

Secure Computing

Secure Computing

Editor:

Cate Thomas

www.bibliotex.com

Secure Computing
Editor: Cate Thomas

www.bibliotex.com

email: info@bibliotex.com

e-book Edition 2022

ISBN: 978-1-98467-777-8 (e-book)

This book contains information obtained from highly regarded resources. Reprinted material
sources are indicated. Copyright for individual articles remains with the authors as indicated and
published under Creative Commons License. A Wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and views articulated in the chapters are those
of the individual contributors, and not necessarily those of the editors or publishers. Editors or
publishers are not responsible for the accuracy of the information in the published chapters or
consequences of their use. The publisher assumes no responsibility for any damage or griev-
ance to the persons or property arising out of the use of any materials, instructions, methods or
thoughts in the book. The editors and the publisher have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission has
not been obtained. If any copyright holder has not been acknowledged, please write to us so we
may rectify.

Notice: Registered trademark of products or corporate names are used only for explanation and
identification without intent of infringement.

© 2022 Intelliz Press

In Collaboration with Intelliz Press. Originally Published in printed book format by Intelliz

Press with ISBN 978-1-68251-837-3

TABLE OF CONTENTS

 Preface...xi

Chapter 1 Information Security 1
Introduction ... 1
1.1 Information Security (InfoSec) .. 2

1.1.1 Importance of Information Security3
1.1.2 Principles of Information Security4
1.1.3 Threats and Threat Responses ...7
1.1.4 Information security vs. Network Security7

1.2 Concept of Computer Security ... 9
1.2.1 The Challenges of Computer Security11
1.2.2 A Model for Computer Security13
1.2.3 Threats, Attacks, and Assets...16
1.2.4 Communication Lines and Networks23
1.2.5 Security Functional Requirements25

1.3 Fundamental Security Design
Principles .. 27

1.3.1 Attack Surfaces and Attack Trees33
1.4 Computer Security Strategy .. 38

1.4.1 Security Policy ..38
1.4.2 Security Implementation ..39

vi

1.4.3 Assurance and Evaluation ..40
References .. 42

Chapter 2 Cryptography 45
Introduction ... 45
2.1 Meaning of Cryptography ... 46

2.1.1 History of Cryptography ..47
2.1.2 Types of Cryptography ..49

2.2 Public-Key Cryptography ... 51
2.2.1 Principles of Public-Key Cryptosystems52
2.2.2 Applications for P-K Cryptosystems55
2.2.3 Requirements of the Algorithm55
2.2.4 Cryptography Benefits and Drawbacks60

2.3 Transposition Ciphers and
Substitution Ciphers .. 60

2.3.1 Substitution Techniques ...61
2.3.2 Transposition Techniques ...62

2.4 Block Cipher and Stream Cipher .. 63
2.5 RSA Cryptosystem ... 65

2.5.1 RSA Analysis ..67
2.5.2 Encryption and Decryption in RSA Public-key

Cryptosystem ...68
2.5.3 RSA Signature Scheme..71
2.5.4 Attacks on Cryptosystems ..74

References .. 81

Chapter 3 Program Security 83
Introduction ... 83
3.1 Secure Programs ... 84

3.1.1 Fixing Faults ...85
3.1.2 Unexpected Behavior ..86
3.1.3 Types of Flaws ...88

3.2 Nonmalicious Program Errors .. 89
3.2.1 Buffer Overflows ..89
3.2.2 Security Implication ..92
3.2.3 Incomplete Mediation ...94
3.2.4 Security Implication ..96

vii

3.2.5 Time-of-Check to Time-of-Use Errors97
3.2.6 Security Implication ..99
3.2.7 Combinations of Nonmalicious Program Flaws100

3.3 Viruses and Other Malicious Code 100
3.3.1 Why Worry About Malicious Code?101
3.3.2 Malicious Code Can Do Much (Harm)101
3.3.3 Malicious Code Has Been Around a Long Time102
3.3.4 Kinds of Malicious Code ..103
3.3.5 How Viruses Attach ..106
3.3.6 Appended Viruses ...107
3.3.7 Viruses That Surround a Program108
3.3.8 Integrated Viruses and Replacements109
3.3.9 Document Viruses ...110
3.3.10 How Viruses Gain Control ...110
3.3.11 Homes for Viruses ...111
3.3.12 Other Homes for Viruses ..115
3.3.13 Virus Signatures ...116
3.3.14 Storage Patterns ...117
3.3.15 Execution Patterns ...118
3.3.16 Transmission Patterns ...120
3.3.17 Polymorphic Viruses ...120
3.3.18 The Source of Viruses ..122
3.3.19 Prevention of Virus Infection123
3.3.20 Truths and Misconceptions about Viruses126

References .. 130

Chapter 4 Protection and Security in
Operating System 133
Introduction ... 133
4.1 Security in Common Operating Systems 134

4.1.1 Security Problems of Common Operating Systems .135
4.1.2 Existing Partial Solutions ..140
4.1.3 Existing Protection Profiles ..143

4.2 Goals, Objectives and Methods .. 144
4.3 Threats to Protection and Security 146

4.3.1 Virus ..146
4.3.2 Trojan Horse ...146
4.3.3 Trap Door..146

4.3.4 Worm ...146
4.3.5 Denial of Service ..147

4.4 Protection and Security Methods ... 147
4.4.1 Authentication ..147
4.4.2 One Time Password ..148
4.4.3 Classes of Applications Considered149
4.4.4 Security Model ...152

4.5 Protection Profile Overview .. 157
4.5.1 Our New Model vs. MIC in Windows Vista161
4.5.2 Our New Model vs. SELinux163
4.5.3 Our Protection Profile vs. CAPP and LSPP164

References .. 168

Chapter 5 Designing Trusted Operating Systems 171
Introduction ... 171
5.1 Trusted System .. 172
5.2 Security Policies .. 176

5.2.1 Military Security Policy ..176
5.2.2 Commercial Security Policies179

5.3 Models of Security .. 185
5.3.1 Multilevel Security ..186
5.3.2 Models Proving Theoretical Limitations of

Security Systems ..191
5.4 Trusted Operating System Design 199

5.4.1 Trusted System Design Elements199
5.4.2 Security Features of Ordinary Operating Systems ...201
5.4.3 Security Features of Trusted Operating Systems204
5.4.4 Kernelized Design ...210
5.4.5 Separation/Isolation ..217
5.4.6 Virtualization ...219
5.4.7 Virtual Machines ..220
5.4.8 Layered Design ..222

References .. 226

Chapter 6 Database and Data mining
Security 229
Introduction ... 229
6.1 Concept of Database ... 231

ix

6.1.1 Components of Databases ..232
6.1.2 Advantages of Using Databases236

6.2 Security Requirements ... 237
6.2.1 Integrity of the Database ..238
6.2.2 Element Integrity ...239
6.2.3 Auditability ...241
6.2.4 Access Control ..242
6.2.5 User Authentication ..243
6.2.6 Availability ..244
6.2.7 Integrity/Confidentiality/Availability244

6.3 Reliability and Integrity ... 244
6.3.1 Protection Features from the Operating System246
6.3.2 Two-Phase Update ..246
6.3.3 Redundancy/Internal Consistency247
6.3.4 Recovery..248
6.3.5 Concurrency/Consistency ..248
6.3.6 Monitors ..249

6.4 Proposals for Multilevel Security ... 252
6.4.1 Designs of Multilevel Secure Databases257

6.5 Data Mining ... 264
6.5.1 Data Correctness and Integrity266
6.5.2 Availability of Data ..268

References .. 269

Chapter 7 Security in Networks 271
Introduction ... 271
7.1 Network Security Basics .. 272

7.1.1 Principles of Network Security....................................273
7.1.2 Network Security Methods ..274
7.1.3 Network Security and The Cloud 276
7.1.4 Network Security Software ..277

7.2 Threats in Networks ... 278
7.2.1 Network Security Attack ...279
7.2.2 Identifying Your Network Security Threats281

7.3 Network Security Controls .. 283
7.3.1 Access Control ..283
7.3.2 Identification ..286

x

7.3.3 Authentication ..287
7.3.4 Authorization ...287

7.3.5 Accounting .. 288
7.4 Firewalls ... 288

7.4.1 Firewall History ...289
7.4.2 Uses ..290
7.4.3 How does a firewall work? ..291
7.4.4 What does firewall security do?294
7.4.5 Types of Firewalls ..295
7.4.6 Firewall Examples ...300
7.4.7 How to Use Firewall Protection302

7.5 Intrusion Detection Systems ... 303
7.5.1 Classification of Intrusion Detection Systems304
7.5.2 Detection Method of IDS Deployment306
7.5.3 What does an intrusion detection system do?...........307
7.5.4 Function of an Intrusion Detection System on

A Network ..307
7.5.5 Challenges of Managing an IDS309
7.5.6 The Future of Intrusion Detection Systems310

7.6 Secure E-mail ... 311
7.6.1 How Secure Is Email? ...311
7.6.2 Email Security Policies ..312
7.6.3 Email Security Best Practices313
7.6.4 Email Security Tools..314
7.6.5 Importance of Email Security315
7.6.6 Email Security Tips to Secure Messages Sent

via Mail Transfer Protocols ..315
References .. 321

 INDEX 323

Data security has consistently been a major issue in information
technology. In the cloud computing environment, it becomes
particularly serious because the data is located in different places even
in all the globe. The security of computer networks plays a strategic
role in modern computer systems. In order to enforce high protection
levels against malicious attack, a number of software tools have
been currently developed. Intrusion Detection System has recently
become a heated research topic due to its capability of detecting and
preventing the attacks from malicious network users. Data security
and privacy protection are the two main factors of user’s concerns
about the cloud technology. Though many techniques on the topics
in cloud computing have been investigated in both academics and
industries, data security and privacy protection are becoming more
important for the future development of cloud computing technology
in government, industry, and business. Data security and privacy
protection issues are relevant to both hardware and software in the
cloud architecture.
This book is aimed to cover different security techniques and challenges
from both software and hardware aspects for protecting data in the
cloud and aims at enhancing the data security and privacy protection
for the trustworthy cloud environment. Network and computer security
is critical to the financial health of every organization. Over the past

PREFACE

xii

few years, Internet-enabled business, or e-business, has drastically
improved efficiency and revenue growth. E-business applications
such as e-commerce, supply-chain management, and remote access
allow companies to streamline processes, lower operating costs, and
increase customer satisfaction. Such applications require mission-
critical networks that accommodate voice, video, and data traffic, and
these networks must be scalable to support increasing numbers of
users and the need for greater capacity and performance. However,
as networks enable more and more applications and are available to
more and more users, they become ever more vulnerable to a wider
range of security threats. To combat those threats and ensure that
e-business transactions are not compromised, security technology
must play a major role in today’s networks. As time goes on, more
and more new technology will be developed to further improve
the efficiency of business and communications. At the same time,
breakthroughs in technology will provide even greater network
security, therefore, greater piece of mind to operate in cutting edge
business environments. Provided that enterprises stay on top of this
emerging technology, as well as the latest security threats and dangers,
the benefits of networks will most certainly outweigh the risks.

INTRODUCTION

Information security is a set of practices designed to keep personal
data secure from unauthorized access and alteration during storing
or transmitting from one place to another. Information security
is designed and implemented to protect the print, electronic and
other private, sensitive and personal data from unauthorized
persons. It is used to protect data from being misused, disclosure,
destruction, modification, and disruption. Information security,
sometimes abbreviated to infosec, is a set of practices intended to
keep data secure from unauthorized access or alterations, both when
it›s being stored and when it›s being transmitted from one machine or
physical location to another. You might sometimes see it referred to
as data security. As knowledge has become one of the 21st century’s
most important assets, efforts to keep information secure have
correspondingly become increasingly important.

1
INFORMATION SECURITY

C
H

A
PT

ER

Secure Computing2

Information security or infosec is concerned with protecting
information from unauthorized access. It’s part of information risk
management and involves preventing or reducing the probability
of unauthorized access, use, disclosure, disruption, deletion,
corruption, modification, inspect, or recording. If a security
incident does occur, information security professionals are
involved with reducing the negative impact of the incident. Note
information can be electronic or physical, tangible or intangible.

While the primary focus of any information security program is
protecting the confidentiality, integrity and availability (the CIA
triad) of information, maintaining organizational productivity is
often an important consideration. This has led the information
security industry to offer guidance, information security policies,
and industry standards on passwords, antivirus software, firewalls,
encryption software, legal liability and security awareness, to
share best practices.

1.1 INFORMATION SECURITY (INFOSEC)

Information security (infosec) is a set of strategies for managing
the processes, tools and policies necessary to prevent, detect,
document and counter threats to digital and non-digital
information. Infosec responsibilities include establishing a set of
business processes that will protect information assets regardless
of how the information is formatted or whether it is in transit, is
being processed or is at rest in storage.

Many large enterprises employ a dedicated security group to
implement and maintain the organization’s infosec program.
Typically, this group is led by a chief information security officer.
The security group is generally responsible for conducting risk
management, a process through which vulnerabilities and
threats to information assets are continuously assessed, and the
appropriate protective controls are decided on and applied. The
value of an organization lies within its information its security is
critical for business operations, as well as retaining credibility and
earning the trust of clients.

Information Security 3

1.1.1 Importance of Information Security

Information security, sometimes shortened to infosec, is the practice
of protecting information by mitigating information risks. It is part
of information risk management. It typically involves preventing
or at least reducing the probability of unauthorized/inappropriate
access to data, or the unlawful use, disclosure, disruption, deletion,
corruption, modification, inspection, recording or devaluation
of information. It also involves actions intended to reduce the
adverse impacts of such incidents. Protected information may take
any form, e.g. electronic or physical, tangible (e.g. paperwork) or
intangible (e.g. knowledge). Information security’s primary focus
is the balanced protection of the confidentiality, integrity and
availability of data (also known as the CIA triad) while maintaining
a focus on efficient policy implementation, all without hampering
organization productivity. This is largely achieved through a
structured risk management process that involves:

• Identifying information and related assets, plus potential
threats, vulnerabilities and impacts;

• Evaluating the risks;
• Deciding how to address or treat the risks i.e. to avoid,

mitigate, share or accept them;
• Where risk mitigation is required, selecting or designing

appropriate security controls and implementing them;
• Monitoring the activities, making adjustments

as necessary to address any issues, changes and
improvement opportunities.

To standardize this discipline, academics and professionals
collaborate to offer guidance, policies, and industry standards
on password, antivirus software, firewall, encryption software,
legal liability, security awareness and training, and so forth. This
standardization may be further driven by a wide variety of laws
and regulations that affect how data is accessed, processed, stored,
transferred and destroyed. However, the implementation of any
standards and guidance within an entity may have limited effect
if a culture of continual improvement is not adopted.

Secure Computing4

1.1.2 Principles of Information Security

The basic components of information security are most often
summed up by the so-called CIA triad: confidentiality, integrity,
and availability.

•	 Confidentiality is perhaps the element of the triad that
most immediately comes to mind when you think of
information security. Data is confidential when only
those people who are authorized to access it can do so;
to ensure confidentiality, you need to be able to identify
who is trying to access data and block attempts by
those without authorization. Passwords, encryption,
authentication, and defense against penetration attacks
are all techniques designed to ensure confidentiality.

•	 Integrity means maintaining data in its correct state and
preventing it from being improperly modified, either
by accident or maliciously. Many of the techniques that
ensure confidentiality will also protect data integrity—
after all, a hacker cannot change data they can’t access—
but there are other tools that help provide a defense of
integrity in depth: checksums can help you verify data
integrity, for instance, and version control software and
frequent backups can help you restore data to a correct
state if need be. Integrity also covers the concept of non-
repudiation: you must be able to prove that you’ve
maintained the integrity of your data, especially in legal
contexts.

•	 Availability is the mirror image of confidentiality: while
you need to make sure that your data can›t be accessed by
unauthorized users, you also need to ensure that it can be
accessed by those who have the proper permissions.
Ensuring data availability means matching network
and computing resources to the volume of data access
you expect and implementing a good backup policy for
disaster recovery purposes.

Information Security 5

Apart from this there is one more principle that governs information
security programs. This is Non repudiation.

•	 Non	 repudiation – means one party cannot deny
receiving a message or a transaction nor can the other
party deny sending a message or a transaction. For
example in cryptography it is sufficient to show that
message matches the digital signature signed with
sender’s private key and that sender could have a sent a
message and nobody else could have altered it in transit.
Data Integrity and Authenticity are pre-requisites for
Non repudiation.

•	 Authenticity – means verifying that users are who they
say they are and that each input arriving at destination
is from a trusted source. This principle if followed
guarantees the valid and genuine message received
from a trusted source through a valid transmission. For
example if take above example sender sends the message
along with digital signature which was generated using
the hash value of message and private key. Now at the
receiver side this digital signature is decrypted using the
public key generating a hash value and message is again
hashed to generate the hash value. If the 2 value matches
then it is known as valid transmission with the authentic
or we say genuine message received at the recepient side

•	 Accountability – means that it should be possible to trace
actions of an entity uniquely to that entity. For example
as we discussed in Integrity section Not every employee
should be allowed to do changes in other employees data.
For this there is a separate department in an organization
that is responsible for making such changes and when
they receive request for a change then that letter must
be signed by higher authority for example Director of
college and person that is allotted that change will be
able to do change after verifying his bio metrics, thus
timestamp with the user(doing changes) details get
recorded. Thus we can say if a change goes like this then

Secure Computing6

it will be possible to trace the actions uniquely to an
entity.

At the core of Information Security is Information Assurance,
which means the act of maintaining CIA of information, ensuring
that information is not compromised in any way when critical
issues arise. These issues are not limited to natural disasters,
computer/server malfunctions etc.

Thus, the field of information security has grown and evolved
significantly in recent years. It offers many areas for specialization,
including securing networks and allied infrastructure, securing
applications and databases, security testing, information systems
auditing, business continuity planning etc.

In an ideal world, your data should always be kept confidential,
in its correct state, and available; in practice, of course, you often
need to make choices about which information security principles
to emphasize, and that requires assessing your data. If you are
storing sensitive medical information, for instance, you will focus
on confidentiality, whereas a financial institution might emphasize
data integrity to ensure that nobody’s bank account is credited or
debited incorrectly.

Infosec programs are built around the core objectives of the CIA
triad: maintaining the confidentiality, integrity and availability of
IT systems and business data. These objectives ensure that sensitive
information is only disclosed to authorized parties (confidentiality),
prevent unauthorized modification of data (integrity) and
guarantee the data can be accessed by authorized parties when
requested (availability).

The first security consideration, confidentiality, usually requires the
use of encryption and encryption keys. The second consideration,
integrity, implies that when data is read back, it will be exactly the
same as when it was written. (In some cases, it may be necessary
to send the same data to two different locations in order to protect
against data corruption at one place.) The third part of the CIA is
availability. This part of the triad seeks to ensure that new data can

Information Security 7

be used in a timely manner and backup data can be restored in an
acceptable recovery time.

1.1.3 Threats and Threat Responses

Threats to sensitive and private information come in many
different forms, such as malware and phishing attacks, identity
theft and ransomware. To deter attackers and mitigate
vulnerabilities at various points, multiple security controls are
implemented and coordinated as part of a layered defense in
depth strategy. This should minimize the impact of an attack. To
be prepared for a security breach, security groups should have
an incident response plan (IRP) in place. This should allow them
to contain and limit the damage, remove the cause and apply
updated defense controls.

Information security processes and policies typically involve
physical and digital security measures to protect data from
unauthorized access, use, replication or destruction. These measures
can include mantraps, encryption key management, network
intrusion detection systems, password policies and regulatory
compliance. A security audit may be conducted to evaluate the
organization’s ability to maintain secure systems against a set of
established criteria.

1.1.4 Information security vs. Network Security

In modern enterprise computing infrastructure, data is as likely to
be in motion as it is to be at rest. This is where network security
comes in. While technically a subset of cybersecurity, network
security is primarily concerned with the networking infrastructure
of the enterprise. It deals with issues such as securing the edge of
the network; the data transport mechanisms, such as switches and
routers; and those pieces of technology that provide protection for
data as it moves between computing nodes. Where cybersecurity
and network security differ is mostly in the application of security
planning. A cybersecurity plan without a plan for network security

Secure Computing8

is incomplete; however, a network security plan can typically
stand alone.

Jobs in InfoSec

Jobs within the information security field vary in their titles,
but some common designations include IT chief security officer
(CSO), chief information security officer (CISO), security engineer,
information security analyst, security systems administrator and
IT security consultant.

InfoSec certifications

•	 Certified	 Ethical	 Hacker	 (CEH): This is a vendor-neutral
certification from the EC-Council, one of the leading
certification bodies. This security certification, which
validates how much an individual knows about network
security, is best suited for a penetration tester role. This
certification covers more than 270 attacks technologies.
Prerequisites for this certification include attending
official training offered by the EC-Council or its affiliates
and having at least two years of information security-
related experience.

•	 Certified	 Information	 Systems	 Auditor	 (CISA): This
certification is offered by ISACA, a nonprofit, independent
association that advocates for professionals involved in
information security, assurance, risk management and
governance. The exam certifies the knowledge and skills
of security professionals. To qualify for this certification,
candidates must have five years of professional work
experience related to information systems auditing,
control or security.

•	 Certified	information	security	manager	(CISM): CISM is an
advanced certification offered by ISACA that provides
validation for individuals who have demonstrated the
in-depth knowledge and experience required to develop
and manage an enterprise information security program.

Information Security 9

The certification is aimed at information security
managers, aspiring managers or IT consultants who
support information security program management.

•	 GIAC	 Security	 Essentials	 (GSEC): This certification
created and administered by the Global Information
Assurance Certification organization is geared toward
security professionals who want to demonstrate they are
qualified for IT systems hands-on roles with respect to
security tasks. Candidates are required to demonstrate
they understand information security beyond simple
terminology and concepts.

1.2 CONCEPT OF COMPUTER SECURITY

Computer security, the protection of computer systems and
information from harm, theft, and unauthorized use. Computer
hardware is typically protected by the same means used to protect
other valuable or sensitive equipment, namely, serial numbers,
doors and locks, and alarms. The protection of information and
system access, on the other hand, is achieved through other tactics,
some of them quite complex.

The security precautions related to computer information and
access address four major threats: (1) theft of data, such as that

Secure Computing10

of military secrets from government computers; (2) vandalism,
including the destruction of data by a computer virus; (3)
fraud, such as employees at a bank channeling funds into their
own accounts; and (4) invasion of privacy, such as the illegal
accessing of protected personal financial or medical data from a
large database. The most basic means of protecting a computer
system against theft, vandalism, invasion of privacy, and other
irresponsible behaviors is to electronically track and record the
access to, and activities of, the various users of a computer system.
This is commonly done by assigning an individual password to
each person who has access to a system. The computer system
itself can then automatically track the use of these passwords,
recording such data as which files were accessed under particular
passwords and so on. Another security measure is to store a
system’s data on a separate device, or medium, such as magnetic
tape or disks, that is normally inaccessible through the computer
system. Finally, data is often encrypted so that it can be deciphered
only by holders of a singular encryption key.

Computer security has become increasingly important since
the late 1960s, when modems (devices that allow computers
to communicate over telephone lines) were introduced. The
proliferation of personal computers in the 1980s compounded the
problem because they enabled hackers to illegally access
major computer systems from the privacy of their homes. The
development of advanced security techniques continues to
diminish such threats, though concurrent refinements in the
methods of computer crime pose ongoing hazards.

Computer security deals with the protection of computer systems
and information from harm, theft, and unauthorized use. The
main reason users get attacked frequently is that they lack
adequate defenses to keep out intruders, and cybercriminals are
quick to exploit such weaknesses. Computer security ensures the
confidentiality, integrity, and availability of your computers and
their stored data.

Information Security 11

1.2.1 The Challenges of Computer Security

Computer security is both fascinating and complex. Some of the
reasons follow:

• Computer security is not as simple as it might first
appear to the novice. The requirements seem to be
straightforward; indeed, most of the major requirements
for security services can be given self-explanatory
one-word labels: confidentiality, authentication,
nonrepudiation, integrity. But the mechanisms used
to meet those requirements can be quite complex, and
understanding them may involve rather subtle reasoning.

• In developing a particular security mechanism or
algorithm, one must always consider potential attacks on
those security features. In many cases, successful attacks
are designed by looking at the problem in a completely
different way, therefore exploiting an unexpected
weakness in the mechanism.

• Because of point 2, the procedures used to provide
particular services are often counterintuitive. Typically,
a security mechanism is complex, and it is not obvious
from the statement of a particular requirement that
such elaborate measures are needed. It is only when the

Secure Computing12

various aspects of the threat are considered that elaborate
security mechanisms make sense.

• Having designed various security mechanisms, it is
necessary to decide where to use them. This is true both
in terms of physical placement (e.g., at what points in
a network are certain security mechanisms needed)
and in a logical sense [e.g., at what layer or layers of
an architecture such as TCP/IP (Transmission Control
Protocol/Internet Protocol) should mechanisms be
placed].

• Security mechanisms typically involve more than a
particular algorithm or protocol. They also require that
participants be in possession of some secret information
(e.g., an encryption key), which raises questions
about the creation, distribution, and protection of
that secret information. There may also be a reliance
on communications protocols whose behavior may
complicate the task of developing the security
mechanism. For example, if the proper functioning of
the security mechanism requires setting time limits on
the transit time of a message from sender to receiver,
then any protocol or network that introduces variable,
unpredictable delays may render such time limits
meaningless.

• Computer security is essentially a battle of wits between
a perpetrator who tries to find holes and the designer
or administrator who tries to close them. The great
advantage that the attacker has is that he or she need
only find a single weakness while the designer must find
and eliminate all weaknesses to achieve perfect security.

• There is a natural tendency on the part of users and
system managers to perceive little benefit from security
investment until a security failure occurs.

• Security requires regular, even constant, monitoring,
and this is difficult in today’s short-term, overloaded
environment.

Information Security 13

• Security is still too often an afterthought to be incorporated
into a system after the design is complete rather than
being an integral part of the design process.

• Many users and even security administrators view
strong security as an impediment to efficient and user-
friendly operation of an information system or use of
information.

1.2.2 A Model for Computer Security

Table 1 defines terms and Figure 1, based on [CCPS12a], shows
the relationship among some of these terms. We start with the
concept of a system resource, or asset, that users and owners wish
to protect. The assets of a computer system can be categorized as
follows:

• Hardware: Including computer systems and other data
processing, data storage, and data communications
devices

• Software: Including the operating system, system
utilities, and applications.

• Data: Including files and databases, as well as security-
related data, such as password files.

Secure Computing14

•	 Communication facilities and networks: Local and wide
area network communication links, bridges, routers, and
so on.

Table 1. Computer Security Terminology

Adversary (threat agent)
An entity that attacks, or is a threat to, a system.
Attack
An assault on system security that derives from an intelligent threat; that
is, an intelligent act that is a deliberate attempt (especially in the sense of
a method or technique) to evade security services and violate the security
policy of a system.
Countermeasure
An action, device, procedure, or technique that reduces a threat, a vulner-
ability, or an attack by eliminating or preventing it, by minimizing the harm
it can cause, or by discovering and reporting it so that corrective action can
be taken.
Risk
An expectation of loss expressed as the probability that a particular threat
will exploit a particular vulnerability with a particular harmful result.
Security Policy
A set of rules and practices that specify or regulate how a system or orga-
nization provides security services to protect sensitive and critical system
resources.
System Resource (Asset)
Data contained in an information system; or a service provided by a system;
or a system capability, such as processing power or communication band-
width; or an item of system equipment (i.e., a system component— hard-
ware, firmware, software, or documentation); or a facility that houses system
operations and equipment.
Threat
A potential for violation of security, which exists when there is a circum-
stance, capability, action, or event, that could breach security and cause
harm. That is, a threat is a possible danger that might exploit a vulnerability.
Vulnerability
A flaw or weakness in a system’s design, implementation, or operation and
management that could be exploited to violate the system’s security policy.

Information Security 15

Figure 1. Security Concepts and Relationships.

In the context of security, our concern is with the vulnerabilities
of system resources. Lists the following general categories of
vulnerabilities of a computer system or network asset:

• It can be corrupted, so that it does the wrong thing or
gives wrong answers. For example, stored data values
may differ from what they should be because they have
been improperly modified.

• It can become leaky. For example, someone who should
not have access to some or all of the information available
through the network obtains such access.

• It can become unavailable or very slow. That is, using the
system or network becomes impossible or impractical.

Corresponding to the various types of vulnerabilities to a
system resource are threats that are capable of exploiting those
vulnerabilities. A threat represents a potential security harm to an
asset. An attack is a threat that is carried out (threat action) and, if
successful, leads to an undesirable violation of security, or threat
consequence. The agent carrying out the attack is referred to as an
attacker, or threat agent. We can distinguish two types of attacks:

• Active attack: An attempt to alter system resources or
affect their operation.

• Passive attack: An attempt to learn or make use of
information from the system that does not affect system

Secure Computing16

resources. We can also classify attacks based on the origin
of the attack:

•	 Inside attack: Initiated by an entity inside the security pe-
rimeter (an “insider”). The insider is authorized to access
system resources but uses them in a way not approved by
those who granted the authorization.

•	 Outside attack: Initiated from outside the perimeter, by an
unauthorized or illegitimate user of the system (an “out-
sider”). On the Internet, potential outside attackers range
from amateur pranksters to organized criminals, interna-
tional terrorists, and hostile governments.

Finally, a countermeasure is any means taken to deal with a
security attack. Ideally, a countermeasure can be devised to
prevent a particular type of attack from succeeding. When
prevention is not possible, or fails in some instance, the goal is to
detect the attack and then recover from the effects of the attack. A
countermeasure may itself introduce new vulnerabilities. In any
case, residual vulnerabilities may remain after the imposition of
countermeasures. Such vulnerabilities may be exploited by threat
agents representing a residual level of risk to the assets. Owners
will seek to minimize that risk given other constraints.

1.2.3 Threats, Attacks, and Assets

We look at the types of security threats that must be dealt with,
and then give some examples of the types of threats that apply to
different categories of assets.

Threats and Attacks

Table 2, based on RFC 4949, describes four kinds of threat
consequences and lists the kinds of attacks that result in each
consequence.

Information Security 17

Table 2. Threat Consequences, and the Types of Threat Actions that
Cause Each Consequence

Threat Consequence Threat Action (Attack)
Unauthorized Disclosure
A circumstance or event
whereby an entity gains access
to data for which the entity is
not authorized.

Exposure: Sensitive data are directly re-
leased to an unauthorized entity.
Interception: An unauthorized entity
directly accesses sensitive data traveling
between authorized sources and destina-
tions.
Inference: A threat action whereby an
unauthorized entity indirectly accesses
sensitive data (but not necessarily the data
contained in the communication) by rea-
soning from characteristics or by-products
of communications.
Intrusion: An unauthorized entity gains
access to sensitive data by circumventing a
system’s security protections.

Deception
A circumstance or event that
may result in an authorized
entity receiving false data and
believing it to be true.

Masquerade: An unauthorized entity gains
access to a system or performs a malicious
act by posing as an authorized entity.
Falsification: False data deceive an autho-
rized entity.
Repudiation: An entity deceives another
by falsely denying responsibility for an act.

Disruption
A circumstance or event that
interrupts or prevents the
correct operation of system
services and functions.

Incapacitation: Prevents or interrupts
system operation by disabling a system
component.
Corruption: Undesirably alters system
operation by adversely modifying system
functions or data.
Obstruction: A threat action that interrupts
delivery of system services by hindering
system operation.

Usurpation
A circumstance or event that
results in control of system
services or functions by an
unauthorized entity.

Misappropriation: An entity assumes
unauthorized logical or physical control of
a system resource.
Misuse: Causes a system component to
perform a function or service that is detri-
mental to system security.

Secure Computing18

Unauthorized disclosure is a threat to confidentiality. The
following types of attacks can result in this threat consequence:

• Exposure: This can be deliberate, as when an insider
intentionally releases sensitive information, such as
credit card numbers, to an outsider. It can also be the
result of a human, hardware, or software error, which
results in an entity gaining unauthorized knowledge of
sensitive data. There have been numerous instances of
this, such as universities accidentally posting student
confidential information on the Web.

• Interception: Interception is a common attack in the
context of communications. On a shared local area
network (LAN), such as a wireless LAN or a broadcast
Ethernet, any device attached to the LAN can receive
a copy of packets intended for another device. On the
Internet, a determined hacker can gain access to e-mail
traffic and other data transfers. All of these situations
create the potential for unauthorized access to data.

• Inference: An example of inference is known as traffic
analysis, in which an adversary is able to gain information
from observing the pattern of traffic on a network, such
as the amount of traffic between particular pairs of hosts
on the network. Another example is the inference of
detailed information from a database by a user who has
only limited access; this is accomplished by repeated
queries whose combined results enable inference.

• Intrusion: An example of intrusion is an adversary gaining
unauthorized access to sensitive data by overcoming the
system’s access control protections.

Deception is a threat to either system integrity or data integrity.
The following types of attacks can result in this threat consequence:

• Masquerade: One example of masquerade is an attempt
by an unauthorized user to gain access to a system by
posing as an authorized user; this could happen if the
unauthorized user has learned another user’s logon
ID and password. Another example is malicious logic,

Information Security 19

such as a Trojan horse, that appears to perform a useful
or desirable function but actually gains unauthorized
access to system resources or tricks a user into executing
other malicious logic.

• Falsification: This refers to the altering or replacing of
valid data or the introduction of false data into a file or
database. For example, a student may alter his or her
grades on a school database.

• Repudiation: In this case, a user either denies sending
data or a user denies receiving or possessing the data.

Disruption is a threat to availability or system integrity. The
following types of attacks can result in this threat consequence:

• Incapacitation: This is an attack on system availability.
This could occur as a result of physical destruction of or
damage to system hardware. More typically, malicious
software, such as Trojan horses, viruses, or worms, could
operate in such a way as to disable a system or some of
its services.

• Corruption: This is an attack on system integrity.
Malicious software in this context could operate in such
a way that system resources or services function in an
unintended manner. Or a user could gain unauthorized
access to a system and modify some of its functions. An
example of the latter is a user placing backdoor logic in
the system to provide subsequent access to a system and
its resources by other than the usual procedure.

• Obstruction: One way to obstruct system operation
is to interfere with communications by disabling
communication links or altering communication control
information. Another way is to overload the system
by placing excess burden on communication traffic or
processing resources.

Secure Computing20

Usurpation is a threat to system integrity. The following types of
attacks can result in this threat consequence:

• Misappropriation: This can include theft of service. An
example is a distributed denial of service attack, when
malicious software is installed on a number of hosts to be
used as platforms to launch traffic at a target host. In this
case, the malicious software makes unauthorized use of
processor and operating system resources.

• Misuse: Misuse can occur by means of either malicious
logic or a hacker that has gained unauthorized access to a
system. In either case, security functions can be disabled
or thwarted.

Threats and Assets

The assets of a computer system can be categorized as hardware,
software, data, and communication lines and networks. We briefly
describe these four categories and relate these to the concepts of
integrity, confidentiality, and availability introduced (see Figure 2
and Table 3).

Figure 2. Scope of Computer Security.

Information Security 21

Table 3. Computer and Network Assets, with Examples of Threats

Hardware

A major threat to computer system hardware is the threat to
availability. Hardware is the most vulnerable to attack and the least
susceptible to automated controls. Threats include accidental and
deliberate damage to equipment as well as theft. The proliferation
of personal computers and workstations and the widespread use
of LANs increase the potential for losses in this area. Theft of CD-
ROMs and DVDs can lead to loss of confidentiality. Physical and
administrative security measures are needed to deal with these
threats.

Software

Software includes the operating system, utilities, and application
programs. A key threat to software is an attack on availability.
Software, especially application software, is often easy to delete.
Software can also be altered or damaged to render it useless.
Careful software configuration management, which includes
making backups of the most recent version of software, can
maintain high availability. A more difficult problem to deal with is
software modification that results in a program that still functions
but that behaves differently than before, which is a threat to
integrity/authenticity. Computer viruses and related attacks fall

Secure Computing22

into this category. A final problem is protection against software
piracy. Although certain countermeasures are available, by and
large the problem of unauthorized copying of software has not
been solved.

Data

Hardware and software security are typically concerns of
computing center professionals or individual concerns of personal
computer users. A much more widespread problem is data
security, which involves files and other forms of data controlled
by individuals, groups, and business organizations. Security
concerns with respect to data are broad, encompassing availability,
secrecy, and integrity. In the case of availability, the concern is with
the destruction of data files, which can occur either accidentally or
maliciously.

The obvious concern with secrecy is the unauthorized reading of
data files or databases, and this area has been the subject of perhaps
more research and effort than any other area of computer security.
A less obvious threat to secrecy involves the analysis of data and
manifests itself in the use of so-called statistical databases, which
provide summary or aggregate information. Presumably, the
existence of aggregate information does not threaten the privacy of
the individuals involved. However, as the use of statistical databases
grows, there is an increasing potential for disclosure of personal
information. In essence, characteristics of constituent individuals
may be identified through careful analysis. For example, if one
table records the aggregate of the incomes of respondents A, B,
C, and D and another records the aggregate of the incomes of A,
B, C, D, and E, the difference between the two aggregates would
be the income of E. This problem is exacerbated by the increasing
desire to combine data sets. In many cases, matching several sets
of data for consistency at different levels of aggregation requires
access to individual units. Thus, the individual units, which are
the subject of privacy concerns, are available at various stages in
the processing of data sets.

Information Security 23

Finally, data integrity is a major concern in most installations.
Modifications to data files can have consequences ranging from
minor to disastrous.

1.2.4 Communication Lines and Networks

Network security attacks can be classified as passive attacks and
active attacks. A passive attack attempts to learn or make use of
information from the system but does not affect system resources.
An active attack attempts to alter system resources or affect their
operation. Passive attacks are in the nature of eavesdropping on,
or monitoring of, transmissions. The goal of the attacker is to
obtain information that is being transmitted. Two types of passive
attacks are the release of message contents and traffic analysis.
The release of message contents is easily understood. A telephone
conversation, an electronic mail message, and a transferred file
may contain sensitive or confidential information. We would
like to prevent an opponent from learning the contents of these
transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose
that we had a way of masking the contents of messages or other
information traffic so that opponents, even if they captured the
message, could not extract the information from the message.
The common technique for masking contents is encryption. If
we had encryption protection in place, an opponent might still
be able to observe the pattern of these messages. The opponent
could determine the location and identity of communicating hosts
and could observe the frequency and length of messages being
exchanged. This information might be useful in guessing the
nature of the communication that was taking place.

Passive attacks are very difficult to detect because they do not
involve any alteration of the data. Typically, the message traffic
is sent and received in an apparently normal fashion and neither
the sender nor receiver is aware that a third party has read the
messages or observed the traffic pattern. However, it is feasible
to prevent the success of these attacks, usually by means of

Secure Computing24

encryption. Thus, the emphasis in dealing with passive attacks is
on prevention rather than detection.

Active attacks involve some modification of the data stream or
the creation of a false stream and can be subdivided into four
categories: replay, masquerade, modification of messages, and
denial of service. Replay involves the passive capture of a data unit
and its subsequent retransmission to produce an unauthorized
effect. A masquerade takes place when one entity pretends to be a
different entity. A masquerade attack usually includes one of the
other forms of active attack. For example, authentication sequences
can be captured and replayed after a valid authentication sequence
has taken place, thus enabling an authorized entity with few
privileges to obtain extra privileges by impersonating an entity
that has those privileges.

Modification of messages simply means that some portion of
a legitimate message is altered, or that messages are delayed
or reordered, to produce an unauthorized effect. For example,
a message stating, “Allow John Smith to read confidential
file accounts” is modified to say, “Allow Fred Brown to read
confidential file accounts.”

The denial of service prevents or inhibits the normal use or
management of communication facilities. This attack may have a
specific target; for example, an entity may suppress all messages
directed to a particular destination (e.g., the security audit
service). Another form of service denial is the disruption of an
entire network, either by disabling the network or by overloading
it with messages so as to degrade performance.

Active attacks present the opposite characteristics of passive
attacks. Whereas passive attacks are difficult to detect, measures
are available to prevent their success. On the other hand, it is quite
difficult to prevent active attacks absolutely, because to do so
would require physical protection of all communication facilities
and paths at all times. Instead, the goal is to detect them and to
recover from any disruption or delays caused by them. Because
the detection has a deterrent effect, it may also contribute to
prevention.

Information Security 25

1.2.5 Security Functional Requirements

There are a number of ways of classifying and characterizing the
countermeasures that may be used to reduce vulnerabilities and
deal with threats to system assets. We view countermeasures in
terms of functional requirements, and we follow the classification
defined in FIPS 200 (Minimum Security Requirements
for Federal Information and Information Systems). This standard
enumerates 17 security-related areas with regard to protecting the
confidentiality, integrity, and availability of information systems
and the information processed, stored, and transmitted by those
systems. The areas are defined in Table 4.

The requirements listed in FIPS 200 encompass a wide range of
countermeasures to security vulnerabilities and threats. Roughly,
we can divide these countermeasures into two categories:
those that require computer security technical measures, either
hardware or software, or both; and those that are fundamentally
management issues.

Each of the functional areas may involve both computer security
technical measures and management measures. Functional areas
that primarily require computer security technical measures
include access control, identification and authentication, system
and communication protection, and system and information
integrity. Functional areas that primarily involve management
controls and procedures include awareness and training; audit
and accountability; certification, accreditation, and security
assessments; contingency planning; maintenance; physical and
environmental protection; planning; personnel security; risk
assessment; and systems and services acquisition. Functional
areas that overlap computer security technical measures and
management controls include configuration management,
incident response, and media protection.

Note that the majority of the functional requirements areas in
FIPS 200 are either primarily issues of management or at least
have a significant management component, as opposed to purely
software or hardware solutions. But as one computer security

Secure Computing26

expert observed, “If you think technology can solve your security
problems, then you don’t understand the problems and you don’t
technology”.

Table 4. Security Requirements

Access	Control: Limit information system access to authorized users, processes acting
on behalf of authorized users, or devices (including other information systems) and to
the types of transactions and functions that authorized users are permitted to exercise.
Awareness	and	Training: (i) Ensure that managers and users of organizational infor-
mation systems are made aware of the security risks associated with their activities
and of the applicable laws, regulation, and policies related to the security of organi-
zational information systems; and (ii) ensure that personnel are adequately trained to
carry out their assigned information security-related duties and responsibilities.
Audit	 and	Accountability: (i) Create, protect, and retain information system audit
records to the extent needed to enable the monitoring, analysis, investigation, and
reporting of unlawful, unauthorized, or inappropriate information system activity;
and (ii) ensure that the actions of individual information system users can be uniquely
traced to those users so they can be held accountable for their actions.
Certification,	Accreditation,	and	Security	Assessments: (i) Periodically assess the se-
curity controls in organizational information systems to determine if the controls are
effective in their application; (ii) develop and implement plans of action designed to cor-
rect deficiencies and reduce or eliminate vulnerabilities in organizational information
systems; (iii) authorize the operation of organizational information systems and any as-
sociated information system connections; and (iv) monitor information system security
controls on an ongoing basis to ensure the continued effectiveness of the controls.
Configuration	Management: (i) Establish and maintain baseline configurations and
inventories of organizational information systems (including hardware, software,
firmware, and documentation) throughout the respective system development life
cycles; and (ii) establish and enforce security configuration settings for information
technology products employed in organizational information systems.
Contingency	Planning: Establish, maintain, and implement plans for emergency re-
sponse, backup operations, and postdisaster recovery for organizational information
systems to ensure the availability of critical information resources and continuity of
operations in emergency situations.
Identification and Authentication: Identify information system users, processes acting
on behalf of users, or devices, and authenticate (or verify) the identities of those users,
processes, or devices, as a prerequisite to allowing access to organizational informa-
tion systems.
Incident	Response: (i) Establish an operational incident-handling capability for orga-
nizational information systems that includes adequate preparation, detection, analy-
sis, containment, recovery, and user-response activities; and (ii) track, document, and
report incidents to appropriate organizational officials and/or authorities.
Maintenance: (i) Perform periodic and timely maintenance on organizational infor-
mation systems; and (ii) provide effective controls on the tools, techniques, mecha-
nisms, and personnel used to conduct information system maintenance.
Media	Protection: (i) Protect information system media, both paper and digital; (ii)
limit access to information on information system media to authorized users; and
(iii) sanitize or destroy information system media before disposal or release for reuse.

Information Security 27

Physical	and	Environmental	Protection: (i) Limit physical access to information sys-
tems, equipment, and the respective operating environments to authorized individu-
als; (ii) protect the physical plant and support infrastructure for information systems;
(iii) provide supporting utilities for information systems; (iv) protect information
systems against environmental hazards; and (v) provide appropriate environmental
controls in facilities containing information systems.
Planning: Develop, document, periodically update, and implement security plans
for organizational information systems that describe the security controls in place or
planned for the information systems and the rules of behavior for individuals access-
ing the information systems.
Personnel	Security: (i) Ensure that individuals occupying positions of responsibility
within organizations (including third-party service providers) are trustworthy and
meet established security criteria for those positions; (ii) ensure that organizational in-
formation and information systems are protected during and after personnel actions
such as terminations and transfers; and (iii) employ formal sanctions for personnel
failing to comply with organizational security policies and procedures.
Risk	Assessment: Periodically assess the risk to organizational operations (including
mission, functions, image, or reputation), organizational assets, and individuals, re-
sulting from the operation of organizational information systems and the associated
processing, storage, or transmission of organizational information.
Systems	and	Services	Acquisition: (i) Allocate sufficient resources to adequately pro-
tect organizational information systems; (ii) employ system development life cycle
processes that incorporate information security considerations; (iii) employ software
usage and installation restrictions; and (iv) ensure that thirdparty providers employ
adequate security measures to protect information, applications, and/or services out-
sourced from the organization.
System	and	Communications	Protection: (i) Monitor, control, and protect organiza-
tional communications (i.e., information transmitted or received by organizational
information systems) at the external boundaries and key internal boundaries of the
information systems; and (ii) employ architectural designs, software development
techniques, and systems engineering principles that promote effective information
security within organizational information systems.
System	and	Information	Integrity: (i) Identify, report, and correct information and
information system flaws in a timely manner; (ii) provide protection from malicious
code at appropriate locations within organizational information systems; and (iii)
monitor information system security alerts and advisories and take appropriate ac-
tions in response.

1.3 FUNDAMENTAL SECURITY DESIGN
PRINCIPLES

Despite years of research and development, it has not been possible
to develop security design and implementation techniques that
systematically exclude security flaws and prevent all unauthorized

Secure Computing28

actions. In the absence of such foolproof techniques, it is useful to
have a set of widely agreed design principles that can guide the
development of protection mechanisms. The National Centers of
Academic Excellence in Information Assurance/Cyber Defense,
which is jointly sponsored by the U.S. National Security Agency
and the U. S. Department of Homeland Security, list the following
as fundamental security design principles:

• Economy of mechanism
• Fail-safe defaults
• Complete mediation
• Open design
• Separation of privilege
• Least privilege
• Least common mechanism
• Psychological acceptability
• Isolation
• Encapsulation
• Modularity
• Layering
• Least astonishment

Economy	of	mechanism means that the design of security measures
embodied in both hardware and software should be as simple and
small as possible. The motivation for this principle is that relatively
simple, small design is easier to test and verify thoroughly. With
a complex design, there are many more opportunities for an
adversary to discover subtle weaknesses to exploit that may be
difficult to spot ahead of time. The more complex the mechanism,
the more likely it is to possess exploitable flaws. Simple mechanisms
tend to have fewer exploitable flaws and require less maintenance.
Furthermore, because configuration management issues are
simplified, updating or replacing a simple mechanism becomes a
less intensive process. In practice, this is perhaps the most difficult
principle to honor. There is a constant demand for new features
in both hardware and software, complicating the security design

Information Security 29

task. The best that can be done is to keep this principle in mind
during system design to try to eliminate unnecessary complexity.

Fail-safe	default means that access decisions should be based on
permission rather than exclusion. That is, the default situation
is lack of access, and the protection scheme identifies conditions
under which access is permitted. This approach exhibits a better
failure mode than the alternative approach, where the default is to
permit access. A design or implementation mistake in a mechanism
that gives explicit permission tends to fail by refusing permission,
a safe situation that can be quickly detected. On the other hand, a
design or implementation mistake in a mechanism that explicitly
excludes access tends to fail by allowing access, a failure that may
long go unnoticed in normal use. For example, most file access
systems work on this principle and virtually all protected services
on client/server systems work this way.

Complete	 mediation means that every access must be checked
against the access control mechanism. Systems should not rely
on access decisions retrieved from a cache. In a system designed
to operate continuously, this principle requires that, if access
decisions are remembered for future use, careful consideration be
given to how changes in authority are propagated into such local
memories. File access systems appear to provide an example of a
system that complies with this principle. However, typically, once
a user has opened a file, no check is made to see of permissions
change. To fully implement complete mediation, every time a
user reads a field or record in a file, or a data item in a database,
the system must exercise access control. This resource-intensive
approach is rarely used.

Open	design means that the design of a security mechanism should
be open rather than secret. For example, although encryption keys
must be secret, encryption algorithms should be open to public
scrutiny. The algorithms can then be reviewed by many experts,
and users can therefore have high confidence in them. This is
the philosophy behind the National Institute of Standards and
Technology (NIST) program of standardizing encryption and

Secure Computing30

hash algorithms, and has led to the widespread adoption of NIST-
approved algorithms.

Separation	 of	 privilege is defined in [SALT75] as a practice in
which multiple privilege attributes are required to achieve access
to a restricted resource. A good example of this is multifactor user
authentication, which requires the use of multiple techniques,
such as a password and a smart card, to authorize a user. The
term is also now applied to any technique in which a program is
divided into parts that are limited to the specific privileges they
require in order to perform a specific task. This is used to mitigate
the potential damage of a computer security attack. One example
of this latter interpretation of the principle is removing high
privilege operations to another process and running that process
with the higher privileges required to perform its tasks. Day-to-
day interfaces are executed in a lower privileged process.

