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Data security has consistently been a major issue in information 
technology. In the cloud computing environment, it becomes 
particularly serious because the data is located in different places even 
in all the globe. The security of computer networks plays a strategic 
role in modern computer systems. In order to enforce high protection 
levels against malicious attack, a number of software tools have 
been currently developed. Intrusion Detection System has recently 
become a heated research topic due to its capability of detecting and 
preventing the attacks from malicious network users. Data security 
and privacy protection are the two main factors of user’s concerns 
about the cloud technology. Though many techniques on the topics 
in cloud computing have been investigated in both academics and 
industries, data security and privacy protection are becoming more 
important for the future development of cloud computing technology 
in government, industry, and business. Data security and privacy 
protection issues are relevant to both hardware and software in the 
cloud architecture. 
This book is aimed to cover different security techniques and challenges 
from both software and hardware aspects for protecting data in the 
cloud and aims at enhancing the data security and privacy protection 
for the trustworthy cloud environment. Network and computer security 
is critical to the financial health of every organization. Over the past 
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few years, Internet-enabled business, or e-business, has drastically 
improved efficiency and revenue growth. E-business applications 
such as e-commerce, supply-chain management, and remote access 
allow companies to streamline processes, lower operating costs, and 
increase customer satisfaction. Such applications require mission-
critical networks that accommodate voice, video, and data traffic, and 
these networks must be scalable to support increasing numbers of 
users and the need for greater capacity and performance. However, 
as networks enable more and more applications and are available to 
more and more users, they become ever more vulnerable to a wider 
range of security threats. To combat those threats and ensure that 
e-business transactions are not compromised, security technology 
must play a major role in today’s networks. As time goes on, more 
and more new technology will be developed to further improve 
the efficiency of business and communications. At the same time, 
breakthroughs in technology will provide even greater network 
security, therefore, greater piece of mind to operate in cutting edge 
business environments. Provided that enterprises stay on top of this 
emerging technology, as well as the latest security threats and dangers, 
the benefits of networks will most certainly outweigh the risks.



INTRODUCTION

Information security is a set of practices designed to keep personal 
data secure from unauthorized access and alteration during storing 
or transmitting from one place to another. Information security 
is designed and implemented to protect the print, electronic and 
other private, sensitive and personal data from unauthorized 
persons. It is used to protect data from being misused, disclosure, 
destruction, modification, and disruption. Information security, 
sometimes abbreviated to infosec, is a set of practices intended to 
keep data secure from unauthorized access or alterations, both when 
it›s being stored and when it›s being transmitted from one machine or 
physical location to another. You might sometimes see it referred to 
as data security. As knowledge has become one of the 21st century’s 
most important assets, efforts to keep information secure have 
correspondingly become increasingly important.

1
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Information security or infosec is concerned with protecting 
information from unauthorized access. It’s part of information risk 
management and involves preventing or reducing the probability 
of unauthorized access, use, disclosure, disruption, deletion, 
corruption, modification, inspect, or recording. If a security 
incident does occur, information security professionals are 
involved with reducing the negative impact of the incident. Note 
information can be electronic or physical, tangible or intangible. 

While the primary focus of any information security program is 
protecting the confidentiality, integrity and availability (the CIA 
triad) of information, maintaining organizational productivity is 
often an important consideration. This has led the information 
security industry to offer guidance, information security policies, 
and industry standards on passwords, antivirus software, firewalls, 
encryption software, legal liability and security awareness, to 
share best practices.

1.1 INFORMATION SECURITY (INFOSEC)

Information security (infosec) is a set of strategies for managing 
the processes, tools and policies necessary to prevent, detect, 
document and counter threats to digital and non-digital 
information. Infosec responsibilities include establishing a set of 
business processes that will protect information assets regardless 
of how the information is formatted or whether it is in transit, is 
being processed or is at rest in storage.

Many large enterprises employ a dedicated security group to 
implement and maintain the organization’s infosec program. 
Typically, this group is led by a chief information security officer. 
The security group is generally responsible for conducting risk 
management, a process through which vulnerabilities and 
threats to information assets are continuously assessed, and the 
appropriate protective controls are decided on and applied. The 
value of an organization lies within its information its security is 
critical for business operations, as well as retaining credibility and 
earning the trust of clients.



Information Security 3

1.1.1 Importance of Information Security

Information security, sometimes shortened to infosec, is the practice 
of protecting information by mitigating information risks. It is part 
of information risk management. It typically involves preventing 
or at least reducing the probability of unauthorized/inappropriate 
access to data, or the unlawful use, disclosure, disruption, deletion, 
corruption, modification, inspection, recording or devaluation 
of information. It also involves actions intended to reduce the 
adverse impacts of such incidents. Protected information may take 
any form, e.g. electronic or physical, tangible (e.g. paperwork) or 
intangible (e.g. knowledge). Information security’s primary focus 
is the balanced protection of the confidentiality, integrity and 
availability of data (also known as the CIA triad) while maintaining 
a focus on efficient policy implementation, all without hampering 
organization productivity. This is largely achieved through a 
structured risk management process that involves:

• Identifying information and related assets, plus potential 
threats, vulnerabilities and impacts;

• Evaluating the risks;
• Deciding how to address or treat the risks i.e. to avoid, 

mitigate, share or accept them;
• Where risk mitigation is required, selecting or designing 

appropriate security controls and implementing them;
• Monitoring the activities, making adjustments 

as necessary to address any issues, changes and 
improvement opportunities.

To standardize this discipline, academics and professionals 
collaborate to offer guidance, policies, and industry standards 
on password, antivirus software, firewall, encryption software, 
legal liability, security awareness and training, and so forth. This 
standardization may be further driven by a wide variety of laws 
and regulations that affect how data is accessed, processed, stored, 
transferred and destroyed. However, the implementation of any 
standards and guidance within an entity may have limited effect 
if a culture of continual improvement is not adopted.
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1.1.2 Principles of Information Security

The basic components of information security are most often 
summed up by the so-called CIA triad: confidentiality, integrity, 
and availability.

•	 Confidentiality is perhaps the element of the triad that 
most immediately comes to mind when you think of 
information security. Data is confidential when only 
those people who are authorized to access it can do so; 
to ensure confidentiality, you need to be able to identify 
who is trying to access data and block attempts by 
those without authorization. Passwords, encryption, 
authentication, and defense against penetration attacks 
are all techniques designed to ensure confidentiality.

•	 Integrity means maintaining data in its correct state and 
preventing it from being improperly modified, either 
by accident or maliciously. Many of the techniques that 
ensure confidentiality will also protect data integrity—
after all, a hacker cannot change data they can’t access—
but there are other tools that help provide a defense of 
integrity in depth: checksums can help you verify data 
integrity, for instance, and version control software and 
frequent backups can help you restore data to a correct 
state if need be. Integrity also covers the concept of non-
repudiation: you must be able to prove that you’ve 
maintained the integrity of your data, especially in legal 
contexts.

•	 Availability is the mirror image of confidentiality: while 
you need to make sure that your data can›t be accessed by 
unauthorized users, you also need to ensure that it can be 
accessed by those who have the proper permissions. 
Ensuring data availability means matching network 
and computing resources to the volume of data access 
you expect and implementing a good backup policy for 
disaster recovery purposes.



Information Security 5

Apart from this there is one more principle that governs information 
security programs. This is Non repudiation.

•	 Non	 repudiation – means one party cannot deny 
receiving a message or a transaction nor can the other 
party deny sending a message or a transaction. For 
example in cryptography it is sufficient to show that 
message matches the digital signature signed with 
sender’s private key and that sender could have a sent a 
message and nobody else could have altered it in transit. 
Data Integrity and Authenticity are pre-requisites for 
Non repudiation.

•	 Authenticity – means verifying that users are who they 
say they are and that each input arriving at destination 
is from a trusted source. This principle if followed 
guarantees the valid and genuine message received 
from a trusted source through a valid transmission. For 
example if take above example sender sends the message 
along with digital signature which was generated using 
the hash value of message and private key. Now at the 
receiver side this digital signature is decrypted using the 
public key generating a hash value and message is again 
hashed to generate the hash value. If the 2 value matches 
then it is known as valid transmission with the authentic 
or we say genuine message received at the recepient side

•	 Accountability – means that it should be possible to trace 
actions of an entity uniquely to that entity. For example 
as we discussed in Integrity section Not every employee 
should be allowed to do changes in other employees data. 
For this there is a separate department in an organization 
that is responsible for making such changes and when 
they receive request for a change then that letter must 
be signed by higher authority for example Director of 
college and person that is allotted that change will be 
able to do change after verifying his bio metrics, thus 
timestamp with the user(doing changes) details get 
recorded. Thus we can say if a change goes like this then 
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it will be possible to trace the actions uniquely to an 
entity.

At the core of Information Security is Information Assurance, 
which means the act of maintaining CIA of information, ensuring 
that information is not compromised in any way when critical 
issues arise. These issues are not limited to natural disasters, 
computer/server malfunctions etc.

Thus, the field of information security has grown and evolved 
significantly in recent years. It offers many areas for specialization, 
including securing networks and allied infrastructure, securing 
applications and databases, security testing, information systems 
auditing, business continuity planning etc.

In an ideal world, your data should always be kept confidential, 
in its correct state, and available; in practice, of course, you often 
need to make choices about which information security principles 
to emphasize, and that requires assessing your data. If you are 
storing sensitive medical information, for instance, you will focus 
on confidentiality, whereas a financial institution might emphasize 
data integrity to ensure that nobody’s bank account is credited or 
debited incorrectly.

Infosec programs are built around the core objectives of the CIA 
triad: maintaining the confidentiality, integrity and availability of 
IT systems and business data. These objectives ensure that sensitive 
information is only disclosed to authorized parties (confidentiality), 
prevent unauthorized modification of data (integrity) and 
guarantee the data can be accessed by authorized parties when 
requested (availability).

The first security consideration, confidentiality, usually requires the 
use of encryption and encryption keys. The second consideration, 
integrity, implies that when data is read back, it will be exactly the 
same as when it was written. (In some cases, it may be necessary 
to send the same data to two different locations in order to protect 
against data corruption at one place.) The third part of the CIA is 
availability. This part of the triad seeks to ensure that new data can 
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be used in a timely manner and backup data can be restored in an 
acceptable recovery time. 

1.1.3 Threats and Threat Responses

Threats to sensitive and private information come in many 
different forms, such as malware and phishing attacks, identity 
theft and ransomware. To deter attackers and mitigate 
vulnerabilities at various points, multiple security controls are 
implemented and coordinated as part of a layered defense in 
depth strategy. This should minimize the impact of an attack. To 
be prepared for a security breach, security groups should have 
an incident response plan (IRP) in place. This should allow them 
to contain and limit the damage, remove the cause and apply 
updated defense controls.

Information security processes and policies typically involve 
physical and digital security measures to protect data from 
unauthorized access, use, replication or destruction. These measures 
can include mantraps, encryption key management, network 
intrusion detection systems, password policies and regulatory 
compliance. A security audit may be conducted to evaluate the 
organization’s ability to maintain secure systems against a set of 
established criteria.

1.1.4 Information security vs. Network Security

In modern enterprise computing infrastructure, data is as likely to 
be in motion as it is to be at rest. This is where network security 
comes in. While technically a subset of cybersecurity, network 
security is primarily concerned with the networking infrastructure 
of the enterprise. It deals with issues such as securing the edge of 
the network; the data transport mechanisms, such as switches and 
routers; and those pieces of technology that provide protection for 
data as it moves between computing nodes. Where cybersecurity 
and network security differ is mostly in the application of security 
planning. A cybersecurity plan without a plan for network security 



Secure Computing8

is incomplete; however, a network security plan can typically 
stand alone.

Jobs in InfoSec

Jobs within the information security field vary in their titles, 
but some common designations include IT chief security officer 
(CSO), chief information security officer (CISO), security engineer, 
information security analyst, security systems administrator and 
IT security consultant.

InfoSec certifications

•	 Certified	 Ethical	 Hacker	 (CEH): This is a vendor-neutral 
certification from the EC-Council, one of the leading 
certification bodies. This security certification, which 
validates how much an individual knows about network 
security, is best suited for a penetration tester role. This 
certification covers more than 270 attacks technologies. 
Prerequisites for this certification include attending 
official training offered by the EC-Council or its affiliates 
and having at least two years of information security-
related experience.

•	 Certified	 Information	 Systems	 Auditor	 (CISA): This 
certification is offered by ISACA, a nonprofit, independent 
association that advocates for professionals involved in 
information security, assurance, risk management and 
governance. The exam certifies the knowledge and skills 
of security professionals. To qualify for this certification, 
candidates must have five years of professional work 
experience related to information systems auditing, 
control or security.

•	 Certified	information	security	manager	(CISM): CISM is an 
advanced certification offered by ISACA that provides 
validation for individuals who have demonstrated the 
in-depth knowledge and experience required to develop 
and manage an enterprise information security program. 
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The certification is aimed at information security 
managers, aspiring managers or IT consultants who 
support information security program management.

•	 GIAC	 Security	 Essentials	 (GSEC): This certification 
created and administered by the Global Information 
Assurance Certification organization is geared toward 
security professionals who want to demonstrate they are 
qualified for IT systems hands-on roles with respect to 
security tasks. Candidates are required to demonstrate 
they understand information security beyond simple 
terminology and concepts.

1.2 CONCEPT OF COMPUTER SECURITY

Computer security, the protection of computer systems and 
information from harm, theft, and unauthorized use. Computer 
hardware is typically protected by the same means used to protect 
other valuable or sensitive equipment, namely, serial numbers, 
doors and locks, and alarms. The protection of information and 
system access, on the other hand, is achieved through other tactics, 
some of them quite complex.

The security precautions related to computer information and 
access address four major threats: (1) theft of data, such as that 
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of military secrets from government computers; (2) vandalism, 
including the destruction of data by a computer virus; (3) 
fraud, such as employees at a bank channeling funds into their 
own accounts; and (4) invasion of privacy, such as the illegal 
accessing of protected personal financial or medical data from a 
large database. The most basic means of protecting a computer 
system against theft, vandalism, invasion of privacy, and other 
irresponsible behaviors is to electronically track and record the 
access to, and activities of, the various users of a computer system. 
This is commonly done by assigning an individual password to 
each person who has access to a system. The computer system 
itself can then automatically track the use of these passwords, 
recording such data as which files were accessed under particular 
passwords and so on. Another security measure is to store a 
system’s data on a separate device, or medium, such as magnetic 
tape or disks, that is normally inaccessible through the computer 
system. Finally, data is often encrypted so that it can be deciphered 
only by holders of a singular encryption key.

Computer security has become increasingly important since 
the late 1960s, when modems (devices that allow computers 
to communicate over telephone lines) were introduced. The 
proliferation of personal computers in the 1980s compounded the 
problem because they enabled hackers to illegally access 
major computer systems from the privacy of their homes. The 
development of advanced security techniques continues to 
diminish such threats, though concurrent refinements in the 
methods of computer crime pose ongoing hazards.

Computer security deals with the protection of computer systems 
and information from harm, theft, and unauthorized use. The 
main reason users get attacked frequently is that they lack 
adequate defenses to keep out intruders, and cybercriminals are 
quick to exploit such weaknesses. Computer security ensures the 
confidentiality, integrity, and availability of your computers and 
their stored data.
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1.2.1 The Challenges of Computer Security

Computer security is both fascinating and complex. Some of the 
reasons follow:

• Computer security is not as simple as it might first 
appear to the novice. The requirements seem to be 
straightforward; indeed, most of the major requirements 
for security services can be given self-explanatory 
one-word labels: confidentiality, authentication, 
nonrepudiation, integrity. But the mechanisms used 
to meet those requirements can be quite complex, and 
understanding them may involve rather subtle reasoning. 

• In developing a particular security mechanism or 
algorithm, one must always consider potential attacks on 
those security features. In many cases, successful attacks 
are designed by looking at the problem in a completely 
different way, therefore exploiting an unexpected 
weakness in the mechanism. 

• Because of point 2, the procedures used to provide 
particular services are often counterintuitive. Typically, 
a security mechanism is complex, and it is not obvious 
from the statement of a particular requirement that 
such elaborate measures are needed. It is only when the 
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various aspects of the threat are considered that elaborate 
security mechanisms make sense. 

• Having designed various security mechanisms, it is 
necessary to decide where to use them. This is true both 
in terms of physical placement (e.g., at what points in 
a network are certain security mechanisms needed) 
and in a logical sense [e.g., at what layer or layers of 
an architecture such as TCP/IP (Transmission Control 
Protocol/Internet Protocol) should mechanisms be 
placed]. 

• Security mechanisms typically involve more than a 
particular algorithm or protocol. They also require that 
participants be in possession of some secret information 
(e.g., an encryption key), which raises questions 
about the creation, distribution, and protection of 
that secret information. There may also be a reliance 
on communications protocols whose behavior may 
complicate the task of developing the security 
mechanism. For example, if the proper functioning of 
the security mechanism requires setting time limits on 
the transit time of a message from sender to receiver, 
then any protocol or network that introduces variable, 
unpredictable delays may render such time limits 
meaningless. 

• Computer security is essentially a battle of wits between 
a perpetrator who tries to find holes and the designer 
or administrator who tries to close them. The great 
advantage that the attacker has is that he or she need 
only find a single weakness while the designer must find 
and eliminate all weaknesses to achieve perfect security. 

• There is a natural tendency on the part of users and 
system managers to perceive little benefit from security 
investment until a security failure occurs. 

• Security requires regular, even constant, monitoring, 
and this is difficult in today’s short-term, overloaded 
environment. 
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• Security is still too often an afterthought to be incorporated 
into a system after the design is complete rather than 
being an integral part of the design process. 

• Many users and even security administrators view 
strong security as an impediment to efficient and user-
friendly operation of an information system or use of 
information.

1.2.2 A Model for Computer Security

Table 1 defines terms and Figure 1, based on [CCPS12a], shows 
the relationship among some of these terms. We start with the 
concept of a system resource, or asset, that users and owners wish 
to protect. The assets of a computer system can be categorized as 
follows:

• Hardware: Including computer systems and other data 
processing, data storage, and data communications 
devices 

• Software: Including the operating system, system 
utilities, and applications. 

• Data: Including files and databases, as well as security-
related data, such as password files. 
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•	 Communication facilities and networks: Local and wide 
area network communication links, bridges, routers, and 
so on.

Table 1. Computer Security Terminology

Adversary (threat agent)
An entity that attacks, or is a threat to, a system.
Attack
An assault on system security that derives from an intelligent threat; that 
is, an intelligent act that is a deliberate attempt (especially in the sense of 
a method or technique) to evade security services and violate the security 
policy of a system.
Countermeasure
An action, device, procedure, or technique that reduces a threat, a vulner-
ability, or an attack by eliminating or preventing it, by minimizing the harm 
it can cause, or by discovering and reporting it so that corrective action can 
be taken.
Risk
An expectation of loss expressed as the probability that a particular threat 
will exploit a particular vulnerability with a particular harmful result.
Security Policy
A set of rules and practices that specify or regulate how a system or orga-
nization provides security services to protect sensitive and critical system 
resources.
System Resource (Asset)
Data contained in an information system; or a service provided by a system; 
or a system capability, such as processing power or communication band-
width; or an item of system equipment (i.e., a system component— hard-
ware, firmware, software, or documentation); or a facility that houses system 
operations and equipment.
Threat
A potential for violation of security, which exists when there is a circum-
stance, capability, action, or event, that could breach security and cause 
harm. That is, a threat is a possible danger that might exploit a vulnerability.
Vulnerability
A flaw or weakness in a system’s design, implementation, or operation and 
management that could be exploited to violate the system’s security policy.
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Figure 1. Security Concepts and Relationships.

In the context of security, our concern is with the vulnerabilities 
of system resources. Lists the following general categories of 
vulnerabilities of a computer system or network asset:

• It can be corrupted, so that it does the wrong thing or 
gives wrong answers. For example, stored data values 
may differ from what they should be because they have 
been improperly modified. 

• It can become leaky. For example, someone who should 
not have access to some or all of the information available 
through the network obtains such access. 

• It can become unavailable or very slow. That is, using the 
system or network becomes impossible or impractical.

Corresponding to the various types of vulnerabilities to a 
system resource are threats that are capable of exploiting those 
vulnerabilities. A threat represents a potential security harm to an 
asset. An attack is a threat that is carried out (threat action) and, if 
successful, leads to an undesirable violation of security, or threat 
consequence. The agent carrying out the attack is referred to as an 
attacker, or threat agent. We can distinguish two types of attacks:

• Active attack: An attempt to alter system resources or 
affect their operation. 

• Passive attack: An attempt to learn or make use of 
information from the system that does not affect system 
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resources. We can also classify attacks based on the origin 
of the attack: 

•	 Inside attack: Initiated by an entity inside the security pe-
rimeter (an “insider”). The insider is authorized to access 
system resources but uses them in a way not approved by 
those who granted the authorization. 

•	 Outside attack: Initiated from outside the perimeter, by an 
unauthorized or illegitimate user of the system (an “out-
sider”). On the Internet, potential outside attackers range 
from amateur pranksters to organized criminals, interna-
tional terrorists, and hostile governments.

Finally, a countermeasure is any means taken to deal with a 
security attack. Ideally, a countermeasure can be devised to 
prevent a particular type of attack from succeeding. When 
prevention is not possible, or fails in some instance, the goal is to 
detect the attack and then recover from the effects of the attack. A 
countermeasure may itself introduce new vulnerabilities. In any 
case, residual vulnerabilities may remain after the imposition of 
countermeasures. Such vulnerabilities may be exploited by threat 
agents representing a residual level of risk to the assets. Owners 
will seek to minimize that risk given other constraints.

1.2.3 Threats, Attacks, and Assets

We look at the types of security threats that must be dealt with, 
and then give some examples of the types of threats that apply to 
different categories of assets.

Threats and Attacks

Table 2, based on RFC 4949, describes four kinds of threat 
consequences and lists the kinds of attacks that result in each 
consequence.
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Table 2. Threat Consequences, and the Types of Threat Actions that 
Cause Each Consequence

Threat Consequence Threat Action (Attack)
Unauthorized Disclosure
A circumstance or event 
whereby an entity gains access 
to data for which the entity is 
not authorized.

Exposure: Sensitive data are directly re-
leased to an unauthorized entity.
Interception: An unauthorized entity 
directly accesses sensitive data traveling 
between authorized sources and destina-
tions.
Inference: A threat action whereby an 
unauthorized entity indirectly accesses 
sensitive data (but not necessarily the data 
contained in the communication) by rea-
soning from characteristics or by-products 
of communications.
Intrusion: An unauthorized entity gains 
access to sensitive data by circumventing a 
system’s security protections.

Deception
A circumstance or event that 
may result in an authorized 
entity receiving false data and 
believing it to be true.

Masquerade: An unauthorized entity gains 
access to a system or performs a malicious 
act by posing as an authorized entity.
Falsification: False data deceive an autho-
rized entity.
Repudiation: An entity deceives another 
by falsely denying responsibility for an act.

Disruption
A circumstance or event that 
interrupts or prevents the 
correct operation of system 
services and functions.

Incapacitation: Prevents or interrupts 
system operation by disabling a system 
component. 
Corruption: Undesirably alters system 
operation by adversely modifying system 
functions or data. 
Obstruction: A threat action that interrupts 
delivery of system services by hindering 
system operation.

Usurpation 
A circumstance or event that 
results in control of system 
services or functions by an 
unauthorized entity.

Misappropriation: An entity assumes 
unauthorized logical or physical control of 
a system resource. 
Misuse: Causes a system component to 
perform a function or service that is detri-
mental to system security.
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Unauthorized disclosure is a threat to confidentiality. The 
following types of attacks can result in this threat consequence:

• Exposure: This can be deliberate, as when an insider 
intentionally releases sensitive information, such as 
credit card numbers, to an outsider. It can also be the 
result of a human, hardware, or software error, which 
results in an entity gaining unauthorized knowledge of 
sensitive data. There have been numerous instances of 
this, such as universities accidentally posting student 
confidential information on the Web.

• Interception: Interception is a common attack in the 
context of communications. On a shared local area 
network (LAN), such as a wireless LAN or a broadcast 
Ethernet, any device attached to the LAN can receive 
a copy of packets intended for another device. On the 
Internet, a determined hacker can gain access to e-mail 
traffic and other data transfers. All of these situations 
create the potential for unauthorized access to data. 

• Inference: An example of inference is known as traffic 
analysis, in which an adversary is able to gain information 
from observing the pattern of traffic on a network, such 
as the amount of traffic between particular pairs of hosts 
on the network. Another example is the inference of 
detailed information from a database by a user who has 
only limited access; this is accomplished by repeated 
queries whose combined results enable inference. 

• Intrusion: An example of intrusion is an adversary gaining 
unauthorized access to sensitive data by overcoming the 
system’s access control protections.

Deception is a threat to either system integrity or data integrity. 
The following types of attacks can result in this threat consequence:

• Masquerade: One example of masquerade is an attempt 
by an unauthorized user to gain access to a system by 
posing as an authorized user; this could happen if the 
unauthorized user has learned another user’s logon 
ID and password. Another example is malicious logic, 
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such as a Trojan horse, that appears to perform a useful 
or desirable function but actually gains unauthorized 
access to system resources or tricks a user into executing 
other malicious logic. 

• Falsification: This refers to the altering or replacing of 
valid data or the introduction of false data into a file or 
database. For example, a student may alter his or her 
grades on a school database. 

• Repudiation: In this case, a user either denies sending 
data or a user denies receiving or possessing the data.

Disruption is a threat to availability or system integrity. The 
following types of attacks can result in this threat consequence:

• Incapacitation: This is an attack on system availability. 
This could occur as a result of physical destruction of or 
damage to system hardware. More typically, malicious 
software, such as Trojan horses, viruses, or worms, could 
operate in such a way as to disable a system or some of 
its services. 

• Corruption: This is an attack on system integrity. 
Malicious software in this context could operate in such 
a way that system resources or services function in an 
unintended manner. Or a user could gain unauthorized 
access to a system and modify some of its functions. An 
example of the latter is a user placing backdoor logic in 
the system to provide subsequent access to a system and 
its resources by other than the usual procedure. 

• Obstruction: One way to obstruct system operation 
is to interfere with communications by disabling 
communication links or altering communication control 
information. Another way is to overload the system 
by placing excess burden on communication traffic or 
processing resources.
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Usurpation is a threat to system integrity. The following types of 
attacks can result in this threat consequence:

• Misappropriation: This can include theft of service. An 
example is a distributed denial of service attack, when 
malicious software is installed on a number of hosts to be 
used as platforms to launch traffic at a target host. In this 
case, the malicious software makes unauthorized use of 
processor and operating system resources. 

• Misuse: Misuse can occur by means of either malicious 
logic or a hacker that has gained unauthorized access to a 
system. In either case, security functions can be disabled 
or thwarted.

Threats and Assets

The assets of a computer system can be categorized as hardware, 
software, data, and communication lines and networks. We briefly 
describe these four categories and relate these to the concepts of 
integrity, confidentiality, and availability introduced (see Figure 2 
and Table 3).

Figure 2. Scope of Computer Security.
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Table 3. Computer and Network Assets, with Examples of Threats

Hardware

A major threat to computer system hardware is the threat to 
availability. Hardware is the most vulnerable to attack and the least 
susceptible to automated controls. Threats include accidental and 
deliberate damage to equipment as well as theft. The proliferation 
of personal computers and workstations and the widespread use 
of LANs increase the potential for losses in this area. Theft of CD-
ROMs and DVDs can lead to loss of confidentiality. Physical and 
administrative security measures are needed to deal with these 
threats.

Software

Software includes the operating system, utilities, and application 
programs. A key threat to software is an attack on availability. 
Software, especially application software, is often easy to delete. 
Software can also be altered or damaged to render it useless. 
Careful software configuration management, which includes 
making backups of the most recent version of software, can 
maintain high availability. A more difficult problem to deal with is 
software modification that results in a program that still functions 
but that behaves differently than before, which is a threat to 
integrity/authenticity. Computer viruses and related attacks fall 
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into this category. A final problem is protection against software 
piracy. Although certain countermeasures are available, by and 
large the problem of unauthorized copying of software has not 
been solved.

Data

Hardware and software security are typically concerns of 
computing center professionals or individual concerns of personal 
computer users. A much more widespread problem is data 
security, which involves files and other forms of data controlled 
by individuals, groups, and business organizations. Security 
concerns with respect to data are broad, encompassing availability, 
secrecy, and integrity. In the case of availability, the concern is with 
the destruction of data files, which can occur either accidentally or 
maliciously.

The obvious concern with secrecy is the unauthorized reading of 
data files or databases, and this area has been the subject of perhaps 
more research and effort than any other area of computer security. 
A less obvious threat to secrecy involves the analysis of data and 
manifests itself in the use of so-called statistical databases, which 
provide summary or aggregate information. Presumably, the 
existence of aggregate information does not threaten the privacy of 
the individuals involved. However, as the use of statistical databases 
grows, there is an increasing potential for disclosure of personal 
information. In essence, characteristics of constituent individuals 
may be identified through careful analysis. For example, if one 
table records the aggregate of the incomes of respondents A, B, 
C, and D and another records the aggregate of the incomes of A, 
B, C, D, and E, the difference between the two aggregates would 
be the income of E. This problem is exacerbated by the increasing 
desire to combine data sets. In many cases, matching several sets 
of data for consistency at different levels of aggregation requires 
access to individual units. Thus, the individual units, which are 
the subject of privacy concerns, are available at various stages in 
the processing of data sets.
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Finally, data integrity is a major concern in most installations. 
Modifications to data files can have consequences ranging from 
minor to disastrous.

1.2.4 Communication Lines and Networks

Network security attacks can be classified as passive attacks and 
active attacks. A passive attack attempts to learn or make use of 
information from the system but does not affect system resources. 
An active attack attempts to alter system resources or affect their 
operation. Passive attacks are in the nature of eavesdropping on, 
or monitoring of, transmissions. The goal of the attacker is to 
obtain information that is being transmitted. Two types of passive 
attacks are the release of message contents and traffic analysis. 
The release of message contents is easily understood. A telephone 
conversation, an electronic mail message, and a transferred file 
may contain sensitive or confidential information. We would 
like to prevent an opponent from learning the contents of these 
transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose 
that we had a way of masking the contents of messages or other 
information traffic so that opponents, even if they captured the 
message, could not extract the information from the message. 
The common technique for masking contents is encryption. If 
we had encryption protection in place, an opponent might still 
be able to observe the pattern of these messages. The opponent 
could determine the location and identity of communicating hosts 
and could observe the frequency and length of messages being 
exchanged. This information might be useful in guessing the 
nature of the communication that was taking place.

Passive attacks are very difficult to detect because they do not 
involve any alteration of the data. Typically, the message traffic 
is sent and received in an apparently normal fashion and neither 
the sender nor receiver is aware that a third party has read the 
messages or observed the traffic pattern. However, it is feasible 
to prevent the success of these attacks, usually by means of 
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encryption. Thus, the emphasis in dealing with passive attacks is 
on prevention rather than detection.

Active attacks involve some modification of the data stream or 
the creation of a false stream and can be subdivided into four 
categories: replay, masquerade, modification of messages, and 
denial of service. Replay involves the passive capture of a data unit 
and its subsequent retransmission to produce an unauthorized 
effect. A masquerade takes place when one entity pretends to be a 
different entity. A masquerade attack usually includes one of the 
other forms of active attack. For example, authentication sequences 
can be captured and replayed after a valid authentication sequence 
has taken place, thus enabling an authorized entity with few 
privileges to obtain extra privileges by impersonating an entity 
that has those privileges.

Modification of messages simply means that some portion of 
a legitimate message is altered, or that messages are delayed 
or reordered, to produce an unauthorized effect. For example, 
a message stating, “Allow John Smith to read confidential 
file accounts” is modified to say, “Allow Fred Brown to read 
confidential file accounts.”

The denial of service prevents or inhibits the normal use or 
management of communication facilities. This attack may have a 
specific target; for example, an entity may suppress all messages 
directed to a particular destination (e.g., the security audit 
service). Another form of service denial is the disruption of an 
entire network, either by disabling the network or by overloading 
it with messages so as to degrade performance.

Active attacks present the opposite characteristics of passive 
attacks. Whereas passive attacks are difficult to detect, measures 
are available to prevent their success. On the other hand, it is quite 
difficult to prevent active attacks absolutely, because to do so 
would require physical protection of all communication facilities 
and paths at all times. Instead, the goal is to detect them and to 
recover from any disruption or delays caused by them. Because 
the detection has a deterrent effect, it may also contribute to 
prevention.
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1.2.5 Security Functional Requirements

There are a number of ways of classifying and characterizing the 
countermeasures that may be used to reduce vulnerabilities and 
deal with threats to system assets. We view countermeasures in 
terms of functional requirements, and we follow the classification 
defined in FIPS 200 (Minimum Security Requirements 
for Federal Information and Information Systems). This standard 
enumerates 17 security-related areas with regard to protecting the 
confidentiality, integrity, and availability of information systems 
and the information processed, stored, and transmitted by those 
systems. The areas are defined in Table 4.

The requirements listed in FIPS 200 encompass a wide range of 
countermeasures to security vulnerabilities and threats. Roughly, 
we can divide these countermeasures into two categories: 
those that require computer security technical measures, either 
hardware or software, or both; and those that are fundamentally 
management issues.

Each of the functional areas may involve both computer security 
technical measures and management measures. Functional areas 
that primarily require computer security technical measures 
include access control, identification and authentication, system 
and communication protection, and system and information 
integrity. Functional areas that primarily involve management 
controls and procedures include awareness and training; audit 
and accountability; certification, accreditation, and security 
assessments; contingency planning; maintenance; physical and 
environmental protection; planning; personnel security; risk 
assessment; and systems and services acquisition. Functional 
areas that overlap computer security technical measures and 
management controls include configuration management, 
incident response, and media protection.

Note that the majority of the functional requirements areas in 
FIPS 200 are either primarily issues of management or at least 
have a significant management component, as opposed to purely 
software or hardware solutions. But as one computer security 
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expert observed, “If you think technology can solve your security 
problems, then you don’t understand the problems and you don’t 
technology”.

Table 4. Security Requirements

Access	Control: Limit information system access to authorized users, processes acting 
on behalf of authorized users, or devices (including other information systems) and to 
the types of transactions and functions that authorized users are permitted to exercise.
Awareness	and	Training: (i) Ensure that managers and users of organizational infor-
mation systems are made aware of the security risks associated with their activities 
and of the applicable laws, regulation, and policies related to the security of organi-
zational information systems; and (ii) ensure that personnel are adequately trained to 
carry out their assigned information security-related duties and responsibilities.
Audit	 and	Accountability: (i) Create, protect, and retain information system audit 
records to the extent needed to enable the monitoring, analysis, investigation, and 
reporting of unlawful, unauthorized, or inappropriate information system activity; 
and (ii) ensure that the actions of individual information system users can be uniquely 
traced to those users so they can be held accountable for their actions.
Certification,	Accreditation,	and	Security	Assessments: (i) Periodically assess the se-
curity controls in organizational information systems to determine if the controls are 
effective in their application; (ii) develop and implement plans of action designed to cor-
rect deficiencies and reduce or eliminate vulnerabilities in organizational information 
systems; (iii) authorize the operation of organizational information systems and any as-
sociated information system connections; and (iv) monitor information system security 
controls on an ongoing basis to ensure the continued effectiveness of the controls.
Configuration	Management: (i) Establish and maintain baseline configurations and 
inventories of organizational information systems (including hardware, software, 
firmware, and documentation) throughout the respective system development life 
cycles; and (ii) establish and enforce security configuration settings for information 
technology products employed in organizational information systems.
Contingency	Planning: Establish, maintain, and implement plans for emergency re-
sponse, backup operations, and postdisaster recovery for organizational information 
systems to ensure the availability of critical information resources and continuity of 
operations in emergency situations.
Identification and Authentication: Identify information system users, processes acting 
on behalf of users, or devices, and authenticate (or verify) the identities of those users, 
processes, or devices, as a prerequisite to allowing access to organizational informa-
tion systems.
Incident	Response: (i) Establish an operational incident-handling capability for orga-
nizational information systems that includes adequate preparation, detection, analy-
sis, containment, recovery, and user-response activities; and (ii) track, document, and 
report incidents to appropriate organizational officials and/or authorities.
Maintenance: (i) Perform periodic and timely maintenance on organizational infor-
mation systems; and (ii) provide effective controls on the tools, techniques, mecha-
nisms, and personnel used to conduct information system maintenance.
Media	Protection: (i) Protect information system media, both paper and digital; (ii) 
limit access to information on information system media to authorized users; and 
(iii) sanitize or destroy information system media before disposal or release for reuse.
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Physical	and	Environmental	Protection: (i) Limit physical access to information sys-
tems, equipment, and the respective operating environments to authorized individu-
als; (ii) protect the physical plant and support infrastructure for information systems; 
(iii) provide supporting utilities for information systems; (iv) protect information 
systems against environmental hazards; and (v) provide appropriate environmental 
controls in facilities containing information systems. 
Planning: Develop, document, periodically update, and implement security plans 
for organizational information systems that describe the security controls in place or 
planned for the information systems and the rules of behavior for individuals access-
ing the information systems.
Personnel	Security: (i) Ensure that individuals occupying positions of responsibility 
within organizations (including third-party service providers) are trustworthy and 
meet established security criteria for those positions; (ii) ensure that organizational in-
formation and information systems are protected during and after personnel actions 
such as terminations and transfers; and (iii) employ formal sanctions for personnel 
failing to comply with organizational security policies and procedures. 
Risk	Assessment: Periodically assess the risk to organizational operations (including 
mission, functions, image, or reputation), organizational assets, and individuals, re-
sulting from the operation of organizational information systems and the associated 
processing, storage, or transmission of organizational information. 
Systems	and	Services	Acquisition: (i) Allocate sufficient resources to adequately pro-
tect organizational information systems; (ii) employ system development life cycle 
processes that incorporate information security considerations; (iii) employ software 
usage and installation restrictions; and (iv) ensure that thirdparty providers employ 
adequate security measures to protect information, applications, and/or services out-
sourced from the organization. 
System	and	Communications	Protection: (i) Monitor, control, and protect organiza-
tional communications (i.e., information transmitted or received by organizational 
information systems) at the external boundaries and key internal boundaries of the 
information systems; and (ii) employ architectural designs, software development 
techniques, and systems engineering principles that promote effective information 
security within organizational information systems. 
System	and	Information	Integrity: (i) Identify, report, and correct information and 
information system flaws in a timely manner; (ii) provide protection from malicious 
code at appropriate locations within organizational information systems; and (iii) 
monitor information system security alerts and advisories and take appropriate ac-
tions in response.

1.3 FUNDAMENTAL SECURITY DESIGN  
PRINCIPLES

Despite years of research and development, it has not been possible 
to develop security design and implementation techniques that 
systematically exclude security flaws and prevent all unauthorized 
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actions. In the absence of such foolproof techniques, it is useful to 
have a set of widely agreed design principles that can guide the 
development of protection mechanisms. The National Centers of 
Academic Excellence in Information Assurance/Cyber Defense, 
which is jointly sponsored by the U.S. National Security Agency 
and the U. S. Department of Homeland Security, list the following 
as fundamental security design principles:

• Economy of mechanism
• Fail-safe defaults
• Complete mediation
• Open design
• Separation of privilege
• Least privilege
• Least common mechanism
• Psychological acceptability
• Isolation
• Encapsulation
• Modularity
• Layering
• Least astonishment

Economy	of	mechanism means that the design of security measures 
embodied in both hardware and software should be as simple and 
small as possible. The motivation for this principle is that relatively 
simple, small design is easier to test and verify thoroughly. With 
a complex design, there are many more opportunities for an 
adversary to discover subtle weaknesses to exploit that may be 
difficult to spot ahead of time. The more complex the mechanism, 
the more likely it is to possess exploitable flaws. Simple mechanisms 
tend to have fewer exploitable flaws and require less maintenance. 
Furthermore, because configuration management issues are 
simplified, updating or replacing a simple mechanism becomes a 
less intensive process. In practice, this is perhaps the most difficult 
principle to honor. There is a constant demand for new features 
in both hardware and software, complicating the security design 
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task. The best that can be done is to keep this principle in mind 
during system design to try to eliminate unnecessary complexity.

Fail-safe	default means that access decisions should be based on 
permission rather than exclusion. That is, the default situation 
is lack of access, and the protection scheme identifies conditions 
under which access is permitted. This approach exhibits a better 
failure mode than the alternative approach, where the default is to 
permit access. A design or implementation mistake in a mechanism 
that gives explicit permission tends to fail by refusing permission, 
a safe situation that can be quickly detected. On the other hand, a 
design or implementation mistake in a mechanism that explicitly 
excludes access tends to fail by allowing access, a failure that may 
long go unnoticed in normal use. For example, most file access 
systems work on this principle and virtually all protected services 
on client/server systems work this way.

Complete	 mediation means that every access must be checked 
against the access control mechanism. Systems should not rely 
on access decisions retrieved from a cache. In a system designed 
to operate continuously, this principle requires that, if access 
decisions are remembered for future use, careful consideration be 
given to how changes in authority are propagated into such local 
memories. File access systems appear to provide an example of a 
system that complies with this principle. However, typically, once 
a user has opened a file, no check is made to see of permissions 
change. To fully implement complete mediation, every time a 
user reads a field or record in a file, or a data item in a database, 
the system must exercise access control. This resource-intensive 
approach is rarely used.

Open	design means that the design of a security mechanism should 
be open rather than secret. For example, although encryption keys 
must be secret, encryption algorithms should be open to public 
scrutiny. The algorithms can then be reviewed by many experts, 
and users can therefore have high confidence in them. This is 
the philosophy behind the National Institute of Standards and 
Technology (NIST) program of standardizing encryption and 
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hash algorithms, and has led to the widespread adoption of NIST-
approved algorithms.

Separation	 of	 privilege is defined in [SALT75] as a practice in 
which multiple privilege attributes are required to achieve access 
to a restricted resource. A good example of this is multifactor user 
authentication, which requires the use of multiple techniques, 
such as a password and a smart card, to authorize a user. The 
term is also now applied to any technique in which a program is 
divided into parts that are limited to the specific privileges they 
require in order to perform a specific task. This is used to mitigate 
the potential damage of a computer security attack. One example 
of this latter interpretation of the principle is removing high 
privilege operations to another process and running that process 
with the higher privileges required to perform its tasks. Day-to-
day interfaces are executed in a lower privileged process.

Least	 privilege means that every process and every user of the 
system should operate using the least set of privileges necessary to 
perform the task. A good example of the use of this principle is role-
based access control. The system security policy can identify and 
define the various roles of users or processes. Each role is assigned 
only those permissions needed to perform its functions. Each 
permission specifies a permitted access to a particular resource 
(such as read and write access to a specified file or directory, and 
connect access to a given host and port). Unless permission is 
granted explicitly, the user or process should not be able to access 
the protected resource. More generally, any access control system 
should allow each user only the privileges that are authorized 
for that user. There is also a temporal aspect to the least privilege 
principle. For example, system programs or administrators who 
have special privileges should have those privileges only when 
necessary; when they are doing ordinary activities the privileges 
should be withdrawn. Leaving them in place just opens the door 
to accidents.

Least	common	mechanism means that the design should minimize 
the functions shared by different users, providing mutual 
security. This principle helps reduce the number of unintended 
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communication paths and reduces the amount of hardware and 
software on which all users depend, thus making it easier to verify 
if there are any undesirable security implications.

Psychological	acceptability implies that the security mechanisms 
should not interfere unduly with the work of users, while at the 
same time meeting the needs of those who authorize access. 
If security mechanisms hinder the usability or accessibility of 
resources, users may opt to turn off those mechanisms. Where 
possible, security mechanisms should be transparent to the users 
of the system or at most introduce minimal obstruction. In addition 
to not being intrusive or burdensome, security procedures must 
reflect the user’s mental model of protection. If the protection 
procedures do not make sense to the user or if the user must 
translate his image of protection into a substantially different 
protocol, the user is likely to make errors.

Isolation is a principle that applies in three contexts. First, public 
access systems should be isolated from critical resources (data, 
processes, etc.) to prevent disclosure or tampering. In cases where 
the sensitivity or criticality of the information is high, organizations 
may want to limit the number of systems on which that data are 
stored and isolate them, either physically or logically. Physical 
isolation may include ensuring that no physical connection exists 
between an organization’s public access information resources and 
an organization’s critical information. When implementing logical 
isolation solutions, layers of security services and mechanisms 
should be established between public systems and secure systems 
responsible for protecting critical resources. Second, the processes 
and files of individual users should be isolated from one another 
except where it is explicitly desired. All modern operating systems 
provide facilities for such isolation, so that individual users have 
separate, isolated process space, memory space, and file space, 
with protections for preventing unauthorized access. And finally, 
security mechanisms should be isolated in the sense of preventing 
access to those mechanisms. For example, logical access control 
may provide a means of isolating cryptographic software from 
other parts of the host system and for protecting cryptographic 
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software from tampering and the keys from replacement or 
disclosure.

Encapsulation can be viewed as a specific form of isolation 
based on object oriented functionality. Protection is provided by 
encapsulating a collection of procedures and data objects in a 
domain of its own so that the internal structure of a data object is 
accessible only to the procedures of the protected subsystem and 
the procedures may be called only at designated domain entry 
points.

Modularity in the context of security refers both to the 
development of security functions as separate, protected modules 
and to the use of a modular architecture for mechanism design 
and implementation. With respect to the use of separate security 
modules, the design goal here is to provide common security 
functions and services, such as cryptographic functions, as common 
modules. For example, numerous protocols and applications make 
use of cryptographic functions. Rather than implementing such 
functions in each protocol or application, a more secure design is 
provided by developing a common cryptographic module that can 
be invoked by numerous protocols and applications. The design 
and implementation effort can then focus on the secure design 
and implementation of a single cryptographic module, including 
mechanisms to protect the module from tampering. With respect 
to the use of a modular architecture, each security mechanism 
should be able to support migration to new technology or upgrade 
of new features without requiring an entire system redesign. The 
security design should be modular so that individual parts of 
the security design can be upgraded without the requirement to 
modify the entire system.

