shortest paths geodesic connections in the orbit are defined via Hamilton’s Princi-
ple of least action requires first order variations of the solutions in the orbits of Com-
putational Anatomy which are based on computing critical points on the metric length 
or energy of the path. The original derivation of the Euler equation associated with 
the geodesic flow of diffeomorphisms exploits the was a generalized function equation 
when *Av V∈ is a distribution, or generalized function, take the first order variation of 
the action integral using the adjoint operator for the Lie bracket (adjoint-Lie-bracket) 
gives for all smooth ,w V∈ .
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( )
1 1

0 0 0
 ( ) | ( ) ( ) .t t t t t tX X

d dJ Av v dxdt Av w Dv w Dw v dxdt
d dt

ε
εϕ δ

ε =
 = ⋅ = ⋅ − − 
 ∫ ∫ ∫ ∫

Using the bracket :vad w V V∈  and * * *: vad V V→ gives:

* ( ) 0 , [0  1  , ] ,
tt v t

d Av ad Av t
dt

+ = ∈
 
(EL-General)

meaning for all smooth: 

( ( )) (( ) ( ) ) 0.
tt v t t t tX X X t

d dAv ad Av wdx Av wdx Av Dv w Dw v dx
dt dt

∗+ ⋅ = ⋅ + ⋅ − =∫ ∫ ∫
Equation (Euler-general) is the Euler-equation when diffeomorphic shape momentum 
is a generalized function. This equation has been called EPDiff, Euler–Poincare equa-
tion for diffeomorphisms and has been studied in the context of fluid mechanics for 
incompressible fluids with 2L metric. 

Riemannian Exponential for Positioning

In the random orbit model of Computational anatomy, the entire flow is reduced to the 
initial condition which forms the coordinates encoding the diffeomorphism, as well 
as providing the means of positioning information in the orbit. This was first terms 
of a geodesic positioning system in Miller, Trouve, and Younes. From the initial con-
dition 0v then geodesic positioning with respect to the Riemannian metric of Compu-
tational anatomy solves for the flow of the Euler–Lagrange equation. Solving the geo-
desic from the initial condition 0v is termed the Riemannian-exponential, a mapping 

idExp (·) : DiffVV → at identity to the group. 

The Riemannian exponential satisfies id 0 1Exp ( )v ϕ= for initial condition 0 0 ,vϕ = , vec-
tor field dynamics , [0,1 ,]t t tv tϕ ϕ= ° ∈ .

•	 For classical equation on the diffeomorphic shape momentum as a smooth vec-

tor t tAv dxµ= with  ,tX
wdx w Vµ ⋅ ∈∫ the Euler equation exists in the classical 

sense as first derived for the density:

	

( ) ( ) ( · ) 0 , ;T
t t t t t t t t

d Dv D v v Av dx
dt
µ µ µ µ µ+ + + ∇ = =

•	 For generalized equation, *,Av V∈  then:

	

* ( ) 0 , [0,1] .
tt v t

d Av ad Av t
dt

+ = ∈

It is extended to the entire group, 0 id 0Exp ( ) E p ) .x (v vϕϕ ϕ ϕ= ° °
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The Variation Problem for Matching or Registering Coordinate  
System Information in Computational Anatomy

Matching information across coordinate systems is central to computational anatomy. 

Adding a matching term : DiffVE Rϕ +∈ → to the action integral of Equation (Hamil-

ton’s action integral) which represents the target endpoint: 

1

10
( ) · ( ) .t tX

C Av v dxdt Eϕ ϕ+∫ ∫

The endpoint term adds a boundary condition for the Euler–Lagrange equation 
(EL-General) which gives the Euler equation with boundary term. Taking the variation 
gives. 

•	 Necessary geodesic condition:

1
1

( ) ( ) ( · ) 0 ;

( ) 0

T
t t t t t t

d Av Dv Av DAv v v Av
dt

EAv ϕ
ϕ

 + + + ∇ =
 ∂ + =

∂

Proof: The Proof via variation calculus uses the perturbations from above and classic 
calculus of variation arguments. 

Proof via calculus of variations with endpoint energy.

Euler–lagrange Geodesic Endpoint Conditions for Image  
Matching

The earliest large deformation diffeomorphic metric mapping (LDDMM) algorithms 
solved matching problems associated with images and registered landmarks. are in a 
vector spaces. The image matching geodesic equation satisfies the classical dynamical 
equation with endpoint condition. The necessary conditions for the geodesic for image 
matching takes the form of the classic Equation (EL-Classic) of Euler–Lagrange with 
boundary condition: 

1 1 2
: 10

1 1min ( ) · ( ) ( ) |
2 2t tv t tX X

C Av v dxdt I x J x dxϕ ϕ ϕ ϕ ϕ−
= ° + ° −∫ ∫ ∫



•	 Necessary geodesic condition:

1 1
1 1 1

( ) ( ) ( · ) 0 ;

( ) ( )

T
t t t t t t

d Av Dv Av DAv v v Av
dt
Av I J Iϕ ϕ− −

 + + + ∇ =

 = ° − ∇ °
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Euler–lagrange Geodesic Endpoint Conditions for Landmark 
Matching

The registered landmark matching problem satisfies the dynamical equation for gener-
alized functions with endpoint condition: 

1

1 10:

1 1min ( ) ( ( ) ) ( ( ) ).
2 2t t

t t i i i iXv
i

C Av v dxdt x y x y
ϕ ϕ ϕ

ϕ ϕ ϕ
=

⋅ + − ⋅ −∑∫ ∫






•	 Necessary geodesic conditions:

1

*

1 ( ) 1
1

( ) 0 , [0,1] ,

( ( ))

t

i

t v t

n

x i i
i

d Av ad Av t
dt

Av y xϕδ ϕ
=

 + = ∈

 = −


∑

Proof: The variation ( )E ϕ
ϕ
∂
∂

requires variation of the inverse 1ϕ− generalizes the ma-

trix perturbation of the inverse via 1 1 1( ) ( ) ( )id oϕ εδϕ ϕ ϕ εδϕ ϕ ε− − −+ + = +   giving 
1 1 1( )δϕ ϕ ϕ δϕ− − −= − giving: 

1

1 1 1 2
0

1 1
1

1 1
1 1

1 | ( ) | |
2

( ) | ( )

( ) ( ) .

X

X

X

d I J dx
d

I J I D dx

I J I dx

ε

ϕ

ϕ εδϕ ϕ
ε

ϕ ∇ ϕ δϕ

ϕ ∇ ϕ δϕ

−

− − −
=

− −

− −

+ −

= − −

= − −

∫

∫
∫

 



 

Bayesian Model of Computational Anatomy

Computational anatomy (CA) is a discipline within medical imaging focusing on the 
study of anatomical shape and form at the visible or gross anatomical scale of mor-
phology. The field is broadly defined and includes foundations in anatomy, applied 
mathematics and pure mathematics, including medical imaging, neuroscience, phys-
ics, probability, and statistics. It focuses on the anatomical structures being imaged, 
rather than the medical imaging devices. The central focus of the sub-field of compu-
tational anatomy within medical imaging is mapping information across anatomical 
coordinate systems most often dense information measured within a magnetic reso-
nance image (MRI). The introduction of flows into CA, which are akin to the equations 
of motion used in fluid dynamics, exploit the notion that dense coordinates in image 
analysis follow the Lagrangian and Eulerian equations of motion. In models based on 
Lagrangian and Eulerian flows of diffeomorphisms, the constraint is associated with 
topological properties, such as open sets being preserved, coordinates not crossing 
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implying uniqueness and existence of the inverse mapping, and connected sets remain-
ing connected. The use of diffeomorphic methods grew quickly to dominate the field of 
mapping methods post Christensen’s original paper, with fast and symmetric methods 
becoming available.

The Main Statistical Model

Source-channel model showing the source of images the deformable template 

temp·I Iϕ ∈  and channel output associated with MRI sensor DI ∈  .

The central statistical model of Computational Anatomy in the context of medical im-
aging has been the source-channel model of Shannon theory; the source is the deform-
able template of images ,I ∈  the channel outputs are the imaging sensors with ob-
servables DI ∈  . The importance of the source-channel model is that the variation in 
the anatomical configuration are modelled separated from the sensor variations of the 
Medical imagery. The Bayes theory dictates that the model is characterized by the prior 
on the source, (·)π  on ,I ∈ , and the conditional density on the observable 

(· ) on Dp I I| ∈ 

conditioned on .I ∈

In deformable template theory, the images are linked to the templates, with the defor-
mations a group which acts on the template; For image action temp( ) · ,,I g g I g∈ 
then the prior on the group (·)π induces the prior on images (·)π  , written as densi-
ties the log-posterior takes the form 

log ( ( ) | ) log ( | ( )) log ( ).D Dp I g I p I I g gπ+ 

The random orbit model which follows specifies how to generate the group elements 
and therefore the random spray of objects which form the prior distribution. 

The Random Orbit Model of Computational Anatomy
The random orbit model of Computational Anatomy first appeared in modelling 
the change in coordinates associated with the randomness of the group acting on 
the templates, which induces the randomness on the source of images in the ana-
tomical orbit of shapes and forms and resulting observations through the medical 
imaging devices. Such a random orbit model in which randomness on the group 
induces randomness on the images was examined for the Special Euclidean Group 
for object recognition in which the group element g∈ was the special Euclidean 
group in.
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Orbits of brains associated with diffeomorphic group action on templates depicted via 
smooth flow associated with geodesic flows with random spray associated with random 
generation of initial tangent space vector field 0 ;v V∈  published in.

For the study of deformable shape in CA, the high-dimensional diffeomorphism groups 
used in computational anatomy are generated via smooth flows , [0,1]t tϕ ∈ which sat-
isfy the Lagrangian and Eulerian specification of the flow fields satisfying the ordinary 
differential equation: 

Showing the Lagrangian flow of coordinates x X∈ with associated vector 

fields , [0,1]tv t∈ satisfying ordinary differential equation 0) .( ,t t tv idϕ ϕ ϕ= =

0, id ;    t t t
d v
dt
ϕ ϕ ϕ= ° = (Lagrangian Flow)

with 1 2 3( , , )v v v v the vector fields on 3
 termed the Eulerian velocity of the particles 

at position ϕ of the flow. The vector fields are functions in a function space, modelled 
as a smooth Hilbert space with the vector fields having 1-continuous derivative. For 

1, [   0,1]t t tv tϕ ϕ−= ° ∈ , the inverse of the flow is given by: 

1 1 1
0( ) ,   id,t t t

d D v
dt
ϕ ϕ ϕ− − −= − = (Eulerianflow)

and the 3 3× Jacobian matrix for flows in 3
 given as .i

j

D
x
ϕϕ

 ∂
  ∂ 


To ensure smooth flows of diffeomorphisms with inverse, the vector fields 3
 must be 

at least 1-time continuously differentiable in space which are modelled as elements of 
the Hilbert space ( , ||·|| )VV using the Sobolev embedding theorems so that each element 
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3
0 , 1, 2,3,iv H i∈ = has 3-square-integrable derivatives. Thus ( , · )VV || || embed smoothly 

in 1-time continuously differentiable functions. The diffeomorphism group are flows 
with vector fields absolutely integrable in Sobolev norm: 

1

1 0
0

{ : , , },V t t t t VDiff v id v dtϕ ϕ ϕ ϕ ϕ ∞= = = || || <∫ 


 
(Diffeomorphism Group)

where 2 ·t V t t
X

v Av v dx|| || ∫ with A a linear operator *:A V V defining the norm of the 

RKHS. The integral is calculated by integration by parts when Av is a generalized func-

tion in the dual space *V . 

Riemannian Exponential

In the random orbit model of computational anatomy, the entire flow is reduced to the 
initial condition which forms the coordinates encoding the diffeomorphism. From the 
initial condition v0then geodesic positioning with respect to the Riemannian metric of 
Computational anatomy solves for the flow of the Euler-Lagrange equation. Solving the 
geodesic from the initial condition v0 is termed the Riemannian-exponential, a map-
ping idExp (·) : DiffVV → at identity to the group. 

The Riemannian exponential satisfies id 0 1Exp ( )v ϕ= for initial condition 0 0 ,vϕ = , vec-
tor field dynamics , [0,1 ,]t t tv tϕ ϕ= ° ∈

•	 for classical equation diffeomorphic shape momentum · ,tX
Av wdx Av V∈∫ , then

	
( ) ( ) ( · ) 0 ;T

t t t t t t
d Av Dv Av DAv v v Av
dt

+ + + ∇ =

•	 for generalized equation, then *,Av V w V∈ ∈ , 

	 0 id 0Exp ( ) Exp ( ) .v vϕϕ ϕ ϕ= ° °

It is extended to the entire group, 0 id 0Exp ( ) Exp ( )v vϕϕ ϕ ϕ= ° ° Depicted in the ac-

companying figure is a depiction of the random orbits around each exemplar, 0m ∈ , 

generated by randomizing the flow by generating the initial tangent space vector field at 
the identity 0 ,v V∈ , and then generating random object id 0 0Exp ( · .)n v m ∈ 

Shown in the figure on the right the cartoon orbit, are a random spray of the sub-
cortical manifolds generated by randomizing the vector fields I ∈ supported over 
the submanifolds.The random orbit model induces the prior on shapes and images 
conditioned on a particular atlas aI ∈ . For this the generative model generates the 
mean field I as a random change in coordinates of the template according to · aI Iϕ , 
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where the diffeomorphic change in coordinates is generated randomly via the geode-
sic flows. 

The random spray of synthesized subcortical structures laid out in 
the two-dimensional grid representing the variance of the  

eigenfunction used for the momentum for synthesis.

MAP Estimation in the Multiple-atlas Orbit Model

The random orbit model induces the prior on shapes and images I ∈ conditioned 
on a particular atlas .aI ∈  For this the generative model generates the mean field I 
as a random change in coordinates of the template according to · ,aI Iϕ , where the
diffeomorphic change in coordinates is generated randomly via the geodesic flows. The 

prior on random transformations Diff ( )dπ ϕ on DiffV is induced by the flow idExp ( ,)v  

with v V∈ constructed as a Gaussian random field prior .( )V dvπ  The density on the 

random observables at the output of the sensor D DI ∈ are given by:

( ) ( ( )· ) ( ) .D D
a id a V

V

p I I p I Exp v I dvπ| = |∫
Maximum a posteriori estimation (MAP) estimation is central to modern statistical 
theory. Parameters of interest θ ∈Θ take many forms including (i) disease type such as 
neurodegenerative or neurodevelopmental diseases, (ii) structure type such as cortical 
or subcorical structures in problems associated with segmentation of images, and (iii) 

template reconstruction from populations. Given the observed image ,DI  MAP estima-
tion maximizes the posterior: 

ˆ arg max log ( ).Dp Iθθ θ∈Θ |

This requires computation of the conditional probabilities 
( , )( )

)
.

(

D
D

D

p Ip I
p I

θθ | =  The 

multiple atlas orbit model randomizes over the denumerable set of atlases }.{ ,aI a∈  

The model on images in the orbit take the form of a multi-modal mixture distribution: 

( , ) ( , ) ( ) .D D
a

a
p I p I I aθ θ π

∈

= |∑ 


The conditional Gaussian model has been examined heavily for inexact matching in 
dense images and for landmark matching. 
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Dense Emage Matching
Model ( ),DI x x X∈ as a conditionally Gaussian random field conditioned, mean field, 

1
1 1 1· ( ), .VI I Diffϕ ϕ ϕ− ∈  For uniform variance the endpoint error terms plays the role 

of the log-conditional (only a function of the mean field) giving the endpoint term: 

1 2
1 12

1log ( ( )) ( ) .
2

D Dp I I g E I Iϕ ϕ
σ

−− | || − ° || 

 
(Conditional-Gaussian)

Landmark Matching
Model 1 2{ , , }Y y y= … as conditionally Gaussian with mean field 1 1( ), 1, 2, D ,, iffi Vx iϕ ϕ= … ∈  
constant noise variance independent of landmarks. The log-conditional (only a func-
tion of the mean field) can be viewed as the endpoint term: 

2
1 12

1log ( ( )) E( ) ( ) .
2

D
i i

i
p I I g y xϕ ϕ

σ
− | || − ||∑ 

MAP Segmentation based on Multiple Atlases

The random orbit model for multiple atlases models the orbit of shapes as the union 
over multiple anatomical orbits generated from the group action of diffeomor-
phisms, Diff · ,V aa

I
∈

=
 

  with each atlas having a template and predefined seg-

mentation field 1 2( , ), , ,a aI W a a a= … incorporating the parcellation into anatomical 

structures of the coordinate of the MRI. The pairs are indexed over the voxel lattice 
3( ), ( ),a i a i iI x W x x X∈ ⊂  with an MRI image and a dense labelling of every voxel co-

ordinate.The anatomical labelling of parcellated structures are manual delineations by 
neuroanatomists. 

The Bayes segmentation problem is given measurement DI with mean field and par-
cellation ( , ),I W  the anatomical labelling Wθ   must be estimated for the measured 
MRI image. The mean field of the observable DI image is modelled as a random defor-
mation from one of the templates DI , which is also randomly selected, · ,aI Iϕ . The 
optimal diffeomorphism ,A a=  is hidden and acts on the background space of coor-
dinates of the randomly selected template image ϕ∈ . Given a single atlas aI , the 

likelihood model for inference is determined by the joint probability ( , )Dp I W A a| =  
with multiple atlases, the fusion of the likelihood functions yields the multi-modal mix-
ture model with the prior averaging over models. 

The MAP estimator of segmentation aW is the maximizer max log ( )
W

Dp W I| given 
DI , 

which involves the mixture over all atlases. 
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ˆ arg max log ( , ) with ( , ) ( , ) ( ).D D D
W Aa

W p I W p I W p I W A a aπ
∈

= | =∑



The quantity ( , )Dp I W is computed via a fusion of likelihoods from multiple deform-

able atlases, with ( )A aπ being the prior probability that the observed image evolves 
from the specific template image .aI

The MAP segmentation can be iteratively solved via the expectation-maximization(EM) 
algorithm 

arg max log ( , , , ) ( , , ).new D old D

W
W p W I A dp A W Iϕ ϕ |∫

MAP Estimation of Volume Templates from Populations and the 
EM Algorithm

Generating templates empirically from populations is a fundamental operation ubiqui-
tous to the discipline. Several methods based on Bayesian statistics have emerged for 
submanifolds and dense image volumes. For the dense image volume case, given the 

observable 1 2, ,D DI I … the problem is to estimate the template in the orbit of dense im-

ages I ∈ . Ma’s procedure takes an initial hypertemplate 0I ∈ as the starting point, 

and models the template in the orbit under the unknown to be estimated diffeomor-

phism 0 0· ,I Iφ  with the parameters to be estimated the log-coordinates 0vθ   deter-

mining the geodesic mapping of the hyper-template id 0 0Exp ( )· .v I I= ∈

In the Bayesian random orbit model of computational anatomy the observed MRI im-
ages iDI are modelled as a conditionally Gaussian random field with mean field ,·i Iφ  
with iφ a random unknown transformation of the template. The MAP estimation prob-
lem is to estimate the unknown template I ∈ given the observed MRI images. 

Ma’s procedure for dense imagery takes an initial hypertemplate 0I ∈ as the starting 
point, and models the template in the orbit under the unknown to be estimated dif-
feomorphism. The observables are modelled as conditional random fields, 0 0· .I Iφ
a conditional-Gaussian random field with mean field iDI . The unknown variable to be 
estimated explicitly by MAP is the mapping of the hyper-template 0 0· · · .i iI Iφ φ φ , with 
the other mappings considered as nuisance or hidden variables which are integrated 
out via the Bayes procedure. This is accomplished using the expectation-maximization 
(EM) algorithm. 

The orbit-model is exploited by associating the unknown to be estimated flows to their 
log-coordinates , 1,iv i = …via the Riemannian geodesic log and exponential for com-
putational anatomy the initial vector field in the tangent space at the identity so that 
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idExp ( )i iv φ , with id 0Exp ( )v the mapping of the hyper-template. The MAP estimation 

problem becomes: 

0
0 0 1 2 1 2max ( , ) ( , , , ) ( , , )

v

D Dp I v p I v v v v v dvθ θ π= = = | … …∫
The EM algorithm takes as complete data the vector-field coordinates parameterizing 
the mapping, , 1,iv i = …and compute iteratively the conditional-expectation: 

old old old
0 0 0 1 2

old 1 old 2 2
0 id 0 0

( ; ) (log ( , , , ) , )

( Exp ( ) )

D D

V

Q v v E p I v v v I

I I v v

θ θ θ θ

β−

= = = − = … |

= − || − ° || − || ||

|

• Compute new template maximizing Q-function setting:

0

1 2 2
0 0 0 id 0 0arg max ( ; ) ( Exp ( ) )new new old old old old

Vv
v Q v I I v v

θ
θ θ θ β−

=
= = = − || − || − || || 

• Compute the mode-approximation for the expectation updating the expect-
ed-values for the mode values:

1new 2 old 1 1 2
0 id 0 id: 0

id idnew 1
id

1

arg max Exp ( ) Exp ( ) . 1, 2,

Exp ( ) Exp ( )( )
( ) | Exp ( )( ) ,  ( )

( )

i

i

D
i t Vv v

n D new newn
i inew new i

i old
i

v v dt I I v v i

I v D v x
x D v x with I x

x

φ φ

β
β

− −
= °

=

=

= − || || − || − ° ° || = …

| |
= | =

∫
∑∑





Bayesian Estimation of Templates in Computational Anatomy

Statistical shape analysis and statistical shape theory in computational anatomy (CA) 
is performed relative to templates, therefore it is a local theory of statistics on shape.
Template estimation in computational anatomy from populations of observations is a 
fundamental operation ubiquitous to the discipline. Several methods for template es-
timation based on Bayesian probability and statistics in the random orbit model of CA 
have emerged for submanifolds and dense image volumes.

The Deformable Template Model of Shapes and Forms via 
Diffeomorphic Group Actions

Linear algebra is one of the central tools of modern engineering. Central to linear al-
gebra is the notion of an orbit of vectors, with the matrices forming groups (matrices 
with inverses and identity) which act on the vectors. In linear algebra the equations de-
scribing the orbit elements the vectors are linear in the vectors being acted upon by the 
matrices. In computational anatomy the space of all shapes and forms is modeled as 
an orbit similar to the vectors in linear-algebra, however the groups do not act linear as 
the matrices do, and the shapes and forms are not additive. In computational anatomy 
addition is essentially replaced by the law of composition. 
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The central group acting CA defined on volumes in 3
 are the diffeomorphisms 

Diff which are mappings with 3-components 1 2 3(·) ( (·), (·), (·))φ φ φ φ= , law of com-

position of functions (·) ( (·))φ φ φ φ′ ′°  , with inverse 1 1(·) (·)) .( idφ φ φ φ− −° = =  

Groups and group are familiar to the Engineering community with the universal popu-
larization and standardization of linear algebra as a basic model. 

A popular group action is on scalar images, 3( ),I x x∈ , with action on the right via 
the inverse: 

1 3· ( ) ( ), .I x I x xφ φ−= ° ∈

For sub-manifolds 3 ,X ⊂ ∈  , parametrized by a chart or immersion ( ), ,m u u U∈ , 
the diffeomorphic action the flow of the position: 

· ( ) ( ), .m u m u u Uφ φ° ∈

Several group actions in computational anatomy have been defined. 

Geodesic Positioning via the Riemannian Exponential

For the study of deformable shape in CA, a more general diffeomorphism group has 
been the group of choice, which is the infinite dimensional analogue. The high-di-
mensional diffeomorphism groups used in computational anatomy are generated via 
smooth flows , [0,1]t tφ ∈ which satisfy the Lagrangian and Eulerian specification of the 
flow fields satisfying the ordinary differential equation:

0, ;t t t
d v id
dt
φ φ φ= ° =  (Lagrangian Flow)

with 1 2 3( , , )v v v v the vector fields on 3
 termed the Eulerian velocity of the particles 

at position φ of the flow. The vector fields are functions in a function space, modelled 
as a smooth Hilbert space with the vector fields having 1-continuous derivative. For 

1, [0,1]t t tv tφ φ−= ° ∈ , with the inverse for the flow given by:

1 1 1
0( ) , , t t t

d D v id
dt
φ φ φ− − −= − =  (Eulerianflow)
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and the 3 3× Jacobian matrix for flows in 3
  given as .i

j

D
x
φφ

 ∂
  ∂ 


Flows were first introduced for large deformations in image matching; ( )t xφ is the in-

stantaneous velocity of particle x at time t. with the vector fields termed the Eulerian 
velocity of the particles at position of the flow. The modelling approach used in CA 
enforces a continuous differentiability condition on the vector fields by modelling the 
space of vector fields ( , · )VV || || as a reproducing kernel Hilbert space (RKHS), with the 

norm defined by a 1-1, differential operator *,:A V V→ , Green’s inverse 1.K A−=  The 

norm according to 2 · , ,V
X

v Av vdx v V|| || ∈∫ where for *( )v Av Vσ ∈ a generalized func-

tion or distribution, then 
3

( ) ( ) ( )i i
i

w w x dxσ σ∑∫


| . Since A is a differential opera-

tor, finiteness of the norm-square ·
X
Av vdx < ∞∫ includes derivatives from the differen-

tial operator implying smoothness of the vector fields. 

To ensure smooth flows of diffeomorphisms with inverse, the vector fields ( , · )VV || ||
must be at least 1-time continuously differentiable in space which are modelled as ele-
ments of the Hilbert space 3

0 , 1, 2,3,iv H i∈ = using the Sobolev embedding theorems so 

that each element has 3-square-integrable derivatives. Thus ( , · )VV || || embed smoothly 
in 1-time continuously differentiable functions. The diffeomorphism group are flows 
with vector fields absolutely integrable in Sobolev norm:

1

1 0 0
{ : , , } .V t t t t VDiff v id v dtϕ φ φ φ φ= = ° = || || < ∞∫



 
(Diffeomorphism Group)

The Bayes Model of Computational Anatomy

The central statistical model of computational anatomy in the context of medical im-
aging is the source-channel model of Shannon theory; the source is the deformable 
template of images I ∈ , the channel outputs are the imaging sensors with observ-

ables DI ∈  . The variation in the anatomical configurations are modelled sepa-
rately from the Medical imaging modalities Computed Axial Tomography machine, 
MRI machine, PET machine, and others. The Bayes theory models the prior on the 
source of images (·)π  on ,I ∈ , and the conditional density on the observable imag-

ery (·| ) on Dp I I ∈  , conditioned on .I ∈ . For images with diffeomorphism group 
action temp· , VI I Diffφ φ ∈ , then the prior on the group (·)

VDiffπ induces the prior on 

images ),(·π  , written as densities the log-posterior takes the form: 

Difflog ( · ) log ( · ) log ( ) .
V

D Dp I I p I Iφ φ π φ+| |
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Maximum a posteriori estimation (MAP) estimation is central to modern statistical 
theory. Parameters of interest θ ∈Θ take many forms including (i) disease type such as 
neurodegenerative or neurodevelopmental diseases, (ii) structure type such as cortical 
or subcorical structures in problems associated with segmentation of images, and (iii) 

template reconstruction from populations. Given the observed image ,DI  MAP estima-
tion maximizes the posterior: 

ˆ arg max log ( ).Dp Iθθ θ∈Θ |

Shown are shape templates of amygdala, hippocampus, and ventricle generated from 
754 ADNI samples Topcd surface area group differences between normal ageing and 
Alzheimer disease (positive represents atrophy in Alzheimer whereas negative sug-
gests expansion). Bottom panel denotes the group differences in the annualized rates 
of change in the localized surface areas (positive represents faster atrophy rates (or 
slower expansion rates) in Alzheimer whereas negative suggests faster expansion 
rates (or slower atrophy rates) in Alzheimer).

This requires computation of the conditional probabilities 
( , )( )

)
.

(

D
D

D

p Ip I
p I

θθ =|  The 

multiple atlas orbit model randomizes over the denumerable set of atlases }.{ ,aI a∈  

The model on images in the orbit take the form of a multi-modal mixture distribution 

( , ) ( , ) ( ) .D D
aa

p I p I I aθ θ π
∈

= |∑ 

Surface Templates for Computational Neuroanatomy and 
Subcortical Structures

The study of sub-cortical neroanatomy has been the focus of many studies. Since the 
original publications by Csernansky and colleagues of hippocampal change in Schizo-
phrenia, Alzheimer’s disease, and Depression, many neuroanatomical shape statisti-
cal studies have now been completed using templates built from all of the subcortical 
structures for depression, Alzheimer’s, Bipolar disorder, ADHD, autism, and Hunting-
ton’s Disease. Templates were generated using Bayesian template estimation data back 
to Ma, Younes and Miller. 
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Shown in the accompanying figure is an example of subcortical structure templates 
generated from T1-weighted magnetic resonance imagery by Tang et al. for the study of 
Alzheimer’s disease in the ADNI population of subjects. 

Surface Estimation in Cardiac Computational Anatomy

Showing population atlases identifying regional differences in radial thickness at 
end-systolic cardiac phase between patients with hypertrophic cardiomyopathy (left) 
and hypertensive heart disease (right). Grey mesh shows the common surface template 
to the population, with the color map representing basilar septal and anterior epicar-
dial wall with larger radial thickness in patients with hypertrophic cardiomyopathy vs. 
hypertensive heart disease.

Numerous studies have now been done on cardiac hypertrophy and the role of the struc-
tural integrates in the functional mechanics of the heart. Siamak Ardekani has been 
working on populations of Cardiac anatomies reconstructing atlas coordinate systems 
from populations. The figure on the right shows the computational cardiac anatomy 
method being used to identify regional differences in radial thickness at end-systolic 
cardiac phase between patients with hypertrophic cardiomyopathy (left) and hyper-
tensive heart disease (right). Color map that is placed on a common surface template 
(grey mesh) represents region (basilar septal and the anterior epicardial wall) that has 
on average significantly larger radial thickness in patients with hypertrophic cardiomy-
opathy vs. hypertensive heart disease. 

MAP Estimation of Volume Templates from Populations and the 
EM Algorithm

Generating templates empirically from populations is a fundamental operation ubiqui-
tous to the discipline. Several methods based on Bayesian statistics have emerged for 
submanifolds and dense image volumes. For the dense image volume case, given the 
observable 1 2, ,D DI I … the problem is to estimate the template in the orbit of dense im-

ages I ∈ . Ma’s procedure takes an initial hypertemplate 0I ∈ as the starting point, 
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and models the template in the orbit under the unknown to be estimated diffeomor-
phism 0 0· ,I Iφ , with the parameters to be estimated the log-coordinates 0vθ   deter-
mining the geodesic mapping of the hyper-template id 0 0Exp ( )· .v I I= ∈

In the Bayesian random orbit model of computational anatomy the observed MRI im-
ages iDI are modelled as a conditionally Gaussian random field with mean field ,·i Iφ  
with iφ a random unknown transformation of the template. The MAP estimation prob-
lem is to estimate the unknown template I ∈ given the observed MRI images. 

Ma’s procedure for dense imagery takes an initial hypertemplate 0I ∈ as the starting 
point, and models the template in the orbit under the unknown to be estimated diffeo-
morphism. The observables are modelled as conditional random fields, 0 0· .I Iφ a condi-
tional-Gaussian random field with mean field iDI . The unknown variable to be estimated 
explicitly by MAP is the mapping of the hyper-template 0 0· · · .i iI Iφ φ φ , with the other map-
pings considered as nuisance or hidden variables which are integrated out via the Bayes 
procedure. This is accomplished using the expectation-maximization (EM) algorithm. 

The orbit-model is exploited by associating the unknown to be estimated flows to their 
log-coordinates , 1,iv i = …via the Riemannian geodesic log and exponential for com-
putational anatomy the initial vector field in the tangent space at the identity so that 

idExp ( )i iv φ , with id 0Exp ( )v the mapping of the hyper-template. The MAP estimation 
problem becomes: 

0
0 0 1 2 1 2max ( , ) ( , , , ) ( , , )

v

D Dp I v p I v v v v v dvθ θ π= = = | … …∫

The EM algorithm takes as complete data the vector-field coordinates parameterizing 
the mapping, , 1,iv i = …and compute iteratively the conditional-expectation: 

old old old
0 0 0 1 2

old 1 old 2 2
0 id 0 0

( ; ) (log ( , , , ) , )

( Exp ( ) )

D D

V

Q v v E p I v v v I

I I v v

θ θ θ θ

β−

= = = − = | … |

= − || − ° || − || ||

•	 Compute new template maximizing Q-function setting:

0

1 2 2
0 0 0 id 0 0arg max ( ; ) ( Exp ( ) )new new old old old old

Vv
v Q v I I v v

θ
θ θ θ β−

=
= = = − || − || − || || 

•	 Compute the mode-approximation for the expectation updating the expect-
ed-values for the mode values:

1new 2 old 1 1 2
0 id 0 id: 0

id idnew 1
id

1

arg max Exp ( ) Exp ( ) . 1, 2,

Exp ( ) Exp ( )( )
( ) Exp ( )( ) ,  ( )

( )

i

i

D
i t Vv v

n D new newn
i inew new i

i old
i

v v dt I I v v i

I v D v x
x D v x with I x

x

φ φ

β
β

− −
= °

=

=

= − || || − || − ° ° || = …

| |
= | | =

∫
∑∑




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Large Deformation Diffeomorphic Metric Mapping

Large deformation diffeomorphic metric mapping (LDDMM) is a specific suite of 
algorithms used for diffeomorphic mapping and manipulating dense imagery based 
on diffeomorphic metric mapping within the academic discipline of computation-
al anatomy, to be distinguished from its precursor based on diffeomorphic map-
ping. The distinction between the two is that diffeomorphic metric maps satisfy the 
property that the length associated with their flow away from the identity induces 
a metric on the group of diffeomorphisms, which in turn induces a metric on the 
orbit of shapes and forms within the field of Computational Anatomy. The study 
of shapes and forms with the metric of diffeomorphic metric mapping is called 
diffeomorphometry.

A diffeomorphic mapping system is a system designed to map, manipulate, and 
transfer information which is stored in many types of spatially distributed medical 
imagery.

Diffeomorphic mapping is the underlying technology for mapping and analyzing in-
formation measured in human anatomical coordinate systems which have been mea-
sured via Medical imaging. Diffeomorphic mapping is a broad term that actually refers 
to a number of different algorithms, processes, and methods. It is attached to many 
operations and has many applications for analysis and visualization. Diffeomorphic 
mapping can be used to relate various sources of information which are indexed as 
a function of spatial position as the key index variable. Diffeomorphisms are by their 
Latin root structure preserving transformations, which are in turn differentiable and 
therefore smooth, allowing for the calculation of metric based quantities such as arc 
length and surface areas. Spatial location and extents in human anatomical coordi-
nate systems can be recorded via a variety of Medical imaging modalities, generally 
termed multi-modal medical imagery, providing either scalar and or vector quantities 
at each spatial location. Examples are scalar T1 or T2 magnetic resonance imagery, or 
as 3x3 diffusion tensor matrices diffusion MRI and diffusion-weighted imaging, to sca-
lar densities associated with computed tomography (CT), or functional imagery such 
as temporal data of functional magnetic resonance imaging and scalar densities such as 
Positron emission tomography (PET).

Computational anatomy is a subdiscipline within the broader field of neuroinformatics 
within bioinformatics and medical imaging. The first algorithm for dense image mapping 
via diffeomorphic metric mapping was Beg’s LDDMM for volumes and Joshi’s landmark 
matching for point sets with correspondence, with LDDMM algorithms now available 
for computing diffeomorphic metric maps between non-corresponding landmarks and 
landmark matching intrinsic to spherical manifolds, curves, currents and surfaces, 
tensors, varifolds, and time-series. The term LDDMM was first established as part of 
the National Institutes of Health supported Biomedical Informatics Research Network.

In a more general sense, diffeomorphic mapping is any solution that registers or builds 
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correspondences between dense coordinate systems in medical imaging by ensuring 
the solutions are diffeomorphic. There are now many codes organized around dif-
feomorphic registration including ANTS, DARTEL, DEMONS, StationaryLDDMM, 
FastLDDMM, as examples of actively used computational codes for constructing 
correspondences between coordinate systems based on dense images.

The distinction between diffeomorphic metric mapping forming the basis for LDDMM 
and the earliest methods of diffeomorphic mapping is the introduction of a Hamilton 
principle of least-action in which large deformations are selected of shortest length cor-
responding to geodesic flows. This important distinction arises from the original for-
mulation of the Riemannian metric corresponding to the right-invariance. The lengths 
of these geodesics give the metric in the metric space structure of human anatomy. 
Non-geodesic formulations of diffeomorphic mapping in general does not correspond 
to any metric formulation.

Diffeomorphic mapping 3-dimensional information across coordinate systems is cen-
tral to high-resolution Medical imaging and the area of Neuroinformatics within the 
newly emerging field of bioinformatics. Diffeomorphic mapping 3-dimensional coordi-
nate systems as measured via high resolution dense imagery has a long history in 3-D 
beginning with Computed Axial Tomography (CAT scanning). In the 90’s there were 
several solutions for image registration which were associated with linearizations of 
small deformation and non-linear elasticity. 

The central focus of the sub-field of Computational anatomy (CA) within medical 
imaging is mapping information across anatomical coordinate systems at the 1 mil-
limeter morphome scale. In CA mapping of dense information measured within 
Magnetic resonance image (MRI) based coordinate systems such as in the brain has 
been solved via inexact matching of 3D MR images one onto the other. The earliest 
introduction of the use of diffeomorphic mapping via large deformation flows of 
diffeomorphisms for transformation of coordinate systems in image analysis and 
medical imaging was by Christensen, Rabbitt and Miller and Trouve. The introduc-
tion of flows, which are akin to the equations of motion used in fluid dynamics, ex-
ploit the notion that dense coordinates in image analysis follow the Lagrangian and 
Eulerian equations of motion. This model becomes more appropriate for cross-sec-
tional studies in which brains and or hearts are not necessarily deformations of 
one to the other. Methods based on linear or non-linear elasticity energetics which 
grows with distance from the identity mapping of the template, is not appropri-
ate for cross-sectional study. Rather, in models based on Lagrangian and Eulerian 
flows of diffeomorphisms, the constraint is associated with topological properties, 
such as open sets being preserved, coordinates not crossing implying uniqueness 
and existence of the inverse mapping, and connected sets remaining connected. 
The use of diffeomorphic methods grew quickly to dominate the field of mapping 
methods post Christensen’s original paper, with fast and symmetric methods be-
coming available. 
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Such methods are powerful in that they introduce notions of regularity of the solutions so 
that they can be differentiated and local inverses can be calculated. The disadvantages of 
these methods are that there was no associated global least-action property which could 
score the flows of minimum energy. This contrasts the geodesic motions which are cen-
tral to the study of Rigid body kinematics and the many problems solved in Physics via 
Hamilton’s principle of least action. In 1998, Dupuis, Grenander and Miller established 
the conditions for guaranteeing the existence of solutions for dense image matching in the 
space of flows of diffeomorphisms. These conditions require an action penalizing kinetic 
energy measured via the Sobolev norm on spatial derivatives of the flow of vector fields. 

The large deformation diffeomorphic metric mapping (LDDMM) code that Faisal Beg 
derived and implemented for his PhD, developed the earliest algorithmic code which 
solved for flows with fixed points satisfying the necessary conditions for the dense im-
age matching problem subject to least-action. Computational anatomy now has many 
existing codes organized around diffeomorphic registration including ANTS, DARTEL, 
DEMONS, LDDMM, StationaryLDDMM as examples of actively used computational 
codes for constructing correspondences between coordinate systems based on dense 
images. 

These large deformation methods have been extended to landmarks without registra-
tion via measure matching, curves, surfaces, dense vector and tensor imagery, and var-
ifolds removing orientation. 

The Diffeomorphism Orbit Model in Computational Anatomy

Deformable shape in Computational Anatomy (CA) is studied via the use of diffeo-
morphic mapping for establishing correspondences between anatomical coordi-
nates in Medical Imaging. In this setting, three dimensional medical images are 
modelled as a random deformation of some exemplar, termed the template ,tempI  

with the set of observed images element in the random orbit model of CA for images 
{ , .}temp VI I I Diffϕ ϕ∈ = ° ∈  The template is mapped onto the target by defining a 

variational problem in which the template is transformed via the diffeomorphism used 
as a change of coordinate to minimize a squared-error matching condition between the 
transformed template and the target. 

The diffeomorphisms are generated via smooth flows , [0 1 ,, ]t tφ ∈ , with 1,ϕ φ , sat-

isfying the Lagrangian and Eulerian specification of the flow field associated with the 

ordinary differential equation: 

0, ,t t t
d v id
dt
φ φ φ= ° =

with , [0,1]tv t∈ the Eulerian vector fields determining the flow. The vector fields are 
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guaranteed to be 1-time continuously differentiable 1
tv C∈ by modelling them to be 

in a smooth Hilbert v V∈  space supporting 1-continuous derivative. The inverse 
1, [0,1]t tφ− ∈ is defined by the Eulerian vector-field with flow given by: 

1 1 1
0( ) ,   .t t t

d D v id
dt
φ φ φ− − −= − =  (Inverse Transport Flow)

To ensure smooth flows of diffeomorphisms with inverse, the vector fields with com-
ponents in 3

 must be at least 1-time continuously differentiable in space which are 
modelled as elements of the Hilbert space ( , · )VV || || using the Sobolev embedding theo-

rems so that each element 3
0 , 1, 2,3,iv H i∈ = has 3-times square-integrable weak-deriv-

atives. Thus ( , )|| ⋅ || embeds smoothly in 1-time continuously differentiable functions. 

The diffeomorphism group are flows with vector fields absolutely integrable in Sobolev 
norm: 

1

1 0 0
{ : , , } .V t t t VDiff v id v dtϕ φ φ φ φ= = ° = || || < ∞∫

  (Diffeomorphism Group)

The Variational Problem of Dense Image Matching and Sparse 
Landmark Matching

LDDMM Algorithm for Dense Image Matching

In CA the space of vector fields ( , · )VV |||| are modelled as a reproducing Kernel Hilbert 

space (RKHS) defined by a 1-1, differential operator *:A V V→ determining the norm 

3

2 ,  ,V
R

v Av vdx v V|| || ⋅ ∈∫ where the integral is calculated by integration by parts when is 

a generalized function in the dual space *.V  The differential operator is selected so that 
the Green’s kernel, the inverse of the operator, is continuously differentiable in each 
variable implying that the vector fields support 1-continuous derivative; for the neces-
sary conditions on the norm for existence of solutions. 

The original large deformation diffeomorphic metric mapping (LDDMM) algorithms 
of Beg, Miller, Trouve, Younes was derived taking variations with respect to the vector 
field parameterization of the group, since 1v φ φ−= ° are in a vector spaces. Beg solved 
the dense image matching minimizing the action integral of kinetic energy of diffeo-
morphic flow while minimizing endpoint matching term according to: 

30 3

1 1 2
1: , 0

1 1min ( ) | |
2 2R t tv v id R

C v Av v dxdt I J dxφ φ φ φ −
= = ⋅ + −∫∫ ∫



 
 (Variational Problem Images)

•	 Beg’s Iterative Algorithm for Dense Image Matching.
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Update until convergence, old new
t tφ φ← each iteration, with 1

1 1 :t tφ φ φ−°  

3

1 1
1 1(·) (·) ( (·, )( ( ) ( )) ( ( )) | ( ) | ), [0,1]

, [0,1]

new old old old old old old
t t t t t t tR
new new new
t t t

v v v K y I y J y I y D y dy t

v t

φ φ φ φ

φ φ

− − = − − ° − ° ∇ ° ∈


= ° ∈

∫




(Beg-LDDMM-iteration)
This implies that the fixed point at 0t = satisfies: 

* * * *
0 0 1 1( ) ,| |Av I J I Dµ φ φ= = − ° ∇

which in turn implies it satisfies the Conservation equation given by the Endpoint 
Matching Condition according to: 

* * 1 * * 1 * 1
0( ) | |T

t t t tAv D Av Dφ φ φ− − −= °

LDDMM Registered Landmark Matching

The landmark matching problem has a pointwise correspondence defining the end-
point condition with geodesics given by the following minimum: 

:
3

1

0 1 1
1 1min ( ) · ( ( ) )·( ( ) )
2 2

;
v vt t t

R t t i i i i
i

C v Av v dxdt x y x y
φ φ

φ φ
= °

+ − −∫ ∑∫




LDMM dense image matching. Top row shows transport of the image 
under the flow ,tv ; middle row shows sequence of vector fields 1;tI φ−° t=0,1/5,2/5,3/5,4/5,1; 

bottom row shows the sequence of grids under .tφ

• Iterative Algorithm for Landmark Matching Joshi originally defined the reg-

istered landmark matching probleme,. Update until convergence, old new
t tφ φ←

each iteration, with : 1
1 1 :t tφ φ φ−°

1 1( )
( ) ( ) ( ( , ( ))( ) | ( ( )), [0,1]

, [0,1]

old
t i

new old old old oldT old
t t t t i t i ixi

new new new
t t t

v v v K x D y x t

v t
φ

φ φ φ

φ φ

⋅ = ⋅ − + ⋅ − ∈

∈



 =





∑




ò

(Landmark-LDDMM-iteration)
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This implies that the fixed point satisfy: 

0 1 1( )( ) ( ( ))
i

T
i i i x

i
Av D x y xφ φ δ= − −∑

with, 

1 ( ) 1 ( )( ) | ( ( )) .
t i t i

T
t t x i i x

i
Av D y xφ φφ φ δ= − −∑

Variations for LDDMM Dense Image and Landmark Matching

The Calculus of variations was used in beg to derive the iterative algorithm as a solution 
which when it converges satisfies the necessary maximizer conditions given by the nec-
essary conditions for a first order variation requiring the variation of the endpoint with 
respect to a first order variation of the vector field. The directional derivative calculates 
the Gateaux derivative as calculated in Beg’s original paper and show.

First Order Variation of the Flow and Vector Field for Dense Image and Landmark 
Matching.

LDDMM Diffusion Tensor Image Matching

LDDMM matching based on the principal eigen vector of the diffusion tensor matrix 
takes the image 3( ),I x x∈ as a unit vector field defined by the first eigen vector. The 
group action becomes: 

1

1

1 1

1 0,
·

0 otherwise.

D I I
I

I D I
ϕ

ϕ

ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ
−

−

− −

−

 ° || ° ||
° ≠

= || ° ||



where ·|| ||  that denotes image squared-error norm. 

LDDMM matching based on the entire tensor matrix has group action 
1

1 1 1 2 2 2 3 3 3ˆ ˆ ˆ ˆ ˆ ˆ· ( ) ,T T TM e e e e e eϕ λ λ λ ϕ−= + + ° transformed eigenvectors: 

1 2 1 2 1
1 2 3 1 22 2

1 2 1 2

ˆ ˆ,ˆ ˆ ˆ ˆ ˆ, ,
ˆ ,

.D e D e e D e ee e e e e
D e D e e D e
ϕ ϕ ϕ
ϕ ϕ ϕ

− 〈 〉
= = = ×
|| || || || −〈 〉

Dense Matching Problem onto Principle Eigenvector of DTI

The variational problem matching onto vector image 3( ),I x x′ ∈ with endpoint 

3
3

2 2
1 1 1( ) · ( . · ) )E I I dx I I dxφ α φ β φ′ ′|| − || + || || − || ||∫ ∫






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becomes: 

3 31 3

2

:

1

10

2
1

1min ( )  .
2 R t t

v
Av v dxdt I I dx I I dx′ ′

φ φ
α φ β φ

−
⋅ + || ⋅ − || + || ⋅ || − || ||∫ ∫ ∫ ∫









Dense Matching Problem Onto DTI MATRIX

The variational problem matching onto: 3( ),M x x′ ∈ with endpoint: 

3

2
1 1( ) · ( ) ( ) FR

E M x M x dxφ φ ′|| − ||∫

with · F|| || Frobenius norm, giving variational problem: 

3 31

1 2
10:

1min · · ( ) ( )
2 t t Fv v

Av v dxdt M x M x dx
φ φ

α φ
−

′

= °
+ || − ||∫ ∫ ∫



 

(Dense TensorDTI-Matching).

LDDMM ODF

High angular resolution diffusion imaging (HARDI) addresses the well-known limita-
tion of DTI, that is, DTI can only reveal one dominant fiber orientation at each location. 
HARDI measures diffusion along n uniformly distributed directions on the sphere and 
can characterize more complex fiber geometries by reconstructing an orientation distri-
bution function (ODF) that characterizes the angular profile of the diffusion probability 

density function of water molecules. The ODF is a function defined on a unit sphere, 2

. Denote the square-root ODF ( ODF ) as ( )ψ s , where ( )ψ s is non-negative to ensure 

uniqueness and 
2

2 ( ) 1dψ
∈

=∫s s s


. The metric defines the distance between two ODF

functions 1 2,ψ ψ ∈Ψ as: 

21 1

1 1
1 2 2 1 2 1 2( , ) log ( ) cos , cos ( ( ) ( ) ),dψ ψρ ψ ψ ψ ψ ψ ψ ψ− −

∈
=|| || = = ∫s s s s



where ·,·〈 〉 is the normal dot product between points in the sphere under the 2L metric. 

The template and target are denoted 2
temp targ( , ), ( , ),x xψ ψ ∈s s s  x X∈ indexed across 

the unit sphere and the image domain, with the target indexed similarly. 

