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Preface

Signal processing is the field that is concerned with the analysis, modification and synthesis of signals that 
represent information about the behavior or characteristics of some phenomenon. It is a subfield of information 
engineering, electrical engineering, and mathematics. Signal processing techniques serve to improve signal 
transmission fidelity, subjective quality, storage efficiency, and detect or emphasize signal characteristics that 
are of particular interest. Signal processing can be of different kinds based on its application, such as analog 
signal processing, discrete-time signal processing, continuous-time signal processing, digital signal processing, 
etc. Such techniques are useful in image and video processing, wireless communication, process control 
and audio signal processing, besides several other important applications. Different approaches, evaluations, 
methodologies and advanced studies on signal processing have been included in this book. There has been 
rapid progress in this field and its applications are finding their way across multiple industries. With state-
of-the-art inputs by acclaimed experts of this field, this book targets students and professionals.

This book has been the outcome of endless efforts put in by authors and researchers on various issues and 
topics within the field. The book is a comprehensive collection of significant researches that are addressed 
in a variety of chapters. It will surely enhance the knowledge of the field among readers across the globe. 

It gives us an immense pleasure to thank our researchers and authors for their efforts to submit their piece 
of writing before the deadlines. Finally in the end, I would like to thank my family and colleagues who have 
been a great source of inspiration and support. 

Editor
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Comparative Study between the Discrete-
Frequency Kalman Filtering and the Discrete-
Time Kalman Filtering with Application in 
Noise Reduction in Speech Signals
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230 São Cristóvão, Uberaba, MG, Brazil
3Department of Electrical Engineering, Universidade Federal de Goiás, Av. Esperança, s/n. Campus Universitário, Goiânia, GO, Brazil
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This article aims to carry out a comparative study between discrete-time and discrete-frequency Kalman filters. In order to assess
the performance of both methods for speech reconstruction, we measured the output segmental signal-to-noise ratio and the
Itakura-Saito distance provided by each algorithm over 25 different voice signals.The results show that although the two algorithms
performed very similarly regarding noise reduction, the discrete-time Kalman filter produced smaller spectral distortion on the
estimated signals when compared with the discrete-frequency Kalman filter.

1. Introduction

Even with the advent of the Internet, voice transmission
is still one of the most important ways of communication.
The quality and intelligibility of speech signals play a key
role in the ease and precision during information exchange.
Practically in almost all voice transmission applications, the
quality can be affected by factors such as ambient noise, losses
due to digital link encoding, and interference from other
conversations or even from other signal sources [1].

In order to overcome their harmful effects, digital speech
processing techniques can be employed to reduce or even
eliminate them. In recent years, some techniques and meth-
ods such as spectral subtraction, Kalman filtering, psychoa-
coustics, and wavelet transforms gained more prominence,
especially in noise reduction, so that many research efforts
have been made for improving them.

In [2, 3], the authors enhance speech quality by removing
the musical noise introduced by spectral subtraction. In [1],

the authors combined spectral subtraction and wavelets on
a prefiltering approach for noise reduction in speech signals
and used the result as an initial guess for a Kalman filter.
When compared to Kalman filtering using only wavelets or
spectral subtraction alone to produce the initial guess, their
method showed the least spectral distortion and a similar
segmental output signal-to-noise ratio.

Since wavelet-based denoising is highly dependent on
thresholding the approximation and detail coefficients, recent
research in this area focuses on new thresholds [4, 5].

Shao and Chang [6] concatenated the Kalman filter to
a bank of wavelet filters with a perceptual weighting filter.
They used a technique of masking the psychoacoustic model
to derive the weighting filter. According to the authors,
that work brought two contributions. The first one was the
wavelet-based auditorymodel with a perceptual wavelet filter
bank that maps the frequency response of the human audi-
tory system through subband decomposition. The second
was the Kalman filter using a voice state space model in

1
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the wavelet domain, whose computational cost was reduced
when compared to the discrete-time Kalman filter.They were
able to reduce the noise in different environments with low
signal degradation.

Dhivya and Justin [7] proposed a noise reduction based
technique that applies spectral subtraction to the wavelet
approximation coefficients and soft thresholding to the detail
coefficients.They used five wavelet filters and compared them
according to their output signal-to-noise ratios. Besides the
output SNR, they also considered the correlation coefficient
and the perceptual evolution of speech quality (PESQ) crite-
ria.

However, although these algorithms show significant
advances in noise removal, most of them do not evaluate
spectral distortion nor do they attempt to minimize it. So,
since the method in [1] provided low spectral distortion, this
article proposes a comparative study between discrete-time
and discrete-frequency Kalman filters simply using the noisy
signal as initial estimate. According to Fujimoto and Ariki
[8], the main difference between the two approaches is that
the operation of the Kalman filter is more computationally
efficient in the frequency domain than in the time domain.

On the other hand, transforming the set of Kalman
filter equations to/from the frequency domain produces a
significant distortion in the estimated signal. Then, we used
prefiltering based on spectral subtraction to reduce this
distortion. In order to assess the performance of the proposed
algorithms, we measured both the segmental signal-to-noise
ratio of the outputs and the Itakura-Saito distance.

This article is structured as follows: Sections 2 and 3
describe the discrete-time and discrete-frequency Kalman
filtering algorithms, respectively. Section 4 brings the exper-
imental results and finally, in Section 5, the conclusions are
presented.

2. Discrete-Time Kalman Filtering (DTKF)

In the 1960s, Rudolf Emil Kalman published the paper “A
New Approach to Linear Filtering and Prediction Problems”,
describing a recursive solution to the discrete-time linear
filtering problem [1]. Since then, due to the major advances
of digital computing, Kalman filtering has become a very
important technique in several areas such as navigation,
monitoring processes, economics, and signal reconstruction
from noisy samples.

In this article, the Kalman filtering development follows
the heuristics described by Vaseghi [9]. Thus, the speech
signal is modeled as an autoregressive process of order 𝑃,
AR(𝑃), according to𝑥 (𝑛) = 𝑃∑

𝑘=1

𝑎𝑝 (𝑘) 𝑥 (𝑛 − 𝑘) + 𝑤 (𝑛) (1)

where 𝑎𝑝(𝑘) are the linear prediction coefficients of order 𝑃,𝑤(𝑛) is the prediction error associated with the excitation of
the source-filter model of speech production, and 𝑥(𝑛) is the𝑛th sample of the speech signal.

It can be observed that, in the acquisition process of audio
and speech signals, most of the signals are captured in the

presence of some type of additive noise. Consequently, we can
model the noisy signal as shown in𝑦 (𝑛) = 𝑥 (𝑛) + V (𝑛) (2)

where 𝑦(𝑛) is the noisy speech signal and V(𝑛) is a white
Gaussian additive noise.

From (1) and (2), we can set up a state space model
described by (3) and (4), respectively [9]:

x (𝑛) = A (𝑛 − 1) x (𝑛 − 1) + w (𝑛) (3)

y (𝑛) = H (𝑛) x (𝑛) + v (𝑛) (4)

where x(𝑛) is the𝑃×1 state vector at time 𝑛;A(𝑛−1) is the state
transition matrix with dimensions 𝑃 × 𝑃 that relates current
time 𝑛 with past time (𝑛 − 1); w(𝑛) is the 𝑃× 1 input vector of
the state equation and it is modeled as a white noise; y(𝑛) is
the𝑀× 1 observation vector; H(𝑛) is the channel distortion
matrix of dimensions𝑀 × 𝑃; and v(𝑛) is an𝑀 × 1 additive
white noise vector [9].

According to Vaseghi [9], w(𝑛) and v(𝑛) are assumed to
be independent white noise processes so that𝐸 [v (𝑛) vT (𝑘)] = R (𝑛) = {{{𝑟 (𝑛) I𝑀×𝑀 𝑘 = 𝑛0 𝑘 ̸= 𝑛 (5)

𝐸 [w (𝑛)wT (𝑘)] = Q (𝑛) = {{{𝑞 (𝑛) I𝑃×𝑃 𝑘 = 𝑛0 𝑘 ̸= 𝑛 (6)

where R(𝑛) and Q(𝑛) are diagonal covariance matrices,
respectively, related to the additive noise and the prediction
error.

The Kalman filtering estimates a process by using a kind
of feedback control: first, the filter estimates the state of the
process at a given time, then the feedback is obtained in the
form of a new measurement.

Brown and Hwang [10] and Vaseghi [9] divided the
Kalman filtering equations into two groups.The first ones are
the time-update equations (prediction) and the second are
the measurement-update equations (correction). Equation
(7) describes the time-update:

x̂ ( 𝑛𝑛 − 1) = A (𝑛 − 1) x̂ (𝑛 − 1𝑛 − 1) (7)

while measurement-update equations are shown in (8) and
(9), respectively.

K (𝑛) = P( 𝑛𝑛 − 1)HT (𝑛)× [H (𝑛)P( 𝑛𝑛 − 1)HT (𝑛) + R (𝑛)]−1 (8)

x̂ (𝑛𝑛) = x̂ ( 𝑛𝑛 − 1)+ K (𝑛) [y (𝑛) −H (𝑛) x̂ ( 𝑛𝑛 − 1)] (9)

P(𝑛𝑛) = [I − K (𝑛)H (𝑛)]P( 𝑛𝑛 − 1) (10)

2 New Frontiers in Signal Processing
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where P(𝑛/𝑛) is the error covariance matrix at time 𝑛; K(𝑛) is
the Kalman gain matrix, responsible for minimizing P(𝑛/𝑛);
and x̂(𝑛/𝑛) is the state estimate at time 𝑛, according to the
previous observations of y(𝑛).
3. Discrete-Frequency Kalman
Filtering (DFKF)

Fujimoto and Ariki [8] introduced the discrete-frequency
Kalman filtering (DFKF) in 2000 to provide more com-
putationally efficient algorithm. This is accomplished by
transforming the Kalman filter equations to be iterated in
the frequency domain and then inverse transforming the
estimated spectrum back to the time domain to find the
estimated signal. In order to do so, they divide the frequency
domain into multiple frames in such a way that the 𝑙th frame𝑋(𝑘, 𝑙) is the complex spectrum of the noiseless signal 𝑥(𝑛, 𝑙)
and 𝑦(𝑛, 𝑙) is the white Gaussian noise. Thus, the noise-
corrupted signal 𝑦(𝑛, 𝑙) is given by the following equation [8]:𝑦 (𝑛, 𝑙) = 𝑥 (𝑛, 𝑙) + V (𝑛, 𝑙) (11)

Since 𝑥(𝑛, 𝑙) can be replaced by the Inverse Discrete Fourier
Transform (IDFT) of𝑋(𝑘, 𝑙), we have𝑦 (𝑛, 𝑙) = 𝑁−1∑

𝑘=0

𝑋(𝑘, 𝑙) exp(𝑗2𝜋𝑘𝑛𝑁 ) + V (𝑛, 𝑙) (12)

In matrix notation, (12) can be represented as shown in

y (𝑛, 𝑙)
=(((
(

1
exp(𝑗2𝜋 𝑛𝑁)...

exp(𝑗2𝜋(𝑁 − 1) 𝑛𝑁 )
)))
)
𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
F𝑛

( 𝑋(0, 𝑙)𝑋 (1, 𝑙)...𝑋 (𝑁 − 1, 𝑙))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
X𝑙+ v (𝑛, 𝑙)

(13)

that can be simply written as

y (𝑛, 𝑙) = F𝑛X𝑙 + v (𝑛, 𝑙) (14)

where 𝑛 represents time within 𝑙th frame,𝑁 is the number of
samples in the frame, and F𝑛 is the 𝑁 × 1 vector containing
the basis of the Discrete Fourier Transform (DFT). X𝑙 is the
complex spectrum vector of the 𝑙th frame. Since time 𝑛 has
no meaning for X𝑙, there is no state transition matrix in
the Kalman equations for the frequency domain, so that the
computational effort of the DFKF is significantly reduced.

Analogous to the DTKF, the DFKF can be represented by
the following equations:

K(𝑛,𝑙) = P(𝑛−1,𝑙)F
𝐻
𝑛 [F𝑛P(𝑛−1,𝑙)F𝐻𝑛 + R(𝑛,𝑙)]−1 (15)

X̂(𝑛,𝑙) = X̂(𝑛−1,𝑙) + K(𝑛,𝑙) [y (𝑛, 𝑙) − F𝑛X̂(𝑛−1,𝑙)] (16)

P(𝑛,𝑙) = P(𝑛−1,𝑙) − [K(𝑛,𝑙)F𝑛P(𝑛−1,𝑙)] (17)

Noiseless Speech Signal
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Figure 1: Noiseless signal used for comparison with the estimated
signal.

where (⋅)𝐻 means the complex conjugate transpose of a
matrix.

In order to obtain the estimated signal of the Kalman
filter in the time domain, we must apply the Inverse Discrete
Fourier Transform (IDFT) on (16).

4. Results

In order to compare the performances of the studied tech-
niques, we used 25 different recorded speech signals sampled
at 22050Hz and coded with 16 bits per sample. Each signal
was windowed by a Hamming window of size 512 with 50%
overlap. All tests were performed using Matlab R2013B on a
Core i7 processor computer with 8GB RAM.

The quality of the estimated speech signal in the output of
each filter was evaluated using the segmental signal-to-noise
ratio (SNRseg).We have chosen the SNRseg because it can be
calculated over short segments of the speech signal, in order
to balance the weights assigned to each segment of higher or
lower signal strength. SNRseg is given by [11]

SNRseg = 10𝑀𝑀−1∑
𝑗=0

log10 [[ 𝑚𝑗∑
𝑛=𝑚𝑗−𝑁+1

𝑥2 (𝑛)[𝑥 (𝑛) − 𝑥 (𝑛)]2]] (18)

where𝑚𝑗 are the limits of each one of the𝑀 frames of length𝑁. To carry out the tests, the signals were contaminated by
additive white noise and the input segmental signal-to-noise
ratio (SNRI) was adjusted to 3 dB.

As reported by Rabiner and Schafer [12], a suitable way
to measure spectrum variations is the Itakura-Saito distance.
Such measure can be calculated as𝑑 (b, a) = log[b𝑅b𝑇

a𝑅a𝑇 ] (19)

where a and b are the linear prediction coefficients (LPC)
vectors of the original and estimated signals, respectively, and
R is the autocorrelation matrix of the original signal. The
closer to each other the spectra of the original and estimated
signals, the smaller 𝑑(b, a). Thus, an Itakura-Saito distance
equal to zero indicates that the spectra are the equal [12].

TheDTKF algorithmwas employed in the first test, which
used the utterance elétrica (electrical in Portuguese). The
results are shown in Figures 1, 2, and 3, respectively.

3Comparative Study between the Discrete-Frequeny Kalman Filtering and the Discrete-Time Kalman Filtering...
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Contaminated signal with white noise applied to the DTKF algorithm.
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Figure 2: Contaminated signal with white noise applied to the
DTKF algorithm.

Estimated signal after processing with the DTKF algorithm.
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Figure 3: Estimated signal after processing with the DTKF algo-
rithm.

Figures 2 and 3 evidence the noise reduction, especially
during the silence parts of the signal. The SNRO in this case
was 10 dB and the Itakura-Saito distance was 0.3250.

The second test preserved the same parameters of the
first test except for the use of DFKF. The results are shown
in Figures 4 and 5, respectively. The SNRO was 8 dB and the
comparison of Figures 4 and 5 shows a considerable reduction
in the noise. However, the Itakura-Saito distance was 0.3782,
which indicates a larger distortion in the filtering.

Therefore, the DTKF algorithm produced smaller spec-
tral distortion than the DFKF but provided a larger SNRO.

The results of the tests for the 25 words are presented in
Figures 6 and 7. Figure 6 shows that the SNRO in targeted
tests was almost always the same for DTKF and DFKF, with
an average of 9 dB.

Figure 7 shows that the DTKF algorithm produced
smaller signal distortion for all tests. Thus, we can affirm
that the DTKF is more suitable than the DFKF for speech
processing.

Tests were also performed after prefiltering the noisy
signals.Theprefilteringwas based on spectral subtraction like
in [1]. All results showed that the DTKF produced smaller
spectral distortion thanDFKF.The spectral distortions for the
25 words are shown in Figure 8 for an SNRI of 3 dB.

The comparison of Figures 7 and 8 indicates that pre-
filtering allowed only a tiny improvement in the reduction of
spectral distortion provided by the DTKF algorithm.

Contaminated signal with white noise applied to the DFKF algorithm.
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Figure 4: Contaminated signal with white noise applied to the
algorithm DFKF.

Estimated signal after processing with the DFKF algorithm.

−1.5

−1

−0.5

0

0.5

1

1.5

A
m
pl
en
es
s

×10
4

0.5 1 1.5 2 2.50
Samples

Figure 5: Estimated signal after processing with the DFKF algo-
rithm.

Figure 6: Comparison for segmental signal-to-noise ratio output
(SNRO) with 25 words contaminated by white noise with signal-to-
noise ratio input (SNRI) of 3 dB.

5. Conclusions

This paper presented a comparative study between discrete-
time and discrete-frequency Kalman filtering algorithms.
Tests were carried out with 25 different words using Itakura-
Saito distance to measure the spectral distortion and the seg-
mental signal-to-noise ratio to evaluate the noise reduction.

Although the two algorithms performed very similarly
regarding noise reduction, discrete-time Kalman filtering
produced smaller spectral distortion on the estimated signals
for all targeted tests. This shows that discrete-time Kalman

4 New Frontiers in Signal Processing
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Figure 7: Comparison for spectral distortion for 25 words contami-
nated by white noise with signal-to-noise ratio input (SNRI) of 3 dB.

Figure 8: Comparison for spectral distortion for 25 words contami-
nated by white noise with signal-to-noise ratio input (SNRI) of 3 dB,
using spectral subtraction with prefiltering of the contaminated
signal.

filtering is more suitable than discrete-frequency Kalman
filtering for the reconstruction of speech signals corrupted by
additive white noise.
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A maximum energy approach is investigated in this paper to design fixed wideband beamformer. This approach has been
improved by integrating response variation (RV) into the target function to maintain the frequency invariant property of wideband
beamformer over the whole passband. Two methods for designing null to suppress interference signal also have been proposed to
make the wideband beamformer robust in complicated environment. Comparisons among other methods are provided to illustrate
the effectiveness and enhancement of performance of the new approaches.

1. Introduction

The term beamforming is derived from early spatial filters
that were designed for beams in order to receive a signal
radiated from a specific location and attenuate others from
other locations [1, 2]. Beamforming is widely adopted by sig-
nal processing of radar, sonar, communication, seismology,
geophysics, and so on [3–7].

Wideband beamforming has attracted increasing atten-
tions in recent years because of the advantages of wideband
signal such as larger channel capacity. Wideband beamform-
ing can be achievedmainly through two approaches: adaptive
wideband beamforming and fixed wideband beamformer.
Fixed wideband beamformer directly constrains the response
of beamformer, and the beam pattern is constant once set.
Three approaches are mainly adopted to design the fixed
wideband beamformer: iterative optimization, least square
approach, and eigenfilter approach [2]. Eigenfilter approach is
efficient because no matrix inversion (least square approach)
or iteration (iterative optimization) is required during the
optimization.

Eigenfilter is a filter whose coefficients are the elements
of an eigenvector. It was first proposed to design digital filters
and then extended to the design of beamformer [8]. In [9],
fixed wideband beamformer was achieved bymaximizing the

ratio of mainlobe’s energy to sidelobe’s energy through eigen-
filter approach. It can also be achieved by minimizing total
least squares error between reference response and responses
over wide passband, both in near field and in far field [9, 10].

All the methods above have not discussed the design of
null for interference, which is of great importance for beam-
former to get a good result in complicated environment with
inferences. The width of mainlobe varies over the passband.
It will produce distortion if the signal is not coming from the
main direction. Response variation (RV) was introduced in
[11–14] to maintain a good frequency invariant property in
wideband beamforming.

An improved maximum energy approach is proposed to
design fixed wideband beamformer. In this approach, RV is
integrated into the target functionwith a trade-off coefficient,
which makes it possible to get a good frequency invariant
property and constrain the beamformer’s response directly
at reference frequency simultaneously. Two methods for null
designing are discussed: linear constraint approach and null’s
expanded energy approach. Both methods are transformed
into a standard maximum energy problem and can be solved
through a generalized vector approach.

The outline of the paper is as follows.
In Section 1, a brief introduction about the wideband

beamforming is made.
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In the next section, a TDL (Tapped Delay Line) structure
and beam patterns are described. The standard maximum
energy problem and generalized vector approach are also
discussed in this section.

In Section 3, we will describe the method we proposed
with improved target function and simplified constraint. Two
methods for designing null are shown as well, both of which
can be casted into a standard maximum energy problem.

The methods are tested in Section 4. The results demon-
strate the effectiveness of the proposed methods compared
with other methods.

2. Wideband Beamforming through Maximum
Energy Approach

2.1. Wideband Beamforming Model with TDL Structure. A
TDL structure is shown in Figure 1, where there is a linear
array that consists of𝑀 sensors with a 𝐽 order FIR connecting
to each of them.

The symbol “△” in the structure represents a TDL unit
which produces a delay of 𝜏, which has been set to sampling
time 𝑇𝑠 for simplicity.

The output of this TDL structure can be expressed as
follows:

𝑦 (𝑡) = w𝐻x (𝑡) , (1)
where

w = [𝑤0,0, . . . , 𝑤𝑀−1,𝐽−1]
𝑇

x (𝑡) = [𝑥0 (𝑡) , . . . , 𝑥𝑀−1 (𝑡) , 𝑥0 (𝑡 − 𝑇𝑠) , . . . ,

𝑥𝑀−1 (𝑡 − (𝐽 − 1) 𝑇𝑠)]
𝑇
,

(2)

wherew is𝑀𝐽×1weight vector and x(𝑡) is the received signal
through TDL structure.

We denote the received signal at the first sensor by 𝑥0(𝑡).
It can be represented as an inverse Fourier transformation
within the bandwidth [𝜔𝑙, 𝜔ℎ]:

𝑥0 (𝑡) =
1

2𝜋
∫

𝜔ℎ

𝜔𝑙

𝑋0 (𝜔) 𝑒
𝑗𝜔𝑡
𝑑𝜔. (3)

Thus, the signal at 𝑚th and 𝑖th unit of the TDL structure
can be represented as

𝑥𝑚,𝑖 (𝑡) =
1

2𝜋
∫

𝜔ℎ

𝜔𝑙

𝑋0 (𝜔) 𝑒
𝑗𝜔(𝑡−(𝜏𝑚+𝑖𝑇𝑠))𝑑𝜔. (4)

Hence, (1) can be derived in a new form:

𝑦 (𝑡) =
1

2𝜋
∫

𝜔ℎ

𝜔𝑙

𝑋0 (𝜔) 𝑒
𝑗𝜔𝑡
𝑀−1

∑

𝑚=0

𝐽−1

∑

𝑖=0

𝑒
−𝑗𝜔(𝜏𝑚+𝑖𝑇𝑠)𝑤

∗
𝑚,𝑖𝑑𝜔

=
1

2𝜋
∫

𝜔ℎ

𝜔𝑙

𝑋0 (𝜔) 𝑒
𝑗𝜔𝑡
𝑃 (𝜃, 𝜔) 𝑑𝜔,

(5)

where 𝑃(𝜃, 𝜔) is the response of the beamformer and is
expressed as

𝑃 (𝜔, 𝜃) =

𝑀−1

∑

𝑚=0

𝐽−1

∑

𝑖=0

𝑒
−𝑗𝜔(𝜏𝑚+𝑖𝑇𝑠)𝑤

∗
𝑚,𝑖 = w𝐻a (𝜔, 𝜃) , (6)

△ △

△△

△

△

△△ △

⨂ ⨂ ⨂ ⨂

⨁

⨁ ⨁ ⨁

⨂ ⨂

⨁

⨂

⨁

⨂

⨁

⨂ ⨂

⨁

⨂

⨁

⨂

⨁
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w
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∗
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∗
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.
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Figure 1: Structure of TDL.

where a(𝜔, 𝜃) is the steering vector of the TDL structure; that
is,

a (𝜔, 𝜃) = [𝑒−𝑗𝜔𝜏0 , . . . , 𝑒−𝑗𝜔𝜏𝑀−1 , 𝑒−𝑗𝜔(𝜏0+𝑇𝑠), . . . ,

𝑒
−𝑗𝜔(𝜏𝑀−1+(𝐽−1)𝑇𝑠)]

𝑇
,

(7)

where 𝜔 is the frequency and 𝜃 is the arriving direction of the
signal. 𝜏0, 𝜏1, . . . , 𝜏𝑀−1 is the time delay in the array, which
can be computed through 𝜏𝑚 = 𝑚𝑑 × sin(𝜃)/𝑐, where 𝑚 =

0, . . . ,𝑀 − 1 and 𝑐 is the speed of light.
For fixed wideband beamformer,𝑃(𝜔, 𝜃) is only related to

the weight vector and steering vector of the array.

2.2. Maximum Energy Approach. Maximum energy ap-
proach can provide a closed-form solution to the fixed
wideband beamformer and it is computationally efficient
because no matrix inversion is involved.

Given aHermitianmatrixR and a positive definitematrix
B, generalized Rayleigh ratio is described as

w𝐻Rw
w𝐻Bw

. (8)

Equation (8) reaches its maximum when w is the general-
ized eigenvector corresponding to the maximum generalized
eigenvalue of matrix pair R and B, Rw = 𝜆maxBw, and
reaches its minimum when w is the generalized eigenvector
corresponding to the minimum generalized eigenvalue of
matrix pair R and B, Rw = 𝜆minBw.

According to the property of (8), the design of fixed
wideband beamformer can be implemented by maximizing
the Rayleigh ratio of beamformer’s energy on angle range of
interest to the energy over the whole direction area on the
passband. For simplification, the angle range of interest is
referred to as mainlobe in the paper, and the angle range that
is not of interest is referred to as sidelobe. Hence,

max
w

∫
ΩPB
∫
ΘML

󵄨󵄨󵄨󵄨󵄨
w𝐻a (𝜔, 𝜃)󵄨󵄨󵄨󵄨󵄨

2
𝑑𝜃 𝑑𝜔

∫
ΩPB
∫
Θ

󵄨󵄨󵄨󵄨w𝐻a (𝜔, 𝜃)
󵄨󵄨󵄨󵄨

2
𝑑𝜃 𝑑𝜔

. (9)
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In (9), the numerator is the energy of the beamformer
on mainlobe ΘML on passband ΩPB and the denominator
represents the beamformer’s energy over the whole angle
region Θ onΩPB.

A variation of (9) is achieved by replacing the beam-
former’s energy over whole direction area with the energy
only on sidelobe:

max
w

∫
ΩPB
∫
ΘML

󵄨󵄨󵄨󵄨󵄨
w𝐻a (𝜔, 𝜃)󵄨󵄨󵄨󵄨󵄨

2
𝑑𝜃 𝑑𝜔

∫
ΩPB
∫
ΘSL

󵄨󵄨󵄨󵄨w𝐻a (𝜔, 𝜃)
󵄨󵄨󵄨󵄨

2
𝑑𝜃 𝑑𝜔

, (10)

which is equivalent to

max
w

w𝐻AMLw
w𝐻ASLw

, (11)

where

AML = ∫
ΩPB

∫
ΘML

a (𝜔, 𝜃) a (𝜔, 𝜃)𝐻 𝑑𝜃 𝑑𝜔

ASL = ∫
ΩPB

∫
ΘSL

a (𝜔, 𝜃) a (𝜔, 𝜃)𝐻 𝑑𝜃 𝑑𝜔.
(12)

Maximum energy approach does not guarantee a smooth
constant response over different frequencies [2]. Linear con-
straints C𝐻w = f can be added to get a smooth response
at mainlobe by directly constraining the response of the
beamformer over different frequencies [2]. C is 𝑁𝐽 × 𝐽
constraint matrix and f is the 𝐽 × 1 response vector.Thus, (11)
becomes

max
w

w𝐻AMLw
w𝐻ASLw

subject to C𝐻w = f .

(13)

Equation (13) can be transformed into another form:

max
ŵ

ŵ𝐻ÂMLŵ
ŵ𝐻ÂSLŵ

subject to Ĉ𝐻ŵ = 0,

(14)

where

ŵ = [w𝐻, −1]
𝐻
,

ÂML = [
AML 0
0 0

] ,

ÂSL = [
ASL 0
0 0

] ,

Ĉ = [C𝐻 f]
𝐻
.

(15)

It is shown in the constraint of (14) that ŵ locates in
the null space of Ĉ. Equation (14) can be transformed into a
standard maximum energy problem by introducing a matrix

Z whose columns are the bases of the null space of Ĉ and it
satisfies ŵ = Zw̃. Hence,

max
ŵ

w̃𝐻Z𝐻ÂMLZw̃
w̃𝐻Z𝐻ÂSLZw̃

. (16)

Equation (16) is a standard maximum energy problem and
can be solved through generalized vector approach. Aswe can
see in the first equation in (15), the first𝑀𝐽 elements of ŵ can
be regarded as w only when the last element of ŵ has been
scaled to −1.

3. Improved Maximum Energy Approach

3.1. Maximum Energy Approach with Response Variation. RV
describes the Euclidean distance between responses at ref-
erence frequency and responses at other frequencies within
whole angle-frequency region of interest.

In [11–14, 16], a general form of RV is defined:

RV = ∫
ΩPB

∫
Θ

󵄨󵄨󵄨󵄨󵄨
w𝐻a (𝜔, 𝜃) − w𝐻a (𝜔𝑟, 𝜃)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝜃 𝑑𝜔

= w𝐻ARVw,
(17)

where

ARV = ∫
ΩPB

∫
Θ
(a (𝜔, 𝜃) − a (𝜔𝑟, 𝜃))

⋅ (a (𝜔, 𝜃) − a (𝜔𝑟, 𝜃))
𝐻
𝑑𝜃 𝑑𝜔,

(18)

where Θ represents the range of angles RV measured.
The introduction of RV factor makes it possible to

constrain response directly on the reference frequency. The
energy of mainlobe and sidelobe also can be simplified as
follows:

w𝐻a (𝜔𝑟, 𝜃𝑑) = 1 (19)

AMLr = ∫
ΘML

a (𝜔𝑟, 𝜃) a (𝜔𝑟, 𝜃)
𝐻
𝑑𝜃 (20)

ASLr = ∫
ΘSL

a (𝜔𝑟, 𝜃) a (𝜔𝑟, 𝜃)
𝐻
𝑑𝜃. (21)

Equation (19) constrains the response of beamformer at
looking direction 𝜃𝑑 without distortion.

Equation (13) can be transformed into a new form with
RV and new constraint:

max
w

w𝐻AMLrw
w𝐻 (ASLr + 𝛼ARV)w

subject to w𝐻a (𝜔𝑟, 𝜃𝑑) = 1,

(22)

where 𝛼 is a positive trade-off coefficient, usually larger
than 1, affecting the frequency invariant (FI) property. The
beamformer will achieve better FI property with larger 𝛼.
However, if the value of 𝛼 is too large, the whole beam
patterns will be degraded.
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Equation (22) can be transformed into a similar form to
(14):

max
w

ŵ𝐻ÂMLrŵ
ŵ𝐻ÂSRrŵ

subject to Ĉ𝐻ŵ = 0,

(23)

where

Ĉ = [
a (𝜔𝑟, 𝜃𝑑)

1
] ,

ÂMLr = [
AMLr 0
0 0

] ,

ÂSRr = [
(ASLr + 𝛼ARV) 0

0 0
] ,

ŵ = [w𝐻 −1]
𝐻
.

(24)

Similarly, (23) can be transformed into a new standard
maximum energy problem:

max
ŵ

w̃𝐻Z𝐻ÂMLrZw̃
w̃𝐻Z𝐻ÂSRrZw̃

. (25)

Equation (25) reaches itsmaximumwhen w̃ is the generalized
eigenvector corresponding to the largest generalized eigen-
value of matrix pair Z𝐻ÂMLZ and Z𝐻ÂSRZ.

3.2. Design of Null Point

3.2.1. Design of Null with Linear Constraint on Null’s Response.
Null can be generated by directly imposing a constraint at
interference angle 𝜃𝑖 at reference frequency 𝜔𝑟:

w𝐻a (𝜔𝑟, 𝜃𝑖) = 𝜀, (26)

where 𝜀 is a small positive value, usually smaller than 1, of
the response at null point. Null’s response in decibels can be
computed through −20 lg 𝜀 dB.

With this constraint, (22) is rewritten as

max
w

w𝐻AMLrw
w𝐻 (ASLr + 𝛼ARV)w

subject to w𝐻a (𝜔𝑟, 𝜃𝑑) = 1

w𝐻a (𝜔𝑟, 𝜃𝑖) = 𝜀.

(27)

Hence, (27) can be transformed into a similar form to (14):

max
w

ŵ𝐻ÂMLrŵ
ŵ𝐻ÂSRrŵ

subject to Ĉ𝐻ŵ = 0,

(28)

where

Ĉ = [
a (𝜔𝑟, 𝜃𝑑) a (𝜔𝑟, 𝜃𝑖)

1 𝜀
] ,

ÂMLr = [
AMLr 0
0 0

] ,

ÂSRr = [
(ASLr + 𝛼ARV) 0

0 0
] ,

ŵ = [w𝐻 −1]
𝐻
.

(29)

And (28) changes into an unconstrained form by introducing
a matrix Z which satisfies ŵ = Zw̃:

max
ŵ

w̃𝐻Z𝐻ÂMLrZw̃
w̃𝐻Z𝐻ÂSRrZw̃

. (30)

Equation (30) is a standard maximum energy problem and
reaches its maximum when w̃ is the generalized eigenvector
corresponding to the largest generalized eigenvalue of matrix
pair Z𝐻ÂMLrZ and Z𝐻ÂSRrZ.

3.2.2. Design of Null with Expanded Null’s Energy. Null’s
energy at reference frequency is defined as

∫
ΘNL

󵄨󵄨󵄨󵄨󵄨
w𝐻a (𝜔𝑟, 𝜃)

󵄨󵄨󵄨󵄨󵄨

2
𝑑𝜃 = w𝐻ANLrw

ANLr = ∫
ΘNL

a (𝜔𝑟, 𝜃) a (𝜔𝑟, 𝜃)
𝐻
𝑑𝜃.

(31)

Null is designed for interference, which usually locates in
sidelobe: ΘNL ⊂ ΘSL.

Then, (22) changes to a new form by replacing ASLr with
ASLr + 𝛽ANLr:

max
w

w𝐻AMLrw
w𝐻 (ASLr + 𝛽ANLr + 𝛼ARV)w

subject to w𝐻a (𝜔𝑟, 𝜃𝑑) = 1,

(32)

where 𝛽 is the expansion coefficient which is also a large
positive value used to expand null’s energy in target function.
Commonly, null is lower with larger 𝛽. The value of 𝛽 is
related to the actual beamformer, usually bigger than 1000 for
a null low enough.

Thus, (32) can be transformed into a new form like (14):

max
w

ŵ𝐻ÂMLrŵ
ŵ𝐻ÂSRNrŵ

subject to Ĉ𝐻ŵ = 0,

(33)
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where

Ĉ = [
a (𝜔𝑟, 𝜃𝑑)

1
] ,

ÂMLr = [
AMLr 0
0 0

] ,

ÂSRNr = [
(ASLr + 𝛽ANLr + 𝛼ARV) 0

0 0
] ,

ŵ = [w𝐻 −1]
𝐻
.

(34)

Similarly, (33) can be transformed into a standard maxi-
mum energy problem:

max
ŵ

w̃𝐻Z𝐻ÂMLrZw̃
w̃𝐻Z𝐻ÂSRNrZw̃

. (35)

Equation (35) reaches itsmaximumwhen w̃ is the generalized
eigenvector corresponding to the largest generalized eigen-
value of matrix pair Z𝐻ÂMLrZ and Z𝐻ÂSRNrZ.

4. Performance Analysis

In this section, wewill test and analyze the performance of the
methods proposed. The relative coefficients will be discussed
as well.

4.1. Experiment 1. The simulations are performed based on
the specifications as follows:

(i) A TDL structure with𝑀 = 14 and 𝐽 = 20 is adopted
during the simulation.

(ii) Half of the sampling frequency 𝑓𝑠 has been scaled to
𝜋 and has been sampled to 64 narrow bands; the wide
passband is set as ΩPB = [0.5𝜋, 𝜋], and the reference
frequency is set as 𝜔𝑟 = 0.7𝜋.

(iii) Space between elements is half of the wavelength
corresponding to the highest frequency of passband.

(iv) Desired signal is coming from 0
∘, the interference

signal comes from 50∘, and null is set to be [48∘, 52∘].
(v) Mainlobe is set as ΘML = [−15

∘
, 15
∘
] and sidelobe is

set to beΩSL = [−90
∘
, −20
∘
]∪[20

∘
, 90
∘
], and the whole

direction area is sampled every 1∘.
(vi) 𝛼 = 10 and 𝜀 = 10−4 in method 1; 𝛼 = 200 and 𝛽 =

9 × 10
4 in method 2.

(vii) To get a real-value w, all the matrices during the
computation are the real part of the original matrices.

Beamformer’s responses through the 2 proposedmethods
are shown in Figures 2 and 3, respectively.

Good beam patterns have been achieved with distortion-
less mainlobes point at 0∘ and nulls reach −80 dB or lower.

To illustrate the effectiveness of the proposed methods
described in (27) and (32), we compare themwith themethod
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Figure 2: Response of beamformer with proposed method 1.
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Figure 3: Response of beamformer with proposed method 2.

from [2, 15]. In [15], the design of wideband beamformer
was achieved through convex optimization. The weighting
function in [15] has been set as 𝐹(𝜔, 𝜃) = 1, 𝛿 = 1 × 10−6,
𝜀 = 10

−4.
We test these methods versus width of mainlobe over

passband, RV value of mainlobe, peak sidelobe level (SLL) of
the beam patterns averaged over passband, and suppression
values of null point.

The results are shown in Table 1.
The nulls generated by these four methods are con-

strained to −80 dB, which is very good suppression for
interference signal. It can be seen in Table 1 with RV taken
into consideration during the design of fixedwideband beam-
former that both the proposed methods and the method in
[15] achieved constant beam width and smaller RV; however,
the values through the proposed methods are smaller. The
SLL produced by the proposed methods are more than 10 dB
lower than those from the method in [2, 15], indicating better
suppression over the sidelobe region.

10 New Frontiers in Signal Processing
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Table 1: Evaluation of four methods.

Measurement Method in [2] Method in [15] Method 1 Method 2
Width of beam [−12∘, 11∘] [−10∘, 9∘] [−10∘, 9∘] [−10∘, 9∘]
RV of mainlobe 7.69 × 10

−3
3.27 × 10

−8
1.98 × 10

−10
3.96 × 10

−11

SLL (dB) −21.06 −27.03 −44.2 −38.21

Table 2: Evaluation of the two proposed methods with different 𝛼.

𝛼
Method 1 Method 2

RV SLL (dB) RV SLL (dB)
1 6.85 × 10−8 −45.21 1.75 × 10−7 −41.71
10 1.98 × 10−10 −44.2 2.21 × 10−9 −40.99
20 1.76 × 10−10 −44.04 6.60 × 10−10 −40.23
50 1.07 × 10−10 −43.37 7.61 × 10−10 −38.51
100 6.44 × 10−11 −42.69 4.04 × 10−11 −38.39
200 4.81 × 10−11 −42 3.69 × 10−11 −38.21
500 9.61 × 10−12 −40.55 3.17 × 10−11 −37.41
1000 1.81 × 10−12 −39.17 4.19 × 10−11 −37.52

In order to investigate how the RV and SLL change with
different 𝛼, more simulations have been implemented and the
results are shown in Table 2 (all the specifications stay the
same except for 𝛼).

As we mentioned previously, larger 𝛼 provide a small RV
(better frequency invariant property), but, at the same time,
SLL gets higher. One conclusion can be drawn from Table 2:
RVwill not keep decreasing with the increasing of 𝛼 (method
2; RV with 𝛼 = 1000 is larger than that with 𝛼 = 500). A good
beam pattern should be a balance between the RV and SLL
with an appropriate 𝛼.

4.2. Experiment 2. Wideband beamformer’s performance
decreases while the passband gets wider [2]. Wider passband
is discussed in this part to test the effectiveness of the pro-
posed methods. The specifications are described as follows:

(i) A TDL structure with𝑀 = 12 and 𝐽 = 12 is adopted
during the simulation.

(ii) Half of the sampling frequency 𝑓𝑠 has been scaled to
𝜋 and has been sampled to 64 narrow bands; the wide
passband is set as ΩPB = [0.3𝜋, 𝜋], and the reference
frequency is set as 𝜔𝑟 = 0.6𝜋.

(iii) Space between elements is half of the wavelength
corresponding to the highest frequency of passband.

(iv) Desired signal is coming from 10
∘, the interfer-

ence signal comes from −40
∘, and null is set to be

[−42
∘
, −38
∘
].

(v) Mainlobe is set asΘML = [−5
∘
, 25
∘
] and sidelobe is set

to be ΩSL = [−90
∘
, −10
∘
] ∪ [30

∘
, 90
∘
], and the whole

direction area is sampled every 1∘.
(vi) 𝛼 = 10 and 𝜀 = 10−3 in method 1; 𝛼 = 20 and 𝛽 =

5 × 10
3 in method 2.

(vii) To get a real-valuew, all the matrices during the com-
putation are the real part of the original matrices.
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Figure 4: Response of beamformer with proposed method 1.
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Figure 5: Response of beamformer with proposed method 2.

Beamformers’ responses through the 2 proposed meth-
ods are shown in Figures 4 and 5, respectively.

The beam patterns obtained are shown in Figures 4 and 5.
The mainlobes for both beam patterns are distortionless and
point at 10∘ as desired. All realized nulls are −60 dB or less.

Similarly, the proposed methods are compared with the
methods from [2, 15].Theweighting function in [15] has been
set as𝐹(𝜔, 𝜃) = 1, 𝛿 = 1×10−5, 𝜀 = 10−3.The results are shown
in Table 3.

All the nulls reach −60 dB. The performances of four
methods decrease whenwe compare Table 3 with Table 1, due

11Design of Fixed Wideband Beamformer through Improved Maximum Energy Approach
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Table 3: Evaluation of four methods.

Measurement Method in [2] Method in [15] Method 1 Method 2
Width of beam [−3∘, 22∘] [0∘, 19∘] [0∘, 19∘] [0∘, 19∘]
RV of mainlobe 6.11 × 10

−2
7.74 × 10

−7
2.31 × 10

−8
1.07 × 10

−10

SLL (dB) −18.21 −22.64 −30.24 −32.81

Table 4: Evaluation of the two proposed methods with different 𝛼.

𝛼
Method 1 Method 2

RV SLL (dB) RV SLL (dB)
1 8.31 × 10−8 −32.26 2.00 × 10−9 −34.67
10 2.31 × 10−8 −30.24 7.07 × 10−11 −32.48
20 1.64 × 10−8 −29.69 1.07 × 10−10 −32.81
50 1.42 × 10−8 −29 1.53 × 10−10 −32.1
100 1.86 × 10−8 −28.37 5.90 × 10−12 −31.14
200 9.99 × 10−9 −27.96 5.29 × 10−11 −31.36
500 2.50 × 10−9 −25.84 1.32 × 10−12 −29.85
1000 1.46 × 10−9 −24.87 1.42 × 10−12 −29.92

to the wider passband. But the results through the proposed
methods are still better than the rest. The mainlobes remain
constant over thewhole passband, the SLL aremore than 8 dB
lower than other methods, and RV through our methods is
smaller.

More simulations have been implemented to investigate
𝛼 and the results are shown in Table 4.

Similar to the previous discussion, RV decreases with the
increasing of 𝛼 which also causes an increase in SLL (not
strictly satisfied inmethod 2). A good choice of 𝛼 should take
both RV and SLL into consideration. One conclusion can be
drawn from Table 4: for a wider passband, using the second
method can achieve better beam patterns (smaller RV and
lower SLL).

5. Conclusion

In this paper, a fixed wideband beamformer designing
method based on maximum energy approach and RV has
been proposed and investigated, as well as two methods to
design null for interferences. Simulations show that good
frequency invariant property in mainlobes and stable nulls
for interference signal can be achieved through the proposed
methods and the sidelobe suppression with the proposed
methods is also lower.
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To improve the reconstruction performance of the generalized orthogonal matching pursuit, an improved method is proposed.
Columns are selected from the sensing matrix by generalized orthogonal matching pursuit, and indices of the columns are added
to the estimated support set to reconstruct a sparse signal.Those columns contain error columns that can reduce the reconstruction
performance. Therefore, the proposed algorithm adds a backtracking process to remove the low-reliability columns from the
selected column set. For any 𝑘-sparse signal, the proposed method firstly computes the correlation between the columns of the
sensing matrix and the residual vector and then selects 𝑠 columns that correspond to the 𝑠 largest correlation in magnitude and
adds their indices to the estimated support set in each iteration. Secondly, the proposed algorithm projects the measurements onto
the space that consists of those selected columns and calculates the projection coefficient vector. When the size of the support set
is larger than 𝑘, the proposed method will select 𝑘 high-reliability indices using a search strategy from the support set. Finally, the
proposedmethod updates the estimated support set using the selected 𝑘 high-reliability indices.The simulation results demonstrate
that the proposed algorithm has a better recovery performance.

1. Introduction

In recent years, a new theory named compressive sensing
(CS) [1] has surpassed the limits of the Nyquist sampling
rate. Because CS can recover signals at a sampling frequency
far lower than the Nyquist sampling rate, CS has aroused
tremendous interests over the past few years [2, 3]. CS differs
from the traditional Nyquist sampling theory and includes
three procedures: sparse representation, nonrelated linear
measurement, and signal reconstruction. The reconstruction
algorithm aims to recover signals accurately from the mea-
surements, and this step is one of most important parts of CS.

Recently, many reconstruction algorithms have been
proposed to obtain the original sparse signal from measure-
ments. Two major classes of reconstruction algorithms are
𝑙1-minimization and greedy pursuit algorithms. Common
𝑙1-minimization approaches include basis pursuit (BP) [4],
Gradient projection for sparse reconstruction (GPSR) [5],
iterative thresholding (IT) [6], and other algorithms. Those
algorithms possess good performance in solving a convex
minimization problem, but they have a higher computational
complexity.

Greedy algorithms have received increasing attention for
their excellent performance and small cost in recovering
sparse signals from compressed measurements. A greedy
algorithm proposed early on was the matching pursuit algo-
rithm (MP) [7]. Building on the MP algorithm, the orthog-
onal matching pursuit algorithm (OMP) [8] was proposed
to optimize the MP via orthogonalization of the estimate
support set. The OMP has become a well-known greedy
algorithm with wide application. The regularized orthogonal
matching pursuit algorithm (ROMP) [9] was developed to
refine the selected columns of themeasurementmatrix with a
regularized rule to improve the speed of OMP.The stage wise
orthogonal matching pursuit (StOMP) [10] selects multiple
columns in each iteration via a presupposed threshold. The
subspace pursuit (SP) [11] and compressive sampling match-
ing pursuit (CoSaMP) [12] proposed similar improvement
methods. Both of these algorithms were proposed with the
idea of backtracking, and the difference is that SP selects 𝑘
columns from the sensing matrix for each iteration, while
CoSaMP selects 2𝑘. The generalized orthogonal matching
pursuit (GOMP) was proposed by Wang et al. [13, 14]. The
algorithm selects 𝑆 (𝑆 ≤ 𝐾) columns in each iteration.
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When 𝑆 = 1, GOMP is identical to OMP. Compared
to OMP, which selects only one column in each iteration,
GOMP changes the number of columns that are selected
in each iteration to improve the computational efficiency
and recovery performance. The generalized OMP (GOMP)
has received increasing attention in recent years, because
the method can enhance the recovery performance of OMP.
Several papers have been published on the analysis of the
theoretical performance of GOMP [13–17].

2. Compressive Sensing Model

Compressive sensing requires that the target signal is a 𝐾-
sparse signal. It means that if we regard the signal as a
dimensional vector 𝑥, there should be at most 𝐾 no-zero
elements in 𝑥. However, in practical applications, sparse
signals may not exist in all cases. The target signal has to be
transformed into a sparse signal based on a set of sparse basis
Ψ = {𝜙1, 𝜙2, 𝜙3, . . . , 𝜙�푁}. In this case, 𝑥 can be defined as

𝑥 =
�푁

∑
�푖=1

𝛼�푖𝜙�푖 = Ψ𝛼, (1)

where ‖𝛼‖0 = 𝐾; ‖ ⋅ ‖0 denotes the number of nonzero
elements in a vector. Thus, the signal 𝑥 is equivalently rep-
resented by𝐾-sparse vector 𝛼 under some linear transforma-
tion Ψ in some domains. The process of compressive sensing
can be regarded as a technique that automatically selects
relevant information from signals by a measurement. In the
theory, 𝑥 is translated into𝑀-dimensional measurements 𝑦
via a matrix multiplication with Φ. We express it as

𝑦 = Φ𝑥, (2)

where Φ is defined as the measurement matrix with dimen-
sions𝑀×𝑁. Combining (1) with (2), we can obtain

𝑦 = Φ𝑥 = ΦΨ𝛼 = 𝐴CS𝛼, (3)

where 𝐴CS = ΦΨ.
In most scenarios,𝑀 ≪ 𝑁. Thus, we can interpret that 𝑥

is compressed into 𝑦with a dimension ranging from𝑁 to𝑀.
Clearly, (3) is an underdetermined equation, and it is difficult
to obtain an accurate solution based on the equation. That is
to say, it is impossible with traditional methods that obtain
the inverse of the matrix Φ to reconstruct the original signal
𝑥 accurately. In this case, we can obtain 𝑥 by solving the 𝑙�푝-
minimization problem:

𝛼̂ = min ‖𝛼‖�푝

s.t. 𝑦 = 𝐴CS𝛼.
(4)

Several methods exist for solving this problem. When 𝑝 =
1, the problem is a 𝑙1-minimization problem, which can be
solved by using a convex optimization algorithm. When 𝑝 =
0, the problem is a 𝑙0-minimization problem, which can be
solved using a greedy algorithm.An appropriate condition for
exact recovery is that thematrix𝐴CS satisfies the condition of
restricted isometry property (RIP) condition [1].

Definition 1. A sensing Matrix 𝐴CS is said to satisfy the
RIP condition with the smallest number of the 𝐾-restricted
isometry constant 𝛿�퐾 (𝛿�퐾 ∈ (0, 1)), if

(1 − 𝛿�퐾) ‖𝛼‖
2 ≤ 󵄩󵄩󵄩󵄩𝐴CS𝛼

󵄩󵄩󵄩󵄩 ≤ (1 + 𝛿�퐾) ‖𝛼‖
2 (5)

holds for any 𝐾-sparse vector 𝛼 ∈ 𝑅�푁×1 with ‖𝛼‖0 ≤ 𝐾.

3. GOMP Algorithm

Greedy algorithms are used widely to recover signals in CS
due to their simple algorithms and low computational com-
plexity. Twomethods exist for improving theOMPalgorithm.
The first method is based on the idea of backtracking, as in
the subspace pursuit algorithm (SP) [11]. The second method
selects more than one atom in each iteration, as in GOMP.
The computational complexity of the backtracking method
is higher, but it yields higher accuracy in most cases. In this
section, we will introduce the GOMP algorithm.

GOMP firstly computes the correlation between the
columns of the sensing matrixΦ and the residual vector 𝑟�푘−1

by Φ�耠𝑟�푘−1 and then selects 𝑆 columns that correspond to
the 𝑆 largest correlation in magnitude adding their indices
to the estimated support set Λ�푘 in each iteration. Next the
projection coefficient vector 𝑥Λ𝑘 of measurements 𝑦 onto
space of span(ΦΛ𝑘) is obtained using the least square method
(LS). The residual 𝑟�푘 is revised by subtracting ΦΛ𝑘𝑥Λ𝑘 from
𝑦. These operations are repeated until either the iteration
number reaches the maximum 𝑘 = min{𝐾,𝑀/𝑆}, or the
𝑙2-norm of the residual falls below a threshold 𝜀. For ease
of understanding, we describe the GOMP algorithm in
Algorithm 1 according to [13, 14].

In Algorithm 1, we observe that the only difference
between GOMP and OMP is that the GOMP selects more
than one atom in each iteration.TheGOMP algorithm selects
𝑆 (𝑆 ≥ 1) atoms in each iteration. When 𝑆 = 1, the GOMP is
identical to OMP.

4. Improved GOMP Algorithm

For the usage of greedy algorithms, it is important to generate
an estimate of the correct support set. We assume the correct
support is 𝑇, and the estimate of 𝑇 is Λ�푘. The goal is to
determine the indices for Λ�푘 that are most similar to 𝑇.
GOMP selects 𝑆 columns from the sensing matrix Φ and
added the indices of these columns to the estimated support
set Λ�푘 to reconstruct a sparse signal. Those columns contain
columns that be selected by error. AlthoughGOMPallows for
a number of error indices in Λ�푘, these error indices will lead
to the size of Λ�푘 larger than 𝐾. This increases the algorithm
complexity greatly in the process of estimation of 𝑥Λ𝑘 and
residual update in the GOMP.

In the process of estimation of 𝑥Λ𝑘 , the projection coeffi-
cient vector of themeasurements onto the space of span(ΦΛ𝑘)
can be expressed as

𝑥Λ𝑘 = ΦΛ𝑘
†𝑦, (6)
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Input: measurements 𝑦 ∈ 𝑅�푀×�푁,
sensing matrix Φ ∈ 𝑅�푀×�푁,
Sparsity 𝐾,

Initialize: number of indices of columns for each
selection 𝑆 (𝑆 ≤ 𝐾).

iteration count 𝑘 = 0,
residual vector 𝑟0 = 𝑦,
estimated support set Λ0 = ⌀.

While ‖𝑟�푘‖ > 𝜀 and 𝑘 < min{𝐾,𝑀/𝑆} do
𝑘 = 𝑘 + 1;

(Identification)
Select 𝑆 largest entries (in magnitude) fromΦ�耠𝑟�푘−1.
Then record the indices {𝜑(𝑖)}�푖=1,2,3,...,�푆 corresponding
to the entries.

(Augmentation)
Λ�푘 = Λ�푘−1 ∪ {𝜑(1), 𝜑(2), . . . , 𝜑(𝑆)}.
(Estimation of 𝑥Λ𝑘 )
𝑥Λ𝑘 = argminsup�푝(�푢)=Λ𝑘‖𝑦 − Φ𝑢‖2.
(Residual Update)
𝑟�푘 = 𝑦 − ΦΛ𝑘𝑥Λ𝑘 .

End
Output The estimated support Λ̂ = argmin�푇:‖�푇‖=�퐾‖𝑥Λ𝑘 − 𝑥�푇‖2
and signal 𝑥Λ̂ = Φ

†
Λ̂𝑦.

Algorithm 1: GOMP algorithm.

where ΦΛ𝑘
† = (Φ�푇

Λ𝑘
ΦΛ𝑘)
−1Φ�푇
Λ𝑘
; 𝑦 are the measurements of

the signal vector 𝑥. The cost of (6) is

4𝑆2𝑘𝑚 + (−2𝑆2 + 5𝑁)𝑚 + 2𝑆3𝑘2 + (−4𝑆3 + 5𝑆2) 𝑘

+ 3𝑆3 − 𝑆2 − 𝑆,
(7)

where 𝑆 represents the number of indices of columns for
each selection, 𝑘 is the number of iterations, and 𝑚 is the
dimensionality of measurements 𝑦 [13].

In the process of estimation of residual update, the
residuals in GOMP can be expressed as

𝑟�푘 = 𝑦 − ΦΛ𝑘𝑥Λ𝑘 , (8)

where 𝑦 represents the measurements, ΦΛ𝑘 is the estimated
support set, and 𝑥Λ𝑘 is the projection coefficient vector of the
measurements onto the space of the estimated support set.
The cost of ΦΛ𝑘𝑥Λ𝑘 is

(2𝑘𝑆 − 1)𝑚, (9)

where 𝑘 is the number of iterations and 𝑆 is the number of
indices of columns for each selection.

GOMP selects 𝑆 indices in each iteration and adds them
to Λ�푘. On the 𝑘-th iteration, 𝑘𝑆 indices will be selected, and
the dimensionality of ΦΛ𝑘 is 𝑚 × 𝑘𝑆. If all the indices in
the estimated support set Λ�푘 are correct, Λ�푘 is identical to
𝑇 and 𝑘𝑆 ≈ 𝐾. Although a selection rule exists to ensure
that newly added indices belong to the correct support 𝑇 in
GOMP, it is unavoidable that the error indices are selected
and once selected, the error indices of the selected columns

will remain in the support set throughout the remainder of
the reconstruction process. It means 𝑘𝑆 > 𝐾. Generally
speaking, when a large 𝑆 is selected, the GOMP should exert
higher efficiency than a small 𝑆. However, as 𝑆 increases,
the probability of the selected error indices increases as well.
When a large number of error indices are selected, it leads
to a great increase in 𝑘𝑆, further increasing the cost of the
algorithm.

To overcome this problem, we propose a method to
improve the performance of GOMP. The proposed method
will retain the size of the estimated support set as 𝐾 and
update the indices using the backtracking method to reduce
the number of error indices, when the number of indices
is greater than 𝐾. Even if an index is deemed reliable in
some iteration, when it is considered unreliable in subsequent
iterations, the index will be removed from the estimated
support set. This can reduce the number of error indices in
the estimated support set.

The main difference between the proposed and the
conventional GOMP algorithm is that the new algorithm can
add or remove the index from the estimated support set at
any stage of the recovery process. The proposed algorithm
increases the reliability of the indices of the estimated support
set and furthermore reduces the cost of the reconstruction
process. The process of proposed algorithm is expressed in
Algorithm 2.

In Algorithm 2, we observe that the proposed method
adds a backtracking step to the GOMP algorithm. When 𝑆
is small, it has a high accuracy for the identification process.
When 𝑆 = 1, GOMP is identical to OMP. At this step,
GOMP has the highest accuracy in the identification step.

15A New Generalized Orthogonal Matching Pursuit Method
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Input: measurements 𝑦 ∈ 𝑅�푀×�푁,
sensing matrix Φ ∈ 𝑅�푀×�푁,
Sparsity 𝐾,

Initialize: number of indices of columns for each selection
𝑆 (𝑆 ≤ 𝐾).
iteration count 𝑘 = 0,
residual vector 𝑟0 = 𝑦,
estimated support set Λ0 = ⌀.

While ‖𝑟�푘‖ > 𝜀 and 𝑘 < min{𝐾,𝑀/𝑆} do
𝑘 = 𝑘 + 1;

(Identification)
Select 𝑆 largest entries (in magnitude) fromΦ�耠𝑟�푘−1. Then
record the indices {𝜑(𝑖)}�푖=1,2,3,...,�푆 corresponding to the
entries.

(Augmentation)
Λ�푘 = Λ�푘−1 ∪ {𝜑(1), 𝜑(2), . . . , 𝜑(𝑆)}.
(Estimation of 𝑥Λ𝑘 )
𝑥Λ𝑘 = argminsup�푝(�푢)=Λ𝑘‖𝑦 − Φ𝑢‖2.
(Backtracking)While ‖𝑥Λ𝑘‖0 ≥ 𝐾, select 𝐾 largest

elements of |𝑥Λ𝑘 |. Then recording the indices corresponding
to the elements, and renew the Λ �푘 with those indices.

(Residual Update) 𝑟�푘 = 𝑦 − ΦΛ𝑘𝑥Λ𝑘 .
End
OutputThe estimated support Λ̂ = argmin�푇:‖�푇‖=�퐾‖𝑥Λ𝑘 − 𝑥�푇‖2
and signal 𝑥Λ̂ = Φ

†
Λ̂𝑦.

Algorithm 2: Improved method of GOMP.

As 𝑆 increases, the probability of the selected error indices
increases as well. The proposed method adds a backtrack-
ing process to remove those error indices in subsequent
iterations. When 𝑆 ≤ 𝐾, the proposed method requires
more than one iteration to create a 𝐾-sized support set.
When 𝑘𝑆 < 𝐾, the support set cannot contain 𝐾 correct
indices, and executing the backtracking step is unnecessary
and will cause wasteful computation. Therefore, we designed
the algorithm to execute the backtracking step when 𝑘𝑆 ≥ 𝐾.
The dimensionality of 𝑥Λ𝑘 is 𝑘𝑆 × 1 before executing the
backtracking step. So the improved algorithm determines
whether to execute the backtracking step by the size of
𝑥Λ𝑘 . Experimental evidence demonstrated that our changes
improved the performance. We will describe our simulation
in the next section.

5. Simulation and Discussion

In this part, we will demonstrate the performance of the
proposed algorithm with sparse signals. We used the same
sparse signal sources as in GOMP with 𝐾-sparse to compare
the performances of the different algorithms. The compo-
nents of the sensing matrix were generated randomly with
Gaussian distribution, and the size of the sensing matrix was
128 × 256. We used MATLAB 7.0 with a quad-core 64-bit
processor in a Windows 10 environment. We executed each
algorithm 1000 times and recorded the probability of the
exact reconstructions. We set the threshold 𝜀 = 10−6 used
in [13] in both GOMP and the proposed method.
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Figure 1: Reconstruction performance for𝐾-sparse Gaussian signal
vector as a function of sparsity𝐾.

In Figure 1, we compare the probability of successful
reconstruction of the proposed method with the ROMP
[9], OMP [8], SP [11], CoSaMP [12], and StOMP [10] algo-
rithms. It is evident from Figure 1 that the reconstruction
performance of ROMP decreased rapidly with a rise in 𝐾.
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Figure 2: Reconstruction performance of GOMP and the proposed
method with a small 𝑆 value.

When 𝐾 = 20, the recovery probability was near zero.
The probability of successful recovery of OMP decreased at
a smaller rate than that of ROMP, and its critical sparsity
was reached at 𝐾 = 55. CoSaMP and StOMP had similar
performances. Both retained a high recovery performance
when 𝐾 ≤ 40. The probability of successful recovery of
SP was higher than for ROMP, OMP, CoSaMP, and StOMP
with the same 𝐾. For our proposed method, we tested the
performancewith different 𝑆 values, representing the number
of selected columns in each iteration. We set 𝑆 = 10 and
𝑆 = 20. Figure 1 indicates that the smaller the value of
𝑆, the higher the probability of successful recovery of the
proposed algorithm with the same𝐾. Compared to the other
algorithms, under the same conditions, the proposedmethod
with 𝑆 = 10 had the highest probability of successful recovery,
followed by the proposed method with 𝑆 = 20, and followed
by the SP algorithm.The proposed algorithm with different 𝑆
values had a higher probability than the other algorithms.

In Figures 2 and 3, we compare the performances of the
proposed method and GOMP with different values for the
parameter 𝑆. In Figure 2, we selected smaller 𝑆 values to
compare the algorithms. All algorithms resulted in high levels
of probability of recovery when 𝐾 ≤ 40. The probability of
exact recovery decreased with an increase in 𝐾 and reached
zero when𝐾 = 70. Both the proposed algorithm and GOMP
had a higher probability of exact recovery with a smaller
𝑆 value. When 𝑆 = 6, the two algorithms had nearly the
same probability values. When 𝑆 = 9, the proposed method
had a higher probability of recovery. The probability of exact
reconstruction of both algorithms was 100% when 𝐾 < 40
and zero when𝐾 > 70 for 𝑆 = 6 and 𝑆 = 9, and the difference
between two algorithms mainly concentrated on the sparsity
level from 40 to 70. Therefore, we compared two algorithms
with𝐾 = 40 to 𝐾 = 70 in Figure 2.

In Figure 3, we selected a larger value of 𝑆 to compare
the proposed algorithm and GOMP. The probability of exact
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Figure 3: Reconstruction performance of GOMP and the proposed
method with a large 𝑆 value.

reconstruction of both algorithms was 100% for 𝐾 < 10 and
zero for 𝐾 > 70, so we compared the two algorithms with
𝐾 = 10 to 𝐾 = 70 for 𝑆 = 20 and 𝑆 = 30 in Figure 3.

When 𝐾 = 40 and 𝑆 = 20, the probability of exact
recovery of GOMP was 48.7%, while the probability value
for the proposed method was 99.4%. When 𝐾 = 40 and
𝑆 = 30, the resulting probability values were 4.5% for GOMP
and 99.4% for the proposed method. These results indicated
that, for different 𝑆 values, the proposedmethod had a higher
probability of exact recovery than the GOMP method.

Figures 2 and 3 demonstrate that, for different 𝑆 values,
the curves of probability for exact recovery were closer to
each other for the proposedmethod than theGOMPmethod.
This indicated that the proposed method had a more stable
performance than the GOMP method for different 𝑆 values.

Based on the analysis and comparison, we determined
that even though the proposed algorithm had an additional
backtracking process compared to GOMP, the proposed
method demonstrated an excellent performance with regard
to running time. In order to compare running times for
all the algorithms, we ran each algorithm one thousand
times to calculate the average running time. The computing
environment was the same as for the determination of the
probability of exact reconstruction.

In Figure 2, we can see that the probability of extract
reconstruction of both algorithmswas below 100% for𝐾 > 40
with 𝑆 = 6 and 𝑆 = 9, and the effective running time should
be computed for successful reconstructing.Therefore, we just
compared the running time with 𝐾 < 40 for two methods.
The difference was not obvious with 𝐾 < 5 in running time
for both methods with 𝑆 = 6 and 𝑆 = 9, so we compared the
running time with 𝐾 > 5 and𝐾 < 40 in Figure 4.

In Figure 3, we can see that probability of extract recon-
struction of GOMP algorithm with 𝑆 = 20 was below 100%
for𝐾 < 20, and with 𝑆 = 30 for𝐾 < 10, and the probability of
extract reconstruction of proposed algorithmwith 𝑆 = 20 and

17A New Generalized Orthogonal Matching Pursuit Method
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Figure 4: The average running time of GOMP and the proposed
method with a small 𝑆 value.
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Figure 5: The average running time of GOMP and the proposed
method with a large 𝑆 value.

𝑆 = 30 all were below 100% for𝐾 < 40. The effective running
time should be computed for successful reconstructing, so we
just compared the running time of both algorithms for 𝑆 = 20
with𝐾 < 20, and 𝑆 = 30 with𝐾 < 10. The difference was not
obvious in running time for both methods with smaller 𝐾.
Based on the above analysis, we just compared their running
time with 𝐾 > 5 and 𝐾 < 20 for 𝑆 = 20, and 𝐾 > 5 and
𝐾 < 10 for 𝑆 = 30. In order to unify the sparsity level scope,
we set 𝐾 from 5 to 20 in Figure 5.

In Figure 4, we set 𝑆 = 6 and 𝑆 = 9 to compare the running
times for GOMP and the proposed method. The running

times for GOMP with 𝑆 = 6 and the proposed method with
𝑆 = 6 and 𝑆 = 9 were nearly identical. The running times
under those conditions were less than those for GOMP with
𝑆 = 9. When 𝐾 = 40, the running time of the proposed
method with 𝑆 = 6 and 𝑆 = 9 was less than that of GOMP
with 𝑆 = 6.

In Figure 5, we set 𝑆 = 20 and 𝑆 = 30. From Figure 5, we
can observe that the running time of the proposed algorithms
was less than GOMP for 𝑆 = 20 with𝐾 = 5 to 20, and for 𝑆 =
30 with 𝐾 = 5 to 10. This shows that the proposed algorithm
has faster speed for reconstructing.

These results show that the proposed method resulted
not only in better performance with regard to running time,
but also in a higher probability of exact reconstruction. The
advantage is more obvious when larger 𝑆 is taken in both
algorithms.

6. Conclusion

In this paper, a novel method for sparse signal reconstruction
has been proposed. The proposed method adds a backtrack-
ing step tomaintain a𝐾-sized estimated support set, avoiding
the extra computation cost for an oversized estimated set.
At the same time, the proposed method can increase the
reliability of the estimated support set by removing the
low-reliability columns from the estimated support set. The
proposed reconstruction algorithm performs well at not only
reconstructing the sparse signal (i.e., when 𝐾 is small), but
also the less sparse signal (i.e., when 𝐾 is large). The simu-
lation results showed that the proposed method had a better
performance than GOMPwith regard to both the probability
of exact reconstruction and running time, especially with
larger 𝑆 values. In future research, we want to improve on the
proposed algorithm to optimize the greedy algorithm further.
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In multipath assisted positioning, multipath components arriving at a receiver are regarded as being transmitted by a virtual
transmitter in a line-of-sight condition. As the locations and clock offsets of the virtual and physical transmitters are in general
unknown, simultaneous localization and mapping (SLAM) schemes can be applied to simultaneously localize a user and estimate
the states of physical and virtual transmitters as landmarks. Hence,multipath assisted positioning enables localizing a user with only
one physical transmitter depending on the scenario. In this paper, we present and derive a novel filtering approach for ourmultipath
assisted positioning algorithm called Channel-SLAM. Making use of Rao-Blackwellization, the location of a user is tracked by a
particle filter, and each landmark is represented by a sum of Gaussian probability density functions, whose parameters are estimated
by unscented Kalman filters. Since data association, that is, finding correspondences among landmarks, is essential for robust long-
term SLAM, we also derive a data association scheme. We evaluate our filtering approach for multipath assisted positioning by
simulations in an urban scenario and by outdoor measurements.

1. Introduction

The amount of available and potential services requiring
precise localization of a user has steadily increased over the
recent years. Global navigation satellite systems (GNSSs) can
often satisfy the demands for localization in scenarios where
the receiver has a clear view of the sky. However, if the view
of the sky is obstructed, such as indoors, in urban canyons,
or in tunnels, the positioning performance of GNSSs may
be drastically decreased, or no positioning solution may be
obtained at all [1]. Reasons for this include a low received
signal power due to signal blocking or shadowing and
multipath propagation.

In contrast to GNSS signals, many kinds of terrestrial
signals are likely to have a good coverage in GNSS denied
places. In particular, cellular radio frequency (RF) signals
are designed to be reliably available at least in populated
areas, and they may be used as signals of opportunity (SoOs)
for positioning. However, also terrestrial signals experience
multipath propagation. Multipath propagation biases range
estimates if standard correlator based methods are used.

Various approaches to handle the multipath problem have
been addressed in the literature, for example, in [2]. Advanced
methods such as maximum likelihood (ML) mitigation
algorithms try to estimate the channel impulse response
(CIR) and to mitigate the influence of multipath components
(MPCs) on the line-of-sight (LoS) path [3].

The idea of multipath assisted positioning is contrary,
though. Instead of regarding multipath propagation as ill,
the spatial information of MPCs on the receiver position
is exploited. In [4], the information of MPCs is used in a
fingerprinting scheme. Going one step further, each MPC
can be regarded as being transmitted by a virtual transmitter
in a pure LoS condition, and the virtual transmitters can be
used to locate the user. Such an approach is called multipath
assisted positioning.

The authors of [5, 6] derived some theoretical bounds
for multipath assisted positioning. Multipath assisted posi-
tioning schemes have, for example, been applied in radar
applications [7], using ultrawideband (UWB) [8, 9] or 5G [10]
systems and in cooperative systems [11].

4
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If the locations of physical transmitters and reflecting and
scattering objects are known, the locations of virtual trans-
mitters can be calculated based on geometrical considera-
tions.The authors of [12] assume the room layout to be known
and focus on the association among virtual transmitters and
reflecting walls. In a general setting, however, the scenario is
unknown to the user.

The authors of [13, 14] have presented amultipath assisted
positioning scheme namedChannel-SLAM that does not rely
on prior information on the scenario. Instead, the locations of
the physical and virtual transmitters are estimated simulta-
neously with the user position in a simultaneous localization
and mapping (SLAM) [15, 16] approach. In general, SLAM
describes the simultaneous estimation of a user position
and the locations of landmarks. In Channel-SLAM, the
landmarks are the physical and virtual transmitters. Previous
extensions to Channel-SLAM include mapping of the user
positions [17], the consideration of vehicular applications
[18], and data association methods [19, 20], for example.

Nonlinearities in the prediction and update equations of
the Bayesian recursive estimation framework prohibit the use
of optimal algorithms such as the Kalman filter, since the
integrals involved in the estimation process cannot be solved
in closed form or become intractable. A popular alternative
is the extended Kalman filter (EKF) [21], which linearizes the
nonlinear terms using a first-order Taylor series expansion.
However, such a linearization can introduce large errors in
the estimation process [22]. The unscented Kalman filter
(UKF) [23, 24] uses a nonlinear transformation to deal with
nonlinearities and outperforms the EKF in a wide range of
applications [22, 25].

UKF methods have found their way into localization
problems, for example, in [27, 28]. The authors of [29]
propose Gaussian sum cubature filters. In [30, 31], the
authors consider a Rao-Blackwellization scheme for SLAM
with a particle filter for the user state and UKFs for the
landmark states, where the measurement model is based on
linearization, though.

The current Channel-SLAM algorithm uses a Rao-
Blackwellized particle filter to estimate the user state and
the location of transmitters simultaneously. Hence, both
the user state probability density function (PDF) and the
transmitter state PDFs are represented by a large set of
particles, tending to result in a highmemory occupation.This
paper is an extension of [32], where we proposed a novel
estimation approach for Channel-SLAM scheme based on
Rao-Blackwellization and performed first simulations. We
refer to this new estimation method as Rao-Blackwellized
Gaussian sum particle filter (RBGSPF). In the RBGSPF,
the user position is tracked by a sequential importance
resampling (SIR) particle filter, while the physical and virtual
transmitter state PDFs are represented by Gaussian mixture
models estimated byUKFs.This parametrized representation
of the transmitter states is a key enabler for exchanging
maps of transmitters among users, since the amount of data
that has to be communicated among users can be decreased
drastically compared to the nonparametric representation
with particles. Such an exchange of maps may be performed
directly among users or via a central entity, for example,

in form of local dynamic maps (LDMs) in an intelligent
transportation system (ITS) context. In this paper, we provide
a full and detailed derivation of our novel algorithm. In
particular, we derive the calculation of the particle weights
in the user particle filter given the representation of the
transmitters in the UKF framework. Since data association
is an essential feature for the accuracy in long-term SLAM,
we also derive a data association method based on [33].
We evaluate our algorithm by both simulations in an urban
scenario and outdoor measurements.

The remainder of this paper is structured as follows.
Section 2 describes the fundamental idea behind multipath
assisted positioning and Channel-SLAM. In Section 3, we
briefly summarize some concepts of nonlinear Kalman filter-
ing. The derivation of the RBGSPF is presented in Section 4,
and a solution to data association is presented in Section 5.
After the experimental results in Section 6, Section 7 con-
cludes the paper.

Throughout the paper, we use the following notation:

(i) As indices, 𝑖 stands for a user particle, 𝑗 denotes a
transmitter or a signal component, ℓ is a component
in a Gaussian mixture model, and 𝑚 stands for a
sigma point.

(ii) (⋅)𝑇 denotes the transpose of a matrix or vector.
(iii) 1𝑛 denotes the identity matrix of dimension 𝑛 × 𝑛.
(iv) 0𝑛 and 0𝑚×𝑛 denote the zero matrices of dimensions𝑛 × 𝑛 and𝑚 × 𝑛, respectively.
(v) N(x;𝜇,C) denotes the PDF of a normal distribution

in x with mean 𝜇 and covariance C.
(vi) 𝑐0 denotes the speed of light.
(vii) ‖ ⋅ ‖ denotes the Euclidean norm of a vector.

2. Multipath Assisted Positioning

2.1. Virtual Transmitters. The idea of virtual transmitters is
illustrated in Figure 1. The physical transmitter Tx transmits
an RF signal. A mobile user equipped with an RF receiver
receives the transmitted signal via three different propagation
paths.

In the first case, the signal is reflected at the reflecting
surface. The user treats the corresponding impinging MPC
as being transmitted by the virtual transmitter vTx1 in a pure
LoS condition. The location of vTx1 is the location of the
physical transmitter Tx mirrored at the reflecting surface.
When the usermoves along the trajectory, the reflection point
at the wall moves as well. However, the location of vTx1
is static. The two transmitters Tx and vTx1 are inherently
perfectly synchronized.

In the second case, the signal from the physical trans-
mitter is scattered by a point scatterer and then received
by the user. We define the effect of scattering such that the
energy of an electromagnetic wave impinging against the
scatterer is distributed uniformly in all directions [34]. The
user regards the scattered signal as a LoS signal from the
virtual transmitter vTx2, which is located at the scatterer
location. If the signal is scattered, the physical and the virtual
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Figure 1: Signals from the physical transmitter Tx are received
at the two user positions via different propagation paths. Each
MPC arriving at the receiver is regarded as being transmitted by a
virtual transmitter in a pure LoS condition. The propagation paths
correspond to a reflection at the wall (vTx1), a scattering at a point
scatterer (vTx2), and a scattering followed by a reflection at the wall
(vTx3).

transmitter are not time synchronized: the virtual transmitter
has an additional delay offset to the physical transmitter
corresponding to the propagation time of the signal traveling
from the physical to the virtual transmitter.

In the third case, the signal is first scattered at the scatterer
and then reflected at the surface.The user treats this signal as
being sent from the virtual transmitter vTx3. The location of
vTx3 is the location of vTx2, that is, the scatterer location,
mirrored at the reflecting surface. Accordingly, the concept
of single reflections and scatterings can be generalized in a
straightforwardmanner to the case ofmultiple reflections and
scatterings by applying the first two cases iteratively. In case
the signal undergoes only reflections, the physical and the
virtual transmitters are inherently time synchronized. If the
signal is scattered at least once, the delay offset corresponds
to the actual propagation time of the signal from the physical
transmitter to the last scatterer the signal interacts with.
Therefore, in Figure 1, the virtual transmitters vTx2 and vTx3
have the same delay offset towards the physical transmitter.
Note that a delay offset can be interpreted as a clock offset.

Throughout the paper, we consider the physical trans-
mitter and the environment to be static. Hence, the virtual
transmitters are static as well.

2.2. Recursive Bayesian Estimation. Recursive Bayesian esti-
mation [35] is a method to recursively estimate the evolution
of a state vector x, where the state evolution is modeled as

x𝑘 = f𝑘 (x𝑘−1, k𝑘−1) . (1)

The index 𝑘 denotes the time instant, the function f𝑘(⋅) is
assumed to be known, and k𝑘−1 denotes a sample of the
process noise with covariance matrix Q. The state is related
to the measurement z𝑘 by

z𝑘 = h𝑘 (x𝑘,n𝑘) , (2)

where h𝑘(⋅) is again a known function and n𝑘 is a sample of
the measurement noise with covariance matrix R. Recursive

Position
Estimation

Parameter
Estimation

Received
Signal

IMU

Position
Estimate

Figure 2: Based on the received signal, the parameters of the propa-
gation paths are estimated in the first step by the KEST algorithm. In
the second step, the estimates serve as measurements for estimating
the positions of the user and the physical and virtual transmitters. In
addition, user heading rates of change measurements from an IMU
are incorporated in the second step.

