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Evolutionary computing is particularly suited to the adaptation 
(learning) of neural and fuzzy systems. Evolutionary computing is 
a versatile problem solver inspired by natural evolution. It models 
the critical elements of biological evolution and investigates the 
space of solution through gene inheritance, mutation and selection 
of the most suitable candidate solutions. Evolutionary computing 
is a significant field of study for adaptation and optimization. The 
approach actually originated from the Darwin concept of natural 
selection, also known as the survival of the fittest. Evolutionary 
computing has seen a significant increase in both theoretical and 
industrial applications over the last decade. Its scope has grown 
beyond its original sense of “biological evolution” to a broad range 
of nature-inspired computational algorithms and techniques, covering 
evolutionary, neural, ecological, social and economic computing, etc., 
in a unified context. In the Darwinian model, information gained by 
an individual cannot be transmitted to its genome and consequently 
passed on to the next generation. The synthesis of learning and 
evolution, represented by evolving neural networks, is more adaptable 
to a changing world. The interaction of learning with evolution 
accelerates evolution, which can take the form of the Lamarckian 
evolution or be based on the Baldwin effect. The Lamarckian strategy 
enables the inheritance of inherited traits in the genetic code of an 
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individual’s life so that the offspring will inherit its characteristics. 
Today, many research topics in evolutionary computing are not 
inherently “evolutionary”. 
The current book provides an overview of some recent advances 
in evolutionary computation. It concentrates on evolutionary 
computing, which is viewed as one of the most promising paradigms 
of computational intelligence. It covers a wide range of topics in 
optimization, learning and design using evolutionary approaches 
and techniques, and theoretical results in the computational time 
complexity of evolutionary algorithms. The dialects of evolutionary 
algorithms include genetic algorithms, evolutionary strategies, 
genetic programming, particle swarm optimization, ant colony 
optimization, artificial immune systems, estimation of distribution 
algorithms, differential evolution, and memetic algorithms. These 
evolutionary methods have proven their success on various hard and 
complex optimization problems. During this time, new metaheuristic 
optimization approaches, like evolutionary algorithms, genetic 
algorithms, swarm intelligence, etc., were being developed and new 
fields of usage in artificial intelligence, machine learning, combinatorial 
and numerical optimization, etc., were being explored. Some issues 
related to future development of evolutionary computation are also 
discussed. Presenting some new theoretical as well as practical aspects 
of evolutionary computation, this book will be of great value to 
undergraduates and graduate students in computer science. 



INTRODUCTION

In computer science, evolutionary computation is a family 
of algorithms for global optimization inspired by biological 
evolution, and the subfield of artificial intelligence and soft 
computing studying these algorithms. In technical terms, they are 
a family of population-based trial and error problem solvers with 
a met heuristic or stochastic optimization character.

In evolutionary computation, an initial set of candidate solutions 
is generated and iteratively updated. Each new generation is 
produced by stochastically removing less desired solutions, and 
introducing small random changes. In biological terminology, a 
population of solutions is subjected to natural selection (or artificial 
selection) and mutation. As a result, the population will gradually 
evolve to increase in fitness, in this case the chosen fitness function 
of the algorithm.

1
INTRODUCTION TO EVOLUTIONARY 
COMPUTATION
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Evolutionary computation techniques can produce highly 
optimized solutions in a wide range of problem settings, making 
them popular in computer science. Many variants and extensions 
exist, suited to more specific families of problems and data 
structures. Evolutionary computation is also sometimes used in 
evolutionary biology as an in silico experimental procedure to 
study common aspects of general evolutionary processes.

1.1 OVERVIEW OF EVOLUTIONARY  
COMPUTATION

Surprisingly enough, the idea to apply Darwinian principles 
to automated problem solving originates from the fifties, long 
before the breakthrough of computers. During the sixties three 
different implementations of this idea have been developed at 
three different places. In the USA Fogel introduced evolutionary 
programming, while Holland called his method a genetic 
algorithm. In Germany Rechenberg and Schwefel invented 
evolution strategies. For about 15 years these areas developed 
separately; it is since the early nineties that they are envisioned 
as different representatives (“dialects”) of one technology, called 
evolutionary computing. It was also in the early nineties that a 
fourth stream following the general ideas has emerged – genetic 
programming. The contemporary terminology denotes the whole 
field by evolutionary computing and considers evolutionary 
programming, evolution strategies, genetic algorithms, and 
genetic programming as sub-areas.

1.1.1 Evolutionary Computation

Evolutionary computation (EC) is a series of stochastic 
optimization algorithms that are inspired originally by natural 
selection and “survival of the fittest” and further developed 
by ant colony optimization, artificial immune systems, partial 
swarm intelligence, and others. From the algorithmic taxonomy 
viewpoint, EC takes the probability theory as its philosophy and 
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methodology. The fundamentals of its search mechanism are 
established in the basics of probability theory. The system behavior 
of an EC algorithm can therefore be presented as a probability 
transition matrix, and its dynamic optimization process can be 
described as a Markov chain. However, other theoretical analysis 
methods from deterministic theory, such as fixed point theory, 
are also introduced into the EC in order to study its fundamental 
aspects, such as efficiency, effectiveness, and convergence. 
Drawing inspiration from chaos theory and its ergodicity, a chaotic 
evolution algorithm has been recently proposed and studied. This 
is very different from the conventional deterministic and stochastic 
optimization algorithms. Chaotic evolution can be considered as 
an implementation of the chaotic optimization algorithm, whose 
theoretical fundamental is supported by chaotic philosophy and 
methodology.

There are two components in EC from the viewpoint of the 
algorithm design framework. One is an iterative process, and 
the other is one or several evolutionary operations that are 
implemented by a variety of methods. Algorithm selection and 
parameter settings are two critical issues, when we apply EC to an 
optimization problem. The objective of the former issue is to answer 
the question as to which is the best EC algorithm to solve a concrete 
problem. The latter one seeks to obtain the best parameter setting 
of an EC algorithm to obtain a better optimization performance. 

What is an evolutionary algorithm? 

The common underlying idea behind all these techniques is 
the same: given a population of individuals, the environmental 
pressure causes natural selection (survival of the fittest) and 
hereby the fitness of the population is growing. It is easy to see 
such a process as optimization. Given an objective function to be 
maximized we can randomly create a set of candidate solutions and 
use the objective function as an abstract fitness measure (the higher 
the better). Based on this fitness, some of the better candidates are 
chosen to seed the next generation by applying recombination and/
or mutation. Recombination is applied to two selected candidates, 
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the so-called parents, and results one or two new candidates, 
the children. Mutation is applied to one candidate and results in 
one new candidate. Applying recombination and mutation leads 
to a set of new candidates, the offspring. Based on their fitness 
these offspring compete with the old candidates for a place in the 
next generation. This process can be iterated until a solution is 
found or a previously set time limit is reached. Let us note that 
many components of such an evolutionary process are stochastic. 
According to Darwin, the emergence of new species, adapted to 
their environment, is a consequence of the interaction between 
the survival of the fittest mechanism and undirected variations. 
Variation operators must be stochastic, the choice on which pieces 
of information will be exchanged during recombination, as well as 
the changes in a candidate solution during mutation, are random. 

On the other hand, selection operators can be either deterministic, 
or stochastic. In the latter case fitter individuals have a higher 
chance to be selected than less fit ones, but typically even the 
weak individuals have a chance to become a parent or to survive. 
The general scheme of an evolutionary algorithm can be given as 
follows.

Let us note that this scheme falls in the category of generate-and-
test, also known as trialand-error, algorithms. The fitness function 
represents a heuristic estimation of solution quality and the search 
process is driven by the variation operators (recombination and 
mutation creating new candidate solutions) and the selection 
operators. Evolutionary algorithms (EA) are distinguished within 
in the family of generate-and-test methods by being population 
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based, i.e. process a whole set of candidate solutions and by the use 
of recombination to mix information of two candidate solutions. 
The aforementioned “dialects” of evolutionary computing follow 
the above general outlines and differ only in technical details.

1.1.2 Critical issues

There are some issues that one should keep in mind when designing 
and running an evolutionary algorithm. These considerations 
concern all of the “dialects”, and will be discussed here in general, 
without a specific type of evolutionary algorithm in mind. One 
crucial issue when running an EA is to try to preserve the genetic 
diversity of the population as long as possible. Opposite too 
many other optimization methods, EAs use a whole population 
of individuals – and this is one of the reasons for their power. 
However, if that populations starts to concentrate in a very 
narrow region of the search space, all advantages of handling 
many different individuals vanish, while the burden of computing 
their fitnesses remains. This phenomenon is known as premature 
convergence. There are two main directions to prevent this: a 
priori ensuring creation of new material, for instance by using a 
high level of mutation or a posteriori manipulating the finesses 
of all individuals to create a bias against being similar, or close 
to, existing candidates. A well-known technique is the so-called 
niching mechanism.

Exploration and exploitation are two terms often used in EC. 
Although crisp definitions are lacking there has been a lot of 
discussion about them. The dilemma within an optimization 
procedure is whether to search around the best-so-far solutions 
(as their neighborhood hopefully contains even better points) or 
explore some totally different regions of the search space (as the 
bestso-far solutions might only be local optima). An EA must be 
set up in such a way that it solves this dilemma without a priori 
knowledge of the kind of landscape it will have to explore. The 
exploitation phase can sometimes be “delegated” to some local 
optimization procedure, whether called as a mutation operator, 
or systematically applied to all newborn individuals, moving 
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them to the nearest local optimum. In the latter case, the resulting 
hybrid algorithm is called a memetic algorithm

In general, there are two driving forces behind an EA: selection 
and variation. The first one represents a push toward quality and 
is reducing the genetic diversity of the population. The second 
one, implemented by recombination and mutation operators, 
represents a push toward novelty and is increasing genetic 
diversity. To have an EA work properly, an appropriate balance 
between these two forces has to be maintained. At the moment, 
however, there is not much theory supporting practical EA design.

1.1.3 Components of Evolutionary Algorithms

Representation

Solving a given problem with an EA starts with specifying a 
representation of the candidate solutions. Such candidate solutions 
are seen as phenotypes that can have very complex structures. 
Applying variation operators directly to these structures might not 
be possible, or easy. Therefore these phenotypes are represented 
by corresponding genotypes. The standard EC machinery consists 
of many off-the-shelf variation operators acting on a specific 
genotype space, for instance bit-strings, real-valued vectors, 
permutations of integers, or trees. Designing an EA thus often 
amounts to choosing one of the standard representations with 
the corresponding variation operators in mind. However, one 
strength of EAs is their ability to tackle any search space provided 
that initialization and variation operators are available. Choosing 
a standard option is, therefore, not necessary.

Fitness or evaluation function

Fitness-based selection is the force that represents the drive toward 
quality improvements in an EA. Designing the fitness function 
(or evaluation function) is therefore crucial. The first important 
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feature about fitness computation is that it represents 99% of the 
total computational cost of evolution in most real-world problems. 
Second, the fitness function very often is the only information 
about the problem in the algorithm: Any available and usable 
knowledge about the problem domain should be used.

Representation dependent

Initialization

The initial population is usually created by some random 
sampling of the search space, generally performed as uniformly 
as possible. However, in some cases, uniform sampling might 
not be well-defined, e.g. on parse-tree spaces, or on unbounded 
intervals for floating-point numbers. A common practice also is to 
inoculate some known good solutions into the initial population. 
But beware that no bias is better than a wrong bias!

Crossover

Crossover operators take two (or more) parents and generate 
offspring by exchange of information between the parents. The 
underlying idea to explain crossover performance is that the good 
fitness of the parents is somehow due to precise parts of their genetic 
material (termed building blocks), and the recombining those 
building blocks will result in an increase in fitness. Nevertheless, 
there are numerous other ways to perform crossover. For instance, 
crossing over two vectors of floating-points values can be done by 
linear combination (with uniformly drawn weights) of the parent’s 
values. The idea is that information pertaining to the problem 
at hand should be somehow exchanged. Note that the effect of 
crossover varies from exploration when the population is highly 
diversified to exploitation when it starts to collapse into a small 
region of the search space.
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Mutation

Mutation operators are stochastic transformations of an individual. 
The usual compromise between exploration and exploitation must 
be maintained: large mutations are necessary from theoretical 
reasons (it ensures the ergodicity of the underlying stochastic 
process), that translate practically (it is the only way to reintroduce 
genetic diversity in the end of evolution); but of course too much 
too large mutation transform the algorithm into a random walk – 
so most mutations should generate offspring close to their parents. 
There is no standard general mutation, but general trends are to 
modify the value of a component of the genotype with a small 
probability (e.g. flip one bit of a bitstring, or, in case of real-valued 
components, add zero-mean Gaussian noise with carefully tuned 
standard deviation).

The historical debate

There has long been a strong debate about the usefulness of 
crossover. The GA community considers crossover to be the 
essential variation operator, while mutation is only a background 
necessity. The general agreement nowadays is that the answer is 
problem-dependent: If there exists a “semantically meaningful” 
crossover for the problem at hand, it is probably a good idea to 
use it. But otherwise mutation alone might be sufficient to find 
good solutions – and the resulting algorithm can still be called an 
Evolutionary Algorithm.

1.1.4 Representation-independent

Artificial Darwinism

Darwin’s theory states that the fittest individuals reproduce and 
survive. The evolution engine, i.e. the two steps of selection (of 
some parents to become genitors) and replacement (of some 
parents by newborn offspring) are the artificial implementations 
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of these two selective processes. They differ in an essential way: 
during selection step, the same parent can be selected many times; 
during replacement step, each individual (among parents and 
offspring) either is selected, or disappears forever. Proportional 
selection (aka roulette-wheel) has long been the most popular 
selection operator: each parent has a probability to be selected that 
is proportional to its fitness. However, the difficulty is to scale the 
fitness to tune the selection pressure: even the greatest care will 
not prevent some super-individual to take over the population 
in a very short time. Hence the most widely used today is 
tournament selection: to select one individual, T individuals are 
uniformly chosen, and the best of these T is returned. Of course, 
both roulette-wheel and tournament repeatedly act on the same 
current population, to allow for multiple selection of the very best 
individuals.

There are two broad categories of replacement methods: either 
the parents and the offspring “fight” for survival, or only some 
offspring are allowed to survive. Denoting by µ (resp. λ) the 
number of parents (resp. offspring) as in ES history the former 
strategy is called (µ + λ) and the latter (µ, λ). When µ = λ, the 
comma strategy is also known as generational replacement: 
all offspring simply replace all parents. When λ = 1, the (plus!) 
strategy is then termed steady-state and amounts to choosing one 
parent to be replaced.

An important point about the evolution engine is the monotonicity 
of the best fitness along evolution: for instance, ES plus strategies 
are elitist, i.e. ensure that the best fitness can only increase from 
one generation to another, while the comma strategies are not 
elitist – though elitism can be a posteriori added by retaining the 
best parent when a decrease of fitness is foreseen.

Termination criterion

There has been very few theoretical studies about when to stop an 
Evolutionary Algorithm. The usual stopping criterion is a fixed 
amount of computing time (or, almost equivalently, of fitness 
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computations). A slightly more subtle criterion is to stop when a 
user-defined amount of time has passed without improvement of 
the best fitness in the population. 

Setting the parameters

EAs typically have a large number of parameters (e.g. population 
size, frequency of recombination, mutation step-size, selective 
pressure, . . . ). The main problem in this respect is that even the 
individual effect of one parameter is often unpredictable, let 
alone the combined influence of all parameters. Most authors 
rely on intensive trials (dozens of independent runs for each 
possible parameter setting) to calibrate their algorithms – an 
option that is clearly very time consuming. Another possibility is 
to use longexisting statistical techniques like ANOVA. A specific 
evolutionary trend is to let the EA calibrate itself to a given 
problem, while solving that problem

Result analysis

As with any randomized algorithm, the results of a single run of 
an EA are meaningless. A typical experimental analysis will run 
say over more than 15 independent runs (everything equal except 
the initial population), and present averages, standard deviations, 
and T-test in case of comparative experiments. However, one 
should distinguish design problems, where the goal is to find at 
least one very good solution once, from day-to-day optimization 
(e.g. control, scheduling,. . . ), where the goal is to consistently find 
a good solution for different inputs. In the design context, a high 
standard deviation is desirable provided the average result is not 
too bad. In the optimization context, a good average and a small 
standard deviation are mandatory.
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1.2 THEORY AND APPLICATIONS OF  
EVOLUTIONARY COMPUTATION

Evolutionary computation is a powerful problem solver inspired 
from natural evolution. It models the essential elements of biological 
evolution and explores the solution space by gene inheritance, 
mutation, and selection of the fittest candidate solutions. The 
dialects of evolutionary algorithms include genetic algorithms, 
evolutionary strategies, genetic programming, particle swarm 
optimization, ant colony optimization, artificial immune systems, 
estimation of distribution algorithms, differential evolution, and 
memetic algorithms. These evolutionary methods have proven 
their success on various hard and complex optimization problems. 

1.2.1 Discrete Dynamics in Evolutionary Computation and 
Its Applications

Evolutionary computation (EC) is considered to be a natural and 
artificial system with discrete dynamics. EC has been successfully 
applied to various real-world problems for optimization purposes. 
The aim of this special issue is to publish original and high-quality 
articles related to discrete dynamics in EC and its applications.

This special issue was opened in November of 2015 and closed 
in February of 2016. There were a total of 29 submissions. All of 
them were peer-reviewed according to the high standards of this 
journal and only 5 of them were accepted for publication, which 
gave important developments in discrete dynamics in EC and its 
applications. The guest editors of this special issue hope that the 
presented results could outline new ideas for further studies.

In EC, selection or mating is one of the most important operations. 
“A New Adaptive Hungarian Mating Scheme in Genetic 
Algorithms,” C. Jung et al. suggested an adaptive mating scheme 
from Hungarian mating schemes, which consist of maximizing 
the sum of mating distances, minimizing the sum, and random 
matching. They presented an adaptive algorithm to elect one of 
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these Hungarian mating schemes. Each mated pair of individuals 
voted for the next generation mating scheme. The distance 
between parents and the distance between parent and offspring 
were considered during voting. Two well-known combinatorial 
optimization problems, the traveling salesman problem and the 
graph bisection problem, which are NP-hard, were considered 
to show the effectiveness of their adaptive method. Since various 
factors affect the fluctuation of network traffic, accurate prediction 
of network traffic is considered as a challenging task of the time 
series prediction process. “A Network Traffic Prediction Model 
Based on Quantum-Behaved Particle Swarm Optimization 
Algorithm and Fuzzy Wavelet Neural Network,” K. Zhang et al. 
proposed a novel prediction method of network traffic based on 
quantum-behaved particle swarm optimization (QPSO) algorithm 
and fuzzy wavelet neural network (FWNN). The authors 
introduced QPSO and presented the structure and operation 
algorithms of FWNN. The parameters of FWNN were optimized 
by a QPSO algorithm. This optimized QPSO-FWNN was applied 
to the prediction of network traffic successfully when compared to 
different prediction models such as BP neural network, RBF neural 
network, fuzzy neural network, and FWNN-GA neural network.

The exponential growth in data traffic due to the modernization 
of smart devices has resulted in the need for a high-capacity 
wireless network in the future. To successfully deploy 5G 
networks, we should be able to handle the growth in the data 
traffic. The increasing amount of traffic volume puts excessive 
stress on the important factors of the resource allocation methods 
such as scalability and throughput. “A Genetic Algorithm with 
Location Intelligence Method for Energy Optimization in 5G 
Wireless Networks,” R. Sachan et al. defined network planning 
as an optimization problem with the decision variables such as 
transmission power and transmitter location in 5G networks, 
leading to interesting implementation using some heuristic 
approaches such as differential evolution and real-coded genetic 
algorithm (RCGA). The authors modified an RCGA-based method 
to find the optimal configuration of transmitters by not only 
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offering optimal coverage of underutilized transmitters, but also 
optimizing the amounts of power consumption.

1.2.2 Using Evolutionary Computation on GPS Position 
Correction

Global positioning System, GPS, has been successfully applied 
in various areas such as navigation, meteorology, military tasks, 
mapping, tour design, path tracking tools, and more. Recently 
many mobile devices have been equipped with embedded GPS 
such as tablet PCs and smart phones. They provide maps to help 
users not to lose their way or search the shortest route to their 
destination.

Many techniques are proposed to improve GPS position accuracy. 
A commonly used technique is to use relative positioning. 
Relative positioning methods, including static, rapid static, 
pseudokinematic, kinematic, and real-time kinematic, have 
proved their ability of improving GPS accuracy. In, Berber et al. 
claimed that pseudokinematic technique produces closest results, 
which could significantly reduce the error to 2 centimeters.

Differential correction is an effective method to improve GPS 
positional accuracy. A GPS receiver with such technique is called 
dGPS. A typical differential correction requires a reference 
stationary receiver at a known location. Figure 1 shows a typical 
scenario of the dGPS environment. The exact location information 
of reference stationary receiver is known. It receives GPS signals 
and calculates its position. Under the assumption that close 
GPS receivers suffer similar noises and after evaluating the 
difference between the exact known position information and 
the calculated position information, the reference stationary 
receiver communicates with roving GPS receivers to correct their 
position information. dGPS can be used to eliminate affections 
of ionospheric and tropospheric delay, ephemeris error, and 
satellite clock error. However, when the error is due to multipath 
error, or poor satellite measurement geometry, the improvement 
effectiveness of dGPS technique is relatively low.
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Figure 1: An illustration of dGPS scenario. The precise location of the 
reference stationary receiver is known. 

Figure 2: A consumer-grade GPS receiver at a location which has exact 
known location.

This technique is based on differential correction and genetic 
programming (GP). GP will be used to generate a correction 
function from NMEA information derived from the GPS receiver 
at the known location and the GPS receiver which needs to be 
corrected. The receiver which requires to be corrected will apply 
the function to obtain its corrected location information.
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1.2.3 Layered Architecture Genetic Programming

Genetic programming is a research area of evolutionary 
computation. It has been proved that GP is capable of finding 
a solution efficiently. GP, like other techniques in evolutionary 
computation, generates possible solutions—in this case, 
correction functions—randomly for the given problem under 
given constrains. The fitness value which of an individual is used 
to measure the degree of the individual fitting with the given 
problem is determined by a predefined fitness function. The set 
with fixed size of individuals is named a population. In order to 
produce new solutions, genetic operators such as crossover and 
mutation are applied on selected individuals, called  parents, 
to create offspring and mutant. Comparing the fitness degree 
of those offspring and mutant with parents, which have higher 
fitness value, will be kept as survived individuals. All survived 
individuals will replace the original population. A  generation  is 
finished once the original population is fully replaced. After a 
number of generations, evolutionary process completes and the 
individual with highest fitness is regarded as the result. 

We use the improved version of genetic programming called 
layered architecture genetic programming, LAGEP. LAGEP is only 
usable with functional expression individuals. It utilizes the layer 
architecture to arrange populations. Populations in the same layer 
evolve independently. Once every population finishes evolutionary 
progress, the best individual of each population evaluates with 
its training instances, T, to generate a series of numerical results. 
The number of results is equal to |T|. Combining those values, 
a new training set  T′ having  |T|  instances could be produced. 
Supporting that the number of populations in the layer is  n,  T′ 
will be an n-dimensional training set. The final layer of LAGEP 
contains one population only. The individual produced by this 
population is the evolutionary result. The flowchart of LAGEP is 
shown in Figure 3.
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Figure 3: The flowchart of LAGEP.

Training instances are constructed by raw information obtained 
from two GPS receivers and the known location. GPS receivers 
are capable of transferring different types of NMEA interpreted 
sentences. In this work, we used GPGGA to represent position 
information, as shown in Table  1. The third, fifth, tenth, and 
twelfth field are symbols that can be harmlessly eliminated. The 
value of sixth field indicates GPS quality which is fixed. The 
thirteenth and fourteenth are usable when dGPS is available. The 
fifteenth is the checksum used to identify correctness of received 
data. In conclusion, 8 out of 15 fields can be removed. Two GPS 
receivers construct a 13-feature training instance after eliminating 
a redundant UTC time feature since those GPS receivers would 
have identical UTC time. Those features with longitude and 
latitude of the known location form a 15-feature training instance, 
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as shown in Table 2. The target value is either known latitude or 
known longitude to which we intent to correct GPS receiver as 
close as possible.

Table 1: Fifteen fields of GPGGA sentence.

Number Meaning

1 UTC of position
2 Latitude
3* N or S
4 Longitude
5* E or W
6* GPS quality indicator

1: invalid
2: GPS fix
3: dGPS fix

7 Number of satellites in use
8 Horizontal dilution of position
9 Antenna altitude above/below mean sea 

level (geoid)
10* Meters (antenna height unit)
11 Geoidal separation
12* Meters (units of geoidal separation)
13* Age in seconds since last update from dif-

ferential reference station
14* Differential reference station ID
15* Checksum
Removed features.

Table 2: Features of a training instance.

Number Meaning

Target value Known latitude/known longitude
1–7 $GPGGA from GPS receiver 1 as shown in Table 1
8–13 $GPGGA from GPS receiver 2 as shown in Table 1 

without the UTC of position
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14 Known latitude (where GPS receiver 1 is located)
15 Known longitude (where GPS receiver 1 is located)

1.2.4 Algorithmic Mechanism Design of Evolutionary  
Computation

We consider algorithmic design, enhancement, and improvement 
of evolutionary computation as a mechanism design problem. All 
individuals or several groups of individuals can be considered 
as self-interested agents. The individuals in evolutionary 
computation can manipulate parameter settings and operations 
by satisfying their own preferences, which are defined by an 
evolutionary computation algorithm designer, rather than by 
following a fixed algorithm rule. Evolutionary computation 
algorithm designers or self-adaptive methods should construct 
proper rules and mechanisms for all agents (individuals) to 
conduct their evolution behaviour correctly in order to definitely 
achieve the desired and preset objective(s). As a case study, we 
propose a formal framework on parameter setting, strategy 
selection, and algorithmic design of evolutionary computation by 
considering the Nash strategy equilibrium of a mechanism design 
in the search process. The evaluation results present the efficiency 
of the framework. This primary principle can be implemented in 
any evolutionary computation algorithm that needs to consider 
strategy selection issues in its optimization process. The final 
objective of our work is to solve evolutionary computation design 
as an algorithmic mechanism design problem and establish its 
fundamental aspect by taking this perspective. 

Game theory is the methodology used to research strategic 
interaction among several self-interested agents. Some important 
concepts, such as  type,  strategy, and  utility, are useful to an 
understanding of the theoretical framework of game theory. 
Agent type indicates the preferences of the agent over different 
outcomes in a game. A strategy is a plan or a rule, which defines 
the actions that an agent will select in a game. The utility of an 
agent determines different allocations and payments under its and 
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other agents’ types and strategy profiles; for example, an agent 
rationality in game theory is to implement the expected utility to 
be maximum. An agent will select a strategy that maximizes its 
expected utility, given its preferences with regard to outcomes, 
beliefs about the strategies of other agents, and structure of the 
game.

Nash equilibrium (NE) is one of the solution concepts that game 
theory provides to compute outcomes of a game from self-interested 
agents under certain assumed information that is available to 
each agent, such as agents types and strategies. It states that every 
agent in a game should select a maximum utility strategy taking 
account of other agents’ strategies so as to achieve equilibrium. 
The fundamental aspect of game theory lies in the Nash solution 
concept which, however, requests stronger assumptions on agents’ 
information (type, strategy, utility, etc.). There are some related 
solution concepts, such as dominant strategy and Bayesian-Nash 
strategy in game theory. 

The history of mechanism design can be traced back to the 1920s 
to the 1930s, when there was an economic controversy concerning 
the socialist economic system. Liberal economists, such as von 
Mises and von Hayek, believed that socialist economics cannot 
obtain effective information to make their economic system 
operate efficiently. However, other economists, such as Lange, 
thought socialist economics can solve the problem of requesting 
more information about economic operation so as to promote 
efficient resource allocation. The contention of this controversy 
focuses on the information issue, which is also a core problem 
of mechanism design. Hurwicz established the fundamentals of 
mechanism design theory from the information viewpoint, which 
proposed a common framework to compare the issue of efficiency 
among different economic systems.

Mechanism design theory can be considered as a comprehensive 
utilization of game theory and social choice theory, which is 
referred to as principal agent theory and implementation theory 
as well. Its primary philosophy is to design a series of rules to 
implement the trust between principal and agent and to ensure the 
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mechanism runs well under an asymmetric information condition. 
The fundamental issues of mechanism design refer to (1) whether 
there is a set of rules in a game and (2) how to implement these 
rules. The objective of mechanism design is to achieve a preset 
objective that a game establishes, when all agents act for their own 
benefit with their private information.

When we make reference to individuals in EC, they are neither 
rational nor self-interested participants in an EC algorithm. The 
individuals just follow the fixed rules of the EC algorithm. The 
design principle of an EC algorithm should be more reasonable 
based on this assumption, rather than merely simulating natural 
phenomenon in an iterative process of evolution. There are 
several issues that need to be discussed in this context: (1) what 
kind of information should be involved in mechanism design of 
EC algorithm; (2) how to distinguish principal(s) and agent(s) in a 
game of EC algorithm design; (3) which solution concept should 
be implemented in this game; (4) how to define the expected utility 
function for an established mechanism or model; (5) whether the 
established mechanism or model is the optimal one; and (6) what 
are the characteristics and properties of designed game induced 
by EC. After modelling EC as a game, we can introduce theoretical 
principles of game theory and microeconomic theory into the 
fundamentals of EC for designing, enhancing, and improving 
more efficient and effective EC algorithm. This is the primary 
motivation and original contribution of this work.

1.2.5 Evolutionary Computation Meets Game Theory and 
Mechanism Design

Game theory attempts to determine the outcome of a game with a 
set of given strategies from self-interested agents, and mechanism 
design seeks to design the strategies of agents to obtain the 
desired outcome in a game. The research objectives of game 
theory and mechanism design are to find outcomes corresponding 
to strategies and to design strategies under a desired outcome, 
respectively. However, EC tries to find the optimal solution(s) of 
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an optimization problem. These three disciplines, game theory, 
mechanism design, and EC, are quite different with regard to 
research philosophies, approaches, or objectives.

Game theory and mechanism design have been introduced into 
some fields, such as distributed artificial intelligence, resource 
allocation, and scheduling. It is easy to establish concrete models of 
agent and utility function by using game theory in corresponding 
applications. Mechanism design was also reported in computation 
related topics and algorithmic design problems, which presents 
complexity bounds and worst case approximation. These studies 
focus definitely on the same viewpoint, that is, a mechanism 
design problem of deterministic optimization. These works do not 
relate to EC and do not pursue our proposal, that is, an algorithmic 
mechanism design of the EC, which is a stochastic optimization 
method rather than deterministic optimization one.

From the related literatures and to the best of our knowledge, EC 
can act as an optimization tool to find the best response, equilibrium 
of strategy in game theory and mechanism design. Some EC 
algorithms, such as genetic algorithm, genetic programming, and 
coevolution, are applied to game theory problems to obtain the 
best strategy or parameters. Scant literature reports having applied 
the philosophy and methodology of game theory or mechanism 
design to the fundamental aspects of EC. 

1.2.6 Algorithmic Mechanism Design of Evolutionary  
Computation: A Strategy Equilibrium Implementation 
Problem

Motivation of the Proposal

Conventional EC algorithm as a search method is applied to an 
optimization problem with a set of fixed algorithm parameters 
and operations. Although the inspiration of EC seeks to find 
adaptive mechanisms in its search scheme, the fixed parameter 
setting restricts its optimization capability. From the system theory 
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viewpoint, the whole EC algorithm system can be considered as a 
control system and its parameters decide the system behaviour. If 
we aim to obtain the best optimization performance, the parameters 
of EC algorithm should be controllable, and the relationship 
between parameter settings and optimization performance should 
be observable. However, because the EC algorithm belongs to 
stochastic method, such deterministic methods (e.g., automatic 
control method) have not been applied to the EC area in order to 
study on its theoretical fundamentals.

There are primary three research directions for improving 
optimization performance of an EC algorithm. The first is 
obtaining information from a fitness landscape, such as fitness 
landscape approximation, and using the information to conduct 
a special operation or to develop new search schemes for tuning 
the parameter of an EC algorithm. The second is developing new 
mechanisms in extant EC algorithm to enhance its performance 
or to implement the parameter adaptive mechanism. Individuals 
in conventional EC algorithms or in some population-based 
optimization algorithm are common elements, which present 
the search space and structure aspect of an optimized problem. 
Individuals search for the optimum/optima with the information 
shared between one another, so they are influenced each by the 
other from one generation to the next. They operate under the 
same evolutionary operations with fixed operation rates from 
parameter settings in a certain EC algorithm. This work scheme 
restricts the EC algorithm search capability.

If we consider individuals in EC algorithm as agents, the EC 
algorithm therefore can be considered as a game, whose outcome 
is optimal solution(s) or some other metric(s). Furthermore, these 
agents play the game (i.e., EC algorithm) with self-interested 
preference and conduct optimization strategies with their own 
preferences. An EC algorithm designer can play this game by using 
noncooperative or cooperative game concepts. The objective of the 
EC algorithm design is to find optimum/optima by designing a 
proper strategy for these individuals (i.e., agents). This description 
can be abstracted as a mechanism design problem. That is, design, 



Introduction to Evolutionary Computation 23

parameter setting, and operation selection of the EC algorithm 
can be decided by the individuals, and the desired outcome is to 
find the final optimum/optima. EC algorithm can be modelled as 
a game, that is, an agent system, so the corresponding theoretical 
fundamentals of agent system, game theory, or mechanism design 
can be brought to bear on the study of the fundamental theoretical 
aspects of EC algorithm.

1.2.7 Strategy Equilibrium Implementation in  
Evolutionary Computation Algorithm

We propose that the design of an EC algorithm can be considered 
as a mechanism design problem. Based on these concepts, 
we establish a formal EC algorithm framework by using the 
equilibrium concept and solve this mechanism design problem by 
finding the Nash strategy equilibrium in EC algorithm.

Agent and Its Type

An agent is an abstract concept in game theory. It refers to a 
participant in a game who will make strategic decisions based 
on its type. Individuals in EC are definitely considered as agents 
under the basic philosophy of our proposal. In game theory, an 
agent is treated as being self-interested. However, in EC, we 
consider it as a more rational one that allows itself to select certain 
operations, even though its utility will become low. For example, 
the simulated annealing mechanism in EC is such a case, if the 
EC algorithm allows individuals to be replaced by their offspring 
with worse fitness. The agent in a game can determine its own 
behaviour, so the individuals of EC should follow this rule by 
encoding operation types and their rates in themselves. In the EC, 
the type of an agent can be considered as information, such as 
fitness and fitness landscape, or some metrics of the evolution.
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Strategy Equilibrium

The agent in EC algorithm is the individual, which is a participant 
in a game of EC. Each individual can decide their own strategy, 
that is, operation and operation rate, by their utilities and types, 
which can be measured as fitness improvement information 
or other algorithm evaluation metrics. All the EC algorithm 
implementations can be abstracted as a mechanism design 
problem, whose equilibrium concept is a solution of the problem. 
The objective of mechanism design is to implement some strategy 
equilibrium concepts in a game; however, it is an optimization 
problem, in which equilibrium implementation can lead to the 
best performance and fast convergence of EC algorithms. We 
initially discuss, design, and evaluate our proposed framework 
by implementing Nash equilibrium, but it is not limited to within 
Nash equilibrium.

A Case Study: Nash Strategy Equilibrium-Based Differential 
Evolution Algorithm

After we introduce the optimization process of EC as an algorithmic 
mechanism design problem, there are a variety of ways to 
implement EC algorithms by designing concrete implementations 
of a game. There are two design issues that should be concentrated 
on especially. One is the definition of strategy; the other is 
equilibrium calculation. In Nash strategy equilibrium-based DE, 
operations and their parameters are coded with each individual, 
so that the individual can select their own operation and rate. 
Mutation method, crossover rate, and scale factor rate are three 
primary parameter settings in DE. For simplifying the design 
objectives, we design the algorithm by splitting individuals into 
two groups (Group A and Group B) with equal population size 
and strategy sets within the following criteria:
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1.3 ANALYSES AND DISCUSSIONS

The objective of this study is not only to find a method for 
designing, enhancing, and accelerating EC from the viewpoint of 
an algorithmic mechanism design problem, but also to establish 
EC fundamental aspects by borrowing from game theory and 
mechanism design.

There are three parallel ways to research and consider our world 
from the philosophies of determinism, probability, and chaos. In the 
optimization field, there are also three categories of optimization 
method from the corresponding philosophy and methodology, that 
is, deterministic, stochastic, and chaotic optimization methods. EC 
belongs to the stochastic one, and its fundamental aspect should 
be described from the probability viewpoint. This restricts the 
fundamental development of EC and explanation capability of 
its algorithms. This study tries to use fundamentals from game 
theory and mechanism design (deterministic theory) to explain 
EC (stochastic algorithm) and establish its fundamental contents.

1.3.1 Prediction of Drifter Trajectory Using Evolutionary 
Computation

The technology for predicting particle trajectories in the ocean 
can be used in a variety of ways. For example, it can provide a 
method to track objects in the ocean during a distress situation 
or an accident through the last observed time and location data, 
as well as predicting the path of icebergs floating at the sea. It 
also presents the possibility of tracing pollutants in the event of 
accidents such as the 2010 Deepwater Horizon oil spill in the Gulf 
of Mexico; as a result, numerous studies have been conducted on 
the matter. Conventionally, a specific equation is used to predict 
the movement of an object, and the constant parameters used 
are based on previously studied values. In this study, we set this 
equation in a form suitable for parameter optimization irrespective 
of fluid dynamics and predicted the particle trajectory by setting 
the constant parameter used here to the optimal value through 
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evolutionary computation. This is a novel prediction method, and 
it is significant in that it suggests a new method of designing a 
prediction model.

Figure 4: Surface drifters

1.3.2 A Review of Gait Optimization Based on Evolutionary 
Computation

Compared to wheeled robots, legged robots usually possess 
superior mobility in uneven and unstructured environments. This 
is because they can use discrete footholds to overcome obstacles, 
climb stairs, and so forth, instead of relying on a continuous 
support surface.

A gait is a cyclic, periodic motion of the joints of a legged robot, 
requiring the sequencing or coordination of the legs to obtain 
reliable locomotion. In other words, gait is the temporal and 
spatial relationship between all the moving parts of a legged robot. 
Gait optimization is very important for legged robots, because 
it determines the optimal position, velocity and acceleration for 
each Degree of Freedom (DOF) at any moment in time, and the 
gait pattern will directly affect the robot’s dynamic stabilization, 
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harmony, energy dissipation and so on. Gait optimization 
determines a legged robot’s quality of movement.

Why Evolutionary Computation Is Suitable for Gait Optimi-
zation

Gait Generation Is a Multiconstrained, Multiobjective Optimiza-
tion Problem

Gait generation, which incorporates mobility and stability, is a 
very challenging task for legged robots, because their system of 
locomotion has multiple DOFs and a variable mechanical structure 
during locomotion. As a result a large number of parameters 
have to be established. For example, 54 motion parameters have 
to be considered for the walk gait of the Sony AIBO robot. To 
obtain a natural and efficient gait for a legged robot, two kinds 
of strategies for sequencing or coordination of the leg movements 
can be followed.

The first strategy assumes that the gates of humans or animals are 
optimal, as otherwise they would not have been able to survive the 
competition and natural selection proposed by Darwin’s Theory 
of Evolution. This assumption has been proved accurate. The 
constrained optimization hypothesis suggests that gait parameters 
are selected to optimize (minimize) the objective function of the 
cost of transport (metabolic cost/distance) within the limitations 
of imposed constraints. A lot of research has shown that humans 
and animals move in a way that minimizes the metabolic cost of 
locomotion and validates the idea that the gait synthesis of legged 
robot is a constrained optimization problem 

Robots simulate human or animal behavior. Therefore, it is quite 
natural to use biological locomotion data to control the gait of 
robots. For example, Human Motion Captured Data has been 
adopted to drive a humanoid robot. However, some research 
indicates that biological locomotion data cannot be used directly 
for a legged robot due to kinematic and dynamic inconsistencies 
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between humans/animals and the legged robot. This implies 
the need for kinematic corrections when calculating joint angle 
trajectories

The second strategy formulates the gait generation problem of 
the legged robot as an optimization problem with constraints. It 
generates the optimal gait cycle by minimizing some performance 
indexes, for example, velocity of motion, stability criteria, actuating 
forces, energy consumption, and so forth. The gait generation 
problem of legged robots often has several objectives, and some of 
these objectives may be contradictory to each other (for example, 
speed and stability). Thus the gait generation problem can be 
stated as a multi-constrained and multi-objective optimization 
problem.

These two gait generation strategies may reach the same goal 
by different routes because both of them actually solve the 
gait synthesis problem as a multi-constrained multi-objective 
optimization problem. Once a database of precomputed optimal 
gaits has been created, the robot can cover the entire interval of 
precomputed optimal gaits by interpolation and thus realize 
smooth real time locomotion.

1.3.3 Evolutionary Computation Is Suitable for the Gait 
Optimization Problem

The dynamic equations of legged robot locomotion are high order 
highly coupled and nonlinear, and gait optimization for legged 
robots requires searching a set of parameters in a highly irregular, 
multidimensional space. As a result, the standard gradient search-
based optimization methods are not useful for legged systems 
with high DOF. 

Evolutionary Computation (EC), including the Genetic Algorithm 
(GA), Genetic Programming (GP), Evolutionary Programming 
(EP), and Evolutionary Strategy (ES), is a natural choice for the 
gait optimization of legged robots.
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First, EC uses optimization methods based on Darwin’s Natural 
Evolution Theory. According to this theory, the locomotion 
mechanisms of life forms resulted from natural selection and the 
interaction between individuals and the natural environment. This 
makes the use of EC a natural choice, as it is biologically inspired 
and can generate biologically plausible solutions.

Second, from the computational point of view, EC also fits well with 
the gait optimization of legged robots, because of the following:

•	 Gait optimization problems can have multiple criteria, 
multiple constraints, as well as multiple design variables, 
and EC has been shown effective for these kinds of 
large-dimension, multi-objective, multi-constraint 
optimization problems.

•	 EC has been seen to be robust for search and optimization 
problems and has been used to solve difficult problems 
with objective functions where local information such as 
continuity, differentiability, and so on is not available, 
even though it is very important for gait optimization, 
as the objective functions of gait optimization may be 
very complex and it is very difficult to obtain this local 
information.

•	 Because of the complexity and high DOF of the mechanical 
structure, it is difficult to obtain a precise dynamic model 
of a legged robot. EC will be efficient as this method is 
resistant to noise in the evaluation function and offers 
a model-free approach to optimization, only requiring 
feedback from the environment to improve performance 
when online evolution is deployed with a real robot.

•	 EC has strong global search capability and is also 
insensitive to the initial population. Therefore EC 
decreases the risk of being trapped in a local minimum 
for finding a true optimum solution.

•	 EC can easily be parallelized. Since gait optimization 
of legged robots is often a large-scale problem and the 
objective function and constraints are often complex, 
the process of evolutionary optimization may be very 
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time-consuming because of the high computational 
cost of EC due to iterative evaluations of candidate 
solutions. Therefore it is advantageous to use parallel 
implementations of EC to gain efficiency and improve 
the solution quality of EC-based gait optimization.

1.3.4 How to Evolve the Optimal Gait

The Multiform EC Models Adopted in Gait Optimization

Gait optimization based on EC is actually a combination of EC 
procedures and gait optimization problems. A general block 
diagram of EC-based gait optimization is given in Figure 5. This 
offers a first glance at the application of EC technique for gait 
optimization of legged robots.

Figure 5: A general block diagram for EC-based gait optimization
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A lot of EC models have been adopted to solve gait optimization 
problems. The gaits most often studied include the gaits of biped, 
quadruped, and hexapod robots engaged in walking, running, 
negotiating sloping surfaces, and going up and down stairs 

The Genetic Algorithm (GA) is the gait optimization tool which 
is most often used, and some modifications can be introduced 
to fit the specific problems of gait optimization. For example, 
interpolating and extrapolating operators, two-point crossover, 
Gaussian mutation, overlapping populations, and Elitism strategy 
have been adopted. The explicit fitness sharing mechanism has also 
been adopted to prevent premature convergence to suboptimal 
extremes. This speciation technique divides the population into a 
fixed number of species, where each species contains individuals 
that are similar to each other, and can force similar members of 
the same species to “share” one representative score, thereby 
penalizing species with a large number of individuals and 
allowing new species to form even if they do not perform as well 
as other, larger, species. 

Adaptability that can adaptively change the probabilities of 
crossover and mutation is introduced in GA to balance global 
and local exploitation and exploration towards the progress of 
evolutionary optimization. For instance, Adaptive GA is used to 
optimize the gait of a humanoid robot ascending and descending 
a staircase by searching optimal trajectory parameters in blending 
polynomials. 

Adaptive mechanisms may also be applied to control mutation 
rate. This method places radiation (the level of radiation decreases 
over time) into the middle of a region where a large group of 
individuals is clustered within the same locality to dramatically 
increase the mutation rate in this area, causing all the individuals 
to mutate in the next generation and to disperse to other areas 
of the space. It is reported that this mechanism can be useful in 
controlling the learning behavior of GA and makes GA more 
robust with respect to noise in parameter evaluations preventing 
premature convergence to suboptimal extremes.



Evolutionary Computing32

Simulation results obtained using GP on an AIBO quadruped 
in the Webots environment are reported much better than those 
obtained using simple GA-based approaches. In this approach, 
the gait is defined using joint angle trajectories instead of locus of 
paw to reduce the search space of optimization. An elite archive 
mechanism (EAM) is used to prevent premature convergence 
and improve the search capability of GP. EAM can preserve elite 
individuals at an early stage and flow them into in later stage. In 
this way, genetic material from elite individuals at an early stage 
is used to refresh an evolutionary convergent state and to create a 
role for preserving diversity as long as possible.

GE is one of the most popular forms of grammar-based GP. The 
advantage of GE lies in that it allows the user to conveniently 
specify and modify the grammar, whilst ignoring the task of 
designing specific genetic search operators. Thus GE can be used 
to optimize pre-existing motion data or generate novel motions. 
Using a Fourier gait representation to encode the chromosome and 
the dynamic similarity principles as a constraint, GE is employed to 
optimize the gait retargeting problem in animation. It successfully 
modified one animal’s gait cycle data into a different animal’s gait 
cycle data in computer simulations of animal locomotion. The 
same method can also be used to optimize the gait of a walking 
horse from a veterinary publication into a physics-based horse 
mode. 