Layering	 refers to the use of multiple, overlapping protection 
approaches addressing the people, technology, and operational 
aspects of information systems. By using multiple, overlapping 
protection approaches, the failure or circumvention of any 
individual protection approach will not leave the system 
unprotected.
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Least	 astonishment means that a program or user interface 
should always respond in the way that is least likely to astonish 
the user. For example, the mechanism for authorization should 
be transparent enough to a user that the user has a good intuitive 
understanding of how the security goals map to the provided 
security mechanism.

1.3.1 Attack Surfaces and Attack Trees

We provided an overview of the spectrum of security threats and 
attacks facing computer and network systems. We elaborate on 
two concepts that are useful in evaluating and classifying threats: 
attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable 
vulnerabilities in a system. Examples of attack surfaces are the 
following:

• Open ports on outward facing Web and other servers, 
and code listening on those ports 

• Services available on the inside of a firewall 
• Code that processes incoming data, email, XML, office 

documents, and industry specific custom data exchange 
formats 

• Interfaces, SQL, and Web forms 
• An employee with access to sensitive information 

vulnerable to a social engineering attack

Attack surfaces can be categorized in the following way:
• Network attack surface: This category refers to 

vulnerabilities over an enterprise network, wide-area 
network, or the Internet. Included in this category are 
network protocol vulnerabilities, such as those used for 
a denial-of-service attack, disruption of communications 
links, and various forms of intruder attacks. 
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• Software attack surface: This refers to vulnerabilities in 
application, utility, or operating system code. A particular 
focus in this category is Web server software. 

• Human attack surface: This category refers to 
vulnerabilities created by personnel or outsiders, such 
as social engineering, human error, and trusted insiders.

An attack surface analysis is a useful technique for assessing the 
scale and severity of threats to a system. A systematic analysis of 
points of vulnerability makes developers and security analysts 
aware of where security mechanisms are required. Once an 
attack surface is defined, designers may be able to find ways to 
make the surface smaller, thus making the task of the adversary 
more difficult. The attack surface also provides guidance on 
setting priorities for testing, strengthening security measures, or 
modifying the service or application.

As illustrated in Figure 3, the use of layering, or defense in depth, 
and attack surface reduction complement each other in mitigating 
security risk.

Figure 3. Defense in Depth and Attack Surface.
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Attack Trees

An attack tree is a branching, hierarchical data structure that 
represents a set of potential techniques for exploiting security 
vulnerabilities. The security incident that is the goal of the attack 
is represented as the root node of the tree, and the ways that an 
attacker could reach that goal are iteratively and incrementally 
represented as branches and subnodes of the tree. Each subnode 
defines a subgoal, and each subgoal may have its own set of 
further subgoals, etc. The final nodes on the paths outward from 
the root, i.e., the leaf nodes, represent different ways to initiate 
an attack. Each node other than a leaf is either an AND-node or 
an OR-node. To achieve the goal represented by an AND-node, 
the subgoals represented by all of that node’s subnodes must be 
achieved; and for an OR-node, at least one of the subgoals must 
be achieved. Branches can be labeled with values representing 
difficulty, cost, or other attack attributes, so that alternative attacks 
can be compared.

The motivation for the use of attack trees is to effectively exploit 
the information available on attack patterns. Organizations 
such as CERT publish security advisories that have enabled the 
development of a body of knowledge about both general attack 
strategies and specific attack patterns. Security analysts can use 
the attack tree to document security attacks in a structured form 
that reveals key vulnerabilities. The attack tree can guide both the 
design of systems and applications, and the choice and strength of 
countermeasures.

Figure 4, is an example of an attack tree analysis for an Internet 
banking authentication application. The root of the tree is the 
objective of the attacker, which is to compromise a user’s account. 
The shaded boxes on the tree are the leaf nodes, which represent 
events that comprise the attacks. The white boxes are categories 
which consist of one or more specific attack events (leaf nodes). 
Note that in this tree, all the nodes other than leaf nodes are OR-
nodes. The analysis used to generate this tree considered the three 
components involved in authentication:
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• User terminal and user (UT/U): These attacks target 
the user equipment, including the tokens that may 
be involved, such as smartcards or other password 
generators, as well as the actions of the user. 

• Communications channel (CC): This type of attack 
focuses on communication links. 

• Internet banking server (IBS): These types of attacks are 
offline attack against the servers that host the Internet 
banking application.

Figure 4. An Attack Tree for Internet Banking Authentication.

Five overall attack strategies can be identified, each of which 
exploits one or more of the three components. The five strategies 
are as follows:

• User credential compromise: This strategy can be used 
against many elements of the attack surface. There are 
procedural attacks, such as monitoring a user’s action to 
observe a PIN or other credential, or theft of the user’s 



Information Security 37

token or handwritten notes. An adversary may also 
compromise token information using a variety of token 
attack tools, such as hacking the smartcard or using a 
brute force approach to guess the PIN. Another possible 
strategy is to embed malicious software to compromise 
the user’s login and password. An adversary may 
also attempt to obtain credential information via the 
communication channel (sniffing). Finally, an adversary 
may use various means to engage in communication 
with the target user, as shown in Figure 4.

• Injection of commands: In this type of attack, the attacker 
is able to intercept communication between the UT 
and the IBS. Various schemes can be used to be able 
to impersonate the valid user and so gain access to the 
banking system. 

• User credential guessing: It is reported in [HILT06] that 
brute force attacks against some banking authentication 
schemes are feasible by sending random usernames and 
passwords. The attack mechanism is based on distributed 
zombie personal computers, hosting automated 
programs for username- or password-based calculation.

• Security policy violation: For example, violating the 
bank’s security policy in combination with weak access 
control and logging mechanisms, an employee may cause 
an internal security incident and expose a customer’s 
account. 

• Use of known authenticated session: This type of attack 
persuades or forces the user to connect to the IBS with 
a preset session ID. Once the user authenticates to the 
server, the attacker may utilize the known session ID to 
send packets to the IBS, spoofing the user’s identity.

Figure 4 provides a thorough view of the different types of attacks 
on an Internet banking authentication application. Using this tree 
as a starting point, security analysts can assess the risk of each 
attack and, using the design principles outlined in the preceding 
section, design a comprehensive security facility.
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1.4 COMPUTER SECURITY STRATEGY

We conclude this chapter with a brief look at the overall strategy 
for providing computer security. Suggests that a comprehensive 
security strategy involves three aspects:

• Specification/policy: What is the security scheme 
supposed to do? 

• Implementation/mechanisms: How does it do it? 
• Correctness/assurance: Does it really work?

1.4.1 Security Policy

The first step in devising security services and mechanisms is to 
develop a security policy. Those involved with computer security 
use the term security policy in various ways. At the least, a security 
policy is an informal description of desired system behavior. 
Such informal policies may reference requirements for security, 
integrity, and availability. More usefully, a security policy is a 
formal statement of rules and practices that specify or regulate 
how a system or organization provides security services to protect 
sensitive and critical system resources. Such a formal security 
policy lends itself to being enforced by the system’s technical 
controls as well as its management and operational controls.

In developing a security policy, a security manager needs to 
consider the following factors:

• The value of the assets being protected
• The vulnerabilities of the system
• Potential threats and the likelihood of attacks

Further, the manager must consider the following trade-offs:
• Ease of use versus security: Virtually all security 

measures involve some penalty in the area of ease of 
use. The following are some examples. Access control 
mechanisms require users to remember passwords and 
perhaps perform other access control actions. Firewalls 
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and other network security measures may reduce 
available transmission capacity or slow response time. 
Virus-checking software reduces available processing 
power and introduces the possibility of system crashes 
or malfunctions due to improper interaction between the 
security software and the operating system.

• Cost of security versus cost of failure and recovery: In 
addition to ease of use and performance costs, there are 
direct monetary costs in implementing and maintaining 
security measures. All of these costs must be balanced 
against the cost of security failure and recovery if certain 
security measures are lacking. The cost of security failure 
and recovery must take into account not only the value 
of the assets being protected and the damages resulting 
from a security violation, but also the risk, which is 
the probability that a particular threat will exploit a 
particular vulnerability with a particular harmful result.

1.4.2 Security Implementation

Security implementation involves four complementary courses of 
action:

• Prevention: An ideal security scheme is one in which 
no attack is successful. Although this is not practical 
in all cases, there is a wide range of threats in which 
prevention is a reasonable goal. For example, consider 
the transmission of encrypted data. If a secure encryption 
algorithm is used, and if measures are in place to prevent 
unauthorized access to encryption keys, then attacks on 
confidentiality of the transmitted data will be prevented.

• Detection: In a number of cases, absolute protection is not 
feasible, but it is practical to detect security attacks. For 
example, there are intrusion detection systems designed 
to detect the presence of unauthorized individuals 
logged onto a system. Another example is detection 
of a denial of service attack, in which communications 
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or processing resources are consumed so that they are 
unavailable to legitimate users. 

• Response: If security mechanisms detect an ongoing 
attack, such as a denial of service attack, the system may 
be able to respond in such a way as to halt the attack and 
prevent further damage. 

• Recovery: An example of recovery is the use of backup 
systems, so that if data integrity is compromised, a prior, 
correct copy of the data can be reloaded.

1.4.3 Assurance and Evaluation

Those who are “consumers” of computer security services and 
mechanisms (e.g., system managers, vendors, customers, and end 
users) desire a belief that the security measures in place work as 
intended. That is, security consumers want to feel that the security 
infrastructure of their systems meet security requirements and 
enforce security policies. These considerations bring us to the 
concepts of assurance and evaluation.

Assurance as the degree of confidence one has that the security 
measures, both technical and operational, work as intended 
to protect the system and the information it processes. This 
encompasses both system design and system implementation. 
Thus, assurance deals with the questions, “Does the security 
system design meet its requirements?” and “Does the security 
system implementation meet its specifications?” Note that 
assurance is expressed as a degree of confidence, not in terms of a 
formal proof that a design or implementation is correct. The state 
of the art in proving designs and implementations is such that it 
is not possible to provide absolute proof. Much work has been 
done in developing formal models that define requirements and 
characterize designs and implementations, together with logical 
and mathematical techniques for addressing these issues. But 
assurance is still a matter of degree.

Evaluation is the process of examining a computer product or 
system with respect to certain criteria. Evaluation involves testing 
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and may also involve formal analytic or mathematical techniques. 
The central thrust of work in this area is the development of 
evaluation criteria that can be applied to any security system 
(encompassing security services and mechanisms) and that are 
broadly supported for making product comparisons.
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INTRODUCTION

Cryptography is a method of protecting information and 
communications through the use of codes, so that only those 
for whom the information is intended can read and process it. 
The prefix “crypt-” means “hidden” or “vault” -- and the suffix 
“-graphy” stands for “writing.”

In computer science, cryptography refers to secure information and 
communication techniques derived from mathematical concepts 
and a set of rule-based calculations called algorithms, to transform 
messages in ways that are hard to decipher. These deterministic 
algorithms are used for cryptographic key generation, digital 
signing, verification to protect data privacy, web browsing on the 
internet, and confidential communications such as credit card 
transactions and email.

2
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2.1 MEANING OF CRYPTOGRAPHY

Cryptography is the study of secure communications techniques 
that allow only the sender and intended recipient of a message to 
view its contents. The term is derived from the Greek word kryptos, 
which means hidden. It is closely associated to encryption, which is 
the act of scrambling ordinary text into what’s known as ciphertext 
and then back again upon arrival. In addition, cryptography also 
covers the obfuscation of information in images using techniques 
such as microdots or merging.

Cryptography is the method of transmitting secured data and 
communications via few codes so that only the destined person 
knows about the actual information that is transmitted. This form 
of process intercepts unauthorized accessibility for the data. So, 
in clear the name itself indicates that “crypt” refers to “hidden” 
to “writing”. Encoding of information in cryptography follows 
mathematical hypotheses and few calculations described as 
algorithms. The encoded data is transmitted so that it makes it 
difficult to find the original data. These sets of rules are utilized 
in the procedures of digital signing, authentication to secure 
data, cryptographic key development and to safeguard all your 
financial transactions. Mostly, cryptography is followed by the 
organizations to go with the objectives of:

Privacy – The transmitted data should not be known by external 
parties except for the intended individual.
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Reliability – the data cannot be modified in storage or transfer 
between the sender and the destined receiver having no kind of 
modification.

Non-repudiation – Once the data is transmitted, the sender has 
no chance to deny it in the later phases.

Authentication – Both the sender and receiver need to 
circumstantiate their own identities about the transmitted and 
received data.

2.1.1 History of Cryptography

This is all very abstract, and a good way to understand the 
specifics of what we’re talking about is to look at one of the 
earliest known forms of cryptography. It’s known as the Caesar 
cipher,	 because Julius Caesar used it for his confidential 
correspondence; as his biographer Suetonius described it, “if he 
had anything confidential to say, he wrote it in cipher, that is, by 
so changing the order of the letters of the alphabet ... If anyone 
wishes to decipher these, and get at their meaning, he must 
substitute the fourth letter of the alphabet, namely D, for A, and 
so with the others.”
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Suetonius’s description can be broken down into the two 
cryptographic elements we’ve discussed, the algorithm and the 
key. The algorithm here is simple: each letter is replaced by another 
letter from later in the alphabet. The key is how many letters later 
in the alphabet you need to go to create your ciphertext. It’s three in 
the version of the cipher Suetonius describes, but obviously other 
variations are possible — with a key of four, A would become E, 
for instance.

A few things should be clear from this example. Encryption like 
this offers a fairly simple way to secretly send any message you 
like. Contrast that with a system of code phrases where, say, “Let’s 
order pizza” means “I’m going to invade Gaul.”

  To translate that sort of code, people at both ends of the 
communication chain would need a book of code phrases, and 
you’d have no way to encode new phrases you hadn’t thought of 
in advance. With the Caesar cipher, you can encrypt any message 
you can think of. The tricky part is that everyone communicating 
needs to know the algorithm and the key in advance, though it’s 
much easier to safely pass on and keep that information than it 
would be with a complex code book.

The Caesar cipher is what’s known as a substitution cipher, because 
each letter is substituted with another one; other variations on 
this, then, would substitute letter blocks or whole words. For most 
of history, cryptography consisted of various substitution ciphers 
deployed to keep government and military communications 
secure. 

Medieval Arab mathematicians pushed the science forward, 
particularly the art of decryption — once researchers realized that 
certain letters in a given language are more common than others, 
it becomes easier to recognize patterns, for instance. 

But most pre-modern encryption is incredibly simple by 
modern standards, for the obvious reason that, before the 
advent of computers, it was difficult to perform mathematical 
transformations quickly enough to make encryption or decryption 
worthwhile.
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In fact, the development of computers and advances in 
cryptography went hand in hand. Charles Babbage, whose idea 
for the Difference Engine presaged modern computers, was 
also interested in cryptography. During World War II, the Germans 
used the electromechanical Enigma machine to encrypt messages 
— and, famously, Alan Turing led a team in Britain that developed 
a similar machine to break the code, in the process laying some of 
the groundwork for the first modern computers. Cryptography 
got radically more complex as computers became available, but 
remained the province of spies and generals for several more 
decades. However, that began to change in the 1960s.

2.1.2 Types of Cryptography

Cryptography is further classified into three different categories:
• Symmetric Key Cryptography (Private/Secret Key 

Cryptography)
• Asymmetric Key Cryptography (Public Key 

Cryptography)
• Hash Function

Symmetric Key Cryptography

Symmetric key cryptography is a type of cryptography in which 
the single common key is used by both sender and receiver for 
the purpose of encryption and decryption of a message. This 
system is also called private or secret key cryptography and AES 
(Advanced Encryption System) is the most widely uses symmetric 
key cryptography.

The symmetric key system has one major drawback that the two 
parties must somehow exchange the key in a secure way as there 
is only one single key for encryption as well as decryption process.

Types: AES (Advanced Encryption Standard), DES, Triple DES, 
RC2, RC4, RC5, IDEA, Blowfish, Stream cipher, Block cipher, etc. 
are the types of symmetric key cryptography.
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Asymmetric Key Cryptography

Asymmetric Key Cryptography is completely different and a 
more secure approach than symmetric key cryptography. In this 
system, every user uses two keys or a pair of keys (private key and 
public key) for encryption and decryption process. Private key is 
kept as a secret with every user and public key is distributed over 
the network so if anyone wants to send message to any user can 
use those public keys.

Either of the key can be used to encrypt the message and the one 
left is used for decryption purpose. Asymmetric key cryptography 
is also known as public key cryptography and is more secure 
than symmetric key. RSA is the most popular and widely used 
asymmetric algorithm.

Types: RSA, DSA, PKCs, Elliptic Curve techniques, etc. are the 
common types of asymmetric key cryptography.
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Hash Function

A Hash function is a cryptography algorithm that takes input of 
arbitrary length and gives the output in fixed length. The hash 
function is also considered as a mathematical equation that takes 
seed (numeric input) and produce the output that is called hash 
or message digest. This system operates in one-way manner and 
does not require any key. Also, it is considered as the building 
blocks of modern cryptography.

The hash function works in a way that it operates on two blocks 
of fixed length binary data and then generate a hash code. There 
are different rounds of hashing functions and each round takes an 
input of combination of most recent block and the output of the 
last round.

Types: Some popular hash functions are Message Digest 5 (MD5), 
SHA (Secure Hash Algorithm), RIPEMD, and Whirlpool. MD5 is 
the most commonly used hash function to encrypt and protect 
your passwords and private data.

2.2 PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography is a radical departure from all that 
has gone before. Right up to modern times all cryptographic 
systems have been based on the elementary tools of substitution 
and permutation. However, public-key algorithms are based on 
mathematical functions and are asymmetric in nature, involving 
the use of two keys, as opposed to conventional single key 
encryption. Several misconceptions are held about p-k:
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1. That p-k encryption is more secure from cryptanalysis 
than conventional encryption. In fact the security of any 
system depends on key length and the computational 
work involved in breaking the cipher. 

2. That p-k encryption has superseded single key encryption. This 
is unlikely due to the increased processing power required. 

3. That key management is trivial with public key 
cryptography, this is not correct.

2.2.1 Principles of Public-Key Cryptosystems

The concept of P-K evolved from an attempt to solve two problems, 
key distribution and the development of digital signatures. In 
1976 Whitfield Diffie and Martin Hellman achieved great success 
in developing the conceptual framework. For conventional 
encryption the same key is used for encryption and decryption. 
This is not a necessary condition. Instead it is possible to develop 
a cryptographic system that relies on one key for encryption and 
a different but related key for decryption. Furthermore these 
algorithms have the following important characteristic:

• It is computationally infeasible to determine the 
decryption key given only knowledge of the algorithm 
and the encryption key.

In addition, some algorithms such as RSA, also exhibits the 
following characteristics:

• Either of the two related keys can be used for encryption, 
with the other used for decryption.

1. Each system generates a pair of keys.
2. Each system publishes its encryption key (public key) 

keeping its companion key private.
3. If A wishes to send a message to B it encrypts the message 

using B’s public key.
4. When B receives the message, it decrypts the message 

using its private key. No one else can decrypt the message 
because only B knows its private key.



Cryptography 53

Figure 1: Public Key Cryptography.

Considering P-K in more detail we have a source A that produces 
plaintext X destined for B (figure 2). B generates a pair of keys KUb 
(a public key) and KRb (a private key). With X and KUb as inputs, 
A forms the cipher text Y:

The intended receiver B is able to invert the transformation with 
his private key:

Figure 2: Public Key Cryptography: Secrecy.

Authentication

As mentioned, either key may be used for encryption with the 
other used for subsequent decryption. This facilitates a different 
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form of scheme as shown in figure 3. In this case A prepares a 
message to B using his private key to encrypt and B can decrypt it 
using A’s public key.

As the message was prepared using A’s private key it could only 
have come from A therefore the entire message serves as a digital 
signature. It should be noted that this scheme does not provide 
confidentiality because everyone has access to A’s public key. Also 
the scheme is not efficient because B must maintain/store both the 
cipher text (as proof of authenticity) and the decoded plaintext (for 
practical use of the document). A more efficient way of achieving 
the same result is to encrypt a small block of bits that are a function 
of the document. This block, called an authenticator, must have 
the property that it is infeasible to change the document without 
changing the authenticator. If the authenticator is encrypted using 
the senders

Figure 3: Public key cryptography: authentication.

Confidentiality and Authentication If both are required; the double 
use of the public key scheme (figure 4) facilitates this. Here
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In this case the message is first encrypted using the sender’s private 
key, providing the digital signature. Then a second encryption 
is performed using the receiver’s public key, which delivers 
confidentiality. The disadvantage with this scheme is that the 
public key algorithm which is complex must be used four times.

2.2.2 Applications for P-K Cryptosystems

In broad terms, we can classify the use of public-key cryptosystems 
into three categories:

• Encryption/decryption: where the sender encrypts the 
message with the receivers public key.

• Digital signature: where the sender “signs” a message 
with his private key.

• Key exchange: several approaches later.

Figure 4: Public key cryptography: secrecy and authentication.

2.2.3 Requirements of the Algorithm

The requirements of any P-K system:
1. It is computationally easy for party B to generate a key 

pair (public (KU) and private (KR)). 
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2. It is computationally easy for sender A knowing KUb 
and the message to be encrypted to generate the 
corresponding cipher text .

3. It is computationally easy for the receiver B to decrypt 
the resulting ciphertext using his private key (KRb) to 
recover the original message. .

4. It is computationally infeasible for an opponent, knowing 
the public key KUb, to determine the private key KRb. 

5. It is computationally infeasible for an opponent, knowing 
KUb and C to recover the plaintext message M. 

6. A sixth requirement that, although useful, is not 
necessary for all public-key applications - the encryption 
and decryption can be applied in either order: 

These are formidable requirements as is evidenced by the fact that 
only one algorithm (RSA) has received widespread acceptance 
in over 20 years. The requirements boil down to the need for a 
trapdoor one-way function. A one-way function is a function that 
maps a domain into a range such that every function value has 
a unique inverse, with the condition that the calculation of the 
function is easy whereas the calculation of the inverse is infeasible:

“Easy” is defined to mean a problem that can be solved in 
polynomial time as a function of input length (n). For example, the 
time to compute is proportional to na where a is a fixed constant. 
“Infeasible” is not as well defined however. Generally we can 
say that if the effort to solve is greater than polynomial time the 
problem is infeasible, e.g. if time to compute is proportional to 2n. 
Trapdoor one-way functions are a family of invertible functions fk 
such that Y = fk(X) is easy if k and X known, X = fk(Y) is easy if k 
and Y are known, and  is infeasible if Y is known but k 
is not known. The development of a practical public-key scheme 
depends on the discovery of a suitable trapdoor one-way function.
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The Knapsack Algorithm

Many algorithms have been proposed for P-K, and have 
subsequently been broken. The most famous of these was proposed 
by Ralph Merkle as follows. The problem deals with determining 
which of a set of objects are in a container, say a knapsack. Of 
the list of say six objects of different weights shown below, which 
subset is in the knapsack if it weighs S?

Given that the weight of the knapsack is S = 821 grams, the 
problem is to determine which of the items are in the knapsack. 
The problem shown here is simple but when the number of items 
is increased (> 100) it becomes computationally infeasible. So 
what we have is six different objects with six different weights. 
The knapsack weighs nothing itself but with a selected number of 
objects in it weighs (say) 821 grams. Which objects does it contain? 
Merkle’s contribution was to show how to turn the knapsack 
problem into a scheme for encryption and decryption. In other 
words how to incorporate “trapdoor” information which enabled 
the easy solution of the knapsack problem. Suppose we wish to 
send messages in blocks of n bits. We define the following:

• Cargo vector: a = (a1, a2, . . . , an), where ai is an integer. 
• Plaintext message block x	=	(x1, x2, . . . , xn), where xi is a 

binary digit. 
• Corresponding cipher text S:

The vector a is considered to be a list of potential elements to be put 
into the knapsack with each vector element equal to each weight 
of the element. The message block x is considered to be a selection 
of elements of the cargo vector in the knapsack. Each element is 
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set equal to 1 if the corresponding element is in the knapsack and 
0 if it is not. The product S is simply the sum of the selected item’s 
weights (i.e. the weight of the contents of the knapsack).

As an example lets take a cargo vector as follows:

a = (455, 341, 284, 132, 82, 56)

x = (x1, x2, x3, x4, x5, x6)   a six bit binary number

S = 821

For encryption a is used as the public key. The person sending the 
message x performs S = a · x and sends S as the cipher text. The 
receiving party must recover x from S and a. Two requirements 
are as follows:

1. That there be a unique inverse for each value of S. For 
example if S = 3 and a = (1, 3, 2, 5) then the problem would 
have two solutions, x = (1, 0, 1, 0) and x = (0, 1, 0, 0). The 
value of a must be chosen so that each combination of 
elements yields a unique value of S.

2. That decryption is hard in general but easy if special 
knowledge is available.

For large values of n the knapsack problem is hard in general. If 
however we impose the condition that each element of a is larger 
than the sum of the preceding elements we have:

This is known as a super increasing vector and in this case the 
solution is easy. For example, consider the vector a’ = (171, 197, 
459, 1191, 2410) which satisfies the condition. Suppose we have 
S’ = a’ · x’ = 3798. Because 3798 > 2410, a5 must be included (x5 = 
1) because without a5 all the other elements cannot contribute 
enough to add up to 3798 (or 2410). Now consider 3798 − 2410 = 
1388. The number 1388 is bigger than 1191 so a4 must be included 
(x4 = 1). Continuing1 in this fashion we find that x3 = 0, x2 = 1 
and x1 = 0. What Merkle did was to tie an easy super increasing 
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knapsack problem to a hard general knapsack problem. Suppose 
we choose an easy knapsack vector a’ with n elements. Also select 
two integers’ m and ω such that m is greater than the sum of the 
elements, and ω is relatively prime to m, that is:

Now, we construct a hard knapsack vector, a, by multiplying an 
easy vector a’ by ω (mod m):

The vector a will in general not be super increasing and therefore 
can be used to construct hard knapsack problems. However, 
knowledge of ω and m enables the conversion of this hard knapsack 
problem to an easy one. To see this, first observe that since ω and 
m are relatively prime, there exists a unique multiplicative inverse 
ω−1 , modulo m. Therefore:

We can now state the knapsack scheme. The ingredients are as 
follows:

1. a’ , a super increasing vector (private, chosen). 
2. m, an integer larger than the sum of all aj ’s (private, 

chosen). 
3. ω, an integer relatively prime to m (private, chosen). 
4. ω−1 , the inverse of ω, modulo m (private, calculated). 
5. a, equal to ωa’ (mod m) (public, calculated).

The private key consists of the triple (ω−1, m, a’ ) and the public key 
consists of the value of a.

Suppose user A has published his public key a and that user B 
wishes to send a message x to A. B calculates the sum S = a · x. 
The determination of x given S and a is difficult so this is a secure 
transmission. However, on receipt, user A is able to decrypt easily. 
Defining S’ = ω−1S (mod m) we have the following:
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Thus we have converted the hard problem of finding x given S 
into the easy problem of finding x given S’ and a’.

For	example, given the plaintext message x = (0, 1, 0, 0, 1, 0, 1, 1), 
user B computes a · x = 818. User A first computes S 0 = ω−1S (mod 
m) = 415, and then solves the easy knapsack problem to recover x 
= (0, 1, 0, 0, 1, 0, 1, 1).

2.2.4 Cryptography Benefits and Drawbacks

Nowadays, the networks have gone global and information has 
taken the digital form of bits and bytes. Critical information now 
gets stored, processed and transmitted in digital form on computer 
systems and open communication channels.

Since information plays such a vital role, adversaries are targeting 
the computer systems and open communication channels to either 
steal the sensitive information or to disrupt the critical information 
system.

Modern cryptography provides a robust set of techniques to ensure 
that the malevolent intentions of the adversary are thwarted while 
ensuring the legitimate users get access to information. 

2.3 TRANSPOSITION CIPHERS AND  
SUBSTITUTION CIPHERS

From the encryption algorithm point of view, there are two main 
techniques we used to implement in the secret key cryptography 
(symmetric cipher) system: Substitution cipher and Transposition 
cipher. Substitution ciphers replace bits, characters, or blocks of 
characters with substitution. Transposition ciphers rearrange bits 
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or characters in the data. We now describe some details about the 
two kinds of cipher and simply introduce some examples that we 
use very often in the two kinds of cipher.

2.3.1 Substitution Techniques

Substitution technique is one that the letters in the plaintext will 
be replaced by other letters or by numbers or symbols. [Caesar 
Cipher] The earliest use of substitution cipher is also the simplest 
one that is proposed by Julius Caesar, called Caesar Cipher. The 
Caesar Cipher works with replacing each letter with the letter 
standing three places further down of the alphabet order. For 
example:

So if the plaintext is “meet me after the party”. The ciphertext 
would be “phhw ph diwhu wkh sduwb”.

If we assign each letter a number from 0 to 25(from A to Z). Take 
the Ciphertext as C, Encryption as E, and plaintext as P. Then we 
can describe the Caesar Cipher as below

C=E(p)=(p+3)mod(26)   (1)

A shift could be any amount, so the general Caesar algorithm is

C=E(p)=(p+k)mod(26)   (2)

where k takes on a value in the range from 1 to 25. And the 
decryption algorithm is simply 

p =D(C)=(C-k)mod(26)   (3

If it is known that a given ciphertext is a Caesar cipher, then a 
brute-force cryptanalysis will be easily performed. Just try all 
the 25 for the possible value of k. In this example, there are three 
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reasons for us to use the brute-force cryptanalysis. First is that the 
encryption and the decryption algorithms are known. Second is 
that there are only 25 keys to try. Third is that the language of the 
plaintext is known and easily recognizable.

For general cases, we always assume that the first condition 
is held, that is the algorithms of encryption and decryption are 
always known by the enemy who want to break the cipher. What 
really makes the brute-force attack impractical is that most of 
the algorithms use a large number of keys, that is, the second 
condition. For example, the triple DES algorithm uses a 168-bit key 
which makes people who choose to use the brute-force attacking 
way wasting resources or time. And the third condition is also 
important. If the language of the plaintext is unknown, we do not 
have any idea to recognize that if the key we try is right even in 
the trial that is right.
[Polyalphabetic cipher] 

Simple substitution ciphers like Caesar cipher use a single mapping 
from plaintext to ciphertext letters, that is the same plaintext will 
have the same ciphertext. This characteristic is always not good 
in cryptography from the security point of view. Polyalphabetic 
cipher solves this problem by using multiple substitutions. Image 
a cipher disk with two circles (outer and inner circle) and they are 
movable between each other.Every time we randomly turn around 
the inner circle, we will get a response pair from each alphabet. 
Then we record where the &(or any sign different from alphabets 
and numbers) sign stand. That is the simple way to produce a 
substitution cipher which works and avoid the single mapping 
from plaintext to ciphertext problem.

2.3.2 Transposition Techniques

Transposition technique is achieved by performing some kind of 
permutation on the plaintext letters. It is very simple to realize 
this kind of cipher. We can do it by the example. If the plaintext is 
“meet me after the party”, we can rearrange it by this way:
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So we get the plaintext and the ciphertext like this:

[Columnar transposition]

Another simple transposition cipher is called Columnar 
transposition. If the plaintext is “data encryption”, we will 
compose the sentence into a 3*5 matrix. For example:

Of course, the transposition cipher can be made more secure by 
performing more than one stage of transposition. For example, 
doing the Columnar transposition 2 or 3 times and it will efficiently 
to increase the security of this cipher.

2.4 BLOCK CIPHER AND STREAM CIPHER

We can even more separate symmetric cipher to two kinds of 
cipher as block cipher and stream cipher by the encryption basic 
sense. In this report we pay more attention to the block cipher, but 
we also give some stream cipher examples.

Figure 5. Block cipher and Stream cipher.
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The most different part between the block cipher and the stream 
cipher is that the block cipher encrypts the fixed size of the input 
data. On the other hand, stream cipher

Block Cipher

Figure 6. Block cipher scheme.

Let M be a plaintext message. A block cipher breaks M into 
successive blocks M1 , M2 , …… and encrypt each Mk with the 
same key K; that is,

   (4)

Typical size of block cipher block size is 64bits, 128bits or larger. 
Older cipher usually had the smaller size. Considering of the 
security, the larger the block size has, the safer the data is. Because 
each bits in the original data influences the every single output 
bit. And with aspect of processing speed, it is the same that we 
hope that the block size much larger. One of the advantages of the 
block cipher is the fast speed. The drawback of the block cipher 
is that we must fit the block size, or we cannot do block cipher 
encryption. Sometimes we have to add additional redundant to 
fit the block size to do encryption. And this is kind of wasting 
resource.

Stream Cipher

Stream cipher is different from block cipher that stream cipher 
break message M into successive characters or bitsm1 , m2 , …… 
and encrypt each mk with the ith element ki of a key stream K= k1 
k2 ……; that is,



Cryptography 65

  (5)

The stream cipher produces key stream by using a key instead of 
dealing with block data. The key stream is often used to do XOR 
with plaintext and the results could be used to do encryption. We 
describe the XOR algorithm as followed.

Table 2. XOR-operation

2.5 RSA CRYPTOSYSTEM

This cryptosystem is one the initial system. It remains most 
employed cryptosystem even today. The system was invented 
by three scholars Ron Rivest, Adi Shamir, and Len Adleman and 
hence, it is termed as RSA cryptosystem.

We will see two aspects of the RSA cryptosystem, firstly generation 
of key pair and secondly encryption-decryption algorithms.

Generation of RSA Key Pair

Each person or a party who desires to participate in communication 
using encryption needs to generate a pair of keys, namely public 
key and private key. The process followed in the generation of 
keys is described below:

Generate the RSA Modulus (n)

• Select two large primes, p and q.
• Calculate n=p*q. For strong unbreakable encryption, let 

n be a large number, typically a minimum of 512 bits.
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Find Derived Number (e)

• Number e must be greater than 1 and less than (p − 1)
(q − 1).

• There must be no common factor for e and (p − 1)(q − 1) 
except for 1. In other words two numbers e and (p – 1)
(q – 1) are coprime.

Form the Public Key

• The pair of numbers (n, e) form the RSA public key and 
is made public.

• Interestingly, though n is part of the public key, difficulty 
in factorizing a large prime number ensures that attacker 
cannot find in finite time the two primes (p & q) used to 
obtain n. This is strength of RSA.

Generate the Private Key

• Private Key d is calculated from p, q, and e. For given n 
and e, there is unique number d.

• Number d is the inverse of e modulo (p - 1)(q – 1). This 
means that d is the number less than (p - 1)(q - 1) such 
that when multiplied by e, it is equal to 1 modulo (p - 1)
(q - 1).

• This relationship is written mathematically as follows:

ed = 1 mod (p − 1)(q − 1)

The Extended Euclidean Algorithm takes p, q, and e as input and 
gives d as output.

Example

An example of generating RSA Key pair is given below. (For ease 
of understanding, the primes p & q taken here are small values. 
Practically, these values are very high).
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• Let two primes be p = 7 and q = 13. Thus, modulus n = pq 
= 7 x 13 = 91.

• Select e = 5, which is a valid choice since there is no 
number that is common factor of 5 and (p − 1)(q − 1) = 6 
× 12 = 72, except for 1.

• The pair of numbers (n, e) = (91, 5) forms the public key 
and can be made available to anyone whom we wish to 
be able to send us encrypted messages.

• Input p = 7, q = 13, and e = 5 to the Extended Euclidean 
Algorithm. The output will be d = 29.

• Check that the d calculated is correct by computing
 de = 29 × 5 = 145 = 1 mod 72
• Hence, public key is (91, 5) and private keys is (91, 29).

2.5.1 RSA Analysis

The security of RSA depends on the strengths of two separate 
functions. The RSA cryptosystem is most popular public-key 
cryptosystem strength of which is based on the practical difficulty 
of factoring the very large numbers.

Encryption	 Function: It is considered as a one-way function of 
converting plaintext into cipher text and it can be reversed only 
with the knowledge of private key d.

Key Generation: The difficulty of determining a private key from 
an RSA public key is equivalent to factoring the modulus n. An 
attacker thus cannot use knowledge of an RSA public key to 
determine an RSA private key unless he can factor n. It is also a one 
way function, going from p & q values to modulus n is easy but 
reverse is not possible. If either of these two functions are proved 
non one-way, then RSA will be broken. In fact, if a technique for 
factoring efficiently is developed then RSA will no longer be safe.
The strength of RSA encryption drastically goes down against 
attacks if the number p and q are not large primes and/ or chosen 
public key e is a small number.
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2.5.2 Encryption and Decryption in RSA Public-key Cryp-
tosystem

Encryption is the process of transforming information so it is 
unintelligible to anyone but the intended recipient. Decryption is 
the process of decoding encrypted information. A cryptographic 
algorithm, also called a cipher, is a mathematical function used for 
encryption or decryption. Usually, two related functions are used, 
one for encryption and the other for decryption.

With most modern cryptography, the ability to keep encrypted 
information secret is based not on the cryptographic algorithm, 
which is widely known, but on a number called a key that must 
be used with the algorithm to produce an encrypted result or to 
decrypt encrypted information. Decryption with the correct key is 
simple. Decryption without the correct key is very difficult, if not 
impossible.

Symmetric-Key Encryption

With symmetric-key encryption, the encryption key can be 
calculated from the decryption key and vice versa. With most 
symmetric algorithms, the same key is used for both encryption and 
decryption, as shown in Figure 7, “Symmetric-Key Encryption”.

Figure 7: Symmetric-key encryption.

Implementations of symmetric-key encryption can be highly 
efficient, so that users do not experience any significant time 
delay as a result of the encryption and decryption. Symmetric-
key encryption also provides a degree of authentication, since 
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information encrypted with one symmetric key cannot be 
decrypted with any other symmetric key. Thus, as long as the 
symmetric key is kept secret by the two parties using it to encrypt 
communications, each party can be sure that it is communicating 
with the other as long as the decrypted messages continue to make 
sense.

Symmetric-key encryption is effective only if the symmetric key 
is kept secret by the two parties involved. If anyone else discovers 
the key, it affects both confidentiality and authentication. A 
person with an unauthorized symmetric key not only can decrypt 
messages sent with that key, but can encrypt new messages and 
send them as if they came from one of the legitimate parties using 
the key.

Symmetric-key encryption plays an important role in SSL 
communication, which is widely used for authentication, tamper 
detection, and encryption over TCP/IP networks. SSL also uses 
techniques of public-key encryption.

Public-Key Encryption

Public-key encryption (also called asymmetric encryption) 
involves a pair of keys, a public key and a private key, associated 
with an entity. Each public key is published, and the corresponding 
private key is kept secret. Data encrypted with a public key can 
be decrypted only with the corresponding private key. Figure 
8, “Public-Key Encryption” shows a simplified view of the way 
public-key encryption works.

Figure 8: Public-key encryption.
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The scheme shown in Figure 8, “Public-Key Encryption” allows 
public keys to be freely distributed, while only authorized people 
are able to read data encrypted using this key. In general, to send 
encrypted data, the data is encrypted with that person’s public 
key, and the person receiving the encrypted data decrypts it with 
the corresponding private key.

Compared with symmetric-key encryption, public-key encryption 
requires more processing and may not be feasible for encrypting 
and decrypting large amounts of data. However, it is possible to 
use public-key encryption to send a symmetric key, which can 
then be used to encrypt additional data. This is the approach used 
by the SSL/TLS protocols.

The reverse of the scheme shown in Figure 8 “Public-Key 
Encryption” also works: data encrypted with a private key can be 
decrypted only with the corresponding public key. This is not a 
recommended practice to encrypt sensitive data, however, because 
it means that anyone with the public key, which is by definition 
published, could decrypt the data. Nevertheless, private-key 
encryption is useful because it means the private key can be used 
to sign data with a digital signature, an important requirement 
for electronic commerce and other commercial applications of 
cryptography.

Key Length and Encryption Strength

Breaking an encryption algorithm is basically finding the key to the 
access the encrypted data in plain text. For symmetric algorithms, 
breaking the algorithm usually means trying to determine the key 
used to encrypt the text. For a public key algorithm, breaking the 
algorithm usually means acquiring the shared secret information 
between two recipients.

One method of breaking a symmetric algorithm is to simply try 
every key within the full algorithm until the right key is found. For 
public key algorithms, since half of the key pair is publicly known, 
the other half (private key) can be derived using published, though 
complex, mathematical calculations. Manually finding the key to 
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break an algorithm is called a brute force attack.

Breaking an algorithm introduces the risk of intercepting, or even 
impersonating and fraudulently verifying, private information.

The key strength of an algorithm is determined by finding the 
fastest method to break the algorithm and comparing it to a brute 
force attack.

For symmetric keys, encryption strength is often described in terms 
of the size or length of the keys used to perform the encryption: 
longer keys generally provide stronger encryption. Key length is 
measured in bits. 

An encryption key is considered full strength if the best known 
attack to break the key is no faster than a brute force attempt to 
test every key possibility.

Different types of algorithms particularly public key algorithms 
may require different key lengths to achieve the same level of 
encryption strength as a symmetric-key cipher. The RSA cipher 
can use only a subset of all possible values for a key of a given 
length, due to the nature of the mathematical problem on which 
it is based. Other ciphers, such as those used for symmetric-key 
encryption, can use all possible values for a key of a given length. 
More possible matching options means more security.

Because it is relatively trivial to break an RSA key, an RSA public-
key encryption cipher must have a very long key at least 1024 bits 
to be considered cryptographically strong. On the other hand, 
symmetric-key ciphers are reckoned to be equivalently strong 
using a much shorter key length, as little as 80 bits for most 
algorithms.

2.5.3 RSA Signature Scheme

The RSA public-key cryptosystem can be used for both encryption 
and signatures. Each user has three integers e, d and n, n = pq 
with p and q large primes. For the key pair (e, d), ed ≡ 1 (mod 
φ(n)) must be satisfied. If sender A wants to send signed message 
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c corresponding to message m to receiver B, A signs it using A’s 
private key, computing c ≡ mdA (mod nA). First A computes ϕ(nA) 
≡ lcm (pA − 1, qA − 1)

where lcm stands for the least common multiple. The sender A 
selects his own key pair (eA, dA) such that eA•dA ≡ 1 (mod ϕ(nA))

The modulus nA and the public key eA are published., Figure 9 
illustrates the RSA signature scheme.

Example

Choose p = 11 and q = 17. Then n = pq = 187.

Figure 9: The RSA signature scheme

Suppose m = 55. Then the signed message is

c ≡ mdA (mod 187)
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≡ 553 (mod 187) ≡ 132

The message will be recreated as:

m ≡ ceA (mod n) 

≡ 13227 (mod 187) ≡ 55

Thus, the message m is accepted as authentic.

Next, consider a case where the message is much longer. The 
larger m requires more computation in signing and verification 
steps. Therefore, it is better to compute the message digest using 
a appropriate hash function, for example, the SHA-1 algorithm. 
Signing the message digest rather than the message often improves 
the efficiency of the process because the message digest is usually 
much smaller than the message. When the message is assumed to 
be m = 75 139, the message digest h of m is computed using the 
SHA-1 algorithm as follows:

h ≡ H (m) (mod n) 

≡ H (75 139) (mod 187)

≡ 86a0aab5631e729b0730757b0770947307d9f597

≡ 768587753333627872847426508024461003561962698135 (mod 
187) (decimal)

The message digest h is then computed as:

h ≡ H (75 139) (mod 187) ≡ 11

Signing h with A’s private key dA produces:

c ≡ hdA (mod n)

≡ 113 (mod 187) ≡ 22

Thus, the signature verification proceeds as follows:

h ≡ ceA (mod n)

≡ 2227 (mod 187) ≡ 11
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which shows that verification is accomplished.

In hardware, RSA is about 1000 times slower than DES. RSA is 
also implemented in smartcards, but these implementations are 
slower. DES is about 100 times faster than RSA. However, RSA will 
never reach the speed of symmetric cipher algorithms. It is known 
that the security of RSA depends on the problem of factoring large 
numbers. To find the private key from the public key e and the 
modulus n, one has to factor n. Currently, n must be larger than 
a 129 decimal digit modulus. Easy methods to break RSA have 
not yet been found. A brute-force attack is even less efficient than 
trying to factor n. RSA encryption and signature verification are 
faster if you use a low value for e, but can be insecure.

2.5.4 Attacks on Cryptosystems

In the present era, not only business but almost all the aspects 
of human life are driven by information. Hence, it has become 
imperative to protect useful information from malicious activities 
such as attacks. Let us consider the types of attacks to which 
information is typically subjected to.

Attacks are typically categorized based on the action performed 
by the attacker. An attack, thus, can be passive or active.

Passive Attacks

The main goal of a passive attack is to obtain unauthorized access 
to the information. For example, actions such as intercepting and 
eavesdropping on the communication channel can be regarded as 
passive attack. These actions are passive in nature, as they neither 
affect information nor disrupt the communication channel. A 
passive attack is often seen as stealing information. The only 
difference in stealing physical goods and stealing information is 
that theft of data still leaves the owner in possession of that data. 
Passive information attack is thus more dangerous than stealing of 
goods, as information theft may go unnoticed by the owner.
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Active Attacks

An active attack involves changing the information in some way 
by conducting some process on the information. For example,

• Modifying the information in an unauthorized manner.
• Initiating unintended or unauthorized transmission of 

information.
• Alteration of authentication data such as originator name 

or timestamp associated with information
• Unauthorized deletion of data.
• Denial of access to information for legitimate users 

(denial of service).

Cryptography provides many tools and techniques for 
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implementing cryptosystems capable of preventing most of the 
attacks described above.

Assumptions of Attacker

Let us see the prevailing environment around cryptosystems 
followed by the types of attacks employed to break these systems:

Environment around Cryptosystem

While considering possible attacks on the cryptosystem, it is 
necessary to know the cryptosystems environment. The attacker’s 
assumptions and knowledge about the environment decides his 
capabilities.

In cryptography, the following three assumptions are made about 
the security environment and attacker’s capabilities.

Details of the Encryption Scheme

The design of a cryptosystem is based on the following two 
cryptography algorithms

Public Algorithms: With this option, all the details of the algorithm 
are in the public domain, known to everyone.

Proprietary algorithms: The details of the algorithm are only 
known by the system designers and users.

In case of proprietary algorithms, security is ensured through 
obscurity. Private algorithms may not be the strongest algorithms 
as they are developed in-house and may not be extensively 
investigated for weakness.

