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Preface

Probability and Statistics are two closely related sub-disciplines of mathematics.  Statistics is a mathematical 
branch that deals with data collection, organization, interpretation, presentation and analysis. There are two 
main statistical methods used in data analysis - descriptive statistics and inferential statistics. Descriptive 
statistics summarizes the data from a sample by using indexes like mean and standard deviation, whereas, 
inferential statistics conclude from data that are subject to random variations. Probability is a measure that 
quantifies the likelihood that events are going to occur. It measures the quantity as a number between 0 and 
1 that respectively indicate the impossibility and certainty of an event. Probability distributions are commonly 
used for statistical analysis. Both these topics are often studied in conjunction with one another. This book 
presents researches and studies performed by experts across the globe. It studies, analyzes and upholds the 
pillars of probability and statistics and their utmost significance in modern times. This book attempts to assist 
those with a goal of delving into these areas.

The information shared in this book is based on empirical researches made by veterans in this field of study. 
The elaborative information provided in this book will help the readers further their scope of knowledge 
leading to advancements in this field. 

Finally, I would like to thank my fellow researchers who gave constructive feedback and my family members 
who supported me at every step of my research.

Editor
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Rainfall modeling is significant for prediction and forecasting purposes in agriculture, weather derivatives, hydrology, and risk and
disaster preparedness. Normally two models are used to model the rainfall process as a chain dependent process representing the
occurrence and intensity of rainfall. Such two models help in understanding the physical features and dynamics of rainfall process.
However rainfall data is zero inflated and exhibits overdispersion which is always underestimated by such models. In this study
we have modeled the two processes simultaneously as a compound Poisson process. The rainfall events are modeled as a Poisson
process while the intensity of each rainfall event is Gamma distributed. We minimize overdispersion by introducing the dispersion
parameter in the model implemented through Tweedie distributions. Simulated rainfall data from the model shows a resemblance
of the actual rainfall data in terms of seasonal variation, means, variance, and magnitude. The model also provides mechanisms
for small but important properties of the rainfall process. The model developed can be used in forecasting and predicting rainfall
amounts and occurrences which is important in weather derivatives, agriculture, hydrology, and prediction of drought and flood
occurrences.

1. Introduction

Climate variables, in particular, rainfall occurrence and
intensity, hugely impact human and physical environment.
Knowledge of the frequency of the occurrence and intensity
of rainfall events is essential for planning, designing, and
management of various water resources system [1]. Specif-
ically rain-fed agriculture is a sensitive sector to weather
and crop production is directly dependent on the amount
of rainfall and its occurrence. Rainfall modeling has a great
impact on crop growth, weather derivatives, hydrological
systems, drought, and floodmanagement and crop simulated
studies.

Rainfall modeling is also important in pricing of weather
derivatives which are financial instruments that are used as
a tool for risk management to reduce risk associated with
adverse or unexpected weather conditions.

Further as climate change greatly affects the environment
there is an urgent need for predicting the variability of rainfall
for future periods for different climate change scenarios

in order to provide necessary information for high quality
climate related impact studies [1].

Howevermodeling precipitation poses a lot of challenges,
namely, accurate measurement of precipitation since rainfall
data consists of sequences of values which are either zero or
some positive numbers (intensity) depending on the depth
of accumulation over discrete intervals. In addition factors
like wind can affect collection accuracy. Rainfall is localized
unlike temperature which is highly correlated across regions;
therefore a derivative holder based on rainfall may suffer
geographical basis risk in case of pricing weather derivatives.
The final challenge is the choice of a proper probability
distribution function to describe precipitation data. The
statistical property of precipitation is far more complex and
a more sophisticated distribution is required [2].

Rainfall has been modeled as a chain dependent process
where a two-state Markov chain model represents the occur-
rence of rainfall and the intensity of rainfall is modeled by
fitting a suitable distribution like Gamma [3], exponential,
and mixed exponential [1, 4]. These models are easy to
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understand and interpret and use maximum likelihood to
find the parameters. However models involve many parame-
ters to fully describe the dynamics of rainfall aswell asmaking
several assumptions for the process.

Wilks [5] proposed a multisite model for daily precipi-
tation using a combination of two-state Markov process (for
the rainfall occurrence) and amixed exponential distribution
(for the precipitation amount). He found that the mixture of
exponential distributions offered a much better fit than the
commonly used Gamma distribution.

In study of Leobacher and Ngare [3] the precipitation
is modeled on a monthly basis by constructing a suit-
able Markov-Gamma process to take into account seasonal
changes of precipitation. It is assumed that rainfall data
for different years of the same month is independent and
identically distributed. It is assumed that precipitation can be
forecast with sufficient accuracy for a month.

Another approach of modeling rainfall is based on the
Poisson cluster model where two of the most recognized
cluster based models in the stochastic modeling of rain-
fall are the Newman-Scott Rectangular Pulses model and
the Bartlett-Lewis Rectangular Pulse model. These mod-
els represent rainfall sequences in time and rainfall fields
in space where both the occurrence and depth processes
are combined. The difficulty in Poisson cluster models as
observed by Onof et al. [6] is the challenge of how many
features should be addressed so that the model is still
mathematically tractable. In addition the models are best
fitted by the method of moments and so requires matching
analytic expressions for the statistical properties such asmean
and variance.

Carmona and Diko [7] developed a time-homogeneous
jump Markov process to describe rainfall dynamics. The
rainfall process was assumed to be in form of storms which
consists of cells themselves. At a cell arrival time the rainfall
process jumps up by a random amount and at extinction time
it jumps down by a random amount, bothmodeled as Poisson
process. Each time the rain intensity changes, an exponential
increase occurs either upwards or downwards. To preserve
nonnegative intensity, the downward jump size is truncated
to the current jump size.TheMarkov jumpprocess also allows
for a jump directly to zero corresponding to the state of no
rain [8].

In this study the rainfall process is modeled as a single
model where the occurrence and intensity of rainfall are
simultaneously modeled. The Poisson process models the
daily occurrence of rainfall while the intensity is modeled
using Gamma distribution as the magnitude of the jumps
of the Poisson process. Hence we have a compound Poisson
process which is Poisson-Gammamodel.The contribution of
this study is twofold: a Poisson-Gamma model that simul-
taneously describes the rainfall occurrence and intensity at
once and a suitablemodel for zero inflated datawhich reduces
overdispersion.

This paper is structured as follows. In Section 2 the
Poisson-Gamma model is described and then formulated
mathematically while Section 3 presents methods of estimat-
ing the parameters of the model. In Section 4 the model is
fitted to the data and goodness of fit of the model is evaluated

by mean deviance whereas quantile residuals perform the
diagnostics check of the model. Simulation and forecasting
are carried out in Section 5 and the study concludes in
Section 6.

2. Model Formulation

2.1. Model Description. Rainfall comprises discrete and con-
tinuous components in that if it does not rain the amount
of rainfall is discrete whereas if it rains the amount is
continuous. In most research works [3, 4, 9] the rainfall
process is presented by use of two separate models: one
is for the occurrence and conditioned on the occurrence
and another model is developed for the amount of rain-
fall. Rainfall occurrence is basically modeled as first or
higher order Markov chain process and conditioned on
this process a distribution is used to fit the precipitation
amount. Commonly used distributions are Gamma, expo-
nential, mixture of exponential, Weibull, and so on. These
models work based on several assumptions and inclusion
of several parameters to capture the observed temporal
dependence of the rainfall process. However rainfall data
exhibit overdispersion [10] which is caused by various factors
like clustering, unaccounted temporal correlation, or the fact
that the data is a product of Bernoulli trials with unequal
probability of events.The stochastic models developed in this
way underestimate the overdispersion of rainfall data which
may result in underestimating the risk of low or high seasonal
rainfall.

Our interest in this research is to simultaneously model
the occurrence and intensity of rainfall in one model. We
would model the rainfall process by using a Poisson-Gamma
probability distribution which is flexible to model the exact
zeros and the amount of rainfall together.

Rainfall ismodeled as a compoundPoisson processwhich
is a Lévy process with Gamma distributed jumps. This is
motivated by the sudden changes of rainfall amount from
zero to a large positive value following each rainfall event
which are modeled as pure jumps of the compound Poisson
process.

We assume rainfall arrives in forms of storms following a
Poisson process, and at each arrival time the current intensity
increases by a randomamount based onGammadistribution.
The jumps of the driving process represent the arrival of
the storm events generating a jump size of random size.
Each storm comprises cells that also arrive following another
Poisson process.

The Poisson cluster processes gives an appropriate tool as
rainfall data indicating presence of clusters of rainfall cells.
As observed by Onof et al. [6] use of Gamma distributed
variables for cell depth improves the reproduction of extreme
values.

Lord [11] used the Poisson-Gamma compound process to
model the motor vehicle crashes where they examined the
effects of low sample mean values and small sample size on
the estimation of the fixed dispersion parameter. Wang [12]
proposed a Poisson-Gamma compound approach for species
richness estimation.
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2.2. Mathematical Formulation. Let 𝑁𝑡 be total number of
rainfall event per day following a Poisson process such that

𝑃 (𝑁𝑡 = 𝑛) = 𝑒−𝜆 𝜆𝑛𝑛! , ∀𝑛 ∈ N,
𝑁𝑡 = ∑

𝑡≥1

1[𝑡,∞) (𝑡) . (1)

The amount of rainfall is the total sum of the jumps of
each rainfall event, say (𝑦𝑖)𝑖≥1, assumed to be identically and
independently Gamma distributed and independent of the
times of the occurrence of rainfall:

𝐿 (𝑡) = {{{{{
𝑁𝑡∑
𝑖=1

𝑦𝑖 𝑁𝑡 = 1, 2, 3, . . .
0 𝑁𝑡 = 0, (2)

such that 𝑦𝑖 ∼ Gamma(𝛼, 𝑃) is with probability density func-
tion

𝑓 (𝑦) = {{{{{
𝛼𝑝𝑦𝑃−1𝑒−𝛼𝑦Γ (𝑃) 𝑦 > 0,
0 𝑦 ≤ 0. (3)

Lemma 1. The compound Poisson process (2) has a cumulant
function

𝜓 (𝑠, 𝑡, 𝑥) = 𝜆𝑡 (𝑒𝑀𝑌(𝑥) − 1) , (4)

for 0 ≤ 𝑠 < 𝑡 and 𝑥 ∈ R, where𝑀𝑌(𝑥) is the moment generat-
ing function of the Gamma distribution.

Proof. Themoment generating functionΦ(𝑠) of 𝐿(𝑠) is given
by

𝑀𝐿 (𝑠) = E (𝑒𝑠𝐿(𝑡))
= ∞∑

𝑗=0

E (𝑒𝑠𝐿(𝑡) | 𝑁 (𝑡) = 𝑗) 𝑃 (𝑁 (𝑡) = 𝑗)
= ∞∑

𝑗=0

E (𝑒𝑠(𝐿(1)+𝐿(2)+⋅⋅⋅+𝐿(𝑗)) | 𝑁 (𝑡) = 𝑗) 𝑃 (𝑁 (𝑡) = 𝑗)
= ∞∑

𝑗=0

E (𝑒𝑠(𝐿(1)+𝐿(2)+⋅⋅⋅+𝐿(𝑗))) 𝑃 (𝑁 (𝑡) = 𝑗)
because of independence of 𝐿 and 𝑁(𝑡)

= ∞∑
𝑗=0

(𝑀𝑌 (𝑠))𝑗 𝑒−𝜆𝑡 (𝜆𝑡)𝑗𝑗! = 𝑒−𝜆𝑡 ∞∑
𝑗=0

(𝑀𝑌 (𝑠))𝑗 (𝜆𝑡)𝑗𝑗!
= 𝑒−𝜆𝑡+𝑀𝑌(𝑠)𝜆𝑡.

(5)

So the cumulant of 𝐿 is

ln𝑀𝐿 (𝑠) = 𝜆 (𝑀𝑌 (𝑠) − 1) = 𝜆 [(1 − 𝛼𝑥)−𝑃 − 1] . (6)

If we observe the occurrence of rainfall for 𝑛 periods,
then we have the sequence {𝐿 𝑖}𝑛𝑖=1 which is independent and
identically distributed.

If on a particular day there is no rainfall that occurred,
then

𝑃 (𝐿 = 0) = exp (−𝜆) (𝜆)00! = exp (−𝜆) = 𝑝0. (7)

Therefore the process has a point mass at 0 which implies
that it is not entirely continuous random variable.

Lemma 2. The probability density function of 𝐿 in (2) is

𝑓𝜃 (𝐿) = exp (−𝜆) 𝛿 (𝐿) + exp (−𝜆 − 𝛼𝐿) 𝐿−1𝑟𝑃 (V𝐿𝑃) , (8)

where 𝛿0(𝐿) is a dirac function at zero.

Proof. Let 𝑞0 = 1−𝑝0 be the probability that it rained. Hence
for 𝐿 𝑖 > 0 we have
𝑓+
𝜃 (𝐿) = ∞∑

𝑖=1

𝑝𝑖𝑞0 (𝛼𝑖𝑃𝐿𝑖𝑃−1 exp (−𝛼𝐿)Γ (𝑖𝑝) )
where 𝑝𝑖 = exp (−𝜆) (𝜆)𝑖𝑖!

= 1𝑞0 [∞∑
𝑖=1

𝑝𝑖 exp (−𝛼𝐿) 𝛼𝑖𝑃𝐿𝑖𝑃−1Γ (𝑖𝑃) ]
= 1𝑞0 [exp (−𝛼𝐿) ∞∑

𝑖=1

𝑝𝑖 𝛼𝑖𝑃𝐿𝑖𝑃−1Γ (𝑖𝑃) ]
= 1𝑞0 [exp (−𝛼𝐿) ∞∑

𝑖=1

(exp (−𝜆) (𝜆)𝑖𝑖! ) 𝛼𝑖𝑃𝐿𝑖𝑃−1Γ (𝑖𝑃) ]
= exp (−𝜆)𝑞0 [exp (−𝛼𝐿) ∞∑

𝑖=1

((𝜆)𝑖𝑖! ) 𝛼𝑖𝑝𝐿𝑖𝑃−1Γ (𝑖𝑝) ]
= exp (−𝜆)𝑞0 exp (−𝛼𝐿) [∞∑

𝑖=1

(𝜆)𝑖 (𝛼𝐿)𝑖𝑝𝐿𝑖!Γ (𝑖𝑃) ]
= 𝐿−1 exp (−𝛼𝐿)(exp (𝜆) − 1)

∞∑
𝑖=1

𝜆𝛼𝑃𝐿𝑃𝑖!Γ (𝑖𝑃) .

(9)

If we let V = 𝜆𝛼𝑃 and 𝑟𝑝(V𝐿𝑃) = ∑∞
𝑖=1(V𝐿𝑃/𝑖!Γ(𝑖𝑃)), then we

have

𝑓+
𝜃 (𝐿) = 𝐿−1 exp (−𝛼𝐿)(exp (𝜆) − 1) 𝑟𝑃 (V𝐿𝑃) . (10)
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We can express the probability density function 𝑓𝜃(𝐿) in
terms of a Dirac function as𝑓𝜃 (𝐿) = 𝑝0𝛿0 (𝐿) + 𝑞0𝑓+

𝜃 (𝐿)
= exp (−𝜆) 𝛿0 (𝐿)

+ [ 𝑞0(exp (𝜆) − 1)] 𝐿−1 exp (−𝛼𝐿) 𝑟𝑃 (V𝐿𝑃)
= exp (−𝜆) 𝛿0 (𝐿)

+ exp (−𝜆 − 𝛼𝐿) 𝐿−1𝑟𝑃 (V𝐿𝑃) .

(11)

Consider a random sample of size 𝑛 of 𝐿 𝑖 with the proba-
bility density function

𝑓𝜃 (𝐿) = exp (−𝜆) 𝛿 (𝐿) + exp (−𝜆 − 𝛼𝐿) 𝐿−1𝑟𝑝 (V𝐿𝑝) . (12)

If we assume that there are 𝑚 positive values 𝐿1, 𝐿2, . . . , 𝐿𝑚,
then there are𝑀 = 𝑛 − 𝑚 zeros where𝑚 > 0.

We observe that 𝑚 ∼ 𝐵𝑖(𝑛, 1 − exp (−𝜆)) and 𝑝(𝑚 = 0) =
exp (−𝑛𝜆); hence the likelihood function is

𝐿 = (𝑛𝑚)𝑝𝑛−𝑚0 𝑞𝑚0 𝑚∏
𝑖=1

𝑓+
𝜃 (𝐿 𝑖) (13)

and the log-likelihood for 𝜃 = (𝜆, 𝛼, 𝑝) is
log𝐿 (𝜃; 𝐿1, 𝐿2, . . . , 𝐿𝑛)

= log((𝑛𝑚)𝑝𝑛−𝑚0 𝑞𝑚0 𝑚∏
𝑖=1

𝑓+
𝜃 (𝐿 𝑖))

= log((𝑛𝑚) 𝑒−𝜆𝑛+𝜆𝑚 (1 − 𝑒−𝜆)𝑚 𝑚∏
𝑖=1

𝑒−𝜆−𝛼𝐿 𝑖 1𝐿 𝑖

⋅ ∞∑
𝑗=1

(𝜆𝛼𝑝𝐿𝑝𝑖𝑗)𝑗𝑗!Γ (𝑗𝑝) ) = log(𝑛𝑚) + 𝜆 (𝑚 − 𝑛) + 𝑚
⋅ log (1 − 𝑒−𝜆) + 𝑚∑

𝑖=1

− 𝜆 − 𝛼𝐿 𝑖 − log 𝐿 𝑖

+ log
𝑚∑
𝑖=1

∞∑
𝑗=1

(𝜆𝛼𝑝𝐿𝑝𝑖𝑗)𝑗𝑗!Γ (𝑗𝑝) .

(14)

Now for �̂� we have𝜕 log 𝐿 (𝜃; 𝐿1, 𝐿2, . . . , 𝐿𝑛)𝜕𝜆
= 𝑚 − 𝑛 + 𝑚1 − 𝑒−𝜆 + (−1)𝑚

+ 1𝜆
𝑚∑
𝑖=1

∞∑
𝑗=1

𝑖 𝜕 log𝐿 (𝜃; 𝐿1, 𝐿2, . . . , 𝐿𝑛)𝜕𝜆 = 0 ⇒
𝑚 − 𝑛 + 𝑚1 − 𝑒−𝜆 + (−1)𝑚 + 1𝜆

𝑚∑
𝑖=1

∞∑
𝑗=1

𝑖 = 0.

(15)

We can observe from the above evaluation that 𝜆 can not be
expressed in closed form; similar derivation also shows that𝛼 as well can not be expressed in closed form. Therefore we
can only estimate 𝜆 and 𝛼 using numerical methods. Withers
and Nadarajah [13] also observed that the probability density
function can not be expressed in closed form and therefore
it is difficult to find the analytic form of the estimators. So
we will express the probability density function in terms of
exponential dispersion models as described below.

Definition 3 (see [14]). A probability density function of the
form

𝑓 (𝑦; 𝜃, Θ) = 𝑎 (𝑦, Θ) exp { 1Θ [𝑦𝜃 − 𝑘 (𝜃)]} (16)

for suitable functions 𝑘() and 𝑎() is called an exponential
dispersion model.

Θ > 0 is the dispersion parameter.The function 𝑘(𝜃) is the
cumulant of the exponential dispersion model; since Θ = 1,
then 𝑘() are the successive cumulants of the distribution [15].
The exponential dispersion models were first introduced by
Fisher in 1922.

If we let 𝐿 𝑖 = log𝑓(𝑦𝑖; 𝜃𝑖, Θ) as a contribution of 𝑦𝑖 to the
likelihood function 𝐿 = ∑𝑖 𝐿 𝑖, then

𝐿 𝑖 = 1Θ [𝑦𝑖𝜃 − 𝑘 (𝜃𝑖)] + log 𝑎 (𝑦, Θ) ,
𝜕𝐿 𝑖𝜕𝜃𝑖 = 1Θ (𝑦𝑖 − 𝑘 (𝜃𝑖)) ,
𝜕2𝐿 𝑖𝜕𝜃2𝑖 = − 1Θ𝑘 (𝜃𝑖) .

(17)

However we expect that E(𝜕𝐿 𝑖/𝜕𝜃𝑖) = 0 and −E(𝜕2𝐿 𝑖/𝜕𝜃2𝑖 ) =
E(𝜕𝐿 𝑖/𝜕𝜃𝑖)2 so that

E( 1Θ (𝑦𝑖 − 𝑘 (𝜃𝑖))) = 0,
1Θ (E (𝑦𝑖) − 𝑘 (𝜃𝑖)) = 0,

E (𝑦𝑖) = 𝑘 (𝜃𝑖) .
(18)

Furthermore

−E(𝜕2𝐿 𝑖𝜕𝜃2𝑖 ) = E(𝜕𝐿 𝑖𝜕𝜃𝑖 )
2 ,

−E(− 1Θ𝑘 (𝜃𝑖)) = E( 1Θ (𝑦𝑖 − 𝑘 (𝜃𝑖)))2 ,
𝑘 (𝜃𝑖)Θ = Var (𝑦𝑖)Θ2

,
Var (𝑦𝑖) = Θ𝑘 (𝜃𝑖) .

(19)

Therefore the mean of the distribution is E[𝑌] = 𝜇 = 𝑑𝑘(𝜃)/𝑑𝜃 and the variance is Var(𝑌) = Θ(𝑑2𝑘(𝜃)/𝑑𝜃2).
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The relationship 𝜇 = 𝑑𝑘(𝜃)/𝑑𝜃 is invertible so that 𝜃 can
be expressed as a function of 𝜇; as such we have Var(𝑌) =Θ𝑉(𝜇), where 𝑉(𝜇) is called a variance function.

Definition 4. The family of exponential dispersion models,
whose variance functions are of the form 𝑉(𝜇) = 𝜇𝑝 for𝑝 ∈ (−∞, 0]∪[1,∞), are called Tweedie family distributions.

Examples are as follows: for 𝑝 = 0 then we have a normal
distribution, 𝑝 = 1, and Θ = 1; it is a Poisson distribution,
and Gamma distribution for 𝑝 = 2, while when 𝑝 = 3 it is
Gaussian inverse distribution. Tweedie densities can not be
expressed in closed form (apart from the examples above)
but can instead be identified by their cumulants generating
functions.