Define the variational problem assuming that two ODF volumes can be generated from 
one to another via flows of diffeomorphisms ,tφ , which are solutions of ordinary differ-

ential equations 0( ), [0,1], ,t t tv t idφ φ φ= ∈ = . The group action of the diffeomorphism 
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on the template is given according to 1
1 1 1· ( ) ( ) ( ),x D x x Xφ ψ φ ψ φ−° ∈ , where 1( )Dφ is 

the Jacobian of the affined transformed ODF and is defined as: 

1 1
1 1

1
1 1

1

1 1
1 11 1

1 1 13 11
11

det (
( ) ( ) , ( ) .

(

( ) )
)( )

D D
D x x

DD

φ φ

φφ

φ φ
φ ψ φ ψ φ

φφ
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Hamiltonian LDDMM for Dense Image Matching

Beg solved the early LDDMM algorithms by solving the variational matching taking 
variations with respect to the vector fields. Another solution by Vialard, reparam-

eterizes the optimization problem in terms of the state 1
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Computational Genomics

Computational genomics (often referred to as Computational Genetics) refers to the use 
of computational and statistical analysis to decipher biology from genome sequences 
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and related data, including both DNA and RNA sequence as well as other “post-genom-
ic” data (i.e., experimental data obtained with technologies that require the genome se-
quence, such as genomic DNA microarrays). These, in combination with computational 
and statistical approaches to understanding the function of the genes and statistical 
association analysis, this field is also often referred to as Computational and Statistical 
Genetics/genomics. As such, computational genomics may be regarded as a subset of 
bioinformatics and computational biology, but with a focus on using whole genomes 
(rather than individual genes) to understand the principles of how the DNA of a species 
controls its biology at the molecular level and beyond. With the current abundance of 
massive biological datasets, computational studies have become one of the most im-
portant means to biological discovery.

The roots of computational genomics are shared with those of bioinformatics. During 
the 1960s, Margaret Dayhoff and others at the National Biomedical Research Foun-
dation assembled databases of homologous protein sequences for evolutionary study. 
Their research developed a phylogenetic tree that determined the evolutionary changes 
that were required for a particular protein to change into another protein based on 
the underlying amino acid sequences. This led them to create a scoring matrix that 
assessed the likelihood of one protein being related to another. 

Beginning in the 1980s, databases of genome sequences began to be recorded, but 
this presented new challenges in the form of searching and comparing the databas-
es of gene information. Unlike text-searching algorithms that are used on websites 
such as Google or Wikipedia, searching for sections of genetic similarity requires 
one to find strings that are not simply identical, but similar. This led to the devel-
opment of the Needleman-Wunsch algorithm, which is a dynamic programming 
algorithm for comparing sets of amino acid sequences with each other by using 
scoring matrices derived from the earlier research by Dayhoff. Later, the BLAST 
algorithm was developed for performing fast, optimized searches of gene sequence 
databases. BLAST and its derivatives are probably the most widely used algorithms 
for this purpose. 

The emergence of the phrase “computational genomics” coincides with the availability 
of complete sequenced genomes in the mid-to-late 1990s. The first meeting of the An-
nual Conference on Computational Genomics was organized by scientists from The In-
stitute for Genomic Research (TIGR) in 1998, providing a forum for this speciality and 
effectively distinguishing this area of science from the more general fields of Genomics 
or Computational Biology. The first use of this term in scientific literature, according 
to MEDLINE abstracts, was just one year earlier in Nucleic Acids Research. The final 
Computational Genomics conference was held in 2006, featuring a keynote talk by No-
bel Laureate Barry Marshall, co-discoverer of the link between Helicobacter pylori and 
stomach ulcers. As of 2014, the leading conferences in the field include Intelligent Sys-
tems for Molecular Biology (ISMB) and Research in Computational Molecular Biology 
(RECOMB). 
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The development of computer-assisted mathematics (using products such as Mathe-
matica or Matlab) has helped engineers, mathematicians and computer scientists to 
start operating in this domain, and a public collection of case studies and demonstra-
tions is growing, ranging from whole genome comparisons to gene expression analysis. 
This has increased the introduction of different ideas, including concepts from systems 
and control, information theory, strings analysis and data mining. It is anticipated that 
computational approaches will become and remain a standard topic for research and 
teaching, while students fluent in both topics start being formed in the multiple courses 
created in the past few years. 

Contributions of Computational Genomics Research to Biology

Contributions of computational genomics research to biology include: 

•	 Proposing cellular signalling networks.

•	 Proposing mechanisms of genome evolution.

•	 Predict precise locations of all human genes using comparative genomics tech-
niques with several mammalian and vertebrate species.

•	 Predict conserved genomic regions that are related to early embryonic 
development.

•	 Discover potential links between repeated sequence motifs and tissue-specific 
gene expression.

•	 Measure regions of genomes that have undergone unusually rapid evolution.

Computational Neuroscience

Computational neuroscience is a branch of neuroscience which uses computational 
approaches, to study the nervous system. Computational approaches include mathe-
matics, statistics, computer simulations, and abstractions which are used across many 
subareas of neuroscience including development, structure, physiology and cognitive 
abilities of the nervous system. 

The computational neuroscience discipline roughly divides into two subfields. A first, 
which may be called theoretical neuroscience focuses on principled approaches towards 
arriving at meaningful models of the nervous system. This field contains many aspects 
of mathematical neuroscience which employs mathematical techniques to arrive at 
models. Models in theoretical neuroscience are often aimed at capturing the essential 
features of the biological system at multiple spatial-temporal scales, from membrane 
currents, and chemical coupling via network oscillations, columnar and topographic 
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architecture, all the way up to behavior. These computational models frame hypotheses 
that can often be directly tested by biological or psychological experiments. A second 
subfield, which is often called neural data science focuses on approaches towards mak-
ing sense of the progressively larger datasets in neuroscience. This may include the 
processing of electrophysiological or imaging data, the fitting of models to data, and 
the comparison of models. These two subfields are highly synergistic and many papers 
draw from both traditions. 

Research in computational neuroscience can be roughly categorized into several 
lines of inquiry. Most computational neuroscientists collaborate closely with ex-
perimentalists in analyzing novel data and synthesizing new models of biological 
phenomena. 

Single-neuron Modelling

Even single neurons have complex biophysical characteristics and can perform compu-
tations (e.g.). Hodgkin and Huxley’s original model only employed two voltage-sensi-
tive currents (Voltage sensitive ion channels are glycoprotein molecules which extend 
through the lipid bilayer, allowing ions to traverse under certain conditions through 
the axolemma), the fast-acting sodium and the inward-rectifying potassium. Though 
successful in predicting the timing and qualitative features of the action potential, it 
nevertheless failed to predict a number of important features such as adaptation and 
shunting. Scientists now believe that there are a wide variety of voltage-sensitive cur-
rents, and the implications of the differing dynamics, modulations, and sensitivity of 
these currents is an important topic of computational neuroscience. 

The computational functions of complex dendrites are also under intense investigation. 
There is a large body of literature regarding how different currents interact with geo-
metric properties of neurons. Some models are also tracking biochemical pathways at 
very small scales such as spines or synaptic clefts. 

There are many software packages, such as GENESIS and NEURON, that allow rapid 
and systematic in silico modelling of realistic neurons. Blue Brain, a project found-
ed by Henry Markram from the École Polytechnique Fédérale de Lausanne, aims to 
construct a biophysically detailed simulation of a cortical column on the Blue Gene 
supercomputer. 

Modelling the richness of biophysical properties on the single-neuron scale can supply 
mechanisms that serve as the building blocks for network dynamics. However, detailed 
neuron descriptions are computationally expensive and this can handicap the pursuit 
of realistic network investigations, where many neurons need to be simulated. As a 
result, researchers that study large neural circuits typically represent each neuron and 
synapse with an artificially simple model, ignoring much of the biological detail. Hence 
there is a drive to produce simplified neuron models that can retain significant bio-
logical fidelity at a low computational overhead. Algorithms have been developed to 
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produce faithful, faster running, simplified surrogate neuron models from computa-
tionally expensive, detailed neuron models. 

Development, Axonal Patterning and Guidance

Computational neuroscience aims to address a wide array of questions. How do axons 
and dendrites form during development? How do axons know where to target and how 
to reach these targets? How do neurons migrate to the proper position in the central 
and peripheral systems? How do synapses form? We know from molecular biology that 
distinct parts of the nervous system release distinct chemical cues, from growth factors 
to hormones that modulate and influence the growth and development of functional 
connections between neurons. 

Theoretical investigations into the formation and patterning of synaptic connection and 
morphology are still nascent. One hypothesis that has recently garnered some attention is 
the minimal wiring hypothesis, which postulates that the formation of axons and dendrites 
effectively minimizes resource allocation while maintaining maximal information storage. 

Sensory Processing

Early models on sensory processing understood within a theoretical framework are 
credited to Horace Barlow. Barlow understood the processing of the early sensory sys-
tems to be a form of efficient coding, where the neurons encoded information which 
minimized the number of spikes. Experimental and computational work have since 
supported this hypothesis in one form or another. 

Current research in sensory processing is divided among a biophysical modelling of differ-
ent subsystems and a more theoretical modelling of perception. Current models of percep-
tion have suggested that the brain performs some form of Bayesian inference and integra-
tion of different sensory information in generating our perception of the physical world. 

Motor Control

Many models of the way the brain controls movement have been developed. This includes 
models of processing in the brain such as the cerebellum’s role for error correction, skill 
learning in motor cortex and the basal ganglia, or the control of the vestibulo ocular re-
flex. This also includes many normative models, such as those of the Bayesian or optimal 
control flavor which is built on the idea that the brain efficiently solves its problems. 

Memory and Synaptic Plasticity

Earlier models of memory are primarily based on the postulates of Hebbian learning. 
Biologically relevant models such as Hopfield net have been developed to address the 
properties of associative (also known as “content-addressable”) style of memory that 
occur in biological systems. These attempts are primarily focusing on the formation of 

____________________ WORLD TECHNOLOGIES ____________________



WT

51CHAPTER 2    Subfields of Computational Biology

medium- and long-term memory, localizing in the hippocampus. Models of working 
memory, relying on theories of network oscillations and persistent activity, have been 
built to capture some features of the prefrontal cortex in context-related memory. Ad-
ditional models look at the close relationship between the basal ganglia and the pre-
frontal cortex and how that contributes to working memory. 

One of the major problems in neurophysiological memory is how it is maintained and 
changed through multiple time scales. Unstable synapses are easy to train but also 
prone to stochastic disruption. Stable synapses forget less easily, but they are also hard-
er to consolidate. One recent computational hypothesis involves cascades of plasticity 
that allow synapses to function at multiple time scales. Stereochemically detailed mod-
els of the acetylcholine receptor-based synapse with the Monte Carlo method, working 
at the time scale of microseconds, have been built. It is likely that computational tools 
will contribute greatly to our understanding of how synapses function and change in 
relation to external stimulus in the coming decades. 

Behaviors of Networks

Biological neurons are connected to each other in a complex, recurrent fashion. These 
connections are, unlike most artificial neural networks, sparse and usually specific. It is 
not known how information is transmitted through such sparsely connected networks, 
although specific areas of the brain, such as the Visual cortex, are understood in some 
detail. It is also unknown what the computational functions of these specific connectiv-
ity patterns are, if any. 

The interactions of neurons in a small network can be often reduced to simple models 
such as the Ising model. The statistical mechanics of such simple systems are well-char-
acterized theoretically. There has been some recent evidence that suggests that dynam-
ics of arbitrary neuronal networks can be reduced to pairwise interactions. It is not 
known, however, whether such descriptive dynamics impart any important computa-
tional function. With the emergence of two-photon microscopy and calcium imaging, 
we now have powerful experimental methods with which to test the new theories re-
garding neuronal networks. 

In some cases the complex interactions between inhibitory and excitatory neurons can 
be simplified using mean field theory, which gives rise to the population model of neu-
ral networks. While many neurotheorists prefer such models with reduced complexity, 
others argue that uncovering structural-functional relations depends on including as 
much neuronal and network structure as possible. Models of this type are typically built 
in large simulation platforms like GENESIS or NEURON. There have been some at-
tempts to provide unified methods that bridge and integrate these levels of complexity. 

Visual Attention, Identification and Categorization

Visual attention can be described as a set of mechanisms that limit some processing 
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to a subset of incoming stimuli. Attentional mechanisms shape what we see and what 
we can act upon. They allow for concurrent selection of some (preferably, relevant) 
information and inhibition of other information.In order to have a more concrete 
specification of the mechanism underlying visual attention and the binding of fea-
tures, a number of computational models have been proposed aiming to explain psy-
chophysical findings. In general, all models postulate the existence of a saliency or 
priority map for registering the potentially interesting areas of the retinal input, and 
a gating mechanism for reducing the amount of incoming visual information, so that 
the limited computational resources of the brain can handle it. Computational neuro-
science provides a mathematical framework for studying the mechanisms involved in 
brain function and allows complete simulation and prediction of neuropsychological 
syndromes.

Cognition, Discrimination and Learning

Computational modelling of higher cognitive functions has only recently begun. 
Experimental data comes primarily from single-unit recording in primates. The 
frontal lobe and parietal lobe function as integrators of information from multiple 
sensory modalities. There are some tentative ideas regarding how simple mutual-
ly inhibitory functional circuits in these areas may carry out biologically relevant 
computation. 

The brain seems to be able to discriminate and adapt particularly well in certain con-
texts. For instance, human beings seem to have an enormous capacity for memorizing 
and recognizing faces. One of the key goals of computational neuroscience is to dissect 
how biological systems carry out these complex computations efficiently and potential-
ly replicate these processes in building intelligent machines. 

The brain’s large-scale organizational principles are illuminated by many fields, in-
cluding biology, psychology, and clinical practice. Integrative neuroscience attempts 
to consolidate these observations through unified descriptive models and databases of 
behavioral measures and recordings. These are the bases for some quantitative model-
ling of large-scale brain activity. 

The Computational Representational Understanding of Mind (CRUM) is another at-
tempt at modelling human cognition through simulated processes like acquired rule-
based systems in decision making and the manipulation of visual representations in 
decision making. 

Consciousness

One of the ultimate goals of psychology/neuroscience is to be able to explain the every-
day experience of conscious life. Francis Crick, Giulio Tononi and Christof Koch made 
some attempts to formulate consistent frameworks for future work in neural correlates 
of consciousness (NCC), though much of the work in this field remains speculative. 
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Computational Clinical Neuroscience

Computational Clinical Neuroscience is a field that brings together experts in neurosci-
ence, neurology, psychiatry, decision sciences and computational modelling to quan-
titatively define and investigate problems in neurological and psychiatric diseases, 
and to train scientists and clinicians that wish to apply these models to diagnosis and 
treatment. 

Controversies

Some scientists believe that computational neuroscience should focus only on the de-
scription of biologically plausible neurons (and neural systems) and their physiology 
and dynamics, and should therefore not be concerned about disciplines that are per-
ceived to be biologically unrealistic such as connectionism, machine learning, artificial 
neural networks, artificial intelligence and computational learning theory. Other sci-
entists believe that artificial neural networks are among the best models we currently 
have for neural function.

Computational Biomodelling

Simulation of biological systems has prospects for the evaluation of normal and dis-
eased conditions, identification of the underlying mechanisms of biological function, 
and prediction of surgical and rehabilitative outcomes. When experimentation is lim-
ited due to feasibility and safety, computer simulations are likely to provide insight. 
Modelling can be utilized with constricted experimental data to extract biological prop-
erties that may not be measured directly, e.g. in vivo deformation characteristics of 
tissues. Simulations can link organ function to cell response. For example, it may be 
possible to establish the role of system level mechanical loading to cellular damage. 
Simulation tools and models can be used to assess health risks when experimentation 
is not safe. Estimation of electromagnetic radiation due to wireless devices illustrates 
such an application. Simulation based medicine is possible by utilizing predictive na-
ture of computational modelling. Adequacy of intravascular stent functionality can be 
evaluated like the performance of other cardiovascular devices, orthopedic implants 
and many more. Model development procedures and numerical methods are applica-
ble in many health related research areas including but not limited to the exploration 
of drug delivery systems, cellular signaling and molecular processes.

In computational modelling, one searches for the representation of the essential as-
pects of the biological system in a usable form. While description of the system with 
mathematical equations provides this form, a.k.a. model, useful information is extract-
ed by solving these equations numerically, a.k.a. simulation. Successful realization of 
this process establishes virtual test beds to explore the system.
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The interdisciplinary field which is concerned with the development of methods and 
software tools used for analyzing and interpreting biological data is known as bioin-
formatics. It branches into structural bioinformatics which focuses on the analysis and 
prediction of the three-dimensional structure of proteins, RNA and DNA. The topics 
elaborated in this chapter will help in gaining a better perspective about bioinformatics.

Bioinformatics 3
• Structural Bioinformatics

• Sequence Analysis

• Sequence Alignment

• Alignment-free Sequence Analysis

• Gene Expression

• Protein Expression

• Gene Prediction

• BLAST (Biotechnology)

• Role of Bioinformatics in Biotechnology

Bioinformatics is a hybrid science that links biological data with techniques for in-
formation storage, distribution, and analysis to support multiple areas of scientific 
research, including biomedicine. Bioinformatics is fed by high-throughput data-gen-
erating experiments, including genomic sequence determinations and measurements 
of gene expression patterns. Database projects curate and annotate the data and then 
distribute it via the World Wide Web. Mining these data leads to scientific discoveries 
and to the identification of new clinical applications. In the field of medicine in par-
ticular, a number of important applications for bioinformatics have been discovered. 
For example, it is used to identify correlations between gene sequences and diseases, 
to predict protein structures from amino acid sequences, to aid in the design of novel 
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drugs, and to tailor treatments to individual patients based on their DNA sequences 
(pharmacogenomics).

The Data of Bioinformatics

The classic data of bioinformatics include DNA sequences of genes or full genomes; 
amino acid sequences of proteins; and three-dimensional structures of proteins, nucle-
ic acids and protein–nucleic acid complexes. Additional “-omics” data streams include: 
transcriptomics, the pattern of RNA synthesis from DNA; proteomics, the distribution of 
proteins in cells; interactomics, the patterns of protein-protein and protein–nucleic acid 
interactions; and metabolomics, the nature and traffic patterns of transformations of 
small molecules by the biochemical pathways active in cells. In each case there is interest 
in obtaining comprehensive, accurate data for particular cell types and in identifying pat-
terns of variation within the data. For example, data may fluctuate depending on cell type, 
timing of data collection (during the cell cycle, or diurnal, seasonal, or annual variations), 
developmental stage, and various external conditions. Metagenomics and metaproteom-
ics extend these measurements to a comprehensive description of the organisms in an 
environmental sample, such as in a bucket of ocean water or in a soil sample.

Bioinformatics has been driven by the great acceleration in data-generation processes 
in biology. Genome sequencing methods show perhaps the most dramatic effects. In 
1999 the nucleic acid sequence archives contained a total of 3.5 billion nucleotides, 
slightly more than the length of a single human genome; a decade later they contained 
more than 283 billion nucleotides, the length of about 95 human genomes. The U.S. 
National Institutes of Health has challenged researchers by setting a goal to reduce the 
cost of sequencing a human genome to $1,000; this would make DNA sequencing a 
more affordable and practical tool for U.S. hospitals and clinics, enabling it to become 
a standard component of diagnosis.

Storage and Retrieval of Data

In bioinformatics, data banks are used to store and organize data. Many of these enti-
ties collect DNA and RNA sequences from scientific papers and genome projects. Many 
databases are in the hands of international consortia. For example, an advisory com-
mittee made up of members of the European Molecular Biology Laboratory Nucleotide 
Sequence Database (EMBL-Bank) in the United Kingdom, the DNA Data Bank of Japan 
(DDBJ), and GenBank of the National Center for Biotechnology Information (NCBI) in 
the United States oversees the International Nucleotide Sequence Database Collabo-
ration (INSDC). To ensure that sequence data are freely available, scientific journals 
require that new nucleotide sequences be deposited in a publicly accessible database as 
a condition for publication of an article. (Similar conditions apply to nucleic acid and 
protein structures.) There also exist genome browsers, databases that bring together all 
the available genomic and molecular information about a particular species.
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The major database of biological macromolecular structure is the worldwide Protein 
Data Bank (wwPDB), a joint effort of the Research Collaboratory for Structural Bioin-
formatics (RCSB) in the United States, the Protein Data Bank Europe (PDBe) at the Eu-
ropean Bioinformatics Institute in the United Kingdom, and the Protein Data Bank Ja-
pan. The homepages of the wwPDB partners contain links to the data files themselves, 
to expository and tutorial material (including news items), to facilities for deposition of 
new entries, and to specialized search software for retrieving structures.

Information retrieval from the data archives utilizes standard tools for identification 
of data items by keyword; for instance, one can type “aardvark myoglobin” into Google 
and retrieve the molecule’s amino acid sequence. Other algorithms search data banks 
to detect similarities between data items. For example, a standard problem is to probe a 
sequence database with a gene or protein sequence of interest in order to detect entities 
with similar sequences.

Goals of Bioinformatics

The development of efficient algorithms for measuring sequence similarity is an im-
portant goal of bioinformatics. The Needleman-Wunsch algorithm, which is based on 
dynamic programming, guarantees finding the optimal alignment of pairs of sequenc-
es. This algorithm essentially divides a large problem (the full sequence) into a series 
of smaller problems (short sequence segments) and uses the solutions of the smaller 
problems to construct a solution to the large problem. Similarities in sequences are 
scored in a matrix, and the algorithm allows for the detection of gaps in sequence 
alignment.

Although the Needleman-Wunsch algorithm is effective, it is too slow for probing a 
large sequence database. Therefore, much attention has been given to finding fast in-
formation-retrieval algorithms that can deal with the vast amounts of data in the ar-
chives. An example is the program BLAST (Basic Local Alignment Search Tool). A de-
velopment of BLAST, known as position-specific iterated- (or PSI-) BLAST, makes use 
of patterns of conservation in related sequences and combines the high speed of BLAST 
with very high sensitivity to find related sequences.

Another goal of bioinformatics is the extension of experimental data by predictions. A 
fundamental goal of computational biology is the prediction of protein structure from 
an amino acid sequence. The spontaneous folding of proteins shows that this should 
be possible. Progress in the development of methods to predict protein folding is mea-
sured by biennial Critical Assessment of Structure Prediction (CASP) programs, which 
involve blind tests of structure prediction methods.

Bioinformatics is also used to predict interactions between proteins, given individual 
structures of the partners. This is known as the “docking problem". Protein-protein 
complexes show good complementarity in surface shape and polarity and are stabilized 
largely by weak interactions, such as burial of hydrophobic surface, hydrogen bonds, 

____________________ WORLD TECHNOLOGIES ____________________



WT

58 Principles of Computational Biology

and van der Waals forces. Computer programs simulate these interactions to predict 
the optimal spatial relationship between binding partners. A particular challenge, one 
that could have important therapeutic applications, is to design an antibody that binds 
with high affinity to a target protein.

Initially, much bioinformatics research has had a relatively narrow focus, concentrat-
ing on devising algorithms for analyzing particular types of data, such as gene sequenc-
es or protein structures. Now, however, the goals of bioinformatics are integrative and 
are aimed at figuring out how combinations of different types of data can be used to 
understand natural phenomena, including organisms and disease.

Structural Bioinformatics

Structural bioinformatics is the branch of bioinformatics which is related to the anal-
ysis and prediction of the three-dimensional structure of biological macromolecules 
such as proteins, RNA, and DNA. It deals with generalizations about macromolecular 
3D structure such as comparisons of overall folds and local motifs, principles of molec-
ular folding, evolution, and binding interactions, and structure/function relationships, 
working both from experimentally solved structures and from computational models. 
The term structural has the same meaning as in structural biology, and structural bio-
informatics can be seen as a part of computational structural biology. 

Three-dimensional structure of a protein.
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•	 Selection of Target - Potential targets are identified by comparing them with 
databases of known structures and sequence. The importance of a target can 
be decided on the basis of published literature. Target can also be selected on 
the basis of its protein domain. Protein domain are building blocks that can be 
rearranged to form new proteins. They can be studied in isolation initially.

•	 Tracking X-ray crystallography trials - X-Ray crystallography can be used to 
reveal three-dimensional structure of a protein. But, in order to use X-ray for 
studying protein crystals, pure proteins crystals must be formed, which can take 
a lot of trials. This leads to a need for tracking the conditions and results of tri-
als. Furthermore, supervised machine learning algorithms can be used on the 
stored data to identify conditions that might increase the yield of pure crystals.

•	 Analysis of X-Ray crystallographic data - The diffraction pattern obtained as a 
result of bombarding X-rays on electrons is Fourier transform of electron den-
sity distribution. There is a need for algorithms that can deconvolve Fourier 
transform with partial information ( due to missing phase information, as the 
detectors can only measure amplitude of diffracted X-rays, and not the phase 
shifts ). Extrapolation technique such as Multiwavelength anomalous disper-
sion can be used to generate electron density map, which uses the location of 
selenium atoms as a reference to determine rest of the structure. Standard Ball-
and-stick model is generated from the electron density map.

•	 Analysis of NMR spectroscopy data - Nuclear magnetic resonance spectrosco-
py experiments produce two (or higher) dimensional data, with each peak cor-
responding to a chemical group within the sample. Optimization methods are 
used to convert spectra into three dimensional structures.

•	 Correlating Structural information with functional information - Structural 
studies can be used as probe for structural-functional relationship.

Sequence Analysis

In bioinformatics, sequence analysis is the process of subjecting a DNA, RNA or pep-
tide sequence to any of a wide range of analytical methods to understand its features, 
function, structure, or evolution. Methodologies used include sequence alignment, 
searches against biological databases, and others. Since the development of methods 
of high-throughput production of gene and protein sequences, the rate of addition of 
new sequences to the databases increased exponentially. Such a collection of sequences 
does not, by itself, increase the scientist’s understanding of the biology of organisms. 
However, comparing these new sequences to those with known functions is a key way of 
understanding the biology of an organism from which the new sequence comes. Thus, 

Informatics approaches used in structural bioinformatics are:
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sequence analysis can be used to assign function to genes and proteins by the study of 
the similarities between the compared sequences. Nowadays, there are many tools and 
techniques that provide the sequence comparisons (sequence alignment) and analyze 
the alignment product to understand its biology. 

Sequence analysis in molecular biology includes a very wide range of relevant topics: 

1.	 The comparison of sequences in order to find similarity, often to infer if they are 
related (homologous).

2.	 Identification of intrinsic features of the sequence such as active sites, post 
translational modification sites, gene-structures, reading frames, distributions 
of introns and exons and regulatory elements.

3.	 Identification of sequence differences and variations such as point mutations 
and single nucleotide polymorphism (SNP) in order to get the genetic marker.

4.	 Revealing the evolution and genetic diversity of sequences and organisms.

5.	 Identification of molecular structure from sequence alone.

In chemistry, sequence analysis comprises techniques used to determine the sequence 
of a polymer formed of several monomers. In molecular biology and genetics, the same 
process is called simply “sequencing”. 

In marketing, sequence analysis is often used in analytical customer relationship man-
agement applications, such as NPTB models (Next Product to Buy). 

In sociology, sequence methods are increasingly used to study life-course and career 
trajectories, patterns of organizational and national development, conversation and in-
teraction structure, and the problem of work/family synchrony. This body of research 
has given rise to the emerging subfield of social sequence analysis. 

Since the very first sequences of the insulin protein were characterized by Fred 
Sanger in 1951, biologists have been trying to use this knowledge to understand the 
function of molecules. He and his colleague’s discoveries contributed to the success-
ful sequencing of the first DNA-based genome. The method used.which is called the 
“Sanger method” or Sanger sequencing, was a milestone in sequencing long strand 
molecules such as DNA. This method was eventually used in the human genome 
project. According to Michael Levitt, sequence analysis was born in the period from 
1969-1977. In 1969 the analysis of sequences of transfer RNAs was used to infer 
residue interactions from correlated changes in the nucleotide sequences, giving 
rise to a model of the tRNA secondary structure. In 1970, Saul B. Needleman and 
Christian D. Wunsch published the first computer algorithm for aligning two se-
quences. Over this time, developments in obtaining nucleotide sequence improved 
greatly, leading to the publication of the first complete genome of a bacteriophage 
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in 1977. Robert Holley and his team had believed to be the first to sequence an RNA 
molecule. 

Sequence Alignment

Example multiple sequence alignment.

There are millions of protein and nucleotide sequences known. These sequences fall 
into many groups of related sequences known as protein families or gene families. Re-
lationships between these sequences are usually discovered by aligning them together 
and assigning this alignment a score. There are two main types of sequence alignment. 
Pair-wise sequence alignment only compares two sequences at a time and multiple 
sequence alignment compares many sequences. Two important algorithms for aligning 
pairs of sequences are the Needleman-Wunsch algorithm and the Smith-Waterman 
algorithm. Popular tools for sequence alignment include: 

•	 Pair-wise alignment - BLAST, Dot plots.

•	 Multiple alignment - ClustalW, PROBCONS, MUSCLE, MAFFT, and T-Coffee.

A common use for pairwise sequence alignment is to take a sequence of interest and 
compare it to all known sequences in a database to identify homologous sequences. 
In general, the matches in the database are ordered to show the most closely related 
sequences first, followed by sequences with diminishing similarity. These matches 
are usually reported with a measure of statistical significance such as an Expectation 
value. 

Profile Comparison

In 1987, Michael Gribskov, Andrew McLachlan, and David Eisenberg introduced the 
method of profile comparison for identifying distant similarities between proteins. 
Rather than using a single sequence, profile methods use a multiple sequence align-
ment to encode a profile which contains information about the conservation level of 
each residue. These profiles can then be used to search collections of sequences to find 
sequences that are related. Profiles are also known as Position Specific Scoring Matri-
ces (PSSMs). In 1993, a probabilistic interpretation of profiles was introduced by Da-
vid Haussler and colleagues using hidden Markov models. These models have become 
known as profile-HMMs. 
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In recent years, methods have been developed that allow the comparison of profiles 
directly to each other. These are known as profile-profile comparison methods. 

Sequence Assembly

Sequence assembly refers to the reconstruction of a DNA sequence by aligning and 
merging small DNA fragments. It is an integral part of modern DNA sequencing. Since 
presently-available DNA sequencing technologies are ill-suited for reading long se-
quences, large pieces of DNA (such as genomes) are often sequenced by (1) cutting 
the DNA into small pieces, (2) reading the small fragments, and (3) reconstituting the 
original DNA by merging the information on various fragments. 

Recently, sequencing multiple species at one time is one of the top research objec-
tives. Metagenomics is the study of microbial communities directly obtained from the 
environment. Different from cultured microorganisms from the lab, the wild sam-
ple usually contains dozens, sometimes even thousands of types of microorganisms 
from their original habitats. Recovering the original genomes can prove to be very 
challenging. 

Gene Prediction

Gene prediction or gene finding refers to the process of identifying the regions of ge-
nomic DNA that encode genes. This includes protein-coding genes as well as RNA 
genes, but may also include the prediction of other functional elements such as regula-
tory regions. Gene finding is one of the first and most important steps in understand-
ing the genome of a species once it has been sequenced. In general, the prediction 
of bacterial genes is significantly simpler and more accurate than the prediction of 
genes in eukaryotic species that usually have complex intron/exon patterns. Identify-
ing genes in long sequences remains a problem, especially when the number of genes 
is unknown. Hidden markov models can be part of the solution. Machine learning 
has played a significant role in predicting the sequence of transcription factors. Tra-
ditional sequencing analysis focused on the statistical parameters of the nucleotide 
sequence itself. Another method is to identify homologous sequences based on other 
known gene sequences. The two methods described here are focused on the sequence. 
However, the shape feature of these molecules such as DNA and protein have also 
been studied and proposed to have an equivalent, if not higher, influence on the be-
haviors of these molecules. 

Protein Structure Prediction

The 3D structures of molecules are of great importance to their functions in nature. 
Since structural prediction of large molecules at an atomic level is a largely intracta-
ble problem, some biologists introduced ways to predict 3D structure at a primary 
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sequence level. This includes the biochemical or statistical analysis of amino acid resi-
dues in local regions and structural the inference from homologs (or other potentially 
related proteins) with known 3D structures. 

Target protein structure (3dsm, shown in ribbons), with Calpha backbones (in gray) of 354 predicted 
models for it submitted in the CASP8 structure-prediction experiment.

There have been a large number of diverse approaches to solve the structure predic-
tion problem. In order to determine which methods were most effective, a structure 
prediction competition was founded called CASP (Critical Assessment of Structure 
Prediction). 

Methodology

The tasks that lie in the space of sequence analysis are often non-trivial to resolve and 
require the use of relatively complex approaches. Of the many types of methods used in 
practice, the most popular include: 

•	 DNA patterns.

•	 Dynamic programming.

•	 Artificial Neural Network.

•	 Hidden Markov Model.

•	 Support Vector Machine.

•	 Clustering.

•	 Bayesian Network.

•	 Regression Analysis.
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•	 Sequence mining.

•	 Alignment-free sequence analysis.

Identification of Genes in a Genomic DNA Sequence

Prediction of Protein-coding Genes

Archaeal and bacterial genes typically comprise uninterrupted stretches of DNA be-
tween a start codon (usually ATG, but in a minority of genes, GTG, TTG, or CTG) and 
a stop codon (TAA, TGA, or TAG; alternative genetic codes of certain bacteria, such 
as mycoplasmas, have only two stop codons). Rare exceptions to this rule involve 
important but rare mechanisms, such as programmed frameshifts. There seem to 
be no strict limits on the length of the genes. Indeed, the Mgene rpmJ encoding the 
ribosomal protein L36 is only 111 bp long in most bacteria, whereas the gene for B. 
subtilis polyketide synthase PksK is 13,343 bp long. In practice, mRNAs shorter than 
30 codons are poorly translated, so protein-coding genes in prokaryotes are usually 
at least 100 bases in length. In prokaryotic genome-sequencing projects, open read-
ing frames (ORFs) shorter than 100 bases are rarely taken into consideration, which 
does not seem to result in substantial underprediction. In contrast, in multicellular 
eukaryotes, most genes are interrupted by introns. The mean length of an exon is ~50 
codons, but some exons are much shorter; many of the introns are extremely long, 
resulting in genes occupying up to several megabases of genomic DNA. This makes 
prediction of eukaryotic genes a far more complex (and still unsolved) problem than 
prediction of prokaryotic genes.

Prokaryotes

For most common purposes, a prokaryotic gene can be defined simply as the longest 
ORF for a given region of DNA. Translation of a DNA sequence in all six reading frames 
is a straightforward task, Of course, this approach is oversimplified and may result in 
a certain number of incorrect gene predictions, although the error rate is rather low. 
Firstly, DNA sequencing errors may result in incorrectly assigned or missed start and 
stop codons, because of which a gene might be truncated, overextended, or missed alto-
gether. Secondly, on rare occasions, among two overlapping ORFs (on the same or the 
opposite DNA strand), the shorter one might be the real gene. 

The existence of a long “shadow” ORF opposite a protein-coding sequence is more like-
ly than in a random sequence because of the statistical properties of the coding re-
gions. Indeed, consider the simple case where the first base in a codon is a purine and 
the third base is a pyrimidine (the RNY codon pattern). Obviously, the mirror frame 
in the complementary strand would follow the same pattern, resulting in a deficit of 
stop codons. Figure shows the ORFs of at least 100 bp located in a 10-kb fragment 
of the E. coli genome (from 3435250 to 3445250) that encodes potassium transport 
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protein TrkA, mechanosensitive channel MscL, transcriptional regulator YhdM, RNA 
polymerase alpha subunit RpoA, preprotein translocase subunit SecY, and ribosomal 
proteins RplQ (L17), RpsD (S4), RpsK (S11), RpsM (S13), RpmJ (L36), RplO (L15), 
RpmD (L30), RpsE (S5), RplR (L18), RplF (L6), RpsH (S8), RpsN (S14), RplE (L5), 
and RplX (L24). Although the two ORFs in frame +1 (top line, on the right) are longer 
(207 aa and 185 aa) than the ORFs in frame −3 (bottom line, 117 aa, 177 aa, 130 aa, and 
101 aa), it is the latter that encode real proteins, namely the ribosomal proteins RplR, 
RplF, RpsH, and RpsN.

Open reading frames of ≥100 bp encoded on a 10-kb fragment of the Escherichia coli 
K12 genome from 3435250 to 3445250The figure was generated using the program 
ORF finder at the NCBI web site. The six horizontal lines represent frames 1, 2, 3, −1, 
−2, and −3, respectively. ORFs in each frame are shown as green boxes.

Because of these complications, it is always desirable to have some additional evidence 
that a particular ORF actually encodes a protein. Such evidence comes along many dif-
ferent lines and can be obtained using various methods, e.g. the following ones:

•	 The ORF in question encodes a protein that is similar to previously described 
ones (search the protein database for homologs of the given sequence).

•	 The ORF has a typical GC content, codon frequency, or oligonucleotide compo-
sition (calculate the codon bias and other statistical features of the sequence, 
compare to those for known protein-coding genes from the same organism).

•	 The ORF is preceded by a typical ribosome-binding site (search for a Shine-Dal-
garno sequence in front of the predicted coding sequence).

•	 The ORF is preceded by a typical promoter (if consensus promoter sequences for 
the given organism are known, check for the presence of a similar upstream region).

The most reliable of these approaches is a database search for homologs. In several 
useful tools, DNA translation is seamlessly bound to the database searches. In the 
ORF finder, for example, the user can submit the translated sequence for a BLASTP or 
TBLASTN search against the NCBI sequence databases. In addition, there is an oppor-
tunity to compare the translated sequence to the COG database. 

Other methods take advantage of the statistical properties of the coding sequences. 
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For organisms with highly biased GC content, for example, the third position in each 
codon has a highly biased (very high or very low) frequency of G and C. The most useful 
and popular gene prediction programs, such as GeneMark and Glimmer, build Markov 
models of the known coding regions for the given organism and then employ them to 
estimate the coding potential of uncharacterized ORFs.

Inferring genes based on the coding potential and on the similarity of the encoded 
protein sequences to those of other proteins represent the intrinsic and extrinsic ap-
proaches to gene prediction, which ideally should be combined. Two programs that 
implement such a combination, developed specifically for analysis of prokaryotic ge-
nomes, are ORPH and CRITICA Several other algorithms that incorporate both these 
approaches are aimed primarily at eukaryotic genomes. 

Unicellular Eukaryotes

Genomes of unicellular eukaryotes are extremely diverse in size, the proportion of the 
genome that is occupied by protein-encoding genes and the frequency of introns. Clear-
ly, the smaller the intergenic regions and the fewer introns are there, the easier it is 
to identify genes. Fortunately, genomes of at least some simple eukaryotes are quite 
compact and contain very few introns. Thus, in yeast S. cerevisiae, at least 67% of the 
genome is protein-coding, and only 233 genes (less than 4% of the total) appear to have 
introns. Although these include some biologically important and extensively studied 
genes, e.g. those for aminopeptidase APE2, ubiquitin-protein ligase UBC8, subunit 1 
of the mitochondrial cytochrome oxidase COX1, and many ribosomal proteins, introns 
comprise less than 1% of the yeast genome. The tiny genome of the intracellular eukary-
otic parasite Encephalitozoon cuniculi appears to contain introns in only 12 genes and 
is practically prokaryote-like in terms of the “wall-to-wall” gene arrangement. Malaria 
parasite Plasmodium falciparum is a more complex case, with ~43% of the genes lo-
cated on chromosome 2 containing one or more introns. Protists with larger genomes 
often have fairly high intron density. In the slime mold Physarum polycephalum, for 
example, the average gene has 3.7 introns. Given that the average exon size in this or-
ganism (165 ± 85 bp) is comparable to the length of an average intron (138 ± 103 bp), 
homology-based prediction of genes becomes increasingly complicated.

Because of this genome diversity, there is no single way to efficiently predict pro-
tein-coding genes in different unicellular eukaryotes. For some of them, such as yeast, 
gene prediction can be done by using more or less the same approaches that are rou-
tinely employed in prokaryotic genome analysis. For those with intron-rich genomes, 
the gene model has to include information on the intron splice sites, which can be 
gained from a comparison of the genomic sequence against a set of ESTs from the same 
organism. This necessitates creating a comprehensive library of ESTs that have to be 
sequenced in a separate project. Such dual EST/genomic sequencing projects are cur-
rently under way for several unicellular eukaryotes.
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Multicellular Eukaryotes

In most multicellular eukaryotes, gene organization is so complex that gene identifi-
cation poses a major problem. Indeed, eukaryotic genes are often separated by large 
intergenic regions, and the genes themselves contain numerous introns, many of them 
long. Figure shows a typical distribution of exons and introns in a human gene, the X 
chromosome-located gene encoding iduronate 2-sulfatase (IDS_HUMAN), a lysosom-
al enzyme responsible for removing sulfate groups from heparan sulfate and dermatan 
sulfate. Mutations causing iduronate sulfatase deficiency result in the lysosomal accu-
mulation of these glycosaminoglycans, clinically known as Hunter’s syndrome or type 
II mucopolysaccharidosis (OMIM entry 309900). A number of clinical cases have been 
shown to result from aberrant alternative splicing of this gene’s mRNA, which empha-
sizes the importance of reliable prediction of gene structure.

Organization of the human iduronate 2-sulfatase gene.

This gene is located in positions 152960–177995 of human X chromosome and en-
codes a 550-aa precursor protein that contains a 25-aa N-terminal signal sequence, 
followed by eight amino acids that are removed in the course of protein maturation. 
Mutations in this gene cause mucopolysaccharidosis type II, also known as Hunter’s 
disease, which results in tissue deposits of chondroitin sulfate and heparin sulfate. The 
symptoms of Hunter’s disease include dysostosis with dwarfism, coarse facial features, 
hepatosplenomegaly, cardiovascular disorders, deafness, and, in some cases, progres-
sive mental retardation. The top line indicates the X chromosome and shows the loca-
tion of the iduronate sulfatase gene (thick line in the middle). Thin lines on the bottom 
indicate two alternative transcripts. Exons are shown with small rectangles. The square 
bracket above the iduronate sulfatase gene marks the region of the gene.

Obviously, the coding regions compose only a minor portion of the gene. In this case, 
positions of the exons could be unequivocally determined by mapping the cDNA se-
quence (i.e. iduronate sulfatase mRNA) back to the chromosomal DNA. Because of 
the clinical phenotype of the mutations in the iduronate sulfatase gene, we already 
know the “correct” mRNA sequence and can identify various alternatively spliced 
variants as mutations. However, for many, perhaps the majority of the human genes, 
multiple alternative forms are part of the regular expression pattern, and correct 
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gene prediction ideally should identify all of these forms, which immensely compli-
cates the task.

Ideally, gene prediction should identify all exons and introns, including those in the 
5′-untranslated region (5′-UTR) and the 3′-UTR of the mRNA, in order to precisely re-
construct the predominant mRNA species. For practical purposes, however, it is useful 
to assemble at least the coding exons correctly because this allows one to deduce the 
protein sequence.

Sequence of the first two exons of human iduronate sulfatase gene.

The figure shows the DNA sequence of the positions 15391–15571 of human X chromo-
some. The iduronate sulfatase mRNA and its coding sequence are shown as thick lines; 
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the corresponding amino acid residues are shown underneath. “Variation” indicates 
the positions of mapped mutations causing type II mucopolysaccharidosis.

Correct identification of the exon boundaries relies on the recognition of the splice 
sites, which is facilitated by the fact that the great majority of splice sites conform to 
consensus sequences that include two nearly invariant dinucleotides at the ends of each 
intron, a GT at the 5′ end and an AG at the 3′ end. Non-canonical splice signals are 
rare and come in several variants. In the 5′ splice sites, the GC dinucleotide is some-
times found instead of GT. The second class of exceptions to the splice site consensus 
includes so-called “AT-AC” introns that have the highly conserved /(A,G)TATCCT(C,T) 
sequence at their 5′ sites. There are additional variants of non-canonical splice signals, 
which further complicate prediction of the gene structure.

The available assessments of the quality of eukaryotic gene prediction achieved by 
different programs show a rather gloomy picture of numerous errors in exon/intron 
recognition. Even the best tools correctly predict only ~40% of the genes. The most se-
rious errors come from genes with long introns, which may be predicted as intragenic 
sequences, resulting in erroneous gene fission, and pairs of genes with short intergenic 
regions, which may be predicted as introns, resulting in false gene fusion. Nevertheless, 
most of the popular gene prediction programs reasonable performance in predicting 
the coding regions in the sense that, even if a small exon is missed or overpredicted, the 
majority of exons are identified correctly.

Another important parameter that can affect ORF prediction is the fraction of sequenc-
ing errors in the analyzed sequence. Indeed, including frameshift corrections was found 
to substantially improve the overall quality of gene prediction. Several algorithms were 
described that could detect frameshift errors based on the statistical properties of cod-
ing sequences. On the other hand, error correction techniques should be used with 
caution because eukaryotic genomes contain numerous pseudogenes, and non-critical 
frameshift correction runs the risk of wrongly “rescuing” pseudogenes. The problem of 
discriminating between pseudogenes and frameshift errors is actually quite complex 
and will likely be solved only through whole-genome alignments of different species or, 
in certain cases, by direct experimentation, e.g., expression of the gene(s) in question.

Algorithms and Software Tools for Gene Identification

recognizing genes in the DNA sequences remains one of the most pressing problems in 
genome analysis. Several different approaches to gene prediction have been developed, 
and there are several popular programs that are most commonly used for this task. 
Some of these tools perform gene prediction ab initio, relying only on the statistical 
parameters in the DNA sequence for gene identification. In contrast, homology-based 
methods rely primarily on identifying homologous sequences in other genomes and in 
public databases using BLAST or Smith-Waterman algorithms. Many of the commonly 
used methods combine these two approaches.
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Software Tools for Ab initio Gene Prediction

The absence of introns and relatively high gene density in most genomes of prokaryotes 
and some unicellular eukaryotes provides for effective use of sequence similarity search-
es as the first step in genome annotation. Genes identified by homology can be used as 
the training set for one of the statistical methods for gene recognition, and the resulting 
statistical model can then be used for analyzing the remaining parts of the genome. In 
most eukaryotes, the abundance of introns and long intergenic regions makes it difficult 
to use homology-based methods as the first step unless, of course, one can rely on syn-
teny between several closely related genomes (e.g. human, mouse, and rat). As a result, 
gene prediction for genome sequences of multicellular eukaryotes usually starts with ab 
initio methods, followed by similarity searches with the initial exon assemblies.

A detailed comparison of the algorithms and tools for gene prediction. each of these 
methods has its own advantages and limitations, and none of them is perfect. There-
fore, it is advisable to use at least two different programs for gene prediction in a new 
DNA sequence, especially if it comes from a eukaryote or a poorly characterized pro-
karyote. A comparison of predictions generated by different programs reveals the cases 
where a given program performs the best and helps in achieving consistent quality of 
gene prediction. Such a comparison can be performed, which employs a voting scheme 
to combine predictions of different gene-finding programs, such as GeneMark, Glim-
merM, GRAIL, GenScan, and Fgenes.

GeneMark

GeneMark mirrored at the EBI web site was developed by Mark Borodovsky and James 
McIninch in 1993. GeneMark was the first tool for finding prokaryotic genes that em-
ployed a non-homogeneous Markov model to classify DNA regions into protein-coding, 
non-coding, and non-coding but complementary to coding. It has been shown previ-
ously that, by multivariate codon usage analysis, the E. coli genes could be classified 
into so-called typical, highly typical, and atypical gene sets, with the latter two groups 
apparently corresponding to highly expressed genes and horizontally transferred genes. 
Accordingly, more than one Markov model was required to adequately describe differ-
ent groups of genes in the same genome.

Like other gene prediction programs, GeneMark relies on organism-specific recognition 
parameters to partition the DNA sequence into coding and non-coding regions and thus 
requires a sufficiently large training set of known genes from a given organism for best 
performance. The program has been repeatedly updated and modified and now exists in 
separate variants for gene prediction in prokaryotic, eukaryotic, and viral DNA sequences.

Glimmer

Gene Locator and Interpolated Markov Modeler, is a system for finding genes in 
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prokaryotic genomes. To identify coding regions and distinguish them from noncoding 
DNA, Glimmer uses interpolated Markov models, i.e. series of Markov models with 
the order of the model increasing at each step and the predictive power of each model 
separately evaluated. Like GeneMark, Glimmer requires a training set, which is usually 
selected among known genes, genes coding for proteins with strong database hits, and 
simply long ORFs. Glimmer is used as the primary gene finder tool at TIGR, where it 
has been applied to the annotation of numerous microbial genomes.

Recently, Salzberg and coworkers developed GlimmerM, a modified version of Glim-
mer specifically designed for gene recognition in small eukaryotic genomes, such as the 
malaria parasite Plasmodium falciparum.

Grail

Gene Recognition and Assembly Internet Link, is a tool that identifies exons, polyA 
sites, promoters, CpG islands, repetitive elements, and frameshift errors in DNA se-
quences by comparing them to a database of known human and mouse sequence el-
ements. Exon and repetitive element prediction is also available for Arabidopsis and 
Drosophila sequences.

Grail has been recently incorporated into the Oak Ridge genome analysis pipe-
line, which provides a unified web interface to a number of convenient analysis 
tools. For prokaryotes, it offers gene prediction using Glimmer and Generation 
programs, followed by BLASTP searches of predicted ORFs against SWISS-PROT 
and NR databases and a HMMer search against Pfam. There is also an option of 
BLASTN search of the submitted DNA sequence against a variety of nucleotide 
sequence databases.

For human and mouse sequences, the Oak Ridge pipeline offers gene prediction using 
GrailEXP and GenScan, also followed by BLASTP searches of predicted ORFs against 
SWISS-PROT and NR databases and a HMMer search against Pfam. Again, the user 
can perform BLASTN search of the submitted DNA sequence against a variety of nucle-
otide sequence databases, as well as search for CpG islands, repeat fragments, tRNAs, 
and BAC-end pairs, the possibility to directly compare gene predictions made by two 
different programs is a valuable feature, which is available at the Oak Ridge web site.

