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Until the recent sequencing of the human genome, drug discovery has long 
been a multidisciplinary effort to optimize ligands properties (potency, 
selectivity, and pharmacokinetics) towards a single macromolecular 
target. A robust knowledge of the interactions between small molecules 
and specific proteins aids the development of new biotechnological 
tools and the identification of new drug targets, and can lead to specific 
biological insights. Chemogenomics is a complementary strategy for 
the investigation of chemically related compounds and libraries against 
various members of a target family. It is largely based on the intelligent 
application of automated parallel synthesis. Chemogenomics is a new 
strategy in drug discovery which, in principle, searches for all molecules 
that are capable of interacting with any biological target. Because of 
the almost infinite number of drug-like organic molecules, this is an 
impossible task. Therefore Chemogenomics has been defined as the 
investigation of classes of compounds (libraries) against families of 
functionally related proteins. 

This thorough book provides a collection of techniques used in the 
emerging field of Chemogenomics. Chemogenomic modeling is 
concerned with the application of techniques to extract patterns in ligand-
target binding, aiming to exploit similarity of bioactivity between similar 
molecules which is then expected to contribute to the identification of 
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bioactive pairs more efficiently than random molecule selection and 
activity measurement. In this book, the concepts and core elements to 
build a computational Chemogenomic platform are presented, with 
special emphasis on adaptive instance selection by the active learning 
technique. Despite its adaptation to drug discovery almost two decades 
prior, it is not until recently that active learning has been investigated in 
Chemogenomic contexts; nonetheless, the technique is demonstrating 
the ability to build models of ligand-target binding that are also 
predictive on external prediction challenges. 



INTRODUCTION

Chemogenomics, or chemical genomics, is the systematic screening 
of targeted chemical libraries of small molecules on specific target 
families of drugs, with the ultimate goal of identifying new drugs 
and medicines. Usually some members of a target library have 
been well characterized, where the function has been determined 
and compounds that modulate the function of these goals have 
been identified. Other members of the target family may have 
an unknown function with no known ligands and are therefore 
classified as orphan receptors. By identifying screening hits that 
modulate the activity of the less well characterized members of 
the family, the functions of these new tasks can be clarified. In 
addition, it is ideal for these purposes can be used as a starting 
point for drug discovery. The completion of the project “human 
Genome” has provided an abundance of potential targets for 

1
INTRODUCTION TO  
CHEMOGENOMICS

C
H

A
PT

ER



Chemogenomics2

therapeutic intervention. Chemogenomics aims to explore the 
intersection of all possible drugs to all these potential targets. 

The General method of constructing target chemical library should 
include known ligands of at least one and preferably several 
members of the family. Because some of the ligands that have 
been designed and synthesized to bind to one family member are 
linked to additional family members, compounds contained in the 
target chemical library must collectively associated with a high 
percentage of the target family.

1.1 CHEMOGENOMICS IN DRUG DISCOVERY

Chemogenomics is a new strategy in drug discovery which, in 
principle, searches for all molecules that are capable of interacting 
with any biological target. Because of the almost infinite number 
of drug-like organic molecules, this is an impossible task. 
Therefore chemogenomics has been defined as the investigation 
of classes of compounds (libraries) against families of functionally 
related proteins. In this definition, chemogenomics deals with the 
systematic analysis of chemical–biological interactions. Congeneric 
series of chemical analogs are probes to investigate their action on 
specific target classes, e.g., GPCRs, kinases, phosphodiesterases, 
ion channels, serine proteases, and others. Whereas such a strategy 
developed in pharmaceutical industry almost 20 years ago, it is 
now more systematically applied in the search for target- and 
subtype-specific ligands. The term “privileged structures” has 
been defined for scaffolds, such as the benzodiazepines, which 
very often produce biologically active analogs in a target family, 
in this case in the class of G-protein-coupled receptors. The SOSA 
approach is a strategy to modify the selectivity of biologically 
active compounds, generating new drug candidates from the side 
activities of therapeutically used drugs.

Chemical biology, chemical genetics, and chemogenomics are 
recent strategies in drug discovery. Although definitions in the 
literature are somehow diffuse and inconsistent, a differentiation 
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of the terms will be attempted here: Chemical biology may be 
defined as the study of biological systems, e.g., whole cells, 
under the influence of chemical libraries. If a new phenotype is 
discovered by the action of a certain substance, the next step is the 
identification of the responsible target.

Chemical genetics is the dedicated study of protein function, e.g., 
signaling chains, under the influence of ligands which bind to certain 
proteins or interfere with protein–protein interaction; sometimes 
orthogonal ligand–protein pairs are generated to achieve selectivity 
for a certain protein. Chemogenomics defines, in principle, the 
screening of the chemical universe, i.e., all possible chemical 
compounds, against the target universe, i.e., all proteins and other 
potential drug targets. Whereas this task can never be achieved, due 
to the almost infinite size of the chemical universe, the systematic 
screening of libraries of congeneric compounds against members 
of a target family offers unprecedented chances in the search for 
compounds with significant target or subtype specificity

1.1.1 Chemical Biology

In classical drug discovery, research was often based on vague 
hypotheses on structure–activity relationships. Compounds were 
synthesized and tested in whole animals. If a biological effect 
was observed, a medicinal chemistry project started to optimize 
chemical structures with respect to activity, pharmacokinetic 
properties, and lack of toxic side effects. Later on, this approach 
was replaced by in vitro screening on defined targets, most often 
human proteins. Only in recent years have we experienced a more 
systematic investigation of drug-like compounds in biological 
systems, called chemical biology.

One illustrative example of the chemical biology approach is the 
discovery of monastrol, a molecule that prevents spindle formation 
in mitotic cells by inhibiting the kinesin Eg5, a motor protein 
required for spindle bipolarity. In this manner, monastrol stops 
cell division by mitotic arrest. Another example of the concept 
of chemical biology is the discovery of synthetic small molecules 
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that influence embryonic stem (ES) cell fate. A high-throughput 
phenotypic cell-based screen identified a 4,6-disubstitued 
pyrrolo-pyrimidine, which induces the differentiation of ES cells 
to neurons. Glycogen synthase kinase-3β (GSK-3β) has been 
identified as the target of this compound.

On the other hand, screening of any compounds may not result 
in the desired output of results. The production of a 2.18 million-
compound natural product library by diversity-oriented synthesis 
generated much hype but, so far, not the anticipated results with 
respect to biological activities. In a later comment, the author 
Stu Schreiber had to admit that the chemical diversity of his 
library was seemingly too narrow – “disappointingly similar” by 
molecular descriptors; the compounds “tend to cluster in discrete 
regions of multidimensional descriptor space”. This goes hand in 
hand with another problem: biologically active compounds seem 
to be distributed only in certain areas of chemical space, by their 
physicochemical properties and their structural features. If we 
consider the chemical universe as a huge ocean, with small islands 
or groups of islands of biologically active compounds, we have 
to understand and accept that most chemistry-driven approaches 
will end up in water, instead of discovering new islands. For 
the broad exploration of biology with small organic molecules, 
the National Institutes of Health (NIH) has started an initiative 
to provide a repository of chemically diverse molecules for the 
public and private sector

1.1.2 Chemical Genetics

Classical genetics sets a (random) mutation, e.g., by irradiation, 
and tries to conclude from a new phenotype to the genotype. 
“Chemical genetics” is another new term for a strategy that 
has also been used since long ago, in a less systematic manner; 
it describes the purposeful investigation of proteins by small 
molecules or libraries, for target identification (forward chemical 
genetics) or target validation (reverse chemical genetics). 
Sometimes, orthogonal ligand-receptor pairs are constructed if 
selective ligands are not available. Selective kinase inhibition 
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has been achieved by specifically converting nonspecific, low-
affinity inhibitors into larger analogs and to construct certain 
kinase mutants (e.g., v-Src I338G or Cdk II F80G) that specifically 
accommodate these originally less well-fitting ligands by their 
larger binding pocket. In this manner, the specific inhibition of 
a certain kinase can be studied without having developed an 
inhibitor of comparable specificity against the wild-type kinase.

1.1.3 Chemogenomics

As well as in the other two cases, chemogenomics defines an 
approach that has also been used earlier, but less systematically. 
Since a screening of the chemical universe against the target 
universe is practically impossible, due to the almost infinite 
number of potential drug-like compounds, the method defines the 
screening of congeneric chemical libraries against certain target 
families, e.g., the G protein-coupled receptors, nuclear receptors, 
different protease families, kinases, phosphodiesterases, ion 
channels, transporters, etc.; this systematic strategy aims to 
discover highly potent, selective ligands against functionally and 
evolutionarily related targets, with the least effort.

Privileged Structures

Many drugs have been derived from certain chemotypes, e.g., 
phenethylamines, tricyclics, steroids, or benzodiazepines, 
whereas others have certain structural features in common, e.g., 
diphenylmethane, diphenylamine, or arylpiperazine groups.

Figure 1: Diazepam 1 (Valium) was one of the first tranquilizers and the 
prototype of a series of other GABA receptor agonists, antagonists, and 
inverse agonists. The chemically closely related benzodiazepine Tiflua-
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dom 2 is a κ-opiate receptor agonist and a nanomolar cholecystokinin 
receptor antagonist.

The systematic chemical variation of benzodiazepines, e.g., the 
GABA-agonist diazepam 1 produced not only tranquilizers but 
also GABA antagonists, inverse agonists, and the strong κ-opiate 
receptor agonist tifluadom 2 (Fig. 1)

When Evans discovered that tifluadom is also a nanomolar 
cholecystokinin receptor antagonist, he concluded that “these 
structures appear to contain common features which facilitate 
binding to various . . . receptor surfaces, perhaps through binding 
elements different from those employed for binding of the natural 
ligands . . . ” and formulated “. . . what is clear is that certain 
‘privileged structures’ are capable of providing useful ligands for 
more than one receptor and that judicious modification of such 
structures could be a viable alternative in the search for new 
receptor agonists and antagonists”. Minor chemical modifications 
of such privileged structures (Fig. 2) may result in highly selective 
ligands or drugs, e.g., the estrogenic, gestagenic, androgenic, 
glucocorticoid, and mineralocorticoid steroids, or the α-adrenergic, 
β-adrenergic, and β-antiadrenergic phenethylamines. Others lack 
such target selectivity: the atypical neuroleptic olanzapine is a 
highly promiscuous tricyclic ligand, with nanomolar affinities at 
various GPCRs, including 5-HT2A, 5-HT2B, 5-HT2C, dopaminergic 
D1, D2, D4, muscarinic M1, M2, M3, M4, M5, adrenergic α1, and 
histaminic H1 receptors, as well as the 5-HT3 ion channel.

Figure 2: Privileged structures are scaffolds or substituents that often 
produce biologically active compounds, e.g., phenethylamines, diphe-
nylmethyl and diphenylamine compounds (X = C or N, respectively), 
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tricyclic compounds (X = C or N), benzodiazepines, arylpiperidines, ste-
roids, spiropiperidines, and tetrazolobiphenyls (from the upper left to 
the lower right).

Privileged structures, even if they are promiscuous ligands, should 
not be confused with some structural classes, which seemingly 
bind with micromolar affinity to various enzymes. 

This unspecific binding behavior is caused by an aggregation of 
the ligands and clumping of these aggregates to the protein.

Drugs from Side Effects – The SOSA Approach

Many drugs of the past resulted from the experimental or clinical 
observation of side effects. Diuretic, antihypertonic, antiglaucoma, 
and antidiabetic drugs were derived from the bacteriostatic 
sulfonamides; the mood-improving effect of iproniazid was 
discovered when it was tested as an antituberculous drug; 
antidepressant inhibitors of neurotransmitter re-uptake, like 
imipramine and desipramine, stem from the antipsychotic 
dopamine antagonist chlorpromazine, which itself was derived 
from H1 antihistaminics; there are many other stories of this kind. 
Only recently, Camille Wermuth proposed to investigate the side 
effects of drugs more systematically, by his “selective optimization 
of side activities” (SOSA) approach.

Whenever a side effect of a drug is observed, it might be possible 
to optimize the candidate to a selective drug with this other 
biological activity, following a statement by Sir James Black that 
“the most fruitful basis for discovery of a new drug is to start with 
an old drug”. 

Among several other examples, Wermuth demonstrated by his 
own research the optimization of different weak side effects of 
the antidepressant minaprine 3 to the nanomolar muscarinic M1 
receptor ligand 4 and the reversible acetylcholinesterase inhibitor 
5; a closely related analog of minaprine was optimized to the 
nanomolar 5-HT3 antagonist 6 (Fig. 3)
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Figure 3: The antidepressant minaprine 3 is also a weak muscarinic M1 
receptor antagonist (Ki = 17 µM) and an acetylcholinesterase inhibitor 
(Ki = 600 µM). By systematic structural variation, these activities could 
be enhanced to the nanomolar M1 receptor antagonist 4 (Ki = 3 nM) and 
the acetylcholinesterase inhibitor 5 (Ki = 10 nM). A closely related analog 
of minaprine was optimized to the nanomolar 5-HT3 receptor antago-
nist 6 (IC50 = 10 nM)

From Target Family-Directed Masterkeys to Selective Drugs

Chemogenomics is mainly based on the masterkey concept of 
tailormade privileged structures. Starting from such masterkeys, 
selective ligands can be derived, either by classical medicinal 
chemistry or by systematic structural variation in combinatorial 
libraries. The masterkey concept will be illustrated by just one 
example: selective β1 and β2 agonists, as well as β antagonists 
(β-blockers) were derived from the mixed α/β agonist epinephrine.

Figure 4: The β-blocker prototype structure 7, Phenyl-O-CH2-CH(OR1)- 
CH2NHR2 is also the key structural element of the antidepressant 
viloxazine 8 and the class Ic antiarrhythmic propafenone 9. Structural 
variation of a cyclic β-blocker analog 10 yielded the potassium channel 
opener levcromakalim 11.
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Further chemical variation of the typical β-blocker 
phenoxypropanolamine structure 7 yielded the antidepressant 
viloxazine 8 and the class Ic antiarrhythmic propafenone 9. The 
optimization of a cyclic β-blocker prototype 10 indeed produced 
an antihypertensive drug; however, levcromakalim 11 is no longer 
a β-blocker, it is a vasodilatory potassium channel opener (Fig. 4).

1.1.4 Enzyme Inhibitors

Protease inhibitors are most often derived from the sequence of 
the amino acids in the positions next to the bond that is cleaved by 
the enzyme. A simple strategy for a first inhibitor is a conversion 
of the amide bond of the cleavage site into a noncleavable analog 
or a group that reacts or coordinates with the catalytic center of 
the enzyme; the P1, P2, ... and/or P1’ , P2’ , ... amino acids are kept 
constant.

The structural requirements of the individual protease classes are 
different:

•	 For aspartyl protease inhibitors, it is necessary to attach 
some aminoand carboxy-terminal amino acid side 
chains to a group that mimics the transition state of the 
enzymatic cleavage. 

•	 For metalloprotease inhibitors, a metal-coordinating 
group is introduced at the amino-terminal side of the 
peptide. 

•	 For serine and cysteine protease inhibitors, the groups 
that interact with the catalytic center are not necessarily 
but most often at the carboxy-terminal end of the peptide.

The chemogenomics strategy in the design of protease inhibitors 
will be illustrated by four examples: the design of HIV protease 
inhibitors, thrombin and factor Xa inhibitors, selective ACE and 
dual zinc protease inhibitors, and “dual warhead” MMP/cathepsin 
inhibitors. Renin is an aspartyl protease, which is involved in 
blood pressure regulation by converting angiotensinogen into 
angiotensin I, the substrate of angiotensin-converting enzyme 
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(ACE). Hundreds of person years of research were invested to 
arrive at orally active peptidomimetics, without much success. 
When it became known that HIV protease is also an aspartyl 
protease, the accumulated experience on the design of transition 
state inhibitors could be transferred to this new project.

The same situation applies to inhibitors of the serine protease 
thrombin; here also all efforts to arrive at orally active analogs 
had only limited success. However, structural elements from 
inhibitors of another serine protease, elastase, e.g., the pyrimidone 
ring system as a substitute for a flexible amino acid, could also be 
applied to thrombin inhibitors. Later on, the search for inhibitors 
shifted from thrombin to factor Xa, a serine protease with similar 
specificity as thrombin.

Figure 5: Captopril 12 was the very first marketed angiotensin-convert-
ing enzyme (ACE) inhibitor. The specific ACE inhibitor 13a (n = 0, R = 
β-H; Ki ACE = 11.5 nM, Ki NEP24.11 = 2,820 nM) resulted from structural 
variation, as well as the dual zinc protease inhibitors 13b (n = 0, R = α-H; 
Ki ACE = 16 nM, Ki NEP24.11 = 11.5 nM) and 13c (n = 1, R = α-H; Ki ACE 
= 5.5 nM, Ki NEP24.11 = 1.1 nM)

Figure 6: Compound 14 is a nanomolar metalloprotease inhibitor (IC50 
MMP1 = 3 nM; IC50 Cat L > 1,000 nM), whereas compound 15 is a nano-
molar cysteine protease inhibitor (IC50 MMP-1 > 1,000 nM; IC50 Cat L = 3 
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nM). Crossover of the two structures produces the dual inhibitor 16 (IC50 
MMP1 = 25 nM; IC50 Cat L = 15 nM); the dashed lines indicate the com-
mon center part of all three molecules

Captopril 12 was the very first ACE inhibitor that was introduced 
into human therapy. A multitude of ACE-inhibiting analogs 
resulted from this drug, e.g., the ACE-specific inhibitor 13a and 
the dual ACE/NEP24.11 inhibitors 13b and 13c (Fig. 5).

A dual warhead inhibitor resulted from a merger of the structures 
of a selective matrix metalloprotease (MMP) inhibitor 14 with a 
cathepsin L inhibitor 15. Although MMP-1 is a zinc protease and 
cathepsin L is a cysteine protease, the resulting inhibitor 16, which 
bears both “warheads,” inhibits both enzymes with nanomolar 
activity (Fig. 6).

Kinases play a most important role in cell signaling. More than 500 
different kinases are coded by the human genome; after activation, 
they phosphorylate either a tyrosine hydroxyl group (tyrosine 
kinases) or a serine or threonine hydroxyl group (serine/threonine 
kinases). Some kinase mutants are constitutionally active: they 
activate a signaling cascade without any external stimulus.

Figure 7: Structural variation of the protein kinase C (PKC) inhibitor 17 
produced the dual PKC/bcr-abl inhibitor 18a (R = H). A minor structural 
modification to 18b (R = CH3) abolished the undesired PKC activity. Af-
ter introduction of a methylpiperazine residue, to enhance the aqueous 
solubility, the bcr-abl inhibitor imatinib 19 (Glivec, Gleevec) resulted
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Chronic myelogenous leukemia is caused by such a constitutionally 
active kinase. The coding regions of an abl tyrosine kinase at 
chromosome 9 and a bcr serine/threonine kinase at chromosome 
22 form after reciprocal translocation a bcr-abl coding region 
at the new, shorter version of the chromosome 9, the so-called 
Philadelphia chromosome. The resulting bcr-abl tyrosine kinase 
is constitutionally active. At Novartis, a class of protein kinase C 
(PKC) inhibitors were optimized to the PKC inhibitor 17. Amide 
analogs 18a of this compound showed activity against PKC and 
bcr-abl kinase; surprisingly, the methyl analog 18b inhibited only 
bcr-abl kinase; finally, an N-methyl-piperazine residue was added 
to increase solubility (Fig. 7). Imatinib (Gleevec, Glivec), 19, was 
clinically developed and is successfully used for the treatment of 
chronic myelogenous leukemia.

1.1.5 Receptor Ligands

G protein-coupled receptors (GPCRs) are a large group of 
evolutionarily related seven-transmembrane proteins. They 
are activated by such different agents as light, ions, odorants, 
neurotransmitters, peptides, and proteins and transfer the 
stimulus by the G protein complex. Serotonin receptors are made 
up of 14 subtypes, 13 of which are GPCRs, whereas the 5-HT3 
subtype is a ligand-controlled ion channel.

Figure 8: Compound 20 is a highly selective 5-HT3 antagonist (Ki 5-HT3 
= 3.7 nM, Ki 5-HT4 > 1,000 nM), whereas the chemically closely related 
compound 21 is a selective 5-HT4 antagonist (Ki 5-HT3 > 10,000 nM, Ki 
5- HT4 = 13.7 nM).

From pharmacophore models, Lopez-Rodriguez et al. designed 
the structure of a highly selective 5-HT4 receptor ligand 20, 
which shows a selectivity difference of more than five orders of 
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magnitude to its closely related, 5-HT3-selective analog 21 (Fig. 8)

Somatostatin receptors are made up of five subtypes: sst1–sst5. 
In their attempt to obtain selective, peptidomimetic ligands for 
each subtype, Rohrer et al. synthesized four β-turn-mimicking 
combinatorial libraries, with up to 350,000 compounds per library. 
Highly specific ligands resulted for all five subtypes.

Nuclear receptors are another important receptor family. They 
are made up of a ligand-binding domain and a DNA-binding 
domain. After activation by their specific ligands, e.g., the steroid 
hormones, the thyroid hormone or retinoic acid, receptor dimers 
bind to DNA and activate the expression of certain proteins.

Estrogen receptors exist as two distinct subtypes, ERα and ERβ, 
which are relatively abundant in several tissues. As their function 
in all those organs and potential interaction, forming ERα/ERβ 
heterodimers, has not been completely elucidated so far, it is most 
important to find selective ligands for both receptors. By homology 
modeling of the ligandbinding domain of the ERβ receptor, based 
on the corresponding 3D structure of the ERα receptor, Hillisch 
et al. inspected the minor differences in the estradiol binding site: 
in human ERβ, the leucine of ERα at the “top” of the binding 
site (“top” refers to the β side of the steroid ring) is replaced by 
a flexible, sterically less demanding methionine, whereas at the 
“bottom” of the binding site, close to ring D, a methionine in ERα 
is replaced by an isoleucine in ERβ.

Figure 9: The estradiol analogs 22 (40% of estradiol activity, ERα-
selective) and 23 (50% of estradiol activity, ERβ-selective) have been de-
signed as selective ERα and ERβ receptor ligands. Even though they are 
less active than estradiol, they show 300-fold and 190-fold selectivity for 
the different receptor subtypes.
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Using this information on the narrower binding pocket above and 
below the estradiol binding sites of ERα and ERβ, respectively, the 
selective ligands 22 and 23 could be designed (Fig. 9). 

Whereas 22 has only about 40% of the activity of estradiol at ERα, 
it shows a 300-fold selectivity against ERβ; on the other hand, 
compound 23 has only 50% of the activity of estradiol at ERβ but 
a 190-fold selectivity against ERα.

The thyroid hormone T3 and its less active storage form T4 are 
iodinated phenoxy-phenylalanines, which bind to two nuclear 
receptor subtypes TRα and TRβ. Unfortunately, the affinity of T3 
to TRα is higher than to TRβ, which causes cardiac side effects, if 
hypothyroid patients are treated with T3. 

The alkyl analogs 24 and 25 are less active at TRα than at TRβ 
(Fig. 10). Compound 26 binds to both receptor subtypes but has 
no agonistic activity at TRα and is only a weak partial agonist 
at TRβ; correspondingly, this compound might be used to treat 
hyperthyroid patients. 

Other patients suffer from a R320C mutant of TRβ; due to the 
exchange of the strongly basic arginine side chain against the 
neutral cysteine, T3 binds with much lower affinity to this receptor, 
causing a hypothyroid condition. 

Treatment with T3 or compound 25 is impossible, due to the high 
affinity of these compounds to the TRα receptor. Conversion of 
the acid 25 into the neutral analog 27 solved the problem: 27 has a 
higher affinity to the TRβ mutant than to TRα (Fig. 10).

Integrins are another group of receptors. They are expressed at 
cell surfaces and their endogenous ligands, e.g., fibrinogen at the 
GP IIb/IIIa integrin (also called fibrinogen receptor) or vitronectin 
at the αvβ3 integrin (also called vitronectin receptor), mediate cell–
cell contacts.
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Figure 10: Compounds 24 (CGS-23425) and 25 (GC-1, UCSF) are alkyl 
analogs of the thyroid hormone T3; in contrast to T3, which has a higher 
activity at TRα, these analogs have a higher activity at the TRβ. Com-
pound 26 is a thyroid hormone antagonist at TRα and a weak partial ag-
onist at TRβ. Neither T3 (EC50 hTRα = 0.14 nM, EC50 hTRβ = 0.66 nM, EC50 
hTRβ R320C mutant = 4.3 nM) nor compound 25 (EC50 hTRα = 6.6 nM, 
EC50 hTRβ = 3.7 nM, EC50 hTRβ R320C mutant = 38 nM) has sufficient ac-
tivity at a hTRβ R320C mutant. Compound 27 is a neutral, weakly active 
but TRβ R320C mutant-selective thyromimetic (EC50 hTRα = 38 nM, EC50 
hTRβ = 32 nM, EC50 hTRβ R320C mutant = 7.0 nM)

The recognition motif of these two receptors is the Arg-Gly-Asp 
(RGD) sequence of the ligands, obviously in different conformations. 
Research at SmithKline Beecham led to the discovery of ligands 
that showed, after minor chemical modification of a basic side 
chain, some selectivity for each of these two receptors.

Figure 11: Compound 28 (lotrafiban, Ki GP IIb/IIIa = 2.5 nM, Ki avβ3 = 
10,340 nM; failed in phase III clinical trials) is a specific fibrinogen recep-
tor antagonist, whereas compound 29 (Ki GP IIb/IIIa = 30,000 nM, Ki avβ3 
= 2 nM) is a specific vitronectin receptor antagonist.



Chemogenomics16

After extensive structural modification, the highly selective ligands 
28 (SB 214 857, lotrafiban) and 29 (SB 223 245) resulted in their 
selectivity (Fig. 11) (Samanen et al. 1996; Keenan et al. 1997; Miller 
et al. 2000). They differ by more than seven orders of magnitude.

1.2 CHEMOGENOMICS STRATEGY

Chemogenomics integrates target and drug discovery by using 
active compounds that function as ligands as probes to characterize 
proteome functions. The interaction between small compound 
and protein that causes the phenotype. 

Once the phenotype is characterized, we could link the protein to a 
molecular event. Compared to genetics, chemogenomics methods 
can change the function of the protein, not the gene. In addition, 
chemogenomics is able to observe the interaction and reversibility 
in real time. 

For example, a change of the phenotype can be observed only 
after adding a special component and can be interrupted after its 
withdrawal from the environment. 

Currently there are two experimental chemogenomic approaches: 
classical forward and reverse chemogenomics chemogenomics. 
Forward chemogenomics attempt to identify drug targets in the 
search for molecules which give a certain phenotype on cells or 
animals, while reverse chemogenomics to validate phenotypes by 
searching for molecules that interact specifically with this protein. 

Both of these approaches require a suitable collection of compounds 
and an appropriate model system for screening substances and 
looking for the parallel identification of biological targets and 
biologically active compounds. 

Biologically active compounds that can be detected by direct or 
reverse chemogenomics approaches are called the modulators 
because they bind to and modulate specific molecular targets, so 
they can be used as a target therapy’.
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Figure 12: Forward- and reverse-experimental chemogenomic ap-
proaches. The initial step in forward and reverse chemogenomics is to 
select a suitable collection of compounds and an appropriate model sys-
tem in which to screen them. In both approaches, the sequential steps 
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of the assay — the transfer of ligands, cells, assay reagents and plates 
— can be fully or semiautomated. IT integration is a key element in in-
dustrial setups. A. In forward chemogenomics, the cell or organismal 
model system is typically dispensed in multiwell microtitre or nanowell 
plates. Solutions of single ligands are added from the stock plates to dif-
ferent wells. After incubation, an aliquot is transferred from the donor 
plate to a new recipient plate, in which the ligand–target binding assay 
is carried out. The effects of a compound are assayed by one of several 
methods: functional assays directly measure cellular activities such as 
cell division; marker assays, such as reporter-gene assays and whole-
culture CYTOBLOTS, identify specific molecular events that act as sur-
rogate transcriptional and post-transcriptional markers for phenotypic 
changes of interest; automated microscopy or imaging-based screening 
are innovative approaches that attempt to capture further morphologi-
cal changes. The end point of most cell-based high-throughput assays 
is a spectroscopic readout; readout data are automatically transferred 
to a microprocessor for final data calculation, including in silico quality 
control and structure–activity relationship (SAR) analysis. Active com-
pounds that achieve the desired phenotypic change are then selected 
to identify their molecular targets. This can be done in several ways, of 
which affinity matrix purification, phage display or transcriptional or 
proteomic profiling are the most commonly used approaches. In profil-
ing experiments, protein or RNA isolates of the treated model system 
are analysed in reference to mock treatment for global molecular drug 
signature assessment. B. In reverse chemogenomics, emphasis is espe-
cially placed on the parallel exploration of gene and protein families. 
Here, target gene sequences that show a certain degree of homology 
are expressed in a host cell: these family target proteins are purified, 
collected and subjected to assay design. Based on the SAR homology 
concept116 that the degree of similarity of ligands determines similari-
ties in target binding, candidate ligands that show a desirable similar-
ity to a ligand that is known to interact with one member of a target 
family are selected. The ultimate goal is to identify new ligands that hit 
either the same target or analogous target-family members. Reverse che-
mogenomics is normally carried out using a cell-free binding system, in 
which either the target protein or the libraries are immobilized on assay 
plates or dispensed in multiwell plates, and the study compounds or 
target proteins, respectively, are added in solution. Various technologies 
are used to detect ligand–target binding. In fluorescence-based detec-
tion, an imaging camera automatically captures the fluorescence signal 
that corresponds to ligand–target binding. As in forward chemogenom-
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ics, readout data are transferred to a data analysis system, which uses 
sophisticated computational algorithms to mine the large amounts of 
— and, to some extent, noisy and error-prone — data.

1.2.1 Forward Chemogenomics

Live chemogenomics, which is also known as classic 
chemogenomics, the phenotype studied and the small coupling of 
interacting with this function defined. The molecular basis of this 
desired phenotype is unknown. Once the modulators have been 
identified, they will be used as tools to search protein responsible 
for the phenotype. For example, the loss of function phenotype 
could be the inhibition of tumor growth. After connecting that 
lead to a target phenotype have been identified, the identification 
of gene and protein targets should be the next step. The main 
challenge of forward chemogenomics strategy lies in designing 
phenotypic assays that lead immediately from screening to target 
identification.

In ‘forward chemogenomics’ (FIG. 12a), the molecular basis of 
a desired phenotype is unknown. Here, a so-called ‘phenotypic 
screen’ is performed in single-cell organisms or cells from 
multicellular organisms using a panel of ligands. The biological 
systems can consist of prokaryotic and eukaryotic single 
cell organisms (bacteria and fungi; for example, the yeast 
Saccharomyces cerevisiae), physiological or pathological cells 
from complex multicellular vertebrate or mammalian organisms, 
or even whole higher organisms, such as fly, worm, zebrafish or 
mouse. Subsequently, high-throughput cell-based or organismal 
phenotypic assays are used to identify biologically active 
compounds .In other words, in this approach, compounds are 
identified on the basis of their conditional phenotypic effect 
on a whole biological system rather than on the basis of their 
inhibition of a specific protein target. The phenotypic screen is 
designed to reveal a novel conditional phenotype (either a loss-
of-function or a gain of-function phenotype) and the affected 
protein or pathway. For example, a loss-of-function phenotype 
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could be an arrest of tumour growth. Once biologically active 
compounds that lead to a target phenotype have been identified, 
efforts are directed towards the study of the mechanistic basis of 
the phenotype by identifying the gene and protein targets using 
various high throughput methods (FIG. 12a). The biological and 
structural information on the target can, in turn, be used in reverse 
chemogenomicsto identify and develop, through HTS, new and 
more potent compounds that disrupt the function of the target. 
On the other hand, active ligands that are identified using reverse 
chemogenomics can be biologically validated by examining the 
phenotypic effect of altering the function of their protein targets 
in a forward chemogenomics setting. The main challenge of this 
chemogenomics strategy lies in designing phenotypic assays that 
lead immediately from screening to target identification.

1.2.2 Reverse Chemogenomics

In reverse chemogenomics, small compounds that disturb the 
function of the enzyme in terms of enzymatic in vitro test to 
be determined. Once the modulators have been identified, the 
phenotype caused by the molecules to be analyzed in test cells 
or on the entire body. This method will allow you to identify 
or confirm the enzyme role in biological reactions. Reverse 
chemogenomics used almost identical target sets that were used in 
the development of drugs and molecular pharmacology over the 
past decade. This strategy is now enhanced by parallel screening 
and the ability to perform lead optimization on many targets that 
belong to one target family.

In ‘reverse chemogenomics’, gene sequences of interest are first 
cloned and expressed as target proteins, which are then screened 
in a high throughput, ‘target-based’ manner by the compound 
library (FIG. 12b). Such a HIGH-THROUGHPUT SCREENING 
(HTS) method can involve many different bioassays ,which 
monitor the effects of different compounds on specific targets(such 
as the ability to bind a protein), on specific cellular pathways 
(for example, the capacity to inhibit the mitogenic pathway of 
a tumour cell) or on the phenotype of a whole cell or organism. 
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The assays can be generally divided into cell-free, cell-based and 
organismal assays .Cell-free, universal binding assays — in which 
several compounds are simultaneously tested for their binding 
affinity to a wide panel of specific targets — are usually simple, 
precise, highly automated and compatible with a very high 
throughput approach. Target–ligand interactions (so-called ‘hits’) 
are unambiguously identified in the absence of confounding 
variables. For example, fluorescent-based methods for detecting 
the LIGAND-INDUCED CONFORMATIONAL STABILIZATION 
of proteins or MASS-SPECTROMETRY-based detection systems 
have been described as a meansto examine the effect of bound 
ligands. By contrast, cell-based and organismal assays — in which 
selected compounds are delivered directly to cells or organisms 
in vitro — identify hits within a relevant cellular context, but, 
because of the interaction with multiple targets, hits require 
additional mechanistic characterization. Whereas cell-free assays 
are primarily used in reverse chemogenomics, if target information 
is available, cell-based and organismal assays are predominantly 
used in forward chemogenomics (see below)to examine broad 
compound effects on intact biological systems.

The hits that are revealed in this way are used to generate lead 
compounds. These are then optimized by the careful selection of 
the most promising candidates and through the synthesis and 
testing of chemical ANALOGUES with similar and, it is to be 
hoped, improved properties. Reverse chemogenomics is therefore 
virtually identical to the target-based approaches that have been 
applied in drug discovery and molecular pharmacology over 
the past decade; however, these are now enhanced by parallel 
screening and by the ability to perform lead optimization on many 
targets that belong to one target family.

1.2.3 Predictive Chemogenomics

Whereas the principal goal of chemogenomics is to identify 
new therapeutic targets and drugs, ‘predictive chemogenomics’ 
strategies primarily attempt to holistically characterize treatment 
responses, coupled with the secondary aim of identifying novel 
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therapeutic molecules. The central approach of predictive 
chemogenomics is to initially collect the genomic responses (for 
example, through microarray analysis) and the pharmacological 
responses(for example, through growth inhibition assay) of a cell 
type or tissue to treatment with various drugs.

Table 1: Key in silico methods that are used to support chemogenomics 
approaches

Each drug profile represents the drug’s own signature at the 
transcriptional and molecular pharmacological level. Biostatistical 
integration of the genomic and pharmacological data then reveals 
predicted gene–drug relationships. This approach can be extended 
to look at families of drugs to extract the signatures that are common 
to a class of molecules (that is, the effect that is linked to a chemical 
structure) and those that are drug specific. This strategy will not 
necessarily reveal drug targets but might identify molecules that 
significantly influence the effect of a drug. Computational or in 
silico methods can complement experimental chemogenomics 
strategies in the search for such predictive molecules (TABLE 1).
Predictive chemogenomics has considerable overlap with ‘PHAR-



Introduction to Chemogenomics 23

MACOGENOMICS’. In contrast to pharmacogenomics, how-
ever, predictive chemogenomics strategies generate gene–ligand 
response associations by concurrently considering the response 
profiles of thousands of drugs, rather than those of one molecule 
at a time.

1.2.4 Ligand and target selection

From a cost perspective, it is important that biologically active 
chemical candidates are identified quickly, efficiently and accurately. 
The original combinatorial chemistry approach to ligand and 
target identification involved the ULTRA HIGH-THROUGHPUT 
SCREENING (uHTS) of diverse-compound collections; however, 
it soon became clear that such massive screening is hardly 
applicable in the above experimental chemogenomics settings 
because of the necessary high level of financial investment and 
the substantial efforts needed for data handling (IT logistics and 
automation) and interpretation. In experimental chemogenomics, 
emphasis has therefore now been placed on the pre-selection of 
potential ligands to allow the study of smaller, focused, libraries 
of compounds. Several strategies have been applied to generate 
so-called ‘targeted libraries’, in which the design and selection 
of ligands is based on the information that is available on either 
the target itself (for example, through three-dimensional X-ray/
nuclear magnetic resonance (NMR) structure) or on ligands that 
are known to interact with the target. For targets with limited or 
no biostructural information, PRIVILEGED STRUCTURES are 
often considered in library design. Today, typical chemogenomics 
screening libraries contain several types of designed subset, 
including annotated known biologically active compounds, 
target-family focused libraries (for example, kinases, proteases), 
peptide mimetics (for example, β-strand, β-turn and α-helix 
structural mimetics), natural products and derivatives thereof, 
and DIVERSITY SETS of drug-like compounds.

As well as using focused library design, cost-efficient 
chemogenomics requires genetic sequences of relevance to be 
dissected from those that do not contribute to the ligand–target 
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interaction. For this purpose, sequence homology alignments and 
biostructural algorithms can be used to narrow down the number 
of targets to be tested.

1.2.5 Reverse-chemogenomics case study: designing a fo-
cused library of ligands for monoamine-related GPCRs

The successful design of family-focused target libraries depends on 
how similar the ligands and binding sites are among the members 
of a gene family. We recently proposed that the monoamine-related 
G-protein coupled receptor(GPCR)subfamily, for which motif-
based sequence searches identified 50 human GPCR members, 
recognizes its ligands through 3 binding sites. 

The sequence comparisons of the 50 identified GPCRs, based on 
the 7-transmembrane (7TM) domain, are shown in the dendrogram 
in panel a (the scale of sequence identity is indicated by the 5% 
distance bar and the numbers on the branches are BOOTSTRAP 
values out of 1,000 replicates).

For the serotonin 5HT1A-receptorsubtype, each of the three 
spatially distinct binding regions allows the receptor to bind a 
different ligand (panel b, top).These regions are located within the 
highly conserved 7TMdomain of the receptor and overlap at the 
residueD3.32 inTM3,which is responsible for the recognition of the 
basic amino group of the ligands. This information motivated the 
design of the Novartistertiary amine (TAM) combinatorial ligand 
library. The TAM structures, for which prototypes are shown in 
panel c, were designed to be similar in architecture and properties 
to known monoamine-related GPCR ligands, for which examples 
are shown in panel b. 

The successful search for antagonists for the 5HT7 GPCR, which has 
the 5HT1A receptors as next neighbor in the sequence dendrogram, 
illustrates the use of the TAM library. By searching with 5HT1A 
reference compoundsin the TAM library (using the Similog 
method ),we were able to identify a 10% hit rate (pKB< 5 µM, where 
pKB= the negative logarithm of the binding constant) when only 
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a biological assay with limited capacity was available — that is, 
when only a limited number of componds could be screened. 
The hits corresponded to arylpiperazines(see panel c),which, in 
follow-up studies, were also active on other monoamine-related 
GPCRs.
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1.3 CHEMOGENOMICS APPLICATION

Chemogenomics strategies are increasingly being harnessed by 
various fields of medical research – for example, those related 
to cancer or immune, inflammatory and hormone disease – in 
attempts to develop new targeted therapies as rapidly as possible. 

Several advances have been made by chemogenomics in 
understanding the molecular biology of various diseases and in 
identifying potential pharmacological therapies for them. TABLE 
2 summarizes some recent results of chemogenomics research 
into human diseases.

In general, chemogenomics approaches can be used for three 
different purposes in disease research. 

First, chemogenomics can be used to identify new drug targets 
and might allow their biological functions to be understood. 
In this context, forward chemogenomics strategies are used to 
initially examine the phenotypic effect of a compound or a panel 
of compounds on a
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Table 2: Chemogenomics applications

Biological system, followed by an investigation into how these 
compounds interact with the drug targets. As a result of these 
approaches, the number of newly identified targets (and compounds) 
is steadily increasing (TABLE 2). One of the earliest successes of 
this method was the discovery of the immunosuppressant FK-
506 (which has entered clinical practice as tracrolimus) in 1987 
and the subsequent identification of calcineurin as its molecular 
target. The application of forward chemogenomics to cancer and 
angiogenesis research, for example, has identified the heat-shock 
protein 90 (HSP90) molecular chaperone and ATP citrate lyase 
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(ACL) as targets of radicicol (Humicola fuscoatra, an antifungal 
antibiotic that has anti-tumour and anti-neoplastic activity) and its 
analogues KT8529,KF25706,BR-1 and BR-6 (REFS 32–34). Second, 
chemogenomics approaches are applied to discover, in a high-
throughput fashion, new chemical candidates for molecular targets 
and phenotypes of interest. Hundreds of novel drug-like ligands have 
been identified for various molecular targets in the past few years 
through reverse, in silico and forward chemogenomics (TABLE 2). 
These targets relate to different disease areas, such as cancer, asthma, 
neuroinflammation and hyperthyroidism. Finally, chemogenomics 
can be used to understand the mechanism of drug action, which 
also includesfinding genetic markers of drug susceptibility (TABLE 
2). For example, the complex molecular effects of rapamycin (an 
antibiotic derived from Streptomyces hygroscopicus that has anti-
fungal, anti-inflammatory, anti-tumour and immunosuppressive 
properties) and wortmannin (a fungal metabolite isolated from 
Penicillium wortmanni that has anti-neoplastic and radio sensitizing 
effects) were recently examined in a chemogenomics fashion using 
homozygous and heterozygous collections of the yeast S.cerevisiae: 
defined and known regions of the yeast genome had been deleted 
and targets were identified on the grounds that a yeast strain bearing 
a deletion in a gene that encodes a protein target is more resistant to 
treatment. Similarly, the heterozygous yeast-deletion model has been 
recently used to identify gene products that functionally interact 
with various compounds, including anticancer, antifungal and 
anticholesterol agents. The published data show signs of promise for 
all three aspects of chemogenomics.