From Var(𝑌) = Θ(𝑑2𝑘(𝜃)/𝑑𝜃2), then for Tweedie family
distribution we have

Var (𝑌) = Θ𝑑2𝑘 (𝜃)𝑑𝜃2 = Θ𝑉 (𝜇) = Θ𝜇𝑝. (20)

Hence we can solve for 𝜇 and 𝑘(𝜃) as follows:
𝜇 = 𝑑𝑘 (𝜃)𝑑𝜃 ,

𝑑𝜇𝑑𝜃 = 𝜇𝑝 ⇒
∫ 𝑑𝜇𝜇𝑝 = ∫𝑑𝜃,

𝜃 = {{{{{
𝜇1−𝑝1 − 𝑝 𝑝 ̸= 1,
log𝜇 𝑝 = 1

(21)

by equating the constants of integration above to zero.
For 𝑝 ̸= 1 we have 𝜇 = [(1 − 𝑝)𝜃]1/(1−𝑝) so that

∫𝑑𝑘 (𝜃) = ∫ [(1 − 𝑝) 𝜃]1/(1−𝑝) 𝑑𝜃,
𝑘 (𝜃) = [(1 − 𝑝) 𝜃](2−𝑝)/(1−𝑝)2 − 𝑝 = 𝜇(2−𝑝)/(1−𝑝)2 − 𝑝 ,

𝑝 ̸= 2.
(22)

Proposition 5. Thecumulant generating function of a Tweedie
distribution for 1 < 𝑝 < 2 is

log𝑀𝑌 (𝑡)
= 1Θ 𝜇2−𝑝𝑝 − 1 [(1 + 𝑡Θ (1 − 𝑝) 𝜇𝑝−1)(2−𝑝)/(1−𝑝) − 1] . (23)

Proof. From (16) the moment generating function is given by

𝑀𝑌 (𝑡) = ∫ exp (𝑡𝑦) 𝑎 (𝑦, Θ) exp { 1Θ [𝑦𝜃 − 𝑘 (𝜃)]} 𝑑𝑦
= ∫𝑎 (𝑦,Θ) exp { 1Θ [𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)]} 𝑑𝑦
= ∫𝑎 (𝑦,Θ) exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)Θ
+ 𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)Θ )𝑑𝑦 = ∫𝑎 (𝑦, Θ)
⋅ exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ
+ 𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )𝑑𝑦 = ∫𝑎 (𝑦,Θ)
⋅ exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )
⋅ exp(𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )𝑑𝑦
= exp(𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )∫𝑎 (𝑦,Θ)
⋅ exp(𝑦 (𝜃 + 𝑡Θ) − 𝑘 (𝜃 + 𝑡Θ)Θ )𝑑𝑦
= exp { 1Θ [𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)]} .

(24)

Hence cumulant generating function is

log𝑀𝑌 (𝑡) = 1Θ [𝑘 (𝜃 + 𝑡Θ) − 𝑘 (𝜃)] . (25)

For 1 < 𝑝 < 2 we substitute 𝜃 and 𝑘(𝜃) to have
log𝑀𝑌 (𝑡)

= 1Θ 𝜇2−𝑝𝑝 − 1 [(1 + 𝑡Θ (1 − 𝑝) 𝜇𝑝−1)(2−𝑝)/(1−𝑝) − 1] . (26)

By comparing the cumulant generating functions in
Lemma 1 and Proposition 5 the compound Poisson process
can be thought of as Tweedie distribution with parameters(𝜆, 𝛼, 𝑃) expressed as follows:

𝜆 = 𝜇2−𝑝Θ(2 − 𝑝) ,
𝛼 = Θ (𝑝 − 1) 𝜇𝑝−1,
𝑃 = 2 − 𝑝𝑝 − 1 .

(27)

The requirement that the Gamma shape parameter 𝑃 be
positive implies that only Tweedie distributions between 1 <𝑝 < 2 can represent the Poisson-Gamma compound process.
In addition, for 𝜆 > 0, 𝛼 > 0 implies 𝜇 > 0 and Θ > 0.
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Proposition 6. Based on Tweedie distribution, the probability
of receiving no rainfall at all is

𝑃 (𝐿 = 0) = exp[− 𝜇2−𝑝Θ(2 − 𝑝)] (28)

and the probability of having a rainfall event is

𝑃 (𝐿 > 0)
= 𝑊 (𝜆, 𝛼, 𝐿, 𝑃) exp[ 𝐿(1 − 𝑝) 𝜇𝑝−1 − 𝜇2−𝑝2 − 𝑝] , (29)

where

𝑊(𝜆, 𝛼, 𝐿, 𝑃) = ∞∑
𝑗=1

𝜆𝑗 (𝛼𝐿)𝑗𝑃 𝑒−𝜆𝑗!Γ (𝑗𝑃) . (30)

Proof. This follows by directly substituting the values of 𝜆 and𝜃, 𝑘(𝜃) into (16).
The function 𝑊(𝜆, 𝛼, 𝐿, 𝑃) is an example of Wright’s

generalized Bessel function; however it can not be expressed
in terms of the more common Bessel function. To evaluate it
the value of 𝑗 is determined forwhich the function𝑊𝑗 reaches
the maximum [15].

3. Parameter Estimation

We approximate the function 𝑊(𝜆, 𝛼, 𝐿, 𝑃) =∑∞
𝑗=1(𝜆𝑗(𝛼𝐿)𝑗𝑃𝑒−𝜆/𝑗!Γ(𝑗𝑃)) = ∑∞

𝑗=1 𝑊𝑗 following the
procedure by [15] where the value of 𝑗 is determined for
which𝑊𝑗 reaches maximum.We treat 𝑗 as continuous so that𝑊𝑗 is differentiated with respect to 𝑗 and set the derivative to
zero. So for 𝐿 > 0 we have the following.
Lemma 7 (see [15]). The log maximum approximation of 𝑊𝑗

is given by

log𝑊max = 𝐿2−𝑝(2 − 𝑝)Θ [log 𝐿𝑃 (𝑝 − 1)𝑃Θ(1−𝑃) (2 − 𝑝) + (1 + 𝑃)
− 𝑃 log𝑃 − (1 − 𝑃) log 𝐿2−𝑝(2 − 𝑝)Θ] − log (2𝜋) − 12
⋅ log𝑃 − log 𝐿2−𝑝(2 − 𝑝)Θ,

(31)

where 𝑗max = 𝐿2−𝑝/(2 − 𝑝)Θ.

Proof.

𝑊(𝜆, 𝛼, 𝐿, 𝑃) = ∞∑
𝑗=1

𝜆𝑗 (𝛼𝐿)𝑗𝑃−1 𝑒−𝜆𝑗!Γ (𝑗𝑃)
= ∞∑

𝑗=1

𝜆𝑗𝐿𝑗𝑃−1𝑒−𝐿/𝜏𝑒−𝜆𝑗!𝜏𝑃𝑗Γ (𝑃𝑗) where 𝜏 = 1𝛼 .
(32)

Substituting the values of 𝜆, 𝛼 in the above equation we have

𝑊(𝜆, 𝛼, 𝐿, 𝑃)
= ∞∑

𝑗=1

(𝜇2−𝑝/Θ (2 − 𝑝))𝑗 𝐿𝑗𝑃−1 [Θ (1 − 𝑝) 𝜇𝑝−1]𝑗𝑃 𝑒−𝐿/𝜏𝑒−𝜆𝑗!Γ (𝑃𝑗)
= 𝑒−𝐿/𝜏−𝜆𝐿−1 ∞∑

𝑗=1

𝜇(2−𝑝)𝑗 (Θ (𝑝 − 1) 𝜇𝑝−1)𝑗𝑃 𝐿𝑗𝑃
Θ𝑗 (2 − 𝑝)𝑗 𝑗!Γ (𝑗𝑃)

= 𝑒−𝐿/𝜏−𝜆𝐿−1 ∞∑
𝑗=1

𝐿𝑗𝑃 (𝑝 − 1)𝑗𝑃 𝜇(2−𝑝)𝑗+(𝑝−1)𝑗𝑃Θ𝑗(1−𝑃) (2 − 𝑝)𝑗 𝑗!Γ (𝑗𝑃) .

(33)

The term 𝜇(2−𝑝)𝑗+(𝑝−1)𝑗𝑃 depends on the 𝐿, 𝑝, 𝑃, Θ values so
we maximize the summation

𝑊(𝐿,Θ, 𝑃) = ∞∑
𝑗=1

𝐿𝑗𝑃 (𝑝 − 1)𝑗𝑃Θ𝑗(1−𝑃) (2 − 𝑝)𝑗 𝑗!Γ (𝑗𝑃)
= ∞∑

𝑗=1

𝑧𝑗𝑗!Γ (𝑗𝑃)
where 𝑧 = 𝐿𝑃 (𝑝 − 1)𝑃Θ(1−𝑃) (2 − 𝑝)

= 𝑊𝑗.

(34)

Considering𝑊𝑗 we have

log𝑊𝑗 = 𝑗 log 𝑧 − log 𝑗! − log (𝑃𝑗)
= 𝑗 log 𝑧 − log Γ (𝑗 + 1) − log (𝑃𝑗) . (35)

Using Stirling’s approximation of Gamma functions we have

log Γ (1 + 𝑗) ≈ (1 + 𝑗) log (1 + 𝑗) − (1 + 𝑗)
+ 12 log( 2𝜋1 + 𝑗) ,

log Γ (𝑃𝑗) ≈ 𝑃𝑗 log (𝑃𝑗) − 𝑃𝑗 + 12 log(2𝜋𝑃𝑗 ) .
(36)

And hence we have

𝑊𝑗 ≈ 𝑗 [log 𝑧 + (1 + 𝑃) − 𝑃 log𝑃 − (1 − 𝑃) log 𝑗]
− log (2𝜋) − 12 log𝑃 − log 𝑗. (37)

For 1 < 𝑝 < 2 we have 𝑃 = (2 − 𝑝)/(𝑝 − 1) > 0; hence
the logarithms have positive arguments. Differentiating with
respect to 𝑗 we have

𝜕 log𝑊𝑗𝜕𝑗 ≈ log 𝑧 − 1𝑗 − log 𝑗 − 𝑃 log (𝑃𝑗)
≈ log 𝑧 − log 𝑗 − 𝑃 log (𝑃𝑗) , (38)

6 Probability and Statistics: Concepts and Applications



where 1/𝑗 is ignored for large 𝑗. Solving for (𝜕 log𝑊𝑗)/𝜕𝑗 = 0
we have

𝑗max = 𝐿2−𝑝(2 − 𝑝)Θ. (39)

Substituting 𝑗max in log𝑊𝑗 to find the maximum approxima-
tion of𝑊𝑗 we have

log𝑊max = 𝐿2−𝑝(2 − 𝑝)Θ [log 𝐿𝑃 (𝑝 − 1)𝑃Θ(1−𝑃) (2 − 𝑝) + (1 + 𝑃)
− 𝑃 log𝑃 − (1 − 𝑃) log 𝐿2−𝑝(2 − 𝑝)Θ] − log (2𝜋) − 12
⋅ log𝑃 − log 𝐿2−𝑝(2 − 𝑝)Θ.

(40)

Hence the result follows.

It can be observed that 𝜕𝑊𝑗/𝜕𝑗 is monotonically decreas-
ing; hence log𝑊𝑗 is strictly convex as a function of 𝑗.
Therefore 𝑊𝑗 decays faster than geometrically on either side
of 𝑗max [15]. Therefore if we are to estimate 𝑊(𝐿,Θ, 𝑃) by�̂�(𝐿, Θ, 𝑃) = ∑𝑗𝑢

𝑗=𝑗𝑑
𝑊𝑗 the approximation error is bounded

by geometric sum

𝑊(𝐿,Θ, 𝑃) − �̂� (𝐿, Θ, 𝑃)
< 𝑊𝑗𝑑−1

1 − 𝑟𝑗𝑑−1
𝑙1 − 𝑟𝑙 + 𝑊𝑗𝑢+1

11 − 𝑟𝑢 ,
𝑟𝑙 = exp(𝜕𝑊𝑗𝜕𝑗 )𝑗 = 𝑗𝑑 − 1,
𝑟𝑢 = exp(𝜕𝑊𝑗𝜕𝑗 )𝑗 = 𝑗𝑢 + 1.

(41)

For quick and accurate evaluation of𝑊(𝜆, 𝛼, 𝐿, 𝑃), the series
is summed for only those terms in the series which contribute
significantly to the sum.

Generalized linear models extend the standard linear
regressionmodels to incorporate nonnormal response distri-
butions and possibly nonlinear functions of the mean. The
advantage of GLMs is that the fitting process maximizes the
likelihood for the choice of the distribution for a random
variable 𝑦 and the choice is not restricted to normality unlike
linear regression [16].

The exponential dispersion models are the response
distributions for the generalized linear models. Tweedie dis-
tributions are members of the exponential dispersion models
upon which the generalized linear models are based. Conse-
quently fitting a Tweedie distribution follows the framework
of fitting a generalized linear model.

Lemma 8. In case of a canonical link function, the sufficient
statistics for {𝛽𝑗} are {∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖𝑗}.

Proof. For 𝑛 independent observations 𝑦𝑖 of the exponential
dispersion model (16) the log-likelihood function is

𝐿 (𝛽) = 𝑛∑
𝑖=1

𝐿 𝑖 = 𝑛∑
𝑖

log𝑓 (𝑦𝑖, 𝜃𝑖, Θ)
= 𝑛∑

𝑖=1

𝑦𝑖𝜃𝑖 − 𝑘 (𝜃𝑖)Θ + 𝑛∑
𝑖

log 𝑎 (𝑦𝑖, Θ) .
(42)

But 𝜃𝑖 = ∑𝑝
𝑗 𝛽𝑗𝑥𝑖𝑗; hence

𝑛∑
𝑖

𝑦𝑖𝜃𝑖 = 𝑛∑
𝑖=1

𝑦𝑖 𝑝∑
𝑗

𝛽𝑗𝑥𝑖𝑗 = 𝑝∑
𝑗

𝛽𝑗 𝑛∑
𝑖=1

𝑦𝑖𝑥𝑖𝑗. (43)

Proposition 9. Given that 𝑦𝑖 is distributed as (16) then its
distribution depends only on its first two moments, namely, 𝜇𝑖
and Var(𝑦𝑖).
Proof. Let 𝑔(𝜇𝑖) be the link function of the GLM such that𝜂𝑖 = ∑𝑝

𝑗=1 𝛽𝑗𝑥𝑖𝑗 = 𝑔(𝜇𝑖). The likelihood equations are

𝜕𝐿 (𝛽)𝜕𝛽 = 𝑛∑
𝑖=1

𝜕𝐿 𝑖𝜕𝛽𝑗 ∀𝑗. (44)

Using chain rule we have

𝜕𝐿 𝑖𝜕𝛽𝑗 = 𝜕𝐿 𝑖𝜕𝜃𝑖 𝜕𝜃𝑖𝜕𝜇𝑖 𝜕𝜇𝑖𝜕𝜂𝑖 𝜕𝜂𝑖𝜕𝛽𝑗 = 𝑦𝑖 − 𝜇𝑖
Var (𝑦𝑖)𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖 . (45)

Hence

𝜕𝐿 (𝛽)𝜕𝛽 = 𝑦𝑖 − 𝜇𝑖
Var (𝑦𝑖)𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖 = 𝑦𝑖 − 𝜇𝑖Θ𝜇𝑝𝑖 𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖 . (46)

Since Var(𝑦𝑖) = 𝑉(𝜇𝑖), the relationship between themean and
variance characterizes the distribution.

Clearly a GLM only requires the first two moments of
the response 𝑦𝑖; hence despite the difficulty of full likelihood
analysis of Tweedie distribution as it can not be expressed
in closed form for 1 < 𝑝 < 2 we can still fit a
Tweedie distribution family. The likelihood is only required
to estimate 𝑝 and Θ as well as diagnostic check of the model.

Proposition 10. Under the standard regularity conditions, for
large 𝑛, the maximum likelihood estimator 𝛽 of 𝛽 for general-
ized linear model is efficient and has an approximate normal
distribution.

Proof. From the log-likelihood, the covariance matrix of the
distribution is the inverse of the information matrix J =
E(−𝜕2𝐿(𝛽)/𝜕𝛽ℎ𝜕𝛽𝑗).
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So

J = E(−𝜕2𝐿 (𝛽)𝜕𝛽ℎ𝜕𝛽𝑗 ) = E[(𝜕2𝐿 𝑖𝜕𝛽ℎ )(𝜕2𝐿 𝑖𝜕𝛽𝑗 )]
= [( 𝑦𝑖 − 𝜇𝑖

Var (𝑦𝑖)𝑥𝑖ℎ 𝜕𝜇𝑖𝜕𝜂𝑖)( 𝑦𝑖 − 𝜇𝑖
Var (𝑦𝑖)𝑥𝑖𝑗 𝜕𝜇𝑖𝜕𝜂𝑖)]

= 𝑥𝑖ℎ𝑥𝑖𝑗
Var (𝑦𝑖) (𝜕𝜇𝑖𝜕𝜂𝑖)

2 .
(47)

Hence

E(−𝜕2𝐿 (𝛽)𝜕𝛽ℎ𝜕𝛽𝑗 ) = 𝑛∑
𝑖

𝑥𝑖ℎ𝑥𝑖𝑗
Var (𝑦𝑖) (𝜕𝜇𝑖𝜕𝜂𝑖)

2 = (𝑋𝑇𝑊𝑋) , (48)

where𝑊 = diag[(1/Var(𝑦𝑖))(𝜕𝜇𝑖/𝜕𝜂𝑖)2].
Therefore 𝛽 has an approximate 𝑁[𝛽, (𝑋𝑇𝑊𝑋)−1] with

Var(𝛽) = (𝑋𝑇�̂�𝑋)−1, where �̂� is evaluated at 𝛽.
To compute 𝛽 we use the iteratively reweighted least

square algorithmproposed byDobson andBarnett [17]where
the iterations use the working weights 𝑤𝑖:𝑤𝑖𝑉 (𝜇𝑖) ̇𝑔 (𝜇𝑖)2 , (49)

where 𝑉(𝜇𝑖) = 𝜇𝑝𝑖 .
However estimating 𝑝 is more difficult than estimating𝛽 and Θ such that most researchers working with Tweedie

densities have𝑝 a priori. In this study we use the procedure in
[15]where themaximum likelihood estimator of𝑝 is obtained
by directly maximizing the profile likelihood function. For
any given value of𝑝wefind themaximum likelihood estimate
of 𝛽,Θ and compute the log-likelihood function. This is
repeated several times until we have a value of 𝑝 which
maximizes the log-likelihood function.

Given the estimated values of 𝑝 and 𝛽, then the unbiased
estimator of Θ is given by

Θ̂ = 𝑛∑
𝑖=1

[𝐿 𝑖 − 𝜇𝑖 (𝛽)]2
𝜇𝑖 (𝛽)𝑝 . (50)

Since for 1 < 𝑝 < 2 the Tweedie density can not be expressed
in closed form, it is recommended that the maximum
likelihood estimate of Θ must be computed iteratively from
full data [15].

4. Data and Model Fitting

4.1. Data Analysis. Daily rainfall data of Balaka district in
Malawi covering the period 1995–2015 is used. The data was
obtained from Meteorological Surveys of Malawi. Figure 1
shows a plot of the data.

In summary the minimum value is 0mmwhich indicates
that there were no rainfall on particular days, whereas the
maximum amount is 123.7mm. The mean rainfall for the
whole period is 3.167mm.
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Figure 1: Daily rainfall amount for Balaka district.
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Figure 2: Variance mean relationship.

We investigated the relationship between the variance and
the mean of the data by plotting the log(variance) against
log(mean) as shown in Figure 2. From the figure we can
observe a linear relationship between the variance and the
mean which can be expressed as

log (Variance) = 𝛼 + 𝛽 log (mean) (51)

Variace = 𝐴 ∗mean𝛽, 𝐴 ∈ R. (52)

Hence the variance can be expressed as some power 𝛽 ∈ R

of the mean agreeing with the Tweedie variance function
requirement.

4.2. Fitted Model. To model the daily rainfall data we use sin
and cos as predictors due to the cyclic nature and seasonality
of rainfall. We have assumed that February ends on 28th for
all the years to be uniform in our modeling.

The canonical link function is given by

log𝜇𝑖 = 𝑎0 + 𝑎1 sin( 2𝜋𝑖365) + 𝑎2 cos( 2𝜋𝑖365) , (53)

where 𝑖 = 1, 2, . . . , 365 corresponds to days of the year and𝑎0, 𝑎1, 𝑎2 are the coefficients of regression.
In the first place we estimate 𝑝 by maximizing the profile

log-likelihood function. Figure 3 shows the graph of the
profile log-likelihood function. As can be observed the value
of 𝑝 that maximizes the function is 1.5306.

From the results obtained after fitting themodel, both the
cyclic cosine and sine terms are important characteristics for
daily rainfall Table 1. The covariates were determined to take
into account the seasonal variations in the stochastic model.

8 Probability and Statistics: Concepts and Applications



Table 1: Estimated parameter values.

Parameter Estimate Std. error 𝑡 value Pr(> |𝑡|)𝑎0 0.1653 0.0473 3.4930 0.0005∗∗∗𝑎1 0.9049 0.0572 15.81100 <2e −16∗∗∗𝑎2 2.0326 0.0622 32.6720 <2e −16∗∗∗Θ̂ 14.8057 - - -
With 𝑠𝑖𝑔𝑛𝑖f code: 0 ∗ ∗ ∗.
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Figure 3: Profile likelihood.

The predicted 𝜇𝑖, 𝑝, Θ̂ for each day only depends on the
day’s conditions so that for each day 𝑖 we have

𝜇𝑖 = exp [0.1653 + 0.9049 sin( 2𝜋𝑖365)
+ 2.0326 cos( 2𝜋𝑖365)] ,

𝑝 = 1.5306,
Θ̂ = 14.8057.

(54)

From these estimated values we can calculate the parameter(�̂�𝑖, �̂�𝑖, �̂�) from the corresponding formulas above as

�̂�𝑖 = 16.5716 (exp [0.1653 + 0.9049 sin( 2𝜋𝑖365)
+ 2.03263 cos( 2𝜋𝑖365)])

0.4694 ,
�̂� = 7.4284 (exp [0.1653 + 0.9049 sin( 2𝜋𝑖365)

+ 2.0326 cos( 2𝜋𝑖365)])
0.5306 ,

�̂� = 0.8847.

(55)

Comparing the actual means and the predicted means for 2
July we have 𝜇 = 0.3820, whereas 𝜇 = 0.4333; similarly for 31
December we have 𝜇 = 9.0065 and 𝜇 = 10.6952, respectively.
Figure 4 shows the estimated mean and actual mean where
the model behaves well generally.

4.3. Goodness of Fit of the Model. Let the maximum likeli-
hood estimate of 𝜃𝑖 be 𝜃𝑖 for all 𝑖 and 𝜇 as the model’s mean
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Figure 4: Actual versus predicted mean.

estimate. Let 𝜃𝑖 denote the estimate of 𝜃𝑖 for the saturated
model with corresponding 𝜇 = 𝑦𝑖.

The goodness of fit is determined by deviance which is
defined as

− 2 [ maximum likelihood of the fitted model
Maximum likelihood of the saturated model

]
= −2 [𝐿 (𝜇; 𝑦) − 𝐿 (𝑦, 𝑦)]
= 2 𝑛∑

𝑖=1

𝑦𝑖𝜃𝑖 − 𝑘 (𝜃𝑖)Θ − 2 𝑛∑
𝑖=1

𝑦𝑖𝜃𝑖 − 𝑘 (𝜃𝑖)Θ
= 2 𝑛∑

𝑖=1

𝑦𝑖 (𝜃𝑖 − 𝜃𝑖) − 𝑘 (𝜃𝑖) + 𝑘 (𝜃𝑖)Θ = Dev (𝑦, 𝜇)Θ .

(56)

Dev(𝑦, 𝜇) is called the deviance of the model and the greater
the deviance, the poorer the fitted model as maximizing the
likelihood corresponds to minimizing the deviance.

In terms of Tweedie distributions with 1 < 𝑝 < 2, the
deviance is

Dev𝑝

= 2 𝑛∑
𝑖=1

(𝑦2−𝑝𝑖 − (2 − 𝑝) 𝑦𝑖𝜇1−𝑝𝑖 + (1 − 𝑝) 𝜇2−𝑝𝑖(1 − 𝑝) (2 − 𝑝) ) . (57)

Based on results from fitting the model, the residual
deviance is 43144 less than the null deviance 62955 which
implies that the fitted model explains the data better than a
null model.

4.4. Diagnostic Check. Themodel diagnostic is considered as
a way of residual analysis. The fitted model faces challenges
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Figure 6: Q-Q plot of the quantile residuals.

to be assessed especially for days with no rainfall at all as they
produce spurious results and distracting patterns similarly
as observed by [15]. Since this is a nonnormal regression,
residuals are far from being normally distributed and having
equal variances unlike in a normal linear regression. Here
the residuals lie parallel to distinct values; hence it is difficult
to make any meaningful decision about the fitted model
(Figure 5).