GenScan

GenScan was developed by Chris Burge and Samuel Karlin and is currently hosted in 
the Burge laboratory at the MIT Department of Biology. This program uses a complex 
probabilistic model of the gene structure that is based on actual biological informa-
tion about the properties of transcriptional, translational, and splicing signals. In 
addition, it utilizes various statistical properties of coding and noncoding regions. 
To account for the heterogeneity of the human genome that affects gene structure 
and gene density, GenScan derives different sets of gene models for genome regions 
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with different GC content. Its high speed and accuracy make GenScan the method of 
choice for the initial analysis of large (in the megabase range) stretches of eukaryotic 
genomic DNA. GenScan has being used as the principal tool for gene prediction in the 
International Human Genome Project.

GeneBuilder

GeneBuilder performs ab initio gene prediction using numerous parameters, such as 
GC content, dicodon frequencies, splicing site data, CpG islands, repetitive elements, 
and others. It also utilizes a unique approach that is based on evaluating relative fre-
quencies of synonymous and nonsynonymous substitutions to identify likely coding 
sequences. In addition, it performs BLAST searches of predicted genes against pro-
tein and EST databases, which helps to refine the boundaries of predicted exons using 
the BLAST hits as guides. The program allows the user to change certain parameters, 
which permits interactive gene structure prediction. As a result, GeneBuilder is some-
times able to predict the gene structure with a good accuracy, even when the similarity 
of the predicted ORF to a homologous protein sequence is low.

Splice Site Prediction

Programs for predicting intron splice sites, which are commonly used as subroutines in 
the gene prediction tools, can also be used as stand-alone programs to verify positions 
of splice sites or predict alternative splicing sites. Such programs can be particularly 
useful for predicting non-coding exons, which are commonly missed in gene prediction 
studies.

Combining Various Gene Prediction Tools

While the first step of gene identification in long genomic sequences utilizes ab ini-
tio programs that can rapidly and with reasonable accuracy predict multiple genes, 
the next step validates these predictions through similarity searches. Predicted genes 
are compared to nucleotide sequence databases, including EST databases, and protein 
sequences encoded by these predicted genes are compared to protein sequence data-
bases. These data are then combined with the information about repetitive elements, 
CpG islands, and transcription factor binding sites and used for further refinement 
of gene structure. Thus, homology information is ultimately incorporated into every 
gene prediction pipeline. There are, however, several programs that primarily rely on 
similarity search for gene prediction. Although differing in details, they all search for 
the best alignment of the given piece of DNA to the homologous nucleotide or protein 
sequences in the database.

Principles of Sequence Similarity Searches

initial characterization of any new DNA or protein sequence starts with a database 
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search aimed at finding out whether homologs of this gene (protein) are already avail-
able, and if they are, what is known about them. Clearly, looking for exactly the same 
sequence is quite straightforward. One can just take the first letter of the query se-
quence, search for its first occurrence in the database, and then check if the second 
letter of the query is the same in the subject. If it is indeed the same, the program could 
check the third letter, then the fourth, and continue this comparison to the end of the 
query. If the second letter in the subject is different from the second letter in the query, 
the program should search for another occurrence of the first letter, and so on. This 
will identify all the sequences in the database that are identical to the query sequence 
(or include it). Of course, this approach is primitive computation-wise, and there are 
sophisticated algorithms for text matching that do it much more efficiently.

Note that, in the example above, we looked only for sequences that exactly match the 
query. The algorithm would not even find a sequence that is identical to the query with 
the exception of the first letter. To find such sequences, the same analysis should be 
conducted with the fragments starting from the second letter of the original query, then 
from the third one, and so on.

Such search quickly becomes time-consuming, and we are still dealing only with iden-
tical sequences. Finding close relatives would introduce additional conceptual and 
technical problems. Let us assume that sequences that are 99% identical are definitely 
homologous. What should one select as the threshold to consider sequences not to be 
homologous: 50% identity, 33%, or perhaps 25%? These are legitimate questions that 
need to be answered before one goes any further. The example of two lysozymes shows 
that sequences with as low as 8% identity may belong to orthologous proteins and per-
form the same function.

As a matter of fact, when comparing nucleic acid sequences, there is very little one 
could do. All the four nucleotides, A, T, C, and G, are found in the database with approx-
imately the same frequencies and have roughly the same probability of mutating one 
into another. As a result, DNA-DNA comparisons are largely based on straightforward 
text matching, which makes them fairly slow and not particularly sensitive, although a 
variety of heuristics have been developed to overcome this.

Amino acid sequence comparisons have several distinct advantages over nucleotide 
sequence comparisons, which, at least potentially, lead to a much greater sensitivity. 

____________________ WORLD TECHNOLOGIES ____________________



WT

74 Principles of Computational Biology

Firstly, because there are 20 amino acids but only four bases, an amino acid match car-
ries with it >4 bits of information as opposed to only two bits for a nucleotide match. 
Thus, statistical significance can be ascertained for much shorter sequences in protein 
comparisons than in nucleotide comparisons. Secondly, because of the redundancy of 
the genetic code, nearly one-third of the bases in coding regions are under a weak (if 
any) selective pressure and represent noise, which adversely affects the sensitivity of 
the searches. Thirdly, nucleotide sequence databases are much larger than protein da-
tabases because of the vast amounts of non-coding sequences coming out of eukaryotic 
genome projects, and this further lowers the search sensitivity. Finally, and probably 
most importantly, unlike in nucleotide sequence, the likelihoods of different amino 
acid substitutions occurring during evolution are substantially different, and taking 
this into account greatly improves the performance of database search methods as de-
scribed below. Given all these advantages, comparisons of any coding sequences are 
typically carried out at the level of protein sequences; even when the goal is to produce 
a DNA-DNA alignment (e.g. for analysis of substitutions in silent codon positions), 
it is usually first done with protein sequences, which are then replaced by the corre-
sponding coding sequences. Direct nucleotide sequence comparison is indispensable 
only when non-coding regions are analyzed.

Substitution Scores and Substitution Matrices

The fact that each of the 20 standard protein amino acids has its own unique proper-
ties means that the likelihood of the substitution of each particular residue for another 
residue during evolution should be different. Generally, the more similar the physi-
co-chemical properties of two residues, the greater the chance that the substitution 
will not have an adverse effect on the protein’s function and, accordingly, on the organ-
ism’s fitness. Hence, in sequence comparisons, such a substitution should be penalized 
less than a replacement of amino acid residue with one that has dramatically different 
properties. This is, of course, an oversimplification, because the effect of a substitution 
depends on the structural and functional environment where it occurs. For example, a 
cysteine-to-valine substitution in the catalytic site of an enzyme will certainly abolish 
the activity and, on many occasions, will have a drastic effect on the organism’s fitness. 
In contrast, the same substitution within a β-strand may have little or no effect. Unfor-
tunately, in general, we do not have a priori knowledge of the location of a particular 
residue in the protein structure, and even with such knowledge, incorporating it in a 
database search algorithm is an extremely complex task. Thus, a generalized measure 
of the likelihood of amino acid substitutions is required so that each substitution is 
given an appropriate score (weight) to be used in sequence comparisons. The score for 
a substitution between amino acids i and j always can be expressed by the following 
intuitively plausible formula, which shows how likely a particular substitution is given 
the frequencies of each the two residues in the analyzed database:

( )/ij i i iS kln q p p=
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where k is a coefficient, q ij is the observed frequency of the given substitution, and 
p i, p j are the background frequencies of the respective residues. Obviously, here the 
product p i p j is the expected frequency of the substitution and, if q ij = p i p j (S ij = 0), 
the substitution occurs just as often as expected. The scores used in practice are scaled 
such that the expected score for aligning a random pair of amino acid sequences is 
negative.

There are two fundamentally different ways to come up with a substitution score ma-
trix, i.e. a triangular table containing 210 numerical score values for each pair of amino 
acids, including identities (diagonal elements of the matrix. As in many other situations 
in computational biology, the first approach works ab initio, whereas the second one 
is empirical. One ab initio approach calculates the score as the number of nucleotide 
substitutions that are required to transform a codon for one amino acid in a pair into 
a codon for the other. In this case, the matrix is obviously unique (as long as alterna-
tive genetic codes are not considered) and contains only four values, 0, 1, 2, or 3. Ac-
cordingly, this is a very coarse grain matrix that is unlikely to work well. The other ab 
initio approach assigns scores on the basis of similarities and differences in the phys-
ico-chemical properties of amino acids. Under this approach, the number of possible 
matrices is infinite, and they may have as fine a granularity as desirable, but a degree of 
arbitrariness is inevitable because our understanding of protein physics is insufficient 
to make informed decisions on what set of properties “correctly” reflects the relation-
ships between amino acids.

The PAM30 substitution matrix.

The numbers indicate the substitution scores for each replacement. The greater the num-
ber, the lesser the penalty for the given substitution. Note the high penalty for replacing 
Cys and aromatic amino acids (Phe, Tyr, and Trp) with any other residues and, accord-
ingly, the high reward for conservation of these residues (see the diagonal elements).

The meaning of the numbers is the same as for PAM30. Note the relatively lower reward 
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for conservation of Cys, Phe, Tyr, and Trp and lower penalties for replacing these ami-
no acids than in the PAM30 matrix. This trend is even stronger in lower series mem-
bers (e.g. BLOSUM45) because drastic amino acid changes are more likely at larger 
evolutionary distances.

Empirical approaches, which historically came first, attempt to derive the characteris-
tic frequencies of different amino acid substitutions from actual alignments of homol-
ogous protein families. In other words, these approaches strive to determine the actual 
likelihood of each substitution occurring during evolution. Obviously, the outcome of 
such efforts critically depends on the quantity and quality of the available alignments, 
and even now, any alignment database is far from being complete or perfectly correct. 
Furthermore, simple counting of different types of substitutions will not suffice if align-
ments of distantly related proteins are included because, in many cases, multiple sub-
stitutions might have occurred in the same position. Ideally, one should construct the 
phylogenetic tree for each family, infer the ancestral sequence for each internal node, 
and then count the substitutions exactly. This is not practicable in most cases, and var-
ious shortcuts need to be taken.

The BLOSUM 62 substitution matrix.

Several solutions to these problems have been proposed, each resulting in a different 
set of substitution scores. The first substitution matrix, constructed by Dayhoff and Eck 
in 1968, was based on an alignment of closely related proteins, so that the ancestral 
sequence could be deduced and all the amino acid replacements could be considered 
occurring just once. This model was then extrapolated to account for more distant re-
lationships. PAM (Accepted Point Mutation) is a unit of evolutionary divergence of 
protein sequences, corresponding to one amino acid change per 100 residues. Thus, for 
example, the PAM30 matrix is supposed to apply to proteins that differ, on average, by 
0.3 change per aligned residue, whereas PAM250 should reflect evolution of sequenc-
es with an average of 2.5 substitutions per position. Accordingly, the former matrix 
should be employed for constructing alignments of closely related sequences, whereas 
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the latter is useful in database searches aimed at detection of distant relationships. Us-
ing an approach similar to that of Dayhoff, combined with rapid algorithms for protein 
sequence clustering and alignment, Jones, Taylor, and Thornton produced the series of 
the so-called JTT matrices, which are essentially an update of the PAMs.

The PAM and JTT matrices, however, have obvious limitations because of the fact 
that they have been derived from alignments of closely related sequences and extrap-
olated to distantly related ones. This extrapolation may not be fully valid because the 
underlying evolutionary model might not be adequate, and the trends that determine 
sequence divergence of closely related sequences might not apply to the evolution at 
larger distances.

In 1992, Steven and Jorja Henikoff developed a different series of substitution ma-
trices using conserved ungapped alignments of related proteins from the BLOCKS 
database. The use of these alignments offered three important advantages over the 
alignments used for constructing the PAM matrices. First, the BLOCKS collection ob-
viously included a much larger number and, more importantly, a much greater diver-
sity of protein families than the collection that was available to Dayhoff and coworkers 
in the 1970’s. Second, coming from rather distantly related proteins, BLOCKS align-
ments better reflected the amino acid changes that occur over large phylogenetic dis-
tances and thus produced substitution scores that represented sequence divergence in 
distant homologs directly, rather than through extrapolation. Third, in these distantly 
related proteins, BLOCKS included only the most confidently aligned regions, which 
are likely to best represent the prevailing evolutionary trends. These substitution ma-
trices, named the BLOSUM (= BLOcks SUbstitution Matrix) series, were tailored to 
particular evolutionary distances by ignoring the sequences that had more than a cer-
tain percent identity. In the BLOSUM62 matrix, for example, the substitution scores 
were derived from the alignments of sequences that had no more than 62% identity; 
the substitution scores of the BLOSUM45 matrix were calculated from the alignments 
that contained sequences with no more than 45% identity. Accordingly, BLOSUM ma-
trices with high numbers, such as BLOSUM80, are best suited for comparisons of 
closely related sequences (it is also advisable to use BLOSUM80 for database searches 
with short sequences, see), whereas low-number BLOSUM matrices, such as BLO-
SUM45, are better for distant relationships. In addition to the general-purpose PAM, 
JTT, and BLOSUM series, some specialized substitution matrices were developed, 
for example, for integral membrane proteins], but they never achieved comparable 
recognition.

Several early studies found the PAM matrices based on empirical data consistently re-
sulted in greater search sensitivity than any of the ab initio matrices (see). An extensive 
empirical comparison showed that: (i) BLOSUM matrices consistently outperformed 
PAMs in BLAST searches, and (ii) on average, BLOSUM62 performed best in the series; 
this matrix is currently used as the default in most sequence database searches. It is 
remarkable that so far, throughout the 30-plus-year history of amino acid substitution 
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matrices, empirical matrices have consistently outperformed those based on theory, 
either physico-chemical or evolutionary. This is not to say, of course, that theory is 
powerless in this field, but to point out that we currently do not have a truly adequate 
theory to describe protein evolution. Clearly, the last word has not been said on amino 
acid substitution matrices, and one can expect that eventually the BLOSUM series will 
be replaced by new matrices based on greater amounts of higher quality alignment 
data and more realistic evolutionary models. A recently reported maximum-likelihood 
model for substitution frequency estimation has already been claimed to describe indi-
vidual protein families better than the Dayhoff and JTT models. It remains to be seen 
how this and other new matrices perform in large-scale computational experiments 
on real databases. AAindex lists 66 different substitution matrices, both ab initio and 
empirical, and there is no doubt that this list will continue to grow.

Statistics of Protein Sequence Comparison

It is impossible to explain even the basic principles of statistical analysis of sequence 
similarities without invoking some mathematics. To introduce these concepts in the 
least painful way, let us consider the same protein sequence (E. coli RpsJ) as above

and check how many times segments of this sequence of different lengths are found in 
the database (we chose fragments starting from the second position in the sequence 
because nearly every protein in the database starts with a methionine). Not unexpect-
edly, we find that the larger the fragment, the smaller the number of exact matches in 
the database.

Table: Dependence of the number of exact database matches on the length of the query 
word.

Sequence Occurrences in the database

KV 488,559

KVR 28,592

KVRA 2,077

KVRAS 124

KVRASV 23

KVRASVK 8

KVRASVKK 4

KVRASVKKL 1

KVRASVKKLC 1

Dependence of the number of exact database matches on the length of the query word. 
Perhaps somewhat counterintuitively, a 9-mer is already unique. With the decrease in 
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the number of database hits, the likelihood that these hits are biologically relevant, i.e. 
belong to homologs of the query protein, increases. Thus, 13 of the 23 occurrences of the 
string KVRASV and all 8 occurrences of the string KVRASVK are from RpsJ orthologs.

The number of occurrences of a given string in the database can be roughly estimated 
as follows. The probability of matching one amino acid residue is 1/20 (assuming equal 
frequencies of all 20 amino acids in the database; this not being the case, the probabili-
ty is slightly greater). The probability of matching two residues in a row is then (1/20)2, 
and the probability of matching n residues is (1/20) n. Given that the protein database 
currently contains N ~2 × 108 letters, one should expect a string of n letters to match 
approximately N × (1/20) n times, which is fairly close to the numbers in table.

Searching for perfect matches is the simplest and, in itself, obviously insufficient form 
of sequence database search, although, it is important as one of the basic steps in cur-
rently used search algorithms. the goal of a search is finding homologs, which can have 
drastically different sequences such that, in distant homologs, only a small fraction of 
the amino acid residues are identical or even similar. Even in close homologs, a region 
of high similarity is usually flanked by dissimilar regions like in the following alignment 
of E. coli RpmJ with its ortholog from Vibrio cholerae:

In this example, the region of highest similarity is in the middle of the alignment, but 
including the less conserved regions on both sides improves the overall score (taking 
into account the special treatment of gaps, which is introduced below). Further along 
the alignment, the similarity almost disappears so that inclusion of additional letters 
into the alignment would not increase the overall score or would even decrease it. 
Such fragments of the alignment of two sequences whose similarity score cannot be 
improved by adding or trimming any letters, are referred to as high-scoring segment 
pairs (HSPs). For this approach to work, the expectation of the score for random se-
quences must be negative, and the scoring matrices used in database searches are 
scaled accordingly.

So, instead of looking for perfect matches, sequence comparisons programs actually 
search for HSPs. Once a set of HSPs is found, different methods, such as Smith-Water-
man, FASTA, or BLAST, deal with them in different fashions. However, the principal 
issue that any database search method needs to address is identifying those HSPs that 
are unlikely to occur by chance and, by inference, are likely to belong to homologs and 
to be biologically relevant. This problem has been solved by Samuel Karlin and Stephen 
Altschul, who showed that maximal HSP scores follow the extreme value distribution. 
Accordingly, if the lengths of the query sequence (m) and the database (n) are suffi-
ciently high, the expected number of HSPs with a score of at least S is given by the 
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formula:

'2SE mn=

Here, S is the so-called raw score calculated under a given scoring system, and K and λ 
are natural scaling parameters for the search space size and the scoring system, respec-
tively. Normalizing the score according to the formula:

( )' / 2S S Ink Inλ= −

gives the bit score, which has a standard unit accepted in information theory and com-
puter science. Then,

2 SE Kmn λ−=

and, since it can be shown that the number of random HSPs with score ≥S’ is described 
by Poisson distribution, the probability of finding at least one HSP with bit score ≥S’ is:

EP 1 E−= −

Equation EP 1 E−= − links two commonly used measures of sequence similarity, the 
probability (P-value) and expectation (E-value). For example, if the score S is such that 
three HSPs with this score (or greater) are expected to be found by chance, the prob-
ability of finding at least one such HSP is (1 − e−3), ~0.95. By definition, P-values vary 
from 0 to 1, whereas E-values can be much greater than 1. The BLAST programs report 
E-values, rather than P-values, because E-values of, for example, 5 and 10 are much 
easier to comprehend than P-values of 0.993 and 0.99995. However, for E < 0.01, 
P-value and E-value are nearly identical.

The product mn defines the search space, a critically important parameter of any da-
tabase search. Equations ( )' / 2S S Ink Inλ= − and 2 SE Kmn λ−= codify the intuitively 
obvious notion that the larger the search space, the higher the expectation of finding 
an HSP with a score greater than any given value. There are two corollaries of this that 
might take some getting used to: (i) the same HSP may come out statistically significant 
in a small database and not significant in a large database; with the natural growth of 
the database, any given alignment becomes less and less significant (but by no means 
less important because of that) and (ii) the same HSP may be statistically significant in 
a small protein (used as a query) and not significant in a large protein.

Clearly, one can easily decrease the E-value and the P-value associated with the align-
ment of the given two sequences by lowering n in equation '2SE mn= , i.e. by searching 
a smaller database. However, the resulting increase in significance is false, although 
such a trick can be useful for detecting initial hints of subtle relationships that should 
be subsequently verified using other approaches. It is the experience of the authors that 
the simple notion of E(P)-value is often misunderstood and interpreted as if these values 
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applied just to a single pairwise comparison (i.e., if an E-value of 0.001 for an HSP with 
score S is reported, then, in a database of just a few thousand sequences, one expects 
to find a score >S by chance). It is critical to realize that the size of the search space is 
already factored in these E-values, and the reported value corresponds to the database 
size at the time of search (thus, it is certainly necessary to indicate, in all reports of se-
quence analysis, which database was searched, and desirably, also on what exact date).

Speaking more philosophically (or futuristically), one could imagine that, should the 
genomes of all species that inhabit this planet be sequenced, it would become almost 
impossible to demonstrate statistical significance for any but very close homologs in 
standard database searches. Thus, other approaches to homology detection are re-
quired that counter the problems created by database growth by taking advantage of 
the simultaneously increasing sequence diversity.

The Karlin-Altschul statistics has been rigorously proved to apply only to sequence align-
ments that do not contain gaps, whereas statistical theory for the more realistic gapped 
alignments remains an open problem. However, extensive computer simulations have 
shown that these alignments also follow the extreme value distribution to a high precision; 
therefore, at least for all practical purposes, the same statistical formalism is applicable.

Protein Sequence Complexity: Compositional Bias

The existence of a robust statistical theory of sequence comparison, in principle, should 
allow one to easily sort search results by statistical significance and accordingly assign a 
level of confidence to any homology identification. However, a major aspect of protein 
molecule organization substantially complicates database search interpretation and 
may lead to gross errors in sequence analysis. Many proteins, especially in eukaryotes, 
contain low (compositional) complexity regions, in which the distribution of amino 
acid residues is non-random, i.e. deviates from the standard statistical model. In oth-
er words, these regions typically have biased amino acid composition, e.g. are rich in 
glycine or proline, or in acidic or basic amino acid residues. The ultimate form of low 
complexity is, of course, a homopolymer, such as a Q-linker. Other low-complexity se-
quences have a certain amino acid periodicity, sometimes subtle, such as, for example, 
in coiled-coil and other non-globular proteins (e.g. collagen or keratin).

The notion of compositional complexity was encapsulated in the SEG algorithm and 
the corresponding program, which partitions protein sequences into segments of low 
and high (normal) complexity. An important finding made by John Wootton is that 
low-complexity sequences correspond to non-globular portions of proteins. In other 
words, a certain minimal level of complexity is required for a sequence to fold into a 
globular structure. Low-complexity regions in proteins, although devoid of enzymatic 
activity, have important biological functions, most often promoting protein-protein in-
teractions or cellular adhesion to various surfaces and to each other.
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In a detailed empirical study, a set of parameters of the SEG program was identified that 
allowed reasonably accurate partitioning of a protein sequence into predicted globular 
and non-globular parts. The mastermind protein of Drosophila is a component of the 
Notch-dependent signaling pathway and plays an important role in the development of 
the nervous system of the fruit fly. In spite of this critical biological function, this pro-
tein consists mostly of stretches of only three amino acid residues, Gln, Asn, and Gly, 
and is predicted to have a predominantly non-globular structure. Recently discovered 
human homologs of mastermind are also involved in Notch-dependent transcriptional 
regulation and similarly appear to be almost entirely non-globular.

Sequence of the Drosophila mastermind protein: partitioning into predicted  
non-globular (left column) and globular (right column) regions.

The SEG program was run with the parameters optimized for detection of non-globu-
lar regions: window length 45, trigger complexity 3.4, extension complexity 3.7. Asn, 
Gln, and Gly residues are shown in bold. Note that, because the existence of globular 
domains consisting of <50 amino acids is unlikely, mastermind probably contains only 
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one globular domain, between amino acid residues 122 and 195. Prediction of short 
segments as ‘globular’ appears to be a SEG artifact.

Low-complexity regions represent a major problem for database searches. Since the 
λ parameter of equation 4.2 is calculated for the entire database, Karlin-Altschul sta-
tistics breaks down when the composition of the query or a database sequence or both 
significantly deviates from the average composition of the database. The result is that 
low-complexity regions with similar composition (e.g. acidic or basic) often produce “sta-
tistically significant” alignments that have nothing to with homology and are completely 
irrelevant. The SEG program can be used to overcome this problem in a somewhat crude  
manner: the query sequence, the database, or both can be partitioned into normal com-
plexity and low-complexity regions, and the latter are masked (i.e. amino acid symbols are 
replaced with the corresponding number of X’s). For the purpose of a database search, 
such filtering is usually done using short windows so that only the segments with a strong-
ly compositional bias are masked. Low-complexity filtering has been indispensable for 
making database search methods, in particular BLAST, into reliable tools. Without mask-
ing low-complexity regions, false results would have been produced for a substantial frac-
tion of proteins, especially eukaryotic ones (an early estimate held that low-complexity 
regions comprise ~15% of the protein sequences in the SWISS-PROT database). These 
false results would have badly polluted any large-scale database search, and the respec-
tive proteins would have been refractory to any meaningful sequence analysis. For these 
reasons, for several years, SEG filtering had been used as the default for BLAST searches 
to mask low-complexity segments in the query sequence. However, this procedure is not 
without its drawbacks. Not all low-complexity sequences are captured, and false-positives 
still occur in database searches. The opposite problem also hampers database searches 
for some proteins: when short low-complexity sequences are parts of conserved regions, 
statistical significance of an alignment may be underestimated, sometimes grossly.

In a recent work of Alejandro Schäffer and colleagues, a different, less arbitrary ap-
proach for dealing with compositionally biased sequences was introduced. This method, 
called composition-based statistics, recalculates the λ parameter and, accordingly, the 
E values for each query and each database sequence, thus correcting the inordinately 
low (“significant”) E-values for sequences with similarly biased amino acid composition. 
This improves the accuracy of the reported E-values and eliminates most false-positives. 
Composition-based statistics is currently used as the default for the NCBI BLAST. In,

Algorithms for Sequence Alignment and Similarity Search

The Basic Alignment Concepts and Principal Algorithms

similarity searches aim at identifying the homologs of the given query protein (or nu-
cleotide) sequence among all the protein (or nucleotide) sequences in the database. An 
alignment of homologous protein sequences reveals their common features that are os-
tensibly important for the structure and function of each of these proteins; it also reveals 
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poorly conserved regions that are less important for the common function but might de-
fine the specificity of each of the homologs. In principle, the only way to identify homo-
logs is by aligning the query sequence against all the sequences in the database (below 
we will discuss some important heuristics that allow an algorithm to skip sequences that 
are obviously unrelated to the query), sorting these hits based on the degree of similari-
ty, and assessing their statistical significance that is likely to be indicative of homology. 
Thus, before considering algorithms and programs used to search sequence databases. 

It is important to make a distinction between a global (i.e. full-length) alignment and a 
local alignment, which includes only parts of the analyzed sequences (subsequences). Al-
though, in theory, a global alignment is best for describing relationships between sequenc-
es, in practice, local alignments are of more general use for two reasons. Firstly, it is com-
mon that only parts of compared proteins are homologous (e.g. they share one conserved 
domain, whereas other domains are unique). Secondly, on many occasions, only a portion 
of the sequence is conserved enough to carry a detectable signal, whereas the rest have 
diverged beyond recognition. Optimal global alignment of two sequences was first real-
ized in the Needleman-Wunsch algorithm, which employs dynamic programming. The 
notion of optimal local alignment (the best possible alignment of two subsequences from 
the compared sequences) and the corresponding dynamic programming algorithm were 
introduced by Smith and Waterman. Both of these are O(n 2 ) algorithms. 

the time and memory required to generate an optimal alignment are proportional to 
the product of the lengths of the compared sequences (for convenience, the sequences 
are assumed to be of equal length n in this notation). Optimal alignment algorithms 
for multiple sequences have the O(n k ) complexity (where k is the number of compared 
sequences). Such algorithms for k > 3 are not feasible on any existing computers, there-
fore all available methods for multiple sequence alignments produce only approxima-
tions and do not guarantee the optimal alignment.

It might be useful, at this point, to clarify the notion of optimal alignment. Algorithms 
like Needleman-Wunsch and Smith-Waterman guarantee the optimal alignment (glob-
al and local, respectively) for any two compared sequences. It is important to keep in 
mind, however, that this optimality is a purely formal notion, which means that, given 
a scoring function, the algorithm outputs the alignment with the highest possible score. 
This has nothing to with statistical significance of the alignment, which has to be esti-
mated separately (e.g. using the Karlin-Altschul statistics as outlined above), let alone 
the biological relevance of the alignment.

For better or worse, alignment algorithms treat protein or DNA as simple strings of let-
ters without recourse to any specific properties of biological macromolecules. Therefore, 
it might be useful to illustrate the principles of local alignments using a text free of biolog-
ical context as an example. Below is the text of stanzas I and IV of one of the most famous 
poems of all times; we shall compare them line by line, observing along the way various 
problems involved in sequence alignment (the alignable regions are shown in bold):
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It is easy to see that, in the first two lines of the two stanzas, the longest common string 
consists of only five letters, with one mismatch:

The second lines align better, with two similar blocks separated by spacers of vari-
able lengths, which requires gaps to be introduced, in order to combine them in one 
alignment:

In the third lines, there are common words of seven, four, and six letters, again sepa-
rated by gaps:

The fourth lines align very well, with a long string of near identity at the end:

In contrast, there is no reasonable alignment between the fifth lines, except for the 
identical word ‘door’. Obviously, however, the fourth line of the second stanza may 
be aligned not only with the fourth (IV), but also with the fifth line of the first stanza:

Alignments (IV) and (IV′) can thus be combined to produce a multiple alignment:

Finally, sixth lines of the two stanzas could be aligned at their ends:
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This simple example seems to capture several important issues that emerge in sequence 
alignment analysis. Firstly, remembering that an optimal alignment can be obtained 
for any two sequences, we should ask: Which alignments actually reflect homology of 
the respective lines? The alignments III, IV, IV′ (and the derivative IV′′), and V seem 
to be relevant beyond reasonable doubt. However, are they really correct? In particu-
lar, aligning en-ly/ently in III and ntly/ntly in IV require introducing gaps into both 
sequences. Is this justified? We cannot answer this simple question without a statistical 
theory for assessing the significance of an alignment, including a way to introduce some 
reasonable gap penalties.

The treatment of gaps is one of the hardest and still unsolved problems of alignment 
analysis. There is no theoretical basis for assigning gap penalties relative to substitution 
penalties (scores). Deriving these penalties empirically is a much more complicated task 
than deriving substitution penalties as in PAM and BLOSUM series because, unlike the 
alignment of residues in highly conserved blocks, the number and positions of gaps in 
alignments tend to be highly uncertain (see, for example alignment IV: Is it correct to 
place gaps both before and after ‘so’ in the second line?). Thus, gap penalties typically 
are assigned on the basis of two notions that stem both from the existing understanding 
of protein structure and from empirical examinations of protein family alignments: (i) 
deletion or insertion resulting in a gap is much less likely to occur than even the most 
radical amino acid substitution and should be heavily penalized, and (ii) once a deletion 
(insertion) has occurred in a given position, deletion or insertion of additional residues 
(gap extension) becomes much more likely. Therefore a linear function:

,G a bx a b= + >>

where a is the gap opening penalty, b is the gap extension penalty, and x is the length 
of the gap is used to deal with gaps in most alignment methods. Typically, a = 10 and 
b = 1 is a reasonable choice of gap penalties to be used in conjunction with the BLO-
SUM62 matrix. Using these values, the reader should be able to find out whether gaps 
should have been introduced in alignments III and IV above. In principle, objective 
gap penalties could be produced through analysis of distributions of gaps in structural 
alignments, and such a study suggested using convex functions for gap penalties. How-
ever, this makes alignment algorithms much costlier computationally, and the practical 
advantages remain uncertain, so linear gap penalties are still universally employed.

The feasibility of alignments (IV) and (IV’) creates the problem of choice: Which of 
these is the correct alignment? Alignment (IV) wins because it clearly has a longer 
conserved region. What is, then, the origin of line 5 in the first stanza and, accord-
ingly, of alignment (IV′)? It is not too difficult to figure out that this is a repeat, a re-
sult of duplication of line 4 (this is what we have to conclude given that line 4 is more 
similar to the homologous line in the second stanza). Such duplications are common 
in protein sequences, too, and often create major problems for alignment methods.
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We concluded that lines 3, 4, and 6 in each stanza of “Raven” are homologous, i.e. evolved 
from common ancestors with some subsequent divergence. In this case, the conclusion 
is also corroborated by the fact that we recognize the English words in these lines and 
see that they are indeed nearly the same and convey similar meanings, albeit differing in 
nuances. What about alignments (I) and (II)? The content here tells us that no homology 
is involved, even though alignment (II) looks “believable”. However, it would not have 
been recognized as statistically significant in a search of any sizable database, such as, 
for example, the “Complete poems of Edgar Allan Poe” at the American Verse Project.

Most of the existing alignment methods utilize modifications of the Smith-Waterman algo-
rithm. the latest developments in sequence alignment, the reader has to keep in mind that 
this remains an active research field, with a variety of algorithms and tools being developed, 
which at least claim improvements over the traditional ones appearing at a high rate. Just 
one recent example is BALSA, a Bayesian local alignment algorithm that explores series 
of substitution matrices and gap penalty values and assesses their posterior probabilities, 
thus overcoming some of the shortcomings of the Smith-Waterman algorithm.

Pairwise alignment methods are important largely in the context of a database search. 
For analysis of individual protein families, multiple alignment methods are critical. 
We believe that anyone routinely involved in protein family analysis would agree 
that, so far, no one has figured out the best way to do it. As indicated above, optimal 
alignment of more than three sequences is not feasible in the foreseeable future; so 
all the available methods are approximations. The main principle underlying popular 
algorithms is hierarchical clustering that roughly approximates the phylogenetic tree 
and guides the alignment (to our knowledge, this natural idea was first introduced 
by Feng and Doolittle). The sequences are first compared using a fast method and 
clustered by similarity scores to produce a guide tree. Sequences are then aligned 
step-by-step in a bottom-up succession, starting from terminal clusters in the tree 
and proceeding to the internal nodes until the root is reached. Once two sequences 
are aligned, their alignment is fixed and treated essentially as a single sequence with a 
modification of dynamic programming. Thus, the hierarchical algorithms essentially 
reduce the O(n k ) multiple alignment problem to a series of O(n 2 ) problems, which 
makes the algorithm feasible but potentially at the price of alignment quality. The hi-
erarchical algorithms attempt to minimize this problem by starting with most similar 
sequences where the likelihood of incorrect alignment is minimal, in the hope that 
the increased weight of correctly aligned positions precludes errors even on the sub-
sequent steps. The most commonly used method for hierarchical multiple alignment 
is Clustal, which is currently used in the ClustalW or ClustalX variants.

Clustal is fast and tends to produce reasonable alignments, even for protein families 
with limited sequence conservation, provided the compared proteins do not differ in 
length too much. A combination of length differences and low sequence conservation 
tends to result in gross distortions of the alignment. The T-Coffee program is a recent 
modification of Clustal that incorporates heuristics partially solving these problems.
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Sequence Database Search Algorithms

Smith-waterman

Any pairwise sequence alignment method in principle can be used for database search 
in a straightforward manner. All that needs to be done is to construct alignments of 
the query with each sequence in the database, one by one, rank the results by sequence 
similarity, and estimate statistical significance.

The classic Smith-Waterman algorithm is a natural choice for such an application, and 
it has been implemented in several database search programs, the most popular one 
being SSEARCH written by William Pearson and distributed as part of the FASTA pack-
age. It is currently available on numerous servers around the world. The major problem 
preventing SSEARCH and other implementations of the Smith-Waterman algorithm 
from becoming the standard choice for routine database searches is the computational 
cost, which is orders of magnitude greater than it is for the heuristic FASTA and BLAST 
methods (see below). Since extensive comparisons of the performance of these meth-
ods in detecting structurally relevant relationships between proteins failed to show a 
decisive advantage of SSEARCH, the fast heuristic methods dominate the field. Nev-
ertheless, on a case-by-case basis, it is certainly advisable to revert to full Smith-Wa-
terman search when other methods do not reveal a satisfactory picture of homologous 
relationship for a protein of interest. On a purely empirical and even personal note, the 
authors have not had much success with this, but undoubtedly, even rare findings may 
be important. A modified, much faster version of the Smith-Waterman algorithm has 
been implemented in the MPSRCH program.

FASTA

FASTA, introduced in 1988 by William Pearson and David Lipman, was the first data-
base search program that achieved search sensitivity comparable to that of Smith-Wa-
terman but was much faster. FASTA looks for biologically relevant global alignments 
by first scanning the sequence for short exact matches called “words”; a word search is 
extremely fast. The idea is that almost any pair of homologous sequences is expected to 
have at least one short word in common. Under this assumption, the great majority of 
the sequences in the database that do not have common words with the query can be 
skipped without further examination with a minimal waste of computer time. The sen-
sitivity and speed of the database search with FASTA are inversely related and depend 
on the “k-tuple” variable, which specifies the word size; typically, searches are run with 
k = 3, but, if high sensitivity at the expense of speed is desired, one may switch to k = 2.

Subsequently, Pearson introduced several improvements to the FASTA algorithm, 
which are implemented in the FASTA3 program available on the EBI server at. A useful 
FASTA-based tool for comparing two sequences, LALIGN.
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Motifs, Domains and Profiles

Protein Sequence Motifs and Methods for Motif Detection

Let us ask a very general question: What distinguishes biologically important sequence 
similarities from spurious ones? By looking at just one alignment of the query and its 
database hit showing more or less scattered identical and similar residues as in this, 
already familiar alignment:

it might be hard to tell one from the other. However, as soon as we align more homol-
ogous sequence, particularly from distantly related organisms, as it is done for L36 in 
figure, we will have a clue as to the nature of the distinction. Note two pairs of residues 
that are conserved in the great majority of L36 sequences: Cx(2)Cx(12)Cx(4–5)H [here 
x(n) indicates n residues whose identity does not concern us]. Those familiar with protein 
domains might have already noticed that this conserved pattern resembles the pattern of 
metal-coordinating residues in the so-called Zn-fingers and Zn-ribbons, extremely wide-
spread metal-binding domains, which mediate protein-nucleic acid and protein-protein 
interactions. Indeed, L36 has been shown to bind Zn2+, and those very cysteines and his-
tidines are involved. Such constellation of conserved amino acid residues associated with 
a particular function is called a sequence motif. Typically, motifs are confined to short 
stretches of protein sequences, usually spanning 10 to 30 amino acid residues. The no-
tion of a motif, arguably one of the most important concepts in computational biology, 
was first explicitly introduced by Russell Doolittle in 1981. Fittingly and, to our knowl-
edge, quite independently, the following year, John Walker and colleagues described 
what is probably the most prominent sequence motif in the entire protein universe, the 
phosphate-binding site of a vast class of ATP/GTP-utilizing enzymes, which subsequent-
ly has been named P-loop. Discovery of sequence motifs characteristic of a vast variety of 
enzymatic and binding activities of proteins proceeded first at an increasing and then, ap-
parently, at a steady rate, and the motifs, in the form of amino acid patterns, were swiftly 
incorporated by Amos Bairoch in the PROSITE database.

The P-loop, which we already encountered in is usually presented as the following pat-
tern of amino acid residues:

[ ] ( ) [ ]GA 4 GK STx

Note that there are two strictly conserved residues in this pattern and two positions 
where one of two residues is allowed. By running this pattern against the entire pro-
tein sequence database using, for example, the FPAT program available through the 
ExPASy server program or any other pattern-matching program (even the UNIX ‘grep’ 
command will do), one immediately realizes just how general and how useful this 
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pattern is. Indeed, such a search retrieves sequences of thousands of experimentally 
characterized ATPases and GTPases and their close homologs. However, only about 
one-half of the retrieved sequences are known or predicted NTPases of the P-loop class, 
whereas the rest are false-positives (E.V.K., unpublished). This is not surprising given 
the small number of residues in this pattern, which results in the probability of chance 
occurrence of about:

( )( )( )( ) 51/10 1/ 20 1/ 20 1/10 2.5 10−= ×

(this is an approximate estimate because the actual amino acid frequencies are not 
taken into account, but it is close enough). With the current database size of about 3.2 
× 108 residues, the expected number of matches is about 8,000.

This simple calculation shows that this and many other similar patterns, although they 
include the most conserved amino acid residues of important motifs, are insufficiently 
selective to be good diagnostic tools. The specificity of a pattern can be increased by 
taking into account adjacent residues that tend to have conserved properties. In par-
ticular, for the P-loop pattern, it can be required that there are at least three bulky, hy-
drophobic residues among the five residues upstream of the first glycine (structurally, 
this is a hydrophobic β-strand in ATPases and GTPases). This would greatly reduce the 
number of false-positives in a database search but would require a more sophisticat-
ed search method (as implemented, for example, in the GREF program of the SEALS 
package. Still, this does not solve the problem of motif identification. Figure shows the 
alignment of a small set of selected P-loops that were chosen for their sequence diver-
sity. Obviously, not even a single amino is conserved in all these sequences, although 
they all represent the same motif that has a conserved function and, in all likelihood, 
is monophyletic, i.e. evolved only once. Given this lack of strict conservation of amino 
acid residues in an enzymatic motif, this trend is even more pronounced in motifs as-
sociated with macromolecular interactions, in which invariant residues are the excep-
tion rather than the norm. Pattern search remains a useful first-approximation method 
for motif identification, especially because a rich pattern collection, PROSITE, can be 
searched using a rapid and straightforward program like SCANPROSITE. However, by 
the very nature of the approach, patterns are either insufficiently selective or too spe-
cific and, accordingly, are not adequate descriptions of motifs.

Alignment of P-loops from diverse ATPases and GTPases  
The most conserved residues are shown in bold.
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The way to properly capture the information contained in sequence motifs is to repre-
sent them as amino acid frequency profiles, which incorporate the frequencies of each 
of the 20 amino acid residues in each position of the motif. Even in the absence of 
invariant residues, non-randomness of a motif may be quite obvious in a profile repre-
sentation. Utilization of frequency profiles for database searches had a profound effect 
on the quality and depth of sequence and structure analysis. 

AConserved catalytic motifs in the caspase-like superfamily of proteases

A. Multiple alignment of the catalytic motifs around the two active residues (His and 
Cys) of caspases (Csp, top group), paracaspases (PC, middle group), and metacas-
pases; see more about these proteases in. Note the conservation in the stretches pre-
ceding each of the catalytic residues and corresponding to the two main β-strands 
of the caspase domain. Conserved hydrophobic residues are highlighted in yellow; 
conserved small residues (Gly, Ser, Ala, Cys) are shown on a green background. 
The species abbreviations are: Hs, human; Ce, C. elegans; Dd, Dictyostelium; Ml, 
M. loti; Sc, yeast; At, Arabidopsis; Rsph, Rhodobacter sphaeroides; Gsul, Geobacter 
sulfurreducens.

Protein Domains, PSSMs and Advanced Methods for 	
Database Search

Sequence motifs are extremely convenient descriptors of conserved, functionally im-
portant short portions of proteins. However, motifs are not the natural units of protein 
structure and evolution. Such distinct units are protein domains. In structural biology, 
domains are defined as structurally compact, independently folding parts of protein mol-
ecules. In comparative genomics and sequence analysis in general, the central, “atomic” 
objects are parts of proteins that have distinct evolutionary trajectories, i.e. occur either 
as stand-alone proteins or as parts of variable domain architectures (we refer to the 
linear order of domains in protein sequences as domain or multidomain architecture), 
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but are never split into parts. Very often, probably in the majority of cases, such units of 
protein evolution exactly correspond to structural domains. However, in some groups 
of proteins, an evolutionary unit may consist of two or more domains. For example, 
from a purely structural viewpoint, trypsin-like proteases have two domains. However, 
at least so far, separation of these domains has not been observed, and therefore, they 
should be treated as a single evolutionary unit. It might be desirable to propose a spe-
cial name for these units of protein evolution, but to our knowledge, this has not been 
done, and in comparative-genomic literature, including this book, they are commonly 
referred to as domains. On rare occasions, a domain consists of a single motif, as in the 
case of AT-hooks shown in figure However, much more often, domains are relatively 
large, comprising 100 to 300 amino acid residues and including two or more distinct 
motifs. Motifs are highly conserved patches in multiple alignments of domains that tend 
to be separated by regions of less pronounced sequence conservation and often of vari-
able length; in other words, motifs may be conceptualized (and visualized) as peaks on 
sequence conservation profiles. In the 3D structure of most domains, the distinct motifs 
are juxtaposed and function together, which explains their correlated conservation. Fig-
ure illustrates the juxtaposition of motifs that center around the two catalytic residues in 
the alignment of the catalytic domain of caspase-related proteases from figure.

Profile representation of a conserved sequence motif and  
the corresponding 3D structure of the DNA-binding AT-hook domain. The  

pictorial form of the profile was produced using the Sequence Logo method.

The notion of protein motifs has been employed directly in algorithms that construct 
multiple sequence alignments as a chain of motifs separated by unaligned regions. 
The first of such methods, Multiple Alignment Construction and Analysis Workbench 
(MACAW), originally used a BLAST-like method for approximately delineating con-
served sequence blocks (motifs) and then allowed the user to determine whether 
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inclusion of additional alignment columns increased the significance of the block 
alignment.

Conserved catalytic motifs in the caspase-like superfamily of proteases.

B. Structure of the human caspase-7 (PDB entry 1I51). The figure is generated using 
Cn3D representation of the MMDB entry. The conserved histidine and cysteine resi-
dues are shown in ball-and-stick representation in the upper part of the structure.

MACAW is a very convenient, accurate, and flexible alignment tool; however, the algo-
rithm is O(nk) and, accordingly, becomes prohibitively computationally expensive for a 
large number of sequences. MACAW is an interactive tool that embodies the important 
notion that completely automatic methods are unlikely to capture all important mo-
tifs in cases of subtle sequence conservation, particularly in proteins that substantially 
differ in length. For many occasions, it remains the method of choice when careful 
alignment analysis is required, although, in the current situation of explosive growth 
of sequence data, the computational cost severely limits MACAW’s utility. Subsequent-
ly, Charles Lawrence, Andrew Neuwald, and coworkers adapted the Gibbs sampling 
strategy for motif detection and developed the powerful (if not necessarily user-friend-
ly) PROBE method that allows delineation of multiple, subtle motifs in large sets of 
sequences Importantly, Gibbs sampler is an O(n) algorithm, which allows analysis of 
large numbers of sequences. Gibbs sampling has been incorporated into MACAW as 
one of the methods for conserved block detection. In principle, this should enable MA-
CAW to efficiently align numerous sequences. 

Arguably, the most important methodological advance based on the concepts of do-
mains and motifs was the development of position-specific weight matrices (PSSMs) 
and their use in database searches as an incomparably more powerful substitute for 
regular matrices, such as BLOSUMs and PAMs. A PSSM is a rectangular table, which 
consists of n columns (n is the number of positions in the multiple alignment for which 
the PSSM is made) and 20 rows and contains, in each cell, the score (weight) for the 
given amino acid in the given position of the multiple alignment. In the simplest case, 
this score can be the frequency of the amino acid in the given position. It is easy to 
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realize, however, that, on most occasions, residue frequencies taken from any given 
alignment are unlikely to adequately describe the respective domain family. Firstly, we 
certainly never know the full range of family members, and moreover, there is no evi-
dence that we have a representative set. Therefore, if a residue is missing in a particular 
alignment column, this does not justify a 0 score in a PSSM. In reality, a PSSM never 
includes a score of exactly 0, although scores for some residues might be extremely low, 
and rounding sometimes may result in 0 values. Instead, a finite score is assigned to the 
missing residue using so-called regularizers, i.e. various mathematical techniques that 
strive to derive the correct distribution of amino acids for a given position on the basis 
of a limited sample. It is easy to realize that the score given to a missing residue depends 
on two factors: the distribution actually found in the sample of available superfamily 
members and the size of the sample. Clearly, if a set of 1,000 diverse sequences invari-
ably contains, for example, a serine residue in a particular position, the probability of 
finding any other residue in this position is extremely low. Nevertheless, threonine, as 
a residue that is structurally close to serine and, according to substitution matrices like 
BLOSUMs and PAMs, is often exchangeable with serine in proteins, certainly should 
receive a higher score than, say, lysine. 

One of course, could argue that an invariant serine is most likely to be part of a cat-
alytic center of an enzyme and as such is more likely to be replaced by cysteine than 
by threonine (such replacements in enzymes, e.g. proteases and acyltransferases, are 
well documented, e.g. This level of sophistication seems to be beyond the capabilities 
of current automatic methods for PSSM generation, although, in principle, a PSSM for 
a particular domain could be tailored manually. Another aspect of PSSM construction 
that requires formal treatment beyond calculating and regularizing amino acid residue 
scores stems from the fact that many protein families available to us are enriched with 
closely related sequences (this might be the result of a genuine proliferation of a partic-
ular subset of a family or could be caused by sequencing bias). Obviously, an overrep-
resented subfamily will sway the entire PSSMs toward detection of additional closely 
related sequences and hamper the performance. To overcome this problem, different 
weighting schemes are applied to PSSMs to downweigh closely related sequences and 
increase the contribution of diverse ones. Optimal PSSM construction remains an im-
portant problem in sequence analysis, and even small improvements have the potential 
of significantly enhancing the power of database search methods. Some of the recent 
developments that we do not have the opportunity to seem to hold considerable prom-
ise. Once a PSSM is constructed, using it in a database search is straightforward and 
not particularly different from using a single query sequence combined with a regular 
substitution matrix, e.g. BLOSUM62. The common database search methods, such as 
BLAST, can work equally well with a PSSM, and the same statistics apply.

