

Evolutionary Computing

Evolutionary Computing

Editor:

Luciana Rocha

www.bibliotex.com

Evolutionary Computing
Editor: Luciana Rocha

www.bibliotex.com

email: info@bibliotex.com

e-book Edition 2022

ISBN: 978-1-98467-775-4 (e-book)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated. Copyright for individual articles remains with the authors as indicated and
published under Creative Commons License. A Wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and views articulated in the chapters are those
of the individual contributors, and not necessarily those of the editors or publishers. Editors or
publishers are not responsible for the accuracy of the information in the published chapters or
consequences of their use. The publisher assumes no responsibility for any damage or griev-
ance to the persons or property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
identification without intent of infringement.

© 2022 Intelliz Press

In Collaboration with Intelliz Press. Originally Published in printed book format by Intelliz

Press with ISBN 978-1-68251-835-9

TABLE OF CONTENTS

	 Preface...xi

Chapter 1	 Introduction to Evolutionary Computation	 1
Introduction.. 1
1.1 Overview of Evolutionary

Computation... 2
1.1.1 Evolutionary Computation...2
1.1.2 Critical issues..5
1.1.3 Components of Evolutionary Algorithms......................6
1.1.4 Representation-independent..8

1.2 Theory and Applications of
Evolutionary Computation... 11

1.2.1 Discrete Dynamics in Evolutionary Computation
and Its Applications...11

1.2.2 Using Evolutionary Computation on GPS Position
Correction..13

1.2.3 Layered Architecture Genetic Programming...............15
1.2.4 Algorithmic Mechanism Design of Evolutionary

Computation...18
1.2.5 Evolutionary Computation Meets Game Theory

and Mechanism Design...20
1.2.6 Algorithmic Mechanism Design of Evolutionary

Computation: A Strategy Equilibrium

vi

Implementation Problem..21
1.2.7 Strategy Equilibrium Implementation in

Evolutionary Computation Algorithm.......................23
1.3 Analyses and Discussions... 25

1.3.1 Prediction of Drifter Trajectory Using Evolutionary
Computation...25

1.3.2 A Review of Gait Optimization Based on
Evolutionary Computation...26

1.3.3 Evolutionary Computation Is Suitable for the
Gait Optimization Problem...28

1.3.4 How to Evolve the Optimal Gait....................................30
1.3.5 Gait Representation and Chromosome Encoding.......34
1.3.6 Comparing EC with Other Global Optimization

Approaches...35
References... 39

Chapter 2	 Evolutionary Algorithm	 41
Introduction.. 41
2.1 Evolutionary Algorithm... 42
2.2 Components of Evolutionary Algorithms.............................. 45

2.2.1 Representation (Definition of Individuals)...................46
2.2.2 Evaluation Function (Fitness Function)........................47
2.2.3 Population...48
2.2.4 Parent Selection Mechanism...49
2.2.5 Variation Operators (Mutation and Recombination)..49
2.2.6 Survivor Selection Mechanism (Replacement)............52
2.2.7 Initialization..53
2.2.8 Termination Condition..53

2.3 Types of Evolutionary Algorithm (EA).................................. 54
2.3.1 Genetic Algorithm..55
2.3.2 Genetic Programming..56
2.3.3 Evolutionary Programming..56
2.3.4 Gene Expression Programming.....................................57
2.3.5 Evolution Strategy..57
2.3.6 Differential Evolution..58
2.3.7 Neuroevolution...59
2.3.8 Learning Classifier System..60

2.4 An Evolutionary Cycle by Hand... 60

vii

2.5 Example Applications... 63
2.5.1 The Eight-Queens Problem...63
2.5.2 The Knapsack Problem..66

2.6 The Operation of an Evolutionary
Algorithm.. 69

2.7 Natural versus Artificial Evolution... 73
2.8 Evolutionary Computing, Global

Optimization, and Other Search
Algorithms... 74

References... 78

Chapter 3	 Genetic Algorithm	 79
Introduction.. 79
3.1 Representation of Individuals.. 80

3.1.1 Data Representation...81
3.1.2 Floating-Point Representation..86
3.1.3 Error-Detecting codes..92

3.2 Number Representation and Binary Code............................. 94
3.2.1 How Computers use Boolean Operations..................101
3.2.2 Fixed- and Floating-Point Number Representation..104
3.2.3 BCD...107
3.2.4 EBCDIC..109
3.2.5 ASCII..109
3.2.6 IEEE Standard ..115

3.3 Mutation.. 119
3.3.1 Genetic Algorithms - Population.................................121
3.3.2 Genetic Algorithms - Parent Selection.........................123

References... 128

Chapter 4	 Introduction to Evolution Strategy	 131
Introduction.. 131
4.1 Overview of Evolution Strategy.. 132

4.1.1 Simple Evolution Strategy...135
4.1.2 Simple Genetic Algorithm...135
4.1.3 Covariance-Matrix Adaptation Evolution Strategy

(CMA-ES)...137
4.2 Natural Evolution Strategies.. 139
4.3 Numerical Optimization... 140

4.3.1 Evolution Strategies...141
4.3.2 Vanilla Implementation...142
4.3.3 Pseudo Code...143
4.3.4 Python Implementation from scratch..........................144

References... 151

Chapter 5	 Genetic Programming	 155
Introduction.. 155
5.1 Fundamental of Genetic Programming................................ 156

5.1.1 Preparatory Steps of Genetic Programming...............158
5.1.2 Multiple predictive model structures using GP.........161
5.1.3 GP as surrogate model for simulation-optimization.162

5.2 Types of Genetic Programming... 164
5.2.1 Tree-based Genetic Programming...............................164
5.2.2 Stack-based GP...165
5.2.3 Linear Genetic Programming.......................................166
5.2.4 Grammatical Evolution...167
5.2.5 Cartesian Genetic Programming..................................168
5.2.6 Genetic Improvement Programming (GIP)................170

5.3 Genetic Programming: Approach in Modeling
Water Flows... 173

5.3.1 Genetic Operations...175
5.3.2 Use of GP in Water Flows Modeling...........................177
5.3.3 Applications in Ocean Engineering.............................178
5.3.4 Applications in Hydrology...185

References... 191

Chapter 6	 Memetic Algorithms	 195
Introduction.. 195
6.1 Basic Concept of Memetic Algorithm................................... 196

6.1.1 Basic Model of a Memetic Algorithm..........................197
6.1.2 The Development of MAs...198
6.1.3 The Need for Memetic Algorithms..............................200
6.1.4 Recombination..204

6.2 General Structure of Memetic Algorithms........................... 208

ix

6.3 Memetic Computing Specific Implementations.................. 215
6.3.1 MAs in Discrete Optimization......................................216
6.3.2 MAs in Continuous Optimization...............................217
6.3.3 MAs in Multimodal Optimization...............................220
6.3.4 MAs in Large Scale Optimization................................221
6.3.5 MAs in Constrained Optimization..............................222
6.3.6 MAs in Multi-Objective Optimization........................224
6.3.7 MAs in the Presence of Uncertainties..........................226

6.4 Algorithmic Extensions of Memetic Algorithms................. 230
6.4.1 Adaptive Memetic Algorithms.....................................231
6.4.2 Complete Memetic Algorithms....................................233

6.5 Design Issues.. 234
6.6 Applications of Memetic Algorithms.................................... 235
References... 239

Chapter 7	 Constraint Handling	 241
Introduction.. 241
7.1. Constraint Handling Techniques.. 242

7.1.1. Elimination...242
7.1.2. Penalty Functions..243
7.1.3. Dominance-Based Methods...248
7.1.4. Other Techniques...249

7.2. Current Constraint-Handling Techniques.......................... 251
7.2.1. Feasibility Rules...251
7.2.2. Stochastic Ranking..262
7.2.3. ε-constrained Method...263
7.2.4. Novel Penalty Functions...267
7.2.5. Novel special operators..271
7.2.6. Multi-objective concepts...274
7.2.7. Ensemble of constraint-handling techniques............279

7.3. Approaches to Handling Constraints.................................. 280
7.3.1. Penalty Functions..281
7.3.2. Repair Functions..284
7.3.3. Restricting Search to the Feasible Region..................285
7.3.4. Decoder Functions...286

x

7.4 Application Example: Graph Three-Colouring................... 288
7.4.1. Indirect Approach...288
7.4.2. Mixed Mapping Direct Approach...............................290

References... 292

	 INDEX	 295

Evolutionary computing is particularly suited to the adaptation
(learning) of neural and fuzzy systems. Evolutionary computing is
a versatile problem solver inspired by natural evolution. It models
the critical elements of biological evolution and investigates the
space of solution through gene inheritance, mutation and selection
of the most suitable candidate solutions. Evolutionary computing
is a significant field of study for adaptation and optimization. The
approach actually originated from the Darwin concept of natural
selection, also known as the survival of the fittest. Evolutionary
computing has seen a significant increase in both theoretical and
industrial applications over the last decade. Its scope has grown
beyond its original sense of “biological evolution” to a broad range
of nature-inspired computational algorithms and techniques, covering
evolutionary, neural, ecological, social and economic computing, etc.,
in a unified context. In the Darwinian model, information gained by
an individual cannot be transmitted to its genome and consequently
passed on to the next generation. The synthesis of learning and
evolution, represented by evolving neural networks, is more adaptable
to a changing world. The interaction of learning with evolution
accelerates evolution, which can take the form of the Lamarckian
evolution or be based on the Baldwin effect. The Lamarckian strategy
enables the inheritance of inherited traits in the genetic code of an

PREFACE

xii

individual’s life so that the offspring will inherit its characteristics.
Today, many research topics in evolutionary computing are not
inherently “evolutionary”.
The current book provides an overview of some recent advances
in evolutionary computation. It concentrates on evolutionary
computing, which is viewed as one of the most promising paradigms
of computational intelligence. It covers a wide range of topics in
optimization, learning and design using evolutionary approaches
and techniques, and theoretical results in the computational time
complexity of evolutionary algorithms. The dialects of evolutionary
algorithms include genetic algorithms, evolutionary strategies,
genetic programming, particle swarm optimization, ant colony
optimization, artificial immune systems, estimation of distribution
algorithms, differential evolution, and memetic algorithms. These
evolutionary methods have proven their success on various hard and
complex optimization problems. During this time, new metaheuristic
optimization approaches, like evolutionary algorithms, genetic
algorithms, swarm intelligence, etc., were being developed and new
fields of usage in artificial intelligence, machine learning, combinatorial
and numerical optimization, etc., were being explored. Some issues
related to future development of evolutionary computation are also
discussed. Presenting some new theoretical as well as practical aspects
of evolutionary computation, this book will be of great value to
undergraduates and graduate students in computer science.

INTRODUCTION

In computer science, evolutionary computation is a family
of algorithms for global optimization inspired by biological
evolution, and the subfield of artificial intelligence and soft
computing studying these algorithms. In technical terms, they are
a family of population-based trial and error problem solvers with
a met heuristic or stochastic optimization character.

In evolutionary computation, an initial set of candidate solutions
is generated and iteratively updated. Each new generation is
produced by stochastically removing less desired solutions, and
introducing small random changes. In biological terminology, a
population of solutions is subjected to natural selection (or artificial
selection) and mutation. As a result, the population will gradually
evolve to increase in fitness, in this case the chosen fitness function
of the algorithm.

1
INTRODUCTION TO EVOLUTIONARY
COMPUTATION

C
H

A
PT

ER

Evolutionary Computing2

Evolutionary computation techniques can produce highly
optimized solutions in a wide range of problem settings, making
them popular in computer science. Many variants and extensions
exist, suited to more specific families of problems and data
structures. Evolutionary computation is also sometimes used in
evolutionary biology as an in silico experimental procedure to
study common aspects of general evolutionary processes.

1.1 OVERVIEW OF EVOLUTIONARY
COMPUTATION

Surprisingly enough, the idea to apply Darwinian principles
to automated problem solving originates from the fifties, long
before the breakthrough of computers. During the sixties three
different implementations of this idea have been developed at
three different places. In the USA Fogel introduced evolutionary
programming, while Holland called his method a genetic
algorithm. In Germany Rechenberg and Schwefel invented
evolution strategies. For about 15 years these areas developed
separately; it is since the early nineties that they are envisioned
as different representatives (“dialects”) of one technology, called
evolutionary computing. It was also in the early nineties that a
fourth stream following the general ideas has emerged – genetic
programming. The contemporary terminology denotes the whole
field by evolutionary computing and considers evolutionary
programming, evolution strategies, genetic algorithms, and
genetic programming as sub-areas.

1.1.1 Evolutionary Computation

Evolutionary computation (EC) is a series of stochastic
optimization algorithms that are inspired originally by natural
selection and “survival of the fittest” and further developed
by ant colony optimization, artificial immune systems, partial
swarm intelligence, and others. From the algorithmic taxonomy
viewpoint, EC takes the probability theory as its philosophy and

Introduction to Evolutionary Computation 3

methodology. The fundamentals of its search mechanism are
established in the basics of probability theory. The system behavior
of an EC algorithm can therefore be presented as a probability
transition matrix, and its dynamic optimization process can be
described as a Markov chain. However, other theoretical analysis
methods from deterministic theory, such as fixed point theory,
are also introduced into the EC in order to study its fundamental
aspects, such as efficiency, effectiveness, and convergence.
Drawing inspiration from chaos theory and its ergodicity, a chaotic
evolution algorithm has been recently proposed and studied. This
is very different from the conventional deterministic and stochastic
optimization algorithms. Chaotic evolution can be considered as
an implementation of the chaotic optimization algorithm, whose
theoretical fundamental is supported by chaotic philosophy and
methodology.

There are two components in EC from the viewpoint of the
algorithm design framework. One is an iterative process, and
the other is one or several evolutionary operations that are
implemented by a variety of methods. Algorithm selection and
parameter settings are two critical issues, when we apply EC to an
optimization problem. The objective of the former issue is to answer
the question as to which is the best EC algorithm to solve a concrete
problem. The latter one seeks to obtain the best parameter setting
of an EC algorithm to obtain a better optimization performance.

What is an evolutionary algorithm?

The common underlying idea behind all these techniques is
the same: given a population of individuals, the environmental
pressure causes natural selection (survival of the fittest) and
hereby the fitness of the population is growing. It is easy to see
such a process as optimization. Given an objective function to be
maximized we can randomly create a set of candidate solutions and
use the objective function as an abstract fitness measure (the higher
the better). Based on this fitness, some of the better candidates are
chosen to seed the next generation by applying recombination and/
or mutation. Recombination is applied to two selected candidates,

Evolutionary Computing4

the so-called parents, and results one or two new candidates,
the children. Mutation is applied to one candidate and results in
one new candidate. Applying recombination and mutation leads
to a set of new candidates, the offspring. Based on their fitness
these offspring compete with the old candidates for a place in the
next generation. This process can be iterated until a solution is
found or a previously set time limit is reached. Let us note that
many components of such an evolutionary process are stochastic.
According to Darwin, the emergence of new species, adapted to
their environment, is a consequence of the interaction between
the survival of the fittest mechanism and undirected variations.
Variation operators must be stochastic, the choice on which pieces
of information will be exchanged during recombination, as well as
the changes in a candidate solution during mutation, are random.

On the other hand, selection operators can be either deterministic,
or stochastic. In the latter case fitter individuals have a higher
chance to be selected than less fit ones, but typically even the
weak individuals have a chance to become a parent or to survive.
The general scheme of an evolutionary algorithm can be given as
follows.

Let us note that this scheme falls in the category of generate-and-
test, also known as trialand-error, algorithms. The fitness function
represents a heuristic estimation of solution quality and the search
process is driven by the variation operators (recombination and
mutation creating new candidate solutions) and the selection
operators. Evolutionary algorithms (EA) are distinguished within
in the family of generate-and-test methods by being population

Introduction to Evolutionary Computation 5

based, i.e. process a whole set of candidate solutions and by the use
of recombination to mix information of two candidate solutions.
The aforementioned “dialects” of evolutionary computing follow
the above general outlines and differ only in technical details.

1.1.2 Critical issues

There are some issues that one should keep in mind when designing
and running an evolutionary algorithm. These considerations
concern all of the “dialects”, and will be discussed here in general,
without a specific type of evolutionary algorithm in mind. One
crucial issue when running an EA is to try to preserve the genetic
diversity of the population as long as possible. Opposite too
many other optimization methods, EAs use a whole population
of individuals – and this is one of the reasons for their power.
However, if that populations starts to concentrate in a very
narrow region of the search space, all advantages of handling
many different individuals vanish, while the burden of computing
their fitnesses remains. This phenomenon is known as premature
convergence. There are two main directions to prevent this: a
priori ensuring creation of new material, for instance by using a
high level of mutation or a posteriori manipulating the finesses
of all individuals to create a bias against being similar, or close
to, existing candidates. A well-known technique is the so-called
niching mechanism.

Exploration and exploitation are two terms often used in EC.
Although crisp definitions are lacking there has been a lot of
discussion about them. The dilemma within an optimization
procedure is whether to search around the best-so-far solutions
(as their neighborhood hopefully contains even better points) or
explore some totally different regions of the search space (as the
bestso-far solutions might only be local optima). An EA must be
set up in such a way that it solves this dilemma without a priori
knowledge of the kind of landscape it will have to explore. The
exploitation phase can sometimes be “delegated” to some local
optimization procedure, whether called as a mutation operator,
or systematically applied to all newborn individuals, moving

Evolutionary Computing6

them to the nearest local optimum. In the latter case, the resulting
hybrid algorithm is called a memetic algorithm

In general, there are two driving forces behind an EA: selection
and variation. The first one represents a push toward quality and
is reducing the genetic diversity of the population. The second
one, implemented by recombination and mutation operators,
represents a push toward novelty and is increasing genetic
diversity. To have an EA work properly, an appropriate balance
between these two forces has to be maintained. At the moment,
however, there is not much theory supporting practical EA design.

1.1.3 Components of Evolutionary Algorithms

Representation

Solving a given problem with an EA starts with specifying a
representation of the candidate solutions. Such candidate solutions
are seen as phenotypes that can have very complex structures.
Applying variation operators directly to these structures might not
be possible, or easy. Therefore these phenotypes are represented
by corresponding genotypes. The standard EC machinery consists
of many off-the-shelf variation operators acting on a specific
genotype space, for instance bit-strings, real-valued vectors,
permutations of integers, or trees. Designing an EA thus often
amounts to choosing one of the standard representations with
the corresponding variation operators in mind. However, one
strength of EAs is their ability to tackle any search space provided
that initialization and variation operators are available. Choosing
a standard option is, therefore, not necessary.

Fitness or evaluation function

Fitness-based selection is the force that represents the drive toward
quality improvements in an EA. Designing the fitness function
(or evaluation function) is therefore crucial. The first important

Introduction to Evolutionary Computation 7

feature about fitness computation is that it represents 99% of the
total computational cost of evolution in most real-world problems.
Second, the fitness function very often is the only information
about the problem in the algorithm: Any available and usable
knowledge about the problem domain should be used.

Representation dependent

Initialization

The initial population is usually created by some random
sampling of the search space, generally performed as uniformly
as possible. However, in some cases, uniform sampling might
not be well-defined, e.g. on parse-tree spaces, or on unbounded
intervals for floating-point numbers. A common practice also is to
inoculate some known good solutions into the initial population.
But beware that no bias is better than a wrong bias!

Crossover

Crossover operators take two (or more) parents and generate
offspring by exchange of information between the parents. The
underlying idea to explain crossover performance is that the good
fitness of the parents is somehow due to precise parts of their genetic
material (termed building blocks), and the recombining those
building blocks will result in an increase in fitness. Nevertheless,
there are numerous other ways to perform crossover. For instance,
crossing over two vectors of floating-points values can be done by
linear combination (with uniformly drawn weights) of the parent’s
values. The idea is that information pertaining to the problem
at hand should be somehow exchanged. Note that the effect of
crossover varies from exploration when the population is highly
diversified to exploitation when it starts to collapse into a small
region of the search space.

Evolutionary Computing8

Mutation

Mutation operators are stochastic transformations of an individual.
The usual compromise between exploration and exploitation must
be maintained: large mutations are necessary from theoretical
reasons (it ensures the ergodicity of the underlying stochastic
process), that translate practically (it is the only way to reintroduce
genetic diversity in the end of evolution); but of course too much
too large mutation transform the algorithm into a random walk –
so most mutations should generate offspring close to their parents.
There is no standard general mutation, but general trends are to
modify the value of a component of the genotype with a small
probability (e.g. flip one bit of a bitstring, or, in case of real-valued
components, add zero-mean Gaussian noise with carefully tuned
standard deviation).

The historical debate

There has long been a strong debate about the usefulness of
crossover. The GA community considers crossover to be the
essential variation operator, while mutation is only a background
necessity. The general agreement nowadays is that the answer is
problem-dependent: If there exists a “semantically meaningful”
crossover for the problem at hand, it is probably a good idea to
use it. But otherwise mutation alone might be sufficient to find
good solutions – and the resulting algorithm can still be called an
Evolutionary Algorithm.

1.1.4 Representation-independent

Artificial Darwinism

Darwin’s theory states that the fittest individuals reproduce and
survive. The evolution engine, i.e. the two steps of selection (of
some parents to become genitors) and replacement (of some
parents by newborn offspring) are the artificial implementations

Introduction to Evolutionary Computation 9

of these two selective processes. They differ in an essential way:
during selection step, the same parent can be selected many times;
during replacement step, each individual (among parents and
offspring) either is selected, or disappears forever. Proportional
selection (aka roulette-wheel) has long been the most popular
selection operator: each parent has a probability to be selected that
is proportional to its fitness. However, the difficulty is to scale the
fitness to tune the selection pressure: even the greatest care will
not prevent some super-individual to take over the population
in a very short time. Hence the most widely used today is
tournament selection: to select one individual, T individuals are
uniformly chosen, and the best of these T is returned. Of course,
both roulette-wheel and tournament repeatedly act on the same
current population, to allow for multiple selection of the very best
individuals.

There are two broad categories of replacement methods: either
the parents and the offspring “fight” for survival, or only some
offspring are allowed to survive. Denoting by µ (resp. λ) the
number of parents (resp. offspring) as in ES history the former
strategy is called (µ + λ) and the latter (µ, λ). When µ = λ, the
comma strategy is also known as generational replacement:
all offspring simply replace all parents. When λ = 1, the (plus!)
strategy is then termed steady-state and amounts to choosing one
parent to be replaced.

An important point about the evolution engine is the monotonicity
of the best fitness along evolution: for instance, ES plus strategies
are elitist, i.e. ensure that the best fitness can only increase from
one generation to another, while the comma strategies are not
elitist – though elitism can be a posteriori added by retaining the
best parent when a decrease of fitness is foreseen.

Termination criterion

There has been very few theoretical studies about when to stop an
Evolutionary Algorithm. The usual stopping criterion is a fixed
amount of computing time (or, almost equivalently, of fitness

Evolutionary Computing10

computations). A slightly more subtle criterion is to stop when a
user-defined amount of time has passed without improvement of
the best fitness in the population.

Setting the parameters

EAs typically have a large number of parameters (e.g. population
size, frequency of recombination, mutation step-size, selective
pressure, . . .). The main problem in this respect is that even the
individual effect of one parameter is often unpredictable, let
alone the combined influence of all parameters. Most authors
rely on intensive trials (dozens of independent runs for each
possible parameter setting) to calibrate their algorithms – an
option that is clearly very time consuming. Another possibility is
to use longexisting statistical techniques like ANOVA. A specific
evolutionary trend is to let the EA calibrate itself to a given
problem, while solving that problem

Result analysis

As with any randomized algorithm, the results of a single run of
an EA are meaningless. A typical experimental analysis will run
say over more than 15 independent runs (everything equal except
the initial population), and present averages, standard deviations,
and T-test in case of comparative experiments. However, one
should distinguish design problems, where the goal is to find at
least one very good solution once, from day-to-day optimization
(e.g. control, scheduling,. . .), where the goal is to consistently find
a good solution for different inputs. In the design context, a high
standard deviation is desirable provided the average result is not
too bad. In the optimization context, a good average and a small
standard deviation are mandatory.

Introduction to Evolutionary Computation 11

1.2 THEORY AND APPLICATIONS OF
EVOLUTIONARY COMPUTATION

Evolutionary computation is a powerful problem solver inspired
from natural evolution. It models the essential elements of biological
evolution and explores the solution space by gene inheritance,
mutation, and selection of the fittest candidate solutions. The
dialects of evolutionary algorithms include genetic algorithms,
evolutionary strategies, genetic programming, particle swarm
optimization, ant colony optimization, artificial immune systems,
estimation of distribution algorithms, differential evolution, and
memetic algorithms. These evolutionary methods have proven
their success on various hard and complex optimization problems.

1.2.1 Discrete Dynamics in Evolutionary Computation and
Its Applications

Evolutionary computation (EC) is considered to be a natural and
artificial system with discrete dynamics. EC has been successfully
applied to various real-world problems for optimization purposes.
The aim of this special issue is to publish original and high-quality
articles related to discrete dynamics in EC and its applications.

This special issue was opened in November of 2015 and closed
in February of 2016. There were a total of 29 submissions. All of
them were peer-reviewed according to the high standards of this
journal and only 5 of them were accepted for publication, which
gave important developments in discrete dynamics in EC and its
applications. The guest editors of this special issue hope that the
presented results could outline new ideas for further studies.

In EC, selection or mating is one of the most important operations.
“A New Adaptive Hungarian Mating Scheme in Genetic
Algorithms,” C. Jung et al. suggested an adaptive mating scheme
from Hungarian mating schemes, which consist of maximizing
the sum of mating distances, minimizing the sum, and random
matching. They presented an adaptive algorithm to elect one of

Evolutionary Computing12

these Hungarian mating schemes. Each mated pair of individuals
voted for the next generation mating scheme. The distance
between parents and the distance between parent and offspring
were considered during voting. Two well-known combinatorial
optimization problems, the traveling salesman problem and the
graph bisection problem, which are NP-hard, were considered
to show the effectiveness of their adaptive method. Since various
factors affect the fluctuation of network traffic, accurate prediction
of network traffic is considered as a challenging task of the time
series prediction process. “A Network Traffic Prediction Model
Based on Quantum-Behaved Particle Swarm Optimization
Algorithm and Fuzzy Wavelet Neural Network,” K. Zhang et al.
proposed a novel prediction method of network traffic based on
quantum-behaved particle swarm optimization (QPSO) algorithm
and fuzzy wavelet neural network (FWNN). The authors
introduced QPSO and presented the structure and operation
algorithms of FWNN. The parameters of FWNN were optimized
by a QPSO algorithm. This optimized QPSO-FWNN was applied
to the prediction of network traffic successfully when compared to
different prediction models such as BP neural network, RBF neural
network, fuzzy neural network, and FWNN-GA neural network.

The exponential growth in data traffic due to the modernization
of smart devices has resulted in the need for a high-capacity
wireless network in the future. To successfully deploy 5G
networks, we should be able to handle the growth in the data
traffic. The increasing amount of traffic volume puts excessive
stress on the important factors of the resource allocation methods
such as scalability and throughput. “A Genetic Algorithm with
Location Intelligence Method for Energy Optimization in 5G
Wireless Networks,” R. Sachan et al. defined network planning
as an optimization problem with the decision variables such as
transmission power and transmitter location in 5G networks,
leading to interesting implementation using some heuristic
approaches such as differential evolution and real-coded genetic
algorithm (RCGA). The authors modified an RCGA-based method
to find the optimal configuration of transmitters by not only

Introduction to Evolutionary Computation 13

offering optimal coverage of underutilized transmitters, but also
optimizing the amounts of power consumption.

1.2.2 Using Evolutionary Computation on GPS Position
Correction

Global positioning System, GPS, has been successfully applied
in various areas such as navigation, meteorology, military tasks,
mapping, tour design, path tracking tools, and more. Recently
many mobile devices have been equipped with embedded GPS
such as tablet PCs and smart phones. They provide maps to help
users not to lose their way or search the shortest route to their
destination.

Many techniques are proposed to improve GPS position accuracy.
A commonly used technique is to use relative positioning.
Relative positioning methods, including static, rapid static,
pseudokinematic, kinematic, and real-time kinematic, have
proved their ability of improving GPS accuracy. In, Berber et al.
claimed that pseudokinematic technique produces closest results,
which could significantly reduce the error to 2 centimeters.

Differential correction is an effective method to improve GPS
positional accuracy. A GPS receiver with such technique is called
dGPS. A typical differential correction requires a reference
stationary receiver at a known location. Figure 1 shows a typical
scenario of the dGPS environment. The exact location information
of reference stationary receiver is known. It receives GPS signals
and calculates its position. Under the assumption that close
GPS receivers suffer similar noises and after evaluating the
difference between the exact known position information and
the calculated position information, the reference stationary
receiver communicates with roving GPS receivers to correct their
position information. dGPS can be used to eliminate affections
of ionospheric and tropospheric delay, ephemeris error, and
satellite clock error. However, when the error is due to multipath
error, or poor satellite measurement geometry, the improvement
effectiveness of dGPS technique is relatively low.

Evolutionary Computing14

Figure 1: An illustration of dGPS scenario. The precise location of the
reference stationary receiver is known.

Figure 2: A consumer-grade GPS receiver at a location which has exact
known location.

This technique is based on differential correction and genetic
programming (GP). GP will be used to generate a correction
function from NMEA information derived from the GPS receiver
at the known location and the GPS receiver which needs to be
corrected. The receiver which requires to be corrected will apply
the function to obtain its corrected location information.

Introduction to Evolutionary Computation 15

1.2.3 Layered Architecture Genetic Programming

Genetic programming is a research area of evolutionary
computation. It has been proved that GP is capable of finding
a solution efficiently. GP, like other techniques in evolutionary
computation, generates possible solutions—in this case,
correction functions—randomly for the given problem under
given constrains. The fitness value which of an individual is used
to measure the degree of the individual fitting with the given
problem is determined by a predefined fitness function. The set
with fixed size of individuals is named a population. In order to
produce new solutions, genetic operators such as crossover and
mutation are applied on selected individuals, called parents,
to create offspring and mutant. Comparing the fitness degree
of those offspring and mutant with parents, which have higher
fitness value, will be kept as survived individuals. All survived
individuals will replace the original population. A generation is
finished once the original population is fully replaced. After a
number of generations, evolutionary process completes and the
individual with highest fitness is regarded as the result.

We use the improved version of genetic programming called
layered architecture genetic programming, LAGEP. LAGEP is only
usable with functional expression individuals. It utilizes the layer
architecture to arrange populations. Populations in the same layer
evolve independently. Once every population finishes evolutionary
progress, the best individual of each population evaluates with
its training instances, T, to generate a series of numerical results.
The number of results is equal to |T|. Combining those values,
a new training set T′ having |T| instances could be produced.
Supporting that the number of populations in the layer is n, T′
will be an n-dimensional training set. The final layer of LAGEP
contains one population only. The individual produced by this
population is the evolutionary result. The flowchart of LAGEP is
shown in Figure 3.

Evolutionary Computing16

Figure 3: The flowchart of LAGEP.

Training instances are constructed by raw information obtained
from two GPS receivers and the known location. GPS receivers
are capable of transferring different types of NMEA interpreted
sentences. In this work, we used GPGGA to represent position
information, as shown in Table 1. The third, fifth, tenth, and
twelfth field are symbols that can be harmlessly eliminated. The
value of sixth field indicates GPS quality which is fixed. The
thirteenth and fourteenth are usable when dGPS is available. The
fifteenth is the checksum used to identify correctness of received
data. In conclusion, 8 out of 15 fields can be removed. Two GPS
receivers construct a 13-feature training instance after eliminating
a redundant UTC time feature since those GPS receivers would
have identical UTC time. Those features with longitude and
latitude of the known location form a 15-feature training instance,

Introduction to Evolutionary Computation 17

as shown in Table 2. The target value is either known latitude or
known longitude to which we intent to correct GPS receiver as
close as possible.

Table 1: Fifteen fields of GPGGA sentence.

Number Meaning

1 UTC of position
2 Latitude
3* N or S
4 Longitude
5* E or W
6* GPS quality indicator

1: invalid
2: GPS fix
3: dGPS fix

7 Number of satellites in use
8 Horizontal dilution of position
9 Antenna altitude above/below mean sea

level (geoid)
10* Meters (antenna height unit)
11 Geoidal separation
12* Meters (units of geoidal separation)
13* Age in seconds since last update from dif-

ferential reference station
14* Differential reference station ID
15* Checksum
Removed features.

Table 2: Features of a training instance.

Number Meaning

Target value Known latitude/known longitude
1–7 $GPGGA from GPS receiver 1 as shown in Table 1
8–13 $GPGGA from GPS receiver 2 as shown in Table 1

without the UTC of position

Evolutionary Computing18

14 Known latitude (where GPS receiver 1 is located)
15 Known longitude (where GPS receiver 1 is located)

1.2.4 Algorithmic Mechanism Design of Evolutionary
Computation

We consider algorithmic design, enhancement, and improvement
of evolutionary computation as a mechanism design problem. All
individuals or several groups of individuals can be considered
as self-interested agents. The individuals in evolutionary
computation can manipulate parameter settings and operations
by satisfying their own preferences, which are defined by an
evolutionary computation algorithm designer, rather than by
following a fixed algorithm rule. Evolutionary computation
algorithm designers or self-adaptive methods should construct
proper rules and mechanisms for all agents (individuals) to
conduct their evolution behaviour correctly in order to definitely
achieve the desired and preset objective(s). As a case study, we
propose a formal framework on parameter setting, strategy
selection, and algorithmic design of evolutionary computation by
considering the Nash strategy equilibrium of a mechanism design
in the search process. The evaluation results present the efficiency
of the framework. This primary principle can be implemented in
any evolutionary computation algorithm that needs to consider
strategy selection issues in its optimization process. The final
objective of our work is to solve evolutionary computation design
as an algorithmic mechanism design problem and establish its
fundamental aspect by taking this perspective.

Game theory is the methodology used to research strategic
interaction among several self-interested agents. Some important
concepts, such as type, strategy, and utility, are useful to an
understanding of the theoretical framework of game theory.
Agent type indicates the preferences of the agent over different
outcomes in a game. A strategy is a plan or a rule, which defines
the actions that an agent will select in a game. The utility of an
agent determines different allocations and payments under its and

Introduction to Evolutionary Computation 19

other agents’ types and strategy profiles; for example, an agent
rationality in game theory is to implement the expected utility to
be maximum. An agent will select a strategy that maximizes its
expected utility, given its preferences with regard to outcomes,
beliefs about the strategies of other agents, and structure of the
game.

Nash equilibrium (NE) is one of the solution concepts that game
theory provides to compute outcomes of a game from self-interested
agents under certain assumed information that is available to
each agent, such as agents types and strategies. It states that every
agent in a game should select a maximum utility strategy taking
account of other agents’ strategies so as to achieve equilibrium.
The fundamental aspect of game theory lies in the Nash solution
concept which, however, requests stronger assumptions on agents’
information (type, strategy, utility, etc.). There are some related
solution concepts, such as dominant strategy and Bayesian-Nash
strategy in game theory.

The history of mechanism design can be traced back to the 1920s
to the 1930s, when there was an economic controversy concerning
the socialist economic system. Liberal economists, such as von
Mises and von Hayek, believed that socialist economics cannot
obtain effective information to make their economic system
operate efficiently. However, other economists, such as Lange,
thought socialist economics can solve the problem of requesting
more information about economic operation so as to promote
efficient resource allocation. The contention of this controversy
focuses on the information issue, which is also a core problem
of mechanism design. Hurwicz established the fundamentals of
mechanism design theory from the information viewpoint, which
proposed a common framework to compare the issue of efficiency
among different economic systems.

Mechanism design theory can be considered as a comprehensive
utilization of game theory and social choice theory, which is
referred to as principal agent theory and implementation theory
as well. Its primary philosophy is to design a series of rules to
implement the trust between principal and agent and to ensure the

Evolutionary Computing20

mechanism runs well under an asymmetric information condition.
The fundamental issues of mechanism design refer to (1) whether
there is a set of rules in a game and (2) how to implement these
rules. The objective of mechanism design is to achieve a preset
objective that a game establishes, when all agents act for their own
benefit with their private information.

When we make reference to individuals in EC, they are neither
rational nor self-interested participants in an EC algorithm. The
individuals just follow the fixed rules of the EC algorithm. The
design principle of an EC algorithm should be more reasonable
based on this assumption, rather than merely simulating natural
phenomenon in an iterative process of evolution. There are
several issues that need to be discussed in this context: (1) what
kind of information should be involved in mechanism design of
EC algorithm; (2) how to distinguish principal(s) and agent(s) in a
game of EC algorithm design; (3) which solution concept should
be implemented in this game; (4) how to define the expected utility
function for an established mechanism or model; (5) whether the
established mechanism or model is the optimal one; and (6) what
are the characteristics and properties of designed game induced
by EC. After modelling EC as a game, we can introduce theoretical
principles of game theory and microeconomic theory into the
fundamentals of EC for designing, enhancing, and improving
more efficient and effective EC algorithm. This is the primary
motivation and original contribution of this work.

1.2.5 Evolutionary Computation Meets Game Theory and
Mechanism Design

Game theory attempts to determine the outcome of a game with a
set of given strategies from self-interested agents, and mechanism
design seeks to design the strategies of agents to obtain the
desired outcome in a game. The research objectives of game
theory and mechanism design are to find outcomes corresponding
to strategies and to design strategies under a desired outcome,
respectively. However, EC tries to find the optimal solution(s) of

Introduction to Evolutionary Computation 21

an optimization problem. These three disciplines, game theory,
mechanism design, and EC, are quite different with regard to
research philosophies, approaches, or objectives.

Game theory and mechanism design have been introduced into
some fields, such as distributed artificial intelligence, resource
allocation, and scheduling. It is easy to establish concrete models of
agent and utility function by using game theory in corresponding
applications. Mechanism design was also reported in computation
related topics and algorithmic design problems, which presents
complexity bounds and worst case approximation. These studies
focus definitely on the same viewpoint, that is, a mechanism
design problem of deterministic optimization. These works do not
relate to EC and do not pursue our proposal, that is, an algorithmic
mechanism design of the EC, which is a stochastic optimization
method rather than deterministic optimization one.

From the related literatures and to the best of our knowledge, EC
can act as an optimization tool to find the best response, equilibrium
of strategy in game theory and mechanism design. Some EC
algorithms, such as genetic algorithm, genetic programming, and
coevolution, are applied to game theory problems to obtain the
best strategy or parameters. Scant literature reports having applied
the philosophy and methodology of game theory or mechanism
design to the fundamental aspects of EC.

1.2.6 Algorithmic Mechanism Design of Evolutionary
Computation: A Strategy Equilibrium Implementation
Problem

Motivation of the Proposal

Conventional EC algorithm as a search method is applied to an
optimization problem with a set of fixed algorithm parameters
and operations. Although the inspiration of EC seeks to find
adaptive mechanisms in its search scheme, the fixed parameter
setting restricts its optimization capability. From the system theory

Evolutionary Computing22

viewpoint, the whole EC algorithm system can be considered as a
control system and its parameters decide the system behaviour. If
we aim to obtain the best optimization performance, the parameters
of EC algorithm should be controllable, and the relationship
between parameter settings and optimization performance should
be observable. However, because the EC algorithm belongs to
stochastic method, such deterministic methods (e.g., automatic
control method) have not been applied to the EC area in order to
study on its theoretical fundamentals.

There are primary three research directions for improving
optimization performance of an EC algorithm. The first is
obtaining information from a fitness landscape, such as fitness
landscape approximation, and using the information to conduct
a special operation or to develop new search schemes for tuning
the parameter of an EC algorithm. The second is developing new
mechanisms in extant EC algorithm to enhance its performance
or to implement the parameter adaptive mechanism. Individuals
in conventional EC algorithms or in some population-based
optimization algorithm are common elements, which present
the search space and structure aspect of an optimized problem.
Individuals search for the optimum/optima with the information
shared between one another, so they are influenced each by the
other from one generation to the next. They operate under the
same evolutionary operations with fixed operation rates from
parameter settings in a certain EC algorithm. This work scheme
restricts the EC algorithm search capability.

If we consider individuals in EC algorithm as agents, the EC
algorithm therefore can be considered as a game, whose outcome
is optimal solution(s) or some other metric(s). Furthermore, these
agents play the game (i.e., EC algorithm) with self-interested
preference and conduct optimization strategies with their own
preferences. An EC algorithm designer can play this game by using
noncooperative or cooperative game concepts. The objective of the
EC algorithm design is to find optimum/optima by designing a
proper strategy for these individuals (i.e., agents). This description
can be abstracted as a mechanism design problem. That is, design,

Introduction to Evolutionary Computation 23

parameter setting, and operation selection of the EC algorithm
can be decided by the individuals, and the desired outcome is to
find the final optimum/optima. EC algorithm can be modelled as
a game, that is, an agent system, so the corresponding theoretical
fundamentals of agent system, game theory, or mechanism design
can be brought to bear on the study of the fundamental theoretical
aspects of EC algorithm.

1.2.7 Strategy Equilibrium Implementation in
Evolutionary Computation Algorithm

We propose that the design of an EC algorithm can be considered
as a mechanism design problem. Based on these concepts,
we establish a formal EC algorithm framework by using the
equilibrium concept and solve this mechanism design problem by
finding the Nash strategy equilibrium in EC algorithm.

Agent and Its Type

An agent is an abstract concept in game theory. It refers to a
participant in a game who will make strategic decisions based
on its type. Individuals in EC are definitely considered as agents
under the basic philosophy of our proposal. In game theory, an
agent is treated as being self-interested. However, in EC, we
consider it as a more rational one that allows itself to select certain
operations, even though its utility will become low. For example,
the simulated annealing mechanism in EC is such a case, if the
EC algorithm allows individuals to be replaced by their offspring
with worse fitness. The agent in a game can determine its own
behaviour, so the individuals of EC should follow this rule by
encoding operation types and their rates in themselves. In the EC,
the type of an agent can be considered as information, such as
fitness and fitness landscape, or some metrics of the evolution.

Evolutionary Computing24

Strategy Equilibrium

The agent in EC algorithm is the individual, which is a participant
in a game of EC. Each individual can decide their own strategy,
that is, operation and operation rate, by their utilities and types,
which can be measured as fitness improvement information
or other algorithm evaluation metrics. All the EC algorithm
implementations can be abstracted as a mechanism design
problem, whose equilibrium concept is a solution of the problem.
The objective of mechanism design is to implement some strategy
equilibrium concepts in a game; however, it is an optimization
problem, in which equilibrium implementation can lead to the
best performance and fast convergence of EC algorithms. We
initially discuss, design, and evaluate our proposed framework
by implementing Nash equilibrium, but it is not limited to within
Nash equilibrium.

A Case Study: Nash Strategy Equilibrium-Based Differential
Evolution Algorithm

After we introduce the optimization process of EC as an algorithmic
mechanism design problem, there are a variety of ways to
implement EC algorithms by designing concrete implementations
of a game. There are two design issues that should be concentrated
on especially. One is the definition of strategy; the other is
equilibrium calculation. In Nash strategy equilibrium-based DE,
operations and their parameters are coded with each individual,
so that the individual can select their own operation and rate.
Mutation method, crossover rate, and scale factor rate are three
primary parameter settings in DE. For simplifying the design
objectives, we design the algorithm by splitting individuals into
two groups (Group A and Group B) with equal population size
and strategy sets within the following criteria:

Introduction to Evolutionary Computation 25

1.3 ANALYSES AND DISCUSSIONS

The objective of this study is not only to find a method for
designing, enhancing, and accelerating EC from the viewpoint of
an algorithmic mechanism design problem, but also to establish
EC fundamental aspects by borrowing from game theory and
mechanism design.

There are three parallel ways to research and consider our world
from the philosophies of determinism, probability, and chaos. In the
optimization field, there are also three categories of optimization
method from the corresponding philosophy and methodology, that
is, deterministic, stochastic, and chaotic optimization methods. EC
belongs to the stochastic one, and its fundamental aspect should
be described from the probability viewpoint. This restricts the
fundamental development of EC and explanation capability of
its algorithms. This study tries to use fundamentals from game
theory and mechanism design (deterministic theory) to explain
EC (stochastic algorithm) and establish its fundamental contents.

1.3.1 Prediction of Drifter Trajectory Using Evolutionary
Computation

The technology for predicting particle trajectories in the ocean
can be used in a variety of ways. For example, it can provide a
method to track objects in the ocean during a distress situation
or an accident through the last observed time and location data,
as well as predicting the path of icebergs floating at the sea. It
also presents the possibility of tracing pollutants in the event of
accidents such as the 2010 Deepwater Horizon oil spill in the Gulf
of Mexico; as a result, numerous studies have been conducted on
the matter. Conventionally, a specific equation is used to predict
the movement of an object, and the constant parameters used
are based on previously studied values. In this study, we set this
equation in a form suitable for parameter optimization irrespective
of fluid dynamics and predicted the particle trajectory by setting
the constant parameter used here to the optimal value through

Evolutionary Computing26

evolutionary computation. This is a novel prediction method, and
it is significant in that it suggests a new method of designing a
prediction model.

Figure 4: Surface drifters

1.3.2 A Review of Gait Optimization Based on Evolutionary
Computation

Compared to wheeled robots, legged robots usually possess
superior mobility in uneven and unstructured environments. This
is because they can use discrete footholds to overcome obstacles,
climb stairs, and so forth, instead of relying on a continuous
support surface.

A gait is a cyclic, periodic motion of the joints of a legged robot,
requiring the sequencing or coordination of the legs to obtain
reliable locomotion. In other words, gait is the temporal and
spatial relationship between all the moving parts of a legged robot.
Gait optimization is very important for legged robots, because
it determines the optimal position, velocity and acceleration for
each Degree of Freedom (DOF) at any moment in time, and the
gait pattern will directly affect the robot’s dynamic stabilization,

Introduction to Evolutionary Computation 27

harmony, energy dissipation and so on. Gait optimization
determines a legged robot’s quality of movement.

Why Evolutionary Computation Is Suitable for Gait Optimi-
zation

Gait Generation Is a Multiconstrained, Multiobjective Optimiza-
tion Problem

Gait generation, which incorporates mobility and stability, is a
very challenging task for legged robots, because their system of
locomotion has multiple DOFs and a variable mechanical structure
during locomotion. As a result a large number of parameters
have to be established. For example, 54 motion parameters have
to be considered for the walk gait of the Sony AIBO robot. To
obtain a natural and efficient gait for a legged robot, two kinds
of strategies for sequencing or coordination of the leg movements
can be followed.

The first strategy assumes that the gates of humans or animals are
optimal, as otherwise they would not have been able to survive the
competition and natural selection proposed by Darwin’s Theory
of Evolution. This assumption has been proved accurate. The
constrained optimization hypothesis suggests that gait parameters
are selected to optimize (minimize) the objective function of the
cost of transport (metabolic cost/distance) within the limitations
of imposed constraints. A lot of research has shown that humans
and animals move in a way that minimizes the metabolic cost of
locomotion and validates the idea that the gait synthesis of legged
robot is a constrained optimization problem

Robots simulate human or animal behavior. Therefore, it is quite
natural to use biological locomotion data to control the gait of
robots. For example, Human Motion Captured Data has been
adopted to drive a humanoid robot. However, some research
indicates that biological locomotion data cannot be used directly
for a legged robot due to kinematic and dynamic inconsistencies

Evolutionary Computing28

between humans/animals and the legged robot. This implies
the need for kinematic corrections when calculating joint angle
trajectories

The second strategy formulates the gait generation problem of
the legged robot as an optimization problem with constraints. It
generates the optimal gait cycle by minimizing some performance
indexes, for example, velocity of motion, stability criteria, actuating
forces, energy consumption, and so forth. The gait generation
problem of legged robots often has several objectives, and some of
these objectives may be contradictory to each other (for example,
speed and stability). Thus the gait generation problem can be
stated as a multi-constrained and multi-objective optimization
problem.

These two gait generation strategies may reach the same goal
by different routes because both of them actually solve the
gait synthesis problem as a multi-constrained multi-objective
optimization problem. Once a database of precomputed optimal
gaits has been created, the robot can cover the entire interval of
precomputed optimal gaits by interpolation and thus realize
smooth real time locomotion.

1.3.3 Evolutionary Computation Is Suitable for the Gait
Optimization Problem

The dynamic equations of legged robot locomotion are high order
highly coupled and nonlinear, and gait optimization for legged
robots requires searching a set of parameters in a highly irregular,
multidimensional space. As a result, the standard gradient search-
based optimization methods are not useful for legged systems
with high DOF.

Evolutionary Computation (EC), including the Genetic Algorithm
(GA), Genetic Programming (GP), Evolutionary Programming
(EP), and Evolutionary Strategy (ES), is a natural choice for the
gait optimization of legged robots.

Introduction to Evolutionary Computation 29

First, EC uses optimization methods based on Darwin’s Natural
Evolution Theory. According to this theory, the locomotion
mechanisms of life forms resulted from natural selection and the
interaction between individuals and the natural environment. This
makes the use of EC a natural choice, as it is biologically inspired
and can generate biologically plausible solutions.

Second, from the computational point of view, EC also fits well with
the gait optimization of legged robots, because of the following:

•	 Gait optimization problems can have multiple criteria,
multiple constraints, as well as multiple design variables,
and EC has been shown effective for these kinds of
large-dimension, multi-objective, multi-constraint
optimization problems.

•	 EC has been seen to be robust for search and optimization
problems and has been used to solve difficult problems
with objective functions where local information such as
continuity, differentiability, and so on is not available,
even though it is very important for gait optimization,
as the objective functions of gait optimization may be
very complex and it is very difficult to obtain this local
information.

•	 Because of the complexity and high DOF of the mechanical
structure, it is difficult to obtain a precise dynamic model
of a legged robot. EC will be efficient as this method is
resistant to noise in the evaluation function and offers
a model-free approach to optimization, only requiring
feedback from the environment to improve performance
when online evolution is deployed with a real robot.

•	 EC has strong global search capability and is also
insensitive to the initial population. Therefore EC
decreases the risk of being trapped in a local minimum
for finding a true optimum solution.

•	 EC can easily be parallelized. Since gait optimization
of legged robots is often a large-scale problem and the
objective function and constraints are often complex,
the process of evolutionary optimization may be very

Evolutionary Computing30

time-consuming because of the high computational
cost of EC due to iterative evaluations of candidate
solutions. Therefore it is advantageous to use parallel
implementations of EC to gain efficiency and improve
the solution quality of EC-based gait optimization.