Combining forward and reverse chemogenomics. Several studies 
stress the power of combining forward and reverse chemogenomics 
in concurrent target and drug discovery.Assuch,targetsidentified 
forlead compounds by phenotypic screening have been 
subsequently used to develop more potentsynthetic analogues by 
HTS . To take a specific example, sequential forward and reverse 
chemogenomics have led to the initial identification of histone 
deacetylase (HDAC) and the subsequent development of HDAC 
inhibitors, such as depsipeptide, sodium phenylbutyrate, CI-994 
and suberoylanilide hydroxamic acid (SAHA) .Clinical testing of 



Introduction to Chemogenomics 29

these compounds has already begun in patients with advanced 
solid cancers, peripheral and cutaneous T-cell lymphoma, acute 
myeloid leukaemia and MYELODYSPLASTIC SYNDROME. In 
turn, phenotypic screening of compoundsthat have been recently 
discovered by reverse chemogenomicsto inhibit a certain biological 
pathway can be used to identify the immediate target of compound 
action in this pathway. For example, the redox effector factor-1 
(Ref1) gene has been recently identified as a therapeutic target for 
asthma,following HTS for small-molecule inhibitors of activator 
protein-1 (AP1)transcription . The potential of chemogenomics 
to identify novel compounds for many targets has stimulated 
particular interest in its application to cancer research. Compared 
with other diseases, cancers normally demonstrate complex 
genetic changes. These changes involve multiple alterations at the 
genetic and gene-expression levels that lead to aberrant protein 
(target) abundance. The genetic and epigenetic profile is highly 
variable even among cancers that seem to be histologically similar. 
In addition, genetic instability can cause substantial intratumour 
genetic heterogeneity, which further increases the number of 
molecular aberrations. This presents two difficult challenges: how 
to identify the enormous quantity of pathogenic changes(and 
therefore potential targets)that are present in tumours and how 
to identify the many targeted therapeutics that are necessary to 
address as many genetic alterations as possible. Chemogenomics 
might successfully rise to both these challenges and it is in fact in 
the field of cancer research that currently most chemogenomics 
studies have been done

1.3.1 The Definition of the Mode of Action

Chemogenomics have been used to determine the MOA mode 
of action of traditional Chinese medicine TCM and Ayurveda. 
Substance contained in traditional medicine is usually more soluble 
than synthetic compounds, y” privileged structures” chemical 
structure, which are more often used for binding in various living 
organisms, and more fully known safety factors and tolerance. 
Thus, this makes them particularly attractive as a resource for 
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leadership structures in the development of new molecular 
entities. Databases containing chemical structures of compounds 
used in alternative medicine along with their phenotypic effects, 
in Silico analysis can be used to assist in determining the MOA 
for example, to predict indicators of the ligand, which are related 
to known phenotypes for traditional medicines. In the study, the 
case for CPR, therapeutic grade a tonic and restorative medicine” 
was estimated. Therapeutic actions or phenotypes for this 
class include anti-inflammatory, antioxidant, neuroprotective, 
hypoglycemic activity, immunomodulatory, anti-metastatic and 
anti-hypertensive. Sodium-glucose transport proteins and PTP1B 
to insulin signaling regulator has been identified as goals that are 
associated with the hypoglycemic phenotype suggested. Case 
study for Ayurveda participates anti-cancer drugs. In this case, the 
target forecasting software is enriched for the purposes directly 
related to the progression of cancer, such as steroid-5-alpha-
reductase and synergistic goals efflux pump P-GP. These target-
phenotype links can help to identify new MoA. 

In TCM and Ayurveda, chemogenomics can be applied at an early 
stage of drug discovery to determine the mechanism of action of 
compounds and use of genomic biomarkers of toxicity and efficacy 
for use in Phase I and II clinical trials.

1.3.2 The Identification of New Drugs

Chemogenomics profiling can be used to identify entirely new 
therapeutic targets, such as new antibacterial drugs. The study is 
based on an existing library of ligand to enzyme, called murD, 
which is used in the synthesis of peptidoglycan the way. Based 
on the principle of similarity chemogenomics, the researchers 
made a map of the murD ligand library to other family members 
of the Mur ligase, to identify new targets for known ligands. 
Identified ligands would be expected to be broad-spectrum gram-
negative inhibitors in experimental tests because the synthesis of 
peptidoglycan is exclusive to bacteria. Structural and molecular 
studies have shown the docking of the ligands of candidate for 
Goro and Ligas Muir.
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1.3.3 Identifying Genes in Biological Reactions

Thirty years after post translationally modified derivative of 
histidine diphthamide, it was determined chemogenomics have 
been used to detect the enzyme responsible for the last stage of its 
synthesis. Dipthamide is post translationally modified histidine 
residue found in elongation factor 2 EEF-2. The first two steps of 
the biosynthesis leading to dipthine was known, but the enzyme 
responsible for amidation dipthine in diphthamide remains a 
mystery. The researchers used Saccharomyces cofitness data. Data 
Cofitness data representing the similarity of growth fitness under 
different conditions between any two different strains of the 
deletion. Under the assumption that strains lacking diphthamide 
synthetase gene should have a high cofitness strain with no 
other diphthamide biosynthesis genes, they identified ylr143w 
as a strain with high cofitness for all other strains lacking known 
diphthamide biosynthesis genes. Subsequent experimental assays 
confirmed that YLR143W was required for diphthamide synthesis 
and was the missing diphthamide synthase.

1.4 CHALLENGES AND LIMITATIONS

Chemogenomics is one example of the many innovative platforms 
that pharmaceutical and biotechnology research have generated to 
accelerate the pace of drug discovery. Such combined efforts have 
been motivated by the assumption that the judicious application 
of genomics can help to improve efficiencies throughout the 
drug-discovery process — for example, by identifying candidate 
failures early in the process — before moving into expensive later-
phase trials.

However, the decreased output of commercialized drugs during 
the past few years indicates that genomics might currently 
be doing more to hinder drug-discovery programmes than to 
stimulate them. The sheer volume of data that are generated by 
chemogenomic analyses creates a gap between drug discovery 
and drug development. Considering that an important driving 
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concept of chemogenomics is to reduce the time taken for drug 
development, it is under tremendous pressure to deliver some valid 
results quickly. Therefore, current chemogenomics programmes 
are anxiously seeking to accelerate their throughput at every stage 
of the drug-development process.

1.4.1 Hit Selection and Validation

HTS often generates an enormous number of hits. In addition, 
HTS data are noisy and error prone and include a substantial 
portion of false-positive and false-negative hits. This presents 
two main challenges: how to mine the large data sets to identify 
those hits with the greatest potential as leads and how to weed out 
false-positive hits. It is generally agreed that the bottleneck that 
is created by genomics-based drug discovery occurs not because 
the process fails to identify hits but because of the slow process 
of optimizing and validating them — that is, it is improving 
their ADMET PROPERTIES and determining whether they can 
convincingly reverse or ameliorate a disease state80 .Negligent 
hit validation often occurs at the expense of taking compounds 
through development, only to later fall short of success. Validation 
is not always straight forward, however, as sufficient biological 
information about many targets is often lacking and, in turn, 
for many new targets with true disease impact, leads cannot 
be identified or optimized because of the increasing sizes and 
concurrent stagnating diversities and complexities of chemical 
libraries.

The design, adaptation and refinement of sophisticated ‘front-
end’ computational approaches that can assist in making an 
informed, quick decision as to which hits should be pursued 
will be crucial for the success of chemogenomics. Statistical 
and chemoinformatics approaches for assessing the quality 
control of HTS data and for mining their chemical and biological 
information have been developed, for example, by incorporating 
pattern-detection methods for the identification of pipetting 
artefacts or for the detection of chemical-class-related effects. 
The development of chemoinformatics methods and procedures, 
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such as recursive partitioning, phylogenetic-like tree algorithms 
or binary quantitative structure–activity relationships (QSARS) 
, which support the automatic identification of hits that are 
frequently identified by HTS, false positives and negatives, as 
well as structure–activity relationship (SAR) information, is 
essential for generating knowledge from HTS data.The myriad 
efforts that surround the design of appropriate analytic tools 
have to cope with the difficulty of integrating disparate types of 
information, especially PARSING and assimilating both chemical 
and genomics information data (tools such as Scitegic Pipeline 
pilot or Kensington Inforsense provide the required integration 
concepts).

1.4.2 Data Integration

Chemogenomics-orientated drug discovery programmes face 
many data-management challenges, which have partly been met 
by the recent development of innovative ‘biochemoinformatics’(or 
pharmacoinformatics) platforms. These integration platforms 
aim to collect, store and disseminate diverse data sets — such 
as combinatorial library diversity data, small-molecule chemical 
structure and biomolecule protein structure data, annotation 
information, HTS bioassay data and imaging data — in as efficient 
and productive a manner as possible and to maximize the potential 
of these data sets.

In particular, integrating information about ligands and targets 
is complex. This process is related to the current bioinformatics 
project to create ontologies for proteomics, the aim of which is to 
generate a systematic definition of the structure and function of 
all proteins in a genome. The key difficulty lies in integrating two 
ontologies—one for protein structure and the other for protein 
function — that have been developed separately and remain 
largely isolated. The description of active sites and binding sites in 
protein structures is recognized here as one potential connection 
point that describes the protein function. Classifications that are 
based on molecular interactions, in which each protein is associated 
with a vector that consists of the probability of binding to various 
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ligands — the central chemogenomics idea—might therefore 
become prominent in the future. The emphasis on protein-
structure similarity is recognized here as a guiding principle. The 
establishment of standardized molecular informatics platforms 
and real drug-discovery ontologies at the genome level — that 
integrate the relevant chemical and biological knowledge—is 
therefore pursued by the academic and industrial drug-discovery 
organizations and by companies that are involved in informatics-
based discovery.

Knowledge-based chemogenomics companies are currently 
developing comprehensive molecular information systems for 
several target classes, including G-protein-coupled receptors, 
kinases, ion channels and proteases. Their main contribution has 
been to integrate, in a comprehensive manner, data from patents 
and selected literature, including two-dimensional structures of 
the ligands, target sequence and classification, mechanisms of 
action, structure–activity data, assay results and bibliographic 
information, together with chemical and biological search engines. 
Further academic and commercial programmes are gathering 
information on other types of target, such as those involved in 
adverse reactions, in ADMET mechanisms and those that define 
metabolic and signalling pathways.
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INTRODUCTION

Target-identification and mechanism-of-action studies have 
important roles in small-molecule probe and drug discovery. 
Biological and technological advances have resulted in the 
increasing use of cell-based assays to discover new biologically 
active small molecules. Such studies allow small-molecule action 
to be tested in a more disease-relevant setting at the outset, but 
they require follow-up studies to determine the precise protein 
target or targets responsible for the observed phenotype. Target 
identification can be approached by direct biochemical methods, 
genetic interactions or computational inference. In many cases, 
however, combinations of approaches may be required to fully 
characterize on-target and off-target effects and to understand 
mechanisms of small-molecule action. 

2
CHEMOGENOMICS ANALYSIS OF 
DRUG TARGETS
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2.1 COMPARATIVE CHEMOGENIC ANALYSIS FOR 
PREDICTING DRUG-TARGET

A computational technique for predicting the DTIs has now turned 
out to be an indispensable job during the process of drug finding. 
It tapers the exploration room for interactions by propounding 
possible interaction contenders for authentication through 
experiments of wet-lab which are known for their expensiveness 
and time consumption. Chemogenomics, an emerging research 
area focused on the systematic examination of the biological 
impact of a broad series of minute molecular-weighting ligands 
on a broad raiment of macromolecular target spots. 

Additionally, with the advancement in time, the complexity of the 
algorithms is increasing which may result in the entry of big data 
technologies like Spark in this field soon. 

In the presented work, we intend to offer an inclusive idea and 
realistic evaluation of the computational Drug Target Interaction 
projection approaches, to perform as a guide and reference for 
researchers who are carrying out work in a similar direction. 
Precisely, we first explain the data utilized in computational Drug 
Target Interaction prediction attempts like this. We then sort and 
explain the best and most modern techniques for the prediction 
of DTIs. Then, a realistic assessment is executed to show the 
projection performance of several illustrative approaches in 
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various situations. Ultimately, we underline possible opportunities 
for additional improvement of Drug Target Interaction projection 
enactment and also linked study objectives.

The accurate prediction of interactions formed between a drug 
and its targeted protein via computational approaches is highly 
demanding because it is an efficient analog to the wet-lab 
experiments that cost heavily and requires additional efforts. 
Drug–target interactions (DTIs) which are newly discovered are 
critical for discovering novel targets that can interact with the 
existing drugs, as well as new drugs that can target some specific 
genes causing diseases. Drug repositioning is one of the efficient 
methods for the recovery of existing drugs for a novel cause, i.e. 
drugs which are developed for some particular purposes can be 
used to treat other biological conditions, meaning a single drug 
can be applied to many targets. There is already massive research 
going on the existing drugs based on the bioavailability and their 
safe use. Repositioning can limit drug costs and may enhance the 
process of drug discovery, making drug repositioning an eminent 
method for drug discovery. Some major techniques employed for 
the drug repurposing involve network-based approach, network-
based cluster approach, network-based propagation approach, 
text mining-based approach, and semantics-based approach. Drug 
repositioning is different from the traditional drug development 
that involves five stages, however, this method requires only 
4 stages which include compound recognition, obtaining a 
compound, production and FDA based safety monitoring. The 
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Gleevec (imatinib mesylate) is a well-known example of drug 
repositioning which was initially thought to interact only with 
the Bcr-Abl fusion gene related to leukemia. But later on, it was 
found that interaction of the Gleevec with PDGF and KIT can also 
be achieved, with an added advantage as a repositioned drug for 
the treatment of gastrointestinal stromal tumours. The success of 
Gleevec as a repositioned drug is one of the admired stories reported 
in the literature. As drug repositioning is already revealed by the 
example of Gleevec, it opens new doors for scientists to reposition 
other drugs as well. A drug’s feasibility (i.e. interaction of a single 
drug with multiple targets) may enrich its polypharmacology (i.e. 
having multiple beneficial effects), which motivates the scientists 
to discover more about drug repositioning. 

On the other side, there still exist a lot of small molecules that 
can be used as drugs but because of their interaction profiles, they 
cannot be used. For example, more than 90 million compounds 
are stored in the PubChem database whose interaction profiles 
are still unknown. Thus, by knowing the interactions between the 
disease-causing genes and the target proteins for these compounds 
may help in the discovery of new drugs as it can help the drug 
candidates with low potential to work within the drug discovery 
field. Therefore, for drug repositioning, the discovery of DTIs 
is very useful, as it aids with the drug candidate selection and 
predicts the side effects of these drugs in advance. Definitely, the 
experimental wet-lab techniques are more helpful in predicting 
such types of interactions but this job is much tiresome and 
also consumes a lot of time. Thus, from here, the computational 
methods take over as they are proven to be highly useful and may 
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prove efficient in predicting potential interacting candidates with 
satisfactory accuracy, hence reducing the DTIs to be inspected 
via in-vitro correspondent. 

2.1.1 Identification of Chemogenomic Features from Drug–
Target Interaction

Drug phenotypic effects are caused by the interactions between 
drug molecules and their target proteins including their primary 
targets and off-targets. Polypharmacology, the idea that drug 
phenotypic effects are not due only to its primary target, but 
rather to its whole spectrum of interactions, tends to become 
a new paradigm in drug design. It is important to identify the 
molecular mechanisms behind overall drug–target interactions or 
more generally compound–protein interactions, leading to many 
applications at different levels of the drug design process. There 
is a hypothesis that polypharmacology is strongly involved in 
both drug chemical substructures and protein functional sites, 
so there is a strong incentive to develop new methods to explore 
the association between drug chemical substructures and protein 
functional sites in terms of drug–target interactions. 

Docking or ligand–based approach (e.g. QSAR) have been proposed 
to analyze and predict interactions with respect to a single protein, 
so these methods cannot be applied to mine ligand–protein pairs 
across many different proteins. Chemogenomics is an emerging 
research area that attempts to associate the chemical space of 
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possible ligands with the genomic space of possible proteins. These 
methods are purely predictive and do not provide any further 
understanding of molecular mechanisms behind ligand–protein 
interactions. Drug–target interactions are due to drug chemical 
substructures and protein functional sites. Beyond the ligand–
protein interaction prediction problem, a variety of methods have 
been proposed to investigate the correlation between chemical 
substructures, biological activities and phenotypic effects. 

Several methods based on binding pockets comparison have 
been proposed, but they require the knowledge of protein 3D 
structures, which is not genome-wide available. However, most 
previous works have been performed from the viewpoint of either 
chemical substructures or protein functional sites.

One of the most challenging issues in recent chemogenomic 
research is to identify the underlying associations between drug 
chemical substructures and protein functional sites which are 
involved in drug–target interaction networks. 

Recently, a variant of sparse canonical correspondence analysis 
(SCCA) has been proposed to extract sets of chemical substructures 
and protein domains governing drug–target interactions, but the 
variation of detectable protein domains is very limited. 

The use of both graph mining and sequence mining has been 
proposed to extract drug substructures and protein subsequences 
which tend to appear in known drug–target interactions. However, 
the size of extracted subsequences is very small (e.g. two or three 
amino acids), which makes biological interpretation difficult, 
and any prediction framework for new interactions based on the 
extracted features was not provided.

We develop a classifier-based approach to identify chemogenomic 
features (the underlying associations between drug chemical 
substructures and protein domains) which are strongly involved 
in drug–target interaction networks. We propose a novel 
algorithm for extracting informative chemogenomic features 
by using  L1  regularized classifiers over the tensor product 
space of possible drug–target pairs. In the results, we show 
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that the proposed method can extract a very limited number 
of chemogenomic features without losing the performance 
of predicting drug–target interactions. We underline that the 
extracted chemogenomic features are biologically meaningful and 
discuss how the method can help the drug development process. 
The extracted substructure–domain association network enables 
us to suggest ligand chemical fragments specific for each protein 
domain and ligand core substructures important for a wide range 
of protein families.

2.1.2 Materials

Drug–target interactions involving human proteins were obtained 
from the DrugBank database. Target proteins belong to many 
different classes such as enzymes, ion channels, G protein-coupled 
receptors (GPCRs) or nuclear receptors. The dataset consists 
of 4809 drug–target interactions involving 1862 drugs and 1554 
target proteins.

Chemically identical drugs with the same structures (duplicates) 
are removed, so structures of all drugs in the above interaction 
data are unique. 

Each drug was represented by an 881 dimensional binary vector 
whose elements encode for the presence or absence of each 
PubChem substructure by 1 or 0, respectively. Among the 881 
substructures used to represent the chemical structures, 663 are 
actually used, because 218 do not appear in our drug set.

Genomic information about target proteins was obtained from 
the UniProt database, and associated protein domains were 
obtained from the PFAM database. Target proteins in our dataset 
were associated with 876 PFAM domains. Each target protein was 
represented by a 876 dimensional binary vector whose elements 
encode for the presence or absence of each of the retained PFAM 
domain by 1 or 0, respectively.



Chemogenomics48

2.1.3 Model

Linear model is a useful tool for classification and regression. 
Generally, a linear model represents each example E by a feature 
vector representation Φ(E) ∈ ℜD  and then estimates a linear 
function  f(E) =  wTΦ(E) whose sign is used to predict whether 
the example E  is classified into positive or negative. The weight 
vector w ∈ ℜD is estimated based on its ability to correctly predict 
the classes of examples in the training set. In addition to its 
classification ability, linear models have an interpretability of 
features. Since each element of a feature vector Φ(E) corresponds 
to an element of its weight vector  w, we can extract effective 
features contributing to the prediction by sorting elements of Φ(E) 
according to the values of the corresponding elements of w.

The prediction of drug–target interactions or compound–protein 
interactions is more complicated because the dataset consist of 
drug–target pairs or compound–protein pairs. Let C be a drug (or 
drug candidate compound) and P be a target (or target candidate 
protein). To apply the previous machine learning approach to 
this problem, we need to represent a pair of a compound C and 
a protein P by a feature vector Φ(C, P) and then estimate a linear 
function  f(C, P) = wT Φ(C, P) whose sign can be used to predict 
whether a pair of C and P interacts or not. The weight vector w is 
estimated based on its ability to correctly predict interactions of 
drug–target pairs or compound-protein pairs.

2.1.4 Binary classifiers

We apply two popular binary linear classifiers: logistic regression 
and linear support vector machine (SVM). Models are typically 
learned to minimize objective functions with a regularization for 
both classifiers. It is well known that the use of regularization is 
necessary to achieve a model that generalizes well to unseen data, 
particularly if the dimension of features is very high relative to 
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the amount of training data. One common regularization is  L2-
regularization which keeps most elements in the weight vector 
to be non-zeros. Therefore, one can suffer from interpreting 
features from learned weights. We shall, respectively, refer to L2-
regularized logistic regression and linear SVM as L2LOG and 
L2SVM. Another possible regularization is L1-regularization that 
makes most elements in the weight vector to be zeros. In this 
study, we introduce logistic regression and linear SVM with L1-
regularization for its high interpretability.

2.1.5 Extraction of Chemogenomic Features

We tested the feature extraction ability of five feature extraction 
methods: L1LOG, L1SVM, L2LOG, L2SVM and SCCA. Note 
that L1LOG and L1SVM are the proposed methods with L1-
regularization, L2LOG and L2SVM are the proposed methods 
with L2-regularization and SCCAis the previous method. We 
extracted chemogenomic features that were positively weighted in 
each method. The parameters in each method (e.g. regularization 
parameters, sparsity parameters and number of components) 
were optimized by performing cross-validation. 
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Table 1: Examples of extracted chemogenomic features by the L1LOG 
method

Rank Weight Substrucure ID 
Domain ID

PubChem substructure definition 
PFAM domain definition

1 2.1468 SUB158 >= 3 any ring size 5
1 2.1468 PF00106 short chain dehydrogenase
2 2.1118 SUB414 S(~C)(~H)
2 2.1118 PF00255 Glutathione peroxidase
3 1.9413 SUB158 >= 3 any ring size 5
3 1.9413 PF01126 Heme oxygenase
4 1.8035 SUB686 O = C-C-C-C-N
4 1.8035 PF01094 Receptor family ligand binding 

region
5 1.7707 SUB687 O = C-C-C-C-O
5 1.7707 PF03171 2OG-Fe(II), oxygenase superfamily
6 1.7514 SUB348 C(~C)(~H)(~O)(~O)
6 1.7514 PF03414 Glycosyltransferase family 6
7 1.6343 SUB387 C(:C)(:C)(:N)
7 1.6343 PF00042 Globin
8 1.6299 SUB409 O(~H)(~S)
8 1.6299 PF00167 Fibroblast growth factor
9 1.5807 SUB32 >= 2 P
9 1.5807 PF00348 Polyprenyl synthetase
10 1.5797 SUB567 O-C-C-N
10 1.5797 PF00464 Serine hydroxymethyltransferase
11 1.5105 SUB309 O-H
11 1.5105 PF00102 Protein-tyrosine phosphatase
12 1.5065 SUB433 C(-C)(-C)(= O)
12 1.5065 PF02518 Histidine kinase-, DNA gyrase B-, 

and HSP90-like ATPase
13 1.5033 SUB449 C(-H)(= O)
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13 1.5033 PF00107 Zinc-binding dehydrogenase
14 1.4956 SUB695 O = C-C-C-C-C = O
14 1.4956 PF00551 Formyl transferase
15 1.4784 SUB433 C(-C)(-C)(= O)
15 1.4784 PF07884 Vitamin K epoxide reductase family

Figure 1 shows a comparison of the number of extracted features be-
tween the five different feature extraction methods. In the case of SCCA, 
we evaluated the association between chemical substructures and pro-
tein domains by computing the product of their weight elements be-
tween chemical substructures and protein domains within each canoni-
cal component, and we took unique combinations as chemogenomic 
features if they were present in different canonical components. 

Figure 1: Comparison of the number of extracted features between dif-
ferent methods. 
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2.2 OPEN-SOURCE CHEMOGENOMIC DATA-DRIV-
EN ALGORITHMS FOR PREDICTING DRUG–TAR-
GET INTERACTIONS

Drug development is a complex and expensive process. Over the 
past decades, despite technological advances in drug discovery 
and increase of investments in pharmaceutical research and 
development, the number of new drug approvals has remained 
stagnant. The most significant causes of drug failures are toxicity 
and a lack of efficacy. Thus, there is an urgent need to develop 
effective drugs to overcome these limitations. Drug repositioning, 
the process of finding new uses outside the scope of the original 
medical indications for existing drugs, is considered to be a 
promising strategy with the benefit of providing a rapid route 
to clinic than through the traditional drug discovery approaches 
because of the use of existing knowledge about drugs. The new 
indication-driven discovery by using repositioning methods has 
already yielded several successes. For example, HIV protease 
inhibitors such as nelfinavir can be used as a new class of 
anticancer drugs. Sunitinib, originally developed for treating 
renal cell carcinoma, was found to be effective for patients with 
pancreatic neuroendocrine tumors. Imatinib, developed originally 
for chronic myeloid leukemia, has shown clinical benefits to the 
treatment of gastrointestinal stromal tumor.

One of the necessary steps of drug repositioning is to accurately 
identify the drug–target interactions (DTIs). However, 
experimental determination of such associations is time-
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consuming and costly. Thus, computational methods have been 
proposed alternatively to infer potential DTIs in effective ways. 
Traditionally, computational methods for DTI predictions include 
molecular docking simulation, quantitative structure–activity 
relationship (QSAR) and so forth. However, these methods 
possess inherent limitations. For example, docking simulation 
requires 3D crystal structure of the drug target, which is difficult 
to obtain for membrane proteins. Traditional QSAR often handles 
compound analogs targeting a single molecular target, which 
is less efficient for processing chemogenomic data with a large 
library of compounds and many targets.

Unlike QSAR (chemical data-based) and molecular docking 
(genomic data-based) approaches, chemogenomic data-driven 
DTI prediction methods simultaneously consider both chemical 
information and genomic information (often from large-scale 
screenings of small molecule libraries against a panel of drug 
target, which may or may not be biologically related). For example, 
Yamanishi  et al. proposed a bipartite graph learning method 
to infer the relationship between chemical/genomic space and 
pharmacological space. Kim and coworkers explored the effect of 
drug–drug interactions (DDIs) on DTI predictions. They used two 
machine learning algorithms, including support vector machine 
(SVM) and kernel-based L1-norm regularized logistic regression 
(KL1LR) to build prediction models. As a result, they concluded 
that DDI from pharmacological information is a promising feature 
in predicting DTIs when compared with other data sources 
such as chemical structures of drugs, and KL1LR is useful for 
investigating the contributing features. In the work by Wang  et 
al, a two-layer graphical model, called restricted Boltzmann 
machine, was proposed to predict not only the direct and indirect 
drug–target relationships but also the drug modes of action, 
including binding, activation and inhibition, which extended the 
conventional binary DTI predictions. Most recently, Meng  et al. 
proposed a novel feature-based approach, called predicting drug 
targets with protein sequence (PDTPS), to infer potential DTIs. In 
PDTPS, for each protein sequence, position-specific score matrix 
(PSSM) was first constructed, and the bigram probability feature 
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extraction method was used to represent a given protein sequence 
based on the calculated PSSM. After this, principal component 
analysis (PCA) was adopted to reduce the protein sequence feature 
vector. For each drug compound, the structural features were 
calculated. As a result, the feature representation of each drug–
target pair was obtained by concatenating both protein vector 
and drug vector. Finally, relevance vector machine was used to 
predict potential DTIs. Another feature-based approach proposed 
by Li et al. adopted local binary pattern operator to compute the 
histogram descriptors for protein sequences. For drug molecules, 
they calculated the fingerprints, and used PCA to extract the low-
dimensional features for both proteins and drugs. Finally, they 
used the discriminative vector machine classifier to identify DTIs. 

Among these algorithms, many of them are made publicly 
available. Researchers often compared different algorithms based 
on the benchmark data set, and they adopted two commonly used 
metrics [i.e. area under the curve (AUC) and area under precision–
recall curve (AUPR)] as the evaluation criteria. However, the 
comparison may be suboptimal and less objective because of 
differences in program parameter setting and details of cross-
validation methods. In this work, we first review chemogenomic 
data-driven and open-source algorithms published in recent 
years, and then we compare five representative algorithms based 
on a new recall-based evaluation metric in the same framework. 
We hope the reviewed algorithms can be continuously improved 
to make stronger prediction, and can be optimized to ease reuse 
and ensure result replication.

Table 2: Benchmark data set for DTI prediction algorithms

Data set Number of 
drugs

Number of targets Number of 
interactions

Sparsity 
value

Enzyme  445  664  2926  0.010 

IC  210  204  1476  0.034 

GPCR  223  95  635  0.030 

NR  54  26  90  0.064 
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2.2.1 Data set transformation

It should be emphasized that the benchmark data set may 
be transformed slightly based on the individual prediction 
algorithms. For algorithms such as bipartite local models (BLMs), 
the zero components in matrix  Y  may be transformed to −1, 
while for algorithms such as dual-network integrated logistic 
matrix factorization (DNILMF), the original zero elements remain 
unchanged. Besides the interaction matrix Y, the drug similarity 
matrix  Sc  and target similarity matrix  Sg  may be transformed 
to corresponding kernel matrices,  Kc  and  Kg, respectively. 
For example, BLM requires a kernel matrix as input to build a 
model. A general transformation procedure can be performed 
in the following way: taking the conversion from  Sc  to  Kc  as 
an example,  Sc  was first converted to a symmetrical matrix by 
adding its transposed matrix and then divided by 2. The obtained 
symmetrical matrix was finally converted to a positive semi-
definite matrix by adding an identity matrix with a small value 
(0.1 in the work) in the main diagonal line for multiple times. A 
similar procedure was applied to Sg for generating Kg.

2.2.2 Cross-validation and Evaluation Metric

Stringent cross-validation is important for model evaluation. 
Different from previous methods, which put both positive and 
negative interaction pairs (considering unknown interactions as 
negative ones) into the test set. We, in this work, only include the 
positive interaction pairs in the test set in the process of cross-
validation. Specifically, in each split, we removed a random subset 
of 10% of the known entries in the drug–target adjacency matrix Y 
as the test set and trained on the remaining 90% of the known DTI. 
In addition, we ensured each drug has at least one interaction with 
a target (and vice versa, each target has at least one interaction with 
a drug as well) in the training matrix as reported by a previous 
DTI prediction work. Then, we used a ranking-based statistical 
metric to evaluate different DTI prediction algorithms.
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2.2.3 Open-source chemogenomic data-driven DTI predic-
tion algorithms

We review several chemogenomic data-driven and open-source 
DTI prediction algorithms focusing on model properties and 
model evolutionary relationships. Table 3 lists the reviewed 
algorithms with the corresponding Web links.

Table 3: Open-source chemogenomic data-driven DTI prediction algo-
rithms based on the benchmark data set

No. Algorithm Open-access link Year

1  BLM  http://cbio.mines-paristech.
fr/∼yyamanishi/bipartitelocal/ 

2009 

2  KronRLS  http://cs.ru.nl/∼tvanlaarhoven/drugtar-
get2011/ 

2011 

3  KBMF2K  http://users.ics.aalto.fi/gonen/bioinfo12.
php 

2012 

4  DTHybrid  http://alpha.dmi.unict.it/dtweb/dthybrid.
php 

2013 

5  KronRLS-
WNN 

http://cs.ru.nl/∼tvanlaarhoven/drugtar-
get2013/ 

2013 

6  SC-
MLKNN 

http://web.hku.hk/∼liym1018/projects/
drug/drug.html or http://www.bmln-
wpu.org/us/tools/PredictingDTI_S2/
METHODS.html 

2015 

7  RLSKF  https://github.com/minghao2016/RLS-KF  2016 
8  Kro-

nRLSMKL 
http://www.cin.ufpe.br/∼acan/kro-
nrlsmkl/ 

2016 

9  KronRLS-
WNNS 

https://github.com/hkmztrk/SMILES-
basedSimilarityKernels 

2016 

10  NRLMF  https://github.com/stephenliu0423/Py-
DTI 

2016 

11  COSINE  http://bioinfo.cs.uni.edu/COSINE.html  2016 
12  DNILMF  https://github.com/minghao2016/

DNILMF 
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2.2.4 Algorithm Comparison Procedure

We performed the following evaluation procedures for a more 
rigorous comparison of the reviewed algorithms based on the 
recall-based statistical metric. Step 1: 

The adjacency matrix, Y, was first split for 10-fold cross-validation 
in the abovementioned approach. Briefly, only positive pairs were 
used to perform the subset splitting to compare the recall-based 
evaluation metric. 

In each fold, at least one link (known interaction) was kept in each 
row and each column of Y, respectively. Five trials of 10-fold cross-
validation processes were performed to yield 50 fold matrices 
with test set data points included in each matrix. Each fold matrix 
was used to build the model and predict the data points in the test 
set. Step 2: 

Optionally, the similarity matrices were converted to the 
corresponding kernel matrices as shown in the data set 
transformation section for the kernel-based algorithms such as 
BLM. Step 3: Multiple models were built based on similarity matrix 
either from targets or from drugs (or based on matrices from both 
targets and drugs), as well as each fold matrix (generated from 
Step 1). Step 4: The recall-based evaluation metric, MPR, was 
calculated from the test set data points in each fold matrix. 

Table 4: Comparison of open-source algorithms based on MPR, AUC 
and AUPR for the benchmark data set

Data Method MPR 
(mean ± SE)

AUC 
(mean ± SE)

AUPR 
(mean ± SE)

Enzyme  BLM  0.119 ± 0.002  0.923 ± 0.003  0.750 ± 0.003 

KronRLSMKL  0.047 ± 0.001  0.993 ± 0.000  0.963 ± 0.001 

DTHybrid  0.053 ± 0.002  0.986 ± 0.001  0.939 ± 0.001 

SCMLKNN  0.076 ± 0.002  0.986 ± 0.000  0.839 ± 0.002 

DNILMF  0.033 ± 0.001  0.996 ± 0.000  0.951 ± 0.001 
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IC  BLM  0.169 ± 0.003  0.899 ± 0.002  0.684 ± 0.009 

KronRLSMKL  0.088 ± 0.002  0.990 ± 0.001  0.953 ± 0.003 

DTHybrid  0.090 ± 0.002  0.989 ± 0.002  0.918 ± 0.002 

SCMLKNN  0.109 ± 0.003  0.975 ± 0.000  0.823 ± 0.004 

DNILMF  0.068 ± 0.001  0.996 ± 0.000  0.947 ± 0.002 

GPCR  BLM  0.266 ± 0.006  0.752 ± 0.010  0.326 ± 0.009 

KronRLSMKL  0.079 ± 0.001  0.987 ± 0.003  0.833 ± 0.005 

DTHybrid  0.080 ± 0.002  0.969 ± 0.002  0.768 ± 0.014 

SCMLKNN  0.086 ± 0.005  0.968 ± 0.003  0.650 ± 0.011 

DNILMF  0.056 ± 0.001  0.987 ± 0.001  0.826 ± 0.008 

NR  BLM  0.349 ± 0.020  0.777 ± 0.050  0.211 ± 0.091 

KronRLSMKL  0.254 ± 0.006  0.979 ± 0.001  0.613 ± 0.060 

DTHybrid  0.257 ± 0.005  0.917 ± 0.003  0.566 ± 0.087 

SCMLKNN  0.135 ± 0.016  0.951 ± 0.002  0.342 ± 0.009 

DNILMF  0.205 ± 0.005  0.952 ± 0.011  0.605 ± 0.063 

kd  BLM  0.320 ± 0.003  0.755 ± 0.009  0.233 ± 0.015 

KronRLSMKL  0.166 ± 0.003  0.817 ± 0.004  0.200 ± 0.002 

DTHybrid  0.126 ± 0.002  0.957 ± 0.001  0.686 ± 0.004 

SCMLKNN  0.181 ± 0.005  0.908 ± 0.002  0.526 ± 0.008 

DNILMF  0.122 ± 0.002  0.966 ± 0.001  0.721 ± 0.004 
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Figure 2: MPR of five representative DTI prediction algorithms based 
on the benchmark data set. For Enzyme, IC and NR, all results differ 
significantly except KronRLSMKL VS. DTHybrid (P < 0.01, t-test). 

For three relatively larger data sets (i.e. Enzyme, IC and GPCR), 
all of the five representative algorithms keep the same trend of 
prediction performance, where DNILMF outperforms the other 
four algorithms consistently, and BLM shows large MPR values 
compared with others. 

Both KronRLSMKL and DTHybrid show comparable results, 
which are both (slightly) better than the ones from SCMLKNN. 
Interestingly, for NR, which is the smallest data set, SCMLKNN 
exhibits the best MPR value. However, for all four data sets, 
these algorithms already gave a large improvement over a purely 
random model with MPR expected as of 50% (especially for the 
larger data sets). 

We emphasize that the current results of MPR were calculated based 
on the original parameter settings from the reported algorithms 
with slight differences, and the parameters were fixed during the 
cross-validations. Therefore, it is anticipated that the performance 
might be improved by fully exploiting the parameter space. As 
reported in the previous work, the nested cross-validation can be 
used to perform parameter tuning from the inner loop, and the 
outer loop is used to evaluate the model. In this work, we took 
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the DTHybrid algorithm as an example to perform nested cross-
validation. As a result, the model with optimal parameters (i.e. 
lambda and alpha used by DTHybrid) derived from the nested 
cross-validation exhibits similar or slightly better results than the 
one using fixed parameters.

Most models would show improved performance with the 
increase of samples. Interestingly, though IC includes more data 
points compared with GPCR, algorithms from KronRLSMKL, 
DTHybrid, SCMLKNN and DNILMF consistently give relative 
better results for GPCR. One of the possible reasons for this result 
may be that the ratio of the number of targets to the number of 
drugs in Y for GPCR is much less than the ratio in the IC group. To 
further investigate the influence of data size, we subsampled three 
larger data sets (i.e. Enzyme, IC and GPCR in descending order of 
size) to the sizes approximate to that of the smaller data sets and 
calculated the MPR values. For computational efficiency, we took 
DTHybrid as the tested algorithm. To subsample a larger data 
set, for example, for the Enzyme data set (i.e. 664 targets and 445 
drugs), three subsamples were generated with the approximated 
size of IC (i.e. 204 targets and 221 drugs), GPCR (i.e. 95 targets and 
125 drugs) and NR (i.e. 30 targets and 55 drugs). Similarly, two 
subsamples for the IC data set and one subsample for the GPCR 
data sets were generated. 

It is evident that DNILMF shows better performance for all 
the subsets except NR. However, we notice that the enhanced 
performance of DNILMF is not only derived from the proposed 
algorithm itself but also from the KF method, which is an important 
but understudied approach in the DTI prediction field. In fact, the 
KF method can be applied to any algorithm, as it is independent of 
the model itself. In this work, we combined two kinds of kernels (in 
the DNILMF algorithm) including the drug kernel from structural 
information (or target kernel from sequence information) and the 
drug GIP kernel from the interaction matrix Y (or target GIP kernel 
of Y). However, multiple kernels are allowed to KF.

Besides the KF technology, many other methods were also 
proposed to improve the data set itself, which are independent 
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of algorithms. For example, in the SCMLKNN algorithm, the 
authors proposed the super-target technique, which first clusters 
the targets into protein families on the basis of sequence similarity. 
By performing such operation, the data sparsity problem can 
be solved to some extent. In the KronRLSWNN algorithm, the 
authors proposed to use a WNN to infer the interaction profiles 
for new drugs, which have no interaction data with any targets. 

In both RLSKF and DNILMF, a similar process was also used 
to infer those profiles for both new drugs and new targets. 
Technologies such as KF, super-target clustering and WNN, which 
are unsupervised methods, are more straightforward and flexible 
to combine with other algorithms, as they are obtained before the 
model building step. 

Therefore, such unsupervised technologies are often adopted by 
researchers who do not have statistical/mathematical background 
because of the simplicity and easy implementation compared with 
supervised algorithms, which often require optimization process 
with complex mathematical knowledge.

Besides the mentioned algorithms above, in fact, there are many 
algorithms from other scientific disciplines such as implicit 
feedback, which can be smoothly transformed and applied to 
tackle DTI predictions. 

Indeed, progress for one scientific field may be accelerated by 
‘borrowing’ ideas, concepts or theories from a different discipline. 
For example, NRLMF borrows the logistic matrix factorization 
technique used by collaborative filtering with enhanced objective 
function, and DNILMF borrows the ‘trust ensemble’ idea from the 
recommender systems field by adding similarity fusion technique 
and extending the original one to dual integration. Thus, with the 
development of algorithms in various research fields, it is beneficial 
to transfer across-discipline methods into the DTI prediction field.

In this work, we assessed five open-access DTI prediction 
algorithms based on the experimental setting where both training 
and test sets share common drugs/targets, and proposed to use a 
recall-based metric to evaluate the models. Algorithms, which can 
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handle new drug/target scenarios, will be studied in the future, 
and additional and multiple evaluation metrics for estimating 
one-class classification problems may be taken into consideration. 
Despite of the many applications in previous work, the benchmark 
data sets used are rather limited. In fact, as more DTI data becomes 
available in the public domain, it will be beneficial to apply the 
DTI algorithms to diverse data sets for comparison. In summary, 
the current work compares and analyzes the performance on 
DTI predictions using the commonly used benchmark data set 
and DTI data in the kd data set. Such review and comparative 
work may provide insights for advancing the state of art for DTI 
predictions by developing new methods to improve scalability 
and gain stronger generalization abilities, as well as to effectively 
incorporate negative samples and better handle regression-format 
data. 
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2.3 CHEMOGENOMIC APPROACHES TO RATIONAL 
DRUG DESIGN

Remarkably, medicinal chemistry followed a parallel boost with the 
miniaturization and parallelization of compound synthesis, such 
that over 10 million non-redundant chemical structures covers the 
actual chemical space, out of which ca. 1000 have been approved 
as drugs. Therefore, only a small fraction of compounds describing 
the current chemical space has been tested on a fraction of the 
entire target space. Chemogenomics is the new interdisciplinary 
field, which attempts to fully match target and ligand space, and 
ultimately identify all ligands of all targets. Various definitions 
of overlapping fields (chemical genetics, chemical genomics) 
have been proposed. We will herein consider a broad definition 
of chemogenomics encompassing chemoproteomics, namely the 
study of small-molecular-weight drug candidates on gene/protein 
function. From the definition of the field, one easily understands 
that chemogenomics will be at the interface of chemistry, biology 
and consequently informatics since data mining is required to 
extract reliable information. Furthermore, methodologies at the 
border of chemistry and biology (medicinal chemistry), chemistry 
and informatics (chemoinformatics), biology and informatics 
(bioinformatics) will also play a major role in bringing these 
major disciplines together. Chemogenomic approaches to drug 
discovery rely on at least three components, each necessitating hard 
experimental work: (1) a compound library, (2) a representative 
biological system (target library, single cell and whole organism), 
and (3) a reliable readout (for example, gene/protein expression, 
high-throughput binding or functional assay). By definition, 
analysing chemogenomic data is a never-ending learning process 
aimed at completing a two-dimensional (2-D) matrix, where 
targets/genes are usually reported as columns and compounds as 
rows, and where reported values are usually binding constants 
(Ki, IC50) or functional effects (for example, EC50). This matrix is 
sparse as far as all possible compounds have not been tested on 
all possible genes/proteins. Predictive chemogenomics will thus 
attempt to fill existing holes by predicting compounds–genes/



Chemogenomics64

proteins relationships.  In silico  approaches to predict such data 
(target selectivity for various ligands and ligand selectivity 
for various targets) will span pure ligand-based approaches 
(comparison of known ligands to predict their most probable 
targets), pure target-based approaches (comparison of targets 
or ligand-binding sites to predict their most likely ligands) or 
ultimately target-ligand based approaches (using experimental 
and predicted binding affinity matrices).

2.3.1 Ligand space

To efficiently navigate in ligand space, one first needs to describe 
the compound using appropriate properties (descriptors) and 
then to use a master equation to measure a distance between two 
compounds (similarity metric).