So we assess the model based on quantile residuals which
remove the pattern in discrete data by adding the smallest
amount of randomization necessary on the cumulative prob-
ability scale.

The quantile residuals are obtained by inverting the
distribution function for each response and finding the
equivalent standard normal quantile.

Mathematically, let 𝑎𝑖 = lim𝑦↑𝑦𝑖
𝐹(𝑦; 𝜇𝑖, Θ̂) and 𝑏𝑖 = 𝐹(𝑦𝑖;𝜇𝑖, Θ̂), where 𝐹 is the cumulative function of the probability

density function 𝑓(𝑦; 𝜇, Θ); then the randomized quantile
residuals for 𝑦𝑖 are

𝑟𝑞,𝑖 = Φ−1 (𝑢𝑖) (58)

with 𝑢𝑖 being the uniform random variable on (𝑎𝑖, 𝑏𝑖]. The
randomized quantile residuals are distributed normally bar-
ring the variability in 𝜇 and Θ̂.

Figure 6 shows the normalized Q-Q plot and as can
be observed there are no large deviations from the straight
line, only small deviations at the tail. The linearity observed
indicates an acceptable fitted model.
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Figure 8: Probability of rainfall occurrence.

5. Simulation

Themodel is simulated to test whether it produces data with
similar characteristics to the actual observed rainfall. The
simulation is done for a period of two years where one was
the last year of the data (2015) and the other year (2016) was
a future prediction. Then comparison was done with a graph
for 2015 data as shown in Figure 7.

The different statistics of the simulated data and actual
data are shown in Table 2 for comparisons.

The main objective of simulation is to demonstrate that
the Poisson-Gamma can be used to predict and forecast
rainfall occurrence and intensity simultaneously. Based on
the results above (Figure 8), the model has shown that it
works well in predicting the rainfall intensity and hence can
be used in agriculture, actuarial science, hydrology, and so on.

However the model performed poorly in predicting
probability of rainfall occurrence as it underestimated the
probability of rainfall occurrence. It is suggested here that
probably the use of truncated Fourier series can improve this
estimation as compared to the sinusoidal.

But it performed better in predicting probability of no
rainfall on days where there was little or no rainfall as
indicated in Figure 8.

It can also be observed that the model produces synthetic
precipitation that agrees with the four characteristics of a
stochastic precipitation model as suggested by [4] as follows.
The probability of rainfall occurrence obeys a seasonal pat-
tern (Figure 8); in addition we can also tell that a probability
of a rain in a day is higher if the previous day was wet
which is the basis of precipitation models that involve the
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Table 2: Data statistics.

Min 1st Qu. Median Mean 3rd Qu. Max
Predicted data 0.00 0.00 0.00 3.314 0.00 116.5
Actual data [10 yrs] 0.00 0.00 0.00 3.183 0.300 123.7
Actual data [2015] 0.00 0.00 0.00 3.328 0.00 84.5
Markov process. From Figure 7 we can also observe variation
of rainfall intensity based on time of the season.

In addition the model allows modeling of exact zeros in
the data and is able to predict a probability of no rainfall event
simultaneously.

6. Conclusion

A daily stochastic rainfall model was developed based on
a compound Poisson process where rainfall events follow
a Poisson distribution and the intensity is independent
of events following a Gamma distribution. Unlike several
researches that have been carried out into precipitation
modeling whereby two models are developed for occurrence
and intensity, the model proposed here is able to model both
processes simultaneously. The proposed model is also able
to model the exact zeros, the event of no rainfall, which
is not the case with the other models. This precipitation
model is an important tool to study the impact of weather
on a variety of systems including ecosystem, risk assessment,
drought predictions, and weather derivatives as we can be
able to simulate synthetic rainfall data. The model provides
mechanisms for understanding the fine scale structure like
number and mean of rainfall events, mean daily rainfall,
and probability of rainfall occurrence. This is applicable in
agriculture activities, disaster preparedness, and water cycle
systems.

The model developed can easily be used for forecasting
future events and, in terms ofweather derivatives, theweather
index can be derived from simulating a sample path by
summing up daily precipitation in the relevant accumulation
period. Rather than developing a weather index which is not
flexible enough to forecast future events, we can use this
model in pricing weather derivatives.

Rainfall data is generally zero inflated in that the amount
of rainfall received on a day can be zero with a posi-
tive probability but continuously distributed otherwise. This
makes it difficult to transform the data to normality by
power transforms or to model it directly using continu-
ous distribution. The Poisson-Gamma distribution has a
complicated probability density function whose parameters
are difficult to estimate. Hence expressing it in terms of a
Tweedie distribution makes estimating the parameters easy.
In addition, Tweedie distributions belong to the exponential
family of distributions upon which generalized linear models
are based; hence there is an already existing framework in
place for fitting and diagnostic testing of the model.

Themodel developed allows the information in both zero
and positive observations to contribute to the estimation
of all parts of the model unlike the other model [3, 4, 9]
which conditions rainfall intensity based on probability of

occurrence. In addition the introduction of the dispersion
parameter in the model helps in reducing underestimation
of overdispersion of the data which is also common in the
aforementioned models.
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A 𝑈-statistic for the tail index of a multivariate stable random vector is given as an extension of the univariate case introduced
by Fan (2006). Asymptotic normality and consistency of the proposed 𝑈-statistic for the tail index are proved theoretically. The
proposed estimator is used to estimate the spectral measure. The performance of both introduced tail index and spectral measure
estimators is compared with the known estimators by comprehensive simulations and real datasets.

1. Introduction

In recent years, stable distributions have received extensive
use in a vast number of fields including physics, economics,
finance, insurance, and telecommunications. Different sorts
of data found in applications arise from heavy tailed or
asymmetric distribution, where normal models are clearly
inappropriate. In fact, stable distributions have theoretical
underpinnings to accurately model a wide variety of pro-
cesses. Stable distribution has originated with the work of
Lévy [1]. There are a variety of ways to introduce a stable
random vector. In the following, two definitions are proposed
for a stable random vector; see Samorodnitsky and Taqqu [2].

Definition 1. A random vector X = (𝑋1, . . . , 𝑋𝑑)𝑇 is said to
be stable in R𝑑 if for any positive numbers 𝐴 and 𝐵 there are
a positive number 𝐶 and a vectorD ∈ R𝑑 such that𝐴X1 + 𝐵X2 𝑑= 𝐶X +D, (1)

where X1 and X2 are independent and identical copies of X
and 𝐶 = (𝐴𝛼 + 𝐵𝛼)1/𝛼.
Definition 2. Let 0 < 𝛼 < 2. Then X is a non-Gaussian 𝛼-
stable random vector inR𝑑 if there exist a finite measure Γ on
the unit sphere S𝑑 = {x = (𝑥1, . . . , 𝑥𝑑)𝑇 ∈ R𝑑 | ⟨x, x⟩ = 1}
and a vector 𝜇 = (𝜇1, . . . , 𝜇𝑑)𝑇 ∈ R𝑑 such that

𝜑X (t) = log𝐸 (exp (𝑖 ⟨t,X⟩)) = {{{{{{{
−∫

S𝑑
|⟨t, s⟩|𝛼 [1 − 𝑖 sgn ⟨t, s⟩ tan(𝜋𝛼2 )] Γ (𝑑s) + 𝑖 ⟨t,𝜇⟩ , 𝛼 ̸= 1,−∫

S𝑑
|⟨t, s⟩| [1 + 𝑖 sgn ⟨t, s⟩ 2𝜋 log |⟨t, s⟩|] Γ (𝑑s) + 𝑖 ⟨t,𝜇⟩ , 𝛼 = 1, (2)

where ⟨t, s⟩ = ∑𝑑𝑖=1 𝑡𝑖𝑠𝑖 for t = (𝑡1, . . . , 𝑡𝑑)𝑇, s = (𝑠1, . . . , 𝑠𝑑)𝑇,𝑖2 = −1, and sgn(⋅) denotes the sign function. The pair (Γ,𝜇)
is unique.

Theparameter𝛼, inDefinitions 1 and 2, is called tail index.
A random vector X is said to be a strictly 𝛼-stable random

vector in R𝑑 if 𝜇 = 0 for 𝛼 ̸= 1; see Samorodnitsky and
Taqqu [2]. We note that X is strictly 𝛼-stable, in the sense
of Definition 1, if D = 0. Throughout we assume that X is
strictly 𝛼-stable and 𝛼 ̸= 1. The probability density function
of a stable distribution has no closed-form expression and
moments with orders greater than or equal to 𝛼 are not
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finite for the members of this class. The two aforementioned
difficulties make statistical inference about the parameters of
a stable distribution hard. However, a series of contributions
has permitted inference about the parameters of univariate
and multivariate stable distributions. For example, in the
univariate case, maximum likelihood (ML) estimation was
studied first by DuMouchel (1971) and then by Nolan [3].
Although the ML approach leads to an efficient estimate for
samples of large size, it involves numerical complexities. A
program, called STABLE uses a cubic spline interpolation
of stable densities for this purpose; see Nolan [4]. STABLE
estimates all four parameters of a stable distribution for 𝛼 ≥0.4. Sample quantile (SQ) technique is another approach
proposed by McCulloch [5]. The results are simple and
consistent estimators of all four parameters based on five
sample quantiles. The empirical characteristic function (CF)
is suggested by Kogon and Williams [6]. The CF and SQ
methods work well but are not as efficient as the MLmethod.
As the last approach considered here, 𝑈-statistics for the
tail index and scale parameters of a univariate strictly stable
distribution are introduced by Fan [7]. In multivariate case,
the focus of interest is the spectral measure estimation.
Among them, we refer to Nolan et al. [8], Pivato and Seco
[9], Ogata [10], and Mohammadi et al. [11].

The structure of the paper is as follows. In Section 2, new
estimators for the tail index and spectral measure of a strictly
stable distribution are presented which is an extension of the𝑈-statistic proposed by Fan [7] for the univariate case. A
comprehensive simulation study is performed in Section 3 to
compare the performance of the introduced estimators and
the known estimators. Two real data sets are analyzed in this
section to illustrate the performance of the proposedmethod.

2. New Estimators

This section consists of two subsections. Firstly, we propose
an estimator for the tail index. Secondly, an estimator for the
spectral measure is given.

2.1. Estimation of Tail Index. Themain result of this section is
given inTheorem 4, which gives 𝑈-statistic for the inverse of
tail index of a strictly stable distribution.We present themain
result in the light of Lemma 3 given as follows.The proofs are
given in the Appendix.

Lemma 3. Let X = (𝑋1, . . . , 𝑋𝑑)𝑇 be a 𝑑-dimensional strictly
stable random vector. Then, Var log ‖X‖ is finite, where ‖ ⋅ ‖
denotes the Euclidean norm.

Theorem4. Let x1, . . . , x𝑛 be a sequence of 𝑛 observations from
a 𝑑-dimensional strictly stable random vector. Then𝑈𝑛 = (𝑛2)−1 ∑

1≤𝑖<𝑗≤𝑛

𝐻(x𝑖, x𝑗) , (3)

where 𝐻(x𝑖, x𝑗) = log x𝑖 + x𝑗


log 2 − log x𝑖 + log x𝑗2 log 2 (4)

is the 𝑈-statistic for 1/𝛼.

As it is seen, from Theorem 4, the introduced 𝑈-statistic
is an unbiased estimator for 1/𝛼. Hereafter, we write �̂�MU =1/𝑈𝑛 as introduced estimator for 𝛼. Here, subscript MU
indicates that �̂�MU is constructed based on multivariate 𝑈-
statistic defined in Theorem 4. It should be noted that when
the true value of 𝛼 is near two, the kernel given in (4) could
be less than 0.5. So, �̂�MU is greater than two. In this case, we
set �̂�MU = 2.
2.2. Spectral Measure Estimation. We use �̂�MU to estimate an𝑚-point discrete approximation to the exact spectralmeasure
of the form Γ (⋅) = 𝑚∑

𝑗=1

𝛾𝑗𝐼s𝑗 (⋅) , (5)

where 𝛾𝑗 is a mass at point s𝑗 in the unit sphere S𝑑 and𝐼s𝑗(⋅) is an indicator function at point s𝑗; for 𝑗 = 1, . . . , 𝑚,
see Byczkowski et al. [12]. To estimate Γ(⋅), we replace
Definition 2 for a strictly𝑑-dimensional stable randomvector
with𝜑X (t) = − 𝑚∑

𝑗=1

⟨t, s𝑗⟩𝛼 [1 − 𝑖 sgn ⟨t, s𝑗⟩𝐺 (𝛼, t, s𝑗)] 𝛾𝑗,
= − 𝑚∑
𝑗=1

𝜓 (t, s𝑗, 𝛼) 𝛾𝑗, (6)

where 𝐺(𝛼, t, s𝑗) = tan(𝜋𝛼/2) for 𝛼 ̸= 1 and −2/𝜋 log |⟨t, s𝑗⟩|
for 𝛼 = 1. Define
Λ

= (𝜓(t1, s1, 𝛼) 𝜓 (t1, s2, 𝛼) ⋅ ⋅ ⋅ 𝜓 (t1, s𝑚, 𝛼)𝜓 (t2, s1, 𝛼) 𝜓 (t2, s2, 𝛼) ⋅ ⋅ ⋅ 𝜓 (t2, s𝑚, 𝛼)... ... d
...𝜓 (t𝑚, s1, 𝛼) 𝜓 (t𝑚, s2, 𝛼) ⋅ ⋅ ⋅ 𝜓 (t𝑚, s𝑚, 𝛼)), (7)

V = (− log𝜑X (t1) , . . . , − log𝜑X (t𝑚))𝑇 , (8)

where t𝑗 = (𝑡𝑗1, . . . , 𝑡𝑗𝑑)𝑇 ∈ S𝑑, for 𝑗 = 1, . . . , 𝑚. Using (7)
and (8), both sides of (6) are connected together through the
following linear system:

V = Λ𝛾, (9)

where 𝛾 = (𝛾1, . . . , 𝛾𝑚)𝑇. Assuming that Λ in (9) is nonsin-
gular, then 𝛾 = Λ−1V. Hence, we estimate the vector of the
masses as

�̂� = Λ̂−1V̂, (10)

where
Λ̂

= (𝜓(t1, s1, �̂�MU) 𝜓 (t1, s2, �̂�MU) ⋅ ⋅ ⋅ 𝜓 (t1, s𝑚, �̂�MU)𝜓 (t2, s1, �̂�MU) 𝜓 (t2, s2, �̂�MU) ⋅ ⋅ ⋅ 𝜓 (t2, s𝑚, �̂�MU)... ... d
...𝜓 (t𝑚, s1, �̂�MU) 𝜓 (t𝑚, s2, �̂�MU) ⋅ ⋅ ⋅ 𝜓 (t𝑚, s𝑚, �̂�MU)),
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V̂= (− log 1𝑛 𝑛∑
𝑖=1

exp {𝑖 ⟨t1, x𝑖⟩} , . . . , − log 1𝑛 𝑛∑
𝑖=1

exp {𝑖 ⟨t𝑚, x𝑖⟩})𝑇 ,
(11)

in which x𝑖 is 𝑖-th vector observation in random sample of
size 𝑛.

Due to the standard error of V̂, we have two problems
with direct use of (10). Firstly, �̂� may be complex, and
secondly, its real part may be quite negative. Since Λ̂ and
V̂ are complex while gamma is constrained to be real (and
nonnegative), the Euclidean norm used by McCulloch [13]
and Nolan et al. [8] must be replaced with the complex
modulus to solve both problems in a novel way. For this, we
use the nnls(⋅) library in the R package. In the next section,
the estimated spectral measure �̂�, based on �̂�MU, is shown by
�̂�MU. We note that another estimator of 𝛾 can be constructed
by separating both of the real and imaginary parts in the
structure of V̂. But simulation results show that constructed
estimator gives the same performance.

3. Simulation Study

This section is in three parts. Firstly, we study the per-
formance of the proposed estimator with the known ones
for estimating the tail index. Secondly, we compare the
performance of the spectral measure estimator developed
through the introduced tail index estimator with the known
approaches. In the last subsection, we give a real data example
to illustrate the efficiency of the proposed estimators.

3.1. Performance Analysis of the Tail Index Estimators. Here,
we perform a simulation study to compare the performance
of �̂�MU and four other estimators for 𝛼, including (1) �̂�ML, (2)�̂�SQ, (3) �̂�CF, and (4) �̂�MM.The first three competitors areML,
SQ, andCF estimations for the tail index, respectively. Each of
three competitors is obtained as �̂�PROJ = 1/𝑚∑𝑚𝑗=1 �̂�(u𝑗) after
projecting the 𝑑-dimensional stable random vector using⟨u𝑗,X⟩. Here,𝑚 is the number of masses, u𝑗 = (𝑢𝑗1, . . . , 𝑢𝑗𝑑)𝑇
is an arbitrary unit vector, and X is the 𝑑-dimensional stable
random vector. It is worth noting that the first three com-
petitors are computed by the help of STABLE software after
projecting. The fourth estimator, that is, �̂�MM, is the second
estimator for tail index proposed by Mohammadi et al. [11].
We compare both the bias and root mean-squared error
(RMSE) of estimators for 500 replications of samples of size𝑛 = 500 and 5000 of a bivariate stable random vector gener-
ated by themethod given inModarres andNolan [14].We use
two settings for discrete spectral measure with𝑚 = 8masses,
including 𝛾1 = (0.1, 0.2, 0.3, 0.4, 0.1, 0.2, 0.3, 0.4)𝑇 and 𝛾2 =(0, 0.1, 0.7, 0.3, 0.7, 0.3, 0.7, 0.1)𝑇. In both cases, masses are
concentrated on points s𝑗 = (cos(2𝜋(𝑗 − 1)/𝑚), sin(2𝜋(𝑗 −1)/𝑚))𝑇 for 𝑗 = 1, . . . , 8. In the first case that data are
coming from a stable distribution with 𝛾1, we generate t𝑗
from a uniform distribution on the unit sphere S𝑑. For
the second case, we set t𝑗 = s𝑗. Biases and RMSEs

for 𝛼 = (0.1 : 0.1 : 0.9, 0.95, 1.05, 1.1 : 0.1 : 1.9, 1.95, 2) are
shown in Figures 1 and 2. As Figure 1 shows, when 𝛾1 =(0.1, 0.2, 0.3, 0.4, 0.1, 0.2, 0.3, 0.4)𝑇, we observe that �̂�MU is
more efficient than �̂�SQ for 𝑛 = 5000. Also, it works better
than �̂�MM in terms of RMSE (for 𝛼 ≤ 1.8). Based on Figure 2,
when 𝛾2 = (0, 0.1, 0.7, 0.3, 0.7, 0.3, 0.7, 0.1)𝑇, we observe that�̂�MU is more efficient than other methods when 𝛼 < 1.4 and𝑛 = 5000 in the sense of RMSE. Also, when 𝛼 < 1.7 and𝑛 = 500, �̂�MU is more efficient than �̂�SQ, �̂�CF, and �̂�MM with
respect to RMSE.

3.2. Performance Analysis of the Spectral Measure Estimators.
Here, we compare the performance of the estimator for
masses of spectral measure 𝛾 = (𝛾1, . . . , 𝛾𝑚)𝑇 constructed
based on 𝑈-statistic, �̂�MU with the other four known
estimators for the spectral measure. The competitors
are three types of estimators for 𝛾 based on empirical
characteristic function method: (1) �̂�MLE-cf ; (2) �̂�SQ-cf ; (3)
�̂�CF-cf ; and (4) Mohammadi et al. [11] estimator for 𝛾, �̂�MM.
For computing �̂�MLE-cf , �̂�SQ-cf , and �̂�CF-cf , we use command
mvstable.fit(x, nspectral, method1d, method2d, param) in
the STABLE program, where x is data vector, nspectral
is number of spectral measure masses, method1d is the
method to use for estimating parameters of univariate stable
distribution, that is, MLE, SQ, and CF (corresponding codes
in STABLE are 1, 2, and 3, respectively), method2d is the
method to use for estimating parameters of bivariate stable
distribution (we set method2d = 2 which corresponds to
empirical characteristic function approach, cf), and param

refers to kind of parameterization. Here, we set param = 1
since we are using the characteristic function in (2). More
information about the first three competitors is given in
Robust Analysis Inc. [15]. The estimators �̂�MLE-cf , �̂�SQ-cf ,
�̂�CF-cf , and �̂�MM are obtained by substituting �̂�ML, �̂�SQ,�̂�CF, and �̂�MM into (7) and then solving linear system (10),
respectively. Comparisons are based on the RMSE of 𝛾𝑗, for𝑗 = 1, . . . , 𝑚, which is defined as√1/𝑁∑𝑁𝑖=1(𝛾𝑖𝑗 − 𝛾𝑖𝑗)2, where𝑁 is the number of iterations and 𝛾𝑖𝑗 is the estimation of 𝑗th
component of �̂� at 𝑖th iteration. We consider five scenarios
for the structure of discrete spectral measure as follows.

(1) Independent case: 𝛾 = (1/4, 0, 1/4, 0, 1/4, 0, 1/4, 0)𝑇.
(2) Symmetric case: 𝛾 = (0.1, 0.2, 0.3, 0.4, 0.1, 0.2, 0.3,0.4)𝑇.
(3) Uniform case: 𝛾 = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8)𝑇.
(4) Triangle case: 𝛾 = (0, 0.1, 0.7, 0.3, 0.7, 0.3, 0.7, 0.1)𝑇.
(5) Exchangeable case: 𝛾 = (0.1, 0.2, 0.1, 0.4, 0.3, 0.2, 0.3,0.4)𝑇.

We note that the first and the third scenarios above are
similar to Examples 2 and 1 of Nolan et al. [8], respectively.
The fourth scenario is called Triangle since corresponding
density contour plot is similar to a triangle. For each of the
above five scenarios, we arrange the settings of simulation
as 𝑚 = 8, 𝛼 = 1.25; 1.75; 𝑛 = 2000; 5000 (𝑛 is sample size),
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Figure 1: Biases and RMSEs of estimators when data are generated from a strictly stable distribution with discrete spectral measure 𝛾1 =(0.1, 0.2, 0.3, 0.4, 0.1, 0.2, 0.3, 0.4)𝑇. (a) Bias when 𝑛 = 500, (b) RMSE when 𝑛 = 500, (c) bias when 𝑛 = 5000, and (d) RMSE when 𝑛 = 5000.
and 𝑁 = 500. It should be noted that masses are located at
s𝑗 = (cos(2𝜋(𝑗 − 1)/𝑚), sin(2𝜋(𝑗 − 1)/𝑚))𝑇, for 𝑗 = 1, . . . , 𝑚,
and components of t𝑗 = (𝑡𝑗1, . . . , 𝑡𝑗𝑑)𝑇 are generated from
a uniform distribution on the unit sphere S𝑑. The results of
simulations are given in Figures 3–6. As it is seen, �̂�MU shows
better performance than �̂�MM.