Least	 privilege means that every process and every user of the
system should operate using the least set of privileges necessary to
perform the task. A good example of the use of this principle is role-
based access control. The system security policy can identify and
define the various roles of users or processes. Each role is assigned
only those permissions needed to perform its functions. Each
permission specifies a permitted access to a particular resource
(such as read and write access to a specified file or directory, and
connect access to a given host and port). Unless permission is
granted explicitly, the user or process should not be able to access
the protected resource. More generally, any access control system
should allow each user only the privileges that are authorized
for that user. There is also a temporal aspect to the least privilege
principle. For example, system programs or administrators who
have special privileges should have those privileges only when
necessary; when they are doing ordinary activities the privileges
should be withdrawn. Leaving them in place just opens the door
to accidents.

Least	common	mechanism means that the design should minimize
the functions shared by different users, providing mutual
security. This principle helps reduce the number of unintended

Information Security 31

communication paths and reduces the amount of hardware and
software on which all users depend, thus making it easier to verify
if there are any undesirable security implications.

Psychological	acceptability implies that the security mechanisms
should not interfere unduly with the work of users, while at the
same time meeting the needs of those who authorize access.
If security mechanisms hinder the usability or accessibility of
resources, users may opt to turn off those mechanisms. Where
possible, security mechanisms should be transparent to the users
of the system or at most introduce minimal obstruction. In addition
to not being intrusive or burdensome, security procedures must
reflect the user’s mental model of protection. If the protection
procedures do not make sense to the user or if the user must
translate his image of protection into a substantially different
protocol, the user is likely to make errors.

Isolation is a principle that applies in three contexts. First, public
access systems should be isolated from critical resources (data,
processes, etc.) to prevent disclosure or tampering. In cases where
the sensitivity or criticality of the information is high, organizations
may want to limit the number of systems on which that data are
stored and isolate them, either physically or logically. Physical
isolation may include ensuring that no physical connection exists
between an organization’s public access information resources and
an organization’s critical information. When implementing logical
isolation solutions, layers of security services and mechanisms
should be established between public systems and secure systems
responsible for protecting critical resources. Second, the processes
and files of individual users should be isolated from one another
except where it is explicitly desired. All modern operating systems
provide facilities for such isolation, so that individual users have
separate, isolated process space, memory space, and file space,
with protections for preventing unauthorized access. And finally,
security mechanisms should be isolated in the sense of preventing
access to those mechanisms. For example, logical access control
may provide a means of isolating cryptographic software from
other parts of the host system and for protecting cryptographic

Secure Computing32

software from tampering and the keys from replacement or
disclosure.

Encapsulation can be viewed as a specific form of isolation
based on object oriented functionality. Protection is provided by
encapsulating a collection of procedures and data objects in a
domain of its own so that the internal structure of a data object is
accessible only to the procedures of the protected subsystem and
the procedures may be called only at designated domain entry
points.

Modularity in the context of security refers both to the
development of security functions as separate, protected modules
and to the use of a modular architecture for mechanism design
and implementation. With respect to the use of separate security
modules, the design goal here is to provide common security
functions and services, such as cryptographic functions, as common
modules. For example, numerous protocols and applications make
use of cryptographic functions. Rather than implementing such
functions in each protocol or application, a more secure design is
provided by developing a common cryptographic module that can
be invoked by numerous protocols and applications. The design
and implementation effort can then focus on the secure design
and implementation of a single cryptographic module, including
mechanisms to protect the module from tampering. With respect
to the use of a modular architecture, each security mechanism
should be able to support migration to new technology or upgrade
of new features without requiring an entire system redesign. The
security design should be modular so that individual parts of
the security design can be upgraded without the requirement to
modify the entire system.

Layering	 refers to the use of multiple, overlapping protection
approaches addressing the people, technology, and operational
aspects of information systems. By using multiple, overlapping
protection approaches, the failure or circumvention of any
individual protection approach will not leave the system
unprotected.

Information Security 33

Least	 astonishment means that a program or user interface
should always respond in the way that is least likely to astonish
the user. For example, the mechanism for authorization should
be transparent enough to a user that the user has a good intuitive
understanding of how the security goals map to the provided
security mechanism.

1.3.1 Attack Surfaces and Attack Trees

We provided an overview of the spectrum of security threats and
attacks facing computer and network systems. We elaborate on
two concepts that are useful in evaluating and classifying threats:
attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable
vulnerabilities in a system. Examples of attack surfaces are the
following:

• Open ports on outward facing Web and other servers,
and code listening on those ports

• Services available on the inside of a firewall
• Code that processes incoming data, email, XML, office

documents, and industry specific custom data exchange
formats

• Interfaces, SQL, and Web forms
• An employee with access to sensitive information

vulnerable to a social engineering attack

Attack surfaces can be categorized in the following way:
• Network attack surface: This category refers to

vulnerabilities over an enterprise network, wide-area
network, or the Internet. Included in this category are
network protocol vulnerabilities, such as those used for
a denial-of-service attack, disruption of communications
links, and various forms of intruder attacks.

Secure Computing34

• Software attack surface: This refers to vulnerabilities in
application, utility, or operating system code. A particular
focus in this category is Web server software.

• Human attack surface: This category refers to
vulnerabilities created by personnel or outsiders, such
as social engineering, human error, and trusted insiders.

An attack surface analysis is a useful technique for assessing the
scale and severity of threats to a system. A systematic analysis of
points of vulnerability makes developers and security analysts
aware of where security mechanisms are required. Once an
attack surface is defined, designers may be able to find ways to
make the surface smaller, thus making the task of the adversary
more difficult. The attack surface also provides guidance on
setting priorities for testing, strengthening security measures, or
modifying the service or application.

As illustrated in Figure 3, the use of layering, or defense in depth,
and attack surface reduction complement each other in mitigating
security risk.

Figure 3. Defense in Depth and Attack Surface.

Information Security 35

Attack Trees

An attack tree is a branching, hierarchical data structure that
represents a set of potential techniques for exploiting security
vulnerabilities. The security incident that is the goal of the attack
is represented as the root node of the tree, and the ways that an
attacker could reach that goal are iteratively and incrementally
represented as branches and subnodes of the tree. Each subnode
defines a subgoal, and each subgoal may have its own set of
further subgoals, etc. The final nodes on the paths outward from
the root, i.e., the leaf nodes, represent different ways to initiate
an attack. Each node other than a leaf is either an AND-node or
an OR-node. To achieve the goal represented by an AND-node,
the subgoals represented by all of that node’s subnodes must be
achieved; and for an OR-node, at least one of the subgoals must
be achieved. Branches can be labeled with values representing
difficulty, cost, or other attack attributes, so that alternative attacks
can be compared.

The motivation for the use of attack trees is to effectively exploit
the information available on attack patterns. Organizations
such as CERT publish security advisories that have enabled the
development of a body of knowledge about both general attack
strategies and specific attack patterns. Security analysts can use
the attack tree to document security attacks in a structured form
that reveals key vulnerabilities. The attack tree can guide both the
design of systems and applications, and the choice and strength of
countermeasures.

Figure 4, is an example of an attack tree analysis for an Internet
banking authentication application. The root of the tree is the
objective of the attacker, which is to compromise a user’s account.
The shaded boxes on the tree are the leaf nodes, which represent
events that comprise the attacks. The white boxes are categories
which consist of one or more specific attack events (leaf nodes).
Note that in this tree, all the nodes other than leaf nodes are OR-
nodes. The analysis used to generate this tree considered the three
components involved in authentication:

Secure Computing36

• User terminal and user (UT/U): These attacks target
the user equipment, including the tokens that may
be involved, such as smartcards or other password
generators, as well as the actions of the user.

• Communications channel (CC): This type of attack
focuses on communication links.

• Internet banking server (IBS): These types of attacks are
offline attack against the servers that host the Internet
banking application.

Figure 4. An Attack Tree for Internet Banking Authentication.

Five overall attack strategies can be identified, each of which
exploits one or more of the three components. The five strategies
are as follows:

• User credential compromise: This strategy can be used
against many elements of the attack surface. There are
procedural attacks, such as monitoring a user’s action to
observe a PIN or other credential, or theft of the user’s

Information Security 37

token or handwritten notes. An adversary may also
compromise token information using a variety of token
attack tools, such as hacking the smartcard or using a
brute force approach to guess the PIN. Another possible
strategy is to embed malicious software to compromise
the user’s login and password. An adversary may
also attempt to obtain credential information via the
communication channel (sniffing). Finally, an adversary
may use various means to engage in communication
with the target user, as shown in Figure 4.

• Injection of commands: In this type of attack, the attacker
is able to intercept communication between the UT
and the IBS. Various schemes can be used to be able
to impersonate the valid user and so gain access to the
banking system.

• User credential guessing: It is reported in [HILT06] that
brute force attacks against some banking authentication
schemes are feasible by sending random usernames and
passwords. The attack mechanism is based on distributed
zombie personal computers, hosting automated
programs for username- or password-based calculation.

• Security policy violation: For example, violating the
bank’s security policy in combination with weak access
control and logging mechanisms, an employee may cause
an internal security incident and expose a customer’s
account.

• Use of known authenticated session: This type of attack
persuades or forces the user to connect to the IBS with
a preset session ID. Once the user authenticates to the
server, the attacker may utilize the known session ID to
send packets to the IBS, spoofing the user’s identity.

Figure 4 provides a thorough view of the different types of attacks
on an Internet banking authentication application. Using this tree
as a starting point, security analysts can assess the risk of each
attack and, using the design principles outlined in the preceding
section, design a comprehensive security facility.

Secure Computing38

1.4 COMPUTER SECURITY STRATEGY

We conclude this chapter with a brief look at the overall strategy
for providing computer security. Suggests that a comprehensive
security strategy involves three aspects:

• Specification/policy: What is the security scheme
supposed to do?

• Implementation/mechanisms: How does it do it?
• Correctness/assurance: Does it really work?

1.4.1 Security Policy

The first step in devising security services and mechanisms is to
develop a security policy. Those involved with computer security
use the term security policy in various ways. At the least, a security
policy is an informal description of desired system behavior.
Such informal policies may reference requirements for security,
integrity, and availability. More usefully, a security policy is a
formal statement of rules and practices that specify or regulate
how a system or organization provides security services to protect
sensitive and critical system resources. Such a formal security
policy lends itself to being enforced by the system’s technical
controls as well as its management and operational controls.

In developing a security policy, a security manager needs to
consider the following factors:

• The value of the assets being protected
• The vulnerabilities of the system
• Potential threats and the likelihood of attacks

Further, the manager must consider the following trade-offs:
• Ease of use versus security: Virtually all security

measures involve some penalty in the area of ease of
use. The following are some examples. Access control
mechanisms require users to remember passwords and
perhaps perform other access control actions. Firewalls

Information Security 39

and other network security measures may reduce
available transmission capacity or slow response time.
Virus-checking software reduces available processing
power and introduces the possibility of system crashes
or malfunctions due to improper interaction between the
security software and the operating system.

• Cost of security versus cost of failure and recovery: In
addition to ease of use and performance costs, there are
direct monetary costs in implementing and maintaining
security measures. All of these costs must be balanced
against the cost of security failure and recovery if certain
security measures are lacking. The cost of security failure
and recovery must take into account not only the value
of the assets being protected and the damages resulting
from a security violation, but also the risk, which is
the probability that a particular threat will exploit a
particular vulnerability with a particular harmful result.

1.4.2 Security Implementation

Security implementation involves four complementary courses of
action:

• Prevention: An ideal security scheme is one in which
no attack is successful. Although this is not practical
in all cases, there is a wide range of threats in which
prevention is a reasonable goal. For example, consider
the transmission of encrypted data. If a secure encryption
algorithm is used, and if measures are in place to prevent
unauthorized access to encryption keys, then attacks on
confidentiality of the transmitted data will be prevented.

• Detection: In a number of cases, absolute protection is not
feasible, but it is practical to detect security attacks. For
example, there are intrusion detection systems designed
to detect the presence of unauthorized individuals
logged onto a system. Another example is detection
of a denial of service attack, in which communications

Secure Computing40

or processing resources are consumed so that they are
unavailable to legitimate users.

• Response: If security mechanisms detect an ongoing
attack, such as a denial of service attack, the system may
be able to respond in such a way as to halt the attack and
prevent further damage.

• Recovery: An example of recovery is the use of backup
systems, so that if data integrity is compromised, a prior,
correct copy of the data can be reloaded.

1.4.3 Assurance and Evaluation

Those who are “consumers” of computer security services and
mechanisms (e.g., system managers, vendors, customers, and end
users) desire a belief that the security measures in place work as
intended. That is, security consumers want to feel that the security
infrastructure of their systems meet security requirements and
enforce security policies. These considerations bring us to the
concepts of assurance and evaluation.

Assurance as the degree of confidence one has that the security
measures, both technical and operational, work as intended
to protect the system and the information it processes. This
encompasses both system design and system implementation.
Thus, assurance deals with the questions, “Does the security
system design meet its requirements?” and “Does the security
system implementation meet its specifications?” Note that
assurance is expressed as a degree of confidence, not in terms of a
formal proof that a design or implementation is correct. The state
of the art in proving designs and implementations is such that it
is not possible to provide absolute proof. Much work has been
done in developing formal models that define requirements and
characterize designs and implementations, together with logical
and mathematical techniques for addressing these issues. But
assurance is still a matter of degree.

Evaluation is the process of examining a computer product or
system with respect to certain criteria. Evaluation involves testing

Information Security 41

and may also involve formal analytic or mathematical techniques.
The central thrust of work in this area is the development of
evaluation criteria that can be applied to any security system
(encompassing security services and mechanisms) and that are
broadly supported for making product comparisons.

Secure Computing42

REFERENCES

1. A.V.R. Mayuri (2012), “Phishing Detection based on Visual-
Similarity” Conference Proceedings from “International
Conference on Network and Cyber Security - 2012” SRK
Institute of Technology, Vijayawada, A.P.

2. Amit Sharma (2010), “Cyber Wars and National Security
- A paradigm shift from Means to Ends” Proceedings from
Conference on Cyber Security, “Emerging Cyber Threats &
Challenges, (2010)” CII, Confederation of Indian Industry,
Chennai.

3. Anderson, D., Reimers, K. and Barretto, C. (March 2014).
Post-Secondary Education Network Security: Results of
Addressing the End-User Challenge.publication date Mar
11, 2014 publication description INTED2014 (International
Technology, Education, and Development Conference)

4. B., McDermott, E., & Geer, D. (2001). Information security
is information risk management. In Proceedings of the 2001
Workshop on New Security Paradigms NSPW ‘01, (pp. 97 –
104). ACM.

5. B.G.Gupta (2010), “Security Convergence – Physical &
Information” Proceedings from Conference on Cyber
Security, “Emerging Cyber Threats & Challenges, (2010)” CII,
Confederation of Indian Industry, Chennai.

6. Boritz, J. Efrim (2005). “IS Practitioners’ Views on Core
Concepts of Information Integrity”. International Journal of
Accounting Information Systems. Elsevier. 6 (4): 260–279.

7. Caldwell, Tracey (12 February 2013). “Risky business: why
security awareness is crucial for employees”. The Guardian.
Retrieved 8 October 2018.

8. Cmde Ashok Sawhney, (2010), “Cyber war in 21st Century -
Emerging Security Challenge”, Proceedings from Conference
on Cyber Security, “Emerging Cyber Threats & Challenges,
(2010)” CII, Confederation of Indian Industry, Chennai.

Information Security 43

9. Computer Security and Mobile Security Challenges.
researchgate.net. 3 December 2015. Archived from the original
on 12 October 2016. Retrieved 4 August 2016.

10. Hemavathy (2010), “Emerging Cyber Threats and Counter
Measures for Protecting Defense Network” Proceedings from
Conference on Cyber Security, “Emerging Cyber Threats &
Challenges, (2010)” CII, Confederation of Indian Industry,
Chennai.

11. James Greene (2012). “Intel Trusted Execution Technology:
White Paper”. Intel Corporation. Archived from the original
on 11 June 2014. Retrieved 18 December 2013.

12. Krutz, Ronald L.; Russell Dean Vines (2003). The CISSP Prep
Guide (Gold ed.). Indianapolis, IN: Wiley.

13. Layton, Timothy P. (2007). Information Security: Design,
Implementation, Measurement, and Compliance. Boca Raton,
FL: Auerbach publications.

14. Manasi Desai, Dharam Padia (2011) “Security Problems in
Cloud Computing” Proceedings of ‘‘ICT4U‟ – 46th National
convention, Computer Society of India, Ahmedabad.

15. Peltier, Thomas R. (2002). Information Security Policies,
Procedures, and Standards: guidelines for effective
information security management. Boca Raton, FL: Auerbach
publications.

16. Pipkin, D. (2000). Information security: Protecting the global
enterprise. New York: Hewlett-Packard Company.

17. Schlienger, Thomas; Teufel, Stephanie (December 2003).
“Information security culture - from analysis to change”.
South African Computer Society (SAICSIT). 2003 (31): 46–52.

18. Stevens, Tim (11 June 2018). “Global Cybersecurity: New
Directions in Theory and Methods” (PDF). Politics and
Governance. 6 (2): 1–4.

19. Studies prove once again that users are the weakest link in
the security chain. CSO Online. 22 January 2014. Retrieved 8
October 2018.

INTRODUCTION

Cryptography is a method of protecting information and
communications through the use of codes, so that only those
for whom the information is intended can read and process it.
The prefix “crypt-” means “hidden” or “vault” -- and the suffix
“-graphy” stands for “writing.”

In computer science, cryptography refers to secure information and
communication techniques derived from mathematical concepts
and a set of rule-based calculations called algorithms, to transform
messages in ways that are hard to decipher. These deterministic
algorithms are used for cryptographic key generation, digital
signing, verification to protect data privacy, web browsing on the
internet, and confidential communications such as credit card
transactions and email.

2
CRYPTOGRAPHY

C
H

A
PT

ER

Secure Computing46

2.1 MEANING OF CRYPTOGRAPHY

Cryptography is the study of secure communications techniques
that allow only the sender and intended recipient of a message to
view its contents. The term is derived from the Greek word kryptos,
which means hidden. It is closely associated to encryption, which is
the act of scrambling ordinary text into what’s known as ciphertext
and then back again upon arrival. In addition, cryptography also
covers the obfuscation of information in images using techniques
such as microdots or merging.

Cryptography is the method of transmitting secured data and
communications via few codes so that only the destined person
knows about the actual information that is transmitted. This form
of process intercepts unauthorized accessibility for the data. So,
in clear the name itself indicates that “crypt” refers to “hidden”
to “writing”. Encoding of information in cryptography follows
mathematical hypotheses and few calculations described as
algorithms. The encoded data is transmitted so that it makes it
difficult to find the original data. These sets of rules are utilized
in the procedures of digital signing, authentication to secure
data, cryptographic key development and to safeguard all your
financial transactions. Mostly, cryptography is followed by the
organizations to go with the objectives of:

Privacy – The transmitted data should not be known by external
parties except for the intended individual.

Cryptography 47

Reliability – the data cannot be modified in storage or transfer
between the sender and the destined receiver having no kind of
modification.

Non-repudiation – Once the data is transmitted, the sender has
no chance to deny it in the later phases.

Authentication – Both the sender and receiver need to
circumstantiate their own identities about the transmitted and
received data.

2.1.1 History of Cryptography

This is all very abstract, and a good way to understand the
specifics of what we’re talking about is to look at one of the
earliest known forms of cryptography. It’s known as the Caesar
cipher,	 because Julius Caesar used it for his confidential
correspondence; as his biographer Suetonius described it, “if he
had anything confidential to say, he wrote it in cipher, that is, by
so changing the order of the letters of the alphabet ... If anyone
wishes to decipher these, and get at their meaning, he must
substitute the fourth letter of the alphabet, namely D, for A, and
so with the others.”

Secure Computing48

Suetonius’s description can be broken down into the two
cryptographic elements we’ve discussed, the algorithm and the
key. The algorithm here is simple: each letter is replaced by another
letter from later in the alphabet. The key is how many letters later
in the alphabet you need to go to create your ciphertext. It’s three in
the version of the cipher Suetonius describes, but obviously other
variations are possible — with a key of four, A would become E,
for instance.

A few things should be clear from this example. Encryption like
this offers a fairly simple way to secretly send any message you
like. Contrast that with a system of code phrases where, say, “Let’s
order pizza” means “I’m going to invade Gaul.”

 To translate that sort of code, people at both ends of the
communication chain would need a book of code phrases, and
you’d have no way to encode new phrases you hadn’t thought of
in advance. With the Caesar cipher, you can encrypt any message
you can think of. The tricky part is that everyone communicating
needs to know the algorithm and the key in advance, though it’s
much easier to safely pass on and keep that information than it
would be with a complex code book.

The Caesar cipher is what’s known as a substitution cipher, because
each letter is substituted with another one; other variations on
this, then, would substitute letter blocks or whole words. For most
of history, cryptography consisted of various substitution ciphers
deployed to keep government and military communications
secure.

Medieval Arab mathematicians pushed the science forward,
particularly the art of decryption — once researchers realized that
certain letters in a given language are more common than others,
it becomes easier to recognize patterns, for instance.

But most pre-modern encryption is incredibly simple by
modern standards, for the obvious reason that, before the
advent of computers, it was difficult to perform mathematical
transformations quickly enough to make encryption or decryption
worthwhile.

Cryptography 49

In fact, the development of computers and advances in
cryptography went hand in hand. Charles Babbage, whose idea
for the Difference Engine presaged modern computers, was
also interested in cryptography. During World War II, the Germans
used the electromechanical Enigma machine to encrypt messages
— and, famously, Alan Turing led a team in Britain that developed
a similar machine to break the code, in the process laying some of
the groundwork for the first modern computers. Cryptography
got radically more complex as computers became available, but
remained the province of spies and generals for several more
decades. However, that began to change in the 1960s.

2.1.2 Types of Cryptography

Cryptography is further classified into three different categories:
• Symmetric Key Cryptography (Private/Secret Key

Cryptography)
• Asymmetric Key Cryptography (Public Key

Cryptography)
• Hash Function

Symmetric Key Cryptography

Symmetric key cryptography is a type of cryptography in which
the single common key is used by both sender and receiver for
the purpose of encryption and decryption of a message. This
system is also called private or secret key cryptography and AES
(Advanced Encryption System) is the most widely uses symmetric
key cryptography.

The symmetric key system has one major drawback that the two
parties must somehow exchange the key in a secure way as there
is only one single key for encryption as well as decryption process.

Types: AES (Advanced Encryption Standard), DES, Triple DES,
RC2, RC4, RC5, IDEA, Blowfish, Stream cipher, Block cipher, etc.
are the types of symmetric key cryptography.

Secure Computing50

Asymmetric Key Cryptography

Asymmetric Key Cryptography is completely different and a
more secure approach than symmetric key cryptography. In this
system, every user uses two keys or a pair of keys (private key and
public key) for encryption and decryption process. Private key is
kept as a secret with every user and public key is distributed over
the network so if anyone wants to send message to any user can
use those public keys.

Either of the key can be used to encrypt the message and the one
left is used for decryption purpose. Asymmetric key cryptography
is also known as public key cryptography and is more secure
than symmetric key. RSA is the most popular and widely used
asymmetric algorithm.

Types: RSA, DSA, PKCs, Elliptic Curve techniques, etc. are the
common types of asymmetric key cryptography.

Cryptography 51

Hash Function

A Hash function is a cryptography algorithm that takes input of
arbitrary length and gives the output in fixed length. The hash
function is also considered as a mathematical equation that takes
seed (numeric input) and produce the output that is called hash
or message digest. This system operates in one-way manner and
does not require any key. Also, it is considered as the building
blocks of modern cryptography.

The hash function works in a way that it operates on two blocks
of fixed length binary data and then generate a hash code. There
are different rounds of hashing functions and each round takes an
input of combination of most recent block and the output of the
last round.

Types: Some popular hash functions are Message Digest 5 (MD5),
SHA (Secure Hash Algorithm), RIPEMD, and Whirlpool. MD5 is
the most commonly used hash function to encrypt and protect
your passwords and private data.

2.2 PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography is a radical departure from all that
has gone before. Right up to modern times all cryptographic
systems have been based on the elementary tools of substitution
and permutation. However, public-key algorithms are based on
mathematical functions and are asymmetric in nature, involving
the use of two keys, as opposed to conventional single key
encryption. Several misconceptions are held about p-k:

Secure Computing52

1. That p-k encryption is more secure from cryptanalysis
than conventional encryption. In fact the security of any
system depends on key length and the computational
work involved in breaking the cipher.

2. That p-k encryption has superseded single key encryption. This
is unlikely due to the increased processing power required.

3. That key management is trivial with public key
cryptography, this is not correct.

2.2.1 Principles of Public-Key Cryptosystems

The concept of P-K evolved from an attempt to solve two problems,
key distribution and the development of digital signatures. In
1976 Whitfield Diffie and Martin Hellman achieved great success
in developing the conceptual framework. For conventional
encryption the same key is used for encryption and decryption.
This is not a necessary condition. Instead it is possible to develop
a cryptographic system that relies on one key for encryption and
a different but related key for decryption. Furthermore these
algorithms have the following important characteristic:

• It is computationally infeasible to determine the
decryption key given only knowledge of the algorithm
and the encryption key.

In addition, some algorithms such as RSA, also exhibits the
following characteristics:

• Either of the two related keys can be used for encryption,
with the other used for decryption.

1. Each system generates a pair of keys.
2. Each system publishes its encryption key (public key)

keeping its companion key private.
3. If A wishes to send a message to B it encrypts the message

using B’s public key.
4. When B receives the message, it decrypts the message

using its private key. No one else can decrypt the message
because only B knows its private key.

Cryptography 53

Figure 1: Public Key Cryptography.

Considering P-K in more detail we have a source A that produces
plaintext X destined for B (figure 2). B generates a pair of keys KUb
(a public key) and KRb (a private key). With X and KUb as inputs,
A forms the cipher text Y:

The intended receiver B is able to invert the transformation with
his private key:

Figure 2: Public Key Cryptography: Secrecy.

Authentication

As mentioned, either key may be used for encryption with the
other used for subsequent decryption. This facilitates a different

Secure Computing54

form of scheme as shown in figure 3. In this case A prepares a
message to B using his private key to encrypt and B can decrypt it
using A’s public key.

As the message was prepared using A’s private key it could only
have come from A therefore the entire message serves as a digital
signature. It should be noted that this scheme does not provide
confidentiality because everyone has access to A’s public key. Also
the scheme is not efficient because B must maintain/store both the
cipher text (as proof of authenticity) and the decoded plaintext (for
practical use of the document). A more efficient way of achieving
the same result is to encrypt a small block of bits that are a function
of the document. This block, called an authenticator, must have
the property that it is infeasible to change the document without
changing the authenticator. If the authenticator is encrypted using
the senders

Figure 3: Public key cryptography: authentication.

Confidentiality and Authentication If both are required; the double
use of the public key scheme (figure 4) facilitates this. Here

Cryptography 55

In this case the message is first encrypted using the sender’s private
key, providing the digital signature. Then a second encryption
is performed using the receiver’s public key, which delivers
confidentiality. The disadvantage with this scheme is that the
public key algorithm which is complex must be used four times.

2.2.2 Applications for P-K Cryptosystems

In broad terms, we can classify the use of public-key cryptosystems
into three categories:

• Encryption/decryption: where the sender encrypts the
message with the receivers public key.

• Digital signature: where the sender “signs” a message
with his private key.

• Key exchange: several approaches later.

Figure 4: Public key cryptography: secrecy and authentication.

2.2.3 Requirements of the Algorithm

The requirements of any P-K system:
1. It is computationally easy for party B to generate a key

pair (public (KU) and private (KR)).

Secure Computing56

2. It is computationally easy for sender A knowing KUb
and the message to be encrypted to generate the
corresponding cipher text .

3. It is computationally easy for the receiver B to decrypt
the resulting ciphertext using his private key (KRb) to
recover the original message. .

4. It is computationally infeasible for an opponent, knowing
the public key KUb, to determine the private key KRb.

5. It is computationally infeasible for an opponent, knowing
KUb and C to recover the plaintext message M.

6. A sixth requirement that, although useful, is not
necessary for all public-key applications - the encryption
and decryption can be applied in either order:

These are formidable requirements as is evidenced by the fact that
only one algorithm (RSA) has received widespread acceptance
in over 20 years. The requirements boil down to the need for a
trapdoor one-way function. A one-way function is a function that
maps a domain into a range such that every function value has
a unique inverse, with the condition that the calculation of the
function is easy whereas the calculation of the inverse is infeasible:

“Easy” is defined to mean a problem that can be solved in
polynomial time as a function of input length (n). For example, the
time to compute is proportional to na where a is a fixed constant.
“Infeasible” is not as well defined however. Generally we can
say that if the effort to solve is greater than polynomial time the
problem is infeasible, e.g. if time to compute is proportional to 2n.
Trapdoor one-way functions are a family of invertible functions fk
such that Y = fk(X) is easy if k and X known, X = fk(Y) is easy if k
and Y are known, and is infeasible if Y is known but k
is not known. The development of a practical public-key scheme
depends on the discovery of a suitable trapdoor one-way function.

Cryptography 57

The Knapsack Algorithm

Many algorithms have been proposed for P-K, and have
subsequently been broken. The most famous of these was proposed
by Ralph Merkle as follows. The problem deals with determining
which of a set of objects are in a container, say a knapsack. Of
the list of say six objects of different weights shown below, which
subset is in the knapsack if it weighs S?

Given that the weight of the knapsack is S = 821 grams, the
problem is to determine which of the items are in the knapsack.
The problem shown here is simple but when the number of items
is increased (> 100) it becomes computationally infeasible. So
what we have is six different objects with six different weights.
The knapsack weighs nothing itself but with a selected number of
objects in it weighs (say) 821 grams. Which objects does it contain?
Merkle’s contribution was to show how to turn the knapsack
problem into a scheme for encryption and decryption. In other
words how to incorporate “trapdoor” information which enabled
the easy solution of the knapsack problem. Suppose we wish to
send messages in blocks of n bits. We define the following:

• Cargo vector: a = (a1, a2, . . . , an), where ai is an integer.
• Plaintext message block x	=	(x1, x2, . . . , xn), where xi is a

binary digit.
• Corresponding cipher text S:

The vector a is considered to be a list of potential elements to be put
into the knapsack with each vector element equal to each weight
of the element. The message block x is considered to be a selection
of elements of the cargo vector in the knapsack. Each element is

Secure Computing58

set equal to 1 if the corresponding element is in the knapsack and
0 if it is not. The product S is simply the sum of the selected item’s
weights (i.e. the weight of the contents of the knapsack).

As an example lets take a cargo vector as follows:

a = (455, 341, 284, 132, 82, 56)

x = (x1, x2, x3, x4, x5, x6) a six bit binary number

S = 821

For encryption a is used as the public key. The person sending the
message x performs S = a · x and sends S as the cipher text. The
receiving party must recover x from S and a. Two requirements
are as follows:

1. That there be a unique inverse for each value of S. For
example if S = 3 and a = (1, 3, 2, 5) then the problem would
have two solutions, x = (1, 0, 1, 0) and x = (0, 1, 0, 0). The
value of a must be chosen so that each combination of
elements yields a unique value of S.

2. That decryption is hard in general but easy if special
knowledge is available.

For large values of n the knapsack problem is hard in general. If
however we impose the condition that each element of a is larger
than the sum of the preceding elements we have:

This is known as a super increasing vector and in this case the
solution is easy. For example, consider the vector a’ = (171, 197,
459, 1191, 2410) which satisfies the condition. Suppose we have
S’ = a’ · x’ = 3798. Because 3798 > 2410, a5 must be included (x5 =
1) because without a5 all the other elements cannot contribute
enough to add up to 3798 (or 2410). Now consider 3798 − 2410 =
1388. The number 1388 is bigger than 1191 so a4 must be included
(x4 = 1). Continuing1 in this fashion we find that x3 = 0, x2 = 1
and x1 = 0. What Merkle did was to tie an easy super increasing

Cryptography 59

knapsack problem to a hard general knapsack problem. Suppose
we choose an easy knapsack vector a’ with n elements. Also select
two integers’ m and ω such that m is greater than the sum of the
elements, and ω is relatively prime to m, that is:

Now, we construct a hard knapsack vector, a, by multiplying an
easy vector a’ by ω (mod m):

The vector a will in general not be super increasing and therefore
can be used to construct hard knapsack problems. However,
knowledge of ω and m enables the conversion of this hard knapsack
problem to an easy one. To see this, first observe that since ω and
m are relatively prime, there exists a unique multiplicative inverse
ω−1 , modulo m. Therefore:

We can now state the knapsack scheme. The ingredients are as
follows:

1. a’ , a super increasing vector (private, chosen).
2. m, an integer larger than the sum of all aj ’s (private,

chosen).
3. ω, an integer relatively prime to m (private, chosen).
4. ω−1 , the inverse of ω, modulo m (private, calculated).
5. a, equal to ωa’ (mod m) (public, calculated).

The private key consists of the triple (ω−1, m, a’) and the public key
consists of the value of a.

Suppose user A has published his public key a and that user B
wishes to send a message x to A. B calculates the sum S = a · x.
The determination of x given S and a is difficult so this is a secure
transmission. However, on receipt, user A is able to decrypt easily.
Defining S’ = ω−1S (mod m) we have the following:

Secure Computing60

Thus we have converted the hard problem of finding x given S
into the easy problem of finding x given S’ and a’.

For	example, given the plaintext message x = (0, 1, 0, 0, 1, 0, 1, 1),
user B computes a · x = 818. User A first computes S 0 = ω−1S (mod
m) = 415, and then solves the easy knapsack problem to recover x
= (0, 1, 0, 0, 1, 0, 1, 1).

2.2.4 Cryptography Benefits and Drawbacks

Nowadays, the networks have gone global and information has
taken the digital form of bits and bytes. Critical information now
gets stored, processed and transmitted in digital form on computer
systems and open communication channels.

Since information plays such a vital role, adversaries are targeting
the computer systems and open communication channels to either
steal the sensitive information or to disrupt the critical information
system.

Modern cryptography provides a robust set of techniques to ensure
that the malevolent intentions of the adversary are thwarted while
ensuring the legitimate users get access to information.

2.3 TRANSPOSITION CIPHERS AND
SUBSTITUTION CIPHERS

From the encryption algorithm point of view, there are two main
techniques we used to implement in the secret key cryptography
(symmetric cipher) system: Substitution cipher and Transposition
cipher. Substitution ciphers replace bits, characters, or blocks of
characters with substitution. Transposition ciphers rearrange bits

Cryptography 61

or characters in the data. We now describe some details about the
two kinds of cipher and simply introduce some examples that we
use very often in the two kinds of cipher.

2.3.1 Substitution Techniques

Substitution technique is one that the letters in the plaintext will
be replaced by other letters or by numbers or symbols. [Caesar
Cipher] The earliest use of substitution cipher is also the simplest
one that is proposed by Julius Caesar, called Caesar Cipher. The
Caesar Cipher works with replacing each letter with the letter
standing three places further down of the alphabet order. For
example:

So if the plaintext is “meet me after the party”. The ciphertext
would be “phhw ph diwhu wkh sduwb”.

If we assign each letter a number from 0 to 25(from A to Z). Take
the Ciphertext as C, Encryption as E, and plaintext as P. Then we
can describe the Caesar Cipher as below

C=E(p)=(p+3)mod(26) (1)

A shift could be any amount, so the general Caesar algorithm is

C=E(p)=(p+k)mod(26) (2)

where k takes on a value in the range from 1 to 25. And the
decryption algorithm is simply

p =D(C)=(C-k)mod(26) (3

If it is known that a given ciphertext is a Caesar cipher, then a
brute-force cryptanalysis will be easily performed. Just try all
the 25 for the possible value of k. In this example, there are three

Secure Computing62

reasons for us to use the brute-force cryptanalysis. First is that the
encryption and the decryption algorithms are known. Second is
that there are only 25 keys to try. Third is that the language of the
plaintext is known and easily recognizable.

For general cases, we always assume that the first condition
is held, that is the algorithms of encryption and decryption are
always known by the enemy who want to break the cipher. What
really makes the brute-force attack impractical is that most of
the algorithms use a large number of keys, that is, the second
condition. For example, the triple DES algorithm uses a 168-bit key
which makes people who choose to use the brute-force attacking
way wasting resources or time. And the third condition is also
important. If the language of the plaintext is unknown, we do not
have any idea to recognize that if the key we try is right even in
the trial that is right.
[Polyalphabetic cipher]

Simple substitution ciphers like Caesar cipher use a single mapping
from plaintext to ciphertext letters, that is the same plaintext will
have the same ciphertext. This characteristic is always not good
in cryptography from the security point of view. Polyalphabetic
cipher solves this problem by using multiple substitutions. Image
a cipher disk with two circles (outer and inner circle) and they are
movable between each other.Every time we randomly turn around
the inner circle, we will get a response pair from each alphabet.
Then we record where the &(or any sign different from alphabets
and numbers) sign stand. That is the simple way to produce a
substitution cipher which works and avoid the single mapping
from plaintext to ciphertext problem.

2.3.2 Transposition Techniques

Transposition technique is achieved by performing some kind of
permutation on the plaintext letters. It is very simple to realize
this kind of cipher. We can do it by the example. If the plaintext is
“meet me after the party”, we can rearrange it by this way:

Cryptography 63

So we get the plaintext and the ciphertext like this:

[Columnar transposition]

Another simple transposition cipher is called Columnar
transposition. If the plaintext is “data encryption”, we will
compose the sentence into a 3*5 matrix. For example:

Of course, the transposition cipher can be made more secure by
performing more than one stage of transposition. For example,
doing the Columnar transposition 2 or 3 times and it will efficiently
to increase the security of this cipher.

2.4 BLOCK CIPHER AND STREAM CIPHER

We can even more separate symmetric cipher to two kinds of
cipher as block cipher and stream cipher by the encryption basic
sense. In this report we pay more attention to the block cipher, but
we also give some stream cipher examples.

Figure 5. Block cipher and Stream cipher.

Secure Computing64

The most different part between the block cipher and the stream
cipher is that the block cipher encrypts the fixed size of the input
data. On the other hand, stream cipher

Block Cipher

Figure 6. Block cipher scheme.

Let M be a plaintext message. A block cipher breaks M into
successive blocks M1 , M2 , …… and encrypt each Mk with the
same key K; that is,

 (4)

Typical size of block cipher block size is 64bits, 128bits or larger.
Older cipher usually had the smaller size. Considering of the
security, the larger the block size has, the safer the data is. Because
each bits in the original data influences the every single output
bit. And with aspect of processing speed, it is the same that we
hope that the block size much larger. One of the advantages of the
block cipher is the fast speed. The drawback of the block cipher
is that we must fit the block size, or we cannot do block cipher
encryption. Sometimes we have to add additional redundant to
fit the block size to do encryption. And this is kind of wasting
resource.

Stream Cipher

Stream cipher is different from block cipher that stream cipher
break message M into successive characters or bitsm1 , m2 , ……
and encrypt each mk with the ith element ki of a key stream K= k1
k2 ……; that is,

Cryptography 65

 (5)

The stream cipher produces key stream by using a key instead of
dealing with block data. The key stream is often used to do XOR
with plaintext and the results could be used to do encryption. We
describe the XOR algorithm as followed.

Table 2. XOR-operation

2.5 RSA CRYPTOSYSTEM

This cryptosystem is one the initial system. It remains most
employed cryptosystem even today. The system was invented
by three scholars Ron Rivest, Adi Shamir, and Len Adleman and
hence, it is termed as RSA cryptosystem.

We will see two aspects of the RSA cryptosystem, firstly generation
of key pair and secondly encryption-decryption algorithms.

Generation of RSA Key Pair

Each person or a party who desires to participate in communication
using encryption needs to generate a pair of keys, namely public
key and private key. The process followed in the generation of
keys is described below:

Generate the RSA Modulus (n)

• Select two large primes, p and q.
• Calculate n=p*q. For strong unbreakable encryption, let

n be a large number, typically a minimum of 512 bits.

Secure Computing66

Find Derived Number (e)

• Number e must be greater than 1 and less than (p − 1)
(q − 1).

• There must be no common factor for e and (p − 1)(q − 1)
except for 1. In other words two numbers e and (p – 1)
(q – 1) are coprime.

Form the Public Key

• The pair of numbers (n, e) form the RSA public key and
is made public.

• Interestingly, though n is part of the public key, difficulty
in factorizing a large prime number ensures that attacker
cannot find in finite time the two primes (p & q) used to
obtain n. This is strength of RSA.

Generate the Private Key

• Private Key d is calculated from p, q, and e. For given n
and e, there is unique number d.

• Number d is the inverse of e modulo (p - 1)(q – 1). This
means that d is the number less than (p - 1)(q - 1) such
that when multiplied by e, it is equal to 1 modulo (p - 1)
(q - 1).

• This relationship is written mathematically as follows:

ed = 1 mod (p − 1)(q − 1)

The Extended Euclidean Algorithm takes p, q, and e as input and
gives d as output.

Example

An example of generating RSA Key pair is given below. (For ease
of understanding, the primes p & q taken here are small values.
Practically, these values are very high).

Cryptography 67

• Let two primes be p = 7 and q = 13. Thus, modulus n = pq
= 7 x 13 = 91.

• Select e = 5, which is a valid choice since there is no
number that is common factor of 5 and (p − 1)(q − 1) = 6
× 12 = 72, except for 1.

• The pair of numbers (n, e) = (91, 5) forms the public key
and can be made available to anyone whom we wish to
be able to send us encrypted messages.

• Input p = 7, q = 13, and e = 5 to the Extended Euclidean
Algorithm. The output will be d = 29.

• Check that the d calculated is correct by computing
 de = 29 × 5 = 145 = 1 mod 72
• Hence, public key is (91, 5) and private keys is (91, 29).

2.5.1 RSA Analysis

The security of RSA depends on the strengths of two separate
functions. The RSA cryptosystem is most popular public-key
cryptosystem strength of which is based on the practical difficulty
of factoring the very large numbers.

Encryption	 Function: It is considered as a one-way function of
converting plaintext into cipher text and it can be reversed only
with the knowledge of private key d.

Key Generation: The difficulty of determining a private key from
an RSA public key is equivalent to factoring the modulus n. An
attacker thus cannot use knowledge of an RSA public key to
determine an RSA private key unless he can factor n. It is also a one
way function, going from p & q values to modulus n is easy but
reverse is not possible. If either of these two functions are proved
non one-way, then RSA will be broken. In fact, if a technique for
factoring efficiently is developed then RSA will no longer be safe.
The strength of RSA encryption drastically goes down against
attacks if the number p and q are not large primes and/ or chosen
public key e is a small number.

Secure Computing68

2.5.2 Encryption and Decryption in RSA Public-key Cryp-
tosystem

Encryption is the process of transforming information so it is
unintelligible to anyone but the intended recipient. Decryption is
the process of decoding encrypted information. A cryptographic
algorithm, also called a cipher, is a mathematical function used for
encryption or decryption. Usually, two related functions are used,
one for encryption and the other for decryption.

With most modern cryptography, the ability to keep encrypted
information secret is based not on the cryptographic algorithm,
which is widely known, but on a number called a key that must
be used with the algorithm to produce an encrypted result or to
decrypt encrypted information. Decryption with the correct key is
simple. Decryption without the correct key is very difficult, if not
impossible.

Symmetric-Key Encryption

With symmetric-key encryption, the encryption key can be
calculated from the decryption key and vice versa. With most
symmetric algorithms, the same key is used for both encryption and
decryption, as shown in Figure 7, “Symmetric-Key Encryption”.

Figure 7: Symmetric-key encryption.

Implementations of symmetric-key encryption can be highly
efficient, so that users do not experience any significant time
delay as a result of the encryption and decryption. Symmetric-
key encryption also provides a degree of authentication, since

Cryptography 69

information encrypted with one symmetric key cannot be
decrypted with any other symmetric key. Thus, as long as the
symmetric key is kept secret by the two parties using it to encrypt
communications, each party can be sure that it is communicating
with the other as long as the decrypted messages continue to make
sense.

Symmetric-key encryption is effective only if the symmetric key
is kept secret by the two parties involved. If anyone else discovers
the key, it affects both confidentiality and authentication. A
person with an unauthorized symmetric key not only can decrypt
messages sent with that key, but can encrypt new messages and
send them as if they came from one of the legitimate parties using
the key.

Symmetric-key encryption plays an important role in SSL
communication, which is widely used for authentication, tamper
detection, and encryption over TCP/IP networks. SSL also uses
techniques of public-key encryption.

Public-Key Encryption

Public-key encryption (also called asymmetric encryption)
involves a pair of keys, a public key and a private key, associated
with an entity. Each public key is published, and the corresponding
private key is kept secret. Data encrypted with a public key can
be decrypted only with the corresponding private key. Figure
8, “Public-Key Encryption” shows a simplified view of the way
public-key encryption works.

Figure 8: Public-key encryption.

Secure Computing70

The scheme shown in Figure 8, “Public-Key Encryption” allows
public keys to be freely distributed, while only authorized people
are able to read data encrypted using this key. In general, to send
encrypted data, the data is encrypted with that person’s public
key, and the person receiving the encrypted data decrypts it with
the corresponding private key.

Compared with symmetric-key encryption, public-key encryption
requires more processing and may not be feasible for encrypting
and decrypting large amounts of data. However, it is possible to
use public-key encryption to send a symmetric key, which can
then be used to encrypt additional data. This is the approach used
by the SSL/TLS protocols.

The reverse of the scheme shown in Figure 8 “Public-Key
Encryption” also works: data encrypted with a private key can be
decrypted only with the corresponding public key. This is not a
recommended practice to encrypt sensitive data, however, because
it means that anyone with the public key, which is by definition
published, could decrypt the data. Nevertheless, private-key
encryption is useful because it means the private key can be used
to sign data with a digital signature, an important requirement
for electronic commerce and other commercial applications of
cryptography.

Key Length and Encryption Strength

Breaking an encryption algorithm is basically finding the key to the
access the encrypted data in plain text. For symmetric algorithms,
breaking the algorithm usually means trying to determine the key
used to encrypt the text. For a public key algorithm, breaking the
algorithm usually means acquiring the shared secret information
between two recipients.

One method of breaking a symmetric algorithm is to simply try
every key within the full algorithm until the right key is found. For
public key algorithms, since half of the key pair is publicly known,
the other half (private key) can be derived using published, though
complex, mathematical calculations. Manually finding the key to

Cryptography 71

break an algorithm is called a brute force attack.

Breaking an algorithm introduces the risk of intercepting, or even
impersonating and fraudulently verifying, private information.

The key strength of an algorithm is determined by finding the
fastest method to break the algorithm and comparing it to a brute
force attack.

For symmetric keys, encryption strength is often described in terms
of the size or length of the keys used to perform the encryption:
longer keys generally provide stronger encryption. Key length is
measured in bits.

An encryption key is considered full strength if the best known
attack to break the key is no faster than a brute force attempt to
test every key possibility.

Different types of algorithms particularly public key algorithms
may require different key lengths to achieve the same level of
encryption strength as a symmetric-key cipher. The RSA cipher
can use only a subset of all possible values for a key of a given
length, due to the nature of the mathematical problem on which
it is based. Other ciphers, such as those used for symmetric-key
encryption, can use all possible values for a key of a given length.
More possible matching options means more security.

Because it is relatively trivial to break an RSA key, an RSA public-
key encryption cipher must have a very long key at least 1024 bits
to be considered cryptographically strong. On the other hand,
symmetric-key ciphers are reckoned to be equivalently strong
using a much shorter key length, as little as 80 bits for most
algorithms.

2.5.3 RSA Signature Scheme

The RSA public-key cryptosystem can be used for both encryption
and signatures. Each user has three integers e, d and n, n = pq
with p and q large primes. For the key pair (e, d), ed ≡ 1 (mod
φ(n)) must be satisfied. If sender A wants to send signed message

Secure Computing72

c corresponding to message m to receiver B, A signs it using A’s
private key, computing c ≡ mdA (mod nA). First A computes ϕ(nA)
≡ lcm (pA − 1, qA − 1)

where lcm stands for the least common multiple. The sender A
selects his own key pair (eA, dA) such that eA•dA ≡ 1 (mod ϕ(nA))

The modulus nA and the public key eA are published., Figure 9
illustrates the RSA signature scheme.

Example

Choose p = 11 and q = 17. Then n = pq = 187.

Figure 9: The RSA signature scheme

Suppose m = 55. Then the signed message is

c ≡ mdA (mod 187)

Cryptography 73

≡ 553 (mod 187) ≡ 132

The message will be recreated as:

m ≡ ceA (mod n)

≡ 13227 (mod 187) ≡ 55

Thus, the message m is accepted as authentic.

Next, consider a case where the message is much longer. The
larger m requires more computation in signing and verification
steps. Therefore, it is better to compute the message digest using
a appropriate hash function, for example, the SHA-1 algorithm.
Signing the message digest rather than the message often improves
the efficiency of the process because the message digest is usually
much smaller than the message. When the message is assumed to
be m = 75 139, the message digest h of m is computed using the
SHA-1 algorithm as follows:

h ≡ H (m) (mod n)

≡ H (75 139) (mod 187)

≡ 86a0aab5631e729b0730757b0770947307d9f597

≡ 768587753333627872847426508024461003561962698135 (mod
187) (decimal)

The message digest h is then computed as:

h ≡ H (75 139) (mod 187) ≡ 11

Signing h with A’s private key dA produces:

c ≡ hdA (mod n)

≡ 113 (mod 187) ≡ 22

Thus, the signature verification proceeds as follows:

h ≡ ceA (mod n)

≡ 2227 (mod 187) ≡ 11

Secure Computing74

which shows that verification is accomplished.

In hardware, RSA is about 1000 times slower than DES. RSA is
also implemented in smartcards, but these implementations are
slower. DES is about 100 times faster than RSA. However, RSA will
never reach the speed of symmetric cipher algorithms. It is known
that the security of RSA depends on the problem of factoring large
numbers. To find the private key from the public key e and the
modulus n, one has to factor n. Currently, n must be larger than
a 129 decimal digit modulus. Easy methods to break RSA have
not yet been found. A brute-force attack is even less efficient than
trying to factor n. RSA encryption and signature verification are
faster if you use a low value for e, but can be insecure.