To our knowledge, the notion of a PSSM and its use for detecting weak sequence simi-
larities was first introduced by Michael Gribskov, Andrew McLachlan, and David Eisen-
berg in 1987. However, their method was initially of limited utility because it depended 
on a pre-constructed multiple sequence alignment and consequently could not be used 
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with the speed and ease comparable to those of using FASTA or BLAST. An important 
additional step was combining the use of PSSMs with iterative search strategy. To our 
knowledge, this was first done by Gribskov. Under this approach, after the first run of 
a PSSM-based similarity search against a sequence database, newly detected sequenc-
es (with the similarity to PSSM above a certain cut-off) are added to the alignment, 
the PSSM is rebuilt, and the cycle is repeated until no new members of the family are 
detected. This approach was implemented in a completely automated fashion in the 
Motif Search Tool (MoST) program, which also included a rigorous statistical method 
for evaluating resulting similarities but only worked with ungapped alignment blocks.

A decisive breakthrough in the evolution of PSSM-based methods for database search-
ing was the development of the Position-Specific Iterating (PSI)-BLAST program. This 
program first performs a regular BLAST search of a protein query against a protein 
database. It then uses all the hits with scores greater than a certain cut-off to generate 
a multiple alignment and create a PSSM, which is used for the second search iteration. 
The search goes on until convergence or for a desired number of iterations. Obvious-
ly, the first PSI-BLAST iteration must employ a regular substitution matrix, such as 
BLOSUM62, to calculate HSP scores. For the subsequent iterations, the PSSM reg-
ularization procedure was designed in such a way that the contribution of the initial 
matrix to the position-specific scores decreases, whereas the contribution of the actual 
amino acid frequencies in the alignment increases with the growth of the number of 
retrieved sequences. PSI-BLAST also employs a simple sequence-weighting scheme, 
which is applied for PSSM construction at each iteration. Since its appearance in 1997, 
PSI-BLAST has become the most common method for in-depth protein sequence anal-
ysis. The method owes its success to its high speed (each iteration takes only slightly 
longer than a regular BLAST run), the ease of use (no additional steps are required, the 
search starts with a single sequence, and alignments and PSSMs are constructed auto-
matically on the fly), and high reliability, especially when composition-based statistics 
are invoked. The practical aspects of using PSI-BLAST are considered at some length 
in 4.3.5.

Hidden Markov Models (HMMs) of multiple sequence alignments are a popular al-
ternative to PSSMs. HMMs can be trained on unaligned sequences or pre-constructed 
multiple alignments and, similarly to PSI-BLAST, can be iteratively run against a data-
base in an automatic regime. A variety of HMM-based search programs are included in 
the HMMer2 package; Sean Eddy’s web site displays a recommendation to pronounce 
the name of this package “hammer” as in “a more precise mining tool than a BLAST”). 
HMM search is slower than PSI-BLAST, but there have been reports of greater sensi-
tivity of HMMs (e.g). In the extensive albeit anecdotal experience of the authors, the 
results of protein superfamily analysis using PSI-BLAST and HMMer2 are remarkably 
similar.

The availability of techniques for constructing models of protein families and using 
them in database searches naturally leads to a vision of the future of protein sequence 
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analysis. The methods such as PSI-BLAST and HMMer, start with a protein sequence 
and gradually build a model that allows detection of homologs with low sequence sim-
ilarity to the query. Clearly, this approach can be reversed such that a sequence query 
is run against a pre-made collection of protein family models. In principle, if models 
were developed for all protein families, the problem of classifying a new protein se-
quence would have been essentially solved. In addition to family classification, regu-
lar database searches like BLAST also provide information on the most closely related 
homologs of the query, thus giving an indication of its evolutionary affinity. In itself, a 
search of a library of family models does not yield such information, but an extension 
of this approach is easily imaginable whereby a protein sequence, after being assigned 
to a family through PSSM and HMM search, is then fit into a phylogenetic tree. Search-
ing the COG database may be viewed as a rough prototype of this approach. Such a 
system seems to have the potential of largely replacing current methods with an ap-
proach that is both much faster and more informative. Given the explosive growth of 
sequence databases, transition to searching databases of protein family models as the 
primary sequence analysis approach seems inevitable in a relatively near future. Only 
for discovering new domains will it be necessary to revert to searching the entire data-
base, and since the protein universe is finite, these occasions are expected to become 
increasingly rare.

Presently, sequence analysis has not reached such an advanced stage, but search-
es against large, albeit far from complete, databases of domain-specific PSSMs and 
HMMs have already become extremely useful approaches in sequence analysis. Pfam, 
SMART, and CDD, which were introduced in 3.2, are the principal tools of this type. 
Pfam and SMART perform searches against HMMs generated from curated alignments 
of a variety of proteins domains. The CDD server compares a query sequence to the 
PSSM collection in the CDD using the Reversed Position-Specific (RPS)-BLAST pro-
gram. Algorithmically, RPS-BLAST is similar to BLAST, with minor modifications; 
Karlin-Altschul statistics applies to E-value calculation for this method. RPS-BLAST 
searches the library of PSSMs derived from CDD, finding single- or double-word hits 
and then performing ungapped extension on these candidate matches. If a sufficiently 
high-scoring ungapped alignment is produced, a gapped extension is done, and the 
alignments with E-values below the cut-off are reported. Since the search space is equal 
to nm where n is the length of the query and m is the total length of the PSSMs in the 
database (which, at the time of writing, contains ~5,000 PSSMs), RPS-BLAST is ~100 
times faster than regular BLAST.

Pattern-Hit-Initiated BLAST (PHI-BLAST) is a variant of BLAST that searches for ho-
mologs of the query that contain a particular sequence pattern. Pattern search often is 
insufficiently selective. PHI-BLAST partially rectifies this by first selecting the subset 
of database sequences that contain the given pattern and then searching this limited 
database using the regular BLAST algorithm. Although the importance of this method 
is not comparable to that of PSI-BLAST, it can be useful for detecting homologs with a 
very low overall similarity to the query that nevertheless retain a specific pattern.
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Stand-alone (non-web) BLAST. However, the web-based approach is not suitable for 
large-scale searches requiring extensive post-processing, which are common in genome 
analysis. For these tasks, one has to use the stand-alone version of BLAST, which can be 
obtained from NCBI via ftp and installed locally under the Unix or Windows operation 
systems. Although the stand-alone BLAST programs do not offer all the conveniences 
available on the web, they do provide some additional and useful opportunities. In par-
ticular, stand-alone PSI-BLAST can be automatically run for the specified number of 
iterations or until convergence.

With the help of simple additional scripts, the results of stand-alone BLAST can be 
put to much use beyond the straightforward database search. Searches with thou-
sands of queries can be run automatically, followed with various post-processing 
steps; The BLASTCLUST program (written by Ilya Dondoshansky in collaboration 
with Yuri Wolf and E.V.K.), which is also available from NCBI via ftp and works 
only with stand-alone BLAST, allows clustering sequences by similarity using the 
results of an all-against-all BLAST search within an analyzed set of sequences as the 
input. It identifies clusters using two criteria: (i) level of sequence similarity, which 
may be expressed either as percent identity or as score density (number of bits per 
aligned position), and (ii) the length of HSP relative to the length of the query and 
subject (e.g. one may require that, for the given two sequences to be clustered, the 
HSP(s) should cover at least 70% of each sequence). BLASTCLUST can be used, for 
example, to eliminate protein fragments from a database or to identify families of 
paralogs.

Sequence Alignment

A sequence alignment, produced by ClustalO, of mammalian histone proteins. 

Sequences are the amino acids for residues 120-180 of the proteins. Residues that are 
conserved across all sequences are highlighted in grey. Below the protein sequences is 
a key denoting conserved sequence (*), conservative mutations (:), semi-conservative 
mutations (.), and non-conservative mutations ( ).
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In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, 
RNA, or protein to identify regions of similarity that may be a consequence of function-
al, structural, or evolutionary relationships between the sequences. Aligned sequences 
of nucleotide or amino acid residues are typically represented as rows within a ma-
trix. Gaps are inserted between the residues so that identical or similar characters are 
aligned in successive columns. Sequence alignments are also used for non-biological 
sequences, such as calculating the distance cost between strings in a natural language 
or in financial data. 

Interpretation

If two sequences in an alignment share a common ancestor, mismatches can be inter-
preted as point mutations and gaps as indels (that is, insertion or deletion mutations) 
introduced in one or both lineages in the time since they diverged from one another. 
In sequence alignments of proteins, the degree of similarity between amino acids oc-
cupying a particular position in the sequence can be interpreted as a rough measure of 
how conserved a particular region or sequence motif is among lineages. The absence 
of substitutions, or the presence of only very conservative substitutions (that is, the 
substitution of amino acids whose side chains have similar biochemical properties) in 
a particular region of the sequence, suggest that this region has structural or functional 
importance. Although DNA and RNA nucleotide bases are more similar to each other 
than are amino acids, the conservation of base pairs can indicate a similar functional 
or structural role. 

Alignment Methods

Very short or very similar sequences can be aligned by hand. However, most interest-
ing problems require the alignment of lengthy, highly variable or extremely numerous 
sequences that cannot be aligned solely by human effort. Instead, human knowledge 
is applied in constructing algorithms to produce high-quality sequence alignments, 
and occasionally in adjusting the final results to reflect patterns that are difficult to 
represent algorithmically (especially in the case of nucleotide sequences). Compu-
tational approaches to sequence alignment generally fall into two categories: global 
alignments and local alignments. Calculating a global alignment is a form of global 
optimization that “forces” the alignment to span the entire length of all query sequenc-
es. By contrast, local alignments identify regions of similarity within long sequences 
that are often widely divergent overall. Local alignments are often preferable, but can 
be more difficult to calculate because of the additional challenge of identifying the 
regions of similarity. A variety of computational algorithms have been applied to the 
sequence alignment problem. These include slow but formally correct methods like 
dynamic programming. These also include efficient, heuristic algorithms or probabi-
listic methods designed for large-scale database search, that do not guarantee to find 
best matches. 
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Representations

Alignments are commonly represented both graphically and in text format. In almost 
all sequence alignment representations, sequences are written in rows arranged so 
that aligned residues appear in successive columns. In text formats, aligned columns 
containing identical or similar characters are indicated with a system of conservation 
symbols. As in the image above, an asterisk or pipe symbol is used to show identity 
between two columns; other less common symbols include a colon for conservative 
substitutions and a period for semiconservative substitutions. Many sequence visual-
ization programs also use color to display information about the properties of the indi-
vidual sequence elements; in DNA and RNA sequences, this equates to assigning each 
nucleotide its own color. In protein alignments, such as the one in the image above, 
color is often used to indicate amino acid properties to aid in judging the conservation 
of a given amino acid substitution. For multiple sequences the last row in each column 
is often the consensus sequence determined by the alignment; the consensus sequence 
is also often represented in graphical format with a sequence logo in which the size of 
each nucleotide or amino acid letter corresponds to its degree of conservation. 

Sequence alignments can be stored in a wide variety of text-based file formats, many 
of which were originally developed in conjunction with a specific alignment program 
or implementation. Most web-based tools allow a limited number of input and output 
formats, such as FASTA format and GenBank format and the output is not easily edit-
able. Several conversion programs that provide graphical and command line interfaces 
are available, such as READSEQ and EMBOSS. There are also several programming 
packages which provide this conversion functionality, such as BioPython, BioRuby and 
BioPerl. The SAM/BAM files use the CIGAR (Compact Idiosyncratic Gapped Align-
ment Report) string format to represent an alignment of a sequence to a reference by 
encoding a sequence of events (e.g. match/mismatch, insertions, deletions). 

Global and Local Alignments

Global alignments, which attempt to align every residue in every sequence, are most 
useful when the sequences in the query set are similar and of roughly equal size. (This 
does not mean global alignments cannot start and end in gaps.) A general global align-
ment technique is the Needleman–Wunsch algorithm, which is based on dynamic 
programming. Local alignments are more useful for dissimilar sequences that are sus-
pected to contain regions of similarity or similar sequence motifs within their larger se-
quence context. The Smith–Waterman algorithm is a general local alignment method 
based on the same dynamic programming scheme but with additional choices to start 
and end at any place. 

Hybrid methods, known as semi-global or “glocal” (short for global-local) methods, 
search for the best possible partial alignment of the two sequences (in other words, a 
combination of one or both starts and one or both ends is stated to be aligned). This 
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can be especially useful when the downstream part of one sequence overlaps with the 
upstream part of the other sequence. In this case, neither global nor local alignment is 
entirely appropriate: a global alignment would attempt to force the alignment to extend 
beyond the region of overlap, while a local alignment might not fully cover the region 
of overlap. Another case where semi-global alignment is useful is when one sequence is 
short (for example a gene sequence) and the other is very long (for example a chromo-
some sequence). In that case, the short sequence should be globally (fully) aligned but 
only a local (partial) alignment is desired for the long sequence. 

Fast expansion of genetic data challenges speed of current DNA sequence alignment al-
gorithms. Essential needs for an efficient and accurate method for DNA variant discov-
ery demand innovative approaches for parallel processing in real time. Optical comput-
ing approaches have been suggested as promissing alternatives to the current electrical 
implementations, yet their applicability remains to be tested. 

Pairwise Alignment

Pairwise sequence alignment methods are used to find the best-matching piecewise 
(local or global) alignments of two query sequences. Pairwise alignments can only be 
used between two sequences at a time, but they are efficient to calculate and are often 
used for methods that do not require extreme precision (such as searching a database 
for sequences with high similarity to a query). The three primary methods of produc-
ing pairwise alignments are dot-matrix methods, dynamic programming, and word 
methods; however, multiple sequence alignment techniques can also align pairs of se-
quences. Although each method has its individual strengths and weaknesses, all three 
pairwise methods have difficulty with highly repetitive sequences of low information 
content - especially where the number of repetitions differ in the two sequences to be 
aligned. One way of quantifying the utility of a given pairwise alignment is the ‘max-
imum unique match’ (MUM), or the longest subsequence that occurs in both query 
sequences. Longer MUM sequences typically reflect closer relatedness. 

Dot-matrix Methods

The dot-matrix approach, which implicitly produces a family of alignments for individ-
ual sequence regions, is qualitative and conceptually simple, though time-consuming 
to analyze on a large scale. In the absence of noise, it can be easy to visually identify 
certain sequence features—such as insertions, deletions, repeats, or inverted repeats—
from a dot-matrix plot. To construct a dot-matrix plot, the two sequences are written 
along the top row and leftmost column of a two-dimensional matrix and a dot is placed 
at any point where the characters in the appropriate columns match—this is a typical 
recurrence plot. Some implementations vary the size or intensity of the dot depending 
on the degree of similarity of the two characters, to accommodate conservative substi-
tutions. The dot plots of very closely related sequences will appear as a single line along 
the matrix’s main diagonal. 
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Self comparison of a part of a mouse strain genome. The dot-plot shows 
a patchwork of lines, demonstrating duplicated segments of DNA.

Problems with dot plots as an information display technique include: noise, lack of 
clarity, non-intuitiveness, difficulty extracting match summary statistics and match po-
sitions on the two sequences. There is also much wasted space where the match data 
is inherently duplicated across the diagonal and most of the actual area of the plot is 
taken up by either empty space or noise, and, finally, dot-plots are limited to two se-
quences. None of these limitations apply to Miropeats alignment diagrams but they 
have their own particular flaws. 

A DNA dot plot of a human zinc finger transcription factor (GenBank ID NM_002383), 
showing regional self-similarity. The main diagonal represents the sequence’s alignment 
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with itself; lines off the main diagonal represent similar or repetitive patterns within 
the sequence. This is a typical example of a recurrence plot.

Dot plots can also be used to assess repetitiveness in a single sequence. A sequence can 
be plotted against itself and regions that share significant similarities will appear as 
lines off the main diagonal. This effect can occur when a protein consists of multiple 
similar structural domains. 

Dynamic Programming

The technique of dynamic programming can be applied to produce global alignments 
via the Needleman-Wunsch algorithm, and local alignments via the Smith-Waterman 
algorithm. In typical usage, protein alignments use a substitution matrix to assign 
scores to amino-acid matches or mismatches, and a gap penalty for matching an ami-
no acid in one sequence to a gap in the other. DNA and RNA alignments may use a 
scoring matrix, but in practice often simply assign a positive match score, a negative 
mismatch score, and a negative gap penalty. (In standard dynamic programming, the 
score of each amino acid position is independent of the identity of its neighbors, and 
therefore base stacking effects are not taken into account. However, it is possible to 
account for such effects by modifying the algorithm.) A common extension to standard 
linear gap costs, is the usage of two different gap penalties for opening a gap and for 
extending a gap. Typically the former is much larger than the latter, e.g. -10 for gap 
open and -2 for gap extension. Thus, the number of gaps in an alignment is usually 
reduced and residues and gaps are kept together, which typically makes more biolog-
ical sense. The Gotoh algorithm implements affine gap costs by using three matrices. 

Dynamic programming can be useful in aligning nucleotide to protein sequences, a 
task complicated by the need to take into account frameshift mutations (usually in-
sertions or deletions). The framesearch method produces a series of global or local 
pairwise alignments between a query nucleotide sequence and a search set of protein 
sequences, or vice versa. Its ability to evaluate frameshifts offset by an arbitrary num-
ber of nucleotides makes the method useful for sequences containing large numbers 
of indels, which can be very difficult to align with more efficient heuristic methods. In 
practice, the method requires large amounts of computing power or a system whose 
architecture is specialized for dynamic programming. The BLAST and EMBOSS suites 
provide basic tools for creating translated alignments (though some of these approach-
es take advantage of side-effects of sequence searching capabilities of the tools). More 
general methods are available from open-source software such as Genewise. 

The dynamic programming method is guaranteed to find an optimal alignment given 
a particular scoring function; however, identifying a good scoring function is often an 
empirical rather than a theoretical matter. Although dynamic programming is extensi-
ble to more than two sequences, it is prohibitively slow for large numbers of sequences 
or extremely long sequences. 
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Word Methods

Word methods, also known as k-tuple methods, are heuristic methods that are not 
guaranteed to find an optimal alignment solution, but are significantly more efficient 
than dynamic programming. These methods are especially useful in large-scale data-
base searches where it is understood that a large proportion of the candidate sequenc-
es will have essentially no significant match with the query sequence. Word methods 
are best known for their implementation in the database search tools FASTA and the 
BLAST family. Word methods identify a series of short, nonoverlapping subsequences 
(“words”) in the query sequence that are then matched to candidate database sequenc-
es. The relative positions of the word in the two sequences being compared are sub-
tracted to obtain an offset; this will indicate a region of alignment if multiple distinct 
words produce the same offset. Only if this region is detected do these methods apply 
more sensitive alignment criteria; thus, many unnecessary comparisons with sequenc-
es of no appreciable similarity are eliminated. 

In the FASTA method, the user defines a value k to use as the word length with which 
to search the database. The method is slower but more sensitive at lower values of 
k, which are also preferred for searches involving a very short query sequence. The 
BLAST family of search methods provides a number of algorithms optimized for par-
ticular types of queries, such as searching for distantly related sequence matches. 
BLAST was developed to provide a faster alternative to FASTA without sacrificing 
much accuracy; like FASTA, BLAST uses a word search of length k, but evaluates only 
the most significant word matches, rather than every word match as does FASTA. 
Most BLAST implementations use a fixed default word length that is optimized for 
the query and database type, and that is changed only under special circumstances, 
such as when searching with repetitive or very short query sequences. Implemen-
tations can be found via a number of web portals, such as EMBL FASTA and NCBI 
BLAST. 

Multiple Sequence Alignment

Multiple sequence alignment is an extension of pairwise alignment to incorporate 
more than two sequences at a time. Multiple alignment methods try to align all of the 
sequences in a given query set. Multiple alignments are often used in identifying con-
served sequence regions across a group of sequences hypothesized to be evolutionari-
ly related. Such conserved sequence motifs can be used in conjunction with structural 
and mechanistic information to locate the catalytic active sites of enzymes. Align-
ments are also used to aid in establishing evolutionary relationships by construct-
ing phylogenetic trees. Multiple sequence alignments are computationally difficult to 
produce and most formulations of the problem lead to NP-complete combinatorial 
optimization problems. Nevertheless, the utility of these alignments in bioinformat-
ics has led to the development of a variety of methods suitable for aligning three or 
more sequences. 
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Alignment of 27 avian influenza hemagglutinin protein sequences colored  
by residue conservation (top) and residue properties (bottom).

Dynamic Programming

The technique of dynamic programming is theoretically applicable to any number of 
sequences; however, because it is computationally expensive in both time and memo-
ry, it is rarely used for more than three or four sequences in its most basic form. This 
method requires constructing the n-dimensional equivalent of the sequence matrix 
formed from two sequences, where n is the number of sequences in the query. Stan-
dard dynamic programming is first used on all pairs of query sequences and then the 
“alignment space” is filled in by considering possible matches or gaps at intermedi-
ate positions, eventually constructing an alignment essentially between each two-se-
quence alignment. Although this technique is computationally expensive, its guarantee 
of a global optimum solution is useful in cases where only a few sequences need to be 
aligned accurately. One method for reducing the computational demands of dynamic 
programming, which relies on the “sum of pairs” objective function, has been imple-
mented in the MSA software package. 

Progressive Methods

Progressive, hierarchical, or tree methods generate a multiple sequence alignment 
by first aligning the most similar sequences and then adding successively less related 
sequences or groups to the alignment until the entire query set has been incorporated 
into the solution. The initial tree describing the sequence relatedness is based on pair-
wise comparisons that may include heuristic pairwise alignment methods similar to 
FASTA. Progressive alignment results are dependent on the choice of “most related” 
sequences and thus can be sensitive to inaccuracies in the initial pairwise alignments. 
Most progressive multiple sequence alignment methods additionally weight the se-
quences in the query set according to their relatedness, which reduces the likelihood 
of making a poor choice of initial sequences and thus improves alignment accuracy. 
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Many variations of the Clustal progressive implementation are used for multiple se-
quence alignment, phylogenetic tree construction, and as input for protein structure 
prediction. A slower but more accurate variant of the progressive method is known as 
T-Coffee. 

Iterative Methods

Iterative methods attempt to improve on the heavy dependence on the accuracy of the 
initial pairwise alignments, which is the weak point of the progressive methods. Iter-
ative methods optimize an objective function based on a selected alignment scoring 
method by assigning an initial global alignment and then realigning sequence subsets. 
The realigned subsets are then themselves aligned to produce the next iteration’s mul-
tiple sequence alignment. Various ways of selecting the sequence subgroups and objec-
tive function are reviewed in. 

Motif Finding

Motif finding, also known as profile analysis, constructs global multiple sequence align-
ments that attempt to align short conserved sequence motifs among the sequences in 
the query set. This is usually done by first constructing a general global multiple se-
quence alignment, after which the highly conserved regions are isolated and used to 
construct a set of profile matrices. The profile matrix for each conserved region is ar-
ranged like a scoring matrix but its frequency counts for each amino acid or nucleotide 
at each position are derived from the conserved region’s characte r distribution rather 
than from a more general empirical distribution. The profile matrices are then used to 
search other sequences for occurrences of the motif they characterize. In cases where 
the original data set contained a small number of sequences, or only highly related se-
quences, pseudocounts are added to normalize the character distributions represented 
in the motif. 

Techniques Inspired by Computer Science

A variety of general optimization algorithms commonly used in computer science have 
also been applied to the multiple sequence alignment problem. Hidden Markov models 
have been used to produce probability scores for a family of possible multiple sequence 
alignments for a given query set; although early HMM-based methods produced un-
derwhelming performance, later applications have found them especially effective in 
detecting remotely related sequences because they are less susceptible to noise created 
by conservative or semiconservative substitutions. Genetic algorithms and simulated 
annealing have also been used in optimizing multiple sequence alignment scores as 
judged by a scoring function like the sum-of-pairs method. 

The Burrows–Wheeler transform has been successfully applied to fast short read align-
ment in popular tools such as Bowtie and BWA. 

____________________ WORLD TECHNOLOGIES ____________________



WT

106 Principles of Computational Biology

Structural Alignment

Structural alignments, which are usually specific to protein and sometimes RNA se-
quences, use information about the secondary and tertiary structure of the protein or 
RNA molecule to aid in aligning the sequences. These methods can be used for two or 
more sequences and typically produce local alignments; however, because they depend 
on the availability of structural information, they can only be used for sequences whose 
corresponding structures are known (usually through X-ray crystallography or NMR 
spectroscopy). Because both protein and RNA structure is more evolutionarily con-
served than sequence, structural alignments can be more reliable between sequences 
that are very distantly related and that have diverged so extensively that sequence com-
parison cannot reliably detect their similarity. 

Structural alignments are used as the “gold standard” in evaluating alignments for 
homology-based protein structure prediction because they explicitly align regions of 
the protein sequence that are structurally similar rather than relying exclusively on 
sequence information. However, clearly structural alignments cannot be used in struc-
ture prediction because at least one sequence in the query set is the target to be mod-
eled, for which the structure is not known. It has been shown that, given the structural 
alignment between a target and a template sequence, highly accurate models of the 
target protein sequence can be produced; a major stumbling block in homology-based 
structure prediction is the production of structurally accurate alignments given only 
sequence information. 

DALI

The DALI method, or distance matrix alignment, is a fragment-based method for con-
structing structural alignments based on contact similarity patterns between successive 
hexapeptides in the query sequences. It can generate pairwise or multiple alignments 
and identify a query sequence’s structural neighbors in the Protein Data Bank (PDB). It 
has been used to construct the FSSP structural alignment database (Fold classification 
based on Structure-Structure alignment of Proteins, or Families of Structurally Similar 
Proteins). A DALI webserver can be accessed at DALI and the FSSP is located at The 
Dali Database. 

SSAP

SSAP (sequential structure alignment program) is a dynamic programming-based 
method of structural alignment that uses atom-to-atom vectors in structure space 
as comparison points. It has been extended since its original description to include 
multiple as well as pairwise alignments, and has been used in the construction of the 
CATH (Class, Architecture, Topology, Homology) hierarchical database classifica-
tion of protein folds. The CATH database can be accessed at CATH Protein Structure 
Classification. 

____________________ WORLD TECHNOLOGIES ____________________



WT

107CHAPTER 3    Bioinformatics

Combinatorial Extension

The combinatorial extension method of structural alignment generates a pairwise 
structural alignment by using local geometry to align short fragments of the two pro-
teins being analyzed and then assembles these fragments into a larger alignment. Based 
on measures such as rigid-body root mean square distance, residue distances, local 
secondary structure, and surrounding environmental features such as residue neigh-
bor hydrophobicity, local alignments called “aligned fragment pairs” are generated and 
used to build a similarity matrix representing all possible structural alignments within 
predefined cutoff criteria. A path from one protein structure state to the other is then 
traced through the matrix by extending the growing alignment one fragment at a time. 
The optimal such path defines the combinatorial-extension alignment. A web-based 
server implementing the method and providing a database of pairwise alignments of 
structures in the Protein Data Bank is located at the Combinatorial Extension website. 

Phylogenetic Analysis

Phylogenetics and sequence alignment are closely related fields due to the shared ne-
cessity of evaluating sequence relatedness. The field of phylogenetics makes exten-
sive use of sequence alignments in the construction and interpretation of phylogenetic 
trees, which are used to classify the evolutionary relationships between homologous 
genes represented in the genomes of divergent species. The degree to which sequenc-
es in a query set differ is qualitatively related to the sequences’ evolutionary distance 
from one another. Roughly speaking, high sequence identity suggests that the se-
quences in question have a comparatively young most recent common ancestor, while 
low identity suggests that the divergence is more ancient. This approximation, which 
reflects the “molecular clock” hypothesis that a roughly constant rate of evolution-
ary change can be used to extrapolate the elapsed time since two genes first diverged 
(that is, the coalescence time), assumes that the effects of mutation and selection are 
constant across sequence lineages. Therefore, it does not account for possible differ-
ence among organisms or species in the rates of DNA repair or the possible functional 
conservation of specific regions in a sequence. (In the case of nucleotide sequences, 
the molecular clock hypothesis in its most basic form also discounts the difference in 
acceptance rates between silent mutations that do not alter the meaning of a given co-
don and other mutations that result in a different amino acid being incorporated into 
the protein). More statistically accurate methods allow the evolutionary rate on each 
branch of the phylogenetic tree to vary, thus producing better estimates of coalescence 
times for genes. 

Progressive multiple alignment techniques produce a phylogenetic tree by necessity 
because they incorporate sequences into the growing alignment in order of related-
ness. Other techniques that assemble multiple sequence alignments and phylogenetic 
trees score and sort trees first and calculate a multiple sequence alignment from the 
highest-scoring tree. Commonly used methods of phylogenetic tree construction are 
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mainly heuristic because the problem of selecting the optimal tree, like the problem of 
selecting the optimal multiple sequence alignment, is NP-hard. 

Assessment of Significance

Sequence alignments are useful in bioinformatics for identifying sequence similarity, 
producing phylogenetic trees, and developing homology models of protein structures. 
However, the biological relevance of sequence alignments is not always clear. Align-
ments are often assumed to reflect a degree of evolutionary change between sequences 
descended from a common ancestor; however, it is formally possible that convergent 
evolution can occur to produce apparent similarity between proteins that are evolu-
tionarily unrelated but perform similar functions and have similar structures. 

In database searches such as BLAST, statistical methods can determine the likelihood 
of a particular alignment between sequences or sequence regions arising by chance 
given the size and composition of the database being searched. These values can vary 
significantly depending on the search space. In particular, the likelihood of finding a 
given alignment by chance increases if the database consists only of sequences from the 
same organism as the query sequence. Repetitive sequences in the database or query 
can also distort both the search results and the assessment of statistical significance; 
BLAST automatically filters such repetitive sequences in the query to avoid apparent 
hits that are statistical artifacts. 

Methods of statistical significance estimation for gapped sequence alignments are 
available in the literature. 

Assessment of Credibility

Statistical significance indicates the probability that an alignment of a given quality 
could arise by chance, but does not indicate how much superior a given alignment is to 
alternative alignments of the same sequences. Measures of alignment credibility indi-
cate the extent to which the best scoring alignments for a given pair of sequences are 
substantially similar. Methods of alignment credibility estimation for gapped sequence 
alignments are available in the literature. 

Scoring Functions

The choice of a scoring function that reflects biological or statistical observations about 
known sequences is important to producing good alignments. Protein sequences are 
frequently aligned using substitution matrices that reflect the probabilities of given 
character-to-character substitutions. A series of matrices called PAM matrices (Point 
Accepted Mutation matrices, originally defined by Margaret Dayhoff and sometimes re-
ferred to as “Dayhoff matrices”) explicitly encode evolutionary approximations regard-
ing the rates and probabilities of particular amino acid mutations. Another common 
series of scoring matrices, known as BLOSUM (Blocks Substitution Matrix), encodes 
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empirically derived substitution probabilities. Variants of both types of matrices are 
used to detect sequences with differing levels of divergence, thus allowing users of 
BLAST or FASTA to restrict searches to more closely related matches or expand to de-
tect more divergent sequences. Gap penalties account for the introduction of a gap - on 
the evolutionary model, an insertion or deletion mutation - in both nucleotide and pro-
tein sequences, and therefore the penalty values should be proportional to the expected 
rate of such mutations. The quality of the alignments produced therefore depends on 
the quality of the scoring function. 

It can be very useful and instructive to try the same alignment several times with differ-
ent choices for scoring matrix and gap penalty values and compare the results. Regions 
where the solution is weak or non-unique can often be identified by observing which 
regions of the alignment are robust to variations in alignment parameters. 

Other Biological Uses

Sequenced RNA, such as expressed sequence tags and full-length mRNAs, can be 
aligned to a sequenced genome to find where there are genes and get information 
about alternative splicing and RNA editing. Sequence alignment is also a part of ge-
nome assembly, where sequences are aligned to find overlap so that contigs (long 
stretches of sequence) can be formed. Another use is SNP analysis, where sequences 
from different individuals are aligned to find single basepairs that are often different 
in a population. 

Non-biological Uses

The methods used for biological sequence alignment have also found applications in 
other fields, most notably in natural language processing and in social sciences, where 
the Needleman-Wunsch algorithm is usually referred to as Optimal matching. Tech-
niques that generate the set of elements from which words will be selected in natu-
ral-language generation algorithms have borrowed multiple sequence alignment 
techniques from bioinformatics to produce linguistic versions of computer-generated 
mathematical proofs. In the field of historical and comparative linguistics, sequence 
alignment has been used to partially automate the comparative method by which lin-
guists traditionally reconstruct languages. Business and marketing research has also 
applied multiple sequence alignment techniques in analyzing series of purchases over 
time.

Alignment-free Sequence Analysis

In bioinformatics, alignment-free sequence analysis approaches to molecular sequence 
and structure data provide alternatives over alignment-based approaches. 
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The emergence and need for the analysis of different types of data generated through 
biological research has given rise to the field of bioinformatics. Molecular sequence 
and structure data of DNA, RNA, and proteins, gene expression profiles or microarray 
data, metabolic pathway data are some of the major types of data being analysed in 
bioinformatics. Among them sequence data is increasing at the exponential rate due to 
advent of next-generation sequencing technologies. Since the origin of bioinformatics, 
sequence analysis has remained the major area of research with wide range of appli-
cations in database searching, genome annotation, comparative genomics, molecular 
phylogeny and gene prediction. The pioneering approaches for sequence analysis were 
based on sequence alignment either global or local, pairwise or multiple sequence align-
ment. Alignment-based approaches generally give excellent results when the sequences 
under study are closely related and can be reliably aligned, but when the sequences 
are divergent, a reliable alignment cannot be obtained and hence the applications of 
sequence alignment are limited. Another limitation of alignment-based approaches is 
their computational complexity and are time-consuming and thus, are limited when 
dealing with large-scale sequence data. The advent of next-generation sequencing tech-
nologies has resulted in generation of voluminous sequencing data. The size of this 
sequence data poses challenges on alignment-based algorithms in their assembly, an-
notation and comparative studies. 

Alignment-free Methods

Alignment-free methods can broadly be classified into five categories: a) methods based 
on k-mer/word frequency, b) methods based on the length of common substrings, c) 
methods based on the number of (spaced) word matches, d) methods based on mi-
cro-alignments, e) methods based on information theory and f) methods based on 
graphical representation. Alignment-free approaches have been used in sequence sim-
ilarity searches, clustering and classification of sequences, and more recently in phy-
logenetics. Such molecular phylogeny analyses employing alignment-free approaches 
are said to be part of next-generation phylogenomics. The AFproject is an international 
collaboration to benchmark and compare software tools for alignment-free sequence 
comparison. 

Methods based on k-mer/word Frequency

The popular methods based on k-mer/word frequencies include feature frequency pro-
file (FFP), Composition vector (CV), Return time distribution (RTD), frequency chaos 
game representation (FCGR) and Spaced Words. 

Feature Frequency Profile

The methodology involved in FFP based method starts by calculating the count of each 
possible k-mer (possible number of k-mers for nucleotide sequence: 4k, while that 
for protein sequence: 20k) in sequences. Each k-mer count in each sequence is then 
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normalized by dividing it by total of all k-mers’ count in that sequence. This leads to 
conversion of each sequence into its feature frequency profile. The pair wise distance 
between two sequences is then calculated Jensen–Shannon (JS) divergence between 
their respective FFPs. The distance matrix thus obtained can be used to construct phy-
logenetic tree using clustering algorithms like neighbor-joining, UPGMA etc. 

Composition Vector

In this method frequency of appearance of each possible k-mer in a given sequence is 
calculated. The next characteristic step of this method is the subtraction of random 
background of these frequencies using Markov model to reduce the influence of ran-
dom neutral mutations to highlight the role of selective evolution. The normalized fre-
quencies are put a fixed order to form the composition vector (CV) of a given sequence. 
Cosine distance function is then used to compute pairwise distance between CVs of 
sequences. The distance matrix thus obtained can be used to construct phylogenetic 
tree using clustering algorithms like neighbor-joining, UPGMA etc. This method can be 
extended through resort to efficient pattern matching algorithms to include in the com-
putation of the composition vectors: (i) all k-mers for any value of k, (ii) all substrings 
of any length up to an arbitrarily set maximum k value, (iii) all maximal substrings, 
where a substring is maximal if extending it by any character would cause a decrease in 
its occurrence count. 

Return Time Distribution

The RTD based method does not calculate the count of k-mers in sequences, instead 
it computes the time required for the reappearance of k-mers. The time refers to the 
number of residues in successive appearance of particular k-mer. Thus the occurrence 
of each k-mer in a sequence is calculated in the form of RTD, which is then summarised 
using two statistical parameters mean (μ) and standard deviation (σ). Thus each se-
quence is represented in the form of numeric vector of size 2·4k containing μ and σ of 4k 
RTDs. The pair wise distance between sequences is calculated using Euclidean distance 
measure. The distance matrix thus obtained can be used to construct phylogenetic tree 
using clustering algorithms like neighbor-joining, UPGMA etc. 

Frequency Chaos Game Representation

The FCGR methods have evolved from chaos game representation (CGR) technique, 
which provides scale independent representation for genomic sequences. The CGRs 
can be divided by grid lines where each grid square denotes the occurrence of oli-
gonucleotides of a specific length in the sequence. Such representation of CGRs is 
termed as Frequency Chaos Game Representation (FCGR). This leads to representa-
tion of each sequence into FCGR. The pair wise distance between FCGRs of sequences 
can be calculated using the Pearson distance, the Hamming distance or the Euclidean 
distance. 
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Spaced-word Frequencies

While most alignment-free algorithms compare the word-composition of sequenc-
es, Spaced Words uses a pattern of care and don’t care positions. The occurrence of 
a spaced word in a sequence is then defined by the characters at the match positions 
only, while the characters at the don’t care positions are ignored. Instead of comparing 
the frequencies of contiguous words in the input sequences, this approach compares 
the frequencies of the spaced words according to the pre-defined pattern. Note that the 
pre-defined pattern can be selected by analysis of the Variance of the number of match-
es, the probability of the first occurrence on several models, or the Pearson correlation 
coefficient between the expected word frequency and the true alignment distance. 

Methods based on Length of Common Substrings

The methods in this category employ the similarity and differences of substrings in a pair of 
sequences. These algorithms were mostly used for string processing in computer science. 

Average Common Substring

In this approach, for a chosen pair of sequences (A and B of lengths n and m respective-
ly), longest substring starting at some position is identified in one sequence (A) which 
exactly matches in the other sequence (B) at any position. In this way, lengths of lon-
gest substrings starting at different positions in sequence A and having exact matches 
at some positions in sequence B are calculated. All these lengths are averaged to derive 
a measure. Intuitively, larger the ( , )L A B , the more similar the two sequences are. 
To account for the differences in the length of sequences, ( , )L A B is normalized [i.e. 

( , ) / log( )L A B m ]. This gives the similarity measure between the sequences. 

In order to derive a distance measure, the inverse of similarity measure is taken and a 
correction term is subtracted from it to assure that ( , )d A A will be zero. 

log log( , ) .
( , ) ( , )

m nd A B
L A B L A A
   

= −   
   

This measure ( , )d A B is not symmetric, so one has to compute ( , ) ( , ) ( ( , ) ( , )) / 2s sd A B d B A d A B d B A= = +

( , ) ( , ) ( ( , ) ( , )) / 2s sd A B d B A d A B d B A= = + , which gives final ACS measure between the two strings (A 
and B). The subsequence/substring search can be efficiently performed by using suffix 
trees. 

k-mismatch Average Common Substring Approach

This approach is a generalization of the ACS approach. To define the distance between 
two DNA or protein sequences, kmacs estimates for each position i of the first sequence 

____________________ WORLD TECHNOLOGIES ____________________



WT

113CHAPTER 3    Bioinformatics

the longest substring starting at i and matching a substring of the second sequence with 
up to k mismatches. It defines the average of these values as a measure of similarity be-
tween the sequences and turns this into a symmetric distance measure. Kmacs does not 
compute exact k-mismatch substrings, since this would be computational too costly, 
but approximates such substrings. 

Mutation Distances

This approach is closely related to the ACS, which calculates the number of substitu-
tions per site between two DNA sequences using the shortest absent substring (termed 
as shustring). 

Length Distribution of k-mismatch Common Substrings

This approach uses the program kmacs to calculate longest common substrings with up 
to k mismatches for a pair of DNA sequences. The phylogenetic distance between the 
sequences can then be estimated from a local maximum in the length distribution of 
the k-mismatch common substrings. 

Methods based on the Number of Spaced-word Matches

2 2andSD D∗

These approachese are variants of the D2statistics that counts the number of k-mer 
matches between two sequences. They improve the simple D2 statistics by taking the 
background distribution of the compared sequences into account. 

MASH

This is an extremely fast method that uses the MinHash bottom sketch strategy for es-
timating the Jaccard index of the multi-sets of k -mers of two input sequences. That is, 
it estimates the ratio of k -mer matches to the total number of k -mers of the sequences. 
This can be used, in turn, to estimate the evolutionary distances between the compared 
sequences, measured as the number of substitutions per sequence position since the 
sequences evolved from their last common anchestor. 

Slope-Tree

This approach calculates a distance value between two protein sequences based on the 
decay of the number of k -mer matches if k increases. 

Slope-SpaM

This method calculates the number N k of k -mer or spaced-word matches (SpaM) for 
different values for the word length or number of match positions k in the underlying 

____________________ WORLD TECHNOLOGIES ____________________



WT

114 Principles of Computational Biology

pattern, respectively. The slope of an affine-linear function F that depends on N k is 
calculated to estimate the Jukes-Cantor distance between the input sequences. 

Skmer

Skmer calculates distances between species from unassembled sequencing reads. Sim-
ilar to MASH, it uses the Jaccard index on the sets of k -mers from the input sequences. 
In contrast to MASH, the program is still accurate for low sequencing coverage, so it 
can be used for genome skimming. 

Methods based on Micro-alignments

Strictly spoken, these methods are not alignment-free. They are using simple gap-free 
micro-alignments where sequences are required to match at certain pre-defined posi-
tions. The positions aligned at the remaining positions of the micro-alignments where 
mismatches are allowed, are then used for phylogeny inference. 

Co-phylog

This method searches for so-called structures that are defined as pairs of k-mer match-
es between two DNA sequences that are one position apart in both sequences. The two 
k-mer matches are called the context, the position between them is called the object. 
Co-phylog then defines the distance between two sequences the fraction of such struc-
tures for which the two nucleotides in the object are different. The approach can be 
applied to unassembled sequencing reads. 

ANDi

ANDi estimates phylogenetic distances between genomic sequences based on 
ungapped local alignments that are flanked by maximal exact word matches. Such 
word matches can be efficiently found using suffix arrays. The gapfree alignments 
between the exact word matches are then used to estimate phylogenetic distances 
between genome se-quences. The resulting distance estimates are accurate for up to 
around 0.6 substitu-tions per position. 

Filtered Spaced-word Matches

FSWM uses a pre-defined binary pattern P representing so-called match positions and 
don’t-care positions. For a pair of input DNA sequences, it then searches for spaced-
word matches w.r.t. P, i.e. for local gap-free alignments with matching nucleotides at 
the match positions of P and possible mismatches at the don’t-care positions. Spurious 
low-scoring spaced-word matches are discarded, evolutionary distances between the 
input sequences are estimated based on the nucleotides aligned to each other at the 
don’t-care positions of the remaining, homologous spaced-word matches. FSWM has 
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been adapted to estimate distances based on unassembled NGS reads, this version of 
the program is called Read-SpaM 

Prot-SpaM

Prot-SpaM (Proteome-based Spaced-word Matches) is an implementation of the 
FSWM algorithm for partial or whole proteome sequences. 

Multi-SpaM

Multi-SpaM (MultipleSpaced-word Matches) is an approach to genome-based phy-
logeny reconstruction that extends the FSWM idea to multiple sequence compari-
son. Given a binary pattern P of match positions and don’t-care positions, the pro-
gram searches for P-blocks, i.e. local gap-free four-way alignments with matching 
nucleotides at the match positions of P and possible mismatches at the don’t-care 
positions. Such four-way alignments are randomly sampled from a set of input ge-
nome sequences. For each P-block, an unrooted tree topology is calculated using 
RAxML. The program Quartet MaxCut is then used to calculate a supertree from 
these trees. 

Methods based on Information Theory

Information Theory has provided successful methods for alignment-free sequence 
analysis and comparison. The existing applications of information theory include glob-
al and local characterization of DNA, RNA and proteins, estimating genome entropy to 
motif and region classification. It also holds promise in gene mapping, next-generation 
sequencing analysis and metagenomics. 

Base-base Correlation

Base–base correlation (BBC) converts the genome sequence into a unique 16-dimen-
sional numeric vector using the following equation:

2
1

( )
( ) ( )·log

K
ij

ij ij
i j

P
T K P

PP=

 
=   

 
∑






The iP and jP denotes the probabilities of bases i and j in the genome. The ( )ijP  in-
dicates the probability of bases i and j at distance ℓ in the genome. The parameter K 
indicates the maximum distance between the bases i and j. The variation in the values 
of 16 parameters reflect variation in the genome content and length. 

Information Correlation and Partial Information Correlation

IC-PIC (information correlation and partial information correlation) based method 
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employs the base correlation property of DNA sequence. IC and PIC were calculated 
using following formulas, 

2 22 log ( ) log ( )i i ij ij
i ij

IC P P P P= − +∑ ∑


 

2( ) ( ( ) ( ))ij ij i jPIC P PP= −  

The final vector is obtained as follows: 

{ }0 0 0 where , 1, , ,
( )ij

ICV n
PIC

= ∈ + … +

   



which defines the range of distance between bases. 

The pairwise distance between sequences is calculated using Euclidean distance mea-
sure. The distance matrix thus obtained can be used to construct phylogenetic tree us-
ing clustering algorithms like neighbor-joining, UPGMA, etc.

Lempel-Ziv Compression

Lempel-Ziv complexity uses the relative information between the sequences. This 
complexity is measured by the number of steps required to generate a string given the 
prior knowledge of another string and a self-delimiting production process. This mea-
sure has a relation to measuring k-words in a sequence, as they can be easily used to 
generate the sequence. It is computational intensive method. Otu and Sayood (2003) 
used this method to construct five different distance measures for phylogenetic tree 
construction. 

Context Modelling Compression

In the context modelling complexity the next-symbol predictions, of one or more sta-
tistical models, are combined or competing to yield a prediction that is based on events 
recorded in the past. The algorithmic information content derived from each symbol 
prediction can be used to compute algorithmic information profiles with a time pro-
portional to the length of the sequence. The process has been applied to DNA sequence 
analysis. 

Methods based on Graphical Representation

Iterated Maps

The use of iterated maps for sequence analysis was first introduced by HJ Jefferey in 
1990 when he proposed to apply the Chaos Game to map genomic sequences into a unit 
square. That report coined the procedure as Chaos Game Representation (CGR). How-
ever, only 3 years later this approach was first dismissed as a projection of a Markov 
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transition table by N Goldman. This objection was overruled by the end of that de-
cade when the opposite was found to be the case – that CGR bijectively maps Markov 
transition is into a fractal, order-free (degree-free) representation. The realization that 
iterated maps provide a bijective map between the symbolic space and numeric space 
led to the identification of a variety of alignment-free approaches to sequence compar-
ison and characterization. A number of web apps such as https://usm.github.com, are 
available to demonstrate how to encode and compare arbitrary symbolic sequences in 
a manner that takes full advantage of modern MapReduce distribution developed for 
cloud computing. 

Comparison of Alignment based and Alignment-free Methods 

Alignment-based Methods Alignment-free Methods 

These methods assume that homologous regions are 
contiguous (with gaps).

Does not assume such contiguity of homologous 
regions. 

Computes all possible pairwise comparisons of se-
quences; hence computationally expensive.

Based on occurrences of sub-sequences; com-
position; computationally inexpensive, can be 
memory-intensive. 

Well-established approach in phylogenomics. Relatively recent and application in phyloge-
nomics is limited; needs further testing for ro-
bustness and scalability.

Requires substitution/evolutionary models. Less dependent on substitution/evolutionary 
models.

Sensitive to stochastic sequence variation, recombi-
nation, horizontal (or lateral) genetic transfer, rate 
heterogeneity and sequences of varied lengths, espe-
cially when similarity lies in the “twilight zone”.

Less sensitive to stochastic sequence variation, 
recombination, horizontal (or lateral) genetic 
transfer, rate heterogeneity and sequences of 
varied lengths.

Best practice uses inference algorithms with com-
plexity at least O(n2); less time-efficient.

Inference algorithms typically O(n2) or less; 
more time-efficient. 

Heuristic in nature; statistical significance of how 
alignment scores relate to homology is difficult to 
assess.

Exact solutions; statistical significance of the se-
quence distances (and degree of similarity) can 
be readily assessed.

Relies on dynamic programming (computationally 
expensive) to find alignment that has optimal score. 

side-steps computational expensive dynamic 
programming by indexing word counts or posi-
tions in fractal space. 

Applications of Alignment-free Methods

•	 Genomic rearrangements.

•	 Molecular phylogenetics.

•	 Metagenomics.

•	 Next generation sequence data analysis.

•	 Epigenomics.
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• Barcoding of species.

• Population genetics.

• Horizontal gene transfer.

• Sero/genotyping of viruses.

• Allergenicity prediction.

• SNP discovery.

• Recombination detection.

Gene Expression

Gene expression is the process by which information from a gene is used in the synthe-
sis of a functional gene product. These products are often proteins, but in non-protein 
coding genes such as transfer RNA (tRNA) or small nuclear RNA (snRNA) genes, the 
product is a functional RNA. 

Genes are expressed by being transcribed into RNA, and this 
transcript may then be translated into protein.

The process of gene expression is used by all known life, eukaryotes (including mul-
ticellular organisms), prokaryotes (bacteria and archaea), and utilized by viruses to 
generate the macromolecular machinery for life. 