ES is also employed to solve the gait optimization problem, and 
some encouraging results have been obtained.

Using a hand-tuned gait as a seed, the bipedal gait is directly 
evolved on a physical robot by an ES approach with parametric 
mutation and structural mutation. After hundreds of evaluations 
significant improvements were obtained for a functioning but 
nonoptimized bipedal gait that improved the walking speed by 
around 65% compared to the hand-tuned gait. 

A hybrid approach of space-time optimization and covariance 
matrix adaptation evolution strategy (CMA-ES) has been 
proposed to generate gaits and morphologies for legged animal 
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locomotion. It effectively generated dynamic locomotion gait of 
bipeds, a quadruped, as well as an imaginary five-legged creature 
by simulation. The gaits and morphologies produced are reported 
lifelike and exhibit many qualitative traits seen in real animals. This 
hybrid approach may combine the efficiency in high-dimensional 
spaces and the ability to handle general constraints of space-time 
optimization with the ability to handle nondifferentiable variables 
and to avoid many local minima from CMA.

Apart from traditional EC and its variations, some relatively new 
types of EC have also been applied to gait optimization research.

Estimation of Distribution Algorithms (EDAs) are evolutionary 
algorithms based on probabilistic models that replace the operators 
of mutation and crossover used in GAs. The main advantage of 
EDA lies in the fact that the knowledge about the problem acquired 
previously can be used to set the initial probability model, and 
the global statistical information about the search space can be 
extracted directly by EDA to modify the probability model with 
promising solutions. This can reduce the search space and obtain 
good solutions in a shorter time interval. For this reason EDA has 
been used to study the gait optimization problem. For example, 
EDA has been applied to optimize the gait of the AIBO robot. 
A fitness function based on direct evaluation of the robots was 
adopted, and significant improvement of the previous gait was 
achieved over a short training period 

In some cases of gait optimization, the performance of a gait 
cannot be directly measured or calculated based on certain 
functions. In this case human preferences, intuition, emotions, 
and other psychological aspects can be introduced into the target 
system. Interactive evolutionary computation (IEC) is a form 
of evolutionary computation where the fitness function can be 
replaced by the user. A prominent advantage of IEC is that it can 
reflect user preference and allow optimization of the solution with 
a minimum of required knowledge in the problem domain. 

The multiobjective multiconstraint problem is often solved by 
combining the multiple objectives and constraints into a single 
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scalar objective problem using weighting coefficients. To do this, 
some problem-specific information is needed, and the relative 
importance of the objectives and constraints should be decided. In 
the complex problem of gait optimization, it is difficult to know this 
information in advance. In addition, there is no rational basis for 
determining adequate weights for these competitive or conflicting 
criteria, and the objective function that will be formed may lose 
significance due to the combination of noncommensurable 
objectives. Therefore, more and more gait optimization problems 
are parameterized and optimized using tailored Multiple Objective 
EC procedures, for example, the Strength Pareto Evolutionary 
Algorithm and Nondominated Sorting Genetic Algorithm with 
Fitness Sharing method, and the obtained Pareto-optimal gaits, 
which is a set of nondominated or noninferior gaits that satisfies 
different objective functions. These methods have shown good 
performance

1.3.5 Gait Representation and Chromosome Encoding

The gait of a legged robot may be represented in three-dimensional 
space or in joint space. In order to control a legged robot’s 
movement, it is necessary to generate the trajectories of all the 
joints. Therefore, gait is usually represented by a sequence of key 
poses (states) extracted from one complete gait cycle, and phases 
between these key poses are approximated by a polynomial 
function, for example, 3rd, 4th, or 5th order polynomials. These 
polynomial functions are adopted because they can insure that 
the joint trajectories are smoothly connected with first-order 
and second-order derivative continuity. First order derivative 
continuity guarantees the smoothness of velocity, while the second 
order guarantees the smoothness requirements of acceleration 
or the torque in the joints. As a result, the gait of robot will look 
natural.

If only the foot placement point of these key poses is specified, once 
the foot trajectories are generated, inverse kinematics should then 
be used to convert the locus of foot into the joint angles required to 
generate the foot placement curves for a particular gait.
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To make the robot optimally move from its current position/stance 
to a goal position/stance, other parameters apart from those of 
the leg joint trajectories should also be considered, for example, 
parameters describing the position and orientation of the body, 
how the robot’s weight shifts during walking, whether or how 
much the arms swing, and so forth.

The joint angles in these states, the coefficients of the polynomials, 
and some of the other parameters mentioned above are the design 
variables to be optimized by EC. These design variables, when 
treated as genes and arranged in an array, make up a chromosome 
of EC. 

A variety of chromosome encoding methods, including the gray 
code representation, real number coding, mixed encoding of 
floating point number, and binary number, have been adopted, 
but the most often used encoding is the real coded method. This 
is due to difficulties associated with binary representation when 
dealing with a continuous search space with large dimension

1.3.6 Comparing EC with Other Global Optimization  
Approaches

Besides evolution-based optimization techniques, other global 
optimization approaches that adopt a non-evolutionary metaphor 
have also been employed in gait optimization. These also search 
for the global optimum of the cost function without using the 
differential information of a given cost function.

Particle Swarm Optimization (PSO) can be used to optimize the 
stable and straight movement patterns (gaits) of a humanoid 
robot with the control signals of the joint angles produced by a 
Truncated Fourier Series (TFS). It is reported that PSO optimized 
TFS significantly faster and better than GA to generate straighter 
and faster humanoid locomotion because PSO bypassed a local 
minimum that GA was caught in. The authors therefore concluded 
that PSO is better than GA as a learning method for the gait 
optimization problem in a non-deterministic environment.
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We argue that GA may not necessarily be inferior to PSO in gait 
optimization, even in a non-deterministic environment such as 
the one in this experiment. This is because the PSO employed 
in this experiment was Adaptive PSO, which has a dynamically 
adjustable nonlinear parameter of inertia weight to control the 
balance between global and local exploration. A larger inertia 
weight facilitates a global search, while a smaller inertia weight 
facilitates a local search. The GA employed in this experiment 
is just a canonical paradigm with roulette wheel selection and a 
fixed rate of crossover and mutation. This may be the reason why 
PSO can speed up the search and perform better than GA in this 
experiment.

EC of course can employ the same mechanism to improve its 
efficiency. For example, Adaptive GA can adaptively change the 
probabilities of crossover and mutation during the process of 
evolution. In ES, the step size or mutation strength is often governed 
by self-adaptation (evolution window), and the individual step 
sizes for each coordinate or correlations between coordinates are 
either governed by self-adaptation or also by covariance matrix 
adaptation (CMA-ES).

Adaptive PSO is used to optimize the fastest forward gaits of the 
quadruped robot AIBO with the whole learning process running 
automatically on the physical robot. Starting with randomly 
generated parameters instead of hand-tuned parameters, several 
high-performance sets of gait parameters are obtained, and these 
gains were reported as being among the fastest forward gaits ever 
developed for the same robot platform.

Parallel PSO was applied to large-scale human movement problems, 
and experimental results show that PSO was outperformed by the 
gradient-based algorithm. It is reported that a single run with a 
gradient-based nonlinear least squares algorithm produced a 
significantly better solution than did 10 runs using global PSO. 
Thus the authors do not recommend using the PSO algorithm 
for solving large-scale human movement optimization problems 
possessing constraints or competing terms in the cost function.
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The results of this experiment may be a fortunate exception. The 
objective functions of large-scale gait optimization problems 
with hundreds of design variables will no doubt be massively 
multimodal and the landscape must be very rugged. Therefore 
a gradient-based algorithm will certainly be trapped in a local 
minimum, and the global search ability of EC is absolutely 
necessary for decreasing this risk. We agree with the suggestion of 
the authors that a global local hybrid algorithm may be necessary 
for PSO and other global optimizers to solve large-scale human 
movement problems efficiently.

As far as we have seen from the literature, Ant Colony Optimization 
(ACO) has not yet been used in the field of gait optimization 
though this too is a famous metaheuristic of Swarm Intelligence 
(SI) similar to PSO and has been widely used to solve a lot of kinds 
of optimization problems.

The univariate dynamic encoding algorithm for searches (uDEAS) 
has also been applied to the gait optimization problem of a biped 
model walking up and down a staircase. The simulation results 
show that uDEAS outperforms adaptive GA with a 17 s versus 
126 s run time on average and a slightly smaller minimum for best 
cost values. The authors attribute this result to the effectiveness of 
describing trajectories with the blending polynomial of uDEAS.

The problem representation method and the genotype encoding 
method directly determine the size and the characteristic of 
the search space and as a result directly affect the efficiency 
of EC optimization. For example, TFS is reported to be a good 
gait representation approach that can generate suitable angular 
trajectories for controlling bipedal locomotion. This is because it 
does not require inverse kinematics, and stable gaits with different 
step lengths and stride frequencies can be readily generated by 
changing the value of only one parameter in the TFS.

Though some comparison of performance between EC and other 
non-evolutionary global optimization approaches has been 
reported, no systematic comparative study has been carried out. 
Such a systematic comparative study may be not necessary or not 
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feasible because we often search for a set of satisfactory solutions 
instead of an absolutely global optimal solution. Both the robot 
platform and the objective functions of gait optimization will be 
different in each case, and thus it is difficult to find a benchmark 
robot and a set of benchmark objective functions to optimize.

Both EC and SI approaches are population-based iterative 
algorithms, even though they adopt different metaphors. Thus 
they share the same advantages and disadvantages in gait 
optimization, for example, a similar global and high-dimensional 
search capability, multi-objective optimization capability, as well 
as a lot of control parameters which require tuning. One thing that 
can be said for sure is that EC, and SI approaches are proven good 
tools for gait optimization for legged robots, and further research 
should be done to improve their performance in the field of gait 
optimization. 
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INTRODUCTION

An evolutionary algorithm is an evolutionary AI-based computer 
application that solves problems by employing processes that 
mimic the behaviors of living things. As such, it uses mechanisms 
that are typically associated with biological evolution, such as 
reproduction, mutation and recombination.

2
EVOLUTIONARY ALGORITHM
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Evolutionary algorithms function in a Darwinian-like natural 
selection process; the weakest solutions are eliminated while 
stronger, more viable options are retained and re-evaluated in the 
next evolution—with the goal being to arrive at optimal actions to 
achieve the desired outcomes.

2.1 EVOLUTIONARY ALGORITHM

As the history of the field suggests, there are many different 
variants of evolutionary algorithms. The common underlying 
idea behind all these techniques is the same: given a population of 
individuals within some environment that has limited resources, 
competition for those resources causes natural selection (survival 
of the fittest). This in turn causes a rise in the fitness of the 
population. Given a quality function to be maximized, we can 
randomly create a set of candidate solutions, i.e., elements of the 
function’s domain. We then apply the quality function to these as 
an abstract fitness measure – the higher the better. On the basis 
of these fitness values some of the better candidates are chosen to 
seed the next generation. This is done by applying recombination 
and/or mutation to them. Recombination is an operator that is 
applied to two or more selected candidates (the so-called parents), 
producing one or more new candidates (the children). Mutation 
is applied to one candidate and results in one new candidate. 
Therefore executing the operations of recombination and mutation 
on the parents leads to the creation of a set of new candidates (the 
offspring). These have their fitness evaluated and then compete 
– based on their fitness (and possibly age) – with the old ones 
for a place in the next generation. This process can be iterated 
until a candidate with sufficient quality (a solution) is found or a 
previously set computational limit is reached.

There are two main forces that form the basis of evolutionary 
systems:

•	 Variation operators (recombination and mutation) create 
the necessary diversity within the population, and 
thereby facilitate novelty.
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•	 Selection acts as a force increasing the mean quality of 
solutions in the population.

The combined application of variation and selection generally 
leads to improving fitness values in consecutive populations. It 
is easy to view this process as if evolution is optimizing (or at 
least ‘approximising’) the fitness function, by approaching the 
optimal values closer and closer over time. An alternative view is 
that evolution may be seen as a process of adaptation. From this 
perspective, the fitness is not seen as an objective function to be 
optimized, but as an expression of environmental requirements. 
Matching these requirements more closely implies an increased 
viability, which is reflected in a higher number of offspring. The 
evolutionary process results in a population which is increasingly 
better adapted to the environment.

It should be noted that many components of such an evolutionary 
process are stochastic. For example, during selection the best 
individuals are not chosen deterministically, and typically even 
the weak individuals have some chance of becoming a parent or of 
surviving. During the recombination process, the choice of which 
pieces from the parents will be recombined is made at random. 
Similarly for mutation, the choice of which pieces will be changed 
within a candidate solution, and of the new pieces to replace 
them, is made randomly. The general scheme of an evolutionary 
algorithm is given in pseudocode in Fig. 1, and is shown as a 
flowchart in Fig. 2.

Figure 1. The general scheme of an evolutionary algorithm in pseudo-
code.
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It is easy to see that this scheme falls into the category of generate-
and-test algorithms. The evaluation (fitness) function provides 
a heuristic estimate of solution quality, and the search process 
is driven by the variation and selection operators. Evolutionary 
algorithms possess a number of features that can help position 
them within the family of generate-and-test methods:

•	 EAs are population based, i.e., they process a whole 
collection of candidate solutions simultaneously.

•	 Most EAs use recombination, mixing information from 
two or more candidate solutions to create a new one.

•	 EAs are stochastic.

Figure 2. The general scheme of an evolutionary algorithm as a flow-
chart.

In particular, different streams are often characterized by the 
representation of a candidate solution – that is to say the data 
structures used to encode candidates. Typically this has the form 
of strings over a finite alphabet in genetic algorithms (GAs), real-
valued vectors in evolution strategies (ESs), finite state machines 
in classical evolutionary programming (EP), and trees in genetic 
programming (GP). The origin of these differences is mainly 
historical. Technically, one representation might be preferable 
to others if it matches the given problem better; that is, it makes 
the encoding of candidate solutions easier or more natural. For 
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instance, when solving a satisfiability problem with n logical 
variables, the straightforward choice is to use bit-strings of length 
n so that the contents of the ith bit would denote that variable i took 
the value true (1) or false (0). Hence, the appropriate EA would 
be a GA. To evolve a computer program that can play checkers, 
the parse trees of the syntactic expressions forming the programs 
are a natural choice to represent candidate solutions, thus a GP 
approach is likely. It is important to note two points. First, the 
recombination and mutation operators working on candidates 
must match the given representation. Thus, for instance, in GP the 
recombination operator works on trees, while in GAs it operates 
on strings. Second, in contrast to variation operators, the selection 
process only takes fitness information into account, and so it 
works independently from the choice of representation. Therefore 
differences between the selection mechanisms commonly applied 
in each stream are a matter of tradition rather than of technical 
necessity.

2.2 COMPONENTS OF EVOLUTIONARY  
ALGORITHMS

There are a number of components, procedures, or operators that 
must be specified in order to define a particular EA. The most 
important components are:

•	 representation (definition of individuals)
•	 evaluation function (or fitness function)
•	 population
•	 parent selection mechanism
•	 variation operators, recombination and mutation
•	 survivor selection mechanism (replacement)

To create a complete, runnable algorithm, it is necessary to specify 
each component and to define the initialization procedure. If we 
wish the algorithm to stop at some stage, we must also provide a 
termination condition.
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2.2.1 Representation (Definition of Individuals)

The first step in defining an EA is to link the ‘real world’ to the ‘EA 
world’, that is, to set up a bridge between the original problem 
context and the problem-solving space where evolution takes place. 
This often involves simplifying or abstracting some aspects of the 
real world to create a well-defined and tangible problem context 
within which possible solutions can exist and be evaluated, and this 
work is often undertaken by domain experts. The first step from 
the point of view of automated problem-solving is to decide how 
possible solutions should be specified and stored in a way that can 
be manipulated by a computer. We say that objects forming possible 
solutions within the original problem context are referred to as 
phenotypes, while their encoding, that is, the individuals within the 
EA, are called genotypes. This first design step is commonly called 
representation, as it amounts to specifying a mapping from the 
phenotypes onto a set of genotypes that are said to represent them. 
For instance, given an optimization problem where the possible 
solutions are integers, the given set of integers would form the set 
of phenotypes. In this case one could decide to represent them by 
their binary code, so, for example, the value 18 would be seen as a 
phenotype, and 10010 as a genotype representing it. It is important 
to understand that the phenotype space can be very different from 
the genotype space, and that the whole evolutionary search takes 
place in the genotype space. A solution – a good phenotype – is 
obtained by decoding the best genotype after termination. Therefore 
it is desirable that the (optimal) solution to the problem at hand – 
a phenotype – is represented in the given genotype space. In fact, 
since in general we will not know in advance what that solution 
looks like, it is usually desirable that all possible feasible solutions 
can be represented.
The evolutionary computation literature contains many synonyms:

•	 On the side of the original problem context the terms 
candidate solution, phenotype, and individual are 
all used to denote possible solutions. The space of all 
possible candidate solutions is commonly called the 
phenotype space.
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•	 On the side of the EA, the terms genotype, chromosome, 
and again individual are used to denote points in the 
space where the evolutionary search actually takes place. 
This space is often termed the genotype space.

•	 There are also many synonymous terms for the elements 
of individuals. A placeholder is commonly called a 
variable, a locus (plural: loci), a position, or – in a biology-
oriented terminology – a gene. An object in such a place 
can be called a value or an allele.

It should be noted that the word ‘representation’ is used in two 
slightly different ways. Sometimes it stands for the mapping from 
the phenotype to the genotype space. In this sense it is synonymous 
with encoding, e.g., one could mention binary representation or 
binary encoding of candidate solutions. The inverse mapping 
from genotypes to phenotypes is usually called decoding, and it is 
necessary that the representation should be invertible so that for 
each genotype there is at most one corresponding phenotype. The 
word representation can also be used in a slightly different sense, 
where the emphasis is not on the mapping itself, but on the data 
structure of the genotype space. This interpretation is the one we 
use when, for example, we speak about mutation operators for 
binary representation.

2.2.2 Evaluation Function (Fitness Function)

The role of the evaluation function is to represent the requirements 
the population should adapt to meet. It forms the basis for 
selection, and so it facilitates improvements. More accurately, it 
defines what improvement means. From the problem-solving 
perspective, it represents the task to be solved in the evolutionary 
context. Technically, it is a function or procedure that assigns a 
quality measure to genotypes. Typically, this function is composed 
from the inverse representation (to create the corresponding 
phenotype) followed by a quality measure in the phenotype space. 
To stick with the example above, if the task is to find an integer 
x that maximizes x2, the fitness of the genotype 10010 could be 
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defined by decoding its corresponding phenotype (10010 → 18) 
and then taking its square: 182 = 324.

The evaluation function is commonly called the fitness function in 
EC. This might cause a counterintuitive terminology if the original 
problem requires minimization, because the term fitness is 
usually associated with maximization. Mathematically, however, 
it is trivial to change minimization into maximization, and vice 
versa. Quite often, the original problem to be solved by an EA is 
an optimization problem. In this case the name objective function 
is often used in the original problem context, and the evaluation 
(fitness) function can be identical to, or a simple transformation of, 
the given objective function.

2.2.3 Population

The role of the population is to hold (the representation of) 
possible solutions. A population is a multiset of genotypes. The 
population forms the unit of evolution. Individuals are static 
objects that do not change or adapt; it is the population that does. 
Given a representation, defining a population may be as simple 
as specifying how many individuals are in it, that is, setting the 
population size. In some sophisticated EAs a population has an 
additional spatial structure, defined via a distance measure or a 
neighborhood relation. This corresponds loosely to the way that 
real populations evolve within the context of a spatial structure 
given by individuals’ geographical locations. In such cases the 
additional structure must also be defined in order to fully specify 
a population.

In almost all EA applications the population size is constant and 
does not change during the evolutionary search – this produces 
the limited resources need to create competition. The selection 
operators (parent selection and survivor selection) work at 
the population level. In general, they take the whole current 
population into account, and choices are always made relative 
to what is currently present. For instance, the best individual of 
a given population is chosen to seed the next generation, or the 
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worst individual of a given population is chosen to be replaced by 
a new one. This population level activity is in contrast to variation 
operators, which act on one or more parent individuals.

The diversity of a population is a measure of the number of 
different solutions present. No single measure for diversity exists. 
Typically people might refer to the number of different fitness 
values present, the number of different phenotypes present, or 
the number of different genotypes. Other statistical measures 
such as entropy are also used. Note that the presence of only one 
fitness value in a population does not necessarily imply that only 
one phenotype is present, since many phenotypes may have the 
same fitness. Equally, the presence of only one phenotype does 
not necessarily imply only one genotype. However, if only one 
genotype is present then this implies only one phenotype and 
fitness value are present.

2.2.4 Parent Selection Mechanism

The role of parent selection or mate selection is to distinguish 
among individuals based on their quality, and, in particular, 
to allow the better individuals to become parents of the next 
generation. An individual is a parent if it has been selected to 
undergo variation in order to create offspring. Together with the 
survivor selection mechanism, parent selection is responsible for 
pushing quality improvements. In EC, parent selection is typically 
probabilistic. Thus, high-quality individuals have more chance of 
becoming parents than those with low quality. Nevertheless, low-
quality individuals are often given a small, but positive chance; 
otherwise the whole search could become too greedy and the 
population could get stuck in a local optimum.

2.2.5 Variation Operators (Mutation and Recombination)

The role of variation operators is to create new individuals from 
old ones. In the corresponding phenotype space this amounts to 
generating new candidate solutions. From the generate-and-test 
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search perspective, variation operators perform the generate step. 
Variation operators in EC are divided into two types based on 
their arity, distinguishing unary (mutation) and n-ary versions 
(recombination).

Mutation

A unary variation operator is commonly called mutation. It is 
applied to one genotype and delivers a (slightly) modified mutant, 
the child or offspring.

A mutation operator is always stochastic: its output – the child – 
depends on the outcomes of a series of random choices. It should 
be noted that not all unary operators are seen as mutation. For 
example, it might be tempting to use the term mutation to describe 
a problem-specific heuristic operator which acts systematically 
on one individual trying to find its weak spot and improve it 
by performing a small change. However, in general mutation is 
supposed to cause a random, unbiased change. For this reason it 
might be more appropriate not to call heuristic unary operators 
mutation. Historically, mutation has played a different role in 
various EC dialects. Thus, for example, in genetic programming 
it is often not used at all, whereas in genetic algorithms it has 
traditionally been seen as a background operator, providing the 
gene pool with ‘fresh blood’, and in evolutionary programming it 
is the only variation operator, solely responsible for the generation 
of new individuals.

Variation operators form the evolutionary implementation of 
elementary (search) steps, giving the search space its topological 
structure. Generating a child amounts to stepping to a new point 
in this space. From this perspective, mutation has a theoretical 
role as well: it can guarantee that the space is connected. There 
are theorems which state that an EA will (given sufficient time) 
discover the global optimum of a given problem. These often rely 
on this connectedness property that each genotype representing 
a possible solution can be reached by the variation operators. The 
simplest way to satisfy this condition is to allow the mutation 
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operator to jump everywhere: for example, by allowing any allele 
to be mutated into any other with a nonzero probability. However, 
many researchers feel these proofs have limited practical 
importance, and EA implementations often don’t possess this 
property.

Recombination

A binary variation operator is called recombination or crossover. 
As the names indicate, such an operator merges information from 
two parent genotypes into one or two offspring genotypes. Like 
mutation, recombination is a stochastic operator: the choices of 
what parts of each parent are combined, and how this is done, 
depend on random drawings. Again, the role of recombination 
differs between EC dialects: in genetic programming it is often the 
only variation operator, and in genetic algorithms it is seen as the 
main search operator, whereas in evolutionary programming it is 
never used. Recombination operators with a higher arity (using 
more than two parents) are mathematically possible and easy to 
implement, but have no biological equivalent. Perhaps this is why 
they are not commonly used, although several studies indicate 
that they have positive effects on the evolution.

The principle behind recombination is simple – by mating two 
individuals with different but desirable features, we can produce 
an offspring that combines both of those features. This principle 
has a strong supporting case – for millennia it has been successfully 
applied by plant and livestock breeders to produce species that 
give higher yields or have other desirable features. Evolutionary 
algorithms create a number of offspring by random recombination, 
and we hope that while some will have undesirable combinations 
of traits, and most may be no better or worse than their parents, 
some will have improved characteristics. The biology of the 
planet Earth, where, with very few exceptions, lower organisms 
reproduce asexually and higher organisms reproduce sexually, 
suggests that recombination is the superior form of reproduction. 
However recombination operators in EAs are usually applied 
probabilistically, that is, with a nonzero chance of not being 
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performed. It is important to remember that variation operators 
are representation dependent. Thus for different representations 
different variation operators have to be defined. For example, if 
genotypes are bit-strings, then inverting a bit can be used as a 
mutation operator. However, if we represent possible solutions by 
tree-like structures another mutation operator is required.

2.2.6 Survivor Selection Mechanism (Replacement)

Similar to parent selection, the role of survivor selection or 
environmental selection is to distinguish among individuals 
based on their quality. However, it is used in a different stage 
of the evolutionary cycle – the survivor selection mechanism is 
called after the creation of the offspring from the selected parents. 
In EC the population size is almost always constant. This requires 
a choice to be made about which individuals will be allowed in to 
the next generation. This decision is often based on their fitness 
values, favoring those with higher quality, although the concept of 
age is also frequently used. In contrast to parent selection, which 
is typically stochastic, survivor selection is often deterministic. 
Thus, for example, two common methods are the fitness-based 
method of ranking the unified multi-set of parents and offspring 
and selecting the top segment, or the age-biased approach of 
selecting only from the offspring.

Survivor selection is also often called the replacement strategy. In 
many cases the two terms can be used interchangeably, but we 
use the name survivor selection to keep terminology consistent: 
steps 1 and 5 in Fig. 1 are both named selection, distinguished 
by a qualifier. Equally, if the algorithm creates surplus children 
(e.g., 500 offspring from a population of 100), then using the term 
survivor selection is clearly appropriate. On the other hand, the 
term “replacement” might be preferred if the number of newly-
created children is small compared to the number of individuals 
in the population. For example, a “steady-state” algorithm might 
generate two children per iteration from a population of 100. In this 
case, survivor selection means choosing the two old individuals 
that are to be deleted to make space for the new ones, so it is 



Evolutionary Algorithm 53

more efficient to declare that everybody survives unless deleted 
and to choose whom to replace. Both strategies can of course be 
seen in nature, and have their proponents in EC, so in the rest 
of this book we will be pragmatic about this issue. We will use 
survivor selection in the section headers for reasons of generality 
and uniformity, while using replacement if it is commonly used in 
the literature for the given procedure we are discussing.

2.2.7 Initialization

Initialization is kept simple in most EA applications; the first 
population is seeded by randomly generated individuals. In 
principle, problem-specific heuristics can be used in this step, to 
create an initial population with higher fitness. Whether this is 
worth the extra computational effort, or not, very much depends 
on the application at hand.

2.2.8 Termination Condition

We can distinguish two cases of a suitable termination condition. 
If the problem has a known optimal fitness level, probably coming 
from a known optimum of the given objective function, then in an 
ideal world our stopping condition would be the discovery of a 
solution with this fitness. If we know that our model of the real-
world problem contains necessary simplifications, or may contain 
noise, we may accept a solution that reaches the optimal fitness to 
within a given precision 𝜖 > 0. However, EAs are stochastic and 
mostly there are no guarantees of reaching such an optimum, so 
this condition might never get satisfied, and the algorithm may 
never stop. Therefore we must extend this condition with one that 
certainly stops the algorithm. The following options are commonly 
used for this purpose:

1.	 The maximally allowed CPU time elapses.
2.	 The total number of fitness evaluations reaches a given 

limit.
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3.	 The fitness improvement remains under a threshold 
value for a given period of time (i.e., for a number of 
generations or fitness evaluations).

4.	 The population diversity drops under a given threshold.

Technically, the actual termination criterion in such cases is a 
disjunction: optimum value hit or condition X satisfied. If the 
problem does not have a known optimum, then we need no 
disjunction. We simply need a condition from the above list, or a 
similar one that is guaranteed to stop the algorithm.

2.3 TYPES OF EVOLUTIONARY ALGORITHM (EA)

Evolutionary algorithms (EAs) are population-based 
metaheuristics. Historically, the design of EAs was motivated by 
observations about natural evolution in biological populations. 
Recent varieties of EA tend to include a broad mixture of influences 
in their design, although biological terminology is still in common 
use. The term ‘EA’ is also sometimes extended to algorithms that 
are motivated by population-based aspects of EAs, but which 
are not directly descended from traditional EAs, such as scatter 
search. The term evolutionary computation is also used to refer 
to EAs, but usually as a generic term that includes optimization 
algorithms motivated by other natural processes, such as particle 
swarm optimization and artificial immune systems.
The main classes of EA in contemporary usage are (in order of 
popularity) genetic algorithms (GAs), evolution strategies (ESs), 
differential evolution (DE) and estimation of distribution algo-
rithms (EDAs). Multi-objective evolutionary algorithms (MOEAs), 
which generalize EAs to the multiple objective case, and memetic 
algorithms (MAs), which hybridize EAs with local search, are also 
popular, particularly within applied work. Special-purpose EAs, 
such as genetic programming (GP) and learning classifier systems 
(LCS) are also widely used.
Similar techniques differ in genetic representation and other 
implementation details, and the nature of the particular applied 
problem.
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2.3.1 Genetic Algorithm

Genetic algorithms, or GAs, are one of the earliest forms of EA, 
and remain widely used. Candidate solutions, often referred to as 
chromosomes in the GA literature, comprise a vector of decision 
variables. Nowadays, these variables tend to have a direct mapping 
to an optimization domain, with each decision variable (or gene) 
in the GA chromosome representing a value (or allele) that is to 
be optimized. However, it should be noted that historically GAs 
worked with binary strings, with real values encoded by multiple 
binary symbols, and that this practice is still sometimes used. GA 
solution vectors are either fixed-length or variable-length, with 
the former the more common of the two.

Given their long history, genetic algorithm implementations vary 
considerably. However, it is fairly common to use a mutation 
operator that changes each decision variable with a certain 
probability (values of 4-8% are typical, depending upon the 
problem domain). When the solution vector is a binary string, the 
effect of the mutation operator is simply to flip the value. More 
generally, if the solution vector is a ‘k-ary’ string, in which each 
position can take any of a discrete set of k possible values, then 
the mutation operator is usually designed to choose a random 
new value from the available alphabet. If the solution vector is a 
string of real-valued parameters within a set range, the new value 
may be sampled from a uniform distribution in that range, or it 
may be sampled from a non-uniform (e.g. Gaussian) probability 
distribution centered around the current value. The latter is 
generally the preferred approach, since it leads to less disruptive 
change on average. Recombination is typically implemented using 
two-point or uniform crossover. Two-point crossover chooses two 
parent solutions and two crossover points within the solutions. 
The values of the decision variables lying between these two 
points are then swapped to form two child solutions. Uniform 
crossover is similar, except that crossover points are created at 
each decision variable with a given probability. Other forms of 
crossover have also been used in GAs. Examples include line 
crossover and multi-parent crossover. Other variation operators, 



Evolutionary Computing56

such as inversion, have been found useful for some problems. 
Various forms of selection are used with GAs. Rank-based or 
tournament selection are generally preferred, since they maintain 
exploration better than the more traditional fitness-proportionate 
selection (e.g. roulette-wheel selection). Note, however, that the 
latter is still widely used. Rank-based selection involves ranking 
the population in terms of objective value. Population members 
are then chosen to become parents with a probability proportional 
to their rank. In tournament selection, a small group of solutions 
(typically 3 or 4) are uniformly sampled from the population, and 
those with the highest objective value(s) become the parent(s) of 
the next child solution that is created. Tournament selection allows 
selective pressure to be easily varied by adjusting the tournament 
size.

2.3.2 Genetic Programming

Genetic programming (GP) is relatively new; it is a specialized 
form of a GA which operates on very specific types of solution, 
using modified genetic operators. The GP was developed by Koza 
as an attempt to find the way for the automatic generation of 
the program codes when the evaluation criteria for their proper 
operation is known. Because the searched solution is a program, 
the evolved potential solutions are coded in the form of trees 
instead of linear chromosomes (of bits or numbers) widespread in 
GAs. Of course, the genetic operators are specialized for working 
on trees, e.g., crossover as exchanging the subtrees, mutation as a 
change of node or leaf.

2.3.3 Evolutionary Programming

Evolutionary programming (EP) was developed as a tool for 
discovering the grammar of the unknown language. However, 
EP became more popular when it was proposed as the numerical 
optimization technique. The EP is similar to the ES (μ + λ), but 
with one essential difference. In EP, the new population of 
individuals is created by mutating every individual from the 
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parental population, while in the ES(μ + λ), every individual has 
the same probability to be selected to the temporary population 
on which the genetic operations are performed. In the EP, the 
mutation is based on the random perturbation of the values of 
the particular genes of the mutated individual. The newly created 
and the parental populations are the same sizes (μ = λ). Finally, 
the new generation of the population is created using the ranking 
selection of the individuals from both, the parental and the 
mutated populations.

2.3.4 Gene Expression Programming

Gene expression programming (GEP) is an evolutionary algorithm 
that creates computer programs or models. These computer 
programs are complex tree structures that learn and adapt by 
changing their sizes, shapes, and composition, much like a living 
organism. And like living organisms, the computer programs of 
GEP are also encoded in simple linear chromosomes of fixed length. 
Thus, GEP is a genotype–phenotype system, benefiting from a 
simple genome to keep and transmit the genetic information and 
a complex phenotype to explore the environment and adapt to it.

2.3.5 Evolution Strategy

Evolution strategies, or ESs, also have a long history, and this 
parallels the development of GAs. Whilst early ESs were restricted 
to a single search point and used no recombination operator, 
modern formulations have converged towards the GA norms, and 
tend to use both a population of search points and recombination. 
A lasting difference, however, is how they carry out mutation, 
with ESs using strategies that guide how the mutation operator 
is applied to each decision variable. Unlike GAs, ESs mutate 
every decision variable at each application of the operator, and 
do so according to a set of strategy parameters that determine the 
magnitude of these changes. Strategy parameters usually control 
characteristics of probability distributions from which the new 
values of decision variables are drawn.
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It is standard practice to adapt strategy parameters over the 
course of an ES run, the basic idea being that different types 
of move will be beneficial at different stages of search. Various 
techniques have been used to achieve this adaptation. Some of 
these involve applying a simple formula, e.g. the 1/5th rule, which 
involves increasing or decreasing the magnitude of changes based 
on the number of successful mutations that have recently been 
observed. Others are based around the idea of self-adaptation, 
which involves encoding the strategy parameters as additional 
decision variables, and hence allowing evolution to come up with 
appropriate values. However, the most widely used contemporary 
approach is covariance matrix adaptation (CMA-ES), which uses a 
mechanism for estimating the directions of productive gradients 
within the search space, and then applying moves in those 
directions. In this respect, CMA-ES has similarities with gradient-
based optimization methods.

ESs use different recombination operators to GAs, and often use 
more than two parents to create each child solution. For example, 
intermediate recombination gives a child solution the average 
values of each decision variable in each of the parent solutions. 
Weighted multi-recombination is similar, but uses a weighted 
average, based on the fitness of each parent. Also unlike GAs, 
ESs tend to use deterministic rather than probabilistic selection 
mechanisms, whereby the best solutions in the population are 
always used as parents of the next generation.

2.3.6 Differential Evolution

Differential evolution (DE) is a relatively recent EA formulation 
which uses a mechanism for adaptive search that does not make 
use of probability distributions. Whilst its basic mechanism is 
similar to a GA, its mutation operator is quite different, using a 
geometric approach that is motivated by the moves performed in 
the Nelder Mead simplex search method. This involves selecting 
two existing search points from the population, taking their vector 
difference, scaling this by a constant F, and then adding this to a 
third search point, again sampled randomly from the population. 
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Following mutation, DE’s crossover operator recombines the 
mutated search point (the mutant vector) with another existing 
search point (the target vector), replacing it if the child solution 
(known as a trial vector) is of equal or greater objective value. 
There are two standard forms of crossover: exponential crossover 
and binomial crossover, which closely resemble GA two-point 
crossover and uniform crossover, respectively. The comparisons 
between target vector and trial vector play the same role as the 
selection mechanism in a GA or ES. Since DE requires each existing 
solution to be used once as a target vector, the whole population is 
replaced in the course of applying crossover.

An advantage of using simplex-like mutations in DE is that the 
algorithm is largely self-adapting, with moves automatically 
becoming smaller in each dimension as the population converges. 
More generally, the authors of the method have claimed that this 
sort of self-adaptation means that the size and direction of moves 
are automatically matched to the search landscape, a phenomenon 
they term contour matching. When compared to CMA-ES, for 
example, this means that the algorithm has few parameters and is 
relatively easy to implement.

2.3.7 Neuroevolution

Neuroevolution is a form of artificial intelligence that uses 
evolutionary algorithms to generate artificial neural networks 
(ANN), parameters, topology and rules. It is most commonly 
applied in artificial life, general game playing and evolutionary 
robotics. The main benefit is that neuroevolution can be applied 
more widely than supervised learning algorithms, which require a 
syllabus of correct input-output pairs. In contrast, neuroevolution 
requires only a measure of a network’s performance at a task. For 
example, the outcome of a game (i.e. whether one player won or 
lost) can be easily measured without providing labeled examples 
of desired strategies. Neuroevolution is commonly used as part 
of the reinforcement learning paradigm, and it can be contrasted 
with conventional deep learning techniques that use gradient 
descent on a neural network with a fixed topology.
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2.3.8 Learning Classifier System

Learning classifier systems (LCS) are a paradigm of rule-based 
machine learning methods that combine a discovery component 
(e.g. typically a genetic algorithm) with a learning component 
(performing either supervised learning, reinforcement learning, 
or unsupervised learning). Learning classifier systems seek to 
identify a set of context-dependent rules that collectively store 
and apply knowledge in a piecewise manner in order to make 
predictions (e.g. behavior modeling, classification, data mining, 
regression, function approximation, or game strategy). This 
approach allows complex solution spaces to be broken up into 
smaller, simpler parts.

The founding concepts behind learning classifier systems came 
from attempts to model complex adaptive systems, using rule-
based agents to form an artificial cognitive system (i.e. artificial 
intelligence).

Here the solution is a set of classifiers (rules or conditions). A 
Michigan-LCS evolves at the level of individual classifiers whereas 
a Pittsburgh-LCS uses populations of classifier-sets. Initially, 
classifiers were only binary, but now include real, neural net, or 
S-expression types. Fitness is typically determined with either a 
strength or accuracy based reinforcement learning or supervised 
learning approach.

2.4 AN EVOLUTIONARY CYCLE BY HAND

To illustrate the working of an EA, reproduction cycle on a simple 
problem after Goldberg, that of maximizing the values of x2 for 
integers in the range 0–31. To execute a full evolutionary cycle, 
we must make design decisions regarding the EA components 
representation, parent selection, recombination, mutation, and 
survivor selection.
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For the representation we use a simple five-bit binary encoding 
mapping integers (phenotypes) to bit-strings (genotypes). For 
parent selection we use a fitness proportional mechanism, where 
the probability pi that an individual i in population P is chosen to 
be a parent is . Furthermore, we can decide to 
replace the entire population in one go by the offspring created 
from the selected parents. This means that our survivor selection 
operator is very simple: all existing individuals are removed from 
the population and all new individuals are added to it without 
comparing fitness values. This implies that we will create as many 
offspring as there are members in the population. Given our 
chosen representation, the mutation and recombination operators 
can be kept simple. Mutation is executed by generating a random 
number (from a uniform distribution over the range [0, 1]) in 
each bit position, and comparing it to a fixed threshold, usually 
called the mutation rate. If the random number is below that rate, 
the value of the gene in the corresponding position is flipped. 
Recombination is implemented by the classic one-point crossover. 
This operator is applied to two parents and produces two children 
by choosing a random crossover-point along the strings and 
swapping the bits of the parents after this point.

After having made the essential design decisions, we can execute 
a full selection–reproduction cycle. Table 1 shows a random initial 
population of four genotypes, the corresponding phenotypes, 
and their fitness values. The cycle then starts with selecting the 
parents to seed the next generation. The fourth column of Table 
1 shows the expected number of copies of each individual after 
parent selection, being  where ¯f denotes the average fitness 
(displayed values are rounded up). As can be seen, these numbers 
are not integers; rather they represent a probability distribution, 
and the mating pool is created by making random choices to 
sample from this distribution. The column “Actual count” stands 
for the number of copies in the mating pool, i.e., it shows one 
possible outcome.
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Table 1. The x2 example, 1: initialization, evaluation, and parent selec-
tion.

Next the selected individuals are paired at random, and for each 
pair a random point along the string is chosen. Table 2 shows the 
results of crossover on the given mating pool for crossover points 
after the fourth and second genes, respectively, together with the 
corresponding fitness values. Mutation is applied to the offspring 
delivered by crossover. Once again, we show one possible 
outcome of the random drawings, and Table 3 shows the hand-
made ‘mutants’. In this case, the mutations shown happen to have 
caused positive changes in fitness, but we should emphasize that 
in later generations, as the number of 1’s in the population rises, 
mutation will be on average (but not always) deleterious. Although 
manually engineered, this example shows a typical progress: the 
average fitness grows from 293 to 588.5, and the best fitness in the 
population from 576 to 729 after crossover and mutation.

Table 2. The x2 example, 2: crossover and offspring evaluation.

Table 3. The x2 example, 3: mutation and offspring evaluation
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2.5 EXAMPLE APPLICATIONS

2.5.1 The Eight-Queens Problem

This is the problem of placing eight queens on a regular 8 × 8 
chessboard so that no two of them can check each other. There are 
many classical artificial intelligence approaches to this problem, 
which work in a constructive, or incremental, fashion. They start by 
placing one queen, and after having placed n queens, they attempt 
to place the (n + 1)th in a feasible position where the new queen 
does not check any others. Typically some sort of backtracking 
mechanism is applied; if there is no feasible position for the (n+1)
th queen, the nth is moved to another position.

An evolutionary approach to this problem is drastically different 
in that it is not incremental. Our candidate solutions are complete 
(rather than partial) board configurations, which specify the 
positions of all eight queens. The phenotype space P is the set of 
all such configurations. Clearly, most elements of this space are 
infeasible, violating the condition of non-checking queens. The 
quality q(p) of any phenotype p ∈ P can be simply quantified by 
the number of checking queen pairs. The lower this measure, the 
better a phenotype (board configuration), and a zero value, q(p) = 0, 
indicates a good solution. From this observation we can formulate a 
suitable objective function to be minimized, with a known optimal 
value. Even though we have not defined genotypes at this point, 
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we can state that the fitness (to be maximized) of a genotype g that 
represents phenotype p is some inverse of q(p). There are many 
possible ways of specifying what kind of inverse we wish to use 
here. For instance, 1/q(p) is an easy option, but has the disadvantage 
that attempting division by zero is a problem for many computing 
systems. We could circumvent this by watching for q(p) = 0 and 
saying that when this occurs we have a solution, or by adding a 
small value 𝜖, i.e., 1/(q(p) + 𝜖). Other options are to use −q(p) or M 
− q(p), where M is a sufficiently large number to make all fitness 
values positive, e.g., M ≥ max{q(p) | p ∈ P}. This fitness function 
inherits the property of q that it has a known optimum M.

To design an EA to search the space P we need to define a 
representation of phenotypes from P. The most straightforward 
idea is to use a matrix representation of elements of P directly 
as genotypes, meaning that we must design variation operators 
for these matrices. In this example, however, we define a more 
clever representation as follows. A genotype, or chromosome, 
is a permutation of the numbers 1,..., 8, and a given g = 〈i1,...,i8〉 
denotes the (unique) board configuration, where the nth column 
contains exactly one queen placed on the inth row. For instance, 
the permutation g = 〈 1,..., 8〉 represents a board where the queens 
are placed along the main diagonal. The genotype space G is now 
the set of all permutations of 1,..., 8 and we also have defined a 
mapping F : G → P.

It is easy to see that by using such chromosomes we restrict 
the search to board configurations where horizontal constraint 
violations (two queens on the same row) and vertical constraint 
violations (two queens on the same column) do not occur. In other 
words, the representation guarantees half of the requirements of a 
solution – what remains to be minimized is the number of diagonal 
constraint violations. From a formal perspective we have chosen 
a representation that is not surjective since only part of P can be 
obtained by decoding elements of G. While in general this could 
carry the danger of missing solutions in P, in our present example 
this is not the case, since we know a priori that those phenotypes 
from P \ F(G) can never be solutions.
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The next step is to define suitable variation operators (mutation 
and crossover) for our representation, i.e., to work on genotypes 
that are permutations. The crucial feature of a suitable operator 
is that it does not lead out of the space G. In common parlance, 
the offspring of permutations must themselves be permutations. 
For mutation we can use an operator that randomly selects two 
positions in a given chromosome, and swaps the values found 
in those positions. A good crossover for permutations is less 
obvious, but the mechanism outlined in Fig. 3 will create two child 
permutations from two parents.

Figure 3. ‘Cut-and-crossfill’ crossover.

The important thing about these variation operators is that 
mutation causes a small undirected change, and crossover creates 
children that inherit genetic material from both parents. It should 
be noted though that there can be large performance differences 
between operators, e.g., an EA using mutation A might find a 
solution quickly, whereas one using mutation B might never find a 
solution. The operators we sketch here are not necessarily efficient; 
they merely serve as examples of operators that are applicable to 
the given representation.

The next step in setting up an EA is to decide upon the selection 
and population update mechanisms. We will choose a simple 
scheme for managing the population. In each evolutionary cycle 
we will select two parents, producing two children, and the new 
population of size n will contain the best n of the resulting n + 2 
individuals (the old population plus the two new ones).

Parent selection will be done by choosing five individuals 
randomly from the population and taking the best two as parents. 
This ensures a bias towards using parents with relatively high 
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fitness. Survivor selection checks which old individuals should be 
deleted to make place for the new ones – provided the new ones 
are better. The strategy we will use merges the population and 
offspring, then ranks them according to fitness, and deletes the 
worst two.