Secondly, they allow communication among closed group only. 
Hence they are not suitable for modern communication where 
people communicate with large number of known or unknown 
entities. The algorithm is preferred to be public with strength of 
encryption lying in the key.
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Thus, the first assumption about security environment is that the 
encryption algorithm is known to the attacker.

Availability of Cipher text

We know that once the plaintext is encrypted into cipher text, it 
is put on unsecure public channel (say email) for transmission. 
Thus, the attacker can obviously assume that it has access to the 
cipher text generated by the cryptosystem.

Availability of Plaintext and Cipher text

This assumption is not as obvious as other. However, there may 
be situations where an attacker can have access to plaintext and 
corresponding cipher text. Some such possible circumstances are:

• The attacker influences the sender to convert plaintext of 
his choice and obtains the cipher text.

• The receiver may divulge the plaintext to the attacker 
inadvertently. The attacker has access to corresponding 
cipher text gathered from open channel.

• In a public-key cryptosystem, the encryption key is in 
open domain and is known to any potential attacker. 
Using this key, he can generate pairs of corresponding 
plaintexts and cipher texts.

Cryptographic Attacks

The basic intention of an attacker is to break a cryptosystem and 
to find the plaintext from the cipher text. To obtain the plaintext, 
the attacker only needs to find out the secret decryption key, as the 
algorithm is already in public domain.

Hence, he applies maximum effort towards finding out the 
secret key used in the cryptosystem. Once the attacker is able to 
determine the key, the attacked system is considered as broken or 
compromised.
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Based on the methodology used, attacks on cryptosystems are 
categorized as follows:

Cipher	 text	 Only	 Attacks	 (COA): In this method, the attacker 
has access to a set of cipher text(s). He does not have access to 
corresponding plaintext. COA is said to be successful when the 
corresponding plaintext can be determined from a given set of 
cipher text. Occasionally, the encryption key can be determined 
from this attack. Modern cryptosystems are guarded against 
cipher text-only attacks.

Known	Plaintext	Attack	(KPA): In this method, the attacker knows 
the plaintext for some parts of the cipher text. The task is to decrypt 
the rest of the cipher text using this information. This may be 
done by determining the key or via some other method. The best 
example of this attack is linear cryptanalysis against block ciphers.

Chosen	Plaintext	Attack	(CPA): In this method, the attacker has the 
text of his choice encrypted. So he has the cipher text-plaintext pair 
of his choice. This simplifies his task of determining the encryption 
key. An example of this attack is differential cryptanalysis applied 
against block ciphers as well as hash functions. A popular public 
key cryptosystem, RSA is also vulnerable to chosen-plaintext 
attacks.

Dictionary	 Attack: This attack has many variants, all of which 
involve compiling a ‘dictionary’. In simplest method of this attack, 
attacker builds a dictionary of cipher texts and corresponding 
plaintexts that he has learnt over a period of time. In future, when 
an attacker gets the cipher text, he refers the dictionary to find the 
corresponding plaintext.

Brute	 Force	 Attack	 (BFA): In this method, the attacker tries to 
determine the key by attempting all possible keys. If the key is 8 
bits long, then the number of possible keys is 28 = 256. The attacker 
knows the cipher text and the algorithm, now he attempts all the 
256 keys one by one for decryption. The time to complete the 
attack would be very high if the key is long.
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Birthday	Attack: This attack is a variant of brute-force technique. It 
is used against the cryptographic hash function. When students 
in a class are asked about their birthdays, the answer is one of 
the possible 365 dates. Let us assume the first student’s birthdate 
is 3rd Aug. Then to find the next student whose birthdate is 3rd 
Aug, we need to enquire 1.25*�√365 ≈ 25 students.

Similarly, if the hash function produces 64 bit hash values, the 
possible hash values are 1.8 x 1019. By repeatedly evaluating the 
function for different inputs, the same output is expected to be 
obtained after about 5.1 x 109 random inputs.

If the attacker is able to find two different inputs that give the 
same hash value, it is a collision and that hash function is said to 
be broken.

Man	in	Middle	Attack	(MIM): The targets of this attack are mostly 
public key cryptosystems where key exchange is involved before 
communication takes place.

• Host A wants to communicate to host B, hence requests 
public key of B.

• An attacker intercepts this request and sends his public 
key instead.

• Thus, whatever host A sends to host B, the attacker is 
able to read.

• In order to maintain communication, the attacker re-
encrypts the data after reading with his public key and 
sends to B.

• The attacker sends his public key as A’s public key so 
that B takes it as if it is taking it from A.

Side	 Channel	 Attack	 (SCA): This type of attack is not against 
any particular type of cryptosystem or algorithm. Instead, it is 
launched to exploit the weakness in physical implementation of 
the cryptosystem.

Timing	Attacks: They exploit the fact that different computations 
take different times to compute on processor. By measuring such 
timings, it is be possible to know about a particular computation 
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the processor is carrying out. For example, if the encryption takes 
a longer time, it indicates that the secret key is long.

Power	Analysis	Attacks: These attacks are similar to timing attacks 
except that the amount of power consumption is used to obtain 
information about the nature of the underlying computations.

Fault	 analysis	Attacks: In these attacks, errors are induced in the 
cryptosystem and the attacker studies the resulting output for 
useful information.

Practicality of Attacks

The attacks on cryptosystems described here are highly academic, 
as majority of them come from the academic community. In fact, 
many academic attacks involve quite unrealistic assumptions 
about environment as well as the capabilities of the attacker. 
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INTRODUCTION

A program security flaw is an undesired program behaviour 
caused by a program vulnerability. Early idea was to attack the 
finished program to reveal faults, and then to patch the corresp. 
errors. Experience shows that this is not effective, and just tends to 
introduce new faults (and errors)! More modern approach is to use 
careful specification and compare behaviour with the expected.

Protecting programs is at the heart of computer security because 
programs constitute so much of a computing system (the operating 
system, device drivers, the network infrastructure, database 
management systems and other applications, even executable 
commands on web pages). For now, we call all these pieces of code 
“programs.” 
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So we need to ask two important questions:
• How do we keep programs free from flaws?
• How do we protect computing resources against 

programs that contain flaws?

3.1 SECURE PROGRAMS

Consider what we mean when we say that a program is “secure.” 
Security implies some degree of trust that the program enforces 
expected confidentiality, integrity, and availability. From the point 
of view of a program or a programmer, how can we look at a 
software component or code fragment and assess its security? This 
question is, of course, similar to the problem of assessing software 
quality in general. One way to assess security or quality is to ask 
people to name the characteristics of software that contribute 
to its overall security. However, we are likely to get different 
answers from different people. This difference occurs because the 
importance of the characteristics depends on who is analyzing the 
software. For example, one person may decide that code is secure 
because it takes too long to break through its security controls. 
And someone else may decide code is secure if it has run for a 
period of time with no apparent failures. But a third person may 
decide that any potential fault in meeting security requirements 
makes code insecure.

An assessment of security can also be influenced by someone’s 
general perspective on software quality. For example, if your 
manager’s idea of quality is conformance to specifications, then she 
might consider the code secure if it meets security requirements, 
whether or not the requirements are complete or correct. This 
security view played a role when a major computer manufacturer 
delivered all its machines with keyed locks, since a keyed lock was 
written in the requirements. But the machines were not secure, 
because all locks were configured to use the same key! Thus, 
another view of security is fitness for purpose; in this view, the 
manufacturer clearly had room for improvement.
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In general, practitioners often look at quantity and types of faults 
for evidence of a product’s quality (or lack of it). For example, 
developers track the number of faults found in requirements, 
design, and code inspections and use them as indicators of the 
likely quality of the final product.

3.1.1 Fixing Faults

One approach to judging quality in security has been fixing 
faults. You might argue that a module in which 100 faults were 
discovered and fixed is better than another in which only 20 faults 
were discovered and fixed, suggesting that more rigorous analysis 
and testing had led to the finding of the larger number of faults. 
Au contraire, challenges your friend: a piece of software with 100 
discovered faults is inherently full of problems and could clearly 
have hundreds more waiting to appear. Your friend’s opinion is 
confirmed by the software testing literature; software that has 
many faults early on is likely to have many others still waiting to 
be found.

Early work in computer security was based on the paradigm of 
“penetrate and patch,” in which analysts searched for and repaired 
faults. Often, a top-quality “tiger team” would be convened to test 
a system’s security by attempting to cause it to fail. The test was 
considered to be a “proof” of security; if the system withstood 
the attacks, it was considered secure. Unfortunately, far too often 
the proof became a counterexample, in which not just one but 
several serious security problems were uncovered. The problem 
discovery in turn led to a rapid effort to “patch” the system to 
repair or restore the security. However, the patch efforts were 
largely useless, making the system less secure rather than more 
secure because they frequently introduced new faults. There are 
at least four reasons why.

The pressure to repair a specific problem encouraged a narrow 
focus on the fault itself and not on its context. In particular, the 
analysts paid attention to the immediate cause of the failure and 
not to the underlying design or requirements faults.
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• The fault often had nonobvious side effects in places 
other than the immediate area of the fault.

• Fixing one problem often caused a failure somewhere 
else, or the patch addressed the problem in only one 
place, not in other related places.

• The fault could not be fixed properly because system 
functionality or performance would suffer

3.1.2 Unexpected Behavior

The inadequacies of penetrate-and-patch led researchers to 
seek a better way to be confident that code meets its security 
requirements. One way to do that is to compare the requirements 
with the behavior. That is, to understand program security, we can 
examine programs to see whether they behave as their designers 
intended or users expected. We call such unexpected behavior a 
program security flaw; it is inappropriate program behavior caused 
by a program vulnerability. Unfortunately, the terminology in the 
computer security field is not consistent with the IEEE standard; 
the terms “vulnerability” and “flaw” do not map directly to the 
characterization of faults and failures. A flaw can be either a 
fault or failure, and a vulnerability usually describes a class of 
flaws, such as a buffer overflow. In spite of the inconsistency, it is 
important for us to remember that we must view vulnerabilities 
and flaws from two perspectives, cause and effect, so that we see 
what fault caused the problem and what failure (if any) is visible 
to the user. For example, a Trojan horse may have been injected 
in a piece of code a flaw exploiting a vulnerability but the user 
may not yet have seen the Trojan horse’s malicious behavior. Thus, 
we must address program security flaws from inside and outside, 
to find causes not only of existing failures but also of incipient 
ones. Moreover, it is not enough just to identify these problems. 
We must also determine how to prevent harm caused by possible 
flaws.

Program security flaws can derive from any kind of software 
fault. That is, they cover everything from a misunderstanding 
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of program requirements to a one-character error in coding or 
even typing. The flaws can result from problems in a single code 
component or from the failure of several programs or program 
pieces to interact compatibly through a shared interface. The 
security flaws can reflect code that was intentionally designed 
or coded to be malicious or code that was simply developed in a 
sloppy or misguided way. Thus, it makes sense to divide program 
flaws into two separate logical categories: inadvertent human 
errors versus malicious, intentionally induced flaws.

These categories help us understand some ways to prevent the 
inadvertent and intentional insertion of flaws into future code, 
but we still have to address their effects, regardless of intention. 
That is, in the words of Sancho Panza in Man of La Mancha, “it 
doesn’t matter whether the stone hits the pitcher or the pitcher 
hits the stone, it’s going to be bad for the pitcher.” An inadvertent 
error can cause just as much harm to users and their organizations 
as can an intentionally induced flaw. Furthermore, a system 
attack often exploits an unintentional security flaw to perform 
intentional damage. From reading the popular press, you might 
conclude that intentional security incidents (called cyber attacks) 
are the biggest security threat today. In fact, plain, unintentional 
human errors are more numerous and cause much more damage.

Regrettably, we do not have techniques to eliminate or address all 
program security flaws. Security is fundamentally hard, security 
often conflicts with usefulness and performance, there is no 
“”silver bullet” to achieve security effortlessly, and false security 
solutions impede real progress toward more secure programming. 
There are two reasons for this distressing situation.

• Program controls apply at the level of the individual 
program and programmer. When we test a system, we 
try to make sure that the functionality prescribed in the 
requirements is implemented in the code. That is, we 
take a “should do” checklist and verify that the code 
does what it is supposed to do. However, security is also 
about preventing certain actions: a “shouldn’t do” list. 
A system shouldn’t do anything not on its “should do” 
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list. It is almost impossible to ensure that a program does 
precisely what its designer or user intended, and nothing 
more. Regardless of designer or programmer intent, in 
a large and complex system, the pieces that have to fit 
together properly interact in an unmanageably large 
number of ways. We are forced to examine and test the 
code for typical or likely cases; we cannot exhaustively 
test every state and data combination to verify a system’s 
behavior. So sheer size and complexity preclude total 
flaw prevention or mediation. Programmers intending 
to implant malicious code can take advantage of this 
incompleteness and hide some flaws successfully,

• Programming and software engineering techniques 
change and evolve far more rapidly than do computer 
security techniques. So we often find ourselves trying to 
secure last year’s technology while software developers 
are rapidly adopting today’s and next year’s technology.

Still, the situation is far from bleak. Computer security has much 
to offer to program security. By understanding what can go wrong 
and how to protect against it, we can devise techniques and tools 
to secure most computer applications.

3.1.3 Types of Flaws

To aid our understanding of the problems and their prevention or 
correction, we can define categories that distinguish one kind of 
problem from another. For example, a taxonomy of program flaws, 
dividing them first into intentional and inadvertent flaws. They 
further divide intentional flaws into malicious and nonmalicious 
ones. In the taxonomy, the inadvertent flaws fall into six categories:

• validation error (incomplete or inconsistent): permission 
checks

• domain error: controlled access to data
• serialization and aliasing: program flow order
• inadequate identification and authentication: basis for 

authorization
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• boundary condition violation: failure on first or last case
• other exploitable logic errors

3.2 NONMALICIOUS PROGRAM ERRORS

Being human, programmers and other developers make many 
mistakes, most of which are unintentional and nonmalicious. 
Many such errors cause program malfunctions but do not lead to 
more serious security vulnerabilities. However, a few classes of 
errors have plagued programmers and security professionals for 
decades, and there is no reason to believe they will disappear. In 
this section we consider three classic error types that have enabled 
many recent security breaches. We explain each type, why it is 
relevant to security, and how it can be prevented or mitigated.

3.2.1 Buffer Overflows

A buffer overflow is the computing equivalent of trying to pour 
two liters of water into a one-liter pitcher: Some water is going to 
spill out and make a mess. And in computing, what a mess these 
errors have made!

Definition

A buffer (or array or string) is a space in which data can be held. 
A buffer resides in memory. Because memory is finite, a buffer’s 
capacity is finite. For this reason, in many programming languages 
the programmer must declare the buffer’s maximum size so that 
the compiler can set aside that amount of space.

Let us look at an example to see how buffer overflows can happen. 
Suppose a C language program contains the declaration:

char sample[10];

The compiler sets aside 10 bytes to store this buffer, one byte for 
each of the 10 elements of the array, sample[0] tHRough sample[9]. 
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Now we execute the statement:

sample[10] = ‘B’;

The subscript is out of bounds (that is, it does not fall between 0 
and 9), so we have a problem. The nicest outcome (from a security 
perspective) is for the compiler to detect the problem and mark 
the error during compilation. However, if the statement were

sample[i] = ‘B’;

we could not identify the problem until i was set during execution 
to a too-big subscript. It would be useful if, during execution, the 
system produced an error message warning of a subscript out of 
bounds. Unfortunately, in some languages, buffer sizes do not have 
to be predefined, so there is no way to detect an out-of-bounds 
error. More importantly, the code needed to check each subscript 
against its potential maximum value takes time and space during 
execution, and the resources are applied to catch a problem that 
occurs relatively infrequently. Even if the compiler were careful in 
analyzing the buffer declaration and use, this same problem can 
be caused with pointers, for which there is no reasonable way to 
define a proper limit. Thus, some compilers do not generate the 
code to check for exceeding bounds.

Let us examine this problem more closely. It is important to 
recognize that the potential overflow causes a serious problem 
only in some instances. The problem’s occurrence depends on 
what is adjacent to the array sample. For example, suppose each 
of the ten elements of the array sample is filled with the letter A 
and the erroneous reference uses the letter B, as follows:
for (i=0; i<=9; i++)
 sample[i] = ‘A’;
sample[10] = ‘B’

All program and data elements are in memory during execution, 
sharing space with the operating system, other code, and resident 
routines. So there are four cases to consider in deciding where the 
‘B’ goes, as shown in Figure 1. If the extra character overflows into 
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the user’s data space, it simply overwrites an existing variable 
value (or it may be written into an as-yet unused location), perhaps 
affecting the program’s result, but affecting no other program or 
data.

Figure 1: Places Where a Buffer Can Overflow.

In the second case, the ‘B’ goes into the user’s program area. If 
it overlays an already executed instruction (which will not be 
executed again), the user should perceive no effect. If it overlays an 
instruction that is not yet executed, the machine will try to execute 
an instruction with operation code 0x42, the internal code for the 
character ‘B’. If there is no instruction with operation code 0x42, 
the system will halt on an illegal instruction exception. Otherwise, 
the machine will use subsequent bytes as if they were the rest of 
the instruction, with success or failure depending on the meaning 
of the contents. Again, only the user is likely to experience an 
effect.

The most interesting cases occur when the system owns the space 
immediately after the array that overflows. Spilling over into 
system data or code areas produces similar results to those for the 
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user’s space: computing with a faulty value or trying to execute an 
improper operation.

3.2.2 Security Implication

We consider program flaws from unintentional or nonmalicious 
causes. Remember, however, that even if a flaw came from an 
honest mistake, the flaw can still cause serious harm. A malicious 
attacker can exploit these flaws.

Let us suppose that a malicious person understands the damage 
that can be done by a buffer overflow; that is, we are dealing with 
more than simply a normal, errant programmer. The malicious 
programmer looks at the four cases illustrated in Figure 1 and 
thinks deviously about the last two: What data values could the 
attacker insert just after the buffer to cause mischief or damage, 
and what planned instruction codes could the system be forced 
to execute? There are many possible answers, some of which 
are more malevolent than others. Here, we present two buffer 
overflow attacks that are used frequently. 

First, the attacker may replace code in the system space. Remember 
that every program is invoked by the operating system and that 
the operating system may run with higher privileges than those 
of a regular program. Thus, if the attacker can gain control by 
masquerading as the operating system, the attacker can execute 
many commands in a powerful role. Therefore, by replacing a few 
instructions right after returning from his or her own procedure, 
the attacker regains control from the operating system, possibly 
with raised privileges. If the buffer overflows into system code 
space, the attacker merely inserts overflow data that correspond 
to the machine code for instructions.

On the other hand, the attacker may make use of the stack pointer 
or the return register. Subprocedure calls are handled with a stack, 
a data structure in which the most recent item inserted is the next 
one removed (last arrived, first served). This structure works well 
because procedure calls can be nested, with each return causing 
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control to transfer back to the immediately preceding routine at its 
point of execution. Each time a procedure is called, its parameters, 
the return address (the address immediately after its call), and 
other local values are pushed onto a stack. An old stack pointer is 
also pushed onto the stack, and a stack pointer register is reloaded 
with the address of these new values. Control is then transferred 
to the subprocedure.

As the subprocedure executes, it fetches parameters that it finds 
by using the address pointed to by the stack pointer. Typically, the 
stack pointer is a register in the processor. Therefore, by causing 
an overflow into the stack, the attacker can change either the old 
stack pointer (changing the context for the calling procedure) or 
the return address (causing control to transfer where the attacker 
wants when the subprocedure returns). Changing the context or 
return address allows the attacker to redirect execution to a block 
of code the attacker wants.

In both these cases, a little experimentation is needed to determine 
where the overflow is and how to control it. But the work to be 
done is relatively smallprobably a day or two for a competent 
analyst. These buffer overflows are carefully explained in a paper 
of the famed l0pht computer security group. Buffer overflows ten 
years after Mudge and found that, far from being a minor aspect of 
attack, buffer overflows have been a very significant attack vector 
and have spawned several other new attack types.

An alternative style of buffer overflow occurs when parameter 
values are passed into a routine, especially when the parameters 
are passed to a web server on the Internet. Parameters are passed 
in the URL line, with a syntax similar to
h t t p : / / w w w . s o m e s i t e . c o m / s u b p a g e / u s e r i n p u t .
asp?parm1=(808)555-1212 &parm2=2009Jan17
In this example, the page userinput receives two parameters, parm1 
with value (808)555-1212 (perhaps a U.S. telephone number) and 
parm2 with value 2009Jan17 (perhaps a date). The web browser on 
the caller’s machine will accept values from a user who probably 
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completes fields on a form. The browser encodes those values and 
transmits them back to the server’s web site.

The attacker might question what the server would do with a 
really long telephone number, say, one with 500 or 1000 digits. 
But, you say, no telephone in the world has such a number; that 
is probably exactly what the developer thought, so the developer 
may have allocated 15 or 20 bytes for an expected maximum length 
telephone number. Will the program crash with 500 digits? And if 
it crashes, can it be made to crash in a predictable and usable way? 
Passing a very long string to a web server is a slight variation on 
the classic buffer overflow, but no less effective.

Buffer overflows have existed almost as long as higher-level 
programming languages with arrays. For a long time they were 
simply a minor annoyance to programmers and users, a cause 
of errors and sometimes even system crashes. Rather recently, 
attackers have used them as vehicles to cause first a system crash 
and then a controlled failure with a serious security implication. 
The large number of security vulnerabilities based on buffer 
overflows shows that developers must pay more attention now to 
what had previously been thought to be just a minor annoyance.

3.2.3 Incomplete Mediation

Incomplete mediation is another security problem that has been 
with us for decades. Attackers are exploiting it to cause security 
problems.

Definition

Consider the example of the previous section:
h t t p : / / w w w . s o m e s i t e . c o m / s u b p a g e / u s e r i n p u t .
asp?parm1=(808)555-1212 &parm2=2009Jan17
The two parameters look like a telephone number and a date. 
Probably the client’s (user’s) web browser enters those two values 
in their specified format for easy processing on the server’s side. 
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What would happen if parm2 were submitted as 1800Jan01? Or 
1800Feb30? Or 2048Min32? Or 1Aardvark2Many?

Something would likely fail. As with buffer overflows, one 
possibility is that the system would fail catastrophically, with a 
routine’s failing on a data type error as it tried to handle a month 
named “Min” or even a year (like 1800) that was out of range. 
Another possibility is that the receiving program would continue 
to execute but would generate a very wrong result. (For example, 
imagine the amount of interest due today on a billing error with a 
start date of 1 Jan 1800.) Then again, the processing server might 
have a default condition, deciding to treat 1Aardvark2Many as 3 
July 1947. The possibilities are endless.

One way to address the potential problems is to try to anticipate 
them. For instance, the programmer in the examples above may 
have written code to check for correctness on the client’s side 
(that is, the user’s browser). The client program can search for 
and screen out errors. Or, to prevent the use of nonsense data, the 
program can restrict choices only to valid ones. For example, the 
program supplying the parameters might have solicited them by 
using a drop-down box or choice list from which only the twelve 
conventional months would have been possible choices. Similarly, 
the year could have been tested to ensure that the value was 
between 1995 and 2015, and date numbers would have to have 
been appropriate for the months in which they occur (no 30th 
of February, for example). Using these verification techniques, 
the programmer may have felt well insulated from the possible 
problems a careless or malicious user could cause.

However, the program is still vulnerable. By packing the result 
into the return URL, the programmer left these data fields in a 
place the user can access (and modify). In particular, the user 
could edit the URL line, change any parameter values, and resend 
the line. On the server side, there is no way for the server to tell if 
the response line came from the client’s browser or as a result of 
the user’s editing the URL directly. We say in this case that the data 
values are not completely mediated: The sensitive data (namely, 
the parameter values) are in an exposed, uncontrolled condition.
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3.2.4 Security Implication

Incomplete mediation is easy to exploit, but it has been exercised 
less often than buffer overflows. Nevertheless, unchecked data 
values represent a serious potential vulnerability.

To demonstrate this flaw’s security implications, we use a real 
example; only the name of the vendor has been changed to protect 
the guilty. Things, Inc., was a very large, international vendor of 
consumer products, called Objects. The company was ready to 
sell its Objects through a web site, using what appeared to be a 
standard e-commerce application. The management at Things 
decided to let some of its in-house developers produce the web 
site so that its customers could order Objects directly from the 
web.

To accompany the web site, Things developed a complete price 
list of its Objects, including pictures, descriptions, and drop-down 
menus for size, shape, color, scent, and any other properties. For 
example, a customer on the web could choose to buy 20 of part 
number 555A Objects. If the price of one such part were $10, the 
web server would correctly compute the price of the 20 parts to be 
$200. Then the customer could decide whether to have the Objects 
shipped by boat, by ground transportation, or sent electronically. 
If the customer were to choose boat delivery, the customer’s web 
browser would complete a form with parameters like these:

http://www.things.com/order.asp?custID=101&part=555A&qy=20
&price =10&ship=boat&shipcost=5&total=205

So far, so good; everything in the parameter passage looks correct. 
But this procedure leaves the parameter statement open for 
malicious tampering. Things should not need to pass the price of 
the items back to itself as an input parameter; presumably Things 
knows how much its Objects cost, and they are unlikely to change 
dramatically since the time the price was quoted a few screens 
earlier.
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A malicious attacker may decide to exploit this peculiarity by 
supplying instead the following URL, where the price has been 
reduced from $205 to $25:

http://www.things.com/order.asp?custID=101&part=555A&qy=20
&price =1&ship=boat&shipcost=5&total=25

Surprise! It worked. The attacker could have ordered Objects from 
Things in any quantity at any price. And yes, this code was running 
on the web site for a while before the problem was detected. From 
a security perspective, the most serious concern about this flaw 
was the length of time that it could have run undetected. Had 
the whole world suddenly made a rush to Things’s web site and 
bought Objects at a fraction of their price, Things probably would 
have noticed. But Things is large enough that it would never 
have detected a few customers a day choosing prices that were 
similar to (but smaller than) the real price, say 30 percent off. 
The e-commerce division would have shown a slightly smaller 
profit than other divisions, but the difference probably would not 
have been enough to raise anyone’s eyebrows; the vulnerability 
could have gone unnoticed for years. Fortunately, Things hired a 
consultant to do a routine review of its code, and the consultant 
found the error quickly.

This web program design flaw is easy to imagine in other web 
settings. Those of us interested in security must ask ourselves how 
many similar problems are there in running code today? And how 
will those vulnerabilities ever be found?

3.2.5 Time-of-Check to Time-of-Use Errors

The third programming flaw we investigate involves 
synchronization. To improve efficiency, modern processors and 
operating systems usually change the order in which instructions 
and procedures are executed. In particular, instructions that 
appear to be adjacent may not actually be executed immediately 
after each other, either because of intentionally changed order or 
because of the effects of other processes in concurrent execution.
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Definition

Access control is a fundamental part of computer security; we 
want to make sure that only those who should access an object 
are allowed that access. Every requested access must be governed 
by an access policy stating who is allowed access to what; then 
the request must be mediated by an access-policy-enforcement 
agent. But an incomplete mediation problem occurs when access 
is not checked universally. The time-of-check to time-of-use 
(TOCTTOU) flaw concerns mediation that is performed with a 
“bait and switch” in the middle. It is also known as a serialization 
or synchronization flaw.

To understand the nature of this flaw, consider a person’s buying 
a sculpture that costs $100. The buyer removes five $20 bills from 
a wallet, carefully counts them in front of the seller, and lays 
them on the table. Then the seller turns around to write a receipt. 
While the seller’s back is turned, the buyer takes back one $20 bill. 
When the seller turns around, the buyer hands over the stack of 
bills, takes the receipt, and leaves with the sculpture. Between the 
time the security was checked (counting the bills) and the access 
(exchanging the sculpture for the bills), a condition changed: 
What was checked is no longer valid when the object (that is, the 
sculpture) is accessed.

A similar situation can occur with computing systems. Suppose a 
request to access a file were presented as a data structure, with the 
name of the file and the mode of access presented in the structure. 

The data structure is essentially a “work ticket,” requiring a stamp 
of authorization; once authorized, it is put on a queue of things 
to be done. Normally the access control mediator receives the 
data structure, determines whether the access should be allowed, 
and either rejects the access and stops or allows the access and 
forwards the data structure to the file handler for processing.

To carry out this authorization sequence, the access control 
mediator would have to look up the file name (and the user 
identity and any other relevant parameters) in tables. The mediator 
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could compare the names in the table to the file name in the data 
structure to determine whether access is appropriate. More likely, 
the mediator would copy the file name into its own local storage 
area and compare from there. Comparing from the copy leaves 
the data structure in the user’s area, under the user’s control.

It is at this point that the incomplete mediation flaw can be 
exploited. While the mediator is checking access rights for the file 
my file, the user could change the file name descriptor to your 
file. Having read the work ticket once, the mediator would not 
be expected to reread the ticket before approving it; the mediator 
would approve the access and send the now-modified descriptor 
to the file handler.

The problem is called a time-of-check to time-of-use flaw because 
it exploits the delay between the two times. That is, between the 
time the access was checked and the time the result of the check 
was used, a change occurred, invalidating the result of the check.

3.2.6 Security Implication

The security implication here is pretty clear: Checking one action 
and performing another is an example of ineffective access control. 
We must be wary whenever a time lag or loss of control occurs, 
making sure that there is no way to corrupt the check’s results 
during that interval.

Fortunately, there are ways to prevent exploitation of the time 
lag. One way is to ensure that critical parameters are not exposed 
during any loss of control. The access checking software must own 
the request data until the requested action is complete. Another 
way is to ensure serial integrity; that is, to allow no interruption 
(loss of control) during the validation. Or the validation routine 
can initially copy data from the user’s space to the routine’s area 
out of the user’s reach and perform validation checks on the copy. 
Finally, the validation routine can seal the request data with a 
checksum to detect modification.
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3.2.7 Combinations of Nonmalicious Program Flaws

These three vulnerabilities are bad enough when each is considered 
on its own. But perhaps the worst aspect of all three flaws is that 
they can be used together as one step in a multistep attack. An 
attacker may not be content with causing a buffer overflow. Instead 
the attacker may begin a three-pronged attack by using a buffer 
overflow to disrupt all execution of arbitrary code on a machine. 
At the same time, the attacker may exploit a time-of-check to time-
of-use flaw to add a new user ID to the system. The attacker then 
logs in as the new user and exploits an incomplete mediation 
flaw to obtain privileged status, and so forth. The clever attacker 
uses flaws as common building blocks to build a complex attack. 
For this reason, we must know about and protect against even 
simple flaws. Unfortunately, these kinds of flaws are widespread 
and dangerous. As we see in the next section, innocuous-seeming 
program flaws can be exploited by malicious attackers to plant 
intentionally harmful code.

3.3 VIRUSES AND OTHER MALICIOUS CODE

By themselves, programs are seldom security threats. The 
programs operate on data, taking action only when data and 
state changes trigger it. Much of the work done by a program is 
invisible to users who are not likely to be aware of any malicious 
activity. For instance, when was the last time you saw a bit? Do 
you know in what form a document file is stored? If you know a 
document resides somewhere on a disk, can you find it? Can you 
tell if a game program does anything in addition to its expected 
interaction with you? Which files are modified by a word processor 
when you create a document? Which programs execute when 
you start your computer or open a web page? Most users cannot 
answer these questions. However, since users usually do not see 
computer data directly, malicious people can make programs serve 
as vehicles to access and change data and other programs. Let us 
look at the possible effects of malicious code and then examine in 
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detail several kinds of programs that can be used for interception 
or modification of data.

3.3.1 Why Worry About Malicious Code?

None of us like the unexpected, especially in our programs. 
Malicious code behaves in unexpected ways, thanks to a malicious 
programmer’s intention. We think of the malicious code as lurking 
inside our system: all or some of a program that we are running 
or even a nasty part of a separate program that somehow attaches 
itself to another (good) program.

How can such a situation arise? When you last installed a major 
software package, such as a word processor, a statistical package, 
or a plug-in from the Internet, you ran one command, typically 
called INSTALL or SETUP. From there, the installation program 
took control, creating some files, writing in other files, deleting 
data and files, and perhaps renaming a few that it would change. 
A few minutes and a quite a few disk accesses later, you had plenty 
of new code and data, all set up for you with a minimum of human 
intervention. Other than the general descriptions on the box, in 
documentation files, or on web pages, you had absolutely no idea 
exactly what “gifts” you had received. You hoped all you received 
was good, and it probably was. The same uncertainty exists when 
you unknowingly download an application, such as a Java applet 
or an ActiveX control, while viewing a web site. Thousands or 
even millions of bytes of programs and data are transferred, and 
hundreds of modifications may be made to your existing files, all 
occurring without your explicit consent or knowledge.

3.3.2 Malicious Code Can Do Much (Harm)

Malicious code can do anything any other program can, such 
as writing a message on a computer screen, stopping a running 
program, generating a sound, or erasing a stored file. Or malicious 
code can do nothing at all right now; it can be planted to lie 
dormant, undetected, until some event triggers the code to act. 
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The trigger can be a time or date, an interval (for example, after 
30 minutes), an event (for example, when a particular program 
is executed), a condition (for example, when communication 
occurs on a network interface), a count (for example, the fifth time 
something happens), some combination of these, or a random 
situation. In fact, malicious code can do different things each time, 
or nothing most of the time with something dramatic on occasion. 
In general, malicious code can act with all the predictability of a 
two-year-old child: We know in general what two-year-olds do, 
we may even know what a specific two-year-old often does in 
certain situations, but two-year-olds have an amazing capacity to 
do the unexpected.

Malicious code runs under the user’s authority. Thus, malicious 
code can touch everything the user can touch, and in the same 
ways. Users typically have complete control over their own 
program code and data files; they can read, write, modify, append, 
and even delete them. And well they should. But malicious code 
can do the same, without the user’s permission or even knowledge.

3.3.3 Malicious Code Has Been Around a Long Time

The popular literature and press continue to highlight the effects 
of malicious code as if it were a relatively recent phenomenon. It is 
not. Cohen [COH84] is sometimes credited with the discovery of 
viruses, but in fact Cohen gave a name to a phenomenon known 
long before. For example, Thompson, in his 1984 Turing Award 
lecture, “Reflections on Trusting Trust” [THO84], described code 
that can be passed by a compiler. vulnerabilities, and program 
security flaws, especially intentional ones. What is new about 
malicious code is the number of distinct instances and copies that 
have appeared and the speed with which exploit code appears.

So malicious code is still around, and its effects are more pervasive. 
It is important for us to learn what it looks like and how it works 
so that we can take steps to prevent it from doing damage or at 
least mediate its effects. How can malicious code take control of a 
system? How can it lodge in a system? How does malicious code 



Program Security 103

spread? How can it be recognized? How can it be detected? How 
can it be stopped? How can it be prevented?

3.3.4 Kinds of Malicious Code

Malicious code or rogue program

Malicious code or rogue program is the general name for 
unanticipated or undesired effects in programs or program parts, 
caused by an agent intent on damage. This definition excludes 
unintentional errors, although they can also have a serious negative 
effect. This definition also excludes coincidence, in which two 
benign programs combine for a negative effect. The agent is the 
writer of the program or the person who causes its distribution. By 
this definition, most faults found in software inspections, reviews, 
and testing do not qualify as malicious code, because we think 
of them as unintentional. However, keep in mind as you read 
this chapter that unintentional faults can in fact invoke the same 
responses as intentional malevolence; a benign cause can still lead 
to a disastrous effect.

You are likely to have been affected by a virus at one time or another, 
either because your computer was infected by one or because 
you could not access an infected system while its administrators 
were cleaning up the mess one made. In fact, your virus might 
actually have been a worm: The terminology of malicious code 
is sometimes used imprecisely. A virus is a program that can 
replicate itself and pass on malicious code to other nonmalicious 
programs by modifying them. The term “virus” was coined 
because the affected program acts like a biological virus: It infects 
other healthy subjects by attaching itself to the program and either 
destroying it or coexisting with it. Because viruses are insidious, 
we cannot assume that a clean program yesterday is still clean 
today. Moreover, a good program can be modified to include a 
copy of the virus program, so the infected good program itself 
begins to act as a virus, infecting other programs. The infection 
usually spreads at a geometric rate, eventually overtaking an 
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entire computing system and spreading to all other connected 
systems.

A virus can be either transient or resident. A transient virus has 
a life that depends on the life of its host; the virus runs when 
its attached program executes and terminates when its attached 
program ends. (During its execution, the transient virus may 
spread its infection to other programs.) A resident virus locates 
itself in memory; then it can remain active or be activated as a 
stand-alone program, even after its attached program ends.

Trojan Horse

A Trojan horse is malicious code that, in addition to its primary 
effect, has a second, nonobvious malicious effect.[1] As an example 
of a computer Trojan horse, consider a login script that solicits 
a user’s identification and password, passes the identification 
information on to the rest of the system for login processing, but 
also retains a copy of the information for later, malicious use. In 
this example, the user sees only the login occurring as expected, 
so there is no evident reason to suspect that any other action took 
place.

Logic Bomb

A logic bomb is a class of malicious code that “detonates” or goes 
off when a specified condition occurs. A time bomb is a logic bomb 
whose trigger is a time or date.

Trapdoor or backdoor

A trapdoor or backdoor is a feature in a program by which 
someone can access the program other than by the obvious, direct 
call, perhaps with special privileges. For instance, an automated 
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bank teller program might allow anyone entering the number 
990099 on the keypad to process the log of everyone’s transactions 
at that machine. In this example, the trapdoor could be intentional, 
for maintenance purposes, or it could be an illicit way for the 
implementer to wipe out any record of a crime.

Worm

A worm is a program that spreads copies of itself through a 
network. Shock and Hupp [SHO82] are apparently the first to 
describe a worm, which, interestingly, was for nonmalicious 
purposes. The primary difference between a worm and a virus is 
that a worm operates through networks, and a virus can spread 
through any medium (but usually uses copied program or data 
files). Additionally, the worm spreads copies of itself as a stand-
alone program, whereas the virus spreads copies of itself as a 
program that attaches to or embeds in other programs.

A rabbit as a virus or worm that self-replicates without bound, 
with the intention of exhausting some computing resource. A 
rabbit might create copies of itself and store them on disk in an 
effort to completely fill the disk, for example.

These definitions match current careful usage. The distinctions 
among these terms are small, and often the terms are confused, 
especially in the popular press. The term “virus” is often used to 
refer to any piece of malicious code. Furthermore, two or more 
forms of malicious code can be combined to produce a third kind 
of problem. For instance, a virus can be a time bomb if the viral 
code that is spreading will trigger an event after a period of time 
has passed. The kinds of malicious code are summarized in Table 
1.
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Table 1: Types of Malicious Code

Because “virus” is the popular name given to all forms of 
malicious code and because fuzzy lines exist between different 
kinds of malicious code, we are not too restrictive in the following 
discussion. We want to look at how malicious code spreads, how 
it is activated, and what effect it can have. A virus is a convenient 
term for mobile malicious code, so in the following sections we 
use the term “virus” almost exclusively. The points made apply 
also to other forms of malicious code.

3.3.5 How Viruses Attach

A printed copy of a virus does nothing and threatens no one. 
Even executable virus code sitting on a disk does nothing. What 
triggers a virus to start replicating? For a virus to do its malicious 
work and spread itself, it must be activated by being executed. 
Fortunately for virus writers but unfortunately for the rest of us, 
there are many ways to ensure that programs will be executed on 
a running computer.

For example, recall the SETUP program that you initiate on your 
computer. It may call dozens or hundreds of other programs, 
some on the distribution medium, some already residing on the 
computer, some in memory. If any one of these programs contains 
a virus, the virus code could be activated. Let us see how. Suppose 
the virus code were in a program on the distribution medium, 
such as a CD; when executed, the virus could install itself on a 
permanent storage medium (typically, a hard disk) and also in any 
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and all executing programs in memory. Human intervention is 
necessary to start the process; a human being puts the virus on the 
distribution medium, and perhaps another initiates the execution 
of the program to which the virus is attached. (It is possible for 
execution to occur without human intervention, though, such as 
when execution is triggered by a date or the passage of a certain 
amount of time.) After that, no human intervention is needed; the 
virus can spread by itself.

A more common means of virus activation is as an attachment to an 
e-mail message. In this attack, the virus writer tries to convince the 
victim (the recipient of the e-mail message) to open the attachment. 
Once the viral attachment is opened, the activated virus can do 
its work. Some modern e-mail handlers, in a drive to “help” the 
receiver (victim), automatically open attachments as soon as the 
receiver opens the body of the e-mail message. The virus can be 
executable code embedded in an executable attachment, but other 
types of files are equally dangerous. For example, objects such as 
graphics or photo images can contain code to be executed by an 
editor, so they can be transmission agents for viruses. In general, 
it is safer to force users to open files on their own rather than 
automatically; it is a bad idea for programs to perform potentially 
security-relevant actions without a user’s consent. However, ease-
of-use often trumps security, so programs such as browsers, e-mail 
handlers, and viewers often “helpfully” open files without asking 
the user first.

3.3.6 Appended Viruses

A program virus attaches itself to a program; then, whenever the 
program is run, the virus is activated. This kind of attachment is 
usually easy to program.

In the simplest case, a virus inserts a copy of itself into the 
executable program file before the first executable instruction. 
Then, all the virus instructions execute first; after the last virus 
instruction, control flows naturally to what used to be the first 
program instruction. Such a situation is shown in Figure 2.
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Figure 2: Virus Appended to a Program.

This kind of attachment is simple and usually effective. The 
virus writer does not need to know anything about the program 
to which the virus will attach, and often the attached program 
simply serves as a carrier for the virus. The virus performs its task 
and then transfers to the original program. Typically, the user is 
unaware of the effect of the virus if the original program still does 
all that it used to. Most viruses attach in this manner.

3.3.7 Viruses That Surround a Program

An alternative to the attachment is a virus that runs the original 
program but has control before and after its execution. For example, 
a virus writer might want to prevent the virus from being detected. 
If the virus is stored on disk, its presence will be given away by 
its file name, or its size will affect the amount of space used on the 
disk. The virus writer might arrange for the virus to attach itself 
to the program that constructs the listing of files on the disk. If 
the virus regains control after the listing program has generated 
the listing but before the listing is displayed or printed, the virus 
could eliminate its entry from the listing and falsify space counts 
so that it appears not to exist. A surrounding virus is shown in 
Figure 3.
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Figure 3: Virus Surrounding a Program.

3.3.8 Integrated Viruses and Replacements

A third situation occurs when the virus replaces some of its 
target, integrating itself into the original code of the target. Such 
a situation is shown in Figure 4. Clearly, the virus writer has to 
know the exact structure of the original program to know where 
to insert which pieces of the virus.

Figure 4: Virus Integrated into a Program.
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Finally, the virus can replace the entire target, either mimicking 
the effect of the target or ignoring the expected effect of the target 
and performing only the virus effect. In this case, the user is most 
likely to perceive the loss of the original program.

3.3.9 Document Viruses

Currently, the most popular virus type is what we call the document 
virus, which is implemented within a formatted document, such 
as a written document, a database, a slide presentation, a picture, 
or a spreadsheet. These documents are highly structured files that 
contain both data (words or numbers) and commands (such as 
formulas, formatting controls, links). The commands are part of 
a rich programming language, including macros, variables and 
procedures, file accesses, and even system calls. The writer of 
a document virus uses any of the features of the programming 
language to perform malicious actions.

The ordinary user usually sees only the content of the document 
(its text or data), so the virus writer simply includes the virus in 
the commands part of the document, as in the integrated program 
virus.

3.3.10 How Viruses Gain Control

The virus (V) has to be invoked instead of the target (T). Essentially, 
the virus either has to seem to be T, saying effectively “I am T” or 
the virus has to push T out of the way and become a substitute for 
T, saying effectively “Call me instead of T.” A more blatant virus 
can simply say “invoke me [you fool].”

The virus can assume T’s name by replacing (or joining to) T’s code 
in a file structure; this invocation technique is most appropriate for 
ordinary programs. The virus can overwrite T in storage (simply 
replacing the copy of T in storage, for example). Alternatively, the 
virus can change the pointers in the file table so that the virus 
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is located instead of T whenever T is accessed through the file 
system. These two cases are shown in Figure 5.

Figure 5: Virus Completely Replacing a Program.

The virus can supplant T by altering the sequence that would have 
invoked T to now invoke the virus V; this invocation can be used 
to replace parts of the resident operating system by modifying 
pointers to those resident parts, such as the table of handlers for 
different kinds of interrupts.

3.3.11 Homes for Viruses

The virus writer may find these qualities appealing in a virus:
• It is hard to detect.
• It is not easily destroyed or deactivated.
• It spreads infection widely.
• It can reinfect its home program or other programs.
• It is easy to create.
• It is machine independent and operating system 

independent.
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Few viruses meet all these criteria. The virus writer chooses from 
these objectives when deciding what the virus will do and where 
it will reside.

Just a few years ago, the challenge for the virus writer was to 
write code that would be executed repeatedly so that the virus 
could multiply. Now, however, one execution is enough to ensure 
widespread distribution. Many viruses are transmitted by e-mail, 
using either of two routes. In the first case, some virus writers 
generate a new e-mail message to all addresses in the victim’s 
address book. These new messages contain a copy of the virus 
so that it propagates widely. Often the message is a brief, chatty, 
nonspecific message that would encourage the new recipient to 
open the attachment from a friend (the first recipient). For example, 
the subject line or message body may read “I thought you might 
enjoy this picture from our vacation.” In the second case, the 
virus writer can leave the infected file for the victim to forward 
unknowingly. If the virus’s effect is not immediately obvious, the 
victim may pass the infected file unwittingly to other victims.

Let us look more closely at the issue of viral residence.

One-Time Execution

The majority of viruses today execute only once, spreading their 
infection and causing their effect in that one execution. A virus 
often arrives as an e-mail attachment of a document virus. It is 
executed just by being opened.

Boot Sector Viruses

A special case of virus attachment, but formerly a fairly popular 
one, is the so-called boot sector virus. When a computer is started, 
control begins with firmware that determines which hardware 
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components are present, tests them, and transfers control to an 
operating system. A given hardware platform can run many 
different operating systems, so the operating system is not coded 
in firmware but is instead invoked dynamically, perhaps even by 
a user’s choice, after the hardware test.