Several steps in the gene expression process may be modulated, including the tran-
scription, RNA splicing, translation, and post-translational modification of a protein. 
Gene regulation gives the cell control over structure and function, and is the basis for 
cellular differentiation, morphogenesis and the versatility and adaptability of any or-
ganism. Gene regulation may also serve as a substrate for evolutionary change, since 
control of the timing, location, and amount of gene expression can have a profound 
effect on the functions (actions) of the gene in a cell or in a multicellular organism. 

In genetics, gene expression is the most fundamental level at which the genotype gives 
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rise to the phenotype, i.e. observable trait. The genetic code stored in DNA is “inter-
preted” by gene expression, and the properties of the expression give rise to the or-
ganism’s phenotype. Such phenotypes are often expressed by the synthesis of proteins 
that control the organism’s shape, or that act as enzymes catalysing specific metabolic 
pathways characterising the organism. Regulation of gene expression is thus critical to 
an organism’s development. 

Mechanism

Transcription

A gene is a stretch of DNA that encodes information. Genomic DNA consists of two an-
tiparallel and reverse complementary strands, each having 5’ and 3’ ends. With respect 
to a gene, the two strands may be labeled the “template strand,” which serves as a blue-
print for the production of an RNA transcript, and the “coding strand,” which includes 
the DNA version of the transcript sequence. (Perhaps surprisingly, the “coding strand” 
is not physically involved in the coding process because it is the “template strand” that 
is read during transcription). 

The process of transcription is carried out by RNA polymerase (RNAP),  
which uses DNA (black) as a template and produces RNA (blue).

The production of the RNA copy of the DNA is called transcription, and is performed in 
the nucleus by RNA polymerase, which adds one RNA nucleotide at a time to a growing 
RNA strand as per the complementarity law of the bases. This RNA is complementary 
to the template 3’ → 5’ DNA strand, which is itself complementary to the coding 5’ → 3’ 
DNA strand. Therefore, the resulting 5’ → 3’ RNA strand is identical to the coding DNA 
strand with the exception that thymines (T) are replaced with uracils (U) in the RNA. 
A coding DNA strand reading “ATG” is indirectly transcribed through the “TAC” in the 
non-coding template strand as “AUG” in the mRNA. 

In prokaryotes, transcription is carried out by a single type of RNA polymerase, which 
needs a DNA sequence called a Pribnow box as well as a sigma factor (σ factor) to start 
transcription. In eukaryotes, transcription is performed by three types of RNA poly-
merases, each of which needs a special DNA sequence called the promoter and a set of 
DNA-binding proteins—transcription factors—to initiate the process. RNA polymerase 
I is responsible for transcription of ribosomal RNA (rRNA) genes. RNA polymerase 
II (Pol II) transcribes all protein-coding genes but also some non-coding RNAs (e.g., 
snRNAs, snoRNAs or long non-coding RNAs). Pol II includes a C-terminal domain 
(CTD) that is rich in serine residues. When these residues are phosphorylated, the CTD 
binds to various protein factors that promote transcript maturation and modification. 
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RNA polymerase III transcribes 5S rRNA, transfer RNA (tRNA) genes, and some small 
non-coding RNAs (e.g., 7SK). Transcription ends when the polymerase encounters a 
sequence called the terminator. 

RNA Processing

While transcription of prokaryotic protein-coding genes creates messenger RNA 
(mRNA) that is ready for translation into protein, transcription of eukaryotic genes 
leaves a primary transcript of RNA (pre-mRNA), which first has to undergo a series of 
modifications to become a mature mRNA. 

These include 5’ capping, which is set of enzymatic reactions that add 7-methylgua-
nosine (m7G) to the 5’ end of pre-mRNA and thus protect the RNA from degradation 
by exonucleases. The m7G cap is then bound by cap binding complex heterodimer 
(CBC20/CBC80), which aids in mRNA export to cytoplasm and also protect the RNA 
from decapping. 

Another modification is 3’ cleavage and polyadenylation. They occur if polyadenyla-
tion signal sequence (5’- AAUAAA-3’) is present in pre-mRNA, which is usually between 
protein-coding sequence and terminator. The pre-mRNA is first cleaved and then a 
series of ~200 adenines (A) are added to form poly(A) tail, which protects the RNA 
from degradation. Poly(A) tail is bound by multiple poly(A)-binding proteins (PABP) 
necessary for mRNA export and translation re-initiation. 

Simple illustration of exons and introns in pre-mRNA and the formation of mature  
mRNA by splicing. The UTRs are non-coding parts of exons at the ends of the mRNA.

A very important modification of eukaryotic pre-mRNA is RNA splicing. The majori-
ty of eukaryotic pre-mRNAs consist of alternating segments called exons and introns. 
During the process of splicing, an RNA-protein catalytical complex known as spliceo-
some catalyzes two transesterification reactions, which remove an intron and release 
it in form of lariat structure, and then splice neighbouring exons together. In certain 
cases, some introns or exons can be either removed or retained in mature mRNA. This 
so-called alternative splicing creates series of different transcripts originating from a 
single gene. Because these transcripts can be potentially translated into different pro-
teins, splicing extends the complexity of eukaryotic gene expression. 

Extensive RNA processing may be an evolutionary advantage made possible by the 
nucleus of eukaryotes. In prokaryotes, transcription and translation happen together, 
whilst in eukaryotes, the nuclear membrane separates the two processes, giving time 
for RNA processing to occur. 
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Non-coding RNA Maturation

In most organisms non-coding genes (ncRNA) are transcribed as precursors that un-
dergo further processing. In the case of ribosomal RNAs (rRNA), they are often tran-
scribed as a pre-rRNA that contains one or more rRNAs. The pre-rRNA is cleaved and 
modified (2′-O-methylation and pseudouridine formation) at specific sites by approxi-
mately 150 different small nucleolus-restricted RNA species, called snoRNAs. SnoRNAs 
associate with proteins, forming snoRNPs. While snoRNA part basepair with the target 
RNA and thus position the modification at a precise site, the protein part performs the 
catalytical reaction. In eukaryotes, in particular a snoRNP called RNase, MRP cleaves 
the 45S pre-rRNA into the 28S, 5.8S, and 18S rRNAs. The rRNA and RNA processing 
factors form large aggregates called the nucleolus. 

In the case of transfer RNA (tRNA), for example, the 5’ sequence is removed by RNase 
P, whereas the 3’ end is removed by the tRNase Z enzyme and the non-templated 3’ CCA 
tail is added by a nucleotidyl transferase. In the case of micro RNA (miRNA), miRNAs 
are first transcribed as primary transcripts or pri-miRNA with a cap and poly-A tail and 
processed to short, 70-nucleotide stem-loop structures known as pre-miRNA in the cell 
nucleus by the enzymes Drosha and Pasha. After being exported, it is then processed to 
mature miRNAs in the cytoplasm by interaction with the endonuclease Dicer, which also 
initiates the formation of the RNA-induced silencing complex (RISC), composed of the 
Argonaute protein. 

Even snRNAs and snoRNAs themselves undergo series of modification before they be-
come part of functional RNP complex. This is done either in the nucleoplasm or in the 
specialized compartments called Cajal bodies. Their bases are methylated or pseudou-
ridinilated by a group of small Cajal body-specific RNAs (scaRNAs), which are struc-
turally similar to snoRNAs. 

RNA Export

In eukaryotes most mature RNA must be exported to the cytoplasm from the nucleus. 
While some RNAs function in the nucleus, many RNAs are transported through the 
nuclear pores and into the cytosol. Notably this includes all RNA types involved in pro-
tein synthesis. In some cases RNAs are additionally transported to a specific part of the 
cytoplasm, such as a synapse; they are then towed by motor proteins that bind through 
linker proteins to specific sequences (called “zipcodes”) on the RNA. 

Translation

For some RNA (non-coding RNA) the mature RNA is the final gene product. In the case 
of messenger RNA (mRNA) the RNA is an information carrier coding for the synthesis 
of one or more proteins. mRNA carrying a single protein sequence (common in eukary-
otes) is monocistronic whilst mRNA carrying multiple protein sequences (common in 
prokaryotes) is known as polycistronic. 
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During the translation, tRNA charged with amino acid enters the ribosome and aligns  
with the correct mRNA triplet. Ribosome then adds amino acid to growing protein chain.

Every mRNA consists of three parts: a 5’ untranslated region (5’UTR), a protein-coding 
region or open reading frame (ORF), and a 3’ untranslated region (3’UTR). The coding 
region carries information for protein synthesis encoded by the genetic code to form 
triplets. Each triplet of nucleotides of the coding region is called a codon and corre-
sponds to a binding site complementary to an anticodon triplet in transfer RNA. Trans-
fer RNAs with the same anticodon sequence always carry an identical type of amino 
acid. Amino acids are then chained together by the ribosome according to the order of 
triplets in the coding region. The ribosome helps transfer RNA to bind to messenger 
RNA and takes the amino acid from each transfer RNA and makes a structure-less 
protein out of it. Each mRNA molecule is translated into many protein molecules, on 
average ~2800 in mammals. 

In prokaryotes translation generally occurs at the point of transcription (co-transcrip-
tionally), often using a messenger RNA that is still in the process of being created. In 
eukaryotes translation can occur in a variety of regions of the cell depending on where 
the protein being written is supposed to be. Major locations are the cytoplasm for sol-
uble cytoplasmic proteins and the membrane of the endoplasmic reticulum for pro-
teins that are for export from the cell or insertion into a cell membrane. Proteins that 
are supposed to be expressed at the endoplasmic reticulum are recognised part-way 
through the translation process. This is governed by the signal recognition particle—a 
protein that binds to the ribosome and directs it to the endoplasmic reticulum when it 
finds a signal peptide on the growing (nascent) amino acid chain. 

Folding

Each protein exists as an unfolded polypeptide or random coil when translated from a 
sequence of mRNA into a linear chain of amino acids. This polypeptide lacks any de-
veloped three-dimensional structure (the left hand side of the neighboring figure). The 
polypeptide then folds into its characteristic and functional three-dimensional struc-
ture from a random coil. Amino acids interact with each other to produce a well-defined 
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three-dimensional structure, the folded protein (the right hand side of the figure) 
known as the native state. The resulting three-dimensional structure is determined by 
the amino acid sequence (Anfinsen’s dogma). 

Protein before (left) and after (right) folding.

The correct three-dimensional structure is essential to function, although some parts of 
functional proteins may remain unfolded. Failure to fold into the intended shape usu-
ally produces inactive proteins with different properties including toxic prions. Several 
neurodegenerative and other diseases are believed to result from the accumulation of 
misfolded proteins. Many allergies are caused by the folding of the proteins, for the 
immune system does not produce antibodies for certain protein structures. 

Enzymes called chaperones assist the newly formed protein to attain (fold into) the 
3-dimensional structure it needs to function. Similarly, RNA chaperones help RNAs 
attain their functional shapes. Assisting protein folding is one of the main roles of the 
endoplasmic reticulum in eukaryotes. 

Translocation

Secretory proteins of eukaryotes or prokaryotes must be translocated to enter the 
secretory pathway. Newly synthesized proteins are directed to the eukaryotic Sec61 
or prokaryotic SecYEG translocation channel by signal peptides. The efficiency of 
protein secretion in eukaryotes is very dependent on the signal peptide which has 
been used. 

Protein Transport

Many proteins are destined for other parts of the cell than the cytosol and a wide range 
of signalling sequences or (signal peptides) are used to direct proteins to where they are 
supposed to be. In prokaryotes this is normally a simple process due to limited com-
partmentalisation of the cell. However, in eukaryotes there is a great variety of different 
targeting processes to ensure the protein arrives at the correct organelle. 

Not all proteins remain within the cell and many are exported, for example, diges-
tive enzymes, hormones and extracellular matrix proteins. In eukaryotes the export 
pathway is well developed and the main mechanism for the export of these proteins 
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is translocation to the endoplasmic reticulum, followed by transport via the Golgi 
apparatus. 

Regulation of Gene Expression

Regulation of gene expression refers to the control of the amount and timing of appear-
ance of the functional product of a gene. Control of expression is vital to allow a cell 
to produce the gene products it needs when it needs them; in turn, this gives cells the 
flexibility to adapt to a variable environment, external signals, damage to the cell, and 
other stimuli. More generally, gene regulation gives the cell control over all structure 
and function, and is the basis for cellular differentiation, morphogenesis and the versa-
tility and adaptability of any organism. 

The patchy colours of a tortoiseshell cat are the result of different levels of  
expression of pigmentation genes in different areas of the skin.

Numerous terms are used to describe types of genes depending on how they are regu-
lated; these include: 

•	 A constitutive gene is a gene that is transcribed continually as opposed to a fac-
ultative gene, which is only transcribed when needed.

•	 A housekeeping gene is a gene that is required to maintain basic cellular func-
tion and so is typically expressed in all cell types of an organism. Examples 
include actin, GAPDH and ubiquitin. Some housekeeping genes are transcribed 
at a relatively constant rate and these genes can be used as a reference point in 
experiments to measure the expression rates of other genes.

•	 A facultative gene is a gene only transcribed when needed as opposed to a con-
stitutive gene.

•	 An inducible gene is a gene whose expression is either responsive to environ-
mental change or dependent on the position in the cell cycle.

Any step of gene expression may be modulated, from the DNA-RNA transcription step 
to post-translational modification of a protein. The stability of the final gene product, 
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whether it is RNA or protein, also contributes to the expression level of the gene—an 
unstable product results in a low expression level. In general gene expression is regu-
lated through changes in the number and type of interactions between molecules that 
collectively influence transcription of DNA and translation of RNA. 

Some simple examples of where gene expression is important are: 

•	 Control of insulin expression so it gives a signal for blood glucose regulation.

•	 X chromosome inactivation in female mammals to prevent an “overdose” of the 
genes it contains.

•	 Cyclin expression levels control progression through the eukaryotic cell cycle.

Transcriptional Regulation

When lactose is present in a prokaryote, it acts as an inducer and inactivates the  
repressor so that the genes for lactose metabolism can be transcribed.

Regulation of transcription can be broken down into three main routes of influence; ge-
netic (direct interaction of a control factor with the gene), modulation interaction of a 
control factor with the transcription machinery and epigenetic (non-sequence changes 
in DNA structure that influence transcription). 

Direct interaction with DNA is the simplest and the most direct method by which a pro-
tein changes transcription levels. Genes often have several protein binding sites around 
the coding region with the specific function of regulating transcription. There are many 
classes of regulatory DNA binding sites known as enhancers, insulators and silencers. 
The mechanisms for regulating transcription are very varied, from blocking key bind-
ing sites on the DNA for RNA polymerase to acting as an activator and promoting tran-
scription by assisting RNA polymerase binding. 

The activity of transcription factors is further modulated by intracellular signals caus-
ing protein post-translational modification including phosphorylated, acetylated, or 
glycosylated. These changes influence a transcription factor’s ability to bind, directly 
or indirectly, to promoter DNA, to recruit RNA polymerase, or to favor elongation of a 
newly synthesized RNA molecule.
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The lambda repressor transcription factor (green) binds as a dimer to major groove of  
DNA target (red and blue) and disables initiation of transcription. From PDB: 1LMB​.

The nuclear membrane in eukaryotes allows further regulation of transcription fac-
tors by the duration of their presence in the nucleus, which is regulated by reversible 
changes in their structure and by binding of other proteins. Environmental stimuli or 
endocrine signals may cause modification of regulatory proteins eliciting cascades of 
intracellular signals, which result in regulation of gene expression. 

More recently it has become apparent that there is a significant influence of non-DNA-
sequence specific effects on transcription. These effects are referred to as epigenetic 
and involve the higher order structure of DNA, non-sequence specific DNA binding 
proteins and chemical modification of DNA. In general epigenetic effects alter the ac-
cessibility of DNA to proteins and so modulate transcription. 

In eukaryotes, DNA is organized in form of nucleosomes. Note how the DNA  
(blue and green) is tightly wrapped around the protein core made of histone octamer  

(ribbon coils), restricting access to the DNA. From PDB: 1KX5​.

DNA methylation is a widespread mechanism for epigenetic influence on gene expres-
sion and is seen in bacteria and eukaryotes and has roles in heritable transcription 
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silencing and transcription regulation. In eukaryotes the structure of chromatin, con-
trolled by the histone code, regulates access to DNA with significant impacts on the 
expression of genes in euchromatin and heterochromatin areas. 

Transcriptional Regulation in Cancer

The majority of gene promoters contain a CpG island with numerous CpG sites. When 
many of a gene’s promoter CpG sites are methylated the gene becomes silenced. Col-
orectal cancers typically have 3 to 6 driver mutations and 33 to 66 hitchhiker or passen-
ger mutations. However, transcriptional silencing may be of more importance than mu-
tation in causing progression to cancer. For example, in colorectal cancers about 600 
to 800 genes are transcriptionally silenced by CpG island methylation. Transcriptional 
repression in cancer can also occur by other epigenetic mechanisms, such as altered 
expression of microRNAs. In breast cancer, transcriptional repression of BRCA1 may 
occur more frequently by over-expressed microRNA-182 than by hypermethylation of 
the BRCA1 promoter (see Low expression of BRCA1 in breast and ovarian cancers). 

Post-transcriptional Regulation

In eukaryotes, where export of RNA is required before translation is possible, nuclear 
export is thought to provide additional control over gene expression. All transport in 
and out of the nucleus is via the nuclear pore and transport is controlled by a wide 
range of importin and exportin proteins. 

Expression of a gene coding for a protein is only possible if the messenger RNA carry-
ing the code survives long enough to be translated. In a typical cell, an RNA molecule is 
only stable if specifically protected from degradation. RNA degradation has particular 
importance in regulation of expression in eukaryotic cells where mRNA has to travel 
significant distances before being translated. In eukaryotes, RNA is stabilised by cer-
tain post-transcriptional modifications, particularly the 5’ cap and poly-adenylated tail. 

Intentional degradation of mRNA is used not just as a defence mechanism from foreign 
RNA (normally from viruses) but also as a route of mRNA destabilisation. If an mRNA 
molecule has a complementary sequence to a small interfering RNA then it is targeted 
for destruction via the RNA interference pathway. 

Three Prime Untranslated Regions and MicroRNAs

Three prime untranslated regions (3’UTRs) of messenger RNAs (mRNAs) often con-
tain regulatory sequences that post-transcriptionally influence gene expression. Such 
3’-UTRs often contain both binding sites for microRNAs (miRNAs) as well as for reg-
ulatory proteins. By binding to specific sites within the 3’-UTR, miRNAs can decrease 
gene expression of various mRNAs by either inhibiting translation or directly causing 
degradation of the transcript. The 3’-UTR also may have silencer regions that bind re-
pressor proteins that inhibit the expression of a mRNA. 
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The 3’-UTR often contains microRNA response elements (MREs). MREs are sequences 
to which miRNAs bind. These are prevalent motifs within 3’-UTRs. Among all regula-
tory motifs within the 3’-UTRs (e.g. including silencer regions), MREs make up about 
half of the motifs. 

As of 2014, the miRBase web site, an archive of miRNA sequences and annotations, 
listed 28,645 entries in 233 biologic species. Of these, 1,881 miRNAs were in annotated 
human miRNA loci. miRNAs were predicted to have an average of about four hundred 
target mRNAs (affecting expression of several hundred genes). Friedman et al. esti-
mate that >45,000 miRNA target sites within human mRNA 3’UTRs are conserved 
above background levels, and >60% of human protein-coding genes have been under 
selective pressure to maintain pairing to miRNAs. 

Direct experiments show that a single miRNA can reduce the stability of hundreds of 
unique mRNAs. Other experiments show that a single miRNA may repress the produc-
tion of hundreds of proteins, but that this repression often is relatively mild (less than 
2-fold). 

The effects of miRNA dysregulation of gene expression seem to be important in cancer. 
For instance, in gastrointestinal cancers, nine miRNAs have been identified as epige-
netically altered and effective in down regulating DNA repair enzymes. 

The effects of miRNA dysregulation of gene expression also seem to be important in 
neuropsychiatric disorders, such as schizophrenia, bipolar disorder, major depression, 
Parkinson’s disease, Alzheimer’s disease and autism spectrum disorders. 

Translational Regulation

Neomycin is an example of a small molecule that reduces expression of all  
protein genes inevitably leading to cell death; it thus acts as an antibiotic.

Direct regulation of translation is less prevalent than control of transcription or 
mRNA stability but is occasionally used. Inhibition of protein translation is a major 
target for toxins and antibiotics, so they can kill a cell by overriding its normal gene 
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expression control. Protein synthesis inhibitors include the antibiotic neomycin and 
the toxin ricin. 

Post-translational Modifications

Post-translational modifications (PTMs) are covalent modifications to proteins. Like 
RNA splicing, they help to significantly diversify the proteome. These modifications are 
usually catalyzed by enzymes. Additionally, processes like covalent additions to amino 
acid side chain residues can often be reversed by other enzymes. However, some, like 
the proteolytic cleavage of the protein backbone, are irreversible. 

PTMs play many important roles in the cell. For example, phosphorylation is pri-
marily involved in activating and deactivating proteins and in signaling pathways. 
PTMs are involved in transcriptional regulation: an important function of acetylation 
and methylation is histone tail modification, which alters how accessible DNA is for 
transcription. They can also be seen in the immune system, where glycosylation plays 
a key role. One type of PTM can initiate another type of PTM, as can be seen in how 
ubiquitination tags proteins for degradation through proteolysis. Proteolysis, other 
than being involved in breaking down proteins, is also important in activating and 
deactivating them, and in regulating biological processes such as DNA transcription 
and cell death. 

Measurement

Measuring gene expression is an important part of many life sciences, as the ability to 
quantify the level at which a particular gene is expressed within a cell, tissue or organ-
ism can provide a lot of valuable information. For example, measuring gene expression 
can: 

•	 Identify viral infection of a cell (viral protein expression).

•	 Determine an individual’s susceptibility to cancer (oncoge ne expression).

•	 Find if a bacterium is resistant to penicillin (beta-lactamase expression).

Similarly, the analysis of the location of protein expression is a powerful tool, and this 
can be done on an organismal or cellular scale. Investigation of localization is partic-
ularly important for the study of development in multicellular organisms and as an 
indicator of protein function in single cells. Ideally, measurement of expression is done 
by detecting the final gene product (for many genes, this is the protein); however, it is 
often easier to detect one of the precursors, typically mRNA and to infer gene-expres-
sion levels from these measurements. 

mRNA Quantification

Levels of mRNA can be quantitatively measured by northern blotting, which provides 
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size and sequence information about the mRNA molecules. A sample of RNA is sep-
arated on an agarose gel and hybridized to a radioactively labeled RNA probe that is 
complementary to the target sequence. The radiolabeled RNA is then detected by an 
autoradiograph. Because the use of radioactive reagents makes the procedure time 
consuming and potentially dangerous, alternative labeling and detection methods, 
such as digoxigenin and biotin chemistries, have been developed. Perceived disad-
vantages of Northern blotting are that large quantities of RNA are required and that 
quantification may not be completely accurate, as it involves measuring band strength 
in an image of a gel. On the other hand, the additional mRNA size information from 
the Northern blot allows the discrimination of alternately spliced transcripts. 

Another approach for measuring mRNA abundance is RT-qPCR. In this technique, 
reverse transcription is followed by quantitative PCR. Reverse transcription first 
generates a DNA template f rom the mRNA; this single-stranded template is called 
cDNA. The cDNA template is then amplified in the quantitative step, during which the 
fluorescence emitted by labeled hybridization probes or intercalating dyes changes 
as the DNA amplification process progresses. With a carefully constructed standard 
curve, qPCR can produce an absolute measurement of the number of copies of origi-
nal mRNA, typically in units of copies per nanolitre of homogenized tissue or copies 
per cell. qPCR is very sensitive (detection of a single mRNA molecule is theoretically 
possible), but can be expensive depending on the type of reporter used; fluorescently 
labeled oligonucleotide probes are more expensive than non-specific intercalating flu-
orescent dyes. 

For expression profiling, or high-throughput analysis of many genes within a sam-
ple, quantitative PCR may be performed for hundreds of genes simultaneously in 
the case of low-density arrays. A second approach is the hybridization microarray. 
A single array or “chip” may contain probes to determine transcript levels for every 
known gene in the genome of one or more organisms. Alternatively, “tag based” 
technologies like Serial analysis of gene expression (SAGE) and RNA-Seq, which 
can provide a relative measure of the cellular concentration of different mRNAs, 
can be used. An advantage of tag-based methods is the “open architecture”, allowing 
for the exact measurement of any transcript, with a known or unknown sequence. 
Next-generation sequencing (NGS) such as RNA-Seq is another approach, produc-
ing vast quantities of sequence data that can be matched to a reference genome. Al-
though NGS is comparatively time-consuming, expensive, and resource-intensive, it 
can identify single-nucleotide polymorphisms, splice-variants, and novel genes, and 
can also be used to profile expression in organisms for which little or no sequence 
information is available. 

Protein Quantification

For genes encoding proteins, the expression level can be directly assessed by a number 
of methods with some clear analogies to the techniques for mRNA quantification. 
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The most commonly used method is to perform a Western blot against the pro-
tein  of  interest—this gives information on the size of the protein in addition to 
its identity. A sample (often cellular lysate) is separated on a polyacrylamide gel, 
transferred to a membrane and then probed with an antibody to the protein of 
interest. The antibody can either be conjugated to a fluorophore or to horserad-
ish peroxidase for imaging and quantification. The gel-based nature of this assay 
makes quantification less accurate, but it has the advantage of being able to identify 
later modifications to the protein, for example proteolysis or ubiquitination, from 
changes in size. 

mRNA-protein Correlation

Quantification of protein and mRNA permits a correlation of the two levels. The ques-
tion of how well protein levels correlate with their corresponding transcript levels is 
highly debated and depends on multiple factors. Regulation on each step of gene ex-
pression can impact the correlation, as shown for regulation of translation or protein 
stability. Post-translational factors, such as protein transport in highly polar cells, can 
influence the measured mRNA-protein correlation as well. 

Localisation

Analysis of expression is not limited to quantification; localisation can also be deter-
mined. mRNA can be detected with a suitably labelled complementary mRNA strand 
and protein can be detected via labelled antibodies. The probed sample is then ob-
served by microscopy to identify where the mRNA or protein is. 

In situ-hybridization of Drosophila embryos at different developmental stages  
for the mRNA responsible for the expression of hunchback. High intensity of  

blue color marks places with high hunchback mRNA quantity.
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The three-dimensional structure of green fluorescent protein. The residues  
in the centre of the “barrel” are responsible for production of green light after  

exposing to higher energetic blue light. From PDB: 1EMA​.

By replacing the gene with a new version fused to a green fluorescent protein (or simi-
lar) marker, expression may be directly quantified in live cells. This is done by imaging 
using a fluorescence microscope. It is very difficult to clone a GFP-fused protein into its 
native location in the genome without affecting expression levels so this method often 
cannot be used to measure endogenous gene expression. It is, however, widely used to 
measure the expression of a gene artificially introduced into the cell, for example via an 
expression vector. It is important to note that by fusing a target protein to a fluorescent 
reporter the protein’s behavior, including its cellular localization and expression level, 
can be significantly changed. 

The enzyme-linked immunosorbent assay works by using antibodies immobilised on a 
microtiter plate to capture proteins of interest from samples added to the well. Using 
a detection antibody conjugated to an enzyme or fluorophore the quantity of bound 
protein can be accurately measured by fluorometric or colourimetric detection. The 
detection process is very similar to that of a Western blot, but by avoiding the gel steps 
more accurate quantification can be achieved. 

Expression System

An expression system is a system specifically designed for the production of a gene 
product of choice. This is normally a protein although may also be RNA, such as tRNA 
or a ribozyme. An expression system consists of a gene, normally encoded by DNA, and 
the molecular machinery required to transcribe the DNA into mRNA and translate the 
mRNA into protein using the reagents provided. In the broadest sense this includes ev-
ery living cell but the term is more normally used to refer to expression as a laboratory 
tool. An expression system is therefore often artificial in some manner. Expression sys-
tems are, however, a fundamentally natural process. Viruses are an excellent example 
where they replicate by using the host cell as an expression system for the viral proteins 
and genome. 
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Tet-ON inducible shRNA system.

Inducible Expression

Doxycycline is also used in “Tet-on” and “Tet-off” tetracycline controlled transcription-
al activation to regulate transgene expression in organisms and cell cultures. 

In Nature

In addition to these biological tools, certain naturally observed configurations of DNA 
(genes, promoters, enhancers, repressors) and the associated machinery itself are re-
ferred to as an expression system. This term is normally used in the case where a gene 
or set of genes is switched on under well defined conditions, for example, the simple 
repressor switch expression system in Lambda phage and the lac operator system in 
bacteria. Several natural expression systems are directly used or modified and used for 
artificial expression systems such as the Tet-on and Tet-off expression system. 

Gene Networks

Genes have sometimes been regarded as nodes in a network, with inputs being proteins 
such as transcription factors, and outputs being the level of gene expression. The node 
itself performs a function, and the operation of these functions have been interpreted as 
performing a kind of information processing within cells and determines cellular behavior. 

Gene networks can also be constructed without formulating an explicit causal model. 
This is often the case when assembling networks from large expression data sets. Co-
variation and correlation of expression is computed across a large sample of cases and 
measurements (often transcriptome or proteome data). The source of variation can 
be either experimental or natural (observational). There are several ways to construct 
gene expression networks, but one common approach is to compute a matrix of all 
pair-wise correlations of expression across conditions, time points, or individuals and 
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convert the matrix (after thresholding at some cut-off value) into a graphical represen-
tation in which nodes represent genes, transcripts, or proteins and edges connecting 
these nodes represent the strength of association. 

Techniques and Tools

The following experimental techniques are used to measure gene expression and are 
listed in roughly chronological order, starting with the older, more established technol-
ogies. They are divided into two groups based on their degree of multiplexity. 

• Low-to-mid-plex techniques:

◦ Reporter gene.

◦ Northern blot.

◦ Western blot.

◦ Fluorescent in situ hybridization.

◦ Reverse transcription PCR.

• Higher-plex techniques:

◦ SAGE.

◦ DNA microarray.

◦ Tiling array.

◦ RNA-Seq.

Protein Expression

Proteins are synthesized and regulated depending upon the functional need in the cell. 
The blueprints for proteins are stored in DNA and decoded by highly regulated tran-
scriptional processes to produce messenger RNA (mRNA). The message coded by an 
mRNA is then translated into a protein. Transcription is the transfer of information 
from DNA to mRNA, and translation is the synthesis of protein based on a sequence 
specified by mRNA.

Simple diagram of transcription and translation. This describes the general flow of information 
from DNA base-pair sequence (gene) to amino acid polypeptide sequence (protein).

____________________ WORLD TECHNOLOGIES ____________________



WT

135CHAPTER 3    Bioinformatics

In prokaryotes, the process of transcription and translation occur simultaneously. The 
translation of mRNA starts even before a mature mRNA transcript is fully synthesized. 
This simultaneous transcription and translation of a gene is termed coupled transcrip-
tion and translation. In eukaryotes, the processes are spatially separated and occur 
sequentially with transcription happening in the nucleus and translation, or protein 
synthesis, occurring in the cytoplasm.

Comparison of transcription and translation in prokaryotes vs. eukaryotes.

Transcription and Translation

Transcription occurs in three steps in both prokaryotes and eukaryotes: initiation, 
elongation and termination. Transcription begins when the double-stranded DNA is 
unwound to allow the binding of RNA polymerase. Once transcription is initiated, RNA 
polymerase is released from the DNA. Transcription is regulated at various levels by 
activators and repressors and also by chromatin structure in eukaryotes. In prokary-
otes, no special modification of mRNA is required and translation of the message starts 
even before the transcription is complete. In eukaryotes, however, mRNA is further 
processed to remove introns (splicing), addition of a cap at the 5' end and multiple ade-
nines at the mRNA 3' end to generate a polyA tail. The modified mRNA is then exported 
to the cytoplasm where it is translated.

Translation or protein synthesis is a multi-step process that requires macromolecules 
like ribosomes, transfer RNAs (tRNA), mRNA and protein factors as well as small mol-
ecules like amino acids, ATP, GTP and other cofactors. There are specific protein fac-
tors for each step of translation. The overall process is similar in both prokaryotes and 
eukaryotes, although particular differences exist.

During initiation, the small subunit of the ribosome bound to initiator t-RNA scans 
the mRNA starting at the 5' end to identify and bind the initiation codon (AUG). The 
large subunit of the ribosome joins the small ribosomal subunit to generate the initi-
ation complex at the initiation codon. Protein factors as well as sequences in mRNA 
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are involved in the recognition of the initiation codon and formation of the initiation 
complex. During elongation, tRNAs bind to their designated amino acids (known as 
tRNA charging) and shuttle them to the ribosome where they are polymerized to form 
a peptide. The sequence of amino acids added to the growing peptide is dependent on 
the mRNA sequence of the transcript. Finally, the nascent polypeptide is released in 
the termination step when the ribosome reaches the termination codon. At this point, 
the ribosome is released from the mRNA and is ready to initiate another round of 
translation.

Post-translational Modification

After translation, polypeptides are modified in various ways to complete their struc-
ture, designate their location or regulate their activity within the cell. Post-translational 
modifications (PTMs) are various additions or alterations to the chemical structure and 
are critical features of the overall cell biology.

Types of post-translational modifications include:

•	 Polypeptide folding into a globular protein with the help of chaperone proteins 
to arrive at the lowest energy state.

•	 Modifications of the amino acids present, such as removal of the first methi-
onine residue.

•	 Disulfide bridge formation or reduction.

•	 Protein modifications that facilitate binding functions:

◦	 Glycosylation.

◦	 Prenylation of proteins for membrane localization.

◦	 Acetylation of histones to modify DNA–histone interactions.

•	 Addition of functional groups that regulate protein activity:

◦	 Phosphorylation.

◦	 Nitrosylation.

◦	 GTP binding.

Mammalian Protein Expression

Mammalian expression systems can be used to produce mammalian proteins that have 
the most native structure and activity due to its physiologically relevant environment. 
This results in high levels of post-translational processing and functional activity. Mam-
malian expression systems are the preferred system for the expression of mammalian 
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proteins and can be used for the production of antibodies, complex proteins and pro-
teins for use in functional cell-based assays. However, these benefits are coupled with 
more demanding culture conditions.

Mammalian expression systems can be used to produce proteins transiently or through 
stable cell lines, where the expression construct is integrated into the host genome. 
While stable cell lines can be used over several experiments, transient production can 
generate large amounts of protein in one to two weeks. These transient, high-yield 
mammalian expression systems utilize suspension cultures and can produce gram-per-
liter yields. Furthermore, these proteins have more native folding and post-translation-
al modifications, such as glycosylation, as compared to other expression systems. In the 
example that follows, 3 different mammalian expression systems were used to express 
recombinant proteins. 

Recombinant protein yield.

The Gibco FreeStyle CHO, Expi293 and ExpiCHO Expression Systems were used 
to transiently expresses human IgG, rabbit IgG and EPO (erythropoietin) using the 
pcDNA 3.4 expression vector. The Max Titer protocol was used for ExpiCHO and 
proteins were harvested at day 10–12. For FreeStyleCHO and Expi293, the proteins 
were harvested at day 6 or 7. All proteins were quantitated by ForteBio Octet or ELI-
SA. Use of ExpiCHO results in higher protein titers as compared to FreeStyle CHO 
and Expi293.

Insect Protein Expression

Insect cells can be used for high level protein expression with modifications similar to 
mammalian systems. There are several systems that can be used to produce recombi-
nant baculovirus, which can then be utilized to express the protein of interest in insect 
cells. These systems can be easily scaled up and adapted to high-density suspension 
culture for large-scale expression of protein that is more functionally similar to native 
mammalian protein. Though yields can be up to 500 mg/L, recombinant baculovirus 
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production can be time consuming and culture conditions more challenging than pro-
karyotic systems.

Baculovirus Expression System Protocol Summary.

The Invitrogen BaculoDirect Baculovirus Expression System utilizes Invitrogen Gate-
way technology for cloning. After a 1-hour recombinase reaction and transfection in 
insect cells, baculovirus containing the gene of interest is produced. A quick expression 
test can then be performed before amplifying the viral stock and scaling up expression. 
Use of this system allows for baculovirus expression in insect cells.

Bacterial Protein Expression

Bacterial protein expression systems are popular because bacteria are easy to culture, 
grow fast and produce high yields of recombinant protein. However, multi-domain eu-
karyotic proteins expressed in bacteria often are non-functional because the cells are 
not equipped to accomplish the required post-translational modifications or molecular 
folding. Also, many proteins become insoluble as inclusion bodies that are very difficult 
to recover without harsh denaturants and subsequent cumbersome protein-refolding 
procedures. In the example that follows, a bacterial cell-based system was used to ex-
press 8 different recombinant proteins. 
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Protein Expression in Bacterial Cells. 

Gateway cloning was used to clone 8 human proteins into the Invitrogen Champion 
pET300/NT-DEST vector. BL21(DE3) E. coli were utilized to express positive clones in 
either LB + IPTG (1), ready-to-use Invitrogen MagicMedia medium (2), or MagicMedia 
medium prepared from powder (3). Samples were lysed and analyzed on a Coomassie 
blue dye–stained Invitrogen NuPAGE 4-12% Bis-Tris Protein Gel. M = Invitrogen See-
Blue Protein Standard. Use of MagicMedia E. coli medium results in higher protein 
yield across different samples.

Cell-free Protein Expression

Cell-free protein expression is the in vitro synthesis of a protein using translation-com-
patible extracts of whole cells. In principle, whole cell extracts contain all the macro-
molecules and components needed for transcription, translation and even post-trans-
lational modification. These components include RNA polymerase, regulatory protein 
factors, transcription factors, ribosomes and tRNA. When supplemented with cofac-
tors, nucleotides and the specific gene template, these extracts can synthesize proteins 
of interest in a few hours.

Although not sustainable for large scale production, cell-free, or in vitro translation 
(IVT) protein expression systems, have several advantages over traditional in vivo 
systems. Cell-free expression allows for fast synthesis of recombinant proteins with-
out the hassle of cell culture. Cell-free systems enable protein labeling with modified 
amino acids, as well as expression of proteins that undergo rapid proteolytic deg-
radation by intracellular proteases. Also, with the cell-free method, it is simpler to 
express many different proteins simultaneously (e.g., testing protein mutations by 
expression on a small scale from many different recombinant DNA templates). In 
this representative experiment, an IVT system was used to express human caspase 
3 protein. 
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Caspase-3 Expression in a Human IVT System. 

Caspase-3 was expressed using the Thermo Scientific 1-Step Human High-Yield IVT 
Kit (Human IVT) and in E. coli (Recombinant). Active caspase-3 activity was assayed 
using equal amounts of protein. Caspase-3 protein expressed using the IVT system was 
more active as compared to a protein expressed in bacteria.

Chemical Protein Synthesis

Chemical synthesis of proteins can be used for applications requiring proteins labeled 
with unnatural amino acids, proteins labeled at specific sites or proteins that are toxic 
to biological expression systems. Chemical synthesis produces highly pure protein but 
works well only for small proteins and peptides. Yield is often quite low with chemical 
synthesis, and the method is prohibitively expensive for longer polypeptides. 

Gene Prediction

In computational biology, gene prediction or gene finding refers to the process of iden-
tifying the regions of genomic DNA that encode genes. This includes protein-coding 
genes as well as RNA genes, but may also include prediction of other functional ele-
ments such as regulatory regions. Gene finding is one of the first and most important 
steps in understanding the genome of a species once it has been sequenced. 

Structure of a eukaryotic gene.
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In its earliest days, “gene finding” was based on painstaking experimentation on liv-
ing cells and organisms. Statistical analysis of the rates of homologous recombination 
of several different genes could determine their order on a certain chromosome, and 
information from many such experiments could be combined to create a genetic map 
specifying the rough location of known genes relative to each other. Today, with com-
prehensive genome sequence and powerful computational resources at the disposal of 
the research community, gene finding has been redefined as a largely computational 
problem. 

Determining that a sequence is functional should be distinguished from determining 
the function of the gene or its product. Predicting the function of a gene and confirm-
ing that the gene prediction is accurate still demands in vivo experimentation through 
gene knockout and other assays, although frontiers of bioinformatics research are 
making it increasingly possible to predict the function of a gene based on its sequence 
alone. 

Gene prediction is one of the key steps in genome annotation, following sequence as-
sembly, the filtering of non-coding regions and repeat masking. 

Gene prediction is closely related to the so-called ‘target search problem’ inves-
tigating how DNA-binding proteins (transcription factors) locate specific binding 
sites within the genome. Many aspects of structural gene prediction are based on 
current understanding of underlying biochemical processes in the cell such as gene 
transcription, translation, protein–protein interactions and regulation processes, 
which are subject of active research in the various omics fields such as transcrip-
tomics, proteomics, metabolomics, and more generally structural and functional 
genomics. 

Empirical Methods

In empirical (similarity, homology or evidence-based) gene finding systems, the target 
genome is searched for sequences that are similar to extrinsic evidence in the form of 
the known expressed sequence tags, messenger RNA (mRNA), protein products, and 
homologous or orthologous sequences. Given an mRNA sequence, it is trivial to derive 
a unique genomic DNA sequence from which it had to have been transcribed. Given a 
protein sequence, a family of possible coding DNA sequences can be derived by reverse 
translation of the genetic code. Once candidate DNA sequences have been determined, 
it is a relatively straightforward algorithmic problem to efficiently search a target ge-
nome for matches, complete or partial, and exact or inexact. Given a sequence, local 
alignment algorithms such as BLAST, FASTA and Smith-Waterman look for regions of 
similarity between the target sequence and possible candidate matches. Matches can 
be complete or partial, and exact or inexact. The success of this approach is limited by 
the contents and accuracy of the sequence database. 

A high degree of similarity to a known messenger RNA or protein product is strong 
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evidence that a region of a target genome is a protein-coding gene. However, to ap-
ply this approach systemically requires extensive sequencing of mRNA and protein 
products. Not only is this expensive, but in complex organisms, only a subset of all 
genes in the organism’s genome are expressed at any given time, meaning that ex-
trinsic evidence for many genes is not readily accessible in any single cell culture. 
Thus, to collect extrinsic evidence for most or all of the genes in a complex organ-
ism requires the study of many hundreds or thousands of cell types, which presents 
further difficulties. For example, some human genes may be expressed only during 
development as an embryo or fetus, which might be difficult to study for ethical 
reasons. 

Despite these difficulties, extensive transcript and protein sequence databases have 
been generated for human as well as other important model organisms in biology, such 
as mice and yeast. For example, the RefSeq database contains transcript and protein 
sequence from many different species, and the Ensembl system comprehensively maps 
this evidence to human and several other genomes. It is, however, likely that these 
databases are both incomplete and contain small but significant amounts of erroneous 
data. 

New high-throughput transcriptome sequencing technologies such as RNA-Seq and 
ChIP-sequencing open opportunities for incorporating additional extrinsic evidence 
into gene prediction and validation, and allow structurally rich and more accurate 
alternative to previous methods of measuring gene expression such as expressed se-
quence tag or DNA microarray. 

Major challenges involved in gene prediction involve dealing with sequencing errors 
in raw DNA data, dependence on the quality of the sequence assembly, handling short 
reads, frameshift mutations, overlapping genes and incomplete genes. 

In prokaryotes it’s essential to consider horizontal gene transfer when searching for 
gene sequence homology. An additional important factor underused in current gene 
detection tools is existence of gene clusters—operons( is a functioning unit of DNA con-
taining a cluster of genes under the control of a single promoter) in both prokaryotes 
and eukaryotes. Most popular gene detectors treat each gene in isolation, independent 
of others, which is not biologically accurate. 

Ab Initio Methods

Ab Initio gene prediction is an intrinsic method based on gene content and signal de-
tection. Because of the inherent expense and difficulty in obtaining extrinsic evidence 
for many genes, it is also necessary to resort to ab initio gene finding, in which the 
genomic DNA sequence alone is systematically searched for certain tell-tale signs of 
protein-coding genes. These signs can be broadly categorized as either signals, specific 
sequences that indicate the presence of a gene nearby, or content, statistical properties 
of the protein-coding sequence itself. Ab initio gene finding might be more accurately 
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characterized as gene prediction, since extrinsic evidence is generally required to con-
clusively establish that a putative gene is functional. 

This picture shows how Open Reading Frames (ORFs) can be used for gene prediction. 
Gene prediction is the process of determining where a coding gene might be in a ge-
nomic sequence. Functional proteins must begin with a Start codon (where DNA tran-
scription begins), and end with a Stop codon (where transcription ends). By looking at 
where those codons might fall in a DNA sequence, one can see where a functional pro-
tein might be located. This is important in gene prediction because it can reveal where 
coding genes are in an entire genomic sequence. In this example, a functional protein 
can be discovered using ORF3 because it begins with a Start codon, has multiple amino 
acids, and then ends with a Stop codon, all within the same reading frame.

In the genomes of prokaryotes, genes have specific and relatively well-understood pro-
moter sequences (signals), such as the Pribnow box and transcription factor binding sites, 
which are easy to systematically identify. Also, the sequence coding for a protein occurs 
as one contiguous open reading frame (ORF), which is typically many hundred or thou-
sands of base pairs long. The statistics of stop codons are such that even finding an open 
reading frame of this length is a fairly informative sign. (Since 3 of the 64 possible codons 
in the genetic code are stop codons, one would expect a stop codon approximately every 
20–25 codons, or 60–75 base pairs, in a random sequence.) Furthermore, protein-cod-
ing DNA has certain periodicities and other statistical properties that are easy to detect 
in sequence of this length. These characteristics make prokaryotic gene finding relatively 
straightforward, and well-designed systems are able to achieve high levels of accuracy. 

Ab initio gene finding in eukaryotes, especially complex organisms like humans, is con-
siderably more challenging for several reasons. First, the promoter and other regulatory 
signals in these genomes are more complex and less well-understood than in prokary-
otes, making them more difficult to reliably recognize. Two classic examples of signals 
identified by eukaryotic gene finders are CpG islands and binding sites for a poly(A) tail. 
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Second, splicing mechanisms employed by eukaryotic cells mean that a particular pro-
tein-coding sequence in the genome is divided into several parts (exons), separated by 
non-coding sequences (introns). (Splice sites are themselves another signal that eu-
karyotic gene finders are often designed to identify.) A typical protein-coding gene in 
humans might be divided into a dozen exons, each less than two hundred base pairs 
in length, and some as short as twenty to thirty. It is therefore much more difficult 
to detect periodicities and other known content properties of protein-coding DNA in 
eukaryotes. 

Advanced gene finders for both prokaryotic and eukaryotic genomes typically use com-
plex probabilistic models, such as hidden Markov models (HMMs) to combine infor-
mation from a variety of different signal and content measurements. The GLIMMER 
system is a widely used and highly accurate gene finder for prokaryotes. GeneMark 
is another popular approach. Eukaryotic ab initio gene finders, by comparison, have 
achieved only limited success; notable examples are the GENSCAN and geneid pro-
grams. The SNAP gene finder is HMM-based like Genscan, and attempts to be more 
adaptable to different organisms, addressing problems related to using a gene finder 
on a genome sequence that it was not trained against. A few recent approaches like 
mSplicer, CONTRAST, or mGene also use machine learning techniques like support 
vector machines for successful gene prediction. They build a discriminative model us-
ing hidden Markov support vector machines or conditional random fields to learn an 
accurate gene prediction scoring function. 

Ab Initio methods have been benchmarked, with some approaching 100% sensitivi-
ty, however as the sensitivity increases, accuracy suffers as a result of increased false 
positives. 

Other Signals

Among the derived signals used for prediction are statistics resulting from the sub-se-
quence statistics like k-mer statistics, Isochore (genetics) or Compositional domain GC 
composition/uniformity/entropy, sequence and frame length, Intron/Exon/Donor/Ac-
ceptor/Promoter and Ribosomal binding site vocabulary, Fractal dimension, Fourier 
transform of a pseudo-number-coded DNA, Z-curve parameters and certain run features. 

It has been suggested that signals other than those directly detectable in sequences may 
improve gene prediction. For example, the role of secondary structure in the identifica-
tion of regulatory motifs has been reported. In addition, it has been suggested that RNA 
secondary structure prediction helps splice site prediction. 

Neural Networks

Artificial neural networks are computational models that excel at machine learning and 
pattern recognition. Neural networks must be trained with example data before being 
able to generalise for experimental data, and tested against benchmark data. Neural 
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networks are able to come up with approximate solutions to problems that are hard to 
solve algorithmically, provided there is sufficient training data. When applied to gene 
prediction, neural networks can be used alongside other ab initio methods to predict or 
identify biological features such as splice sites. One approach involves using a sliding 
window, which traverses the sequence data in an overlapping manner. The output at 
each position is a score based on whether the network thinks the window contains a 
donor splice site or an acceptor splice site. Larger windows offer more accuracy but also 
require more computational power. A neural network is an example of a signal sensor 
as its goal is to identify a functional site in the genome. 

Combined Approaches

Programs such as Maker combine extrinsic and ab initio approaches by mapping pro-
tein and EST data to the genome to validate ab initio predictions. Augustus, which may 
be used as part of the Maker pipeline, can also incorporate hints in the form of EST 
alignments or protein profiles to increase the accuracy of the gene prediction. 

Comparative Genomics Approaches

As the entire genomes of many different species are sequenced, a promising direction 
in current research on gene finding is a comparative genomics approach. 

This is based on the principle that the forces of natural selection cause genes and other 
functional elements to undergo mutation at a slower rate than the rest of the genome, 
since mutations in functional elements are more likely to negatively impact the organ-
ism than mutations elsewhere. Genes can thus be detected by comparing the genomes 
of related species to detect this evolutionary pressure for conservation. This approach 
was first applied to the mouse and human genomes, using programs such as SLAM, 
SGP and TWINSCAN/N-SCAN and CONTRAST. 