1.3.4 How to Evolve the Optimal Gait

The Multiform EC Models Adopted in Gait Optimization

Gait optimization based on EC is actually a combination of EC
procedures and gait optimization problems. A general block
diagram of EC-based gait optimization is given in Figure 5. This
offers a first glance at the application of EC technique for gait
optimization of legged robots.

Figure 5: A general block diagram for EC-based gait optimization

Introduction to Evolutionary Computation 31

A lot of EC models have been adopted to solve gait optimization
problems. The gaits most often studied include the gaits of biped,
quadruped, and hexapod robots engaged in walking, running,
negotiating sloping surfaces, and going up and down stairs

The Genetic Algorithm (GA) is the gait optimization tool which
is most often used, and some modifications can be introduced
to fit the specific problems of gait optimization. For example,
interpolating and extrapolating operators, two-point crossover,
Gaussian mutation, overlapping populations, and Elitism strategy
have been adopted. The explicit fitness sharing mechanism has also
been adopted to prevent premature convergence to suboptimal
extremes. This speciation technique divides the population into a
fixed number of species, where each species contains individuals
that are similar to each other, and can force similar members of
the same species to “share” one representative score, thereby
penalizing species with a large number of individuals and
allowing new species to form even if they do not perform as well
as other, larger, species.

Adaptability that can adaptively change the probabilities of
crossover and mutation is introduced in GA to balance global
and local exploitation and exploration towards the progress of
evolutionary optimization. For instance, Adaptive GA is used to
optimize the gait of a humanoid robot ascending and descending
a staircase by searching optimal trajectory parameters in blending
polynomials.

Adaptive mechanisms may also be applied to control mutation
rate. This method places radiation (the level of radiation decreases
over time) into the middle of a region where a large group of
individuals is clustered within the same locality to dramatically
increase the mutation rate in this area, causing all the individuals
to mutate in the next generation and to disperse to other areas
of the space. It is reported that this mechanism can be useful in
controlling the learning behavior of GA and makes GA more
robust with respect to noise in parameter evaluations preventing
premature convergence to suboptimal extremes.

Evolutionary Computing32

Simulation results obtained using GP on an AIBO quadruped
in the Webots environment are reported much better than those
obtained using simple GA-based approaches. In this approach,
the gait is defined using joint angle trajectories instead of locus of
paw to reduce the search space of optimization. An elite archive
mechanism (EAM) is used to prevent premature convergence
and improve the search capability of GP. EAM can preserve elite
individuals at an early stage and flow them into in later stage. In
this way, genetic material from elite individuals at an early stage
is used to refresh an evolutionary convergent state and to create a
role for preserving diversity as long as possible.

GE is one of the most popular forms of grammar-based GP. The
advantage of GE lies in that it allows the user to conveniently
specify and modify the grammar, whilst ignoring the task of
designing specific genetic search operators. Thus GE can be used
to optimize pre-existing motion data or generate novel motions.
Using a Fourier gait representation to encode the chromosome and
the dynamic similarity principles as a constraint, GE is employed to
optimize the gait retargeting problem in animation. It successfully
modified one animal’s gait cycle data into a different animal’s gait
cycle data in computer simulations of animal locomotion. The
same method can also be used to optimize the gait of a walking
horse from a veterinary publication into a physics-based horse
mode.

ES is also employed to solve the gait optimization problem, and
some encouraging results have been obtained.

Using a hand-tuned gait as a seed, the bipedal gait is directly
evolved on a physical robot by an ES approach with parametric
mutation and structural mutation. After hundreds of evaluations
significant improvements were obtained for a functioning but
nonoptimized bipedal gait that improved the walking speed by
around 65% compared to the hand-tuned gait.

A hybrid approach of space-time optimization and covariance
matrix adaptation evolution strategy (CMA-ES) has been
proposed to generate gaits and morphologies for legged animal

Introduction to Evolutionary Computation 33

locomotion. It effectively generated dynamic locomotion gait of
bipeds, a quadruped, as well as an imaginary five-legged creature
by simulation. The gaits and morphologies produced are reported
lifelike and exhibit many qualitative traits seen in real animals. This
hybrid approach may combine the efficiency in high-dimensional
spaces and the ability to handle general constraints of space-time
optimization with the ability to handle nondifferentiable variables
and to avoid many local minima from CMA.

Apart from traditional EC and its variations, some relatively new
types of EC have also been applied to gait optimization research.

Estimation of Distribution Algorithms (EDAs) are evolutionary
algorithms based on probabilistic models that replace the operators
of mutation and crossover used in GAs. The main advantage of
EDA lies in the fact that the knowledge about the problem acquired
previously can be used to set the initial probability model, and
the global statistical information about the search space can be
extracted directly by EDA to modify the probability model with
promising solutions. This can reduce the search space and obtain
good solutions in a shorter time interval. For this reason EDA has
been used to study the gait optimization problem. For example,
EDA has been applied to optimize the gait of the AIBO robot.
A fitness function based on direct evaluation of the robots was
adopted, and significant improvement of the previous gait was
achieved over a short training period

In some cases of gait optimization, the performance of a gait
cannot be directly measured or calculated based on certain
functions. In this case human preferences, intuition, emotions,
and other psychological aspects can be introduced into the target
system. Interactive evolutionary computation (IEC) is a form
of evolutionary computation where the fitness function can be
replaced by the user. A prominent advantage of IEC is that it can
reflect user preference and allow optimization of the solution with
a minimum of required knowledge in the problem domain.

The multiobjective multiconstraint problem is often solved by
combining the multiple objectives and constraints into a single

Evolutionary Computing34

scalar objective problem using weighting coefficients. To do this,
some problem-specific information is needed, and the relative
importance of the objectives and constraints should be decided. In
the complex problem of gait optimization, it is difficult to know this
information in advance. In addition, there is no rational basis for
determining adequate weights for these competitive or conflicting
criteria, and the objective function that will be formed may lose
significance due to the combination of noncommensurable
objectives. Therefore, more and more gait optimization problems
are parameterized and optimized using tailored Multiple Objective
EC procedures, for example, the Strength Pareto Evolutionary
Algorithm and Nondominated Sorting Genetic Algorithm with
Fitness Sharing method, and the obtained Pareto-optimal gaits,
which is a set of nondominated or noninferior gaits that satisfies
different objective functions. These methods have shown good
performance

1.3.5 Gait Representation and Chromosome Encoding

The gait of a legged robot may be represented in three-dimensional
space or in joint space. In order to control a legged robot’s
movement, it is necessary to generate the trajectories of all the
joints. Therefore, gait is usually represented by a sequence of key
poses (states) extracted from one complete gait cycle, and phases
between these key poses are approximated by a polynomial
function, for example, 3rd, 4th, or 5th order polynomials. These
polynomial functions are adopted because they can insure that
the joint trajectories are smoothly connected with first-order
and second-order derivative continuity. First order derivative
continuity guarantees the smoothness of velocity, while the second
order guarantees the smoothness requirements of acceleration
or the torque in the joints. As a result, the gait of robot will look
natural.

If only the foot placement point of these key poses is specified, once
the foot trajectories are generated, inverse kinematics should then
be used to convert the locus of foot into the joint angles required to
generate the foot placement curves for a particular gait.

Introduction to Evolutionary Computation 35

To make the robot optimally move from its current position/stance
to a goal position/stance, other parameters apart from those of
the leg joint trajectories should also be considered, for example,
parameters describing the position and orientation of the body,
how the robot’s weight shifts during walking, whether or how
much the arms swing, and so forth.

The joint angles in these states, the coefficients of the polynomials,
and some of the other parameters mentioned above are the design
variables to be optimized by EC. These design variables, when
treated as genes and arranged in an array, make up a chromosome
of EC.

A variety of chromosome encoding methods, including the gray
code representation, real number coding, mixed encoding of
floating point number, and binary number, have been adopted,
but the most often used encoding is the real coded method. This
is due to difficulties associated with binary representation when
dealing with a continuous search space with large dimension

1.3.6 Comparing EC with Other Global Optimization
Approaches

Besides evolution-based optimization techniques, other global
optimization approaches that adopt a non-evolutionary metaphor
have also been employed in gait optimization. These also search
for the global optimum of the cost function without using the
differential information of a given cost function.

Particle Swarm Optimization (PSO) can be used to optimize the
stable and straight movement patterns (gaits) of a humanoid
robot with the control signals of the joint angles produced by a
Truncated Fourier Series (TFS). It is reported that PSO optimized
TFS significantly faster and better than GA to generate straighter
and faster humanoid locomotion because PSO bypassed a local
minimum that GA was caught in. The authors therefore concluded
that PSO is better than GA as a learning method for the gait
optimization problem in a non-deterministic environment.

Evolutionary Computing36

We argue that GA may not necessarily be inferior to PSO in gait
optimization, even in a non-deterministic environment such as
the one in this experiment. This is because the PSO employed
in this experiment was Adaptive PSO, which has a dynamically
adjustable nonlinear parameter of inertia weight to control the
balance between global and local exploration. A larger inertia
weight facilitates a global search, while a smaller inertia weight
facilitates a local search. The GA employed in this experiment
is just a canonical paradigm with roulette wheel selection and a
fixed rate of crossover and mutation. This may be the reason why
PSO can speed up the search and perform better than GA in this
experiment.

EC of course can employ the same mechanism to improve its
efficiency. For example, Adaptive GA can adaptively change the
probabilities of crossover and mutation during the process of
evolution. In ES, the step size or mutation strength is often governed
by self-adaptation (evolution window), and the individual step
sizes for each coordinate or correlations between coordinates are
either governed by self-adaptation or also by covariance matrix
adaptation (CMA-ES).

Adaptive PSO is used to optimize the fastest forward gaits of the
quadruped robot AIBO with the whole learning process running
automatically on the physical robot. Starting with randomly
generated parameters instead of hand-tuned parameters, several
high-performance sets of gait parameters are obtained, and these
gains were reported as being among the fastest forward gaits ever
developed for the same robot platform.

Parallel PSO was applied to large-scale human movement problems,
and experimental results show that PSO was outperformed by the
gradient-based algorithm. It is reported that a single run with a
gradient-based nonlinear least squares algorithm produced a
significantly better solution than did 10 runs using global PSO.
Thus the authors do not recommend using the PSO algorithm
for solving large-scale human movement optimization problems
possessing constraints or competing terms in the cost function.

Introduction to Evolutionary Computation 37

The results of this experiment may be a fortunate exception. The
objective functions of large-scale gait optimization problems
with hundreds of design variables will no doubt be massively
multimodal and the landscape must be very rugged. Therefore
a gradient-based algorithm will certainly be trapped in a local
minimum, and the global search ability of EC is absolutely
necessary for decreasing this risk. We agree with the suggestion of
the authors that a global local hybrid algorithm may be necessary
for PSO and other global optimizers to solve large-scale human
movement problems efficiently.

As far as we have seen from the literature, Ant Colony Optimization
(ACO) has not yet been used in the field of gait optimization
though this too is a famous metaheuristic of Swarm Intelligence
(SI) similar to PSO and has been widely used to solve a lot of kinds
of optimization problems.

The univariate dynamic encoding algorithm for searches (uDEAS)
has also been applied to the gait optimization problem of a biped
model walking up and down a staircase. The simulation results
show that uDEAS outperforms adaptive GA with a 17 s versus
126 s run time on average and a slightly smaller minimum for best
cost values. The authors attribute this result to the effectiveness of
describing trajectories with the blending polynomial of uDEAS.

The problem representation method and the genotype encoding
method directly determine the size and the characteristic of
the search space and as a result directly affect the efficiency
of EC optimization. For example, TFS is reported to be a good
gait representation approach that can generate suitable angular
trajectories for controlling bipedal locomotion. This is because it
does not require inverse kinematics, and stable gaits with different
step lengths and stride frequencies can be readily generated by
changing the value of only one parameter in the TFS.

Though some comparison of performance between EC and other
non-evolutionary global optimization approaches has been
reported, no systematic comparative study has been carried out.
Such a systematic comparative study may be not necessary or not

Evolutionary Computing38

feasible because we often search for a set of satisfactory solutions
instead of an absolutely global optimal solution. Both the robot
platform and the objective functions of gait optimization will be
different in each case, and thus it is difficult to find a benchmark
robot and a set of benchmark objective functions to optimize.

Both EC and SI approaches are population-based iterative
algorithms, even though they adopt different metaphors. Thus
they share the same advantages and disadvantages in gait
optimization, for example, a similar global and high-dimensional
search capability, multi-objective optimization capability, as well
as a lot of control parameters which require tuning. One thing that
can be said for sure is that EC, and SI approaches are proven good
tools for gait optimization for legged robots, and further research
should be done to improve their performance in the field of gait
optimization.

Introduction to Evolutionary Computation 39

REFERENCES

1.	 F. A. von Hayek, The Road to Serfdom: Text and Documents—The
Definitive Edition, University of Chicago Press, 2009.

2.	 J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

3.	 J. F. Nash, “Equilibrium points in n-person games,” Proceedings
of the National Academy of Sciences of the United States of America,
vol. 36, pp. 48–49, 1950.

4.	 K. J. Arrow, Social Choice and Individual Values, Wiley, 2nd
edition, 1963.

5.	 L. Hurwicz, “The design of mechanisms for resource
allocation,” The American Economic Review, vol. 63, no. 2, pp.
1–30, 1973.

6.	 L. von Mises, Socialism: An Economic and Sociological Analysis,
Laissez Faire Books, 1922.

7.	 M. D. Vose and G. E. Liepins, “Punctuated equilibria in
genetic search,” Complex Systems, vol. 5, no. 1, pp. 31–44, 1991.

8.	 O. Lange, “On the economic theory of socialism: part one,” The
Review of Economic Studies, vol. 4, no. 1, pp. 53–71, 1936.

9.	 R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

10.	 Y. Pei, “Chaotic evolution: fusion of chaotic ergodicity and
evolutionary iteration for optimization,” Natural Computing,
vol. 13, no. 1, pp. 79–96, 2014.

11.	 L. Chen, P. Yang, Z. Liu, H. Chen, and X. Guo, “Gait
optimization of biped robot based on mix-encoding genetic
algorithm,” in Proceedings of the 2nd IEEE Conference on
Industrial Electronics and Applications (ICIEA ‘07), pp. 1623–
1626, May 2007.

Evolutionary Computing40

12.	 S. Chernova and M. Veloso, “An evolutionary approach to gait
learning for four-legged robots,” in Proceedings of the IEEE/
RSJ International Conference on Intelligent Robots and Systems
(IROS ‘04), pp. 2562–2567, October 2004.

13.	 J. E. A. Bertram and A. Ruina, “Multiple walking speed-
frequency relations are predicted by constrained
optimization,” Journal of Theoretical Biology, vol. 209, no. 4, pp.
445–453, 2001.

INTRODUCTION

An evolutionary algorithm is an evolutionary AI-based computer
application that solves problems by employing processes that
mimic the behaviors of living things. As such, it uses mechanisms
that are typically associated with biological evolution, such as
reproduction, mutation and recombination.

2
EVOLUTIONARY ALGORITHM

C
H

A
PT

ER

Evolutionary Computing42

Evolutionary algorithms function in a Darwinian-like natural
selection process; the weakest solutions are eliminated while
stronger, more viable options are retained and re-evaluated in the
next evolution—with the goal being to arrive at optimal actions to
achieve the desired outcomes.

2.1 EVOLUTIONARY ALGORITHM

As the history of the field suggests, there are many different
variants of evolutionary algorithms. The common underlying
idea behind all these techniques is the same: given a population of
individuals within some environment that has limited resources,
competition for those resources causes natural selection (survival
of the fittest). This in turn causes a rise in the fitness of the
population. Given a quality function to be maximized, we can
randomly create a set of candidate solutions, i.e., elements of the
function’s domain. We then apply the quality function to these as
an abstract fitness measure – the higher the better. On the basis
of these fitness values some of the better candidates are chosen to
seed the next generation. This is done by applying recombination
and/or mutation to them. Recombination is an operator that is
applied to two or more selected candidates (the so-called parents),
producing one or more new candidates (the children). Mutation
is applied to one candidate and results in one new candidate.
Therefore executing the operations of recombination and mutation
on the parents leads to the creation of a set of new candidates (the
offspring). These have their fitness evaluated and then compete
– based on their fitness (and possibly age) – with the old ones
for a place in the next generation. This process can be iterated
until a candidate with sufficient quality (a solution) is found or a
previously set computational limit is reached.

There are two main forces that form the basis of evolutionary
systems:

•	 Variation operators (recombination and mutation) create
the necessary diversity within the population, and
thereby facilitate novelty.

Evolutionary Algorithm 43

•	 Selection acts as a force increasing the mean quality of
solutions in the population.

The combined application of variation and selection generally
leads to improving fitness values in consecutive populations. It
is easy to view this process as if evolution is optimizing (or at
least ‘approximising’) the fitness function, by approaching the
optimal values closer and closer over time. An alternative view is
that evolution may be seen as a process of adaptation. From this
perspective, the fitness is not seen as an objective function to be
optimized, but as an expression of environmental requirements.
Matching these requirements more closely implies an increased
viability, which is reflected in a higher number of offspring. The
evolutionary process results in a population which is increasingly
better adapted to the environment.

It should be noted that many components of such an evolutionary
process are stochastic. For example, during selection the best
individuals are not chosen deterministically, and typically even
the weak individuals have some chance of becoming a parent or of
surviving. During the recombination process, the choice of which
pieces from the parents will be recombined is made at random.
Similarly for mutation, the choice of which pieces will be changed
within a candidate solution, and of the new pieces to replace
them, is made randomly. The general scheme of an evolutionary
algorithm is given in pseudocode in Fig. 1, and is shown as a
flowchart in Fig. 2.

Figure 1. The general scheme of an evolutionary algorithm in pseudo-
code.

Evolutionary Computing44

It is easy to see that this scheme falls into the category of generate-
and-test algorithms. The evaluation (fitness) function provides
a heuristic estimate of solution quality, and the search process
is driven by the variation and selection operators. Evolutionary
algorithms possess a number of features that can help position
them within the family of generate-and-test methods:

•	 EAs are population based, i.e., they process a whole
collection of candidate solutions simultaneously.

•	 Most EAs use recombination, mixing information from
two or more candidate solutions to create a new one.

•	 EAs are stochastic.

Figure 2. The general scheme of an evolutionary algorithm as a flow-
chart.

In particular, different streams are often characterized by the
representation of a candidate solution – that is to say the data
structures used to encode candidates. Typically this has the form
of strings over a finite alphabet in genetic algorithms (GAs), real-
valued vectors in evolution strategies (ESs), finite state machines
in classical evolutionary programming (EP), and trees in genetic
programming (GP). The origin of these differences is mainly
historical. Technically, one representation might be preferable
to others if it matches the given problem better; that is, it makes
the encoding of candidate solutions easier or more natural. For

Evolutionary Algorithm 45

instance, when solving a satisfiability problem with n logical
variables, the straightforward choice is to use bit-strings of length
n so that the contents of the ith bit would denote that variable i took
the value true (1) or false (0). Hence, the appropriate EA would
be a GA. To evolve a computer program that can play checkers,
the parse trees of the syntactic expressions forming the programs
are a natural choice to represent candidate solutions, thus a GP
approach is likely. It is important to note two points. First, the
recombination and mutation operators working on candidates
must match the given representation. Thus, for instance, in GP the
recombination operator works on trees, while in GAs it operates
on strings. Second, in contrast to variation operators, the selection
process only takes fitness information into account, and so it
works independently from the choice of representation. Therefore
differences between the selection mechanisms commonly applied
in each stream are a matter of tradition rather than of technical
necessity.

2.2 COMPONENTS OF EVOLUTIONARY
ALGORITHMS

There are a number of components, procedures, or operators that
must be specified in order to define a particular EA. The most
important components are:

•	 representation (definition of individuals)
•	 evaluation function (or fitness function)
•	 population
•	 parent selection mechanism
•	 variation operators, recombination and mutation
•	 survivor selection mechanism (replacement)

To create a complete, runnable algorithm, it is necessary to specify
each component and to define the initialization procedure. If we
wish the algorithm to stop at some stage, we must also provide a
termination condition.

Evolutionary Computing46

2.2.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the ‘real world’ to the ‘EA
world’, that is, to set up a bridge between the original problem
context and the problem-solving space where evolution takes place.
This often involves simplifying or abstracting some aspects of the
real world to create a well-defined and tangible problem context
within which possible solutions can exist and be evaluated, and this
work is often undertaken by domain experts. The first step from
the point of view of automated problem-solving is to decide how
possible solutions should be specified and stored in a way that can
be manipulated by a computer. We say that objects forming possible
solutions within the original problem context are referred to as
phenotypes, while their encoding, that is, the individuals within the
EA, are called genotypes. This first design step is commonly called
representation, as it amounts to specifying a mapping from the
phenotypes onto a set of genotypes that are said to represent them.
For instance, given an optimization problem where the possible
solutions are integers, the given set of integers would form the set
of phenotypes. In this case one could decide to represent them by
their binary code, so, for example, the value 18 would be seen as a
phenotype, and 10010 as a genotype representing it. It is important
to understand that the phenotype space can be very different from
the genotype space, and that the whole evolutionary search takes
place in the genotype space. A solution – a good phenotype – is
obtained by decoding the best genotype after termination. Therefore
it is desirable that the (optimal) solution to the problem at hand –
a phenotype – is represented in the given genotype space. In fact,
since in general we will not know in advance what that solution
looks like, it is usually desirable that all possible feasible solutions
can be represented.
The evolutionary computation literature contains many synonyms:

•	 On the side of the original problem context the terms
candidate solution, phenotype, and individual are
all used to denote possible solutions. The space of all
possible candidate solutions is commonly called the
phenotype space.

Evolutionary Algorithm 47

•	 On the side of the EA, the terms genotype, chromosome,
and again individual are used to denote points in the
space where the evolutionary search actually takes place.
This space is often termed the genotype space.

•	 There are also many synonymous terms for the elements
of individuals. A placeholder is commonly called a
variable, a locus (plural: loci), a position, or – in a biology-
oriented terminology – a gene. An object in such a place
can be called a value or an allele.

It should be noted that the word ‘representation’ is used in two
slightly different ways. Sometimes it stands for the mapping from
the phenotype to the genotype space. In this sense it is synonymous
with encoding, e.g., one could mention binary representation or
binary encoding of candidate solutions. The inverse mapping
from genotypes to phenotypes is usually called decoding, and it is
necessary that the representation should be invertible so that for
each genotype there is at most one corresponding phenotype. The
word representation can also be used in a slightly different sense,
where the emphasis is not on the mapping itself, but on the data
structure of the genotype space. This interpretation is the one we
use when, for example, we speak about mutation operators for
binary representation.

2.2.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements
the population should adapt to meet. It forms the basis for
selection, and so it facilitates improvements. More accurately, it
defines what improvement means. From the problem-solving
perspective, it represents the task to be solved in the evolutionary
context. Technically, it is a function or procedure that assigns a
quality measure to genotypes. Typically, this function is composed
from the inverse representation (to create the corresponding
phenotype) followed by a quality measure in the phenotype space.
To stick with the example above, if the task is to find an integer
x that maximizes x2, the fitness of the genotype 10010 could be

Evolutionary Computing48

defined by decoding its corresponding phenotype (10010 → 18)
and then taking its square: 182 = 324.

The evaluation function is commonly called the fitness function in
EC. This might cause a counterintuitive terminology if the original
problem requires minimization, because the term fitness is
usually associated with maximization. Mathematically, however,
it is trivial to change minimization into maximization, and vice
versa. Quite often, the original problem to be solved by an EA is
an optimization problem. In this case the name objective function
is often used in the original problem context, and the evaluation
(fitness) function can be identical to, or a simple transformation of,
the given objective function.

2.2.3 Population

The role of the population is to hold (the representation of)
possible solutions. A population is a multiset of genotypes. The
population forms the unit of evolution. Individuals are static
objects that do not change or adapt; it is the population that does.
Given a representation, defining a population may be as simple
as specifying how many individuals are in it, that is, setting the
population size. In some sophisticated EAs a population has an
additional spatial structure, defined via a distance measure or a
neighborhood relation. This corresponds loosely to the way that
real populations evolve within the context of a spatial structure
given by individuals’ geographical locations. In such cases the
additional structure must also be defined in order to fully specify
a population.

In almost all EA applications the population size is constant and
does not change during the evolutionary search – this produces
the limited resources need to create competition. The selection
operators (parent selection and survivor selection) work at
the population level. In general, they take the whole current
population into account, and choices are always made relative
to what is currently present. For instance, the best individual of
a given population is chosen to seed the next generation, or the

Evolutionary Algorithm 49

worst individual of a given population is chosen to be replaced by
a new one. This population level activity is in contrast to variation
operators, which act on one or more parent individuals.

The diversity of a population is a measure of the number of
different solutions present. No single measure for diversity exists.
Typically people might refer to the number of different fitness
values present, the number of different phenotypes present, or
the number of different genotypes. Other statistical measures
such as entropy are also used. Note that the presence of only one
fitness value in a population does not necessarily imply that only
one phenotype is present, since many phenotypes may have the
same fitness. Equally, the presence of only one phenotype does
not necessarily imply only one genotype. However, if only one
genotype is present then this implies only one phenotype and
fitness value are present.

2.2.4 Parent Selection Mechanism

The role of parent selection or mate selection is to distinguish
among individuals based on their quality, and, in particular,
to allow the better individuals to become parents of the next
generation. An individual is a parent if it has been selected to
undergo variation in order to create offspring. Together with the
survivor selection mechanism, parent selection is responsible for
pushing quality improvements. In EC, parent selection is typically
probabilistic. Thus, high-quality individuals have more chance of
becoming parents than those with low quality. Nevertheless, low-
quality individuals are often given a small, but positive chance;
otherwise the whole search could become too greedy and the
population could get stuck in a local optimum.

2.2.5 Variation Operators (Mutation and Recombination)

The role of variation operators is to create new individuals from
old ones. In the corresponding phenotype space this amounts to
generating new candidate solutions. From the generate-and-test

Evolutionary Computing50

search perspective, variation operators perform the generate step.
Variation operators in EC are divided into two types based on
their arity, distinguishing unary (mutation) and n-ary versions
(recombination).

Mutation

A unary variation operator is commonly called mutation. It is
applied to one genotype and delivers a (slightly) modified mutant,
the child or offspring.

A mutation operator is always stochastic: its output – the child –
depends on the outcomes of a series of random choices. It should
be noted that not all unary operators are seen as mutation. For
example, it might be tempting to use the term mutation to describe
a problem-specific heuristic operator which acts systematically
on one individual trying to find its weak spot and improve it
by performing a small change. However, in general mutation is
supposed to cause a random, unbiased change. For this reason it
might be more appropriate not to call heuristic unary operators
mutation. Historically, mutation has played a different role in
various EC dialects. Thus, for example, in genetic programming
it is often not used at all, whereas in genetic algorithms it has
traditionally been seen as a background operator, providing the
gene pool with ‘fresh blood’, and in evolutionary programming it
is the only variation operator, solely responsible for the generation
of new individuals.

Variation operators form the evolutionary implementation of
elementary (search) steps, giving the search space its topological
structure. Generating a child amounts to stepping to a new point
in this space. From this perspective, mutation has a theoretical
role as well: it can guarantee that the space is connected. There
are theorems which state that an EA will (given sufficient time)
discover the global optimum of a given problem. These often rely
on this connectedness property that each genotype representing
a possible solution can be reached by the variation operators. The
simplest way to satisfy this condition is to allow the mutation

Evolutionary Algorithm 51

operator to jump everywhere: for example, by allowing any allele
to be mutated into any other with a nonzero probability. However,
many researchers feel these proofs have limited practical
importance, and EA implementations often don’t possess this
property.

Recombination

A binary variation operator is called recombination or crossover.
As the names indicate, such an operator merges information from
two parent genotypes into one or two offspring genotypes. Like
mutation, recombination is a stochastic operator: the choices of
what parts of each parent are combined, and how this is done,
depend on random drawings. Again, the role of recombination
differs between EC dialects: in genetic programming it is often the
only variation operator, and in genetic algorithms it is seen as the
main search operator, whereas in evolutionary programming it is
never used. Recombination operators with a higher arity (using
more than two parents) are mathematically possible and easy to
implement, but have no biological equivalent. Perhaps this is why
they are not commonly used, although several studies indicate
that they have positive effects on the evolution.

The principle behind recombination is simple – by mating two
individuals with different but desirable features, we can produce
an offspring that combines both of those features. This principle
has a strong supporting case – for millennia it has been successfully
applied by plant and livestock breeders to produce species that
give higher yields or have other desirable features. Evolutionary
algorithms create a number of offspring by random recombination,
and we hope that while some will have undesirable combinations
of traits, and most may be no better or worse than their parents,
some will have improved characteristics. The biology of the
planet Earth, where, with very few exceptions, lower organisms
reproduce asexually and higher organisms reproduce sexually,
suggests that recombination is the superior form of reproduction.
However recombination operators in EAs are usually applied
probabilistically, that is, with a nonzero chance of not being

Evolutionary Computing52

performed. It is important to remember that variation operators
are representation dependent. Thus for different representations
different variation operators have to be defined. For example, if
genotypes are bit-strings, then inverting a bit can be used as a
mutation operator. However, if we represent possible solutions by
tree-like structures another mutation operator is required.

2.2.6 Survivor Selection Mechanism (Replacement)

Similar to parent selection, the role of survivor selection or
environmental selection is to distinguish among individuals
based on their quality. However, it is used in a different stage
of the evolutionary cycle – the survivor selection mechanism is
called after the creation of the offspring from the selected parents.
In EC the population size is almost always constant. This requires
a choice to be made about which individuals will be allowed in to
the next generation. This decision is often based on their fitness
values, favoring those with higher quality, although the concept of
age is also frequently used. In contrast to parent selection, which
is typically stochastic, survivor selection is often deterministic.
Thus, for example, two common methods are the fitness-based
method of ranking the unified multi-set of parents and offspring
and selecting the top segment, or the age-biased approach of
selecting only from the offspring.

Survivor selection is also often called the replacement strategy. In
many cases the two terms can be used interchangeably, but we
use the name survivor selection to keep terminology consistent:
steps 1 and 5 in Fig. 1 are both named selection, distinguished
by a qualifier. Equally, if the algorithm creates surplus children
(e.g., 500 offspring from a population of 100), then using the term
survivor selection is clearly appropriate. On the other hand, the
term “replacement” might be preferred if the number of newly-
created children is small compared to the number of individuals
in the population. For example, a “steady-state” algorithm might
generate two children per iteration from a population of 100. In this
case, survivor selection means choosing the two old individuals
that are to be deleted to make space for the new ones, so it is

Evolutionary Algorithm 53

more efficient to declare that everybody survives unless deleted
and to choose whom to replace. Both strategies can of course be
seen in nature, and have their proponents in EC, so in the rest
of this book we will be pragmatic about this issue. We will use
survivor selection in the section headers for reasons of generality
and uniformity, while using replacement if it is commonly used in
the literature for the given procedure we are discussing.

2.2.7 Initialization

Initialization is kept simple in most EA applications; the first
population is seeded by randomly generated individuals. In
principle, problem-specific heuristics can be used in this step, to
create an initial population with higher fitness. Whether this is
worth the extra computational effort, or not, very much depends
on the application at hand.

2.2.8 Termination Condition

We can distinguish two cases of a suitable termination condition.
If the problem has a known optimal fitness level, probably coming
from a known optimum of the given objective function, then in an
ideal world our stopping condition would be the discovery of a
solution with this fitness. If we know that our model of the real-
world problem contains necessary simplifications, or may contain
noise, we may accept a solution that reaches the optimal fitness to
within a given precision 𝜖 > 0. However, EAs are stochastic and
mostly there are no guarantees of reaching such an optimum, so
this condition might never get satisfied, and the algorithm may
never stop. Therefore we must extend this condition with one that
certainly stops the algorithm. The following options are commonly
used for this purpose:

1.	 The maximally allowed CPU time elapses.
2.	 The total number of fitness evaluations reaches a given

limit.

Evolutionary Computing54

3.	 The fitness improvement remains under a threshold
value for a given period of time (i.e., for a number of
generations or fitness evaluations).

4.	 The population diversity drops under a given threshold.

Technically, the actual termination criterion in such cases is a
disjunction: optimum value hit or condition X satisfied. If the
problem does not have a known optimum, then we need no
disjunction. We simply need a condition from the above list, or a
similar one that is guaranteed to stop the algorithm.

2.3 TYPES OF EVOLUTIONARY ALGORITHM (EA)

Evolutionary algorithms (EAs) are population-based
metaheuristics. Historically, the design of EAs was motivated by
observations about natural evolution in biological populations.
Recent varieties of EA tend to include a broad mixture of influences
in their design, although biological terminology is still in common
use. The term ‘EA’ is also sometimes extended to algorithms that
are motivated by population-based aspects of EAs, but which
are not directly descended from traditional EAs, such as scatter
search. The term evolutionary computation is also used to refer
to EAs, but usually as a generic term that includes optimization
algorithms motivated by other natural processes, such as particle
swarm optimization and artificial immune systems.
The main classes of EA in contemporary usage are (in order of
popularity) genetic algorithms (GAs), evolution strategies (ESs),
differential evolution (DE) and estimation of distribution algo-
rithms (EDAs). Multi-objective evolutionary algorithms (MOEAs),
which generalize EAs to the multiple objective case, and memetic
algorithms (MAs), which hybridize EAs with local search, are also
popular, particularly within applied work. Special-purpose EAs,
such as genetic programming (GP) and learning classifier systems
(LCS) are also widely used.
Similar techniques differ in genetic representation and other
implementation details, and the nature of the particular applied
problem.

Evolutionary Algorithm 55

2.3.1 Genetic Algorithm

Genetic algorithms, or GAs, are one of the earliest forms of EA,
and remain widely used. Candidate solutions, often referred to as
chromosomes in the GA literature, comprise a vector of decision
variables. Nowadays, these variables tend to have a direct mapping
to an optimization domain, with each decision variable (or gene)
in the GA chromosome representing a value (or allele) that is to
be optimized. However, it should be noted that historically GAs
worked with binary strings, with real values encoded by multiple
binary symbols, and that this practice is still sometimes used. GA
solution vectors are either fixed-length or variable-length, with
the former the more common of the two.

Given their long history, genetic algorithm implementations vary
considerably. However, it is fairly common to use a mutation
operator that changes each decision variable with a certain
probability (values of 4-8% are typical, depending upon the
problem domain). When the solution vector is a binary string, the
effect of the mutation operator is simply to flip the value. More
generally, if the solution vector is a ‘k-ary’ string, in which each
position can take any of a discrete set of k possible values, then
the mutation operator is usually designed to choose a random
new value from the available alphabet. If the solution vector is a
string of real-valued parameters within a set range, the new value
may be sampled from a uniform distribution in that range, or it
may be sampled from a non-uniform (e.g. Gaussian) probability
distribution centered around the current value. The latter is
generally the preferred approach, since it leads to less disruptive
change on average. Recombination is typically implemented using
two-point or uniform crossover. Two-point crossover chooses two
parent solutions and two crossover points within the solutions.
The values of the decision variables lying between these two
points are then swapped to form two child solutions. Uniform
crossover is similar, except that crossover points are created at
each decision variable with a given probability. Other forms of
crossover have also been used in GAs. Examples include line
crossover and multi-parent crossover. Other variation operators,

Evolutionary Computing56

such as inversion, have been found useful for some problems.
Various forms of selection are used with GAs. Rank-based or
tournament selection are generally preferred, since they maintain
exploration better than the more traditional fitness-proportionate
selection (e.g. roulette-wheel selection). Note, however, that the
latter is still widely used. Rank-based selection involves ranking
the population in terms of objective value. Population members
are then chosen to become parents with a probability proportional
to their rank. In tournament selection, a small group of solutions
(typically 3 or 4) are uniformly sampled from the population, and
those with the highest objective value(s) become the parent(s) of
the next child solution that is created. Tournament selection allows
selective pressure to be easily varied by adjusting the tournament
size.

2.3.2 Genetic Programming

Genetic programming (GP) is relatively new; it is a specialized
form of a GA which operates on very specific types of solution,
using modified genetic operators. The GP was developed by Koza
as an attempt to find the way for the automatic generation of
the program codes when the evaluation criteria for their proper
operation is known. Because the searched solution is a program,
the evolved potential solutions are coded in the form of trees
instead of linear chromosomes (of bits or numbers) widespread in
GAs. Of course, the genetic operators are specialized for working
on trees, e.g., crossover as exchanging the subtrees, mutation as a
change of node or leaf.

2.3.3 Evolutionary Programming

Evolutionary programming (EP) was developed as a tool for
discovering the grammar of the unknown language. However,
EP became more popular when it was proposed as the numerical
optimization technique. The EP is similar to the ES (μ + λ), but
with one essential difference. In EP, the new population of
individuals is created by mutating every individual from the

Evolutionary Algorithm 57

parental population, while in the ES(μ + λ), every individual has
the same probability to be selected to the temporary population
on which the genetic operations are performed. In the EP, the
mutation is based on the random perturbation of the values of
the particular genes of the mutated individual. The newly created
and the parental populations are the same sizes (μ = λ). Finally,
the new generation of the population is created using the ranking
selection of the individuals from both, the parental and the
mutated populations.

2.3.4 Gene Expression Programming

Gene expression programming (GEP) is an evolutionary algorithm
that creates computer programs or models. These computer
programs are complex tree structures that learn and adapt by
changing their sizes, shapes, and composition, much like a living
organism. And like living organisms, the computer programs of
GEP are also encoded in simple linear chromosomes of fixed length.
Thus, GEP is a genotype–phenotype system, benefiting from a
simple genome to keep and transmit the genetic information and
a complex phenotype to explore the environment and adapt to it.

2.3.5 Evolution Strategy

Evolution strategies, or ESs, also have a long history, and this
parallels the development of GAs. Whilst early ESs were restricted
to a single search point and used no recombination operator,
modern formulations have converged towards the GA norms, and
tend to use both a population of search points and recombination.
A lasting difference, however, is how they carry out mutation,
with ESs using strategies that guide how the mutation operator
is applied to each decision variable. Unlike GAs, ESs mutate
every decision variable at each application of the operator, and
do so according to a set of strategy parameters that determine the
magnitude of these changes. Strategy parameters usually control
characteristics of probability distributions from which the new
values of decision variables are drawn.

Evolutionary Computing58

It is standard practice to adapt strategy parameters over the
course of an ES run, the basic idea being that different types
of move will be beneficial at different stages of search. Various
techniques have been used to achieve this adaptation. Some of
these involve applying a simple formula, e.g. the 1/5th rule, which
involves increasing or decreasing the magnitude of changes based
on the number of successful mutations that have recently been
observed. Others are based around the idea of self-adaptation,
which involves encoding the strategy parameters as additional
decision variables, and hence allowing evolution to come up with
appropriate values. However, the most widely used contemporary
approach is covariance matrix adaptation (CMA-ES), which uses a
mechanism for estimating the directions of productive gradients
within the search space, and then applying moves in those
directions. In this respect, CMA-ES has similarities with gradient-
based optimization methods.

ESs use different recombination operators to GAs, and often use
more than two parents to create each child solution. For example,
intermediate recombination gives a child solution the average
values of each decision variable in each of the parent solutions.
Weighted multi-recombination is similar, but uses a weighted
average, based on the fitness of each parent. Also unlike GAs,
ESs tend to use deterministic rather than probabilistic selection
mechanisms, whereby the best solutions in the population are
always used as parents of the next generation.

2.3.6 Differential Evolution

Differential evolution (DE) is a relatively recent EA formulation
which uses a mechanism for adaptive search that does not make
use of probability distributions. Whilst its basic mechanism is
similar to a GA, its mutation operator is quite different, using a
geometric approach that is motivated by the moves performed in
the Nelder Mead simplex search method. This involves selecting
two existing search points from the population, taking their vector
difference, scaling this by a constant F, and then adding this to a
third search point, again sampled randomly from the population.

Evolutionary Algorithm 59

Following mutation, DE’s crossover operator recombines the
mutated search point (the mutant vector) with another existing
search point (the target vector), replacing it if the child solution
(known as a trial vector) is of equal or greater objective value.
There are two standard forms of crossover: exponential crossover
and binomial crossover, which closely resemble GA two-point
crossover and uniform crossover, respectively. The comparisons
between target vector and trial vector play the same role as the
selection mechanism in a GA or ES. Since DE requires each existing
solution to be used once as a target vector, the whole population is
replaced in the course of applying crossover.

An advantage of using simplex-like mutations in DE is that the
algorithm is largely self-adapting, with moves automatically
becoming smaller in each dimension as the population converges.
More generally, the authors of the method have claimed that this
sort of self-adaptation means that the size and direction of moves
are automatically matched to the search landscape, a phenomenon
they term contour matching. When compared to CMA-ES, for
example, this means that the algorithm has few parameters and is
relatively easy to implement.

2.3.7 Neuroevolution

Neuroevolution is a form of artificial intelligence that uses
evolutionary algorithms to generate artificial neural networks
(ANN), parameters, topology and rules. It is most commonly
applied in artificial life, general game playing and evolutionary
robotics. The main benefit is that neuroevolution can be applied
more widely than supervised learning algorithms, which require a
syllabus of correct input-output pairs. In contrast, neuroevolution
requires only a measure of a network’s performance at a task. For
example, the outcome of a game (i.e. whether one player won or
lost) can be easily measured without providing labeled examples
of desired strategies. Neuroevolution is commonly used as part
of the reinforcement learning paradigm, and it can be contrasted
with conventional deep learning techniques that use gradient
descent on a neural network with a fixed topology.

Evolutionary Computing60

2.3.8 Learning Classifier System

Learning classifier systems (LCS) are a paradigm of rule-based
machine learning methods that combine a discovery component
(e.g. typically a genetic algorithm) with a learning component
(performing either supervised learning, reinforcement learning,
or unsupervised learning). Learning classifier systems seek to
identify a set of context-dependent rules that collectively store
and apply knowledge in a piecewise manner in order to make
predictions (e.g. behavior modeling, classification, data mining,
regression, function approximation, or game strategy). This
approach allows complex solution spaces to be broken up into
smaller, simpler parts.

The founding concepts behind learning classifier systems came
from attempts to model complex adaptive systems, using rule-
based agents to form an artificial cognitive system (i.e. artificial
intelligence).

Here the solution is a set of classifiers (rules or conditions). A
Michigan-LCS evolves at the level of individual classifiers whereas
a Pittsburgh-LCS uses populations of classifier-sets. Initially,
classifiers were only binary, but now include real, neural net, or
S-expression types. Fitness is typically determined with either a
strength or accuracy based reinforcement learning or supervised
learning approach.

2.4 AN EVOLUTIONARY CYCLE BY HAND

To illustrate the working of an EA, reproduction cycle on a simple
problem after Goldberg, that of maximizing the values of x2 for
integers in the range 0–31. To execute a full evolutionary cycle,
we must make design decisions regarding the EA components
representation, parent selection, recombination, mutation, and
survivor selection.

Evolutionary Algorithm 61

For the representation we use a simple five-bit binary encoding
mapping integers (phenotypes) to bit-strings (genotypes). For
parent selection we use a fitness proportional mechanism, where
the probability pi that an individual i in population P is chosen to
be a parent is . Furthermore, we can decide to
replace the entire population in one go by the offspring created
from the selected parents. This means that our survivor selection
operator is very simple: all existing individuals are removed from
the population and all new individuals are added to it without
comparing fitness values. This implies that we will create as many
offspring as there are members in the population. Given our
chosen representation, the mutation and recombination operators
can be kept simple. Mutation is executed by generating a random
number (from a uniform distribution over the range [0, 1]) in
each bit position, and comparing it to a fixed threshold, usually
called the mutation rate. If the random number is below that rate,
the value of the gene in the corresponding position is flipped.
Recombination is implemented by the classic one-point crossover.
This operator is applied to two parents and produces two children
by choosing a random crossover-point along the strings and
swapping the bits of the parents after this point.

After having made the essential design decisions, we can execute
a full selection–reproduction cycle. Table 1 shows a random initial
population of four genotypes, the corresponding phenotypes,
and their fitness values. The cycle then starts with selecting the
parents to seed the next generation. The fourth column of Table
1 shows the expected number of copies of each individual after
parent selection, being where ¯f denotes the average fitness
(displayed values are rounded up). As can be seen, these numbers
are not integers; rather they represent a probability distribution,
and the mating pool is created by making random choices to
sample from this distribution. The column “Actual count” stands
for the number of copies in the mating pool, i.e., it shows one
possible outcome.

Evolutionary Computing62

Table 1. The x2 example, 1: initialization, evaluation, and parent selec-
tion.

Next the selected individuals are paired at random, and for each
pair a random point along the string is chosen. Table 2 shows the
results of crossover on the given mating pool for crossover points
after the fourth and second genes, respectively, together with the
corresponding fitness values. Mutation is applied to the offspring
delivered by crossover. Once again, we show one possible
outcome of the random drawings, and Table 3 shows the hand-
made ‘mutants’. In this case, the mutations shown happen to have
caused positive changes in fitness, but we should emphasize that
in later generations, as the number of 1’s in the population rises,
mutation will be on average (but not always) deleterious. Although
manually engineered, this example shows a typical progress: the
average fitness grows from 293 to 588.5, and the best fitness in the
population from 576 to 729 after crossover and mutation.

Table 2. The x2 example, 2: crossover and offspring evaluation.

Table 3. The x2 example, 3: mutation and offspring evaluation

Evolutionary Algorithm 63

2.5 EXAMPLE APPLICATIONS

2.5.1 The Eight-Queens Problem

This is the problem of placing eight queens on a regular 8 × 8
chessboard so that no two of them can check each other. There are
many classical artificial intelligence approaches to this problem,
which work in a constructive, or incremental, fashion. They start by
placing one queen, and after having placed n queens, they attempt
to place the (n + 1)th in a feasible position where the new queen
does not check any others. Typically some sort of backtracking
mechanism is applied; if there is no feasible position for the (n+1)
th queen, the nth is moved to another position.

An evolutionary approach to this problem is drastically different
in that it is not incremental. Our candidate solutions are complete
(rather than partial) board configurations, which specify the
positions of all eight queens. The phenotype space P is the set of
all such configurations. Clearly, most elements of this space are
infeasible, violating the condition of non-checking queens. The
quality q(p) of any phenotype p ∈ P can be simply quantified by
the number of checking queen pairs. The lower this measure, the
better a phenotype (board configuration), and a zero value, q(p) = 0,
indicates a good solution. From this observation we can formulate a
suitable objective function to be minimized, with a known optimal
value. Even though we have not defined genotypes at this point,

Evolutionary Computing64

we can state that the fitness (to be maximized) of a genotype g that
represents phenotype p is some inverse of q(p). There are many
possible ways of specifying what kind of inverse we wish to use
here. For instance, 1/q(p) is an easy option, but has the disadvantage
that attempting division by zero is a problem for many computing
systems. We could circumvent this by watching for q(p) = 0 and
saying that when this occurs we have a solution, or by adding a
small value 𝜖, i.e., 1/(q(p) + 𝜖). Other options are to use −q(p) or M
− q(p), where M is a sufficiently large number to make all fitness
values positive, e.g., M ≥ max{q(p) | p ∈ P}. This fitness function
inherits the property of q that it has a known optimum M.

To design an EA to search the space P we need to define a
representation of phenotypes from P. The most straightforward
idea is to use a matrix representation of elements of P directly
as genotypes, meaning that we must design variation operators
for these matrices. In this example, however, we define a more
clever representation as follows. A genotype, or chromosome,
is a permutation of the numbers 1,..., 8, and a given g = 〈i1,...,i8〉
denotes the (unique) board configuration, where the nth column
contains exactly one queen placed on the inth row. For instance,
the permutation g = 〈 1,..., 8〉 represents a board where the queens
are placed along the main diagonal. The genotype space G is now
the set of all permutations of 1,..., 8 and we also have defined a
mapping F : G → P.

It is easy to see that by using such chromosomes we restrict
the search to board configurations where horizontal constraint
violations (two queens on the same row) and vertical constraint
violations (two queens on the same column) do not occur. In other
words, the representation guarantees half of the requirements of a
solution – what remains to be minimized is the number of diagonal
constraint violations. From a formal perspective we have chosen
a representation that is not surjective since only part of P can be
obtained by decoding elements of G. While in general this could
carry the danger of missing solutions in P, in our present example
this is not the case, since we know a priori that those phenotypes
from P \ F(G) can never be solutions.

Evolutionary Algorithm 65

The next step is to define suitable variation operators (mutation
and crossover) for our representation, i.e., to work on genotypes
that are permutations. The crucial feature of a suitable operator
is that it does not lead out of the space G. In common parlance,
the offspring of permutations must themselves be permutations.
For mutation we can use an operator that randomly selects two
positions in a given chromosome, and swaps the values found
in those positions. A good crossover for permutations is less
obvious, but the mechanism outlined in Fig. 3 will create two child
permutations from two parents.

Figure 3. ‘Cut-and-crossfill’ crossover.

The important thing about these variation operators is that
mutation causes a small undirected change, and crossover creates
children that inherit genetic material from both parents. It should
be noted though that there can be large performance differences
between operators, e.g., an EA using mutation A might find a
solution quickly, whereas one using mutation B might never find a
solution. The operators we sketch here are not necessarily efficient;
they merely serve as examples of operators that are applicable to
the given representation.

The next step in setting up an EA is to decide upon the selection
and population update mechanisms. We will choose a simple
scheme for managing the population. In each evolutionary cycle
we will select two parents, producing two children, and the new
population of size n will contain the best n of the resulting n + 2
individuals (the old population plus the two new ones).

Parent selection will be done by choosing five individuals
randomly from the population and taking the best two as parents.
This ensures a bias towards using parents with relatively high

Evolutionary Computing66

fitness. Survivor selection checks which old individuals should be
deleted to make place for the new ones – provided the new ones
are better. The strategy we will use merges the population and
offspring, then ranks them according to fitness, and deletes the
worst two.

To obtain a full specification we can decide to fill the initial
population with randomly generated permutations, and to
terminate the search when we find a solution, or when 10,000
fitness evaluations have elapsed, whichever happens sooner.
Furthermore we can decide to use a population size of 100, and to
use the variation operators with a certain frequency. For instance,
we always apply crossover to the two selected parents and in
80% of the cases apply mutation to the offspring. Putting this all
together, we obtain an EA as summarized in Table 4.

Table 4. Description of the EA for the eight-queens problem.