Bayesian estimation works in two steps, the prediction and
the update step. The corresponding PDFs can be calculated
recursively by

p (x𝑘 | z1:𝑘−1) = ∫ p (x𝑘 | x𝑘−1) p (x𝑘−1 | z1:𝑘−1) dx𝑘−1 (3)

for the prediction step and by

p (x𝑘 | z1:𝑘) = 1𝑐𝑘 p (z𝑘 | x𝑘) p (x𝑘 | z1:𝑘−1) , (4)

for the update step, where 𝑐𝑘 is a constant and z1:𝑘 denotes the
measurements from time instant 1 to 𝑘. The state transition
prior p(x𝑘 | x𝑘−1) and the measurement likelihood p(z𝑘 | x𝑘)
are obtained from the movement model in (1) and the
measurement model in (2), respectively.

2.3. Channel-SLAM. In the following, we will revise the
Channel-SLAM algorithm from [13, 17]. Figure 2 gives an
overview of the two stages of Channel-SLAM. In the first
stage, the parameters of the signal components received by
the user via different propagation paths are estimated. The
resulting estimates are used as measurement input in the
second stage, where the states of the physical and virtual
transmitters and the user position are estimated simultane-
ously in a SLAM scheme. Further sensors, such as an inertial
measurement unit (IMU), may be included in the second
stage.The locations of both the physical and virtual transmit-
ters are assumed to be unknown. Thus, Channel-SLAM does
not differentiate between physical and virtual transmitters,
and the term transmitter comprises both physical and virtual
transmitters in the following. Each signal component arriving
at the receiver corresponds to one transmitter.

The RF propagation channel between the physical trans-
mitter and the user equipped with a receiver is assumed to be
a linear and time-variant multipath channel.

The received signal ismodeled as a superposition of signal
components of the transmit signal 𝑠(𝑡), where the 𝑗th signal
component is defined by a complex amplitude 𝑎𝑗(𝑡𝑘) and a
delay 𝑑𝑗(𝑡𝑘) at time 𝑡𝑘. The signal received by the user at time
instant 𝑡𝑘 is

𝑦 (𝜏, 𝑡𝑘) = ∑
𝑗

𝑎𝑗 (𝑡𝑘) 𝑠 (𝜏 − 𝑑𝑗 (𝑡𝑘)) + 𝑛 (𝜏) , (5)

where 𝑛(𝜏) is a sample from a colored noise sequence incor-
porating both dense multipath components (DMCs) and
additive Gaussian noise. The channel is assumed to be
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constant during the short time interval when the received
signal is sampled at time instant 𝑘.

The physical transmitter continuously broadcasts the
signal 𝑠(𝑡) that is known to the user. At the user side, the
parameters of the signal components arriving at the receiver
are estimated. Such parameters can in general be the complex
amplitude, time of arrival (ToA), angle of arrival (AoA), or
Doppler shift, depending on the available hardware and the
scenario. For the signal parameter estimation, we use the
KEST algorithm [36]. The KEST estimator works in two
stages. In an inner stage, a ML parameter estimator such
as Space-Alternating Generalized Expectation-Maximization
(SAGE) [37] estimates the parameters of the signal compo-
nents jointly on a snapshot basis. An outer stage tracks these
estimated parameters over time with a Kalman filter and
keeps track of the number of signal components. The KEST
estimator is in general able to handle the DMCs in the noise
term in (5). However, DMC handling is not implemented
in our evaluations, leading to a model mismatch in KEST
and hence to a higher variance in the parameter estimation.
However, we do not expect many DMCs in our evaluation
scenarios. In an indoor scenario, for example, DMCs need to
be considered [38].

In the literature, there are alternatives to the KEST
estimator. For example, the authors of [39] track signal
component parameters based on an EKF, though the authors
of [40] showed that the KEST estimator is more robust in
resolving signal components that are close to each other in
the state space. In [41], an EKF is used as well for parameter
estimation, while the position estimation is based on the
time difference of arrival (TDoA) of virtual transmitters. The
authors of [42] consider the linearization of the observation
model in the EKF a major drawback that might lead to a
tracking loss.

In the second stage of Channel-SLAM, we use only
the delays, that is, ToAs, and AoAs, estimated by KEST
as measurement inputs. Hence, after sampling the received
signal, the KEST estimates at time instant 𝑘 are comprised in
the vector

z𝑘 = [d𝑇𝑘 𝜃𝑇𝑘 ]𝑇 , (6)

where

d𝑘 = [𝑑1,𝑘 ⋅ ⋅ ⋅ 𝑑𝑁TX ,𝑘]𝑇 (7)

are the ToA estimates for the 𝑁TX signal components, or
transmitters, and

𝜃𝑘 = [𝜃1,𝑘 ⋅ ⋅ ⋅ 𝜃𝑁TX ,𝑘]𝑇 (8)

are the corresponding AoA estimates. Note that the number
of signal components and thus transmitters may change over
time. Nevertheless, for notational convenience, we omit the
time instant index 𝑘 in𝑁TX.

In the second stage of Channel-SLAM, the user state xu,𝑘
is estimated simultaneously with the state of the transmitters
xTX,𝑘. The entire state vector is hence

x𝑘 = [xu,𝑘𝑇 xTX,𝑘𝑇]𝑇
= [xu,𝑘𝑇 x⟨1⟩TX,𝑘

𝑇 ⋅ ⋅ ⋅ x⟨𝑁TX⟩TX,𝑘
𝑇]𝑇 , (9)

where x⟨𝑗⟩TX,𝑘 is the state of the 𝑗th transmitter. As we consider
a two-dimensional scenario, the user state at time instant 𝑘 is
defined by

xu,𝑘 = [𝑥𝑘 𝑦𝑘 V𝑥,𝑘 V𝑦,𝑘]𝑇 = [p𝑇u,𝑘 k𝑇u,𝑘]𝑇 , (10)

where the user position is defined by pu,𝑘 = [𝑥𝑘 𝑦𝑘]𝑇 and
the user velocity by ku,𝑘 = [V𝑥,𝑘 V𝑦,𝑘]𝑇. Each transmitter is
defined by its location pTX,𝑘 = [𝑥TX,𝑘 𝑦TX,𝑘]𝑇 and a clock
offset 𝜏0,𝑘 at time instant 𝑘. The state vector of the 𝑗th
transmitter is hence defined by

x⟨𝑗⟩TX,𝑘 = [𝑥⟨𝑗⟩TX,𝑘 𝑦⟨𝑗⟩TX,𝑘 𝜏⟨𝑗⟩
0,𝑘

]𝑇 = [p⟨𝑗⟩TX,𝑘𝑇 𝜏⟨𝑗⟩
0,𝑘

]𝑇 . (11)

Our goal is to find the minimum mean square error
(MMSE) estimator for x𝑘, which is defined as

x̂𝑘 = ∫ x𝑘p (x𝑘 | z1:𝑘) dx𝑘, (12)

where z1:𝑘 denotes all measurements up to time instant 𝑘.
We use a recursive Bayesian estimation scheme as in

Section 2.2 to estimate the posterior PDF p(x𝑘 | z1:𝑘). This
posterior can be factorized as

p (x𝑘 | z1:𝑘) = p (xTX,𝑘, xu,𝑘 | z1:𝑘)
= p (xTX,𝑘 | xu,𝑘, z1:𝑘) p (xu,𝑘 | z1:𝑘) . (13)

The signal components arriving at the receiver are
assumed to be independent of each other; that is, we assume
they interact with distinct objects. Assuming independence
among the measurements for distinct transmitters (on the
one hand, the parameters of the signal components are
estimated jointly by the KEST algorithm, and hence these
estimates might be correlated between signal components
and between the parameters; on the other hand, the correla-
tion is likely to have effect only on a short term basis as KEST
estimates are unbiasedwhenobserved over a longer time), the
first factor in (13) can be factorized further as

p (xTX,0:𝑘 | xu,0:𝑘, z1:𝑘) =
𝑁TX∏
𝑗=1

p (x⟨𝑗⟩TX,0:𝑘 | xu,0:𝑘, z⟨𝑗⟩1:𝑘) . (14)

With the above factorization, the transmitter states are
estimated independently from each other.

As we consider a static scenario, the virtual transmitters
are static as well, and the transition prior for the 𝑗th
transmitter is calculated as

p (x⟨𝑗⟩TX,𝑘 | x⟨𝑗⟩TX,𝑘−1) = 𝛿 (x⟨𝑗⟩TX,𝑘 − x⟨𝑗⟩TX,𝑘−1) , (15)

where 𝛿(⋅) denotes the Dirac distribution.
For the prediction of the user, additional sensors such

as an IMU carried by the user may be integrated into
the movement model. Within this paper, we assume only
heading change rate measurements from a gyroscope to be
available, though, and no knowledge on the user speed.
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Figure 3: The user moves in the direction ku,𝑘 at time instant 𝑘.
The heading change rate from the IMU is Δ 𝛽,𝑘. The ToA and AoA
measurements for the signal from the 𝑗th transmitter are 𝑑𝑗,𝑘 and𝜃𝑗,𝑘, respectively, where 𝜃𝑗,𝑘 describes the angle between the heading
direction ku,𝑘 of the user and the arriving signal.

With the gyroscope heading change rate Δ 𝛽,𝑘, we predict the
movement of the user by

xu,𝑘 = [12 𝑇𝑘12
02 R (Δ 𝛽,𝑘)] xu,𝑘−1 = Fu,𝑘xu,𝑘−1, (16)

where 𝑇𝑘 denotes the time between instants 𝑘 − 1 and 𝑘. The
two-dimensional rotation matrix R(Δ 𝛽,𝑘) is defined as

R (Δ 𝛽,𝑘) = [
[
cos (Δ 𝛽,𝑘 + 𝑤𝑘) − sin (Δ 𝛽,𝑘 + 𝑤𝑘)
sin (Δ 𝛽,𝑘 + 𝑤𝑘) cos (Δ 𝛽,𝑘 + 𝑤𝑘) ]

]
, (17)

where 𝑤𝑘 is the heading noise which is distributed following
a von Mises distribution. Hence, the function f𝑘 in (1) can be
expressed in our case as

f𝑘 (x𝑘−1, k𝑘−1) = [ Fu,𝑘 04×3𝑁TX

03𝑁TX×4 13𝑁TX

] x𝑘−1 + k𝑘−1, (18)

where the process noise covariance matrixQ is diagonal.
As depicted in Figure 3, an AoA measurement for a

transmitter 𝑗 describes the angle 𝜃𝑗,𝑘 between the user
heading direction ku,𝑘 and the incoming signal from the
transmitter. The measurement noise for the ToA and AoA
measurements is assumed to be zero-mean Gaussian dis-
tributed with variances 𝜎2𝑑,𝑗 and 𝜎2𝜃,𝑗, respectively, for the 𝑗th
transmitter. Also, we assume no cross-correlation between
the single ToA andAoAmeasurements.The likelihood for the
measurement vector z𝑘 conditioned on the state vector x𝑘 is
therefore the product

p (z𝑘 | x𝑘) =
𝑁TX∏
𝑗=1

N (𝑑𝑗,𝑘; 𝑑𝑗,𝑘, 𝜎2𝑑,𝑗)N (𝜃𝑗,𝑘; 𝜃𝑗,𝑘, 𝜎2𝜃,𝑗) , (19)

where the predicted ToA between the user and the 𝑗th
transmitter is

𝑑𝑗,𝑘 = 1𝑐0
󵄩󵄩󵄩󵄩󵄩󵄩pu,𝑘 − p⟨𝑗⟩TX,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩 + 𝜏⟨𝑗⟩
0,𝑘

, (20)

and the predicted AoA is calculated as

𝜃𝑗,𝑘 = atan2 (𝑦𝑘 − 𝑦⟨𝑗⟩TX,𝑘, 𝑥𝑘 − 𝑥⟨𝑗⟩TX,𝑘)
− atan2 (V𝑦,𝑘, V𝑥,𝑘) . (21)

The function atan2(𝑦, 𝑥) calculates the four-quadrant inverse
tangent function. It returns the counterclockwise angle
between the positive 𝑥-axis and the point given by the
coordinates (𝑥, 𝑦).
3. Nonlinear Kalman Filtering

3.1. Unscented Transform. If a random variable x is trans-
formed by a function g(⋅) such that y = g(x), the statistics
of y cannot always be calculated in closed form. Monte Carlo
(MC) methods try to estimate the statistics of y from a set
of randomly chosen sample points of x that undergo the
transformation g(⋅). For the unscented transform, a set of the
so-called sigma points is propagated through the function
g(⋅) to obtain transformed sigma points yielding the statistics
of y. However, the sigma points are not chosen randomly,
but in a deterministic manner, which is the fundamental
difference to MC methods.

Based on the unscented transform, numerical approxi-
mations of integrals can be derived. In particular, for the case
when the integrand is a product of an arbitrary function g(x)
of the integration variable x and aGaussian PDFN(x;𝜇x,Cx)
an integration rule of the form

∫ g (x)N (x;𝜇x,Cx) dx ≈ 𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) (22)

can be applied, where X𝑚 is the 𝑚th of the 𝑁sig sigma
points with its associated weight 𝜔𝑚. The idea of the UKF
is to approximate the posterior PDF in recursive Bayesian
estimation by a Gaussian PDF. Hence, the integral in the
prediction step is approximated by the integration rule
in (22). The authors of [43] provide further insight into
sigma point methods and their relation to Gaussian process
quadrature.

3.2. Choice of Sigma Points. In the literature, different sets of
sigmapoints have been proposed for the unscented transform
[44]. Let X𝑚 be the 𝑚th sigma point and 𝜔𝑚 its associated
weight. The dimension, mean, and covariance of the random
variable x are denoted by𝑁, 𝜇x, and Cx, respectively. In [23],
the sigma points and their weights are defined for some 𝜅 ∈ R

as

X0 = 𝜇x, 𝜔0 = 𝜅𝜅 + 𝑁,
X𝑚 = 𝜇x + (√(𝑁 + 𝜅)Cx)

𝑚
, 𝜔𝑚 = 12 (𝜅 + 𝑁) ,

X𝑚+𝑁 = 𝜇x − (√(𝑁 + 𝜅)Cx)
𝑚
,
𝜔𝑚+𝑁 = 12 (𝜅 + 𝑁) ,

(23)

where𝑚 = 1, . . . , 𝑁, (A)𝑚 denotes the𝑚th row or column of
the matrix A, and (𝑁 + 𝜅)Cx is factorized into

(𝑁 + 𝜅)Cx = √(𝑁 + 𝜅)Cx√(𝑁 + 𝜅)Cx

𝑇. (24)
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Figure 4: Structure of the RBGSPF representation: the user state xu
is represented by a number of particles. Each particle estimates the
transmitters’ states on its own. Each of the 𝑁TX transmitter states
is represented by a sum of 𝑁UKF Gaussian distributions Nℓ with
associated weights 𝑤⟨ℓ⟩.

This definition leads to 𝑁sig = 2𝑁 + 1 sigma points. The
authors of [45] presented the cubature Kalman filter (CKF)
with an intuitive derivation of the choice of sigma points
and their weights. The CKF differs from the UKF only in
the choice of the sigma points. Its derivation is based on the
fact that the approximation of an integral using the unscented
transform as in (22) is exact for g(x) being a monomial of an
order not greater than some integer 𝑑. The resulting sigma
points are the points in (23) for 𝜅 = 0. Since the weight of the
first sigma point is zero, there are only 2𝑁 effective points.
Although the derivation in [45] gives useful insight into the
UKF, the same choice of sigma points had been proposed in
[44] before.

The Appendix summarizes the equations for the pre-
diction and update steps of the UKF. If the state transition
model in (1) or the measurement model in (2) are linear
or if Gaussian noise is assumed in the state transition or
measurement model, methods from [46] can be applied to
decrease the computational complexity of the UKF.

4. Derivation of the Gaussian Sum
Particle Filter

4.1. The Rao-Blackwellized Gaussian Sum Particle Filter. The
factorization in (13) allows for estimating the user state
independently from the transmitter states. For the estimation
of the user state in the RBGSPF, we use a SIR particle filter
[26, 47].The single transmitter states x⟨𝑗⟩TX,𝑘 are estimated inde-
pendently from each other following (14). Each transmitter
state is represented by a Gaussian mixture model or Gaussian
sum model [48]. The posterior PDF of each of the 𝑁UKF
Gaussian components in a Gaussian mixture is estimated by
a UKF.The structure of the resulting RBGSPF representation
is shown in Figure 4.

A particle filter is a MC based method, where the
posterior PDF is represented by a number of random samples,
called particles, with associated weights. The user posterior
PDF is approximated as

p (xu,𝑘 | z1:𝑘) =
𝑁𝑝∑
𝑖=1

𝑤⟨𝑖⟩𝑘 𝛿 (xu,𝑘 − x⟨𝑖⟩u,𝑘) , (25)

where x⟨𝑖⟩u,𝑘 is the 𝑖th user particle, 𝑤⟨𝑖⟩
𝑘

its associated weight,
and 𝑁𝑝 the number of particles in the particle filter. From
the structure of (14), we see that the transmitter states are
estimated for each user particle independently.

The posterior distribution of the state of each transmitter
is approximated by a Gaussian mixture model. In a Gaussian
mixture model, a PDF is described as a sum of weighted
Gaussian PDFs, each described by a mean and a covariance.
Hence, the posterior PDF of the state of the 𝑗th transmitter of
the 𝑖th user particle is represented as [48]

p (x⟨𝑖,𝑗⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z⟨𝑗⟩1:𝑘) = 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

×N (x⟨𝑖,𝑗⟩TX,𝑘; x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,P⟨𝑖,𝑗,ℓ⟩𝑘|𝑘 ) ,
(26)

where z⟨𝑗⟩
1:𝑘

are the measurements for the 𝑗th transmitter
and x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘, P

⟨𝑖,𝑗,ℓ⟩

𝑘|𝑘
, and 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
are the mean, the covariance

matrix, and the weight, respectively, of the ℓth Gaussian
component of the Gaussian mixture for the 𝑗th transmitter.
Both x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘 and P⟨𝑖,𝑗,ℓ⟩

𝑘|𝑘
are obtained from the update step

of the corresponding UKF. Similarly, the likelihood for the
measurement of the 𝑗th transmitter of the 𝑖th user particle is

p (z⟨𝑗⟩
𝑘

| x⟨𝑖⟩u,𝑘, x⟨𝑖,𝑗⟩TX,𝑘) = 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

×N (z⟨𝑗⟩
𝑘

; ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

,R⟨𝑗⟩
𝑘

) ,
(27)

where R⟨𝑗⟩
𝑘

is the measurement noise covariance matrix for
the 𝑗th transmitter. The number 𝑁UKF of Gaussian compo-
nents might differ between transmitters, user particles, and
time instants. However, for notational convenience, we drop
the particle, transmitter, and time instant indices of 𝑁UKF.
The predicted measurement of the ℓth Gaussian component
for the 𝑗th transmitter of the 𝑖th user particle,

ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

= [𝑑⟨𝑖,𝑗,ℓ⟩
𝑘

𝜃⟨𝑖,𝑗,ℓ⟩
𝑘

]𝑇 , (28)

consists of the predicted ToA measurement

𝑑⟨𝑖,𝑗,ℓ⟩
𝑘

= 1𝑐0
󵄩󵄩󵄩󵄩󵄩󵄩p⟨𝑖⟩u,𝑘 − p⟨𝑖,𝑗,ℓ⟩TX,𝑘

󵄩󵄩󵄩󵄩󵄩󵄩 + 𝜏⟨𝑖,𝑗,ℓ⟩
0,𝑘 (29)

and the predicted AoA measurement

𝜃⟨𝑖,𝑗,ℓ⟩
𝑘

= atan2 (𝑦⟨𝑖⟩𝑘 − 𝑦⟨𝑖,𝑗,ℓ⟩TX,𝑘 , 𝑥⟨𝑖⟩𝑘 − 𝑥⟨𝑖,𝑗,ℓ⟩TX,𝑘 )
− atan2 (V⟨𝑖⟩𝑦,𝑘, V⟨𝑖⟩𝑥,𝑘) ,

(30)

where the 𝑖th user particle is

x⟨𝑖⟩u,𝑘 = [𝑥⟨𝑖⟩𝑘 𝑦⟨𝑖⟩
𝑘

V⟨𝑖⟩
𝑥,𝑘

V⟨𝑖⟩
𝑦,𝑘]𝑇 = [p⟨𝑖⟩u,𝑘𝑇 k⟨𝑖⟩u,𝑘

𝑇]𝑇 , (31)
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and the mean of the corresponding ℓth Gaussian component
of the 𝑗th transmitter is

x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘 = [𝑥⟨𝑖,𝑗,ℓ⟩TX,𝑘 𝑦⟨𝑖,𝑗,ℓ⟩TX,𝑘 𝜏⟨𝑖,𝑗,ℓ⟩
0,𝑘

]𝑇
= [p⟨𝑖,𝑗,ℓ⟩TX,𝑘

𝑇 𝜏⟨𝑖,𝑗,ℓ⟩
0,𝑘

]𝑇 . (32)

In the prediction step of the user particle filter, new
particles are sampled based on the transition prior p(xu,𝑘 |
xu,𝑘−1). Hence, the particle x⟨𝑖⟩u,𝑘 is drawn as

x⟨𝑖⟩u,𝑘 = fu,𝑘 (x⟨𝑖⟩u,𝑘−1, ku,𝑘−1) , (33)

where the function fu,𝑘(⋅) describes the user movement
model, and ku,𝑘−1 is a noise sample drawn from the user
process noise PDF. For the prediction and the update step of
a Gaussian component of a transmitter’s state, the equations
of the UKF are summarized in the Appendix.

4.2. Derivation of the Particle Weight Calculation. In the
following, we will derive the calculation of the particle
weights in the user particle filter and of the weights for
the Gaussian components in the Gaussian mixture models
used to describe the PDFs of the transmitter states. As the
importance density of the SIR particle filter is the state
transition prior and resampling of the particles is performed
at every time instant, the weight for the 𝑖th particle at time
instant 𝑘 is given by [26]

𝑤⟨𝑖⟩𝑘 ∝ p (z𝑘 | x⟨𝑖⟩u,0:𝑘, z1:𝑘−1) . (34)

This expression can be written as

𝑤⟨𝑖⟩𝑘 ∝ ∫ p (z𝑘 | x⟨𝑖⟩u,0:𝑘, x⟨𝑖⟩TX,𝑘, z1:𝑘−1)
× p (x⟨𝑖⟩TX,𝑘 | x⟨𝑖⟩u,0:𝑘, z1:𝑘−1) dx⟨𝑖⟩TX,𝑘
∝ ∫ p (z𝑘 | x⟨𝑖⟩u,𝑘, x⟨𝑖⟩TX,𝑘)
× p (x⟨𝑖⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z𝑘−1) dx⟨𝑖⟩TX,𝑘,

(35)

where we use the assumption of a first-order hidden Markov
model. With the assumption that the measurements are
independent for different transmitters, (35) can be expressed
as

𝑤⟨𝑖⟩𝑘 ∝ 𝑁TX∏
𝑗=1

∫ p (z⟨𝑗⟩
𝑘

| x⟨𝑖⟩u,𝑘, x⟨𝑖,𝑗⟩TX,𝑘)
× p (x⟨𝑖,𝑗⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z⟨𝑗⟩𝑘−1) dx⟨𝑖,𝑗⟩TX,𝑘.

(36)

Furthermore, using the Gaussian mixture model rep-
resentation from (26) and (27) and assuming Gaussian
measurement noise, the integrand can be expressed as a sum
of weighted Gaussian PDFs; namely,

p (z⟨𝑗⟩
𝑘

| x⟨𝑖⟩u,𝑘, x⟨𝑖,𝑗⟩TX,𝑘) p (x⟨𝑖,𝑗⟩TX,𝑘 | x⟨𝑖⟩u,𝑘, z⟨𝑗⟩𝑘−1)
= 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

p
⟨𝑖,𝑗,ℓ⟩

z,𝑘 p
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 .
(37)

In (37), we defined for notational brevity

p
⟨𝑖,𝑗,ℓ⟩

z,𝑘 = N (z⟨𝑗⟩
𝑘

; ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

,R⟨𝑗⟩
𝑘

) , (38)

p
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 = N (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,P⟨𝑖,𝑗,ℓ⟩𝑘|𝑘 ) , (39)

where R⟨𝑗⟩
𝑘

is the measurement noise covariance matrix for
the 𝑗th transmitter and x⟨𝑖,𝑗,ℓ⟩TX,𝑘 denotes the state of the ℓth
Gaussian component of the 𝑗th transmitter of the 𝑖th user
particle. As we assume no correlation among the ToA and
AoA measurements, we have

R⟨𝑗⟩
𝑘

= [𝜎2𝑑,𝑗 0
0 𝜎2𝜃,𝑗] . (40)

Inserting (37) into (36) leads to

𝑤⟨𝑖⟩𝑘 ∝ 𝑁TX∏
𝑗=1

𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

∫ p
⟨𝑖,𝑗,ℓ⟩

z,𝑘 p
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 dx
⟨𝑖,𝑗,ℓ⟩

TX,𝑘 . (41)

Thepredictedmeasurement ẑ⟨𝑖,𝑗,ℓ⟩
𝑘

in (38), defined in (28),
is a nonlinear function of x⟨𝑖,𝑗,ℓ⟩TX,𝑘 .We express themeasurement
likelihood in (38) explicitly as a function g(⋅) of x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ,
resulting in

g (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ) = p
⟨𝑖,𝑗,ℓ⟩

z,𝑘

= N (𝑑𝑗,𝑘; 𝑑⟨𝑖,𝑗,ℓ⟩𝑘 , 𝜎2𝑑,𝑗)
×N (𝜃𝑗,𝑘; 𝜃⟨𝑖,𝑗,ℓ⟩𝑘 , 𝜎2𝜃,𝑗) .

(42)

Due to the nonlinearity in (42), stemming from (29) and (30),
the integral in (41) cannot be solved analytically. Instead, we
use the approximation from (22) to calculate the integral as

∫ g (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 )N (x⟨𝑖,𝑗,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,P⟨𝑖,𝑗,ℓ⟩𝑘|𝑘 ) dx⟨𝑖,𝑗,ℓ⟩TX,𝑘

≈ 𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) ,
(43)

where the sigma points X𝑚 and their weights 𝜔𝑚 can be
calculated by (23), where

𝜇x = x⟨𝑖,𝑗,ℓ⟩TX,𝑘|𝑘,
Cx = P⟨𝑖,𝑗,ℓ⟩

𝑘|𝑘
, (44)

and𝑁 is the dimension of a transmitter’s state; that is,𝑁 = 3.
Finally, the weight of the 𝑖th particle is calculated as

𝑤⟨𝑖⟩𝑘 ∝ 𝑁TX∏
𝑗=1

𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) . (45)

It follows directly from (45) that the weights of the Gaussian
components are updated by

𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

∝ 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) . (46)
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Input: x⟨𝑖⟩u,𝑘−1, x
⟨𝑖,𝑗,ℓ⟩

TX,𝑘−1 and 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘−1

for 𝑖 = 1, . . . , 𝑁𝑝, 𝑗 = 1, . . . , 𝑁TX, ℓ = 1, . . . , 𝑁UKF, z𝑘
Output: x⟨𝑖⟩u,𝑘, x

⟨𝑖,𝑗,ℓ⟩

TX,𝑘 and 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

for 𝑖 = 1, . . . , 𝑁𝑝, 𝑗 = 1, . . . , 𝑁TX, ℓ = 1, . . . , 𝑁UKF
(1) for 𝑖 = 1, . . . , 𝑁𝑝 do
(2) draw new user particle x⟨𝑖⟩u,𝑘 using (33);
(3) if any new signal components detected then
(4) initialize the new transmitter(s) based on z𝑘;
(5) if track of any signal components lost then
(6) delete the corresponding transmitter(s);
(7) for 𝑗 = 1, . . . , 𝑁TX do
(8) for ℓ = 1, . . . , 𝑁UKF do
(9) perform UKF prediction and update to calculate x⟨𝑖,𝑗,ℓ⟩TX,𝑘 using the UKF equations in the Appendix;
(10) calculate the weight 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
with (46);

(11) if 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

< 𝜌 then
(12) prune this Gaussian component: set 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
= 0;

(13) calculate the weight 𝑤⟨𝑖⟩
𝑘

with (45);
(14) for 𝑖 = 1, . . . , 𝑁𝑝 do
(15) for 𝑗 = 1, . . . , 𝑁TX do
(16) normalize the weights 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘
for ℓ = 1, . . . , 𝑁UKF;

(17) normalize the weights 𝑤⟨𝑖⟩
𝑘

for 𝑖 = 1, . . . , 𝑁𝑝;
(18) resample the user particles x⟨𝑖⟩u,𝑘 [26];

Algorithm 1: RBGSPF for time instant 𝑘 > 0.

Note that the weights 𝑤⟨𝑖⟩
𝑘

and 𝑤⟨𝑖,𝑗,ℓ⟩
𝑘

in (45) and (46) of
the user particles and the Gaussian components, respectively,
are not yet normalized. Since resampling is performed at
every time instant in the SIR particle filter, the user particle
weights 𝑤⟨𝑖⟩

𝑘
do not depend on the weights 𝑤⟨𝑖⟩

𝑘−1
from the

previous time instant [26].

4.3. Merging and Pruning of Gaussian Components. When
the KEST estimator detects a new signal component, a new
transmitter is initialized for each user particle based on
the ToA and AoA measurement for that new transmitter
at the current time instant. The posterior PDF of the new
transmitter is represented by a number of Gaussian PDFs,
whose means are initially placed on a grid dependent on the
measurement.The number of Gaussian components depends
on the measurement as well.

As the user travels through a scenario, the means,
covariances, and weights of the Gaussian components of a
transmitter’s state posterior PDF change over time depending
on the available measurements. The mean and covariance of
a Gaussian component may be regarded as a hypothesis and
a corresponding uncertainty, respectively, for the state of a
transmitter. If the weight of a Gaussian component becomes
smaller, the hypothesis for that state of the transmitter
becomes less likely. Hence, if the weight of a Gaussian com-
ponent falls below a threshold 𝜌, the Gaussian component is
pruned; that is, its weight 𝑤⟨𝑖,𝑗,ℓ⟩

𝑘−1
is set to zero. If the means

of two Gaussian components get very close to each other,
they may be merged in order to reduce the computational
complexity.

The final algorithm for one time instant 𝑘 > 0 of the
RBGSPF is summarized in Algorithm 1. For a particle filter

(III)
(II)

(I)

Tx

Figure 5: A user moves along the trajectory. The LoS signal to the
transmitter in Region (I) is lost in Region (II) temporarily due to
blocking by an obstacle and received again in Region (III).

resampling algorithm, we refer to [26]. Note again that we
have dropped the particle and transmitter indices in𝑁UKF.

5. Data Association

Data association is of crucial importance for robust long-term
SLAM. It describes the correspondences among landmarks,
which are transmitters in multipath assisted positioning. In
Figure 5, a user travels along its trajectory. In Region (I),
the LoS signal from the transmitter Tx can be tracked. This
signal is lost in Region (II) and regained in Region (III).
However, KEST is not able to retrack a former path. Hence,
when the user enters Region (III), KEST detects a new signal
component, and consequently a new transmitter is initialized.
However, the transmitter is the same as that which had been
observed in Region (I).

We define the set of transmitters that had been observed
previously but are not detected any more, as old transmitters.
When a new signal component is detected by KEST, a new
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transmitter has to be initialized. Consequently, two casesmay
arise:

(1) the new signal component corresponds indeed to a
new transmitter, or

(2) the new signal component corresponds to an old
transmitter that had been observed before already.

Data association is the decision on the above two cases when
a new signal component is detected. In the first case, a
new transmitter is initialized for the newly detected signal
component. In the second case, the newly detected signal
component is associated with a previously observable, that is,
old, transmitter.

In [33], amultiple hypothesis tracking (MHT) association
methodwas introduced and derived for FastSLAM,where the
user state is represented by a particle filter and each landmark
state by an EKF. In [19], the samemethod has been derived for
a Rao-Blackwellized particle filter. In the following, we will
derive the method for the RBGSPF derived in Section 4.

Each user particle decides for associations individu-
ally and thus carries a hypothesis for associations. Hence,
association decisions are hard decisions for each particle.
Regarding the ensemble of user particles, though, there are
many different hypotheses on associations in the user state
estimate, and the associationmethod can be regarded as a soft
decision method. Consequently, the state vector of the user is
increased by data association.

In the following, we describe how to make an association
decision for a single user particle, where we omit the particle
index 𝑖 in the association variables for notational brevity. The
value of the association variable 𝑛𝑘 denotes an association of
the new transmitter with the old transmitter 𝑛𝑘. We denote
the marginalized likelihood of the measurement of the new
transmitter that is to be initialized at time instant 𝑘 by 𝑝𝑛𝑘
assuming that the new transmitter is associated with the old
transmitter 𝑛𝑘. The set of association decisions up to time
instant 𝑘 − 1 is denoted by𝑁𝑘−1. From [33], we have

𝑝𝑛𝑘 = p (z𝑘 | 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)
= ∫ p (z𝑘 | x⟨𝑖,𝑛𝑘⟩TX,𝑘 , 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)
× p (x⟨𝑖,𝑛𝑘⟩TX,𝑘 | 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1) dx⟨𝑖,𝑛𝑘⟩TX,𝑘 ,

(47)

where x⟨𝑖,𝑛𝑘⟩TX,𝑘 denotes the state vector of the 𝑛𝑘th transmitter
for the 𝑖th user particle.

Assuming a first-order hidden Markov model, the first
integrand in (47) can be simplified to

p (z𝑘 | x⟨𝑖,𝑛𝑘⟩TX,𝑘 , 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)
= p (z𝑘 | x⟨𝑖,𝑛𝑘⟩TX,𝑘 , 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘) .

(48)

Since we use a Gaussian mixture model to represent the
single transmitter states, the second integrand in (47) can be
rewritten as

p (x⟨𝑖,𝑛𝑘⟩TX,𝑘 | 𝑛𝑘, 𝑁𝑘−1, x⟨𝑖⟩u,𝑘, z1:𝑘−1)

= 𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑛𝑘,ℓ⟩
𝑘

N (x⟨𝑖,𝑛𝑘⟩TX,𝑘 ; x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,P⟨𝑖,𝑛𝑘,ℓ⟩𝑘|𝑘−1
) .

(49)

Inserting (48) and (49) into (47) yields

𝑝𝑛𝑘 =
𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑛𝑘,ℓ⟩
𝑘

∫ p
⟨𝑖,𝑛𝑘,ℓ⟩

z,𝑘 p
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘 dx⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 , (50)

where p⟨𝑖,𝑛𝑘,ℓ⟩z,𝑘 is defined as in (38), and

p
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘|𝑘−1 = N (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,P⟨𝑖,𝑛𝑘,ℓ⟩𝑘|𝑘−1
) . (51)

Similar to (42), we define

g (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 ) = p
⟨𝑖,𝑛𝑘,ℓ⟩

z,𝑘

= N (𝑑𝑛𝑘 ,𝑘; 𝑑⟨𝑖,𝑛𝑘,ℓ⟩𝑘
, 𝜎2𝑑,𝑛𝑘)

×N (𝜃𝑛𝑘 ,𝑘; 𝜃⟨𝑖,𝑛𝑘,ℓ⟩𝑘
, 𝜎2𝜃,𝑛𝑘) ,

(52)

which is nonlinear in x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 , and rewrite the integral in (50)
as

∫ p
⟨𝑖,𝑛𝑘,ℓ⟩

z,𝑘 p
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘|𝑘−1dx
⟨𝑖,𝑛𝑘,ℓ⟩

TX,𝑘 = ∫ g (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 )
×N (x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 ; x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,P⟨𝑖,𝑛𝑘,ℓ⟩𝑘|𝑘−1

) dx⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘 .
(53)

Approximating the integral using (22) and inserting it
into (50) finally yield

𝑝𝑛𝑘 =
𝑁UKF∑
ℓ=1

𝑤⟨𝑖,𝑛𝑘,ℓ⟩
𝑘

𝑁sig∑
𝑚=1

𝜔𝑚g (X𝑚) . (54)

The sigma points X𝑚 and their weights 𝜔𝑚 can again be
calculated by (23) with

𝜇x = x⟨𝑖,𝑛𝑘,ℓ⟩TX,𝑘|𝑘−1,
Cx = P⟨𝑖,𝑛𝑘,ℓ⟩

𝑘|𝑘−1
. (55)

The authors of [33] propose two ways to come to an
association decision, a ML method and data association
sampling (DAS). The probability for making no association
is defined and denoted by 𝑝0. The set of indices of old
transmitters that have not yet been and hence might be
associated is denoted by Γ𝑘.

For the ML association method, the association of the
new transmitter with the old transmitter 𝑛𝑘 is chosen to be

𝑛ML,𝑘 = arg max
𝑛𝑘∈Γ𝑘∪{0}

𝑝𝑛𝑘 . (56)

In DAS, an association is sampled based on the likelihoods𝑐𝑝𝑛𝑘 for 𝑛𝑘 ∈ Γ𝑘 ∪ {0}, where 𝑐 is a normalization constant.
If a detected transmitter is associated with an old

transmitter, the new transmitter can be initialized with the
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Figure 6: The simulation scenario with thick black lines represent-
ing reflecting walls and black circles representing objects that scatter
the RF signals.The physical transmitter is marked by the red upward
triangle labeled Tx.The user travels along the blue line from START
to END with one loop around the central building.

posterior PDF of the associated old transmitter. Thus, data
association has to be incorporated in Line (4) of Algorithm 1.

The above method describes how to take association
decisions if no more than one new transmitter is initialized
at one time instant, that is, if no more than one new signal
component is detected by KEST at a time instant. In case
of multiple transmitters being initialized at the same time
instant, a greedy algorithm [20] may be applied.

6. Evaluations

In the following, we evaluate the RBGSPF derived in
Section 4 by means of simulations and actual outdoor mea-
surements. For the evaluations, we implemented a square-
root version of the cubature Kalman filter as in [45] for
numerical stability. The sigma points are the ones in (23) for𝜅 = 0. Since the movement model of the transmitters is linear
and we assume Gaussian noise, the prediction step can be
calculated analytically. For the description of a prediction step
of a square-root version of the conventional Kalman filter, we
refer to [48].

6.1. Simulations in an Urban Scenario. A top view of the
urban simulation scenario is depicted in Figure 6. The thick
black lines represent walls, for example, from buildings, that
reflect RF signals, and the black circles are objects such as
traffic light poles acting as scatterers. There is one physical
transmitter in the scenariomarked by the red upward triangle
labeled Tx. The user travels with a constant speed of 10m/s
along the blue line with a loop around the central building.
The initial and final user positions are labeled START and
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Figure 7: The results of the KEST estimator for the simulations
showing the propagation distances of signal components versus
the user traveled distance. The propagation distances are the ToA
multiplied by the speed of light. Only signal components that are
observable for a traveled distance of at least 35m are shown. The
color indicates the normalized amplitude in linear domain.

END, respectively. The traveled distances of the user are
marked for every 50m.

The transmitter continuously broadcasts a signal that is
known to the user and has a rectangular shape in frequency
domain with a center frequency of 1.5 GHz and a bandwidth
of 100MHz. As we know the environment, a CIR and the
received signal can be modeled for every user position with
a simple ray-tracing approach. We incorporate first- and
second-order reflections and scattering, that is, single and
double reflections and/or scattering. The power loss for the
signal being reflected is 3 dB and 6 dB when the signal is
scattered at a point scatterer.The average signal-to-noise ratio
(SNR) at the user is 7 dB.

The user is equipped with an RF receiver and a two-
dimensional, rectangular antenna array consisting of nine
elements. Hence, both the ToA and the AoA estimates from
KEST are incorporated in the estimation of the user and
the transmitters’ states. Based on the received signal, KEST
estimates the ToAs and AoAs every 50ms.

The results of the KEST estimator are plotted in Figure 7.
It shows the propagation distance, which is the ToA mul-
tiplied by the speed of light, of the signal components
versus the traveled distance of the user. Each continuous
line represents one signal component and its evolution as
the user travels through the scenario. The color of each line
indicates the normalized absolute value of the amplitude of
the corresponding signal component in linear domain. Since
signal components that are observable for a long time can
contribute much better to Channel-SLAM than components
which are observable only for a short time, only signal
components that are observable for a user traveled distance
of at least 35m are plotted and used. Using all detected signal
components would dramatically increase the computational
complexity and hardly increase the positioning performance.
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Figure 8: The RMSE of the user position versus the user traveled
distance for the simulations. The red curve shows the RMSE if no
associations among transmitters are made, the blue curve if the ML
method for associations is applied, and the green curve for using
DAS.

In Channel-SLAM, the user position is estimated relative
to the physical and virtual transmitters in the scenario. Thus,
to create a local coordinate system, the initial state of the user
is assumed to be known. However, no prior knowledge on
any transmitter is assumed. In the Rao-Blackwellized particle
filter, the number of user particles in the particle filter is
4000, while the number of Gaussian components for each
transmitter depends on the first ToA measurement for that
transmitter.

The root mean square error (RMSE) of the user position
versus its traveled distance is plotted in Figure 8. The red
curve shows the RMSE if no associations among transmitters
are made; that is, every signal component that is detected
by the KEST algorithm is assumed to be a new transmitter.
The RMSEs with the ML association method and DAS
from Section 5 being applied are plotted in blue and green,
respectively. Since the particle filter is a MC based method,
all RMSE curves are averaged over 100 simulations.

As we assume the starting position of the user to be
known, all three curves start with a low RMSE that increases
linearly during the first 200m as expected. The increase
of the RMSE is less due to a bias in the position estimate
but more due to an increasing uncertainty, that is, variance,
about the user position. After approximately 200m, the
RMSE tends to decrease for all three curves. As more and
more transmitters are observed, the weight for some user
particles becomes small, and these particles are unlikely to
be resampled. Towards the end of the track, the geometrical
delusion of precision (GDOP) causes an increase in the
RMSE, since most of the transmitters are observed from the
same direction. After a traveled distance of around 370m,
several transmitters that had been observed in the beginning
are observed again, and correspondences among them can
be found. If data association methods are used, the RMSE
decreases particularly in that region. The ML method and
DAS show a similar performance. Note that there are several
reasons for which associations among transmitters can be
found. Examples are signal blocking or the geometry of the
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Figure 9: Top viewof themeasurement scenario in front of a hangar.
The physical transmitter location is marked by the red triangle
labeled Tx. The user travels along the blue track from START to
END. The expected virtual transmitter locations are marked by the
magenta downward triangles.

environment causing virtual transmitters to be observable
only from certain regions. In addition, when KEST loses and
regains track of a signal component if its received power
fluctuates or if another signal component arrives at the
receiver with a very small difference in delay, transmitters
may be discarded and initialized again at a later point, and
associations among them may be found. This explains the
increasing positioning performance gain after approx. 50m
using data association.

6.2. OutdoorMeasurements. In addition to the simulations as
described above, we performed outdoormeasurements on an
airfield. A top view of the measurement scenario is depicted
in Figure 9. The grey area is an airplane hangar with solid
metallic doors. The user track with a total length of 112.5m is
plotted in blue.The user walked along the track starting from
the light blue cross labeled START to the black cross labeled
END. The traveled distance of the user is marked after 25m,
75m, and 100m.There is one physical transmitter marked by
the red upward triangle labeled Tx. The user is in LoS to the
physical transmitter throughout the entire track.

In the scenario, we have three fences labeled Fence 1,
Fence 2, and Fence 3. We expect these fences and the
hangar door to reflect the RF signal emitted by the physical
transmitter. Hence, we expect a virtual transmitter for each
of the fences and for the hangar door following Section 2.1.
The virtual transmitter corresponding to the reflection of
the signal at Fence 1 is the magenta downward triangle
labeled vTx2. It is located at the physical transmitter position
mirrored at Fence 1. Likewise, the location of the virtual
transmitter corresponding to Fence 2 is labeled as vTx3. For
the reflection of the signal at the hangar doors, we expect
the virtual transmitter located at the magenta triangle labeled
as vTx1. The expected virtual transmitter corresponding to
Fence 3, vTx4, is outside of the boundaries of Figure 9.
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Figure 10: The results of the KEST estimator for the outdoor
measurements showing the propagation distances, that is, the ToAs
multiplied by the speed of light, of signal components, versus the
user traveled distance. Only signal components that are observable
for long traveled distance are shown. The color indicates the
estimated received power for the signal components in dB.

The Medav RUSK broadband channel sounder [49] was
used to perform the measurements. The transmit signal is a
multitone signal with a center frequency of 1.51 GHz and a
bandwidth of 100 MHz. The signal has 1281 subcarriers with
equal gains and a total transmit power of 10mW.

The user was equipped with an RF receiver, recording
a snapshot of the received signal every 1.024ms. For later
evaluation, the user carried a prism mounted next to the
receiver antenna that was tracked by a tachymeter (Leica
Geosystems TCRP1200) to obtain the ground truth of the
user location in centimeter accuracy. In addition, the user
carried an XsensMTI-G-700 IMU. Only heading change rate
measurements were used from the IMU.

On both transmitter and receiver side, single antennas
were used. Hence, no AoA information about the imping-
ing signal components can be used for Channel-SLAM.
Instead, only ToA estimates from KEST are incorporated.
The likelihood function in (19) is adapted accordingly for the
evaluation.

The results of the KEST estimator for the outdoor mea-
surements are plotted in Figure 10. The colors indicate the
power estimated by KEST in dBm. As for the simulations,
only signal components that are observable for a long user
traveled distance are plotted and used. In addition, the
ground truth geometrical line-of-sight (GLoS) propagation
distances from the physical and the expected virtual trans-
mitters as in Figure 9 to the user are plotted by black lines.
Theymatch theKEST estimates verywell, justifying the signal
model in (5) without considering DMCs in KEST for the
measurement scenario.
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Figure 11: The RMSE of the user position versus the user traveled
distance for the outdoor measurements. The red curve shows the
RMSE if no associations among transmitters are made, the blue
curve if the ML method for associations is applied, and the green
curve for using DAS.

The RMSE of the user position versus its traveled distance
for the outdoor measurements is plotted in Figure 11, where
the RMSE is averaged over 50 particle filter simulations.
As for Figure 8, the red curve denotes the RMSE with no
association method applied; the blue and green curves show
the RMSE if the ML method and DAS, respectively, are
incorporated for data association.

Theuser is always in a LoS condition to the physical trans-
mitter vTx, and the corresponding LoS signal component is
tracked by the user throughout the track, as becomes evident
in Figure 10. Likewise, the signal component corresponding
to the virtual transmitter vTx2 can be tracked after a traveled
distance of approximately 22m until the end.

The almost continuous presence of the signals from
these two transmitters is reflected in the user RMSE in
Figure 11. The RMSE without data association methods
applied increases in the beginning but then stays constant
in the order of 3-4m with some fluctuations. This is due to
the fact that once the variance on the states of transmitters
vTx and vTx2 has decreased far enough, they serve as
reliable anchors throughout the track. Hence, they prevent
the uncertainty about the user state from increasing further,
althoughwemeasure only the ToA for each signal component
in the outdoor measurement scenario.

For the same reason, the data association methods
cannot really improve the user positioning performance in
the outdoor measurements. From another point of view, a
correct data association is inherently made for vTx and vTx2
throughout the track, since once these transmitters have
been initialized they stay observable throughout the track.
However, if a user was to go through the same scenario a
second time with prior information of the transmitter states
as estimated during the first run, data association would
improve the positioning performance as correspondences
among transmitters estimated during the first and second run
could be found and exploited.
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In contrast, the user RMSE in Figure 8 without data
association in the simulations keeps increasing, since there
are constantly new transmitters showing up and current
transmitters disappear. As mentioned above, the uncertainty
about transmitters is high upon initialization, since the
measurements obtained from KEST are of fewer dimensions
than the transmitter states. In addition, the current user
uncertainty adds up to the transmitter uncertainty. No
transmitter can be tracked throughout the scenario, and
the overall uncertainty keeps increasing. In the simulations,
data association relates new transmitters with previously
observable transmitters and decreases the uncertainty about
the states of transmitters drastically. Consequently, also the
uncertainty about and hence the RMSE of the user state
decrease.

7. Conclusion

Within this paper, we derived a novel filtering approach
for Channel-SLAM. Using Rao-Blackwellization, the user
state is represented by a number of particles and estimated
by a particle filter. The states of the landmarks, which are
the physical and virtual transmitters in Channel-SLAM, are
represented by a sum of Gaussian PDFs, where eachGaussian
component PDF is filtered by a UKF. The approach can be
applied to SLAM problems in general.

We evaluated our approach in simulations in an urban
scenario as well as with outdoormeasurement data, where we
could track a user’s position with only one physical transmit-
ter whose location was unknown. For the simulations in the
urban scenario, the user RMSE was always below 21m. With
the presented data associationmethods applied, it was always
below 16.5m. For the measurements on an airfield, the user
RMSE was in the order of 3-4m.

Appendix

A. UKF Prediction and Update Equations

A.1. Prediction Step

(1) Given the Gaussian state PDF p(x𝑘−1 | z𝑘−1) =
N(x̂𝑘−1|𝑘−1,P𝑘−1|𝑘−1), calculate the set of 𝑁sig sigma
points X𝑚,𝑘−1|𝑘−1 and their weights 𝜔𝑚 for 𝑚 = 1,. . . , 𝑁sig, for example, using (23).

(2) Propagate the sigma points through the movement
model:

X∗𝑚,𝑘|𝑘−1 = f𝑘 (X𝑚,𝑘−1|𝑘−1) . (A.1)

(3) Calculate the predicted state:

x̂𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚X∗𝑚,𝑘|𝑘−1. (A.2)

(4) Calculate the predicted error covariance:

P𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚X∗𝑚,𝑘|𝑘−1X∗𝑚,𝑘|𝑘−1𝑇 − x̂𝑘|𝑘−1x̂
𝑇
𝑘|𝑘−1

+Q𝑘−1.
(A.3)

A.2. Update Step

(1) Given the Gaussian state PDF p(x𝑘 | z𝑘−1) =
N(x̂𝑘|𝑘−1,P𝑘|𝑘−1), calculate the set of 𝑁sig predicted
sigma points X𝑚,𝑘|𝑘−1 and their weights 𝜔𝑚 as for the
prediction.

(2) Propagate the predicted sigma points through the
measurement function:

Z𝑚,𝑘|𝑘−1 = h𝑘 (X𝑚,𝑘|𝑘−1) . (A.4)

(3) Calculate the predicted measurement:

ẑ𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚Z𝑚,𝑘|𝑘−1. (A.5)

(4) Calculate the estimated innovation covariance
matrix:

P⟨𝑧𝑧⟩𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚Z𝑚,𝑘|𝑘−1Z𝑚,𝑘|𝑘−1𝑇 − ẑ𝑘|𝑘−1ẑ
𝑇
𝑘|𝑘−1

+ R𝑘−1.
(A.6)

(5) Calculate the cross-covariance matrix:

P⟨𝑥𝑧⟩𝑘|𝑘−1 =
𝑁sig∑
𝑚=1

𝜔𝑚X𝑚,𝑘|𝑘−1Z𝑚,𝑘|𝑘−1𝑇 − x̂𝑘|𝑘−1ẑ
𝑇
𝑘|𝑘−1. (A.7)

(6) Calculate the Kalman gain:

W𝑘 = P⟨𝑥𝑧⟩𝑘|𝑘−1P
⟨𝑧𝑧⟩
𝑘|𝑘−1

−1. (A.8)

(7) Calculate the updated state estimate:

x̂𝑘|𝑘 = x̂𝑘|𝑘−1 +W𝑘 (z𝑘 − ẑ𝑘|𝑘−1) . (A.9)

(8) Calculate the updated error covariance:

P𝑘|𝑘 = P𝑘|𝑘−1 −W𝑘P
⟨𝑧𝑧⟩
𝑘|𝑘−1W

𝑇
𝑘 . (A.10)
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Composite binary offset carrier (CBOC) signal has been widely researched in GNSS. The main ingredient of CBOC signal is
BOC(1, 1) signal. Usually, the acquisitionmethod for BOC(1, 1) signal is used to capture CBOC signal, while the research of special
acquisition method for CBOC signal is rare. In this letter, according to the principle and characteristics of CBOC signal, a special
side-peak cancellationmethod (SSCM) is proposed and simulated. In thismethod, two special auxiliary signals are introduced. And
the local reference signals are obtained by multiplying the data channel signal and pilot channel signal by the auxiliary signals. The
cross-correlation results from the received pilot signal and the two local pilot signals with different auxiliary signals will subtract
from one another.Then, side peaks of correlation function and in-band noise of pilot channel are suppressed, while the data channel
has the same operation results. At last the outputs of pilot channel and data channel will be added up tomake full use of the received
signal power. By this way, the acquisition efficiency, accuracy, and adaptability to low signal-to-noise ratio (SNR) conditions for
CBOC signal have been improved, alongside possible solution when the GNSS receiver works in a critical environment.

1. Introduction

With the development of wireless devices, radio environment
is becoming more and more complex. Global Navigation
Satellite Systems (GNSS) have to share the crowded frequency
source and work in terrible environment with multipath
or interference. Then, in 2004, the BOC modulation was
proposed by the European Union (EU) and the US, which
can be used for modernized civil Global Position System
(GPS) signal on L1 band andGalileo Open Service (OS) on E1
band [1]. The new BOC modulation reduces the interference
level caused by the existing GPS L1 C/A signal, since it splits
the power spectral away from the center frequency. In 2007,
in order to improve the interoperability and compatibility
between the PRN code tracking accuracy and navigation
systems, MBOC modulation has been recommended by
the GPS-Galileo working group. Multiplexed Binary Offset
Carrier (MBOC) [2] signal is denoted as the optimization
modulation method instead of the initial BOC(1, 1) modu-
lation, which can restrain multipath.

TheMBOCmodulated signal can be produced by CBOC
or time-multiplexed BOC (TMBOC) signals. This new

modulation allocates a wide band signal BOC(6, 1) in E1/L1
band without interfering with other existing signals and
realizes the compatibility and interoperability between GPS
and Galileo system. CBOC modulated signal can get more
high-frequency components on the power spectral density
(PSD) which improves the performance of tracking accuracy
and antimultipath capability. However, some drawbacks have
been noted, especially associated with themultiple side peaks
of autocorrelation function (ACF) causing the ambiguity
problem. In order to remove the side peaks, several acqui-
sition algorithms have been proposed and introduced in the
past few years, including BPSK-like technique [3], ASPeCT
technique [4], pseudo correlation function (PCF) technique
[5–7], subcarrier phase cancellation (SCPC) technique [8],
and unambiguous acquisition algorithms without auxiliary
signals [9]. Nevertheless, most of the methods are designed
for BOC modulated signal. Therefore, a novel acquisition
algorithm for the CBOC signal is proposed.

The main contributions of this paper are enumerated below:
(i) An optimized acquisition technique named SSCM

is proposed to remove side peaks and then the
ambiguity problem can be restrained.
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(ii) CBOCmodulated signal is an important part ofmod-
ern navigation systems. Some acquisition methods
only use part of signal power to capture signal, while
SSCMmake full use of CBOC signal power. Then the
acquisition performance is improved.

(iii) In order to overcome the complicated wireless envi-
ronment, this method is suitable when the GNSS
receiver works in a serious condition, which is based
on the antijamming performance of modern GNSS
signal.

The remainder of this paper is organized as follows.
In Section 2, before expound SSCM, some related work
has been undertook. In Section 3, properties of the CBOC
modulated signal are shown. In Section 4, SSCM with noise
reduction for CBOC modulated signal is presented in detail.
Section 5 simulates and compares the proposed algorithm
with preexisting acquisition algorithms. Lastly, Section 6
concludes the paper.

2. Related Work

Several techniques have been proposed in the last ten years
to overcome ambiguity problem. The BPSK-like method
regards BOC or CBOC modulated signal as the sum of
binary phase shift keying (BPSK) signals, using filtering,
shifting, and integration to change the ACF shape into
BPSK-like correlation function shape.Then, an unambiguous
correlation function with a decreasing precision is obtained.
However, the structure of BPSK-like method is complex and
expensive to implement. The in-band noise of intermediate
frequency (IF) signal will have an effect on acquisition. In
[4], ASPeCT method has a good performance within solving
the ambiguity tracking problem, but also the single peak
feature and the inhibiting of side peaks are unsatisfactory.
Additionally, the BOC(6, 1) component will be regarded as
noise in the ASPeCT method. Then, it is possible that some
side peak will be larger than main peak, and false lock will
happen. According to literature [5], PCF method uses sim-
ilar locally BOC modulated signals to obtain unambiguous
function. This method shows a good adaptability. However,
some disadvantages such as lower main peak and energy loss
are unavoidable. The subcarrier phase cancellation (SCPC)
technique generates an in-phase local subcarrier signal and
a quadra-phase local subcarrier signal, which are used to
correlate with the received filtered signal. The outputs of two
correlation channels are combined to remove side peaks, and
an unambiguous correlation function is obtained. However,
the suppression of the in-band noise and the utilization of
two channels of CBOC modulated signal have not been fully
considered.When the in-band noise is serious and no special
care is taken, false acquisition or biased tracking will occur.
In order to remove the ambiguities of ACF and unwanted
replicas of the signal spectrum, a quick unambiguous acqui-
sition algorithm for BOC modulated signals is proposed
[10], which exploits a reduced-complexity filter composed of
only seven nonzero samples. However, the high-frequency
power is sacrificed when the scheme is applied to the CBOC
modulated signal. Thus, the advantages of CBOC modulated

signal will be wasted. New unambiguous acquisition algo-
rithms, using auxiliary signals, have beenproposed in [10–12].
However, all of them are proposed for sine-BOC or cosine-
BOC modulated signal in particular. When considering the
unique characteristic of CBOC modulated signals, it is more
urgent to study the effective acquisition algorithms for CBOC
modulated signal. Then, a novel acquisition algorithm for
CBOC modulated signal is proposed, named SSCM.

In the new algorithm SSCM, a special auxiliary signal
for CBOC modulated signal is introduced to remove side
peaks. Moreover, the data channel and pilot channel signals
are utilized completely, to ensure the detection probability.
Additionally, the subtraction of the correlation channels is
used to suppress in-band noise. This way, the side peaks
are removed before signal detection. And the acquisition
precision will be improved, which accelerates the tracking
process.

3. Signal Model

CBOC signal is recommended and produced by BOC(1, 1)
and BOC(6, 1) signal. In Galileo E1 OS, CBOC signal has the
same power for data and pilot channels. Two different imple-
mentations of CBOC are proposed for a 50%/50% power split
between data and pilot components. CBOC(6, 1, 1/11) is an
important implementation method, where 1/11 denotes the
percentage of power of BOC(6, 1) with respect to the total
signal CBOC power. The PSD of CBOC(6, 1, 1/11) [13–16] is
given by

GCBOC(6,1,1/11) (𝑓) = 1011GBOC(1,1) (𝑓)
+ 111GBOC(6,1) (𝑓) ,

(1)

where GBOC(1,1)(𝑓) and GBOC(6,1)(𝑓) can be represented with
GBOC(𝑓𝑠 ,𝑓𝑐)(𝑓), which is the normalized baseband PSD of a
BOC modulation, shown as below. From expression (2) of
[17], 𝐺BOC(𝑓𝑠 ,𝑓𝑐)(𝑓) can be expressed as below, when 2𝑓𝑠/𝑓𝑐
of BOC(1, 1) and BOC(6, 1) are both even.

𝐺BOC(𝑓𝑠 ,𝑓𝑐) (𝑓) = 𝑓𝑐 ( sin (𝜋𝑓/2𝑓𝑠) sin (𝜋𝑓/𝑓𝑐)𝜋𝑓 cos (𝜋𝑓/2𝑓𝑠) )2 . (2)

The power spectrum and autocorrelation function of
CBOC modulated signal are shown in Figures 1 and 2.

The subcarrier formula of BOC(1, 1) and BOC(6, 1) are
given as follows:

SCBOC(1,1) (𝑡) = {{{
sign [sin(2𝜋𝑡𝑇𝑐 )] , 0 ≤ 𝑡 ≤ 𝑇𝑐
0, elsewhere,

SCBOC(6,1) (𝑡) = {{{
sign [sin(12𝜋𝑡𝑇𝑐 )] , 0 ≤ 𝑡 ≤ 𝑇𝑐
0, elsewhere,

(3)

where 𝑇𝑐 is the code chip duration. Figure 3 shows the
schematic diagram of CBOC(6, 1, 1/11)modulated signal.
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Figure 2: Normalized ACFs of BOC(1, 1) and CBOC(6, 1, 1/11)
signal.

4. Proposed Acquisition Algorithm

CBOC(6, 1, 1/11) is one of modulations for Galileo E1 signal
[18], including E1-B and E1-C channels. CBOC(6, 1, 1/11) of
baseband can be expressed mathematically as follows:

𝑠 (𝑡) = 𝑠E1-B (𝑡) − 𝑠E1-C (𝑡) , (4)

𝑠E1-B (𝑡) = ( 1√2) ⋅ 𝑒E1-B (𝑡)
⋅ (𝑃 ⋅ scE1-B,𝑎 (𝑡) + 𝑄 ⋅ scE1-B,𝑏 (𝑡)) ,

(5)

𝑠E1-C (𝑡) = ( 1√2) ⋅ 𝑒E1-C (𝑡)
⋅ (𝑃 ⋅ scE1-C,𝑎 (𝑡) − 𝑄 ⋅ scE1-C,𝑏 (𝑡)) ,

(6)

P

Q

BOC(1, 1)

BOC(6, 1)

CBOC(6, 1, 1/11)

Code Code

±

1

2

Figure 3: CBOC(6, 1, 1/11) signal generation graph.

where 𝑒E1-B(𝑡) and 𝑒E1-C(𝑡) are the binary signal component
of data and pilot at the code frequency 𝑓𝑐(= 1/𝑇𝑐). 𝑃 equals√10/11. 𝑄 equals √1/11. scE1-B,𝑎(𝑡), scE1-B,𝑏(𝑡), scE1-C,𝑎(𝑡),
and scE1-C,𝑏(𝑡), respectively, denote the subcarrier, which can
be expressed as follows. And 𝑓𝑥 represents the subcarrier
frequency

sc𝑥 (𝑡) = sign (sin (2𝜋𝑓𝑥𝑡)) . (7)

For the case of a CBOC waveform on both data and
pilot components, CBOC(6, 1, 1/11) and the rest of received
signals of E1 signal can be expressed mathematically as
follows:

𝑠𝑟 (𝑡) = 𝐴 [𝑐𝐷 (𝑡) 𝑑𝐷 (𝑡) (𝑃sc1 (𝑡) + 𝑄sc6 (𝑡))
− 𝑐𝑃 (𝑡) (𝑃sc1 (𝑡) − 𝑄sc6 (𝑡))]
⋅ cos (2𝜋 (𝑓IF + 𝑓𝐷) 𝑡 + 𝜃) + 𝑛 (𝑡) ,

(8)

where 𝑐𝐷 and 𝑐𝑃 are the data and pilot channels spreading
code sequences, 𝑑 is the navigation message, BOC(1, 1)
spreading symbols denoted sc1(𝑡) and BOC(6, 1) spreading
symbols denoted sc6(𝑡), 𝐴 is the amplitude, 𝑓IF and 𝑓𝐷 are
IF frequency and Doppler frequency, respectively, 𝜃 is the
unknown carrier phase, and 𝑛(𝑡) is the baseband equivalent
noise of the received noise that is assumed to be Gaussian.

In order to introduce the method, the baseband signal of
CBOC(6, 1, 1/11) is given by

𝑠 (𝑡) = 𝐴 [𝑐𝐷 (𝑡) 𝑑𝐷 (𝑡) (𝑃sc1 (𝑡) + 𝑄sc6 (𝑡))
− 𝑐𝑃 (𝑡) (𝑃sc1 (𝑡) − 𝑄sc6 (𝑡))] . (9)

Based on the waveform of CBOC(6, 1, 1/11) signal, an
auxiliary signal 𝑎𝑖(𝑡) (𝑖 = 1, 2) is introduced to signal
acquisition process. The local reference signals of pilot and
data channels with auxiliary signal are represented in the
following equations.

𝑆𝐷𝑖 (𝑡) = 𝐶𝐷−𝐿 (𝑡) (𝑃 ⋅ SC1 (𝑡) + 𝑄 ⋅ SC6 (𝑡)) 𝑎𝑖 (𝑡) , (10)

𝑆𝑃𝑖 (𝑡) = 𝐶𝑃−𝐿 (𝑡) (𝑃 ⋅ SC1 (𝑡) − 𝑄 ⋅ SC6 (𝑡)) 𝑎𝑖 (𝑡) , (11)

𝑎𝑖 (𝑡) =
{{{{{{{{{{{{{

1.5, (𝑛 − 1) 𝑇𝑐 < 𝑡 < (𝑛 − 23)𝑇𝑐
0, (𝑛 − 23)𝑇𝑐 < 𝑡 < (𝑛 − 13)𝑇𝑐
1.5 ∗ (−1)𝑖, (𝑛 − 13)𝑇𝑐 < 𝑡 < 𝑛𝑇𝑐

𝑖 = 1, 2,

(12)
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where 𝐶𝐷−𝐿(𝑡) and 𝐶𝑃−𝐿(𝑡) are local PRN code of data
channel and pilot channel, 𝑇𝑐 is the PRN code interval, and 𝑛
is the number of 𝑇𝑐. Then the cross-correlation functions can
be obtained,multiplying the local reference signals by 𝑆base(𝑡).
And 𝜏 represents code delay.

𝑅𝑆/𝑆𝐷1 (𝜏) =
+∞∑
−∞

𝑆 (𝑡) 𝑆𝐷1 (𝑡 − 𝜏) , (13)

𝑅𝑆/𝑆𝐷2 (𝜏) =
+∞∑
−∞

𝑆 (𝑡) 𝑆𝐷2 (𝑡 − 𝜏) , (14)

𝑅𝑆/𝑆𝑃1 (𝜏) =
+∞∑
−∞

𝑆 (𝑡) 𝑆𝑃1 (𝑡 − 𝜏) , (15)

𝑅𝑆/𝑆𝑃2 (𝜏) =
+∞∑
−∞

𝑆 (𝑡) 𝑆𝑃2 (𝑡 − 𝜏) . (16)

Then, the correlation results (13), (14), (15), and (16) can
be computed based on equations (10), (11), and (12). tri(𝑥/𝑦)
is a triangular function of width 2𝑦, centred in 𝑥 = 0, where
it has a unity value. It can be used to express the correlation
peaks of correlation function.

󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝐷1 (𝜏)󵄨󵄨󵄨󵄨󵄨 =
11∑
𝑖=−11,𝑖 ̸=0

𝛼𝑖 ⋅ tri(𝜏 + 𝑖/121/12 ) , (17)

where 1/12 is the bottom width, decided by the subcarrier
frequency of BOC(6, 1). And the number of triangular
functions is decided by the waveform of 𝑆 and 𝑆𝐷1.

Based on the fixed component and ratio of
CBOC(6, 1, 1/11), 𝛼𝑖 have fixed values through calculating.
And the results of 𝛼𝑖 are obtained as follows.

𝛼i = [1 + 2√10/118 , 944 , 3 + 2√10/118 , 922 , 12 , 922 ,
12 − √1044 , 122 , 7 + 2√1088 , 14 , 988 , 988 , 14 , 7 + 2√1088 ,
122 , 12 −

√1044 , 922 , 12 , 922 , 3 + 2√10/118 , 944 ,
1 + 2√10/118 ] , 𝑖 = −11∼11, 𝑖 ̸= 0.

(18)

Similarly, the correlation results |𝑅𝑆/𝑆𝐷2(𝜏)| can be
obtained.

󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝐷2 (𝜏)󵄨󵄨󵄨󵄨󵄨 =
11∑
𝑖=−11

𝛽𝑖 ∗ tri(𝜏 + 𝑖/121/12 ) ,

𝛽𝑖 = [1 + 2√10/118 , 944 , 3 + 2√10/118 , 922 , 12 , 922 ,

1

2

3

4

5

6

×104

×104

×104

×104

Rs/s1



Rs/s2



Rs/s1



Rs/s2



0
2
4
6
8

A
m

pl
itu

de

0
5

10
15

A
m

pl
itu

de

0
2
4
6
8

A
m

pl
itu

de

0
5

10
15

A
m

pl
itu

de
10 2 3−2 −1−3

Code delay (chips) 

10 2 3−2 −1−3

Code delay (chips) 

10 2 3−1−2−3

Code delay (chips) 

10 2 3−2 −1−3

Code delay (chips) 

Figure 4: Correlation results of |𝑅𝑆/𝑆𝐷1 (𝜏)|, |𝑅𝑆/𝑆𝐷2 (𝜏)|, |𝑅𝑆/𝑆𝑃1 (𝜏)|,
and |𝑅𝑆/𝑆𝑃2 (𝜏)|.

12 − √1044 , 122 , 25 + 2√1088 , 34 , 6388 , 1, 6388 , 34 ,
25 + 2√1088 , 122 , 12 −

√1044 , 922 , 12 , 922 , 3 + 2√10/118 ,
944 , 1 + 2√10/118 ] , 𝑖 = −11∼11.

(19)

By calculating and comparing, |𝑅𝑆/𝑆𝐷1(𝜏)| and |𝑅𝑆/𝑆𝐷2(𝜏)|
own similar side peaks, while there are seven differences,
including 𝑖 = [−3, −2, −1, 0, 1, 2, 3].The same situation occurs
on |𝑅𝑆/𝑆𝑃1(𝜏)| and |𝑅𝑆/𝑆𝑃2(𝜏)|. All the correlation outputs have
been simulated and shown in Figure 4.

Looking at Figure 4, we can find that label 1 and label
2 have the same shape as well as label 5 and label 6. The
result of the experiment is accordant with the theory. Then,
if |𝑅𝑆/𝑆𝐷2(𝜏)| is subtracted from |𝑅𝑆/𝑆𝐷1(𝜏)|, the side peaks will
be removed nearly. Furthermore, when label 4 is subtracted
from label 3, the result is a main peak, restraining side
peaks.The same situation occurs on |𝑅𝑆/𝑆𝑃1(𝜏)| and |𝑅𝑆/𝑆𝑃2(𝜏)|.
According to correlation results, outputs of data and pilot
channels are obtained.

󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝐷2 (𝜏)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝐷1 (𝜏)󵄨󵄨󵄨󵄨󵄨 =
3∑
𝑖=−3

𝜀𝑖 ⋅ tri(𝜏 + 𝑖/121/12 ) ,

𝜀𝑖 = 944 , 12 , 2744 , 1, 2744 , 12 , 944 ,
(20)

38 New Frontiers in Signal Processing

__________________________ WORLD TECHNOLOGIES __________________________



WT
>�reshold?

Multiple IFFT

Multiple IFFT

Multiple FFTMultiple FFT
Yes

N0

Cosine carrier Local PRN
generator

Multiple IFFT

Multiple IFFT

Multiple FFT Multiple FFT

Local sub-carrier

S(t)

… …

… …

… …

… …

… …

… …

… …

… …

⨂

⨂

⨂

⨂

⨂

⨂

⨂

⨂

⨂

⨂ ⨁

⨁

⨁

⨁

⨁

⨁

⨁

⨁
⨁

Multiple ＆＆４∗

Multiple ＆＆４∗

Q(·)

I(·)

90∘

SD1(t) SD2(t) SP1(t) SP2(t)

a1(t) a2(t) ３＃1(t) ３＃6(t) CD−L(t) CP−L(t)

+

−

−

+
−

Auxiliary signal
(ai(t), i = 1, 2)

Figure 5: Architecture of SSCM algorithm.

󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝑃2 (𝜏)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝑃1 (𝜏)󵄨󵄨󵄨󵄨󵄨 =
3∑
𝑖=−3

𝜀𝑖 ⋅ tri(𝜏 + 𝑖/121/12 ) ,
𝜀𝑖 = 944 , 12 , 2744 , 1, 2744 , 12 , 944 .

(21)

From (20) and (21), one can see that the correlation result
is a linear superposition of several triangular functions, and
the two functions are the same. Therefore, a normalized
correlation function named special side-peak cancel method
(SSCM) can be denoted as follows:

𝑅proposed (𝜏) = 󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝐷2 (𝜏)󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝐷1 (𝜏)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝑃2 (𝜏)󵄨󵄨󵄨󵄨󵄨
− 󵄨󵄨󵄨󵄨󵄨𝑅𝑆/𝑆𝑃1 (𝜏)󵄨󵄨󵄨󵄨󵄨

= 2 ⋅ 3∑
𝑖=−3

𝜀𝑖 ⋅ tri(𝜏 + 𝑖/121/12 )
≈ 2 ⋅ tri( 𝜏1/3) .

(22)

From formula (22), the correlation function of SSCM
contains only one main peak, solving the phase ambiguity
problem effectively.

Based on subtract operation, the noise of each channel is
restrained, while the main peak value of correlation output is
uninfluenced. Furthermore, by using |𝑅𝑆/𝑆𝐷2(𝜏)| − |𝑅𝑆/𝑆𝐷1(𝜏)|

and |𝑅𝑆/𝑆𝑃2(𝜏)| − |𝑅𝑆/𝑆𝑃1(𝜏)| in combination, a bigger main
peak can be obtained, and the pilot channel and data channel
are both fully used. Then the schematic diagram of SSCM
algorithm is shown in Figure 5.

Eight correlators are employed in this architecture. And
the in-phase branches are omitted to simplify structure.

In order to analyze detection probability (𝑃𝑑) and false
alarm probability (𝑃𝑓), a detailed description of the spread
spectrum signal acquisition theory [19] is used. In traditional
acquisition scheme, the test criterion is given by

𝑇 = 𝑀−1∑
𝑖=0

𝐼2𝑖 + 𝑄2𝑖 , (23)

where 𝐼𝑖 and 𝑄𝑖 are, respectively, in-phase and quadra-phase
correlator outputs.𝑀 is the number of noncoherent summa-
tions. Once the maximum correlation result is larger than a
threshold, detection is declared. The main idea SSCM based
is to construct local auxiliary signals, the cross-correlation
of which with the received signal can be used to remove the
undesired side peaks. We choose the test criterion as follows.

𝑇 = 𝑀−1∑
𝑖=0

[(𝐼2𝑆/𝑆𝐷2 ,𝑖 + 𝑄2𝑆/𝑆𝐷2 ,𝑖) − (𝐼2𝑆/𝑆𝐷1 ,𝑖 + 𝑄2𝑆/𝑆𝐷1 ,𝑖)
+ (𝐼2𝑆/𝑆𝑃2 ,𝑖 + 𝑄2𝑆/𝑆𝑃2 ,𝑖) − (𝐼2𝑆/𝑆𝑃1 ,𝑖 + 𝑄2𝑆/𝑆𝑃1 ,𝑖)] ,

(24)
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where 𝐼𝑆/𝑆𝐷2 ,𝑖, 𝑄𝑆/𝑆𝐷2 ,𝑖, 𝐼𝑆/𝑆𝐷1 ,𝑖, 𝑄𝑆/𝑆𝐷1 ,𝑖, 𝐼𝑆/𝑆𝑃2 ,𝑖, 𝑄𝑆/𝑆𝑃2 ,𝑖, 𝐼𝑆/𝑆𝑃1 ,𝑖,
and 𝑄𝑆/𝑆𝑃1 ,𝑖 are in-phase and quadra-phase correlate outputs
when the local signals employ the auxiliary signal. All the
outputs are shown in the following.

𝐼𝑆/𝑆𝐷1 ,𝑖
= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝐷1 (Δ𝜏) cos (Δ𝜑)

+ 𝑛𝐼,𝑖,
𝑄𝑆/𝑆𝐷1 ,𝑖

= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝐷1 (Δ𝜏) sin (Δ𝜑)
+ 𝑛𝑄,𝑖,

𝐼𝑆/𝑆𝐷2 ,𝑖
= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝐷2 (Δ𝜏) cos (Δ𝜑)

+ 𝑛𝐼,𝑖,
𝑄𝑆/𝑆𝐷2 ,𝑖

= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝐷2 (Δ𝜏) sin (Δ𝜑)
+ 𝑛𝑄,𝑖,

𝐼𝑆/𝑆𝑃1 ,𝑖
= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝑃1 (Δ𝜏) cos (Δ𝜑)

+ 𝑛𝐼,𝑖,
𝑄𝑆/𝑆𝑃1 ,𝑖

= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝑃1 (Δ𝜏) sin (Δ𝜑)
+ 𝑛𝑄,𝑖,

𝐼𝑆/𝑆𝑃2 ,𝑖
= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝑃2 (Δ𝜏) cos (Δ𝜑)

+ 𝑛𝐼,𝑖,
𝑄𝑆/𝑆𝑃2 ,𝑖

= √𝑇sum𝐶𝑁0 sinc (Δ𝑓𝑇sum) 𝑅𝑆/𝑆𝑃2 (Δ𝜏) sin (Δ𝜑)
+ 𝑛𝑄,𝑖.

(25)

Here sinc(𝑥) is equal to sin(𝑥)/𝑥. Δ𝜏 means the code
phase error, 𝑇sum, is the coherent integration time, Δ𝑓
represents the Doppler frequency, 𝐶/𝑁0 means the ratio of
carrier and noise, and Δ𝜑 refer to the frequency wipe-off
error. 𝑛𝐼,𝑖 and 𝑛𝑄,𝑖 are the correlation calculation results of
an additive white Gaussian noise with zero and single-sided
noise PSD𝑁0.