The operating system is software stored on disk. Code copies the 
operating system from disk to memory and transfers control to 
it; this copying is called the bootstrap (often boot) load because 
the operating system figuratively pulls itself into memory by its 
bootstraps. The firmware does its control transfer by reading a 
fixed number of bytes from a fixed location on the disk (called the 
boot sector) to a fixed address in memory and then jumping to 
that address (which will turn out to contain the first instruction 
of the bootstrap loader). The bootstrap loader then reads into 
memory the rest of the operating system from disk. To run a 
different operating system, the user just inserts a disk with the 
new operating system and a bootstrap loader. When the user 
reboots from this new disk, the loader there brings in and runs 
another operating system. This same scheme is used for personal 
computers, workstations, and large mainframes.

To allow for change, expansion, and uncertainty, hardware 
designers reserve a large amount of space for the bootstrap load. 
The boot sector on a PC is slightly less than 512 bytes, but since the 
loader will be larger than that, the hardware designers support 
“chaining,” in which each block of the bootstrap is chained to 
(contains the disk location of) the next block. This chaining allows 
big bootstraps but also simplifies the installation of a virus. The 
virus writer simply breaks the chain at any point, inserts a pointer 
to the virus code to be executed, and reconnects the chain after the 
virus has been installed. This situation is shown in Figure 6.
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Figure 6: Boot Sector Virus Relocating Code.

The boot sector is an especially appealing place to house a virus. 
The virus gains control very early in the boot process, before most 
detection tools are active, so that it can avoid, or at least complicate, 
detection. The files in the boot area are crucial parts of the operating 
system. Consequently, to keep users from accidentally modifying 
or deleting them with disastrous results, the operating system 
makes them “invisible” by not showing them as part of a normal 
listing of stored files, preventing their deletion. Thus, the virus 
code is not readily noticed by users.

Memory-Resident Viruses

Some parts of the operating system and most user programs 
execute, terminate, and disappear, with their space in memory 
being available for anything executed later. For very frequently 
used parts of the operating system and for a few specialized user 
programs, it would take too long to reload the program each 
time it was needed. Such code remains in memory and is called 
“resident” code. Examples of resident code are the routine that 
interprets keys pressed on the keyboard, the code that handles 
error conditions that arise during a program’s execution, or a 
program that acts like an alarm clock, sounding a signal at a time 
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the user determines. Resident routines are sometimes called TSRs 
or “terminate and stay resident” routines.

Virus writers also like to attach viruses to resident code because 
the resident code is activated many times while the machine is 
running. Each time the resident code runs, the virus does too. Once 
activated, the virus can look for and infect uninfected carriers. For 
example, after activation, a boot sector virus might attach itself to 
a piece of resident code. Then, each time the virus was activated 
it might check whether any removable disk in a disk drive was 
infected and, if not, infect it. In this way the virus could spread 
its infection to all removable disks used during the computing 
session.

A virus can also modify the operating system’s table of programs 
to run. On a Windows machine the registry is the table of all 
critical system information, including programs to run at startup. 
If the virus gains control once, it can insert a registry entry so that 
it will be reinvoked each time the system restarts. In this way, even 
if the user notices and deletes the executing copy of the virus from 
memory, the virus will return on the next system restart.

3.3.12 Other Homes for Viruses

A virus that does not take up residence in one of these cozy 
establishments has to fend more for itself. But that is not to say 
that the virus will go homeless.

One popular home for a virus is an application program. Many 
applications, such as word processors and spreadsheets, have a 
“macro” feature, by which a user can record a series of commands 
and repeat them with one invocation. Such programs also provide 
a “startup macro” that is executed every time the application is 
executed. A virus writer can create a virus macro that adds itself 
to the startup directives for the application. It also then embeds a 
copy of itself in data files so that the infection spreads to anyone 
receiving one or more of those files.
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Libraries are also excellent places for malicious code to reside. 
Because libraries are used by many programs, the code in them 
will have a broad effect. Additionally, libraries are often shared 
among users and transmitted from one user to another, a practice 
that spreads the infection. Finally, executing code in a library can 
pass on the viral infection to other transmission media. Compilers, 
loaders, linkers, runtime monitors, runtime debuggers, and even 
virus control programs are good candidates for hosting viruses 
because they are widely shared.

3.3.13 Virus Signatures

A virus cannot be completely invisible. Code must be stored 
somewhere, and the code must be in memory to execute. Moreover, 
the virus executes in a particular way, using certain methods to 
spread. Each of these characteristics yields a telltale pattern, called 
a signature, that can be found by a program that looks for it. The 
virus’s signature is important for creating a program, called a 
virus scanner, that can detect and, in some cases, remove viruses. 
The scanner searches memory and long-term storage, monitoring 
execution and watching for the telltale signatures of viruses. For 
example, a scanner looking for signs of the Code Red worm can 
look for a pattern containing the following characters:

/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbd3
%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858
%ucbd3%u7801%u9090
%u9090%u8190%u00c3%u0003%ub00%u531b%u53ff
%u0078%u0000%u00=a
HTTP/1.0

When the scanner recognizes a known virus’s pattern, it can then 
block the virus, inform the user, and deactivate or remove the 
virus. However, a virus scanner is effective only if it has been kept 
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up to date with the latest information on current viruses.

3.3.14 Storage Patterns

Most viruses attach to programs that are stored on media such 
as disks. The attached virus piece is invariant, so the start of the 
virus code becomes a detectable signature. The attached piece is 
always located at the same position relative to its attached file. For 
example, the virus might always be at the beginning, 400 bytes 
from the top, or at the bottom of the infected file. Most likely, the 
virus will be at the beginning of the file because the virus writer 
wants to obtain control of execution before the bona fide code of 
the infected program is in charge. In the simplest case, the virus 
code sits at the top of the program, and the entire virus does its 
malicious duty before the normal code is invoked. In other cases, 
the virus infection consists of only a handful of instructions that 
point or jump to other, more detailed instructions elsewhere. For 
example, the infected code may consist of condition testing and a 
jump or call to a separate virus module. In either case, the code to 
which control is transferred will also have a recognizable pattern. 
Both of these situations are shown in Figure 7.

Figure 7: Recognizable Patterns in Viruses.
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A virus may attach itself to a file, in which case the file’s size 
grows. Or the virus may obliterate all or part of the underlying 
program, in which case the program’s size does not change but 
the program’s functioning will be impaired. The virus writer has 
to choose one of these detectable effects.

The virus scanner can use a code or checksum to detect changes 
to a file. It can also look for suspicious patterns, such as a JUMP 
instruction as the first instruction of a system program (in case 
the virus has positioned itself at the bottom of the file but is to be 
executed first, as in Figure 7).

3.3.15 Execution Patterns

A virus writer may want a virus to do several things at the same 
time, namely, spread infection, avoid detection, and cause harm. 
These goals are shown in Table 7, along with ways each goal can be 
addressed. Unfortunately, many of these behaviors are perfectly 
normal and might otherwise go undetected. For instance, one goal 
is modifying the file directory; many normal programs create files, 
delete files, and write to storage media. Thus, no key signals point 
to the presence of a virus.

Table 2: Virus Effects and Causes.
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Most virus writers seek to avoid detection for themselves and 
their creations. Because a disk’s boot sector is not visible to normal 
operations (for example, the contents of the boot sector do not 
show on a directory listing), many virus writers hide their code 
there. A resident virus can monitor disk accesses and fake the 
result of a disk operation that would show the virus hidden in a 
boot sector by showing the data that should have been in the boot 
sector (which the virus has moved elsewhere).
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There are no limits to the harm a virus can cause. On the modest 
end, the virus might do nothing; some writers create viruses just 
to show they can do it. Or the virus can be relatively benign, 
displaying a message on the screen, sounding the buzzer, or 
playing music. From there, the problems can escalate. One virus 
can erase files, another an entire disk; one virus can prevent a 
computer from booting, and another can prevent writing to disk. 
The damage is bounded only by the creativity of the virus’s author.

3.3.16 Transmission Patterns

A virus is effective only if it has some means of transmission 
from one location to another. As we have already seen, viruses 
can travel during the boot process by attaching to an executable 
file or traveling within data files. The travel itself occurs during 
execution of an already infected program. Since a virus can execute 
any instructions a program can, virus travel is not confined to any 
single medium or execution pattern. For example, a virus can 
arrive on a disk or from a network connection, travel during its 
host’s execution to a hard disk boot sector, reemerge next time the 
host computer is booted, and remain in memory to infect other 
disks as they are accessed.

3.3.17 Polymorphic Viruses

The virus signature may be the most reliable way for a virus 
scanner to identify a virus. If a particular virus always begins with 
the string 47F0F00E08 (in hexadecimal) and has string 00113FFF 
located at word 12, it is unlikely that other programs or data files 
will have these exact characteristics. For longer signatures, the 
probability of a correct match increases.

If the virus scanner will always look for those strings, then the 
clever virus writer can cause something other than those strings 
to be in those positions. Many instructions cause no effect, such as 
adding 0 to a number, comparing a number to itself, or jumping 
to the next instruction. These instructions, sometimes called no-
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ops, can be sprinkled into a piece of code to distort any pattern. 
For example, the virus could have two alternative but equivalent 
beginning words; after being installed, the virus will choose 
one of the two words for its initial word. Then, a virus scanner 
would have to look for both patterns. A virus that can change its 
appearance is called a polymorphic virus. (Poly means “many” 
and morph means “form.”)

A two-form polymorphic virus can be handled easily as two 
independent viruses. Therefore, the virus writer intent on 
preventing detection of the virus will want either a large or an 
unlimited number of forms so that the number of possible forms 
is too large for a virus scanner to search for. Simply embedding a 
random number or string at a fixed place in the executable version 
of a virus is not sufficient, because the signature of the virus is just 
the constant code excluding the random part. A polymorphic virus 
has to randomly reposition all parts of itself and randomly change 
all fixed data. Thus, instead of containing the fixed (and therefore 
searchable) string “HA! INFECTED BY A VIRUS,” a polymorphic 
virus has to change even that pattern sometimes.

Trivially, assume a virus writer has 100 bytes of code and 50 bytes 
of data. To make two virus instances different, the writer might 
distribute the first version as 100 bytes of code followed by all 
50 bytes of data. A second version could be 99 bytes of code, a 
jump instruction, 50 bytes of data, and the last byte of code. Other 
versions are 98 code bytes jumping to the last two, 97 and three, 
and so forth. Just by moving pieces around, the virus writer can 
create enough different appearances to fool simple virus scanners. 
Once the scanner writers became aware of these kinds of tricks, 
however, they refined their signature definitions.

A simple variety of polymorphic virus uses encryption under 
various keys to make the stored form of the virus different. These 
are sometimes called encrypting viruses. This type of virus must 
contain three distinct parts: a decryption key, the (encrypted) 
object code of the virus, and the (unencrypted) object code of the 
decryption routine. For these viruses, the decryption routine itself, 
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or a call to a decryption library routine, must be in the clear so that 
becomes the signature.

To avoid detection, not every copy of a polymorphic virus has to 
differ from every other copy. If the virus changes occasionally, not 
every copy will match a signature of every other copy.

3.3.18 The Source of Viruses

Since a virus can be rather small, its code can be “hidden” inside 
other larger and more complicated programs. Two hundred lines 
of a virus could be separated into one hundred packets of two 
lines of code and a jump each; these one hundred packets could 
be easily hidden inside a compiler, a database manager, a file 
manager, or some other large utility.

Virus discovery could be aided by a procedure to determine if 
two programs are equivalent. However, theoretical results in 
computing are very discouraging when it comes to the complexity 
of the equivalence problem. The general question “Are these two 
programs equivalent?” is undecidable (although that question 
can be answered for many specific pairs of programs). Even 
ignoring the general undecidability problem, two modules may 
produce subtly different results that mayor may notbe security 
relevant. One may run faster, or the first may use a temporary file 
for workspace whereas the second performs all its computations 
in memory. These differences could be benign, or they could be 
a marker of an infection. Therefore, we are unlikely to develop 
a screening program that can separate infected modules from 
uninfected ones.

Although the general is dismaying, the particular is not. If we 
know that a particular virus may infect a computing system, we 
can check for it and detect it if it is there. Having found the virus, 
however, we are left with the task of cleansing the system of it. 
Removing the virus in a running system requires being able to 
detect and eliminate its instances faster than it can spread.
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3.3.19 Prevention of Virus Infection

The only way to prevent the infection of a virus is not to receive 
executable code from an infected source. This philosophy used to 
be easy to follow because it was easy to tell if a file was executable 
or not. For example, on PCs, a .exe extension was a clear sign 
that the file was executable. However, as we have noted, today’s 
files are more complex, and a seemingly nonexecutable file may 
have some executable code buried deep within it. For example, 
a word processor may have commands within the document 
file; as we noted earlier, these commands, called macros, make it 
easy for the user to do complex or repetitive things. But they are 
really executable code embedded in the context of the document. 
Similarly, spreadsheets, presentation slides, other office- or 
business-related files, and even media files can contain code or 
scripts that can be executed in various waysand thereby harbor 
viruses. And, as we have seen, the applications that run or use these 
files may try to be helpful by automatically invoking the executable 
code, whether you want it run or not! Against the principles of 
good security, e-mail handlers can be set to automatically open 
(without performing access control) attachments or embedded 
code for the recipient, so your e-mail message can have animated 
bears dancing across the top.

Another approach virus writers have used is a little-known feature 
in the Microsoft file design. Although a file with a .doc extension is 
expected to be a Word document, in fact, the true document type is 
hidden in a field at the start of the file. This convenience ostensibly 
helps a user who inadvertently names a Word document with a .ppt 
(Power-Point) or any other extension. In some cases, the operating 
system will try to open the associated application but, if that fails, 
the system will switch to the application of the hidden file type. 
So, the virus writer creates an executable file, names it with an 
inappropriate extension, and sends it to the victim, describing it is 
as a picture or a necessary code add-in or something else desirable. 
The unwitting recipient opens the file and, without intending to, 
executes the malicious code.
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More recently, executable code has been hidden in files containing 
large data sets, such as pictures or read-only documents. These 
bits of viral code are not easily detected by virus scanners and 
certainly not by the human eye. For example, a file containing a 
photograph may be highly granular; if every sixteenth bit is part 
of a command string that can be executed, then the virus is very 
difficult to detect.

Because you cannot always know which sources are infected, you 
should assume that any outside source is infected. Fortunately, 
you know when you are receiving code from an outside source; 
unfortunately, it is not feasible to cut off all contact with the outside 
world.

In their interesting paper comparing computer virus transmission 
with human disease transmission, Individuals’ efforts to keep 
their computers free from viruses lead to communities that are 
generally free from viruses because members of the community 
have little (electronic) contact with the outside world. In this 
case, transmission is contained not because of limited contact but 
because of limited contact outside the community. Governments, 
for military or diplomatic secrets, often run disconnected network 
communities. The trick seems to be in choosing one’s community 
prudently. However, as use of the Internet and the World Wide 
Web increases, such separation is almost impossible to maintain.

Nevertheless, there are several techniques for building a reasonably 
safe community for electronic contact, including the following:

•	 Use	 only	 commercial	 software	 acquired	 from	 reliable,	 well-
established	 vendors. There is always a chance that you 
might receive a virus from a large manufacturer with 
a name everyone would recognize. However, such 
enterprises have significant reputations that could be 
seriously damaged by even one bad incident, so they go 
to some degree of trouble to keep their products virus-
free and to patch any problem-causing code right away. 
Similarly, software distribution companies will be careful 
about products they handle.
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•	 Test	all	new	software	on	an	isolated	computer. If you must use 
software from a questionable source, test the software 
first on a computer that is not connected to a network 
and contains no sensitive or important data. Run the 
software and look for unexpected behavior, even simple 
behavior such as unexplained figures on the screen. Test 
the computer with a copy of an up-to-date virus scanner 
created before the suspect program is run. Only if the 
program passes these tests should you install it on a less 
isolated machine.

•	 Open	attachments	only	when	you	know	them	to	be	safe. What 
constitutes “safe” is up to you, as you have probably 
already learned in this chapter. Certainly, an attachment 
from an unknown source is of questionable safety. You 
might also distrust an attachment from a known source 
but with a peculiar message.

•	 Make	a	recoverable	system	image	and	store	it	safely.	If your 
system does become infected, this clean version will let 
you reboot securely because it overwrites the corrupted 
system files with clean copies. For this reason, you must 
keep the image write-protected during reboot. Prepare 
this image now, before infection; after infection it is too 
late. For safety, prepare an extra copy of the safe boot 
image.

•	 Make	and	retain	backup	copies	of	executable	system	files.	This 
way, in the event of a virus infection, you can remove 
infected files and reinstall from the clean backup copies 
(stored in a secure, offline location, of course). Also 
make and retain backups of important data files that 
might contain infectable code; such files include word-
processor documents, spreadsheets, slide presentations, 
pictures, sound files, and databases. Keep these backups 
on inexpensive media, such as CDs or DVDs so that you 
can keep old backups for a long time. In case you find 
an infection, you want to be able to start from a clean 
backupthat is, one taken before the infection.
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•	 Use	virus	detectors	(often	called	virus	scanners)	regularly	and	
update	them	daily. Many of the available virus detectors can 
both detect and eliminate infection from viruses. Several 
scanners are better than one because one may detect the 
viruses that others miss. Because scanners search for 
virus signatures, they are constantly being revised as 
new viruses are discovered. New virus signature files 
or new versions of scanners are distributed frequently; 
often, you can request automatic downloads from the 
vendor’s web site. Keep your detector’s signature file up 
to date.

3.3.20 Truths and Misconceptions about Viruses

Because viruses often have a dramatic impact on the computer-
using community, they are often highlighted in the press, 
particularly in the business section. However, there is much 
misinformation in circulation about viruses. Let us examine some 
of the popular claims about them.

•	 Viruses	 can	 infect	 only	Microsoft	Windows	 systems.	 False. 
Among students and office workers, PCs running 
Windows are popular computers, and there may be 
more people writing software (and viruses) for them 
than for any other kind of processor. Thus, the PC is most 
frequently the target when someone decides to write a 
virus. However, the principles of virus attachment and 
infection apply equally to other processors, including 
Macintosh computers, Unix and Linux workstations, and 
mainframe computers. Cell phones and PDAs are now 
also virus targets. In fact, no writeable stored-program 
computer is immune to possible virus attack. This 
situation means that all devices containing computer 
code, including automobiles, airplanes, microwave 
ovens, radios, televisions, voting machines, and radiation 
therapy machines have the potential for being infected 
by a virus.



Program Security 127

•	 Viruses	can	modify	“hidden”	or	“read-only”	files.	True. We 
may try to protect files by using two operating system 
mechanisms. First, we can make a file a hidden file 
so that a user or program listing all files on a storage 
device will not see the file’s name. Second, we can 
apply a read-only protection to the file so that the user 
cannot change the file’s contents. However, each of these 
protections is applied by software, and virus software 
can override the native software’s protection. Moreover, 
software protection is layered, with the operating 
system providing the most elementary protection. If a 
secure operating system obtains control before a virus 
contaminator has executed, the operating system can 
prevent contamination as long as it blocks the attacks the 
virus will make.

•	 Viruses	 can	 appear	 only	 in	 data	 files,	 or	 only	 in	 Word	
documents,	 or	 only	 in	 programs.	 False. What are data? 
What is an executable file? The distinction between these 
two concepts is not always clear, because a data file 
can control how a program executes and even cause a 
program to execute. Sometimes a data file lists steps to be 
taken by the program that reads the data, and these steps 
can include executing a program. For example, some 
applications contain a configuration file whose data are 
exactly such steps. Similarly, word-processing document 
files may contain startup commands to execute when 
the document is opened; these startup commands can 
contain malicious code. Although, strictly speaking, 
a virus can activate and spread only when a program 
executes, in fact, data files are acted on by programs. 
Clever virus writers have been able to make data control 
files that cause programs to do many things, including 
pass along copies of the virus to other data files.

•	 Viruses	 spread	 only	 on	 disks	 or	 only	 through	 e-mail.	 False. 
File-sharing is often done as one user provides a copy of 
a file to another user by writing the file on a transportable 
disk. However, any means of electronic file transfer 
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will work. A file can be placed in a network’s library or 
posted on a bulletin board. It can be attached to an e-mail 
message or made available for download from a web 
site. Any mechanism for sharing filesof programs, data, 
documents, and so forthcan be used to transfer a virus.

•	 Viruses	 cannot	 remain	 in	 memory	 after	 a	 complete	 power	
off/power	on	reboot.	True,	but	 .	 .	 .	If a virus is resident in 
memory, the virus is lost when the memory loses power. 
That is, computer memory (RAM) is volatile, so all 
contents are deleted when power is lost.[2] However, 
viruses written to disk certainly can remain through a 
reboot cycle. Thus, you can receive a virus infection, the 
virus can be written to disk (or to network storage), you 
can turn the machine off and back on, and the virus can 
be reactivated during the reboot. Boot sector viruses gain 
control when a machine reboots (whether it is a hardware 
or software reboot), so a boot sector virus may remain 
through a reboot cycle because it activates immediately 
when a reboot has completed.

•	 Viruses	 cannot	 infect	 hardware.	 True. Viruses can infect 
only things they can modify; memory, executable files, 
and data are the primary targets. If hardware contains 
writeable storage (socalled firmware) that can be 
accessed under program control, that storage is subject 
to virus attack. There have been a few instances of 
firmware viruses. Because a virus can control hardware 
that is subject to program control, it may seem as if a 
hardware device has been infected by a virus, but it is 
really the software driving the hardware that has been 
infected. Viruses can also exercise hardware in any way 
a program can. Thus, for example, a virus could cause a 
disk to loop incessantly, moving to the innermost track 
then the outermost and back again to the innermost.

•	 Viruses	can	be	malevolent,	benign,	or	benevolent.	True. Not 
all viruses are bad. For example, a virus might locate 
uninfected programs, compress them so that they 
occupy less memory, and insert a copy of a routine that 
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decompresses the program when its execution begins. 
At the same time, the virus is spreading the compression 
function to other programs. This virus could substantially 
reduce the amount of storage required for stored 
programs, possibly by up to 50 percent. However, the 
compression would be done at the request of the virus, 
not at the request, or even knowledge, of the program 
owner.
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INTRODUCTION

Protection and security requires that computer resources such as 
CPU, software’s, memory etc. are protected. This extends to the 
operating system as well as the data in the system. This can be 
done by ensuring integrity, confidentiality and availability in the 
operating system. The system must be protect against unauthorized 
access, viruses, worms etc. During the past few years we have 
been observing a significant increase in the number of people 
who use computers to perform tasks where security is important. 
Typical such applications, that are of interest to general public and 
can be expected to be used on home computers, include Internet 
banking, e-government applications, electronic signature creation 
and verification applications. We will use the term security-
critical application to denote such applications. Organizations use 
information systems to store and process confidential business 
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data and personal data. Unauthorized access to information 
stored or processed by all of the mentioned applications (and 
many others) can often cause a substantial loss to the affected 
person or organization. It is usually the user’s responsibility 
to protect the sensitive data. However, common users are not 
information security experts and can only follow some guidelines 
given to them. Even that is usually possible only if the guidelines 
are simple enough. While a larger organization can dedicate 
some computers to security-critical applications and protect them 
against unauthorized access, modification or software installation, 
it can hardly be expected in a home environment.

4.1 SECURITY IN COMMON OPERATING SYSTEMS

In the thesis, we have analyzed two groups of currently common 
desktop operating systems for personal computers. The first group 
consists of Microsoft Windows 2000/ XP Professional/Vista, and 
the second one consists of the Linux operating systems. We have 
used the security functional requirements classes specified in the 
international standard ISO/IEC 15408 to organize the analysis 
of the security functions of the considered operating systems. 
Operating systems in both groups use hardware resources to 
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protect themselves against manipulation by processes, and to 
protect the processes against each other. They implement security 
functions for security audit records generation and review, user 
data protection, user identification and authentication, security 
management, limited trusted path and trusted channels, and 
other security requirements. As far as access control is concerned, 
operating systems in both groups implement discretionary access 
control mechanisms, and some of them (Linux, Windows Vista) 
optionally provide different sorts of (partial) mandatory access 
control mechanisms.

4.1.1 Security Problems of Common Operating Systems

We have identified several common security problems that are 
not addressed sufficiently by the considered operating systems 
if potentially malicious applications are to be used simultaneusly 
with security-critical ones.
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Abuse of privileges by an administrator

Linux operating systems not not apply discretionary access control 
to the processes running on behalf of the user with ID 0 (root). A 
system administrator can, by default, run any program on behalf 
of this user. The administrator can, therefore, manipulate with data 
of any user, and can also modify parts of the operating system and 
applications, e.g. to capture sensitive input such as passwords, 
PINs. The SELinux security module can be used with a carefully 
specified security policy and with a suitable separation of duty 
among more people to lower the risks of abuse of privileges by an 
administrator. In Windows operating systems, the users can limit 
the access of administrators to their data. However, this feature 
is insufficient because it can be circumvented by abusing the 
privileges for backup operators. The protection of confidentiality of 
the data can be improved using encryption, but the administrators 
are still able to overcome the encryption by designating a special 
user able to decrypt all files.
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To sum up, the system administrators (and other users with 
special privileges) effectively control the entire system. Their 
trustworthiness is therefore very important for the overall security 
of the operating systems. 

Too many processes with high privileges

Another common problem is that many processes providing 
various services run on behalf of privileged users (e.g. root 
on Linux, or special system user on Windows). Many of these 
processes do need the privileges, but there are also many of them 
that need only a small subset of the privileges. Programs contain 
various flaws that may allow attackers to execute arbitrary code 
with the privileges of the exploited process. When such flawed 
program runs within a process with an administrator’s privileges, 
it may allow an unidentified attacker to abuse the administrator’s 
privileges.
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Abuse of privileges of an ordinary user

A currently very common problem is the abuse of privileges of 
an ordinary user by malicious applications. Many users do not 
realize that the programs they have obtained from untrusted 
sources (such as the huge number of web pages) can, on top of 
(or instead of) the declared activities, perform any operations, 
including malicious ones, while abusing the user’s privileges

Another problem is that applications often contain flaws that allow 
a code embedded in a specially crafted document to be executed as 
a result of the application’s processing of the document. When the 
user uses such application to process a document obtained from 
an untrusted source, the risk is similar to that of directly running 
a program from an untrusted source. This problem becomes 
even more significant when we consider common web browsers 
or e-mail clients that, to be more userfriendly, automatically run 
various applications to process documents in web pages or e-mail 
attachments, often without asking the user whether or not to do 
so. This is probably the most common way of spreading computer 
viruses and Trojans nowadays. The lack of awareness of users also 
helps the attackers to use this way to abuse the users’ privileges. 
The users often trust unauthenticated information. A typical 
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example is the e-mail address of the sender of an e-mail message 
– it is trivial to forge while many users, seeing a known e-mail 
address, believe that the message must have been received from 
a person they trust. The message often comes from a virus, Trojan 
or another malware that attempts to exploit a security flaw in an 
application the recipient is expected to use to process the message.

Direct manipulation with the hardware

Direct manipulation with the hardware while it is not controlled 
by the operating system also presents a nonnegligible possibility 
of breaking security of the considered operating systems. If an 
attacker can physically manipulate with a computer, he or she 
can modify the contents of its hard disks, and thus modify any 
data, applications or parts of the operating system. Even though 
the operating systems support digital signature verification for 
system components or for software packages during installation, 
the signature verification depends on data stored on the disk that 
may be subject to unauthorized modification via direct hardware 
manipulation. The system can also be modified not to perform 
the verification at all. This problem cannot be, in general, solved 
at the operating system layer without booting the system from 
a medium that can be trusted not to have been modified in an 
unauthorized way (e.g. a physically protected read-only medium 
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or a file the authenticity of which is verified before using it by the 
computer’s firmware and hardware).

4.1.2 Existing Partial Solutions

Some of the problems mentioned above can be partially solved 
using the features provided by the considered operating systems. 
The problem with processes with too high privileges can, in some 
cases, be solved by minimizing the privileges to the minimal 
required set. It is, however, not always sufficient or possible.

The problem with abusing the user’s privileges can be sometimes 
solved by increasing the awareness of the users, and by strict 
separation of the security-critical activities from the risky ones 
(such as web browsing or e-mail processing). When a user uses 
different accounts for different purposes, he or she can set the 
access control lists in the way that the programs running with the 
user’s identity for the risky operations cannot interfere with the 
sensitive data that are to be accessed only by processes running 
with the other user’s identity.
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There have been many projects for the Linux operating systems 
implementing various security mechanisms (most often a sort of 
mandatory access control) to effectively solve some of the problems. 
They finally resulted in the inclusion of Linux Security Module 
(LSM) framework in the Linux kernel, and in the acceptance of 
SELinux module as a standard part of the kernel. SELinux can be 
used to protect confidentiality using BellLaPadula based multi-
level security policy, and using any policy specified in terms of 
domain and type enforcement mechanism. The latter is nowadays 
used by several Linux distributions (e.g. RedHat, Debian) to limit 
the impact of exploiting flaws in applications on Linux servers. 
Attempts to use a strict SELinux policy on desktop systems have 
failed due to too diverse requirements of desktop systems [11, 2], 
and they have resulted in usage of so called targeted policy that 
constrains many of the system services and server processes but 
leaves the user-started processes unconfined in a single domain. 
This way the user’s data are not protected against malicious 
code started by the user, either directly or indirectly via a flawed 
application and a malicious document. 
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Windows operating systems also brought several interesting 
attempts to solve the problems. Windows Vista introduces two 
new security features that are worth mentioning. One of them 
is called Mandatory integrity control (MIC). Filesystem objects 
and processes are assigned integrity levels, and a process can 
only modify objects with the same or lower integrity level than 
the process’s integrity level. In fact, one half of the standard Biba 
model rules are used. It can also be configured to enforce one half 
of the standard Bell-LaPadula model – a process can only read 
from objects with the same or lower level. Because MIC only 
implements a half of the standard rules, it lacks the provable 
security properties of Bell-LaPadula and Biba models. Its primary 
use was to protect the user’s data and programs against a malicious 
code executed by a flawed web browser. It does not, however, 
prevent other processes from reading (and acting upon) malicious 
data that have been downloaded from untrusted sources.

Another new security feature introduced in Windows Vista is 
User Account Control (UAC). It deals with the, well known and 
unfortunate, fact that many users on desktop systems use accounts 
with administrator privileges (either to overcome problems with 
some software or just out of a sort of laziness) for their normal 
computer usage. This leads to a situation that even a flawed 
web browser or e-mail client can perform operations that are 
restricted to administrators, and it effectively makes the access 
control mechanisms ineffective. UAC works by disabling some 
of the special privileges normally given to administrators and 
prompting the user for a permission to grant these privileges to 
the process that attempts to perform an operation that requires the 
privileges. This way, the processes cannot perform the privileged 
operations without the user knowing about it. They can still, 
however, perform any operations that do not require the privileges 
dedicated to administrators.
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4.1.3 Existing Protection Profiles

The security requirements for IT products are often specified in 
the form of a protection profile (PP) according to the international 
standard ISO/IEC 15408. In the thesis, we have analyzed several 
existing protection profiles for operating systems. In the PP registry, 
several protection profiles for operating systems are registered. 
Two of them, Controlled access protection profile (CAPP) and 
Labeled security protection profile (LSPP), are for general use. A 
few others are specifically tailored to the needs of the Department 
of Defense of the U.S.A. for the classified information processing, 
but they are not suitable for general home/office use.

The security objectives and the functional security requirements 
of the CAPP do not cover protection against abuse of an 
administrator’s privileges – a trustworthy administrator is 
assumed. No protection against malicious code executing with a 
user’s privileges is provided because all access control decisions 
are based on the user’s identity regardless of the program being 
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executed. The user has thus no way of preventing a malicious 
program from accessing any data accessible to the user. Even if 
the user attempts to restrict his/her own access rights to an object, 
the malicious program running on the user’s behalf can grant the 
access rights to the user (or to any other user).

The LSPP improves the protection of confidentiality of data in the 
environments where information is/may be classified in the Bell-
LaPadula way. When a process (subject) is executed at a security 
level, it cannot read from objects with a higher security level (thus 
containing more sensitive information), and it cannot write to 
objects with a lower security level. For example, if communication 
objects connecting to untrusted external systems are classified at 
the lowest level, a malicious program running at a higher level 
cannot send sensitive information to the external systems, and 
a malicious process operating at the lowest level (and thus able 
to communicate with the external system) can read no sensitive 
information (contained in an object with a higher level).

The LSPP, however, contains no improvements regarding integrity 
protection. A malicious program running at the lowest security 
level can still cause damage to valuable data stored on the system. 
As we will show later, the integrity protection can be of equal, 
or sometimes even higher importance that the confidentiality 
protection. The LSPP, just like the CAPP, does not cover the 
protection against abuse of an administrator’s privileges – it 
assumes a trustworthy administrator.

4.2 GOALS, OBJECTIVES AND METHODS

The problems mentioned in the previous section have given rise to 
the primary goals of the thesis:

• designing a suitable security model for an operating 
system supporting secure use of security-critical 
applications alongside untrusted and potentially 
malicious applications,

• creating a protection profile, compliant to the ISO/IEC 
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15408 standard, for a general purpose operating system 
supporting such use, utilizing the security model.

In order to achieve the goals, we have set the following objectives 
to fulfil in the thesis:

• Identify and categorize typical applications and identify 
the protection requirements.

• Specify the data classification scheme.
• Specify the security model.
• Formulate and prove security properties of the model.
• Create the protection profile.

In order to specify the security model we have used a simplified 
model of an operating system consisting of active entities – 
subjects (processes) performing operations on passive entities 
– objects (files, directories, communication objects, processes, 
. . . ). We started with read, write, create and delete operations, 
and we extended the set of operations later to cover a more 
realistic operating system. We have modelled access control 
and information flow control using logical functions operating 
on subjects and objects and yielding true or false depending on 
whether the operation is permitted or not.

The structure of a protection profile is specified by the international 
standard ISO/IEC 15408. We have used the standard to write our 
protection profile.
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4.3 THREATS TO PROTECTION AND SECURITY

A threat is a program that is malicious in nature and leads to 
harmful effects for the system. Some of the common threats that 
occur in a system are −

4.3.1 Virus

Viruses are generally small snippets of code embedded in a 
system. They are very dangerous and can corrupt files, destroy 
data, crash systems etc. They can also spread further by replicating 
themselves as required.

4.3.2 Trojan Horse

A trojan horse can secretly access the login details of a system. Then 
a malicious user can use these to enter the system as a harmless 
being and wreak havoc.

4.3.3 Trap Door

A trap door is a security breach that may be present in a system 
without the knowledge of the users. It can be exploited to harm 
the data or files in a system by malicious people.

4.3.4 Worm

A worm can destroy a system by using its resources to extreme 
levels. It can generate multiple copies which claim all the resources 
and don’t allow any other processes to access them. A worm can 
shut down a whole network in this way.
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4.3.5 Denial of Service

These type of attacks do not allow the legitimate users to 
access a system. It overwhelms the system with requests so it is 
overwhelmed and cannot work properly for other user.

4.4 PROTECTION AND SECURITY METHODS

The different methods that may provide protect and security for 
different computer systems are −

4.4.1 Authentication

This deals with identifying each user in the system and making sure 
they are who they claim to be. The operating system makes sure 
that all the users are authenticated before they access the system. 
The different ways to make sure that the users are authentic are:

• Username/ Password

Each user has a distinct username and password combination and 
they need to enter it correctly before they can access the system.

• User Key/ User Card
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The users need to punch a card into the card slot or use they 
individual key on a keypad to access the system.

• User Attribute Identification

Different user attribute identifications that can be used are 
fingerprint, eye retina etc. These are unique for each user and are 
compared with the existing samples in the database. The user can 
only access the system if there is a match.

4.4.2 One Time Password

These passwords provide a lot of security for authentication 
purposes. A onetime password can be generated exclusively for 
a login every time a user wants to enter the system. It cannot be 
used more than once. The various ways a onetime password can 
be implemented are −

• Random Numbers

The system can ask for numbers that correspond to alphabets that 
are pre-arranged. This combination can be changed each time a 
login is required.

• Secret Key

A hardware device can create a secret key related to the user id for 
login. This key can change each time.
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4.4.3 Classes of Applications Considered

We have considered the typical applications used on personal 
computers in the home and small office environment. We have 
identified several classes according to the security requirements 
for their data.

Malicious applications

A special class of applications is the class of malicious applications. 
These are applications that have been intentionally programmed 
to perform malicious activities. The typical examples are computer 
viruses, worms, Trojan horses and other kinds of so called malware. 
They can be downloaded from the Internet by the user, received 
as an attachment of an e-mail message, or a vulnerable application 
may be turned into a malicious one by processing malicious 
data. The user is usually unaware of the fact that a particular 
application is malicious. It has to be assumed that the malicious 
applications do anything not prevented by the operating system 
or the environment of the computer (e.g. a network firewall).

Local applications

The class of local applications contains the applications that 
are used to process data stored in a local file system. These 
applications generally do not need network access to perform 
their tasks. The typical examples are text processors, spreadsheets, 
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presentation software, graphic editors, . . . . Local applications are 
used to process data with varying requirements regarding the 
confidentiality and integrity protection. If they process malicious 
data, they may become malicious due to programming errors.

Sensitive web access

Web browsers are often used to access remote services that process 
data requiring confidentiality and/or integrity protection. A 
typical example is an Internet-banking system. It provides access 
to financial information; it allows the user to submit transaction 
orders to the bank, etc. It also processes authentication data 
(e.g. passwords). All such data may be considered confidential 
by the user, and therefore, are to be adequately protected. 
The confidentiality and the integrity of the data during their 
transmission is usually protected by means of cryptography. 
Cryptography is usually also used to provide authentication 
of the remote system. But the data is also to be protected while 
stored in the memory or in a file on the local computer. Consider 
an instance of a web browser used for general Internet access. It 
may have processed some malicious data, a and therefore, it may 
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have become a malicious application exporting everything to an 
attacker. If the instance of the web browser is later used to access 
an Internet banking system, all the confidential information may 
leak.

Digital signature creation

A digital signature creation application needs access to the private 
key. The private key is a very sensitive piece of information the 
confidentiality of which has to be protected. The integrity of the 
private key has to be protected as well because its modification 
can lead not only to the loss of ability to create correct digital 
signatures, but also to the leak of information that is sufficient to 
compute the corresponding private key in certain cases.

Digital signature verification

A digital signature verification application needs access to the 
public key. The public key requires no confidentiality protection, 
but it does require integrity protection. If attackers were able to 
modify the public key used to verify a digital signature, they 
would be able to create a digitally signed document that would 
pass the signature verification process.

Data encryption

A data encryption application using asymmetric cryptography 
needs access to the public key of the receiver of the data. As 
mentioned above, the public key requires no confidentiality 
protection, but it does require integrity protection. In the case of 
encryption, if the public key were modified by an attacker, the 
attacker would be able to decrypt the encrypted data instead of 
the intended receiver. The encrypted output of a data encryption 
application may be transmitted via communication channels that 
do not provide confidentiality protection even if the confidentiality 
of the original data is to be protected.
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4.4.4 Security Model

Objects

It can be seen in the examples in the previous section that we 
have to deal with data with varying requirements regarding the 
confidentiality and integrity protection. As far as the confidentiality 
is concerned, we can classify the data into three basic categories:

• public data,
• normal data – C-normal,
• data that are sensitive regarding their confidentiality – 

C-sensitive.

The public data require no confidentiality protection. They may be 
freely transmitted via communication channels and/or to remote 
systems that provide no confidentiality protection. An example 
of public data is the data downloaded from public Internet. The 
normal data are to be protected by means of discretionary access 
control against unauthorized reading by other users than the owner 
of the data. The C-sensitive data are the data that their owner (a 
user) wishes to remain unreadable to the others regardless of the 
software the user uses, and even if the users makes some mistakes 
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(such as setting wrong access rights for discretionary access 
control). Examples of C-sensitive data are private and secret keys, 
passwords for Internet banking, etc. As far as the integrity (or 
trustworthiness) of data is concerned, we can also classify the data 
into three basic categories:

• potentially malicious data,
• normal data – I-normal,
• data that are sensitive regarding their integrity – 

I-sensitive.

The requirements of the integrity protection of data is tightly 
coupled to the trustworthiness of the data. The trustworthiness of 
data can be thought of as a metric of how reliable the data are. If 
some data can be modified by anyone, they cannot be trusted not 
to contain wrong or malicious information. If some data are to be 
relied on, their integrity has to be protected.

The potentially malicious data require no integrity protection, 
and can neither be trusted to contain valid information, nor can 
be trusted not to contain malicious content. The normal data is 
to be protected by means of discretionary access control against 
unauthorized modification by other users that the owner of the 
data.

The I-sensitive data are the data that their owner wishes to remain 
unmodified by the others regardless of the software the user uses, 
and even if the users makes some mistakes. The I-sensitive data are 
to be modifiable only under special conditions upon their owner’s 
request. A special category of I-sensitive data is the category of 
the shared system files such as the programs, the libraries, various 
system-wide configuration files, the user database . . . Some of these 
files may be modifiable by the designated system administrator, 
some of them should be even more restricted.

The number of the confidentiality and integrity categories may be 
higher in real systems. 

A common approach to ensuring the confidentiality and/or the 
integrity of information in systems that deal with data classified into 
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several confidentiality/integrity levels, is to define an information 
flow policy, and then to enforce the policy. In order to enforce an 
information flow policy, subjects are divided into two categories – 
trusted and untrusted. A trusted subject is a subject that is trusted 
to enforce the information flow policy (with exceptions) by itself; 
an untrusted subject is a subject that is not trusted to enforce the 
policy by itself, and therefore the policy has to be enforced on the 
subject’s operations by the system.

A typical information flow policy protecting confidentiality (e.g. 
one based on Bell-LaPadula model) states that a subject operating 
at a confidentiality level CS may only read from an object with a 
confidentiality level COr if CS ≥ COr , and may only write to an 
object with a confidentiality level COw if CS ≤ COw . If a subject is 
to be able to read from a more confidential object, and to write to 
a less confidential object, it has to be a trusted subject.

A typical information flow policy protecting integrity (e.g. one 
based on Biba model) states that a subject operating at an integrity 
level IS may only read from an object with an integrity level IOr 
if IS ≤ IOr , and may only write to an object with an integrity level 
IOw if IS ≥ IOw . Only a trusted subject can read from an object 
with a lower integrity level, and write to an object with a higher 
integrity level.

The problem with the division of subjects into the two categories 
is that it would lead to the need of too many trusted subjects in the 
home and office environment. 

We will divide subjects into three categories:
• untrusted subjects,
• partially trusted subjects, and
• trusted subjects.

An untrusted subject is a subject that is not trusted to enforce the 
information flow policy. It is assumed to perform any operations 
on any objects unless it is prevented from doing so by the operating 
system. A trusted subject is a subject that is trusted to enforce 
the information flow policy by itself. A trusted subject may be 
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used to perform tasks than require violation of the policy under 
conditions that are verified by the trusted subject. A trusted subject 
can, therefore, be used to implement an exception to the policy. A 
partially trusted subject is a subject that is trusted to enforce the 
information flow policy regarding a specific set of objects, but not 
trusted to enforce the information flow policy regarding any other 
objects. In other words, a trusted subject is

• trusted not to transfer information from a defined set of 
objects (designated inputs) at a higher confidentiality 
level to a defined set of objects (designated outputs) 
at a lower confidentiality level in a way other than the 
intended one, and 

• trusted not to transfer information from a defined set of 
objects (designated inputs) at a lower integrity level to 
a defined set of objects (designated outputs) at a higher 
integrity level in a way other than the intended one, but 

• not trusted not to transfer information between any other 
objects.

The sets of designated inputs and outputs regarding confidentiality 
are distinct from the sets regarding integrity. Any of the sets may 
be empty. A partially trusted subject, like a trusted one, can be 
used to implement an exception to the policy, because it can 
violate the policy (and it is trusted to do it only in an intended 
way). The most important difference between trusted and partially 
trusted subjects is in the level of trust. While trusted subjects are 
completely trusted to behave correctly, partially trusted subjects 
are only trusted not to abuse the possibility of the information 
flow violating the policy between a defined set of input objects 
and a defined set of output objects.

Information Flow Policy

Having specified the objects and the subjects and their 
classification, we can formulate the information flow policy to 
protect the confidentiality and the integrity of the information 
stored in, or transferred via the objects. We will first specify the 
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policy objectives in an informal way, and then we will define the 
policy formally.

In accordance with the classification of objects, the information 
flow policy has the following objectives:

• Prevent reading of C-sensitive objects by subjects of 
other users than the owner of the object. 

• Prevent modification of I-sensitive objects by subjects of 
other users than the owner of the object. 

• Prevent information passing from objects with a 
higher confidentiality level3 to objects with a lower 
confidentiality level by untrusted subjects with the 
exception stated below. 

• Allow the user to explicitly allow a subject to read 
a C-normal object on per request basis. The user’s 
approval in such case must be obtained via a mechanism 
independent on the subject. The idea of this objective 
is to allow the user to perform operations such as 
submitting a C-normal document to a remote system, 
that is not trusted to process C-normal data in general 
and is considered a public object with respect to our 
classification scheme, without the need to reclassify 
the document first (a therefore to expose its content to 
any subject). Because this approach is very prone to the 
user’s mistakes, it should be limited to C-normal objects 
and not applicable to C-sensitive objects. 

• Prevent information passing from objects with a lower 
integrity level4 to objects with a higher integrity level by 
untrusted subjects. 

• Allow the user to specify the maximal integrity level 
for each subject and prevent the subject from writing 
to objects with a higher integrity level. The idea of this 
objective is to prevent modification of objects with a high 
integrity level unless required by the user. 

• Allow the user to define four sets of special input and 
output objects (two sets for confidentiality protection 
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and two sets for integrity protection) and two special 
confidentiality levels (for reading and writing 
respectively) and two special integrity levels associated 
with the sets for each partially trusted subject, and apply 
the same rules to partially trusted subjects with the 
following exceptions:

(a)  Allow a partially trusted subject to transfer in formation 
from an object  with a confidentiality level  to an 
object  with a confidentiality level  if the 
object  is in the input set for confidentiality protection, 
the object  is in the output set for confidentiality 
protection,  is at most the special confidentiality level 
for reading, and cout is at least the special confidentiality 
level for writing

(b)  Allow a partially trusted subject to transfer information 
from an object Oin with an integrity level iin to an object 
Oout with an integrity level iout > iin if the object Oin is in 
the input set for integrity protection, the object Oout is in 
the output set for integrity protection, iin is at least the 
special integrity level for reading, and iout is at most the 
special integrity level for writing.