To obtain a full specification we can decide to fill the initial 
population with randomly generated permutations, and to 
terminate the search when we find a solution, or when 10,000 
fitness evaluations have elapsed, whichever happens sooner. 
Furthermore we can decide to use a population size of 100, and to 
use the variation operators with a certain frequency. For instance, 
we always apply crossover to the two selected parents and in 
80% of the cases apply mutation to the offspring. Putting this all 
together, we obtain an EA as summarized in Table 4.

Table 4. Description of the EA for the eight-queens problem.

2.5.2 The Knapsack Problem

The 0–1 knapsack problem, a generalization of many industrial 
problems. We are given a set of n items, each of which has attached 
to it some value vi, and some cost ci. The task is to select a subset of 
those items that maximizes the sum of the values, while keeping the 
summed cost within some capacity Cmax. Thus, for example, when 
packing a backpack for a round-the-world trip, we must balance 
likely utility of the items against the fact that we have a limited 
volume (the items chosen must fit in one bag), and weight (airlines 
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impose fees for luggage over a given weight). It is a natural idea 
to represent candidate solutions for this problem as binary strings 
of length n, where a 1 in a given position indicates that an item is 
included and a 0 that it is omitted. The corresponding genotype 
space G is the set of all such strings with size 2n, which increases 
exponentially with the number of items considered. Using this G, 
we fix the representation in the sense of data structure, and next 
we need to define the mapping from genotypes to phenotypes.

The first representation (in the sense of a mapping) that we 
consider takes the phenotype space P and the genotype space to 
be identical. The quality of a given solution p, represented by a 
binary genotype g, is thus determined by summing the values 
of the included items, i.e., . However, this 
simple representation leads us to some immediate problems. By 
using a one-to-one mapping between the genotype space G and 
the phenotype space P, individual genotypes may correspond 
to invalid solutions that have an associated cost greater than the 
capacity, i.e., .

The second representation that we outline here solves this 
problem by employing a decoder function that breaks the one-
to-one correspondence between the genotype space G and the 
solution space P. In essence, our genotype representation remains 
the same, but when creating a solution we read from left to right 
along the binary string, and keep a running tally of the cost of 
included items. When we encounter a value 1, we first check to see 
whether including the item would break our capacity constraint. 
In other words, rather than interpreting a value 1 as meaning 
include this item, we interpret it as meaning include this item IF it 
does not take us over the cost constraint. The effect of this scheme 
is to make the mapping from genotype to phenotype space many-
to-one, since once the capacity has been reached, the values of all 
bits to the right of the current position are irrelevant, as no more 
items will be added to the solution. Furthermore, this mapping 
ensures that all binary strings represent valid solutions with a 
unique fitness (to be maximized).
Having decided on a fixed-length binary representation, we 
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can now choose off-the-shelf variation operators from the GA 
literature, because the bit-string representation is ‘standard’ there. 
A suitable (but not necessarily optimal) recombination operator is 
the so-called one-point crossover, where we align two parents and 
pick a random point along their length. 

The two offspring are created by exchanging the tails of the 
parents at that point. We will apply this with 70% probability, i.e., 
for each pair of parents there is a 70% chance that we will create 
two offspring by crossover and 30% that the children will be just 
copies of the parents. 

A suitable mutation operator is so-called bit-flipping: in each 
position we invert the value with a small probability pm ∈ [0, 1).

In this case we will create the same number of offspring as we 
have members in our initial population. As noted above, we create 
two offspring from each two parents, so we will select that many 
parents and pair them randomly. 

We will use a tournament for selecting the parents, where each 
time we pick two members of the population at random (with 
replacement), and the one with the highest value q(p) wins the 
tournament and becomes a parent. We will institute a generational 
scheme for survivor selection, i.e., all of the population in each 
iteration are discarded and replaced by their offspring.

Finally, we should consider initialization (which we will do by 
random choice of 0 and 1 in each position of our initial population), 
and termination. In this case, we do not know the maximum 
value that we can achieve, so we will run our algorithm until no 
improvement in the fitness of the best member of the population 
has been observed for 25 generations.

We have already defined our crossover probability as 0.7; we will 
work with a population size of 500 and a mutation rate of pm = 
1/n, i.e., that will on average change one value in every offspring. 
Our evolutionary algorithm to tackle this problem can be specified 
as below in Table 5.
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Table 5. Description of the EA for the knapsack problem.

2.6 THE OPERATION OF AN EVOLUTIONARY  
ALGORITHM

Evolutionary algorithms have some rather general properties 
concerning how they work. To illustrate how an EA typically 
works, we will assume a one-dimensional objective function to be 
maximized. Figure 4 shows three stages of the evolutionary search, 
showing how the individuals might typically be distributed in the 
beginning, somewhere halfway, and at the end of the evolution. 
In the first stage directly after initialization, the individuals are 
randomly spread over the whole search space (Fig. 4, left). After 
only a few generations this distribution changes: because of 
selection and variation operators the population abandons low-
fitness regions and starts to climb the hills (Fig. 4, middle). Yet 
later (close to the end of the search, if the termination condition is 
set appropriately), the whole population is concentrated around 
a few peaks, some of which may be suboptimal. In principle it is 
possible that the population might climb the wrong hill, leaving 
all of the individuals positioned around a local but not global 
optimum. Although there is no universally accepted rigorous 
definition of the terms exploration and exploitation, these notions 
are often used to categorize distinct phases of the search process. 
Roughly speaking, exploration is the generation of new individuals 
in as-yet untested regions of the search space, while exploitation 
means the concentration of the search in the vicinity of known 
good solutions. Evolutionary search processes are often referred 
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to in terms of a trade-off between exploration and exploitation. 
Too much of the former can lead to inefficient search, and too 
much of the latter can lead to a propensity to focus the search too 
quickly. Premature convergence is the well-known effect of losing 
population diversity too quickly, and getting trapped in a local 
optimum.

Figure 4. Typical progress of an EA illustrated in terms of population 
distribution. For each point x in the search space y shows the corre-
sponding fitness value.

The other effect we want to illustrate is the anytime behavior of EAs 
by plotting the development of the population’s best fitness value 
over time (Fig. 5). This curve shows rapid progress in the beginning 
and flattening out later on. This is typical for many algorithms that 
work by iterative improvements to the initial solution(s). The name 
‘anytime’ comes from the property that the search can be stopped 
at any time, and the algorithm will have some solution, even if 
it is suboptimal. Based on this anytime curve we can make some 
general observations concerning initialization and the termination 
condition for EAs. We questioned whether it is worth putting 
extra computational effort into applying intelligent heuristics to 
seed the initial population with better-than-random individuals. 
In general, it could be said that that the typical progress curve of 
an evolutionary process makes it unnecessary. This is illustrated 
in Fig. 6. As the figure indicates, using heuristic initialization can 
start the evolutionary search with a better population. However, 
typically a few (k in the figure) generations are enough to reach 
this level, making the extra effort questionable.
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Figure 5. Typical progress of an EA illustrated in terms of development 
over time of the highest fitness in the population.

Figure 6. Illustration of why heuristic initialization might not be worth 
additional effort. Level a shows the best fitness in a randomly initialized 
population; level b belongs to heuristic initialization.

The anytime behavior also gives some general indications 
regarding the choice of termination conditions for EAs. In Fig. 7 
we divide the run into two equally long sections. As the figure 
indicates, the progress in terms of fitness increase in the first half 
of the run (X) is significantly greater than in the second half (Y 
). This suggests that it might not be worth allowing very long 
runs. In other words, because of frequently observed anytime 
behavior of EAs, we might surmise that effort spent after a certain 
time (number of fitness evaluations) is unlikely to result in better 
solution quality.
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Figure 7. Why long runs might not be worth performing. X shows the 
fitness increase in the first half of the run, while Y belongs to the second 
half.

We close this review of EA behavior by looking at EA performance 
from a global perspective. That is, rather than observing one run 
of the algorithm, we consider the performance of EAs for a wide 
range of problems. Fig. 8 shows the 1980s view after Goldberg. 

What the figure indicates is that EAs show a roughly evenly good 
performance over a wide range of problems. This performance 
pattern can be compared to random search and to algorithms 
tailored to a specific problem type. 

EAs are suggested to clearly outperform random search. In 
contrast, a problem-tailored algorithm performs much better than 
an EA, but only on the type of problem for which it was designed. 
As we move away from this problem type to different problems, 
the problem-specific algorithm quickly loses performance. In this 
sense, EAs and problem-specific algorithms form two opposing 
extremes. This perception played an important role in positioning 
EAs and stressing the difference between evolutionary and 
random search, but it gradually changed in the 1990s based on new 
insights from practice as well as from theory. The contemporary 
view acknowledges the possibility of combining the two extremes 
into a hybrid algorithm. As for theoretical considerations, the No 
Free Lunch theorem has shown that (under some conditions) no 
black-box algorithm can outperform random walk when averaged 
over ‘all’ problems. That is, showing the EA line always above that 
of random search is fundamentally incorrect.
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Figure 8. 1980s view of EA performance after Goldberg.

2.7 NATURAL VERSUS ARTIFICIAL EVOLUTION

From the perspective of the underlying substrate, the emergence of 
evolutionary computation can be considered as a major transition 
of the evolutionary principles from wetware, the realm of biology, 
to software, the realm of computers. 

This was made possible by using computers as instruments for 
creating digital worlds that are very flexible and much more 
controllable than the physical reality we live in. 

Together with the increased understanding of the genetic 
mechanisms behind evolution this brought about the opportunity 
to become active masters of evolutionary processes that are fully 
designed and executed by human experimenters from above.

It could be argued that evolutionary algorithms are not faithful 
models of natural evolution. However, they certainly are a form 
of evolution.

As phrased by Dennett: If you have variation, heredity, and 
selection, then you must get evolution. In Table 6 we compare 
natural evolution and artificial evolution as used in contemporary 
evolutionary algorithms.
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Table 6. Differences between natural and artificial evolution.

2.8 EVOLUTIONARY COMPUTING, GLOBAL  
OPTIMIZATION, AND OTHER SEARCH  
ALGORITHMS

Evolutionary algorithms are often used for problem optimization. 
Of course EAs are not the only optimization technique known, so 
in this section we explain where EAs fall into the general class of 
optimization methods, and why they are of increasing interest.

In an ideal world, we would possess the technology and 
algorithms that could provide a provably optimal solution to 
any problem that we could suitably pose to the system. In fact 
such algorithms do exist: an exhaustive enumeration of all of 
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the possible solutions to a problem is clearly such an algorithm. 
Moreover, for many problems that can be expressed in a suitably 
mathematical formulation, much faster, exact techniques such 
as branch and bound search are well known. However, despite 
the rapid progress in computing technology, and even if there is 
no halt to Moore’s Law, all too often the types of problems posed 
by users exceed in their demands the capacity of technology to 
answer them.

Decades of computer science research have taught us that 
many real-world problems can be reduced in their essence to 
well-known abstract forms, for which the number of potential 
solutions grows very quickly with the number of variables 
considered. For example, many problems in transportation can 
be reduced to the well-known travelling salesperson problem 
(TSP): given a list of destinations, construct the shortest tour that 
visits each destination exactly once. If we have n destinations, 
with symmetric distances between them, the number of possible 
tours is n!/2 = n·(n−1)·(n−2)·...·3, which is exponential in n. For 
some of these abstract problems exact methods are known whose 
time complexity scales linearly (or at least polynomially) with 
the number of variables. However, it is widely accepted that for 
many types of problems encountered, no such algorithms exist. 
Thus, despite the increase in computing power, beyond a certain 
size of problem we must abandon the search for provably optimal 
solutions, and look to other methods for finding good solutions.

The term global optimization refers to the process of attempting to 
find the solution with the optimal value for some fitness function. 
In mathematical terminology, we are trying to find the solution 
x∗ out of a set of possible solutions S, such that x = x∗ ⇒ f(x∗) ≥ 
f(x) ∀x ∈ S. Here we have assumed a maximization problem – the 
inequality is simply reversed for minimization.

As noted above, a number of deterministic algorithms exist that, 
if allowed to run to completion, are guaranteed to find x∗. The 
simplest example is, of course, complete enumeration of all the 
solutions in S, which can take an exponentially long time as the 
number of variables increases. A variety of other techniques, 
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collectively known as box decomposition, are based on ordering 
the elements of S into some kind of tree, and then reasoning about 
the quality of solutions in each branch in order to decide whether 
to investigate its elements. Although methods such as branch and 
bound can sometimes make very fast progress, in the worst case 
(caused by searching in a suboptimal order) the time complexity 
of the algorithms is still the same as complete enumeration.

Another class of search methods is known as heuristics. These 
may be thought of as sets of rules for deciding which potential 
solution out of S should next be generated and tested. For some 
randomized heuristics, such as simulated annealing and certain 
variants of EAs, convergence proofs do in fact exist, i.e., they are 
guaranteed to find x∗. Unfortunately these algorithms are fairly 
weak, in the sense that they will not identify xc as being globally 
optimal, rather as simply the best solution seen so far.

An important class of heuristics is based on the idea of using 
operators that impose some kind of structure onto the elements of 
S, such that each point x has associated with it a set of neighbors 
N(x). In Fig. 2 the variables (traits) x and y were taken to be real-
valued, which imposes a natural structure on S. The reader should 
note that for those types of problem where each variable takes 
one of a finite set of values (so-called combinatorial optimization), 
there are many possible neighborhood structures. As an example 
of how the landscape ‘seen’ by a local search algorithm depends 
on its neighborhood structure, the reader might wish to consider 
what a chessboard would look like if we reordered it, so that 
squares that are possible next moves for the knight piece were 
adjacent to each other. Thus points which are locally optimal 
(fitter than all their neighbors) in the landscape induced by one 
neighborhood structure may not be for another. However, by its 
definition, the global optimum x∗ will always be fitter than all of 
its neighbors under any neighborhood structure.

So-called local search algorithms and their many variants work 
by taking a starting solution x, and then searching the candidate 
solutions in N(x) for one x’ that performs better than x. If such 
a solution exists, then this is accepted as the new incumbent 
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solution, and the search proceeds by examining the candidate 
solutions in N(x ‘). This process will eventually lead to the 
identification of a local optimum: a solution that is superior to 
all those in its neighborhood. Such algorithms (often referred 
to as hill climbers for maximization problems) have been well 
studied over the decades. They have the advantage that they are 
often quick to identify a good solution to the problem, which is 
sometimes all that is required in practical applications. However, 
the downside is that problems will frequently exhibit numerous 
local optima, some of which may be significantly worse than the 
global optimum, and no guarantees can be offered for the quality 
of solution found.

A number of methods have been proposed to get around this 
problem by changing the search landscape, either by changing the 
neighborhood structure, or by temporarily assigning low fitness 
to already-seen good solutions. However the theoretical basis 
behind these algorithms is still very much in gestation.There are a 
number of features of EAs that distinguish them from local search 
algorithms, relating principally to their use of a population. The 
population provides the algorithm with a means of defining a 
non-uniform probability distribution function (p.d.f.) governing 
the generation of new points from S. This p.d.f. reflects possible 
interactions between points in S which are currently represented 
in the population. The interactions arise from the recombination 
of partial solutions from two or more members of the population 
(parents). This potentially complex p.d.f. contrasts with the globally 
uniform distribution of blind random search, and the locally 
uniform distribution used by many other stochastic algorithms 
such as simulated annealing and various hill-climbing algorithms.
The ability of EAs to maintain a diverse set of points provides not 
only a means of escaping from local optima, but also a means of 
coping with large and discontinuous search spaces. In addition, 
if several copies of a solution can be generated, evaluated, and 
maintained in the population, this provides a natural and robust 
way of dealing with problems where there is noise or uncertainty 
associated with the assignment of a fitness score to a candidate 
solution.
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INTRODUCTION

Genetic Algorithm (GA) is a search-based optimization technique 
based on the principles of Genetics and Natural Selection. It 
is frequently used to find optimal or near-optimal solutions to 
difficult problems which otherwise would take a lifetime to solve. 
It is frequently used to solve optimization problems, in research, 
and in machine learning.

Nature has always been a great source of inspiration to all mankind. 
Genetic Algorithms (GAs) are search based algorithms based on 
the concepts of natural selection and genetics. GAs are a subset 
of a much larger branch of computation known as Evolutionary 
Computation. GAs were developed by John Holland and his 
students and colleagues at the University of Michigan, most 
notably David E. Goldberg and has since been tried on various 
optimization problems with a high degree of success.
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In GAs, we have a pool or a population of possible solutions to the 
given problem. These solutions then undergo recombination and 
mutation (like in natural genetics), producing new children, and 
the process is repeated over various generations. Each individual 
(or candidate solution) is assigned a fitness value (based on its 
objective function value) and the fitter individuals are given a 
higher chance to mate and yield more “fitter” individuals. This is 
in line with the Darwinian Theory of “Survival of the Fittest”. In 
this way we keep “evolving” better individuals or solutions over 
generations, till we reach a stopping criterion.

Genetic Algorithms are sufficiently randomized in nature, but 
they perform much better than random local search (in which we 
just try various random solutions, keeping track of the best so far), 
as they exploit historical information as well.

3.1 REPRESENTATION OF INDIVIDUALS

Genetic representation is a way of representing solutions/
individuals in evolutionary computation methods. Genetic 
representation can encode appearance, behaviour, physical 
qualities of individuals. Designing a good genetic representation 
that is expressive and evolvable is a hard problem in evolutionary 
computation. Difference in genetic representations is one of 
the major criteria drawing a line between known classes of 
evolutionary computation.

Terminology is often analogous with natural genetics. The block of 
computer memory that represents one candidate solution is called 
an individual. The data in that block is called a chromosome. 
Each chromosome consists of genes. The possible values of a 
particular gene are called alleles. A programmer may represent 
all the individuals of a population using binary encoding, 
permutational encoding, encoding by tree, or any one of several 
other representations. 

Genetic algorithms use linear binary representations. The most 
standard one is an array of bits. Arrays of other types and structures 
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can be used in essentially the same way. The main property that 
makes these genetic representations convenient is that their parts 
are easily aligned due to their fixed size. This facilitates simple 
crossover operation. Variable length representations were also 
explored in Genetic algorithms, but crossover implementation is 
more complex in this case.

Evolution strategy uses linear real-valued representations, e.g. 
an array of real values. It uses mostly gaussian mutation and 
blending/averaging crossover.

Genetic programming (GP) pioneered tree-like representations 
and developed genetic operators suitable for such representations. 
Tree-like representations are used in GP to represent and evolve 
functional programs with desired properties. Human-based 
genetic algorithm (HBGA) offers a way to avoid solving hard 
representation problems by outsourcing all genetic operators to 
outside agents, in this case, humans. The algorithm has no need 
for knowledge of a particular fixed genetic representation as long 
as there are enough external agents capable of handling those 
representations, allowing for free-form and evolving genetic 
representations.

3.1.1 Data Representation

The organization of any computer depends considerably on how 
it represents numbers, characters, and control information. The 
converse is also true: Standards and conventions established over 
the years have determined certain aspects of computer organization.

Data Type

A data type, in programming, is a classification that specifies 
which type of value a variable has and what type of mathematical, 
relational or logical operations can be applied to it without causing 
an error. A string, for example, is a data type that is used to classify 
text and an integer is a data type used to classify whole numbers.
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Data Type Used for Example

String Alphanumeric characters hello world, Alice, Bob123

Integer Whole numbers 7, 12, 999

Float (float-
ing point)

Number with a decimal 
point

3.15, 9.06, 00.13

Character Encoding text numerically 97 (in ASCII, 97 is a lower 
case ‘a’)

Boolean Representing logical 
values

TRUE, FALSE

The data type defines which operations can safely be performed 
to create, transform and use the variable in another computation. 
When a program language requires a variable to only be used in 
ways that respect its data type, that language is said to be strongly 
typed. This prevents errors, because while it is logical to ask the 
computer to multiply a float by an integer (1.5 x 5), it is illogical to 
ask the computer to multiply a float by a string (1.5 x Alice). When 
a programming language allows a variable of one data type to be 
used as if it were a value of another data type, the language is said 
to be weakly typed.

Technically, the concept of a strongly typed or weakly typed 
programming language is a fallacy. In every programming 
language, all values of a variable have a static type but the type 
might be one whose values are classified into one or more classes. 
And while some classes specify how the data type’s value will be 
compiled or interpreted, there are other classes whose values are 
not marked with their class until run-time. The extent to which 
a programming language discourages or prevents type error is 
known as type safety.

Fixed-Point Representation

•	 Positive integers and zero can be represented by unsigned 
numbers
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•	 Negative numbers must be represented by signed 
numbers since + and – signs are not available, only 1’s 
and 0’s are

•	 Signed numbers have msb as 0 for positive and 1 for 
negative – msb is the sign bit

•	 Two ways to designate binary point position in a register
-- Fixed point position
-- Floating-point representation

•	 Fixed point position usually uses one of the two following 
positions
-- A binary point in the extreme left of the register to make 

it a fraction
-- A binary point in the extreme right of the register to 

make it an integer
-- In both cases, a binary point is not actually present

•	 The floating-point representations uses a second register 
to designate the position of the binary point in the first 
register

•	 When an integer is positive, the msb, or sign bit, is 0 and 
the remaining bits represent the magnitude

•	 When an integer is negative, the msb, or sign bit, is 1, but 
the rest of the number can be represented in one of three 
ways
-- Signed-magnitude representation
-- Signed-1’s complement representation
-- Signed-2’s complement representation

•	 Consider an 8-bit register and the number +14
-- The only way to represent it is 00001110

•	 Consider an 8-bit register and the number –14
-- Signed magnitude: 		  1 0001110
-- Signed 1’s complement:		  1 1110001
-- Signed 2’s complement: 		  1 1110010
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•	 Typically use signed 2’s complement
•	 Addition of two signed-magnitude numbers follow the 

normal rules
-- If same signs, add the two magnitudes and use the 

common sign
-- Differing signs, subtract the smaller from the larger and 

use the sign of the larger magnitude
-- Must compare the signs and magnitudes and then either 

add or subtract
•	 Addition of two signed 2’s complement numbers does 

not require a comparison or subtraction – only addition 
and complementation
-- Add the two numbers, including their sign bits
-- Discard any carry out of the sign bit position
-- All negative numbers must be in the 2’s complement 

form
-- If the sum obtained is negative, then it is in 2’s 

complement form

•	 Subtraction of two signed 2’s complement numbers is as 
follows

•	 Take the 2’s complement form of the subtrahend 
(including sign bit)

•	 Add it to the minuend (including the sign bit)
•	 A carry out of the sign bit position is discarded
•	 An overflow occurs when two numbers of n digits each 

are added and the sum occupies n + 1 digits
•	 Overflows are problems since the width of a register is 

finite
•	 Therefore, a flag is set if this occurs and can be checked 
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by the user
•	 Detection of an overflow depends on if the numbers are 

signed or unsigned
•	 For unsigned numbers, an overflow is detected from the 

end carry out of the msb
•	 For addition of signed numbers, an overflow cannot 

occur if one is positive and one is negative – both have to 
have the same sign

•	 An overflow can be detected if the carry into the sign bit 
position and the carry out of the sign bit position are not 
equal

•	 The representation of decimal numbers in registers is a 
function of the binary code used to represent a decimal 
digit

•	 A 4-bit decimal code requires four flip-flops for each 
decimal digit

•	 This takes much more space than the equivalent binary 
representation and the circuits required to perform 
decimal arithmetic are more complex

•	 Representation of signed decimal numbers in BCD is 
similar to the representation of signed numbers in binary

•	 Either signed magnitude or signed complement systems
•	 The sign of a number is represented with four bits

-- 0000 for +
-- 1001 for –

•	 To obtain the 10’s complement of a BCD number, first 
take the 9’s complement and then add one to the least 
significant digit

•	 Example: (+375) + (-240) = +135
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3.1.2 Floating-Point Representation

If we wanted to build a real computer, we could use any of the 
integer representations that we just studied. We would pick one of 
them and proceed with our design tasks. Our next step would be 
to decide the word size of our system. If we want our system to be 
really inexpensive, we would pick a small word size, say 16 bits. 
Allowing for the sign bit, the largest integer that this system can 
store is 32,767. So now what do we do to accommodate a potential 
customer who wants to keep a tally of the number of spectators 
paying admission to professional sports events in a given year? 
Certainly, the number is larger than 32,767. No problem. Let’s just 
make the word size larger. Thirty-two bits ought to do it. Our word 
is now big enough for just about anything that anyone wants to 
count. But what if this customer also needs to know the amount 
of money each spectator spends per minute of playing time? This 
number is likely to be a decimal fraction. Now we’re really stuck.

The easiest and cheapest approach to this problem is to keep 
our 16-bit system and say, “Hey, we’re building a cheap system 
here. If you want to do fancy things with it, get yourself a good 
programmer.” Although this position sounds outrageously 
flippant in the context of today’s technology, it was a reality in the 
earliest days of each generation of computers. There simply was no 
such thing as a floating-point unit in many of the first mainframes 
or microcomputers. For many years, clever programming enabled 
these integer systems to act as if they were, in fact, floating-point 
systems.

If you are familiar with scientific notation, you may already be 
thinking of how you could handle floating-point operations—
how you could provide floating-point emulation—in an integer 
system. In scientific notation, numbers are expressed in two parts: 
a fractional part, called a mantissa, and an exponential part that 
indicates the power of ten to which the mantissa should be raised 
to obtain the value we need. So to express 32,767 in scientific 
notation, we could write 3.2767 × 104. Scientific notation simplifies 
pencil and paper calculations that involve very large or very small 
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numbers. It is also the basis for floating-point computation in 
today’s digital computers.

A Simple Model

In digital computers, floating-point numbers consist of three parts: 
a sign bit, an exponent part (representing the exponent on a power 
of 2), and a fractional part called a significand (which is a fancy 
word for a mantissa). The number of bits used for the exponent 
and significand depends on whether we would like to optimize 
for range (more bits in the exponent) or precision (more bits in the 
significand). We will use a 14-bit model with a 5-bit exponent, an 
8-bit significand, and a sign bit (see Figure 1).

Figure 1: Floating-Point Representation.

Let’s say that we wish to store the decimal number 17 in our model. 
We know that 17 = 17.0 × 100 = 1.7 × 101 = 0.17 × 102. Analogously, in 
binary, 1710 = 100012 × 20 = 1000.12 × 21 = 100.012 × 22 = 10.0012 × 23 
= 1.00012 × 24 = 0.100012 × 25. If we use this last form, our fractional 
part will be 10001000 and our exponent will be 00101, as shown 
here:

Using this form, we can store numbers of much greater magnitude 
than we could using a fixed-point representation of 14 bits (which 
uses a total of 14 binary digits plus a binary, or radix, point). If we 
want to represent 65536 = 0.12 × 217 in this model, we have:

One obvious problem with this model is that we haven’t provided 
for negative exponents. If we wanted to store 0.25 we would have 
no way of doing so because 0.25 is 2–2 and the exponent –2 cannot 
be represented. We could fix the problem by adding a sign bit 
to the exponent, but it turns out that it is more efficient to use 
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a biased exponent, because we can use simpler integer circuits 
when comparing the values of two floating-point numbers.

The idea behind using a bias value is to convert every integer in 
the range into a non-negative integer, which is then stored as a 
binary numeral. The integers in the desired range of exponents 
are first adjusted by adding this fixed bias value to each exponent. 
The bias value is a number near the middle of the range of possible 
values that we select to represent zero. In this case, we could select 
16 because it is midway between 0 and 31 (our exponent has 5 
bits, thus allowing for 25 or 32 values). Any number larger than 16 
in the exponent field will represent a positive value. Values less 
than 16 will indicate negative values. This is called an excess-16 
representation because we have to subtract 16 to get the true value 
of the exponent. Note that exponents of all zeros or all ones are 
typically reserved for special numbers (such as zero or infinity).

Returning to our example of storing 17, we calculated 1710 = 
0.100012 × 25. The biased exponent is now 16 + 5 = 21:

If we wanted to store 0.25 = 1.0 × 2–2 we would have:

There is still one rather large problem with this system: We do not 
have a unique representation for each number. All of the following 
are equivalent:

Because synonymous forms such as these are not well-suited for 
digital computers, a convention has been established where the 
leftmost bit of the significand will always be a 1. This is called 
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normalization. This convention has the additional advantage in 
that the 1 can be implied, effectively giving an extra bit of precision 
in the significand.

Floating-Point Arithmetic

If we wanted to add two decimal numbers that are expressed in 
scientific notation, such as 1.5 × 102 + 3.5 × 103, we would change 
one of the numbers so that both of them are expressed in the same 
power of the base. In our example, 1.5 × 102 + 3.5 × 103 = 0.15 × 103 + 
3.5 × 103 = 3.65 × 103. Floating-point addition and subtraction work 
the same way.

Example

Add the following binary numbers as represented in a normalized 
14-bit format with a bias of 16.

We see that the addend is raised to the second power and that the 
augend is to the zero power. Alignment of these two operands on 
the binary point gives us:

Renormalizing, we retain the larger exponent and truncate the 
low-order bit. Thus, we have:

Multiplication and division are carried out using the same rules of 
exponents applied to decimal arithmetic, such as 2–3 × 24 = 21.
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Floating-Point Errors

When we use pencil and paper to solve a trigonometry problem or 
compute the interest on an investment, we intuitively understand 
that we are working in the system of real numbers. We know that 
this system is infinite, because given any pair of real numbers, we 
can always find another real number that is smaller than one and 
greater than the other.

Unlike the mathematics in our imaginations, computers are finite 
systems, with finite storage. When we call upon our computers to 
carry out floating-point calculations, we are modeling the infinite 
system of real numbers in a finite system of integers. What we 
have, in truth, is an approximation of the real number system. 
The more bits we use, the better the approximation. However, 
there is always some element of error, no matter how many bits 
we use. Floating-point errors can be blatant, subtle, or unnoticed. 
The blatant errors, such as numeric overflow or underflow, are the 
ones that cause programs to crash. Subtle errors can lead to wildly 
erroneous results that are often hard to detect before they cause 
real problems. For example, in our simple model, we can express 
normalized numbers in the range of –.111111112 × 215 through 
+.11111111 × 215. Obviously, we cannot store 2–19 or 2128; they simply 
don’t fit. It is not quite so obvious that we cannot accurately store 
128.5, which is well within our range. Converting 128.5 to binary, 
we have 10000000.1, which is 9 bits wide. Our significand can hold 
only eight. Typically, the low-order bit is dropped or rounded 
into the next bit. No matter how we handle it, however, we have 
introduced an error into our system.

We can compute the relative error in our representation by taking 
the ratio of the absolute value of the error to the true value of the 
number. Using our example of 128.5, we find:

If we are not careful, such errors can propagate through a 
lengthy calculation, causing substantial loss of precision. Figure 
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2 illustrates the error propagation as we iteratively multiply 16.24 
by 0.91 using our 14-bit model. Upon converting these numbers 
to 8-bit binary, we see that we have a substantial error from the 
outset.

As you can see, in six iterations, we have more than tripled the 
error in the product. Continued iterations will produce an error 
of 100% because the product eventually goes to zero. Although 
this 14-bit model is so small that it exaggerates the error, all 
floating-point systems behave the same way. There is always 
some degree of error involved when representing real numbers in 
a finite system, no matter how large we make that system. Even 
the smallest error can have catastrophic results, particularly when 
computers are used to control physical events such as in military 
and medical applications. The challenge to computer scientists is 
to find efficient algorithms for controlling such errors within the 
bounds of performance and economics.

Figure 2 Error Propagation in a 14-Bit Floating-Point Number.
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3.1.3 Error-Detecting codes

Whenever a message is transmitted, it may get scrambled by noise 
or data may get corrupted. To avoid this, we use error-detecting 
codes which are additional data added to a given digital message 
to help us detect if an error occurred during transmission of the 
message. A simple example of error-detecting code is parity check.

Error-Correcting codes

Along with error-detecting code, we can also pass some data to 
figure out the original message from the corrupt message that we 
received. This type of code is called an error-correcting code. Error-
correcting codes also deploy the same strategy as error-detecting 
codes but additionally, such codes also detect the exact location of 
the corrupt bit.

In error-correcting codes, parity check has a simple way to detect 
errors along with a sophisticated mechanism to determine the 
corrupt bit location. Once the corrupt bit is located, its value is 
reverted (from 0 to 1 or 1 to 0) to get the original message.

How to Detect and Correct Errors?

To detect and correct the errors, additional bits are added to the 
data bits at the time of transmission.

•	 The additional bits are called parity bits. They allow 
detection or correction of the errors.

•	 The data bits along with the parity bits form a code word.

Parity Checking of Error Detection

It is the simplest technique for detecting and correcting errors. The 
MSB of an 8-bits word is used as the parity bit and the remaining 
7 bits are used as data or message bits. The parity of 8-bits 
transmitted word can be either even parity or odd parity.
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Even parity -- Even parity means the number of 1’s in the given 
word including the parity bit should be even (2,4,6,....).

Odd parity -- Odd parity means the number of 1’s in the given 
word including the parity bit should be odd (1,3,5,....).

Use of Parity Bit

The parity bit can be set to 0 and 1 depending on the type of the 
parity required.

•	 For even parity, this bit is set to 1 or 0 such that the no. of 
“1 bits” in the entire word is even. Shown in figure (3).

•	 For odd parity, this bit is set to 1 or 0 such that the no. of 
“1 bits” in the entire word is odd. Shown in figure (4).

Figure 3:

Figure 4:

How Does Error Detection Take Place?

Parity checking at the receiver can detect the presence of an error 
if the parity of the receiver signal is different from the expected 
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parity. That means, if it is known that the parity of the transmitted 
signal is always going to be “even” and if the received signal has 
an odd parity, then the receiver can conclude that the received 
signal is not correct. 

If an error is detected, then the receiver will ignore the received byte 
and request for retransmission of the same byte to the transmitter.

3.2 NUMBER REPRESENTATION AND BINARY 
CODE

Binary is a number system which builds numbers from elements 
called bits. Each bit can be represented by any two mutually 
exclusive states. 

Generally, when one write it down or code bits, and represent 
them with 1 and 0 to build binary numbers the same way and 
build numbers in the traditional base 10 system. However, instead 
of a one’s column, a 10’s column, and a 100 column (and so on) and 
have a one’s column, a two’s columns, a four’s column, an eight’s 
column, and so on, as illustrated:

Table 1. Binary

2... 26 25 24 23 22 21 20

... 64 32 16 8 4 2 1

For example, to represent the number 203 in base 10, place a 3 in 
the 1’s column, a 0 in the 10’s column and a 2 in the 100’s column.
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This is expressed with exponents in the Table 2.

Table 2. 203 in base 10

102 101 100

2 0 3

Or, in other words, 2 Ã 102 + 3 Ã 100 = 200 + 3 = 203.

To represent the same thing in binary, and would have in the Table 
3.

Table 3. 203 in base 2

27 26 25 24 23 22 21 20

1 1 0 0 1 0 1 1

That equates to 27 + 26 + 23+21 + 20 = 128 + 64 + 8 + 2 + 1 = 203.

Conversion

The easiest way to convert between bases is to use a computer; 
after all, that’s what they are good at! However, it is often useful to 
know how to do conversions by hand.

The easiest method to convert between bases is repeated division. 
To convert, repeatedly divide the quotient by the base, until the 
quotient is zero, making note of the remainders at each step. 
Then, write the remainders in reverse, starting at the bottom and 
appending to the right each time. An example should illustrate; 
since you are converting to binary and use a base of 2.

Table 4. Convert 203 to binary

Quotient Â  Remainder Â 

20310 Ã· 2 = 101 1 Â 

10110 Ã· 2 = 50 1 â†‘

5010 Ã· 2 = 25 0 â†‘
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2510 Ã· 2 = 12 1 â†‘

1210 Ã· 2 = 6 0 â†‘

610 Ã· 2 = 3 0 â†‘

310 Ã· 2 = 1 1 â†‘

110 Ã· 2 = 0 1 â†‘

Reading from the bottom and appending to the right each time 
gives 11001011, which anyone saw from the example was 203.ss

Bits and Bytes

To represent all the letters of the alphabet you would need at least 
enough different combinations to represent all the lower case 
letters, the upper case letters, numbers and punctuation, plus 
a few extras. Adding this up means need probably around 80 
different combinations.

•	 If you have two bits and can represent 4 unique 
combinations (00 01 10 11).

•	 If you have three bits and can represent 8 different 
combinations.

•	 With n bits you can represent 2n unique combinations.

8 bits gives us 28 = 256 unique representations, more than enough 
for the alphabet combinations. And call a group of 8 bits a byte. 
Guess how bit a C char variable is?

ASCII

Given that a byte can represent any of the values 0 through 256, 
anyone could arbitrarily make up a mapping between characters 
and numbers. For example, a video card manufacturer could decide 
that the value 10 represents A, so when value 10 is sent to the 
video card it displays a capital ‘A’ on the screen.
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To avoid this happening, the American Standard Code for Information 
Interchange or ASCII was invented. This is a 7-bit code, meaning 
there are 27 or 128 available codes.

The range of codes is divided up into two major parts; the non-
printable and the printable. Printable characters are things like 
characters (supper and lower case), numbers and punctuation. 
Nonprintable codes are for control, and do things like make a 
carriage-return, ring the terminal bell or the special NULL code 
which represents nothing at all.

127 unique characters is sufficient for American English, but 
becomes very restrictive when someone wants to represent 
characters common in other languages, especially Asian languages 
which can have many thousands of unique characters.

To alleviate this, modern systems are moving away from ASCII 
to Unicode, which can use up to 4 bytes to represent a character, 
giving much more room!

Parity

ASCII, being only a 7-bit code, leaves one bit of the byte spare. 
This can be used to implement parity which is a simple form of 
error checking. Consider a computer using punch-cards for 
input, where a hole represents 1 and no hole represents 0. Any 
inadvertent covering of a hole will cause an incorrect value to be 
read, causing undefined behavior.

Parity allows a simple check of the bits of a byte to ensure they 
were read correctly, and can implement either odd or even parity 
by using the extra bit as a parity bit.

In odd parity, if the number of 1’s in the 7 bits of information is 
odd, the parity bit is set, otherwise it is not set. Even parity is the 
opposite; if the number of 1’s is even the parity bit is set to 1. In 
this way, the flipping of one bit will case a parity error, which can 
be detected.
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16, 32 and 64 bit Computers

Numbers do not fit into bytes; hopefully bank balance in dollars 
will need more range than can fit into one byte! Most modern 
architectures are 32 bit computers. This means they work with 4 
bytes at a time when processing and reading or writing to memory; 
and refers to 4 bytes as a word; this is analogous to language where 
letters (bits) make up words in a sentence, except in computing 
every word has the same size! The size of a C it variable is 32 
bits. Newer architectures are 64 bits, which doubles the size the 
processor works with (8 bytes).

Kilo, Mega and Giga Bytes

Computers deal with a lot of bytes; that’s what makes them so 
powerful!

One need a way to talk about large numbers of bytes, and a natural 
way is to use the “International System of Units” (SI) prefixes as 
used in most other scientific areas. So for example, kilo refers to 103 
or 1,000 units, as in a kilogram has 1,000 grams.

1,000 is a nice round number in base 10, but in binary it is 1111101000 
which is not a particularly “round” number. However, 1024 (or 
210) is (10000000000), and happens to be quite close to the base ten 
meaning of kilo (1000 as opposed to 1024).

Hence 1024 bytes became known as a kilobyte. The first mass 
market computer was the Commodore 64, so named because it 
had 64 kilobytes of storage.

Today, kilobytes of memory would be small for a wrist watch, let 
alone a personal computer. The next SI unit is “mega” for 106. As 
it happens, 220 is again close to the SI base 10 definition; 1048576 as 
opposed to 1000000.

The units keep increasing by powers of 10; each time it diverges 
from the base SI meaning.
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Table 5 Bytes

210 Kilobyte

220 Megabyte

230 Gigabyte

240 Terabyte

250 Petabyte

260 Exabyte

Therefore a 32 bit computer can address up to four gigabytes of 
memory; the extra two bits can represent four groups of 230 bytes. 
A 64 bit computer can address up to 8 Exabyte’s; you might be 
interested in working out just how big a number this is. To get a 
feel for how bit that number is calculate how long it would take to 
count to 264; if you incremented once per second.

Boolean Operations

George Boole was a mathematician who discovered a whole 
area of mathematics called Boolean algebra. Whilst he made his 
discoveries in the mid 1800’s, his mathematics is the fundamentals 
of all computer science.

Boolean operations simply take a particular input and produce a 
particular output follows a rule. 

For example, the simplest Boolean operation, not simply inverts 
the value of the input operand. Other operands usually take two 
inputs, and produce a single output.

The fundamental Boolean operations used in computer science 
are easy to remember and listed. These represent them with truth 
tables; they simply show all possible inputs and outputs. The term 
true simply reflects 1 in binary.
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NOT

Usually represented by (!), NOT simply inverts the value, so 0 
becomes 1 and 1 becomes 0

Table 6: Truth table for not

Input Output

1 0

0 1

AND

To remember how the AND operation works think of it as “if one 
input true and the other are true, result is true.

Table 7: Truth table for and

Input 1 Input 2 Output
0 0 0
1 0 0
0 1 0
1 1 1

OR

To remember how the OR operation works think of it as “if one 
input or the other input is true, the result is true.

Table 8: Truth table for OR

Input 1 Input 2 Output
0 0 0
1 0 1
0 1 1
1 1 1
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Exclusive OR (XOR)

Exclusive OR, written as XOR is a special case of or where the 
output is true if one, and only one, of the inputs is true. This 
operation can surprisingly do many interesting tricks, but one will 
not see a lot of it in the kernel.

Table 9: Truth table for XOR

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

1 1 0

3.2.1 How Computers use Boolean Operations

Believe it or not, essentially everything computer does comes back 
to the operations. 

For example, the half adder is a type of circuit made up from 
Boolean operations that can add bits together (it is called a half 
adder because it does not handle carry bits). Put more half adders 
together, and will start to build something that can add together 
long binary numbers. Add some external memory, and has a 
computer. 

Electronically, the Boolean operations are implemented in gates 
made by transistors. 

This is why you might have heard about transistor counts and 
things like Moores Law. The more transistors, the more gates, the 
more things and can add together. To create the modern computer, 
there are an awful lot of gates, and an awful lot of transistors. 
Some of the latest Itanium processors have around 460 million 
transistors.
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Hexadecimal

Hexadecimal refers to a base 16 number system. Uses this in 
computer science for only one reason; it makes it easy for humans 
to think about binary numbers. Computers only ever deal in 
binary and hexadecimal is simply a shortcut for us humans trying 
to work with the computer.

So why base 16? Well, the most natural choice is base 10, since 
anyone is used to thinking in base 10 from everyday number 
system. But base 10 does not work well with binary to represent 10 
different elements in binary, and need four bits. Four bits, however, 
gives us sixteen possible combinations. So they can either take the 
very tricky road of trying to convert between base 10 and binary, 
or take the easy road and make up a base 16 number system - 
hexadecimal!

Hexadecimal uses the standard base 10 numerals, but adds A B C 
D E F which refer to 10 11 12 13 14 15 (one start from zero).

Traditionally, any time you sees a number prefixed by 0x this will 
denote a hexadecimal number.

As mentioned, to represent 16 different patterns in binary, and 
would need exactly four bits. Therefore, each hexadecimal numeral 
represents exactly four bits.

One should consider it an exercise to learn the given Table off by 
heart.

Table 10: Hexadecimal, binary and decimal

Hexadecimal Binary Decimal

0 0000 0

1 0001 1

2 0010 2
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3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Of course there is no reason not to continue the pattern (say, 
assign G to the value 16), but 16 values is an excellent tradeoff 
between the vagaries of human memory and the number of bits 
used by a computer. Anyone simply represents larger numbers 
of bits with more numerals. For example, a sixteen bit variable can 
be represented by 0xAB12, and to find it in binary simply take 
each individual numeral, convert it as per the table and join them 
all together (so 0xAB12 ends up as the 16-bit binary number 
1010101100010010). And can use the reverse to convert from 
binary back to hexadecimal.

One can also use the same repeated division scheme to change the 
base of a number. 
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For example, to find 203 in hexadecimal.

Table 11: Convert 203 to hexadecimal

Quotient Â  Remainder Â 

20310 Ã· 16 = 12 11 (0xB) Â 

1210 Ã· 16 = 0 12 (0xC) â†‘

Hence 203 in hexadecimal is 0xCB.

Practical Implications

Use of Binary in Code

Whilst binary is the underlying language of every computer, it is 
entirely practical to program a computer in high level languages 
without knowing the first thing about it. However, for the low 
level codes and they are interested in a few fundamental binary 
principles are used repeatedly.

3.2.2 Fixed- and Floating-Point Number Representation

The Institute of Electrical and Electronics Engineers (IEEE) 
standardizes floating-point representation in IEEE 754. Floating-
point representation is similar to scientific notation in that there is 
a number multiplied by a base number raised to some power. For 
example, 118.625 are represented in scientific notation as 1.18625 
× 102. The main benefit of this representation is that it provides 
varying degrees of precision based on the scale of the numbers 
that anyone is using. For example, it is beneficial to talk in terms of 
angstroms (10-10 m) when one is working with the distance between 
atoms. However, if they are dealing with the distance between 
cities, this level of precision is no longer practical or necessary.

IEEE 754 defines binary representations for 32-bit single-precision 
and 64-bit double-precision (64-bit) numbers as well as extended 
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single-precision and extended double-precision numbers. Examine 
the specification for single-precision, floating-point numbers, also 
called floats.

A float consists of three parts: the sign bit, the exponent, and the 
mantissa. The division of the three parts is as follows:

The sign bit is 0 if the number is positive and 1 if the number is 
negative.

The exponent is an 8-bit number that ranges in value from -126 
to 127. The exponent is actually not the typical two’s complement 
representation because this makes comparisons more difficult. 
Instead, the value is biased by adding 127 to the desired exponent 
and representation, which makes it possible to represent negative 
numbers. The mantissa is the normalized binary representation of 
the number to be multiplied by 2 raised to the power defined by 
the exponent.
Now look at how to encode 118.625 as a float. The number 118.625 
is a positive number, so the sign bit is 0. To find the exponent and 
mantissa, first write the number in binary, which are 1110110.101. 
Next, normalize the number to 1.110110101 × 26, which is the bi-
nary equivalent of scientific notation. The exponent is 6 and the 
mantissa is 1.110110101. The exponent must be biased, which is 6 
+ 127 = 133. The binary representation of 133 is 10000101.
Thus, the floating-point encoded value of 118.65 is 0100 0010 1111 
0110 1010 0000 0000 0000. Binary values are often referred to in 
their hexadecimal equivalent. In this case, the hexadecimal value 
is 42F6A000.