2.5.4 Attacks on Cryptosystems

In the present era, not only business but almost all the aspects
of human life are driven by information. Hence, it has become
imperative to protect useful information from malicious activities
such as attacks. Let us consider the types of attacks to which
information is typically subjected to.

Attacks are typically categorized based on the action performed
by the attacker. An attack, thus, can be passive or active.

Passive Attacks

The main goal of a passive attack is to obtain unauthorized access
to the information. For example, actions such as intercepting and
eavesdropping on the communication channel can be regarded as
passive attack. These actions are passive in nature, as they neither
affect information nor disrupt the communication channel. A
passive attack is often seen as stealing information. The only
difference in stealing physical goods and stealing information is
that theft of data still leaves the owner in possession of that data.
Passive information attack is thus more dangerous than stealing of
goods, as information theft may go unnoticed by the owner.

Cryptography 75

Active Attacks

An active attack involves changing the information in some way
by conducting some process on the information. For example,

• Modifying the information in an unauthorized manner.
• Initiating unintended or unauthorized transmission of

information.
• Alteration of authentication data such as originator name

or timestamp associated with information
• Unauthorized deletion of data.
• Denial of access to information for legitimate users

(denial of service).

Cryptography provides many tools and techniques for

Secure Computing76

implementing cryptosystems capable of preventing most of the
attacks described above.

Assumptions of Attacker

Let us see the prevailing environment around cryptosystems
followed by the types of attacks employed to break these systems:

Environment around Cryptosystem

While considering possible attacks on the cryptosystem, it is
necessary to know the cryptosystems environment. The attacker’s
assumptions and knowledge about the environment decides his
capabilities.

In cryptography, the following three assumptions are made about
the security environment and attacker’s capabilities.

Details of the Encryption Scheme

The design of a cryptosystem is based on the following two
cryptography algorithms

Public Algorithms: With this option, all the details of the algorithm
are in the public domain, known to everyone.

Proprietary algorithms: The details of the algorithm are only
known by the system designers and users.

In case of proprietary algorithms, security is ensured through
obscurity. Private algorithms may not be the strongest algorithms
as they are developed in-house and may not be extensively
investigated for weakness.

Secondly, they allow communication among closed group only.
Hence they are not suitable for modern communication where
people communicate with large number of known or unknown
entities. The algorithm is preferred to be public with strength of
encryption lying in the key.

Cryptography 77

Thus, the first assumption about security environment is that the
encryption algorithm is known to the attacker.

Availability of Cipher text

We know that once the plaintext is encrypted into cipher text, it
is put on unsecure public channel (say email) for transmission.
Thus, the attacker can obviously assume that it has access to the
cipher text generated by the cryptosystem.

Availability of Plaintext and Cipher text

This assumption is not as obvious as other. However, there may
be situations where an attacker can have access to plaintext and
corresponding cipher text. Some such possible circumstances are:

• The attacker influences the sender to convert plaintext of
his choice and obtains the cipher text.

• The receiver may divulge the plaintext to the attacker
inadvertently. The attacker has access to corresponding
cipher text gathered from open channel.

• In a public-key cryptosystem, the encryption key is in
open domain and is known to any potential attacker.
Using this key, he can generate pairs of corresponding
plaintexts and cipher texts.

Cryptographic Attacks

The basic intention of an attacker is to break a cryptosystem and
to find the plaintext from the cipher text. To obtain the plaintext,
the attacker only needs to find out the secret decryption key, as the
algorithm is already in public domain.

Hence, he applies maximum effort towards finding out the
secret key used in the cryptosystem. Once the attacker is able to
determine the key, the attacked system is considered as broken or
compromised.

Secure Computing78

Based on the methodology used, attacks on cryptosystems are
categorized as follows:

Cipher	 text	 Only	 Attacks	 (COA): In this method, the attacker
has access to a set of cipher text(s). He does not have access to
corresponding plaintext. COA is said to be successful when the
corresponding plaintext can be determined from a given set of
cipher text. Occasionally, the encryption key can be determined
from this attack. Modern cryptosystems are guarded against
cipher text-only attacks.

Known	Plaintext	Attack	(KPA): In this method, the attacker knows
the plaintext for some parts of the cipher text. The task is to decrypt
the rest of the cipher text using this information. This may be
done by determining the key or via some other method. The best
example of this attack is linear cryptanalysis against block ciphers.

Chosen	Plaintext	Attack	(CPA): In this method, the attacker has the
text of his choice encrypted. So he has the cipher text-plaintext pair
of his choice. This simplifies his task of determining the encryption
key. An example of this attack is differential cryptanalysis applied
against block ciphers as well as hash functions. A popular public
key cryptosystem, RSA is also vulnerable to chosen-plaintext
attacks.

Dictionary	 Attack: This attack has many variants, all of which
involve compiling a ‘dictionary’. In simplest method of this attack,
attacker builds a dictionary of cipher texts and corresponding
plaintexts that he has learnt over a period of time. In future, when
an attacker gets the cipher text, he refers the dictionary to find the
corresponding plaintext.

Brute	 Force	 Attack	 (BFA): In this method, the attacker tries to
determine the key by attempting all possible keys. If the key is 8
bits long, then the number of possible keys is 28 = 256. The attacker
knows the cipher text and the algorithm, now he attempts all the
256 keys one by one for decryption. The time to complete the
attack would be very high if the key is long.

Cryptography 79

Birthday	Attack: This attack is a variant of brute-force technique. It
is used against the cryptographic hash function. When students
in a class are asked about their birthdays, the answer is one of
the possible 365 dates. Let us assume the first student’s birthdate
is 3rd Aug. Then to find the next student whose birthdate is 3rd
Aug, we need to enquire 1.25*�√365 ≈ 25 students.

Similarly, if the hash function produces 64 bit hash values, the
possible hash values are 1.8 x 1019. By repeatedly evaluating the
function for different inputs, the same output is expected to be
obtained after about 5.1 x 109 random inputs.

If the attacker is able to find two different inputs that give the
same hash value, it is a collision and that hash function is said to
be broken.

Man	in	Middle	Attack	(MIM): The targets of this attack are mostly
public key cryptosystems where key exchange is involved before
communication takes place.

• Host A wants to communicate to host B, hence requests
public key of B.

• An attacker intercepts this request and sends his public
key instead.

• Thus, whatever host A sends to host B, the attacker is
able to read.

• In order to maintain communication, the attacker re-
encrypts the data after reading with his public key and
sends to B.

• The attacker sends his public key as A’s public key so
that B takes it as if it is taking it from A.

Side	 Channel	 Attack	 (SCA): This type of attack is not against
any particular type of cryptosystem or algorithm. Instead, it is
launched to exploit the weakness in physical implementation of
the cryptosystem.

Timing	Attacks: They exploit the fact that different computations
take different times to compute on processor. By measuring such
timings, it is be possible to know about a particular computation

Secure Computing80

the processor is carrying out. For example, if the encryption takes
a longer time, it indicates that the secret key is long.

Power	Analysis	Attacks: These attacks are similar to timing attacks
except that the amount of power consumption is used to obtain
information about the nature of the underlying computations.

Fault	 analysis	Attacks: In these attacks, errors are induced in the
cryptosystem and the attacker studies the resulting output for
useful information.

Practicality of Attacks

The attacks on cryptosystems described here are highly academic,
as majority of them come from the academic community. In fact,
many academic attacks involve quite unrealistic assumptions
about environment as well as the capabilities of the attacker.

Cryptography 81

REFERENCES

1. Alex Biryukov, Adi Shamir, and David Wagner. Real
time cryptanalysis of A5/1 on a PC. In FSE: Fast Software
Encryption, pages 1–18. Springer, 2000.

2. ANSI X9.42-2003. Public Key Cryptography for the Financial
Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography. Technical report, American
Bankers Association, 2003.

3. ANSI X9.62-2001. Elliptic Curve Key Agreement and Key
Transport Protocols. Technical report, American Bankers
Association, 2001.

4. Carlisle Adams and Steve Lloyd. Understanding PKI:
Concepts, Standards, and Deployment Considerations.
Addison-Wesley Longman Publishing, Boston, MA, USA,
2002.

5. Dan Boneh and Matthew Franklin. Identity-based encryption
from the Weil pairing. SIAM J. Comput., 32(3):586–615, 2003.

6. Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen.
Post-Quantum Cryptography. Springer, 2009.

7. Daniel V. Bailey and Christof Paar. Efficient arithmetic in
finite field extensions with application in elliptic curve
cryptography. Journal of Cryptology, 14, 2001.

8. Hirsch, Frederick J. “SSL/TLS Strong Encryption: An
Introduction”. Apache HTTP Server. Retrieved 17 April 2013.
The first two sections contain a very good introduction to
public-key cryptography.

9. Mavroeidis, Vasileios, and Kamer Vishi, “The Impact
of Quantum Computing on Present Cryptography”,
International Journal of Advanced Computer Science and
Applications, 31 March 2018

10. Paar, Christof; Pelzl, Jan; Preneel, Bart (2010). Understanding
Cryptography: A Textbook for Students and Practitioners.

Secure Computing82

Springer.
11. Robinson, Sara (June 2003). “Still Guarding Secrets after Years

of Attacks, RSA Earns Accolades for its Founders” (PDF).
SIAM News. 36 (5).

12. Sawer, Patrick (11 March 2016). “The unsung genius who
secured Britain’s computer defences and paved the way for
safe online shopping”. The Telegraph.

INTRODUCTION

A program security flaw is an undesired program behaviour
caused by a program vulnerability. Early idea was to attack the
finished program to reveal faults, and then to patch the corresp.
errors. Experience shows that this is not effective, and just tends to
introduce new faults (and errors)! More modern approach is to use
careful specification and compare behaviour with the expected.

Protecting programs is at the heart of computer security because
programs constitute so much of a computing system (the operating
system, device drivers, the network infrastructure, database
management systems and other applications, even executable
commands on web pages). For now, we call all these pieces of code
“programs.”

3
PROGRAM SECURITY

C
H

A
PT

ER

Secure Computing84

So we need to ask two important questions:
• How do we keep programs free from flaws?
• How do we protect computing resources against

programs that contain flaws?

3.1 SECURE PROGRAMS

Consider what we mean when we say that a program is “secure.”
Security implies some degree of trust that the program enforces
expected confidentiality, integrity, and availability. From the point
of view of a program or a programmer, how can we look at a
software component or code fragment and assess its security? This
question is, of course, similar to the problem of assessing software
quality in general. One way to assess security or quality is to ask
people to name the characteristics of software that contribute
to its overall security. However, we are likely to get different
answers from different people. This difference occurs because the
importance of the characteristics depends on who is analyzing the
software. For example, one person may decide that code is secure
because it takes too long to break through its security controls.
And someone else may decide code is secure if it has run for a
period of time with no apparent failures. But a third person may
decide that any potential fault in meeting security requirements
makes code insecure.

An assessment of security can also be influenced by someone’s
general perspective on software quality. For example, if your
manager’s idea of quality is conformance to specifications, then she
might consider the code secure if it meets security requirements,
whether or not the requirements are complete or correct. This
security view played a role when a major computer manufacturer
delivered all its machines with keyed locks, since a keyed lock was
written in the requirements. But the machines were not secure,
because all locks were configured to use the same key! Thus,
another view of security is fitness for purpose; in this view, the
manufacturer clearly had room for improvement.

Program Security 85

In general, practitioners often look at quantity and types of faults
for evidence of a product’s quality (or lack of it). For example,
developers track the number of faults found in requirements,
design, and code inspections and use them as indicators of the
likely quality of the final product.

3.1.1 Fixing Faults

One approach to judging quality in security has been fixing
faults. You might argue that a module in which 100 faults were
discovered and fixed is better than another in which only 20 faults
were discovered and fixed, suggesting that more rigorous analysis
and testing had led to the finding of the larger number of faults.
Au contraire, challenges your friend: a piece of software with 100
discovered faults is inherently full of problems and could clearly
have hundreds more waiting to appear. Your friend’s opinion is
confirmed by the software testing literature; software that has
many faults early on is likely to have many others still waiting to
be found.

Early work in computer security was based on the paradigm of
“penetrate and patch,” in which analysts searched for and repaired
faults. Often, a top-quality “tiger team” would be convened to test
a system’s security by attempting to cause it to fail. The test was
considered to be a “proof” of security; if the system withstood
the attacks, it was considered secure. Unfortunately, far too often
the proof became a counterexample, in which not just one but
several serious security problems were uncovered. The problem
discovery in turn led to a rapid effort to “patch” the system to
repair or restore the security. However, the patch efforts were
largely useless, making the system less secure rather than more
secure because they frequently introduced new faults. There are
at least four reasons why.

The pressure to repair a specific problem encouraged a narrow
focus on the fault itself and not on its context. In particular, the
analysts paid attention to the immediate cause of the failure and
not to the underlying design or requirements faults.

Secure Computing86

• The fault often had nonobvious side effects in places
other than the immediate area of the fault.

• Fixing one problem often caused a failure somewhere
else, or the patch addressed the problem in only one
place, not in other related places.

• The fault could not be fixed properly because system
functionality or performance would suffer

3.1.2 Unexpected Behavior

The inadequacies of penetrate-and-patch led researchers to
seek a better way to be confident that code meets its security
requirements. One way to do that is to compare the requirements
with the behavior. That is, to understand program security, we can
examine programs to see whether they behave as their designers
intended or users expected. We call such unexpected behavior a
program security flaw; it is inappropriate program behavior caused
by a program vulnerability. Unfortunately, the terminology in the
computer security field is not consistent with the IEEE standard;
the terms “vulnerability” and “flaw” do not map directly to the
characterization of faults and failures. A flaw can be either a
fault or failure, and a vulnerability usually describes a class of
flaws, such as a buffer overflow. In spite of the inconsistency, it is
important for us to remember that we must view vulnerabilities
and flaws from two perspectives, cause and effect, so that we see
what fault caused the problem and what failure (if any) is visible
to the user. For example, a Trojan horse may have been injected
in a piece of code a flaw exploiting a vulnerability but the user
may not yet have seen the Trojan horse’s malicious behavior. Thus,
we must address program security flaws from inside and outside,
to find causes not only of existing failures but also of incipient
ones. Moreover, it is not enough just to identify these problems.
We must also determine how to prevent harm caused by possible
flaws.

Program security flaws can derive from any kind of software
fault. That is, they cover everything from a misunderstanding

Program Security 87

of program requirements to a one-character error in coding or
even typing. The flaws can result from problems in a single code
component or from the failure of several programs or program
pieces to interact compatibly through a shared interface. The
security flaws can reflect code that was intentionally designed
or coded to be malicious or code that was simply developed in a
sloppy or misguided way. Thus, it makes sense to divide program
flaws into two separate logical categories: inadvertent human
errors versus malicious, intentionally induced flaws.

These categories help us understand some ways to prevent the
inadvertent and intentional insertion of flaws into future code,
but we still have to address their effects, regardless of intention.
That is, in the words of Sancho Panza in Man of La Mancha, “it
doesn’t matter whether the stone hits the pitcher or the pitcher
hits the stone, it’s going to be bad for the pitcher.” An inadvertent
error can cause just as much harm to users and their organizations
as can an intentionally induced flaw. Furthermore, a system
attack often exploits an unintentional security flaw to perform
intentional damage. From reading the popular press, you might
conclude that intentional security incidents (called cyber attacks)
are the biggest security threat today. In fact, plain, unintentional
human errors are more numerous and cause much more damage.

Regrettably, we do not have techniques to eliminate or address all
program security flaws. Security is fundamentally hard, security
often conflicts with usefulness and performance, there is no
“”silver bullet” to achieve security effortlessly, and false security
solutions impede real progress toward more secure programming.
There are two reasons for this distressing situation.

• Program controls apply at the level of the individual
program and programmer. When we test a system, we
try to make sure that the functionality prescribed in the
requirements is implemented in the code. That is, we
take a “should do” checklist and verify that the code
does what it is supposed to do. However, security is also
about preventing certain actions: a “shouldn’t do” list.
A system shouldn’t do anything not on its “should do”

Secure Computing88

list. It is almost impossible to ensure that a program does
precisely what its designer or user intended, and nothing
more. Regardless of designer or programmer intent, in
a large and complex system, the pieces that have to fit
together properly interact in an unmanageably large
number of ways. We are forced to examine and test the
code for typical or likely cases; we cannot exhaustively
test every state and data combination to verify a system’s
behavior. So sheer size and complexity preclude total
flaw prevention or mediation. Programmers intending
to implant malicious code can take advantage of this
incompleteness and hide some flaws successfully,

• Programming and software engineering techniques
change and evolve far more rapidly than do computer
security techniques. So we often find ourselves trying to
secure last year’s technology while software developers
are rapidly adopting today’s and next year’s technology.

Still, the situation is far from bleak. Computer security has much
to offer to program security. By understanding what can go wrong
and how to protect against it, we can devise techniques and tools
to secure most computer applications.

3.1.3 Types of Flaws

To aid our understanding of the problems and their prevention or
correction, we can define categories that distinguish one kind of
problem from another. For example, a taxonomy of program flaws,
dividing them first into intentional and inadvertent flaws. They
further divide intentional flaws into malicious and nonmalicious
ones. In the taxonomy, the inadvertent flaws fall into six categories:

• validation error (incomplete or inconsistent): permission
checks

• domain error: controlled access to data
• serialization and aliasing: program flow order
• inadequate identification and authentication: basis for

authorization

Program Security 89

• boundary condition violation: failure on first or last case
• other exploitable logic errors

3.2 NONMALICIOUS PROGRAM ERRORS

Being human, programmers and other developers make many
mistakes, most of which are unintentional and nonmalicious.
Many such errors cause program malfunctions but do not lead to
more serious security vulnerabilities. However, a few classes of
errors have plagued programmers and security professionals for
decades, and there is no reason to believe they will disappear. In
this section we consider three classic error types that have enabled
many recent security breaches. We explain each type, why it is
relevant to security, and how it can be prevented or mitigated.

3.2.1 Buffer Overflows

A buffer overflow is the computing equivalent of trying to pour
two liters of water into a one-liter pitcher: Some water is going to
spill out and make a mess. And in computing, what a mess these
errors have made!

Definition

A buffer (or array or string) is a space in which data can be held.
A buffer resides in memory. Because memory is finite, a buffer’s
capacity is finite. For this reason, in many programming languages
the programmer must declare the buffer’s maximum size so that
the compiler can set aside that amount of space.

Let us look at an example to see how buffer overflows can happen.
Suppose a C language program contains the declaration:

char sample[10];

The compiler sets aside 10 bytes to store this buffer, one byte for
each of the 10 elements of the array, sample[0] tHRough sample[9].

Secure Computing90

Now we execute the statement:

sample[10] = ‘B’;

The subscript is out of bounds (that is, it does not fall between 0
and 9), so we have a problem. The nicest outcome (from a security
perspective) is for the compiler to detect the problem and mark
the error during compilation. However, if the statement were

sample[i] = ‘B’;

we could not identify the problem until i was set during execution
to a too-big subscript. It would be useful if, during execution, the
system produced an error message warning of a subscript out of
bounds. Unfortunately, in some languages, buffer sizes do not have
to be predefined, so there is no way to detect an out-of-bounds
error. More importantly, the code needed to check each subscript
against its potential maximum value takes time and space during
execution, and the resources are applied to catch a problem that
occurs relatively infrequently. Even if the compiler were careful in
analyzing the buffer declaration and use, this same problem can
be caused with pointers, for which there is no reasonable way to
define a proper limit. Thus, some compilers do not generate the
code to check for exceeding bounds.

Let us examine this problem more closely. It is important to
recognize that the potential overflow causes a serious problem
only in some instances. The problem’s occurrence depends on
what is adjacent to the array sample. For example, suppose each
of the ten elements of the array sample is filled with the letter A
and the erroneous reference uses the letter B, as follows:
for (i=0; i<=9; i++)
 sample[i] = ‘A’;
sample[10] = ‘B’

All program and data elements are in memory during execution,
sharing space with the operating system, other code, and resident
routines. So there are four cases to consider in deciding where the
‘B’ goes, as shown in Figure 1. If the extra character overflows into

Program Security 91

the user’s data space, it simply overwrites an existing variable
value (or it may be written into an as-yet unused location), perhaps
affecting the program’s result, but affecting no other program or
data.

Figure 1: Places Where a Buffer Can Overflow.

In the second case, the ‘B’ goes into the user’s program area. If
it overlays an already executed instruction (which will not be
executed again), the user should perceive no effect. If it overlays an
instruction that is not yet executed, the machine will try to execute
an instruction with operation code 0x42, the internal code for the
character ‘B’. If there is no instruction with operation code 0x42,
the system will halt on an illegal instruction exception. Otherwise,
the machine will use subsequent bytes as if they were the rest of
the instruction, with success or failure depending on the meaning
of the contents. Again, only the user is likely to experience an
effect.

The most interesting cases occur when the system owns the space
immediately after the array that overflows. Spilling over into
system data or code areas produces similar results to those for the

Secure Computing92

user’s space: computing with a faulty value or trying to execute an
improper operation.

3.2.2 Security Implication

We consider program flaws from unintentional or nonmalicious
causes. Remember, however, that even if a flaw came from an
honest mistake, the flaw can still cause serious harm. A malicious
attacker can exploit these flaws.

Let us suppose that a malicious person understands the damage
that can be done by a buffer overflow; that is, we are dealing with
more than simply a normal, errant programmer. The malicious
programmer looks at the four cases illustrated in Figure 1 and
thinks deviously about the last two: What data values could the
attacker insert just after the buffer to cause mischief or damage,
and what planned instruction codes could the system be forced
to execute? There are many possible answers, some of which
are more malevolent than others. Here, we present two buffer
overflow attacks that are used frequently.

First, the attacker may replace code in the system space. Remember
that every program is invoked by the operating system and that
the operating system may run with higher privileges than those
of a regular program. Thus, if the attacker can gain control by
masquerading as the operating system, the attacker can execute
many commands in a powerful role. Therefore, by replacing a few
instructions right after returning from his or her own procedure,
the attacker regains control from the operating system, possibly
with raised privileges. If the buffer overflows into system code
space, the attacker merely inserts overflow data that correspond
to the machine code for instructions.

On the other hand, the attacker may make use of the stack pointer
or the return register. Subprocedure calls are handled with a stack,
a data structure in which the most recent item inserted is the next
one removed (last arrived, first served). This structure works well
because procedure calls can be nested, with each return causing

Program Security 93

control to transfer back to the immediately preceding routine at its
point of execution. Each time a procedure is called, its parameters,
the return address (the address immediately after its call), and
other local values are pushed onto a stack. An old stack pointer is
also pushed onto the stack, and a stack pointer register is reloaded
with the address of these new values. Control is then transferred
to the subprocedure.

As the subprocedure executes, it fetches parameters that it finds
by using the address pointed to by the stack pointer. Typically, the
stack pointer is a register in the processor. Therefore, by causing
an overflow into the stack, the attacker can change either the old
stack pointer (changing the context for the calling procedure) or
the return address (causing control to transfer where the attacker
wants when the subprocedure returns). Changing the context or
return address allows the attacker to redirect execution to a block
of code the attacker wants.

In both these cases, a little experimentation is needed to determine
where the overflow is and how to control it. But the work to be
done is relatively smallprobably a day or two for a competent
analyst. These buffer overflows are carefully explained in a paper
of the famed l0pht computer security group. Buffer overflows ten
years after Mudge and found that, far from being a minor aspect of
attack, buffer overflows have been a very significant attack vector
and have spawned several other new attack types.

An alternative style of buffer overflow occurs when parameter
values are passed into a routine, especially when the parameters
are passed to a web server on the Internet. Parameters are passed
in the URL line, with a syntax similar to
h t t p : / / w w w . s o m e s i t e . c o m / s u b p a g e / u s e r i n p u t .
asp?parm1=(808)555-1212 &parm2=2009Jan17
In this example, the page userinput receives two parameters, parm1
with value (808)555-1212 (perhaps a U.S. telephone number) and
parm2 with value 2009Jan17 (perhaps a date). The web browser on
the caller’s machine will accept values from a user who probably

Secure Computing94

completes fields on a form. The browser encodes those values and
transmits them back to the server’s web site.

The attacker might question what the server would do with a
really long telephone number, say, one with 500 or 1000 digits.
But, you say, no telephone in the world has such a number; that
is probably exactly what the developer thought, so the developer
may have allocated 15 or 20 bytes for an expected maximum length
telephone number. Will the program crash with 500 digits? And if
it crashes, can it be made to crash in a predictable and usable way?
Passing a very long string to a web server is a slight variation on
the classic buffer overflow, but no less effective.

Buffer overflows have existed almost as long as higher-level
programming languages with arrays. For a long time they were
simply a minor annoyance to programmers and users, a cause
of errors and sometimes even system crashes. Rather recently,
attackers have used them as vehicles to cause first a system crash
and then a controlled failure with a serious security implication.
The large number of security vulnerabilities based on buffer
overflows shows that developers must pay more attention now to
what had previously been thought to be just a minor annoyance.

3.2.3 Incomplete Mediation

Incomplete mediation is another security problem that has been
with us for decades. Attackers are exploiting it to cause security
problems.

Definition

Consider the example of the previous section:
h t t p : / / w w w . s o m e s i t e . c o m / s u b p a g e / u s e r i n p u t .
asp?parm1=(808)555-1212 &parm2=2009Jan17
The two parameters look like a telephone number and a date.
Probably the client’s (user’s) web browser enters those two values
in their specified format for easy processing on the server’s side.

Program Security 95

What would happen if parm2 were submitted as 1800Jan01? Or
1800Feb30? Or 2048Min32? Or 1Aardvark2Many?

Something would likely fail. As with buffer overflows, one
possibility is that the system would fail catastrophically, with a
routine’s failing on a data type error as it tried to handle a month
named “Min” or even a year (like 1800) that was out of range.
Another possibility is that the receiving program would continue
to execute but would generate a very wrong result. (For example,
imagine the amount of interest due today on a billing error with a
start date of 1 Jan 1800.) Then again, the processing server might
have a default condition, deciding to treat 1Aardvark2Many as 3
July 1947. The possibilities are endless.

One way to address the potential problems is to try to anticipate
them. For instance, the programmer in the examples above may
have written code to check for correctness on the client’s side
(that is, the user’s browser). The client program can search for
and screen out errors. Or, to prevent the use of nonsense data, the
program can restrict choices only to valid ones. For example, the
program supplying the parameters might have solicited them by
using a drop-down box or choice list from which only the twelve
conventional months would have been possible choices. Similarly,
the year could have been tested to ensure that the value was
between 1995 and 2015, and date numbers would have to have
been appropriate for the months in which they occur (no 30th
of February, for example). Using these verification techniques,
the programmer may have felt well insulated from the possible
problems a careless or malicious user could cause.

However, the program is still vulnerable. By packing the result
into the return URL, the programmer left these data fields in a
place the user can access (and modify). In particular, the user
could edit the URL line, change any parameter values, and resend
the line. On the server side, there is no way for the server to tell if
the response line came from the client’s browser or as a result of
the user’s editing the URL directly. We say in this case that the data
values are not completely mediated: The sensitive data (namely,
the parameter values) are in an exposed, uncontrolled condition.

Secure Computing96

3.2.4 Security Implication

Incomplete mediation is easy to exploit, but it has been exercised
less often than buffer overflows. Nevertheless, unchecked data
values represent a serious potential vulnerability.

To demonstrate this flaw’s security implications, we use a real
example; only the name of the vendor has been changed to protect
the guilty. Things, Inc., was a very large, international vendor of
consumer products, called Objects. The company was ready to
sell its Objects through a web site, using what appeared to be a
standard e-commerce application. The management at Things
decided to let some of its in-house developers produce the web
site so that its customers could order Objects directly from the
web.

To accompany the web site, Things developed a complete price
list of its Objects, including pictures, descriptions, and drop-down
menus for size, shape, color, scent, and any other properties. For
example, a customer on the web could choose to buy 20 of part
number 555A Objects. If the price of one such part were $10, the
web server would correctly compute the price of the 20 parts to be
$200. Then the customer could decide whether to have the Objects
shipped by boat, by ground transportation, or sent electronically.
If the customer were to choose boat delivery, the customer’s web
browser would complete a form with parameters like these:

http://www.things.com/order.asp?custID=101&part=555A&qy=20
&price =10&ship=boat&shipcost=5&total=205

So far, so good; everything in the parameter passage looks correct.
But this procedure leaves the parameter statement open for
malicious tampering. Things should not need to pass the price of
the items back to itself as an input parameter; presumably Things
knows how much its Objects cost, and they are unlikely to change
dramatically since the time the price was quoted a few screens
earlier.

Program Security 97

A malicious attacker may decide to exploit this peculiarity by
supplying instead the following URL, where the price has been
reduced from $205 to $25:

http://www.things.com/order.asp?custID=101&part=555A&qy=20
&price =1&ship=boat&shipcost=5&total=25

Surprise! It worked. The attacker could have ordered Objects from
Things in any quantity at any price. And yes, this code was running
on the web site for a while before the problem was detected. From
a security perspective, the most serious concern about this flaw
was the length of time that it could have run undetected. Had
the whole world suddenly made a rush to Things’s web site and
bought Objects at a fraction of their price, Things probably would
have noticed. But Things is large enough that it would never
have detected a few customers a day choosing prices that were
similar to (but smaller than) the real price, say 30 percent off.
The e-commerce division would have shown a slightly smaller
profit than other divisions, but the difference probably would not
have been enough to raise anyone’s eyebrows; the vulnerability
could have gone unnoticed for years. Fortunately, Things hired a
consultant to do a routine review of its code, and the consultant
found the error quickly.

This web program design flaw is easy to imagine in other web
settings. Those of us interested in security must ask ourselves how
many similar problems are there in running code today? And how
will those vulnerabilities ever be found?

3.2.5 Time-of-Check to Time-of-Use Errors

The third programming flaw we investigate involves
synchronization. To improve efficiency, modern processors and
operating systems usually change the order in which instructions
and procedures are executed. In particular, instructions that
appear to be adjacent may not actually be executed immediately
after each other, either because of intentionally changed order or
because of the effects of other processes in concurrent execution.

Secure Computing98

Definition

Access control is a fundamental part of computer security; we
want to make sure that only those who should access an object
are allowed that access. Every requested access must be governed
by an access policy stating who is allowed access to what; then
the request must be mediated by an access-policy-enforcement
agent. But an incomplete mediation problem occurs when access
is not checked universally. The time-of-check to time-of-use
(TOCTTOU) flaw concerns mediation that is performed with a
“bait and switch” in the middle. It is also known as a serialization
or synchronization flaw.

To understand the nature of this flaw, consider a person’s buying
a sculpture that costs $100. The buyer removes five $20 bills from
a wallet, carefully counts them in front of the seller, and lays
them on the table. Then the seller turns around to write a receipt.
While the seller’s back is turned, the buyer takes back one $20 bill.
When the seller turns around, the buyer hands over the stack of
bills, takes the receipt, and leaves with the sculpture. Between the
time the security was checked (counting the bills) and the access
(exchanging the sculpture for the bills), a condition changed:
What was checked is no longer valid when the object (that is, the
sculpture) is accessed.

A similar situation can occur with computing systems. Suppose a
request to access a file were presented as a data structure, with the
name of the file and the mode of access presented in the structure.

The data structure is essentially a “work ticket,” requiring a stamp
of authorization; once authorized, it is put on a queue of things
to be done. Normally the access control mediator receives the
data structure, determines whether the access should be allowed,
and either rejects the access and stops or allows the access and
forwards the data structure to the file handler for processing.

To carry out this authorization sequence, the access control
mediator would have to look up the file name (and the user
identity and any other relevant parameters) in tables. The mediator

Program Security 99

could compare the names in the table to the file name in the data
structure to determine whether access is appropriate. More likely,
the mediator would copy the file name into its own local storage
area and compare from there. Comparing from the copy leaves
the data structure in the user’s area, under the user’s control.

It is at this point that the incomplete mediation flaw can be
exploited. While the mediator is checking access rights for the file
my file, the user could change the file name descriptor to your
file. Having read the work ticket once, the mediator would not
be expected to reread the ticket before approving it; the mediator
would approve the access and send the now-modified descriptor
to the file handler.

The problem is called a time-of-check to time-of-use flaw because
it exploits the delay between the two times. That is, between the
time the access was checked and the time the result of the check
was used, a change occurred, invalidating the result of the check.

3.2.6 Security Implication

The security implication here is pretty clear: Checking one action
and performing another is an example of ineffective access control.
We must be wary whenever a time lag or loss of control occurs,
making sure that there is no way to corrupt the check’s results
during that interval.

Fortunately, there are ways to prevent exploitation of the time
lag. One way is to ensure that critical parameters are not exposed
during any loss of control. The access checking software must own
the request data until the requested action is complete. Another
way is to ensure serial integrity; that is, to allow no interruption
(loss of control) during the validation. Or the validation routine
can initially copy data from the user’s space to the routine’s area
out of the user’s reach and perform validation checks on the copy.
Finally, the validation routine can seal the request data with a
checksum to detect modification.

Secure Computing100

3.2.7 Combinations of Nonmalicious Program Flaws

These three vulnerabilities are bad enough when each is considered
on its own. But perhaps the worst aspect of all three flaws is that
they can be used together as one step in a multistep attack. An
attacker may not be content with causing a buffer overflow. Instead
the attacker may begin a three-pronged attack by using a buffer
overflow to disrupt all execution of arbitrary code on a machine.
At the same time, the attacker may exploit a time-of-check to time-
of-use flaw to add a new user ID to the system. The attacker then
logs in as the new user and exploits an incomplete mediation
flaw to obtain privileged status, and so forth. The clever attacker
uses flaws as common building blocks to build a complex attack.
For this reason, we must know about and protect against even
simple flaws. Unfortunately, these kinds of flaws are widespread
and dangerous. As we see in the next section, innocuous-seeming
program flaws can be exploited by malicious attackers to plant
intentionally harmful code.

3.3 VIRUSES AND OTHER MALICIOUS CODE

By themselves, programs are seldom security threats. The
programs operate on data, taking action only when data and
state changes trigger it. Much of the work done by a program is
invisible to users who are not likely to be aware of any malicious
activity. For instance, when was the last time you saw a bit? Do
you know in what form a document file is stored? If you know a
document resides somewhere on a disk, can you find it? Can you
tell if a game program does anything in addition to its expected
interaction with you? Which files are modified by a word processor
when you create a document? Which programs execute when
you start your computer or open a web page? Most users cannot
answer these questions. However, since users usually do not see
computer data directly, malicious people can make programs serve
as vehicles to access and change data and other programs. Let us
look at the possible effects of malicious code and then examine in

Program Security 101

detail several kinds of programs that can be used for interception
or modification of data.

3.3.1 Why Worry About Malicious Code?

None of us like the unexpected, especially in our programs.
Malicious code behaves in unexpected ways, thanks to a malicious
programmer’s intention. We think of the malicious code as lurking
inside our system: all or some of a program that we are running
or even a nasty part of a separate program that somehow attaches
itself to another (good) program.

How can such a situation arise? When you last installed a major
software package, such as a word processor, a statistical package,
or a plug-in from the Internet, you ran one command, typically
called INSTALL or SETUP. From there, the installation program
took control, creating some files, writing in other files, deleting
data and files, and perhaps renaming a few that it would change.
A few minutes and a quite a few disk accesses later, you had plenty
of new code and data, all set up for you with a minimum of human
intervention. Other than the general descriptions on the box, in
documentation files, or on web pages, you had absolutely no idea
exactly what “gifts” you had received. You hoped all you received
was good, and it probably was. The same uncertainty exists when
you unknowingly download an application, such as a Java applet
or an ActiveX control, while viewing a web site. Thousands or
even millions of bytes of programs and data are transferred, and
hundreds of modifications may be made to your existing files, all
occurring without your explicit consent or knowledge.

3.3.2 Malicious Code Can Do Much (Harm)

Malicious code can do anything any other program can, such
as writing a message on a computer screen, stopping a running
program, generating a sound, or erasing a stored file. Or malicious
code can do nothing at all right now; it can be planted to lie
dormant, undetected, until some event triggers the code to act.

Secure Computing102

The trigger can be a time or date, an interval (for example, after
30 minutes), an event (for example, when a particular program
is executed), a condition (for example, when communication
occurs on a network interface), a count (for example, the fifth time
something happens), some combination of these, or a random
situation. In fact, malicious code can do different things each time,
or nothing most of the time with something dramatic on occasion.
In general, malicious code can act with all the predictability of a
two-year-old child: We know in general what two-year-olds do,
we may even know what a specific two-year-old often does in
certain situations, but two-year-olds have an amazing capacity to
do the unexpected.

Malicious code runs under the user’s authority. Thus, malicious
code can touch everything the user can touch, and in the same
ways. Users typically have complete control over their own
program code and data files; they can read, write, modify, append,
and even delete them. And well they should. But malicious code
can do the same, without the user’s permission or even knowledge.

3.3.3 Malicious Code Has Been Around a Long Time

The popular literature and press continue to highlight the effects
of malicious code as if it were a relatively recent phenomenon. It is
not. Cohen [COH84] is sometimes credited with the discovery of
viruses, but in fact Cohen gave a name to a phenomenon known
long before. For example, Thompson, in his 1984 Turing Award
lecture, “Reflections on Trusting Trust” [THO84], described code
that can be passed by a compiler. vulnerabilities, and program
security flaws, especially intentional ones. What is new about
malicious code is the number of distinct instances and copies that
have appeared and the speed with which exploit code appears.

So malicious code is still around, and its effects are more pervasive.
It is important for us to learn what it looks like and how it works
so that we can take steps to prevent it from doing damage or at
least mediate its effects. How can malicious code take control of a
system? How can it lodge in a system? How does malicious code

Program Security 103

spread? How can it be recognized? How can it be detected? How
can it be stopped? How can it be prevented?

3.3.4 Kinds of Malicious Code

Malicious code or rogue program

Malicious code or rogue program is the general name for
unanticipated or undesired effects in programs or program parts,
caused by an agent intent on damage. This definition excludes
unintentional errors, although they can also have a serious negative
effect. This definition also excludes coincidence, in which two
benign programs combine for a negative effect. The agent is the
writer of the program or the person who causes its distribution. By
this definition, most faults found in software inspections, reviews,
and testing do not qualify as malicious code, because we think
of them as unintentional. However, keep in mind as you read
this chapter that unintentional faults can in fact invoke the same
responses as intentional malevolence; a benign cause can still lead
to a disastrous effect.

You are likely to have been affected by a virus at one time or another,
either because your computer was infected by one or because
you could not access an infected system while its administrators
were cleaning up the mess one made. In fact, your virus might
actually have been a worm: The terminology of malicious code
is sometimes used imprecisely. A virus is a program that can
replicate itself and pass on malicious code to other nonmalicious
programs by modifying them. The term “virus” was coined
because the affected program acts like a biological virus: It infects
other healthy subjects by attaching itself to the program and either
destroying it or coexisting with it. Because viruses are insidious,
we cannot assume that a clean program yesterday is still clean
today. Moreover, a good program can be modified to include a
copy of the virus program, so the infected good program itself
begins to act as a virus, infecting other programs. The infection
usually spreads at a geometric rate, eventually overtaking an

Secure Computing104

entire computing system and spreading to all other connected
systems.

A virus can be either transient or resident. A transient virus has
a life that depends on the life of its host; the virus runs when
its attached program executes and terminates when its attached
program ends. (During its execution, the transient virus may
spread its infection to other programs.) A resident virus locates
itself in memory; then it can remain active or be activated as a
stand-alone program, even after its attached program ends.

Trojan Horse

A Trojan horse is malicious code that, in addition to its primary
effect, has a second, nonobvious malicious effect.[1] As an example
of a computer Trojan horse, consider a login script that solicits
a user’s identification and password, passes the identification
information on to the rest of the system for login processing, but
also retains a copy of the information for later, malicious use. In
this example, the user sees only the login occurring as expected,
so there is no evident reason to suspect that any other action took
place.

Logic Bomb

A logic bomb is a class of malicious code that “detonates” or goes
off when a specified condition occurs. A time bomb is a logic bomb
whose trigger is a time or date.

Trapdoor or backdoor

A trapdoor or backdoor is a feature in a program by which
someone can access the program other than by the obvious, direct
call, perhaps with special privileges. For instance, an automated

Program Security 105

bank teller program might allow anyone entering the number
990099 on the keypad to process the log of everyone’s transactions
at that machine. In this example, the trapdoor could be intentional,
for maintenance purposes, or it could be an illicit way for the
implementer to wipe out any record of a crime.

Worm

A worm is a program that spreads copies of itself through a
network. Shock and Hupp [SHO82] are apparently the first to
describe a worm, which, interestingly, was for nonmalicious
purposes. The primary difference between a worm and a virus is
that a worm operates through networks, and a virus can spread
through any medium (but usually uses copied program or data
files). Additionally, the worm spreads copies of itself as a stand-
alone program, whereas the virus spreads copies of itself as a
program that attaches to or embeds in other programs.

A rabbit as a virus or worm that self-replicates without bound,
with the intention of exhausting some computing resource. A
rabbit might create copies of itself and store them on disk in an
effort to completely fill the disk, for example.

These definitions match current careful usage. The distinctions
among these terms are small, and often the terms are confused,
especially in the popular press. The term “virus” is often used to
refer to any piece of malicious code. Furthermore, two or more
forms of malicious code can be combined to produce a third kind
of problem. For instance, a virus can be a time bomb if the viral
code that is spreading will trigger an event after a period of time
has passed. The kinds of malicious code are summarized in Table
1.

Secure Computing106

Table 1: Types of Malicious Code

Because “virus” is the popular name given to all forms of
malicious code and because fuzzy lines exist between different
kinds of malicious code, we are not too restrictive in the following
discussion. We want to look at how malicious code spreads, how
it is activated, and what effect it can have. A virus is a convenient
term for mobile malicious code, so in the following sections we
use the term “virus” almost exclusively. The points made apply
also to other forms of malicious code.

3.3.5 How Viruses Attach

A printed copy of a virus does nothing and threatens no one.
Even executable virus code sitting on a disk does nothing. What
triggers a virus to start replicating? For a virus to do its malicious
work and spread itself, it must be activated by being executed.
Fortunately for virus writers but unfortunately for the rest of us,
there are many ways to ensure that programs will be executed on
a running computer.

For example, recall the SETUP program that you initiate on your
computer. It may call dozens or hundreds of other programs,
some on the distribution medium, some already residing on the
computer, some in memory. If any one of these programs contains
a virus, the virus code could be activated. Let us see how. Suppose
the virus code were in a program on the distribution medium,
such as a CD; when executed, the virus could install itself on a
permanent storage medium (typically, a hard disk) and also in any

Program Security 107

and all executing programs in memory. Human intervention is
necessary to start the process; a human being puts the virus on the
distribution medium, and perhaps another initiates the execution
of the program to which the virus is attached. (It is possible for
execution to occur without human intervention, though, such as
when execution is triggered by a date or the passage of a certain
amount of time.) After that, no human intervention is needed; the
virus can spread by itself.

A more common means of virus activation is as an attachment to an
e-mail message. In this attack, the virus writer tries to convince the
victim (the recipient of the e-mail message) to open the attachment.
Once the viral attachment is opened, the activated virus can do
its work. Some modern e-mail handlers, in a drive to “help” the
receiver (victim), automatically open attachments as soon as the
receiver opens the body of the e-mail message. The virus can be
executable code embedded in an executable attachment, but other
types of files are equally dangerous. For example, objects such as
graphics or photo images can contain code to be executed by an
editor, so they can be transmission agents for viruses. In general,
it is safer to force users to open files on their own rather than
automatically; it is a bad idea for programs to perform potentially
security-relevant actions without a user’s consent. However, ease-
of-use often trumps security, so programs such as browsers, e-mail
handlers, and viewers often “helpfully” open files without asking
the user first.

3.3.6 Appended Viruses

A program virus attaches itself to a program; then, whenever the
program is run, the virus is activated. This kind of attachment is
usually easy to program.

In the simplest case, a virus inserts a copy of itself into the
executable program file before the first executable instruction.
Then, all the virus instructions execute first; after the last virus
instruction, control flows naturally to what used to be the first
program instruction. Such a situation is shown in Figure 2.

Secure Computing108

Figure 2: Virus Appended to a Program.

This kind of attachment is simple and usually effective. The
virus writer does not need to know anything about the program
to which the virus will attach, and often the attached program
simply serves as a carrier for the virus. The virus performs its task
and then transfers to the original program. Typically, the user is
unaware of the effect of the virus if the original program still does
all that it used to. Most viruses attach in this manner.

3.3.7 Viruses That Surround a Program

An alternative to the attachment is a virus that runs the original
program but has control before and after its execution. For example,
a virus writer might want to prevent the virus from being detected.
If the virus is stored on disk, its presence will be given away by
its file name, or its size will affect the amount of space used on the
disk. The virus writer might arrange for the virus to attach itself
to the program that constructs the listing of files on the disk. If
the virus regains control after the listing program has generated
the listing but before the listing is displayed or printed, the virus
could eliminate its entry from the listing and falsify space counts
so that it appears not to exist. A surrounding virus is shown in
Figure 3.

Program Security 109

Figure 3: Virus Surrounding a Program.

3.3.8 Integrated Viruses and Replacements

A third situation occurs when the virus replaces some of its
target, integrating itself into the original code of the target. Such
a situation is shown in Figure 4. Clearly, the virus writer has to
know the exact structure of the original program to know where
to insert which pieces of the virus.

Figure 4: Virus Integrated into a Program.

Secure Computing110

Finally, the virus can replace the entire target, either mimicking
the effect of the target or ignoring the expected effect of the target
and performing only the virus effect. In this case, the user is most
likely to perceive the loss of the original program.

3.3.9 Document Viruses

Currently, the most popular virus type is what we call the document
virus, which is implemented within a formatted document, such
as a written document, a database, a slide presentation, a picture,
or a spreadsheet. These documents are highly structured files that
contain both data (words or numbers) and commands (such as
formulas, formatting controls, links). The commands are part of
a rich programming language, including macros, variables and
procedures, file accesses, and even system calls. The writer of
a document virus uses any of the features of the programming
language to perform malicious actions.

The ordinary user usually sees only the content of the document
(its text or data), so the virus writer simply includes the virus in
the commands part of the document, as in the integrated program
virus.

3.3.10 How Viruses Gain Control

The virus (V) has to be invoked instead of the target (T). Essentially,
the virus either has to seem to be T, saying effectively “I am T” or
the virus has to push T out of the way and become a substitute for
T, saying effectively “Call me instead of T.” A more blatant virus
can simply say “invoke me [you fool].”

The virus can assume T’s name by replacing (or joining to) T’s code
in a file structure; this invocation technique is most appropriate for
ordinary programs. The virus can overwrite T in storage (simply
replacing the copy of T in storage, for example). Alternatively, the
virus can change the pointers in the file table so that the virus

Program Security 111

is located instead of T whenever T is accessed through the file
system. These two cases are shown in Figure 5.

Figure 5: Virus Completely Replacing a Program.

The virus can supplant T by altering the sequence that would have
invoked T to now invoke the virus V; this invocation can be used
to replace parts of the resident operating system by modifying
pointers to those resident parts, such as the table of handlers for
different kinds of interrupts.

3.3.11 Homes for Viruses

The virus writer may find these qualities appealing in a virus:
• It is hard to detect.
• It is not easily destroyed or deactivated.
• It spreads infection widely.
• It can reinfect its home program or other programs.
• It is easy to create.
• It is machine independent and operating system

independent.

Secure Computing112

Few viruses meet all these criteria. The virus writer chooses from
these objectives when deciding what the virus will do and where
it will reside.

Just a few years ago, the challenge for the virus writer was to
write code that would be executed repeatedly so that the virus
could multiply. Now, however, one execution is enough to ensure
widespread distribution. Many viruses are transmitted by e-mail,
using either of two routes. In the first case, some virus writers
generate a new e-mail message to all addresses in the victim’s
address book. These new messages contain a copy of the virus
so that it propagates widely. Often the message is a brief, chatty,
nonspecific message that would encourage the new recipient to
open the attachment from a friend (the first recipient). For example,
the subject line or message body may read “I thought you might
enjoy this picture from our vacation.” In the second case, the
virus writer can leave the infected file for the victim to forward
unknowingly. If the virus’s effect is not immediately obvious, the
victim may pass the infected file unwittingly to other victims.

Let us look more closely at the issue of viral residence.

One-Time Execution

The majority of viruses today execute only once, spreading their
infection and causing their effect in that one execution. A virus
often arrives as an e-mail attachment of a document virus. It is
executed just by being opened.

Boot Sector Viruses

A special case of virus attachment, but formerly a fairly popular
one, is the so-called boot sector virus. When a computer is started,
control begins with firmware that determines which hardware

Program Security 113

components are present, tests them, and transfers control to an
operating system. A given hardware platform can run many
different operating systems, so the operating system is not coded
in firmware but is instead invoked dynamically, perhaps even by
a user’s choice, after the hardware test.

The operating system is software stored on disk. Code copies the
operating system from disk to memory and transfers control to
it; this copying is called the bootstrap (often boot) load because
the operating system figuratively pulls itself into memory by its
bootstraps. The firmware does its control transfer by reading a
fixed number of bytes from a fixed location on the disk (called the
boot sector) to a fixed address in memory and then jumping to
that address (which will turn out to contain the first instruction
of the bootstrap loader). The bootstrap loader then reads into
memory the rest of the operating system from disk. To run a
different operating system, the user just inserts a disk with the
new operating system and a bootstrap loader. When the user
reboots from this new disk, the loader there brings in and runs
another operating system. This same scheme is used for personal
computers, workstations, and large mainframes.

To allow for change, expansion, and uncertainty, hardware
designers reserve a large amount of space for the bootstrap load.
The boot sector on a PC is slightly less than 512 bytes, but since the
loader will be larger than that, the hardware designers support
“chaining,” in which each block of the bootstrap is chained to
(contains the disk location of) the next block. This chaining allows
big bootstraps but also simplifies the installation of a virus. The
virus writer simply breaks the chain at any point, inserts a pointer
to the virus code to be executed, and reconnects the chain after the
virus has been installed. This situation is shown in Figure 6.

Secure Computing114

Figure 6: Boot Sector Virus Relocating Code.