4.5 PROTECTION PROFILE OVERVIEW

To fulfil one of the goals of the thesis, we have created a protection 
profile, compliant to the ISO/IEC 15408 standard, for a general 
purpose operating system suitable for using security-critical 
applications alongside potentially malicious ones. Our protection 
profile has been designed to support our new security model 
in addition to the common discretionary access control policy 
supported by the common existing operating systems. Our 
protection profile specifies several assumptions about the security 
environment of the operating system, namely about the hardware 
and its physical surroundings:

• the hardware supports access control for memory regions 
and peripheral devices, 
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• the processor(s) restrict the use of privileged instructions 
to the operating system,

• the hardware is physically protected against modification, 
• and the internal communication paths (such as system 

buses) are protected against unauthorized monitoring 
and tampering with.

The hardware assumptions are consistent with the currently 
common PC hardware. The other two assumptions are to be 
upheld by the environment, most commonly using physical 
security mechanisms. It is also assumed that an operating 
system compliant with the protection profile is constructed as a 
modification of an existing operating system. On one hand this 
limits the choice of security functional requirements and, most 
notably, security assurance requirements; on the other hand it 
allows a compliant operating system to be used in practice by 
utilizing existing applications and hardware support.

The objectives of the protection profile can be summarized as 
follows:

• restricting access to identified, authenticated, and 
authorized users only, 

• enforcing a discretionary access control policy based on 
user identities, 
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• enforcing confidentiality and integrity protection 
according to our new security model, 

• cryptographic confidentiality and integrity protection of 
stored data, 

• auditing of security related events, 
• residual information protection, 
• system management restricted to authorized system 

administrators, 
• limiting the ability of an authorized administrator to 

abuse his/her privileges, 
• and the feasibility of construction of a compliant 

operating system by modifying an existing operating 
system while preserving its compatibility with existing 
applications.

The security functional requirements specified in the protection 
profile can be summarized as follows:

• Security Audit (FAU) – the protection profile requires that 
the operating system is able to generate audit records for 
the listed events, that the authorized audit administrators 
are able to review, sort and search the audit records, and 
configure the set of audited events, and that the audit 
records are protected against unauthorized modification 
and deletion.

• User Data Protection (FDP) – the protection profile 
requires that the operating system enforces the 
discretionary access control policy and our information 
flow policy based on the user identity and group 
membership and other security attributes associated 
with subjects and objects. It also requires removal of any 
residual information from resources upon their allocation. 
Support for cryptographic protection of integrity and 
confidentiality of stored data is also required.

• Identification and Authentication (FIA) – the protection 
profile specifies security attributes to be associated with 
each user and the user’s processes. It allows minimal 
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strength requirements for authentication data to be 
specified. It requires a successful identification and 
authentication of an authorized user before performing 
any other action on the user’s behalf. It requires re-
authentication before performing several specific 
security-critical actions.

• Security Managements (FMT) – the protection profile 
requires the management of the security attributes and 
data to be restricted to the authorized users acting in 
specific roles, and in compliance with the information 
flow and access control policies. The protection profiles 
defines several security roles and splits the privileges and 
responsibilities among them in order to minimize the 
ability of a single individual (e.g. a system administrator) 
to abuse his/her privileges. It also supports authorization 
of securitycritical operations by multiple administrators.
– Protection of TOE Security Functions (FPT) – the 

protection profile requires the operating system to 
protect itself against tampering by unauthorized 
subjects, as well as to separate the security domains 
of subjects. The protection profile requires that the 
security functions must always be invoked before 
other operations within the scope of control can 
be performed, i.e. it may not be possible to bypass 
the security functions. The protection profile also 
requires the operating system to perform tests 
during start-up to verify the crucial assumptions 
about the hardware.

– Resource Utilization (FRU) – the protection 
profile requires the operating system to enforce 
the maximum quotas on disk space used by an 
individual user.

– TOE Access (FTA) – the protection profile requires 
the operating system to support session locking 
on the user’s request as well as automatically after 
a specified period of inactivity. It also requires 
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the operating system to maintain and display 
information about successful and unsuccessful 
session establishments.

– Trusted Path/Channel (FTP) – the protection profile 
requires the operating system to provide a trusted 
path between the user and itself for specified 
securitycritical interactions including (re-)
authentication, authentication data management, 
special security attributes management,

– Cryptographic Support (FCS) – the protection 
profile specifies requirements for cryptographic key 
generation and destructions, and for cryptographic 
operations.

The security assurance requirements specified in the protection 
profile are based on EAL3 augmented with the addition of 
requirements for detection of modification during delivery of the 
operating system.

Discussion

In the thesis, we discuss the benefits of our model. We present 
several usage examples based on the considered classes of 
applications. These examples can also be found in [13]. We also 
compare our new security model and our protection profile to 
several other projects and to the mentioned existing protection 
profiles.

4.5.1 Our New Model vs. MIC in Windows Vista

MIC can be used to prevent a potentially malicious application 
running at a low integrity level from modifying data at a higher 
integrity level. Unlike our new model, however, it does not 
prevent an untrusted application running at a higher integrity 
level from reading (potentially malicious) data at a lower level. If 
the application contains a flaw that can be exploited by processing 
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malicious data, the user can, e.g. by an accident, use it to read and 
process malicious data stored at the low integrity level, and thus 
turn the application to a malicious one that can spoil data at its 
(higher) integrity level.

MIC also allows confidentiality protection to be turned on. Unlike 
in our new model, the confidentiality and integrity levels in MIC 
are not independent, the same level is used for both. It can be used 
to prevent a potentially malicious application running at a low 
level from reading (and also from modifying) data at a higher 
level. Unlike our new model, it does not prevent an application 
running at a higher level (and thus capable of reading data at that 
level) from writing to objects at a lower level. Any application is 
thus able to export any data that it can read to external untrusted 
systems, or to store them to a low-level file.

MIC is a useful feature that allows a careful user to use a web 
browser or to test a potentially malicious application without 
the risk that they will modify (and optionally also read) any data 
classified at a higher level. The user must be careful enough, 
however, not to open any files classified at the low level in another 
application running at a higher level unless the application is 
trusted not to misbehave upon reading the data. The integrity and 
confidentiality protection provided by our new security model is 
definitely stronger than that of MIC, and it has provable security 
properties similar to those of Bell-LaPadula and Biba models.
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4.5.2 Our New Model vs. SELinux

SELinux, by implementing a flavour of domain and type 
enforcement, provides a very flexible security mechanism that can 
be used to enforce a wide range of security policies. We show in the 
thesis that it can be used to implement our new model as well. The 
commonly used SELinux policies[11, 2] define unique types and 
domains for many typical system services, server applications, and 
their data, and strictly restrict the set of operations the processes 
running within these domains are allowed to perform. The strict 
version of the policy is suitable for servers but causes problems 
on desktop systems because the restrictions are too strict to be 
accepted by users. The targeted version of the policy, that restricts 
many system services but leaves the applications started by the 
user in a single, unconfined domain, is suitable for desktops. It 
prevents a flawed system service program from accessing data it 
does not have to be able to access.

It does not, however, prevent user-started applications from 
accessing the user’s data, perhaps except for some specially 
designated sensitive data (such as private keys) accessible only 
to certain applications. The targeted policy could be combined 
with our new model to provide combined benefits of both. The 
targeted policy provides more rigorous restrictions for specific 
services while our new model can be used to protect the ordinary 
users’ data.
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4.5.3 Our Protection Profile vs. CAPP and LSPP

Our protection profile, the CAPP, and the LSPP are designed 
for general purpose operating systems. We will now discuss the 
benefits of our protection profile when compared to those two. 
All three protection profiles have some common objectives, such 
as restricting access to authorized users only, audit, discretionary 
access control policy enforcement, residual information protection 
and restricting system management to authorized administrators 
only. They also use similar security functional requirements 
to fulfil these objectives. We will, therefore, concentrate on the 
objectives that make the protection profiles different.

There are three new, important objectives in our protection profile 
when compared to the CAPP or the LSPP: 

• enforcing confidentiality and integrity protection 
according to our new security model,

• cryptographic confidentiality and integrity protection of 
stored data,

• and limiting the ability of an authorized administrator to 
abuse his/her privileges.

The first is intended to address the problem of abusing the 
privileges of a user (including an administrator) by malicious 
code (whether executing as a standalone malicious applications, 
or as a part of a flawed application). Our new model has provable 
security properties that ensure that no untrusted applications can 
cause information to flow from objects at a higher confidentiality 
and/or lower integrity level to objects at a lower confidentiality 
and/or higher integrity level. The user can, thus, run a malicious 
application as an untrusted subject without the risk that it could 
cause an information leak or spoiling. Applications that need to 
be able to override this restriction can often be run as partially 
trusted subjects where the amount of trust can be very limited. We 
expect this approach to minimize the risk resulting from flaws in 
such applications.

The second new objective addresses the problem of direct 
manipulation with storage devices. Data encryption provides for 
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confidentiality protection of the stored data against manipulation 
by means that are not under control of the operating system. 
Cryptographic integrity protection can prevent unnoticed 
unauthorized modification of the stored data including the 
operating system itself. Our protection profile is missing the 
assumption of a trustworthy administrator (this assumption 
is present in both the CAPP and the LSPP). The third objective 
addresses the problem of privilege abuse by an administrator. 
This is not addressed by the other two protection profiles. In our 
protection profile, it is addressed by separating the privileges and 
responsibilities for various aspects of system management (such 
as general system management, security management, audit 
management), and by defining distinct security roles for such 
activities. When the roles are assigned to different individuals, 
no single person can cause an unnoticed security policy violation. 
For environments, where this problem is a major concern, our 
protection profile supports multiple independent authorizations 
for critical operations. When compared to the LSPP’s Bell-LaPadula 
style confidentiality protection, our protection profile addresses 
the integrity protection as well as the confidentiality protection. 
The concept of the partially trusted subjects, that we have 
introduced, is also a convenient way of minimizing the amount of 
trust given to applications that have to be able to violate the rules 
for untrusted subjects.

Benefits Summary

The key benefits of our new security model are summarized in 
the table 1. While we have based our new model on the ideas of 
Bell-LaPadula and Biba models, we have introduced significant 
improvements. Unlike others (e.g. MIC), we use independent 
confidentiality and integrity levels, and, most notably, we have 
introduced partially trusted subjects. The introduction of partially 
trusted subjects allows us to achieve strong security properties 
with minimal trust in correct behaviour of the partially trusted 
subjects.
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Our protection profile, unlike the well-known and often used 
protection profiles addresses the issues of privilege abuse by a 
system administrator, includes cryptographic protection against 
direct storage media manipulation, and provides for both 
confidentiality and integrity protection according to our new 
security model.

Feasibility of Implementation

The thesis includes a feasibility study to show that it is feasible 
to modify a real, existing operating system to comply with our 
protection profile. We have chosen Linux operating systems as 
the base. We compare the security functions of Linux operating 
systems with the security functional requirements of our protection 
profile, and identify the missing features. We suggest two ways of 
implementing our new security model – the major missing feature 
– in Linux. In one approach we suggest using Linux Security 
Module framework present in the Linux kernel. In the other one 
we show how a SELinux policy can be created to enforce the rules 
of our new security model. 

The goals of our thesis were to design a suitable security model 
and to create a protection profile for a general purpose operating 
system for home and office environment suitable to support 
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the use of security-critical applications alongside untrusted and 
potentially malicious applications. We have presented several 
typical examples of applications used in the target environment, 
analyzed the security requirements and properties of the data 
involved, and designed a security model with a formally defined 
information flow policy to protect the confidentiality and the 
integrity of the data. In the thesis, we have formally proved 
important security properties of the model. We have created a 
new protection profile utilizing our new security model. We have 
discussed the benefits of our new security model and protection 
profile for security. We have compared them to other projects and 
protection profiles. Finally, we have discussed possible ways to 
modify Linux operating system to comply with our protection 
profile. It seems to be feasible to make the needed modifications 
in a near future. Having said that, we believe we have managed to 
fulfil the goals.

Table 1: Summary of the benefits of our new security model

We can see the following tasks that might follow the thesis:
• Implementation – attempt to implement the suggested 

modifications. This is currently a work in progress of two 
of our students, and we expect to have the first results in 
June, 2010.

• Usability testing – find out whether the resulting system 
can be used without unacceptable discomfort for the 
users.

• Compare the different possible ways to make the 
needed modifications in terms of performance, usability, 
compatibility, extensibility. 
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INTRODUCTION

Operating systems are the prime providers of security in computing 
systems. They support many programming capabilities, permit 
multiprogramming and sharing of resources, and enforce 
restrictions on program and user behavior. Because they have 
such power, operating systems are also targets for attack, because 
breaking through the defenses of an operating system gives access 
to the secrets of computing systems.

Trusted Operating System (TOS) generally refers to an operating 
system that provides sufficient support for multilevel security and 
evidence of correctness to meet a particular set of government 
requirements.
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The most common set of criteria for trusted operating system 
design is the Common Criteria combined with the Security 
Functional Requirements (SFRs) for Labeled Security Protection 
Profile (LSPP) and mandatory access control (MAC). The Common 
Criteria is the result of a multi-year effort by the governments of the 
U.S., Canada, United Kingdom, France, Germany, the Netherlands 
and other countries to develop a harmonized security criteria for 
IT products.

5.1 TRUSTED SYSTEM

A trusted system is a system that is relied upon to a specified 
extent to enforce a specified security policy. This is equivalent to 
saying that a trusted system is one whose failure would break a 
security policy (if a policy exists that the trusted system is trusted 
to enforce). The meaning of the word “trust” is critical, as it 
does not carry the meaning that might be expected in everyday 
usage. A system trusted by a user, is one that the user feels safe 
to use, and trusts to do tasks without secretly executing harmful 
or unauthorized programs; while trusted computing refers to 
whether programs can trust the platform to be unmodified from 
that expected, whether or not those programs are innocent, 
malicious or execute tasks that are undesired by the user.

Trusted system can also be seen as level base security system 
where protection is provided and handled according to different 
levels. This is commonly found in military, where information 
is categorized as unclassified (U), confidential(C), Secret(S), Top 
secret(TS) and beyond. These also enforces the policies of No-read 
up and No-write down.

We studied these four services:
• memory protection
• file protection
• general object access control
• user authentication
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The four major underpinnings of a trusted operating system:
• Policy. Every system can be described by its requirements: 

statements of what the system should do and how it should 
do it. An operating system’s security requirements are a 
set of well-defined, consistent, and implementable rules 
that have been clearly and unambiguously expressed. 
If the operating system is implemented to meet these 
requirements, it meets the user’s expectations. To ensure 
that the requirements are clear, consistent, and effective, 
the operating system usually follows a stated security 
policy: a set of rules that lay out what is to be secured 
and why.

• Model. To create a trusted operating system, the designers 
must be confident that the proposed system will meet 
its requirements while protecting appropriate objects 
and relationships. They usually begin by constructing 
a model of the environment to be secured. The model 
is actually a representation of the policy the operating 
system will enforce. Designers compare the model with 
the system requirements to make sure that the overall 
system functions are not compromised or degraded by 
the security needs. Then, they study different ways of 
enforcing that security.

• Design. After having selected a security model, 
designers choose a means to implement it. Thus, the 
design involves both what the trusted operating system 
is (that is, its intended functionality) and how it is to be 
constructed (its implementation).

• Trust. Because the operating system plays a central role 
in enforcing security, we (as developers and users) seek 
some basis (assurance) for believing that it will meet 
our expectations. Our trust in the system is rooted in 
two aspects: features (the operating system has all the 
necessary functionality needed to enforce the expected 
security policy) and assurance (the operating system 
has been implemented in such a way that we have 
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confidence it will enforce the security policy correctly 
and effectively).

To trust any program, we base our trust on rigorous analysis and 
testing, looking for certain key characteristics:

• Functional correctness. The program does what it is 
supposed to, and it works correctly.

• Enforcement of integrity. Even if presented erroneous 
commands or commands from unauthorized users, 
the program maintains the correctness of the data with 
which it has contact.

• Limited privilege: The program is allowed to access 
secure data, but the access is minimized and neither 
the access rights nor the data are passed along to other 
untrusted programs or back to an untrusted caller.

• Appropriate confidence level. The program has been 
examined and rated at a degree of trust appropriate for 
the kind of data and environment in which it is to be 
used.

Trusted software is often used as a safe way for general users 
to access sensitive data. Trusted programs are used to perform 
limited (safe) operations for users without allowing the users to 
have direct access to sensitive data.

Security professionals prefer to speak of trusted instead of secure 
operating systems. A trusted system connotes one that meets 
the intended security requirements, is of high enough quality, 
and justifies the user’s confidence in that quality. That is, trust is 
perceived by the system’s receiver or user, not by its developer, 
designer, or manufacturer. As a user, you may not be able to 
evaluate that trust directly. You may trust the design, a professional 
evaluation, or the opinion of a valued colleague. But in the end, it 
is your responsibility to sanction the degree of trust you require.

It is important to realize that there can be degrees of trust; unlike 
security, trust is not a dichotomy. For example, you trust certain 
friends with deep secrets, but you trust others only to give you the 
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time of day. Trust is a characteristic that often grows over time, 
in accordance with evidence and experience. For instance, banks 
increase their trust in borrowers as the borrowers repay loans as 
expected; borrowers with good trust (credit) records can borrow 
larger amounts. Finally, trust is earned, not claimed or conferred. 
The comparison in Table 1 highlights some of these distinctions.

Table 1. Qualities of Security and Trustedness

Secure Trusted
Either-or: Something either is or is 
not secure.

Graded: There are degrees of “trust-
worthiness.”

Property of presenter Property of receiver
Asserted based on product charac-
teristics

Judged based on evidence and 
analysis

Absolute: not qualified as to how 
used, where, when, or by whom

Relative: viewed in context of use

A goal A characteristic

The adjective trusted appears many times, as in trusted process (a 
process that can affect system security, or a process whose incorrect 
or malicious execution is capable of violating system security 
policy), trusted product (an evaluated and approved product), 
trusted software (the software portion of a system that can be 
relied upon to enforce security policy), trusted computing base 
(the set of all protection mechanisms within a computing system, 
including hardware, firmware, and software, that together enforce 
a unified security policy over a product or system), or trusted 
system (a system that employs sufficient hardware and software 
integrity measures to allow its use for processing sensitive 
information). These definitions are paraphrased from. Common 
to these definitions are the concepts of

• enforcement of security policy
• sufficiency of measures and mechanisms
• evaluation

In studying trusted operating systems, we examine closely what 
makes them trustworthy.
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5.2 SECURITY POLICIES

A security policy is a statement of the security we expect the system 
to enforce. An operating system (or any other piece of a trusted 
system) can be trusted only in relation to its security policy; that 
is, to the security needs the system is expected to satisfy.

5.2.1 Military Security Policy

Military security policy is based on protecting classified 
information. Each piece of information is ranked at a particular 
sensitivity level, such as unclassified, restricted, confidential, 
secret, or top secret. The ranks or levels form a hierarchy, and they 
reflect an increasing order of sensitivity, as shown in Figure 1. 
That is, the information at a given level is more sensitive than the 
information in the level below it and less sensitive than in the level 
above it. For example, restricted information is more sensitive than 
unclassified but less sensitive than confidential. We can denote the 
sensitivity of an object O by rankO.

Figure 1. Hierarchy of Sensitivities.
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Information access is limited by the need-to-know rule: Access to 
sensitive data is allowed only to subjects who need to know those 
data to perform their jobs. Each piece of classified information may 
be associated with one or more projects, called compartments, 
describing the subject matter of the information. For example, the 
alpha project may use secret information, as may the beta project, 
but staff on alpha do not need access to the information on beta. 
In other words, both projects use secret information, but each is 
restricted to only the secret information needed for its particular 
project. In this way, compartments help enforce need-to-know 
restrictions so that people obtain access only to information that 
is relevant to their jobs. A compartment may include information 
at only one sensitivity level, or it may cover information at several 
sensitivity levels. The relationship between compartments and 
sensitivity levels is shown in Figure 2.

Figure 2. Compartments and Sensitivity Levels.

We can assign names to identify the compartments, such as 
snowshoe, crypto, and Sweden. A single piece of information 
can be coded with zero, one, two, or more compartment names, 
depending on the categories to which it relates. The association 
of information and compartments is shown in Figure 3. For 
example, one piece of information may be a list of publications 
on cryptography, whereas another may describe development 
of snowshoes in Sweden. The compartment of this first piece of 
information is {crypto}; the second is {snowshoe, Sweden}.
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Figure 3. Association of Information and Compartments.

The combination <rank; compartments> is called the class or 
classification of a piece of information. By designating information 
in this way, we can enforce need-to-know both by security level 
and by topic.

A person seeking access to sensitive information must be cleared. 
A clearance is an indication that a person is trusted to access 
information up to a certain level of sensitivity and that the 
person needs to know certain categories of sensitive information. 
The clearance of a subject is expressed as a combination <rank; 
compartments>. This combination has the same form as the 
classification of a piece of information.

Now we introduce a relation ≤, called dominance, on the sets of 
sensitive objects and subjects. For a subject o,

s ≤ o if and only if

rankS ≤ rankO and

compartmentsS ⊆ compartmentsO

We say that o dominates s (or s is dominated by o) if s ≤ is the 
opposite. Dominance is used to limit the sensitivity and content 
of information a subject can access. A subject can read an object 
only if
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• the clearance level of the subject is at least as high as that 
of the information and

• the subject has a need to know about all compartments 
for which the information is classified

These conditions are equivalent to saying that the subject 
dominates the object.

To see how the dominance relation works, consider the concentric 
circles in Figure 3. According to the relationships depicted 
there, information classified as <secret;{Sweden}> could be 
read by someone cleared for access to <top secret;{Sweden}> 
or <secret;{Sweden, crypto}>, but not by someone with 
a <top secret;{crypto}> clearance or someone cleared for 
<confidential;{Sweden}> or <secret;{France}>.

Military security enforces both sensitivity requirements and need-
to-know requirements. Sensitivity requirements are known as 
hierarchical requirements because they reflect the hierarchy of 
sensitivity levels; need-to-know restrictions are nonhierarchical 
because compartments do not necessarily reflect a hierarchical 
structure. This combinational model is appropriate for a setting 
in which access is rigidly controlled by a central authority. 
Someone, often called a security officer, controls clearances and 
classifications, which are not generally up to individuals to alter.

5.2.2 Commercial Security Policies

Commercial enterprises have significant security concerns. 
They worry that industrial espionage will reveal information to 
competitors about new products under development. Likewise, 
corporations are often eager to protect information about the 
details of corporate finance. So even though the commercial 
world is usually less rigidly and less hierarchically structured 
than the military world, we still find many of the same concepts 
in commercial security policies. For example, a large organization, 
such as a corporation or a university, may be divided into groups 
or departments, each responsible for a number of disjoint projects. 
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There may also be some corporate-level responsibilities, such as 
accounting and personnel activities. Data items at any level may 
have different degrees of sensitivity, such as public, proprietary, or 
internal; here, the names may vary among organizations, and no 
universal hierarchy applies.

Let us assume that public information is less sensitive than 
proprietary, which in turn is less sensitive than internal. Projects 
and departments tend to be fairly well separated, with some 
overlap as people work on two or more projects. Corporate-
level responsibilities tend to overlie projects and departments, 
as people throughout the corporation may need accounting or 
personnel data. However, even corporate data may have degrees 
of sensitivity. Projects themselves may introduce a degree of 
sensitivity: Staff members on project old-standby have no need 
to know about project new-product, while staff members on new-
product may have access to all data on old-standby. For these 
reasons, a commercial layout of data might look like Figure 4.

Figure 4. Commercial View of Sensitive Information.

Two significant differences exist between commercial and military 
information security. First, outside the military, there is usually 
no formalized notion of clearances: A person working on a 
commercial project does not require approval for project MARS 
access by a central security officer. Typically, an employee is not 
conferred a different degree of trust by being allowed access to 
internal data. Second, because there is no formal concept of a 
clearance, the rules for allowing access are less regularized. For 
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example, if a senior manager decides that a person needs access to 
a piece of MARS internal data, the manager will instruct someone 
to allow the access, either one-time or continuing. Thus, there is 
no dominance function for most commercial information access 
because there is no formal concept of a commercial clearance.

So far, much of our discussion has focused only on read access, 
which addresses confidentiality in security. In fact, this narrow 
view holds true for much of the existing work in computer security. 
However, integrity and availability are at least as important 
as confidentiality in many instances. Policies for integrity and 
availability are significantly less well formulated than those for 
confidentiality, in both military and commercial realms. In the 
two examples that follow, we explore some instances of integrity 
concerns.

ClarkWilson Commercial Security Policy

In many commercial applications, integrity can be at least as 
important as confidentiality. The correctness of accounting 
records, the accuracy of legal work, and the proper timing of 
medical treatments are the essence of their fields. Clark and Wilson 
proposed a policy for what they call well-formed	transactions, which 
they assert are as important in their field as is confidentiality in a 
military realm.

To see why, consider a company that orders and pays for materials. 
A representation of the procurement process might be this:

• A purchasing clerk creates an order for a supply, sending 
copies of the order to both the supplier and the receiving 
department.

• The supplier ships the goods, which arrive at the 
receiving department. A receiving clerk checks the 
delivery, ensures that the correct quantity of the right 
item has been received, and signs a delivery form. The 
delivery form and the original order go to the accounting 
department.
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• The supplier sends an invoice to the accounting 
department. An accounting clerk compares the invoice 
with the original order (as to price and other terms) and 
the delivery form (as to quantity and item) and issues a 
check to the supplier.

The sequence of activities is important. A receiving clerk will not 
sign a delivery form without already having received a matching 
order (because suppliers should not be allowed to ship any 
quantities of any items they want and be paid), and an accounting 
clerk will not issue a check without already having received a 
matching order and delivery form (because suppliers should not 
be paid for goods not ordered or received). Furthermore, in most 
cases, both the order and the delivery form must be signed by 
authorized individuals. Performing the steps in order, performing 
exactly the steps listed, and authenticating the individuals who 
perform the steps constitute a well-formed transaction. The goal 
of the ClarkWilson policy is to maintain consistency between the 
internal data and the external (users’) expectations of those data.

Clark and Wilson present their policy in terms of constrained 
data items, which are processed by transformation procedures. A 
transformation procedure is like a monitor in that it performs only 
particular operations on specific kinds of data items; these data 
items are manipulated only by transformation procedures. The 
transformation procedures maintain the integrity of the data items 
by validating the processing to be performed. Clark and Wilson 
propose defining the policy in terms of access triples: <userID, 
TPi, {CDIj, CDIk, ...}>, combining a transformation procedure, one 
or more constrained data items, and the identification of a user 
who is authorized to operate on those data items by means of the 
transaction procedure.

Separation of Duty

A second commercial security policy involves separation of 
responsibility. Clark and Wilson raised this issue in their analysis 
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of commercial security requirements, and Lee and Nash and 
Poland added to the concept.

To see how it works, we continue our example of a small company 
ordering goods. In the company, several people might be authorized 
to issue orders, receive goods, and write checks. However, we 
would not want the same person to issue the order, receive the 
goods, and write the check, because there is potential for abuse. 
Therefore, we might want to establish a policy that specifies that 
three separate individuals issue the order, receive the goods, and 
write the check, even though any of the three might be authorized 
to do any of these tasks. This required division of responsibilities 
is called separation of duty.

Separation of duty is commonly accomplished manually by 
means of dual signatures. Clark and Wilson triples are “stateless,” 
meaning that a triple does not have a context of prior operations; 
triples are incapable of passing control information to other triples. 
Thus, if one person is authorized to perform operations TP1 and 
TP2, the Clark and Wilson triples cannot prevent the same person 
from performing both TP1 and TP2 on a given data item. However, 
it is quite easy to implement distinctness if it is stated as a policy 
requirement.

Chinese Wall Security Policy

Brewer and Nash defined a security policy called the Chinese 
Wall that reflects certain commercial needs for information access 
protection. The security requirements reflect issues relevant to 
those people in legal, medical, investment, or accounting firms who 
might be subject to conflict of interest. A conflict of interest exists 
when a person in one company can obtain sensitive information 
about people, products, or services in competing companies.

The security policy builds on three levels of abstraction.
• Objects. At the lowest level are elementary objects, such 

as files. Each file contains information concerning only 
one company.
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• Company groups. At the next level, all objects concerning 
a particular company are grouped together.

• Conflict classes. At the highest level, all groups of objects 
for competing companies are clustered.

With this model, each object belongs to a unique company group, 
and each company group is contained in a unique conflict class. 
A conflict class may contain one or more company groups. For 
example, suppose you are an advertising company with clients 
in several fields: chocolate companies, banks, and airlines. You 
might want to store data on chocolate companies Suchard and 
Cadbury; on banks Citicorp, Deutsche Bank, and Credit Lyonnais; 
and on airline SAS. You want to prevent your employees from 
inadvertently revealing information to a client about that client’s 
competitors, so you establish the rule that no employee will know 
sensitive information about competing companies. Using the 
Chinese Wall hierarchy, you would form six company groups (one 
for each company) and three conflict classes: {Suchard, Cadbury}, 
{Citicorp, Deutsche Bank, Credit Lyonnais}, and {SAS}.

The hierarchy guides a simple access control policy: A person can 
access any information as long as that person has never accessed 
information from a different company in the same conflict class. 
That is, access is allowed if either the object requested is in the same 
company group as an object that has previously been accessed 
or the object requested belongs to a conflict class that has never 
before been accessed. In our example, initially you can access any 
objects. Suppose you read from a file on Suchard. A subsequent 
request for access to any bank or to SAS would be granted, but a 
request to access Cadbury files would be denied. Your next access, 
of SAS data, does not affect future accesses. But if you then access 
a file on Credit Lyonnais, you will be blocked from future accesses 
to Deutsche Bank or Citicorp. From that point on, as shown in 
Figure 5, you can access objects only concerning Suchard, SAS, 
Credit Lyonnais, or a newly defined conflict class.
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Figure 5. Chinese Wall Security Policy.

The Chinese Wall is a commercially inspired confidentiality 
policy. It is unlike most other commercial policies, which focus on 
integrity. It is also interesting because access permissions change 
dynamically: As a subject accesses some objects, other objects that 
would previously have been accessible are subsequently denied.

5.3 MODELS OF SECURITY

In security and elsewhere, models are often used to describe, 
study, or analyze a particular situation or relationship. McLean 
gives a good overview of models for security. In particular, security 
models are used to

• test a particular policy for completeness and consistency
• document a policy
• help conceptualize and design an implementation
• check whether an implementation meets its requirements

We assume that some access control policy dictates whether a 
given user can access a particular object. We also assume that this 
policy is established outside any model. That is, a policy decision 
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determines whether a specific user should have access to a specific 
object; the model is only a mechanism that enforces that policy. 
Thus, we begin studying models by considering simple ways to 
control access by one user.

5.3.1 Multilevel Security

Ideally, we want to build a model to represent a range of sensitivities 
and to reflect the need to separate subjects rigorously from objects 
to which they should not have access. For instance, consider an 
election and the sensitivity of data involved in the voting process. 
The names of the candidates are probably not sensitive. If the 
results have not yet been released, the name of the winner is 
somewhat sensitive. If one candidate received an embarrassingly 
low number of votes, the vote count may be more sensitive. Finally, 
the way a particular individual voted is extremely sensitive. Users 
can also be ranked by the degree of sensitivity of information to 
which they can have access.

For obvious reasons, the military has developed extensive 
procedures for securing information. A generalization of the 
military model of information security has also been adopted 
as a model of data security within an operating system. Bell and 
La Padula were first to describe the properties of the military 
model in mathematical notation, and Denning first formalized the 
structure of this model. In 2005, Bell returned to the original model 
to highlight its contribution to computer security. He observed 
that the model demonstrated the need to understand security 
requirements before beginning system design, build security 
into not onto the system, develop a security toolbox, and design 
the system to protect itself. The generalized model is called the 
lattice model of security because its elements form a mathematical 
structure called a lattice.
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Lattice Model of Access Security

The military security model is representative of a more general 
scheme, called a lattice. The dominance relation ≤ defined in 
the military model is the relation for the lattice. The relation ≤ is 
transitive and antisymmetric. The largest element of the lattice is 
the classification <all compartments>, and the smallest element is 
<unclassified; no compartments>; these two elements respectively 
dominate and are dominated by all elements. Therefore, the 
military model is a lattice.

Many other structures are lattices. For example, we noted earlier 
that a commercial security policy may contain data sensitivities 
such as public, proprietary, and internal, with the natural ordering 
that public data are less sensitive than proprietary, which are less 
sensitive than internal. These three levels also form a lattice.

Security specialists have chosen to base security systems on 
a lattice because it naturally represents increasing degrees. A 
security system designed to implement lattice models can be 
used in a military environment. However, it can also be used in 
commercial environments with different labels for the degrees of 
sensitivity. Thus, lattice representation of sensitivity levels applies 
to many computing situations.

Figure 6. Sample Lattice.
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BellLa Padula Confidentiality Model

The Bell and La Padula model is a formal description of the 
allowable paths of information flow in a secure system. The model’s 
goal is to identify allowable communication when maintaining 
secrecy is important. The model has been used to define security 
requirements for systems concurrently handling data at different 
sensitivity levels. This model is a formalization of the military 
security policy and was central to the U.S. Department of Defense’s 
evaluation criteria.

We are interested in secure information flows because they 
describe acceptable connections between subjects and objects 
of different levels of sensitivity. One purpose for security-level 
analysis is to enable us to construct systems that can perform 
concurrent computation on data at two different sensitivity levels. 
For example, we may want to use one machine for top-secret and 
confidential data at the same time. The programs processing top-
secret data would be prevented from leaking top-secret data to the 
confidential data, and the confidential users would be prevented 
from accessing the top-secret data. Thus, the BellLa Padula model 
is useful as the basis for the design of systems that handle data of 
multiple sensitivities.

To understand how the BellLa Padula model works, consider a 
security system with the following properties. The system covers 
a set of subjects S and a set of objects O. Each subject s in S and 
each object o in O has a fixed security class C(s) and C(o) (denoting 
clearance and classification level). The security classes are ordered 
by a relation ≤. (Note: The classes may form a lattice, even though 
the BellLa Padula model can apply to even less restricted cases.)

Two properties characterize the secure flow of information.

Simple Security Property

A subject s may have read access to an object o only if C(o) ≤ Cs).
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In the military model, this property says that the security class 
(clearance) of someone receiving a piece of information must be at 
least as high as the class (classification) of the information.

*-Property (called the “Star Property”)

A subject s who has read access to an object o may have write 
access to an object p only if C(o) ≤ Cp).

In the military model, this property says that the contents of a 
sensitive object can be written only to objects at least as high.

In the military model, one interpretation of the *-property is 
that a person obtaining information at one level may pass that 
information along only to people at levels no lower than the level 
of the information. The *-property prevents write-down, which 
occurs when a subject with access to high-level data transfers that 
data by writing it to a low-level object.

Literally, the *-property requires that a person receiving information 
at one level not talk with people cleared at levels lower than the 
level of the informationnot even about the weather! This example 
points out that this property is stronger than necessary to ensure 
security; the same is also true in computing systems. The BellLa 
Padula model is extremely conservative: It ensures security even 
at the expense of usability or other properties.

The implications of these two properties are shown in Figure 7. 
The classifications of subjects (represented by squares) and objects 
(represented by circles) are indicated by their positions: As the 
classification of an item increases, it is shown higher in the figure. 
The flow of information is generally horizontal (to and from the 
same level) and upward (from lower levels to higher). A downward 
flow is acceptable only if the highly cleared subject does not pass 
any high-sensitivity data to the lower-sensitivity object.
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Figure 7. Secure Flow of Information.

For computing systems, downward flow of information is difficult 
because a computer program cannot readily distinguish between 
having read a piece of information and having read a piece of 
information that influenced what was later written. (McLean, in 
work related to Goguen and Meseguer, presents an interesting 
counter to the *-property of Bell and La Padula. He suggests 
considering noninterference, which can be loosely described as 
tracing the effects of inputs on outputs. If we can trace all output 
effects, we can determine conclusively whether a particular low-
level output was “contaminated” with high-level input.)

Biba Integrity Model

The BellLa Padula model applies only to secrecy of information: The 
model identifies paths that could lead to inappropriate disclosure 
of information. However, the integrity of data is important, 
too. Biba constructed a model for preventing inappropriate 
modification of data.

The Biba model is the counterpart (sometimes called the dual) of 
the BellLa Padula model. Biba defines “integrity levels,” which 
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are analogous to the sensitivity levels of the BellLa Padula model. 
Subjects and objects are ordered by an integrity classification 
scheme, denoted I(s) and I(o). The properties are

• Simple Integrity Property. Subject s can modify (have 
write access to) object o only if I(s) ≥ Io)

• Integrity *-Property. If subject s has read access to object 
o with integrity level I(o), s can have write access to object 
p only if I(o) ≥ Ip)

These two rules cover untrustworthy information in a natural 
way. Suppose John is known to be untruthful sometimes. If John 
can create or modify a document, other people should distrust 
the truth of the statements in that document. Thus, an untrusted 
subject who has write access to an object reduces the integrity of 
that object. Similarly, people are rightly skeptical of a report based 
on unsound evidence. The low integrity of a source object implies 
low integrity for any object based on the source object.

This model addresses the integrity issue that the BellLa Padula 
model ignores. However, in doing so, the Biba model ignores 
secrecy. Secrecy-based security systems have been much more fully 
studied than have integrity-based systems. The current trend is to 
join secrecy and integrity concerns in security systems, although 
no widely accepted formal models achieve this compromise.

5.3.2 Models Proving Theoretical Limitations of Security 
Systems

Models are also useful for demonstrating the feasibility of an 
approach. Consider the security properties that we want a system 
to have. We want to build a model that tells us (before we invest in 
design, code, and testing) whether the properties can actually be 
achieved. This new class of models is based on the general theory 
of computability, which you may have studied in your computer 
science classes. Computability helps us determine decidability: 
If we pose a question, we want to know if we will ever be able 
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to decide what the answer is. The results of these computability-
based models show us the limitations of abstract security systems.

GrahamDenning Model

Lampson and Graham and Denning introduced the concept 
of a formal system of protection rules. Graham and Denning 
constructed a model having generic protection properties. This 
model forms the basis for two later models of security systems.

The GrahamDenning model operates on a set of subjects S, a 
set of objects O, a set of rights R, and an access control matrix 
A. The matrix has one row for each subject and one column for 
each subject and each object. The rights of a subject on another 
subject or an object are shown by the contents of an element of 
the matrix. For each object, one subject designated the “owner” 
has special rights; for each subject, another subject designated the 
“controller” has special rights.

The GrahamDenning model has eight primitive protection rights. 
These rights are phrased as commands that can be issued by 
subjects, with effects on other subjects or objects.

• Create object allows the commanding subject to introduce 
a new object to the system.

• Create subject, delete object, and delete subject have the 
similar effect of creating or destroying a subject or object.

• Read access right allows a subject to determine the 
current access rights of a subject to an object.

• Grant access right allows the owner of an object to convey 
any access rights for an object to another subject.

• Delete access right allows a subject to delete a right of 
another subject for an object, provided that the deleting 
subject either is the owner of the object or controls the 
subject from which access should be deleted.

• Transfer access right allows a subject to transfer one of 
its rights for an object to another subject. Each right can 
be transferable or nontransferable. If a subject receives a 
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transferable right, the subject can then transfer that right 
(either transferable or not) to other subjects. If a subject 
receives a nontransferable right, it can use the right but 
cannot transfer that right to other subjects.

These rules are shown in Table 2, which shows prerequisite 
conditions for executing each command and its effect. The access 
control matrix is A [s,o], where s is a subject and o is an object. The 
subject executing each command is denoted x. A transferable right 
is denoted r*; a nontransferable right is written r.

Table 2. Protection System Commands.

Command Precondition Effect
Create object o Add column for o in A; 

place owner in A[x,o]
Create subject s Add row for s in A; place 

control in A[x,s]
Delete object o Owner in A[x,o] Delete column o
Delete subject s Control in A[x,s] Delete row s
Read access right of 
s on o

Control in A[x,s] or 
owner in A[x,o]

Copy A[s,o] to x

Delete access right r 
of s on o

Control in A[x,s] or 
owner in A[x,o]

Remove r from A[s,o]

Grant access right r 
to s on o

Owner in A[x,o] Add r to A[s,o]

Transfer access right 
r or r* to s on o

r* in A[x,o] Add r or r* to A[s,o]

This set of rules provides the properties necessary to model the 
access control mechanisms of a protection system. For example, 
this mechanism can represent a reference monitor or a system 
of sharing between two untrustworthy, mutually suspicious 
subsystems.

HarrisonRuzzoUllman Results

Harrison, Ruzzo, and Ullman proposed a variation on the 
GrahamDenning model. This revised model answered several 
questions concerning the kinds of protection a given system can 
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offer. Suppose you are about to use a particular operating system 
and you want to know if a given user can ever be granted a certain 
kind of access. For example, you may be establishing protection 
levels in Windows or MVS. You set up the access controls and 
then ask whether user X will ever have access to object Y. The 
three researchers developed their model so that we might be able 
to answer questions like this one.

The HarrisonRuzzoUllman model (called the HRU model) is based 
on commands, where each command involves conditions and 
primitive operations. The structure of a command is as follows.

command name(o1,o2,…, ok)
if r1 in A[s1, o1,] and
 r2 in A[s2, o2,] and
  …
 rm in A[sm, om,]
then
 op1
 op2
 …
 opn

end
This command is structured like a procedure, with parameters o1 
through ok. The notation of the HRU model is slightly different 
from the GrahamDenning model; in HRU every subject is an 
object, too. Thus, the columns of the access control matrix are all the 
subjects and all the objects that are not subjects. For this reason, all 
the parameters of a command are labeled o, although they could 
be either subjects or nonsubject objects. Each r is a generic right, 
as in the GrahamDenning model. Each op is a primitive operation, 
defined in the following list. The access matrix is shown in Table 3.
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Table 3. Access Matrix in HRU Model.

Objects
Subjects S1 S2 S3 O1 O2 O3

S1 Control Own, Suspend, Resume  Own Own Read, 
Propagate

S2  Control   Extend Own
S3   Control Read, Write Write Read

The primitive operations op, similar to those of the GrahamDenning 
model, are as follows:

• create subject s
• create object o
• destroy subject s
• destroy object o
• enter right r into A[s,o]
• delete right r from A[s,o]

The interpretations of these operations are what their names 
imply. A protection system is a set of subjects, objects, rights, and 
commands.

Harrison et al. demonstrate that these operations are adequate to 
model several examples of protection systems, including the Unix 
protection mechanism and an indirect access mode introduced 
by Graham and Denning. Thus, like the GrahamDenning model, 
the HRU model can represent “reasonable” interpretations of 
protection.

Two important results derived by Harrison et al. have major 
implications for designers of protection systems.

The first result from HRU indicates that, In the modeled system, 
in which commands are restricted to a single operation each, it 
is possible to decide whether a given subject can ever obtain a 
particular right to an object.
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Therefore, we can decide (that is, we can know in advance) 
whether a low-level subject can ever obtain read access to a high-
level object, for example.

The second result is less encouraging. Harrison et al. show that, 
If commands are not restricted to one operation each, it is not 
always decidable whether a given protection system can confer a 
given right.

Thus, we cannot determine in general whether a subject can obtain 
a particular right to an object.

As an example, consider protection in the Unix operating system. 
The Unix protection scheme is relatively simple; other protection 
systems are more complex. Because the Unix protection scheme 
requires more than one operation per command in the HRU 
model, there can be no general procedure to determine whether a 
certain access right can be given to a subject.

The HRU result is important but bleak. In fact, the HRU result 
can be extended. There may be an algorithm to decide the access 
right question for a particular collection of protection systems, 
but even an infinite number of algorithms cannot decide the 
access right question for all protection systems. However, the 
negative results do not say that no decision process exists for any 
protection system. In fact, for certain specific protection systems, 
it is decidable whether a given access right can be conferred.

TakeGrant Systems

One final model of a protection system is the takegrant system, 
introduced by Jones and expanded by Lipton and Snyder.

This model has only four primitive operations: create, revoke, 
take, and grant. Create and revoke are similar to operations from 
the GrahamDenning and HRU models; take and grant are new 
types of operations. These operations are presented most naturally 
through the use of graphs.
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As in other systems, let S be a set of subjects and O be a set of 
objects; objects can be either active (subjects) or passive (nonsubject 
objects). Let R be a set of rights. Each subject or object is denoted by 
a node of a graph; the rights of a particular subject to a particular 
object are denoted by a labeled, directed edge from the subject to 
the object. Figure 8 shows an example of subject, object, and rights.

Figure 8. Subject, Object, and Rights.

Let s be the subject performing each of the operations. The four 
operations are defined as follows. The effects of these operations 
are shown in Figure 9.

Figure 9. Creating an Object; Revoking, Granting, and Taking Access 
Rights.

• Create(o,r). A new node with label o is added to the graph. 
From s to o is a directed edge with label r, denoting the 
rights of s on o.

• Revoke(o,r). The rights r are revoked from s on o. The 
edge from s to o was labeled q ⋃ q. Informally, we say 
that s can revoke its rights to do r on o.

• Grant(o,p,r). Subject s grants to o access rights r on p. 
A specific right is grant. Subject s can grant to o access 
rights r on p only if s has grant rights on o and s has 
r rights on p. Informally, s can grant (share) any of its 
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rights with o, as long as s has the right to grant privileges 
to o. An edge from o to p is added, with label r.

• Take(o,p,r). Subject s takes from o access rights r on p. 
A specific right is take. Subject s can take from o access 
rights r on p only if s has take right on o and o has r rights 
on p. Informally, s can take any rights o has, as long as s 
has the right to take privileges from o. An edge from s to 
p is added, with label r.

This set of operations is even shorter than the operations of either 
of the two previous models. However, take and grant are more 
complex rights.