Table 5: Ligand descriptors

Dimension Nature Examples
1-D Global Molecular weight, atom and bound counts 

(for example, number of H-bond donors, 
number of rings), polar surface area, polar-
izability, log P)
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2-D Topological Topological and connectivity indices, frag-
ments, substructures (for example, maxi-
mum common substructures), topological 
fingerprints (for example, structural keys)

3-D Conforma-
tional

n-points pharmacophore, shape, field, 
spectra and fingerprints

2.3.2 Target space

However, sequence lengths may considerably vary within a protein 
family (for example, sequence lengths of human GPCRs range 
from 290 to 6200 residues), such that analysing similarities and 
differences first requires an alignment of amino-acid sequences 
which can be tricky in case of large insertions/deletions. Therefore, 
one may focus on specific motifs which are a collection of 
continuous residues specific of a protein family (for example, DRY 
motif in TM III of rhodopsin-like GPCRs). To take into account the 
structural organization of the target, it can be of interest to look at 
the 2-D structure (mapping of α-helices, β-sheets, coils and random 
structures) and even better at the 3-D structure (atomic coordinates 
provided by X-ray diffraction, NMR or molecular modelling) and/
or the corresponding fold. In chemogenomics-related approaches, 
one usually focuses on the ligand-binding site, where structural 
similarities among related targets are usually much higher than 
when considering the full 1-D sequence or 3-D structure.

Table 6: Structural classification of proteins

Dimension Classification 
scheme

Databases

1-D Sequence UniProt (Wu et al., 2006) and Pfam 
(Finn et al., 2006)

  Patterns PRINTS (Attwood et al., 2003) and 
PROSITE (Hulo et al., 2006)

     
2-D Secondary struc-

ture fold
SCOP (Casbon and Saqi, 2005) and 
CATH (Reeves et al., 2006)
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3-D Atomic coordi-

nates
PDB (Berman et al., 2000) and MOD-
BASE (Pieper et al., 2006)

  binding site Binding MOAD (Hu et al., 2005) and 
sc-PDB (Kellenberger et al., 2006)

Targets may also be classified according to their pharmacological 
profile (binding affinity for a panel of ligands) which means 
according to the nature of ligands they recognize. Of course, there 
is a considerable overlap between sequence- and ligand-based 
classifications, since ligands generally bind to a subset of the protein 
universe. However, relationships across protein subfamilies are 
particularly interesting in drug design for predicting/modifying 
the pharmacological profile of a drug.

2.3.3 Target–ligand space

It is possible to directly navigate in the protein–ligand space 
by browsing full matrices in which either affinity or structural 
information is stored. 

Experimental evaluation of  x  compounds on  y  targets (for 
example,  in vitro  binding affinity assay) leads to a matrix 
of  xy  numbers (for example, IC50  values), which can be used 
to predict the affinity of a new compound to an existing target 
by multivariate linear regression measure a structure–activity 
relationships distance between two targets and predict a global 
pharmacological profile. 

A clear advantage of this approach is that it relies on true binding 
affinity values and that experimentally derived descriptors will 
usually outperform computed descriptors. 

A clear drawback is the enormous amount of data required to 
derive true information such that similar approaches are not 
realistic, for example, in an academic environment.
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2.4 LIGAND-BASED CHEMOGENOMIC  
APPROACHES

The basic paradigm underlying ligand-based chemogenomic 
approaches is that molecules sharing enough similarity to existing 
biologically annotated ligands have enhanced probability to 
share the same biological profile. It is therefore very important 
to annotate chemical libraries with biological information 
(targets,  in vitro  affinity data and ADMET properties). Over 
recent years, there has been a huge effort mainly from small 
biotech companies to compile such data by an exhaustive survey 
of literature and patent data. Since chemogenomic approaches 
usually focus on target families, most of these archives are related 
to the most pharmaceutically important target families (GPCRs, 
kinases, nuclear hormone receptors (NHRs), proteases and 
phosphodiesterases).

Table 7: Biologically annotated compound libraries

Database Description Website

AurSCOPE Target family-oriented knowl-
edge database containing phar-
macological and pharmacoki-
netical data for 160 000 GPCR 
ligands and 77 000 kinase 
inhibitors

http://www.aureus-
pharma.com
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Bioprint Biological profile (in vitro and 
clinical data) of 2400 small-
molecular-weight drugs and 
drug-like compounds

http://www.cerep.fr/

ChemBank Storage of 50 000 compounds 
and related biological proper-
ties in 441 high-throughput 
screening and small molecule 
microarray assays

http://chembank.
broad.harvard.edu/

ChemBioBase Target centric ligand databases 
(GPCRs, kinases, PDE)

http://www.jubilant-
biosys.com/

Kinase knowl-
edge base

kinase structure–activity and 
chemical synthesis data

http://www.eidogen-
sertanty.com/

MDL Drug 
Data Report

132 000 biologically relevant 
compounds and well-defined 
derivatives

http://www.mdli.
com/

MedChem 
database

650 000 compounds with bio-
logical and pharmacological 
information

http://www.gvkbio.
com

StARLITe Highly curated target-com-
pound SAR relationships

http://www.inphar-
matica.co.uk/

Wombat 154 236 entries over 307 700 
biological activities on 1320 
unique targets

http://sunsetmolecu-
lar.com/

On the other hand, annotation of targets was based on existing 
classifications for enzymes and receptors. Linking MDDR ‘activity 
keys’ to the target classification scheme enabled the annotation 
of 53 000 compounds totalling 799 different activity keys and 
related targets. Since the target’s sequence is linkable to the 
ligand, sequence-based similarity searches of ligands for protein 
homologues of liganded targets are therefore feasible. Annotated 
reference ligands for a particular GPCR were used as starting 
points to recover either new receptor ligands or ligands of receptors 
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close to the reference GPCR. Interestingly, the efficiency of the 
virtual screening approach was dependent on the phylogenetic 
distance between the reference and the query targets. Another 
straightforward application of biologically annotated compound 
libraries is the design of target-directed combinatorial libraries 
focusing on chemotypes preferred by a family of targets. 

Natural products also cover a very interesting chemical space 
of biological relevance because of the evolutionary pressure put 
on these compounds to bind, usually through highly specific 
mechanisms, to particular targets. The chemical space spanned by 
biologically annotated natural products was described recently as 
a structural and hierarchical scaffold tree which can be browsed to 
design natural product-oriented chemical libraries.

Biologically annotated compound libraries are a direct source of 
potentially new biological mechanisms to correct a phenotype. It 
designed a library of 2036 biologically active compounds covering 
169 different biochemical mechanisms, which was shown to be 
structurally diverse and able to provide 85 hits in a cell viability 
and proliferation assay. Among the 85 hits, 27 were supposed to 
be active by new biochemical mechanisms.

2.4.1 Ligand-based in silico screening

Main target families can be distinguished by a simple look at 
physicochemical properties (molecular weight, log P, polar 
surface area, H-bond donor and acceptor counts) of their cognate 
ligands. One can thus easily imagine that more sophisticated 
descriptors can be used to predict a global target profile for 
any given compound, provided that targets to be predicted are 
sufficiently well described by existing ligands. Ligand-based  in 
silico approaches to target fishing begin to appear in the literature. 
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2.5 TARGET-BASED CHEMOGENOMIC  
APPROACHES

Controlling the selectivity of ligands towards related targets from 
the same family is crucial information in early drug-discovery 
stages. There is therefore a growing interest in comparing all targets 
from the same family especially those for which there is enough 
structural data (X-ray or NMR structures) to enable a proteome-
wide comparative modelling of targets of still unknown structure 
(for example, protein kinases). Target-based chemogenomic 
approaches can be classified in two categories depending on 
whether the amino-acid sequence or the 3-D structure of targets 
is compared.
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2.5.1 Sequence-based comparisons

Sequence-based approaches are intended to be used for any 
kind of target family, provided that a multiple alignment of all 
targets to compare is reachable. They are generally used for target 
families where a lack of high-resolution structural data hampers 
target comparison. A simple one consists in target hopping, which 
means discovering receptor ligands for a particular receptor by 
considering first the known ligands of closely related receptors. For 
example, CRTH2 receptor antagonists could have been identified 
from existing angiotensin II type 1 receptor antagonists, because 
both receptors were found close in the GPCR cavity-biased tree. In 
addition, the design of targeted libraries towards a particular area 
of the tree is facilitated by addressing those residues responsible 
for selectivity/promiscuity

2.5.2 Structure-based comparisons

Structure-based comparisons are only possible for target families 
where there are enough good structural templates (X-ray 
structures) to afford the homology modelling of other related 
targets. In general, only ligand-binding sites are compared, since 
the basic aim of such comparisons is to understand the selectivity/
permissivity features of related targets of known ligands.

Starting from a structural alignment of all targets, interaction 
energies generated by rolling several probe atoms (for example, 
sp3 carbon atom) at each point of 3-D grid encompassing the 
ligand-binding site are then concatenated into a MIF vector, which 
can be placed in a global matrix where rows describe targets and 
columns interaction energies at a given 3-D grid point. 

A nice example of binding site similarities for distant proteins 
has been exemplified by, who detected cross-reactivity of 
arylsulfonamide-based COX-2 inhibitors with human carbonic 
anhydrase (HCA) based on the similarity of COX-2 and HCA 
binding pockets. A problem with these matching techniques is that 
the computed similarity score (usually dependent on the number 
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of atom/pseudocenter/triangle matches) is not always easy to 
interpret, notably for active sites of different dimensions, because 
large actives sites will have a tendency to present more matches 
than small ones even if the latter are more similar. Therefore, 
normalized distance metrics similar to those used for comparing 
ligands are needed. A promising approach is proposed by, who 
discretizes an active site by a dimensionless 80-triangle sphere 
and projects, from cβ atoms of cavity-lining residues to the sphere 
centre, various topological and physicochemical descriptors.

2.5.3 Chemical annotation of target binding sites

However, as far as information about the binding site is missing, 
there is a potential risk to compare compounds sharing the same 
target but not the same binding site (for example, orthosteric and 
allosteric ligands). It is therefore important to rigorously annotate 
protein sequences and/or binding site by the chemotype of the 
ligands they can recognize. The SMID (Small Molecule Interaction 
Database) archive is an interesting initiative to annotate protein 
amino-acid sequences by domain-specific ligands. A total of 6300 
ligands covering 230 000 experimentally observed domain/small 
molecule interactions have been stored in a relational database, 
which can be browsed to predict the most likely ligand of proteins 
of unknown 3-D structures by comparison of their domains to 
known protein structures using a reverse position-specific basic 
local alignment search (BLAST) procedures. 

2.5.4 2-D searches

To browse and predict protein–ligand complexes, one needs 
to set up simple descriptors for both ligands and proteins from 
knowledge databases and concatenate them into a single protein–
ligand description. A machine-learning algorithm was trained 
from 5319 non-redundant known complexes and applied to a set of 
1 911 415 virtual complexes (55 orphan receptors and 34 753 drug-
like compounds from the NCI database) to predict the most likely 
associations. Out-of-sample validations (finding the receptors of 
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a promiscuous ligand and the ligands of a single target) were in 
general agreement with literature data and some predictions still 
awaiting experimental validations have been made.

2.5.5 3-D searches

A straightforward way to predict putative targets of ligands is to 
dock each of the ligands of the compound library into each of the 
active site of the target library. This strategy has been validated 
by several groups and proved able to recover the known ligands 
of known targets and predict their off-targets and thus some 
potential side effects. Up to now, there is a single successful target 
fishing application described in the literature utilizing a docking 
approach. Hence, inverse docking requires first a high-quality 3-D 
dataset of binding sites whose automated set-up is quite difficult, 
and second an accurate scoring function to properly rank targets. A 
problem is that energy-based scoring functions are not very good 
at quantifying very heterogeneous protein–ligand complexes by 
decreasing binding-free energies and that alternative ways of 
scoring are requested for efficient target selection. 

Usage of IFPs have shown several promising features: (i) 
enhancing the quality of pose prediction in docking experiments; 
(ii) clustering protein–ligand interactions for a panel of related 
inhibitors according to the diversity of their interaction with a 
target subfamily; (iii) assisting target-biased library design.

However, docking-independent 3-D methods may also constitute 
an interesting approach to predict protein–ligand complexes. A 
significant problem is to encode protein and ligand properties 
with similar descriptors such that one partner can be retrieved by 
using the second one as a query. A promising solution is proposed 
with the CoLiBRI (Complementary Ligands Based on Receptor 
Information) method in which both ligand and active site atoms 
are described by a same vector of molecular descriptors derived 
from shape and electronic properties of isolated atoms. Therefore, 
it is possible to directly correlate chemical similarities between 
active site and their ligands by mapping patterns of active sites onto 
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patterns of their complementary ligands. When applied to a test 
data set of 800 high-resolution PDB complexes, the complementary 
ligand was ranked among the top 1% of a large library in 90% 
of tested active sites. Accuracy dropped significantly for active 
sites very different from those in the test set but still usable as a 
prefiltering step for removing the most improbable ligands 

2.5.6 Concluding remarks

Chemogenomic approaches to rational drug discovery have been 
exploding in the last years as high-throughput data (structure, 
binding affinity and functional effects) become available for both 
targets and ligands of pharmaceutical interest. Numerous ways 
to link those data have been proposed focusing on either ligand 
or target neighbourhood. A clear data organization and storage is 
necessary to foster such applications and begins to emerge for the 
most interesting target families (kinases, GPCRs and NHRs). In a 
near feature, an earlier and better control of ligand selectivity can 
be anticipated by using chemogenomic data. This does not mean 
that more selective ligands are going to be designed, but simply 
that the observed selectivity profile of the compound will be 
compatible with a therapeutical usage. In addition, novel genomic 
targets could be better addressed after locating them in the target 
space and exploiting the associated chemical information.

2.6 GENE KNOCKOUT TECHNOLOGY

A gene knockout (abbreviation: KO) is a genetic technique in which 
one of an organism’s genes is made inoperative (“knocked out” of the 
organism). ... Knockout organisms or simply knockouts are used to 
study gene function, usually by investigating the effect of gene loss. 

2.6.1 Utility and Importance of Gene Knockout Animals

The importance of many dietary constituents in maintenance of 
health is obvious. While deficiencies in dietary intake of specific 
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nutrients may be detrimental to growth, reproduction and 
immunity, excessive amounts of specific nutrients in the diet can 
also lead to disease states. For example, increased intake of dietary 
fat and cholesterol is associated with hyperlipidemia and an 
increased risk of coronary heart disease. Excessive intake of vitamin 
D has also been shown to result in soft-tissue calcification and 
renal calculi. However, it must be noted that while the correlation 
exists between increase nutrient uptake and specific diseases, the 
response of a given individual is quite variable. These individual 
variations in dietary responsiveness are likely due to the different 
genetic composition of each individual. Numerous genetic factors 
are involved in determining responsiveness to specific dietary 
nutrients. These include genes important for nutrient absorption 
as well as those important for the metabolism and processing of the 
nutrient in the diet. Additionally, the amount of each nutrient in 
the diet also has an impact on the level of specific gene expression. 
Such regulatory mechanisms may also account for individual 
differences in susceptibility to diet-induced diseases.

Advances in molecular biology techniques during the past decade 
have led to an explosion of research aimed at understanding diet 
and gene interactions in health and diseases. While most of the 
earlier work focused on nutrient regulation of gene expression, 
transgenic technology has also been used to study the effect of 
overexpression of specific genes in modulation of dietary nutrient 
effects and on the metabolism of dietary components as they relate 
to normal health and pathogenesis of diseases. More recently, 
targeted gene inactivation, commonly known as gene knockout, 
has been employed to study the functional importance of specific 
genes and the impact of specific genetic mutations and deletions 
on complex metabolic processes which ultimately lead to various 
diseases. This review provides an overview of the utility and 
importance of the gene ablation technology to nutritional and 
metabolic research
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2.6.2 Experimental approaches to modulate gene expres-
sion in vivo

Three different approaches have been used to inhibit specific gene 
expression in mammalian systems. The most common approach is 
specific gene ablation by homologous recombination in embryonic 
stem cells and then the production of animals with defects in 
expression of the specific gene. However, technical difficulties in 
obtaining high level stable expression of antisense nucleotides and 
ribozymes have limited the usefulness of these approaches. Most 
of the research with antisense nucleotides and ribozymes were 
restricted to in vitro cell culture systems and, thus, were of limited 
value to nutritional and metabolic studies. In contrast, targeted 
gene disruption by homologous recombination in embryonic stem 
cells have been employed widely to produce animal models with 
specific gene deletions. Many of these models are quite useful for 
nutritional and metabolic research. Therefore, this review will 
focus on the use of this technique.

Targeted gene disruption by homologous recombination takes 
advantage of the observation that pluripotent embryonic stem 
(ES) cells obtained from mouse blastocysts can be cultured in 
vitro and remain viable for differentiation after their injection 
into a different embryo and reimplantation into a foster mother. 
In a typical experiment, the ES cells and the recipient embryo are 
obtained from animals carrying genes of different coat colors, 
such that the initial selection of chimeric mice can be based on 
the coat color of the offspring. The most commonly used ES cells 
to date are those derived from the mouse strain 129, which has 
an agouti coat color. These ES cells can then be microinjected into 
embryos obtained from C57BL/6J mice, which have a black coat 
color. Offspring with a high degree of agouti coat color, indicating 
the transmission of ES cell-derived genes, can then be crossbred 
with each other to obtain animals with a genetic background 
identical to that of the ES cells. Using this approach, mice with 
specific gene modifications can be obtained by manipulation of 
the ES cell genome.
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Modification of specific genes in the ES cell genome depends on 
the ability of transfected DNA to recombine with the homologous 
gene in the chromosome. Although such targeted recombination is 
a rare event in comparison with nonhomologous integration of the 
transfected DNA, methodology has been developed to optimize 
the chance of homologous recombination and to rapidly screen 
and select ES cells in which such event has taken place. Most of 
the experiments to date utilized isogenic DNA for the targeting 
construct to maximize hybridization of the targeting DNA to the 
proper gene locus in the chromosome. 

Homologous recombination of the transfected DNA with 
chromosomal DNA at the target locus will result in the replacement 
of a portion of the endogenous gene with the targeting construct, 
thus disrupting the coding sequence and inactivation of the 
endogenous gene. The use of a selectable gene marker allows the 
selection for cells that have taken up and expressed the transfected 
DNA. Growth of the ES cells in the presence of antibiotic selection 
indicates the integration of the transfected DNA into the ES cell 
genome. In a successful experiment, approximately 0.01–0.001 
of the antibiotic-resistant cells would have the transfected DNA 
targeted to the proper gene locus, while the remaining cells would 
have incorporated the DNA in a nonhomologous site. In some cases, 
investigators have included a negative selectable gene marker 
at the 5′ or 3′ end of the targeted construct to allow for selection 
against random insertion events. Homologous recombination at 
the targeted gene locus would result in deletion of the negative 
selectable gene marker, while integration at nonhomologous sites 
would have included this marker in the genome. The inclusion 
of a negative selection marker usually results in an additional 10-
fold enrichment of homologous recombination clones. 
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INTRODUCTION

To understand what chemical genetics is and how it can add value 
to the drug discovery process, we must first consider some of the 
challenges and needs of the pharmaceutical industry. The process 
of discovering new drugs is a highly complex multidisciplinary 
activity requiring very large investments of time, intellectual 
capital, and money. Today the average cost of bringing an NCE to 
market is on the order of $ 900 million. For every 5000 compounds 
synthesized, only one makes it to the market. Only three of ten 
drugs generate revenue that meets or exceeds average R&D costs, 
and 70% of total returns are generated by only 20% of the products. 
Given this gloomy backdrop it is even more disturbing to learn 
that, despite the proliferation of many new technologies of great 
potential (and great cost), pharmaceutical productivity levels 
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have not increased in the past ten years (as shown graphically in 
Figure 1).

Figure 1. US drug approvals during the past ten years.

Pharmaceutical R&D costs continue to grow exponentially, driven 
in part by investments in new technologies, but the return on this 
investment remains elusive. There are many reasons for these 
disturbing trends. If we consider the pharmaceutical industry 
as primarily a generator of knowledge (defining knowledge as 
compiled and interpreted information that can be acted upon) 
and focus on the knowledge creation process, we can shed some 
light on how the current situation, a productivity gap, emerged. 
Working harder is not likely to overcome this productivity gap 
to deliver more drugs. Working smarter, doing things differently, 
and focusing on what we actually need to deliver, i.e., knowledge, 
may be a new way to approach the problem. Ultimately, spanning 
the ‘knowledge gap’ will lead us to the efficient exploitation of 
the human genome to discover new drugs to meet major medical 
needs.

3.1 KNOWLEDGE MANAGEMENT IN DRUG DIS-
COVERY

Pharmaceutical companies create and sell knowledge, e.g., 
knowledge that a drug product will rid patients of the symptoms 
of their disease while not causing serious side effects. The 
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resources that go into the production of the drug pale alongside 
the resources needed to discover the knowledge of what the drug 
will do when administered to a patient. In the early years of drug 
discovery it was often true that the literature provided a significant 
knowledge base for our efforts. Two approaches were taken: (1) 
function-based screening, where one did not know what the target 
was but could easily screen for small molecules that possessed the 
right biology [3]; and (2) ‘rational drug discovery’, where one has 
knowledge of the target and its function. What was needed were 
small molecules that would interact with the target in the right 
way before being optimized for in vivo activity and safety.
The existing and evolving chemistry and biology literature fueled 
these efforts. It is probably also true to say that the medical 
problems addressed in these early days of drug discovery 
represented the more accessible opportunities. Often the biology 
was not only reasonably well understood, but it was reasonably 
easy to study and measure. Examples of biological effects that were 
tackled include blood pressure, acid secretion, and cytotoxicity. 
The situation today is very different. We now face many new 
targets we know little about and biology that is complex to study 
and understand. In addition to these issues, advances in our 
knowledge of distribution, metabolism, and pharmacokinetics, 
as well as toxicology and pharmacogenetics, have led to the 
introduction of discovery processes that front-load measurement 
of such small-molecule properties. This also raises the bar for 
passage of compounds through the process – making the process 
more difficult and slower. While this may lead to lower output of 
development candidates, it should also lead to lower failure rates 
later in development, i.e., improvements in quality.

3.2 KNOWLEDGE GAPS, THEIR IMPORTANCE, 
AND HOW TO ADDRESS THEM

The human genome has been solved and optimistic promises 
have been made. It is clear that the human genome did not 
deliver knowledge (i.e., something immediately useful); rather, it 
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delivered a massive amount of data. Significant advances have also 
been made in cell biology and systems biology. The relationship 
between genes/proteins derived from the human genome and 
their function as a part of a biological system constitutes the 
knowledge gap, and our appreciation of the extent of this void 
is still emerging. The human genome is thought to consist of ca. 
30 000 genes. Each gene can potentially produce several proteins 
via alternative splicing and post-translational modification, and 
every protein can potentially combine with other proteins to form 
many different protein complexes. Clearly, the number of different 
proteins and protein complexes is much larger than 30 000. To add 
further complexity, small molecules (that we hope will become 
drugs) can interact with different sites on a protein or via different 
mechanisms to further expand the diversity of possible outcomes 
from the interaction of small molecules with a protein target. 
We do not know what many gene products (proteins) do, either 
physiologically or pathologically, and we do not really know how 
many of these proteins can interact with small-molecule ligands. 
There are many genes about which we know nothing at all. In 
summary, there is clearly a vast knowledge gap between knowing 
a gene and knowing the function (physiology and pathology) of 
its protein product (Figure 2). The enormity of this knowledge gap 
has been underestimated by the pharmaceutical industry.

Figure 2. The knowledge gap represents the large gap in understand-
ing that exists between genetic information from the human genome 
project and information regarding biological function from cell and sys-
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tems biology To illustrate the size of the knowledge gap, consider 
the following (admittedly approximate) analysis from the area 
of substance P. Substance P antagonists have emerged in recent 
years as potential new treatments for depression, although none 
have yet been approved for this use. Substance P has been known 
since 1937, and since that time (67 years!) there have been over 
6500 papers published providing significant new information on 
substance P. Thousands of scientists have worked on generating 
this information during this period. It is sobering that our under-
standing of Substance P’s role in depression is still in its infancy. 
No one pharmaceutical company can generate this volume of in-
formation. New faster and more efficient methods must be devel-
oped to fill these knowledge gaps. Partnership with the academic 
community will become increasingly important as the number of 
druggable targets expands.

3.3 TARGET VALIDATION: THE FOUNDATION OF 
DRUG DISCOVERY

One critical piece of knowledge to the pharmaceutical industry 
relates to knowledge of a drug target and its link to a disease 
process. In the context of small-molecule drug discovery, we define 
target validation in a broader sense as including knowledge of the 
protein target and its specific interaction with small molecules, 
and the consequences of this interaction in terms of modifying 
a disease process. In fact, drug discovery is primarily focused 
on the biology of a target in the presence of a drug, i.e., drug-
induced biology. It begins with a chemical effect – the interaction 
of a ligand with a protein at a specific site in a specific manner – 
and ends in patients’ gaining benefit from taking a drug derived 
from the application and exploitation of this knowledge. Target 
validation that simply links a specific protein and its function 
to a disease state does not include reference to whether a small 
molecule can modulate the function of the protein. The protein 
may not therefore constitute a true target since it is not a target 
for a small-molecule ligand and efforts to do target validation on 
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such a protein will ultimately lead to a negative outcome. We can 
(and do) proceed to work on drug discovery before we have all the 
knowledge we need. The absence of this knowledge constitutes 
the major risk of drug discovery. One way to proceed is to focus on 
obtaining the most critical knowledge first. This is the knowledge 
that modulation of a protein target by a small molecule can 
ultimately lead to a clinical benefit in patients.

3.4 CHEMICAL GENETICS – HOW CHEMISTRY CAN 
CONTRIBUTE TO TARGET IDENTIFICATION AND 
VALIDATION

Target validation (TV) is the foundation of drug discovery and 
requires greater attention if we are to reduce the risk of failure 
after significant investment. Traditionally, target validation has 
been thought of as a biology problem. Thinking in terms of what 
knowledge we need makes it clear that the problem does not 
neatly fall into any particular discipline and is better characterized 
as an integrated biology and chemistry problem. A schematic 
target validation roadmap is shown in Figure 3, where the entire 
validation path from a chemical effect through various levels of 
biological effects to a clinical effect is outlined. To begin with, an 
understanding of the function of a particular gene product can often 
be achieved through the methods of classical genetics. However, 
the process can be slow and tedious. For example, developing 
a mouse carrying the mutation of interest could take months or 
years. Indeed, if the gene product is essential, the organism may 
not survive long enough to be studied. On the other hand, the 
situation wherein a molecule is available that alters the function 
of the gene product has a number of advantages. However, we 
should recognize that significant chemical effort is often required. 
The phenotype of interest is conditional, in that it is present only 
when the molecule is present, allowing the study of essential gene 
products. It is also tunable, i.e., the intensity of the phenotype can 
be adjusted by controlling the concentration of the molecule.
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Figure 3. The knowledge roadmap for target validation, beginning with 
a chemical effect between a small molecule and a protein target and end-
ing with a beneficial clinical effect on a person with a disease. Chemical 
genetics approaches provide some assistance in pursuing this path.

Chemical genetics is the purposeful modulation of protein function 
through its interaction with a small molecule. The principles of 
chemical genetics were established in the rich history of using 
small molecules to explore biological function and, in this sense, 
chemical genetics is not new. What is new is the development of 
a systematic approach to studying biological function with small 
molecules – this is the emerging field of chemical genetics. Just as 
genetic changes can alter protein function, so can small molecule–
protein interactions. It is important to appreciate that, by interaction 
of a ligand with a protein, we mean interaction of a small molecule 
at a specific site on a protein causing a specific protein change, 
conformational or otherwise, ultimately leading to a specific 
biological effect. Small molecules can often interact with multiple 
sites on proteins and cause a multitude of consequences such as 
agonism, antagonism, partial agonism, modulation, competitive 
and noncompetitive inhibition, etc. They can also interact at 
junctions between protein subunits. The sophistication of small 
molecule–protein interactions and their biological consequences 
cannot be easily reproduced by techniques such as gene knockin/
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out or the use of siRNA, by which genes/proteins are simply 
removed or increased in concentration in a biological system. 
Having said that, knockout models have certainly contributed 
significantly to drug discovery and will continue to do so. The 
power of chemical genetics resides in this sophistication of the 
small molecule–protein interaction and the precise way we can 
(in principle) modulate the function of a protein. As a precursor 
to drug discovery it serves the purpose of focusing us on where 
small molecule drug discovery really begins – with the chemical 
interaction between a small molecule and a protein.

The knowledge gap outlined above can be thought of as a cycle 
linking the target (a protein or protein complex) with a function 
ultimately linked to an effect important in a disease process (Figure 
4). Going from target to function represents the knowledge path 
of target validation. Going from a function to a target represents 
the knowledge path of target identification (TI) or deconvolution. 
Chemical genetics approaches can be applied to both knowledge 
paths. Application to the target validation path is called reverse 
chemical genetics. Application to the target identification/
deconvolution path is referred to as forward chemical genetics. At 
the heart of this approach to knowledge generation in TI/TV is the 
simple concept that small molecules are used to perturb biological 
systems. Manipulation of a biological system in a controlled 
manner by small molecules allows us to study these systems more 
systematically.

Figure 4. Chemical genetics tools (libraries) can help uncover the func-
tion of proteins (target validation) and the protein target responsible for 



The Value of Chemical Genetics in Drug Discovery 87

biological function (target identification) in a phenotype assay.

3.5 INTEGRATION OF CHEMISTRY AND BIOLOGY: 
IMPORTANCE AND ISSUES

Given that the foundation of target validation is a ligand–protein 
interaction (a chemical effect) and its consequence (a biochemical/
biological effect), we can expect that advances in this area will 
come from a close integration of chemistry and biology. Some 
key questions at the interface of chemistry and biology that 
are fundamental to chemical genetics include – why are some 
molecules biologically active while others are not? What is the 
biological profile of a small molecule’s structure and how do we 
dissect this into what each part (fragment) of the small molecule is 
doing to each protein target? Is there a protein ‘code’ for recognition 
of small molecules that is used by every protein in the proteome? 
The following sections begin to address these questions.

3.6 FINDING NEW CHEMICAL TOOLS AND LEADS

A chemical tool is small molecule that is sufficiently potent and 
selective for a protein target to be used in the identification and 
validation of that target. It could, although it need not, meet the 
rigorous absorption, distribution, metabolism, excretion, and 
toxicology criteria required of a lead to start an optimization project. 
How do we find such tools? The total number of ‘reasonable’ 
drug-like molecules has been estimated as approximately 1063 
discrete molecules, a number so large that synthesizing all of 
them is simply impossible. Natural products were designed by 
nature to bind to proteins and other macromolecular targets and 
represent powerful chemical tools for use in chemical genetics. 
Numerous examples exist in which natural products have been 
identified that modulate biological function. The natural products 
are then used to identify proteins that they interact with and so 
to begin deconvolution (forward chemical genetics) of the target 
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responsible for the biological effect. For example, fumagillin 
inhibits new blood vessel growth (angiogenesis), and analogs 
of this compound are now in Phase 3 trials. Using fumagillin 
as a starting point, chemical tools (e.g., biotinylated analogs) 
were constructed to bind and tag cellular proteins. One of these 
proteins, methionine aminopeptidase, has been identified as the 
likely target for this class of molecules. Some other examples of 
natural products used in forward chemical genetics are shown in 
Table 1. Cases in which these natural products were then used to 
deconvolute the target protein are noted. Interestingly, some of 
the top-selling drug classes originated from a forward chemical 
genetics approach, e.g., the gastric acid secretion inhibitors 
omeprazole and esomeprazole were discovered by a process 
that began with screening for antisecretory agents that lowered 
stomach acid.

Table 1. Natural products used to identify targets.
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Interestingly, given the discussion of the importance of 
understanding small molecule–target protein interactions early 
in drug discovery, there is renewed interest in reexamining many 
older drugs to more fully understand how they work.

An advantage of the chemical genetics approach is that the small 
molecules identified in biological screens can act both as conditional 
switches for inducing phenotypic changes and as probes/
chemical tools for identifying protein targets implicated in those 
phenotypic changes. However, identifying the molecular target 
and mechanisms by which the small molecules affect biological 
systems (target deconvolution) can sometimes be difficult. Classical 
deconvolution approaches, such as affinity chromatography 
and biochemical fractionation using photoactivatable and other 
affinity ligands to pull out the target protein, often work well. 
More recently, genomics-based techniques have been added to the 
deconvolution toolset.

Beyond natural products, finding chemical tools to modulate 
biological systems is a difficult step and shares many of the 
risks associated with finding leads in a drug discovery program. 
Strategies for finding small-molecule tools representing two 
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poles on a continuum of approaches are illustrated by structure-
based design and the high-throughput screening approach. Given 
our focus on knowledge generation, it is interesting to note that 
molecules at either end of this spectrum also reflect different 
levels of information content. Individual molecules used in 
high-throughput screening teach us (if we are fortunate) about 
a simple IC50 or EC50. Molecules that additionally teach us how 
they bind to their molecular target provide us with much more 
useful information, especially when we consider what to do next 
to improve or change the biology of the molecule (Figure 5).

Figure 5. The spectrum of approaches to finding chemical tools or leads, 
illustrating the inverse relationship between information content and 
number of compounds needed.

Schreiber has been a pioneer in this rapidly developing area of 
chemical biology. He has constructed several structurally complex 
screening libraries using a diversityoriented synthesis approach 
and has used these libraries to uncover chemical tools to begin 
to unravel complex biology. Using this approach, Schreiber 
discovered a small-molecule chemical tool that he named 
uretupamine, which interacts with the protein Ure2p. Ure2p 
represses the transcription factors Gln3p and Nil1p.

Uretupamine was found to specifically modulate a subset of 
glucose-sensitive genes downstream of Ure2p. As noted earlier, 
this type of behavior, modulating a subset of the function of Ure2p, 
cannot be replicated by gene knockouts (e.g., knockout of the 
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URE2 gene) or siRNA approaches and represents a real challenge 
for proteomics to identify and control all inputs and outputs of a 
protein. He used the natural product FK506 to uncover its target 
FKBP12 and then went on to design specific molecular probes 
derived from FK506, guided by crystal structures of FKBP, FK506, 
and calcineurin to uncover its mechanism of action as a ‘small-
molecule dimerizer’ of FKBP12 and calcineurin. The formation of 
this ternary complex led to inhibition of the protein phosphatase 
activity of calcineurin. This discovery, together with the discovery 
by Gerald Crabtree of NFAT proteins, helped define the calcium–
calcineurin–NFAT signaling pathway, now known to be essential 
for immune function, heart development, and the acquisition of 
memory in the hippocampus.

Peter Schultz’s team used a combinatorial library of purines to 
identify agents that could disassemble multinucleated myotubes 
into mononucleated fragments (a morphological differentiation 
screen). A new microtubule-binding molecule, mysoseverin, was 
identified in this way.

Figure 6. Replacing a bulky amino acid with glycine in the ATP-binding 
site of a kinase enlarges the site. ATP binding and catalytic activity are 
unaffected. The nonselective kinase inhibitor can now be modified to 
create a molecule that selectively blocks the mutant enzyme.
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Structure-based design has been employed in some powerful 
examples of chemical genetics by teams led by Kevan Shokat and 
by John Koh. Shokat’s team has studied the function of kinases 
by engineering designed modifications into both the kinase and 
kinase inhibitor ligand to create highly selective chemical tools 
that can then be used to probe the function of individual kinases in 
complex kinase cascades (for an explanation of the basic concept 
see Figure 6).

John Koh’s team have focused their efforts on nuclear hormone 
receptors, including the vitamin D receptor, in an effort to 
target specific clinical problems. Koh studied a mutant version 
of the vitamin D receptor (an arginine located in the binding 
pocket is mutated to a leucine) that binds vitamin D with only 
one thousandth the affinity of the normal receptor. Analogs of 
vitamin D were synthesized, based on computer modeling of 
their interaction in the mutant vitamin D receptor. Some of these 
compounds were found to bind 500 times better than vitamin D 
to the mutant receptor. This work may ultimately lead to drugs to 
treat a disease known as vitamin D resistant rickets. Koh previously 
demonstrated the feasibility of this approach with other nuclear 
hormone members, including thyroid hormone receptor.

David Corey’s team has also employed this approach, termed 
‘engineered orthogonal ligand–receptor pairs’, in studies of 
retinoid x receptor to find ‘near drugs’. These near drugs are 
chemical tools used to discern the biology of the retinoid x 
receptors.

To date, the results of efforts to find new biologically active 
molecules through preparation of large libraries based solely 
on diversity considerations have been disappointing. On the 
other hand, the collective experience of the global bioorganic 
and medicinal chemistry community indicates that biological 
activity is not uniformly distributed in chemistry space; rather, 
it is found within discrete regions. Since we cannot know the 
locations of these regions a priori, we might look to known 
biologically active molecules to guide our search. There have been 
several approaches to doing this. Many natural products derived 
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from plants and animals have evolved over time to have specific 
biological effects on either the parent organism or an unrelated 
one. The pool of natural products is extremely large with respect 
to both numbers and structural diversity. Not surprisingly, a 
number of methods to produce natural product libraries have 
emerged. Some companies provide prefractionated extracts of 
unknown structures for screening. Structures are determined 
after a hit is found. Many companies have established libraries 
of single pure natural products. Yet another approach is the 
assembly of libraries of derivatized natural products. Finally, one 
can develop syntheses of natural product core structures and, 
using combinatorial techniques, decorate the cores with diverse 
elements. In this way it is possible to prepare large libraries of 
peripherally diverse compounds related to natural products for 
general screening. The following library (Fig. 7) is illustrative. It 
contains over 2 million compounds that are both sterically and 
functionally complex. Little biological activity was observed; for 
the purposes of the pharmaceutical industry this result might be 
viewed as somewhat disappointing, given the size of the library 
and the effort invested in preparing it. Why were more active 
compounds not found?

Figure 7. Potential coupling sites on a natural product-related core-
based diversity library.

One reason might be related to the high degree of overall molecular 
complexity of the library. Hann and coworkers reported an in-
depth analysis of the relationship between molecular complexity 
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and the probability of finding leads. They derived a model system 
in which ligand complexity and ability to bind to a protein target 
could be studied statistically. They found that, as systems became 
more complex, the chance of observing a useful interaction for 
a randomly chosen ligand fell dramatically. Thus, there may 
be an optimal complexity for molecules in a screening library. 
Smaller libraries of less-complex molecules are likely to be more 
productive in terms of finding relevant chemistry space, with 
enhancements in potency and selectivity resulting from iterative 
rounds of synthesis and testing to increase complexity. Although 
the compounds were not derived from a library, a comparison of 
glutamic acid to LY354740 and MGS0028 is illustrative (Figure 8).

Figure 8. Increasing structural complexity of glutamate analogs.

Glutamic acid is a relatively simple molecule with several 
degrees of rotational freedom, and obviously interacts with all 
glutamate receptors, both ionotropic and metabotropic. LY354740 
is arguably more complex with respect to stereochemistry and 
rigidity, is much more potent than glutamate at Group 2 mGluR’s, 
and has no activity at iGluR’s. MGS0028 is even more complex 
with respect to functionality and heteroatoms and, although no 
more selective than LY354740, it is about 20 times more potent. 
Most chemists would no doubt agree that molecular complexity 
increases from glutamic acid to LY354740 to MGS0028, but there 
have been few attempts to quantify molecular complexity. Bertz 
developed a general index of molecular complexity based on 
concepts of graph theory and information theory and included 
features such as branching, rings, multiple bonds, heteroatoms, 
and symmetry. In the work reported by Hann, the number of bits 
set in the Daylight 2D structure representation was taken as an 
indication of the internal bond complexity, but the method does 
not capture notions of stereochemistry and rigidity.
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A rather different approach to natural product-based libraries is 
being promoted by Waldmann and coworkers. Recent results in 
structural biology and bioinformatics indicate that the number 
of distinct protein families and folds is fairly limited. Often, 
many proteins use the same structural domain in a more or less 
modified form created by divergent evolution. Protein families 
can have similar folds, even though they at first seem to have 
completely different sequences and/or catalyze quite different 
chemical reactions with a different arrangement of activesite 
residues. However, proteins in these families evolved from the 
same ancestors and can still bind similar ligands. If ligand types or 
frameworks for certain domain families are already known from 
the investigation of evolutionarily related proteins, the underlying 
structure of this ligand may be employed as the guiding principle 
for library development. Such ligands would provide targeted, 
biologically validated starting points in structural space for the 
development of relatively small compound libraries, which 
should yield significantly higher hit rates than much larger 
libraries designed exclusively on the basis of available and proven 
chemical transformations.

Accordingly, they synthesized a library of nakijiquinone analogs 
(Figure 9), the only natural products known to be inhibitors of 
the Her-2/Neu receptor tyrosine kinase, and investigated them 
as possible inhibitors of the receptor tyrosine kinases involved in 
angiogenesis. This led to the identification of inhibitors of IGF1R, 
Tie-2, and VEGFR-3, with IC50’s in the range of 0.5–18 µM.

Figure 9. Molecular composition of the nakijiquinone library.
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The growing awareness that biological activity is not uniformly 
distributed throughout chemistry space has led to a number of 
efforts to determine those molecular attributes that are drivers of 
that activity. At an elementary level, Ghose and coworkers carried 
out quantitative and qualitative characterization of known drug 
databases with respect to computed physicochemical property 
profiles, such as log P, molar refractivity, molecular weight, 
and number of atoms, as well as characterization based on the 
occurrence of functional groups and important substructures. 
For many parameters, they defined a qualifying range covering ≥ 
80% of the compounds. They also found that the benzene ring is 
the most abundant substructure, slightly more abundant than all 
heterocyclic rings combined, and that nonaromatic heterocycles 
were twice as abundant as aromatic heterocycles. The most 
abundant functional groups were tertiary aliphatic amines, 
alcohols, and carboxamides.

Bemis and Murcko carried out an extensive structure-based 
analysis using shape description methods to analyze a database of 
commercially available drugs and prepare a list of common drug 
shapes. A useful way of organizing this structural data is to group 
the atoms of each drug molecule into ring, linker, framework, 
and side-chain atoms. On the basis of the 2D molecular structures 
(without regard to atom type, hybridization, or bond order), there 
were 1179 different frameworks among the 5120 compounds 
analyzed. However, the shapes of half of the drugs in the database 
were described by the 32 most frequently occurring frameworks. 
This suggests that the diversity of shapes in the set of known drugs 
is extremely low. Within the set of 32 frameworks, 23 contained at 
least two six-membered rings linked or fused together, and only 
three had more than five rotatable bonds. In a second method of 
analysis, in which atom type, hybridization, and bond order were 
considered, more diversity was seen: there were 2506 different 
frameworks among the 5120 compounds in the database, and the 
most frequently occurring 42 frameworks accounted for only one-
fourth of the drugs. Subsequently, the same workers analyzed the 
side chains of the same set of drugs. On the basis of the atom pair 
shape descriptor (taking into account atom type, hybridization, 
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and bond order), there were 1246 different side chains among the 
5090 compounds analyzed. The average number of side chains 
per molecule was 4, and the average number of heavy atoms per 
side chain was 2. Ignoring the carbonyl side chain, there were 
approximately 15 000 occurrences of side chains. Of these 15 
000, approximately 11 000 were from the ‘top-20’ group of side 
chains. This suggests that the diversity that side chains provide 
to drug molecules is also quite low. The authors have combined 
this information to generate new structures that are likely to be 
druglike and synthetically accessible. They used this approach 
to generate a set of molecules optimized for blood–brain barrier 
penetration.

Ajay and coworkers used a Bayesian neural network to distinguish 
between drugs and non-drugs. They evaluated commercial 
databases of drug (Comprehensive Medicinal Chemistry, CMC) 
and nondrug (Available Chemicals Directory, ACD) molecules 
with respect to 1D and 2D parameters. The former contain 
information about the entire molecule, like molecular weight, and 
the latter contain information about specific functional groups. 
Their results correctly predicted over 90% of the compounds in 
the drug database while classifying about 10% of the molecules 
in the nondrug database as drug-like. The neighborhoods defined 
by their model are not similar to those generated by standard 
Tanimoto similarity calculations, and thus new and different 
information is being generated by these models, as shown in 
Figure 10.