The boot sector is an especially appealing place to house a virus.
The virus gains control very early in the boot process, before most
detection tools are active, so that it can avoid, or at least complicate,
detection. The files in the boot area are crucial parts of the operating
system. Consequently, to keep users from accidentally modifying
or deleting them with disastrous results, the operating system
makes them “invisible” by not showing them as part of a normal
listing of stored files, preventing their deletion. Thus, the virus
code is not readily noticed by users.

Memory-Resident Viruses

Some parts of the operating system and most user programs
execute, terminate, and disappear, with their space in memory
being available for anything executed later. For very frequently
used parts of the operating system and for a few specialized user
programs, it would take too long to reload the program each
time it was needed. Such code remains in memory and is called
“resident” code. Examples of resident code are the routine that
interprets keys pressed on the keyboard, the code that handles
error conditions that arise during a program’s execution, or a
program that acts like an alarm clock, sounding a signal at a time

Program Security 115

the user determines. Resident routines are sometimes called TSRs
or “terminate and stay resident” routines.

Virus writers also like to attach viruses to resident code because
the resident code is activated many times while the machine is
running. Each time the resident code runs, the virus does too. Once
activated, the virus can look for and infect uninfected carriers. For
example, after activation, a boot sector virus might attach itself to
a piece of resident code. Then, each time the virus was activated
it might check whether any removable disk in a disk drive was
infected and, if not, infect it. In this way the virus could spread
its infection to all removable disks used during the computing
session.

A virus can also modify the operating system’s table of programs
to run. On a Windows machine the registry is the table of all
critical system information, including programs to run at startup.
If the virus gains control once, it can insert a registry entry so that
it will be reinvoked each time the system restarts. In this way, even
if the user notices and deletes the executing copy of the virus from
memory, the virus will return on the next system restart.

3.3.12 Other Homes for Viruses

A virus that does not take up residence in one of these cozy
establishments has to fend more for itself. But that is not to say
that the virus will go homeless.

One popular home for a virus is an application program. Many
applications, such as word processors and spreadsheets, have a
“macro” feature, by which a user can record a series of commands
and repeat them with one invocation. Such programs also provide
a “startup macro” that is executed every time the application is
executed. A virus writer can create a virus macro that adds itself
to the startup directives for the application. It also then embeds a
copy of itself in data files so that the infection spreads to anyone
receiving one or more of those files.

Secure Computing116

Libraries are also excellent places for malicious code to reside.
Because libraries are used by many programs, the code in them
will have a broad effect. Additionally, libraries are often shared
among users and transmitted from one user to another, a practice
that spreads the infection. Finally, executing code in a library can
pass on the viral infection to other transmission media. Compilers,
loaders, linkers, runtime monitors, runtime debuggers, and even
virus control programs are good candidates for hosting viruses
because they are widely shared.

3.3.13 Virus Signatures

A virus cannot be completely invisible. Code must be stored
somewhere, and the code must be in memory to execute. Moreover,
the virus executes in a particular way, using certain methods to
spread. Each of these characteristics yields a telltale pattern, called
a signature, that can be found by a program that looks for it. The
virus’s signature is important for creating a program, called a
virus scanner, that can detect and, in some cases, remove viruses.
The scanner searches memory and long-term storage, monitoring
execution and watching for the telltale signatures of viruses. For
example, a scanner looking for signs of the Code Red worm can
look for a pattern containing the following characters:

/default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbd3
%u7801%u9090%u6858%ucdb3%u7801%u9090%u6858
%ucbd3%u7801%u9090
%u9090%u8190%u00c3%u0003%ub00%u531b%u53ff
%u0078%u0000%u00=a
HTTP/1.0

When the scanner recognizes a known virus’s pattern, it can then
block the virus, inform the user, and deactivate or remove the
virus. However, a virus scanner is effective only if it has been kept

Program Security 117

up to date with the latest information on current viruses.

3.3.14 Storage Patterns

Most viruses attach to programs that are stored on media such
as disks. The attached virus piece is invariant, so the start of the
virus code becomes a detectable signature. The attached piece is
always located at the same position relative to its attached file. For
example, the virus might always be at the beginning, 400 bytes
from the top, or at the bottom of the infected file. Most likely, the
virus will be at the beginning of the file because the virus writer
wants to obtain control of execution before the bona fide code of
the infected program is in charge. In the simplest case, the virus
code sits at the top of the program, and the entire virus does its
malicious duty before the normal code is invoked. In other cases,
the virus infection consists of only a handful of instructions that
point or jump to other, more detailed instructions elsewhere. For
example, the infected code may consist of condition testing and a
jump or call to a separate virus module. In either case, the code to
which control is transferred will also have a recognizable pattern.
Both of these situations are shown in Figure 7.

Figure 7: Recognizable Patterns in Viruses.

Secure Computing118

A virus may attach itself to a file, in which case the file’s size
grows. Or the virus may obliterate all or part of the underlying
program, in which case the program’s size does not change but
the program’s functioning will be impaired. The virus writer has
to choose one of these detectable effects.

The virus scanner can use a code or checksum to detect changes
to a file. It can also look for suspicious patterns, such as a JUMP
instruction as the first instruction of a system program (in case
the virus has positioned itself at the bottom of the file but is to be
executed first, as in Figure 7).

3.3.15 Execution Patterns

A virus writer may want a virus to do several things at the same
time, namely, spread infection, avoid detection, and cause harm.
These goals are shown in Table 7, along with ways each goal can be
addressed. Unfortunately, many of these behaviors are perfectly
normal and might otherwise go undetected. For instance, one goal
is modifying the file directory; many normal programs create files,
delete files, and write to storage media. Thus, no key signals point
to the presence of a virus.

Table 2: Virus Effects and Causes.

Program Security 119

Most virus writers seek to avoid detection for themselves and
their creations. Because a disk’s boot sector is not visible to normal
operations (for example, the contents of the boot sector do not
show on a directory listing), many virus writers hide their code
there. A resident virus can monitor disk accesses and fake the
result of a disk operation that would show the virus hidden in a
boot sector by showing the data that should have been in the boot
sector (which the virus has moved elsewhere).

Secure Computing120

There are no limits to the harm a virus can cause. On the modest
end, the virus might do nothing; some writers create viruses just
to show they can do it. Or the virus can be relatively benign,
displaying a message on the screen, sounding the buzzer, or
playing music. From there, the problems can escalate. One virus
can erase files, another an entire disk; one virus can prevent a
computer from booting, and another can prevent writing to disk.
The damage is bounded only by the creativity of the virus’s author.

3.3.16 Transmission Patterns

A virus is effective only if it has some means of transmission
from one location to another. As we have already seen, viruses
can travel during the boot process by attaching to an executable
file or traveling within data files. The travel itself occurs during
execution of an already infected program. Since a virus can execute
any instructions a program can, virus travel is not confined to any
single medium or execution pattern. For example, a virus can
arrive on a disk or from a network connection, travel during its
host’s execution to a hard disk boot sector, reemerge next time the
host computer is booted, and remain in memory to infect other
disks as they are accessed.

3.3.17 Polymorphic Viruses

The virus signature may be the most reliable way for a virus
scanner to identify a virus. If a particular virus always begins with
the string 47F0F00E08 (in hexadecimal) and has string 00113FFF
located at word 12, it is unlikely that other programs or data files
will have these exact characteristics. For longer signatures, the
probability of a correct match increases.

If the virus scanner will always look for those strings, then the
clever virus writer can cause something other than those strings
to be in those positions. Many instructions cause no effect, such as
adding 0 to a number, comparing a number to itself, or jumping
to the next instruction. These instructions, sometimes called no-

Program Security 121

ops, can be sprinkled into a piece of code to distort any pattern.
For example, the virus could have two alternative but equivalent
beginning words; after being installed, the virus will choose
one of the two words for its initial word. Then, a virus scanner
would have to look for both patterns. A virus that can change its
appearance is called a polymorphic virus. (Poly means “many”
and morph means “form.”)

A two-form polymorphic virus can be handled easily as two
independent viruses. Therefore, the virus writer intent on
preventing detection of the virus will want either a large or an
unlimited number of forms so that the number of possible forms
is too large for a virus scanner to search for. Simply embedding a
random number or string at a fixed place in the executable version
of a virus is not sufficient, because the signature of the virus is just
the constant code excluding the random part. A polymorphic virus
has to randomly reposition all parts of itself and randomly change
all fixed data. Thus, instead of containing the fixed (and therefore
searchable) string “HA! INFECTED BY A VIRUS,” a polymorphic
virus has to change even that pattern sometimes.

Trivially, assume a virus writer has 100 bytes of code and 50 bytes
of data. To make two virus instances different, the writer might
distribute the first version as 100 bytes of code followed by all
50 bytes of data. A second version could be 99 bytes of code, a
jump instruction, 50 bytes of data, and the last byte of code. Other
versions are 98 code bytes jumping to the last two, 97 and three,
and so forth. Just by moving pieces around, the virus writer can
create enough different appearances to fool simple virus scanners.
Once the scanner writers became aware of these kinds of tricks,
however, they refined their signature definitions.

A simple variety of polymorphic virus uses encryption under
various keys to make the stored form of the virus different. These
are sometimes called encrypting viruses. This type of virus must
contain three distinct parts: a decryption key, the (encrypted)
object code of the virus, and the (unencrypted) object code of the
decryption routine. For these viruses, the decryption routine itself,

Secure Computing122

or a call to a decryption library routine, must be in the clear so that
becomes the signature.

To avoid detection, not every copy of a polymorphic virus has to
differ from every other copy. If the virus changes occasionally, not
every copy will match a signature of every other copy.

3.3.18 The Source of Viruses

Since a virus can be rather small, its code can be “hidden” inside
other larger and more complicated programs. Two hundred lines
of a virus could be separated into one hundred packets of two
lines of code and a jump each; these one hundred packets could
be easily hidden inside a compiler, a database manager, a file
manager, or some other large utility.

Virus discovery could be aided by a procedure to determine if
two programs are equivalent. However, theoretical results in
computing are very discouraging when it comes to the complexity
of the equivalence problem. The general question “Are these two
programs equivalent?” is undecidable (although that question
can be answered for many specific pairs of programs). Even
ignoring the general undecidability problem, two modules may
produce subtly different results that mayor may notbe security
relevant. One may run faster, or the first may use a temporary file
for workspace whereas the second performs all its computations
in memory. These differences could be benign, or they could be
a marker of an infection. Therefore, we are unlikely to develop
a screening program that can separate infected modules from
uninfected ones.

Although the general is dismaying, the particular is not. If we
know that a particular virus may infect a computing system, we
can check for it and detect it if it is there. Having found the virus,
however, we are left with the task of cleansing the system of it.
Removing the virus in a running system requires being able to
detect and eliminate its instances faster than it can spread.

Program Security 123

3.3.19 Prevention of Virus Infection

The only way to prevent the infection of a virus is not to receive
executable code from an infected source. This philosophy used to
be easy to follow because it was easy to tell if a file was executable
or not. For example, on PCs, a .exe extension was a clear sign
that the file was executable. However, as we have noted, today’s
files are more complex, and a seemingly nonexecutable file may
have some executable code buried deep within it. For example,
a word processor may have commands within the document
file; as we noted earlier, these commands, called macros, make it
easy for the user to do complex or repetitive things. But they are
really executable code embedded in the context of the document.
Similarly, spreadsheets, presentation slides, other office- or
business-related files, and even media files can contain code or
scripts that can be executed in various waysand thereby harbor
viruses. And, as we have seen, the applications that run or use these
files may try to be helpful by automatically invoking the executable
code, whether you want it run or not! Against the principles of
good security, e-mail handlers can be set to automatically open
(without performing access control) attachments or embedded
code for the recipient, so your e-mail message can have animated
bears dancing across the top.

Another approach virus writers have used is a little-known feature
in the Microsoft file design. Although a file with a .doc extension is
expected to be a Word document, in fact, the true document type is
hidden in a field at the start of the file. This convenience ostensibly
helps a user who inadvertently names a Word document with a .ppt
(Power-Point) or any other extension. In some cases, the operating
system will try to open the associated application but, if that fails,
the system will switch to the application of the hidden file type.
So, the virus writer creates an executable file, names it with an
inappropriate extension, and sends it to the victim, describing it is
as a picture or a necessary code add-in or something else desirable.
The unwitting recipient opens the file and, without intending to,
executes the malicious code.

Secure Computing124

More recently, executable code has been hidden in files containing
large data sets, such as pictures or read-only documents. These
bits of viral code are not easily detected by virus scanners and
certainly not by the human eye. For example, a file containing a
photograph may be highly granular; if every sixteenth bit is part
of a command string that can be executed, then the virus is very
difficult to detect.

Because you cannot always know which sources are infected, you
should assume that any outside source is infected. Fortunately,
you know when you are receiving code from an outside source;
unfortunately, it is not feasible to cut off all contact with the outside
world.

In their interesting paper comparing computer virus transmission
with human disease transmission, Individuals’ efforts to keep
their computers free from viruses lead to communities that are
generally free from viruses because members of the community
have little (electronic) contact with the outside world. In this
case, transmission is contained not because of limited contact but
because of limited contact outside the community. Governments,
for military or diplomatic secrets, often run disconnected network
communities. The trick seems to be in choosing one’s community
prudently. However, as use of the Internet and the World Wide
Web increases, such separation is almost impossible to maintain.

Nevertheless, there are several techniques for building a reasonably
safe community for electronic contact, including the following:

•	 Use	 only	 commercial	 software	 acquired	 from	 reliable,	 well-
established	 vendors. There is always a chance that you
might receive a virus from a large manufacturer with
a name everyone would recognize. However, such
enterprises have significant reputations that could be
seriously damaged by even one bad incident, so they go
to some degree of trouble to keep their products virus-
free and to patch any problem-causing code right away.
Similarly, software distribution companies will be careful
about products they handle.

Program Security 125

•	 Test	all	new	software	on	an	isolated	computer. If you must use
software from a questionable source, test the software
first on a computer that is not connected to a network
and contains no sensitive or important data. Run the
software and look for unexpected behavior, even simple
behavior such as unexplained figures on the screen. Test
the computer with a copy of an up-to-date virus scanner
created before the suspect program is run. Only if the
program passes these tests should you install it on a less
isolated machine.

•	 Open	attachments	only	when	you	know	them	to	be	safe. What
constitutes “safe” is up to you, as you have probably
already learned in this chapter. Certainly, an attachment
from an unknown source is of questionable safety. You
might also distrust an attachment from a known source
but with a peculiar message.

•	 Make	a	recoverable	system	image	and	store	it	safely.	If your
system does become infected, this clean version will let
you reboot securely because it overwrites the corrupted
system files with clean copies. For this reason, you must
keep the image write-protected during reboot. Prepare
this image now, before infection; after infection it is too
late. For safety, prepare an extra copy of the safe boot
image.

•	 Make	and	retain	backup	copies	of	executable	system	files.	This
way, in the event of a virus infection, you can remove
infected files and reinstall from the clean backup copies
(stored in a secure, offline location, of course). Also
make and retain backups of important data files that
might contain infectable code; such files include word-
processor documents, spreadsheets, slide presentations,
pictures, sound files, and databases. Keep these backups
on inexpensive media, such as CDs or DVDs so that you
can keep old backups for a long time. In case you find
an infection, you want to be able to start from a clean
backupthat is, one taken before the infection.

Secure Computing126

•	 Use	virus	detectors	(often	called	virus	scanners)	regularly	and	
update	them	daily. Many of the available virus detectors can
both detect and eliminate infection from viruses. Several
scanners are better than one because one may detect the
viruses that others miss. Because scanners search for
virus signatures, they are constantly being revised as
new viruses are discovered. New virus signature files
or new versions of scanners are distributed frequently;
often, you can request automatic downloads from the
vendor’s web site. Keep your detector’s signature file up
to date.

3.3.20 Truths and Misconceptions about Viruses

Because viruses often have a dramatic impact on the computer-
using community, they are often highlighted in the press,
particularly in the business section. However, there is much
misinformation in circulation about viruses. Let us examine some
of the popular claims about them.

•	 Viruses	 can	 infect	 only	Microsoft	Windows	 systems.	 False.
Among students and office workers, PCs running
Windows are popular computers, and there may be
more people writing software (and viruses) for them
than for any other kind of processor. Thus, the PC is most
frequently the target when someone decides to write a
virus. However, the principles of virus attachment and
infection apply equally to other processors, including
Macintosh computers, Unix and Linux workstations, and
mainframe computers. Cell phones and PDAs are now
also virus targets. In fact, no writeable stored-program
computer is immune to possible virus attack. This
situation means that all devices containing computer
code, including automobiles, airplanes, microwave
ovens, radios, televisions, voting machines, and radiation
therapy machines have the potential for being infected
by a virus.

Program Security 127

•	 Viruses	can	modify	“hidden”	or	“read-only”	files.	True. We
may try to protect files by using two operating system
mechanisms. First, we can make a file a hidden file
so that a user or program listing all files on a storage
device will not see the file’s name. Second, we can
apply a read-only protection to the file so that the user
cannot change the file’s contents. However, each of these
protections is applied by software, and virus software
can override the native software’s protection. Moreover,
software protection is layered, with the operating
system providing the most elementary protection. If a
secure operating system obtains control before a virus
contaminator has executed, the operating system can
prevent contamination as long as it blocks the attacks the
virus will make.

•	 Viruses	 can	 appear	 only	 in	 data	 files,	 or	 only	 in	 Word	
documents,	 or	 only	 in	 programs.	 False. What are data?
What is an executable file? The distinction between these
two concepts is not always clear, because a data file
can control how a program executes and even cause a
program to execute. Sometimes a data file lists steps to be
taken by the program that reads the data, and these steps
can include executing a program. For example, some
applications contain a configuration file whose data are
exactly such steps. Similarly, word-processing document
files may contain startup commands to execute when
the document is opened; these startup commands can
contain malicious code. Although, strictly speaking,
a virus can activate and spread only when a program
executes, in fact, data files are acted on by programs.
Clever virus writers have been able to make data control
files that cause programs to do many things, including
pass along copies of the virus to other data files.

•	 Viruses	 spread	 only	 on	 disks	 or	 only	 through	 e-mail.	 False.
File-sharing is often done as one user provides a copy of
a file to another user by writing the file on a transportable
disk. However, any means of electronic file transfer

Secure Computing128

will work. A file can be placed in a network’s library or
posted on a bulletin board. It can be attached to an e-mail
message or made available for download from a web
site. Any mechanism for sharing filesof programs, data,
documents, and so forthcan be used to transfer a virus.

•	 Viruses	 cannot	 remain	 in	 memory	 after	 a	 complete	 power	
off/power	on	reboot.	True,	but	 .	 .	 .	If a virus is resident in
memory, the virus is lost when the memory loses power.
That is, computer memory (RAM) is volatile, so all
contents are deleted when power is lost.[2] However,
viruses written to disk certainly can remain through a
reboot cycle. Thus, you can receive a virus infection, the
virus can be written to disk (or to network storage), you
can turn the machine off and back on, and the virus can
be reactivated during the reboot. Boot sector viruses gain
control when a machine reboots (whether it is a hardware
or software reboot), so a boot sector virus may remain
through a reboot cycle because it activates immediately
when a reboot has completed.

•	 Viruses	 cannot	 infect	 hardware.	 True. Viruses can infect
only things they can modify; memory, executable files,
and data are the primary targets. If hardware contains
writeable storage (socalled firmware) that can be
accessed under program control, that storage is subject
to virus attack. There have been a few instances of
firmware viruses. Because a virus can control hardware
that is subject to program control, it may seem as if a
hardware device has been infected by a virus, but it is
really the software driving the hardware that has been
infected. Viruses can also exercise hardware in any way
a program can. Thus, for example, a virus could cause a
disk to loop incessantly, moving to the innermost track
then the outermost and back again to the innermost.

•	 Viruses	can	be	malevolent,	benign,	or	benevolent.	True. Not
all viruses are bad. For example, a virus might locate
uninfected programs, compress them so that they
occupy less memory, and insert a copy of a routine that

Program Security 129

decompresses the program when its execution begins.
At the same time, the virus is spreading the compression
function to other programs. This virus could substantially
reduce the amount of storage required for stored
programs, possibly by up to 50 percent. However, the
compression would be done at the request of the virus,
not at the request, or even knowledge, of the program
owner.

Secure Computing130

REFERENCES

1. Andreas M. Antonopoulos, Mastering	 Bitcoin:	 Unlocking	
Digital	 Cryptocurrencies (Dec 2014, O›Reilly; 2/e 2017). First
edition free online.

2. Applied cryptography and network security: Menezes, van
Oorschot and Vanstone, Handbook	of	Applied	Cryptography (1996,
CRC Press; 2001 with corrections), free online for personal
use.

3. Bruce Schneier. Secrets	and	Lies:	Digital	Security	in	a	Networked	
World (2000, Wiley).

4. Dieter Gollmann, Computer	Security,	3/e (2011, Wiley).
5. Goodrich and Tamassia, Introduction	to	Computer	Security (2010,

Addison-Wesley).
6. Kaufman, Perlman and Speciner, Network	 Security:	 Private	

Communications	in	a	Public	World,	second	edition (2003, Prentice
Hall).

7. Keith M. Martin, Everyday	 Cryptography (2017, 2/e; Oxford
University Press).

8. Mark Stamp, Information	 Security:	 Principles	 and	 Practice,	
2/e (2011, Wiley).

9. Matt Bishop, Computer	 Security:	 Art	 and	 Science (2002,
Addison-Wesley). Shorter version which «omits much
of the mathematical formalism»: Introduction	 to	 Computer	
Security (2005, Addison-Wesley).

10. Operating system security: Trent Jaeger, Operating System
Security (2008, Morgan and Claypool).

11. Paul van Oorschot, Computer Security and the Internet: Tools
and Jewels (2020, Springer). Personal use copy freely available
on author’s web site.

12. Pfleeger and Pfleeger, Security	in	Computing,	4/e (2007, Prentice
Hall).

13. Saltzer and Kaashoek, Principles	 of	 Computer	 System	
Design (2009, Morgan Kaufmann). Free online chapters
include (pdf) Ch.11: Information Security.

Program Security 131

14. Security in the real-life systems (including anecdotes): Ross
Anderson, Security	Engineering:	A	Guide	to	Building	Dependable	
Distributed	Systems,	2/e (2008, Wiley). The first edition (2001)
is available free online.

15. Smith and Marchesini, The	 Craft	 of	 System	 Security (2007,
Addison-Wesley).

16. Smith, Elementary	Information	Security (2011, Jones & Bartlett
Learning).

17. Stallings and Brown, Computer	Security:	Principles	and	Practice,	
3/e (2014, Prentice Hall).

18. Wenliang Du, Computer	Security:	A	Hands-on	Approach (2017,
self-published). Updated May 2019.

19. William Stallings, Cryptography	and	Network	Security:	Principles	
and	Practice,	5/e (2010, Prentice Hall). Relative to this book›s
4th edition, the network security components and an extra
chapter on SNMP are also packaged as Stallings› Network	
Security	 Essentials:	 Applications	 and	 Standards,	 3/e (2007,
Prentice Hall).

INTRODUCTION

Protection and security requires that computer resources such as
CPU, software’s, memory etc. are protected. This extends to the
operating system as well as the data in the system. This can be
done by ensuring integrity, confidentiality and availability in the
operating system. The system must be protect against unauthorized
access, viruses, worms etc. During the past few years we have
been observing a significant increase in the number of people
who use computers to perform tasks where security is important.
Typical such applications, that are of interest to general public and
can be expected to be used on home computers, include Internet
banking, e-government applications, electronic signature creation
and verification applications. We will use the term security-
critical application to denote such applications. Organizations use
information systems to store and process confidential business

4
PROTECTION AND SECURITY IN
OPERATING SYSTEM

C
H

A
PT

ER

Secure Computing134

data and personal data. Unauthorized access to information
stored or processed by all of the mentioned applications (and
many others) can often cause a substantial loss to the affected
person or organization. It is usually the user’s responsibility
to protect the sensitive data. However, common users are not
information security experts and can only follow some guidelines
given to them. Even that is usually possible only if the guidelines
are simple enough. While a larger organization can dedicate
some computers to security-critical applications and protect them
against unauthorized access, modification or software installation,
it can hardly be expected in a home environment.

4.1 SECURITY IN COMMON OPERATING SYSTEMS

In the thesis, we have analyzed two groups of currently common
desktop operating systems for personal computers. The first group
consists of Microsoft Windows 2000/ XP Professional/Vista, and
the second one consists of the Linux operating systems. We have
used the security functional requirements classes specified in the
international standard ISO/IEC 15408 to organize the analysis
of the security functions of the considered operating systems.
Operating systems in both groups use hardware resources to

Protection and Security in Operating System 135

protect themselves against manipulation by processes, and to
protect the processes against each other. They implement security
functions for security audit records generation and review, user
data protection, user identification and authentication, security
management, limited trusted path and trusted channels, and
other security requirements. As far as access control is concerned,
operating systems in both groups implement discretionary access
control mechanisms, and some of them (Linux, Windows Vista)
optionally provide different sorts of (partial) mandatory access
control mechanisms.

4.1.1 Security Problems of Common Operating Systems

We have identified several common security problems that are
not addressed sufficiently by the considered operating systems
if potentially malicious applications are to be used simultaneusly
with security-critical ones.

Secure Computing136

Abuse of privileges by an administrator

Linux operating systems not not apply discretionary access control
to the processes running on behalf of the user with ID 0 (root). A
system administrator can, by default, run any program on behalf
of this user. The administrator can, therefore, manipulate with data
of any user, and can also modify parts of the operating system and
applications, e.g. to capture sensitive input such as passwords,
PINs. The SELinux security module can be used with a carefully
specified security policy and with a suitable separation of duty
among more people to lower the risks of abuse of privileges by an
administrator. In Windows operating systems, the users can limit
the access of administrators to their data. However, this feature
is insufficient because it can be circumvented by abusing the
privileges for backup operators. The protection of confidentiality of
the data can be improved using encryption, but the administrators
are still able to overcome the encryption by designating a special
user able to decrypt all files.

Protection and Security in Operating System 137

To sum up, the system administrators (and other users with
special privileges) effectively control the entire system. Their
trustworthiness is therefore very important for the overall security
of the operating systems.

Too many processes with high privileges

Another common problem is that many processes providing
various services run on behalf of privileged users (e.g. root
on Linux, or special system user on Windows). Many of these
processes do need the privileges, but there are also many of them
that need only a small subset of the privileges. Programs contain
various flaws that may allow attackers to execute arbitrary code
with the privileges of the exploited process. When such flawed
program runs within a process with an administrator’s privileges,
it may allow an unidentified attacker to abuse the administrator’s
privileges.

Secure Computing138

Abuse of privileges of an ordinary user

A currently very common problem is the abuse of privileges of
an ordinary user by malicious applications. Many users do not
realize that the programs they have obtained from untrusted
sources (such as the huge number of web pages) can, on top of
(or instead of) the declared activities, perform any operations,
including malicious ones, while abusing the user’s privileges

Another problem is that applications often contain flaws that allow
a code embedded in a specially crafted document to be executed as
a result of the application’s processing of the document. When the
user uses such application to process a document obtained from
an untrusted source, the risk is similar to that of directly running
a program from an untrusted source. This problem becomes
even more significant when we consider common web browsers
or e-mail clients that, to be more userfriendly, automatically run
various applications to process documents in web pages or e-mail
attachments, often without asking the user whether or not to do
so. This is probably the most common way of spreading computer
viruses and Trojans nowadays. The lack of awareness of users also
helps the attackers to use this way to abuse the users’ privileges.
The users often trust unauthenticated information. A typical

Protection and Security in Operating System 139

example is the e-mail address of the sender of an e-mail message
– it is trivial to forge while many users, seeing a known e-mail
address, believe that the message must have been received from
a person they trust. The message often comes from a virus, Trojan
or another malware that attempts to exploit a security flaw in an
application the recipient is expected to use to process the message.

Direct manipulation with the hardware

Direct manipulation with the hardware while it is not controlled
by the operating system also presents a nonnegligible possibility
of breaking security of the considered operating systems. If an
attacker can physically manipulate with a computer, he or she
can modify the contents of its hard disks, and thus modify any
data, applications or parts of the operating system. Even though
the operating systems support digital signature verification for
system components or for software packages during installation,
the signature verification depends on data stored on the disk that
may be subject to unauthorized modification via direct hardware
manipulation. The system can also be modified not to perform
the verification at all. This problem cannot be, in general, solved
at the operating system layer without booting the system from
a medium that can be trusted not to have been modified in an
unauthorized way (e.g. a physically protected read-only medium

Secure Computing140

or a file the authenticity of which is verified before using it by the
computer’s firmware and hardware).

4.1.2 Existing Partial Solutions

Some of the problems mentioned above can be partially solved
using the features provided by the considered operating systems.
The problem with processes with too high privileges can, in some
cases, be solved by minimizing the privileges to the minimal
required set. It is, however, not always sufficient or possible.

The problem with abusing the user’s privileges can be sometimes
solved by increasing the awareness of the users, and by strict
separation of the security-critical activities from the risky ones
(such as web browsing or e-mail processing). When a user uses
different accounts for different purposes, he or she can set the
access control lists in the way that the programs running with the
user’s identity for the risky operations cannot interfere with the
sensitive data that are to be accessed only by processes running
with the other user’s identity.

Protection and Security in Operating System 141

There have been many projects for the Linux operating systems
implementing various security mechanisms (most often a sort of
mandatory access control) to effectively solve some of the problems.
They finally resulted in the inclusion of Linux Security Module
(LSM) framework in the Linux kernel, and in the acceptance of
SELinux module as a standard part of the kernel. SELinux can be
used to protect confidentiality using BellLaPadula based multi-
level security policy, and using any policy specified in terms of
domain and type enforcement mechanism. The latter is nowadays
used by several Linux distributions (e.g. RedHat, Debian) to limit
the impact of exploiting flaws in applications on Linux servers.
Attempts to use a strict SELinux policy on desktop systems have
failed due to too diverse requirements of desktop systems [11, 2],
and they have resulted in usage of so called targeted policy that
constrains many of the system services and server processes but
leaves the user-started processes unconfined in a single domain.
This way the user’s data are not protected against malicious
code started by the user, either directly or indirectly via a flawed
application and a malicious document.

Secure Computing142

Windows operating systems also brought several interesting
attempts to solve the problems. Windows Vista introduces two
new security features that are worth mentioning. One of them
is called Mandatory integrity control (MIC). Filesystem objects
and processes are assigned integrity levels, and a process can
only modify objects with the same or lower integrity level than
the process’s integrity level. In fact, one half of the standard Biba
model rules are used. It can also be configured to enforce one half
of the standard Bell-LaPadula model – a process can only read
from objects with the same or lower level. Because MIC only
implements a half of the standard rules, it lacks the provable
security properties of Bell-LaPadula and Biba models. Its primary
use was to protect the user’s data and programs against a malicious
code executed by a flawed web browser. It does not, however,
prevent other processes from reading (and acting upon) malicious
data that have been downloaded from untrusted sources.

Another new security feature introduced in Windows Vista is
User Account Control (UAC). It deals with the, well known and
unfortunate, fact that many users on desktop systems use accounts
with administrator privileges (either to overcome problems with
some software or just out of a sort of laziness) for their normal
computer usage. This leads to a situation that even a flawed
web browser or e-mail client can perform operations that are
restricted to administrators, and it effectively makes the access
control mechanisms ineffective. UAC works by disabling some
of the special privileges normally given to administrators and
prompting the user for a permission to grant these privileges to
the process that attempts to perform an operation that requires the
privileges. This way, the processes cannot perform the privileged
operations without the user knowing about it. They can still,
however, perform any operations that do not require the privileges
dedicated to administrators.

Protection and Security in Operating System 143

4.1.3 Existing Protection Profiles

The security requirements for IT products are often specified in
the form of a protection profile (PP) according to the international
standard ISO/IEC 15408. In the thesis, we have analyzed several
existing protection profiles for operating systems. In the PP registry,
several protection profiles for operating systems are registered.
Two of them, Controlled access protection profile (CAPP) and
Labeled security protection profile (LSPP), are for general use. A
few others are specifically tailored to the needs of the Department
of Defense of the U.S.A. for the classified information processing,
but they are not suitable for general home/office use.

The security objectives and the functional security requirements
of the CAPP do not cover protection against abuse of an
administrator’s privileges – a trustworthy administrator is
assumed. No protection against malicious code executing with a
user’s privileges is provided because all access control decisions
are based on the user’s identity regardless of the program being

Secure Computing144

executed. The user has thus no way of preventing a malicious
program from accessing any data accessible to the user. Even if
the user attempts to restrict his/her own access rights to an object,
the malicious program running on the user’s behalf can grant the
access rights to the user (or to any other user).

The LSPP improves the protection of confidentiality of data in the
environments where information is/may be classified in the Bell-
LaPadula way. When a process (subject) is executed at a security
level, it cannot read from objects with a higher security level (thus
containing more sensitive information), and it cannot write to
objects with a lower security level. For example, if communication
objects connecting to untrusted external systems are classified at
the lowest level, a malicious program running at a higher level
cannot send sensitive information to the external systems, and
a malicious process operating at the lowest level (and thus able
to communicate with the external system) can read no sensitive
information (contained in an object with a higher level).

The LSPP, however, contains no improvements regarding integrity
protection. A malicious program running at the lowest security
level can still cause damage to valuable data stored on the system.
As we will show later, the integrity protection can be of equal,
or sometimes even higher importance that the confidentiality
protection. The LSPP, just like the CAPP, does not cover the
protection against abuse of an administrator’s privileges – it
assumes a trustworthy administrator.

4.2 GOALS, OBJECTIVES AND METHODS

The problems mentioned in the previous section have given rise to
the primary goals of the thesis:

• designing a suitable security model for an operating
system supporting secure use of security-critical
applications alongside untrusted and potentially
malicious applications,

• creating a protection profile, compliant to the ISO/IEC

Protection and Security in Operating System 145

15408 standard, for a general purpose operating system
supporting such use, utilizing the security model.

In order to achieve the goals, we have set the following objectives
to fulfil in the thesis:

• Identify and categorize typical applications and identify
the protection requirements.

• Specify the data classification scheme.
• Specify the security model.
• Formulate and prove security properties of the model.
• Create the protection profile.

In order to specify the security model we have used a simplified
model of an operating system consisting of active entities –
subjects (processes) performing operations on passive entities
– objects (files, directories, communication objects, processes,
. . .). We started with read, write, create and delete operations,
and we extended the set of operations later to cover a more
realistic operating system. We have modelled access control
and information flow control using logical functions operating
on subjects and objects and yielding true or false depending on
whether the operation is permitted or not.

The structure of a protection profile is specified by the international
standard ISO/IEC 15408. We have used the standard to write our
protection profile.

Secure Computing146

4.3 THREATS TO PROTECTION AND SECURITY

A threat is a program that is malicious in nature and leads to
harmful effects for the system. Some of the common threats that
occur in a system are −

4.3.1 Virus

Viruses are generally small snippets of code embedded in a
system. They are very dangerous and can corrupt files, destroy
data, crash systems etc. They can also spread further by replicating
themselves as required.

4.3.2 Trojan Horse

A trojan horse can secretly access the login details of a system. Then
a malicious user can use these to enter the system as a harmless
being and wreak havoc.

4.3.3 Trap Door

A trap door is a security breach that may be present in a system
without the knowledge of the users. It can be exploited to harm
the data or files in a system by malicious people.

4.3.4 Worm

A worm can destroy a system by using its resources to extreme
levels. It can generate multiple copies which claim all the resources
and don’t allow any other processes to access them. A worm can
shut down a whole network in this way.

Protection and Security in Operating System 147

4.3.5 Denial of Service

These type of attacks do not allow the legitimate users to
access a system. It overwhelms the system with requests so it is
overwhelmed and cannot work properly for other user.

4.4 PROTECTION AND SECURITY METHODS

The different methods that may provide protect and security for
different computer systems are −

4.4.1 Authentication

This deals with identifying each user in the system and making sure
they are who they claim to be. The operating system makes sure
that all the users are authenticated before they access the system.
The different ways to make sure that the users are authentic are:

• Username/ Password

Each user has a distinct username and password combination and
they need to enter it correctly before they can access the system.

• User Key/ User Card

Secure Computing148

The users need to punch a card into the card slot or use they
individual key on a keypad to access the system.

• User Attribute Identification

Different user attribute identifications that can be used are
fingerprint, eye retina etc. These are unique for each user and are
compared with the existing samples in the database. The user can
only access the system if there is a match.

4.4.2 One Time Password

These passwords provide a lot of security for authentication
purposes. A onetime password can be generated exclusively for
a login every time a user wants to enter the system. It cannot be
used more than once. The various ways a onetime password can
be implemented are −

• Random Numbers

The system can ask for numbers that correspond to alphabets that
are pre-arranged. This combination can be changed each time a
login is required.

• Secret Key

A hardware device can create a secret key related to the user id for
login. This key can change each time.

Protection and Security in Operating System 149

4.4.3 Classes of Applications Considered

We have considered the typical applications used on personal
computers in the home and small office environment. We have
identified several classes according to the security requirements
for their data.

Malicious applications

A special class of applications is the class of malicious applications.
These are applications that have been intentionally programmed
to perform malicious activities. The typical examples are computer
viruses, worms, Trojan horses and other kinds of so called malware.
They can be downloaded from the Internet by the user, received
as an attachment of an e-mail message, or a vulnerable application
may be turned into a malicious one by processing malicious
data. The user is usually unaware of the fact that a particular
application is malicious. It has to be assumed that the malicious
applications do anything not prevented by the operating system
or the environment of the computer (e.g. a network firewall).

Local applications

The class of local applications contains the applications that
are used to process data stored in a local file system. These
applications generally do not need network access to perform
their tasks. The typical examples are text processors, spreadsheets,

Secure Computing150

presentation software, graphic editors, Local applications are
used to process data with varying requirements regarding the
confidentiality and integrity protection. If they process malicious
data, they may become malicious due to programming errors.

Sensitive web access

Web browsers are often used to access remote services that process
data requiring confidentiality and/or integrity protection. A
typical example is an Internet-banking system. It provides access
to financial information; it allows the user to submit transaction
orders to the bank, etc. It also processes authentication data
(e.g. passwords). All such data may be considered confidential
by the user, and therefore, are to be adequately protected.
The confidentiality and the integrity of the data during their
transmission is usually protected by means of cryptography.
Cryptography is usually also used to provide authentication
of the remote system. But the data is also to be protected while
stored in the memory or in a file on the local computer. Consider
an instance of a web browser used for general Internet access. It
may have processed some malicious data, a and therefore, it may

Protection and Security in Operating System 151

have become a malicious application exporting everything to an
attacker. If the instance of the web browser is later used to access
an Internet banking system, all the confidential information may
leak.

Digital signature creation

A digital signature creation application needs access to the private
key. The private key is a very sensitive piece of information the
confidentiality of which has to be protected. The integrity of the
private key has to be protected as well because its modification
can lead not only to the loss of ability to create correct digital
signatures, but also to the leak of information that is sufficient to
compute the corresponding private key in certain cases.

Digital signature verification

A digital signature verification application needs access to the
public key. The public key requires no confidentiality protection,
but it does require integrity protection. If attackers were able to
modify the public key used to verify a digital signature, they
would be able to create a digitally signed document that would
pass the signature verification process.

Data encryption

A data encryption application using asymmetric cryptography
needs access to the public key of the receiver of the data. As
mentioned above, the public key requires no confidentiality
protection, but it does require integrity protection. In the case of
encryption, if the public key were modified by an attacker, the
attacker would be able to decrypt the encrypted data instead of
the intended receiver. The encrypted output of a data encryption
application may be transmitted via communication channels that
do not provide confidentiality protection even if the confidentiality
of the original data is to be protected.

Secure Computing152

4.4.4 Security Model

Objects

It can be seen in the examples in the previous section that we
have to deal with data with varying requirements regarding the
confidentiality and integrity protection. As far as the confidentiality
is concerned, we can classify the data into three basic categories:

• public data,
• normal data – C-normal,
• data that are sensitive regarding their confidentiality –

C-sensitive.

The public data require no confidentiality protection. They may be
freely transmitted via communication channels and/or to remote
systems that provide no confidentiality protection. An example
of public data is the data downloaded from public Internet. The
normal data are to be protected by means of discretionary access
control against unauthorized reading by other users than the owner
of the data. The C-sensitive data are the data that their owner (a
user) wishes to remain unreadable to the others regardless of the
software the user uses, and even if the users makes some mistakes

Protection and Security in Operating System 153

(such as setting wrong access rights for discretionary access
control). Examples of C-sensitive data are private and secret keys,
passwords for Internet banking, etc. As far as the integrity (or
trustworthiness) of data is concerned, we can also classify the data
into three basic categories:

• potentially malicious data,
• normal data – I-normal,
• data that are sensitive regarding their integrity –

I-sensitive.

The requirements of the integrity protection of data is tightly
coupled to the trustworthiness of the data. The trustworthiness of
data can be thought of as a metric of how reliable the data are. If
some data can be modified by anyone, they cannot be trusted not
to contain wrong or malicious information. If some data are to be
relied on, their integrity has to be protected.

The potentially malicious data require no integrity protection,
and can neither be trusted to contain valid information, nor can
be trusted not to contain malicious content. The normal data is
to be protected by means of discretionary access control against
unauthorized modification by other users that the owner of the
data.

The I-sensitive data are the data that their owner wishes to remain
unmodified by the others regardless of the software the user uses,
and even if the users makes some mistakes. The I-sensitive data are
to be modifiable only under special conditions upon their owner’s
request. A special category of I-sensitive data is the category of
the shared system files such as the programs, the libraries, various
system-wide configuration files, the user database . . . Some of these
files may be modifiable by the designated system administrator,
some of them should be even more restricted.

The number of the confidentiality and integrity categories may be
higher in real systems.

A common approach to ensuring the confidentiality and/or the
integrity of information in systems that deal with data classified into

Secure Computing154

several confidentiality/integrity levels, is to define an information
flow policy, and then to enforce the policy. In order to enforce an
information flow policy, subjects are divided into two categories –
trusted and untrusted. A trusted subject is a subject that is trusted
to enforce the information flow policy (with exceptions) by itself;
an untrusted subject is a subject that is not trusted to enforce the
policy by itself, and therefore the policy has to be enforced on the
subject’s operations by the system.

A typical information flow policy protecting confidentiality (e.g.
one based on Bell-LaPadula model) states that a subject operating
at a confidentiality level CS may only read from an object with a
confidentiality level COr if CS ≥ COr , and may only write to an
object with a confidentiality level COw if CS ≤ COw . If a subject is
to be able to read from a more confidential object, and to write to
a less confidential object, it has to be a trusted subject.

A typical information flow policy protecting integrity (e.g. one
based on Biba model) states that a subject operating at an integrity
level IS may only read from an object with an integrity level IOr
if IS ≤ IOr , and may only write to an object with an integrity level
IOw if IS ≥ IOw . Only a trusted subject can read from an object
with a lower integrity level, and write to an object with a higher
integrity level.

The problem with the division of subjects into the two categories
is that it would lead to the need of too many trusted subjects in the
home and office environment.

We will divide subjects into three categories:
• untrusted subjects,
• partially trusted subjects, and
• trusted subjects.

An untrusted subject is a subject that is not trusted to enforce the
information flow policy. It is assumed to perform any operations
on any objects unless it is prevented from doing so by the operating
system. A trusted subject is a subject that is trusted to enforce
the information flow policy by itself. A trusted subject may be

Protection and Security in Operating System 155

used to perform tasks than require violation of the policy under
conditions that are verified by the trusted subject. A trusted subject
can, therefore, be used to implement an exception to the policy. A
partially trusted subject is a subject that is trusted to enforce the
information flow policy regarding a specific set of objects, but not
trusted to enforce the information flow policy regarding any other
objects. In other words, a trusted subject is

• trusted not to transfer information from a defined set of
objects (designated inputs) at a higher confidentiality
level to a defined set of objects (designated outputs)
at a lower confidentiality level in a way other than the
intended one, and

• trusted not to transfer information from a defined set of
objects (designated inputs) at a lower integrity level to
a defined set of objects (designated outputs) at a higher
integrity level in a way other than the intended one, but

• not trusted not to transfer information between any other
objects.

The sets of designated inputs and outputs regarding confidentiality
are distinct from the sets regarding integrity. Any of the sets may
be empty. A partially trusted subject, like a trusted one, can be
used to implement an exception to the policy, because it can
violate the policy (and it is trusted to do it only in an intended
way). The most important difference between trusted and partially
trusted subjects is in the level of trust. While trusted subjects are
completely trusted to behave correctly, partially trusted subjects
are only trusted not to abuse the possibility of the information
flow violating the policy between a defined set of input objects
and a defined set of output objects.

Information Flow Policy

Having specified the objects and the subjects and their
classification, we can formulate the information flow policy to
protect the confidentiality and the integrity of the information
stored in, or transferred via the objects. We will first specify the

Secure Computing156

policy objectives in an informal way, and then we will define the
policy formally.

In accordance with the classification of objects, the information
flow policy has the following objectives:

• Prevent reading of C-sensitive objects by subjects of
other users than the owner of the object.

• Prevent modification of I-sensitive objects by subjects of
other users than the owner of the object.

• Prevent information passing from objects with a
higher confidentiality level3 to objects with a lower
confidentiality level by untrusted subjects with the
exception stated below.

• Allow the user to explicitly allow a subject to read
a C-normal object on per request basis. The user’s
approval in such case must be obtained via a mechanism
independent on the subject. The idea of this objective
is to allow the user to perform operations such as
submitting a C-normal document to a remote system,
that is not trusted to process C-normal data in general
and is considered a public object with respect to our
classification scheme, without the need to reclassify
the document first (a therefore to expose its content to
any subject). Because this approach is very prone to the
user’s mistakes, it should be limited to C-normal objects
and not applicable to C-sensitive objects.

• Prevent information passing from objects with a lower
integrity level4 to objects with a higher integrity level by
untrusted subjects.

• Allow the user to specify the maximal integrity level
for each subject and prevent the subject from writing
to objects with a higher integrity level. The idea of this
objective is to prevent modification of objects with a high
integrity level unless required by the user.

• Allow the user to define four sets of special input and
output objects (two sets for confidentiality protection

Protection and Security in Operating System 157

and two sets for integrity protection) and two special
confidentiality levels (for reading and writing
respectively) and two special integrity levels associated
with the sets for each partially trusted subject, and apply
the same rules to partially trusted subjects with the
following exceptions:

(a) Allow a partially trusted subject to transfer in formation
from an object with a confidentiality level to an
object with a confidentiality level if the
object is in the input set for confidentiality protection,
the object is in the output set for confidentiality
protection, is at most the special confidentiality level
for reading, and cout is at least the special confidentiality
level for writing

(b) Allow a partially trusted subject to transfer information
from an object Oin with an integrity level iin to an object
Oout with an integrity level iout > iin if the object Oin is in
the input set for integrity protection, the object Oout is in
the output set for integrity protection, iin is at least the
special integrity level for reading, and iout is at most the
special integrity level for writing.

4.5 PROTECTION PROFILE OVERVIEW

To fulfil one of the goals of the thesis, we have created a protection
profile, compliant to the ISO/IEC 15408 standard, for a general
purpose operating system suitable for using security-critical
applications alongside potentially malicious ones. Our protection
profile has been designed to support our new security model
in addition to the common discretionary access control policy
supported by the common existing operating systems. Our
protection profile specifies several assumptions about the security
environment of the operating system, namely about the hardware
and its physical surroundings:

• the hardware supports access control for memory regions
and peripheral devices,

Secure Computing158

• the processor(s) restrict the use of privileged instructions
to the operating system,

• the hardware is physically protected against modification,
• and the internal communication paths (such as system

buses) are protected against unauthorized monitoring
and tampering with.

The hardware assumptions are consistent with the currently
common PC hardware. The other two assumptions are to be
upheld by the environment, most commonly using physical
security mechanisms. It is also assumed that an operating
system compliant with the protection profile is constructed as a
modification of an existing operating system. On one hand this
limits the choice of security functional requirements and, most
notably, security assurance requirements; on the other hand it
allows a compliant operating system to be used in practice by
utilizing existing applications and hardware support.

The objectives of the protection profile can be summarized as
follows:

• restricting access to identified, authenticated, and
authorized users only,

• enforcing a discretionary access control policy based on
user identities,

Protection and Security in Operating System 159

• enforcing confidentiality and integrity protection
according to our new security model,

• cryptographic confidentiality and integrity protection of
stored data,

• auditing of security related events,
• residual information protection,
• system management restricted to authorized system

administrators,
• limiting the ability of an authorized administrator to

abuse his/her privileges,
• and the feasibility of construction of a compliant

operating system by modifying an existing operating
system while preserving its compatibility with existing
applications.

The security functional requirements specified in the protection
profile can be summarized as follows:

• Security Audit (FAU) – the protection profile requires that
the operating system is able to generate audit records for
the listed events, that the authorized audit administrators
are able to review, sort and search the audit records, and
configure the set of audited events, and that the audit
records are protected against unauthorized modification
and deletion.

• User Data Protection (FDP) – the protection profile
requires that the operating system enforces the
discretionary access control policy and our information
flow policy based on the user identity and group
membership and other security attributes associated
with subjects and objects. It also requires removal of any
residual information from resources upon their allocation.
Support for cryptographic protection of integrity and
confidentiality of stored data is also required.

• Identification and Authentication (FIA) – the protection
profile specifies security attributes to be associated with
each user and the user’s processes. It allows minimal

Secure Computing160

strength requirements for authentication data to be
specified. It requires a successful identification and
authentication of an authorized user before performing
any other action on the user’s behalf. It requires re-
authentication before performing several specific
security-critical actions.

• Security Managements (FMT) – the protection profile
requires the management of the security attributes and
data to be restricted to the authorized users acting in
specific roles, and in compliance with the information
flow and access control policies. The protection profiles
defines several security roles and splits the privileges and
responsibilities among them in order to minimize the
ability of a single individual (e.g. a system administrator)
to abuse his/her privileges. It also supports authorization
of securitycritical operations by multiple administrators.
– Protection of TOE Security Functions (FPT) – the

protection profile requires the operating system to
protect itself against tampering by unauthorized
subjects, as well as to separate the security domains
of subjects. The protection profile requires that the
security functions must always be invoked before
other operations within the scope of control can
be performed, i.e. it may not be possible to bypass
the security functions. The protection profile also
requires the operating system to perform tests
during start-up to verify the crucial assumptions
about the hardware.