Snyder shows that in this system certain protection questions are 
decidable; furthermore, they are decidable in reasonable (less than 
exponential) time. In, Snyder considers two questions:

• Can we decide whether a given subject can share an 
object with another subject?

• Can we decide whether a given subject can steal access to 
an object from another subject?

Clearly, these are important questions to answer about a protection 
system, for they show whether the access control mechanisms are 
secure against unauthorized disclosure.

The answer to Snyder’s first question is yes. Sharing can occur 
only if several other subjects together have the desired access to 
the object and the first subject is connected to each of the group 
of other subjects by a path of edges having a particular form. An 
algorithm that detects sharability runs in time proportional to the 
size of the graph of the particular case.

Snyder also answers the second question affirmatively, in a 
situation heavily dependent on the ability to share. Thus, an 
algorithm can decide whether access can be stolen by direct appeal 
to the algorithm to decide sharability.

Landwehr points out that the takegrant model assumes the worst 
about users: If a user can grant access rights, the model assumes 
that the user will. Suppose a user can create a file and grant access 
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to it to everyone. In that situation, every user could allow access 
to every object by every other user. This worst-case assumption 
limits the applicability of the model to situations of controlled 
sharing of information. In general, however, the takegrant model 
is useful because it identifies conditions under which a user can 
obtain access to an object.

5.4 TRUSTED OPERATING SYSTEM DESIGN

Operating systems by themselves (regardless of their security 
constraints) are very difficult to design. They handle many 
duties, are subject to interruptions and context switches, and 
must minimize overhead so as not to slow user computations and 
interactions. Adding the responsibility for security enforcement 
to the operating system substantially increases the difficulty of 
designing an operating system.

5.4.1 Trusted System Design Elements

That security considerations pervade the design and structure of 
operating systems implies two things. First, an operating system 
controls the interaction between subjects and objects, so security 
must be considered in every aspect of its design. That is, the 
operating system design must include definitions of which objects 
will be protected in what way, which subjects will have access and 
at what levels, and so on. There must be a clear mapping from 
the security requirements to the design, so that all developers can 
see how the two relate. Moreover, once a section of the operating 
system has been designed, it must be checked to see that the degree 
of security that it is supposed to enforce or provide has actually 
been designed correctly. This checking can be done in many ways, 
including formal reviews or simulations. Again, a mapping is 
necessary, this time from the requirements to design to tests so 
that developers can affirm that each aspect of operating system 
security has been tested and shown to work correctly.
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Second, because security appears in every part of an operating 
system, its design and implementation cannot be left fuzzy or 
vague until the rest of the system is working and being tested. It is 
extremely hard to retrofit security features to an operating system 
designed with inadequate security. Leaving an operating system’s 
security to the last minute is much like trying to install plumbing 
or wiring in a house whose foundation is set, structure defined, 
and walls already up and painted; not only must you destroy most 
of what you have built, but you may also find that the general 
structure can no longer accommodate all that is needed (and so 
some has to be left out or compromised). Thus, security must 
be an essential part of the initial design of a trusted operating 
system. Indeed, the security considerations may shape many of 
the other design decisions, especially for a system with complex 
and constraining security requirements. For the same reasons, the 
security and other design principles must be carried throughout 
implementation, testing, and maintenance.

Good design principles are always good for security, as we have 
noted above. But several important design principles are quite 
particular to security and essential for building a solid, trusted 
operating system. These principles have been articulated well by 
Saltzer and Saltzer and Schroeder:

•	 Least	 privilege. Each user and each program should 
operate by using the fewest privileges possible. In this 
way, the damage from an inadvertent or malicious attack 
is minimized.

•	 Economy	 of	 mechanism. The design of the protection 
system should be small, simple, and straightforward. 
Such a protection system can be carefully analyzed, 
exhaustively tested, perhaps verified, and relied on.

•	 Open	design. The protection mechanism must not depend 
on the ignorance of potential attackers; the mechanism 
should be public, depending on secrecy of relatively few 
key items, such as a password table. An open design 
is also available for extensive public scrutiny, thereby 
providing independent confirmation of the design 
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security.
•	 Complete	mediation. Every access attempt must be checked. 

Both direct access attempts (requests) and attempts to 
circumvent the access checking mechanism should be 
considered, and the mechanism should be positioned so 
that it cannot be circumvented.

•	 Permission	based. The default condition should be denial 
of access. A conservative designer identifies the items 
that should be accessible, rather than those that should 
not.

•	 Separation	 of	 privilege. Ideally, access to objects should 
depend on more than one condition, such as user 
authentication plus a cryptographic key. In this way, 
someone who defeats one protection system will not 
have complete access.

•	 Least	common	mechanism. Shared objects provide potential 
channels for information flow. Systems employing 
physical or logical separation reduce the risk from 
sharing.

•	 Ease	of	use. If a protection mechanism is easy to use, it is 
unlikely to be avoided.

Although these design principles were suggested several decades 
ago, they are as accurate now as they were when originally written. 
The principles have been used repeatedly and successfully in 
the design and implementation of numerous trusted systems. 
More importantly, when security problems have been found in 
operating systems in the past, they almost always derive from 
failure to abide by one or more of these principles.

5.4.2 Security Features of Ordinary Operating Systems

A multiprogramming operating system performs several functions 
that relate to security. To see how, examine Figure 10, which 
illustrates how an operating system interacts with users, provides 
services, and allocates resources.



Secure Computing202

Figure 10. Overview of an Operating System’s Functions.

We can see that the system addresses several particular functions 
that involve computer security:

•	 User	authentication. The operating system must identify 
each user who requests access and must ascertain that 
the user is actually who he or she purports to be. The 
most common authentication mechanism is password 
comparison.

•	 Memory	 protection. Each user’s program must run in 
a portion of memory protected against unauthorized 
accesses. The protection will certainly prevent outsiders’ 
accesses, and it may also control a user’s own access 
to restricted parts of the program space. Differential 
security, such as read, write, and execute, may be applied 
to parts of a user’s memory space. Memory protection 
is usually performed by hardware mechanisms, such as 
paging or segmentation.

• File and I/O device access control. The operating system 
must protect user and system files from access by 
unauthorized users. Similarly, I/O device use must be 
protected. Data protection is usually achieved by table 
lookup, as with an access control matrix.
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• Allocation and access control to general objects. Users 
need general objects, such as constructs to permit 
concurrency and allow synchronization. However, access 
to these objects must be controlled so that one user does 
not have a negative effect on other users. Again, table 
lookup is the common means by which this protection 
is provided.

•	 Enforced	 sharing. Resources should be made available 
to users as appropriate. Sharing brings about the need 
to guarantee integrity and consistency. Table lookup, 
combined with integrity controls such as monitors or 
transaction processors, is often used to support controlled 
sharing.

• Guaranteed fair service. All users expect CPU usage 
and other service to be provided so that no user is 
indefinitely starved from receiving service. Hardware 
clocks combine with scheduling disciplines to provide 
fairness. Hardware facilities and data tables combine to 
provide control.

•	 Interprocess	 communication and synchronization. 
Executing processes sometimes need to communicate 
with other processes or to synchronize their accesses 
to shared resources. Operating systems provide these 
services by acting as a bridge between processes, 
responding to process requests for asynchronous 
communication with other processes or synchronization. 
Interprocess communication is mediated by access 
control tables.

• Protected operating system protection data. The 
operating system must maintain data by which it can 
enforce security. Obviously if these data are not protected 
against unauthorized access (read, modify, and delete), 
the operating system cannot provide enforcement. 
Various techniques, including encryption, hardware 
control, and isolation, support isolation of operating 
system protection data.
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5.4.3 Security Features of Trusted Operating Systems

Unlike regular operating systems, trusted systems incorporate 
technology to address both features and assurance. The design of 
a trusted system is delicate, involving selection of an appropriate 
and consistent set of features together with an appropriate degree of 
assurance that the features have been assembled and implemented 
correctly. Figure 11 illustrates how a trusted operating system 
differs from an ordinary one. Compare it with Figure 10. Notice 
how objects are accompanied or surrounded by an access control 
mechanism, offering far more protection and separation than does 
a conventional operating system. In addition, memory is separated 
by user, and data and program libraries have controlled sharing 
and separation.

Figure 11. Security Functions of a Trusted Operating System.

The key features of a trusted operating system including
• user identification and authentication
• mandatory access control
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• discretionary access control
• object reuse protection
• complete mediation
• trusted path
• audit
• audit log reduction
• intrusion detection

We consider each of these features in turn.

Identification and Authentication

Identification is at the root of much of computer security. We must 
be able to tell who is requesting access to an object, and we must be 
able to verify the subject’s identity. As we see shortly, most access 
control, whether mandatory or discretionary, is based on accurate 
identification. Thus, identification involves two steps: finding 
out who the access requester is and verifying that the requester 
is indeed who he/she/it claims to be. That is, we want to establish 
an identity and then authenticate or verify that identity. Trusted 
operating systems require secure identification of individuals, 
and each individual must be uniquely identified.

Mandatory and Discretionary Access Control

Mandatory access control (MAC) means that access control policy 
decisions are made beyond the control of the individual owner of 
an object. A central authority determines what information is to be 
accessible by whom, and the user cannot change access rights. An 
example of MAC occurs in military security, where an individual 
data owner does not decide who has a top-secret clearance; neither 
can the owner change the classification of an object from top secret 
to secret.

By contrast, discretionary access control (DAC), as its name implies, 
leaves a certain amount of access control to the discretion of the 
object’s owner or to anyone else who is authorized to control the 
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object’s access. The owner can determine who should have access 
rights to an object and what those rights should be. Commercial 
environments typically use DAC to allow anyone in a designated 
group, and sometimes additional named individuals, to change 
access. For example, a corporation might establish access controls 
so that the accounting group can have access to personnel files. 
But the corporation may also allow Ana and Jose to access those 
files, too, in their roles as directors of the Inspector General’s office. 
Typically, DAC access rights can change dynamically. The owner 
of the accounting file may add Renee and remove Walter from the 
list of allowed accessors, as business needs dictate.

MAC and DAC can both be applied to the same object. MAC 
has precedence over DAC, meaning that of all those who are 
approved for MAC access, only those who also pass DAC will 
actually be allowed to access the object. For example, a file may 
be classified secret, meaning that only people cleared for secret 
access can potentially access the file. But of those millions of 
people granted secret access by the government, only people on 
project “deer park” or in the “environmental” group or at location 
“Fort Hamilton” are actually allowed access.

Object Reuse Protection

One way that a computing system maintains its efficiency is to 
reuse objects. The operating system controls resource allocation, 
and as a resource is freed for use by other users or programs, the 
operating system permits the next user or program to access the 
resource. But reusable objects must be carefully controlled, lest 
they create a serious vulnerability. To see why, consider what 
happens when a new file is created. Usually, space for the file 
comes from a pool of freed, previously used space on a disk or 
other storage device. Released space is returned to the pool 
“dirty,” that is, still containing the data from the previous user. 
Because most users would write to a file before trying to read from 
it, the new user’s data obliterate the previous owner’s, so there 
is no inappropriate disclosure of the previous user’s information. 
However, a malicious user may claim a large amount of disk space 
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and then scavenge for sensitive data. This kind of attack is called 
object reuse. The problem is not limited to disk; it can occur with 
main memory, processor registers and storage, other magnetic 
media (such as disks and tapes), or any other reusable storage 
medium.

To prevent object reuse leakage, operating systems clear (that is, 
overwrite) all space to be reassigned before allowing the next user 
to have access to it. Magnetic media are particularly vulnerable to 
this threat. Very precise and expensive equipment can sometimes 
separate the most recent data from the data previously recorded, 
from the data before that, and so forth. This threat, called 
magnetic remanence. In any case, the operating system must take 
responsibility for “cleaning” the resource before permitting access 
to it.

Complete Mediation

For mandatory or discretionary access control to be effective, all 
accesses must be controlled. It is insufficient to control access 
only to files if the attack will acquire access through memory 
or an outside port or a network or a covert channel. The design 
and implementation difficulty of a trusted operating system rises 
significantly as more paths for access must be controlled. Highly 
trusted operating systems perform complete mediation, meaning 
that all accesses are checked.

Trusted Path

One way for a malicious user to gain inappropriate access is to 
“spoof” users, making them think they are communicating with 
a legitimate security enforcement system when in fact their 
keystrokes and commands are being intercepted and analyzed. 
For example, a malicious spoofer may place a phony user ID and 
password system between the user and the legitimate system. As 
the illegal system queries the user for identification information, 
the spoofer captures the real user ID and password; the spoofer 
can use these bona fide entry data to access the system later on, 
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probably with malicious intent. Thus, for critical operations such 
as setting a password or changing access permissions, users want 
an unmistakable communication, called a trusted path, to ensure 
that they are supplying protected information only to a legitimate 
receiver. On some trusted systems, the user invokes a trusted path 
by pressing a unique key sequence that, by design, is intercepted 
directly by the security enforcement software; on other trusted 
systems, security-relevant changes can be made only at system 
startup, before any processes other than the security enforcement 
code run.

Accountability and Audit

A security-relevant action may be as simple as an individual 
access to an object, such as a file, or it may be as major as a change 
to the central access control database affecting all subsequent 
accesses. Accountability usually entails maintaining a log of 
security-relevant events that have occurred, listing each event and 
the person responsible for the addition, deletion, or change. This 
audit log must obviously be protected from outsiders, and every 
security-relevant event must be recorded.

Audit Log Reduction

Theoretically, the general notion of an audit log is appealing 
because it allows responsible parties to evaluate all actions that 
affect all protected elements of the system. But in practice an 
audit log may be too difficult to handle, owing to volume and 
analysis. To see why, consider what information would have to 
be collected and analyzed. In the extreme (such as where the data 
involved can affect a business’ viability or a nation’s security), 
we might argue that every modification or even each character 
read from a file is potentially security relevant; the modification 
could affect the integrity of data, or the single character could 
divulge the only really sensitive part of an entire file. And because 
the path of control through a program is affected by the data the 
program processes, the sequence of individual instructions is 
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also potentially security relevant. If an audit record were to be 
created for every access to a single character from a file and for 
every instruction executed, the audit log would be enormous. (In 
fact, it would be impossible to audit every instruction, because 
then the audit commands themselves would have to be audited. 
In turn, these commands would be implemented by instructions 
that would have to be audited, and so on forever.)

In most trusted systems, the problem is simplified by an audit of 
only the opening (first access to) and closing of (last access to) files 
or similar objects. Similarly, objects such as individual memory 
locations, hardware registers, and instructions are not audited. 
Even with these restrictions, audit logs tend to be very large. Even 
a simple word processor may open fifty or more support modules 
(separate files) when it begins, it may create and delete a dozen 
or more temporary files during execution, and it may open many 
more drivers to handle specific tasks such as complex formatting 
or printing. Thus, one simple program can easily cause a hundred 
files to be opened and closed, and complex systems can cause 
thousands of files to be accessed in a relatively short time. On 
the other hand, some systems continuously read from or update 
a single file. A bank teller may process transactions against the 
general customer accounts file throughout the entire day; what 
is significant is not that the teller accessed the accounts file, but 
which entries in the file were accessed. Thus, audit at the level 
of file opening and closing is in some cases too much data and in 
other cases not enough to meet security needs.

A final difficulty is the “needle in a haystack” phenomenon. Even if 
the audit data could be limited to the right amount, typically many 
legitimate accesses and perhaps one attack will occur. Finding 
the one attack access out of a thousand legitimate accesses can 
be difficult. A corollary to this problem is the one of determining 
who or what does the analysis. Does the system administrator 
sit and analyze all data in the audit log? Or do the developers 
write a program to analyze the data? If the latter, how can we 
automatically recognize a pattern of unacceptable behavior? These 
issues are open questions being addressed not only by security 
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specialists but also by experts in artificial intelligence and pattern 
recognition.

Intrusion Detection

Closely related to audit reduction is the ability to detect security 
lapses, ideally while they occur. As we have seen in the State 
Department example, there may well be too much information in 
the audit log for a human to analyze, but the computer can help 
correlate independent data. Intrusion detection software builds 
patterns of normal system usage, triggering an alarm any time 
the usage seems abnormal. After a decade of promising research 
results in intrusion detection, products are now commercially 
available. Some trusted operating systems include a primitive 
degree of intrusion detection software.

5.4.4 Kernelized Design

A kernel is the part of an operating system that performs the lowest-
level functions. In standard operating system design, the kernel 
implements operations such as synchronization, interprocess 
communication, message passing, and interrupt handling. The 
kernel is also called a nucleus or core. The notion of designing an 
operating system around a kernel is described by Lampson and 
Sturgis and by Popek and Kline.

A security kernel is responsible for enforcing the security 
mechanisms of the entire operating system. The security kernel 
provides the security interfaces among the hardware, operating 
system, and other parts of the computing system. Typically, 
the operating system is designed so that the security kernel is 
contained within the operating system kernel. Security kernels are 
discussed in detail by Ames.

There are several good design reasons why security functions may 
be isolated in a security kernel.

• Coverage. Every access to a protected object must pass 
through the security kernel. In a system designed in this 
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way, the operating system can use the security kernel to 
ensure that every access is checked.

• Separation. Isolating security mechanisms both from 
the rest of the operating system and from the user 
space makes it easier to protect those mechanisms from 
penetration by the operating system or the users.

• Unity. All security functions are performed by a single set 
of code, so it is easier to trace the cause of any problems 
that arise with these functions.

• Modifiability. Changes to the security mechanisms are 
easier to make and easier to test.

• Compactness. Because it performs only security 
functions, the security kernel is likely to be relatively 
small.

• Verifiability. Being relatively small, the security kernel 
can be analyzed rigorously. For example, formal methods 
can be used to ensure that all security situations (such 
as states and state changes) have been covered by the 
design.

Notice the similarity between these advantages and the design 
goals of operating systems that we described earlier. These 
characteristics also depend in many ways on modularity.

On the other hand, implementing a security kernel may degrade 
system performance because the kernel adds yet another layer of 
interface between user programs and operating system resources. 
Moreover, the presence of a kernel does not guarantee that it 
contains all security functions or that it has been implemented 
correctly. And in some cases a security kernel can be quite large.

How do we balance these positive and negative aspects of using 
a security kernel? The design and usefulness of a security kernel 
depend somewhat on the overall approach to the operating 
system’s design. There are many design choices, each of which 
falls into one of two types: Either the kernel is designed as an 
addition to the operating system, or it is the basis of the entire 
operating system. Let us look more closely at each design choice.
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Reference Monitor

The most important part of a security kernel is the reference 
monitor, the portion that controls accesses to objects. A reference 
monitor is not necessarily a single piece of code; rather, it is the 
collection of access controls for devices, files, memory, interprocess 
communication, and other kinds of objects. As shown in Figure 
12, a reference monitor acts like a brick wall around the operating 
system or trusted software.

Figure 12. Reference Monitor.

A reference monitor must be
• tamperproof, that is, impossible to weaken or disable
• unbypassable, that is, always invoked when access to 

any object is required
• analyzable, that is, small enough to be subjected to 

analysis and testing, the completeness of which can be 
ensured

A reference monitor can control access effectively only if it cannot 
be modified or circumvented by a rogue process, and it is the single 
point through which all access requests must pass. Furthermore, 
the reference monitor must function correctly if it is to fulfill its 
crucial role in enforcing security. Because the likelihood of correct 
behavior decreases as the complexity and size of a program 
increase, the best assurance of correct policy enforcement is to 
build a small, simple, understandable reference monitor.

The reference monitor is not the only security mechanism of a 
trusted operating system. Other parts of the security suite include 
audit, identification, and authentication processing, as well as 
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the setting of enforcement parameters, such as who the allowable 
subjects are and which objects they are allowed to access. These 
other security parts interact with the reference monitor, receiving 
data from the reference monitor or providing it with the data it 
needs to operate. The reference monitor concept has been used 
for many trusted operating systems and also for smaller pieces 
of trusted software. The validity of this concept is well supported 
both in research and in practice.

Trusted Computing Base

The trusted computing base, or TCB, is the name we give to 
everything in the trusted operating system necessary to enforce 
the security policy. Alternatively, we say that the TCB consists of 
the parts of the trusted operating system on which we depend 
for correct enforcement of policy. We can think of the TCB as a 
coherent whole in the following way. Suppose you divide a trusted 
operating system into the parts that are in the TCB and those that 
are not, and you allow the most skillful malicious programmers to 
write all the non-TCB parts. Since the TCB handles all the security, 
there is nothing the malicious non-TCB parts can do to impair the 
correct security policy enforcement of the TCB. This definition 
gives you a sense that the TCB forms the fortress-like shell that 
protects whatever in the system needs protection. But the analogy 
also clarifies the meaning of trusted in trusted operating system: 
Our trust in the security of the whole system depends on the TCB.

It is easy to see that it is essential for the TCB to be both correct 
and complete. Thus, to understand how to design a good TCB, 
we focus on the division between the TCB and non-TCB elements 
of the operating system and spend our effort on ensuring the 
correctness of the TCB.

TCB Functions

Just what constitutes the TCB? We can answer this question by 
listing system elements on which security enforcement could 
depend:
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• hardware, including processors, memory, registers, and 
I/O devices

• some notion of processes, so that we can separate and 
protect security-critical processes

• primitive files, such as the security access control 
database and identification/authentication data

• protected memory, so that the reference monitor can be 
protected against tampering

• some interprocess communication, so that different parts 
of the TCB can pass data to and activate other parts. For 
example, the reference monitor can invoke and pass data 
securely to the audit routine.

It may seem as if this list encompasses most of the operating 
system, but in fact the TCB is only a small subset. For example, 
although the TCB requires access to files of enforcement data, it 
does not need an entire file structure of hierarchical directories, 
virtual devices, indexed files, and multidevice files. Thus, it might 
contain a primitive file manager to handle only the small, simple 
files needed for the TCB. The more complex file manager to 
provide externally visible files could be outside the TCB. Figure 
13 shows a typical division into TCB and non-TCB sections.

Figure 13. TCB and Non-TCB Code.
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The TCB, which must maintain the secrecy and integrity of each 
domain, monitors four basic interactions.

•	 Process activation. In a multiprogramming environment, 
activation and deactivation of processes occur frequently. 
Changing from one process to another requires a 
complete change of registers, relocation maps, file access 
lists, process status information, and other pointers, 
much of which is security-sensitive information.

•	 Execution	 domain	 switching. Processes running in one 
domain often invoke processes in other domains to 
obtain more sensitive data or services.

•	 Memory	 protection. Because each domain includes code 
and data stored in memory, the TCB must monitor 
memory references to ensure secrecy and integrity for 
each domain.

• I/O operation. In some systems, software is involved 
with each character transferred in an I/O operation. 
This software connects a user program in the outermost 
domain to an I/O device in the innermost (hardware) 
domain. Thus, I/O operations can cross all domains.

TCB Design

The division of the operating system into TCB and non-TCB 
aspects is convenient for designers and developers because it 
means that all security-relevant code is located in one (logical) 
part. But the distinction is more than just logical. To ensure that 
the security enforcement cannot be affected by non-TCB code, TCB 
code must run in some protected state that distinguishes it. Thus, 
the structuring into TCB and non-TCB must be done consciously. 
However, once this structuring has been done, code outside the 
TCB can be changed at will, without affecting the TCB’s ability to 
enforce security. This ability to change helps developers because it 
means that major sections of the operating systemutilities, device 
drivers, user interface managers, and the likecan be revised or 
replaced any time; only the TCB code must be controlled more 
carefully. Finally, for anyone evaluating the security of a trusted 
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operating system, a division into TCB and non-TCB simplifies 
evaluation substantially because non-TCB code need not be 
considered.

TCB Implementation

Security-related activities are likely to be performed in different 
places. Security is potentially related to every memory access, 
every I/O operation, every file or program access, every initiation 
or termination of a user, and every interprocess communication. 
In modular operating systems, these separate activities can be 
handled in independent modules. Each of these separate modules, 
then, has both security-related and other functions.

Collecting all security functions into the TCB may destroy the 
modularity of an existing operating system. A unified TCB may 
also be too large to be analyzed easily. Nevertheless, a designer 
may decide to separate the security functions of an existing 
operating system, creating a security kernel. This form of kernel is 
depicted in Figure 14.

Figure 14. Combined Security Kernel/Operating System.

A more sensible approach is to design the security kernel first 
and then design the operating system around it. This technique 



Designing Trusted Operating Systems 217

was used by Honeywell in the design of a prototype for its 
secure operating system, Scomp. That system contained only 
twenty modules to perform the primitive security functions, and 
it consisted of fewer than 1,000 lines of higher-level-language 
source code. Once the actual security kernel of Scomp was built, 
its functions grew to contain approximately 10,000 lines of code.

In a security-based design, the security kernel forms an interface 
layer, just atop system hardware. The security kernel monitors all 
operating system hardware accesses and performs all protection 
functions. The security kernel, which relies on support from 
hardware, allows the operating system itself to handle most 
functions not related to security. In this way, the security kernel 
can be small and efficient. As a byproduct of this partitioning, 
computing systems have at least three execution domains: security 
kernel, operating system, and user. See Figure 15.

Figure 15. Separate Security Kernel.

5.4.5 Separation/Isolation

Rushby and Randell list four ways to separate one process from 
others: physical, temporal, cryptographic, and logical separation. 
With physical separation, two different processes use two different 
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hardware facilities. For example, sensitive computation may be 
performed on a reserved computing system; nonsensitive tasks 
are run on a public system. Hardware separation offers several 
attractive features, including support for multiple independent 
threads of execution, memory protection, mediation of I/O, and 
at least three different degrees of execution privilege. Temporal 
separation occurs when different processes are run at different 
times. For instance, some military systems run nonsensitive jobs 
between 8:00 a.m. and noon, with sensitive computation only from 
noon to 5:00 p.m. Encryption is used for cryptographic separation, 
so two different processes can be run at the same time because 
unauthorized users cannot access sensitive data in a readable 
form. Logical separation, also called isolation, is provided when 
a process such as a reference monitor separates one user’s objects 
from those of another user. Secure computing systems have been 
built with each of these forms of separation.

Multiprogramming operating systems should isolate each user 
from all others, allowing only carefully controlled interactions 
between the users. Most operating systems are designed to 
provide a single environment for all. In other words, one copy 
of the operating system is available for use by many users, as 
shown in Figure 16. The operating system is often separated into 
two distinct pieces, located at the highest and lowest addresses of 
memory.

Figure 16. Conventional Multiuser Operating System Memory.
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5.4.6 Virtualization

Virtualization is a powerful tool for trusted system designers 
because it allows users to access complex objects in a carefully 
controlled manner. By virtualization we mean that the operating 
system emulates or simulates a collection of a computer system’s 
resources. We say that a virtual machine is a collection of real 
or simulated hardware facilities: a [central] processor that runs 
an instruction set, an amount of directly addressable storage, 
and some I/O devices. These facilities support the execution of 
programs.
Obviously, virtual resources must be supported by real hardware 
or software, but the real resources do not have to be the same 
as the simulated ones. There are many examples of this type of 
simulation. For instance, printers are often simulated on direct 
access devices for sharing in multiuser environments. Several 
small disks can be simulated with one large one. With demand 
paging, some noncontiguous memory can support a much larger 
contiguous virtual memory space. And it is common even on PCs 
to simulate space on slower disks with faster memory. In these 
ways, the operating system provides the virtual resource to the 
user, while the security kernel precisely controls user accesses.

Multiple Virtual Memory Spaces

The IBM MVS/ESA operating system uses virtualization to provide 
logical separation that gives the user the impression of physical 
separation. IBM MVS/ESA is a paging system such that each user’s 
logical address space is separated from that of other users by the 
page mapping mechanism. Additionally, MVS/ESA includes the 
operating system in each user’s logical address space, so a user 
runs on what seems to be a complete, separate machine.

Most paging systems present to a user only the user’s virtual 
address space; the operating system is outside the user’s virtual 
addressing space. However, the operating system is part of the 
logical space of each MVS/ESA user. Therefore, to the user MVS/
ESA seems like a single-user system, as shown in Figure 17.



Secure Computing220

Figure 17. Multiple Virtual Addressing Spaces.

A primary advantage of MVS/ESA is memory management. Each 
user’s virtual memory space can be as large as total addressable 
memory, in excess of 16 million bytes. And protection is a second 
advantage of this representation of memory. Because each user’s 
logical address space includes the operating system, the user’s 
perception is of running on a separate machine, which could even 
be true.

5.4.7 Virtual Machines

The IBM Processor Resources/System Manager (PR/SM) system 
provides a level of protection that is stronger still. A conventional 
operating system has hardware facilities and devices that are under 
the direct control of the operating system, as shown in Figure 18. 
PR/SM provides an entire virtual machine to each user, so that 
each user not only has logical memory but also has logical I/O 
devices, logical files, and other logical resources. PR/SM performs 
this feat by strictly separating resources.
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Figure 18. Conventional Operating System.

The PR/SM system is a natural extension of the concept of virtual 
memory. Virtual memory gives the user a memory space that is 
logically separated from real memory; a virtual memory space is 
usually larger than real memory, as well. A virtual machine gives 
the user a full set of hardware features; that is, a complete machine 
that may be substantially different from the real machine. These 
virtual hardware resources are also logically separated from those 
of other users. The relationship of virtual machines to real ones is 
shown in Figure 19.

Figure 19. Virtual Machine.

Both MVS/ESA and PR/SM improve the isolation of each user 
from other users and from the hardware of the system. Of course, 
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this added complexity increases the overhead incurred with these 
levels of translation and protection.

5.4.8 Layered Design

As described previously, a kernelized operating system consists of 
at least four levels: hardware, kernel, operating system, and user. 
Each of these layers can include sublayers. For example, in, the 
kernel has five distinct layers. At the user level, it is not uncommon 
to have quasi system programs, such as database managers or 
graphical user interface shells, that constitute separate layers of 
security themselves.

Layered Trust

The layered view of a secure operating system can be depicted as a 
series of concentric circles, with the most sensitive operations in the 
innermost layers. Then, the trustworthiness and access rights of a 
process can be judged by the process’s proximity to the center: The 
more trusted processes are closer to the center. But we can also depict 
the trusted operating system in layers as a stack, with the security 
functions closest to the hardware. Such a system is shown in Figure 20.

Figure 20. Layered Operating System.
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In this design, some activities related to protection functions 
are performed outside the security kernel. For example, user 
authentication may include accessing a password table, challenging 
the user to supply a password, verifying the correctness of the 
password, and so forth. The disadvantage of performing all these 
operations inside the security kernel is that some of the operations 
(such as formatting the userterminal interaction and searching for 
the user in a table of known users) do not warrant high security.

Alternatively, we can implement a single logical function in several 
different modules; we call this a layered design. Trustworthiness 
and access rights are the basis of the layering. In other words, a 
single function may be performed by a set of modules operating 
in different layers, as shown in Figure 21. The modules of each 
layer perform operations of a certain degree of sensitivity.

Figure 21. Modules Operating In Different Layers.

Neumann describes the layered structure used for the Provably 
Secure Operating System (PSOS). As shown in Table 4, some 
lower-level layers present some or all of their functionality to 
higher levels, but each layer properly encapsulates those things 
below itself.
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Table 4. PSOS Design Hierarchy.

Level Function Hidden by Level Visible to User
16 User request interpreter  Yes
15 User environments and 

name spaces
 Yes

14 User I/O  Yes
13 Procedure records  Yes
12 User processes and visible 

I/O
 Yes

11 Creation and deletion of 
user objects

 Yes

10 Directories 11 Partially
9 Extended types 11 Partially
8 Segments 11 Partially
7 Paging 8 No
6 System processes and I/O 12 No
5 Primitive I/O 6 No
4 Arithmetic and other basic 

operations
 Yes

3 Clocks 6 No
2 Interrupts 6 No
1 Registers and addressable 

memory
7 Partially

0 Capabilities  Yes

A layered approach is another way to achieve encapsulation. 
Layering is recognized as a good operating system design. Each 
layer uses the more central layers as services, and each layer 
provides a certain level of functionality to the layers farther out. 
In this way, we can “peel off” each layer and still have a logically 
complete system with less functionality. Layering presents a good 
example of how to trade off and balance design characteristics.

Another justification for layering is damage control. To see why, 
consider Neumann’s two examples of risk, shown in Tables 5 
and 6. In a conventional, nonhierarchically designed system, any 
problemhardware failure, software flaw, or unexpected condition, 
even in a supposedly non-security-relevant portioncan cause 
disaster because the effect of the problem is unbounded and 
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because the system’s design means that we cannot be confident 
that any given function has no (indirect) security effect.

Table 5. Conventionally (Nonhierarchically) Designed System.

Level Functions Risk
All Noncritical functions Disaster possible
All Less critical functions Disaster possible
All Most critical functions Disaster possible

Table 6. Hierarchically Designed System.

Level Functions Risk
2 Noncritical 

functions
Few disasters likely from noncritical 
software

1 Less criti-
cal func-
tions

Some failures possible from less critical 
functions, but because of separation, effect 
limited

0 Most criti-
cal func-
tions

Disasters possible but unlikely if system 
simple enough to be analyzed extensively

By contrast, as shown in Table 6, hierarchical structuring has two 
benefits:

• Hierarchical structuring permits identification of the 
most critical parts, which can then be analyzed intensely 
for correctness, so the number of problems should be 
smaller.

• Isolation limits effects of problems to the hierarchical 
levels at and above the point of the problem, so the effects 
of many problems should be confined.

These design propertiesthe kernel, separation, isolation, and 
hierarchical structurehave been the basis for many trustworthy 
system prototypes. They have stood the test of time as best design 
and implementation practices.
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INTRODUCTION

A database is an organized collection of data, generally stored and 
accessed electronically from a computer system. Where databases 
are more complex they are often developed using formal design 
and modeling techniques. The database management system 
(DBMS) is the software that interacts with end users, applications, 
and the database itself to capture and analyze the data. The DBMS 
software additionally encompasses the core facilities provided to 
administer the database. The sum total of the database, the DBMS 
and the associated applications can be referred to as a “database 
system”. Often the term “database” is also used to loosely refer to 
any of the DBMS, the database system or an application associated 
with the database.
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Ensuring the integrity of computer networks, both in relation to 
security and with regard to the institutional life of the nation in 
general, is a growing concern. Security and defense networks, 
proprietary research, intellectual property, and data based market 
mechanisms that depend on unimpeded and undistorted access, 
can all be severely compromised by malicious intrusions. Data 
mining has many applications in security including in national 
security (e.g., surveillance) as well as in cyber security (e.g., virus 
detection). 

Protecting data is at the heart of many secure systems, and 
many users (people, programs, or systems) rely on a database 
management system (DBMS) to manage the protection. The 
security of database management systems, as an example of 
how application security can be designed and implemented for a 
specific task. There is substantial current interest in DBMS security 
because databases are newer than programming and operating 
systems. Databases are essential to many business and government 
organizations, holding data that reflect the organization’s core 
competencies. Often, when business processes are reengineered to 
make them more effective and more in tune with new or revised 
goals, one of the first systems to receive careful scrutiny is the set 
of databases supporting the business processes. Thus, databases 
are more than software-related repositories. Their organization 
and contents are considered valuable corporate assets that must 
be carefully protected.
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However, the protection provided by database management 
systems has had mixed results. Over time, we have improved our 
understanding of database security problems, and several good 
controls have been developed. But, as you will see, there are still 
more security concerns for which there are no available controls.

Then we consider the security requirements for database 
management systems. Two major security problems integrity 
and secrecy are explained in a database context. Two major (but 
related) database security problems, the inference problem and the 
multilevel problem. Both problems are complex, and there are no 
immediate solutions. However, by understanding the problems, 
we become more sensitive to ways of reducing potential threats 
to the data.

6.1 CONCEPT OF DATABASE

A database is a collection of data and a set of rules that organize the 
data by specifying certain relationships among the data. Through 
these rules, the user describes a logical format for the data. The 
data items are stored in a file, but the precise physical format of 
the file is of no concern to the user. A database administrator is 
a person who defines the rules that organize the data and also 
controls who should have access to what parts of the data. The user 
interacts with the database through a program called a database 
manager or a database management system (DBMS), informally 
known as a front end.

A database is stored as a file or a set of files. The information 
in these files may be broken down into records, each of which 
consists of one or more fields. Fields are the basic units of data 
storage, and each field typically contains information pertaining 
to one aspect or attribute of the entity described by the database. 
Records are also organized into tables that include information 
about relationships between its various fields. Although database 
is applied loosely to any collection of information in computer 
files, a database in the strict sense provides cross-referencing 
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capabilities. Using keywords and various sorting commands, 
users can rapidly search, rearrange, group, and select the fields in 
many records to retrieve or create reports on particular aggregates 
of data.

Database records and files must be organized to allow retrieval of 
the information. Queries are the main way users retrieve database 
information. The power of a DBMS comes from its ability to define 
new relationships from the basic ones given by the tables and to 
use them to get responses to queries.

6.1.1 Components of Databases

The database file consists of records, each of which contains one 
related group of data. As shown in the example in Table 1, a record 
in a name and address file consists of one name and address. Each 
record contains fields or elements, the elementary data items 
themselves. The fields in the name and address record are NAME, 
ADDRESS, CITY, STATE, and ZIP (where ZIP is the U.S. postal 
code). This database can be viewed as a two-dimensional table, 
where a record is a row and each field of a record is an element of 
the table.
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Table 1: Example of a Database.

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Not every database is easily represented as a single, compact 
table. The database in Figure 1 logically consists of three files with 
possibly different uses. These three files could be represented as 
one large table, but that depiction may not improve the utility of 
or access to the data.

Figure 1: Related Parts of a Database.

The logical structure of a database is called a schema. A particular 
user may have access to only part of the database, called a 
subschema. The overall schema of the database in Figure 1 is 
detailed in Table 2. The three separate blocks of the figure are 
examples of subschemas, although other subschemas of this 
database can be defined. We can use schemas and subschemas 
to present to users only those elements they wish or need to see. 
For example, if Table 1 represents the employees at a company, 
the subschema on the lower left can list employee names without 
revealing personal information such as home address.

Table 2: Schema of Database Shown in Figure 1.

Name First Address City State Zip Airport
ADAMS Charles 212 Market St. Columbus OH 43210 CMH
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ADAMS Edward 212 Market St. Columbus OH 43210 CMH
BENCH-
LY

Zeke 501 Union St. Chicago IL 60603 ORD

CARTER Mar-
lene

411 Elm St. Columbus OH 43210 CMH

CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH
CARTER Lisa-

beth
411 Elm St. Columbus OH 43210 CMH

CARTER Mary 411 Elm St. Columbus OH 43210 CMH

The rules of a database identify the columns with names. The 
name of each column is called an attribute of the database. A 
relation is a set of columns. For example, using the database in 
Table 2, we see that NAMEZIP is a relation formed by taking 
the NAME and ZIP columns, as shown in Table 3. The relation 
specifies clusters of related data values in much the same way that 
the relation “mother of” specifies a relationship among pairs of 
humans. In this example, each cluster contains a pair of elements, 
a NAME and a ZIP. Other relations can have more columns, so 
each cluster may be a triple, a 4-tuple, or an n-tuple (for some 
value n) of elements.

Table 3: Relation in a Database.

Name Zip
ADAMS 43210
BENCHLY 60603
CARTER 43210

Queries

Users interact with database managers through commands to the 
DBMS that retrieve, modify, add, or delete fields and records of 
the database. A command is called a query. Database management 
systems have precise rules of syntax for queries. Most query 
languages use an English-like notation, and many are based on 
SQL, a structured query language originally developed by IBM. 
For example, the query
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SELECT NAME = ‘ADAMS’ 

retrieves all records having the value ADAMS in the NAME field.

The result of executing a query is a subschema. One way to 
form a subschema of a database is by selecting records meeting 
certain conditions. For example, we might select records in which 
ZIP=43210, producing the result shown in Table 4.

Table 4: Result of Select Query.

Name First Address City State Zip Airport
ADAMS Charles 212 Market St. Columbus OH 43210 CMH
ADAMS Edward 212 Market St. Columbus OH 43210 CMH
CARTER Marlene 411 Elm St. Columbus OH 43210 CMH
CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH
CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH
CARTER Mary 411 Elm St. Columbus OH 43210 CMH

Other, more complex, selection criteria are possible, with logical 
operators such as and ( ) and ), and comparisons such as

SELECT (ZIP=’43210’)  (NAME=’ADAMS) 

After having selected records, we may project these records onto 
one or more attributes. The select operation identifies certain rows 
from the database, and a project operation extracts the values from 
certain fields (columns) of those records. The result of a select-
project operation is the set of values of specified attributes for the 
selected records. For example, we might select records meeting 
the condition ZIP=43210 and project the results onto the attributes 
NAME and FIRST, as in Table 5. The result is the list of first and 
last names of people whose addresses have zip code 43210.

Table 5: Results of Select-Project Query.

ADAMS Charles
ADAMS Edward
CARTER Marlene
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CARTER Beth
CARTER Ben
CARTER Lisabeth
CARTER Mary

Notice that we do not have to project onto the same attribute(s) 
on which the selection is done. For example, we can build a query 
using ZIP and NAME but project the result onto FIRST:

SHOW FIRST WHERE (ZIP=’43210’)  (NAME=’ADAMS) 

The result would be a list of the first names of people whose last 
names are ADAMS and ZIP is 43210.

We can also merge two subschema on a common element by 
using a join query. The result of this operation is a subschema 
whose records have the same value for the common element. For 
example, Figure 2 shows that the subschema NAMEZIP and the 
subschema ZIPAIRPORT can be joined on the common field ZIP 
to produce the subschema NAMEAIRPORT.

Figure 2: Results of Select-Project-Join Query.

6.1.2 Advantages of Using Databases

The logical idea behind a database is this: A database is a single 
collection of data, stored and maintained at one central location, 
to which many people have access as needed. However, the 
actual implementation may involve some other physical storage 
arrangement or access. The essence of a good database is that 
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the users are unaware of the physical arrangements; the unified 
logical arrangement is all they see. As a result, a database offers 
many advantages over a simple file system:

• shared access, so that many users can use one common, 
centralized set of data

• minimal redundancy, so that individual users do not 
have to collect and maintain their own sets of data

• data consistency, so that a change to a data value affects 
all users of the data value

• data integrity, so that data values are protected against 
accidental or malicious undesirable changes

• controlled access, so that only authorized users are 
allowed to view or to modify data values

A DBMS is designed to provide these advantages efficiently. 
However, as often happens, the objectives can conflict with each 
other. In particular, as we shall see, security interests can conflict 
with performance. This clash is not surprising because measures 
taken to enforce security often increase the computing system’s 
size or complexity. What is surprising, though, is that security 
interests may also reduce the system’s ability to provide data 
to users by limiting certain queries that would otherwise seem 
innocuous.

6.2 SECURITY REQUIREMENTS

The basic security requirements of database systems are not unlike 
those of other computing systems we have studied. The basic 
problems access control, exclusion of spurious data, authentication 
of users, and reliability have appeared in many contexts so far in 
this book. Following is a list of requirements for database security.

•	 Physical	 database	 integrity. The data of a database are 
immune to physical problems, such as power failures, 
and someone can reconstruct the database if it is 
destroyed through a catastrophe.
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•	 Logical	 database	 integrity. The structure of the database 
is preserved. With logical integrity of a database, a 
modification to the value of one field does not affect 
other fields, for example.

•	 Element	integrity. The data contained in each element are 
accurate.

•	 Auditability. It is possible to track who or what has 
accessed (or modified) the elements in the database.

•	 Access	control. A user is allowed to access only authorized 
data, and different users can be restricted to different 
modes of access (such as read or write).

•	 User	 authentication. Every user is positively identified, 
both for the audit trail and for permission to access 
certain data.

•	 Availability. Users can access the database in general and 
all the data for which they are authorized.

6.2.1 Integrity of the Database

If a database is to serve as a central repository of data, users must 
be able to trust the accuracy of the data values. This condition 
implies that the database administrator must be assured that 
updates are performed only by authorized individuals. It also 
implies that the data must be protected from corruption, either by 
an outside illegal program action or by an outside force such as 
fire or a power failure. Two situations can affect the integrity of a 
database: when the whole database is damaged (as happens, for 
example, if its storage medium is damaged) or when individual 
data items are unreadable. Integrity of the database as a whole 
is the responsibility of the DBMS, the operating system, and the 
(human) computing system manager. From the perspective of the 
operating system and the computing system manager, databases 
and DBMSs are files and programs, respectively. Therefore, one 
way of protecting the database as a whole is to regularly back up 
all files on the system. These periodic backups can be adequate 
controls against catastrophic failure.
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Sometimes it is important to be able to reconstruct the database at 
the point of a failure. For instance, when the power fails suddenly, 
a bank’s clients may be in the middle of making transactions or 
students may be in the midst of registering online for their classes. 
In these cases, we want to be able to restore the systems to a stable 
point without forcing users to redo their recently completed 
transactions. To handle these situations, the DBMS must maintain 
a log of transactions. For example, suppose the banking system 
is designed so that a message is generated in a log (electronic or 
paper or both) each time a transaction is processed. In the event of 
a system failure, the system can obtain accurate account balances 
by reverting to a backup copy of the database and reprocessing all 
later transactions from the log.

6.2.2 Element Integrity

The integrity of database elements is their correctness or accuracy. 
Ultimately, authorized users are responsible for entering correct 
data into databases. However, users and programs make mistakes 
collecting data, computing results, and entering values. Therefore, 
DBMSs sometimes take special action to help catch errors as they 
are made and to correct errors after they are inserted.
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This corrective action can be taken in three ways. First, the DBMS 
can apply field checks, activities that test for appropriate values in 
a position. A field might be required to be numeric, an uppercase 
letter, or one of a set of acceptable characters. The check ensures 
that a value falls within specified bounds or is not greater than 
the sum of the values in two other fields. These checks prevent 
simple errors as the data are entered. (Sidebar 6-1 demonstrates 
the importance of element integrity.)

A second integrity action is provided by access control. To see 
why, consider life without databases. Data files may contain 
data from several sources, and redundant data may be stored in 
several different places. For example, a student’s home address 
may be stored in many different campus files: at class registration, 
for dining hall privileges, at the bookstore, and in the financial 
aid office. Indeed, the student may not even be aware that each 
separate office has the address on file. If the student moves 
from one residence to another, each of the separate files requires 
correction. Without a database, there are several risks to the 
data’s integrity. First, at a given time, there could be some data 
files with the old address (they have not yet been updated) and 
some simultaneously with the new address (they have already 
been updated). Second, there is always the possibility that the 
data fields were changed incorrectly, again leading to files with 
incorrect information. Third, there may be files of which the 
student is unaware, so he or she does not know to notify the file 
owner about updating the address information. These problems 
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are solved by databases. They enable collection and control of 
this data at one central source, ensuring the student and users of 
having the correct address.