Figure 10. Histogram of Tanimoto coefficients based on topological tor-
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sions of the most similar CMC molecule for each of the drug-like mol-
ecules from the ACD.

Further efforts have been made to distinguish between drugs and 
non-drugs. Sadowski and Kubinyi developed a scoring scheme 
for rapid and automatic classification of molecules into drugs and 
nondrugs. The method was set up by using atom type descriptors 
for encoding the molecular structures and by training a feed-
forward neural network for classifying the molecules. It was 
parameterized and validated by using large databases of drugs 
(World Drug Index, WDI) and non-drugs (ACD). The method 
revealed features in the molecular descriptors that either qualify 
or disqualify a molecule for being a drug and classified 83% of the 
ACD and 77% of the WDI appropriately.

Clark and coworkers investigated techniques for distinguishing 
between drugs and non-drugs using a set of molecular descriptors 
derived from semiempirical molecular orbital (AM1) calculations. 
These descriptors had been used successfully to build absorption, 
distribution, metabolism, and excretion-related QSPR models. A 
principal-components analysis was carried out for the descriptors 
in property space. The third-most significant principal component 
of this set of descriptors served as a useful numerical index of 
drug-likeness, but no others were able to distinguish between 
drugs and non-drugs. The set of descriptors was extended, and 
ultimately three descriptors were used to train a Kohonen artificial 
neural net for the entire Maybridge dataset. Projecting the drug 
database onto the map so obtained resulted in clear distinction 
between drugs and non-drugs.

Figure 11 demonstrates that there is no simple relationship 
between druglikeness and standard 2D similarity measures of 
molecules. Martin and coworkers [40] addressed this question 
in a study using Daylight fingerprints. They showed that, for 
IC50 values determined as a follow-up to 115 high-throughput 
screening assays, there is only a 30% chance that a compound that 
is ≥0.85 Tanimoto similar to an active is itself active.
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Figure 11. The fraction of molecules that are similar to any active that are 
themselves active, as a function of the number of actives with similars.

These workers also asked whether biologically similar compounds 
have similar chemical structures. Considering such classic example 
pairs as the nicotinic agonists acetylcholine and nicotine or the 
dopaminergic agonists dopamine and pergolide (Figure 12), the 
expected answer is no. In fact, the highest Tanimoto similarity 
within this group of four compounds is between nicotine and 
pergolide, and the second-highest is between nicotine and 
dopamine. Nevertheless, in general, the Daylight and Unity 
fingerprints are more similar for compounds with the same 
biological properties than for compounds with different biological 
activities. What might at first be perceived as a disappointing level 
of similarity-predicted actives might be the result of compounds 
binding in subtly different ways to the same receptor or to different 
but related populations of receptors.
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Figure 12. Pairs of cholinergic and dopaminergic agonists.

Pearlman and Smith indicated that such distance-based 
algorithms are quite satisfactory for simple subset selection, but 
are considerably less useful for all other diversity-related tasks. 
In their view, traditional descriptors make rather poor chemistry 
space metrics for three reasons: many of the traditional descriptors 
are highly correlated, some traditional descriptors are strongly 
related to pharmacokinetics but only weakly related to receptor 
affinity, and traditional descriptors convey very little information 
about substructural differences that are the basis of structural 
diversity. They defined BCUT metrics in a manner that incorporates 
both connectivity information and atomic properties relevant 
to intermolecular interaction, i.e., atomic charge, polarizability, 
and H-bond donor and acceptor abilities. Given a set of active 
compounds that all bind to a given receptor in the same way, it is 
certainly reasonable to expect that these active compounds should 
be positioned near each other in a small region of chemistry 
space if the chemistry space metrics are valid. They developed 
the Activity-Seeded Structure-Based clustering algorithm, which 
provides a method for directly testing that expectation in the 
typical case in which the chemistry space dimensionality is greater 
than three and, thus, simple visual inspection of the distribution 
of active compounds is difficult or impossible. Given a number 
of compounds for which a particular receptor has significant 
affinity, they can then identify the receptor-relevant subspace for 
that receptor by identifying the axes along which compounds are 
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tightly clustered. The algorithm also accounts for the possibility 
of multiple receptor binding modes by allowing more than 
one cluster of actives per relevant axis. In addition to their own 
application to ACE inhibitors as an illustration of the method, 
Stanton independently applied this method to a QSAR study of 
dihydrofolate reductase inhibitors. The resulting model was highly 
predictive, as shown in Figure 13. It is apparent that the BCUT 
metrics are measuring particular structural features that can be 
related to the observed properties of a variety of molecules. They 
appear to perform quite well in capturing structural information 
important for understanding polar intermolecular interactions.

Figure 13. Comparison of estimated and observed DHFR inhibitor activ-
ity values using a BCUT-based model.

BCUT metrics are being used increasingly in QSAR studies and 
library design. A particularly interesting study was done by 
Pirard and Pickett, who presented studies with BCUTs for the 
classification of ATP site-directed kinase inhibitors active against 
five different protein kinases, three from the serine/threonine 
family and two from the tyrosine kinase family. In combination 
with a chemometric method, the BCUTs were able to correctly 
classify the ligands according to their target. The authors concluded 
that BCUTs are indeed a useful set of descriptors for design tasks, 
extracting information in a manner relevant to describing ligand– 
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receptor interactions. They are particularly suited to the design of 
targeted libraries and virtual screening of compound collections, 
as they are quick to calculate while containing more information 
than a standard 2D fingerprint type descriptor.

3.7 IS BIOLOGICAL SELECTIVITY AN ILLUSION?

We have illustrated the enormity of chemistry space and the focus 
on biologically relevant chemistry space, but what about biology 
space itself? How many biologically relevant targets are there? 
Although this number has been estimated to be around 3000, it 
may well be much larger than this if we extrapolate from what 
we know about particular target classes, e.g., GPCRs, where 
there are many potential druggable targets and many potential 
pharmacologies, from agonists to antagonists to modulators to 
inverse agonists. In a typical drug discovery program, selectivity 
of potential development candidates is often assessed against a 
panel of 50–100 biologies. Clearly, this does not cover a very large 
fraction of available biology space. In fact, many compounds 
originally thought to be very selective were later found to have 
effects against many other targets. For example, cholesterol-
lowering HMGCoA reductase Inhibitors (statins) are among the 
world’s top-selling drugs. It was recognized recently that statins 
possess additional biology. e.g., anti-inflammatory activity that 
is not explained by their interaction with this enzyme. High-
throughput screening of large chemical libraries has identified 
lovastatin (a statin) as an extracellular inhibitor of LFA-1. 
Lovastatin was shown to decrease LFA-1-mediated leukocyte 
adhesion to ICAM-1 and T-cell co-stimulation. Unexpectedly, 
lovastatin was found to bind to a hitherto unknown site in the 
LFA-1 I (inserted) domain, as documented by nuclear magnetic 
resonance spectroscopy and crystallography.

Some structural classes, e.g., benzodiazepines, are well known 
to exhibit diverse biology depending on the precise substituent 
pattern and conformation. Selective ligands with common cores 
have been obtained against many protein targets (Figure 14). 
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The existence of such privileged structures suggests that some 
common structural binding motifs on proteins are reused across 
many different protein families. It is widely accepted that few if 
any of the known biologically active molecules are exclusively 
selective for a single biological target. This forms the basis for the 
discovery of new uses for existing drugs and the explanation of 
side effects observed for all drugs. Indeed, in a commentary on the 
molecular basis for the binding promiscuity of antagonist drugs, 
LaBella stated that it is unlikely that binding-site dimensions, 
geometry, charge environments, hydrophobic surfaces, and 
other features will ever be known to the extent that drug design 
technology will yield a compound with absolute specificity for 
one species of functional protein. On a molecular level this may 
well be a consequence of there being a relatively small number of 
protein families and folding motifs. These considerations are being 
applied in interesting ways to quickly find new biologically active 
compounds. For example, Kauvar and Dixon have developed 
a method called affinity fingerprinting, for predicting ligand 
binding to proteins. In this method, the binding potency of a 
small molecule is measured against a panel of reference proteins, 
in which the panel members have been empirically selected to 
provide binding sites that are well diversified with regard to 
interactions with small molecules. The resulting set of pIC50’s 
constitutes the molecule’s molecular fingerprint. Libraries of 
compounds can be evaluated and the collection of corresponding 
fingerprints entered into a database. From this large set, a subset is 
then chosen to represent the diversity of the set. The subset is then 
screened against a new target protein. Those compounds with the 
best pIC50’s against the new protein are used to query the database 
to find other compounds with the same or similar fingerprint. 
Repetition of the cycle quickly finds the bestbinding compounds 
in the collection. These can then serve as seeds for combinatorial 
expansion, presumably accelerating the lead discovery process.
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Figure 14. The classic privileged structure – the benzodiazepine nucleus 
with small structural modifications – is capable of many different biolo-
gies.

We have used a related strategy to analyze the performance of our 
corporate collection in high-throughput screening over the past 
several years. Our panel of proteins consists of drug targets of 
interest and spans several target classes, including GPCRs, several 
classes of enzymes, ion channels, etc. Our thesis is that a compound 
that exhibits biological activity in any target class is more likely to 
exhibit activity in another unrelated class than is a compound that 
has never exhibited biological activity of any kind. We initially 
used a relatively small set of assays and screened compounds and 
identified about 3500 compounds that were biologically active 
in at least one assay and met our internal criteria with respect to 
molecular weight, cLogP, polar surface area, and other chemistry-
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based filters. About 10% of these compounds were found to exhibit 
activity in other assays. The number of active compounds was 
then to expanded about 10 000, and the number of assays to 40. 
The hit rate of the general corporate collection was normalized to 
a frequency of 1 and compared to the hit rate of the 10 000 known 
biologically active set. The results are shown in Figure 15.

Figure 15. Observed hit rates for a biology-based library on a scale in 
which the hit rate of the general collection was normalized to 1.

Clearly, the hit rate exceeds that of the general collection in the 
majority of screens. However, recent publications have sounded a 
cautionary note. Roche and coworkers reported the development 
of a virtual screening method for the identification of ‘frequent 
hitters’. These compounds appear as hits in many different 
biological assays covering a wide range of targets for two main 
reasons: (1) the activity of the compound is not specific for the 
target; and (2) the compound perturbs the assay or the detection 
method. They found that, with an increasing drug-likeness of the 
database, a decreasing fraction of frequent hitters is predicted. 
Sheridan reported finding multiactivity substructures by mining 
databases of drug-like compounds. Shoichet and coworkers 
described a common mechanism underlying this phenomenon. 
In their study they observed that several nonspecific inhibitors 
formed aggregates 30–400 nm in diameter and that these aggregates 
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were likely responsible for the inhibition. With these two reports 
in mind, we returned to our corporate database and identified, 
again after suitable filtering, a set of 72 000 biologically active 
compounds. We then selected a subset of about 25 000 compounds 
based on the following criteria: (1) compounds with confirmed 
activity in at least two assays, (2) compounds with confirmed 
activity in no more than five assays, (3) compounds tested in at 
least ten assays. We felt that this simple approach would give us a 
set of information-rich compounds largely free of frequent hitters. 
Using Daylight 2D fingerprints and a Tanimoto distance of 0.3, 
the set consists of 9200 clusters, of which there are almost 5100 
singletons. We propose that this richly diverse subset is an ideal 
starting platform for the design of screening libraries and for the 
discovery of new privileged structures. Interestingly, with respect 
to physical properties, the subset is slightly more lipophilic and 
has slightly larger polar surface area than the general collection, 
but the distribution of molecular weights and the numbers of 
hydrogen-bond donors and acceptors is the same. We conclude 
that the currently accepted drug-like physical properties boundary 
conditions are necessary but not sufficient to define biological 
activity and that other, poorly understood, factors are the true 
drivers of such activity. We continue to explore just what those 
factors might be.

3.8 SYNTHESIS OF CHEMICAL GENETICS LIBRAR-
IES: NEW ORGANIC SYNTHESIS APPROACHES TO 
THE DISCOVERY OF BIOLOGICAL ACTIVITY

The recognition that the intersection of biology space is limited 
within chemistry space has encouraged the development of new 
strategies in organic synthesis for the discovery of biological 
activity. For example, Ellman and coworkers have developed 
combinatorial target-guided ligand assembly. In this method, 
a set of potential binding elements is prepared in which each 
molecule incorporates a common chemical linkage group. The set 
of potential binding elements is screened to identify all binding 
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elements that interact even weakly with the biological target. A 
combinatorial library of linked binding elements is prepared in 
which the binding elements are connected through a set of flexible 
linkers. The library is then screened to identify the tightest-binding 
ligands. Using this approach they identified a potent (IC50 = 64 nM) 
inhibitor of the non-receptor tyrosine kinase c-Src. An extension of 
this strategy has been developed by Lehn and others. So-called 
dynamic combinatorial chemistry uses self-assembly processes 
to generate libraries. In contrast to the stepwise assembly of 
molecules in the library, this method allows for the generation 
of libraries based on continuous inter-conversion among the 
library constituents. Addition of the target ligand or receptor 
creates a driving force that favors formation of the best-binding 
constituent. Sharpless and coworkers have investigated a slightly 
different approach. Rather than using a set of interconverting 
constituents, they allow the target to select building blocks and 
synthesize its own inhibitor. Dubbed ‘click chemistry,’ it depends 
on the simultaneous binding of two ligands, decorated with 
complementary reactive groups, to adjacent sites on the protein. 
Their colocalization is then likely to accelerate the reaction that 
connects them. The reaction of course must be selected so as to 
not take place in undesired ways within biochemical systems. 
One such reaction is the cycloaddition of azides to acetylenes to 
yield 1,2,3-triazoles. As a proof of principle, AChE was used to 
select and synthesize a triazole-linked bivalent inhibitor by using 
known site-specific ligands as building blocks. This resulted in 
the discovery of an inhibitor with a Kd in the range of 77–410 fM 
(femtomolar), depending on the species. This is the most potent 
noncovalent AChE inhibitor known to date, by approximately 
two orders of magnitude.

The standard approach to parallel synthesis of libraries is to start 
with a polyfunctional common core and elaborate those functions 
with diversity elements. With just a few diversity locations and the 
large number of commercially available diversity reactants, this 
can result in libraries consisting of tens or hundreds of thousands, 
or even more, members. Nevertheless, such libraries retain the 
common core for all members, which necessarily limits the total 
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diversity of the library. Far more challenging, and arguably more 
valuable to the efficient exploration of chemistry space, would be 
the synthesis of libraries whose members are based on disparate 
cores. Schreiber is addressing the problem of skeletal diversity by 
using a synthesis strategy that involves transforming substrates 
with different appendages that pre-encode skeletal information 
into products that have different skeletons, with the use of 
common reaction conditions.
Our own interest in this problem was the result of our work 
on the biology-based collections discussed above. We found 
that roughly only half the compounds were available as solid 
samples for further study, and the remainder were dropped 
from consideration for that reason. The efficient resynthesis 
of hundreds or thousands of disparate compounds was simply 
not practical. Or was it? Perhaps there was an easy way to sort 
multiple syntheses into common starting materials and reactions 
and to carry them out in parallel. To that end, we used LeadScope 
software as our management tool. Normally, LeadScope links 
chemical and biological data, allowing chemists to explore large 
sets of compounds by a systematic substructural analysis using 
a predefined set of 27 000 structural features. More importantly 
for our purposes, two sets can be compared with respect to these 
features. We chose the ACD database as our second set. We could 
then easily select those starting materials that would give rise to 
many products via different routes. We then ran as many reactions 
as possible using parallel synthesis methods. We have used this 
method for syntheses of up to four steps and have been able to 
maintain a productivity level of one compound per chemist per 
day, 25 mg scale, purified ≥85%, and characterized by LC/MS and 
NMR.
We are developing an approach to true simultaneous synthesis 
of disparate core compounds. Most molecules of the size and 
complexity we are interested in would likely be prepared in no 
more than five steps. The actual transformations are usually 
limited to the chemistry background and experience of the 
chemist(s) involved in the project. However, the routes need not 
be so limited. Indeed, consider the generation of tens or hundreds 
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of routes to each compound of interest. The problem then becomes 
one of how to prepare the maximum number of compounds 
using the minimum set of common chemistries, staging the 
routes as necessary so as to maximize the overlap of reagents and 
conditions. The generation of syntheses is software based. Two or 
three decades ago there was a lot of effort to develop software to 
predict the most efficient syntheses of complex organic molecules; 
most have been abandoned. We chose to use the SynGen program 
for the very reason that it usually produces several routes to a 
molecule, each of which begins with a commercially available 
starting material and whose transformations usually have a 
literature precedent. Common chemistries can be grouped at three 
levels: (1) reaction type, e.g., acylation of amines; (2) reagent type, 
e.g., acylation of secondary amines; and (3) specific reagents, e.g., 
acylation of diethyl amine. Each level is specifically encoded by 
the program, making searching, sorting, and matching fairly easy. 
We will not necessarily choose the shortest route to each molecule, 
since it is entirely possible that some longer routes would give rise 
to additional commonalities, thereby allowing the preparation 
of a larger total number of compounds. We are in the process of 
testing this concept using a set of 100 very different structures and 
will report the results in due course.

3.9 INFORMATION AND KNOWLEDGE MANAGE-
MENT ISSUES

The integration of chemistry and biology that constitutes the 
engine for chemical genetics presents a major challenge for 
existing models of information and knowledge management. The 
management of information and knowledge is so critical as to 
deserve a place as one of the three critical components necessary 
to truly enable chemical genetics (Figure 16). Linking chemical 
structures with biology in a systematic way has challenged 
pharmaceutical companies and software vendors for many years, 
and several proprietary and off-the-shelf solutions now exist. 
Typically, these products are not scaleable or flexible enough to 
deal with the problems exposed by chemical genetics.



Chemogenomics110

Figure 16. Chemical genetics requires the integration of the three criti-
cal elements of chemistry, biology, and information/knowledge manage-
ment.

3.10 ANNOTATION OF SMALL MOLECULES

Several groups have realized the information management 
challenges posed by chemical genetics. The US National Cancer 
Institute is developing a powerful openaccess database called 
ChemBank that will link small-molecule structure and associated 
effects on proteins, cell pathways, and tissue formation. 
Additionally the effect of small molecules on an organism’s 
phenotype will also be captured. ChemBank is a chemical 
genetics database, which has been described as a chemical version 
of GenBank, the online repository of genetic data. The NCI 
plans to synthesize and screen thousands of molecules for their 
biological activity. Annotation of small molecules should allow 
for much closer integration of chemical structure and biological 
activity. Use of such annotated compounds (sometimes referred 
to as information-rich compounds) as chemical tools for probing 
biological systems promises to be a fruitful area of future research.
The central informatics issue in chemical genetics is annotation 
of chemical structures in the same way as annotation of genes, 
i.e., annotation of the biology and other properties of a chemical 
structure. In a typical single-drug discovery project, it is common 
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for many structures to be profiled by a single biological screen 
generating a simple vertical data format (Figure 17). In chemical 
genetics we focus on single compounds annotated with many bi-
ologies – a horizontal data format (Figure 17).

Figure 17. Chemical genetics databases require the annotation of indi-
vidual compounds with many biologies, in contrast to the more tradi-
tional way of capturing the assay results of many compounds against a 
single biology
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NCI is asking scientists from all over the world to deposit 
information on the effects of small molecules on cells on the micro 
(gene expression) and macro levels in ChemBank. One of the hopes 
here is to link phenotypic changes with structures and to use this 
information in predicting the mechanism of action of drugs.
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INTRODUCTION

The goal of chemogenomics is a systematic understanding of how 
various chemical compounds modulate the function or activity of 
each and every gene product (protein) in the human body. Before an 
approach qualifies as chemogenomic, it must provide knowledge 
about multiple targets or pathways in a holistic manner that 
represents a departure from drug discovery’s historic target-by-
target approach. Hence, technologies such as cell-based screening 
and expression profiling are commonly labeled chemogenomic by 
virtue of their ability to furnish data that spans multiple targets 
and pathways. Naturally, as these chemogenomic technologies 
begin to yield new types of data, new chemogenomic informatics 
approaches must be developed to convert this data into knowledge 
relevant to drug discovery. The goal of human structural genomics 
is a systematic determination of all of the protein structures in the 
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human body. Current experimental efforts have been instrumental 
in establishing high-throughput structural genomics platforms 
that employ automated protein expression, crystallization, data 
acquisition, and model refinement technologies.
The number of protein-ligand co-crystal structures available 
for drug targets has also increased substantially over the last 
decade (Fig. 1). Historically, structure-based drug design (SBDD) 
approaches have utilized cocrystal information to rationally 
optimize the activity and ADME properties of lead compounds. 
Since the first successful structure-based drugs were developed 
to target HIV protease and influenza neuraminidase in the early 
nineties, inhibitors for more than 40 distinct targets have been 
developed using SBDD approaches.

Figure 1: High throughput technologies have rapidly expanded the 
number of targets that have been expressed and successfully co-crys-
tallized.

As the amount of protein and protein-ligand complex structural 
data increases, structural coverage across many important gene 
families is becoming much more complete. That is, rather than 
having the structure for just one target within a gene family, 
structures are becoming available for many or all of the targets 
within a gene family. This increase in structural coverage offers the 
possibility of replacing the historic target-by-target utilization of 
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structural data with a holistic, chemogenomic approach. Structural 
informatics is an important branch of chemogenomic informatics 
whose goal is to utilize the rapidly expanding structural database 
in new ways to enhance the discovery and optimization of small 
molecule protein modulators on a genomic scale.

4.1 STRUCTURAL INFORMATICS

Informatics is defined as, “the collection, classification, storage, 
retrieval, and dissemination of recorded knowledge.”In 
bioinformatics, gene and protein sequences are classified according 
to their similarity to infer function for genes and proteins whose 
functions have not been verified experimentally. For example, 
many of the proteins that we refer to as kinases have never been 
assayed for kinase activity, we infer that they are kinases since 
their sequences are similar to verified kinases. 

This well-established process of inference via similarity is 
not without error; every once in a while the bioinformatics-
based inference of protein function will be incorrect. Much 
more frequently, the cheminformaticsbased inference of small 
molecule activity is in error, since slight changes in a molecule can 
dramatically affect its ability to bind. Hence, in cheminformatics, 
inference of function from similarity classification is less reliable 
than in bioinformatics. Because of this lack of reliability, inference 
in cheminformatics is thought of as an imperfect screening 
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process, whose less than ideal performance is analyzed in terms 
of an enrichment factor (a measure of how much better the 
cheminformatic inference performs than random inference).

Structural informatics utilizes the same process of inference 
through classification as its well established informatics cousins. 
In structural informatics, the data being compared and classified 
are protein structures, binding sites, and ligand binding modes. 
Correspondingly, the types of algorithms used for the purposes 
of classification are structure alignments, site alignments, and 
binding mode alignments.

Figure 2: The relationship between bio-, structural, and cheminformat-
ics.

4.1.1 Calculating the Structural Informatics Universe

While the number of compounds that can potentially modulate 
the activity of human proteins is infinite, the number of human 
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proteins is finite. Hence, it is theoretically feasible to construct 
bioinformatics and structural informatics databases that contain 
the sequences, structures, and binding sites for all human proteins. 
Since experimental structure determination plays a key role in 
expanding the amount of reliable structural and ligand binding 
mode data, the foundation of such a database is robust, updatable 
knowledge management of experimental protein structure 
information. At Eidogen-Sertanty, we have developed a structural 
informatics database that utilizes predictive algorithms to amplify 
the existing experimental protein structure and binding site data 
and to classify the resulting structures, sites, and ligand binding 
modes according to their respective similarity relationships. We 
call this database the Target Informatics Platform (TIP). Figure 
3 shows the data and algorithms in the TIP database, and how 
data can be extracted from the database to interface with selected 
compounds from the infinite space of potential molecules. Figure 
4 shows a snapshot of the protein structure and binding site data 
in TIP for those targets recently assigned to the human druggable 
genome.
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Figure 3: The data and algorithms in Eidogen-Sertanty’s Target Infor-
matics Platform human database.

4.1.2 Structural Relationships

Due to divergent or convergent evolution, structural homology 
can be conserved between proteins with undetectable sequence 
homology. In such instances, protein structure alignment 
algorithms, such as DALI and CE, can be used to find structural 
similarities and potential functional relationships that cannot be 
found using sequence alignment approaches. The well known 
structural classification databases SCOP, CATH, and FSSP 
store the results of structure alignments for protein structures 
from the PDB, and the Gene3D database goes a step further by 
providing the CATH structural classification for gene and protein 
sequences from completed genomes. The TIP database goes an 
additional step beyond Gene3D, not only providing the structural 
classification for all protein structures in a genome, but also the 
explicit structural alignments between each of the structures.

While protein structure alignment is certainly an important tool 
for functional genomics, the knowledge gained from structural 
classification is of limited value for chemogenomics applications. 
Inferring whether a compound is likely to bind to a target protein 
requires an understanding of the relationships at the level of the 
binding site.
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Figure 4: TIP’s structure and binding site coverage for the major drug 
target families that comprise the druggable human genome.

4.1.3 Binding Site Relationships

While there are many resources available for obtaining protein 
structure relationships, there are comparatively few resources 
available for understanding binding site relationships. Sali and 
co-workers developed the first resource of this kind, LigBase. 
The LigBase database was created by coupling site annotations 
from the co-crystal record in the PDB along with the CE structure 
alignment algorithm, yielding multiple alignments for known 
binding sites. A distinguishing feature of CavBase is that it contains 
additional similarities between binding sites from proteins that 
do not share any structural homology, since the binding sites are 
directly aligned using a clique detection algorithm, not a structure 
alignment algorithm. At Eidogen-Sertanty, we have developed a 
site alignment algorithm, SiteSorter, which uses a weighted-clique 
detection approach to directly overlay binding sites and avoid the 
requirement for structure homology. By integrating SiteSorter 
with fully automated homology modeling (STRUCTFAST) and 
site annotation (SiteSeeker), TIP goes an additional step beyond 
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LigBase and CavBase, providing intra- and inter family binding 
site for the entire proteome, not just for those proteins whose 
structures have been resolved experimentally.

Since closely related binding sites are more likely to bind to the 
same small molecules, binding site similarity analysis allows 
us to infer important cross-reactivity information. During lead 
discovery for a new target, finding a cross-reactivity to a target for 
which there are already leads enables the fast discovery of new 
leads via target-hopping. With the potential of short circuiting the 
lead discovery process on a genomic scale, target hopping is an 
important chemogenomic application of structural informatics. 
Figure 5 shows an example of intra-family target hopping, while 
Fig. 6 shows an example of inter-family target hopping.

Figure 5: An example of intra-family target hopping within kinases.

While the potential for target hopping exists when two binding 
pockets are highly similar, a second set of applications emerges 
from a detailed understanding of the differences between two 
similar binding pockets. During lead optimization, where the goal 
is a highly selective binder, understanding the detailed mechanism 
of cross-reactivity between targets is critical for modifying existing 
leads to enhance their affinity for the desired target. 
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Figure 6: An example of inter-family target hopping between human 
and viral aspartyl proteases.

Figure 7 shows an example of an undesirable inter-family 
crossreactivity found in the TIP database, and proposes a 
mechanism for an optimized lead series to avoid the undesirable 
off-target. In addition to enabling the optimization of known 
leads, structural informatics offers the possibility of mining the 
proteome for interesting drug discovery opportunities that are 
likely to succeed because binding site similarity analysis reveals 
an opportunity to design a highly selective binder. 

Figure 7: Binding site similarity analysis can reveal unwanted off-target 
cross-reactivities.
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Figure 8 shows an example of opportunity mining in the area of 
anti-infectives. Once one or more projects have been mined, struc-
tural informatics can also be used to prioritize the projects by their 
expected feasibility. 

Figure 8: Structural informatics can be used to mine anti-infective op-
portunities that cannot be discovered by comparative genomics.

Figure 9 shows an example of a project whose feasibility has been 
adversely affected because the target’s binding site is very different 
in mice, the animal model of choice.

Figure 9: Binding site analysis of different species can uncover potential 
problems with animal models for a given target.
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4.1.4 Ligand Binding Mode Relationships

While it has long been a common practice in structure-based drug 
design to examine the binding modes of co-crystalized ligands to 
gain insight into the important principles for binding, methods 
for the fully automated analysis of ligand binding modes. These 
methods play a crucial role in structural informatics by enabling 
similarity based classification of the rapidly expanding database 
of co-crystal structural data. In the TIP database,a binding mode 
similarity score is determined for each of the co-crystal binding 
site overlays using an approach called SLiC (site-ligand contacts), 
which is similar to the SIFt (structural interaction fingerprint) 
methodology developed by Singh and co-workers at Biogen. In 
the SIFt and SLiC approaches, the types of contacts that a ligand 
makes with each of the residues of the binding pocket are coded 
into a bit string.

By converting the interactions important for binding into one dimen-
sional bit strings, the SiFT and SLiC approaches can be coupled with 
small molecule docking approaches to find new molecules that are ca-
pable of making the same interactions. In this manner, automated bind-
ing mode analysis can be used to significantly enhance docking based 
approaches for inferring small molecule activity.

4.2 TOOLS FOR LIGAND BASED DRUG DESIGN

Ligand-based drug design or relies on knowledge of other 
molecules that bind to the biological target of interest. These 
other molecules may be used to derive a pharmacophore model 
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that defines the minimum necessary structural characteristics 
a molecule must possess in order to bind to the target. In other 
words, a model of the biological target may be built based on 
the knowledge of what binds to it, and this model in turn may 
be used to design new molecular entities that interact with the 
target. Alternatively, a quantitative structure-activity relationship 
(QSAR), in which a correlation between calculated properties of 
molecules and their experimentally determined biological activity, 
may be derived. These QSAR relationships in turn may be used 
to predict the activity of new analogs. Ligand based drug design 
uses ligands of the drug target— that is, molecules that bind to the 
drug target.

Design focuses on the structure of the ligands, for example, by the 
use of pharmacophore models or by QSAR models. The former 
model seeks to determine what ligand structures are necessary 
for target binding. QSAR models, on the other hand, suggest that 
molecular similarity, through combination molecular descriptors, 
predicts biological activity of the drug.

4.2.1 Quantitative Structure–activity Relationship (QSAR)

Quantitative structure–activity relationship models are regression 
or classification models used in the chemical and biological sciences 
and engineering. Like other regression models, QSAR regression 
models relate a set of “predictor” variables to the potency of the 
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response variable (Y), while classification QSAR models relate the 
predictor variables to a categorical value of the response variable.

The number of compounds required for synthesis in order to place 
10 different groups in 4 positions of benzene ring is 104.

Solution: synthesize a small number of compounds and from 
their data derive rules to predict the biological activity of other 
compounds.

VEGA Platform

Using the VEGA platform, you can access a series of QSAR 
models for regulatory purposes, or develop your own model. 
QSAR models can be used to predict the property of a chemical 
compound, using information obtained from its structure.

DEMETRA

This project aim has been to develop predictive models and software 
which give a quantitative prediction of the toxicity of a molecule, in 
particular molecules of pesticides, candidate pesticides, and their 
derivatives. The input is the chemical structure of the compound, 
and the software algorithms use “Quantitative Structure-Activity 
Relationships” (QSARs). The DEMETRA software tool can be 
used for toxicity prediction of molecules of pesticides and related 
compounds. The DEMETRA models are freely available. Five 
models have been developed to predict toxicity against trout, 
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daphnia, quail and bee. The software is based on the integration 
of the knowledge acquired in the DEMETRA EU project in a 
homogeneous manner using the best algorithms obtained as the 
basis for hybrid combinative models to be used for predictive 
purposes.

T.E.S.T

Toxicity Estimation Software Tool (T.E.S.T.) will enable users to 
easily estimate acute toxicity using the above QSAR methodologies.

OCHEM

The OCHEM is an online database of experimental measurements 
integrated with the modeling environment. Submit your 
experimental data or use the data uploaded by other users to 
build predictive QSAR models for physical-chemical or biological 
properties.

E-DRAGON

E-DRAGON is the electronic remote version of the well-known 
software DRAGON, which is an application for the calculation 
of molecular descriptors developed by the Milano Chemometrics 
and QSAR. These descriptors can be used to evaluate molecular 
structure-activity or structure-property relationships, as well as 
for similarity analysis and high throughput screening of molecule 
databases.

SeeSAR

SeeSAR is a software tool for interactive, visual compound 
prioritization as well as compound evolution. Structure-based 
design work ideally supports a multi-parameter optimization 
to maximize the likelihood of success, rather than affinity alone. 
Having the relevant parameters at hand in combination with real-
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time visual computer assistance in 3D is one of the strengths of 
SeeSAR.

Dragon

Dragon calculates 5,270 molecular descriptors, covering most of 
the various theoretical approaches. The list of descriptors includes 
the simplest atom types, functional groups and fragment counts, 
topological and geometrical descriptors, three-dimensional 
descriptors, but also several properties estimation (such as logP) 
and drug-like and lead-like alerts.

PaDEL-Descriptor

A software to calculate molecular descriptors and fingerprints. 
The software currently calculates 1875 descriptors (1444 1D, 2D 
descriptors and 431 3D descriptors) and 12 types of fingerprints 
(total 16092 bits). The descriptors and fingerprints are calculated 
using The Chemistry Development Kit with additional descriptors 
and fingerprints such as atom type electrotopological state 
descriptors, Crippen’s logP and MR, extended topochemical 
atom (ETA) descriptors, McGowan volume, molecular linear 
free energy relation descriptors, ring counts, count of chemical 
substructures identified by Laggner, and binary fingerprints and 
count of chemical substructures identified by Klekota and Roth.

4.2.2 Pharmacophore

A Pharmacophore is an abstract description of molecular features 
that are necessary for molecular recognition of a ligand by a 
biological macromolecule. The IUPAC defines a Pharmacophore 
to be “an ensemble of steric and electronic features that is 
necessary to ensure the optimal supramolecular interactions with 
a specific biological target and to trigger (or block) its biological 
response”. A Pharmacophore model explains how structurally 
diverse ligands can bind to a common receptor site. Furthermore, 
Pharmacophore models can be used to identify through de novo 
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design or virtual screening novel ligands that will bind to the same 
receptor. In modern computational chemistry, Pharmacophores 
are used to define the essential features of one or more molecules 
with the same biological activity. A database of diverse chemical 
compounds can then be searched for more molecules which share 
the same features arranged in the same relative orientation.

Pharmacophores are also used as the starting point for developing 
3DQSAR models. Such tools and a related concept of “privileged 
structures”, which are “defined as molecular frameworks which 
are able of providing useful ligands for more than one type of 
receptor or enzyme target by judicious structural modifications”, 
aid in drug discovery.

Pharmer

Predicting molecular interactions is a major goal in rational drug 
design. Pharmacophore, which is the spatial arrangement of 
features that is essential for a molecule to interact with a specific 
target receptor, is important for achieving this goal. PharmaGist 
is a freely available web server for pharmacophore detection. 
The employed method is ligand based. It does not require the 
structure of the target receptor. Instead, the input is a set of 
structures of drug-like molecules that are known to bind to the 
receptor. We compute candidate pharmacophores by multiple 
flexible alignments of the input ligands. The main innovation of 



Structural Informatics: Chemogenomics 131

this approach is that the flexibility of the input ligands is handled 
explicitly and in deterministic manner within the alignment 
process. The method is highly efficient, where a typical run with 
up to 32 drug-like molecules takes seconds to a few minutes on a 
standard PC. Another important characteristic of the method is 
the capability of detecting pharmacophores shared by different 
subsets of input molecules. This capability is a key advantage 
when the ligands belong to different binding modes or when the 
input contains outliers.

Catalyst

Pharmacophore Modeling and Analysis; 3D database building 
and searching; Ligand conformer generation and analysis tools; 
Geometric, descriptor-based querying; Shape-based screening. 

LigandScout

The LigandScout software suite comprises the most user-friendly 
molecular design tools available to chemists and modelers 
worldwide. The platform seamlessly integrates computational 
technology for designing, filtering, searching and prioritizing 
molecules for synthesis and biological assessment.

MOE

MOE contains the industry-leading suite of Pharmacophore 
discovery applications used for fragment-, ligandand structure-
based design projects. Pharmacophore modeling is a powerful 
means to generate and use 3D information to search for novel 
active compounds, particularly when no receptor geometry is 
available. Pharmacophore methods use a generalized molecular 
recognition representation and geometric constraints to bypass 
the structural or chemical class bias of 2D methods.
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Phase

Phase is a complete, user-friendly Pharmacophore modeling 
solution designed to maximize performance in virtual screening 
and lead optimization. Fast, accurate, and easy-to-use, Phase 
includes a novel, scientifically validated common Pharmacophore 
perception algorithm.

4.2.3 Target Fishing

Computational methods for Target Fishing (TF), also known as 
Target Prediction or Polypharmacology Prediction, can be used 
to discover new targets for small-molecule drugs. This may result 
in repositioning the drug in a new indication or improving our 
current understanding of its efficacy and side effects. We can a 
new benchmark to validate TF methods, which is particularly 
suited to analyze how predictive performance varies with the 
query molecule.

Robust target fishing extends multitude benefits to drug research, 
such as avoiding unwanted side effects from poly pharmacology 
of small molecules at clinical stages, to reveal the mode-of-actions 
of a compound and also to repurpose old drugs for new targets. 
The rule of ‘one-size-does-not-fit-all’ still holds well in target 
fishing approaches as well. Therefore, it is important to carefully 
assemble the available methods and resources such that all 
levels of biological information, from sequences to structures to 
pharmacophores, are maximally utilized for fishing out the targets 
for the design of safer next generation drugs.
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ChemMapper

ChemMapper is a free web server for computational drug 
discovery based on the concept that compounds sharing high 3D 
similarities may have relatively similar target association profile. 
ChemMapper integrates nearly 300 000 chemical structures from 
various sources with pharmacology annotations and over 3 000 
000 compounds from commercial and public chemical catalogues. 
Inhouse SHAFTS method which combines the strength of 
molecular shape superposition and chemical feature matching 
is used in ChemMapper to perform the 3D similarity searching, 
ranking, and superposition. Taking the user-provided chemical 
structure as the query, SHAFTS aligns each target compound 
in the database onto the query and calculates the 3D similarity 
scores and the top most similar structures are returned. Based on 
these top most similar structures whose pharmacology annotation 
is available, a chemical-protein network is constructed and a 
random walk algorithm is taken to compute the probabilities of 
the interaction between the query structure and proteins which 
associated with hit compounds. These potential protein targets 
ranked by the standard score of the probabilities. ChemMapper 
can be useful in a variety of polypharmacology, drug repurposing, 
chemical-target association, virtual screening, and scaffold 
hopping studies.



Chemogenomics134

PharmMapper Server

The current release, i.e. version 2017, is based on the contents 
of PDB officially released by Jan 1st, 2016. This release applies 
Cavity1.1 to detect the binding sites on the surface of a given 
protein structure and rank them according to the corresponding 
druggability scores. A receptor-based pharmacophore modeling 
program Pocket 4.0 was then used to extract pharmacophore 
features within cavities. In this approach, a total of 23236 proteins 
covering 16159 pharmacophore models which are predicted as 
druggable binding sites and 52431 pharmacophore models with 
a pKd value higher than 6.0 are picked out, which is currently 
the largest collection of this kind. Compared to the last release 
(v.2010), target pharmacophore models included in this release 
have increased more than six times, from 7302 to over almost 
53000.

TargetHunter

This web portal implements a novel in silico target prediction 
algorithm, the Targets Associated with its Most Similar 
Counterparts, by exploring the largest chemogenomical databases, 
ChEMBL. TargetHunter also features an embedded geography 
tool, BioassayGeoMap, developed to allow the user easily to search 
for potential collaborators that can experimentally validate the 
predicted biological targets or off targets. TargetHunter therefore 
provides a promising alternative to bridge the knowledge 
gap between biology and chemistry, and significantly boost 
the productivity of chemogenomics for silico drug design and 
discovery.

ChemProt

The ChemProt 2.0 server is a resource of annotated and predicted 
chemical-protein interactions. The server is a compilation of over 
1 100 000 unique chemicals with biological activity for more than 
15000 proteins. ChemProt can assist in the in-silico evaluation of 
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small molecules (drugs, environmental chemicals and natural 
products) with the integration of molecular, cellular and disease-
associated proteins complexes.

SwissTargetPrediction

This website allows you to predict the targets of a small molecule. 
Using a combination of 2D and 3D similarity measures, it compares 
the query molecule to a library of 280’000 compounds active on 
more than 2000 targets of 5 different organisms.

SuperPred

SuperPred, which is a prediction webserver for ATC code and 
target prediction of compounds. Predicting ATC codes or targets 
of small molecules and thus gaining information about the 
compounds offers assistance in the drug development process. 
The webserver’s ATC prediction as well as target prediction is 
based on a pipeline consisting of 2D, fragment and 3D similarity 
search.

PASS

PASS Online predicts over 4000 kinds of biological activity, 
including pharmacological effects, mechanisms of action, toxic 
and adverse effects, interaction with metabolic enzymes and 
transporters, influence on gene expression, etc. To obtain the 
predicted biological activity profile for your compound, only 
structural formula is necessary; thus, prediction is possible even 
for virtual structure designed in computer but not synthesized yet.

4.2.4 Reverse Docking

In reverse docking, one tries to find protein targets which can bind 
to a particular ligand. The necessary components are similar to 
those of forward docking methods; preparing data sets, searching 
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for ligand poses, and scoring and ranking the complex structures. 
However, several issues including high computational cost and 
inter-protein score bias makes reverse docking process rather 
complex.

Invdock

A computer method, and its application software INVDOCK, 
have been developed for computerautomated identification of 
potential protein and nucleic acid targets of a small molecule. The 
3-D structure of the small molecule being studied is input into the 
programmer, the software automatically searches a protein and 
nucleic acid 3-D structure database to identify protein, RNA or 
DNA molecule that the small molecule can bind to. The identified 
proteins and nucleic acids are considered potential targets of the 
molecule.
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idTarget

A web server for identifying biomolecular targets of small 
chemical molecules with robust scoring functions and a divide-
and-conquer docking approach.

AMIDE (Automatic molecular inverse docking engine)

Molecular docking is widely used computational technics that 
allows studying structure-based interactions complexes between 
biological objects at the molecular scale. AMIDE was developed, 
a framework that allows performing inverse virtual screening to 
carry out a large-scale chemical ligand docking over a large dataset 
of proteins. Its ability to reproduce experimentally determined 
structures and binding affinities highlighted that AMIDE allows 
performing better exploration than existing blind docking 
methods.

VTS (Virtual Target Screening)

Virtual Target Screening (VTS)”, a set of small drug-like molecules 
are docked against each structure in the protein library to produce 
benchmark statistics. This calibration provides a reference for each 
protein so that hits can be identified for an MOI. VTS can then be 
used as tool for: drug repositioning, specificity and toxicity testing, 
identifying potential metabolites, probing protein structures for 
allosteric sites, and testing focused libraries for selectivity.

iRAISE (inverse rapid index-based screening engine)

Integrates flexibility of hydrophilic rotatable terminal groups 
(such as hydroxyl groups) of the active site and the query molecule. 
iRAISE is an inverse screening tool based on the RApid Index-
based Screening Engine (RAISE) technolog.
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ACTP (Autophagic Compound-Target Prediction)

Autophagy (macroautophagy) is well known as an evolutionarily 
conserved lysosomal degradation process for long-lived proteins 
and damaged organelles. Recently, accumulating evidence has 
revealed a series of small-molecule compounds that may activate 
or inhibit autophagy for therapeutic potential on human diseases. 
However, targeting autophagy for drug discovery still remains 
in its infancy. In this study, we developed a webserver called 
Autophagic Compound-Target Prediction (ACTP) that could 
predict autophagic targets and relevant pathways for a given 
compound.