– Resource Utilization (FRU) – the protection
profile requires the operating system to enforce
the maximum quotas on disk space used by an
individual user.

– TOE Access (FTA) – the protection profile requires
the operating system to support session locking
on the user’s request as well as automatically after
a specified period of inactivity. It also requires

Protection and Security in Operating System 161

the operating system to maintain and display
information about successful and unsuccessful
session establishments.

– Trusted Path/Channel (FTP) – the protection profile
requires the operating system to provide a trusted
path between the user and itself for specified
securitycritical interactions including (re-)
authentication, authentication data management,
special security attributes management,

– Cryptographic Support (FCS) – the protection
profile specifies requirements for cryptographic key
generation and destructions, and for cryptographic
operations.

The security assurance requirements specified in the protection
profile are based on EAL3 augmented with the addition of
requirements for detection of modification during delivery of the
operating system.

Discussion

In the thesis, we discuss the benefits of our model. We present
several usage examples based on the considered classes of
applications. These examples can also be found in [13]. We also
compare our new security model and our protection profile to
several other projects and to the mentioned existing protection
profiles.

4.5.1 Our New Model vs. MIC in Windows Vista

MIC can be used to prevent a potentially malicious application
running at a low integrity level from modifying data at a higher
integrity level. Unlike our new model, however, it does not
prevent an untrusted application running at a higher integrity
level from reading (potentially malicious) data at a lower level. If
the application contains a flaw that can be exploited by processing

Secure Computing162

malicious data, the user can, e.g. by an accident, use it to read and
process malicious data stored at the low integrity level, and thus
turn the application to a malicious one that can spoil data at its
(higher) integrity level.

MIC also allows confidentiality protection to be turned on. Unlike
in our new model, the confidentiality and integrity levels in MIC
are not independent, the same level is used for both. It can be used
to prevent a potentially malicious application running at a low
level from reading (and also from modifying) data at a higher
level. Unlike our new model, it does not prevent an application
running at a higher level (and thus capable of reading data at that
level) from writing to objects at a lower level. Any application is
thus able to export any data that it can read to external untrusted
systems, or to store them to a low-level file.

MIC is a useful feature that allows a careful user to use a web
browser or to test a potentially malicious application without
the risk that they will modify (and optionally also read) any data
classified at a higher level. The user must be careful enough,
however, not to open any files classified at the low level in another
application running at a higher level unless the application is
trusted not to misbehave upon reading the data. The integrity and
confidentiality protection provided by our new security model is
definitely stronger than that of MIC, and it has provable security
properties similar to those of Bell-LaPadula and Biba models.

Protection and Security in Operating System 163

4.5.2 Our New Model vs. SELinux

SELinux, by implementing a flavour of domain and type
enforcement, provides a very flexible security mechanism that can
be used to enforce a wide range of security policies. We show in the
thesis that it can be used to implement our new model as well. The
commonly used SELinux policies[11, 2] define unique types and
domains for many typical system services, server applications, and
their data, and strictly restrict the set of operations the processes
running within these domains are allowed to perform. The strict
version of the policy is suitable for servers but causes problems
on desktop systems because the restrictions are too strict to be
accepted by users. The targeted version of the policy, that restricts
many system services but leaves the applications started by the
user in a single, unconfined domain, is suitable for desktops. It
prevents a flawed system service program from accessing data it
does not have to be able to access.

It does not, however, prevent user-started applications from
accessing the user’s data, perhaps except for some specially
designated sensitive data (such as private keys) accessible only
to certain applications. The targeted policy could be combined
with our new model to provide combined benefits of both. The
targeted policy provides more rigorous restrictions for specific
services while our new model can be used to protect the ordinary
users’ data.

Secure Computing164

4.5.3 Our Protection Profile vs. CAPP and LSPP

Our protection profile, the CAPP, and the LSPP are designed
for general purpose operating systems. We will now discuss the
benefits of our protection profile when compared to those two.
All three protection profiles have some common objectives, such
as restricting access to authorized users only, audit, discretionary
access control policy enforcement, residual information protection
and restricting system management to authorized administrators
only. They also use similar security functional requirements
to fulfil these objectives. We will, therefore, concentrate on the
objectives that make the protection profiles different.

There are three new, important objectives in our protection profile
when compared to the CAPP or the LSPP:

• enforcing confidentiality and integrity protection
according to our new security model,

• cryptographic confidentiality and integrity protection of
stored data,

• and limiting the ability of an authorized administrator to
abuse his/her privileges.

The first is intended to address the problem of abusing the
privileges of a user (including an administrator) by malicious
code (whether executing as a standalone malicious applications,
or as a part of a flawed application). Our new model has provable
security properties that ensure that no untrusted applications can
cause information to flow from objects at a higher confidentiality
and/or lower integrity level to objects at a lower confidentiality
and/or higher integrity level. The user can, thus, run a malicious
application as an untrusted subject without the risk that it could
cause an information leak or spoiling. Applications that need to
be able to override this restriction can often be run as partially
trusted subjects where the amount of trust can be very limited. We
expect this approach to minimize the risk resulting from flaws in
such applications.

The second new objective addresses the problem of direct
manipulation with storage devices. Data encryption provides for

Protection and Security in Operating System 165

confidentiality protection of the stored data against manipulation
by means that are not under control of the operating system.
Cryptographic integrity protection can prevent unnoticed
unauthorized modification of the stored data including the
operating system itself. Our protection profile is missing the
assumption of a trustworthy administrator (this assumption
is present in both the CAPP and the LSPP). The third objective
addresses the problem of privilege abuse by an administrator.
This is not addressed by the other two protection profiles. In our
protection profile, it is addressed by separating the privileges and
responsibilities for various aspects of system management (such
as general system management, security management, audit
management), and by defining distinct security roles for such
activities. When the roles are assigned to different individuals,
no single person can cause an unnoticed security policy violation.
For environments, where this problem is a major concern, our
protection profile supports multiple independent authorizations
for critical operations. When compared to the LSPP’s Bell-LaPadula
style confidentiality protection, our protection profile addresses
the integrity protection as well as the confidentiality protection.
The concept of the partially trusted subjects, that we have
introduced, is also a convenient way of minimizing the amount of
trust given to applications that have to be able to violate the rules
for untrusted subjects.

Benefits Summary

The key benefits of our new security model are summarized in
the table 1. While we have based our new model on the ideas of
Bell-LaPadula and Biba models, we have introduced significant
improvements. Unlike others (e.g. MIC), we use independent
confidentiality and integrity levels, and, most notably, we have
introduced partially trusted subjects. The introduction of partially
trusted subjects allows us to achieve strong security properties
with minimal trust in correct behaviour of the partially trusted
subjects.

Secure Computing166

Our protection profile, unlike the well-known and often used
protection profiles addresses the issues of privilege abuse by a
system administrator, includes cryptographic protection against
direct storage media manipulation, and provides for both
confidentiality and integrity protection according to our new
security model.

Feasibility of Implementation

The thesis includes a feasibility study to show that it is feasible
to modify a real, existing operating system to comply with our
protection profile. We have chosen Linux operating systems as
the base. We compare the security functions of Linux operating
systems with the security functional requirements of our protection
profile, and identify the missing features. We suggest two ways of
implementing our new security model – the major missing feature
– in Linux. In one approach we suggest using Linux Security
Module framework present in the Linux kernel. In the other one
we show how a SELinux policy can be created to enforce the rules
of our new security model.

The goals of our thesis were to design a suitable security model
and to create a protection profile for a general purpose operating
system for home and office environment suitable to support

Protection and Security in Operating System 167

the use of security-critical applications alongside untrusted and
potentially malicious applications. We have presented several
typical examples of applications used in the target environment,
analyzed the security requirements and properties of the data
involved, and designed a security model with a formally defined
information flow policy to protect the confidentiality and the
integrity of the data. In the thesis, we have formally proved
important security properties of the model. We have created a
new protection profile utilizing our new security model. We have
discussed the benefits of our new security model and protection
profile for security. We have compared them to other projects and
protection profiles. Finally, we have discussed possible ways to
modify Linux operating system to comply with our protection
profile. It seems to be feasible to make the needed modifications
in a near future. Having said that, we believe we have managed to
fulfil the goals.

Table 1: Summary of the benefits of our new security model

We can see the following tasks that might follow the thesis:
• Implementation – attempt to implement the suggested

modifications. This is currently a work in progress of two
of our students, and we expect to have the first results in
June, 2010.

• Usability testing – find out whether the resulting system
can be used without unacceptable discomfort for the
users.

• Compare the different possible ways to make the
needed modifications in terms of performance, usability,
compatibility, extensibility.

Secure Computing168

REFERENCES

1. Domain and type enforcement. http://www.cs.wm.
edu/~hallyn/dte/. [cit. 2004].

2. F. Coker and R. Coker. Taking advantage of selinux in red hat
enterprise linux. Red Hat Magazine, (6), 2005. [cit. 2009].

3. Fedora selinux project : discussion of policies. http://
fedoraproject.org/wiki/SELinux/Policies. [cit. 2009].

4. H. F. Tipton and M. Krause, editors. Information Security
Management Handbook. CRC Press LLC, 5th edition, 2004.
ISBN 0-8493-1997-8.

5. ISO/IEC 15408:2005, common criteria for information
technology security evaluation : part 1 introduction and
general model. http://www.commoncriteriaportal.org/.

6. ISO/IEC 15408:2005, common criteria for information
technology security evaluation : part 2 security functional
requirements. http://www.commoncriteriaportal.org/.

7. ISO/IEC 15408:2005, common criteria for information
technology security evaluation : part 3 security assurance
requirements. http://www.commoncriteriaportal.org/.

8. J. Janácek. A security model for an operating system for
ˇ security-critical applications in small office and home
environment. Communications : Scientific Letters of the
University of Žilina, 11(3):5–10, 2009. ISSN 1335-4205.

9. J. Janácek. Bezpe ˇ cnost’ opera ˇ cných systémov : písomná
ˇ cast’ ˇ dizertacnej skúšky. ˇ http: //www.dcs.fmph.uniba.
sk/~janacek/BezpecnostOS.pdf.

10. J. Janácek. Mandatory access control for small office and
home ˇ environment. In Informaˇcné Technológie – Aplikácie
a Teória : Zborník príspevkov prezentovaných na pracovnom
seminári ITAT, pages 27–34, Sena, 2009. PONT s.r.o. ˇ

11. J. Janácek. Two dimensional labelled security model with ˇ
partially trusted subjects and its enforcement using selinux
dte mechanism. In Networked Digital Technologies, Part I,

Protection and Security in Operating System 169

volume 87 of Communications in Computer and Information
Science. Springer, 2010. ISBN 978-3-642-14291-8, to appear.

12. Linux intrusion detection system. http://www.lids.org/. [cit.
2004].

13. M. Russinovich. Inside windows vista user account control.
http://technet.microsoft.com/en-us/magazine/2007. 06.uac.
aspx. [cit. 2009].

14. Medusa DS9. http://medusa.fornax.sk/. [cit. 2004]. [8] Role set
based access control. http://www.rsbac.org/. [cit. 2004].

15. NSA. Information systems security organization: Controlled
access protection profile : version 1.d. http://www.
commoncriteriaportal.org/files/ppfiles/capp.pdf, 1999.

16. NSA. Information systems security organization: Labeled
security protection profile : version 1.b. http://www.
commoncriteriaportal.org/files/ppfiles/lspp.pdf, 1999.

17. S. Riley. Mandatory integrity control in windows vista. http://
blogs.technet.com/steriley/archive/2006/ 07/21/442870.aspx.
[cit. 2009].

18. Security enhanced linux. http://www.nsa.gov/selinux/. [cit.
2004]. [10] D. E. Bell and L. J. La Padula. Secure computer
system: unified exposition and multics interpretation :
technical report. http: //csrc.nist.gov/publications/history/
bell76.pdf, 1976.

INTRODUCTION

Operating systems are the prime providers of security in computing
systems. They support many programming capabilities, permit
multiprogramming and sharing of resources, and enforce
restrictions on program and user behavior. Because they have
such power, operating systems are also targets for attack, because
breaking through the defenses of an operating system gives access
to the secrets of computing systems.

Trusted Operating System (TOS) generally refers to an operating
system that provides sufficient support for multilevel security and
evidence of correctness to meet a particular set of government
requirements.

5
DESIGNING TRUSTED OPERATING
SYSTEMS

C
H

A
PT

ER

Secure Computing172

The most common set of criteria for trusted operating system
design is the Common Criteria combined with the Security
Functional Requirements (SFRs) for Labeled Security Protection
Profile (LSPP) and mandatory access control (MAC). The Common
Criteria is the result of a multi-year effort by the governments of the
U.S., Canada, United Kingdom, France, Germany, the Netherlands
and other countries to develop a harmonized security criteria for
IT products.

5.1 TRUSTED SYSTEM

A trusted system is a system that is relied upon to a specified
extent to enforce a specified security policy. This is equivalent to
saying that a trusted system is one whose failure would break a
security policy (if a policy exists that the trusted system is trusted
to enforce). The meaning of the word “trust” is critical, as it
does not carry the meaning that might be expected in everyday
usage. A system trusted by a user, is one that the user feels safe
to use, and trusts to do tasks without secretly executing harmful
or unauthorized programs; while trusted computing refers to
whether programs can trust the platform to be unmodified from
that expected, whether or not those programs are innocent,
malicious or execute tasks that are undesired by the user.

Trusted system can also be seen as level base security system
where protection is provided and handled according to different
levels. This is commonly found in military, where information
is categorized as unclassified (U), confidential(C), Secret(S), Top
secret(TS) and beyond. These also enforces the policies of No-read
up and No-write down.

We studied these four services:
• memory protection
• file protection
• general object access control
• user authentication

Designing Trusted Operating Systems 173

The four major underpinnings of a trusted operating system:
• Policy. Every system can be described by its requirements:

statements of what the system should do and how it should
do it. An operating system’s security requirements are a
set of well-defined, consistent, and implementable rules
that have been clearly and unambiguously expressed.
If the operating system is implemented to meet these
requirements, it meets the user’s expectations. To ensure
that the requirements are clear, consistent, and effective,
the operating system usually follows a stated security
policy: a set of rules that lay out what is to be secured
and why.

• Model. To create a trusted operating system, the designers
must be confident that the proposed system will meet
its requirements while protecting appropriate objects
and relationships. They usually begin by constructing
a model of the environment to be secured. The model
is actually a representation of the policy the operating
system will enforce. Designers compare the model with
the system requirements to make sure that the overall
system functions are not compromised or degraded by
the security needs. Then, they study different ways of
enforcing that security.

• Design. After having selected a security model,
designers choose a means to implement it. Thus, the
design involves both what the trusted operating system
is (that is, its intended functionality) and how it is to be
constructed (its implementation).

• Trust. Because the operating system plays a central role
in enforcing security, we (as developers and users) seek
some basis (assurance) for believing that it will meet
our expectations. Our trust in the system is rooted in
two aspects: features (the operating system has all the
necessary functionality needed to enforce the expected
security policy) and assurance (the operating system
has been implemented in such a way that we have

Secure Computing174

confidence it will enforce the security policy correctly
and effectively).

To trust any program, we base our trust on rigorous analysis and
testing, looking for certain key characteristics:

• Functional correctness. The program does what it is
supposed to, and it works correctly.

• Enforcement of integrity. Even if presented erroneous
commands or commands from unauthorized users,
the program maintains the correctness of the data with
which it has contact.

• Limited privilege: The program is allowed to access
secure data, but the access is minimized and neither
the access rights nor the data are passed along to other
untrusted programs or back to an untrusted caller.

• Appropriate confidence level. The program has been
examined and rated at a degree of trust appropriate for
the kind of data and environment in which it is to be
used.

Trusted software is often used as a safe way for general users
to access sensitive data. Trusted programs are used to perform
limited (safe) operations for users without allowing the users to
have direct access to sensitive data.

Security professionals prefer to speak of trusted instead of secure
operating systems. A trusted system connotes one that meets
the intended security requirements, is of high enough quality,
and justifies the user’s confidence in that quality. That is, trust is
perceived by the system’s receiver or user, not by its developer,
designer, or manufacturer. As a user, you may not be able to
evaluate that trust directly. You may trust the design, a professional
evaluation, or the opinion of a valued colleague. But in the end, it
is your responsibility to sanction the degree of trust you require.

It is important to realize that there can be degrees of trust; unlike
security, trust is not a dichotomy. For example, you trust certain
friends with deep secrets, but you trust others only to give you the

Designing Trusted Operating Systems 175

time of day. Trust is a characteristic that often grows over time,
in accordance with evidence and experience. For instance, banks
increase their trust in borrowers as the borrowers repay loans as
expected; borrowers with good trust (credit) records can borrow
larger amounts. Finally, trust is earned, not claimed or conferred.
The comparison in Table 1 highlights some of these distinctions.

Table 1. Qualities of Security and Trustedness

Secure Trusted
Either-or: Something either is or is
not secure.

Graded: There are degrees of “trust-
worthiness.”

Property of presenter Property of receiver
Asserted based on product charac-
teristics

Judged based on evidence and
analysis

Absolute: not qualified as to how
used, where, when, or by whom

Relative: viewed in context of use

A goal A characteristic

The adjective trusted appears many times, as in trusted process (a
process that can affect system security, or a process whose incorrect
or malicious execution is capable of violating system security
policy), trusted product (an evaluated and approved product),
trusted software (the software portion of a system that can be
relied upon to enforce security policy), trusted computing base
(the set of all protection mechanisms within a computing system,
including hardware, firmware, and software, that together enforce
a unified security policy over a product or system), or trusted
system (a system that employs sufficient hardware and software
integrity measures to allow its use for processing sensitive
information). These definitions are paraphrased from. Common
to these definitions are the concepts of

• enforcement of security policy
• sufficiency of measures and mechanisms
• evaluation

In studying trusted operating systems, we examine closely what
makes them trustworthy.

Secure Computing176

5.2 SECURITY POLICIES

A security policy is a statement of the security we expect the system
to enforce. An operating system (or any other piece of a trusted
system) can be trusted only in relation to its security policy; that
is, to the security needs the system is expected to satisfy.

5.2.1 Military Security Policy

Military security policy is based on protecting classified
information. Each piece of information is ranked at a particular
sensitivity level, such as unclassified, restricted, confidential,
secret, or top secret. The ranks or levels form a hierarchy, and they
reflect an increasing order of sensitivity, as shown in Figure 1.
That is, the information at a given level is more sensitive than the
information in the level below it and less sensitive than in the level
above it. For example, restricted information is more sensitive than
unclassified but less sensitive than confidential. We can denote the
sensitivity of an object O by rankO.

Figure 1. Hierarchy of Sensitivities.

Designing Trusted Operating Systems 177

Information access is limited by the need-to-know rule: Access to
sensitive data is allowed only to subjects who need to know those
data to perform their jobs. Each piece of classified information may
be associated with one or more projects, called compartments,
describing the subject matter of the information. For example, the
alpha project may use secret information, as may the beta project,
but staff on alpha do not need access to the information on beta.
In other words, both projects use secret information, but each is
restricted to only the secret information needed for its particular
project. In this way, compartments help enforce need-to-know
restrictions so that people obtain access only to information that
is relevant to their jobs. A compartment may include information
at only one sensitivity level, or it may cover information at several
sensitivity levels. The relationship between compartments and
sensitivity levels is shown in Figure 2.

Figure 2. Compartments and Sensitivity Levels.

We can assign names to identify the compartments, such as
snowshoe, crypto, and Sweden. A single piece of information
can be coded with zero, one, two, or more compartment names,
depending on the categories to which it relates. The association
of information and compartments is shown in Figure 3. For
example, one piece of information may be a list of publications
on cryptography, whereas another may describe development
of snowshoes in Sweden. The compartment of this first piece of
information is {crypto}; the second is {snowshoe, Sweden}.

Secure Computing178

Figure 3. Association of Information and Compartments.

The combination <rank; compartments> is called the class or
classification of a piece of information. By designating information
in this way, we can enforce need-to-know both by security level
and by topic.

A person seeking access to sensitive information must be cleared.
A clearance is an indication that a person is trusted to access
information up to a certain level of sensitivity and that the
person needs to know certain categories of sensitive information.
The clearance of a subject is expressed as a combination <rank;
compartments>. This combination has the same form as the
classification of a piece of information.

Now we introduce a relation ≤, called dominance, on the sets of
sensitive objects and subjects. For a subject o,

s ≤ o if and only if

rankS ≤ rankO and

compartmentsS ⊆ compartmentsO

We say that o dominates s (or s is dominated by o) if s ≤ is the
opposite. Dominance is used to limit the sensitivity and content
of information a subject can access. A subject can read an object
only if

Designing Trusted Operating Systems 179

• the clearance level of the subject is at least as high as that
of the information and

• the subject has a need to know about all compartments
for which the information is classified

These conditions are equivalent to saying that the subject
dominates the object.

To see how the dominance relation works, consider the concentric
circles in Figure 3. According to the relationships depicted
there, information classified as <secret;{Sweden}> could be
read by someone cleared for access to <top secret;{Sweden}>
or <secret;{Sweden, crypto}>, but not by someone with
a <top secret;{crypto}> clearance or someone cleared for
<confidential;{Sweden}> or <secret;{France}>.

Military security enforces both sensitivity requirements and need-
to-know requirements. Sensitivity requirements are known as
hierarchical requirements because they reflect the hierarchy of
sensitivity levels; need-to-know restrictions are nonhierarchical
because compartments do not necessarily reflect a hierarchical
structure. This combinational model is appropriate for a setting
in which access is rigidly controlled by a central authority.
Someone, often called a security officer, controls clearances and
classifications, which are not generally up to individuals to alter.

5.2.2 Commercial Security Policies

Commercial enterprises have significant security concerns.
They worry that industrial espionage will reveal information to
competitors about new products under development. Likewise,
corporations are often eager to protect information about the
details of corporate finance. So even though the commercial
world is usually less rigidly and less hierarchically structured
than the military world, we still find many of the same concepts
in commercial security policies. For example, a large organization,
such as a corporation or a university, may be divided into groups
or departments, each responsible for a number of disjoint projects.

Secure Computing180

There may also be some corporate-level responsibilities, such as
accounting and personnel activities. Data items at any level may
have different degrees of sensitivity, such as public, proprietary, or
internal; here, the names may vary among organizations, and no
universal hierarchy applies.

Let us assume that public information is less sensitive than
proprietary, which in turn is less sensitive than internal. Projects
and departments tend to be fairly well separated, with some
overlap as people work on two or more projects. Corporate-
level responsibilities tend to overlie projects and departments,
as people throughout the corporation may need accounting or
personnel data. However, even corporate data may have degrees
of sensitivity. Projects themselves may introduce a degree of
sensitivity: Staff members on project old-standby have no need
to know about project new-product, while staff members on new-
product may have access to all data on old-standby. For these
reasons, a commercial layout of data might look like Figure 4.

Figure 4. Commercial View of Sensitive Information.

Two significant differences exist between commercial and military
information security. First, outside the military, there is usually
no formalized notion of clearances: A person working on a
commercial project does not require approval for project MARS
access by a central security officer. Typically, an employee is not
conferred a different degree of trust by being allowed access to
internal data. Second, because there is no formal concept of a
clearance, the rules for allowing access are less regularized. For

Designing Trusted Operating Systems 181

example, if a senior manager decides that a person needs access to
a piece of MARS internal data, the manager will instruct someone
to allow the access, either one-time or continuing. Thus, there is
no dominance function for most commercial information access
because there is no formal concept of a commercial clearance.

So far, much of our discussion has focused only on read access,
which addresses confidentiality in security. In fact, this narrow
view holds true for much of the existing work in computer security.
However, integrity and availability are at least as important
as confidentiality in many instances. Policies for integrity and
availability are significantly less well formulated than those for
confidentiality, in both military and commercial realms. In the
two examples that follow, we explore some instances of integrity
concerns.

ClarkWilson Commercial Security Policy

In many commercial applications, integrity can be at least as
important as confidentiality. The correctness of accounting
records, the accuracy of legal work, and the proper timing of
medical treatments are the essence of their fields. Clark and Wilson
proposed a policy for what they call well-formed	transactions, which
they assert are as important in their field as is confidentiality in a
military realm.

To see why, consider a company that orders and pays for materials.
A representation of the procurement process might be this:

• A purchasing clerk creates an order for a supply, sending
copies of the order to both the supplier and the receiving
department.

• The supplier ships the goods, which arrive at the
receiving department. A receiving clerk checks the
delivery, ensures that the correct quantity of the right
item has been received, and signs a delivery form. The
delivery form and the original order go to the accounting
department.

Secure Computing182

• The supplier sends an invoice to the accounting
department. An accounting clerk compares the invoice
with the original order (as to price and other terms) and
the delivery form (as to quantity and item) and issues a
check to the supplier.

The sequence of activities is important. A receiving clerk will not
sign a delivery form without already having received a matching
order (because suppliers should not be allowed to ship any
quantities of any items they want and be paid), and an accounting
clerk will not issue a check without already having received a
matching order and delivery form (because suppliers should not
be paid for goods not ordered or received). Furthermore, in most
cases, both the order and the delivery form must be signed by
authorized individuals. Performing the steps in order, performing
exactly the steps listed, and authenticating the individuals who
perform the steps constitute a well-formed transaction. The goal
of the ClarkWilson policy is to maintain consistency between the
internal data and the external (users’) expectations of those data.

Clark and Wilson present their policy in terms of constrained
data items, which are processed by transformation procedures. A
transformation procedure is like a monitor in that it performs only
particular operations on specific kinds of data items; these data
items are manipulated only by transformation procedures. The
transformation procedures maintain the integrity of the data items
by validating the processing to be performed. Clark and Wilson
propose defining the policy in terms of access triples: <userID,
TPi, {CDIj, CDIk, ...}>, combining a transformation procedure, one
or more constrained data items, and the identification of a user
who is authorized to operate on those data items by means of the
transaction procedure.

Separation of Duty

A second commercial security policy involves separation of
responsibility. Clark and Wilson raised this issue in their analysis

Designing Trusted Operating Systems 183

of commercial security requirements, and Lee and Nash and
Poland added to the concept.

To see how it works, we continue our example of a small company
ordering goods. In the company, several people might be authorized
to issue orders, receive goods, and write checks. However, we
would not want the same person to issue the order, receive the
goods, and write the check, because there is potential for abuse.
Therefore, we might want to establish a policy that specifies that
three separate individuals issue the order, receive the goods, and
write the check, even though any of the three might be authorized
to do any of these tasks. This required division of responsibilities
is called separation of duty.

Separation of duty is commonly accomplished manually by
means of dual signatures. Clark and Wilson triples are “stateless,”
meaning that a triple does not have a context of prior operations;
triples are incapable of passing control information to other triples.
Thus, if one person is authorized to perform operations TP1 and
TP2, the Clark and Wilson triples cannot prevent the same person
from performing both TP1 and TP2 on a given data item. However,
it is quite easy to implement distinctness if it is stated as a policy
requirement.

Chinese Wall Security Policy

Brewer and Nash defined a security policy called the Chinese
Wall that reflects certain commercial needs for information access
protection. The security requirements reflect issues relevant to
those people in legal, medical, investment, or accounting firms who
might be subject to conflict of interest. A conflict of interest exists
when a person in one company can obtain sensitive information
about people, products, or services in competing companies.

The security policy builds on three levels of abstraction.
• Objects. At the lowest level are elementary objects, such

as files. Each file contains information concerning only
one company.

Secure Computing184

• Company groups. At the next level, all objects concerning
a particular company are grouped together.

• Conflict classes. At the highest level, all groups of objects
for competing companies are clustered.

With this model, each object belongs to a unique company group,
and each company group is contained in a unique conflict class.
A conflict class may contain one or more company groups. For
example, suppose you are an advertising company with clients
in several fields: chocolate companies, banks, and airlines. You
might want to store data on chocolate companies Suchard and
Cadbury; on banks Citicorp, Deutsche Bank, and Credit Lyonnais;
and on airline SAS. You want to prevent your employees from
inadvertently revealing information to a client about that client’s
competitors, so you establish the rule that no employee will know
sensitive information about competing companies. Using the
Chinese Wall hierarchy, you would form six company groups (one
for each company) and three conflict classes: {Suchard, Cadbury},
{Citicorp, Deutsche Bank, Credit Lyonnais}, and {SAS}.

The hierarchy guides a simple access control policy: A person can
access any information as long as that person has never accessed
information from a different company in the same conflict class.
That is, access is allowed if either the object requested is in the same
company group as an object that has previously been accessed
or the object requested belongs to a conflict class that has never
before been accessed. In our example, initially you can access any
objects. Suppose you read from a file on Suchard. A subsequent
request for access to any bank or to SAS would be granted, but a
request to access Cadbury files would be denied. Your next access,
of SAS data, does not affect future accesses. But if you then access
a file on Credit Lyonnais, you will be blocked from future accesses
to Deutsche Bank or Citicorp. From that point on, as shown in
Figure 5, you can access objects only concerning Suchard, SAS,
Credit Lyonnais, or a newly defined conflict class.

Designing Trusted Operating Systems 185

Figure 5. Chinese Wall Security Policy.

The Chinese Wall is a commercially inspired confidentiality
policy. It is unlike most other commercial policies, which focus on
integrity. It is also interesting because access permissions change
dynamically: As a subject accesses some objects, other objects that
would previously have been accessible are subsequently denied.

5.3 MODELS OF SECURITY

In security and elsewhere, models are often used to describe,
study, or analyze a particular situation or relationship. McLean
gives a good overview of models for security. In particular, security
models are used to

• test a particular policy for completeness and consistency
• document a policy
• help conceptualize and design an implementation
• check whether an implementation meets its requirements

We assume that some access control policy dictates whether a
given user can access a particular object. We also assume that this
policy is established outside any model. That is, a policy decision

Secure Computing186

determines whether a specific user should have access to a specific
object; the model is only a mechanism that enforces that policy.
Thus, we begin studying models by considering simple ways to
control access by one user.

5.3.1 Multilevel Security

Ideally, we want to build a model to represent a range of sensitivities
and to reflect the need to separate subjects rigorously from objects
to which they should not have access. For instance, consider an
election and the sensitivity of data involved in the voting process.
The names of the candidates are probably not sensitive. If the
results have not yet been released, the name of the winner is
somewhat sensitive. If one candidate received an embarrassingly
low number of votes, the vote count may be more sensitive. Finally,
the way a particular individual voted is extremely sensitive. Users
can also be ranked by the degree of sensitivity of information to
which they can have access.

For obvious reasons, the military has developed extensive
procedures for securing information. A generalization of the
military model of information security has also been adopted
as a model of data security within an operating system. Bell and
La Padula were first to describe the properties of the military
model in mathematical notation, and Denning first formalized the
structure of this model. In 2005, Bell returned to the original model
to highlight its contribution to computer security. He observed
that the model demonstrated the need to understand security
requirements before beginning system design, build security
into not onto the system, develop a security toolbox, and design
the system to protect itself. The generalized model is called the
lattice model of security because its elements form a mathematical
structure called a lattice.

Designing Trusted Operating Systems 187

Lattice Model of Access Security

The military security model is representative of a more general
scheme, called a lattice. The dominance relation ≤ defined in
the military model is the relation for the lattice. The relation ≤ is
transitive and antisymmetric. The largest element of the lattice is
the classification <all compartments>, and the smallest element is
<unclassified; no compartments>; these two elements respectively
dominate and are dominated by all elements. Therefore, the
military model is a lattice.

Many other structures are lattices. For example, we noted earlier
that a commercial security policy may contain data sensitivities
such as public, proprietary, and internal, with the natural ordering
that public data are less sensitive than proprietary, which are less
sensitive than internal. These three levels also form a lattice.

Security specialists have chosen to base security systems on
a lattice because it naturally represents increasing degrees. A
security system designed to implement lattice models can be
used in a military environment. However, it can also be used in
commercial environments with different labels for the degrees of
sensitivity. Thus, lattice representation of sensitivity levels applies
to many computing situations.

Figure 6. Sample Lattice.

Secure Computing188

BellLa Padula Confidentiality Model

The Bell and La Padula model is a formal description of the
allowable paths of information flow in a secure system. The model’s
goal is to identify allowable communication when maintaining
secrecy is important. The model has been used to define security
requirements for systems concurrently handling data at different
sensitivity levels. This model is a formalization of the military
security policy and was central to the U.S. Department of Defense’s
evaluation criteria.

We are interested in secure information flows because they
describe acceptable connections between subjects and objects
of different levels of sensitivity. One purpose for security-level
analysis is to enable us to construct systems that can perform
concurrent computation on data at two different sensitivity levels.
For example, we may want to use one machine for top-secret and
confidential data at the same time. The programs processing top-
secret data would be prevented from leaking top-secret data to the
confidential data, and the confidential users would be prevented
from accessing the top-secret data. Thus, the BellLa Padula model
is useful as the basis for the design of systems that handle data of
multiple sensitivities.

To understand how the BellLa Padula model works, consider a
security system with the following properties. The system covers
a set of subjects S and a set of objects O. Each subject s in S and
each object o in O has a fixed security class C(s) and C(o) (denoting
clearance and classification level). The security classes are ordered
by a relation ≤. (Note: The classes may form a lattice, even though
the BellLa Padula model can apply to even less restricted cases.)

Two properties characterize the secure flow of information.

Simple Security Property

A subject s may have read access to an object o only if C(o) ≤ Cs).

Designing Trusted Operating Systems 189

In the military model, this property says that the security class
(clearance) of someone receiving a piece of information must be at
least as high as the class (classification) of the information.

*-Property (called the “Star Property”)

A subject s who has read access to an object o may have write
access to an object p only if C(o) ≤ Cp).

In the military model, this property says that the contents of a
sensitive object can be written only to objects at least as high.

In the military model, one interpretation of the *-property is
that a person obtaining information at one level may pass that
information along only to people at levels no lower than the level
of the information. The *-property prevents write-down, which
occurs when a subject with access to high-level data transfers that
data by writing it to a low-level object.

Literally, the *-property requires that a person receiving information
at one level not talk with people cleared at levels lower than the
level of the informationnot even about the weather! This example
points out that this property is stronger than necessary to ensure
security; the same is also true in computing systems. The BellLa
Padula model is extremely conservative: It ensures security even
at the expense of usability or other properties.

The implications of these two properties are shown in Figure 7.
The classifications of subjects (represented by squares) and objects
(represented by circles) are indicated by their positions: As the
classification of an item increases, it is shown higher in the figure.
The flow of information is generally horizontal (to and from the
same level) and upward (from lower levels to higher). A downward
flow is acceptable only if the highly cleared subject does not pass
any high-sensitivity data to the lower-sensitivity object.

Secure Computing190

Figure 7. Secure Flow of Information.

For computing systems, downward flow of information is difficult
because a computer program cannot readily distinguish between
having read a piece of information and having read a piece of
information that influenced what was later written. (McLean, in
work related to Goguen and Meseguer, presents an interesting
counter to the *-property of Bell and La Padula. He suggests
considering noninterference, which can be loosely described as
tracing the effects of inputs on outputs. If we can trace all output
effects, we can determine conclusively whether a particular low-
level output was “contaminated” with high-level input.)

Biba Integrity Model

The BellLa Padula model applies only to secrecy of information: The
model identifies paths that could lead to inappropriate disclosure
of information. However, the integrity of data is important,
too. Biba constructed a model for preventing inappropriate
modification of data.

The Biba model is the counterpart (sometimes called the dual) of
the BellLa Padula model. Biba defines “integrity levels,” which

Designing Trusted Operating Systems 191

are analogous to the sensitivity levels of the BellLa Padula model.
Subjects and objects are ordered by an integrity classification
scheme, denoted I(s) and I(o). The properties are

• Simple Integrity Property. Subject s can modify (have
write access to) object o only if I(s) ≥ Io)

• Integrity *-Property. If subject s has read access to object
o with integrity level I(o), s can have write access to object
p only if I(o) ≥ Ip)

These two rules cover untrustworthy information in a natural
way. Suppose John is known to be untruthful sometimes. If John
can create or modify a document, other people should distrust
the truth of the statements in that document. Thus, an untrusted
subject who has write access to an object reduces the integrity of
that object. Similarly, people are rightly skeptical of a report based
on unsound evidence. The low integrity of a source object implies
low integrity for any object based on the source object.

This model addresses the integrity issue that the BellLa Padula
model ignores. However, in doing so, the Biba model ignores
secrecy. Secrecy-based security systems have been much more fully
studied than have integrity-based systems. The current trend is to
join secrecy and integrity concerns in security systems, although
no widely accepted formal models achieve this compromise.

5.3.2 Models Proving Theoretical Limitations of Security
Systems

Models are also useful for demonstrating the feasibility of an
approach. Consider the security properties that we want a system
to have. We want to build a model that tells us (before we invest in
design, code, and testing) whether the properties can actually be
achieved. This new class of models is based on the general theory
of computability, which you may have studied in your computer
science classes. Computability helps us determine decidability:
If we pose a question, we want to know if we will ever be able

Secure Computing192

to decide what the answer is. The results of these computability-
based models show us the limitations of abstract security systems.

GrahamDenning Model

Lampson and Graham and Denning introduced the concept
of a formal system of protection rules. Graham and Denning
constructed a model having generic protection properties. This
model forms the basis for two later models of security systems.

The GrahamDenning model operates on a set of subjects S, a
set of objects O, a set of rights R, and an access control matrix
A. The matrix has one row for each subject and one column for
each subject and each object. The rights of a subject on another
subject or an object are shown by the contents of an element of
the matrix. For each object, one subject designated the “owner”
has special rights; for each subject, another subject designated the
“controller” has special rights.

The GrahamDenning model has eight primitive protection rights.
These rights are phrased as commands that can be issued by
subjects, with effects on other subjects or objects.

• Create object allows the commanding subject to introduce
a new object to the system.

• Create subject, delete object, and delete subject have the
similar effect of creating or destroying a subject or object.

• Read access right allows a subject to determine the
current access rights of a subject to an object.

• Grant access right allows the owner of an object to convey
any access rights for an object to another subject.

• Delete access right allows a subject to delete a right of
another subject for an object, provided that the deleting
subject either is the owner of the object or controls the
subject from which access should be deleted.

• Transfer access right allows a subject to transfer one of
its rights for an object to another subject. Each right can
be transferable or nontransferable. If a subject receives a

Designing Trusted Operating Systems 193

transferable right, the subject can then transfer that right
(either transferable or not) to other subjects. If a subject
receives a nontransferable right, it can use the right but
cannot transfer that right to other subjects.

These rules are shown in Table 2, which shows prerequisite
conditions for executing each command and its effect. The access
control matrix is A [s,o], where s is a subject and o is an object. The
subject executing each command is denoted x. A transferable right
is denoted r*; a nontransferable right is written r.

Table 2. Protection System Commands.

Command Precondition Effect
Create object o Add column for o in A;

place owner in A[x,o]
Create subject s Add row for s in A; place

control in A[x,s]
Delete object o Owner in A[x,o] Delete column o
Delete subject s Control in A[x,s] Delete row s
Read access right of
s on o

Control in A[x,s] or
owner in A[x,o]

Copy A[s,o] to x

Delete access right r
of s on o

Control in A[x,s] or
owner in A[x,o]

Remove r from A[s,o]

Grant access right r
to s on o

Owner in A[x,o] Add r to A[s,o]

Transfer access right
r or r* to s on o

r* in A[x,o] Add r or r* to A[s,o]

This set of rules provides the properties necessary to model the
access control mechanisms of a protection system. For example,
this mechanism can represent a reference monitor or a system
of sharing between two untrustworthy, mutually suspicious
subsystems.

HarrisonRuzzoUllman Results

Harrison, Ruzzo, and Ullman proposed a variation on the
GrahamDenning model. This revised model answered several
questions concerning the kinds of protection a given system can

Secure Computing194

offer. Suppose you are about to use a particular operating system
and you want to know if a given user can ever be granted a certain
kind of access. For example, you may be establishing protection
levels in Windows or MVS. You set up the access controls and
then ask whether user X will ever have access to object Y. The
three researchers developed their model so that we might be able
to answer questions like this one.

The HarrisonRuzzoUllman model (called the HRU model) is based
on commands, where each command involves conditions and
primitive operations. The structure of a command is as follows.

command name(o1,o2,…, ok)
if r1 in A[s1, o1,] and
 r2 in A[s2, o2,] and
 …
 rm in A[sm, om,]
then
 op1
 op2
 …
 opn

end
This command is structured like a procedure, with parameters o1
through ok. The notation of the HRU model is slightly different
from the GrahamDenning model; in HRU every subject is an
object, too. Thus, the columns of the access control matrix are all the
subjects and all the objects that are not subjects. For this reason, all
the parameters of a command are labeled o, although they could
be either subjects or nonsubject objects. Each r is a generic right,
as in the GrahamDenning model. Each op is a primitive operation,
defined in the following list. The access matrix is shown in Table 3.

Designing Trusted Operating Systems 195

Table 3. Access Matrix in HRU Model.

Objects
Subjects S1 S2 S3 O1 O2 O3

S1 Control Own, Suspend, Resume Own Own Read,
Propagate

S2 Control Extend Own
S3 Control Read, Write Write Read

The primitive operations op, similar to those of the GrahamDenning
model, are as follows:

• create subject s
• create object o
• destroy subject s
• destroy object o
• enter right r into A[s,o]
• delete right r from A[s,o]

The interpretations of these operations are what their names
imply. A protection system is a set of subjects, objects, rights, and
commands.

Harrison et al. demonstrate that these operations are adequate to
model several examples of protection systems, including the Unix
protection mechanism and an indirect access mode introduced
by Graham and Denning. Thus, like the GrahamDenning model,
the HRU model can represent “reasonable” interpretations of
protection.

Two important results derived by Harrison et al. have major
implications for designers of protection systems.

The first result from HRU indicates that, In the modeled system,
in which commands are restricted to a single operation each, it
is possible to decide whether a given subject can ever obtain a
particular right to an object.

Secure Computing196

Therefore, we can decide (that is, we can know in advance)
whether a low-level subject can ever obtain read access to a high-
level object, for example.

The second result is less encouraging. Harrison et al. show that,
If commands are not restricted to one operation each, it is not
always decidable whether a given protection system can confer a
given right.

Thus, we cannot determine in general whether a subject can obtain
a particular right to an object.

As an example, consider protection in the Unix operating system.
The Unix protection scheme is relatively simple; other protection
systems are more complex. Because the Unix protection scheme
requires more than one operation per command in the HRU
model, there can be no general procedure to determine whether a
certain access right can be given to a subject.

The HRU result is important but bleak. In fact, the HRU result
can be extended. There may be an algorithm to decide the access
right question for a particular collection of protection systems,
but even an infinite number of algorithms cannot decide the
access right question for all protection systems. However, the
negative results do not say that no decision process exists for any
protection system. In fact, for certain specific protection systems,
it is decidable whether a given access right can be conferred.

TakeGrant Systems

One final model of a protection system is the takegrant system,
introduced by Jones and expanded by Lipton and Snyder.

This model has only four primitive operations: create, revoke,
take, and grant. Create and revoke are similar to operations from
the GrahamDenning and HRU models; take and grant are new
types of operations. These operations are presented most naturally
through the use of graphs.

Designing Trusted Operating Systems 197

As in other systems, let S be a set of subjects and O be a set of
objects; objects can be either active (subjects) or passive (nonsubject
objects). Let R be a set of rights. Each subject or object is denoted by
a node of a graph; the rights of a particular subject to a particular
object are denoted by a labeled, directed edge from the subject to
the object. Figure 8 shows an example of subject, object, and rights.

Figure 8. Subject, Object, and Rights.

Let s be the subject performing each of the operations. The four
operations are defined as follows. The effects of these operations
are shown in Figure 9.

Figure 9. Creating an Object; Revoking, Granting, and Taking Access
Rights.

• Create(o,r). A new node with label o is added to the graph.
From s to o is a directed edge with label r, denoting the
rights of s on o.

• Revoke(o,r). The rights r are revoked from s on o. The
edge from s to o was labeled q ⋃ q. Informally, we say
that s can revoke its rights to do r on o.

• Grant(o,p,r). Subject s grants to o access rights r on p.
A specific right is grant. Subject s can grant to o access
rights r on p only if s has grant rights on o and s has
r rights on p. Informally, s can grant (share) any of its

Secure Computing198

rights with o, as long as s has the right to grant privileges
to o. An edge from o to p is added, with label r.

• Take(o,p,r). Subject s takes from o access rights r on p.
A specific right is take. Subject s can take from o access
rights r on p only if s has take right on o and o has r rights
on p. Informally, s can take any rights o has, as long as s
has the right to take privileges from o. An edge from s to
p is added, with label r.

This set of operations is even shorter than the operations of either
of the two previous models. However, take and grant are more
complex rights.

Snyder shows that in this system certain protection questions are
decidable; furthermore, they are decidable in reasonable (less than
exponential) time. In, Snyder considers two questions:

• Can we decide whether a given subject can share an
object with another subject?

• Can we decide whether a given subject can steal access to
an object from another subject?

Clearly, these are important questions to answer about a protection
system, for they show whether the access control mechanisms are
secure against unauthorized disclosure.

The answer to Snyder’s first question is yes. Sharing can occur
only if several other subjects together have the desired access to
the object and the first subject is connected to each of the group
of other subjects by a path of edges having a particular form. An
algorithm that detects sharability runs in time proportional to the
size of the graph of the particular case.

Snyder also answers the second question affirmatively, in a
situation heavily dependent on the ability to share. Thus, an
algorithm can decide whether access can be stolen by direct appeal
to the algorithm to decide sharability.

Landwehr points out that the takegrant model assumes the worst
about users: If a user can grant access rights, the model assumes
that the user will. Suppose a user can create a file and grant access

Designing Trusted Operating Systems 199

to it to everyone. In that situation, every user could allow access
to every object by every other user. This worst-case assumption
limits the applicability of the model to situations of controlled
sharing of information. In general, however, the takegrant model
is useful because it identifies conditions under which a user can
obtain access to an object.

5.4 TRUSTED OPERATING SYSTEM DESIGN

Operating systems by themselves (regardless of their security
constraints) are very difficult to design. They handle many
duties, are subject to interruptions and context switches, and
must minimize overhead so as not to slow user computations and
interactions. Adding the responsibility for security enforcement
to the operating system substantially increases the difficulty of
designing an operating system.

5.4.1 Trusted System Design Elements

That security considerations pervade the design and structure of
operating systems implies two things. First, an operating system
controls the interaction between subjects and objects, so security
must be considered in every aspect of its design. That is, the
operating system design must include definitions of which objects
will be protected in what way, which subjects will have access and
at what levels, and so on. There must be a clear mapping from
the security requirements to the design, so that all developers can
see how the two relate. Moreover, once a section of the operating
system has been designed, it must be checked to see that the degree
of security that it is supposed to enforce or provide has actually
been designed correctly. This checking can be done in many ways,
including formal reviews or simulations. Again, a mapping is
necessary, this time from the requirements to design to tests so
that developers can affirm that each aspect of operating system
security has been tested and shown to work correctly.

Secure Computing200

Second, because security appears in every part of an operating
system, its design and implementation cannot be left fuzzy or
vague until the rest of the system is working and being tested. It is
extremely hard to retrofit security features to an operating system
designed with inadequate security. Leaving an operating system’s
security to the last minute is much like trying to install plumbing
or wiring in a house whose foundation is set, structure defined,
and walls already up and painted; not only must you destroy most
of what you have built, but you may also find that the general
structure can no longer accommodate all that is needed (and so
some has to be left out or compromised). Thus, security must
be an essential part of the initial design of a trusted operating
system. Indeed, the security considerations may shape many of
the other design decisions, especially for a system with complex
and constraining security requirements. For the same reasons, the
security and other design principles must be carried throughout
implementation, testing, and maintenance.

Good design principles are always good for security, as we have
noted above. But several important design principles are quite
particular to security and essential for building a solid, trusted
operating system. These principles have been articulated well by
Saltzer and Saltzer and Schroeder:

•	 Least	 privilege. Each user and each program should
operate by using the fewest privileges possible. In this
way, the damage from an inadvertent or malicious attack
is minimized.

•	 Economy	 of	 mechanism. The design of the protection
system should be small, simple, and straightforward.
Such a protection system can be carefully analyzed,
exhaustively tested, perhaps verified, and relied on.

•	 Open	design. The protection mechanism must not depend
on the ignorance of potential attackers; the mechanism
should be public, depending on secrecy of relatively few
key items, such as a password table. An open design
is also available for extensive public scrutiny, thereby
providing independent confirmation of the design

Designing Trusted Operating Systems 201

security.
•	 Complete	mediation. Every access attempt must be checked.

Both direct access attempts (requests) and attempts to
circumvent the access checking mechanism should be
considered, and the mechanism should be positioned so
that it cannot be circumvented.

•	 Permission	based. The default condition should be denial
of access. A conservative designer identifies the items
that should be accessible, rather than those that should
not.

•	 Separation	 of	 privilege. Ideally, access to objects should
depend on more than one condition, such as user
authentication plus a cryptographic key. In this way,
someone who defeats one protection system will not
have complete access.

•	 Least	common	mechanism. Shared objects provide potential
channels for information flow. Systems employing
physical or logical separation reduce the risk from
sharing.

•	 Ease	of	use. If a protection mechanism is easy to use, it is
unlikely to be avoided.

Although these design principles were suggested several decades
ago, they are as accurate now as they were when originally written.
The principles have been used repeatedly and successfully in
the design and implementation of numerous trusted systems.
More importantly, when security problems have been found in
operating systems in the past, they almost always derive from
failure to abide by one or more of these principles.

5.4.2 Security Features of Ordinary Operating Systems

A multiprogramming operating system performs several functions
that relate to security. To see how, examine Figure 10, which
illustrates how an operating system interacts with users, provides
services, and allocates resources.

Secure Computing202

Figure 10. Overview of an Operating System’s Functions.

We can see that the system addresses several particular functions
that involve computer security:

•	 User	authentication. The operating system must identify
each user who requests access and must ascertain that
the user is actually who he or she purports to be. The
most common authentication mechanism is password
comparison.