3.3. Real Data Analysis. Here, we give two examples. In the
first example, adjusted daily log-return (in percent) for the 30

stocks at the Dow Jones index is collected between January
3, 2000, and December 31, 2004. The log-return percent of
1247 closing prices has been computed for AXP (American
Express Company) and MRK (Merck & Co. Inc.) stocks
after multiplying the daily log-return by 100; see Nolan [16].
The scatter plot of AXP and MRK stocks log-return percent
values, X = (AXP,MRK)𝑇, is shown in Figure 7. We use
a bivariate 𝛼-stable distribution with 𝑚 = 12 points of
masses for spectral measure addressed by s𝑗 = (cos(2𝜋(𝑗 −1)/𝑚), sin(2𝜋(𝑗 − 1)/𝑚))𝑇, for 𝑗 = 1, . . . , 12. We estimate the
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Figure 2: Biases and RMSEs of estimators when data are generated from a strictly stable distribution with discrete spectral measure 𝛾2 =(0, 0.1, 0.7, 0.3, 0.7, 0.3, 0.7, 0.1)𝑇. (a) Bias when 𝑛 = 500, (b) RMSE when 𝑛 = 500, (c) bias when 𝑛 = 5000, and (d) RMSE when 𝑛 = 5000.
location parameter as �̂�ML-cf = (−3.438𝐸 − 07, −2.402𝐸 −07)𝑇. So, a strictly 𝛼-stable distribution is fitted to the Y =(X − �̂�ML-cf )𝑇. For this, we set t𝑗 = s𝑗, for 𝑗 = 1, . . . , 12.
Table 1 shows the results for modelling data through five
methods. We note that estimated tail indices are �̂�MU =1.581, �̂�MM = 1.734, �̂�ML-cf = 1.618, �̂�SQ-cf = 1.493,
and �̂�CF-cf = 1.723. As it is seen, estimated tail indices
through estimators �̂�MU and �̂�ML-cf are closer together than

the other estimators. In the second example, we focus on
the cubic-root of the monthly average of river discharge. We
choose discharge of the Odra and Wisla rivers in Poland
during 1901 to 1986 (raw data are in m3/s. They are available
at https://nelson.wisc.edu/sage/data-and-models/riverdata/).
The scatter plot for cubic-root of Odra river discharge versus
cubic-root of Wisla river discharge is shown in Figure 8.
Setting𝑚 = 8, s𝑗 = (cos(2𝜋(𝑗−1)/𝑚), sin(2𝜋(𝑗−1)/𝑚))𝑇, and
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Figure 3: RMSEs of 𝛾 under different scenarios when 𝛼 = 1.25. We use the following symbol scheme: ⬦ for �̂�UM, I for �̂�MM, + for �̂�ML-cf , ×
for �̂�SQ-cf , and  for �̂�CF-cf .

t𝑗 = s𝑗, for 𝑗 = 1, . . . , 8, we obtain �̂�ML-cf = (7.9837, 9.9947)𝑇.
After fitting a strictly 𝛼-stable distribution to the shifted data,
results for estimating spectral measure are given in Table 2.
Estimated tail indices are �̂�MU = 1.860, �̂�MM = 1.312,�̂�ML-cf = 1.813, �̂�SQ-cf = 1.936, and �̂�CF-cf = 1.962. Based on

results given in Table 2, estimated masses through estimators
�̂�MU, �̂�ML-cf , and �̂�SQ-cf are closer together than the other
estimators.We compare here �̂�MU with �̂�ML-cf and �̂�SQ-cf since
the latter estimators are among the best estimators for the
masses as shown in the previous subsection.
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Figure 4: RMSEs of 𝛾 under different scenarios when 𝛼 = 1.75. We use the following symbol scheme: ⬦ for �̂�UM, I for �̂�MM, + for �̂�ML-cf , ×
for �̂�SQ-cf , and  for �̂�CF-cf .
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Figure 5: RMSEs of 𝛾 under different scenarios when 𝛼 = 1.25. We use the following symbol scheme: ⬦ for �̂�UM, I for �̂�MM, + for �̂�ML-cf , ×
for �̂�SQ-cf , and  for �̂�CF-cf.

4. Conclusion

We compare the performance of the introduced 𝑈-statistic
for the tail index with the well-known methods, includ-
ing maximum likelihood, empirical characteristic function,
sample quantile, and that introduced in Mohammadi et al.
[11] through a simulation study. In the sense of root mean-
squared error, it is proved that proposed tail index estimator
always outperforms Mohammadi et al. [11] and SQ methods
when 𝛼 ≤ 1.4. This is while ML and CF methods show
better performance than the proposed estimator for large 𝛼,
say 𝛼 > 1.4 in terms of root mean-squared error. Simulation
studies for estimating the discrete spectral measure 𝛾 under
five scenarios prove that estimator of 𝛾 based on introduced𝑈-statistic shows, in terms of root mean-squared error, better
performance than Mohammadi et al. [11] estimator. Analysis
of two sets of real data reveals that estimator of the tail index
and 𝛾 based on 𝑈-statistic shows expedient performance.
As some possible future works, firstly, we aim to introduce

a 𝑈-statistic for the case of a nonzero location parameter.
Secondly, we look for methodology possibly based on a 𝑈-
statistic, to estimate tail, masses, and location parameters
simultaneously. Finally, recalling that the approach employed
in this work is based on characteristic function, the discrete
spectral measure using �̂�MU can be estimated through projec-
tion approach.

Appendix

Proof of Lemma 3. We show that 𝐸(log2‖X‖) < ∞. Suppose𝑑 = 2 and 𝑝− = 𝑃(‖X‖ ≤ 1), 𝑝+ = 1 − 𝑝−, 𝑝−− = 𝑃(𝑋1 <0,𝑋2 < 0), 𝑝−+ = 𝑃(𝑋1 < 0,𝑋2 > 0), 𝑝+− = 𝑃(𝑋1 > 0,𝑋2 <0), and 𝑝++ = 𝑃(𝑋1 > 0,𝑋2 > 0). So𝐸 (log2 ‖X‖) = 𝐸 (log2 ‖X‖ | ‖X‖ < 1) 𝑝−+ 𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1) 𝑝+
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Figure 6: RMSEs of 𝛾 under different scenarios when 𝛼 = 1.75. We use the following symbol scheme: ⬦ for �̂�UM, I for �̂�MM, + for �̂�ML-cf , ×
for �̂�SQ-cf , and  for �̂�CF-cf .

Table 1: Estimation results after fitting a strictly bivariate 𝛼-stable distribution to AXP and MRK stocks data.

Estimator 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6 𝛾7 𝛾8 𝛾9 𝛾10 𝛾11 𝛾12
�̂�MU 0.396 0.070 0.077 0.433 0.087 0 0.231 0.378 0 0.439 0.078 0
�̂�MM 0.373 0 0 0.463 0.021 0 0.333 0.479 0 0.563 0.100 0
�̂�ML-cf 0.338 0.156 0.162 0.412 0 0 0.490 0.206 0.055 0.425 0.122 0
�̂�SQ-cf 0.232 0.216 0.089 0.404 0.012 0 0.480 0.115 0.177 0.254 0.156 0
�̂�CF-cf 0.421 0.129 0.237 0.434 0 0 0.537 0.209 0 0.527 0.089 0

Table 2: Estimation results after fitting a strictly bivariate 𝛼-stable distribution to Odra and Wisla discharge data.

Estimator 𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 𝛾6 𝛾7 𝛾8
�̂�MU 0.006 1.459 0.498 0 0 0 0 0
�̂�MM 0 0.800 0.257 0 0.026 0.483 0.165 0
�̂�ML-cf 0 1.380 0.508 0 0 0 0 0
�̂�SQ-cf 0 1.490 0.532 0 0 0 0 0
�̂�CF-cf 0 0.196 0.199 0 0.009 1.283 0.339 0
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Figure 7: Scatter plot for AXP versusMRKdaily log-return percent,
X = (AXP,MRK)𝑇.
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Figure 8: Scatter plot for cubic-root of Odra and Wisla rivers
discharge.

≤ 𝐸 (log2 |𝑋| | ‖X‖ < 1) 𝑝−+ 𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1) 𝑝+≤ 𝐸 (log2 |𝑋|)+ 𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1) ,
(A.1)

where 𝑋, in the above, denotes one of the components of
vectorX. It should be noted that inequality𝐸(log2‖X‖ | ‖X‖ <1) ≤ 𝐸(log2|𝑋| | ‖X‖ < 1) holds irrespective of 𝑑. On the
other hand,𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1)= 𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1,𝑋1 < 0,𝑋2 < 0) 𝑝−−

+ 𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1,𝑋1 < 0,𝑋2 > 0) 𝑝−++ 𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1,𝑋1 > 0,𝑋2 < 0) 𝑝+−+ 𝐸 (log2 ‖X‖ | ‖X‖ ≥ 1,𝑋1 > 0,𝑋2 > 0) 𝑝++≤ 𝐸 (log2 𝑋1 + 𝑋2 | ‖X‖ ≥ 1,𝑋1 < 0,𝑋2 < 0)⋅ 𝑝−−+ 𝐸 (log2 −𝑋1 + 𝑋2 | ‖X‖ ≥ 1,𝑋1 < 0,𝑋2 > 0)⋅ 𝑝−++ 𝐸 (log2 𝑋1 − 𝑋2 | ‖X‖ ≥ 1,𝑋1 > 0,𝑋2 < 0)⋅ 𝑝+−+ 𝐸 (log2 𝑋1 + 𝑋2 | ‖X‖ ≥ 1,𝑋1 > 0,𝑋2 > 0)⋅ 𝑝++ ≤ 2𝐸 (log2 𝑋1 + 𝑋2)+ 2𝐸 (log2 𝑋1 + 𝑋2) .
(A.2)

Thus,𝐸 (log2 ‖X‖) ≤ 𝐸 (log2 |𝑋|) + 2𝐸 (log2 𝑋1 + 𝑋2)+ 2𝐸 (log2 𝑋1 − 𝑋2) . (A.3)

Generally, for 𝑑 ≥ 2, one can write𝐸 (log2 ‖X‖)≤ 𝐸 (log2 |𝑋|)+ 𝑑∑
𝑖=0

(𝑑𝑖)𝐸(log2
− 𝑖∑𝑗=1𝑋𝑗 + 𝑋𝑖+1 + ⋅ ⋅ ⋅ + 𝑋𝑑) , (A.4)

where we adopt this convention that ∑0𝑗=1𝑋𝑗 = 0. Let𝑆(𝛼, 𝛽, 𝜎, 𝜇 = 0) stands for a univariate strictly stable random
variable with tail index 𝛼, scale parameter 𝜎, and skewness
parameter 𝛽. It is well known that if X = (𝑋1, . . . , 𝑋𝑑)𝑇
is an 𝛼-stable random vector, then any linear combina-
tion of its components such as ⟨b𝑖,X⟩ = ∑𝑑𝑗=1 𝑏𝑖𝑗𝑋𝑗, for
b𝑖 = ( 𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞−1, . . . , −1, 𝑑−𝑖⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1, . . . , 1)𝑇, follows a stable distribution with
tail index 𝛼,

𝜎𝑖 = (∫
S𝑑

⟨bi, s⟩𝛼 Γ (𝑑s))1/𝛼 ,𝛽𝑖 = 1𝜎𝛼𝑖 (∫S𝑑 ⟨bi, s⟩[𝛼] Γ (𝑑s))1/𝛼 , (A.5)
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where Γ(⋅) is spectral measure and |𝑥|[𝑟] = sgn(𝑥)|𝑥|𝑟; see
Samorodnitsky and Taqqu [2]. It follows, fromKuruoglu [17],
that if𝑋 ∼ 𝑆(𝛼, 𝛽, 𝜎, 0), then𝑒 (𝛼, 𝛽, 𝜎) = 𝐸 (log2 |𝑋|)= 7𝜋2 − 6𝜃2 + 6 [log (𝜎/ cos (𝜃)) + 𝛾 (1 − 𝛼)]2 − 𝜋2𝛼26𝛼2 , (A.6)
where 𝜃 = arctan(𝛽 tan(𝜋𝛼/2)). Also,𝑒 (𝛼, 𝛽𝑖, 𝜎𝑖) = 𝐸 (log2 |𝑍|)= 7𝜋2 − 6𝜃2𝑖 + 6 [log (𝜎𝑖/cos (𝜃𝑖)) + 𝛾 (1 − 𝛼)]2 − 𝜋2𝛼26𝛼2 , (A.7)
where 𝑍 = −∑𝑖𝑗=1𝑋𝑗 + 𝑋𝑖+1 + ⋅ ⋅ ⋅ + 𝑋𝑑, for 𝑖 = 0, . . . , 𝑑 and𝜃𝑖 = arctan(𝛽𝑖 tan(𝜋𝛼/2)). Parameters 𝜎𝑖 and 𝛽𝑖 are defined
in (A.5). Finally,𝐸 (log2 ‖X‖) ≤ 𝑒 (𝛼, 𝛽, 𝜎) + 𝑑∑

𝑖=0

(𝑑𝑖) 𝑒 (𝛼, 𝛽𝑖, 𝜎𝑖) . (A.8)

The proof is complete since all terms on the right-hand side
of (A.8) are finite.

Proof of Theorem 4. We rewrite Definition 1 as𝐴X1 + 𝐵X2 𝑑= 𝐶X1 +D. (A.9)

Setting 𝐴 = 1, 𝐵 = 1, andD = 0 in (A.9), it yields

X1 + X2
𝑑= 21/𝛼X1. (A.10)

By applying log-transformation, after taking the Euclidean
norm, to both sides of (A.10), we have1𝛼 = log X1 + X2

 − log X1
log 2 . (A.11)

The right-hand side of (A.11) can be used to define a
symmetric kernel of the form𝐻(X1,X2) = log X1 + X2


log 2− log X1 + log X22 log 2 . (A.12)

To guarantee the asymptotic normality of the introduced 𝑈-
statistics for 1/𝛼 with kernel (A.12), we need to check that𝐸(𝐻(X1,X2))2 < ∞. It suffices to show that Var𝐻(X1,X2) <∞. For this, the result of Lemma 3 shows that Var log ‖X1‖ is
finite. On the other hand, from (A.10) it turns out that

Var log X1 + X2
 = Var log X1 = Var log X2 . (A.13)

We use property (A.13) to calculate variance of the right-hand
side of (A.12) as

Var 𝐻(X1,X2) = Var log X1
log22 + Var log X12 log22− 𝐾
log22 , (A.14)

where𝐾 = Cov (log X1 + X2
 , log X1 + log X2)≤ 2√Var log X1 + X2
√Var log X1. (A.15)

Applying property (A.13) again on the right-hand side of
(A.15), we have

Var𝐻(X1,X2) ≤ 7Var log X12 log22 , (A.16)

where we used the result of Lemma 3 to get the right-hand
side of (A.16). This means that𝜆 = Var (𝐸 (𝐻 (X1,X2) | X1)) ≤ Var𝐻(X1,X2)< ∞. (A.17)

Therefore,𝐸(𝐻(X1,X2))2 < ∞. Now,we define𝑈-statistic for1/𝛼 with kernel given in (A.12) as𝑈𝑛 = (𝑛2)−1 ∑
1≤𝑖<𝑗≤𝑛

𝐻(x𝑖, x𝑗) . (A.18)

By definition, given𝑈-statistic in (A.18) is unbiased estimator
for 1/𝛼.
Conflicts of Interest

The authors declare that they have no conflicts of interest.

References
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A new continuous distribution on the positive real line is constructed from half-logistic distribution, using a transformation
and its analytical characteristics are studied. Some characterization results are derived. Classical procedures for the estimation of
parameters of the new distribution are discussed and a comparative study is done through numerical examples. Further, different
families of continuous distributions on the positive real line are generated using this distribution. Application is discussed with the
help of real-life data sets.

1. Introduction

Distributions defined on the positive real line are widely
used in modeling of survival data. The Weibull, Pareto, and
Exponential distributions have major roles in fitting data
sets in the fields of computer science, engineering, biology,
and so forth. Half-logistic distribution (HLD) is another life
distribution used in reliability analysis by many researchers.
The half-logistic random variable studied by Balakrishnan
[1, 2] has survival function

𝐹 (𝑥) =
2

1 + 𝑒𝑥
, 𝑥 > 0. (1)

By imparting the location and scale parameters, its probabil-
ity density function (pdf) is

𝑓 (𝑥; 𝜇, 𝜎) =
2𝑒

((𝑥−𝜇)/𝜎)

𝜎 ⋅ (1 + 𝑒((𝑥−𝜇)/𝜎))
2
, 𝑥 ≥ 𝜇, 𝜎 > 0. (2)

In the past few years many researchers have paid much
attention to this distribution and several generalizations have
been introduced. Srinivasa Rao et al. [3], Olapade [4–6],
Cordeiro et al. [7], Kantam et al. [8], and so forth are some
of the recent works in this area.

It is well known that through power transformation,
the Weibull is an extension of exponential while the power
function distribution is that of uniform.Hence, it is of interest
to know what would be the distribution of similar power

transformation of half-logistic distributions. Motivated by
this, in the present paper, we introduce a new continuous
distribution on the positive real line using a transformation
of half-logistic random variable. We study the properties and
applications of this so-called generalization of half-logistic
distribution.

The remaining part of the paper is organized as follows. In
Section 2, PowerHalf-Logistic Distribution is introduced and
its properties are studied. In Section 3, some characterization
results are derived. Estimation of the parameters is done
in Section 4 and numerical illustrations are given therein.
Section 5 deals with extensions of this new transformed
distribution. Application to real data sets is considered in
Section 6 followed by a concluding section at the end.

2. Power Half-Logistic Distribution

Let 𝑌 be a random variable following half-logistic distribu-
tion with survival function

𝐹𝑌 (𝑦) =
2

1 + 𝑒𝛽𝑦
, 𝑦 > 0, 𝛽 > 0. (3)

Consider the transformation, 𝑋 = 𝑌
1/𝛼. Then the survival

function of𝑋 is

𝐹𝑋 (𝑥) =
2

1 + 𝑒𝛽𝑥
𝛼 , 𝑥 > 0, 𝛼, 𝛽 > 0 (4)
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Figure 1: pdfs of PHLD for various values of the parameters.

and its pdf is

𝑓 (𝑥) =
2𝛼𝛽𝑒

𝛽𝑥𝛼
𝑥
𝛼−1

(1 + 𝑒𝛽𝑥
𝛼

)
2
, 𝑥 > 0, 𝛼 > 0, 𝛽 > 0. (5)

Hereinafter we call the random variable𝑋 with pdf (5) as the
Power Half-Logistic Distribution (PHLD).

The graphical form of the pdf for various values of 𝛼 and
𝛽 is given in Figure 1 (𝛽 = 0.8 and 𝛽 = 1). When 𝛽 is fixed
and 𝛼 is increasing in (0, 1), the pdf becomes more convex.
But when 𝛼 is >1 it becomes concave. Another characteristic
is that for 0 < 𝛼 < 1, the distribution is heavy tailed but for
𝛼 > 1, the distribution is light tailed as compared to HLD
(see Figure 2). So it can be used to model data sets having
tail probability less or greater than HLD.The plots of survival
function and hazard rates for different values of 𝛼 when 𝛽 =
0.5 and 1.5 are shown in Figures 3 and 4, respectively, for an
alternate view of the behavior of the distribution.

Next we explore the analytical properties of the PHLD,
deriving its moments, median, quantiles, hazard function,
and log odds function, and summarize them below.

Properties. (1) The 𝑠th moment 𝐸(𝑋𝑠
) = (2𝑠/(𝛽

𝑠
⋅ 𝛼))Γ(𝑠/

𝛼)∑
∞
𝑗=0((−1)

𝑗
/(𝑗 + 1)

𝑠/𝛼
).

(2) Median = ((log 3)/𝛽)1/𝛼.
(3) The 𝑝th quantile is ((1/𝛽) log((1 + 𝑝)/(1 − 𝑝)))

1/𝛼
.

(4) Hazard rate 𝑟(𝑥) = 𝛼𝛽𝑒
𝛽𝑥𝛼

𝑥
𝛼−1

/(1 + 𝑒
𝛽𝑥𝛼

). It can be
seen in Figure 4 that for 𝛼 > 1, the distribution has increasing
failure rate (IFR), but for 0 < 𝛼 < 1 the distribution has
decreasing failure rate (DFR).

(5) The log odds function is log[(𝑒𝛽𝑥
𝛼

− 1)/2].

It may be noted that in a recent study on the exponenti-
ated half-logistic family by Cordeiro et al. [7] a special case
of it called half-logistic Weibull distribution has been just

mentioned without any elaborate study.They proposed a new
exponentiated half-logistic (EHL) family as a competitive
alternative for lifetime data analysis. For any parent contin-
uous distribution 𝐺 they defined the corresponding EHL-
𝐺 distribution with distribution function [(1 − 𝐺(𝑥)

𝜆
)/(1 +

𝐺(𝑥)
𝜆
)]
𝛼. This new family extends several common distribu-

tions such as Frechet, normal, log-normal, Gumbel, and log-
logistic distributions. It is interesting to observe that PHLD is
the same as the distribution pointed out there when 𝐺(𝑥) =

1 − exp(−𝑥𝛽).
Next we derive some characterization results of PHLD.

3. Characterizations

In the first characterization we establish a relationship
between the PHLD andWeibull distribution.

Result 1. Suppose 𝐹(𝑥) and 𝐺(𝑥) are survival functions with
respective pdfs 𝑓 and 𝑔. Then in the equation

𝑑

𝑑𝑥
(

1

𝐺 (𝑥)

) =
1

2

𝑑

𝑑𝑥
(

1

𝐹 (𝑥)

) (6)

or
𝑔 (𝑥)

(𝐺 (𝑥))
2
=
1

2

𝑓 (𝑥)

(𝐹 (𝑥))
2
, (7)

𝑔(𝑥) has PHLD if, and only if, 𝑓(𝑥) is Weibull.

Proof. Suppose the pdf 𝑔(𝑥) is PHLD with the form as in (5)
and then substituting in (7) and further on integrating, we get

𝐹 (𝑥) = 𝑒
−𝛽𝑥𝛼

, (8)

which is the survival function of Weibull random variable.
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Figure 2: Comparison of PHLD, HLD, and Weibull densities.

Conversely assuming 𝑓(𝑥) as Weibull with pdf

𝑓 (𝑥) = 𝑒
−𝛽𝑥𝛼

𝛼𝛽𝑥
𝛼−1 (9)

and substituting in (7), we get

𝐺 (𝑥) =
2

1 + 𝑒𝛽𝑥
𝛼 , (10)

which is the survival function of PHLD.

Result 2. The function 𝑔(𝑥) in

𝑥
1/𝛼

𝑔 (𝑥
1/𝛼

)

𝑥
= 𝛼𝑓 (𝑥) (11)

is the pdf of PHLD if, and only if, 𝑓(𝑥) is the pdf of HLD.

Proof. The proof easily follows.

Result 3. For a survival function 𝐺(𝑥), the functional equa-
tion

𝑓((𝑥
𝛼
+ 𝑦

𝛼
)
1/𝛼

) = 𝑓 (𝑥) 𝑓 (𝑦) (12)

(a variant of Cauchy’s equation) is satisfied by 𝑓(𝑥) = 2/

𝐺(𝑥) − 1 if, and only if, 𝐺(𝑥) = 2/(1 + 𝑒
𝑐𝑥𝛼

).

Proof. Suppose 𝑓(𝑥) = 2/𝐺(𝑥) − 1 satisfies the given
functional equation.

Then there exists a constant 𝑐 such that 𝑓(𝑥) = 𝑒
𝑐𝑥𝛼 (see

[9]). Hence, 𝐺(𝑥) = 2/(1 + 𝑒
𝑐𝑥𝛼

).
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Figure 3: Survival function of PHLD (𝛽 = 0.5 and 1.5).
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Figure 4: Hazard rate of PHLD (𝛽 = 0.5 and 1.5).

Converse part easily follows by assuming 𝐺(𝑥) = 2/(1 +

𝑒
𝑐𝑥𝛼

).

One may derive further characterizations of PHLD by
taking the (1/𝛼)th power of half-logistic variables in the
results of Olapade [4], which described some characteriza-
tions of half-logistic distribution.