Then the four terms ∑𝑀−1𝑖=0 (𝐼2𝑆/𝑆𝐷2 ,𝑖 + 𝑄2𝑆/𝑆𝐷2 ,𝑖),∑𝑀−1𝑖=0 (𝐼2𝑆/𝑆𝐷1 ,𝑖 + 𝑄2𝑆/𝑆𝐷1 ,𝑖), ∑𝑀−1𝑖=0 (𝐼2𝑆/𝑆𝑃2 ,𝑖 + 𝑄2𝑆/𝑆𝑃2 ,𝑖), and
∑𝑀−1𝑖=0 (𝐼2𝑆/𝑆𝑃1 ,𝑖 + 𝑄2𝑆/𝑆𝑃1 ,𝑖) follow 𝜒2 distribution with 2𝑀
degrees of freedom (DOF), in which the noncentrality
parameters of the four terms are

𝑎21 = 𝑀 ⋅ 𝑇sum ⋅ 𝐶𝑁0 ⋅ sinc
2 (Δ𝑓𝑇sum) ⋅ 𝑅2𝑆/𝑆𝐷2 (Δ𝜏) ,

𝑎22 = 𝑀 ⋅ 𝑇sum ⋅ 𝐶𝑁0 ⋅ sinc
2 (Δ𝑓𝑇sum) ⋅ 𝑅2𝑆/𝑆𝐷1 (Δ𝜏) ,

𝑎23 = 𝑀 ⋅ 𝑇sum ⋅ 𝐶𝑁0 ⋅ sinc
2 (Δ𝑓𝑇sum) ⋅ 𝑅2𝑆/𝑆𝑃2 (Δ𝜏) ,

𝑎24 = 𝑀 ⋅ 𝑇sum ⋅ 𝐶𝑁0 ⋅ sinc
2 (Δ𝑓𝑇sum) ⋅ 𝑅2𝑆/𝑆𝑃1 (Δ𝜏) .

(26)

And the test criterion without noise can be expressed as

𝑇 ≈ 𝑀 ⋅ 𝑇sum ⋅ 𝐶𝑁0 ⋅ sinc
2 (𝜋Δ𝑓𝑇sum) ⋅ (𝑅2𝑆/𝑆𝐷2 (Δ𝜏)

− 𝑅2𝑆/𝑆𝐷1 (Δ𝜏) + 𝑅2𝑆/𝑆𝑃2 (Δ𝜏) − 𝑅2𝑆/𝑆𝑃1 (Δ𝜏)) = 𝑎21
− 𝑎22 + 𝑎23 − 𝑎24 .

(27)

According to the statistical theory [19–21], in order to
simplify the computation of theoretical 𝑃𝑓𝑎 and 𝑃𝑑, the detec-
tion probability and false alarm probability of the proposed
method have similar form as the GRASS technique [10]. And
the Gaussian 𝑄-function is adopted to approximate

𝑃𝑑 (𝑉) ≈ 𝑄(𝑉 − 4𝑀 −𝑀(𝑇 − 4)
4√𝑀(4 + 𝑇) ) , (28)

where 𝑉 denotes threshold of false alarm, which can be
calculated as

𝑃𝑓𝑎 (𝑉) = exp(−𝑉2 )
𝑀−1∑
𝑛=0

1𝑛! (𝑉2 )
𝑛 . (29)

5. Simulation and Analysis

In order to verify the effectiveness and validity of SSCM, it
is necessary to analyze the efficiency in terms of correlation
function, peak-to-average ratio (PAR) with different noise,
detection probability (𝑃𝑑), false alarm probability (𝑃𝑓), and
processing complexity. In the following comparisons, we
assume the following parameters: the center frequency 𝑓𝑐 is
48MHz, sampling frequency 𝑓𝑠 is 192MHz, accumulation
time 𝑇 is 1ms, and signal-to-noise rate (SNR) range is −35∼
0 dB.
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Figure 6: Normalized correlation functions of SSCM, ASPeCT,
SCPC, and PCF.

Figure 6 shows the normalized correlation functions
of these four methods. And the SNR is set at −15 dB.
SCPC method is similar to that of BPSK, and this method
destroys the narrow peak of autocorrelation function (ACF).
Therefore, SCPC method is not suitable to CBOC signal. For
ASPeCT method, the influence of remaining side peaks still
exist. With PRN code delay and Doppler shift, each value is
tested in order to get a correlative result. Once the maximum
correlation result exceeds the setting threshold, detection will
occur. It is probably that one of side peak’s energy will be
larger than the main peak under the influence of remaining
side peaks; thus false acquisition will happen, and this side
peak will be locked. In these four methods, PCF method has
similarACFwith SSCMmethod, owning only onemain peak.
Nevertheless, the two methods differed in power efficiency.
From formula (4) one can find that CBOC signal owns data
component and pilot component. In PCF method, only one
component is utilized, while the two components are fully
used in SSCM method. And the main peak of SSCM will be
higher than PCF’s. Through comparison and analysis, it is
found that PCF method owns the best correlation function
among PCF, ASPeCT, and SCPC, which is similar to SSCM.
Then, take PCFmethod as example, the performances of PCF
and SSCM are compared. In Figure 7, the nonnormalized
correlation functions of PCF and SSCMmethod are shown.

In CBOC(6, 1, 1/11) modulation, data component and
pilot component are modulated in the same carrier. And
both components have the same Doppler shift and code
synchronous message.Therefore, depending on using a com-
bination of the two components, PAR of SSCM method is
increased to guarantee 𝑃𝑑 under severe environment.

Along with SNR increasing from −35 dB to 0 dB, simula-
tion shows that SSCM method own the best PAR than other
three methods. From formula (20), |𝑅𝑆/𝑆𝐷2(𝜏)| − |𝑅𝑆/𝑆𝐷1(𝜏)|
and |𝑅𝑆/𝑆𝑃2(𝜏)| − |𝑅𝑆/𝑆𝑃1(𝜏)| can suppress the noise of each
component, which contribute to PAR. And SCPC owns the
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Figure 7: Nonnormalized correlation functions of SSCM and PCF.
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worst PAR due to its combination of in-phase correlation
output and quadra-phase correlation output, which cause
channel noise more severe. PARs of these four methods are
shown in Figure 8.

With a fixed false alarm probability 𝑃𝑓𝑎 = 10−5, the
performance of the SSCMandPCF acquisitionmethod is also
shown in the following for comparison.

The detection probabilities of both proposed technique
and PCF method are drawn in Figure 9 with different 𝑇𝑝 and𝑀, under the assumption of fixed false alarmprobability. And
the detection probabilities increase with 𝐶/𝑁0, 𝑇𝑝 and 𝑀
growth. And the acquisition performance of SSCM method
increases 1 to 2 dB compared with the PCF method. The
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Figure 9: Detection probability for CBOC, 𝑃𝑓𝑎 = 10−5.

reason for this phenomenon is that the proposed method
uses data channel and pilot channel completely to get the
correlation peak. Moreover, the proposed method has no
threat with acquisition ambiguity problems. So the proposed
scheme is robust compared with PCF scheme. Another
characteristic of the proposed unambiguous methods is that
it has a narrower peak. It can provide sufficiently small code
delay to insure the acquisition precision.

6. Conclusion

In this paper, the principle and characteristics of
CBOC(6, 1, 1/11) are studied. And a new acquisition
method for CBOC(6, 1, 1/11) modulation is proposed,
which can remove the ambiguity threat. Eight correlators are
used in this method and result in complexity of acquisition
structure increasing. However, the acquisition technique can
remove side peaks completely, meaning that the ambiguity
problem can be restrained. Moreover, SSCM method
is suitable for working in a serious condition. And the
detection probability of CBOC can be guaranteed, which
devote to average acquisition time.
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[8] V. Heiries, J.-À. Àvila-Rodriguez, M. Irsigler, G. W. Hein, E.
Rebeyrol, and D. Roviras, “Acquisition performance analysis of
composite signals for the LIOSoptimized signal,” inProceedings
of the 18th International Technical Meeting of the Satellite
Division ofThe Institute of Navigation, IONGNSS 2005, pp. 877–
889, usa, September 2005.

[9] Y. Lee, D. Chong, I. Song, S. Y. Kim, G.-I. Jee, and S. Yoon,
“Cancellation of correlation side-peaks for unambiguous BOC
signal tracking,” IEEE Communications Letters, vol. 16, no. 5, pp.
569–572, 2012.

[10] Z. Yao, M. Lu, and Z. Feng, “Unambiguous sine-phased binary
offset carrier modulated signal acquisition technique,” IEEE
Transactions onWireless Communications, vol. 9, no. 2, pp. 577–
580, 2010.

[11] F. Shen, G. Xu, and D. Xu, “Unambiguous acquisition technique
for cosine-phased binary offset carrier signal,” IEEE Communi-
cations Letters, vol. 18, no. 10, pp. 1751–1754, 2014.

[12] Y. Zhou, X. Hu, T. Ke, and Z. Tang, “Ambiguity mitigating
technique for cosine-phased binary offset carrier signal,” IEEE
Transactions on Wireless Communications, vol. 11, no. 6, pp.
1981–1984, 2012.

[13] J. A. Avila-Rodriguez, “Revised combined GALILEO/GPS fre-
quency and signal performance analysis,” in Proceedings of ION
GNSS, pp. 13–16, Long Beach , Calif, USA, 2005.

[14] M. Flissi, K. Rouabah, D. Chikouche, A. Mayouf, and S. Atia,
“Performance of new BOC-AW-modulated signals for GNSS
system,” EURASIP Journal on Wireless Communications and
Networking, vol. 2013, no. 1, article no. 124, 2013.

[15] D. W. Lim, D. J. Cho, H. H. Choi, and S. J. Lee, “A simple and
efficient code discriminator for a MBOC signal tracking,” IEEE
Communications Letters, vol. 17, no. 6, pp. 1088–1091, 2013.

42 New Frontiers in Signal Processing

__________________________ WORLD TECHNOLOGIES __________________________



WT

[16] J. A. Avila-Rodriguez, S. Wallner, G. W. Hein, E. Rebeyrol, and
O. Julien, “CBOC: an implementation of MBOC. CNES-ESA,”
in Proceedings of the 1st Workshop on GALILEO Signals and
Signal Processing, Toulouse, France, 2006.

[17] J. W. Betz, “Binary offset carrier modulations for radionaviga-
tion,” NAVIGATION: Journal of the Institute of Navigation, vol.
48, no. 4, pp. 227–246, 2001.

[18] European Union, European GNSS (Galileo) Open Service,
Signal in Space Interface Control Document, SIS ICD, Issue 1.2,
November, 2015.

[19] F. Bastide, O. Julien, C. Macabiau, and B. Roturier, “Analysis of
L5/E5 acquisition, tracking and data demodulation thresholds,”
in Proceedings of the U.S. Institute of Navigation GPS Conference,
pp. 2196–2207, Portland, Ore, USA, 2002.

[20] J. Proakis andM. Salehi,Digital Communications,McGraw-Hill,
2001.

[21] H. Van Trees, Detection, Estimation And Modulation Theory,
Chapter 5, Wiley-Interscience, 2001.

43SSCM: An Unambiguous Acquisition Algorithm for CBOC Modulated Signal

__________________________ WORLD TECHNOLOGIES __________________________



WT
A Detection Algorithm for the BOC Signal
b ased on Quadrature Channel Correlation

Bo Qian , Guolei Zheng , and Yongxin Feng

School of Information Science and Engineering, Shenyang Ligong University, Shenyang 110159, China

Correspondence should be addressed to Yongxin Feng; fengyongxin@263.net

Academic Editor: Iickho Song

In order to solve the problem of detecting a BOC signal, which uses a long-period pseudo random sequence, an algorithm is
presented based on quadrature channel correlation. The quadrature channel correlation method eliminates the autocorrelation
component of the carrier wave, allowing for the extraction of the absolute autocorrelation peaks of the BOC sequence. If the same
lag difference and height difference exist for the adjacent peaks, the BOC signal can be detected effectively using a statistical analysis
of themultiple autocorrelation peaks.The simulation results show that the interference of the carrier wave component is eliminated
and the autocorrelation peaks of the BOC sequence are obtained effectively without demodulation.The BOC signal can be detected
effectively when the SNR is greater than−12 dB.The detection ability can be improved further by increasing the number of sampling
points. The higher the ratio of the square wave subcarrier speed to the pseudo random sequence speed is, the greater the detection
ability is with a lower SNR. The algorithm presented in this paper is superior to the algorithm based on the spectral correlation.

1. Introduction

The Binary Offset Carrier (BOC) signal is used in the global
navigation satellite system (GNSS) and is characterized by
multiple peaks in its autocorrelation function and spectrum
splitting [1–3]. By using a square wave to modulate again, the
synchronization precision of the BOC signal is improved and
the interference of the same-frequency signals is decreased
[4]. On the other hand, there are multiple side-peaks around
the main peak of autocorrelation function of the BOC
sequence, thus causing the ambiguity problem. To deal with
the problem, several unambiguous techniques have been
proposed [5, 6]. A novel cancellation technique of correlation
side-peaks is proposed, by employing a combination of the
subcorrelations making up the BOC autocorrelation [6].

The pseudo random sequence of the BOC signal has the
characteristics of pseudo randomness and infinite periods
in a short time, which is used in secret communications.
Therefore, it is difficult to detect a BOC signal under non-
cooperative conditions. In addition, by utilizing the direct
sequence spread spectrum (DSSS), the BOC signal can be
transmitted under a negative signal to noise ratio (SNR)

and because the anti-interception ability is strong, it is more
difficult to detect the signal.

To date, new methods of BOC signal recognition and
parameter estimation have been proposed [7–11]. The detec-
tion methods are based on spectral correlation [7–9] and the
methods for parameter estimation are based on autocorre-
lation [10, 11]. The basis of the spectral correlation methods
is based on the cyclostationary characteristic of the BOC
signal, so that the parameters of the carrier, square wave, and
pseudo random sequence can be estimated. However, when
the pseudo random sequence has an infinite period in a short
time, the methods based on spectral correlation cannot work
effectively.

The autocorrelation methods are based on the character-
istics of themultiple autocorrelation peaks of the BOC signal.
Based on demodulating the BOC signal, the parameters can
be estimated effectively based on how the BOC signal cor-
relates with the multiple autocorrelation peaks. Considering
that the BOC signal is transmitted under a negative SNR in
secret communications, demodulation is not easily achieved;
therefore, it is difficult to estimate the parameters in a real-life
environment.

6
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Figure 1: Power spectral density of the BOC signals.

In this paper, an algorithm for detecting the BOC signal is
presented, using a long-period pseudo random sequence.The
autocorrelation component of the carrier wave in the BOC
signal is eliminated based on quadrature channel correlation.
By detecting the autocorrelation peaks, the BOC signal can
be detected.

The outline of this paper is as follows. In Section 2,
we study the characteristics of the BOC signal. Section 3
describes the analysis of the characteristics of the multiple
autocorrelation peaks for the BOC signal and the algorithm
for detecting the BOC signal. Section 4 provides simulation
results demonstrating the performance of the algorithm.
Finally, Section 5 presents our conclusions and final com-
ments.

2. Characteristics of the BOC Signal

The BOC signal 𝑌(𝑡), modulated by BPSK, is given by

𝑌 (𝑡) = 𝐴 ⋅ 𝐷 (𝑡) 𝑃 (𝑡) 𝑆𝑐 (𝑡) cos (2𝜋𝑓𝑡 + 𝜑) , (1)

where 𝐴 is the carrier amplitude, 𝐷(𝑡) is the baseband data,𝑃(𝑡) is the pseudo random sequence, 𝑆𝑐(𝑡) is the square wave,

𝑓 is the carrier frequency, and 𝜑 is the phase. The frequency
of 𝑃(𝑡) is 𝑓𝑐, and the frequency of 𝑆𝑐(𝑡) is 𝑓𝑠.

Firstly, the spread spectrum sequence is obtained by XOR
baseband data with the pseudo random sequence. Then, the
spread spectrum sequence is XORed again with a square
wave to generate the BOC sequence. Finally, the BOC signal
is generated by modulating the BOC sequence to the main
carrier. The BOC signal is denoted as BOC (𝑁𝑠, 𝑁𝑐), where𝑁𝑠 means the ratio of 𝑓𝑠 to the reference frequency 𝑓base, and𝑁𝑐 means the ratio of 𝑓𝑐 to the reference frequency 𝑓base. In
GNSS systems, the reference frequency 𝑓base = 1.023MHz.

The normalized power spectral density (PSD) of the BOC
signal can be expressed as [12]

𝐺BOC(𝑓𝑆,𝑓𝑐) (𝑓)

=
{{{{{{{{{

𝑓𝑐 [ sin (𝜋𝑓/2𝑓𝑠) sin (𝜋𝑓/𝑓𝑐)𝜋𝑓 cos (𝜋𝑓/2𝑓𝑠) ]
2

, 𝑛 is an odd number

𝑓𝑐 [ sin (𝜋𝑓/2𝑓𝑠) cos (𝜋𝑓/𝑓𝑐)𝜋𝑓 cos (𝜋𝑓/2𝑓𝑠) ]
2

, 𝑛 is an even number,
(2)

where

𝑛 = 2𝑓𝑠𝑓𝑐 . (3)

The distribution of the normalized power spectral density
for the BOC signals is shown in Figure 1, where DS (10) is
the normalized power spectral density of the DSSS signals, in
which the frequency of the pseudo random sequence is ten
times as much as 𝑓base.

As shown in Figure 1, the main lobe energy of the
BOC signal is split into two lobes located at ±𝑓𝑠 from
the central frequency. The main lobe energy of the DSSS
signal is concentrated in the central frequency.Therefore, the
BOC signal and the DSSS signal can be transmitted on the
same frequency at the same time without interfering with
each other and the bandwidth efficiency is greatly improved.
Because of the wider bandwidth, the BOC signal has a greater
antijamming capability than the DSSS signal. Furthermore, it
is difficult to estimate the carrier frequency of the BOC signal
because the two lobes are not located in the carrier frequency.

The autocorrelation function of the BOC sequence can be
expressed as [13]

𝑅BOC (𝜏) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

1, 𝜏 = 0
(−1)𝑙−1 [𝑛 − (𝑙 − 1)]

𝑛 + (−1)𝑙 [4𝑓𝑠 − 𝑓𝑐 (2𝑙 − 1)] ⋅ (𝜏 − 𝑙 − 1
2𝑓𝑠 ) , (𝑙 − 1)

2𝑓𝑠 < 𝜏 ≤ 𝑙
2𝑓𝑠0 < 𝑙 ≤ 𝑛 − 1, 𝑙 is integer

(−1)𝑙 [𝑛 − |𝑙|]
𝑛 + (−1)|𝑙|−1 [4𝑓𝑠 − 𝑓𝑐 (2 |𝑙| − 1)] ⋅ (𝜏 + |𝑙|

2𝑓𝑠) , |𝑙|
2𝑓𝑠 < 𝜏 ≤ (|𝑙| − 1)

2𝑓𝑠−𝑛 + 1 ≤ 𝑙 < 0, 𝑙 is integer
− 1
𝑁 𝑇𝑐 < |𝜏| ≤ (𝑁 − 1) 𝑇𝑐,

(4)
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Spread spectrum
sequence

...

...

...

...

Square wave

BOC sequence

BOC sequence
code delay 1

BOC sequence
code delay 2

1/fc

1/fs

1/2fs

Figure 3: The generation process of the autocorrelation peaks.

where𝑁 is the chip number of the pseudo random sequence
in one period and 𝑇𝑐 is the period of the pseudo random
sequence.

The autocorrelation functions of the BOC sequence are
shown in Figure 2.

Figure 2 shows that the autocorrelation function of
the BOC sequence contains multiple positive and negative
peaks. The absolute values of the multiple peaks decrease
gradually as the code delay increases.The sum of themultiple
peaks is 2𝑛 − 1. The width of the autocorrelation function’s
main peak is narrower so that the BOC sequence has a
better synchronous precision. The BOC sequence is highly
correlated with itself. The autocorrelation function of the
DSSS sequence contains only one peak and the main peak
of the DSSS sequence is wider than the peak of the BOC
sequence.

As shown in Figures 1 and 2, the BOC signal has two
characteristics splitting spectrum peaks and multiple auto-
correlation peaks, which enhance the antijamming ability
and improve the precision of the acquisition [14, 15]. In

addition, the BOC signal can be transmitted with other
signals, greatly improving the bandwidth efficiency [16]. The
advantages of the BOC signal make it highly suitable for
secret communications. However, because the main lobe
energy of the BOC signal is not concentrated in the carrier
frequency and the BOC signal should be transmitted under
the condition of a negative SNR [17, 18], it will be difficult
to estimate the carrier frequency of the BOC signal. In
addition, the BOC sequence, which is commonly used in
secret communications, has a longer period or is aperiodic in
a short time, which increases the difficulty of detecting and
estimating the BOC signal.

3. The Recognition Algorithm for
the BOC Signal

3.1. Multiple Autocorrelation Peaks Analysis. The multiple
autocorrelation peaks are a unique feature of the BOC
sequence and can be used to detect the BOC signal. This
feature is needed to analyze the relevance between the
multiple autocorrelation peaks. Figure 3 shows the genera-
tion process of an unambiguous autocorrelation function for
the BOC sequence.

The spread spectrum sequence, which is obtained by
the XOR baseband data with the pseudo random sequence
is XORed again with a square wave to generate the BOC
sequence (Figure 3).Then, the BOC sequence is shifted as the
code delay 𝜏 increases.When 𝜏 equals half a period of a square
wave, it represents the BOC sequence code delay 1. Similarly,
when 𝜏 equals one period of a square wave, it represents the
BOC sequence code delay 2 (Figure 3).

When 𝜏 is 0, the normalized autocorrelation result of the
BOC sequence is 1. The result of the normalized autocorre-
lation function decreases gradually with the increase in the
code delay 𝜏 from 0 to 1/2𝑓𝑠. This represents the main peak
of the autocorrelation function of the BOC sequence when𝜏 = 0 as shown in Figure 2. When 𝜏 is equal to 1/2𝑓𝑠, the
phase of the square wave component in the BOC sequence 1
is inverted. As a result, the autocorrelation result of the square
wave component is −1. This represents the first negative peak
when 𝜏 = 1/2𝑓𝑠 as shown in Figure 2. With an increase in
the code delay 𝜏, when 𝜏 is 1/𝑓𝑠, the phase of the square
wave component in the BOC sequence 2 is the same as in
the BOC sequence. As a result, the autocorrelation result of
the square wave component is equal to 1. This represents
the second positive peak when 𝜏 = 1/𝑓𝑠 as shown in
Figure 2.

By parity of reasoning, because the autocorrelation result
of the squarewave component is changed repeatedly from 1 to−1, there are multiple positive and negative peaks in the auto-
correlation function of the BOC sequence. The peaks occur
at the moment when 𝜏 is the integral multiple of 1/2𝑓𝑠 and 𝜏
is less than 1/𝑓𝑐. The number of peaks is related to 𝑓𝑐 and 𝑓𝑠
and is equal to 2𝑛 − 1 with |𝜏| ≤ 1/𝑓𝑐 by lead and lag. When 𝜏
exceeds one chip of the pseudo random sequence, the auto-
correlation result of the pseudo random sequence is −1/𝑁, as
shown in (3).When the period of the BOC sequence is longer
or aperiodic, the autocorrelation result is nearly equal to
0.
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By analyzing the generation process of the autocorrela-
tion function for the BOC sequence, the values of the auto-
correlation peaks can be expressed by

ℎ (𝑙) = (−1)𝑙 (𝑛 − |𝑙|)
𝑛 , 𝑙 = 0, ±1, . . . , ±𝑛 − 1, (5)

where ℎ(𝑙) is the value of the 𝑙-th peaks and 𝑙 is the sequence
number of the peaks.

When 𝑙 is equal to 0, ℎ(0) is the value of the main peak.𝑙 is positive when 𝜏 > 0; otherwise it is negative. The values
of the peaks decrease gradually as |𝑙| increases. Further, it is
seen from (4) that the height difference between the 𝑙-th peak
and the (𝑙 + 1)-th peak can be represented as

|Δℎ| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑛 − |𝑙|)

𝑛 − (𝑛 − |𝑙 + 1|)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
1
𝑛 , (6)

where Δℎ is the height difference.
Because the peaks always occur at the moment when 𝜏 is

the integral multiple of 1/2𝑓𝑠, the lag difference between the𝑙-th peak and the (𝑙+1)-th peak is 1/2𝑓𝑠. It can be represented
as

Δ𝜏 = 1
2𝑓𝑠 , (7)

where Δ𝜏 is the lag difference.
As shown in (5) and (6), the heights and lags of the

multiple autocorrelation peaks are related to 1/2𝑓𝑠. The
reason is mainly due to the second modulation by the square
wave. Therefore, we can detect the BOC signal by detecting
multiple autocorrelation peaks of the BOC sequence. If the
relevant rules shown in (5) and (6) are satisfied, the BOC
signal will be detected.

3.2. Quadrature Channel Correlation. Because the BOC sig-
nal is transmitted under the condition of a negative SNR and
there is a carrier wave component in the BOC signal, it is
difficult to obtain multiple autocorrelation peaks of the BOC
sequence.

An improvedmethod based onquadrature channel corre-
lation is presented to obtain multiple autocorrelation peaks.

The overall process of the quadrature channel correlation is
shown Figure 4.

The received BOC signal can be expressed as

𝑌󸀠 (𝑡) = 𝐴 ⋅ 𝑃󸀠 (𝑡) 𝑆𝑐 (𝑡) cos (2𝜋𝑓𝑡 + 𝜑) + 𝑛 (𝑡) , (8)

where𝑃󸀠(𝑡) is the spread spectrum sequence𝑃󸀠(𝑡) = 𝐷(𝑡)𝑃(𝑡)
and 𝑛(𝑡) is the zero-mean gauss white noise with a two-sided
power spectral density𝑁0.

Firstly, 𝑌󸀠(𝑡) is multiplied by cos(2𝜋𝑓local𝑡 + 𝜑local) and
sin(2𝜋𝑓local𝑡+𝜑local), respectively, where𝑓local is the frequency
of the local oscillator and 𝜑local is the phase of the local
oscillator.

Next, the high-frequency components are filtered by a
low-pass filter. We obtain

𝑆𝐼 (𝑡) = 𝐴
2 ⋅ 𝑃󸀠 (𝑡) 𝑆𝑐 (𝑡) cos [2𝜋Δ𝑓𝑡 + Δ𝜑] + 𝑛𝐼 (𝑡) (9)

𝑆𝑄 (𝑡) = −𝐴2 ⋅ 𝑃󸀠 (𝑡) 𝑆𝑐 (𝑡) sin [2𝜋Δ𝑓𝑡 + Δ𝜑] + 𝑛𝑄 (𝑡) , (10)

where Δ𝑓 = 𝑓−𝑓local, Δ𝜑 = 𝜑−𝜑local, and 𝑛𝐼(𝑡) and 𝑛𝑄(𝑡) are
the noise components in the 𝐼 and 𝑄 channels after filtering.

Subsequently, the autocorrelation functions of 𝑆𝐼(𝑡) and𝑆𝑄(𝑡) are calculated with the code delay 𝜏. We take 𝑆𝐼(𝑡) as
an example to study the autocorrelation and cross-correlation
functions. The autocorrelation function of 𝑆𝐼(𝑡) can be
expressed as

𝑅𝐼𝐼 (𝜏) = 𝑅𝑆𝐼𝑆𝐼 (𝜏) + 𝑅𝑆𝐼𝑛𝐼 (𝜏) + 𝑅𝑛𝐼𝑛𝐼 (𝜏) , (11)

where 𝑅𝑆𝐼𝑆𝐼(𝜏) is the autocorrelation component of the BOC
signal, 𝑅𝑆𝐼𝑛𝐼(𝜏) is the cross-correlation component between
the BOC signal and the noise, and 𝑅𝑛𝐼𝑛𝐼(𝜏) is the autocorre-
lation component of the noise.

Because there is no correlation between the noise and the
BOC signal,𝑅𝑆𝐼𝑛𝐼(𝜏) is nearly equal to 0 with enough received
data. Then, formula (10) can be expressed as

𝑅𝐼𝐼 (𝜏) = 𝑅𝑆𝐼𝑆𝐼 (𝜏) + 𝑅𝑛𝐼𝑛𝐼 (𝜏) (12)

based on the assumption,

𝑅𝑛𝐼𝑛𝐼 (𝜏) ≈ 𝑁0𝛿 (𝜏) . (13)
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The autocorrelation function 𝑅𝑆𝐼𝑆𝐼(𝜏) of the BOC signal
in 𝐼 channel can be expressed as

𝑅𝑆𝐼𝑆𝐼 (𝜏) = 1
2𝑇 lim
𝑇→∞

∫𝑇
−𝑇

𝑆𝐼 (𝑡) 𝑆𝐼 (𝑡 + 𝜏) 𝑑𝑡 = 1
2𝑇

⋅ lim
𝑇→∞

∫𝑇
−𝑇

𝐴2
8 𝑅PS (𝜏) ⋅ cos [2𝜋Δ𝑓 (2𝑡 + 𝜏) + 2Δ𝜑] 𝑑𝑡

+ 𝐴2
8 ⋅ cos (2𝜋Δ𝑓𝜏) ⋅ 𝑅PS (𝜏) ,

(14)

where

𝑅PS (𝜏) = 𝑃󸀠 (𝑡) 𝑆𝑐 (𝑡) 𝑃󸀠 (𝑡 + 𝜏) 𝑆𝑐 (𝑡 + 𝜏) (15)

is the autocorrelation function of the BOC sequence.
Then, 𝑅𝐼𝐼(𝜏) can be expressed as

𝑅𝐼𝐼 (𝜏) = 1
2𝑇

⋅ lim
𝑇→∞

∫𝑇
−𝑇

𝐴2
8 𝑅PS (𝜏) ⋅ cos [2𝜋Δ𝑓 (2𝑡 + 𝜏) + 2Δ𝜑] 𝑑𝑡

+ 𝐴2
8 cos (2𝜋Δ𝑓𝜏) ⋅ 𝑅PS (𝜏) + 𝑅𝑛𝐼𝑛𝐼 (𝜏) .

(16)

Similarly, the autocorrelation function of the 𝑄 channel
and the cross-correlation function of the two channels are
represented as

𝑅𝑄𝑄 (𝜏) = − 1
2𝑇

⋅ lim
𝑇→∞

∫𝑇
−𝑇

𝐴2
8 𝑅PS (𝜏) ⋅ cos [2𝜋Δ𝑓 (2𝑡 + 𝜏) + 2Δ𝜑] 𝑑𝑡

+ 𝐴2
8 cos (2𝜋Δ𝑓𝜏) ⋅ 𝑅PS (𝜏) + 𝑅𝑛𝑄𝑛𝑄 (𝜏)

(17)

𝑅𝐼𝑄 (𝜏) = − 1
2𝑇

⋅ lim
𝑇→∞

∫𝑇
−𝑇

𝐴2
8 𝑅PS (𝜏) ⋅ sin [2𝜋Δ𝑓 (2𝑡 + 𝜏) + 2Δ𝜑] 𝑑𝑡

− 𝐴2
8 sin (2𝜋Δ𝑓𝜏) ⋅ 𝑅PS (𝜏) + 𝑅𝑛𝐼𝑛𝑄 (𝜏)

(18)

𝑅𝑄𝐼 (𝜏) = − 1
2𝑇

⋅ lim
𝑇→∞

∫𝑇
−𝑇

𝐴2
8 𝑅PS (𝜏) ⋅ sin [2𝜋Δ𝑓 (2𝑡 + 𝜏) + 2Δ𝜑] 𝑑𝑡

+ 𝐴2
8 sin (2𝜋Δ𝑓𝜏) ⋅ 𝑅PS (𝜏) + 𝑅𝑛𝑄𝑛𝐼 (𝜏) .

(19)

According to (15)∼(18), we obtain
SUM (𝜏) = 𝑅𝐼𝐼 + 𝑅𝑄𝑄

=
{{{{{{{

𝐴2
4 cos (2𝜋Δ𝑓𝜏) ⋅ 𝑅PS (𝜏) , 𝜏 ̸= 0
𝐴2
4 + 𝑁0, 𝜏 = 0

(20)

SUB (𝜏) = 𝑅𝑄𝐼 − 𝑅𝐼𝑄

= {{{{{
𝐴2
4 sin (2𝜋Δ𝑓𝜏) ⋅ 𝑅PS (𝜏) , 𝜏 ̸= 0
0, 𝜏 = 0,

(21)

𝑅̂2 (𝜏) = SUM2 (𝜏) + SUB2 (𝜏)

=
{{{{{{{

𝐴4
16 𝑅2PS (𝜏) , 𝜏 ̸= 0
𝐴4
16 + 𝐴2

2 𝑁0 + 𝑁20 , 𝜏 = 0.
(22)

Then, the absolute value of the normalized multiple
autocorrelation peaks is obtained as shown in the following:

󵄨󵄨󵄨󵄨󵄨𝑅̂ (𝜏)󵄨󵄨󵄨󵄨󵄨 = √𝑅̂2 (𝜏) (23)

By using the quadrature channel correlation, the autocor-
relation of the carrier component in the BOC signal has been
eliminated and themultiple autocorrelation peaks of the BOC
sequence are extracted.

3.3. Detection of the Autocorrelation Peaks. In order to detect
the BOC modulation signal, it is necessary to detect the
autocorrelation peaks. By analyzing multiple autocorrelation
peaks of the BOC sequence as described in Section 2, we
know that the heights and lags of themultiple autocorrelation
peaks for the BOC sequence are related to 1/2𝑓𝑠 and that the
sum of the multiple autocorrelation peaks is related to 𝑓𝑐 and𝑓𝑠.

The absolute values of the normalized multiple autocor-
relation peaks for the BOC sequence with different 𝑓𝑐 and 𝑓𝑠
values are shown in Figure 5. The sampling frequency is 400
times larger than for 𝑓base.

The frequency of the square wave should be larger than
the frequency of the pseudo random sequence to generate the
BOC signal. In Figure 5, the number of peaks for the BOC
(10, 10) signal is two with a gradual increase in 𝜏 from 0 to1/𝑓𝑐. The main peak appears when 𝜏 = 0 and the secondary
peak appears at the 20th sample point. Because one period of
the square wave or the pseudo random sequence is sampled
40 times, when 𝜏 equals 20 sample points, the normalized
autocorrelation result of the square wave is equal to −1. At
the same time, the normalized autocorrelation result of the
spread spectrum sequence is equal to 0.5 and the height of
the secondary peak is equal to 0.5.When 𝜏 exceeds 40 sample
points, the autocorrelation result of the spread spectrum
sequence is nearly equal to 0 and there is no peak.

For the BOC (10, 5) signal, the frequency of the square
wave is twice as much as the frequency of the pseudo random
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Figure 5: The absolute values of the autocorrelation peaks for the BOC sequence.

sequence. One period of the square wave is sampled 40 times
and one chip of the pseudo random sequence is sampled
80 times. When 𝜏 equals 20 sample points, the normalized
autocorrelation result of the square wave is equal to −1. At
the same time, the normalized autocorrelation result of the
square wave is equal to 0.75. Therefore, the absolute value of
the normalized autocorrelation result for the BOC sequence
is equal to 0.75. This represents the secondary peak. When𝜏 equals 40 sample points, it represents the third peak and
the height of the peak is equal to 0.5. The last peak occurs
at 60 sample points and the height of the peak is equal to
0.25. There is no peak when 𝜏 exceeds 80 sample points.
Similarly, for the BOC (5, 2) signal, the secondary peak occurs
at 40 sample points and the height of the peak is equal to
0.8. For the BOC (15, 2.5) signal, the secondary peak occurs
at 13 sample points and the height of the peak is equal to
0.87.

By analyzing the multiple autocorrelation peaks of the
BOC sequence described in Section 2.1 and Figure 5, the
secondary peak occurs at the moment that 𝜏 equals half a
period of the square wave. Therefore, when 𝑓𝑐 is equal to 𝑓𝑠,
the height of the secondary peak is equal to 0.5. When 𝑓𝑠 is
larger than 𝑓𝑐, the height of the secondary peak is larger than
0.5, as shown in Figure 5. With a gradual increase in 𝜏, the
heights of the peaks decrease gradually. Because 𝑓𝑠 is not less
than 𝑓𝑐, the height of the secondary peak is not less than 0.5.
Therefore, the initial threshold for detecting the secondary
peaks can be equal to 0.5. The secondary peak is determined
by the absolute value of the normalized autocorrelation result,
which is the largest peak except for the main peak and it is
not less than 0.5. If there is no peak, it is not a BOC signal.
Otherwise, according to the height and lag difference, Δℎ andΔ𝜏 can be estimated. We can determine the next peak withΔℎ and Δ𝜏 until the height is nearly equal to 0. If there are
multiple peaks, this means it is a BOC signal.

As shown in (21), there is an autocorrelation component
of the noise in 𝑦(𝜏) with 𝜏 = 0. When the SNR is low, the
autocorrelation component of the noise is large, which will
lead to greater errors for Δℎ, and this has a large impact on
the ability to detect the BOC signal. Therefore, the absolute
values of the normalizedmultiple autocorrelation peaks need
to be adjusted. Based on the least squares fitting method, the
autocorrelation results that are close to the main peak and
are descending continuously are determined and the height
of the main peak is adjusted.

The flow of the algorithm is shown in Figure 6.

4. Simulation Results

We assume the following parameters for the simulations: 𝑓𝑐
= 2.046MHz, 𝑓𝑠 = 5.115MHz, 𝑓𝑠 = 20.46MHz, and 𝑓local =
10.23MHz. The sampling frequency is 204.6MHz and the
number of sampled points is 25000.

Figure 7 shows the absolute values of the autocorrelation
peaks for the BOC (5, 2) signal with SNR = 10 dB. It is evident
that the autocorrelation component of the carrier wave is
eliminated by using the quadrature channel correlation. The
multiple autocorrelation peaks are easy to detect. For the
absolute values of the normalized multiple autocorrelation
peaks (without the elimination of the autocorrelation compo-
nent of the carrier wave), there aremore peaks that are caused
by the carrier autocorrelation around the peaks of the BOC
sequence. This can interfere with the detection of the peaks.
From Figure 7, we can see that the multiple autocorrelation
peaks of the BOC sequence are obtained by the quadrature
channel correlation and the BOC signal does not require
demodulation.

Figure 8 shows the absolute values of the autocorrelation
peaks for the BOC (5, 2) signal with different SNR values.
Because there is a noise autocorrelation component that is
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Figure 6: Flowchart of the proposed algorithm.
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Figure 7: The absolute value of the autocorrelation peaks with SNR = 10 dB.
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Figure 8: The absolute value of the autocorrelation peaks with different SNR.

included in the main peaks as shown in (a), the main peaks
increase as the SNR gradually decreases. Therefore, the other
normalized autocorrelation peaks are lower with a lower SNR
such as the secondary peak and the third peak. The noise
autocorrelation component in the main peak is eliminated
after the adjustment. As a result, the adjusted result for the
multiple peaks is similar to the result under a noise-free
condition.

Table 1 shows the results for the detection of the multiple
peaks. It is evident that the heights of the peaks decrease grad-
ually as 𝜏 increases. For SNR = 10 dB, there are the approx-
imate height differences Δℎ and lag differences Δ𝜏 between

the adjacent peaks. For lower values of the SNR, the error
gradually increases.

Figure 9 shows the performance of the proposed algo-
rithm for different data lengths. When the data length is
25000, the BOC (5, 2) signal can be detected effectively when
the SNR is greater than −12 dB. When the data length is
100000, the detection probability of the BOC (5, 2) signal
increases to 1 dB. The detection performance for the BOC (5,
2) signal can be improved with an increase in the data length
because the autocorrelation component of the noise is smaller
with a greater data length. Therefore, the detection ability of
the proposed algorithm is higher at a lower SNR. However,
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Figure 9: Detection probability with different data lengths.
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Figure 10: Detection probability for different values of 𝑓𝑐 and 𝑓𝑠.

when the SNR is lower than −15 dB, the BOC signal cannot
be detected when the data length is 100000.

Figure 10 shows the performance of the proposed algo-
rithm for different values of 𝑓𝑐 and 𝑓𝑠 with a data length of
100000.When the ratio 𝑛 of𝑓𝑠 to𝑓𝑐 is larger, the probability of
detecting the BOC signal is higher for the same SNR because
there are more peaks with a larger 𝑛 and the height of the
secondary peak is larger. Therefore, it is easy to detect the
peaks and detect the BOC signal.

Figure 11 shows the performance of the proposed algo-
rithm based on the quadrature channel correlation and the
spectral correlation. It is evident that the probability of
detecting the BOC signal is higher for the quadrature channel
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Figure 11: Detection probability for different algorithms.

Table 1: The results of the peak detection.

SNR/dB Number of peaks Height 𝜏/sampled points Δℎ

10 dB

1 1 0 0
2 0.7992 20 0.2008
3 0.6021 40 0.1971
4 0.4122 60 0.1899
5 0.2197 80 0.1925

0 dB

1 1 0 0
2 0.7655 20 0.2345
3 0.5613 40 0.2042
4 0.4122 60 0.1491
5 0.195 80 0.2172

−10 dB
1 1 0 0
2 0.7173 20 0.2827
3 0.5025 40 0.2148
4 0.3473 59 0.1552
5 0.2984 79 0.0489

correlation than for the spectral correlation algorithm.Under
the same conditions, the detection probability for the BOC
signal is improved by about 2 dB.

5. Conclusions

(1) The autocorrelation component of the carrier wave is
eliminated by using the quadrature channel correlation. If the
adjacent autocorrelation peaks have the same lag differences
and height differences, the BOC signal is detected effectively
by detecting the absolute value of themultiple autocorrelation
peaks.

(2) The ability to detect the BOC signal is related to the
data length and the ratio of 𝑓𝑠 to 𝑓𝑐. Larger values for the data
length and the ratio of𝑓𝑠 to𝑓𝑐 result in a higher probability to
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detect the BOC signal. The algorithm presented in this paper
is superior to the algorithm based on the spectral correlation.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the Science and Technology Foun-
dation from Liaoning EducationDepartment (no. L2015462),
Shenyang Ligong University Liaoning Province Information
Network and Countermeasure Technology Key Laboratory
Open Foundation (2015), and Shenyang Ligong University
Postdoctoral Science Foundation.

References

[1] M. Foucras, J. Leclère, C. Botteron et al., “Study on the cross-
correlation of GNSS signals and typical approximations,” GPS
Solutions, vol. 21, no. 2, pp. 293–306, 2017.

[2] B. Tripathi, R. Tulsian, and R. C. Jain, “Performance Compar-
ison of Sine and Cosine Phased BOC Signals Used for Radio-
navigation,” in Proceedings of the IFAC, vol. 45, pp. 223–228,
2012.

[3] K. Chae, S. R. Lee, H. Liu, and S. Yoon, “An unambiguous cor-
relation function for generic sine-phased binary offset carrier
signal tracking,” Computers and Electrical Engineering, vol. 49,
pp. 161–172, 2016.

[4] Z. Yanling, L. Xuejiao, and W. Xiaoqing, “Analysis of satellite
navigation signal alternate binary offset carrier modulation,”
Journal of Hubei University, no. 4, pp. 334–339, 2015.

[5] Z. Yao, X. Cui,M. Lu, Z. Feng, and J. Yang, “Pseudo-correlation-
function-based unambiguous tracking technique for sine-BOC
signals,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 46, no. 4, pp. 1782–1796, 2010.

[6] Y. Lee, D. Chong, I. Song, S. Y. Kim, G.-I. Jee, and S. Yoon,
“Cancellation of correlation side-peaks for unambiguous BOC
signal tracking,” IEEE Communications Letters, vol. 16, no. 5, pp.
569–572, 2012.

[7] A. F. Khalaf, M. I. Owis, and I. A. Yassine, “Image features of
spectral correlation function for arrhythmia classification,” in
Proceedings of the 37th Annual International Conference of the
IEEE Engineering inMedicine and Biology Society, EMBC ’15, pp.
5199–5202, IEEE, Milan, Italy, August 2015.

[8] T. Zhang, D. He, S. Chen, and S. Zhou, “Spectral correlation-
based parameter estimation of BOCmodulation signal,” Journal
of Huazhong University of Science and Technology, vol. 41, no. 9,
pp. 11–16, 2013.

[9] S. Zhu, D. Zhao, and F. Wang, “Hybrid prediction and fractal
hyperspectral image compression,” Mathematical Problems in
Engineering, vol. 2015, Article ID 950357, 10 pages, 2015.

[10] T. Former, “Phase clustering based modulation classification
algorithm for PSK signal over wireless environment,” Mobile
Information Systems, vol. 2016, Article ID 2398464, 11 pages,
2016.

[11] R. Chen, J.Wang, R. Lin, and X. Zhao, “Spectrum sensing based
on nonparametric autocorrelation in wireless communication
systems under alpha stable noise,” Mobile Information Systems,
vol. 2016, Article ID 6753830, 6 pages, 2016.

[12] F. Guo, Z. Yao, and M. Lu, “BS-ACEBOC: a generalized
low-complexity dual-frequency constant-envelope multiplex-
ingmodulation for GNSS,”GPS Solutions, vol. 21, no. 2, pp. 561–
575, 2017.

[13] M. S. Yarlykov, “Correlation functions of BOC and AltBOC sig-
nals as the inverse Fourier transforms of energy spectra,” Jour-
nal of Communications Technology and Electronics, vol. 61, no.
8, pp. 857–876, 2016.

[14] M. S. Yarlykov and S. M. Yarlykova, “Correlation functions of
complete CBOC signals derived as the inverse Fourier trans-
form of energy spectra,” Journal of Communications Technology
and Electronics, vol. 62, no. 2, pp. 128–140, 2017.

[15] B. Yin, G. Wang, and Y. Qi, “Unambiguous sine-phased binary
offset carrier modulated signal tracking technique,” Optik -
International Journal for Light and Electron Optics, vol. 132, pp.
284–290, 2017.

[16] P. Weichuan, W. Xue, and H. Chengyan, “Research on corre-
lation peaks detection algorithm for multiplex signal of navi-
gation systems,” Journal of Time and Frequency, vol. 38, no. 3,
pp. 163–170, 2015.

[17] F. Liu and Y. Feng, “A new acquisition algorithm with elimina-
tion side peak for all BOC signals,” Mathematical Problems in
Engineering, vol. 2015, Article ID 140345, 9 pages, 2015.

[18] K. Chae, S. R. Lee, H. Liu et al., “A novel unambiguous com-
posite binary offset carrier (6, 1, 1/11) tracking based on partial
correlations,” Computers and Electrical Engineering, vol. 50, pp.
54–66, 2016.

53A Detection Algorithm for the BOC Signal based on Quadrature Channel Correlation

__________________________ WORLD TECHNOLOGIES __________________________



WT
A Vessel Positioning Algorithm based on
Satellite Automatic Identification System

Shexiang Ma, Jie Wang, Xin Meng, and JunfengWang

School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China

Correspondence should be addressed to Shexiang Ma; masx tjut@126.com

Academic Editor: Caner Özdemir

Vessels can obtain high precision positioning by using the global navigation satellite system (GNSS), but when the ship borne
GNSS receiver fails, the existence of an alternative positioning system is important for the navigation safety of vessel. In this paper,
a localizationmethod based on the signals transmitted by satellite-based automatic identification system (AIS) is proposed for vessel
in GNSS-denied environments. In the proposed method, the positioning model is a modification on the basis of time difference
and frequency difference of arrival measurements by introducing an additional measurement, and the measurement is obtained
through the interactive multiple model algorithm.The performance of the proposed strategy is evaluated through simulations, and
the results validate the feasibility and reliability of vessel localization based on satellite-based AIS.

1. Introduction

Automatic identification system (AIS) is a self-reporting
system designed to protect maritime security of vessel and
improve maritime efficiency [1]. It plays an important role in
ship collision avoidance and maritime supervision through a
series of static and dynamic vessel information automatically
broadcast, and the information includes latitude, longitude,
course, and velocity [2]. The geographical location reported
in AIS is derived by the shipboard GNSS receiver and typi-
cally with the high accuracy [3]. However, there is a problem
that followed with the GNSS being widely used in navigation
of maritime. GNSS is vulnerable to accidental interference
[4]; the ship will not be able to locate once the GNSS signal
is deliberately disturbed or the GNSS receiver fails. So it
is necessary to develop a spare navigation system for the
ship.

AIS is a self-organized time division multiple access
(TDMA) system, which not only can be self-reporting but
also can receive AIS information [5]. Although AIS ignored
the role of the satellite in its original design; it has been proven
feasible to receiveAIS signals by satellite [6, 7]. In the satellite-
based AIS, the relative speed of satellite and ship is high,
and the two are far apart; therefore, there are challenges for

the correct detection of the AIS signal such as the problem
of time delay, the high Doppler offset, and low signal-to-
noise ratio (SNR) [8]. With the current level of AIS signal
detection technology, the correct detection of AIS signal
can be guaranteed with the improvement of synchronization
algorithm, and the influence of high Doppler offset on carrier
recovery is gradually decreasing [9]. The satellite-based AIS
is already operational but focuses on the stage of “vessel
transmitting, satellite receiving.” In view of the fact that a
large number of AIS signals are likely to reach the satellite
at the same time in this stage but satellite can still detect
ship signals [8], the signals can definitely be received by the
ship if the satellite can send information in the AIS operating
frequency band according to the AIS protocol, because the
possibility of AIS signal conflict is relatively low in case of the
ship reception thanks to the characteristics of signal trans-
mission. As the technology of satellite-based AIS advances,
the potentiality of AIS for navigation becomes a concern
and there is the investigation on ship localization using AIS
signals received by satellite [10]. In this paper, we assume
that, in advanced satellite-based AIS, vessels can receive AIS
signals transmitted from satellite in addition to “vessel trans-
mitting, satellite receiving,” and the information of satellite
motion state is broadcast by the downlink AIS signal. On
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the basis of this vision, a ship localization method using AIS
signals transmitted from satellite is proposed.

Among the various measurements for positioning tasks,
the time of arrival (TOA), the time difference of arrival
(TDOA), and the frequency difference of arrival (FDOA) are
very representative choices because of the potentials in attain-
ing high localization accuracy [11, 12].There is a lot of research
on the application of TDOA to improve the positioning accu-
racy of the stationary target and to locate themoving target by
using frequencymeasurements [13–15]. In addition, the posi-
tioningmethods combining two kinds ofmeasurements such
as TDOA/FDOA and TDOA/DOA are also widely discussed
[16, 17]. Except for reducing the number of signals required,
the combination of time and frequency measurements is
attractive for improvement of positioning accuracy [18, 19].
In these methods, however, only the information extracted
from the received signals is used for positioning. Taking
into account the fact that AIS can obtain the ship velocity
and heading by connecting external sensors, in this paper,
a modification positioning model based on TDOA/FDOA is
proposed by introducing an additional measurement based
on the interactive multiple model (IMM) algorithm [20,
21]. The method of TDOA/FDOA and the IMM algorithm
are used separately for locating or tracking the target in
general; given the characteristic of AIS signal carrying infor-
mation, they are combined together in the study. Besides,
for the purpose of making the estimated result more suitable
for the vessel status, a new probability updating method
for IMM is designed in this work.

The solution of TDOA/FDOA measurement equation is
complicated because of the high nonlinearity [22]. Taylor-
series technique can linearize the equations but positioning
result is easy to be affected by initial value setting [23]. The
method of grid searching achieves the accuracy improvement
with the sacrifice of computation [24]. In this paper, the local-
ization results are obtained by Gauss-Newton iteration under
the least squares criterion, and the solution of grid rough
searching is chosen as the starting value. The feasibility of

the positioningmethod based on the advanced satellite-based
AIS signals is investigated through the experiment. The loca-
tion error distributions of the TDOA/FDOA joint location
model and the proposed localization model are analyzed in
this study.

2. TDOA/FDOA Localization Based on
Least Squares Estimation

In satellite-based AIS, satellites are located at a low orbit from
600 km to 1000 km above the ground. The downlink AIS
signals will include the Doppler frequency shift because of
the relative satellite-ship velocities, and the frequency shift is
up to a maximum of ±4 kHz. In order to achieve localization
with the limited number of AIS signals and improve the
positioning accuracy as much as possible, the work of ship
positioning is carried out on the basis of TDOA/FDOA in this
paper.

2.1. Principles of TDOA/FDOA. Assuming that 𝑡𝑖 is the time
cost by the 𝑖th AIS signal transmitted from satellite to ship,
the TDOA between the adjacent signals received by the ship
can be expressed as

Δ𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 =
󵄨󵄨󵄨󵄨Ls(i+1) − Lb

󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨Lsi − Lb
󵄨󵄨󵄨󵄨𝑐 + Δ𝑛𝑡

= 1𝑐 [((𝑥𝑠(i+1) − 𝑥)2 + (𝑦𝑠(i+1) − 𝑦)2

+ (𝑧𝑠(i+1) − 𝑧)2)1/2 − ((𝑥𝑠𝑖 − 𝑥)2 + (𝑦𝑠𝑖 − 𝑦)2
+ (𝑧𝑠𝑖 − 𝑧)2)1/2] + Δ𝑛𝑡 = 𝑟𝑡𝑖 (𝑥, 𝑦, 𝑧) + Δ𝑛𝑡.

(1)

The FDOAbetween the adjacent AIS signals can be expressed
as

Δ𝑓𝑟𝑖 = 𝑓𝑒𝑐 [
VT

s(i+1) ⋅ (Ls(i+1) − Lb)󵄨󵄨󵄨󵄨Ls(i+1) − Lb
󵄨󵄨󵄨󵄨 − VT

si ⋅ (Lsi − Lb)󵄨󵄨󵄨󵄨Lsi − Lb
󵄨󵄨󵄨󵄨 ] + Δ𝑛𝑓

= 𝑓𝑒𝑐 [[
𝑉𝑠𝑥(𝑖+1) (𝑥𝑠(𝑖+1) − 𝑥) + 𝑉𝑠𝑦(𝑖+1) (𝑦𝑠(𝑖+1) − 𝑦) + 𝑉𝑠𝑥(𝑖+1) (𝑧𝑠(𝑖+1) − 𝑧)

((𝑥𝑠(𝑖+1) − 𝑥)2 + (𝑦𝑠(𝑖+1) − 𝑦)2 + (𝑧𝑠(𝑖+1) − 𝑧)2)1/2 − 𝑉𝑠𝑥𝑖 (𝑥𝑠𝑖 − 𝑥) + 𝑉𝑠𝑦𝑖 (𝑦𝑠𝑖 − 𝑦) + 𝑉𝑠𝑥𝑖 (𝑧𝑠𝑖 − 𝑧)((𝑥𝑠𝑖 − 𝑥)2 + (𝑦𝑠𝑖 − 𝑦)2 + (𝑧𝑠𝑖 − 𝑧)2)1/2
]
]

+ Δ𝑛𝑓 = 𝑟𝑓𝑖 (𝑥, 𝑦, 𝑧) + Δ𝑛𝑓,

(2)

where 𝑓𝑒 is the carrier frequency of the AIS signal and 𝑐
is the signal propagation velocity. Lb = [𝑥, 𝑦, 𝑧]𝑇 is the
vessel position vector in the ECEF reference and Vsi =[𝑉𝑠𝑥𝑖, 𝑉𝑠𝑦𝑖, 𝑉𝑠𝑧𝑖]𝑇 and Lsi = [𝑥𝑠𝑖, 𝑦𝑠𝑖, 𝑧𝑠𝑖]𝑇 are velocity vector
and position vector of the satellite when transmitting the 𝑖th
AIS signal, respectively.Δ𝑛𝑡 is the difference of noise between
the two timemeasurements andΔ𝑛𝑓 is the difference of noise
between the two frequency measurements.

It is assumed that the number of signals received by the
ship in the visual time of the satellite is 𝑁 + 1; the local-
ization equation matrix based on (1) and (2) can be written
as

[ΔT
ΔF
] = [rt (𝑥, 𝑦, 𝑧)

rf (𝑥, 𝑦, 𝑧)] + n (3)
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with

rt (𝑥, 𝑦, 𝑧)
= [𝑟𝑡1 (𝑥, 𝑦, 𝑧) , 𝑟𝑡2 (𝑥, 𝑦, 𝑧) , . . . , 𝑟𝑡𝑁 (𝑥, 𝑦, 𝑧)]𝑇

rf (𝑥, 𝑦, 𝑧)
= [𝑟𝑓1 (𝑥, 𝑦, 𝑧) , 𝑟𝑓2 (𝑥, 𝑦, 𝑧) , . . . , 𝑟𝑓𝑁 (𝑥, 𝑦, 𝑧)]𝑇 ,

(4)

where ΔT = [Δ𝑡1, Δ𝑡2, . . . , Δ𝑡𝑁]𝑇 is the TDOA measurement
vector obtained by synchronization technique and ΔF =[Δ𝑓𝑟1, Δ𝑓𝑟2, . . . , Δ𝑓𝑟𝑁]𝑇 is the FDOA measurement vector. n
is the measurement noise matrix.

2.2. Calculation Based on Least Squares Estimation. On the
basis of least squares criterion, the estimator associated
with (3) needs to minimize the differences between the
measurements and predictions; the equation to beminimized
can be written as

𝐶 (𝑥, 𝑦, 𝑧) = [Υ − q (𝑥, 𝑦, 𝑧)]𝑇N−1 [Υ − q (𝑥, 𝑦, 𝑧)] , (5)

whereN is the noise covariancematrix,Υ = [ΔT ΔF]𝑇 is the
measurement vector of TDOA/FDOA, and q = [rt rf]𝑇.

The estimated position value (𝑥, 𝑦, 𝑧̂) =
argmin(𝑥,𝑦,𝑧){𝐶(𝑥, 𝑦, 𝑧)} can be obtained by Gauss-Newton
iteration

[𝑥𝑗+1, 𝑦𝑗+1, 𝑧𝑗+1]𝑇
= [𝑥𝑗, 𝑦𝑗, 𝑧𝑗]𝑇
+ [J𝑇 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)N−1J (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)]−1
× J𝑇 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)N−1 [Υ − q (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)] ,

(6)

where matrix J is

J = [Jt
Jf
] (7)

with

Jt =
[[[[[[[
[

𝑟𝑡1 (𝑥, 𝑦, 𝑧)𝜕𝑥
𝑟𝑡1 (𝑥, 𝑦, 𝑧)𝜕𝑦

𝑟𝑡1 (𝑥, 𝑦, 𝑧)𝜕𝑧... ... ...
𝑟𝑡𝑁 (𝑥, 𝑦, 𝑧)𝜕𝑥

𝑟𝑡𝑁 (𝑥, 𝑦, 𝑧)𝜕𝑦
𝑟𝑡𝑁 (𝑥, 𝑦, 𝑧)𝜕𝑧

]]]]]]]
]
,

Jf =
[[[[[[[[
[

𝑟𝑓1 (𝑥, 𝑦, 𝑧)𝜕𝑥
𝑟𝑓1 (𝑥, 𝑦, 𝑧)𝜕𝑦

𝑟𝑓1 (𝑥, 𝑦, 𝑧)𝜕𝑧... ... ...
𝑟𝑓𝑁 (𝑥, 𝑦, 𝑧)𝜕𝑥

𝑟𝑓𝑁 (𝑥, 𝑦, 𝑧)𝜕𝑦
𝑟𝑓𝑁 (𝑥, 𝑦, 𝑧)𝜕𝑧

]]]]]]]]
]
.

(8)

S1

S2



(go, go)



Figure 1: Method of determining the initialization vector.

The initial position in (6) needs to be defined in advance;
the method for determining the initial position (shown in
Figure 1) is as follows: (1) setting up a grid with the units of 1∘.
The grid is centered on the midpoint (𝑔𝜆𝑜, 𝑔𝜑𝑜) of the satellite
ground trajectory (the track generated during AIS signals
transmission) and the range of grid geodetic coordinates(𝑔𝜆, 𝑔𝜑) is {𝑔𝜆𝑜 − 𝛽/2 ≤ 𝑔𝜆 ≤ 𝑔𝜆𝑜 + 𝛽/2, 𝑔𝜑𝑜 − 𝜀/2 ≤ 𝑔𝜑 ≤𝑔𝜑𝑜 + 𝜀/2}, where 𝛽 and 𝜀 are the maximum visible longitude
and latitude of satellite, respectively. (2) Connecting the
start and end points of the satellite ground trajectory and
dividing the grid into 𝑆1 and 𝑆2 (two parts) by extending
the connecting line. (3) Searching within each part of grid
and selecting two points with (𝑚𝜆𝑖, 𝑚𝜑𝑖) = argmax{𝑆𝑖}{𝐸 =
1/(𝑓𝑟 − 𝑓)2} (𝑖 = 1, 2). In the cost function 𝐸, 𝑓𝑟 is
the measured frequency of the AIS signal and 𝑓 = 𝑓𝑐{1 −(VT

si(Lsi − Lg)/𝑐|Lsi − Lg|)} is the estimated frequency of
received signal at the grid point, where Lg = [𝑥𝑔, 𝑦𝑔, 𝑧𝑔]T
is the position vector of grid point in ECEF coordinate. In
this paper, we select “nearest point” to eliminate the false
image which may occur in grid searching, that is, taking the
point with the shortest distance from the origin of the ship
as the optimal position (𝜆0, 𝜑0). The transformation of vessel
location from the geodetic coordinate to ECEF coordinate is
defined as follows:

𝑥 = 𝑅𝑁 cos 𝜆 cos𝜑
𝑦 = 𝑅𝑁 sin 𝜆 cos𝜑
𝑧 = 𝑅𝑁 (1 − 𝑒2) sin𝜑,

(9)

where 𝜆 and 𝜑 are the longitude and latitude coordinates
of vessel and (𝑥, 𝑦, 𝑧) are the ECEF coordinates of vessel.
𝑅𝑁 = 𝛼/√1 − 𝑒2 sin2𝜑 is radius of curvature in prime vertical,
where 𝑒2 = 0.00669437999013 and 𝛼 = 6378.137 km are the
square of the first eccentricity and equatorial radius of the
earth defined by WGS-84, respectively.
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3. Localization Method Combining
TDOA/FDOA with the Track Forecast

AIS equipped on vessel can obtain a series of dynamic
information, such as speed, heading, and turning rate by
connecting external sensors. Assuming that the motion state
of ship remains constant during the two adjacent positioning
points, it is possible with IMM algorithm to estimate the
current ship position by using current dynamic information.
Considering that the position of the ship at a moment is
related to those of the same ship in the previous moment, in
the proposed positioningmethod, the predictionwith IMMis
taken as a newmeasurement and added to the TDOA/FDOA
joint positioning measurement.

3.1. The Motion Model of Vessel. The ship sailing at sea is a
slow maneuvering target, with the consideration of the fact
that balance between the model accuracy and computational
cost, the constant velocity (CV) model, and the constant turn
(CT) model are adopted in this paper.

The ship state at time 𝑘 is defined as

X (𝑘) = [𝑥 (𝑘) , V𝑥 (𝑘) , 𝑎𝑥 (𝑘) , 𝑦 (𝑘) , V𝑦 (𝑘) , 𝑎𝑦 (𝑘) , 𝑧 (𝑘) ,
V𝑧 (𝑘) , 𝑎𝑧 (𝑘)]𝑇 ,

(10)

where 𝑥(𝑘), 𝑦(𝑘), 𝑧(𝑘) are vessel position in ECEF coordinate
and V𝑥(𝑘), V𝑦(𝑘), V𝑧(𝑘) and 𝑎𝑥(𝑘), 𝑎𝑦(𝑘), 𝑎𝑧(𝑘) are vessel
velocity and acceleration in ECEF coordinate, respectively.

The CV model equation is shown as follows:

X (𝑘) = ΦCVX (𝑘 − 1) + ΓCV𝑊(𝑘 − 1) , (11)

where the state transition matrix ΦCV = [Φ𝑉 0 0
0 Φ𝑉 0
0 0 Φ𝑉

] with

Φ𝑉 = [ 1 𝑇𝑆 00 1 0
0 0 0

] (𝑇𝑆 is time interval between adjacent position-

ing points). The control input matrix ΓCV = [ Γ𝑉 0 0
0 Γ𝑉 0
0 0 Γ𝑉

] with
Γ𝑉 = [𝑇𝑆2/2 𝑇𝑆 0]𝑇 and𝑊(𝑘 − 1) is process noise.

The CT model equation is shown as follows:

X (𝑘) = ΦCTX (𝑘 − 1) + ΓCTW (𝑘 − 1) , (12)

where the control input matrix ΓCT = [ Γ𝑇 0 0
0 Γ𝑇 0
0 0 Γ𝑇

] with

Γ𝑇 = [𝑇𝑆3/6 𝑇𝑆2/2 𝑇𝑆]𝑇. The state transition matrix ΦCT =
[Φ𝑇 0 0

0 Φ𝑇 0
0 0 Φ𝑇

] with Φ𝑇 = [ 1 sin(𝜔𝑇𝑆)/𝜔 [1−cos(𝜔𝑇𝑆)]/𝜔2
0 cos(𝜔𝑇𝑆) sin(𝜔𝑇𝑆)/𝜔
0 −𝜔 sin(𝜔𝑇𝑆) cos(𝜔𝑇𝑆)

] and 𝜔 is

the steering rate of vessel.

3.2. Vessel Position Predicting Based on IMM Algorithm. A
complete cycle of the IMM consists of four operations,
namely, input mixing, model filtering, model probability
update, and combination. Taking the recorded position at
time 𝑘 − 1 and the dynamic information at time 𝑘 (motion
state is supposed to be unchanged during times 𝑘 − 1 and 𝑘)
as the initial vessel state of eachmodel, the forecasting process
of ship position with IMM algorithm is as follows.

Step 1 (input mixing). 𝑝𝑖𝑗 (𝑖, 𝑗 = CV,CT) is defined as the
Markov transition probability from model 𝑖 to model 𝑗. The
mixing probability is computed as follows:

𝜇𝑖𝑗 (𝑘 − 1 | 𝑘 − 1) = pij ⋅ 𝜇𝑖 (𝑘 − 1)𝑚𝑗 (𝑘) (13)

with
𝑚𝑗 (𝑘) = ∑

𝑖=CV,CT
pij ⋅ 𝜇𝑖 (𝑘 − 1) , (14)

where 𝜇𝑖(𝑘 − 1) is probability of mode 𝑖 at time 𝑘 − 1
Themixed state estimate for model 𝑗 is given by

X̂0j (𝑘 − 1 | 𝑘 − 1)
= ∑
𝑖=CV,CT

X̂i (𝑘 − 1 | 𝑘 − 1) 𝜇𝑖𝑗 (𝑘 − 1 | 𝑘 − 1) . (15)

The predicted covariance corresponding to the above
mixed state estimate is given by

P0j (𝑘 − 1 | 𝑘 − 1) = ∑
𝑖=CV,CT

𝜇𝑖𝑗 (𝑘 − 1 | 𝑘 − 1)
⋅ {Pi (𝑘 − 1 | 𝑘 − 1)
+ [X̂i (𝑘 − 1 | 𝑘 − 1) − X̂0j (𝑘 − 1 | 𝑘 − 1)]
× [X̂i (𝑘 − 1 | 𝑘 − 1) − X̂0j (𝑘 − 1 | 𝑘 − 1)]𝑇} .

(16)

Step 2 (model filtering). The extended Kalman filter (EKF)
algorithm is adopted in this stage. The mixed state estimate
and the predicted covariance corresponding to CV and CT
in (15) and (16) are updated by the following two stages.

Time Update

X̂ (𝑘 | 𝑘 − 1) = ΦX̂ (𝑘 − 1)
P (𝑘 | 𝑘 − 1) = ΦP (𝑘 − 1)Φ𝑇 + ΓΛΓ𝑇, (17)

where P is the covariance of the vessel location prediction,
Φ is the state transition matrix, Γ is the control input matrix,
and Λ is the system noise variance matrix.

Measurement Update

K (𝑘) = P (𝑘 | 𝑘 − 1) J𝑇 (X̂ (𝑘 | 𝑘 − 1))
× [J (X̂ (𝑘 | 𝑘 − 1))P (𝑘 | 𝑘 − 1) J𝑇 (X̂ (𝑘 | 𝑘 − 1))
+ R]−1

X̂ (𝑘 | 𝑘) = X̂ (𝑘 | 𝑘 − 1) + K (𝑘) [Z (𝑘)
− q (X̂ (𝑘 | 𝑘 − 1))]

P (𝑘 | 𝑘) = [𝐼 − K (𝑘) J (X̂ (𝑘 | 𝑘 − 1))]P (𝑘 | 𝑘 − 1) ,

(18)

whereK corresponds to the gain matrix, R is the observation
noise variance matrix, I is the unit matrix, and J is the
Jacobianmatrix of themeasure function q(⋅), as shown in (7).
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Step 3 (model probability update). In the IMM algorithm,
the updating of the model probability is carried out by
calculating the likelihood function matching the model.
However, this method is greatly influenced by the presetting
model transition probability. In this work, an optimization
method is developed to improve the positioning accuracy and
can be described as follows.

(1) The positions estimated using EKF based on the CV
model and CT model are denoted by PosCV and PosCT,
respectively. Let Pos = 𝜇CVPosCV + 𝜇CTPosCT and calculate
the measurement vector Υ𝑝 at position Pos according to (1)
and (2), where 𝜇CV and 𝜇CT (𝜇CV + 𝜇CT = 1) correspond to
the model probabilities of CV and CT models, respectively.

(2) Assuming 𝜇CV = 𝜂 (in this paper, 𝜂 = 0.05),
according to Υ𝑝 determined by the aforementioned method,
the corresponding error of measurement vector denoted by 𝜎
is calculated by 𝜎 = √(Υ − Υ𝑝)𝑇 ⋅ (Υ − Υ𝑝).

(3) Define 𝜇CV = 𝜇CV + 𝜂 and repeat the calculation of𝜎 recursively until 𝜇CV = 1 − 𝜂. Select 𝜇CV (𝜇CT = 1 − 𝜇CV)
corresponding to the minimum error as output probability.

Step 4 (combination). According to the updatedmodel prob-
ability in Step 3 and predicted state and covariance in Step 2,
the combined state and covariance are represented through
the following two equations:

X̂ (𝑘 | 𝑘) = ∑
𝑖=CV,CT

𝜇𝑖X̂𝑖 (𝑘 | 𝑘)
P̂ (𝑘 | 𝑘) = ∑

𝑖=CV,CT
𝜇𝑖 {P𝑖 (𝑘 | 𝑘)

+ [X̂𝑖 (𝑘 | 𝑘) − X̂ (𝑘 | 𝑘)] [X̂𝑖 (𝑘 | 𝑘) − X̂ (𝑘 | 𝑘)]𝑇} .
(19)

In the process of position predicting with IMM algorithm,
it is desirable to have a record of ship trajectory used for
initialization.Once there are no records available, themethod
for initializing vessel state is changed as follows: On the basis
of the grid search previously described, set up a new grid
centered on (𝜆0, 𝜑0) (the optimal position obtained in grid
search); the range of the grid is 2∘ × 2∘ with the unit of0.5∘. According to the cost function 𝐸 introduced before,
search within the new grid and select a point (𝜆0󸀠, 𝜑0󸀠)
corresponding to themaximumof𝐸.The direction of (𝜆0, 𝜑0)
pointing to (𝜆0󸀠, 𝜑0󸀠) is taken as the vessel heading and(𝜆0, 𝜑0) is regarded as the initial position.

3.3. The Proposed Localization Model Design. The predicted
ship positionwith IMM is defined as L̂ = [𝑥, 𝑦, 𝑧̂]𝑇.The local-
ization model combining this prediction with TDOA/FDOA
measurements can be expressed as

[[[
[

ΔT
ΔF

L̂

]]]
]
= [[[
[

rt (𝑥, 𝑦, 𝑧)
rf (𝑥, 𝑦, 𝑧)
[𝑥, 𝑦, 𝑧]𝑇

]]]
]
+ n𝑐. (20)

Let Υ𝑐 = [ΔT ΔF L̂]𝑇 and q𝑐 =
[rt(𝑥, 𝑦, 𝑧) rf(𝑥, 𝑦, 𝑧) [𝑥, 𝑦, 𝑧]𝑇]𝑇; on the basis of least

Reference
Proposed method
(records available)

Proposed method (records unavailable)
TDOA/FDOA

Figure 2: Reference and estimated vessel trajectories.

squares criterion, the estimated position of the proposed
model is achieved by applying the Gauss-Newton algorithm
as follows:

[𝑥𝑗+1, 𝑦𝑗+1, 𝑧𝑗+1]𝑇
= [𝑥𝑗, 𝑦𝑗, 𝑧𝑗]𝑇
+ [J𝑐𝑇 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)N𝑐−1J𝑐 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)]−1
× J𝑐
𝑇 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)N𝑐−1 [Υ𝑐 − q𝑐 (𝑥𝑗, 𝑦𝑗, 𝑧𝑗)] ,

(21)

where J𝑐 = [ J
I3×3 ], N𝑐 = [ N 0

0 N𝑀 ], and N𝑀 is the covariance
matrix of ship predicted position obtained in IMMalgorithm.

4. Simulation Research

Due to the limitation of the experimental conditions, the
satellite ephemeris information is generated by Satellite Tool
Kit. The orbital height of the satellite is set to 1000 km and
the inclination angle is 50∘. Simulations have been conducted
to evaluate the estimation performance by using 3 signals for
positioning (the change of ship position during the reception
of the signals is negligible) and the time intervals separating
signals are 20 s and 60 s. The measurement vectors of TDOA
and FDOA are calculated by (1) and (2). It is supposed that,
in the simulation, the time measurements are affected by
an additive Gaussian noise constituting independent samples
with zero mean and variance var𝑡 = 30 𝜇s2 and the frequency
measurements noise is subjected to the Gaussian distribution
of zero mean and variance var𝑓 = 400Hz2.

Figure 2 shows the estimated vessel trajectories with
TDOA/FDOApositioningmodel and the proposed position-
ing model. The reference trajectory of vessel is carried out by
AIS message reported by an ocean-going ship from Xiamen
towards Long Beach in 24 hours and the average speed of
ship is 19 knots. Figure 3 shows examples of reference position
and estimated position for records availability scenario. The
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Figure 3: Examples of estimated vessel positions for records
availability scenario.
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Figure 4: Positioning error in 𝑋, 𝑌, 𝑍 direction for records
availability scenario.

number of positioning results presented is 21 and the average
time separating them is approximately 1 hour. From Figures
2 and 3, it can be seen that, compared with TDOA/FDOA
positioning model, the estimated trajectory with the pro-
posed method is more in line with the reference trajectory
in the case where a record of previous trajectory is used for
initialization.

In Figure 3, it is assumed that the reference positions from
low latitude to high latitude correspond to numbers 1 to 21
in order. Figure 4 shows the positioning error of these 21
positions in𝑋,𝑌,𝑍 direction for records availability scenario
and Figure 5 shows the distance between the reference and
estimated positions in the same scenario. In Figure 5, the
average distance error of TDOA/FDOA positioning model
is 30.4947 km, the maximum error occurs at the number 1
position, with the distance of 132.9219 km, and the minimum
error is 2.8647 km at the number 20 position. Besides, with
the condition of records availability, the average distance
error of the proposed method is 22.9933 km and the max-
imum and the minimum error are 41.6187 km correspond-
ing the number 9 position and 8.0532 km corresponding
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Figure 5: Distance between reference and estimated positions for
records availability scenario.
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Figure 6: Examples of estimated vessel positions for records
unavailability scenario.

the number 19 position, respectively. As can be observed
from Figures 3 and 5, the stability and accuracy of the
proposed model (for records availability scenario) are better
than those of the TDOA/FDOA positioning model on the
whole. Although there is a case where the performance
of TDOA/FDOA positioning is superior to the proposed
method in individual positions, the large error values of the
TDOA/FDOA method estimated at some positions cannot
be ignored; because the TDOA/FDOA method is affected
by the relative satellite-ship position, it is unstable in overall
positioning accuracy.

The examples of reference position and estimated posi-
tion for records unavailability scenario are shown in Figure 6.
In Figures 3 and 6, the reference positions are the same,
but it is obvious that the proposed method has a better
performance in the case of records availability. Figure 7
shows the positioning error of estimated positions in 𝑋, 𝑌,𝑍 direction for records availability scenario.
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Figure 7: Positioning error in 𝑋, 𝑌, 𝑍 direction for records
unavailability scenario.
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Figure 8: Distance between reference positions and estimated
positions.

Figure 8 shows the distance between the estimated
position and the reference position in different cases. For
the scenario of records unavailability, the average distance
error of proposed method is 26.2660 km, the maximum
error occurs at the number 18 position, with the distance
of 168.1150 km, and the minimum error is 2.9289 km at the
number 8 position. According to Figures 5 and 8, it can be
seen that, for the same reference positions, the average error
with different positioning methods in descending order is
as follows: 30.4947 km corresponding to TDOA/FDOA posi-
tioning method, 26.2660 km corresponding to the proposed
method for records unavailability scenario, and 22.9933 km
corresponding to the proposed method for records avail-
ability scenario. Overall, the performance of the proposed
method in this paper is better thanTDOA/FDOApositioning
method, and, compared with the scenario of records unavail-
ability, the accuracy of the proposed method is higher in the
case where records are available.

5. Conclusion

A ship positioning method using AIS signals transmitted
from satellite is presented in this paper. In the proposed
positioning model, an additional measurement obtained by
IMM algorithm is added to the TDOA/FDOA measure-
ments. Besides, a probability update method applied in IMM
algorithm is designed in this work. The feasibility of the
proposed positioning method is verified by simulations.
Regardless of algorithm complexity, the performance of the
proposed method is better than TDOA/FDOA positioning
model, especially in the casewhere the record of previous ship
track is used for initialization.
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An important application of speaker recognition is forensics. However, the accuracy of speaker recognition in forensic cases often
drops off rapidly because of the ill effect of ambient noise, variable channel, different duration of speech data, and so on.Therefore,
finding a robust speaker recognition model is very important for forensics. This paper builds a new speaker recognition model
based on wavelet cepstral coefficient (WCC), i-vector, and cosine distance scoring (CDS). This model firstly uses the WCC to
transform the speech into spectral feature vecors and then uses those spectral feature vectors to train the i-vectors that represent
the speeches having different durations. CDS is used to compare the i-vectors to give out the evidence.Moreover, linear discriminant
analysis (LDA) and the within-class covariance normalization (WCNN) are added to the CDS algorithm to deal with the channel
variability problem. Finally, the likelihood ratio estimates the strength of the evidence. We use the TIMIT database to evaluate the
performance of the proposed model. The experimental results show that the proposed model can effectively solve the troubles of
forensic scenario, but the time cost of the method is high.

1. Introduction

With the increasing use of computer technology, more and
more complex and tedious works can be finished by com-
puter. Automatic speaker recognition (or speaker recognition
for short) technique refers to recognizing persons from their
voice using the computer software. An important application
of speaker recognition is forensics. This technique is usually
used for investigation and evidence reporting [1]. In the
investigation task, the speaker recognition is used to compare
the questioned speech with the speeches of known criminals
in police’s database to produce a small list of potential
suspects. In the evidence reporting task, police has found the
suspect and the speaker recognition is used to give out the
evidence (is defined as the similarity between the questioned
speech and the suspect’s speech samples [2]) supporting the
fact that the suspect is the author of the criminal speech.