•	 Memory	 protection. Each user’s program must run in
a portion of memory protected against unauthorized
accesses. The protection will certainly prevent outsiders’
accesses, and it may also control a user’s own access
to restricted parts of the program space. Differential
security, such as read, write, and execute, may be applied
to parts of a user’s memory space. Memory protection
is usually performed by hardware mechanisms, such as
paging or segmentation.

• File and I/O device access control. The operating system
must protect user and system files from access by
unauthorized users. Similarly, I/O device use must be
protected. Data protection is usually achieved by table
lookup, as with an access control matrix.

Designing Trusted Operating Systems 203

• Allocation and access control to general objects. Users
need general objects, such as constructs to permit
concurrency and allow synchronization. However, access
to these objects must be controlled so that one user does
not have a negative effect on other users. Again, table
lookup is the common means by which this protection
is provided.

•	 Enforced	 sharing. Resources should be made available
to users as appropriate. Sharing brings about the need
to guarantee integrity and consistency. Table lookup,
combined with integrity controls such as monitors or
transaction processors, is often used to support controlled
sharing.

• Guaranteed fair service. All users expect CPU usage
and other service to be provided so that no user is
indefinitely starved from receiving service. Hardware
clocks combine with scheduling disciplines to provide
fairness. Hardware facilities and data tables combine to
provide control.

•	 Interprocess	 communication and synchronization.
Executing processes sometimes need to communicate
with other processes or to synchronize their accesses
to shared resources. Operating systems provide these
services by acting as a bridge between processes,
responding to process requests for asynchronous
communication with other processes or synchronization.
Interprocess communication is mediated by access
control tables.

• Protected operating system protection data. The
operating system must maintain data by which it can
enforce security. Obviously if these data are not protected
against unauthorized access (read, modify, and delete),
the operating system cannot provide enforcement.
Various techniques, including encryption, hardware
control, and isolation, support isolation of operating
system protection data.

Secure Computing204

5.4.3 Security Features of Trusted Operating Systems

Unlike regular operating systems, trusted systems incorporate
technology to address both features and assurance. The design of
a trusted system is delicate, involving selection of an appropriate
and consistent set of features together with an appropriate degree of
assurance that the features have been assembled and implemented
correctly. Figure 11 illustrates how a trusted operating system
differs from an ordinary one. Compare it with Figure 10. Notice
how objects are accompanied or surrounded by an access control
mechanism, offering far more protection and separation than does
a conventional operating system. In addition, memory is separated
by user, and data and program libraries have controlled sharing
and separation.

Figure 11. Security Functions of a Trusted Operating System.

The key features of a trusted operating system including
• user identification and authentication
• mandatory access control

Designing Trusted Operating Systems 205

• discretionary access control
• object reuse protection
• complete mediation
• trusted path
• audit
• audit log reduction
• intrusion detection

We consider each of these features in turn.

Identification and Authentication

Identification is at the root of much of computer security. We must
be able to tell who is requesting access to an object, and we must be
able to verify the subject’s identity. As we see shortly, most access
control, whether mandatory or discretionary, is based on accurate
identification. Thus, identification involves two steps: finding
out who the access requester is and verifying that the requester
is indeed who he/she/it claims to be. That is, we want to establish
an identity and then authenticate or verify that identity. Trusted
operating systems require secure identification of individuals,
and each individual must be uniquely identified.

Mandatory and Discretionary Access Control

Mandatory access control (MAC) means that access control policy
decisions are made beyond the control of the individual owner of
an object. A central authority determines what information is to be
accessible by whom, and the user cannot change access rights. An
example of MAC occurs in military security, where an individual
data owner does not decide who has a top-secret clearance; neither
can the owner change the classification of an object from top secret
to secret.

By contrast, discretionary access control (DAC), as its name implies,
leaves a certain amount of access control to the discretion of the
object’s owner or to anyone else who is authorized to control the

Secure Computing206

object’s access. The owner can determine who should have access
rights to an object and what those rights should be. Commercial
environments typically use DAC to allow anyone in a designated
group, and sometimes additional named individuals, to change
access. For example, a corporation might establish access controls
so that the accounting group can have access to personnel files.
But the corporation may also allow Ana and Jose to access those
files, too, in their roles as directors of the Inspector General’s office.
Typically, DAC access rights can change dynamically. The owner
of the accounting file may add Renee and remove Walter from the
list of allowed accessors, as business needs dictate.

MAC and DAC can both be applied to the same object. MAC
has precedence over DAC, meaning that of all those who are
approved for MAC access, only those who also pass DAC will
actually be allowed to access the object. For example, a file may
be classified secret, meaning that only people cleared for secret
access can potentially access the file. But of those millions of
people granted secret access by the government, only people on
project “deer park” or in the “environmental” group or at location
“Fort Hamilton” are actually allowed access.

Object Reuse Protection

One way that a computing system maintains its efficiency is to
reuse objects. The operating system controls resource allocation,
and as a resource is freed for use by other users or programs, the
operating system permits the next user or program to access the
resource. But reusable objects must be carefully controlled, lest
they create a serious vulnerability. To see why, consider what
happens when a new file is created. Usually, space for the file
comes from a pool of freed, previously used space on a disk or
other storage device. Released space is returned to the pool
“dirty,” that is, still containing the data from the previous user.
Because most users would write to a file before trying to read from
it, the new user’s data obliterate the previous owner’s, so there
is no inappropriate disclosure of the previous user’s information.
However, a malicious user may claim a large amount of disk space

Designing Trusted Operating Systems 207

and then scavenge for sensitive data. This kind of attack is called
object reuse. The problem is not limited to disk; it can occur with
main memory, processor registers and storage, other magnetic
media (such as disks and tapes), or any other reusable storage
medium.

To prevent object reuse leakage, operating systems clear (that is,
overwrite) all space to be reassigned before allowing the next user
to have access to it. Magnetic media are particularly vulnerable to
this threat. Very precise and expensive equipment can sometimes
separate the most recent data from the data previously recorded,
from the data before that, and so forth. This threat, called
magnetic remanence. In any case, the operating system must take
responsibility for “cleaning” the resource before permitting access
to it.

Complete Mediation

For mandatory or discretionary access control to be effective, all
accesses must be controlled. It is insufficient to control access
only to files if the attack will acquire access through memory
or an outside port or a network or a covert channel. The design
and implementation difficulty of a trusted operating system rises
significantly as more paths for access must be controlled. Highly
trusted operating systems perform complete mediation, meaning
that all accesses are checked.

Trusted Path

One way for a malicious user to gain inappropriate access is to
“spoof” users, making them think they are communicating with
a legitimate security enforcement system when in fact their
keystrokes and commands are being intercepted and analyzed.
For example, a malicious spoofer may place a phony user ID and
password system between the user and the legitimate system. As
the illegal system queries the user for identification information,
the spoofer captures the real user ID and password; the spoofer
can use these bona fide entry data to access the system later on,

Secure Computing208

probably with malicious intent. Thus, for critical operations such
as setting a password or changing access permissions, users want
an unmistakable communication, called a trusted path, to ensure
that they are supplying protected information only to a legitimate
receiver. On some trusted systems, the user invokes a trusted path
by pressing a unique key sequence that, by design, is intercepted
directly by the security enforcement software; on other trusted
systems, security-relevant changes can be made only at system
startup, before any processes other than the security enforcement
code run.

Accountability and Audit

A security-relevant action may be as simple as an individual
access to an object, such as a file, or it may be as major as a change
to the central access control database affecting all subsequent
accesses. Accountability usually entails maintaining a log of
security-relevant events that have occurred, listing each event and
the person responsible for the addition, deletion, or change. This
audit log must obviously be protected from outsiders, and every
security-relevant event must be recorded.

Audit Log Reduction

Theoretically, the general notion of an audit log is appealing
because it allows responsible parties to evaluate all actions that
affect all protected elements of the system. But in practice an
audit log may be too difficult to handle, owing to volume and
analysis. To see why, consider what information would have to
be collected and analyzed. In the extreme (such as where the data
involved can affect a business’ viability or a nation’s security),
we might argue that every modification or even each character
read from a file is potentially security relevant; the modification
could affect the integrity of data, or the single character could
divulge the only really sensitive part of an entire file. And because
the path of control through a program is affected by the data the
program processes, the sequence of individual instructions is

Designing Trusted Operating Systems 209

also potentially security relevant. If an audit record were to be
created for every access to a single character from a file and for
every instruction executed, the audit log would be enormous. (In
fact, it would be impossible to audit every instruction, because
then the audit commands themselves would have to be audited.
In turn, these commands would be implemented by instructions
that would have to be audited, and so on forever.)

In most trusted systems, the problem is simplified by an audit of
only the opening (first access to) and closing of (last access to) files
or similar objects. Similarly, objects such as individual memory
locations, hardware registers, and instructions are not audited.
Even with these restrictions, audit logs tend to be very large. Even
a simple word processor may open fifty or more support modules
(separate files) when it begins, it may create and delete a dozen
or more temporary files during execution, and it may open many
more drivers to handle specific tasks such as complex formatting
or printing. Thus, one simple program can easily cause a hundred
files to be opened and closed, and complex systems can cause
thousands of files to be accessed in a relatively short time. On
the other hand, some systems continuously read from or update
a single file. A bank teller may process transactions against the
general customer accounts file throughout the entire day; what
is significant is not that the teller accessed the accounts file, but
which entries in the file were accessed. Thus, audit at the level
of file opening and closing is in some cases too much data and in
other cases not enough to meet security needs.

A final difficulty is the “needle in a haystack” phenomenon. Even if
the audit data could be limited to the right amount, typically many
legitimate accesses and perhaps one attack will occur. Finding
the one attack access out of a thousand legitimate accesses can
be difficult. A corollary to this problem is the one of determining
who or what does the analysis. Does the system administrator
sit and analyze all data in the audit log? Or do the developers
write a program to analyze the data? If the latter, how can we
automatically recognize a pattern of unacceptable behavior? These
issues are open questions being addressed not only by security

Secure Computing210

specialists but also by experts in artificial intelligence and pattern
recognition.

Intrusion Detection

Closely related to audit reduction is the ability to detect security
lapses, ideally while they occur. As we have seen in the State
Department example, there may well be too much information in
the audit log for a human to analyze, but the computer can help
correlate independent data. Intrusion detection software builds
patterns of normal system usage, triggering an alarm any time
the usage seems abnormal. After a decade of promising research
results in intrusion detection, products are now commercially
available. Some trusted operating systems include a primitive
degree of intrusion detection software.

5.4.4 Kernelized Design

A kernel is the part of an operating system that performs the lowest-
level functions. In standard operating system design, the kernel
implements operations such as synchronization, interprocess
communication, message passing, and interrupt handling. The
kernel is also called a nucleus or core. The notion of designing an
operating system around a kernel is described by Lampson and
Sturgis and by Popek and Kline.

A security kernel is responsible for enforcing the security
mechanisms of the entire operating system. The security kernel
provides the security interfaces among the hardware, operating
system, and other parts of the computing system. Typically,
the operating system is designed so that the security kernel is
contained within the operating system kernel. Security kernels are
discussed in detail by Ames.

There are several good design reasons why security functions may
be isolated in a security kernel.

• Coverage. Every access to a protected object must pass
through the security kernel. In a system designed in this

Designing Trusted Operating Systems 211

way, the operating system can use the security kernel to
ensure that every access is checked.

• Separation. Isolating security mechanisms both from
the rest of the operating system and from the user
space makes it easier to protect those mechanisms from
penetration by the operating system or the users.

• Unity. All security functions are performed by a single set
of code, so it is easier to trace the cause of any problems
that arise with these functions.

• Modifiability. Changes to the security mechanisms are
easier to make and easier to test.

• Compactness. Because it performs only security
functions, the security kernel is likely to be relatively
small.

• Verifiability. Being relatively small, the security kernel
can be analyzed rigorously. For example, formal methods
can be used to ensure that all security situations (such
as states and state changes) have been covered by the
design.

Notice the similarity between these advantages and the design
goals of operating systems that we described earlier. These
characteristics also depend in many ways on modularity.

On the other hand, implementing a security kernel may degrade
system performance because the kernel adds yet another layer of
interface between user programs and operating system resources.
Moreover, the presence of a kernel does not guarantee that it
contains all security functions or that it has been implemented
correctly. And in some cases a security kernel can be quite large.

How do we balance these positive and negative aspects of using
a security kernel? The design and usefulness of a security kernel
depend somewhat on the overall approach to the operating
system’s design. There are many design choices, each of which
falls into one of two types: Either the kernel is designed as an
addition to the operating system, or it is the basis of the entire
operating system. Let us look more closely at each design choice.

Secure Computing212

Reference Monitor

The most important part of a security kernel is the reference
monitor, the portion that controls accesses to objects. A reference
monitor is not necessarily a single piece of code; rather, it is the
collection of access controls for devices, files, memory, interprocess
communication, and other kinds of objects. As shown in Figure
12, a reference monitor acts like a brick wall around the operating
system or trusted software.

Figure 12. Reference Monitor.

A reference monitor must be
• tamperproof, that is, impossible to weaken or disable
• unbypassable, that is, always invoked when access to

any object is required
• analyzable, that is, small enough to be subjected to

analysis and testing, the completeness of which can be
ensured

A reference monitor can control access effectively only if it cannot
be modified or circumvented by a rogue process, and it is the single
point through which all access requests must pass. Furthermore,
the reference monitor must function correctly if it is to fulfill its
crucial role in enforcing security. Because the likelihood of correct
behavior decreases as the complexity and size of a program
increase, the best assurance of correct policy enforcement is to
build a small, simple, understandable reference monitor.

The reference monitor is not the only security mechanism of a
trusted operating system. Other parts of the security suite include
audit, identification, and authentication processing, as well as

Designing Trusted Operating Systems 213

the setting of enforcement parameters, such as who the allowable
subjects are and which objects they are allowed to access. These
other security parts interact with the reference monitor, receiving
data from the reference monitor or providing it with the data it
needs to operate. The reference monitor concept has been used
for many trusted operating systems and also for smaller pieces
of trusted software. The validity of this concept is well supported
both in research and in practice.

Trusted Computing Base

The trusted computing base, or TCB, is the name we give to
everything in the trusted operating system necessary to enforce
the security policy. Alternatively, we say that the TCB consists of
the parts of the trusted operating system on which we depend
for correct enforcement of policy. We can think of the TCB as a
coherent whole in the following way. Suppose you divide a trusted
operating system into the parts that are in the TCB and those that
are not, and you allow the most skillful malicious programmers to
write all the non-TCB parts. Since the TCB handles all the security,
there is nothing the malicious non-TCB parts can do to impair the
correct security policy enforcement of the TCB. This definition
gives you a sense that the TCB forms the fortress-like shell that
protects whatever in the system needs protection. But the analogy
also clarifies the meaning of trusted in trusted operating system:
Our trust in the security of the whole system depends on the TCB.

It is easy to see that it is essential for the TCB to be both correct
and complete. Thus, to understand how to design a good TCB,
we focus on the division between the TCB and non-TCB elements
of the operating system and spend our effort on ensuring the
correctness of the TCB.

TCB Functions

Just what constitutes the TCB? We can answer this question by
listing system elements on which security enforcement could
depend:

Secure Computing214

• hardware, including processors, memory, registers, and
I/O devices

• some notion of processes, so that we can separate and
protect security-critical processes

• primitive files, such as the security access control
database and identification/authentication data

• protected memory, so that the reference monitor can be
protected against tampering

• some interprocess communication, so that different parts
of the TCB can pass data to and activate other parts. For
example, the reference monitor can invoke and pass data
securely to the audit routine.

It may seem as if this list encompasses most of the operating
system, but in fact the TCB is only a small subset. For example,
although the TCB requires access to files of enforcement data, it
does not need an entire file structure of hierarchical directories,
virtual devices, indexed files, and multidevice files. Thus, it might
contain a primitive file manager to handle only the small, simple
files needed for the TCB. The more complex file manager to
provide externally visible files could be outside the TCB. Figure
13 shows a typical division into TCB and non-TCB sections.

Figure 13. TCB and Non-TCB Code.

Designing Trusted Operating Systems 215

The TCB, which must maintain the secrecy and integrity of each
domain, monitors four basic interactions.

•	 Process activation. In a multiprogramming environment,
activation and deactivation of processes occur frequently.
Changing from one process to another requires a
complete change of registers, relocation maps, file access
lists, process status information, and other pointers,
much of which is security-sensitive information.

•	 Execution	 domain	 switching. Processes running in one
domain often invoke processes in other domains to
obtain more sensitive data or services.

•	 Memory	 protection. Because each domain includes code
and data stored in memory, the TCB must monitor
memory references to ensure secrecy and integrity for
each domain.

• I/O operation. In some systems, software is involved
with each character transferred in an I/O operation.
This software connects a user program in the outermost
domain to an I/O device in the innermost (hardware)
domain. Thus, I/O operations can cross all domains.

TCB Design

The division of the operating system into TCB and non-TCB
aspects is convenient for designers and developers because it
means that all security-relevant code is located in one (logical)
part. But the distinction is more than just logical. To ensure that
the security enforcement cannot be affected by non-TCB code, TCB
code must run in some protected state that distinguishes it. Thus,
the structuring into TCB and non-TCB must be done consciously.
However, once this structuring has been done, code outside the
TCB can be changed at will, without affecting the TCB’s ability to
enforce security. This ability to change helps developers because it
means that major sections of the operating systemutilities, device
drivers, user interface managers, and the likecan be revised or
replaced any time; only the TCB code must be controlled more
carefully. Finally, for anyone evaluating the security of a trusted

Secure Computing216

operating system, a division into TCB and non-TCB simplifies
evaluation substantially because non-TCB code need not be
considered.

TCB Implementation

Security-related activities are likely to be performed in different
places. Security is potentially related to every memory access,
every I/O operation, every file or program access, every initiation
or termination of a user, and every interprocess communication.
In modular operating systems, these separate activities can be
handled in independent modules. Each of these separate modules,
then, has both security-related and other functions.

Collecting all security functions into the TCB may destroy the
modularity of an existing operating system. A unified TCB may
also be too large to be analyzed easily. Nevertheless, a designer
may decide to separate the security functions of an existing
operating system, creating a security kernel. This form of kernel is
depicted in Figure 14.

Figure 14. Combined Security Kernel/Operating System.

A more sensible approach is to design the security kernel first
and then design the operating system around it. This technique

Designing Trusted Operating Systems 217

was used by Honeywell in the design of a prototype for its
secure operating system, Scomp. That system contained only
twenty modules to perform the primitive security functions, and
it consisted of fewer than 1,000 lines of higher-level-language
source code. Once the actual security kernel of Scomp was built,
its functions grew to contain approximately 10,000 lines of code.

In a security-based design, the security kernel forms an interface
layer, just atop system hardware. The security kernel monitors all
operating system hardware accesses and performs all protection
functions. The security kernel, which relies on support from
hardware, allows the operating system itself to handle most
functions not related to security. In this way, the security kernel
can be small and efficient. As a byproduct of this partitioning,
computing systems have at least three execution domains: security
kernel, operating system, and user. See Figure 15.

Figure 15. Separate Security Kernel.

5.4.5 Separation/Isolation

Rushby and Randell list four ways to separate one process from
others: physical, temporal, cryptographic, and logical separation.
With physical separation, two different processes use two different

Secure Computing218

hardware facilities. For example, sensitive computation may be
performed on a reserved computing system; nonsensitive tasks
are run on a public system. Hardware separation offers several
attractive features, including support for multiple independent
threads of execution, memory protection, mediation of I/O, and
at least three different degrees of execution privilege. Temporal
separation occurs when different processes are run at different
times. For instance, some military systems run nonsensitive jobs
between 8:00 a.m. and noon, with sensitive computation only from
noon to 5:00 p.m. Encryption is used for cryptographic separation,
so two different processes can be run at the same time because
unauthorized users cannot access sensitive data in a readable
form. Logical separation, also called isolation, is provided when
a process such as a reference monitor separates one user’s objects
from those of another user. Secure computing systems have been
built with each of these forms of separation.

Multiprogramming operating systems should isolate each user
from all others, allowing only carefully controlled interactions
between the users. Most operating systems are designed to
provide a single environment for all. In other words, one copy
of the operating system is available for use by many users, as
shown in Figure 16. The operating system is often separated into
two distinct pieces, located at the highest and lowest addresses of
memory.

Figure 16. Conventional Multiuser Operating System Memory.

Designing Trusted Operating Systems 219

5.4.6 Virtualization

Virtualization is a powerful tool for trusted system designers
because it allows users to access complex objects in a carefully
controlled manner. By virtualization we mean that the operating
system emulates or simulates a collection of a computer system’s
resources. We say that a virtual machine is a collection of real
or simulated hardware facilities: a [central] processor that runs
an instruction set, an amount of directly addressable storage,
and some I/O devices. These facilities support the execution of
programs.
Obviously, virtual resources must be supported by real hardware
or software, but the real resources do not have to be the same
as the simulated ones. There are many examples of this type of
simulation. For instance, printers are often simulated on direct
access devices for sharing in multiuser environments. Several
small disks can be simulated with one large one. With demand
paging, some noncontiguous memory can support a much larger
contiguous virtual memory space. And it is common even on PCs
to simulate space on slower disks with faster memory. In these
ways, the operating system provides the virtual resource to the
user, while the security kernel precisely controls user accesses.

Multiple Virtual Memory Spaces

The IBM MVS/ESA operating system uses virtualization to provide
logical separation that gives the user the impression of physical
separation. IBM MVS/ESA is a paging system such that each user’s
logical address space is separated from that of other users by the
page mapping mechanism. Additionally, MVS/ESA includes the
operating system in each user’s logical address space, so a user
runs on what seems to be a complete, separate machine.

Most paging systems present to a user only the user’s virtual
address space; the operating system is outside the user’s virtual
addressing space. However, the operating system is part of the
logical space of each MVS/ESA user. Therefore, to the user MVS/
ESA seems like a single-user system, as shown in Figure 17.

Secure Computing220

Figure 17. Multiple Virtual Addressing Spaces.

A primary advantage of MVS/ESA is memory management. Each
user’s virtual memory space can be as large as total addressable
memory, in excess of 16 million bytes. And protection is a second
advantage of this representation of memory. Because each user’s
logical address space includes the operating system, the user’s
perception is of running on a separate machine, which could even
be true.

5.4.7 Virtual Machines

The IBM Processor Resources/System Manager (PR/SM) system
provides a level of protection that is stronger still. A conventional
operating system has hardware facilities and devices that are under
the direct control of the operating system, as shown in Figure 18.
PR/SM provides an entire virtual machine to each user, so that
each user not only has logical memory but also has logical I/O
devices, logical files, and other logical resources. PR/SM performs
this feat by strictly separating resources.

Designing Trusted Operating Systems 221

Figure 18. Conventional Operating System.

The PR/SM system is a natural extension of the concept of virtual
memory. Virtual memory gives the user a memory space that is
logically separated from real memory; a virtual memory space is
usually larger than real memory, as well. A virtual machine gives
the user a full set of hardware features; that is, a complete machine
that may be substantially different from the real machine. These
virtual hardware resources are also logically separated from those
of other users. The relationship of virtual machines to real ones is
shown in Figure 19.

Figure 19. Virtual Machine.

Both MVS/ESA and PR/SM improve the isolation of each user
from other users and from the hardware of the system. Of course,

Secure Computing222

this added complexity increases the overhead incurred with these
levels of translation and protection.

5.4.8 Layered Design

As described previously, a kernelized operating system consists of
at least four levels: hardware, kernel, operating system, and user.
Each of these layers can include sublayers. For example, in, the
kernel has five distinct layers. At the user level, it is not uncommon
to have quasi system programs, such as database managers or
graphical user interface shells, that constitute separate layers of
security themselves.

Layered Trust

The layered view of a secure operating system can be depicted as a
series of concentric circles, with the most sensitive operations in the
innermost layers. Then, the trustworthiness and access rights of a
process can be judged by the process’s proximity to the center: The
more trusted processes are closer to the center. But we can also depict
the trusted operating system in layers as a stack, with the security
functions closest to the hardware. Such a system is shown in Figure 20.

Figure 20. Layered Operating System.

Designing Trusted Operating Systems 223

In this design, some activities related to protection functions
are performed outside the security kernel. For example, user
authentication may include accessing a password table, challenging
the user to supply a password, verifying the correctness of the
password, and so forth. The disadvantage of performing all these
operations inside the security kernel is that some of the operations
(such as formatting the userterminal interaction and searching for
the user in a table of known users) do not warrant high security.

Alternatively, we can implement a single logical function in several
different modules; we call this a layered design. Trustworthiness
and access rights are the basis of the layering. In other words, a
single function may be performed by a set of modules operating
in different layers, as shown in Figure 21. The modules of each
layer perform operations of a certain degree of sensitivity.

Figure 21. Modules Operating In Different Layers.

Neumann describes the layered structure used for the Provably
Secure Operating System (PSOS). As shown in Table 4, some
lower-level layers present some or all of their functionality to
higher levels, but each layer properly encapsulates those things
below itself.

Secure Computing224

Table 4. PSOS Design Hierarchy.

Level Function Hidden by Level Visible to User
16 User request interpreter Yes
15 User environments and

name spaces
 Yes

14 User I/O Yes
13 Procedure records Yes
12 User processes and visible

I/O
 Yes

11 Creation and deletion of
user objects

 Yes

10 Directories 11 Partially
9 Extended types 11 Partially
8 Segments 11 Partially
7 Paging 8 No
6 System processes and I/O 12 No
5 Primitive I/O 6 No
4 Arithmetic and other basic

operations
 Yes

3 Clocks 6 No
2 Interrupts 6 No
1 Registers and addressable

memory
7 Partially

0 Capabilities Yes

A layered approach is another way to achieve encapsulation.
Layering is recognized as a good operating system design. Each
layer uses the more central layers as services, and each layer
provides a certain level of functionality to the layers farther out.
In this way, we can “peel off” each layer and still have a logically
complete system with less functionality. Layering presents a good
example of how to trade off and balance design characteristics.

Another justification for layering is damage control. To see why,
consider Neumann’s two examples of risk, shown in Tables 5
and 6. In a conventional, nonhierarchically designed system, any
problemhardware failure, software flaw, or unexpected condition,
even in a supposedly non-security-relevant portioncan cause
disaster because the effect of the problem is unbounded and

Designing Trusted Operating Systems 225

because the system’s design means that we cannot be confident
that any given function has no (indirect) security effect.

Table 5. Conventionally (Nonhierarchically) Designed System.

Level Functions Risk
All Noncritical functions Disaster possible
All Less critical functions Disaster possible
All Most critical functions Disaster possible

Table 6. Hierarchically Designed System.

Level Functions Risk
2 Noncritical

functions
Few disasters likely from noncritical
software

1 Less criti-
cal func-
tions

Some failures possible from less critical
functions, but because of separation, effect
limited

0 Most criti-
cal func-
tions

Disasters possible but unlikely if system
simple enough to be analyzed extensively

By contrast, as shown in Table 6, hierarchical structuring has two
benefits:

• Hierarchical structuring permits identification of the
most critical parts, which can then be analyzed intensely
for correctness, so the number of problems should be
smaller.

• Isolation limits effects of problems to the hierarchical
levels at and above the point of the problem, so the effects
of many problems should be confined.

These design propertiesthe kernel, separation, isolation, and
hierarchical structurehave been the basis for many trustworthy
system prototypes. They have stood the test of time as best design
and implementation practices.

Secure Computing226

REFERENCES

1. Arpaci-Dusseau, Remzi; Arpaci-Dusseau, Andrea (2015).
Operating Systems: Three Easy Pieces.

2. Author, Guest (7 February 2020). “User Authentication
Methods & Technologies to Prevent Breach”. ID R&D.
Retrieved 8 November 2020.

3. Bic, Lubomur F.; Shaw, Alan C. (2003). Operating Systems.
Pearson: Prentice Hall.

4. Bishop, Matt (2004). Computer security: art and science.
Addison-Wesley.

5. Daly, Christopher. (2004). A Trust Framework for the DoD
Network-Centric Enterprise Services (NCES) Environment,
IBM Corp., 2004.

6. Deitel, Harvey M.; Deitel, Paul; Choffnes, David (25 December
2015). Operating Systems. Pearson/Prentice Hall. ISBN 978-0-
13-092641-8.

7. Eugene Schultz, E. (2007). “Risks due to convergence of
physical security systems and information technology
environments”. Information Security Technical Report. 12 (2):
80–84. doi:10.1016/j.istr.2007.06.001.

8. Federal Financial Institutions Examination Council (2008).
“Authentication in an Internet Banking Environment” (PDF).
Archived (PDF) from the original on 5 May 2010. Retrieved 31
December 2009.

9. Graham Pulford (17 October 2007). High-Security Mechanical
Locks: An Encyclopedic Reference. Butterworth-Heinemann.
pp. 76–. ISBN 978-0-08-055586-7.

10. Leva, Alberto; Maggio, Martina; Papadopoulos, Alessandro
Vittorio; Terraneo, Federico (2013). Control-based Operating
System Design. IET. ISBN 978-1-84919-609-3.

11. Newman, Robert (2010). Security and access control using
biometric technologies. Boston, Mass.: Course Technology.
ISBN 978-1-4354-9667-5. OCLC 535966830.

12. Niemelä, Harri (2011). “The study of business opportunities

Designing Trusted Operating Systems 227

and value add of NFC applications in security”. theseus.fi.
Retrieved 22 March 2019.

13. O’Brien, J. A., & Marakas, G. M.(2011). Management
Information Systems. 10e. McGraw-Hill Irwin.

14. P. A. Loscocco, S. D. Smalley, Meeting Critical Security
Objectives with Security-Enhanced Linux Proceedings of the
2001 Ottawa Linux Symposium.

15. Pereira, Henrique G. G.; Fong, Philip W. L. (2019). “SEPD:
An Access Control Model for Resource Sharing in an IoT
Environment”. Computer Security – ESORICS 2019. Lecture
Notes in Computer Science. Springer International Publishing.
11736: 195–216. doi:10.1007/978-3-030-29962-0_10. ISBN 978-
3-030-29961-3.

16. Rhodes, Brian (2019). “Designing Access Control Guide”.
ipvm.com. Retrieved 1 October 2019.

17. Robert N. M. Watson. “A decade of OS access-control
extensibility”. Commun. ACM 56, 2 (February 2013), 52–63.

18. Schapranow, Matthieu-P. (2014). Real-time Security Extensions
for EPCglobal Networks. Springer. ISBN 978-3-642-36342-9.

19. Silberschatz, Avi; Galvin, Peter; Gagne, Greg (2008). Operating
Systems Concepts. John Wiley & Sons. ISBN 978-0-470-12872-
5.

INTRODUCTION

A database is an organized collection of data, generally stored and
accessed electronically from a computer system. Where databases
are more complex they are often developed using formal design
and modeling techniques. The database management system
(DBMS) is the software that interacts with end users, applications,
and the database itself to capture and analyze the data. The DBMS
software additionally encompasses the core facilities provided to
administer the database. The sum total of the database, the DBMS
and the associated applications can be referred to as a “database
system”. Often the term “database” is also used to loosely refer to
any of the DBMS, the database system or an application associated
with the database.

6
DATABASE AND DATA MINING
SECURITY

C
H

A
PT

ER

Secure Computing230

Ensuring the integrity of computer networks, both in relation to
security and with regard to the institutional life of the nation in
general, is a growing concern. Security and defense networks,
proprietary research, intellectual property, and data based market
mechanisms that depend on unimpeded and undistorted access,
can all be severely compromised by malicious intrusions. Data
mining has many applications in security including in national
security (e.g., surveillance) as well as in cyber security (e.g., virus
detection).

Protecting data is at the heart of many secure systems, and
many users (people, programs, or systems) rely on a database
management system (DBMS) to manage the protection. The
security of database management systems, as an example of
how application security can be designed and implemented for a
specific task. There is substantial current interest in DBMS security
because databases are newer than programming and operating
systems. Databases are essential to many business and government
organizations, holding data that reflect the organization’s core
competencies. Often, when business processes are reengineered to
make them more effective and more in tune with new or revised
goals, one of the first systems to receive careful scrutiny is the set
of databases supporting the business processes. Thus, databases
are more than software-related repositories. Their organization
and contents are considered valuable corporate assets that must
be carefully protected.

Database and Data mining Security 231

However, the protection provided by database management
systems has had mixed results. Over time, we have improved our
understanding of database security problems, and several good
controls have been developed. But, as you will see, there are still
more security concerns for which there are no available controls.

Then we consider the security requirements for database
management systems. Two major security problems integrity
and secrecy are explained in a database context. Two major (but
related) database security problems, the inference problem and the
multilevel problem. Both problems are complex, and there are no
immediate solutions. However, by understanding the problems,
we become more sensitive to ways of reducing potential threats
to the data.

6.1 CONCEPT OF DATABASE

A database is a collection of data and a set of rules that organize the
data by specifying certain relationships among the data. Through
these rules, the user describes a logical format for the data. The
data items are stored in a file, but the precise physical format of
the file is of no concern to the user. A database administrator is
a person who defines the rules that organize the data and also
controls who should have access to what parts of the data. The user
interacts with the database through a program called a database
manager or a database management system (DBMS), informally
known as a front end.

A database is stored as a file or a set of files. The information
in these files may be broken down into records, each of which
consists of one or more fields. Fields are the basic units of data
storage, and each field typically contains information pertaining
to one aspect or attribute of the entity described by the database.
Records are also organized into tables that include information
about relationships between its various fields. Although database
is applied loosely to any collection of information in computer
files, a database in the strict sense provides cross-referencing

Secure Computing232

capabilities. Using keywords and various sorting commands,
users can rapidly search, rearrange, group, and select the fields in
many records to retrieve or create reports on particular aggregates
of data.

Database records and files must be organized to allow retrieval of
the information. Queries are the main way users retrieve database
information. The power of a DBMS comes from its ability to define
new relationships from the basic ones given by the tables and to
use them to get responses to queries.

6.1.1 Components of Databases

The database file consists of records, each of which contains one
related group of data. As shown in the example in Table 1, a record
in a name and address file consists of one name and address. Each
record contains fields or elements, the elementary data items
themselves. The fields in the name and address record are NAME,
ADDRESS, CITY, STATE, and ZIP (where ZIP is the U.S. postal
code). This database can be viewed as a two-dimensional table,
where a record is a row and each field of a record is an element of
the table.

Database and Data mining Security 233

Table 1: Example of a Database.

ADAMS 212 Market St. Columbus OH 43210
BENCHLY 501 Union St. Chicago IL 60603
CARTER 411 Elm St. Columbus OH 43210

Not every database is easily represented as a single, compact
table. The database in Figure 1 logically consists of three files with
possibly different uses. These three files could be represented as
one large table, but that depiction may not improve the utility of
or access to the data.

Figure 1: Related Parts of a Database.

The logical structure of a database is called a schema. A particular
user may have access to only part of the database, called a
subschema. The overall schema of the database in Figure 1 is
detailed in Table 2. The three separate blocks of the figure are
examples of subschemas, although other subschemas of this
database can be defined. We can use schemas and subschemas
to present to users only those elements they wish or need to see.
For example, if Table 1 represents the employees at a company,
the subschema on the lower left can list employee names without
revealing personal information such as home address.

Table 2: Schema of Database Shown in Figure 1.

Name First Address City State Zip Airport
ADAMS Charles 212 Market St. Columbus OH 43210 CMH

Secure Computing234

ADAMS Edward 212 Market St. Columbus OH 43210 CMH
BENCH-
LY

Zeke 501 Union St. Chicago IL 60603 ORD

CARTER Mar-
lene

411 Elm St. Columbus OH 43210 CMH

CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH
CARTER Lisa-

beth
411 Elm St. Columbus OH 43210 CMH

CARTER Mary 411 Elm St. Columbus OH 43210 CMH

The rules of a database identify the columns with names. The
name of each column is called an attribute of the database. A
relation is a set of columns. For example, using the database in
Table 2, we see that NAMEZIP is a relation formed by taking
the NAME and ZIP columns, as shown in Table 3. The relation
specifies clusters of related data values in much the same way that
the relation “mother of” specifies a relationship among pairs of
humans. In this example, each cluster contains a pair of elements,
a NAME and a ZIP. Other relations can have more columns, so
each cluster may be a triple, a 4-tuple, or an n-tuple (for some
value n) of elements.

Table 3: Relation in a Database.

Name Zip
ADAMS 43210
BENCHLY 60603
CARTER 43210

Queries

Users interact with database managers through commands to the
DBMS that retrieve, modify, add, or delete fields and records of
the database. A command is called a query. Database management
systems have precise rules of syntax for queries. Most query
languages use an English-like notation, and many are based on
SQL, a structured query language originally developed by IBM.
For example, the query

Database and Data mining Security 235

SELECT NAME = ‘ADAMS’

retrieves all records having the value ADAMS in the NAME field.

The result of executing a query is a subschema. One way to
form a subschema of a database is by selecting records meeting
certain conditions. For example, we might select records in which
ZIP=43210, producing the result shown in Table 4.

Table 4: Result of Select Query.

Name First Address City State Zip Airport
ADAMS Charles 212 Market St. Columbus OH 43210 CMH
ADAMS Edward 212 Market St. Columbus OH 43210 CMH
CARTER Marlene 411 Elm St. Columbus OH 43210 CMH
CARTER Beth 411 Elm St. Columbus OH 43210 CMH
CARTER Ben 411 Elm St. Columbus OH 43210 CMH
CARTER Lisabeth 411 Elm St. Columbus OH 43210 CMH
CARTER Mary 411 Elm St. Columbus OH 43210 CMH

Other, more complex, selection criteria are possible, with logical
operators such as and () and), and comparisons such as

SELECT (ZIP=’43210’) (NAME=’ADAMS)

After having selected records, we may project these records onto
one or more attributes. The select operation identifies certain rows
from the database, and a project operation extracts the values from
certain fields (columns) of those records. The result of a select-
project operation is the set of values of specified attributes for the
selected records. For example, we might select records meeting
the condition ZIP=43210 and project the results onto the attributes
NAME and FIRST, as in Table 5. The result is the list of first and
last names of people whose addresses have zip code 43210.

Table 5: Results of Select-Project Query.

ADAMS Charles
ADAMS Edward
CARTER Marlene

Secure Computing236

CARTER Beth
CARTER Ben
CARTER Lisabeth
CARTER Mary

Notice that we do not have to project onto the same attribute(s)
on which the selection is done. For example, we can build a query
using ZIP and NAME but project the result onto FIRST:

SHOW FIRST WHERE (ZIP=’43210’) (NAME=’ADAMS)

The result would be a list of the first names of people whose last
names are ADAMS and ZIP is 43210.

We can also merge two subschema on a common element by
using a join query. The result of this operation is a subschema
whose records have the same value for the common element. For
example, Figure 2 shows that the subschema NAMEZIP and the
subschema ZIPAIRPORT can be joined on the common field ZIP
to produce the subschema NAMEAIRPORT.

Figure 2: Results of Select-Project-Join Query.

6.1.2 Advantages of Using Databases

The logical idea behind a database is this: A database is a single
collection of data, stored and maintained at one central location,
to which many people have access as needed. However, the
actual implementation may involve some other physical storage
arrangement or access. The essence of a good database is that

Database and Data mining Security 237

the users are unaware of the physical arrangements; the unified
logical arrangement is all they see. As a result, a database offers
many advantages over a simple file system:

• shared access, so that many users can use one common,
centralized set of data

• minimal redundancy, so that individual users do not
have to collect and maintain their own sets of data

• data consistency, so that a change to a data value affects
all users of the data value

• data integrity, so that data values are protected against
accidental or malicious undesirable changes

• controlled access, so that only authorized users are
allowed to view or to modify data values

A DBMS is designed to provide these advantages efficiently.
However, as often happens, the objectives can conflict with each
other. In particular, as we shall see, security interests can conflict
with performance. This clash is not surprising because measures
taken to enforce security often increase the computing system’s
size or complexity. What is surprising, though, is that security
interests may also reduce the system’s ability to provide data
to users by limiting certain queries that would otherwise seem
innocuous.

6.2 SECURITY REQUIREMENTS

The basic security requirements of database systems are not unlike
those of other computing systems we have studied. The basic
problems access control, exclusion of spurious data, authentication
of users, and reliability have appeared in many contexts so far in
this book. Following is a list of requirements for database security.

•	 Physical	 database	 integrity. The data of a database are
immune to physical problems, such as power failures,
and someone can reconstruct the database if it is
destroyed through a catastrophe.

Secure Computing238

•	 Logical	 database	 integrity. The structure of the database
is preserved. With logical integrity of a database, a
modification to the value of one field does not affect
other fields, for example.

•	 Element	integrity. The data contained in each element are
accurate.

•	 Auditability. It is possible to track who or what has
accessed (or modified) the elements in the database.

•	 Access	control. A user is allowed to access only authorized
data, and different users can be restricted to different
modes of access (such as read or write).

•	 User	 authentication. Every user is positively identified,
both for the audit trail and for permission to access
certain data.

•	 Availability. Users can access the database in general and
all the data for which they are authorized.

6.2.1 Integrity of the Database

If a database is to serve as a central repository of data, users must
be able to trust the accuracy of the data values. This condition
implies that the database administrator must be assured that
updates are performed only by authorized individuals. It also
implies that the data must be protected from corruption, either by
an outside illegal program action or by an outside force such as
fire or a power failure. Two situations can affect the integrity of a
database: when the whole database is damaged (as happens, for
example, if its storage medium is damaged) or when individual
data items are unreadable. Integrity of the database as a whole
is the responsibility of the DBMS, the operating system, and the
(human) computing system manager. From the perspective of the
operating system and the computing system manager, databases
and DBMSs are files and programs, respectively. Therefore, one
way of protecting the database as a whole is to regularly back up
all files on the system. These periodic backups can be adequate
controls against catastrophic failure.

Database and Data mining Security 239

Sometimes it is important to be able to reconstruct the database at
the point of a failure. For instance, when the power fails suddenly,
a bank’s clients may be in the middle of making transactions or
students may be in the midst of registering online for their classes.
In these cases, we want to be able to restore the systems to a stable
point without forcing users to redo their recently completed
transactions. To handle these situations, the DBMS must maintain
a log of transactions. For example, suppose the banking system
is designed so that a message is generated in a log (electronic or
paper or both) each time a transaction is processed. In the event of
a system failure, the system can obtain accurate account balances
by reverting to a backup copy of the database and reprocessing all
later transactions from the log.

6.2.2 Element Integrity

The integrity of database elements is their correctness or accuracy.
Ultimately, authorized users are responsible for entering correct
data into databases. However, users and programs make mistakes
collecting data, computing results, and entering values. Therefore,
DBMSs sometimes take special action to help catch errors as they
are made and to correct errors after they are inserted.

Secure Computing240

This corrective action can be taken in three ways. First, the DBMS
can apply field checks, activities that test for appropriate values in
a position. A field might be required to be numeric, an uppercase
letter, or one of a set of acceptable characters. The check ensures
that a value falls within specified bounds or is not greater than
the sum of the values in two other fields. These checks prevent
simple errors as the data are entered. (Sidebar 6-1 demonstrates
the importance of element integrity.)

A second integrity action is provided by access control. To see
why, consider life without databases. Data files may contain
data from several sources, and redundant data may be stored in
several different places. For example, a student’s home address
may be stored in many different campus files: at class registration,
for dining hall privileges, at the bookstore, and in the financial
aid office. Indeed, the student may not even be aware that each
separate office has the address on file. If the student moves
from one residence to another, each of the separate files requires
correction. Without a database, there are several risks to the
data’s integrity. First, at a given time, there could be some data
files with the old address (they have not yet been updated) and
some simultaneously with the new address (they have already
been updated). Second, there is always the possibility that the
data fields were changed incorrectly, again leading to files with
incorrect information. Third, there may be files of which the
student is unaware, so he or she does not know to notify the file
owner about updating the address information. These problems

Database and Data mining Security 241

are solved by databases. They enable collection and control of
this data at one central source, ensuring the student and users of
having the correct address.

The third means of providing database integrity is maintaining a
change log for the database. A change log lists every change made
to the database; it contains both original and modified values.
Using this log, a database administrator can undo any changes
that were made in error.

6.2.3 Auditability

For some applications it may be desirable to generate an audit
record of all access (read or write) to a database. Such a record
can help to maintain the database’s integrity, or at least to discover
after the fact who had affected which values and when. A second
advantage, as we see later, is that users can access protected data
incrementally; that is, no single access reveals protected data, but
a set of sequential accesses viewed together reveals the data, much
like discovering the clues in a detective novel. In this case, an audit
trail can identify which clues a user has already been given, as a
guide to whether to tell the user more.

Audited events in operating systems are actions like open file or call
procedure; they are seldom as specific as write record 3 or execute
instruction I. To be useful for maintaining integrity, database audit
trails should include accesses at the record, field, and even element
levels. This detail is prohibitive for most database applications.

Furthermore, it is possible for a record to be accessed but not
reported to a user, as when the user performs a select operation.
(Accessing a record or an element without transferring to the user
the data received is called the pass-through problem.) Also, you
can determine the values of some elements without accessing
them directly. (For example, you can ask for the average salary in a
group of employees when you know the number of employees in
the group is only one.) Thus, a log of all records accessed directly
may both overstate and understate what a user actually knows.

Secure Computing242

6.2.4 Access Control

Databases are often separated logically by user access privileges.
For example, all users can be granted access to general data, but
only the personnel department can obtain salary data and only
the marketing department can obtain sales data. Databases are
very useful because they centralize the storage and maintenance
of data. Limited access is both a responsibility and a benefit of this
centralization.

The database administrator specifies who should be allowed access
to which data, at the view, relation, field, record, or even element
level. The DBMS must enforce this policy, granting access to all
specified data or no access where prohibited. Furthermore, the
number of modes of access can be many. A user or program may
have the right to read, change, delete, or append to a value, add
or delete entire fields or records, or reorganize the entire database.

Superficially, access control for a database seems like access control
for operating systems or any other component of a computing
system. However, the database problem is more complicated.
Operating system objects, such as files, are unrelated items,
whereas records, fields, and elements are related. Although a
user cannot determine the contents of one file by reading others, a
user might be able to determine one data element just by reading
others. The problem of obtaining data values from others is called
inference.

Database and Data mining Security 243

It is important to notice that you can access data by inference
without needing direct access to the secure object itself. Restricting
inference may mean prohibiting certain paths to prevent possible
inferences. However, restricting access to control inference
also limits queries from users who do not intend unauthorized
access to values. Moreover, attempts to check requested accesses
for possible unacceptable inferences may actually degrade the
DBMS’s performance.

Finally, size or granularity is different between operating system
objects and database objects. An access control list of several
hundred files is much easier to implement than an access control
list for a database with several hundred files of perhaps a hundred
fields each. Size affects the efficiency of processing.

6.2.5 User Authentication

The DBMS can require rigorous user authentication. For example,
a DBMS might insist that a user pass both specific password
and time-of-day checks. This authentication supplements the
authentication performed by the operating system. Typically, the
DBMS runs as an application program on top of the operating
system. This system design means that there is no trusted path
from the DBMS to the operating system, so the DBMS must be
suspicious of any data it receives, including user authentication.
Thus, the DBMS is forced to do its own authentication.

Secure Computing244

6.2.6 Availability

A DBMS has aspects of both a program and a system. It is a
program that uses other hardware and software resources, yet
to many users it is the only application run. Users often take the
DBMS for granted, employing it as an essential tool with which to
perform particular tasks. But when the system is not availablebusy
serving other users or down to be repaired or upgradedthe users
are very aware of a DBMS’s unavailability. For example, two users
may request the same record, and the DBMS must arbitrate; one
user is bound to be denied access for a while. Or the DBMS may
withhold unprotected data to avoid revealing protected data,
leaving the requesting user unhappy. Problems like these result in
high availability requirements for a DBMS.

6.2.7 Integrity/Confidentiality/Availability

The three aspects of computer securityintegrity, confidentiality,
and availabilityclearly relate to database management systems.
As we have described, integrity applies to the individual elements
of a database as well as to the database as a whole. Thus, integrity
is a major concern in the design of database management systems.

Confidentiality is a key issue with databases because of the
inference problem, whereby a user can access sensitive data
indirectly.

Finally, availability is important because of the shared access
motivation underlying database development. However,
availability conflicts with confidentiality.

6.3 RELIABILITY AND INTEGRITY

Databases amalgamate data from many sources, and users expect a
DBMS to provide access to the data in a reliable way. When software
engineers say that software has reliability, they mean that the
software runs for very long periods of time without failing. Users

Database and Data mining Security 245

certainly expect a DBMS to be reliable, since the data usually are
key to business or organizational needs. Moreover, users entrust
their data to a DBMS and rightly expect it to protect the data from
loss or damage. Concerns for reliability and integrity are general
security issues, but they are more apparent with databases.

However, the controls we consider are not absolute: No control
can prevent an authorized user from inadvertently entering an
acceptable but incorrect value.

Database concerns about reliability and integrity can be viewed
from three dimensions:

•	 Database	integrity: concern that the database as a whole
is protected against damage, as from the failure of a disk
drive or the corruption of the master database index.
These concerns are addressed by operating system
integrity controls and recovery procedures.

•	 Element	integrity: concern that the value of a specific data
element is written or changed only by authorized users.
Proper access controls protect a database from corruption
by unauthorized users.

Secure Computing246

•	 Element	 accuracy: concern that only correct values are
written into the elements of a database. Checks on the
values of elements can help prevent insertion of improper
values. Also, constraint conditions can detect incorrect
values.

6.3.1 Protection Features from the Operating System

A responsible system administrator backs up the files of a database
periodically along with other user files. The files are protected
during normal execution against outside access by the operating
system’s standard access control facilities. Finally, the operating
system performs certain integrity checks for all data as a part of
normal read and write operations for I/O devices. These controls
provide basic security for databases, but the database manager
must enhance them.

6.3.2 Two-Phase Update

A serious problem for a database manager is the failure of the
computing system in the middle of modifying data. If the data
item to be modified was a long field, half of the field might show
the new value, while the other half would contain the old. Even
if errors of this type were spotted easily (which they are not), a
more subtle problem occurs when several fields are updated and
no single field appears to be in obvious error. DBMSs, uses a two-
phase update.