Multiple Informants

TWINSCAN examined only human-mouse synteny to look for orthologous genes. 
Programs such as N-SCAN and CONTRAST allowed the incorporation of alignments 
from multiple organisms, or in the case of N-SCAN, a single alternate organism from 
the target. The use of multiple informants can lead to significant improvements in 
accuracy. 

CONTRAST is composed of two elements. The first is a smaller classifier, identifying 
donor splice sites and acceptor splice sites as well as start and stop codons. The second 
element involves constructing a full model using machine learning. Breaking the prob-
lem into two means that smaller targeted data sets can be used to train the classifiers, 
and that classifier can operate independently and be trained with smaller windows. 
The full model can use the independent classifier, and not have to waste computational 
time or model complexity re-classifying intron-exon boundaries. The paper in which 
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CONTRAST is introduced proposes that their method (and those of TWINSCAN, etc.) 
be classified as de novo gene assembly, using alternate genomes, and identifying it as 
distinct from ab initio, which uses a target ‘informant’ genomes. 

Comparative gene finding can also be used to project high quality annotations from one 
genome to another. Notable examples include Projector, GeneWise, GeneMapper and 
GeMoMa. Such techniques now play a central role in the annotation of all genomes. 

Pseudogene Prediction

Pseudogenes are close relatives of genes, sharing very high sequence homology, but 
being unable to code for the same protein product. Whilst once relegated as byprod-
ucts of gene sequencing, increasingly, as regulatory roles are being uncovered, they are 
becoming predictive targets in their own right. Pseudogene prediction utilises existing 
sequence similarity and ab initio methods, whilst adding additional filtering and meth-
ods of identifying pseudogene characteristics. 

Sequence similarity methods can be customised for pseudogene prediction using ad-
ditional filtering to find candidate pseudogenes. This could use disablement detection, 
which looks for nonsense or frameshift mutations that would truncate or collapse an 
otherwise functional coding sequence. Additionally, translating DNA into proteins se-
quences can be more effective than just straight DNA homology. 

Content sensors can be filtered according to the differences in statistical properties be-
tween pseudogenes and genes, such as a reduced count of CpG islands in pseudogenes, or 
the differences in G-C content between pseudogenes and their neighbours. Signal sensors 
also can be honed to pseudogenes, looking for the absence of introns or polyadenine tails. 

Metagenomic Gene Prediction

Metagenomics is the study of genetic material recovered from the environment, result-
ing in sequence information from a pool of organisms. Predicting genes is useful for 
comparative metagenomics. 

Metagenomics tools also fall into the basic categories of using either sequence similar-
ity approaches (MEGAN4) and ab initio techniques (GLIMMER-MG). 

Glimmer-MG is an extension to GLIMMER that relies mostly on an ab initio ap-
proach for gene finding and by using training sets from related organisms. The pre-
diction strategy is augmented by classification and clustering gene data sets prior to 
applying ab initio gene prediction methods. The data is clustered by species. This 
classification method leverages techniques from metagenomic phylogenetic classi-
fication. An example of software for this purpose is, Phymm, which uses interpolat-
ed markov models—and PhymmBL, which integrates BLAST into the classification 
routines. 
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MEGAN4 uses a sequence similarity approach, using local alignment against databases 
of known sequences, but also attempts to classify using additional information on func-
tional roles, biological pathways and enzymes. As in single organism gene prediction, 
sequence similarity approaches are limited by the size of the database. 

FragGeneScan and MetaGeneAnnotator are popular gene prediction programs based 
on Hidden Markov model. These predictors account for sequencing errors, partial 
genes and work for short reads. 

Another fast and accurate tool for gene prediction in metagenomes is MetaGeneMark. 
This tool is used by the DOE Joint Genome Institute to annotate IMG/M, the largest 
metagenome collection to date. 

BLAST	Biotechnology

In bioinformatics, BLAST (basic local alignment search tool) is an algorithm for com-
paring primary biological sequence information, such as the amino-acid sequences of 
proteins or the nucleotides of DNA and RNA sequences. A BLAST search enables a 
researcher to compare a subject protein or nucleotide sequence (called a query) with a 
library or database of sequences, and identify library sequences that resemble the que-
ry sequence above a certain threshold. 

Different types of BLASTs are available according to the query sequences. For example, 
following the discovery of a previously unknown gene in the mouse, a scientist will typ-
ically perform a BLAST search of the human genome to see if humans carry a similar 
gene; BLAST will identify sequences in the human genome that resemble the mouse 
gene based on similarity of sequence. 

BLAST is one of the most widely used bioinformatics programs for sequence search-
ing. It addresses a fundamental problem in bioinformatics research. The heuristic al-
gorithm it uses is much faster than other approaches, such as calculating an optimal 
alignment. This emphasis on speed is vital to making the algorithm practical on the 
huge genome databases currently available, although subsequent algorithms can be 
even faster. 

Before BLAST, FASTA was developed by David J. Lipman and William R. Pearson in 1985. 

Before fast algorithms such as BLAST and FASTA were developed, searching databas-
es for protein or nucleic sequences was very time consuming because a full alignment 
procedure (e.g., the Smith–Waterman algorithm) was used. 

BLAST came from the 1990 stochastic model of Samuel Karlin and Stephen Altschul 
They “proposed a method for estimating similarities between the known DNA sequence 
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of one organism with that of another,” and their work has been described as “the sta-
tistical foundation for BLAST". Subsequently, Altschul, along with Warren Gish, Webb 
Miller, Eugene Myers, and David J. Lipman at the National Institutes of Health de-
signed the BLAST algorithm, which was published in the Journal of Molecular Biology 
in 1990 and cited over 75,000 times.

While BLAST is faster than any Smith-Waterman implementation for most cases, it cannot 
“guarantee the optimal alignments of the query and database sequences” as Smith-Water-
man algorithm does. The optimality of Smith-Waterman “ensured the best performance 
on accuracy and the most precise results” at the expense of time and computer power. 

BLAST is more time-efficient than FASTA by searching only for the more significant 
patterns in the sequences, yet with comparative sensitivity. This could be further real-
ized by understanding the algorithm of BLAST introduced below. 

Examples of other questions that researchers use BLAST to answer are: 

•	 Which bacterial species have a protein that is related in lineage to a certain pro-
tein with known amino-acid sequence.

•	 What other genes encode proteins that exhibit structures or motifs such as ones 
that have just been determined.

BLAST is also often used as part of other algorithms that require approximate sequence 
matching. 

BLAST is available on the web on the NCBI website. Alternative implementations in-
clude AB-BLAST (formerly known as WU-BLAST), FSA-BLAST (last updated in 2006), 
and ScalaBLAST. 

Input

Input sequences (in FASTA or Genbank format) and weight matrix. 

Output

BLAST output can be delivered in a variety of formats. These formats include HTML, 
plain text, and XML formatting. For NCBI’s web-page, the default format for output is 
HTML. When performing a BLAST on NCBI, the results are given in a graphical format 
showing the hits found, a table showing sequence identifiers for the hits with scoring 
related data, as well as alignments for the sequence of interest and the hits received 
with corresponding BLAST scores for these. The easiest to read and most informative 
of these is probably the table. 

If one is attempting to search for a proprietary sequence or simply one that is unavail-
able in databases available to the general public through sources such as NCBI, there is a 
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BLAST program available for download to any computer, at no cost. This can be found at 
BLAST+ executables. There are also commercial programs available for purchase. Data-
bases can be found from the NCBI site, as well as from Index of BLAST databases (FTP). 

Process

Using a heuristic method, BLAST finds similar sequences, by locating short matches be-
tween the two sequences. This process of finding similar sequences is called seeding. It 
is after this first match that BLAST begins to make local alignments. While attempting to 
find similarity in sequences, sets of common letters, known as words, are very important. 
For example, suppose that the sequence contains the following stretch of letters, GLK-
FA. If a BLAST was being conducted under normal conditions, the word size would be 3 
letters. In this case, using the given stretch of letters, the searched words would be GLK, 
LKF, KFA. The heuristic algorithm of BLAST locates all common three-letter words be-
tween the sequence of interest and the hit sequence or sequences from the database. This 
result will then be used to build an alignment. After making words for the sequence of in-
terest, the rest of the words are also assembled. These words must satisfy a requirement 
of having a score of at least the threshold T, when compared by using a scoring matrix. 

One commonly used scoring matrix for BLAST searches is BLOSUM62, although the 
optimal scoring matrix depends on sequence similarity. Once both words and neigh-
borhood words are assembled and compiled, they are compared to the sequences in 
the database in order to find matches. The threshold score T determines whether or 
not a particular word will be included in the alignment. Once seeding has been con-
ducted, the alignment which is only 3 residues long, is extended in both directions 
by the algorithm used by BLAST. Each extension impacts the score of the alignment 
by either increasing or decreasing it. If this score is higher than a pre-determined T, 
the alignment will be included in the results given by BLAST. However, if this score is 
lower than this pre-determined T, the alignment will cease to extend, preventing the 
areas of poor alignment from being included in the BLAST results. Note that increas-
ing the T score limits the amount of space available to search, decreasing the number 
of neighborhood words, while at the same time speeding up the process of BLAST 

Algorithm

To run the software, BLAST requires a query sequence to search for, and a sequence to 
search against (also called the target sequence) or a sequence database containing mul-
tiple such sequences. BLAST will find sub-sequences in the database which are similar 
to sub sequences in the query. In typical usage, the query sequence is much smaller 
than the database, e.g., the query may be one thousand nucleotides while the database 
is several billion nucleotides. 

The main idea of BLAST is that there are often High-scoring Segment Pairs (HSP) con-
tained in a statistically significant alignment. BLAST searches for high scoring sequence 
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alignments between the query sequence and the existing sequences in the database 
using a heuristic approach that approximates the Smith-Waterman algorithm. Howev-
er, the exhaustive Smith-Waterman approach is too slow for searching large genomic 
databases such as GenBank. Therefore, the BLAST algorithm uses a heuristic approach 
that is less accurate than the Smith-Waterman algorithm but over 50 times faster. The 
speed and relatively good accuracy of BLAST are among the key technical innovations 
of the BLAST programs. 

An overview of the BLAST algorithm (a protein to protein search) is as follows: 

1.	 Remove low-complexity region or sequence repeats in the query sequence: 
“Low-complexity region” means a region of a sequence composed of few kinds 
of elements. These regions might give high scores that confuse the program to 
find the actual significant sequences in the database, so they should be filtered 
out. The regions will be marked with an X (protein sequences) or N (nucleic 
acid sequences) and then be ignored by the BLAST program. To filter out the 
low-complexity regions, the SEG program is used for protein sequences and 
the program DUST is used for DNA sequences. On the other hand, the program 
XNU is used to mask off the tandem repeats in protein sequences.

2.	 Make a k-letter word list of the query sequence: Take k=3 for example, we list 
the words of length 3 in the query protein sequence (k is usually 11 for a DNA 
sequence) “sequentially”, until the last letter of the query sequence is included. 
The method is illustrated in figure.

The method to establish the k-letter query word list.

3.	 List the possible matching words: This step is one of the main differences between 
BLAST and FASTA. FASTA cares about all of the common words in the database 
and query sequences that are listed in step 2; however, BLAST only cares about 
the high-scoring words. The scores are created by comparing the word in the list in 
step 2 with all the 3-letter words. By using the scoring matrix (substitution matrix) 
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to score the comparison of each residue pair, there are 20^3 possible match scores 
for a 3-letter word. For example, the score obtained by comparing PQG with PEG 
and PQA is respectively 15 and 12 with the BLOSUM62 weighting scheme. For 
DNA words, a match is scored as +5 and a mismatch as -4, or as +2 and -3. After 
that, a neighborhood word score threshold T is used to reduce the number of pos-
sible matching words. The words whose scores are greater than the threshold T 
will remain in the possible matching words list, while those with lower scores will 
be discarded. For example, PEG is kept, but PQA is abandoned when T is 13.

4.	 Organize the remaining high-scoring words into an efficient search tree: This allows 
the program to rapidly compare the high-scoring words to the database sequences.

5.	 Repeat step 3 to 4 for each k-letter word in the query sequence.

6.	 Scan the database sequences for exact matches with the remaining high-scoring 
words: The BLAST program scans the database sequences for the remaining 
high-scoring word, such as PEG, of each position. If an exact match is found, 
this match is used to seed a possible un-gapped alignment between the query 
and database sequences.

7.	 Extend the exact matches to high-scoring segment pair: The original version of 
BLAST stretches a longer alignment between the query and the database sequence 
in the left and right directions, from the position where the exact match occurred. 
The extension does not stop until the accumulated total score of the HSP begins to 
decrease. A simplified example is presented in figure. To save more time, a newer 
version of BLAST, called BLAST2 or gapped BLAST, has been developed. BLAST2 
adopts a lower neighborhood word score threshold to maintain the same level 
of sensitivity for detecting sequence similarity. Therefore, the possible matching 
words list in step 3 becomes longer. Next, the exact matched regions, within dis-
tance A from each other on the same diagonal in figure, will be joined as a longer 
new region. Finally, the new regions are then extended by the same method as in 
the original version of BLAST, and the HSPs’ (High-scoring segment pair) scores 
of the extended regions are then created by using a substitution matrix as before.

The process to extend the exact match. Adapted from Biological Sequence  
Analysis I, Current Topics in Genome Analysis.
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The positions of the exact matches.

8.	 List all of the HSPs in the database whose score is high enough to be consid-
ered:  We list the HSPs whose scores are greater than the empirically deter-
mined cutoff score S. By examining the distribution of the alignment scores 
modeled by comparing random sequences, a cutoff score S can be determined 
such that its value is large enough to guarantee the significance of the remain-
ing HSPs.

9.	 Evaluate the significance of the HSP score: BLAST next assesses the statistical 
significance of each HSP score by exploiting the Gumbel extreme value distri-
bution (EVD). (It is proved that the distribution of Smith-Waterman local align-
ment scores between two random sequences follows the Gumbel EVD. For local 
alignments containing gaps it is not proved.). In accordance with the Gumbel 
EVD, the probability p of observing a score S equal to or greater than x is given 
by the equation:

	 ( ) ( )( )1 exp xp S x e λ µ− −≥ = − −

where, 	 ( )log Km n
µ

λ
′ ′

=

The statistical parameters λ and K are estimated by fitting the distribution of 
the un-gapped local alignment scores, of the query sequence and a lot of shuf-
fled versions (Global or local shuffling) of a database sequence, to the Gumbel 
extreme value distribution. Note that λ and K depend upon the substitution 
matrix, gap penalties, and sequence composition (the letter frequencies). m′
and n′ are the effective lengths of the query and database sequences, respec-
tively. The original sequence length is shortened to the effective length to com-
pensate for the edge effect (an alignment start near the end of one of the query 
or database sequence is likely not to have enough sequence to build an optimal 
alignment). They can be calculated as:

	
ln Kmnm m

H
′ ≈ −
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ln Kmnn n

H
′ ≈ −

where His the average expected score per aligned pair of residues in an align-
ment of two random sequences. Altschul and Gish gave the typical values,

0.318K 13,0.λ = =  and H 0.40= , for un-gapped local alignment using BLO-
SUM62 as the substitution matrix. Using the typical values for assessing the sig-
nificance is called the lookup table method; it is not accurate. The expect score E 
of a database match is the number of times that an unrelated database sequence 
would obtain a score S higher than x by chance. The expectation E obtained in a 
search for a database of D sequences is given by:

	 ( )1 p s x DE e− >≈ −

Furthermore, when 1,0.p < , E could be approximated by the Poisson distribu-
tion as:

	 E pD≈

This expectation or expect value “E” (often called an E score or E-value or e-val-
ue) assessing the significance of the HSP score for un-gapped local alignment is 
reported in the BLAST results. The calculation shown here is modified if indi-
vidual HSPs are combined, such as when producing gapped alignments, due to 
the variation of the statistical parameters.

10.	Make two or more HSP regions into a longer alignment: Sometimes, 
we find  two or more HSP regions in one database sequence that can be 
made into a longer alignment. This provides additional evidence of the rela-
tion between the query and database sequence. There are two methods, the 
Poisson method and the sum-of-scores method, to compare the significance 
of the newly combined HSP regions. Suppose that there are two combined 
HSP regions with the pairs of scores (65, 40) and (52, 45), respectively. The 
Poisson method gives more significance to the set with the maximal lower 
score (45>40). However, the sum-of-scores method prefers the first set, be-
cause 65+40 (105) is greater than 52+45(97). The original BLAST uses the 
Poisson method; gapped BLAST and the WU-BLAST uses the sum-of scores 
method.

11.	 Show the gapped Smith-Waterman local alignments of the query and each of 
the matched database sequences: The original BLAST only generates un-gapped 
alignments including the initially found HSPs individually, even when there is 
more than one HSP found in one database sequence. BLAST2 produces a single 
alignment with gaps that can include all of the initially found HSP regions. Note 
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that the computation of the score and its corresponding E-value involves use of 
adequate gap penalties.

12.	 Report every match whose expect score is lower than a threshold parameter E.

Parallel BLAST

Parallel BLAST versions of split databases are implemented using MPI and Pthreads, 
and have been ported to various platforms including Windows, Linux, Solaris, Mac OS 
X, and AIX. Popular approaches to parallelize BLAST include query distribution, hash 
table segmentation, computation parallelization, and database segmentation (parti-
tion). Databases are split into equal sized pieces and stored locally on each node. Each 
query is run on all nodes in parallel and the resultant BLAST output files from all nodes 
merged to yield the final output. Specific implementations include MPIblast, ScalaB-
LAST, DCBLAST and so on. 

Program

The BLAST program can either be downloaded and run as a command-line utility 
“blastall” or accessed for free over the web. The BLAST web server, hosted by the NCBI, 
allows anyone with a web browser to perform similarity searches against constant-
ly updated databases of proteins and DNA that include most of the newly sequenced 
organisms. 

The BLAST program is based on an open-source format, giving everyone access to it 
and enabling them to have the ability to change the program code. This has led to the 
creation of several BLAST “spin-offs”. 

There are now a handful of different BLAST programs available, which can be used 
depending on what one is attempting to do and what they are working with. These dif-
ferent programs vary in query sequence input, the database being searched, and what 
is being compared. These programs and their details are listed below: 

BLAST is actually a family of programs (all included in the blastall executable). These 
include: 

1.	 Nucleotide-nucleotide BLAST (blastn): This program, given a DNA query, returns 
the most similar DNA sequences from the DNA database that the user specifies.

2.	 Protein-protein BLAST (blastp): This program, given a protein query, returns 
the most similar protein sequences from the protein database that the user 
specifies.

3.	 Position-Specific Iterative BLAST (PSI-BLAST) (blastpgp): This program is 
used to find distant relatives of a protein. First, a list of all closely related pro-
teins is created. These proteins are combined into a general “profile” sequence, 
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which summarises significant features present in these sequences. A query 
against the protein database is then run using this profile, and a larger group 
of proteins is found. This larger group is used to construct another profile, and 
the process is repeated. By including related proteins in the search, PSI-BLAST 
is much more sensitive in picking up distant evolutionary relationships than a 
standard protein-protein BLAST.

4.	 Nucleotide 6-frame translation-protein (blastx): This program compares the 
six-frame conceptual translation products of a nucleotide query sequence (both 
strands) against a protein sequence database.

5.	 Nucleotide 6-frame translation-nucleotide 6-frame translation (tblastx): This 
program is the slowest of the BLAST family. It translates the query nucleotide 
sequence in all six possible frames and compares it against the six-frame trans-
lations of a nucleotide sequence database. The purpose of tblastx is to find very 
distant relationships between nucleotide sequences.

6.	 Protein-nucleotide 6-frame translation (tblastn): This program compares a pro-
tein query against the all six reading frames of a nucleotide sequence database.

7.	 Large numbers of query sequences (megablast): When comparing large num-
bers of input sequences via the command-line BLAST, “megablast” is much fast-
er than running BLAST multiple times. It concatenates many input sequences 
together to form a large sequence before searching the BLAST database, then 
post-analyzes the search results to glean individual alignments and statistical 
values.

Of these programs, BLASTn and BLASTp are the most commonly used because they 
use direct comparisons, and do not require translations. However, since protein se-
quences are better conserved evolutionarily than nucleotide sequences, tBLASTn, 
tBLASTx, and BLASTx, produce more reliable and accurate results when dealing with 
coding DNA. They also enable one to be able to directly see the function of the protein 
sequence, since by translating the sequence of interest before searching often gives you 
annotated protein hits. 

Alternative Versions

A version designed for comparing large genomes or DNA is BLASTZ. 

CS-BLAST (Context-Specific BLAST) is an extended version of BLAST for searching 
protein sequences that finds twice as many remotely related sequences as BLAST at the 
same speed and error rate. In CS-BLAST, the mutation probabilities between amino ac-
ids depend not only on the single amino acid, as in BLAST, but also on its local sequence 
context. Washington University produced an alternative version of NCBI BLAST, called 
WU-BLAST. The rights have since been acquired to Advanced Biocomputing, LLC. 
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In 2009, NCBI has released a new set of BLAST executables, the C++ based BLAST+, 
and has released C versions until 2.2.26. Starting with version 2.2.27 (April 2013), only 
BLAST+ executables are available. Among the changes is the replacement of the blastall 
executable with separate executables for the different BLAST programs, and changes 
in option handling. The formatdb utility (C based) has been replaced by makeblastdb 
(C++ based) and databases formatted by either one should be compatible for identical 
blast releases. The algorithms remain similar, however, the number of hits found and 
their order can vary significantly between the older and the newer version. BLAST+ 
since 

Accelerated Versions

TimeLogic offers an FPGA-accelerated implementation of the BLAST algorithm called 
Tera-BLAST that is hundreds of times faster. 

Other formerly supported versions include: 

•	 FPGA-accelerated: 

◦	 Prior to their acquisition by Qiagen, CLC bio collaborated with SciEngines 
GmbH on an FPGA accelerator they claimed will give 188x acceleration of 
BLAST.

◦	 The Mitrion-C Open Bio Project was an effort to port BLAST to run on Mi-
trion FPGAs.

•	 GPU-accelerated: 

◦	 GPU-Blast is an accelerated version of NCBI BLASTP for CUDA which is 
3x~4x faster than NCBI Blast.

◦	 CUDA-BLASTP is a version of BLASTP that is GPU-accelerated and is 
claimed to run up to 10x faster than NCBI BLAST.

◦	 G-BLASTN is an accelerated version of NCBI blastn and megablast, whose 
speedup varies from 4x to 14x (compared to the same runs with 4 CPU 
threads). Its current limitation is that the database must fit into the GPU 
memory.

•	 CPU-accelerated:

◦	 MPIBlast is a parallel implementation of NCBI BLAST using Message 
Passing Interface. By efficiently utilizing distributed computational re-
sources through database fragmentation, query segmentation, intelligent 
scheduling, and parallel I/O, mpiBLAST improves NCBI BLAST per-
formance by several orders of magnitude while scaling to hundreds of 
processors.
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◦	 CaBLAST makes search on large databases orders of magnitude faster by 
exploiting redundancy in data.

◦	 Paracel BLAST was a commercial parallel implementation of NCBI BLAST, 
supporting hundreds of processors.

◦	 QuickBLAST (kblastp) from NCBI is an implementation accelerated by 
prefiltering based on Jaccard index estimates with hashed pentameric frag-
ments. The filtering slightly reduces sensitivity, but increases performance 
by an order of magnitude. NCBI only makes the search available on their 
non-redundant (nr) protein collection, and does not offer downloads.

Alternatives to BLAST

The predecessor to BLAST, FASTA, can also be used for protein and DNA similarity 
searching. FASTA provides a similar set of programs for comparing proteins to pro-
tein and DNA databases, DNA to DNA and protein databases, and includes additional 
programs for working with unordered short peptides and DNA sequences. In addition, 
the FASTA package provides SSEARCH, a vectorized implementation of the rigorous 
Smith-Waterman algorithm. FASTA is slower than BLAST, but provides a much wider 
range of scoring matrices, making it easier to tailor a search to a specific evolutionary 
distance. 

An extremely fast but considerably less sensitive alternative to BLAST is BLAT (Blast 
Like Alignment Tool). While BLAST does a linear search, BLAT relies on k-mer index-
ing the database, and can thus often find seeds faster. Another software alternative 
similar to BLAT is PatternHunter. 

Advances in sequencing technology in the late 2000s has made searching for very sim-
ilar nucleotide matches an important problem. New alignment programs tailored for 
this use typically use BWT-indexing of the target database (typically a genome). Input 
sequences can then be mapped very quickly, and output is typically in the form of a 
BAM file. Example alignment programs are BWA, SOAP, and Bowtie. 

For protein identification, searching for known domains (for instance from Pfam) by 
matching with Hidden Markov Models is a popular alternative, such as HMMER. 

An alternative to BLAST for comparing two banks of sequences is PLAST. PLAST pro-
vides a high-performance general purpose bank to bank sequence similarity search 
tool relying on the PLAST and ORIS algorithms. Results of PLAST are very similar 
to BLAST, but PLAST is significantly faster and capable of comparing large sets of se-
quences with a small memory (i.e. RAM) footprint. 

For applications in metagenomics, where the task is to compare billions of short DNA 
reads against tens of millions of protein references, DIAMOND runs at up to 20,000 
times as fast as BLASTX, while maintaining a high level of sensitivity. 

____________________ WORLD TECHNOLOGIES ____________________



WT

158 Principles of Computational Biology

The open-source software MMseqs is an alternative to BLAST/PSI-BLAST, which im-
proves on current search tools over the full range of speed-sensitivity trade-off, achiev-
ing sensitivities better than PSI-BLAST at more than 400 times its speed. 

Optical computing approaches have been suggested as promising alternatives to the 
current electrical implementations. OptCAM is an example of such approaches and is 
shown to be faster than BLAST. 

Comparing BLAST and the Smith-Waterman Process

While both Smith-Waterman and BLAST are used to find homologous sequences by 
searching and comparing a query sequence with those in the databases, they do have 
their differences. 

Due to the fact that BLAST is based on a heuristic algorithm, the results received through 
BLAST, in terms of the hits found, may not be the best possible results, as it will not pro-
vide you with all the hits within the database. BLAST misses hard to find matches. 

A better alternative in order to find the best possible results would be to use the 
Smith-Waterman algorithm. This method varies from the BLAST method in two areas, 
accuracy and speed. The Smith-Waterman option provides better accuracy, in that it 
finds matches that BLAST cannot, because it does not miss any information. There-
fore, it is necessary for remote homology. However, when compared to BLAST, it is 
more time consuming, not to mention that it requires large amounts of computer usage 
and space. However, technologies to speed up the Smith-Waterman process have been 
found to improve the time necessary to perform a search dramatically. These technolo-
gies include FPGA chips and SIMD technology. 

In order to receive better results from BLAST, the settings can be changed from 
their default settings. However, there is no given or set way of changing these set-
tings in order to receive the best results for a given sequence. The settings avail-
able for change are E-Value, gap costs, filters, word size, and substitution matrix. 
Note, that the algorithm used for BLAST was developed from the algorithm used 
for Smith-Waterman. BLAST employs an alignment which finds “local alignments 
between sequences by finding short matches and from these initial matches (local) 
alignments are created”. 

BLAST Output Visualization

To help users interpreting BLAST results, different software is available. According to 
installation and use, analysis features and technology, here are some available tools: 

•	 NCBI BLAST service.

•	 General BLAST output interpreters, GUI-based: JAMBLAST, Blast Viewer, 
BLASTGrabber.
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•	 Integrated BLAST environments: PLAN, BlastStation-Free.

•	 BLAST output parsers: MuSeqBox, Zerg, BioParser, BLAST-Explorer.

•	 Specialized BLAST-related tools: MEGAN, BLAST2GENE, BOV, Circoletto.

Uses of BLAST

BLAST can be used for several purposes. These include identifying species, locating 
domains, establishing phylogeny, DNA mapping, and comparison. 

•	 Identifying species: With the use of BLAST, you can possibly correctly identify 
a species or find homologous species. This can be useful, for example, when you 
are working with a DNA sequence from an unknown species.

•	 Locating domains: When working with a protein sequence you can input it into 
BLAST, to locate known domains within the sequence of interest.

•	 Establishing phylogeny: Using the results received through BLAST you can 
create a phylogenetic tree using the BLAST web-page. Phylogenies based on 
BLAST alone are less reliable than other purpose-built computational phylo-
genetic methods, so should only be relied upon for “first pass” phylogenetic 
analyses.

•	 DNA mapping: When working with a known species, and looking to sequence 
a gene at an unknown location, BLAST can compare the chromosomal position 
of the sequence of interest, to relevant sequences in the database(s). NCBI has 
a “Magic-BLAST” tool built around BLAST for this purpose.

•	 Comparison: When working with genes, BLAST can locate common genes in 
two related species, and can be used to map annotations from one organism to 
another.

Role of Bioinformatics in Biotechnology

Bioinformatics is the short form for ‘Biological Informatics’. This is considered to be an 
amalgam of biological sciences and computer science and now a days, many scientists 
prefer to use the term, computational biology. This branch of science became more 
popular when human genome project came into existence. Bioinformatics merges biol-
ogy, computer science and information technology to form a single discipline. It covers 
many areas of biological science especially of modern biology viz. genomics, transcrip-
tomics, proteomics, genetics, and evolution. The ultimate goal of the field is to enable 
the discovery of new biological insights as well as to create a global perspective from 
which unifying principles in biology can be recognized.
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Bioinformatics is a fascinating subject having input of engineering art as well as of 
science. Bioinformaticians are mostly engaged in designing new algorithms, software, 
developing updated databases which all help in solving many biological problems. A 
number of bioinformatics tools, software and databases are available for better un-
derstanding of biological complexity and analyze and store the biological data. Thus, 
the bioinformatics research is used to avoid time, cost and wet lab practice. Scientists 
realized the importance of sequence databases in 1950s and that’s why, first protein 
sequence database was created in 1956 just after insulin peptides sequences became 
available. The human genome sequence data is so huge that if compiled in books, the 
data would run into 200 volumes of 1000 pages each and reading alone would require 
26 years working around the clock. This challenge of handling such a huge data can 
only be possible because of bioinformatics.

The growth of the biotechnology industry in recent years is unprecedented, and ad-
vancements in molecular modelling, disease characterization, pharmaceutical discov-
ery, clinical healthcare, forensics, and agriculture fundamentally impact economic 
and social issues worldwide. As a result, with people confidence and development of 
biotechnology, bioinformatics also reached to new heights among all the biological 
sciences. There exists a number of applications of bioinformatics for accelerating re-
search in the area of biotechnology that include automatic genome sequencing, gene 
identification, prediction of gene function, prediction of protein structure, phylogeny, 
drug designing and development, identification of organisms, vaccine designing, un-
derstanding the gene and genome complexity, understanding protein structure, func-
tionality and folding. By using bioinformatics in research, many long term projects 
are turned up so fast like genome mapping of human and other organisms. Similarly, 
it is expected that bioinformatics innovation in future will also meet the demands of 
biotechnology. 

Genomics

The study of genes and their expression is called as Genomics. This field generates a 
vast amount of data from gene sequences, their interrelation and functions. To man-
age this vast enormous data, bioinformatics plays a very important role. With the 
complete genome sequences for an increasing number of organisms, bioinformatics 
is beginning to provide both conceptua l bases and practical methods for detecting 
systemic functional behaviours of the cell and the organism. Bioinformatics plays a 
vital role in the areas of structural genomics, functional genomics and nutritional 
genomics.

Proteomics

The study of protein structure, function, and interactions produced by a particular cell, 
tissue, or organism is called as proteomics. It deals with techniques of genetics, bio-
chemistry and molecular biology. Advanced techniques in biology led to accumulate 
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enormous data of protein-protein interactions, protein profiles, protein activity pattern 
and organelles compositions. This vast data can be managed and access easily by using 
bioinformatics tools, software and databases. Till now, many algorithms in the field 
of proteomics viz. image analysis of 2D gels, peptide mass fingerprinting and peptide 
fragmentation fingerprinting have been developed.

Transcriptomics

The study of sets of all messenger RNA molecules in the cell is called as transcriptom-
ics. This can also be called as Expression Profiling where DNA microarray is used to 
determine the expression level of mRNA in a given cell population. The microarray 
technique generates vast amount of data, single run generates thousands of data val-
ue and one experiment requires hundreds of runs. Analysis of such vast data is done 
by numerous software packages. In this way, bioinformatics is used for transcriptome 
analysis where mRNA expression levels can be determined. RNA sequencing (RNAseq) 
also has been included under transcriptomics. It is carried out using next generation 
sequencing to determine the presence and quantity of RNA in a sample at a given time. 
It is used to analyze the continuously changing cellular transcriptome.

Cheminformatics

Cheminformatics (chemical informatics) focuses on storing, indexing, searching, re-
trieving, and applying information about chemical compounds. It involves organiza-
tion of chemical data in a logical form to facilitate the retrieval of chemical properties, 
structures and their relationships. Using bioinformatics, it is possible through com-
puter algorithm to identify and structurally modify a natural product, to design a com-
pound with the desired properties and to assess its therapeutic effects, theoretically. 
Cheminformatics analysis includes analyses such as similarity searching, clustering, 
QSAR modelling, virtual screening, etc.

Drug Discovery

Bioinformatics is playing an increasingly important role in nearly all aspects of drug 
discovery, drug assessment and drug development. This growing importance is not 
because bioinformatics handles large volumes of data but also in the utility of bioin-
formatics tools to predict, analyze and help interpretation in clinical and preclinical 
findings. Traditionally, pharmacology and chemistry-based drug discovery approaches 
face various difficulties in finding new drugs. The increasing pressure to generate more 
and more drugs in a short period of time with low risk has resulted in remarkable in-
terest in bioinformatics. In fact, now there is an existence of new separate field known 
as computer-aided drug design (CADD). Bioinformatics provides a huge support to 
overcome the cost and time context in various ways. It provides wide range of drug-re-
lated databases and softwares which can be used for various purposes related to drug 
designing and development process.
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Evolutionary Studies

The study of evolutionary relationship among individuals or group of organisms is de-
fined as phylogenetics. Taxonomists find the evolutionary relationship using various 
anatomical methods that takes too much time. Using Bioinformatics, phylogenetic 
trees are constructed based on the sequence alignment using various methods. Various 
algorithmic methods are developed for the construction of phylogenetic tree that are 
used depending on the various evolutionary lineages.

Crop Improvement

Sustainable agricultural production is an urgent issue in response to global climate 
change and population increase. Innovations in omics based research improve the 
plant based research. The integrated ‘omics’ strategies clarify the molecular system 
of the plant which are used to improve the plant productivity. Genomics strategy, 
especially comparative genomics helps in understanding the genes and their func-
tions, and also the biological properties of each species. Bioinformatics databas-
es are also used in designing new techniques and experiments for increased plant 
production.

Veterinary Science

Food production from livestock can meet demand of human population for food. For 
better bio-economy, there is a need of efficient animal production and reproduction. 
This is achieved with better understanding of livestock species. Current and new meth-
ods in livestock species using data from experimental or field studies with bioinformat-
ics are helping in understanding the systems genetics of complex traits and provide 
biologically meaningful and accurate predictions. Finally, almost all of the next gener-
ations-omics tools and methods that are used in other fields of biological sciences, can 
also be used in veterinary sciences.

Forensic Science

Forensic science includes the study regarding identification and relatedness of indi-
viduals. It is inherently interdisciplinary with bioinformatics as both are dependent 
on computer science and statistics. This field is based on the molecular data and many 
databases are being developed to store the DNA profiles of known offenders. This field 
is being pushed due to technological and statistical advances in microarray, Bayesian 
networks, machine learning algorithms, TFT biosensors and others. This provides the 
effective way of evidence organization and inference.

Biodefense

Biodefense includes measures to restore biosecurity to a group of organisms who 
are subjected to biological threats or infectious diseases (in context of bio-war or 
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bioterrorism). Today, bioinformatics has a limited impact on forensic and intelligence 
operations. There is a need of more algorithms in bioinformatics for biodefense so that 
the developed databases may show interoperability with each other. In order to use 
next generation genome sequencing for forensic operation, bio-threat awareness, miti-
gation and medical intelligence, there is a need for development of more computational 
applications.

Waste Cleanup

Today, the major concern all over the Globe is environmental pollutants. The main 
concern of the environmentalists is waste generated from the industries. These pol-
lutants progressively deteriorate the environment which in turn affects human health. 
There are few microorganisms that are considered to remediate the pollutants into the 
natural biogeochemical cycle. Bioremediation is the recent technology which explores 
the microbial potentiality for biodegradation. This technology can be further improved 
by using bioinformatics. Genomic and bioinformatics data provide a wealth of infor-
mation that would be greatly enhanced by structural characterisation of some protein. 
Bioinformatics provides data of microbial genomics, proteomics, systems biology, 
computational biology, and bioinformatics tools for understanding of the mechanisms 
of biodegradative pathways.

Climate Change Studies

Another Global concern is the Climate change because of loss of sea ice, accelerated sea 
level rise and longer and more intense heat waves. To solve this issue, bioinformatics 
may help by way of sequencing microbial genome which can reduce levels of carbon di-
oxide and other greenhouse gases. This plays an important role in stabilizing the global 
climate change. Not much work has been done in this area in bioinformatics domain, 
and more region-specific work must be conducted considering microbes of that region 
and their capability in CO2 reduction.

Bioenergy/Biofuels

Biofuels offer great promise in contributing to the growing global demand for alterna-
tive sources of renewable energy. Bioinformatics is important in understanding and 
analysis of biofuel producing pathways. Recent progress in algal genomics, in conjunc-
tion with other “omics” approaches, has accelerated the ability to identify metabolic 
pathways and genes that are potential targets in the development of genetically engi-
neered micro-algal strains with optimum lipid content.
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WTThe application of computational algorithms, methods, and programs to phylogenetic 
analysis is referred to as computational phylogenetics. The fundamental concepts that 
come under this field are phylogenetic tree, tree alignment, treefinder, etc. This chapter 
closely examines these key concepts related to computational phylogenetics to provide 
an extensive understanding of the subject.

Phylogenetics Analysis 4
• Phylogenetic Tree

• Tree Alignment

• Distance Matrices in Phylogeny

• Treefinder

• Bayesian Inference in Phylogeny

Computational phylogenetics is the application of computational algorithms, meth-
ods, and programs to phylogenetic analyses. The goal is to assemble a phylogenetic tree 
representing a hypothesis about the evolutionary ancestry of a set of genes, species, or 
other taxa. For example, these techniques have been used to explore the family tree of 
hominid species and the relationships between specific genes shared by many types of 
organisms. Traditional phylogenetics relies on morphological data obtained by measur-
ing and quantifying the phenotypic properties of representative organisms, while the 
more recent field of molecular phylogenetics uses nucleotide sequences encoding genes 
or amino acid sequences encoding proteins as the basis for classification. Many forms 
of molecular phylogenetics are closely related to and make extensive use of sequence 
alignment in constructing and refining phylogenetic trees, which are used to classify 
the evolutionary relationships between homologous genes represented in the genomes 
of divergent species. The phylogenetic trees constructed by computational methods are 
unlikely to perfectly reproduce the evolutionary tree that represents the historical rela-
tionships between the species being analyzed. The historical species tree may also differ 
from the historical tree of an individual homologous gene shared by those species.

Producing a phylogenetic tree requires a measure of homology among the characteris-
tics shared by the taxa being compared. In morphological studies, this requires explicit 
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decisions about which physical characteristics to measure and how to use them to en-
code distinct states corresponding to the input taxa. In molecular studies, a primary 
problem is in producing a multiple sequence alignment (MSA) between the genes or 
amino acid sequences of interest. Progressive sequence alignment methods produce a 
phylogenetic tree by necessity because they incorporate new sequences into the calcu-
lated alignment in order of genetic distance.

Types of Phylogenetic Trees and Networks

Phylogenetic trees generated by computational phylogenetics can be either rooted or 
unrooted depending on the input data and the algorithm used. A rooted tree is a direct-
ed graph that explicitly identifies a most recent common ancestor (MRCA), usually an 
imputed sequence that is not represented in the input. Genetic distance measures can 
be used to plot a tree with the input sequences as leaf nodes and their distances from 
the root proportional to their genetic distance from the hypothesized MRCA. Identi-
fication of a root usually requires the inclusion in the input data of at least one “out-
group” known to be only distantly related to the sequences of interest.

By contrast, unrooted trees plot the distances and relationships between input sequenc-
es without making assumptions regarding their descent. An unrooted tree can always 
be produced from a rooted tree, but a root cannot usually be placed on an unrooted tree 
without additional data on divergence rates, such as the assumption of the molecular 
clock hypothesis.

The set of all possible phylogenetic trees for a given group of input sequences can be 
conceptualized as a discretely defined multidimensional “tree space” through which 
search paths can be traced by optimization algorithms. Although counting the total 
number of trees for a nontrivial number of input sequences can be complicated by vari-
ations in the definition of a tree topology, it is always true that there are more rooted 
than unrooted trees for a given number of inputs and choice of parameters.

Both rooted and unrooted phylogenetic trees can be further generalized to rooted or 
unrooted phylogenetic networks, which allow for the modelling of evolutionary phe-
nomena such as hybridization or horizontal gene transfer.

Coding Characters and Defining Homology

Morphological Analysis

The basic problem in morphological phylogenetics is the assembly of a matrix repre-
senting a mapping from each of the taxa being compared to representative measure-
ments for each of the phenotypic characteristics being used as a classifier. The types 
of phenotypic data used to construct this matrix depend on the taxa being compared; 
for individual species, they may involve measurements of average body size, lengths or 
sizes of particular bones or other physical features, or even behavioral manifestations. 
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Of course, since not every possible phenotypic characteristic could be measured and 
encoded for analysis, the selection of which features to measure is a major inherent 
obstacle to the method. The decision of which traits to use as a basis for the matrix 
necessarily represents a hypothesis about which traits of a species or higher taxon are 
evolutionarily relevant. Morphological studies can be confounded by examples of con-
vergent evolution of phenotypes. A major challenge in constructing useful classes is the 
high likelihood of inter-taxon overlap in the distribution of the phenotype’s variation. 
The inclusion of extinct taxa in morphological analysis is often difficult due to absence 
of or incomplete fossil records, but has been shown to have a significant effect on the 
trees produced; in one study only the inclusion of extinct species of apes produced a 
morphologically derived tree that was consistent with that produced from molecular 
data.

Some phenotypic classifications, particularly those used when analyzing very diverse 
groups of taxa, are discrete and unambiguous; classifying organisms as possessing or 
lacking a tail, for example, is straightforward in the majority of cases, as is counting 
features such as eyes or vertebrae. However, the most appropriate representation of 
continuously varying phenotypic measurements is a controversial problem without a 
general solution. A common method is simply to sort the measurements of interest into 
two or more classes, rendering continuous observed variation as discretely classifiable 
(e.g., all examples with humerus bones longer than a given cutoff are scored as mem-
bers of one state, and all members whose humerus bones are shorter than the cutoff are 
scored as members of a second state). This results in an easily manipulated data set but 
has been criticized for poor reporting of the basis for the class definitions and for sac-
rificing information compared to methods that use a continuous weighted distribution 
of measurements.

Because morphological data is extremely labor-intensive to collect, whether from liter-
ature sources or from field observations, reuse of previously compiled data matrices is 
not uncommon, although this may propagate flaws in the original matrix into multiple 
derivative analyses.

Molecular Analysis

The problem of character coding is very different in molecular analyses, as the charac-
ters in biological sequence data are immediate and discretely defined - distinct nucle-
otides in DNA or RNA sequences and distinct amino acids in protein sequences. How-
ever, defining homology can be challenging due to the inherent difficulties of multiple 
sequence alignment. For a given gapped MSA, several rooted phylogenetic trees can be 
constructed that vary in their interpretations of which changes are “mutations” versus 
ancestral characters, and which events are insertion mutations or deletion mutations. 
For example, given only a pairwise alignment with a gap region, it is impossible to 
determine whether one sequence bears an insertion mutation or the other carries a 
deletion. The problem is magnified in MSAs with unaligned and nonoverlapping gaps. 
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In practice, sizable regions of a calculated alignment may be discounted in phylogenetic 
tree construction to avoid integrating noisy data into the tree calculation.

Distance-matrix Methods

Distance-matrix methods of phylogenetic analysis explicitly rely on a measure of “ge-
netic distance” between the sequences being classified, and therefore they require an 
MSA as an input. Distance is often defined as the fraction of mismatches at aligned po-
sitions, with gaps either ignored or counted as mismatches. Distance methods attempt 
to construct an all-to-all matrix from the sequence query set describing the distance 
between each sequence pair. From this is constructed a phylogenetic tree that plac-
es closely related sequences under the same interior node and whose branch lengths 
closely reproduce the observed distances between sequences. Distance-matrix methods 
may produce either rooted or unrooted trees, depending on the algorithm used to cal-
culate them. They are frequently used as the basis for progressive and iterative types 
of multiple sequence alignments. The main disadvantage of distance-matrix methods 
is their inability to efficiently use information about local highvariation regions that 
appear across multiple subtrees.

Neighbor-joining

Neighbor-joining methods apply general data clustering techniques to sequence anal-
ysis using genetic distance as a clustering metric. The simple neighborjoining method 
produces unrooted trees, but it does not assume a constant rate of evolution (i.e., a 
molecular clock) across lineages. Its relative, UPGMA (Unweighted Pair Group Method 
with Arithmetic mean) produces rooted trees and requires a constant-rate assumption 
- that is, it assumes an ultrametric tree in which the distances from the root to every 
branch tip are equal.

Fitch-Margoliash Method

The Fitch-Margoliash method uses a weighted least squares method for clustering 
based on genetic distance. Closely related sequences are given more weight in the tree 
construction process to correct for the increased inaccuracy in measuring distances 
between distantly related sequences. The distances used as input to the algorithm must 
be normalized to prevent large artifacts in computing relationships between closely 
related and distantly related groups. The distances calculated by this method must 
be linear; the linearity criterion for distances requires that the expected values of the 
branch lengths for two individual branches must equal the expected value of the sum 
of the two branch distances - a property that applies to biological sequences only when 
they have been corrected for the possibility of back mutations at individual sites. This 
correction is done through the use of a substitution matrix such as that derived from 
the Jukes-Cantor model of DNA evolution. The distance correction is only necessary in 
practice when the evolution rates differ among branches. Another modification of the 
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algorithm can be helpful, especially in case of concentrated distances (please report to 
concentration of measure phenomenon and curse of dimensionality): that modifica-
tion, described in, has been shown to improve the efficiency of the algorithm and its 
robustness.

The least-squares criterion applied to these distances is more accurate but less effi-
cient than the neighbor-joining methods. An additional improvement that corrects for 
correlations between distances that arise from many closely related sequences in the 
data set can also be applied at increased computational cost. Finding the optimal least-
squares tree with any correction factor is NPcomplete, so heuristic search methods 
like those used in maximum-parsimony analysis are applied to the search through tree 
space.

Using Outgroups

Independent information about the relationship between sequences or groups can 
be used to help reduce the tree search space and root unrooted trees. Standard usage 
of distance-matrix methods involves the inclusion of at least one outgroup sequence 
known to be only distantly related to the sequences of interest in the query set. This us-
age can be seen as a type of experimental control. If the outgroup has been appropriate-
ly chosen, it will have a much greater genetic distance and thus a longer branch length 
than any other sequence, and it will appear near the root of a rooted tree. Choosing an 
appropriate outgroup requires the selection of a sequence that is moderately related to 
the sequences of interest; too close a relationship defeats the purpose of the outgroup 
and too distant adds noise to the analysis. Care should also be taken to avoid situations 
in which the species from which the sequences were taken are distantly related, but the 
gene encoded by the sequences is highly conserved across lineages. Horizontal gene 
transfer, especially between otherwise divergent bacteria, can also confound outgroup 
usage.

Phylogenetic Tree

A phylogenetic tree or evolutionary tree is a branching diagram or “tree” showing the 
evolutionary relationships among various biological species or other entities—their 
phylogeny based upon similarities and differences in their physical or genetic char-
acteristics. All life on Earth is part of a single phylogenetic tree, indicating common 
ancestry. 

In a rooted phylogenetic tree, each node with descendants represents the inferred most 
recent common ancestor of those descendants, and the edge lengths in some trees may 
be interpreted as time estimates. Each node is called a taxonomic unit. Internal nodes 
are generally called hypothetical taxonomic units, as they cannot be directly observed. 
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A speculatively rooted tree for rRNA genes, showing the three life  
domains: bacteria, archaea, and eukaryota. The black trunk at the bottom of the  

tree links the three branches of living organisms to the last universal common ancestor.

Trees are useful in fields of biology such as bioinformatics, systematics, and phylo-
genetics. Unrooted trees illustrate only the relatedness of the leaf nodes and do not 
require the ancestral root to be known or inferred.

A highly resolved, automatically generated tree of life, based on completely sequenced genomes.

The idea of a “tree of life” arose from ancient notions of a ladder-like progression from 
lower into higher forms of life (such as in the Great Chain of Being). Early representa-
tions of “branching” phylogenetic trees include a “paleontological chart” showing the 
geological relationships among plants and animals in the book Elementary Geology, 
by Edward Hitchcock. 

Charles Darwin also produced one of the first illustrations and crucially popularized 
the notion of an evolutionary “tree” in his seminal book The Origin of Species. Over a 
century later, evolutionary biologists still use tree diagrams to depict evolution because 
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such diagrams effectively convey the concept that speciation occurs through the adap-
tive and semirandom splitting of lineages. Over time, species classification has become 
less static and more dynamic. 