Technologically, the forensic speaker recognition model
is very similar to the common speaker recognition model

[3]. It firstly uses a feature extractor to transform the digital
speech signal into the feature vectors that represent unique
information for a particular speaker irrespective of the speech
content and then uses a learning algorithm to give out the
evidence based on those feature vectors. Finally, it is required
to report the likelihood ratio that estimates the strength of
the evidence after it gives out the evidence [4]. The forensic
context is very challenging for speaker recognition. The
ambient noise cannot be controlled, the duration of speech
data can vary from a few seconds to several hours, and the
speeches are often obtained from different channels such as
phone channel and microphone channel. It is important for
forensics to find a robust speaker recognition model that is
not sensitive to those factors such as noise, duration, and
channel.

The speech is usually transformed into the short-term
feature vector because this feature vector is simple [5]. In the
speaker recognition model used for forensics, Mel-frequency
cepstral coefficient (MFCC) method has been widely used to
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extract the short-term feature vector [6]. This method calcu-
lates only the cepstral coefficients, so the extracted feature
vector just represents the static information. Fused MFCC
(FMCC) [7] method is an extension of MFCC. This method
calculates not only the cepstral coefficients but also the delta
derivatives, so the extracted feature vector can represent both
the static information and dynamic information. Both of the
two methods use discrete Fourier transform (DFT) to obtain
the frequency spectrum. Because the DFT is a global signal
analysis approach, if a local frequency part of the speech is
destroyed by noise, the ill effect of noise will be transmitted
to whole feature vector. Wavelet cepstral coefficient (WCC)
[8] is another method used to extract the short-term feature
vector. This method uses discrete wavelet transform (DWT)
to obtain the frequency spectrum. DWT is a local signal
analysis approach, so the whole feature vector cannot be
interfered strongly by the noise that just destroys the local
frequency part. Unfortunately, thismethod is not used for the
forensic speaker recognition. This paper tries to employ this
method to extract the short-term feature vector, because it
can be robust against the noise.

In the forensic context, the duration of speech can vary
from a few seconds to several hours. To compare those
speeches having different duration, it is necessary to represent
them in a uniform way. I-vector [9] is a newly proposed fea-
ture vector and has been employed by the speaker recognition
model used for forensics [10].Themain advantage of i-vector
is that it can use a signal vector to represent a speech, so
it can uniformly represent those speeches having different
duration. In its extraction method [11], the speech signal is
firstly transformed into short-term feature vectors and then
those short-term feature vectors are used to train i-vector.

Based on the feature vector extracted by MFCC or Fused
MFCC, Gaussian mixture model (GMM) is the conventional
learning algorithm [12]. In [13], it uses the probability dis-
tribution estimated during the training phrase to determine
whether the suspect is the author of the questioned speech.
However, if the dimension of the input vector is very high,
the curse of dimensionwill destroy the algorithm [14]. Cosine
distance scoring (CDS) is another type of learning algo-
rithm used for speaker recognition and [1, 15] use it to give
out the evidence in the forensic speaker recognition. Because
it can deal with the curse of dimension using a cosine kernel,
CDS is suitable for i-vector which is high-dimensional vector
compared with those short-term feature vectors. Moreover,
it does not cost time to estimate the separating hyperplane,
so its time cost is low. Two same speeches will become very
different, if they are obtained from different channels. This is
called channel variability problem. Usually, linear discrimi-
nant analysis and the within-class covariance normalization
are added to the CDS to deal with this problem [16, 17].

In forensic context, the quality of speech is strongly inter-
fered by noise, variable channel, and different duration. This
is very important for forensics to find a speaker recognition
model that is unsusceptible to those factors. Based on those
aboveworks of the speaker recognition used for forensics, this
paper combines the WCC, i-vector approach, and the CDS
learning algorithm to build a new speaker recognition model
that can be robust against the noise, uniformly represent the

speech having different duration, and deal with the channel
variability problem. We use TIMIT to evaluate the perfor-
mance of our system. The experimental results show that
the proposedmodel can solve the trouble of forensic scenario
and improve the accuracy of recognition. However, the time
cost of the model is high compared with other conventional
speaker recognition models.

The rest of the paper is organized as follows. Section 2
briefly describes the conventional speaker recognitionmodel.
In Section 3, we describe the i-vector-based forensic speaker
recognition model. The proposed model is described in
Section 4. In Section 5, we report the result of our experiment.
Finally, we give out a conclusion in the last section.

2. Conventional Speaker Recognition Model

2.1. Short-Term Feature Extraction Method. In conventional
speaker recognition model, the short-term feature vectors
are usually extracted by MFCC and Fused MFCC methods
[18]. In MFCC method, a speech signal is firstly divided into
20ms-long frames with a 10ms overlap for smoothing the
frequency changes over those frames. After the segmentation,
the frames whose energy is less than a silence threshold (=
0.0001 in this paper) are discarded as well. For each frame,
the cepstral coefficient can be calculated as follows:

(i) Take DFT of the frame to obtain the frequency
spectrum.

(ii) Map the power of the spectrum onto Mel scale using
the Mel filter bank.

(iii) Calculate the logarithm value of the power spectrum
mapped on the Mel scale.

(iv) Take DCT of logarithmic power spectrum to obtain
the cepstral coefficient.

Usually, only the lower 12–14 cepstral coefficients are used to
form the short-term feature vector [19]. This feature vector
extracted byMFCC contains only the cepstral coefficients, so
it just represents the static information of the frame. Fused
MFCC (FMCC) is an extension of MFCC. It is very similar
to the MFCC, except that this method calculates not only
the cepstral coefficients but also the delta derivatives [20].
Assume that the feature vector extracted byMFCC is denoted
as [𝑐𝑐1, . . . , 𝑐𝑐13, 𝑐𝑐14]. The delta derivatives are calculated by

𝑑𝑖 =

∑
2
𝑝=1 𝑝 (𝑐𝑐𝑖−𝑝 + 𝑐𝑐𝑖+𝑝)

2∑
2
𝑝=1 𝑝
2

,

𝑑𝑑𝑖 =

∑
2
𝑝=1 𝑝 (𝑑𝑖−𝑝 + 𝑑𝑖+𝑝)

2∑
2
𝑝=1 𝑝
2

.

(1)

The feature vector extracted by FMFCC is denoted as
𝑐𝑐1, . . . , 𝑐𝑐13, 𝑐𝑐14, 𝑑1, . . . , 𝑑13, 𝑑14, 𝑑𝑑1, . . . , 𝑑𝑑13, 𝑑𝑑14. Com-
pared with the cepstral coefficients vector extracted by
MFCC, the feature vector extracted by Fused MFCC can
represent the changes over the multiple frames. The detailed
algorithm of MFCC and Fused MFCC can be found in [20–
22].
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Figure 1: Forensic speaker recognition system.

2.2. Speaker Classification. Gaussian mixture model (GMM)
is the conventional learning algorithm used for speaker
classification in the conventional speaker model. This model
tries to estimate the probability distribution governing the
known speech data of a particular speaker and then uses
the probability distribution to test an unknown speech and
determine whether the unknown speech is spoken by the
speaker. It is linear combination of Gaussian functions. The
experiment in [23] shows that, with increasing of the number
of Gaussian functions which GMM contains, the recognition
accuracy of GMM will become very high. However, the
large number of Gaussian functions also reduces excessive
computational complexity.

Neural network (NN) is another type of learning algo-
rithm used for speaker classification. This algorithm simu-
lates the human brain to learn the knowledge of the known
speech data of a particular speaker by iteratively adjusting
the weights that connect between two neurons in the adjacent
two layers and uses the knowledge to determine whether the
speaker was the author of an unknown speech. Probabilistic
neural network (PNN) is a special case of NN, where the
sigmoid activation function is replaced by an exponential
function. It uses the NN structure to directly implement the
Bayesian decision and does not cost time to estimate the
probability distribution compared with GMM, so the time
cost of this algorithm is very low.

3. I-Vector-Based Speaker Recognition Model
Used for Forensics

The i-vector-based speaker model used for forensics is shown
in Figure 1.

A forensic speaker recognitionmodel can be decomposed
into training phrase and test phrase. The first two columns
denote the training phrase and the last column denotes the
test phrase. In Figure 1, background speeches usually contain
thousands of speeches spoken by a huge number of people [5].
Suspect speech and questioned speech are collected from the
suspect and the criminal scene. All the tree types of speeches
have different length and are full of noise. Furthermore, they
are usually obtained from different channels.

Firstly, the model transforms the three types of speeches
into short-term feature vectors. The short-term feature vec-
tors extracted from the background speeches are used to train
the background model. This model represents the speaker-
and channel-independent information and is implemented
by a GMM. Once the GMMmodel is created, the short-term
feature vectors extracted from the suspect speech and the
questioned speech are used to train i-vector. One i-vector is
trained using only the short-term feature vectors extracted
from a speech. After the suspect speech and questioned
speech are transformed into i-vector, a learning algorithm is
used to compare those i-vectors to give out the evidence in
forensics and then report the strength of the evidence as a
likelihood ratio.

4. The Proposed Model

In the forensic context, the duration of speech can vary from
few seconds to several hours and the recording condition
is full of noise. Moreover, the speeches are usually obtained
from different channels. To deal with those problems, this
paper proposed a new speaker recognitionmodel by employ-
ing WCC, i-vector, and CDS. The WCC is used to extract
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the short-term feature vectors that are used to train i-
vector. I-vector is used to represent the speeches whose
durations are very different in a uniformly way for comparing
those speeches easily. CDS is used to give out the evidence.
Section 4.1 describes theWCC, Section 4.2 describes i-vector,
and Section 4.3 describes the CDS. Finally, the likelihood-
ratio algorithm is described in Section 4.4.

4.1. Short-Term Feature Extraction. This paper uses the
wavelet cepstral coefficient (WCC) to extract the short-term
feature vectors, because it is able to effectively limit the ill
effect of noise using discrete wavelet transform (DWT).

Wavelet transform is a type of signal processing tool that
is used to obtain the frequency spectrum. A standard wavelet
transform is defined by

𝑊𝑓(𝑛,𝑚) =
1

√𝑚
∫

+∞

−∞
𝑆 (𝑡) ⋅ 𝜓 (

𝑡 − 𝑛

𝑚
)𝑑𝑡, (2)

where 𝑊𝑓(𝑛,𝑚) is a continue signal frame which has finite
energy. 𝜓(⋅) is the mother wavelet and 𝑊𝑓(𝑛,𝑚) represents
the 𝑛th wavelet coefficient at level 𝑚. For analyzing the
discrete digital signal, the discrete wavelet transform (DWT)
is proposed.The DWT is usually implemented by the famous
Mallet algorithm [24]. In the algorithm, the DWT is realized
through a pair of low-pass and a high-pass wavelet filters
that are reconstructed from a selected mother wavelet and
its corresponding scaling function. Through those filters, the
signal is decomposed into a low-frequency part and a
high-frequency part. The low-frequency part can be further
decomposed at the next decomposition level to obtain higher
low-frequency resolution.The low- and high-passed filtering
processes are implemented by

𝐴𝑚+1 = 𝐴𝑚 ∗ ℎ [2𝑛] ,

𝐷𝑚+1 = 𝐴𝑚 ∗ 𝑔 [2𝑛] ,

𝐴0 [𝑛] = 𝑆 [𝑛] ,

𝑛 = 1, 2, 3, . . . , 𝑁,

(3)

where 𝑁 is the length of the analyzed signal. 𝑔 and ℎ

represent the low-pass and high-pass conjugatemirror filters,
respectively. ∗ is the convolution operation. Compared with
DFT used in MFCC or Fused MFCC, DWT can decompose
the signal into many small local frequency domains and
obtain the local frequency spectrum. In other words, if one of
frequency parts of signal is destroyed by noise, whole fre-
quency spectrums will not be interfered strongly.This means
that the frequency spectrum obtained by wavelet is robust
against noise.

Recently, researchers have widely used a new type of
feature extractor named wavelet cepstral coefficient method
for short-term feature extraction [8]. The flow chart of WCC
extraction algorithm used in this paper is shown in Figure 2.

In Figure 2, the speech is firstly decomposed into 20ms-
long short-term frames with a 10ms overlap. After the seg-
mentation, the silence frames are discarded using an energy
threshold (= 0.0001). After the silence frame removing, we

DWT

Normalization

DCT DCT DCT

Speech

D1 A1

log []

D8

log [] log []

[wcc1,1 , . . . , wcc1,14 , . . . , wcc8,1 , . . . , wcc8,14 , wcc9,1 , . . . , wcc9,14]

· · ·

Figure 2: The flow chart of WCC extraction algorithm.

add a normalizationmethod to theWCC approach to remove
the ill effect of sound volume.The normalizationmethod [25]
is given by

𝑓 (𝑛) =
𝑓 (𝑛) − 𝜇

𝜎
, 𝑛 = 1, 2, 3, . . . , 𝑁, (4)

where 𝑓(𝑛) is a short-term frame that has finite energy and
length. 𝜇 and 𝜎 are the mean and standard variance of the
frame, respectively. 𝑁 is the length of frame and 𝑓(𝑛) is the
normalized frame. The result of normalization is shown in
Figure 3.

After the normalization, DWT is used to obtain the
local frequency spectrum.This paper decomposes the speech
into 8 levels by DWT, and therefore we obtain 9 local
frequency parts such as 8 high-frequency parts denoted by
𝐷1, 𝐷2, . . . , 𝐷8 and one low-frequency part denoted by 𝐴1.
For each frequency part, log[] and DCT are also used to
calculate the 14 cepstral coefficients. WCC is very similar to
theMFCC, but the difference is that the cepstral coefficient in
MFCC is calculated on a global frequency domain, but the
cepstral coefficient in WCC is calculated on many local
frequency domains obtained by DWT.

4.2. Training I-Vector. After the speech is transformed to
short-term feature vectors, we can use those vectors to train
i-vector. A background model should be trained at first.
The background model represents the speaker- and channel-
independent information and is implemented by a GMM.
This GMM is trained by a huge set of short-term feature vec-
tors extracted from the background speech set that contains
thousands of speeches spoken by large number of speakers.
For forensics, the background speech set may contain all
speeches of all known criminals in police database, and two
gender-dependent GMMs that generalize the characteristic
of gender-dependent voice are trained using female’s speeches
and male’s speeches, respectively [1]. Once the GMMs are
trained, the suspect i-vector and questioned i-vector are
trained using a particular suspect speech and questioned
speech, respectively.
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Figure 3: (a) Two speech signals that have different sound volume before normalization. (b) Two speech signals that have different sound
volume after normalization.

Given a speech, i-vector approach assumes that the
ideal speaker- and channel-dependent feature vector used to
represent the speech can be modeled as

𝑀 = 𝑚 + 𝑍𝑥, (5)

where𝑀 is the ideal feature vector.𝑚 is a vector that consists
of all the mean vectors of the GMM. If the mean vectors of
GMMare denoted by 𝜇𝑇1 , 𝜇

𝑇
2 , . . . , 𝜇

𝑇
𝐼 , where 𝐼 is the number of

themean vectors and each𝜇 is a row vector, then𝑚 is denoted
by [𝜇1, 𝜇2, . . . , 𝜇𝐼]

𝑇. 𝑍 is a low rank matrix and is called
the total variability matrix. 𝑥 is i-vector and obeys standard
normal distribution. For a given speaker and channel,𝑚 and
𝑍 are changeless, so the ideal feature vector is dependent on
the value of 𝑥. In other words, 𝑥 can represent the speech

sample. Based on the assumption shown in (5), the i-vector
training algorithm is used to iteratively estimate 𝑥 and 𝑍.
𝑥 is estimated using a speech, and 𝑍 is estimated using all
speeches generated from a speaker.The details of the training
algorithm are described in [26].

4.3. Evidence Reporting. Cosine distance scoring (CDS) is a
famous learning algorithm. It uses a cosine kernel to directly
compare two input feature vectors and give out the degree of
similarity between the two feature vectors. The cosine kernel
is defined as

𝐸 = 𝐾 (𝑥1, 𝑥2) =
𝑥1𝑥2

√𝑥1𝑥
𝑇
1
√𝑥2𝑥

𝑇
2

, (6)
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where 𝑥1, 𝑥2 are the two feature vectors. In this paper, they
are two i-vectors that represent a suspect’s speech sample and
a questioned sample, respectively. 𝐾(𝑥1, 𝑥2) is the degree of
similarity between the suspect’s speech and the questioned
speech, so it is the evidence reported by the forensic speaker
recognition model.

Two same speech samples will become very different,
if they are obtained from different channels. This is called
channel variability problem. In the forensic context, the
speech data are usually obtained from different channels. For
example, in the criminal case where a victim receives a threat-
ening call, the questioned speech is a phone recording, but
police usually record the speeches of suspect by microphone.
In other words, the question speech is obtained from the
phone channel, but the suspect’s speeches are obtained from
the microphone channel. To deal with the channel variability
problem, LDA andWCCN are added to the CDS.The cosine
kernel is denoted as

𝐸 = 𝐾 (𝑥1, 𝑥2)

=

(𝐴
𝑇
𝑥1)𝑊

−1
(𝐴
𝑇
𝑥2)

√(𝐴𝑇𝑥1)𝑊
−1 (𝐴𝑇𝑥1)√(𝐴

𝑇𝑥2)𝑊
−1 (𝐴𝑇𝑥2)

,

(7)

where 𝐴 is the LDA projection matrix and 𝑊 is WCCN
matrix. The details of LDA andWCCN are described in [27].

4.4. Evaluating the Strength of Evidence. For evidence report-
ing, the speaker recognitionmodel should report the strength
of evidence as a likelihood ratio (LR). To calculate the LR, two
competing hypotheses𝐻0 and𝐻1 are given.𝐻0 assumes that
the suspected speaker is the author of the questioned speech
and𝐻1 assumes that the suspected speaker is not the author
of the questioned speech. Based on the two hypotheses, the
LR [28] is defined as

LR =
𝑃 (𝐸 | 𝐻0)

𝑃 (𝐸 | 𝐻1)
, (8)

where 𝐸 is the evidence calculated by (7). Firstly, we estimate
the probability distribution 𝑃(𝐸 | 𝐻0) and 𝑃(𝐸 | 𝐻1).
In conventional aural speaker recognition, the degree of
similarity between the questioned sample and the suspect’s
sample is estimated by a seven-level verbal scale shown in
Table 1 [28].

To simulate this, we transform 𝐸 into 7-level scale. The
transform function is defined as

𝑇 (𝐸) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

1 −1 ≤ 𝐸 < −0.7

.

.

.
.
.
.

4 −0.1 ≤ 𝐸 < 0.1

.

.

.
.
.
.

7 0.7 ≤ 𝐸 ≤ 1.

(9)

Assume that there are 𝑠 (≥ 2) known criminals in the
police database and each one speaks 𝑚 (≥ 2) speeches. We

Table 1: The verbal scales used in aural speaker recognition.

Level Verbal equivalent
1 I am certain that the two speakers are not the same
2 I am almost certain that the two speaker are not the same
3 It is possible that the two speakers are not the same
4 I am unable to decide
5 It is possible that the two speakers are the same
6 I am almost certain that the two speakers are the same
7 I am certain that the two speakers are the same

iteratively select two speeches spoken by the same speaker
and calculate 𝑇(𝐸). If 𝑇(𝐸) happens 𝑛1 times, then 𝑃(𝑇(𝐸) =
𝑒 | 𝐻0) is calculated as

𝑃 (𝑇 (𝐸) = 𝑒 | 𝐻0) =
𝑛1

𝐶1𝑠𝐶
2
𝑚

=
2𝑛1

𝑠𝑚 (𝑚 − 1)
, (10)

where𝐶𝑛𝑚 denotes the number of n-combinations in a set of𝑚
elements. On the other hand, we iteratively select two speech
samples spoken by different speakers and calculate 𝑇(𝐸). If
𝑇(𝐸) = 𝑒 happens 𝑛2 times, then 𝑃(𝑇(𝐸) = 𝑒 | 𝐻1) is
calculated as

𝑃 (𝑇 (𝐸) = 𝑒 | 𝐻1) =
𝑛2

𝐶2𝑠𝐶
1
𝑚𝐶
1
𝑚

=
2𝑛2

𝑠𝑚2 (𝑚 − 1)
. (11)

We calculate 𝑃(𝑇(𝐸) = 𝑒 | 𝐻0) and 𝑃(𝑇(𝐸) = 𝑒 | 𝐻1) for each
𝑇(𝐸) to obtain the distribution of 𝐸 for 𝐻0 and 𝐻1. Assume
that there is an evidence𝐸 and𝑇(𝐸) = 𝑒1. If we want to report
its strength, we firstly search the distributions and find the
value of 𝑃(𝑒1 | 𝐻0) and 𝑃(𝑒1 | 𝐻1) and then calculate the LR.

5. Results

In this section we report the outcome of our experiments.
In Section 5.1, we describe the experimental dataset and
procedure. In Section 5.2, we carry out an experiment to
select the optimal mother wavelet for WCC method. In Sec-
tion 5.3, we evaluate the performance of the proposed speaker
recognition model used for investigation. In Section 5.4,
we evaluate the performance of the proposed model used
for evidence reporting. In Section 5.5, the time cost of the
proposed model is counted.

5.1. Experimental Dataset. The results of our experiments
were performed on TIMIT speech database [29]. This
database contained 630 speakers (192 females and 438 males)
who came from 8 different dialect regions. Each speaker
supplied ten 5-second-long speeches that were sampled at
16 KHz. In forensic context, the speeches had different length
and were full of noise. Moreover, the questioned speech
and suspect’s speeches are usually obtained from different
channels. For each speaker, 3 speeches were downsampled to
8KHz and other 7 speeches were still sampled at 16 KHz.This
simulated the speech data obtained from different channels.
Moreover, the 3 speeches sampled at 8 KHz were combined
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in a 15-second-long speech, and other 7 speeches still lasted
5 seconds. This simulates the speech data having different
duration.Three types of noises such as 10 dB, 20 dB, and 30 dB
were added to those speeches to simulate the speeches that
were full of noise in Section 5.3. All of female speeches and
all of male speeches were used to train two gender-dependent
background models, respectively. The test results presented
in our experiments were collected on a computer with a
2.5 GHz Intel Core i5 processor and 8GM of memory. The
experimental platform was MATLAB R2012b.

5.2. Mother Wavelet. The mother wavelet was a key issue for
DWT, and good mother wavelet could improve the perfor-
mance of the wavelet-based spectral speech feature such as
theWCC.The goal of this experiment was to find the optimal
mother wavelet for WCC. The number of the vanishing
movements and the size of support were two important ele-
ments for a mother wavelet. In the theory of mother wavelet
[30], if themotherwavelet had enough vanishingmovements,
the DWTwould ignore much of unimportant information; if
the mother wavelet had small enough support, the wavelet
coefficients obtained by DWT would sparely and accurately
represent the important information of a signal. Therefore,
an optimal mother wavelet should have large number of
vanishing movements and meanwhile have small support.
However, we had to take tradeoff between the number of
vanishing movements and the size of support, because they
should satisfy the following equation:

𝐿 ≥ 2𝑝 − 1, (12)

where𝐿 is the size of support and𝑝 is the number of vanishing
movements. In this view, Daubechies wavelets [31] were the
optimal wavelets, because they had the smallest support for
given vanishing movements. Moreover, these wavelets had
orthogonal conjugate mirror filters which were suitable for
the Mallat fast DWT algorithm.

In this experiment, we employ the normalized partial
energy (NPE) [32] to evaluate the performance ofDaubechies
wavelets. NPE was used to quantify how well a particular
transform, such as DWT, performed in capturing the impor-
tant information of a signal. Assume that there was a wavelet
coefficient series denoted by {𝑐1, 𝑐2, . . . , 𝑐𝑁}, where 𝑁 is the
total number of the wavelet coefficients. Form the squared
magnitudes |𝑐𝑡|

2 and order them such that

󵄨󵄨󵄨󵄨𝑐(1)
󵄨󵄨󵄨󵄨

2
≥
󵄨󵄨󵄨󵄨𝑐(2)

󵄨󵄨󵄨󵄨

2
≥ ⋅ ⋅ ⋅ ≥

󵄨󵄨󵄨󵄨𝑐(𝑁)
󵄨󵄨󵄨󵄨

2
. (13)

The NPE was defined by

NPE (𝑛) =
∑
𝑛
𝑢=1

󵄨󵄨󵄨󵄨𝑐(𝑢)
󵄨󵄨󵄨󵄨

2

∑
𝑁
𝑢=1

󵄨󵄨󵄨󵄨𝑐(𝑢)
󵄨󵄨󵄨󵄨

2
, 𝑛 = 1, 2, 3, . . . , 𝑁. (14)

We can see that NPE(𝑛) varied from 0 to 1 for all 𝑛. If the NPE
would be close to 1 for small 𝑛, the DWT was able to capture
the key information. In other words, the mother wavelet
used in the DWT was optimal. The Daubechies wavelet
was denoted by db𝑁, where 𝑁 is its number of vanishing
movements.This experiment employed db 1–8 to decompose

Table 2: The NPEs of the DWT using different mother wavelets.

Mother wavelets 𝑛 = 5 𝑛 = 10 𝑛 = 20

db1 0.51 0.73 0.91
db2 0.66 0.75 0.93
db3 0.80 0.85 0.95
db4 0.86 0.92 0.98
db5 0.79 0.87 0.98
db6 0.73 0.83 0.97
db7 0.69 0.76 0.95
db8 0.65 0.76 0.95

200 speeches that were randomly selected from our dataset.
For each mother wavelet, we calculated 200 NPEs and count
the average value of those NPEs. Table 2 shows the average
NPE of those mother wavelets when 𝑛 was equal to 5, 10, and
20, respectively.

In Table 2, we could find that the NPEs of all mother
wavelets reached higher than 0.9 when 𝑛 was equal to 20 and
db4 and db5 obtained the highest NPEs of 0.98. When 𝑛 was
equal to 10, only db4 obtained the NPE of 0.92 compared
with other mother wavelets which obtained the NPEs of less
than 0.9. Moreover, the db4 wavelet could use only 5 wavelet
coefficients to obtain the NPE of 0.86, but other mother
wavelets obtain the NPE of less than 0.8. Those results
show that the db4 wavelet was the most suitable mother
wavelet, because its DWT can capture the key information of
speech. In [33], researchers suggested that the Symletwavelets
could also obtain good performance. However, the complex
conjugate mirror filters of Symlet wavelets produced the
complex wavelet coefficients whose imaginary parts were
redundant for real signal such as speech, so we abandoned
the Symlet wavelets.

5.3. The Accuracy Rate of Investigation. This experiment
tested the performance of the speaker recognition model
when it was used for investigation. In investigation task, the
speaker recognition model was used to compare the ques-
tioned speech with all of the speeches of known criminals in
police database to produce a small list of potential suspects. In
our experiment, we selected 384 speakers (192 females and 192
males) to form the large criminal set. For each speaker, the
7 recordings sampled at 16 KHz are used as the known
criminal’s speeches (called known speeches for short) and the
recordings sampled at 8 KHz are used as the questioned
speech. The similarity between the criminal’s speech sample
and the questioned speech was defined as

𝑠 =
1

7

7

∑

𝑖=1

𝐾(𝑦𝑖, 𝑥) , (15)

where 𝑦 is the known speeches and 𝑥 is the questioned
speech. 𝐾(⋅, ⋅) is the kernel function defined in (7). For
each questioned speech, we required the speaker recognition
model to produce a list of top 10 potential suspects that
obtained the highest similarity. If the “real criminal” is in the
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Table 3: The accuracy of investigation.

Short-term feature extractor Accuracy rate of investigation (%)
MFCCGMM 82.46
FMFCCPNN 86.81
MFCCICDS 93.75
WCCICDS 95.48

list, the speaker recognition model got one score; if the “real
criminal” was not found in the list, the model got zero score.
We summed the score of the speaker recognition model for
the 384 questioned speeches and calculated the accuracy rate
that is defined as

ACC =
score
384

× 100%. (16)

Because the speaker recognition model is used for investiga-
tion, the likelihood ratio is not required to be calculated.

For speaker recognition, many types of models were
proposed by researchers. The typical speaker recognition
model is MFCCGMM [34]. This model used 14D short-term
feature vectors obtained by MFCC method to directly repre-
sent the speeches and used GMM for classification. In [20],
researchers proposed a model based on Fused MFCC and
probabilistic neural network (PNN), which is named FMFC-
CPNN. This model used 52D short-term feature vectors
obtained by Fused MFCC method for speech representation
and used the PNN for classification. Recently, [15] proposed a
speakermodel based on theMFCC, i-vector, and CDS, which
is named MFCCICDS. This model used i-vector for speech
representation andCDSwas used for classification.Moreover,
i-vector was trained using 14D short-term feature vectors
obtained byMFCCmethod. Inspired by the above model, we
proposed new speaker model based on WCC, i-vector, and
CDS, which was calledWCCICDS.Thismodel was similar to
the above one, but we used 126D short-term feature vectors
obtained by WCC to train i-vector. Moreover, the mother
wavelet used in our model was db4. For comparison, we
employed the above 4 models to achieve the investigation
task. The accuracy rates were shown in Table 3. In this
experiment, we just used the clear speeches.

In Table 3, MFCCGMM and FMCCPNN obtained low
accuracy of 82.46% and 86.81%, respectively. However, the
two models in [20] obtained the accuracy of higher than 89%
and 92%, respectively. This was because the speeches in [4]
were obtained from same channel and had the same duration,
but the speeches in our experiment were obtained from
different channels and their durations were different too.This
shows that the CDS could deal with the channel variability
problem and i-vector was able to model the different length
speeches to improve the performance of speaker recognition.
Compared with the two models based on i-vector and CDS,
we found that MFCCICDS obtained lower accuracy than
the WCCICDS did. This was because WCC used DWT to
analyze the speech signal, but MFCC used DFT. DFT used
the fixed window to decompose signal, but DWT used the
variable window that could obtain high frequency resolution
at low frequency and high time resolution at high frequency
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Figure 4: The accuracy rates of speaker recognition in noisy
environment.

[35]. For the explodent sound that had short duration and
high frequency, variable window can capture its information,
but the fixed window might make the information fuzzy
[22]. Therefore, the model which usedWCC obtained higher
accuracy.

In forensic context, the ambient noise cannot be con-
trolled. In particular, the questioned speech is usually
recorded in the condition that is full of noise. We therefore
carried out an experiment to evaluate the performance of our
model in noisy environment. We added 30 dB, 20 dB, and
10 dB noises to the speeches used in the above experiment.
All noise was generated by the MATLAB Gaussian white
noise function. We repeated the above experiment and the
accuracy rates were shown in Figure 4. We could find that
the accuracy rates of the four models decreased by less than
3% when the noise is 30 dB. This shows that the weak noise
could not interfere in those models. However, if we enhanced
the noise, we found that the accuracy rates of MFCCGMM,
FMFCCPNN, and MFCCICDS dropped off rapidly. When
the noise increased to 10 dB, the accuracy of the three models
decreased by about 48.7%, 45.2%, and 33.4%, respectively.
This shows that the two models were susceptible to noise.
Compared with the above two models, the proposed model,
named WCCICDS, performed better. When the 10 dB noise
was added to those speeches, the accuracy of the model
decreased by about 24.6%. This shows that the model using
WCC was more robust against noise.

5.4. The Performance of Evidence Reporting. This experiment
evaluated the performance of speaker recognition model
when it was used for evidence reporting. In the evidence
reporting, the suspect had been found and police used the
speaker recognition model to give out the evidence that is
defined as the degree of similarity between the suspect
speech and the questioned speech. In this case, the speaker
recognition model was required to report the strength of the
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evidence as a likelihood ratio. In this experiment, we also
used the above 384 speakers. For each speaker, the 7 speeches
sampled at 16 KHz were also used as the suspect’s speeches
and the speech sampled at 8 KHz was also used as the
questioned speech.We used all the speeches of the 384 speak-
ers to estimate the probability distribution of evidence for
the two hypotheses𝐻0 and𝐻1. Given a suspect, we required
the speaker model to give out the evidence and report the
evidence and its strength as a likelihood ratio. The evidence
in this experiment is defined as

𝐸 = 𝑇[

[

1

7

7

∑

𝑗=1

𝐾(𝑥, 𝑦𝑗)
]

]

, (17)

where 𝑥 and 𝑦 are the questioned speech and suspect’s
speeches, respectively.𝐾(𝑥, 𝑦𝑗)was theCDS kernel defined in
(7) and 𝑇(⋅) was a transform function defined in (9).

This section used Tippett plots [36] to evaluate the
performance of our model. It was originally used for the
forensic DNA analysis and then was used for evaluating the
forensic speaker recognition model. Assume that there were
𝑚 questioned speeches and𝑀 suspects that had been found
by police. The speaker recognition model reported the like-
lihood ratio (LR) for each of questioned speeches and each
suspect, so we obtained 𝑚 × 𝑀 LRs. The Tippett plot was
defined as

𝑇 (𝑡) =
𝑛

𝑁
× 100%, 0.1 < 𝑡 < 10, (18)

where 𝑇(⋅) was the Tippett plot; 𝑛 was the number of LRs
that were greater than the threshold 𝑡. 𝑁 = 𝑚 × 𝑀 was the
total number of LRs. We varied the threshold 𝑡 from 0.1 to 1
to obtain different Tippett plot. To evaluate the performance
of our model, we calculated two types of Tippett plot. The
first one was calculated in the assumption that the questioned
speech and the suspect speech were spoken by same speaker
and we call it 𝑇1. The second one was calculated in the
assumption that the questioned speech and the suspect
speech were spoken by different speakers and we called it 𝑇2.
LR presented the strength of the evidence that the suspect
was the criminal. For good speaker recognition model, the
reported LR would be very high if the questioned speech
and the suspect’s speeches were spoken by same speaker. On
the other hand, the LR would be very low if the questioned
speech and the suspect’s speeches were spoken by different
speakers. In other words, the separation between the two
types of Tippett plots is an indication of the performance of
the model [37]. Given small 𝑡, a larger separation implied
better performance than a smaller one. The results of this
experiment were shown in Figure 5.

In Figure 5, the two types of Tippett plots of WCCICDS
separated from each other when 𝑡 is less than 0.5 and greater
than 0.1, but the two Tippett plots of MFCCICDS stuck
together.The two curves of MFCCICDS separated from each
other until the threshold increased to about 1. This shows
that the separation between the two types of Tippett plots
of WCCICDS was slightly larger than MFCCICDS’, so the
WCCICDS performed better than the MFCCICDS. When
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Figure 5: Tippett plot curve of the speaker recognition models.

the threshold 𝑡 increased to 8, all plots decreased to 0.Thiswas
because of the fact that the threshold became too high and no
LR was greater than it.

5.5. The Time Cost of Speaker Recognition Models. I-vector in
many cases can improve the accuracy of recognition at cost
of increasing the computational complexity, so in this exper-
iment we test the time cost of the four speaker recognition
models, MFCCGMM, FMCCPNN, MFCCICDS, and our
WCCICDS.We used 200 5-second-long speeches to test their
time cost and calculated the average time cost. The time cost
of inputting those speeches was discarded. The result was
shown in Table 4.

In Table 4, MFCCGMM and FMFCCPNN did not
employ i-vector for speech representation, so they did not
cost time to train i-vector. FMFCCPNN, MFCCICDS, and
WCCICDS used the PNN and CDS for speaker classification.
Because the PNN and CDS were the unsupervised learning
models, the threemodels need not cost time during the train-
ing step of speaker classification. The time cost of short-term
feature extraction of the proposed WCCICDS was the high-
est. This was because this model used WCC to calculate 126
cepstral coefficients from 9 local frequency domains com-
pared with other three models that used MFCC or FMFCC
to calculate 14 cepstral coefficients from a global frequency
domain. Training i-vector was also a time-consuming pro-
cess, so i-vector-basedmodel costs more time than themodel
that did not employ i-vector. In all, WCC and i-vector could
slightly improve the performance of the speaker recognition
model at cost of increasing the time cost, so selection of
speaker recognition model was the process that found the
balance between the performance and time cost.

Parallel computation was an effective way to reduce the
time cost, because many loops in the linear computation
could be finished at once using a parallel algorithm. For
example, we used DWT to decompose a signal at 𝑀 levels.
In the linear algorithm, we had to run a filtering process
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Table 4: Average time cost of the speaker recognition models.

Model
Feature extraction (s/speech) Speaker classification (s/speech)

Short-term feature
extraction I-vector training Training Recognition

MFCCGMM 0.45 — 1.92 0.81
FMFCCPNN 1.29 — — 0.83
MFCCICDS 0.51 2.21 — 0.85
WCCICDS 2.91 2.19 — 0.89

whose time cost was 𝑂(log𝑁) N times for each level, so the
time complexity of DWT was 𝑂(𝑀𝑁 log𝑁). However, if we
used a parallel algorithm to implement the DWT, we could
use𝑁 independent cores to compute𝑁 filtering processes at
once, and therefore the time cost reduced to𝑂(𝑀 log𝑁). In a
further study, the parallel computationmay be used to reduce
the time cost of the proposed model.

6. Conclusions

In the forensic context, the speaker recognition model is
usually used for investigation and evidence reporting. In the
investigation, police assume that the real criminal is in a large
set of known criminals and the speaker recognition model
is used to produce a small list of potential suspects from a
large set of known criminals. In the evidence reporting, the
suspect is found, and the speaker recognition model is used
to report the evidence that supports the fact the suspect was
the real criminal. In this case, speaker recognition model
also should report the strength of evidence as a likelihood
ratio.

The forensic scene is very challenging for speaker recog-
nition, because the ambient noise cannot be controlled and
the much-change speech data are usually obtained from
different channels. In this paper we propose a new speaker
recognition model based on WCC, i-vector, and CDS. WCC
has good performance on antinoise, because the DWT
employed by WCC is a local analysis approach that can
prevent the noise interfering in whole frequency domain. I-
vector is a robust way to represent a speech utterance using a
signal i-vector, so it can model the much-change speech data
effectively. CDS employs the LDA andWCCN to compensate
the channel to deal with the channel variability problem.
Our experiments simulate the investigation and evidence
reporting tasks. The result of our experiments shows that
the proposed WCCICDS obtained high accuracy rate in the
investigation task and also obtained good performance in
the evidence reporting task, but its time cost was higher
compared to other models. The result also shows that the
parallel algorithm could effectively reduce the time cost of the
model based on i-vector.

In the future, we will use the parallel algorithm to reduce
the time cost of the proposed model. Moreover, we will com-
bine audio and visual features to improve the performance of
the forensic speaker recognition system.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors thank Professor Kun She for assistance in prepa-
ration of the manuscript and acknowledge support by Key
Technology Support Program of Sichuan Province (Grant no.
2015GZ0102).

References

[1] M. Mandasari, M. McLaren, and D. A. V. Leeuwen, “Evaluation
of I-vector speaker recognition systems for forensic applica-
tion,” in Proceedings of the INTERSPEECH, pp. 21–24, August
2011.

[2] A. Eriksson, “Aural acoustic vs. Automatic methods in forensic
phonetic case work,” in Forensic Speaker Recognition, pp. 41–69,
2012.

[3] A. Drygajlo, “From speaker recognition to forensic speaker
recognition,” Biomedical Authentication, vol. 8897, pp. 93–104,
2014.

[4] J. R. Conzalez, A. Drygajilo, D. R. Castro, and M. G. Garcia,
“Robust estimation interpretation and assessment of likelihood
ratios in forensic speaker,” Computer Speech & Language, vol.
20, pp. 331–355, 2006.

[5] T. Kinnunen and H. Li, “An overview of text-independent
speaker recognition: from features to supervectors,” Speech
Communication, vol. 52, no. 1, pp. 12–40, 2010.

[6] C. Champod and D. Meuwly, “Inference of identity in forensic
speaker recognition,” Speech Communication, vol. 31, no. 2, pp.
193–203, 2000.

[7] M. A. Silveria, C. P. Schroeder, J. P. C. L. da Costa et al., “Con-
volutive ica-based forensic speaker identification using mel
frequency cepstral coefficients and gaussian mixture model,”
The International Journal of Forensic Computer, vol. 1, pp. 27–
34, 2013.

[8] S. Srivastava, S. Bhardwaj, and A. Bhandari, “Wavelet packet
based mel frequency cepstral features for text independent
speaker identification,” Advances in Intelligent Systems and
Computing, vol. 182, pp. 237–247, 2013.

[9] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice model-
ing with sparse training data,” IEEE Transactions on Speech and
Audio Processing, vol. 13, no. 3, pp. 345–354, 2005.
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An algorithm for detecting cavities inside a tree-body is presented with simulation and measured examples. The details of the
imaging algorithm that is based on sinusoidal template focusing routine are given. First, the algorithm is tested with the simulation
scenario for which perfect reconstruction of the simulated cavity structure together with tree-body is successfully formed in
MATLAB programming environment. Then, the algorithm is applied to the measurement data that have been collected from a
laboratory set-up. Collected backscattered measurements from the tree-body (with cavity) structure are used to generate the image
of the scene by the help of our proposed algorithm. The resultant radar images of the measured data collected from the laboratory
arrangement have shown the applicability of the developed algorithm for the detection of cavity structures inside tree-bodies.

1. Introduction

The detection of voids or cavities within tree-bodies at
microwave band has become an emerging technology for the
determination of unhealthy and weak trees [1, 2]. Every year
tens of people are being killed all around the world due to
falling tree incidents and related incidents [1–4]. Although
most of the trees seem to be healthy and strong when looking
from the outside, it is not easy to realize the existence of
interior cavities that might occur due to fungus and worm
attacks by using conventional methods such as acoustic
imaging techniques [5], resistivity measurement methods
[6], and thermographic inspection [7]. It is known by the
experts that decaying wood is expected to have a different
moisture content and density; therefore, this part of the tree-
body should have different electrical characteristics such as
dielectric constant and conductivity [8]. One of the most
applied methods is the ultrasonic tomography that can sense
decay structures only under special circumstances [9]. This
technique uses the mechanical behavior of wood that usually
depicts a strong anisotropy such that ultrasonic pulses are
being used to sense this discontinuity caused by the cavity.
On the other hand, ultrasonic pulses in wood are usually

strongly attenuated; therefore, this method requires high
signal sensitivity and dynamic range while acquiring and
processing the raw data [10, 11]. Recently, using obstacle-
penetrating radar technologies to detect and image cavities
within a tree-body has been increasingly gaining attention
thanks to recent advances in radar hardware and radar
signal processing techniques [12–15]. It is eminent by the
electromagnetic (EM) community that microwave imaging
techniques have the advantages of providing high resolution
features and requiring relatively smaller amount of power
to penetrate such obstacles. Algorithms used in ground-
penetrating-radar (GPR) [16–18] and through-wall-imaging-
radar (TWIR) [19–21] seem to provide promising solutions to
this special problem. Also, circular Radon transform could
be an opportunity to focus the scattered electric field data
collected from a circular measurement set-up for a different
application [22].

In this work, we offer a practical but also a fast focus-
ing/migration method that can be readily used for tree-
interior imaging radar (TIIR) applications. We are present-
ing a conceptual study on TIIR by suggesting an imag-
ing/focusing method that has been specially tailored to
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this specific application and also demonstrating a proof-of-
concept study by providing and assessing the results of related
simulations and measurements from a test-bed.

The paper is organized as follows: in the next section, we
present the steps and the details of our imaging algorithm
for the TIIR problem. In the third section, the validity
of the proposed method is first tested with the help of
simulated data that are generated with point scatterer model.
In the following section, a measurement set-up for TIIR
experiments is constructed and both the simulation of the
experimental set-up and measurements conducted with real
tree-body with cavity are presented.The results after applying
the proposed methods are provided. Resultant radar images
of both the simulation and the measurement data validate
the effectiveness and the success of our suggested algorithm.
In the final section, the work is concluded by discussing the
applicability and assessment of themeasurement systemwith
the proposed algorithm.

2. Imaging/Focusing Algorithm for TIPR

The geometry of our TIIR problem can be described as
illustrated in Figure 1 where the tree-body is circularly
scanned by a directive antenna for a total of𝑀 distinct look-
aspects covering the whole azimuth angles. The radius of the
scanning circle is 𝑅0. The frequency-diverse backscattered
electric field data are collected in the monostatic configu-
ration of the radar. For any point scatterer, 𝑃(𝑥𝑛, 𝑦𝑛) was
assumed to be on the perimeter of the cavity within the radius
𝑅0; therefore, one-dimensional (1D) electric field data can be
obtained by the antenna of the 𝑖th position as

Es
i (k) = 𝐴 𝑖 exp (−𝑗2k𝑟𝑖) . (1)

Here, 𝑟𝑖 = sqrt[(𝑥𝑛 − 𝑥𝑖)
2
+ (𝑦𝑛 − 𝑦𝑖)

2
] is the distance

between the scatterer and the antenna and k is the wavenum-
ber vector. This result is valid for the following assumptions:
first, we assume isotropic radiation of the electromagnetic
(EM)wave inside the tree-body such that the EMwave travels

along its propagation direction. This assumption is usually
true for the decayed trees since such trees usually dry in the
inside due to decaying phenomenon. It is reported that the
dielectric constant of dried wood material is on the order of
1.4 to 2.9 in practice [23]. Therefore, the moisture content for
the decayed trees is usually very low and does not present
significant anisotropy in terms of the water content of the
tree-body. This situation also helps radar signal to penetrate
the tree-body better since the relative electric permittivity
contrast between the air and the tree structure is not high.
Secondly, the scattering structures within the tree-body
are assumed to be represented with point scatterer model
that is very effective and commonly used in many radar
applications [24]. Therefore, near field boundary conditions
for the air void and the tree-body are not imposed. Although
such modelling will provide a more realistic representation,
the surface modelling of air void would be quite complex
and yield a very complex calculation of the EM reflection.
Therefore, we have encountered a more basic and simplified
EM scattering calculation model to ease the numerical load
of the problem. Furthermore, such kind of study is out of
this research work. Yet, modelling boundary points such as
surface of cavities with perfect point scatters has proven to
be an effective way of calculating the scattering from such
boundaries in many radar problems [25, 26]. Thirdly, any
multipath phenomenon is not accounted as all radar imaging
algorithms are based on only single-reflection assumption.

Based on the above assumptions, then, (1) can be rewrit-
ten as a summation over scatterer and provides a two-
dimensional (2D) data by considering different look angles
as the following for a finite number of point scatterers (𝑀)
that form the tree-body:

Es
(k,𝜙) =

𝑀

∑

𝑖=1

𝐴 𝑖 exp (−𝑗2kRi) , (2)

where Ri = sqrt[(X − 𝑥𝑖)2 + (Y − 𝑦𝑖)2] is the distance vector
between the scatterer and all the positions of radar for whole
azimuth observation angles of 𝜙 ranging from 1 to𝑀 and k
is the wave number for the stepped frequencies for a total of
𝑁 distinct frequencies. Then, X and Y vectors correspond to
Cartesian coordinates of𝑀 antenna positions, accordingly as
given below:

X = 𝑅0 cos𝜙,

Y = 𝑅0 sin𝜙.
(3)

Taking the one-dimensional (1D) inverse Fourier transform
(IFT) of (2) along the spatial frequency axis, one can easily
get the 2D range-angle data, 𝐸𝑠(r,𝜙). In this resultant range-
angle data, any point 𝑃(𝑥𝑛, 𝑦𝑛) exhibits a sinusoidal behavior
for the 360∘ variation of azimuth angle 𝜙 because of circular
scanning arrangement.

Our detection and imaging algorithm can be briefly
summarized as follows: (i) after obtaining the 2D range-angle
backscattered electric field data, Es

(r,𝜙), we select an image
window in 2D (range, angle) domain that covers the whole
geometry. It is important to note that the range-extent of the
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Figure 2: Simulation geometry for the TIIR algorithm.

image window should be larger than or at least equal to the
diameter of scanning, that is, 2𝑅0. (ii) Next, we iteratively
pick all the points; 𝑃(𝑥𝑝, 𝑦𝑝)within the selected window. (iii)
Then, we form a template vector for each look angle of 𝜙𝑖 by
writing the following template equation:

Rn
temp (𝜙n) = sqrt [(X − 𝑥𝑝)

2
+ (Y − 𝑦𝑝)

2
] . (4)

(iv) Afterwards, we go back to 2D 𝐸𝑠(r,𝜙) data and pick the
data under (Rn

temp,𝜙n) points. At this point, a precise data
interpolation schemeneeds to be employed to lessen the error
associated with data interpolation. (v) In the final step, we
add all the data under this template vector and record the
result in a new 2D image matrix at (𝑥𝑝, 𝑦𝑝) location. The
new, reconstructed image data at (𝑥𝑝, 𝑦𝑝) location becomes a
pixel in the final image.The algorithm successively continues
until all the points in the selected image window are passed
through the algorithm. The resultant I(𝑥, 𝑦) matrix is the
focused image.

3. Simulation Results

The above-explained algorithm was first tested by a simu-
lation scenario whose illustration is given in Figure 2. The
simulation scene was constructed inMATLAB programming
environment [27] with the assumptions that were listed in
the previous section. To be able to test and evaluate the per-
formance of this technique with ideal conditions, perimeter
of the tree-body (shown as black dots) was assumed to be
composed of a total of 60 perfect point scatterers with the
identical reflectivity amplitudes of “1,” that is, independent of
frequency and aspect. The radius of the tree-body is taken as
60 cm. In the simulation, there were two cavity regions; one
was centered at (10 cm, 0) while the other one was located
at (−20 cm, 5 cm). Both cavities were considered to be in the
form of circles with diameters of 8 cm and 6 cm for the first

and second void regions, respectively. The circumference of
the cavities was also assumed to be composed of perfect
point scatterers with equal EM reflectivities of “0.5” that
are independent of frequency and angle. Dielectric constant
for the tree-body was taken as 1.65 and assumed to be
homogeneous within the tree-body. The radar antenna was
positioned at 35 cm away from the tree’s surface and moved
along a circular track for a total of 360 distinct look angles
to collect the backscattered data. For each of the look angles,
frequency-diverse backscattered electric field was gathered
for the stepped frequencies ranging from 1 to 8GHz for
the total of 100 discrete frequency points. Therefore, the
backscattered electric field data were collected on the 2D
frequency-angle plane such that a matrix of 100 × 360 points
was obtained.

We apply the steps of our focusing algorithm that was
based on summation of the data beneath the sinusoidal tem-
plate. In Figure 3(a), the range profilematrix for different look
angles, Es

(r,𝜙), was obtained. We have several observations
about the range-angle raw data in Figure 3(a) as follows:
(i) the scattering from the nearest point from the circular
tree-body geometry shows up as a straight line since both
the scanning path and the tree-body are in the form of
circles. This line occurred at a range distance of 35 cm as
expected. (ii) Scatterers on the perimeter of both cavities
come out as sinusoids of different oscillating amplitudes
due to different round-trip distances between the antenna
and the scatterers due to circular movement of the radar
while collecting the data. In fact, the peak amplitudes of
these oscillating sinusoids depend on their distances from
the center of rotation. For our simulation example, these
numbers are 4 cm and 3 cm for the first and the second cavity,
respectively. The range-angle image in Figure 3(a) exactly
exhibits this behavior as we have anticipated. (iii) The widths
of the sinusoids represent the diameters of the cavities. From
the figure, the widths of the sinusoidal behavior are 8 cm and
6 cm that are precisely the same values of real diameters for
the cavity regions. (iv) The starting point of the sinusoidal
behavior actually pinpoints the exact location of the cavity:
for example, if the sinusoids start from the maximum value,
the cavity is located at the nearest point to the antenna’s
location. If the sinusoid starts from theminimumvalue, then,
the cavity is at 180∘ away from the antenna. (v) Center point
of the scanning will show up as a straight line in the range-
angle image. Therefore, if there is a small cavity at the center,
its image will be a horizontal line at the half wave between
the scatterings from near and far points of the tree-body. (vi)
Second straight line around 95 cm in range-angle image in
Figure 3(a) corresponds to scattering from far-most point of
tree-body. As the radar moves around a circle, the distance
from the far-most point of the tree-body stays constant at
95 cm as it was obtained in Figure 3(a). After analyzing the
range-angle image in Figure 3(a) that certainly tells us many
facts, we applied the steps of the algorithm such that the final
focused image I(𝑥, 𝑦) was obtained as given in Figure 3(b).
As it is clearly seen from the figure, both the tree-body and
the cavity regions were successfully imaged in the resultant
focused image at their correct locations in the Cartesian
coordinates. Of course, the image strength of cavities is much
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Figure 4: The measurement set-up for the TIIR experiment.

smaller than that of tree’s surface due to decaying of EMwave
with 1/(4𝜋𝑅2) term.

The fidelity of the resultant image in our simulation is
compared to othermethods such asRadon transform [21] and
ultrasonic techniques are as follows [9]: focused image can be
obtained fromRadon transform simulationmethod that uses
projection data associatedwith cross-sections of an object but
this method requires complex calculations for obtaining the
final image. Therefore, its implementation is more difficult
and takes much more time. Ultrasonic simulation method
also can be used for imaging but the disadvantage of this
method is the weakness of the ultrasonic signals to be able
to penetrate the tree-body. To ensure the required minimum
detectable signal level, many receivers are usually required
along the perimeter of tree-body. Our method is more
practical and has faster migration method to be applied for
TIIR applications.

4. Measurement Set-Up and
Experimental Results

To assess the effectiveness of our TIIR detection/imaging
algorithm with real experimental data, we have con-
structed a measurement test-bed at our anechoic chamber of
Mersin University’s Advanced Technologies Research Center
(MEATRC) facility. The geometry of the measurement set-
up is shown in Figure 4. In this set-up, a Vector Network
Analyzer (VNA) [Agilent ENA5071B] was utilized to gen-
erate/transmit/receive the radar signal by using an ultra-
wide band (UWB) double-ridged horn antenna [Geozondas
GZ0126DRH] that was used in the monostatic configuration.
The antenna frequency range is 1–26GHz. Beam width of the
antenna at E plane is 37.7∘ at 1 GHz and 22.4∘ 8GHz. A turn
table with automation software was employed to get different
look angle profiles of the tree-body. Also, a PC has to be used
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to synchronously control the VNA and the turn table with a
MATLAB [27] script.

For the presented configuration in Figure 4, a piece of
pine tree trunk with outer-diameter of approximately 42 cm
was used as the target to be imaged. The tree has a cavity
whose center is about 2 cm away from the center of the tree
with a radius of about 11 cm as pictured in Figure 5(a). Before
starting the experiment, we first constructed an approximate
2D simulation of the measurement that we were going to do
to visualize the results out of the experiment and to compare
it to real experiment that we were going to conduct later
on. In Figure 5(b), the simulation for the experiment was
constructed again in MATLAB. Our antenna is assumed to
be 58 cm away from the center of the tree or 36 cm away from
the body of the tree trunk. The geometry for the tree trunk
and the cavity was constructed in accordance with the real
values as illustrated in Figure 5(b).

For the simulation, the frequency is altered from 1 to
8GHz for a total of 100 discrete frequencies while the look
angle was also varied from 1∘ to 360∘ for a total of 361 distinct
aspects. The tree-body’s frequency-independent reflectivity
amplitude was chosen to be “1” while that of cavity was
selected as “0.1” to emulate the attenuation of EM wave while
travelling inside the tree-body. The 2D range-angle data after
running the simulation is presented in Figure 6(a) where
we can observe different scattering mechanisms easily: the
reflection from the tree-body showed up as a straight line
around 36 cm from the antenna as expected. The front point
and the back point of the cavity experienced two sinusoids as
the look angle varies along the whole azimuth. Of course, the
reflection magnitude for the back point of the cavity is less
than that of the front point of the cavity due to attenuation
of the EM wave with distance. After applying our sinusoidal
template-based focusing algorithm, the TIIR image of this
simulation for the experiment was gathered as plotted in
Figure 6(b). By comparing this figure with the simulation

geometry in Figure 5(b), one can easily see that the suggested
algorithm successfully forms the TIIR image of the scenario
with good fidelity.

As the final study, we have conducted a real through-
the-tree-imaging-radar experiment as pictured in Figure 5(c).
The experiment was performed with the measurement test-
bed at our anechoic chamber of MEATRC facility. During
this experiment, the tree trunk whose picture is seen in Fig-
ure 5(a) was put on the turn table.The antenna in monostatic
configuration was positioned as seen in Figure 5(c) such that
the phase center of the measurement set-up is about 58 cm
away from the scanning axis of the tree trunk just as similar
to the simulation. By using the automation software that was
adopted by our MATLAB script, turn table has been turned
for the full azimuth coverage of 360∘ at 1∘ increments. For
each look angle measurement, the frequency of the VNA
was changed from 1 to 8GHz for a total of 100 discrete
frequency points as in the case of the simulation. Therefore,
a 2D scattered electric field matrix, Es

(𝑘, 𝜙), of 100 × 360
measurement points was collected. Theoretical achievable
resolution is calculated as Δ𝑟 = 𝑐/(2 ∗ 𝐵 ∗ √𝜖𝑟) = 1.66 cm
for a bandwidth of 𝐵 = 7GHz and 𝜖𝑟 ≅ 1.65 (relative electric
permittivity of tree trunk). Maximum range is 𝑅max = 𝑁 ∗
Δ𝑟 = 166 cm for number of the discrete frequency points
𝑁 = 100.

After applying the IFToperation along the frequency axis,
2D range-aspect data, Es

(𝑟, 𝜙), were obtained as plotted in
Figure 6(c). We can notice the scattering from the tree’s body
as a wavy line around 36 to 40 cm since the perimeter of the
treewas not a perfect circle.We also notice the scattering from
cavity that experiences the same behavior of the tree’s body as
the look angle varies during the measurement. Although the
attenuation of the EMwave inside the tree texture looksmore
intense thanwehave anticipated in the simulation,we can still
sense the disturbance of the scattering energy due to existence
of the cavity around 50 to 70 cm in range direction. Next,
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Figure 6: Simulation and measured results for the experiment: (a) simulated range-angle data, (b) simulated TIIR image, (c) measured
range-angle data, and (d) measured TIIR image.

we have employed our sinusoidal template based focusing
algorithm to migrate the data from range-aspect domain to
the image domain such that we have obtained the final TIIR
image of the tree trunk as depicted in Figure 6(d). Thanks
to the focusing ability of our algorithm, the reflections from
the tree-body and the cavity’s perimeter have been amplified.
Therefore, we can easily notice the borders of impedance
changes from air to tree-body and tree-body to cavity and
vice versa. Visually comparing the results in Figure 6(d)
[measurement] and Figure 6(b) [simulation] with the real
picture of tree trunk in Figure 5(a), one can clearly realize that
resultant TIIR images successfully form the geometry of tree-
body and the cavity around their correct locations such that
the cavity inside the tree trunk is detected.

5. Conclusion

In this work, we have presented our recent work on tree-
interior imaging radar research. On this scope, we have
introduced a new algorithm based on summation of raw

data over sinusoidal templates to be effectively used for TIIR
or similar applications. The algorithm is specially developed
for multiangle multifrequency monostatic radar set-up with
circular scanning geometry of object under test. The details
of the algorithm were given together with the assumptions.
Then, the algorithm is first tested with simulation data and
then a real experiment was conducted at Mersin University’s
MEATRC facility. Both the simulated and the measured
results of TIIR images demonstrate the validity and the
success of the proposed algorithm in detecting and localizing
the cavity region inside the tree-body.

Algorithm can be modified to include the effect caused
by change in the velocity of the EM waves inside the tree-
body as a future study. This algorithm can also be applied to
similar problems such as detecting and imaging breast tumors
by employing a very similar geometry of data collection.
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on migration methods in b-scan ground penetrating radar
imaging,” Mathematical Problems in Engineering, vol. 2014,
Article ID 280738, 2014.

[18] C. Ozdemir, S. Demirci, E. Yigit, and A. Kavak, “A hyperbolic
summation method to focus B-scan ground penetrating radar
images: An experimental study with a stepped frequency
system,” Microwave and Optical Technology Letters, vol. 49, no.
3, pp. 671–676, 2007.
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Electrophysiological signal in plant is a weak electrical signal, which can fluctuate with the change of environment. An amplification
detection system was designed for plant electrical signal acquisition by using integrated op-amps (CA3140, AD620, and INA118),
patch electrode, data acquisition card (NI USB-6008), computer, and shielded box. Plant electrical signals were also studied under
pressure and flooding stress. The amplification detection system can make nondestructive acquisition for Aquatic Scindapsus and
Guaibcnwith high precision, high sensitivity, low power consumption, high commonmode rejection ratio, and working frequency
bandwidth. Stress experiments were conducted through the system; results show that electrical signals were produced in the leaf of
Aquatic Scindapsus under the stress of pressure. Electrical signals in the up-leaf surface of Aquatic Scindapsus were stronger than
the down-leaf surface. Electrical signals produced in the leaf of Guaibcn were getting stronger when suffering flooding stress. The
more the flooding stress was severe, the faster the electrical signal changed, the longer the time required for returning to a stable
state was, and the greater the electrical signal got at the stable state was.

1. Introduction

There are potential changes when life activities occur among
living body, biological tissues and organs, and biological cell,
which are called electrophysiological signal.The electrophys-
iological signal is a basic character as well as a behavior in
living beings. It is also the general reflection of a series of
physical and chemical reactions [1–4]. Some plants would
react to external stimulus. For example, the leaves will close
with the change of potential when mimosa is stimulated.
Stahlberg [5] reviewed the history of electrical signals from
the first recordings of action potentials (AP) in sensitive
Dionaea and Mimosa plants at the end of the 19th century
to their rediscovery in common plants in the 1950s, from
the first intracellular recordings of AP in giant algal cells to
the identification of the ionic mechanisms by voltage-clamp
experiments. Sinyukhin and Britikov [6] who published a
thesis about potential build reproductive system in journal
called Nature. In recent years, there are a lot of researches
about electrical signal in plant all over the world [7–9]. For
instance,Ding andLu’s research group recognized plant stress

factor by the fuzzy optimal wavelet packet and set up a
model based on the environmental factor of electrical signal
in plant [10, 11]. However, the electrical signal is very weak,
although magnitudes of electrical reactions can be often
about tens mV (up to 100mV or more) under environment
stimulation; if we take the general detection method to
amplify andprocess the signal, it can be influenced by the zero
drift of operational amplifier, the noise, the electromagnetic
wave, and the spread of the channel; thus it is difficult for us
to obtain authentic signals [12]. Chatterjee et al. [13] provide
a platform for realizing a plant signal-based biosensor to
classify the environmental stimuli by using raw electrical
signals from plants. How to successfully detect which stimuli
caused the signal is quite promising because it not only can
open the possibility of remotely monitoring the environment
of a large geographical area, but also can help in taking timely
preventive measures for natural or man-made disasters.
However, at present, it is difficult to find an instrument and
equipment which is specifically applied to detect the elec-
trophysiological signal in plant. And it is not conducive to
satisfy models to guide agricultural production. It is of great
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significance for developing professional plant electrical signal
equipment, setting up a prediction model based on the elec-
trical signal in plant, and promoting the application of plant
electrical signal in agriculture to find ways to detect electrical
signal in plant.

Besides, China always suffers from serious flooding.
About two-thirds of the land area suffers different degrees of
flooding [14]. The waterlogging stress is a kind of water
stress, and the water stress includes drought stress (moisture
loss) and waterlogging stress (flood). The damage caused by
flood is calledwaterlogging injury.Waterlogging stress is very
harmful to plant growth. There is a limit to the demand for
water plants; too less or too much water will be harmful to
plant growth. Water deficit can cause drought, and waterlog-
ging stress can cause the plant roots decay. At present, people
have partly understood the mechanism of plants’ response
to the flooding stress but there is still a need for more study
to be done [15, 16].

Therefore, a method for detecting the physiological sig-
nals of plants is proposed in the paper. Through studied
changes in the electrophysiological signals of stress on
Aquatic Scindapsus and Guaibcn, the detecting system will
be tested on whether stable plant electrical signal can be
collected correctly; moreover, stress experiments were con-
ducted through the detecting system to find the rule of water-
logging stress influence on the plant electrical signals.

2. Principles and Methods

2.1. Composition of the Detection System of Electrical Physi-
ological Signal in Plant. As shown in Figure 1, the detection
system consists of electrode, amplifying circuit, data acqui-
sition card, shield, and so on. The graphite patch electrode
was used to measure the electrical signals on the surface of
the plant. The amplifying circuit consists of three integrated
operational amplifiers (CA3140, AD620, and INA118), two
integrated voltage stabilizing circuits (CW7805, CW7905),
and one data acquisition card (NI USB-6008).The shield was
made of aluminum foil.

2.2. The Design Principle of Amplifying Circuit. Figures 2
and 3 are the amplifying circuit principle diagram of the
electrophysiological signal in plant and PCB plate-making
figure, respectively.

As shown in Figures 2 and 3, in view of the uncertainty
of the size of plant resistance and the frequency interference
caused by the ends of the amplifying, we should add two high
input impedance circuit operational amplifiers (CA3140) and
form a depth series voltage negative feedback in order to get
less interference, and it can also form a differential circuit
with instrumentation amplifier (AD620). Since the common
mode voltage output voltage and drift which are caused by
CA3140 can counteract each other, the amplifying circuit has
advantages of small voltage output drift and strong common
mode rejection capability.

The signal is amplified by AD620; however, if the signal
is just amplified by AD620, circuit might burn out which is
caused by the sudden increase of signal. So we used INA118

which contains input protection circuit to amplify the signal
secondly. If the inputs overload, protection circuit can ensure
the safety of the follow-up circuit by limiting the input current
in 1.5mA to 5mA. INA118 has some advantages like high
precision, low consumption, high membrane rejection ratio,
wide working frequency band, and so on. It is suitable for the
amplification of small signals. Its gain formula is

𝐺 = 49.4
𝐾

𝑅
+ 1. (1)

In Figure 2, the external resistor of CA3140 is 10 k ohms
of the potentiometer; the first stage for amplification circuit
is AD620; the external resistor of AD620 is a 200 ohms of the
potentiometer. After adjusting potentiometer to 167 ohms,
magnification of 300 times was obtained. The second stage
for amplification circuit is INA118; the external resistor of
INA118 is 2 k ohms of the potentiometer. After adjusting
potentiometer to 2 k ohms, the magnification of 20 times
was obtained, and the amplifying circuit can magnify the
electrical signals 6000 times totally.

2.3. Design of Experiments on Plant Electrical Signal Detection
under Stress. In order to examine whether the amplification
detection system of electrophysiological signal in plant can
gather reliable electrical signal and study the changing rules
of the electrophysiological signals in plants under stress,
based on the Aquatic Scindapsus and Guaibcn as the research
object, the following tests were designed.

(a) Electrical Signal Detection of Aquatic Scindapsus Leaf
Surface under Compressive Stress. Aquatic Scindapsus that
grows well was chosen in the study. Electrical signals on the
Aquatic Scindapsus surface were detected when the leaves
of Aquatic Scindapsus were clamped by clip. When Aquatic
Scindapsus is under pressure, the potential voltage change
of electrical signals on the up-leaf and down-leaf surface
of Aquatic Scindapsus was measured. Specific experimental
steps are as follows.
(1) Attach graphite patch electrode A (measurement

electrode) on the up-leaf or down-leaf surface of one leaf of
Aquatic Scindapsus and graphite patch electrode B (reference
electrode) posted on the Aquatic Scindapsus stem which is
connected with the leaf.
(2) After equipping with batteries and turning on the

circuit, let it stand for 40 minutes until the numerical digit of
voltage becomes stable; then save the voltage data in the
computer.
(3)Clamp the leaves of Aquatic Scindapsus by clip, record

the instantaneous potential change, and observe the potential
changes. Then remove the clamp and repeat parallel experi-
ments 10 times.
(4) Remove graphite patch electrode A, attach to the

Aquatic Scindapsus under the leaf (the same as the measuring
objects before, detecting the same leaf; the only difference
was that one is to detect the up-leaf surface but the other is
to detect the down-leaf surface), and attach a graphite patch
electrode on the Aquatic Scindapsus stem which is connected
with the leaf.
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Figure 1: Structure diagram of the electrical signals detection system for plant.
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Figure 2: Schematic diagram of electrical signals amplifying circuit for plant.

(5) After equipping with batteries and turning on the cir-
cuit again, let it stand for 40minutes until the numerical digit
of voltage becomes stable; then save the voltage data in the
computer.
(6) Clamp the leaves of Aquatic Scindapsus by clip, and

record the instantaneous potential change as well as observ-
ing the potential changes. Then remove the clamp, to repeat
parallel experiments 10 times; compare the potential differ-
ence between up-leaf surface and down-leaf surface.

(b) Electrical Signal Detection of Guaibcn under Waterlogging
Stress. Guaibcn that grows well was chosen in the study. By
watering Guaibcn continuously (simulating the rainy day)
or applying one-time watering (simulating rainstorm), then,
observe the change of the electrical signal of Guaibcn.

In order to study the Guaibcn electrical signals in rainy
season affected by the persistent plum rains, the Guaibcnwas
watered persistently with 50ml each time, then observing the
change of the electrical signal ofGuaibcn. Specific experiment
steps are as follows.
(1) Attach graphite patch electrode A (measurement

electrode) on the down-leaf surface of one leaf ofGuaibcn and
the graphite patch electrode B (reference electrode) posted on
the Guaibcn stem which is connected with the leaf.
(2) After equipping with batteries and turning on the

circuit, let it stand for 40 minutes until the numerical digit
of voltage becomes stable, then saving the voltage data in the
computer.
(3)Water theGuaibcn, observe the change of the electrical

signal of Guaibcn, and record the voltage value every 30
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Figure 3: Printed circuit board diagram of electrical signals ampli-
fying circuit for plant.

seconds.Water theGuaibcn by 50mlwater again after it keeps
stable (the time points of watering are 6min, 20min, 25min,
and 30min).

In order to observe the change of the electrical signal of
Guaibcn when rainstorm occurs, add 200ml water into the
culture soil of the Guaibcn and then save the voltage data
every 30 seconds in the computer. Specific experiment steps
are as follows.
(1) Attach graphite patch electrode A (measurement

electrode) on the down-leaf surface of one leaf of Guaibcn
and graphite patch electrode B (reference electrode) posted
on the Guaibcn stem which is connected with the leaf.
(2) After equipping with batteries and turning on the

circuit, let it stand for 40 minutes until the numerical digit of
voltage becomes stable and then save the voltage data in the
computer.
(3) Add 200ml water into the culture soil of the Guaibcn

and then save the voltage data every 30 seconds in the
computer.

(c) Statistical Analysis. There are ten repetitions in the study.
Data were analyzed using an analysis of variance (ANOVA)
multiple comparison (single factor). The differences between
the experiment and control were tested by the method. Stress
effects were considered to be significant at 𝑃 < 0.05.

3. Results and Discussion

3.1. Aquatic Scindapsus Electrical Signal before and after the
Pressure of Leaves. Figures 4 and 5 showed the comparison
chart about voltage values (the realmagnitude is 1/6000 times
the magnitude after amplification as shown in the figures) of
electrical signals in the up-leaf surface of Aquatic Scindapsus
before and after the pressure, respectively.

In Figure 4, the maximum change of electrical signal on
the leaf is 0.0033V, and the minimum is 0.000V, the median
is 0.0017V, the average is 0.0006V, the standard deviation is
0.001092, and the coefficient of dispersion is 1.82. In Figure 5,
the maximum number of the changes of electrical signal
under leaf is 0.0047V, the minimum is 0.0010V, the median
is 0.0029V, the average is 0.0032V, the standard deviation
is 0.001361, and the coefficient of dispersion is 0.42. From
Figures 4 and 5, we can find that the signal of up-leaf surface
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Figure 4: Voltage values of electrical signals in the up-leaf surface
of Aquatic Scindapsus.
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Figure 5: Voltage values of electrical signals in the down-leaf surface
of Aquatic Scindapsus.

does not change obviously before and after the clamping; only
two sets of data have large potential change, but the changes
of down-leaf surface are obvious; there are 8 sets of data that
have obvious potential rise phenomenon. As we know, many
plants can efficiently produce electric signals in the form
of action potentials (AP) and variation potentials (VP) and
the long-distance propagation of these signals proceeds in
the vascular bundles [5]. Therefore, the experimental results
indicated that the changes of down-leaf surface are more
obvious than the up-leaf surface, probably because the leaf
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vein (as the vascular bundles) is more near to the down-leaf
of down-leaf surface.

Since there are two sets of data values (5 and 10) deviating
from the value of the other eight sets of data, we suppose the
two sets of data as the unreliable data caused by interference.
After removing the two unreliable data, we find that the
maximum number of the changes of electrical signal on leaf
is 0.0003V, theminimum is 0.0000V, themedian is 0.0002V,
the average is 0.00012V, the standard deviation is 8.57𝐸 − 05,
and the coefficient of dispersion is 0.623. After removing
those two groups of data, the discrete coefficient decreased
significantly.

By analysis and comparison of the data above, we found
that the electrical signal ofAquatic Scindapsuswill change and
amplitude will increase under the action of external pressure.
After the signal is amplified by amplification, the potential
of the up-leaf surface increases in average by 0.00006V and
the down-leaf surface increase in average by 0.0032V. The
growth rate of down-leaf surface is greater than the up-
leaf surface. The reason why the electrical signal in plant
falls fast after removing the pressure might relate to the
production mechanism of the electrical signal in plant and
the mechanism of conduction [17].

3.2. Changes of the Electrical Signal of Guaibcn under
Waterlogging Stress

3.2.1. Changes of the Electrical Signal of Guaibcn under One-
Time Flooding. Figure 6 is the change of the electrical signal
of Guaibcn under one-time water flooding.

In Figure 6, the time we started to add water is on the
red arrow point (0 moment on x-axis). As shown in Figure 6,
before adding water, curve is flat and fluctuates in a small
scope. After we added 200ml water, curve rose gradually and
achieved the highest point about 28 minutes later, and then
the curve declined and returned back to the potential before
watering. After we added a lot of water, the potential rises
quickly, and the rate of change was in the positive; then the
rate of change declined, until becoming in the negative.When
the potential almost returns to the data which is the data
before we added water, the fluctuation of the rate of change
was near zero.The result is similar to the avocado tree’s action
with irrigation provided by Gurovich and Hermosilla [18].

Flooding can result in an anaerobic situation in the
plant root system that induces pH changes in the apoplast
and symplast.Therefore, electrical potential increased during
flooding is probably because of pH changes in the apoplast
and symplast.

3.2.2. The Change of the Electrical Signal of Guaibcn under
Continuous Adding of Water. Figure 7 showed the change
of the electrical signal of Guaibcn under continuous water
flooding.

In Figure 7, the time we started to add water is on the
red arrow point (0 moment on x-axis).The potentials of stem
and leaf rise slowly after watering the first 50ml water. After 2
minutes, the potential rises quickly. Sixminutes later, the elec-
trical signal gradually stabilized. After watering the second
50ml, the potentials of stem and leaf rise immediately, and

three minutes later, the electrical signal gradually stabilized.
Afterwatering the third and fourth 50mlwater, the potentials
of stem and leaf rise immediately. But the rise degree was less
than the previous two, and the fourth was also less than the
third. The electrical signal gradually stabilized two minutes
later.

Several physiological mechanisms that explain electric
responses to irrigation have been postulated. Action potential
(AP) and variation potential (VP) lead to a physiological reac-
tion by informing distant cells about local stimuli [19]. Addi-
tional signalling mechanisms in plants have been reported,
including modifications of cytoplasmatic pH [20, 21].

The above two kinds of experiments of Guaibcn were
carried out under the condition of flooding stress. The first
experiment added water four times, and 50ml water was
added each time; the electrical signal of Guaibcn changes
obviously after we added the first 50ml water for 3 minutes.
The second experiment added 200ml water one time, and
the electrical signal changes immediately after adding water.
Through the above analysis, we found the following:
(1) The main phenomenon of the change of Guaibcn

under water flooding was the amplitude of electrical signal
increases.
(2)Thechange of electrical signal ofGuaibcn relates to the

amount of water, the more severe the water flooding is, the
quicker the electrical signal changes, the larger the amount of
change is, and the longer the time required for returning to a
stable state is.
(3)The electrical signal produced under the water flood-

ing can restore its original state as long as the water is in a cer-
tain range.

4. Conclusions

(1) Patch electrode and integrated operational amplifiers
(CA3140, AD620, and INA118) were used to design an ampli-
fier circuit with advantage of high precision, high sensitivity,
low power consumption, high membrane rejection ratio, and
wide working frequency band. The amplification detection
system can make nondestructive acquisition for Aquatic
Scindapsus and Guaibcn.
(2) According to the experiment results, the electrophys-

iological signal detection system can collect stable electrical
signals and satisfy the need of analysis of the electrophysi-
ological signal based on the combination of the patch elec-
trode and amplifying circuit (consisting of CA3140, AD620,
INA118, CW7805, and CW7905).
(3) According to the study about the change of electrical

signal of Aquatic Scindapsus under compressive stress, we
found that Aquatic Scindapsus could generate the electrical
signal under compressive stress, and the change of down-leaf
is greater than the up-leaf.
(4) According to the study about the change of electrical

signal of Guaibcn under purpose of stress, we found that the
electrical signal of Guaibcn would rise under waterlogging
stress, and the change degree relates to the amount of water;
the more severe the waterlogging stress is, the quicker the
electrical signal changes, the larger the amount of change is,
and the longer the time required for returning to a stable state.
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Figure 6: Changes of electrical signals for Guaibcn under one-time water flooding.
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Figure 7: Changes of electrical signals for Guaibcn under continuous water flooding.
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The electrical signal produced under the water flooding can
restore its original state as long as the water is in a certain
range.

The relationship between the plant physiological param-
eters and the electrical signals is very complex. The results
of the study provided a method for developing electrophys-
iological signal monitoring device of plant and a reference
for studying the change rule of the plant electrophysiological
signals under stress.
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A four-way quadrature signals generator with precise phase modulation is presented. It consists of a phase precision regulator and
a frequency divider. The phase precision regulator generates two programmable currents by controlling the conduction of the tail
current sources and then changes the currents into two bias voltages which are superimposed on the clock signals to adjust the
phase difference of the four quadrature signals generated by the frequency divider, making the phase difference of 90 degrees. The
four quadrature signals’ generator with precise phase modulation has been implemented in a 0.18𝜇m mixed-signal and RF 1P6M
CMOS technology. The size of the chip including the pads is 675 𝜇m ∗ 690 𝜇m. The circuit uses a supply voltage of 1.8 V, a bias
current of 7.2 𝜇A, and the bits of phase-setting input level 𝑛 = 6 in the design. The measured results of the four orthogonal signals’
phase error can reach ±0.1∘, and the phase modulation range can reach ±3.6∘.