Update Technique

During the first phase, called the intent phase, the DBMS gathers
the resources it needs to perform the update. It may gather data,
create dummy records, open files, lock out other users, and
calculate final answers; in short, it does everything to prepare
for the update, but it makes no changes to the database. The first
phase is repeatable an unlimited number of times because it takes

Database and Data mining Security 247

no permanent action. If the system fails during execution of the
first phase, no harm is done because all these steps can be restarted
and repeated after the system resumes processing.

The last event of the first phase, called committing, involves the
writing of a commit flag to the database. The commit flag means
that the DBMS has passed the point of no return: After committing,
the DBMS begins making permanent changes.

The second phase makes the permanent changes. During the
second phase, no actions from before the commit can be repeated,
but the update activities of phase two can also be repeated as often
as needed. If the system fails during the second phase, the database
may contain incomplete data, but the system can repair these data
by performing all activities of the second phase. After the second
phase has been completed, the database is again complete.

6.3.3 Redundancy/Internal Consistency

Many DBMSs maintain additional information to detect internal
inconsistencies in data. The additional information ranges from
a few check bits to duplicate or shadow fields, depending on the
importance of the data.

Error Detection and Correction Codes

One form of redundancy is error detection and correction codes,
such as parity bits, Hamming codes, and cyclic redundancy
checks. These codes can be applied to single fields, records, or the
entire database. Each time a data item is placed in the database,
the appropriate check codes are computed and stored; each time
a data item is retrieved, a similar check code is computed and
compared to the stored value. If the values are unequal, they
signify to the DBMS that an error has occurred in the database.
Some of these codes point out the place of the error; others show
precisely what the correct value should be. The more information
provided, the more space required to store the codes.

Secure Computing248

Shadow Fields

Entire attributes or entire records can be duplicated in a database.
If the data are irreproducible, this second copy can provide
an immediate replacement if an error is detected. Obviously,
redundant fields require substantial storage space.

6.3.4 Recovery

In addition to these error correction processes, a DBMS can
maintain a log of user accesses, particularly changes. In the event
of a failure, the database is reloaded from a backup copy and all
later changes are then applied from the audit log.

6.3.5 Concurrency/Consistency

Database systems are often multiuser systems. Accesses by two
users sharing the same database must be constrained so that
neither interferes with the other. Simple locking is done by the
DBMS. If two users attempt to read the same data item, there is no
conflict because both obtain the same value.

If both users try to modify the same data items, we often assume
that there is no conflict because each knows what to write; the
value to be written does not depend on the previous value of the
data item. However, this supposition is not quite accurate.

To see how concurrent modification can get us into trouble,
suppose that the database consists of seat reservations for a
particular airline flight. Agent A, booking a seat for passenger
Mock, submits a query to find which seats are still available. The
agent knows that Mock prefers a right aisle seat, and the agent
finds that seats 5D, 11D, and 14D are open. At the same time, Agent
B is trying to book seats for a family of three traveling together. In
response to a query, the database indicates that 8ABC and 11DEF
are the two remaining groups of three adjacent unassigned seats.
Agent A submits the update command

Database and Data mining Security 249

SELECT (SEAT-NO = ‘11D’) ASSIGN ‘MOCK,E’ TO PASSENGER-
NAME
while Agent B submits the update sequence
SELECT (SEAT-NO = ‘11D’) ASSIGN ‘EHLERS,P’ TO PASSENGER-
NAME
as well as commands for seats 11E and 11F. Then two passengers
have been booked into the same seat (which would be
uncomfortable, to say the least).

Both agents have acted properly: Each sought a list of empty seats,
chose one seat from the list, and updated the database to show to
whom the seat was assigned. The difficulty in this situation is the
time delay between reading a value from the database and writing
a modification of that value. During the delay time, another user
has accessed the same data.

To resolve this problem, a DBMS treats the entire queryupdate
cycle as a single atomic operation. The command from the agent
must now resemble “read the current value of seat PASSENGER-
NAME for seat 11D; if it is ‘UNASSIGNED’, modify it to ‘MOCK,E’
(or ‘EHLERS,P’).” The readmodify cycle must be completed as an
uninterrupted item without allowing any other users access to the
PASSENGER-NAME field for seat 11D. The second agent’s request
to book would not be considered until after the first agent’s had
been completed; at that time, the value of PASSENGERNAME
would no longer be ‘UNASSIGNED’.

A final problem in concurrent access is readwrite. Suppose one
user is updating a value when a second user wishes to read it.
If the read is done while the write is in progress, the reader may
receive data that are only partially updated. Consequently, the
DBMS locks any read requests until a write has been completed.

6.3.6 Monitors

The monitor is the unit of a DBMS responsible for the structural
integrity of the database. A monitor can check values being
entered to ensure their consistency with the rest of the database or

Secure Computing250

with characteristics of the particular field. For example, a monitor
might reject alphabetic characters for a numeric field. We discuss
several forms of monitors.

Range Comparisons

A range comparison monitor tests each new value to ensure that
the value is within an acceptable range. If the data value is outside
the range, it is rejected and not entered into the database. For
example, the range of dates might be 131, “/,” 112, “/,” 19002099. An
even more sophisticated range check might limit the day portion
to 130 for months with 30 days, or it might take into account leap
year for February.

Range comparisons are also convenient for numeric quantities.
For example, a salary field might be limited to $200,000, or the
size of a house might be constrained to be between 500 and 5,000
square feet. Range constraints can also apply to other data having
a predictable form.

Range comparisons can be used to ensure the internal consistency
of a database. When used in this manner, comparisons are made
between two database elements. For example, a grade level from
K8 would be acceptable if the record described a student at an
elementary school, whereas only 912 would be acceptable for a
record of a student in high school. Similarly, a person could be
assigned a job qualification score of 75100 only if the person had
completed college or had had at least ten years of work experience.
Filters or patterns are more general types of data form checks.
These can be used to verify that an automobile plate is two letters
followed by four digits, or the sum of all digits of a credit card
number is a multiple of 9.

Checks of these types can control the data allowed in the database.
They can also be used to test existing values for reasonableness.
If you suspect that the data in a database have been corrupted, a
range check of all records could identify those having suspicious
values.

Database and Data mining Security 251

State Constraints

State constraints describe the condition of the entire database.
At no time should the database values violate these constraints.
Phrased differently, if these constraints are not met, some value of
the database is in error.

On two-phase updates, we saw how to use a commit flag, which is
set at the start of the commit phase and cleared at the completion
of the commit phase. The commit flag can be considered a state
constraint because it is used at the end of every transaction for
which the commit flag is not set. A process to reset the commit
flags in the event of a failure after a commit phase. In this way, the
status of the commit flag is an integrity constraint on the database.

For another example of a state constraint, consider a database
of employees’ classifications. At any time, at most one employee
is classified as “president.” Furthermore, each employee has an
employee number different from that of every other employee. If
a mechanical or software failure causes portions of the database
file to be duplicated, one of these uniqueness constraints might
be violated. By testing the state of the database, the DBMS could
identify records with duplicate employee numbers or two records
classified as “president.”

Transition Constraints

State constraints describe the state of a correct database. Transition
constraints describe conditions necessary before changes can be
applied to a database. For example, before a new employee can
be added to the database, there must be a position number in the
database with status “vacant.” (That is, an empty slot must exist.)
Furthermore, after the employee is added, exactly one slot must
be changed from “vacant” to the number of the new employee.

Simple range checks and filters can be implemented within most
database management systems. However, the more sophisticated
state and transition constraints can require special procedures for

Secure Computing252

testing. Such user-written procedures are invoked by the DBMS
each time an action must be checked.

6.4 PROPOSALS FOR MULTILEVEL SECURITY

Implementing multilevel security for databases is difficult,
probably more so than in operating systems, because of the small
granularity of the items being controlled. We study approaches to
multilevel security for databases.

Separation

As we have already seen, separation is necessary to limit access. We
study mechanisms to implement separation in databases. Then,
we see how these mechanisms can help to implement multilevel
security for databases.

Partitioning

The obvious control for multilevel databases is partitioning. The
database is divided into separate databases, each at its own level
of sensitivity. This approach is similar to maintaining separate
files in separate file cabinets.

This control destroys a basic advantage of databases: elimination
of redundancy and improved accuracy through having only one
field to update. Furthermore, it does not address the problem of a
high-level user who needs access to some low-level data combined
with high-level data.

Database and Data mining Security 253

Nevertheless, because of the difficulty of establishing, maintaining,
and using multilevel databases, many users with data of mixed
sensitivities handle their data by using separate, isolated databases.

Encryption

If sensitive data are encrypted, a user who accidentally receives
them cannot interpret the data. Thus, each level of sensitive data
can be stored in a table encrypted under a key unique to the level
of sensitivity. But encryption has certain disadvantages.

First, a user can mount a chosen plaintext attack. Suppose party
affiliation of REP or DEM is stored in encrypted form in each
record. A user who achieves access to these encrypted fields can
easily decrypt them by creating a new record with party=DEM
and comparing the resulting encrypted version to that element
in all other records. Worse, if authentication data are encrypted,
the malicious user can substitute the encrypted form of his or her
own data for that of any other user. Not only does this provide
access for the malicious user, but it also excludes the legitimate
user whose authentication data have been changed to that of the
malicious user. These possibilities are shown in Figures 3 and 4.

Secure Computing254

Figure 3: Cryptographic Separation: Different Encryption Keys.

Figure 4: Cryptographic Separation: Block Chaining.

Using a different encryption key for each record overcomes these
defects. Each record’s fields can be encrypted with a different key,
or all fields of a record can be cryptographically linked, as with
cipher block chaining.

The disadvantage, then, is that each field must be decrypted when
users perform standard database operations such as “select all
records with SALARY > 10,000.” Decrypting the SALARY field,
even on rejected records, increases the time to process a query.
Thus, encryption is not often used to implement separation in
databases.

Database and Data mining Security 255

Integrity Lock

The lock is a way to provide both integrity and limited access for
a database. The operation was nicknamed “spray paint” because
each element is figuratively painted with a color that denotes its
sensitivity. The coloring is maintained with the element, not in a
master database table.

A model of the basic integrity lock is shown in Figure 5. As
illustrated, each apparent data item consists of three pieces:
the actual data item itself, a sensitivity label, and a checksum.
The sensitivity label defines the sensitivity of the data, and the
checksum is computed across both data and sensitivity label to
prevent unauthorized modification of the data item or its label.
The actual data item is stored in plaintext, for efficiency because
the DBMS may need to examine many fields when selecting
records to match a query.

Figure 5: Integrity Lock.

The sensitivity label should be
• unforgeable, so that a malicious subject cannot create a

new sensitivity level for an element
• unique, so that a malicious subject cannot copy a

sensitivity level from another element
• concealed, so that a malicious subject cannot even

determine the sensitivity level of an arbitrary element

Secure Computing256

The third piece of the integrity lock for a field is an error-detecting
code, called a cryptographic checksum. To guarantee that a data
value or its sensitivity classification has not been changed, this
checksum must be unique for a given element, and must contain
both the element’s data value and something to tie that value to
a particular position in the database. As shown in Figure 6, an
appropriate cryptographic checksum includes something unique
to the record (the record number), something unique to this data
field within the record (the field attribute name), the value of this
element, and the sensitivity classification of the element. These
four components guard against anyone’s changing, copying, or
moving the data. The checksum can be computed with a strong
encryption algorithm or hash function.

Figure 6: Cryptographic Checksum.

Sensitivity Lock

The sensitivity lock shown in Figure 7 was designed by Graubert
and Kramer [GRA84b] to meet these principles. A sensitivity
lock is a combination of a unique identifier (such as the record
number) and the sensitivity level. Because the identifier is unique,
each lock relates to one particular record. Many different elements
will have the same sensitivity level. A malicious subject should
not be able to identify two elements having identical sensitivity
levels or identical data values just by looking at the sensitivity

Database and Data mining Security 257

level portion of the lock. Because of the encryption, the lock’s
contents, especially the sensitivity level, are concealed from plain
view. Thus, the lock is associated with one specific record, and it
protects the secrecy of the sensitivity level of that record.

Figure 7: Sensitivity Lock.

6.4.1 Designs of Multilevel Secure Databases

These designs show the tradeoffs among efficiency, flexibility,
simplicity, and trustworthiness.

Integrity Lock

The integrity lock DBMS was invented as a short-term solution to
the security problem for multilevel databases. The intention was
to be able to use any (untrusted) database manager with a trusted
procedure that handles access control. The sensitive data were
obliterated or concealed with encryption that protected both a
data item and its sensitivity. In this way, only the access procedure
would need to be trusted because only it would be able to achieve
or grant access to sensitive data. The structure of such a system is
shown in Figure 8.

Secure Computing258

Figure 8: Trusted Database Manager.

The efficiency of integrity locks is a serious drawback. The space
needed for storing an element must be expanded to contain the
sensitivity label. Because there are several pieces in the label and
one label for every element, the space required is significant.

Problematic, too, is the processing time efficiency of an integrity
lock. The sensitivity label must be decoded every time a data
element is passed to the user to verify that the user’s access is
allowable. Also, each time a value is written or modified, the
label must be recomputed. Thus, substantial processing time is
consumed. If the database file can be sufficiently protected, the
data values of the individual elements can be left in plaintext.
That approach benefits select and project queries across sensitive
fields because an element need not be decrypted just to determine
whether it should be selected.

A final difficulty with this approach is that the untrusted database
manager sees all data, so it is subject to Trojan horse attacks by
which data can be leaked through covert channels.

Trusted Front End

The model of a trusted front-end process is shown in Figure 9. This
approach, originated by Hinke and Schaefer, recognizes that many
DBMSs have been built and put into use without consideration
of multilevel security. Staff members are already trained in using

Database and Data mining Security 259

these DBMSs, and they may in fact use them frequently. The
front-end concept takes advantage of existing tools and expertise,
enhancing the security of these existing systems with minimal
change to the system. The interaction between a user, a trusted
front end, and a DBMS involves the following steps.

• A user identifies himself or herself to the front end; the
front end authenticates the user’s identity.

• The user issues a query to the front end.
• The front end verifies the user’s authorization to data.
• The front end issues a query to the database manager.
• The database manager performs I/O access, interacting

with low-level access control to achieve access to actual
data.

• The database manager returns the result of the query to
the trusted front end.

• The front end analyzes the sensitivity levels of the data
items in the result and selects those items consistent with
the user’s security level.

• The front end transmits selected data to the untrusted
front end for formatting.

• The untrusted front end transmits formatted data to the
user.

Figure 9: Trusted Front End.

Secure Computing260

The trusted front end serves as a one-way filter, screening out
results the user should not be able to access. But the scheme is
inefficient because potentially much data is retrieved and then
discarded as inappropriate for the user.

Commutative Filters

The notion of a commutative filter was proposed by Denning as
a simplification of the trusted interface to the DBMS. Essentially,
the filter screens the user’s request, reformatting it if necessary, so
that only data of an appropriate sensitivity level are returned to
the user.

A commutative filter is a process that forms an interface between
the user and a DBMS. However, unlike the trusted front end, the
filter tries to capitalize on the efficiency of most DBMSs. The filter
reformats the query so that the database manager does as much
of the work as possible, screening out many unacceptable records.
The filter then provides a second screening to select only data to
which the user has access.

Filters can be used for security at the record, attribute, or element
level.

When used at the record level, the filter requests desired data plus
cryptographic checksum information; it then verifies the accuracy
and accessibility of data to be passed to the user.

At the attribute level, the filter checks whether all attributes in the
user’s query are accessible to the user and, if so, passes the query
to the database manager. On return, it deletes all fields to which
the user has no access rights.

At the element level, the system requests desired data plus
cryptographic checksum information. When these are returned,
it checks the classification level of every element of every record
retrieved against the user’s level.

Suppose a group of physicists in Washington works on very
sensitive projects, so the current user should not be allowed to

Database and Data mining Security 261

access the physicists’ names in the database. This restriction
presents a problem with this query:

retrieve NAME where ((OCCUP=PHYSICIST) (CITY=WASHDC))

Suppose, too, that the current user is prohibited from knowing
anything about any people in Moscow. Using a conventional
DBMS, the query might access all records, and the DBMS would
then pass the results on to the user. However, as we have seen,
the user might be able to infer things about Moscow employees
or Washington physicists working on secret projects without even
accessing those fields directly.

The commutative filter re-forms the original query in a trustable
way so that sensitive information is never extracted from the
database. Our sample query would become
retrieve NAME where ((OCCUP=PHYSICIST) (CITY=WASHDC))
from all records R where (NAME-SECRECY-LEVEL (R) USER-
SECRECY-LEVEL) (OCCUP-SECRECY-LEVEL (R) USER-
SECRECY-LEVEL) (CITY-SECRECY-LEVEL (R) USER-
SECRECY-LEVEL))

The filter works by restricting the query to the DBMS and then
restricting the results before they are returned to the user. In this
instance, the filter would request NAME, NAME-SECRECY-
LEVEL, OCCUP, OCCUP-SECRECY-LEVEL, CITY, and CITY-
SECRECY-LEVEL values and would then filter and return to
the user only those fields and items that are of a secrecy level
acceptable for the user. Although even this simple query becomes
complicated because of the added terms, these terms are all added
by the front-end filter, invisible to the user.

An example of this query filtering in operation is shown in Figure
10. The advantage of the commutative filter is that it allows query
selection, some optimization, and some subquery handling to be
done by the DBMS. This delegation of duties keeps the size of
the security filter small, reduces redundancy between it and the
DBMS, and improves the overall efficiency of the system.

Secure Computing262

Figure 10: Commutative Filters.

Distributed Databases

The distributed or federated database is a fourth design for a secure
multilevel database. In this case, a trusted front end controls access
to two unmodified commercial DBMSs: one for all low-sensitivity
data and one for all high-sensitivity data.

The front end takes a user’s query and formulates single-level
queries to the databases as appropriate. For a user cleared for
high-sensitivity data, the front end submits queries to both the
high- and low-sensitivity databases. But if the user is not cleared
for high-sensitivity data, the front end submits a query to only
the low-sensitivity database. If the result is obtained from either
back-end database alone, the front end passes the result back to
the user. If the result comes from both databases, the front end has
to combine the results appropriately. For example, if the query is a
join query having some high-sensitivity terms and some low, the
front end has to perform the equivalent of a database join itself.

The distributed database design is not popular because the front
end, which must be trusted, is complex, potentially including most
of the functionality of a full DBMS itself. In addition, the design
does not scale well to many degrees of sensitivity; each sensitivity
level of data must be maintained in its own separate database.

Database and Data mining Security 263

Window/View

Traditionally, one of the advantages of using a DBMS for multiple
users of different interests (but not necessarily different sensitivity
levels) is the ability to create a different view for each user. That is,
each user is restricted to a picture of the data reflecting only what
the user needs to see. For example, the registrar may see only
the class assignments and grades of each student at a university,
not needing to see extracurricular activities or medical records.
The university health clinic, on the other hand, needs medical
records and drug-use information but not scores on standardized
academic tests.

The notion of a window or a view can also be an organizing
principle for multilevel database access. A window is a subset
of a database, containing exactly the information that a user is
entitled to access. Denning surveys the development of views for
multilevel database security.

A view can represent a single user’s subset database so that all of
a user’s queries access only that database. This subset guarantees
that the user does not access values outside the permitted ones,
because non-permitted values are not even in the user’s database.
The view is specified as a set of relations in the database, so the
data in the view subset change as data change in the database.

Practical Issues

The multilevel security problem for databases has been studied
since the 1970s. Several promising research results have been
identified. However, as with trusted operating systems, the
consumer demand has not been sufficient to support many
products. Civilian users have not liked the inflexibility of the
military multilevel security model, and there have been too few
military users. Consequently, multilevel secure databases are
primarily of research and historical interest.

The general concepts of multilevel databases are important. We
do need to be able to separate data according to their degree of

Secure Computing264

sensitivity. Similarly, we need ways of combining data of different
sensitivities into one database. And these needs will only increase
over time as larger databases contain more sensitive information,
especially for privacy concerns.

6.5 DATA MINING

Databases are great repositories of data. More data are being
collected and saved (partly because the cost per megabyte of
storage has fallen from dollars a few years ago to fractions of cents
today). Networks and the Internet allow sharing of databases by
people and in ways previously unimagined. But to find needles
of information in those vast fields of haystacks of data requires
intelligent analyzing and querying of the data. Indeed, a whole
specialization, called data mining, has emerged. In a largely
automated way, data mining applications sort and search thorough
data.

Data mining uses statistics, machine learning, mathematical
models, pattern recognition, and other techniques to discover
patterns and relations on large datasets. Data mining tools use
association (one event often goes with another), sequences

Database and Data mining Security 265

(one event often leads to another), classification (events exhibit
patterns, for example coincidence), clustering (some items have
similar characteristics), and forecasting (past events foretell future
ones). The distinction between a database and a data mining
application is becoming blurred; you can probably see how you
could implement these techniques in ordinary database queries.
Generally, database queries are manual, whereas data mining is
more automatic. You could develop a database query to see what
other products are bought by people who buy digital cameras and
you might notice a preponderance of MP3 players in the result, but
you would have to observe that relationship yourself. Data mining
tools would present the significant relationships, not just between
cameras and MP3 players, but also among bagels, airline tickets,
and running shoes (if such a relationship existed). Humans have
to analyze these correlations and determine what is significant.

Data mining presents probable relationships, but these are not
necessarily cause-and-effect relationships. Suppose you analyzed
data and found a correlation between sale of ice cream cones and
death by drowning. You would not conclude that selling ice cream
cones causes drowning (nor the converse). This distinction shows
why humans must be involved in data mining to interpret the
output: Only humans can discern that more variables are involved
(for example, time of year or places where cones are sold).

Computer security gains from data mining. Data mining is widely
used to analyze system data, for example, audit logs, to identify
patterns related to attacks. Finding the precursors to an attack can
help develop good prevention tools and techniques, and seeing the
actions associated with an attack can help pinpoint vulnerabilities
to control and damage that may have occurred.

However, we want to examine security problems involving
data mining. Our now-familiar triad of confidentiality, integrity,
and availability gives us clues to what these security issues are.
Confidentiality concerns start with privacy but also include
proprietary and commercially sensitive data and protecting the
value of intellectual property: How do we control what is disclosed
or derived? For integrity the important issue is correctness

Secure Computing266

incorrect data are both useless and potentially damaging, but
we need to investigate how to gauge and ensure correctness.
The availability consideration relates to both performance and
structure: Combining databases not originally designed to be
combined affects whether results can be obtained in a timely
manner or even at all.

6.5.1 Data Correctness and Integrity

“Connecting the dots” is a phrase currently in vogue: It refers to
drawing conclusions from relationships between discrete bits of
data. But before we can connect dots, we need to do two other
important things: collect and correct them. Data storage and
computer technology is making it possible to collect more dots
than ever before. But if your name or address has ever appeared
incorrectly on a mailing list, you know that not all collected dots
are accurate.

Correcting Mistakes in Data

Data mining exacerbates this situation. Databases need unique
keys to help with structure and searches. But different databases
may not have shared keys, so they use some data field as if it
were a key. In our example case, this shared data field might be
the address, so now your neighbor’s address is associated with
cooking (even if your neighbor needs a recipe to make tea).
Fortunately, this example is of little consequence.

Consider terrorists, however. A government’s intelligence service
collects data on suspicious activities. But the names of suspicious
persons are foreign, written in a different alphabet. When
transformed into the government’s alphabet, the transformation
is irregular: One agent writes “Doe,” another “Do,” and another
“Dho.” Trying to use these names as common keys is difficult at best.
One approach is phonetic. You cluster terms that sound similar. In
this case, however, you might bring in “Jo,” “Cho,” “Toe,” and
“Tsiao,” too, thereby implicating innocent people in the terrorist

Database and Data mining Security 267

search. Assuming a human analyst could correctly separate all
these and wanted to correct the Doe/Do/Doh databases, there
are still two problems. First, the analyst might not have access to
the original databases held by other agencies. Even if the analyst
could get to the originals, the analyst would probably never learn
where else these original databases had already been copied.

One important goal of databases is to have a record in one place
so that one correction serves all uses. With data mining, a result is
an aggregate from multiple databases. There is no natural way to
work backward from the result to the amalgamated databases to
find and correct errors.

Using Comparable Data

Data semantics is another important consideration when mining
for data. Consider two geographical databases with data on family
income. Except one database has income by dollar, and the other
has the data in thousands of dollars. Even if the field names are
the same, combining the raw data would result in badly distorted
statistics. Consider another attribute rated high/medium/low in
one database and on a numerical scale of 1 to 5 in another. Should
high/medium/low be treated as 1/3/5? Even if analysts use that
transformation, computing with some 3-point and some 5-point
precision reduces the quality of the results. Or how can you
meaningfully combine one database that has a particular attribute
with another that does not?

Eliminating False Matches

Coincidence is not correlation or causation; because two things
occur together does not mean either causes the other. Data mining
tries to highlight nonobvious connections in data, but data mining
applications often use fuzzy logic to find these connections. These
approaches will generate both false positives (false matches) and
missed connections (false negatives). We need to be sensitive to the
inherent inaccuracy of data mining approaches and guard against

Secure Computing268

putting too much trust in the output of a data mining application
just because “the computer said so.” Correctness of results and
correct interpretation of those results are major security issues for
data mining.

6.5.2 Availability of Data

Interoperability among distinct databases is a third security
issue for data mining. As we just described, databases must have
compatible structure and semantics to make data mining possible.
Missing or incomparable data can make data mining results
incorrect, so perhaps a better alternative is not to produce a result.
But no result is not the same as a result of no correlation. As with
single databases, data mining applications must deal with multiple
sensitivities. Trying to combine databases on an attribute with
more sensitive values can lead to no data and hence no matches.

Database and Data mining Security 269

REFERENCES

1. J. Vaidya, B. Shafiq, W. Fan, D. Mehmood and D. Lorenzi,“
A Random Decision Tree Framework for Privacy-Preserving
Data Mining,” IEEE Transactions on Dependable and Secure
Computing, vol. 11, no. 5, pp. 399–411, 2014.

2. C.-H. Yeh, G. Lee, and C.-Y. Lin, “Robust Laser Speckle
Authentication System through Data Mining Techniques,”
IEEE Transactions on Industrial Informatics, vol. 11, no. 2, pp.
505–512, 2015.

3. S. Khan, A. Sharma, A. S. Zamani, and A. Akhtar, “Data
Mining for Security Purpose & its Solitude Suggestions,”
International Journal of Technology Enhancements and
Emerging Engineering Research, vol. 1, no. 7, pp. 1–4, 2012.

4. Venugopal K R, K G Srinivasa and L M Patnaik,“Soft
Computing for Data Mining Applications,” Springer, 2009.

5. R. J. Bayardo and R. Agrawal, “Data Privacy Through Optimal
k-Anonymization,” 21st International Conference on Data
Engineering (ICDE’05), pp. 217–228, 2005.

6. M. Siddiqui, M. C. Wang, and J. Lee, “Detecting Internet
Worms Using Data Mining Techniques,” Journal of Systemics,
Cybernetics and Informatics, vol. 6, no. 6, pp. 48–53, 2009.

7. M. S. Abadeh, J. Habibi, and C. Lucas, “Intrusion Detection
using a Fuzzy Genetics-Based Learning Algorithm,” Journal
of Network and Computer Applications, vol. 30, no. 1, pp.
414–428, 2007.

8. P Deepa Shenoy, Srinivasa K G, Venugopal K R and L M
Patnaik, “Dynamic Association Rule Mining using Genetic
Algorithms,” Intelligent Data Analysis, vol. 9, no. 5, pp. 439–
453, 2005.

INTRODUCTION

Network security is a broad term that covers a multitude of
technologies, devices and processes. In its simplest term, it is a
set of rules and configurations designed to protect the integrity,
confidentiality and accessibility of computer networks and
data using both software and hardware technologies. Every
organization, regardless of size, industry or infrastructure,
requires a degree of network security solutions in place to protect
it from the ever-growing landscape of cyber threats in the wild
today.

7
SECURITY IN NETWORKS

C
H

A
PT

ER

Secure Computing272

Today’s network architecture is complex and is faced with a threat
environment that is always changing and attackers that are always
trying to find and exploit vulnerabilities. These vulnerabilities
can exist in a broad number of areas, including devices, data,
applications, users and locations. For this reason, there are many
network security management tools and applications in use today
that address individual threats and exploits and also regulatory
non-compliance. When just a few minutes of downtime can cause
widespread disruption and massive damage to an organization’s
bottom line and reputation, it is essential that these protection
measures are in place.

7.1 NETWORK SECURITY BASICS

Network security is the practice of preventing and protecting
against unauthorized intrusion into corporate networks. As a
philosophy, it complements endpoint security, which focuses on
individual devices; network security instead focuses on how those
devices interact, and on the connective tissue between them.

Definitions are fine as top-level statements of intent. But how
do you lay out a plan for implementing that vision? Stephen
Northcutt wrote a primer on the basics of network security for

Security in Networks 273

CSOonline over a decade ago, but we feel strongly that his vision
of the three phases of network security is still relevant and should
be the underlying framework for your strategy. In his telling,
network security consists of:

• Protection: You should configure your systems and
networks as correctly as possible

• Detection: You must be able to identify when the
configuration has changed or when some network traffic
indicates a problem

• Reaction: After identifying problems quickly, you must
respond to them and return to a safe state as rapidly as
possible

This, in short, is a defense	in	depth	strategy. If there’s one common
theme among security experts, it’s that relying on one single line
of defense is dangerous, because any single defensive tool can be
defeated by a determined adversary. Your network isn’t a line or a
point: it’s a territory, and even if an attacker has invaded part of it,
you still have the resources to regroup and expel them, if you’ve
organized your defense properly.

7.1.1 Principles of Network Security

There are three principles within the concept of network security—
confidentiality, integrity, and availability—which together are
sometimes referred to as the “CIA triad.” A network can only
be considered secure when it has all three elements in play
simultaneously.

Confidentiality works to keep sensitive data protected and
sequestered away from where it can be accessed by the average
user. This goes hand-in-hand with the principle of availability,
which seeks to ensure that data and resources are kept accessible
for those who are authorized to access them. Challenges to
availability can include DDoS attacks or equipment failure. The
principle of integrity seeks to protect information from intentional

Secure Computing274

or accidental changes in order to keep the data reliable, accurate,
and trustworthy.

Every decision made regarding network security should be
working to further at least one of these principles. This means that
MSPs need to ask if each decision will ensure that data is kept
confidential, that its integrity will be protected, and that it will be
made more easily available to those with authorization to access
it.

Why are these network security concepts so important?
Cyberattacks are on the rise, with a recent report from Positive
Technologies showing that government and healthcare
organizations are becoming prime targets for hackers. The report
also shows the goal of more than half of cybercrimes is data
theft, and that financial gain was the motivation behind 42% of
cyberattacks against individuals—and behind 30% of cyberattacks
against organizations.

As our world becomes increasingly digitized, we rely more and
more on the internet and networks to function. This in turn
requires that the internet and networks provide us with reliable
and secure service.

However, as more of our personal and sensitive data is stored
in electronic repositories and archives, hackers are turning their
attention to networked systems. For this reason, it is imperative
that MSPs and security support personnel offer customers robust
security systems that protect data from various threat vectors.

7.1.2 Network Security Methods

To implement this kind of defense in depth, there are a variety
of specialized techniques and types of network security you will
want to roll out. Cisco, a networking infrastructure company,
uses the following schema to break down the different types of
network security, and while some of it is informed by their product
categories, it’s a useful way to think about the different ways to
secure a network.

Security in Networks 275

• Access control: You should be able to block unauthorized
users and devices from accessing your network. Users
that are permitted network access should only be able to
work with the limited set of resources for which they’ve
been authorized.

• Anti-malware: Viruses, worms, and trojans by definition
attempt to spread across a network, and can lurk dormant
on infected machines for days or weeks. Your security
effort should do its best to prevent initial infection and
also root out malware that does make its way onto your
network.

• Application security: Insecure applications are often the
vectors by which attackers get access to your network.
You need to employ hardware, software, and security
processes to lock those apps down.

• Behavioral analytics: You should know what normal
network behavior looks like so that you can spot
anomalies or breaches as they happen.

• Data loss prevention: Human beings are inevitably
the weakest security link. You need to implement
technologies and processes to ensure that staffers don’t
deliberately or inadvertently send sensitive data outside
the network.

• Email security: Phishing is one of the most common
ways attackers gain access to a network. Email security
tools can block both incoming attacks and outbound
messages with sensitive data.

• Firewalls: Perhaps the granddaddy of the network
security world, they follow the rules you define to permit
or deny traffic at the border between your network and
the internet, establishing a barrier between your trusted
zone and the wild west outside. They don’t preclude the
need for a defense-in-depth strategy, but they’re still a
must-have.

• Intrusion detection and prevention: These systems scan
network traffic to identify and block attacks, often by

Secure Computing276

correlating network activity signatures with databases
of known attack techniques.

• Mobile device and wireless security: Wireless devices
have all the potential security flaws of any other
networked gadget — but also can connect to just about
any wireless network anywhere, requiring extra scrutiny.

• Network segmentation: Software-defined segmentation
puts network traffic into different classifications and
makes enforcing security policies easier.

• Security information and event management
(SIEM): These products aim to automatically pull
together information from a variety of network tools to
provide data you need to identify and respond to threats.

• VPN: A tool (typically based on IPsec or SSL) that
authenticates the communication between a device and
a secure network, creating a secure, encrypted “tunnel”
across the open internet.

• Web security: You need to be able to control internal
staff’s web use in order to block web-based threats from
using browsers as a vector to infect your network.

7.1.3 Network Security and The Cloud

More and more enterprises are offloading some of their computing
needs to cloud service providers, creating hybrid infrastructures
where their own internal network has to interoperate seamlessly
— and securely — with servers hosted by third parties. Sometimes
this infrastructure itself is a self-contained network, which can be
either physical (several cloud servers working together) or virtual
(multiple VM instances running together and “networking” with
each other on a single physical server).

To handle the security aspects, many cloud vendors
establish centralized security control policies on their own
platform. However, the trick here is that those security systems
won’t always match up with your policies and procedures for your

Security in Networks 277

internal networks, and this mismatch can add to the workload for
network security pros. There are a variety of tools and techniques
available to you that can help ease some of this worry, but the
truth is that this area is still in flux and the convenience of the
cloud can mean network security headaches for you.

7.1.4 Network Security Software

To cover all those bases, you’ll need a variety of software and
hardware tools in your toolkit. Most venerable, as we’ve noted, is
the firewall. The drumbeat has been to say that the days when a
firewall was the sum total of your network security is long gone,
with defense in depth needed to fight threats behind (and even in
front of) the firewall. Indeed, it seems that one of the nicest things
you can say about a firewall product in a review is that calling it a
firewall is selling it short.

But firewalls can’t be jettisoned entirely. They’re properly one
element in your hybrid defense-in-depth strategy. And as eSecurity
Planet explains, there are a number of different firewall types,
many of which map onto the different types of network security
we covered earlier:

• Network firewalls
• Next-generation firewalls
• Web application firewalls
• Database firewalls
• Unified threat management
• Cloud firewalls
• Container firewalls
• Network segmentation firewalls

Beyond the firewall, a network security pro will deploy a number
of tools to keep track of what’s happening on their networks.
Some of these tools are corporate products from big vendors,
while others come in the form of free, open source utilities that
sysadmins have been using since the early days of Unix. A great

Secure Computing278

resource is SecTools.org, which maintains a charmingly Web 1.0
website that keeps constant track of the most popular network
security tools, as voted on by users. Top categories include:

• Packet sniffers, which give deep insight into data traffic
• Vulnerability scanners like Nessus
• Intrusion detection and prevention software, like the

legendary Snort
• Penetration testing software

That last category might raise some eyebrows — after all, what’s
penetration testing if not an attempt to hack into a network? But
part of making sure you’re locked down involves seeing how
hard or easy it is to break in, and pros know it; ethical hacking is
an important part of network security. That›s why you›ll see
tools like Aircrack — which exists to sniff out wireless network
security keys — alongside staid corporate offerings that cost tens
of thousands of dollars on the SecTools.org list.

In an environment where you need to get many tools to work
together, you might also want to deploy SIEM software, which we
touched on above. SIEM products evolved from logging software,
and analyze network data collected by a number of different
tools to detect suspicious behavior on your network.

7.2 THREATS IN NETWORKS

Network threats are unlawful or malicious activities that intend to
take advantage of network vulnerabilities. The goal is to breach,
harm, or sabotage the information or data valuable to the company.
Malicious actors also attack networks to gain unauthorized access
and manipulate the same according to their intentions.

Regardless of the type of network security threat, there are
different motives for executing network attacks and they are often
malicious. Individuals, businesses, and nations have different
reasons for executing an attack. The most common are hacktivism,
extortion, cyber warfare, business feuds, and personal reasons.

Security in Networks 279

The most common network security threats are Computer viruses,
Computer worms, Trojan horse, SQL injection attack, DOS and
DDOS attack, Rootkit, Rogue security software, Phishing, Adware
and spyware, and Man-in-the-middle attacks. Computer viruses
are the most common network threats for everyday internet users,
with approximately 33% of PCs being affected by malware, most
of which are viruses.

7.2.1 Network Security Attack

A network	 attack	 can be defined as any method, process, or
means used to maliciously attempt to compromise network
security. Network security is the process of preventing network
attacks across a given network infrastructure, but the techniques
and methods used by the attacker further distinguish whether
the attack is an active cyber attack, a passive type attack, or some
combination of the two.

Let’s consider a simple network attack example to understand the
difference between active and passive attack.

Active Attacks

An active attack is a network exploit in which attacker attempts to
make changes to data on the target or data en route to the target.

Meet Alice and Bob. Alice wants to communicate to Bob but
distance is a problem. So, Alice sends an electronic mail to
Bob via a network which is not secure against attacks. There is

Secure Computing280

another person, Tom, who is on the same network as Alice and
Bob. Now, as the data flow is open to everyone on that network,
Tom alters some portion of an authorized message to produce
an unauthorized effect. For example, a message meaning “Allow
BOB to read confidential file X” is modified as “Allow Smith to
read confidential file X”.

Active network attacks are often aggressive, blatant attacks that
victims immediately become aware of when they occur. Active
attacks are highly malicious in nature, often locking out users,
destroying memory or files, or forcefully gaining access to a
targeted system or network.

Passive Attacks

A passive attack is a network attack in which a system is monitored
and sometimes scanned for open ports and vulnerabilities, but
does not affect system resources.

Let’s consider the example we saw earlier:

Alice sends an electronic mail to Bob via a network which is not
secure against attacks. Tom, who is on the same network as Alice
and Bob, monitors the data transfer that is taking place between
Alice and Bob. Suppose, Alice sends some sensitive information

Security in Networks 281

like bank account details to Bob as plain text. Tom can easily access
the data and use the data for malicious purposes.

So, the purpose of the passive attack is to gain access to the
computer system or network and to collect data without detection.

So, network security includes implementing different hardware
and software techniques necessary to guard underlying network
architecture. With the proper network security in place, you can
detect emerging threats before they infiltrate your network and
compromise your data.

Active and passive network security attacks are further divided
according to the methods used. The most prominent ones are:

7.2.2 Identifying Your Network Security Threats

If you want to defend your network security effectively, you need
a Certified Network Defender that can properly identify and
mitigate the vulnerabilities within your network.

Enable your network visibility

The first step for preparing your network defender and other
members of your security team to identify network threats and
vulnerabilities is to enable your whole network visibility. The only
way you can detect a threat is when it is visible. You can use the
existing structures on your network devices to achieve visibility.

Secure Computing282

You can also design a strategic network diagram to exemplify
your packet flows and the possible places where you can activate
security procedures that will identify, categorize, and alleviate the
threat.

Set up computer and network access

You need to construct your computer and network access to control
who can access your network and the level of access they can
have. Not every user should be given access to the whole network.
Your network security policies will determine the appropriate
ways to protect treasured assets, evaluate potential risks, lessen
vulnerability channels, and craft a recovery plan in case of an
incident.

Firewall configuration

Setting up a network firewall thwarts unauthorized access and
internet-based attacks from dispersing into your computer
networks. Your network firewall oversees the flow of computer
data traffic permitted to traverse your network. They can also
obstruct reconnaissance assaults, including IP scanning or port
sweeps. Your internal firewall can restrict this, but you need to
configure it.

Limit access to updates and installations

Malicious hackers can penetrate your computer network through
out-of-date software for antivirus, operating systems, device
drivers, firmware, and other endpoint mechanisms. Access control
in network security is critical. Network defenders can mitigate
the risk of random assaults by restricting the number of people
who can install or update software. Your IT team should only be
allowed to activate updates and installations only via their admin
access.

Security in Networks 283

7.3 NETWORK SECURITY CONTROLS

Network Security Controls are used to ensure the confidentiality,
integrity, and availability of the network services. These security
controls are either technical or administrative safeguards
implemented to minimize the security risk. To reduce the risk
of a network being compromised, an adequate network security
requires implementing a proper combination of network
security controls.

These network security controls include:
• Access Control
• Identification
• Authentication
• Authorization
• Accounting
• Cryptography
• Security Policy

These controls help organizations with implementing strategies
for addressing network security concerns. The multiple layers of
network security controls along with the network should be used
to minimize the risks of attack or compromise. The overlapping
use of these controls ensures defense in depth network security.

7.3.1 Access Control

Access control is a method for reducing the risk of data from being
affected and to save the organization’s crucial data by providing
limited access of computer resources to users. The mechanism
grants access to system resources to read, write, or execute to the
user based on the access permissions and their associated roles.
The crucial aspect of implementing access control is to maintain
the integrity, confidentiality, and availability of the information.

Secure Computing284

An access control system includes:
• File permissions such as create, read, edit or delete
• Program permissions such as the right to execute a

program
• Data rights such as the right to retrieve or update

information in a database

There are two types of access controls:

Physical and logical. The physical access controls the access to
buildings, physical IT assets, etc. The logical access controls the
access to networks and data.

In general, access control provides essential services like
authorization, identification, authentication, access permissions
and accountability.

• Authorization determines the action a user can perform
• Identification and authentication identify and permit

only authorized users to access the systems
• The access permissions determine approvals or

permissions provided to a user to access a system and
other resources

• Accountability categorizes the actions performed by a
user

Access Control Terminology

The following terminologies are used to define access control on
specific resources:

• Subject: A subject may be defined as a user or a process,
which attempts to access the objects. Further, subjects are
those entities that perform certain actions on the system.

• Object: An object is an explicit resource on which access
restriction is imposed. The Access controls implemented
on the objects further control the actions performed by
the user. For example, files or hardware devices.

Security in Networks 285

• Reference Monitor: It monitors the restrictions imposed
according to certain access control rules. Reference
monitor implements a set of rules on the ability of the
subject to perform certain actions on the object.

• Operation: An operation is an action performed by the
subject on the object. A user trying to delete a file is an
example of an operation. Here, the user is the subject.
Delete refers to the operation and file is the object.

Access Control Principles

Access control principles deal with restricting or allowing the
access controls to users or processes. The principle includes the
server receiving a request from the user and authenticating the
user with the help of an Access Control Instruction (ACO). The
server can either allow or deny the user to perform any actions
like read, write, access files, etc.

Network	Security	Control	is	a	part	Certified	Ethical	Hacking	v10(CEH	
v10)	training	you	learn	the	cyber	security	attacks	and	their	impact.

Access controls enable users to gain access to the entire directory,
subtree of the directory and another specific set of entries and
attribute values in the directory. It is possible to set permission
values to a single user or a group of users. The directory and
attribute values contain the access control instructions. Access
control function uses an authorization database, maintained
by the security admin, to check the authorization details of the
requesting user.

Types of Access Control

Types of access control between how a subject can access an object.
The policy for determining the mechanism uses access control
technologies and security.

Secure Computing286

Discretionary Access Control (DAC)

Discretionary access controls determine the access controls taken
by any possessor of an object in order to decide the access controls
of the subjects on those objects. The other name for DAC is a need-
to-know access model. It permits the user, who is granted access
to information, to decide how to protect the information and the
level of sharing desired. Access to files is restricted to users and
groups based upon their identity and the groups to which the
users belong.

Mandatory Access Control (MAC)

The mandatory access controls determine the usage and access
policies of the users. Users can access a resource only if that
particular user has the access rights to that resource. MAC
finds its application in the data marked as highly confidential.
The network administrators impose MAC, depending on the
operating system and security kernel. It does not permit the end
user to decide who can access the information, and does not permit
the user to pass privileges to other users as the access could then
be circumvented.

Role Based Access Control (RBAC)

In role based access control, the access permissions are available
based on the access policies determined by the system. The access
permissions are out of user control, which means that users
cannot amend the access policies created by the system. Users
Identification, Authentication, Authorization and Accounting

7.3.2 Identification

Identification deals with confirming the identity of a user, process,
or device accessing the network. User identification is the most
common technique used in authenticating the users in the network
and applications. Users have a unique User ID, which helps in

Security in Networks 287

identifying them.

The authentication process includes verifying a user ID and a
password. Users need to provide both the credentials in order
to gain access to the network. The network administrators
provide access controls and permissions to various other services
depending on the user ID’s.

Example: Username, Account Number, etc.

7.3.3 Authentication

Authentication refers to verifying the credentials provided by
the user while attempting to connect to a network. Both wired
and wireless networks perform authentication of users before
allowing them to access the resources in the network. A typical
user authentication consists of a user ID and a password. The
other forms of authentication are authenticating a website using a
digital certificate, comparing the product and the label associated
with it.

Example: Password, PIN, etc.

7.3.4 Authorization

Authorization refers to the process of providing permission to
access the resources or perform an action on the network. Network
administrators can decide the access permissions of users on a
multi-user system. They even decide the user privileges. The
mechanism of authorization can allow the network administrator
to create access permissions for users as well as verify the access
permissions created for each user.

In logical terms, authorization succeeds authentication. But, the
type of resources or perform an action on the network. Network
administrators can decide the access permissions of users on a
multi-user system. They even decide the user privileges. The
mechanism of authorization can allow the network administrator

Secure Computing288

to create access permissions for users as well as verify the access
permissions created for each user.

In logical terms, authorization succeeds authentication. But, the
type of authentication required for authorization varies. However,
there are cases that do not require any authorization of the users
requesting for a service.

Example: A user can only read the file but not write to or delete it.

7.3.5 Accounting

User accounting refers to tracking the actions performed by the
user on a network. This includes verifying the files accessed by the
user, functions like alteration or modification of the files or data.
It keeps track of who, when, how the users access the network. It
helps in identifying authorized and unauthorized actions.

7.4 FIREWALLS

A firewall is a network security device that monitors incoming
and outgoing network traffic and decides whether to allow or
block specific traffic based on a defined set of security rules.

Firewalls have been a first line of defense in network security
for over 25 years. They establish a barrier between secured and
controlled internal networks that can be trusted and untrusted
outside networks, such as the Internet.

A firewall can be hardware, software, or both.

Security in Networks 289

A Firewall is a necessary part of any security architecture and
takes the guesswork out of host level protections and entrusts
them to your network security device. Firewalls, and especially
Next Generation Firewalls, focus on blocking malware and
application-layer attacks, along with an integrated intrusion
prevention system (IPS), these Next Generation Firewalls can
react quickly and seamlessly to detect and react to outside attacks
across the whole network. They can set policies to better defend
your network and carry out quick assessments to detect invasive
or suspicious activity, like malware, and shut it down.

7.4.1 Firewall History

Firewalls have existed since the late 1980’s and started out as
packet filters, which were networks set up to examine packets,
or bytes, transferred between computers. Though packet filtering
firewalls are still in use today, firewalls have come a long way as
technology has developed throughout the decades.

• Gen 1 Virus
– Generation 1, Late 1980’s, virus attacks on stand-

alone PC’s affected all businesses and drove anti-
virus products.

• Gen 2 Networks
– Generation 2, Mid 1990’s, attacks from the internet

affected all business and drove creation of the
firewall.

• Gen 3 Applications
– Generation 3, Early 2000’s, exploiting vulnerabilities

in applications which affected most businesses
and drove Intrusion Prevention Systems Products
(IPS).

• Gen 4 Payload
– Generation 4, Approx. 2010, rise of targeted,

unknown, evasive, polymorphic attacks which
affected most businesses and drove anti-bot and
sandboxing products.

Secure Computing290

• Gen 5 Mega
– Generation 5, Approx. 2017, large scale, multi-

vector, mega attacks using advance attack tools
and is driving advance threat prevention solutions.

Back in 1993, Check Point CEO Gil Shwed introduced the first
stateful inspection firewall, FireWall-1. Fast forward twenty-seven
years, and a firewall is still an organization’s first line of defense
against cyber attacks. Today’s firewalls, including Next Generation
Firewalls and Network Firewalls support a wide variety of
functions and capabilities with built-in features, including:

• Network Threat Prevention
• Application and Identity-Based Control
• Hybrid Cloud Support
• Scalable Performance

7.4.2 Uses

Firewalls are used in both corporate and consumer settings. Modern
organizations incorporate them into a security information and
event management (SIEM) strategy along with other cybersecurity
devices. They may be installed at an organization’s network
perimeter to guard against external threats, or within the network
to create segmentation and guard against insider threats.

In addition to immediate threat defense, firewalls perform
important logging and audit functions. They keep a record of
events, which can be used by administrators to identify patterns
and improve rule sets. Rules should be updated regularly to keep
up with ever-evolving cybersecurity threats. Vendors discover
new threats and develop patches to cover them as soon as possible.

In a single home network, a firewall can filter traffic and alert
the user to intrusions. They are especially useful for always-on
connections, like Digital Subscriber Line (DSL) or cable modem,
because those connection types use static IP addresses. They are
often used alongside to antivirus applications. Personal firewalls,

Security in Networks 291

unlike corporate ones, are usually a single product as opposed to
a collection of various products. They may be software or a device
with firewall firmware embedded. Hardware/firmware firewalls
are often used for setting restrictions between in-home devices.

7.4.3 How does a firewall work?

A firewall decides which network traffic is allowed to pass
through and which traffic is deemed dangerous. It essentially
works by filtering out the good from the bad, or the trusted from
the untrusted. However, before we go into detail, we must first
understand the structure of web-based networks before explaining
how a firewall operates to filter between them.

Firewalls are intended to secure the private networks and the
endpoint devices within, known as network hosts.