The third means of providing database integrity is maintaining a 
change log for the database. A change log lists every change made 
to the database; it contains both original and modified values. 
Using this log, a database administrator can undo any changes 
that were made in error. 

6.2.3 Auditability

For some applications it may be desirable to generate an audit 
record of all access (read or write) to a database. Such a record 
can help to maintain the database’s integrity, or at least to discover 
after the fact who had affected which values and when. A second 
advantage, as we see later, is that users can access protected data 
incrementally; that is, no single access reveals protected data, but 
a set of sequential accesses viewed together reveals the data, much 
like discovering the clues in a detective novel. In this case, an audit 
trail can identify which clues a user has already been given, as a 
guide to whether to tell the user more.

Audited events in operating systems are actions like open file or call 
procedure; they are seldom as specific as write record 3 or execute 
instruction I. To be useful for maintaining integrity, database audit 
trails should include accesses at the record, field, and even element 
levels. This detail is prohibitive for most database applications.

Furthermore, it is possible for a record to be accessed but not 
reported to a user, as when the user performs a select operation. 
(Accessing a record or an element without transferring to the user 
the data received is called the pass-through problem.) Also, you 
can determine the values of some elements without accessing 
them directly. (For example, you can ask for the average salary in a 
group of employees when you know the number of employees in 
the group is only one.) Thus, a log of all records accessed directly 
may both overstate and understate what a user actually knows.
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6.2.4 Access Control

Databases are often separated logically by user access privileges. 
For example, all users can be granted access to general data, but 
only the personnel department can obtain salary data and only 
the marketing department can obtain sales data. Databases are 
very useful because they centralize the storage and maintenance 
of data. Limited access is both a responsibility and a benefit of this 
centralization.

The database administrator specifies who should be allowed access 
to which data, at the view, relation, field, record, or even element 
level. The DBMS must enforce this policy, granting access to all 
specified data or no access where prohibited. Furthermore, the 
number of modes of access can be many. A user or program may 
have the right to read, change, delete, or append to a value, add 
or delete entire fields or records, or reorganize the entire database.

Superficially, access control for a database seems like access control 
for operating systems or any other component of a computing 
system. However, the database problem is more complicated. 
Operating system objects, such as files, are unrelated items, 
whereas records, fields, and elements are related. Although a 
user cannot determine the contents of one file by reading others, a 
user might be able to determine one data element just by reading 
others. The problem of obtaining data values from others is called 
inference.
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It is important to notice that you can access data by inference 
without needing direct access to the secure object itself. Restricting 
inference may mean prohibiting certain paths to prevent possible 
inferences. However, restricting access to control inference 
also limits queries from users who do not intend unauthorized 
access to values. Moreover, attempts to check requested accesses 
for possible unacceptable inferences may actually degrade the 
DBMS’s performance.

Finally, size or granularity is different between operating system 
objects and database objects. An access control list of several 
hundred files is much easier to implement than an access control 
list for a database with several hundred files of perhaps a hundred 
fields each. Size affects the efficiency of processing.

6.2.5 User Authentication

The DBMS can require rigorous user authentication. For example, 
a DBMS might insist that a user pass both specific password 
and time-of-day checks. This authentication supplements the 
authentication performed by the operating system. Typically, the 
DBMS runs as an application program on top of the operating 
system. This system design means that there is no trusted path 
from the DBMS to the operating system, so the DBMS must be 
suspicious of any data it receives, including user authentication. 
Thus, the DBMS is forced to do its own authentication.
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6.2.6 Availability

A DBMS has aspects of both a program and a system. It is a 
program that uses other hardware and software resources, yet 
to many users it is the only application run. Users often take the 
DBMS for granted, employing it as an essential tool with which to 
perform particular tasks. But when the system is not availablebusy 
serving other users or down to be repaired or upgradedthe users 
are very aware of a DBMS’s unavailability. For example, two users 
may request the same record, and the DBMS must arbitrate; one 
user is bound to be denied access for a while. Or the DBMS may 
withhold unprotected data to avoid revealing protected data, 
leaving the requesting user unhappy. Problems like these result in 
high availability requirements for a DBMS.

6.2.7 Integrity/Confidentiality/Availability

The three aspects of computer securityintegrity, confidentiality, 
and availabilityclearly relate to database management systems. 
As we have described, integrity applies to the individual elements 
of a database as well as to the database as a whole. Thus, integrity 
is a major concern in the design of database management systems. 

Confidentiality is a key issue with databases because of the 
inference problem, whereby a user can access sensitive data 
indirectly. 

Finally, availability is important because of the shared access 
motivation underlying database development. However, 
availability conflicts with confidentiality. 

6.3 RELIABILITY AND INTEGRITY

Databases amalgamate data from many sources, and users expect a 
DBMS to provide access to the data in a reliable way. When software 
engineers say that software has reliability, they mean that the 
software runs for very long periods of time without failing. Users 
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certainly expect a DBMS to be reliable, since the data usually are 
key to business or organizational needs. Moreover, users entrust 
their data to a DBMS and rightly expect it to protect the data from 
loss or damage. Concerns for reliability and integrity are general 
security issues, but they are more apparent with databases.

However, the controls we consider are not absolute: No control 
can prevent an authorized user from inadvertently entering an 
acceptable but incorrect value.

Database concerns about reliability and integrity can be viewed 
from three dimensions:

•	 Database	integrity: concern that the database as a whole 
is protected against damage, as from the failure of a disk 
drive or the corruption of the master database index. 
These concerns are addressed by operating system 
integrity controls and recovery procedures.

•	 Element	integrity: concern that the value of a specific data 
element is written or changed only by authorized users. 
Proper access controls protect a database from corruption 
by unauthorized users.
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•	 Element	 accuracy: concern that only correct values are 
written into the elements of a database. Checks on the 
values of elements can help prevent insertion of improper 
values. Also, constraint conditions can detect incorrect 
values.

6.3.1 Protection Features from the Operating System

A responsible system administrator backs up the files of a database 
periodically along with other user files. The files are protected 
during normal execution against outside access by the operating 
system’s standard access control facilities. Finally, the operating 
system performs certain integrity checks for all data as a part of 
normal read and write operations for I/O devices. These controls 
provide basic security for databases, but the database manager 
must enhance them.

6.3.2 Two-Phase Update

A serious problem for a database manager is the failure of the 
computing system in the middle of modifying data. If the data 
item to be modified was a long field, half of the field might show 
the new value, while the other half would contain the old. Even 
if errors of this type were spotted easily (which they are not), a 
more subtle problem occurs when several fields are updated and 
no single field appears to be in obvious error. DBMSs, uses a two-
phase update.

Update Technique

During the first phase, called the intent phase, the DBMS gathers 
the resources it needs to perform the update. It may gather data, 
create dummy records, open files, lock out other users, and 
calculate final answers; in short, it does everything to prepare 
for the update, but it makes no changes to the database. The first 
phase is repeatable an unlimited number of times because it takes 
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no permanent action. If the system fails during execution of the 
first phase, no harm is done because all these steps can be restarted 
and repeated after the system resumes processing.

The last event of the first phase, called committing, involves the 
writing of a commit flag to the database. The commit flag means 
that the DBMS has passed the point of no return: After committing, 
the DBMS begins making permanent changes.

The second phase makes the permanent changes. During the 
second phase, no actions from before the commit can be repeated, 
but the update activities of phase two can also be repeated as often 
as needed. If the system fails during the second phase, the database 
may contain incomplete data, but the system can repair these data 
by performing all activities of the second phase. After the second 
phase has been completed, the database is again complete.

6.3.3 Redundancy/Internal Consistency

Many DBMSs maintain additional information to detect internal 
inconsistencies in data. The additional information ranges from 
a few check bits to duplicate or shadow fields, depending on the 
importance of the data.

Error Detection and Correction Codes

One form of redundancy is error detection and correction codes, 
such as parity bits, Hamming codes, and cyclic redundancy 
checks. These codes can be applied to single fields, records, or the 
entire database. Each time a data item is placed in the database, 
the appropriate check codes are computed and stored; each time 
a data item is retrieved, a similar check code is computed and 
compared to the stored value. If the values are unequal, they 
signify to the DBMS that an error has occurred in the database. 
Some of these codes point out the place of the error; others show 
precisely what the correct value should be. The more information 
provided, the more space required to store the codes.
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Shadow Fields

Entire attributes or entire records can be duplicated in a database. 
If the data are irreproducible, this second copy can provide 
an immediate replacement if an error is detected. Obviously, 
redundant fields require substantial storage space.

6.3.4 Recovery

In addition to these error correction processes, a DBMS can 
maintain a log of user accesses, particularly changes. In the event 
of a failure, the database is reloaded from a backup copy and all 
later changes are then applied from the audit log.

6.3.5 Concurrency/Consistency

Database systems are often multiuser systems. Accesses by two 
users sharing the same database must be constrained so that 
neither interferes with the other. Simple locking is done by the 
DBMS. If two users attempt to read the same data item, there is no 
conflict because both obtain the same value.

If both users try to modify the same data items, we often assume 
that there is no conflict because each knows what to write; the 
value to be written does not depend on the previous value of the 
data item. However, this supposition is not quite accurate.

To see how concurrent modification can get us into trouble, 
suppose that the database consists of seat reservations for a 
particular airline flight. Agent A, booking a seat for passenger 
Mock, submits a query to find which seats are still available. The 
agent knows that Mock prefers a right aisle seat, and the agent 
finds that seats 5D, 11D, and 14D are open. At the same time, Agent 
B is trying to book seats for a family of three traveling together. In 
response to a query, the database indicates that 8ABC and 11DEF 
are the two remaining groups of three adjacent unassigned seats. 
Agent A submits the update command
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SELECT (SEAT-NO = ‘11D’) ASSIGN ‘MOCK,E’ TO PASSENGER-
NAME 
while Agent B submits the update sequence
SELECT (SEAT-NO = ‘11D’) ASSIGN ‘EHLERS,P’ TO PASSENGER-
NAME 
as well as commands for seats 11E and 11F. Then two passengers 
have been booked into the same seat (which would be 
uncomfortable, to say the least).

Both agents have acted properly: Each sought a list of empty seats, 
chose one seat from the list, and updated the database to show to 
whom the seat was assigned. The difficulty in this situation is the 
time delay between reading a value from the database and writing 
a modification of that value. During the delay time, another user 
has accessed the same data.

To resolve this problem, a DBMS treats the entire queryupdate 
cycle as a single atomic operation. The command from the agent 
must now resemble “read the current value of seat PASSENGER-
NAME for seat 11D; if it is ‘UNASSIGNED’, modify it to ‘MOCK,E’ 
(or ‘EHLERS,P’).” The readmodify cycle must be completed as an 
uninterrupted item without allowing any other users access to the 
PASSENGER-NAME field for seat 11D. The second agent’s request 
to book would not be considered until after the first agent’s had 
been completed; at that time, the value of PASSENGERNAME 
would no longer be ‘UNASSIGNED’.

A final problem in concurrent access is readwrite. Suppose one 
user is updating a value when a second user wishes to read it. 
If the read is done while the write is in progress, the reader may 
receive data that are only partially updated. Consequently, the 
DBMS locks any read requests until a write has been completed.

6.3.6 Monitors

The monitor is the unit of a DBMS responsible for the structural 
integrity of the database. A monitor can check values being 
entered to ensure their consistency with the rest of the database or 
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with characteristics of the particular field. For example, a monitor 
might reject alphabetic characters for a numeric field. We discuss 
several forms of monitors.

Range Comparisons

A range comparison monitor tests each new value to ensure that 
the value is within an acceptable range. If the data value is outside 
the range, it is rejected and not entered into the database. For 
example, the range of dates might be 131, “/,” 112, “/,” 19002099. An 
even more sophisticated range check might limit the day portion 
to 130 for months with 30 days, or it might take into account leap 
year for February.

Range comparisons are also convenient for numeric quantities. 
For example, a salary field might be limited to $200,000, or the 
size of a house might be constrained to be between 500 and 5,000 
square feet. Range constraints can also apply to other data having 
a predictable form.

Range comparisons can be used to ensure the internal consistency 
of a database. When used in this manner, comparisons are made 
between two database elements. For example, a grade level from 
K8 would be acceptable if the record described a student at an 
elementary school, whereas only 912 would be acceptable for a 
record of a student in high school. Similarly, a person could be 
assigned a job qualification score of 75100 only if the person had 
completed college or had had at least ten years of work experience. 
Filters or patterns are more general types of data form checks. 
These can be used to verify that an automobile plate is two letters 
followed by four digits, or the sum of all digits of a credit card 
number is a multiple of 9.

Checks of these types can control the data allowed in the database. 
They can also be used to test existing values for reasonableness. 
If you suspect that the data in a database have been corrupted, a 
range check of all records could identify those having suspicious 
values.
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State Constraints

State constraints describe the condition of the entire database. 
At no time should the database values violate these constraints. 
Phrased differently, if these constraints are not met, some value of 
the database is in error.

On two-phase updates, we saw how to use a commit flag, which is 
set at the start of the commit phase and cleared at the completion 
of the commit phase. The commit flag can be considered a state 
constraint because it is used at the end of every transaction for 
which the commit flag is not set. A process to reset the commit 
flags in the event of a failure after a commit phase. In this way, the 
status of the commit flag is an integrity constraint on the database.

For another example of a state constraint, consider a database 
of employees’ classifications. At any time, at most one employee 
is classified as “president.” Furthermore, each employee has an 
employee number different from that of every other employee. If 
a mechanical or software failure causes portions of the database 
file to be duplicated, one of these uniqueness constraints might 
be violated. By testing the state of the database, the DBMS could 
identify records with duplicate employee numbers or two records 
classified as “president.”

Transition Constraints

State constraints describe the state of a correct database. Transition 
constraints describe conditions necessary before changes can be 
applied to a database. For example, before a new employee can 
be added to the database, there must be a position number in the 
database with status “vacant.” (That is, an empty slot must exist.) 
Furthermore, after the employee is added, exactly one slot must 
be changed from “vacant” to the number of the new employee.

Simple range checks and filters can be implemented within most 
database management systems. However, the more sophisticated 
state and transition constraints can require special procedures for 
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testing. Such user-written procedures are invoked by the DBMS 
each time an action must be checked.

6.4 PROPOSALS FOR MULTILEVEL SECURITY

Implementing multilevel security for databases is difficult, 
probably more so than in operating systems, because of the small 
granularity of the items being controlled. We study approaches to 
multilevel security for databases.

Separation

As we have already seen, separation is necessary to limit access. We 
study mechanisms to implement separation in databases. Then, 
we see how these mechanisms can help to implement multilevel 
security for databases.

Partitioning

The obvious control for multilevel databases is partitioning. The 
database is divided into separate databases, each at its own level 
of sensitivity. This approach is similar to maintaining separate 
files in separate file cabinets.

This control destroys a basic advantage of databases: elimination 
of redundancy and improved accuracy through having only one 
field to update. Furthermore, it does not address the problem of a 
high-level user who needs access to some low-level data combined 
with high-level data.



Database and Data mining Security 253

Nevertheless, because of the difficulty of establishing, maintaining, 
and using multilevel databases, many users with data of mixed 
sensitivities handle their data by using separate, isolated databases.

Encryption

If sensitive data are encrypted, a user who accidentally receives 
them cannot interpret the data. Thus, each level of sensitive data 
can be stored in a table encrypted under a key unique to the level 
of sensitivity. But encryption has certain disadvantages.

First, a user can mount a chosen plaintext attack. Suppose party 
affiliation of REP or DEM is stored in encrypted form in each 
record. A user who achieves access to these encrypted fields can 
easily decrypt them by creating a new record with party=DEM 
and comparing the resulting encrypted version to that element 
in all other records. Worse, if authentication data are encrypted, 
the malicious user can substitute the encrypted form of his or her 
own data for that of any other user. Not only does this provide 
access for the malicious user, but it also excludes the legitimate 
user whose authentication data have been changed to that of the 
malicious user. These possibilities are shown in Figures 3 and 4.
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Figure 3: Cryptographic Separation: Different Encryption Keys.

Figure 4: Cryptographic Separation: Block Chaining.

Using a different encryption key for each record overcomes these 
defects. Each record’s fields can be encrypted with a different key, 
or all fields of a record can be cryptographically linked, as with 
cipher block chaining.

The disadvantage, then, is that each field must be decrypted when 
users perform standard database operations such as “select all 
records with SALARY > 10,000.” Decrypting the SALARY field, 
even on rejected records, increases the time to process a query. 
Thus, encryption is not often used to implement separation in 
databases.
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Integrity Lock

The lock is a way to provide both integrity and limited access for 
a database. The operation was nicknamed “spray paint” because 
each element is figuratively painted with a color that denotes its 
sensitivity. The coloring is maintained with the element, not in a 
master database table.

A model of the basic integrity lock is shown in Figure 5. As 
illustrated, each apparent data item consists of three pieces: 
the actual data item itself, a sensitivity label, and a checksum. 
The sensitivity label defines the sensitivity of the data, and the 
checksum is computed across both data and sensitivity label to 
prevent unauthorized modification of the data item or its label. 
The actual data item is stored in plaintext, for efficiency because 
the DBMS may need to examine many fields when selecting 
records to match a query.

Figure 5: Integrity Lock.

The sensitivity label should be
• unforgeable, so that a malicious subject cannot create a 

new sensitivity level for an element
• unique, so that a malicious subject cannot copy a 

sensitivity level from another element
• concealed, so that a malicious subject cannot even 

determine the sensitivity level of an arbitrary element
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The third piece of the integrity lock for a field is an error-detecting 
code, called a cryptographic checksum. To guarantee that a data 
value or its sensitivity classification has not been changed, this 
checksum must be unique for a given element, and must contain 
both the element’s data value and something to tie that value to 
a particular position in the database. As shown in Figure 6, an 
appropriate cryptographic checksum includes something unique 
to the record (the record number), something unique to this data 
field within the record (the field attribute name), the value of this 
element, and the sensitivity classification of the element. These 
four components guard against anyone’s changing, copying, or 
moving the data. The checksum can be computed with a strong 
encryption algorithm or hash function.

Figure 6: Cryptographic Checksum.

Sensitivity Lock

The sensitivity lock shown in Figure 7 was designed by Graubert 
and Kramer [GRA84b] to meet these principles. A sensitivity 
lock is a combination of a unique identifier (such as the record 
number) and the sensitivity level. Because the identifier is unique, 
each lock relates to one particular record. Many different elements 
will have the same sensitivity level. A malicious subject should 
not be able to identify two elements having identical sensitivity 
levels or identical data values just by looking at the sensitivity 
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level portion of the lock. Because of the encryption, the lock’s 
contents, especially the sensitivity level, are concealed from plain 
view. Thus, the lock is associated with one specific record, and it 
protects the secrecy of the sensitivity level of that record.

Figure 7: Sensitivity Lock.

6.4.1 Designs of Multilevel Secure Databases

These designs show the tradeoffs among efficiency, flexibility, 
simplicity, and trustworthiness.

Integrity Lock

The integrity lock DBMS was invented as a short-term solution to 
the security problem for multilevel databases. The intention was 
to be able to use any (untrusted) database manager with a trusted 
procedure that handles access control. The sensitive data were 
obliterated or concealed with encryption that protected both a 
data item and its sensitivity. In this way, only the access procedure 
would need to be trusted because only it would be able to achieve 
or grant access to sensitive data. The structure of such a system is 
shown in Figure 8.
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Figure 8: Trusted Database Manager.

The efficiency of integrity locks is a serious drawback. The space 
needed for storing an element must be expanded to contain the 
sensitivity label. Because there are several pieces in the label and 
one label for every element, the space required is significant.

Problematic, too, is the processing time efficiency of an integrity 
lock. The sensitivity label must be decoded every time a data 
element is passed to the user to verify that the user’s access is 
allowable. Also, each time a value is written or modified, the 
label must be recomputed. Thus, substantial processing time is 
consumed. If the database file can be sufficiently protected, the 
data values of the individual elements can be left in plaintext. 
That approach benefits select and project queries across sensitive 
fields because an element need not be decrypted just to determine 
whether it should be selected.

A final difficulty with this approach is that the untrusted database 
manager sees all data, so it is subject to Trojan horse attacks by 
which data can be leaked through covert channels.

Trusted Front End

The model of a trusted front-end process is shown in Figure 9. This 
approach, originated by Hinke and Schaefer, recognizes that many 
DBMSs have been built and put into use without consideration 
of multilevel security. Staff members are already trained in using 
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these DBMSs, and they may in fact use them frequently. The 
front-end concept takes advantage of existing tools and expertise, 
enhancing the security of these existing systems with minimal 
change to the system. The interaction between a user, a trusted 
front end, and a DBMS involves the following steps.

• A user identifies himself or herself to the front end; the 
front end authenticates the user’s identity.

• The user issues a query to the front end.
• The front end verifies the user’s authorization to data.
• The front end issues a query to the database manager.
• The database manager performs I/O access, interacting 

with low-level access control to achieve access to actual 
data.

• The database manager returns the result of the query to 
the trusted front end.

• The front end analyzes the sensitivity levels of the data 
items in the result and selects those items consistent with 
the user’s security level.

• The front end transmits selected data to the untrusted 
front end for formatting.

• The untrusted front end transmits formatted data to the 
user.

Figure 9: Trusted Front End.
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The trusted front end serves as a one-way filter, screening out 
results the user should not be able to access. But the scheme is 
inefficient because potentially much data is retrieved and then 
discarded as inappropriate for the user.

Commutative Filters

The notion of a commutative filter was proposed by Denning as 
a simplification of the trusted interface to the DBMS. Essentially, 
the filter screens the user’s request, reformatting it if necessary, so 
that only data of an appropriate sensitivity level are returned to 
the user.

A commutative filter is a process that forms an interface between 
the user and a DBMS. However, unlike the trusted front end, the 
filter tries to capitalize on the efficiency of most DBMSs. The filter 
reformats the query so that the database manager does as much 
of the work as possible, screening out many unacceptable records. 
The filter then provides a second screening to select only data to 
which the user has access.

Filters can be used for security at the record, attribute, or element 
level.

When used at the record level, the filter requests desired data plus 
cryptographic checksum information; it then verifies the accuracy 
and accessibility of data to be passed to the user.

At the attribute level, the filter checks whether all attributes in the 
user’s query are accessible to the user and, if so, passes the query 
to the database manager. On return, it deletes all fields to which 
the user has no access rights.

At the element level, the system requests desired data plus 
cryptographic checksum information. When these are returned, 
it checks the classification level of every element of every record 
retrieved against the user’s level.

Suppose a group of physicists in Washington works on very 
sensitive projects, so the current user should not be allowed to 
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access the physicists’ names in the database. This restriction 
presents a problem with this query:

retrieve NAME where ((OCCUP=PHYSICIST)  (CITY=WASHDC)) 

Suppose, too, that the current user is prohibited from knowing 
anything about any people in Moscow. Using a conventional 
DBMS, the query might access all records, and the DBMS would 
then pass the results on to the user. However, as we have seen, 
the user might be able to infer things about Moscow employees 
or Washington physicists working on secret projects without even 
accessing those fields directly.

The commutative filter re-forms the original query in a trustable 
way so that sensitive information is never extracted from the 
database. Our sample query would become
retrieve NAME where ((OCCUP=PHYSICIST)  (CITY=WASHDC)) 
from all records R where       (NAME-SECRECY-LEVEL (R)  USER-
SECRECY-LEVEL)        (OCCUP-SECRECY-LEVEL (R)  USER-
SECRECY-LEVEL)        (CITY-SECRECY-LEVEL (R)  USER-
SECRECY-LEVEL)) 

The filter works by restricting the query to the DBMS and then 
restricting the results before they are returned to the user. In this 
instance, the filter would request NAME, NAME-SECRECY-
LEVEL, OCCUP, OCCUP-SECRECY-LEVEL, CITY, and CITY-
SECRECY-LEVEL values and would then filter and return to 
the user only those fields and items that are of a secrecy level 
acceptable for the user. Although even this simple query becomes 
complicated because of the added terms, these terms are all added 
by the front-end filter, invisible to the user.

An example of this query filtering in operation is shown in Figure 
10. The advantage of the commutative filter is that it allows query 
selection, some optimization, and some subquery handling to be 
done by the DBMS. This delegation of duties keeps the size of 
the security filter small, reduces redundancy between it and the 
DBMS, and improves the overall efficiency of the system.
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Figure 10: Commutative Filters.

Distributed Databases

The distributed or federated database is a fourth design for a secure 
multilevel database. In this case, a trusted front end controls access 
to two unmodified commercial DBMSs: one for all low-sensitivity 
data and one for all high-sensitivity data.

The front end takes a user’s query and formulates single-level 
queries to the databases as appropriate. For a user cleared for 
high-sensitivity data, the front end submits queries to both the 
high- and low-sensitivity databases. But if the user is not cleared 
for high-sensitivity data, the front end submits a query to only 
the low-sensitivity database. If the result is obtained from either 
back-end database alone, the front end passes the result back to 
the user. If the result comes from both databases, the front end has 
to combine the results appropriately. For example, if the query is a 
join query having some high-sensitivity terms and some low, the 
front end has to perform the equivalent of a database join itself.

The distributed database design is not popular because the front 
end, which must be trusted, is complex, potentially including most 
of the functionality of a full DBMS itself. In addition, the design 
does not scale well to many degrees of sensitivity; each sensitivity 
level of data must be maintained in its own separate database.
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Window/View

Traditionally, one of the advantages of using a DBMS for multiple 
users of different interests (but not necessarily different sensitivity 
levels) is the ability to create a different view for each user. That is, 
each user is restricted to a picture of the data reflecting only what 
the user needs to see. For example, the registrar may see only 
the class assignments and grades of each student at a university, 
not needing to see extracurricular activities or medical records. 
The university health clinic, on the other hand, needs medical 
records and drug-use information but not scores on standardized 
academic tests.

The notion of a window or a view can also be an organizing 
principle for multilevel database access. A window is a subset 
of a database, containing exactly the information that a user is 
entitled to access. Denning surveys the development of views for 
multilevel database security.

A view can represent a single user’s subset database so that all of 
a user’s queries access only that database. This subset guarantees 
that the user does not access values outside the permitted ones, 
because non-permitted values are not even in the user’s database. 
The view is specified as a set of relations in the database, so the 
data in the view subset change as data change in the database.

Practical Issues

The multilevel security problem for databases has been studied 
since the 1970s. Several promising research results have been 
identified. However, as with trusted operating systems, the 
consumer demand has not been sufficient to support many 
products. Civilian users have not liked the inflexibility of the 
military multilevel security model, and there have been too few 
military users. Consequently, multilevel secure databases are 
primarily of research and historical interest.

The general concepts of multilevel databases are important. We 
do need to be able to separate data according to their degree of 
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sensitivity. Similarly, we need ways of combining data of different 
sensitivities into one database. And these needs will only increase 
over time as larger databases contain more sensitive information, 
especially for privacy concerns.

6.5 DATA MINING

Databases are great repositories of data. More data are being 
collected and saved (partly because the cost per megabyte of 
storage has fallen from dollars a few years ago to fractions of cents 
today). Networks and the Internet allow sharing of databases by 
people and in ways previously unimagined. But to find needles 
of information in those vast fields of haystacks of data requires 
intelligent analyzing and querying of the data. Indeed, a whole 
specialization, called data mining, has emerged. In a largely 
automated way, data mining applications sort and search thorough 
data.

Data mining uses statistics, machine learning, mathematical 
models, pattern recognition, and other techniques to discover 
patterns and relations on large datasets. Data mining tools use 
association (one event often goes with another), sequences 
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(one event often leads to another), classification (events exhibit 
patterns, for example coincidence), clustering (some items have 
similar characteristics), and forecasting (past events foretell future 
ones). The distinction between a database and a data mining 
application is becoming blurred; you can probably see how you 
could implement these techniques in ordinary database queries. 
Generally, database queries are manual, whereas data mining is 
more automatic. You could develop a database query to see what 
other products are bought by people who buy digital cameras and 
you might notice a preponderance of MP3 players in the result, but 
you would have to observe that relationship yourself. Data mining 
tools would present the significant relationships, not just between 
cameras and MP3 players, but also among bagels, airline tickets, 
and running shoes (if such a relationship existed). Humans have 
to analyze these correlations and determine what is significant.

Data mining presents probable relationships, but these are not 
necessarily cause-and-effect relationships. Suppose you analyzed 
data and found a correlation between sale of ice cream cones and 
death by drowning. You would not conclude that selling ice cream 
cones causes drowning (nor the converse). This distinction shows 
why humans must be involved in data mining to interpret the 
output: Only humans can discern that more variables are involved 
(for example, time of year or places where cones are sold).

Computer security gains from data mining. Data mining is widely 
used to analyze system data, for example, audit logs, to identify 
patterns related to attacks. Finding the precursors to an attack can 
help develop good prevention tools and techniques, and seeing the 
actions associated with an attack can help pinpoint vulnerabilities 
to control and damage that may have occurred. 

However, we want to examine security problems involving 
data mining. Our now-familiar triad of confidentiality, integrity, 
and availability gives us clues to what these security issues are. 
Confidentiality concerns start with privacy but also include 
proprietary and commercially sensitive data and protecting the 
value of intellectual property: How do we control what is disclosed 
or derived? For integrity the important issue is correctness 
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incorrect data are both useless and potentially damaging, but 
we need to investigate how to gauge and ensure correctness. 
The availability consideration relates to both performance and 
structure: Combining databases not originally designed to be 
combined affects whether results can be obtained in a timely 
manner or even at all.

6.5.1 Data Correctness and Integrity

“Connecting the dots” is a phrase currently in vogue: It refers to 
drawing conclusions from relationships between discrete bits of 
data. But before we can connect dots, we need to do two other 
important things: collect and correct them. Data storage and 
computer technology is making it possible to collect more dots 
than ever before. But if your name or address has ever appeared 
incorrectly on a mailing list, you know that not all collected dots 
are accurate.

Correcting Mistakes in Data

Data mining exacerbates this situation. Databases need unique 
keys to help with structure and searches. But different databases 
may not have shared keys, so they use some data field as if it 
were a key. In our example case, this shared data field might be 
the address, so now your neighbor’s address is associated with 
cooking (even if your neighbor needs a recipe to make tea). 
Fortunately, this example is of little consequence.

Consider terrorists, however. A government’s intelligence service 
collects data on suspicious activities. But the names of suspicious 
persons are foreign, written in a different alphabet. When 
transformed into the government’s alphabet, the transformation 
is irregular: One agent writes “Doe,” another “Do,” and another 
“Dho.” Trying to use these names as common keys is difficult at best. 
One approach is phonetic. You cluster terms that sound similar. In 
this case, however, you might bring in “Jo,” “Cho,” “Toe,” and 
“Tsiao,” too, thereby implicating innocent people in the terrorist 
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search. Assuming a human analyst could correctly separate all 
these and wanted to correct the Doe/Do/Doh databases, there 
are still two problems. First, the analyst might not have access to 
the original databases held by other agencies. Even if the analyst 
could get to the originals, the analyst would probably never learn 
where else these original databases had already been copied.

One important goal of databases is to have a record in one place 
so that one correction serves all uses. With data mining, a result is 
an aggregate from multiple databases. There is no natural way to 
work backward from the result to the amalgamated databases to 
find and correct errors.

Using Comparable Data

Data semantics is another important consideration when mining 
for data. Consider two geographical databases with data on family 
income. Except one database has income by dollar, and the other 
has the data in thousands of dollars. Even if the field names are 
the same, combining the raw data would result in badly distorted 
statistics. Consider another attribute rated high/medium/low in 
one database and on a numerical scale of 1 to 5 in another. Should 
high/medium/low be treated as 1/3/5? Even if analysts use that 
transformation, computing with some 3-point and some 5-point 
precision reduces the quality of the results. Or how can you 
meaningfully combine one database that has a particular attribute 
with another that does not?

Eliminating False Matches

Coincidence is not correlation or causation; because two things 
occur together does not mean either causes the other. Data mining 
tries to highlight nonobvious connections in data, but data mining 
applications often use fuzzy logic to find these connections. These 
approaches will generate both false positives (false matches) and 
missed connections (false negatives). We need to be sensitive to the 
inherent inaccuracy of data mining approaches and guard against 
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putting too much trust in the output of a data mining application 
just because “the computer said so.” Correctness of results and 
correct interpretation of those results are major security issues for 
data mining.

6.5.2 Availability of Data

Interoperability among distinct databases is a third security 
issue for data mining. As we just described, databases must have 
compatible structure and semantics to make data mining possible. 
Missing or incomparable data can make data mining results 
incorrect, so perhaps a better alternative is not to produce a result. 
But no result is not the same as a result of no correlation. As with 
single databases, data mining applications must deal with multiple 
sensitivities. Trying to combine databases on an attribute with 
more sensitive values can lead to no data and hence no matches.
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INTRODUCTION

Network security is a broad term that covers a multitude of 
technologies, devices and processes. In its simplest term, it is a 
set of rules and configurations designed to protect the integrity, 
confidentiality and accessibility of computer networks and 
data using both software and hardware technologies. Every 
organization, regardless of size, industry or infrastructure, 
requires a degree of network security solutions in place to protect 
it from the ever-growing landscape of cyber threats in the wild 
today.

7
SECURITY IN NETWORKS

C
H

A
PT

ER



Secure Computing272

Today’s network architecture is complex and is faced with a threat 
environment that is always changing and attackers that are always 
trying to find and exploit vulnerabilities. These vulnerabilities 
can exist in a broad number of areas, including devices, data, 
applications, users and locations. For this reason, there are many 
network security management tools and applications in use today 
that address individual threats and exploits and also regulatory 
non-compliance. When just a few minutes of downtime can cause 
widespread disruption and massive damage to an organization’s 
bottom line and reputation, it is essential that these protection 
measures are in place.

7.1 NETWORK SECURITY BASICS

Network security is the practice of preventing and protecting 
against unauthorized intrusion into corporate networks. As a 
philosophy, it complements endpoint security, which focuses on 
individual devices; network security instead focuses on how those 
devices interact, and on the connective tissue between them.

Definitions are fine as top-level statements of intent. But how 
do you lay out a plan for implementing that vision? Stephen 
Northcutt wrote a primer on the basics of network security for 
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CSOonline over a decade ago, but we feel strongly that his vision 
of the three phases of network security is still relevant and should 
be the underlying framework for your strategy. In his telling, 
network security consists of:

• Protection: You should configure your systems and 
networks as correctly as possible

• Detection: You must be able to identify when the 
configuration has changed or when some network traffic 
indicates a problem

• Reaction: After identifying problems quickly, you must 
respond to them and return to a safe state as rapidly as 
possible

This, in short, is a defense	in	depth	strategy. If there’s one common 
theme among security experts, it’s that relying on one single line 
of defense is dangerous, because any single defensive tool can be 
defeated by a determined adversary. Your network isn’t a line or a 
point: it’s a territory, and even if an attacker has invaded part of it, 
you still have the resources to regroup and expel them, if you’ve 
organized your defense properly.

7.1.1 Principles of Network Security

There are three principles within the concept of network security—
confidentiality, integrity, and availability—which together are 
sometimes referred to as the “CIA triad.” A network can only 
be considered secure when it has all three elements in play 
simultaneously.

Confidentiality works to keep sensitive data protected and 
sequestered away from where it can be accessed by the average 
user. This goes hand-in-hand with the principle of availability, 
which seeks to ensure that data and resources are kept accessible 
for those who are authorized to access them. Challenges to 
availability can include DDoS attacks or equipment failure. The 
principle of integrity seeks to protect information from intentional 
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or accidental changes in order to keep the data reliable, accurate, 
and trustworthy.

Every decision made regarding network security should be 
working to further at least one of these principles. This means that 
MSPs need to ask if each decision will ensure that data is kept 
confidential, that its integrity will be protected, and that it will be 
made more easily available to those with authorization to access 
it.

Why are these network security concepts so important? 
Cyberattacks are on the rise, with a recent report from Positive 
Technologies showing that government and healthcare 
organizations are becoming prime targets for hackers. The report 
also shows the goal of more than half of cybercrimes is data 
theft, and that financial gain was the motivation behind 42% of 
cyberattacks against individuals—and behind 30% of cyberattacks 
against organizations.

As our world becomes increasingly digitized, we rely more and 
more on the internet and networks to function. This in turn 
requires that the internet and networks provide us with reliable 
and secure service.

However, as more of our personal and sensitive data is stored 
in electronic repositories and archives, hackers are turning their 
attention to networked systems. For this reason, it is imperative 
that MSPs and security support personnel offer customers robust 
security systems that protect data from various threat vectors.

7.1.2 Network Security Methods

To implement this kind of defense in depth, there are a variety 
of specialized techniques and types of network security you will 
want to roll out. Cisco, a networking infrastructure company, 
uses the following schema to break down the different types of 
network security, and while some of it is informed by their product 
categories, it’s a useful way to think about the different ways to 
secure a network.
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• Access control: You should be able to block unauthorized 
users and devices from accessing your network. Users 
that are permitted network access should only be able to 
work with the limited set of resources for which they’ve 
been authorized.

• Anti-malware: Viruses, worms, and trojans by definition 
attempt to spread across a network, and can lurk dormant 
on infected machines for days or weeks. Your security 
effort should do its best to prevent initial infection and 
also root out malware that does make its way onto your 
network.

• Application security: Insecure applications are often the 
vectors by which attackers get access to your network. 
You need to employ hardware, software, and security 
processes to lock those apps down.

• Behavioral analytics: You should know what normal 
network behavior looks like so that you can spot 
anomalies or breaches as they happen.

• Data loss prevention: Human beings are inevitably 
the weakest security link. You need to implement 
technologies and processes to ensure that staffers don’t 
deliberately or inadvertently send sensitive data outside 
the network.

• Email security: Phishing is one of the most common 
ways attackers gain access to a network. Email security 
tools can block both incoming attacks and outbound 
messages with sensitive data.

• Firewalls: Perhaps the granddaddy of the network 
security world, they follow the rules you define to permit 
or deny traffic at the border between your network and 
the internet, establishing a barrier between your trusted 
zone and the wild west outside. They don’t preclude the 
need for a defense-in-depth strategy, but they’re still a 
must-have.

• Intrusion detection and prevention: These systems scan 
network traffic to identify and block attacks, often by 



Secure Computing276

correlating network activity signatures with databases 
of known attack techniques.

• Mobile device and wireless security: Wireless devices 
have all the potential security flaws of any other 
networked gadget — but also can connect to just about 
any wireless network anywhere, requiring extra scrutiny.

• Network segmentation: Software-defined segmentation 
puts network traffic into different classifications and 
makes enforcing security policies easier.

• Security information and event management 
(SIEM): These products aim to automatically pull 
together information from a variety of network tools to 
provide data you need to identify and respond to threats.

• VPN: A tool (typically based on IPsec or SSL) that 
authenticates the communication between a device and 
a secure network, creating a secure, encrypted “tunnel” 
across the open internet.

• Web security: You need to be able to control internal 
staff’s web use in order to block web-based threats from 
using browsers as a vector to infect your network.

7.1.3 Network Security and The Cloud 

More and more enterprises are offloading some of their computing 
needs to cloud service providers, creating hybrid infrastructures 
where their own internal network has to interoperate seamlessly 
— and securely — with servers hosted by third parties. Sometimes 
this infrastructure itself is a self-contained network, which can be 
either physical (several cloud servers working together) or virtual 
(multiple VM instances running together and “networking” with 
each other on a single physical server).

To handle the security aspects, many cloud vendors 
establish centralized security control policies on their own 
platform. However, the trick here is that those security systems 
won’t always match up with your policies and procedures for your 
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internal networks, and this mismatch can add to the workload for 
network security pros. There are a variety of tools and techniques 
available to you that can help ease some of this worry, but the 
truth is that this area is still in flux and the convenience of the 
cloud can mean network security headaches for you.

7.1.4 Network Security Software

To cover all those bases, you’ll need a variety of software and 
hardware tools in your toolkit. Most venerable, as we’ve noted, is 
the firewall. The drumbeat has been to say that the days when a 
firewall was the sum total of your network security is long gone, 
with defense in depth needed to fight threats behind (and even in 
front of) the firewall. Indeed, it seems that one of the nicest things 
you can say about a firewall product in a review is that calling it a 
firewall is selling it short.

But firewalls can’t be jettisoned entirely. They’re properly one 
element in your hybrid defense-in-depth strategy. And as eSecurity 
Planet explains, there are a number of different firewall types, 
many of which map onto the different types of network security 
we covered earlier:

• Network firewalls
• Next-generation firewalls
• Web application firewalls
• Database firewalls
• Unified threat management
• Cloud firewalls
• Container firewalls
• Network segmentation firewalls

Beyond the firewall, a network security pro will deploy a number 
of tools to keep track of what’s happening on their networks. 
Some of these tools are corporate products from big vendors, 
while others come in the form of free, open source utilities that 
sysadmins have been using since the early days of Unix. A great 
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resource is SecTools.org, which maintains a charmingly Web 1.0 
website that keeps constant track of the most popular network 
security tools, as voted on by users. Top categories include:

• Packet sniffers, which give deep insight into data traffic
• Vulnerability scanners like Nessus
• Intrusion detection and prevention software, like the 

legendary Snort
• Penetration testing software

That last category might raise some eyebrows — after all, what’s 
penetration testing if not an attempt to hack into a network? But 
part of making sure you’re locked down involves seeing how 
hard or easy it is to break in, and pros know it; ethical hacking is 
an important part of network security. That›s why you›ll see 
tools like Aircrack — which exists to sniff out wireless network 
security keys — alongside staid corporate offerings that cost tens 
of thousands of dollars on the SecTools.org list.

In an environment where you need to get many tools to work 
together, you might also want to deploy SIEM software, which we 
touched on above. SIEM products evolved from logging software, 
and analyze network data collected by a number of different 
tools to detect suspicious behavior on your network.

7.2 THREATS IN NETWORKS

Network threats are unlawful or malicious activities that intend to 
take advantage of network vulnerabilities. The goal is to breach, 
harm, or sabotage the information or data valuable to the company. 
Malicious actors also attack networks to gain unauthorized access 
and manipulate the same according to their intentions.

Regardless of the type of network security threat, there are 
different motives for executing network attacks and they are often 
malicious. Individuals, businesses, and nations have different 
reasons for executing an attack. The most common are hacktivism, 
extortion, cyber warfare, business feuds, and personal reasons.
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The most common network security threats are Computer viruses, 
Computer worms, Trojan horse, SQL injection attack, DOS and 
DDOS attack, Rootkit, Rogue security software, Phishing, Adware 
and spyware, and Man-in-the-middle attacks. Computer viruses 
are the most common network threats for everyday internet users, 
with approximately 33% of PCs being affected by malware, most 
of which are viruses.

7.2.1 Network Security Attack 

A network	 attack	 can be defined as any method, process, or 
means used to maliciously attempt to compromise network 
security. Network security is the process of preventing network 
attacks across a given network infrastructure, but the techniques 
and methods used by the attacker further distinguish whether 
the attack is an active cyber attack, a passive type attack, or some 
combination of the two. 

Let’s consider a simple network attack example to understand the 
difference between active and passive attack.

Active Attacks

An active attack is a network exploit in which attacker attempts to 
make changes to data on the target or data en route to the target.

Meet Alice and Bob. Alice wants to communicate to Bob but 
distance is a problem. So, Alice sends an electronic mail to 
Bob via a network which is not secure against attacks. There is 
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another person, Tom, who is on the same network as Alice and 
Bob. Now, as the data flow is open to everyone on that network, 
Tom alters some portion of an authorized message to produce 
an unauthorized effect. For example, a message meaning “Allow 
BOB to read confidential file X” is modified as “Allow Smith to 
read confidential file X”.

Active network attacks are often aggressive, blatant attacks that 
victims immediately become aware of when they occur. Active 
attacks are highly malicious in nature, often locking out users, 
destroying memory or files, or forcefully gaining access to a 
targeted system or network. 

Passive Attacks

A passive attack is a network attack in which a system is monitored 
and sometimes scanned for open ports and vulnerabilities, but 
does not affect system resources.

Let’s consider the example we saw earlier:

Alice sends an electronic mail to Bob via a network which is not 
secure against attacks. Tom, who is on the same network as Alice 
and Bob, monitors the data transfer that is taking place between 
Alice and Bob. Suppose, Alice sends some sensitive information 
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like bank account details to Bob as plain text. Tom can easily access 
the data and use the data for malicious purposes. 

So, the purpose of the passive attack is to gain access to the 
computer system or network and to collect data without detection.

So, network security includes implementing different hardware 
and software techniques necessary to guard underlying network 
architecture. With the proper network security in place, you can 
detect emerging threats before they infiltrate your network and 
compromise your data.

Active and passive network security attacks are further divided 
according to the methods used. The most prominent ones are:

7.2.2 Identifying Your Network Security Threats

If you want to defend your network security effectively, you need 
a Certified Network Defender that can properly identify and 
mitigate the vulnerabilities within your network.

Enable your network visibility

The first step for preparing your network defender and other 
members of your security team to identify network threats and 
vulnerabilities is to enable your whole network visibility. The only 
way you can detect a threat is when it is visible. You can use the 
existing structures on your network devices to achieve visibility.
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You can also design a strategic network diagram to exemplify 
your packet flows and the possible places where you can activate 
security procedures that will identify, categorize, and alleviate the 
threat.

Set up computer and network access

You need to construct your computer and network access to control 
who can access your network and the level of access they can 
have. Not every user should be given access to the whole network. 
Your network security policies will determine the appropriate 
ways to protect treasured assets, evaluate potential risks, lessen 
vulnerability channels, and craft a recovery plan in case of an 
incident.

Firewall configuration 

Setting up a network firewall thwarts unauthorized access and 
internet-based attacks from dispersing into your computer 
networks. Your network firewall oversees the flow of computer 
data traffic permitted to traverse your network. They can also 
obstruct reconnaissance assaults, including IP scanning or port 
sweeps. Your internal firewall can restrict this, but you need to 
configure it.