4. Estimation of the Parameters

We use the following three common methods for estimation
purpose. Numerical illustrations are also done subsequently.

4.1. Maximum Likelihood Estimation. Suppose a sample of
size 𝑛 is taken from PHLD with density function (5). By
taking logarithms and finding the derivative with respect to 𝛼
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and 𝛽 we have two nonlinear equations which can be solved
simultaneously and numerically.

We have
𝜕 log 𝐿
𝜕𝛼

=
𝑛

𝛼
+

𝑛

∑

𝑖=1

𝛽𝑥
𝛼
𝑖 log𝑥𝑖 +

𝑛

∑

𝑖=1

log𝑥𝑖

− 2

𝑛

∑

𝑖=1

1

1 + 𝑒
𝛽𝑥𝛼
𝑖

log𝑥𝑖𝑥
𝛼
𝑖 𝛽𝑒

𝛽𝑥𝛼
𝑖 ,

𝜕 log 𝐿
𝜕𝛽

=
𝑛

𝛽
+

𝑛

∑

𝑖=1

𝑥
𝛼
𝑖 −

2

1 + 𝑒
𝛽𝑥𝛼
𝑖 𝑥

𝛼
𝑖

.

(13)

4.2. Method of Moments. Method of moment estimation is
another common method used for estimation of parameters.
Equating the first and second rawmoments to corresponding
central moments, the following are the equations obtained:

∑
𝑛
𝑖=1 𝑥𝑖

𝑛
=

2

𝛼𝛽
Γ (

1

𝛼
)

∞

∑

𝑗=0

(−1)
𝑗

(𝑗 + 1)
1/𝛼

,

∑
𝑛
𝑖=1 𝑥

2
𝑖

𝑛
=

4

𝛼𝛽2
Γ (

2

𝛼
)

∞

∑

𝑗=0

(−1)
𝑗

(𝑗 + 1)
2/𝛼

.

(14)

4.3. Least Square Method. Least square estimation method
involves the least squares regression to estimate the two
parameters based on the linearized PHLD distribution func-
tion. For details of this procedure see Krishnaiah [10]. The
basis of this method is the transformation of PHLD survival
function

𝐹 (𝑥) =
2

1 + 𝑒𝛽𝑥
𝛼 , (15)

in the form

log𝑥 =
− log𝛽

𝛼
+
1

𝛼
log [log( 2

1 − 𝐹 (𝑥)
− 1)] . (16)

On putting 𝑌 = log𝑥 and𝑋 = log[log((2/(1 − 𝐹(𝑥))) − 1)], it
becomes a linear function of𝑋 and 𝑌 in the form

𝑌 =
1

𝛼
(− log𝛽) + 1

𝛼
𝑋. (17)

Note that 1/𝛼 is the slope of this equation and (1/𝛼) ⋅ (− log𝛽)
is the intercept.

Let 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑛 be the times of failure arranged
in ascending order and 𝑛 is the sample size. Then 𝐹(𝑥𝑖) is
estimated as in Zaka and Akhter [11], using Bernards’ median
rank method given by

�̂� (𝑥𝑖) =
𝑖 − 0.3

𝑛 + 0.4
. (18)

Now the least square estimates of 𝛼 and 𝛽 are

�̂� =
𝑛∑𝑋

2
𝑖 − (∑𝑋𝑖)

2

𝑛∑ (𝑋𝑖𝑌𝑖) − ∑𝑋𝑖∑𝑌𝑖

,

�̂� = 𝑒
(−1/𝑛)(�̂�⋅∑𝑌𝑖−∑𝑋𝑖),

(19)

where 𝑋𝑖 and 𝑌𝑖 are the values corresponding to the ordered
failure times 𝑥𝑖.

Table 1: Parameter estimates.

Sample
size

Parameters
𝛼, 𝛽 Method Estimates

�̂�, �̂�
K-S

distance 𝑝 value

𝑛 = 100 0.5, 0.8
MLE 0.5052,

0.8049 0.03 1.0

LSE 0.4973,
0.8069 0.04 1.0

𝑛 = 50 0.5, 0.8
MLE 0.5140,

0.8039 0.06 1.0

LSE 0.5008,
0.8122 0.06 1.0

𝑛 = 20 0.5, 0.8
MLE 0.5441,

0.7908 0.15 0.9831

LSE 0.5107,
0.8200 0.15 0.9831

𝑛 = 100 1.2, 1.0
MLE 1.1948,

1.0082 0.03 1.0

LSE 1.2218,
1.0012 0.03 1.0

𝑛 = 50 1.2, 1.0
MLE 1.2363,

0.9993 0.04 1.0

LSE 1.1968,
1.0147 0.04 1.0

𝑛 = 20 1.2, 1.0
MLE 1.2968,

1.0093 0.1 1.0

LSE 1.2270,
1.0323 0.1 1.0

4.4. Numerical Examples. Samples of sizes 100, 50, and 20 are
generated from PHLD for different values of parameters.The
standardmethod of generation in R-programming is used for
the generation of samples. We repeat this process 1000 times
and compute simulated average, standard errors, confidence
intervals, and coverage probabilities in each case. Compari-
son of the maximum likelihood estimation (MLE) and least
square estimation (LSE) methods mentioned above is done.
The computations are performed using R-programme and
results are shown in Table 1. Kolmogorov-Smirnov (K-S)
statistic and corresponding 𝑝 values are used for comparing
the estimation methods. The 95% confidence intervals for
the parameters using maximum likelihood estimates are also
constructed in Table 2. Value of the K-S statistic is the same
for both methods in most of the cases. Also 𝑝 value is the
same in both cases. As there is no clear supremacy of a
method over the other, we suggest MLE method since it
is more prevalent and the estimates have better appealing
properties. The distribution functions are considered for
the generated sequence for given parameter values and also
using estimated parameters and those functions are plotted
in Figure 5. Similarly histograms and superimposed density
curves for estimated values of the parameters are shown in
Figure 6. From this we conclude that the above two methods
of estimation are in agreement. Coverage probabilities for the
parameters for different sample sizes are given in Table 3 and
it is clear that they are higher in the case of LSE method.
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Table 2: Confidence interval for the parameters.

Sample size Parameters
𝛼, 𝛽

Estimates
�̂�, �̂�

Confidence
intervals MSE

𝑛 = 100

0.5 0.5052 (0.4219,
0.5885) 0.0018

0.8 0.8049 (0.60095,
1.0089) 0.0108

𝑛 = 50

0.5 0.5140 (0.3879,
0.6400) 0.0041

0.8 0.8039 (0.5302,
1.0776) 0.0194

𝑛 = 20

0.5 0.5441 (0.3176,
0.7707) 0.0133

0.8 0.7908 (0.3631,
1.2186) 0.0476

𝑛 = 100

1.2 1.1948 (1.0142,
1.4293) 0.0112

1.0 1.0082 (0.7976,
1.2049) 0.0107

𝑛 = 50

1.2 1.2363 (0.9437,
1.5288) 0.0228

1.0 0.9993 (0.7065,
1.2920) 0.0223

𝑛 = 20

1.2 1.2968 (0.7858,
1.8088) 0.0679

1.0 1.0093 (0.5248,
1.4938) 0.0611

Table 3: Coverage probabilities for the parameters based on estima-
tion methods.

Method Sample size Parameters
𝛼 = 0.5, 𝛽 = 0.8

Parameters
𝛼 = 1.2, 𝛽 = 1

MLE
𝑛 = 100

0.875, 0.864 0.834, 0.832
LSE 0.942, 0.955 0.944, 0.963
MLE

𝑛 = 50
0.844, 0.812 0.734, 0.724

LSE 0.946, 0.95 0.939, 0.951
MLE

𝑛 = 20
0.836, 0.529 0.575, 0.593

LSE 0.94, 0.956 0.942, 0.955

5. Extensions of PHLD

Several types of extensions are possible using this distri-
bution. Some of them are very much related with already
existing distributions in the literature. These are discussed in
this section.

5.1. Log Power Half-Logistic Distributions. Consider the dis-
tribution of some log transformations and we call the dis-
tributions obtained as log Power Half-Logistic Distributions.
When 𝑌 = 𝑒

𝑋 and𝑋 has PHLD, then

𝑓 (𝑦) =
2𝛼𝛽𝑒

𝛽(log𝑦)𝛼
(log𝑦)𝛼−1

𝑦 (1 + 𝑒𝛽(log𝑦)
𝛼

)
2

, 𝑦 > 1. (20)

This distribution is called as log positive Power Half-Logistic
Distribution.

In a similar way we define the distribution of 𝑌 = 𝑒
−𝑥 as

log negative Power Half-Logistic Distribution with support
0 < 𝑦 < 1.

If 𝑌 = 𝑒
𝑥𝛼 , where𝑋 ∼ PHLD, the pdf of 𝑌 is given by

𝑔 (𝑦) =
2

(1 + 𝑦)
2
, 𝑦 > 1. (21)

Similarly the pdf of 𝑍 = 𝑒
−𝑥𝛼 is

𝑔 (𝑧) =
2

(1 + 𝑧)
2
, 0 < 𝑧 < 1. (22)

So we get two distributions with the same structure but
defined at two disjoint intervals [1,∞) and [0, 1]which is the
characteristic of a nonnegative random variable with respect
to log transformations.These are having the same form as we
transform half-logistic distribution by the transformations
𝑌 = 𝑒

𝑥 and 𝑍 = 𝑒
−𝑥.

Immediately, we have the following result, which may be
exploited for generating random variables from PHLD.

Result 4. If 𝑋 ∼ 𝑈(0, 1), then the random variable 𝑍 =

[(1/𝛽) log(𝑎 − 𝑋)/𝑋]
1/𝛼 has truncated PHLD (TPHLD).

Proof. If𝑋 ∼ 𝑈(0, 1), then

𝑃 (𝑍 ≥ 𝑧) = 𝑃([(
1

𝛽
) log(𝑎 − 𝑋

𝑋
)]

1/𝛼

≥ 𝑧)

=
𝑎

1 + 𝑒𝛽𝑧
𝛼 ,

(23)

which is a new distribution with density function

𝑓 (𝑥) =
𝛼𝑎𝛽𝑒

𝛽𝑥𝛼
𝑥
𝛼−1

(1 + 𝑒𝛽𝑥
𝛼

)
2
;

𝑥 > [
1

𝛽
log (𝑎 − 1)]

1/𝛼

, 𝛼 > 0, 𝛽 > 0, 𝑎 ≥ 2.

(24)

We call this as Truncated Power Half-Logistic Distribu-
tion (TPHLD). Note that when 𝛼 = 1, we have the Truncated
Half-Logistic Distribution; when 𝑎 = 2, 𝛼 = 1, it gives HLD;
and when 𝑎 = 2, 𝛼 > 0, it gives PHLD.

5.2. Families ofDistributionsGenerated fromPHLD. Wehave,
in the literature, quite a few families of distributions generated
fromBeta andGamma distributions (see [7, 12, 13]).This type
of distributions is generalizations of many existing families.
Here we generate families of distributions from the PHLD.
A detailed study of this type of distributions, its properties,
applications, and so forth is not attempted in this paper for
brevity, but would be carried out in future.
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Figure 5: Distribution functions when 𝑛 = 20, 50, 100.

Define a new transformation

𝐺1 (𝑥) = ∫

𝜙(𝑥)

0
𝑑 (𝐻 (𝑥)) , (25)

where 𝐻(𝑥) is the distribution function of PHLD or its
generalizations and 𝜙(𝑥) takes different forms of 𝐺(𝑥), the
survival function of a random variable. This transformation
gives us very interesting results as summarized in Table 4.
Note that when 𝛽 = 1, 𝐺(𝑥) in Result number 1 in Table 4
has Marshall and Olkin [14] form with parameter 2. So a
general structure is needed for constructing Marshall-Olkin
form with parameter 𝛼. This is explained in the following
remark.

Remark 1. Consider a new distribution, called General Power
Half-Logistic Distribution (GPHLD), by adding a skewness
parameter 𝛾,

ℎ (𝑥) = (1 + 𝛾)
𝛾𝛽𝛼𝑒

𝛽𝑥𝛼
𝑥
𝛼−1

(1 + 𝛾𝑒𝛽𝑥
𝛼

)
2
; 𝑥 > 0, 𝛼 > 0. (26)

The survival function is

𝐻(𝑥) =
1 + 𝛾

1 + 𝛾𝑒𝛽𝑥
𝛼 . (27)
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Figure 6: Fitted density curves based on estimation.

Using this in (25) we get a new family of life distributions,
with survival function

𝐻(𝑥) =
𝐺 (𝑥)

𝛽
(1 + 𝛾)

𝛾 + 𝐺 (𝑥)
𝛽

(28)

which can be considered as a generalization of Marshall and
Olkin [14] (M-O) form with survival function 𝛼𝐹(𝑥)/(1 −

𝛼𝐹(𝑥)), 𝛼 > 0. Let 𝛽 = 1 in (28); then corresponding density
function is given by ℎ(𝑥) = (1 + 𝛾)𝛾𝑔(𝑥)/(𝛾 + 𝐺(𝑥))

2 and

hazard rate is (𝛾/(𝛾+𝐺(𝑥)))𝑟(𝑥)where 𝑟(𝑥) is the hazard rate
function of 𝑔(𝑥).We can see that the parameters 𝛾 in (28) and
𝛼 in M-O are related as 𝛾 = 1/(𝛼 − 1).

Interestingly we have noted that (27) is the Weibull-
geometric distribution introduced by Barreto-Souza et al. [15]
with parameter 𝜃 in [−1,∞).

Remark 2. Result number 3 of Table 4 is obtained by taking
the 𝛾 th power of distribution function of PHLD (called as
Type I PHLD) which is the same as in Cordeiro et al. [7].
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Table 4: Families of distributions generated.

Result
number

𝐻(𝑥), 𝑥 > 0,
𝛼 > 0, 𝛽 > 0

𝜙(𝑥) 𝐺1(𝑥)

1 1 −
2

1 + 𝑒𝛽𝑥
𝛼 (− log𝐺 (𝑥))

1/𝛼 2𝐺
𝛽

1 + 𝐺
𝛽

2 1 −
2

1 + 𝑒𝛽𝑥
𝛼

𝐺

𝐺

2

1 + 𝑒𝛽(𝐺/𝐺)
𝛼

3 [1 −
2

1 + 𝑒𝛽𝑥
𝛼 ]

𝛾

(− log𝐺 (𝑥))
1/𝛼

1 − [
1 − 𝐺(𝑥)

𝛽

1 + 𝐺(𝑥)
𝛽
]

𝛾

4 1 − (
2

1 + 𝑒𝛽𝑥
𝛼 )

𝛾

(− log𝐺(𝑥))
1/𝛼

[
2𝐺(𝑥)

𝛽

1 + 𝐺(𝑥)
𝛽
]

𝛾

Table 5: Fitting based on data set 1.

Distribution Parameter estimates Log likelihood K-S distance 𝑝 value
Weibull �̂� = 2.08, �̂� = 0.0001 −113.6902 0.1304 0.9897
PHLD �̂� = 1.77, �̂� = 0.0006 −114.0720 0.2609 0.4143
Type I HLD �̂� = 3.41, �̂� = 0.0350 −113.0407 0.2174 0.6487
GPHLD �̂� = 2.01, �̂� = 0.0002, �̂� = 4.96 −113.7000 0.1304 0.9897

Table 6: Fitting based on data set 2.

Distribution Parameter estimates Log likelihood K-S distance 𝑝 value
Weibull �̂� = 5.78, �̂� = 0.06 −15.2070 0.2063 0.1367
PHLD �̂� = 5.05, �̂� = 0.13 −13.8273 0.1587 0.4055
Type I HLD �̂� = 5.04, �̂� = 0.13 −13.8300 0.1587 0.4055
GPHLD �̂� = 3.202, �̂� = 0.695, �̂� = 0.064 −12.0336 0.0952 0.9375

Remark 3. 𝐺1(𝑥) in Result number 4 of Table 4 is amember of
the Lehmann family of distributions and this is Type II PHLD.

6. Applications

In this section we use three sets of real-life data to fit the
distributions. The analysis is done using R-programming
software. The first set is discussed by Gupta and Kundu [16]
in the fitting of exponentiated exponential distribution.

Data Set 1. The first data set is taken from Lawless [17, page
98]. The data are the number of million revolutions before
failure for each of the 23 ball bearings in the life test and they
are 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96,
54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, and 173.40. We consider the
Weibull, Type I HLD (Kantam et al. [8]), PHLD, and GPHLD
for this particular data set.

The likelihood value as noted in Table 5 is greatest for
Type 1 HLD and also based on 𝑝 values of K-S statistic, we
conclude that Type 1 HLD is a good fit for the data.

Data Set 2. This data set is from Smith and Naylor [18]
representing strengths of 1.5 cm glass fibres. The data set is
0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2,

0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82,
2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76,
1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77,
1.84, 0.84, 1.24, 1.3, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, and
1.89 (see [19]). They have fitted different distributions to this
data set. When we use this data set for the four distributions,
Weibull, Type I HLD, PHLD, and GPHLD, the results are as
follows.

Morais and Barreto-Souza [19] have shown that the
Weibull-geometric distribution is better fit to this data set.
The log-likelihood values, K-S distance, and 𝑝 values in
Table 6 reveal that GPHLD is better than the other three
models (see Remark 1 in this context).

Data Set 3.This data set is of camber of 497 lead wires taken
from Leone et al. [20]. Cooray et al. [21] considered this data
and fitted folded logistic distribution.They got log-likelihood
= −1698.24, K-S distance = 0.06, and 𝑝 value = 0.32. Results
are illustrated in Table 7 and it is clear that PHLD is the most
suitable for this data set.

7. Conclusions

A new distribution on the positive real line is constructed
using power transformation on half-logistic distribution.
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Table 7: Fitting based on data set 3.

Distribution Parameter estimates Log likelihood K-S distance 𝑝 value
Weibull �̂� = 1.860, �̂� = 0.0059 −1692.670 0.0795 0.10
PHLD �̂� = 1.595, �̂� = 0.0180 −1692.180 0.0785 0.10
Type I HLD �̂� = 2.095, �̂� = 0.1450 −1698.953 0.0845 0.06
GPHLD �̂� = 1.824, �̂� = 0.0069, �̂� = 9.934 −1692.484 0.0986 0.02

Analytical properties, some characterizations, and estimation
of the parameters are done. New families of distributions are
generated from this new distribution which generalizesmany
existing families of distributions. Applications are discussed
with the help of three data sets. The properties, charac-
teristics, and applications of the newly generated families
of distributions are further topics for future research work.
Some of these families are generated using the odds function.
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We studymatrix variate confluent hypergeometric function kind 1 distributionwhich is a generalization of thematrix variate gamma
distribution.We give several properties of this distribution.We also derive density functions of𝑋−1/2

2 𝑋1𝑋
−1/2
2 , (𝑋1+𝑋2)

−1/2
𝑋1(𝑋1+

𝑋2)
−1/2, and𝑋1 +𝑋2, where𝑚×𝑚 independent randommatrices𝑋1 and𝑋2 follow confluent hypergeometric function kind 1 and

gamma distributions, respectively.

1. Introduction

Thematrix variate gamma distribution hasmany applications
in multivariate statistical analysis. The Wishart distribution,
which is the distribution of the sample variance covari-
ance matrix when sampling from a multivariate normal
distribution, is a special case of the matrix variate gamma
distribution.

The purpose of this paper is to give a generalization of the
matrix variate gamma distribution and study its properties.

We begin with a brief review of some definitions and
notations. We adhere to standard notations (cf. Gupta and
Nagar [1]). Let 𝐴 = (𝑎𝑖𝑗) be an 𝑚 × 𝑚 matrix. Then, 𝐴

denotes the transpose of 𝐴; tr(𝐴) = 𝑎11 + ⋅ ⋅ ⋅ + 𝑎𝑚𝑚; etr(𝐴) =
exp(tr(𝐴)); det(𝐴) = determinant of 𝐴; norm of 𝐴 = ‖𝐴‖ =
maximum of absolute values of eigenvalues of the matrix 𝐴;
𝐴 > 0 means that 𝐴 is symmetric positive definite; and 𝐴1/2

denotes the unique symmetric positive definite square root of
𝐴 > 0. The multivariate gamma function Γ𝑚(𝑎) is defined by

Γ𝑚 (𝑎) = ∫
𝑋>0

etr (−𝑋) det (𝑋)𝑎−(𝑚+1)/2 d𝑋

= 𝜋
𝑚(𝑚−1)/4

𝑚

∏

𝑖=1

Γ (𝑎 −
𝑖 − 1

2
) , Re (𝑎) > 𝑚 − 1

2
.

(1)

The𝑚×𝑚 symmetric positive definite randommatrix𝑋 is
said to have a matrix variate gamma distribution, denoted by

𝑋 ∼ Ga(𝑚, ], 𝜃, Ω), if its probability density function (p.d.f.)
is given by

det (𝑋)]−(𝑚+1)/2 etr (−Ω−1
𝑋/𝜃)

Γ𝑚 (]) 𝜃𝑚] det (Ω)]
, 𝑋 > 0, (2)

where Ω is a symmetric positive definite matrix of order
𝑚, 𝜃 > 0, and ] > (𝑚 − 1)/2. For Ω = 𝐼𝑚, the above
density reduces to a standard matrix variate gamma density
and in this case we write 𝑋 ∼ Ga(𝑚, ], 𝜃). Further, if 𝑋1 ∼

Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ Ga(𝑚, ]2, 𝜃) are independent gamma
matrices, then the random matrix (𝑋1 + 𝑋2)

−1/2
𝑋1(𝑋1 +

𝑋2)
−1/2 follows a matrix variate beta type 1 distribution with

parameters ]1 and ]2.
By replacing etr(−Ω−1

𝑋/𝜃) by the confluent hypergeo-
metric function of matrix argument 1𝐹1(𝛼; 𝛽; −Ω

−1
𝑋/𝜃), a

generalization of the matrix variate gamma distribution can
be defined by the p.d.f.:

𝐶 (], 𝛼, 𝛽, 𝜃, Ω) det (𝑋)]−(𝑚+1)/2 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) , (3)

where𝑋 > 0 and 𝐶(], 𝛼, 𝛽, 𝜃, Ω) is the normalizing constant.
In Section 2, it has been shown that, for 𝛽 − ] > (𝑚 − 1)/2,
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𝛼 − ] > (𝑚 − 1)/2, ] > (𝑚 − 1)/2, 𝜃 > 0, and Ω > 0, the
normalizing constant can be evaluated as

𝐶 (], 𝛼, 𝛽, 𝜃, Ω) =
Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ]) det (𝜃Ω)−]

Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])
. (4)

Therefore, the p.d.f. in (3) can be written explicitly as

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ]) det (𝜃Ω)−]

Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])
det (𝑋)]−(𝑚+1)/2

⋅ 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) , 𝑋 > 0,

(5)

where𝛽−] > (𝑚−1)/2,𝛼−] > (𝑚−1)/2, ] > (𝑚−1)/2, 𝜃 > 0,
Ω > 0, and 1𝐹1 is the confluent hypergeometric function
of the first kind of matrix argument (Gupta and Nagar
[1]). Since the density given above involves the confluent
hypergeometric function, we will call the corresponding
distribution a confluent hypergeometric function distribution.
We will write 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, kind 1) to say that the
random matrix 𝑋 has a confluent hypergeometric function
distribution defined by the density (5). It has been shown by
van der Merwe and Roux [2] that the above density can be
obtained as a limiting case of a density involving the Gauss
hypergeometric function of matrix argument. For 𝛼 = 𝛽, the
density (5) reduces to a matrix variate gamma density and for
Ω = 𝐼𝑚 it slides to

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
𝜃𝑚]Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

det (𝑋)]−(𝑚+1)/2

⋅ 1𝐹1 (𝛼; 𝛽; −
1

𝜃
𝑋) , 𝑋 > 0,

(6)

where 𝛽−] > (𝑚−1)/2, 𝛼−] > (𝑚−1)/2, ] > (𝑚−1)/2, and
𝜃 > 0. In this case we will write 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, kind 1).
The matrix variate confluent hypergeometric function kind 1
distribution occurs as the distribution of the matrix ratio
of independent gamma and beta matrices. For 𝑚 = 1, (6)
reduces to a univariate confluent hypergeometric function
kind 1 density given by (Orozco-Castañeda et al. [3])

Γ (𝛼) Γ (𝛽 − ])
𝜃]Γ (]) Γ (𝛽) Γ (𝛼 − ])

𝑥
]−1

1𝐹1 (𝛼; 𝛽; −
𝑥

𝜃
) , 𝑥 > 0, (7)

where 𝛽 − ] > 0, 𝛼 − ] > 0, ] > 0, 𝜃 > 0, and
1𝐹1 is the confluent hypergeometric function of the first
kind (Luke [4]). The random variable 𝑥 having the above
density will be designated by 𝑥 ∼ CH(], 𝛼, 𝛽, 𝜃, kind 1). Since
the matrix variate confluent hypergeometric function kind 1
distribution is a generalization of the matrix variate gamma
distribution, it is reasonable to say that the matrix variate
confluent hypergeometric function kind 1 distribution can
be used as an alternative to the gamma distribution quite
effectively.