1. Introduction

The method of integrated orthogonal signal generator is
RC-CR phase-shift method, and the RC-CR phase-shift net-
work can be achieved by the input signal phase shift of 45
degrees. In the literature [1], the design of I/Q generator is
used in the S band, its unbalance amplitude is 0.1 dB, and the
unbalance phase is 0.1 degrees. But this method cannot adjust
the phase of the signals. The method of RC-CR network is
complex, and once integrated, it cannot be used for phase
error compensation. In addition, the capacitor and resistance
should not be too large; otherwise integrated circuit is also
difficult to be integrated in the chip.The secondmethod often
uses quadrature voltage-controlled oscillator cross coupling
method. In the literature [2], a QVCO which is low in power
consumption is manufactured and used in 2.4GHz PLL.This
design reduces power consumption and improves the noise
coefficient, but the unbalance of I/Q phase is 2.21 degrees and
the phase cannot be adjustable. Then the digital quadrature
signal generator is used to generate orthogonal signals [3–6],
but the phase error of the signal is not adjustable and compen-
sated. In the previous study [7], the quadrature phase error
caused by themismatch of the capacitor is very large, and this

phenomenon is more serious with the increase of the fre-
quency.Themore important problem is that the implemented
integrated circuit is able to generate orthogonal signals, and
the phase difference of the orthogonal signal is exactly 90
degrees in the early simulation stage. However, after the chip
is processed, the phase difference often deviates from 90
degrees due to the limitation of the technology of integrated
circuit production. Therefore, an integrated precise adjust-
ment circuit structure is needed to compensate quadrature
signals for the phase deviation caused by the integrated cir-
cuit process.

In this paper, an integrated four quadrature signals’ gen-
erator is presented. The generator cannot only produce four
orthogonal signals, but also can generate a programmable
current by controlling the conduction of the tail current sour-
ces.The current is converted into a bias voltage superimposed
on the clock signal to adjust the phase difference of the four
signals, so as to make the phase difference be 90 degrees.

2. Circuit Design

As shown in Figure 1, the structure of the quadrature
signals generator is composed of a phase precision regulator
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unit (Ph reg for short) and a frequency divider. The phase
precision regulator unit can produce a programmable current
by controlling the conduction of the tail current sources,
and then the current can be converted into a bias voltage
superimposed on the clock signal to precisely adjust the
phase change. The frequency divider which consists of two
D triggers (DFFs) is used to generate the four quadrature
signals. The SET PHASE⟨𝑛 − 1 : 0⟩ input level is represented
by thick solid lines because it is an n-bit bus.

2.1. The Design of Divider. The frequency divider consists of
two DFFs which are connected in the form of a two-stage
ring with the differential input signal injected into the clock
terminals [8]. As shown in Figure 1, the outputs of the first
DFF are connected with the inputs of the second DFF, and
the outputs of the second one connect back to the first one’s
input terminals which are in reversed polarity to achieve
the extra phase shift of 180∘. The clock terminals of the two
DFFs are tied in reversed polarity and used to inject the
differential input signal.The output signals can be taken from

the data terminals of the second DFF; each output terminal’s
frequency is half of the input frequency.

The schematic of the DFF is shown in Figure 2.The cell of
DFF contains two parts: the trigger part of the input signal is
sent to the output and the storage part of the memory output
logic level. The trigger part is realized by differential pairs;
the lock part is realized by a cross coupling.The two parts are
driven by a pair of clock signals, which are used to control the
trigger circuit and the latch circuit, respectively [9].

The specificwork process of the divider is as follows:when
the input clock is a rising edge, the first DFF in Figure 1 is in
the trigger state; that is to say, the output varies with the input.
The second DFF in the lock state will remain the same state
with the previous one, and its output will be sent back to the
first DFF by reverse phase. When the input clock is a falling
edge, the first DFF is in the lock state; the second one changes
into the trigger state, and the state of its output will be locked
in the first one. In this way, the time of a period of each DFF’s
output signal is the same as two periods of the clock signal,
and the output frequency is just half of the input frequency,
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thus achieving function of divide-by-2. The output terminals
of the two DFFs are all used as the output signals, and then
the four orthogonal signals are obtained.

2.2. The Design of Phase Modulator. The precise phase preci-
sion regulator unit can produce two programmable currents
by controlling the conduction of the tail current sources,
and then the programmable currents can be converted into
two-way bias voltages by a COMS operational amplifier. The
two-way bias voltages are superimposed on the clock signals
to precisely adjust the phase change. Figure 3 shows the
specific circuit of phase modulator unit, which consists of
the programming current output cell (idac for short) and the

current converting voltage cell. Two programmable currents
are produced by n-bits phase-setting input level to control the
conduction of the tail current sources in the programming
current output cell. The current converting voltage cell is
composed of a full differential CMOS amplifier (AP for short)
and two resistors of 𝑅2 and 𝑅3.

The schematic of the idac is shown in Figure 4; the
idac receives the external n-bits phase-setting input level of
SET PHASE⟨𝑛 − 1 : 0⟩ and generates two pair inverse strobe
levels Set i⟨𝑛−1, 0⟩ and Set ib⟨𝑛−1, 0⟩ through the inverters.
These pair levels are used to control the conductions of the
tail current sources (idac unit for short in Figure 4). The first
bit phase-setting input signal (SET PHASE⟨0⟩) generates two
inverse strobe signals Set i⟨0⟩ and Set ib⟨0⟩ by the inverter
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Figure 5: Structure of differential CMOS amplifier.

to, respectively, control the left and right branch of the
current source (idac unit⟨0⟩), the second bit phase-setting
input signal (SET PHASE⟨1⟩) generates two strobe signals
Set i⟨1⟩ and Set ib⟨1⟩ by the inverter to, respectively, control
two parallel left and right branches of the current sources
(idac unit⟨1 : 0⟩), and so on, and the 𝑛 bit (SET PHASE⟨𝑛 −
1⟩) generates two strobe signals S i⟨𝑛 − 1⟩ and Set ib⟨𝑛 − 1⟩
by the inverter to, respectively, control 2𝑛−1 parallel left and
right branches of the current sources (idac unit⟨𝑛 − 1 : 0⟩),
and the suspension points in Figure 4 are used to show the
omitted idac units from 2 to 𝑛 − 2. The left branch of the tail
current source is turned on, and the right branch is turned
off correspondingly; similarly, the right branch is turned on
and the left branch is turned off. As a small map is shown in
Figure 4, the left branch of the 𝑖th tail currentmodule chooses
the control terminal SEL A to receive the 𝑖th bit strobe signal,
the right branch of the 𝑖th tail currentmodule chooses control
terminal SEL B to receive the 𝑖th bit signal of the inverting
signal, the 𝑖th tail current module is composed of 2𝑖−1 tail
current sources in parallel, 𝑖 is a natural number, and 1 ≤ 𝑖 ≤
𝑛.

Assuming every branch of conduction current of each
tail current source is 𝐼, when the highest bit of is 1, the
others are 0 (or the highest bit is 0, and the others are 1)
for the SET PHASE⟨𝑛 − 1 : 0⟩ in Figure 3, the current
difference between 𝐼A and 𝐼B is minimum, and the value is
𝐼. Then 𝐼A and 𝐼B are converted into voltages by the current
converting voltage unit, and the voltage difference is also
the smallest. The minimum voltage difference is used to
adjust and compensate the phase of the four output signals
determining the accuracy of the circuit. When all bits of the
SET PHASE⟨𝑛 − 1 : 0⟩ are 1 (or all bits are 0), the current
difference between 𝐼A and 𝐼B is maximum, and the value is
(1 + 2+ 4+ ⋅ ⋅ ⋅ + 2

𝑛−1
) ∗ 𝐼, that is, equal to (2𝑛 −1) ∗ 𝐼, and the

voltage difference is also the largest. The maximum voltage
difference is used to adjust and compensate the phase of

the four output signals determining the adjustment range of
the circuit. When the value of 𝐼A is increased, 𝐼B is decreased.
Assuming conduction current of𝑀p1 is 𝐼p1, 𝑀p2 is 𝐼p2, and
each tail current source is 𝐼, the external 𝑛-bits phase-setting
input level of SET PHASE⟨𝑛 − 1 : 0⟩ is 𝑘𝑛−1𝑘𝑛−2 ⋅ ⋅ ⋅ 𝑘1𝑘0, and
then

𝐼SA =
𝑛−1

∑

𝑖=0

𝑘𝑖 ⋅ 2
𝑖
⋅ 𝐼 (𝑘𝑖 = 1) ,

𝐼SB =
𝑛−1

∑

𝑖=0

𝑘𝑖 ⋅ 2
𝑖
⋅ 𝐼 (𝑘𝑖 = 0) .

(1)

So the outcurrent of 𝐼A and 𝐼B is equal to

𝐼A = 𝐼p1 − 𝐼SA = 𝐼p1 −
𝑛−1

∑

𝑖=0

𝑘𝑖 ⋅ 2
𝑖
⋅ 𝐼 (𝑘𝑖 = 1) ,

𝐼B = 𝐼p2 − 𝐼SB = 𝐼p2 −
𝑛−1

∑

𝑖=0

𝑘𝑖 ⋅ 2
𝑖
⋅ 𝐼 (𝑘𝑖 = 0) .

(2)

Yet, the sum of the two currents is constant, and its value
is (𝐼p1 + 𝐼p2) − (2

𝑛
− 1) ∗ 𝐼.

The output of the two programmable currents 𝐼A and
𝐼B is converted into two bias voltages through a full differ-
ential operational CMOS amplifier, the resistors 𝑅2 and 𝑅3,
respectively. Because the two programmable currents’ size
and direction can be programmed with the selected external
𝑛-bits phase-setting input level of SET PHASE⟨𝑛 − 1 : 0⟩,
the two-way bias voltages of OUT1 and OUT2 shown in
Figure 3 are programmed. So in this design, a classic double-
end differential CMOS amplifier is used as shown in Figure 5.

3. Results and Discussion

According to the simulations’ results, the design can generate
two programmable currents by controlling the conduction of

90 New Frontiers in Signal Processing

__________________________ WORLD TECHNOLOGIES __________________________



WT

Table 1: The𝑊/𝐿 values of the CMOS in Figure 3.

Device 𝑊/𝐿 (𝜇m)
𝑀p0 10/1
𝑀p1 12/1.2
𝑀p2 12/1.2
𝑀p3 12/1.2
𝑀p4 12/1.2
𝑀n0 3.2/2
𝑀n1 1.6/2
𝑀11 1.6/2
𝑀12 1/2
𝑀13 1/2

Table 2: The 𝑊/𝐿 values of the differential CMOS amplifier in
Figure 5.

Device 𝑊/𝐿 (𝜇m)
𝑀p0 10/0.25
𝑀p1 100/1
𝑀p2 100/1
𝑀p3 20/1
𝑀p4 20/1
𝑀p5 40/1
𝑀p6 40/1
𝑀p7 40/1
𝑀p8 40/1
𝑀p9 10/0.25
𝑀p10 10/0.25
𝑀n0 20/3
𝑀n1 5/1
𝑀n2 5/1
𝑀n3 50/3
𝑀n4 20/3
𝑀n5 10/3
𝑀n6 10/3
𝑀n7 3/1
𝑀n8 3/1

the tail current sources and then changes the currents into
two bias voltages superimposed on the clock signals to adjust
the phase difference of the four signals, making the phase
difference of 90 degrees.

In the design, the values of resistances are𝑅0 =𝑅1 = 12 kΩ,
𝑅2 = 𝑅3 = 200 kΩ, and 𝑅4 = 𝑅5 = 100 kΩ, respectively. The
W/L values of the CMOS in Figure 3 are listed in Table 1. The
W/L values of the differential CMOS amplifier in Figure 5 are
listed in Table 2. Parameter settings and part of the simulation
results are listed in Table 3.

For demonstration, the presented circuit has been fab-
ricated in SMIC’s 0.18 𝜇m CMOS process with a 4GHz
phase-locked loop together. The chip microphotograph is
shown in Figure 6, and the size of the chip including the
pads is 675 𝜇m ∗ 690 𝜇m. A LC tank voltage-controlled

LC_VCO

dac Divider

Figure 6: The microphotograph of the quadrature signal generator.

oscillator (LC VCO) is used in the phase-locked loop. The
used differential inductor has an inner diameter of 30 𝜇m, a
metal width of 8 𝜇m, and the spacing of 1.5 𝜇m. The value
of the inductor is about 2.4 nH, and the effective quality
factor is about 10 under the 4GHz frequency. The range
of the capacitor is about 0.3–0.68 pF. The tuning range of
VCO is 300MHz, from 3.85GHz to 4.15 GHz, with the center
frequency being about 4GHz. The two output signals of the
LC tank voltage-controlled oscillator are sinusoidal wave, and
the signals are divided by four and used as the input clock
signals of INN and INP shown in Figure 1. The circuit uses
a supply voltage of 1.8 V, a bias current of 7.2 𝜇A, and the
bits of phase-setting input signal 𝑛 = 6 in the design. There
are no effective methods to measure the phase error because
the present oscillography could not measure the phase error
between four-channel several hundred MHz signals. The
phase error is measured between every two of them based
on the time domain outputs, the output four orthogonal
signals’ phase error precision can reach ±0.1∘, and the phase
modulation range is ±3.6∘, but the phase difference in the
simulation is about ±2.7∘. The main reason of the error is
caused by different ways in the measurement and simulation;
the signals’ phase error cannot be directly measured because
of the limitation of the instruments.The die bonding leads to
error of measurement too.

4. Conclusions

In this paper, a four phase quadrature signals’ generator
with precise phase modulation is proposed. The design
can generate two programmable currents by controlling the
conduction of the tail current sources and then changes
the currents into two bias voltages superimposed on the
clock signals to adjust the phase difference of the four
signals generated, making the phase difference of 90 degrees.
It has been implemented in 0.18-𝜇m CMOS process. The
measurement result shows the proposed quadrature signal
generator could achieve ±0.1∘ phase error, and the phase
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Table 3: Parameter settings and results of the simulations.

SET PHASE
⟨5 : 0⟩

IBIAS
(𝜇A)

𝐼

(𝜇A)
𝐼p1
(𝜇A)

𝐼p2
(𝜇A)

𝐼A
(𝜇A)

𝐼B
(𝜇A)

𝑉p shift1
(mV)

𝑉p shift2
(mV)

Phase
difference (∘)

000000 7.2 0.72 23.2 23.2 23.14 −22.45 854.9 360.9 2.7
010000 7.2 0.72 23.2 23.2 11.55 −10.89 730.5 486.2 1.5
011000 7.2 0.72 23.2 23.2 5.75 −5.11 667.6 549.2 0.8
011011 7.2 0.72 23.2 23.2 5.03 4.38 643.9 572.9 0.3
011111 7.2 0.72 23.2 23.2 0.68 −0.04 612.4 604.1 0.1
100000 7.2 0.72 23.2 23.2 −0.04 0.68 604.5 612.4 −0.1
100100 7.2 0.72 23.2 23.2 −2.93 3.58 572.9 644.0 −0.3
101000 7.2 0.72 23.2 23.2 −5.83 6.47 541.4 675.5 −0.8
110000 7.2 0.72 23.2 23.2 −11.62 12.27 478.3 738.4 −1.6
111111 7.2 0.72 23.2 23.2 −22.46 23.13 360.9 854.9 −2.7

modulation range is ±3.6∘ with the bits of phase-setting input
signal 𝑛 = 6.
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In order to overcome the poor observability of yawmeasurement for foot-mounted inertial measurement unit (IMU), an integrated
IMU+Compass scheme for self-contained pedestrian navigation is presented. In this mode, the compass measurement is used to
provide the accurate yaw to improve the accuracy of the attitude transformation matrix for the foot-mounted IMU solution. And
then, when the person is in a stance phase during walk, a unbiased finite impulse response (UFIR) filter based on the self-contained
pedestrian navigation scheme is investigated, which just needs the state vector size �푀𝑈 and the filtering horizon size �푁𝑈, while
ignoring the noise statistics compared with the Kalman filter (KF). Finally, a real test has been done to verify the performance of
the proposed self-contained pedestrian navigation using the IMU and compass measurements via UFIR filter.The test results show
that the proposed filter has robust performance compared with the KF.

1. Introduction

Indoor pedestrian navigation (PN), which provides the posi-
tion and the heading information of the target person in
indoor environment, has received a topic [1, 2].

In order to provide the accurate position information
of the person in indoor environment, many approaches
have been proposed. For example, in [3, 4], the radio fre-
quency identification (RFID)-based technologies have been
proposed provide object self-localization. Yang and Shao and
Ma et al. proposed in [5, 6] an autonomous positioning
system operating on WiFi, which is also able to achieve
the indoor localization in indoor environment. However, it
should be pointed out that although the RFID- and WiFi-
based methods mentioned above are able to provide the
position information in indoor environment, the accuracy
of such approaches is on meter-level. In order to improve
the positioning accuracy, ultrasonic-based approaches are
proposed in [7]. However, it should be pointed that although
the ultrasonic-based approaches are on centimeter-level, it
is easy to be outage. Meanwhile, the ultra wideband (UWB)
technology [8] is employed in some approaches. For example,

a location detection and tracking of moving targets by a
2D IR-UWB radar system is presented in [9]. It should
be emphasized that the methods mentioned above have to
employ extra infrastructures; moreover, the sampling time of
these methods is larger [1, 10].

In order to overcome the disadvantages of the methods
mentioned above, the inertial navigation systems (INS) have
been employed for providing the human position in global
positioning system- (GPS-) denied areas. One of the famous
examples is the navigation shoe proposed in [11], which
employs the foot-mounted inertial measurement unit (IMU)
to correct the error drift of the INS solution. Based on this
model, there aremany improving approaches. For example, in
[12–14], themagnetic sensor is used to correct the positioning
error of the foot-mounted IMU. On the other hand, there
are also many approaches for the signal processing in INS.
For example, the analysis for microelectromechanical system
(MEMS) gyroscope within wide-temperature range is shown
in [15].

Based on the INS, the Kalman filter (KF) and its
improving methods are widely used to correct the INS
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solution error [16, 17]. However, despite great progress in
the development of the KF approach, the recursive KF-based
algorithms demonstrate good performance mostly when the
noise statistics are known exactly, and the model perfectly
matches the process; otherwise, the KF-based estimators
often demonstrate poor performance [18–20]. In order to
provide the robust estimation, the unbiased finite impulse
response (UFIR) filter has been proposed in [21–23]. Then,
there are some improving UFIR filters proposed to improve
the performance [24–27]. Compared with the KF-based
filters, UFIR filters just need the state vector size and the
filtering horizon size, while ignoring the noise statistics [25,
28, 29].

In this paper, we propose a self-contained pedestrian
navigation by fusing the IMU and compass measurements
via UFIR filtering. To the self-contained pedestrian naviga-
tion scheme, the compass measurement is used to provide
the accurate yaw to improve the accuracy of the attitude
transformation matrix for the foot-mounted IMU solution.
Moreover, we investigate the UFIR filter based on the self-
contained pedestrian navigation scheme, which just needs
the state vector size �푀𝑈 and the filtering horizon size �푁𝑈,
while ignoring the noise statistics. Finally, a real test has
been done to verify the performance of the proposed self-
contained pedestrian navigation using the IMU and compass
measurements via UFIR filter. The test results show that
the proposed filter has robust performance compared with
the KF. The remaining part of this paper is organized as
follows. Section 2 designs the scheme of the self-contained
pedestrian navigation using the IMU and compass mea-
surements. Section 3 presents the UFIR algorithms for the
self-contained pedestrian navigation. Testing and results are
discussed in Section 4. Finally, Section 5 gives the conclu-
sions.

2. The Self-Contained Pedestrian Navigation
Using the IMU and Compass Measurements

In this section, the scheme of self-contained pedestrian
navigation using the IMU and compass measurements will
be designed. Then, the state and measurement equations
based on the scheme which we designed will be investi-
gated.

2.1.The Scheme of Self-Contained Pedestrian Navigation Using
the IMU and Compass Measurements. In this subsection,
we will introduce the scheme of self-contained pedestrian
navigation using the IMU and compass measurements.
The architecture of the self-contained pedestrian navigation
employing the recent IMU and compass measurements is
shown in Figure 1. In this work, we employ inertial measure-
ment unit (IMU) and compass measurements for the indoor
self-contained pedestrian navigation.The IMU is fixed on the
shoe, and the compass is fixed on the shoulder. In this paper,
the IMU is used to provide the acceleration �푎, angular velocity
�푤, pitch, and the roll, which are used to compute the position
and posture of the target person. Compared with the IMU
fixed on the shoe, thigh, shank, and waist, the IMU fixed on

Shoulder-
mounted 
compass

INS
mechanization UFIR filter

Pitch, Roll
Foot-

mounted
IMU

w

a

Phase dection
Stance detection

(n)
k

V(n)
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V(n)
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[0 0 0]

V(n)
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−

−

Figure 1: The architecture of the self-contained pedestrian naviga-
tion using the IMU and compass measurements.

the shoulder has the best performance for yawmeasurement.
Thus, we employ shoulder-mounted IMU to provide the
yaw measurement for the solution, which can improve the
accuracy of the attitude transformation matrix for the foot-
mounted IMU solution. In theory, the true velocity of the
pedestrian shoes should be zero when the shoe is on the floor
(so called stance phase). Thus, the velocity measured from
the foot-mounted IMU will be the error measurement of the
velocity in the stance phase. And when the person is in a
stance phase, the unbiased finite impulse response (UFIR)
filter works; it employs the measurement of the velocity error
derived from the foot-mounted IMU to estimate the INS
position error; then, the INS solution is corrected by the error
estimation.

Meanwhile, the body frame (so called b-frame) and
the navigation frame (so called n-frame (East-North-Up,
ENU)) used in this paper are also shown in this fig-
ure. Compared with the outdoor navigation, the area of
the indoor self-contained pedestrian navigation is very
small; thus, the earth’s rotation is not considered in this
paper.

2.2. The State and Measurement Equations for the UFIR Filter.
In this subsection, the state and measurement equations for
the UFIR filter will be designed. Based on the self-contained
pedestrian navigation scheme proposed in Section 2.1, a
UFIR filter with a 15-element vector will be introduced in this
paper.The state equation of the UFIR filter used in this paper
at time step �푡�푡 is listed as

[[[[[[
[

�휙(𝑛)𝑡𝑡
�훿V(𝑛)𝑡𝑡
∇(𝑛)𝑡𝑡
�휀(𝑛)𝑡𝑡

]]]]]]
]⏟�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰⏟

X𝑡𝑡

=
[[[[[
[

I3×3 03×3 03×3 I3×3�푇
�푆 (f(𝑛)𝑡𝑡 ) �푇 I3×3 I3×3�푇 03×3
03×3 03×3 I3×3 03×3
03×3 03×3 03×3 I3×3

]]]]]
]⏟�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰⏟

A𝑡𝑡

[[[[[[
[

�휙(𝑛)𝑡𝑡−1
�훿V(𝑛)𝑡𝑡−1
∇(𝑛)𝑡𝑡−1
�휀(𝑛)𝑡𝑡−1

]]]]]]
]⏟�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰⏟

X𝑡𝑡−1

+ �휔𝑡𝑡−1,

(1)

where [�휙(𝑛)𝑡𝑡 , �훿V(𝑛)𝑡𝑡 ]𝑇 denotes attitude and velocity error vec-
tors in n-frame at time step �푡�푡 and [∇(𝑏)𝑡𝑡 , �휀(𝑏)𝑡𝑡 ]𝑇 denotes the
biases for accelerometers and gyroscopes in b-frame at time
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Data: Z𝑡𝑡, X0, P0,Q, R𝑡𝑡
Result: X̂𝑡𝑡
(1) begin
(2) for �푡�푡 = 1 : ∞ do
(3) X̂𝑡𝑡|𝑡𝑡−1 = A𝑡𝑡X̂𝑡𝑡−1
(4) P𝑡𝑡|𝑡𝑡−1 = A𝑡𝑡−1P𝑡𝑡−1A𝑇𝑡𝑡−1 + Q
(5) K𝑡𝑡 = P𝑡𝑡|𝑡𝑡−1H𝑇𝑡𝑡(H𝑘P𝑡𝑡|𝑡𝑡−1H𝑇𝑡𝑡 + R𝑡𝑡)−1
(6) X̂𝑡𝑡 = X̂𝑡𝑡|𝑡𝑡−1 + K𝑡𝑡(Z𝑡𝑡 − Hkx̂𝑡𝑡|𝑡𝑡−1)
(7) P𝑡𝑡 = (I − K𝑡𝑡H𝑡𝑡)P𝑡𝑡|𝑡𝑡−1
(8) end for
(9) end

Algorithm 1: Kalman filter algorithm for the self-contained
scheme.

step �푡�푡, respectively. All these 5 componentsmentioned above
have 3 elements each:

�푆 (f(𝑛)𝑡𝑡 ) = [[[
[

0 �푎(𝑛)
𝐷𝑡𝑡

−�푎(𝑛)
𝑁𝑡𝑡

−�푎(𝑛)
𝐷𝑡𝑡

0 �푎(𝑛)
𝐸𝑡𝑡

�푎(𝑛)
𝑁𝑡𝑡

−�푎(𝑛)
𝐸𝑡𝑡

0
]]]
]

; (2)

here, [�푎(𝑛)
𝐸𝑡𝑡

�푎(𝑛)
𝑁𝑡𝑡

�푎(𝑛)
𝐷𝑡𝑡

] is the acceleration in n-frame (East-
North-Up, ENU) at time step �푡�푡; �푇 denotes the sampling
time; �휔𝑡𝑡 is a system noise at time step �푡�푡 with the covariance
Q𝑡𝑡.

The measurement equation is listed in

[�훿Ṽ(𝑛)𝑡𝑡 ]⏟�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰⏟
Z𝑡𝑡

= [03×3 I3×3 03×3 03×3]⏟�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰⏟
H𝑡𝑡

[[[[[[
[

�휙(𝑛)𝑡𝑡
�훿V(𝑛)𝑡𝑡
∇(𝑛)𝑡𝑡
�휀(𝑛)𝑡𝑡

]]]]]]
]⏟�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰�㷰⏟

X𝑡𝑡

+ �휂𝑡𝑡, (3)

where �훿Ṽ(𝑛)𝑡𝑡 is the observations for the velocity error in
n-frame at time step �푡�푡; �휂𝑡𝑡 is a measurement noise with
covariance is R𝑡𝑡.

3. UFIR Algorithms for the Self-Contained
Pedestrian Navigation

In this section, the KF and the UFIR filter for the indoor
self-contained pedestrian navigation based on the scheme
proposed in Section 2.1 will be discussed.

3.1. KF Algorithm. As one of the most used data fusion
algorithm, the Kalman filter (KF) and its improving methods
have been widely used inmany fields [30–34]. And its pseudo
code is listed as Algorithm 1. It should be pointed out that
the Kalman filter and its improving methods need the accu-
rate model description and noise description, especially the
accurate Q and R𝑡𝑡, to maintain the performance. However,
it is not easy to get the information mentioned above in
someplace.

Data: Z𝑡𝑡, �푀𝑈, �푁𝑈
Result: X̂𝑡𝑡
(1) begin
(2) for �푡�푡 = �푁𝑈 : ∞ do
(3) �푚 = �푡�푡 − �푁𝑈 + 1, �푠 = �푚 + �푀𝑈 − 1

(4) H𝑠,𝑚 =
[[[[[[
[

H𝑚+3A𝑚+3A𝑚+2A𝑚+1
H𝑚+2A𝑚+2A𝑚+1

H𝑚+1A𝑚+1
H𝑚

]]]]]]
]

(5) A𝑡𝑠,0 = A𝑠A𝑠−1 ⋅ ⋅ ⋅A𝑚+1
(6) G𝑠 = A𝑡𝑠,0(H𝑇𝑠,𝑚H𝑠,𝑚)−1(A𝑡𝑠,0)𝑇
(7) if �푡�푡 = �푁 then
(8) Z𝑠,𝑚 = [Z𝑇𝑚+3 Z𝑇𝑚+2 Z𝑇𝑚+1 Z𝑇𝑚]𝑇
(9) X̃𝑠 = A𝑠,0(H𝑇𝑠,𝑚H𝑠,𝑚)−1H𝑇𝑠,𝑚Z𝑇𝑠,𝑚
(10) end if
(11) if �푡�푡 > �푁 then
(12) X̃𝑠 = X̂𝑡𝑡
(13) end if
(14) for �푘�푘 = �푠 + 1 : �푡�푡 do
(15) X̃𝑘𝑘|𝑘𝑘−1 = A𝑘𝑘X̃𝑘𝑘−1 + �휔𝑘𝑘
(16) G𝑘𝑘 = [H𝑇𝑘𝑘H𝑘𝑘 + (A𝑘𝑘G𝑘𝑘−1A𝑇𝑘𝑘)−1]−1
(17) K𝑘𝑘 = G𝑘𝑘H𝑇𝑘𝑘
(18) X̃𝑘𝑘 = X̃𝑘𝑘|𝑘𝑘−1 + K𝑘𝑘(Z𝑘𝑘 − H𝑘𝑘X̃𝑘𝑘|𝑘𝑘−1)
(19) end for
(20) X̂𝑡𝑡 = X̃𝑡𝑡
(21) end for
(22) end
(23) † �푀𝑈 is the state vector size
(24) † �푁𝑈 is the filtering horizon size

Algorithm 2: UFIR filter algorithm for the self-contained scheme.

3.2. UFIR Filtering Algorithm. Compared with KF, the UFIR
filter does not need the accurate Q and R𝑘 to keep its
accuracy [26, 35]. Based on the self-contained scheme pro-
posed in Section 2.1, the UFIR filtering algorithm is listed in
Algorithm 2. Thus, we can say that the UFIR filter is more
robust than the KF filter.

4. Test and Discussion

In this paper, we employ a real indoor test to verify the
performance of the proposed self-contained pedestrian nav-
igation using the IMU and compass measurements via UFIR
filter. The real test was done in the Machine Building of the
University of Jinan, Jinan, China. In this section, the real test
will be designed and we will investigate the corresponding
results. Firstly, the real test will be designed. Then, the
performances of the KF and UFIR filter will be compared.

4.1. Setting. The test platform used in the real test consists
of one 9 degree of freedom (DOF) IMU, one compass, one
computer, and one encoder. The 9-DOF IMU is fixed on
the shoe; it employs ADXL203, ADXRS620, and HMC5983
as accelerometer, gyroscope, andmagnetometer, respectively,

95Robust Self-Contained Pedestrian Navigation by Fusing the IMU and Compass Measurements via UFIR Filtering

__________________________ WORLD TECHNOLOGIES __________________________



WT

Table 1: The parameters for the tests.

X0 P0 Q R �푁𝑈
Group 1 012×1 I12×12 I12×12 I3×3 13
Group 2 012×1 I12×12 10−2I12×12 I3×3 13

Compass

Computer

Encoder

Foot-mounted
IMU

Figure 2: The prototype of the test platform.

which is able to provide the human position. Then, one
HMC5983-based compass which is fixed on the shoulder
is used to provide more accurate yaw measurement, which
helps improve the accuracy of the yaw for the foot-mounted
IMU. The computer is used to collect the sensor data. The
encoder used in the real test is able to provide the reference
velocity of the person. The sampling time �푇 used in (1) is
0.03 s. From Algorithm 2, we can see that the performance
of the UFIR filter is just need �푀𝑈 and �푁𝑈. From (1), we can
get that �푀𝑈 = 12 and we employ �푁𝑈 = 13 in this paper. The
prototype of the test platform is shown in Figure 2.

4.2. The Performance of the UFIR Filter. The position error
of the UFIR filter for self-contained pedestrian navigation
using the IMU and compass measurements will be discussed
in this section. In this subsection, we employ two groups of
parameters which listed in Table 1.

(1) INS Position Errors–Group 1. Trajectoriesmeasured by INS
+ ZUPT + KF and INS + ZUPT + UFIR for the first group
of possible parameters (Group 1) are shown in Figures 3 and
4. From the figures, firstly, we can see that the proposed self-
contained pedestrian navigation scheme is able to provide the
person position without any auxiliary equipment. Secondly,
we can see that the trajectories estimated by the KF and the
UFIR filter are similar.

The absolute average position errors by the KF and UFIR
filter in Test 1 (Group 1) are listed in Table 2. From the table,
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Figure 3: Trajectory measured by INS + ZUPT + KF for the first
group of possible parameters (Group 1).
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Figure 4: Trajectory measured by INS + ZUPT + UFIR for the first
group of possible parameters (Group 1).

we can see that the position errors of the KF and UFIR filter
are similar.Thus, we can see that the performances of KF and
UFIR filter are similar in Test 1 (Group 1).

(2) INS Position Errors–Group 2. We now repeat the exper-
iment for the second group of possible parameters (Group
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Figure 5: Trajectory measured by INS + ZUPT + KF for the second
group of possible parameters (Group 2).

Table 2: Absolute average position errors by different filters in Test
1 (Group 1).

Model Absolute average position errors [m]
East direction North direction

KF 0.25 0.29
UFIR 0.22 0.31

Table 3: Absolute average position errors by different filters in Test
2 (Group 2).

Model Absolute average position errors [m]
East direction North direction

KF 0.88 2.79
UFIR 0.22 0.31

2). The trajectories measured from UWB only model using
least square algorithm and the INS/UWB loosely coupled
integrated model using the KF and UFIR filter for the second
group of possible parameters (Group 2) are shown in Figures
5 and 6. And the absolute average position errors by the KF
and UFIR filter in Test 2 (Group 2) are listed in Table 3. From
the figures, we can see easily that the KF has been diverged,
while the performance of the UFIR filter is still good.

5. Conclusion

In this paper, a self-contained pedestrian navigation by fusing
the IMU and compass measurements via UFIR filtering
and both the implement and test are proposed. To the
self-contained pedestrian navigation scheme, the compass
measurement is used to provide the accurate yaw to improve
the accuracy of the attitude transformation matrix for the
foot-mounted IMU solution. Moreover, we investigate the

−2

0

2

4

6

8

10

12

14

N
or

th
 (m

)

−12 −10−14 −6 −4 −2−8 2 40
East (m)

Start point
End point

INS + ZUPT + UFIR
Reference path

Figure 6: Trajectory measured by INS + ZUPT + UFIR for the
second group of possible parameters (Group 2).

UFIR filter based on the self-contained pedestrian navigation
scheme, which just needs the state vector size �푀𝑈 and the
filtering horizon size �푁𝑈, while ignoring the noise statistics.
Finally, a real test has been done to verify the performance
of the proposed self-contained pedestrian navigation using
the IMU and compass measurements via UFIR filter.The test
results show that the proposed filter has robust performance
compared with the KF.
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Quality of service (QoS) is an important performance indicator for Web applications and bandwidth is a key factor affecting
QoS. Current methods use network protocols or ports to schedule bandwidth, which require tedious manual configurations or
modifications of the underlying network. Some applications use dynamic ports and the traditional port-based bandwidth control
methods cannot deal with them. A newQoS control method based on local bandwidth scheduling is proposed, which can schedule
bandwidth at application level in a user-transparent way and it does not require tedious manual configurations. Experimental
results indicate that the new method can effectively improve the QoS for applications, and it can be easily integrated into current
Web applications without the need to modify the underlying network.

1. Introduction

Improving bandwidth efficiency is a focus in academic
research and industrial innovation. Internet adopts a best-
effort service model, which lacks the capability of QoS
guarantee inherently [1]. Although traditional methods such
as Resource Reservation Protocol (RSVP) [2] and Differ-
entiated Service (DiffServ) [3] can improve the QoS for
Web applications effectively, they require modifying the
underlying network [4]. For example, Neto proposed a
multicast-aware RSVP for class-based networks [5] and FU
Qi proposed a service-aware multipath QoS strategy, which
achieved the fair use of different types of traffic channels and
wireless links [6]. All these methods require modifying the
underlying network. Allowing for the diversity of network
types, these modifications are not always feasible [7, 8].
Some QoS methods such as Traffic Control (TC) [9] do not
require modifying the underlying network, which schedule
bandwidth based on network protocols or ports. Manual
configurations are inevitable when using these methods.This
process is very cumbersome and requires highly specialized
expertise. Even network experts cannot handle this task
easily. Furthermore, some applications such as uTorrent [10]
use dynamic ports and traditional port-based bandwidth
control methods cannot deal with them.

With the rapid emergence of Web applications, the
demand for application-level QoS control on local computers
is growing. The disorderly competition in bandwidth usage
may cause bandwidth-sensitive applications working abnor-
mally. Although the traditional fixed bandwidth allocation
strategy can avoid this problem and guarantee the QoS, it can
lead to bandwidth idling.

A new QoS control method is proposed in this research,
which uses an improved token bucket algorithm and can
schedule bandwidth at application level in a user-transparent
manner.Thismethod dynamically allocates bandwidth based
on the bandwidth requirements of applications, which
achieves a good balance between bandwidth usage efficiency
and QoS guarantee. It can maximize the bandwidth usage
while guaranteeing the QoS for applications running in the
same computer. In addition, the newmethod does not require
modifying the underlying network and can avoid the problem
of tedious configurations.

2. Related Work

2.1. DiffServ. DiffServ is often used to ensure the QoS of
backbone networks, which classifies data flows into different
levels according to their QoS requirements. High-level data
flows are preferentially transmitted than those at low levels
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Figure 1: Flowchart of token bucket algorithm.

when encountering congestions.More details onDiffServ can
be found in RFC2474 [11].

DiffServ has become the current mainstream QoS archi-
tecture because of its good scalability, simplicity, and oper-
ability. However, DiffServ is not an end-to-end method
and it cannot be used without modifying the underlying
network.

2.2. TokenBucket Algorithm. As a classical bandwidth control
method, token bucket algorithm [12] has good capability in
congestion processing, which consists of three components:
token, token bucket, and token generator (Figure 1). Token
controls the transmission of data packets and token generator
generates tokens to fill into the token bucket. When there are
enough tokens in the bucket, data packets can be transmitted.
Otherwise, they will be buffered or discarded.

2.3. Review of ExistingMethods for Bandwidth Control. There
are lots of researches in QoS guarantee. Most of them
schedule bandwidth at router or network layer, which are
not application-level based scheduling methods, so that they
cannot avoid the confliction of bandwidth usage in the local
computer.

Lin N. proposed a QoS control method based on DiffServ
and token bucket algorithm [13], which designed three ser-
vices of QoS: Guaranteed Service (GS), Control Load Service
(CLS), and Best Effort Service (BES). Protocols and ports in
the packet headers were used to distinguish these services.
This method can guarantee the QoS for applications with GS
type. It cannot deal with the applications using dynamic ports
and requires modifying the underlying network and making
port-based manual configurations.

Kidambi proposed a token bucket based method, in
which bandwidth was equally divided among data flows [14].
This method can guarantee the QoS for applications but has
the problem of idle bandwidth due to the fixed bandwidth
allocation strategy.

Cucinotta proposed a QoS control method for real-
time applications, which can guarantee the QoS for real-
time applications [15]. This method uses fixed bandwidth
allocation strategy, which has the similar problem with
Kidambi’s method.

Hierarchical token bucket [16] method can avoid idle
bandwidth, but it requires tedious manual configurations

based on network protocols or ports. It is not an application-
level method and cannot schedule the bandwidth for applica-
tions using dynamic ports.

3. The New Application-Level QoS
Control Method

Bandwidth is a key performance indicator for many Web
applications. For example, a VOIP application using G.711
codec requires at least 64 KB/s bandwidth to guarantee good
call quality [17]. In the new method, priorities are assigned
to applications according to their bandwidth requirements.
An improved token bucket algorithm is designed, which
can dynamically schedule bandwidth based on the priorities
of applications. The following two steps describe the new
method in detail.

3.1. Application-Level Bandwidth Scheduling. Popular operat-
ing systems (OS) such as Linux, Windows, and MacOS usu-
ally support some priority mechanisms. These mechanisms
are more like a gentleman’s agreement andmany applications
do not follow them strictly, so that these mechanisms cannot
solve the problem in bandwidth control. Moreover, priorities
assigned by OS are based on CPU timeslicing instead of
bandwidth [18], so that they cannot guarantee the QoS for
Web applications.

To achieve application-level bandwidth scheduling, the
network packets should be associated with their correspond-
ing processes. The hooking mechanism [19] provided by OS
can be used to do this. For example,WFP (Windows Filtering
Platform) [20] hooking mechanism can be used to filter
network packets on Windows. Other operating systems such
as Linux or MacOS also have similar mechanisms.

The new application-level bandwidth scheduling method
consists of four steps. Let us take Windows as an example.

(1) Build a priority database to store the fingerprints of
applications. The fingerprint can be the MD5 hash of an
application, the application name, or other tags that can
uniquely identify the application. In this research, MD5
hashes are used to generate the fingerprints. Except the
fingerprints, the bandwidth requirements and application
priorities are also stored in the priority database.

(2) Hook the packet sending and receiving functions in
network protocol libraries and use WFP interfaces to obtain
the corresponding process IDs (PIDs) for these packets.
Retrieve the application’s full paths through PIDs and gen-
erate fingerprints using these paths.

(3) Query the priority database using the fingerprints to
retrieve the application’s priorities. If an application is not
configured in the priority database, it will be assigned the
lowest priority.

(4) Schedule bandwidth at application level using the
method described in Section 3.2.

3.2. Bandwidth Dynamic Scheduling Method. There are two
typical bandwidth scheduling methods. One method is to
let applications freely compete for bandwidth, which can
maximize bandwidth usage and has no problem of idle
bandwidth. The drawback is that it cannot guarantee the
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QoS for applications. The other method is to preallocate
bandwidth for applications. Linksys P-WRT1900ACS router
[21] uses this method, which preallocates bandwidth for each
port or IP to ensure the bandwidth will not be overconsumed
by some applications. The second method can guarantee the
QoS for applications, but it has the problem of idle bandwidth
and cannot maximize the bandwidth usage.

Tokens are privately owned by applications in tradi-
tional token bucket algorithm, which are not shared with
other applications. This mechanism can guarantee the QoS
for applications but has the problem of idle bandwidth.
An improved token bucket algorithm is proposed in this
research, which designs a borrowing mechanism to make
tokens sharable among applications. A new bandwidth
dynamic scheduling method based on the improved token
bucket algorithm is proposed, which can avoid the problemof
idle bandwidth while guaranteeing the QoS for applications.
Figure 3 is the flowchart of the newmethod, which consists of
three components: token generator, token allocationmodule,
and token buckets. Token generator generates tokens andputs
them into token buckets through token allocation module.
Each application has a privately owned token bucket and
all applications share the same token generator and token

allocation module.The creation and termination of a process
can bemonitored by hooking process management functions
(such as CreateProcess [22] and TerminateProcess [23]).
When a process is started or terminated, its correspond-
ing token bucket is built or destroyed simultaneously. A
packet can be transmitted only if its corresponding token
bucket has enough tokens. Otherwise, the packet will be
buffered and suspended to transmit until there are enough
tokens.

To achieve bandwidth dynamic scheduling through the
above mechanism, the following three questions should be
answered: (1) What packet size each token corresponds to?
(2) What is the token generation rate? (3) What is the
capacity of each token bucket? For question (1), each 1500-
byte packet is associated with a token allowing that the
Ethernet MTU (Maximum Transmission Unit) is such size
[24]. For question (2), the token generation rate should
match the available bandwidth of the current computer. The
available bandwidth can be calculated bymonitoring the peak
transmission speed within a period of time. Allowing the
non-real-time characteristic of popular operating systems,
the token generation rate is set to 1.2 times the actual
bandwidth to avoid the possible token generation delays. For
question (3), if an application is listed in the priority database,
its token bucket capacity is set to 1.2 times the configured
bandwidth to match the total token generation rate. If it is
not listed in the priority database, the capacity is set to a
preconfigured value.

Token allocation module in Figure 2 is the pivot of
bandwidth dynamic scheduling method, which consists of
two allocations. In the first allocation, the allocation module
will check the token bucket of each running process listed in
priority database in descending order of priority. If the bucket
is not full, put tokens into it according to the configured
bandwidth in the priority database.Otherwise, the tokenswill
be reserved to the second allocation. In the second allocation,
a token borrowing mechanism is designed to realize token
sharing.
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Input: The tokens generated by generator (Ltoken)
Output: The first token allocation policy (Lallocation)
(1) FirstAllocation (Ltoken) {
(2) Obtain the running Web process list Lprocess
(3) Query the priorities of processes in Lprocess in the
(4) priority database
(5) Sort Lprocess in descending order of priority
(6) Initialize the first allocation policy Lallocation
(7) FOR i=0 to COUNT(Lprocess)-1 {
(8) Mark the bucket of 𝑖th process in Lprocess as Bi
(9) IF (f currentSize(Bi) < f maxSize(Bi)) {
(10) // Non-full bucket
(11) Get the bandwidth Vi for the corresponding
(12) process in the priority database
(13) IF (Vi != null) { // Process exists in the priority database
(14) // Ti is the remaining capacity of Bi
(15) Ti = f maxSize(Bi) - f currentSize(Bi)
(16) Initialize the allocation policy (allocation) for Bi
(17) // Set the bucket member of allocation (token ID)
(18) allocation.BUCKET = Bi
(19) // Set the TOKEN member of allocation (token count)
(20) // Add the smaller one between 1.2∗Vi and Ti to the
(21) // current token bucket
(22) allocation.TOKEN = allocation.TOKEN+MIN(Ti, 1.2∗Vi)
(23) Add allocation into the first allocation policy Lallocation
(24) Delete the allocated tokens from Ltoken
(25) }
(26) ELSE { // All processes in priority database checked
(27) // A null value of Vi means that the corresponding process
(28) // of Bi does not exist in the priority database and the
(29) // remaining processes do not exist in the database
(30) // either.These processes won’t be allocated any tokens
(31) // in the first allocation.
(32) RETURN Lallocation
(33) }
(34) }
(35) }
(36) RETURN Lallocation // All processes checked
(37) }

Algorithm 1: Bandwidth dynamic scheduling method (the first allocation).

The maxBorrow parameter is introduced to control how
much bandwidth an application can borrow fromother appli-
cations, which can be set to a larger value when wanting to
borrow more bandwidth or set to zero to disable borrowing.
MaxBorrow will gradually decrease with the transmissions
of packets. When the maxBorrow for a process decreases
to zero, the maxBorrow for all the processes with higher or
equal priority will be reset to their initial values, while the
maxBorrow for the other processes will remain unchanged.
This means that, when detecting a zero value of maxBorrow
for some process, the token borrowing privilege will always
be granted to all the processes with higher or equal priority
simultaneously, and the processes with lower priority will not
get such privilege.

The first allocation guarantees that every running process
listed in the priority database can obtain the configured

bandwidth. The following data structure is introduced to
specify the allocation process.

struct allocation{

BUCKET // ID of token bucket
TOKEN // The token count

}

Algorithm 1 is the pseudo code for the first allocation.
Lines starting with // are comments and all the other lines
are valid code. The number at the beginning of each line is
the line number. The input of the algorithm is the generated
tokens (Ltoken) and the output is the first token allocation
policy (Lallocation).
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In Algorithm 1, firstly obtain the running process list
(Lprocess, line (2)), then query the priority database to retrieve
the priorities of processes in Lprocess (lines (3)-(4)) and sort
these processes in descending order of priority (line (5)).
Initialize the allocation policy (Lallocation, line (6)) and loop
through Lprocess (lines (7)-(35)). Use functions f currentSize and
f maxSize to get the current and maximal capacity of a token
bucket (Bi), respectively, and check whether the bucket is full.
If it is not full (lines (9)-(10)), query the configured bandwidth
(Vi) in the priority database (lines (11)-(12)). If Vi is not null,
get the remaining capacity of Bi and mark it as Ti (lines (13)-
(15)). Initialize the allocation policy for Bi (line (16)), assign
Bi to its BUCKET member and add MIN(Ti, 1.2∗Vi) to its
TOKENmember (lines (17)-(22)). After that, add it to the first
allocation policy (Lallocation) and delete the allocated tokens
from Ltoken (lines (23)-(24)). A null value of Vi represents
that its corresponding process is not listed in the priority
database. Since Lprocess is looped through in descending order
of priority, when finding a process not listed in the priority
database, all the remaining processes are not listed in this
database either. In this case, stop looping and return Lallocation
directly (lines (26)-(33)). If all the processes in Lprocess have
been checked, return Lallocation (line (36)).

Through the first allocation, all the running processes
listed in the priority database have attained tokens and token-
based packet transmission privileges. Combining the priority
mechanism, the QoS for these processes can be guaranteed.

The unallocated tokens (marked as 𝐿󸀠𝑡𝑜𝑘𝑒𝑛) in the first
allocation will be further allocated to other processes in
the second allocation. The token sharing mechanism is
introduced to maximize the bandwidth usage during the
second allocation. Algorithm 2 is the pseudo code, whose
input is the unallocated tokens (𝐿󸀠𝑡𝑜𝑘𝑒𝑛) and the output is the
second token allocation policy (𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛).

In Algorithm 2, firstly obtain all the running Web
processes not listed in the priority database (𝐿󸀠𝑝𝑟𝑜𝑐𝑒𝑠𝑠, lines
(2)-(3)). These processes do not get any tokens in the first
allocation, so that tokens will be allocated to them firstly.
Loop through 𝐿󸀠𝑝𝑟𝑜𝑐𝑒𝑠𝑠 to retrieve the token bucket for each
process (Bi, lines (5)-(6)). When a nonfull token bucket is
found (line (7)), get its remaining capacity (Ti, lines (8)-
(9)). Initialize allocation for Bi and set its members (lines
(10)-(15)), then add it into the second allocation policy
(line (16)) and remove the allocated tokens from 𝐿󸀠𝑡𝑜𝑘𝑒𝑛
(line (17)). Since all the processes in 𝐿󸀠𝑝𝑟𝑜𝑐𝑒𝑠𝑠 have the same
and lowest priority, evenly allocate tokens for them (lines
(20)-(33)). Firstly, calculate the average count of allocated
tokens (lines (20)-(24)), then update the token count for the
second allocation policy (lines (25)-(33)). If all the tokens
have been allocated (line (34)), return 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 directly (line
(35)). Otherwise, allocate tokens to all the running Web
processes (Lp, lines (37)-(65)). Loop through Lp to retrieve
each token bucket (Mj, lines (42)-(43)). If the bucket is not
full and its maxBorrow (𝑀𝑗 𝑚𝑎𝑥𝐵𝑜𝑟𝑟𝑜𝑤) is greater than zero,
allocate tokens for it and add the smallest value among the
unallocated token count (COUNT(𝐿󸀠𝑡𝑜𝑘𝑒𝑛)), the remaining
capacity of this bucket (Tj) and its token borrowing count
(𝑀𝑗 𝑚𝑎𝑥𝐵𝑜𝑟𝑟𝑜𝑤) to its current bucket count (lines (44)-(54)).
Add it into the second allocation policy (line (55)), and

decrease the token borrowing count (lines (56)-(57)) and the
unallocated token count (line (58)), respectively. If all the
tokens have been allocated (line (59)), return 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (line
(60)). 𝐿󸀠𝑡𝑜𝑘𝑒𝑛 will be discarded and a null allocation policy will
be returned if no bucket satisfies all the above conditions (line
(66)).

It can be seen that from Algorithm 2, processes not
listed in the priority database will be firstly allocated tokens
using an average allocation policy, which guarantees that they
have equal rights to use bandwidth. Since these processes
have the lowest priority, their token bucket capacity is set
to a preconfigured value. It is possible that there are still
unallocated tokens after this average allocation.These tokens
will be further allocated among all the runningWebprocesses
regardless of their existence in the priority database. This can
maximize the bandwidth usage and avoid the problem of idle
bandwidth.

It should be noted that other tool functions and facilities
are also needed except those listed in Algorithms 1 and 2.
For example, a token generating function should be used
to generate tokens periodically; a periodic timer should be
used to reset the maxBorrow value for each process; a queue
should be constructed to buffer the packets in low priorities
that cannot be transmitted immediately. These functions and
facilities are omitted for the sake of brevity.

4. Experimental Results

Three experiments (Experimental PC settings: Intel i7-3770
CPU, 16G RAM, Windows 7 Professional) were designed to
verify the effectiveness of the new method. Experiment 1
verified the capability of bandwidth control. Experiment 2
verified the effectiveness of bandwidth scheduling. Experi-
ment 3 verified the improvement of QoS.

4.1. Capability of Bandwidth Control. Baidu Netdisk (a cloud
storage application) [25] was used to upload a 1G byte file
and its bandwidth usage was illustrated in Figure 3. It can be
seen that the upload rate was 100 KB/s at the beginning and
it decreased to 10 KB/s when a bandwidth limit of 10 KB/s
was applied at the tick of 70 second. It recovered to 100 KB/s
gradually after the limit was removed.

Similar results were gained in the file download experi-
ment (Figure 4). These results indicate that the new method
has a good capability in bandwidth control.

4.2. Effectiveness Of Bandwidth Dynamic Scheduling. Three
applications were used in this experiment: a video conference
application (Fsmeeting) [26], an online music player (QQ
Music) [27], and a download manager (Thunder) [28]. The
priority is Fsmeeting > QQ Music > Thunder. The total
download bandwidth for them was set to 200 KB/s and
the separate download bandwidth for them was set to 130
KB/s, 50 KB/s, and 20 KB/s, respectively (Table 1). All the
three applications were allowed to borrow idle bandwidth.
Figure 5 illustrates the experimental results. It can be seen that
the three processes consumed the preconfigured bandwidth
during the period of 0∼50 seconds, which indicates that their
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Input: The unallocated tokens after the first allocation (𝐿󸀠𝑡𝑜𝑘𝑒𝑛)
Output: The second token allocation policy (𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)
(1) SecondAllocation (𝐿󸀠𝑡𝑜𝑘𝑒𝑛) {
(2) Obtain the running Web processes not listed in
(3) the priority database and mark them as 𝐿󸀠𝑝𝑟𝑜𝑐𝑒𝑠𝑠
(4) Initialize the second allocation policy 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
(5) FOR i=0 to COUNT(𝐿󸀠𝑝𝑟𝑜𝑐𝑒𝑠𝑠)-1 { // Retrieve each process
(6) Mark the bucket of 𝑖th process in 𝐿

󸀠
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 as Bi

(7) IF (f currentSize(Bi) < f maxSize(Bi)) { // Bucket is not full
(8) // Ti is the remaining capacity of Bi
(9) Ti = f maxSize(Bi) - f currentSize(Bi)
(10) Initialize the allocation policy (allocation) for Bi
(11) // Set the BUCKET member of allocation (token ID)
(12) allocation.BUCKET = Bi
(13) // Set the TOKEN member of allocation (token count).
(14) //This value may be modified in the following steps.
(15) allocation.TOKEN = allocation.TOKEN + Ti
(16) Add allocation into the second allocation policy 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
(17) Delete allocated tokens from 𝐿󸀠𝑡𝑜𝑘𝑒𝑛
(18) }
(19) }
(20) // Calculate how many tokens each process can get
(21) // using average allocation policy
(22) IF (COUNT(𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) > 0) {
(23) AVE = COUNT(𝐿󸀠𝑡𝑜𝑘𝑒𝑛) / COUNT(𝐿

󸀠
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)

(24) }
(25) // Loop through 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 to update the token count for
(26) // each allocation
(27) FOR k=0 to COUNT(𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)-1 {
(28) Mark the 𝑘th item of 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 as Ak
(29) // update the token count using the average value
(30) Ak.TOKEN = Ak.TOKEN +
(31) MIN(f maxSize(Ak) - f currentSize(Ak), AVE)
(32) Delete the allocated tokens from 𝐿󸀠𝑡𝑜𝑘𝑒𝑛
(33) }
(34) IF (COUNT(𝐿󸀠𝑡𝑜𝑘𝑒𝑛) == 0) { // Token allocation finished
(35) RETURN 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
(36) }
(37) ELSE { // Still have unallocated tokens
(38) // Try to allocate the remaining tokens to all the running
(39) //Web processes regardless of their existence in the
(40) // priority database through token borrowing
(41) Get all the running Web process Lp and sort it in descending order of priority
(42) FOR j=0 to COUNT(Lp)-1 {
(43) Mark the bucket of the jth process in Lp asMj
(44) IF (f currentSize(Mj) < f maxSize(Mj)) { // Bucket is not full
(45) Get themaxBorrow of the current bucket (𝑀𝑗 𝑚𝑎𝑥𝐵𝑜𝑟𝑟𝑜𝑤)
(46) IF (𝑀𝑗 𝑚𝑎𝑥𝐵𝑜𝑟𝑟𝑜𝑤 > 0) { // Can borrow more tokens
(47) // Tj is the remaining capacity of Mj
(48) Tj = f maxSize(Mj) - f currentSize(Mj)
(49) Initialize allocation forMj
(50) // Set the BUCKET member of allocation (token ID)
(51) allocation.BUCKET =Mj
(52) // Set the TOKEN member of allocation (token count)
(53) allocation.TOKEN = allocation.TOKEN +
(54) MIN(COUNT(𝐿󸀠𝑡𝑜𝑘𝑒𝑛), Tj,𝑀𝑗 𝑚𝑎𝑥𝐵𝑜𝑟𝑟𝑜𝑤)
(55) Add allocation into the second allocation policy
(56) Subtract the count of allocated tokens from the token
(57) borrowing parameter (𝑀𝑗 𝑚𝑎𝑥𝐵𝑜𝑟𝑟𝑜𝑤)
(58) Delete the allocated tokens from 𝐿󸀠𝑡𝑜𝑘𝑒𝑛
(59) IF (COUNT(𝐿󸀠𝑡𝑜𝑘𝑒𝑛) == 0) { // Token allocation finished

Algorithm 2: Continued.
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(60) RETURN 𝐿󸀠𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
(61) }
(62) }
(63) }
(64) }
(65) }
(66) RETURN null
(67) }

Algorithm 2: Bandwidth dynamic scheduling method (the second allocation).

Table 1: Bandwidth and priorities configurations for the three
applications.

Application Bandwidth Priority
Fsmeeting 130KB/s High
QQMusic 50KB/s Medium
Thunder 20KB/s Low
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Figure 4: Download bandwidth control.

bandwidth can be scheduled correctly. After the tick of 50 sec-
onds, Fsmeeting was killed and its bandwidth usage decreased
to 0 KB/s. The bandwidth usage of QQ Music gradually
increased to 180 KB/s, while the bandwidth usage ofThunder
is kept unchanged during this period. These experimental
results can verify that the newmethod has good effectiveness
in bandwidth sharing and dynamic scheduling, which can
maximize the bandwidth usage without the problem of idle
bandwidth.

4.3. Verification of QoS Improvement. A VOIP application
(MicroSIP [29]) was used to verify the improvement of QoS.
The reason for choosing a VOIP application is that such
applications are very sensitive to bandwidth and their QoS
can be measured through a relatively easy method named
Mean Opinion Score (MOS) [30]. Strictly speaking, the QoS
for VOIP applications can be influenced by many factors,
for example, bandwidth, network delay, packet loss, etc.
And bandwidth is not the only influencing factor. In this
experiment, the other factors were assumed unchanged and
bandwidth was assumed to be the only influencing factor.

Currently there is no relevant research on the impact
of local bandwidth scheduling for QoS guarantee in the
local computer. Therefore, in this research there was no
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Figure 5: Bandwidth usage for three applications.

comparison experiment with the existing methods. Instead,
two experiments were designed to verify the improvement of
QoS when using the new method or not. Three applications
Baidu Netdisk, Thunder, and MicroSIP were used in the two
experiments. Table 2 lists their configurations in bandwidth
and priorities.

The steps of the two experiments are as follows: download
a 1G byte file using Baidu Netdisk and Thunder simultane-
ously, and during this period useMicroSIP to make calls. The
first experiment used the new QoS method and the second
one did not use it. Figures 6 and 7 illustrate the MOS scores
and the bandwidth usage in two cases.

A piece of music instead of human voice was used when
making calls to avoid man-made influence. The call quality
was scored through MOS which ranged from 1 to 5. The
higher the call quality, the higher the MOS score. Thirty
participants were invited to scored their MOS. Figure 6
illustrates the MOS in two experiments. The average MOS
is 3.91 and 3.18 when using the new QoS method or not,
respectively.The former has a 23%higher score than the latter,
which concludes that the QoS can be improved significantly
when using the bandwidth dynamic scheduling method.

Figure 7 illustrates the bandwidth usage of MicroSIP in
the two experiments. It can be seen that the bandwidth
usage cannot be guaranteed when not using the QoSmethod.
In this case, three applications competed bandwidth freely
and MicroSIP did not have any bandwidth guarantee. When
using the QoS method, the bandwidth for MicroSIP was

105An Application-Level QoS Control Method based on Local Bandwidth Scheduling

__________________________ WORLD TECHNOLOGIES __________________________



WT

Table 2: Bandwidth and priority configurations in two cases.

Application Using method Not using method
Bandwidth Priority Bandwidth Priority

MicroSIP 100 KB/s High null null
Baidu Netdisk 80 KB/s Medium null null
Thunder null Low null null
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Figure 6: MOS scores of the two experiments.
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Figure 7: Bandwidth usage for MicroSIP in two cases.

generally stable at 100 KB/s, although the other two appli-
cations were performing significant bandwidth-consuming
operations. This concludes that, from another perspective,
the local bandwidth scheduling method can guarantee the
bandwidth for Web applications and can improve their QoS
effectively.

5. Conclusion

A new application-level QoS control method based on
local bandwidth scheduling was proposed and experimental
results verified its effectiveness. The new method has three
advantages. (1) It can schedule bandwidth without tedious
manual configurations. The configurations for commonly
used scenarios can be built in advance and most users can
reuse them andmake their own extensions.This will simplify
the configuration and reduce lots ofworkload. (2) It schedules
bandwidth at application level and can control the bandwidth
for applications using dynamic ports. (3) It can be easily

integrated into current Web applications without modifying
the underlying network.

It should be noted that the existing QoS guarantee
methods which work at router or network layer are effective
and practically verified. Our method is not a competitive or
replaceable relationship with these methods. To the opposite,
it is an organic supplement to them and can improve QoS
further at application level. The new method only solved the
problem of bandwidth scheduling in local computer, which
cannot avoid the excessive bandwidth consumption caused
by other computers in the same local area network. Further
research can be made to solve the problem in this scenario.
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Abnormal event detection is one of the vital tasks inwireless sensor networks. However, the faults of nodes and the poor deployment
environment have brought great challenges to abnormal event detection. In a typical event detection technique, spatiotemporal
correlations are collected to detect an event, which is susceptible to noises and errors. To improve the quality of detection
results, we propose a novel approach for abnormal event detection in wireless sensor networks. This approach considers not only
spatiotemporal correlations but also the correlations among observed attributes. A dependency model of observed attributes is
constructed based on Bayesian network. In this model, the dependency structure of observed attributes is obtained by structure
learning, and the conditional probability table of each node is calculated by parameter learning. We propose a new concept named
attribute correlation confidence to evaluate the fitting degree between the sensor reading and the abnormal event pattern. On the
basis of time correlation detection and space correlation detection, the abnormal events are identified. Experimental results show
that the proposed algorithm can reduce the impact of interference factors and the rate of the false alarm effectively; it can also
improve the accuracy of event detection.

1. Introduction

Abnormal event detection is one of the main problems in
wireless sensor networks [1]. In wireless sensor networks,
abnormal events are usually complex, because an event
usually involves multiple observed attributes, and it is dif-
ficult to describe an abnormal event pattern [2]. Existing
anomaly detection algorithms detect an abnormal event by
comparing a single attribute threshold [3, 4] or by considering
the spatiotemporal correlations of sensor readings [2, 5–8].
However, some important information may be hidden in the
correlations among different attributes [9].

In [3], an adaptive distributed event detection method is
proposed, which dynamically adjusts the decision threshold
based on the trust value of the sensor nodes and uses the
moving average filter to tolerate the transient faults of the
sensor nodes. Although this method is fault-tolerant, it is
still possible to misjudge the event nodes into faulty nodes.
Particularly when the event range is large, the accuracy of
detection will decrease significantly. Besides, this method
computes a trust value for each sensor node, so it can only

be applied to univariate applications. Paper [5] models the
event region based on Dynamic Markov Random Field.
This method can effectively capture the dynamic changes of
local area; since the method needs to exchange information
of space-time neighbor constantly, the detection efficiency
is low. Besides, the detection of the events lacks a global
perspective, which may lead to misjudgment of abnormal
events. Paper [6] proposed an event detection scheme based
on spatiotemporal correlations. In this method, the sensor
nodes are divided intomultiple working groups; the time cor-
relation of the sensor data is used to eliminate low frequency
errors. Different working groups cooperate to determine
whether the anomalies represent an event. However, this
methodonly constructs themodel based on the single sensing
attribute and does not consider the relations between the
multisensory attribute and the abnormal event.

The attributes of the sensor readings usually contain
time information, sensor topology information, and other
attributes directly sensed by the sensor (e.g., temperature,
humidity, and light intensity). When abnormal events occur
in the network, events often show temporal correlation,
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spatial correlation, and attributes correlation [9]. In most
cases, event detection methods that take the spatiotem-
poral correlation of the data into account are susceptible
to both sensor failures and external environmental noises.
For observed attributes, a simple threshold comparison is
insufficient to determine whether an abnormal event occurs.
For instance, in an indoor fire monitoring application, the
increase of the temperature and smoke concentration may be
caused by cooking, rather than a fire accident.

In order to improve the accuracy of abnormal event
detection in wireless sensor networks withmultiple attributes
and reduce the influence of environmental noises and sensor
failures on the event detection results, this paper proposes a
newmethod calledAbnormal EventDetection based onMul-
tiattribute Correlation (MACAED). First, considering that
Bayesian network can effectively represent the dependencies
among variables, a Bayesian network is used to establish
the dependency model of observed attributes. In this model,
the dependency structure of abnormal events is obtained
by structure learning. Each node learns the parameters
to get a conditional probability table. Then, the attribute
correlation confidence is introduced to judge whether the
attribute correlation mode of the point is an abnormal
mode. Based on the sliding window model, the degree of
temporal correlationwas calculated; the spatial similarity was
calculated by using the neighbor node information. Finally,
the anomaly events were detected by three kinds of attribute
correlation.

2. Attribute Dependency Model

In wireless sensor networks, abnormal events usually show
the following three characteristics:

(1) For a single sensor node, the anomaly event will
continue for a period of time once the event occurs;
the adjacent time of the data shows a certain degree
of similarity [7]. In addition, abnormal events will
inevitably affect the physical environment of network
monitoring, and the sensor data will change accord-
ingly, showing a special mode.

(2) For a number of sensor nodes, sensor nodes in
the event region will exhibit spatial similarity when
abnormal events occur [10]; in other words, the
readings of adjacent nodes exhibit similar patterns.

(3) When the abnormal events occur in the monitoring
area, the sensed attributes of the sensor readings show
a certain degree of relevance, and this correlation
appears as probability relations [9].

According to the three kinds of characteristics of abnor-
mal events in wireless sensor networks and the experience
that Bayesian network can effectively represent the probabil-
ity relationship among attributes, we construct the attribute
dependency model. The attribute correlation confidence is
proposed to measure the degree of similarity between the
measured points and the anomalies in observed attribute
probability model.

X1

X2
X3 X4

X5

Figure 1: An example of attribute dependency model.

2.1. Bayesian Network. Bayesian network is a product of
probability theory and graph theory. It is a directed acyclic
graphwith probabilistic annotations, which can represent the
probability dependencies among random variables. It has a
solid mathematical foundation [11]. On the one hand, the
Bayesian network can reveal the structure of the problem
intuitively by using graph theory. On the other hand, the
Bayesian network can utilize the structure of the problem
according to the principle of probability theory, which
reduces the computational complexity of reasoning. In view
of this, this paper establishes a dependencymodel of observed
attributes based on the Bayesian network; each attribute is
represented by a unique node, and the probabilistic depen-
dencies are represented by arcs between nodes.

2.2. Formal Description. The attribute dependency model
is represented by a triplet 𝐵 = (𝐷, 𝐺, 𝜃), where 𝐷 is
the sample dataset that contains observed attributes, 𝐷 ={𝑑1, 𝑑2, . . . , 𝑑𝑚}; G denotes a directed acyclic graph, which
qualitatively describes the dependencies among attributes,𝐺 = (𝑋,𝑈), where 𝑋 is a set of nodes representing
observed attributes, corresponding to the elements in𝐷, and𝑈 is the directed edge set representing the dependencies
among the attributes; 𝜃 is the set of conditional probability
distributions for each node, which quantitatively describes
the dependencies among attributes, 𝜃 = {𝑃(𝑋𝑖 | 𝜋(𝑋𝑖))},
where 𝑋𝑖 is the 𝑖th node in 𝐺 and 𝜋(𝑋𝑖) is the set of parent
nodes of node 𝑋𝑖. Figure 1 is an example of an attribute
dependency model.

2.3. Structure Learning. For WSNs with large number of
variables and implicit dependencies among variables, it is
difficult to obtain a reasonable network structure relying on a
priori information and expert knowledge, and the probability
is subjective, so we learn the Bayesian network structure from
training samples. This paper utilizes a strategy of scoring and
searching. Specifically, we use a scoring function to evaluate
the matching degree between a specific network structure
and the training sample and select the appropriate search
strategy to search the network structure with the highest
scoring value.
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Given a sample dataset 𝐷(𝑑1, 𝑑2, . . . , 𝑑𝑚), let Bayesian
network 𝐺 take all the variables in the node set 𝑋(𝑋1,𝑋2, . . . , 𝑋𝑚) as nodes, and instantiate all the variables of 𝑋
using the attribute value 𝑑𝑖 in the sample dataset.The variable𝑋𝑖 has 𝑟𝑖 possible values (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑟𝑖). Let the parent
variable set of𝑋𝑖 beΠ𝑖,𝑤𝑖𝑗 denotes the 𝑗th instantiation value
of the parent nodeΠ𝑖 with respect to𝐷, and𝑁𝑖𝑗𝑘 denotes the
number of instances in which the value𝑋𝑖𝑘 of the variable𝑋𝑖
is taken and is instantiated into𝑤𝑖𝑗 byΠ𝑖,𝑁𝑖𝑗 = ∑𝑟𝑖𝑘=1𝑁𝑖𝑗𝑘.The
Bayesian scoring criterion is used to compute the likelihood
ratios of the two Bayesian network structures 𝐺1 and 𝐺2.
Since 𝑝(𝐺1 | 𝐷)/𝑝(𝐺2 | 𝐷) = 𝑝(𝐺1, 𝐷)/𝑝(𝐺2, 𝐷), we only
need to compare the joint probability 𝑝(𝐺1, 𝐷) and 𝑝(𝐺2, 𝐷).
This can be calculated by using the formula [12]

𝑝 (𝐺,𝐷) = 𝑝 (𝐺) 𝑝 (𝐷 | 𝐺)
= 𝑝 (𝐺) ⋅ 𝑛∏

𝑖=1

𝑞𝑖∏
𝑗=1

(𝑟𝑖 − 1)!(𝑁𝑖𝑗 + 𝑟𝑖 − 1)! ⋅
𝑟𝑖∏
𝑘=1

𝑁𝑖𝑗𝑘!, (1)

where 𝑝(𝐺) is the prior probability and the arrangement
order of Π𝑖 is (1, . . . , 𝑞𝑖). Maximizing the joint probability𝑝(𝐺,𝐷) in (1)

max
𝐺
{𝑝 (𝐺,𝐷)}

= 𝑝 (𝐺) 𝑛∏
𝑖=1

max
Π𝑖

[
[
𝑞𝑖∏
𝑗=1

(𝑟𝑖 − 1)!(𝑁𝑖𝑗 + 𝑟𝑖 − 1)!
𝑟𝑖∏
𝑘=1

𝑁𝑖𝑗𝑘!]]
. (2)

It can be seen that, for each variable𝑋𝑖, it is only necessary to
maximize

max
Π𝑖

{𝑔 (𝑖, Π𝑖)} = max
Π𝑖

[
[
𝑞𝑖∏
𝑗=1

(𝑟𝑖 − 1)!(𝑁𝑖𝑗 + 𝑟𝑖 − 1)!
𝑟𝑖∏
𝑘=1

𝑁𝑖𝑗𝑘!]]
. (3)

In the initial stage of constructing the network structure, it is
assumed that each node has no parent node.The nodes which
meet the posterior probability maximization formula are
recursively added to the parent set of nodes. When 𝑝(𝐺,𝐷)
is no longer increased, stop adding to the parent node set;
then the network structure 𝐺󸀠 is obtained. For the current
sample dataset 𝐷, 𝐺󸀠 is the optimal network structure under
the Bayesian scoring standard.

2.4. Parameter Learning. According to the trained network
structure, the parameter of each node in the network is
learned to get the corresponding conditional probability
table. The conditional probability table contains the prob-
ability relations among the variables. Using the maximum
likelihood estimation method, suppose (𝑥1, 𝑥2, . . . , 𝑥𝑛) is a
set of possible values of random variable set (𝑋1, 𝑋2, . . . , 𝑋𝑛),
and the probability of (𝑋1, 𝑋2, . . . , 𝑋𝑛) falling in the
neighborhood of (𝑥1, 𝑥2, . . . , 𝑥𝑛) (𝑛-dimensional cubes with
side length 𝑑𝑥1, 𝑑𝑥2, . . . , 𝑑𝑥𝑛, resp.) is approximated as∏𝑛𝑖=1𝑓(𝑥𝑖; 𝜃)𝑑𝑥𝑖, where ∏𝑛𝑖=1𝑓(𝑥𝑖; 𝜃) is the joint probability
density of (𝑋1, 𝑋2, . . . , 𝑋𝑛), 𝜃 is the structural parameters,
and 𝜃 ∈ Θ. The maximum likelihood estimation value 𝜃 of 𝜃

is calculated throughmax𝜃∈Θ𝐿(𝑥1, . . . , 𝑥𝑛; 𝜃).The conditional
probability table for each node is obtained from the sample
data and prior knowledge.

2.5. Attribute Correlation Confidence. Attribute correlation
confidence is a concept we proposed to measure the fitting
degree between the sensor reading and the abnormal event
pattern. It is equal to the ratio of the joint probability distri-
bution between the measured point and the abnormal point.
Let (𝑦1, 𝑦2, . . . , 𝑦𝑛) be the sensor reading at the current time.
For an abnormal event 𝐸𝑖, the joint probability of all node
variables𝑃(𝑋1, 𝑋2, . . . , 𝑋𝑛 | 𝐸𝑖) is calculated according to the
Bayesian network structure and the conditional probability
table. Since in Bayesian network, not every node has an arc
to the all the rest nodes, the conditional probability only
depends on the direct parent node. In other words, given the
values of parent variables, the probability of nondescendant
node is conditionally independent of the parent node. So the
calculation of joint probability 𝑃(𝑋1, 𝑋2, . . . , 𝑋𝑛 | 𝐸𝑖) can be
simplified by using the chain rule [11],

𝑝 (𝑥) = 𝑛∏
𝑖=1

𝑝 (𝑥𝑖 | 𝑥𝑝𝑎(𝑖)) (4)

in which 𝑥𝑝𝑎(𝑖) represents the parent node of 𝑥𝑖.
After calculating 𝑃(𝑋1, 𝑋2, . . . , 𝑋𝑛 | 𝐸𝑖), we can get the

probability pattern of the reading in an event. According to
the formula,

𝛼 = max
𝑖∈𝐼

𝑃 (𝑋1 = 𝑦1, . . . , 𝑋𝑛 = 𝑦𝑛)𝑃 (𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛 | 𝐸𝑖) , (5)

the attribute correlation confidence 𝛼 of the tested point is
calculated.Thehigher the probability, themore the possibility
for the anomaly to represent an abnormal event.

3. Abnormal Event Detection Algorithm
Based on Multiattribute Correlation

In this paper, we propose a detection algorithm based on
multiattribute correlation, which is divided into three phases:
attribute correlation pattern decision, temporal similarity
detection, and spatial similarity detection.

3.1. Description of Abnormal Event. For an abnormal event,
define event information 𝐼𝑛𝑓𝑜 = {𝑇𝑚, 𝐿𝑜𝑐, 𝐴𝑡𝑡𝑟, 𝑃𝑎𝑟𝑚, 𝐸𝑖},
where 𝑇𝑚 is the time of occurrence of abnormal events, 𝐿𝑜𝑐
is the location of abnormal events, and 𝐴𝑡𝑡𝑟 is the attribute
set that an event involves. Parm is the parameter set, which
includes temporal similarity threshold 𝜀, spatial similarity
threshold 𝛿, and attribute correlation confidence threshold𝜑. For different application environments, the values of each
item in Parm can be adjusted to achieve the best detection
result adaptively. 𝐸𝑖 represents the event type, 𝑖 = 0means no
abnormal events occurred, 𝑖 > 0means that abnormal events
occurred, and the higher the value 𝑖 is, the more severity the
abnormal event has.
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3.2. Temporal Similarity Detection. The data sampling fre-
quency of most wireless sensor networks is relatively high
and data change range at the adjacent time is relatively small,
so the sensor data is time-correlated. Combining with sliding
windowmodel and the attribute dependencymodel obtained,
candidate anomalies that may represent abnormal events are
detected.

Let 𝑠 be the size of the sliding window, and for each
data sequence 𝑡𝑖 within the window, calculate the similarity
between 𝑡𝑖 and the current time series 𝑡

𝑞 (𝑡𝑖, 𝑡) = 1
(1 + √∑𝑚𝑘=1 (𝑥𝑡𝑖𝑘 − 𝑥𝑡𝑘)2)

.
(6)

Considering that the data sequence that is closest to the cur-
rent time is most correlated, the average similarity between
the current time data and the data in the window is calculated
by the weighted summation method

𝑞 (𝑡) = ∑𝑤𝑤𝑖=1 𝑤𝑖𝑞 (𝑡𝑖, 𝑡)𝑠 , (7)

where the weight is 𝑤𝑖 = 1/(𝑡 − 𝑡𝑖). If the average similarity is
smaller than the threshold 𝜀 and the confidence degree of the
attribute correlation is greater than or equal to the threshold𝜑, it means that not only does the data sequence of the current
time significantly deviate from the historical data, but also the
relationship among the attributes is in accordance with the
probability relation when the abnormal event occurs, which
needs a further spatial correlation detection. In other cases, it
will be filtered as a noise.