4.3 BIOINFORMATICS

Bioinformatics, a hybrid science that links biological data with 
techniques for information storage, distribution, and analysis to 
support multiple areas of scientific research, including biomedicine. 
Bioinformatics is fed by high-throughput data-generating 
experiments, including genomic sequence determinations and 
measurements of gene expression patterns. Database projects 
curate and annotate the data and then distribute it via the World 
Wide Web. Mining these data leads to scientific discoveries and 
to the identification of new clinical applications. In the field of 
medicine in particular, a number of important applications for 
bioinformatics have been discovered. For example, it is used to 
identify correlations between gene sequences and diseases, to 
predict protein structures from amino acid sequences, to aid in 
the design of novel drugs, and to tailor treatments to individual 
patients based on their DNA sequences (pharmacogenomics).
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4.3.1 Data of Bioinformatics

The classic data of bioinformatics include DNA sequences of 
genes or full genomes; amino acid sequences of proteins; and 
three-dimensional structures of proteins, nucleic acids and 
protein–nucleic acid complexes. Additional “-omics” data streams 
include: transcriptomics, the pattern of RNA synthesis from DNA; 
proteomics, the distribution of proteins in cells; interactomics, the 
patterns of protein-protein and protein–nucleic acid interactions; 
and metabolomics, the nature and traffic patterns of transformations 
of small molecules by the biochemical pathways active in cells. In 
each case there is interest in obtaining comprehensive, accurate 
data for particular cell types and in identifying patterns of variation 
within the data. For example, data may fluctuate depending 
on cell type, timing of data collection (during the cell cycle, or 
diurnal, seasonal, or annual variations), developmental stage, and 
various external conditions. Metagenomics and metaproteomics 
extend these measurements to a comprehensive description of 
the organisms in an environmental sample, such as in a bucket of 
ocean water or in a soil sample.
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Bioinformatics has been driven by the great acceleration in data-
generation processes in biology. Genome sequencing methods 
show perhaps the most dramatic effects. In 1999 the nucleic acid 
sequence archives contained a total of 3.5 billion nucleotides, 
slightly more than the length of a single human genome; a decade 
later they contained more than 283 billion nucleotides, the length 
of about 95 human genomes.

The U.S. National Institutes of Health has challenged researchers 
by setting a goal to reduce the cost of sequencing a human genome 
to $1,000; this would make DNA sequencing a more affordable and 
practical tool for U.S. hospitals and clinics, enabling it to become a 
standard component of diagnosis.

4.3.2 Storage and Retrieval of Data

The major database of biological macromolecular structure is 
the worldwide Protein Data Bank (wwPDB), a joint effort of the 
Research Collaboratory for Structural Bioinformatics (RCSB) in 
the United States, the Protein Data Bank Europe (PDBe) at the 
European Bioinformatics Institute in the United Kingdom, and 
the Protein Data Bank Japan at Ōsaka University. The homepages 
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of the wwPDB partners contain links to the data files themselves, 
to expository and tutorial material (including news items), to 
facilities for deposition of new entries, and to specialized search 
software for retrieving structures. Information retrieval from the 
data archives utilizes standard tools for identification of data items 
by keyword; for instance, one can type “aardvark myoglobin” into 
Google and retrieve the molecule’s amino acid sequence. Other 
algorithms search data banks to detect similarities between data 
items. For example, a standard problem is to probe a sequence 
database with a gene or protein sequence of interest in order to 
detect entities with similar sequences.

4.3.3 Goals

To study how normal cellular activities are altered in different 
disease states, the biological data must be combined to form a 
comprehensive picture of these activities. Therefore, the field 
of bioinformatics has evolved such that the most pressing task 
now involves the analysis and interpretation of various types 
of data. This includes nucleotide and amino acid sequences, 
protein domains, and protein structures. The actual process of 
analyzing and interpreting data is referred to as computational 
biology. Important sub-disciplines within bioinformatics and 
computational biology include:
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•	 Development and implementation of computer programs 
that enable efficient access to, management and use of, 
various types of information.

•	 Development of new algorithms (mathematical formulas) 
and statistical measures that assess relationships among 
members of large data sets. For example, there are 
methods to locate a gene within a sequence, to predict 
protein structure and/or function, and to cluster protein 
sequences into families of related sequences.

The primary goal of bioinformatics is to increase the understanding 
of biological processes. What sets it apart from other approaches, 
however, is its focus on developing and applying computationally 
intensive techniques to achieve this goal. Examples include: 
pattern recognition, data mining, machine learning algorithms, 
and visualization. Major research efforts in the field include 
sequence alignment, gene finding, genome assembly, drug design, 
drug discovery, protein structure alignment, protein structure 
prediction, prediction of gene expression and protein–protein 
interactions, genome-wide association studies, the modeling of 
evolution and cell division/mitosis.

Bioinformatics now entails the creation and advancement of 
databases, algorithms, computational and statistical techniques, 
and theory to solve formal and practical problems arising from 
the management and analysis of biological data.

Over the past few decades, rapid developments in genomic 
and other molecular research technologies and developments 
in information technologies have combined to produce a 
tremendous amount of information related to molecular biology. 
Bioinformatics is the name given to these mathematical and 
computing approaches used to glean understanding of biological 
processes.

Common activities in bioinformatics include mapping and 
analyzing DNA and protein sequences, aligning DNA and protein 
sequences to compare them, and creating and viewing 3-D models 
of protein structures.
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4.3.4 Relation to Other Fields

Bioinformatics is a science field that is similar to but distinct from 
biological computation, while it is often considered synonymous 
to computational biology. Biological computation uses 
bioengineering and biology to build biological computers, whereas 
bioinformatics uses computation to better understand biology. 
Bioinformatics and computational biology involve the analysis of 
biological data, particularly DNA, RNA, and protein sequences. 
The field of bioinformatics experienced explosive growth starting 
in the mid-1990s, driven largely by the Human Genome Project 
and by rapid advances in DNA sequencing technology.

Analyzing biological data to produce meaningful information 
involves writing and running software programs that use 
algorithms from graph theory, artificial intelligence, soft computing, 
data mining, image processing, and computer simulation. The 
algorithms in turn depend on theoretical foundations such as 
discrete mathematics, control theory, system theory, information 
theory, and statistics.
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INTRODUCTION

Ion channel modulators offer significant therapeutic opportunities 
in a number of areas, including arrhythmia, asthma, CNS disorders, 
coronary heart disease, hypertension, inflammation, and water 
retention. New ion channels are constantly being discovered 
and characterized in terms of their pharmacology, physiology, 
and structure. In addition, more and more selective ion channel 
modulators are emerging, upon which drug discovery programs 
can be initiated.

5
A CHEMICAL GENOMICS  
APPROACH FOR ION CHANNEL 
MODULATORS
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The physiological effects of ion channels are based on the regulation 
of ion fluxes (e.g., K+ , Na+ , Ca2+, Cl– ) across membranes, which 
affect, for example, osmotic pressure, nerve signal transmission, 
and muscle contraction. Ion permeation is extremely fast (up to 
107 ions s–1) and highly selective.

Drews classified ion channels as the fourth-most important target 
class for drug therapies after receptors, enzymes, and hormones, 
and a more recent analysis considered kinases, GPCRs, and cation 
channels to be the most interesting target classes for pharmaceutical 
research. Currently, drugs targeting ion channels generate over 24 
billion dollars in sales per annum.

Appropriate drug targets should meet several criteria, such as 
known biological functions, as well as robust assay systems for 
in vitro characterization and testing. Furthermore, they need to 
be accessible to low molecular weight compounds in vivo. Ion 
channels meet most of these ‘druggability’ criteria and can be 
viewed as suitable targets for small molecule drugs.

Potassium (K+) ion channels, for example, are recognized as 
critical regulators of cellular activities and are linked to several 
disease indications, including ventricular arrhythmias, long QT 
syndrome, and atrial fibrillation, as well as to insulin secretion 
and T-cell activation. The long QT syndrome, for instance, is 
associated with an inhibition of the hERG channel in the heart. 
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hERG inhibition represents an important safety consideration 
in drug discovery. Due to their hERG blocking properties and 
subsequent QT interval prolongation, several diverse drugs such 
as Terfenadine, Cisapride, and Astemizole have been withdrawn 
from the market. In comparison, the voltage-gated Kv1.3 channel 
is of interest in therapeutic immune modulation in multiple 
sclerosis and other T-cell mediated autoimmune diseases, and 
Ca2+-activated potassium channels are of interest for reducing 
hyperactive bladder by hyperpolarization of the smooth muscle 
in the bladder.

Calcium-channel blockers are used for treating cardiac arrhythmia 
and pulmonary hypertension and for prevention of reperfusion 
injury. Sodium channels have been linked to epilepsy and 
hyperkalemic periodic paralysis.

Recently approved ion channel modulators include, for example, 
Nateglinide and Nimodipine. Nateglinide was approved in 
December 2000 as a blood glucose lowering agent. Nateglinide 
depolarizes pancreatic β cells by blocking the ATP sensitive 
potassium (KATP) channel, whereby calcium channels are opened, 
resulting in calcium influx and insulin secretion. The extent of 
insulin release is glucose-dependent and decreases at low glucose 
levels. Nateglinide is highly tissue selective with low affinity for 
heart and muscle.

Nimodipine was approved in August 2000 for the improvement 
of neurological outcome by reducing the incidence and severity of 
ischemic deficits in patients with subarachnoid hemorrhage.

The sodium-channel inhibitor Amiloride is used for the treatment 
of chronic bronchitis, and the most frequently used anesthetic 
drug, Lidocain, inhibits voltagegated sodium-channel α subunits, 
which mediate the pathophysiology of pain.

Despite their remarkable physiological value, ion channels are still 
an unexploited therapeutic target class, especially in comparison 
to G-protein coupled receptors. Hence, lead finding and lead 
optimization programs for ion channel modulators are becoming 
more and more interesting. As ion channels are strongly related to 
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each other, a systematic exploration of this target family appears 
to be a promising way to accelerate drug discovery. Chemical 
genomics refers to such systematic and in-depth exploration of 
a target family and fosters a knowledge-driven drug design 
approach. This method is especially feasible for ion channel 
modulators, since considerable knowledge of pharmaceutically 
active structural classes and structure–activity relationships 
exists. In this chapter we summarize our current chemical 
genomics knowledge-based strategies for drug discovery of ion 
channel modulators. This includes structural information about 
ion channels, as well as lead-finding strategies in this field. The 
impact of this strategy is outlined by several successful examples.

Table 1 Pathophysiological conditions related to ion channels

We consider the highest impact of this strategy to be in lead 
finding, although such a target family-related approach offers 
further obvious advantages in the field of assay development, 
HTS technology, and compound optimization. In particular, 
the selectivity of ion channel modulators can be addressed by 
appropriate profiling of these compounds and by building 
channel-specific models applicable to lead optimization.

5.1 STRUCTURAL INFORMATION ON ION  
CHANNELS: ION CHANNEL FAMILIES

Ion channels form a large, diverse family of membrane proteins 
that can be grouped according to various criteria, such as the 
gating behavior or the ion selectivity, as shown in Table 1. 



A Chemical Genomics Approach for Ion Channel Modulators 151

Classification according to such a scheme is not always simple, 
since ligandgated channels like the NMDA-activated ion channel 
may show voltage dependence, and, on the other hand voltage-
gated channels have ligand-binding sites. Voltage gated sodium 
channels can be activated by drugs like Veratridine, whereas the 
MaxiK channel is gated by calcium ions.

The classification of ion channels by their topology is exemplified 
for potassium channels in Figure 1. Potassium channels can be 
classified into 2TM/P channels, which contain two transmembrane 
helices (TM) with one P loop (P) between them, 6TM/P channels, 
7TM/P channels, 8TM/2P channels, and 4TM/2P channels. The 
4TM/2P family is called leakage channels and is targeted by 
numerous anesthetics.

The 6TM/P channel family contains six transmembrane helices, 
labeled S1 to S6. The S4 helix contains four to seven positively 
charged amino acids, which are responsible for sensing the 
membrane potential. Therefore, the S4 helix is called the voltage 
sensor. The S5 and S6 helices form the ion-conducting pore by 
tetramerization.

Table 2. Classification schemes for ion channels

Figure 1. Architectures of potassium channels: different transmembrane 
topologies shown together with potassium channels as examples. In the 
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6TM family, the voltage-sensor helix S4 is highlighted, together with the 
pore-forming helices S5 and S6.

A number of different X-ray structures of bacterial potassium 
channels reveal the detailed atomic picture of the pore-forming 
part, helices S5 and S6. KcsA, which is crystallized in the closed 
conformation, has an overall structure similar to an inverted 
teepee. Four identical subunits surround the ion-conducting 
pathway. Each subunit contains two full transmembrane helices, 
S5 and S6, as well as the P loop. The S6 helices line the central 
cavity, whereas the S5 helices are involved in interactions with 
the lipid environment. In the closed channel conformation the 
transmembrane helices meet at the cytosolic side to block the 
ion conduction path. In the open conformation of the channel, 
the S6 helix kinks at a conserved glycine residue to open the ion 
conduction path, as shown in the structure of the bacterial channel 
MthK. The ion conduction path is formed by the selectivity filter 
and the large water-filled central cavity.

The solution of potassium channel X-ray structures has significantly 
contributed to the understanding of mechanistic questions like 
the amazing selectivity of potassium channels. Although the 
atomic radii of potassium (1.33 Å) and of sodium (0.95 Å) differ 
only slightly, potassium channels select potassium over sodium 
ion by a factor of 1000. This tremendous selectivity is achieved 
by the coordination geometry of eight amide carbonyl groups 
in the selectivity filter, optimized for the coordination sphere of 
potassium ions.
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Structural data on potassium channels has also improved the 
understanding of the gating mechanism. Gating comprises a 
signaling step and the opening of the ion conduction path. The 
elucidation of the structure of the bacterial voltage-gated potassium 
channel KvAP, crystallized by using monoclonal antibody Fab 
fragments, yielded some unexpected insights into the design of 
the voltage-sensor helix S4. Mutational data demonstrated the 
role of the S4 helix in voltage sensing, and fluorescence labeling 
has shown movement of the S4 helix during gatin. The prevailing 
model so far suggests a movement of helix S4 from one side of the 
membrane to the other upon changes in the membrane potential, 
although the findings of MacKinnon imply a different model. First, 
helix 3 is actually split into two different helices: the second part 
of helix 3 – called helix 3b – forms a helix– turn–helix motif with 
helix S4. This unit, called the ‘voltage-sensor paddle’, is actually 
oriented perpendicular to the pore unit and moves to the outer 
membrane side when the channel is opened.

Figure 2. (a) Topology of 6TM/P potassium channels. (b) X-ray structure 
of KcsA (PDB code: 1j95). The four monomers tetramerizing to form the 
functional channel are shown in different colors. Important structural 
features such as the S5 and S6 helices, central cavity, and selectivity filter 
are indicated. (c) Structure of MthK pore (PDB code: 1LNQ). The struc-
ture is in the open channel conformation. The glycine residues that serve 
as a hinge for the bending of helix S6 are indicated.
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Nevertheless, it is still unknown how the movement of the voltage-
sensor paddle is linked to the opening of the ion conduction 
pathway, which is achieved by an outward bending of the S6 helix 
at the position of a conserved glycine. This helix movement opens 
the inner cavity to the cytosol, as shown by a comparison of the 
KcsA and MthK structures. For the inward-rectifying potassium 
channel family, a glycine residue in a different position could be 
the hinge position for formation of the opening pathway.

Chloride channels have a completely different structure from 
potassium channels. The dimeric structure has two ion pathways, 
one formed by each monomer. The ion pathway does not run 
straight through the membrane, but is U-shaped. Amino acids 
stabilize the ion in the pathway by forming direct interactions with 
the chloride atom via hydrogen bond donors, just as the carbonyl 
groups in the selectivity filter of potassium channels stabilize the 
potassium cation.

A couple of structures of ion channels have been solved, it is 
still a challenging task to express, purify, and crystallize these 
membrane proteins. Chang, for example, state that approximately 
24 000 crystallization conditions were tested to solve the structure 
of the MscL homolog from Mycobacterium tuberculosis, a 
mechanosensitive ion channel. Therefore, the number of 3D 
structures of ion channels is still very small compared to the number 
of enzyme structures. Most importantly, no crystal structure of a 
ligand–ion channel complex has been obtained so far.

Figure 3. Topology of voltage-gated sodium channels. Known binding 
sites of peptides and drugs are marked. Voltage-gated sodium channels 
possess four 6TM/P domains.



A Chemical Genomics Approach for Ion Channel Modulators 155

Thus, structure-based drug design in the field of ion channels still 
has to rely on homology models of ion channels, which can be 
combined with conventional methods to map the ligand binding 
site, such as site-directed mutagenesis or photoaffinity labeling. A 
number of different binding sites have thus been recognized on ion 
channels. For voltage-gated sodium channels, at least six different 
binding sites for toxins or drugs are known and are schematically 
depicted in Figure 3.

Voltage-gated potassium channels also have a number of different 
binding sites. Similar to sodium channels, there is a binding site 
for peptide toxins at the outer vestibule of the pore. This binding 
site has been identified by site-directed mutagenesis for different 
peptide toxins, e.g., for the toxin ShK from a sea anemone, 
which blocks Kv1.3, or for Charybdotoxin, which blocks various 
potassium channels.

Potassium channels also have binding sites within the ion 
conduction pore, as has been demonstrated for example for Kv1.3, 
Kv1.5, and hERG. Within the central cavity, there might be distinct 
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but possibly overlapping binding sites. Ammonium ions bind in 
the upper part of the cavity, close to the selectivity filter; whereas 
for the hERG channel or for Kv1.3, mutational data indicate drug 
binding sites closer to the cytosolic part of the cavity. A recent study 
by Milnes raises the question of whether there is a ‘nonaromatic’ 
binding site within the hERG channel, since the binding affinity of 
Fluvoxamine is only partially attenuated by mutations of Tyr652 
and Phe656.

Figure 4. Structure of potassium channels with different binding sites in 
the pore domain marked. To show the binding location of R-L3 between 
helices S5 and S6, only the monomer is shown.

Recently, another binding site has been identified, the first binding 
site for a potassium channel activator. The benzodiazepine 
derivative R-L3, a partial agonist of KCNQ1, binds between 
the S5 and S6 helices as indicated in Figure 4. Interestingly, the 
structurally related compound L-7 blocks KCNQ1 binding in the 
central cavity.

This example illustrates the difficulty of drug design in the absence 
of detailed structural knowledge, since even slight modifications 
can have a tremendous effect on the binding site and mode of 
action. In the field of ion channels, rational design is even more 
hampered by the fact that voltage-gated ion channels cycle 
through at least three different states – a resting state, an open 
state, and an inactivated state. Electrophysiological studies give 
evidence that blockers can interact with open channels as well 
as with closed channels. Vesnarinone or MK-499 require channel 
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opening to bind. Other drugs, like Ketoconazole, bind to a closed 
state of the hERG channel, but Bertosamil binds to it in both its 
open and inactivated states.

5.2 LEAD-FINDING STRATEGIES FOR ION CHAN-
NEL MODULATORS

Appropriate lead-finding strategies for ion channel modulators 
make use of as much information as possible. This includes 
information on modulators of closely related ion channels and 
presumably some 3D information about the particular target, 
either a homology model or available X-ray or NMR structures. 
The ligand information can be used for a ligand-based lead finding 
approach, whereas 3D structures are applicable to structure-based 
design. 

5.2.1 Ligand-based Lead Finding

Ligand-based lead finding is based solely on information about 
putative ligands for a particular target or for a closely homologous 
target. This ligand information is then applied to select compounds 
that are closely linked to the reference molecules. This is achieved 
by 2D or 3D techniques. The 2D approach consists mainly of 
similarity and substructure searching, whereas the 3D method 
makes use of 3D pharmacophores built from a set of diverse 
compounds.

For similarity searching, all molecules are described by an 
appropriate binary descriptor (consisting of only zeros and ones). 
Such a binary fingerprint contains all structural information for 
a particular molecule and was applied at Aventis to identify new 
Kv1.5 inhibitors in the compound collection.

The Kv1.5 channel is a member of the voltage-gated K+ channel 
family (which belongs to the 6TM/P family), whose functional 
form consists of four α subunits each containing 6 transmembrane 
segments. The Kv1.5 pore domain is formed by four S5 and S6 
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segments from four different α subunits. In the human atrium, 
Kv1.5 is the molecular component of the repolarizing K+ current 
Ikur, which contributes to the falling part of the cardiac action 
potential. Since Ikur has been found only in the human atrium, 
blockade of Kv1.5 has emerged as a promising approach for 
developing new atrial-selective antiarrythmics devoid of undesired 
effects observed with the currently available antiarrythmics. When 
the Kv1.5 project was started at Aventis, no high-throughput 
screening assay was available, and our lead-finding strategy relied 
on database searching.

We used a compound from an Icagen patent as a query and 
identified two structurally different molecules that showed almost 
identical Kv1.5 activity as our reference molecule. Additionally, 
a Kv1.5 pharmacophore was derived from a lead series of Kv1.5 
inhibitors. This pharmacophore, consisting of three hydrophobic 
features in a specific spatial orientation, was used to identify new 
putative Kv1.5 inhibitors in our corporate compound collection. 
The 12 mostpromising compounds were selected based on their 
fit to the Kv1.5 pharmacophore. Subsequent biological profiling 
revealed one new lead structure.

Known side effects of a lead compound or drug can become 
an interesting opportunity to turn the side effect into the main 
pharmacological action of the compound. For the calcium 
antagonist Nifedipine, weak blocking of the calcium dependent 
potassium channels IKCa has been reported. IKCa is assumed to 
be involved in several diseases such as sickle cell anemia, immune 
disorders, and ischemic events. Blocking of this channel was also 
proposed to be beneficial in traumatic brain injury. Therefore, the 
calcium channel blocker Nifedipine was used as a starting point 
for developing a selective IKCa blocker with beneficial properties 
in a traumatic brain injury model. Since the NH group of the 
dihydropyridine ring is a prerequisite for calcium antagonistic 
activity, it was replaced by the isoelectronic oxygen, leading to 
phenylpyrans that showed significant IKCa blocking activity. 
Added electron-withdrawing substituents at the para position 
of the phenyl ring were able to further increase the potassium 
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channel activity. Overall, the SAR for the phenylpyrans on the 
IKCa channel was found to be orthogonal to the SAR of the 
dihydropyridines on the L-type calcium channel, allowing for the 
identification of IKCa-selective compounds.

Figure 5. (a) Similarity-based 2D database searching for Kv1.5 inhibi-
tors. (b) Ligand-based Kv1.5 pharmacophore and its application in 3D 
database searching.

Thus, this recent example nicely demonstrates that ion channel 
ligands can be valuable starting points for the identification of 
drugs acting against other members of the ion channel protein 
family.
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Figure 6. Nifedipine (left) provided a good starting point to obtain a 
selective blocker of IKCa (right), by slight changes in the central scaffold 
and the substitution pattern.

5.2.2. Structure-based Lead Finding

Structure-based lead finding requires a target 3D structure to start 
with. However, experimental elucidation of ion channel structures 
either NMR or X-ray crystallography is extremely difficult to 
achieve. 

Nevertheless, homology modeling of closely homologous channels 
to KcsA or MthK, for which 3D structures are available, makes this 
approach feasible

In an early structure-based design effort, a combinatorial library 
was designed by using LUDI for Kv1.3. Kv1.3 is involved in 
regulation of the membrane potential of human T cells, controlling 
calcium influx into the cell by voltage-dependent calcium channels. 
Calcium influx ultimately results in cytokine release and cell 
proliferation. 

Therefore, Kv1.3 blockers might be interesting immunosuppressive 
compounds. Various peptide toxins are known to block Kv1.3. 
Chandy and coworkers have used these structures in combination 
with mutant cycle analysis to derive a model of the outer vestibule 
of the Kv1.3 channel.

Within this outer vestibule model, LUDI calculations were focused 
on three amino acids from each subunit, which are known to be 
important for toxin binding: His404, Gly380, and Asp386. LUDI 
was used to suggest fragments interacting with these key amino 
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acids. Fragment linking and modifications of the whole molecules, 
followed by molecular mechanics calculations, resulted in a 
phenylstilbene scaffold, which in the next step was varied in a 
combinatorial library comprising 400 compounds. The most active 
compound showed an IC50 of 2.9 µM.

This study was based on a model of the outer vestibule, which was 
developed using indirect evidence like the structure of known 
ligands and data from mutational analysis. 

At that time, the KcsA crystal structure or other potassium channel 
X-ray structures were not available. Meanwhile, more detailed 
knowledge of the atomic details of potassium channels allows the 
development of homology models that can be successfully used in 
drug design, as demonstrated by the following example.

A recent structure-based lead-finding strategy was used for 
Kv1.5 inhibitors. The pore-forming domain of Kv1.5 exhibits 54% 
sequence homology with the bacterial K+ channel KcsA from 
Streptomyces lividans, for which a crystal structure of the closed 
channel is available. 

This structure was subsequently used as a template to build a 
homology model of the Kv1.5 pore-forming domain, using the 
Composer module of Sybyl 6.6. 

Starting with the α subunit of KcsA, a model of the S4 and S6 
segments of Kv1.5 was built. Four of these segments were 
assembled according to the arrangement of the four α subunits of 
KcsA, representing the pore domain of Kv1.5. 

This model was refined by a two-step minimization protocol, 
involving minimization of the protein sidechains while keeping 
the backbone rigid, followed by minimization of the whole protein. 
The Sybyl 6.6 implementation of the AMBER forcefield was used 
to evaluate the energy of the system. 

The minimized structure was submitted to several tests for its 
quality and internal consistency, which included both geometric 
and profile analyses.
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Figure 7. (a) Schematic representation of the proposed interactions of 
the phenylstilbene scaffold with residues from the outer vestibule. (b) 
The shown structure has the highest activity for Kv1.3 found in this li-
brary.

A computational elucidation of putative binding sites using the 
PASS algorithm revealed an internal site as most interesting 
for small organic molecules to interact with. Subsequent more 
detailed analysis resulted in the derivation of a protein based 
pharmacophore.

Use of this particular pharmacophore in subsequent 3D database 
searching of about 1 million compounds resulted in 244 interesting 
compounds, from which 19 compounds showed IC50 values 
below 10 µM.

The alignment of three of these hits is shown in Figure 9 a. Of 
course, these compounds exhibit high spatial similarity and fit 
remarkably well into the Kv1.5 binding site.
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Figure 8. (a) Knowledge-based homology modeling of the closed Kv1.5 
pore. (b) Identification of a putative Kv1.5 binding site.
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Figure 9. (a) Alignment of the three most active Kv1.5 inhibitors. (b) Ex-
perimental validation of the Kv1.5 homology model by mutational data.
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We proposed several mutations to the Kv1.5 channel to validate 
our model. Docking of our inhibitors in the Kv1.5 binding site 
revealed Thr477 as very important for binding. Indeed, mutation 
of Thr477 to serine left the Kv1.5 channel fully functional, but the 
activity of all four types of Kv1.5 inhibitors significantly decreased.

5.3 DESIGN OF ION CHANNEL FOCUSED LIBRAR-
IES: CHEMICAL GENOMICS

The consideration of all available ligand information concerning 
ion channel modulators, as well as the use of 3D structural 
information is required for designing appropriate ion channel 
focused libraries. This can be achieved by matching chemical 
and biological information in the target family of ion channels. 
The intersection of biological structures and functionalities 
with chemical structures and properties is derived to perform a 
knowledge-driven biased library design. This allows extraction of 
common structural features for ion channel modulators out of a 
practically infinite chemical space. Applying such design criteria 
leads to chemical libraries that are enriched in preferred features 
of ion channel modulators. This section covers design principles 
and their application.

5.3.1 Design Principles

Matching chemical and biological information in the field of ion 
channels requires combined 2D and 3D analysis. The 2D approach 
is based on a collection of biologically active compounds and 
consists mainly of similarity and substructure searching and 
of analysis of common frameworks and fragments to identify 
privileged chemotypes. Applicable 3D techniques are either ligand- 
or structure based. The ligand-based method requires biologically 
active ion channel modulators to derive 3D pharmacophores, and 
the structure-based technique uses a 3D structure of ion channels 
for subsequent virtual screening.



Chemogenomics166

Figure 10. Computational tools for analyzing ion channels in knowl-
edge-driven design.

Figure 11. Topological framework analysis.

Substructure searching is often used in drug design and needs 
no further clarification. Similarity searching is also a very well-
known technique described in more detail elsewhere. We usually 
use MACCS keys, Unity fingerprints, CATS descriptors, and 
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feature trees for similarity searching. Each technique has its own 
strengths and weaknesses, so we favor parallel application of two 
or three of them.

Framework analysis was published by Bemis and Murcko in 1996. 
They analyzed shapes of existing drugs in a commercial database 
to extract drug-related molecular frameworks by following a 
graph theoretical approach to decompose molecules into rings 
and noncyclic sidechains. Linkers and rings together form the 
framework of a molecule, whereas sidechains are omitted. For 
example, framework analysis of Thioridazine starts with removal 
of the acyclic sidechains and leaves a framework composed of two 
rings and one inter-ring linker.

Application of this topological framework analysis to ion channel 
modulators yields access to privileged ion channel chemotypes. 
Conversion of these frameworks into appropriate scaffolds for 
synthesis allows subsequent building of ion channel focused 
libraries.

Fragment analysis is based on the RECAP algorithm. This 
retrosynthetic combinatorial analysis starts with a collection of 
active molecules and then fragments these molecules using any 
set of retrosynthetic reactions. For example, Cisapride is cleaved 
into four fragments based on three different bond cleavage types.
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Figure 12. Retrosynthetic combinatorial analysis procedure (RECAP).

Resulting fragments are clustered and reclassified into sets of 
monomers for subsequent library design. The RECAP procedure 
derives not only suitable chemotypes but also appropriate building 
blocks for scaffold decoration. Since the monomers are extracted 
from biologically active compounds, there is a high likelihood 
that new molecules derived from them will contain biologically 
important motifs.

The 3D approach makes use of ion channel-specific 
pharmacophores, ion channel X-ray structures, and homology 
models. Ion channel X-ray and homology models are not as precise 
as structures of smaller proteins. The uncertainty regarding the 
binding mode of ion channel modulators also adds additional 
complexity to structure-based virtual screening. However, valid 
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3D pharmacophores can be derived from these structures and 
subsequently used to identify privileged ion channel chemotypes 
by virtual screening in proprietary and public databases. Needless 
to say, both ligand- and structure-based pharmacophores require 
in-depth validation prior to their use in virtual screening.

5.3.2 Example: Building the Aventis Ion Channel Library

Ion channels are of potential interest in several therapeutic areas. 
However, appropriate high-throughput assays to test several 
hundred thousand compounds against a particular ion channel 
still lack sufficient signal-to-noise ratios. Therefore, a biased ion 
channel library is of high interest for lead finding.

We performed a combined 2D and 3D analysis of chemical and 
biological space to identify ion channel privileged chemotypes. 
The 2D approach was based on a collection of biologically active 
compounds and consisted mainly of similarity and substructure 
searching and of analysis of common frameworks and fragments. 
Our 3D approach relied on multiple ion channel pharmacophores 
and homology models, which were used for virtual screening.

Our iterative ion channel library design process is outlined in Figure 
13. Retrieval and critical review of literature and in-house data on 
ion channel modulators resulted in a collection of valuable lead 
compounds, suitable for 2D and 3D database mining in internal 
and external compound collections. Among others, we took into 
account calcium channel blockers like Clonidine, chloride channel 
blockers, potassium channel openers, K(ATP) channel blocker and 
openers (e.g., Glibenclamide), and NHE-1 inhibitors.

Scaffold proposals were collected and reviewed according to 
privileged ion channel motifs, chemical feasibility, and fit to our 
multiple pharmacophores. Building block selection, virtual library 
design, and filtering yielded small virtual libraries suitable for 
automated solution-phase synthesis. All synthesized compounds 
were finally purified and characterized prior to addition to our 
focused library.
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Picked and purchased compounds, as well as all new designed 
chemotype focused libraries, were assessed in terms of quality, 
diversity, and drug-likeness. The remaining compounds were 
plated in our ion channel library, which is frequently used for 
screening of ion channels. New compounds and chemotypes 
from novel ion channel projects are continuously added to this 
focused library, and thus we constantly increase the value of our 
ion channel ligand collection.

Figure 13. Design of the Aventis ion channel focused library.
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Figure 14. Key properties of the Aventis ion channel library.

The key properties of our ion channel library, namely molecular 
weight, polar surface area, clogP, and number of hydrogen 
bond acceptors and donors, are within the lead-like range of 
compounds. A purity analysis of a small subset of our liquid ion 
channel collection revealed that more than 75% of the compounds 
had acceptable purity.
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Figure 15. Aventis ion channel library: current status and hit rates.

Currently, the Aventis ion channel library contains approximately 
16 000 compounds related to 1740 scaffolds and 80 chemotypes. 
Almost 6500 compounds have emerged from database mining, 
and 9500 compounds were synthesized.

Screening of this library or subsets of it against new ion channels 
revealed hit rates of approximately 4%, which is substantially 
higher than typical hit rates from high-throughput screening 
(~0.01%–0.1%). In addition, this focused screening identified 
highly valuable hits, since the library contains primarily drug like 
or lead-like compounds. Profiling this library against several ion 
channels not only reveals channel-subtype specific chemotypes, 
but also offers the opportunity to build early structure–activity 
relationships on scaffolds, which is very helpful especially for 
optimizing activity and selectivity. Hence, our chemical genomics 
approach has yielded improved screening hit rates and better 
starting points for subsequent compound optimization, thus 
reducing the cycle times for screening and optimization.

Although almost all our screening efforts using this focused 
library against new ion channel targets have resulted in good hit 
rates, we were recently disappointed by finding a hit rate of only 
0.8% against a specific potassium channel, and we thought about 
opportunities for improvement. Current antiarrhythmic agents, 
for example Sotalol, quite often show adrenoceptor inhibition and 
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potassium- or multichannel blockade. Hence, a future prospect 
for our ion channel library is to identify common GPCR and ion 
channel chemotypes by profiling our GPCR library against ion 
channels and vice versa.

Identification of suitable lead compounds for subsequent 
optimization is one of the key needs in drug discovery today. 
Several techniques have been successfully applied, while a 
chemical genomics-driven approach, by building target family 
related compound libraries, seems to be a promising future 
strategy for lead finding. The high complexity of these efforts 
motivates a knowledge-driven design strategy, taking into account 
as much information as possible from targets and ligands. An in-
depth scientific understanding of the intersection of biological and 
chemical information is crucial for enabling higher productivity in 
early compound identification. Hence, the relationship between 
certain chemotypes and biological targets within target families 
should drive this lead identification strategy.

The effort to bridge the chemical and biological space is called 
chemical genomics or chemogenomics. So far, no unique definition 
of chemical genomics has emerged from the literature, but the 
systematic exploration of target families is a common goal, based 
on the assumption that similar compounds bind to similar targets 
by similar mechanisms. This assumption is one of the foundations 
for the selection of compounds for our ion channel biased screening 
collection. Another important principle of chemical genomics is 
the integrated use of state-of-the-art computational tools to derive 
new ion channel binding motifs.

We have discussed such a chemical genomics approach for ion 
channel modulators. Some case studies for ion channel lead finding 
illustrate the opportunities of target- and ligand-related strategies. 
Target family-related knowledge is of course mandatory for this 
process. However, limited accessibility to ion channel 3D structures 
and uncertainties in homology models mean that structure-based 
approaches are feasible only after thorough validation of the 
underlying models.
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However, identification of ion channel modulators by screening 
compound libraries enriched with ion channel privileged 
chemotypes offers rapid, efficient access to lead compounds. 
Flexible data-driven building and optimization of such an 
ion channel focused library will enable better and faster lead 
identification of ion channel modulators.

The increasing information in biological and chemical space and 
its effective transformation into a knowledge-driven ion channel 
focused library may foster a paradigm shift in lead identification.
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INTRODUCTION

Phosphodiesterase inhibitors (PDE inhibitors) are a class of drugs 
that inhibit phosphodiesterase enzymes (PDE enzymes). PDE 
enzymes normally break off phosphate groups and decrease cAMP 
or cGMP in target cells. PDE inhibitors are classified according to 
which enzyme(s) they act upon as nonspecific, PDE5, PDE4, and 
PDE3 inhibitors. PDE5 inhibitors cause pulmonary vasodilation 
and penile smooth muscle relaxation, and are used for pulmonary 
hypertension and erectile dysfunction. PDE4 inhibitors enable 
bronchial dilation in severe COPD. PDE3 inhibitors have positive 
inotropic, vasodilator, and antiplatelet effects, which are used 
in acute heart failure and in peripheral vascular disease. PDE3 
inhibitors are not recommended for long-term use in patients with 
heart failure because of their strong cardiostimulatory effects. 
Nitrates or alpha-blockers are strongly contraindicated in patients 
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taking PDE5 inhibitors because of the risk of life-threatening 
hypotension

6.1 BASICS OF PHOSPHODIESTERASE  
INHIBITORS

Phosphodiesterase inhibitors are a class of medications that 
promote blood vessel dilation (vasodilation) and smooth muscle 
relaxation in certain parts of the body, such as the heart, lungs, and 
genitals. Phosphodiesterases are a diverse family of enzymes that 
play a key role in regulating cell functions by indirectly increasing 
the intracellular levels of cyclic adenosine monophosphate 
(cAMP) and cyclic guanosine monophosphate (cGMP), both of 
which are “second messengers” that regulate the primary effects 
of hormones and neurotransmitters.   
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6.1.1 How do phosphodiesterase inhibitors work?

Phosphodiesterase inhibitors work by inhibiting the 
phosphodiesterase enzymes, thus preventing them from breaking 
down cAMP and cGMP molecules in the cell. The production of 
cAMP and cGMP are regulated by a molecule called nitric oxide, 
and their function is to help regulate physiological processes by 
decreasing the levels of calcium in the cell. Ultimately, cAMP and 
cGMP are broken down by phosphodiesterase enzymes. 

When phosphodiesterase is inhibited, it is not able to break down 
the cAMP and cGMP. Thus, their levels inside the cell increase, 
which in turn leads to a decrease in the levels of calcium in the 
cell. Ultimately, this leads to vasodilation and smooth muscle 
relaxation in their target tissues.

6.1.2 Uses

Phosphodiesterase inhibitors are classified based on which 
specific phosphodiesterase enzyme they target. There are 11 
families of phosphodiesterase enzymes and PDE inhibitors 
for each. Among these, the most widely used are four types of 
phosphodiesterase inhibitors: phosphodiesterase type 5 inhibitors 
(PDE5 inhibitor), phosphodiesterase type 4 inhibitors (PDE4 
inhibitor), phosphodiesterase type 3 inhibitors (PDE3 inhibitor), 
and nonspecific inhibitors.



Chemogenomics182

PDE5 inhibitors

PDE5 inhibitors work by increasing the levels of cGMP and 
specifically target the penis and the lungs. PDE5 inhibitors can 
be used to treat erectile dysfunction by inducing smooth muscle 
relaxation and increasing the blood flow to the penis, leading 
to an erection. Additionally, PDE5 inhibitors trigger pulmonary 
vasodilation, helping to regulate the pulmonary perfusion and 
pressure, thus they can be used to treat pulmonary hypertension 
when given at a lower dose compared to erectile dysfunction.

PDE4 inhibitors

PDE4 inhibitors work by increasing the levels of cAMP. They 
specifically target the airways, the skin and immune system, 
and the brain. PDE4 inhibitors work by causing smooth muscle 
relaxation in the airways, making them useful in the treatment 
of pulmonary diseases, such as asthma and chronic obstructive 
pulmonary disease. PDE4 inhibitors can also be used to treat 
inflammatory conditions that may affect the skin or other tissues, 
such as psoriasis, atopic dermatitis, inflammatory bowel disease, 
and rheumatoid arthritis. There is currently research being 
conducted on PDE4 inhibitors being used in the treatment of 
mental conditions, such as depression and anxiety. 

PDE3 inhibitors

PDE3 inhibitors work by increasing the levels of cAMP. PDE3 
inhibitors are typically used for cardiovascular diseases. In the 
heart, they help to increase cardiac contractility, or the ability of the 
heart to beat. They also relax vascular and airway smooth muscle, 
making them useful in the treatment of heart failure. In addition, 
PDE3 inhibitors can prevent platelet aggregation into clots, and 
can thus be used to prevent and treat myocardial infarction 
(heart attack). Finally, PDE3 inhibitors can trigger vasodilation 
of peripheral blood vessels and can be used to treat intermittent 
claudication, which is a cramping in the legs due to a decreased 
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blood flow. 

Nonspecific inhibitors

Nonspecific inhibitors work by decreasing the destruction of the 
cAMP by any phosphodiesterase enzyme. They mainly induce 
mild dilation of the bronchioles of the lungs and help reduce airway 
inflammation. Nonspecific phosphodiesterase inhibitors are used 
in the treatment of chronic obstructive pulmonary disease, as well 
as for short term and long term management of asthma.

6.1.3 Some Examples of Common Phosphodiesterase In-
hibitors

PDE5 inhibitors are the most common and include sildenafil, 
tadalafil, vardenafil, and avanafil.

The most common PDE4 inhibitors are roflumilast, apremilast, 
and ibudilast.

Some examples of PDE3 inhibitors are cilostazol and milrinone.

Nonspecific phosphodiesterase inhibitors include theophylline, 
aminophylline, and methylxanthine.

Viagra is a PDE5 inhibitor most often used for the treatment of 
erectile dysfunction. Viagra has also been useful in the treatment 
of pulmonary hypertension for both short term and long term use 
when given at a lower dose compared to the dosages prescribed 
for erectile dysfunction. Viagra has a low number of side effects 
and is considered relatively safe for individuals with heart disease. 
However, it’s important to note that the use of Viagra taken along 
with nitrates can lead to a reduction in blood pressure and is 
contraindicated. 

Phosphodiesterase type 5 inhibitors are competitive and reversible 
inhibitors. When a PDE5 inhibitor is used, it competitively binds 
to PDE5 to stop it from breaking down cGMP. PDE5 inhibitors 
are considered reversible because they bind to PDE5 for a limited 
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amount of time. With the decrease in the levels of the cGMP, this 
will reverse the smooth muscle relaxation in the penis, which will 
end the erection.

Caffeine is a phosphodiesterase inhibitor that has been shown 
to increase the levels of cAMP in the cell thus leading to smooth 
muscle relaxation. Caffeine is a weak inhibitor, but variations 
of caffeine including theophylline have been introduced as 
treatments for pulmonary disease. 

Methylxanthines are among the first phosphodiesterase inhibitors 
to be discovered, and are nonspecific. The most common 
methylxanthine is theophylline, which is commonly used for 
short or long term treatment of different types of pulmonary 
diseases, such as asthma. Methylxanthines can help to induce 
bronchodilation and reduce airway inflammation. 

6.1.4 Side Effects of Phosphodiesterase Inhibitors

Common side effects of PDE5 inhibitors include headache, nasal 
congestion, dyspepsia and flushing. A potential rare side effect 
of PDE5 inhibitors is priapism, or an erection lasting longer 
than 4 hours. Priapism is a medical emergency that requires 
immediate intervention. First line treatment is oral terbutaline or 
pseudoephedrine. If the priapism persists, needle aspiration of 
the blood in the penis, as well as an intracavernous injection of 
phenylephrine, may be needed. 