Although ample information aboutmatrix variate gamma
distribution is available, little appears to have been done in
the literature to study the matrix variate confluent hypergeo-
metric function kind 1 distribution.

In this paper, we study several properties including
stochastic representations of the matrix variate confluent
hypergeometric function kind 1 distribution. We also derive
the density function of the matrix quotient of two inde-
pendent random matrices having confluent hypergeometric
function kind 1 and gamma distributions. Further, densities
of several other matrix quotients andmatrix products involv-
ing confluent hypergeometric function kind 1, beta type 1,
beta type 2, and gamma matrices are derived.

2. Some Definitions and Preliminary Results

In this section we give some definitions and preliminary
results which are used in subsequent sections.

Amore general integral representation of themultivariate
gamma function can be obtained as

Γ𝑚 (𝑎) = det (𝑌)𝑎 ∫
𝑅>0

etr (−𝑌𝑅) det (𝑅)𝑎−(𝑚+1)/2 d𝑅, (8)

where Re(𝑎) > (𝑚 − 1)/2 and Re(𝑌) > (𝑚 − 1)/2. The above
result can be established for real 𝑌 > 0 by substituting 𝑋 =

𝑌
1/2
𝑅𝑌

1/2 with the Jacobian 𝐽(𝑋 → 𝑅) = det(𝑌)(𝑚+1)/2 in (1)
and it follows for complex 𝑌 by analytic continuation.

The multivariate generalization of the beta function is
given by

𝐵𝑚 (𝑎, 𝑏)

= ∫

𝐼𝑚

0
det (𝑅)𝑎−(𝑚+1)/2 det (𝐼𝑚 − 𝑅)

𝑏−(𝑚+1)/2 d𝑅

=
Γ𝑚 (𝑎) Γ𝑚 (𝑏)

Γ𝑚 (𝑎 + 𝑏)
= 𝐵𝑚 (𝑏, 𝑎) ,

(9)

where Re(𝑎) > (𝑚 − 1)/2 and Re(𝑏) > (𝑚 − 1)/2.
The generalized hypergeometric function of one matrix,

defined in Constantine [5], is given by

𝑝𝐹𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞; 𝑋)

=

∞

∑

𝑘=0

∑

𝜅⊢𝑘

(𝑎1)𝜅 ⋅ ⋅ ⋅ (𝑎𝑝)𝜅

(𝑏1)𝜅 ⋅ ⋅ ⋅ (𝑏𝑞)𝜅

𝐶𝜅 (𝑋)

𝑘!
,

(10)

where 𝑎𝑖, 𝑖 = 1, . . . , 𝑝, 𝑏𝑗, 𝑗 = 1, . . . , 𝑞 are arbitrary complex
numbers, 𝑋 is an 𝑚 × 𝑚 complex symmetric matrix, 𝐶𝜅(𝑋)

is the zonal polynomial of𝑚 ×𝑚 complex symmetric matrix
𝑋 corresponding to the ordered partition 𝜅 = (𝑘1, . . . , 𝑘𝑚),
𝑘1 ≥ ⋅ ⋅ ⋅ ≥ 𝑘𝑚 ≥ 0, 𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑚 = 𝑘, and ∑𝜅⊢𝑘

denotes the summation over all partitions 𝜅. The generalized
hypergeometric coefficient (𝑎)𝜅 used above is defined by

(𝑎)𝜅 =

𝑚

∏

𝑖=1

(𝑎 −
𝑖 − 1

2
)
𝑘𝑖

, (11)
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where (𝑎)𝑟 = 𝑎(𝑎+1) ⋅ ⋅ ⋅ (𝑎+𝑟−1), 𝑟 = 1, 2, . . ., with (𝑎)0 = 1.
Conditions for convergence of the series in (10) are available
in the literature. From (10), it follows that

0𝐹0 (𝑋) =

∞

∑

𝑘=0

∑

𝜅⊢𝑘

𝐶𝜅 (𝑋)

𝑘!
= etr (𝑋) ,

1𝐹0 (𝑎; 𝑋) =

∞

∑

𝑘=0

∑

𝜅⊢𝑘

(𝑎)𝜅 𝐶𝜅 (𝑋)

𝑘!

= det (𝐼𝑚 − 𝑋)
−𝑎
, ‖𝑋‖ < 1,

(12)

1𝐹1 (𝑎; 𝑐; 𝑋) =

∞

∑

𝑘=0

∑

𝜅⊢𝑘

(𝑎)𝜅 𝐶𝜅 (𝑋)

(𝑐)𝜅 𝑘!
, (13)

2𝐹1 (𝑎, 𝑏; 𝑐; 𝑋) =

∞

∑

𝑘=0

∑

𝜅⊢𝑘

(𝑎)𝜅 (𝑏)𝜅

(𝑐)𝜅

𝐶𝜅 (𝑋)

𝑘!
, ‖𝑋‖ < 1. (14)

By taking 𝑎𝑝 = 𝑏𝑞 = 𝑐 in (10), it can be observed that

𝑝𝐹𝑞 (𝑎1, . . . , 𝑎𝑝−1, 𝑐; 𝑏1, . . . , 𝑏𝑞−1, 𝑐; 𝑋)

= 𝑝−1𝐹𝑞−1 (𝑎1, . . . , 𝑎𝑝−1; 𝑏1, . . . , 𝑏𝑞−1; 𝑋) .

(15)

Substituting 𝑝 = 2, 𝑞 = 1 in (15) and using (12), the Gauss
hypergeometric function 2𝐹1(𝑎, 𝑐; 𝑐; 𝑋) is reduced as

2𝐹1 (𝑎, 𝑐; 𝑐; 𝑋) = 1𝐹0 (𝑎; 𝑋) = det (𝐼𝑚 − 𝑋)
−𝑎
,

‖𝑋‖ < 1.

(16)

The integral representations of the confluent hypergeo-
metric function 1𝐹1 and the Gauss hypergeometric function
2𝐹1 are given by

1𝐹1 (𝑎; 𝑐; 𝑋) =
1

𝐵𝑚 (𝑎, 𝑐 − 𝑎)
∫

𝐼𝑚

0
det (𝑅)𝑎−(𝑚+1)/2

⋅ det (𝐼𝑚 − 𝑅)
𝑐−𝑎−(𝑚+1)/2 etr (𝑋𝑅) d𝑅,

(17)

2𝐹1 (𝑎, 𝑏; 𝑐; 𝑋) =
1

𝐵𝑚 (𝑎, 𝑐 − 𝑎)

⋅ ∫

𝐼𝑚

0

det (𝑅)𝑎−(𝑚+1)/2 det (𝐼𝑚 − 𝑅)
𝑐−𝑎−(𝑚+1)/2

det (𝐼𝑚 − 𝑋𝑅)
𝑏

d𝑅,
(18)

where Re(𝑎) > (𝑚 − 1)/2 and Re(𝑐 − 𝑎) > (𝑚 − 1)/2.
Further generalizations of (8) and (9) in terms of zonal

polynomials, due to Constantine [5], are given as

∫
𝑅>0

etr (−𝑌𝑅) det (𝑅)𝑎−(𝑚+1)/2 𝐶𝜅 (𝑋𝑅) d𝑅

= Γ𝑚 (𝑎) (𝑎)𝜅 det (𝑌)
−𝑎
𝐶𝜅 (𝑌

−1
𝑋) ,

(19)

∫

𝐼𝑚

0
det (𝑅)𝑎−(𝑚+1)/2 det (𝐼𝑚 − 𝑅)

𝑏−(𝑚+1)/2
𝐶𝜅 (𝑋𝑅) d𝑅

=
𝐵𝑚 (𝑎, 𝑏) (𝑎)𝜅

(𝑎 + 𝑏)𝜅

𝐶𝜅 (𝑋) ,

(20)

respectively.

For Re(𝛼) > (𝑚 − 1)/2 and Re(𝛽) > (𝑚 − 1)/2, we have

∫
𝑅>0

det (𝑅)𝛼−(𝑚+1)/2 etr (−𝑌𝑅) 𝑝𝐹𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞;

𝑋𝑅) d𝑅 = Γ𝑚 (𝛼) det (𝑌)
−𝑎

𝑝+1𝐹𝑞 (𝛼, 𝑎1, . . . , 𝑎𝑝;

𝑏1, . . . , 𝑏𝑞; 𝑋𝑌
−1
) ,

(21)

∫

𝐼𝑚

0
det (𝑅)𝛼−(𝑚+1)/2 det (𝐼𝑚

− 𝑅)
𝛽−(𝑚+1)/2

𝑝𝐹𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞; 𝑋𝑅) d𝑅

= 𝐵𝑚 (𝛼, 𝛽) 𝑝+1𝐹𝑞+1 (𝛼, 𝑎1, . . . , 𝑎𝑝; 𝛼 + 𝛽, 𝑏1, . . . , 𝑏𝑞; 𝑋) .

(22)

We can establish (21) and (22) by expanding 𝑝𝐹𝑞 in series
form by using (10) and integrating term by term by applying
(19) and (20) and finally summing the resulting series.

Note that the series expansions for 1𝐹1 and 2𝐹1 given
in (13) and (14) can be obtained by expanding etr(𝑋𝑅) and
det(𝐼𝑚 − 𝑋𝑅)

−𝑏, ‖𝑋𝑅‖ < 1, in (17) and (18) and integrating
𝑅 using (20). Substituting 𝑋 = 𝐼𝑚 in (18) and integrating, we
obtain

2𝐹1 (𝑎, 𝑏; 𝑐; 𝐼𝑚) =
Γ𝑚 (𝑐) Γ𝑚 (𝑐 − 𝑎 − 𝑏)

Γ𝑚 (𝑐 − 𝑎) Γ𝑚 (𝑐 − 𝑏)
, (23)

where Re(𝑐−𝑎−𝑏) > (𝑚−1)/2, Re(𝑐−𝑎) > (𝑚−1)/2, Re(𝑐−
𝑏) > (𝑚 − 1)/2, and Re(𝑐) > (𝑚 − 1)/2. The hypergeometric
function 1𝐹1(𝑎; 𝑐; 𝑋) satisfies Kummer’s relation

1𝐹1 (𝑎; 𝑐; −𝑋) = etr (−𝑋) 1𝐹1 (𝑐 − 𝑎; 𝑐; 𝑋) . (24)

For properties and further results on these functions the
reader is referred to Constantine [5], James [6], Muirhead
[7], and Gupta and Nagar [1]. The numerical computation
of a hypergeometric function of matrix arguments is very
difficult. However, some numerical methods are proposed in
recent years; see, Hashiguchi et al. [8] and Koev and Edelman
[9].

The generalized hypergeometric function with 𝑚 × 𝑚

complex symmetric matrices𝑋 and 𝑌 is defined by

𝑝𝐹
(𝑚)
𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞; 𝑋, 𝑌)

=

∞

∑

𝑘=0

∑

𝜅⊢𝑘

(𝑎1)𝜅 ⋅ ⋅ ⋅ (𝑎𝑝)𝜅

(𝑏1)𝜅 ⋅ ⋅ ⋅ (𝑏𝑞)𝜅

𝐶𝜅 (𝑋)𝐶𝜅 (𝑌)

𝐶𝜅 (𝐼𝑚) 𝑘!
.

(25)

It is clear from the above definition that the order of𝑋 and 𝑌
is unimportant; that is,

𝑝𝐹
(𝑚)
𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞; 𝑋, 𝑌)

= 𝑝𝐹
(𝑚)
𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞; 𝑌, 𝑋) .

(26)

Also, if one of the argument matrices is the identity, this
function reduces to the one argument function. Further, the
two-matrix argument function 𝑝𝐹

(𝑚)
𝑞 can be obtained from

the one-matrix function 𝑝𝐹𝑞 by averaging over the orthogonal
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group 𝑂(𝑚) using a result given in James [6, Equation 23];
namely,

∫
𝑂(𝑚)

𝐶𝜅 (𝑋𝐻𝑌𝐻

) (d𝐻) =

𝐶𝜅 (𝑋)𝐶𝜅 (𝑌)

𝐶𝜅 (𝐼𝑚)
, (27)

where (d𝐻) denotes the normalized invariant measure on
𝑂(𝑚). That is,

𝑝𝐹
(𝑚)
𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞; 𝑋, 𝑌)

= ∫
𝑂(𝑚)

𝑝𝐹
(𝑚)
𝑞 (𝑎1, . . . , 𝑎𝑝; 𝑏1, . . . , 𝑏𝑞; 𝑋𝐻𝑌𝐻


) (d𝐻) ,

(28)

given in James [6, Equation 30].
Finally, we define the inverted matrix variate gamma,

matrix variate beta type 1, and matrix variate beta type 2
distributions. These definitions can be found in Gupta and
Nagar [1] and Iranmanesh et al. [10].

Definition 1. An 𝑚 × 𝑚 random symmetric positive definite
matrix 𝑋 is said to have an inverted matrix variate gamma
distribution with parameters 𝜇, 𝜃, and Ψ, denoted by 𝑋 ∼

InvGa(𝑚, 𝜇, 𝜃, Ψ), if its p.d.f. is given by

det (𝑋)−𝜇−(𝑚+1)/2 etr (−Ψ−1
𝑋
−1
/𝜃)

det (𝜃Ψ)𝜇 Γ𝑚 (𝜇)
, 𝑋 > 0, (29)

where 𝜇 > (𝑚 − 1)/2, 𝜃 > 0, and Ψ is a symmetric positive
definite matrix of order𝑚.

Definition 2. An 𝑚 × 𝑚 random symmetric positive definite
matrix 𝑈 is said to have a matrix variate beta type 1
distribution with parameters 𝑎(> (𝑚 − 1)/2) and 𝑏(> (𝑚 −

1)/2), denoted as 𝑈 ∼ B1(𝑚, 𝑎, 𝑏), if its p.d.f. is given by

det (𝑈)𝑎−(𝑚+1)/2 det (𝐼𝑚 − 𝑈)
𝑏−(𝑚+1)/2

𝐵𝑚 (𝑎, 𝑏)
, 0 < 𝑈 < 𝐼𝑚.

(30)

Definition 3. An 𝑚 × 𝑚 random symmetric positive definite
matrix 𝑉 is said to have a matrix variate beta type 2
distribution with parameters 𝑎(> (𝑚 − 1)/2) and 𝑏(> (𝑚 −

1)/2), denoted as 𝑉 ∼ B2(𝑚, 𝑎, 𝑏), if its p.d.f. is given by

det (𝑉)𝑎−(𝑚+1)/2 det (𝐼𝑚 + 𝑉)
−(𝑎+𝑏)

𝐵𝑚 (𝑎, 𝑏)
, 𝑉 > 0. (31)

Note that if𝑈 ∼ B1(𝑚, 𝑎, 𝑏), then (𝐼𝑚 −𝑈)
−1
𝑈 ∼ B2(𝑚, 𝑎,

𝑏). Further, if 𝑋1 and 𝑋2 are independent, 𝑋1 ∼ Ga(𝑚, ]1, 𝜃)
and𝑋2 ∼ Ga(𝑚, ]2, 𝜃), then (𝑋1 +𝑋2)

−1/2
𝑋1(𝑋1 +𝑋2)

−1/2
∼

B1(𝑚, ]1, ]2) and𝑋
−1/2
2 𝑋1𝑋

−1/2
2 ∼ B2(𝑚, ]1, ]2).

We conclude this section by evaluating the normalizing
constant 𝐶(], 𝛼, 𝛽, 𝜃, Ω) in (3). Since the density over its
support set integrates to one, we have

[𝐶 (], 𝛼, 𝛽, 𝜃, Ω)]−1

= ∫
𝑋>0

det (𝑋)]−(𝑚+1)/2 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) d𝑋.

(32)

By rewriting 1𝐹1 using Kummer’s relation (24) and integrat-
ing𝑋 by applying (21), we get

[𝐶 (], 𝛼, 𝛽, 𝜃, Ω)]−1

= Γ𝑚 (]) det (𝜃Ω)
]
2𝐹1 (], 𝛽 − 𝛼; 𝛽; 𝐼𝑚) ,

(33)

where Re(]) > (𝑚 − 1)/2. Finally, writing 2𝐹1(], 𝛽 − 𝛼; 𝛽; 𝐼𝑚)
in terms of multivariate gamma functions by using (23), we
obtain

[𝐶 (], 𝛼, 𝛽, 𝜃, Ω)]−1

= ∫
𝑋>0

det (𝑋)]−(𝑚+1)/2 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) d𝑋

=
det (𝜃Ω)] Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
,

(34)

where Re(𝛽 − ]) > (𝑚 − 1)/2, Re(𝛼 − ]) > (𝑚 − 1)/2, 𝜃 > 0,
Re(]) > (𝑚 − 1)/2, andΩ > 0.

3. Properties

In this section we study several properties of the conflu-
ent hypergeometric function kind 1 distribution defined in
Section 1. For the sake of completeness, we first state the
following results established in Gupta and Nagar [1].

(1) Let 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, kind 1) and let 𝐴 be an
𝑚 × 𝑚 constant nonsingular matrix. Then, 𝐴𝑋𝐴

∼

CH𝑚(], 𝛼, 𝛽, 𝜃, 𝐴Ω𝐴

, kind 1).

(2) Let𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, kind 1) and let𝐻 be an𝑚×𝑚
orthogonal matrix whose elements are either con-
stants or random variables distributed independent
of 𝑋. Then, the distribution of 𝑋 is invariant under
the transformation 𝑋 → 𝐻𝑋𝐻

 if 𝐻 is a matrix of
constants. Further, if 𝐻 is a random matrix, then 𝐻
and𝐻𝑋𝐻 are independent.

(3) Let 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, kind 1). Then, the cumu-
lative distribution function (cdf) of𝑋 is derived as

𝑃 (𝑋 ≤ Λ) =
Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ]) Γ𝑚 [(𝑚 + 1) /2]

Γ𝑚 [] + (𝑚 + 1) /2] Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

⋅ det (𝜃Ω)−] det (Λ)]

⋅ 2𝐹2 (𝛼, ]; 𝛽, ] +
𝑚 + 1

2
; −
1

𝜃
Ω
−1
Λ) ,

(35)

where Λ > 0.
(4) Let 𝑋 = (

𝑋11 𝑋12
𝑋21 𝑋22

), where 𝑋11 is a 𝑞 × 𝑞 matrix.
Define 𝑋11⋅2 = 𝑋11 − 𝑋12𝑋

−1
22𝑋21 and 𝑋22⋅1 = 𝑋22 −

𝑋21𝑋
−1
11𝑋12. If 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, kind 1), then (i)

𝑋11 and 𝑋22⋅1 are independent, 𝑋11 ∼ CH𝑞(], 𝛼 −

(𝑚 − 𝑞)/2, 𝛽 − (𝑚 − 𝑞)/2, 𝜃, kind 1) and 𝑋22⋅1 ∼

CH𝑚−𝑞(] − 𝑞/2, 𝛼 − 𝑞/2, 𝛽 − 𝑞/2, 𝜃, kind 1), and (ii)
𝑋22 and 𝑋11⋅2 are independent, 𝑋22 ∼ CH𝑚−𝑞(], 𝛼 −
𝑞/2, 𝛽 − 𝑞/2, 𝜃, kind 1) and 𝑋11⋅2 ∼ CH𝑞(] − (𝑚 −

𝑞)/2, 𝛼 − (𝑚 − 𝑞)/2, 𝛽 − (𝑚 − 𝑞)/2, 𝜃, kind 1).
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(5) Let 𝐴 be a 𝑞 × 𝑚 constant matrix of rank 𝑞(≤

𝑚). If 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, kind 1), then 𝐴𝑋𝐴

∼

CH𝑞(], 𝛼−(𝑚−𝑞)/2, 𝛽−(𝑚−𝑞)/2, 𝜃, 𝐴𝐴

, kind 1) and

(𝐴𝑋
−1
𝐴

)
−1
∼ CH𝑞(] − (𝑚 − 𝑞)/2, 𝛼 − (𝑚 − 𝑞)/2, 𝛽 −

(𝑚 − 𝑞)/2, 𝜃, (𝐴𝐴

)
−1
, kind 1).

(6) Let 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, kind 1) and let a be a
nonzero 𝑚-dimensional column vector of constants,
then (aa)−1(a𝑋a) ∼ CH(], 𝛼 − (𝑚 − 1)/2, 𝛽 − (𝑚 −

1)/2, 𝜃, kind 1) and aa(a𝑋−1a)−1 ∼ CH(] − (𝑚 −

1)/2, 𝛼 − (𝑚− 1)/2, 𝛽 − (𝑚− 1)/2, 𝜃, kind 1). Further,
if y is an𝑚-dimensional random vector, independent
of 𝑋, and 𝑃(y ̸= 0) = 1, then it follows that
(yy)−1(y𝑋y) ∼ CH(], 𝛼 − (𝑚 − 1)/2, 𝛽 − (𝑚 −

1)/2, 𝜃, kind 1) and yy(y𝑋−1y)−1 ∼ CH(] − (𝑚 −

1)/2, 𝛼 − (𝑚 − 1)/2, 𝛽 − (𝑚 − 1)/2, 𝜃, kind 1).
It may also be mentioned here that properties (1)–(6)

given above aremodified forms of results given in Section 8.10
of Gupta and Nagar [1].

If the𝑚×𝑚 randommatrices𝑋1 and𝑋2 are independent,
𝑋1 ∼ CH𝑚(], 𝑎1 + ], 2], 𝜃, kind 1) and 𝑋2 ∼ CH𝑚(], 𝑎2 +
], 2], 𝜃, kind 1), ] = 𝛾/2 + (𝑚 + 1)/4, then Roux and van der
Merwe [11] have shown that𝑋−1/2

2 𝑋1𝑋
−1/2
2 has matrix variate

beta type 2 distributions with parameters 𝑎2 and 𝑎1.
The matrix variate confluent hypergeometric function

kind 1 distribution can be derived as the distribution of the
matrix ratio of independent gamma and beta matrices. It has
been shown in Gupta and Nagar [1] that if 𝑌 ∼ Ga(𝑚, ], 𝜃)
and 𝑈 ∼ B1(𝑚, 𝑎, 𝑏), then 𝑈−1/2

𝑌𝑈
−1/2

∼ CH𝑚(], 𝑎 + ], 𝑎 +
𝑏 + ], 𝜃, kind 1).