3.3. Spatial Similarity Detection. The similarity between the
candidate anomaly and the neighbor node’s data sequence is
calculated. If the candidate anomaly and the neighbor node’s
data sequence satisfy certain similarity degree, it indicates
that the abnormal event occurs in the region where the
candidate anomaly is located and needs to be uploaded to the
sink node.

The similarity between the candidate anomaly and the
neighbor node sequence is calculated according to the follow-
ing formula:

𝑞 (𝑥𝑡, 𝑦𝑡) = 1
(1 + √∑𝑚𝑘=1 (𝑥𝑡𝑘 − 𝑦𝑡𝑘)2)

. (8)

If the spatial similarity 𝑞(𝑥𝑡, 𝑦𝑡) is greater than or equal to
the threshold 𝛿, it indicates that both nodes have detected
an abnormal event at the same time and mark the candi-
date anomaly nodes and their neighbor nodes as abnormal
event nodes. On the contrary, it indicates that no neighbor
nodes detect abnormal information at this time, and the
candidate anomaly belongs to noise data, which is also filtered
out.

3.4. Description of MACAED Algorithm. Based on the calcu-
lation of attribute correlation confidence and the detection of

temporal and spatial correlation of sensor data, an abnormal
event detection algorithmbased onmultiattribute correlation
is proposed. The pseudocode of the algorithm is shown in
Algorithm 1.

In the pseudocode of Algorithm 1, rows (2)∼(3) train
the Bayesian network through the scoring-searching method
and choose the network structure𝑀 with the highest score
as the observed attribute dependency model, rows (4)∼(26)
detect abnormal events in real time, where rows (9)∼(10)
proceed parameter learning for each sensor in order to
update the probability distribution in attribute dependency
model, rows (10)∼(14) compute the attribute correlation
confidence of observed attributes, row (15) calculates the
average similarity between the current time readings and the
readings within the window, row (18) calculates the average
similarity between the current node and the adjacent node
readings, and rows (17)∼(24) determine whether the current
reading represents abnormal events readings.

3.5. Time Complexity Analysis. Let 𝑛 be the number of
observed attributes, which corresponds to the number of
nodes in Bayesian network; 𝑚 is the number of instances,
that is, the number of readings; 𝑟 is the number of possible
values for each observed attribute;𝑁 is the number of nodes
in WSN; 𝑠 is the size of sliding window. For the structure
learning part, the time complexity is 𝑂(𝑚𝑛4𝑟) [12]. For
abnormal event detection part, it contains two layers: outer
layer loops 𝑂(𝑚 − 𝑠 − 1) times and inner loops 𝑂(𝑁) times.
The parameter learning consists of a cycle of 𝑂(𝑛) times. The
time correlation detection consists of a cycle of 𝑂(𝑠) times.
The spatial correlation detection consists of a cycle of 𝑂(𝑁)
times.The total time complexity of the algorithm is𝑂(𝑚𝑛4𝑟)+𝑂(𝑚−𝑠−1)𝑂(𝑁)𝑂(𝑛+𝑠+𝑁). Since, for most wireless sensor
networks, the value of 𝑛 is small (less than 10) and sliding
window 𝑠 and the number of possible values of each attribute𝑟 are relatively small (in this experiment, 𝑠 = 10; 𝑟 = 9),
the influence of these values on the total time complexity can
be ignored, so the total time complexity can be simplified to𝑂(𝑚) + 𝑂(𝑚𝑁2) = 𝑂(𝑚𝑁2).
4. Experimental Results and Analysis

4.1. Datasets. We test the performance of the MACAED
algorithm by means of conducting simulation experiments
on Matlab 2014a. The experiments are run on a PC with
an Intel Core i3-2120 @3.30GHZ Cpu, 4GB memory, and
Windows 7 operating system. For the instance of detecting
fire event, the performance tests are based on the processed
data of Intel Lab Data [13] from Intel Berkeley Lab. Except for
the real data field, we insert the fire events and interference
events data field into the dataset manually.

The experiment dataset contains the records of 54 sensors
deployed in the IBRL lab during the time span from February
28th to April 5th in 2004. The MicaDot sensors collect
temperature, humidity, light intensity, and voltage value every
31 seconds. Sensor node deployment is shown in Figure 2.
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Input. WSN data set𝐷
Output. Abnormal event Information Info
(1) standardize𝐷 into values between 0 and 1
(2) divide𝐷 into 𝐾 subsets, choose the first set to learn Bayesian network
(3) choose the network with highest score as attribute

dependency model𝑀
(4) for 𝑡 = 𝑠 + 1 to epoch//epoch is incremental tick
(5) if 𝑡%period = 0//period is parameter update period
(6) flag = true; //flag represents update parameter or not
(7) end
(8) for 𝑖𝑑 = 1 to𝑁//𝑖𝑑 is the id of WSN,𝑁 is the number of sensors
(9) learn parameter for each sensor node
(10) if dataPointer [𝑖𝑑] < group_length

//prevent the 𝑖𝑑 exceed the length of group
(11) if groupData_time [𝑖𝑑] < 𝑡

//prevent a break caused by data loss
(12) compute 𝛼 fromM
(13) end
(14) end
(15) compute 𝑞(𝑡𝑖, 𝑡)
(16) if 𝑞(𝑡𝑖, 𝑡) < 𝜀 && 𝛼 ≥ 𝜑
(17) compute 𝑞(𝑥𝑡, 𝑦𝑡);
(18) if 𝑞(𝑥𝑡, 𝑦𝑡) ≥ 𝛿
(19) report Info to sink node;
(20) else
(21) filter as noise;
(22) end
(23) end
(24) end
(25) flag = false;
(26) end

Algorithm 1: Abnormal event detection algorithm based on multiattribute correlation.
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Figure 2: Location of sensor nodes deployed in IBRL lab.

4.2. Data Preprocessing. In our experiment, we choose the
records within 24 hours in February 28th as our test data; we
preprocess the raw data as follows:

(1) Since the unit of measurement attributes directly
sensed by each sensor is different and the changing
range of different attributes is wide, so the raw data

needs to be standardized andmapped to [0, 1]; in this
way, the relative distance can be calculated.

(2) Since the change of each attribute value is continuous
and periodic, in order to facilitate the calculation, the
experimental datasets are discretized, and the values
of each attribute are divided into 10 intervals.
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Figure 3: Network structure under Bayesian scoring criterion.

(3) For some parts of the raw IBRL datasets have missing
values and the failure nodes (both node 5 and node 15
have no records; node 28 only has 3 attribute records),
the NaN is used in this experiment to fill the missing
values, and these values will be discussed in different
situations, not for computation.

(4) In order to verify the performance of our algorithm
ondetecting abnormal events, abnormal readings that
represent abnormal events are added in the dataset.
In addition, the readings of the abnormal events with
the interference are added (e.g., opening heater in the
room will make the temperature rise).

4.3. Experimental Parameters. Temperature 𝑇, humidity 𝐻,
light intensity𝐿, and voltage𝑉 are numberedwith 1, 2, 3, 4. In
order to obtain relatively stable Bayesian network structure,
we set the maximum number of parent nodes in structure
learning max_fan_in = 2, learning step length step = 10, and
the number of instancesncases= 1000.Theoptimal parameter
learning cycle period = 600. Bayesian networks with four
different scores are showed in Figure 3; the higher the score is,
the more stable the network structure is. Thus, we choose the
structure whose score = 74 as an attribute dependency model
in this experiment.

In this method, the sliding window size has a direct
impact on the detection results. The precision, the recall, and
the 𝐹1-measure of anomaly detection under different sliding
window sizes are experimented. The experimental results are
shown in Figure 4.

From Figure 4, we can find that the recall decreases with
the increase of the sliding windowwidth; however, the overall
change is not obvious. But the precision declines relatively
faster, leading to the quick decrease of 𝐹1 value. This is
because, with the increase of window width, the historical
data increases, and the calculated average value declines
ceaselessly, which means that the possibility of becoming
candidate anomalies is higher. Considering that the sliding
window width is small and the amount of uploaded data is
small, so we set the sliding window size 𝑠 = 10; in this way,
we will make full use of historical data.
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Figure 4: Influence of sliding window size on the test results.

There are different requirements for the threshold settings
when the environment of wireless sensor networks differs.
We change the value of three different thresholds and test
the accuracy of the anomalies under the change of single
threshold; the results are shown in Figure 5.

From Figure 5 it can be concluded that it gets the highest
detection accuracy when temporal similarity threshold 𝜀 =0.1, spatial similarity threshold 𝛿 = 0.2, and attribute
correlation confidence threshold 𝜑 = 0.5.
4.4. Contrast Experiment. In the contrast experiment, we still
use the IBRL dataset, in which the number of sensor nodes
is 54, and the deployment of nodes is shown in Figure 2.
We use (𝑇, 𝐻, 𝐿, 𝑉) to represent four different attributes:
temperature, humidity, light intensity, and voltage. Since
there are no interference factors in the dataset, we add some
false abnormal events artificially, which are shown in Table 1.

The contrast algorithms include the Adaptive Fault-
Tolerant Event Detection (AFTED) algorithm proposed in
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Figure 5: Influence of the three thresholds on the test results.

Table 1: False abnormal events.

Number Event name Attributes Id of nodes
1 Cooking 𝑇,𝐻, 𝐿, 𝑉 2, 37
2 Air-condition 𝑇,𝐻, 𝑉 5, 17, 24, 36, 44
3 Heater 𝑇, 𝑉 11, 12, 13
4 Bath heater 𝑇, 𝐿, 𝑉 53, 54
5 Humidifier 𝐻 27, 28, 29, 30

[3], the Online Dynamic Event Region Detection (ODERD)
algorithm proposed in [5], the Real-Time Event Detec-
tion Approach based on Temporal-Spatial Correlations
(TSCRED) presented in [6], and the Spatiotemporal Correla-
tion based Fault-Tolerant Event Detection (STFTED) scheme
proposed in [8]. And we compare the detection accuracy,
false alarm rate, and detection time of abnormal events.

In the proposed algorithm, we use the same parame-
ter settings as the previous experiments. In AFTED algo-
rithm, we set the window size for tolerating transient faults𝑀AFTED = 4, and the threshold for filtering transient faults𝛿AFTED = 0.75, which have been verified to be the most
appropriate in their experiment. In ODERD algorithm, since
we only focus on the static abnormal event detection, the
parameters controlling the shift and deformation of event
regions are set to 0 s. To compare these algorithms in an
equivalent level, we set the sliding window size of TSCRED
and STFTED to 10, which is the same as the proposed
algorithm. Besides, all of the sensor nodes have the same
communication range 𝑅 = 4. And each event region is
assumed to be a circle with radius 𝑙 = 2𝑅.

The results of the proposed algorithm compared with the
other four algorithms in detection accuracy are shown in
Figure 6. It can be seen from Figure 6 that when the node
failure rate goes from 0.05 to 0.3, the detection accuracies of
the five algorithms are similar, reaching 0.96 or more; this is
becausemost of the noise is filtered out in the time correlation
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Figure 6: Detection accuracy of five algorithms.
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Figure 7: False alarm rate of five algorithms.

detection phase. When the node failure rate is greater than
0.3, the detection accuracies of the five algorithms decrease
significantly, but the MACAED algorithm is significantly
better than the other four algorithms.The reason is that all the
five algorithms have the spatial correlation detection stage.
With the increase of the failure rate, the faulty nodes are
easily affected by the neighbor nodes which have not detected
the abnormal events, and they are converted into the normal
state, thereforemisjudging that no abnormal events occurred.

As for the false alarm rate, these compared results are
shown in Figure 7. It can be seen that MACAED has a signif-
icantly lower false alarm rate than the other four algorithms
as the node failure rate increases. This is due to the fact that
MACAED fully considers the impact of attribute correlations
on abnormal event detection. By calculating the attribute
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Table 2: Running time of five algorithms.

Algorithms Time(s)
AFTED 8.381
ODERD 7.647
TSCRED 7.435
STFTED 10.917
MACAED 12.546

correlation confidence, the fitting degree between the data
records and the abnormal event attribute dependency model
can be determined, so the abnormal event and interference
factor can be distinguished effectively.

The running time of the five algorithms is shown in
Table 2.

It can be seen from Table 2 that the MACAED algorithm
consumes the longest time. The reason is that the MACAED
algorithm needs to train the network structure at the begin-
ning. This process takes about 5 s on average. If the trained
network structure is saved as the known result, the detection
phase needs 12.546 − 5 = 7.546 s, which is very close to
TSCRED algorithm and ODRED algorithm.

5. Conclusion

In this paper, we present a new approach to detect abnormal
events in wireless sensor networks. We construct a depen-
dency model of observed attributes based on Bayesian net-
work and propose a newmethod to measure the dependency
of the attributes. Combining with the temporal correlation
detection based on sliding window and the spatial correlation
detection based on neighbor node information, the influence
of noise and interference event factors on event detection
results is effectively reduced. Experimental results show that
the algorithm proposed in this paper can effectively eliminate
the influence of interference events. It not only reduces the
false alarm rate of abnormal events but also improves the
accuracy of event detection compared with the other four
algorithms.
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In smart cities, vehicles tracking is organized to increase safety by localizing cars using the Global Positioning System (GPS). The
GPS-based system provides accurate tracking but is also required to be reliable and robust. As a main estimator, we propose using
the unbiased finite impulse response (UFIR) filter, which meets these needs as being more robust than the Kalman filter (KF).
The UFIR filter is developed for vehicle tracking in discrete-time state-space over wireless sensor networks (WSNs) with time-
stamped data discretely delayed on 𝑘-step-lags and missing data. The state-space model is represented in a way such that the UFIR
filter, KF, and𝐻∞ filter can be used universally. Applications are given for measurement data, which are cooperatively transferred
from a vehicle to a central station through several nodes with 𝑘-step-lags. Better tracking performance of the UFIR filter is shown
experimentally.

1. Introduction

Accurate target tracking is one of the key problems in urban
areas [1], which especially arises in smart cities design [2].
If a target is equipped with the Global Positioning System
(GPS) tracker, then measurement data can be transferred to
a central station through one or several nodes of a wireless
sensor network (WSN) [3]. The problem which arises here
is associated with information latency and missing data [4]
due to the followingmain causes: highmaneuverability of the
target [1], failures in measurements [5], network congestion
[3], non-line-of-sight (NLOS) problems [6, 7], and accidental
loss of some collected data [8]. Furthermore, latency naturally
occurs due to the limited bandwidth, finite propagation
time [9], complexity of very large-scale integration and
microelectromechanical systems [10], and time required to
complete operations such as signal conditioning and storage
[11]. In networks, communication delays go along with data
loss called dropout or intermittence [12, 13]. Also the delay
between the measurement and its availability to the filter
causes the problem of out-of-sequence measurement [6, 14].

Two basic models have been created for delayed data.The
delays are assumed to be known when sensors are able to

detect the delays or data are time-stamping [15, 16]. In many
other applications [17, 18], the delays are considered to be
random. The problem becomes more complex in uncertain
systems [19].The best estimate is obtained here by combining
delayed and nondelayed data with different probabilities.

The Kalman and 𝐻∞ state estimators are most widely
used to deal with latency and associated issues [20]. The
linear Kalman filter (KF) is optimal when it matches the
system perfectly, noise is white Gaussian and uncorrelated,
and the noise statistics are known along with the initial
values. When such conditions are not obeyed, the KF may
demonstrate poor performance [13, 21]. The robust 𝐻∞
filter bounds the mean square error (MSE) for admissible
parameter perturbations and delays [19, 22], which allows for
minimizing errors with less information required than for the
noise statistics [20, 23].

Another way to achieve better robustness is to process
most recent finite data [24] using finite impulse response
(FIR) filters [25]. Such filters have been developed during
decades by many authors in signal processing [26–33] and
control [34–36]. However, only a few authors have proposed
FIR solutions for models with delays [37–40]. Let us notice
that the available iterative unbiased FIR (UFIR) algorithm
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[28, 41–43] is most robust among other FIR solutions owing
to an ability to ignore the noise statistics and initial values.
This filter is bounded-input bounded-output (BIBO) stable
and blind on given horizons of 𝑁 points, but is still not
developed for observations with delayed and missing data.

In this paper, we develop the UFIR filter for GPS-
based vehicle tracking over WSNs with time-stamped data
discretely delayed and missing data. The rest of the paper is
organized as follows. In Section 2, we consider the model
and formulate the problem. In Section 3, we develop the
UFIR filter for observations with delayed and missing data.
Section 4 discusses the estimation errors. Section 5 gives an
experimental example of applications to GPS-based tracking
and concluding remarks are drawn in Section 6.

2. Tracking Model and Problem Formulation

A typical scenario of GPS-based vehicle tracking in WSNs
is sketched in Figure 1. The vehicle current coordinates are
measured by the GPS tracker. The time-stamped data are
transferred to a central station (CS) via one or several nodes
of the WSN. Because each node may discretely delay time-
stamped data at least on one-step, the vehicle location is
observed in CS with a time varying 𝑘𝑛-step-lag depending on
the vehicle location and interaction with the WSN.

2.1. Tracking Model. For 𝑘𝑛 ⩾ 0, the vehicle dynamics and its
observation can be represented in discrete-time state-space
as

𝑥𝑛 = 𝐹𝑥𝑛−1 + 𝑤𝑛, (1)

𝑦𝑛 = 𝐻𝑥𝑛−𝑘𝑛 + V𝑛, (2)

where 𝑛 is the discrete-time index, 𝑥𝑛 ∈ R𝐾 is the vehicle
state vector, 𝑦𝑛 ∈ 𝑅𝑀 is the observation vector, 𝐹 ∈ R𝐾×𝐾 is
not singular, and 𝐻 ∈ R𝑀×𝐾. All data are time-stamped, so
that 𝑘𝑛 is known at each 𝑛. Regardless of the delay, the initial
state 𝑥𝑛−1 is supposed to be known. The uncorrelated noise
vectors, 𝑤𝑛 ∈ R𝐾 and V𝑛 ∈ R𝑀, are white Gaussian with
known covariances, 𝑄 = 𝐸{𝑤𝑛𝑤𝑇𝑛 } and 𝑅 = 𝐸{V𝑛V𝑇𝑛 }, and the
property 𝐸{𝑤𝑛V𝑇𝑞 } = 0 for all 𝑛 and 𝑞.

The UFIR filter can be applied if to transform model (1)-
(2) to have no latency. That can be done if to represent 𝑥𝑛−𝑘𝑛
using (1) via 𝑥𝑛 as

𝑥𝑛−𝑘𝑛 = 𝐹−𝑘𝑛 (𝑥𝑛 −
𝑘𝑛−1∑
𝑖=0

𝐹𝑖𝑤𝑛−𝑖) (3)

and then substitute (3) into (2) and arrive at

𝑦𝑛 = 𝐻𝑛𝑥𝑛 + V𝑛, (4)

where

𝐻𝑛 = 𝐻𝐹−𝑘𝑛 , (5)

V𝑛 = V𝑛 − 𝐻
𝑘𝑛−1∑
𝑖=0

𝐹−𝑘𝑛+𝑖𝑤𝑛−𝑖 (6)

GPS

Node Node CS

k-step-lag

· · ·

Figure 1: Transferring the time-stamped vehicle coordinates mea-
sured by a GPS tracker to a central station (CS) via several nodes of
a WSN. Latency with a 𝑘𝑛-step-lag is caused by delays in the node.

and the covariance 𝑅𝑛 = 𝐸{V𝑛V𝑇𝑛 } of V𝑛 is given by

𝑅𝑛 = 𝑅 + 𝐻𝑛
𝑘𝑛−1∑
𝑖=0

𝐹𝑖𝑄𝐹𝑖𝑇𝐻𝑇𝑛 . (7)

In compact matrix forms, (6) and (7) can be represented
as

V𝑛 = V𝑛 − 𝐻𝐵𝑛𝑊𝑝𝑛,𝑛, (8)

𝑅𝑛 = 𝑅 + 𝐻𝐵𝑛𝑄𝑛𝐵𝑇𝑛𝐻𝑇, (9)

where

𝐵𝑛 = [𝐹−1 𝐹−2 ⋅ ⋅ ⋅ 𝐹−𝑘𝑛] , (10)

𝑊𝑝𝑛,𝑛 = [𝑤𝑇𝑝𝑛 𝑤𝑇𝑝𝑛+1 ⋅ ⋅ ⋅ 𝑤𝑇𝑛 ]𝑇 , (11)

and 𝑄𝑛 = diag [𝑄 𝑄 ⋅ ⋅ ⋅ 𝑄] has 𝑘𝑛 diagonal components.
Here, 𝐵n = 0 and𝑊𝑝𝑛 ,𝑛 = 0 when 𝑘𝑛 = 0 and 𝑝𝑛 > 𝑛.

Any standard estimation technique can now be applied
to models (1) and (4). However, the KF and 𝐻∞ filter were
most developed for datawith latency.Therefore, belowwewill
introduce in brief only these filters and then compare them
to the UFIR filter based on examples of tracking. We will use
the following measures: 𝑥𝑛 ≜ 𝑥𝑛|𝑛 is the estimate of 𝑥𝑛 over
data taken from past up to and including time index 𝑛, 𝑥−𝑛 is
the prior estimate, 𝑃𝑛 = 𝐸{(𝑥𝑛 − 𝑥𝑛)(𝑥𝑛 − 𝑥𝑛)𝑇} is the error
covariance matrix, and 𝑃−𝑛 = 𝐸{(𝑥𝑛 − 𝑥−𝑛 )(𝑥𝑛 − 𝑥−𝑛 )𝑇} is the
prior error covariance matrix.

2.1.1. Kalman Filter. For our purposes, we will exploit an
alternative form of the KF algorithm given in [44]. This
algorithm starts with the prior error covariance matrix

𝑃−𝑛 = 𝐹𝑃𝑛−1𝐹𝑇 + 𝑄 (12)

and then recursively updates the following values:

𝑃𝑛 = (𝑃−𝑛 )−1 + 𝐻𝑇𝑛𝑅−1𝑛 𝐻𝑛,
𝐾KF
𝑛 = 𝑃−1𝑛 𝐻𝑇𝑛𝑅−1𝑛 ,
𝑥𝑛 = 𝐹𝑥𝑛−1 + 𝐾KF

𝑛 (𝑦𝑛 − 𝐻𝑛𝐹𝑥𝑛−1) ,
𝑃−𝑛+1 = 𝐹𝑃−1𝑛 𝐹𝑇 + 𝑄,

(13)

where𝐻𝑛 is given by (5) and 𝑅𝑛 by (7) for any 𝑘𝑛 ⩾ 0.
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2.1.2. 𝐻∞ Filter. The 𝐻∞ filter has been derived in [44] in
the form (13) of the KF using the game theory. For 𝑘𝑛 ⩾ 0, the𝐻∞ filtering algorithm becomes

𝑃𝑛 = (𝑃̌−𝑛 )−1 − 𝜃𝑛𝑆𝑛 + 𝐻𝑇𝑛 𝑅̌−1𝑛 𝐻𝑛, (14)

𝐾∞𝑛 = 𝑃−1𝑛 𝐻𝑇𝑛 𝑅̌−1𝑛 , (15)

𝑥𝑛 = 𝐹𝑥𝑛−1 + 𝐾∞𝑛 (𝑦𝑛 − 𝐻𝑛𝐹𝑥𝑛−1) , (16)

𝑃̌−𝑛+1 = 𝐹𝑃−1𝑛 𝐹𝑇 + 𝑄̌, (17)

where the user-given symmetric positive definite matrices𝑃0,𝑄̌, and 𝑅̌ have different meanings than in the KF and 𝑃̌−𝑛 can
be computed via 𝑃0 using (12) with 𝑄 = 𝑄̌. To keep (14)
positive definite, the positive definite matrix 𝑆𝑛 ∈ 𝑅𝐾×𝐾 is
subject to

(𝑃̌−𝑛 )−1 − 𝜃𝑛𝑆𝑛 + 𝐻𝑇𝑛 𝑅̌−1𝐻𝑛 > 0. (18)

If equal weights are required for all errors, matrix 𝑆𝑛 must
be set identity, 𝑆𝑛 = 𝐼. The performance criterion for this
filter is 𝐽𝑛 < 1/𝜃𝑛, in which a scalar 𝜃𝑛 must be small enough
in order for the filter to be efficient. It then follows that the
tuning factor 𝜃𝑛 is not allowed to be negative, even though
its negative values may reduce errors when the weighting
matrices are not maximized. For Gaussian noise, zero 𝜃𝑛
transforms the𝐻∞ filter to the KF. For any other noise, small𝜃𝑛 > 0may result in better robustness.

The problem now formulates as follows. Given (1) and (4)
with time varying 𝑘𝑛 ⩾ 0 and missing data, we would like
to develop the UFIR filter and find its fast iterative form for
GPS-based tracking of a moving vehicle as shown in Figure 1.
We also wish to know how the UFIR filter, KF, and𝐻∞ filter
measure to each other in applications to tracking.

3. UFIR Filter for Tracking with
Delayed and Missing Data

To develop the UFIR filter for 𝑘𝑛 > 0, we extend models (1)
and (4) on a horizon [𝑚, 𝑛] of𝑁 points, from𝑚 = 𝑛 − 𝑁 + 1
to 𝑛 that referring to [43] yields

𝑋𝑚,𝑛 = 𝐴𝑁𝑥𝑚 + 𝐵𝑁𝑊𝑚,𝑛, (19)

𝑌𝑚,𝑛 = 𝐶𝑚,𝑛𝑥𝑚 + 𝐺𝑚,𝑛𝑊𝑚,𝑛 + 𝑉𝑚,𝑛 (20)

with the following extended vectors and matrices:

𝑋𝑚,𝑛 = [𝑥𝑇𝑚 𝑥𝑇𝑚+1 ⋅ ⋅ ⋅ 𝑥𝑇𝑛 ]𝑇 , (21)

𝑌𝑚,𝑛 = [𝑦𝑇𝑚 𝑦𝑇𝑚+1 ⋅ ⋅ ⋅ 𝑦𝑇𝑛 ]𝑇 , (22)

𝑉𝑚,𝑛 =
[[[[[[[[[[
[

V𝑚 − 𝐶𝐵𝑛𝑊𝑝𝑚,𝑚
V𝑚+1 − 𝐶𝐵𝑛𝑊𝑝𝑚+1,𝑚+1...
V𝑛−1 − 𝐶𝐵𝑛𝑊𝑝𝑛−1,𝑛−1

V𝑛 − 𝐶𝐵𝑛𝑊𝑝𝑛,𝑛

]]]]]]]]]]
]

, (23)

𝐴𝑁 = [𝐼 𝐹𝑇 ⋅ ⋅ ⋅ 𝐹𝑁−1𝑇]𝑇 , (24)

𝐵𝑁 =
[[[[[[[[[[
[

𝐼 0 ⋅ ⋅ ⋅ 0 0
𝐹 𝐼 ⋅ ⋅ ⋅ 0 0
... ... d

... ...
𝐹𝑁−2 𝐹𝑁−3 ⋅ ⋅ ⋅ 𝐼 0
𝐹𝑁−1 𝐹𝑁−2 ⋅ ⋅ ⋅ 𝐹 𝐼

]]]]]]]]]]
]

, (25)

𝐶𝑚,𝑛 ≜ 𝐶𝑚,𝑛 (𝑘) = 𝐶𝑚,𝑛 (𝑘) 𝐴𝑁, (26)

𝐺𝑚,𝑛 ≜ 𝐺𝑚,𝑛 (𝑘) = 𝐶𝑚,𝑛 (𝑘) 𝐵𝑁, (27)

𝐶𝑚,𝑛 (𝑘) = diag[
[ 𝐶𝐹
−𝑘𝑚 𝐶𝐹−𝑘𝑚+1 ⋅ ⋅ ⋅ 𝐶𝐹−𝑘𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

]
]
, (28)

where 𝑘 represents a set of {𝑘𝑚, 𝑘𝑚+1, . . . , 𝑘𝑛}.
3.1. Batch UFIR Filter Form. The UFIR filtering estimate 𝑥𝑛
of the vehicle state 𝑥𝑛 can be obtained at 𝑛 in the batch form
as [27, 34]

𝑥𝑛 =H𝑚,𝑛𝑌𝑚,𝑛, (29)

whereH𝑚,𝑛 is the UFIR filter gain and 𝑌𝑚,𝑛 is a vector of real
data (22), if to satisfy the unbiasedness condition

𝐸 {𝑥𝑛} = 𝐸 {𝑥𝑛} , (30)

inwhich𝐸{𝑧}means averaging of 𝑧 and𝑥𝑛 can be represented
with the last row vector in (19) as

𝑥𝑛 = 𝐹𝑁−1𝑥𝑚 + 𝐵(𝑁)𝑁 𝑊𝑚,𝑛, (31)

where 𝐵(𝑁)𝑁 is the𝑁th row vector in (25) given by

𝐵(𝑁)𝑁 = [𝐹𝑁−1 𝐹𝑁−2 ⋅ ⋅ ⋅ 𝐹 𝐼] . (32)

By combining (29)–(32) and following [27], one arrives at
the unbiasedness constraint

𝐼 =H𝑚,𝑛C𝑚,𝑛, (33)

in which

C𝑚,𝑛 ≜ C𝑚,𝑛 (𝑘) =
[[[[[[[
[

𝐶𝐹−𝑁+1−𝑘𝑚
...

𝐶𝐹−1−𝑘𝑛−1
𝐶𝐹−𝑘𝑛

]]]]]]]
]
. (34)
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Now multiplying the both sides of (33) with(C𝑇𝑚,𝑛C𝑚,𝑛)−1C𝑇𝑚,𝑛C𝑚,𝑛 yields the UFIR filter gain

H𝑚,𝑛 = (C𝑇𝑚,𝑛C𝑚,𝑛)−1C𝑇𝑚,𝑛 (35)

and the batch UFIR filtering estimate becomes

𝑥𝑛 = (C𝑇𝑚,𝑛C𝑚,𝑛)−1C𝑇𝑚,𝑛𝑌𝑚,𝑛 (36a)

= 𝐺𝑛C𝑇𝑚,𝑛𝑌𝑚,𝑛, (36b)

where the generalized noise power gain (GNPG) [43] is

𝐺𝑛 =H𝑚,𝑛H
𝑇
𝑚,𝑛 = (C𝑇𝑚,𝑛C𝑚,𝑛)−1 . (37)

Thebatch form (36a)may not suite real-time tracking and
we go on with its fast iterative algorithm.

3.2. Iterative UFIR Filter Form. Provided (1) and (4), the stan-
dard iterative UFIR filtering algorithm [25] can be applied
straightforwardly, if to substitute matrix 𝐻 with 𝐻 given by
(5). The UFIR filtering estimate (36a) can then be computed
iteratively using recursions

𝐺𝑙 = [𝐻𝑇𝑙 𝐻𝑙 + (𝐹𝐺𝑙−1𝐹𝑇)−1]−1 , (38)

𝑥𝑙 = 𝐹𝑥𝑙−1 + 𝐺𝑙𝐻𝑇𝑙 (𝑦𝑙 − 𝐻𝑙𝐹𝑥𝑙−1) , (39)

beginning with 𝑙 = 𝑚 + 𝐾 and ending when 𝑙 = 𝑛. The initial
values for (38) and (39) are obtained at 𝑠 = 𝑚 + 𝐾 − 1 in the
batch forms as

𝐺𝑠 = (C𝑇𝑚,𝑠C𝑚,𝑠)−1 , (40)

𝑥𝑠 = 𝐺𝑠C𝑇𝑚,𝑠𝑌𝑚,𝑠, (41)

where 𝑌𝑚,𝑠 is a vector (22) of real data. When some data are
lost, inaccurate, or unavailable, 𝑦𝑛 can be predicted as 𝑦𝑛 =𝐻𝐹𝑥𝑛−1, in which case first data on the horizon [0,𝑁 − 1]
must be available.

It is known that the linear UFIR filter is BIBO stable and
not prone to divergence. However, latency in information
delivery may require an ability to predict lost values that
inevitably cause extra tracking errors, which we will consider
next.

4. Tracking Errors Caused by Latency, 𝑘𝑛 ⩾ 0
Error produced by the UFIR tracker can be defined as 𝜖𝑛 =𝑥𝑛 − 𝑥𝑛, where 𝑥𝑛 is specified by (31). Provided 𝜖𝑛, the error
covariance matrix 𝑃𝑛 = 𝐸{𝜖𝑛𝜖𝑇𝑛 } can also be represented in
two forms.

In the batch form, matrix 𝑃𝑛 appears if to substitute 𝑥𝑛
with (31) and employ 𝑥𝑛 =H𝑚,𝑛𝑌𝑚,𝑛 with 𝑌𝑚,𝑛 given by (20).
That yields

𝑃𝑛 = [𝐵(𝑁)𝑁 −H𝑚,𝑛𝐺𝑚,𝑛]𝑄𝑁 [𝐵(𝑁)𝑚,𝑛 − 𝐻𝑚,𝑛𝐺𝑚,𝑛]𝑇
+ 𝐻𝑚,𝑛𝑅𝑁𝐻𝑇𝑚,𝑛,

(42)

where 𝑄𝑁 = diag [𝑄 𝑄 ⋅ ⋅ ⋅ 𝑄] and 𝑅𝑁 = diag [𝑅 𝑅 ⋅ ⋅ ⋅𝑅] are square matrices with𝑁 nonzero diagonal elements. It
can be shown that the deterministic case of𝑄𝑁 = 0 and 𝑅𝑁 =0 makes 𝑃𝑛 = 0 and the UFIR tracker has thus the deadbeat
property.

4.1. Iterative Computation of 𝑃𝑛. Matrix (42) can also be
computed iteratively, if to substitute 𝑥𝑛 with (1) and 𝑥𝑛 with
(39). Provided the averaging, the recursion for (42) can be
found as

𝑃𝑙 = (𝐼 − 𝐺𝑙𝐻𝑇𝑙 𝐻𝑙)𝑃−𝑙 (⋅ ⋅ ⋅)𝑇 + 𝐺𝑙𝐻𝑇𝑙 𝐻𝑙
× (𝑘𝑙−1∑
𝑖=0

𝐹𝑖𝑄𝐹𝑖𝑇)𝐻𝑇𝑙 𝐻𝑙𝐺𝑙 + 𝐺𝑙𝐻𝑇𝑙 𝑅𝐻𝑙𝐺𝑙,
(43)

where 𝑃−𝑙 is given by (12), 𝑙 ranges as in (38) and (39), and 𝑃𝑛
is taken when 𝑙 = 𝑛. Recursion (43) suggests that the tracking
error grows with 𝑘𝑛, because the sum containing 𝑄 grows
with 𝑘𝑛. However, the same cannot be said about 𝑅, which
does not accumulate the effect of 𝑘𝑛.

With no latency, the sum in (43) becomes identically zero
and one arrives at the error covariance 𝑃𝑙 of the standard
UFIR filter [43],

𝑃𝑙 = (𝐼 − 𝐺𝑙𝐻𝑇𝐻)𝑃−𝑙 (⋅ ⋅ ⋅)𝑇 + 𝐺𝑙𝐻𝑇𝑅𝐻𝐺𝑙, (44)

which also holds for the KF, if to substitute 𝐺𝑛𝐻𝑇 with the
Kalman gain𝐾𝑛.

Note that the minimization of tracking errors will require
an optimal number𝑁opt − 1 of iterations for the UFIR filter.
At the test stage, the optimal horizon 𝑁opt can be found for
the known ground truth 𝑥𝑛 by minimizing the MSE via the
trace of P𝑛 [30] depicted as tr P𝑛. Because the ground truth
is unavailable in real tracking, 𝑁opt can be estimated via the
measurement residual as shown in [30].

5. GPS-Based Tracking of a Moving Vehicle

We will now consider the case shown in Figure 1 when the
GPS tracker measures the vehicle coordinates of location at
each time index 𝑛 and transfer time-stamped data coopera-
tively to a CS of a WSN via one or several nodes. We admit
that each nodemay introduce latency anddatawill thus arrive
at the CSwith known delay on 𝑘𝑛 > 0 points. At different time
instances, a vehicle may interact with a different number of
the nodes that will make the 𝑘𝑛-step-lag time varying.Wewill
base our investigations on data obtained in the Cook county
of Illinois and available for free use from the University of
Illinois at Chicago. To simplify the problem, in this paper we
will consider the case of a constant latency, 𝑘 = 𝑘𝑛.

Concerned with the tracking errors and not with the
actual vehicle location, we will conventionally place the start
point at zero coordinates as shown in Figure 2.

5.1. State-Space Model. To investigate the trade-off between
the estimators, we will suppose that a vehicle is represented
with two states in each directions and assign the state vector,

119UFIR Filtering for GPS-Based Tracking over WSNs with Delayed and Missing Data

__________________________ WORLD TECHNOLOGIES __________________________



WT
−2.0 −1.8 −1.6 −1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

y
(k

m
)

x (km)

Figure 2: GPS-based vehicle trajectory measured in the north (𝑦)
and east (𝑥) coordinates, both in km, with the start point at {0, 0}.
Measurements are provided each second at 858 data points.

𝐾 = 4, as 𝑥𝑛 = [𝑥1𝑛 𝑥2𝑛 𝑥3𝑛 𝑥4𝑛]𝑇, where 𝑥1𝑛 = 𝑥𝑛, 𝑥2𝑛 =𝑥̇𝑛, 𝑥3𝑛 = 𝑦𝑛, and 𝑥4𝑛 = ̇𝑦𝑛. Accordingly, the system matrix
attains the form of

𝐹 = [[[[[
[

1 𝜏 0 0
0 1 0 0
0 0 1 𝜏
0 0 0 1

]]]]]
]
, (45)

where the sampling time is 𝜏 = 1 s for the considered
database. The GPS tracker provides measurements of the
vehicle coordinates, 𝑥 and 𝑦. Therefore, the measurement
matrix is

𝐻 = [1 0 0 00 0 1 0] . (46)

Provided𝐹 and𝐻,matrixC𝑚,𝑠 required by theUFIRfilter
to compute the initial values (40) and (41) for 𝑠 = 𝑚 + 3
becomes

C𝑠,𝑚 =

[[[[[[[[[[[[[[[[[
[

1 −3𝜏 0 0
0 0 1 −3𝜏
1 −2𝜏 0 0
0 0 1 −2𝜏
1 −𝜏 0 0
0 0 1 −𝜏
1 0 0 0
0 0 1 0

]]]]]]]]]]]]]]]]]
]

𝐹−𝑘. (47)

The only tuning factor 𝑁opt = 5 required by the UFIR
filter was found for 𝑘 = 0 by minimizing the derivative of the
trace of the mean square value of the residual 𝑦𝑛 − 𝐻𝑥𝑛(𝑁),
as shown in [30]. Because 𝑁opt depends on 𝑘, we will apply𝑁opt = 5 in the worst case for the UFIR filter.

Having no information about the process noise, we
observe similar trajectories and estimate the average vehicle

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Step lag k

y
-R

M
SE

 (m
)

KFH∞,  = 0.00071

UFIR, N = 5

UFIR, NＩＪＮ(k)

H∞, ＩＪＮ(k)

Figure 3: Effect of the 𝑘-step-lag on the 𝑦-RMSE of the UFIR filter,
KF, and𝐻∞ filter with different tunings.

speed by about 10m/s or 36 km/hour. Next, accepting the
speed standard deviation of about 20%, we set 𝜎𝑤2 = 2m/s
to the second state along each of the coordinates, ignore the
unknown noise in the first state, 𝜎𝑤1 = 0, and describe matrix𝑄 as

𝑄 = 𝜎2𝑤2
[[[[[
[

𝜏2/2 𝜏/2 0 0
𝜏/2 1 0 0
0 0 𝜏2/2 𝜏/2
0 0 𝜏/2 1

]]]]]
]
. (48)

The GPS standard positioning service provides naviga-
tion with an error of less than 15 meters with the probability
of 95% in the 2-sigma sense. Referring to this value, we assign
the standard deviation of the measurement noise in each
direction as 𝜎V = 15/4 = 3.75m and obtain

𝑅 = [𝜎2V 0
0 𝜎2V] . (49)

Because the above provided matrices 𝑄 and 𝑅 are over-
estimated, we set 𝑄̌ = 𝑄 and 𝑅̌ = 𝑅 for 𝐻∞. It is
expected that the tuning factor 𝜃 will improve the perfor-
mance of the 𝐻∞ filter by minimizing the MSE for the
maximized errors. However, the ground truth is not available
in tracking. Therefore, we will find 𝜃 for the measured
trajectory and consider it as the best case for 𝐻∞, which is
unfeasible.

5.2. Effect of Latency on the Estimation Accuracy. We start
with learning the effect of 𝑘 on the estimation accuracy, which
is illustrated in Figure 3 with the root MSEs (RMSEs) in
the north direction (𝑦-RMSE). The KF is self-tuned to 𝑘.
Therefore, we consider its RMSE as a benchmark. A special
feature of the KF is that the RMSE grows with 𝑘 nonlinearly
and faster than in the UFIR and𝐻∞ filters.

The UFIR filter produces a bit more errors than in the
KF with small 𝑘 and lesser with larger 𝑘. A special feature is
that the UFIR estimate is of low sensitivity to 𝑁, in which
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Figure 4: Tracking in the north direction 𝑦,𝑚 for 𝑘 = 3 with UFIR filter (𝑁opt = 5), KF, and𝐻∞ filter (𝜃 = 3.3 × 10−4): (a) full time scale, (b)0 ⩽ 𝑛 ⩽ 200, and (c) 300 ⩽ 𝑛 ⩽ 400.

optimal value 𝑁opt = 5 holds for 0 ⩽ 𝑘 ⩽ 4, increases
to 𝑁opt = 6 for 5 ⩽ 𝑘 ⩽ 6, and reaches 𝑁opt = 7
when 7 ⩽ 𝑘 ⩽ 10. Of practical importance is that setting𝑁 optimally for each 𝑘 does not improve the performance
essentially against the worst case when𝑁opt = 5 is set for all𝑘.

The 𝐻∞ filter outperforms both the UFIR filter and KF,
provided that 𝜃 is set properly for each lag 𝑘. However, this
filter is highly sensitive to 𝜃, in which optimal value 𝜃opt
ranges from 1.8 × 10−2 for 𝑘 = 0 to 1.066 × 10−5 for 𝑘 = 10
in a nonlinear way. Unlike in the UFIR filter, a constant 𝜃
is unacceptable for all 𝑘. An example is given in Figure 3,
where 𝜃opt = 7.1 × 10−4 found for 𝑘 = 2 is applied in a wide
range of 𝑘. As can be seen, it is only when 𝑘 = 2 that the𝐻∞ filter improves the KF performance. For 𝑘 < 2, there
is no improvement and, when 𝑘 > 2, the 𝐻∞ filter rapidly
diverges.

5.3. Tracking over Data Delayed on 𝑘 = 3. We now suppose
that data are transferred from a vehicle to a CS with 𝑘 = 3 and
investigate tracking errors in the north and east directions.
Filters will be tuned as follows: UFIR in the worst case of𝑁opt = 5 being valid for 𝑘 = 0; KF as near optimal; and𝐻∞ being in the best (unfeasible) case of known ground
truth.

5.3.1. Tracking in the North Direction. The vehicle tra-
jectory (measured and delayed) and estimates provided
by the filters in the north direction are sketched in Fig-
ure 4. As can be seen in Figure 4(a), the trajectory is
nonlinear and the vehicle sometimes maneuvers rapidly.
All filters produce consistent estimates with poorly distin-
guishable differences (Figure 4(a)). We therefore additionally
show two parts of the trajectory on short-time spans of0 ⩽ 𝑛 ⩽ 200 in Figure 4(b) and 300 ⩽ 𝑛 ⩽ 400 in
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Figure 5: Tracking in the east direction 𝑥,𝑚 for 𝑘 = 3 with UFIR filter (𝑁opt = 5), KF, and𝐻∞ filter (𝜃 = 3.3 × 10−4): (a) full time scale, (b)0 ⩽ 𝑛 ⩽ 200, and (c) 500 ⩽ 𝑛 ⩽ 600.

Figure 4(c). Several observations can be made from Fig-
ure 4:

(i) All filters track well the trajectory when a vehicle
travels with a near constant velocity in one direction,
as on 140 ⩽ 𝑛 ⩽ 180 in Figure 4(b).

(ii) Filters temporarily lose an ability of tracking and go
along the delayed data when a vehicle quickly changes
the direction, as on 340 ⩽ 𝑛 ⩽ 343 in Figure 4(c).

(iii) Responding to fast maneuvers, all filters produce
dynamic errors such that the UFIR filter comes up
with larger excursions but shorter transients, KF with
shorter excursions but longer transients, and 𝐻∞
filter demonstrates inbetween properties; see on 80 ⩽𝑛 ⩽ 100 in Figure 4(b) and 344 ⩽ 𝑛 ⩽ 360 in
Figure 4(c).

Because errors are unacceptably large in all filters when
they temporarily lose an ability of tracking, a key question
arises of how fast each of them returns back to the normal
mode. In this regard the UFIR filter looks better with its
shortest transient.

5.3.2. Tracking in the East Direction. Tracking in the east
direction (Figure 5) does not reveal any essential features.
The filters still track well the trajectory when a vehicle travels
with a near constant velocity as, for example, in a span
of 120 ⩽ 𝑛 ⩽ 160 in Figure 5(b). Here, all filters also
temporarily lose an ability of tracking and go along the
delayed data when the trajectory quickly changes as, for
example, in a span of 560 ⩽ 𝑛 ⩽ 570 in Figure 5(c).
Finally, the UFIR filter still demonstrates larger excursions
but shorter transients, KF shorter excursions but longer
transients, and 𝐻∞ filter is inbetween as, for example, in
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Figure 6: Vehicle tracking with temporary missing data in the east
direction 𝑥 by the UFIR filter, KF, and 𝐻∞ filter, all augmented
with the prediction option. Tuned improperly, the𝐻∞ filter becomes
unstable and prone to divergence, as in Figure 3.

spans of 60 ⩽ 𝑛 ⩽ 80 in Figure 5(b) and 570 ⩽ 𝑛 ⩽ 580
in Figure 5(c).

5.4. Tracking with Temporary Lost Data. We finally admit
that some data points can be lost during the transmission
and remove 5 data points at 𝑛 = (615 ⋅ ⋅ ⋅ 620) s and 10 at𝑛 = (665 ⋅ ⋅ ⋅ 675) s as shown in Figure 6 for 𝑘 = 3. To predict
lost data, we augment each algorithm with the prediction
block as mentioned below (41) and run the filters. As can be
seen, the filters act consistently with, however, some specifics.
The estimates do not get away essentially from each other
and the actual trajectory. However, when a vehiclemaneuvers
during the prediction, all filters diverge and return back to the
actual trajectory with similar transients as in Figures 4 and 5.
The latter again speaks in favor of the UFIR filter, which has
shorter transients.

6. Conclusions

TheUFIR filter developed in this paper for GPS-based vehicle
tracking over WSNs with time-stamped discretely delayed
and missing data has demonstrated better performance than
the KF and𝐻∞ filter.Themain benefits of using the UFIR fil-
ter are that it (1) does not require any information about noise
and initial conditions, (2) becomes blind on given horizons,
and (3) has shorter transients. The latter can be considered
as an important practical advantage in all situations when
the trajectory changes rapidly and estimators temporarily
loses an ability of tracking. Applications toGPS-based vehicle
tracking with known discretely delayed andmissed data have
proved a better performance of the UFIR filter.
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-e equalization of a large attenuation signal and multirate communication in high-speed serial interface is hard to balance.
To overcome this difficulty, an adaptive equalization system with optimized eye-opening monitor is proposed. -e designed
eye-opening monitor is based on the asynchronous statistic eye diagram tracking algorithm, and the eye diagram is obtained
by undersampling with the low-speed asynchronous clock. With the eye-opening monitor into the adaptive loop, an adaptive
equalization system combined with continuous-time linear equalization (CTLE) is completed. And the inductor peaking
technology is used to improve the capacity of compensation. With SMIC 28 nm CMOS process to achieve the overall design,
the power consumption and core chip area are 12mW @ 12.5 Gbps and 0.12mm2, respectively. And postsimulation results
show that it can offer compensation from 6 to 21 dB for 1.25–12.5 Gbps range of receiving data, which achieves a large range of
data rate and channel loss, and its power efficiency is 0.046 pJ/bit/dB for the worst case, which is better than most
previous works.

1. Introduction

High-speed serial interface has become the inevitable
choice for high-speed data transmission. However, the
nonideal factors of the wireline transmission channel will
lead to channel noise and frequency attenuation and
significantly reduce the quality of the received signal.
Various equalization techniques had been used to com-
pensate the loss, among the most popular are decision
feedback equalizer (DFE) and CTLE. -e DFE can elim-
inate intersymbol interference (ISI) effectively, but it will
increase system complexity, and for high-speed data, the
time constraint is apparent. On the contrary, CTLE can
realize the compensation of the full-frequency band and
has simple structure, and it does not need any clock signal.
For that reason, we choose the CTLE to realize the signal
equalization.

In addition, a fixed preset equalizer may not work well
across a large range of data rate, it is imperative to have the

robust adaptation algorithm to achieve a well-behaved
adaptive equalizer. -e adaptive equalization algorithm
based on energy extraction proposed by Won et al. [1] had
good compensation effect on high-speed data, but the
circuit complexity and power consumption were greatly
increased through its algorithm. Choi et al. [2] used the
frequency filter to change low-frequency gain adaptively,
and the adaptive linear device had a simple circuit struc-
ture, but the frequency information shaped by the rectifier
was inaccurate, and the stability still needed to be opti-
mized. -e data pattern information also had been used to
change the equalization coefficient in [3], which had better
area and power efficient, but the compensation capacity
was limited.

As the optimal compensation for the high-frequency
signal and low-frequency signal is difficult to balance, and it
is even more difficult to cover a large range of channel loss.
In order to overcome these obstacles, we proposed an
optimized adaptive equalization system which is based on
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eye diagram tracking. We use the asynchronous under-
sampling method to obtain an on chip eye-opening
monitor. And the proposed tolerance judgement in the
adaptation algorithm could track the change of the data
rate, and it can avoid the over equalization results. Besides,
the undersampling method alleviates the circuit timing
constraints and simpli�es the circuit design, and we use the
active-inductor technology to improve the performance of
the CTLE module. �e optimized CTLE combined with the
digital eye-opening monitor realizes the automatic
equalization for channel changing, and it also can achieve
the optimal compensation results for di erent data rates.
�e equalization system can compensate the data rate range
from 1.25Gbps to 12.5 Gbps and provide a wide equal-
ization range from 6 dB to 21 dB. And the power e�ciency
of the core circuit is only 0.046 pJ/bit/dB. It achieves both
design �exibility and stability, also with lower power
consumption.

2. Nonideal Factors of Channel

�e nonideal characteristics of transmission channels
mainly include skin e ect, dielectric loss, return loss,
crosstalk, and all kinds of noises. Among which, the skin
e ect and dielectric loss are main reasons for high-frequency
channel losses [4, 5]. �eir impacts can be expressed by

CS � exp −hs ∗ l( )(1 + j)
��
f

√
[ ], (1)

Cd � exp −hd ∗ l( )f[ ], (2)

where hs and hd are the coe�cients of skin e ect and
dielectric loss, respectively, f is the frequency, and l is the
transmission distance. It indicates that skin e ect loss and
dielectric loss are both proportional to the channel length.
And when the signal frequency is relatively low, the
channel attenuation is mainly resulted from the skin ef-
fect. With signal frequency increasing, the attenuation
caused by the dielectric loss becomes more and more
obvious. Taking these nonideal factors into account, we
can get the frequency response trend of the actual channel,
shown in Figure 1. �e actual channel shows low-pass
characteristics and suppresses the high-frequency signal
signi�cantly.

3. Adaptive Equalization Algorithm

3.1. Asynchronous Statistic Eye Diagram Tracking Algorithm.
Figure 2 shows two eye diagrams and their statistic results.
According to the actual eye diagram, it can be concluded
that height of the eye-opening indicates the amplitude of
the received signal. In addition, the thickness of the eyelid
proves that if the loss signal gets an e ective and uniform
compensation after passing through the equalization
system. With that observation, the eye diagram can be
obtained by two steps: sampling and counting. �e
asynchronous undersampling technique is adopted to
achieve eye diagram sampling [6], in which the sampling

clock is not synchronous with the periodic input signal
and the sample clock is much slower than the data clock.
As shown in Figure 3, the asynchronous clock is used to
sample the high-speed input signal, and the low-frequency
clock is sweeping the sample time across the period of the
input waveform. After a certain number of sampling
periods, the time domain waveform of input data can be
obtained, and the statistical result of sampling data rep-
resents the information of input data. In that way, we
would realize an on-chip eye-opening monitor. And
certain eye characteristics can be extracted as long as
a su�cient number of samples are taken.

However, the adaptive algorithm in [6] has a defect
that the analysis of the statistic information is not com-
prehensive enough. Using comparison of Figures 2(a) and
2(b) to explain that, it seems that biggest sample number
of Figure 2(b) is much bigger than Figure 2(a). But when
we focus on the compensation performance, in fact,
Figure 2(b) provides an over equalization, and Figure 2(a)
gets the optimal equalization result, which proves that
simply searching for the histogram that has the largest
peak value to choose the equalization coe�cient is not
accurate. In others words, not only the height of eye
opening shows the amplitude of the compensated signal,
the reference voltage value corresponding to the maxi-
mum value of statistics results provides useful information
too. �erefore, we optimize the algorithm with a tolerance
judgement, using the reference voltage to do the second-
order decision. �e proposed optimized algorithm could
further improve the performance of the adaptation system
and gets the optimal equalization e ects.

3.2. Architecture of Adaptive Equalizer. Figure 4 presents the
structure of the proposed adaptive equalizer, which mainly
consists of a CTLE, a full di erential dynamic comparator,
and a DAC to provide reference voltage, and Figure 5
demonstrates the adaptation control �ow chart. Based on
the asynchronous undersampling technique, we divide the
amplitude of an eye diagram into 16 reference levels, named
REFj (j � 0, 1, 2, . . ., 15), and the equalizer coe�cients are
called EQi (i � 0, 1, 2, . . ., 15), which aims to provide a large
range of equalization capacities.
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�e operation process of the adaptive equalization

system is as follows: Step 1, the adaptive eye-opening
monitor sets the original equalization coe�cient as EQ0,
the reference level is set to REF0, and then DAC outputs the
corresponding reference voltage VREF. Step 2, the full
di erential comparator compares equalized data EQ_OUT
with VREF in M (for example, M � 8192) CLK sampling
periods (k is the count number of sample clocks). And the
comparison result CS is transmitted to the eye-opening
monitor. Step 3, the eye-opening monitor moves the ref-
erence value to next level (j � j + 1) and repeats sampling
operation in Step 2, until j � 15, and the whole eye diagram
corresponded to EQ0 is sampled. Step 4, change the
equalization coe�cient to EQ1 and repeat operation in Step
2 and Step 3, and those processes are repeated for each
equalization coe�cient (i � 0, 1, 2, . . ., 15). �en, the eye-
opening monitor obtains the counting results in order to
complete the eye diagram. Step 5, the eye-opening monitor
selects the optimal coe�cient of the equalizer and com-
pletes the adaptive process.

�e algorithm provides a full consideration of asyn-
chronous statistic eye diagram tracking. In Step 5, the eye-
opening monitor �rstly selects the biggest and secondary
peaking value of eye diagram statistical results, which are Sa
and Sb, respectively. And they both correspond to a ref-
erence voltage (called vrefa and vrefb), which indicate the
amplitude of eye diagram. If the di erence value of Sa and
Sb is less than the tolerance value, then it compares the
reference voltages vrefa and vrefb and chooses the equal-
ization coe�cient corresponding to the bigger reference
voltage. �e tolerance value is depends on comparator and
sampler errors, and we did the simulation of those circuits
to set the tolerance value.

�e settle time of the proposed adaptation process is
calculated by M (sample number) × 16 (reference voltage
level number) × 16 (equalization coe�cient number) ×
7.5 ns (asynchronous clock period)∼15ms.

4. Implementation of Equalizer System

�e system consists of a CTLE with the active inductor, a full
di erential dynamic comparator, and a DAC. We use
a digital circuit to achieve the algorithm to improve design
�exibility and, meanwhile, promote system performance and
algorithm e�ciency.

4.1. CTLE. �e common structure of conventional CTLE is
capacitive degenerated di erential pair [7], as shown in
Figure 6(a). �e transfer function is given by

H(s) �
gmRd( ) 1 + sRsCs( )

1 + sRsCs + gmRs/2( )( )/ 1 + sRdCd( )
, (3)

where gm is the transconductance of input di erence pairs.
And the expressions for the locations of zero and poles can
be deduced as wz � 1/(RsCs), wp1 � (1 + gmRs/2)/
RsCs, wp2 � 1/(RdCd).

�is topology, however, su ers from limited band-
width and consequently insu�cient compensation at high
frequencies. It is because wp1 exceeds wz by a factor of
(1 + gmRs/2), and the DC gain drops by the same amount
of factor. In other words, gmRs must stay low so as to avoid
large DC loss (otherwise the interposed bu ers su er).
�is issue limits the maximum achievable boost in mag-
nitude and phase. To expand the bandwidth of CTLE, the
inductor peaking technology is introduced, shown in
Figure 6(b). �e transfer function of CTLE with the in-
ductor load is given by

H(s) �
gmRd

1 + gmRs/2( )
·
1 + s/wz1( )
1 + s/wp1( )

·
1 + s/wz2( )

1 + 2ζ/wn( )s + s2/w2
n( )

,

(4)

where wz2 � 2ζwn, ζ � (Rd/2)(Cd/Lp)1/2, wn � 1/(Cd · Lp)1/2
and wz1 and wp1 are unchanged.
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elseeq_final = Sa;
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Figure 5: Proposed adaptive equalizer structure’s adaptation control �ow chart.
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Since a passive inductor may take large area, we in-

troduce an optimized structure of CTLE called the active
inductor to realize the inductive termination [8, 9], which
aims to extend the output bandwidth in the presence of large
capacitive loads and save chip area. A PMOS-based active-
inductor circuit is used as the load of CTLE in Figure 6(c),

which enhances the compensation ability for high-speed
data. It uses a MOS resistor (M2, which operates in deep-
triode region) through which the output node is coupled to
the gate of the PMOS transistor M1. A level shifter, con-
sisting of a source follower M3 and a current source M4, is
inserted between M1 and M2 to allow a lower gate bias
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Figure 6: CTLE circuit. (a) Conventional CTLE circuit and frequency-response curve. (b) CTLE with inductor peaking. (c) Designed CTLE
circuit and frequency-response curve.
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voltage for M1. -e termination impedance of presented
CTLE is given by the following equation:

Zt �
1 + jωCgsR2

gds + gm( 􏼁 −ω2R2CdsCgs + jω Cgs + Cds + R2Cgsgds􏼐 􏼑
,

(5)

L �
R2Cgs1􏼐 􏼑

gds1 + gm1( 􏼁
,

Cp � Cds1,

Rx �
1

gds1 + gm1( 􏼁
,

(6)

where Cds, Cgs, gds, and gm are the parameters of M1 and
R2 is the equivalent resistor. And the termination impedance
can be represented as (6).

-e inductive peaking facilitates the equalizing filter
design, and the 20 dB compensation for data rate above
10Gbps becomes feasible. Besides, for a single transmission
data rate, as the equalizer is designed for a fixed frequency
point, the adjusting of the equalization coefficient only
depends on the channel change. While the data rate is
changing, it could not achieve an optimal compensation by
a coefficient fixed equalizer. -erefore, the RC values both
need to be changed through the switches SR and SC to
provide different DC gains and peaking frequency.-ere are
4 resistance values (SR is 2 bit) and 4 capacitance values (SC
is 2 bit), and they can combine out 16 sets of different
equalization coefficients. -e frequency response of
designed active-inductor CTLE is shown in Figure 6(c). It
can realize a compensation range of 6–21 dB in the effective
frequency band, the DC gain can change from −10 dB to
5 dB, and the peaking frequency can scan from 1.25–
12.5GHz (at Nyquist frequency), which can provide an area-
efficient alternative for passive inductive terminations and
well satisfy the equalization ability.

4.2. Full Differential Comparator and DAC. -e full differ-
ential comparator consists of the SA in the first stage, and the
slave set-reset (SR) latch in the second stage is shown in
Figure 7(a), and Figure 7(b) is the DAC circuit using partial
pressure resistance structure and hot code control switch to
reduce switch number.

5. Postsimulation Results

-e equalizer layout in SMIC 28 nm CMOS technology is
demonstrated in Figure 8, core circuit power consumption
and area are 12mW@ 12.5Gbps and 0.12mm2, respectively,
and the digital implementation is included.

-e postsimulation results are shown in Figure 9. -e
S-parameter curve of a 563mm PCB channel with 18.1 dB
loss at 5 GHz is shown in Figure 9(a), and the eye diagram
of the 10 Gbps receiving signal is shown in Figure 9(b); it
can be seen that the eye diagram is closed totally. -e
acquired eye diagram after the adaptive equalizer of 456,
593, 336, and 1355mm PCB channels are shown in

Figures 9(c)–9(f ), and according channel loss are −21.4 dB
@ 6.25 GHz, −22.3 dB @ 5GHz, −12 dB @ 5GHz, and
−8 dB @ 620MHz, respectively. According data rates are
12.5 Gbps, 10 Gbps, 10 Gbps, and 1.25 Gbps, respectively.
By comparing Figure 9(d) with Figure 9(e), it shows that,
for the fixed data rate, while the channel length is
changing, the equalization system can realize well
equalization. And by comparing Figures 9(c) and 9(d) with
Figure 9(f ), it demonstrates that although the data rates
are different, the loss data can achieve the optimal com-
pensation results after the equalization system, and the
changing of signal frequency can be well tracked by the
proposed adaptation algorithm. And the final equalization
coefficients for Figures 9(c)–9(f ) are SRSC � 0000, 0001,
0110, 1111, respectively. On the one hand, it proves that
the equalizer can provide large compensation range; on the
other hand, it shows that the adaptation algorithm can
avoid the over equalization results with the proposed eye-
opening monitor. As seen from the results, receiving loss
signal can be well compensated after equalization, and eye
diagrams open well.

Compared with other recent work given in Table 1, the
advantages of this design can be displayed intuitively.
Comparing with the eye-openingmonitor in [15], our design
can compensate the bigger loss, and the adaptation part is
realized on the chip. A proposed FOM is calculated by

FOM � total power
data rate ∗ channel loss

. (7)

-e proposed figure of merit normalizes the power con-
sumption, transmission data frequency, and channel loss, which
compares the system performance under the same evaluation
index, and canmake amore comprehensivemeasurement. And
as shown in the comparison table, thanks to digital eye-opening
tracking monitor and the asynchronous sampling technique,
the FOM of proposed adaptive equalizer is clearly superior to
other designs, which means that this design achieves better
compensation ability for the same data rate, and it also has
obvious advantage in power efficiency. -e active-inductor
peaking technology expands the compensation ability of the
equalizer, which can achieve the signal frequency range from
1.25Gbps to 12.5Gbps, and channel losses range from −6dB to
−21dB. In the meantime, the proposed optimized asynchro-
nous statistic eye diagram tracking algorithm also ensures to
obtain the appropriate compensation effects and avoids over
equalization for the different data rate.

6. Conclusion

An adaptive equalization system based on the asynchronous
statistic eye diagram tracking algorithm was realized on SMIC
28nm CMOS technology. As the height of eye diagram and
the concentration of statistical data are taking into account, the
optimized adaptive algorithm provides a tolerance judgement
to track equalized eye opening so that the equalization system
can avoid under equalization or over equalization of different
signal frequencies. -e active-inductor peaking technology
also enhances CTLE capacity to provide a wide equalization
range. -e adaptive equalization system can offer
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Figure 8: Layout of the chip.
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Figure 7: Circuit of full di erential comparator and DAC.
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WTa compensation from 6dB to 21 dB for 1.25–12.5Gbps of the
receiving signal, and its power e�ciency is 0.046 pJ/bit/dB for
the worst case. It has low power consumption and strong
adaptive capacity so as to greatly optimize the high-speed
interface analog front-end design. As the adaptation judge-
ment is realized by the digital controller, it achieves a reusable
design of the adaptive equalization system as well.
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,is paper proposes an inaccuracy mitigation measure to reduce the error associated with distribution line parameters identification.
Additionally, it introduces the concept of positive sequence quantities for determining the line resistance, reactive inductance, and
shunt admittance.,e positive sequence-based analysis is required for asymmetrical related studies such as unbalanced fault analysis.
,e paper, also, includes the consideration of noisy distribution networks. It compares the performance of three line parameters
identification techniques by using different statistical measures. A total of 12,960 different case studies are simulated and analyzed
under six main loading scenarios and four categories with changing line parameters. ,e line parameters are calculated online using
voltage and current signals obtained from phasor measurement units (PMUs) placed at the line two terminals. Finally, the study
outcomes and the associated recommendations have been summarized for future works considerations.

1. Introduction

Distribution line (DL) parameters identification forms the
basis for distribution power system studies, including dy-
namic and transient stabilities, state estimate, protection
setting, etc. ,e common practice in the industry, till today,
is to determine the parameters using values from design
datasheets, manufacture specification sheets, and engineer
estimation. ,e latter could base the calculation on con-
ductor dimensions, sag, temperature, tower geometries, and
other elements. ,ese elements are used to identify the DL
data through different mechanisms such as calculating the
geometric mean radius and the geometric mean distance,
denoted by GMR and GMD, respectively. Additionally, the
official electrical transient analysis program (known as
ETAP) model could be utilized to find the DL data, which is
an off-line tool. Assumptions and approximations are in-
cluded in the calculation process steps which reduce the
accuracy of results. Basing DL parameter estimation on off-
line techniques or preidentified information significantly

impacts the accuracy level of the power system studies that
depend on these values due to the following:

(1) Conductor resistance and reactance vary with ambient
conditions, conductor situation, and power flow.

(2) A number of installed circuits are spliced with other
conductors that are different in types and specifi-
cations. ,is represents an inhomogeneity of the line
sections.

(3) ,e overhead conductor arrangement changes due
to using different tower configurations and applying
the concept of transposition.

(4) Cable installation conditions such as grouping,
underground, overhead, cable trays, conduits, and
submarine, etc., play a major role in line parameter
estimation.

(5) Cable aging could impact the line parameters due to
several factors such as degradation, tension, and life
cycle.
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,e above five factors are sources of conductor im-
pedance and admittance identification errors. With the
emergence of PMU technology, it is possible to obtain more
accurate data about the system conditions with high-
frequency samples along with the corresponding time
stamp. Accordingly, it is possible to develop more accurate
DL impedance parameters estimation by online measure-
ment techniques using the synchronized PMUs. ,is online
analysis can be used to improve power system operations
reliability as detailed below:

(a) Power system restoration and reclosing: phasor data
is used to bring equipment back into service avoiding
the risk of instability or unsuccessful reclosing trials

(b) Automated management of voltage and frequency
response: the data is used for better system man-
agement to frequency and voltage changes

(c) Wide-area protection: real-time phasor data allows
for improved grid events identification and execu-
tion of appropriate system protection measures

(d) Planned power system islanding: this is to improve
islanding of power system during instability situations

(e) Power plant monitoring and integration: real-time
data is used for better integration of different power
plants that includes intermittent renewables or
distributed power sources

,e majority of research works to estimate the power
system line parameters are focused on transmission systems.
Numerous techniques have been introduced to calculate the
transmission parameters using the synchronized measure-
ment devices. A two-port ABCD parameter identification
based technique was introduced in [1]. ,is method utilized
two sets of three samples of sending and receiving terminals’
voltage and current signals. ,is was to find three estimates of
ABCD parameters. ,e ABCD method is referred to in this
research work as a “two-port circuit measurement technique”.
In Reference [2], fourmethods were discussed to identify short
transmission line parameters by synchronized measurements.
Reference [3] proposed a novel method to identify trans-
mission line parameters for different cases, including short and
long, transposed and untransposed lines with balanced and
unbalanced load conditions. ,e positive sequence line pa-
rameters considering the effects of the line shunt capacitance
were estimated in [4], employing a two-terminal transmission
line model. Likewise, Reference [5] aimed to achieve the same
objectives where a new estimation method was presented
using synchronized phasor measurements at both line ends.
,e approach in [6] proposes the use of recursive parameter
estimation to find the network branch parameters online and
off-line. ,e least-square technique was leveraged in [7] with
the objective of obtaining the line parameters iteratively.

Unlike the abundance of publications on transmission
line parameters estimation, the work in distribution is
limited.,e probability theory, which builds on voltage drop
linear equivalent model, was used in [8]. ,e approach
objective was to estimate the DL impedance and get precise
parameters. Numerous works discussed the uncertainties
of network parameters and inaccuracy of measurements.

In particular, the DL parameters and measurement uncer-
tainties were analyzed in [9]. A novel power system un-
certainty analysis technique was proposed in [10], where a
two-step approach based on static weighted least-squares
analysis was used. Reference [11] presents a method to
estimate distribution line parameters using only conven-
tional SCADA measurements (voltage magnitude and
power measurements). It resulted in a negligible deviation
between simulation, experiment, and the actual manufac-
turer specifications. ,e key outcomes of the DL parameters
estimation studies were that the accuracy of line parameters
is crucial for a number of applications including the grid
control, stability analysis, and fault location studies.

To the best of the authors’ knowledge, the applicability of
different methods to identify the sequence DL parameters has
not been considered before. ,is paper proposes the use of
PMU to identify the DL parameters under the consideration of
accuracy, positive sequence, and noise. ,e concept of sym-
metrical components is leveraged to extract the positive se-
quence of the synchronized phasor voltage and current
measurement signals.,e online synchronized signals obtained
from the PMUs will be used in calculating both the phase and
positive sequenceDL parameters. In Section 2, three techniques
have been developed to measure DL resistance, reactive in-
ductance, and shunt admittance. Section 3 describes the used
accuracy statistical measures to evaluate and compare the
performance of the three techniques. ,e developed case
studies along with their results and discussion are presented in
Sections 4 and 5, respectively. Finally, the study recommen-
dations and outcomes are stipulated in Section 6.,emain data
used to support the findings of this study are included within
this article. If additional data is required, it could be requested
from the corresponding author with proper justification.

2. Techniques of Distribution Line
Parameters Estimation

,ree different techniques are discussed in this section with
the objectives of identifying the DL parameters. ,e tech-
niques leverage the PMU voltage and current signals ob-
tained at the two terminals of the line. In order to perform
DL parameters estimation, the line is represented in a
π-model equivalent circuit as illustrated in Figure 1(a).

,e study considers the positive sequence of the voltage
and current phasors in addition to the phase values.,is aims
to explore accuracy enhancement opportunities and compare
the results. Additionally, the sequence quantities are required
for developing any asymmetrical analysis. ,e positive se-
quence equivalent π-model is shown in Figure 1(b).

2.1.Ohm’s FormulaTechnique. ,e proposed ohm’s formula
technique (OFT) depends on the ohm’s law [12]. Under this
method, both phase and positive sequence voltage and
current phasors are used. ,is method requires only single
set of voltage and current samples of the phasor voltage and
current signals produced by PMUs.

,e developed OFT equations to calculate the DL pa-
rameters are described below:
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WTZDL1 �
2 VS1 −VR1( 􏼁

IR1 + IS1
,

YDL1 �
IS1 − IR1

VS1
.

(1)

2.2. Single Measurement Technique. ,e proposed single
measurement technique (SMT) aims to find DL resistance,
reactive inductance and shunt admittance [12]. It uses both
the phase and positive sequence of the voltage and current
signals that are obtained from PMUs at the steady state. ,e
SMT equations are formulated as follows:

ZDL1 �
V2

S1 −V2
R1

VR1IS1 + VS1IR1
,

YDL1 �
2 VS1 −VR1( 􏼁

IR1 + IS1
.

(2)

2.3. Two-Port CircuitMeasurement Technique. ,e two-port
circuit measurement technique (TPCMT) requires two sets
of synchronized measurement samples at different loading
conditions [12]. ,e samples are taken from the DL ter-
minals to calculate the two-port circuit parameter known as
A, B, C, and D. ,e DL impedance and admittance are
identified from the ABCD matrix.

,e TPCMT is conventionally used to represent trans-
mission lines. Additionally, it provides adequate accuracy
for DLs at some cases. Representation of positive sequence
TPCMT for DL is shown in Figure 2, where VS1, VR1, IR1,
and IS1 are the positive sequence of the sending and re-
ceiving ends voltage and current signals, respectively.

,e following equations form the relation between the
sending end and the receiving end quantities:

VS1 � A VR1 + B IR1,

IS1 � C VR1 + D IR1,
(3)

where the parameters A, B, C and D are influenced by the
DL resistance, inductance, capacitance, and conductance. ,e
ABDCparameters are complex numbers in whichA andD are
unit less, B is measured in ohms, and C has a unit of Siemens.

,e ABCD parameters of the DL equivalent π-model
shown in Figure 1 are obtained by the following equations:

VS1 � VR1 + ZDL1 IR1 +
VR1YDL1

2
􏼒 􏼓

� 1 +
ZDL1YDL1

2
􏼒 􏼓VR1 + ZDL1IR1.

(4)

By applying the Kirchhoff current law (known as KCL) at
the sending end, the following equation is obtained:

IS1 � IR1 +
YDL1 VR1 + VS1( 􏼁

2
. (5)

Combining the previous two equations yields

IS1 � IR1 +
YDL1VR1

2
+ 1 +

ZDL1YDL1

2
􏼒 􏼓VR1 + ZDL1IR1􏼢 􏼣

YDL1

2

� YDL1 1 +
ZDL1YDL1

4
􏼒 􏼓VR1 + 1 +

ZDL1YDL1

2
􏼒 􏼓IR1.

(6)

ZS

YDL/2

ZDL ZR

VS VR

Sending (S) Receiving (R)

YDL/2

Utility

IS IR

(a)

ZS1

YDL1/2

ZDL1 ZR1

VS1 VR1

Sending (S) Receiving (R)

YDL1/2

Utility

IS1 IR1

(b)

Figure 1: Distribution line equivalent model (π-Type). (a) One-line diagram using the phasor quantities (b) One-line diagram using the
positive sequence quantities. ,e parameters of the above circuits are described as follows: ZS, equivalent impedance at the source side; ZS1,
positive sequence equivalent impedance at the source side; ZR, equivalent impedance at the receiving end; ZR1, ppositive sequence
equivalent impedance at the receiving end; ZDL, distribution line impedance; ZDL1, positive sequence distribution line impedance; YDL,
distribution line admittance; YDL1, positive sequence distribution line admittance; VS, phase voltages at sending end; VS1, positive sequence
phase voltages at sending end; VR, phase voltages at receiving end; VR1, positive sequence phase voltages at receiving end; IS, Phase current at
sending end; IS1, positive sequence phase current at sending end; IR, phase current at receiving end; IR1, positive sequence phase current at
receiving end.

Two-port
circuit 

IS1 IR1

+
VS1
–

+
VR1
–

Figure 2: Representation of positive sequence two-port circuit for
distribution line.
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Comparing the last above formula with the ABCD
equations yields

A � D

� 1 +
ZDL1YDL1

2
􏼒 􏼓 per unit,

C � YDL1 1 +
ZDL1YDL1

4
􏼒 􏼓 ohm.

(7)

From the simple DL (only series impedance represen-
tation) analysis and derivation B is obtained to be

B � ZDL1 ohm. (8)

,e above A, B, C and D equations are solved to find
ZDL1 and YDL1 which will be as follows:

ZDL1 � B ohm,

YDL1 �
2(A− 1)

B
Siemens.

(9)

,ismethod could be extended to accommodate two sets
of PMUmeasurements. ,e two sets could be obtained from
two different redundant PMUs or from two readings
recorded at different timing or loading conditions. ,e
ABCD equations for the two sets are as follows:

VS1′ � A VR1′ + B IR1′ ,

IS1′ � C VR1′ + D IR1′ ,

V″S1 � A V″R1 + B I″R1,

I″S1 � C V″R1 + D I″R1.

(10)

,e samples of the voltages and currents for the receiving
and sending ends are as the following:

(i) VS1′ , VR1′ , IS1′ , and IR1′ are for the first set
(ii) V″S1, V″R1, I″S1, and I″R1 are for the second set

,e ABCD parameters are calculated to account for the
two sets to be as follows:

A �
IR1′ V″S1 − I″R1 VS1′

IR1′ V″R1 − I″R1VR1′
,

B �
V″R1 VS1′ − VR1′ V″S1
IR1′ V″R1 − I″R1VR1′

,

C �
IR1′ I″S1 − I″R1IS1′

IR1′ V″R1 − I″R1VR1′
,

D �
IS1′ V″R1 − I″S1 VR1′

IR1′ V″R1 − I″R1VR1′
.

(11)

3. Accuracy Statistical Measures

,e accuracy of the proposed methods is evaluated using
different statistical measures. ,is is to ensure that the mea-
sures will converge for all case studies analyzed in this paper.

,at is, in case one statistical measure fails to perform in one of
the cases, the evaluation will be achieved by the othermeasures.

3.1. Percentage Error. ,e first step toward accepting or
rejecting the proposed methods is assessing its accuracy
using the percentage error given by the following equation:

error(%) �
|actual values− calculated value|

actual value
× 100. (12)

3.2. Coefficient of Determination. ,e coefficient of de-
termination (CoD), denoted by R2, is used to indicate the
difference of the obtained values by a proposed formula
compared to the actual ones. It measures the strength of the
proposed formula and benchmarks it with the ideal situation
which will result in a coefficient of determination of 100%. It
is, also, called the squared error which is the error between the
curve obtained by the proposed formula and the actual curve.
,e range of coefficient of determination varies between 0 and
1. ,e higher the number means the proposed formula is
more descriptive and reflective to the actual values. Figure 3 is
an explanatory sketch for calculating the CoD.

,e coefficient of determination equation is formulated
as follows:

CoD � 1−
􏽐k

1 ycalc −yact( 􏼁 2

􏽐k
1 ycalc −yact( 􏼁 2

� 1−
SE
TV

,

SE � 􏽘
k

1
ycalc −yact( 􏼁 2,

TV � 􏽘
k

1
ycalc −yact( 􏼁 2.

(13)

,e parameters are described as follows: CoD, coefficient
of determination; SE, total square error between the calcu-
lated points and the actual values; TV, total variation between
the calculated points and the actual values; yact, mean of the
actual values; ycalc, calculated value; and yact, actual value.