Fixed Point Representation

In fixed-point representation, a specific radix point called a 
decimal point in English and written “.” is chosen so there is a 
fixed number of bits to the right and a fixed number of bits to the 
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left of the radix point. The bits to the left of the radix point are 
called the integer bits. The bits to the right of the radix point are 
called the fractional bits.

In this example, assume a 16-bit fractional number with 8 
magnitude bits and 8 radix bits, which is typically represented 
as 8.8 representations. Like most signed integers, fixed-point 
numbers are represented in two’s complement binary. Using a 
positive number keeps this example simple.

To encode 118.625, first find the value of the integer bits. The 
binary representation of 118 is 01110110, so this is the upper 8 
bits of the 16-bit number. The fractional part of the number is 
represented as 0.625 × 2n where n is the number of fractional bits. 
Because 0.625 × 256 = 160, and use the binary representation of 
160, which is 10100000, to determine the fractional bits. Thus, the 
binary representation for 118.625 is 0111 0110 1010 0000. The value 
is typically referred to using the hexadecimal equivalent, which is 
76A0.

The major advantage of using fixed-point representation for real 
numbers is that fixed-point adheres to the same basic arithmetic 
principles as integers. Therefore, fixed-point numbers can take 
advantage of the general optimizations made to the Arithmetic 
Logic Unit (ALU) of most microprocessors, and do not require 
any additional libraries or any additional hardware logic. On 
processors without a floating-point unit (FPU), such as the Analog 
Devices Black fin Processor, fixed-point representation can 
result in much more efficient embedded code when performing 
mathematically heavy operations.

In general, the disadvantage of using fixed-point numbers is that 
fixed-point numbers can represent only a limited range of values, 
so fixed-point numbers are susceptible to common numeric 
computational inaccuracies. For example, the range of possible 
values in the 8.8 notation that can be represented is +127.99609375 
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to -128.0. If you add 100 + 100 and exceed the valid range of the 
data type which is called overflow. In most cases, the values that 
overflow are saturated, or truncated, so that the result is the largest 
representable number.

3.2.3 BCD

In computing and electronic systems, binary-coded decimal 
(BCD) or, in its most common modern implementation, packed 
decimal, is an encoding for decimal numbers in which each 
digit is represented by its own binary sequence. Its main virtue 
is that it allows easy conversion to decimal digits for printing or 
display, and allows faster decimal calculations. Its drawbacks are 
a small increase in the complexity of circuits needed to implement 
mathematical operations. Uncompressed BCD is also a relatively 
inefficient encoding it occupies more space than a purely binary 
representation.

Short for Binary Coded Decimal, BCD is also known as packet 
decimal and is numbers 0 through 9 converted to four-digit binary. 
There is a list of the decimal numbers 0 through 9 and the binary 
conversion.

In BCD, a digit is usually represented by four bits which, in general, 
represent the decimal digits 0 through 9. Other bit combinations 
are sometimes used for a sign or for other indications (e.g., error 
or overflow).

Although uncompressed BCD is not as widely used as it once 
was, decimal fixed-point and floating-point are still important 
and continue to be used in financial, commercial, and industrial 
computing.

Recent decimal floating-point representations use base-
10 exponents, but not BCD encodings. Current hardware 
implementations, however, convert the compressed decimal 
encodings to BCD internally before carrying out computations. 
Software implementations of decimal arithmetic typically use 
BCD or some other 10n base, depending on the operation.
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Decimal BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Using this conversion, the number 25, for example, would have a 
BCD number of 0010 0101 or 00100101. However, in binary, 25 are 
represented as 11001.Number larger than 9 having two or more 
digits in the decimal system, are expressed digit by digit. For 
example, the BCD rendition of the base-10 number 1895 is

0001 1000 1001 0101

The binary equivalents of 1, 8, 9, and 5, always in a four-digit 
format, go from left to right.

The BCD representation of a number is not the same, in general, 
as its simple binary representation. In binary form, for example, the 
decimal quantity 1895 appears as

11101100111

Other bit patterns are sometimes used in BCD format to represent 
special characters relevant to a particular system, such as sign 
(positive or negative), error condition, or overflow condition.
The BCD system offers relative ease of conversion between 
machine-readable and human-readable numerals. As compared 
to the simple binary system, however, BCD increases the circuit 
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complexity. The BCD system is not as widely used today as it was 
a few decades ago, although some systems still employ BCD in 
financial applications.

3.2.4 EBCDIC

Extended Binary Coded Decimal Interchange Code (EBCDIC) is a 
character encoding set used by IBM mainframes. Unlike virtually 
every computer system in the world which uses a variant of ASCII, 
IBM mainframes and midrange systems such as the AS/400 tend to 
use a wholly incompatible character set primarily designed for ease 
of use on punched cards. (For an excellent page on punched cards, 
see Doug Jones’s Punched Card Codes).EBCDIC uses the full 8 bits 
available to it, so parity checking cannot be used on an 8 bit system. 
Also, EBCDIC has a wider range of control characters than ASCII.

The character encoding is based on Binary Coded Decimal (BCD), 
so the contiguous characters in the alphanumeric range are formed 
up in blocks of up to 10 from 0000 binary to 1001 binary. Non 
alphanumeric characters are almost all outside the BCD range.
There are four main blocks in the EBCDIC code page: 0000 0000 to 
0011 1111 is reserved for control characters; 0100 0000 to 0111 1111 
is for punctuation; 1000 0000 to 1011 1111 for lowercase characters 
and 1100 0000 to 1111 1111 for uppercase characters and numbers.

3.2.5 ASCII

ASCII is the American Standard Code for Information Interchange, 
also known as ANSI X3.4. There are many variants of this standard, 
typically to allow different code pages for language encoding, but 
they all basically follow the same format. ASCII is quite elegant 
in the way it represents characters, and it is very easy to write 
code to manipulate upper/lowercase and check for valid data 
ranges.ASCII is essentially a 7-bit code which allows the 8th most 
significant bit (MSB) to be used for error checking, however most 
modern computer systems tend to use ASCII values of 128 for 
extended character sets.
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Excess-3

Excess-3 code is an example of un-weighted code. Excess-3 
equivalent of a decimal number is obtained by adding 3 and then 
converting it to a binary format. For instance to find excess-3 
representation of decimal number 4, first 3 is added to 4 to get 
7 and then binary equivalent of 7 i.e. 0111 forms the excess-3 
equivalent. The truth table of excess-3 is given in Table 13.

Table 13: Truth table of excess-3

Truth Table

Input (BCD) Output (Excess-3)

A B C D W X Y Z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

Here is a Table representing excess-3 equivalent of decimal 
numbers (0-9):
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Table 14: Excess-3 equivalent of decimal numbers

Decimal Number Excess-3 Equivalent

0 0011

1 0100

2 0101

3 0110

4 0111

5 1000

6 1001

7 1010

8 1011

9 1100

Excess 3 Code Additions

The operation of addition can be done by very simple method you 
will illustrate the operation in a simple way using steps.

•	 Step 1: You have to convert the numbers (which are to be 
added) into excess 3 forms by adding 0011 with each of 
the four bit groups them or simply increasing them by 3.

•	 Step 2: Now the two numbers are added using the basic 
laws of binary addition, there is no exception for this 
method.

•	 Step 3: Now which of the four groups have produced a 
carry one has to add 0011 with them and subtract 0011 
from the groups which have not produced a carry during 
the addition.

•	 Step 4: The result which you have obtained after this 
operation is in Excess 3 form and this is desired result
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Example

To understand the Excess 3 Code Addition method better you can 
observe the method with the help of an example,

Let us take two numbers which one will to add.

0011 0101 0110 and 0101 0111 1001 are the two binary numbers. 
Now follows the first step one take the excess 3 form of these two 
numbers which are 0110 1000 1001 and 1000 1010 1100, now these 
numbers are added the basic rules of addition.

Now adding 0011 to the groups which produces a carry and 
subtracting zero from the groups which did not produced carry 
one get the result as 1100 0110 1000 is the result of the addition in 
excess 3 code and the BCD answer is 1001 0011 0101.

Excess 3 Code Subtractions

Similarly binary subtraction can be performed by Excess 3 Code 
Subtraction method. The operation is illustrated with the help of 
some steps.

•	 Step 1: The numbers have to be converted into excess 3 
codes.

•	 Step 2: Following the basic methods of binary subtraction, 
subtraction is done.

•	 Step 3: Subtract ‘0011’ from each BCD four-bit group in 
the answer if the subtraction operation of the relevant 
four-bit groups required borrow from the next higher 
adjacent four-bit group.

•	 Step 4: Add ‘0011’ to the remaining four-bit groups, if 
any, in the result.
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•	 Step 5: Finally one gets the desired result in excess 3 
codes.

Example

Again an example will make the understanding very easy for us.

Let us take the numbers
0001 1000 0101 and 0000 0000 1000 now the excess 3 equivalent of 
those numbers are 0100 1011 1000 and 0011 0011 1011
Now performing the operation of binary subtraction one get

The least significant column which needed borrow and the other 
two columns did not need borrow. Now you have to subtract 
0011 from the result of this column and add 0011 to the other two 
columns, and get 0100 1010 1010. This is the result expressed in 
excess 3 codes. And the binary result is 0001 0111 0111

3.2.6 IEEE Standard 

Abbreviation of Institute of Electrical and Electronics Engineers, 
pronounced I-triple-E. Founded in 1884 as the AIEE, the IEEE 
was formed in 1963 when AIEE merged with IRE. IEEE is an 
organization composed of engineers, scientists, and students. The 
IEEE is best known for developing standards for the computer 
and electronics industry. In particular, the IEEE 802 standards for 
local-area networks are widely followed.

The IEEE has done notable work in the standards area of networking. 
This organization is huge with over 300,000 members made up 
of engineers, technicians, scientists, and students in related areas. 
The Computer Society of IEEE alone has over 100,000 members. 
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IEEE is credited with having provided definitive standards in 
local area networking. 

The 802 standards were the culmination of work performed by 
the subcommittee starting in 1980. This was followed in 1985 with 
specific LAN-oriented standards titled 802.2 - 802.5. Since that 
time there have been other references set up as well. Most of the 
work performed by the 802 Project committee revolves around the 
first two layers of the OSI model initiated by the ISO. These layers 
involve the physical medium on which you move data (cable 
type) and the way that interacts with it. It addresses such crucial 
issues of how data is placed on the network and how insures 
its accuracy and flow. In order to better define these functions, 
the IEEE split the Data Link layer of the OSI model up into two 
separate components.

802 IEEE committee responsible for setting standards concerning 
cabling physical topologies logical topologies and physical access 
methods for networking products. The Computer Society of IEEE’s 
802 Project Committee is divided into several subcommittees that 
deal with specific standards in these general areas. Specifically the 
Physical layer and the Data Link layer of the ISO’s OSI model are 
addressed.

802.1 This work defines an overall picture of LANs and 
connectivity. 802.1B this set of standards specifically addressed 
network management.

802.1D Standards for bridges used to connect various types of 
LANs together were set up with 802.1D.

802.2 called the logical link control (LLC) standards; this 
specification governs the communication of packets of information 
from one device to another on a network. Specifically it deals with 
communication, not access to the network itself.

802.3 Defines the way data has access to a network for multiple 
topology systems using Carrier Sense Multiple Access/ Collision 
Detection (CSMA/CD). A prime example is Ethernet and Star LAN 
systems. These LAN types operate at 10 Mb/sec.
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802.4 Standards developed for a token-passing scheme on a 
bus topology. The primary utilizer of this specification was the 
Manufacturing Automation Protocol LANs developed by General 
Motors. Operate at 10 Mb/sec.

802.5 This standard defines token ring systems. It involves the 
token-passing concept on a ring topology with twisted pair 
cabling. IBM’s token ring system uses this specification. The speed 
is either 4 Mb/sec or 16 Mb/sec.

802.6 Metropolitan Area Networks are defined by this group. 
MANs are networks that are larger than LANs typically falling 
within 50 kilometers. They operate at speeds ranging from 1 Mb/
sec up to about 200 Mb/sec.

802.7 These are standards concerning broadband LANs.

802.8 This group sets up standards for LANs using fiber optic 
cabling and access methods.

802.9 This specification covers voice and digital data integration.

802.10 These members set standards for interoperable security.

802.11 Wireless LANs are the subject of this particular 
subcommittee’s works. Both infrared and radio LANs are covered.

IEEE standard for Floating Point Representation

The IEEE (Institute of Electrical and Electronics Engineers) has 
produced a standard for floating point arithmetic. This standard 
specifies how single precision (32 bit) and double precision (64 
bit) floating point numbers are to be represented, as well as how 
arithmetic should be carried out on them.

Single Precision

The IEEE single precision floating point standard representation 
requires a 32 bit word, which may be represented as numbered 
from 0 to 31, left to right. The first bit is the sign bit, S, the next 
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eight bits are the exponent bits, ‘E’, and the final 23 bits are the 
fraction ‘F’:

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

0 1                 8 9                                               31

The value V represented by the word may be determined as 
follows:

•	 If E=255 and F is nonzero, then V=NaN (“Not a number”)
•	 If E=255 and F is zero and S is 1, then V=-Infinity
•	 If E=255 and F is zero and S is 0, then V=Infinity
•	 If 0<E<255 then V= (-1)**S * 2 ** (E-127) * (1.F) where “1.F” 

is intended to represent the binary number created by 
prefixing F with an implicit leading 1 and a binary point.

•	 If E=0 and F is nonzero, then V= (-1)**S * 2 ** (-126) * (0.F) 
These are “normalized” values.

•	 If E=0 and F is zero and S is 1, then V=-0
•	 If E=0 and F is zero and S is 0, then V=0

In particular,
  0 00000000 00000000000000000000000 = 0
  1 00000000 00000000000000000000000 = -0
  0 11111111 00000000000000000000000 = Infinity
  1 11111111 00000000000000000000000 = -Infinity
  0 11111111 00000100000000000000000 = NaN
  1 11111111 00100010001001010101010 = NaN
  0 10000000 00000000000000000000000 = +1 * 2**(128-127) * 1.0 = 2
  0 10000001 10100000000000000000000 = +1 * 2**(129-127) * 1.101 
= 6.5
  1 10000001 10100000000000000000000 = -1 * 2**(129-127) * 1.101 = 
-6.5
  0 00000001 00000000000000000000000 = +1 * 2**(1-127) * 1.0 = 2**(-
126)
  0 00000000 10000000000000000000000 = +1 * 2**(-126) * 0.1 = 2**(-
127) 



Genetic Algorithm 119

  0 00000000 00000000000000000000001 = +1 * 2**(-126) * 
                                       0.00000000000000000000001 = 
                                       2**(-149)  (Smallest positive value)

Double Precision

The IEEE double precision floating point standard representation 
requires a 64 bit word, which may be represented as numbered 
from 0 to 63, left to right. The first bit is the sign bit, S, the next 
eleven bits are the exponent bits, ‘E’, and the final 52 bits are the 
fraction ‘F’:
S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFF
0 1                         11 12                                                                                                              63
The value V represented by the word may be determined as 
follows:

•	 If E=2047 and F is nonzero, then V=NaN (“Not a number”)
•	 If E=2047 and F is zero and S is 1, then V=-Infinity
•	 If E=2047 and F is zero and S is 0, then V=Infinity
•	 If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where 

“1.F” is intended to represent the binary number created 
by prefixing F with an implicit leading 1 and a binary 
point.

•	 If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F) 
These are “unnormalized” values.

•	 If E=0 and F is zero and S is 1, then V=-0
•	 If E=0 and F is zero and S is 0, then V=0

3.3 MUTATION

In simple terms, mutation may be defined as a small random tweak 
in the chromosome, to get a new solution. It is used to maintain 
and introduce diversity in the genetic population and is usually 
applied with a low probability – pm. If the probability is very high, 
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the GA gets reduced to a random search. Mutation is the part of 
the GA which is related to the “exploration” of the search space. It 
has been observed that mutation is essential to the convergence of 
the GA while crossover is not.

Mutation Operators

In this section, we describe some of the most commonly used 
mutation operators. Like the crossover operators, this is not an 
exhaustive list and the GA designer might find a combination of 
these approaches or a problem-specific mutation operator more 
useful.

Bit Flip Mutation

In this bit flip mutation, we select one or more random bits and 
flip them. This is used for binary encoded GAs.

Random Resetting

Random Resetting is an extension of the bit flip for the integer 
representation. In this, a random value from the set of permissible 
values is assigned to a randomly chosen gene.

Swap Mutation

In swap mutation, we select two positions on the chromosome 
at random, and interchange the values. This is common in 
permutation based encodings.
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Scramble Mutation

Scramble mutation is also popular with permutation 
representations. In this, from the entire chromosome, a subset 
of genes is chosen and their values are scrambled or shuffled 
randomly.

Inversion Mutation

In inversion mutation, we select a subset of genes like in scramble 
mutation, but instead of shuffling the subset, we merely invert the 
entire string in the subset.

3.3.1 Genetic Algorithms - Population

Population is a subset of solutions in the current generation. It can 
also be defined as a set of chromosomes. There are several things 
to be kept in mind when dealing with GA population −

•	 The diversity of the population should be maintained 
otherwise it might lead to premature convergence.

•	 The population size should not be kept very large as it 
can cause a GA to slow down, while a smaller population 
might not be enough for a good mating pool. Therefore, 
an optimal population size needs to be decided by trial 
and error.

The population is usually defined as a two-dimensional array of 
– size population, size x, chromosome size.
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Population Initialization

There are two primary methods to initialize a population in a GA. 
They are −

•	 Random Initialization  − Populate the initial population 
with completely random solutions.

•	 Heuristic initialization  − Populate the initial population 
using a known heuristic for the problem.

It has been observed that the entire population should not be 
initialized using a heuristic, as it can result in the population 
having similar solutions and very little diversity. It has been 
experimentally observed that the random solutions are the ones 
to drive the population to optimality. Therefore, with heuristic 
initialization, we just seed the population with a couple of good 
solutions, filling up the rest with random solutions rather than 
filling the entire population with heuristic based solutions.

It has also been observed that heuristic initialization in some cases, 
only effects the initial fitness of the population, but in the end, it is 
the diversity of the solutions which lead to optimality.

Population Models

There are two population models widely in use −

Steady State

In steady state GA, we generate one or two off-springs in each 
iteration and they replace one or two individuals from the 
population. A steady state GA is also known as Incremental GA.

Generational

In a generational model, we generate ‘n’ off-springs, where n is the 
population size, and the entire population is replaced by the new 
one at the end of the iteration.



Genetic Algorithm 123

3.3.2 Genetic Algorithms - Parent Selection

Parent Selection is the process of selecting parents which mate 
and recombine to create off-springs for the next generation. Parent 
selection is very crucial to the convergence rate of the GA as good 
parents drive individuals to a better and fitter solutions.

However, care should be taken to prevent one extremely fit solution 
from taking over the entire population in a few generations, as this 
leads to the solutions being close to one another in the solution 
space thereby leading to a loss of diversity.  Maintaining good 
diversity in the population is extremely crucial for the success of 
a GA. This taking up of the entire population by one extremely fit 
solution is known as premature convergence and is an undesirable 
condition in a GA.

Fitness Proportionate Selection

Fitness Proportionate Selection is one of the most popular ways 
of parent selection. In this every individual can become a parent 
with a probability which is proportional to its fitness. Therefore, 
fitter individuals have a higher chance of mating and propagating 
their features to the next generation. Therefore, such a selection 
strategy applies a selection pressure to the more fit individuals in 
the population, evolving better individuals over time.

Consider a circular wheel. The wheel is divided into n pies, where 
n is the number of individuals in the population. Each individual 
gets a portion of the circle which is proportional to its fitness value.

Two implementations of fitness proportionate selection are 
possible −

Roulette Wheel Selection

In a roulette wheel selection, the circular wheel is divided as 
described before. A fixed point is chosen on the wheel circumference 
as shown and the wheel is rotated. The region of the wheel which 
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comes in front of the fixed point is chosen as the parent. For the 
second parent, the same process is repeated.

It is clear that a fitter individual has a greater pie on the wheel and 
therefore a greater chance of landing in front of the fixed point 
when the wheel is rotated. Therefore, the probability of choosing 
an individual depends directly on its fitness.
Implementation wise, we use the following steps −

•	 Calculate S = the sum of a finesses.
•	 Generate a random number between 0 and S.
•	 Starting from the top of the population, keep adding the 

finesses to the partial sum P, till P<S.
•	 The individual for which P exceeds S is the chosen 

individual.

Stochastic Universal Sampling (SUS)

Stochastic Universal Sampling is quite similar to Roulette wheel 
selection, however instead of having just one fixed point, we have 
multiple fixed points as shown in the following image. Therefore, 
all the parents are chosen in just one spin of the wheel. Also, such 
a setup encourages the highly fit individuals to be chosen at least 
once.
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It is to be noted that fitness proportionate selection methods don’t 
work for cases where the fitness can take a negative value.

Tournament Selection

In K-Way tournament selection, we select K individuals from the 
population at random and select the best out of these to become a 
parent. The same process is repeated for selecting the next parent. 
Tournament Selection is also extremely popular in literature as it 
can even work with negative fitness values.
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Rank Selection

Rank Selection also works with negative fitness values and is 
mostly used when the individuals in the population have very 
close fitness values (this happens usually at the end of the run). 
This leads to each individual having an almost equal share of 
the pie (like in case of fitness proportionate selection) as shown 
in the following image and hence each individual no matter how 
fit relative to each other has an approximately same probability 
of getting selected as a parent. This in turn leads to a loss in the 
selection pressure towards fitter individuals, making the GA to 
make poor parent selections in such situations.

In this, we remove the concept of a fitness value while selecting 
a parent. However, every individual in the population is ranked 
according to their fitness. The selection of the parents depends on 
the rank of each individual and not the fitness. The higher ranked 
individuals are preferred more than the lower ranked ones.

Chromosome Fitness Value Rank

A 8.1 1

B 8.0 4

C 8.05 2

D 7.95 6
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E 8.02 3

F 7.99 5

Random Selection

In this strategy we randomly select parents from the existing 
population. There is no selection pressure towards fitter individuals 
and therefore this strategy is usually avoided.
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INTRODUCTION

Neural network models are highly expressive and flexible, and if 
we are able to find a suitable set of model parameters, we can use 
neural nets to solve many challenging problems. Deep learning’s 
success largely comes from the ability to use the backpropagation 
algorithm to efficiently calculate the gradient of an objective 
function over each model parameter. With these gradients, we can 
efficiently search over the parameter space to find a solution that 
is often good enough for our neural net to accomplish difficult 
tasks.

However, there are many problems where the backpropagation 
algorithm cannot be used. For example, in reinforcement learning 
(RL) problems, we can also train a neural network to make 
decisions to perform a sequence of actions to accomplish some 
task in an environment. However, it is not trivial to estimate the 
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gradient of reward signals given to the agent in the future to an 
action performed by the agent right now, especially if the reward 
is realised many timesteps in the future. Even if we are able to 
calculate accurate gradients, there is also the issue of being stuck 
in a local optimum, which exists many for RL tasks.

4.1 OVERVIEW OF EVOLUTION STRATEGY

The diagrams below are top-down plots of shifted 2D Schaffer 
and Rastrigin functions, two of several simple toy problems used 
for testing continuous black-box optimization algorithms. Lighter 
regions of the plots represent higher values of F(x,y). As you can 
see, there are many local optimums in this function. Our job is to 
find a set of model parameters (x,y), such that F(x,y) is as close as 
possible to the global maximum.
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Although there are many definitions of evolution strategies, we 
can define an evolution strategy as an algorithm that provides 
the user a set of candidate solutions to evaluate a problem. The 
evaluation is based on an  objective function  that takes a given 
solution and returns a single  fitness  value. Based on the fitness 
results of the current solutions, the algorithm will then produce 
the next generation of candidate solutions that is more likely 
to produce even better results than the current generation. 
The iterative process will stop once the best known solution is 
satisfactory for the user.

Given an evolution strategy algorithm called EvolutionStrategy, 
we can use in the following way:
solver = EvolutionStrategy()
while True:
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  # ask the ES to give us a set of candidate solutions

  solutions = solver.ask()

  # create an array to hold the fitness results.

  fitness_list = np.zeros(solver.popsize)

  # evaluate the fitness for each given solution.

  for i in range(solver.popsize):

    fitness_list[i] = evaluate(solutions[i])

  # give list of fitness results back to ES

  solver.tell(fitness_list)

  # get best parameter, fitness from ES

  best_solution, best_fitness = solver.result()

  if best_fitness > MY_REQUIRED_FITNESS:

    break

Although the size of the population is usually held constant for 
each generation, they don’t need to be. The ES can generate as many 
candidate solutions as we want, because the solutions produced 
by an ES are  sampled  from a distribution whose parameters are 
being updated by the ES at each generation. I will explain this 
sampling process with an example of a simple evolution strategy.
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4.1.1 SIMPLE EVOLUTION STRATEGY

One of the simplest evolution strategy we can imagine will just 
sample a set of solutions from a Normal distribution, with a mean \
muμ and a fixed standard deviation \sigmaσ. In our 2D problem, 

 Initially, μ is set at the origin. After 
the fitness results are evaluated, we set μ  to the best solution 
in the population, and sample the next generation of solutions 
around this new mean. This is how the algorithm behaves over 20 
generations on the two problems mentioned earlier:

In the visualisation above, the green dot indicates the mean of 
the distribution at each generation, the blue dots are the sampled 
solutions, and the red dot is the best solution found so far by our 
algorithm.

This simple algorithm will generally only work for simple 
problems. Given its greedy nature, it throws away all but the best 
solution, and can be prone to be stuck at a local optimum for more 
complicated problems. It would be beneficial to sample the next 
generation from a probability distribution that represents a more 
diverse set of ideas, rather than just from the best solution from 
the current generation.

4.1.2 Simple Genetic Algorithm

One of the oldest black-box optimization algorithms is the genetic 
algorithm. There are many variations with many degrees of 
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sophistication, but I will illustrate the simplest version here. The 
idea is quite simple: keep only 10% of the best performing solutions 
in the current generation, and let the rest of the population die. 
In the next generation, to sample a new solution is to randomly 
select two solutions from the survivors of the previous generation, 
and recombine their parameters to form a new solution. 
This crossover recombination process uses a coin toss to determine 
which parent to take each parameter from. In the case of our 2D 
toy function, our new solution might inherit  x  or  y  from either 
parents with 50% chance. Gaussian noise with a fixed standard 
deviation will also be injected into each new solution after this 
recombination process.

The figure above illustrates how the simple genetic algorithm 
works. The green dots represent members of the elite population 
from the previous generation, the blue dots are the offspring’s to 
form the set of candidate solutions, and the red dot is the best 
solution.

Genetic algorithms help diversity by keeping track of a diverse set 
of candidate solutions to reproduce the next generation. However, 
in practice, most of the solutions in the elite surviving population 
tend to converge to a local optimum over time. There are more 
sophisticated variations of GA out there, such as CoSyNe, ESP, 
and NEAT, where the idea is to cluster similar solutions in the 
population together into different species, to maintain better 
diversity over time.
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4.1.3 Covariance-Matrix Adaptation Evolution Strategy 
(CMA-ES)

A shortcoming of both the Simple ES and Simple GA is that our 
standard deviation noise parameter is fixed. There are times when 
we want to explore more and increase the standard deviation of 
our search space, and there are times when we are confident we 
are close to a good optima and just want to fine tune the solution. 
We basically want our search process to behave like this:

Amazing isn’it it? The search process shown in the figure above 
is produced by Covariance-Matrix Adaptation Evolution Strategy 
(CMA-ES). CMA-ES an algorithm that can take the results of 
each generation, and adaptively increase or decrease the search 
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space for the next generation. It will not only adapt for the mean \
muμ and sigma \sigmaσ parameters, but will calculate the entire 
covariance matrix of the parameter space. At each generation, 
CMA-ES provides the parameters of a multi-variate normal 
distribution to sample solutions from. So how does it know how 
to increase or decrease the search space?

Before we discuss its methodology, let’s review how to estimate 
a covariance matrix. This will be important to understand CMA-
ES’s methodology later on. 

If we want to estimate the covariance matrix of our entire sampled 
population of size of N, we can do so using the set of equations 
below to calculate the maximum likelihood estimate of a covariance 
matrix C. We first calculate the means of each of the xi and yi in our 
population:

The terms of the 2x2 covariance matrix C will be:
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4.2 NATURAL EVOLUTION STRATEGIES

Imagine if you had built an artificial life simulator, and you sample 
a different neural network to control the behavior of each ant 
inside an ant colony. Using the Simple Evolution Strategy for this 
task will optimize for traits and behaviors that benefit individual 
ants, and with each successive generation, our population will be 
full of alpha ants who only care about their own well-being. 

Instead of using a rule that is based on the survival of the fittest 
ants, what if you take an alternative approach where you take the 
sum of all fitness values of the entire ant population, and optimize 
for this sum instead to maximize the well-being of the entire ant 
population over successive generations? Well, you would end up 
creating a Marxist utopia.

A perceived weakness of the algorithms mentioned so far is that 
they discard the majority of the solutions and only keep the best 
solutions. Weak solutions contain information about what not to 
do, and this is valuable information to calculate a better estimate 
for the next generation.

In this approach, we want to use all of the information from each 
member of the population, good or bad, for estimating a gradient 
signal that can move the entire population to a better direction in 
the next generation. Since we are estimating a gradient, we can 
also use this gradient in a standard SGD update rule typically 
used for deep learning. We can even use this estimated gradient 
with Momentum SGD, RMSProp, or Adam if we want to. 
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The idea is to maximize the expected value of the fitness score of 
a sampled solution. If the expected result is good enough, then 
the best performing member within a sampled population will be 
even better, so optimizing for the expectation might be a sensible 
approach. Maximising the expected fitness score of a sampled 
solution is almost the same as maximizing the total fitness score 
of the entire population.

4.3 NUMERICAL OPTIMIZATION

Almost every machine learning algorithm can be posed as an 
optimization problem. In an ML algorithm, we update the model’s 
parameters to minimize the loss. For example, every supervised 
learning algorithm can be written as, θ_estimate = argmin 
𝔼[L(y,f(x,θ))], where x and y represent the features and the target 
respectively, θ represents model parameters, f represents the 
function we are trying to model and L represents the Loss function, 
which measures how good our fit is. Gradient Descent algorithm 
also known as steepest descent has proven to solve such problems 
well in most of the cases. It is a first-order iterative algorithm for 
finding the local minimum of a differentiable function. We take 
steps proportional to the negative of the gradient of the Loss 
function at the current point, i.e. θ_new = θ_old — α*∇ L(y, f(x, θ_
old)). Newton’s Method is another second-order iterative method 
which converges in fewer iterations but is computationally 
expensive as the inverse of second-order derivative of the loss 
function (Hessian matrix) needs to be calculated, i.e. θ_new = θ_old 
— [∇² L(y, f(x, θ_old))]^(-1) * ∇ L(y, f(x, θ_old)). We are searching 
for parameter using the gradients as we believe that it will lead us 
in the direction where loss will get reduced. But can we search for 
optimal parameters without calculating any gradients? Actually, 
there are many ways to solve this problem! There are bunch of 
different Derivitive-free optimization algorithms (also known as 
Black-Box optimization). 
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4.3.1 Evolution Strategies

Gradient descent might not always solve our problems. Why? The 
answer is local optimum in short. For example in case of sparse 
reward scenarios in reinforcement learning where agent receives 
reward at the end of episode, like in chess with end reward as +1 
or -1 for winning or losing the game respectively. In case we lose 
the game, we won’t know whether we played horribly wrong or 
just made a small mistake. The reward gradient signal is largely 
uninformative and can get us stuck. Rather than using noisy 
gradients to update our parameters we can resort to derivative-free 
techniques such as Evolution Strategies (ES). ES works out well in 
such cases and also where we don’t know the precise analytic form 
of an objective function or cannot compute the gradients directly.
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Moreover, they found out that ES discovered more diverse policies 
compared to traditional Reinforcement learning algorithm. ES 
are nature-inspired optimization methods which use random 
mutation, recombination, and selection applied to a population 
of individuals containing candidate solutions in order to evolve 
iteratively better solutions. It is really useful for non-linear or non-
convex continuous optimization problems.

In ES, we don’t care much about the function and its relationship 
with the inputs or parameters. Some million numbers (parameters 
of the model) go into the algorithm and it spits out 1 value (e.g. loss 
in supervised setting; reward in case of Reinforcement Learning). 
We try to find the best set of such numbers which returns good 
values for our optimization problem. We are optimizing a 
function J(θ) with respect to the parameters θ, just by evaluating 
it without making any assumptions about the structure of J, and 
hence the name ‘black-box optimization’. Let’s dig deep into the 
implementation details!

4.3.2 Vanilla Implementation

To start with, we randomly generate the parameters and tweak it 
such that the parameters work better slightly. Mathematically, at 
each step we take a parameter vector θ and generate a population 
of, say, 100 slightly different parameter vectors θ₁,θ₂…θ₁₀₀ by 
jittering θ with Gaussian noise. We then evaluate each one of the 
100 candidates independently by running the model and based 
on the output value evaluate the loss or the objective function. 
We then select top N best performing elite parameters, N can 
be say 10, and take the mean of these parameters and call it our 
best parameter so far. We then repeat the above process by again 
generating 100 different parameters by adding Gaussian noise to 
our best parameter obtained so far.

Thinking in terms of natural selection, we are creating a population 
of parameters (species) randomly and selecting the top parameters 
that perform well based on our objective function (also known 
as fitness function). We then take combine the best qualities of 



Introduction to Evolution Strategy 143

these parameters by taking their mean (this is a crude way but it 
still works!) and call it our best parameter. We then recreate the 
population by mutating this parameter by adding random noise 
and repeat the whole process till convergence.

4.3.3 Pseudo Code

•	 Randomly initialize the best parameter using a Gaussian 
distribution

•	 Loop until convergence:
-- Create population of parameters θ₁,θ₂…θ₁₀₀ by adding 

Gaussian noise to the best parameter
-- Evaluate the objective function for all the parameters 

and select the top N best performing parameters (elite 
parameters)

-- Best parameter = Mean(top N elite parameters)
-- Decay the noise at the end of each iteration by some 

factor (At the start more noise will help us to explore 
better but as we reach the convergence point we want 
the noise to be minimum so as to not deviate away)
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4.3.4 Python Implementation from scratch

Let’s go through a simple example in Python to get a better 
understanding. I tried to add details related to numerical stability 
as well for few of the things. Please read the comments! We will 
start by loading the required libraries and the MNIST Handwritten 
digit dataset.
Importing all the required libraries
import numpy as np
import matplotlib.pyplot as plt
import tqdm
import pickle
import warnings
warnings.filterwarnings(‘ignore’)
from keras.datasets import mnist
# Machine Epsilon (needed to calculate logarithms)
eps = np.finfo(np.float64).eps
# Loading MNIST dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# x contains the images (features to our model)
# y contains the labels 0 to 9
# Normalizing the inputs between 0 and 1
x_train = x_train/255.
x_test = x_test/255.
# Flattening the image as we are using 
# dense neural networks
x_train = x_train.reshape( -1, x_train.shape[1]*x_train.shape[2])
x_test = x_test.reshape( -1, x_test.shape[1]*x_test.shape[2])
# Converting to one-hot representation
identity_matrix = np.eye(10) 
y_train = identity_matrix[y_train]
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y_test = identity_matrix[y_test]
# Plotting the images
fig, ax = plt.subplots(2,5)
for i, ax in enumerate(ax.flatten()):
 im_idx = np.argwhere(y_train == i)[0]
 plottable_image = np.reshape(x_train[im_idx], (28, 28))
 ax.set_axis_off()
 ax.imshow(plottable_image, cmap=’gray’)
plt.savefig(‘mnist.jpg’)
This is how the images look like,

We will start by defining our model, which will be a single layer 
neural network with only forward pass.

def soft_max(x):

‘’’

 Arguments: numpy array

 Returns: numpy array after applying 

 softmax function to each

 element

 ‘’’

 # Subtracting max of x from each element of x for numerical

 # stability as this results in the largest argument to 

 # exp being 0, ruling out the possibility of overflow
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 # Read more about it at :

 # https://www.deeplearningbook.org/contents/numerical.html

 e_x = np.exp(x — np.max(x))

 return e_x /e_x.sum()

class Model():

‘’’

Single layer Neural Network

‘’’

 def __init__(self, input_shape, n_classes):

 # Number of output classes

 self.n_classes = n_classes

 # Parameters/Weights of our network which we will be updating

 self.weights = np.random.randn(input_shape, n_classes)

 def forward(self,x):

 ‘’’

 Arguments: numpy array containing the features,

 expected shape of input array is

 (batch size, number of features)

 Returns: numpy array containing the probability,

 expected shape of output array is

 (batch size, number of classes)

 ‘’’

 # Multiplying weights with inputs

 x = np.dot(x,self.weights)
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 # Applying softmax function on each row

 x = np.apply_along_axis(soft_max, 1, x)

 return x

 def __call__(self,x):

 ‘’’

 This dunder function

 enables your model to be callable

When the model is called using model(x),

 forward method of the model is called internally

 ‘’’

 return self.forward(x)

 def evaluate(self, x, y, weights = None):

 ‘’’

Arguments : x — numpy array of shape (batch size,number of 
features),

 y — numpy array of shape (batch size,number of classes),

 weights — numpy array containing the parameters of the model

 Returns : Scalar containing the mean of the categorical cross-
entropy loss

 of the batch

‘’’

 if weights is not None:

 self.weights = weights

 # Calculating the negative of cross-entropy loss (since

 # we are maximizing this score)
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 # Adding a small value called epsilon 

 # to prevent -inf in the output

 log_predicted_y = np.log(self.forward(x) + eps)

 return (log_predicted_y*y).mean()

We will now define our function which will take a model as input 
and update its parameters.

def optimize(model,x,y,

 top_n = 5, n_pop = 20, n_iter = 10,

 sigma_error = 1, error_weight = 1, decay_rate = 0.95,

 min_error_weight = 0.01 ):

 ‘’’

 Arguments : model — Model object(single layer neural network 
here),

 x — numpy array of shape (batch size, number of features),

 y — numpy array of shape (batch size, number of classes),

 top_n — Number of elite parameters to consider for calculating 
the

 best parameter by taking mean

 n_pop — Population size of the parameters

 n_iter — Number of iteration 

 sigma_error — The standard deviation of errors while creating 

 population from best parameter

 error_weight — Contribution of error for considering new 
population

 decay_rate — Rate at which the weight of the error will reduce 
after 
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 each iteration, so that we don’t deviate away at the 

 point of convergence. It controls the balance between 

 exploration and exploitation

 Returns : Model object with updated parameters/weights

 ‘’’

 # Model weights have been randomly initialized at first

 best_weights = model.weights

 for i in range(n_iter):

 # Generating the population of parameters

 pop_weights = [best_weights + error_weight*sigma_error* \

 np.random.randn(*model.weights.shape)

 for i in range(n_pop)]

 # Evaluating the population of parameters

 evaluation_values = [model.evaluate(x,y,weight) for weight in 
pop_weights]

 # Sorting based on evaluation score

 weight_eval_list = zip(evaluation_values, pop_weights)

 weight_eval_list = sorted(weight_eval_list, key = lambda x: x[0], 
reverse = True)

 evaluation_values, pop_weights = zip(*weight_eval_list)

 # Taking the mean of the elite parameters

 best_weights = np.stack(pop_weights[:top_n], axis=0).
mean(axis=0)

 #Decaying the weight
 error_weight = max(error_weight*decay_rate, min_error_weight)
 model.weights = best_weights
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 return model

# Instantiating our model object

model = Model(input_shape= x_train.shape[-1], n_classes= 10)

print(“Evaluation on training data”, model.evaluate(x_train, y_
train))

# Running it for 200 steps

for i in tqdm.tqdm(range(200)):

 model = optimize(model, 

 x_train,

 y_train, 

 top_n = 10, 

 n_pop = 100,

 n_iter = 1)

 print(“Test data cross-entropy loss: “, -1*model.evaluate(x_test, 
y_test))

 print(“Test Accuracy: “,(np.argmax(model(x_test),axis=1) == y_
test).mean())

# Saving the model for later use
with open(‘model.pickle’,’wb’) as f:
 pickle.dump(model,f)
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INTRODUCTION

Genetic Programming (GP) is a type of Evolutionary Algorithm 
(EA), a subset of machine learning. EAs are used to discover 
solutions to problems humans do not know how to solve, directly. 
Free of human preconceptions or biases, the adaptive nature of 
EAs can generate solutions that are comparable to, and often 
better than the best human efforts.

5
GENETIC PROGRAMMING
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Inspired by biological evolution and its fundamental mechanisms, 
GP software systems implement an algorithm that uses random 
mutation, crossover, a fitness function, and multiple generations of 
evolution to resolve a user-defined task. GP can be used to discover 
a functional relationship between features in data (symbolic 
regression), to group data into categories (classification), and to 
assist in the design of electrical circuits, antennae, and quantum 
algorithms. GP is applied to software engineering through code 
synthesis, genetic improvement, automatic bug-fixing, and in 
developing game-playing strategies, and more.

Genetic Programming is a new method to generate computer 
programs. It was derived from the model of biological evolution. 
Programs are ‘bred’ through continuous improvement of an 
initially random population of programs. Improvements are 
made possible by stochastic variation of programs and selection 
according to pre-specified criteria for judging the quality of a 
solution. Programs of Genetic Programming systems evolve 
to solve pre-described automatic programming and machine 
learning problems.

5.1 FUNDAMENTAL OF GENETIC PROGRAMMING

A learning process inspired by evolution and related to genetic 
algorithms. Whereas genetic algorithms evolve representations 
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of problem features to find solutions, genetic programming 
evolves over populations of program fragments to assemble a 
final program that gives a solution. The output programs may be 
produced in a subset of a given language or might be in the form 
of a decision tree.

In artificial intelligence, genetic programming (GP) is a technique 
of evolving programs, starting from a population of unfit (usually 
random) programs, fit for a particular task by applying operations 
analogous to natural genetic processes to the population of 
programs. It is essentially a heuristic search technique often 
described as ‘hill climbing’, i.e. searching for an optimal or at least 
suitable program among the space of all programs.

The operations are: selection of the fittest programs for reproduction 
(crossover) and mutation according to a predefined fitness 
measure, usually proficiency at the desired task. The crossover 
operation involves swapping random parts of selected pairs 
(parents) to produce new and different offspring that become part 
of the new generation of programs. Mutation involves substitution 
of some random part of a program with some other random 
part of a program. Some programs not selected for reproduction 
are copied from the current generation to the new generation. 
Then the selection and other operations are recursively applied 
to the new generation of programs. Typically, members of each 
new generation are on average more fit than the members of 
the previous generation, and the best-of-generation program is 
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often better than the best-of-generation programs from previous 
generations. Termination of the recursion is when some individual 
program reaches a predefined proficiency or fitness level.

Genetic programming (GP) is an evolutionary approach that 
extends genetic algorithms to allow the exploration of the space 
of computer programs. Like other evolutionary algorithms, GP 
works by defining a goal in the form of a quality criterion (or 
fitness) and then using this criterion to evolve a set (or population) 
of candidate solutions (individuals) by mimicking the basic 
principles of Darwinian evolution. GP breeds the solutions to 
problems using an iterative process involving the probabilistic 
selection of the fittest solutions and their variation by means of a 
set of genetic operators, usually crossover and mutation. GP has 
been successfully applied to a number of challenging real-world 
problem domains. Its operations and behavior are now reasonably 
well understood thanks to a variety of powerful theoretical results.

5.1.1 Preparatory Steps of Genetic Programming

Genetic programming is a domain-independent method that 
genetically breeds a population of computer programs to solve a 
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problem. Specifically, genetic programming iteratively transforms 
a population of computer programs into a new generation of 
programs by applying analogs of naturally occurring genetic 
operations. The genetic operations include crossover (sexual 
recombination), mutation, reproduction, gene duplication, and 
gene deletion.

The human user communicates the high-level statement of the 
problem to the genetic programming system by performing 
certain well-defined preparatory steps.

The five major preparatory steps for the basic version of genetic 
programming require the human user to specify

1.	 The set of terminals (e.g., the independent variables of 
the problem, zero-argument functions, and random 
constants) for each branch of the to-be-evolved program,

2.	 The set of primitive functions for each branch of the to-
be-evolved program,

3.	 The fitness measure (for explicitly or implicitly measuring 
the fitness of individuals in the population),

4.	 Certain parameters for controlling the run, and
5.	 The termination criterion and method for designating 

the result of the run. Executional Steps of Genetic 
Programming
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Genetic programming typically starts with a population of 
randomly generated computer programs composed of the 
available programmatic ingredients. Genetic programming 
iteratively transforms a population of computer programs into a 
new generation of the population by applying analogs of naturally 
occurring genetic operations. These operations are applied to 
individual(s) selected from the population. The individuals are 
probabilistically selected to participate in the genetic operations 
based on their fitness (as measured by the fitness measure 
provided by the human user in the third preparatory step). The 
iterative transformation of the population is executed inside the 
main generational loop of the run of genetic programming.
The executional steps of genetic programming (that is, the 
flowchart of genetic programming) are as follows:

1.	 Randomly create an initial population (generation 0) 
of individual computer programs composed of the 
available functions and terminals.

2.	 Iteratively perform the following sub-steps (called a 
generation) on the population until the termination 
criterion is satisfied:

(a) 	 Execute each program in the population and ascertain 
its fitness (explicitly or implicitly) using the problem’s 
fitness measure.

(b) 	 Select one or two individual program(s) from the 
population with a probability based on fitness (with 
reselection allowed) to participate in the genetic 
operations in (c).

(c) 	 Create new individual program(s) for the population by 
applying the following genetic operations with specified 
probabilities:

(i) 	 Reproduction: Copy the selected individual program to 
the new population.

(ii) 	 Crossover: Create new offspring program(s) for the new 
population by recombining randomly chosen parts from 
two selected programs.
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(iii) 	 Mutation: Create one new offspring program for the new 
population by randomly mutating a randomly chosen 
part of one selected program.

(iv) 	 Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such 
operations and create one new offspring program for 
the new population by applying the chosen architecture-
altering operation to one selected program.
-- After the termination criterion is satisfied, the single best 

program in the population produced during the run (the 
best-so-far individual) is harvested and designated as the 
result of the run. If the run is successful, the result may 
be a solution (or approximate solution) to the problem.