The expected values of 𝑋 and 𝑋
−1, for 𝑋 ∼

CH𝑚(], 𝛼, 𝛽, 𝜃, kind 1), can easily be obtained from the
above results. For any fixed a ∈ R𝑚, a ̸= 0,

𝐸[
a𝑋a
aa

] = 𝐸 (V1) , (36)

where V1 ∼ CH(], 𝛼− (𝑚−1)/2, 𝛽−(𝑚−1)/2, 𝜃, kind 1), and

𝐸[
a𝑋−1a
aa

] = 𝐸(
1

V2
) , (37)

where V2 ∼ CH(] − (𝑚 − 1)/2, 𝛼 − (𝑚 − 1)/2, 𝛽 − (𝑚 −

1)/2, 𝜃, kind 1). Hence, for all a ∈ R𝑚,

a𝐸 (𝑋) a = aa𝐸 (V1)

=
]𝜃 [𝛽 − ] − (𝑚 + 1) /2]

[𝛼 − ] − (𝑚 + 1) /2]
aa,

𝛼 − ] >
𝑚 + 1

2
, 𝛽 − ] >

𝑚 + 1

2
,

a𝐸 (𝑋−1
) a = aa𝐸( 1

V2
)

=
𝛼 − ]

𝜃 [] − (𝑚 + 1) /2] (𝛽 − ])
aa,

] >
𝑚 + 1

2
,

(38)

which implies that

𝐸 (𝑋) =
]𝜃 [𝛽 − ] − (𝑚 + 1) /2]

[𝛼 − ] − (𝑚 + 1) /2]
𝐼𝑚,

𝛼 − ] >
𝑚 + 1

2
, 𝛽 − ] >

𝑚 + 1

2
,

𝐸 (𝑋
−1
) =

𝛼 − ]
𝜃 [] − (𝑚 + 1) /2] (𝛽 − ])

𝐼𝑚,

] >
𝑚 + 1

2
.

(39)

The Laplace transform of the density of 𝑋, where 𝑋 ∼

CH𝑚(], 𝛼, 𝛽, 𝜃, kind 1), is given by

𝜃
−𝑚]

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

∫
𝑋>0

etr(−𝑍𝑋 −
𝑋

𝜃
)

⋅ det (𝑋)]−(𝑚+1)/2 1𝐹1 (𝛽 − 𝛼; 𝛽;
𝑋

𝜃
) d𝑋

=
Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

det (𝐼𝑚 + 𝜃𝑍)
−]

2𝐹1 (], 𝛽

− 𝛼; 𝛽; (𝐼𝑚 + 𝜃𝑍)
−1
) , Re (𝑍) > 0,

(40)

where we have used (24) and (21). From the above expression,
the Laplace transform of the density of 𝑋, where 𝑋 ∼

CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, kind 1), is derived as

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

det (𝐼𝑚 + 𝜃Ω𝑍)
−]

⋅ 2𝐹1 (], 𝛽 − 𝛼; 𝛽; (𝐼𝑚 + 𝜃Ω𝑍)
−1
) , Re (𝑍) > 0.

(41)

Theorem 4. Let𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, kind 1); then

𝐸 [det (𝑋)ℎ]

=
det (𝜃Ω)ℎ Γ𝑚 (𝛽 − ]) Γ𝑚 (] + ℎ) Γ𝑚 (𝛼 − ] − ℎ)

Γ𝑚 (]) Γ𝑚 (𝛼 − ]) Γ𝑚 (𝛽 − ] − ℎ)
,

(42)

where Re(ℎ + ]) > (𝑚 − 1)/2, Re(ℎ) < 𝛼 − ] − (𝑚 − 1)/2, and
Re(ℎ) < 𝛽 − ] − (𝑚 − 1)/2.

Proof. From the density of𝑋, we have

𝐸 [det (𝑋)ℎ] =
det (𝜃Ω)−] Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

⋅ ∫
𝑋>0

det (𝑋)]+ℎ−(𝑚+1)/2 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) d𝑋.

(43)

Now, evaluating the above integral by using (34), we get

𝐸 [det (𝑋)ℎ] =
det (𝜃Ω)−] Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

⋅
det (𝜃Ω)]+ℎ Γ𝑚 (] + ℎ) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ] − ℎ)

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ] − ℎ)
,

(44)
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where Re(ℎ + ]) > (𝑚 − 1)/2, Re(ℎ) < 𝛼 − ] − (𝑚 − 1)/2,
and Re(ℎ) < 𝛽 − ] − (𝑚 − 1)/2. Finally, simplifying the above
expression, we get the desired result.

Corollary 5. Let 𝑥 ∼ CH(], 𝛼, 𝛽, 𝜃, kind 1); then

𝐸 (𝑥
ℎ
) =

𝜃
ℎ
Γ (𝛽 − ]) Γ (] + ℎ) Γ (𝛼 − ] − ℎ)
Γ (]) Γ (𝛼 − ]) Γ (𝛽 − ] − ℎ)

, (45)

where Re(ℎ + ]) > 0, Re(ℎ) < 𝛼 − ], and Re(ℎ) < 𝛽 − ].

Using (42) the mean and the variance of det(𝑋) are
derived as

𝐸 [det (𝑋)] = 𝜃𝑚 det (Ω)

⋅

𝑚

∏

𝑗=1

[] − (𝑗 − 1) /2] [𝛽 − ] − (𝑗 + 1) /2]
[𝛼 − ] − (𝑗 + 1) /2]

,

(46)

where 𝛽 > ] + (𝑚 + 1)/2, 𝛼 > ] + (𝑚 + 1)/2, and

Var (det (𝑋)) = 𝜃2𝑚 det (Ω)2
𝑚

∏

𝑗=1

[
[] − (𝑗 − 1) /2] [𝛽 − ] − (𝑗 + 1) /2]

[𝛼 − ] − (𝑗 + 1) /2]
{
[] − (𝑗 − 3) /2] [𝛽 − ] − (𝑗 + 3) /2]

[𝛼 − ] − (𝑗 + 3) /2]

−
[] − (𝑗 − 1) /2] [𝛽 − ] − (𝑗 + 1) /2]

[𝛼 − ] − (𝑗 + 1) /2]
}] ,

(47)

where 𝛽 > ] + (𝑚 + 3)/2 and 𝛼 > ] + (𝑚 + 3)/2. For 𝑚 × 𝑚

symmetric matrix 𝐴, 𝐸[𝐶𝜅(𝐴𝑋)] is derived as

𝐸 [𝐶𝜅 (𝐴𝑋)] =
det (𝜃Ω)−] Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ])
Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])

⋅ ∫
𝑋>0

𝐶𝜅 (𝐴𝑋) det (𝑋)
]−(𝑚+1)/2

⋅ 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) d𝑋.

(48)

Replacing 1𝐹1(𝛼; 𝛽; −Ω
−1
𝑋/𝜃) by its integral representation,

namely,

1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) =

Γ𝑚 (𝛽)

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − 𝛼)

⋅ ∫

𝐼𝑚

0
etr(−1

𝜃
Ω
−1/2

𝑋Ω
−1/2

𝑌) det (𝑌)𝛼−(𝑚+1)/2

⋅ det (𝐼𝑚 − 𝑌)
𝛽−𝛼−(𝑚+1)/2 d𝑌,

(49)

where Re(𝛽 − 𝛼) > (𝑚 − 1)/2 and Re(𝛼) > (𝑚 − 1)/2, one
obtains

𝐸 [𝐶𝜅 (𝐴𝑋)] =
det (𝜃Ω)−] Γ𝑚 (𝛽 − ])

Γ𝑚 (]) Γ𝑚 (𝛽 − 𝛼) Γ𝑚 (𝛼 − ])

⋅ ∫

𝐼𝑚

0
det (𝑌)𝛼−(𝑚+1)/2 det (𝐼𝑚 − 𝑌)

𝛽−𝛼−(𝑚+1)/2

⋅ ∫
𝑋>0

𝐶𝜅 (𝐴𝑋) det (𝑋)
]−(𝑚+1)/2

⋅ etr(−1
𝜃
Ω
−1/2

𝑋Ω
−1/2

𝑌) d𝑋 d𝑌.

(50)

Now, evaluating the above integral by using (19), we obtain

𝐸 [𝐶𝜅 (𝐴𝑋)] =
𝜃
𝑘
Γ𝑚 (𝛽 − ]) (])𝜅

Γ𝑚 (𝛽 − 𝛼) Γ𝑚 (𝛼 − ])

⋅ ∫

𝐼𝑚

0
det (𝑌)𝛼−]−(𝑚+1)/2 det (𝐼𝑚 − 𝑌)

𝛽−𝛼−(𝑚+1)/2

⋅ 𝐶𝜅 (Ω
1/2
𝐴Ω

1/2
𝑌
−1
) d𝑌.

(51)

Finally, evaluating the integral involving 𝑌 by using (Khatrzi
[12])

∫

𝐼𝑚

0
det (𝑅)𝑎−(𝑚+1)/2 det (𝐼𝑚 − 𝑅)

𝑏−(𝑚+1)/2

⋅ 𝐶𝜅 (𝑋𝑅
−1
) d𝑅

=
(−𝑎 − 𝑏 + (𝑚 + 1) /2)𝜅 Γ𝑚 (𝑎) Γ𝑚 (𝑏)

(−𝑎 + (𝑚 + 1) /2)𝜅 Γ𝑚 (𝑎 + 𝑏)
𝐶𝜅 (𝑋) ,

Re (𝑎) > 𝑚 − 1

2
+ 𝑘1, Re (𝑏) >

𝑚 − 1

2
,

(52)

we get

𝐸 [𝐶𝜅 (𝐴𝑋)]

=
𝜃
𝑘
(] − 𝛽 + (𝑚 + 1) /2)𝜅 (])𝜅
(] − 𝛼 + (𝑚 + 1) /2)𝜅

𝐶𝜅 (Ω𝐴) ,

(53)

where Re(𝛼−]) > (𝑚−1)/2+𝑘1 andRe(𝛽−]) > (𝑚−1)/2+𝑘1.
Proceeding similarly and using the result (Khatrzi [12])

∫
𝑅>0

etr (−𝑋𝑅) det (𝑅)𝑎−(𝑚+1)/2 𝐶𝜅 (𝑅
−1
𝑆) d𝑅

=
(−1)

𝑘
Γ𝑚 (𝑎)

(−𝑎 + (𝑚 + 1) /2)𝜅

det (𝑋)−𝑎 𝐶𝜅 (𝑋𝑆) ,

Re (𝑎) > 𝑚 − 1

2
+ 𝑘1,

(54)
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the expected value of 𝐶𝜅(𝐴𝑋
−1
) is derived as

𝐸 [𝐶𝜅 (𝐴𝑋
−1
)] =

det (𝜃Ω)−] Γ𝑚 (𝛽 − ])
Γ𝑚 (]) Γ𝑚 (𝛽 − 𝛼) Γ𝑚 (𝛼 − ])

⋅ ∫

𝐼𝑚

0
det (𝑌)𝛼−(𝑚+1)/2 det (𝐼𝑚 − 𝑌)

𝛽−𝛼−(𝑚+1)/2

⋅ ∫
𝑋>0

𝐶𝜅 (𝐴𝑋
−1
) det (𝑋)]−(𝑚+1)/2

⋅ etr(−1
𝜃
Ω
−1/2

𝑋Ω
−1/2

𝑌) d𝑋 d𝑌

=
(−1)

𝑘
𝜃
−𝑘
Γ𝑚 (𝛽 − ])

Γ𝑚 (𝛽 − 𝛼) Γ𝑚 (𝛼 − ]) (−] + (𝑚 + 1) /2)𝜅

⋅ ∫

𝐼𝑚

0
det (𝑌)𝛼−]−(𝑚+1)/2 det (𝐼𝑚 − 𝑌)

𝛽−𝛼−(𝑚+1)/2

⋅ 𝐶𝜅 (Ω
−1/2

𝐴Ω
−1/2

𝑌) d𝑌,

(55)

where Re(]) > (𝑚 − 1)/2 + 𝑘1. Finally, evaluating the above
integral using (20) we obtain

𝐸 [𝐶𝜅 (𝐴𝑋
−1
)]

=
(−1)

𝑘
𝜃
−𝑘
(𝛼 − ])𝜅

(𝛽 − ])𝜅 (−] + (𝑚 + 1) /2)𝜅

𝐶𝜅 (Ω
−1
𝐴) ,

Re (]) > 𝑚 − 1

2
+ 𝑘1.

(56)

In the next theorem, we derive the confluent hypergeo-
metric function kind 1 distribution using independent beta
and gamma matrices.

Theorem 6. Let𝑋1 and𝑋2 be independent,𝑋1 ∼ Ga(𝑚, ], 𝜃)
and𝑋2 ∼ B1(𝑚, 𝑎, 𝑏).Then,𝑋−1/2

2 𝑋1𝑋
−1/2
2 ∼ CH𝑚(], 𝑎+], 𝑎+

𝑏 + ], 𝜃, kind 1).

Proof. See Gupta and Nagar [1].

Theorem 7. Let𝑋1 and𝑋2 be independent,𝑋1 ∼ Ga(𝑚, ], 𝜃)
and𝑋2 ∼ B1(𝑚, 𝑎, 𝑏). Then,𝑋1/2

1 𝑋
−1
2 𝑋

1/2
1 ∼ CH𝑚(], 𝑎+], 𝑎+

𝑏 + ], 𝜃, kind 1).

Proof. The result follows from Theorem 6 and the fact that
𝑋
−1/2
2 𝑋1𝑋

−1/2
2 and 𝑋1/2

1 𝑋
−1
2 𝑋

1/2
1 have same eigenvalues, and

the matrix variate confluent hypergeometric function kind 1
distribution is orthogonally invariant.

Theorem 8. Let𝑋1 and𝑋2 be independent,𝑋1 ∼ Ga(𝑚, ], 𝜃)
and 𝑋2 ∼ B1(𝑚, 𝑎, 𝑏). Then, (𝐼𝑚 − 𝑋2)

−1/2
𝑋1(𝐼𝑚 − 𝑋2)

−1/2
∼

CH𝑚(], 𝑏 + ], 𝑎 + 𝑏 + ], 𝜃, kind 1).

Proof. Noting that 𝐼𝑚−𝑋2 ∼ B1(𝑚, 𝑏, 𝑎) and usingTheorem 6
we get the result.

Theorem 9. Let𝑋1 and𝑋2 be independent,𝑋1 ∼ Ga(𝑚, ], 𝜃)
and 𝑋2 ∼ B2(𝑚, 𝑎, 𝑏). Then, (𝐼𝑚 + 𝑋2)

1/2
𝑋1(𝐼𝑚 + 𝑋2)

1/2
∼

CH𝑚(], 𝑏 + ], 𝑎 + 𝑏 + ], 𝜃, kind 1).

Proof. The desired result is obtained by observing that (𝐼𝑚 +

𝑋2)
−1
∼ B1(𝑚, 𝑏, 𝑎) and usingTheorem 6.

Theorem10. Let𝑋1 and𝑋2 be independent,𝑋1 ∼ Ga(𝑚, ], 𝜃)
and 𝑋2 ∼ B2(𝑚, 𝑎, 𝑏). Then, (𝐼𝑚 + 𝑋−1

2 )
1/2
𝑋1(𝐼𝑚 + 𝑋

−1
2 )

1/2
∼

CH𝑚(], 𝑎 + ], 𝑎 + 𝑏 + ], 𝜃, kind 1).

Proof. Noting that (𝐼𝑚 + 𝑋
−1
2 )

−1
∼ B1(𝑚, 𝑎, 𝑏) and using

Theorem 6 we get the result.

Theorem 11. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼ Ga(𝑚, ]1,
𝜃) and 𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then, (𝑋1 + 𝑋2)𝑋

−1
1 (𝑋1 + 𝑋2) ∼

CH𝑚(]1 + ]2, 2]1 + ]2, 2]1 + 2]2, 𝜃, kind 1).

Proof. It is well known that𝑋1+𝑋2 and (𝑋1+𝑋2)
−1/2

𝑋1(𝑋1+

𝑋2)
−1/2 are independent, 𝑋1 + 𝑋2 ∼ Ga(𝑚, ]1 + ]2, 𝜃) and

(𝑋1 + 𝑋2)
−1/2

𝑋1(𝑋1 + 𝑋2)
−1/2

∼ B1(𝑚, ]1, ]2). Therefore,
usingTheorem 7, (𝑋1+𝑋2)𝑋

−1
1 (𝑋1+𝑋2) ∼ CH𝑚(]1+]2, 2]1+

]2, 2]1 + 2]2, 𝜃, kind 1).

Theorem 12. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼

Ga(𝑚, ]1, 𝜃) and𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then, (𝑋1+𝑋2)𝑋
−1
2 (𝑋1+

𝑋2) ∼ CH𝑚(]1 + ]2, ]1 + 2]2, 2]1 + 2]2, 𝜃, kind 1).

Proof. The proof is similar to the proof of Theorem 11.

4. Distributions of Sum and Quotients

In statistical distribution theory it is well known that if 𝑋1

and 𝑋2 are independent, 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼

Ga(𝑚, ]2, 𝜃), then 𝑋
−1/2
2 𝑋1𝑋

−1/2
2 ∼ B2(𝑚, ]1, ]2), (𝑋1 +

𝑋2)
−1/2

𝑋1(𝑋1 + 𝑋2)
−1/2

∼ B1(𝑚, ]1, ]2), and 𝑋1 + 𝑋2 ∼

Ga(𝑚, ]1 + ]2). In this section we derive similar results
when 𝑋1 and 𝑋2 are independent confluent hypergeometric
function kind 1 and gamma matrices, respectively.

Theorem 13. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼ CH𝑚(]1,
𝛼1, 𝛽1, 𝜃, kind 1) and𝑋2 ∼ Ga(𝑚, ]2, 𝜃).Then, the p.d.f. of𝑍 =

𝑋
−1/2
2 𝑋1𝑋

−1/2
2 is given by

Γ𝑚 (𝛼1) Γ𝑚 (𝛽1 − ]1) Γ𝑚 (]1 + ]2)
Γ𝑚 (𝛽1) Γ𝑚 (𝛼1 − ]1) Γ𝑚 (]1) Γ𝑚 (]2)

det (𝑍)]1−(𝑚+1)/2

det (𝐼𝑚 + 𝑍)
]1+]2

⋅ 2𝐹1 (𝛽1 − 𝛼1, ]1 + ]2; 𝛽1; (𝐼𝑚 + 𝑍)
−1
𝑍) ,

𝑍 > 0.

(57)

Proof. Using the independence, the joint p.d.f. of 𝑋1 and 𝑋2

is given by

𝐾 det (𝑋1)
]1−(𝑚+1)/2 det (𝑋2)

]2−(𝑚+1)/2

⋅ etr [−1
𝜃
(𝑋1 + 𝑋2)] 1𝐹1 (𝛽1 − 𝛼1; 𝛽1;

1

𝜃
𝑋1) ,

𝑋1 > 0, 𝑋2 > 0,

(58)
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where

𝐾 =
𝜃
−𝑚(]1+]2)Γ𝑚 (𝛼1) Γ𝑚 (𝛽1 − ]1)

Γ𝑚 (]1) Γ𝑚 (]2) Γ𝑚 (𝛽1) Γ𝑚 (𝛼1 − ]1)
. (59)

Making the transformation 𝑍 = 𝑋
−1/2
2 𝑋1𝑋

−1/2
2 , 𝑋2 = 𝑋2,

with the Jacobian 𝐽(𝑋1, 𝑋2 → 𝑍,𝑋2) = det(𝑋2)
(𝑚+1)/2 we

obtain the joint p.d.f. of 𝑍 and𝑋2 as

𝐾 det (𝑍)]1−(𝑚+1)/2 det (𝑋2)
]1+]2−(𝑚+1)/2

⋅ exp [−1
𝜃
(𝐼𝑚 + 𝑍)𝑋2] 1𝐹1 (𝛽1 − 𝛼1; 𝛽1;

1

𝜃
𝑍𝑋2) ,

𝑍 > 0, 𝑋2 > 0.

(60)

Now, integrating𝑋2 in (60) by applying (21) and substituting
for𝐾, we obtain the desired result.

Corollary 14. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼

CH𝑚(]1, 𝛼1, 𝛽1, 𝜃, kind 1) and 𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then, the
p.d.f. of 𝑍1 = 𝑋

1/2
2 𝑋

−1
1 𝑋

1/2
2 is given by

Γ𝑚 (𝛼1) Γ𝑚 (𝛽1 − ]1) Γ𝑚 (]1 + ]2)
Γ𝑚 (𝛽1) Γ𝑚 (𝛼1 − ]1) Γ𝑚 (]1) Γ𝑚 (]2)

⋅
det (𝑍1)

]2−(𝑚+1)/2

det (𝐼𝑚 + 𝑍1)
]1+]2

⋅ 2𝐹1 (𝛽1 − 𝛼1, ]1 + ]2; 𝛽1; (𝐼𝑚 + 𝑍1)
−1
) , 𝑍1 > 0.

(61)

Corollary 15. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼ Ga(𝑚,
]1, 𝜃) and 𝑋2 ∼ CH𝑚(]2, 𝛼2, 𝛽2, 𝜃, kind 1). Then, the p.d.f. of
𝑍3 = 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 is given by

Γ𝑚 (𝛼2) Γ𝑚 (𝛽2 − ]2) Γ𝑚 (]1 + ]2)
Γ𝑚 (𝛽2) Γ𝑚 (𝛼2 − ]2) Γ𝑚 (]1) Γ𝑚 (]2)

⋅
det (𝑍3)

]1−(𝑚+1)/2

det (𝐼𝑚 + 𝑍3)
]1+]2

⋅ 2𝐹1 (𝛽2 − 𝛼2, ]1 + ]2; 𝛽2; (𝐼𝑚 + 𝑍3)
−1
) , 𝑍3 > 0.

(62)

Proof. Interchanging subscripts 1 and 2 in Corollary 14, the
p.d.f. of 𝑍2 = 𝑋

1/2
1 𝑋

−1
2 𝑋

1/2
1 is given by

Γ𝑚 (𝛼2) Γ𝑚 (𝛽2 − ]2) Γ𝑚 (]1 + ]2)
Γ𝑚 (𝛽2) Γ𝑚 (𝛼2 − ]2) Γ𝑚 (]1) Γ𝑚 (]2)

⋅
det (𝑍2)

]1−(𝑚+1)/2

det (𝐼𝑚 + 𝑍2)
]1+]2

⋅ 2𝐹1 (𝛽2 − 𝛼2, ]1 + ]2; 𝛽2; (𝐼𝑚 + 𝑍2)
−1
) , 𝑍2 > 0,

(63)

where 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ CH𝑚(]2, 𝛼2, 𝛽2, 𝜃,
kind 1). Now, the result follows from the fact that 𝑍2 =

𝑋
1/2
1 𝑋

−1
2 𝑋

1/2
1 and 𝑍3 = 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 have the same eigen-

values, and the distribution𝑍2 is orthogonally invariant.

Corollary 16. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼

CH𝑚(]1, 𝛼1, ]1 + ]2, 𝜃, kind 1) and 𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then,
𝑋
−1/2
2 𝑋1𝑋

−1/2
2 ∼ B2(𝑚, ]1, 𝛼1 − ]1).

Corollary 17. Let the random matrices 𝑋1 and 𝑋2 be inde-
pendent, 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ CH𝑚(]2, 𝛼2, ]2 + ]1,
𝜃, kind 1). Then,𝑋−1/2

2 𝑋1𝑋
−1/2
2 ∼ B2(𝑚, 𝛼2 − ]2, ]2).