2.5.2 The Knapsack Problem

The 0–1 knapsack problem, a generalization of many industrial
problems. We are given a set of n items, each of which has attached
to it some value vi, and some cost ci. The task is to select a subset of
those items that maximizes the sum of the values, while keeping the
summed cost within some capacity Cmax. Thus, for example, when
packing a backpack for a round-the-world trip, we must balance
likely utility of the items against the fact that we have a limited
volume (the items chosen must fit in one bag), and weight (airlines

Evolutionary Algorithm 67

impose fees for luggage over a given weight). It is a natural idea
to represent candidate solutions for this problem as binary strings
of length n, where a 1 in a given position indicates that an item is
included and a 0 that it is omitted. The corresponding genotype
space G is the set of all such strings with size 2n, which increases
exponentially with the number of items considered. Using this G,
we fix the representation in the sense of data structure, and next
we need to define the mapping from genotypes to phenotypes.

The first representation (in the sense of a mapping) that we
consider takes the phenotype space P and the genotype space to
be identical. The quality of a given solution p, represented by a
binary genotype g, is thus determined by summing the values
of the included items, i.e., . However, this
simple representation leads us to some immediate problems. By
using a one-to-one mapping between the genotype space G and
the phenotype space P, individual genotypes may correspond
to invalid solutions that have an associated cost greater than the
capacity, i.e., .

The second representation that we outline here solves this
problem by employing a decoder function that breaks the one-
to-one correspondence between the genotype space G and the
solution space P. In essence, our genotype representation remains
the same, but when creating a solution we read from left to right
along the binary string, and keep a running tally of the cost of
included items. When we encounter a value 1, we first check to see
whether including the item would break our capacity constraint.
In other words, rather than interpreting a value 1 as meaning
include this item, we interpret it as meaning include this item IF it
does not take us over the cost constraint. The effect of this scheme
is to make the mapping from genotype to phenotype space many-
to-one, since once the capacity has been reached, the values of all
bits to the right of the current position are irrelevant, as no more
items will be added to the solution. Furthermore, this mapping
ensures that all binary strings represent valid solutions with a
unique fitness (to be maximized).
Having decided on a fixed-length binary representation, we

Evolutionary Computing68

can now choose off-the-shelf variation operators from the GA
literature, because the bit-string representation is ‘standard’ there.
A suitable (but not necessarily optimal) recombination operator is
the so-called one-point crossover, where we align two parents and
pick a random point along their length.

The two offspring are created by exchanging the tails of the
parents at that point. We will apply this with 70% probability, i.e.,
for each pair of parents there is a 70% chance that we will create
two offspring by crossover and 30% that the children will be just
copies of the parents.

A suitable mutation operator is so-called bit-flipping: in each
position we invert the value with a small probability pm ∈ [0, 1).

In this case we will create the same number of offspring as we
have members in our initial population. As noted above, we create
two offspring from each two parents, so we will select that many
parents and pair them randomly.

We will use a tournament for selecting the parents, where each
time we pick two members of the population at random (with
replacement), and the one with the highest value q(p) wins the
tournament and becomes a parent. We will institute a generational
scheme for survivor selection, i.e., all of the population in each
iteration are discarded and replaced by their offspring.

Finally, we should consider initialization (which we will do by
random choice of 0 and 1 in each position of our initial population),
and termination. In this case, we do not know the maximum
value that we can achieve, so we will run our algorithm until no
improvement in the fitness of the best member of the population
has been observed for 25 generations.

We have already defined our crossover probability as 0.7; we will
work with a population size of 500 and a mutation rate of pm =
1/n, i.e., that will on average change one value in every offspring.
Our evolutionary algorithm to tackle this problem can be specified
as below in Table 5.

Evolutionary Algorithm 69

Table 5. Description of the EA for the knapsack problem.

2.6 THE OPERATION OF AN EVOLUTIONARY
ALGORITHM

Evolutionary algorithms have some rather general properties
concerning how they work. To illustrate how an EA typically
works, we will assume a one-dimensional objective function to be
maximized. Figure 4 shows three stages of the evolutionary search,
showing how the individuals might typically be distributed in the
beginning, somewhere halfway, and at the end of the evolution.
In the first stage directly after initialization, the individuals are
randomly spread over the whole search space (Fig. 4, left). After
only a few generations this distribution changes: because of
selection and variation operators the population abandons low-
fitness regions and starts to climb the hills (Fig. 4, middle). Yet
later (close to the end of the search, if the termination condition is
set appropriately), the whole population is concentrated around
a few peaks, some of which may be suboptimal. In principle it is
possible that the population might climb the wrong hill, leaving
all of the individuals positioned around a local but not global
optimum. Although there is no universally accepted rigorous
definition of the terms exploration and exploitation, these notions
are often used to categorize distinct phases of the search process.
Roughly speaking, exploration is the generation of new individuals
in as-yet untested regions of the search space, while exploitation
means the concentration of the search in the vicinity of known
good solutions. Evolutionary search processes are often referred

Evolutionary Computing70

to in terms of a trade-off between exploration and exploitation.
Too much of the former can lead to inefficient search, and too
much of the latter can lead to a propensity to focus the search too
quickly. Premature convergence is the well-known effect of losing
population diversity too quickly, and getting trapped in a local
optimum.

Figure 4. Typical progress of an EA illustrated in terms of population
distribution. For each point x in the search space y shows the corre-
sponding fitness value.

The other effect we want to illustrate is the anytime behavior of EAs
by plotting the development of the population’s best fitness value
over time (Fig. 5). This curve shows rapid progress in the beginning
and flattening out later on. This is typical for many algorithms that
work by iterative improvements to the initial solution(s). The name
‘anytime’ comes from the property that the search can be stopped
at any time, and the algorithm will have some solution, even if
it is suboptimal. Based on this anytime curve we can make some
general observations concerning initialization and the termination
condition for EAs. We questioned whether it is worth putting
extra computational effort into applying intelligent heuristics to
seed the initial population with better-than-random individuals.
In general, it could be said that that the typical progress curve of
an evolutionary process makes it unnecessary. This is illustrated
in Fig. 6. As the figure indicates, using heuristic initialization can
start the evolutionary search with a better population. However,
typically a few (k in the figure) generations are enough to reach
this level, making the extra effort questionable.

Evolutionary Algorithm 71

Figure 5. Typical progress of an EA illustrated in terms of development
over time of the highest fitness in the population.

Figure 6. Illustration of why heuristic initialization might not be worth
additional effort. Level a shows the best fitness in a randomly initialized
population; level b belongs to heuristic initialization.

The anytime behavior also gives some general indications
regarding the choice of termination conditions for EAs. In Fig. 7
we divide the run into two equally long sections. As the figure
indicates, the progress in terms of fitness increase in the first half
of the run (X) is significantly greater than in the second half (Y
). This suggests that it might not be worth allowing very long
runs. In other words, because of frequently observed anytime
behavior of EAs, we might surmise that effort spent after a certain
time (number of fitness evaluations) is unlikely to result in better
solution quality.

Evolutionary Computing72

Figure 7. Why long runs might not be worth performing. X shows the
fitness increase in the first half of the run, while Y belongs to the second
half.

We close this review of EA behavior by looking at EA performance
from a global perspective. That is, rather than observing one run
of the algorithm, we consider the performance of EAs for a wide
range of problems. Fig. 8 shows the 1980s view after Goldberg.

What the figure indicates is that EAs show a roughly evenly good
performance over a wide range of problems. This performance
pattern can be compared to random search and to algorithms
tailored to a specific problem type.

EAs are suggested to clearly outperform random search. In
contrast, a problem-tailored algorithm performs much better than
an EA, but only on the type of problem for which it was designed.
As we move away from this problem type to different problems,
the problem-specific algorithm quickly loses performance. In this
sense, EAs and problem-specific algorithms form two opposing
extremes. This perception played an important role in positioning
EAs and stressing the difference between evolutionary and
random search, but it gradually changed in the 1990s based on new
insights from practice as well as from theory. The contemporary
view acknowledges the possibility of combining the two extremes
into a hybrid algorithm. As for theoretical considerations, the No
Free Lunch theorem has shown that (under some conditions) no
black-box algorithm can outperform random walk when averaged
over ‘all’ problems. That is, showing the EA line always above that
of random search is fundamentally incorrect.

Evolutionary Algorithm 73

Figure 8. 1980s view of EA performance after Goldberg.

2.7 NATURAL VERSUS ARTIFICIAL EVOLUTION

From the perspective of the underlying substrate, the emergence of
evolutionary computation can be considered as a major transition
of the evolutionary principles from wetware, the realm of biology,
to software, the realm of computers.

This was made possible by using computers as instruments for
creating digital worlds that are very flexible and much more
controllable than the physical reality we live in.

Together with the increased understanding of the genetic
mechanisms behind evolution this brought about the opportunity
to become active masters of evolutionary processes that are fully
designed and executed by human experimenters from above.

It could be argued that evolutionary algorithms are not faithful
models of natural evolution. However, they certainly are a form
of evolution.

As phrased by Dennett: If you have variation, heredity, and
selection, then you must get evolution. In Table 6 we compare
natural evolution and artificial evolution as used in contemporary
evolutionary algorithms.

Evolutionary Computing74

Table 6. Differences between natural and artificial evolution.

2.8 EVOLUTIONARY COMPUTING, GLOBAL
OPTIMIZATION, AND OTHER SEARCH
ALGORITHMS

Evolutionary algorithms are often used for problem optimization.
Of course EAs are not the only optimization technique known, so
in this section we explain where EAs fall into the general class of
optimization methods, and why they are of increasing interest.

In an ideal world, we would possess the technology and
algorithms that could provide a provably optimal solution to
any problem that we could suitably pose to the system. In fact
such algorithms do exist: an exhaustive enumeration of all of

Evolutionary Algorithm 75

the possible solutions to a problem is clearly such an algorithm.
Moreover, for many problems that can be expressed in a suitably
mathematical formulation, much faster, exact techniques such
as branch and bound search are well known. However, despite
the rapid progress in computing technology, and even if there is
no halt to Moore’s Law, all too often the types of problems posed
by users exceed in their demands the capacity of technology to
answer them.

Decades of computer science research have taught us that
many real-world problems can be reduced in their essence to
well-known abstract forms, for which the number of potential
solutions grows very quickly with the number of variables
considered. For example, many problems in transportation can
be reduced to the well-known travelling salesperson problem
(TSP): given a list of destinations, construct the shortest tour that
visits each destination exactly once. If we have n destinations,
with symmetric distances between them, the number of possible
tours is n!/2 = n·(n−1)·(n−2)·...·3, which is exponential in n. For
some of these abstract problems exact methods are known whose
time complexity scales linearly (or at least polynomially) with
the number of variables. However, it is widely accepted that for
many types of problems encountered, no such algorithms exist.
Thus, despite the increase in computing power, beyond a certain
size of problem we must abandon the search for provably optimal
solutions, and look to other methods for finding good solutions.

The term global optimization refers to the process of attempting to
find the solution with the optimal value for some fitness function.
In mathematical terminology, we are trying to find the solution
x∗ out of a set of possible solutions S, such that x = x∗ ⇒ f(x∗) ≥
f(x) ∀x ∈ S. Here we have assumed a maximization problem – the
inequality is simply reversed for minimization.

As noted above, a number of deterministic algorithms exist that,
if allowed to run to completion, are guaranteed to find x∗. The
simplest example is, of course, complete enumeration of all the
solutions in S, which can take an exponentially long time as the
number of variables increases. A variety of other techniques,

Evolutionary Computing76

collectively known as box decomposition, are based on ordering
the elements of S into some kind of tree, and then reasoning about
the quality of solutions in each branch in order to decide whether
to investigate its elements. Although methods such as branch and
bound can sometimes make very fast progress, in the worst case
(caused by searching in a suboptimal order) the time complexity
of the algorithms is still the same as complete enumeration.

Another class of search methods is known as heuristics. These
may be thought of as sets of rules for deciding which potential
solution out of S should next be generated and tested. For some
randomized heuristics, such as simulated annealing and certain
variants of EAs, convergence proofs do in fact exist, i.e., they are
guaranteed to find x∗. Unfortunately these algorithms are fairly
weak, in the sense that they will not identify xc as being globally
optimal, rather as simply the best solution seen so far.

An important class of heuristics is based on the idea of using
operators that impose some kind of structure onto the elements of
S, such that each point x has associated with it a set of neighbors
N(x). In Fig. 2 the variables (traits) x and y were taken to be real-
valued, which imposes a natural structure on S. The reader should
note that for those types of problem where each variable takes
one of a finite set of values (so-called combinatorial optimization),
there are many possible neighborhood structures. As an example
of how the landscape ‘seen’ by a local search algorithm depends
on its neighborhood structure, the reader might wish to consider
what a chessboard would look like if we reordered it, so that
squares that are possible next moves for the knight piece were
adjacent to each other. Thus points which are locally optimal
(fitter than all their neighbors) in the landscape induced by one
neighborhood structure may not be for another. However, by its
definition, the global optimum x∗ will always be fitter than all of
its neighbors under any neighborhood structure.

So-called local search algorithms and their many variants work
by taking a starting solution x, and then searching the candidate
solutions in N(x) for one x’ that performs better than x. If such
a solution exists, then this is accepted as the new incumbent

Evolutionary Algorithm 77

solution, and the search proceeds by examining the candidate
solutions in N(x ‘). This process will eventually lead to the
identification of a local optimum: a solution that is superior to
all those in its neighborhood. Such algorithms (often referred
to as hill climbers for maximization problems) have been well
studied over the decades. They have the advantage that they are
often quick to identify a good solution to the problem, which is
sometimes all that is required in practical applications. However,
the downside is that problems will frequently exhibit numerous
local optima, some of which may be significantly worse than the
global optimum, and no guarantees can be offered for the quality
of solution found.

A number of methods have been proposed to get around this
problem by changing the search landscape, either by changing the
neighborhood structure, or by temporarily assigning low fitness
to already-seen good solutions. However the theoretical basis
behind these algorithms is still very much in gestation.There are a
number of features of EAs that distinguish them from local search
algorithms, relating principally to their use of a population. The
population provides the algorithm with a means of defining a
non-uniform probability distribution function (p.d.f.) governing
the generation of new points from S. This p.d.f. reflects possible
interactions between points in S which are currently represented
in the population. The interactions arise from the recombination
of partial solutions from two or more members of the population
(parents). This potentially complex p.d.f. contrasts with the globally
uniform distribution of blind random search, and the locally
uniform distribution used by many other stochastic algorithms
such as simulated annealing and various hill-climbing algorithms.
The ability of EAs to maintain a diverse set of points provides not
only a means of escaping from local optima, but also a means of
coping with large and discontinuous search spaces. In addition,
if several copies of a solution can be generated, evaluated, and
maintained in the population, this provides a natural and robust
way of dealing with problems where there is noise or uncertainty
associated with the assignment of a fitness score to a candidate
solution.

Evolutionary Computing78

REFERENCES

1.	 Ashlock, D. (2006), Evolutionary Computation for Modeling
and Optimization, Springer, ISBN 0-387-22196-4.

2.	 Benko, Attila; Dosa, Gyorgy; Tuza, Zsolt (2010). “Bin
Packing/Covering with Delivery, solved with the evolution
of algorithms”. 2010 IEEE Fifth International Conference on
Bio-Inspired Computing: Theories and Applications (BIC-
TA). pp. 298–302. doi:10.1109/BICTA.2010.5645312. ISBN 978-
1-4244-6437-1. S2CID 16875144.

3.	 Claudio Comis Da Ronco, Ernesto Benini, A Simplex-
Crossover-Based Multi-Objective Evolutionary Algorithm,
IAENG Transactions on Engineering Technologies, Volume
247 of the series Lecture Notes in Electrical Engineering pp
583-598, 2013 https://link.springer.com/chapter/10.1007%
2F978-94-007-6818-5_41

4.	 Eiben, A.E., Smith, J.E. (2003), Introduction to Evolutionary
Computing, Springer.

5.	 Michalewicz Z., Fogel D.B. (2004). How To Solve It: Modern
Heuristics, Springer.

6.	 Poli, R.; Langdon, W. B.; McPhee, N. F. (2008). A Field Guide
to Genetic Programming. Lulu.com, freely available from the
internet. ISBN 978-1-4092-0073-4. Archived from the original
on 2016-05-27. Retrieved 2011-03-05.

7.	 Price, K., Storn, R.M., Lampinen, J.A., (2005). “Differential
Evolution: A Practical Approach to Global Optimization”,
Springer.

8.	 Rahman, Rosshairy Abd.; Kendall, Graham; Ramli, Razamin;
Jamari, Zainoddin; Ku-Mahamud, Ku Ruhana (2017).
“Shrimp Feed Formulation via Evolutionary Algorithm with
Power Heuristics for Handling Constraints”. Complexity.
2017: 1–12. doi:10.1155/2017/7053710.

9.	 Simon, D. (2013): Evolutionary Optimization Algorithms,
Wiley.

INTRODUCTION

Genetic Algorithm (GA) is a search-based optimization technique
based on the principles of Genetics and Natural Selection. It
is frequently used to find optimal or near-optimal solutions to
difficult problems which otherwise would take a lifetime to solve.
It is frequently used to solve optimization problems, in research,
and in machine learning.

Nature has always been a great source of inspiration to all mankind.
Genetic Algorithms (GAs) are search based algorithms based on
the concepts of natural selection and genetics. GAs are a subset
of a much larger branch of computation known as Evolutionary
Computation. GAs were developed by John Holland and his
students and colleagues at the University of Michigan, most
notably David E. Goldberg and has since been tried on various
optimization problems with a high degree of success.

3
GENETIC ALGORITHM

C
H

A
PT

ER

Evolutionary Computing80

In GAs, we have a pool or a population of possible solutions to the
given problem. These solutions then undergo recombination and
mutation (like in natural genetics), producing new children, and
the process is repeated over various generations. Each individual
(or candidate solution) is assigned a fitness value (based on its
objective function value) and the fitter individuals are given a
higher chance to mate and yield more “fitter” individuals. This is
in line with the Darwinian Theory of “Survival of the Fittest”. In
this way we keep “evolving” better individuals or solutions over
generations, till we reach a stopping criterion.

Genetic Algorithms are sufficiently randomized in nature, but
they perform much better than random local search (in which we
just try various random solutions, keeping track of the best so far),
as they exploit historical information as well.

3.1 REPRESENTATION OF INDIVIDUALS

Genetic representation is a way of representing solutions/
individuals in evolutionary computation methods. Genetic
representation can encode appearance, behaviour, physical
qualities of individuals. Designing a good genetic representation
that is expressive and evolvable is a hard problem in evolutionary
computation. Difference in genetic representations is one of
the major criteria drawing a line between known classes of
evolutionary computation.

Terminology is often analogous with natural genetics. The block of
computer memory that represents one candidate solution is called
an individual. The data in that block is called a chromosome.
Each chromosome consists of genes. The possible values of a
particular gene are called alleles. A programmer may represent
all the individuals of a population using binary encoding,
permutational encoding, encoding by tree, or any one of several
other representations.

Genetic algorithms use linear binary representations. The most
standard one is an array of bits. Arrays of other types and structures

Genetic Algorithm 81

can be used in essentially the same way. The main property that
makes these genetic representations convenient is that their parts
are easily aligned due to their fixed size. This facilitates simple
crossover operation. Variable length representations were also
explored in Genetic algorithms, but crossover implementation is
more complex in this case.

Evolution strategy uses linear real-valued representations, e.g.
an array of real values. It uses mostly gaussian mutation and
blending/averaging crossover.

Genetic programming (GP) pioneered tree-like representations
and developed genetic operators suitable for such representations.
Tree-like representations are used in GP to represent and evolve
functional programs with desired properties. Human-based
genetic algorithm (HBGA) offers a way to avoid solving hard
representation problems by outsourcing all genetic operators to
outside agents, in this case, humans. The algorithm has no need
for knowledge of a particular fixed genetic representation as long
as there are enough external agents capable of handling those
representations, allowing for free-form and evolving genetic
representations.

3.1.1 Data Representation

The organization of any computer depends considerably on how
it represents numbers, characters, and control information. The
converse is also true: Standards and conventions established over
the years have determined certain aspects of computer organization.

Data Type

A data type, in programming, is a classification that specifies
which type of value a variable has and what type of mathematical,
relational or logical operations can be applied to it without causing
an error. A string, for example, is a data type that is used to classify
text and an integer is a data type used to classify whole numbers.

Evolutionary Computing82

Data Type Used for Example

String Alphanumeric characters hello world, Alice, Bob123

Integer Whole numbers 7, 12, 999

Float (float-
ing point)

Number with a decimal
point

3.15, 9.06, 00.13

Character Encoding text numerically 97 (in ASCII, 97 is a lower
case ‘a’)

Boolean Representing logical
values

TRUE, FALSE

The data type defines which operations can safely be performed
to create, transform and use the variable in another computation.
When a program language requires a variable to only be used in
ways that respect its data type, that language is said to be strongly
typed. This prevents errors, because while it is logical to ask the
computer to multiply a float by an integer (1.5 x 5), it is illogical to
ask the computer to multiply a float by a string (1.5 x Alice). When
a programming language allows a variable of one data type to be
used as if it were a value of another data type, the language is said
to be weakly typed.

Technically, the concept of a strongly typed or weakly typed
programming language is a fallacy. In every programming
language, all values of a variable have a static type but the type
might be one whose values are classified into one or more classes.
And while some classes specify how the data type’s value will be
compiled or interpreted, there are other classes whose values are
not marked with their class until run-time. The extent to which
a programming language discourages or prevents type error is
known as type safety.

Fixed-Point Representation

•	 Positive integers and zero can be represented by unsigned
numbers

Genetic Algorithm 83

•	 Negative numbers must be represented by signed
numbers since + and – signs are not available, only 1’s
and 0’s are

•	 Signed numbers have msb as 0 for positive and 1 for
negative – msb is the sign bit

•	 Two ways to designate binary point position in a register
-- Fixed point position
-- Floating-point representation

•	 Fixed point position usually uses one of the two following
positions
-- A binary point in the extreme left of the register to make

it a fraction
-- A binary point in the extreme right of the register to

make it an integer
-- In both cases, a binary point is not actually present

•	 The floating-point representations uses a second register
to designate the position of the binary point in the first
register

•	 When an integer is positive, the msb, or sign bit, is 0 and
the remaining bits represent the magnitude

•	 When an integer is negative, the msb, or sign bit, is 1, but
the rest of the number can be represented in one of three
ways
-- Signed-magnitude representation
-- Signed-1’s complement representation
-- Signed-2’s complement representation

•	 Consider an 8-bit register and the number +14
-- The only way to represent it is 00001110

•	 Consider an 8-bit register and the number –14
-- Signed magnitude: 		 1 0001110
-- Signed 1’s complement:		 1 1110001
-- Signed 2’s complement: 		 1 1110010

Evolutionary Computing84

•	 Typically use signed 2’s complement
•	 Addition of two signed-magnitude numbers follow the

normal rules
-- If same signs, add the two magnitudes and use the

common sign
-- Differing signs, subtract the smaller from the larger and

use the sign of the larger magnitude
-- Must compare the signs and magnitudes and then either

add or subtract
•	 Addition of two signed 2’s complement numbers does

not require a comparison or subtraction – only addition
and complementation
-- Add the two numbers, including their sign bits
-- Discard any carry out of the sign bit position
-- All negative numbers must be in the 2’s complement

form
-- If the sum obtained is negative, then it is in 2’s

complement form

•	 Subtraction of two signed 2’s complement numbers is as
follows

•	 Take the 2’s complement form of the subtrahend
(including sign bit)

•	 Add it to the minuend (including the sign bit)
•	 A carry out of the sign bit position is discarded
•	 An overflow occurs when two numbers of n digits each

are added and the sum occupies n + 1 digits
•	 Overflows are problems since the width of a register is

finite
•	 Therefore, a flag is set if this occurs and can be checked

Genetic Algorithm 85

by the user
•	 Detection of an overflow depends on if the numbers are

signed or unsigned
•	 For unsigned numbers, an overflow is detected from the

end carry out of the msb
•	 For addition of signed numbers, an overflow cannot

occur if one is positive and one is negative – both have to
have the same sign

•	 An overflow can be detected if the carry into the sign bit
position and the carry out of the sign bit position are not
equal

•	 The representation of decimal numbers in registers is a
function of the binary code used to represent a decimal
digit

•	 A 4-bit decimal code requires four flip-flops for each
decimal digit

•	 This takes much more space than the equivalent binary
representation and the circuits required to perform
decimal arithmetic are more complex

•	 Representation of signed decimal numbers in BCD is
similar to the representation of signed numbers in binary

•	 Either signed magnitude or signed complement systems
•	 The sign of a number is represented with four bits

-- 0000 for +
-- 1001 for –

•	 To obtain the 10’s complement of a BCD number, first
take the 9’s complement and then add one to the least
significant digit

•	 Example: (+375) + (-240) = +135

Evolutionary Computing86

3.1.2 Floating-Point Representation

If we wanted to build a real computer, we could use any of the
integer representations that we just studied. We would pick one of
them and proceed with our design tasks. Our next step would be
to decide the word size of our system. If we want our system to be
really inexpensive, we would pick a small word size, say 16 bits.
Allowing for the sign bit, the largest integer that this system can
store is 32,767. So now what do we do to accommodate a potential
customer who wants to keep a tally of the number of spectators
paying admission to professional sports events in a given year?
Certainly, the number is larger than 32,767. No problem. Let’s just
make the word size larger. Thirty-two bits ought to do it. Our word
is now big enough for just about anything that anyone wants to
count. But what if this customer also needs to know the amount
of money each spectator spends per minute of playing time? This
number is likely to be a decimal fraction. Now we’re really stuck.

The easiest and cheapest approach to this problem is to keep
our 16-bit system and say, “Hey, we’re building a cheap system
here. If you want to do fancy things with it, get yourself a good
programmer.” Although this position sounds outrageously
flippant in the context of today’s technology, it was a reality in the
earliest days of each generation of computers. There simply was no
such thing as a floating-point unit in many of the first mainframes
or microcomputers. For many years, clever programming enabled
these integer systems to act as if they were, in fact, floating-point
systems.

If you are familiar with scientific notation, you may already be
thinking of how you could handle floating-point operations—
how you could provide floating-point emulation—in an integer
system. In scientific notation, numbers are expressed in two parts:
a fractional part, called a mantissa, and an exponential part that
indicates the power of ten to which the mantissa should be raised
to obtain the value we need. So to express 32,767 in scientific
notation, we could write 3.2767 × 104. Scientific notation simplifies
pencil and paper calculations that involve very large or very small

Genetic Algorithm 87

numbers. It is also the basis for floating-point computation in
today’s digital computers.

A Simple Model

In digital computers, floating-point numbers consist of three parts:
a sign bit, an exponent part (representing the exponent on a power
of 2), and a fractional part called a significand (which is a fancy
word for a mantissa). The number of bits used for the exponent
and significand depends on whether we would like to optimize
for range (more bits in the exponent) or precision (more bits in the
significand). We will use a 14-bit model with a 5-bit exponent, an
8-bit significand, and a sign bit (see Figure 1).

Figure 1: Floating-Point Representation.

Let’s say that we wish to store the decimal number 17 in our model.
We know that 17 = 17.0 × 100 = 1.7 × 101 = 0.17 × 102. Analogously, in
binary, 1710 = 100012 × 20 = 1000.12 × 21 = 100.012 × 22 = 10.0012 × 23
= 1.00012 × 24 = 0.100012 × 25. If we use this last form, our fractional
part will be 10001000 and our exponent will be 00101, as shown
here:

Using this form, we can store numbers of much greater magnitude
than we could using a fixed-point representation of 14 bits (which
uses a total of 14 binary digits plus a binary, or radix, point). If we
want to represent 65536 = 0.12 × 217 in this model, we have:

One obvious problem with this model is that we haven’t provided
for negative exponents. If we wanted to store 0.25 we would have
no way of doing so because 0.25 is 2–2 and the exponent –2 cannot
be represented. We could fix the problem by adding a sign bit
to the exponent, but it turns out that it is more efficient to use

Evolutionary Computing88

a biased exponent, because we can use simpler integer circuits
when comparing the values of two floating-point numbers.

The idea behind using a bias value is to convert every integer in
the range into a non-negative integer, which is then stored as a
binary numeral. The integers in the desired range of exponents
are first adjusted by adding this fixed bias value to each exponent.
The bias value is a number near the middle of the range of possible
values that we select to represent zero. In this case, we could select
16 because it is midway between 0 and 31 (our exponent has 5
bits, thus allowing for 25 or 32 values). Any number larger than 16
in the exponent field will represent a positive value. Values less
than 16 will indicate negative values. This is called an excess-16
representation because we have to subtract 16 to get the true value
of the exponent. Note that exponents of all zeros or all ones are
typically reserved for special numbers (such as zero or infinity).

Returning to our example of storing 17, we calculated 1710 =
0.100012 × 25. The biased exponent is now 16 + 5 = 21:

If we wanted to store 0.25 = 1.0 × 2–2 we would have:

There is still one rather large problem with this system: We do not
have a unique representation for each number. All of the following
are equivalent:

Because synonymous forms such as these are not well-suited for
digital computers, a convention has been established where the
leftmost bit of the significand will always be a 1. This is called

Genetic Algorithm 89

normalization. This convention has the additional advantage in
that the 1 can be implied, effectively giving an extra bit of precision
in the significand.

Floating-Point Arithmetic

If we wanted to add two decimal numbers that are expressed in
scientific notation, such as 1.5 × 102 + 3.5 × 103, we would change
one of the numbers so that both of them are expressed in the same
power of the base. In our example, 1.5 × 102 + 3.5 × 103 = 0.15 × 103 +
3.5 × 103 = 3.65 × 103. Floating-point addition and subtraction work
the same way.

Example

Add the following binary numbers as represented in a normalized
14-bit format with a bias of 16.

We see that the addend is raised to the second power and that the
augend is to the zero power. Alignment of these two operands on
the binary point gives us:

Renormalizing, we retain the larger exponent and truncate the
low-order bit. Thus, we have:

Multiplication and division are carried out using the same rules of
exponents applied to decimal arithmetic, such as 2–3 × 24 = 21.

Evolutionary Computing90

Floating-Point Errors

When we use pencil and paper to solve a trigonometry problem or
compute the interest on an investment, we intuitively understand
that we are working in the system of real numbers. We know that
this system is infinite, because given any pair of real numbers, we
can always find another real number that is smaller than one and
greater than the other.

Unlike the mathematics in our imaginations, computers are finite
systems, with finite storage. When we call upon our computers to
carry out floating-point calculations, we are modeling the infinite
system of real numbers in a finite system of integers. What we
have, in truth, is an approximation of the real number system.
The more bits we use, the better the approximation. However,
there is always some element of error, no matter how many bits
we use. Floating-point errors can be blatant, subtle, or unnoticed.
The blatant errors, such as numeric overflow or underflow, are the
ones that cause programs to crash. Subtle errors can lead to wildly
erroneous results that are often hard to detect before they cause
real problems. For example, in our simple model, we can express
normalized numbers in the range of –.111111112 × 215 through
+.11111111 × 215. Obviously, we cannot store 2–19 or 2128; they simply
don’t fit. It is not quite so obvious that we cannot accurately store
128.5, which is well within our range. Converting 128.5 to binary,
we have 10000000.1, which is 9 bits wide. Our significand can hold
only eight. Typically, the low-order bit is dropped or rounded
into the next bit. No matter how we handle it, however, we have
introduced an error into our system.

We can compute the relative error in our representation by taking
the ratio of the absolute value of the error to the true value of the
number. Using our example of 128.5, we find:

If we are not careful, such errors can propagate through a
lengthy calculation, causing substantial loss of precision. Figure

Genetic Algorithm 91

2 illustrates the error propagation as we iteratively multiply 16.24
by 0.91 using our 14-bit model. Upon converting these numbers
to 8-bit binary, we see that we have a substantial error from the
outset.

As you can see, in six iterations, we have more than tripled the
error in the product. Continued iterations will produce an error
of 100% because the product eventually goes to zero. Although
this 14-bit model is so small that it exaggerates the error, all
floating-point systems behave the same way. There is always
some degree of error involved when representing real numbers in
a finite system, no matter how large we make that system. Even
the smallest error can have catastrophic results, particularly when
computers are used to control physical events such as in military
and medical applications. The challenge to computer scientists is
to find efficient algorithms for controlling such errors within the
bounds of performance and economics.

Figure 2 Error Propagation in a 14-Bit Floating-Point Number.

Evolutionary Computing92

3.1.3 Error-Detecting codes

Whenever a message is transmitted, it may get scrambled by noise
or data may get corrupted. To avoid this, we use error-detecting
codes which are additional data added to a given digital message
to help us detect if an error occurred during transmission of the
message. A simple example of error-detecting code is parity check.

Error-Correcting codes

Along with error-detecting code, we can also pass some data to
figure out the original message from the corrupt message that we
received. This type of code is called an error-correcting code. Error-
correcting codes also deploy the same strategy as error-detecting
codes but additionally, such codes also detect the exact location of
the corrupt bit.

In error-correcting codes, parity check has a simple way to detect
errors along with a sophisticated mechanism to determine the
corrupt bit location. Once the corrupt bit is located, its value is
reverted (from 0 to 1 or 1 to 0) to get the original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the
data bits at the time of transmission.

•	 The additional bits are called parity bits. They allow
detection or correction of the errors.

•	 The data bits along with the parity bits form a code word.

Parity Checking of Error Detection

It is the simplest technique for detecting and correcting errors. The
MSB of an 8-bits word is used as the parity bit and the remaining
7 bits are used as data or message bits. The parity of 8-bits
transmitted word can be either even parity or odd parity.

Genetic Algorithm 93

Even parity -- Even parity means the number of 1’s in the given
word including the parity bit should be even (2,4,6,....).

Odd parity -- Odd parity means the number of 1’s in the given
word including the parity bit should be odd (1,3,5,....).

Use of Parity Bit

The parity bit can be set to 0 and 1 depending on the type of the
parity required.

•	 For even parity, this bit is set to 1 or 0 such that the no. of
“1 bits” in the entire word is even. Shown in figure (3).

•	 For odd parity, this bit is set to 1 or 0 such that the no. of
“1 bits” in the entire word is odd. Shown in figure (4).

Figure 3:

Figure 4:

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an error
if the parity of the receiver signal is different from the expected

Evolutionary Computing94

parity. That means, if it is known that the parity of the transmitted
signal is always going to be “even” and if the received signal has
an odd parity, then the receiver can conclude that the received
signal is not correct.

If an error is detected, then the receiver will ignore the received byte
and request for retransmission of the same byte to the transmitter.

3.2 NUMBER REPRESENTATION AND BINARY
CODE

Binary is a number system which builds numbers from elements
called bits. Each bit can be represented by any two mutually
exclusive states.

Generally, when one write it down or code bits, and represent
them with 1 and 0 to build binary numbers the same way and
build numbers in the traditional base 10 system. However, instead
of a one’s column, a 10’s column, and a 100 column (and so on) and
have a one’s column, a two’s columns, a four’s column, an eight’s
column, and so on, as illustrated:

Table 1. Binary

2... 26 25 24 23 22 21 20

... 64 32 16 8 4 2 1

For example, to represent the number 203 in base 10, place a 3 in
the 1’s column, a 0 in the 10’s column and a 2 in the 100’s column.

Genetic Algorithm 95

This is expressed with exponents in the Table 2.

Table 2. 203 in base 10

102 101 100

2 0 3

Or, in other words, 2 Ã 102 + 3 Ã 100 = 200 + 3 = 203.

To represent the same thing in binary, and would have in the Table
3.

Table 3. 203 in base 2

27 26 25 24 23 22 21 20

1 1 0 0 1 0 1 1

That equates to 27 + 26 + 23+21 + 20 = 128 + 64 + 8 + 2 + 1 = 203.

Conversion

The easiest way to convert between bases is to use a computer;
after all, that’s what they are good at! However, it is often useful to
know how to do conversions by hand.

The easiest method to convert between bases is repeated division.
To convert, repeatedly divide the quotient by the base, until the
quotient is zero, making note of the remainders at each step.
Then, write the remainders in reverse, starting at the bottom and
appending to the right each time. An example should illustrate;
since you are converting to binary and use a base of 2.

Table 4. Convert 203 to binary

Quotient Â Remainder Â

20310 Ã· 2 = 101 1 Â

10110 Ã· 2 = 50 1 â†‘

5010 Ã· 2 = 25 0 â†‘

Evolutionary Computing96

2510 Ã· 2 = 12 1 â†‘

1210 Ã· 2 = 6 0 â†‘

610 Ã· 2 = 3 0 â†‘

310 Ã· 2 = 1 1 â†‘

110 Ã· 2 = 0 1 â†‘

Reading from the bottom and appending to the right each time
gives 11001011, which anyone saw from the example was 203.ss

Bits and Bytes

To represent all the letters of the alphabet you would need at least
enough different combinations to represent all the lower case
letters, the upper case letters, numbers and punctuation, plus
a few extras. Adding this up means need probably around 80
different combinations.

•	 If you have two bits and can represent 4 unique
combinations (00 01 10 11).

•	 If you have three bits and can represent 8 different
combinations.

•	 With n bits you can represent 2n unique combinations.

8 bits gives us 28 = 256 unique representations, more than enough
for the alphabet combinations. And call a group of 8 bits a byte.
Guess how bit a C char variable is?

ASCII

Given that a byte can represent any of the values 0 through 256,
anyone could arbitrarily make up a mapping between characters
and numbers. For example, a video card manufacturer could decide
that the value 10 represents A, so when value 10 is sent to the
video card it displays a capital ‘A’ on the screen.

Genetic Algorithm 97

To avoid this happening, the American Standard Code for Information
Interchange or ASCII was invented. This is a 7-bit code, meaning
there are 27 or 128 available codes.

The range of codes is divided up into two major parts; the non-
printable and the printable. Printable characters are things like
characters (supper and lower case), numbers and punctuation.
Nonprintable codes are for control, and do things like make a
carriage-return, ring the terminal bell or the special NULL code
which represents nothing at all.

127 unique characters is sufficient for American English, but
becomes very restrictive when someone wants to represent
characters common in other languages, especially Asian languages
which can have many thousands of unique characters.

To alleviate this, modern systems are moving away from ASCII
to Unicode, which can use up to 4 bytes to represent a character,
giving much more room!

Parity

ASCII, being only a 7-bit code, leaves one bit of the byte spare.
This can be used to implement parity which is a simple form of
error checking. Consider a computer using punch-cards for
input, where a hole represents 1 and no hole represents 0. Any
inadvertent covering of a hole will cause an incorrect value to be
read, causing undefined behavior.

Parity allows a simple check of the bits of a byte to ensure they
were read correctly, and can implement either odd or even parity
by using the extra bit as a parity bit.

In odd parity, if the number of 1’s in the 7 bits of information is
odd, the parity bit is set, otherwise it is not set. Even parity is the
opposite; if the number of 1’s is even the parity bit is set to 1. In
this way, the flipping of one bit will case a parity error, which can
be detected.

Evolutionary Computing98

16, 32 and 64 bit Computers

Numbers do not fit into bytes; hopefully bank balance in dollars
will need more range than can fit into one byte! Most modern
architectures are 32 bit computers. This means they work with 4
bytes at a time when processing and reading or writing to memory;
and refers to 4 bytes as a word; this is analogous to language where
letters (bits) make up words in a sentence, except in computing
every word has the same size! The size of a C it variable is 32
bits. Newer architectures are 64 bits, which doubles the size the
processor works with (8 bytes).

Kilo, Mega and Giga Bytes

Computers deal with a lot of bytes; that’s what makes them so
powerful!

One need a way to talk about large numbers of bytes, and a natural
way is to use the “International System of Units” (SI) prefixes as
used in most other scientific areas. So for example, kilo refers to 103
or 1,000 units, as in a kilogram has 1,000 grams.

1,000 is a nice round number in base 10, but in binary it is 1111101000
which is not a particularly “round” number. However, 1024 (or
210) is (10000000000), and happens to be quite close to the base ten
meaning of kilo (1000 as opposed to 1024).

Hence 1024 bytes became known as a kilobyte. The first mass
market computer was the Commodore 64, so named because it
had 64 kilobytes of storage.

Today, kilobytes of memory would be small for a wrist watch, let
alone a personal computer. The next SI unit is “mega” for 106. As
it happens, 220 is again close to the SI base 10 definition; 1048576 as
opposed to 1000000.

The units keep increasing by powers of 10; each time it diverges
from the base SI meaning.

Genetic Algorithm 99

Table 5 Bytes

210 Kilobyte

220 Megabyte

230 Gigabyte

240 Terabyte

250 Petabyte

260 Exabyte

Therefore a 32 bit computer can address up to four gigabytes of
memory; the extra two bits can represent four groups of 230 bytes.
A 64 bit computer can address up to 8 Exabyte’s; you might be
interested in working out just how big a number this is. To get a
feel for how bit that number is calculate how long it would take to
count to 264; if you incremented once per second.

Boolean Operations

George Boole was a mathematician who discovered a whole
area of mathematics called Boolean algebra. Whilst he made his
discoveries in the mid 1800’s, his mathematics is the fundamentals
of all computer science.

Boolean operations simply take a particular input and produce a
particular output follows a rule.

For example, the simplest Boolean operation, not simply inverts
the value of the input operand. Other operands usually take two
inputs, and produce a single output.

The fundamental Boolean operations used in computer science
are easy to remember and listed. These represent them with truth
tables; they simply show all possible inputs and outputs. The term
true simply reflects 1 in binary.

Evolutionary Computing100

NOT

Usually represented by (!), NOT simply inverts the value, so 0
becomes 1 and 1 becomes 0

Table 6: Truth table for not

Input Output

1 0

0 1

AND

To remember how the AND operation works think of it as “if one
input true and the other are true, result is true.

Table 7: Truth table for and

Input 1 Input 2 Output
0 0 0
1 0 0
0 1 0
1 1 1

OR

To remember how the OR operation works think of it as “if one
input or the other input is true, the result is true.

Table 8: Truth table for OR

Input 1 Input 2 Output
0 0 0
1 0 1
0 1 1
1 1 1

Genetic Algorithm 101

Exclusive OR (XOR)

Exclusive OR, written as XOR is a special case of or where the
output is true if one, and only one, of the inputs is true. This
operation can surprisingly do many interesting tricks, but one will
not see a lot of it in the kernel.

Table 9: Truth table for XOR

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

1 1 0

3.2.1 How Computers use Boolean Operations

Believe it or not, essentially everything computer does comes back
to the operations.

For example, the half adder is a type of circuit made up from
Boolean operations that can add bits together (it is called a half
adder because it does not handle carry bits). Put more half adders
together, and will start to build something that can add together
long binary numbers. Add some external memory, and has a
computer.

Electronically, the Boolean operations are implemented in gates
made by transistors.

This is why you might have heard about transistor counts and
things like Moores Law. The more transistors, the more gates, the
more things and can add together. To create the modern computer,
there are an awful lot of gates, and an awful lot of transistors.
Some of the latest Itanium processors have around 460 million
transistors.

Evolutionary Computing102

Hexadecimal

Hexadecimal refers to a base 16 number system. Uses this in
computer science for only one reason; it makes it easy for humans
to think about binary numbers. Computers only ever deal in
binary and hexadecimal is simply a shortcut for us humans trying
to work with the computer.

So why base 16? Well, the most natural choice is base 10, since
anyone is used to thinking in base 10 from everyday number
system. But base 10 does not work well with binary to represent 10
different elements in binary, and need four bits. Four bits, however,
gives us sixteen possible combinations. So they can either take the
very tricky road of trying to convert between base 10 and binary,
or take the easy road and make up a base 16 number system -
hexadecimal!

Hexadecimal uses the standard base 10 numerals, but adds A B C
D E F which refer to 10 11 12 13 14 15 (one start from zero).

Traditionally, any time you sees a number prefixed by 0x this will
denote a hexadecimal number.

As mentioned, to represent 16 different patterns in binary, and
would need exactly four bits. Therefore, each hexadecimal numeral
represents exactly four bits.

One should consider it an exercise to learn the given Table off by
heart.

Table 10: Hexadecimal, binary and decimal

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2

Genetic Algorithm 103

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Of course there is no reason not to continue the pattern (say,
assign G to the value 16), but 16 values is an excellent tradeoff
between the vagaries of human memory and the number of bits
used by a computer. Anyone simply represents larger numbers
of bits with more numerals. For example, a sixteen bit variable can
be represented by 0xAB12, and to find it in binary simply take
each individual numeral, convert it as per the table and join them
all together (so 0xAB12 ends up as the 16-bit binary number
1010101100010010). And can use the reverse to convert from
binary back to hexadecimal.

One can also use the same repeated division scheme to change the
base of a number.

Evolutionary Computing104

For example, to find 203 in hexadecimal.

Table 11: Convert 203 to hexadecimal

Quotient Â Remainder Â

20310 Ã· 16 = 12 11 (0xB) Â

1210 Ã· 16 = 0 12 (0xC) â†‘

Hence 203 in hexadecimal is 0xCB.

Practical Implications

Use of Binary in Code

Whilst binary is the underlying language of every computer, it is
entirely practical to program a computer in high level languages
without knowing the first thing about it. However, for the low
level codes and they are interested in a few fundamental binary
principles are used repeatedly.

3.2.2 Fixed- and Floating-Point Number Representation

The Institute of Electrical and Electronics Engineers (IEEE)
standardizes floating-point representation in IEEE 754. Floating-
point representation is similar to scientific notation in that there is
a number multiplied by a base number raised to some power. For
example, 118.625 are represented in scientific notation as 1.18625
× 102. The main benefit of this representation is that it provides
varying degrees of precision based on the scale of the numbers
that anyone is using. For example, it is beneficial to talk in terms of
angstroms (10-10 m) when one is working with the distance between
atoms. However, if they are dealing with the distance between
cities, this level of precision is no longer practical or necessary.

IEEE 754 defines binary representations for 32-bit single-precision
and 64-bit double-precision (64-bit) numbers as well as extended

Genetic Algorithm 105

single-precision and extended double-precision numbers. Examine
the specification for single-precision, floating-point numbers, also
called floats.

A float consists of three parts: the sign bit, the exponent, and the
mantissa. The division of the three parts is as follows:

The sign bit is 0 if the number is positive and 1 if the number is
negative.

The exponent is an 8-bit number that ranges in value from -126
to 127. The exponent is actually not the typical two’s complement
representation because this makes comparisons more difficult.
Instead, the value is biased by adding 127 to the desired exponent
and representation, which makes it possible to represent negative
numbers. The mantissa is the normalized binary representation of
the number to be multiplied by 2 raised to the power defined by
the exponent.
Now look at how to encode 118.625 as a float. The number 118.625
is a positive number, so the sign bit is 0. To find the exponent and
mantissa, first write the number in binary, which are 1110110.101.
Next, normalize the number to 1.110110101 × 26, which is the bi-
nary equivalent of scientific notation. The exponent is 6 and the
mantissa is 1.110110101. The exponent must be biased, which is 6
+ 127 = 133. The binary representation of 133 is 10000101.
Thus, the floating-point encoded value of 118.65 is 0100 0010 1111
0110 1010 0000 0000 0000. Binary values are often referred to in
their hexadecimal equivalent. In this case, the hexadecimal value
is 42F6A000.

Fixed Point Representation

In fixed-point representation, a specific radix point called a
decimal point in English and written “.” is chosen so there is a
fixed number of bits to the right and a fixed number of bits to the

Evolutionary Computing106

left of the radix point. The bits to the left of the radix point are
called the integer bits. The bits to the right of the radix point are
called the fractional bits.

In this example, assume a 16-bit fractional number with 8
magnitude bits and 8 radix bits, which is typically represented
as 8.8 representations. Like most signed integers, fixed-point
numbers are represented in two’s complement binary. Using a
positive number keeps this example simple.

To encode 118.625, first find the value of the integer bits. The
binary representation of 118 is 01110110, so this is the upper 8
bits of the 16-bit number. The fractional part of the number is
represented as 0.625 × 2n where n is the number of fractional bits.
Because 0.625 × 256 = 160, and use the binary representation of
160, which is 10100000, to determine the fractional bits. Thus, the
binary representation for 118.625 is 0111 0110 1010 0000. The value
is typically referred to using the hexadecimal equivalent, which is
76A0.

The major advantage of using fixed-point representation for real
numbers is that fixed-point adheres to the same basic arithmetic
principles as integers. Therefore, fixed-point numbers can take
advantage of the general optimizations made to the Arithmetic
Logic Unit (ALU) of most microprocessors, and do not require
any additional libraries or any additional hardware logic. On
processors without a floating-point unit (FPU), such as the Analog
Devices Black fin Processor, fixed-point representation can
result in much more efficient embedded code when performing
mathematically heavy operations.

In general, the disadvantage of using fixed-point numbers is that
fixed-point numbers can represent only a limited range of values,
so fixed-point numbers are susceptible to common numeric
computational inaccuracies. For example, the range of possible
values in the 8.8 notation that can be represented is +127.99609375

Genetic Algorithm 107

to -128.0. If you add 100 + 100 and exceed the valid range of the
data type which is called overflow. In most cases, the values that
overflow are saturated, or truncated, so that the result is the largest
representable number.

3.2.3 BCD

In computing and electronic systems, binary-coded decimal
(BCD) or, in its most common modern implementation, packed
decimal, is an encoding for decimal numbers in which each
digit is represented by its own binary sequence. Its main virtue
is that it allows easy conversion to decimal digits for printing or
display, and allows faster decimal calculations. Its drawbacks are
a small increase in the complexity of circuits needed to implement
mathematical operations. Uncompressed BCD is also a relatively
inefficient encoding it occupies more space than a purely binary
representation.

Short for Binary Coded Decimal, BCD is also known as packet
decimal and is numbers 0 through 9 converted to four-digit binary.
There is a list of the decimal numbers 0 through 9 and the binary
conversion.

In BCD, a digit is usually represented by four bits which, in general,
represent the decimal digits 0 through 9. Other bit combinations
are sometimes used for a sign or for other indications (e.g., error
or overflow).

Although uncompressed BCD is not as widely used as it once
was, decimal fixed-point and floating-point are still important
and continue to be used in financial, commercial, and industrial
computing.

Recent decimal floating-point representations use base-
10 exponents, but not BCD encodings. Current hardware
implementations, however, convert the compressed decimal
encodings to BCD internally before carrying out computations.
Software implementations of decimal arithmetic typically use
BCD or some other 10n base, depending on the operation.

Evolutionary Computing108

Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Using this conversion, the number 25, for example, would have a
BCD number of 0010 0101 or 00100101. However, in binary, 25 are
represented as 11001.Number larger than 9 having two or more
digits in the decimal system, are expressed digit by digit. For
example, the BCD rendition of the base-10 number 1895 is

0001 1000 1001 0101

The binary equivalents of 1, 8, 9, and 5, always in a four-digit
format, go from left to right.