5.1.2 Multiple predictive model structures using GP

The advent of GP as a modelling tool has paved the way for 
researches exploring the possibility of multiple optimal models 
for predicting hydrological processes. 

Genetic programming, in its evolutionary approach to derive 
optimal model structures and parameters, tests millions of 
model structures which can mimic the physical process under 
consideration. 

Researchers have found that multiple models can be identified 
using GP which are considerably different in model structures 
but able to make consistently good predictions. Parasuraman and 
Elshorbagy developed genetic programming based models for 
predicting the evapo-transporation. In doing so, multiple optimal 
GP models were trained and tested and they were applied to 
quantify the uncertainty in those models. An ensemble of surrogate 
models based on GP was developed and the ensemble was used 
to get model predictions with improved reliability levels. The 
variance of the model predictions were used as the measure of 
uncertainty in the modelling process.
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5.1.3 GP as surrogate model for simulation-optimization

A very important application of data intensive modelling 
approaches is to develop surrogate models to computationally 
complex numerical simulation models. The potential utility of 
the surrogates is to replace the numerical simulation model in 
simulation-optimization frameworks. Simulation-optimization 
models are used to derive optimal management decisions using 
optimization algorithms in which a numerical simulation models 
is run to predict the outcome of implementing the alternative 
management options. The optimal pumping from the coastal 
aquifer can be decided only by considering the impact of any 
alternative pumping strategy on saltwater intrusion. For this 
the numerical simulation model needs to be integrated with the 
optimization algorithm and the impact of each candidate pumping 
strategy is predicted by using the simulation model iteratively. This 
involve a lot of computational burden as thousands of numerical 
model runs are required before an optimal pumping strategy is 
identified.

GP was used a surrogate model within the optimization algorithm 
as a substitute of the numerical simulation model in the study. 
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Genetic programming based surrogate models for groundwater 
pollution source identification. It was found that genetic 
programming could be used as a superior surrogate model in 
such application with definite advantages. The study intended to 
develop optimal pumping strategies for coastal aquifers in which 
the total pumping could be maximized and at the same time 
limiting the saltwater intrusion at pre-specified limits. 

In doing so, the effect of pumping on the salinity levels was 
predicted using trained and tested GP models. The GP models 
were externally coupled to a genetic algorithm based optimization 
model to derive the optimal management strategies. The results of 
the GP based simulation-optimization was then compared to the 
results obtained using an ANN-based simulation-optimization 
model. The ability of GP in parsimoniously identifying the model 
inputs helped in reducing the dimension of the decision space in 
which modelling and optimization was carried out. The smaller 
dimension of the modelling space helped in reducing the training 
and testing required to develop the surrogate models. The study 
identified that GP has potential applicability in developing 
surrogate models with potential application in simulation-
optimization methodology to solve environmental management 
problems.
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5.2 TYPES OF GENETIC PROGRAMMING

Genetic Programming (GP) is an algorithm for evolving programs 
to solve specific well-defined problems. It is a type of automatic 
programming intended for challenging problems where the task 
is well defined and solutions can be checked easily at a low cost, 
although the search space of possible solutions is vast, and there is 
little intuition as to the best way to solve the problem.

This often includes open problems such as controller design, 
circuit design, as well as predictive modeling tasks such as feature 
selection, classification, and regression. It can be difficult for a 
beginner to get started in the field as there is a vast amount of 
literature going back decades.

5.2.1 Tree-based Genetic Programming

In tree-based GP, the computer programs are represented in tree 
structures that are evaluated recursively to produce the resulting 
multivariate expressions. Traditional nomenclature states that a 
tree node (or just node) is an operator [+,-,*,/] and a terminal node 
(or leaf) is a variable [a,b,c,d].

Lisp was the first programming language applied to tree-based 
GP, as the structure of this language matches the structure of the 
trees. However, many other languages such as Python, Java, and 
C++ have been used to develop tree-based GP applications.
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Tree-based GP was the first application of Genetic Programming. 
There are several other types (as presented on the home page of 
this website) such as linear, Cartesian, and stack-based which are 
typically more efficient in their execution of the genetic operators. 
However, Tree-based GP provides a visual means to engage new 
users of Genetic Programming, and remains viable when built 
upon a fast programming language or underlying suite of libraries.

5.2.2 Stack-based GP

In stack-based genetic programming, the programs in the evolving 
population are expressed in a stack-based programming language. 
The specific languages vary among systems, but most are similar 
to FORTH insofar as programs are composed of instructions that 
take arguments from data stacks and push results back on those 
data stacks. In the Push family of languages, which were designed 
specifically for genetic programming, a separate stack is provided 
for each data type, and program code itself can be manipulated on 
data stacks and subsequently executed.
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Depending on the specific language and genetic operators used, 
stack-based genetic programming can have a variety of advantages 
over tree-based genetic programming. These may include 
improvements or simplifications to the handling of multiple data 
types, bloat-free mutation and recombination operators, execution 
tracing, programs with loops that provide valid outputs even when 
terminated prematurely, parallelism, evolution of arbitrary control 
structures, and automatic simplification of evolved programs.

5.2.3 Linear Genetic Programming

Linear genetic programming (LGP) is a particular subset of genetic 
programming wherein computer programs in a population 
are represented as a sequence of instructions from imperative 
programming language or machine language. The graph-based 
data flow that results from a multiple usage of register contents 
and the existence of structurally non-effective code (introns) are 
two main differences of this genetic representation from the more 
common tree-based genetic programming (TGP) variant.

In genetic programming (GP) a linear tree is a program composed 
of a variable number of unary functions and a single terminal. 
Note that linear tree GP differs from bit string genetic algorithms 
since a population may contain programs of different lengths and 
there may be more than two types of functions or more than two 
types of terminals.
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5.2.4 Grammatical Evolution

GE offers a solution to this issue by evolving solutions according 
to a user-specified grammar (usually a grammar in Backus-Naur 
form). Therefore the search space can be restricted, and domain 
knowledge of the problem can be incorporated. The inspiration 
for this approach comes from a desire to separate the “genotype” 
from the “phenotype”: in GP, the objects the search algorithm 
operates on and what the fitness evaluation function interprets 
are one and the same. In contrast, GE’s “genotypes” are ordered 
lists of integers which code for selecting rules from the provided 
context-free grammar. The phenotype, however, is the same as in 
Koza-style GP: a tree-like structure that is evaluated recursively. 
This model is more in line with how genetics work in nature, 
where there is a separation between an organism’s genotype and 
the final expression of phenotype in proteins, etc.

Separating genotype and phenotype allows a modular approach. 
In particular, the search portion of the GE paradigm needn’t be 
carried out by any one particular algorithm or method. Observe 
that the objects GE performs search on are the same as those used 
in genetic algorithms. This means, in principle that any existing 
genetic algorithm package, such as the popular GAlib, can be 
used to carry out the search, and a developer implementing a GE 
system need only worry about carrying out the mapping from 
list of integers to program tree. It is also in principle possible to 
perform the search using some other method, such as particle 
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swarm optimization; the modular nature of GE creates many 
opportunities for hybrids as the problem of interest to be solved 
dictates.

Brabazon and O’Neill have successfully applied GE to predicting 
corporate bankruptcy, forecasting stock indices, bond credit 
ratings, and other financial applications.[citation needed] GE has 
also been used with a classic predator-prey model to explore the 
impact of parameters such as predator efficiency, niche number, 
and random mutations on ecological stability.

It is possible to structure a GE grammar that for a given function/
terminal set is equivalent to genetic programming.

5.2.5 Cartesian Genetic Programming

In CGP, programs are represented in the form of directed acyclic 
graphs. These graphs are represented as a two-dimensional grid 
of computational nodes. The genes that make up the genotype in 
CGP are integers that represent where a node gets its data, what 
operations the node performs on the data and where the output 
data required by the user is to be obtained. When the genotype is 
decoded, some nodes may be ignored. This happens when node 
outputs are not used in the calculation of output data. When this 
happens, we refer to the nodes and their genes as ‘non-coding’. 
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We call the program that results from the decoding of a genotype a 
phenotype. The genotype in CGP has a fixed length. However, the 
size of the phenotype (in terms of the number of computational 
nodes) can be anything from zero nodes to the number of nodes 
defined in the genotype. 

A phenotype would have zero nodes if all the program outputs 
were directly connected to program inputs. 

A phenotype would have the same number of nodes as defined 
in the genotype when every node in the graph was required. The 
genotype–phenotype mapping used in CGP is one of its defining 
characteristics.

The types of computational node functions used in CGP are 
decided by the user and are listed in a function look-up table. 
In CGP, each node in the directed graph represents a particular 
function and is encoded by a number of genes. 

One gene is the address of the computational node function in the 
function look-up table. We call this a function gene. The remaining 
node genes say where the node gets its data from. 

These genes represent addresses in a data structure (typically an 
array). We call these connection genes. Nodes take their inputs 
in a feed-forward manner from either the output of nodes in a 
previous column or from a program input (which is sometimes 
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called a terminal). The number of connection genes a node has 
is chosen to be the maximum number of inputs (often called the 
arity) that any function in the function look-up table has.

CGP represents computational structures (mathematical 
equations, circuits, computer programs etc.) as a string of integers. 
These integers, known as genes determine the functions of nodes 
in the graph, the connections between nodes, the connections to 
inputs and the locations in the graph where outputs are taken 
from. 

Using a graph representation is very flexible as many computational 
structures can be represented as graphs. A good example of this 
is artificial neural networks (ANNs). These can be easily encoded 
in CGP.

5.2.6 Genetic Improvement Programming (GIP)

GIP evolves replacement software components that maximize 
achievement of multiple objectives, while retaining the interfaces 
between the components so-evolved and the surrounding system. 

The GISMO project will develop theory, algorithms and techniques 
for GIP as a way to automatically optimize multiple software 
engineering objectives such as maximal throughput, fastest 
response time and most reliable performance, while minimizing 
power consumption, faults, memory use, compiled code size, 
peak disk usage and disk transfers.
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The term component should be interpreted in its widest context. 
It refers to any piece of code that can be identified as a subpart of 
the overall program or system with well-defined interface to the 
encasing system. For example, we include functions, files, modules 
and procedures, for which interfaces are defined by parameters 
and shared global variables. We also include smaller segments of 
contiguous code that perform a coherent well-defined task or set 
of tasks, for which the interface is captured by the defined and 
referenced variables of the segment of code. What is important is 
that these pieces of code can be replaced by an evolved component 
that preserves their functionality and interface, while maximizing 
achievement of challenging new multiple objectives.

The Problem Addressed by GISMO

The emergent computing application paradigms require systems 
that are not only correct but are also optimized for many different 
competing non-functional requirements. Increasingly, we need to 
adapt existing systems to cater for operating environments with 
challenging non-functional properties. For instance, the migration 
from stand-alone systems to large scale distributed systems brings 
with it a need for optimization of non-functional properties such 
as response time and throughput. The increasing prevalence of 
smaller hand-held systems such as communications devices, 
raises the importance of non-functional properties such as power 
consumption and memory use.
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Managing any one of these non-functional objectives is a challenge, 
but managing several at once is a daunting prospect, even for the 
most skilled and experience developer. The multiple objectives 
that have to be optimized are often conflicting. For instance, 
one can often trade speed of execution for compiled code size. 
Humans cannot be expected to optimally balance such competing 
constraints and may miss potentially valuable solutions.

The GISMO Solution

The GISMO solution rests on two core observations:
1.	 There is a wealth of relatively well-tested code upon 

which organizations already rely.
2.	 Evolutionary computation has proved able to balance 

many different competing and potentially conflicting 
criteria.

We therefore seek to use evolutionary computation, not to evolve 
entire systems but to replace components within existing systems 
with evolved replacements. The goal of the evolution will be to 
optimize for a new set of non-functional properties. These non-
functional properties will be mapped into fitness functions that will 
guide evolution. The research challenge is to develop techniques 
that evolve components that balance these objectives, in a scalable 
way, while producing code that is useful and acceptable to the 
developer. The GISMO project will address the scalability issue 
using parallel computation. It will address the human acceptability 
issue using interactive evolution.

Why the Project Will be Highly Transformative

Genetic programming has proved to be good at evolving small code 
fragments for a single objective, while evolutionary computation 
has proved effective at solving multiple objective problems. The 
GISMO approach to scalability, human acceptance and multiple 
objectives are all entirely novel for genetic programming. If 
the project is even partly successful in its goal of automatically 
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finding GIP-evolved component replacements, this would be a 
major breakthrough. It would significantly increase our ability to 
migrate systems to challenging new operating environments and, 
simultaneously, dramatically reduce the cost of doing so.

Is it feasible?

The PI and named research fellow, Bill Langdon, have demonstrated 
the feasibility of the GIP approach. In our initial work we were 
able to port a critical component of Unix gzip utility to a CUDA 
platform [1]. The GISMO project will employ Dr. Langdon as a 
named research fellow for four years, in order to develop our new 
approach to software development.

GISMO Objectives

To achieve its aims, the GISMO project will:
1.	 Develop a theory of Genetic Interface Programming 

(GIP).
2.	 Develop techniques for parallel GIP computation for 

scalability and interactive GIP evolution for human 
involvement.

3.	 Develop new algorithms for achieving single and 
multiple objective GIP.

4.	 Evaluate qualitatively and quantitatively using 
benchmarks and real world systems from the industrial 
partners.

5.3 GENETIC PROGRAMMING: APPROACH IN 
MODELING WATER FLOWS

Like genetic algorithm (GA) the concept of Genetic Programming 
(GP) follows the principle of ‘survival of the fittest’ borrowed 
from the process of evolution occurring in nature. But unlike GA 
its solution is a computer program or an equation as against a 
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set of numbers in the GA and hence it is convenient to use the 
same as a regression tool rather than an optimization one like the 
GA. GP operates on parse trees rather than on bit strings as in a 
GA, to approximate the equation (in symbolic form) or computer 
program that best describes how the output relates to the input 
variables. A good explanation of various concepts related to GP. 
GP starts with a population of randomly generated computer 
programs on which computerized evolution process operates. 
Then a ‘tournament’ or competition is conducted by randomly 
selecting four programs from the population. 

GP measures how each program performs the user designated 
task. The two programs that perform the task best ‘win’ the 
tournament. 

GP algorithm then copies the two winner programs and transforms 
these copies into two new programs via crossover and mutation 
operators i.e. winners now have the ‘children.’ 

These two new child programs are then inserted into the 
population of programs, replacing the two loser programs from 
the tournament. Crossover is inspired by the exchange of genetic 
material occurring in sexual reproduction in biology. 

The creation of offspring’s continues (in an iterative manner) till a 
specified number of offspring’s in a generation are produced and 
further till another specified number of generations are created. 
The resulting offspring at the end of all this process (an equation 
or a computer program) is the solution of the problem. The GP 
thus transforms one population of individuals into another one 
in an iterative manner by following the natural genetic operations 
like reproduction, mutation and cross-over.

The tree based GP corresponds to the expressions (syntax trees) 
from a ‘functional programming language’. In this type, Functions 
are located at the inner nodes; while leaves of the tree hold input 
values and constants. 

A population of random trees representing the programs is 
initially constructed and genetic operations are performed on 
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these trees to generate individuals with the help of two distinct 
sets; the terminal set T and the function set F.

Population: These are the programs initially constructed from the 
data sets in the form of trees to perform genetic operations using 
Terminal set and Function set. 

The function set for a run is comprised of operators to be used 
in evolving programs e.g. addition, subtraction, absolute value, 
logarithm, square root etc. The terminal set for a run is made up 
of the values on which the function set operates. 

There can be four types of terminals namely inputs, constant, 
temporary variables, conditional flags. The population size is 
the number of programs in the population to be evolved. Larger 
population can solve more complicated problem. The maximum 
size of population depends upon RAM of the computer and length 
of programs in the population.

5.3.1 Genetic Operations

Cross over:  Two individuals (programs) are chosen as per the 
fitness called parents. Two random nodes are selected from inside 
such program (parents) and thereafter the resultant sub-trees are 
swapped, generating two new programs. The resulting individuals 
are inserted into the new population. Individuals are increased by 
2. The parents may be identical or different. The allowable range 
of cross over frequency parameter is 0 to 100%

Mutation: One individual is selected as per the fitness. A sub-tree 
is replaced by another one randomly. The mutant is inserted into 
the new population. Individuals are increased by 1. The allowable 
range of mutation frequency parameter is 0 to 100%

Reproduction: The best program is copied as it is as per the fitness 
criterion and included in the new population. Individuals are 
increased by 1. Reproduction rate = 100 – mutation rate – (crossover 
rate * [1 – mutation rate])
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Figure 1. Flowchart of Genetic programming.

The second variant of GP is Linear genetic Programming (LGP) 
which uses a specific linear representation of computer programs. 
The name ‘linear’ refers to the structure of the (imperative) 
program representation only and does not stand for functional 
genetic programs that are restricted to a linear list of nodes only. 
On the contrary, it usually represents highly nonlinear solutions. 
Each individual (Program) in LGP is represented by a variable-
length sequence of simple C language instructions, which operate 
on the registers or constants from predefined sets. The function 
setof the system can be composed of arithmetic operations (+, -, X, 
/), conditional branches, and function calls (f{x, xn, sqrt, ex,sin, cos, 
tan, log, ln }). Each function implicitly includes an assignment to a 
variable which facilitates use of multiple program outputs in LGP. 
LGP utilizes two-point string cross-over. A segment of random 
position and random length of an instruction is selected from each 
parents and exchanged. If one of the resulting children exceeds 
the maximum length, this cross-over is abandoned and restarted 
by exchanging equalized segments. An operand or operator of an 
instruction is changed by mutation into another symbol over the 
same set.
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Gene-Expression Programming (GEP) is an extension of GP. The 
genome is encoded as linear chromosomes of fixed length, as 
in Genetic Algorithm (GA); however, in GEP the genes are then 
expressed as a phenotype in the form of expression trees. GEP 
combines the advantages of both its predecessors, GA and GP, 
and removes their limitations. GEP is a full-fledged genotype/
phenotype system in which both are dealt with separately, 
whereas GP is a simple replicator system. As a consequence of 
this difference, the complete genotype/phenotype GEP system 
surpasses the older GP system by a factor of 100 to 60,000. In GEP, 
just like in other evolutionary methods, the process starts with the 
random generation of an initial population consisting of individual 
chromosomes of fixed length. The chromosomes may contain one 
or more than one genes. Each individual chromosome in the initial 
population is then expressed and its fitness is evaluated using one 
of the fitness function equations available in the literature. These 
chromosomes are then selected based on their fitness values 
using a roulette wheel selection process. Fitter chromosomes have 
greater chances of selection for passage to the next generation. 
After selection, these are reproduced with some modifications 
performed by the genetic operators. In Gene Expression 
Programming, genetic operators such as mutation, inversion, 
transposition and recombination are used for these modifications. 
Mutation is the most efficient genetic operator, and it is sometime 
used as the only means of modification. The new individuals 
are then subjected to the same process of modification, and the 
process continues until the maximum number of generations is 
reached or the required accuracy is achieved.

5.3.2 Use of GP in Water Flows Modeling

It is a known fact that many variables in the domain of Hydraulic 
Engineering are of random nature having a complex underlying 
phenomenon. For example the generation of ocean waves which are 
primarily functions of wind forcing is a very complex procedure. 
Forecasting of the ocean waves is an essential prerequisite for 
many ocean-coastal related activities. Traditionally this is done 
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using numerical models like WAM and SWAN. These models are 
extremely complex in development and application besides being 
highly computation-intensive. Further they are more useful for 
forecasting over a large spatial and temporal domain. The accuracy 
levels of wave forecasts obtained through such numerical models 
again leaves scope for exploration of alternative schemes. These 
numerical models suffer from disadvantages like requirement 
of exogenous data, complex modeling procedure, rounding off 
errors and large requirement of computer memory and time and 
there is no guarantee that the results will be accurate. Particularly 
when point forecasts were required the researchers therefore used 
the data driven techniques namely ARMA, ARIMA and since 
last two decades or so the soft computing technique of Neural 
Networks. A comprehensive review of applications of ANN in 
Ocean Engineering. Although wave forecasting models were 
developed using Artificial Neural Networks by many research 
workers there was scope for use of another data driven techniques 
in that the ANN based models generally were unable to forecast 
extreme events with reasonable accuracy and the accuracy of 
forecasts decreases with increase in lead time. This became an 
ideal situation for the entry of another soft computing tool of GP 
which functions in a completely different way than ANN in that 
it does not involve any transfer function and evolves generations 
and generations of ‘offspring’ based on the ‘fitness criteria’ and 
genetic operations.The rainfall -runoff modeling is very complex 
procedure and many numerical schemes are available as well as a 
large number of attempts by ANNs. Thus Genetic Programming 
entered in rainfall-runoff modeling. It was also found that GP 
results were superior to that of M5 Model Trees another data 
driven modeling technique. Apart from these two variables the 
use of GP for modeling for many hydraulic engineering processes 
was found necessary for similar reasons. 

5.3.3 Applications in Ocean Engineering

Primarily the applications of GP in Ocean Engineering were found 
for modeling of oceanic parameters like waves, water levels, 
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zero cross wave periods, currents, wind, sediment transport 
and circular pile scour. One of the earlier applications was done 
to retrieve missing informationin wave records along the west 
coast. Such a need arises many times due to malfunctioning of 
instrument or drift of wave measuring buoy making it inoperative 
as a result of which data is not measured and it is lost forever. 
Filling up the missing significant wave height (Hs) values at a 
given location based on the same being collected at the nearby 
station(s) was done using GP. The wave heights were measured at 
an interval of 3 hours. Data at six locations around Indian coastline 
was used in this exercise. Out of the total sample size of four years 
the observations for the initial 25 months were used to evaluate 
the final or optimum GP program or equation while those for the 
last 23 months were employed to validate the performance and 
achieve gap in-filling with different quanta of missing information. 
It was found that both tree based and linear GP models worked 
in similar fashion as far as accuracy of estimation was considered. 

When the similar work was also carried out using ANN it was found 
that GP produces results that are marginally more satisfactory than 
ANN. Another exercise was also carried out especially to estimate 
peaks by calibrating a separate model for high wave data which 
showed a marginal improvement in prediction of peaks. Albeit in 
altogether different area of Gulf of Mexico near the USA coastline. 
Gaps in hourly significant wave height records at one location 
were filled by using the significant wave heights at surrounding 3 
locations at same time instant and the soft tool of GP and ANN. In 
all data spanning over 4 years was used for the study. The exercise 
was carried out for 4 locations in the Gulf of Mexico. The data can 
be downloaded from www.ndbc.noaa.gov. The typical value of the 
population size was 500, number of generations 15 and number of 
tournaments 90,00,000. The mutation and the cross-over frequency 
also varied for different testing exercises and it ranged from 20% 
to 80%. The fitness criterion was the mean squared error between 
actual observations and corresponding predictions.

The suitability of this approach was also tried for different gap 
lengths ranging from 1 day to 1 month and it was concluded 
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on the basis of 3 error measures that the accuracy of gap filling 
decreases with increase in the gap length. The accuracy of the 
results were also judged by calculating statistical parameters of 
the wave records without gaps filled and with gaps filled using 
GP model. When the gap lengths did not exceed 1 or 5 days all 
the four statistics were faithfully reproduced. Compared to ANN 
GP produced marginally better results. In both the cases Linear 
Genetic Programming technique was employed.

In another earlier works of GP current predictions over a time 
step of twenty minutes, one hour, 3 hours, 6 hours, 12 hours and 
24 hours at 2 locations in the tidal dominated area of the Gulf of 
Khambhat along west coast of India was carried out using two soft 
techniques of ANN and GP and 2 hard techniques of traditional 
harmonic analysis and ARIMA. The work involved antecedent 
values of current only to forecast the current for various lead times 
at these locations. The fitness function selected was the mean 
square error, while the initial population size was 500, mutation 
frequency was 95%, and the crossover frequency was kept at 50%. 
For cross shore currents ARIMA performs better than ANN and 
GP even at longer prediction intervals. In general the three data 
driven techniques performed better than harmonic analysis. The 
new technique GP performed at par with ANN if not better. Perhaps 
the only drawback of the work was that the data (spanning over 7 
months) is less than a year indicating that all possible variations in 
data set were not presented while calibrating the model making it 
susceptible when it is used at operational level.

Online wave forecasts over lead times of 3, 6, 12 and 24 hours were 
carried out at two locations in the gulf of Mexico using past values 
of wave heights (3 in number) and the soft computing technique 
of GP. The data measured from 1999 to 2004 was available for 
free download on the web site of National Buoy Centre. The 
locations chosen were differing to a large extent in that one was 
a deep water buoy and the other was a coastal buoy. The work 
was different from others in one aspect that monthly models 
were developed instead of routine yearly models. However any 
peculiar effect of this either good or bad on forecasting accuracy 
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was not evident from the 3 error measures calculated. Though the 
results of GP were promising (high correlation coefficients for 3 
and 6 hr forecast) the forecasting accuracy decreased for longer 
lead times of 12 hr and 24 hr. It was found that the results of GP 
were superior to ANN. For GP model the initial population size 
was 500 while the number of generations was 300. The mutation 
frequency was 90 percent while the cross over frequency was 50 
percent. Values of these control parameters were selected initially 
and thereafter varied in trials till the best fitness measures were 
produced. 

The fitness criterion was the mean squared error between the 
actual and the predicted value of the significant wave height. 
Another exercise on real time forecasting of waves for warning 
times up to 72 hours at three locations along the Indian coastline 
using alternative techniques of ANN, GP and MT. The data was 
measured from 1998 to 2004 by the national data buoy program 
(www.niot.res.in). Forecasting waves up to 72hr and that too with 
reasonable accuracy is itself a specialty of this work. The data 
had many missing values which were filled by using temporal as 
well as spatial correlation approaches. Both MT and GP results 
were competitive with that of the ANN forecasts and hence the 
choice of a model should depend on the convenience of the user. 
The selected tools were able to forecast satisfactorily even up to a 
high lead time of 72 hrs. The significant wave height and average 
wave period at the current and subsequent 24 hr. lead time were 
predicted from continuous and past 24-hourly measurements 
of wind speeds and directions as well as two soft computing 
techniques of GP and MT. The data collected at 8 locations in 
Arabian Sea and Indian Ocean (www.niot.res.in) was used to 
develop both hind-casting and forecasting models. Both the 
methods, GP and MT, performed satisfactorily in the given task 
of wind wave simulation as reflected in high values of the error 
statistics of R, R2, CE and low values of MAE, RMSE and SI. This 
is noteworthy since MT is not purely non-linear like GP. Although 
the magnitudes of these statistics did not indicate a significant 
difference in the relative performance of GP and MT, qualitative 
scatter diagrams and time histories showed the tendency of MT 
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to better estimate the higher waves. Forecasting at higher lead 
times were fairly accurate compared to the same at lower ones. In 
general the performance of wave period was less satisfactory than 
that of wave height and this can be expected in view of a highly 
varying nature of wave period values. Lately, extended their earlier 
work by forecasting Significant wave height and zero cross wave 
period over time intervals of 1 to 4 days using the current and 
previous values of wind velocity and wind direction at 2 locations 
around the Indian coastline. It was found out that best results 
were possible when the length of the input sequence matched 
with that of the output lead time. As observed earlier here also it 
was found that the accuracy of prediction decreases with increase 
in lead time. However the results were satisfactory for 4 days 
ahead predictions also. In general it was observed that results of 
MT were slightly inferior to that of GP. Separate models were also 
developed to account for the monsoon (rainfall season in India) 
which showed a considerable improvement over yearly models. 
The models calibrated at one location when applied for another 
nearby locations also shown satisfactory performance provided 
both sites have spatial homogeneity in terms of openness, long 
offshore distances and deep water conditions. 

GP was used to forecast sea levels averaged over 12 h and 24 
h time intervals for time periods from 12 to 120 h ahead at the 
Cocos (Keeling) Islands in the Indian Ocean. The model produced 
high quality predictions over all considered time periods. The 
presented results demonstrates the suitability of GP for learning 
the non-linear behavior of sea level variations in terms of the 
R2(with values no lower than 0.968), MSE(with values generally 
smaller than 431) and MARE(no larger than 1.94%). This differs 
from earlier applications particularly for wave forecasting in that 
for forecasting of waves it was difficult to achieve higher order 
accuracy in terms of r, rmse and other error measures for as far as 
24 hour forecast. Perhaps the recurring nature of sea water levels 
(the deterministic tidal component which is inherent in water level, 
is the reason behind this high level accuracy. In order to assess 
the ability of GP model relative to that of the ANN technique. 
The developed GP model was found to perform better than the 
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used ANNs. In the current work, the linear genetic programming 
approach was employed. The water level at Hillary’s Boat Harbor, 
Australia was predicted three time steps ahead using time series 
averaged over 12hr, 24hr, 5 day and 10 day time interval and the 
soft tool of GP. The results are compared with ANN. Total 12 years 
of data was used out of which 3 years of data is used for model 
validation. Tree based GP was used. The results of 12 hr averaged 
input data were found to be better than 24 hr averaged input data 
and in general the accuracy of prediction reduced for higher lead 
times. For both the cases GP results were better than ANN. For 
5 day averaged inputs performance of GP was inferior to that of 
ANN though it improved for 10 day averaged inputs. It may be 
noted that the input data is averaged over 12hr, 24hr, 5days and 10 
days which means there is possibility of loss of information which 
can be major drawback of this work. For both the above works 
the hourly sea-level records from a SEA-level Fine Resolutions 
Acoustic Measuring Equipment (SEA-FRAME) station were used. 
The information about initial parameters of GP is however not 
mentioned in both the works.

Estimation of wind speed and wind direction using the significant 
wave height, zero cross wave period, average wave period and the 
soft tools of ANN and GP was carried out at 5 locations around 
Indian coastline. The first attempt both ANN and GP were tried 
for estimating the wind speed in which GP was found better and 
therefore in the second fold GP was only used to determine both 
wind speed and direction by calibrating the model by splitting 
of wind vector into two components. Two variants of GP, one 
based on Tree based approach and the other on Linear Genetic 
Programming were also tried though the accuracy of estimation 
for both the approaches was at par. In the third fold a network 
of wave buoys were formed and wind direction and wind speed 
at one location was estimated using the same at other locations. 
This was also done by combining data of all locations and making 
a regional model. All the attempts yielded highly satisfactory 
results as far as accuracy of estimation is considered. It was also 
confirmed that for estimation of only wind speed the non-splitting 
of wind velocity gives better results. Similarly wind speed and 
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its directions were predicted for intervals of 3hr, 6hr, 9hr, 12hr 
and 24 hr at locations along the west coast of India using two 
soft computing techniques of ANN and GP and previous values 
of the same. It was found that GP rivaled ANN predictions at all 
the cases and even bettered it particularly for open sea location. 
The results for prediction of wind speed and wind direction 
together were better when training of GP and ANN models was 
done on the basis of splitting of wind vector into two components 
along orthogonal directions although a separate model for wind 
speed alone was better. In general long interval predictions were 
less accurate compared to short interval predictions for both the 
techniques. Data for one location was for about 1.5 years while for 
the other location it was for 3 years. A similar work was carried 
out to estimate the wind speed at 5 locations around the Indian 
coastline using the wave parameters and 3 data driven techniques 
namely GP (program based- tree type), MT and another data 
driven tool of locally weighted projection regression (LWPR) by. 
All models showed tendency to underestimate higher values in 
given records. When all of the eight error statistics employed were 
viewed together, no single method appeared distinctly superior to 
others, but the use of an average evaluation index EI which they 
have suggested in this work gave equal weightage to each measure 
showed that the GP was more acceptable than other methods in 
carrying out the intended inverse modeling. Separate GP models 
were developed to estimate higher wind speeds that may be 
encountered in stormy conditions. At all the locations, these 
models indicated satisfactory performance of GP although with 
a fall in accuracy with increase in randomness. For all the above 
works the data was measured by national data buoy program of 
India however no mention is made about the initial parameters 
chosen for GP implementation.

The estimation of longshore sediment transport rate at an Indian 
location was carried out using GP and combined GP-ANN 
models. The inputs were significant wave height, zero cross wave 
period, breaking wave height, breaking wave angle and surf zone 
width. The limitation of the work was the amount of data (81) 
used for training and testing of the models. The choice of control 
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parameters was as follows: initial population size = 500; mutation 
frequency = 95%; crossover frequency = 50%. The initial trial with 
GP yielded reasonable results (r = 0.87). However by first training 
the ANN with same inputs and using the output as input for GP 
model yielded better results ( r = 0.92). It may be noted this is a 
kind of work done in the domain of Ocean Engineering wherein 
a different parameter (sediment transport rate) is modeled 
rather than the usual parameters of waves, periods etc. Another 
different work was carried out by, for prediction of scour depth 
due to ocean/lake waves around a pile/pier in medium dense silt 
and sand bed using Linear Genetic Programming and Adaptive 
Neuro-Fuzzy Inference system and measured laboratory data. The 
study was carried out in both dimensional and non-dimensional 
form in which non-dimensional form yielded better results. The 
relative importance of input parameters on scour process was also 
investigated by first using all the influential parameters as inputs 
and then removing them one by one and observing the results. The 
drawback of the work is perhaps the small number of data used 
in model making (total 38 data, 28 of which is used for training 
the model) which may be impediment in operational use of this 
model. The results were found to be superior to ANFIS results.

In all the above cases where GP is compared with another data 
driven technique like ANN, MT or LWPR it was found that GP is 
superior to all of them in terms of accuracy of results. However it 
can be said that GP needs to be explored further particularly for 
prediction of extreme events like water levels, wave heights during 
hurricanes. A detailed study on effect of variation of GP control 
parameters like initial population, mutation, crossover percentage 
etc. on model accuracy is now need of the day. Similarly the critic 
on other approaches about decreasing forecasting accuracy with 
increase in the lead time seems to be true for GP as well. This needs 
more attention if GP is here to stay.

5.3.4 Applications in Hydrology

Genetic Programming is used in Hydrology (science of water) for 
various purposes such as modeling of phenomena like rainfall-
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runoff process, evapo-transpiration, flood routing, stage-discharge 
curve. The GP approach was applied to the flow prediction of the 
Kirkton catchment in Scotland (U.K.). The results obtained were 
compared to those attained using optimally calibrated conceptual 
models and an ANN. The data sets selected for the modeling 
process were rainfall, streamflow and Penman open water 
evaporation. The data used for calibration was of 610 days while 
that of validation was of 1705 days. The models were developed 
with preceding values of rainfall, evaporation and stream flow 
for predicting stream flow one time step ahead. Two conceptual 
models as well as ANN were employed for developing the stream 
flow forecasting model. It was observed that the rainfall data was 
the most influencing factor on the output. All models performed 
well in terms of forecasting accuracy with GP performing better. 
In another work one day ahead forecasting of runoff knowing the 
rainfall and runoff of the previous days and the soft computing 
tool of Linear Genetic Programming was carried out in Lindenborg 
catchment of Denmark by. The models were developed for 
forecasting runoff as well as variation of runoff by using previous 
values of variation of discharge as input as well as previous values 
of discharge as input along with rainfall information. It was found 
that it was necessary to include information of discharge rather 
than variation of discharge. The model predicting discharge gave 
wrong local peaks in the low regime where as models predicting 
variation of discharge gave less wrong peaks in the low flow. Both 
the models had difficulty in predicting high peaks. The models 
were also developed using ANN. No specific information is 
provided about the initial values of GP parameters. The results 
obtained with a deterministic lumped parameter model, based on 
the unit hydrograph approach were compared with those obtained 
using a stochastic machine learning model of GP. For the Welsh 
catchment in UK, the results between the two models were similar. 
Since rainfall and runoff were highly correlated, the deterministic 
assumption underlying the IHACRES model (deterministic) 
was satisfied. Therefore, IHACREX could achieve a satisfactory 
correlation between calibration and simulation data. The GP 
approach which did not require any causal relationships achieved 
similar results. The behavior of the studied Australian catchment 
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is very different from the Welsh catchment. The runoff ratio was 
very low (7%), and hence, the a priori assumptions of IHACRES 
(and other deterministic models) were a poor representation of the 
real world. This was demonstrated by the inability of IHACREJS 
to use more than one season’s data for calibration purposes and 
only able to use data from a high rainfall period. Since the GP 
approach did not make any assumptions about the underlying 
physical processes, calibration periods over more than one season 
could be used. These led to significantly improved generalizations 
for the modeled behavior of the catchment. In summary, either 
approach worked satisfactorily when rainfall and runoff were 
correlated. However, when this correlation was poor, the CFG-GP 
had some advantages because it did not assume any underlying 
relationships. This is particularly important when considering 
the modeling of environmental problems, where typically the 
relationships are nonlinear, and are often measured at a scale 
which does not match with conceptual or deterministic modeling 
assumptions. In their work of GP in hydrology, [30] first used 
a simple example of the Bernoulli equation to illustrate how 
GP symbolically regresses or infers the relationship between 
the input and output variables. An important conclusion from 
this study was that non-dimensionalizing the variables prior to 
symbolic regression process significantly enhance the success 
of GSR (Genetic Symbolic Regression). GP was then applied 
to the problem of real-time runoff forecasting for the Orgeval 
catchment in France. GP functions as an error updating procedure 
complementing the rainfall-runoff model, MIKE11/ NAM. Ten 
storm events were used to infer the relationship between the 
NAM simulated runoff and the corresponding prediction error. 
That relationship was subsequently used for real-time forecasting 
of six storm events. The results indicated that the proposed 
methodology was able to forecast different storm events with great 
accuracy for different updating intervals. The forecast hydrograph 
performs well even for a long forecast horizon of up to nine hours. 
However, it was found that for practical applications in real-time 
runoff forecasting, the updating interval should be less than or 
equal to the time of concentration of the catchment. The results 
were also compared with two known updating methods such as 
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the auto-regression and Kalman filter. Comparisons showed that 
the proposed scheme, NAM-GSR, is comparable to these methods 
for real time runoff forecasting. The rainfall-runoff models were 
created on the basis of data alone as well as in combination 
with conceptual models and Genetic Programming. The study 
was carried out in Orgeval catchment of France having an area 
about 104 km2 using hourly rainfall runoff data of 10 storms for 
calibration and 6 storms for testing the models. The models were 
calibrated to forecast the temporal difference between the current 
and future discharge rather than absolute value of discharge 
for the lead times of 1 to 12 hours. The results were superior to 
conceptual numerical model. The model was then calibrated 
using a hybrid method in that the surface runoff value was first 
forecasted by using a conceptual forecasting model and then 
using the simulation error and GP to forecast the stream flow. 
The hybrid models provided a many fold improvement over the 
raw GP models. Additionally the models were developed using 
multilayer perceprton as well as Generalized Regression Neural 
Networks (GRNN). The statistical ARMA method was also used 
to develop the stream flow forecasting model. The results showed 
that both LGP and NN techniques predicted the daily time series 
of discharge with quite good agreement as indicated by high value 
of coefficient of determination and low values of error measures 
with the observed data. LGP models generally predicted the 
maximum and minimum discharge values better than the NN 
models though LGP results were also far from accurate. The 
robustness of the developed models was tested by using applied 
data which was neither used in training or testing and the results 
were judged using Akaike Information Criterion (AIC). 

The potential of the GP-based model for flood routing between 
two river gauging stations on river Walla in USA was explored 
for single peaked as well as multi-peaked flood hydrographs. The 
accuracy of GP models was far superior than modified Muskingum 
method which is a traditional physics based hydrologic flood 
routing model which also showed time lag in predictions. The 
inputs were current and antecedent discharge at upstream 
station and antecedent discharge at downstream station while 
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the output was current discharge at the downstream station. The 
LGP was employed for the flood routing exercise. The optimal GP 
parameters used in this study were: crossover rate, 0.9; mutation 
rate, 0.5; population size, 200; number of generations, 500; and 
functional set, i.e. simple arithmetic functions (plus, minus, 
multiply, divide).

The utility of genetic programming in modeling the eddy-covariance 
(EC) measured evapo-transpiration flux was investigated. The 
performance of the GP technique was compared with artificial 
neural network and Penman-Monteith model estimates. EC 
measured evapo-transpiration fluxes from two distinct case-
studies with different climatic and topographic conditions were 
considered for the analysis and latent heat is modeled as a function 
of net radiation, ground temperature, air temperature, wind 
speed and relative humidity. Results from the study indicated 
that both data-driven models (ANN and GP) performed better 
than the Penman-Monteith method. However, the performance 
of the GP model is comparable with that of ANN models. One 
of the important advantages of employing GP to model evapo-
transpiration process is that, unlike the ANN model, GP resulted 
in an explicit model structure that can be easily comprehended 
and adopted. Another advantage of GP over ANN was found 
that unlike ANN, GP can evolve its own model structure with 
relevant inputs reducing the tedious task of identifying optimal 
input combinations. This work was extended by [34] where in an 
additional data driven tool of Evolutionary Polynomial Regression 
was used to model the evapo-transpiration process. Additionally 
the effect of previous states of input variable (lags) on modeling 
the EC measured AET (actual evapo‐transpiration) is investigated. 
The evapo-transpiration is estimated using the environmental 
variables such as net radiation (NR), ground temperature (GT), air 
temperature (AT), wind speed (WS) and relative humidity (RH). 
It has been found out that random search and evolutionary-based 
techniques, such as GP and EPR techniques, do not guarantee 
consistent performance in all case studies e.g. good and/or bad 
performance for modelling AET. The results of ANN, GP and 
EPR were mostly at par with each other though EPR models were 
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easier to understand. Recently the stage –discharge relationship 
for the Pahang River in Malaysia was modeled using Genetic 
Programming (GP) and Gene Expression Programming (GEP). 
The data was provided by Malaysian Department of Irrigation and 
Drainage (DID). Gene Expression Programming is an extension of 
GP. GEP is a full-fledged genotype/phenotype system in which 
both are dealt with separately, whereas GP is a simple replicator 
system. Stage and discharge data from 2 years were used to 
compare the performance of the GP and GEP models against that of 
the more conventional (stage-rating curve) SRC and (Regression) 
REG approaches. The GEP model was found to be considerably 
better than the conventional SRC, REG and GP models. GEP was 
also relatively more successful than GP, especially in estimating 
large discharge values during flood events. 
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INTRODUCTION

Memetic algorithm (MA) is an extension of the traditional genetic 
algorithm. It uses a local search technique to reduce the likelihood of 
the premature convergence. Memetic algorithms represent one of 
the recent growing areas of research in evolutionary computation. 
The term MA is now widely used as a synergy of evolutionary or 
any population-based approach with separate individual learning 
or local improvement procedures for problem search. Memetic 
algorithms address the difficulty of developing high-performance 
universal heuristics by encouraging the exploitation of multiple 
heuristics acting in concert, making use of all available sources of 
information for a problem. This approach has resulted in a rich 
arsenal of heuristic algorithms and metaheuristic frameworks for 
many problems.

6
MEMETIC ALGORITHMS
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6.1 BASIC CONCEPT OF MEMETIC ALGORITHM

The generic denomination of ‘Memetic Algorithms’ (MAs) is used 
to encompass a broad class of metaheuristics (i.e. general purpose 
methods aimed to guide an underlying heuristic). The method 
is based on a population of agents and proved to be of practical 
success in a variety of problem domains and in particular for the 
approximate solution of NP-hard optimization problems.

Unlike traditional evolutionary computation (EC) methods, 
MAs are intrinsically concerned with exploiting all available 
knowledge about the problem under study. The incorporation of 
problem domain knowledge is not an optional mechanism, but 
a fundamental feature that characterizes MAs. This functioning 
philosophy is perfectly illustrated by the term “memetic”.

In contrast, it is processed and enhanced by the communicating 
parts. This enhancement is accomplished in MAs by incorporating 
heuristics, approximation algorithms, local search techniques, 
specialized recombination operators, truncated exact methods, 
etc. In essence, most MAs can be interpreted as a search strategy in 
which a population of optimizing agents cooperate and compete. 
The success of MAs can probably be explained as being a direct 
consequence of the synergy of the different search approaches 
they incorporate.

The most crucial and distinctive feature of MAs, the inclusion of 
problem knowledge mentioned above, is also supported by strong 
theoretical results. As Hart and Belew initially stated and Wolpert 
and Macready later popularized in the so-called No-Free-Lunch 
Theorem, a search algorithm strictly performs in accordance with 
the amount and quality of the problem knowledge they incorporate. 
This fact clearly underpins the exploitation of problem knowledge 
intrinsic to MAs. Given that the term hybridization is often used to 
denote the process of incorporating problem knowledge, it is not 
surprising that MAs are sometimes called ‘Hybrid Evolutionary 
Algorithms’ (hybrid EAs) as well. One of the first algorithms 
to which the MA label was assigned dates from 1988, and was 
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regarded by many as a hybrid of traditional Genetic Algorithms 
(GAs) and Simulated Annealing (SA). Part of the initial motivation 
was to find a way out of the limitations of both techniques on 
a well-studied combinatorial optimization problem the Min 
Euclidean Traveling Salesman problem (Min ETSP). According to 
the authors, the original inspiration came from computer game 
tournaments used to study “the evolution of cooperation”. That 
approach had several features which anticipated many current 
algorithms in practice today. The competitive phase of the algorithm 
was based on the new allocation of search points in configuration 
phase, a process involving a “battle” for survival followed by the 
so-called “cloning”, which has a strong similarity with ‘go with 
the winners’ algorithms. The cooperative phase followed by local 
search may be better named “go-with-the-local-winners” since 
the optimizing agents were arranged with a topology of a two 
dimensional toroidal lattice. After initial computer experiments, an 
insight was derived on the particular relevance that the “spatial” 
organization, when coupled with an appropriate set of rules, had 
for the overall performance of population search processes. A few 
months later, Moscato and Norman discovered that they shared 
similar views with other researchers and other authors proposing 
“island models” for GAs. Spacialization is now being recognized 
as the “catalyzer” responsible of a variety of phenomena.

6.1.1 Basic Model of a Memetic Algorithm

Figure 1 shows the block diagram of a basic population 
metaheuristic, indicating the four points where a local search can 
be included in order to form a MA:

1.	 On the population, to simulate the cultural development 
that will be transmitted from one generation to another; it 
can be applied to the whole set of agents or to specific ele-
ments, and even to the initial group.