Properties

Rooted Tree

A rooted phylogenetic tree is a directed tree with a unique node — the root — corre-
sponding to the (usually imputed) most recent common ancestor of all the entities at 
the leaves of the tree. The root node does not have a parent node, but serves as the 
parent of all other nodes in the tree. The root is therefore a node of degree 2 while oth-
er internal nodes have a minimum degree of 3 (where “degree” here refers to the total 
number of incoming and outgoing edges). 

The most common method for rooting trees is the use of an uncontroversial outgroup—
close enough to allow inference from trait data or molecular sequencing, but far enough 
to be a clear outgroup. 

Unrooted Tree

An unrooted phylogenetic tree for myosin, a superfamily of proteins.

Unrooted trees illustrate the relatedness of the leaf nodes without making assump-
tions about ancestry. They do not require the ancestral root to be known or inferred. 
Unrooted trees can always be generated from rooted ones by simply omitting the root. 
By contrast, inferring the root of an unrooted tree requires some means of identifying 
ancestry. This is normally done by including an outgroup in the input data so that the 
root is necessarily between the outgroup and the rest of the taxa in the tree, or by in-
troducing additional assumptions about the relative rates of evolution on each branch, 
such as an application of the molecular clock hypothesis. 
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Bifurcating versus Multifurcating

Both rooted and unrooted trees can be either bifurcating or multifurcating. A rooted 
bifurcating tree has exactly two descendants arising from each interior node (that 
is, it forms a binary tree), and an unrooted bifurcating tree takes the form of an 
unrooted binary tree, a free tree with exactly three neighbors at each internal node. 
In contrast, a rooted multifurcating tree may have more than two children at some 
nodes and an unrooted multifurcating tree may have more than three neighbors at 
some nodes. 

Labeled	versus	Unlabeled

Both rooted and unrooted trees can be either labeled or unlabeled. A labeled tree has 
specific values assigned to its leaves, while an unlabeled tree, sometimes called a tree 
shape, defines a topology only. 

Enumerating Trees

Increase in the total number of phylogenetic trees as a function of the number  
of labeled leaves: unrooted binary trees (blue diamonds), rooted binary trees (red circles),  

and rooted multifurcating or binary trees (green: triangles). The Y-axis scale is logarithmic.

The number of possible trees for a given number of leaf nodes depends on the specific 
type of tree, but there are always more labeled than unlabeled trees, more multifur-
cating than bifurcating trees, and more rooted than unrooted trees. The last distinc-
tion is the most biologically relevant; it arises because there are many places on an 
unrooted tree to put the root. For bifurcating labeled trees, the total number of rooted 
trees is,
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where n represents the number of leaf nodes.

For bifurcating labeled trees, the total number of unrooted trees is: 
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Among labeled bifurcating trees, the number of unrooted trees with n leaves is equal to 
the number of rooted trees with 1n − leaves. 

The number of rooted trees grows quickly as a function of the number of tips. For 10 
tips, there are more than 634 10× possible bifurcating trees, and the number of multi-
furcating trees rises faster, with ca. 7 times as many of the latter as of the former. 

Counting trees. 

Labeled
leaves

Binary
unrooted Trees

Binary
rooted Trees

Multifurcating
rooted Trees

All Possible
rooted Trees 

1 1 1 0 1 

2 1 1 0 1 

3 1 3 1 4 

4 3 15 11 26 

5 15 105 131 236 

6 105 945 1,807 2,752 

7 945 10,395 28,813 39,208 

8 10,395 135,135 524,897 660,032 

9 135,135 2,027,025 10,791,887 12,818,912 

10 2,027,025 34,459,425 247,678,399 282,137,824 

Special Tree Types

A spindle diagram, showing the evolution of the vertebrates at class level, width of spindles  
indicating number of families. Spindle diagrams are often used in evolutionary taxonomy.
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Dendrogram

A dendrogram is a general name for a tree, whether phylogenetic or not, and hence also 
for the diagrammatic representation of a phylogenetic tree. 

Cladogram

A cladogram only represents a branching pattern; i.e., its branch spans do not repre-
sent time or relative amount of character change, and its internal nodes do not repre-
sent ancestors. 

Phylogram

A phylogram is a phylogenetic tree that has branch spans proportional to the amount 
of character change. 

Chronogram

A chronogram is a phylogenetic tree that explicitly represents time through its branch 
spans. 

Spindle Diagram

A spindle diagram (often called a Romerogram after the American palaeontologist Al-
fred Romer) is the representation of the evolution and abundance of the various taxa 
through time, but is not an evolutionary tree. 

Dahlgrenogram

A Dahlgrenogram is a diagram representing a cross section of a phylogenetic tree.

Phylogenetic Network

A phylogenetic network is not strictly speaking a tree, but rather a more general graph, 
or a directed acyclic graph in the case of rooted networks. They are used to overcome 
some of the limitations inherent to trees. 

Coral of Life

Darwin also mentioned that the coral may be a more suitable metaphor than the tree. 
Indeed, phylogenetic corals are useful for portraying past and present life, and they 
have some advantages over trees (anastomoses allowed, etc). 
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The coral of life.

Construction

Phylogenetic trees composed with a nontrivial number of input sequences are con-
structed using computational phylogenetics methods. Distance-matrix methods such as 
neighbor-joining or UPGMA, which calculate genetic distance from multiple sequence 
alignments, are simplest to implement, but do not invoke an evolutionary model. Many 
sequence alignment methods such as ClustalW also create trees by using the simpler 
algorithms (i.e. those based on distance) of tree construction. Maximum parsimony is 
another simple method of estimating phylogenetic trees, but implies an implicit model of 
evolution (i.e. parsimony). More advanced methods use the optimality criterion of maxi-
mum likelihood, often within a Bayesian framework, and apply an explicit model of evo-
lution to phylogenetic tree estimation. Identifying the optimal tree using many of these 
techniques is NP-hard, so heuristic search and optimization methods are used in com-
bination with tree-scoring functions to identify a reasonably good tree that fits the data. 

Tree-building methods can be assessed on the basis of several criteria: 

• Efficiency: How long does it take to compute the answer, how much memory
does it need?

• Power: Does it make good use of the data, or is information being wasted?

• Consistency: Will it converge on the same answer repeatedly, if each time given
different data for the same model problem?

• Robustness: Does it cope well with violations of the assumptions of the under-
lying model?

• Falsifiability: Does it alert us when it is not good to use, i.e. when assumptions
are violated?
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Tree-building techniques have also gained the attention of mathematicians. Trees can 
also be built using T-theory. 

Limitations of Phylogenetic Analysis

Although phylogenetic trees produced on the basis of sequenced genes or genomic data 
in different species can provide evolutionary insight, these analyses have important 
limitations. Most importantly, the trees that they generate are not necessarily correct 
– they do not necessarily accurately represent the evolutionary history of the included 
taxa. As with any scientific result, they are subject to falsification by further study (e.g., 
gathering of additional data, analyzing the existing data with improved methods). The 
data on which they are based may be noisy; the analysis can be confounded by genetic 
recombination, horizontal gene transfer, hybridisation between species that were not 
nearest neighbors on the tree before hybridisation takes place, convergent evolution, 
and conserved sequences. 

Also, there are problems in basing an analysis on a single type of character, such as a 
single gene or protein or only on morphological analysis, because such trees construct-
ed from another unrelated data source often differ from the first, and therefore great 
care is needed in inferring phylogenetic relationships among species. This is most true 
of genetic material that is subject to lateral gene transfer and recombination, where 
different haplotype blocks can have different histories. In these types of analysis, the 
output tree of a phylogenetic analysis of a single gene is an estimate of the gene’s phy-
logeny (i.e. a gene tree) and not the phylogeny of the taxa (i.e. species tree) from which 
these characters were sampled, though ideally, both should be very close. For this rea-
son, serious phylogenetic studies generally use a combination of genes that come from 
different genomic sources (e.g., from mitochondrial or plastid vs. nuclear genomes), or 
genes that would be expected to evolve under different selective regimes, so that homo-
plasy (false homology) would be unlikely to result from natural selection. 

When extinct species are included as terminal nodes in an analysis (rather than, for 
example, to constrain internal nodes), they are considered not to represent direct an-
cestors of any extant species. Extinct species do not typically contain high-quality DNA. 

The range of useful DNA materials has expanded with advances in extraction and 
sequencing technologies. Development of technologies able to infer sequences from 
smaller fragments, or from spatial patterns of DNA degradation products, would fur-
ther expand the range of DNA considered useful. 

Phylogenetic trees can also be inferred from a range of other data types, including mor-
phology, the presence or absence of particular types of genes, insertion and deletion 
events – and any other observation thought to contain an evolutionary signal. 

Phylogenetic networks are used when bifurcating trees are not suitable, due to these 
complications which suggest a more reticulate evolutionary history of the organisms 
sampled. 
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Tree Alignment

In computational phylogenetics, tree alignment is a computational problem concerned 
with producing multiple sequence alignments, or alignments of three or more sequenc-
es of DNA, RNA, or protein. Sequences are arranged into a phylogenetic tree, model-
ling the evolutionary relationships between species or taxa. The edit distances between 
sequences are calculated for each of the tree’s internal vertices, such that the sum of all 
edit distances within the tree is minimized. Tree alignment can be accomplished using 
one of several algorithms with various trade-offs between manageable tree size and 
computational effort.

Input: A set S of sequences, a phylogenetic tree T leaf-labeled by S and an edit distance 
function d between sequences. 

Output: A labeling of the internal vertices of T such that ( )e T d e∈Σ is minimized, where 
( )d e is the edit distance between the endpoints of the task is NP-hard.

Sequence Alignment

This is a simple Sequence Alignment of Insulin gene between rat, human and chicken. The labeled  
nucleotides are the different nucleotides with rats I and means the missing nucleotides.

In bioinformatics, the basic method of information processing is to contrast the se-
quence data. Biologists use it to discover the function, structure, and evolutionary in-
formation in biological sequences. The following analyses are based on the sequence 
assembly: the phylogenetic analysis, the haplotype comparison, and the prediction of 
RNA structure. Therefore, the efficiency of sequence alignment will directly affect the 
efficacy of solving these problems. In order to design a rational and efficient sequence 
alignment, the algorithm derivation becomes an important branch of research in the 
field of bioinformatics. 

Generally, sequence alignment means constructing a string from two or more given 
strings with the greatest similarity by adding letters, deleting letters, or adding a space 
for each string. The multiple sequence alignment problem is generally based on pair-
wise sequence alignment and currently, for a pairwise sequence alignment problem, 
biologists can use a dynamic programming approach to obtain its optimal solution. 
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However, the multiple sequence alignment problem is still one of the more challenging 
problems in bioinformatics. This is because finding the optimal solution for multiple 
sequence alignment has been proven as an NP-complete problem and only an approx-
imate optimal solution can be obtained. 

Distance Matrix Method

Distance method measures the minimum operation number of character insertions, 
deletions, and substitutions that are required to transform one sequence u to the 
other sequence v when being operated on a pair of strings. The calculation of edit 
distance can be based on dynamic programming, and the equation is in O(|u|×|v|) 
time, where |u| and |v| are the lengths of u and v. The efficient estimation of edit 
distance is essential as Distance method is a basic principle in computational biology 
For functions of hereditary properties “symmetrization” can be used. Due to a series 
of functions being used to calculate edit distance, different functions may result in 
different results. Finding an optimal edit distance function is essential for the tree 
alignment problem. 

The Problem of Tree Alignment

This figure indicates the growth rate about the exponential time, the  
polynomial time and the linear time.

Tree alignment results in a NP-hard problem, where scoring modes and alphabet 
sizes are restricted. It can be found as an algorithm, which is used to find the opti-
mized solution. However, there is an exponential relationship between its efficiency 
and the number sequences, which means that when the length of the sequence is 
very large, the computation time required to get results is enormously long. Using 
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star alignment to get the approximate optimized solution is faster than using tree 
alignment. However, whatever the degree of multiple-sequence similarity is, the 
time complexity of star alignment has a proportional relationship with the square of 
the sequence number and the square of the sequence average length. As usual, the 
sequence in MSA is so long that it is also inefficient or even unacceptable. Therefore, 
the challenge of reducing the time complexity to linear is one of the core issues in 
tree alignment. 

Combinatorial Optimization Strategy

Combinatorial optimization is a good strategy to solve MSA problems. The idea of 
combinatorial optimization strategy is to transform the multiple sequence align-
ment into pair sequence alignment to solve this problem. Depending on its transfor-
mation strategy, the combinatorial optimization strategy can be divided into the tree 
alignment algorithm and the star alignment algorithm. For a given multi-sequence 
set { }1,..., nS s s=  find an evolutionary tree which has n leaf nodes and establishing 
one to one relationship between this evolutionary tree and the set S. By assigning 
the sequence to the internal nodes of the evolutionary tree, we calculate the total 
score of each edge, and the sum of all edges’ scores is the score of the evolutionary 
tree. The aim of tree alignment is to find an assigned sequence, which can obtain a 
maximum score, and get the final matching result from the evolutionary tree and its 
nodes’ assigned sequence. Star alignment can be seen as a special case of the tree 
alignment. When we use star alignment, the evolutionary tree has only one internal 
node and n leaf nodes. The sequence, which is assigned to the internal node, is called 
the core sequence. 

The Keyword Tree Theory and The Aho-Corasick Search Algorithm

When the combinatorial optimization strategy is used to transform the multiple se-
quence alignment into pair sequence alignment, the main problem is changed from 
“How to improve the efficiency of multiple sequence alignment” to “How to improve 
the efficiency of pairwise sequence alignment”. The Keyword Tree Theory and the 
Aho-Corasick search algorithm is an efficient approach to solve the pairwise se-
quence alignment problem. The aim of combining the keyword tree theory and the 
Aho-Corasick search algorithm is to solve this kind of problem: for a given long string 
T and a set of short strings P ={ 1 2 2, ,...,p pp } (z∈N,z>1), find the location of all .iP in 
T. The keyword tree produced by set P is used, and then searched for in T with this 
keyword tree through the Aho-Corasick search algorithm. The total time complexity 

of using this method to find all .iP ’s location in the T is O (m + n + k), where m T=
(the length of T ), in P=∑ (the sum of all ‘s .iP lengths) and k means the sum of oc-

currence for all .iP in T. 
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Keyword Tree Theory

The keyword tree of the setm P ={ 1 2 2, ,...,p pp } (z∈N,z>1) mis a rooted tree, whose 
root denoted by K, and this keyword tree satisfies:

1.	 Each edge clearly demarcates one letter. 

2.	 Any two edges separated from the same node are to correspond to different 
letters. 

3.	 Each pattern .iP  (i=1,2,…,z) corresponds to a node v, and the path from the 

root K to the node v can exactly correctly spell the string .iP

For each leaf node of this K tree, it corresponds to one of the certain patterns of 
set P. ( )L v is used to represent the STRING which is connected from the root node 
to the node v. ( )Lp v will then be used to represent the length of the longest suffix 
(also, this suffix is the prefix of one of patterns in the set P). Searching this prefix 
from the root node in the keyword tree, and the last node denoted by vn when the 
search is over.

For example, the set P ={potato, tattoo, theater, other}, and the keyword tree is shown 

on the right. In that example, if ( )L v =potat, then ( )Lp v =|tat|=3, and the failure link 

of the node v is shown in that figure. 

Establishing a failure link is the key to improve the time complexity of the Aho-Cora-
sick algorithm. It can be used to reduce the original polynomial time to the linear 
time for searching. Therefore, the core of keyword tree theory is to find all failure 
links (which also means finding all vn s) of a keyword tree in the linear time. It is as-
sumed that every vn of all nodes v, whose distance from the root node is less than or 
equal k, can be found. The vn of the node v whose distance from the root node is k+ 1 
can then be sought for. Its parent node is v′ , and the letter represented by the node 
v and v′ , is x. 

1.	 If the next letter of the node vn ′ is x, the other node of this edge can be set as: 

	 , and vw n w=

2.	 If all letters are not x by searching all edges between vn ′ and its child nodes, 
( )vL n is a suffix of ( )vL n ′ plus x. Because this suffix matches the STRING 

beginning with the root node (similar to prefix), the x after vn ′ can be de-
tected or not. If not, this process can be continued until x or the root node 
is found. 
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Aho-Corasick Search Algorithm

After establishing all failure links in the keyword tree, the Aho-Corasick search algo-
rithm is used to find the locations of all iP (i=1,2,…,z) in the linear time. In this step, the 
time complexity is O(m+k). 

Other Strategies

In MSA, DNA, RNA, and proteins, sequences are usually generated and they are as-
sumed to have an evolutionary relationship. By comparing generated maps of RNA, 
DNA, and sequences from evolutionary families, people can assess conservation of pro-
teins and find functional gene domains by comparing differences between evolutionary 
sequences. Generally, heuristic algorithms and tree alignment graphs are also adopted 
to solve multiple sequence alignment problems. 

Heuristic Algorithm

Generally, heuristic algorithms rely on the iterative strategy, which is to say that based 
on a comparison method, optimizing the results of multiple sequence alignment by the 
iterative process. Davie M. proposed using the particle swarm optimization algorithm 
to solve the multiple sequence alignment problem; Ikeda Takahiro proposed a heuristic 
algorithm which is based on the A* search algorithm; E. Birney first proposed using the 
hidden Markov model to solve the multiple sequence alignment problem; and many 
other biologists use the genetic algorithm to solve it. All these algorithms generally are 
robust and insensitive to the number of sequences, but they also have shortcomings. 
For example, the results from the particle swarm optimization algorithm are unstable 
and its merits depend on the selection of random numbers, the runtime of the A* search 
algorithm is too long, and the genetic algorithm is easy to fall into local excellent.

Tree Alignment Graph

Roughly, tree alignment graph aims to align trees into a graph and finally synthesize 
them to develop statistics. In biology, tree alignment graphs (TAGs) are used to remove 
the evolutionary conflicts or overlapping taxa from sets of trees and can then be queried 
to explore uncertainty and conflict. By integrating methods of aligning, synthesizing 
and analyzing, the TAG aims to solve the conflicting relationships and partial over-
lapping taxon sets obtained from a wide range of sequences. Also, the tree alignment 
graph serves as a fundamental approach for supertree and grafting exercises, which 
have been successfully tested to construct supertrees by Berry. Because the transfor-
mation from trees to a graph contain similar nodes and edges from their source trees, 
TAGs can also provide extraction of original source trees for further analysis. TAG is 
a combination of a set of aligning trees. It can store conflicting hypotheses evolution-
ary relationship and synthesize the source trees to develop evolutionary hypotheses. 
Therefore, it is a basic method to solve other alignment problems.
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Distance Matrices in Phylogeny

Distance matrices are used in phylogeny as non-parametric distance methods and 
were originally applied to phenetic data using a matrix of pairwise distances. These 
distances are then reconciled to produce a tree (a phylogram, with informative branch 
lengths). The distance matrix can come from a number of different sources, including 
measured distance (for example from immunological studies) or morphometric analy-
sis, various pairwise distance formulae (such as euclidean distance) applied to discrete 
morphological characters, or genetic distance from sequence, restriction fragment, or 
allozyme data. For phylogenetic character data, raw distance values can be calculated 
by simply counting the number of pairwise differences in character states (Hamming 
distance).

Distance-matrix Methods

Distance-matrix methods of phylogenetic analysis explicitly rely on a measure of 
“genetic distance” between the sequences being classified, and therefore they re-
quire an MSA (multiple sequence alignment) as an input. Distance is often defined 
as the fraction of mismatches at aligned positions, with gaps either ignored or 
counted as mismatches. Distance methods attempt to construct an all-to-all matrix 
from the sequence query set describing the distance between each sequence pair. 
From this is constructed a phylogenetic tree that places closely related sequences 
under the same interior node and whose branch lengths closely reproduce the ob-
served distances between sequences. Distance-matrix methods may produce either 
rooted or unrooted trees, depending on the algorithm used to calculate them. They 
are frequently used as the basis for progressive and iterative types of multiple se-
quence alignment. The main disadvantage of distance-matrix methods is their in-
ability to efficiently use information about local high-variation regions that appear 
across multiple subtrees. 

Neighbor-joining

Neighbor-joining methods apply general data clustering techniques to sequence anal-
ysis using genetic distance as a clustering metric. The simple neighbor-joining method 
produces unrooted trees, but it does not assume a constant rate of evolution (i.e., a 
molecular clock) across lineages. 

UPGMA and WPGMA

The UPGMA (Unweighted Pair Group Method with Arithmetic mean) and WPGMA 
(Weighted Pair Group Method with Arithmetic mean) methods produce rooted trees 
and require a constant-rate assumption – that is, it assumes an ultrametric tree in 
which the distances from the root to every branch tip are equal. 
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Fitch–Margoliash Method

The Fitch–Margoliash method uses a weighted least squares method for clustering 
based on genetic distance. Closely related sequences are given more weight in the tree 
construction process to correct for the increased inaccuracy in measuring distances 
between distantly related sequences. In practice, the distance correction is only nec-
essary when the evolution rates differ among branches. The distances used as input to 
the algorithm must be normalized to prevent large artifacts in computing relationships 
between closely related and distantly related groups. The distances calculated by this 
method must be linear; the linearity criterion for distances requires that the expected 
values of the branch lengths for two individual branches must equal the expected value 
of the sum of the two branch distances – a property that applies to biological sequences 
only when they have been corrected for the possibility of back mutations at individual 
sites. This correction is done through the use of a substitution matrix such as that de-
rived from the Jukes–Cantor model of DNA evolution. 

The least-squares criterion applied to these distances is more accurate but less efficient 
than the neighbor-joining methods. An additional improvement that corrects for correla-
tions between distances that arise from many closely related sequences in the data set 
can also be applied at increased computational cost. Finding the optimal least-squares 
tree with any correction factor is NP-complete, so heuristic search methods like those 
used in maximum-parsimony analysis are applied to the search through tree space. 

Using Outgroups

Independent information about the relationship between sequences or groups can be 
used to help reduce the tree search space and root unrooted trees. Standard usage of dis-
tance-matrix methods involves the inclusion of at least one outgroup sequence known to 
be only distantly related to the sequences of interest in the query set. This usage can be 
seen as a type of experimental control. If the outgroup has been appropriately chosen, it 
will have a much greater genetic distance and thus a longer branch length than any oth-
er sequence, and it will appear near the root of a rooted tree. Choosing an appropriate 
outgroup requires the selection of a sequence that is moderately related to the sequences 
of interest; too close a relationship defeats the purpose of the outgroup and too distant 
adds noise to the analysis. Care should also be taken to avoid situations in which the spe-
cies from which the sequences were taken are distantly related, but the gene encoded by 
the sequences is highly conserved across lineages. Horizontal gene transfer, especially 
between otherwise divergent bacteria, can also confound outgroup usage. 

Weaknesses of Different Methods

In general, pairwise distance data are an underestimate of the path-distance between 
taxa on a phylogram. Pairwise distances effectively “cut corners” in a manner anal-
ogous to geographic distance: the distance between two cities may be 100 miles “as 
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the crow flies,” but a traveler may actually be obligated to travel 120 miles because of 
the layout of roads, the terrain, stops along the way, etc. Between pairs of taxa, some 
character changes that took place in ancestral lineages will be undetectable, because 
later changes have erased the evidence (often called multiple hits and back mutations 
in sequence data). This problem is common to all phylogenetic estimation, but it is 
particularly acute for distance methods, because only two samples are used for each 
distance calculation; other methods benefit from evidence of these hidden changes 
found in other taxa not considered in pairwise comparisons. For nucleotide and amino 
acid sequence data, the same stochastic models of nucleotide change used in maxi-
mum likelihood analysis can be employed to “correct” distances, rendering the analy-
sis “semi-parametric”. 

Several simple algorithms exist to construct a tree directly from pairwise distances, in-
cluding UPGMA and neighbor joining (NJ), but these will not necessarily produce the 
best tree for the data. To counter potential complications noted above, and to find the 
best tree for the data, distance analysis can also incorporate a tree-search protocol that 
seeks to satisfy an explicit optimality criterion. Two optimality criteria are commonly 
applied to distance data, minimum evolution (ME) and least squares inference. Least 
squares is part of a broader class of regression-based methods lumped together here 
for simplicity. These regression formulae minimize the residual differences between 
path-distances along the tree and pairwise distances in the data matrix, effectively 
“fitting” the tree to the empirical distances. In contrast, ME accepts the tree with the 
shortest sum of branch lengths, and thus minimizes the total amount of evolution as-
sumed. ME is closely akin to parsimony, and under certain conditions, ME analysis of 
distances based on a discrete character dataset will favor the same tree as conventional 
parsimony analysis of the same data. 

Phylogeny estimation using distance methods has produced a number of controver-
sies. UPGMA assumes an ultrametric tree (a tree where all the path-lengths from the 
root to the tips are equal). If the rate of evolution were equal in all sampled lineag-
es (a molecular clock), and if the tree were completely balanced (equal numbers of 
taxa on both sides of any split, to counter the node density effect), UPGMA should 
not produce a biased result. These expectations are not met by most datasets, and 
although UPGMA is somewhat robust to their violation, it is not commonly used for 
phylogeny estimation. The advantage of UPGMA is that it is fast and can handle many 
sequences. 

Neighbor-joining is a form of star decomposition and, as a heuristic method, is general-
ly the least computationally intensive of these methods. It is very often used on its own, 
and in fact quite frequently produces reasonable trees. However, it lacks any sort of tree 
search and optimality criterion, and so there is no guarantee that the recovered tree is 
the one that best fits the data. A more appropriate analytical procedure would be to use 
NJ to produce a starting tree, then employ a tree search using an optimality criterion, 
to ensure that the best tree is recovered. 
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Many scientists eschew distance methods, for various reasons. A commonly cited rea-
son is that distances are inherently phenetic rather than phylogenetic, in that they do 
not distinguish between ancestral similarity (symplesiomorphy) and derived simi-
larity (synapomorphy). This criticism is not entirely fair: most currently implemen-
tations of parsimony, likelihood, and Bayesian phylogenetic inference use time-re-
versible character models, and thus accord no special status to derived or ancestral 
character states. Under these models, the tree is estimated unrooted; rooting, and 
consequently determination of polarity, is performed after the analysis. The primary 
difference between these methods and distances is that parsimony, likelihood, and 
Bayesian methods fit individual characters to the tree, whereas distance methods fit 
all the characters at once. There is nothing inherently less phylogenetic about this 
approach.

More practically, distance methods are avoided because the relationship between indi-
vidual characters and the tree is lost in the process of reducing characters to distances. 
These methods do not use character data directly, and information locked in the distri-
bution of character states can be lost in the pairwise comparisons. Also, some complex 
phylogenetic relationships may produce biased distances. On any phylogram, branch 
lengths will be underestimated because some changes cannot be discovered at all due 
to failure to sample some species due to either experimental design or extinction (a 
phenomenon called the node density effect). However, even if pairwise distances from 
genetic data are “corrected” using stochastic models of evolution as mentioned above, 
they may more easily sum to a different tree than one produced from analysis of the 
same data and model using maximum likelihood. This is because pairwise distances are 
not independent; each branch on a tree is represented in the distance measurements of 
all taxa it separates. Error resulting from any characteristic of that branch that might 
confound phylogeny (stochastic variability, change in evolutionary parameters, an ab-
normally long or short branch length) will be propagated through all of the relevant 
distance measurements. The resulting distance matrix may then better fit an alternate 
(presumably less optimal) tree. 

Despite these potential problems, distance methods are extremely fast, and they of-
ten produce a reasonable estimate of phylogeny. They also have certain benefits over 
the methods that use characters directly. Notably, distance methods allow use of data 
that may not be easily converted to character data, such as DNA-DNA hybridization 
assays. They also permit analyses that account for the possibility that the rate at which 
particular nucleotides are incorporated into sequences may vary over the tree, using 
LogDet distances. For some network-estimation methods (notably NeighborNet), the 
abstraction of information about individual characters in distance data are an advan-
tage. When considered character-by character, conflict between character and a tree 
due to reticulation cannot be told from conflict due either to homoplasy or error. How-
ever, pronounced conflict in distance data, which represents an amalgamation of many 
characters, is less likely due to error or homoplasy unless the data are strongly biased, 
and is thus more likely to be a result of reticulation. 
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Distance methods are popular among molecular systematists, a substantial number of 
whom use NJ without an optimization stage almost exclusively. With the increasing 
speed of character-based analyses, some of the advantages of distance methods will 
probably wane. However, the nearly instantaneous NJ implementations, the ability to 
incorporate an evolutionary model in a speedy analysis, LogDet distances, network es-
timation methods, and the occasional need to summarize relationships with a single 
number all mean that distance methods will probably stay in the mainstream for a long 
time to come. 

Treefinder

Treefinder is a computer program for the likelihood-based reconstruction of phyloge-
netic trees from molecular sequences. It was written by Gangolf Jobb, a Treefinder is 
free of charge, though the most recent license prohibits its use in the USA and eight 
European countries.

A platform-independent graphical environment integrates a standard suite of analyses: 
phylogeny reconstruction, bootstrap analysis, model selection, hypothesis testing, tree 
calibration, manipulation of trees and sequence data. Treefinder is scriptable through 
a proprietary scripting language called TL. 

Treefinder has an efficient tree search algorithm that can infer trees with thousands 
of species within a short time. Result trees are displayed and can then be saved as a 
reconstruction report, which may serve as an input for further analysis, for example 
hypothesis testing. The report contains all information about the tree and the models 
used. Treefinder also supports exporting results as NEWICK or NEXUS files. 

The software supports a broad collection of models of sequence evolution. The June 
2008 release implements 7 models of nucleotide substitution (HKY, TN, J1, J2, J3 (= 
TIM), TVM, GTR), 14 empirical models of amino acid substitution (BLOSUM, cpREV, 
Dayhoff, JTT, LG, mtArt, mtMam, mtREV, PMB, rtREV, betHIV, witHIV, VT, WAG), 
4 substitution models of structured rRNA (bactRNA, eukRNA, euk23RNA, mitoRNA), 
the 6-state “Dayhoff Groups” protein model (DG), 2-state and 3-state models of DNA 
(GTR3, GTR2), a parametric mixed model (MIX) mixing the empirical models of pro-
teins or rRNA, and also a user-definable GTR-type model (MAP) mapping characters to 
states as needed. Three models of among-site rate heterogeneity are available (Gamma, 
Gamma+I, I), which can be combined with any of the substitution models. One can 
assume different models for different partitions of a sequence alignment, and parti-
tions may be assumed to evolve at different speeds. All parameters of the models can 
be estimated from the data by maximization of likelihood. Certain TL expressions, the 
“model expressions”, allow the concise notation of complex models, together with their 
parameters and optimization modes. 
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Treefinder’s original publication from 2004 has been cited more than a thousand times 
in the scientific literature.

Bayesian Inference in Phylogeny

A Bayesian analysis combines ones prior beliefs about the probability of a hypothesis 
with the likelihood. The likelihood is the vehicle that carries the information about 
the hypothesis contained in the observations. In this case, the likelihood is simply the 
probability of observing a four and a six given that the die is biased or fair. Assuming 
independence of the tosses, the probability of observing a four and a six is:

1 1 1Pr 4,6 Fair  
6 6 36

  = × = 

for a fair die and,

4 6 24Pr 4,6 Biased  
21 21 441

  = × = 

for a biased die. The probability of observing the data is 1.96 times greater under the 
hypothesis that the die is biased. In other words, the ratio of the likelihoods under the 
two hypotheses suggests that the die is biased.

Bayesian inferences are based upon the posterior probability of a hypothesis. The pos-
terior probability that the die is biased can be obtained using Bayes’ (1) formula:

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]

Pr 4,6 |  Biased   Pr Biased
Pr Biased | 4,6   

 Pr 4,6 |  Biased   Pr Biased   Pr 4,6 |  Fair   Pr Fair
×

=
× + ×

where Pr[Biased] and Pr[Fair] are the prior probabilities that the die is biased or fair, 
respectively, a reasonable prior probability that the die is biased would be the propor-
tion of the dice in the box that were biased. The posterior probability is then:

24 1
441 10Pr Biased 4,6 0.17924 1 1 9

441 10 36 10

×
  = = 

× + ×

This means that our opinion that the die is biased changed from 0.1 to 0.179 after ob-
serving the four and six.

Depending upon one’s viewpoint, the incorporation of prior beliefs about a parameter 
is either a strength or a weakness of Bayesian inference. It is a strength in as much as 
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the method explicitly incorporates prior information in inferences about a hypothesis. 
However, it can often be difficult to specify a prior. For the dice example, it is easy to 
specify the prior as we provided information on the number of fair and biased dice in 
the box and also specify that a die was randomly selected. However, if we were to sim-
ply state that the die is either fair or biased, but did not specify a physical description 
of how the die was chosen, it would have been much more difficult to specify a prior 
specifying the probability that the die is biased. For example, one could have taken the 
two hypotheses to have been a priori equally probable or given much more weight to 
the hypothesis that had the die fair as severely biased dice are rarely encountered (or 
manufactured) in the real world.

An example of a phylogenetic tree for s = 5 species. The branch lengths are denoted v i.

Bayesian Inference of Phylogeny

Bayesian inference of phylogeny is based upon the posterior probability of a phy-
logenetic tree, τ. The posterior probability of the i th phylogenetic tree, τ i, condi-
tioned on the observed matrix of aligned DNA sequences (X) is obtained using Bayes 
formula:

( ) ( ) ( )
( )( )

1

|
|   

 | ( )
i B s

j jj

f X i f i
f X

f X f

τ τ
τ

τ τ
=

=
∑

[throughout, It denote conditional probabilities a f (·|·)]. Here, ( )|  if Xτ is the pos-

terior probability of the i th phylogeny and can be interpreted as the probability that 
τ i is the correct tree given the DNA sequence data. The likelihood of the i th tree 

is ( )|  if X τ and the prior probability of the i th tree is ( )if τ . The summation in 

the denominator is over all B(s) trees that are possible for s species. This number 

is ( ) ( )
( )2

2 3 !
2 2 !s

s
B s

s−

−
=

−
 for rooted trees, ( ) ( )

( )3

2 5 !
2 3 !s

s
B s

s−

−
=

−
for unrooted trees, and 

( ) ( )
1

! 1 !
2s

s s
B s −

−
= for labelled histories. Typically, an uninformative prior is used for 

trees, such that f(τi) = 1 B(s).
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DNA sequence data.— We consider an aligned matrix of s DNA sequences:

{ }

Species 1
Species 2
Species 3

Species

ij

A A C C T
A A C G G

X x A C C C T

s A C C C T

 
 
  = =  
 
 
  

     

The data matrix consists of the sequences for s species for c = 5 sites from a gene (c is 
the length of the aligned DNA sequences). The observations at the first site are x1 = {A, 
A, A,..., A}’. In general, the information at the ith site in the matrix is denoted x i.

Phylogenetic models.—What is the probability of observing the data at the ith site? To 
calculate this probability, we assume a phylogenetic model. A phylogenetic model con-
sists of a tree (τ i) with branch lengths specified on the tree (v i) and a stochastic model 
of DNA substitution.

The 16 possible assignments of nucleotides to the internal nodes of a tree of  
s = 3 species. The observations at the site are xi = {C, C, A} and the  

unobserved nucleotides at the internal nodes of the tree are denoted y.

Figure shows an example of a phylogenetic tree of s = 5 species. The tips of the tree are 
labeled 1, 2,...,s and the internal nodes of the tree are labeled s + 1, s + 2,..., 2s − 1; the 
root of the tree is always labeled 2s − 1. The lengths of the branches are denoted v i and 
are in terms of the number of substitutions expected to occur along the ith branch. In 
general, the ancestor of node k will be denoted σ(k); the ancestor of node 4 is σ(4) = 8. 
The ancestor of the root is σ(2s − 1) = ∅.
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The second part of the phylogenetic model consists of a stochastic model of DNA sub-
stitution. Here, the typical assumption is that DNA substitution follows a time-homo-
geneous Poisson process. The heart of the model is a matrix specifying the instanta-
neous rate of substitution from one nucleotide state to another:

{ }

.
.

.
.

C AC G AG T AT

A AC G CG T CT
ij

A AG C CG T GT

A AT C CT G CT

r r r
r r r

Q q
r r r
r r r

π π π
π π π
π π π
π π π

 
 
 = = 
  
 

where the matrix specifies the rate of change from nucleotide i (row) to nucleotide j (col-
umn). The nucleotides are in the order A, C, G, T. The diagonals of the matrix are spec-
ified such that the rows each sum to 0. The equilibrium (or stationary) frequencies of 
the four nucleotides are denoted πi (π = {πA, πC, πG, πT }). This matrix specifies the most 
general time-reversible model of DNA substitution and is referred to as the GTR model. 
Because the rate of substitution and time are confounded, the Q matrix is rescaled such 

that 1i iiqπ−∑ =  for all i (making the average rate of substitution 1). Over a branch of 

length v the transition probabilities are calculated as ( ) ( ){ },  , Qv
ijP v p v eθ θ= = . The 

parameters of the substitution model are contained in a vector θ.

The likelihood of a phylogeny.—The phylogenetic model consists of a tree ( )iτ with 

branch lengths (vi) and a stochastic model of DNA substitution that is specified by a 
matrix of instantaneous rates. The probability of observing the data at the ith site in 
the aligned matrix is a sum over all possible assignments of nucleotides to the internal 
nodes of the tree:

( )
( )

( )
( )

( )
2 1 , ,

2

1 1

|  , ,  , ,
−

−

= = +

   
τ θ = π   

   
∑ ∏ ∏s ik iki k i k

s ss

i j j y y x k y y k
y k k s

f x v p v p v
σ σ

θ θ

Here, yij is the (unobserved) nucleotide at the jth node for the ith site. The summation 
is over all 4s−1 ways that nucleotides can be assigned to the internal nodes of the tree. 
Figure illustrates the possible nucleotide assignments for a simple tree of s = 3 species. 
Felsenstein introduced a pruning algorithm that efficiently calculates the summation. 
Often, the rate at the site is assumed to be drawn from a gamma distribution. This al-
lows one to relax the assumption that the rate of substitution is equal across all sites. 
If gamma-distributed rate variation is assumed, then the probability of observing the 
data at the ith site becomes:

( )
( )

( )
( )

( ) ( )
2 1 , ,

2 2

0
1 1

|  , ,  , , ,
−

−∞

= = +

     π    
     

∑ ∏ ∏∫ s ik iki k i k

s s

i j j y y x k y y k
y k k s

f x v p v r p v r f r dr
σ σ

τ θ α θ θ α
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where f(r|α) is the density of the rate r under the gamma model. The parameter α is the 
shape parameter of the gamma distribution (here, the shape and the scale parameters 
of the gamma distribution are both set to α). Typically, this integral is impossible to 
evaluate. Hence, an approximation first suggested by Yang is used in which the contin-
uous gamma distribution is broken into K categories, each with equal weight. The mean 
rate from each category represents the rate for the entire category. The probability of 
observing the data at the ith site then becomes:

( )
( )

( )
( )

( )
2 1 , ,

2 2

1 1 1

1|  , ,  , , ,
−

−

= = = +

     π    
     

∑ ∑ ∏ ∏s ik iki k i k

s sK

i j j y y x k n y y k n
n y k k s

f x v p v r p v r
Kσ σ

τ θ α θ θ

Assuming independence of the substitutions across sites, the probability of observing 
the aligned matrix of DNA sequences is:

( ) ( )
1

|  , ,  , |  , ,  ,
c

i j j i j j
i

f x v f x vτ θ α τ θ α
=
∏

Importantly, the likelihood can be calculated under a number of different models of 
character change. For example, the codon model describes the substitution process 
over triplets of sites (a codon) and allows the estimation of the nonsynonymous/syn-
onymous rate ratio. Similarly, models of DNA substitution have been described that 
allow nonindenpendent substitutions to occur in stem regions of rRNA genes. Finally, 
one can calculate likelihoods for amino acid, restriction site, and, more recently, mor-
phological data.

The likelihood depends upon several unknown parameters; generally, the phylogeny, 
branch lengths, and substitution parameters are unknown. The method of maximum 
likelihood estimates these parameters by finding the values of the parameters which 
maximize the likelihood function. Currently, programs such as PAUP*, PAML, and 
PHYLIP estimate phylogeny using the method of maximum likelihood:

( ) ( ) ( )
( )( )

1

|
|

 | ( )
j i

j B s
j jj

f X f
f X

f X f

τ τ
τ

τ τ
=

=
∑

where the likelihood function is integrated over all possible values for the branch 
lengths and substitution parameters:

( ) ( ) ( ) ( ) ( )| |  , ,  ,    
i

i j j i iv
f X i f x v f v f f dv d d

θ α
τ τ θ α θ α θ α= ∫ ∫ ∫

Markov chain Monte Carlo.—Typically, the posterior probability cannot be calculated 
analytically. However, the posterior probability of phylogenies can be approximated by 
sampling trees from the posterior probability distribution. Markov chain Monte Carlo 

____________________ WORLD TECHNOLOGIES ____________________



WT

192 Principles of Computational Biology

(MCMC) can be used to sample phylogenies according to their posterior probabilities. 
The Metropolis-Hastings-Green (MHG) algorithm is an MCMC algorithm that has 
been used successfully to approximate the posterior probabilities of trees.

The MHG algorithm works as follows. Let Ψ = {τ, v, θ, α} be a specific tree, combi-
nation of branch lengths, substitution parameters, and gamma shape parameter. The 
MHG algorithm constructs a Markov chain that has as its stationary frequency the pos-
terior probability of interest (in this case, the joint posterior probability of τ, v, θ, and 
α). The current state of the chain is denotedΨ . If this is the first generation of the 
chain, then the chain is initialized (perhaps by randomly picking a state from the prior). 
A new state is then proposed, ′Ψ . The probability of proposing the new state given the 
old state is ( )f ′Ψ Ψ and the probability of making the reverse move (which is never 

actually made) is ( )f ′Ψ Ψ . The new state is accepted with probability:

( )
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

Prior RatioLikelihood Ratio ProposalRatio

min 1,

/
min 1,

/

min 1,

f X f
R

f X f

f X f f X f
f X f f X f

f X ff
ff X f

 ′ ′Ψ Ψ Ψ
= ×  ′Ψ Ψ Ψ 

 ′ ′ ′Ψ Ψ Ψ Ψ
= ×  ′ ′Ψ Ψ Ψ Ψ 

 
 ′ ′Ψ Ψ Ψ′Ψ = × ×

′Ψ Ψ Ψ Ψ 
 
 



 

A uniform random variable between 0 and 1 is drawn. If this number is less than R, 
then the proposed state is accepted and ′Ψ = Ψ . Otherwise, the chain remains in the 
original state. This process of proposing a new state, calculating the acceptance proba-
bility, and either accepting or rejecting the proposed move is repeated many thousands 
of times. The sequence of states visited forms a Markov chain. This chain is sampled 
(either every step, or the chain is “thinned” and samples are taken every so often). 
The samples from the Markov chain form a valid, albeit dependent, sample from the 
posterior probability distribution. As described here, the Markov chain samples from 
the joint probability density of trees, branch lengths, and substitution parameters. The 
marginal probability of trees can be calculated by simply printing to a file the trees that 
are visited during the course of the MCMC analysis. The proportion of the time any 
single tree is found in this sample is an approximation of the posterior probability of 
the tree.

An example of Bayesian inference of phylogeny.—Here we will demonstrate Bayes-
ian inference of phylogeny for a simple example of five species. The DNA sequences 
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are albumin and c-myc sequences sampled from a fish, frog, bird, rodent, and human 
(albumin: Actinoptergyii, Salmo salar, X52397; Amphibia, Xenopus laevis, M18350; 
Aves, Gallus gallus, X60688; Rodentia, Rattus norvegicus, J00698; Primates, Homo 
sapiens, L00132; c-myc: Actinoptergyii, Salmo gairdneri, M13048; Amphibia, Xenopus 
laevis, M14455; Aves, Gallus gallus, M20006; Rodentia, Rattus norvegicus, Y00396; 

Primates, Homo sapiens, V00568). There are a total of B(5) = 15 unrooted trees possi-

ble for the five sequences. The prior probability of any single tree, then, is
1 0.067

15
= .

We first analyzed the c-myc DNA sequences using a program written by J.P.H. The 
HKY85+Γ model of DNA substitution was assumed. This model allows there to be a 
different rate of transitions and transversions, different stationary nucleotide frequen-
cies, and among-site rate variation (as described by a discrete gamma distribution). 
The Markov chain was run for 100,000 generations and sampled every 100 genera-
tions. The first 10,000 generations of the chain were discarded; the chain was started 
from a random tree and branch lengths and it took some time for the chain to reach 
apparent stationarity. Hence, inferences were based upon a sample of 900 trees. Figure 
summarizes the results of the analysis. The tree with the largest posterior probability 
was (Fish,Frog,(Bird,(Rodent,Human))) and the posterior probability of this tree was 
0.964. Figure shows the posterior probability of the clades on the tree with the maxi-
mum posterior probability.

One of the advantages of Bayesian inference of phylogeny is that the results are easy to 
interpret. For example, the sum of the posterior probabilities of all trees will sum to 1. 
Moreover, the posterior probability of any single clade is simply the sum of the posteri-
or probabilities of all trees that contain that clade. 

The tree with the maximum posterior probability for the analysis of the c-myc sequences.  
The numbers at the internal branches represent the posterior probability that the clade is correct.

a credible set of trees can be formed by ordering all of the trees from largest to smallest 
posterior probability and then adding those trees with the highest posterior probability 
to a set until the cumulative posterior probability is 0.95. A 95% credible set of trees for 
the c-myc gene would contain only one tree.

The posterior probability of trees can form the prior for any subsequent analysis of the 
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species. For example, let us imagine that the albumin sequences were analyzed after 
the c-myc sequences. The posterior probabilities of phylogenies from the analysis of the 
c-myc sequences is the prior for the analysis of the albumin sequences. The posterior 
probability of the trees after analysis of the albumin sequences is shown in the table. The 
posterior probability of τ1 is now 0.996. Our beliefs about the phylogeny of the five spe-
cies have changed throughout the analysis. For example, our initial belief about the the 
phylogeny τ1 was 0.067. After observing the c-myc sequences, our belief that this is the 
true phylogeny increased from 0.067 to 0.964. The albumin sequences strengthened our 
beliefs about this phylogeny. The final posterior probability of this phylogeny was 0.996. 
This probability could form the prior probability for tree 1 for any subsequent analysis.

One modification of the analysis of the vertebrate sequences would be to modify the 
prior probabilities of trees. There is overwhelming morphological and paleontological 
evidence that the correct phylogeny for fish, frogs, birds, rodents, and humans is tree τ1. 
Hence, a systematist might reflect this prior information as a different prior probability 
on the trees. For example, he or she may decide to put almost all of the prior probability 
on τ1 and very little prior probability on the other trees.

Programs for Bayesian inference of phylogeny. There are a few programs for the Bayes-
ian analysis of phylogenetic trees. BAMBE approximates the posterior probability 
of phylogenies using MCMC (specifically, BAMBE uses the MHG algorithm). BAM-
BE assumes uniform priors on phylogenies and branch lengths. The program uses an 
improved method for calculating likelihoods that is very fast. Another program, MC-
MCTREE in the PAML package of programs calculates posterior probabilities of trees 
using a combination of Monte Carlo and MCMC integration. The program works for up 
to s = 11 species. Besides the algorithm for approximating posterior probabilities, the 
program differs from BAMBE in assuming a birth-death process prior on phylogenies. 
This prior places equal weight on labelled histories(where a labelled history differs 
from a rooted tree in considering the relative speciation times).
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WTThe mathematical and computational models that are used for the analysis of complex 
biological systems are referred to as systems biology. Biochemical systems theory, bio-
logical network inference, BioPAX, cellular model and cancer systems biology are a 
few concepts that come under systems biology. The topics elaborated in this 
chapter will help in gaining a better perspective about systems biology.

Systems Biology: An 
Integrated Study 5

• Biochemical Systems Theory

• Biological Network Inference

• BioPAX

• Cellular Model

• Cancer Systems Biology

Systems biology seeks to study biological systems as a whole, contrary to the reduction-
ist approach that has dominated biology.

Biological systems are enormously complex, organised across several levels of hierar-
chy. At the core of this organisation is the genome that contains information in a digital 
form to make thousands of different molecules and drive various biological process-
es. This genomic view of biology has been primarily ushered in by the human genome 
project. The development of sequencing and other high-throughput technologies that 
generate vast amounts of biological data has fuelled the development of new ways of hy-
pothesis-driven research. Development of computational techniques for analysis of the 
large data, as well as for the modelling and simulation of the complex biological systems 
have followed as a logical consequence. Simulatable computational models of biological 
systems and processes form the cornerstone of the emerging science of systems biology.

Traditionally, biology has focused on identifying individual genes, proteins and cells, 
and studying their specific functions. Each of these is indeed extremely important in 
understanding the individual molecules, but as individual isolated pieces of informa-
tion, they are insufficient to provide insights about complex phenomena such as hu-
man health and disease. As an analogy, More importantly, it would not provide any 
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understanding of what component influences what other component in what manner 
and to what extent, an understanding which is very important to effectively set things 
right when something malfunctions. In the same way, since diseases occur when there 
is some malfunction in the form or function of one or more of the cellular compo-
nents, we need an understanding how various molecules in a cell influence each other 
in health, in order to attempt curing or correcting it to the extent possible.