The BCD representation of a number is not the same, in general,
as its simple binary representation. In binary form, for example, the
decimal quantity 1895 appears as

11101100111

Other bit patterns are sometimes used in BCD format to represent
special characters relevant to a particular system, such as sign
(positive or negative), error condition, or overflow condition.
The BCD system offers relative ease of conversion between
machine-readable and human-readable numerals. As compared
to the simple binary system, however, BCD increases the circuit

Genetic Algorithm 109

complexity. The BCD system is not as widely used today as it was
a few decades ago, although some systems still employ BCD in
financial applications.

3.2.4 EBCDIC

Extended Binary Coded Decimal Interchange Code (EBCDIC) is a
character encoding set used by IBM mainframes. Unlike virtually
every computer system in the world which uses a variant of ASCII,
IBM mainframes and midrange systems such as the AS/400 tend to
use a wholly incompatible character set primarily designed for ease
of use on punched cards. (For an excellent page on punched cards,
see Doug Jones’s Punched Card Codes).EBCDIC uses the full 8 bits
available to it, so parity checking cannot be used on an 8 bit system.
Also, EBCDIC has a wider range of control characters than ASCII.

The character encoding is based on Binary Coded Decimal (BCD),
so the contiguous characters in the alphanumeric range are formed
up in blocks of up to 10 from 0000 binary to 1001 binary. Non
alphanumeric characters are almost all outside the BCD range.
There are four main blocks in the EBCDIC code page: 0000 0000 to
0011 1111 is reserved for control characters; 0100 0000 to 0111 1111
is for punctuation; 1000 0000 to 1011 1111 for lowercase characters
and 1100 0000 to 1111 1111 for uppercase characters and numbers.

3.2.5 ASCII

ASCII is the American Standard Code for Information Interchange,
also known as ANSI X3.4. There are many variants of this standard,
typically to allow different code pages for language encoding, but
they all basically follow the same format. ASCII is quite elegant
in the way it represents characters, and it is very easy to write
code to manipulate upper/lowercase and check for valid data
ranges.ASCII is essentially a 7-bit code which allows the 8th most
significant bit (MSB) to be used for error checking, however most
modern computer systems tend to use ASCII values of 128 for
extended character sets.

Evolutionary Computing110
Ta

bl
e

12
: T

ab
le

 o
f A

SC
II

 c
ha

ra
ct

er
s

bi
na

ry
M

SN

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

LS
N

he

x
0

1
2

3
4

5
6

7

00
00

0
N

U
L

00
0

D
LE

16 10
SP

32 20
0

48 30
@

64 40
P

80 50
`

96 60
p

11
2

70

00
01

1
SO

H
1 01

XO
N

(D
C

1)
17 11

!
33 21

1
49 31

A
65 41

Q
81 51

a
97 61

q
11

3
71

00
10

2
ST

X
2 02

D
C

2
18 12

“
34 22

2
50 32

B
66 42

R
82 52

b
98 62

r
11

4
72

00
11

3
ET

X
3 03

XO
FF

 (D
C

2)
19 13

#
35 23

3
51 33

C
67 43

S
83 53

c
99 63

s
11

5
73

01
00

4
EO

T
4 04

D
C

4
20 14

$
36 24

4
52 34

D
68 44

T
84 54

d
10

0
64

t
11

6
74

01
01

5
EN

Q
5 05

N
A

K
21 15

%
37 25

5
53 35

E
69 45

U
85 55

e
10

1
65

u
11

7
75

01
10

6
A

C
K

6 06
SY

N
22 16

&
38 26

6
54 36

F
70 46

V
86 56

f
10

2
66

v
11

8
76

Genetic Algorithm 111
01

11
7

BE
L

7 07
ET

B
23 17

‘
39 27

7
55 37

G
71 47

W
87 57

g
10

3
67

w
11

9
77

10
00

8
BS

8 08
C

A
N

24 18
(

40 28
8

56 38
H

72 48
X

88 58
h

10
4

68
x

12
0

78

10
01

9
H

T
9 09

EM
25 19

)
41 29

9
57 39

I
73 49

Y
89 59

i
10

5
69

y
12

1
79

10
10

A
LF

10 0A
SU

B
26 1A

*
42 2A

:
58 3A

J
74 4A

Z
90 5A

j
10

6
6A

z
12

2
7A

10
11

B
V

T
11 0B

ES
C

27 1B
+

43 2B
;

59 3B
K

75 4B
[

91 5B
k

10
7

6B
{

12
3

7B

11
00

C
FF

12 0C
FS

28 1C
,

44 2C
<

60 3C
L

76 4C
\

92 5C
l

10
8

6C
|

12
4

7C

11
01

D
C

R
13 0D

G
S

29 1D
-

45 2D
=

61 3D
M

77 4D
]

93 5D
m

10
9

6D
}

12
5

7D

11
10

E
SO

14 0E
R

S
30 1E

.
46 2E

>
62 3E

N
78 4E

^
94 5E

n
11

0
6E

~
12

6
7E

11
11

F
SI

15
0F

U
S

31
1F

/
47

2F
?

63
3F

O
79

4F
_

95
5F

o
11

16
F

D
EL

12
77

F

Evolutionary Computing112

Excess-3

Excess-3 code is an example of un-weighted code. Excess-3
equivalent of a decimal number is obtained by adding 3 and then
converting it to a binary format. For instance to find excess-3
representation of decimal number 4, first 3 is added to 4 to get
7 and then binary equivalent of 7 i.e. 0111 forms the excess-3
equivalent. The truth table of excess-3 is given in Table 13.

Table 13: Truth table of excess-3

Truth Table

Input (BCD) Output (Excess-3)

A B C D W X Y Z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

Here is a Table representing excess-3 equivalent of decimal
numbers (0-9):

Genetic Algorithm 113

Table 14: Excess-3 equivalent of decimal numbers

Decimal Number Excess-3 Equivalent

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

Excess 3 Code Additions

The operation of addition can be done by very simple method you
will illustrate the operation in a simple way using steps.

•	 Step 1: You have to convert the numbers (which are to be
added) into excess 3 forms by adding 0011 with each of
the four bit groups them or simply increasing them by 3.

•	 Step 2: Now the two numbers are added using the basic
laws of binary addition, there is no exception for this
method.

•	 Step 3: Now which of the four groups have produced a
carry one has to add 0011 with them and subtract 0011
from the groups which have not produced a carry during
the addition.

•	 Step 4: The result which you have obtained after this
operation is in Excess 3 form and this is desired result

Evolutionary Computing114

Example

To understand the Excess 3 Code Addition method better you can
observe the method with the help of an example,

Let us take two numbers which one will to add.

0011 0101 0110 and 0101 0111 1001 are the two binary numbers.
Now follows the first step one take the excess 3 form of these two
numbers which are 0110 1000 1001 and 1000 1010 1100, now these
numbers are added the basic rules of addition.

Now adding 0011 to the groups which produces a carry and
subtracting zero from the groups which did not produced carry
one get the result as 1100 0110 1000 is the result of the addition in
excess 3 code and the BCD answer is 1001 0011 0101.

Excess 3 Code Subtractions

Similarly binary subtraction can be performed by Excess 3 Code
Subtraction method. The operation is illustrated with the help of
some steps.

•	 Step 1: The numbers have to be converted into excess 3
codes.

•	 Step 2: Following the basic methods of binary subtraction,
subtraction is done.

•	 Step 3: Subtract ‘0011’ from each BCD four-bit group in
the answer if the subtraction operation of the relevant
four-bit groups required borrow from the next higher
adjacent four-bit group.

•	 Step 4: Add ‘0011’ to the remaining four-bit groups, if
any, in the result.

Genetic Algorithm 115

•	 Step 5: Finally one gets the desired result in excess 3
codes.

Example

Again an example will make the understanding very easy for us.

Let us take the numbers
0001 1000 0101 and 0000 0000 1000 now the excess 3 equivalent of
those numbers are 0100 1011 1000 and 0011 0011 1011
Now performing the operation of binary subtraction one get

The least significant column which needed borrow and the other
two columns did not need borrow. Now you have to subtract
0011 from the result of this column and add 0011 to the other two
columns, and get 0100 1010 1010. This is the result expressed in
excess 3 codes. And the binary result is 0001 0111 0111

3.2.6 IEEE Standard

Abbreviation of Institute of Electrical and Electronics Engineers,
pronounced I-triple-E. Founded in 1884 as the AIEE, the IEEE
was formed in 1963 when AIEE merged with IRE. IEEE is an
organization composed of engineers, scientists, and students. The
IEEE is best known for developing standards for the computer
and electronics industry. In particular, the IEEE 802 standards for
local-area networks are widely followed.

The IEEE has done notable work in the standards area of networking.
This organization is huge with over 300,000 members made up
of engineers, technicians, scientists, and students in related areas.
The Computer Society of IEEE alone has over 100,000 members.

Evolutionary Computing116

IEEE is credited with having provided definitive standards in
local area networking.

The 802 standards were the culmination of work performed by
the subcommittee starting in 1980. This was followed in 1985 with
specific LAN-oriented standards titled 802.2 - 802.5. Since that
time there have been other references set up as well. Most of the
work performed by the 802 Project committee revolves around the
first two layers of the OSI model initiated by the ISO. These layers
involve the physical medium on which you move data (cable
type) and the way that interacts with it. It addresses such crucial
issues of how data is placed on the network and how insures
its accuracy and flow. In order to better define these functions,
the IEEE split the Data Link layer of the OSI model up into two
separate components.

802 IEEE committee responsible for setting standards concerning
cabling physical topologies logical topologies and physical access
methods for networking products. The Computer Society of IEEE’s
802 Project Committee is divided into several subcommittees that
deal with specific standards in these general areas. Specifically the
Physical layer and the Data Link layer of the ISO’s OSI model are
addressed.

802.1 This work defines an overall picture of LANs and
connectivity. 802.1B this set of standards specifically addressed
network management.

802.1D Standards for bridges used to connect various types of
LANs together were set up with 802.1D.

802.2 called the logical link control (LLC) standards; this
specification governs the communication of packets of information
from one device to another on a network. Specifically it deals with
communication, not access to the network itself.

802.3 Defines the way data has access to a network for multiple
topology systems using Carrier Sense Multiple Access/ Collision
Detection (CSMA/CD). A prime example is Ethernet and Star LAN
systems. These LAN types operate at 10 Mb/sec.

Genetic Algorithm 117

802.4 Standards developed for a token-passing scheme on a
bus topology. The primary utilizer of this specification was the
Manufacturing Automation Protocol LANs developed by General
Motors. Operate at 10 Mb/sec.

802.5 This standard defines token ring systems. It involves the
token-passing concept on a ring topology with twisted pair
cabling. IBM’s token ring system uses this specification. The speed
is either 4 Mb/sec or 16 Mb/sec.

802.6 Metropolitan Area Networks are defined by this group.
MANs are networks that are larger than LANs typically falling
within 50 kilometers. They operate at speeds ranging from 1 Mb/
sec up to about 200 Mb/sec.

802.7 These are standards concerning broadband LANs.

802.8 This group sets up standards for LANs using fiber optic
cabling and access methods.

802.9 This specification covers voice and digital data integration.

802.10 These members set standards for interoperable security.

802.11 Wireless LANs are the subject of this particular
subcommittee’s works. Both infrared and radio LANs are covered.

IEEE standard for Floating Point Representation

The IEEE (Institute of Electrical and Electronics Engineers) has
produced a standard for floating point arithmetic. This standard
specifies how single precision (32 bit) and double precision (64
bit) floating point numbers are to be represented, as well as how
arithmetic should be carried out on them.

Single Precision

The IEEE single precision floating point standard representation
requires a 32 bit word, which may be represented as numbered
from 0 to 31, left to right. The first bit is the sign bit, S, the next

Evolutionary Computing118

eight bits are the exponent bits, ‘E’, and the final 23 bits are the
fraction ‘F’:

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

0 1 8 9 31

The value V represented by the word may be determined as
follows:

•	 If E=255 and F is nonzero, then V=NaN (“Not a number”)
•	 If E=255 and F is zero and S is 1, then V=-Infinity
•	 If E=255 and F is zero and S is 0, then V=Infinity
•	 If 0<E<255 then V= (-1)**S * 2 ** (E-127) * (1.F) where “1.F”

is intended to represent the binary number created by
prefixing F with an implicit leading 1 and a binary point.

•	 If E=0 and F is nonzero, then V= (-1)**S * 2 ** (-126) * (0.F)
These are “normalized” values.

•	 If E=0 and F is zero and S is 1, then V=-0
•	 If E=0 and F is zero and S is 0, then V=0

In particular,
 0 00000000 00000000000000000000000 = 0
 1 00000000 00000000000000000000000 = -0
 0 11111111 00000000000000000000000 = Infinity
 1 11111111 00000000000000000000000 = -Infinity
 0 11111111 00000100000000000000000 = NaN
 1 11111111 00100010001001010101010 = NaN
 0 10000000 00000000000000000000000 = +1 * 2**(128-127) * 1.0 = 2
 0 10000001 10100000000000000000000 = +1 * 2**(129-127) * 1.101
= 6.5
 1 10000001 10100000000000000000000 = -1 * 2**(129-127) * 1.101 =
-6.5
 0 00000001 00000000000000000000000 = +1 * 2**(1-127) * 1.0 = 2**(-
126)
 0 00000000 10000000000000000000000 = +1 * 2**(-126) * 0.1 = 2**(-
127)

Genetic Algorithm 119

 0 00000000 00000000000000000000001 = +1 * 2**(-126) *
 0.00000000000000000000001 =
 2**(-149) (Smallest positive value)

Double Precision

The IEEE double precision floating point standard representation
requires a 64 bit word, which may be represented as numbered
from 0 to 63, left to right. The first bit is the sign bit, S, the next
eleven bits are the exponent bits, ‘E’, and the final 52 bits are the
fraction ‘F’:
S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFF
0 1 11 12 63
The value V represented by the word may be determined as
follows:

•	 If E=2047 and F is nonzero, then V=NaN (“Not a number”)
•	 If E=2047 and F is zero and S is 1, then V=-Infinity
•	 If E=2047 and F is zero and S is 0, then V=Infinity
•	 If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where

“1.F” is intended to represent the binary number created
by prefixing F with an implicit leading 1 and a binary
point.

•	 If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F)
These are “unnormalized” values.

•	 If E=0 and F is zero and S is 1, then V=-0
•	 If E=0 and F is zero and S is 0, then V=0

3.3 MUTATION

In simple terms, mutation may be defined as a small random tweak
in the chromosome, to get a new solution. It is used to maintain
and introduce diversity in the genetic population and is usually
applied with a low probability – pm. If the probability is very high,

Evolutionary Computing120

the GA gets reduced to a random search. Mutation is the part of
the GA which is related to the “exploration” of the search space. It
has been observed that mutation is essential to the convergence of
the GA while crossover is not.

Mutation Operators

In this section, we describe some of the most commonly used
mutation operators. Like the crossover operators, this is not an
exhaustive list and the GA designer might find a combination of
these approaches or a problem-specific mutation operator more
useful.

Bit Flip Mutation

In this bit flip mutation, we select one or more random bits and
flip them. This is used for binary encoded GAs.

Random Resetting

Random Resetting is an extension of the bit flip for the integer
representation. In this, a random value from the set of permissible
values is assigned to a randomly chosen gene.

Swap Mutation

In swap mutation, we select two positions on the chromosome
at random, and interchange the values. This is common in
permutation based encodings.

Genetic Algorithm 121

Scramble Mutation

Scramble mutation is also popular with permutation
representations. In this, from the entire chromosome, a subset
of genes is chosen and their values are scrambled or shuffled
randomly.

Inversion Mutation

In inversion mutation, we select a subset of genes like in scramble
mutation, but instead of shuffling the subset, we merely invert the
entire string in the subset.

3.3.1 Genetic Algorithms - Population

Population is a subset of solutions in the current generation. It can
also be defined as a set of chromosomes. There are several things
to be kept in mind when dealing with GA population −

•	 The diversity of the population should be maintained
otherwise it might lead to premature convergence.

•	 The population size should not be kept very large as it
can cause a GA to slow down, while a smaller population
might not be enough for a good mating pool. Therefore,
an optimal population size needs to be decided by trial
and error.

The population is usually defined as a two-dimensional array of
– size population, size x, chromosome size.

Evolutionary Computing122

Population Initialization

There are two primary methods to initialize a population in a GA.
They are −

•	 Random Initialization − Populate the initial population
with completely random solutions.

•	 Heuristic initialization − Populate the initial population
using a known heuristic for the problem.

It has been observed that the entire population should not be
initialized using a heuristic, as it can result in the population
having similar solutions and very little diversity. It has been
experimentally observed that the random solutions are the ones
to drive the population to optimality. Therefore, with heuristic
initialization, we just seed the population with a couple of good
solutions, filling up the rest with random solutions rather than
filling the entire population with heuristic based solutions.

It has also been observed that heuristic initialization in some cases,
only effects the initial fitness of the population, but in the end, it is
the diversity of the solutions which lead to optimality.

Population Models

There are two population models widely in use −

Steady State

In steady state GA, we generate one or two off-springs in each
iteration and they replace one or two individuals from the
population. A steady state GA is also known as Incremental GA.

Generational

In a generational model, we generate ‘n’ off-springs, where n is the
population size, and the entire population is replaced by the new
one at the end of the iteration.

Genetic Algorithm 123

3.3.2 Genetic Algorithms - Parent Selection

Parent Selection is the process of selecting parents which mate
and recombine to create off-springs for the next generation. Parent
selection is very crucial to the convergence rate of the GA as good
parents drive individuals to a better and fitter solutions.

However, care should be taken to prevent one extremely fit solution
from taking over the entire population in a few generations, as this
leads to the solutions being close to one another in the solution
space thereby leading to a loss of diversity. Maintaining good
diversity in the population is extremely crucial for the success of
a GA. This taking up of the entire population by one extremely fit
solution is known as premature convergence and is an undesirable
condition in a GA.

Fitness Proportionate Selection

Fitness Proportionate Selection is one of the most popular ways
of parent selection. In this every individual can become a parent
with a probability which is proportional to its fitness. Therefore,
fitter individuals have a higher chance of mating and propagating
their features to the next generation. Therefore, such a selection
strategy applies a selection pressure to the more fit individuals in
the population, evolving better individuals over time.

Consider a circular wheel. The wheel is divided into n pies, where
n is the number of individuals in the population. Each individual
gets a portion of the circle which is proportional to its fitness value.

Two implementations of fitness proportionate selection are
possible −

Roulette Wheel Selection

In a roulette wheel selection, the circular wheel is divided as
described before. A fixed point is chosen on the wheel circumference
as shown and the wheel is rotated. The region of the wheel which

Evolutionary Computing124

comes in front of the fixed point is chosen as the parent. For the
second parent, the same process is repeated.

It is clear that a fitter individual has a greater pie on the wheel and
therefore a greater chance of landing in front of the fixed point
when the wheel is rotated. Therefore, the probability of choosing
an individual depends directly on its fitness.
Implementation wise, we use the following steps −

•	 Calculate S = the sum of a finesses.
•	 Generate a random number between 0 and S.
•	 Starting from the top of the population, keep adding the

finesses to the partial sum P, till P<S.
•	 The individual for which P exceeds S is the chosen

individual.

Stochastic Universal Sampling (SUS)

Stochastic Universal Sampling is quite similar to Roulette wheel
selection, however instead of having just one fixed point, we have
multiple fixed points as shown in the following image. Therefore,
all the parents are chosen in just one spin of the wheel. Also, such
a setup encourages the highly fit individuals to be chosen at least
once.

Genetic Algorithm 125

It is to be noted that fitness proportionate selection methods don’t
work for cases where the fitness can take a negative value.

Tournament Selection

In K-Way tournament selection, we select K individuals from the
population at random and select the best out of these to become a
parent. The same process is repeated for selecting the next parent.
Tournament Selection is also extremely popular in literature as it
can even work with negative fitness values.

Evolutionary Computing126

Rank Selection

Rank Selection also works with negative fitness values and is
mostly used when the individuals in the population have very
close fitness values (this happens usually at the end of the run).
This leads to each individual having an almost equal share of
the pie (like in case of fitness proportionate selection) as shown
in the following image and hence each individual no matter how
fit relative to each other has an approximately same probability
of getting selected as a parent. This in turn leads to a loss in the
selection pressure towards fitter individuals, making the GA to
make poor parent selections in such situations.

In this, we remove the concept of a fitness value while selecting
a parent. However, every individual in the population is ranked
according to their fitness. The selection of the parents depends on
the rank of each individual and not the fitness. The higher ranked
individuals are preferred more than the lower ranked ones.

Chromosome Fitness Value Rank

A 8.1 1

B 8.0 4

C 8.05 2

D 7.95 6

Genetic Algorithm 127

E 8.02 3

F 7.99 5

Random Selection

In this strategy we randomly select parents from the existing
population. There is no selection pressure towards fitter individuals
and therefore this strategy is usually avoided.

Evolutionary Computing128

REFERENCES

1.	 A. Alameldeen and D. Wood. Variability in architectural
simulations of multi-threaded workloads. In Proceedings of
the Ninth International Symposium on High-Performance
Computer Architecture (HPCA), pages 7–18, February 2003.

2.	 E. Argollo, A. Falcón, P. Faraboschi,M.Monchiero, and D.
Ortega. COTSon: Infrastructure for full system simulation.
SIGOPS Operating System Review, 43(1):52–61, January 2009.

3.	 T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE Computer,
35(2):59–67, February 2002. 51, 55

4.	 R. Bell, Jr. and L. K. John. Improved automatic testcase
synthesis for performance model validation. In Proceedings of
the 19th ACM International Conference on Supercomputing
(ICS), pages 111–120, June 2005.

5.	 E. Berg and E. Hagersten. Fast data-locality profiling of native
execution. In Proceedings of the International Conference
on Measurements and Modeling of Computer Systems
(SIGMETRICS), pages 169–180, June 2005.

6.	 C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques
(PACT), pages 72–81, October 2008.

7.	 N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,
and S. K. Reinhardt. The M5 simulator: Modeling networked
systems. IEEE Micro, 26(4):52–60, 2006.

8.	 M. Burtscher and I. Ganusov. Automatic synthesis of high-
speed processor simulators. In Proceedings of the 37th IEEE/
ACM Symposium on Microarchitecture (MICRO), pages 55–
66, December 2004. 52, 72

9.	 M. Burtscher, I. Ganusov, S. J. Jackson, J. Ke, P. Ratanaworabhan,
and N. B. Sam. The VPC trace-compression algorithms. IEEE
Transactions on Computers, 54(11):1329–1344, November
2005.

Genetic Algorithm 129

10.	 D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip-multiprocessor architecture.
In Proceedings of the Eleventh International Symposium on
High Performance Computer Architecture (HPCA), pages
340–351, February 2005. 7, 91, 93

11.	 J. Chen, M. Annavaram, and M. Dubois. SlackSim: A platform
for parallel simulation of CMPs on CMPs. ACM SIGARCH
Computer Architecture News, 37(2):20–29, May 2009.

12.	 X. E. Chen and T. M. Aamodt. Hybrid analytical modeling
of pending cache hits, data prefetching, and MSHRs.
In Proceedings of the International Symposium on
Microarchitecture (MICRO), pages 59–70, December 2008. 46

INTRODUCTION

Neural network models are highly expressive and flexible, and if
we are able to find a suitable set of model parameters, we can use
neural nets to solve many challenging problems. Deep learning’s
success largely comes from the ability to use the backpropagation
algorithm to efficiently calculate the gradient of an objective
function over each model parameter. With these gradients, we can
efficiently search over the parameter space to find a solution that
is often good enough for our neural net to accomplish difficult
tasks.

However, there are many problems where the backpropagation
algorithm cannot be used. For example, in reinforcement learning
(RL) problems, we can also train a neural network to make
decisions to perform a sequence of actions to accomplish some
task in an environment. However, it is not trivial to estimate the

4
INTRODUCTION TO EVOLUTION
STRATEGY

C
H

A
PT

ER

Evolutionary Computing132

gradient of reward signals given to the agent in the future to an
action performed by the agent right now, especially if the reward
is realised many timesteps in the future. Even if we are able to
calculate accurate gradients, there is also the issue of being stuck
in a local optimum, which exists many for RL tasks.

4.1 OVERVIEW OF EVOLUTION STRATEGY

The diagrams below are top-down plots of shifted 2D Schaffer
and Rastrigin functions, two of several simple toy problems used
for testing continuous black-box optimization algorithms. Lighter
regions of the plots represent higher values of F(x,y). As you can
see, there are many local optimums in this function. Our job is to
find a set of model parameters (x,y), such that F(x,y) is as close as
possible to the global maximum.

Introduction to Evolution Strategy 133

Although there are many definitions of evolution strategies, we
can define an evolution strategy as an algorithm that provides
the user a set of candidate solutions to evaluate a problem. The
evaluation is based on an objective function that takes a given
solution and returns a single fitness value. Based on the fitness
results of the current solutions, the algorithm will then produce
the next generation of candidate solutions that is more likely
to produce even better results than the current generation.
The iterative process will stop once the best known solution is
satisfactory for the user.

Given an evolution strategy algorithm called EvolutionStrategy,
we can use in the following way:
solver = EvolutionStrategy()
while True:

Evolutionary Computing134

 # ask the ES to give us a set of candidate solutions

 solutions = solver.ask()

 # create an array to hold the fitness results.

 fitness_list = np.zeros(solver.popsize)

 # evaluate the fitness for each given solution.

 for i in range(solver.popsize):

 fitness_list[i] = evaluate(solutions[i])

 # give list of fitness results back to ES

 solver.tell(fitness_list)

 # get best parameter, fitness from ES

 best_solution, best_fitness = solver.result()

 if best_fitness > MY_REQUIRED_FITNESS:

 break

Although the size of the population is usually held constant for
each generation, they don’t need to be. The ES can generate as many
candidate solutions as we want, because the solutions produced
by an ES are sampled from a distribution whose parameters are
being updated by the ES at each generation. I will explain this
sampling process with an example of a simple evolution strategy.

Introduction to Evolution Strategy 135

4.1.1 SIMPLE EVOLUTION STRATEGY

One of the simplest evolution strategy we can imagine will just
sample a set of solutions from a Normal distribution, with a mean \
muμ and a fixed standard deviation \sigmaσ. In our 2D problem,

 Initially, μ is set at the origin. After
the fitness results are evaluated, we set μ to the best solution
in the population, and sample the next generation of solutions
around this new mean. This is how the algorithm behaves over 20
generations on the two problems mentioned earlier:

In the visualisation above, the green dot indicates the mean of
the distribution at each generation, the blue dots are the sampled
solutions, and the red dot is the best solution found so far by our
algorithm.

This simple algorithm will generally only work for simple
problems. Given its greedy nature, it throws away all but the best
solution, and can be prone to be stuck at a local optimum for more
complicated problems. It would be beneficial to sample the next
generation from a probability distribution that represents a more
diverse set of ideas, rather than just from the best solution from
the current generation.

4.1.2 Simple Genetic Algorithm

One of the oldest black-box optimization algorithms is the genetic
algorithm. There are many variations with many degrees of

Evolutionary Computing136

sophistication, but I will illustrate the simplest version here. The
idea is quite simple: keep only 10% of the best performing solutions
in the current generation, and let the rest of the population die.
In the next generation, to sample a new solution is to randomly
select two solutions from the survivors of the previous generation,
and recombine their parameters to form a new solution.
This crossover recombination process uses a coin toss to determine
which parent to take each parameter from. In the case of our 2D
toy function, our new solution might inherit x or y from either
parents with 50% chance. Gaussian noise with a fixed standard
deviation will also be injected into each new solution after this
recombination process.

The figure above illustrates how the simple genetic algorithm
works. The green dots represent members of the elite population
from the previous generation, the blue dots are the offspring’s to
form the set of candidate solutions, and the red dot is the best
solution.

Genetic algorithms help diversity by keeping track of a diverse set
of candidate solutions to reproduce the next generation. However,
in practice, most of the solutions in the elite surviving population
tend to converge to a local optimum over time. There are more
sophisticated variations of GA out there, such as CoSyNe, ESP,
and NEAT, where the idea is to cluster similar solutions in the
population together into different species, to maintain better
diversity over time.

Introduction to Evolution Strategy 137

4.1.3 Covariance-Matrix Adaptation Evolution Strategy
(CMA-ES)

A shortcoming of both the Simple ES and Simple GA is that our
standard deviation noise parameter is fixed. There are times when
we want to explore more and increase the standard deviation of
our search space, and there are times when we are confident we
are close to a good optima and just want to fine tune the solution.
We basically want our search process to behave like this:

Amazing isn’it it? The search process shown in the figure above
is produced by Covariance-Matrix Adaptation Evolution Strategy
(CMA-ES). CMA-ES an algorithm that can take the results of
each generation, and adaptively increase or decrease the search

Evolutionary Computing138

space for the next generation. It will not only adapt for the mean \
muμ and sigma \sigmaσ parameters, but will calculate the entire
covariance matrix of the parameter space. At each generation,
CMA-ES provides the parameters of a multi-variate normal
distribution to sample solutions from. So how does it know how
to increase or decrease the search space?

Before we discuss its methodology, let’s review how to estimate
a covariance matrix. This will be important to understand CMA-
ES’s methodology later on.

If we want to estimate the covariance matrix of our entire sampled
population of size of N, we can do so using the set of equations
below to calculate the maximum likelihood estimate of a covariance
matrix C. We first calculate the means of each of the xi and yi in our
population:

The terms of the 2x2 covariance matrix C will be:

Introduction to Evolution Strategy 139

4.2 NATURAL EVOLUTION STRATEGIES

Imagine if you had built an artificial life simulator, and you sample
a different neural network to control the behavior of each ant
inside an ant colony. Using the Simple Evolution Strategy for this
task will optimize for traits and behaviors that benefit individual
ants, and with each successive generation, our population will be
full of alpha ants who only care about their own well-being.

Instead of using a rule that is based on the survival of the fittest
ants, what if you take an alternative approach where you take the
sum of all fitness values of the entire ant population, and optimize
for this sum instead to maximize the well-being of the entire ant
population over successive generations? Well, you would end up
creating a Marxist utopia.

A perceived weakness of the algorithms mentioned so far is that
they discard the majority of the solutions and only keep the best
solutions. Weak solutions contain information about what not to
do, and this is valuable information to calculate a better estimate
for the next generation.

In this approach, we want to use all of the information from each
member of the population, good or bad, for estimating a gradient
signal that can move the entire population to a better direction in
the next generation. Since we are estimating a gradient, we can
also use this gradient in a standard SGD update rule typically
used for deep learning. We can even use this estimated gradient
with Momentum SGD, RMSProp, or Adam if we want to.

Evolutionary Computing140

The idea is to maximize the expected value of the fitness score of
a sampled solution. If the expected result is good enough, then
the best performing member within a sampled population will be
even better, so optimizing for the expectation might be a sensible
approach. Maximising the expected fitness score of a sampled
solution is almost the same as maximizing the total fitness score
of the entire population.

4.3 NUMERICAL OPTIMIZATION

Almost every machine learning algorithm can be posed as an
optimization problem. In an ML algorithm, we update the model’s
parameters to minimize the loss. For example, every supervised
learning algorithm can be written as, θ_estimate = argmin
𝔼[L(y,f(x,θ))], where x and y represent the features and the target
respectively, θ represents model parameters, f represents the
function we are trying to model and L represents the Loss function,
which measures how good our fit is. Gradient Descent algorithm
also known as steepest descent has proven to solve such problems
well in most of the cases. It is a first-order iterative algorithm for
finding the local minimum of a differentiable function. We take
steps proportional to the negative of the gradient of the Loss
function at the current point, i.e. θ_new = θ_old — α*∇ L(y, f(x, θ_
old)). Newton’s Method is another second-order iterative method
which converges in fewer iterations but is computationally
expensive as the inverse of second-order derivative of the loss
function (Hessian matrix) needs to be calculated, i.e. θ_new = θ_old
— [∇² L(y, f(x, θ_old))]^(-1) * ∇ L(y, f(x, θ_old)). We are searching
for parameter using the gradients as we believe that it will lead us
in the direction where loss will get reduced. But can we search for
optimal parameters without calculating any gradients? Actually,
there are many ways to solve this problem! There are bunch of
different Derivitive-free optimization algorithms (also known as
Black-Box optimization).

Introduction to Evolution Strategy 141

4.3.1 Evolution Strategies

Gradient descent might not always solve our problems. Why? The
answer is local optimum in short. For example in case of sparse
reward scenarios in reinforcement learning where agent receives
reward at the end of episode, like in chess with end reward as +1
or -1 for winning or losing the game respectively. In case we lose
the game, we won’t know whether we played horribly wrong or
just made a small mistake. The reward gradient signal is largely
uninformative and can get us stuck. Rather than using noisy
gradients to update our parameters we can resort to derivative-free
techniques such as Evolution Strategies (ES). ES works out well in
such cases and also where we don’t know the precise analytic form
of an objective function or cannot compute the gradients directly.

Evolutionary Computing142

Moreover, they found out that ES discovered more diverse policies
compared to traditional Reinforcement learning algorithm. ES
are nature-inspired optimization methods which use random
mutation, recombination, and selection applied to a population
of individuals containing candidate solutions in order to evolve
iteratively better solutions. It is really useful for non-linear or non-
convex continuous optimization problems.

In ES, we don’t care much about the function and its relationship
with the inputs or parameters. Some million numbers (parameters
of the model) go into the algorithm and it spits out 1 value (e.g. loss
in supervised setting; reward in case of Reinforcement Learning).
We try to find the best set of such numbers which returns good
values for our optimization problem. We are optimizing a
function J(θ) with respect to the parameters θ, just by evaluating
it without making any assumptions about the structure of J, and
hence the name ‘black-box optimization’. Let’s dig deep into the
implementation details!

4.3.2 Vanilla Implementation

To start with, we randomly generate the parameters and tweak it
such that the parameters work better slightly. Mathematically, at
each step we take a parameter vector θ and generate a population
of, say, 100 slightly different parameter vectors θ₁,θ₂…θ₁₀₀ by
jittering θ with Gaussian noise. We then evaluate each one of the
100 candidates independently by running the model and based
on the output value evaluate the loss or the objective function.
We then select top N best performing elite parameters, N can
be say 10, and take the mean of these parameters and call it our
best parameter so far. We then repeat the above process by again
generating 100 different parameters by adding Gaussian noise to
our best parameter obtained so far.

Thinking in terms of natural selection, we are creating a population
of parameters (species) randomly and selecting the top parameters
that perform well based on our objective function (also known
as fitness function). We then take combine the best qualities of

Introduction to Evolution Strategy 143

these parameters by taking their mean (this is a crude way but it
still works!) and call it our best parameter. We then recreate the
population by mutating this parameter by adding random noise
and repeat the whole process till convergence.

4.3.3 Pseudo Code

•	 Randomly initialize the best parameter using a Gaussian
distribution

•	 Loop until convergence:
-- Create population of parameters θ₁,θ₂…θ₁₀₀ by adding

Gaussian noise to the best parameter
-- Evaluate the objective function for all the parameters

and select the top N best performing parameters (elite
parameters)

-- Best parameter = Mean(top N elite parameters)
-- Decay the noise at the end of each iteration by some

factor (At the start more noise will help us to explore
better but as we reach the convergence point we want
the noise to be minimum so as to not deviate away)

Evolutionary Computing144

4.3.4 Python Implementation from scratch

Let’s go through a simple example in Python to get a better
understanding. I tried to add details related to numerical stability
as well for few of the things. Please read the comments! We will
start by loading the required libraries and the MNIST Handwritten
digit dataset.
Importing all the required libraries
import numpy as np
import matplotlib.pyplot as plt
import tqdm
import pickle
import warnings
warnings.filterwarnings(‘ignore’)
from keras.datasets import mnist
Machine Epsilon (needed to calculate logarithms)
eps = np.finfo(np.float64).eps
Loading MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x contains the images (features to our model)
y contains the labels 0 to 9
Normalizing the inputs between 0 and 1
x_train = x_train/255.
x_test = x_test/255.
Flattening the image as we are using
dense neural networks
x_train = x_train.reshape(-1, x_train.shape[1]*x_train.shape[2])
x_test = x_test.reshape(-1, x_test.shape[1]*x_test.shape[2])
Converting to one-hot representation
identity_matrix = np.eye(10)
y_train = identity_matrix[y_train]

Introduction to Evolution Strategy 145

y_test = identity_matrix[y_test]
Plotting the images
fig, ax = plt.subplots(2,5)
for i, ax in enumerate(ax.flatten()):
 im_idx = np.argwhere(y_train == i)[0]
 plottable_image = np.reshape(x_train[im_idx], (28, 28))
 ax.set_axis_off()
 ax.imshow(plottable_image, cmap=’gray’)
plt.savefig(‘mnist.jpg’)
This is how the images look like,

We will start by defining our model, which will be a single layer
neural network with only forward pass.

def soft_max(x):

‘’’

 Arguments: numpy array

 Returns: numpy array after applying

 softmax function to each

 element

 ‘’’

 # Subtracting max of x from each element of x for numerical

 # stability as this results in the largest argument to

 # exp being 0, ruling out the possibility of overflow

Evolutionary Computing146

 # Read more about it at :

 # https://www.deeplearningbook.org/contents/numerical.html

 e_x = np.exp(x — np.max(x))

 return e_x /e_x.sum()

class Model():

‘’’

Single layer Neural Network

‘’’

 def __init__(self, input_shape, n_classes):

 # Number of output classes

 self.n_classes = n_classes

 # Parameters/Weights of our network which we will be updating

 self.weights = np.random.randn(input_shape, n_classes)

 def forward(self,x):

 ‘’’

 Arguments: numpy array containing the features,

 expected shape of input array is

 (batch size, number of features)

 Returns: numpy array containing the probability,

 expected shape of output array is

 (batch size, number of classes)

 ‘’’

 # Multiplying weights with inputs

 x = np.dot(x,self.weights)

Introduction to Evolution Strategy 147

 # Applying softmax function on each row

 x = np.apply_along_axis(soft_max, 1, x)

 return x

 def __call__(self,x):

 ‘’’

 This dunder function

 enables your model to be callable

When the model is called using model(x),

 forward method of the model is called internally

 ‘’’

 return self.forward(x)

 def evaluate(self, x, y, weights = None):

 ‘’’

Arguments : x — numpy array of shape (batch size,number of
features),

 y — numpy array of shape (batch size,number of classes),

 weights — numpy array containing the parameters of the model

 Returns : Scalar containing the mean of the categorical cross-
entropy loss

 of the batch

‘’’

 if weights is not None:

 self.weights = weights

 # Calculating the negative of cross-entropy loss (since

 # we are maximizing this score)

Evolutionary Computing148

 # Adding a small value called epsilon

 # to prevent -inf in the output

 log_predicted_y = np.log(self.forward(x) + eps)

 return (log_predicted_y*y).mean()

We will now define our function which will take a model as input
and update its parameters.

def optimize(model,x,y,

 top_n = 5, n_pop = 20, n_iter = 10,

 sigma_error = 1, error_weight = 1, decay_rate = 0.95,

 min_error_weight = 0.01):

 ‘’’

 Arguments : model — Model object(single layer neural network
here),

 x — numpy array of shape (batch size, number of features),

 y — numpy array of shape (batch size, number of classes),

 top_n — Number of elite parameters to consider for calculating
the

 best parameter by taking mean

 n_pop — Population size of the parameters

 n_iter — Number of iteration

 sigma_error — The standard deviation of errors while creating

 population from best parameter

 error_weight — Contribution of error for considering new
population

 decay_rate — Rate at which the weight of the error will reduce
after

Introduction to Evolution Strategy 149

 each iteration, so that we don’t deviate away at the

 point of convergence. It controls the balance between

 exploration and exploitation

 Returns : Model object with updated parameters/weights

 ‘’’

 # Model weights have been randomly initialized at first

 best_weights = model.weights

 for i in range(n_iter):

 # Generating the population of parameters

 pop_weights = [best_weights + error_weight*sigma_error* \

 np.random.randn(*model.weights.shape)

 for i in range(n_pop)]

 # Evaluating the population of parameters

 evaluation_values = [model.evaluate(x,y,weight) for weight in
pop_weights]

 # Sorting based on evaluation score

 weight_eval_list = zip(evaluation_values, pop_weights)

 weight_eval_list = sorted(weight_eval_list, key = lambda x: x[0],
reverse = True)

 evaluation_values, pop_weights = zip(*weight_eval_list)

 # Taking the mean of the elite parameters

 best_weights = np.stack(pop_weights[:top_n], axis=0).
mean(axis=0)

 #Decaying the weight
 error_weight = max(error_weight*decay_rate, min_error_weight)
 model.weights = best_weights

Evolutionary Computing150

 return model

Instantiating our model object

model = Model(input_shape= x_train.shape[-1], n_classes= 10)

print(“Evaluation on training data”, model.evaluate(x_train, y_
train))

Running it for 200 steps

for i in tqdm.tqdm(range(200)):

 model = optimize(model,

 x_train,

 y_train,

 top_n = 10,

 n_pop = 100,

 n_iter = 1)

 print(“Test data cross-entropy loss: “, -1*model.evaluate(x_test,
y_test))

 print(“Test Accuracy: “,(np.argmax(model(x_test),axis=1) == y_
test).mean())

Saving the model for later use
with open(‘model.pickle’,’wb’) as f:
 pickle.dump(model,f)

Introduction to Evolution Strategy 151

REFERENCES

1.	 Abadir K, Magnus J (2005) Matrix algebra. Cambridge
University Press, New York

2.	 Arnold D (2006) Weighted multirecombination evolution
strategies. Theor Comput Sci 361(1):18–37

3.	 Arnold D, Beyer HG (2006) A general noise model and its
effects on evolution strategy performance. IEEE Trans Evolut
Comput 10(4):380–391

4.	 Arnold D, Salomon R (2007) Evolutionary gradient search
revisited. IEEE Trans Evolut Comput 11(4):480–495

5.	 Auger A, Hansen N (2005) A restart CMA evolution strategy
with increasing population size. In: Proceedings of the 2005
IEEE congress on evolutionary computation (CEC 2005), vol
2. IEEE Press, Piscataway, NJ, pp 1769–1776

6.	 Auger A, Teytaud O (2007) Continuous lunches are free!
In: Thierens D et al. (eds) Proceedings of the genetic and
evolutionary computation conference (GECCO 2007). ACM
Press, New York, pp 916–922

7.	 Auger A, Schoenauer M, Vanhaecke N (2004) LS-CMA-ES:
a second-order algorithm for covariance matrix adaptation.
In: Yao X et al. (eds) Proceedings of the 8th international
conference on parallel problem solving from nature (PPSN
VIII). Springer, Berlin, Germany, pp 182–191

8.	 Bäck T, Hoffmeister F, Schwefel HP (1991) A survey of evolution
strategies. In: Belew RK, Booker LB (eds) Proceedings of
the fourth international conference on genetic algorithms
(ICGA’91). Morgan Kaufmann, San Mateo CA, pp 2–9

9.	 Bartz-Beielstein T (2006) Experimental research in evolutionary
computation. The new experimentalism. Springer, Heidelberg

10.	 Beyer HG, Meyer-Nieberg S (2006) Self-adaptation of
evolution strategies under noisy fitness evaluations. Genet
Programming Evolvable Mach 7(4):295–328

Evolutionary Computing152

11.	 Beyer HG, Schwefel HP (2002) Evolution strategies – a
comprehensive introduction. Nat Comput 1(1):3–52

12.	 Beyer HG, Sendhoff B (2008) Covariance matrix adaptation
revisited – the CMSA evolution strategy. In: Rudolph G et
al. (eds) Proceedings of the 10th international conference on
parallel problem solving from nature (PPSN X). Springer,
Berlin, Germany, pp 123–132

13.	 Emmerich M, Giotis A, Oezdemir M, Bäck T, Giannakoglou K
(2002) Metamodel-assisted evolution strategies. In: Merelo J
et al. (eds) Proceedings of the 7th international conference on
parallel problem solving from nature (PPSN VII). Springer,
Berlin, Germany, pp 361–370

14.	 Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and
related distributions. Chapman and Hall, London, UK

15.	 Hansen N (2009) The CMA evolution strategy: A tuto- rial.
Continuously updated technical report. Available via http://
www.lri.fr/~hansen/cmatutorial.pdf. Accessed April 2009

16.	 Hansen N, Ostermeier A (1996) Adapting arbitrary normal
mutation distributions in evolution strategies: the covariance
matrix adaptation. In: Proceedings of the 1996 IEEE
international conference on evolutionary computation (ICEC
‘96). IEEE Press, Piscataway, NJ, pp 312–317

17.	 Hansen N, Ostermeier A (2001) Completely derandomized
self-adaptation in evolution strategies. Evolut Comput
9(2):159–195

18.	 Hansen N, Ostermeier A, Gawelczyk A (1995) On the adaptation
of arbitrary normal mutation distributions in evolution
strategies: the generating set adaptation. In: Eshelman L (ed)
Proceedings of the 6th international conference on genetic
algorithms (ICGA 6). Morgan Kaufmann, San Fransisco, CA,
pp 57–64

19.	 Hoffmann F, Hölemann S (2006) Controlled model assisted
evolution strategy with adaptive preselection. In: Proceedings
of the 2006 international symposium on evolving fuzzy
systems. IEEE Press, Piscataway, NJ, pp 182–187

Introduction to Evolution Strategy 153

20.	 Igel C, Hansen C, Roth S (2006) Covariance matrix adaptation
for multi-objective optimization. Evolut Comput 15(1):1–28

21.	 Jastrebski G, Arnold D (2006) Improving evolution strategies
through active covariance matrix adaptation. In: Proceedings
of the 2006 IEEE congress on evolutionary computation (CEC
2006). IEEE Press, Piscataway, NJ

22.	 Kramer O, Schwefel HP (2006) On three new approaches to
handle constraints within evolution strategies. Nat Comput
5:363–385

23.	 McKay M, Beckman R, Conover W (1979) A comparison of
three methods for selecting values of input variables in the
analysis of output from a computer code. Technometrics
21(2):239–245

INTRODUCTION

Genetic Programming (GP) is a type of Evolutionary Algorithm
(EA), a subset of machine learning. EAs are used to discover
solutions to problems humans do not know how to solve, directly.
Free of human preconceptions or biases, the adaptive nature of
EAs can generate solutions that are comparable to, and often
better than the best human efforts.

5
GENETIC PROGRAMMING

C
H

A
PT

ER

Evolutionary Computing156

Inspired by biological evolution and its fundamental mechanisms,
GP software systems implement an algorithm that uses random
mutation, crossover, a fitness function, and multiple generations of
evolution to resolve a user-defined task. GP can be used to discover
a functional relationship between features in data (symbolic
regression), to group data into categories (classification), and to
assist in the design of electrical circuits, antennae, and quantum
algorithms. GP is applied to software engineering through code
synthesis, genetic improvement, automatic bug-fixing, and in
developing game-playing strategies, and more.

Genetic Programming is a new method to generate computer
programs. It was derived from the model of biological evolution.
Programs are ‘bred’ through continuous improvement of an
initially random population of programs. Improvements are
made possible by stochastic variation of programs and selection
according to pre-specified criteria for judging the quality of a
solution. Programs of Genetic Programming systems evolve
to solve pre-described automatic programming and machine
learning problems.

5.1 FUNDAMENTAL OF GENETIC PROGRAMMING

A learning process inspired by evolution and related to genetic
algorithms. Whereas genetic algorithms evolve representations

Genetic Programming 157

of problem features to find solutions, genetic programming
evolves over populations of program fragments to assemble a
final program that gives a solution. The output programs may be
produced in a subset of a given language or might be in the form
of a decision tree.

In artificial intelligence, genetic programming (GP) is a technique
of evolving programs, starting from a population of unfit (usually
random) programs, fit for a particular task by applying operations
analogous to natural genetic processes to the population of
programs. It is essentially a heuristic search technique often
described as ‘hill climbing’, i.e. searching for an optimal or at least
suitable program among the space of all programs.

The operations are: selection of the fittest programs for reproduction
(crossover) and mutation according to a predefined fitness
measure, usually proficiency at the desired task. The crossover
operation involves swapping random parts of selected pairs
(parents) to produce new and different offspring that become part
of the new generation of programs. Mutation involves substitution
of some random part of a program with some other random
part of a program. Some programs not selected for reproduction
are copied from the current generation to the new generation.
Then the selection and other operations are recursively applied
to the new generation of programs. Typically, members of each
new generation are on average more fit than the members of
the previous generation, and the best-of-generation program is

Evolutionary Computing158

often better than the best-of-generation programs from previous
generations. Termination of the recursion is when some individual
program reaches a predefined proficiency or fitness level.

Genetic programming (GP) is an evolutionary approach that
extends genetic algorithms to allow the exploration of the space
of computer programs. Like other evolutionary algorithms, GP
works by defining a goal in the form of a quality criterion (or
fitness) and then using this criterion to evolve a set (or population)
of candidate solutions (individuals) by mimicking the basic
principles of Darwinian evolution. GP breeds the solutions to
problems using an iterative process involving the probabilistic
selection of the fittest solutions and their variation by means of a
set of genetic operators, usually crossover and mutation. GP has
been successfully applied to a number of challenging real-world
problem domains. Its operations and behavior are now reasonably
well understood thanks to a variety of powerful theoretical results.

5.1.1 Preparatory Steps of Genetic Programming

Genetic programming is a domain-independent method that
genetically breeds a population of computer programs to solve a

Genetic Programming 159

problem. Specifically, genetic programming iteratively transforms
a population of computer programs into a new generation of
programs by applying analogs of naturally occurring genetic
operations. The genetic operations include crossover (sexual
recombination), mutation, reproduction, gene duplication, and
gene deletion.

The human user communicates the high-level statement of the
problem to the genetic programming system by performing
certain well-defined preparatory steps.

The five major preparatory steps for the basic version of genetic
programming require the human user to specify

1.	 The set of terminals (e.g., the independent variables of
the problem, zero-argument functions, and random
constants) for each branch of the to-be-evolved program,

2.	 The set of primitive functions for each branch of the to-
be-evolved program,

3.	 The fitness measure (for explicitly or implicitly measuring
the fitness of individuals in the population),

4.	 Certain parameters for controlling the run, and
5.	 The termination criterion and method for designating

the result of the run. Executional Steps of Genetic
Programming

Evolutionary Computing160

Genetic programming typically starts with a population of
randomly generated computer programs composed of the
available programmatic ingredients. Genetic programming
iteratively transforms a population of computer programs into a
new generation of the population by applying analogs of naturally
occurring genetic operations. These operations are applied to
individual(s) selected from the population. The individuals are
probabilistically selected to participate in the genetic operations
based on their fitness (as measured by the fitness measure
provided by the human user in the third preparatory step). The
iterative transformation of the population is executed inside the
main generational loop of the run of genetic programming.
The executional steps of genetic programming (that is, the
flowchart of genetic programming) are as follows:

1.	 Randomly create an initial population (generation 0)
of individual computer programs composed of the
available functions and terminals.