2.	 On the parent or selected parents, before reproduction 
stage.

3.	 When new solutions are generated, to produce a better off-
spring.
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4.	 On the offspring, before selecting a survivor according to 
fitness criteria.

Figure 1. Block diagram of a basic population metaheuristic. 

From this basic model several versions of MAs have been 
developed, differing between each other in at least one of the 
following aspects:

•	 Population metaheuristic used as a base.
•	 Selected algorithm for local search (exact method or 

metaheuristic, number of memes to consider.)
•	 Conditions for local search (trigger event, frequency, 

intensity, number of individuals to improve, etc.)

6.1.2 The Development of MAs

1st Generation

The first generation of MA refers to hybrid algorithms, a marriage 
between a population-based global search (often in the form of an 
evolutionary algorithm) coupled with a cultural evolutionary stage. 
This first generation of MA although encompasses characteristics 
of cultural evolution (in the form of local refinement) in the search 
cycle, it may not qualify as a true evolving system according 
to universal Darwinism, since all the core principles of inheritance/
memetic transmission, variation, and selection are missing. This 
suggests why the term MA stirred up criticisms and controversies 
among researchers when first introduced.
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Pseudo code
   Procedure Memetic Algorithm
   Initialize: Generate an initial population;
   while Stopping conditions are not satisfied do
       Evaluate all individuals in the population.
       Evolve a new population using stochastic search operators.

       Select the subset of individuals, ilΩ , that should undergo the 
individual improvement procedure.

       for each individual in ilΩ  do
           Perform individual learning using meme(s) with frequency 
or probability of ilf , for a period of ilt .
           Proceed with Lamarckian or Baldwinian learning.
       end for
   end while

2nd Generation

Multi-meme,  hyper-heuristic  and meta-Lamarckian MA are 
referred to as second generation MA exhibiting the principles of 
memetic transmission and selection in their design. In Multi-meme 
MA, the memetic material is encoded as part of the  genotype. 
Subsequently, the decoded meme of each respective individual/
chromosome  is then used to perform a local refinement. The 
memetic material is then transmitted through a simple inheritance 
mechanism from parent to offspring(s). On the other hand, in 
hyper-heuristic and meta-Lamarckian MA, the pool of candidate 
memes considered will compete, based on their past merits in 
generating local improvements through a reward mechanism, 
deciding on which meme to be selected to proceed for future local 
refinements. Memes with a higher reward have a greater chance 
of being replicated or copied. For a review on second generation 
MA; i.e., MA considering multiple individual learning methods 
within an evolutionary system, the reader is referred to.
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3rd Generatio

Co-evolutionand self-generating MAs  may be regarded as 3rd 
generation MA where all three principles satisfying the definitions 
of a basic evolving system have been considered. In contrast to 
2nd generation MA which assumes that the memes to be used 
are known a priori, 3rd generation MA utilizes a rule-based local 
search to supplement candidate solutions within the evolutionary 
system, thus capturing regularly repeated features or patterns in 
the problem space.

6.1.3 The Need for Memetic Algorithms

In order to understand in depth the role and need of MAs, it is 
fundamental to consider the historical context within which MAs 
have been defined. In 1988, when the first MAs were defined, 
Genetic Algorithms (GAs) were extremely popular among 
computer scientists and their related research was oriented 
towards the design of algorithms having a superior performance 
with respect to all the other algorithms. Unlike all the algorithms 
proposed at that time, a MA was not a specific algorithm but was 
something much more general than an optimization algorithm: 
since MAs consists of the concept of combining global and local 
search algorithms, they represented a broad and flexible class 
of algorithms which somehow contained the previous work on 
Evolutionary Algorithms (EAs) and thus, constituted a new 
philosophy in optimization. Probably, due to their excessively 
innovative contents, MAs had to face for about one decade, the 
skepticism of the scientific community which repeatedly rejected 
the memetic approach as a valuable possibility in optimization.

Since 1997, researchers in optimization had to dramatically 
change their view about the subject. More specifically, in the light 
of increasing interest in general purpose optimization algorithms, 
it has become important, in the end of 90’s to understand the 
relationship between how well an algorithm a performs on a 
given optimization problem f on which it is run on the basis of the 
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features of the problem f . A slightly counter intuitive result has 
been derived by Wolpert and Macready in which states that for a 
given pair of algorithms A and B:

where P(xm| f,A) is the probability that algorithm A detects the 
optimal solution for a generic objective function f and P(xm| f,B) 
is the analogue probability for algorithm B. The statement is 
proved for both static and time dependent case and are named 
“No Free Lunch Theorems” (NFLT). In other words, in 1997 it 
was mathematically proved that the average performance of 
any pair of algorithms across all possible problems is identical. 
Thus, if an algorithm performs well on a certain class of problems 
then it necessarily pays for that with degraded performance on 
the set of all remaining problems as this is the only way that all 
algorithms can have the same performance averaged over all 
functions. Strictly speaking, the proof of NFLT is made under the 
hypothesis that both the algorithms A and B are non-revisiting, i.e. 
the algorithms do not perform the fitness evaluation of the same 
candidate solution more often than once during the optimization 
run. Although this hypothesis is de facto not respected for most 
of the computational intelligence optimization algorithms, the 
concept that there is no universal optimizer had a significant 
impact on the scientific community.

It should be highlighted that a class of problems on which an 
algorithms performs well is not defined by the nature of the 
application but rather by the features of the fitness function 
within the search space. For example an optimization problem is 
characterized by:

•	 The shape and properties of a corresponding fitness 
landscape,

•	 Multi-modality,
•	 Separability of the problem,
•	 Absence or presence of a noise in the values of the 

objective function (optionally, the type of noise),
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•	 Time dependency of the objective function (dynamic 
problems)

•	 Shape and connectivity of the search domain

More formally, the fitness landscape (S, f, d) of a problem instance 
for a given problem consists of a set of points S, a fitness function 
f which assigns values (fitness) to solutions from S, and a distance 
measure d : S × S → R which defines the spacial structure of the 
landscape. This rather abstract concept has proven to be useful for 
understanding the functionality of various optimization methods.

One of the most important properties of the fitness landscape is 
epistasis whose concept has been borrowed from biology where 
it refers to the degree to which the genes are correlated. As well 
known, a function is separable if it can be rewritten as a sum of 
functions of just one variable. The separability is closely related to 
the concept of epistasis. In the field of evolutionary computation, 
the epistasis measures how much the contribution of a gene to 
the fitness of the individual depends on the values of other 
genes. Nonseparable functions are more difficult to optimize as 
the accurate search direction depends on two or more genes. On 
the other hand, separable functions can be optimized for each 
variable in turn. However, epistasis does not provide any piece of 
information on how the fitness values are topologically related to 
each other. By knowing the epistasis of an optimization problem, 
it cannot be established whether the fitness values form a smooth 
progression resulting in a solitary optimum or whether they form 
a spiky pattern of many isolated optima.

The impossibility of understanding each detail of the fitness 
landscape depends not only on the fitness function but also on 
the search algorithm since an observed landscape appears to 
be an artefact of the algorithm used or, more specifically, of the 
neighborhood structure induced by the operators used by the 
algorithm. The neighborhood structure is defined as a set of 
points that can be reached by a single move of a search algorithm. 
Closely related to the concept of the neighborhood structure is 
the notion of a basin of attraction induced by this structure. More 
specifically, a basin of attraction of a local optimum x is the set of 
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points X of the search space such that a search algorithm starting 
from any point from X ends in the local optimum x. A special 
note should be made regarding the landscapes with plateaus, i.e. 
regions in search domain where the function has constant or nearly 
constant values. If a search method is trapped on such region it 
cannot get any information regarding the gradient or even its 
estimates. Generally speaking, this situation is rather complicated 
and special algorithmic components should be used in this case. 
Finally, an important feature of a fitness landscape is the presence 
or absence of symmetry. Special components can be included in 
the algorithms for symmetrical problems.

In addition, two features can be mentioned which appear to be semi-
defining when distinguishing the classes of problems on which 
an algorithm performs well. The first one is dimensionality of the 
problem. Two problems with high dimensionality of the search 
domain can be put into the same class, however an algorithm that 
performs well for one of them might not necessarily work well 
for the other one. At the same time, two specialized algorithms 
for these two problems will have some common features intended 
to overcome difficulties arising from high dimensionality. The 
second semi-defining feature is computational cost of a single 
evaluation of the objective function. Clearly, two problems with 
computationally expensive objective functions can have different 
features mentioned above that will put them into different classes. 
However, these problems are unsolvable (in practice) if treated as 
computationally cheap functions, therefore algorithms for such 
problems should have common type components which allow 
proper handling of the computational cost.

There is generally a performance advantage in incorporating prior 
knowledge into the algorithm, however the results of NFLT do not 
deem the use of unspecialized algorithms futile. It is impossible 
to determine the fraction of practical problems for which an 
algorithm yields good results rapidly, therefore a practical free 
lunch is possible. NFLT constitute, in a certain sense, the “Full 
Employment Theorem” (FET) for optimization professionals. In 
computer science and mathematics, the term FET is used to refer 
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to a theorem that shows that no algorithm can optimally perform 
a particular task done by some class of professionals. In this sense, 
as no efficient general purpose solver exists, there is always scope 
for improving algorithms for better performance on particular 
problems. Since MAs, as mentioned above, represent a broad class 
of algorithms which combine various algorithmic components, 
a suitable combination is necessary for a given problem. Since, 
during the last decade, computer scientists had to observe the 
features of their optimization problem in order to propose an ad-
hoc optimization algorithm, the approach of combining various 
search operators within the algorithmic design became a common 
practice. The development of NFLT implicitly encouraged the use 
and development of MAs, which became extremely popular and 
often necessary, in computer science, at first, and in engineering 
and applied science, more recently, thus constituting the FET for 
MAs.

6.1.4 Recombination

Local search is based on the application of a mutation operator 
to a single configuration. Despite the apparent simplicity of this 
mechanism, “mutation-based” local search has revealed itself a 
very powerful mechanism for obtaining good quality solutions for 
NP−hard problems. For this reason, some researchers have tried 
to provide a more theoretically-solid background to this class of 
search. It is worth mentioning the definition of the Polynomial 
Local Search class (PLS) by Johnson et al. Basically, this complexity 
class comprises a problem and an associated search landscape 
such that we can decide in polynomial time if we can find a better 
solution in the neighborhood. Unfortunately, it is very likely that 
no NP−hard problem is contained in class PLS, since that would 
imply that NP=co-NP, a conjecture usually assumed to be false. 
This fact has justified the quest for additional search mechanisms 
to be used as stand-alone operators or as complements to standard 
mutation.

Recall that population-based search allowed the definition of 
generalized move operators termed recombination operators. In 
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essence, recombination can be defined as a process in which a 
set Spar of n configurations (informally referred to as “parents”) is 
manipulated to create a set Sdesc ⊆ solP (x) of m new configurations 
(informally termed “descendants”). The creation of these 
descendants involves the identification and combination of 
features extracted from the parents.

At this point, it is possible to consider properties of interest that 
can be exhibited by recombination operators. The first property, 
respect, represents the exploitation side of recombination. A 
recombination operator is said to be respectful, regarding a 
particular type of features of the configurations, if, and only if, 
it generates descendants carrying all basic features common to 
all parents. Notice that, if all parent configurations are identical, 
a respectful recombination operator is forced to return the same 
configuration as a descendant. This property is termed purity, 
and can be achieved even when the recombination operator is not 
generally respectful.

On the other hand, assortment represents the exploratory side of 
recombination. A recombination operator is said to be properly 
assorting if, and only if, it can generate descendants carrying any 
combination of compatible features taken from the parents. The 
assortment is said to be weak if it is necessary to perform several 
recombinations within the offspring to achieve this effect.

Finally, transmission is a very important property that captures 
the intuitive role of recombination. An operator is said to be 
transmitting if every feature exhibited by the offspring is present 
in at least one of the parents. Thus, a transmitting recombination 
operator combines the information present in the parents but 
does not introduce new information. This latter task is usually 
left to the mutation operator. For this reason, a non-transmitting 
recombination operator is said to introduce implicit mutation.

The three properties above suffice to describe the abstract input/
output behavior of a recombination operator regarding some 
particular features. It provides a characterization of the possible 
descendants that can be produced by the operator. Nevertheless, 
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there exist other aspects of the functioning of recombination that 
must be studied. In particular, it is interesting to consider how the 
construction of Sdesc is approached.

First of all, a recombination operator is said to be blind if it has 
no other input than Spar, i.e., it does not use any information from 
the problem instance. This definition is certainly very restrictive, 
and hence is sometimes relaxed as to allow the recombination 
operator to use information regarding the problem constraints 
(so as to construct feasible descendants), and possibly the fitness 
values of configurations y ∈ Spar (so as to bias the generation of 
descendants toward the best parents). A typical example of a 
blind recombination operator is the classical Uniform crossover. 
This operator is defined on search spaces S ≡ Σn, i.e., strings of 
n symbols taken from an alphabet Σ. The construction of the 
descendant is done by randomly selecting at each position one 
of the symbols appearing in that position in any of the parents. 
This random selection can be totally uniform or can be biased 
according to the fitness values of the parents as mentioned before. 
Furthermore, the selection can be done so as to enforce feasibility 
(e.g., consider the binary representation of solutions in the 0-1 
MKP). Notice that, the resulting operator is neither respectful nor 
transmitting in general.

The use of blind recombination operators has been usually 
justified on the grounds of not introducing excessive bias in the 
search algorithm, thus preventing extremely fast convergence to 
suboptimal solutions. This is questionable though. First, notice 
that the behavior of the algorithm is in fact biased by the choice 
of representation and the mechanics of the particular operators. 
Second, there exist widely known mechanisms (e.g., spatial 
isolation) to hinder these problems. Finally, it can be better to 
quickly obtain a suboptimal solution and restart the algorithm 
than using blind operators for a long time in pursuit of an 
asymptotically optimal behavior.

Recombination operators that use problem knowledge are 
commonly termed heuristic or hybrid. In these operators, problem 
information is utilized to guide the process of constructing the 
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descendants. This can be done in a plethora of ways for each 
problem, so it is difficult to provide a taxonomy of heuristic 
recombination operators. Nevertheless, there exist two main 
aspects into which problem knowledge can be injected: the 
selection of the parental features that will be transmitted to the 
descendant, and the selection of nonparental features that will be 
added to it. A heuristic recombination operator can focus in one of 
these aspects, or in both of them simultaneously.

As an example of a heuristic recombination operator focusing on 
the first aspect, Dynastically Optimal Recombination (DOR) can be 
mentioned. This operator explores the dynastic potential (i.e., the 
set of possible children) of the configurations being recombined, 
so as to find the best member of this set (notice that, since 
configurations in the dynastic potential are entirely composed 
of features taken from any of the parents, this is a transmitting 
operator). This exploration is done using a subordinate complete 
algorithm, and its goal is thus to find the best combination of 
parental features giving rise to a feasible child. Hence, this operator 
is monotonic in the sense that any child generated is at least as 
good as the best parent.

Examples of heuristic recombination operators concentrating on 
the selection of non-parental features, one can cite the patching-
by-forma-completion operators proposed by Radcliffe and 
Surry. These operators are based on generating an incomplete 
child using a non-heuristic procedure (e.g., the RARω operator), 
and then completing the child either using a local hill climbing 
procedure restricted to non-specified features (locally optimal 
forma completion) or a global search procedure that finds the 
globally best solution carrying the specified features (globally 
optimal forma completion). Notice the similarity of this latter 
approach with DOR.

Finally, there exist some operators trying to exploit knowledge in 
both of the above aspects. A distinguished example is the Edge 
Assembly Crossover (EAX). EAX is a specialized operator for 
the TSP (both for symmetric and asymmetric instances) in which 
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the construction of the child comprises two-phases: the first one 
involves the generation of an incomplete child via the so-called 
E-sets (subtours composed of alternating edges from each parent); 
subsequently, these subtours are merged into a single feasible 
subtours using a greedy repair algorithm. The authors of this 
operator reported impressive results in terms of accuracy and 
speed.

A final comment must be made in relation to the computational 
complexity of recombination. It is clear that combining the features 
of several solutions is in general computationally more expensive 
than modifying a single solution (i.e., a mutation). Furthermore, 
the recombination operation will be usually invoked a large 
number of times. For this reason, it is convenient (and in many 
situations mandatory) to keep it at a low computational cost. A 
reasonable guideline is to consider an O(N log N) upper bound 
for its complexity, where N is the size of the input (the set Spar and 
the problem instance x). Such limit is easily affordable for blind 
recombination operators, which are called crossover, a reasonable 
name to convey their low complexity (yet not always used in this 
context). However, this limit can be relatively astringent in the case 
of heuristic recombination, mainly when epistasis (nonadditive 
inter-feature influence on the fitness value) is involved. This admits 
several solutions depending upon the particular heuristic used. 
For example, DOR has exponential worst case behavior, but it can 
be made affordable by picking larger pieces of information from 
each parent (the larger the size of these pieces of information, the 
lower the number of them needed to complete the child). Consider 
that heuristic recombination operators provide better solutions 
than blind recombination operators, and hence they need not be 
invoked the same number of times.

6.2 GENERAL STRUCTURE OF MEMETIC  
ALGORITHMS

In order to define the notation used in this section, let us consider a 
solution x, i.e., a vector of n design variables (x1, x2, . . . , xi , . . . , xn). 
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Each design variable xi can take values from a domain Di (e.g., an 
interval  if variables are continuous, or a certain collection 
of values otherwise). The Cartesian product of these domains for 
each design variable is called the decision space D. Let us consider 
a set of (either deterministic or stochastic) functions f1, f2, . . . , fm 
defined in D and returning some values. Under these conditions, 
the most general statement of an optimization problem is given by 
the following formulas:

		 (1)
where gj and hk are inequality and equality constraints, respectively.

If m = 1 the problem is single-objective, while for m > 1 the problem 
is multi-objective. The particular structure of the functions gj and 
hk in each particular problem determines its constrainedness, 
which is often related to the hardness of its resolution. Finally, the 
continuous or combinatorial nature of the problem is given by the 
fact that D is a discrete or dense set. 

MAs address the problem in (1) by means of a specific algorithmic 
structure which can be seen as an iterated sequence of the 
following operations, aimed at having a population (pool) of 
tentative solution converge (i.e., evolve from an initial high-
diversity, scattered state to a low-diversity, more homogeneous 
state) towards an optimal (or quasi-optimal) solution:

•	 Selection of parents: Selection aims to determine the 
candidate solutions that will survive in the following 
generations and be used to create new solutions. 
Selection for reproduction often operates in relation with 
the fitness (performance) of the candidate solutions; 
Here, performance typically amounts to the extent to 
which the solution maximizes/minimizes the objective 
function(s) fm (although in some cases fitness may be 
measured by means of a different guiding function, 
related to the objective function but not identical, e.g., 
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in the SAT problem the objective function is binary –
satisfied/unsatisfied– yet the most common fitness 
function is maximizing the number of satisfied clauses). 
High quality solutions have thus more chances to be 
chosen. For example, roulette-wheel and tournament 
selections can be applied. Selection can also be done 
according to other criteria such as diversity. In such a 
case, only spread out individuals are allowed to survive 
and reproduce. If the solutions of the population are 
sufficiently diversified, selection can also be carried out 
randomly.

•	 Combination of parents for offspring generation: 
Combination aims to create new promising candidate 
solutions by blending existing solutions (parents), a 
solution being promising if it can potentially lead the 
optimization process to new search areas where better 
solutions may be found.

•	 Local improvement of offspring: The goal of local 
improvement is to improve the quality of an offspring as 
far as possible. Candidate solutions undergo refinement 
which correspond the life-time learning of the individuals 
in the original metaphor of MAs. 

•	 Update of the population: This step decides whether a 
new solution should become a member of the population 
and which existing solution of the population should 
be replaced. Often, these decisions are made according 
to criteria related to both quality and diversity. Such a 
strategy is commonly employed in methods like Scatter 
Search and many Evolutionary Algorithms. For instance, 
a basic quality-based updating rule would replace the 
worst solution of the population while a diversity-based 
rule would substitute for a similar solution according to 
a distance metric. Other criteria like recency (age) can 
also be considered. The policies employed for managing 
the population are essential to maintain an appropriate 
diversity of the population, to prevent the search process 
from premature convergence (i.e., too fast convergence 
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towards a suboptimal region of the search space), and 
to help the algorithm to continually discover new 
promising search areas.

MAs blend together ideas from different search methodologies, 
and most prominently ideas from local search techniques and 
population-based search. Indeed, from a very general point of 
view a basic MA can be regarded as one (or several) local search 
procedure(s) acting on a pool pop of |pop| ≥  2 solutions which 
engage in periodical episodes of cooperation via recombination 
procedures. This is shown in Algorithm 1.

Algorithm 1: A Basic Memetic Algorithm.

Let us analyze this template. First of all, the Initialize procedure 
is responsible for producing the initial set of |pop| solutions. 
Traditional evolutionary algorithms usually resort to simply 
generating |pop| solutions at random (systematic procedures to 
ensure a good coverage of the search space are sometimes defined, 
although these are not often used). Opposed to this, it is typical 
for MAs to attempt to use high-quality solutions as starting point. 
This can be done either using a more sophisticated mechanism 
(for instance, some constructive heuristic) to inject good solutions 
in the initial population, or by using a local-search procedure to 
improve random solutions (see Algorithm 2).
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Algorithm 2: Injecting high-quality solutions in the initial population.

As for the Termination Criterion function, it typically amounts 
to checking a limit on the total number of iterations, reaching a 
maximum number of iterations without improvement, having 
performed a certain number of population restarts, or reaching a 
certain target fitness.

The procedures Cooperate and Improve constitute the core of the 
MA. Starting with the former, its most typical realization arises 
from the use of two operators for selecting solutions from the 
population and recombining them.

Table 1: Parameters used in the algorithmic description of MAs
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Algorithm 3: The pipelined Cooperate procedure.

This procedure can be easily extended to use a larger collection 
of variation operators applied in a pipeline fashion. As shown in 
Algorithm 3, this procedure comprises numop stages, each one 
corresponding to the iterated application of a particular operator 
opj that takes arityinj solutions from the previous stage, generating 
arityoutj new solutions.

As to the Improve procedure, it embodies the application of a 
local search procedure to solutions in the population. Notice 
that in an abstract sense a local search method can be modelled 
as a unary operator (we adhere here to a strict definition of local 
search as a procedure for iteratively exploring the surroundings/
neighborhood of a certain solution at any given time step), and 
hence it could have been included within the Cooperate procedure 
above. However, local search plays such an important role in 
MAs that it deserves separate treatment. Indeed, there are several 
important design decisions involved in the application of local 
search to solutions, i.e., to which solutions should it be applied, 
how often, for how long, etc.

Next, the Compete procedure is used to reconstruct the current 
population using the old population pop and the population of 
offspring newpop2. Using the terminology commonly used by the 
evolution strategy community, there exist two main possibilities for 
this purpose: the plus strategy and the comma strategy. The non-
elitist nature of the latter makes it less prone to stagnation, being 
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the ratio |newpop|/|pop| ≃ 6 a customary choice. The generation 
of a large number of offspring can be somewhat computationally 
expensive if the fitness function is complex and time-consuming 
though. A suitable alternative in this context is using a plus 
strategy with a low value of |newpop|, an elitist variant which is 
strongly related to the so-called steady-state replacement strategy 
in GAs. While this option usually provides a faster convergence 
to high-quality solutions, premature convergence to suboptimal 
regions of the search space can take place, and hence corrective 
measures may be required. This leads to the last component of the 
template shown in Algorithm 1, namely the restarting procedure.

First of all, it must be decided whether the population has degraded 
or has not, using some measure of information diversity in the 
population (e.g., average Hamming distance or Shannon’s entropy 
in the discrete case, or some dispersion measure in the continuous 
case). Once the diversity indicator provides a value below a 
suitable threshold, the population can be regarded as degenerate 
and the restart procedure is called. Again, this can be implemented 
in a number of ways. A very typical strategy is to keep a fraction 
of the current population, generating new (random or heuristic) 
solutions to complete the population, as shown in Algorithm 4. 
The term random-immigrant strategy has been coined to describe 
this procedure. Alternatively, a strong or heavy mutation operator 
can be activated in order to drive the population away from its 
current location in the search space.

Algorithm 4: The Restart procedure.
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On the basis of the definitions of MA and MC reported above, 
while an algorithmic characterization of MA can be given, any MC 
specific outline would be restrictive. In other words, while MA is 
a class of optimization algorithms having specific implementation 
features, MC is a subject and an implementation philosophy. On 
one hand, the concept of MC appears excessively vague as all 
the computer science implementations if not most of the natural 
sciences and engineering can be seen as a subset of MC. If we 
look at MC in a sceptical way, it may appear as an empty box or 
a label to put on every single human thought. On the other hand, 
the importance of MC is in the unifying role taken and the novel 
perspective that MC suggests to computer science community. 
MC considers algorithms as evolving structures composed by 
cooperative and competitive operators. This perspective suggests 
the automatic generation of algorithms by properly combining 
the operators (memes). We may think that a computational device 
stores a set of operators and combines (some of) them according 
to a certain criterion to efficiently address a problem. This will be 
a firther step with respect to adaptive and self-adaptive systems 
in MAs.

6.3 MEMETIC COMPUTING SPECIFIC  
IMPLEMENTATIONS

MA/MC implementations for various classes of optimization 
problems. More specifically the present divided into the following 
methods: 

•	 MAs in discrete optimization 
•	 MAs in continuous optimization 
•	 MAs in multimodal optimization 
•	 MAs in constrained optimization 
•	 MAs in multi-objective optimization 
•	 MAs in the presence of uncertainties
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6.3.1 MAs in Discrete Optimization

Discrete optimization is the search for the configuration with 
highest performance (optimal solution) among a set of finite 
candidate configurations. There are several ways to describe a 
discrete optimization problem. In its most general form, it can be 
defined as a collection of problem instances, each being specified 
by a pair (S, f), where S is the a finite set of candidate configurations, 
defining the decision space; f is the cost or objective function, given 
by a mapping f: S → Q.

Unlike continuous problems, discrete optimization can in 
principle be solved by enumeration, i.e., by exhaustively counting 
and evaluating all the candidate solutions. In addition, discrete 
problems cannot utilize the gradient for searching the directions 
as a minimum distance between two solutions is set.

Discrete problems and more specifically the Travelling Salesman 
problem (TSP) have been the earliest application domains for 
MAs. Implementations of hybrid algorithms were in use even 
before the term MA was coined. In an early attempt to hybridize 
an evolutionary framework with local search for solving the 
TSP has been presented. Subsequently, still with reference to the 
TSP, in a visionary approach which theorizes the integration of 
extra components and especially crossover techniques within an 
evolutionary framework is presented. A similar approach is given 
in. Another related technique, which can also be considered as an 
early memetic approach is the so called genetic edge recombination. 
More recently, actual MAs (which fit in the definition above) have 
been implemented to address the TSP; the role and effect of local 
search within evolutionary algorithms is extensively studied.

The solution of an optimization problem in a discrete space (as 
well as for continuous problems) must be achieved by efficiently 
balancing the exploitation and exploration. Exploitation is the 
action, performed by the algorithm, of intensively analyzing a 
portion of the decision space in order to quickly enhance upon the 
best current solution while exploration is the action which leads 
to the detection of a candidate solution located in an unexplored 
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areas of the decision space. The dual concept of exploitation and 
exploration covers two fundamental and complementary aspects 
of any effective search procedure. This concept is at the basic of 
optimization and has been termed under the names intensification 
and diversification, respectively, introduced within the Tabu 
Search (TS) methodology.

MA implementations for discrete optimization problems 
essentially tend to combine searchers for exploring the entire 
decision space and searchers which focus on portions of the decision 
space. Local search in MAs for discrete optimization performs an 
intensive exploitation of the search space attempting to enhance 
the performance by slightly modifying some design variables. 
For example, an analysis of the frequency and application point 
of the local search, in the context of continuous optimization, is 
carried out. This analysis has been extended for combinatorial 
optimization problems and introduced the concept of sniff (or 
local/global ratio) for balancing genetic and local search.

6.3.2 MAs in Continuous Optimization

When a MA is designed two of the most relevant features to take 
into account are 1) the cost of local search; 2) the underlying search 
landscape. In order to come up with efficient memetic solvers, in 
continuous optimization, these features must be tackled differently 
with respect to the discrete case.

Regarding the cost of local search, in many combinatorial domains 
it is frequently possible to compute the fitness of a perturbed 
solution incrementally, e.g., let x be a solution and let x′ ∈ N 
(x) be a neighboring solution; then the fitness f(x′) can be often 
computed as f(x ′) = f(x) + ∆f(x, x′), where ∆f(x, x′) is a term that 
depends on the particular perturbation done on x and is typically 
efficient to compute (much more efficiently that a full fitness 
computation). For example, in the context of the TSP and the 2-opt 
neighborhood, the fitness of a perturbed solution can be computed 
in constant time by calculating the difference between the weights 
of the two edges added and the two edges removed. This is much 
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more difficult in the context of continuous optimization problems, 
which are often non-linear and hard to decompose as the sum of 
linearly-coupled terms. Hence local search usually has to resort to 
full fitness computations.

Concerning the underlying search landscape, it should be observed 
that the interplay among the different search operators used in 
memetic algorithms (or even in simple evolutionary algorithms) is 
a crucial issue for achieving good performance in any optimization 
domain. When tackling a combinatorial problem, this interplay is 
a complex topic since each operator may be based on a different 
search landscape. It is then essential to understand these different 
landscape structures and how they are navigated; this concept 
is also known ad the “one operator, one landscape” view and 
is expressed in depth. In the continuous domain the situation 
is somewhat simpler, in the sense that there exists a natural 
underlying landscape in D (typically D = Qn), namely that induced 
by distance measures such as Euclidean distance. In other words, 
in continuous optimization, the set of points which can be reached 
by the application of unary operators to a starting point may be 
represented by closed spheres of radius . On the contrary, the set 
of points reachable by recombination operators (recall for example 
the BLX−α operator) can be visualized by means of a hypercubes 
within the decision space. The intuitive imagery of local optima 
and basins of attraction naturally fits here, and allows the designer 
to exert some control on the search dynamics by carefully adjusting 
the intensification/diversification properties of the operators used.

Starting with the first one (the cost of local search), it emphasizes 
the need for carefully selecting when and how local search 
is applied (obviously this is a general issue, also relevant in 
combinatorial problems, but definitely crucial in continuous ones). 
This decision-making is very hard in general, but some strategies 
have been put forward in previous works. A rather simple one 
is to resort to partial Lamarckianism by randomly applying 
local search with probability pLS < 1. Obviously, the application 
frequency is not the only parameter that can be adjusted to tune 
the computational cost of local search: the intensity of local search 
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(i.e., for how long is local improvement attempted on a particular 
solution) is another parameter to be tweaked. This adjustment 
can be done blindly (i.e., prefixing a constant value or a variation 
schedule across the run), or adaptively. For example, Molina et 
al. define three different solution classes (on the basis of fitness) 
and associate a different set of local-search parameters for each 
of them. Related to this, Nguyen et al. consider a stratified 
approach, in which the population is sorted and divided into 
n levels (n being the number of local search applications), and 
one individual per level is randomly selected. This is shown to 
provide better results than random selection. We refer to for an 
in-depth empirical analysis of the time/quality tradeoffs when 
applying parameterized local search within memetic algorithms. 
This adaptive parameterization has been also exploited in so-
called local-search chains, by saving the state of the local-search 
upon completion on a certain solution for later use if the same 
solution is selected again for local improvement. Let us finally 
note with respect to this parameterization issue that adaptive 
strategies can be taken one step further, entering into the realm of 
self-adaptation.

As to what the exploitation/exploration balance regards, it is 
typically the case that the population-based component is used to 
navigate through the search space, providing interesting starting 
points to intensify the search via the local improvement operator. 
The diversification aspect of the populationbased search can be 
strengthened in several ways, such as for example using multiple 
subpopulations, or diversity-oriented replacement strategies. An 
optimization paradigm closely related to memetic algorithms in 
which the population (or reference set in the SS jargon) is divided 
in tiers: entrance to them is gained by solution on the basis of 
fitness in one case, or diversity in the other case. 

Diversification can be also introduced via selective mating, as it is 
done in CHC (Cross generational elitist selection, Heterogeneous 
recombination, and Cataclysmic mutation). A related strategy 
was proposed by Lozano et al. via the use of negative assortative 
mating: after picking a solution for recombination, a collection of 
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potential mates is selected and the most diverse one is used. Other 
strategies range from the use of clustering (to detect solutions 
likely within the same basin of attraction upon which it may not 
be fruitful to apply local search), or the use of standard diversity 
preservation techniques in multimodal contexts such as sharing 
or crowding. It should be also mentioned that sometimes the 
intensification component of the memetic algorithm is strongly 
imbricated in the population-based engine, without resorting 
to a separate local search component. This is for example the 
case of the so-called crossover hill climbing, a procedure which 
essentially amount to using a hill climbing procedure on states 
composed of a collection of solutions, using crossover as move 
operator. A different intensifying strategy was used by, by 
considering an exact procedure for finding the best combination 
of variable values from the parents (a so-called optimal discrete 
recombination). This obviously requires the objective function is 
amenable to the application of an efficient procedure for exploring 
the dynastic potential (set of possible children) of the solutions 
being recombined. 

6.3.3 MAs in Multimodal Optimization

In some cases, it may be required to detect multiple local optima 
rather than only the global optimum. This problem is usually 
indicated as multimodal optimization problem. Obviously, 
this situation occurs only when there is a continuous landscape 
because in discrete optimization there is no absolute concept of 
local optimum. MC approaches have been used in various contexts 
to address this issue. For example, a memetic approach composed 
of sequential threshold operation, global and local search allows 
the detection of multiple optima under fitness constrains. In a 
heuristic mapping is proposed in order to promote the multiple 
convergence within a unique evolutionary cycle. By means of a 
similar logic, in a memetic swarm intelligence approach is used 
for multimodal optimization.
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6.3.4 MAs in Large Scale Optimization

Optimization problems, both discrete and continuous, when 
characterized by a high number of variables are known as large 
scale optimization problems, or briefly Large Scale Problems 
(LSPs). The detection of an efficient solver for LSPs can be a very 
valuable achievement in applied science and engineering since 
in many applications a high number of design variables may be 
of interest for an accurate problem description. For example, in 
structural optimization an accurate description of complex spatial 
objects might require the formulation of a LSP; similarly such a 
situation also occurs in scheduling problems.

Several memetic approaches have been largely applied in order 
to solve LSPs. This fact is due to the fact that a single search logic 
might easily turn into stagnation or premature convergence. On the 
other hand, a proper coordination of multiple search operators can 
compensate the limits of the others and thus allow the overcome of 
a critical algorithmic situation characterized by no improvements. 
For example, a MA which integrates a simplex crossover within 
the DE framework has been proposed in order to solve LSPs. A 
DE for LSPs has proposed. The algorithm proposed in performs 
a probabilistic update of the control parameter of DE variation 
operators and a progressive size reduction of the population 
size. Although the theoretical justifications of the success of this 
algorithm are not fully clear, the proposed approach seems to be 
extremely promising for various problems. A memetic algorithm 
which hybridizes the self-adaptive DE described and a local search 
applied to the scale factor in order to generate candidate solutions 
with a high performance has been proposed. Since the local search 
on the scale factor (or scale factor local search) is independent 
on the dimensionality of the problem, the resulting memetic 
algorithm offered a good performance for relatively large scale 
problems. By combining the latest two philosophies, Caponio et 
al. propose a MA which integrates the potential of the scale factor 
local search within the self-adaptive DE with automatic reduction 
of the population size in order to guarantee a high performance, in 
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terms of convergence speed and solution detection, for large scale 
problems.

A DE framework with self-adaptively coordinated multiple 
mutation strategies, is hybridized in a memetic fashion with the 
multitrajectory search proposed. The resulting algorithm appears 
very promising for handling LSPs.

Finally, another memetic approach, used for handling LSPs, is 
by means of structured populations. One example is given in 
where multiple DE search strategies are reproduced within a 
ring topology by means of a simple and natural randomized 
adaptation throughout the islands of the structured populations. 
The scale factor of the most successful islands is inherited by the 
other islands after a perturbation which prevents from premature 
convergence. A more efficient scheme for handling LSPs is 
proposed in where the premature convergence is achieved by 
means of the cooperative/competitive application of two simple 
mechanisms: the first, namely shuffling, consists of randomly 
rearranging the individuals over the sub-populations; the second 
consists of updating all the scale factors of the sub-populations.

6.3.5 MAs in Constrained Optimization

When MAs are applied to constrained optimization problems, 
the integration of algorithmic components in the memetic 
framework to handle the constraints becomes fundamental. In 
a MA composed of a GA framework and a gradient based local 
search integrates the constraint violation criterion proposed in: 
(i) the feasible individual is preferred over the infeasible one; (ii) 
for two feasible individuals, the individual with better fitness is 
preferred; and (iii) for two infeasible individuals, the individual 
with lower constraint violation is preferred. Their experimental 
results indicated that MA outperformed conventional algorithms 
in terms of both quality of solution and the rate of convergence. 
The same set of rules has been used to handle the constraints, 
where, in the context of multi-objective optimization, a MA which 



Memetic Algorithms 223

makes use of a local search strategy based on the interior point 
method, has been proposed.

A MA composed by an evolutionary framework and Sequential 
Quadratic Programming (SQP) employs the constraint violation 
procedure. An MA containing an adaptive penalty method and a 
line search technique is proposed. An agent based MA in which 
four local search algorithms were used for adaptive learning has 
been proposed. The algorithms included random perturbation, 
neighborhood and gradient search methods. Subsequently, 
another specialized local search method was designed to deal 
with equality constraints.

A memetic co-evolutionary differential evolution algorithm 
where the population was divided into two sub-populations has 
been proposed. The purpose of one sub-population is to minimize 
the fitness function, and the other is to minimize the constraint 
violation. The optimization was achieved through interactions 
between the two sub-populations. No penalty coefficient has 
been used in the method while a Gaussian random number was 
used to modify the individuals when the best solution remained 
unchanged over several generations.

Some domain-specific applications are solved by means of MAs 
for constraint optimization. Boudia and Prins considered the 
problem of cost minimization of a production-distribution system. 
A repair mechanism was applied for constraint satisfaction. Park 
et al. combined a GA framework with a tunnel-based dynamic 
programming scheme to solve highly constrained non-linear 
discrete dynamic optimization problems arising from long-term 
planning. The infeasible solutions were repaired by randomly 
sampling part of the solutions and replacing some of the previous 
variables (regenerate partial characters). The algorithm successfully 
solved reasonable sized practical problems which cannot be solved 
by means of conventional approaches. A multistage capacitated 
lot-sizing problem was solved by the memetic algorithm proposed 
in using heuristics as local search and standard recombination 
operators. Gallardo et al. propose a multilevel MA for solving 
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weighted constrained satisfaction problems, based on the 
integration of exact techniques within the MA for recombination 
purposes, and the use of upper coordination level involving the 
MA and an incomplete branch and bound derivate.

Some other studies, instead of dealing with conventional 
candidate solutions, require the encoding of mixed continuous/
integer variables or the inclusion of boolean variables. Within 
this class of problems, mixed representations of the constrained 
Vehicle Routing Problems (VRPs) have been extensively studied in 
literature and several MA implementations have been proposed. 

6.3.6 MAs in Multi-Objective Optimization

In order to tackle multi-objective optimization problems, a well 
designed algorithm should capable to detect a set of points 
representative of the Pareto front being well sparse over it. Multi-
Objective MAs (MOMAs) attempt to obtain this result properly 
hybridizing evolutionary operators and local search. In order to 
pursue this aim, the selection mechanism, i.e., that mechanism that 
chooses which solutions should be retained and which discarded, 
must be well designed. A first important feature of the selection 
mechanism is that within a set of solutions, those that dominate 
the others should be chosen. However, dominance relation alone 
leaves many pairs of solutions incomparable. For this reason, the 
employment of only the dominance relation may not be able to 
define a single best solution in a neighborhood or in a tournament.

There are mainly two big families of multi-objective solvers 
(regardless of their memetic nature) and can be classified in the 
following way: 1) algorithms that do not combine the objective 
functions and perform the selection by means of a dominance 
based criterion; 2) algorithms that make use of combinations of 
objectives for selecting new individuals.

The first category is based on the dominance sorting defined in 
and consists of a dominance-based ranking of all the solutions 
of a population. This mechanism has been employed by popular 
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evolutionary algorithms for multi-objective optimization.

In MOMAs the selection criterion involves not only the 
evolutionary framework but also the local search components. 
In a greedy local search method based on dominance relation is 
proposed. This mechanism simply allows the acceptance of a newly 
generated neighbor solution if it dominates the current solution. 
In population-based Pareto local search, the neighborhood of each 
solution of the current population is explored, and if no solution 
of the population weakly dominates a generated neighbor, the 
neighbor is added to the population. Lust and Jaszkiewicz propose 
a method to speed-up local search algorithms based on dominance 
sorting. A dominance criterion is integrated into the evolutionary 
framework and multiple local search components such as 
Simulated Annealing and Rosenbrock These approaches have the 
advantage of not requiring extra parameters for performing their 
implementation. On the other hand, this criterion does not allow 
a control on the solution spread in proximity of the Pareto front. 
This drawback imposes the employment of extra components 
which guarantee the population spread (in terms of fitness values), 
see e.g.,. In addition, while dominance allows a good ranking 
when few objectives are involved, it is often unreliable when the 
problem handles many simultaneous objectives. It is likely to have 
sets solutions which do not dominate each other and thus the 
algorithm cannot perform an efficient selection.

The second category is based on the idea that if a ranking amongst 
the objectives can be performed then the multiple objectives can 
be combined to generate a single-objective optimization problem. 
The ranking is performed by associating to each objective a weight 
value. The functions combining the objectives are usually indicated 
as aggregation functions. When this approach is employed the 
algorithm obviously does not detect a Pareto front but only one 
solution. However, this drawback can be overcome by the use 
of multiple aggregation functions defined by various weight 
vectors. A scheduled variation of weight parameters is employed 
in. A deterministic updated of the weight parameters to generate 
a repulsion among solution and thus dispersion in proximity of 
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the Pareto front is proposed. A meta-evolution of the weights is 
presented in. A randomized weight update, similar to a random 
walk local search, is proposed in while a fully random update is 
presented. The employment of multiple set of weight parameters 
allows a natural dispersion of the solutions and thus, unlike 
dominance based sorting methods, no additional components 
are required. In addition, several speed-up techniques may easily 
be used in local search based on aggregation functions. On the 
other hand, this category of methods has the drawback that the 
selection of a proper set of weights must be performed. In order to 
overcome this problem, some research is focused on the automatic 
selection of the weights.

6.3.7 MAs in the Presence of Uncertainties

Uncertainties in optimization problems are very common in real-
world applications due to the presence of measurement devices and 
approximation models. A fitness function contains uncertainties if 
the variable “time” takes place in the fitness evaluation of a solution. 
In other words, if for a given candidate solution x, the fitness 
calculation f (x) can return different values in different moments, 
then the fitness function f is said to be affected by uncertainties. In 
the survey proposed the sources of uncertainties are categorized 
as 1) uncertainties due to approximation 2) uncertainties due to 
robustness 3) uncertainties due to noise 4) uncertainties due to 
time-variance. 

In some applications, the actual fitness function can be unavailable 
throughout the entire optimization process or, due to its excessive 
computational cost, can be replaced by an approximation model. 
When the fitness value is computed by an approximation model 
a slightly different value than the actual fitness is expected. In 
addition, an approximation procedure can be adjusted over 
the optimization time and alternated with the actual fitness 
thus resulting in multiple fitness values for a single candidate 
solution. The employment of approximation models introduces 
an uncertainty in the landscape. In order to face this difficulty, 
in the Inexact Pre-Evaluation (IPE) framework is proposed. IPE 
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uses the expensive function in the first few generations and then 
uses the model almost exclusively while only a portion of the 
elites are evaluated with the expensive function and are used to 
update the model. This mechanism has been integrated into a 
hierarchical distributed algorithm. This idea has been expanded 
such that each layer may use different solvers, within a memetic 
framework employing a gradient based search. The Controlled 
Evaluations (CE) framework has been proposed. This framework 
monitors the model accuracy using cross-validation: a memory 
structure containing the previously evaluated vectors is split 
into two sets which are then used to train the approximation 
model. In the context of expensive multi-objective optimization, 
a memetic approach integrated fuzzy logic for alternating real 
and approximated fitness evaluation has been proposed. Another 
widely used option is a memetic approach employing the Trust 
Region (TR), i.e., a portion of the decision space where the 
approximation model can be reliably used. Memetic frameworks 
combining an EA as a global search, where at each generation 
every non-duplicated vector in the population is refined using 
a TR, has been proposed. The authors proposed a TR memetic 
framework which uses quadratic models and clustering. Zhou 
et al. proposed a memetic framework which occasionally uses an 
inaccurate model capable to detect proposing solutions. Lim at el. 
have recently proposed a framework composed of an ensemble 
of approximation models as well smoothing models. Other 
approaches, namely model-adaptive frameworks, have been 
proposed. Model-adaptive frameworks employ a set of candidate 
models which are automatically selected by a supervising system.

Robust parameters of a system are those parameters which lie in 
a region of the parameter hyperspace characterized by similar 
system responses. In other words, if a robust parameter is slightly 
perturbed, the system response only slightly varies. Robust 
optimization is a field of optimization theory which aims to 
detecting robust parameters. Reversely, if a parameter is not robust, 
small parameter variations can result into large variation of the 
system response. Very close solution, ideally identically can give 
very different system response and thus in robust optimization, 
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identical solutions can be characterized by very different fitness 
values. In order to address these problems, in an algorithm for 
robust optimization of digital filters where the uncertainty in 
performance is due to material imperfections has been proposed. 
The problem of optimizing a robust aircraft control system using 
a memetic algorithms is studied. Still in the context of aircraft 
design, a surrogated based approach, i.e., an approximation 
model, for computationally expensive optimization problems is 
proposed in. The robust control design of a control system for 
an electric motor is proposed in by applying a surrogate assisted 
model. Other examples of memetic robust design, regarding 
multi-objective optimization, are given in. addressed the problem 
of robust optimization when no a-priori information about the 
distribution of uncertainties is known. The problem of robust 
design in constrained multi-objective optimization is analyzed by 
means of a MA. In the latter work, micro-populations act as local 
search within the decision space. In a robust airline scheduling 
problem where the goal was to obtain a fleet assignment which 
accounts for flight re-timing and aircraft rerouting has been 
proposed.