The scale at which various molecular level studies can now be carried out is providing 
us systematic data on many fronts enabling us to reconstruct holistic models of larger 
systems. Systems biology seeks to study biochemical and biological systems from a ho-
listic perspective, promising to transform how biology is done. The goal is for a compre-
hensive understanding of the system’s influence on its individual components, leading 
to the appearance of complex properties such as robustness, emergence, adaptation, 
regulation and synchronisation, seen so very often in biological systems. Essentially, 
systems biology advocates a departure from the reductionist viewpoint, emphasising 
on the importance of a holistic view of biological systems. It also aims at a departure 
from the “spherical cow” 1, in trying to encapsulate the enormous complexity of bi-
ological systems in greater detail. Systems biology adopts an integrated approach to 
study and understand the function of biological systems, particularly, the response of 
such systems to perturbations such as the inhibition of a reaction in a pathway, or the 
administration of a drug. It can of course be argued that systems biology is just a new 
name for the conventional disciplines such as physiology and pharmacology, which are 
well established for several decades now. Undoubtedly, these disciplines emphasise the 
need for considering whole systems. Yet, systems biology emerges as a new discipline, 
since it differs from the conventional disciplines in a fundamental way: the latter treat 
much of the whole system as a ‘black-box’, giving us only an idea of the end picture but 
not enabling us to ask ‘why’ or ‘how’ a particular outcome is seen. Systems biology on 
the other hand aims to reconstruct systems by a bottom-up approach, with detailed 
knowledge about the individual components that make up the system and how these 
components interact with each other. Modelling and simulation of complex biologi-
cal networks form the cornerstone of systems biology; the coupling of in silico mod-
els with in vivo and in vitro experimentation, with modelling guiding experimentation 
and experimentation aiding in model refinement, can provide impetus to improve the 
understanding of biological systems. Effects and influences of one component on the 
other are deciphered, providing a greater understanding of how genotypes relate to 
phenotypes.

Elements of Systems Biology

Systems biology, being a holistic approach involves modelling and analysis of metabol-
ic pathways, regulatory and signal transduction networks for understanding cellular 
behaviour. There are also various levels of abstraction at which these systems are mod-
elled, with a wide variety of techniques that can be employed based on the quality and 
quantity of data available.
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The critical step in the modelling and analysis of these pathways is their reconstruction, 
involving the integration of diverse sources of data to create a representation of the 
chemical events underlying biological networks. A variety of high-throughput experi-
ments have been developed to provide extensive data on the proteome, metabolome, 
transcriptome and the reactome in a cell. Some of these techniques include microarray 
analyses of the transcriptome and mass spectrometry analyses that generate proteom-
ics data. It is important to understand that these experiments generate genome-scale 
‘omics’ data, which cover a majority of the components such as metabolites, transcripts 
and proteins, in a cell. Another major feature of systems biology is the strong integra-
tion of experiment with theory; it is quite common that a model is used to generate one 
or more hypotheses, which are then tested experimentally, and iteratively contribute to 
model refinement. In essence, the various parts of a systems biology study are (a) de-
fine a model system, (b) identify a choice of attributes/parameters to study the system 
that is appropriate for the problem being addressed, (c) comprehensive experimental 
measurements, (d) appropriate mathematical abstraction of the system that is compu-
tationally tractable and (e) computational simulations that can generate and test vari-
ous hypotheses, (f) that can later be verified by experimental approaches.

Systems biology process. This process relies on an iterative procedure of  
model building, experimental verification, model analysis and model refinement.  

The concepts that underlie these processes have been shown as clouds.

Systems biology experiments are often characterised by a synergy between theory and 
experiment. As in traditional biological experiments, the chosen model system must be 
suitable for experimental investigations, and should also be complex enough to cap-
ture the biological phenomenon of interest. Simple bacteria such as E. coli are often 
used as model organisms to understand the organisation and behaviour of prokary-
otic systems. Saccharomyces cerevisiae is the de facto standard model organism for 
understanding eukaryotic systems. Similarly, the fruitfly Drosophila and the worm 
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Caenorhabditis elegans are used as models to incrementally understand more and 
more complex multi-cellular organisms. It is important to note that, although some of 
these systems are significantly less complex than mammalian systems, several process-
es are conserved, leading to the possibility of very useful predictions of the behaviour 
of mammalian systems from the modelling of simpler systems. Very often, it is im-
practical to consider whole organisms or whole cells, especially to address questions 
pertaining to the mechanism of a given process. Pathways or sets of pathways function 
as modules of the larger systems, which provide a practical framework to study the bi-
ological processes/phenomena.

Metabolic pathways, signal transduction pathways and regulatory pathways have been 
studied from a variety of organisms from which a wide range of biological insights have 
been obtained. Such pathways have also been combined into the larger context of net-
works, where the abstraction is often a bit less quantitative, again for practical rea-
sons. Studies on transcriptional network of yeast, metabolic network of E. coli, serve 
as examples of studies at this level. Thus, the scale of the system can vary from tens of 
components to several thousands. The resolution of information can also vary from 
detailed atomistic information to broad cellular views. For example, a defined model 
could contain thermodynamic data of the metabolic reactions in a given pathway, that 
in turn have sound correlations with the three-dimensional structures of the involved 
enzymes. On the other hand the defined system could simply contain logical connec-
tions between different cellular states implying functional correlations without any fur-
ther details on the cells themselves. A systems biology approach is characterised by a 
series of iterative experimentation and model refinement, often using perturbations to 
the system as a handle to affirm roles of known components as well as to discriminate 
between alternative models. Another important feature is that most of these compo-
nents, from computation to high-throughput laboratory experiments are amenable to 
automation. 

Modelling in Systems Biology: Model Abstraction

Conceptual and theoretical modelling constructs are expressed as sets of algorithms 
and implemented as software packages.For example, in drug discovery, a model can 
refer to the relationship of the structure of a target molecule to its ability to bind a 
certain type of ligand at one end of the spectrum, while at the other end, it can refer to 
a statistically derived relationship of a set of ligands to a particular biological activity, 
with no explicit consideration of the mechanism or the basis of such activities. Concep-
tual modelling is an integral part of problem solving in general and in fact an essential 
component of any activity that attempts to achieve a goal in a systematic way.

The advantages of having a model are manifold: (a) it gives the precise definition of the 
components of a given system (or the genotype), (b) it allows performing simulations 
and monitoring the end-effect, which may be the given phenotype in this context, (c) 
it helps in dissecting the role of every component in the system through the analysis of 
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perturbations, (d) it helps us to interpret complex hard-to-understand problems, (e) 
it helps in studying systems that are impractical to study through conventional exper-
iments, (f) it helps both in designing minimal systems that can result in a particular 
phenotype, as well as analysing the effect of the addition of newer components into the 
framework, and (g) it is highly amenable for high-throughput simulations and highly 
cost-effective, useful especially in applications such as drug discovery.

Thus, models not only provide significant insights into the underlying biology and ap-
plication opportunities, but also enable the efficient study of what may be highly im-
practical, or even impossible through biochemical and molecular biology experiments. 
It must however be emphasised that a model is only as good as our understanding of 
what constitutes a system and how it has been built. Model building is thus a critical 
step in in silico analysis and is often iterated and refined with validation steps.

Given that biological systems and processes are understood at many different levels 
and in many different aspects, it is no wonder that many different kinds of models 
should exist in practice. Figure illustrates that models span a wide range, emanating 
from the organisational hierarchy in which biological systems are understood.

On one hand, there are structural models at atomic levels implying certain functions, 
whereas on the other hand, there are whole genome-based mathematical models of 
either pathways or entire organisms implying functions at very different levels. 

Modelling techniques in systems biology. The various methods have been represented alongside  
an axis that details the granularity (or resolution) typical for each method.

It is important to understand the abstraction levels of the models, so that conclusions 
are drawn at appropriate levels from the analyses. The choice of the method depends 
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upon the type and extent of data available, as well as the objective of the modelling ex-
ercise in terms of the level at which the system is desired to be understood.

Model validation is a critical quality control step that endorses the results obtained 
through simulation of the model. Typical model validation involves the comparison 
of model predictions against known biochemical and genetic evidences obtained by 
various experiments, particularly when experimental data has not been used for tuning 
the models.

Key Properties of Biological Systems

Biological systems are characterised by several key properties, which distinguish them 
from models in other disciplines. Knowledge of these fundamental principles, which 
characterise biological systems, is important both for understanding their function and 
for modelling them. Some of these interesting properties are discussed.

Irreducibility

Irreducibility is an important concept that makes systems thinking important. We may 
undoubtedly gain significant insight into each of the components of the system by study-
ing them individually, but we will require to study the system as a whole in order to gain 
a holistic perspective of what these components do when they are all put together in an 
appropriate manner. An analogy to a book is often drawn, where one cannot understand 
a book by reading one word at a time. In other words, knowing the meaning of every 
word in a book does not tell us what the book is about. They have to be placed in context 
to grasp the story in the book. It is this context that is sought out in systems biology; thus 
it is not only the form and function of individual molecules, but rather their functional 
orchestration in a ‘context’ in a complex manner that makes a living species.

Emergence

Systems are composed of individual elements or ‘parts’ that interact in various ways. 
As Anderson put it as early as 1972, in his classic paper by the same title, “More is dif-
ferent” it is not possible to reliably predict the behaviour of a complex system, despite a 
good knowledge of the fundamental laws governing the individual components.

The ability to reduce everything to simple fundamental laws does not imply the ability 
to start from those laws and reconstruct the universe. The constructionist hypothesis 
breaks down when confronted with the twin difficulties of scale and complexity. At each 
level of complexity entirely new properties appear. Psychology is not applied biology, 
nor is biology applied chemistry. We can now see that the whole becomes not merely 
more, but very different from the sum of its parts.

This reinforces the need to develop methods to study biological systems at the systems 
level, rather than at the level of individual components.
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Complexity

Levels of hierarchies for understanding and modelling biological systems. The figure 
illustrates different types of models that are appropriate at a given level of hierarchy.
Theinformationthey encode (abstraction level) are listed for each of them as also the 
methods that are in current practice to design, build and analyse the models.

The term complexity, a concept linked to the concept of systems itself, is often used in a 
variety of disciplines to characterise a system with a number of components intricately 
linked to each other, giving rise to behaviours that may not be described by simple mod-
els. Emergent behaviour is one of the most fundamental features of complex systems. 
Health or disease are examples of complex systems. These cannot be predicted simply 
by analyzing the individual ligands or proteins that comprise the cells. A more complete 
picture of their context would be necessary to achieve it. Biological systems, needless 
to say, are extraordinarily complex, which is evident in individual prokaryotic cells, let 
alone multi-cellular organisms. For example an E. coli cell has about 4500 genes cod-
ing for at least as many proteins. At the outset, trying to understand how these many 
proteins embedded in less than femtolitre (10–15 L) of volume, perform together to 
enable the many functions of the E. coli cell appears to be a daunting task. However, we 
can understand many aspects of the cell if we divide complexity in hierarchies and then 
focus on understanding each individual level in a stepwise manner and then re-assimi-
late them in an appropriate context. In other words, understanding how, at the bottom 
of the hierarchy, DNA, proteins and metabolites function in individual cells, helps us to 
understand how different proteins give rise to pathways, how pathways come together 
to form processes, and how these are organised in a functional cell. In higher organ-
isms, we would extend this to understanding how different cell types are formed and 
organised in tissues, how tissues make complex organs, and finally, how many different 
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organs are orchestrated in the top hierarchical level, the organism. However, amidst 
this complexity, there is modularity with many common mechanisms for a range of 
biological events. Different cell types and functions use recurrent basic mechanisms of 
organisation and communication; thus common patterns underlie diverse expressions 
of life. Understanding single cell types, even when the organisms containing them are 
evolutionarily distant, such as bacteria and humans, would inevitably provide enor-
mous amount of information to understand other cell types. Complexity has important 
implications for modelling; the complexity of large systems often makes them intracta-
ble for analyses. Therefore, large systems are often broken down into their constituent 
modules, or sub-systems, which are more amenable for analyses.

Modularity

Modules constitute semi-autonomous entities with dense internal functional connec-
tions and relatively looser external connections with their environment. Modularity or 
the encapsulation of functions, can contribute to both robustness (by confinement of 
damage) and to evolvability (by rewiring of modules for new functionality). An obvious 
example of a module is a cell in a multi-cellular organism, which interacts with both the 
environment and other cells. Modules are also commonly organised in a hierarchical 
fashion: a cell is composed of organelles, while also being a part of higher structures 
such as tissues and organs. At a different level, a signal transduction systemis an ex-
tended module that achieves isolation on account of the specificity of the binding of 
chemical signals to receptor proteins as well as the specificity of the interactions be-
tween the signalling proteins within the cell.

Robustness and Fragility

internal or external. No system can be robust to all kinds of perturbations. Robustness 
in biological systems is achieved using several complex mechanisms involvingfeedback, 
alternative (fail-safe) mechanisms featuring redundancy and diversity (heterogeneity), 
structuring of complex systems into semi-autonomous functional units (modularity), 
and their reliable co-ordination via establishment of hierarchies and protocols. Sensi-
tivity or fragility, however, characterises the ability of organisms to respond adequately 
to a stimulus. Robustness and fragility have been described in the literature as insep-
arable; the ‘robust, yet fragile’ nature of complex systems is thought to exhibit ‘highly 
optimised tolerance’.

Complex engineered systems (and biological systems) are often quite resistant to de-
signed-for uncertainties, but quite susceptible to other perturbations. For example, 
modern aeroplanes, vis-à-vis the Wright brothers’ aeroplane, are quite stable to at-
mospheric perturbations, but are fundamentally sensitive to complete electrical fail-
ure, due to the tight dependence of the control on a wide variety of electrical systems. 
Several biological systems are quite sensitive to what may be quantitatively small per-
turbations. There are several examples of networks which exhibit high insensitivity to 
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attacks on nodes in random, but high sensitivity showing high disruption when there is 
a targeted attack on a few highly connected (hub) nodes.

Practice of Systems Biology

A variety of modelling techniques encompassing a wide spectrum of resolution and ac-
curacy are used. Figure shows some of these methods, also indicating the level of detail 
that the method usually deals with. The levels of biological organisational hierarchy at 
which such methods can be used have already been illustrated in figure. 

An overview of modelling in systems biology. This figure illustrates the various com-
ponents of the systems biology modelling cycle, of how various types of experimental 
data are translated to a mathematical model, followed by simulation. The simulation 
results are then used to infer predictions (system behaviour), which are often com-
pared against experimental results, leading to further improvements to the mathemat-
ical model.

At the highest level of resolution, there are atomistic models, followed by molecular 
recognition models, incorporating details at the lowest atomic level. These are followed 
by mechanistic models of molecular networks, which are usually realised using dif-
ferential equations detailing kinetic parameters and stochastic modelling, to account 
for inherent noise in biochemical systems. At a lower level of resolution are the con-
straint-based modelling techniques such as flux balance analysis (FBA) and stoichio-
metric analyses, which rely more on global properties of networks, such as stoichiome-
try and mass conservation, rather than the intricate kinetic parameters.

Boolean networks thrive with lesser data, where interactions between network com-
ponents are represented by means of Boolean functions such as ‘OR’, ‘AND’, ‘AND 
NOT’ and so on. Such discrete modelling techniques have applications in several areas. 
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Topological analyses of networks, which are constructed predominantly based on 
knowledge of association or causality, can also provide interesting insights into the 
organisation and properties of biological systems. At a further lower level of resolution 
are Bayesian networks and other statistical learning models, as well as qualitative mod-
els of biological systems.

The choice of methods for modelling and simulation is predominantly determined by 
the quality and quantity of data that are available, as well as the desired objective of 
the modelling exercise. When well-characterised kinetic parameters are available for 
a set of reactions in a given pathway, a kinetic model consisting of differential equa-
tions describing the rate of change of concentration of each of the metabolites can be 
constructed. Such a system of equations can then be solved to obtain insights about the 
essentiality of each component. For example, a mathematical model of glycolysis in T. 
brucei has been built, based on in vitro enzyme kinetic data.

When kinetic parameters are not available, constraint-based models of reaction net-
works can be constructed and analysed, obtaining insights into the metabolic capabil-
ities of systems as well as gene essentiality. At a lower level of resolution, interaction 
networks of metabolites or more importantly, proteins, can be constructed and ana-
lysed, obtaining fundamental insights into centrality, and consequently lethality (or 
essentiality).

Kinetic Modelling

Typically, ordinary differential equations (ODEs) are used for this purpose. ODE-based 
simulations involve a mechanistic representation of the reaction network, with all the 
involved association/dissociation constants, rate constants and affinities or appropri-
ate approximations. Since such data is not always available, this method has limited 
applicability. Biochemical reactions are regularly represented by differential equations 
that indicate the rate of consumption and production of various species involved in 
the reactions. The system of differential equations so generated can be solved and the 
system can be simulated. An important caveat is that even where kinetic parameters 
are available, they have often been determined in vitro, rather than in vivo, which again 
significantly impacts the accuracy of simulations.

Constraint-based Modelling

Kinetic data available for the simulation of networks are quite scarce, rendering the 
kinetic modelling of metabolic networks a challenging task. An approach used often to 
overcome the limitation of data, is to add appropriate ‘constraints’ on the systems, so 
as to make it feasible to find meaningful solutions. Constraints are generally in the form 
of rules, which define the upper and lower limits of the acceptable values for a given 
variable or in the form of some well-known laws of chemistry that must be upheld while 
solving for the system. Constraint-based analyses of reconstructed metabolic networks 
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have proved to be quite effective in various applications such as metabolic engineering, 
prediction of outcomes of gene deletions, and in the elucidation of cellular regulatory 
networks.

One specific example of metabolic modelling using a constraint-based approach is 
Flux-Balance Analysis (FBA), which uses linear optimisation to determine the steady-
state reaction flux distribution in a metabolic network by maximising an objective func-
tion, such as ATP production or growth rate. FBA involves carrying out a steady state 
analysis, using the stoichiometric matrix for the system in question. An important as-
sumption is that the cell performs optimally with respect to a metabolic function, such 
as maximisation of biomass production or minimisation of nutrient utilisation, on the 
premise that selection pressures during evolution, guide systems towards optimality. 
Once an objective function is fixed, the system of equations can be solved to obtain a 
steady state flux distribution. This flux distribution is then used to interpret the meta-
bolic capabilities of the system.

FBA has the capabilities to address the effects of gene deletions and other types of per-
turbations on the system. Gene deletion studies can be performed by constraining the 
reaction flux(es) corresponding to the gene(s) (and therefore, of their corresponding 
proteins(s)), to zero. Effects of inhibitors of particular proteins can also be studied in a 
similar way, by constraining the upper bounds of their fluxes to any defined fraction of 
the normal flux, corresponding to the extents of inhibition. FBA gives a general idea of 
the metabolic capabilities of an organism; gene deletion studies using FBA yield infor-
mation on the criticality of genes for the growth/survival of an organism. The analysis 
of perturbations using flux balance models of metabolic networks provides a handle to 
analyse the lethality of individual gene deletions, as well as double knock-outs, to iden-
tify pairs of genes that are indispensable, as well as to determine and analyse synthetic 
genetic interactions.

Pathway Models

A pathway model is the lowest level of abstraction in systembased models. It looks at 
only the reactions in the metabolome of an organism and accounts for several of the 
interactions between the gene products of an organism and its metabolites. However, 
this is a significant improvement on the mere sequence data that is often employed for 
modelling and analysis. Several paradigms exist for pathway modelling and they are 
reviewed in the literature. Based on the availability of data, a suitable paradigm can 
be chosen for modelling; this affects the accuracy of the simulations performed on the 
systems. Some examples of the use of pathway models are illustrated in later sections.

Network-based Analysis

Barabási and Oltvai have shown that tools from network theory may be adapted to biol-
ogy, providing profound insights into cellular organisation and evolution. Hubs which 
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are heavily connected components in a graph may be identified and targeted to ‘knock 
out’ a system. In a typical interaction-based modelling of metabolic pathways, connec-
tions between the various proteins and metabolites in a system are obtained. When 
further analysed, specific hubs emerge to be more connected. These hubs may serve 
as interesting targets as they have the potential to affect several other connections in 
the system. The advantage of interaction-based modelling is that the amount of data 
required is relatively less and it is possible to generate interaction networks from ex-
isting databases. There is a need for more such derived databases, which would be of 
immense use in applications such as drug discovery.

Promise of Systems Biology

Systems biology finds application in several fields, including metabolic engineering and 
drug discovery. It has an immense potential to improve our fundamental understand-
ing of biological systems. Biology has itself immensely benefited from building on the 
study of ‘model’ organisms such as Arabidopsis thaliana, Drosophila melanogaster, C. 
elegans and Escherichia coli. Systems approaches have been successfully applied for 
the study of model organisms such as Escherichia coli, where the metabolic capabili-
ties have been predicted in silico and verified experimentally. Systems-level studies of 
organisms such as S. cerevisiae are expected to significantly impact the study of more 
complex organisms such as humans.

An excellent application of systems biology in metabolic engineering, with commercial 
potential, has been illustrated by Stephanopoulos and co-workers, for improving lysine 
production. Stephanopoulos and co-workers have also reported a genome-wide FBA 
of Escherichia coli to discover putative genes impacting network properties and cellu-
lar phenotype, for reengineering lycopene synthesis. Metabolic fluxes were calculated 
such as to optimise growth, followed by scanning the genome for single and multiple 
gene knockouts that yield improved product yield while maintaining acceptable overall 
growth rate. For lycopene biosynthesis in Escherichia coli, such targets were identified 
and subsequently tested experimentally by constructing the corresponding single, dou-
ble and triple gene knockouts. A triple knockout construct (∆gdhA∆aceA∆fdhF) was 
identified, which exhibited a 37% increase over an engineered, high producing parental 
strain.

Another field where excellent progress has been made is in the modelling of the heart as 
a virtual organ, at various levels. Models of different cell types in the heart have led to 
the creation of the first virtual organ, which is being used in drug discovery and testing 
and in simulating the action of devices such as cardiac defibrillators. The culmination 
of systems modelling lies in the modelling of complete systems, accounting for all com-
ponent reactions, the localisation of these components and their interactions. The in-
teraction between these organelles or compartments and the interface with the physical 
world, in terms of external temperature, pH and other effects becomes more relevant 
in highest levels of biological hierarchy. Computational models of human physiology 
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come into play both to relate to whole animal models used in traditional pharmacology 
and more importantly, to build integrated data-driven models that can be refined to 
mimic the human physiology more closely.

The IUPS Physiome project is a project that is aimed at describing the human organ-
ism quantitatively, to understand key elements of physiology and pathophysiology. 
The salient features of the project are the databasing of physiological, pharmacological 
and pathological information on humans and other organisms and integration through 
computational modelling. The models span a wide range, from diagrammatic sche-
ma suggesting relationships among system components, to fully quantitative compu-
tational models describing the behaviour of physiological systems and response of an 
organism to environmental change. Each mathematical model is an internally self-con-
sistent summaryofavailable information and thereby defines a working hypothesis 
about how a system operates. Predictions from such models are subject to tests, with 
new results leading to new models. The goal is to understand the behaviour of complex 
biological systems through a step-by-step process of building upon and refining exist-
ing knowledge.

Efforts are underway to extend these concepts further to virtual patients. Entelos’ 
has developed models of human physiology that supplement animal model systems. 
For example, Entelos’ Diabetes PhysioLab has more than 60 virtual patients, each 
one representing a hypothesis of the pathophysiology of diabetes, constrained by the 
pathway networks and consistent with validation experiments. Such models have the 
potential for performing patient profiling, classifying patient types and even to tai-
lor-design treatment regimes, with a long-term goal of making personalised medi-
cine, a reality.

The possibility of drug discovery based on systems biology is exciting – it holds promise 
for the discovery of more efficacious drugs with fewer adverse effects. Often, adverse 
drug reactions might emerge on account of the binding of the drug to proteins other 
than the intended targets. By considering larger systems and accounting for such pos-
sibilities, it is possible that such problems may be identified by in silico analyses. It is 
envisaged that the complete understanding of a system in terms of all the components 
present and their complex interaction network would assist in discovering the ideal 
drug, which has high specificity and effectiveness.

Biochemical Systems Theory

Biochemical systems theory is a mathematical modelling framework for biochem-
ical systems, based on ordinary differential equations (ODE), in which biochemi-
cal processes are represented using power-law expansions in the variables of the 
system. 
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This framework, which became known as Biochemical Systems Theory, has been devel-
oped since the 1960s by Michael Savageau, Eberhard Voit and others for the systems 
analysis of biochemical processes. According to Cornish-Bowden (2007) they “regard-
ed this as a general theory of metabolic control, which includes both metabolic control 
analysis and flux-oriented theory as special cases”.

Representation

The dynamics of a species is represented by a differential equation with the structure: 

· jkfi
ij j k

j k

dX X
dt

µ γ=∑ ∏

where Xi represents one of the nd variables of the model (metabolite concentrations, 
protein concentrations or levels of gene expression). j represents the nf biochemical 
processes affecting the dynamics of the species. On the other hand, µ ij (stoichiometric 

coefficient), γ j (rate constants) and fjk (kinetic orders) are two different kinds of pa-

rameters defining the dynamics of the system. 

The principal difference of power-law models with respect to other ODE models used 
in biochemical systems is that the kinetic orders can be non-integer numbers. A ki-
netic order can have even negative value when inhibition is modeled. In this way, 
power-law models have a higher flexibility to reproduce the non-linearity of biochem-
ical systems. 

Models using power-law expansions have been used during the last 35 years to model 
and analyze several kinds of biochemical systems including metabolic networks, genet-
ic networks and recently in cell signalling. 

Biological Network Inference

Biological network inference is the process of making inferences and predictions about 
biological networks and a network is a set of nodes and a set of directed or undirected 
edges between the nodes. Many types of biological networks exist, including transcrip-
tional, signalling and metabolic. Few such networks are known in anything approach-
ing their complete structure, even in the simplest bacteria. Still less is known on the 
parameters governing the behavior of such networks over time, how the networks at 
different levels in a cell interact, and how to predict the complete state description of a 
eukaryotic cell or bacterial organism at a given point in the future. Systems biology, in 
this sense, is still in its infancy. 

There is great interest in network medicine for the modelling biological systems.
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methods using high-throughput data for inference of regulatory networks rely on 
searching for patterns of partial correlation or conditional probabilities that indicate 
causal influence. Such patterns of partial correlations found in the high-throughput 
data, possibly combined with other supplemental data on the genes or proteins in the 
proposed networks, or combined with other information on the organism, form the 
basis upon which such algorithms work. Such algorithms can be of use in inferring the 
topology of any network where the change in state of one node can affect the state of 
other nodes. 

Transcriptional Regulatory Networks

Genes are the nodes and the edges are directed. A gene serves as the source of a di-
rect regulatory edge to a target gene by producing an RNA or protein molecule that 
functions as a transcriptional activator or inhibitor of the target gene. If the gene is 
an activator, then it is the source of a positive regulatory connection; if an inhibitor, 
then it is the source of a negative regulatory connection. Computational algorithms 
take as primary input data measurements of mRNA expression levels of the genes un-
der consideration for inclusion in the network, returning an estimate of the network 
topology. Such algorithms are typically based on linearity, independence or normality 
assumptions, which must be verified on a case-by-case basis. Clustering or some form 
of statistical classification is typically employed to perform an initial organization of 
the high-throughput mRNA expression values derived from microarray experiments, 
in particular to select sets of genes as candidates for network nodes. The question then 
arises: how can the clustering or classification results be connected to the underlying 
biology? Such results can be useful for pattern classification – for example, to classify 
subtypes of cancer, or to predict differential responses to a drug (pharmacogenomics). 
But to understand the relationships between the genes, that is, to more precisely define 
the influence of each gene on the others, the scientist typically attempts to reconstruct 
the transcriptional regulatory network. This can be done by data integration in dy-
namic models supported by background literature, or information in public databases, 
combined with the clustering results. The modelling can be done by a Boolean net-
work, by Ordinary differential equations or Linear regression models, e.g. Least-angle 
regression, by Bayesian network or based on Information theory approaches. For in-
stance it can be done by the application of a correlation-based inference algorithm,an 
approach which is having increased success as the size of the available microarray sets 
keeps increasing.

Signal Transduction

Signal transduction networks (very important in the biology of cancer). Proteins are the 
nodes and directed edges represent interaction in which the biochemical conformation 
of the child is modified by the action of the parent (e.g. mediated by phosphorylation, 
ubiquitylation, methylation, etc.). Primary input into the inference algorithm would be 
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data from a set of experiments measuring protein activation/inactivation (e.g., phos-
phorylation/dephosphorylation) across a set of proteins. Inference for such signalling 
networks is complicated by the fact that total concentrations of signalling proteins will 
fluctuate over time due to transcriptional and translational regulation. Such variation 
can lead to statistical confounding. Accordingly, more sophisticated statistical tech-
niques must be applied to analyse such datasets. 

Metabolic

Metabolite networks. Metabolites are the nodes and the edges are directed. Primary input 
into an algorithm would be data from a set of experiments measuring metabolite levels. 

Protein-protein Interaction

Protein-protein interaction networks are also under very active study. However, re-
construction of these networks does not use correlation-based inference in the sense 
discussed for the networks already described (interaction does not necessarily imply a 
change in protein state).

BioPAX

BioPAX (Biological Pathway Exchange) is a RDF/OWL-based standard language to 
represent biological pathways at the molecular and cellular level. Its major use is to 
facilitate the exchange of pathway data. Pathway data captures our understanding of 
biological processes, but its rapid growth necessitates development of databases and 
computational tools to aid interpretation. However, the current fragmentation of path-
way information across many databases with incompatible formats presents barriers to 
its effective use. BioPAX solves this problem by making pathway data substantially eas-
ier to collect, index, interpret and share. BioPAX can represent metabolic and signaling 
pathways, molecular and genetic interactions and gene regulation networks. BioPAX 
was created through a community process. Through BioPAX, millions of interactions 
organized into thousands of pathways across many organisms, from a growing number 
of sources, are available. Thus, large amounts of pathway data are available in a com-
putable form to support visualization, analysis and biological discovery. 

It is supported by a variety of online databases (e.g. Reactome) and tools. The latest 
released version is BioPAX Level 3. There is also an effort to create a version of BioPAX 
as part of OBO. 

Governance and Development

The next version of BioPAX, Level 4, is being developed by a community of researchers. 
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Development is coordinated by board of editors and facilitated by various BioPAX work 
groups. 

Systems Biology Pathway Exchange (SBPAX) is an extension for Level 3 and proposal 
for Level 4 to add quantitative data and systems biology terms (such as Systems Biology 
Ontology). SBPAX export has been implemented by the pathway databases Signaling 
Gateway Molecule Pages and the SABIO-Reaction Kinetics Database. SBPAX import 
has been implemented by the cellular modelling framework Virtual Cell. 

Other proposals for Level 4 include improved support for Semantic Web, validation 
and visualization. 

Software

Software supporting BioPAX include: 

•	 Paxtools, a Java API for handling BioPAX files.

•	 Systems Biology Linker (Sybil), an application for visualizing BioPAX and con-
verting BioPAX to SBML, as part of the Virtual Cell.

•	 ChiBE (Chisio BioPAX Editor), an application for visualizing and editing 
BioPAX.

•	 BioPAX Validator - syntax and semantic rules and best practices.

•	 Cytoscape includes a BioPAX reader and other extensions, such as Pathway-
Commons plugin and CyPath2 app.

•	 BiNoM, a cytoscape plugin for network analysis, with functions to import and 
export BioPAX level 3 files.

•	 BioPAX-pattern, a Java API for defining and searching graph patterns in Bio-
PAX files.

Cellular Model

Creating a cellular model has been a particularly challenging task of systems biology 
and mathematical biology. It involves developing efficient algorithms, data structures, 
visualization and communication tools to orchestrate the integration of large quantities 
of biological data with the goal of computer modelling. 

It is also directly associated with bioinformatics, computational biology and Artifi-
cial life. It involves the use of computer simulations of the many cellular subsystems 
such as the networks of metabolites and enzymes which comprise metabolism, signal 
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transduction pathways and gene regulatory networks to both analyze and visualize the 
complex connections of these cellular processes. 

Part of the cell cycle.

The complex network of biochemical reaction/transport processes and their spatial 
organization make the development of a predictive model of a living cell a grand chal-
lenge for the 21st century. 

The eukaryotic cell cycle is very complex and is one of the most studied topics, since its 
misregulation leads to cancers. It is possibly a good example of a mathematical model 
as it deals with simple calculus but gives valid results. Two research groups have pro-
duced several models of the cell cycle simulating several organisms. They have recently 
produced a generic eukaryotic cell cycle model which can represent a particular eukary-
ote depending on the values of the parameters, demonstrating that the idiosyncrasies 
of the individual cell cycles are due to different protein concentrations and affinities, 
while the underlying mechanisms are conserved.

By means of a system of ordinary differential equations these models show the change 
in time (dynamical system) of the protein inside a single typical cell; this type of model 
is called a deterministic process (whereas a model describing a statistical distribution 
of protein concentrations in a population of cells is called a stochastic process).

To obtain these equations an iterative series of steps must be done: first the several 
models and observations are combined to form a consensus diagram and the appro-
priate kinetic laws are chosen to write the differential equations, such as rate kinetics 
for stoichiometric reactions, Michaelis-Menten kinetics for enzyme substrate reactions 
and Goldbeter–Koshland kinetics for ultrasensitive transcription factors, afterwards 
the parameters of the equations (rate constants, enzyme efficiency coefficients and Mi-
chaelis constants) must be fitted to match observations; when they cannot be fitted the 
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kinetic equation is revised and when that is not possible the wiring diagram is modified. 
The parameters are fitted and validated using observations of both wild type and mu-
tants, such as protein half-life and cell size.

In order to fit the parameters the differential equations need to be studied. This can be 
done either by simulation or by analysis. 

In a simulation, given a starting vector (list of the values of the variables), the progres-
sion of the system is calculated by solving the equations at each time-frame in small 
increments.

In analysis, the properties of the equations are used to investigate the behavior of the 
system depending of the values of the parameters and variables. A system of differ-
ential equations can be represented as a vector field, where each vector described the 
change (in concentration of two or more protein) determining where and how fast the 
trajectory (simulation) is heading. Vector fields can have several special points: a stable 
point, called a sink, that attracts in all directions (forcing the concentrations to be at a 
certain value), an unstable point, either a source or a saddle point which repels (forcing 
the concentrations to change away from a certain value), and a limit cycle, a closed tra-
jectory towards which several trajectories spiral towards (making the concentrations 
oscillate).

A better representation which can handle the large number of variables and param-
eters is called a bifurcation diagram (bifurcation theory): the presence of these spe-
cial steady-state points at certain values of a parameter (e.g. mass) is represented 
by a point and once the parameter passes a certain value, a qualitative change oc-
curs, called a bifurcation, in which the nature of the space changes, with profound 
consequences for the protein concentrations: the cell cycle has phases (partially cor-
responding to G1 and G2) in which mass, via a stable point, controls cyclin levels, 
and phases (S and M phases) in which the concentrations change independently, but 
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once the phase has changed at a bifurcation event (cell cycle checkpoint), the system 
cannot go back to the previous levels since at the current mass the vector field is 
profoundly different and the mass cannot be reversed back through the bifurcation 
event, making a checkpoint irreversible. In particular the S and M checkpoints are 
regulated by means of special bifurcations called a Hopf bifurcation and an infinite 
period bifurcation. 

Molecular Level Simulations

Cell Collective is a modelling software that enables one to house dynamical biological 
data, build computational models, stimulate, break and recreate models. The develop-
ment is led by Tomas Helikar, a researcher within the field of computational biology. 
It is designed for biologists, students learning about computational biology, teachers 
focused on teaching life sciences, and researchers within the field of life science. The 
complexities of math and computer science are built into the backend and one can learn 
about the methods used for modelling biological species, but complex math equations, 
algorithms, programming are not required and hence won’t impede model building. 

The mathematical framework behind Cell Collective is based on a common qualitative 
(discrete) modelling technique where the regulatory mechanism of each node is de-
scribed with a logical function. 

Model validation The model was constructed using local (e.g., protein–protein interac-
tion) information from the primary literature. In other words, during the construction 
phase of the model, there was no attempt to determine the local interactions based on 
any other larger phenotypes or phenomena. However, after the model was completed, 
verification of the accuracy of the model involved testing it for the ability to reproduce 
complex input–output phenomena that have been observed in the laboratory. To do 
this, the T-cell model was simulated under a multitude of cellular conditions and ana-
lyzed in terms of input–output dose–response curves to determine whether the mod-
el behaves as expected, including various downstream effects as a result of activation 
of the TCR, G-protein-coupled receptor, cytokine, and integrin pathways. The E-Cell 
Project aims “to make precise whole cell simulation at the molecular level possible”. 

CytoSolve - developed by V. A. Shiva Ayyadurai and C. Forbes Dewey Jr. of Depart-
ment of Biological Engineering at the Massachusetts Institute of Technology - provided 
a method to model the whole cell by dynamically integrating multiple molecular path-
way models. 

In the July 2012 issue of Cell, a team led by Markus Covert at Stanford published the 
most complete computational model of a cell to date. The model of the roughly 500-
gene Mycoplasma genitalium contains 28 algorithmically-independent components 
incorporating work from over 900 sources. It accounts for interactions of the complete 
genome, transcriptome, proteome, and metabolome of the organism, marking a signif-
icant advancement for the field. 
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Most attempts at modelling cell cycle processes have focused on the broad, compli-
cated molecular interactions of many different chemicals, including several cyclin and 
cyclin-dependent kinase molecules as they correspond to the S, M, G1 and G2 phases 
of the cell cycle. Virginia Tech and Institute de Génétique et Développement de Rennes 
produced a simplified model of the cell cycle using only one cyclin/CDK interaction. 
This model showed the ability to control totally functional cell division through regu-
lation and manipulation only the one interaction, and even allowed researchers to skip 
phases through varying the concentration of CDK. This model could help understand 
how the relatively simple interactions of one chemical translate to a cellular level model 
of cell division. 

Cancer Systems Biology

Cancer systems biology (CSB) recognizes that many individual disciplines and data 
types can be usefully brought to bear, alone or in combination, to systematically study 
cancer. The diversity of interactions among cancer systems biologists, who come from 
fields such as cancer biology, biochemistry, bioinformatics, engineering, mathematics, 
physics, and computer science, can lead to novel approaches to the fundamental chal-
lenges within the field of cancer research. The inaugural Systems Approaches to Cancer 
Biology Conference highlighted the important biological insights gained through these 
synergistic interactions and discussed the unique challenges faced by multidisciplinary 
investigators. The meeting was organized and purposefully populated by mostly early 
career tenure-track and junior investigators in training, offering a unique perspective 
on the emerging field of cancer systems biology.

Central to the meeting was the question of what exactly constitutes CSB, especially in 
comparison to quantitative or computational work within other fields. Through the di-
versity of approaches discussed, it became clear that the field is not defined by a partic-
ular set of methods, nor simply by the application of computational methods to cancer 
data. Rather, the field is defined by a recognition that cancer is a dynamic, multifacto-
rial, and complex process that must be understood using both experimental methods 
and analytical approaches that bridge traditional disciplinary boundaries to directly 
address these concomitant challenges.

Embracing Cancer’s Complexity

In his opening remarks to the meeting, Douglas Lauffenburger made the observation 
that CSB is a field for those who actively embrace the complexity of biology. A central 
component of this complexity, the heterogeneity of cancer within and across patients, 
is undeniably a barrier to accurate diagnosis and treatment. CSB is uniquely poised to 
address this heterogeneity through application of computational analyses that glean 
insights from preclinical and clinical datasets. For example, Andrea Bild presented on 

____________________ WORLD TECHNOLOGIES ____________________



WT

216 Principles of Computational Biology

the striking temporal evolution of tumor heterogeneity measured by whole-genome 
sequencing in an individual breast cancer patient during the course of their various 
treatment regimens. Her study underscored the necessity of understanding subclonal 
evolution within a single patient and how this might influence treatment options and 
decisions. In a related longitudinal genomic and transcriptomic analysis of patients 
with glioblastoma, Jiguang Wang reported that upon treatment, many patients experi-
ence a loss of the dominant driver mutation but gain many novel mutations at relapse 
that change their disease subtype. Wendy Fantl showed that intra- and intertumoral 
heterogeneity is also reflected at the protein level and that increased tumor cell diver-
sity measured with mass cytometry (CyTOF) is related to aggressive disease in ovarian 
cancer. As this and other single-cell studies are finding, the persistence of intratumor 
heterogeneity makes it important to develop analytical and experimental tools that can 
predict the best treatment options. John Paul Shen demonstrated that yeast can be 
used as a model system for identifying synthetic lethalities between inactivated tumor 
suppressor genes and genes that encode druggable proteins. Laura Heiser compared 
-omics data from a panel of breast cancer cell lines against publicly available molec-
ular profiling data from primary tumors in The Cancer Genome Atlas to identify con-
served pathways and gene sets recurrently aberrant in different breast cancer subtypes. 
She described how the cell lines recapitulate major subtypes of breast cancer and can 
be used to identify distinct therapeutic vulnerabilities across subsets of the cell lines. 
Coupling the knowledge gained from profiling tumor heterogeneity with an arsenal of 
computationally predicted treatment options may lead to the realization of precision 
cancer treatments.

CSB is driving numerous technological developments to better study the complex and 
dynamic nature of cancer. Frank Stegmeier (KSQ Therapeutics) compared large-scale 
shRNA-mediated knockdown to CRISPR-CAS9 knockout technology, highlighting the 
benefits and drawbacks of both approaches. CRISPR-based knockout screens iden-
tified more synthetic lethal genes compared with RNAi across a panel of cancer cell 
lines, implying that the identification of cellular dependencies may require full gene 
inactivation. On a related topic, Kevin Janes presented an elegant mathematical model 
illustrating that the network perturbation effects of gene knockdown versus chemical 
inhibition of protein activity encoded by the same gene can be vastly different. The dif-
ference in effect depended intimately on the network context of the molecule and was 
nonlinearly related to the extent of gene knockdown. New experimental systems were 
described by Yvonne Chen, who described the systems-level design and synthetic biol-
ogy implementation of an ‘OR-gate’ T-cell receptor intended to target heterogeneous 
tumor populations and prevent drug resistance caused by tumor cell antigen loss, and 
Shelly Peyton, who presented an in vitro biomaterial platform that enabled systemat-
ic comparison of various microenvironments as sites for potential metastases. These 
novel experimental approaches will fuel the collection of robust and reproducible data 
sets that can then be coupled with computational analysis to provide an essential step 
forward toward systems-level understanding of the complex tumor ecosystem.
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Computational tools can aid in understanding the complexity of cancer by integrating 
new datasets with prior knowledge. Ben Raphael described the HotNet2 algorithm, 
which integrates cancer mutational data with known protein interactions. His group’s 
analysis demonstrated that while there are only a relatively small number of bona fide 
cancer driver mutations, many lower incidence mutations cluster within signaling 
pathways that may provide mechanistic insight to their role in progression. Indeed, the 
phenotypic consequence of most detectable mutations is unknown. To this end, Pau 
Creixell (MIT) suggested that in the case of protein kinases, our understanding of indi-
vidual cancers might be aided by characterizing the specific functional consequences of 
somatic mutations. By analyzing the exomes and phospho proteomes of ovarian cancer 
cell lines using the ReKINect computational platform, he demonstrated that individu-
al kinase mutations in cancer variously affect the activity and specificity of important 
mutated kinases. Taken together, the Raphael and Creixell studies suggested that inte-
grating protein-level data with mutational information can be a powerful approach but 
that caution must be taken when assuming the consequence of a mutation with respect 
to protein activity. For example, in both studies, mutations were identified that were 
neither recurrent nor simply activating/inactivating, yet were functional through their 
network effects.

Reproducibility and Data Sharing

In some cases, the scale and complexity of systems-level studies make reproducibility 
a challenge, especially when connecting preclinical and clinical research. Executing 
reproducible research requires the ability to recapitulate data analysis and laboratory 
protocols. The development of software protocols has provided the means to auto-
matically document analyses for purposes of reproducibility. For example, Ben Ra-
phael showcased his network algorithms by providing direct links to the source code, 
available on GitHub, and making all data available on Synapse. Trey Ideker described 
NDEx, a new resource to facilitate the sharing of networks derived from biologic data 
to make these studies more reproducible. Data sharing is an essential part of recapitu-
lating and building on prior work and thus is a critical aspect of reproducible research. 
Building new models from existing data can additionally lead to novel findings, as 
showcased in the meeting by Stacey Finley who presented a mathematical model to 
predict levels of angiogenic factors during tumor treatment, and Jorge Zanudo who 
presented a mathematical model to predict activated signaling pathways during the 
epithelial-to-mesenchymal transition in cancer. Each of these models relied on pa-
rameters from open data in publications that span years of research, scientific dis-
ciplines, and experimental systems. Many of the present works took advantage of 
open-access datasets such as ICGC or TCGA as well as more modestly sized datasets 
collected through collaborations or gleaned from the literature tailored to their stud-
ies. With this in mind, closing keynote speaker Gordon Mills dubbed the conference 
community the “Society for Data Parasites” in support of data sharing as a means to 
accelerate the study of cancer.
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Clinical Translation and Collaborative Science

During his opening comments, Douglas Lauffenburger pointed out that the results of 
CSB must ultimately improve patient care. Toward this goal, the Systems Approaches 
to Cancer Biology meeting included a number of studies with a strong translational 
focus. Galit Lahav, the opening keynote speaker, showed how oscillating behavior 
in p53, a key tumor suppressor, can give rise to dynamic transcriptional and pheno-
typic behavior at the single-cell level that is often masked in bulk-population anal-
yses. This has directly led to recommendations for timing of treatments involving 
DNA-damaging therapies such as cisplatin and radiation. Jiyang Yu (Pfizer) used an 
shRNA screen to identify HDAC6 as a potential target for inflammatory breast can-
cer. HDAC6 is not itself an oncogene in IBC, but Yu identified it as a key regulator of 
other genes involved in IBC proliferation. Mohammed Shahrok Espahani described 
cancer personalized profiling by deep sequencing (CAPP-seq), a method for targeted 
sequencing of circulating tumor DNA (ctDNA) that may enable “liquid biopsies” to 
track cancer progression. Raghu Kalluri showed that exosomes in fact can contain 
DNA and can provide ctDNA with reduced contamination from nontumor cells. The 
systems approaches taken in these studies yield clinical impact that go beyond what 
traditional studies based on single genomic mutations or amplification events can 
uncover.

Progress in translational research often depends on collecting multiple types of mo-
lecular data from the same tumor samples to enable comprehensive, systems-level 
studies. Early efforts to understand breast cancer at a systems level applied hierarchi-
cal clustering methods to gene expression data to identify clinically relevant subtypes. 
Anne-Lise Børresen-Dale described her team’s efforts to extend this work, which went 
beyond clustering of transcriptomic data to also include other types of molecular data 
and to provide additional biologic insights about these breast cancer subtypes. Inter-
estingly, this analysis identified different subtypes, depending on the measurement 
(e.g. mRNA levels, somatic mutations, etc.) used in the analysis. This observation that 
subtype clusters are not uniquely defined was further supported by Kevin Brennan who 
found that DNA methylation profiles segregate head and neck squamous cell carcino-
ma by etiologic factors.

To collect, analyze, and interpret multidimensional datasets, multi-institutional col-
laborations are often crucial. Over the past several decades, Børresen-Dale has helped 
assemble a large group of international collaborators to derive insights about the inter-
play among genomic, transcriptomic, proteomic, and metabolomic features in breast 
cancer. For example, they examined the transcriptional consequences of somatic mu-
tations and found that tumor cells express these mutations more actively than stromal 
cells and that this relationship depends on estrogen receptor status. As noted by Gor-
don Mills, greater collaboration across institutions and between academia and industry 
should help accelerate clinical translation of CSB studies.
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PERMISSIONS 

All chapters in this book are published with permission under the Creative Commons 
Attribution Share Alike License or equivalent. Every chapter published in this book has 
been scrutinized by our experts. Their significance has been extensively debated. The topics 
covered herein carry significant information for a comprehensive understanding. They may 
even be implemented as practical applications or may be referred to as a beginning point 
for further studies.

We would like to thank the editorial team for lending their expertise to make the book 
truly unique. They have played a crucial role in the development of this book. Without their 
invaluable contributions this book wouldn’t have been possible. They have made vital efforts 
to compile up to date information on the varied aspects of this subject to make this book a 
valuable addition to the collection of many professionals and students.

This book was conceptualized with the vision of imparting up-to-date and integrated 
information in this field. To ensure the same, a matchless editorial board was set up. Every 
individual on the board went through rigorous rounds of assessment to prove their worth. 
After which they invested a large part of their time researching and compiling the most 
relevant data for our readers.

The editorial board has been involved in producing this book since its inception. They have 
spent rigorous hours researching and exploring the diverse topics which have resulted in 
the successful publishing of this book. They have passed on their knowledge of decades 
through this book. To expedite this challenging task, the publisher supported the team at 
every step. A small team of assistant editors was also appointed to further simplify the 
editing procedure and attain best results for the readers.

Apart from the editorial board, the designing team has also invested a significant amount 
of their time in understanding the subject and creating the most relevant covers. They 
scrutinized every image to scout for the most suitable representation of the subject and 
create an appropriate cover for the book.

The publishing team has been an ardent support to the editorial, designing and production 
team. Their endless efforts to recruit the best for this project, has resulted in the 
accomplishment of this book. They are a veteran in the field of academics and their pool 
of knowledge is as vast as their experience in printing. Their expertise and guidance has 
proved useful at every step. Their uncompromising quality standards have made this book 
an exceptional effort. Their encouragement from time to time has been an inspiration for 
everyone.

The publisher and the editorial board hope that this book will prove to be a valuable piece 
of knowledge for students, practitioners and scholars across the globe. 
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