2.	 Iteratively perform the following sub-steps (called a
generation) on the population until the termination
criterion is satisfied:

(a) 	 Execute each program in the population and ascertain
its fitness (explicitly or implicitly) using the problem’s
fitness measure.

(b) 	 Select one or two individual program(s) from the
population with a probability based on fitness (with
reselection allowed) to participate in the genetic
operations in (c).

(c) 	 Create new individual program(s) for the population by
applying the following genetic operations with specified
probabilities:

(i) 	 Reproduction: Copy the selected individual program to
the new population.

(ii) 	 Crossover: Create new offspring program(s) for the new
population by recombining randomly chosen parts from
two selected programs.

Genetic Programming 161

(iii) 	 Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen
part of one selected program.

(iv) 	 Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such
operations and create one new offspring program for
the new population by applying the chosen architecture-
altering operation to one selected program.
-- After the termination criterion is satisfied, the single best

program in the population produced during the run (the
best-so-far individual) is harvested and designated as the
result of the run. If the run is successful, the result may
be a solution (or approximate solution) to the problem.

5.1.2 Multiple predictive model structures using GP

The advent of GP as a modelling tool has paved the way for
researches exploring the possibility of multiple optimal models
for predicting hydrological processes.

Genetic programming, in its evolutionary approach to derive
optimal model structures and parameters, tests millions of
model structures which can mimic the physical process under
consideration.

Researchers have found that multiple models can be identified
using GP which are considerably different in model structures
but able to make consistently good predictions. Parasuraman and
Elshorbagy developed genetic programming based models for
predicting the evapo-transporation. In doing so, multiple optimal
GP models were trained and tested and they were applied to
quantify the uncertainty in those models. An ensemble of surrogate
models based on GP was developed and the ensemble was used
to get model predictions with improved reliability levels. The
variance of the model predictions were used as the measure of
uncertainty in the modelling process.

Evolutionary Computing162

5.1.3 GP as surrogate model for simulation-optimization

A very important application of data intensive modelling
approaches is to develop surrogate models to computationally
complex numerical simulation models. The potential utility of
the surrogates is to replace the numerical simulation model in
simulation-optimization frameworks. Simulation-optimization
models are used to derive optimal management decisions using
optimization algorithms in which a numerical simulation models
is run to predict the outcome of implementing the alternative
management options. The optimal pumping from the coastal
aquifer can be decided only by considering the impact of any
alternative pumping strategy on saltwater intrusion. For this
the numerical simulation model needs to be integrated with the
optimization algorithm and the impact of each candidate pumping
strategy is predicted by using the simulation model iteratively. This
involve a lot of computational burden as thousands of numerical
model runs are required before an optimal pumping strategy is
identified.

GP was used a surrogate model within the optimization algorithm
as a substitute of the numerical simulation model in the study.

Genetic Programming 163

Genetic programming based surrogate models for groundwater
pollution source identification. It was found that genetic
programming could be used as a superior surrogate model in
such application with definite advantages. The study intended to
develop optimal pumping strategies for coastal aquifers in which
the total pumping could be maximized and at the same time
limiting the saltwater intrusion at pre-specified limits.

In doing so, the effect of pumping on the salinity levels was
predicted using trained and tested GP models. The GP models
were externally coupled to a genetic algorithm based optimization
model to derive the optimal management strategies. The results of
the GP based simulation-optimization was then compared to the
results obtained using an ANN-based simulation-optimization
model. The ability of GP in parsimoniously identifying the model
inputs helped in reducing the dimension of the decision space in
which modelling and optimization was carried out. The smaller
dimension of the modelling space helped in reducing the training
and testing required to develop the surrogate models. The study
identified that GP has potential applicability in developing
surrogate models with potential application in simulation-
optimization methodology to solve environmental management
problems.

Evolutionary Computing164

5.2 TYPES OF GENETIC PROGRAMMING

Genetic Programming (GP) is an algorithm for evolving programs
to solve specific well-defined problems. It is a type of automatic
programming intended for challenging problems where the task
is well defined and solutions can be checked easily at a low cost,
although the search space of possible solutions is vast, and there is
little intuition as to the best way to solve the problem.

This often includes open problems such as controller design,
circuit design, as well as predictive modeling tasks such as feature
selection, classification, and regression. It can be difficult for a
beginner to get started in the field as there is a vast amount of
literature going back decades.

5.2.1 Tree-based Genetic Programming

In tree-based GP, the computer programs are represented in tree
structures that are evaluated recursively to produce the resulting
multivariate expressions. Traditional nomenclature states that a
tree node (or just node) is an operator [+,-,*,/] and a terminal node
(or leaf) is a variable [a,b,c,d].

Lisp was the first programming language applied to tree-based
GP, as the structure of this language matches the structure of the
trees. However, many other languages such as Python, Java, and
C++ have been used to develop tree-based GP applications.

Genetic Programming 165

Tree-based GP was the first application of Genetic Programming.
There are several other types (as presented on the home page of
this website) such as linear, Cartesian, and stack-based which are
typically more efficient in their execution of the genetic operators.
However, Tree-based GP provides a visual means to engage new
users of Genetic Programming, and remains viable when built
upon a fast programming language or underlying suite of libraries.

5.2.2 Stack-based GP

In stack-based genetic programming, the programs in the evolving
population are expressed in a stack-based programming language.
The specific languages vary among systems, but most are similar
to FORTH insofar as programs are composed of instructions that
take arguments from data stacks and push results back on those
data stacks. In the Push family of languages, which were designed
specifically for genetic programming, a separate stack is provided
for each data type, and program code itself can be manipulated on
data stacks and subsequently executed.

Evolutionary Computing166

Depending on the specific language and genetic operators used,
stack-based genetic programming can have a variety of advantages
over tree-based genetic programming. These may include
improvements or simplifications to the handling of multiple data
types, bloat-free mutation and recombination operators, execution
tracing, programs with loops that provide valid outputs even when
terminated prematurely, parallelism, evolution of arbitrary control
structures, and automatic simplification of evolved programs.

5.2.3 Linear Genetic Programming

Linear genetic programming (LGP) is a particular subset of genetic
programming wherein computer programs in a population
are represented as a sequence of instructions from imperative
programming language or machine language. The graph-based
data flow that results from a multiple usage of register contents
and the existence of structurally non-effective code (introns) are
two main differences of this genetic representation from the more
common tree-based genetic programming (TGP) variant.

In genetic programming (GP) a linear tree is a program composed
of a variable number of unary functions and a single terminal.
Note that linear tree GP differs from bit string genetic algorithms
since a population may contain programs of different lengths and
there may be more than two types of functions or more than two
types of terminals.

Genetic Programming 167

5.2.4 Grammatical Evolution

GE offers a solution to this issue by evolving solutions according
to a user-specified grammar (usually a grammar in Backus-Naur
form). Therefore the search space can be restricted, and domain
knowledge of the problem can be incorporated. The inspiration
for this approach comes from a desire to separate the “genotype”
from the “phenotype”: in GP, the objects the search algorithm
operates on and what the fitness evaluation function interprets
are one and the same. In contrast, GE’s “genotypes” are ordered
lists of integers which code for selecting rules from the provided
context-free grammar. The phenotype, however, is the same as in
Koza-style GP: a tree-like structure that is evaluated recursively.
This model is more in line with how genetics work in nature,
where there is a separation between an organism’s genotype and
the final expression of phenotype in proteins, etc.

Separating genotype and phenotype allows a modular approach.
In particular, the search portion of the GE paradigm needn’t be
carried out by any one particular algorithm or method. Observe
that the objects GE performs search on are the same as those used
in genetic algorithms. This means, in principle that any existing
genetic algorithm package, such as the popular GAlib, can be
used to carry out the search, and a developer implementing a GE
system need only worry about carrying out the mapping from
list of integers to program tree. It is also in principle possible to
perform the search using some other method, such as particle

Evolutionary Computing168

swarm optimization; the modular nature of GE creates many
opportunities for hybrids as the problem of interest to be solved
dictates.

Brabazon and O’Neill have successfully applied GE to predicting
corporate bankruptcy, forecasting stock indices, bond credit
ratings, and other financial applications.[citation needed] GE has
also been used with a classic predator-prey model to explore the
impact of parameters such as predator efficiency, niche number,
and random mutations on ecological stability.

It is possible to structure a GE grammar that for a given function/
terminal set is equivalent to genetic programming.

5.2.5 Cartesian Genetic Programming

In CGP, programs are represented in the form of directed acyclic
graphs. These graphs are represented as a two-dimensional grid
of computational nodes. The genes that make up the genotype in
CGP are integers that represent where a node gets its data, what
operations the node performs on the data and where the output
data required by the user is to be obtained. When the genotype is
decoded, some nodes may be ignored. This happens when node
outputs are not used in the calculation of output data. When this
happens, we refer to the nodes and their genes as ‘non-coding’.

Genetic Programming 169

We call the program that results from the decoding of a genotype a
phenotype. The genotype in CGP has a fixed length. However, the
size of the phenotype (in terms of the number of computational
nodes) can be anything from zero nodes to the number of nodes
defined in the genotype.

A phenotype would have zero nodes if all the program outputs
were directly connected to program inputs.

A phenotype would have the same number of nodes as defined
in the genotype when every node in the graph was required. The
genotype–phenotype mapping used in CGP is one of its defining
characteristics.

The types of computational node functions used in CGP are
decided by the user and are listed in a function look-up table.
In CGP, each node in the directed graph represents a particular
function and is encoded by a number of genes.

One gene is the address of the computational node function in the
function look-up table. We call this a function gene. The remaining
node genes say where the node gets its data from.

These genes represent addresses in a data structure (typically an
array). We call these connection genes. Nodes take their inputs
in a feed-forward manner from either the output of nodes in a
previous column or from a program input (which is sometimes

Evolutionary Computing170

called a terminal). The number of connection genes a node has
is chosen to be the maximum number of inputs (often called the
arity) that any function in the function look-up table has.

CGP represents computational structures (mathematical
equations, circuits, computer programs etc.) as a string of integers.
These integers, known as genes determine the functions of nodes
in the graph, the connections between nodes, the connections to
inputs and the locations in the graph where outputs are taken
from.

Using a graph representation is very flexible as many computational
structures can be represented as graphs. A good example of this
is artificial neural networks (ANNs). These can be easily encoded
in CGP.

5.2.6 Genetic Improvement Programming (GIP)

GIP evolves replacement software components that maximize
achievement of multiple objectives, while retaining the interfaces
between the components so-evolved and the surrounding system.

The GISMO project will develop theory, algorithms and techniques
for GIP as a way to automatically optimize multiple software
engineering objectives such as maximal throughput, fastest
response time and most reliable performance, while minimizing
power consumption, faults, memory use, compiled code size,
peak disk usage and disk transfers.

Genetic Programming 171

The term component should be interpreted in its widest context.
It refers to any piece of code that can be identified as a subpart of
the overall program or system with well-defined interface to the
encasing system. For example, we include functions, files, modules
and procedures, for which interfaces are defined by parameters
and shared global variables. We also include smaller segments of
contiguous code that perform a coherent well-defined task or set
of tasks, for which the interface is captured by the defined and
referenced variables of the segment of code. What is important is
that these pieces of code can be replaced by an evolved component
that preserves their functionality and interface, while maximizing
achievement of challenging new multiple objectives.

The Problem Addressed by GISMO

The emergent computing application paradigms require systems
that are not only correct but are also optimized for many different
competing non-functional requirements. Increasingly, we need to
adapt existing systems to cater for operating environments with
challenging non-functional properties. For instance, the migration
from stand-alone systems to large scale distributed systems brings
with it a need for optimization of non-functional properties such
as response time and throughput. The increasing prevalence of
smaller hand-held systems such as communications devices,
raises the importance of non-functional properties such as power
consumption and memory use.

Evolutionary Computing172

Managing any one of these non-functional objectives is a challenge,
but managing several at once is a daunting prospect, even for the
most skilled and experience developer. The multiple objectives
that have to be optimized are often conflicting. For instance,
one can often trade speed of execution for compiled code size.
Humans cannot be expected to optimally balance such competing
constraints and may miss potentially valuable solutions.

The GISMO Solution

The GISMO solution rests on two core observations:
1.	 There is a wealth of relatively well-tested code upon

which organizations already rely.
2.	 Evolutionary computation has proved able to balance

many different competing and potentially conflicting
criteria.

We therefore seek to use evolutionary computation, not to evolve
entire systems but to replace components within existing systems
with evolved replacements. The goal of the evolution will be to
optimize for a new set of non-functional properties. These non-
functional properties will be mapped into fitness functions that will
guide evolution. The research challenge is to develop techniques
that evolve components that balance these objectives, in a scalable
way, while producing code that is useful and acceptable to the
developer. The GISMO project will address the scalability issue
using parallel computation. It will address the human acceptability
issue using interactive evolution.

Why the Project Will be Highly Transformative

Genetic programming has proved to be good at evolving small code
fragments for a single objective, while evolutionary computation
has proved effective at solving multiple objective problems. The
GISMO approach to scalability, human acceptance and multiple
objectives are all entirely novel for genetic programming. If
the project is even partly successful in its goal of automatically

Genetic Programming 173

finding GIP-evolved component replacements, this would be a
major breakthrough. It would significantly increase our ability to
migrate systems to challenging new operating environments and,
simultaneously, dramatically reduce the cost of doing so.

Is it feasible?

The PI and named research fellow, Bill Langdon, have demonstrated
the feasibility of the GIP approach. In our initial work we were
able to port a critical component of Unix gzip utility to a CUDA
platform [1]. The GISMO project will employ Dr. Langdon as a
named research fellow for four years, in order to develop our new
approach to software development.

GISMO Objectives

To achieve its aims, the GISMO project will:
1.	 Develop a theory of Genetic Interface Programming

(GIP).
2.	 Develop techniques for parallel GIP computation for

scalability and interactive GIP evolution for human
involvement.

3.	 Develop new algorithms for achieving single and
multiple objective GIP.

4.	 Evaluate qualitatively and quantitatively using
benchmarks and real world systems from the industrial
partners.

5.3 GENETIC PROGRAMMING: APPROACH IN
MODELING WATER FLOWS

Like genetic algorithm (GA) the concept of Genetic Programming
(GP) follows the principle of ‘survival of the fittest’ borrowed
from the process of evolution occurring in nature. But unlike GA
its solution is a computer program or an equation as against a

Evolutionary Computing174

set of numbers in the GA and hence it is convenient to use the
same as a regression tool rather than an optimization one like the
GA. GP operates on parse trees rather than on bit strings as in a
GA, to approximate the equation (in symbolic form) or computer
program that best describes how the output relates to the input
variables. A good explanation of various concepts related to GP.
GP starts with a population of randomly generated computer
programs on which computerized evolution process operates.
Then a ‘tournament’ or competition is conducted by randomly
selecting four programs from the population.

GP measures how each program performs the user designated
task. The two programs that perform the task best ‘win’ the
tournament.

GP algorithm then copies the two winner programs and transforms
these copies into two new programs via crossover and mutation
operators i.e. winners now have the ‘children.’

These two new child programs are then inserted into the
population of programs, replacing the two loser programs from
the tournament. Crossover is inspired by the exchange of genetic
material occurring in sexual reproduction in biology.

The creation of offspring’s continues (in an iterative manner) till a
specified number of offspring’s in a generation are produced and
further till another specified number of generations are created.
The resulting offspring at the end of all this process (an equation
or a computer program) is the solution of the problem. The GP
thus transforms one population of individuals into another one
in an iterative manner by following the natural genetic operations
like reproduction, mutation and cross-over.

The tree based GP corresponds to the expressions (syntax trees)
from a ‘functional programming language’. In this type, Functions
are located at the inner nodes; while leaves of the tree hold input
values and constants.

A population of random trees representing the programs is
initially constructed and genetic operations are performed on

Genetic Programming 175

these trees to generate individuals with the help of two distinct
sets; the terminal set T and the function set F.

Population: These are the programs initially constructed from the
data sets in the form of trees to perform genetic operations using
Terminal set and Function set.

The function set for a run is comprised of operators to be used
in evolving programs e.g. addition, subtraction, absolute value,
logarithm, square root etc. The terminal set for a run is made up
of the values on which the function set operates.

There can be four types of terminals namely inputs, constant,
temporary variables, conditional flags. The population size is
the number of programs in the population to be evolved. Larger
population can solve more complicated problem. The maximum
size of population depends upon RAM of the computer and length
of programs in the population.

5.3.1 Genetic Operations

Cross over: Two individuals (programs) are chosen as per the
fitness called parents. Two random nodes are selected from inside
such program (parents) and thereafter the resultant sub-trees are
swapped, generating two new programs. The resulting individuals
are inserted into the new population. Individuals are increased by
2. The parents may be identical or different. The allowable range
of cross over frequency parameter is 0 to 100%

Mutation: One individual is selected as per the fitness. A sub-tree
is replaced by another one randomly. The mutant is inserted into
the new population. Individuals are increased by 1. The allowable
range of mutation frequency parameter is 0 to 100%

Reproduction: The best program is copied as it is as per the fitness
criterion and included in the new population. Individuals are
increased by 1. Reproduction rate = 100 – mutation rate – (crossover
rate * [1 – mutation rate])

Evolutionary Computing176

Figure 1. Flowchart of Genetic programming.

The second variant of GP is Linear genetic Programming (LGP)
which uses a specific linear representation of computer programs.
The name ‘linear’ refers to the structure of the (imperative)
program representation only and does not stand for functional
genetic programs that are restricted to a linear list of nodes only.
On the contrary, it usually represents highly nonlinear solutions.
Each individual (Program) in LGP is represented by a variable-
length sequence of simple C language instructions, which operate
on the registers or constants from predefined sets. The function
setof the system can be composed of arithmetic operations (+, -, X,
/), conditional branches, and function calls (f{x, xn, sqrt, ex,sin, cos,
tan, log, ln }). Each function implicitly includes an assignment to a
variable which facilitates use of multiple program outputs in LGP.
LGP utilizes two-point string cross-over. A segment of random
position and random length of an instruction is selected from each
parents and exchanged. If one of the resulting children exceeds
the maximum length, this cross-over is abandoned and restarted
by exchanging equalized segments. An operand or operator of an
instruction is changed by mutation into another symbol over the
same set.

Genetic Programming 177

Gene-Expression Programming (GEP) is an extension of GP. The
genome is encoded as linear chromosomes of fixed length, as
in Genetic Algorithm (GA); however, in GEP the genes are then
expressed as a phenotype in the form of expression trees. GEP
combines the advantages of both its predecessors, GA and GP,
and removes their limitations. GEP is a full-fledged genotype/
phenotype system in which both are dealt with separately,
whereas GP is a simple replicator system. As a consequence of
this difference, the complete genotype/phenotype GEP system
surpasses the older GP system by a factor of 100 to 60,000. In GEP,
just like in other evolutionary methods, the process starts with the
random generation of an initial population consisting of individual
chromosomes of fixed length. The chromosomes may contain one
or more than one genes. Each individual chromosome in the initial
population is then expressed and its fitness is evaluated using one
of the fitness function equations available in the literature. These
chromosomes are then selected based on their fitness values
using a roulette wheel selection process. Fitter chromosomes have
greater chances of selection for passage to the next generation.
After selection, these are reproduced with some modifications
performed by the genetic operators. In Gene Expression
Programming, genetic operators such as mutation, inversion,
transposition and recombination are used for these modifications.
Mutation is the most efficient genetic operator, and it is sometime
used as the only means of modification. The new individuals
are then subjected to the same process of modification, and the
process continues until the maximum number of generations is
reached or the required accuracy is achieved.

5.3.2 Use of GP in Water Flows Modeling

It is a known fact that many variables in the domain of Hydraulic
Engineering are of random nature having a complex underlying
phenomenon. For example the generation of ocean waves which are
primarily functions of wind forcing is a very complex procedure.
Forecasting of the ocean waves is an essential prerequisite for
many ocean-coastal related activities. Traditionally this is done

Evolutionary Computing178

using numerical models like WAM and SWAN. These models are
extremely complex in development and application besides being
highly computation-intensive. Further they are more useful for
forecasting over a large spatial and temporal domain. The accuracy
levels of wave forecasts obtained through such numerical models
again leaves scope for exploration of alternative schemes. These
numerical models suffer from disadvantages like requirement
of exogenous data, complex modeling procedure, rounding off
errors and large requirement of computer memory and time and
there is no guarantee that the results will be accurate. Particularly
when point forecasts were required the researchers therefore used
the data driven techniques namely ARMA, ARIMA and since
last two decades or so the soft computing technique of Neural
Networks. A comprehensive review of applications of ANN in
Ocean Engineering. Although wave forecasting models were
developed using Artificial Neural Networks by many research
workers there was scope for use of another data driven techniques
in that the ANN based models generally were unable to forecast
extreme events with reasonable accuracy and the accuracy of
forecasts decreases with increase in lead time. This became an
ideal situation for the entry of another soft computing tool of GP
which functions in a completely different way than ANN in that
it does not involve any transfer function and evolves generations
and generations of ‘offspring’ based on the ‘fitness criteria’ and
genetic operations.The rainfall -runoff modeling is very complex
procedure and many numerical schemes are available as well as a
large number of attempts by ANNs. Thus Genetic Programming
entered in rainfall-runoff modeling. It was also found that GP
results were superior to that of M5 Model Trees another data
driven modeling technique. Apart from these two variables the
use of GP for modeling for many hydraulic engineering processes
was found necessary for similar reasons.

5.3.3 Applications in Ocean Engineering

Primarily the applications of GP in Ocean Engineering were found
for modeling of oceanic parameters like waves, water levels,

Genetic Programming 179

zero cross wave periods, currents, wind, sediment transport
and circular pile scour. One of the earlier applications was done
to retrieve missing informationin wave records along the west
coast. Such a need arises many times due to malfunctioning of
instrument or drift of wave measuring buoy making it inoperative
as a result of which data is not measured and it is lost forever.
Filling up the missing significant wave height (Hs) values at a
given location based on the same being collected at the nearby
station(s) was done using GP. The wave heights were measured at
an interval of 3 hours. Data at six locations around Indian coastline
was used in this exercise. Out of the total sample size of four years
the observations for the initial 25 months were used to evaluate
the final or optimum GP program or equation while those for the
last 23 months were employed to validate the performance and
achieve gap in-filling with different quanta of missing information.
It was found that both tree based and linear GP models worked
in similar fashion as far as accuracy of estimation was considered.

When the similar work was also carried out using ANN it was found
that GP produces results that are marginally more satisfactory than
ANN. Another exercise was also carried out especially to estimate
peaks by calibrating a separate model for high wave data which
showed a marginal improvement in prediction of peaks. Albeit in
altogether different area of Gulf of Mexico near the USA coastline.
Gaps in hourly significant wave height records at one location
were filled by using the significant wave heights at surrounding 3
locations at same time instant and the soft tool of GP and ANN. In
all data spanning over 4 years was used for the study. The exercise
was carried out for 4 locations in the Gulf of Mexico. The data can
be downloaded from www.ndbc.noaa.gov. The typical value of the
population size was 500, number of generations 15 and number of
tournaments 90,00,000. The mutation and the cross-over frequency
also varied for different testing exercises and it ranged from 20%
to 80%. The fitness criterion was the mean squared error between
actual observations and corresponding predictions.

The suitability of this approach was also tried for different gap
lengths ranging from 1 day to 1 month and it was concluded

Evolutionary Computing180

on the basis of 3 error measures that the accuracy of gap filling
decreases with increase in the gap length. The accuracy of the
results were also judged by calculating statistical parameters of
the wave records without gaps filled and with gaps filled using
GP model. When the gap lengths did not exceed 1 or 5 days all
the four statistics were faithfully reproduced. Compared to ANN
GP produced marginally better results. In both the cases Linear
Genetic Programming technique was employed.

In another earlier works of GP current predictions over a time
step of twenty minutes, one hour, 3 hours, 6 hours, 12 hours and
24 hours at 2 locations in the tidal dominated area of the Gulf of
Khambhat along west coast of India was carried out using two soft
techniques of ANN and GP and 2 hard techniques of traditional
harmonic analysis and ARIMA. The work involved antecedent
values of current only to forecast the current for various lead times
at these locations. The fitness function selected was the mean
square error, while the initial population size was 500, mutation
frequency was 95%, and the crossover frequency was kept at 50%.
For cross shore currents ARIMA performs better than ANN and
GP even at longer prediction intervals. In general the three data
driven techniques performed better than harmonic analysis. The
new technique GP performed at par with ANN if not better. Perhaps
the only drawback of the work was that the data (spanning over 7
months) is less than a year indicating that all possible variations in
data set were not presented while calibrating the model making it
susceptible when it is used at operational level.

Online wave forecasts over lead times of 3, 6, 12 and 24 hours were
carried out at two locations in the gulf of Mexico using past values
of wave heights (3 in number) and the soft computing technique
of GP. The data measured from 1999 to 2004 was available for
free download on the web site of National Buoy Centre. The
locations chosen were differing to a large extent in that one was
a deep water buoy and the other was a coastal buoy. The work
was different from others in one aspect that monthly models
were developed instead of routine yearly models. However any
peculiar effect of this either good or bad on forecasting accuracy

Genetic Programming 181

was not evident from the 3 error measures calculated. Though the
results of GP were promising (high correlation coefficients for 3
and 6 hr forecast) the forecasting accuracy decreased for longer
lead times of 12 hr and 24 hr. It was found that the results of GP
were superior to ANN. For GP model the initial population size
was 500 while the number of generations was 300. The mutation
frequency was 90 percent while the cross over frequency was 50
percent. Values of these control parameters were selected initially
and thereafter varied in trials till the best fitness measures were
produced.

The fitness criterion was the mean squared error between the
actual and the predicted value of the significant wave height.
Another exercise on real time forecasting of waves for warning
times up to 72 hours at three locations along the Indian coastline
using alternative techniques of ANN, GP and MT. The data was
measured from 1998 to 2004 by the national data buoy program
(www.niot.res.in). Forecasting waves up to 72hr and that too with
reasonable accuracy is itself a specialty of this work. The data
had many missing values which were filled by using temporal as
well as spatial correlation approaches. Both MT and GP results
were competitive with that of the ANN forecasts and hence the
choice of a model should depend on the convenience of the user.
The selected tools were able to forecast satisfactorily even up to a
high lead time of 72 hrs. The significant wave height and average
wave period at the current and subsequent 24 hr. lead time were
predicted from continuous and past 24-hourly measurements
of wind speeds and directions as well as two soft computing
techniques of GP and MT. The data collected at 8 locations in
Arabian Sea and Indian Ocean (www.niot.res.in) was used to
develop both hind-casting and forecasting models. Both the
methods, GP and MT, performed satisfactorily in the given task
of wind wave simulation as reflected in high values of the error
statistics of R, R2, CE and low values of MAE, RMSE and SI. This
is noteworthy since MT is not purely non-linear like GP. Although
the magnitudes of these statistics did not indicate a significant
difference in the relative performance of GP and MT, qualitative
scatter diagrams and time histories showed the tendency of MT

Evolutionary Computing182

to better estimate the higher waves. Forecasting at higher lead
times were fairly accurate compared to the same at lower ones. In
general the performance of wave period was less satisfactory than
that of wave height and this can be expected in view of a highly
varying nature of wave period values. Lately, extended their earlier
work by forecasting Significant wave height and zero cross wave
period over time intervals of 1 to 4 days using the current and
previous values of wind velocity and wind direction at 2 locations
around the Indian coastline. It was found out that best results
were possible when the length of the input sequence matched
with that of the output lead time. As observed earlier here also it
was found that the accuracy of prediction decreases with increase
in lead time. However the results were satisfactory for 4 days
ahead predictions also. In general it was observed that results of
MT were slightly inferior to that of GP. Separate models were also
developed to account for the monsoon (rainfall season in India)
which showed a considerable improvement over yearly models.
The models calibrated at one location when applied for another
nearby locations also shown satisfactory performance provided
both sites have spatial homogeneity in terms of openness, long
offshore distances and deep water conditions.

GP was used to forecast sea levels averaged over 12 h and 24
h time intervals for time periods from 12 to 120 h ahead at the
Cocos (Keeling) Islands in the Indian Ocean. The model produced
high quality predictions over all considered time periods. The
presented results demonstrates the suitability of GP for learning
the non-linear behavior of sea level variations in terms of the
R2(with values no lower than 0.968), MSE(with values generally
smaller than 431) and MARE(no larger than 1.94%). This differs
from earlier applications particularly for wave forecasting in that
for forecasting of waves it was difficult to achieve higher order
accuracy in terms of r, rmse and other error measures for as far as
24 hour forecast. Perhaps the recurring nature of sea water levels
(the deterministic tidal component which is inherent in water level,
is the reason behind this high level accuracy. In order to assess
the ability of GP model relative to that of the ANN technique.
The developed GP model was found to perform better than the

Genetic Programming 183

used ANNs. In the current work, the linear genetic programming
approach was employed. The water level at Hillary’s Boat Harbor,
Australia was predicted three time steps ahead using time series
averaged over 12hr, 24hr, 5 day and 10 day time interval and the
soft tool of GP. The results are compared with ANN. Total 12 years
of data was used out of which 3 years of data is used for model
validation. Tree based GP was used. The results of 12 hr averaged
input data were found to be better than 24 hr averaged input data
and in general the accuracy of prediction reduced for higher lead
times. For both the cases GP results were better than ANN. For
5 day averaged inputs performance of GP was inferior to that of
ANN though it improved for 10 day averaged inputs. It may be
noted that the input data is averaged over 12hr, 24hr, 5days and 10
days which means there is possibility of loss of information which
can be major drawback of this work. For both the above works
the hourly sea-level records from a SEA-level Fine Resolutions
Acoustic Measuring Equipment (SEA-FRAME) station were used.
The information about initial parameters of GP is however not
mentioned in both the works.

Estimation of wind speed and wind direction using the significant
wave height, zero cross wave period, average wave period and the
soft tools of ANN and GP was carried out at 5 locations around
Indian coastline. The first attempt both ANN and GP were tried
for estimating the wind speed in which GP was found better and
therefore in the second fold GP was only used to determine both
wind speed and direction by calibrating the model by splitting
of wind vector into two components. Two variants of GP, one
based on Tree based approach and the other on Linear Genetic
Programming were also tried though the accuracy of estimation
for both the approaches was at par. In the third fold a network
of wave buoys were formed and wind direction and wind speed
at one location was estimated using the same at other locations.
This was also done by combining data of all locations and making
a regional model. All the attempts yielded highly satisfactory
results as far as accuracy of estimation is considered. It was also
confirmed that for estimation of only wind speed the non-splitting
of wind velocity gives better results. Similarly wind speed and

Evolutionary Computing184

its directions were predicted for intervals of 3hr, 6hr, 9hr, 12hr
and 24 hr at locations along the west coast of India using two
soft computing techniques of ANN and GP and previous values
of the same. It was found that GP rivaled ANN predictions at all
the cases and even bettered it particularly for open sea location.
The results for prediction of wind speed and wind direction
together were better when training of GP and ANN models was
done on the basis of splitting of wind vector into two components
along orthogonal directions although a separate model for wind
speed alone was better. In general long interval predictions were
less accurate compared to short interval predictions for both the
techniques. Data for one location was for about 1.5 years while for
the other location it was for 3 years. A similar work was carried
out to estimate the wind speed at 5 locations around the Indian
coastline using the wave parameters and 3 data driven techniques
namely GP (program based- tree type), MT and another data
driven tool of locally weighted projection regression (LWPR) by.
All models showed tendency to underestimate higher values in
given records. When all of the eight error statistics employed were
viewed together, no single method appeared distinctly superior to
others, but the use of an average evaluation index EI which they
have suggested in this work gave equal weightage to each measure
showed that the GP was more acceptable than other methods in
carrying out the intended inverse modeling. Separate GP models
were developed to estimate higher wind speeds that may be
encountered in stormy conditions. At all the locations, these
models indicated satisfactory performance of GP although with
a fall in accuracy with increase in randomness. For all the above
works the data was measured by national data buoy program of
India however no mention is made about the initial parameters
chosen for GP implementation.

The estimation of longshore sediment transport rate at an Indian
location was carried out using GP and combined GP-ANN
models. The inputs were significant wave height, zero cross wave
period, breaking wave height, breaking wave angle and surf zone
width. The limitation of the work was the amount of data (81)
used for training and testing of the models. The choice of control

Genetic Programming 185

parameters was as follows: initial population size = 500; mutation
frequency = 95%; crossover frequency = 50%. The initial trial with
GP yielded reasonable results (r = 0.87). However by first training
the ANN with same inputs and using the output as input for GP
model yielded better results (r = 0.92). It may be noted this is a
kind of work done in the domain of Ocean Engineering wherein
a different parameter (sediment transport rate) is modeled
rather than the usual parameters of waves, periods etc. Another
different work was carried out by, for prediction of scour depth
due to ocean/lake waves around a pile/pier in medium dense silt
and sand bed using Linear Genetic Programming and Adaptive
Neuro-Fuzzy Inference system and measured laboratory data. The
study was carried out in both dimensional and non-dimensional
form in which non-dimensional form yielded better results. The
relative importance of input parameters on scour process was also
investigated by first using all the influential parameters as inputs
and then removing them one by one and observing the results. The
drawback of the work is perhaps the small number of data used
in model making (total 38 data, 28 of which is used for training
the model) which may be impediment in operational use of this
model. The results were found to be superior to ANFIS results.

In all the above cases where GP is compared with another data
driven technique like ANN, MT or LWPR it was found that GP is
superior to all of them in terms of accuracy of results. However it
can be said that GP needs to be explored further particularly for
prediction of extreme events like water levels, wave heights during
hurricanes. A detailed study on effect of variation of GP control
parameters like initial population, mutation, crossover percentage
etc. on model accuracy is now need of the day. Similarly the critic
on other approaches about decreasing forecasting accuracy with
increase in the lead time seems to be true for GP as well. This needs
more attention if GP is here to stay.

5.3.4 Applications in Hydrology

Genetic Programming is used in Hydrology (science of water) for
various purposes such as modeling of phenomena like rainfall-

Evolutionary Computing186

runoff process, evapo-transpiration, flood routing, stage-discharge
curve. The GP approach was applied to the flow prediction of the
Kirkton catchment in Scotland (U.K.). The results obtained were
compared to those attained using optimally calibrated conceptual
models and an ANN. The data sets selected for the modeling
process were rainfall, streamflow and Penman open water
evaporation. The data used for calibration was of 610 days while
that of validation was of 1705 days. The models were developed
with preceding values of rainfall, evaporation and stream flow
for predicting stream flow one time step ahead. Two conceptual
models as well as ANN were employed for developing the stream
flow forecasting model. It was observed that the rainfall data was
the most influencing factor on the output. All models performed
well in terms of forecasting accuracy with GP performing better.
In another work one day ahead forecasting of runoff knowing the
rainfall and runoff of the previous days and the soft computing
tool of Linear Genetic Programming was carried out in Lindenborg
catchment of Denmark by. The models were developed for
forecasting runoff as well as variation of runoff by using previous
values of variation of discharge as input as well as previous values
of discharge as input along with rainfall information. It was found
that it was necessary to include information of discharge rather
than variation of discharge. The model predicting discharge gave
wrong local peaks in the low regime where as models predicting
variation of discharge gave less wrong peaks in the low flow. Both
the models had difficulty in predicting high peaks. The models
were also developed using ANN. No specific information is
provided about the initial values of GP parameters. The results
obtained with a deterministic lumped parameter model, based on
the unit hydrograph approach were compared with those obtained
using a stochastic machine learning model of GP. For the Welsh
catchment in UK, the results between the two models were similar.
Since rainfall and runoff were highly correlated, the deterministic
assumption underlying the IHACRES model (deterministic)
was satisfied. Therefore, IHACREX could achieve a satisfactory
correlation between calibration and simulation data. The GP
approach which did not require any causal relationships achieved
similar results. The behavior of the studied Australian catchment

Genetic Programming 187

is very different from the Welsh catchment. The runoff ratio was
very low (7%), and hence, the a priori assumptions of IHACRES
(and other deterministic models) were a poor representation of the
real world. This was demonstrated by the inability of IHACREJS
to use more than one season’s data for calibration purposes and
only able to use data from a high rainfall period. Since the GP
approach did not make any assumptions about the underlying
physical processes, calibration periods over more than one season
could be used. These led to significantly improved generalizations
for the modeled behavior of the catchment. In summary, either
approach worked satisfactorily when rainfall and runoff were
correlated. However, when this correlation was poor, the CFG-GP
had some advantages because it did not assume any underlying
relationships. This is particularly important when considering
the modeling of environmental problems, where typically the
relationships are nonlinear, and are often measured at a scale
which does not match with conceptual or deterministic modeling
assumptions. In their work of GP in hydrology, [30] first used
a simple example of the Bernoulli equation to illustrate how
GP symbolically regresses or infers the relationship between
the input and output variables. An important conclusion from
this study was that non-dimensionalizing the variables prior to
symbolic regression process significantly enhance the success
of GSR (Genetic Symbolic Regression). GP was then applied
to the problem of real-time runoff forecasting for the Orgeval
catchment in France. GP functions as an error updating procedure
complementing the rainfall-runoff model, MIKE11/ NAM. Ten
storm events were used to infer the relationship between the
NAM simulated runoff and the corresponding prediction error.
That relationship was subsequently used for real-time forecasting
of six storm events. The results indicated that the proposed
methodology was able to forecast different storm events with great
accuracy for different updating intervals. The forecast hydrograph
performs well even for a long forecast horizon of up to nine hours.
However, it was found that for practical applications in real-time
runoff forecasting, the updating interval should be less than or
equal to the time of concentration of the catchment. The results
were also compared with two known updating methods such as

Evolutionary Computing188

the auto-regression and Kalman filter. Comparisons showed that
the proposed scheme, NAM-GSR, is comparable to these methods
for real time runoff forecasting. The rainfall-runoff models were
created on the basis of data alone as well as in combination
with conceptual models and Genetic Programming. The study
was carried out in Orgeval catchment of France having an area
about 104 km2 using hourly rainfall runoff data of 10 storms for
calibration and 6 storms for testing the models. The models were
calibrated to forecast the temporal difference between the current
and future discharge rather than absolute value of discharge
for the lead times of 1 to 12 hours. The results were superior to
conceptual numerical model. The model was then calibrated
using a hybrid method in that the surface runoff value was first
forecasted by using a conceptual forecasting model and then
using the simulation error and GP to forecast the stream flow.
The hybrid models provided a many fold improvement over the
raw GP models. Additionally the models were developed using
multilayer perceprton as well as Generalized Regression Neural
Networks (GRNN). The statistical ARMA method was also used
to develop the stream flow forecasting model. The results showed
that both LGP and NN techniques predicted the daily time series
of discharge with quite good agreement as indicated by high value
of coefficient of determination and low values of error measures
with the observed data. LGP models generally predicted the
maximum and minimum discharge values better than the NN
models though LGP results were also far from accurate. The
robustness of the developed models was tested by using applied
data which was neither used in training or testing and the results
were judged using Akaike Information Criterion (AIC).

The potential of the GP-based model for flood routing between
two river gauging stations on river Walla in USA was explored
for single peaked as well as multi-peaked flood hydrographs. The
accuracy of GP models was far superior than modified Muskingum
method which is a traditional physics based hydrologic flood
routing model which also showed time lag in predictions. The
inputs were current and antecedent discharge at upstream
station and antecedent discharge at downstream station while

Genetic Programming 189

the output was current discharge at the downstream station. The
LGP was employed for the flood routing exercise. The optimal GP
parameters used in this study were: crossover rate, 0.9; mutation
rate, 0.5; population size, 200; number of generations, 500; and
functional set, i.e. simple arithmetic functions (plus, minus,
multiply, divide).

The utility of genetic programming in modeling the eddy-covariance
(EC) measured evapo-transpiration flux was investigated. The
performance of the GP technique was compared with artificial
neural network and Penman-Monteith model estimates. EC
measured evapo-transpiration fluxes from two distinct case-
studies with different climatic and topographic conditions were
considered for the analysis and latent heat is modeled as a function
of net radiation, ground temperature, air temperature, wind
speed and relative humidity. Results from the study indicated
that both data-driven models (ANN and GP) performed better
than the Penman-Monteith method. However, the performance
of the GP model is comparable with that of ANN models. One
of the important advantages of employing GP to model evapo-
transpiration process is that, unlike the ANN model, GP resulted
in an explicit model structure that can be easily comprehended
and adopted. Another advantage of GP over ANN was found
that unlike ANN, GP can evolve its own model structure with
relevant inputs reducing the tedious task of identifying optimal
input combinations. This work was extended by [34] where in an
additional data driven tool of Evolutionary Polynomial Regression
was used to model the evapo-transpiration process. Additionally
the effect of previous states of input variable (lags) on modeling
the EC measured AET (actual evapo‐transpiration) is investigated.
The evapo-transpiration is estimated using the environmental
variables such as net radiation (NR), ground temperature (GT), air
temperature (AT), wind speed (WS) and relative humidity (RH).
It has been found out that random search and evolutionary-based
techniques, such as GP and EPR techniques, do not guarantee
consistent performance in all case studies e.g. good and/or bad
performance for modelling AET. The results of ANN, GP and
EPR were mostly at par with each other though EPR models were

Evolutionary Computing190

easier to understand. Recently the stage –discharge relationship
for the Pahang River in Malaysia was modeled using Genetic
Programming (GP) and Gene Expression Programming (GEP).
The data was provided by Malaysian Department of Irrigation and
Drainage (DID). Gene Expression Programming is an extension of
GP. GEP is a full-fledged genotype/phenotype system in which
both are dealt with separately, whereas GP is a simple replicator
system. Stage and discharge data from 2 years were used to
compare the performance of the GP and GEP models against that of
the more conventional (stage-rating curve) SRC and (Regression)
REG approaches. The GEP model was found to be considerably
better than the conventional SRC, REG and GP models. GEP was
also relatively more successful than GP, especially in estimating
large discharge values during flood events.

Genetic Programming 191

REFERENCES

1.	 Altenberg L (2009) Modularity in evolution: Some low-
level questions. In: Rasskin-Gutman D, Callebaut W (eds),
Modularity: Understanding the Development and Evolution
of Complex Natural Systems. MIT Press, Cambridge, MA

2.	 Alves da Silva AP, Abrao PJ (2002) Applications of evolutionary
computation in electric power systems. In: Fogel DB et al.
(eds), Proceedings of the 2002 Congress on Evolutionary
Computation CEC2002, pp. 1057–1062. IEEE Press

3.	 Archetti F, Messina E, Lanzeni S, Vanneschi L (2007) Genetic
programming for computational pharmacokinetics in drug
discovery and development. Genet Programming Evol Mach
8(4):17–26

4.	 Azaria Y, Sipper M (2005) GP-gammon: Genetically
programming backgammon players. Genet Programming
Evol Mach 6(3):283–300, Sept. Published online: 12 August
2005

5.	 Barrett SJ, Langdon WB (2006) Advances in the application of
machine learning techniques in drug discovery, design and
development. In: Tiwari A et al. (eds), Applications of Soft
Computing: Recent Trends, Advances in Soft Computing, On
the World Wide Web, 19 Sept.–7 Oct. 2005. Springer, Berlin,
99–110

6.	 Bojarczuk CC, Lopes HS, Freitas AA (July–Aug. 2008)
Genetic programming for knowledge discovery in chest-pain
diagnosis. IEEE Eng Med Biol Mag 19(4):38–44

7.	 Brameier M, Banzhaf W (2001) A comparison of linear genetic
programming and neural networks in medical data mining.
IEEE Trans Evol Comput 5(1):17–26

8.	 Cagnoni S, Rivero D, Vanneschi L (2005) A purely-evolutionary
memetic algorithm as a first step towards symbiotic
coevolution. In: Proceedings of the 2005 IEEE Congress on
Evolutionary Computation (CEC’05), Edinburgh, Scotland,
2005. IEEE Press, Piscataway, NJ. pp. 1156–1163

Evolutionary Computing192

9.	 Castillo F, Kordon A, Smits G (2006) Robust pareto front
genetic programming parameter selection based on design
of experiments and industrial data. In: Riolo RL, et al. (ed)
Genetic Programming Theory and Practice IV, vol 5 of Genetic
and Evolutionary Computation, chapter 2. Springer, Ann
Arbor, 11–13 May

10.	 Chen S-H, Liao C-C (2005) Agent-based computational
modeling of the stock price-volume relation. Inf Sci 170(1):75–
100, 18 Feb

11.	 Da Costa LE, Landry JA (2006) Relaxed genetic programming.
In: Keijzer M et al., editor, GECCO 2006: Proceedings of
the 8th Annual Conference on Genetic and Evolutionary
Computation, vol 1, Seattle, Washington, DC, 8–12 July. ACM
Press pp. 937–938

12.	 Dassau E, Grosman B, Lewin DR (2006) Modeling and
temperature control of rapid thermal processing. Comput
Chem Eng 30(4):686–697, 15 Feb

13.	 Dempsey I (2007) Grammatical evolution in dynamic
environments. Ph.D. thesis, University College Dublin,
Ireland

14.	 Dignum S, Poli R (2007) Generalisation of the limiting
distribution of program sizes in tree-based genetic
programming and analysis of its effects on bloat. In: Thierens,
D et al. (eds), GECCO ‘07: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation, vol 2
London, 7–11 July 2007. ACM Press, pp. 1588–1595

15.	 Eiben AE, Jelasity M (2002) A critical note on experimental
research methodology in EC. In: Congress on Evolutionary
Computation (CEC’02), Honolulu, HI, 2002. IEEE Press,
Piscataway, NJ, pp. 582–587

16.	 Esparcia-Alcazar AI, Sharman KC (Sept. 1996) Genetic
programming techniques that evolve recurrent neural
networks architectures for signal processing. In: IEEE
Workshop on Neural Networks for Signal Processing, Seiko,
Kyoto, Japan

Genetic Programming 193

17.	 Fernandez F, Martin A (2004) Saving effort in parallel GP
by means of plagues. In: Keijzer M, et al. (eds), Genetic
Programming 7th European Conference, EuroGP 2004,
Proceedings, vol 3003 of LNCS, Coimbra, Portugal, 5–7 Apr.
Springer-Verlag, pp. 269–278

INTRODUCTION

Memetic algorithm (MA) is an extension of the traditional genetic
algorithm. It uses a local search technique to reduce the likelihood of
the premature convergence. Memetic algorithms represent one of
the recent growing areas of research in evolutionary computation.
The term MA is now widely used as a synergy of evolutionary or
any population-based approach with separate individual learning
or local improvement procedures for problem search. Memetic
algorithms address the difficulty of developing high-performance
universal heuristics by encouraging the exploitation of multiple
heuristics acting in concert, making use of all available sources of
information for a problem. This approach has resulted in a rich
arsenal of heuristic algorithms and metaheuristic frameworks for
many problems.

6
MEMETIC ALGORITHMS

C
H

A
PT

ER

Evolutionary Computing196

6.1 BASIC CONCEPT OF MEMETIC ALGORITHM

The generic denomination of ‘Memetic Algorithms’ (MAs) is used
to encompass a broad class of metaheuristics (i.e. general purpose
methods aimed to guide an underlying heuristic). The method
is based on a population of agents and proved to be of practical
success in a variety of problem domains and in particular for the
approximate solution of NP-hard optimization problems.

Unlike traditional evolutionary computation (EC) methods,
MAs are intrinsically concerned with exploiting all available
knowledge about the problem under study. The incorporation of
problem domain knowledge is not an optional mechanism, but
a fundamental feature that characterizes MAs. This functioning
philosophy is perfectly illustrated by the term “memetic”.

In contrast, it is processed and enhanced by the communicating
parts. This enhancement is accomplished in MAs by incorporating
heuristics, approximation algorithms, local search techniques,
specialized recombination operators, truncated exact methods,
etc. In essence, most MAs can be interpreted as a search strategy in
which a population of optimizing agents cooperate and compete.
The success of MAs can probably be explained as being a direct
consequence of the synergy of the different search approaches
they incorporate.

The most crucial and distinctive feature of MAs, the inclusion of
problem knowledge mentioned above, is also supported by strong
theoretical results. As Hart and Belew initially stated and Wolpert
and Macready later popularized in the so-called No-Free-Lunch
Theorem, a search algorithm strictly performs in accordance with
the amount and quality of the problem knowledge they incorporate.
This fact clearly underpins the exploitation of problem knowledge
intrinsic to MAs. Given that the term hybridization is often used to
denote the process of incorporating problem knowledge, it is not
surprising that MAs are sometimes called ‘Hybrid Evolutionary
Algorithms’ (hybrid EAs) as well. One of the first algorithms
to which the MA label was assigned dates from 1988, and was

Memetic Algorithms 197

regarded by many as a hybrid of traditional Genetic Algorithms
(GAs) and Simulated Annealing (SA). Part of the initial motivation
was to find a way out of the limitations of both techniques on
a well-studied combinatorial optimization problem the Min
Euclidean Traveling Salesman problem (Min ETSP). According to
the authors, the original inspiration came from computer game
tournaments used to study “the evolution of cooperation”. That
approach had several features which anticipated many current
algorithms in practice today. The competitive phase of the algorithm
was based on the new allocation of search points in configuration
phase, a process involving a “battle” for survival followed by the
so-called “cloning”, which has a strong similarity with ‘go with
the winners’ algorithms. The cooperative phase followed by local
search may be better named “go-with-the-local-winners” since
the optimizing agents were arranged with a topology of a two
dimensional toroidal lattice. After initial computer experiments, an
insight was derived on the particular relevance that the “spatial”
organization, when coupled with an appropriate set of rules, had
for the overall performance of population search processes. A few
months later, Moscato and Norman discovered that they shared
similar views with other researchers and other authors proposing
“island models” for GAs. Spacialization is now being recognized
as the “catalyzer” responsible of a variety of phenomena.

6.1.1 Basic Model of a Memetic Algorithm

Figure 1 shows the block diagram of a basic population
metaheuristic, indicating the four points where a local search can
be included in order to form a MA:

1.	 On the population, to simulate the cultural development
that will be transmitted from one generation to another; it
can be applied to the whole set of agents or to specific ele-
ments, and even to the initial group.