The noise in optimization is a typical condition which plagues 
real-world applications and occurs every time measurements 
concur to the fitness value computation. These measurements 
can be physical instruments, or computational devices which 
contain uncertainties, such as a Neural Network, see e.g.,. Some 
examples of memetic frameworks addressing noisy landscapes 
are given in the following. Kim and Abraham combine a bacteria 
foraging algorithm with a real-coded evolutionary algorithm for 
addressing a control engineering design problem. The noise is 
handled by re-sampling and filtering. In MA based on differential 
evolution where the scale factor was adjusted with a line search is 
proposed and combined with an adaptive resampling technique. 
The authors considered the noisy pattern recognition problem of 
inexact graph matching, that is, determining whether two images 
match when one is corrupted by noise. Ozcan and Mohan studied 
the problem of matching an input image to one from an available 
data set. The difficulty being that the input image may be partially 
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obscured, deformed and so on which results in a noisy optimization 
problem. A resampling technique is integrated within a MA which 
uses a self-organizing map (SOM) as a local search. The algorithm 
was designed to solve the VRP with emphasis on noisy data. The 
authors tackled the problem of training a neural network used for 
controlling resource discovery in peer-to-peer (P2P) networks. In 
order to face this kind of problem, a diversity based adaptation is 
proposed.

Time-variance occurs when the fitness values of (at least some of) 
the points depend on time. This situation can be visualized as a 
landscape which is not stationary but moves over time, twisting 
and changing shape. This fact obviously implies that the position 
of the optima varies with time and thus, when the optima are 
detected, the algorithm should be able to follow the basins of 
attraction to find and locate them anew. It should be remarked that 
while the three previous categories the uncertainties are due to an 
erroneous estimation of the fitness value in a point, in time-variant 
problems the actually fitness value of a solution varies over time. 
In order to tackle this class of problems, a MA combining a binary 
evolutionary framework with the variable local search (VLS) 
operator to track optima in dynamic (time-variance) problems 
has been proposed. A MA based on Particle Swarm Optimization 
(PSO) for dynamic optimization problems has been proposed. 
This modified PSO employs multiple techniques for handling the 
time-dependence. Moser and Hendtlass combined the Extremal 
Optimization algorithm (EO) and a deterministic local search. Due 
to its structure, EO naturally adapts to changing environments and 
thus is a promising background for this class of problems. Another 
variant, employing the Hooke-Jeeves Algorithm. A MC approach 
based on the scatter search framework for dynamic and highly 
constrained problems. In the context of dynamic multiobjective 
problems, a multi start system is achieved by accelerating the 
convergence of the algorithm. This aim is pursued by means of 
a modified gradient capable to predict the changes in the Pareto 
set. Wang et al. proposed a MA for dynamic optimization which 
used a binary representation where at each generation the elite 
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was refined by a local search algorithm and added and updated 
while the fitness landscape changes.

6.4 ALGORITHMIC EXTENSIONS OF MEMETIC  
ALGORITHMS

Multiobjective problems are frequent in real-world applications. 
Rather than having a single objective to be optimized, the solver 
is faced with multiple, partially conflicting objectives. There is no 
a priori single optimal solution, but rather a collection of optimal 
solutions, providing different trade-offs among the objectives 
considered. The notion of Pareto-dominance is essential: given 
two solutions s, s '  ∈ solP (x), s is said to dominate s'  if it is better 
than s'  in at least one of the objectives, and it is no worse in the 
remaining ones. This clearly induces a partial order ≺P, since given 
two solutions it may be the case that none of them dominates the 
other. This collection of optimal solutions is termed the optimal 
Pareto front, or the optimal non-dominated front.

Population-based search techniques, in particular evolutionary 
algorithms (EAs), are naturally fit to deal with multiobjective 
problems, due to the availability of a population of solutions which 
can approach the optimal Pareto front from different directions. 
MAs can obviously benefit from this corpus of knowledge. 
However, MAs typically incorporate a local search mechanism, 
and it has to be adapted to the multiobjective setting as well. This 
can be done in different ways, which can be roughly classified 
into two major classes: scalarizing approaches, and Pareto-based 
approaches. The scalarizing approaches are based on the use of 
some aggregation mechanism to combine the multiple objectives 
into a single scalar value. This is usually done using a linear 
combination of the objective values, with weights that are either 
fixed (at random or otherwise) for the whole execution of the local 
search procedure, or adapted as the local search progresses. As 
to Pareto-based approaches, they consider the notion of Pareto-
dominance for deciding transitions among neighboring solutions, 
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typically coupled with the use of some measure of crowding to 
spread the search.

A full-fledged multiobjective MA (MOMA) is obtained by 
appropriately combining population-based and local search-based 
components for multiobjective optimization. Again, the strategy 
used in the local search mechanism can be used to classify most 
MOMAs. Thus, two proposals due to Ishibuchi and Murata and 
to Jaszkiewicz are based on the use of random scalarization each 
time a local search is to be used. Alternatively, a single-objective 
local search could be used to optimize individual objectives. Ad 
hoc mating strategies based on the particular weights chosen 
at each local search invocation (whereby the solutions to be 
recombined are picked according to these weights) are used as 
well. A related approach – including the on-line adjustment of 
scalarizing weights– is followed by Guo et al. On the other hand, 
a MA based on PAES (Pareto Archived Evolution Strategy) was 
defined by Knowles and Corne. More recently, a MOMA based 
on particle swarm optimization (PSO) has been defined by Liu 
et al. In this algorithm, an archive of nondominated solutions is 
maintained and randomly sampled to obtain reference points 
for particles. A different approach is used by Schuetze et al. for 
numerical-optimization problems. The continuous nature of 
solution variables allows using their values for computing search 
directions. This fact is exploited in their local search procedure 
(HCS for Hill Climber with Sidestep) for directing the search 
toward specific regions (e.g., along the Pareto front) when required.

6.4.1 Adaptive Memetic Algorithms

The fact that these were heuristics that ultimately relied on the 
problem-knowledge available was stressed. This is not a particular 
feature of MAs, but affects the field of metaheuristics as a whole. 
Indeed, one of the keystones in practical metaheuristic problem-
solving is the necessity of customizing the solver for the problem 
at hand. Therefore, it is not surprising that attempts to transfer a 
part of this tuning effort to the metaheuristic technique itself have 
been common. Such attempts can take place at different levels, or 
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can affect different components of the algorithm. The first –and 
more intuitive one– is the parametric level involving the numerical 
values of parameters, such as the operator application rates.

A slightly more general approach –termed ‘meta-lamarckian 
learning’ by Ong and Keane– takes place at the algorithmic level. 
They consider a setting in which the MA has a collection of local 
search operators available, and how the selection of the particular 
operator(s) to be applied to a specific solution can be done on 
the basis of past performance of the operator, or on the basis 
of the similarity of the solution to previous successful cases of 
operator application. Some analogies can also be drawn here with 
hyperheuristics, a high-level heuristic that controls the application 
of a set of low-level heuristics to solutions, using strategies ranging 
from pure random to performance-based rules.

In general terms, the approaches mentioned before are based on 
static, hard-wired mechanisms that the MA uses to react to the 
environment. Hence, they can be regarded as adaptive, but not 
as self-adaptive. The actual definition of the search mechanisms 
can evolve during the search. This is a goal that has been pursued 
for long in MAs. Back in the early days of the field, it was already 
envisioned that future generations of MAs would work in at least 
two levels and two time scales. During the short-time scale, a 
set of agents would be searching in the search space associated 
to the problem. The long-time scale would adapt the algorithms 
associated with the agents. Here we encompass individual search 
strategies, recombination operators, etc. A simple example of 
this kind of self-adaptation can be found in the so-called multi-
memetic algorithms, in which each solution carries a gene that 
indicates which local search has to be applied on it. This can be 
a simple pointer to an existing local search operator, or even the 
parametrization of a general local search template, with items 
such as the neighborhood to use, acceptance criterion, etc. Going 
beyond, a grammar can be defined to specify a more complex local 
search operator. At an even higher level, this evolution of local 
search operators can be made fully symbiotic, rather than merely 
endosymbiotic. For this purpose, two co-evolving populations can 
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be considered: a population of solutions, and a population of local 
search operators. These two populations co-operate by means of 
an appropriate pairing mechanism, that associates solutions with 
operators. The latter receive fitness in response on their ability to 
improve solutions, thus providing a fully self-adaptive strategy 
for exploring the search landscape.

6.4.2 Complete Memetic Algorithms

The combination of exact techniques with metaheuristics is 
an increasingly popular approach. Focusing on local search 
techniques, Dumitrescu and St¨uztle have provided a classification 
of methods in which exact algorithms are used to strengthen 
local search, i.e., to explore large neighborhoods, to solve exactly 
some subproblems, to provide bounds and problem relaxations 
to guide the search, etc. Some of these combinations can be 
also found in the literature on population-based methods. For 
example, exact techniques –such as branch-and-bound (BnB) or 
dynamic programming among others– have been used to perform 
recombination, and approaches in which exact techniques solved 
some subproblems provided by EAs date back to 1995. 

Puchinger and Raidl have provided a classification of this kind of 
hybrid techniques in which algorithmic combinations are either 
collaborative (sequential or intertwined execution of the combined 
algorithms) or integrative (one technique works inside the other 
one, as a subordinate). Some of the exact/metaheuristic hybrid 
approaches defined before are clearly integrative –i.e., using an 
exact technique to explore neighborhoods. Further examples are 
the use of BnB in the decoding process of a genetic algorithm 
(i.e., exact method within a metaheuristic technique), or the use 
of evolutionary techniques for the strategic guidance of BnB 
(metaheuristic approach within an exact method).

As to collaborative combinations, a sequential approach in which 
the execution of a MA is followed by a branch-and-cut method can 
be found in. Intertwined approaches are also popular. For example, 
Denzinger and Offerman combine genetic algorithms and BnB 
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within a parallel multi-agent system. These two algorithms also 
cooperate in, the exact technique providing partial promising 
solutions, and the metaheuristic returning improved bound.

6.5 DESIGN ISSUES

MAs are commonly implemented as EAs endowed with a local 
search component, and therefore the theoretical corpus available 
for the former can be used to guide some aspects of the design 
process, e.g., the representation of solutions in terms of meaningful 
information units.

The most MA-specific design decisions are those related to 
the local search component, not just from the point of view of 
parameterization (see below) but also with the actual inner 
working of the component and its interplay with the remaining 
operators. This latter issue is well exemplified in the work of 
Merz and Freisleben on the TSP. They consider the use of the Lin-
Kernighan heuristic, a highly intensive local search procedure, 
and note that the average distance between local optima is 
similar to the average distance between a local optimum and the 
global optimum. For this reason, they introduce a - operator that 
generate offspring whose distance from the parents is the same 
as the distance between the parents themselves. Such an operator 
is likely to be less effective if a less powerful local improvement 
method, e.g., 2-opt, was used, inducing a different distribution of 
local optima.

Once a local search procedure is selected, an adequate 
parameterization must be determined, i.e., how often it must 
be applied, how to select the solutions that will undergo local 
improvement, and how long must improvement epochs last. 
These are delicate issues since there exists theoretical evidence 
that an inadequate parameter setting can turn the algorithmic 
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solution from easily solvable to nonpolynomially solvable. 
Regarding the probability of application of local search, its precise 
values largely depends on the problem under consideration, and 
its determination is in many cases an art. For this reason, adaptive 
and self-adaptive mechanisms have been defined in order to let 
the algorithm learn what the most appropriate setting is. The term 
partial lamarckianism is used to denote these strategies where not 
every individual is subject to local search.

As to the selection of individuals that will undergo local search, 
most common options are random-selection, and fitness-based 
selection, where only the best individuals are subject to local 
improvement. For example, Nguyen et al. [56] consider an 
approach in which the population is sorted and divided into n 
levels (n being the number of local search applications), and one 
individual per level is randomly selected. Note that such a strategy 
can be readily deployed on a structured MA as defined by Moscato 
et al., in which fitness-based layers are explicitly available.

6.6 APPLICATIONS OF MEMETIC ALGORITHMS

This overview is far from exhaustive since new applications 
are being developed continuously. However, it is intended to 
illustrate the practical impact of these optimization techniques. We 
have organized references in five major areas: machine learning 
and knowledge discovery (Table 2), traditional combinatorial 
optimization (Table 3), planning, scheduling and timetabling 
(Table 4), bioinformatics (Table 5), and electronics, engineering, 
and telecommunications (Table 6). We have tried to be illustrative 
rather than exhaustive, pointing out some selected references 
from these well-known application areas.
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Table 2. Applications in machine learning and knowledge discovery

Table 3. Applications in combinatorial optimization

Table 4. Applications in planning, scheduling, timetabling, and manu-
facturing
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Table 5. Applications in bioinformatics

Table 6. Applications in electronics, telecommunications and engineer-
ing
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Although these fields encompass the vast majority of applications 
of MAs, it must be noted that success stories are not restricted to 
these major fields. To cite an example, there are several applications 
of MAs in economics, e.g., in portfolio optimization, risk analysis, 
and labor-market delineation.
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INTRODUCTION

The central problem in applications of genetic algorithms is 
that of constraints few approaches to the constraint problem 
in genetic algorithms have previously been proposed. One of 
these uses penalty functions as an adjustment to the optimized 
objective function, other approaches use “decoders” or “repair” 
algorithms, which avoid building an illegal individual, or repair 
one, respectively. However, these approaches suffer from the 
disadvantage of being tailored to the specific problem and are not 
sufficiently general to handle a variety of problems. 
It is also a theoretically challenging subject since a great deal of in-
tractable problems (NP-hard, NP-complete, etc.) are constrained. 
The presence of constraints has the effect that not all possible com-
binations of variable values represent valid solutions to the prob-
lem at hand. Unfortunately, constraint handling is not straight-
forward in an EA, because the variation operators (mutation and 
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recombination) are typically “blind” to constraints. That is, there 
is no guarantee that even if the parents satisfy some constraints, 
the offspring will satisfy them as well. Based on this classification 
of constrained problems, we discuss what constraint handling 
means from an EA perspective, and review the most commonly 
applied EA techniques to treat constraints. Analyzing these tech-
niques, we identify a number of common features and arrive at 
the conclusion that the presence of constraints is not harmful, but 
rather helpful in that it provides extra information that EAs can 
utilize.

7.1. CONSTRAINT HANDLING TECHNIQUES

The various existing techniques are available, for instance in. They 
usually involve a distinction between the following classes:

•	 Elimination of infeasible individuals;
•	 Penalization of the objective function;
•	 Dominance concepts;
•	 Preservation of feasibility;
•	 Infeasible individuals repairing;
•	 Hybrid methods.

7.1.1. Elimination

This method, also called “death penalty method”, consists 
in rejecting infeasible individuals. The most common way to 
implement this strategy is to set their fitness equal to 0, which 
prevents infeasible solutions to pass the selection step. This method 
is very simply implemented, but encounters problems for harshly 
constrained problems. In addition, its second weakness is that no 
information is taken from the infeasible space, which could help 
to guide the search towards the global optimum. Nevertheless, 
this technique constitutes a first valid approach when no feature 
allows to previously determine a specific problem-fitted method.
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7.1.2. Penalty Functions

This second class is certainly the most popular one, because of its 
understanding and implementation simplicity. The constrained 
problem is transformed into an unconstrained one by introducing 
the constraints in the objective function via penalty terms. Then, 
it is possible to formulate this penalty term according to a wide 
diversity of techniques. Firstly, it is of common knowledge that 
the penalization will be more efficient if its expression is related to 
the amount of constraint violation than to the violated constraint 
number.

Let us consider the classical optimization problem formulation:

		  (1)

Then, with the unconstrained formulation including the penalty 
term, the new criterion F to minimize can be generally written as 
follows:

		  (2)

Most of time, the penalty is expressed under a quadratic form, 
corresponding to β equal to 2. Equality constraints such as hk(x) 
= 0 can be reformulated as |hk(x)| − e ≤ 0, where ε is a very small 
value. Then, the Rj factor can be expressed in many ways, showing 
various complexity and solution efficiency for the tackled problem. 
General principles can however be stated in order to guide the 
development of performing penalisation strategies.

The first one points out that, in most problems, the global optimum 
is located on the feasible space boundary. So, on the one hand, if 
the influence of the penalty factor is too important, the pressure 
exerted to push the individuals inside the feasible space will be 
too strong, preventing them from heading for more promising 
regions. Furthermore, in case of disjointed feasible spaces, a too 
high penalty factor can confine the population to one feasible 
region without allowing individuals to cross infeasible zones and 
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head for other feasible regions (where the global optimum could 
be located). On the other hand, a too low penalty factor can lead to 
an exhaustive search in the infeasible space, visiting regions where 
the objective function is very low but that are strongly infeasible.

Figure. 1. Too weak penalty factor.

In addition, it is commonly admitted that the penalty term should 
be preferentially pretty low at the beginning of the search, in order 
to explore a wide region of the search space. At the end of the 
run, promising regions should be determined yet. It is then more 
relevant to have a high penalty term, to intensify the search on 
these zones by forcing the individuals to satisfy the constraints.

According to these principles, a great variety of penalization 
methods were implemented, some of them are recalled in. The 
simplest is the static penalty: a numerical value that will not vary 
during the whole search, is allocated to each factor Rj. Obviously, 
the drawback is that as many parameters as existing constraints 
have to be tuned without any known methodology. Normalizing 
the constraints enables however to reduce the number of 
parameters to be chosen from m to 1.
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A modified static penalty technique is proposed in, in which 
violation levels are set for each constraint. So considering l levels 
in a problem with m constraints, it was shown that the method 
needs the tuning of m(2l + 1) parameters.

Another proposal is a dynamic penalty strategy, for which Rj is 
written as (C × t) a where t is the generation number. Here, two 
parameters must be tuned, i.e. C and a. Common values are 0.5 and 
2, respectively. Thus, this method enables to increase the pressure 
on infeasible solutions along the search. A similar effect can be 
obtained with a method presenting an analogy with Simulated 
Annealing:

				    (3)

where τ is a decreasing temperature. It is necessary to determine 
initial and final temperatures, τi and τf, as well as a cooling scheme 
for τ. This technique has two special features. First, it involves a 
difference between linear and non-linear constraints. Feasibility as 
regard with the former is maintained by specific operators, so that 
only the latter has to be included in the annealing penalty term. 
In addition, the initial population is composed of clones of a same 
feasible individual that respects linear constraints.

Different approaches, called adaptive penalties, are based on 
learning from the population behavior in the generations. In, the 
penalty factor decreases (resp. increases) if the best individual was 
always feasible (resp. infeasible) during the k last generations. 
For indeterminate cases, the factor value is kept unchanged. This 
methodology imposes the tuning of the initial value for the penalty 
factor and of the number of learning generation’s k.

New techniques now rest on self-adaptive penalty approaches, 
which also learn from the current run, without any parameter 
tuning. In, the constraints and the objective function are first 
normalized. Then, the method consists in computing the penalty 
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factor for constraint j at generation q as the product of the factor 
at generation q − 1 with a coefficient depending on the ratio of 
individuals violating constraint j at generation q. If this ratio is 
fewer to 50%, then the coefficient is inferior to 1 in order to favor 
individuals located in the infeasible side of the boundary. On the 
contrary, if the feasible individual’s number is weak, the value 
increases up to 1 to have the population heading for the inside part 
of the feasible region. This operating mode enables to concentrate 
the search on the boundary built by each constraint, i.e. where 
the global optimum is likely to be located. The initial value is the 
ratio of the interquartile range of the objective function by the 
interquartile range of the considered constraint at first generation, 
which implicitly carries out normalization. No parameter is thus 
necessary in this method.

Another kind of self-adaptive penalty is proposed by Coello 
Colleo, but this one is based on the principle of co-evolution. 
In addition to the classical population P1 coding the tackled 
problem, the method considers a population P2 representing two 
penalty coefficients that enable to evaluate population P1 (w1 for 
the amount of violation of all constraints and w2 for the number 
of violated constraints). Thus, each individual of P1 is evaluated 
as many times as there are individuals in P2. Then, P1 evolves 
during a fixed number of generations and each individual of P2, 
i.e. each set of two penalty factors is evaluated. This mechanism 
is depicted in Figure 2. Basically, the evaluation is calculated as 
the average of all objective functions of P1 evaluated by each 
individual of P2. Then P2 evolves like in any GA process, given 
that one generation for P2 is equivalent to a complete evolution of 
P1. The evident drawback is the huge number of objective function 
evaluations, making this method computationally expensive. In 
addition, co-evolution involves the introduction and tuning of a 
new GAs parameters set: population size, maximum generation 
number, etc.
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Figure 2. Self-adaptive penalty by co-evolution.

Finally, the technique proposed by Deb is half-way between 
classical penalisation and dominance-based methods. Superiority 
of feasible individuals on infeasible ones is expressed by the 
following penalised criterion:

		  (4)
fmax is the worst objective function value of all feasible solutions in 
the current population. The selection step is made out through a 
tournament process, but it could have been a Goldberg’s roulette 
wheel as well. Most individuals are infeasible at the beginning 
of the search, hence the selection exerts a pressure exclusively 
towards the feasible space until enough feasible solutions 
are located. Without the stochastic effect of both tournament 
or roulette wheel, the minimization of the objective function 
would only occur when the feasible individual number exceeds 
the survivor number. In spite of the random effect introduced, 
efficient mutation procedures and sometimes niching methods are 
necessary to maintain diversity in the population and to prevent 
the search from being trapped in a local optimum.
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Let us recall that niching helps to avoid that two solutions 
characterized by a close set of variables both survive. Metric 
considerations (usually, the euclidean distance) help to estimate 
how close an individual is from another one. In tournament 
between two feasible individuals is authorized only if the distance 
between them is lower than a constant threshold.

Among this profusion of techniques, some of the most classical 
methods were tested and evaluated in for some benchmark 
examples. Some methods are really adapted to particular problems, 
but the authors finally chose the static penalty technique, which is 
the simplest and the most generic one.

7.1.3. Dominance-Based Methods

This class of constraint handling techniques is based on principles 
drawn from multi objective optimization and, in particular, 
on the dominance concept. The first idea is thus to transform 
a constrained mono-objective optimization problem into an 
unconstrained multi objective problem, where each constraint 
represents a new criterion to be minimized. Sorting procedures 
based on the domination in the sense of Pareto (x dominates y if 
and only if it is better than y for at least one criterion and as good 
as y for the other ones) leads toward the ideal solution x*: gj(x*) ≤ 
0 for j = 1, ..., m and f(x*) ≤ f(y) for all feasible y.

These concepts are used again by Coello Coello in the framework 
of mono-objective constrained optimization in order to state 
particular dominance rules setting the superiority of feasible 
solutions on infeasible ones:

1. 	 An infeasible solution is dominated by a feasible one; 
2. 	 If both individuals are feasible, the one with the worst 

objective function is dominated; 
3. 	 If both individuals are infeasible, the one with greatest 

constraint violation is dominated.

These rules are implemented in a tournament: it is to note that 
this technique is finally exactly identical to Deb’s one, who just 
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formalizes the rules as a penalty term added in the objective 
function.

Silva and Biscaia use a quite similar methodology for multi 
objective optimization by setting additional domination rankings. 
The constraints are normalized and four domination levels are 
created and defined according to the range of constraint violation 
amount. The union of the range of all levels is 1. Each individual 
is classified in these levels according to its largest constraint 
violation amount. Then, a positive integer is assigned to each 
domination level and added as a penalty term to the normalized 
objective functions. The selection is carried out through successive 
Pareto sorting rounds, during which non-dominated individuals 
are chosen until obtaining enough surviving individuals.

Thus, the two mentioned examples highlight how tenuous the 
boundary is between this constraint handling mode and some 
kinds of penalization techniques.

7.1.4. Other Techniques

The description of other techniques is merged because they are 
usually applicable only with some assumptions, or even defined 
exclusively for a particular problem. Firstly, in many cases, an 
adapted encoding method may enable to handle some constraints. 
A good is example is presented in, in which the number of 0-valued 
and 1-valued bits are coded instead of the bits themselves.

Besides, methods preserving solutions feasibility are usually 
based on specific crossover and mutation operators that are able 
to build, from feasible individual(s), one or several individuals 
that are feasible too. The GENOCOP algorithm provides a good 
example for linear problems. Equality constraints are removed by 
substitution of an equal number of variables, so that the feasible 
space is then a convex set defined by linear inequalities. Due to 
this property, genetic operators consisting of linear combinations 
can ensure the feasibility of the created solutions. Maintaining 
the feasibility can also be carried out through the use of decoders, 
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i.e., instructions contained in the chromosome that state rules for 
building a feasible solution.

Moreover, repairing infeasible chromosomes is a quite famous 
method. Indeed, in many cases of combinatorial optimization, it 
is easy to create rules that, starting from an infeasible individual, 
enable to modify its structure to get a feasible one. In for instance, 
repair procedures are implemented to act on individuals whose 
chromosome, resulting from crossover or mutation, has no 
physical meaning with regard to the used encoding method. 
However, repair rules are always devoted to the particular case of 
the studied problem and there is no existing heuristic for a general 
perspective. The particularity of the repair methods is also the 
possibility to replace in the population the infeasible individual 
by its repaired version or, on the contrary, to use this version only 
for the solution evaluation.

A generalized repair method proposed in involves the first order 
development of the constraint violation vector V, according to 
x, which represents a tiny variation in the optimization variables 
x:

		  (5)
where matrix ∇xV is the constraint violation gradient according 
to variables x. So, if the constraint violation amount is known 
and by approximating numerically its gradient, it is theoretically 
possible to determine the repair vector x for the considered 
infeasible individual. Since ∇xV is usually not a square matrix, 
pseudoinverse computations provide an approximate inverse that 
can be used in (5). Despite its genericity ambition, it is predictable 
that such a method will only be applicable in some cases for which 
the functions and the nature of the involved variables are quite 
favourable.

This last technique can also be classified in the hybrid methods, just 
like the integration of Lagrange parameters in a penalty function, 
or the application of concepts drawn from fuzzy logic, etc.
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7.2. CURRENT CONSTRAINT-HANDLING  
TECHNIQUES

Presents a set of recent constraint-handling techniques which 
have had a relatively high impact in the area. The number of 
approaches reviewed in this case is lower. This is due to the fact 
that the differences among approaches are, in this case, more 
focused on modifications to the elements of the NIA adopted, 
and not on the constraint-handling technique itself. From the list 
presented the first three and the seventh approach are all new 
constraint-handling techniques, while the fourth and the fifth are 
updated versions of constraint handling techniques previously 
discussed? The use of multi-objective concepts is now considered 
as a separate class due to its popularity in recent years. The 
approaches considered here are:

1. 	 Feasibility rules
2. 	 Stochastic ranking
3. 	 ε-constrained method
4. 	 Novel penalty functions
5. 	 Novel special operators
6. 	 Multi-objective concepts
7. 	 Ensemble of constraint-handling techniques

7.2.1. Feasibility Rules

The three feasibility rules proposed for binary tournaments 
constitute an example of a constraint-handling technique that 
was proposed several years ago, but whose impact is still present. 
The popularity of this simple constraint-handling scheme lies 
on its ability to be coupled to a variety of algorithms, without 
introducing new parameters. The importance of combining these 
feasibility rules with other mechanisms (e.g., retaining infeasible 
solutions which are close to the feasible region) in order to produce 
a constraint-handling technique that is able to deal with problems 
having active constraints. However, such approach required a 
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dynamic decreasing mechanism for the tolerance value (ε) for 
equality constraints.

Mezura-Montes extended these feasibility rules to the selection 
process between target and trial vectors in differential evolution 
(DE). Although the resulting approaches were easy to implement, 
premature convergence was observed for some test problems and 
two additional modifications to the search algorithm (DE in this 
case) were required: (1) each target vector generated more than 
one trial vector (a user-defined parameter was added for this 
sake) and (2) a new DE variant was designed. Lampinen used a 
similar DE-based approach in. However, the third criterion was 
based on Pareto dominance in constraints space instead of the 
sum of constraint violation. Lampinen’s approach was adopted 
by Kukkonen and Lampinen in their Generalized Differential 
Evolution (GDE) algorithm which showed promising results in 
a set of 24 benchmark problems. However, GDE had difficulties 
when facing more than three constraints. This seems to be the 
same limitation faced when attempting to use Pareto dominance 
in problems having four or more objective functions (the so-called 
many-objective optimization problems).

Feasibility rules have also been used for designing parameter 
control mechanisms in DE-based constrained numerical 
optimization. However, if self-adaptation mechanisms are 
incorporated as well, the computational cost of the approach may 
considerably increase, since more iterations will be required to 
collect enough information about the search as to make these self-
adaptation mechanisms work in a proper manner.

Zielinski and Laur coupled DE with the feasibility rules in a 
greedy selection scheme between target and trial vectors. Their 
approach, which is indeed very simple to implement, presented 
some difficulties in high dimensionality problems with equality 
constraints. They also analyzed, in a further work, different 
termination conditions (e.g., improvement-based criteria, 
movement-based criteria distribution-based criteria) for their 
algorithm. They determined that the last criterion from the list 
indicated before was the most competitive. Zielinski also used 
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the feasibility rules in a study to adapt two DE parameters (F and 
CR) when solving CNOPs. They concluded that the adaptation 
mechanism was not as significant as expected in the performance 
of the algorithm. Furthermore, Zielinski and Laur studied the 
effect of the tolerance utilized in the equality constraints, where 
values between ǫ = 1 × 10−7 and ǫ = 1 × 10−15 allowed the algorithm, 
coupled with the feasibility rules, to reach competitive results.

The feasibility rules have also been adopted by DE-based 
approaches which use self-adaptive mechanisms to choose among 
their variants, such as SaDE. In this approach, sequential quadratic 
programming (SQP) is applied during some iterations to a subset 
of solutions in the population. Although this approach is very 
competitive, it heavily relies on the use of SQP, which may limit 
its applicability.

Brest used the feasibility rules in his self-adaptive approach called 
jDE-2, which also combines different DE variants into a single 
approach to solve CNOPs. A replacement mechanism to keep 
diversity in the population was implemented to eliminate those k 
worst vectors at every l generations with new randomly-generated 
vectors. This mechanism reflects the premature convergence that 
the feasibility rules may cause in some test problems despite 
providing competitive results in others mainly related with 
inequality constraints.

Landa and Coello also adopted the feasibility rules in an approach 
in which a cultural DE-based mechanism was developed, with the 
aim of incorporating knowledge from the problem into the search 
process when solving CNOPs. This approach adopts a belief 
space with four types of knowledge generated and stored during 
the search. Such knowledge is used to speed up convergence. 
The approach was able to provide competitive results in a set of 
benchmark problems. However, there are two main shortcomings 
of the approach: (1) it requires the use of spatial data structures 
for knowledge handling and (2) it also needs several parameters 
which must be defined by the user. Furthermore, spacial data 
structures are not trivial to implement.
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Menchaca-Mendez and Coello Coello proposed a hybrid 
approach which combines DE and the Nelder-Mead method. The 
authors extended a variant of the Nelder-Mead method called 
Low Dimensional Simplex Evolution and used it to solve CNOPs. 
The set of feasibility rules are used in this case to deal with the 
constraints of the problems in both, the DE algorithm and the 
m-simplex-operator. However, a fourth rule which considers a tie 
between the sums of the constraint values, is also incorporated. 
The objective function value is used in this case to break this tie. 
This approach also adds some concepts from stochastic ranking. 
The approach was tested in some benchmark problems and 
the results obtained were highly competitive, while requiring a 
lower number of fitness function evaluations than state-of-the-
art algorithms. However, the approach added a significant set of 
parameters which must be fine-tuned by the user, such as those 
related to the m-simplex-operator.

The use of feasibility rules coupled with a mechanism to force 
infeasible individuals to move to the feasible region through 
the application of search space reduction and diversity checking 
mechanisms designed to avoid premature convergence. This 
approach, which adopts an evolutionary agent system as its search 
engine, requires several parameters to be defined by the user and 
it was not compared against state-of-the-art NIAs to solve CNOPs. 
However, in the test bed reported by the authors the results were 
competitive.

The feasibility rules have been a popular constraint-handling 
mechanism in PSO-based approaches, too. Zielinski and Laur 
added feasibility rules into a local best PSO. The approach 
presented premature convergence in test problems with a high 
number of equality constraints due to the lack of a diversity 
maintenance mechanism. In a similar approach, but focused on 
mixed-variable optimization problems, Sun added feasibility 
rules to a global-best PSO. This approach was tested only in two 
engineering design problems.

He and Wang used feasibility rules to select the global best (gbest) 
and for updating the personal best (p best) of each particle in 
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a PSO-based approach designed to solve CNOPs. They used 
simulated annealing (SA) as a local search operator and applied 
it to the gbest particle at each generation. The approach was 
tested on a small set of benchmark problems as well as on a set of 
engineering design problems. The usage of SA improved the PSO 
performance. However, the main shortcoming of the approach is 
that it requires several user-defined parameter for both the PSO 
and the SA algorithms.

Toscano-Pulido and Coello Coello combined feasibility rules 
with a global-best PSO but required a mutation operator to 
avoid converging to local optimum solutions. This same problem 
(premature convergence) was tackled by using two mutation 
operators. Additionally, they also tackled this problem employing 
different topologies in local-best PSO algorithms. The evident need 
of a mutation operator showed that the feasibility rules combined 
with PSO may cause premature convergence.

Cagnina tackled the premature convergence of PSO combined with 
feasibility rules by using a global-local best PSO. However, the 
use of a dynamic mutation operator was also required. The results 
obtained by this approach showed evident signs of stagnation in 
some test problems. In a further version of this approach, a bi-
population scheme and a “shake” operator were added. 

In feasibility rules were used as a constraint-handling mechanism 
in an empirical study aimed to determine which PSO variant was 
the most competitive when solving CNOPs. The authors found 
that the version adopting a constriction factor performed better 
than the (popular) version that uses inertia weight. Furthermore, 
local-best was found to be better than global-best PSO.

The use of feasibility rules motivated the definition of the relative 
feasibility degree in which is a measure of constraint violation 
in pairwise comparisons. The aim of this work was to compare 
pairs of solutions but with a feasibility value based only on the 
values of their constraints and on the ratio of the feasible region 
of a given constraint with respect to the entire feasible region of 
the search space. The approach was coupled to DE and tested in 
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some benchmark problems. The convergence rate was better with 
respect to the original feasibility rules but the final results were 
not considerable better with respect to those obtained by other 
state-of-art algorithms.

Karaboga and Basturk and Karaboga and Akay changed a greedy 
selection based only on the objective function values by the use of 
feasibility rules with the aim of adapting an artificial bee colony 
algorithm (ABC) to solve CNOPs. The authors also modified 
the probability assignment for their roulette wheel selection 
employed to focus the search on the most promising solutions. The 
approach was tested on a well-known set of 13 test problems and 
the results obtained were comparable with those obtained by the 
homomorphous maps stochastic ranking and other approaches 
based on penalty functions. However, the approach modified one 
ABC operator adding a new parameter to be fine-tuned by the 
user.

Mezura-Montes and Cetina-Dom´ıngez extended Karabogas’ 
approach by using feasibility rules as a constraint-handling 
technique but with a special operator designed to locate solutions 
close to the best feasible solution. This approach was tested on 13 
test problems and the results that they obtained were shown to be 
better than those reported by Karaboga and Basturk. However, this 
approach added extra parameters related to the tolerance used to 
handle equality constraints. An improved version was proposed 
in where two operators were improved and a direct-search local 
operator was added to the algorithm. The approach provided 
competitive results in a set of eighteen scalable test problems but 
its main disadvantage was the definition of the schedule to apply 
the local search method.

The Bacterial Foraging Optimization Algorithm to solve CNOPs. 
The feasibility rules were used in the greedy selection mechanism 
within the chemotactic loop, which considers the generation of 
a new solution (swim) based on the random search direction 
(tumble). This approach, called Modified Bacterial Foraging 
Optimization Algorithm (MBFOA), considered a swarming 
mechanism that uses the best solution in the population as an 



Constraint Handling 257

attractor for the other solutions. The approach was used to solve 
engineering design problems.

Mezura-Montes used feasibility rules as a constraint-handling 
mechanism in an in-depth empirical study of the use of DE as 
an optimizer in constrained search spaces. A set of well-known 
test problems and performance measures were used to analyze 
the behavior of different DE variants and their sensitivity to 
two user-defined parameters. From such analysis, the simple 
combination of two of them (DE/rand/1/bin and DE/best/1/bin) 
called Differential Evolution Combined Variants (DECV) was 
proposed by the authors. This approach is able to switch from 
one variant to the other based on a certain percentage of feasible 
solutions present in the population. The results obtained in a set of 
24 test problems were competitive with respect to state-of-the-art 
algorithms. However, the performance of this approach strongly 
depends on the percentage used to perform the switch from one 
variant to the other and this value is problem-dependent.

Elsayed proposed two multi-operator NIAs to solve CNOPs. A 
four sub-populations scheme is handled by one of two options: 
(1) a static approach where each sub-population with a fixed size 
evolves by using a particular crossover and mutation operator 
and, at some periods of time, the sub-populations migrate the best 
solutions that they had found to another sub-population, and (2) 
an adaptive approach in which the size of each subpopulation 
varies based on the feasibility of the best solution in the population 
in two contiguous generations. This approach was tested in two 
versions: with a real-coded GA using four crossover-mutation 
combinations and also with DE adopting four DE mutation 
variants, all of them with binomial crossover. The latter version 
outperformed the former after being extensively tested in 60 
benchmark problems. The approach requires the definition of 
some additional parameters related to the minimum size that a 
sub-population can have, as well as to the generational interval for 
migrating solutions among sub-populations.

Elsayed proposed a modified GA where a novel crossover operator 
called multi-parent crossover and also a randomized operator 



Evolutionary Computing258

were added to a real-coded GA to solve CNOPs. The feasibility 
rules were adopted as the constraint-handling mechanism. The 
approach was tested on a set of eighteen recently proposed test 
problems in 10D and 30D show in very competitive results. 
However, some disadvantages were found in separable test 
problems with a high dimensionality. The approach provided 
better results with respect to other approaches based on DE and 
PSO.

Elsayed compared ten different GA variants to solve CNOPs by 
using, in all cases, the feasibility rules as the constraint-handling 
technique. The crossover operators employed were triangular 
crossover, Simulated binary crossover, parent-centric crossover, 
simplex crossover, and blend crossover. The mutation operators 
adopted were non-uniform mutation and polynomial crossover. 
Statistical tests were applied to the samples of runs to provide 
confidence on the performances showed. An interesting conclusion 
of the comparison was that no GA was clearly superior with 
respect to the others GAs compared. Nonetheless, non-uniform 
mutation and polynomial mutation provided competitive results 
in 10D and 30D test problems.

Hamza proposed a DE algorithm to solve CNOPs where the 
feasibility rules were used as the constraint-hanlding mechanism 
and the population was divided in feasible and infeasible vectors. 
A constraint-concensus operator was applied to infeasible vectors 
so as to become them feasible. Even the approach showed 
competitive results in a set of tirtheen well-known test problems, 
the constraint-concensus operator requires gradient calculations, 
which were made by numerical methods.

In an interesting adaptation of the feasibility rules combined 
with the idea of focusing first on decreasing the sum of constraint 
violation, Tvrd´ık and Pol´akov´a adapted DE to solve CNOPs. If 
feasible solutions were present in the population, in a single cycle 
of the algorithm two generations were carried out, the first one 
based only on the sum of constraint violation and the second one 
based on the feasibility rules with a simple modification on the 
third rule, where between two infeasible solutions the one with 
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the lowest sum of constraint violation was preferred if it also had 
a better value of the objective function. The approach was tested 
on eighteen scalable test problems in 10D and 30D. Even some 
competitive results were obtained, premature convergence was 
generally observed in the approach because the isolated usage of 
the sum of constraint violation kept the algorithm for sampling, 
in a more convenient way, the feasible region of the search space.

The feasibility rules were used in a real-coded GA with simulated 
binary crossover and adaptive polynomial mutation. A special 
operator based on gradient information was employed to favor the 
generation of feasible solutions in presence of equality constraints. 
Even the results improved by the approach in such test problems, 
the parameter which mainly controls the special operator required 
a careful fine-tuning based on the difficulty of the test problem.

The feasibility rules were added by Tseng and Chen to the multiple 
trajectory search (MTS) algorithm to solve CNOPs. Those rules 
worked as the criteria to choose solutions in three region searches 
which allowed MTS to generate new solutions. The approach was 
able to provide feasible solutions in most of eighteen scalable test 
problems. However, it presented premature convergence.

Wang implicitly used feasibility rules to rank the particles in a 
hybrid multi-swarm PSO (HMPSO). They took inspiration from 
two (1) the way Liang and Suganthan constructed sub-swarms 
to promote more exploration of the search space and (2) the way 
Mu˜noz-Zavala used a differential mutation operator to update 
the local-best particle. The results agree with those found by 
Mezura-Montes and Flores-Mendoza, in which local-best PSO 
performs better than global-best PSO when solving CNOPs. The 
main shortcoming of the approach relies in its implementation 
due to the mechanisms added to PSO.

HMPSO was improved by Lui where the DE mutation operator was 
extended by using two other operators. The number of evaluations 
required by the improved approach, which was called PSO-DE, 
decreased with respect to those required by HMPSO in almost 
50%. This approach was validated using some engineering design 
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problems but was not further tested on benchmark problems with 
higher dimensionalities.

The use of feasibility rules has been particularly popular in 
approaches based on artificial immune systems (AISs). The first 
attempts to solve CNOPs with an AIS were based on hybrid GA-
AIS approaches, in which the constraint-handling technique 
was the main task performed by the AIS embedded within a 
GA. The AIS was evolved with the aim of making an infeasible 
solution (the antibody) as similar as possible (at a binary string 
level) as a feasible solution used as a reference (the antigen). After 
increasing the number of feasible solutions in the population, 
the outer GA continued with the optimization process. The main 
advantage of this technique is its simplicity. In further AIS-based 
approaches in which the clonal selection principle was adopted 
feasibility rules were incorporated as a way to rank antibodies 
(i.e., solutions) based on their affinity (objective function values 
and sum of constraint violation). In another approach based on a 
T-cell model, in which three types of cells (solutions) are adopted 
the replacement mechanism uses feasibility rules as the criteria to 
select the survivors for the next iteration.

Liu proposed the organizational evolutionary algorithm (OEA) 
to solve numerical optimization problems. When extending this 
approach to constrained problems, a static penalty function and 
feasibility rules are compared as constraint-handling techniques. 
As expected, the static penalty function required specific values 
for each test problem solved. Although the use of the static penalty 
function allowed OEA to provide slightly better results than the 
use of feasibility rules, such results were only comparable with 
respect to state-of-the-art algorithms used to solve CNOPs.

Sun and Garibaldi proposed a memetic algorithm to solve 
CNOPs. In this approach, the search engine is an estimation of 
distribution algorithm (EDA) while the local search operator is 
based on SQP. Some knowledge, called history, is extracted from 
the application of the local search and is given to the EDA with 
the aim of improving its performance. This knowledge consists in 
the application of a variation operator which uses the location of 
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the best solution found so far to influence the generation of new 
solutions. Feasibility rules are used as the constraint-handling 
mechanism in the selection process. In fact, a comparison against 
a version of this approach but using stochastic ranking as the 
mechanism to deal with the constraints showed that the feasibility 
rules were more suitable for this approach. The approach provided 
competitive results with respect to state-of-the-art algorithms. 
However, the local search adopted requires gradient information.

Adopted feasibility rules in their agent-based memetic algorithm 
to solve CNOPs. This approach is similar to a GA, and adopts 
the SBX operator to generate offspring which are subjected to 
a learning process that lasts up to four life spans. This actually 
works as a mutation operator whose use is based on a proper 
selection being made by each individual (agent). The measures 
used to select an operator are based on the success of each of them 
to generate competitive offspring. The communication among 
agents in the population is restricted to the current population. 
This approach seems to be sensitive to the value of the parameter 
associated with the communication mechanism. The results 
obtained were comparable with previously proposed approaches.

The biogeography based optimization (BBO) algorithm. The idea 
is to add a migration operator inspired on the blend crossover 
operator used in real-coded GAs. BBO is inspired on the study 
of distributions of species over time and space and it adopts two 
variation operators: migration (or emigration) and mutation. 
A habitat (solution) has a habitat suitability index, HSI (i.e., the 
fitness function). High-HSI solutions have a higher probability 
to share their features with low-HSI solutions by emigrating 
features to other habitats. Low-HSI solutions accept a lot of 
new features from high-HSI solutions by immigration from 
other habitats. Feasibility rules are used in this approach as the 
constraint-handling mechanism. The approach was found to be 
competitive with respect to PSO-based approaches and one GA-
based algorithm. However, no further comparisons against state-
of-the-art were reported.
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Ali and Kajee-Bagdadi compared feasibility rules with respect to 
the superiority of feasible points proposed by Powell and Skolnick 
in a DEbased approach, in which a modified version of the pattern 
search method was used as a local search operator. They also 
compared their approach with respect to another based on a GA 
and found the former to be more competitive. The proposed DE-
based approach presented a comparable performance with respect 
to other DE-based algorithms.

7.2.2. Stochastic Ranking

Stochastic ranking (SR) was originally proposed by Runarsson and 
Yao. SR was designed to deal with the inherent shortcomings of a 
penalty function (over and under penalization due to unsuitable 
values for the penalty factors). In SR, instead of the definition 
of those factors, a user-defined parameter called Pf controls the 
criterion used for comparison of infeasible solutions: (1) based 
on their sum of constraint violation or (2) based only on their 
objective function value. SR uses a bubble-sort-like process to rank 
the solutions in the population as shown in Figure 3.

Figure 3. Stochastic Ranking sort algorithm. I is an individual of the 
population. φ(Ij ) is the sum of constraint violation of individual Ij . f(Ij ) 
is the objective function value of individual Ij.
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SR was originally proposed to work with an ES in its replacement 
mechanism which indeed requires a ranking process. However, it 
has been used with other NIAs where the replacement mechanism 
is quite different as in the approach reported by Zhang. In this 
case, the authors used SR with a DE variant proposed by Mezura-
Montes in which more than one trial vector is generated per each 
target vector. Moreover, the parameter Pf was manipulated by a 
dynamic parameter control mechanism in order to conveniently 
decrease it, aiming to favor diversity during the initial generations 
of the search (infeasible solutions close to the feasible region are 
maintained) whereas only feasible solutions are kept during the 
final part of the search. The approach was compared against 
state-of-the-art algorithms and the results obtained were very 
competitive while requiring a low number of fitness function 
evaluations. However, the main disadvantage of this approach 
is that it requires the definition of the number of trial vectors 
generated by each target vector.