3.3. Other Accuracy Statistical Measures. Other accuracy
statistical measures are required to be integrated with the
percentage error and CoD. ,is is due to the fact that the
percentage error does not represent the correlation and the CoD
has certain shortfalls, especially for small scientific numbers.

,e following additional statistical measures are used to
evaluate the proposals presented in this paper:

(1) Mean absolute deviation (MAD), which is the
summation of the absolute deviation between the
actual and calculated values over the number of
records (or the length of the range)

(2) Mean square error (MSE), which is considered as
the most common error metric. It is mainly the
summation of the squared errors over the number of
records
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(3) Root mean square error (RMSE) is obtained by

applying the square root to the MSE
(4) Mean absolute percentage error (MAPE) is the av-

erage of absolute errors over the actual records

4. Case Studies

A 25-kV distribution system (refer to Figure 4) is modeled in
MATLAB/Simulink to verify the effectiveness of the three
line parameters identification techniques. A total of 12,960
different case studies have been performed under six main
loading scenarios (stated in Table 1) and four categories
(presented in Table 2) with changing of the line parameters.
,e line parameters have been varied in 60 steps.,e loading
scenarios and categories considered under this study are
tabulated in below tables.

,e large number of case studies has been developed to
test the robustness and accuracy of this paper proposals. ,e
12,960 simulations differ in the loading conditions, line
lengths, noise, and inaccuracy mitigations.

,e selected DL is modeled as three-phase DL with a
π-type. ,e model consists of one set of resistance and
inductance elements in series connected between sending
and receiving terminals. Two sets of shunt capacitances
lumped are, also, included at both ends as illustrated in
Figure 1. ,e initial DL parameters are stated in Table 3.

,e total series resistance, reactive inductance, and shunt
admittance are given by the following formulas, respectively:

R � rℓ,

XDL1 � ωLℓ,

YDL � ωCℓ,

(14)

where R, L, and C are the total DL resistance, inductance,
and capacitance, and ℓ is the total length of the line.

In MATLAB, two sets of simulated PMUs are placed at
both terminals of the selected DL to measure the voltages
and currents waveforms simultaneously. ,e recorded
waveforms are in the shape of sinusoidal signals and then
converted into phasor equivalents.

5. Results and Discussions

,e simulation results of the 12,960 cases are summarized in
this section and organized into four categories. Under each
category, the resistance, reactive inductance, and shunt
admittance are calculated using the three methods for

different loading conditions and parameter values. ,e
calculation is based on the voltage and current signals ob-
tained from PMUs that are installed at both ends of the line.
Figure 5 shows the voltage and current signals obtained from
PMU devices considering noise-free system.

5.1. Phase Quantities. In this category, the phase quantities
of voltage and current are used to perform the analysis. ,is
type of analysis is required for asymmetrical related studies
such as unbalanced fault analysis.

DL under study
Bus 1 Bus 2 Bus 3 Bus 4 Bus 5

Bus 6 Bus 7 Bus 8

Bus 9 Bus 10

Bus 11 Bus 12 Bus 13 Bus 14

Load 6

Load 10

Load 11 Load 12 Load 13

120 kV
Utility

Main power
transformer

120 kV/25 kV

Load 14

Load 8

Figure 4: ,e 25 kV 14-bus test distribution network under
consideration.

(x1, y1_calc)

(x1, y1_act)

Y-
ax

is

X-axis

Figure 3: Coefficient of determination explanatory sketch.

Table 1: ,e six loading scenarios for simulations.

Scenario
Load

Active (MW) Reactive (MVar)
1 1 0.25
2 2 0.5
3 3 0.75
4 4 1
5 5 1.25
6 6 1.5

Table 2: ,e four categories for this study.

Category Description
1 Phase quantities
2 Positive sequence quantities
3 Phase quantities with noise

4 Phase quantities with the proposed inaccuracy
mitigation for noisy systems in category 3

Table 3: Initial parameters of the distribution line test circuits.

Parameter Actual value Dimension
r 0.1153 (Ohms/km)
l 1.05e-3 (H/km)
c 11.33e-009 (F/km)
where r, l, and c are the resistance, inductance, and capacitance per unit
length, respectively.
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,e values of resistance, reactive inductance, and shunt

admittance are changing in 60 steps. ,e parameters
identification errors of the six loading scenarios are averaged
for the three methods. ,e voltage and current waveforms
are assumed to be noise-free. Results of the average errors for
the resistance, reactive inductance, and shunt admittance are
shown in Figure 6.,emaximum errors for eachmethod are
stated in Table 4. ,e results reveal that SMT is more ef-
fective in calculating the DL parameters.

,e TPCMT shows weakness in calculating the shunt
admittance for short lines. ,is is expected as the method
was developed specifically for medium transmission lines.
However, it performs very well when the DL length is
ranging between 10 and 30 km which is a common sort of
DLs.

5.2. Positive Sequence Quantities. Both OFT and SMT have
excellent performance in identifying the DL parameters
using positive sequence quantities. ,e average and maxi-
mum errors recorded in the simulated studies are presented

in Figure 7 and Table 4, separately. It is observed form the
results that TPCMT fails to calculate the line parameters
using positive sequence voltage and current quantities.
,erefore, the results were excluded from Figure 7. ,e
results demonstrate that SMT is superior to OFT in calcu-
lating the line parameters using positive sequence quantities.

5.3. PhaseQuantities withNoise. Actual voltage and current
signals of any distribution system are not pure sinusoidal.
Noise is always impeded in the signals due to several
factors, e.g., harmonics produced from electronic based
devices. ,e electronic devices could be at residential areas
such as televisions, computers, laptops, electronic games,
and so on. ,ere are a number of applications that produce
harmonics at the industrial sector, for example capacitor
bank, variable frequency drives, and other electronic based
equipment.

Accordingly, all input signals to PMUs will be associ-
ated with additional harmonics beside the fundamental
frequency (60Hz) as in the Kingdome power system.
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Although PMU measurements showed an improved accu-
racy compared to other devices, this performance is not fully
materialized in the actual field due to errors from other
channels such as instrumentation, CT, and potential
transformer (shortly PT) and etc.

Figure 8 shows the voltage and current signals obtained
from PMU devices considering noisy system.

,e OFTand SMT have extraordinary performance when
applying the phase values to noisy system (Figure 9). TPCMT

still shows weakness in estimating the line parameters, es-
pecially for short lines capacitance. As the line length in-
creases as TPCMT converges for identifying the XC.

,e maximum error recorded in the simulated studies
is shown in Table 4. From the calculated average and
maximum errors of the six loading scenarios for the three
methods considering phasor quantities, it is concluded
that SMT is superior to the other techniques for noisy
system.

5.4. Phase Quantities with Inaccuracy Mitigation for Noisy
Systems. It is observed form the simulated case studies that
the error follows specific trend under different line pa-
rameters, irrespective of the loading conditions. Knowing
the error trend will ease predicting the error magnitude and
hence mitigating it. ,is category proposes to apply inac-
curacy mitigation measures to improve the line parameter
calculation errors. ,e measures are developed based on line
characteristics and possible loadings. ,e proposed inac-
curacy mitigation measure concept is illustrated in Figure 10
and given by the following formula:

€y � _y(1 + ε( _y)), (15)

where _y is the originally calculated value and €y is the en-
hanced measurement. ,e symbol ε is taken from the
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Figure 6: Calculation average errors of the six loading scenarios for the three methods under Category 1. (a) Resistance. (b) Reactive
inductance. (c) Shunt admittance.

Table 4: Maximum errors of the six loading scenarios considering
the variation of the line parameters.

Category Method R XL XC

1
1 0.04% 0.07% 3.35%
2 0.09% 0.15% 0.07%
3 0.12% 0.04% High

2
1 0.11% 0.13% 3.45%
2 0.08% 0.15% 0.11%
3 High High High

3
1 0.45% 1.10% 2.22%
2 0.38% 1.08% 1.22%
3 1.87% 0.52% High

4
1 0.34% 0.59% 1.49%
2 0.34% 0.59% 0.03%
3 0.10% 0.04816% High
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WTpredeveloped inaccuracy mitigation measures demonstrated
in Figure 10. ,e inaccuracy mitigation curve could take
different shapes based on line loading and characteristics.

,e proposed concept has been applied to Category 3,
and the simulation results are illustrated in Figure 11. ,e
results reveal significant improvements of Category 4
compared to Category 3 in Figure 9.

,e inaccuracy mitigation measures will result in ac-
curacy improvement up to 98% of the maximum error of
Category 3. ,e maximum errors for the four categories and
six loading scenarios considering the variation of the line
parameters are tabulated in Table 4.

,e MAD, MSE, RMSE, MAPE, and CoD have been
applied to the four categories and six loading scenarios. ,e
results for the latter are averaged into one value for each
category and parameter.,e results are tabulated in Table 5 to
evaluate the robustness of this paper proposals. It is noticed
from the table that generally the values under the proposed
inaccuracy mitigation measures category (Category 4) are
improved compared to those in Category 3. ,is shows the
strength of the proposed inaccuracymitigation concept which
could be applied for ideal and noisy systems. ,e use of
positive sequence quantities will perform very well when
using OFTand SMT. However, the phase quantities will result
in more accurate line parameters estimation. Unlike OFTand
SMT, TPCMT does not function when using the positive
sequence values.,erefore, ABCD should not be used for any
asymmetrical related studies in DLs.

MAPE is found to be the only method applicable for
calculating the line shunt admittance since the values of the
capacitances are very small scientific numbers.

6. Conclusions

To carry out any asymmetrical related analysis at DLs such
as asymmetrical fault studies, the symmetrical compo-
nents should be leveraged to identify the positive, nega-
tive, and zero sequences. ,erefore, robust and accurate
line parameters calculation techniques are required. Based
on that, three line parameters identification techniques
have been applied to different case studies and evaluated
using different statistical measures. ,e outcomes of this
analysis along with the associated recommendations are as
follows:

(1) ,e proposed inaccuracy mitigation concept will
result in accuracy improvement up to 98% of the
maximum error. ,erefore, it is recommended to
use this concept for any online impedance and
admittance calculations using PMUs.

(2) ,e inaccuracy of the line parameters estima-
tion follows a specific trend over different scenarios.
,is will allow proper inaccuracy prediction and
hence mitigation.

(3) ,e proposed inaccuracy prediction and mitigation
have resulted in a negligible deviation between
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Figure 7: Calculation average errors of the six loading scenarios for the OFT and SMT techniques under Category 2. (a) Resistance. (b)
Reactive inductance. (c) Shunt admittance.
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Figure 9: Continued.
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Figure 9: Calculation average errors of the six loading scenarios for the three methods under Category 3. (a) Resistance. (b) Reactive
inductance. (c) Shunt admittance.
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Figure 11: Calculation average errors of the six loading scenarios for the three methods under Category 4. (a) Resistance. (b) Reactive
inductance. (c) Shunt admittance.
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calculated and actual DL parameters. ,is proves
the robustness of the proposals of this paper.

(4) Both OFT and SMT have extraordinary perfor-
mance in calculating the DL parameters using
positive sequence quantities. ,erefore, it is rec-
ommended to use them for any asymmetrical based
analysis such as unbalanced fault studies.

(5) SMT is superior to OFT in calculating the line
parameters using positive sequence quantities.

(6) TPCMT does not perform when the line resistance
is small (short line) and using phase quantities. ,is
is expected as the method was developed for me-
dium transmission lines. As the line impedance or
length increase, TPCMTwill boost up its resistance
calculation accuracy.

(7) It is expected the TPCMTwill not perform very well
for capacitance identification of short DLs. ,ere-
fore, it is unrecommended to use this method for
short DLs.

(8) TPCMT fails to produce result using positive se-
quence voltage and current signals. ,erefore, it
should not be applied for any asymmetrical studies
at the distribution level.

(9) Some statistical measures do not function under
certain conditions, such as in case of small scientific
figures. ,erefore, there is a need for a wide range of
statistical measures to ensure covering all study cases.

(10) SMT is ranked to be the most robust technique for
identifying all DL parameters under different
conditions and OFTcomes the second. ,erefore, it
is recommended to use SMT for any distribution
related case studies.
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Earth surface texture features referring to as visual features of homogeneity in remote sensing images are very important to
understand the relationship between surface information and surrounding environment. Remote sensing data contain rich
information of earth surface texture features (image gray reflecting the spatial distribution information of texture features, for
instance). Here, we propose an efficient and accurate approach to extract earth surface texture features from remote sensing data,
called gray level difference frequency spatial (GLDFS). -e gray level difference frequency spatial approach is designed to extract
multiband remote sensing data, utilizing principle component analysis conversion to compress the multispectral information, and
it establishes the gray level difference frequency spatial of principle components. In the end, the texture features are extracted using
the gray level difference frequency spatial. To verify the effectiveness of this approach, several experiments are conducted and
indicate that it could retain the coordination relationship among multispectral remote sensing data, and compared with the
traditional single-band texture analysis method that is based on gray level co-occurrence matrix, the proposed approach has
higher classification precision and efficiency.

1. Introduction

Remote sensing technology can extract high resolution re-
gional marine environmental information in time, especially
for the complex sea area. Multispectral remote sensing data
reflects the interested target or regional radiation charac-
teristics through the electromagnetic spectrum of multi-
band, and it has the advantages of wide range, multiphase,
multiband, and high resolution. Remote sensing image
could enrich the spectral characteristics of landmark and
find out more detailed information, such as the structure,
shape, and texture. However, in virtue of the fact that same
objects possess different spectral and different objects share
same spectral, the applications of remote sensing data would
be serious restricted if only spectral information is taken into
consideration.-e earth surface texture is a good solution to
the problem because of the stability characteristics [1].

-e classical texture extraction and analytic approaches
include gray level co-occurrence matrix method [2, 3],

wavelet analysis method [4, 5], Gabor spectrum method [6],
and so forth. While all these methods could only be applied
to analyze the information of single band in remote sensing
images, for multispectral remote sensing data, all the bands
should be processed separately, which would decrease the
extraction efficiency badly.

Because of the geometric characteristics of the surface
object, it has a unique texture features on the remote sensing
images. So, the different surface objects can be extracted
through the texture features. -is paper utilizes gray level
difference frequency spatial to extract texture features of
multiband remote sensing data. We firstly conduct principal
component analysis (PCA) on the eight bands of Worldview-
II multispectral images and compress these data on basis of
guaranteeing against loss of spectral information. Make gray
difference statistics on the compressed principle components
and establish the gray level difference frequency spatial. In the
experiments, the gray level difference frequency spatial is used
to extract texture features, and a comparison with Gray Level
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Co-occurrence Matrix (GLCM) is made. -e experimental
results indicate that the gray level difference frequency spatial
has higher classification accuracy and efficiency.

2. Worldview-II Multispectral Remote
Sensing Data

Worldview-II is one of the highest resolution remote sensing
satellites, and it has the highest spatial resolution (0.46m in
the panchromatic band and 1.84m in the multispectral
bands). It provides high resolution multispectral data with
eight bands, which include four conventional bands (red,
green, blue, and near-infrared 1) and four characteristic bands
(coastal, yellow, red edge, and near-infrared 2). -e data
analyzed in this paper are Worldview-II multispectral remote
sensing image of the Sea Islands; the texture features of eight
bands are extracted. Firstly, we calibrate the data and get the
radiance data. Secondly, atmospheric correction is conducted
to eliminate the influence of atmosphere and illumination,
and the actual reflectance of surface objects is obtained. Fi-
nally, we make orthorectification on the data through a few
control points, thus eliminating the geometric distortion.

3. Compression of Multispectral Remote
Sensing Data

Principal component analysis could project the high di-
mensional data onto a low-dimensional space. It takes the
variance in size as the evaluation standard of information
quantity; the greater the variance, the more information it
provides [7, 8]. On the premise of keeping useful information
of multispectral remote sensing data, principal component
analysis could reduce the correlation and redundant in-
formation in order to compress multispectral remote sensing
data. We transform Worldview-II multispectral remote
sensing data into a column vector W as follows:

W � w1, w2, · · · , wn􏼂 􏼃T, (n � 1, 2, · · · , 8). (1)

Principal component analysis makes a combination of
W through linear transformation and guarantees that P has
the largest variance after transformation, as shown in the
following equation:

P � LTW, (2)

where L � (l1, l2, l3, · · · , ln) is the m-dimensional space to be
determined andR is the covariancematrix ofW, thereby, the
variance of P could be computed as follows:

D(P) � LTRL. (3)

-ereby, solving the maximum value of D(P) is equal to
seeking the vector L that makesD(P) the largest.-e length L
is limited to unit length, and then the question is converted to

max D(P) � LTRL,

s.t. LTL � 1.
(4)

In last equation, the covariance matrix R could be
expressed as follows:

R � Γdiag λ1, · · · λn( 􏼁 ΓT, (5)

where λ1, · · · λn is the characteristic value of R and λ1 ≥
λ2 ≥ · · · ≥ λn is satisfied. Γ � (a1, a2, · · · , an), where a1,
a2, · · · , an is the eigenvector corresponding to the unit or-
thogonal eigenvectors. Let a ∈ Rn and multiplying Equation
(5) with aT and a on the left and right side separately, we get

aTRa � aTΓdiag λ1, · · · λn( 􏼁 ΓTa. (6)

Let k � ΓTa, then aTa � kTk; Equation (6) satisfies

aTRa � kTdiag λ1, · · · λn( 􏼁 k � λ1k
2
1 + λ2k

2
2 + · · · + λnk

2
n

≤ λ1 k21 + k22 + · · · + k2n􏼐 􏼑.

(7)

Equation (4) can be rewritten as follows:

max
LTL�1

LTRL � max
kTk�1

λ1k
2
1 + λ2k

2
2 + · · · + λnk

2
n􏼐 􏼑≤ λ1. (8)

If a � a1, then aT1Ra1 � λ1, which indicates that the
maximum value of LTRL is at the point of a1 under the
condition of LTL � 1, thereby the first PCA principle
component could be expressed as p1 � aT1W. -e contri-
bution rate reflects the information quantity contained in
each principle component, and the contribution rate of the i-
th principal component could be computed as follows:

λi

tr(R)
�

λi

􏽐n
k�1λk

. (9)

-e cumulative contribution rate of the first l principal
components is as follows:

􏽐l
i�1λi

􏽐n
k�1λk

. (10)

-e contribution rate indicates the ability that principle
components reflect W. It determines the number of prin-
cipal components after compression of multispectral remote
sensing data.

4. Texture Features Extraction from
Multispectral Remote Sensing Data

4.1. Gray Level Co-Occurrence Matrix. Gray Level Co-
occurrence Matrix is the most direct and simplest texture
analysis approach, which considers the spatial structure of
remote sensing images [9]. It describes the image texture
through the two-order combined conditional probability
density among image pixels [10]. Assume the remote sensing
image is of size M × N; the gray level is L; the distance
between two pixels is d; the angle is θ; the gray levels are
separately i and j; the times that these two pixels appear
simultaneously is P(i, j, d, θ) which could be expressed as
follows:

P(i, j, d, θ) � 􏼈 x1, y1( 􏼁 , x2, y2( 􏼁􏼂 􏼃 ∣ f x1, y1( 􏼁 � i, f x2, y2( 􏼁
� j; x1, x2 � 1, 2, · · · m; y1, y2 � 1, 2, · · · n;􏼉,

(11)
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Where m and n represent the number of remote sensing
image pixels in a row and a column; i, j � 1, 2, · · · L, x1, y1,
x2, y2 are the pixel coordinates in the image. Figure 1 shows
the spatial sketchmap of GLCM. If the remote sensing image
has L picture gray levels, the size of the gray level co-
occurrence matrix is L × L, d represents the distance of
two pixels in the remote sensing image, θ represents the
angle between the connection line of the two pixels and
horizontal direction, and it is usually set as 0∘, 45∘, 90∘, and
135∘. �e element at the a-th row and b-th column in
P(i, j, d, θ) represents the appearance times of all the pixel
couples that are δ apart from each other in the θ direction,
with gray values i and j, respectively. d is related to the image,
the step is usually set as δ � 1, and the central pixel to be
operated and compared with the directly adjacent pixel.

4.2. Establishment of the Gray Level Di�erence Frequency
Spatial. Gray level di�erence frequency spatial is proposed
as a texture extraction approach for the multiprinciple
component, which is based on the Gray Level Co-occurrence
Matrix. Assume the gray level of primary gradient remote
sensing image is g; �rstly, iterate the principle components’
remote sensing image with a rectangular window which is of
size m × n. Assume Lm � 1, 2, · · · , m{ } and Ln � 1, 2, · · · , n{ }
are separately the horizontal and vertical spatial domains of
the window and G � 0, 1, · · · , g− 1{ } is the gray level. Ln ×
Lm is the windows’ pixel set with ranking sequence in the
row and column, specifying I as the conversion formula of
pixels in Ln × Lm to G:

I : Ln × Lm⟶ G. (12)

In di�erent windows of principle components’ image, the
appearance probability of the pixel couples with distance d,

direction θ, and gray level di�erence Δ composing the GLDFS
and it is named P, in which (m1Pi, n1Pi), (m2Pi, n2Pi) are
coordinates of two pixels in the i− th principal component
Ln × Lm; I(m1Pi, n1Pi), I(m2Pi, n2Pi) are gray levels corre-
sponding to the two pixels; and (m2Pi, n2Pi) locates in the θ
direction of (m1Pi, n1Pi) with distance d. �e two pixel gray
level’s di�erence is expressed as follows:

Δi � I m1Pi, n1Pi( )− I m2Pi, n2Pi( )
∣∣∣∣

∣∣∣∣, (13)

where Δi ∈ [0, g− 1]. Make statistics of the gray level dif-
ference in each principal component andmap the result to k-
dimensional space according to the distance d and direction
θ. �e coordinates of the spatial points are (Δ1,Δ2, · · · ,Δk),
and k is the number of the principle components’ remote
sensing images. Meanwhile, make statistics for each prin-
cipal component at the four directions 0∘, 45∘, 90∘, and 135∘,
thereby generating four n-dimensional spaces, and # in-
dicates the number of the elements in the space; the sta-
tistical methods are as follows:

Pk Δ1,Δ2, · · ·Δk, d, 00( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮

m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1 � 0, n1P1 − n2P1
∣∣∣∣

∣∣∣∣ � d, I m1P1, n1P1( )− I m2P1, n2P1( )
∣∣∣∣

∣∣∣∣ � Δ1
m1P2 −m2P2 � 0, n1P2 − n2P2

∣∣∣∣
∣∣∣∣ � d, I m1P2, n1P2( )− I m2P2, n2P2( )

∣∣∣∣
∣∣∣∣ � Δ2

⋮

m1Pk −m2Pk � 0, n1Pk − n2Pk

∣∣∣∣
∣∣∣∣ � d, I m1Pk, n1Pk( )− I m2Pk, n2Pk( )

∣∣∣∣
∣∣∣∣ � Δk







,

(14)

Pn Δ1,Δ2, · · ·Δk, d, 450( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮
m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1 � d, n1P1 − n2P1 � −d( ) or m1P1 −m2P1 � −d, n1P1 − n2P1 � d( ), I m1P1, n1P1( )− I m2P1, n2P1( )
∣∣∣∣

∣∣∣∣ � Δ1
m1P2 −m2P2 � d, n1P2 − n2P2 � −d( ) or m1P2 −m2P2 � −d, n1P2 − n2P2 � d( ), I m1P2, n1P2( )− I m2P2, n2P2( )

∣∣∣∣
∣∣∣∣ � Δ2

⋮
m1Pk −m2Pk � d, n1Pk − n2Pk � −d( ) or m1Pk −m2Pk � −d, n1Pk − n2Pk � d( ) I m1Pk, n1Pk( )− I m2Pk, n2Pk( )

∣∣∣∣
∣∣∣∣ � Δk







,

(15)

Pk Δ1,Δ2, · · ·Δk, d, 900( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮
m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1
∣∣∣∣

∣∣∣∣ � d, n1P1 − n2P1 � 0, m1P2 −m2P2
∣∣∣∣

∣∣∣∣ � d, n1P2 − n2P2 � 0
m1P2 −m2P2

∣∣∣∣
∣∣∣∣ � d, n1P2 − n2P2 � 0, I m1P2, n1P2( )− I m2P2, n2P2( )

∣∣∣∣
∣∣∣∣ � Δ2

⋮
m1Pk −m2Pk

∣∣∣∣
∣∣∣∣ � d, n1Pk − n2Pk � 0, I m1Pk, n1Pk( )− I m2Pk, n2Pk( )

∣∣∣∣
∣∣∣∣ � Δk







,

(16)

Pn Δ1,Δ2, · · ·Δk, d, 1350( ) � #

m1P1, n1P1( ), m2P1, n2P1( ) ∈ Ln × Lm( ) × Ln × Lm( )
m1P2, n1P2( ), m2P2, n2P2( ) ∈ Ln × Lm( ) × Ln × Lm( )

⋮
m1Pk, n1Pk( ), m2Pk, n2Pk( ) ∈ Ln × Lm( ) × Ln × Lm( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1P1 −m2P1 � d, n1P1 − n2P1 � d( ) or m1P1 −m2P1 � −d, n1P1 − n2P1 � −d( ), I m1P1, n1P1( )− I m2P1, n2P1( )
∣∣∣∣

∣∣∣∣ � Δ1
m1P2 −m2P2 � d, n1P2 − n2P2 � d( ) or m1P2 −m2P2 � −d, n1P2 − n2P2 � −d( ), I m1P2, n1P2( )− I m2P2, n2P2( )

∣∣∣∣
∣∣∣∣ � Δ2

⋮
m1Pk −m2Pk � d, n1Pk − n2Pk � d( ) or m1Pk −m2Pk � −d, n1Pk − n2Pk � −d( ) I m1Pk, n1Pk( )− I m2Pk, n2Pk( )

∣∣∣∣
∣∣∣∣ � Δk







.

(17)
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Figure 1: �e space description of the GLCM.
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4.3. Texture Features’ Description of the Gray Level Difference
Frequency Spatial. Haralick proposed Gray Level Co-
occurrence Matrix 14 properties to describe the image’s
texture features, and Sor proposed Gray Level Co-
occurrence Matrix 10 properties aiming at the SAR im-
ages [11]. But some properties are relevant, resulting in
information redundancy; besides, part of properties is not
suitable for analysis of remote sensing images’ texture fea-
tures [12–14]. -is paper makes analysis of seven texture
features with GLDFS and could be computed as follows:

(1) Energy:

T1 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Pn Δ1,Δ2, · · · ,Δn( 􏼁􏼈 􏼉2. (18)

(2) Entropy:
T2 � −􏽘

Δ1

􏽘
Δ2

· · · 􏽘
Δn

Pn Δ1,Δ2, · · · ,Δn( 􏼁

· log Pn Δ1,Δ2, · · · ,Δn( 􏼁( 􏼁.

(19)

(3) Autocorrelation:

T3 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1,Δ2, · · · ,Δn( 􏼁Pn Δ1,Δ2, · · · ,Δn( 􏼁.

(20)

(4) Correlation:

T4 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1,Δ2, · · · ,Δn( 􏼁Pn

· Δ1,Δ2, · · · ,Δn( 􏼁
−μΔ1μΔ2 · · · μΔn

σΔ1σΔ2 · · · σΔn

.

(21)

(5) Highlight degree of clustering:

T5 � 􏽘
Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1 + Δ2 + · · ·Δn − μΔ1μΔ2 · · · μΔn
􏼐 􏼑

3
Pn

· Δ1,Δ2, · · · ,Δn( 􏼁.

(22)

(6) Dark degree of clustering:
T6 � 􏽘

Δ1

􏽘
Δ2

· · · 􏽘
Δn

Δ1 + Δ2 + · · ·Δn − μΔ1μΔ2 · · · μΔn
􏼐 􏼑

4
Pn

· Δ1,Δ2, · · · ,Δn( 􏼁.

(23)

(7) -e maximum similarity:

T7 � MAX
Δ1 ,Δ2 ,···,Δn

Pn Δ1,Δ2, · · · ,Δn( 􏼁 (24)

-e energy, entropy, autocorrelation, and correlation are
the extentions of Haralick's method in high-dimensional
space, and the maximum similarity is generalization of Soh's
method, the highlight degree, and the dark degree of
clustering, which are the simulation calculations of human
perception.

5. Analysis of Experimental Results

-e experiment data are based on the multispectral remote
sensing data of 8 different bands, which were recorded by
Worldview-II on 8th April, 2009. In order to ensure the same
landform features, the reef selected by the experiment is
uncovered with plants consisting of sedimentary and
metamorphic rocks. Gray value variance has a regular
pattern when counted on space and texture feature shows up
with strong intensify as well, so this paper tests and verifies
the gray level difference frequency spatial texture feature
extracting method through the classification of landform
and compares it with the Gray Level Co-occurrence Matrix.
-e gray level difference frequency spatial and Gray Level
Co-occurrence Matrix choose worldview-II remote sensing
data of the same region which cohere well, and thus the
comparability of the experiment data is assured. Experi-
mental classification uses SVM, which is based on structural
risk minimization principle. SVM is a better solution to
small samples and nonlinear problems.

5.1. ;e Experimental Data Compression. PCA is applied to
compression of 8 different bands of Worldview-II multi-
spectral remote sensing data. In this paper, the first three
principal components are derived as the feature of the gray
level difference frequency spatial texture feature. Figure 2
shows the contribution rate as well as the cumulative con-
tribution rate of eachmain component of theWorldview-II 8-
band multispectral data after principal component analysis
transform. Figure 3 shows the three principal component
image data after principal component analysis transformation
and compression. Figure 3(a) shows the first principal
component, and the contribution rate is 74.12%. Figure 3(b)
shows the second principal component, and the contribution
rate is 22.16%. Figure 3(c) shows the third principal com-
ponent, and the contribution rate is 2.73%.

5.2. ;e Classification and Analysis of Sample Data
Experiment. Deriving the texture features of the three
principal components after being compressed with the gray
level difference frequency spatial and deriving the texture
features of the four regular bands and four special bands
which are compared separately with Gray Level Co-
occurrence Matrix, the distance d of both methods is 1;
merely comparing the gray-scale changes of the adjacent
pixel, the window size is 13 × 13. Features including energy,
self-correlation, correlation, cluster dark, and maximum
self-similarity are selected; the sample size is 1350 among
which the reef, sea, and foam samples are 350 separately.-e
SVM pattern is applied for the purpose of dividing the data
into three. -e result of landmark feature classification with
the gray level difference frequency spatial and Gray Level
Co-occurrence Matrix are shown in Tables 1 and 2. -e
recognition rate is based on the typical testing samples
randomly selected from the samples including reef, sea,
and foam data. Calculating the percentage of correct
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identi�cation number for each landmark class with its
corresponding total samples, the average value is the right
recognition number of the three types of landmarks with the

gross sample number. It can be �gured out that the gray level
di�erence frequency spatial is capable of dealing with three
types of landmark features at the same time and has better

1.2

1

0.8

0.6

0.4

0.2

0
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Contribution rate for various components
Accumulative contribution rate for the
first n principal component

Figure 2: �e contribution rate and the cumulative contribution rate of each principal component.

(a) (b)

(c)

Figure 3: Image after PCA transformation and compression: (a) �rst principal component, (b) second principal component, and (c) third
principal component.
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Table 1: -e recognition rate of GLDFS and GLCM of conventional bands.

Recognition rate (%) Blue band Green band Red band Near-infrared 1 band Principal component data
GLCM of conventional bands GLDFS

Reef 60.2 64.6 62.9 79.8 89.3
Seawater 72.3 50.3 34.2 18.9 92.8
Foam 81.2 79.4 49.6 89.3 70.7
Average 65.4 71.3 30.9 62.4 85.9

Table 2: -e recognition rate of GLDFS and GLCM of characteristic bands.

Recognition rate (%) Coastal band Yellow band Infrared band Near-infrared 2 band Principal component data
GLCM of characteristic bands GLDFS

Reef 70.1 64.3 91.4 95.4 93.1
Sea 69.3 30.4 39.8 2.8 94.5
Foam 74.9 49.8 7.9 93.8 69.8
Average 63.2 55.2 54.6 71.2 83.6

(a) (b)

(c) (d)

Figure 4: Continued.
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recognition efficiency and quality than traditional Gray
Level Co-occurrence Matrix.

-e classification using the gray level difference fre-
quency spatial and the classification using Gray Level Co-
occurrence Matrix in conventional bands and characteristic
bands of processing results about principal component data
can be seen from Figure 4. In Figure 4, black indicates the
reef, dark gray indicates foam, and light gray indicates sea.

Figures 4(a)–4(d) are the classification result of conventional
bands of the Gray Level Co-occurrence Matrix. Figures
4(e)–4(h) are the classification result of characteristic bands
of the Gray Level Co-occurrence Matrix. Figure 4(i) is the
classification result of the principal component data of the
gray level difference frequency spatial. -is paper presents
a method named the gray level difference frequency spatial
for the principal components data processing and has

(e) (f )

(g) (h)

(i)

Figure 4:-e classification processing results of GLDFS in conventional bands and characteristic bands and GLCM in principal component
data: (a) blue band, (b) green band, (c) red band, (d) near-infrared 1 band, (e) coastal band, (f ) yellow band, (g) infrared band, (h) near-
infrared 2 band, and (i) principal component data.
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a better classification results with three kinds of surface
features. -e method of Gray Level Co-occurrence Matrix
has poor identification with reef when it is processing blue
bands and coastal bands, and some island and reef are
identified as foam mistakenly; when green bands and yellow
bands is processing, the identification to seawater is poor,
some seawater is identified as reef and island mistakenly;
when red band and red edge band are processing, the
identification to seawater and foam is poor, some seawater
and foam is identified as reef and island mistakenly; when
No. 1 and No. 2 bands of near-infrared are processing,
seawater is identified as foam. -e method of Gray Level
Co-occurrence Matrix has high recognition to some
landmark, but for the multilandmarks of multispectral
remote sensing data, it cannot be guaranteed to have higher
recognition rate in classification. If a variety of surface
landmarks is classified, the single-band data need to be
processed separately. In the experiment, texture features
are extracted from the conventional band and special band
data using Gray Level Co-occurrence Matrix method and
from the principal component data using gray level dif-
ference frequency spatial method. -e extracted results are
processed and used as SVM input variables of multi-
landmark classification. Finally, the classification time
consumption is compared and analyzed. -e efficiency of
texture feature extracted by two methods using SVM
classification is as shown in Table 3, and the results show
that the gray level difference frequency spatial to the main
component of compressed data has better efficiency in
ensuring a higher recognition rate, but takes long time. -e
main reason is that the conventional band and special
bands contain four bands of data; Gray Level Co-
occurrence Matrix requires processing individual band
and makes the results of 4 bands as SVM input variables to
multilandmark classification. Due to the increased di-
mension of the input variables, the efficiency of calculation
of SVM is reduced and the classification time becomes
longer.

6. Conclusions and Discussions

According to theWorldview-II multispectral remote sensing
data, this paper proposed a texture feature method based on

gray-scale difference in space-frequency. -is method
compresses the multispectral remote sensing data after
having it disposed, carries out gray-scale statistic on the
main components after the compression process, and builds
the gray-scale frequency difference spacemodel.-emethod
is validated by taking the data collected by Worldview-II.
From the results, it can be seen that the gray level difference
frequency spatial can extract texture features and recognize
and classify multiband, multi-landmark, and multi-spectral
remote sensing data at the same time and has an advantage
over tradition Gray Level Co-occurrence Matrix on con-
sideration of both recognition efficiency and quality.
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1e preliminary atom set exits redundant atoms in the stochastic gradient matching pursuit algorithm, which affects the accuracy
of the signal reconstruction and increases the computational complexity. To overcome the problem, an improved method is
proposed. Firstly, a limited soft-threshold selection strategy is used to select the new atoms from the preliminary atom set, to
reduce the redundancy of the preliminary atom set. Secondly, before finding the least squares solution of the residual, it is
determined whether the number of columns of the measurement matrix is smaller than the number of rows. If the condition is
satisfied, the least squares solution is calculated; otherwise, the loop is exited. Finally, if the length of the candidate atomic index set
is less than the sparsity level, the current candidate atom index set is the support atom set. If the condition is not satisfied, the
support atom index set is determined by the least squares solution. Simulation results indicate that the proposed method is better
than other methods in terms of the reconstruction probability and shorter running time than the stochastic gradient matching
pursuit algorithm.

1. Introduction

Compressed sensing (CS) [1, 2] theory has three core
problems: sparse representation of signals, and design of the
measurement matrix, and design of reconstruction algo-
rithms. 1e reconstruction algorithm is directly related to
the accuracy of the recovery signal and the convergence rate
of the algorithm, which determines whether the theory is
feasible. 1e recovery algorithm is described as the recovery
of the high-dimensional original signal from the low-
dimensional measurement vectors. At present, many re-
construction algorithms have been proposed to recover the
signal, which include convex optimization methods, com-
binational methods, and greedy pursuit methods. Convex
optimization methods approximate the signal by trans-
forming nonconvex problems into convex ones, which in-
clude basis pursuit (BP) [3], the gradient projection for
sparse reconstruction (GPSR) [4] algorithm, iterative
threshold (IT) [5], interior-point method [6], Bergman it-
eration (BT) [7], and total variation (TV) [8]. Although

convex optimization algorithms have fewer observations,
their higher complexity is not suitable for practical
applications.

Combinational methods include Fourier sampling
[9,10], chaining pursuit (CP) [11], heavy hitters on steroids
pursuit (HHSP) [12]. Combinational methods are low in
complexity; however, the accuracy of the recovery signal is
not as good as convex optimization algorithms. Greedy
algorithms have many advantages, such as simple structure,
fast convergence, and low complexity, becoming the first
choice for the recovery algorithm.

To date, many greedy pursuit algorithms have been
proposed, including the first, the matching pursuit (MP) [13]
algorithm. Based on this algorithm, the orthogonal matching
pursuit (OMP) [14] algorithm was proposed to optimize MP
via orthogonalization of the atoms of the support set.
However, the OMP algorithm only selects one of the atoms
of the support set at each round of iteration, and the effi-
ciency is lower. Successors include the regularized OMP
(ROMP) [15], subspace pursuit (SP) [16] algorithm,
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compressive sampling matching pursuit (CoSaMP) [17, 18]
algorithm, and stagewise OMP (StOMP) [19] algorithm.1e
ROMP algorithm realizes the effective selection of the atom
via the regularized rule, to improve the speed of the OMP.
1e SP and CoSaMP algorithms are similar. Both are
proposed with the backtracking strategy. 1e difference
between the SP and CoSaMP is the number of atoms that are
selected from measurement matrix to compose preliminary
atomic set in each round of iteration. 1e SP selects s atoms,
while the CoSaMP selects 2s atoms. 1e StOMP algorithm
selects multiple atoms or columns of the measurement
matrix in each round of iteration via a threshold parameter.
1e greedy algorithms mentioned above all require the
sparsity information of the signal, and the choice of the type
of atoms is inflexible, which affects the convergence speed,
robustness, and reconstruction performance of the
algorithms.

Because the traditional greedy pursuit algorithm needs
to compute the inverse matrix of the sensing matrix, this
process requires a significant amount of computation time
and storage space, resulting in lower reconstruction prob-
ability. In recent years, some research workers have pro-
posed the fast version of the greedy algorithm, which avoids
computation of the inverse matrix [20]. 1e GP algorithm
uses the gradient idea of the unconstrained optimization
method to replace the computation of the inverse matrix and
to reduce the computational complexity and storage space of
the traditional greedy algorithms [21]. However, the GP
algorithm has a slow convergence and lower efficiency. In
addition, the GP algorithm cannot solve the problem of
large-scale data recovery. To improve those problems, the
conjugate gradient pursuit (CGP) [22] algorithm and ap-
proximate conjugate gradient pursuit (ACGP) [23] algo-
rithm are proposed, respectively. Although CGP and ACGP
algorithms effectively reduce the computational complexity
and storage space of traditional greedy algorithms, the re-
construction performance still needs to be improved. Based
on the GP algorithm, the stagewise weak selection (SWGP)
[24] algorithm was proposed to improve the reconstruction
performance and convergence speed of the GP algorithm,
via introduction of the conjugate direction and weak se-
lection strategy. Motivated by the stochastic gradient descent
methods, the stochastic gradient matching pursuit (StoG-
radMP) algorithm [25] was recently proposed for the op-
timization problem with sparsity constraints. 1e atomic
selection method of the fixed number in the StoGradMP
algorithm (that is, selecting 2s atoms at the preliminary stage
of each iteration) will lead to the redundant atoms of the
preliminary atomic set. When joined with the candidate
atomic set, this will reduce the accuracy of the least squares
solution and the inaccuracy of the support atomic set es-
timation, which affects the precision of the signal re-
construction and increases the computational complexity of
the algorithm. In this study, we use the limited soft-
threshold selection strategy to realize the second selection
of the preliminary atom set after the preliminary stage,
which will improve the reconstruction accuracy. 1e
combination with reliability verification conditions ensures
the correctness and effectiveness of the proposed method.

2. Compressed Sensing Theory

1e recent work in the area of the compressed sensing [26]
demonstrated that it was possible to algorithmically recover
sparse (and, more generally compressible) signals from
incomplete observations. 1e simplest model is an n-di-
mensional signal x with a small number of nonzero entries
under no noise conditions:

x ∈ Rn, ‖x‖0 ≤ s≤ n, (1)

where ‖x‖0 and s are the number of nonzero entries and
sparsity level of the signal, respectively. Such signals are
called s-sparse. Any signal in Rn can be represented in terms
of n × 1 vectors ψi􏼈 􏼉n

i�1. For simplicity, we assume that the
basis is orthonormal. Forming the n × n basis matrix Ψ �
[ψ1,ψ2, . . .ψn] by stacking the vectors ψi􏼈 􏼉 as columns, we
can express any signal x as

x � 􏽘
n

i�1
θiψi � Ψθ, (2)

where θ � ΨTx is the n × 1 column vector of projection
coefficients, θi � 〈x,ψi〉 � ψT

i x is the projection coefficient.
Obviously, x and θ are the equivalent representations of the
same signals in the different domains.1at is, x and θ are the
signals in the time domain and Ψ domain, respectively.

When x is s-sparse, let Ψ � I, I is the unit matrix, and
x � θ. We use a measurement matrix Φ ∈ Rm×n(m≤ n) to
make a linear measurement of the projection coefficient
vector θ, obtaining an observation vector y ∈ Rm×1,
expressed as

y � Φx, (3)

where Equation (3) is a linear projection of the original
signals x on Φ. Note that the measurement process is
nonadaptive; that is, Φ does not depend in any way on the
signal x. Clearly, the dimension of y is much lower than the
dimension of x. 1at is, this problem is an under-
determined problem; Equation (3) has infinitely many so-
lutions. It is difficult to recover the projection coefficient
vector θ directly from the observation vector y. However, the
original signal x is s-sparse andΦ satisfies certain conditions
in Equation (3); x can be recovered by solving the
l0-minimization problem:

min
x

‖x‖0,

s.t. Φx � y,
(4)

where ‖.‖0 is the l0-norm of the vector, representing the
number of nonzero entries. Candes and Tao demonstrated
that if the s-sparse signal x is to be accurately recovered, the
number of measurements m (or the dimension of obser-
vation vector y) must satisfy m � O(s ln(n)), and the
measurement matrix must satisfy the restricted isometric
property (RIP) [27, 28].

When x is not s-sparse in the time domain, the signal
recovery process cannot be directly used in the Equation (4).
1e signal x can be sparse representations on the sparse basis
matrix Ψ. Combining Equations (2) and (3), we obtain
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y � ΦΨTx � 􏽥Φθ, (5)

where 􏽥Φ � ΦΨT ∈ Rm×n is the sensing matrix [29].
According to [30], the equivalent condition of the RIP is that
the measurement matrix Φ is not correlated with the sparse
basis matrixΨ. Note that if the sensing matrix 􏽥Φ also satisfies
the RIP, the recovery signal (or projection coefficient) θ can
be obtained by solving an optimal l0-norm problem similar
to Equation (4):

min
θ

‖θ‖0,

s.t. 􏽥Φθ � y.
(6)

From Equation (5), we see that Ψ is fixed, so that Φ also
satisfies the RIP. 1e measurement matrix Φ must meet
certain conditions. It is shown in [31] that when the mea-
surement matrix is a Gaussian random matrix, the sensing
matrix 􏽥Φ can satisfy the RIP condition with a larger
probability.

However in most scenarios, the signal contains noise. In
this case, the measurement process can be expressed as

y � 􏽥Φθ + e, (7)

where the m × n matrix 􏽥Φ is the sensing matrix and e is the
m-dimensional noise vector. θ is the s-sparse signal in the Ψ
domain. In this study, for simplicity, we assume that the
signal x is s-sparse, that is, x � θ and Φ � 􏽥Φ. 1erefore,
Equation (7) can be written as y � Φx + e, and we minimize
the following formula to recover x:

min
x∈Rn

1
2m

‖y−Φx‖22,

s.t. ‖x‖0 ≤ s,

(8)

where s controls the sparsity of the solution to Equation (9).
To analyze (8), we combine Equation (2), where θi are the

projection coefficients of signal x. x is considered sparse with
respect to Ψ if s is relatively small compared to the ambient
dimension n. 1erefore, we can express the optimization (9)
in the form as follows:

min
x

1/M 􏽘
M

i�1
fi(x)

􏽼√√√√√􏽻􏽺√√√√√􏽽
F(x)

,

s.t. ‖x‖0,Ψ ≤ s,

(9)

where fi(x), x ∈ Rn, is a smooth function that is nonconvex;
‖x‖0,Ψ is defined as the norm that captures the sparsity level
of x. In particular, ‖x‖0,Ψ is the smallest number of atoms in
Ψ such that x can be represented as

‖x‖0,Ψ � min
x

s : x � 􏽘
i∈T

θiψi with |T| � s
⎧⎨
⎩

⎫⎬
⎭. (10)

For sparse signal recovery, the set Ψ consists of n basic
vectors, each of size n in the Euclidean space. 1is problem
can be seen as a special case of Equation (10), with fi(x) �
(yi − <φi, x>)2 and M � m. We decompose the vector ym×1

into nonoverlapping vectors ybi
with a size of b and denote

Φbi
as Φbi×n. Φbi×n is the submatrix of measurement matrix
Φ. According to Equation (9), the objective function is
F(x) � (1/2m)‖y−Φx‖22. We then denote F(x) as

F(x) �
1

M
􏽘
M

i�1

1
2b

ybi
−Φbi

x
�����

�����
2

2
�Δ

1
M

􏽘
M

i�1
fi(x), (11)

where M � m/b, which is a positive integer. We treat each
function fi(x) as fi(x) � (1/2b)‖ybi

−Φbi
x‖22, and each

function fi(x) represents a collection (or block) of obser-
vations of size b. Here, we spilt the function F(x) into
multiple subfunctions fi(x) or block the measurement
matrix Φ into the submatrix Φbi

, which will be beneficial for
the calculation of the gradient.

3. StoGradMP Algorithm

CoSaMP [17] is a popular algorithm for recovering a sparse
signal from its linear measurements.1e idea of the CoSaMP
algorithm is generalized to prove the GradMP algorithm that
solves a broader class of sparsity-constrained problems. In
this section, we describe the stochastic version of the
GradMP, the StoGradMP [25] algorithm, where at each
iteration, only the evaluation of the gradient of a function fi
is required.

1e StoGradMP algorithm is described in Algorithm 1,
which consists of the following steps in each iteration:

Randomize. 1e measurement matrix Φ is subject to
random block processing, to determine the region of
the submatrix Φbi×n. 1en, according to Equation (11),
calculates the subfunction fik

(xk).
Proxy. Compute the gradient of fik

(xk). Here, the
gradient is an n × 1 column vector.
Identify. Select the column indexes of the submatrix
Φbi×n corresponding to themaximum 2s components in
the gradient vector, forming a preliminary index set Sk.
Merge. Merge the preliminary index set Sk and the
support index set Fk−1 of the previous iteration to form
a candidate index set Ck.
Estimation. 1e estimation of signal bk by a sub-
optimization method is determined, which is the least
squares method. Generally, bk is the transition signal.
Prune. Select the column indexes of the measurement
matrix Φ corresponding to the maximum s compo-
nents in the signal estimation vector bk that forms
a support index set F.
Update. Update the signal estimation 􏽢x � xk.
Check. When the residual is less than the tolerance
error of the proposed method iteration, stop the it-
eration. If the loop index k is greater than the max-
imum number of iterations s, the proposed method
ends and the approximation of signal 􏽢x � xk is output.
If the iteration ends, the condition is not satisfied.
Otherwise, continue the iteration until the halting
condition is met.
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4. Improved StoGradMP Algorithm

1e StoGradMP algorithm selects 2s atoms in each iteration,
where s is a fixed number. 1e choice of atoms is inflexible
and will increase the redundancy of the preliminary atom
set. 1is affects the reconstruction and computational speed.
To solve this problem, we use the limited soft selection
strategy to select atoms from the preliminary atom set.

Firstly, according to Equation (11), we randomly block
the measurement matrix to obtain a stochastic block matrix
(or submatrix) Φblock×n, which can be expressed as

ii � ceil(rand∗M),
block � b∗(ii− 1) + 1 : b∗ ii,

(12)

where M is the number of the block measurement matrix,
M � floor(m/b), and b � min(s, m) is the number of rows of
the block matrix. floor(.) and rand(.) generate a maximum

integer smaller than m/b and uniformly distributed pseu-
dorandom numbers, respectively. ceil(.) obtains a minimum
integer greater than rand∗M. block is the row index of the
measurement matrix Φ. From Equation (12), we know that
the area of the block matrix is randomly determined. For
simplicity, we express Φblock×n and yblock as Φbi

and ybi
,

respectively. Next, we compute the subfunction fi(x) as
follows:

fik
xk( 􏼁 �

1
2b

ybik
−Φbik

xk− 1

������
������
2

2
, (13)

where k is the number of iterations, i ∈ [M]. Φbi
is the i-th

submatrix of the measurement matrix Φ, which is sto-
chastically determined and of size bi × n. 1e subfunctions
fi(x) are also stochastically determined, and fi(x) ∈ F(x).
Here, fi(x) is the i-th subfunction of F(x).

After determining the area of submatrix Φbi
and the

subfunction fi(x), we calculate the gradient of the sub-
function, which is expressed as

rk � ∇fik
xk( 􏼁 � −2∗Φbik

T ybik
−Φbik

xk−1􏼒 􏼓, (14)

where rk is the gradient of the subfunction fi(x) at the k-th
iteration and the gradient is an n × 1 column vector.∇(.) and
Φbi

T represent the derivative of the subfunction fi(x) and
the transpose matrix of submeasurement matrix Φbi

, re-
spectively. xk−1 is the approximation of sparse signal x at the
k− 1-th iteration.

In the atomic preliminary selection stage of the sto-
chastic algorithm, we obtain the gradient vector of the
function through the derivation of randomly determined
subfunctions, and then select the 2s largest gradient values
from the gradient vector rk, thereby determining the column
index of the measurement matrix corresponding to the
values of the gradient vector, and form a preliminary atom
index set Sk as

Sk � max rk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, 2s􏼐 􏼑, (15)

where |rk| is the absolute value of the gradient vector rk, k is
the number of iterations, and max(|rk|, 2s) is the atomic (or
column) index of the measurement matrix corresponding to
the maximal value from rk that forms a preliminary atom
index set Sk.

After the preliminary atomic stage, the preliminary
atomic set exits the redundant atoms, which will reduce the
accuracy of the least square solutions of signal and the
inaccuracy of the support atomic set estimation. 1is will
eventually affect the precision of signal reconstruction, and
increase the computational complexity of the algorithm. To
improve the reconstruction accuracy, we use the limited
soft-threshold selection strategy to realize the second se-
lection of the preliminary atom set.

In the atomic index set Sk, the atoms corresponding to
the index are expressed as Γ, Γ � [Γ1, Γ2, . . . Γ2s]. We select
the atoms that are larger than the threshold in the atomic
set Γ, to form a new atomic set. 1e index of the new atomic
set forms the new atomic index set S∗k . 1is process is
described as

Input:
Sparsity level s
Sensing matrix Φm×n

Observation vector ym×1

Block size b
Tolerance used to exit loop tol
Maximum number of iterations maxIter

Initialization parameter:
􏽢x � 0 {initialize signal approximation}
k � 0 {loop index}
done � 0 {while loop flag}
S0 � ∅ {empty preliminary index set}
C0 � ∅ {empty candidate index set }
F0 � ∅ {empty support index set}
M � floor(m/b) {number of block}

While (∼done)
k � k + 1

(1) Randomize
ii � ceil(rand∗M)
block � b∗(ii− 1) + 1 : b∗ ii
fik

(xk) � (1/2b)‖ybik
−Φbik

x‖2
2(2) Computation of gradient

rk � ∇fik
(xk) � −2∗Φbik

T(ybik
−Φbik

xk−1)
(3) Identify the large 2s components

Sk � max(|rk|, 2s)
(4) Merge to update candidate index set

Ck � Fk−1 ∪ Sk
(5) Signal estimation by the least square method

bk � ΦCk

+y
(6) Prune to obtain current support index set

F � max(|bk|, s)
(7) Update

xk � bkF
Fk � F

(8) Check the iteration condition
If (‖y−Φxk‖2≤ tol or k≥maxIter)
done� 1 quit iteration

end
end
Output: 􏽢x � xk (s-sparse approximation of signal x)

ALGORITHM 1: StoGradMP algorithm.
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sigma � max rk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

S∗k � Find rk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌2s≥ t∗ sigma􏼐 􏼑,

(16)

where sigma is the maximum gradient value at the k-th
iteration. ‖rk‖2s represents the largest 2s gradient values from
the absolute value of the gradient vector, which corresponds
to the atomic index set Sk. t is the threshold, whose value
range is generally [0.1 ∼ 1.0]. It should be noted that if the
size of the threshold t is greater than 1, the soft-thresholds
selection strategy fails. 1at is to say that the selection of the
preliminary atomic index set S∗k cannot be completed.
Meanwhile, if the value of the threshold t is too small, it will
lead to the redundant atoms cannot be effectively eliminated
in the preliminary atomic set. t∗ sigma is the soft-thresholds
selection strategy. Find(.) searches the corresponding index
that satisfies the soft-threshold condition and forms a new
atomic index set S∗k .

After the soft-threshold selection strategy is completed,
we merge the new atomic setΦS∗k

and the support setΦFk−1
to

update the candidate atom set ΦCk
, which can be expressed

as

Ck � Fk−1 ∪ S∗k ,

ΦCk
� ΦFk− 1

∪ ΦS∗k
,

(17)

where Ck, Fk−1, and S∗k represent the candidate atomic in-
dex set, the support atomic index set, and the prelimi-
nary atomic index set, respectively. ΦCk

is the candidate
atomic set at the k-th iteration. ΦFk−1

is the support atomic
set at the previous iteration. ΦS∗k

is the new atomic set
corresponding to atomic index set S∗k at the k-th iteration.

Before solving the suboptimization method, we must
ensure that the number of rows is greater than the number of
columns in the candidate atomic matrix ΦCk

; that is, ΦCk
is

a full column-rank matrix. 1erefore, we provide the first
reliability verification condition; that is, if

length Ck( 􏼁 ≤ m, (18)

then

Ak � ΦCk
, (19)

where Ak is the candidate atomic set (or matrix) at the k-th
iteration. If the condition is not satisfied, namely, the
number of rows is smaller than the number of columns, the
matrix is not inversed. If this occurs, we exit the loop. Let
bk � 0. Next, solving the least squares solution of the sparse
approximation signal 􏽢x, it can be expressed as

bk � A+
Ck

y, (20)

where bk is the estimation vector of the sparse signal x at the
k-th iteration. 1is is known as the transition signal. A+

Ck
is

the inverse matrix of the candidate atomic set (or matrix),
and y is the observing vector.

Since the soft-threshold selection strategy is used to
complete the second selection of the preliminary atomic set,
the size of the candidate atomic index set Ck may be less than
s. 1erefore, to ensure the correctness and effectiveness of

the proposed method, we provide the second reliability
verification condition, that is, if

length Ck( 􏼁 < s, (21)

then

F � Ck, (22)

where s is the size of sparsity of the signal. length(Ck) is the
size of the candidate atomic index set Ck. If

length Ck( 􏼁 ≥ s, (23)

then

F � max bk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, s􏼐 􏼑, (24)

where |bk| is the absolute value of the transition signal at the
k-th iteration. max(|bk|, s) determines the atomic (or col-
umn) index of the measurement matrix corresponding to
the maximum value from bk and the former support atomic
index set F.

Next, we update the approximation of sparse signal x,
which is expressed as

xk � bkF, (25)

where xk is the approximation of the signal at the k-th it-
eration, and bkF is the recovery signal corresponding to the
support atomic index set F.

Finally, we check the iteration stopping condition. If

y−Φxk

����
����2< tol or k≥maxIter, (26)

then

done � 1, (27)

where y−Φxk represents the residual at the k-th iteration
and tol is the tolerance error of the algorithm iteration.
max Iter is the maximum number of iteration, with special
value 500∗M in this study. done � 1 represents the algo-
rithm stops and outputs the signal approximation 􏽢x � xk. If
the iteration stopping criteria is not satisfied, then the it-
eration is continued until the condition is satisfied. 1e
entire procedure is shown in Algorithm 2.

5. Results and Discussion

In this section, we used the signal with s-sparsity as the
original signal. 1e measurement matrix is randomly gen-
erated with a Gaussian distribution. All performance is an
average after running the simulation 100 times using
a computer with a quadcore, 64-bit processor, and 4G
memory.

In Figure 1, we compare the reconstruction probability
of different sparsity of the proposed algorithm with different
measurements in different threshold conditions. We set the
sparsity level set as s ∈ [8, 12, 16, 20]. 1e threshold pa-
rameter set is t ∈ [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].
From Figures 1(a)–1(e), we can see that when the size of the
threshold parameter is 0.1, 0.2, 0.3, 0.4, and 0.5, the re-
construction probability of the proposed method is very
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close, with almost no difference. In Figure 1(f), when the size
of the threshold parameter is 0.6, the proposed method can
complete signal reconstruction with less measurements,
compared with other thresholds, when the size of sparsity is
16 and 20. In Figures 1(g)–1(j), we see that when the size of
the threshold is 0.7, 0.8, 0.9, and 1.0, the proposed method
requires more measurements to complete the signal re-
construction under the same sparsity level.

Figure 2 compares the reconstruction probability of
different measurements of the proposed method with dif-
ferent thresholds under the same sparsity level. We set the
sparsity set as s � [8, 12, 16, 20]. 1e threshold parameter set
is consistent with the threshold parameter set in Figure 1.
From Figure 2, we see that different threshold parameters
have certain influences on the reconstruction probability of
the signal for different sparsity levels. In Figures 2(a) and
2(b), we can see that when the sparsity levels are s � 8 and
s� 12, the reconstruction probability of all thresholds
conditions is very close, except for the thresholds 0.8, 0.9,
and 1.0. Meanwhile, from Figures 2(c) and 2(d), we can see
that when the sparsity levels are s� 16 or s� 20 and the sizes
of the threshold are 0.5, 0.6, and 0.7, the reconstruction
performance of the proposed method is better than the
reconstruction probability of the other thresholds for dif-
ferent measurements. 1erefore, from Figure (2), it dem-
onstrates that the soft-threshold strategy is more
advantageous for larger sparsity. In particular, when the
sparsity level s� 20 and threshold t� 0.6, the reconstruction
probability of the proposed method is better than the re-
construction probability of other threshold conditions.
Based on the analysis of Figures 1 and 2, we can see that that
when the threshold is t� 0.6, the proposedmethod has better
performance. 1erefore, in the following simulations, we set
the threshold as 0.6.

In Figure 3, we compared the average runtime of dif-
ferent thresholds of the proposed algorithm with different
measurements. From Figures 1 and 2, we see that the re-
construction probability of the proposed method is 100%
when the number of the measurements is greater than or
equal to 145. In particular, when the sparsity level is s� 20
and the threshold is 0.6, the reconstruction probability is
better than the reconstruction probability of other thresh-
olds. 1erefore, we set the range of the number of the
measurements as [145 200] in the simulation of Figure 3.
From this, we see that the proposed algorithm with t � 0.8
has the shortest runtime, and the next shortest are the
proposed algorithm with t � 0.7 and the proposed algorithm
with t � 0.6. 1e proposed method with t � 0.9 has the
longest runtime. 1is means that the selection of the
threshold parameter t is important to the runtime of the
proposed method.

From the aspects of reconstruction probability and
runtime of the proposed method, we conclude that when the
size of threshold parameter is t� 0.6 and the sparsity level is
s� 20, reconstruction performance of the proposed method

Input:
Sparsity level s
Sensing matrix Φm×n

Observation vector ym×1

Block size b
Tolerance used to exit loop tol
Maximum number of iterations maxIter

Initialize parameter:
􏽢x � 0 {initialize signal approximation}
k � 0 {loop index}
done � 0 {while loop flag}
S0 � ∅ {empty preliminary index set}
C0 � ∅ {empty candidate index set}
F0 � ∅ {empty support index set}
M � floor(m/b) {number of block}

While (∼done)
k � k + 1

(1) Randomize
ii � ceil(rand∗M)
block � b∗(ii− 1) + 1 : b∗ ii
fik

(xk) � (1/2b)‖ybik
−Φbik

xk−1‖
2
2(2) Computation of gradient

rk � ∇fik
(xk) � −2∗Φbik

T(ybik
−Φbik

xk−1)
(3) Identify the large 2s components

Sk � max(|rk|, 2s)
(4) Soft-threshold selection strategy
sigma � max(|rk|)
S∗k � Find(||rk||2s≥ t∗ sigma)

(5) Merge to update the candidate index set
Ck � Fk−1 ∪ S∗k
Reliability verification conditions 1
If length(Ck)≤m
Ak � ΦCk

else
if k �� 1

bk � 0
end
break;

end
(6) Estimation of signal by least square method

bk � A+
Ck

y
(7) Prune to obtain current support index set
Reliability verification conditions 2
If (length(Ck)< s)

F � Ck
else

F � max(|bk|, s)
end

(8) Update
xk � bkF
Fk � F

(9) Check the iteration stopping condition
If (‖y−Φxk‖2 < tol or k≥maxIter)
done� quit iteration

end
end
Output: 􏽢x � xk(s-sparse approximation of signal x)

ALGORITHM 2: Proposed algorithm.
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Figure 1: Reconstruction probability of di�erent sparsity with di�erent measurements in di�erent threshold conditions (n � 256,
s ∈ [8, 12, 16, 20], t ∈ [0.1 1.0], Gaussian signal).
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is better than the reconstruction performance of the other
threshold conditions for di�erent measurements. �erefore,
in the following without special instructions, the default
threshold is 0.6 and the sparsity level is s� 20.

In Figure 4, we compared the reconstruction perfor-
mance of the proposed algorithm in the single re-
construction. From Figure 4, we see that the recovery error is
less than 5 × 10−15, which is much less than the tolerance
error of the proposed method iteration. �is shows that the
reconstruction of the proposed method is ideal.

In Figure 5, we compare the reconstruction probability
of di�erent sparsities of the proposed method and the
StoGradMP in di�erent measurements. We set the sparsity
set as s � [8, 12, 16, 20]. �e size of the threshold is 0.6. From
Figure 5, we see that when the sparsity level is s � 8, the
reconstruction probability of the proposed algorithm and
the StoGradMP algorithm is nearly identical for all mea-
surements. When the sparsity level is s� 8, the re-
construction probability of the StoGradMP algorithm and
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Figure 3: �e average running time of di�erent thresholds of the
proposed algorithm with di�erent measurements (s� 20, n� 256,
t ∈ [0.4 0.9], Gaussian signal).
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Figure 2: Reconstruction probability of di�erent thresholds with di�erent measurements in di�erent sparsity conditions (n � 256,
t ∈ [0.1 1.0], s ∈ [8, 12, 16, 20], Gaussian signal).
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the proposed algorithm is nearly identical. When s� 12, 16,
and 20, the reconstruction probability of the proposed
method is higher than the StoGradMP algorithm under the
same sparsity level. Among them, when the sparsity level
s� 20, the di�erence between the reconstruction probability
of the two algorithms is the largest.

In Figure 6, we compared the reconstruction probability
of the proposed algorithm with StoGradMP, GradMP, and
StoIHT algorithms for di�erent measurements. From Fig-
ure 5, we see that the reconstruction probability is 0% when
the sparsity is equal to 20 and the number of the mea-
surements is smaller than or equal to 40. �erefore, we set
the range of the measurements as [40 130] in the simulation
of Figure 6. From Figure 6, we see that when 40≤m≤ 46, the
reconstruction probability of almost all algorithms is equal
to 0%. For 46≤m≤ 64, the reconstruction probability of the
proposed algorithm ranges from 0 to 97% and has a higher
reconstruction probability than other methods. When

56≤m≤ 64, the reconstruction probability of t GradMP
begins to increase, from approximately 0% to 97%, while the
reconstruction probability ranges from 0 to 51%, and the
reconstruction probability is 0%. When 64≤m≤ 73, the
reconstruction probability of the proposed method and
StoGradMP ranges from to 97–100% and 51–100%, re-
spectively. However, the reconstruction probability of the
GradMP algorithm declines from 98% to 82%. When
73≤m≤ 108, the reconstruction probability of the GradMP
algorithm increases from 82% to 100% and the re-
construction probability of the proposed method and
StoGradMP algorithm is 100%, with almost no change.
However, the reconstruction probability of the StoIHT al-
gorithm is still 0%. When 108≤m≤ 120, the reconstruction
probability of the StoIHT is increased from 0% to 100%.
When 120≤m, all algorithms can complete the
reconstruction.

In Figure 7, we compare the average runtime of di�erent
algorithms for di�erent measurements. From Figure 6, we
see that the reconstruction probability of all recovery
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algorithms is 100% when the sparsity is equal to 20 and the
number of measurements is greater than or equal to 120.
1erefore, we set the range of the number of the mea-
surements as [120 250] in the simulation of Figure 7, and
the sparsity level is equal to 20. We see that the GradMP
algorithm has the lowest runtime, and the next lowest are
the StoIHT and proposed algorithms. 1e StoGradMP
algorithm has the highest running time. From Figures 6
and 7, we see that although the runtime of the proposed
method is much more than the GradMP and StoIHT al-
gorithms, its reconstruction probability is much better than
the other two algorithms. 1is means that the proposed
algorithm has lower complexity than other algorithms,
except for the GradMP and StoIHT algorithms in different
measurements.

Based on the above analysis, the proposed method with
threshold t � 0.6 has better reconstruction performance for
different measurements than others and lower computa-
tional complexity than StoGradMP.

6. Conclusion

In this study, an improved reconstruction method was
proposed. 1e proposed method utilizes the limited soft-
threshold selection strategy to select the most relevant atoms
from the preliminary atom set, which could reduce the
redundancy of the preliminary atoms set and improve the
accuracy of the support atom set estimation, thereby im-
proving the reconstruction precision of the signal and re-
ducing the computational complexity of the algorithm. In
addition, the combination with reliability verification con-
ditions ensured the correctness and effectiveness of the
proposed method. 1e simulation results proved that the
proposed method has better performance than other re-
covery methods.
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vol. 17, no. 4, pp. 1433–1452, 2006.

[27] E. J. Candes and T. Tao, “Near-optimal signal recovery from
random projections: universal encoding strategies?,” IEEE
Transactions on Information +eory, vol. 52, no. 12,
pp. 5406–5425, 2006.

[28] E. J. Candes and T. Tao, “Decoding by linear programming,”
IEEE Transactions on Information +eory, vol. 51, no. 12,
pp. 4203–4215, 2005.

[29] R. G. Baraniuk, “A lecture on compressive sensing,” IEEE
Signal Processing Magazine, vol. 29, no. 4, pp. 1–9, 2007.

[30] R. Baraniuk, “Compressive sensing,” in Proceedings of 42nd
Annual Conference on Information Sciences and Systems,
pp. 1–9, Princeton, NJ, USA, March 2008.

[31] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery
from incomplete and inaccurate measurements,” Communi-
cations on Pure and Applied Mathematics, vol. 59, no. 8,
pp. 1207–1223, 2005.

165Improved Stochastic Gradient Matching Pursuit Algorithm based on the Soft-Thresholds Selection

__________________________ WORLD TECHNOLOGIES __________________________



WT
Secure and Efficient Cluster-Based Range Query
Processing in Wireless Sensor Networks

Liming Zhou ,1 Yingzi Shan ,2 and Lu Chen 1

1School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
2Department of Finance, Yellow River Conservancy Technical Institute, Kaifeng 475004, China

Correspondence should be addressed to Liming Zhou; lmzhou@henu.edu.cn

Academic Editor: Stefano Vitturi

In wireless sensor networks, preserving privacy is more important and has attracted more attentions. Protecting data and sensor
privacy while collecting and computing query results is a challenge. In cluster-based sensor networks, when a user queries
a sensitive data, the adversaries can monitor original node or gain the data in cluster node. To deal with this problem, we propose
a secure and efficient scheme for cluster-based query processing in wireless sensor networks. To preserve location privacy of
sensors, we use anonymity method to confuse adversaries. To protect the sensitive data, we use prefix membership verification
method to prevent adversaries from gaining sensitive messages collected by sensor nodes. And we analyze the security and
communication cost. )e results show that our scheme can efficiently protect privacy in query processing.

1. Introduction

Wireless sensor networks have been widely deployed in
various applications, such as monitoring environment,
collecting temperature data, and gaining information of
battlefield. Each sensor node transmits sensed data to a base
station for further processing. In some applications, clus-
tering method has been extensively studied [1] and used to
organize sensor nodes, which has been considered as a useful
approach. And some nodes are grouped into clusters such
that sensor node sends data to a cluster head in the same
cluster. Many clustering applications aimed at enhancing the
energy efficiency and extending the network lifetime in
wireless sensor networks.

In wireless sensor networks, when sensor nodes collect
information in our daily life, we should pay attention to
protect data privacy and security. For instance, a user wants
to query sensitive data from a certain sensor node according
to his interests. )e sensor network may leak private in-
formation about the user’s interests to an adversary who can
gain the content from the queried data. Meanwhile, the
adversary can monitor the frequency of query to analyze the
user’s preferences and find the related sensor nodes. )en

the adversary may attack and compromise the related nodes.
And the compromised node may respond to a query and
send fake data to the user, which is in conflict with the
privacy requirement. So query processing brings serious
security challenges.

When users monitor events or analyze sensed data, data
query becomes an important operation in wireless sensor
networks. Recently, many existing privacy techniques can be
employed in sensor network scenarios. For example, a target
region transformation technique [2], range query [3–6], and
top-k query [7, 8] have been well addressed. However, these
schemes are not suitable for cluster-based query processing
in wireless sensor networks. And many techniques do not
consider the computing power, power of sensors, and ca-
pacity, which are the limiting factors in wireless sensor
networks. For limited availability resources, it is important
to make the trade-off between the privacy preservation and
the communication overhead.

Based on the above discussions, in this paper, we propose
a novel cluster-based privacy preserving query processing in
wireless sensor networks. We consider the privacy issue
when processing data query in wireless sensor networks. If
a user wants to gain and query information from the
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cluster-based sensor network, we will use the anonymity
method and the prefix membership verification scheme
[9, 10] to protect the sensitive data against adversaries.When
a cluster head receives a query message, the cluster head will
randomly choose several cluster members which include the
real queried node. So, it is unlikely that the adversary can
monitor the real frequency of query in a cluster. )erefore,
the adversary cannot gain the user’s interests from analyzing
the frequency of query or find the location of the real source
node. Meanwhile, cluster members encode their sensed data
and send them to their cluster head. )e cluster heads can
correctly process data queries over encoded data without
knowing their real values. And an adversary cannot know
the query results in the cluster heads. In our scheme, we
make a balance between data confidentiality and query
efficiency.

)e rest of the paper is organized as follows. Section 2
gives the related work and the previous proposed techniques
for data query. In Section 3, we describe the system model
and the security model. )en, we present our secure and
efficient cluster-based query processing scheme in Section 4.
In Section 5, we present the security analysis and perfor-
mance analysis. Finally, we have the conclusion in Section 6.

2. Related Work

Protecting querying region’s privacy in wireless sensor
networks has been drawn attention recently [2]. In [2],
a querying region transformation technique is proposed to
fuzzy the target region of the query according to predefined
transformation functions. )e transformation function
maps one region into m regions so that the target region
cannot be distinguished from the other uninteresting re-
gions. Meanwhile, multiple transformation functions in-
clude uniform, randomized, and hybrid function.

A secure and efficient range query processing scheme is
proposed in [6], called SafeQ. )ey use the prefix mem-
bership verification and neighborhood chains to encode
both data and queries such that a storage node can correctly
process encoded queries over encoded data without knowing
their values.)e prefixmembership verification converts the
verifications of whether a number is in a range to several
verifications of whether two numbers are equal. )e
neighborhood chains allow a sink to verify whether the result
of a query contains exactly the data items that satisfy the
query. )e SafeQ scheme can preserve privacy and integrity
for processing range queries in two-tiered sensor networks.

Privacy preserving range query has been widely studied
in two-tiered wireless sensor networks. Many range query
schemes are proposed to protect privacy of range queries.
CSRQ [3] employs an encoding mechanism and encrypted
constraint chain to preserve data privacy and query result
integrity. In [11], Zhang et al. provided an efficient secure
range query protocol. In their scheme, different sensor nodes
have different hash functions to encode data items for the
protection of data privacy, and the correlation among data is
used for verification of result.

In [12, 13], two optimized versions which verify query
result completeness to reduce the communication overhead

between sensors and storage nodes based on the bucketing
technique are proposed. In their scheme, a bit map is
broadcasted by each sensor node to the nearby sensors,
which indicates which buckets have data. In each sensor
node, the collected data items and the received bit maps are
encrypted together. )e sink can verify the completeness of
the query result for a sensor by examining the bit maps. But
the compromised storage nodes can estimate the values of
data items by using the bucketing technique to achieve data
privacy.

Privacy preserving max/min query schemes in two-
tiered sensor networks are proposed in [14–17], which use
the prefix membership verification scheme to privately
compute the maximum or minimum data item. But their
schemes cannot be suitable for cluster-based sensor net-
works. )e power and storage are limited in cluster heads.

3. Network and Adversary Models

3.1. NetworkModel. Sensor networks consist of a number of
different types of sensor nodes that have been deployed to
monitor environment or collect data and send information
to the sink in an area. Nodes are organized into clusters. A
cluster head is selected in each cluster to receive and query
data from cluster members. In each cluster, every sensor
sends data to its cluster head.)e sink collects data with a lot
of resources in storage, energy, and computation.

In this paper, we assume that sensor nodes are evenly
deployed in the sensor network and do not move after being
deployed. All of the sensors have roughly the same capa-
bilities, power sources, and expected lifetimes. )e users can
access the sensor network by the sink. )e sink translates
a query from a user into multiple queries which are sent to
the cluster heads. )e cluster heads process the queries and
return the query results to the sink. All query results are sent
to the sink which changes all results into a final query result
and sends the final result back to the user. When a user
makes a query request, the sink will send query request to
each cluster head. )e cluster heads collect all results and
send them back to the sink. )e results are forwarded
through certain routing strategies that adopted the sensor
networks.

3.2. Adversary Model. For various kinds of wireless sensor
networks, we assume that an adversary is a motivated and
funded attacker whose objective is to learn sensitive data
information. )e adversary has unbounded energy resource,
adequate computation capability, and sufficient memory of
data storage. )e adversary can use the leaked sensitive data
to threaten the sensor network, such as health monitoring
networks. For a user’s query, the adversary tries to generate
fake message and send it back to the user.

Meanwhile, the adversary wants to gain the user’s in-
terests and the frequency of query in clusters. He wants to
find the location information of queried nodes. )e ad-
versary may stay nearby the cluster to monitor and eaves-
drop constantly. When the adversary monitors a message in
a cluster, he will know the location of a sensor node. If the
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frequency of transmitted messages is large, the adversary will
find that certain sensor node is important for the user. When
the adversary compromises the sensor node, the compro-
mised node will send fake data to the user.

4. Secure and Efficient Cluster-Based Query
Processing Scheme

In this section, we propose a scheme for preserving privacy
query processing in cluster-based sensor networks. Each
cluster head collects the data from sensor nodes in a cluster.
To preserve privacy, sensor nodes encrypt or encode their
collected data, for example, DES algorithm. So the adversary
cannot gain the content of transmitted data.

4.1. .e Basic Idea. In order to preserve privacy query
processing, we propose a secure and efficient cluster-based
query processing scheme to address this problem in wireless
sensor networks. After the sensor network is deployed, the
cluster heads are randomly chosen. )en the cluster heads
broadcast their join messages. When a node firstly receives
a join message from a cluster head, it will reply to the cluster
head and join the cluster. )e cluster head will record the
sensor’s ID. Meanwhile, the sink will record all cluster heads’
ID.

However, if a cluster head has the less remaining energy,
it will randomly select one of its members as the new cluster
head in the cluster. And the new cluster head will record the
ID of all members in the cluster. )en, the sink will replace
the ID of the previous cluster head with the ID of the new
cluster head.

When a user wants to gain the value of a sensor node si,
he will make a query to the sink.)e sink will send the query
message to the cluster head which includes the sensor node
si. )e cluster head will randomly select several cluster
members which include the real queried node si and gain the
sensed data from them. It is aimed for preventing the ad-
versary from monitoring the real frequency of the query in
a cluster. We assume that each sensor si shares a secret key ki
with the sink in a network. A sensor si encrypts its sensed
n data items d1, d2, . . . , dn using key ki in time slot t, the
result of which is denoted as (d1)ki

, . . . , (dn)ki
. )en, si

encode d1, d2, . . . , dn as E(d1, d2, . . . , dn). Moreover, si
sends the message that includes the encrypted data (dj)ki

and the encoded data E(d1, d2, . . . , dn) to its cluster head.
)e cluster head transmits themessage to the sink.When the
user wants to perform query [a, b]{ }, the sink encodes the
range [a, b] as G([a, b]). )en, the sink applies a secret
comparing method C(E(d1, d2, . . . , dn), G([a, b])) to be
used for query processing over encrypted and encoded
data. A data d is in range [a, b] if and only if
C(E(d1, d2, . . . , dn), G([a, b])) is true.)en, the sink decides
whether (dj)ki

should be included in the query result.
Meanwhile, given E(dj) and (dj)ki

, it is infeasible for the
sink to compute dj(1≤ j≤ n). )is condition can guarantee
query privacy. Figure 1 illustrates the basic idea of cluster-
based query processing scheme.