2.	 On the parent or selected parents, before reproduction
stage.

3.	 When new solutions are generated, to produce a better off-
spring.

Evolutionary Computing198

4.	 On the offspring, before selecting a survivor according to
fitness criteria.

Figure 1. Block diagram of a basic population metaheuristic.

From this basic model several versions of MAs have been
developed, differing between each other in at least one of the
following aspects:

•	 Population metaheuristic used as a base.
•	 Selected algorithm for local search (exact method or

metaheuristic, number of memes to consider.)
•	 Conditions for local search (trigger event, frequency,

intensity, number of individuals to improve, etc.)

6.1.2 The Development of MAs

1st Generation

The first generation of MA refers to hybrid algorithms, a marriage
between a population-based global search (often in the form of an
evolutionary algorithm) coupled with a cultural evolutionary stage.
This first generation of MA although encompasses characteristics
of cultural evolution (in the form of local refinement) in the search
cycle, it may not qualify as a true evolving system according
to universal Darwinism, since all the core principles of inheritance/
memetic transmission, variation, and selection are missing. This
suggests why the term MA stirred up criticisms and controversies
among researchers when first introduced.

Memetic Algorithms 199

Pseudo code
 Procedure Memetic Algorithm
 Initialize: Generate an initial population;
 while Stopping conditions are not satisfied do
 Evaluate all individuals in the population.
 Evolve a new population using stochastic search operators.

 Select the subset of individuals, ilΩ , that should undergo the
individual improvement procedure.

 for each individual in ilΩ do
 Perform individual learning using meme(s) with frequency
or probability of ilf , for a period of ilt .
 Proceed with Lamarckian or Baldwinian learning.
 end for
 end while

2nd Generation

Multi-meme, hyper-heuristic and meta-Lamarckian MA are
referred to as second generation MA exhibiting the principles of
memetic transmission and selection in their design. In Multi-meme
MA, the memetic material is encoded as part of the genotype.
Subsequently, the decoded meme of each respective individual/
chromosome is then used to perform a local refinement. The
memetic material is then transmitted through a simple inheritance
mechanism from parent to offspring(s). On the other hand, in
hyper-heuristic and meta-Lamarckian MA, the pool of candidate
memes considered will compete, based on their past merits in
generating local improvements through a reward mechanism,
deciding on which meme to be selected to proceed for future local
refinements. Memes with a higher reward have a greater chance
of being replicated or copied. For a review on second generation
MA; i.e., MA considering multiple individual learning methods
within an evolutionary system, the reader is referred to.

Evolutionary Computing200

3rd Generatio

Co-evolutionand self-generating MAs may be regarded as 3rd
generation MA where all three principles satisfying the definitions
of a basic evolving system have been considered. In contrast to
2nd generation MA which assumes that the memes to be used
are known a priori, 3rd generation MA utilizes a rule-based local
search to supplement candidate solutions within the evolutionary
system, thus capturing regularly repeated features or patterns in
the problem space.

6.1.3 The Need for Memetic Algorithms

In order to understand in depth the role and need of MAs, it is
fundamental to consider the historical context within which MAs
have been defined. In 1988, when the first MAs were defined,
Genetic Algorithms (GAs) were extremely popular among
computer scientists and their related research was oriented
towards the design of algorithms having a superior performance
with respect to all the other algorithms. Unlike all the algorithms
proposed at that time, a MA was not a specific algorithm but was
something much more general than an optimization algorithm:
since MAs consists of the concept of combining global and local
search algorithms, they represented a broad and flexible class
of algorithms which somehow contained the previous work on
Evolutionary Algorithms (EAs) and thus, constituted a new
philosophy in optimization. Probably, due to their excessively
innovative contents, MAs had to face for about one decade, the
skepticism of the scientific community which repeatedly rejected
the memetic approach as a valuable possibility in optimization.

Since 1997, researchers in optimization had to dramatically
change their view about the subject. More specifically, in the light
of increasing interest in general purpose optimization algorithms,
it has become important, in the end of 90’s to understand the
relationship between how well an algorithm a performs on a
given optimization problem f on which it is run on the basis of the

Memetic Algorithms 201

features of the problem f . A slightly counter intuitive result has
been derived by Wolpert and Macready in which states that for a
given pair of algorithms A and B:

where P(xm| f,A) is the probability that algorithm A detects the
optimal solution for a generic objective function f and P(xm| f,B)
is the analogue probability for algorithm B. The statement is
proved for both static and time dependent case and are named
“No Free Lunch Theorems” (NFLT). In other words, in 1997 it
was mathematically proved that the average performance of
any pair of algorithms across all possible problems is identical.
Thus, if an algorithm performs well on a certain class of problems
then it necessarily pays for that with degraded performance on
the set of all remaining problems as this is the only way that all
algorithms can have the same performance averaged over all
functions. Strictly speaking, the proof of NFLT is made under the
hypothesis that both the algorithms A and B are non-revisiting, i.e.
the algorithms do not perform the fitness evaluation of the same
candidate solution more often than once during the optimization
run. Although this hypothesis is de facto not respected for most
of the computational intelligence optimization algorithms, the
concept that there is no universal optimizer had a significant
impact on the scientific community.

It should be highlighted that a class of problems on which an
algorithms performs well is not defined by the nature of the
application but rather by the features of the fitness function
within the search space. For example an optimization problem is
characterized by:

•	 The shape and properties of a corresponding fitness
landscape,

•	 Multi-modality,
•	 Separability of the problem,
•	 Absence or presence of a noise in the values of the

objective function (optionally, the type of noise),

Evolutionary Computing202

•	 Time dependency of the objective function (dynamic
problems)

•	 Shape and connectivity of the search domain

More formally, the fitness landscape (S, f, d) of a problem instance
for a given problem consists of a set of points S, a fitness function
f which assigns values (fitness) to solutions from S, and a distance
measure d : S × S → R which defines the spacial structure of the
landscape. This rather abstract concept has proven to be useful for
understanding the functionality of various optimization methods.

One of the most important properties of the fitness landscape is
epistasis whose concept has been borrowed from biology where
it refers to the degree to which the genes are correlated. As well
known, a function is separable if it can be rewritten as a sum of
functions of just one variable. The separability is closely related to
the concept of epistasis. In the field of evolutionary computation,
the epistasis measures how much the contribution of a gene to
the fitness of the individual depends on the values of other
genes. Nonseparable functions are more difficult to optimize as
the accurate search direction depends on two or more genes. On
the other hand, separable functions can be optimized for each
variable in turn. However, epistasis does not provide any piece of
information on how the fitness values are topologically related to
each other. By knowing the epistasis of an optimization problem,
it cannot be established whether the fitness values form a smooth
progression resulting in a solitary optimum or whether they form
a spiky pattern of many isolated optima.

The impossibility of understanding each detail of the fitness
landscape depends not only on the fitness function but also on
the search algorithm since an observed landscape appears to
be an artefact of the algorithm used or, more specifically, of the
neighborhood structure induced by the operators used by the
algorithm. The neighborhood structure is defined as a set of
points that can be reached by a single move of a search algorithm.
Closely related to the concept of the neighborhood structure is
the notion of a basin of attraction induced by this structure. More
specifically, a basin of attraction of a local optimum x is the set of

Memetic Algorithms 203

points X of the search space such that a search algorithm starting
from any point from X ends in the local optimum x. A special
note should be made regarding the landscapes with plateaus, i.e.
regions in search domain where the function has constant or nearly
constant values. If a search method is trapped on such region it
cannot get any information regarding the gradient or even its
estimates. Generally speaking, this situation is rather complicated
and special algorithmic components should be used in this case.
Finally, an important feature of a fitness landscape is the presence
or absence of symmetry. Special components can be included in
the algorithms for symmetrical problems.

In addition, two features can be mentioned which appear to be semi-
defining when distinguishing the classes of problems on which
an algorithm performs well. The first one is dimensionality of the
problem. Two problems with high dimensionality of the search
domain can be put into the same class, however an algorithm that
performs well for one of them might not necessarily work well
for the other one. At the same time, two specialized algorithms
for these two problems will have some common features intended
to overcome difficulties arising from high dimensionality. The
second semi-defining feature is computational cost of a single
evaluation of the objective function. Clearly, two problems with
computationally expensive objective functions can have different
features mentioned above that will put them into different classes.
However, these problems are unsolvable (in practice) if treated as
computationally cheap functions, therefore algorithms for such
problems should have common type components which allow
proper handling of the computational cost.

There is generally a performance advantage in incorporating prior
knowledge into the algorithm, however the results of NFLT do not
deem the use of unspecialized algorithms futile. It is impossible
to determine the fraction of practical problems for which an
algorithm yields good results rapidly, therefore a practical free
lunch is possible. NFLT constitute, in a certain sense, the “Full
Employment Theorem” (FET) for optimization professionals. In
computer science and mathematics, the term FET is used to refer

Evolutionary Computing204

to a theorem that shows that no algorithm can optimally perform
a particular task done by some class of professionals. In this sense,
as no efficient general purpose solver exists, there is always scope
for improving algorithms for better performance on particular
problems. Since MAs, as mentioned above, represent a broad class
of algorithms which combine various algorithmic components,
a suitable combination is necessary for a given problem. Since,
during the last decade, computer scientists had to observe the
features of their optimization problem in order to propose an ad-
hoc optimization algorithm, the approach of combining various
search operators within the algorithmic design became a common
practice. The development of NFLT implicitly encouraged the use
and development of MAs, which became extremely popular and
often necessary, in computer science, at first, and in engineering
and applied science, more recently, thus constituting the FET for
MAs.

6.1.4 Recombination

Local search is based on the application of a mutation operator
to a single configuration. Despite the apparent simplicity of this
mechanism, “mutation-based” local search has revealed itself a
very powerful mechanism for obtaining good quality solutions for
NP−hard problems. For this reason, some researchers have tried
to provide a more theoretically-solid background to this class of
search. It is worth mentioning the definition of the Polynomial
Local Search class (PLS) by Johnson et al. Basically, this complexity
class comprises a problem and an associated search landscape
such that we can decide in polynomial time if we can find a better
solution in the neighborhood. Unfortunately, it is very likely that
no NP−hard problem is contained in class PLS, since that would
imply that NP=co-NP, a conjecture usually assumed to be false.
This fact has justified the quest for additional search mechanisms
to be used as stand-alone operators or as complements to standard
mutation.

Recall that population-based search allowed the definition of
generalized move operators termed recombination operators. In

Memetic Algorithms 205

essence, recombination can be defined as a process in which a
set Spar of n configurations (informally referred to as “parents”) is
manipulated to create a set Sdesc ⊆ solP (x) of m new configurations
(informally termed “descendants”). The creation of these
descendants involves the identification and combination of
features extracted from the parents.

At this point, it is possible to consider properties of interest that
can be exhibited by recombination operators. The first property,
respect, represents the exploitation side of recombination. A
recombination operator is said to be respectful, regarding a
particular type of features of the configurations, if, and only if,
it generates descendants carrying all basic features common to
all parents. Notice that, if all parent configurations are identical,
a respectful recombination operator is forced to return the same
configuration as a descendant. This property is termed purity,
and can be achieved even when the recombination operator is not
generally respectful.

On the other hand, assortment represents the exploratory side of
recombination. A recombination operator is said to be properly
assorting if, and only if, it can generate descendants carrying any
combination of compatible features taken from the parents. The
assortment is said to be weak if it is necessary to perform several
recombinations within the offspring to achieve this effect.

Finally, transmission is a very important property that captures
the intuitive role of recombination. An operator is said to be
transmitting if every feature exhibited by the offspring is present
in at least one of the parents. Thus, a transmitting recombination
operator combines the information present in the parents but
does not introduce new information. This latter task is usually
left to the mutation operator. For this reason, a non-transmitting
recombination operator is said to introduce implicit mutation.

The three properties above suffice to describe the abstract input/
output behavior of a recombination operator regarding some
particular features. It provides a characterization of the possible
descendants that can be produced by the operator. Nevertheless,

Evolutionary Computing206

there exist other aspects of the functioning of recombination that
must be studied. In particular, it is interesting to consider how the
construction of Sdesc is approached.

First of all, a recombination operator is said to be blind if it has
no other input than Spar, i.e., it does not use any information from
the problem instance. This definition is certainly very restrictive,
and hence is sometimes relaxed as to allow the recombination
operator to use information regarding the problem constraints
(so as to construct feasible descendants), and possibly the fitness
values of configurations y ∈ Spar (so as to bias the generation of
descendants toward the best parents). A typical example of a
blind recombination operator is the classical Uniform crossover.
This operator is defined on search spaces S ≡ Σn, i.e., strings of
n symbols taken from an alphabet Σ. The construction of the
descendant is done by randomly selecting at each position one
of the symbols appearing in that position in any of the parents.
This random selection can be totally uniform or can be biased
according to the fitness values of the parents as mentioned before.
Furthermore, the selection can be done so as to enforce feasibility
(e.g., consider the binary representation of solutions in the 0-1
MKP). Notice that, the resulting operator is neither respectful nor
transmitting in general.

The use of blind recombination operators has been usually
justified on the grounds of not introducing excessive bias in the
search algorithm, thus preventing extremely fast convergence to
suboptimal solutions. This is questionable though. First, notice
that the behavior of the algorithm is in fact biased by the choice
of representation and the mechanics of the particular operators.
Second, there exist widely known mechanisms (e.g., spatial
isolation) to hinder these problems. Finally, it can be better to
quickly obtain a suboptimal solution and restart the algorithm
than using blind operators for a long time in pursuit of an
asymptotically optimal behavior.

Recombination operators that use problem knowledge are
commonly termed heuristic or hybrid. In these operators, problem
information is utilized to guide the process of constructing the

Memetic Algorithms 207

descendants. This can be done in a plethora of ways for each
problem, so it is difficult to provide a taxonomy of heuristic
recombination operators. Nevertheless, there exist two main
aspects into which problem knowledge can be injected: the
selection of the parental features that will be transmitted to the
descendant, and the selection of nonparental features that will be
added to it. A heuristic recombination operator can focus in one of
these aspects, or in both of them simultaneously.

As an example of a heuristic recombination operator focusing on
the first aspect, Dynastically Optimal Recombination (DOR) can be
mentioned. This operator explores the dynastic potential (i.e., the
set of possible children) of the configurations being recombined,
so as to find the best member of this set (notice that, since
configurations in the dynastic potential are entirely composed
of features taken from any of the parents, this is a transmitting
operator). This exploration is done using a subordinate complete
algorithm, and its goal is thus to find the best combination of
parental features giving rise to a feasible child. Hence, this operator
is monotonic in the sense that any child generated is at least as
good as the best parent.

Examples of heuristic recombination operators concentrating on
the selection of non-parental features, one can cite the patching-
by-forma-completion operators proposed by Radcliffe and
Surry. These operators are based on generating an incomplete
child using a non-heuristic procedure (e.g., the RARω operator),
and then completing the child either using a local hill climbing
procedure restricted to non-specified features (locally optimal
forma completion) or a global search procedure that finds the
globally best solution carrying the specified features (globally
optimal forma completion). Notice the similarity of this latter
approach with DOR.

Finally, there exist some operators trying to exploit knowledge in
both of the above aspects. A distinguished example is the Edge
Assembly Crossover (EAX). EAX is a specialized operator for
the TSP (both for symmetric and asymmetric instances) in which

Evolutionary Computing208

the construction of the child comprises two-phases: the first one
involves the generation of an incomplete child via the so-called
E-sets (subtours composed of alternating edges from each parent);
subsequently, these subtours are merged into a single feasible
subtours using a greedy repair algorithm. The authors of this
operator reported impressive results in terms of accuracy and
speed.

A final comment must be made in relation to the computational
complexity of recombination. It is clear that combining the features
of several solutions is in general computationally more expensive
than modifying a single solution (i.e., a mutation). Furthermore,
the recombination operation will be usually invoked a large
number of times. For this reason, it is convenient (and in many
situations mandatory) to keep it at a low computational cost. A
reasonable guideline is to consider an O(N log N) upper bound
for its complexity, where N is the size of the input (the set Spar and
the problem instance x). Such limit is easily affordable for blind
recombination operators, which are called crossover, a reasonable
name to convey their low complexity (yet not always used in this
context). However, this limit can be relatively astringent in the case
of heuristic recombination, mainly when epistasis (nonadditive
inter-feature influence on the fitness value) is involved. This admits
several solutions depending upon the particular heuristic used.
For example, DOR has exponential worst case behavior, but it can
be made affordable by picking larger pieces of information from
each parent (the larger the size of these pieces of information, the
lower the number of them needed to complete the child). Consider
that heuristic recombination operators provide better solutions
than blind recombination operators, and hence they need not be
invoked the same number of times.

6.2 GENERAL STRUCTURE OF MEMETIC
ALGORITHMS

In order to define the notation used in this section, let us consider a
solution x, i.e., a vector of n design variables (x1, x2, . . . , xi , . . . , xn).

Memetic Algorithms 209

Each design variable xi can take values from a domain Di (e.g., an
interval if variables are continuous, or a certain collection
of values otherwise). The Cartesian product of these domains for
each design variable is called the decision space D. Let us consider
a set of (either deterministic or stochastic) functions f1, f2, . . . , fm
defined in D and returning some values. Under these conditions,
the most general statement of an optimization problem is given by
the following formulas:

		 (1)
where gj and hk are inequality and equality constraints, respectively.

If m = 1 the problem is single-objective, while for m > 1 the problem
is multi-objective. The particular structure of the functions gj and
hk in each particular problem determines its constrainedness,
which is often related to the hardness of its resolution. Finally, the
continuous or combinatorial nature of the problem is given by the
fact that D is a discrete or dense set.

MAs address the problem in (1) by means of a specific algorithmic
structure which can be seen as an iterated sequence of the
following operations, aimed at having a population (pool) of
tentative solution converge (i.e., evolve from an initial high-
diversity, scattered state to a low-diversity, more homogeneous
state) towards an optimal (or quasi-optimal) solution:

•	 Selection of parents: Selection aims to determine the
candidate solutions that will survive in the following
generations and be used to create new solutions.
Selection for reproduction often operates in relation with
the fitness (performance) of the candidate solutions;
Here, performance typically amounts to the extent to
which the solution maximizes/minimizes the objective
function(s) fm (although in some cases fitness may be
measured by means of a different guiding function,
related to the objective function but not identical, e.g.,

Evolutionary Computing210

in the SAT problem the objective function is binary –
satisfied/unsatisfied– yet the most common fitness
function is maximizing the number of satisfied clauses).
High quality solutions have thus more chances to be
chosen. For example, roulette-wheel and tournament
selections can be applied. Selection can also be done
according to other criteria such as diversity. In such a
case, only spread out individuals are allowed to survive
and reproduce. If the solutions of the population are
sufficiently diversified, selection can also be carried out
randomly.

•	 Combination of parents for offspring generation:
Combination aims to create new promising candidate
solutions by blending existing solutions (parents), a
solution being promising if it can potentially lead the
optimization process to new search areas where better
solutions may be found.

•	 Local improvement of offspring: The goal of local
improvement is to improve the quality of an offspring as
far as possible. Candidate solutions undergo refinement
which correspond the life-time learning of the individuals
in the original metaphor of MAs.

•	 Update of the population: This step decides whether a
new solution should become a member of the population
and which existing solution of the population should
be replaced. Often, these decisions are made according
to criteria related to both quality and diversity. Such a
strategy is commonly employed in methods like Scatter
Search and many Evolutionary Algorithms. For instance,
a basic quality-based updating rule would replace the
worst solution of the population while a diversity-based
rule would substitute for a similar solution according to
a distance metric. Other criteria like recency (age) can
also be considered. The policies employed for managing
the population are essential to maintain an appropriate
diversity of the population, to prevent the search process
from premature convergence (i.e., too fast convergence

Memetic Algorithms 211

towards a suboptimal region of the search space), and
to help the algorithm to continually discover new
promising search areas.

MAs blend together ideas from different search methodologies,
and most prominently ideas from local search techniques and
population-based search. Indeed, from a very general point of
view a basic MA can be regarded as one (or several) local search
procedure(s) acting on a pool pop of |pop| ≥ 2 solutions which
engage in periodical episodes of cooperation via recombination
procedures. This is shown in Algorithm 1.

Algorithm 1: A Basic Memetic Algorithm.

Let us analyze this template. First of all, the Initialize procedure
is responsible for producing the initial set of |pop| solutions.
Traditional evolutionary algorithms usually resort to simply
generating |pop| solutions at random (systematic procedures to
ensure a good coverage of the search space are sometimes defined,
although these are not often used). Opposed to this, it is typical
for MAs to attempt to use high-quality solutions as starting point.
This can be done either using a more sophisticated mechanism
(for instance, some constructive heuristic) to inject good solutions
in the initial population, or by using a local-search procedure to
improve random solutions (see Algorithm 2).

Evolutionary Computing212

Algorithm 2: Injecting high-quality solutions in the initial population.

As for the Termination Criterion function, it typically amounts
to checking a limit on the total number of iterations, reaching a
maximum number of iterations without improvement, having
performed a certain number of population restarts, or reaching a
certain target fitness.

The procedures Cooperate and Improve constitute the core of the
MA. Starting with the former, its most typical realization arises
from the use of two operators for selecting solutions from the
population and recombining them.

Table 1: Parameters used in the algorithmic description of MAs

Memetic Algorithms 213

Algorithm 3: The pipelined Cooperate procedure.

This procedure can be easily extended to use a larger collection
of variation operators applied in a pipeline fashion. As shown in
Algorithm 3, this procedure comprises numop stages, each one
corresponding to the iterated application of a particular operator
opj that takes arityinj solutions from the previous stage, generating
arityoutj new solutions.

As to the Improve procedure, it embodies the application of a
local search procedure to solutions in the population. Notice
that in an abstract sense a local search method can be modelled
as a unary operator (we adhere here to a strict definition of local
search as a procedure for iteratively exploring the surroundings/
neighborhood of a certain solution at any given time step), and
hence it could have been included within the Cooperate procedure
above. However, local search plays such an important role in
MAs that it deserves separate treatment. Indeed, there are several
important design decisions involved in the application of local
search to solutions, i.e., to which solutions should it be applied,
how often, for how long, etc.

Next, the Compete procedure is used to reconstruct the current
population using the old population pop and the population of
offspring newpop2. Using the terminology commonly used by the
evolution strategy community, there exist two main possibilities for
this purpose: the plus strategy and the comma strategy. The non-
elitist nature of the latter makes it less prone to stagnation, being

Evolutionary Computing214

the ratio |newpop|/|pop| ≃ 6 a customary choice. The generation
of a large number of offspring can be somewhat computationally
expensive if the fitness function is complex and time-consuming
though. A suitable alternative in this context is using a plus
strategy with a low value of |newpop|, an elitist variant which is
strongly related to the so-called steady-state replacement strategy
in GAs. While this option usually provides a faster convergence
to high-quality solutions, premature convergence to suboptimal
regions of the search space can take place, and hence corrective
measures may be required. This leads to the last component of the
template shown in Algorithm 1, namely the restarting procedure.

First of all, it must be decided whether the population has degraded
or has not, using some measure of information diversity in the
population (e.g., average Hamming distance or Shannon’s entropy
in the discrete case, or some dispersion measure in the continuous
case). Once the diversity indicator provides a value below a
suitable threshold, the population can be regarded as degenerate
and the restart procedure is called. Again, this can be implemented
in a number of ways. A very typical strategy is to keep a fraction
of the current population, generating new (random or heuristic)
solutions to complete the population, as shown in Algorithm 4.
The term random-immigrant strategy has been coined to describe
this procedure. Alternatively, a strong or heavy mutation operator
can be activated in order to drive the population away from its
current location in the search space.

Algorithm 4: The Restart procedure.

Memetic Algorithms 215

On the basis of the definitions of MA and MC reported above,
while an algorithmic characterization of MA can be given, any MC
specific outline would be restrictive. In other words, while MA is
a class of optimization algorithms having specific implementation
features, MC is a subject and an implementation philosophy. On
one hand, the concept of MC appears excessively vague as all
the computer science implementations if not most of the natural
sciences and engineering can be seen as a subset of MC. If we
look at MC in a sceptical way, it may appear as an empty box or
a label to put on every single human thought. On the other hand,
the importance of MC is in the unifying role taken and the novel
perspective that MC suggests to computer science community.
MC considers algorithms as evolving structures composed by
cooperative and competitive operators. This perspective suggests
the automatic generation of algorithms by properly combining
the operators (memes). We may think that a computational device
stores a set of operators and combines (some of) them according
to a certain criterion to efficiently address a problem. This will be
a firther step with respect to adaptive and self-adaptive systems
in MAs.

6.3 MEMETIC COMPUTING SPECIFIC
IMPLEMENTATIONS

MA/MC implementations for various classes of optimization
problems. More specifically the present divided into the following
methods:

•	 MAs in discrete optimization
•	 MAs in continuous optimization
•	 MAs in multimodal optimization
•	 MAs in constrained optimization
•	 MAs in multi-objective optimization
•	 MAs in the presence of uncertainties

Evolutionary Computing216

6.3.1 MAs in Discrete Optimization

Discrete optimization is the search for the configuration with
highest performance (optimal solution) among a set of finite
candidate configurations. There are several ways to describe a
discrete optimization problem. In its most general form, it can be
defined as a collection of problem instances, each being specified
by a pair (S, f), where S is the a finite set of candidate configurations,
defining the decision space; f is the cost or objective function, given
by a mapping f: S → Q.

Unlike continuous problems, discrete optimization can in
principle be solved by enumeration, i.e., by exhaustively counting
and evaluating all the candidate solutions. In addition, discrete
problems cannot utilize the gradient for searching the directions
as a minimum distance between two solutions is set.

Discrete problems and more specifically the Travelling Salesman
problem (TSP) have been the earliest application domains for
MAs. Implementations of hybrid algorithms were in use even
before the term MA was coined. In an early attempt to hybridize
an evolutionary framework with local search for solving the
TSP has been presented. Subsequently, still with reference to the
TSP, in a visionary approach which theorizes the integration of
extra components and especially crossover techniques within an
evolutionary framework is presented. A similar approach is given
in. Another related technique, which can also be considered as an
early memetic approach is the so called genetic edge recombination.
More recently, actual MAs (which fit in the definition above) have
been implemented to address the TSP; the role and effect of local
search within evolutionary algorithms is extensively studied.

The solution of an optimization problem in a discrete space (as
well as for continuous problems) must be achieved by efficiently
balancing the exploitation and exploration. Exploitation is the
action, performed by the algorithm, of intensively analyzing a
portion of the decision space in order to quickly enhance upon the
best current solution while exploration is the action which leads
to the detection of a candidate solution located in an unexplored

Memetic Algorithms 217

areas of the decision space. The dual concept of exploitation and
exploration covers two fundamental and complementary aspects
of any effective search procedure. This concept is at the basic of
optimization and has been termed under the names intensification
and diversification, respectively, introduced within the Tabu
Search (TS) methodology.

MA implementations for discrete optimization problems
essentially tend to combine searchers for exploring the entire
decision space and searchers which focus on portions of the decision
space. Local search in MAs for discrete optimization performs an
intensive exploitation of the search space attempting to enhance
the performance by slightly modifying some design variables.
For example, an analysis of the frequency and application point
of the local search, in the context of continuous optimization, is
carried out. This analysis has been extended for combinatorial
optimization problems and introduced the concept of sniff (or
local/global ratio) for balancing genetic and local search.

6.3.2 MAs in Continuous Optimization

When a MA is designed two of the most relevant features to take
into account are 1) the cost of local search; 2) the underlying search
landscape. In order to come up with efficient memetic solvers, in
continuous optimization, these features must be tackled differently
with respect to the discrete case.

Regarding the cost of local search, in many combinatorial domains
it is frequently possible to compute the fitness of a perturbed
solution incrementally, e.g., let x be a solution and let x′ ∈ N
(x) be a neighboring solution; then the fitness f(x′) can be often
computed as f(x ′) = f(x) + ∆f(x, x′), where ∆f(x, x′) is a term that
depends on the particular perturbation done on x and is typically
efficient to compute (much more efficiently that a full fitness
computation). For example, in the context of the TSP and the 2-opt
neighborhood, the fitness of a perturbed solution can be computed
in constant time by calculating the difference between the weights
of the two edges added and the two edges removed. This is much

Evolutionary Computing218

more difficult in the context of continuous optimization problems,
which are often non-linear and hard to decompose as the sum of
linearly-coupled terms. Hence local search usually has to resort to
full fitness computations.

Concerning the underlying search landscape, it should be observed
that the interplay among the different search operators used in
memetic algorithms (or even in simple evolutionary algorithms) is
a crucial issue for achieving good performance in any optimization
domain. When tackling a combinatorial problem, this interplay is
a complex topic since each operator may be based on a different
search landscape. It is then essential to understand these different
landscape structures and how they are navigated; this concept
is also known ad the “one operator, one landscape” view and
is expressed in depth. In the continuous domain the situation
is somewhat simpler, in the sense that there exists a natural
underlying landscape in D (typically D = Qn), namely that induced
by distance measures such as Euclidean distance. In other words,
in continuous optimization, the set of points which can be reached
by the application of unary operators to a starting point may be
represented by closed spheres of radius . On the contrary, the set
of points reachable by recombination operators (recall for example
the BLX−α operator) can be visualized by means of a hypercubes
within the decision space. The intuitive imagery of local optima
and basins of attraction naturally fits here, and allows the designer
to exert some control on the search dynamics by carefully adjusting
the intensification/diversification properties of the operators used.

Starting with the first one (the cost of local search), it emphasizes
the need for carefully selecting when and how local search
is applied (obviously this is a general issue, also relevant in
combinatorial problems, but definitely crucial in continuous ones).
This decision-making is very hard in general, but some strategies
have been put forward in previous works. A rather simple one
is to resort to partial Lamarckianism by randomly applying
local search with probability pLS < 1. Obviously, the application
frequency is not the only parameter that can be adjusted to tune
the computational cost of local search: the intensity of local search

Memetic Algorithms 219

(i.e., for how long is local improvement attempted on a particular
solution) is another parameter to be tweaked. This adjustment
can be done blindly (i.e., prefixing a constant value or a variation
schedule across the run), or adaptively. For example, Molina et
al. define three different solution classes (on the basis of fitness)
and associate a different set of local-search parameters for each
of them. Related to this, Nguyen et al. consider a stratified
approach, in which the population is sorted and divided into
n levels (n being the number of local search applications), and
one individual per level is randomly selected. This is shown to
provide better results than random selection. We refer to for an
in-depth empirical analysis of the time/quality tradeoffs when
applying parameterized local search within memetic algorithms.
This adaptive parameterization has been also exploited in so-
called local-search chains, by saving the state of the local-search
upon completion on a certain solution for later use if the same
solution is selected again for local improvement. Let us finally
note with respect to this parameterization issue that adaptive
strategies can be taken one step further, entering into the realm of
self-adaptation.

As to what the exploitation/exploration balance regards, it is
typically the case that the population-based component is used to
navigate through the search space, providing interesting starting
points to intensify the search via the local improvement operator.
The diversification aspect of the populationbased search can be
strengthened in several ways, such as for example using multiple
subpopulations, or diversity-oriented replacement strategies. An
optimization paradigm closely related to memetic algorithms in
which the population (or reference set in the SS jargon) is divided
in tiers: entrance to them is gained by solution on the basis of
fitness in one case, or diversity in the other case.

Diversification can be also introduced via selective mating, as it is
done in CHC (Cross generational elitist selection, Heterogeneous
recombination, and Cataclysmic mutation). A related strategy
was proposed by Lozano et al. via the use of negative assortative
mating: after picking a solution for recombination, a collection of

Evolutionary Computing220

potential mates is selected and the most diverse one is used. Other
strategies range from the use of clustering (to detect solutions
likely within the same basin of attraction upon which it may not
be fruitful to apply local search), or the use of standard diversity
preservation techniques in multimodal contexts such as sharing
or crowding. It should be also mentioned that sometimes the
intensification component of the memetic algorithm is strongly
imbricated in the population-based engine, without resorting
to a separate local search component. This is for example the
case of the so-called crossover hill climbing, a procedure which
essentially amount to using a hill climbing procedure on states
composed of a collection of solutions, using crossover as move
operator. A different intensifying strategy was used by, by
considering an exact procedure for finding the best combination
of variable values from the parents (a so-called optimal discrete
recombination). This obviously requires the objective function is
amenable to the application of an efficient procedure for exploring
the dynastic potential (set of possible children) of the solutions
being recombined.

6.3.3 MAs in Multimodal Optimization

In some cases, it may be required to detect multiple local optima
rather than only the global optimum. This problem is usually
indicated as multimodal optimization problem. Obviously,
this situation occurs only when there is a continuous landscape
because in discrete optimization there is no absolute concept of
local optimum. MC approaches have been used in various contexts
to address this issue. For example, a memetic approach composed
of sequential threshold operation, global and local search allows
the detection of multiple optima under fitness constrains. In a
heuristic mapping is proposed in order to promote the multiple
convergence within a unique evolutionary cycle. By means of a
similar logic, in a memetic swarm intelligence approach is used
for multimodal optimization.

Memetic Algorithms 221

6.3.4 MAs in Large Scale Optimization

Optimization problems, both discrete and continuous, when
characterized by a high number of variables are known as large
scale optimization problems, or briefly Large Scale Problems
(LSPs). The detection of an efficient solver for LSPs can be a very
valuable achievement in applied science and engineering since
in many applications a high number of design variables may be
of interest for an accurate problem description. For example, in
structural optimization an accurate description of complex spatial
objects might require the formulation of a LSP; similarly such a
situation also occurs in scheduling problems.

Several memetic approaches have been largely applied in order
to solve LSPs. This fact is due to the fact that a single search logic
might easily turn into stagnation or premature convergence. On the
other hand, a proper coordination of multiple search operators can
compensate the limits of the others and thus allow the overcome of
a critical algorithmic situation characterized by no improvements.
For example, a MA which integrates a simplex crossover within
the DE framework has been proposed in order to solve LSPs. A
DE for LSPs has proposed. The algorithm proposed in performs
a probabilistic update of the control parameter of DE variation
operators and a progressive size reduction of the population
size. Although the theoretical justifications of the success of this
algorithm are not fully clear, the proposed approach seems to be
extremely promising for various problems. A memetic algorithm
which hybridizes the self-adaptive DE described and a local search
applied to the scale factor in order to generate candidate solutions
with a high performance has been proposed. Since the local search
on the scale factor (or scale factor local search) is independent
on the dimensionality of the problem, the resulting memetic
algorithm offered a good performance for relatively large scale
problems. By combining the latest two philosophies, Caponio et
al. propose a MA which integrates the potential of the scale factor
local search within the self-adaptive DE with automatic reduction
of the population size in order to guarantee a high performance, in

Evolutionary Computing222

terms of convergence speed and solution detection, for large scale
problems.

A DE framework with self-adaptively coordinated multiple
mutation strategies, is hybridized in a memetic fashion with the
multitrajectory search proposed. The resulting algorithm appears
very promising for handling LSPs.

Finally, another memetic approach, used for handling LSPs, is
by means of structured populations. One example is given in
where multiple DE search strategies are reproduced within a
ring topology by means of a simple and natural randomized
adaptation throughout the islands of the structured populations.
The scale factor of the most successful islands is inherited by the
other islands after a perturbation which prevents from premature
convergence. A more efficient scheme for handling LSPs is
proposed in where the premature convergence is achieved by
means of the cooperative/competitive application of two simple
mechanisms: the first, namely shuffling, consists of randomly
rearranging the individuals over the sub-populations; the second
consists of updating all the scale factors of the sub-populations.

6.3.5 MAs in Constrained Optimization

When MAs are applied to constrained optimization problems,
the integration of algorithmic components in the memetic
framework to handle the constraints becomes fundamental. In
a MA composed of a GA framework and a gradient based local
search integrates the constraint violation criterion proposed in:
(i) the feasible individual is preferred over the infeasible one; (ii)
for two feasible individuals, the individual with better fitness is
preferred; and (iii) for two infeasible individuals, the individual
with lower constraint violation is preferred. Their experimental
results indicated that MA outperformed conventional algorithms
in terms of both quality of solution and the rate of convergence.
The same set of rules has been used to handle the constraints,
where, in the context of multi-objective optimization, a MA which

Memetic Algorithms 223

makes use of a local search strategy based on the interior point
method, has been proposed.

A MA composed by an evolutionary framework and Sequential
Quadratic Programming (SQP) employs the constraint violation
procedure. An MA containing an adaptive penalty method and a
line search technique is proposed. An agent based MA in which
four local search algorithms were used for adaptive learning has
been proposed. The algorithms included random perturbation,
neighborhood and gradient search methods. Subsequently,
another specialized local search method was designed to deal
with equality constraints.

A memetic co-evolutionary differential evolution algorithm
where the population was divided into two sub-populations has
been proposed. The purpose of one sub-population is to minimize
the fitness function, and the other is to minimize the constraint
violation. The optimization was achieved through interactions
between the two sub-populations. No penalty coefficient has
been used in the method while a Gaussian random number was
used to modify the individuals when the best solution remained
unchanged over several generations.

Some domain-specific applications are solved by means of MAs
for constraint optimization. Boudia and Prins considered the
problem of cost minimization of a production-distribution system.
A repair mechanism was applied for constraint satisfaction. Park
et al. combined a GA framework with a tunnel-based dynamic
programming scheme to solve highly constrained non-linear
discrete dynamic optimization problems arising from long-term
planning. The infeasible solutions were repaired by randomly
sampling part of the solutions and replacing some of the previous
variables (regenerate partial characters). The algorithm successfully
solved reasonable sized practical problems which cannot be solved
by means of conventional approaches. A multistage capacitated
lot-sizing problem was solved by the memetic algorithm proposed
in using heuristics as local search and standard recombination
operators. Gallardo et al. propose a multilevel MA for solving

Evolutionary Computing224

weighted constrained satisfaction problems, based on the
integration of exact techniques within the MA for recombination
purposes, and the use of upper coordination level involving the
MA and an incomplete branch and bound derivate.

Some other studies, instead of dealing with conventional
candidate solutions, require the encoding of mixed continuous/
integer variables or the inclusion of boolean variables. Within
this class of problems, mixed representations of the constrained
Vehicle Routing Problems (VRPs) have been extensively studied in
literature and several MA implementations have been proposed.

6.3.6 MAs in Multi-Objective Optimization

In order to tackle multi-objective optimization problems, a well
designed algorithm should capable to detect a set of points
representative of the Pareto front being well sparse over it. Multi-
Objective MAs (MOMAs) attempt to obtain this result properly
hybridizing evolutionary operators and local search. In order to
pursue this aim, the selection mechanism, i.e., that mechanism that
chooses which solutions should be retained and which discarded,
must be well designed. A first important feature of the selection
mechanism is that within a set of solutions, those that dominate
the others should be chosen. However, dominance relation alone
leaves many pairs of solutions incomparable. For this reason, the
employment of only the dominance relation may not be able to
define a single best solution in a neighborhood or in a tournament.

There are mainly two big families of multi-objective solvers
(regardless of their memetic nature) and can be classified in the
following way: 1) algorithms that do not combine the objective
functions and perform the selection by means of a dominance
based criterion; 2) algorithms that make use of combinations of
objectives for selecting new individuals.

The first category is based on the dominance sorting defined in
and consists of a dominance-based ranking of all the solutions
of a population. This mechanism has been employed by popular

Memetic Algorithms 225

evolutionary algorithms for multi-objective optimization.

In MOMAs the selection criterion involves not only the
evolutionary framework but also the local search components.
In a greedy local search method based on dominance relation is
proposed. This mechanism simply allows the acceptance of a newly
generated neighbor solution if it dominates the current solution.
In population-based Pareto local search, the neighborhood of each
solution of the current population is explored, and if no solution
of the population weakly dominates a generated neighbor, the
neighbor is added to the population. Lust and Jaszkiewicz propose
a method to speed-up local search algorithms based on dominance
sorting. A dominance criterion is integrated into the evolutionary
framework and multiple local search components such as
Simulated Annealing and Rosenbrock These approaches have the
advantage of not requiring extra parameters for performing their
implementation. On the other hand, this criterion does not allow
a control on the solution spread in proximity of the Pareto front.
This drawback imposes the employment of extra components
which guarantee the population spread (in terms of fitness values),
see e.g.,. In addition, while dominance allows a good ranking
when few objectives are involved, it is often unreliable when the
problem handles many simultaneous objectives. It is likely to have
sets solutions which do not dominate each other and thus the
algorithm cannot perform an efficient selection.

The second category is based on the idea that if a ranking amongst
the objectives can be performed then the multiple objectives can
be combined to generate a single-objective optimization problem.
The ranking is performed by associating to each objective a weight
value. The functions combining the objectives are usually indicated
as aggregation functions. When this approach is employed the
algorithm obviously does not detect a Pareto front but only one
solution. However, this drawback can be overcome by the use
of multiple aggregation functions defined by various weight
vectors. A scheduled variation of weight parameters is employed
in. A deterministic updated of the weight parameters to generate
a repulsion among solution and thus dispersion in proximity of

Evolutionary Computing226

the Pareto front is proposed. A meta-evolution of the weights is
presented in. A randomized weight update, similar to a random
walk local search, is proposed in while a fully random update is
presented. The employment of multiple set of weight parameters
allows a natural dispersion of the solutions and thus, unlike
dominance based sorting methods, no additional components
are required. In addition, several speed-up techniques may easily
be used in local search based on aggregation functions. On the
other hand, this category of methods has the drawback that the
selection of a proper set of weights must be performed. In order to
overcome this problem, some research is focused on the automatic
selection of the weights.

6.3.7 MAs in the Presence of Uncertainties

Uncertainties in optimization problems are very common in real-
world applications due to the presence of measurement devices and
approximation models. A fitness function contains uncertainties if
the variable “time” takes place in the fitness evaluation of a solution.
In other words, if for a given candidate solution x, the fitness
calculation f (x) can return different values in different moments,
then the fitness function f is said to be affected by uncertainties. In
the survey proposed the sources of uncertainties are categorized
as 1) uncertainties due to approximation 2) uncertainties due to
robustness 3) uncertainties due to noise 4) uncertainties due to
time-variance.

In some applications, the actual fitness function can be unavailable
throughout the entire optimization process or, due to its excessive
computational cost, can be replaced by an approximation model.
When the fitness value is computed by an approximation model
a slightly different value than the actual fitness is expected. In
addition, an approximation procedure can be adjusted over
the optimization time and alternated with the actual fitness
thus resulting in multiple fitness values for a single candidate
solution. The employment of approximation models introduces
an uncertainty in the landscape. In order to face this difficulty,
in the Inexact Pre-Evaluation (IPE) framework is proposed. IPE

Memetic Algorithms 227

uses the expensive function in the first few generations and then
uses the model almost exclusively while only a portion of the
elites are evaluated with the expensive function and are used to
update the model. This mechanism has been integrated into a
hierarchical distributed algorithm. This idea has been expanded
such that each layer may use different solvers, within a memetic
framework employing a gradient based search. The Controlled
Evaluations (CE) framework has been proposed. This framework
monitors the model accuracy using cross-validation: a memory
structure containing the previously evaluated vectors is split
into two sets which are then used to train the approximation
model. In the context of expensive multi-objective optimization,
a memetic approach integrated fuzzy logic for alternating real
and approximated fitness evaluation has been proposed. Another
widely used option is a memetic approach employing the Trust
Region (TR), i.e., a portion of the decision space where the
approximation model can be reliably used. Memetic frameworks
combining an EA as a global search, where at each generation
every non-duplicated vector in the population is refined using
a TR, has been proposed. The authors proposed a TR memetic
framework which uses quadratic models and clustering. Zhou
et al. proposed a memetic framework which occasionally uses an
inaccurate model capable to detect proposing solutions. Lim at el.
have recently proposed a framework composed of an ensemble
of approximation models as well smoothing models. Other
approaches, namely model-adaptive frameworks, have been
proposed. Model-adaptive frameworks employ a set of candidate
models which are automatically selected by a supervising system.

Robust parameters of a system are those parameters which lie in
a region of the parameter hyperspace characterized by similar
system responses. In other words, if a robust parameter is slightly
perturbed, the system response only slightly varies. Robust
optimization is a field of optimization theory which aims to
detecting robust parameters. Reversely, if a parameter is not robust,
small parameter variations can result into large variation of the
system response. Very close solution, ideally identically can give
very different system response and thus in robust optimization,

Evolutionary Computing228

identical solutions can be characterized by very different fitness
values. In order to address these problems, in an algorithm for
robust optimization of digital filters where the uncertainty in
performance is due to material imperfections has been proposed.
The problem of optimizing a robust aircraft control system using
a memetic algorithms is studied. Still in the context of aircraft
design, a surrogated based approach, i.e., an approximation
model, for computationally expensive optimization problems is
proposed in. The robust control design of a control system for
an electric motor is proposed in by applying a surrogate assisted
model. Other examples of memetic robust design, regarding
multi-objective optimization, are given in. addressed the problem
of robust optimization when no a-priori information about the
distribution of uncertainties is known. The problem of robust
design in constrained multi-objective optimization is analyzed by
means of a MA. In the latter work, micro-populations act as local
search within the decision space. In a robust airline scheduling
problem where the goal was to obtain a fleet assignment which
accounts for flight re-timing and aircraft rerouting has been
proposed.

The noise in optimization is a typical condition which plagues
real-world applications and occurs every time measurements
concur to the fitness value computation. These measurements
can be physical instruments, or computational devices which
contain uncertainties, such as a Neural Network, see e.g.,. Some
examples of memetic frameworks addressing noisy landscapes
are given in the following. Kim and Abraham combine a bacteria
foraging algorithm with a real-coded evolutionary algorithm for
addressing a control engineering design problem. The noise is
handled by re-sampling and filtering. In MA based on differential
evolution where the scale factor was adjusted with a line search is
proposed and combined with an adaptive resampling technique.
The authors considered the noisy pattern recognition problem of
inexact graph matching, that is, determining whether two images
match when one is corrupted by noise. Ozcan and Mohan studied
the problem of matching an input image to one from an available
data set. The difficulty being that the input image may be partially

Memetic Algorithms 229

obscured, deformed and so on which results in a noisy optimization
problem. A resampling technique is integrated within a MA which
uses a self-organizing map (SOM) as a local search. The algorithm
was designed to solve the VRP with emphasis on noisy data. The
authors tackled the problem of training a neural network used for
controlling resource discovery in peer-to-peer (P2P) networks. In
order to face this kind of problem, a diversity based adaptation is
proposed.

Time-variance occurs when the fitness values of (at least some of)
the points depend on time. This situation can be visualized as a
landscape which is not stationary but moves over time, twisting
and changing shape. This fact obviously implies that the position
of the optima varies with time and thus, when the optima are
detected, the algorithm should be able to follow the basins of
attraction to find and locate them anew. It should be remarked that
while the three previous categories the uncertainties are due to an
erroneous estimation of the fitness value in a point, in time-variant
problems the actually fitness value of a solution varies over time.
In order to tackle this class of problems, a MA combining a binary
evolutionary framework with the variable local search (VLS)
operator to track optima in dynamic (time-variance) problems
has been proposed. A MA based on Particle Swarm Optimization
(PSO) for dynamic optimization problems has been proposed.
This modified PSO employs multiple techniques for handling the
time-dependence. Moser and Hendtlass combined the Extremal
Optimization algorithm (EO) and a deterministic local search. Due
to its structure, EO naturally adapts to changing environments and
thus is a promising background for this class of problems. Another
variant, employing the Hooke-Jeeves Algorithm. A MC approach
based on the scatter search framework for dynamic and highly
constrained problems. In the context of dynamic multiobjective
problems, a multi start system is achieved by accelerating the
convergence of the algorithm. This aim is pursued by means of
a modified gradient capable to predict the changes in the Pareto
set. Wang et al. proposed a MA for dynamic optimization which
used a binary representation where at each generation the elite

Evolutionary Computing230

was refined by a local search algorithm and added and updated
while the fitness landscape changes.

6.4 ALGORITHMIC EXTENSIONS OF MEMETIC
ALGORITHMS

Multiobjective problems are frequent in real-world applications.
Rather than having a single objective to be optimized, the solver
is faced with multiple, partially conflicting objectives. There is no
a priori single optimal solution, but rather a collection of optimal
solutions, providing different trade-offs among the objectives
considered. The notion of Pareto-dominance is essential: given
two solutions s, s ' ∈ solP (x), s is said to dominate s' if it is better
than s' in at least one of the objectives, and it is no worse in the
remaining ones. This clearly induces a partial order ≺P, since given
two solutions it may be the case that none of them dominates the
other. This collection of optimal solutions is termed the optimal
Pareto front, or the optimal non-dominated front.

Population-based search techniques, in particular evolutionary
algorithms (EAs), are naturally fit to deal with multiobjective
problems, due to the availability of a population of solutions which
can approach the optimal Pareto front from different directions.
MAs can obviously benefit from this corpus of knowledge.
However, MAs typically incorporate a local search mechanism,
and it has to be adapted to the multiobjective setting as well. This
can be done in different ways, which can be roughly classified
into two major classes: scalarizing approaches, and Pareto-based
approaches. The scalarizing approaches are based on the use of
some aggregation mechanism to combine the multiple objectives
into a single scalar value. This is usually done using a linear
combination of the objective values, with weights that are either
fixed (at random or otherwise) for the whole execution of the local
search procedure, or adapted as the local search progresses. As
to Pareto-based approaches, they consider the notion of Pareto-
dominance for deciding transitions among neighboring solutions,

Memetic Algorithms 231

typically coupled with the use of some measure of crowding to
spread the search.

A full-fledged multiobjective MA (MOMA) is obtained by
appropriately combining population-based and local search-based
components for multiobjective optimization. Again, the strategy
used in the local search mechanism can be used to classify most
MOMAs. Thus, two proposals due to Ishibuchi and Murata and
to Jaszkiewicz are based on the use of random scalarization each
time a local search is to be used. Alternatively, a single-objective
local search could be used to optimize individual objectives. Ad
hoc mating strategies based on the particular weights chosen
at each local search invocation (whereby the solutions to be
recombined are picked according to these weights) are used as
well. A related approach – including the on-line adjustment of
scalarizing weights– is followed by Guo et al. On the other hand,
a MA based on PAES (Pareto Archived Evolution Strategy) was
defined by Knowles and Corne. More recently, a MOMA based
on particle swarm optimization (PSO) has been defined by Liu
et al. In this algorithm, an archive of nondominated solutions is
maintained and randomly sampled to obtain reference points
for particles. A different approach is used by Schuetze et al. for
numerical-optimization problems. The continuous nature of
solution variables allows using their values for computing search
directions. This fact is exploited in their local search procedure
(HCS for Hill Climber with Sidestep) for directing the search
toward specific regions (e.g., along the Pareto front) when required.