7.2.3. ε-constrained Method

One of the most recent constraint-handling techniques reported 
in the specialized is the ε-constrained method proposed. This 
mechanism transforms a CNOP into an unconstrained numerical 
optimization problem and it has two main components: (1) a 
relaxation of the limit to consider a solution as feasible, based on 
its sum of constraint violation, with the aim of using its objective 
function value as a comparison criterion, and (2) a lexicographical 
ordering mechanism in which the minimization of the sum of 
constraint violation precedes the minimization of the objective 
function of a given problem. The value of ε, satisfying ε > 0, 
determines the so-called ε-level comparisons between a pair of 
solutions  and  with objective function values  
and sums of constraint violation  as indicated in 
Equations (6) and (7).
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		  (6)

	 (7)
As can be seen, if both solutions in the pairwise comparison 
are feasible, slightly infeasible (as determined by the ε value) or 
even if they have the same sum of constraint violation, they are 
compared using their objective function values. If both solutions 
are infeasible, they are compared based on their sum of constraint 
violation. Therefore, if ε = ∞, the ε-level comparison works 
by using only the objective function values as the comparison 
criteria. On the other hand, if ε = 0, then the ε-level comparisons<0 
and  are equivalent to a lexicographical ordering in which the 
minimization of the sum of constraint violation  precedes the 
minimization of the objective function , as promoted by the use 
of feasibility rules.

Takahama and Sakai have an earlier approach called the 
α-constrained method. In this case, the authors perform 
α-level comparisons which work in a similar way as those of 
the ε-constrained method. However, unlike the ε value which 
represents a tolerance related to the sum of constraint violation, 
the α value is related to the satisfaction level of the constraints 
for a given solution. Therefore, the condition to consider the 
objective function as a criterion in a pairwise comparison is 
based on the aforementioned satisfaction level of both solutions. 
If both levels are higher than a 0 ≤ α ≤ 1 value, the comparison 
can be made by using the objective function value, regardless 
of the full feasibility of the solutions. The main drawback of the 
α-constrained method with respect to the ε-constrained method 
is that the first may require user-defined parameters to compute 
the satisfaction level while the second uses the sum of constraint 
violation which requires no additional parameters. Nonetheless, 
in both mechanisms, the careful fine-tuning of α and ε remains 
as the main shortcoming. The authors have proposed dynamic 
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mechanisms which have allowed these two algorithms to provide 
competitive results.

The α-constrained method was coupled to a GA in while the use 
of the Nelder-Mead method was reported by the same authors. 
The results obtained by using multiple simplexes allowed the 
approach to obtain competitive results with respect to those found 
by SR. Wang and Li adopted the α-constrained method in using DE 
as their search engine, and improved the results reported in. Also, 
the ε-constrained method was combined with a hybrid PSO-GA 
algorithm. The approach considered the reproduction for particles 
as in a GA with the goal to tackle the premature convergence 
observed in a version in which the α-constrained method was 
coupled only to PSO. The hybrid approach was tested only in one 
benchmark function and two engineering design problems.

A successful attempt to find a more suitable search algorithm for 
the εconstrained method was reported in where a DE variant (DE/
rand/1/- exp) and a gradient-based mutation operator (acting as 
a local search engine) were employed. This version obtained the 
best overall results in a competition on constrained real-parameter 
optimization in 2006, in which a set of 24 test problems were 
solved. Gradient-based mutation was applied to newly infeasible 
generated trial vectors in order to make them feasible. Evidently, 
the main limitation of this sort of approach is that gradient 
information must be computed. Also, additional parameters 
must be fine-tuned by the user in this approach. Finally, it is 
worth remarking that there seem to be no studies that analyze 
the role of adopting gradient-based information in an EA used for 
constrained optimization.

Further improvements have been proposed to the ε-constrained 
method. In improved the dynamic control for the ε value by 
using an adaptive approach which allowed a faster decrease in 
its value if the sum of constraint violation was reduced quickly 
enough during the search process. This mechanism produced 
improved results when dealing with CNOPs having equality 
constraints. However, in this case, there is also an additional user-
defined parameter, which is related to the adaptation process. 
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Additionally, the authors did not analyze the performance of this 
variant in CNOPs that have only inequality constraints.

In Takahama and Sakai improved their approach by adding a de 
creasing probability on the use of the gradient-based mutation. 
They also introduced two new mechanisms to deal with boundary 
constraints: (1) one based on a reflecting back process for variable 
values lying outside the valid limits when DE mutation was 
applied, and (2) another one that consisted in assigning the limit 
value to a variable lying outside a boundary when the gradient-
based mutation was computed. With the aforementioned changes, 
the authors could obtain feasible solutions for one highly difficult 
problem known as g22. The main drawback of this improved 
version was the addition of user-defined parameters for the 
dynamic mechanism used by the gradient-based mutation operator. 
A further improved version of the aforementioned algorithm was 
proposed by Takahama and Sakai in where an archive to store 
solutions and the ability of a vector to generate more than one trial 
vector were added. The approach has provided one of the most 
(if not the most) competitive performance in different sets of test 
problems. However, the algorithm still depends on the gradient-
based mutation to provide such competitive results.

Motivated by its competitive performance, the ε-constrained 
method has been adopted as a constraint-handling technique in 
other proposals. This is the case of the jDE algorithm proposed by 
Brest in which the authors propose to self-adapat the parameters 
of DE using stochastic values. In a version called ε-jDE the 
ε-constrained method was one of the improvements proposed, 
besides the use of additional DE variants and a reduction scheme 
of the population size. Brest also added a novel way to adapt the 
ε value, but additional user-defined parameters were introduced. 
However, the results obtained by ε-jDE were highly competitive in 
a set of 24 well-known benchmark problems. An improved version 
called jDEsoco was proposed in where an ageing mechanism to 
replace those solutions stagnated in a local optimum was added. 
Moreover, only the 60% of the population was compared by the 
ε-constrained method and the remaining 40% was compared by 
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only using the objective function value. The results were improved 
but two parameters, the population ratio and an ageing probability 
were added to the algorithm.

Zeng employed the ε-constrained method with a ε variation process 
based on the dynamic decrease mechanism originally proposed. A 
crossover operator biased by the barycenter of the parents, plus a 
uniform mutation were used as variation operators. The approach 
was tested in 24 test problems and the results were found to be 
competitive with respect to the ε-constrained DE. An improved 
version of this approach was proposed by Zhang where a gradient-
based mutation similar to the one proposed by Takahama and 
Sakai was added. The results obtained by this approach were 
compared with respect to those obtained by the ε-constrained DE. 
The approach added parameters related with the variation of the 
ε value as well as those required by the gradient-based mutation.

The ε-constrained method within the ABC algorithm. Additionally, 
a dynamic mechanism to decrease the tolerance for equality 
constraints was considered. The results obtained outperformed 
those reported by a ABC version in which feasibility rules 
were used as the constraint-handling technique. However, this 
approach showed premature convergence in some test problems 
having high dimensionality.

7.2.4. Novel Penalty Functions

In spite of the fact that the two types of constraint-handling 
techniques discussed avoid the use of a penalty function, there 
are proposals based on such penalty functions which provide 
very competitive results. Here, we will briefly review the most 
representative work in this direction.

Xiao used the so-called KS function in a static penalty function to 
solve CNOPs. However, even when the approach was competitive 
in some test problems, it was clearly outperformed in others.

Deb and Datta revisited the static penalty function by proposing 
a method to compute a suitable value for a single penalty factor, 
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assuming the normalization of the constraints. As a first step a bi-
objective problem was solved by a multi-objective evolutionary 
algorithm (MOEA). The first objective was the original objective 
function while the second was the sum of constraint violation 
φ = 0. Furthermore, φ was restricted by a tolerance value (in a 
similar way as the ε-constrained method but with a fixed value in 
this case). The tolerance value was determined by a userdefined 
parameter based on the number of constraints of the problem. 
After a certain number of generations (also defined by the user), 
a cubic curve to approximate the current obtained Pareto front 
was generated by using four points whose φ values were a small 
tolerance. The penalty factor was then defined by calculating 
the corresponding slope at φ = 0. After that, a traditional static 
penalty function was used to solve the original CNOP by using 
a local search algorithm (Matlab’s fmincon() procedure was used 
by the authors) using the solution with the lowest φ value from 
the population of the MOEA as the starting point for the search. 
The termination criterion for the local search algorithm was the 
feasibility of the final solution combined with a small tolerance 
for the difference between objective function values of the starting 
point and the final one. The approach was tested on a set of six 
benchmark problems in which it obtained competitive results, 
while requiring a significant lower number of evaluations with 
respect to those reported by other state-of-the-art NIAs. The 
approach, however, requires the calibration of the MOEA as 
well as a tolerance value for the constraint related to the sum of 
constraint violation. Additionally, it also requires the number of 
generations to define the interval of use for the local search and, 
finally, the tolerance for the termination criterion of the local 
search. It is worth noting that this approach considered only 
inequality constraints. In Datta and Deb extended their approach 
to deal with equality constraints, too. The extension consisted in 
two main changes: (1) the punishment provided by the penalty 
value obtained by the bi-objective problem was increased if the 
local search failed to generate a feasible solution and (2) the 
small tolerance used for choosing the four points employed to 
approximate the cubic curve was relaxed. Both changes were 
motivated by the difficulties to generate feasible solutions caused 
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by the presence of equality constraints. The results obtained in 
eight well-known test problems were highly competitive with 
respect to two state-of-the-art approaches based on PSO and DE.

Tasgetiren and Suganthan proposed the use of a dynamic penalty 
function coupled with a multi-population differential evolution 
algorithm. In this approach, the authors allowed a user-defined 
number of sub-populations to evolve independently. However, 
the selection of the solutions to compute the differential mutation 
could be made by considering all sub-populations. Furthermore, 
a regrouping process, similar to a recombination operator among 
best solutions in each sub-population, was carried out after a 
number of generations, defined by the user. The approach was 
tested on 24 test problems, and the authors reported a high 
sensitivity of their approach to the parameters related with the 
severity of the penalty.

Farmani and Wright proposed a two-parts adaptive penalty 
function in which no penalty factors need to be defined by the 
user. The first part increases the fitness of the infeasible solutions 
with a better value of the objective function with respect to the 
best solution in the current population. The best solution can 
be the feasible solution with the best objective function value. 
However, if no feasible solutions are present in the population, 
the best solution is the infeasible solution with the lowest sum 
of constraint violation. This first part of the penalization focuses 
on promoting diversity in promising regions of the search space, 
regardless of their feasibility. The second part modifies the fitness 
values of the worst infeasible solutions (those with the highest 
sum of constraint violation and a poor objective function value) 
aiming to make them similar to the fitness of the solution with the 
worst value of the objective function. The aim is to generate more 
solutions in the boundaries of the feasible region but with better 
values of the objective function. In spite of its lack of user-defined 
penalty factors, the approach was computationally expensive, 
since it required more than one million evaluations to provide 
competitive results in a set of 11 test problems.
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Puzzi and Carpinteri explored a dynamic penalty function based 
on multiplications instead of summations in a GA-based approach. 
However, this approach performed well in problems having only 
inequality constraints.

Tessema and Yen used the number of feasible solutions in the 
current population to determine the penalty value assigned 
to infeasible solutions in a two-penalty based approach. This 
parameterless penalty function allows, based on the feasibility of 
solutions in the population, to favor slightly infeasible solutions 
having a good objective function value, as promoted. This is 
done in the selection process by assigning such solutions a higher 
fitness value. The approach obtained competitive results in 22 test 
problems. However, the number of evaluations required was higher 
(500, 000) than that required by other state-of-the-art approaches 
(they require around 250, 000 evaluations). Furthermore, three 
mutations operators (which require three mutation probabilities 
defined by the user) are required to maintain the explorative 
capabilities of the approach.

Mani and Patvardhan explored the use of an adaptive penalty 
function in a two-population-GA-like-based approach in which 
the first population evolves by using a parameter-free adaptive 
penalty function based on the objective function and the constraint 
violation of the best solution available so far in the population. 
The other population evolves based on feasibility rules. Then, 
both populations exchange their best solutions plus an additional 
percentage of randomly chosen solutions. The approach was 
tested on a set of test problems. However, the approach required 
parameters related to the migration process as well as the variation 
operators, as well as a local search mechanism based on gradient 
information.

In an analogous way as Coello used co-evolution to optimize 
penalty factors to solve CNOPs by using two-nested GAs, He 
used two PSO algorithms instead. Their approach was used to 
solve a set of engineering design problems and the results were 
encouraging. However, as in the approach using GAs, this one 
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requires the definition of parameter values for the two PSO 
algorithms.

Wu proposed an AIS which combines the metaphor of clonal 
selection with idiotypic network theories. To deal with CNOPs, 
an adaptive penalty function was defined to assign its affinity to 
each antibody. Different operators based on the clonal selection 
principle, affinity maturation and the bone marrow operator 
were applied to generate new solutions. The approach was tested 
on four benchmark nonlinear programming problems and four 
generalized polynomial programming (GPP) problems.

7.2.5. Novel special operators

Leguizam´on and Coello Coello proposed a boundary operator 
based on conducting a binary search between a feasible and an 
infeasible solution. Furthermore, three strategies to select which 
constraint (if more than one is present in a CNOP) is analyzed. 
The search algorithm was an ACO variant for continuous search 
spaces. The approach provided highly competitive results, mostly, 
as expected, in problems having active constraints. However, it was 
outperformed in others. The main disadvantage of the approach is 
the need of an additional constraint-handling technique (a penalty 
function was used in this case) to deal with solutions which are on 
the boundary of the constraint treated but violate other constraints. 
Furthermore, no other search algorithms which are more popular 
in the solution of CNOPs (e.g., DE, ES) have been coupled to this 
proposed boundary operator.

Huang proposed a boundary operator in a two-population 
approach. The first population evolves by using DE as the search 
engine, based only on the objective function value (regardless of 
feasibility). The second population stores only feasible solutions 
and the boundary operator uses solutions from both populations 
to generate new solutions, through the application of the bisection 
method in the boundaries of the feasible region. Furthermore, the 
Nelder-Mead simplex method was used as a local search operator 
applied to the best feasible solutions. Unlike Leguizam´on and 
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Coello’s proposal, this approach does not require an additional 
constraint-handling technique, but a feasible solutions is needed 
at the beginning of the process. The approach was tested only in 
a few problems having only inequality constraints and it required 
different parameter values for each test problem, showing some 
sensitivity to them.

The Constraint Quadratic Approximation (CQA), which is a 
special operator designed to restrict an evolutionary algorithm 
(a GA in this case) to sample solutions inside an object with the 
same dimensions of the feasible region of the search space. This is 
achieved by a second-order approximation of the objective function 
and an equality constraint, which is updated at each generation. 
A subset of solutions from the population was used to build the 
quadratic approximations. The operator was applied based on 
a number of generations defined by the user. Moreover, a static 
penalty function was used to guide the GA search and the equality 
constraint was transformed into two inequality constraints by 
using a small ǫ tolerance. The approach was tested on a small set 
of problems but it could only deal with one quadratic equality 
constraint. With the aim of solving CNOPs with more than one 
equality constraint, Peconick proposed the Constraint Quadratic 
Approximation for Multiple Equality Constraints (CQA-MEC). 
This was achieved by an iterative projection algorithm which 
is able to find points satisfying the approximated quadratic 
constraints with a low computational overhead. However, CQA-
MEC still requires the static penalty function to work as its 
predecessor (CQA). Araujo extended the approaches to deal with 
multiple inequality constraints by using an special operator in 
which the locally convex inequality constraints are approximated 
by quadratic functions, while the locally non-convex inequality 
constraints are approximated by linear functions. The dependence 
of the static penalty function remains in this last approach.

Ullah proposed an agent-based memetic algorithm to solve CNOPs, 
in which the authors adopt a special local operator for equality 
constraints, which is one of five life span learning processes. After 
a selection process in which pairs of agents (i.e., solutions) are 
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chosen based on their fitness and location in the search space, the 
SBX operator is applied. Thereafter, the special operator for equality 
constraints is applied to some individuals in the population as 
follows: the satisfaction of a randomly chosen equality constraint 
is verified for a given solution. If it is not satisfied, a decision 
variable, also chosen at random, is updated with the aim to satisfy 
it. If the constraint is indeed satisfied, two other variables are 
satisfied in such a way that the constraint is still satisfied (i.e., the 
constraint is sampled). This special operator is only applied during 
the early stages of the search because it reduces the diversity in the 
population. These processes are applied based on their success. 
The approach was tested on a set of benchmark problems with 
equality constraints and the results were promising. However, 
the approach requires additional parameters to be defined by the 
user (e.g., the number of generations during which the operator 
must be applied, the number of decision variables to be updated 
in the equality constraint). In fact, the authors do not provide any 
guidelines regarding the way in which these parameters must be 
tuned.

Lu and Chen proposed an approach called self-adaptive velocity 
particle swarm optimization (SAVPSO) to solve CNOPs. This 
approach relies on an analysis based on three elements: (1) the 
position of the feasible region with respect to the whole search 
space, (2) the connectivity and the shape of the feasible region, 
and (3) the ratio of the feasible region with respect to the search 
space. As a result of this analysis, the velocity update formula 
was modified in such a way that each particle has the ability to 
selfadjust its velocity according to the aforementioned features of 
the feasible region. The fitness of a solution is assigned based on 
its feasibility: feasible solutions are evaluated by their objective 
function value, while infeasible solutions are evaluated by their 
sum of constraint violation. The approach was tested on a set of 
13 benchmark problems. The approach, however, showed some 
sensitivity to some of its parameters.

Spadoni and Stefanini transformed a CNOP into an unconstrained 
search problem by sampling feasible directions instead of 
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solutions of a CNOP. Thereafter, three special operators, related 
to feasible directions for box constraints, linear inequality 
constraints, and quadratic inequality constraints, are utilized to 
generate new solutions by using DE as the search engine. The 
main contribution of the approach is that it transforms a CNOP 
into an unconstrained search problem without using a penalty 
function. However, it cannot deal with nonlinear (either equality 
or inequality) constraints.

Modified variation operators in NIAs in such a way that the 
recombination of feasible and infeasible solutions led to the 
generation of more feasible solutions. An adaptive mechanism 
to maintain infeasible solutions was added to the approach. This 
latter version was specifically based on DE’s variation operators.

7.2.6. Multi-objective concepts

In spite of the fact that empirical evidence has suggested that 
multi objective concepts are not well-suited to solve CNOPs, there 
are highly competitive constraint-handling techniques based on 
such concepts.

Motivated by the idea of keeping suitable infeasible solutions Ray 
proposed the Infeasibility Driven Evolutionary Algorithm (IDEA) 
whose replacement process requires the definition of a proportion 
of infeasible solutions to remain in the population for the next 
generation. IDEA works in a similar way as NSGA-II. Nonetheless, 
an additional objective, besides the original objective function, 
is added. This objective consists on the constraint violation 
measure, whose value is computed as follows: each individual in 
the population has a rank for each constraint of the CNOP being 
solved and each rank value depends on the constraint violation 
value for such solution (lower values are ranked higher because 
they represent a smaller violation for a constraint). If a solution 
satisfies the constraint, a zero rank is assigned to it. After each 
solution is ranked for each constraint, the violation measure is 
computed as the sum of ranks per solution. After the offspring are 
generated, the union of parents and offspring is split in two sets, 
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one with the feasible solutions and the other with the infeasible 
ones. Non-dominated sorting is used to rank both sets separately 
and, based on the proportion of desired feasible solutions, they 
are chosen first from the infeasible set, the best ranked feasible 
solutions are chosen. IDEA is able to work with CNOPs and also 
with constrained numerical multi-objective optimization problems 
(CNMOPs). However, its performance has been more competitive 
when solving CNMOPs. The usage of local search, sequential 
quadratic programming in this case, was added to IDEA in the 
so-called Infeasibility Empowered Memetic Algotrithm (IMEA). 
The approach was tested in eigtheen scalable test problems and 
its performance improved with respect to the original IDEA when 
solving CNOPs. However, the local search algorithm adopted 
requires gradient calculation.

Reynoso-Meza proposed the spherical-pruning multi-objective 
optimization differential evolution (sp-MODE) to solve CNOPs, 
which were transformed into three-objective optimization 
problems, where the first objective was the original objective 
function, the second objective was the sum of constraint violation 
for inequality constraints and the third objective was the sum of 
constraint violation for equality constraints. An external archive 
was used to store non-dominated solutions. The sphere-pruning 
operator aims to find the best trade-off between feasibility and the 
optimization of the objective function. The approach required the 
definition for some parameter values depending of the number of 
constraints. However, the sphere-pruning operator might be an 
interesting operator to be applied in some parts of the search.

Wang proposed the use of Pareto dominance in a Hybrid 
Constrained EA (HCOEA) to solve a CNOP which was transformed 
into a bi-objective optimization problem. In this case, the first 
objective is the original objective function while the second one 
is the sum of constraint violation. A global search carried out by 
an EA is coupled to a local search operator based on a population 
division scheme and on the use of the SPX operator. In both cases, 
Pareto dominance is the criterion adopted to select solutions. The 
approach was tested in 13 benchmark problems and the results 
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were found to be competitive with respect to four state-of-the-art 
algorithms. However, the approach requires the definition of two 
crossover probabilities (one for the global search and another for 
the local search) as well as the number of subsets in which the 
population will be divided. HCOEA showed some sensitivity to 
this last parameter.

Wang proposed an steady state EA to solve a CNOP which was 
also transformed into a bi-objective problem. At each generation, 
a set of offspring solutions are generated by applying orthogonal 
crossover to a randomly chosen set of solutions in the current 
population. After that, the non-dominated solutions obtained from 
the set of offspring are chosen. If there are no feasible offspring, two 
randomly chosen solutions from the set of parents will be replaced 
by the offspring which dominate them. Alternative, solutions can 
also be chosen if they have a lower sum of constraint violation. 
Furthermore, the individual with the lowest sum of constraint 
violation will replace the worst parent in the population. If there 
are feasible offspring, based on a user-defined probability, two 
randomly chosen parents will be replaced by two offspring which 
dominate them. Otherwise, the worst parent, based on feasibility 
rules, will be replaced by one offspring. After the steady state 
replacement, all solutions are affected by an improved version of 
the BGA mutation operator based on a user-defined probability. 
The approach was tested in a set of 11 test problems and showed 
competitive results in some of them, but premature convergence 
was observed in others.

Wang in their adaptive trade-off mode (ATM) evolution 
strategy (ATMES), divided the search in three phases based on 
the feasibility of solutions in the population: (1) only infeasible 
solutions, (2) feasible and infeasible solutions, and (3) only feasible 
solutions. Owing to the fact that the CNOP was transformed 
into a bi-objective problem, the selection in the first phase was 
based on Pareto dominance. From the Pareto front obtained, the 
solutions were ranked in ascending order based on the sum of 
constraint violation and the first half was chosen to survive for 
the next generation and was deleted from the set. The process was 
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repeated until the desirable number of solutions was achieved. 
The second phase was biased by a fitness value which is adapted 
based on the percentage of feasible solutions in the population. 
The last stage was biased only by the objective function value. 
The approach provided competitive results in 13 test problems. 
However, ATMES required some parameters related to the 
tolerance for equality constraints and the step size employed by 
the ES used as the search engine. This same ATM was coupled by 
Wang with a NIA in which the offspring generation was as follows: 
An offspring was generated by one of two variation operator: (1) 
simplex crossover or (2) one of two mutations (uniform mutation or 
improved BGA mutation). The approach, besides being tested on a 
set of 13 benchmark problems, was used to solve some engineering 
design problems. The results obtained by the authors were found 
to be very competitive, but some cases of premature convergence 
were reported. Another improvement to the ATM, which is based 
on a shrinking mechanism proposed by Hern´andez-Aguirre 
was proposed. This approach, called Accelerated ATM (AATM), 
outperformed both the original ATM and the approach proposed 
by Hern´andez-Aguirre. However, additional parameters (which 
are required by the shrinking mechanism) were introduced by 
the authors. The ATM was coupled with DE in a recent approach 
showing an improvement in the results with respect to versions 
of the same algorithm. Liu used the ATM in an EA but with 
two main differences: (1) good point set crossover was used to 
generate offspring and (2) feasibility rules were the criteria to 
select solutions in the second stage of the ATM (at which there are 
feasible and infeasible solutions in the current population). The 
approach was tested in some benchmark problems. However, the 
performance of the proposed crossover operator was not found 
to be clearly better with respect to the version of this approach 
reported.

Gong and Cai used Pareto dominance in the many-objective 
space defined by the constraints of a problem as a constraint-
handling mechanism in a DE-based approach. An orthogonal 
process was employed for both, generating the initial population 
and for applying crossover. Furthermore, the ǫ-dominance 
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concept was adopted to update an external archive in which the 
non-dominated solutions found during the search were stored. 
Orthogonal crossover was applied after DE generated the offspring 
population. In fact, an intermediate child population was designed 
to store the offspring which were non-dominated with respect to 
their parents. The aim is to perform a non-dominance checking on 
the union of the parent population and the offspring population 
as a replacement mechanism at the end of each generation of the 
algorithm. Although the approach provided competitive results in 
a set of 13 test problems, the contribution of each of the additional 
mechanisms adopted is not clear. Additionally, no information is 
provided regarding the fine-tuning required for the parameters 
required by this approach.

Li et solved a CNOP which was also transformed into a bi objective 
optimization problem by using a PSO algorithm in which Pareto 
dominance was used as a criterion in the p best update process 
and in the selection of the local-best leaders in a neighborhood. In 
case of ties, the sum of constraint violation worked as a tie-breaker. 
A mutation operator was also added to keep the approach from 
converging prematurely. Additionally, a small tolerance was used 
to consider as feasible to solutions that were slightly infeasible 
(this is similar to the ε-constrained method but with a fixed value 
instead of a dynamic one). The approach was tested only on three 
engineering design problems.

Venter and Haftka also transformed a CNOP into a bi-objective 
optimization problem and used PSO as their search engine. 
However, the leader selection was based most of the time on the 
sum of constraint violation, while the rest of the time the criterion 
was one of the three following choices: (1) the original objective 
function, (2) the crowding distance or (3) Pareto dominance. The 
approach was tested on several benchmark problems and some 
engineering design problems.

Wang used a hybrid selection mechanism based on Pareto 
dominance and tournament selection into a Adaptive Bacterial 
Foraging Algorithm (ABFA) to solve CNOPs. The approach uses 
the so-called good nodes set method to initialize the population, to 



Constraint Handling 279

perform crossover and to spread similar individuals throughout 
the search space. The approach was tested in a set of benchmark 
problems and in some engineering design problems, providing 
competitive results in both cases.

7.2.7. Ensemble of constraint-handling techniques

Many Optimization problems in science and engineering involve 
constraints. The presence of constraints reduces the feasible region 
and complicates the search process. Evolutionary algorithms (EAs) 
always perform unconstrained search. When solving constrained 
optimization problems, they require additional mechanisms to 
handle constraints. In the several constraint handling techniques 
have been proposed to be used with the EAs.

When solving constrained optimization problems, solution 
candidates that satisfy all the constraints are feasible individuals 
while individuals that fail to satisfy any of the constraints are 
infeasible individuals. One of the major issues in constraint 
optimization is how to deal with the infeasible individuals 
throughout the search process. One way to handle it is to completely 
disregard infeasible individuals and continue the search process 
with feasible individuals only. This approach may be ineffective 
as EAs are probabilistic search methods and potential information 
present in infeasible individuals can be wasted. If the search space 
is discontinuous, then the EA can also be trapped in one of the local 
minima. Therefore, different techniques have been developed to 
exploit the information in infeasible individuals. Michalewicz and 
Schoenauer grouped the methods for handling constraints within 
EAs into four categories: preserving feasibility of solutions, penalty 
functions, make a separation between feasible and infeasible 
solutions, and hybrid methods. A constrained optimization 
problem can also be formulated as a multi objective problem, but 
it is computationally intensive due to nondomination sorting.

According to the no free lunch (NFL) theorem, no single state-of-
the-art constraint handling technique can outperform all others on 
every problem. Hence, solving a particular constrained problem 
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requires numerous trial-and-error runs to choose a suitable 
constraint handling technique and to fine tune the associated 
parameters. This approach clearly suffers from unrealistic 
computational requirements in particular if the objective function 
is computationally expensive or solutions are required in real-
time. In this an ensemble of constraint handling techniques 
(ECHT) with four constraint handling techniques is proposed as 
an efficient alternative to the trial-and-error-based search for the 
best constraint handling technique with its best parameters for a 
given problem. In ECHT, each constraint handling technique has 
its own population and each function call is efficiently utilized 
by each of these populations. Different EAs such as differential 
evolution (DE) particle swarm optimizer, evolution strategies, 
evolutionary programming (EP) and others have been used to 
solve constrained optimization problems. In addition, EP and ES 
are similar. Recently the usage of DE to solve constrained problems 
is also gaining importance. Being a general concept, the ECHT can 
be realized with any of the existing EAs.

7.3. APPROACHES TO HANDLING CONSTRAINTS

In the discussion so far, we have not considered the nature of the 
domains of the variables. In this respect there are two extremes: 
they are all discrete or all continuous. Continuous CSPs are rather 
rare, so by default a CSP is discrete. For COPs this is not the case 
as we have discrete COPs (combinatorial optimization problems) 
and continuous COPs as well. Much of the evolutionary on 
constraint handling is restricted to one of these cases, but in fact 
the ways for handling constraints are practically identical – at 
least at the conceptual level. Therefore the following treatment 
of constraint handling methods is general, and we note simply 
that the presence of constraints will divide the space of potential 
solutions S into two or more disjoint regions, the feasible region 
(or regions) F containing those candidate solutions that satisfy the 
given constraints, and U, the infeasible region containing those 
that do not.
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7.3.1. Penalty Functions

Penalty functions modify the original fitness function  applied 
to a candidate solution  such that 
, where  is a distance metric of the infeasible point to the 
feasible region F (this might be simply a count of the number of 
constraints violated). The penalty function P is zero for feasible 
solutions, and it increases with distance from the feasible region 
(for minimisation problems).

For our knapsack problem one simple approach is to calculate the 
excess weight , and then use the penalty 
function: where the fixed weight w is large enough that feasible 
solutions are preferred.

It is important to note that this approach assumes that it is possible 
to evaluate an infeasible point; although in this example it is, for 
many others this is not the case. This discussion is also confined 
to exterior penalty functions, where the penalty is only applied 
to infeasible solutions, rather than interior penalty functions, 
which apply penalties to all solutions based on distance from the 
constraint boundary in order to encourage exploration of this 
region.

The conceptual simplicity of penalty function methods means that 
they are widely used, and they are especially suited to problems 
with disjoint feasible regions, or where the global optimum lies on 
(or near) the constraint boundary. However, their successful use 
depends on a balance between exploration of the infeasible region 
and not wasting time, which places a lot of emphasis on the form 
of the penalty function and the distance metric.

If the penalty function is too severe, then infeasible points near the 
constraint boundary will be discarded, which may delay, or even 
prevent, exploration of this region. Equally, if the penalty function 
is not sufficient in magnitude, then solutions in infeasible regions 
may dominate those in feasible regions, leading to the algorithm 
spending too much time in the infeasible regions and possibly 
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stagnating there. In general, for a system with m constraints, the 
form of the penalty function is a weighted sum.

where κ is a user-defined constant, often taking the value 1 or 2, 
and as the distance metrics  from the point  to the boundary 
for constraint i may be a simple binary value according to whether 
the constraint is satisfied, or a metric based on cost of repair.

Many different approaches have been proposed, and a good 
review is given in, where penalty functions are classified as 
constant, static, dynamic, or adaptive.

Static Penalty Functions

Three methods have commonly been used with static penalty 
functions, namely extinctive penalties (where all of the wi are 
set so high as to prevent the use of infeasible solutions), binary 
penalties (where the value di is 1 if the constraint is violated, and 
zero otherwise), and distance-based penalties.

It has been reported that, of these three, the latter give the best 
results, and the contains many examples of this approach. This 
approach relies on the ability to specify a distance metric that 
accurately reflects the difficulty of repairing the solution, which is 
obviously problem dependent, and may also vary from constraint 
to constraint. The usual approach is to take the square of the 
Euclidean distance (i.e., set κ = 2) .

However, the main problem in using static penalty functions 
remains the setting of the values of wi. In some situations it may 
be possible to find these by experimentation, using repeated runs 
and incorporating domain-specific knowledge, but this is a time-
consuming process that is not always possible.
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Dynamic Penalty Functions

An alternative approach to setting fixed values of wi by hand is 
to use dynamic values, which vary as a function of time. A typical 
approach is that of, in which the static values wi were replaced with 
a simple function of the form si(t)=(wit)α, where it was found that 
for best performance α ∈ {1, 2}. Although this approach is possibly 
less brittle as a result of not using fixed (possibly inappropriate) 
values for wi, the user must still decide on the initial values.

An alternative, which can be seen as the logical extension of 
this approach, is the behavioural memory algorithm of. Here a 
population is evolved in a number of stages – the same number as 
there are constraints. In each stage i, the fitness function used to 
evaluate the population is a combination of the distance function 
for constraint i with a death penalty for all solutions violating 
constraints j that different results may be obtained, depending on 
the order in which the constraints are dealt with.

Adaptive Penalty Functions

Adaptive penalty functions represent an attempt to remove the 
danger of poor performance resulting from an inappropriate 
choice of values for the penalty weights wi. A second approach is 
that of, in which adaptive scaling (based on population statistics 
of the best feasible and infeasible raw fitnesses yet discovered) is 
coupled with the distance metrics for each constraint based on 
the notion of “near feasible thresholds”. These latter are scaling 
factors for each distance metric, which can vary with time.

The Stepwise Adaptation of Weights (SAW) algorithm of can be 
seen as a population-level adaptation of the search space. In this 
method the weights wi are adapted according to a simple heuristic: 
if the best individual in the current population violates constraint 
i, then this constraint must be hard and its weight should be 
increased. In contrast to the adaptive mechanisms, the updating 
function is much simpler. In this case a fixed penalty increment 
Δw is added to the penalty values for each of the constraints 
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violated in the best individual of the generation at which the 
updating takes place. This algorithm was able to adapt weight 
values that were independent of the EA operators and the initial 
weight values, suggesting that this is a robust technique.

7.3.2. Repair Functions

The use of repair algorithms for solving COPs with EAs can be 
seen as a special case of adding local search to the EA. In this case 
the aim of the local search is to reduce (or remove) the constraint 
violation, rather than to simply improve the value of the fitness 
function, as is usually the case.

The use of local search has been intensively researched, with 
attention focusing on the benefits of so-called Baldwinian versus 
Lamarckian learning. In either case, the repair algorithm works by 
taking an infeasible point and generating a feasible solution based 
on it. In the Baldwinian case, the fitness of the repaired solution 
is allocated to the infeasible point, which is kept, whereas with 
Lamarckian learning, the infeasible solution is overwritten with 
the new feasible point. Although the Baldwin vs. Lamarck debate 
has not been settled within unconstrained learning, many COP 
algorithms reach a compromise by introducing some stochasticity, 
for example Michalewicz’s GENOCOP algorithm uses the repaired 
solution around 15% of the time.

For our knapsack example, a simple repair method is to change 
some of the gene values in  from 1 to 0. Although this sounds 
simple, this example raises some interesting questions. One of these 
is the replacement question just discussed; the second is whether 
the genes should be selected for altering in a predetermined order, 
or at random. In it was reported that using a greedy deterministic 
repair algorithm gave the best results, and certainly the use of a 
nondeterministic repair algorithm will add noise to the evaluation 
of every individual, since the same potential solution may yield 
different fitnesses on separate evaluations. However, it has been 
found by some authors that the addition of noise can assist the GA 
in avoiding premature convergence. In practice it is likely that the 
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best method is not only dependent on the problem instance, but 
on the size of the population and the selection pressure.

Although the knapsack example is fairly simple, in general defining 
a repair function may be as complex as solving the problem itself. 
One algorithm that eases this problem (and incidentally uses 
stochastic repair), is Michalewicz’s GENOCOP III algorithm for 
optimisation in continuous domains. This works by maintaining 
two populations, one Ps of so-called search points and one Pr of 
‘reference points’, with all of the latter being feasible. Points in 
Pr and feasible points from Ps are evaluated directly. When an 
infeasible point is generated in Ps it is repaired by picking a point 
in Pr and drawing a line segment from it to the infeasible point. 
This is then sampled until a repaired feasible point is found. If the 
new point is superior to that used from Pr, the new point replaces 
it. With a small probability (which represents the balance between 
Lamarckian and Baldwinian search) the new point replaces the 
infeasible point in Ps. It is worth noting that although two different 
methods are available for selecting the reference point used in the 
repair, both are stochastic, so the evaluation is necessarily noisy.

7.3.3. Restricting Search to the Feasible Region

In many COP applications it may be possible to construct a 
representation and operators so that the search is confined to 
the feasible region of the search space. In constructing such an 
algorithm, care must be taken in order to ensure that all of the 
feasible region is capable of being represented. It is equally 
desirable that any feasible solution can be reached from any other 
by (possibly repeated) applications of the mutation operator. The 
classic example of this is permutation problems. 

For our knapsack problem, we could imagine the following 
operators. A randomised initialisation operator might construct 
solutions by starting with an empty set x(i)=0, ∀i and randomly 
picking elements i to flip the gene value from to 1 until adding the 
next value chosen would violate the cost constraint. This would 
give an initial population where the excess cost  was negative 
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for each member. For recombination, we could apply a slightly 
modified one-point crossover. For any given pair of parents, first 
we generate a random permutation of the values {1,,...,n−1} in 
which to consider the potential crossover points. In that order we 
consider the pairs of offspring created, accepting the first pair that 
is feasible. For mutation we apply bitwise mutation, accepting any 
move that changes a gene from 1 to 0, but only those from 0 to 1 
that do not created excess cost. Again we might choose to do this 
in a random order to remove bias towards selecting items at the 
start of our representation.

It should be noted that this approach to solving COP, although 
attractive, is not suitable for all types of constraints. In many cases 
it is difficult to find an existing or design a new operator that 
guarantees that the offspring are feasible. Although one possible 
option is simply to discard any infeasible points and reapply 
the operator until a feasible solution is generated, the process of 
checking that a solution is feasible may be so time consuming as to 
render this approach unsuitable. However, there remains a large 
class of problems where this approach is valid and with suitable 
choice of operators can be very successfully applied.

7.3.4. Decoder Functions

Decoder functions are a class of mappings from the genotype 
space S’ to the feasible regions F of the solution space S that have 
the following properties:

•	 Every z ∈ S must map to a single solution s’ ∈ F. 
•	 Every solution s’ ∈ F must have at least one representation 

s’ ∈ S’. 
•	 Every s’ ∈ F must have the same number of representations 

in S’ (this need not be 1).

Such decoder functions provide a relatively simple way of using 
EAs for this type of problem, but they are not without drawbacks. 
These are centred around the fact that decoder functions generally 
introduce a lot of redundancy into the original genotype space. 
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This arises when the new mapping is manyto-one, meaning 
that a number of potentially radically different genotypes may 
be mapped onto the same phenotype, and only a subset of the 
phenotype space can be reached.

Considering the knapsack example, a simple approach would leave 
the genotype, initialisation and variation operators unchanged. 
When constructing a solution, the decoder function could start at 
the left hand end of the string and interpret a 1 as take this item if 
possible ... If the cost limit is reached after considering, say, j of the 
n genes, then it is irrelevant what values the rest take, and so 2n−j 
strings all map onto the same solution.

In a few cases it may be possible to devise a decoder function that 
permits the use of relatively standard representation and operators 
while preserving a one-to-one mapping between genotype and 
phenotype. One such example is the decoder for the TSP problem 
proposed by Grefenstette, which is well described by Michalewicz 
in. In this case a simple integer representation was used with 
each gene ai ∈ {1,...,n+1−i}. This representation permits the use of 
common crossover operators and a bitwise mutation operator that 
randomly resets a gene value to one of its permitted allele values. 
The outcome of both of these operators is guaranteed to be valid. 
The decoder function works by considering an ordered list of 
cities, ABCDE, and using the genotype to index into this.

For example, with a genotype <4, 2, 3, 1, 1> the first city in the 
constructed tour is the fourth item in the list, i.e., D. This city is 
then removed from the list and the second gene is considered, 
which in this case points to B. This process is continued until a 
complete tour is constructed: <4, 2, 3, 1, 1> → DBEAC.

Although the one-to-one mapping means that there is no 
redundancy in the genotype space, and it permits the use of 
straightforward crossover and mutation operators, the complexity 
of the mapping function means that a small mutation can have 
a large effect, e.g., <3, 2, 3, 1, 1> → CBDAE. Equally, it can be 
easily shown that recombination operators no longer respect and 
propagate all features common to both solutions. Thus if the two 
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solutions <1, 1, 1, 1, 1>→ ABCDE and <5, 1, 2, 3, 1> → EACDB, 
which share the common feature that C occurs in the third position 
and D in the fourth undergo 1-point crossover between the third 
and fourth loci, the solution <5, 1, 2, 1, 1>→ EACBD is obtained, 
which does not possess this feature. If the crossover occurs in 
other positions, the edge CD may be preserved, but in a different 
position in the cycle.

In both of the examples given, the complexity of the genotype–
phenotype mapping makes it very difficult to ensure locality 
and makes the fitness landscape associated with the search space 
highly complex, since the potential effects in fitness of changes 
at the left-hand end of the string are much bigger than those at 
the right-hand end. Equally, it can become very difficult to specify 
exactly the common features the recombination operators are 
supposed to be preserving.

7.4 APPLICATION EXAMPLE: GRAPH  
THREE-COLOURING

We illustrate the approaches outlined via the description of two 
different ways of solving a well-known CSP problem, graph three-
colouring. This is an abstract version of colouring a political map 
so that no two adjacent areas (counties, states, countries) have the 
same colour. We are given a graph G = {v, e} with n = |v| vertices 
and m = |e| edges connecting some pairs of the vertices. The task 
is to find, if possible, an assignment of one of three colours to each 
vertex so that there are no edges in the graph connecting same-
coloured vertices.

7.4.1. Indirect Approach

We begin by illustrating an indirect approach, transforming the 
problem from a CSP to a FOP by means of penalty functions. The 
most straightforward representation is using ternary strings of 
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length n = |v|, where each variable stands for one node, and the 
integers 1, 2, and 3 denote the three colours.

Using this standard GA representation has the advantage that all 
standard variation operators are immediately applicable. We now 
define two objective functions (penalty functions) that measure 
the amount of ‘incorrectness’ of a chromosome. The first function 
is based on the number of ’incorrect edges’ that connect two 
nodes with the same colour, while the second relies on counting 
the ‘incorrect nodes’ that have a neighbour with the same colour. 
For a formal description let us denote the constraints belonging 
to the edges as ci (i = {1,...,m}), and let Ci be the set of constraints 
involving variable vi (edges connecting to node i). Then the 
penalties belonging to the two options described can be expressed 
as follows:

Note that both functions are correct transformations of the 
constraints in the sense that for each  we have that = true if 
and only if fi =0 (i = 1, 2). The motivation to use weighted sums 
in this example, and in general, is that they provide the possibility 
of emphazising certain constraints (variables) by giving them a 
higher weight. This can be beneficial if some constraints are more 
important or known to be harder to satisfy. Assigning them a 
higher weight gives a higher reward to a chromosome, hence the 
EA naturally focuses on these. Setting the weights can be done 
manually by the user, but can also be done by the EA itself on-the-
fly as in the stepwise adaptation of weights (SAW) mechanism.

Now the EA for the graph three-colouring problem can be 
composed from standard components. For instance, we can apply 
a steady-state GA with population size 100, binary tournament 
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selection and worst fitness deletion, using random resetting 
mutation with pm = 1/n and uniform crossover with pc = 0.8. Notice 
that this EA really ignores constraints; it only tries to minimise the 
given objective function (penalty function).

7.4.2. Mixed Mapping Direct Approach

For this problem, two of the direct approaches would be 
extremely difficult, if not impossible, to implement. Specifying 
either an initialization operator, or a repair function, to create 
valid solutions would effectively mean solving the problem, and 
since it is thought to be NP-complete it is unlikely that there is a 
polynomial time algorithm that could accomplish either of these.

However, we now present another EA for this problem, illustrating 
how constraints can be handled by a decoder. The main idea is to 
use permutations of the nodes as chromosomes. The phenotype 
(coloring) belonging to a genotype (permutation) is determined by 
a procedure that assigns colors to nodes in the order they occur in 
the given permutation, trying the colors in increasing order (1,2,3), 
and leaving the node uncolored if all three colors would lead to 
a constraint violation. Formally, we shift from the search space of 
all colorings S = {1, 2, 3}n to the space of all n-long permutations 

, and the coloring procedure 
(the decoder) is the mapping from S’ to S’. At first glance this 
might not seem like a good idea as we still have constraints in the 
transformed problem – those that define the property of being a 
permutation in the definition of S’. However, we know from Sect. 
4.5 that working in a permutation space is easy, as there are many 
suitable variation operators keeping the search in this space. In 
other words, we have various operators preserving the constraints 
defining this space.

An appropriate objective function for this representation can 
simply be defined as the number (weighted sum) of nodes that 
remain uncolored after decoding. This function also has the 
property that an optimal value (0) implies that all constraints are 
satisfied, i.e., all nodes are colored correctly. The rest of the EA 
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can again use off-the-shelf components: a steady-state GA with 
population size 100, binary tournament selection and worst fitness 
deletion, using swap mutation with pm = 1/n and order crossover 
with pc = 0.8.

Looking at this solution at a conceptual level we can note that there 
are two constraint-handling issues. Primary constraint-handling 
concerns handling the constraints of the original problem, the 
graph three-coloring CSP. This is done by the mapping approach 
via a decoder. However, the transformed search space S’ in 
which the EA has to work is not free, rather it is restricted by the 
constraints defining permutations. This constitutes the secondary 
constraint handling issue that is solved by a (direct) preserving 
approach using appropriate variation operators.
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