Potential side effects of PDE4 inhibitors are headaches, nausea, 
and diarrhea. 

The most common side effects of PDE3 inhibitors include 
ventricular arrhythmias, headaches, and hypotension. 

Side effects of nonspecific inhibitors include upset stomach, 
diarrhea, headaches, and restlessness. 
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6.1.5 Important Facts to Know About Phosphodiesterase 
Inhibitors

Phosphodiesterase inhibitors prevent the phosphodiesterase 
enzymes from breaking down cAMP and cGMP in the cell. As a 
result, they increase the cAMP and cGMP, leading to an increase 
in intracellular calcium, which causes vasodilation and smooth 
muscle relaxation. There are four types of phosphodiesterase 
inhibitors, which have an effect on different locations in the body, 
depending on the specific phosphodiesterase enzyme they target. 
PDE5 inhibitors are commonly used for the treatment of erectile 
dysfunction and pulmonary hypertension. PDE4 inhibitors can 
be used to treat asthma, chronic obstructive pulmonary disease, 
psoriasis, atopic dermatitis, inflammatory bowel disease, and 
rheumatoid arthritis. PDE3 inhibitors are indicated for the 
treatment of heart failure, coronary heart disease, and to prevent 
myocardial infarction. Finally, nonspecific phosphodiesterase 
inhibitors are used in the treatment of asthma and chronic 
obstructive pulmonary disease.

6.2 MODULAR STRUCTURE OF PDES

6.2.1 The PDE Superfamily

That more than one PDE protein degrades cyclic nucleotides in the 
cell was appreciated soon after PDEs were discovered. Different 
chromatographic PDE forms with clearly distinct kinetics, 
substrate specificity, and pharmacological properties were 
demonstrated in extracts from brain and other tissues . A more 
in-depth understanding of the PDE complexity in mammalian 
cells has come with the cloning and identification of the different 
PDE genes. The field is evolving rapidly, and new families and 
genes have been recently added to the PDE superfamily. The latest 
members have been identified taking advantage of the human 
genome project by using homologous searches of EST databases. 
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At last count, 21 genes coding for cyclic nucleotide PDEs have been 
identified in mammals (Fig. 1). Using the most widely accepted 
nomenclature, the PDE family is indicated by an Arabic numeral, 
followed by a capital letter indicating the gene within a family, 
and a second Arabic numeral indicating the splicing variant 
derived from a single gene (for example PDE1C3: family 1, gene 
C, splicing variant 3).

Figure 1. Modular Structure of the PDEs: Schematic Representation of 
the Domain Arrangement in Members of the 11 Families of PDEs The 
number in parentheses next to the gene family indicates the number of 
known genes. In the PDE6 families, only the genes coding for catalytic 
subunits are reported. 

6.2.2 Structure/Function of PDEs

With the exception of a yeast and a Dictiostelium PDE, which may 
belong to a different family, all PDEs have a conserved region 
that corresponds to the catalytic domain (Fig. 1). This domain is 
structurally related to other metal-dependent phosphohydrolases 
with conserved HD motif, pointing to the important role of divalent 
cations in cyclic nucleotide hydrolysis. In addition to the signature 
sequence AaxxHDxDHxG identified by sequence comparison, a 
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number of conserved residues have been identified within this 
catalytic domain, and their mutagenesis often impacts catalysis. 
Spontaneous mutations in PDE6 within the catalytic domain and 
their association with major defects of the retina further support 
the importance of this domain in the enzyme function. The 
recent release of the crystal structure of the catalytic domain has 
reconciled the many site-directed mutagenesis studies done on 
this region of the PDEs. The PDE4 catalytic domain is a compact 
structure composed of 17 α-helices divided into three subdomains, 
with the most conserved residues involved in the formation of the 
catalytic pocket. More importantly, this structural analysis has 
confirmed the presence of metal ions in the catalytic pocket, and 
it will certainly provide conclusive answers regarding the exact 
interactions of this domain with cyclic nucleotide substrates and 
model inhibitors.

The arrangement of domains around this catalytic core, as well 
as the presence of a large number of splicing variants, points to 
a modular structure of PDEs. Several domains with a variety of 
proven or putative functions have been identified at the amino 
terminus portion of most PDE forms (Fig. 1) and are distinctive 
characteristics of each family. These include protein-protein 
interaction domains as well as domains that bind small molecules 
such as cyclic nucleotides. In addition, phosphorylation domains 
that control the catalytic function have been mapped at the amino 
terminus of most PDEs. Domains present at the carboxyl terminus 
of PDEs may be involved in dimerization, as has been suggested 
for PDE4 and PDE1, or may function as a regulatory domain being 
a target for phosphorylation.

Although viewed by some as an oversimplification, it is probable 
that all these different domains regulate PDE catalysis by a 
common mechanism. The regulatory domains that flank the 
catalytic domains function as a sensor of intracellular signals. 
Reception of these signals produces a change in conformation of 
the PDE so that an inhibitory domain no longer exerts a negative 
constraint on the catalysis. The presence of an inhibitory domain 
is inferred by biochemical studies with controlled proteolysis of 
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PDE1, PDE2, and PDE4 and deletion mutagenesis of PDE1, PDE3, 
PDE4, and possibly PDE7. Moreover, the regulation of PDE6 by 
the inhibitory γ-subunit again points to the important role of 
inhibitory constraint in PDE catalysis. Along the same line, PDE4s 
have two unique modules that are conserved in the four genes 
that compose this family. On the basis of their conservation, they 
have been named upstream conserved region 1 and 2 (UCR1 and 
UCR2). Functionally, the UCR2 conserved domain corresponds to 
an autoinhibitory domain that negatively regulates the catalytic 
activity, while regulatory phosphorylation sites have been mapped 
in the UCR1. A model for the interactions between these regions has 
been developed on the basis of domain binding and regulation of 
catalysis. While this model has been recently confirmed by others, 
it remains to be determined to what extent it may be applied to 
PDEs that belong to other families.

6.2.3 Significance of the PDE Complexity

Domain shuffling may explain why a large number of PDE 
variants with divergent amino and carboxyl termini have been 
identified. As an example, the PDE4D gene encodes five well 
characterized splicing variants, a property that is inherited from 
Drosophila. These variants are generated by alternate splicing and/
or different promoter usage. More importantly, these variants are 
subjected to different regulations (see below) or are targeted to 
different subcellular compartments. Targeting domains have been 
identified in most PDEs. PDE3s have a domain that includes six 
transmembrane hydrophobic helices, which target them to the 
endoplasmic reticulum. This domain is absent in some soluble 
PDE3 splicing variants. Two variants with soluble and particulate 
distribution have been described for PDE2 and PDE7. A domain 
that interacts with RACK1, a scaffold protein that binds activated 
protein kinase C (PKC) isoforms, was identified at the amino 
terminus of one of the five PDE4D variants, and putative SH3 
interacting domains have been reported for one PDE4A and one 
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PDE4D variant. A scaffold protein that anchors PDE4D to the 
Golgi/centrosome structures in the vicinity of PKAs has also been 
reported. Although the physiological impact of this differential 
targeting is largely unknown, these findings lend support to the 
idea that PDE subcellular targeting may have a role in signal 
compartmentalization.

The divergent properties and the presence of distinct regulatory 
domains in PDEs explain, at least in part, the heterogeneity of the 
PDE superfamily. A cell utilizes PDEs with different properties 
and regulations to adapt to the large variety of signals to which it 
is exposed, to control cyclic nucleotide accumulation in different 
subcellular compartments, and to integrate different signaling 
pathways. More difficult to understand is why multiple genes 
are present within a family because the corresponding proteins 
have largely overlapping properties and regulations. Recently, it 
has been shown that inactivation of only one of the four PDE4 
genes present in the mouse produces profound and unexpected 
phenotypes, suggesting that the functions of different PDE genes do 
not overlap. In addition, in situ studies on PDE mRNA expression 
in brain have uncovered some specificity in the expression of genes 
belonging to the same family. PDE4B, for instance, is expressed in 
the granular layer of the cerebellum, while PDE4D is expressed in 
the Purkinje cells. Thus, it is also possible that gene duplication 
may have occurred to increase the control of PDE expression in a 
tissue- and developmental-specific fashion.

6.3 MECHANISMS OF REGULATION OF PDES

A wide range of regulations to control cyclic nucleotide hydrolysis 
are operating in the cell, completely refuting the initial idea that 
PDEs are housekeeping enzymes with a passive role in signaling. 
The nature of the stimuli that modulate PDE activity is diverse, 
ranging from posttranslational modification and binding of small 
ligands to protein-protein interaction.
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6.3.1 Protein-Protein Interaction and PDE Function

PDE1s were among the first targets for calmodulin (CaM) to be 
identified, and activation of cGMP hydrolysis has been used 
as a CaM bioassay for more than 20 yr. CaM binding modules, 
which consist of a basic amphypatic helix, have been identified 
by protein homology and by deletion mutagenesis in all proteins 
derived from the three PDE1 genes. Several pieces of evidence 
indicate that the CaM binding domain affects the catalytic domain 
indirectly by controlling the interaction of an autoinhibitory 
domain with the catalytic domain. Using deletion mutagenesis, 
this autoinhibitory domain has been mapped to a region between 
the two CaM binding sites in PDE1A1. Ca++ and CaM produce a 
major increase in PDE activity, suggesting that the enzyme may be 
completely inactive in the absence of Ca++. Of interest is the fact that 
the affinity for Ca++/CaM is different between the different PDE1 
proteins. The PDE1A gene encodes two splicing variants, PDE1A1 
and PDE1A2. CaM is 10 times more potent in activating A1 than 
A2, indicating that splicing is a means to regulate sensitivity to 
Ca++ and CaM. Additional data comparing isoenzymes from 
brain, heart, and lung have shown differences in the affinity of 
PDE1B and PDE1C for CaM. CaM binding is also regulated by 
PDE1 phosphorylation (see below).

The role of PDEs in light perception underscores the importance 
of PDEs in signaling. We are able to sense visual cues because light 
causes a dramatic decrease in cGMP in the retina via activation 
of a PDE. In this pathway, light-activated rhodopsin interacts 
with the G protein transducin that, in turn, activates PDE6, which 
hydrolyzes cone and rod cGMP. The decrease in cGMP results in 
closure of cGMP-gated channels in the membrane, thus causing 
hyperpolarization. The PDE6 expressed in the retina is a tetramer 
composed of two distinct α- andβ -subunits and two γ-subunits in 
rods, with a slightly differentα 2-dimer expressed in cones. Two 
γ-subunits bind the function as inhibitors of the cGMP hydrolytic 
activity of the α- andβ -subunits. In addition, a δ-subunit copurifies 
with PDE6 and may play a role in the membrane association of this 
PDE. The site of interaction of the γ-subunit on the αβ-subunits 
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has been identified by several laboratories and mapped to regions 
surrounding the catalytic domain. This interaction completely 
suppresses cGMP hydrolysis. Transducin controls the interaction 
between γ- andαβ -subunits, but it is unclear whether it interacts 
directly with the γ-subunits or with the αβ-catalytic subunits.

PDE5, which is widely expressed in tissues outside the retina, has 
considerable homology with PDE6. Hence, the idea has been put 
forward that the activity of PDE5 may be regulated by a homolog 
of theγ -subunit. Indeed, there are reports suggesting that proteins 
immunologically related to the retina γ-subunit are expressed 
outside the retina. The exact function of these novel proteins 
remains to be determined. Other sensory cues may use membrane 
signal transduction machinery involving G protein interaction 
with a PDE, as suggested for the taste buds.

6.3.2 Cyclic Nucleotide and Other Allosteric Regulations of 
PDEs

The regulation of PDEs through allosteric binding of cyclic 
nucleotides was discovered in the 1970s. PDE2 binds cGMP 
with an affinity of approximately 100 nM and produces an 
allosteric change in the catalytic domain. Because of this allosteric 
regulation, the enzyme hydrolyzes both cAMP and cGMP with 
positive cooperative kinetics. However, in the intact cell this 
enzyme probably functions as a cGMP-stimulated cAMP PDE. 
This property allows integration of the cGMP- and cAMP-
regulated pathways, as suggested for atrial natriuretic factor 
(ANF) signaling.

Structurally related cGMP binding domains have been identified 
in PDE5, PDE6, PDE9, and PDE10. In PDE5, occupancy of this site 
may modulate the ability of the enzyme to be phosphorylated by 
protein kinase G. In PDE6, cGMP binding regulates the affinity 
ofαβ -dimers for the inhibitory γ-subunit, while little is known 
about the role of cGMP binding in PDE9 and PDE10. Similar 
domains have been found in proteins other than PDEs and have 
been termed GAF domains (cGMP-specific and cGMP-stimulated 
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PDEs, Anabaena adenylyl cyclase and Escherichia coli Fh1A). The 
presence of these domains in species where cGMP is not produced 
has led to the recent proposal that the GAF domain in PDEs may 
not serve to bind cGMP but is involved in interactions with other 
unknown small ligands.

On the basis of sequence homology with a domain found in proteins 
from bacteria to eukariots, a PAS (Period, Arnt, Sim) domain was 
identified in PDE8. This domain functions as a signal detector and 
is usually associated with a heme or a chromophore cofactor. In 
archaea, the PAS domain of FixL is a sensor for oxygen or possibly 
nitric oxide. Although the function of the PAS domain in PDE8 is 
not known, it may be important for protein-protein interaction or 
for sensing concentrations of a small ligand, suggesting a novel 
mode of regulation for PDEs.

6.3.3 Posttranslational Modification

There are now reports demonstrating phosphorylation of PDE1, 
PDE3, PDE4, PDE5, PDE6, and possibly PDE7. With some rare 
exceptions, phosphorylation occurs on regulatory domains 
present at the amino terminus of the PDE protein. Several kinases 
including PKA, protein kinase B (PKB), mitogen-activated protein 
kinase (MAPK), and calmodulin kinase (CaMK) catalyze these 
regulatory phosphorylations (see below).

6.3.4 Signaling Cascades Involving PDEs in Endocrine Cells

Here we will focus on PDE regulations that have the greatest 
impact on endocrine systems. In several instances a PDE serves 
as a connection between two different pathways allowing signal 
integration. Some of these regulations have been extensively 
reviewed elsewhere in the context of cardiovascular or central 
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nervous system functions, PDE1 being an example of a Ca++ signal 
regulating cAMP and cGMP concentration.

The PI-3 Kinase Pathway and Activation of PDE3

Insulin and IGF-I binding activates the receptor tyrosine kinase 
with phosphorylation and recruitment of adapter proteins, 
including insulin receptor substrate 1–4 (IRS1–4). Once 
phosphorylated, these adapters recruit several effectors including 
the lipid phosphatidylinositol 3 kinase (PI-3K). The phosphatidyl 
triphosphate lipid formed serves as an anchor and recruits to 
the membrane the kinase PDK1/2 and downstream kinase PKB/
AKT (Fig. 2). There is now ample evidence that PDE3s integrate 
this PI-3K signaling cascade with the cyclic nucleotide-regulated 
pathway. A large number of observations are consistent with 
the presence of this signaling cascade in the cell. Activation of 
PI-3 kinase by insulin is associated with an increase in PDE3 
activity in adipocytes, and the PDE3 activation is blocked by 
wortmannin and LY 294002, both of which are inhibitors of PI-3 
kinases. In addition, insulin treatment causes the incorporation of 
32P-phosphate in PDE3B. That PDE3B is directly phosphorylated 
by PKB is demonstrated by cell-free experiments with recombinant 
proteins. Two possible phosphorylation sites have been identified 
in PDE3B. Ser302 of rat PDE3B was identified by phosphopeptide 
mapping of PDE3B from insulin-stimulated cells. Conversely, 
site-directed mutagenesis has indicated Ser273 as the major site 
of PKB phosphorylation. While the sequence surrounding Ser273 
conforms with the consensus for PKB phosphorylation, Ser302 
is an anomalous site because it is also phosphorylated by PKA. 
Whether both sites are used in a cell-specific fashion is unclear 
and requires further experimentation. Recently, Rondinone et al. 
have proposed that an additional mechanism of PDE3 activation 
by insulin may directly involve phosphorylation of PDE3B by the 
PI-3K associated with the insulin receptor.
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Figure 2. Signaling Pathways That Control PDE3 and Lipolysis in the 
Cell.

The PI-3K-PKB-PDE3B signaling module has important 
physiological implications because it is used in several endocrine 
regulations and in growth factor control of the entry and exit from 
the cell cycle. For example, hormone-sensitive lipase (HSL) is 
the enzyme that catalyzes the hydrolysis of triglycerides stored 
in adipose tissue and is thought to be the rate-limiting enzyme 
for the mobilization of FFA. The activity of this enzyme is under 
the control of catecholamines and other lipolytic hormones 
that stimulate cAMP accumulation (Fig. 2). The PKA activation 
that follows an increase in cAMP causes activation of HSL by 
phosphorylation on one or more sites . In adipocytes, insulin 
inhibition of lipolysis is mediated by a decrease in cAMP levels 
and is associated with a decreased phosphorylation of HSL. Both 
in vitro and in vivo insulin effects are blocked by specific PDE3 
inhibitors pointing to an important role of this PDE. Moreover, 
the phosphorylation and activation of PDE3B correlates with the 
inactivation of PKA and the dephosphorylation of HSL. Thus, 
PDE3 phosphorylation appears to be a crucial step in mediating 
the effect of insulin on lipid metabolism. The antiglycogenolytic 
effects of insulin may also be mediated, at least in part, by the 
same pathway involving a PDE3 .
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A similar PI-3K, PKB, and PDE3B cascade is activated by leptin 
(OB), a recently discovered hormone involved in the control of 
fat metabolism and food intake. The peripheral effects of leptin 
are mediated by the activation of receptors that are structurally 
related to the cytokine receptors which signal through the janus 
kinases. This kinase, in turn, phosphorylates IRS-1 and IRS-2 
promoting the recruitment and activation of PI-3 kinase (Fig. 2). 
Similar to what has been shown for insulin, PI-3 kinase activation 
causes PKB and PDE3B activation. The resulting decrease in cAMP 
mediates the antiglycogenolytic effects of leptin in hepatocytes.

Because IGF-I shares the same signaling pathway with insulin, 
IGF-I regulation of PDE3 may be important in the regulation of 
cell entry and exit from the cell cycle. In Xenopus eggs, a PDE with 
the properties of PDE3 is activated by AKT and is an important 
step in insulin-like growth factor (IGF)-induced resumption of 
meiosis. A PDE3A is the predominant form that is also expressed 
in mammalian oocytes, and inhibition of this enzyme blocks the 
resumption of meiosis that follows the gonadotropin stimulation 
in vitro and in vivo . With the same signaling cascade, IGF-I 
regulates insulin secretion in islet β-cells by regulating a PDEB. In 
general, it is expected that all the growth factor pathways that use 
PI-3K may use the PDE3 activation to regulate cAMP levels. This 
could provide a means to modulate the gating effects of cAMP on 
the mitogen-activated protein (MAP) kinases signaling pathway, 
and to control exit and entry from the cell cycle.

PDEs as Homeostatic Regulators

Manipulation of hepatocytes with nonhydrolyzable cAMP 
analogs demonstrated that a rapid feedback controlling cAMP is 
operating in these cells. Accumulation of the cAMP analog in the 
cells activates PKA, which in turn activates a PDE. The ultimate 
result is a decrease in endogenous cAMP levels. With the discovery 
that a PDE3 is a substrate for PKA, it was proposed that this PDE 
is involved in these feedback mechanisms. More recently, data in 
thyroid cells also have shown that PDE4 is activated by hormones 
that increase cAMP via a PKA-dependent mechanism. PKA 
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phosphorylates PDE4D3, one of the variants derived from the 
PDE4D genes, and phosphorylation is associated with an increase 
in PDE activity. The residues phosphorylated by PKA have been 
mapped by site-directed mutagenesis to the amino terminus of 
PDE4D3. These observations have been confirmed and extended 
by demonstrating that introduction of a negatively charged amino 
acid in position 54 produces an activated enzyme. Thus, PDE3 and 
PDE4 are both rapidly activated by PKA, depending on the cell in 
which they are expressed (Fig. 3).

Figure 3. Feedback Regulation of PDE3 and PDE4 and Hormone Re-
sponsiveness.

The presence of the PKA-PDE4D feedback loop in intact cells has 
been recently confirmed by demonstrating that PKA inhibitors 
block the PDE4D3 phosphorylation/activation and cause a 
potentiation of TSH-dependent cAMP signaling. In a similar 
fashion, a stable cell line expressing PDE4D3 produces a major 
change in cAMP accumulation stimulated by hormones, whereas 
cell lines expressing a phosphorylation-deficient PDE4D3 have 
normal responses. Interestingly, it was observed that inactivating 
this feedback regulation has a major effect on the intensity of the 
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cAMP spike without any major change in the duration of the 
signal.

During the characterization of the mechanisms causing 
desensitization, it was observed that an increase in cyclic 
nucleotides produces an increase in PDE activity. This activation 
was thought to be a mechanism of desensitization that cooperated 
with receptor/G protein uncoupling. With the limited knowledge 
of PDE heterogeneity available at that time, little was known 
about the PDE involved except that the enzyme was a cAMP-
specific PDE and that the regulation required protein synthesis 
and PKA activation. A better understanding of this second 
feedback mechanism has come with the cloning of the PDE4 
genes. Stimulation with hormones that increase cAMP invariably 
produces an increase in PDE4 mRNA and de novo synthesis of 
PDE4 proteins. This is most evident for the PDE4D gene. Long-
term FSH stimulation of Sertoli cells causes more than a 100-
fold increase in PDE4D mRNA, the accumulation of PDE4D1/
D2 variants, and more than a 10-fold increase in PDE activity. 
Identical induction has been observed in most cells, suggesting 
that this is a ubiquitous feedback regulation of cAMP, thus 
providing a mechanistic explanation of the early findings on long-
term, cycloheximide-sensitive PDE activation (Fig. 3).

The impact of the PDE feedback on cAMP signaling is emerging 
from studies on PDE4D knockout mice. PDE4D-null mice display 
a 30–40% decrease in growth rate during puberty, and the adults 
are usually smaller than their littermates. The decreased growth is 
associated with a decrease in circulating IGF-I levels, suggesting 
a disruption of the GH-IGF-I axis. In addition, the homozygous 
PDE4D-null females display reduced fertility with litter size 
approximately one-third of normal. This reduction in fertility is 
associated with a 70–80% decrease in ovulation rate compared 
with wild-type littermates. Surprisingly, when the sensitivity to 
gonadotropin is measured in granulosa cells from the PDE4D-
null mice, a decrease in responsiveness to hCG was observed. This 
decreased response is difficult to reconcile with the common tenet 
that PDE inhibition leads to an increased cAMP accumulation and 
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cAMP signaling. Pending additional experiments to clarify the 
exact cause of this decreased response, we propose that inactivation 
of the PDE4D-PKA feedback loop causes a desensitization of 
the cAMP signaling pathway at the level of receptor/G protein. 
Thus, PDE4 regulation allows appropriate cAMP signaling by 
protecting from desensitization. If confirmed, this concept may 
have important implications in human diseases as end-organ 
resistance may be associated with inherited PDE4 inactivating 
mutations.

Disruption of PDE4D expression also affects muscarinic cholinergic 
responses in the airway. Mice deficient in PDE4D do not respond 
to methacholine with an increase in airway resistance, in spite 
of a normal complement of muscarinic cholinergic receptors. 
This phenotype may be caused by an increase in sensitivity to 
noradrenaline, which causes relaxation of smooth muscle cells. 
Alternatively, PDEs may directly play a role in M3 muscarinic 
receptor signaling that mediates the contractile response of 
acetylcholine, again supporting a role for PDE4D as a homeostatic 
regulator of signaling.

The PDE4 feedback loop may have an important impact under 
those pathological conditions in which cAMP accumulation is 
deregulated. Mutations in Gsα produce a constitutively active 
protein that maintains adenylyl cyclase in a chronically activated 
state. These mutations are responsible for the phenotype of 
patients with McCune-Albright syndrome and are probable causes 
of a number of adenomas of the pituitary and thyroid. There is 
also abundant literature for constitutive activation of pituitary 
hormone receptors that cause chronic cAMP elevation. All these 
spontaneous mutations cause a marked induction of PDE4 and 
possibly other PDEs both in vitro and in vivo. The PDE4 activation 
must have an impact on growth as the proliferative effects of the Gsα 
mutations are seen in vitro only after inhibition of PDE4. Therefore, 
it is possible that the abnormal growth induced by Gsα or receptor 
mutations is modified by the presence of different PDE alleles. 
Ongoing experiments will determine whether polymorphisms or 
mutations of a PDE4 exist in humans.
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6.4 GENERAL PHARMACOLOGY OF  
CAMP-DEPENDENT PHOSPHODIESTERASE 
INHIBITORS

6.4.1 In PDE3 Inhibitors

Heart

Intracellular concentrations of cAMP play an important second 
messenger role in regulating cardiac muscle contraction. Activation 
of the sympathetic nervous system releases the neurotransmitter 
norepinephrine and increases circulating catecholamines 
(epinephrine and norepinephrine). These catecholamines bind 
primarily to beta1-adrenoceptors in the heart that are coupled to 
Gs-proteins. This activates adenylyl cyclase to form cAMP from 
ATP.

Increased cAMP, through its coupling with other intracellular 
messengers, increases contractility (inotropy), heart rate 
(chronotropy) and conduction velocity (dromotropy). Cyclic-
AMP is broken down by an enzyme called cAMP-dependent 
phosphodiesterase (PDE). The isoform of this enzyme that 
is targeted by currently used clinical drugs is the type 3 form 
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(PDE3). Inhibition of this enzyme prevents cAMP breakdown and 
thereby increases its intracellular concentration. This increases 
cardiac inotropy, chronotropy and dromotropy. PDE3 inhibitors 
can be thought of as a backdoor approach to cardiac stimulation, 
whereas β-agonists go through the front door to produce the same 
cardiac effects.

Blood vessels

Cyclic-AMP also plays an important role in regulating the 
contraction of vascular smooth muscle. Beta2-adrenoceptor 
agonists such as epinephrine stimulate the Gs-protein and the 
formation of cAMP. Unlike cardiac muscle, increased cAMP in 
smooth muscle causes relaxation.

The reason for this is that cAMP normally inhibits myosin light 
chain kinase, the enzyme that is responsible for phosphorylating 
smooth muscle myosin and causing contraction. Like the heart, 
the cAMP is broken down by a cAMP-dependent PDE (PDE3). 
Therefore, inhibition of this enzyme increases intracellular cAMP, 
which further inhibits myosin light chain kinase thereby producing 
less contractile force (i.e., promoting relaxation).
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Cardiovascular Actions of cAMP-dependent PDE (type3) 
Inhibitors

Systemic Circulation
•	 Vasodilation
•	 Increased organ perfusion
•	 Decreased systemic vascular resistance
•	 Decreased arterial pressure

Cardiopulmonary
•	 Increased contractility and heart rate
•	 Increased stroke volume and ejection fraction
•	 Decreased ventricular preload (secondary to increased 

output)
•	 Decreased pulmonary capillary wedge pressure

Overall cardiovascular effects

The cardiac and vascular effects of cAMP-dependent PDE inhibitors 
cause cardiac stimulation, which increases cardiac output, and 
reduced systemic vascular resistance, which tends to lower arterial 
pressure. Because cardiac output increases and systemic vascular 
resistance decreases, the change in arterial pressure depends on 
the relative effects of the PDE inhibitor on the heart versus the 
vasculature. At normal therapeutic doses, PDE3 inhibitors such 
as milrinone have a greater vascular than cardiac effect so that 
arterial pressure is lowered in the presence of augmented cardiac 
output. Because of the dual cardiac and vascular effects of these 
compounds, they are sometimes referred to as “inodilators.”

Other actions

PDE3 inhibitors also decrease platelet aggregation by increasing 
platelet cAMP. However, only cilostazol (see below) is used for this 
purpose in the treatment of intermittant claudication (ischemic leg 
pain associated with leg movement).
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6.4.2 In PDE5 inhibitors

There is a second isoenyme form of PDE in vascular smooth muscle 
that is a cGMP-dependent phosphodiesterase. The type 5 isoform 
of this enzyme (PDE5) is found in the corpus cavernosum of the 
penis and in vascular smooth muscle. This enzyme is responsible 
for breaking down cGMP that forms in response to increased 
nitric oxide (NO). Increased intracellular cGMP inhibits calcium 
entry into the cell, thereby decreasing intracellular calcium 
concentrations and causing smooth muscle relaxation.

NO also activates K+ channels, which leads to hyperpolarization 
and relaxation. Finally, NO acting through cGMP can stimulate a 
cGMP-dependent protein kinase that activates myosin light chain 
phosphatase, the enzyme that dephosphorylates myosin light 
chains, which leads to relaxation.  Therefore, inhibitors cGMP-
dependent phosphodiesterase, by increasing intracellular cGMP, 
enhance smooth muscle relaxation and vasodilation, and cause 
penile erection.

6.4.3 Therapeutic Indications

The cardiostimulatory and vasodilatory actions of PDE3 inhibitors 
make them suitable for the treatment of heart failure. Arterial 
dilation reduces afterload on the failing ventricle and leads to an 
increase in stroke volume and ejection fraction, as well as increases 
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organ perfusion. Reducing the afterload leads to a secondary 
decrease in preload on the heart that helps to improve the 
mechanical efficiency of dilated hearts and to reduce ventricular 
wall stress and the oxygen demands placed on the failing heart. 
The cardiostimulatory effects of these drugs increase inotropy, 
which further enhances stroke volume and ejection fraction. 
Tachycardia, however, also results, and this is not beneficial; 
therefore, doses are used that minimize the positive chronotropic 
actions of the drug. A baroreceptor reflex, which occurs in response 
to hypotension, may contribute to the tachycardia. Clinical 
trials have shown that long-term therapy with PDE3 inhibitors 
increases mortality in heart failure patients; therefore, these 
drugs are not used for long-term, chronic therapy. They are very 
useful, however, in treating acute, decompensated heart failure or 
temporary bouts of decompensated chronic failure. They are not 
used as a monotherapy. Instead, they are used in conjunction with 
other treatment modalities such as diuretics, ACE inhibitors, beta-
blockers or digitalis.

The somewhat selective vasodilatory actions of PDE5 inhibitors 
have made these compounds very useful in the treatment of male 
erectile dysfunction. The PDE5 inhibitor sildenafil is also approved 
for the treatment of pulmonary hypertension.

6.4.4 Specific Drugs

Several different PDE inhibitors are available for clinical use:  
•	 PDE3 inhibitors

₋₋ milrinone
₋₋ inamrinone (formerly amrinone)
₋₋ cilostazol

•	 PDE5 inhibitors
₋₋ sildenafil
₋₋ tadalafil

The PDE3 inhibitors (except cilostazol) are used for treating 
acute, decompensated heart failure, whereas the PDE5 inhibitors 
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are used for treating male erectile dysfunction and pulmonary 
hypertension. Note that the PDE3 inhibitors used in acute heart failure 
end in “one,” whereas the PDE5 inhibitors end in “fil”.

Inhibition of platelet aggregation, along with vasodilation, is an 
important mechanism of action for cilostazol, which is used in 
the treatment of intermittant claudication in peripheral arterial 
disease. Cilostazol appears to have less cardiostimulatory effects 
than milrinone.

6.4.5 Side Effects and Contraindications

PDE3 inhibitors

Milrinone and inamrinone are not used in the treatment of chronic 
heart failure because clinical trials have shown that long-term use 
of these drugs worsen outcome. The most common and severe side 
effect of PDE3 inhibitors is ventricular arrhythmias in about 12% 
of patients, some of which may be life-threatening. Headaches 
and hypotension occur in about 3% of patients. These side effects 
are not uncommon for drugs that increase cAMP in cardiac and 
vascular tissues, other examples being β-agonists.

PDE5 inhibitors

The most common side effects for PDE5 inhibitors include 
headache and cutaneous flushing, both of which are related to 
vascular dilation caused by increased vascular cGMP. There is 
clinical evidence that nitrodilators may interact adversely with 
PDE5 inhibitors. The reason for this adverse reaction is that 
nitrodilators stimulate cGMP production while PDE5 inhibitors 
inhibit cGMP degradation. When combined, these two drug classes 
greatly potentiate cGMP levels, which can lead to hypotension 
and impaired coronary perfusion.



Phosphodiesterase Inhibitors: A Chemogenomic View 205

6.5 PDE6 INHIBITORS

Phosphodiesterase 6 (PDE6) is highly concentrated in the 
retina. It is most abundant in the internal membranes of retinal 
photoreceptors, where it reduces cytoplasmic levels of cyclic 
guanosine monophosphate (cGMP) in rod and cone outer segments 
in response to light. The rod PDE6 holoenzyme comprises α 
and β catalytic subunits and two identical inhibitory γ subunits. 
Each catalytic subunit contains three distinct globular domains 
corresponding to the catalytic domain and two GAF domains 
(responsible for allosteric cGMP binding). The PDE6 catalytic 
subunits resemble PDE5 in amino-acid sequence as well as in three-
dimensional structure of the catalytic dimer; preference for cGMP 
over cyclic adenosine monophosphate (cAMP) as a substrate; 
and the ability to bind cGMP at the regulatory GAF domains. 
Most PDE5 inhibitors inhibit PDE6 with similar potency, and 
electroretinogram studies show modest effects of PDE5 inhibitors 
on visual function—an observation potentially important in 
designing PDE5-specific therapeutic agents.

6.5.1 PDE6, the central effector of visualtransduction in 
rods and cones

The retina contains cones, which operate under daylight conditions 
and perform color discrimination, and rods, which operate in dim 
light. Three types of cones exist in humans and in many primates, 
each one with a peak absorption at a wavelength corresponding to 
blue, green, or red light. In mammals, rods comprise approximately 
90% of the photoreceptors, and cones the remaining 10%.

Both rods and cones contain light-sensitive pigments (opsins) 
that photoactivate on exposure to light. The photoexcited visual 
pigments stimulate the cell membranes of the rods and cones, 
triggering signals transmitted to the inner retina and via the optic 
nerve into the brain. In the dark, a circulating current flows from 
the inner segment of the photoreceptor cell to the outer segment. 
When illumination occurs, processes in the outer segment of the 
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photoreceptor cell interrupt this current. The plasma membrane of 
the outer segment encloses a stack of several thousand physically 
separate disc membranes, on which the initial events of the visual 
transduction pathway occur. Changes in cGMP levels in the outer 
segment transmit this signal from the disc membrane to the 
plasma membrane.

PDE6 is the primary regulator of cytoplasmic cGMP concentration 
in rod and cone photoreceptors (Figure 4). In the dark, PDE6 exists 
in an inactive form, and cGMP levels in the rod outer segment 
are relatively high (several micromolar). This permits a fraction of 
the cGMP-gated ion channels in the plasma membrane to remain 
open, allowing a current to circulate through the photoreceptor 
cell. Photoexcitation of the visual pigment, rhodopsin, activates 
the photoreceptor G-protein, transducin. The activated α subunit 
of transducin binds to PDE6, and displaces the PDE6 inhibitory 
γ subunit from the active site of PDE6. The resulting subsecond 
drop in cGMP concentration causes closure of cGMP-gated ion 
channels, resulting in membrane hyperpolarization.

Figure 4: Visual excitation pathway in rod photoreceptors. The initial 
events of phototransduction occur on the physically separate disc mem-
branes in the outer segment portion of the cell. Photoactivation of rho-
dopsin (R*) catalyzes the activation of hundreds of heterotrimeric G-pro-
teins (G). Nucleotide exchange on the G α-subunit is accelerated, and 
the dissociated Gα

*-GTP subunit then interacts with the PDE6 holoen-
zyme (PDE). Displacement of the PDE6 γ subunit from the catalytic site 
by Gα

*-GTP relieves the inhibition of catalysis at one catalytic subunit, 
resulting in rapid hydrolysis of cytoplasmic cGMP. The drop in cGMP 
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levels in the outer segment causes dissociation of cGMP from the cGMP-
gated ion channels in the plasma membrane, causing their closure. The 
reduced entry of cations into the outer segment causes membrane hy-
perpolarization, and ultimately, generation of the receptor potential at 
the photoreceptor synapse. Reactions involved in the recovery of the 
photoresponse and desensitization of the light response are not shown.

Precise regulation of cGMP levels is essential for normal operation 
of the visual transduction cascade. Indeed, a persistent imbalance 
in cGMP metabolism (either in its synthesis or degradation) will 
disrupt the visual signaling pathway and eventually lead to 
photoreceptor cell death and retinal degeneration (eg, retinitis 
pigmentosa).

6.5.2 Subunit composition and structureof the PDE6  
holoenzyme

The rod PDE6 holoenzyme is a tetramer consisting of α and β 
catalytic subunits to which two identical inhibitory γ subunits 
bind (αβγ2). Cone PDE6 differs from rod PDE6 in that its catalytic 
dimer is composed of two identical α′ subunits. Also, the low 
molecular weight cone inhibitory γ′ subunits differ slightly in 
size (9.4 vs 9.7 kDa) and amino-acid composition from the rod γ 
subunits.

Each γ subunit interacts with at least two distinct sites on the 
catalytic subunit, and the affinity of this interaction is regulated 
by cGMP binding to the regulatory GAF domains of PDE6. When 
cGMP is bound to the GAF domain, the two γ molecules bind with 
different affinities to the catalytic dimer. When these regulatory 
sites are empty, both molecules of γ bind to αβ with the same, albeit 
reduced, affinity. Two major domains on γ interact independently 
with the PDE6 catalytic dimer. The extreme C-terminal residues 
of γ bind directly to the active sites of PDE6, blocking access of 
substrate to the catalytic core. The N-terminal half of γ binds to 
αβ with an affinity 50 times greater than its C-terminal half, and is 
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responsible for the cGMP-dependent modulation of γ affinity by 
the GAF domain.

While not yet fully elucidated, structural differences between the 
α and β catalytic subunits, differences in cGMP binding to the GAF 
domains, and cGMP-dependent modulation of γ affinity for αβ, 
all contribute to the precise regulation of the extent and lifetime of 
PDE6 activation during rod visual transduction.

Electron microscopic analysis of purified rod PDE6 catalytic 
dimers at 2.8 nm resolution reveals a three-dimensional (3-D) 
structure comprised of three distinct globular domains.10 The 
largest domain represents the catalytic domain, while the two 
smaller domains correspond to the two tandem GAF domains. 
While the resolution in the analysis was insufficient to detect low 
molecular weight proteins bound to the PDE6 catalytic dimer, the 
results unequivocally show that the primary dimerization site 
of the α and β catalytic subunits resides in the N-terminal GAFa 
domain.

The molecular organization of PDE5 closely approximates that of 
PDE6, both in terms of its primary amino-acid sequence and its 3-D 
structure (Figure 5). For both PDE families, the two GAF domains 
and the catalytic domain are each likely to fold into independent 
globular structures, as predicted by the crystal structures of the 
catalytic domain of PDE4, and the tandem GAF domains of PDE2. 
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Figure 5: PDE5 and PDE6 share a similar domain organization and 
three-dimensional holoenzyme structure. (a) The domain organiza-
tion of the catalytic subunits of PDE5 and PDE6 are compared. Both 
enzymes contain regulatory domains with tandem GAF domains that 
share significant sequence homology. For PDE5, the GAFa domain has 
been shown to be responsible for cGMP binding. The homologous do-
main for PDE6 is depicted but experimental proof is still lacking. In 
addition, PDE6 GAFa contains a region that interacts with the inhibi-
tory γ subunit. The catalytic domains of PDE5 and PDE6 are also highly 
homologous, with a similar catalytic core containing metal ion binding 
sites. PDE6 contains a unique region at the entrance to the catalytic site 
responsible for inhibition of catalysis by γ binding. PDE5 is regulated by 
phosphorylation in the N-terminal region; no similar regulatory site has 
been identified for PDE6 to date. PDE6 contains a consensus sequence 
for farnesylation (α subunit) or geranylgeranylation (β subunit) at its 
C-terminus. (b) The 3-D surface representation of the PDE5 and PDE6 
holoenzymes shows a high degree of conservation. The largest lobe at 
the top represents the catalytic domain. The primary dimerization site 
appears to be the GAFa domain, with the smaller GAFb domains link-
ing GAFa and the catalytic domain. The low molecular weight γ subunit 
or the prenyl binding protein of PDE6 cannot be visualized at this reso-
lution. The three images of each enzyme are 45° rotations in the vertical 
axis. The bar represents 10 nm. 
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6.5.3 Similarities and differences between PDE5 and PDE6

Of the 11 mammalian PDE families, not only is PDE6 most 
closely related to PDE5 structurally, but it also shares several 
similarities in its biochemical properties. Both PDE5 and PDE6 
strongly prefer cGMP over cyclic adenosine monophosphate 
(cAMP) as a substrate at the catalytic site. The PDE5 and PDE6 
catalytic mechanisms share a requirement for divalent cations, 
including high-affinity binding sites for zinc ions that likely serve 
a structural role as well. Both PDE families bind cGMP with high 
affinity at the regulatory GAF domains, and most PDE5-selective 
pharmacological inhibitors also potently inhibit PDE6 catalysis.

However, there are several aspects of the enzymology and 
regulation of PDE6 that are not found in PDE5. First, while the 
maximum rate of cGMP hydrolysis by PDE6 achieves catalytic 
perfection (6000–8000 cGMP hydrolyzed per second) and 
operates at the diffusion-controlled limit, the catalytic constant 
for PDE5 is lower by almost three orders of magnitude. This 
extraordinary catalytic power of PDE6 may have evolved from 
the need of photoreceptor cells to generate a receptor potential on 
the millisecond time scale. Second, displacement of the inhibitory 
γ subunit from the active site by activated transducin mediates 
the primary mechanism of PDE6 activation. For PDE5, enzyme 
activation most likely proceeds via phosphorylation of the 
catalytic subunits and allosteric changes in cGMP binding to the 
GAF domains. (While PDE5 has been reported to copurify with 
the PDE6 γ subunit, the physiological significance is uncertain 
because the γ subunit lacks binding or inhibitory activity toward 
PDE5 in vitro.)

Functional chimeric phosphodiesterases have been constructed 
using the GAF domains from cone PDE6 and the catalytic domain 
of PDE5 in order to identify structural and functional differences 
of the two PDE families. The original PDE6/PDE5 chimera retained 
the catalytic properties of PDE5 and the cGMP binding properties 
of PDE6. Site-directed mutagenesis using the PDE6/PDE5 chimera 
has identified two sites on PDE5 (Ala(608) and Ala(612)) that 
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accelerate catalysis 10-fold when substituted for glycine residues 
(found at positions 562 and 566 of cone PDE6). These residues are 
near the metal binding motif that represents the catalytic site of 
the enzyme. The unique sites of interaction of the γ subunit with 
the PDE6 catalytic sites have also been probed by substituting 
a stretch of cone PDE6 sequence (amino acids 737–784) into the 
catalytic domain of PDE5 and demonstrating that inhibition by the 
γ subunit occurred. Three hydrophobic residues at the entry to the 
catalytic core (Met(758), Phe(777), and Phe(781)) have been found 
to stabilize γ subunit binding and promote enzyme inhibition. 
Another γ-binding site has been identified in the GAFa domain 
of PDE6 that further stabilizes binding of this inhibitory subunit. 
These studies have provided insights into the unique features of 
transducin-activated PDE6 that distinguish PDE6 catalytic and 
regulatory properties from those of PDE5.