6.4.1 Adaptive Memetic Algorithms

The fact that these were heuristics that ultimately relied on the
problem-knowledge available was stressed. This is not a particular
feature of MAs, but affects the field of metaheuristics as a whole.
Indeed, one of the keystones in practical metaheuristic problem-
solving is the necessity of customizing the solver for the problem
at hand. Therefore, it is not surprising that attempts to transfer a
part of this tuning effort to the metaheuristic technique itself have
been common. Such attempts can take place at different levels, or

Evolutionary Computing232

can affect different components of the algorithm. The first –and
more intuitive one– is the parametric level involving the numerical
values of parameters, such as the operator application rates.

A slightly more general approach –termed ‘meta-lamarckian
learning’ by Ong and Keane– takes place at the algorithmic level.
They consider a setting in which the MA has a collection of local
search operators available, and how the selection of the particular
operator(s) to be applied to a specific solution can be done on
the basis of past performance of the operator, or on the basis
of the similarity of the solution to previous successful cases of
operator application. Some analogies can also be drawn here with
hyperheuristics, a high-level heuristic that controls the application
of a set of low-level heuristics to solutions, using strategies ranging
from pure random to performance-based rules.

In general terms, the approaches mentioned before are based on
static, hard-wired mechanisms that the MA uses to react to the
environment. Hence, they can be regarded as adaptive, but not
as self-adaptive. The actual definition of the search mechanisms
can evolve during the search. This is a goal that has been pursued
for long in MAs. Back in the early days of the field, it was already
envisioned that future generations of MAs would work in at least
two levels and two time scales. During the short-time scale, a
set of agents would be searching in the search space associated
to the problem. The long-time scale would adapt the algorithms
associated with the agents. Here we encompass individual search
strategies, recombination operators, etc. A simple example of
this kind of self-adaptation can be found in the so-called multi-
memetic algorithms, in which each solution carries a gene that
indicates which local search has to be applied on it. This can be
a simple pointer to an existing local search operator, or even the
parametrization of a general local search template, with items
such as the neighborhood to use, acceptance criterion, etc. Going
beyond, a grammar can be defined to specify a more complex local
search operator. At an even higher level, this evolution of local
search operators can be made fully symbiotic, rather than merely
endosymbiotic. For this purpose, two co-evolving populations can

Memetic Algorithms 233

be considered: a population of solutions, and a population of local
search operators. These two populations co-operate by means of
an appropriate pairing mechanism, that associates solutions with
operators. The latter receive fitness in response on their ability to
improve solutions, thus providing a fully self-adaptive strategy
for exploring the search landscape.

6.4.2 Complete Memetic Algorithms

The combination of exact techniques with metaheuristics is
an increasingly popular approach. Focusing on local search
techniques, Dumitrescu and St¨uztle have provided a classification
of methods in which exact algorithms are used to strengthen
local search, i.e., to explore large neighborhoods, to solve exactly
some subproblems, to provide bounds and problem relaxations
to guide the search, etc. Some of these combinations can be
also found in the literature on population-based methods. For
example, exact techniques –such as branch-and-bound (BnB) or
dynamic programming among others– have been used to perform
recombination, and approaches in which exact techniques solved
some subproblems provided by EAs date back to 1995.

Puchinger and Raidl have provided a classification of this kind of
hybrid techniques in which algorithmic combinations are either
collaborative (sequential or intertwined execution of the combined
algorithms) or integrative (one technique works inside the other
one, as a subordinate). Some of the exact/metaheuristic hybrid
approaches defined before are clearly integrative –i.e., using an
exact technique to explore neighborhoods. Further examples are
the use of BnB in the decoding process of a genetic algorithm
(i.e., exact method within a metaheuristic technique), or the use
of evolutionary techniques for the strategic guidance of BnB
(metaheuristic approach within an exact method).

As to collaborative combinations, a sequential approach in which
the execution of a MA is followed by a branch-and-cut method can
be found in. Intertwined approaches are also popular. For example,
Denzinger and Offerman combine genetic algorithms and BnB

Evolutionary Computing234

within a parallel multi-agent system. These two algorithms also
cooperate in, the exact technique providing partial promising
solutions, and the metaheuristic returning improved bound.

6.5 DESIGN ISSUES

MAs are commonly implemented as EAs endowed with a local
search component, and therefore the theoretical corpus available
for the former can be used to guide some aspects of the design
process, e.g., the representation of solutions in terms of meaningful
information units.

The most MA-specific design decisions are those related to
the local search component, not just from the point of view of
parameterization (see below) but also with the actual inner
working of the component and its interplay with the remaining
operators. This latter issue is well exemplified in the work of
Merz and Freisleben on the TSP. They consider the use of the Lin-
Kernighan heuristic, a highly intensive local search procedure,
and note that the average distance between local optima is
similar to the average distance between a local optimum and the
global optimum. For this reason, they introduce a - operator that
generate offspring whose distance from the parents is the same
as the distance between the parents themselves. Such an operator
is likely to be less effective if a less powerful local improvement
method, e.g., 2-opt, was used, inducing a different distribution of
local optima.

Once a local search procedure is selected, an adequate
parameterization must be determined, i.e., how often it must
be applied, how to select the solutions that will undergo local
improvement, and how long must improvement epochs last.
These are delicate issues since there exists theoretical evidence
that an inadequate parameter setting can turn the algorithmic

Memetic Algorithms 235

solution from easily solvable to nonpolynomially solvable.
Regarding the probability of application of local search, its precise
values largely depends on the problem under consideration, and
its determination is in many cases an art. For this reason, adaptive
and self-adaptive mechanisms have been defined in order to let
the algorithm learn what the most appropriate setting is. The term
partial lamarckianism is used to denote these strategies where not
every individual is subject to local search.

As to the selection of individuals that will undergo local search,
most common options are random-selection, and fitness-based
selection, where only the best individuals are subject to local
improvement. For example, Nguyen et al. [56] consider an
approach in which the population is sorted and divided into n
levels (n being the number of local search applications), and one
individual per level is randomly selected. Note that such a strategy
can be readily deployed on a structured MA as defined by Moscato
et al., in which fitness-based layers are explicitly available.

6.6 APPLICATIONS OF MEMETIC ALGORITHMS

This overview is far from exhaustive since new applications
are being developed continuously. However, it is intended to
illustrate the practical impact of these optimization techniques. We
have organized references in five major areas: machine learning
and knowledge discovery (Table 2), traditional combinatorial
optimization (Table 3), planning, scheduling and timetabling
(Table 4), bioinformatics (Table 5), and electronics, engineering,
and telecommunications (Table 6). We have tried to be illustrative
rather than exhaustive, pointing out some selected references
from these well-known application areas.

Evolutionary Computing236

Table 2. Applications in machine learning and knowledge discovery

Table 3. Applications in combinatorial optimization

Table 4. Applications in planning, scheduling, timetabling, and manu-
facturing

Memetic Algorithms 237

Table 5. Applications in bioinformatics

Table 6. Applications in electronics, telecommunications and engineer-
ing

Evolutionary Computing238

Although these fields encompass the vast majority of applications
of MAs, it must be noted that success stories are not restricted to
these major fields. To cite an example, there are several applications
of MAs in economics, e.g., in portfolio optimization, risk analysis,
and labor-market delineation.

Memetic Algorithms 239

REFERENCES

1.	 Abbass, H. A., 2002. An evolutionary artificial neural networks
approach for breast cancer diagnosis. Artificial Intelligence in
Medicine 25 (3), 265–281.

2.	 Barkat Ullah, A. S. S. M., Sarker, R., Cornforth, D., Lokan, C.,
2009. AMA: A new approach for solving constrained real-
valued optimization problems. Soft Computing 13 (8–9), 741–
762.

3.	 Barkat Ullah, A. S. S. M., Sarker, R., Lokan, C., 2009. An agent-
based memetic algorithm (AMA) for nonlinear optimization
with equality constraints. In: CEC 2009. IEEE Press,
Trondheim, Norway, pp. 70– 77.

4.	 Basseur, M., 2006. Design of cooperative algorithms for
multi-objective optimization: application to the flow-shop
scheduling problem. 4OR: A Quarterly Journal of Operations
Research 4 (3), 255–258.

5.	 Berretta, R., Rodrigues, L. F., 2004. A memetic algorithm for
a multistage capacitated lot-sizing problem. International
Journal of Production Economics 87 (1), 67 – 81.

6.	 Boudia, M., Prins, C., 2009. A memetic algorithm with dynamic
population management for an integrated production-
distribution problem. European Journal of Operational
Research 195 (3), 703 – 715.

7.	 Brest, J., Mauˇcec, M. S., 2008. Population size reduction for
the differential evolution algorithm. Applied Intelligence 29
(3), 228–247.

8.	 Brest, J., Maucec, M. S., 2011. Self-adaptive differential
evolution algorithm using population size reduction and
three strategies. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 15 (11), 2157–2174.

9.	 Burke, E. K., De Causmaecker, P., De Maere, G., Mulder, J.,
Paelinck, M., Berghe, G. V., 2010. A multi-objective approach
for robust airline scheduling. Computers and Operations
Research 37, 822–832.

Evolutionary Computing240

10.	 Burke, E. K., Kendall, G., Soubeiga, E., 2003. A tabu search
hyperheuristic for timetabling and rostering. Journal of
Heuristics 9 (6), 451– 470.

11.	 Caponio, A., Cascella, G. L., Neri, F., Salvatore, N., Sumner,
M., 2007. A fast adaptive memetic algorithm for on-line and
off-line control design of pmsm drives. IEEE Transactions on
System Man and Cybernetics-part B, special issue on Memetic
Algorithms 37 (1), 28– 41.

12.	 Caponio, A., Neri, F., 2009. Integrating cross-dominance
adaptation in multi-objective memetic algorithms. In: C.-
K. Goh, Y.-S. Ong, K. T. (Ed.), Multi-Objective Memetic
Algorithms. Vol. 171 of Studies in Computational Intelligence.
Springer, pp. 325–351.

13.	 Caponio, A., Neri, F., Tirronen, V., 2009. Super-fit control
adaptation in memetic differential evolution frameworks.
Soft Computing-A Fusion of Foundations, Methodologies
and Applications 13 (8), 811–831.

14.	 Chakhlevitch, K., Cowling, P., 2008. Hyperheuristics: Recent
developments. In: Cotta, C., Sevaux, M., S¨orensen, K. (Eds.),
Adaptive and Multilevel Metaheuristics. Vol. 136 of Studies
in Computational Intelligence. Springer-Verlag, Berlin
Heidelberg, pp. 3–29.

15.	 Cotta, C., Troya, J., 2003. Embedding branch and bound within
evolutionary algorithms. Applied Intelligence 18(2), 137–153.

16.	 Cowling, P., Kendall, G., Soubeiga, E., 2000. A hyperheuristic
approach to scheduling a sales summit. In: Proceedings of
the Third International Conference on Practice and Theory
of Automated Timetabling. Vol. 2079 of Lecture Notes in
Computer Science. Springer, pp. 176–190.

17.	 Fran¸ca, P. M., Gupta, J. N. D., Mendes, A. S., Moscato, P.,
Veltnik, K. J., 2005. Evolutionary algorithms for scheduling a
flowshop manufacturing cell with sequence dependent family
setups. Computers and Industrial Engineering 48, 491–506.

INTRODUCTION

The central problem in applications of genetic algorithms is
that of constraints few approaches to the constraint problem
in genetic algorithms have previously been proposed. One of
these uses penalty functions as an adjustment to the optimized
objective function, other approaches use “decoders” or “repair”
algorithms, which avoid building an illegal individual, or repair
one, respectively. However, these approaches suffer from the
disadvantage of being tailored to the specific problem and are not
sufficiently general to handle a variety of problems.
It is also a theoretically challenging subject since a great deal of in-
tractable problems (NP-hard, NP-complete, etc.) are constrained.
The presence of constraints has the effect that not all possible com-
binations of variable values represent valid solutions to the prob-
lem at hand. Unfortunately, constraint handling is not straight-
forward in an EA, because the variation operators (mutation and

7
CONSTRAINT HANDLING

C
H

A
PT

ER

Evolutionary Computing242

recombination) are typically “blind” to constraints. That is, there
is no guarantee that even if the parents satisfy some constraints,
the offspring will satisfy them as well. Based on this classification
of constrained problems, we discuss what constraint handling
means from an EA perspective, and review the most commonly
applied EA techniques to treat constraints. Analyzing these tech-
niques, we identify a number of common features and arrive at
the conclusion that the presence of constraints is not harmful, but
rather helpful in that it provides extra information that EAs can
utilize.

7.1. CONSTRAINT HANDLING TECHNIQUES

The various existing techniques are available, for instance in. They
usually involve a distinction between the following classes:

•	 Elimination of infeasible individuals;
•	 Penalization of the objective function;
•	 Dominance concepts;
•	 Preservation of feasibility;
•	 Infeasible individuals repairing;
•	 Hybrid methods.

7.1.1. Elimination

This method, also called “death penalty method”, consists
in rejecting infeasible individuals. The most common way to
implement this strategy is to set their fitness equal to 0, which
prevents infeasible solutions to pass the selection step. This method
is very simply implemented, but encounters problems for harshly
constrained problems. In addition, its second weakness is that no
information is taken from the infeasible space, which could help
to guide the search towards the global optimum. Nevertheless,
this technique constitutes a first valid approach when no feature
allows to previously determine a specific problem-fitted method.

Constraint Handling 243

7.1.2. Penalty Functions

This second class is certainly the most popular one, because of its
understanding and implementation simplicity. The constrained
problem is transformed into an unconstrained one by introducing
the constraints in the objective function via penalty terms. Then,
it is possible to formulate this penalty term according to a wide
diversity of techniques. Firstly, it is of common knowledge that
the penalization will be more efficient if its expression is related to
the amount of constraint violation than to the violated constraint
number.

Let us consider the classical optimization problem formulation:

		 (1)

Then, with the unconstrained formulation including the penalty
term, the new criterion F to minimize can be generally written as
follows:

		 (2)

Most of time, the penalty is expressed under a quadratic form,
corresponding to β equal to 2. Equality constraints such as hk(x)
= 0 can be reformulated as |hk(x)| − e ≤ 0, where ε is a very small
value. Then, the Rj factor can be expressed in many ways, showing
various complexity and solution efficiency for the tackled problem.
General principles can however be stated in order to guide the
development of performing penalisation strategies.

The first one points out that, in most problems, the global optimum
is located on the feasible space boundary. So, on the one hand, if
the influence of the penalty factor is too important, the pressure
exerted to push the individuals inside the feasible space will be
too strong, preventing them from heading for more promising
regions. Furthermore, in case of disjointed feasible spaces, a too
high penalty factor can confine the population to one feasible
region without allowing individuals to cross infeasible zones and

Evolutionary Computing244

head for other feasible regions (where the global optimum could
be located). On the other hand, a too low penalty factor can lead to
an exhaustive search in the infeasible space, visiting regions where
the objective function is very low but that are strongly infeasible.

Figure. 1. Too weak penalty factor.

In addition, it is commonly admitted that the penalty term should
be preferentially pretty low at the beginning of the search, in order
to explore a wide region of the search space. At the end of the
run, promising regions should be determined yet. It is then more
relevant to have a high penalty term, to intensify the search on
these zones by forcing the individuals to satisfy the constraints.

According to these principles, a great variety of penalization
methods were implemented, some of them are recalled in. The
simplest is the static penalty: a numerical value that will not vary
during the whole search, is allocated to each factor Rj. Obviously,
the drawback is that as many parameters as existing constraints
have to be tuned without any known methodology. Normalizing
the constraints enables however to reduce the number of
parameters to be chosen from m to 1.

Constraint Handling 245

A modified static penalty technique is proposed in, in which
violation levels are set for each constraint. So considering l levels
in a problem with m constraints, it was shown that the method
needs the tuning of m(2l + 1) parameters.

Another proposal is a dynamic penalty strategy, for which Rj is
written as (C × t) a where t is the generation number. Here, two
parameters must be tuned, i.e. C and a. Common values are 0.5 and
2, respectively. Thus, this method enables to increase the pressure
on infeasible solutions along the search. A similar effect can be
obtained with a method presenting an analogy with Simulated
Annealing:

				 (3)

where τ is a decreasing temperature. It is necessary to determine
initial and final temperatures, τi and τf, as well as a cooling scheme
for τ. This technique has two special features. First, it involves a
difference between linear and non-linear constraints. Feasibility as
regard with the former is maintained by specific operators, so that
only the latter has to be included in the annealing penalty term.
In addition, the initial population is composed of clones of a same
feasible individual that respects linear constraints.

Different approaches, called adaptive penalties, are based on
learning from the population behavior in the generations. In, the
penalty factor decreases (resp. increases) if the best individual was
always feasible (resp. infeasible) during the k last generations.
For indeterminate cases, the factor value is kept unchanged. This
methodology imposes the tuning of the initial value for the penalty
factor and of the number of learning generation’s k.

New techniques now rest on self-adaptive penalty approaches,
which also learn from the current run, without any parameter
tuning. In, the constraints and the objective function are first
normalized. Then, the method consists in computing the penalty

Evolutionary Computing246

factor for constraint j at generation q as the product of the factor
at generation q − 1 with a coefficient depending on the ratio of
individuals violating constraint j at generation q. If this ratio is
fewer to 50%, then the coefficient is inferior to 1 in order to favor
individuals located in the infeasible side of the boundary. On the
contrary, if the feasible individual’s number is weak, the value
increases up to 1 to have the population heading for the inside part
of the feasible region. This operating mode enables to concentrate
the search on the boundary built by each constraint, i.e. where
the global optimum is likely to be located. The initial value is the
ratio of the interquartile range of the objective function by the
interquartile range of the considered constraint at first generation,
which implicitly carries out normalization. No parameter is thus
necessary in this method.

Another kind of self-adaptive penalty is proposed by Coello
Colleo, but this one is based on the principle of co-evolution.
In addition to the classical population P1 coding the tackled
problem, the method considers a population P2 representing two
penalty coefficients that enable to evaluate population P1 (w1 for
the amount of violation of all constraints and w2 for the number
of violated constraints). Thus, each individual of P1 is evaluated
as many times as there are individuals in P2. Then, P1 evolves
during a fixed number of generations and each individual of P2,
i.e. each set of two penalty factors is evaluated. This mechanism
is depicted in Figure 2. Basically, the evaluation is calculated as
the average of all objective functions of P1 evaluated by each
individual of P2. Then P2 evolves like in any GA process, given
that one generation for P2 is equivalent to a complete evolution of
P1. The evident drawback is the huge number of objective function
evaluations, making this method computationally expensive. In
addition, co-evolution involves the introduction and tuning of a
new GAs parameters set: population size, maximum generation
number, etc.

Constraint Handling 247

Figure 2. Self-adaptive penalty by co-evolution.

Finally, the technique proposed by Deb is half-way between
classical penalisation and dominance-based methods. Superiority
of feasible individuals on infeasible ones is expressed by the
following penalised criterion:

		 (4)
fmax is the worst objective function value of all feasible solutions in
the current population. The selection step is made out through a
tournament process, but it could have been a Goldberg’s roulette
wheel as well. Most individuals are infeasible at the beginning
of the search, hence the selection exerts a pressure exclusively
towards the feasible space until enough feasible solutions
are located. Without the stochastic effect of both tournament
or roulette wheel, the minimization of the objective function
would only occur when the feasible individual number exceeds
the survivor number. In spite of the random effect introduced,
efficient mutation procedures and sometimes niching methods are
necessary to maintain diversity in the population and to prevent
the search from being trapped in a local optimum.

Evolutionary Computing248

Let us recall that niching helps to avoid that two solutions
characterized by a close set of variables both survive. Metric
considerations (usually, the euclidean distance) help to estimate
how close an individual is from another one. In tournament
between two feasible individuals is authorized only if the distance
between them is lower than a constant threshold.

Among this profusion of techniques, some of the most classical
methods were tested and evaluated in for some benchmark
examples. Some methods are really adapted to particular problems,
but the authors finally chose the static penalty technique, which is
the simplest and the most generic one.

7.1.3. Dominance-Based Methods

This class of constraint handling techniques is based on principles
drawn from multi objective optimization and, in particular,
on the dominance concept. The first idea is thus to transform
a constrained mono-objective optimization problem into an
unconstrained multi objective problem, where each constraint
represents a new criterion to be minimized. Sorting procedures
based on the domination in the sense of Pareto (x dominates y if
and only if it is better than y for at least one criterion and as good
as y for the other ones) leads toward the ideal solution x*: gj(x*) ≤
0 for j = 1, ..., m and f(x*) ≤ f(y) for all feasible y.

These concepts are used again by Coello Coello in the framework
of mono-objective constrained optimization in order to state
particular dominance rules setting the superiority of feasible
solutions on infeasible ones:

1. 	 An infeasible solution is dominated by a feasible one;
2. 	 If both individuals are feasible, the one with the worst

objective function is dominated;
3. 	 If both individuals are infeasible, the one with greatest

constraint violation is dominated.

These rules are implemented in a tournament: it is to note that
this technique is finally exactly identical to Deb’s one, who just

Constraint Handling 249

formalizes the rules as a penalty term added in the objective
function.

Silva and Biscaia use a quite similar methodology for multi
objective optimization by setting additional domination rankings.
The constraints are normalized and four domination levels are
created and defined according to the range of constraint violation
amount. The union of the range of all levels is 1. Each individual
is classified in these levels according to its largest constraint
violation amount. Then, a positive integer is assigned to each
domination level and added as a penalty term to the normalized
objective functions. The selection is carried out through successive
Pareto sorting rounds, during which non-dominated individuals
are chosen until obtaining enough surviving individuals.

Thus, the two mentioned examples highlight how tenuous the
boundary is between this constraint handling mode and some
kinds of penalization techniques.

7.1.4. Other Techniques

The description of other techniques is merged because they are
usually applicable only with some assumptions, or even defined
exclusively for a particular problem. Firstly, in many cases, an
adapted encoding method may enable to handle some constraints.
A good is example is presented in, in which the number of 0-valued
and 1-valued bits are coded instead of the bits themselves.

Besides, methods preserving solutions feasibility are usually
based on specific crossover and mutation operators that are able
to build, from feasible individual(s), one or several individuals
that are feasible too. The GENOCOP algorithm provides a good
example for linear problems. Equality constraints are removed by
substitution of an equal number of variables, so that the feasible
space is then a convex set defined by linear inequalities. Due to
this property, genetic operators consisting of linear combinations
can ensure the feasibility of the created solutions. Maintaining
the feasibility can also be carried out through the use of decoders,

Evolutionary Computing250

i.e., instructions contained in the chromosome that state rules for
building a feasible solution.

Moreover, repairing infeasible chromosomes is a quite famous
method. Indeed, in many cases of combinatorial optimization, it
is easy to create rules that, starting from an infeasible individual,
enable to modify its structure to get a feasible one. In for instance,
repair procedures are implemented to act on individuals whose
chromosome, resulting from crossover or mutation, has no
physical meaning with regard to the used encoding method.
However, repair rules are always devoted to the particular case of
the studied problem and there is no existing heuristic for a general
perspective. The particularity of the repair methods is also the
possibility to replace in the population the infeasible individual
by its repaired version or, on the contrary, to use this version only
for the solution evaluation.

A generalized repair method proposed in involves the first order
development of the constraint violation vector V, according to
x, which represents a tiny variation in the optimization variables
x:

		 (5)
where matrix ∇xV is the constraint violation gradient according
to variables x. So, if the constraint violation amount is known
and by approximating numerically its gradient, it is theoretically
possible to determine the repair vector x for the considered
infeasible individual. Since ∇xV is usually not a square matrix,
pseudoinverse computations provide an approximate inverse that
can be used in (5). Despite its genericity ambition, it is predictable
that such a method will only be applicable in some cases for which
the functions and the nature of the involved variables are quite
favourable.

This last technique can also be classified in the hybrid methods, just
like the integration of Lagrange parameters in a penalty function,
or the application of concepts drawn from fuzzy logic, etc.

Constraint Handling 251

7.2. CURRENT CONSTRAINT-HANDLING
TECHNIQUES

Presents a set of recent constraint-handling techniques which
have had a relatively high impact in the area. The number of
approaches reviewed in this case is lower. This is due to the fact
that the differences among approaches are, in this case, more
focused on modifications to the elements of the NIA adopted,
and not on the constraint-handling technique itself. From the list
presented the first three and the seventh approach are all new
constraint-handling techniques, while the fourth and the fifth are
updated versions of constraint handling techniques previously
discussed? The use of multi-objective concepts is now considered
as a separate class due to its popularity in recent years. The
approaches considered here are:

1. 	 Feasibility rules
2. 	 Stochastic ranking
3. 	 ε-constrained method
4. 	 Novel penalty functions
5. 	 Novel special operators
6. 	 Multi-objective concepts
7. 	 Ensemble of constraint-handling techniques

7.2.1. Feasibility Rules

The three feasibility rules proposed for binary tournaments
constitute an example of a constraint-handling technique that
was proposed several years ago, but whose impact is still present.
The popularity of this simple constraint-handling scheme lies
on its ability to be coupled to a variety of algorithms, without
introducing new parameters. The importance of combining these
feasibility rules with other mechanisms (e.g., retaining infeasible
solutions which are close to the feasible region) in order to produce
a constraint-handling technique that is able to deal with problems
having active constraints. However, such approach required a

Evolutionary Computing252

dynamic decreasing mechanism for the tolerance value (ε) for
equality constraints.

Mezura-Montes extended these feasibility rules to the selection
process between target and trial vectors in differential evolution
(DE). Although the resulting approaches were easy to implement,
premature convergence was observed for some test problems and
two additional modifications to the search algorithm (DE in this
case) were required: (1) each target vector generated more than
one trial vector (a user-defined parameter was added for this
sake) and (2) a new DE variant was designed. Lampinen used a
similar DE-based approach in. However, the third criterion was
based on Pareto dominance in constraints space instead of the
sum of constraint violation. Lampinen’s approach was adopted
by Kukkonen and Lampinen in their Generalized Differential
Evolution (GDE) algorithm which showed promising results in
a set of 24 benchmark problems. However, GDE had difficulties
when facing more than three constraints. This seems to be the
same limitation faced when attempting to use Pareto dominance
in problems having four or more objective functions (the so-called
many-objective optimization problems).

Feasibility rules have also been used for designing parameter
control mechanisms in DE-based constrained numerical
optimization. However, if self-adaptation mechanisms are
incorporated as well, the computational cost of the approach may
considerably increase, since more iterations will be required to
collect enough information about the search as to make these self-
adaptation mechanisms work in a proper manner.

Zielinski and Laur coupled DE with the feasibility rules in a
greedy selection scheme between target and trial vectors. Their
approach, which is indeed very simple to implement, presented
some difficulties in high dimensionality problems with equality
constraints. They also analyzed, in a further work, different
termination conditions (e.g., improvement-based criteria,
movement-based criteria distribution-based criteria) for their
algorithm. They determined that the last criterion from the list
indicated before was the most competitive. Zielinski also used

Constraint Handling 253

the feasibility rules in a study to adapt two DE parameters (F and
CR) when solving CNOPs. They concluded that the adaptation
mechanism was not as significant as expected in the performance
of the algorithm. Furthermore, Zielinski and Laur studied the
effect of the tolerance utilized in the equality constraints, where
values between ǫ = 1 × 10−7 and ǫ = 1 × 10−15 allowed the algorithm,
coupled with the feasibility rules, to reach competitive results.

The feasibility rules have also been adopted by DE-based
approaches which use self-adaptive mechanisms to choose among
their variants, such as SaDE. In this approach, sequential quadratic
programming (SQP) is applied during some iterations to a subset
of solutions in the population. Although this approach is very
competitive, it heavily relies on the use of SQP, which may limit
its applicability.

Brest used the feasibility rules in his self-adaptive approach called
jDE-2, which also combines different DE variants into a single
approach to solve CNOPs. A replacement mechanism to keep
diversity in the population was implemented to eliminate those k
worst vectors at every l generations with new randomly-generated
vectors. This mechanism reflects the premature convergence that
the feasibility rules may cause in some test problems despite
providing competitive results in others mainly related with
inequality constraints.

Landa and Coello also adopted the feasibility rules in an approach
in which a cultural DE-based mechanism was developed, with the
aim of incorporating knowledge from the problem into the search
process when solving CNOPs. This approach adopts a belief
space with four types of knowledge generated and stored during
the search. Such knowledge is used to speed up convergence.
The approach was able to provide competitive results in a set of
benchmark problems. However, there are two main shortcomings
of the approach: (1) it requires the use of spatial data structures
for knowledge handling and (2) it also needs several parameters
which must be defined by the user. Furthermore, spacial data
structures are not trivial to implement.

Evolutionary Computing254

Menchaca-Mendez and Coello Coello proposed a hybrid
approach which combines DE and the Nelder-Mead method. The
authors extended a variant of the Nelder-Mead method called
Low Dimensional Simplex Evolution and used it to solve CNOPs.
The set of feasibility rules are used in this case to deal with the
constraints of the problems in both, the DE algorithm and the
m-simplex-operator. However, a fourth rule which considers a tie
between the sums of the constraint values, is also incorporated.
The objective function value is used in this case to break this tie.
This approach also adds some concepts from stochastic ranking.
The approach was tested in some benchmark problems and
the results obtained were highly competitive, while requiring a
lower number of fitness function evaluations than state-of-the-
art algorithms. However, the approach added a significant set of
parameters which must be fine-tuned by the user, such as those
related to the m-simplex-operator.

The use of feasibility rules coupled with a mechanism to force
infeasible individuals to move to the feasible region through
the application of search space reduction and diversity checking
mechanisms designed to avoid premature convergence. This
approach, which adopts an evolutionary agent system as its search
engine, requires several parameters to be defined by the user and
it was not compared against state-of-the-art NIAs to solve CNOPs.
However, in the test bed reported by the authors the results were
competitive.

The feasibility rules have been a popular constraint-handling
mechanism in PSO-based approaches, too. Zielinski and Laur
added feasibility rules into a local best PSO. The approach
presented premature convergence in test problems with a high
number of equality constraints due to the lack of a diversity
maintenance mechanism. In a similar approach, but focused on
mixed-variable optimization problems, Sun added feasibility
rules to a global-best PSO. This approach was tested only in two
engineering design problems.

He and Wang used feasibility rules to select the global best (gbest)
and for updating the personal best (p best) of each particle in

Constraint Handling 255

a PSO-based approach designed to solve CNOPs. They used
simulated annealing (SA) as a local search operator and applied
it to the gbest particle at each generation. The approach was
tested on a small set of benchmark problems as well as on a set of
engineering design problems. The usage of SA improved the PSO
performance. However, the main shortcoming of the approach is
that it requires several user-defined parameter for both the PSO
and the SA algorithms.

Toscano-Pulido and Coello Coello combined feasibility rules
with a global-best PSO but required a mutation operator to
avoid converging to local optimum solutions. This same problem
(premature convergence) was tackled by using two mutation
operators. Additionally, they also tackled this problem employing
different topologies in local-best PSO algorithms. The evident need
of a mutation operator showed that the feasibility rules combined
with PSO may cause premature convergence.

Cagnina tackled the premature convergence of PSO combined with
feasibility rules by using a global-local best PSO. However, the
use of a dynamic mutation operator was also required. The results
obtained by this approach showed evident signs of stagnation in
some test problems. In a further version of this approach, a bi-
population scheme and a “shake” operator were added.

In feasibility rules were used as a constraint-handling mechanism
in an empirical study aimed to determine which PSO variant was
the most competitive when solving CNOPs. The authors found
that the version adopting a constriction factor performed better
than the (popular) version that uses inertia weight. Furthermore,
local-best was found to be better than global-best PSO.

The use of feasibility rules motivated the definition of the relative
feasibility degree in which is a measure of constraint violation
in pairwise comparisons. The aim of this work was to compare
pairs of solutions but with a feasibility value based only on the
values of their constraints and on the ratio of the feasible region
of a given constraint with respect to the entire feasible region of
the search space. The approach was coupled to DE and tested in

Evolutionary Computing256

some benchmark problems. The convergence rate was better with
respect to the original feasibility rules but the final results were
not considerable better with respect to those obtained by other
state-of-art algorithms.

Karaboga and Basturk and Karaboga and Akay changed a greedy
selection based only on the objective function values by the use of
feasibility rules with the aim of adapting an artificial bee colony
algorithm (ABC) to solve CNOPs. The authors also modified
the probability assignment for their roulette wheel selection
employed to focus the search on the most promising solutions. The
approach was tested on a well-known set of 13 test problems and
the results obtained were comparable with those obtained by the
homomorphous maps stochastic ranking and other approaches
based on penalty functions. However, the approach modified one
ABC operator adding a new parameter to be fine-tuned by the
user.

Mezura-Montes and Cetina-Dom´ıngez extended Karabogas’
approach by using feasibility rules as a constraint-handling
technique but with a special operator designed to locate solutions
close to the best feasible solution. This approach was tested on 13
test problems and the results that they obtained were shown to be
better than those reported by Karaboga and Basturk. However, this
approach added extra parameters related to the tolerance used to
handle equality constraints. An improved version was proposed
in where two operators were improved and a direct-search local
operator was added to the algorithm. The approach provided
competitive results in a set of eighteen scalable test problems but
its main disadvantage was the definition of the schedule to apply
the local search method.

The Bacterial Foraging Optimization Algorithm to solve CNOPs.
The feasibility rules were used in the greedy selection mechanism
within the chemotactic loop, which considers the generation of
a new solution (swim) based on the random search direction
(tumble). This approach, called Modified Bacterial Foraging
Optimization Algorithm (MBFOA), considered a swarming
mechanism that uses the best solution in the population as an

Constraint Handling 257

attractor for the other solutions. The approach was used to solve
engineering design problems.

Mezura-Montes used feasibility rules as a constraint-handling
mechanism in an in-depth empirical study of the use of DE as
an optimizer in constrained search spaces. A set of well-known
test problems and performance measures were used to analyze
the behavior of different DE variants and their sensitivity to
two user-defined parameters. From such analysis, the simple
combination of two of them (DE/rand/1/bin and DE/best/1/bin)
called Differential Evolution Combined Variants (DECV) was
proposed by the authors. This approach is able to switch from
one variant to the other based on a certain percentage of feasible
solutions present in the population. The results obtained in a set of
24 test problems were competitive with respect to state-of-the-art
algorithms. However, the performance of this approach strongly
depends on the percentage used to perform the switch from one
variant to the other and this value is problem-dependent.

Elsayed proposed two multi-operator NIAs to solve CNOPs. A
four sub-populations scheme is handled by one of two options:
(1) a static approach where each sub-population with a fixed size
evolves by using a particular crossover and mutation operator
and, at some periods of time, the sub-populations migrate the best
solutions that they had found to another sub-population, and (2)
an adaptive approach in which the size of each subpopulation
varies based on the feasibility of the best solution in the population
in two contiguous generations. This approach was tested in two
versions: with a real-coded GA using four crossover-mutation
combinations and also with DE adopting four DE mutation
variants, all of them with binomial crossover. The latter version
outperformed the former after being extensively tested in 60
benchmark problems. The approach requires the definition of
some additional parameters related to the minimum size that a
sub-population can have, as well as to the generational interval for
migrating solutions among sub-populations.

Elsayed proposed a modified GA where a novel crossover operator
called multi-parent crossover and also a randomized operator

Evolutionary Computing258

were added to a real-coded GA to solve CNOPs. The feasibility
rules were adopted as the constraint-handling mechanism. The
approach was tested on a set of eighteen recently proposed test
problems in 10D and 30D show in very competitive results.
However, some disadvantages were found in separable test
problems with a high dimensionality. The approach provided
better results with respect to other approaches based on DE and
PSO.

Elsayed compared ten different GA variants to solve CNOPs by
using, in all cases, the feasibility rules as the constraint-handling
technique. The crossover operators employed were triangular
crossover, Simulated binary crossover, parent-centric crossover,
simplex crossover, and blend crossover. The mutation operators
adopted were non-uniform mutation and polynomial crossover.
Statistical tests were applied to the samples of runs to provide
confidence on the performances showed. An interesting conclusion
of the comparison was that no GA was clearly superior with
respect to the others GAs compared. Nonetheless, non-uniform
mutation and polynomial mutation provided competitive results
in 10D and 30D test problems.

Hamza proposed a DE algorithm to solve CNOPs where the
feasibility rules were used as the constraint-hanlding mechanism
and the population was divided in feasible and infeasible vectors.
A constraint-concensus operator was applied to infeasible vectors
so as to become them feasible. Even the approach showed
competitive results in a set of tirtheen well-known test problems,
the constraint-concensus operator requires gradient calculations,
which were made by numerical methods.

In an interesting adaptation of the feasibility rules combined
with the idea of focusing first on decreasing the sum of constraint
violation, Tvrd´ık and Pol´akov´a adapted DE to solve CNOPs. If
feasible solutions were present in the population, in a single cycle
of the algorithm two generations were carried out, the first one
based only on the sum of constraint violation and the second one
based on the feasibility rules with a simple modification on the
third rule, where between two infeasible solutions the one with

Constraint Handling 259

the lowest sum of constraint violation was preferred if it also had
a better value of the objective function. The approach was tested
on eighteen scalable test problems in 10D and 30D. Even some
competitive results were obtained, premature convergence was
generally observed in the approach because the isolated usage of
the sum of constraint violation kept the algorithm for sampling,
in a more convenient way, the feasible region of the search space.

The feasibility rules were used in a real-coded GA with simulated
binary crossover and adaptive polynomial mutation. A special
operator based on gradient information was employed to favor the
generation of feasible solutions in presence of equality constraints.
Even the results improved by the approach in such test problems,
the parameter which mainly controls the special operator required
a careful fine-tuning based on the difficulty of the test problem.

The feasibility rules were added by Tseng and Chen to the multiple
trajectory search (MTS) algorithm to solve CNOPs. Those rules
worked as the criteria to choose solutions in three region searches
which allowed MTS to generate new solutions. The approach was
able to provide feasible solutions in most of eighteen scalable test
problems. However, it presented premature convergence.

Wang implicitly used feasibility rules to rank the particles in a
hybrid multi-swarm PSO (HMPSO). They took inspiration from
two (1) the way Liang and Suganthan constructed sub-swarms
to promote more exploration of the search space and (2) the way
Mu˜noz-Zavala used a differential mutation operator to update
the local-best particle. The results agree with those found by
Mezura-Montes and Flores-Mendoza, in which local-best PSO
performs better than global-best PSO when solving CNOPs. The
main shortcoming of the approach relies in its implementation
due to the mechanisms added to PSO.

HMPSO was improved by Lui where the DE mutation operator was
extended by using two other operators. The number of evaluations
required by the improved approach, which was called PSO-DE,
decreased with respect to those required by HMPSO in almost
50%. This approach was validated using some engineering design

Evolutionary Computing260

problems but was not further tested on benchmark problems with
higher dimensionalities.

The use of feasibility rules has been particularly popular in
approaches based on artificial immune systems (AISs). The first
attempts to solve CNOPs with an AIS were based on hybrid GA-
AIS approaches, in which the constraint-handling technique
was the main task performed by the AIS embedded within a
GA. The AIS was evolved with the aim of making an infeasible
solution (the antibody) as similar as possible (at a binary string
level) as a feasible solution used as a reference (the antigen). After
increasing the number of feasible solutions in the population,
the outer GA continued with the optimization process. The main
advantage of this technique is its simplicity. In further AIS-based
approaches in which the clonal selection principle was adopted
feasibility rules were incorporated as a way to rank antibodies
(i.e., solutions) based on their affinity (objective function values
and sum of constraint violation). In another approach based on a
T-cell model, in which three types of cells (solutions) are adopted
the replacement mechanism uses feasibility rules as the criteria to
select the survivors for the next iteration.

Liu proposed the organizational evolutionary algorithm (OEA)
to solve numerical optimization problems. When extending this
approach to constrained problems, a static penalty function and
feasibility rules are compared as constraint-handling techniques.
As expected, the static penalty function required specific values
for each test problem solved. Although the use of the static penalty
function allowed OEA to provide slightly better results than the
use of feasibility rules, such results were only comparable with
respect to state-of-the-art algorithms used to solve CNOPs.

Sun and Garibaldi proposed a memetic algorithm to solve
CNOPs. In this approach, the search engine is an estimation of
distribution algorithm (EDA) while the local search operator is
based on SQP. Some knowledge, called history, is extracted from
the application of the local search and is given to the EDA with
the aim of improving its performance. This knowledge consists in
the application of a variation operator which uses the location of

Constraint Handling 261

the best solution found so far to influence the generation of new
solutions. Feasibility rules are used as the constraint-handling
mechanism in the selection process. In fact, a comparison against
a version of this approach but using stochastic ranking as the
mechanism to deal with the constraints showed that the feasibility
rules were more suitable for this approach. The approach provided
competitive results with respect to state-of-the-art algorithms.
However, the local search adopted requires gradient information.

Adopted feasibility rules in their agent-based memetic algorithm
to solve CNOPs. This approach is similar to a GA, and adopts
the SBX operator to generate offspring which are subjected to
a learning process that lasts up to four life spans. This actually
works as a mutation operator whose use is based on a proper
selection being made by each individual (agent). The measures
used to select an operator are based on the success of each of them
to generate competitive offspring. The communication among
agents in the population is restricted to the current population.
This approach seems to be sensitive to the value of the parameter
associated with the communication mechanism. The results
obtained were comparable with previously proposed approaches.

The biogeography based optimization (BBO) algorithm. The idea
is to add a migration operator inspired on the blend crossover
operator used in real-coded GAs. BBO is inspired on the study
of distributions of species over time and space and it adopts two
variation operators: migration (or emigration) and mutation.
A habitat (solution) has a habitat suitability index, HSI (i.e., the
fitness function). High-HSI solutions have a higher probability
to share their features with low-HSI solutions by emigrating
features to other habitats. Low-HSI solutions accept a lot of
new features from high-HSI solutions by immigration from
other habitats. Feasibility rules are used in this approach as the
constraint-handling mechanism. The approach was found to be
competitive with respect to PSO-based approaches and one GA-
based algorithm. However, no further comparisons against state-
of-the-art were reported.

Evolutionary Computing262

Ali and Kajee-Bagdadi compared feasibility rules with respect to
the superiority of feasible points proposed by Powell and Skolnick
in a DEbased approach, in which a modified version of the pattern
search method was used as a local search operator. They also
compared their approach with respect to another based on a GA
and found the former to be more competitive. The proposed DE-
based approach presented a comparable performance with respect
to other DE-based algorithms.

7.2.2. Stochastic Ranking

Stochastic ranking (SR) was originally proposed by Runarsson and
Yao. SR was designed to deal with the inherent shortcomings of a
penalty function (over and under penalization due to unsuitable
values for the penalty factors). In SR, instead of the definition
of those factors, a user-defined parameter called Pf controls the
criterion used for comparison of infeasible solutions: (1) based
on their sum of constraint violation or (2) based only on their
objective function value. SR uses a bubble-sort-like process to rank
the solutions in the population as shown in Figure 3.

Figure 3. Stochastic Ranking sort algorithm. I is an individual of the
population. φ(Ij) is the sum of constraint violation of individual Ij . f(Ij)
is the objective function value of individual Ij.

Constraint Handling 263

SR was originally proposed to work with an ES in its replacement
mechanism which indeed requires a ranking process. However, it
has been used with other NIAs where the replacement mechanism
is quite different as in the approach reported by Zhang. In this
case, the authors used SR with a DE variant proposed by Mezura-
Montes in which more than one trial vector is generated per each
target vector. Moreover, the parameter Pf was manipulated by a
dynamic parameter control mechanism in order to conveniently
decrease it, aiming to favor diversity during the initial generations
of the search (infeasible solutions close to the feasible region are
maintained) whereas only feasible solutions are kept during the
final part of the search. The approach was compared against
state-of-the-art algorithms and the results obtained were very
competitive while requiring a low number of fitness function
evaluations. However, the main disadvantage of this approach
is that it requires the definition of the number of trial vectors
generated by each target vector.

7.2.3. ε-constrained Method

One of the most recent constraint-handling techniques reported
in the specialized is the ε-constrained method proposed. This
mechanism transforms a CNOP into an unconstrained numerical
optimization problem and it has two main components: (1) a
relaxation of the limit to consider a solution as feasible, based on
its sum of constraint violation, with the aim of using its objective
function value as a comparison criterion, and (2) a lexicographical
ordering mechanism in which the minimization of the sum of
constraint violation precedes the minimization of the objective
function of a given problem. The value of ε, satisfying ε > 0,
determines the so-called ε-level comparisons between a pair of
solutions and with objective function values
and sums of constraint violation as indicated in
Equations (6) and (7).

Evolutionary Computing264

		 (6)

	 (7)
As can be seen, if both solutions in the pairwise comparison
are feasible, slightly infeasible (as determined by the ε value) or
even if they have the same sum of constraint violation, they are
compared using their objective function values. If both solutions
are infeasible, they are compared based on their sum of constraint
violation. Therefore, if ε = ∞, the ε-level comparison works
by using only the objective function values as the comparison
criteria. On the other hand, if ε = 0, then the ε-level comparisons<0
and are equivalent to a lexicographical ordering in which the
minimization of the sum of constraint violation precedes the
minimization of the objective function , as promoted by the use
of feasibility rules.

Takahama and Sakai have an earlier approach called the
α-constrained method. In this case, the authors perform
α-level comparisons which work in a similar way as those of
the ε-constrained method. However, unlike the ε value which
represents a tolerance related to the sum of constraint violation,
the α value is related to the satisfaction level of the constraints
for a given solution. Therefore, the condition to consider the
objective function as a criterion in a pairwise comparison is
based on the aforementioned satisfaction level of both solutions.
If both levels are higher than a 0 ≤ α ≤ 1 value, the comparison
can be made by using the objective function value, regardless
of the full feasibility of the solutions. The main drawback of the
α-constrained method with respect to the ε-constrained method
is that the first may require user-defined parameters to compute
the satisfaction level while the second uses the sum of constraint
violation which requires no additional parameters. Nonetheless,
in both mechanisms, the careful fine-tuning of α and ε remains
as the main shortcoming. The authors have proposed dynamic

Constraint Handling 265

mechanisms which have allowed these two algorithms to provide
competitive results.

The α-constrained method was coupled to a GA in while the use
of the Nelder-Mead method was reported by the same authors.
The results obtained by using multiple simplexes allowed the
approach to obtain competitive results with respect to those found
by SR. Wang and Li adopted the α-constrained method in using DE
as their search engine, and improved the results reported in. Also,
the ε-constrained method was combined with a hybrid PSO-GA
algorithm. The approach considered the reproduction for particles
as in a GA with the goal to tackle the premature convergence
observed in a version in which the α-constrained method was
coupled only to PSO. The hybrid approach was tested only in one
benchmark function and two engineering design problems.

A successful attempt to find a more suitable search algorithm for
the εconstrained method was reported in where a DE variant (DE/
rand/1/- exp) and a gradient-based mutation operator (acting as
a local search engine) were employed. This version obtained the
best overall results in a competition on constrained real-parameter
optimization in 2006, in which a set of 24 test problems were
solved. Gradient-based mutation was applied to newly infeasible
generated trial vectors in order to make them feasible. Evidently,
the main limitation of this sort of approach is that gradient
information must be computed. Also, additional parameters
must be fine-tuned by the user in this approach. Finally, it is
worth remarking that there seem to be no studies that analyze
the role of adopting gradient-based information in an EA used for
constrained optimization.

Further improvements have been proposed to the ε-constrained
method. In improved the dynamic control for the ε value by
using an adaptive approach which allowed a faster decrease in
its value if the sum of constraint violation was reduced quickly
enough during the search process. This mechanism produced
improved results when dealing with CNOPs having equality
constraints. However, in this case, there is also an additional user-
defined parameter, which is related to the adaptation process.

Evolutionary Computing266

Additionally, the authors did not analyze the performance of this
variant in CNOPs that have only inequality constraints.

In Takahama and Sakai improved their approach by adding a de
creasing probability on the use of the gradient-based mutation.
They also introduced two new mechanisms to deal with boundary
constraints: (1) one based on a reflecting back process for variable
values lying outside the valid limits when DE mutation was
applied, and (2) another one that consisted in assigning the limit
value to a variable lying outside a boundary when the gradient-
based mutation was computed. With the aforementioned changes,
the authors could obtain feasible solutions for one highly difficult
problem known as g22. The main drawback of this improved
version was the addition of user-defined parameters for the
dynamic mechanism used by the gradient-based mutation operator.
A further improved version of the aforementioned algorithm was
proposed by Takahama and Sakai in where an archive to store
solutions and the ability of a vector to generate more than one trial
vector were added. The approach has provided one of the most
(if not the most) competitive performance in different sets of test
problems. However, the algorithm still depends on the gradient-
based mutation to provide such competitive results.

Motivated by its competitive performance, the ε-constrained
method has been adopted as a constraint-handling technique in
other proposals. This is the case of the jDE algorithm proposed by
Brest in which the authors propose to self-adapat the parameters
of DE using stochastic values. In a version called ε-jDE the
ε-constrained method was one of the improvements proposed,
besides the use of additional DE variants and a reduction scheme
of the population size. Brest also added a novel way to adapt the
ε value, but additional user-defined parameters were introduced.
However, the results obtained by ε-jDE were highly competitive in
a set of 24 well-known benchmark problems. An improved version
called jDEsoco was proposed in where an ageing mechanism to
replace those solutions stagnated in a local optimum was added.
Moreover, only the 60% of the population was compared by the
ε-constrained method and the remaining 40% was compared by

Constraint Handling 267

only using the objective function value. The results were improved
but two parameters, the population ratio and an ageing probability
were added to the algorithm.

Zeng employed the ε-constrained method with a ε variation process
based on the dynamic decrease mechanism originally proposed. A
crossover operator biased by the barycenter of the parents, plus a
uniform mutation were used as variation operators. The approach
was tested in 24 test problems and the results were found to be
competitive with respect to the ε-constrained DE. An improved
version of this approach was proposed by Zhang where a gradient-
based mutation similar to the one proposed by Takahama and
Sakai was added. The results obtained by this approach were
compared with respect to those obtained by the ε-constrained DE.
The approach added parameters related with the variation of the
ε value as well as those required by the gradient-based mutation.

The ε-constrained method within the ABC algorithm. Additionally,
a dynamic mechanism to decrease the tolerance for equality
constraints was considered. The results obtained outperformed
those reported by a ABC version in which feasibility rules
were used as the constraint-handling technique. However, this
approach showed premature convergence in some test problems
having high dimensionality.