Network hosts are devices that «talk» with other hosts on the
network. They send and receive between internal networks, as
well as outbound and inbound between external networks.

Your computers and other endpoint devices use networks to access
the internet — and each other. However, the internet is segmented
into sub-networks or ‘subnets’ for security and privacy.

The basic subnet segments are as follows:
• External public networks typically refer to the public/

global internet or various extranets.
• Internal private network defines a home network,

corporate intranets, and other «closed» networks.
• Perimeter networks detail border networks made

of bastion	 hosts — computer hosts dedicated with
hardened security that are ready to endure an external
attack. As a secured buffer between internal and external
networks, these can also be used to house any external-
facing services provided by the internal network (i.e.,
servers for web, mail, FTP, VoIP, etc.). These are more

Secure Computing292

secure than external networks but less secure than the
internal. These	 are	 not	 always	 present	 in	 simpler	 networks	
like	home	networks	but	may	often	be	used	in	organizational	or	
national	intranets.

Screening routers are specialized gateway computers placed on
a network to segment it. They are known as house firewalls on
the network-level. The two most common segment models are the
screened host firewall and the screened subnet firewall.

• Screened host firewalls use a single screening router
between the external and internal networks, known as
the choke router. These networks are the two subnets of
this model.

• Screened subnet firewalls use two screening routers—
one known as an access router between the external and
perimeter network, and another labeled as the choke	
router between the perimeter and internal network. This
creates three subnets, respectively.

As mentioned earlier, both the network perimeter and host
machines themselves can house a firewall. To do this, it is placed
between a single computer and its connection to a private network.

• Network firewalls involve the application of one or
more firewalls between external networks and internal
private networks. These regulate inbound and outbound
network traffic, separating external public networks—
like the global internet—from internal networks like
home Wi-Fi networks, enterprise intranets, or national
intranets. Network firewalls may come in the form of any
of the following appliance types: dedicated hardware,
software, and virtual.

• Host firewalls or ‹software firewalls› involve the use of
firewalls on individual user devices and other private
network endpoints as a barrier between devices within
the network. These devices, or hosts, receive customized
regulation of traffic to and from specific computer
applications. Host firewalls may run on local devices
as an operating system service or an endpoint security

Security in Networks 293

application. Host firewalls can also dive deeper into web
traffic, filtering based on HTTP and other networking
protocols, allowing the management of what content
arrives at your machine, rather than just where it comes
from.

Network firewalls require configuration against a broad scope
of connections, whereas host firewalls can be tailored to fit each
machine’s needs. However, host firewalls require more effort to
customize, meaning that network-based are ideal for a sweeping
control solution. But the use of both firewalls in both locations
simultaneously is ideal for a multi-layer security system.

Filtering traffic via a firewall makes use of pre-set or dynamically
learned rules for allowing and denying attempted connections.
These rules are how a firewall regulates the web traffic flow
through your private network and private computer devices.
Regardless of type, all firewalls may filter by some blend of the
following:

• Source: Where an attempted connection is being made
from.

• Destination: Where an attempted connection is intended
to go.

• Contents: What an attempted connection is trying to
send.

• Packet protocols: What «language» an attempted
connection is speaking to carry its message. Among
the networking protocols that hosts use to «talk» with
each other, TCP/IP is the primary protocol used to
communicate across the internet and within intranet/
sub-networks. Other standard protocols include IMCP
and UDP.

• Application protocols: Common protocols include
HTTP, Telnet, FTP, DNS, and SSH.

Source and destination are communicated by internet protocol
(IP) addresses and ports. IP	addresses are unique device names for
each host. Ports are a sub-level of any given source and destination

Secure Computing294

host device, similar to office rooms within a larger building. Ports
are typically assigned specific purposes, so certain protocols and
IP addresses utilizing uncommon ports or disabled ports can be a
concern.

By using these identifiers, a firewall can decide if a data packet
attempting a connection is to be discarded—silently or with an
error reply to the sender—or forwarded.

7.4.4 What does firewall security do?

The concept of a network security firewall is meant to narrow the
attack surface of a network to a single point of contact. Instead
of every host on a network being directly exposed to the greater
internet, all traffic must first contact the firewall. Since this also
works in reverse, the firewall can filter and block non-permitted
traffic, in or out. Also, firewalls are used to create an audit trail of
attempted network connections for better security awareness.

Since traffic filtering can be a rule set established by owners of
a private network, this creates custom use cases for firewalls.
Popular use cases involve managing the following:

• Infiltration from malicious actors: Undesired
connections from an oddly behaving source can be
blocked. This can prevent eavesdropping and advanced
persistent threats (APTs).

• Parental controls: Parents can block their children from
viewing explicit web content.

• Workplace web browsing restrictions: Employers can
prevent employees from using company networks to
access unproductive services and content, such as social
media.

• Nationally controlled intranet: National governments
can block internal residents› access to web content
and services that are potentially dissident to a nation›s
leadership or its values.

Security in Networks 295

Notably, firewalls are not very effective at the following:
• Identifying exploits of legitimate networking

processes: Firewalls do not anticipate human intent,
so they cannot determine if a “legitimate” connection
is intended for malicious purposes. For example, IP
address fraud (IP spoofing) occurs because firewalls
don’t validate the source and destination IPs.

• Prevent connections that do not pass through the
firewall: Network-level firewalls alone will not stop
malicious internal activity. Internal firewalls such as
host-based ones will need to be present in addition to the
perimeter firewall, to partition your network and slow
the movement of internal «fires.»

• Provide adequate protection against viruses: While
connections carrying malicious code can be halted if
not whitelisted, a connection deemed acceptable can
still deliver these threats into your network. If a firewall
overlooks a connection as a result of being misconfigured
or exploited, an antivirus protection suite will still be
needed to clean up any malware or viruses that enter.

7.4.5 Types of Firewalls

Firewall types can be divided into several different categories
based on their general structure and method of operation. Here
are eight types of firewalls:

• Packet-filtering firewalls
• Circuit-level gateways
• Stateful inspection firewalls
• Application-level gateways (a.k.a. proxy firewalls)
• Next-gen firewalls
• Software firewalls
• Hardware firewalls
• Cloud firewalls

Secure Computing296

How do these firewalls work? And, which ones are the best for
your business’ cybersecurity needs?

Here are a few brief explainers:
Packet-Filtering	Firewalls

As the most “basic” and oldest type of firewall architecture,
packet-filtering firewalls basically create a checkpoint at a traffic

Security in Networks 297

router or switch. The firewall performs a simple check of the data
packets coming through the router—inspecting information such
as the destination and origination IP address, packet type, port
number, and other surface-level information without opening up
the packet to inspect its contents.

If the information packet doesn’t pass the inspection, it is dropped.

The good thing about these firewalls is that they aren’t very
resource-intensive. This means they don’t have a huge impact on
system performance and are relatively simple. However, they’re
also relatively easy to bypass compared to firewalls with more
robust inspection capabilities.

Circuit-Level Gateways

As another simplistic firewall type that is meant to quickly and
easily approve or deny traffic without consuming significant
computing resources, circuit-level gateways work by verifying
the transmission control protocol (TCP) handshake. This TCP
handshake check is designed to make sure that the session the
packet is from is legitimate.

While extremely resource-efficient, these firewalls do not check the
packet itself. So, if a packet held malware, but had the right TCP
handshake, it would pass right through. This is why circuit-level
gateways are not enough to protect your business by themselves.

Stateful Inspection Firewalls

These firewalls combine both packet inspection technology and
TCP handshake verification to create a level of protection greater
than either of the previous two architectures could provide alone.

However, these firewalls do put more of a strain on computing
resources as well. This may slow down the transfer of legitimate
packets compared to the other solutions.

Secure Computing298

Proxy Firewalls (Application-Level Gateways/Cloud Fire-
walls)

Proxy firewalls operate at the application layer to filter incoming
traffic between your network and the traffic source—hence, the
name “application-level gateway.” These firewalls are delivered
via a cloud-based solution or another proxy device. Rather than
letting traffic connect directly, the proxy firewall first establishes
a connection to the source of the traffic and inspects the incoming
data packet.

This check is similar to the stateful inspection firewall in that
it looks at both the packet and at the TCP handshake protocol.
However, proxy firewalls may also perform deep-layer packet
inspections, checking the actual contents of the information packet
to verify that it contains no malware.

Once the check is complete, and the packet is approved to connect
to the destination, the proxy sends it off. This creates an extra
layer of separation between the “client” (the system where the
packet originated) and the individual devices on your network—
obscuring them to create additional anonymity and protection for
your network.

If there’s one drawback to proxy firewalls, it’s that they can create
significant slowdown because of the extra steps in the data packet
transferal process.

Next-Generation Firewalls

Many of the most recently-released firewall products are being
touted as “next-generation” architectures. However, there is not
as much consensus on what makes a firewall truly next-gen.

Some common features of next-generation firewall architectures
include deep-packet inspection (checking the actual contents
of the data packet), TCP handshake checks, and surface-level
packet inspection. Next-generation firewalls may include other

Security in Networks 299

technologies as well, such as intrusion prevention systems (IPSs)
that work to automatically stop attacks against your network.

The issue is that there is no one definition of a next-generation
firewall, so it’s important to verify what specific capabilities such
firewalls have before investing in one.

Software Firewalls

Software firewalls include any type of firewall that is installed
on a local device rather than a separate piece of hardware (or
a cloud server). The big benefit of a software firewall is that it’s
highly useful for creating defense in depth by isolating individual
network endpoints from one another.

However, maintaining individual software firewalls on different
devices can be difficult and time-consuming. Furthermore, not
every device on a network may be compatible with a single
software firewall, which may mean having to use several different
software firewalls to cover every asset.

Hardware Firewalls

Hardware firewalls use a physical appliance that acts in a manner
similar to a traffic router to intercept data packets and traffic
requests before they’re connected to the network’s servers. Physical
appliance-based firewalls like this excel at perimeter security
by making sure malicious traffic from outside the network is
intercepted before the company’s network endpoints are exposed
to risk.

The major weakness of a hardware-based firewall, however, is that
it is often easy for insider attacks to bypass them. Also, the actual
capabilities of a hardware firewall may vary depending on the
manufacturer—some may have a more limited capacity to handle
simultaneous connections than others, for example.

Secure Computing300

Cloud Firewalls

Whenever a cloud solution is used to deliver a firewall, it can
be called a cloud firewall, or firewall-as-a-service (FaaS). Cloud
firewalls are considered synonymous with proxy firewalls by
many, since a cloud server is often used in a proxy firewall setup
(though the proxy doesn’t necessarily have to be on the cloud, it
frequently is).

The big benefit of having cloud-based firewalls is that they are
very easy to scale with your organization. As your needs grow,
you can add additional capacity to the cloud server to filter larger
traffic loads. Cloud firewalls, like hardware firewalls, excel at
perimeter security.

7.4.6 Firewall Examples

In practice, a firewall has been a topic of both praise and controversy
due to its real-world applications. While there is a decorated
history of firewall accomplishments, this security type must be
implemented correctly to avoid exploits. Additionally, firewalls
have been known to be used in ethically questionable ways.

Security in Networks 301

Great Firewall of China, internet censorship

Since 1998, China has had internal firewall frameworks in place to
create its carefully monitored intranet. By nature, firewalls allow
for the creation of a customized version of the global internet
within a nation. They accomplish this by preventing select services
and info from being used or accessed within this national intranet.

National surveillance and censorship allow for the ongoing
suppression of free speech while maintaining its government’s
image. Furthermore, China’s firewall allows its government to
limit internet services to local companies. This makes control
over things like search engines and email services much easier to
regulate in favor of the government’s goals.

Naturally, China has seen an ongoing internal protest against
this censorship. The use of virtual private networks and proxies
to get past the national firewall has allowed many to voice their
dissatisfaction.

COVID-19 U.S. federal agency compromised due to remote
work weaknesses

In 2020, a misconfigured firewall was just one of many security
weaknesses that led to an anonymous United States federal
agency›s breach.

It is believed that a nation-state actor exploited a series of
vulnerabilities in the U.S. agency’s cybersecurity. Among the
many cited issues with their security, the firewall in-use had
many outbound ports that were inappropriately open to traffic.
Alongside being maintained poorly, the agency’s network likely
had new challenges with remote work. Once in the network, the
attacker behaved in ways that show clear intent to move through
any other open pathways to other agencies. This type of effort
puts not only the infiltrated agency at risk of a security breach but
many others as well.

Secure Computing302

U.S. power grid operator’s unpatched firewall exploited

In 2019, a United States power grid operations provider was
impacted by a Denial-of-Service (DoS) vulnerability that hackers
exploited. Firewalls on the perimeter network were stuck in a
reboot exploit loop for roughly ten hours.

It was later deemed to be the result of a known-but-unpatched
firmware vulnerability in the firewalls. A standard operating
procedure for checking updates before implementation hadn’t
been put into place yet causing delays in updates and an inevitable
security issue. Fortunately, the security issue did not lead to any
significant network penetration.

These events are another strong indicator of the importance of
regular software updates. Without them, firewalls are yet another
network security system that can be exploited.

7.4.7 How to Use Firewall Protection

Proper setup and maintenance of your firewall are essential to
keep your network and devices protected.

Here are some tips to guide your firewall security practices:
• Always update your firewalls as soon as

possible: Firmware patches keep your firewall updated
against any newly discovered vulnerabilities. Personal
and home firewall users can usually safely update
immediately. Larger organizations may need to check
configuration and compatibility across their network
first. However, everyone should have processes in place
to update promptly.

• Use antivirus protection: Firewalls alone are not
designed to stop viruses and other infections. These

Security in Networks 303

may get past firewall protections, and you’ll need a
security solution that’s designed to disable and remove
them. Kaspersky Total Security can protect you across
your personal devices, and our many business security
solutions can safeguard any network hosts you›ll seek to
keep clean.

• Limit accessible ports and hosts with a whitelist: Default
to connection denial for inbound traffic. Limit inbound
and outbound connections to a strict whitelist of trusted
IP addresses. Reduce user access privileges to necessities.
It is easier to stay secure by enabling access when needed
than to revoke and mitigate damage after an incident.

• Segmented network: Lateral movement by malicious
actors is a clear danger that can be slowed by limiting
cross-communication internally.

• Have active network redundancies to avoid
downtime: Data backups for network hosts and other
essential systems can prevent data loss and productivity
during an incident.

7.5 INTRUSION DETECTION SYSTEMS

An Intrusion Detection System (IDS) is a system that
monitors network traffic for suspicious activity and issues alerts
when such activity is discovered. It is a software application
that scans a network or a system for harmful activity or policy
breaching. Any malicious venture or violation is normally
reported either to an administrator or collected centrally using
a security information and event management (SIEM) system. A
SIEM system integrates outputs from multiple sources and uses
alarm filtering techniques to differentiate malicious activity from
false alarms.

Secure Computing304

Although intrusion detection systems monitor networks for
potentially malicious activity, they are also disposed to false
alarms. Hence, organizations need to fine-tune their IDS products
when they first install them. It means properly setting up the
intrusion detection systems to recognize what normal traffic on
the network looks like as compared to malicious activity.

Intrusion prevention systems also monitor network packets
inbound the system to check the malicious activities involved in it
and at once sends the warning notifications.

7.5.1 Classification of Intrusion Detection Systems

Intrusion detection systems are designed to be deployed in
different environments. And like many cybersecurity solutions,
an IDS can either be host-based or network-based.

• Network Intrusion Detection System (NIDS): Network
intrusion detection systems (NIDS) are set up at a
planned point within the network to examine traffic from
all devices on the network. It performs an observation of
passing traffic on the entire subnet and matches the traffic
that is passed on the subnets to the collection of known

Security in Networks 305

attacks. Once an attack is identified or abnormal behavior
is observed, the alert can be sent to the administrator. An
example of an NIDS is installing it on the subnet where
firewalls are located in order to see if someone is trying
crack the firewall.

• Host Intrusion Detection System (HIDS): Host intrusion
detection systems (HIDS) run on independent hosts or
devices on the network. A HIDS monitors the incoming
and outgoing packets from the device only and will alert
the administrator if suspicious or malicious activity is
detected. It takes a snapshot of existing system files and
compares it with the previous snapshot. If the analytical
system files were edited or deleted, an alert is sent to the
administrator to investigate. An example of HIDS usage
can be seen on mission critical machines, which are not
expected to change their layout.

• Protocol-based Intrusion Detection System (PIDS):
Protocol-based intrusion detection system (PIDS)
comprises of a system or agent that would consistently
resides at the front end of a server, controlling and
interpreting the protocol between a user/device and the
server. It is trying to secure the web server by regularly
monitoring the HTTPS protocol stream and accept the
related HTTP protocol. As HTTPS is un-encrypted and
before instantly entering its web presentation layer
then this system would need to reside in this interface,
between to use the HTTPS.

• Application Protocol-based Intrusion Detection
System (APIDS): Application Protocol-based Intrusion
Detection System (APIDS) is a system or agent that
generally resides within a group of servers. It identifies
the intrusions by monitoring and interpreting the
communication on application specific protocols. For
example, this would monitor the SQL protocol explicit
to the middleware as it transacts with the database in the
web server.

Secure Computing306

• Hybrid Intrusion Detection System : Hybrid intrusion
detection system is made by the combination of two or
more approaches of the intrusion detection system. In the
hybrid intrusion detection system, host agent or system
data is combined with network information to develop a
complete view of the network system. Hybrid intrusion
detection system is more effective in comparison to the
other intrusion detection system. Prelude is an example
of Hybrid IDS.

7.5.2 Detection Method of IDS Deployment

Beyond their deployment location, IDS solutions also differ in
how they identify potential intrusions:

• Signature Detection: Signature-based IDS solutions use
fingerprints of known threats to identify them. Once
malware or other malicious content has been identified,
a signature is generated and added to the list used by
the IDS solution to test incoming content. This enables
an IDS to achieve a high threat detection rate with no
false positives because all alerts are generated based
upon detection of known-malicious content. However,
a signature-based IDS is limited to detecting known
threats and is blind to zero-day vulnerabilities.

• Anomaly Detection: Anomaly-based IDS solutions
build a model of the “normal” behavior of the protected
system. All future behavior is compared to this model,
and any anomalies are labeled as potential threats and
generate alerts. While this approach can detect novel or
zero-day threats, the difficulty of building an accurate
model of “normal” behavior means that these systems
must balance false positives (incorrect alerts) with false
negatives (missed detections).

• Hybrid Detection: A hybrid IDS uses both signature-
based and anomaly-based detection. This enables it to
detect more potential attacks with a lower error rate than
using either system in isolation.

Security in Networks 307

7.5.3 What does an intrusion detection system do?

Intrusion detection systems use two methods: signature-based
detection, which takes data activity and compares it to a signature
or pattern in the signature database. Signature-based detection
has a constraint whereby a new malicious activity that is not in the
database is ignored. The other detection method is the statistical
anomaly-based or behavior-based detection, which, unlike
signature-based, detects any anomaly and gives alerts; hence it
detects new types of attacks. It is referred to as an expert system
as it learns what normal behavior in the system is.

7.5.4 Function of an Intrusion Detection System on
A Network

Intrusion detection is a passive technology; it detects and
acknowledges a problem but interrupt the flow of network traffic,
Novak said. “As mentioned, the purpose is to find and alert on
noteworthy traffic. An alert informs the IDS analyst that some
interesting traffic has been observed. But it is after-the-fact because
the traffic is not blocked or stopped in any way from reaching its
destination.”

Secure Computing308

Compare that to firewalls that block out known malware and
intrusion prevention system (IPS) technology, which as the name
describes, also blocks malicious traffic.
Although an IDS doesn’t stop malware, cybersecurity experts said
the technology still has a place in the modern enterprise.
“The functionality of what it does is still critically important,” said
Eric Hanselman, chief analyst with 451 Research. “The IDS piece
itself is still relevant because at its core it’s detecting an active
attack.”

However, cybersecurity experts said organizations usually don’t
buy and implement IDS as a standalone solution as they once
did. Rather, they buy a suite of security capabilities or a security
platform that has intrusion detection as one of many built-in
capabilities.

Rob Clyde, board of directors vice chair ISACA, an association for
IT governance professionals, and executive chair for the board at
White Cloud Security Inc., agreed that intrusion detection is still a
critical capability. But he said companies need to understand that
an intrusion detection system requires maintenance and consider
whether, and how, they’ll support an IDS if they opt for it.

“Once you’ve gone down the path to say we’re going to keep
track of what’s going on in our environment, you need someone to
respond to alerts and incidents. Otherwise, why bother?” he said.

Given the work an IDS takes, he said smaller companies should
have the capability but only as part of a larger suite of functions
so they’re not managing the IDS in addition to other standalone
solutions. They should also consider working with a managed
security service provider for their overall security requirements,
as the provider due to scale can more efficiently respond to alerts.
“They’ll use machine learning or maybe AI and human effort to
alert your staff to an incident or intrusion you truly have to worry
about,” he said.

“And at mid-size and larger companies, where you really need to
know if someone is inside the network, you do want to have the

Security in Networks 309

additional layer, or additional layers, than just what’s built into
your firewall,” he said.

7.5.5 Challenges of Managing an IDS

Intrusion detection systems do have several recognized
management challenges that may be more work than an
organization is willing or able to take on.

False positives

False positives (i.e., generating alerts when there is no real problem).
“IDSs are notorious for generating false positives,” Rexroad said,
adding that alerts are generally are sent to a secondary analysis
platform to help contend with this challenge.

This challenge also puts pressure on IT teams to continually
update their IDSs with the right information to detect legitimate
threats and to distinguish those real threats from allowable traffic.

It’s no small task, experts said.

 “IDS systems must be tuned by IT administrators to analyze the
proper context and reduce false-positives. For example, there is little
benefit to analyzing and providing alerts on internet activity for a
server that is protected against known attacks. This would generate
thousands of irrelevant alarms at the expense of raising meaningful
alarms. Similarly, there are circumstances where perfectly valid
activities may generate false alarms simply as a matter of probability,”
Rexroad said, noting that organizations often opt for a secondary
analysis platform, such as a Security Incident & Event Management
(SIEM) platform, to help with investigating alerts.

Staffing

Given the requirement for understanding context, an enterprise
has to be ready to make any IDS fit its own unique needs, experts
advised.

Secure Computing310

 “What this means is that an IDS cannot be a one-size-fits all
configuration to operate accurately and effectively. And, this
requires a savvy IDS analyst to tailor the IDS for the interests and
needs of a given site. And, knowledgeable trained system analysts
are scarce,” Novak added.

Missing a Legitimate Risk

“The trick with IDS is that you have to know what the attack is
to be able to identify it. The IDS has always had the patient zero
problem: You have to have found someone who got sick and died
before you can identify it,” Hanselman said.

IDS technology can also have trouble detecting malware with
encrypted traffic, experts said. Additionally, the speed and
distributed nature of incoming traffic can limit the effectiveness of
an intrusion detection system in an enterprise.

“You might have an IDS that can handle 100 megabits of traffic
but you might have 200 megabits coming at it or traffic gets
distributed, so your IDS only sees one out of every three or four
packets,” Hanselman said.

7.5.6 The Future of Intrusion Detection Systems

Hanselman said those limitations still don’t invalidate the value of
an IDS as a function.

“No security tool is perfect. Different products have different
blind spots, so the challenge is knowing those blind spots,” he
explained. “I continue to think that IDS will be with us for a long
time to come. There’s still that basic value in being able to identify
specific hostile traffic on the wire.”

However, experts said this has some organizations rethinking the
need for an IDS – even though today implementing the technology
remains a security best practice.

“This tuning and analysis requires a significant amount of effort

Security in Networks 311

based on the number of alerts received. An organization may
not have the resources to manage all devices in this capacity.
Other organizations may conduct a more comprehensive threat
assessment and decide not to implement IDS devices,” Rexroad
said, adding that the high number of IDS false positives have
some organizations opting against implementing IPSs as well for
fear of blocking legitimate business transactions.

He said other organizations may decide to focus on more advanced
protections at the internet gateway or use flow analysis from
network devices in conjunction with log analysis from systems
and applications to identify suspect events instead of using an
IDS.

7.6 SECURE E-MAIL

Email security is a term for describing different procedures
and techniques for protecting email accounts, content, and
communication against unauthorized access, loss or compromise.
Email is often used to spread malware, spam and phishing attacks.
Attackers use deceptive messages to entice recipients to part with
sensitive information, open attachments or click on hyperlinks
that install malware on the victim’s device. Email is also a common
entry point for attackers looking to gain a foothold in an enterprise
network and obtain valuable company data.

Email encryption involves encrypting, or disguising, the content
of email messages to protect potentially sensitive information
from being read by anyone other than intended recipients. Email
encryption often includes authentication.

7.6.1 How Secure Is Email?

Email was designed to be as open and accessible as possible. It
allows people in organizations to communicate with each other
and with people in other organizations. The problem is that email
is not secure. This allows attackers to use email as a way to cause

Secure Computing312

problems in attempt to profit. Whether through spam campaigns,
malware and phishing attacks, sophisticated targeted attacks, or
business email compromise (BEC), attackers try to take advantage
of the lack of security of email to carry out their actions. Since
most organizations rely on email to do business, attackers exploit
email in an attempt to steal sensitive information.

Because email is an open format, it can be viewed by anyone
who can intercept it, causing email security concerns. This
became an issue as organizations began sending confidential or
sensitive information through email. An attacker could easily
read the contents of an email by intercepting it. Over the years,
organizations have been increasing email security measures to
make it harder for attackers to get their hands on sensitive or
confidential information.

7.6.2 Email Security Policies

Because email is so critical in today’s business world, organizations
have established polices around how to handle this information
flow. One of the first policies most organizations establish is
around viewing the contents of emails flowing through their email
servers. It’s important to understand what is in the entire email
in order to act appropriately. After these baseline policies are put
into effect, an organization can enact various security policies on
those emails.

Security in Networks 313

These email security policies can be as simple as removing all
executable content from emails to more in-depth actions, like
sending suspicious content to a sandboxing tool for detailed
analysis. If security incidents are detected by these policies, the
organization needs to have actionable intelligence about the scope
of the attack. This will help determine what damage the attack
may have caused. Once an organization has visibility into all the
emails being sent, they can enforce email encryption policies to
prevent sensitive email information from falling into the wrong
hands.

7.6.3 Email Security Best Practices

One of the first best practices that organizations should put
into effect is implementing a secure email gateway. An email
gateway scans and processes all incoming and outgoing email
and makes sure that threats are not allowed in. Because attacks
are increasingly sophisticated, standard security measures, such
as blocking known bad file attachments, are no longer effective.
A better solution is to deploy a secure email gateway that uses a
multi-layered approach.

It’s also important to deploy an automated email encryption
solution as a best practice. This solution should be able to analyze
all outbound email traffic to determine whether the material is
sensitive. If the content is sensitive, it needs to be encrypted before
it is emailed to the intended recipient. This will prevent attackers
from viewing emails, even if they were to intercept them.

Secure Computing314

Training employees on appropriate email usage and knowing what
is a good and bad email is also an important best practice for email
security. Users may receive a malicious email that slips through
the secure email gateway, so it’s critical that they understand what
to look for. Most often they are exposed to phishing attacks, which
have telltale signs. Training helps employees spot and report on
these types of emails.

7.6.4 Email Security Tools

A secure email gateway, deployed either on-premises or in the
cloud, should offer multi-layered protection from unwanted,
malicious and BEC email; granular visibility; and business
continuity for organizations of all sizes. These controls enable
security teams to have confidence that they can secure users from
email threats and maintain email communications in the event of
an outage.

An email encryption solution reduces the risks associated with
regulatory violations, data loss and corporate policy violations
while enabling essential business communications. The email
security solution should work for any organization that needs
to protect sensitive data, while still making it readily available
to affiliates, business partners and users—on both desktops
and mobile devices. An email encryption solution is especially
important for organizations required to follow compliance
regulations, like GDPR, HIPAA or SOX, or abide by security
standards like PCI-DSS.

Security in Networks 315

7.6.5 Importance of Email Security

It’s important that users and organizations take measures to
guarantee the security of their email accounts against known
attacks, and it’s especially important that a proper infrastructure is
in place to stop any unauthorized attempts at accessing accounts
or communications. Users are especially susceptible to phishing
attacks against businesses, because they sidestep technical security
protections, and instead lean into users themselves to expose
weaknesses. This is why email security solutions should start with
proper techniques like encryption, spyware detection, and login
security. But it’s equally important that employees are educated
on the proper steps that should be taken to protect email.

7.6.6 Email Security Tips to Secure Messages Sent via Mail
Transfer Protocols

Below, we’ll explore 10 practical checks you can use to
achieve secure SMTP, IMAP, and POP3 communications for your
email accounts:

Learn to Inspect Message Headers

Your email message headers are usually hidden by default, but
you can Google ways to view the original message headers for
your specific email client. For example, if you’re using the Outlook
365 email client:

Secure Computing316

• Double-click on an email to open it in a new window.
• Go to the File menu and select Properties.
• In the Properties window, you’ll see a field at the bottom

that contains email header information.

Once you can see the headers, look for the “Received From” field
that tracks the route the message traveled across the net via servers
to reach you. If you get a suspicious email, search for the sender’s
IP and do a reverse lookup to trace the message back to where it
originated. You can also check if the message fails sender policy
framework (SPF) and domain keys identification mail (DKIM)
checks.

Though most mail programs have email security indications like a
red question mark for unauthenticated emails in Gmail, knowing
how to examine email headers is a useful skill to have.

Avoid Clicking on Links or Downloading Attachments

As most of us know, email security’s biggest weakness often
boils down to human error. This fact is continuously hammered
into our brains by security experts and tech gurus. However,
getting too curious to know what an attachment is, or being too
absentminded to notice that we’ve accidentally clicked on a link

Security in Networks 317

are not impossible scenarios. Even the best of us can fall prey to
phishing attacks — at least, the well-crafted ones. This is why, in
addition to having spam filters and antimalware installed, we
must be careful not to open any attachments or click on links from
unknown senders (or attackers pretending to be Gary from the
accounts department).

Update Your DMARC Records With the Domain Registrar

DMARC, aside from running checks on the messages using SPF
and DKIM standards, is the only method that informs a receiving
server of the action it should take in the event that a message fails
these tests. If you’re a domain owner, besides configuring SPF and
DKIM, consider setting up DMARC records with your domain
registrar. iIn case you’re unsure about the process, they should be
able to help you with it.

Neither SPF nor DKIM can prevent attackers from forging the
“From” address that you see displayed in your inbox. However,
DMARC verifies that the “from” matches the return-path checked
by SPF and the domain name in the DKIM signature.

Test Your SMTP Server

To do this, try sending test emails to see how it responds to genuine
and spam messages alike by monitoring the SPF, DMARC records.
If it’s possible to tweak the SMTP configurations, change the default
settings and update them with more secure alternatives (starting
with changing default admin usernames and passwords).

Make Use of SMTP SSL/TLS Ports

SMTPS traditionally has used port 465 as a way to secure SMTP at
the transport layer by running it over a TLS connection. When we
refer to an SMTP SSL port (or, more accurately, SMTP TLS port),
that’s exactly what we mean — it’s a way to have a secure exchange
of messages between the email client and the email server over
SSL/TLS channels.

Secure Computing318

TLS implementation can be done using two approaches –
opportunistic TLS or forced TLS. With opportunistic (explicit) TLS,
we try to shift from the use of unencrypted SMTP to a secure TLS
encrypted channel utilizing the STARTTLS SMTP command. If
the attempt fails, the transmission resumes in plain text, meaning
without the use of any encryption. However, with forced (implicit)
TLS, the email client and server are either able to negotiate an
encryption version they can both support, or the transmission
stops and the email communication doesn’t progress. You can
make your choice depending on whether you want maximum
deliverability or maximum privacy.

The Internet Assigned Numbers Authority (IANA) had registered
port 465 for SMTPS, though it was never published as an official
SMTP channel by the Internet Engineering Task Force (IETF). A
new service had been assigned to port 465 by the end of 1998.
while 465 functioned as a secure SMTP port, port 25 continues to
be used as the default port for SMTP relaying. ISPs and hosting
providers have restricted the use of port 25 for SMTP connections
(to send mails across the net), and most modern email clients
don’t use this port at all. Unless you’re managing a mail server (a
message transfer agent or an MTA), typically, you should see no
traffic over this port.

Port 587, along with TLS encryption, should be used as the default
secure SMTP port for message submission as recommended
by IETF in accordance with RFC 6409 that separates message
submission (port 587) from message relay (port 25). Because many
legacy systems continue using port 465 for SMTPS, you may still
be able to find support for it from your ISP or hosting provider,
but it is not recommended to use this port. Lastly, if port 587 is
blocked, port 2525 though not officially recognized, is a commonly
used alternative supported by most email service providers.

Security in Networks 319

Deploy End-to-End Encryption for Maximum Email Security

With the note from the authors of RFC 5321 in mind, a note that
indicates that SMTP mail is inherently insecure, consider using
end-to-end encryption standards like S/MIME or PGP to encrypt
messages on the sender’s device, as well as during transmission.
This ensures that even if the message falls into the hands of an
attacker, all they see is garbled data that makes no sense.

An additional benefit of using an S/MIME certificate (or email
signing certificate, as it’s also known) is that it enables you to add
a digital signature. This verifies the authenticity of the sender and
validates message integrity.

Use TLS With IMAP and POP3

So, what’s POP3 and IMAP? The internet access message protocol
(IMAP) and post office protocol (POP3, indicating version 3) deal
with retrieving the messages from the receiving server. These are
the protocols used by email clients like Outlook when getting
your emails from mail servers. While IMAP syncs messages across
all of your devices, POP3 downloads the message onto a single
machine so that it’s available offline before deleting it from the
server. Encrypted POP3 connections use port 995 (also known as
POP3S), and IMAPS uses port 993.

Secure Computing320

Maintain IP Blacklists to Block Targeted Spams

If you’re frequently the target of junk and spam messages from
IP addresses that share unsolicited marketing and sales pitches, it
makes sense to block them on your email server.

To do this, you can use DNS blacklists (e.g., DNSBL, Spamhaus,
etc.) or spam URI real-time block lists (e.g., SURBL, URIBL, etc.).
A quick Google search will show you a bunch of available options,
but be careful utilizing these kinds of tools — they’re not free of
controversies and may inadvertently block some legitimate emails.

Use Restrictive Mail Relay Options

You don’t want to be an open relay because any spammer from
anywhere in the world can use your server and resources for
spamming others. The mail relay parameter specifies for which
domains or IPs your server can forward mail. Configure these
options with the utmost care if you wish to avoid getting on a
blacklist.

Other Considerations to Improve Email Security

Some additional email security considerations that may come in
handy include but are not limited to the following:

• Limit the number of connections to your SMTP
server. You can do this based upon usage and server
hardware specifications as these checks can prevent
denial of service stacks.

• Define a failover configuration for MX records.
Whenever possible, have a failover configuration when
listing MX records to improve availability.

• Set up reverse DNS lookup to block IPs when
authentication fails. Activate reverse DNS lookup that
blocks emails if an IP mismatch occurs between the
hostname and domain name of the sender.

Security in Networks 321

REFERENCES

1. Anderson, R. (2001) Security	Engineering:	A	Guide	to	Building	
Dependable	Distributed	Systems	, Wiley.

2. BS 7799-2 (2002) Information	 Security	 Management	 Systems	
–	 Specification	 with	 Guidance	 for	 Use	 , British Standards
Institution.

3. Dieter Gollmann, Computer	Security,	3/e (2011, Wiley).
4. Ellis, J. and Speed, T. (2001) The	 Internet	Security	Guidebook,

Academic Press.
5. Goodrich and Tamassia, Introduction	to	Computer	Security (2010,

Addison-Wesley).
6. Halsall, F. (2001) Multimedia	Communications, Addison Wesley.
7. ISO/IEC 17799 (2000) Information	Technology	–	Code	of	Practice	for	

Information	Security	Management	, International Organization
for Standardization.

8. ITU-T X.509 (2000) Information	 Technology	 –	 Open	 Systems	
Interconnection	 –	 The	 Directory:	 Public-Key	 and	 Attribute	
Certificate	 Frameworks	 , International Telecommunication
Union.

9. Mark Stamp, Information	 Security:	 Principles	 and	 Practice,	
2/e (2011, Wiley).

10. Matt Bishop, Computer	 Security:	 Art	 and	 Science (2002,
Addison-Wesley). Shorter version which «omits much
of the mathematical formalism»: Introduction	 to	 Computer	
Security (2005, Addison-Wesley).

11. Paul van Oorschot, Computer Security and the Internet: Tools
and Jewels (2020, Springer). Personal use copy freely available
on author’s web site.

12. Pfleeger and Pfleeger, Security	in	Computing,	4/e (2007, Prentice
Hall).

13. Smith and Marchesini, The	 Craft	 of	 System	 Security (2007,
Addison-Wesley).

14. Smith, Elementary	Information	Security (2011, Jones & Bartlett
Learning).

Secure Computing322

15. Stallings and Brown, Computer	Security:	Principles	and	Practice,	
3/e (2014, Prentice Hall).

16. Wenliang Du, Computer	Security:	A	Hands-on	Approach (2017,
self-published). Updated May 2019.

INDEX

A

Access control 275, 282, 283,
285

Access Control Instruction
(ACO) 285

active attack 279, 308
advanced persistent threats

(APTs) 294
Anti-malware 275
Application Protocol-based In-

trusion Detection System
(APIDS) 305

Application security 275
Auditability 238, 241
Authentication 237, 238, 243,

253, 283, 286, 287
Authorization 283, 284, 286,

287

B

Behavioral analytics 275
Buffer overflows 93, 94

business email compromise
(BEC) 312

C

Certified Ethical Hacker (CEH)
8

Chief information security of-
ficer (CISO) 8

Chief security officer (CSO) 8
Cipher text 53, 54, 56, 57, 58,

67, 77, 78
Circuit-Level Gateways 297
Cloud firewalls 277, 295, 300
commercial security policy

182, 187
communication channel 74
Communication facilities and

networks 14
communication protection 25
Communications channel (CC)

36
computer 133, 138, 139, 142,

147, 149, 150, 169

Secure Computing324

Computer hardware 9
Computer networks 230
Computer product 40
Computer security 9, 10, 11,

12, 265
Computer security services 40
Computer security techniques

88
computer’s firmware and hard-

ware 140
computer system 10, 13, 15, 20,

21
Computing system 83, 104, 122
computing systems 171, 189,

190, 217, 218
Controlled access protection

profile (CAPP) 143
Cryptographic system 52
Cryptography 51, 53, 60, 75
Cryptography algorithm 76
cryptosystem 65, 67, 71, 76, 77,

78, 79, 80
Cyber attacks 87
Cyberattacks 274
cybersecurity 290, 296, 301,

304, 308
Cybersecurity 7

D

Database identify 234
Database management system

(DBMS) 229, 230, 231
Database record 232
Databases 230, 232, 236, 242,

244, 257, 262, 264, 266
Data elements 90
Data loss prevention 275

Data mining 229, 230, 264, 265,
266, 267

data security 22
Data semantics 267
Detection 273, 303, 304, 305,

306, 307, 310
digital signature 54, 55, 70
Digital signature 55
Digital Subscriber Line (DSL)

290
discretionary access control

(DAC) 205
Domain error 88

E

e-government applications 133
Email security 275, 311
Encryption 253, 254
Encryption algorithm 70, 77
encryption key 10, 12
Encryption key management 7
Encryption software 2, 3

F

firewall-as-a-service (FaaS) 300
Firewalls 275, 288, 289, 290,

291, 295, 296, 297, 298,
299, 300, 302

H

Hardware firewalls 295, 299
Host Intrusion Detection Sys-

tem (HIDS) 305
Hybrid Intrusion Detection

System 306

Index 325

I

Identification 283, 284, 286
Incident response plan (IRP) 7
Incomplete mediation 94, 96
Information security 1, 2, 3, 7,

42, 43
information system 13, 14, 26,

27
Infosec programs 6
Integrity 230, 231, 237, 238,

239, 240, 241, 244, 245,
246, 249, 251, 255, 256,
257, 258, 265

Integrity Lock 255, 257
internet access message proto-

col (IMAP) 319
Internet Assigned Numbers

Authority (IANA) 318
Internet banking 133, 151, 153
Internet banking server (IBS)

36
Internet Engineering Task

Force (IETF) 318
internet protocol (IP) 293
Interoperability 268
Intrusion detection and pre-

vention 275, 278
intrusion prevention system

(IPS) 289, 308

L

Labeled Security Protection
Profile (LSPP) 172

lattice model 186
Linux Security Module (LSM)

141

local area network (LAN) 18
Logical structure 233

M

magnetic remanence 207
mandatory access control 135,

141
mandatory access control

(MAC) 172
Mandatory access control

(MAC) 205
Mandatory integrity control

(MIC) 142
media protection 25
military security model 187
Military security policy 176
Monitor 249, 250
multiprogramming operating

system 201
Multiuser system 248

N

National Institute of Standards
and Technology (NIST)
29

network communication 14
Network Intrusion Detection

System (NIDS) 304
Network security 23, 271, 272,

279
Network Security Controls 283
Network segmentation 276,

277
Network threats 278

O

operating system 13, 20, 21, 34,
39

Secure Computing326

Operating system 230, 241,
242, 252, 263

operating systems 134, 135,
136, 137, 139, 140, 141,
142, 143, 157, 164, 166

Operating systems 171, 199,
203

P

Partitioning 252
passive attack 279, 280, 281
Phishing 275, 279
Physical placement 12
potential security 15
Program security 83, 86, 87, 88,

102
Program security flaws 86
Program vulnerability 83, 86
Protection 273, 302
Protection and security 133
Protocol-based Intrusion De-

tection System (PIDS) 305
Public Algorithms 76
public information 180
Public key 52, 53, 54, 55, 56, 58,

59, 65, 66, 67, 69, 70, 71,
72, 74, 78, 79

R

Reaction 273
Recovery 248
Rigorous analysis 85
RSA encryption 67, 74

S

Screening routers 292
Security Functional Require-

ments (SFRs) 172

Security implication 94, 99
security information and event

management (SIEM) 290,
303

Security information and event
management (SIEM) 276

security mechanism 11, 12, 29,
32, 33

security mechanisms 12, 31,
34, 40

security policy 14, 30, 37, 38,
172, 173, 175, 176, 183,
188, 213

Security requirement 231, 237
Security services 11, 14, 31, 38,

41
Security system implementa-

tion 40
Side Channel Attack (SCA) 79
Software firewalls 295, 299
software installation 134
Symmetric-key encryption 68,

70, 71

T

TCP/IP (Transmission Control
Protocol/Internet Proto-
col) 12

Trusted Operating System
(TOS) 171

trusted path 205, 208
trusted system 172, 174, 175,

176, 204, 219

U

User Account Control (UAC)
142

User accounting 288

Index 327

User terminal and user (UT/U)
36

V

vulnerabilities 272, 278, 280,
281, 289, 301, 302, 306

Vulnerabilities 2, 3, 7, 15, 16,
25, 26, 33, 34, 35, 38

Vulnerability 86, 96, 97

W

Web security 276
Web server 34

	Cover
	Title Page
	Copyright
	TABLE OF CONTENTS
	Preface
	Chapter 1 Information Security
	Introduction
	1.1 Information Security (InfoSec)
	1.1.1 Importance of Information Security
	1.1.2 Principles of Information Security
	1.1.3 Threats and Threat Responses
	1.1.4 Information security vs. Network Security

	1.2 Concept of Computer Security
	1.2.1 The Challenges of Computer Security
	1.2.2 A Model for Computer Security
	1.2.3 Threats, Attacks, and Assets
	1.2.4 Communication Lines and Networks
	1.2.5 Security Functional Requirements

	1.3 Fundamental Security Design Principles
	1.3.1 Attack Surfaces and Attack Trees

	1.4 Computer Security Strategy
	1.4.1 Security Policy
	1.4.2 Security Implementation
	1.4.3 Assurance and Evaluation

	References

	Chapter 2 Cryptography
	Introduction
	2.1 Meaning of Cryptography
	2.1.1 History of Cryptography
	2.1.2 Types of Cryptography

	2.2 Public-Key Cryptography
	2.2.1 Principles of Public-Key Cryptosystems
	2.2.2 Applications for P-K Cryptosystems
	2.2.3 Requirements of the Algorithm
	2.2.4 Cryptography Benefits and Drawbacks

	2.3 Transposition Ciphers and Substitution Ciphers
	2.3.1 Substitution Techniques
	2.3.2 Transposition Techniques

	2.4 Block Cipher and Stream Cipher
	2.5 RSA Cryptosystem
	2.5.1 RSA Analysis
	2.5.2 Encryption and Decryption in RSA Public-key Cryptosystem
	2.5.3 RSA Signature Scheme
	2.5.4 Attacks on Cryptosystems

	References

	Chapter 3 Program Security
	Introduction
	3.1 Secure Programs
	3.1.1 Fixing Faults
	3.1.2 Unexpected Behavior
	3.1.3 Types of Flaws

	3.2 Nonmalicious Program Errors
	3.2.1 Buffer Overflows
	3.2.2 Security Implication
	3.2.3 Incomplete Mediation
	3.2.4 Security Implication
	3.2.5 Time-of-Check to Time-of-Use Errors
	3.2.6 Security Implication
	3.2.7 Combinations of Nonmalicious Program Flaws

	3.3 Viruses and Other Malicious Code
	3.3.1 Why Worry About Malicious Code?
	3.3.2 Malicious Code Can Do Much (Harm)
	3.3.3 Malicious Code Has Been Around a Long Time
	3.3.4 Kinds of Malicious Code
	3.3.5 How Viruses Attach
	3.3.6 Appended Viruses
	3.3.7 Viruses That Surround a Program
	3.3.8 Integrated Viruses and Replacements
	3.3.9 Document Viruses
	3.3.10 How Viruses Gain Control
	3.3.11 Homes for Viruses
	3.3.12 Other Homes for Viruses
	3.3.13 Virus Signatures
	3.3.14 Storage Patterns
	3.3.15 Execution Patterns
	3.3.16 Transmission Patterns
	3.3.17 Polymorphic Viruses
	3.3.18 The Source of Viruses
	3.3.19 Prevention of Virus Infection
	3.3.20 Truths and Misconceptions about Viruses

	References

	Chapter 4 Protection and Security in Operating System
	Introduction
	4.1 Security in Common Operating Systems
	4.1.1 Security Problems of Common Operating Systems
	4.1.2 Existing Partial Solutions
	4.1.3 Existing Protection Profiles

	4.2 Goals, Objectives and Methods
	4.3 Threats to Protection and Security
	4.3.1 Virus
	4.3.2 Trojan Horse
	4.3.3 Trap Door
	4.3.4 Worm
	4.3.5 Denial of Service

	4.4 Protection and Security Methods
	4.4.1 Authentication
	4.4.2 One Time Password
	4.4.3 Classes of Applications Considered
	4.4.4 Security Model

	4.5 Protection Profile Overview
	4.5.1 Our New Model vs. MIC in Windows Vista
	4.5.2 Our New Model vs. SELinux
	4.5.3 Our Protection Profile vs. CAPP and LSPP

	References

	Chapter 5 Designing Trusted Operating Systems
	Introduction
	5.1 Trusted System
	5.2 Security Policies
	5.2.1 Military Security Policy
	5.2.2 Commercial Security Policies

	5.3 Models of Security
	5.3.1 Multilevel Security
	5.3.2 Models Proving Theoretical Limitations of Security Systems

	5.4 Trusted Operating System Design
	5.4.1 Trusted System Design Elements
	5.4.2 Security Features of Ordinary Operating Systems
	5.4.3 Security Features of Trusted Operating Systems
	5.4.4 Kernelized Design
	5.4.5 Separation/Isolation
	5.4.6 Virtualization
	5.4.7 Virtual Machines
	5.4.8 Layered Design

	References

	Chapter 6 Database and Data mining Security
	Introduction
	6.1 Concept of Database
	6.1.1 Components of Databases
	6.1.2 Advantages of Using Databases

	6.2 Security Requirements
	6.2.1 Integrity of the Database
	6.2.2 Element Integrity
	6.2.3 Auditability
	6.2.4 Access Control
	6.2.5 User Authentication
	6.2.6 Availability
	6.2.7 Integrity/Confidentiality/Availability

	6.3 Reliability and Integrity
	6.3.1 Protection Features from the Operating System
	6.3.2 Two-Phase Update
	6.3.3 Redundancy/Internal Consistency
	6.3.4 Recovery
	6.3.5 Concurrency/Consistency
	6.3.6 Monitors

	6.4 Proposals for Multilevel Security
	6.4.1 Designs of Multilevel Secure Databases

	6.5 Data Mining
	6.5.1 Data Correctness and Integrity
	6.5.2 Availability of Data

	References

	Chapter 7 Security in Networks
	Introduction
	7.1 Network Security Basics
	7.1.1 Principles of Network Security
	7.1.2 Network Security Methods
	7.1.3 Network Security and The Cloud
	7.1.4 Network Security Software

	7.2 Threats in Networks
	7.2.1 Network Security Attack
	7.2.2 Identifying Your Network Security Threats

	7.3 Network Security Controls
	7.3.1 Access Control
	7.3.2 Identification
	7.3.3 Authentication
	7.3.4 Authorization
	7.3.5 Accounting

	7.4 Firewalls
	7.4.1 Firewall History
	7.4.2 Uses
	7.4.3 How does a firewall work?
	7.4.4 What does firewall security do?
	7.4.5 Types of Firewalls
	7.4.6 Firewall Examples
	7.4.7 How to Use Firewall Protection

	7.5 Intrusion Detection Systems
	7.5.1 Classification of Intrusion Detection Systems
	7.5.2 Detection Method of IDS Deployment
	7.5.3 What does an intrusion detection system do?
	7.5.4 Function of an Intrusion Detection System on A Network
	7.5.5 Challenges of Managing an IDS
	7.5.6 The Future of Intrusion Detection Systems

	7.6 Secure E-mail
	7.6.1 How Secure Is Email?
	7.6.2 Email Security Policies
	7.6.3 Email Security Best Practices
	7.6.4 Email Security Tools
	7.6.5 Importance of Email Security
	7.6.6 Email Security Tips to Secure Messages Sent via Mail Transfer Protocols

	References

	INDEX
	Back Cover