Limit access to updates and installations

Malicious hackers can penetrate your computer network through 
out-of-date software for antivirus, operating systems, device 
drivers, firmware, and other endpoint mechanisms. Access control 
in network security is critical. Network defenders can mitigate 
the risk of random assaults by restricting the number of people 
who can install or update software. Your IT team should only be 
allowed to activate updates and installations only via their admin 
access.
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7.3 NETWORK SECURITY CONTROLS

Network Security Controls are used to ensure the confidentiality, 
integrity, and availability of the network services. These security 
controls are either technical or administrative safeguards 
implemented to minimize the security risk. To reduce the risk 
of a network being compromised, an adequate network security 
requires implementing a proper combination of network 
security controls.

These network security controls include:
• Access Control
• Identification
• Authentication
• Authorization
• Accounting
• Cryptography
• Security Policy

These controls help organizations with implementing strategies 
for addressing network security concerns. The multiple layers of 
network security controls along with the network should be used 
to minimize the risks of attack or compromise. The overlapping 
use of these controls ensures defense in depth network security.

7.3.1 Access Control

Access control is a method for reducing the risk of data from being 
affected and to save the organization’s crucial data by providing 
limited access of computer resources to users. The mechanism 
grants access to system resources to read, write, or execute to the 
user based on the access permissions and their associated roles. 
The crucial aspect of implementing access control is to maintain 
the integrity, confidentiality, and availability of the information.
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An access control system includes:
• File permissions such as create, read, edit or delete
• Program permissions such as the right to execute a 

program
• Data rights such as the right to retrieve or update 

information in a database

There are two types of access controls:

Physical and logical. The physical access controls the access to 
buildings, physical IT assets, etc. The logical access controls the 
access to networks and data.

In general, access control provides essential services like 
authorization, identification, authentication, access permissions 
and accountability.

• Authorization determines the action a user can perform
• Identification and authentication identify and permit 

only authorized users to access the systems
• The access permissions determine approvals or 

permissions provided to a user to access a system and 
other resources

• Accountability categorizes the actions performed by a 
user

Access Control Terminology

The following terminologies are used to define access control on 
specific resources:

• Subject: A subject may be defined as a user or a process, 
which attempts to access the objects. Further, subjects are 
those entities that perform certain actions on the system.

• Object: An object is an explicit resource on which access 
restriction is imposed. The Access controls implemented 
on the objects further control the actions performed by 
the user. For example, files or hardware devices.
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• Reference Monitor: It monitors the restrictions imposed 
according to certain access control rules. Reference 
monitor implements a set of rules on the ability of the 
subject to perform certain actions on the object.

• Operation: An operation is an action performed by the 
subject on the object. A user trying to delete a file is an 
example of an operation. Here, the user is the subject. 
Delete refers to the operation and file is the object.

Access Control Principles

Access control principles deal with restricting or allowing the 
access controls to users or processes. The principle includes the 
server receiving a request from the user and authenticating the 
user with the help of an Access Control Instruction (ACO). The 
server can either allow or deny the user to perform any actions 
like read, write, access files, etc.

Network	Security	Control	is	a	part	Certified	Ethical	Hacking	v10(CEH	
v10)	training	you	learn	the	cyber	security	attacks	and	their	impact.

Access controls enable users to gain access to the entire directory, 
subtree of the directory and another specific set of entries and 
attribute values in the directory. It is possible to set permission 
values to a single user or a group of users. The directory and 
attribute values contain the access control instructions. Access 
control function uses an authorization database, maintained 
by the security admin, to check the authorization details of the 
requesting user.

Types of Access Control

Types of access control between how a subject can access an object. 
The policy for determining the mechanism uses access control 
technologies and security.
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Discretionary Access Control (DAC)

Discretionary access controls determine the access controls taken 
by any possessor of an object in order to decide the access controls 
of the subjects on those objects. The other name for DAC is a need-
to-know access model. It permits the user, who is granted access 
to information, to decide how to protect the information and the 
level of sharing desired. Access to files is restricted to users and 
groups based upon their identity and the groups to which the 
users belong.

Mandatory Access Control (MAC)

The mandatory access controls determine the usage and access 
policies of the users. Users can access a resource only if that 
particular user has the access rights to that resource. MAC 
finds its application in the data marked as highly confidential. 
The network administrators impose MAC, depending on the 
operating system and security kernel. It does not permit the end 
user to decide who can access the information, and does not permit 
the user to pass privileges to other users as the access could then 
be circumvented.

Role Based Access Control (RBAC)

In role based access control, the access permissions are available 
based on the access policies determined by the system. The access 
permissions are out of user control, which means that users 
cannot amend the access policies created by the system. Users 
Identification, Authentication, Authorization and Accounting

7.3.2 Identification

Identification deals with confirming the identity of a user, process, 
or device accessing the network. User identification is the most 
common technique used in authenticating the users in the network 
and applications. Users have a unique User ID, which helps in 
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identifying them.

The authentication process includes verifying a user ID and a 
password. Users need to provide both the credentials in order 
to gain access to the network. The network administrators 
provide access controls and permissions to various other services 
depending on the user ID’s.

Example: Username, Account Number, etc.

7.3.3 Authentication

Authentication refers to verifying the credentials provided by 
the user while attempting to connect to a network. Both wired 
and wireless networks perform authentication of users before 
allowing them to access the resources in the network. A typical 
user authentication consists of a user ID and a password. The 
other forms of authentication are authenticating a website using a 
digital certificate, comparing the product and the label associated 
with it.

Example: Password, PIN, etc.

7.3.4 Authorization

Authorization refers to the process of providing permission to 
access the resources or perform an action on the network. Network 
administrators can decide the access permissions of users on a 
multi-user system. They even decide the user privileges. The 
mechanism of authorization can allow the network administrator 
to create access permissions for users as well as verify the access 
permissions created for each user.

In logical terms, authorization succeeds authentication. But, the 
type of resources or perform an action on the network. Network 
administrators can decide the access permissions of users on a 
multi-user system. They even decide the user privileges. The 
mechanism of authorization can allow the network administrator 
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to create access permissions for users as well as verify the access 
permissions created for each user.

In logical terms, authorization succeeds authentication. But, the 
type of authentication required for authorization varies. However, 
there are cases that do not require any authorization of the users 
requesting for a service.

Example: A user can only read the file but not write to or delete it.

7.3.5 Accounting

User accounting refers to tracking the actions performed by the 
user on a network. This includes verifying the files accessed by the 
user, functions like alteration or modification of the files or data. 
It keeps track of who, when, how the users access the network. It 
helps in identifying authorized and unauthorized actions.

7.4 FIREWALLS

A firewall is a network security device that monitors incoming 
and outgoing network traffic and decides whether to allow or 
block specific traffic based on a defined set of security rules.

Firewalls have been a first line of defense in network security 
for over 25 years. They establish a barrier between secured and 
controlled internal networks that can be trusted and untrusted 
outside networks, such as the Internet. 

A firewall can be hardware, software, or both.
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A Firewall is a necessary part of any security architecture and 
takes the guesswork out of host level protections and entrusts 
them to your network security device. Firewalls, and especially 
Next Generation Firewalls, focus on blocking malware and 
application-layer attacks, along with an integrated intrusion 
prevention system (IPS), these Next Generation Firewalls can 
react quickly and seamlessly to detect and react to outside attacks 
across the whole network. They can set policies to better defend 
your network and carry out quick assessments to detect invasive 
or suspicious activity, like malware, and shut it down.

7.4.1 Firewall History

Firewalls have existed since the late 1980’s and started out as 
packet filters, which were networks set up to examine packets, 
or bytes, transferred between computers. Though packet filtering 
firewalls are still in use today, firewalls have come a long way as 
technology has developed throughout the decades.

• Gen 1 Virus
– Generation 1, Late 1980’s, virus attacks on stand-

alone PC’s affected all businesses and drove anti-
virus products.

• Gen 2 Networks
– Generation 2, Mid 1990’s, attacks from the internet 

affected all business and drove creation of the 
firewall.

• Gen 3 Applications
– Generation 3, Early 2000’s, exploiting vulnerabilities 

in applications which affected most businesses 
and drove Intrusion Prevention Systems Products 
(IPS).

• Gen 4 Payload
– Generation 4, Approx. 2010, rise of targeted, 

unknown, evasive, polymorphic attacks which 
affected most businesses and drove anti-bot and 
sandboxing products.
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• Gen 5 Mega
– Generation 5, Approx. 2017, large scale, multi-

vector, mega attacks using advance attack tools 
and is driving advance threat prevention solutions.

Back in 1993, Check Point CEO Gil Shwed introduced the first 
stateful inspection firewall, FireWall-1. Fast forward twenty-seven 
years, and a firewall is still an organization’s first line of defense 
against cyber attacks. Today’s firewalls, including Next Generation 
Firewalls and Network Firewalls support a wide variety of 
functions and capabilities with built-in features, including:

• Network Threat Prevention
• Application and Identity-Based Control
• Hybrid Cloud Support
• Scalable Performance

7.4.2 Uses

Firewalls are used in both corporate and consumer settings. Modern 
organizations incorporate them into a security information and 
event management (SIEM) strategy along with other cybersecurity 
devices. They may be installed at an organization’s network 
perimeter to guard against external threats, or within the network 
to create segmentation and guard against insider threats.

In addition to immediate threat defense, firewalls perform 
important logging and audit functions. They keep a record of 
events, which can be used by administrators to identify patterns 
and improve rule sets. Rules should be updated regularly to keep 
up with ever-evolving cybersecurity threats. Vendors discover 
new threats and develop patches to cover them as soon as possible.

In a single home network, a firewall can filter traffic and alert 
the user to intrusions. They are especially useful for always-on 
connections, like Digital Subscriber Line (DSL) or cable modem, 
because those connection types use static IP addresses. They are 
often used alongside to antivirus applications. Personal firewalls, 
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unlike corporate ones, are usually a single product as opposed to 
a collection of various products. They may be software or a device 
with firewall firmware embedded. Hardware/firmware firewalls 
are often used for setting restrictions between in-home devices.

7.4.3 How does a firewall work?

A firewall decides which network traffic is allowed to pass 
through and which traffic is deemed dangerous. It essentially 
works by filtering out the good from the bad, or the trusted from 
the untrusted. However, before we go into detail, we must first 
understand the structure of web-based networks before explaining 
how a firewall operates to filter between them.

Firewalls are intended to secure the private networks and the 
endpoint devices within, known as network hosts.

Network hosts are devices that «talk» with other hosts on the 
network. They send and receive between internal networks, as 
well as outbound and inbound between external networks.

Your computers and other endpoint devices use networks to access 
the internet — and each other. However, the internet is segmented 
into sub-networks or ‘subnets’ for security and privacy.

The basic subnet segments are as follows:
• External public networks typically refer to the public/

global internet or various extranets.
• Internal private network defines a home network, 

corporate intranets, and other «closed» networks.
• Perimeter networks detail border networks made 

of bastion	 hosts — computer hosts dedicated with 
hardened security that are ready to endure an external 
attack. As a secured buffer between internal and external 
networks, these can also be used to house any external-
facing services provided by the internal network (i.e., 
servers for web, mail, FTP, VoIP, etc.). These are more 
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secure than external networks but less secure than the 
internal. These	 are	 not	 always	 present	 in	 simpler	 networks	
like	home	networks	but	may	often	be	used	in	organizational	or	
national	intranets.

Screening routers are specialized gateway computers placed on 
a network to segment it. They are known as house firewalls on 
the network-level. The two most common segment models are the 
screened host firewall and the screened subnet firewall.

• Screened host firewalls use a single screening router 
between the external and internal networks, known as 
the choke router. These networks are the two subnets of 
this model.

• Screened subnet firewalls use two screening routers— 
one known as an access router between the external and 
perimeter network, and another labeled as the choke	
router between the perimeter and internal network. This 
creates three subnets, respectively.

As mentioned earlier, both the network perimeter and host 
machines themselves can house a firewall. To do this, it is placed 
between a single computer and its connection to a private network.

• Network firewalls involve the application of one or 
more firewalls between external networks and internal 
private networks. These regulate inbound and outbound 
network traffic, separating external public networks—
like the global internet—from internal networks like 
home Wi-Fi networks, enterprise intranets, or national 
intranets. Network firewalls may come in the form of any 
of the following appliance types: dedicated hardware, 
software, and virtual.

• Host firewalls or ‹software firewalls› involve the use of 
firewalls on individual user devices and other private 
network endpoints as a barrier between devices within 
the network. These devices, or hosts, receive customized 
regulation of traffic to and from specific computer 
applications. Host firewalls may run on local devices 
as an operating system service or an endpoint security 
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application. Host firewalls can also dive deeper into web 
traffic, filtering based on HTTP and other networking 
protocols, allowing the management of what content 
arrives at your machine, rather than just where it comes 
from.

Network firewalls require configuration against a broad scope 
of connections, whereas host firewalls can be tailored to fit each 
machine’s needs. However, host firewalls require more effort to 
customize, meaning that network-based are ideal for a sweeping 
control solution. But the use of both firewalls in both locations 
simultaneously is ideal for a multi-layer security system.

Filtering traffic via a firewall makes use of pre-set or dynamically 
learned rules for allowing and denying attempted connections. 
These rules are how a firewall regulates the web traffic flow 
through your private network and private computer devices. 
Regardless of type, all firewalls may filter by some blend of the 
following:

• Source: Where an attempted connection is being made 
from.

• Destination: Where an attempted connection is intended 
to go.

• Contents: What an attempted connection is trying to 
send.

• Packet protocols: What «language» an attempted 
connection is speaking to carry its message. Among 
the networking protocols that hosts use to «talk» with 
each other, TCP/IP is the primary protocol used to 
communicate across the internet and within intranet/
sub-networks. Other standard protocols include IMCP 
and UDP.

• Application protocols: Common protocols include 
HTTP, Telnet, FTP, DNS, and SSH.

Source and destination are communicated by internet protocol 
(IP) addresses and ports. IP	addresses are unique device names for 
each host. Ports are a sub-level of any given source and destination 
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host device, similar to office rooms within a larger building. Ports 
are typically assigned specific purposes, so certain protocols and 
IP addresses utilizing uncommon ports or disabled ports can be a 
concern.

By using these identifiers, a firewall can decide if a data packet 
attempting a connection is to be discarded—silently or with an 
error reply to the sender—or forwarded.

7.4.4 What does firewall security do?

The concept of a network security firewall is meant to narrow the 
attack surface of a network to a single point of contact. Instead 
of every host on a network being directly exposed to the greater 
internet, all traffic must first contact the firewall. Since this also 
works in reverse, the firewall can filter and block non-permitted 
traffic, in or out. Also, firewalls are used to create an audit trail of 
attempted network connections for better security awareness.

Since traffic filtering can be a rule set established by owners of 
a private network, this creates custom use cases for firewalls. 
Popular use cases involve managing the following:

• Infiltration from malicious actors: Undesired 
connections from an oddly behaving source can be 
blocked. This can prevent eavesdropping and advanced 
persistent threats (APTs).

• Parental controls: Parents can block their children from 
viewing explicit web content.

• Workplace web browsing restrictions: Employers can 
prevent employees from using company networks to 
access unproductive services and content, such as social 
media.

• Nationally controlled intranet: National governments 
can block internal residents› access to web content 
and services that are potentially dissident to a nation›s 
leadership or its values.
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Notably, firewalls are not very effective at the following:
• Identifying exploits of legitimate networking 

processes: Firewalls do not anticipate human intent, 
so they cannot determine if a “legitimate” connection 
is intended for malicious purposes. For example, IP 
address fraud (IP spoofing) occurs because firewalls 
don’t validate the source and destination IPs.

• Prevent connections that do not pass through the 
firewall: Network-level firewalls alone will not stop 
malicious internal activity. Internal firewalls such as 
host-based ones will need to be present in addition to the 
perimeter firewall, to partition your network and slow 
the movement of internal «fires.»

• Provide adequate protection against viruses: While 
connections carrying malicious code can be halted if 
not whitelisted, a connection deemed acceptable can 
still deliver these threats into your network. If a firewall 
overlooks a connection as a result of being misconfigured 
or exploited, an antivirus protection suite will still be 
needed to clean up any malware or viruses that enter.

7.4.5 Types of Firewalls

Firewall types can be divided into several different categories 
based on their general structure and method of operation. Here 
are eight types of firewalls:

• Packet-filtering firewalls
• Circuit-level gateways
• Stateful inspection firewalls
• Application-level gateways (a.k.a. proxy firewalls)
• Next-gen firewalls
• Software firewalls
• Hardware firewalls
• Cloud firewalls
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How do these firewalls work? And, which ones are the best for 
your business’ cybersecurity needs?

Here are a few brief explainers:
Packet-Filtering	Firewalls

As the most “basic” and oldest type of firewall architecture, 
packet-filtering firewalls basically create a checkpoint at a traffic 
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router or switch. The firewall performs a simple check of the data 
packets coming through the router—inspecting information such 
as the destination and origination IP address, packet type, port 
number, and other surface-level information without opening up 
the packet to inspect its contents.

If the information packet doesn’t pass the inspection, it is dropped.

The good thing about these firewalls is that they aren’t very 
resource-intensive. This means they don’t have a huge impact on 
system performance and are relatively simple. However, they’re 
also relatively easy to bypass compared to firewalls with more 
robust inspection capabilities.

Circuit-Level Gateways

As another simplistic firewall type that is meant to quickly and 
easily approve or deny traffic without consuming significant 
computing resources, circuit-level gateways work by verifying 
the transmission control protocol (TCP) handshake. This TCP 
handshake check is designed to make sure that the session the 
packet is from is legitimate.

While extremely resource-efficient, these firewalls do not check the 
packet itself. So, if a packet held malware, but had the right TCP 
handshake, it would pass right through. This is why circuit-level 
gateways are not enough to protect your business by themselves.

Stateful Inspection Firewalls

These firewalls combine both packet inspection technology and 
TCP handshake verification to create a level of protection greater 
than either of the previous two architectures could provide alone.

However, these firewalls do put more of a strain on computing 
resources as well. This may slow down the transfer of legitimate 
packets compared to the other solutions.
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Proxy Firewalls (Application-Level Gateways/Cloud Fire-
walls)

Proxy firewalls operate at the application layer to filter incoming 
traffic between your network and the traffic source—hence, the 
name “application-level gateway.” These firewalls are delivered 
via a cloud-based solution or another proxy device. Rather than 
letting traffic connect directly, the proxy firewall first establishes 
a connection to the source of the traffic and inspects the incoming 
data packet.

This check is similar to the stateful inspection firewall in that 
it looks at both the packet and at the TCP handshake protocol. 
However, proxy firewalls may also perform deep-layer packet 
inspections, checking the actual contents of the information packet 
to verify that it contains no malware.

Once the check is complete, and the packet is approved to connect 
to the destination, the proxy sends it off. This creates an extra 
layer of separation between the “client” (the system where the 
packet originated) and the individual devices on your network—
obscuring them to create additional anonymity and protection for 
your network.

If there’s one drawback to proxy firewalls, it’s that they can create 
significant slowdown because of the extra steps in the data packet 
transferal process.

Next-Generation Firewalls

Many of the most recently-released firewall products are being 
touted as “next-generation” architectures. However, there is not 
as much consensus on what makes a firewall truly next-gen.

Some common features of next-generation firewall architectures 
include deep-packet inspection (checking the actual contents 
of the data packet), TCP handshake checks, and surface-level 
packet inspection. Next-generation firewalls may include other 
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technologies as well, such as intrusion prevention systems (IPSs) 
that work to automatically stop attacks against your network.

The issue is that there is no one definition of a next-generation 
firewall, so it’s important to verify what specific capabilities such 
firewalls have before investing in one.

Software Firewalls

Software firewalls include any type of firewall that is installed 
on a local device rather than a separate piece of hardware (or 
a cloud server). The big benefit of a software firewall is that it’s 
highly useful for creating defense in depth by isolating individual 
network endpoints from one another.

However, maintaining individual software firewalls on different 
devices can be difficult and time-consuming. Furthermore, not 
every device on a network may be compatible with a single 
software firewall, which may mean having to use several different 
software firewalls to cover every asset.

Hardware Firewalls

Hardware firewalls use a physical appliance that acts in a manner 
similar to a traffic router to intercept data packets and traffic 
requests before they’re connected to the network’s servers. Physical 
appliance-based firewalls like this excel at perimeter security 
by making sure malicious traffic from outside the network is 
intercepted before the company’s network endpoints are exposed 
to risk.

The major weakness of a hardware-based firewall, however, is that 
it is often easy for insider attacks to bypass them. Also, the actual 
capabilities of a hardware firewall may vary depending on the 
manufacturer—some may have a more limited capacity to handle 
simultaneous connections than others, for example.
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Cloud Firewalls

Whenever a cloud solution is used to deliver a firewall, it can 
be called a cloud firewall, or firewall-as-a-service (FaaS). Cloud 
firewalls are considered synonymous with proxy firewalls by 
many, since a cloud server is often used in a proxy firewall setup 
(though the proxy doesn’t necessarily have to be on the cloud, it 
frequently is).

The big benefit of having cloud-based firewalls is that they are 
very easy to scale with your organization. As your needs grow, 
you can add additional capacity to the cloud server to filter larger 
traffic loads. Cloud firewalls, like hardware firewalls, excel at 
perimeter security.

7.4.6 Firewall Examples

In practice, a firewall has been a topic of both praise and controversy 
due to its real-world applications. While there is a decorated 
history of firewall accomplishments, this security type must be 
implemented correctly to avoid exploits. Additionally, firewalls 
have been known to be used in ethically questionable ways.
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Great Firewall of China, internet censorship

Since 1998, China has had internal firewall frameworks in place to 
create its carefully monitored intranet. By nature, firewalls allow 
for the creation of a customized version of the global internet 
within a nation. They accomplish this by preventing select services 
and info from being used or accessed within this national intranet.

National surveillance and censorship allow for the ongoing 
suppression of free speech while maintaining its government’s 
image. Furthermore, China’s firewall allows its government to 
limit internet services to local companies. This makes control 
over things like search engines and email services much easier to 
regulate in favor of the government’s goals.

Naturally, China has seen an ongoing internal protest against 
this censorship. The use of virtual private networks and proxies 
to get past the national firewall has allowed many to voice their 
dissatisfaction.

COVID-19 U.S. federal agency compromised due to remote 
work weaknesses

In 2020, a misconfigured firewall was just one of many security 
weaknesses that led to an anonymous United States federal 
agency›s breach.

It is believed that a nation-state actor exploited a series of 
vulnerabilities in the U.S. agency’s cybersecurity. Among the 
many cited issues with their security, the firewall in-use had 
many outbound ports that were inappropriately open to traffic. 
Alongside being maintained poorly, the agency’s network likely 
had new challenges with remote work. Once in the network, the 
attacker behaved in ways that show clear intent to move through 
any other open pathways to other agencies. This type of effort 
puts not only the infiltrated agency at risk of a security breach but 
many others as well.
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U.S. power grid operator’s unpatched firewall exploited

In 2019, a United States power grid operations provider was 
impacted by a Denial-of-Service (DoS) vulnerability that hackers 
exploited. Firewalls on the perimeter network were stuck in a 
reboot exploit loop for roughly ten hours.

It was later deemed to be the result of a known-but-unpatched 
firmware vulnerability in the firewalls. A standard operating 
procedure for checking updates before implementation hadn’t 
been put into place yet causing delays in updates and an inevitable 
security issue. Fortunately, the security issue did not lead to any 
significant network penetration.

These events are another strong indicator of the importance of 
regular software updates. Without them, firewalls are yet another 
network security system that can be exploited.

7.4.7 How to Use Firewall Protection

Proper setup and maintenance of your firewall are essential to 
keep your network and devices protected.

Here are some tips to guide your firewall security practices:
• Always update your firewalls as soon as 

possible: Firmware patches keep your firewall updated 
against any newly discovered vulnerabilities. Personal 
and home firewall users can usually safely update 
immediately. Larger organizations may need to check 
configuration and compatibility across their network 
first. However, everyone should have processes in place 
to update promptly.

• Use antivirus protection: Firewalls alone are not 
designed to stop viruses and other infections. These 
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may get past firewall protections, and you’ll need a 
security solution that’s designed to disable and remove 
them. Kaspersky Total Security can protect you across 
your personal devices, and our many business security 
solutions can safeguard any network hosts you›ll seek to 
keep clean.

• Limit accessible ports and hosts with a whitelist: Default 
to connection denial for inbound traffic. Limit inbound 
and outbound connections to a strict whitelist of trusted 
IP addresses. Reduce user access privileges to necessities. 
It is easier to stay secure by enabling access when needed 
than to revoke and mitigate damage after an incident.

• Segmented network: Lateral movement by malicious 
actors is a clear danger that can be slowed by limiting 
cross-communication internally.

• Have active network redundancies to avoid 
downtime: Data backups for network hosts and other 
essential systems can prevent data loss and productivity 
during an incident.

7.5 INTRUSION DETECTION SYSTEMS

An Intrusion Detection System (IDS) is a system that 
monitors network traffic for suspicious activity and issues alerts 
when such activity is discovered. It is a software application 
that scans a network or a system for harmful activity or policy 
breaching. Any malicious venture or violation is normally 
reported either to an administrator or collected centrally using 
a security information and event management (SIEM) system. A 
SIEM system integrates outputs from multiple sources and uses 
alarm filtering techniques to differentiate malicious activity from 
false alarms.



Secure Computing304

Although intrusion detection systems monitor networks for 
potentially malicious activity, they are also disposed to false 
alarms. Hence, organizations need to fine-tune their IDS products 
when they first install them. It means properly setting up the 
intrusion detection systems to recognize what normal traffic on 
the network looks like as compared to malicious activity.

Intrusion prevention systems also monitor network packets 
inbound the system to check the malicious activities involved in it 
and at once sends the warning notifications.

7.5.1 Classification of Intrusion Detection Systems

Intrusion detection systems are designed to be deployed in 
different environments. And like many cybersecurity solutions, 
an IDS can either be host-based or network-based.

• Network Intrusion Detection System (NIDS): Network 
intrusion detection systems (NIDS) are set up at a 
planned point within the network to examine traffic from 
all devices on the network. It performs an observation of 
passing traffic on the entire subnet and matches the traffic 
that is passed on the subnets to the collection of known 
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attacks. Once an attack is identified or abnormal behavior 
is observed, the alert can be sent to the administrator. An 
example of an NIDS is installing it on the subnet where 
firewalls are located in order to see if someone is trying 
crack the firewall.

• Host Intrusion Detection System (HIDS): Host intrusion 
detection systems (HIDS) run on independent hosts or 
devices on the network. A HIDS monitors the incoming 
and outgoing packets from the device only and will alert 
the administrator if suspicious or malicious activity is 
detected. It takes a snapshot of existing system files and 
compares it with the previous snapshot. If the analytical 
system files were edited or deleted, an alert is sent to the 
administrator to investigate. An example of HIDS usage 
can be seen on mission critical machines, which are not 
expected to change their layout.

• Protocol-based Intrusion Detection System (PIDS): 
Protocol-based intrusion detection system (PIDS) 
comprises of a system or agent that would consistently 
resides at the front end of a server, controlling and 
interpreting the protocol between a user/device and the 
server. It is trying to secure the web server by regularly 
monitoring the HTTPS protocol stream and accept the 
related HTTP protocol. As HTTPS is un-encrypted and 
before instantly entering its web presentation layer 
then this system would need to reside in this interface, 
between to use the HTTPS.

• Application Protocol-based Intrusion Detection 
System (APIDS): Application Protocol-based Intrusion 
Detection System (APIDS) is a system or agent that 
generally resides within a group of servers. It identifies 
the intrusions by monitoring and interpreting the 
communication on application specific protocols. For 
example, this would monitor the SQL protocol explicit 
to the middleware as it transacts with the database in the 
web server.



Secure Computing306

• Hybrid Intrusion Detection System : Hybrid intrusion 
detection system is made by the combination of two or 
more approaches of the intrusion detection system. In the 
hybrid intrusion detection system, host agent or system 
data is combined with network information to develop a 
complete view of the network system. Hybrid intrusion 
detection system is more effective in comparison to the 
other intrusion detection system. Prelude is an example 
of Hybrid IDS.

7.5.2 Detection Method of IDS Deployment

Beyond their deployment location, IDS solutions also differ in 
how they identify potential intrusions:

• Signature Detection: Signature-based IDS solutions use 
fingerprints of known threats to identify them. Once 
malware or other malicious content has been identified, 
a signature is generated and added to the list used by 
the IDS solution to test incoming content. This enables 
an IDS to achieve a high threat detection rate with no 
false positives because all alerts are generated based 
upon detection of known-malicious content. However, 
a signature-based IDS is limited to detecting known 
threats and is blind to zero-day vulnerabilities.

• Anomaly Detection: Anomaly-based IDS solutions 
build a model of the “normal” behavior of the protected 
system. All future behavior is compared to this model, 
and any anomalies are labeled as potential threats and 
generate alerts. While this approach can detect novel or 
zero-day threats, the difficulty of building an accurate 
model of “normal” behavior means that these systems 
must balance false positives (incorrect alerts) with false 
negatives (missed detections).

• Hybrid Detection: A hybrid IDS uses both signature-
based and anomaly-based detection. This enables it to 
detect more potential attacks with a lower error rate than 
using either system in isolation.
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7.5.3 What does an intrusion detection system do?

Intrusion detection systems use two methods: signature-based 
detection, which takes data activity and compares it to a signature 
or pattern in the signature database. Signature-based detection 
has a constraint whereby a new malicious activity that is not in the 
database is ignored. The other detection method is the statistical 
anomaly-based or behavior-based detection, which, unlike 
signature-based, detects any anomaly and gives alerts; hence it 
detects new types of attacks. It is referred to as an expert system 
as it learns what normal behavior in the system is.

7.5.4 Function of an Intrusion Detection System on  
A Network

Intrusion detection is a passive technology; it detects and 
acknowledges a problem but interrupt the flow of network traffic, 
Novak said. “As mentioned, the purpose is to find and alert on 
noteworthy traffic. An alert informs the IDS analyst that some 
interesting traffic has been observed. But it is after-the-fact because 
the traffic is not blocked or stopped in any way from reaching its 
destination.”
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Compare that to firewalls that block out known malware and 
intrusion prevention system (IPS) technology, which as the name 
describes, also blocks malicious traffic.
Although an IDS doesn’t stop malware, cybersecurity experts said 
the technology still has a place in the modern enterprise.
“The functionality of what it does is still critically important,” said 
Eric Hanselman, chief analyst with 451 Research. “The IDS piece 
itself is still relevant because at its core it’s detecting an active 
attack.”

However, cybersecurity experts said organizations usually don’t 
buy and implement IDS as a standalone solution as they once 
did. Rather, they buy a suite of security capabilities or a security 
platform that has intrusion detection as one of many built-in 
capabilities.

Rob Clyde, board of directors vice chair ISACA, an association for 
IT governance professionals, and executive chair for the board at 
White Cloud Security Inc., agreed that intrusion detection is still a 
critical capability. But he said companies need to understand that 
an intrusion detection system requires maintenance and consider 
whether, and how, they’ll support an IDS if they opt for it.

“Once you’ve gone down the path to say we’re going to keep 
track of what’s going on in our environment, you need someone to 
respond to alerts and incidents. Otherwise, why bother?” he said.

Given the work an IDS takes, he said smaller companies should 
have the capability but only as part of a larger suite of functions 
so they’re not managing the IDS in addition to other standalone 
solutions. They should also consider working with a managed 
security service provider for their overall security requirements, 
as the provider due to scale can more efficiently respond to alerts. 
“They’ll use machine learning or maybe AI and human effort to 
alert your staff to an incident or intrusion you truly have to worry 
about,” he said.

“And at mid-size and larger companies, where you really need to 
know if someone is inside the network, you do want to have the 
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additional layer, or additional layers, than just what’s built into 
your firewall,” he said.

7.5.5 Challenges of Managing an IDS

Intrusion detection systems do have several recognized 
management challenges that may be more work than an 
organization is willing or able to take on.

False positives 

False positives (i.e., generating alerts when there is no real problem). 
“IDSs are notorious for generating false positives,” Rexroad said, 
adding that alerts are generally are sent to a secondary analysis 
platform to help contend with this challenge.

This challenge also puts pressure on IT teams to continually 
update their IDSs with the right information to detect legitimate 
threats and to distinguish those real threats from allowable traffic.

It’s no small task, experts said.

 “IDS systems must be tuned by IT administrators to analyze the 
proper context and reduce false-positives. For example, there is little 
benefit to analyzing and providing alerts on internet activity for a 
server that is protected against known attacks. This would generate 
thousands of irrelevant alarms at the expense of raising meaningful 
alarms. Similarly, there are circumstances where perfectly valid 
activities may generate false alarms simply as a matter of probability,” 
Rexroad said, noting that organizations often opt for a secondary 
analysis platform, such as a Security Incident & Event Management 
(SIEM) platform, to help with investigating alerts.

Staffing

Given the requirement for understanding context, an enterprise 
has to be ready to make any IDS fit its own unique needs, experts 
advised.
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 “What this means is that an IDS cannot be a one-size-fits all 
configuration to operate accurately and effectively. And, this 
requires a savvy IDS analyst to tailor the IDS for the interests and 
needs of a given site. And, knowledgeable trained system analysts 
are scarce,” Novak added.

Missing a Legitimate Risk

“The trick with IDS is that you have to know what the attack is 
to be able to identify it. The IDS has always had the patient zero 
problem: You have to have found someone who got sick and died 
before you can identify it,” Hanselman said.

IDS technology can also have trouble detecting malware with 
encrypted traffic, experts said. Additionally, the speed and 
distributed nature of incoming traffic can limit the effectiveness of 
an intrusion detection system in an enterprise.

“You might have an IDS that can handle 100 megabits of traffic 
but you might have 200 megabits coming at it or traffic gets 
distributed, so your IDS only sees one out of every three or four 
packets,” Hanselman said.

7.5.6 The Future of Intrusion Detection Systems

Hanselman said those limitations still don’t invalidate the value of 
an IDS as a function.

“No security tool is perfect. Different products have different 
blind spots, so the challenge is knowing those blind spots,” he 
explained. “I continue to think that IDS will be with us for a long 
time to come. There’s still that basic value in being able to identify 
specific hostile traffic on the wire.”

However, experts said this has some organizations rethinking the 
need for an IDS – even though today implementing the technology 
remains a security best practice.

“This tuning and analysis requires a significant amount of effort 
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based on the number of alerts received. An organization may 
not have the resources to manage all devices in this capacity. 
Other organizations may conduct a more comprehensive threat 
assessment and decide not to implement IDS devices,” Rexroad 
said, adding that the high number of IDS false positives have 
some organizations opting against implementing IPSs as well for 
fear of blocking legitimate business transactions.

He said other organizations may decide to focus on more advanced 
protections at the internet gateway or use flow analysis from 
network devices in conjunction with log analysis from systems 
and applications to identify suspect events instead of using an 
IDS.

7.6 SECURE E-MAIL

Email security is a term for describing different procedures 
and techniques for protecting email accounts, content, and 
communication against unauthorized access, loss or compromise. 
Email is often used to spread malware, spam and phishing attacks. 
Attackers use deceptive messages to entice recipients to part with 
sensitive information, open attachments or click on hyperlinks 
that install malware on the victim’s device. Email is also a common 
entry point for attackers looking to gain a foothold in an enterprise 
network and obtain valuable company data.

Email encryption involves encrypting, or disguising, the content 
of email messages to protect potentially sensitive information 
from being read by anyone other than intended recipients. Email 
encryption often includes authentication.

7.6.1 How Secure Is Email?

Email was designed to be as open and accessible as possible. It 
allows people in organizations to communicate with each other 
and with people in other organizations. The problem is that email 
is not secure. This allows attackers to use email as a way to cause 
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problems in attempt to profit. Whether through spam campaigns, 
malware and phishing attacks, sophisticated targeted attacks, or 
business email compromise (BEC), attackers try to take advantage 
of the lack of security of email to carry out their actions. Since 
most organizations rely on email to do business, attackers exploit 
email in an attempt to steal sensitive information.

Because email is an open format, it can be viewed by anyone 
who can intercept it, causing email security concerns. This 
became an issue as organizations began sending confidential or 
sensitive information through email. An attacker could easily 
read the contents of an email by intercepting it. Over the years, 
organizations have been increasing email security measures to 
make it harder for attackers to get their hands on sensitive or 
confidential information.

7.6.2 Email Security Policies

Because email is so critical in today’s business world, organizations 
have established polices around how to handle this information 
flow. One of the first policies most organizations establish is 
around viewing the contents of emails flowing through their email 
servers. It’s important to understand what is in the entire email 
in order to act appropriately. After these baseline policies are put 
into effect, an organization can enact various security policies on 
those emails.
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These email security policies can be as simple as removing all 
executable content from emails to more in-depth actions, like 
sending suspicious content to a sandboxing tool for detailed 
analysis. If security incidents are detected by these policies, the 
organization needs to have actionable intelligence about the scope 
of the attack. This will help determine what damage the attack 
may have caused. Once an organization has visibility into all the 
emails being sent, they can enforce email encryption policies to 
prevent sensitive email information from falling into the wrong 
hands.

7.6.3 Email Security Best Practices

One of the first best practices that organizations should put 
into effect is implementing a secure email gateway. An email 
gateway scans and processes all incoming and outgoing email 
and makes sure that threats are not allowed in. Because attacks 
are increasingly sophisticated, standard security measures, such 
as blocking known bad file attachments, are no longer effective. 
A better solution is to deploy a secure email gateway that uses a 
multi-layered approach.

It’s also important to deploy an automated email encryption 
solution as a best practice. This solution should be able to analyze 
all outbound email traffic to determine whether the material is 
sensitive. If the content is sensitive, it needs to be encrypted before 
it is emailed to the intended recipient. This will prevent attackers 
from viewing emails, even if they were to intercept them.
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Training employees on appropriate email usage and knowing what 
is a good and bad email is also an important best practice for email 
security. Users may receive a malicious email that slips through 
the secure email gateway, so it’s critical that they understand what 
to look for. Most often they are exposed to phishing attacks, which 
have telltale signs. Training helps employees spot and report on 
these types of emails.

7.6.4 Email Security Tools

A secure email gateway, deployed either on-premises or in the 
cloud, should offer multi-layered protection from unwanted, 
malicious and BEC email; granular visibility; and business 
continuity for organizations of all sizes. These controls enable 
security teams to have confidence that they can secure users from 
email threats and maintain email communications in the event of 
an outage.

An email encryption solution reduces the risks associated with 
regulatory violations, data loss and corporate policy violations 
while enabling essential business communications. The email 
security solution should work for any organization that needs 
to protect sensitive data, while still making it readily available 
to affiliates, business partners and users—on both desktops 
and mobile devices. An email encryption solution is especially 
important for organizations required to follow compliance 
regulations, like GDPR, HIPAA or SOX, or abide by security 
standards like PCI-DSS.
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7.6.5 Importance of Email Security

It’s important that users and organizations take measures to 
guarantee the security of their email accounts against known 
attacks, and it’s especially important that a proper infrastructure is 
in place to stop any unauthorized attempts at accessing accounts 
or communications. Users are especially susceptible to phishing 
attacks against businesses, because they sidestep technical security 
protections, and instead lean into users themselves to expose 
weaknesses. This is why email security solutions should start with 
proper techniques like encryption, spyware detection, and login 
security. But it’s equally important that employees are educated 
on the proper steps that should be taken to protect email.

7.6.6 Email Security Tips to Secure Messages Sent via Mail 
Transfer Protocols

Below, we’ll explore 10 practical checks you can use to 
achieve secure SMTP, IMAP, and POP3 communications for your 
email accounts:

Learn to Inspect Message Headers

Your email message headers are usually hidden by default, but 
you can Google ways to view the original message headers for 
your specific email client. For example, if you’re using the Outlook 
365 email client:
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• Double-click on an email to open it in a new window.
• Go to the File menu and select Properties.
• In the Properties window, you’ll see a field at the bottom 

that contains email header information.

Once you can see the headers, look for the “Received From” field 
that tracks the route the message traveled across the net via servers 
to reach you. If you get a suspicious email, search for the sender’s 
IP and do a reverse lookup to trace the message back to where it 
originated. You can also check if the message fails sender policy 
framework (SPF) and domain keys identification mail (DKIM) 
checks.

Though most mail programs have email security indications like a 
red question mark for unauthenticated emails in Gmail, knowing 
how to examine email headers is a useful skill to have.

Avoid Clicking on Links or Downloading Attachments

As most of us know, email security’s biggest weakness often 
boils down to human error. This fact  is continuously hammered 
into our brains by security experts and tech gurus. However, 
getting too curious to know what an attachment is, or being too 
absentminded to notice that we’ve accidentally clicked on a link 
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are not impossible scenarios. Even the best of us can fall prey to 
phishing attacks — at least, the well-crafted ones. This is why, in 
addition to having spam filters and antimalware installed, we 
must be careful not to open any attachments or click on links from 
unknown senders (or attackers pretending to be Gary from the 
accounts department).

Update Your DMARC Records With the Domain Registrar

DMARC, aside from running checks on the messages using SPF 
and DKIM standards, is the only method that informs a receiving 
server of the action it should take in the event that a message fails 
these tests. If you’re a domain owner, besides configuring SPF and 
DKIM, consider setting up DMARC records with your domain 
registrar. iIn case you’re unsure about the process, they should be 
able to help you with it.

Neither SPF nor DKIM can prevent attackers from forging the 
“From” address that you see displayed in your inbox. However, 
DMARC verifies that the “from” matches the return-path checked 
by SPF and the domain name in the DKIM signature.

Test Your SMTP Server

To do this, try sending test emails to see how it responds to genuine 
and spam messages alike by monitoring the SPF, DMARC records. 
If it’s possible to tweak the SMTP configurations, change the default 
settings and update them with more secure alternatives (starting 
with changing default admin usernames and passwords).

Make Use of SMTP SSL/TLS Ports

SMTPS traditionally has used port 465 as a way to secure SMTP at 
the transport layer by running it over a TLS connection. When we 
refer to an SMTP SSL port (or, more accurately, SMTP TLS port), 
that’s exactly what we mean — it’s a way to have a secure exchange 
of messages between the email client and the email server over 
SSL/TLS channels.
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TLS implementation can be done using two approaches – 
opportunistic TLS or forced TLS. With opportunistic (explicit) TLS, 
we try to shift from the use of unencrypted SMTP to a secure TLS 
encrypted channel utilizing the STARTTLS SMTP command. If 
the attempt fails, the transmission resumes in plain text, meaning 
without the use of any encryption. However, with forced (implicit) 
TLS, the email client and server are either able to negotiate an 
encryption version they can both support, or the transmission 
stops and the email communication doesn’t progress. You can 
make your choice depending on whether you want maximum 
deliverability or maximum privacy.

The Internet Assigned Numbers Authority (IANA) had registered 
port 465 for SMTPS, though it was never published as an official 
SMTP channel by the Internet Engineering Task Force (IETF). A 
new service had been assigned to port 465 by the end of 1998. 
while 465 functioned as a secure SMTP port, port 25 continues to 
be used as the default port for SMTP relaying. ISPs and hosting 
providers have restricted the use of port 25 for SMTP connections 
(to send mails across the net), and most modern email clients 
don’t use this port at all. Unless you’re managing a mail server (a 
message transfer agent or an MTA), typically, you should see no 
traffic over this port.

Port 587, along with TLS encryption, should be used as the default 
secure SMTP port for message submission as recommended 
by IETF in accordance with RFC 6409 that separates message 
submission (port 587) from message relay (port 25). Because many 
legacy systems continue using port 465 for SMTPS, you may still 
be able to find support for it from your ISP or hosting provider, 
but it is not recommended to use this port. Lastly, if port 587 is 
blocked, port 2525 though not officially recognized, is a commonly 
used alternative supported by most email service providers.
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Deploy End-to-End Encryption for Maximum Email Security

With the note from the authors of RFC 5321 in mind, a note that 
indicates that SMTP mail is inherently insecure, consider using 
end-to-end encryption standards like S/MIME or PGP to encrypt 
messages on the sender’s device, as well as during transmission. 
This ensures that even if the message falls into the hands of an 
attacker, all they see is garbled data that makes no sense.

An additional benefit of using an S/MIME certificate (or email 
signing certificate, as it’s also known) is that it enables you to add 
a digital signature. This verifies the authenticity of the sender and 
validates message integrity.

Use TLS With IMAP and POP3

So, what’s POP3 and IMAP? The internet access message protocol 
(IMAP) and post office protocol (POP3, indicating version 3) deal 
with retrieving the messages from the receiving server. These are 
the protocols used by email clients like Outlook when getting 
your emails from mail servers. While IMAP syncs messages across 
all of your devices, POP3 downloads the message onto a single 
machine so that it’s available offline before deleting it from the 
server. Encrypted POP3 connections use port 995 (also known as 
POP3S), and IMAPS uses port 993.
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Maintain IP Blacklists to Block Targeted Spams

If you’re frequently the target of junk and spam messages from 
IP addresses that share unsolicited marketing and sales pitches, it 
makes sense to block them on your email server.

To do this, you can use DNS blacklists (e.g., DNSBL, Spamhaus, 
etc.) or spam URI real-time block lists (e.g., SURBL, URIBL, etc.). 
A quick Google search will show you a bunch of available options, 
but be careful utilizing these kinds of tools — they’re not free of 
controversies and may inadvertently block some legitimate emails.

Use Restrictive Mail Relay Options

You don’t want to be an open relay because any spammer from 
anywhere in the world can use your server and resources for 
spamming others. The mail relay parameter specifies for which 
domains or IPs your server can forward mail. Configure these 
options with the utmost care if you wish to avoid getting on a 
blacklist.

Other Considerations to Improve Email Security

Some additional email security considerations that may come in 
handy include but are not limited to the following:

• Limit the number of connections to your SMTP 
server. You can do this based upon usage and server 
hardware specifications as these checks can prevent 
denial of service stacks.

• Define a failover configuration for MX records. 
Whenever possible, have a failover configuration when 
listing MX records to improve availability.

• Set up reverse DNS lookup to block IPs when 
authentication fails. Activate reverse DNS lookup that 
blocks emails if an IP mismatch occurs between the 
hostname and domain name of the sender.
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