6.5.4 Regulation of PDE5 and PDE6 by post-translational 
modifications

PDE6 is unique among the 11 PDE families in that it undergoes 
a post-translational modification resulting in carboxymethylation 
and isoprenylation of the C-terminus of the catalytic subunits. 
The incorporation of a farnesyl group (rod PDE6 α subunit) or a 
geranylgeranyl group (rod PDE6 β subunit) accounts for the high-
affinity interaction of rod PDE6 with photoreceptor membranes. 
A 17-kDa prenyl binding protein (PrBP), originally referred to as 
the ‘delta’ (δ) subunit of PDE6, can bind to PDE6 and release the 
holoenzyme from its membrane-associated state. PrBP principally 
interacts with PDE6 at its prenylated C-terminus. In contrast to 
the catalytic and inhibitory subunits of PDE6, PrBP is widely 
expressed in a variety of tissues. It is also highly conserved through 
evolution. While PrBP has been shown to interact with many other 
binding partners, neither PDE5 nor other phosphodiesterases 
have been reported to interact with this prenyl binding protein.

In PDE5, phosphorylation at serine 92 of the bovine enzyme 
correlates with enhanced catalytic activity of the enzyme as well 
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as conformational changes in the regulatory GAF domains. The 
γ subunit of PDE6 also acts as a substrate for phosphorylation at 
several distinct sites within the central region of this 10 kDa protein. 
Phosphorylation of γ at Thr(22) or Thr(35) has little effect on the PDE6 
holoenzyme itself, but greatly diminishes the ability of activated 
transducin to bind the γ subunit and relieve inhibition of catalysis. 
Phosphorylation of γ at Thr(62) in nonretinal tissue has been reported 
to regulate mitogenic signaling via interactions with proteins other 
than PDE6 catalytic subunits (whose expression is confined to the 
retina and pineal gland). Little information is available on potential 
regulation of PDE6 catalytic subunits by phosphorylation.

6.5.5 Drug selectivity for PDE5 and PDE6

One of the challenges in developing PDE5-specific inhibitors for 
therapeutic purposes is the similarity in the catalytic sites of PDE5 
and PDE6 with respect to drug binding. For example, sildenafil is 
a highly selective inhibitor of PDE5 (Ki=4 nM) with one exception, 
namely its potent inhibition of rod PDE6 (Ki=30 nM). This is 
physiologically relevant, since one well-documented side effect of 
sildenafil treatment is a transient disturbance in visual function. 
PDE5 inhibitors are not known to cross the blood–brain barrier 
but they do cross the blood–retina barrier. Electroretinogram 
studies have shown that PDE5 inhibitors exert a modest effect on 
visual function. While it is likely that visual disturbances induced 
by sildenafil are a direct consequence of PDE6 inhibition, other 
modes of action must also be considered.

6.6 INHIBITORS OF OTHER  
PHOSPHODIESTERASES

6.6.1 PDE1

The PDE1 family is regulated in the short term by Ca2+/calmodulin 
binding following elevation of Ca2+ derived primarily from 
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extracellular sources, and in the long term by changes in PDE 
protein level. PDE1 isoenzymes are widely expressed and are 
abundant in brain, heart, VSM, testis, macrophages, lymphocytes, 
and liver. PDE1 isoenzymes catalytic subunits occur as dimers, 
and each monomer is comprised of two calmodulin-binding 
sites, an autoinhibitory subdomain, and a catalytic domain. Ca2+/
calmodulin binding relieves autoinhibition and increases the Vmax 
with no change in Km. Activities of the PDE1 family are implicated 
in diverse processes that include regulation of smooth muscle 
proliferation, learning and memory, cardiac hypertrophy, and 
olfaction.

The PDE1 isoenzymes (PDE1A, 1B, and 1C) are derived from 
three genes and are represented in tissues by many splice variants 
that substantially differ in size. Among these isoenzymes, the 
relative affinities and catalytic rates for cGMP and cAMP vary 
considerably. Affinities for certain inhibitors and sensitivities to 
stimulation by Ca2+/calmodulin also vary. In tissues containing 
primarily one isoenzyme, the relative hydrolytic contribution of 
the PDE1 family to breakdown of cAMP or cGMP will reflect the 
kinetic features of this dominant PDE1. PDE1 isoenzymes are 
primarily cytosolic, but they are also found in association with 
the plasma membrane and other particulate cellular components. 
Depending on location in the cell, members of the PDE1 family can 
differentially respond to selective changes in Ca2+ signaling and 
thereby provide for variations in the spatial and temporal changes 
in cGMP and/or cAMP levels. Inhibitors that show selectivity for 
PDE1 isoenzymes include vinpocetine, IC224, and SCH51866.

Discovery

The existence of the Ca2+-stimulated PDE1 was first demonstrated 
by Cheung (1970), Kakiuchi and Yamazaki (1970) as a result of their 
research on bovine brain and rat brain respectively. It has since 
been found to be widely distributed in various mammalian tissues 
as well as in other eukaryotes. It is now one of the most intensively 
studied member of the PDE superfamily of enzymes, which today 
represents 11 gene families, and the best characterized one as well.
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Further researches in the field along with increased availability of 
monoclonal antibodies have shown that various PDE1 isozymes 
exist and have been identified and purified. It is now known that 
PDE1 exists as tissue specific isozymes.

Structure

The PDE1 isozyme family belongs to a Class I enzymes, which 
includes all vertebrate PDEs and some yeast enzymes. Class 
I enzymes all have a catalytic core of at least 250 amino acids 
whereas Class II enzymes lack such a common feature.

Usually vertebrate PDEs are dimers of linear 50–150 kDa proteins. 
They consist of three functional domains; a conserved catalytic 
core, a regulatory N-terminus and a C-terminus [3-5]. The proteins 
are chimeric and each domain is associated with their particular 
function.

The regulatory N-terminus is substantially different in various 
PDE types. They are flanked by the catalytic core and include 
regions that auto-inhibit the catalytic domains. They also target 
sequences that control subcellular localization. In PDE1 this region 
contains a calmodulin binding domain.

The catalytic domains of PDE1 (and other types of PDEs) have 
three helical subdomains: an N-terminal cyclin-fold region, a linker 
region and a C-terminal helical bundle. A deep hydrophobic pocket 
is formed at the interface of these subdomains. It is composed of 
four subsites. They are: a metal binding site (M site), core pocket (Q 
pocket), hydrophobic pocket (H pocket) and lid region (L region). 
The M site is placed at the bottom of the hydrophobic pocket with 
several metal atoms. The metal atoms bind to residues that are 
completely conserved in all PDE family members. The identity of 
the metal atoms is not known with absolute certainty. However, 
some evidence indicate that at least one of the metals is zinc and 
the other is likely to be magnesium. The zinc coordination sphere 
is composed of three histidines, one aspartate and two water 
molecules. The magnesium coordination sphere involves the 
same aspartate along with five water molecules, one of which is 
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shared with the zinc molecule. The reputed role of the metal ions 
include structure stabilization as well as activation of hydroxide 
to mediate catalysis.

The domains are separated by “hinge” regions where they can be 
experimentally separated by limited proteolysis.

The PDE1 isozyme family (along with the PDE4 family) is the most 
diverse one and includes numerous splice variant PDE1 isoforms. 
It has three subtypes, PDE1A, PDE1B and PDE1C which divide 
further into various isoforms.

Localization

The localization of PDE1 isoforms in different tissues/cells and 
their location within the cells is as follows:

Table 1. Various PDE1s location in tissues and within cells.

Isoform Tissue/cellular localization Intracellular localiza-
tion

PDE1A (PDE1A) Smooth muscle, heart, lung, brain, 
sperm 

Predominantly cytosolic 

PDE1A1 Heart, lung Predominantly cytosolic 

PDE1A2 Brain Predominantly cytosolic 

PDE1B1 (PDE1B) Neurons, lymphocytes, smooth 
muscle  brain, heart, skeletal 
muscle 

Cytosolic 

PDE1B2 Macrophages, lymphocytes Cytosolic 
PDE1C (PDE1C) Brain, proliferating human smooth 

muscle, spermatids 
Cytosolic 

PDE1C1 Brain, heart, testis -
PDE1C2 Olfactory epithelium Cytosolic 
PDE1C4/5 mRNA is present in the testis -

Most PDE1 isoforms are reported to be cytosolic. However, there 
are instances of PDE1s being localized to subcellular regions 
but little is known about the molecular mechanisms responsible 
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for such localization. It is thought to be likely that the unique 
N-terminal or C-terminal regions of the various isoforms allow the 
different proteins to be targeted to specific subcellular domains.

6.6.2 PDE2

Phosphodiesterase 2 (PDE2) is a ubiquitous enzyme whose 
major role is to hydrolyze the important second messengers 
cyclic adenosine monophosphate (cAMP) and cyclic guanosine 
monophosphate (cGMP). In the central nervous system, 
pharmacological inhibition of PDE2 results in boosted cAMP and/
or cGMP signaling, which is responsible for series of changes 
in protein expression relevant to psychiatric and learning and 
memory disorders, such as depression, anxiety, and cognition 
deficits in Alzheimer’s disease. In the periphery, inhibition of PDE2 
exhibits beneficial effects in the diseased cardiovascular system, 
the respiratory system, skeletal muscles and Candida albicans-
caused systemic infections. Even though blood-brain barrier 
penetration properties and selectivity of currently available PDE2 
inhibitors have hindered them from entering clinical trials, PDE2 is 
still of great potential therapeutic values in different categories of 
diseases, and there is demand for development of new generation 
drugs targeting PDE2 for treatment of diseases in central nervous 
and peripheral systems.

Crystal structure

The crystal structure of the active site of the PDE2 enzyme has 
been reported. Even though amino acid sequences, for members 
of the PDE family show considerable difference (25-35% identity), 
the overall folding, functional and structural elements of the 
active sites are very similar. The active site is formed by residues 
that are highly conserved among all PDEs. The binding pocket 
contains metal ion (zinc and magnesium) binding sites. The 
two histidine and two aspartic acid residues, which bind zinc 
are conserved among all studied PDEs. The structure of several 
other PDE iso-enzymes has been elucidated and among them few 
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co-crystal structures, with inhibitors residing in the active site. 
The co-crystal structures for PDE4B, PDE4D and PDE5A have 
revealed two common features of inhibitor binding to PDEs. One 
is a planar ring structure of the inhibitors, which align in the active 
site of the enzymes and the other is a conserved glutamine residue 
(the “glutamine switch” mentioned below), which is essential for 
nucleotide recognition and selectivity.

Substrate selectivity

Figure 6: cAMP (to the left) and cGMP to the right. Natural substrates 
for PDE2.

As mentioned above, PDE2 is able to hydrolyze both cAMP and 
cGMP, whereas some other members of the PDE family are selective 
for either of the two cyclic nucleotides. The variability in selectivity 
towards either cAMP or cGMP is thought to be determined by a so-
called “glutamine switch”. The “glutamine switch” is an invariant 
glutamine found in all PDEs, for which the crystal structure has 
been solved. In PDE2, this residue is the Gln859. It has potential 
to form hydrogen bonds with the exocyclic amino group of cAMP 
and the exocyclic carbonyl oxygen of cGMP. In PDEs, which can 
hydrolyze both cAMP and cGMP, this glutamine is able to rotate 
freely. In PDEs that are selective for either cAMP or cGMP, this 
glutamine is constrained by neighboring residues to a position 
favoring selectivity for either cyclic nucleotide.
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6.6.3 PDE7

High affinity cAMP-specific 3’,5’-cyclic phosphodiesterase 7A 
is an enzyme that in humans is encoded by the PDE7A gene. 
Mammals possess 21 cyclic nucleotide phosphodiesterase (PDE) 
genes that are pharmacologically grouped into 11 families. PDE7A 
is one of two genes in the PDE7 family, the other being PDE7B. The 
PDE7 family, along with the PDE4 and PDE8 families, are cAMP-
specific, showing little to no activity against 3’, 5’-cyclic guanosine 
monophosphate (cGMP).
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INTRODUCTION

Computational chemogenomics (CG) has demonstrated benefits 
of learning from entire grids of data at once, rather than building 
target-specific QSARs. A possible reason for this is the emergence 
of inductive knowledge transfer (IT) between targets, providing 
statistical robustness to the model, with no assumption about 
the structure of the targets. Computational chemogenomics 
models the compound–protein interaction space, typically for 
drug discovery, where existing methods predominantly either 
incorporate increasing numbers of bioactivity samples or focus on 
specific subfamilies of proteins and ligands. As an alternative to 
modeling entire large datasets at once, active learning adaptively 
incorporates a minimum of informative examples for modeling, 
yielding compact but high quality models. 
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7.1. COMPUTATIONAL CHEMOGENOMICS: IS IT 
MORE THAN INDUCTIVE TRANSFER

Advances in high-throughput technologies have enabled us to 
generate enormous volumes of cellular, functional, and target-
specific bioactivity data for compounds. Despite these advances, 
there is still a considerable gap between our ability to link this 
data as a whole to phenotypical outcomes, particularly with 
respect to unintended drug side effects. It also frequently occurs 
that experimental researchers execute assays on both cellular and 
target specific levels using a fixed set of compounds, but are left 
to only speculate about the connection between the two outcomes. 
In these situations, development of models that explain patterns 
or correlation between the two levels of experimental data can be 
beneficial.

Computational chemogenomics (CG) recently emerged as the 
paradigm of learning from polypharmacological (multi-target) 
profiles. It characterizes each putative ligand–target complex by 
a composite set of both small-molecule descriptors encoding the 
ligand and protein descriptors encoding the target. As increasingly 
more emphasis is set on understanding and early prediction of drug 
side effects, CG naturally emerged as an attempt to address such 
questions, spurred by steadily accumulating multi-target activity 
profile data due to routine screening of pre-drug candidates over 
a wealth of potentially relevant biological targets.

It is important to mention that in CG (seen as the QSAR of 
protein–ligand complexes) both ligand and target may, formally, 
be considered as equivalent. CG may serve both to predict ligand 
affinity in virtual screening of a compound collection against a 
given target, as well as predict protein affinity in attempts to find 
novel targets that may bind a given drug (drug repositioning).

Various approaches to encode protein sequence and structure 
under the form of numeric descriptors have been suggested. 
While 3D structure-based descriptors, exploiting knowledge 
about the location and the geometry of the binding site, are clearly 
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the most information-rich, they are practically not very useful for 
target deorphanization (targets with well-characterized binding 
sites cannot qualify as ‘‘orphans’’). An interesting alternative is 
represented by the injection of information of known or assumed 
key binding site residues into the protein fingerprint. The most 
general approach, not making any a priori assumption about 
the targets, include empirical amino acid sequence-derived 
descriptors, also used in protein sequence–activity relationship 
modeling.

In the CG formalism, target and ligand descriptors are perfectly 
interchangeable. However we will nevertheless adopt, a ligand-
centric approach to CG for three main reasons. First, virtual 
screening for novel ligands is more often employed than the 
orthogonal search for new targets of a ligand. Classical ligand-
centric QSAR is actively employed in the herein reported 
benchmarking study. Last but not least, the provided protein 
information does not have to be structurally relevant in order to 
benefit from multi-target learning, as will be emphasized in the 
following. Therefore, this work will describe CG as a ligand-centric 
approach, where the ligand structure–activity relationships are 
allegedly ‘‘modulated’’ by protein information. This point of view 
serves for discussion only, and has no impact on the computational 
strategies and their results.

The naive approach to multi-target profile prediction would 
simply consist in realizing, for each target T, an individual QSAR 
model  (circumflex cap meaning in silico calculated 
value throughout this text), where a molecule M is described by D 
(M). In their simplest form, such relationships are linear:

		  (1)
where coefficients (weights) ai represent the relative impacts of 
the ligand feature i encoded by Di of the activity A on the current 
target. They will be termed ‘‘feature weights’’ in the following.

Although this work exclusively deals with non-linear models, 
the linear approach will be used to illustrate the concepts that 
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are central to this work. These concepts are independent of the 
actual functional form of the models, and hence easiest explained 
on the basis of maximum simplicity approaches. The reader is 
encouraged to visit the data mining for a more formal treatment.

Predicting activity  of ligand M by individual models trained for 
each T will mechanically allow the completion of the ligand-by-
target matrix of predicted activities. This amounts to determining 
the matrix of feature weights for targets (symbolically, ), by 
successively fitting each vector  for every t. Here, each  is 
implicitly associated to a target t, the unique data source serving 
to fit its value. No explicit knowledge on the relationships 
between these weights and the nature of the target is generated 
here. Fitting ( ) assumes that the initial training data supports— 
in terms of the per-protein ligand set size and diversity (chemical 
space coverage)—the building of all of these individual models. 
Unfortunately, experimental activity profiles AT (M) are often 
sparse; few M, T pairs were subjected to experimental scrutiny, 
and fewer still provide examples of high-affinity complexes. 
Moreover, the only way to update the  matrix in order to cover 
a novel target T is by fitting aT values. This is conditioned by the 
existence of sufficient and diverse training examples of binders 
and non-binders, thus obviously unfeasible for orphan targets.

However, the paradigm of CG, that is the simultaneous machine 
learning from the entire available activity matrix, may significantly 
outperform the -mentioned naive strategy. There are two main 
reasons for this:

Inductive transfer (IT)

Under its most simple form, the principle of IT can be outlined 
as follows. Suppose that the activity of ligands with respect to 
a target t is conditioned by n ligand features, as highlighted in 
Equation 1. Now consider a related target T, depending on exactly 
the same n features, where selectivity stems from a single feature 
that is weighted differently: . In the naive 
approach, fitting either equation would require, by rule-of-thumb, 
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20n or more training examples in order to grant some statistical 
robustness to the models. The strength of IT is the transfer of 
knowledge (e.g., ai values) obtained from analysis of a related 
problem to enhance solving of a new one. Suppose that enough 
data is available to train . Then, predicted values  could be 
employed as a new molecular descriptor for the related model 

. A few ligands, including several actives, tested 
on T would suffice to robustly determine the two coefficients 

 of the latter regression.

In practice, IT is not bound to such a sequential training scheme 
as outlined (output of primary models serving as input for the IT-
enhanced approaches, often referred to as ‘‘feature nets’’), but may 
also be achieved by simultaneous (multi-task) learning for related 
sets of tasks (endpoints). Related tasks share a common latent 
subspace of descriptors, enhanced with elements responsible for 
the specificity of each target.

Explicit learning (EL)

This requires target structural information to be injected into the 
learning process, by means of a protein descriptor vector . 
Intuitively, one may think about an EL model as a QSAR equation 
in which the weights at are now functions of the protein 
descriptors. The reasoning for this is that the relation between 
ligand structures and their affinities to observable endpoints 
should be related to and explained by the explicit provision of the 
protein information. As each protein responds differently to the 
presence of a ligand feature i (a substructure, for example), the 
intensity of this response is dependent on protein structure. If the 
relevant protein structure features are captured by the descriptor 
∆ , then the conditioning of  with respect to ∆  should be learned 
during CG model building, leading to true E Lenhanced models. 
For example, if affinity is represented as a linear combination of 
ligand and protein descriptor cross-terms, as shown in Equitation 
2:
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		  (2)

Both the IT and EL concepts are independent of machine learning 
approaches, and therefore should be insertable into any given 
algorithm, including, but not limited to, the well-known support 
vector machines (SVMs) or neural networks. Hence, it is possible 
to employ the same algorithm to generate both IT enhanced and 
potentially EL-enabled models, where the difference is toggled by 
supplied protein information. The key difference between the IT-
enhanced and EL-enabled approaches is that the former, like naive 
single-endpoint QSARs, are completely ignorant of the nature of 
the targets. The IT approaches are injected with indicator variables 
which replace actual protein information. In other words,  
should stand for actual physicochemical and structural target 
properties in EL, while proteins are represented by mere labels in 
IT. For example, in previous work led by Vert, EL-enabled models 
rely on calculated or biology-inspired protein kernel values, 
while IT-enhanced models are based on the so-called ‘‘multi-task’’ 
kernel. These studies are, to our knowledge, the most extensive 
analysis of IT versus EL, done in terms of classification, based on 
the ‘‘kernel trick’’. This ‘‘trick’’ operates under the tensor-product 
working hypothesis: if ligand–target complexes denoted by m: 
t are described by the tensor , then the expensive cross-
product calculation can be avoided by alternatively computing 
the product of ligand and target kernels:

		  (3)

Despite reported success in previous studies, it is yet to be made 
clear whether injection of actual protein information in intended 
EL models actually leads to the desired EL model, or whether 
machine learning merely exploits those protein descriptors in 
the same way as it would handle target labels in IT processes. 
Moreover, the few realizations of explicit EL-enhanced approaches 
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based on Equation 2 only marginally outperformed the simpler 
linear combination of stand-alone ligand and protein descriptors. 
This is further evidence that granting the technical feasibility for 
the fitting of an EL-enhanced approach is not a guarantee that the 
resulting model will actually attain such status. The present work 
aims to shed some more light on this issue.

To this purpose, a rigorous benchmarking protocol was designed, 
in order to compare (a) single-endpoint QSAR models, (b) 
IT-enhanced single-endpoint QSARs, (c) IT enhanced (multi-
endpoint) CG models, and eventually (d) EL-enabled (protein 
information-supplied) CG models. This should enable us to 
weight multiple perspectives for discovering hidden knowledge 
in phenotypical and other endpoint assay data.

We used this opportunity to focus on quantitative support vector 
regression (SVR). This is more challenging than SVM classification, 
and such studies were so far, only performed as proof-of-concept. 
To our knowledge, SVR was never explicitly investigated in the 
context of IT versus EL benchmarks. Like in the abovementioned 
SVR-driven studies, we opted for the maximum simplicity 
option for ligand–target descriptor pairs: concatenation of their 
respective descriptors. This means that a putative ligand–protein 
complex M: T will be considered as one object represented by a 
vector resulting from concatenation of ligand and protein 
terms respectively.

Based on 9,642 accurate GPCR-ligand complexes of measured 
pKi values (approximately 4,500 ligands for 31 rhodopsin-like 
GCPRs), the herein used training set is one of the largest coherent 
multi-target sets seen in CG studies so far. Featuring actual high 
and low-affinity ligand-protein pairs, it has no need to rely on 
artificially generated, experimentally untested entries as decoys.

ISIDA property-labeled fragment counts and fuzzy pharmacophore 
triplets were used to describe ligands. In terms of genuine protein 
descriptors, we employed a two-pronged approach. On one hand, 
weutilize sequence-based terms that can be easily calculated for 
poorly-studied proteins, and are thus potentially usable in a non-
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simulated, true deorphanization attempt. On the other hand, a 
fingerprint of protein–protein affinity-focused similarity scores 
based on directly measured experimental affinities was exploited. 
EL-enabled models in our approach use the genuine protein 
descriptors, whereas ITenhanced models introduce indicator 
variables (identity fingerprints); both are concatenated to ligand 
descriptors.

The analyses executed were as follows. First, the various 
approaches have been benchmarked in terms of model building 
and cross-validation propensities. A challenging SVR cross-
validation protocol was based on a 10-trial randomized leave-1/3-
out scheme. A genetic algorithm (GA)-driven optimization of the 
SVR operational parameters has been employed to build optimal 
models within each of the CG modeling approaches tested. Cross-
validated prediction propensities of models were monitored 
in terms of residual errors, allowing us to locate benchmarked 
machine learning strategies in a ‘‘strategy space’’ and to report 
mutual closeness relationships.

Second, a target deorphanization study was carried out. Whilst 
there is not a priori expectation to see EL-enabled models 
outperform IT-enhanced approaches in terms of cross-validation 
propensities, target deorphanization challenges are the actual 
stumbling block for genuine ELenabled CG. Indeed, EL should 
display a decisive advantage, for it is expected to explicitly adapt 
the weights to the orphan target. By contrast, as already 
mentioned, IT methods are unaware of the nature of orphans. 
However, while a rigorous deorphanization protocol cannot 
proceed without providing relevant target information, some less 
rigorous alternatives do exist. A baseline deorphanization strategy, 
herein termed ‘‘deorphanization by substitution’’, advocates using 
a predictive model for some training set proteins as a predictor of 
the affinity of the presumedly orphan protein. While there is no 
fundamental reason for the success of such a strategy, in practice 
this may well be the case, if the presumed orphan has at least 
some close analogs among training set proteins. Unfortunately, 
published deorphanization success stories rarely explicitly report 
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the closeness to training set proteins, or how well the single-
endpoint models of those proteins would have fared instead of the 
advocated CG approach. Therefore, the target deorphanization 
protocol here assigns paramount importance to this aspect.

Our study has interestingly revealed that, while CG methods 
once more confirmed their advantages over classical QSAR, 
most of this advantage seems to be due to IT. No significant 
boost of EL approaches over IT strategies was evidenced. The 
direct consequence of this is that successful deorphanization 
was restricted to ‘trivial’ cases of targets being quite close to 
one or several training set proteins. It further shows that future 
CG studies should benchmark EL against some baseline IT 
experiment to provide sufficient proof of EL, and that the field of 
protein descriptor needs further improvements to truly realize the 
expected benefit of EL. A future implication of this is that once one 
has established proof of concept for an EL-enabled model, they 
can return to the critical overarching task of applying their CG 
model to molecule design.

7.1.1. New Insights in Protein Kinase Conformational  
Dynamics

Protein kinases are a large family of signaling proteins that are 
involved in the regulation of a wide range of cellular processes. 
Their mis-regulation is associated with a plethora of diseases, 
ranging from infections to diabetes and cancer. The development 
of novel kinase inhibitors has experienced a significant acceleration 
following the successful approval of imatinib (GleevecR), a 
drug that inhibits the BcrAbl fusion protein, which is the main 
causative agent in chronic myeloid leukemia. In the last few 
years, approximately a 30% of the scientific documenting drug 
development efforts has been focused on kinase inhibitors; more 
than a hundred different compounds are currently under clinical 
trials.

The activation of a kinase generally involves one or more 
conformational transitions from “inactive” to “active” (catalytically 
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competent) states. Since inactive conformations in different 
kinases are more structurally diverse than their respective active 
states, some inhibitors, like imatinib, attain a restricted selectivity 
by targeting an inactive state. Thus, understanding the structure 
and the dynamics of the different conformations of kinases is of 
great importance. However, the lifetime of inactive conformations 
is generally short, while the energetic barriers that separate 
them from the active state can be significant, making their direct 
observation by structural and spectroscopic methods difficult. 
Accordingly, computational predictions of the structures and 
energy landscapes associated with conformational changes are 
becoming increasingly widespread. Many of the new kinase 
inhibitors in development have benefited from computational 
models, and, as the case of HIV intergrase has clearly shown, the 
transient cavities only visible in molecular dynamics simulations 
are expected to help the design of more potent and selective kinase 
inhibitors.

A Complex Conformational Landscape

The crystal structures have shown that most protein kinases 
can assume at least two different states, an active state, able to 
phosphorylate a substrate upon ATP binding and an inactive 
one. Besides those large scale changes, the local configuration of 
several structural elements can vary during the transition from 
active to inactive, leading to a wide ensemble of structures. Taking 
the structure of the Abl kinase 1 as a reference (Figure 1), the 
C-helix in the N-lobe can adopt a “in” conformation, in which a 
glutamate (Glu286 in Abl, UniProt sequence P00519) points towards 
the ATP site and interacts with a lysine on the β 3 (Lys271 in Abl), 
and an “out” conformation in which the same glutamate points 
towards the solvent and the salt-bridge is broken. The conserved 
DFG motif preceding the activation loop can analogously adopt 
an “in” and an “out” conformation depending on which residue 
between the glutamate (DFG-in) and the phenylalanine (DFG-out) 
points towards the ATP cavity. Finally, the activation loop (A-loop) 
can undergo a large structural rearrangement from an “open” 
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structure to a “close” one. While the structural hallmarks of the 
active state are well known and common to most members of the 
kinase family, namely αC-helix in, DFG in and activation loop 
open (Figure 1), many inactive states exists, whose features are 
less prone to be generalized across different kinases. What is more, 
the full sequence of events leading from the on-state to the off-
state is known only for a very limited set of kinases, as the insulin 
receptor kinase or the cyclindependent kinase 2. Just considering 
the local arrangement of the three structural elements described 
so far, several possible off-states, not fulfilling the requirements 
to be active conformations, arise (Table 1), whose existence, so far, 
has been mainly assessed by crystallographic means.

Table 1. Different Structures of the Abl Kinase in the Protein Data Bank

Figure 1. Structure of the human Abl kinase. The N and C lobes are 
represented in white, black, respectively. Important regulatory regions 
as the αC-helix, the g-loop, the DFG motif and the activation loop are 
labeled.
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The picture is further complicated by the existence of several 
“ancillary” domains and ligands that interact with the kinase 
domain in different steps throughout the on-to-off transition and 
lead to an even wider ensemble of conformations. The Abl kinase, 
for example, is auto-inhibited by forming a complex with the two 
Src Homology (SH) domains SH2 and SH3 and can be regulated by 
several endogenous compounds as imatinib or dasatinib (Figure 
2). Cyclin-dependent kinases bind to cyclins to carry out their 
functions and receptor tyrosine kinases, as the epidermal growth 
factor receptor (EGFR), dimerize to form an active complex.

Figure 2. Abl kinase exists in several different conformations, varying 
for the conformations of the DFG motif, the A-loop and the αC helix. 
Some of these conformations have been targeted by several drugs, such 
as imatinib, dasatinib, etc.

The need for an atomic level description of how these phenomena 
take place, able to overcome the unsatisfactory “static picture” 
representation, has led to an increase of expectations towards 
molecular modeling and, in recent years, several features of kinases 
conformational dynamics have been elucidated by simulations. In 
the remainder of this re view, we summarize some of the most 
recent and promising advancements achieved by computation.
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Long Molecular Dynamics Simulations

Molecular dynamics (MD) is the most established approach 
to study proteins at an atomic level. However, the time scales 
accessible to MD are limited by the small integration step (typically 
10-15) used to evolve Newton’s equations, that needs to be of the 
order of magnitude of the fastest molecular motion (i.e. bonds 
vibration). Large structural rearrangements, as the transitions 
between different kinase conformations, take place in time 
scales of the order of hundreds of nanoseconds, at best, and are 
generally considered “rare events”, difficult to observe during MD 
simulations. Only recently, thanks to considerable software and 
hardware advancements, especially in special-purpose machines, 
massively-distributed computing and GPU infrastructures, the 
time-scales needed to sample these phenomena have become 
accessible. Thanks to these advancements, Shaw and co-workers  
were able to perform 2.2 s of total simulation time to study the 
“flip” from the DFG-in to the DFG-out state of the Abl kinase. The 
study represented the first all-atoms MD simulation of a kinase 
in the s time frame and the first unbiased observation of the DFG 
flip. In their study, the authors identified a new intermediate in 
which the C-helix is in “out” conformation and the DFG assumes 
a characteristic configuration with the aspartate pointing towards 
the C-lobe and the phenylalanine occupying a cavity in the N-lobe. 
The role of DFG protonation in favoring different conformations 
was also highlighted, proving a pH-dependency in the binding 
of ligands, as imatinib. Besides deepening the understanding 
of the conformational transition itself, these finding open new 
possible scenarios for drug discovery. Yet, the authors were forced 
to introduce an αC-helix destabilizing mutation to observe the 
conformational change. A considerable step forward in the study 
of kinase conformational dynamics is represented by a recent 
research on the EGFR kinase. In their study, the authors perform 
long MD simulations (a total of 47 s) to study the binding of the 
inhibitor lapatinib (TycerbR ) to EGFR and postulated the existence 
of a third unknown state of the C-helix from discrepancies in the 
calculated rate of association. According to their interpretation, 
the slower binding rate was due to the existence of a new 
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predominant conformation assumed by the αC-helix, different 
from the “out” inactive conformation that binds lapatinib, and 
to which the protein must evolve in order for the drug to bind. 
Deploying a massive body of simulations and experiments, the 
author demonstrated the existence of a partially disordered state of 
the αC-helix, more stable than the “in” active conformation. What 
is more, they were able to explain the role of the important and 
widespread mutant L845R, affecting the dimerization dynamics 
of EGFR despite being distant from the dimerization interface. 
Indeed, they demonstrated that L845R stabilize the αC-helix “in” 
conformation by suppressing the disorder of the helix through 
the formation of new interactions between the mutated arginine 
and a cluster of negatively-charged residues. The same authors 
successfully reproduced also the binding of cancer drug dasatinib 
(SprycelR ) to Src kinase using long “unguided” MD simulations 
(35 s) starting from the unbound ligand, recovering the correct 
crystallographic bound structure and discovering the crucial role 
of cavity desolvation and a potential allosteric site between helices 
F and G. These two examples demonstrate the usefulness of very 
long all-atom molecular dynamics simulations and the remarkable 
correctness of the recent all-atom force fields that are able to 
correctly predict the main conformations of protein kinases. Based 
on the continuous increase of available computational power, it 
is easy to forecast that soon such simulations will be feasible on 
standard high-performance computing platforms.

Coarse Grain

A different approach to overcome the time and length scale 
limitations of all-atoms MDs is simplifying the description of the 
system, giving up the all-atom representation in favor of a coarser 
picture for the sake of speed and feasibility. Several CG approaches 
exists, and describing them all is well beyond the scope of the 
present review. They can be loosely classified into Go-like models 
or “beads” based models. The first class draws on the original 
ideas of Go describing the Hamiltonian of the system as a network 
of native contacts, thus obtaining a structure-based potential, i.e. 
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a potential in which the native structure is the minimum of the 
potential energy by construction. The second class, instead, maps 
the all-atoms system onto a chain of “beads”, each describing a 
group of atoms from which they inherit their properties (generally 
hydrophobic, hydrophilic or neutral). Depending on the process 
of interest, the Go-like representation might, or might not, be 
preferred to the more general beads-based one. Using a multiple 
state Go model, Roux and Yang described the transition from 
inactive to active of Src kinase, identifying two different routes 
and explaining in details the sequence of events leading to 
activation along the lowest energy pathways. In their study, they 
started from a close conformation of the A-loop and an Chelix 
“out” and observed that the activation loop is able to fluctuate 
between active and inactive conformations while the helix has a 
slower transition; they also observe that the transition to C-helix 
“in” take place only after the activation loop has reached an active-
like structure. The first event along the transition was identified as 
a loss of contacts between the A-loop and the C-helix, leading to a 
subsequent detachment of the helix from the N-lobe strands. An 
alternative path, involving partial unfolding of the N-lobe itself, 
was also described. Beside the importance of understanding the 
process underlying Src activation, the study highlight significant 
details on how the information might flow across the highly 
coupled structural elements of kinases, unleashing information 
important for the understanding, and drugrelated harvesting, 
of allosteric regulation. A hybrid potential, in which the bonded 
terms were treated with a classical force field description, while 
the non-bonded term were treated as a structure-based potential. 
In their study, the authors identified a new intermediate state along 
the close-to-open transition, characterized by a predominantly 
close structure, but with few open-like contacts in the C-terminal 
region. No correlation between the A-loop motion and the α
C-helix was observed as both close and open conformations has 
an even population of helix “in” and “out” structures. A similar 
study, investigating the activation mechanism of Lyn kinase using 
a two-state Go-like potential, was recently published by Post and 
co-workers. The importance of the C-helix transition, constituting 
the highest barrier along the activation path, emerges once again 
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from the CG simulations. However, the order of the events is not 
the same as the one obtained in ref. 19. The αC-helix “in” to “out” 
movement was instead found to be the last event (going from active 
to inactive), preceded by the breaking of the contacts between the 
C-helix and the activation loop, and by the formation of a helical 
region in the N-terminal segment of the A-loop itself. As suggested 
by the authors, the discrepancies might arise from differences in 
the Go models and in the description of the activation loop. The 
transition from active to inactive was also studied for another 
kinase, the Protein Kinase A (PKA) by Onuchic and co-workers. 
In their study, the authors applied structure-based Hamiltonians 
to study the closing mechanism upon ATP binding and confirmed 
the existence of motions with different time scales in the catalytic 
domain. The ATP binding site was found to be considerably more 
flexible and moving faster than the overall kinase motion. Upon 
ATP binding, a suppression of the fluctuations in this region is 
observed, that led to the formation of additional contacts that shift 
the structure towards the close conformation. The partial unfolding 
of some elements of the N-terminal lobe was also observed as in 
the study on Src kinase. The use of simplified CG models also 
allowed to perform simulations of Hck kinase catalytic domain 
together with the regulatory domains SH2 and SH3 (Figure 4). In 
their work, the authors successfully generated a wide ensemble 
of putative topological arrangements for the three domains, 
ranging from fully docked auto-inhibited structures to completely 
detached ones, and clustered them into 9 different representative 
states. Using this 9-states representation, the authors were able 
to fit experimental smallangle X-ray scattering (SAXS) data 
and determine the different population of these states under 
different conditions. Interestingly, the analysis pointed out that, 
in the wild-type complex, the auto-inhibited state is predominant 
and populated for the 82%, regardless of the phosphorylation 
state ofthe C-terminal tail tyrosine, which was believed to be 
essential for deactivation, thus disproving the theory that rapid 
disassembling is triggered by the C-tail dephosphorylation. On the 
other hand, they observed that the shift of population towards the 
disassembled state in the presence of potent SH2- and SH3-binding 
peptides is less prominent for the high affinity C-tail mutant Hck-
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YEEI, thus confirming the crucial role of the C-terminal region for 
the formation of the complex.

Figure 3. Abl kinase conformations; (left) active conformation with the 
A-loop open, the αC-helix “in” and the DFG “in”, (right) inactive con-
formation with A-loop close and C-helix “out”; (center) super-imposi-
tion of the active and inactive structures.

Figure 4. Src kinase auto-inhibited state.

Enhanced Sampling

If the results of the simulations are to be used in rational drug 
design, CG simulations may not be sufficiently accurate and a 
fully atomistic representation is required. Several methods, that 
can be loosely classified as “enhanced sampling” approaches have 
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been developed to use an atomically accurate description while 
achieving a statistically significant sampling of the free energy 
landscape. Many of these methods are based on the addition of 
some sort of position or time-dependent bias to the system, in 
order to (partially) compensate the free energy of the starting 
minimum and allow the system to escape, thus enhancing the 
exploration of the conformational space and allowing to observe 
the process of interest in a shorter simulation time. The well-
known approach is perhaps the Umbrella Sampling (US) method. 
It is based on the dimensional reduction paradigm, according 
to which the dynamics of the system is studied as a function of 
a collective variable (CV), function of the atomic coordinates, 
which should properly approximate the real reaction coordinate. 
In US, a fixed harmonic potential is added corresponding to a 
particular value of the CV, so that the system gradually moves 
from its equilibrium conformation towards the minimum of the 
added potential. After a sufficiently long sampling time, the real 
probability distribution of the different states can be recovered 
re-weighting the populations for the additional bias. In practical 
situations, it is often convenient to divide the process in different 
“windows” along the reaction coordinate and to perform different 
US runs for each window, centering the umbrella potential in the 
window itself. Using US, the opening of Src activation loop was 
characterized, highlighting the importance of the exchange of 
Glu310 salt-bridge between Arg385 (in the Clobe) and Arg409 (on the 
A-loop). The authors also identified a possible intermediate state 
that, in their setup, was found to be the most stable conformation 
of the A-loop. Targeted MD (TMD) is conceptually similar to 
US, but the harmonic potential is not kept fixed throughout the 
simulation. Instead, the potential is gradually moved along the 
CV, contributing a force that pushes the system towards a final 
(desired) state. Mendieta and Gago investigate the inter-lobe 
motion in Src kinase and the effect of inter-lobe rearrangements 
on the conformation of the A-loop. In their study, the authors 
constrained the N-lobe and the C-lobe and used TMD to stretch 
the inter-lobe hinge peptide towards a open-like configuration. 
Interestingly, they found that the activation loop didn’t open 
as a consequence of the lobes being pulled apart; instead, the 
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A-loop packed more effectively in the inter-lobe cleft, pushing 
the tyrosine of the phosphorylation site towards the ATP pocket. 
Drawing on this, an autophosphorylation mechanism, triggering 
the A-loop opening, was postulated. Similar “in silico” pulling 
experiments on Src A-loop opening were also performed to obtain 
starting point for subsequent unbiased multiple-trajectories MD 
simulations and to study the release of ADP from kinase A. The 
use of a fixed potential, as in US simulations, require a certain 
knowledge of the system and of the different conformations that it 
might explore. To overcome this limitation, especially for complex 
systems, several “adaptive” techniques have been developed, 
such as local elevation, conformational flooding, self-healing US 
or metadynamics. The latter, in particular, is rapidly becoming 
the method of choice for the study of complex conformational 
changes, especially when the use of 2 or more CVs is needed. 
Metadynamics is based on an extended Lagrangian formalism 
and on the addition of a bias potential in a history dependent 
fashion. Every τ  steps, a small repulsive Gaussian is added in the 
corresponding position of the CV space, discouraging the system 
to visit already explored basins and favoring the sampling of new 
regions of the conformational space. When the dynamics in the CV 
space becomes diffusive, the bias potential, sum of the deposited 
Gaussian, hascompensated the underlying free energy that can 
hence be recovered from the bias potential itself. The closure 
mechanism of cyclin dependent kinase 5 (CDK5) was studied 
by Berteotti using metadynamics with path collective variables 
(PCV). A complex two step mechanism, resembling the one 
obtained with CG for Src kinase, was described, involving first a 
45o rotation of the C-helix and a subsequent concerted movement 
of the helix and the activation loop that leads to the complete 
rotation of the first to the “out” conformation and the closure of 
the latter. An accurate free energy surface was obtained, allowing 
to quantify the stability of the close state over the open one by 4-6 
kcal· mol-1. Most importantly, the study identified an intermediate 
along the path, in which the helix has already reached its final 
position, but the activation loop is still in an open conformation, 
that might unleash important information for the development of 
selective inhibitors. Metadynamics was also used to rationalize the 
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different activity of imatinib towards the two highly homologous 
kinase α c-Src and α c-Abl. In the study, the author applied parallel 
tempering metadynamics (PTMetaD) variant using 28 replicas of 
the system in the temperature range 308-399 K, summing up to 22 
s of total simulation time, to investigate the DFG motif in-to-out 
flip transition. It was found that, while imatinib binds with the 
same pose to both kinase, the different stability of the imatinib-
binding DFG-out conformation largely accounts for the difference 
in activity (0.08 M for Abl, vs. 7.2 M for Src). The authors also 
identified the structural determinants behind the different DFG-
out stability, underlining the higher intrinsic degree of flexibility 
of α c-Abl structure, allowing for a larger opening of the active site 
and for a larger number of water molecules, able to better solvate the 
DFG aspartate. Metadynamics, in the Bias Exchange MD (BEMD) 
scheme, was used together with unbiased MD to rationalize the 
differences between the dynamics of the apo and holo structures 
of PI3K. The analysis suggested a long-range conformational 
selection mechanism for the binding of inhibitors, coupled with 
a short-range ligandinduced fit in the binding cavity. It is to note 
that metadynamics was also used to predict the binding affinity of 
several ligands to protein kinases as CDK2.