4.2. Prefix Membership Verification. We protect privacy
query processing by using the prefix membership verifica-
tion scheme which is first introduced in [8] and later for-
malized in [9]. In the prefix membership verification
scheme, the key idea is to convert the verification of whether
a number is in a range to several verifications of whether two
numbers are equal. A k− prefix is in the form of
0, 1{ }k(∗)w−k, which has k leading 0s and 1s, followed by

w− k∗s. For instance, 101∗ is a 3-prefix and it denotes the
range [1010, 1011].

A prefix family consists of w bits binary number
b1b2 · · · bw, which is defined as the set of w + 1 prefixes
b1b2 · · · bw, b1b2 · · · bw−1∗, · · · , b1∗ · · ·∗,∗∗ · · ·∗􏼈 􏼉, where the
ith prefix is b1b2 · · · bw− i+1∗ · · ·∗. )e prefix family of x is
denoted as F(x). For example, the prefix family of number
11 is F(11) � F(1011) � 1011, 101∗, 10∗∗, 1∗∗∗,∗∗∗∗{ }.
In prefix membership verification scheme, for any number x
and prefix P, x ∈ P if and only if P ∈ F(x).

In order to confirm whether a number x is in a range
[d1, d2], the range [d1, d2] can be translated into a minimum
set of prefixes, denoted as S([d1, d2]), the union of which is
equal to [d1, d2]. Each prefix is a subrange of [d1, d2], which
follows the binary prefix format. For [d1, d2], the number
of prefixes in S([d1, d2]) is at most 2w− 2 [18], where
d1 and d2 are two numbers of w bits. For example,
S([9, 15]) � 1001, 101∗, 11∗∗{ }. We compute the prefix
family F(x) of number x and translate the range [d1, d2] into
a minimum set of prefixes S([d1, d2]). So, x ∈ [d1, d2] if and
only if F(x)∩ S([d1, d2])≠ϕ.

In order to ensure whetherF(x)∩ S([d1, d2])≠ϕ, we use
the operations of verifying whether two numbers are
equal. )en, we convert each prefix to a corresponding
unique number using the prefix numericalization scheme
defined in [19]. A prefix numericalization function
Nneeds to satisfy the following properties: (1) for any p,
N(p) is a binary string; (2) for any two prefixes p and q,
p � q if and only if N(p) � N(q).Given a prefix
b1b2 · · · bk∗ · · ·∗ of w bits, we insert 1 after bk, then every ∗
is replaced by 0. Given a set of prefixes S, the resulting set
of numericalized prefixes is denoted as N(S). For exam-
ple, N(F(11)) � 10111, 10110, 10100, 11000, 10000{ } and
N(S([9, 15])) � 10011, 10110, 11100{ }. )erefore, x ∈ [d1, d2]
if and only if N(F(x))∩N(S([d1, d2]))≠ ϕ. For in-
stance, N(F(11))∩N(S([9, 15])) � 10110, the number 11
is in the range [9, 15]. Figure 2 shows the process of
11 ∈ [9, 15].

4.3. Data Collection. In order to preserve sensitive data,
sensor nodes send the sensed data to cluster heads and sink
by a secure way. We assume that b1 and b2, respectively,
denote the lower bound and the upper bound, the values of
which are known to both sensors and the sink. And we
assume that sensor si collects data item dj(1≤ j≤ n) at a time
slot t, and each data dj is in the range [b1, b2]. When each
sensor node si collects data, sisends the sensitive data by the
following steps:

(1) Sort the n data, b1, and b2 in an ascending order. We
assume b1 < d1 < d2 < · · · <dn < b2.
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WT(2) Convert the n + 1 ranges [b1, d1], [d1, d2], . . . , [dn, b2]
to the corresponding prefix string, that is, compute
S([b1, d1]), S([d1, d2])), . . . , S([dn, b2]).

(3) Numericalize all prefixes. For example, compute
N(S([b1, d1])), N(S([d1, d2])), · · · , N(S([dn, b2])).

(4) Compute the keyed-hash message authentication
code (HMAC) [6, 20] of each data item in numericalize
prefixes using key g, which is shared by all nodes and the
sink. An HMAC function using key g is denoted as
HMACg. ComputeHMACg(N(S([b1, d1]))),HMACg
(N(S([d1, d2]))), . . . ,HMACg(N(S([dn, b2]))).

(5) Encrypt every data item di to (di)ki
using key ki.

(6) Sensor si sends the following packet to its cluster head
(CH): si⟶CH:〈id,t,(di)ki

,HMACg(N(S(b1,d1))),
HMACg(N(S(d1,d2))), ... ,HMACg (N(S(dn,b2)))〉.

Because the HMAC function has the one-wayness and
collision resistance properties, and data items are encrypted,
the cluster head cannot obtain the real values of all data
items.

4.4. Filter and Query Processing. When a cluster head re-
ceives collected packets from cluster members in a cluster,
the cluster head will filter the packet by sensors’ id. In
the query phase, the cluster head randomly selects several
cluster members which include the real queried node si and
gain the sensed data from them. It is aimed for preventing

the adversary frommonitoring the real frequency of query in
a cluster. )erefore, in the submission phase, the cluster
head needs to filter out the useless packets and obtain the
real packet. )en, the cluster head transmits the real packet
to the sink.

In the sink, it firstly converts the query range [a, b] and
computes prefix families F(a) and F(b). After the sink
numericalize all prefixes as N(F(a)) and N(F(b)), it applies
HMACg to each numericalized prefix as HMACg(N(F(a)))
and HMACg(N(F(b))). When the sink receives a packet
from cluster heads, it will process the packet based on the
query range [a, b] using the following theorem [21].

Cluster head

Query

Result
User

Sink

Cluster

Sensor node

Figure 1: )e cluster-based query processing scheme.

[9,15]

Prefix conversion
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Prefix family

1001 101∗ 101∗
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∗∗∗∗

Prefix numericalization

10011
11100
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10110 10100

Prefix numericalization
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Figure 2: Prefix membership verification.
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�eorem 1. Given n numbers sorted in the ascending order
d1 < d2 < · · · <dn, where dj ∈ [b1, b2](1≤ j≤ n), and a range
[a, b](b1 < a≤ b< b2), dj ∈ [a, b] if and only if there exist
1≤ n1 ≤ j< n2 ≤ n + 1 such that the following two conditions
hold:

(1) HMACg(N(F(a)))∩HMACg(N(S([dn1−1, dn1
])))≠ϕ

(2) HMACg(N(F(a)))∩HMACg(N(S([dn2−1, dn2
])))≠ϕ

According to )eorem 1, the sink selects the smallest n1
and the largest n2(1≤ n1, n2 ≤ n + 1) such that a ∈ [dn1−1, dn1

]
and b ∈ [dn2−1, dn2

]. If n1 < n2, the data items dn1
,

dn1+1, . . . , dn2−1 are in the range [a, b]; if n1 � n2, no data item
is in the range [a, b].

Based on the aforementioned description, Algorithm 1
shows a secure and efficient cluster-based query processing
scheme. When a user wants to gain and check whether
sensed data of certain node is in the range [a, b] at a time
slot t, the user will send a query message to the sink. And
then the sink relays the message to a cluster head which
include the queried node. In the cluster head, it randomly
chooses several nodes which include the queried node. In
the collection and submission phase, when the node col-
lects the sensed data, it will process the data using the PMV
and HMAC schemes. )en, the node sends the secure
packet to the cluster head. After the cluster head filters out
the useless packets, it sends the useful packet to the sink.
Finally, the sink processes the packet and sends the final
result to the user.

5. Performance Analysis

In order to protect privacy, we propose a secure and ef-
ficient query processing scheme to prevent an adversary
from obtaining the sensitive data or finding the user’s
interests and location of sensor node in cluster-based
sensor networks. In this section, we present the privacy
analysis and communication overhead analysis. From the
following analysis, we can see that our scheme brings
a better network security and minimal communication
overhead.

5.1. Privacy Analysis. For privacy of collected data,
according to the data collection phase, sensor nodes convert
the collected data by using encryption and HMAC scheme.
So, the submitted information is not plaintext but encrypted
and HMAC data. )e HMAC function has one-wayness and
collision resistance properties. And sensor nodes only share
the secret key with the sink and encrypt sensitive data by the
key. )erefore, it is computationally infeasible for cluster
heads to obtain the value of di. It is difficult for the cluster
head to break the privacy and gain the encryption and
HMAC data. So, our scheme can efficiently protect collected
data items.

For privacy of the query result, the sink obtains the query
result by comparing the HMAC data items. For the HMAC
data items and encrypted data, it is difficult for the adversary
for computing and obtaining the values of the query result

without keys. So, we can preserve the query result which is
securely transmitted to the user.

For privacy of user’s interests and location privacy of
sensors in clusters, our scheme can efficiently preserve
privacy information to prevent an adversary from
monitoring user’s interests and find the location in-
formation of sensors. And the adversary cannot use the
content to trace the routing. We assume that an adversary
monitors a local area with the intention of finding the
interests of the user. We assume that each cluster has M
members. )e adversary wants to identify a set DT ⊂M of
nodes which represent the set of possible location in the
local area. )ere is a close relationship between the
analysis of query frequency of the adversary and the
location privacy. When the adversary analyzes the query
frequency uncertainly, it is secure to preserve the location
information. In the eavesdropping area, the adversary will
need to select the nodes of his analysis. We assume that
the possible sensor nodes in DT include queried nodes
which send data to cluster head. If the size of DT is very
large, the adversary will find it difficult to analyze the
user’s interests. So, it is useful for preserving privacy
information.

Let DP be the set of the protected nodes. We use in-
formation-theoretic metric, called entropy [22], to measure
the privacy protection provided by our scheme. )e entropy
of identifying the queried node in the wireless sensor net-
work is defined as

c � −􏽘
DT

i�1
Pi · log2 Pi( 􏼁 , (1)

where Pi is the probability that node i is the queried node,
|DT| is the number of uncertain nodes by the adversary,
and 􏽐|DT|

i�1 Pi � 1. )erefore, the probability Pi of any sensor
nodes in DT being queried nodes can be estimated by
|DP|/|DT|. )en, we denote the size of DT as R(|DT| � R).
And let r be the size of the protected queried node’s set
(|DP| � r). And we define the privacy as

c � − 􏽘
DT| |

i�1
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􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
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R

i�1

r

R
· log2

r

R
􏼒 􏼓

� r · log2
R

r
􏼒 􏼓.

(2)

)e entropy represents the adversary’s uncertainty
about the user’s interests and the location of sensors in
a wireless sensor network. When the adversary believes that
the nodes have the same probability to be the queried node
in a cluster, the entropy is maximum value. Let D∗T be the
set of all nodes in a cluster and |D∗T| � M. We know that the
size of DT can influence the level of privacy. )erefore, the
entropy is
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(3)

Figure 3 shows the relationship between the level of
privacy and the different number of nodes in a cluster. When
M increases, the level of privacy (c) is higher. )is is due to
the increased number of nodes in a cluster. )e probability
that the adversary finds the protected queried nodes is
decreased. So the level of privacy (c) increases. For the same
M, when M is greater than 20, we can see that the number of
protected queried nodes (r) increases, the level of privacy
(c) increases.

5.2. Energy Consumption Analysis. In cluster-based sensor
networks, sensor nodes have limited energy resource. In this
section, we discuss the energy consumption of sensor nodes
in our scheme. In each phase, the total energy consumption
includes the communication cost and computation energy

consumption. We assume that the energy consumed by
transmitting and receiving a data are et and er. And we
assume that a cluster head randomly chooses Nr nodes to
query.

In the data collection phase, sensor nodes will have
extra computation overhead to preserve privacy of sen-
sitive data. Given a range [d1, d2], where d1 and d2 are
two numbers of w bits, the number of prefixes in
S([d1, d2]) is at most 2w− 2 [18]. So a sensor computes at

(1) initial_cluster;
(2) sink_node;
(3) query_node_id;
(4) CH� cluster_head;
(5) query_range� [a,b];
(6) query_msg�QueryMsg(query_node_id, sink_node, query_range);
(7) if sink receives the query_msg then
(8) SendQueryMsgToCH(CH, query_node_id);
(9) if CH receives the query_msg then
(10) selected_nodes� SelectNodesRandom(query_node_id);
(11) for node in selected_nodes then
(12) di �CollectData();
(13) Sort di,b1 and b2 as b1 <d1 <d2 < · · · < dn < b2
(14) Compute prefixes and numericalize all prefixes as

N(S([b1, d1])), N(S([d1, d2])), . . . , N(S([dn, b2]))
(15) Compute the HMAC as HMACg(N(S([b1, d1]))),HMACg(N(S([d1, d2]))),

. . . ,HMACg(N(S([dn, b2])))
(16) Encrypt di by ki as (di)ki

;
(17) Send packet toCH si⟶ CH : 〈id, t, (di)ki

,HMACg(N(S(b1, d1))),HMACg(N(S(d1, d2))), . . . ,HMACg(N(S(dn, b2)))〉
(18) end for
(19) packet� FilterPackets();
(20) SendToSink(packet);
(21) end if
(22) Compute and encode [a,b] as HMACg(N(F(a))),HMACg(N(F(b)));
(23) GetQueryData(packet, HMACg(N(F(a))),HMACg(N(F(b))));
(24) end if

ALGORITHM 1: Secure and efficient cluster-based query processing.
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most (n + 1)(2w− 2) HMAC data. When a sensor node
sends data to cluster head, it generates extra communi-
cation cost by sending encrypted data and HMAC data.
We assume that each HMAC data is zH bits and encrypted
data is zD bits. Let Hhop be the hop between a sensor node
and a cluster head. In our scheme, Hhop � 1. In a cluster,
the energy consumption Edc is

Edc � 􏽘
Nr

i�1
(n + 1)(2w− 2) · zH + zD + et + er􏼂 􏼃 · Hhop

� Nr · (n + 1)(2w− 2) · zH + zD + et + er􏼂 􏼃.

(4)

In the query processing phase, the sink node computes the
range [a, b] and converts prefix families F(a) and F(b). For
each value in the w bits, there are w + 1 HMAC data items.
So, the sink can perform at most 2(n + 1)(2w− 2)(w + 1)
comparisons. )e energy consumption Eqp is

Eqp � 2(n + 1)(2w− 2)(w + 1) + et + er􏼂 􏼃 · Hhop

� 2(n + 1)(2w− 2)(w + 1) + et + er.
(5)

)erefore, the total energy consumption Etotal is

Etotal � Edc + Eqp

� Nr · (n + 1)(2w− 2) · zH + zD + et + er􏼂 􏼃
+ 2(n + 1)(2w− 2)(w + 1) + et + er􏼂 􏼃.

(6)

According to (3) and (6), Figure 4 shows the total energy
expended in the systems as the prefix number bits increase
from 8 bits to 32 bits and the energy expended in the level of
privacy increases from 1 to 45, for the scenario where each
HMAC data and encrypted data are 256 bits. We assume that
each sensor collects 100 data items at each time slot. And we
assume that the energy consumed by transmitting and re-
ceiving a data are 1. Each cluster head includes 100 sensor
nodes. )is shows that when the prefix number bits is the
same, the higher level of privacy can increase the energy of
the whole sensor network.

6. Conclusions

Wireless sensor networks have been widely deployed in
many applications and drawn more attentions. It is an
important problem to preserve the privacy of sensitive data
in cluster-based query processing in wireless sensor net-
works. In this paper, we propose a secure and efficient
scheme to protect query processing in cluster-based sensor
networks. In order to preserve privacy, sensed data items are
encrypted to prevent cluster heads from obtaining the
content of data. We use the prefix membership verification
method to query the result without plaintext data. Mean-
while, we use anonymity method to confuse adversaries and
prevent adversaries from analyzing the user’s interests and
finding location of the queried node. )en, we perform the
privacy analysis and energy consumption analysis.
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Availability in wireless visual sensor networks is a major design issue that is directly related to applications monitoring quality. For
targets monitoring, visual sensors may be deployed to cover most or all of targets, and monitoring quality may be focused on how
well a set of targets are being covered. However, targets may have different dimensions and it is expected that large targets may
be only partially viewed by source nodes, which may affect coverage quality and lead to a state of unavailability. In this context,
this article analyzes the effect of target’s size on effective coverage in wireless visual sensor networks. A new coverage metric, the
Effective Target Viewing (ETV), is proposed tomeasuremonitoring quality over a set of targets, which is exploited as a fundamental
parameter for availability assessment. Results show that ETV can be used as a practical coverage metric when assessing availability
in wireless visual sensor networks.

1. Introduction

An increasing demand for autonomous surveillance and con-
trol applications has fostered the development of new mon-
itoring technologies, which has placed sensor networks into
a central position. A lot of sensing applications in military,
industrial, residential, health care, and smart cities scenarios
may be designed exploiting the flexibility of sensor networks
[1]. For those networks, when sensor nodes are equipped
with a low-power camera, visual information can be retrieved
from the monitored field [2, 3], opening new opportunities
for monitoring in Internet of Things scenarios. In general,
image snapshots, infrared images, and video streams with
different coding qualities and resolutions can provide valu-
able information for an uncountable number of monitoring
applications.

In general, visual sensors have a viewing orientation and
thus a directional sensingmodel can be defined. In a different
way of scalar sensors, designed to retrieve scalar data such
as temperature, pressure, and humidity, visual sensors may

view distant or close objects or scenes according to their Field
of View (FoV) [4, 5]. For targets monitoring, satisfactory
sensing coverage would happen when one ormore targets are
being viewed by deployed sensors, which means that they are
partially or completely inside the area defined by the sensors’
FoV.

Actually, targets may have different dimensions, poten-
tially impacting target monitoring quality. While small tar-
gets may be sometimes more likely to be viewed, large targets
may not be satisfactorily covered by deployed visual sensors.
In fact, when covering a set of targets, it is usually required
that every target is being viewed by at least one visual sensor,
but there may be parts of targets that may not be viewed. For
some applications, targets have to be viewed in all possible
perspectives and monitoring quality should be accounted for
all covered perspectives. As an example, visual sensors may
view the front or back side of a target, providing different
information for monitoring applications. For another group
of applications, however, viewing perspectives may not be an
issue, since enough parts of the targets are being viewed.
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A system can be assumed as available when the expected
services can be provided when requested. While some net-
work environments can tolerate some states of unavailability,
critical monitoring applications may be severely impaired.
Therefore, a central issue inWireless Visual Sensor Networks
(WVSN) is availability assessment, since we want to say if a
particular application may be assumed as available along the
time. Generally, availability will be affected by hardware and
coverage failures, but different availability metrics concerned
with different availability issuesmay be defined to support the
overall process of availability assessment [6].

Frequently, visual sensors may be deployed on a region
of interest with many fixed or moving targets, where source
nodes may view more than one target at a time. In this sce-
nario, it is worth estimating the coverage quality for differ-
ent configurations of visual sensors, potentially supporting
efficient design and deployment of visual sensor networks.
Evaluating the effect of different targets parameters on visual
sensing coverage may then be beneficial for WVSN. Par-
ticularly, assessing availability for monitoring of small or
large targets may be of paramount importance, especially for
critical applications, as in automatic traffic control, industrial
automation, public security, and rescue operations, just to cite
a few.

This article addresses the problem of availability assess-
ment in wireless visual sensor networks. For that, a geomet-
rical model is defined to compute target viewing by visual
sensors, for any size of targets modelled as circumferences.
Based on it, a new coverage metric is defined to compute the
viewed perimeter of targets, which is referred to as the Effec-
tive Target Viewing (ETV). This metric indicates the average
percentage of the viewed perimeter of all considered targets.
Monitoring availability can then be assessed based on ETV,
along with monitoring requirements of applications, directly
indicating if an application may be assumed as available or
not. To the best of our knowledge, the contributions of this
article have not been proposed before.

The remainder of this article is organized as follows.
Section 2 presents some related works. Section 3 brings the
statements and definitions of targets coverage. The proposed
coverage metric and availability assessment approach are
defined in Section 4. Section 5 presents numerical results,
followed by conclusions and references.

2. Related Works

For wireless visual sensor networks, monitoring applications
may require that a minimum number of targets are being
viewed. The monitoring quality may then be associated to
a percentage of coverage, which might guide deployment
[7] and coverage optimization algorithms [8, 9]. In a differ-
ent perspective, target viewing may be related to network
availability [6], exploiting visual sensing redundancy to com-
pensate failures in sensor nodes. Actually, sensing redun-
dancy in WVSN is not straightforward and there are some
relevant issues that should be properly considered [6, 10],
as the perception of redundancy depends on applications
monitoring requirements [11]. Target viewing may also be
maximized when adjustable visual sensors are deployed, and

the monitoring quality will be a function of visual redun-
dancy over targets [12]. For all these cases, target viewingmay
be performed in different ways and with different objectives
in wireless visual sensor networks.

Efficient sensing coveragewill be deeply related to theway
sensors are deployed. In deterministic deployment, sensors
are neatly placed to achieve optimized coverage and many
works have been concerned with optimization of the number
of sensors required to cover a monitored field [13, 14]. On
the other hand, for many monitoring scenarios, sensors are
expected to be randomly deployed, bringing particular cover-
age problems [3, 9]. In general, nodes placement optimization
is a relevant problem for scalar and visual sensor networks
[4, 15, 16].

In general, visual sensors will be deployed for area,
target, or barrier coverage [17]. After random deployment,
camera-enabled sensors may be scattered over a monitored
field, with unpredicted positions and orientations. For such
sensors, coverage metrics are desired when assessing the
sensing quality of wireless sensor networks. The work in
[18] proposes a metric to measure the coverage quality of
wireless visual sensor networks, computing the probability
of a randomly deployed network to be 𝐾-Coverage, where
every point is covered by at least𝐾 sensors. For higher values
of 𝐾, more visual sensors will be viewing the same area of a
monitored field. In a differentway, ametric is proposed in [19]
to compute the coverage quality for target sensing.The impact
of sensor deployment for visual sensing coverage is discussed
in [7]. In [4], different issues for coverage estimation and
enhancement are addressed.

When sensors may adjust the viewed area, sensing cov-
erage may be optimized [20, 21]. The work in [22] computes
an optimal configuration for visual sensors with changeable
orientations, where visual coverage is based on the definition
of nondisjoint cover sets.Thework in [12] adjusts the sensors’
FoV to optimize the network coverage, achieving maximized
viewing of a monitored field: sensors are reconfigured to
increase sensing redundancy over defined targets. Optimal
coverage is a relevant problem that has driven many research
efforts in wireless visual sensor networks, but visual monitor-
ing availability is also concerned with other relevant issues in
these networks.

A core element of availability is sensing redundancy.
In general, sensing redundancy is based on overlapping of
sensing areas, but the way such overlapping will be consid-
ered when defining redundancy will depend on monitoring
requirements of applications [6, 10]. Actually, sensing redun-
dancy may be exploited to extend the network lifetime, when
redundant nodes are deactivated, but redundancy selection
is still a challenging issue in wireless visual sensor networks.
In [23], algorithms for redundancy selection in WVSN were
proposed. In a similar way, the work in [24] also addressed
redundancy selection for availability enhancement, but it
considers the targets perspectives when defining if sensors
that are viewing the same target can be assumed as redundant.
Sensing redundancy is also exploited in [25] when assessing
availability for target coverage.

Besides redundancy, availability may be also concerned
with the way targets are being viewed. Sometimes, different
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Table 1: Visual sensing coverage in wireless sensor networks.

Issue Approach Main research challenges

Coverage metric [18, 19, 21, 30]
Perception of coverage
quality; use of quantitative
or qualitative measures.

Coverage adjustment [9, 12, 14, 16, 31]
Computing of optimal
orientations; minimum
set of sensors; maximal
coverage.

Sensing redundancy [10, 11, 23–25]
Viewing perspectives;
sensing failures;
availability enhancement.

Target viewing [24, 26–28] Target coverage; targets’
contours.

parts of targets’ contours may be different for applications.
The work in [26] associates source priorities to cameras
according to viewed parts of targets. In a different way, for
large targets, it may be desired that the entire perimeter of
targets is viewed by a set of cameras, as proposed in [27, 28].
In those works, scalar sensors (with circular sensing areas)
are considered to cover targets, and the network is optimized
to find the minimum number of sensors that cover the
targets’ perimeters. Table 1 summarizes the discussed papers,
classifying them according to their contributions to visual
coverage and availability enhancement and assessment.

Actually, previous works have addressed the problem of
target coverage under different perspectives, for scalar and
visual sensor networks. And some of them brought contri-
butions for targets’ perimeters coverage. However, availability
assessment for target coverage is still an open issue, especially
formonitoring of large targets, fostering the definition of new
availability assessment metrics.

3. Targets’ Perimeters Coverage

Visual sensors may be deployed for different tasks in a large
set of monitoring and control applications. Such sensors may
be expected to retrieve visual information of targets or scenes,
with different particularities. For the case of target viewing,
fundamental concepts have to be defined to allow proper
modelling, as discussed in this section.

3.1. Sensors’ Field ofView. A typicalwireless visual sensor net-
work may be composed of scalar sensors, visual sensors,
actuators, and sinks. For visual monitoring tasks, one must
be concerned with visual sensors and the way they view a
monitored field.

In general, it is expected that a WVSN will be composed
of 𝑆 visual sensors, which may be randomly or determin-
istically deployed over an area of interest. Each sensor 𝑠, 𝑠
= 1, . . . , 𝑆, has (𝐴𝑥(𝑠), 𝐴𝑦(𝑠)) location for 2D modelling. For
randomly deployed sensors, their location after deployment
may be discovered using some localization mechanism [22].
Whatever the case, it is assumed herein that sensors are static

A

BC

RR

𝛼

𝜃

Target

Figure 1: Field of View of a visual sensor.

and their configurations do not change after deployment, but
the proposed approach is also valid for dynamic networks.

Each visual sensor is expected to be equipped with a low-
power camera, with a viewing angle 𝜃 and an orientation 𝛼.
The embedded camera also defines a sensing radius 𝑅 that is
an approximation of the camera’s Depth of Field (DoF) [3],
which is the area between the nearest and farthest point that
can be sharply sensed. For simplification, the Field of View of
any visual sensor is defined as the area of an isosceles triangle
composed of three vertices,𝐴, 𝐵, and 𝐶. Vertex𝐴 is assumed
as the visual sensor position [18], (𝐴𝑥(𝑠), 𝐴𝑦(𝑠)), while the
other vertices are computed considering the values of 𝜃, 𝛼,
and 𝑅.

Figure 1 shows a graphical representation of a typical
sensor’s FoV.

One can compute the area of any sensor’s FoV, as ex-
pressed in (1), whenever the sensing parameters of the camera
are known.

FoV(𝑠) =
𝑅
2
(𝑠) ⋅ sin (𝜃(𝑠))

2
. (1)

Basic formulations of trigonometry are used to compute
vertices 𝐵 and 𝐶 for any sensor 𝑠, as expressed in

𝐵𝑥(𝑠) = 𝐴𝑥(𝑠) + 𝑅 ⋅ cos (𝛼(𝑠)) ,

𝐵𝑦(𝑠) = 𝐴𝑦(𝑠) + 𝑅 ⋅ sin (𝛼(𝑠)) ,

𝐶𝑥(𝑠) = 𝐴𝑥(𝑠) + 𝑅 ⋅ cos ((𝛼(𝑠) + 𝜃(𝑠)) mod 2𝜋) ,

𝐶𝑦(𝑠) = 𝐴𝑦(𝑠) + 𝑅 ⋅ sin ((𝛼(𝑠) + 𝜃(𝑠)) mod 2𝜋) .

(2)

3.2. Defining Targets. When wireless visual sensor networks
are deployed for targets viewing, it is desired that the max-
imum number of targets will be visually covered by source
sensors. In general, a target is anymoving or static object that
is expected to be viewed by visual sensors. Moreover, in real
applications, targets may have different formats and sizes, but
visual sensors may view just small parts of them.
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Figure 2: Example of targets.

A target 𝑡 is defined as a generic element located at
position (𝑥(𝑡), 𝑦(𝑡)), although 3D modeling may also be
considered. For a total of𝑇 targets, a target 𝑡, 𝑡 = 1, . . . , 𝑇, has
position (𝑥(𝑡), 𝑦(𝑡)) as its center and thus, for simplification,
a target 𝑡 is defined as a circumference with radius 𝑅(𝑡)

and center (𝑥(𝑡), 𝑦(𝑡)). The value 𝑅(𝑡) is computed taking the
greatest distance from the center of the target to its border,
assuming a top-down view (observer above the monitored
field). Figure 2 shows examples of generic representations of
targets.

The camera’s FoV will view only part of the defined
circumference, which will result in a viewed perimeter lower
than 𝜋 ⋅ 𝑅(𝑡), which is half the perimeter defined by the
circumference. Moreover, we do not consider occlusion of
targets, but it could be assumed in 3D modelling.

3.3. Computing Targets Viewing. The FoV’s triangle may
intersect a target’s circumference in different ways. The area
viewed by a sensor 𝑠, defined as 𝑉(𝑠,𝑡), will be an arch of
the target’s circumference and thus it is defined by a pair of
intersection points, 𝑉1(𝑠) = (𝑉1𝑥(𝑡,𝑠), 𝑉1𝑦(𝑡,𝑠)) and 𝑉2(𝑠) =

(𝑉2𝑥(𝑡,𝑠), 𝑉2𝑦(𝑡,𝑠)). These points are computed according to
the way the FoV intersects the circumference, as exemplified
in Figure 3. Obviously, the basic condition for target viewing
is that the Euclidean distance between the considered target’s
center and visual sensor position is lower than or equal to
(𝑅(𝑡) + 𝑅(𝑠)).

The points 𝑉1 and 𝑉2 can be computed considering the
intersection of the lines defined by the vertices of FoV’s tri-
angle. More specifically, we want to compute the intersection
of lines 𝐴𝐵 and 𝐴𝐶 in relation to the target’s circumference.
Actually, a generic line may have three different configura-
tions concerning a circumference: it may not intersect, it may
intersect in a single point (tangent line), or it may intersect in
two points (secant line). Through geometry, the formulation
in (3) can be considered when checking the way a line will
intersect a circumference. Note that the formulation in (3)
is valid for 𝐴𝐵, but 𝐴𝐶 could be considered just taking the
coordinates of vertex 𝐶.

𝑑𝑥 = (𝐵𝑥 − 𝐴𝑥) ,

𝑑𝑦 = (𝐵𝑦 − 𝐴𝑦) ,

𝑎 = (𝑑𝑥
2
+ 𝑑𝑦
2
) ,

𝑏 = 2 × (𝑑𝑥 × (𝐴𝑥 − 𝑥(𝑡)) + 𝑑𝑦 × (𝐴𝑦 − 𝑦(𝑡))) ,

𝑐 = (𝐴𝑥 − 𝑥(𝑡))
2
+ (𝐴𝑦 − 𝑦(𝑡))

2
− 𝑅
2
(𝑡),

Δ = 𝑏
2
− 4 × 𝑎 × 𝑐,

(3)

where the following conditions are found:

If Δ < 0, there is no intersection.

If Δ = 0, there is a tangent line.

If Δ > 0, there is a secant line.

If both 𝐴𝐵 and 𝐴𝐶 are secant to a considered target’s
circumference, four intersection points will be computed but
only the two closest to vertex 𝐴 have to be taken. It is due to
the fact that visual sensors are not expected to see through the
targets in this work (opaque targets). If any of those two lines
is tangent, the intersection vertex is the point of tangency.The
formulation in (4) computes all possible vertices for tangent
and secant lines; if 𝐴𝐵 (or 𝐴𝐶) is a secant line, two different
values for 𝑥 and 𝑦 may be found, but only one value is
computed for a tangent line.

𝑥 = 𝐴𝑥 +

−𝑏 ± (√Δ × 𝑑𝑥)

2 × 𝑎
,

𝑦 = 𝐴𝑦 +

−𝑏 ± (√Δ × 𝑑𝑦)

2 × 𝑎
.

(4)

A special formulation has to be defined when 𝐴𝐵 or 𝐴𝐶
lines, or both, do not intersect the target’s circumference, as
depicted in Figures 3(a) and 3(d). In these cases, one or two
projection lines are drawn from vertex𝐴 to line 𝐵𝐶 and these
projections are tangent to the target’s circumference. Actually,
the tangent line is perpendicular to the radius of the target’s
circumference and thus a right triangle can be created, as
presented in Figure 4.

There are two possibilities for the tangent line, in which
length between vertex 𝐴 of the considered visual sensor
and the tangent point is defined as 𝑑. If 𝑑 is greater than
the height of the FoV’s (isosceles) triangle, defined as ℎ,
the tangent point must not be considered as an intersection
point. Otherwise, the tangent point is an intersection point
to be considered when computing 𝑉(𝑠,𝑡). The value of 𝑑 is the
hypotenuse of the right triangle created also taking 𝑅(𝑡) and
the distance between vertex 𝐴 of the visual sensor and the
center of the target’s circumference, defined as 𝐴𝑇. And the
value of ℎ can be found through trigonometry when taking
the other parameters of the FoV’s triangle.

When 𝑑 ≥ ℎ, we have to compute the intersection of
line 𝐵𝐶 with the circumference and this can be done just
adjusting (3) and (4). In this case, of course, all intersection
points (one or two) must be considered. When 𝑑 ≤ ℎ,
two possible tangent points will be found. For that, we
take the intersection points of target’s circumference with
a circumference centered at vertex 𝐴 and with radius 𝑑.
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Equation (5) can be used to compute those intersection
points.

𝑎 =

(𝑅
2
𝑡 − 𝑑
2
+ 𝐴𝑇
2
)

(2 × 𝐴𝑇)
,

𝑥 = 𝑥(𝑡) +
𝑎 × (𝐴𝑥 − 𝑥(𝑡))

𝐴𝑇
±

√𝑅
2
𝑡 − 𝑎2 × (𝐴𝑦 − 𝑦(𝑡))

𝐴𝑇
,

𝑦 = 𝑦(𝑡) +
𝑎 × (𝐴𝑥 − 𝑥(𝑡))

𝐴𝑇
±

√𝑅
2
𝑡 − 𝑎2 × (𝐴𝑥 − 𝑥(𝑡))

𝐴𝑇
.

(5)

Two different points of tangency can be found when
applying the formulation in (5). However, for two points 𝑉1
and 𝑉2, only one of them will be inside the FoV’s triangle;
that point will be an intersection point.

4. Proposed Availability Assessment

The availability level of monitoring applications will depend
on visual and hardware characteristics of deployed sensors, as
well as the network topology of the considered wireless visual
sensor networks. Actually, visual monitoring applications
will typically experience different levels of hardware failures
and coverage failures [6]. While a hardware failure may
result from energy depletion, sensors harming, connection
problems, or faulty conditions [25, 29], among other factors,
coverage failures happen when visual sensors cannot provide
minimal acceptable information for applications functions.
For example, if an application expects to view at least 70% of
all targets’ perimeters, it is only assumed as available whether
this constraint is respected (indicating that no coverage
failure happened). A practical coverage metric associated to
targets viewing is then highly desired, since it can be exploited
for availability assessment.

We propose the Effective Target Viewing (ETV), a metric
of the coverage quality over a set of targets. ETV indicates the
percentage of viewed parts of targets’ perimeters. This metric
is derived from the ETV(𝑡), which indicates the percentage
of the viewed perimeter of target 𝑡, while the ETV metric
indicates the average values of ETV(𝑡) for all targets 𝑡, 𝑡 =
1, . . . , 𝑇.

ETV is a coverage metric. However, it can be exploited
to assess the availability of visual monitoring applications. In
fact, ETV can be associated with an availability state, which
may be “yes” (available) or “no” (unavailable). Actually, when
assessing availability, monitoring applications will define the
minimum acceptable ETV for the deployed visual sensors.
We define M-ETV as the minimum acceptable value for
the ETV of the network, while M-ETV(𝑡) is the minimum
acceptable ETV(𝑡), for any considered target. For example,
if M-ETV is 50%, it is the minimum acceptable average
coverage of targets’ perimeters. However, if we define M-
ETV(𝑡) as 50%, at least 50% of each target’s perimeter must
be viewed by visual sensors. As average results may hide the
existence of targets that are not being satisfactorily viewed,
M-ETV(𝑡) may associate availability to uniform viewing over
targets.

Actually, M-ETV andM-ETV(𝑡) are parameters of appli-
cations, with no concern to deployed visual sensors and
targets. In other words, as coverage failures depend on
monitoring requirements [6], different applicationsmay have
different availability conditions even for the same network.

The ETV metric is computed taking the viewed parts of
targets, assuming all nearby cameras. Actually, every visual
sensor may view a percentage of any target’s perimeter,
depending on the considered parameters. It is defined that
a visual sensor 𝑠 may view a target 𝑡 within angles interval,
defined as 𝑉(𝑠,𝑡) = {𝑉1, 𝑉2}, which will be represented by a
sector of the circumference with radius 𝑅(𝑡). The viewed area
is defined by the pair of intersection points, which can be
used to compute an angular distance, as specified in (6). The
formulation in (6) is defined by the fact that both points and
the center of the circumference create an isosceles triangle
with𝑅(𝑡) as one of the sides.The law of cosines is so employed
to compute 𝛾, which is the central angle of target 𝑡 that
determines the arc 𝑉1𝑉2. This “view” will then be (𝛾 × 𝜋 ×

𝑅
2
(𝑡))/360 of the considered target’s circumference.

𝑐
2
= 𝑎
2
+ 𝑏
2
+ 2𝑎𝑏 cos 𝛾,

|𝑉1 − 𝑉2|
2
= 2𝑅
2
(𝑡) − 2𝑅

2
(𝑡) cos 𝛾,

2𝑅
2
(𝑡) − |𝑉1 − 𝑉2|

2

2𝑅
2
(𝑡)

= cos 𝛾,

𝛾 = cos−1(
2𝑅
2
(𝑡) − |𝑉1 − 𝑉2|

2

2𝑅
2
(𝑡)

) ,

𝛾

= cos−1(
2𝑅
2
(𝑡) − ((𝑉2𝑥 − 𝑉1𝑥)

2
+ (𝑉2𝑦 − 𝑉1𝑦))

2

2𝑅
2
(𝑡)

) .

(6)

A simple way to compute the viewed perimeters of
all targets is to compute an average result for the sum of
all viewed perimeters in each target. Obviously, it would
compute the viewed areas assuming redundant views of the
same target, which may be relevant when replacing faulty
nodes [6, 10]. However, as we are computing the percentage
of targets’ perimeters being viewed, redundant coveragemust
not be accounted. In such way, the proposed ETV metric
does not consider redundant views and thus its highest
value for the view of any target is 100%. But if the angular
distance of all values of 𝑉(𝑠,𝑡) is considered, redundant views
on a target might be (erroneously) accounted, which would
not correspond to the expected value of ETV. In order to
avoid that problem, an algorithm was designed to avoid the
accounting of redundant views, removing it from the viewed
arches of the targets.

Let us define 𝐼 = [𝐼(1), 𝐼(2), . . . , 𝐼(2𝑆)] as a vector
containing all points𝑉1(𝑠) and𝑉2(𝑠), for all nodes 𝑠, sorted by
their order of appearance in a counterclockwise or clockwise
tour in the perimeter of the circumference defining the target
𝑡. Let us define Φ = [Φ(1), . . . , (2𝑆)] as a vector containing
the angle 𝛾 defined by 𝐼(𝑖), the center of 𝑡, and 𝐼((𝑖 + 1) mod
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Figure 5: Visual representation of intersection points. (a) Original target; (b) intersection points.

2𝑆). We also define Υ as a numerical constant defining the
maximumpossible sumof themagnitudes, that is, 360∘.Then,

the contribution of the segment defined by a pair (𝐼(𝑖), 𝐼((𝑖 +
1) mod 2𝑆)) to ETV is defined as presented in

𝐶 (Φ, 𝑖) =

{{{{{{{

{{{{{{{

{

Φ(𝑖) if 𝑠 (𝑖) = 𝑠 ((𝑖 + 1) mod 2𝑆)

Φ (𝑖) if (𝑠̂ (𝑖) ∩ 𝑠̂ ((𝑖 + 1) mod 2𝑆)) ̸= 0

Φ (𝑖) if ∃𝑗; (𝑠̂ (𝑖) ∩ 𝑠̂ (𝑗) ̸= 0) ∧ (𝑠̂ ((𝑖 + 1) mod 2𝑆) ∩ ŝ (𝑗) ̸= 0)

0 otherwise.

(7)

In (7), 𝑠(𝑖) is the visual sensor node associated to 𝐼(𝑖), and
𝑠̂(𝑖) is the arc defined by its two 𝑉1(𝑠) and 𝑉2(𝑠) points. The
four conditions in (7) are used to decide whether the arcs
confined by points in 𝐼(𝑖) and 𝐼((𝑖 + 1) mod 2𝑆) are parts
of the area visualized by a sensor node. The first condition
evaluates if both points were projected by the same sensor,
which is possible if (1) there is an entire (nonoverlapped) area
exclusively viewed by sensor 𝑠(𝑖) or (2) the target’s area viewed
by sensor 𝑠(𝑖) is also viewed by another sensor. The second
condition evaluates if areas captured by sensors projecting
points 𝐼(𝑖) and 𝐼((𝑖 + 1) mod 2𝑆) are overlapped. The third
condition evaluates the case where target regions viewed by
sensors 𝑠(𝑖) and 𝑠((𝑖+1) mod 2𝑆) are not overlapped between
them but both of them are overlapped with the captured area
of a common sensor 𝑠(𝑗). At last, the fourth condition will
mark a nonviewed portion of the circumference.

Finally, ETV(𝑡) and ETV can be computed as expressed
in

ETV (𝑡) =
1

Υ
×

2𝑆

∑

𝑖=1

𝐶 (Φ, 𝑖) × 100%,

ETV =

𝑇

∑

𝑡=1

(ETV (𝑡)) ×
1

𝑇
.

(8)

A graphical example of computing the intersection points
using the defined formulation is presented in Figure 5. The
computed ETV(𝑡) for this example is 47.75%.

Algorithm 1 computes ETV and ETV(𝑡) for all targets,
considering the equations previously presented. Most of
computation is performed in line (6), using the proposed
geometrical model.

5. Numerical Results

The proposed metrics can be used to assess availability
in wireless visual sensor networks. We then defined some
mathematical experiments for different parameters of visual
sensors and targets, computing ETV and ETV(𝑡). Using
Matlab, Algorithm 1was implemented, alongwith the defined
mathematical formulations. Next subsection presents the
numerical results when computing those metrics.

5.1. Computing ETV and ETV(𝑡). Different configurations for
visual sensors and targets were considered to compute ETV,
assuming sensors randomly deployed and also sensors deter-
ministically positioned in a grid-like topology. Initially, ran-
domly visual sensors and targets were virtually positioned
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Algorithm: ETV Computing(List[] 𝑆, List[] 𝑇)
Output: ETV, ETV(𝑡)[]

(1) ETV← 0
(2) for 𝑡 ← 1; 𝑡 < 𝑇.size(); 𝑡++ do
(3) target← 𝑇.getVSensor (𝑡)
(4) for 𝑠 ← 1; 𝑠 < 𝑆.size(); 𝑠++ do
(5) sensor← 𝑆.getVSensor (𝑠)
(6) 𝑉 (target, sensor) = computePoints (target, sensor) //Angles interval
(7) ETV (target)← functionC (𝑉)
(8) ETV← ETV + ETV (target)
(9) ETV← ETV/𝑇.size()

Algorithm 1: ETV computing.

30 40 50 60 70 80 90 100 110 120 30
40

50
60

70
80

90
0
5

10
15
20
25
30
35
40

ET
V

 (%
)

Sensing radius (m
)

Viewing angle (∘
)

(a)

30 40 50 60 70 80 90 100 110 120 30
40

50
60

70
80

90
0

5

10

15

20

25

ET
V

 (%
)

Sensing radius (m
)

Viewing angle (∘
)

(b)

Figure 6: ETV after random deployment: (a) 5 targets with 𝑅(𝑡) = 20; (b) 5 targets with 𝑅(𝑡) = 50.

and their parameters were considered in the defined math-
ematical equations. For this verification, visual sensors have
𝜃(𝑠), 𝛼(𝑠), 𝑅(𝑠), and (𝐴𝑥(𝑠), 𝐴𝑦(𝑠)) with random values, while
targets have random values for (𝑥(𝑡), 𝑦(𝑡)) and 𝑅(𝑡).

A 300m × 600m monitoring field is considered for
computing the value of ETV for different network random
configurations, as presented in Figure 6. Five different targets
are randomly positioned in the monitored field for each test,
taking two different fixed values for 𝑅(𝑡) of all targets: 20 and
50. As random parameters are calculated, every verification is
executed 10 times and only the average results are considered.

As random parameters are being considered, there is no
uniform distribution for ETV in Figure 6. But, in general,
ETV increases for higher sensing radius. However, as can be
seen in Figure 6(b), large targets are harder to be completely
viewed in average, which reduces the value of ETV.

Visual sensors were also considered in planned positions.
For the next experiment, a 20 × 2-sensor network with
2 columns of sensors with 20 rows each was considered,
simulating a more realistic network. In that scenario, targets
are located between the columns, as it may happen when cars
are being monitored on a road. Figure 7 presents a graphical
example of how sensors and targets are considered for this
evaluation phase, disregarding the effect of occlusion.

Figure 7: Example of sensors deployment.The ETV in this example
is 51.52%.

ETV was computed when five targets are deployed in
random positions (between the two columns of sensors) and
with 𝑅(𝑡) = 20 and 𝑅(𝑡) = 50. We also considered different
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Figure 8: ETV for a specific scenario: (a) 5 targets with 𝑅(𝑡) = 20; (b) 5 targets with 𝑅(𝑡) = 50.
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Figure 9: ETV for large targets: (a) 20 targets with 𝑅(𝑡) = 50; (b) 5 targets with 𝑅(𝑡) = 50.

values for sensing angle (𝜃) of all visual sensors and sensing
radius. As visual sensors are deployed with random orienta-
tions, every verification is also executed 10 times and only the
average results are considered.The results for this verification
are presented in Figure 8.

The value of ETV varies according to the parameters of
visual sensors. In general, higher values for the sensing radius
(𝑅) of visual sensors will increase ETV for the considered
deployment scenario, but higher angles may decrease ETV.
In fact, for low values of 𝑅, the ETV was too low, since only
targets that were closer to the border of the simulated road
were viewed.

For this same scenario, more targets can be considered
when assessing ETV. Figure 9(a) presents the results when 20
large targets have to be viewed. For more targets, the ETV
is almost the same when also taking the same parameters,
since the targets are being covered in the sameway, in average.
Moreover, larger targets may be harder to be completely
viewed and thus the ETV may be lower.

At last, Figure 9(b) computes ETV for 20 targets with
different sizes, assuming 𝜃 = 60

∘ for all visual sensors. In this
verification, the value of ETV increases for higher values of 𝑅
and 𝑅(𝑡).

Sometimes, it may be desired to compute the lowest
ETV(𝑡) for a monitoring application, which will indicate
the worst targets covering for all targets in the considered
scenario. As ETV is an average value, it may hide the fact that
some targets are being badly covered or even not covered at
all. Figure 10 presents the computed ETV and ETV(𝑡) for the
monitoring scenario of Figure 7, with visual sensors deployed
in two uniform columns and targets randomly positioned
between those columns. For this evaluation, all visual sensors
have 𝜃 = 60

∘ and 𝑅 = 120m, with random orientations
(average results after 10 consecutive tests are considered).

Results in Figures 10(a) and 10(b) present ETV with
similar values, indicating that in average the targets are being
viewed with almost the same “quality,” even for larger targets.
However, when we consider the lowest achieved ETV(𝑡),
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Figure 10: ETV and ETV(𝑡). (a) Targets with 𝑅(𝑡) = 20. (b) Targets with 𝑅(𝑡) = 50.

Table 2: Availability requirements and attainable availability of some visual monitoring applications, for computed ETV and lowest ETV(𝑡)
in Figure 10(a).

Application Targets M-ETV M-ETV(𝑡) ETV Lowest ETV(𝑡) Available
1 5 40% 20% 51.10% 29.43% Yes
2 8 40% 30% 53.26% 22.67% No
3 10 50% 10% 63.89% 0.0% No
4 10 50% — 63.89% 0.0% Yes
5 12 60% 20% 55.98% 27.55% No
6 15 60% 30 61.14% 41.39% Yes

results for smaller targets in Figure 10(a) show that at least
one of the targets was not even covered by any of the visual
sensors, which may not be acceptable for some applications.

Next subsection discusses how ETV and ETV(𝑡) can be
used when assessing availability.

5.2. Assessing Availability. In general, availability is a charac-
teristic of the applications, instead of the networks. As differ-
ent applications will have different requirements concerning
visual coverage and dependability [6], any availability metric
must account the characteristics of each visual monitoring
application.

Considering the average results presented in Figure 10(a),
availability requirements of a set of hypothetical visual mon-
itoring applications were defined. We considered that such
applications define values forM-ETV and, sometimes, forM-
ETV(𝑡) (“—” means it is not relevant for the application),
directly indicating the minimal conditions for availability.
The results are presented in Table 2, where an application is
assumed as available when M-ETV ≤ ETV and M-ETV(𝑡) ≤
Lowest ETV(𝑡).

As can be seen in Table 2, network and targets config-
urations are not enough to determine the availability of a
particular visual monitoring application, since its minimum
expected level of targets coverage must be respected. And
this is true even for the same network configurations, as it
happens with Applications 3 and 4 in Table 2.

Target

Direction

(100, 0) (235, 0) (370, 0)

(165, 180) (435, 180)

(0, 90)

𝜃 = 60
∘

R = 120 m

(300, 180)

Figure 11: Monitoring scenario for a road with moving cars.

Availability was also assessed for amore practical applica-
tion, considering targets that move through an area covered
by fixed visual sensors. That scenario emulates visual moni-
toring over a road for moving cars, which may have different
dimensions. Initially, that scenario is composed of six visual
sensors deployed in two imaginary parallel lines, with three
cameras positioned in each of these lines, as presented in
Figure 11. For the performed verifications, all visual sensors
have 𝑅 = 120m and 𝜃 = 60

∘.
We consider that cars move only on one single direction,

straightly from left to right in Figure 11, keeping in the center
of the road.Three configurations of targets are considered for
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Figure 12: Cars moving through the considered scenario.

the tests: 𝑅(𝑡) = 20m, 𝑅(𝑡) = 40m, and 𝑅(𝑡) = 70m. For
this verification, ETV is computed for different “instants” of
movement, which means that ETV is computed according
to predefined positions. Figure 12 graphically presents an
example of a target with 𝑅(𝑡) = 40m, which is considered in
fixed positions for ETV computing, in different instants. One
should note that cars move only on 𝑥-axis.

The computed values for ETV are presented in Figure 13,
for a single target that moves 500m from left to right.
Assuming a coordinates system where position (0, 0) is at
the top left corner of the road, targets move from position
(0, 90) to position (500, 90), and the value for ETV in this
scenario, with fixed cameras carefully positioned, depends on
the position of the target and its size. Actually, all graphics
in Figure 13 present results for the same scenario and the
same movement behaviour, but only varying the number
of instants of measures. In other words, for more instants
of measures, the proposed algorithm is applied more times,
changing only the position of the target, (𝑥(𝑡), 𝑦(𝑡)). At last, it
is considered that themonitoring application definesM-ETV
= 45%.

For the considered scenario, one can easily note that
in average smaller targets are easier to be more completely
covered by visual sensors, resulting in higher ETV. Another
important conclusion is that the application will not be
available when targets are in some positions, since the
computed ETVwill be lower than the definedM-ETV (45%).
It is also interesting to note that for the smallest target it may
sometimes have the lowest ETV for the experiments, because
it “falls” in areas with low coverage, and that is harder to
happen for larger targets.

The proposed algorithm to compute ETV is significant
because it allows the identification of parts of the network
with poor coverage, whichmay lead to states of unavailability.
And this information may be exploited to change config-
urations of the network, for example, rotating cameras or
deployingmore visual sensors. In order to test this possibility,
we extended the monitoring scenario in Figure 11, deploying
four additional cameras, as depicted in Figure 14.

The ETV was recomputed for this new scenario, as
presented in Figure 15, considering ETV computation for
movement of the target after 10m (Figure 15(a)) and 1m
(Figure 15(b)).

In general, ETVwas improved for three tested sizes of the
target, especially for larger targets. Actually, for 𝑅(𝑡) = 70m,
the application was always unavailable for the scenario in
Figure 11. However, when considering the scenario with 10
visual sensors in Figure 14, applicationmonitoring the largest
target was available when it is between 125m and 400m.

With the performed verifications, the ETV of the defined
scenarios could be assessed. Using the proposed mathemati-
cal formulations, one can estimate the way targets will be cov-
ered, which can be considered to adjust the deployed visual
sensors or even trigger new deployments. We expect that this
methodology can bring valuable results for wireless visual
sensor network deployment, configuration, and operation.

5.3. Availability and Communication in WVSN. Availability
in wireless visual sensor networks is strongly related to com-
munication issues. Actually, the level of availability indicates
how well a deployed network is retrieving data according to
the monitoring requirements of the considered application,
and thus states of unavailability may indicate that something
is wrong or not operating as expected. And the causes of such
“problems” are diverse.

A transient fault in wireless visual sensor networks
will directly impact packet transmission, requiring proper
mechanisms to assure some level of reliability. On the other
hand, permanent faultsmay render part or the entire network
unavailable, when the visual coverage area is reduced. In fact,
if transmission paths are facing long periods of congestion,
the network may become unavailable, even if enough targets
are being properly viewed (packets are not being received at
the sink side). High packet error rates may also impact the
overall availability level of WVSN. Therefore, availability is a
broader concept that comprises different levels of hardware
and coverage failures [6], including communication issues.
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Figure 13: ETVwhen targetsmove through the covered area. (a) Targetsmove 50m for eachmeasure. (b) Targetsmove 25m for eachmeasure.
(c) Targets move 10m for each measure. (d) Targets move 1m for each measure.

Target

Direction

(165, 180)

(370, 0)(235, 0)

(435, 180)(300, 180)

(100, 0)

(0, 90)

(160, 0) (310, 0)

(230, 180) (375, 180)

Figure 14: Monitoring scenario with the addition of four new visual sensors.
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Figure 15: ETV after deployment of four more visual sensors. (a) Targets move 10m for eachmeasure. (b) Targets move 1m for eachmeasure.

TheproposedEffectiveTargetViewing is a relevantmetric
to assess how well targets’ perimeters are being viewed. But
ETV should also be considered along with other parameters
to more completely measure the availability of wireless visual
sensor networks applications. As connectivity problems may
result in hardware failures that disconnect visual sensors, the
ETV may be dynamically affected by the network condition:
disconnected visual sensors may be not considered when
computing ETV. And thus the ETV may even be used as a
QoS metric, since the value of ETV may be impacted by the
network.

Therefore, although ETV is computed considering only
visual sensing parameters, sensors communication may also
have a relevant role when computing ETV and enhancing
availability in wireless visual sensor networks.

6. Conclusions

Target monitoring in wireless visual sensor networks is
a relevant research topic that still presents some relevant
challenging issues, fostering investigation in this area. As
targets may have different forms and sizes, it is relevant
to define mathematical mechanisms to assess the way such
targets will be viewed, which can then affect real WVSN.
For example, a low value of ETV may trigger reposition
of rotatable cameras or even suggest new deployment of
visual sensors. In either way, availability assessment based
on targets’ perimeters can bring valuable results for wireless
visual sensor networks.

As target size is central in the proposed approach, the way
targets will be modelled is extremely relevant. In this article
we considered circumferences to represent targets, providing
a feasible and computationally viable solution. However,
as future works, we will make more realistic modelling,
considering convex polygons and grid of lines to represent

targets, which may bring more realistic results. Moreover,
real snapshots will be considered as a reference to identify
the borders of the targets, allowing even more complex
mathematical models. At last, 3D modelling will be also
considered in future works.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the Brazilian Research
Agency CNPq under Grant no. 441459/2014-5 and by the
University of the Bı́o-Bı́o, under Grants DIUBB 161610 2/R
and GI 160210/EF.

References

[1] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network
survey,”ComputerNetworks, vol. 52, no. 12, pp. 2292–2330, 2008.

[2] Y. Charfi, N. Wakamiya, and M. Murata, “Challenging issues in
visual sensor networks,” IEEEWireless Communications, vol. 16,
no. 2, pp. 44–49, 2009.

[3] I. T. Almalkawi, M. G. Zapata, J. N. Al-Karaki, and J. Morillo-
Pozo, “Wireless multimedia sensor networks: current trends
and future directions,” Sensors, vol. 10, no. 7, pp. 6662–6717, 2010.

[4] D. G. Costa and L. A. Guedes, “The coverage problem in video-
based wireless sensor networks: a survey,” Sensors, vol. 10, no. 9,
pp. 8215–8247, 2010.

[5] D. G. Costa, L. A. Guedes, F. Vasques, and P. Portugal, “Adaptive
monitoring relevance in camera networks for critical surveil-
lance applications,” International Journal of Distributed Sensor
Networks, vol. 2013, Article ID 836721, 14 pages, 2013.

186 New Frontiers in Signal Processing

__________________________ WORLD TECHNOLOGIES __________________________



WT

[6] D. G. Costa, I. Silva, L. A. Guedes, F. Vasques, and P. Portugal,
“Availability issues in wireless visual sensor networks,” Sensors,
vol. 14, no. 2, pp. 2795–2821, 2014.

[7] D. Pescaru, V. Gui, C. Toma, and D. Fuiorea, “Analysis of post-
deployment sensing coverage for video wireless sensor net-
works,” in Proceedings of the 6th Roedunet International Con-
ference (RoEduNet ’07), Craiova, Romania, November 2007.

[8] A. Mavrinac and X. Chen, “Modeling coverage in camera
networks: a survey,” International Journal of Computer Vision,
vol. 101, no. 1, pp. 205–226, 2013.

[9] J. Ai and A. A. Abouzeid, “Coverage by directional sensors in
randomly deployed wireless sensor networks,” Journal of Com-
binatorial Optimization, vol. 11, no. 1, pp. 21–41, 2006.

[10] D. Costa, I. Silva, L. Guedes, F. Vasques, and P. Portugal, “Avail-
ability assessment of wireless visual sensor networks for target
coverage,” in Proceedings of the IEEE International Conference
on Emerging Technologies in Factory Automation (ETFA ’14), pp.
1–8, Barcelona, Spain, 2014.

[11] D. Costa, I. Silva, L. Guedes, F. Vasques, and P. Portugal, “Select-
ing redundant nodes when addressing availability in wireless
visual sensor networks,” in Proceedings of the IEEE International
Conference on Industrial Informatics, pp. 424–448, PortoAlegre,
Brazil, July 2014.

[12] D. G. Costa, I. Silva, L. A. Guedes, P. Portugal, and F. Vasques,
“Enhancing redundancy in wireless visual sensor networks for
target coverage,” in Proceedings of the 20th Brazilian Symposium
on Multimedia and the Web (WebMedia ’14), pp. 31–38, Novem-
ber 2014.

[13] M. Younis and K. Akkaya, “Strategies and techniques for node
placement in wireless sensor networks: a survey,” Ad Hoc
Networks, vol. 6, no. 4, pp. 621–655, 2008.

[14] Y. E. Osais, M. St-Hilaire, and F. R. Yu, “Directional sensor
placement with optimal sensing range, field of view and ori-
entation,” Mobile Networks and Applications, vol. 15, no. 2, pp.
216–225, 2010.

[15] X. Sun, Y. Zhang, X. Ren, and K. Chen, “Optimization deploy-
ment of wireless sensor networks based on culture—ant colony
algorithm,”AppliedMathematics and Computation, vol. 250, pp.
58–70, 2015.

[16] H.-H. Yen, “Optimization-based visual sensor deployment al-
gorithm in PTZ wireless visual sensor networks,” in Proceedings
of the 7th International Conference on Ubiquitous and Future
Networks (ICUFN ’15), pp. 734–739, IEEE, Sapporo, Japan, July
2015.

[17] T. Sauter, “Energy-efficient coverage problems in wireless ad
hoc sensor networks,” Computer Communications, vol. 29, no.
4, pp. 413–420, 2006.

[18] L. Liu, H. Ma, and X. Zhang, “On directional K-coverage analy-
sis of randomly deployed camera sensor networks,” in Proceed-
ings of the IEEE International Conference on Communications
(ICC ’08), pp. 2707–2711, Beijing, China, May 2008.

[19] M. Alaei and J. M. Barcelo-Ordinas, “Node clustering based on
overlapping FoVs for wireless multimedia sensor networks,” in
Proceedings of the IEEEWireless Communications and Network-
ing Conference (WCNC ’10), pp. 1–6, Sydney, Australia, April
2010.

[20] M. Rahimi, S. Ahmadian, D. Zats, R. Laufer, and D. Estrin,
“Magic numbers in networks of wireless image sensors,” in
Proceedings of the Workshop on Distributed Smart Cameras
(DSC ’06), Boulder, Colo, USA, October 2006.

[21] D. Devarajan, R. J. Radke, and H. Chung, “Distributed metric
calibration of Ad hoc camera networks,” ACM Transactions on
Sensor Networks, vol. 2, no. 3, pp. 380–403, 2006.

[22] Y. Cai, W. Lou, M. Li, and X.-Y. Li, “Target-oriented scheduling
in directional sensor networks,” in Proceedings of the 26th
IEEE International Conference on Computer Communications
(INFOCOM ’07), pp. 1550–1558, Barcelona, Spain, May 2007.

[23] D. G. Costa, I. Silva, L. A. Guedes, F. Vasques, and P. Portugal,
“Selecting redundant nodes when addressing availability in
wireless visual sensor networks,” in Proceedings of the 12th IEEE
International Conference on Industrial Informatics (INDIN ’14),
pp. 130–135, IEEE, Porto Alegre, Brazil, July 2014.

[24] D. G. Costa, I. Silva, L. A. Guedes, F. Vasques, and P. Portugal,
“Optimal sensing redundancy for multiple perspectives of
targets in wireless visual sensor networks,” in Proceedings of the
13th International Conference on Industrial Informatics (INDIN
’15), pp. 185–190, Cambridge, UK, July 2015.

[25] D. G. Costa, I. Silva, L. A. Guedes, P. Portugal, and F. Vasques,
“Availability assessment of wireless visual sensor networks for
target coverage,” in Proceedings of the 19th IEEE International
Conference on Emerging Technologies and Factory Automation
(ETFA ’14), pp. 1–8, Barcelona, Spain, September 2014.

[26] C. Duran-Faundez, D. G. Costa, V. Lecuire, and F. Vasques,
“A geometrical approach to compute source prioritization
based on target viewing in wireless visual sensor networks,” in
Proceedings of the IEEEWorld Conference on Factory Communi-
cation Systems (WFCS ’16), pp. 1–7, IEEE, Aveiro, Portugal, May
2016.

[27] K.-S. Hung and K.-S. Lui, “Perimeter coverage scheduling in
wireless sensor networks using sensors with a single continuous
cover range,” EURASIP Journal on Wireless Communications
and Networking, vol. 2010, Article ID 926075, 17 pages, 2010.

[28] K.-S. Hung andK.-S. Lui, “Perimeter coveragemade practical in
wireless sensor networks,” in Proceedings of the 9th International
Symposium on Communications and Information Technology
(ISCIT ’09), pp. 87–92, Icheon, South Korea, September 2009.

[29] I. Silva, L. A. Guedes, P. Portugal, and F. Vasques, “Reliability
and availability evaluation of wireless sensor networks for
industrial applications,” Sensors, vol. 12, no. 1, pp. 806–838, 2012.

[30] X. Bai, L. Ding, J. Teng, S. Chellappan, C. Xu, and D. Xuan,
“Directed coverage in wireless sensor networks: concept and
quality,” in Proceedings of the IEEE 6th International Conference
on Mobile Adhoc and Sensor Systems (MASS ’09), pp. 476–485,
Macau, China, October 2009.

[31] A. Neishaboori, A. Saeed, K. A. Harras, and A. Mohamed, “On
target coverage in mobile visual sensor networks,” in Proceed-
ings of the 12th ACM International Symposium on Mobility
Management and Wireless Access (MobiWac ’14), pp. 39–46,
ACM, Montreal, Canada, September 2014.

187Assessing Availability in Wireless Visual Sensor Networks based on Targets’ Perimeters Coverage

__________________________ WORLD TECHNOLOGIES __________________________



WT
All chapters in this book were first published in JECE, by Hindawi Publishing Corporation; hereby published 
with permission under the Creative Commons Attribution License or equivalent. Every chapter published in 
this book has been scrutinized by our experts. Their significance has been extensively debated. The topics 
covered herein carry significant findings which will fuel the growth of the discipline. They may even be 
implemented as practical applications or may be referred to as a beginning point for another development. 

The contributors of this book come from diverse backgrounds, making this book a truly international effort. 
This book will bring forth new frontiers with its revolutionizing research information and detailed analysis 
of the nascent developments around the world. 

We would like to thank all the contributing authors for lending their expertise to make the book truly unique. 
They have played a crucial role in the development of this book. Without their invaluable contributions  
this book wouldn’t have been possible. They have made vital efforts to compile up to date information on the 
varied aspects of this subject to make this book a valuable addition to the collection of many professionals 
and students. 

This book was conceptualized with the vision of imparting up-to-date information and advanced data in 
this field. To ensure the same, a matchless editorial board was set up. Every individual on the board went 
through rigorous rounds of assessment to prove their worth. After which they invested a large part of their 
time researching and compiling the most relevant data for our readers. 

The editorial board has been involved in producing this book since its inception. They have spent rigorous 
hours researching and exploring the diverse topics which have resulted in the successful publishing of  
this book. They have passed on their knowledge of decades through this book. To expedite this challenging 
task, the publisher supported the team at every step. A small team of assistant editors was also appointed to 
further simplify the editing procedure and attain best results for the readers. 

Apart from the editorial board, the designing team has also invested a significant amount of their time in 
understanding the subject and creating the most relevant covers. They scrutinized every image to scout for 
the most suitable representation of the subject and create an appropriate cover for the book.

The publishing team has been an ardent support to the editorial, designing and production team.  
Their endless efforts to recruit the best for this project, has resulted in the accomplishment of this book.  
They are a veteran in the field of academics and their pool of knowledge is as vast as their experience 
in printing. Their expertise and guidance has proved useful at every step. Their uncompromising quality 
standards have made this book an exceptional effort. Their encouragement from time to time has been an 
inspiration for everyone. 

The publisher and the editorial board hope that this book will prove to be a valuable piece of knowledge for 
researchers, students, practitioners and scholars across the globe.

Permissions

__________________________ WORLD TECHNOLOGIES __________________________



WT
Leandro Aureliano da Silva, Gilberto Arantes Carrijo 
and Eduardo Silva Vasconcelos
Department of Electrical Engineering, Universidade 
Federal de Uberlândia, Av. João Naves dé Avila, 2160 
Bloco 3N, Campus Santa Mônica, Uberlândia, MG, 
Brazil

Roberto Duarte Campos and Cleiton Silvano Goulart 
Department of Electrical Engineering, Faculdade de 
Talentos Humanos, R. Manoel Gonçalves de Rezende, 
230 São Cristóvão, Uberaba, MG, Brazil

Rodrigo Pinto Lemos
Department of Electrical Engineering, Universidade 
Federal de Goiás, Av. Esperança, s/n. Campus 
Universitário, Goiânia, GO, Brazil

Rui Du, Yangyu Fan and Jianshu Wang
School of Electronics and Information, Northwestern 
Polytechnical University, Xi’an, Shaanxi 710072, China

Liquan Zhao and Yulong Liu
College of Information Engineering, Northeast Electric 
Power University, Jilin 132012, China

Markus Ulmschneider, Christian Gentner, Thomas 
Jost and Armin Dammann
German Aerospace Center (DLR), Institute of 
Communications and Navigation, Muenchner Str. 20, 
82334Wessling, Germany

Yongxin Feng, Shunchao Fei, Fang Liu and Bo Qian
Communication and Network Institute, Shenyang 
Ligong University, Shenyang 110159, China

Bo Qian, Guolei Zheng and Yongxin Feng
School of Information Science and Engineering, 
Shenyang Ligong University, Shenyang 110159, China

Shexiang Ma, Jie Wang, Xin Meng and Junfeng Wang
School of Electrical and Electronic Engineering, Tianjin 
University of Technology, Tianjin, China

Lei Lei and She Kun
Laboratory of Cyberspace, School of Information and 
Software Engineering, University of Electronic Science 
and Technology of China, Chengdu 610054, China

Betül Yılmaz, Serhat Gökkan and Caner Özdemir 
Department of Electrical and Electronics Engineering, 
Mersin University, Ciftlikkoy 33343, Mersin, Turkey

Weiming Cai and Qingke Qi
School of Information Science and Engineering, 
Ningbo Institute of Technology, Zhejiang University, 
Ningbo 315100, China

Xiushan Wu, Yanzhi Wang, Siguang An and 
Jianqiang Han 
College of Mechanical and Electrical Engineering, 
China Jiliang University, Hangzhou 310018, China

Ling Sun
Jiangsu Key Laboratory of ASIC Design, Nantong 
University, Nantong, China

Meng Hou and Xiao Liu
School of Electrical Engineering and Automation, Qilu 
University of Technology, Jinan 250353, China

Yuan Xu
The School of Electrical Engineering, University of 
Jinan, Jinan 250022, China

Yong Wang, Fu Xu, Zhibo Chen, Yu Sun and 
Haiyan Zhang
School of Information Science and Technology, Beijing 
Forestry University, Beijing 100083, China

Mengdi Wang, Anrong Xue and Huanhuan Xia
School of Computer Science and Communication 
Engineering, Jiangsu University, Zhenjiang 212013, 
China

Karen Uribe-Murcia, Yuriy S. Shmaliy and Jose A. 
Andrade-Lucio
Department of Electronics Engineering, Universidad 
de Guanajuato, 36885 Salamanca, GTO, Mexico

Chen Cai and Yu-mei Zhou
Institute of Microelectronics of Chinese Academy of 
Sciences, Beitucheng West Road, Chaoyang District, 
Beijing 100029, China
University of Chinese Academy of Sciences, Yuquan 
Road, Shijingshan District, Beijing 100049, China

Jian-zhong Zhao
University of Chinese Academy of Sciences, Yuquan 
Road, Shijingshan District, Beijing 100049, China

Mustafa M. Al Khabbaz 
Facilities Planning Department, Saudi Arabian Oil 
Company (Saudi Aramco), Dhahran 31311, Saudi 
Arabia

List of Contributors

__________________________ WORLD TECHNOLOGIES __________________________



WT

List of Contributors190

Mohamed A. Abido
Electrical Engineering Department, King Fahd 
University of Petroleum and Minerals, Dhahran 31261, 
Saudi Arabia

Zhenxing Zhang and Feng Gao 
College of Automation, Harbin Engineering University, 
Harbin 150001, China

Bin Ma
China Ship Development and Design Center, Wuhan, 
China

Zhiqiang Zhang
92730 Army, Sanya 572016, China

Zhao Liquan and Hu Yunfeng
College of Information Engineering, Northeast Electric 
Power University, Jilin 132012, China

Liming Zhou and Lu Chen
School of Computer and Information Engineering, 
Henan University, Kaifeng 475004, China

Yingzi Shan 
Department of Finance, Yellow River Conservancy 
Technical Institute, Kaifeng 475004, China

Daniel G. Costa
State University of Feira de Santana, Feira de Santana, 
BA, Brazil

Cristian Duran-Faundez
University of the Bío-Bío, Concepción, Chile

__________________________ WORLD TECHNOLOGIES __________________________



WT
A
Abnormal Event Detection Algorithm, 110, 112

Adaptive Equalization Algorithm, 125-126

Asynchronous Statistic Eye Diagram Tracking Algorithm, 
125-126, 130

Attribute Correlation Confidence, 108-111, 113

Automatic Identification System, 54, 60-61

B
Bandwidth Control, 99-101, 103, 105

Bandwidth Dynamic Scheduling Method, 100-102, 105

Bayesian Network, 108-113, 115

Boc Signal, 42, 44-50, 52-53

C
Cellular Radio Frequency (RF) Signals, 20

Channel Impulse Response, 20

Composite Binary Offset Carrier (CBOC) Signal, 35

Compressed Sensing, 18, 155-156, 164

Compressive Sampling Matching Pursuit, 13, 156

Compressive Sensing, 13-14, 19, 164-165

Cosine Distance Scoring, 62-63, 66

D
Data Acquisition Card, 80-81

Decision Feedback Equalizer, 125, 133

Direct Sequence Spread Spectrum, 44

Discrete Wavelet Transform, 63, 65

Discrete-frequency Kalman Filtering, 2-5

Discrete-time Kalman Filtering, 2, 4

Distribution Line Parameters, 134-135

E
Electrical Transient Analysis Program, 134

Electrophysiological Signal Monitoring, 80, 86

Extended Kalman Filter, 21, 57

F
Finite Impulse Response, 93-94, 98, 116, 124

Fixed Wideband Beamformer, 6-7, 12

Frequency Difference of Arrival, 54-55

G
Gaussian Mixture Model, 21, 25-26, 28, 63-64, 71

Global Navigation Satellite System, 42, 44, 54

Gomp Algorithm, 14-15, 17

Gradient Projection For Sparse Reconstruction, 13, 18, 155, 
164

Index

Graphite Patch Electrode, 81-83

Gray Level Difference Frequency Spatial, 146-147, 149, 
152-153

I
Inertial Measurement Unit, 22, 93-94

Interactive Multiple Model (IMM) Algorithm, 55

Iterative Thresholding, 13, 19

L
Local Bandwidth Scheduling, 99, 105-106

M
Maxborrow, 102-103

Maximum Energy Approach, 6-8, 12

Maximum Transmission Unit, 101, 107

Microelectromechanical System, 93

Multipath Assisted Positioning, 20-21, 27, 33

Multiplexed Binary Offset Carrier, 35, 42

N
Neural Network, 64, 69, 72, 124, 145

O
Ohm’s Formula Technique, 135

Orthogonal Matching Pursuit, 13, 19, 155, 165

P
Peak Sidelobe Level, 10

Phasor Measurement Units, 134, 145

Power Spectral Density, 35, 45

Programming Current Output Cell, 89

Q
Quadrature Signals Generator, 87, 92

R
Radio Frequency Identification, 93

Rao-blackwellization, 20-21, 32

Remote Sensing Data, 146-147, 149, 153

Resource Reservation Protocol, 99, 106

Response Variation, 6, 8

S
Sensor Nodes, 108-109, 112-114, 166-168, 170-172, 174-
175

Signal-to-noise Ratio, 1-5, 29, 35

Simultaneous Localization and Mapping, 20-21, 33

Sinusoidal Template-based Focusing Algorithm, 73, 77

__________________________ WORLD TECHNOLOGIES __________________________



WT

192 Index

Spatiotemporal Correlation Based Fault-tolerant Event 
Detection, 114-115

Speech Signals, 1-3, 5, 66

Stage Wise Orthogonal Matching Pursuit, 13

Stochastic Gradient Matching Pursuit Algorithm, 155

Subcarrier Phase Cancellation (SCPC) Technique, 35-36

Subspace Pursuit Algorithm, 14

T
Tapped Delay Line, 7

Time Division Multiple Access, 54

Token Allocation Module, 101

Token Bucket Algorithm, 99-101

Token Generation Rate, 101

Token Generator, 100-101

Tree-interior Imaging Radar, 73

U
Unbiased Finite Impulse Response, 93-94, 98, 116, 124

V
Vector Network Analyzer, 76

Voltage Drop Linear Equivalent Model, 135

Voltage-controlled Oscillator, 87, 91

W
Wavelet Cepstral Coefficient, 62-63, 65

Wavelet Transforms, 1, 153

Wireless Sensor Networks, 108-109, 111, 113, 115-116, 123, 
166-168, 172-173, 175-176, 186-187

Within-class Covariance Normalization, 62-63

__________________________ WORLD TECHNOLOGIES __________________________


	Cover
	Contents
	Preface
	Chapter 1 Comparative Study between the Discrete-Frequency Kalman Filtering and the Discrete-Time Kalman Filtering with Application in Noise Reduction in Speech Signals
	Chapter 2 Design of Fixed Wideband Beamformer through Improved Maximum Energy Approach
	Chapter 3 A New Generalized Orthogonal Matching Pursuit Method
	Chapter 4 Rao-Blackwellized Gaussian Sum Particle Filtering for Multipath Assisted Positioning
	Chapter 5 SSCM: An Unambiguous Acquisition Algorithm for CBOC Modulated Signal
	Chapter 6 A Detection Algorithm for the BOC Signal based on Quadrature Channel Correlation
	Chapter 7 A Vessel Positioning Algorithm based on Satellite Automatic Identification System
	Chapter 8 Speaker Recognition using Wavelet Cepstral Coefficient, I-Vector, and Cosine Distance Scoring and its Application for Forensics
	Chapter 9 An Experimental Study and Concept Evaluation on Tree-Interior Imaging Radar using Sinusoidal Template-Based Focusing Algorithm
	Chapter 10 Study on Electrophysiological Signal Monitoring of Plant under Stress based on Integrated Op-Amps and Patch Electrode
	Chapter 11 A Four Quadrature Signals’ Generator with Precise Phase Adjustment
	Chapter 12 Robust Self-Contained Pedestrian Navigation by Fusing the IMU and Compass Measurements via UFIR Filtering
	Chapter 13 An Application-Level QoS Control Method based on Local Bandwidth Scheduling
	Chapter 14 Abnormal Event Detection in Wireless Sensor Networks based on Multiattribute Correlation
	Chapter 15 UFIR Filtering for GPS-Based Tracking over WSNs with Delayed and Missing Data
	Chapter 16 A 1.25–12.5 Gbps Adaptive CTLE with Asynchronous Statistic Eye-Opening Monitor
	Chapter 17 Online Identification of Distribution Line Parameters by PMUs under Accuracy, Positive Sequence and Noise Considerations
	Chapter 18 Extraction of Earth Surface Texture Features from Multispectral Remote Sensing Data
	Chapter 19 Improved Stochastic Gradient Matching Pursuit Algorithm based on the Soft-Thresholds Selection
	Chapter 20 Secure and Efficient Cluster-Based Range Query Processing in Wireless Sensor Networks
	Chapter 21 Assessing Availability in Wireless Visual Sensor Networks based on Targets’ Perimeters Coverage
	Permissions
	List of Contributors
	Index