7.2.4. Novel Penalty Functions

In spite of the fact that the two types of constraint-handling
techniques discussed avoid the use of a penalty function, there
are proposals based on such penalty functions which provide
very competitive results. Here, we will briefly review the most
representative work in this direction.

Xiao used the so-called KS function in a static penalty function to
solve CNOPs. However, even when the approach was competitive
in some test problems, it was clearly outperformed in others.

Deb and Datta revisited the static penalty function by proposing
a method to compute a suitable value for a single penalty factor,

Evolutionary Computing268

assuming the normalization of the constraints. As a first step a bi-
objective problem was solved by a multi-objective evolutionary
algorithm (MOEA). The first objective was the original objective
function while the second was the sum of constraint violation
φ = 0. Furthermore, φ was restricted by a tolerance value (in a
similar way as the ε-constrained method but with a fixed value in
this case). The tolerance value was determined by a userdefined
parameter based on the number of constraints of the problem.
After a certain number of generations (also defined by the user),
a cubic curve to approximate the current obtained Pareto front
was generated by using four points whose φ values were a small
tolerance. The penalty factor was then defined by calculating
the corresponding slope at φ = 0. After that, a traditional static
penalty function was used to solve the original CNOP by using
a local search algorithm (Matlab’s fmincon() procedure was used
by the authors) using the solution with the lowest φ value from
the population of the MOEA as the starting point for the search.
The termination criterion for the local search algorithm was the
feasibility of the final solution combined with a small tolerance
for the difference between objective function values of the starting
point and the final one. The approach was tested on a set of six
benchmark problems in which it obtained competitive results,
while requiring a significant lower number of evaluations with
respect to those reported by other state-of-the-art NIAs. The
approach, however, requires the calibration of the MOEA as
well as a tolerance value for the constraint related to the sum of
constraint violation. Additionally, it also requires the number of
generations to define the interval of use for the local search and,
finally, the tolerance for the termination criterion of the local
search. It is worth noting that this approach considered only
inequality constraints. In Datta and Deb extended their approach
to deal with equality constraints, too. The extension consisted in
two main changes: (1) the punishment provided by the penalty
value obtained by the bi-objective problem was increased if the
local search failed to generate a feasible solution and (2) the
small tolerance used for choosing the four points employed to
approximate the cubic curve was relaxed. Both changes were
motivated by the difficulties to generate feasible solutions caused

Constraint Handling 269

by the presence of equality constraints. The results obtained in
eight well-known test problems were highly competitive with
respect to two state-of-the-art approaches based on PSO and DE.

Tasgetiren and Suganthan proposed the use of a dynamic penalty
function coupled with a multi-population differential evolution
algorithm. In this approach, the authors allowed a user-defined
number of sub-populations to evolve independently. However,
the selection of the solutions to compute the differential mutation
could be made by considering all sub-populations. Furthermore,
a regrouping process, similar to a recombination operator among
best solutions in each sub-population, was carried out after a
number of generations, defined by the user. The approach was
tested on 24 test problems, and the authors reported a high
sensitivity of their approach to the parameters related with the
severity of the penalty.

Farmani and Wright proposed a two-parts adaptive penalty
function in which no penalty factors need to be defined by the
user. The first part increases the fitness of the infeasible solutions
with a better value of the objective function with respect to the
best solution in the current population. The best solution can
be the feasible solution with the best objective function value.
However, if no feasible solutions are present in the population,
the best solution is the infeasible solution with the lowest sum
of constraint violation. This first part of the penalization focuses
on promoting diversity in promising regions of the search space,
regardless of their feasibility. The second part modifies the fitness
values of the worst infeasible solutions (those with the highest
sum of constraint violation and a poor objective function value)
aiming to make them similar to the fitness of the solution with the
worst value of the objective function. The aim is to generate more
solutions in the boundaries of the feasible region but with better
values of the objective function. In spite of its lack of user-defined
penalty factors, the approach was computationally expensive,
since it required more than one million evaluations to provide
competitive results in a set of 11 test problems.

Evolutionary Computing270

Puzzi and Carpinteri explored a dynamic penalty function based
on multiplications instead of summations in a GA-based approach.
However, this approach performed well in problems having only
inequality constraints.

Tessema and Yen used the number of feasible solutions in the
current population to determine the penalty value assigned
to infeasible solutions in a two-penalty based approach. This
parameterless penalty function allows, based on the feasibility of
solutions in the population, to favor slightly infeasible solutions
having a good objective function value, as promoted. This is
done in the selection process by assigning such solutions a higher
fitness value. The approach obtained competitive results in 22 test
problems. However, the number of evaluations required was higher
(500, 000) than that required by other state-of-the-art approaches
(they require around 250, 000 evaluations). Furthermore, three
mutations operators (which require three mutation probabilities
defined by the user) are required to maintain the explorative
capabilities of the approach.

Mani and Patvardhan explored the use of an adaptive penalty
function in a two-population-GA-like-based approach in which
the first population evolves by using a parameter-free adaptive
penalty function based on the objective function and the constraint
violation of the best solution available so far in the population.
The other population evolves based on feasibility rules. Then,
both populations exchange their best solutions plus an additional
percentage of randomly chosen solutions. The approach was
tested on a set of test problems. However, the approach required
parameters related to the migration process as well as the variation
operators, as well as a local search mechanism based on gradient
information.

In an analogous way as Coello used co-evolution to optimize
penalty factors to solve CNOPs by using two-nested GAs, He
used two PSO algorithms instead. Their approach was used to
solve a set of engineering design problems and the results were
encouraging. However, as in the approach using GAs, this one

Constraint Handling 271

requires the definition of parameter values for the two PSO
algorithms.

Wu proposed an AIS which combines the metaphor of clonal
selection with idiotypic network theories. To deal with CNOPs,
an adaptive penalty function was defined to assign its affinity to
each antibody. Different operators based on the clonal selection
principle, affinity maturation and the bone marrow operator
were applied to generate new solutions. The approach was tested
on four benchmark nonlinear programming problems and four
generalized polynomial programming (GPP) problems.

7.2.5. Novel special operators

Leguizam´on and Coello Coello proposed a boundary operator
based on conducting a binary search between a feasible and an
infeasible solution. Furthermore, three strategies to select which
constraint (if more than one is present in a CNOP) is analyzed.
The search algorithm was an ACO variant for continuous search
spaces. The approach provided highly competitive results, mostly,
as expected, in problems having active constraints. However, it was
outperformed in others. The main disadvantage of the approach is
the need of an additional constraint-handling technique (a penalty
function was used in this case) to deal with solutions which are on
the boundary of the constraint treated but violate other constraints.
Furthermore, no other search algorithms which are more popular
in the solution of CNOPs (e.g., DE, ES) have been coupled to this
proposed boundary operator.

Huang proposed a boundary operator in a two-population
approach. The first population evolves by using DE as the search
engine, based only on the objective function value (regardless of
feasibility). The second population stores only feasible solutions
and the boundary operator uses solutions from both populations
to generate new solutions, through the application of the bisection
method in the boundaries of the feasible region. Furthermore, the
Nelder-Mead simplex method was used as a local search operator
applied to the best feasible solutions. Unlike Leguizam´on and

Evolutionary Computing272

Coello’s proposal, this approach does not require an additional
constraint-handling technique, but a feasible solutions is needed
at the beginning of the process. The approach was tested only in
a few problems having only inequality constraints and it required
different parameter values for each test problem, showing some
sensitivity to them.

The Constraint Quadratic Approximation (CQA), which is a
special operator designed to restrict an evolutionary algorithm
(a GA in this case) to sample solutions inside an object with the
same dimensions of the feasible region of the search space. This is
achieved by a second-order approximation of the objective function
and an equality constraint, which is updated at each generation.
A subset of solutions from the population was used to build the
quadratic approximations. The operator was applied based on
a number of generations defined by the user. Moreover, a static
penalty function was used to guide the GA search and the equality
constraint was transformed into two inequality constraints by
using a small ǫ tolerance. The approach was tested on a small set
of problems but it could only deal with one quadratic equality
constraint. With the aim of solving CNOPs with more than one
equality constraint, Peconick proposed the Constraint Quadratic
Approximation for Multiple Equality Constraints (CQA-MEC).
This was achieved by an iterative projection algorithm which
is able to find points satisfying the approximated quadratic
constraints with a low computational overhead. However, CQA-
MEC still requires the static penalty function to work as its
predecessor (CQA). Araujo extended the approaches to deal with
multiple inequality constraints by using an special operator in
which the locally convex inequality constraints are approximated
by quadratic functions, while the locally non-convex inequality
constraints are approximated by linear functions. The dependence
of the static penalty function remains in this last approach.

Ullah proposed an agent-based memetic algorithm to solve CNOPs,
in which the authors adopt a special local operator for equality
constraints, which is one of five life span learning processes. After
a selection process in which pairs of agents (i.e., solutions) are

Constraint Handling 273

chosen based on their fitness and location in the search space, the
SBX operator is applied. Thereafter, the special operator for equality
constraints is applied to some individuals in the population as
follows: the satisfaction of a randomly chosen equality constraint
is verified for a given solution. If it is not satisfied, a decision
variable, also chosen at random, is updated with the aim to satisfy
it. If the constraint is indeed satisfied, two other variables are
satisfied in such a way that the constraint is still satisfied (i.e., the
constraint is sampled). This special operator is only applied during
the early stages of the search because it reduces the diversity in the
population. These processes are applied based on their success.
The approach was tested on a set of benchmark problems with
equality constraints and the results were promising. However,
the approach requires additional parameters to be defined by the
user (e.g., the number of generations during which the operator
must be applied, the number of decision variables to be updated
in the equality constraint). In fact, the authors do not provide any
guidelines regarding the way in which these parameters must be
tuned.

Lu and Chen proposed an approach called self-adaptive velocity
particle swarm optimization (SAVPSO) to solve CNOPs. This
approach relies on an analysis based on three elements: (1) the
position of the feasible region with respect to the whole search
space, (2) the connectivity and the shape of the feasible region,
and (3) the ratio of the feasible region with respect to the search
space. As a result of this analysis, the velocity update formula
was modified in such a way that each particle has the ability to
selfadjust its velocity according to the aforementioned features of
the feasible region. The fitness of a solution is assigned based on
its feasibility: feasible solutions are evaluated by their objective
function value, while infeasible solutions are evaluated by their
sum of constraint violation. The approach was tested on a set of
13 benchmark problems. The approach, however, showed some
sensitivity to some of its parameters.

Spadoni and Stefanini transformed a CNOP into an unconstrained
search problem by sampling feasible directions instead of

Evolutionary Computing274

solutions of a CNOP. Thereafter, three special operators, related
to feasible directions for box constraints, linear inequality
constraints, and quadratic inequality constraints, are utilized to
generate new solutions by using DE as the search engine. The
main contribution of the approach is that it transforms a CNOP
into an unconstrained search problem without using a penalty
function. However, it cannot deal with nonlinear (either equality
or inequality) constraints.

Modified variation operators in NIAs in such a way that the
recombination of feasible and infeasible solutions led to the
generation of more feasible solutions. An adaptive mechanism
to maintain infeasible solutions was added to the approach. This
latter version was specifically based on DE’s variation operators.

7.2.6. Multi-objective concepts

In spite of the fact that empirical evidence has suggested that
multi objective concepts are not well-suited to solve CNOPs, there
are highly competitive constraint-handling techniques based on
such concepts.

Motivated by the idea of keeping suitable infeasible solutions Ray
proposed the Infeasibility Driven Evolutionary Algorithm (IDEA)
whose replacement process requires the definition of a proportion
of infeasible solutions to remain in the population for the next
generation. IDEA works in a similar way as NSGA-II. Nonetheless,
an additional objective, besides the original objective function,
is added. This objective consists on the constraint violation
measure, whose value is computed as follows: each individual in
the population has a rank for each constraint of the CNOP being
solved and each rank value depends on the constraint violation
value for such solution (lower values are ranked higher because
they represent a smaller violation for a constraint). If a solution
satisfies the constraint, a zero rank is assigned to it. After each
solution is ranked for each constraint, the violation measure is
computed as the sum of ranks per solution. After the offspring are
generated, the union of parents and offspring is split in two sets,

Constraint Handling 275

one with the feasible solutions and the other with the infeasible
ones. Non-dominated sorting is used to rank both sets separately
and, based on the proportion of desired feasible solutions, they
are chosen first from the infeasible set, the best ranked feasible
solutions are chosen. IDEA is able to work with CNOPs and also
with constrained numerical multi-objective optimization problems
(CNMOPs). However, its performance has been more competitive
when solving CNMOPs. The usage of local search, sequential
quadratic programming in this case, was added to IDEA in the
so-called Infeasibility Empowered Memetic Algotrithm (IMEA).
The approach was tested in eigtheen scalable test problems and
its performance improved with respect to the original IDEA when
solving CNOPs. However, the local search algorithm adopted
requires gradient calculation.

Reynoso-Meza proposed the spherical-pruning multi-objective
optimization differential evolution (sp-MODE) to solve CNOPs,
which were transformed into three-objective optimization
problems, where the first objective was the original objective
function, the second objective was the sum of constraint violation
for inequality constraints and the third objective was the sum of
constraint violation for equality constraints. An external archive
was used to store non-dominated solutions. The sphere-pruning
operator aims to find the best trade-off between feasibility and the
optimization of the objective function. The approach required the
definition for some parameter values depending of the number of
constraints. However, the sphere-pruning operator might be an
interesting operator to be applied in some parts of the search.

Wang proposed the use of Pareto dominance in a Hybrid
Constrained EA (HCOEA) to solve a CNOP which was transformed
into a bi-objective optimization problem. In this case, the first
objective is the original objective function while the second one
is the sum of constraint violation. A global search carried out by
an EA is coupled to a local search operator based on a population
division scheme and on the use of the SPX operator. In both cases,
Pareto dominance is the criterion adopted to select solutions. The
approach was tested in 13 benchmark problems and the results

Evolutionary Computing276

were found to be competitive with respect to four state-of-the-art
algorithms. However, the approach requires the definition of two
crossover probabilities (one for the global search and another for
the local search) as well as the number of subsets in which the
population will be divided. HCOEA showed some sensitivity to
this last parameter.

Wang proposed an steady state EA to solve a CNOP which was
also transformed into a bi-objective problem. At each generation,
a set of offspring solutions are generated by applying orthogonal
crossover to a randomly chosen set of solutions in the current
population. After that, the non-dominated solutions obtained from
the set of offspring are chosen. If there are no feasible offspring, two
randomly chosen solutions from the set of parents will be replaced
by the offspring which dominate them. Alternative, solutions can
also be chosen if they have a lower sum of constraint violation.
Furthermore, the individual with the lowest sum of constraint
violation will replace the worst parent in the population. If there
are feasible offspring, based on a user-defined probability, two
randomly chosen parents will be replaced by two offspring which
dominate them. Otherwise, the worst parent, based on feasibility
rules, will be replaced by one offspring. After the steady state
replacement, all solutions are affected by an improved version of
the BGA mutation operator based on a user-defined probability.
The approach was tested in a set of 11 test problems and showed
competitive results in some of them, but premature convergence
was observed in others.

Wang in their adaptive trade-off mode (ATM) evolution
strategy (ATMES), divided the search in three phases based on
the feasibility of solutions in the population: (1) only infeasible
solutions, (2) feasible and infeasible solutions, and (3) only feasible
solutions. Owing to the fact that the CNOP was transformed
into a bi-objective problem, the selection in the first phase was
based on Pareto dominance. From the Pareto front obtained, the
solutions were ranked in ascending order based on the sum of
constraint violation and the first half was chosen to survive for
the next generation and was deleted from the set. The process was

Constraint Handling 277

repeated until the desirable number of solutions was achieved.
The second phase was biased by a fitness value which is adapted
based on the percentage of feasible solutions in the population.
The last stage was biased only by the objective function value.
The approach provided competitive results in 13 test problems.
However, ATMES required some parameters related to the
tolerance for equality constraints and the step size employed by
the ES used as the search engine. This same ATM was coupled by
Wang with a NIA in which the offspring generation was as follows:
An offspring was generated by one of two variation operator: (1)
simplex crossover or (2) one of two mutations (uniform mutation or
improved BGA mutation). The approach, besides being tested on a
set of 13 benchmark problems, was used to solve some engineering
design problems. The results obtained by the authors were found
to be very competitive, but some cases of premature convergence
were reported. Another improvement to the ATM, which is based
on a shrinking mechanism proposed by Hern´andez-Aguirre
was proposed. This approach, called Accelerated ATM (AATM),
outperformed both the original ATM and the approach proposed
by Hern´andez-Aguirre. However, additional parameters (which
are required by the shrinking mechanism) were introduced by
the authors. The ATM was coupled with DE in a recent approach
showing an improvement in the results with respect to versions
of the same algorithm. Liu used the ATM in an EA but with
two main differences: (1) good point set crossover was used to
generate offspring and (2) feasibility rules were the criteria to
select solutions in the second stage of the ATM (at which there are
feasible and infeasible solutions in the current population). The
approach was tested in some benchmark problems. However, the
performance of the proposed crossover operator was not found
to be clearly better with respect to the version of this approach
reported.

Gong and Cai used Pareto dominance in the many-objective
space defined by the constraints of a problem as a constraint-
handling mechanism in a DE-based approach. An orthogonal
process was employed for both, generating the initial population
and for applying crossover. Furthermore, the ǫ-dominance

Evolutionary Computing278

concept was adopted to update an external archive in which the
non-dominated solutions found during the search were stored.
Orthogonal crossover was applied after DE generated the offspring
population. In fact, an intermediate child population was designed
to store the offspring which were non-dominated with respect to
their parents. The aim is to perform a non-dominance checking on
the union of the parent population and the offspring population
as a replacement mechanism at the end of each generation of the
algorithm. Although the approach provided competitive results in
a set of 13 test problems, the contribution of each of the additional
mechanisms adopted is not clear. Additionally, no information is
provided regarding the fine-tuning required for the parameters
required by this approach.

Li et solved a CNOP which was also transformed into a bi objective
optimization problem by using a PSO algorithm in which Pareto
dominance was used as a criterion in the p best update process
and in the selection of the local-best leaders in a neighborhood. In
case of ties, the sum of constraint violation worked as a tie-breaker.
A mutation operator was also added to keep the approach from
converging prematurely. Additionally, a small tolerance was used
to consider as feasible to solutions that were slightly infeasible
(this is similar to the ε-constrained method but with a fixed value
instead of a dynamic one). The approach was tested only on three
engineering design problems.

Venter and Haftka also transformed a CNOP into a bi-objective
optimization problem and used PSO as their search engine.
However, the leader selection was based most of the time on the
sum of constraint violation, while the rest of the time the criterion
was one of the three following choices: (1) the original objective
function, (2) the crowding distance or (3) Pareto dominance. The
approach was tested on several benchmark problems and some
engineering design problems.

Wang used a hybrid selection mechanism based on Pareto
dominance and tournament selection into a Adaptive Bacterial
Foraging Algorithm (ABFA) to solve CNOPs. The approach uses
the so-called good nodes set method to initialize the population, to

Constraint Handling 279

perform crossover and to spread similar individuals throughout
the search space. The approach was tested in a set of benchmark
problems and in some engineering design problems, providing
competitive results in both cases.

7.2.7. Ensemble of constraint-handling techniques

Many Optimization problems in science and engineering involve
constraints. The presence of constraints reduces the feasible region
and complicates the search process. Evolutionary algorithms (EAs)
always perform unconstrained search. When solving constrained
optimization problems, they require additional mechanisms to
handle constraints. In the several constraint handling techniques
have been proposed to be used with the EAs.

When solving constrained optimization problems, solution
candidates that satisfy all the constraints are feasible individuals
while individuals that fail to satisfy any of the constraints are
infeasible individuals. One of the major issues in constraint
optimization is how to deal with the infeasible individuals
throughout the search process. One way to handle it is to completely
disregard infeasible individuals and continue the search process
with feasible individuals only. This approach may be ineffective
as EAs are probabilistic search methods and potential information
present in infeasible individuals can be wasted. If the search space
is discontinuous, then the EA can also be trapped in one of the local
minima. Therefore, different techniques have been developed to
exploit the information in infeasible individuals. Michalewicz and
Schoenauer grouped the methods for handling constraints within
EAs into four categories: preserving feasibility of solutions, penalty
functions, make a separation between feasible and infeasible
solutions, and hybrid methods. A constrained optimization
problem can also be formulated as a multi objective problem, but
it is computationally intensive due to nondomination sorting.

According to the no free lunch (NFL) theorem, no single state-of-
the-art constraint handling technique can outperform all others on
every problem. Hence, solving a particular constrained problem

Evolutionary Computing280

requires numerous trial-and-error runs to choose a suitable
constraint handling technique and to fine tune the associated
parameters. This approach clearly suffers from unrealistic
computational requirements in particular if the objective function
is computationally expensive or solutions are required in real-
time. In this an ensemble of constraint handling techniques
(ECHT) with four constraint handling techniques is proposed as
an efficient alternative to the trial-and-error-based search for the
best constraint handling technique with its best parameters for a
given problem. In ECHT, each constraint handling technique has
its own population and each function call is efficiently utilized
by each of these populations. Different EAs such as differential
evolution (DE) particle swarm optimizer, evolution strategies,
evolutionary programming (EP) and others have been used to
solve constrained optimization problems. In addition, EP and ES
are similar. Recently the usage of DE to solve constrained problems
is also gaining importance. Being a general concept, the ECHT can
be realized with any of the existing EAs.

7.3. APPROACHES TO HANDLING CONSTRAINTS

In the discussion so far, we have not considered the nature of the
domains of the variables. In this respect there are two extremes:
they are all discrete or all continuous. Continuous CSPs are rather
rare, so by default a CSP is discrete. For COPs this is not the case
as we have discrete COPs (combinatorial optimization problems)
and continuous COPs as well. Much of the evolutionary on
constraint handling is restricted to one of these cases, but in fact
the ways for handling constraints are practically identical – at
least at the conceptual level. Therefore the following treatment
of constraint handling methods is general, and we note simply
that the presence of constraints will divide the space of potential
solutions S into two or more disjoint regions, the feasible region
(or regions) F containing those candidate solutions that satisfy the
given constraints, and U, the infeasible region containing those
that do not.

Constraint Handling 281

7.3.1. Penalty Functions

Penalty functions modify the original fitness function applied
to a candidate solution such that
, where is a distance metric of the infeasible point to the
feasible region F (this might be simply a count of the number of
constraints violated). The penalty function P is zero for feasible
solutions, and it increases with distance from the feasible region
(for minimisation problems).

For our knapsack problem one simple approach is to calculate the
excess weight , and then use the penalty
function: where the fixed weight w is large enough that feasible
solutions are preferred.

It is important to note that this approach assumes that it is possible
to evaluate an infeasible point; although in this example it is, for
many others this is not the case. This discussion is also confined
to exterior penalty functions, where the penalty is only applied
to infeasible solutions, rather than interior penalty functions,
which apply penalties to all solutions based on distance from the
constraint boundary in order to encourage exploration of this
region.

The conceptual simplicity of penalty function methods means that
they are widely used, and they are especially suited to problems
with disjoint feasible regions, or where the global optimum lies on
(or near) the constraint boundary. However, their successful use
depends on a balance between exploration of the infeasible region
and not wasting time, which places a lot of emphasis on the form
of the penalty function and the distance metric.

If the penalty function is too severe, then infeasible points near the
constraint boundary will be discarded, which may delay, or even
prevent, exploration of this region. Equally, if the penalty function
is not sufficient in magnitude, then solutions in infeasible regions
may dominate those in feasible regions, leading to the algorithm
spending too much time in the infeasible regions and possibly

Evolutionary Computing282

stagnating there. In general, for a system with m constraints, the
form of the penalty function is a weighted sum.

where κ is a user-defined constant, often taking the value 1 or 2,
and as the distance metrics from the point to the boundary
for constraint i may be a simple binary value according to whether
the constraint is satisfied, or a metric based on cost of repair.

Many different approaches have been proposed, and a good
review is given in, where penalty functions are classified as
constant, static, dynamic, or adaptive.

Static Penalty Functions

Three methods have commonly been used with static penalty
functions, namely extinctive penalties (where all of the wi are
set so high as to prevent the use of infeasible solutions), binary
penalties (where the value di is 1 if the constraint is violated, and
zero otherwise), and distance-based penalties.

It has been reported that, of these three, the latter give the best
results, and the contains many examples of this approach. This
approach relies on the ability to specify a distance metric that
accurately reflects the difficulty of repairing the solution, which is
obviously problem dependent, and may also vary from constraint
to constraint. The usual approach is to take the square of the
Euclidean distance (i.e., set κ = 2) .

However, the main problem in using static penalty functions
remains the setting of the values of wi. In some situations it may
be possible to find these by experimentation, using repeated runs
and incorporating domain-specific knowledge, but this is a time-
consuming process that is not always possible.

Constraint Handling 283

Dynamic Penalty Functions

An alternative approach to setting fixed values of wi by hand is
to use dynamic values, which vary as a function of time. A typical
approach is that of, in which the static values wi were replaced with
a simple function of the form si(t)=(wit)α, where it was found that
for best performance α ∈ {1, 2}. Although this approach is possibly
less brittle as a result of not using fixed (possibly inappropriate)
values for wi, the user must still decide on the initial values.

An alternative, which can be seen as the logical extension of
this approach, is the behavioural memory algorithm of. Here a
population is evolved in a number of stages – the same number as
there are constraints. In each stage i, the fitness function used to
evaluate the population is a combination of the distance function
for constraint i with a death penalty for all solutions violating
constraints j that different results may be obtained, depending on
the order in which the constraints are dealt with.

Adaptive Penalty Functions

Adaptive penalty functions represent an attempt to remove the
danger of poor performance resulting from an inappropriate
choice of values for the penalty weights wi. A second approach is
that of, in which adaptive scaling (based on population statistics
of the best feasible and infeasible raw fitnesses yet discovered) is
coupled with the distance metrics for each constraint based on
the notion of “near feasible thresholds”. These latter are scaling
factors for each distance metric, which can vary with time.

The Stepwise Adaptation of Weights (SAW) algorithm of can be
seen as a population-level adaptation of the search space. In this
method the weights wi are adapted according to a simple heuristic:
if the best individual in the current population violates constraint
i, then this constraint must be hard and its weight should be
increased. In contrast to the adaptive mechanisms, the updating
function is much simpler. In this case a fixed penalty increment
Δw is added to the penalty values for each of the constraints

Evolutionary Computing284

violated in the best individual of the generation at which the
updating takes place. This algorithm was able to adapt weight
values that were independent of the EA operators and the initial
weight values, suggesting that this is a robust technique.

7.3.2. Repair Functions

The use of repair algorithms for solving COPs with EAs can be
seen as a special case of adding local search to the EA. In this case
the aim of the local search is to reduce (or remove) the constraint
violation, rather than to simply improve the value of the fitness
function, as is usually the case.

The use of local search has been intensively researched, with
attention focusing on the benefits of so-called Baldwinian versus
Lamarckian learning. In either case, the repair algorithm works by
taking an infeasible point and generating a feasible solution based
on it. In the Baldwinian case, the fitness of the repaired solution
is allocated to the infeasible point, which is kept, whereas with
Lamarckian learning, the infeasible solution is overwritten with
the new feasible point. Although the Baldwin vs. Lamarck debate
has not been settled within unconstrained learning, many COP
algorithms reach a compromise by introducing some stochasticity,
for example Michalewicz’s GENOCOP algorithm uses the repaired
solution around 15% of the time.

For our knapsack example, a simple repair method is to change
some of the gene values in from 1 to 0. Although this sounds
simple, this example raises some interesting questions. One of these
is the replacement question just discussed; the second is whether
the genes should be selected for altering in a predetermined order,
or at random. In it was reported that using a greedy deterministic
repair algorithm gave the best results, and certainly the use of a
nondeterministic repair algorithm will add noise to the evaluation
of every individual, since the same potential solution may yield
different fitnesses on separate evaluations. However, it has been
found by some authors that the addition of noise can assist the GA
in avoiding premature convergence. In practice it is likely that the

Constraint Handling 285

best method is not only dependent on the problem instance, but
on the size of the population and the selection pressure.

Although the knapsack example is fairly simple, in general defining
a repair function may be as complex as solving the problem itself.
One algorithm that eases this problem (and incidentally uses
stochastic repair), is Michalewicz’s GENOCOP III algorithm for
optimisation in continuous domains. This works by maintaining
two populations, one Ps of so-called search points and one Pr of
‘reference points’, with all of the latter being feasible. Points in
Pr and feasible points from Ps are evaluated directly. When an
infeasible point is generated in Ps it is repaired by picking a point
in Pr and drawing a line segment from it to the infeasible point.
This is then sampled until a repaired feasible point is found. If the
new point is superior to that used from Pr, the new point replaces
it. With a small probability (which represents the balance between
Lamarckian and Baldwinian search) the new point replaces the
infeasible point in Ps. It is worth noting that although two different
methods are available for selecting the reference point used in the
repair, both are stochastic, so the evaluation is necessarily noisy.

7.3.3. Restricting Search to the Feasible Region

In many COP applications it may be possible to construct a
representation and operators so that the search is confined to
the feasible region of the search space. In constructing such an
algorithm, care must be taken in order to ensure that all of the
feasible region is capable of being represented. It is equally
desirable that any feasible solution can be reached from any other
by (possibly repeated) applications of the mutation operator. The
classic example of this is permutation problems.

For our knapsack problem, we could imagine the following
operators. A randomised initialisation operator might construct
solutions by starting with an empty set x(i)=0, ∀i and randomly
picking elements i to flip the gene value from to 1 until adding the
next value chosen would violate the cost constraint. This would
give an initial population where the excess cost was negative

Evolutionary Computing286

for each member. For recombination, we could apply a slightly
modified one-point crossover. For any given pair of parents, first
we generate a random permutation of the values {1,,...,n−1} in
which to consider the potential crossover points. In that order we
consider the pairs of offspring created, accepting the first pair that
is feasible. For mutation we apply bitwise mutation, accepting any
move that changes a gene from 1 to 0, but only those from 0 to 1
that do not created excess cost. Again we might choose to do this
in a random order to remove bias towards selecting items at the
start of our representation.

It should be noted that this approach to solving COP, although
attractive, is not suitable for all types of constraints. In many cases
it is difficult to find an existing or design a new operator that
guarantees that the offspring are feasible. Although one possible
option is simply to discard any infeasible points and reapply
the operator until a feasible solution is generated, the process of
checking that a solution is feasible may be so time consuming as to
render this approach unsuitable. However, there remains a large
class of problems where this approach is valid and with suitable
choice of operators can be very successfully applied.

7.3.4. Decoder Functions

Decoder functions are a class of mappings from the genotype
space S’ to the feasible regions F of the solution space S that have
the following properties:

•	 Every z ∈ S must map to a single solution s’ ∈ F.
•	 Every solution s’ ∈ F must have at least one representation

s’ ∈ S’.
•	 Every s’ ∈ F must have the same number of representations

in S’ (this need not be 1).

Such decoder functions provide a relatively simple way of using
EAs for this type of problem, but they are not without drawbacks.
These are centred around the fact that decoder functions generally
introduce a lot of redundancy into the original genotype space.

Constraint Handling 287

This arises when the new mapping is manyto-one, meaning
that a number of potentially radically different genotypes may
be mapped onto the same phenotype, and only a subset of the
phenotype space can be reached.

Considering the knapsack example, a simple approach would leave
the genotype, initialisation and variation operators unchanged.
When constructing a solution, the decoder function could start at
the left hand end of the string and interpret a 1 as take this item if
possible ... If the cost limit is reached after considering, say, j of the
n genes, then it is irrelevant what values the rest take, and so 2n−j
strings all map onto the same solution.

In a few cases it may be possible to devise a decoder function that
permits the use of relatively standard representation and operators
while preserving a one-to-one mapping between genotype and
phenotype. One such example is the decoder for the TSP problem
proposed by Grefenstette, which is well described by Michalewicz
in. In this case a simple integer representation was used with
each gene ai ∈ {1,...,n+1−i}. This representation permits the use of
common crossover operators and a bitwise mutation operator that
randomly resets a gene value to one of its permitted allele values.
The outcome of both of these operators is guaranteed to be valid.
The decoder function works by considering an ordered list of
cities, ABCDE, and using the genotype to index into this.

For example, with a genotype <4, 2, 3, 1, 1> the first city in the
constructed tour is the fourth item in the list, i.e., D. This city is
then removed from the list and the second gene is considered,
which in this case points to B. This process is continued until a
complete tour is constructed: <4, 2, 3, 1, 1> → DBEAC.

Although the one-to-one mapping means that there is no
redundancy in the genotype space, and it permits the use of
straightforward crossover and mutation operators, the complexity
of the mapping function means that a small mutation can have
a large effect, e.g., <3, 2, 3, 1, 1> → CBDAE. Equally, it can be
easily shown that recombination operators no longer respect and
propagate all features common to both solutions. Thus if the two

Evolutionary Computing288

solutions <1, 1, 1, 1, 1>→ ABCDE and <5, 1, 2, 3, 1> → EACDB,
which share the common feature that C occurs in the third position
and D in the fourth undergo 1-point crossover between the third
and fourth loci, the solution <5, 1, 2, 1, 1>→ EACBD is obtained,
which does not possess this feature. If the crossover occurs in
other positions, the edge CD may be preserved, but in a different
position in the cycle.

In both of the examples given, the complexity of the genotype–
phenotype mapping makes it very difficult to ensure locality
and makes the fitness landscape associated with the search space
highly complex, since the potential effects in fitness of changes
at the left-hand end of the string are much bigger than those at
the right-hand end. Equally, it can become very difficult to specify
exactly the common features the recombination operators are
supposed to be preserving.

7.4 APPLICATION EXAMPLE: GRAPH
THREE-COLOURING

We illustrate the approaches outlined via the description of two
different ways of solving a well-known CSP problem, graph three-
colouring. This is an abstract version of colouring a political map
so that no two adjacent areas (counties, states, countries) have the
same colour. We are given a graph G = {v, e} with n = |v| vertices
and m = |e| edges connecting some pairs of the vertices. The task
is to find, if possible, an assignment of one of three colours to each
vertex so that there are no edges in the graph connecting same-
coloured vertices.

7.4.1. Indirect Approach

We begin by illustrating an indirect approach, transforming the
problem from a CSP to a FOP by means of penalty functions. The
most straightforward representation is using ternary strings of

Constraint Handling 289

length n = |v|, where each variable stands for one node, and the
integers 1, 2, and 3 denote the three colours.

Using this standard GA representation has the advantage that all
standard variation operators are immediately applicable. We now
define two objective functions (penalty functions) that measure
the amount of ‘incorrectness’ of a chromosome. The first function
is based on the number of ’incorrect edges’ that connect two
nodes with the same colour, while the second relies on counting
the ‘incorrect nodes’ that have a neighbour with the same colour.
For a formal description let us denote the constraints belonging
to the edges as ci (i = {1,...,m}), and let Ci be the set of constraints
involving variable vi (edges connecting to node i). Then the
penalties belonging to the two options described can be expressed
as follows:

Note that both functions are correct transformations of the
constraints in the sense that for each we have that = true if
and only if fi =0 (i = 1, 2). The motivation to use weighted sums
in this example, and in general, is that they provide the possibility
of emphazising certain constraints (variables) by giving them a
higher weight. This can be beneficial if some constraints are more
important or known to be harder to satisfy. Assigning them a
higher weight gives a higher reward to a chromosome, hence the
EA naturally focuses on these. Setting the weights can be done
manually by the user, but can also be done by the EA itself on-the-
fly as in the stepwise adaptation of weights (SAW) mechanism.

Now the EA for the graph three-colouring problem can be
composed from standard components. For instance, we can apply
a steady-state GA with population size 100, binary tournament

Evolutionary Computing290

selection and worst fitness deletion, using random resetting
mutation with pm = 1/n and uniform crossover with pc = 0.8. Notice
that this EA really ignores constraints; it only tries to minimise the
given objective function (penalty function).

7.4.2. Mixed Mapping Direct Approach

For this problem, two of the direct approaches would be
extremely difficult, if not impossible, to implement. Specifying
either an initialization operator, or a repair function, to create
valid solutions would effectively mean solving the problem, and
since it is thought to be NP-complete it is unlikely that there is a
polynomial time algorithm that could accomplish either of these.

However, we now present another EA for this problem, illustrating
how constraints can be handled by a decoder. The main idea is to
use permutations of the nodes as chromosomes. The phenotype
(coloring) belonging to a genotype (permutation) is determined by
a procedure that assigns colors to nodes in the order they occur in
the given permutation, trying the colors in increasing order (1,2,3),
and leaving the node uncolored if all three colors would lead to
a constraint violation. Formally, we shift from the search space of
all colorings S = {1, 2, 3}n to the space of all n-long permutations

, and the coloring procedure
(the decoder) is the mapping from S’ to S’. At first glance this
might not seem like a good idea as we still have constraints in the
transformed problem – those that define the property of being a
permutation in the definition of S’. However, we know from Sect.
4.5 that working in a permutation space is easy, as there are many
suitable variation operators keeping the search in this space. In
other words, we have various operators preserving the constraints
defining this space.

An appropriate objective function for this representation can
simply be defined as the number (weighted sum) of nodes that
remain uncolored after decoding. This function also has the
property that an optimal value (0) implies that all constraints are
satisfied, i.e., all nodes are colored correctly. The rest of the EA

Constraint Handling 291

can again use off-the-shelf components: a steady-state GA with
population size 100, binary tournament selection and worst fitness
deletion, using swap mutation with pm = 1/n and order crossover
with pc = 0.8.

Looking at this solution at a conceptual level we can note that there
are two constraint-handling issues. Primary constraint-handling
concerns handling the constraints of the original problem, the
graph three-coloring CSP. This is done by the mapping approach
via a decoder. However, the transformed search space S’ in
which the EA has to work is not free, rather it is restricted by the
constraints defining permutations. This constitutes the secondary
constraint handling issue that is solved by a (direct) preserving
approach using appropriate variation operators.

Evolutionary Computing292

REFERENCES

1.	 A. E. Eiben and J. E. Smith, Introduction to Evolutionary
Computing, Springer, Berlin, Germany, 2003.

2.	 C. A. Coello Coello, “Treating constraints as objectives for
single-objective evolutionary optimization,” Engineering
Optimization 2000.

3.	 C. A. Coello Coello, “Use of a self-adaptive penalty approach
for engineering optimization problems,” Computers in
Industry, 2000.

4.	 K. Deb, “An efficient constraint handling method for genetic
algorithms,” Computer Methods in Applied Mechanics and
Engineering, 2001.

5.	 Kramer, A. Barthelmes, and G. Rudolph, “Surrogate constraint
functions for CMA evolution strategies,” in Proceedings of the
32nd German Annual Conference on Artificial Intelligence
(KI ‘09), pp. 169–176, Paderborn, Germany, September 2009.

6.	 O. Kramer and H.-P. Schwefel, “On three new approaches
to handle constraints within evolution strategies,” Natural
Computing, 2006.

7.	 O. Kramer, “Premature convergence in constrained continuous
search spaces,” in Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature (PPSN
‘08), pp. 62–71, Springer, Dortmund, Germany, 2008.

8.	 O. Kramer, C.-K. Ting, and H. Kleine Büning, “A mutation
operator for evolution strategies to handle constrained
problems,” in Proceedings of the 7th Conference on Genetic
and Evolutionary Computation (GECCO ‘05), pp. 917–918,
Washington, DC, USA, June 2005.

9.	 O. Kramer, C.-K. Ting, and H. Kleine Büning, “A new mutation
operator for evolution strategies for constrained problems,”
in Proceedings of the IEEE Congress on Evolutionary
Computation (CEC ‘05), pp. 2600–2606, Edinburgh, UK,
September 2005.

Constraint Handling 293

10.	 O. Kramer, S. Brugger, and D. Lazovic, “Sex and death:
towards biologically inspired heuristics for constraint
handling,” in Proceedings of the 9th Conference on Genetic
and Evolutionary Computation (GECCO ‘07), pp. 666–673,
ACM Press, London, UK, July 2007.

11.	 T. P. Runarsson, “Approximate evolution strategy using
stochastic ranking,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ‘06), pp. 2760–2767, IEEE,
Vancouver, Canada, July 2006.

INDEX

A

adaptive trade-off mode (ATM)
276

algorithmic mechanism 18, 21,
24, 25

Artificial intelligence 157
Automatic programming 156,

164

B

Binary Coded Decimal 107,
109

binary variation operator 51
Biogeography based optimiza-

tion (BBO) 261
biological evolution 41

C

Coastal aquifers 163
computer organization 81

Computer program 156, 158,
159, 160, 164, 166, 170,
174, 176

computer science 1, 2
Computer system 109
Constraint Quadratic Approxi-

mation (CQA) 272
Constraint Quadratic Ap-

proximation for Multiple
Equality Constraints
(CQA-MEC) 272

D

Darwinian evolution 158
Darwin’s theory 8
Data 116
Data intensive modelling 162
data type 81, 82
Differential Evolution Com-

bined Variants (DECV)
257

Differential evolution (DE)
252, 280

Evolutionary Computing296

distance-preserving crossover
(DPX) 234

Dynastically Optimal Recombi-
nation (DOR) 207

E

Edge Assembly Crossover
(EAX) 207

estimation of distribution algo-
rithms (EDAs) 54

Evolutionary Algorithm (EA)
155

evolutionary computation lit-
erature 46

evolutionary programming
(EP) 44

evolution strategies 133, 151,
152, 153

F

fitness function 43, 45, 48, 64,
75

fitness landscape 201, 202, 230
Fitness Proportionate Selection

123
Fixed point 123, 124
Full Employment Theorem 203

G

Gene deletion 159
Gene duplication 159
Genetic Algorithms (GAs) 197,

200
Genetic operation 159, 160,

174, 175, 178

genetic programming 2, 11, 14,
15, 21

genotypes 46, 47, 48, 49, 51, 52,
61, 63, 64, 65, 67

global maximum 132

H

Hybrid Constrained EA
(HCOEA) 275

Hybrid Evolutionary Algo-
rithms 196

Hybrid multi-swarm PSO
(HMPSO) 259

I

Infeasibility Driven Evolution-
ary Algorithm (IDEA)
274

Infeasibility Empowered
Memetic Algotrithm
(IMEA) 275

Initialization 53
initial population 7, 10, 29
Institute of Electrical and Elec-

tronics Engineers (IEEE)
104

L

Large Scale Problems (LSPs)
221

learning classifier systems
(LCS) 54

M

Machine learning problem 156
Memetic algorithm (MA) 195
Microarchitecture 128, 129

Index 297

Multi-objective evolutionary
algorithms (MOEAs) 54

Multi-Objective MAs (MO-
MAs) 224

mutation 41, 42, 43, 45, 47, 50,
51, 52, 55, 56, 57, 58, 60,
61, 62, 65, 66, 68

mutation operator 5, 50, 51, 52,
55, 57, 58, 68

N

Neural network models 131
No Free Lunch Theorems 201
Numerical simulation 162

P

particle swarm optimization
(PSO) 231

performance 91, 128
Polynomial Local Search class

(PLS) 204

Q

QPSO algorithm 12

R

real-coded genetic algorithm
(RCGA) 12

recombination 41, 42, 43, 44,
45, 50, 51, 57, 58, 60, 61,
68, 77

Reinforcement learning (RL)
problems 131

reproduction 41, 51, 60, 61

S

Saltwater intrusion 162, 163
self-adaptive systems 215
self-adaptive velocity parti-

cle swarm optimization
(SAVPSO) 273

Sequential Quadratic Program-
ming (SQP) 223

Sexual recombination 159
Software systems 156
stochastic 1, 2, 4, 8, 21, 22, 25
Stochastic ranking (SR) 262

T

Tabu Search (TS) 217
termination condition 45, 53,

69, 70
Travelling Salesman problem

(TSP) 216
Trust Region (TR) 227

V

variable local search (VLS) 229
Vehicle Routing Problems

(VRPs) 224

	Cover

	Title Page

	Copyright

	TABLE OF CONTENTS

	Preface
	Chapter 1 Introduction to Evolutionary Computation

	Introduction
	1.1 Overview of Evolutionary Computation
	1.1.1 Evolutionary Computation
	1.1.2 Critical issues
	1.1.3 Components of Evolutionary Algorithms
	1.1.4 Representation-independent

	1.2 Theory and Applications of Evolutionary Computation
	1.2.1 Discrete Dynamics in Evolutionary Computation and Its Applications
	1.2.2 Using Evolutionary Computation on GPS Position Correction
	1.2.3 Layered Architecture Genetic Programming
	1.2.4 Algorithmic Mechanism Design of Evolutionary Computation
	1.2.5 Evolutionary Computation Meets Game Theory and Mechanism Design
	1.2.6 Algorithmic Mechanism Design of Evolutionary Computation: A Strategy Equilibrium Implementation Problem

	1.2.7 Strategy Equilibrium Implementation in Evolutionary Computation Algorithm

	1.3 Analyses and Discussions
	1.3.1 Prediction of Drifter Trajectory Using Evolutionary Computation
	1.3.2 A Review of Gait Optimization Based on Evolutionary Computation
	1.3.3 Evolutionary Computation Is Suitable for the Gait Optimization Problem
	1.3.4 How to Evolve the Optimal Gait
	1.3.5 Gait Representation and Chromosome Encoding
	1.3.6 Comparing EC with Other Global Optimization Approaches

	References

	Chapter 2 Evolutionary Algorithm

	Introduction
	2.1 Evolutionary Algorithm
	2.2 Components of Evolutionary Algorithms
	2.2.1 Representation (Definition of Individuals)
	2.2.2 Evaluation Function (Fitness Function)
	2.2.3 Population
	2.2.4 Parent Selection Mechanism
	2.2.5 Variation Operators (Mutation and Recombination)
	2.2.6 Survivor Selection Mechanism (Replacement)
	2.2.7 Initialization
	2.2.8 Termination Condition

	2.3 Types of Evolutionary Algorithm (EA)
	2.3.1 Genetic Algorithm
	2.3.2 Genetic Programming
	2.3.3 Evolutionary Programming
	2.3.4 Gene Expression Programming
	2.3.5 Evolution Strategy
	2.3.6 Differential Evolution
	2.3.7 Neuroevolution
	2.3.8 Learning Classifier System

	2.4 An Evolutionary Cycle by Hand
	2.5 Example Applications
	2.5.1 The Eight-Queens Problem
	2.5.2 The Knapsack Problem

	2.6 The Operation of an Evolutionary Algorithm
	2.7 Natural versus Artificial Evolution
	2.8 Evolutionary Computing, Global Optimization, and Other Search Algorithms
	References

	Chapter 3 Genetic Algorithm

	Introduction
	3.1 Representation of Individuals
	3.1.1 Data Representation
	3.1.2 Floating-Point Representation
	3.1.3 Error-Detecting codes

	3.2 Number Representation and Binary Code
	3.2.1 How Computers use Boolean Operations
	3.2.2 Fixed- and Floating-Point Number Representation
	3.2.3 BCD
	3.2.4 EBCDIC
	3.2.5 ASCII
	3.2.6 IEEE Standard

	3.3 Mutation
	3.3.1 Genetic Algorithms - Population
	3.3.2 Genetic Algorithms - Parent Selection

	References

	Chapter 4 Introduction to Evolution Strategy

	Introduction
	4.1 Overview of Evolution Strategy
	4.1.1 Simple Evolution Strategy
	4.1.2 Simple Genetic Algorithm
	4.1.3 Covariance-Matrix Adaptation Evolution Strategy (CMA-ES)

	4.2 Natural Evolution Strategies
	4.3 Numerical Optimization
	4.3.1 Evolution Strategies
	4.3.2 Vanilla Implementation
	4.3.3 Pseudo Code
	4.3.4 Python Implementation from scratch

	References

	Chapter 5 Genetic Programming

	Introduction
	5.1 Fundamental of Genetic Programming
	5.1.1 Preparatory Steps of Genetic Programming
	5.1.2 Multiple predictive model structures using GP
	5.1.3 GP as surrogate model for simulation-optimization

	5.2 Types of Genetic Programming
	5.2.1 Tree-based Genetic Programming
	5.2.2 Stack-based GP
	5.2.3 Linear Genetic Programming
	5.2.4 Grammatical Evolution
	5.2.5 Cartesian Genetic Programming
	5.2.6 Genetic Improvement Programming (GIP)

	5.3 Genetic Programming: Approach in Modeling Water Flows
	5.3.1 Genetic Operations
	5.3.2 Use of GP in Water Flows Modeling
	5.3.3 Applications in Ocean Engineering
	5.3.4 Applications in Hydrology

	References

	Chapter 6 Memetic Algorithms

	Introduction
	6.1 Basic Concept of Memetic Algorithm
	6.1.1 Basic Model of a Memetic Algorithm
	6.1.2 The Development of MAs
	6.1.3 The Need for Memetic Algorithms
	6.1.4 Recombination

	6.2 General Structure of Memetic Algorithms
	6.3 Memetic Computing Specific Implementations
	6.3.1 MAs in Discrete Optimization
	6.3.2 MAs in Continuous Optimization
	6.3.3 MAs in Multimodal Optimization
	6.3.4 MAs in Large Scale Optimization
	6.3.5 MAs in Constrained Optimization
	6.3.6 MAs in Multi-Objective Optimization
	6.3.7 MAs in the Presence of Uncertainties

	6.4 Algorithmic Extensions of Memetic Algorithms
	6.4.1 Adaptive Memetic Algorithms
	6.4.2 Complete Memetic Algorithms

	6.5 Design Issues
	6.6 Applications of Memetic Algorithms
	References

	Chapter 7 Constraint Handling

	Introduction
	7.1. Constraint Handling Techniques
	7.1.1. Elimination
	7.1.2. Penalty Functions
	7.1.3. Dominance-Based Methods
	7.1.4. Other Techniques

	7.2. Current Constraint-Handling Techniques
	7.2.1. Feasibility Rules
	7.2.2. Stochastic Ranking
	7.2.3. e-constrained Method
	7.2.4. Novel Penalty Functions
	7.2.5. Novel special operators
	7.2.6. Multi-objective concepts
	7.2.7. Ensemble of constraint-handling techniques

	7.3. Approaches to Handling Constraints
	7.3.1. Penalty Functions
	7.3.2. Repair Functions
	7.3.3. Restricting Search to the Feasible Region
	7.3.4. Decoder Functions

	7.4 Application Example: Graph Three-Colouring
	7.4.1. Indirect Approach
	7.4.2. Mixed Mapping Direct Approach

	References

	INDEX

	Back Cover