A similar method, based on the same extended representation 
used in metadynamics, is Temperature Accelerated MD (TAMD). 
TAMD is based on a the same extended representation used in 
metadynamics. However, in this case, the slower degrees of 
freedom described by the CVs are selectively subjected to a 
different temperature T, higher that the target temperature T , 
and can hence lead the system to explore a wider portion of the 
conformational space, without distorting the free energy itself. 
Using TAMD, Abrams studied the inactive-to-active transition 
in the insulin receptor kinase, refining the lowest energy path by 
means of the string method. Interestingly, the authors paid much 
attention to the dynamics of the so-called C-spine and R-spine 
(Figure 5), two networks of stacked hydrophobic residues that 
have been observed in several protein kinases. The formation of 
a small helical segment in the N-terminal region of the Aloop was 
found to be the first event in the activation pathway. Along this 
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path, the subsequent unfolding of this helix is responsible for a 
rearrangement in the dihedrals of the DFG motif preceding the 
A-loop, leading to the counterclockwise flip of the DFG itself to 
the “in” conformation. The rotation of the αC-helix to its final 
position was observed only in the last part of the path, when the 
A-loop moves towards a completely open conformation. It is to 
note that, even after the DFG flip, the R-spine remains broken, 
due to the incorrect placement of the αC-helix, suggesting an 
alternative mechanism for the regulatory spine disassembly.

Figure 5. Structure of the insulin receptor kinase; (left) inactive confor-
mation with the phenylalanine of the DFG motif inside the ATP cavity 
and forming the so-called C-spine, (right) active conformation with the 
DFG motif flipped in the “in” positionand the phenylalanine joining a 
different hydrophobic network known as the regulatory spine (R-spine).

7.2. CHEMOGENOMICS APPROACHES FOR THE 
QUANTITATIVE COMPARISON OF BIOLOGICAL 
TARGETS

Chemogenomics is a term coined about 10 years ago. Traditional 
approaches for the identification of bioactive compounds use a 
chemical library, a single target protein, and an assay, which allows 
us to measure the activity of these compounds against the selected 
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target. In contrast chemogenomics aims at the identification of the 
bioactivity of all these compounds against multiple targets and 
even beyond: in a very general sense the goal of chemogenomics 
is the exploration of all possible ligand–target interactions, or in 
other words the identification of bioactive compounds from the 
chemical space for all targets of the biological space.

The compound–target matrix plays a central role in 
chemogenomics. Its columns are formed by the set of all possible 
targets encoded in the genes of organisms (not necessarily only 
human genes), and the rows represent all the compounds that 
span the huge chemical space of fragments and lead- or drug-
like compounds. The matrix elements describe the biological 
interaction, for example, a classification as active/inactive or a 
quantitative description by IC50/EC50 or raw % CTRL values. Each 
row of this matrix displays the activity profile (the bioprint) of 
a compound, and each column displays the compound-binding 
profile of a target (the chemoprint).

Regarding experimental data the compound–target matrix is and 
will remain extremely sparse. Given the huge size of the relevant 
chemical space and ten thousands of potential targets, it is 
obviously impossible to fill the matrix with assay data. Hence, in 
silico approaches are the alternative to complement the bioprints 
of the compounds and the chemoprints of the targets.

Calculating the interaction strength of a wide diversity of 
compounds and targets represents a challenging goal, and 
computational chemogenomics is by far not yet mature enough 
to always provide reliable predictions. Despite this, it is a very 
attractive goal for pharmaceutical research. The prediction of the 
biological profile of compounds would allow the identification of 
potential off-targets, which may cause unwanted side effects of 
a drug. This information would help to prioritize the targets for 
the safety profiling and could be used to optimize compounds 
toward reduced side effects. Knowledge of the similarity between 
proteins can pave the way to chemical starting points or tools for 
innovative targets. There is also increasing evidence that most if 
not all drugs bind to a variety of targets (called polypharmacology) 
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with relevance for the therapeutic action of the drugs and/or for 
the side effects. The knowledge of the target spectrum of a drug 
is crucial information for the so-called drug repurposing where 
a known drug is applied to a new disease. It can also help to get 
better insight into the disease relevant targets and pathways and to 
identify new and better approaches to treat a disease, for example, 
by multitarget drugs. Moreover in phenotypic screening the target 
is mostly unknown and the activity profile of an active compound 
may be the key to the identification of the relevant target(s).

The basic assumption that guides all computational approaches 
in chemogenomics is that similar compounds bind to similar 
targets and therefore show a similar binding profile. Conversely 
targets that bind similar ligands have similar binding sites. The 
fundamental question in chemogenomics is how to measure and 
compare the similarity of compounds and targets, respectively. 
It is worth to mention that compounds with a similar bio profile 
may nevertheless have dissimilar structures which is the reason 
why biological fingerprints have a potential for scaffold hopping. 
The successful use of these descriptors in virtual screening goes 
back to the 1990s and was one of the earliest applications of the 
concept of chemogenomics.

An increasing wealth of experimental data about target–ligand 
interactions is available in the public domain, which is at least 
partly compiled in annotated chemical libraries. Therefore most 
of the chemogenomics studies rely on this data even if its quality, 
comparability, and completeness may be difficult to assess.

The term “chemogenomics” has been defined as the discovery 
and description of all possible drugs to all possible drug targets. 
The interaction of chemical and biological matter may be tackeled 
starting from either end. Target-based approaches are grounded 
on a similarity measure derived from the quantitative comparison 
of sequence and/or three-dimensional (3D) structural information 
on targets. The subsequent binding profile prediction is based on 
the assumption that known ligands of a similar target may also 
bind to the target of interest, which allows us to make predictions 
for orphans without known ligands, too. Docking of compounds 
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to experimental or calculated protein structures is an alternative 
approach to use the 3D structure of targets. Whereas sequence 
data is available for all interesting targets due to the mapping of 
the human genome, 3D information is still incomplete but rapidly 
growing.

Ligand-based approaches, which are limited to targets with at 
least one known active compound, start from the other end and 
can include available information about target–ligand interactions 
in different ways. They all build upon existing knowledge about 
bioactive compounds. Some approaches just categorize ligands 
as active or inactive and compare targets based on the similarity 
of their ligand sets. Others consider explicitly the strength of the 
target–ligand interaction in the model-building process. Last but 
not least both protein and compound information can be used in 
target– ligand-based approaches. Some methods combine target 
similarity with information about known ligands; others take the 
details of the interaction on the atomic level into account to derive 
predictive models with machine-learning techniques.

7.2.1. Target-Based Similarity Methods

Similarity measures, which are grounded on target properties 
alone, provide the most direct access to target comparison. Such an 
approach does not need bioactive compounds to derive a similarity 
relationship between targets. It therefore allows searching for 
off targets for a drug without limitation to targets with known 
ligands. In the case of orphans ligands of similar targets can serve 
as a chemical starting point in deorphanization.

On the other hand ligand-based methods have a direct relationship 
to the pharmacological action of chemical matter, while any kind 
of similarity derived from sequence or structural data alone needs 
to be translated into a pharmacologically relevant scale, which is a 
critical and error-prone step.

Methods and tools to compare and to hierarchically cluster 
proteins based on their sequence similarity are well established, 
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and the so-called phylogenetic trees not only are the basis for the 
reconstruction of evolutionary history of life but also are routinely 
employed for the identification of potential targets for selectivity 
testing or safety profiling in drug research. It is, however, well 
known that targets from different families with low sequence 
similarity may nevertheless bind similar ligands. One example is 
the family of serotonin (5-HT) receptors. They are all activated by 
the neurotransmitter serotonin and belong to the superfamily of G 
protein–coupled receptors (GPCRs), with the exception of 5-HT3, 
which is an ion channel with very low overall similarity to the 
other members. The same phenomenon can be observed with the 
nicotinic and muscarinic acetylcholine receptors. The inducible 
cyclooxygenase-2 (COX-2) and the totally unrelated carbonic 
anhydrase (CA) show affinity to the same inhibitors celecoxib and 
valdecoxib. Glycogen synthase kinase 3 beta (GSK3β) and cyclin-
dependent kinase 4 (CDK4) show very similar structure–activity 
relationships despite a sequence identity of only 28%. Another 
example is the frequently observed binding of compounds to 
thehuman Ether-à-go-go-Related Gene (hERG) ion channel. 
The primary target of the vast majority of these compounds is 
phylogenetically unrelated to the hERG channel, but yet persistent 
binding to this antitarget is one of the major reasons for the early 
termination of drug research projects.

It may therefore be misleading to compare the overall sequence 
of targets. Instead, the focus should be on those parts that are 
relevant for ligand binding. These binding sites can be described 
by their (discontinuous) amino acid sequences or by the 3D 
properties of the binding pockets. The latter approach requires 
either experimental 3D structures of proteins or reliable homology 
models. The accurate identiication of the binding sites is a 
prerequisite for meaningful results.

An example for the use of sequence data combined with limited 
structural information regarding the location of the binding site 
can be found in the work The authors aligned the transmembrane 
domain sequences of 369 human GPCRs and used the X-ray 
structure of the bovine rhodopsin-retinal complex to identify 30 
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discontinuous amino acids that are most likely to form the ligand-
binding site. Clustering of the receptors based on these 30 amino 
acids yielded a phylogenetic tree that displays the relationship 
between the receptors. Gloriam revisited this approach by 
considering the additional GPCR X-ray structures that had been 
published in the meantime. They expanded the set of relevant 
amino acids to 44, including all previously identified 30 residues. 
Even if there are differences in the details both the clustering 
published by Surgand and by Gloriam reflects very well the results 
of the phylogenetic analysis by Fredriksson which was based on 
the full sequence of 342 GPCRs. Interestingly a clustering that is 
based only on those residues out of the 44 that most likely interact 
with the group of bioaminergic ligands yields different results that 
better reflect the pharmacologically relevant receptor similarity 
of the respective GPCRs. Milletti came to a similar conclusion 
when they compared binding sites of kinases. They found that the 
prediction of the target-binding profile of a compound requires the 
selection of the appropriate sub pockets that are actually occupied 
by the compound.

Even a close neighborhood of receptors measured in terms of the 
binding relevant amino acid sequence does not always result in 
a similar ligand-binding profile. The bradykinine receptors B1 
and B2 are closely related in all sequence-based analyses. The 
endogenous peptidic ligand bradykinine is bound by B2 but not 
by B1, which is caused by a single residue exchange between 
B1 and B2. A Ser residue in the transmembrane helix 3 of B2 is 
replaced by Lys in B1. The positive charge in the binding site of B1 
repels the C-terminal

Arg in bradykinine. In contrast the C-terminally truncated 
desArg9-bradykinine is bound by B1 since the negative charge of 
the C-terminus is attracted by Lys. This example demonstrates 
that seemingly minor changes in either binding sites or ligands 
may drastically influence the binding profile. These “activity 
cliffs,” that is, discontinuities in structure–activity relationships, 
are found when looking both at targets and at ligands. Activity 
cliffs have been in the focus of interest since a number of years, 
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and the interested reader is referred to a recent review.

The comparison of targets using the detailed 3D structure analysis 
of binding sites typically involves the following four steps: 

(i) 	 Identification of binding pockets, 
(ii)	 Conversion of the residues lining the pockets into a 

simplified representation, 
(iii)	 Alignment of the patterns, and 
(iv)	 Quantitative assessment of the similarity between the 

patterns by a scoring function.

There are several programs available for the first step, the 
identification of binding pockets, which were recently reviewed. 
The authors conclude that encouragingly the programs perform 
well and can tolerate deviations up to 2 Å (heavy atoms) between 
ligand-unbound and ligand-bound protein structures. Limitations 
are encountered if binding pockets are very narrow in the unbound 
state. The authors also tested the ability of the programs to cope 
with homology models and found that the quality of predictions 
was comparable to the one found with native proteins in the tested 
cases. They observed again that too narrow binding sites in the 
homology model are a hurdle for the prediction and noticed that 
the overall quality of the structure in terms of root mean square 
(RMS) deviation does not correlate with the modeling quality 
of the binding site. It is suggested to use molecular dynamics 
calculations to generate a more realistic picture of the plasticity of 
the binding site. An alternative could be to incorporate the ligand 
into the homology modeling process.

A number of recent reviews focuses on steps 2–4 in the 
abovementioned binding site comparison process. A multitude of 
approaches were developed to tackle the problem, and examples 
of the successful identification of similar binding sites not closely 
related by sequence are presented for all these methods. In addition 
to alignment-dependent approaches alignment-free methods were 
also published in recent years, which avoid the time-consuming 
and critical alignment step.
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Despite all advances in this field there are still challenges. Most 
methods are able to detect highly similar binding sites but may 
vary in their performance if the binding sites are of medium 
similarity. The definition that residues of a protein are involved 
in binding to a particular ligand is not clear without referring to 
the X-ray structure of the protein–ligand complex. It was already 
mentioned that the degree of the sequence-based similarity 
between two targets changes if only the residues that are relevant 
for binding are taken into consideration. The same is true if the 
comparison is grounded on the 3D properties of the binding site. 
Ligands do not need to fill a binding site completely to achieve 
sufficient affinity but instead may interact only with sub pockets. 
The ability of an algorithm to identify similarity of targets on the 
sub cavity level is therefore a necessary and important feature.

Even similar binding sites may exhibit variations in shape upon 
ligand binding due to the plasticity of the protein structure. 
Hence, algorithms for binding site comparison need to show some 
degree of fuzziness, while on the other hand a sufficient accuracy 
is required.

There is no generic and unambiguous similarity score threshold 
that separates similar binding sites in terms of ligand-binding 
properties from dissimilar ones. Similarity searches in the binding 
pocket space produce only an enrichment of true-positive results 
among false positives and will miss false negatives. Any cutoff 
is a compromise between recall and precision and may be case 
dependent, quite similar to searching for bioactive compounds by 
virtual screening in the chemical space. Moreover one should also 
be aware of cases where a target is predicted to bind a specific 
ligand. A target–ligand complex may actually be formed in 
agreement with the prediction, but the affinity of the ligand may 
be too weak (e.g., >10 μM) to be recognized in the particular assay, 
and the target will erroneously be considered as a false-positive 
hit.

No binding site comparison approach can currently successfully 
deal with a situation where a ligand binds to two different targets 
but in different orientations that fit into binding sites that hardly 
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show any substantial similarity. In principle, docking could be an 
alternative but requires a substantial computational effort and 
a careful assessment of the docking poses due to the limitations 
of current scoring functions. The interested reader is referred to 
recent publications.

7.2.2. Ligand-Based Target Comparison

At first glance it might appear surprising that ligands, that is, small 
molecules, are suited to deduce quantitative similarity information 
on targets. The reason for this is the nature of the ligand–target 
interaction. Emil Fischer was the first to postulate in 1894 that the 
interaction of a protein with a small molecule can be described in 
a simplified analogy by the lock-and-key principle. Although it is 
known today that the binding process between ligand and target 
is much more complex than Fischer supposed, a complementarity 
between both partners is required. Therefore, a single ligand can be 
considered as a negative imprint of its own specific interaction site 
and the sum of all ligands of a target provides a negative imprint 
of the complete binding site. The latter statement, however, is true 
only if the known ligands of a target describe the ligand–target 
interaction in its entirety.

Regarding the available knowledge that is applied to gain 
information from the ligands, three types of target comparison 
procedures can be distinguished. Chemocentric approaches 
use the ligand sets of targets themselves to deduce knowledge 
on the respective target/binding site similarities. Chemoprint 
comparisons make use of biological activity data or comparable 
parameters that indicate the strength of the relationship between 
ligand and target, and proteochemometric approaches describe 
the interaction of each ligand with its target on a very detailed 
level. All approaches require known ligands for each target to 
be described and thus cannot be used for orphans. Despite this 
limitation the development and application of ligand-based 
methods is in the focus of many publications, and substantial 
progress has been gained during recent years.
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Chemocentric Approaches

The similarity ensemble approach (SEA). SEA is an application 
of the “similarity principle,” which states that structurally 
similar compounds have similar biological activity, reflecting the 
experience medicinal chemists have made since a long time. The 
first systematic studies regarding the validity of the similarity 
principle were published in the mid-nineties. In the following years, 
different research groups have reached different conclusions. In a 
careful analysis of biological data collected at Abbott, Martin found 
that there is only a 30% chance that a compound with a Tanimoto 
similarity ≥0.85 to an active compound is active itself. Even if it 
is much better than random, it is a surprisingly low value. The 
similarity principle with respect to the neighborhood behavior 
within a combinatorial library was recently revisited. The authors 
basically confirmed the conclusions of the former study and in 
particular found a strong and unpredictable dependence of search 
results on the employed query, in spite of a variety of descriptor 
spaces that were used. These results shed some light on the 
limitations of the similarity principle. As pointed out by Maggiora 
rugged activity landscapes with activity cliffs are much more 
frequent than assumed in the past. For this reason the similarity 
principle should not be taken as a fundamental principle but more 
as a valuable guideline with exceptions.

SEA goes beyond a simple similarity search. Inspired by the 
bioinformatics method BLAST SEA uses a statistical model to 
derive an expectation E-value for the comparison of compound 
sets rather than using the Tanimoto similarity itself. This E-value 
describes the significance of the pairwise similarity of compounds 
or compound sets. Thus, if compound sets for two distinct targets 
are compared, the E-value can also be considered as the strength 
of the relationship between these two targets. To derive the 
underlying statistical model, the similarity of random compound 
sets of different sizes from the MDL Drug Data Report (MDDR, 
Accelrys, San Diego, CA, USA) using Daylight fingerprints and the 
Tanimoto coefficient Tc. For each combination of compound sets a 
raw score was calculated as the sum of all pairwise comparisons 
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of the compounds from set 1 with all compounds from set 2. Raw 
scores were calculated for 300,000 pairs of random sets in a size 
interval between 10 and 1,000. The mean raw score, which was 
linearly dependent on the product of the set sizes as well as the 
standard deviation of the raw scores, was fit against the product 
of the set sizes, resulting in two functions for set-size-dependent 
expected mean raw scores and mean raw score standard 
deviations. Based on these expectation values and the individual 
raw scores, Z-scores were calculated by reproducing the above-
described procedure using Tc thresholds for the calculation of raw 
scores in the range between 0.00 and 0.99 and by a fit to an extreme 
value distribution. The distribution derived from a threshold of 
0.57 resulted in the best fit. For this reason only Tc values ≥ 0.57 are 
used in SEA calculations.

Thus, if two ligand sets do not have a single pair of compounds 
with a similarity of at least 0.57 the raw score is 0. It is important to 
note that this value needs to be recalibrated if other than Daylight 
descriptors are used.

With the functions for the expectation values of the mean raw 
score, raw score standard deviation, and the Z-score distribution, 
an E-value can be calculated for every comparison of two ligand 
sets. This E-value quantitatively describes the probability to 
obtain the same or a better raw score just by chance. Keiser used 
this method to analyze a 246-receptor subset of the MDDR. The 
pairwise comparison of all ligand sets as described above yields 
the result that the majority of the compound sets had a similarity 
not better than random. Only 5% of the calculated E-values could 
be interpreted as a statistically significant similarity between the 
targets based on their ligand sets and displayed as a cross-target 
similarity network. The authors found that on average any given 
receptor was similar to 5.8 other receptors with an E-value < 10–10.

Moreover, the ligand-derived E-value from this statistical model 
can directly be compared with a sequence-derived E-value from a 
BLAST search. The MDDR database with known sequences of the 
relevant targets. The pairwise comparison of the ligand sets and 
targets using SEA and BLAST, respectively, yielded a rank order 
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of similarities, which were analyzed by the Spearman rank-order 
correlation coefficient. The authors found few examples (e.g., 
serine proteases) where ligand and target sequence similarities 
agreed well, but such correspondences were more the exception 
than the rule. In general there was no correlation between the 
sequence- and the ligand-based similarity.

To further support the validity of the statistical model and of 
the SEA approach in a prospective manner, Keiser predicted 
novel targets for the three known drugs methadone, emetine, 
and loperamide. According to SEA methadone should be an M3 
receptor antagonist, emetine should antagonize the α2 receptor, 
and loperamide was predicted to be an NK2 antagonist. All three 
predictions could be confirmed by experiment (methadone: 1 μM 
antagonist at M3; emetine and loperamide: micromolar antagonists 
of the α2 and the NK2 receptor, respectively).

While SEA describes the similarity of ligand sets and thereby the 
similarity of their targets by comparing the ligands themselves, 
Bender presented a different approach, introducing the “Bayes 
Affinity Fingerprint” (BAF). Rather than comparing two compounds 
by their binary fingerprint, which indicates the presence or 
absence of substructures, BAFs describe compounds by the scores 
calculated by multiple-activity class-specific Bayesian models. 
Bayesian models are predicated on Bayes’s theorem, named after 
the English mathematician and Presbyterian minister Thomas 
Bayes (~1701–1761). In the implementation used by the authors, 
the Bayesian model calculates the probability that any compound, 
containing a feature F from the ECFP_4 feature space, belongs to an 
activity class A, given the total number of compounds containing 
the feature F and the number of compounds with feature F that 
belong to activity class A. Bender used the WOMBAT 2005.01 
database containing more than 100,000 bioactivity data points to 
train 1,003 activity class-specific Bayesian models. The similarity 
of two compounds is then expressed by the Pearson correlation 
coefficient of their activity class scores.

The approach used by Bender is very similar to the Prediction 
of Activity Spectra for Substances (PASS). However, while PASS 
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calculates the probability of a compound being active at a given 
target, Bender use the combined information from 1,003 targets as 
a compound descriptor to calculate intercom pound similarities, 
comparable to the approach of Kauvar who used experimental 
assay data or the in silico–generated fingerprints of Briem who 
employed the program DOCK. Applying the BAFs as a similarity 
descriptor to a benchmark dataset, Bender improved the retrieval 
rates by about 24% in the top 5% of the hit list compared to 
the ECFP_4 as a descriptor set. These improved retrieval rates 
indicate that the transformation from the graph based compound 
descriptor into a bioactivity space descriptor incorporates some 
knowledge about the chemical space of the 1,003 targets.

Moreover, Bender used this approach to compare the targets 
themselves. The generated Bayesian models are composed of a 
set of ECFP_4 features with positive and negative coefficients, 
depending on the frequency of the feature in the active and inactive 
compounds, respectively, of the training set. Model comparison 
and the subsequent target comparison could be achieved by 
comparing the coefficients of identical features for different 
activity classes. Due to the large number of sub structural features 
this is a computationally very expensive task. Bender therefore 
evaluated a different approach: for the 100 largest activity classes, 
Bayesian scores for 102,500 compounds from the MDDR database 
were calculated. Afterwards, principal components for this matrix 
were calculated, yielding only 9 of 100 eigenvalues larger than 1, 
an observation that reflects a low dimensionality of the BAF space. 
In principle, the variable loadings of the 100 Bayesian models 
could have been used to determine model similarities and derived 
target similarities. While this was not in the focus of the work of 
Bender they could nevertheless show that the nine models with the 
highest correlation with the selected nine principal components are 
sufficient to achieve retrieval rates similar to those of the ECFP_4 
themselves. This indicates that the information content described 
by these nine Bayesian models is similar to the information content 
given by the ECFP_4 descriptor, notwithstanding the dramatically 
reduced dimensionality.
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Obviously, the BAF-derived target similarity depends on the 
ligand set that is used to generate the matrix for the principal 
component analysis. A more direct insight into the bioactivity 
feature space would be provided by the comparison of the learned 
features themselves. Such an analysis has been introduced. The 
authors trained a self-organizing map (SOM) with a set of 10,840 
known drugs from the COBRA data collection, encoded by the 
150-dimensional two-dimensional (2D) topological descriptor 
CATS. After training of the SOM, the dataset was split into 174 
target specific subsets and each subset was presented to the 
SOM in such a way that each compound was assigned to 1 of 
the 150 neurons of the trained SOM, applying the “winner-take-
all” function. Subsequently, the distribution of the target specific 
ligand sets was scaled to the interval and transformed into a 
150-dimensional target descriptor by assigning each neuron of 
the SOM to one position of the descriptor. The different steps of 
this process are illustrated in Figure 6. Thus, by using a nonlinear, 
robust, and noise-tolerant projection method like SOM, Schneider 
transformed a target-specific ligand set into a target fingerprint 
descriptor of the same dimensionality as the ligand descriptor. 
This target fingerprint was then used to describe target similarities 
by the pairwise Pearson correlation between targets.

Figure 6. Workflow for the generation of target fingerprints.
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In a subsequent analysis of the pairwise target fingerprint 
correlations, Schneider generated a target network, using a cutoff 
value for the intertarget connections of r > 0.2. Comparing this 
network with the equivalent network, derived directly from 
similarity comparisons of the CATS descriptor–encoded compound 
sets, reveals the advantage of the SOM-based approach: targets 
that belong to related protease subfamilies (like serine proteases 
or metalloproteases) are clustered. Moreover for particular targets 
like the γ-secretase or the hepatitis C virus protease NS3, the 
target ingerprint representation suggests that a relationship to 
other targets that is based solely on the catalytic mechanism has 
to be reconsidered with regard to the nature of their ligands.

Chemoprint Approaches

Solely make use of ligand sets that are annotated as active or 
inactive at their specific target. Quantitative information on 
the activity is at best used to distinguish between actives and 
nonactives. Other approaches go beyond this binary classification 
and use a quantitative description of the interaction between 
ligands and targets. The approaches discussed have the common 
feature that they build on a compound– target matrix, which is 
almost completely filled by experimental or calculated interaction 
data. While the bio prints of compounds can be used to establish 
a similarity relationship between ligands the chemoprints allow 
us to calculate the similarity of the targets. We want to shed some 
light on selected aspects of the history of these approaches.

The first who introduced the systematic analysis of activities 
of compounds at multiple targets as a bioactivity compound 
descriptor, a method referred to as “target-related affinity 
profiling,” TRAP. Their “affinity fingerprints” were assembled 
from the dose response values (IC50) of 122 compounds at eight 
targets (reference panel). The compounds and targets were selected 
out of a larger matrix based on correlation tests of the chemo prints 
of the targets and structural diversity of the compounds. A subset 
of 12 compounds, representing the most diverse binding profiles, 
was tested at two new targets, glutathione reductase (GRd) and 
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aldehyde dehydrogenase (AdDH). Based on the dose response 
values of the 12 compounds at the two new targets and their 
known affinity fingerprints from the reference panel, multivariate 
linear regression models were fitted for GRd and AdDH. In other 
words, the activity of a compound at a new target is described 
by a linear combination of its activities at each of the proteins of 
the reference panel. Subsequently, the regression models were 
applied to the entire set of 122 affinity fingerprints to select a new 
set of 10 compounds predicted to represent the range of relevant 
potencies more evenly. Final multivariate linear regression 
models for the 22 compounds were trained and applied to all 
122 compounds. Fitting coefficients of 0.85 and 0.86 for GRd and 
AdDH, respectively, between the linear regression models and the 
experimentally derived values for all compounds after the second 
iteration demonstrated the potential of the TRAP approach for 
iterative screening, which was further highlighted by subsequent 
applications. It is worth to emphasize that the linear relationship 
of affinities between different targets was found to be valid also 
for sequentially unrelated proteins.

Encouraged by these results, Briem presented a similar approach 
by using DOCK scores instead of measured affinity data. The 
application of docking scores replaces the in vitro experiment by 
an in silico experiment and therefore broadens the applicability not 
only by reducing the experimental overhead but also by making it 
possible to derive fingerprints for not yet synthesized compounds. 
In contrast to Kauvar Briem did not aim for the prediction of 
quantitative data but for the classification of compounds into 
actives and in actives and the enrichment of known actives in 
retrospective similarity searches. In fact, using docking scores 
for the binding sites of eight known 3D protein structures from 
the Brookhaven Protein Databank, they found enrichment factors 
for the known ligands of different targets in the range of two to 
five within the first 5% of the scored hit sets. Lessel and Briem 
improved the method by using the program FlexX, which allows 
flexible docking. Even if the so-called FlexSimX fingerprints are 
somewhat inferior to the Daylight descriptors regarding the 
enrichment in similarity searches, the strength of the method is 
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its demonstrated scaffold hopping potential. The approach taken 
by Bender who described the BAFs, shows some relationship 
to the docking-based fingerprints. Both fingerprints encode the 
interaction of compounds with a set of targets. The BAFs, however, 
require a target-specific training of Baysian models, which is not 
required for the docking-based fingerprints.

Recent publications on the usability of the compound–target 
matrix are the “biological spectra analysis,” which was introduced 
by Fliri and the application of GPCR affinity profiling at 
Hoffmann-La Roche with the objective of finding a nonpeptidic 
somatostatin receptor subtype 5 (SSTR5) antagonist. Based on a 
dataset of % inhibition values at 10 μM of 1,567 compounds at 
92 ligand-binding assays from the BioPrint database of the bio 
print is a completely sufficient descriptor to cluster compounds 
in accordance to biological responses to an additional target, 
which was not part of the 92 assays. Guba could corroborate this 
result. Following the finding that astemizole, an antagonist at 
the histamine H1 receptor, also antagonizes the SSTR5 receptor 
in the micromolar range, a set of 5,000 ligands from an in-house 
GPCR-directed library was tested against a panel of 15 GPCRs at 
Cerep and the resulting affinity profile was compared with that of 
astemizole, resulting in a new lead structure.

All mentioned publications demonstrate applications of the 
chemogenomics matrix for the purpose of compound screening or, 
more generally, for the quantification of compound similarity by 
means of affinity fingerprints. There have been fewer attempts to 
quantify the similarity of the targets by employing chemogenomics 
data. Metz list some metrics that have been applied to the question 
of chemoprint-derived target similarities. Besides the usage of the 
Pearson correlation coefficient, a common approach to analyze 
chemoprints with the objective of target comparison is to first 
transform the chemoprint into a binary vector of actives and 
inactives by introducing some threshold that separates the two 
classes. Subsequently Tanimoto similarities between the binary 
representations are calculated.
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Pharmacology interaction strength which is calculated as the 
fraction of compounds that do not exceed a certain selectivity 
threshold between two targets, normalized by the total number 
of compounds that are active at both targets. The selectivity cutoff 
is set arbitrarily, which is an obvious disadvantage of this and 
similar procedures. The polypharmacological potential clearly 
depends on the hit threshold (Figure 7).

Figure 7. Distribution of multiple target hitters with respect to different 
hit thresholds.

Probably the first to use the chemogenomics matrix without a 
threshold were Vieth who introduced the “SAR similarity,” which 
is basically the mean of the selectivity’s of all compounds measured 
in two assays, normalized by the total range of the measurements 
in log units and subtracted from 1.

In our opinion the chemogenomics similarity of two targets 
depends not only on the selectivity of the compounds but also on the 
potency. Nonselective compounds with high potencies should be 
more relevant for target similarities than nonselective compounds 
with borderline potency. This reflects the experience of medicinal 
chemists who typically observe a correlation of selectivity’s to off-
targets and the potency of compounds during the phase of lead 
optimization. Therefore we suggested an “assay-related target 
similarity” (ARTS) metric as the sum of all compounds, measured 
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in two assays, weighted by an affinity-dependent score, as given 
in Equation 4:

		  (4)
where ARTS is the similarity of two assays a1 and a2, k is constant 
(k = –4), and IC50,a1i and IC50,a2i are the dose response values of 
compound i with i = 1, 2, . . . , n in assays a1 and a2, respectively

The score rewards potent compounds and considers the selectivity 
of a compound by introducing a smooth Gaussian function that 
adds a nonlinear penalty term to the score, depending on the 
selectivity of the compounds. The advantage of this function 
is the fact that the penalty term can be adjusted in accordance 
to the observed accuracy of the assays. Fluctuations of dose 
response values that may exist due to the assays can be treated 
less restrictively than by using a simple linear penalty function. 
By implementing these two functions into the score, we are able to 
deprioritize compounds with low potency or high selectivity and 
to prioritize highly potent and nonselective compounds without 
introducing any arbitrary cutoff value.

We applied ARTS to a dataset of 3,500 compounds measured in 
dose response at 11 pharmaceutically relevant GPCRs, calculated 
all pairwise ARTS similarities between the targets, and compared 
them to sequence-based similarities. Surprisingly we found some 
degree of similarity between the cannabinoid receptor type 2 (CB2) 
and the somatostatin receptor type 4 (SST4). To analyze to what 
extent our results depend on the dataset, we compared hierarchical 
clustering results of a randomly assigned subset of the dataset 
with the results obtained from the entire dataset. We found that 
using ARTS as a similarity metric, we could decrease the dataset 
by 60% and still obtain stable and reproducible target similarities, 
while other metrics like the Pearson correlation coefficient showed 
a massive decrease in reproducible target similarities.
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Typically, datasets are gathered from the collecting published data 
for activities. If compounds are not explicitly described as actives 
for a certain target, they are defined to be inactive. Obviously, this 
is not necessarily true. We analyzed the influence of simulated 
sparsity on the stability of the pairwise similarities of the targets 
in our chemogenomics dataset by randomly deleting single 
activities. Surprisingly we could show that while the deletion of 
entire compounds does not influence the similarity of the targets 
significantly, the insertion of holes into the matrix does have 
a severe influence. However, the target similarities calculated 
by ARTS are still more stable than those derived by Pearson 
correlation. Nevertheless this shows that careful collection and 
curation of the dataset are extremely important, and in the case 
of holes in the matrix, well-defined procedures for the usage of 
imputation techniques like inverse distance weighting are more 
suited than defining unknown affinities as inactives.

7.2.3. The Impact of Data Quality on Chemogenomics

In general, models are only as good as the data they are based on. 
Whenever models are used to predict the properties of compounds 
or targets this inherent limitation needs to be taken into account.

In that respect there is no difference between, for example, 
in silico models of absorption, distribution, metabolism, and 
excretion (ADME) and chemogenomics models. However, in the 
field of in silico ADME the data quality issue and the reliability 
of models have been systematically investigated and discussed 
for many years. There is still a lack of such systematic studies in 
chemogenomics, in spite of an increasing number of publications 
that address this topic.

Experimental Variations and Errors

Issues in data quality may arise from experimental values 
measured under different conditions that are assembled to larger 
datasets. Variations of assay conditions, for example, regarding 
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the used cell line, the chemical nature of the displaced ligand, or 
the type of readout to name only a few important parameters, may 
lead to inconsistent data. Drug-like molecules frequently exhibit 
low solubility, and undetected precipitation during the assay may 
seriously distort the results and lead to false negatives. It is difficult 
to collect homogeneous data of high quality even within a single 
institution, for example, a pharmaceutical company. It is even more 
difficult to assess the quality of published data. A careful manual 
curation is needed, as highlighted frequently. Even doing so some 
experimental errors like the mentioned solubility problem may 
remain hidden. In recent years databases with detailed binding or 
functional assay results have become publicly available. Still, there 
is a careful analysis of the data regarding experimental variations 
required using them for model building.

Vidal and Mestres, in a systematic analysis of the affinity profiles 
of 13 antipsychotic drugs for 34 protein targets, recently studied 
the prediction of these profiles using more than 21,000 reference 
compounds from public databases with measured affinities to 
these 34 targets. They noticed that the variations in the affinity 
data for compounds with more than one data point per target 
showed an average standard deviation of 0.5 log units irrespective 
of the affinity range, which is within usual error limits of such 
experimental data. Other authors noticed variations up to 1 
log unit. Vidal and Mestres characterized the molecules with a 
combination of descriptors that were based on pharmacophoric 
fragments, featurepair distributions, and Shannon entropy. The 
affinity of each of the 13 drugs for each target was derived from 
the affinity landscape of the reference compounds surrounding 
the drugs using an inverse distance-weighting interpolation. They 
were able to predict 65% of all affinities within a 1 log unit error 
with a precision of more than 90%. This is an encouraging result 
that could be achieved despite the fact that the authors had to rely 
on experimental data from diverse sources. Nevertheless date that 
explicitly employ quantitative affinity data, and the publication of 
Vidal and Mestres is the first attempt to predict the affinity data of 
a complete compound–target matrix. It is therefore still too early 
to assess the influence of experimental errors and neglected assay 
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variations of published compound–target interaction data on the 
results of chemogenomics studies.

Thresholds and Cutoff Values

Most publications in the field of computational chemogenomics 
on approaches where compounds are classified into active and 
inactive ones. Thus, the elements of the compound–target matrix 
are reduced to binary data. Classification models built upon such 
data do not depend on experimental errors and may even tolerate 
variations in assay conditions as long as there is no misclassification 
of training compounds. The risk of misclassification is low in case 
of highly active or completely inactive compounds and increases 
if the activity of a compound is close to the cutoff that separates 
active and inactive compounds. Often a cutoff value of 10 μM is 
used similar to the cutoff that is very common in high-throughput 
screening to distinguish “hits” from “nonhits.” There is no sharp 
boundary between active and inactive compounds, and potentially 
interesting compounds and even whole compound classes may be 
excluded from the analysis due to either experimental variations 
and errors or minor structural modifications that reduce the affinity 
of the compounds just beyond the cutoff. In a recent publication 
Briansó systematically investigated the influence of both biological 
and similarity thresholds on cross-pharmacology profiles of GPCR 
ligands within and outside of the GPCR target family. The authors 
observed a pronounced effect of both thresholds on the resulting 
profiles. The inclusion of less similar and less active compounds 
in the analysis clearly increased the crosspharmacology beyond 
the GPCR target family of the compounds.

The Dataset Composition

The composition of the datasets used for model building in terms 
of structural and biological diversity has a strong impact on the 
results of any chemogenomics analysis. The situation is similar 
to conventional quantitative structure–activity relationship 
(QSAR) models where ligands and their affinities to a single target 
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provide the input to machine-learning techniques. The situation 
in chemogenomics, however, is more complex since the goal is to 
fill the compound–target matrix with predicted values for many 
targets.

The currently available annotated chemical libraries have only 
a limited diversity with respect to the represented chemo types 
and often contain series of similar compounds, which is critically 
pointed out by some authors. These databases reflect to a large 
extent the history of pharmaceutical research and the targets 
and compound classes that were in the focus of interest years 
ago. It would be desirable that research groups in the field of 
chemogenomics perform a detailed analysis of the diversity 
of the chemical libraries that are used in their studies and 
moreover characterize the compound sets by the distribution of 
physicochemical properties (e.g., MW and clog P) and the degree 
of drug-likeness. It was shown that the topology of drug–target 
networks derived from annotated chemical libraries implicitly 
depends on these parameters.

Another factor that has a general influence on the quality of QSAR 
and chemogenomics models is the composition of the decoy set. 
This is an intensively discussed matter also in virtual screening. 
Comprehensive assay data on inactive compounds for a given 
target is hardly ever published. Therefore decoy sets need to be 
artificially composed. It is important that a decoy set be structurally 
sufficiently different from the active compounds in order to 
assemble almost certainly nonbinders but still have a similar 
distribution of physicochemical parameters. A frequently used 
approach is to assume that compounds not reported to beligands 
at a given target are inactive at this target even if this bears some 
risk of false negatives. Emphasize the importance of a completely 
random sampling of these presumed inactives. Weill and Rognan 
studied the influence of the decoy selection on the prediction of 
ligand–GPCR complexes in detail. If the decoys are selected from 
ligand sets of GPCRs that have a distantly related binding site to 
the receptors where the active compounds are taken from, the 
prediction of targets for a given compound is improved, while the 
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prediction of ligands for a given receptor is less accurate. So far, 
to our best knowledge this is the only detailed report regarding 
the impact of the decoy selection process. It would be worthwhile 
to investigate the consequences of the decoy selection in further 
studies.

The Lack of Data Completeness

The lack of data completeness in chemogenomics has gained 
increasing attention in recent years. It is clear that sparse 
compound– target matrices provide an incomplete picture of 
multitarget activity landscapes and conclusions derived from 
such incomplete data must be interpreted with caution. In many 
studies drug–target interaction networks are constructed based 
on the accumulated information in protein–ligand interaction 
databases. In these networks targets are connected if they share 
common ligands and ligands are connected if they share common 
targets. There is no consensus in the scientific community how to 
best decide on the thresholds that should be set in such networks. 
Paolini connect two proteins if both bind one or more compounds, 
if the affinity of the compounds is < 10 μM, if the affinity difference 
between the compounds is not larger than a factor of 1,000, and if at 
least 10 compounds were commonly tested at both targets. Keiser 
connect two targets by an edge in the network if they share ligands 
sets with at least five members each, with a pairwise Tanimoto 
coefficient of at least 0.57 between two compounds of each set, 
and an E-value of ≤ 1. In many studies two targets are connected 
if they share at least one active compound that is listed in one of 
the public databases. Nisius and Bajorath draw an edge between 
two targets if they share at least five active compounds, Gregori-
Puigjané and Mestres construct a network only from targets that 
share at least 10 drugs. It should be emphasized that our method 
ARTS in contrast does not use any arbitrary cutoff.

The influence of the data space used for the network construction. 
Depending on the kind and number of databases and the number 
of unique drug–target interactions, the number of targets per drug 
increased from 1.8 to 5.9, while at the same time the networks 
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changed from a clearly organized modular structure to a highly 
connected and complex topology. The value of 5.9 connections 
per drug increases even further up to 13 if in silico predictions 
of additional targets are added. There is a broad consensus in 
the scientific community that polypharmacology is a widespread 
property of most or even all drugs. However, networks derived 
from incomplete data should be considered with caution. The 
strength of the relationship between targets can increase or decrease 
with the publication of new or revised data, and relationships that 
are based on only a single shared bioactive compound are built on 
shaky ground.

The Applicability Domain

Last but not least all models have a limited applicability domain. 
If a QSAR model was trained with a given set of compounds and 
associated data and the properties of new compounds never seen 
by the model are to be predicted, it is a key question how reliable 
the predictions will be. To provide an estimate of the expected 
accuracy is a topic that has been intensively discussed in many 
publications in recent years. Closely related to this question is 
the use of local versus global models. Local models use a limited 
set of objects, be it compounds or targets, which share some 
common properties, for example, structural similarity in the case 
of compounds and sequence or 3D similarity in the case of targets. 
Global models, in contrast, use the full range of available data. 
Local models may reach a higher accuracy but with the price of a 
more limited applicability domain. Global models may show the 
opposite profile.

In the context of chemogenomics the situation is even more complex 
than in other QSAR applications, for example, in silico ADME, 
since not only the properties of new compounds for a given target 
are to be predicted but also the question if a new target belongs 
to the applicability domain of a model describing a different 
target needs to be answered. In other words, how different can a 
compound or a target be to still belong to the applicability domain 
of the model, and how can this difference be measured?
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There are not too many publications in chemogenomics that 
explicitly address that topic. Vidal and Mestres used a set of 
different descriptors to predict the affinity of compounds for given 
targets based on the affinity landscape of similar compounds. 
They calibrated the similarity threshold for each descriptor by its 
ability to discriminate active from random compounds in public 
databases and used this threshold to define an applicability domain 
for their chemogenomics studies. Weill and Rognan investigated 
the performance of local versus global models for GPCRs and their 
ligands with proteochemometric approaches. They concluded 
that local models clearly outperform the global ones. They also 
made the interesting observation that the most predictive models 
in terms of cross-validation of the training sets were not the 
best ones regarding the prediction of test sets. A recent review 
suggest the use of Gaussian processes to measure the reliability of 
predictions. Gaussian processes can take the statistical uncertainty 
of the training data, for example, by experimental fluctuation, 
into account. They are nevertheless bound to the diversity of the 
training set. If compounds or targets are structurally outside of 
the applicability domain, Gaussian processes, too, cannot make a 
reliable prediction anymore.

To the best knowledge of the authors of this review there is only 
one publication that addresses explicitly the applicability domain 
issue of the target space. Investigated a set of compounds against 
14 human immunodeficiency virus (HIV) reverse transcriptase 
(RT) mutants. They employed a proteochemometric approach 
using 6,314 known compound–target combinations, including 
14 different HIV RT sequences. They predicted prospectively 
the activity of 130 compounds and 317 untested compound–
mutant pairs. The predictions were measured subsequently and 
a rootmean-square error (RMSE) of the predictions comparable 
to the assay reproducibility was achieved (0.6 log units for the 
calculated model vs. 0.5 log units for the experimental data).
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