Corollary 18. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼ Ga(𝑚,
]1, 𝜃) and 𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then, 𝑋−1/2

2 𝑋1𝑋
−1/2
2 ∼ B2(𝑚,

]1, ]2).

Theorem 19. Let 𝑋1, 𝑋2, and 𝑋3 be independent, 𝑋1 ∼

Ga(𝑚, 𝜇, 𝜃), 𝑋2 ∼ B1(𝑚, 𝑎, 𝑏), and 𝑋3 ∼ Ga(𝑚, ], 𝜃). Then,
the p.d.f. of 𝑍 = 𝑋

−1/2
3 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 𝑋

−1/2
3 is given by

Γ𝑚 (𝑎 + 𝜇) Γ𝑚 (𝑎 + 𝑏) Γ𝑚 (𝜇 + ])
Γ𝑚 (𝑎 + 𝑏 + 𝜇) Γ𝑚 (𝑎) Γ𝑚 (𝜇) Γ𝑚 (])

det (𝑍)𝜇−(𝑚+1)/2

det (𝐼𝑚 + 𝑍)
𝜇+]

⋅ 2𝐹1 (𝑏, 𝜇 + ]; 𝑎 + 𝑏 + 𝜇; (𝐼𝑚 + 𝑍)
−1
𝑍) , 𝑍 > 0.

(64)

Proof. Using the independence of𝑋1 and𝑋2 andTheorem 6,
𝑋
−1/2
2 𝑋1𝑋

−1/2
2 ∼ CH𝑚(𝜇, 𝑎 + 𝜇, 𝑎 + 𝑏 + 𝜇, kind 1). Fur-

ther, using independence of 𝑋−1/2
2 𝑋1𝑋

−1/2
2 and 𝑋3 and

Theorem 13, we obtain the desired result.

Corollary 20. Let 𝑋1, 𝑋2, and 𝑋3 be independent, 𝑋1 ∼

Ga(𝑚, 𝜇, 𝜃),𝑋2 ∼ B1(𝑚, 𝑎, 𝑏), and𝑋3 ∼ Ga(𝑚, 𝑎+𝑏, 𝜃).Then,
𝑋
−1/2
3 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 𝑋

−1/2
3 ∼ B2(𝑚, 𝜇, 𝑎).

Proof. For ] = 𝑎 + 𝑏, the p.d.f. of 𝑍 = 𝑋
−1/2
3 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 ⋅

𝑋
−1/2
3 given in the above theorem slides to

Γ𝑚 (𝑎 + 𝜇)

Γ𝑚 (𝑎) Γ𝑚 (𝜇)

det (𝑍)𝜇−(𝑚+1)/2

det (𝐼𝑚 + 𝑍)
𝜇+𝑎+𝑏

⋅ 2𝐹1 (𝑏, 𝜇 + 𝑎 + 𝑏; 𝑎 + 𝑏 + 𝜇; (𝐼𝑚 + 𝑍)
−1
𝑍) ,

𝑍 > 0.

(65)

Now, simplifying the Gauss hypergeometric function as

2𝐹1 (𝑏, 𝜇 + 𝑎 + 𝑏; 𝑎 + 𝑏 + 𝜇; (𝐼𝑚 + 𝑍)
−1
𝑍)

= 1𝐹0 (𝑏; (𝐼𝑚 + 𝑍)
−1
𝑍)

= det (𝐼𝑚 − (𝐼𝑚 + 𝑍)
−1
𝑍)

−𝑏
= det (𝐼𝑚 + 𝑍)

𝑏
,

(66)

where we have used (16), the desired result is obtained.

Corollary 21. Let 𝑉 and 𝑈 be independent, 𝑉 ∼ B2(𝑚, 𝜇, ])
and 𝑈 ∼ B1(𝑚, 𝑎, 𝑏). Then, the p.d.f. of 𝑍 = 𝑈

−1/2
𝑉𝑈

−1/2 is
given by

Γ𝑚 (𝑎 + 𝜇) Γ𝑚 (𝑎 + 𝑏) Γ𝑚 (𝜇 + ])
Γ𝑚 (𝑎 + 𝑏 + 𝜇) Γ𝑚 (𝑎) Γ𝑚 (𝜇) Γ𝑚 (])

det (𝑍)𝜇−(𝑚+1)/2

det (𝐼𝑚 + 𝑍)
𝜇+]

⋅ 2𝐹1 (𝑏, 𝜇 + ]; 𝑎 + 𝑏 + 𝜇; (𝐼𝑚 + 𝑍)
−1
𝑍) , 𝑍 > 0.

(67)

Further, if ] = 𝑎 + 𝑏, then 𝑈−1/2
𝑉𝑈

−1/2
∼ B2(𝑚, 𝜇, 𝑎).
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Proof. Observe that 𝑍 = 𝑋
−1/2
3 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 𝑋

−1/2
3 and

𝑋
−1/2
2 𝑋

−1/2
3 𝑋1𝑋

−1/2
3 𝑋

−1/2
2 have same eigenvalues and the

distribution of 𝑍 is orthogonally invariant. Therefore,
the random matrices 𝑋

−1/2
3 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 𝑋

−1/2
3 and

𝑋
−1/2
2 𝑋

−1/2
3 𝑋1𝑋

−1/2
3 𝑋

−1/2
2 have identical distribution.

Now, setting 𝑉 = 𝑋
−1/2
3 𝑋1𝑋

−1/2
3 and 𝑈 = 𝑋2, where

𝑋
−1/2
3 𝑋1𝑋

−1/2
3 ∼ B2(𝑚, 𝜇, ]) and 𝑋2 ∼ B1(𝑚, 𝑎, 𝑏), we

observe that𝑋−1/2
3 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 𝑋

−1/2
3 and𝑈−1/2

𝑉𝑈
−1/2 have

identical distribution.

Theorem 22. Let 𝑋1 and 𝑋2 be independent, 𝑋1 ∼

CH𝑚(]1, 𝛼1, 𝛽1, 𝜃, kind 1) and 𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then, the
p.d.f. of 𝑅 = (𝑋1 + 𝑋2)

−1/2
𝑋1(𝑋1 + 𝑋2)

−1/2 is given by

Γ𝑚 (𝛼1) Γ𝑚 (𝛽1 − ]1) Γ𝑚 (]1 + ]2)
Γ𝑚 (𝛽1) Γ𝑚 (𝛼1 − ]1) Γ𝑚 (]1) Γ𝑚 (]2)

det (𝑅)]1−(𝑚+1)/2

⋅ det (𝐼𝑚 − 𝑅)
]2−(𝑚+1)/2

⋅ 2𝐹1 (𝛽1 − 𝛼1, ]1 + ]2; 𝛽1; 𝑅) , 0 < 𝑅 < 𝐼𝑚

(68)

and the p.d.f. of 𝑆 = 𝑋1 + 𝑋2 is given by

𝜃
−𝑚(]1+]2)Γ𝑚 (𝛼1) Γ𝑚 (𝛽1 − ]1)

Γ𝑚 (𝛽1) Γ𝑚 (𝛼1 − ]1) Γ𝑚 (]1 + ]2)
det (𝑆)]1+]2−(𝑚+1)/2

⋅ etr(−1
𝜃
𝑆) 2𝐹2 (]1, 𝛽1 − 𝛼1; ]1 + ]2, 𝛽1;

1

𝜃
𝑆) ,

𝑆 > 0.

(69)

Proof. Substituting𝑅 = (𝑋1+𝑋2)
−1/2

𝑋1(𝑋1+𝑋2)
−1/2 and 𝑆 =

𝑋1 + 𝑋2 with the Jacobian 𝐽(𝑋1, 𝑋2 → 𝑅, 𝑆) = det(𝑆)(𝑚+1)/2
in (58) we obtain the joint p.d.f. of 𝑅 and 𝑆 as

𝐾 det (𝑅)]1−(𝑚+1)/2 det (𝐼𝑚 − 𝑅)
]2−(𝑚+1)/2

⋅ det (𝑆)]1+]2−(𝑚+1)/2 etr(−1
𝜃
𝑆)

⋅ 1𝐹1 (𝛽1 − 𝛼1; 𝛽1;
1

𝜃
𝑅𝑆) , 0 < 𝑅 < 𝐼𝑚, 𝑆 > 0.

(70)

Now, integration of 𝑆 by using (21) yields the density of𝑅.The
marginal density of 𝑆 is obtained by integrating 𝑅 by using
(22).

It may be remarked here that the density of 𝑅 given in
the above theorem can also be obtained from the density of
𝑍 = 𝑋

−1/2
2 𝑋1𝑋

−1/2
2 derived in Theorem 13 by making the

transformation 𝑅 = (𝐼𝑚 + 𝑍)
−1
𝑍.

Corollary 23. Let 𝑋1 and 𝑋2 be independent random matri-
ces, 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ CH𝑚(]2, 𝛼2, 𝛽2, 𝜃, kind 1).

Then, the p.d.f. of 𝑅1 = (𝑋1 +𝑋2)
−1/2

𝑋1(𝑋1 +𝑋2)
−1/2 is given

by

Γ𝑚 (𝛼2) Γ𝑚 (𝛽2 − ]2) Γ𝑚 (]1 + ]2)
Γ𝑚 (𝛽2) Γ𝑚 (𝛼2 − ]2) Γ𝑚 (]1) Γ𝑚 (]2)

det (𝑅1)
]1−(𝑚+1)/2

⋅ det (𝐼𝑚 − 𝑅1)
]2−(𝑚+1)/2

⋅ 2𝐹1 (𝛽2 − 𝛼2, ]1 + ]2; 𝛽2; 𝐼𝑚 − 𝑅1) , 0 < 𝑅1 < 𝐼𝑚

(71)

and the p.d.f. of 𝑆1 = 𝑋1 + 𝑋2 is given by

𝜃
−𝑚(]1+]2)Γ𝑚 (𝛼2) Γ𝑚 (𝛽2 − ]2)

Γ𝑚 (𝛽2) Γ𝑚 (𝛼2 − ]2) Γ𝑚 (]1 + ]2)
det (𝑆1)

]1+]2−(𝑚+1)/2

⋅ etr(−1
𝜃
𝑆1) 2𝐹2 (]2, 𝛽2 − 𝛼2; ]1 + ]2, 𝛽2;

1

𝜃
𝑆1) ,

𝑆1 > 0.

(72)

Proof. Interchanging subscripts 1 and 2 in Theorem 22, the
p.d.f. of 𝑅2 = (𝑋1 + 𝑋2)

−1/2
𝑋2(𝑋1 + 𝑋2)

−1/2 is given by

Γ𝑚 (𝛼2) Γ𝑚 (𝛽2 − ]2) Γ𝑚 (]1 + ]2)
Γ𝑚 (𝛽2) Γ𝑚 (𝛼2 − ]2) Γ𝑚 (]1) Γ𝑚 (]2)

det (𝑅2)
]2−(𝑚+1)/2

⋅ det (𝐼𝑚 − 𝑅2)
]2−(𝑚+1)/2

⋅ 2𝐹1 (𝛽2 − 𝛼2, ]1 + ]2; 𝛽2; 𝑅2) , 0 < 𝑅2 < 𝐼𝑚,

(73)

where now 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ CH𝑚(]2, 𝛼2, 𝛽2, 𝜃,
kind 1). The desired result is now obtained by observing
that 𝑅2 = 𝐼𝑚 − 𝑅1. Similarly, the p.d.f. of 𝑆1 is obtained by
interchanging subscripts 1 and 2 in the p.d.f. of 𝑆.

Corollary 24. Let the random matrices 𝑋1 and 𝑋2 be
independent, 𝑋1 ∼ CH𝑚(]1, 𝛼1, ]1 + ]2, 𝜃, kind 1) and
𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then, (𝑋1 + 𝑋2)

−1/2
𝑋1(𝑋1 + 𝑋2)

−1/2
∼

B1(𝑚, ]1, 𝛼1 − ]1).

Proof. Thedesired result is obtained by substituting 𝛽1 = ]1+
]2 in the p.d.f. of 𝑅 and simplifying the resulting expression
by using (16).

Corollary 25. Let the random matrices 𝑋1 and 𝑋2 be inde-
pendent, 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ CH(𝑚, ]2, 𝛼2, ]1 +
]2, 𝜃, kind 1). Then, (𝑋1 + 𝑋2)

−1/2
𝑋1(𝑋1 + 𝑋2)

−1/2
∼

B1(𝑚, 𝛼2 − ]2, ]2).

Proof. Thedesired result is obtained by substituting 𝛽2 = ]1+
]2 in the p.d.f. of 𝑅1 and simplifying the resulting expression
by using (16).

Corollary 26. Let the random matrices 𝑋1 and 𝑋2 be inde-
pendent, 𝑋1 ∼ CH𝑚(]1, 𝛼1, 𝛼1 + ]1 + ]2, 𝜃, kind 1) and 𝑋2 ∼

Ga(𝑚, ]2, 𝜃). Then𝑋1 + 𝑋2 ∼ CH𝑚(]1 + ]2, 𝛼1 + ]2, 𝛼1 + ]1 +
]2, 𝜃, kind 1).

Proof. The result is obtained by substituting 𝛽1 = 𝛼1 + ]1 + ]2
in the p.d.f. of 𝑆 and simplifying the resulting expression by
using (15).
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Corollary 27. Let the random matrices 𝑋1 and 𝑋2 be inde-
pendent, 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ CH𝑚(]2, 𝛼2, 𝛼2 + ]1 +
]2, 𝜃, kind 1). Then𝑋1 +𝑋2 ∼ CH𝑚(]1 + ]2, 𝛼2 + ]1, 𝛼2 + ]1 +
]2, 𝜃, kind 1).

Proof. The result is obtained by substituting 𝛽2 = 𝛼2 + ]1 + ]2
in the p.d.f. of 𝑆 and simplifying the resulting expression by
using (15).

Corollary 28. Let the random matrices 𝑋1 and 𝑋2 be inde-
pendent, 𝑋1 ∼ Ga(𝑚, ]1, 𝜃) and 𝑋2 ∼ Ga(𝑚, ]2, 𝜃). Then,
(𝑋1 +𝑋2)

−1/2
𝑋1(𝑋1 +𝑋2)

−1/2
∼ B1(𝑚, ]1, ]2) and𝑋1 +𝑋2 ∼

Ga(𝑚, ]1 + ]2, 𝜃).

Proof. Substitute 𝛽1 = 𝛼1 in the p.d.f. of 𝑅 or 𝛽2 = 𝛼2 in the
p.d.f. of 𝑅1 and simplify the resulting expression to get the
desired result.

5. Related Distributions

This section gives distributional results for the determinant of
the random matrix distributed as confluent hypergeometric
function kind 1.

In an unpublished report, Coelho et al. [13] have shown
that if 𝑧 is a positive random variable and 𝐸(𝑧ℎ) is defined
for ℎ in some neighborhood of zero, then the moments
𝐸(𝑧

ℎ
) uniquely identify the distribution of 𝑧. In the next

theorem, we will use this result to derive the distribution of
the product of two independent confluent hypergeometric
function kind 1 variables.

Theorem 29. If 𝑥1 ∼ CH(], 𝛼, 𝛽, 𝜃, kind 1) and 𝑥2 ∼ CH(] +
1/2, 𝛼 + 1, 𝛽 + 1, 𝜃, kind 1) are independent, then 2√𝑥1𝑥2 ∼
CH(2], 2𝛼, 2𝛽, 𝜃, kind 1).

Proof. The ℎth moment of 2√𝑥1𝑥2 is derived as

𝐸 [(2√𝑥1𝑥2)
ℎ
]

=
(2𝜃)

ℎ
Γ (𝛽 − ]) Γ (] + ℎ/2) Γ (𝛼 − ] − ℎ/2)
Γ (]) Γ (𝛼 − ]) Γ (𝛽 − ] − ℎ/2)

⋅
Γ (𝛽 − ] + 1/2) Γ (] + 1/2 + ℎ/2) Γ (𝛼 − ] + 1/2 − ℎ/2)

Γ (] + 1/2) Γ (𝛼 − ] + 1/2) Γ (𝛽 − ] + 1/2 − ℎ/2)
.

(74)

Now, using the duplication formula for gamma function,
namely,

Γ (2𝑧) =
Γ (𝑧) Γ (𝑧 + 1/2)

21−2𝑧√𝜋
, (75)

the ℎth moment of 2√𝑥1𝑥2 is rewritten as

𝐸 [(2√𝑥1𝑥2)
ℎ
]

=
𝜃
ℎ
Γ (2𝛽 − 2]) Γ (2] + ℎ) Γ (2𝛼 − 2] − ℎ)
Γ (2]) Γ (2𝛼 − 2]) Γ (2𝛽 − 2] − ℎ)

,

(76)

where ] > 0, 𝛼 − ] > 0, 𝛽 − ] > 0, 2] > ℎ, 2(𝛼 − ]) > ℎ, and
2(𝛽 − ]) > ℎ.

Finally, comparison of the above expression with the one
given in (45) yields the desired result.

Theorem 30. If 𝑋 ∼ CH𝑚(], 𝛼, 𝛽, Ω, 𝜃, kind 1), then
det(Ω−1/2

𝑋Ω
−1/2

) is distributed as ∏𝑚
𝑖=1𝑧𝑖, where 𝑧1, . . . , 𝑧𝑚

are independent, 𝑧𝑖 ∼ CH(] − (𝑖 − 1)/2, 𝛼 − 𝑖 + 1, 𝛽 − 𝑖 + 1, 𝜃,
kind 1), 𝑖 = 1, . . . , 𝑚.

Proof. Writing multivariate gamma functions in terms of
ordinary gamma function, (42) is rewritten as

𝐸 [det (Ω−1/2
𝑋Ω

−1/2
)
ℎ
]

=

𝑚

∏

𝑖=1

[
𝜃
ℎ
Γ [𝛽 − ] − (𝑖 − 1) /2]

Γ [] − (𝑖 − 1) /2] Γ [𝛼 − ] − (𝑖 − 1) /2]

⋅
Γ [] − (𝑖 − 1) /2 + ℎ] Γ [𝛼 − ] − (𝑖 − 1) /2 − ℎ]

Γ [𝛽 − ] − (𝑖 − 1) /2 − ℎ]
] .

(77)

Now, comparing the above expression with (45), we get
𝐸[det(Ω−1/2

𝑋Ω
−1/2

)
ℎ
] = ∏

𝑚
𝑖=1𝐸(𝑧

ℎ
𝑖 ).

Corollary 31. If𝑋 ∼ CH2(], 𝛼, 𝛽, 𝜃, kind 1), then

2det (𝑋)1/2 ∼ CH (2] − 1, 2𝛼 − 2, 2𝛽 − 2, 𝜃, kind 1) . (78)

Proof. For 𝑚 = 2, det(𝑋) is distributed as 𝑧1𝑧2, where 𝑧1
and 𝑧2 are independent, 𝑧1 ∼ CH(], 𝛼, 𝛽, 𝜃, kind 1) and 𝑧2 ∼
CH(]−1/2, 𝛼−1, 𝛽−1, 𝜃, kind 1). FromTheorem 29, we have
2√𝑧1𝑧2 ∼ CH(2] − 1, 2𝛼 − 2, 2𝛽 − 2, 𝜃, kind 1).

Corollary 32. If 𝑋 ∼ Ga(𝑚, ], 𝜃, Ω), then det(Ω−1/2
𝑋Ω

−1/2
)

is distributed as∏𝑚
𝑖=1𝑧𝑖, where 𝑧1, . . . , 𝑧𝑚 are independent, 𝑧𝑖 ∼

Ga(] − (𝑖 − 1)/2, 𝜃), 𝑖 = 1, . . . , 𝑚.

6. Distribution of Eigenvalues

In this section, we derive density of eigenvalues of random
matrix distributed as confluent hypergeometric function
kind 1.

Theorem 33. Let 𝐴 be a positive definite random matrix of
order 𝑚 with the p.d.f. 𝑓(𝐴). Then, the joint p.d.f. of the
eigenvalues 𝑙1, 𝑙2, . . . , 𝑙𝑚 of 𝐴 is given by

𝜋
𝑚2/2

Γ𝑚 (𝑚/2)

𝑚

∏

𝑖<𝑗

(𝑙𝑖 − 𝑙𝑗) ∫
𝑂(𝑚)

𝑓 (𝐻𝐿𝐻

) (𝑑𝐻) , (79)

where 𝑙1 > 𝑙2 > ⋅ ⋅ ⋅ > 𝑙𝑚 > 0, 𝐿 = diag(𝑙1, 𝑙2, . . . , 𝑙𝑚), and (𝑑𝐻)
is the unit invariant Haar measure on the group of orthogonal
matrices 𝑂(𝑚).

Proof of Theorem 33 and several other results can be
found in Muirhead [7].
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Theorem 34. If𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, kind 1), then the joint
p.d.f. of the eigenvalues 𝑥1, 𝑥2, . . . , 𝑥𝑚 of𝑋 is given by

𝜋
𝑚2/2

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ]) det (𝜃Ω)−]

Γ𝑚 (𝑚/2) Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])
[

[

𝑚

∏

𝑖<𝑗

(𝑥𝑖 − 𝑥𝑗)
]

]

⋅

𝑚

∏

𝑖=1

[𝑥
]−(𝑚+1)/2
𝑖 ] 1𝐹

(𝑚)
1 (𝛼; 𝛽; −

1

𝜃
Ω
−1
, 𝐿) ,

(80)

where 0 < 𝑥𝑚 < ⋅ ⋅ ⋅ < 𝑥1 < ∞, 𝐿 = diag(𝑥1, . . . , 𝑥𝑚), and
1𝐹

(𝑚)
1 is the two-matrix argument confluent hypergeometric

function.

Proof. The p.d.f. of 𝑋 is given by (5). Applying Theorem 33,
we obtain the joint p.d.f. of the eigenvalues 𝑥1, . . . , 𝑥𝑚 of𝑋 as

𝜋
𝑚2/2

Γ𝑚 (𝛼) Γ𝑚 (𝛽 − ]) det (𝜃Ω)−]

Γ𝑚 (𝑚/2) Γ𝑚 (]) Γ𝑚 (𝛽) Γ𝑚 (𝛼 − ])
[

[

𝑚

∏

𝑖<𝑗

(𝑥𝑖 − 𝑥𝑗)
]

]

⋅

𝑚

∏

𝑖=1

[𝑥
]−(𝑚+1)/2
𝑖 ]

⋅ ∫
𝑂(𝑚)

1𝐹
(𝑚)
1 (𝛼; 𝛽; −

1

𝜃
Ω
−1
𝐻𝐿𝐻


) (d𝐻) .

(81)

Now, using (28), we obtain the desired result.

7. A Generalized Form

In this section, we give a more general form of the matrix
variate confluent hypergeometric function kind 1 distribution
by introducing an additional factor etr(−Ψ−1

𝑋/𝜃) in the p.d.f.
(5). The p.d.f. of𝑋, in this case, is given by

𝜃
−𝑚] det (Ψ−1

+ Ω
−1
)
]

Γ𝑚 (]) 2𝐹1 (], 𝛽 − 𝛼; 𝛽; (Ψ
−1 + Ω−1)

−1
Ω−1)

etr(−1
𝜃
)

⋅ det (𝑋)]−(𝑚+1)/2 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
𝑋) ,

(82)

where𝑋 > 0. We will write𝑋 ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, Ψ, kind 1)
if the density of𝑋 is given by (82). For Ψ = 𝐼𝑚 and 𝜃 = 1, the
above p.d.f. reduces to

det (𝐼𝑚 + Ω
−1
)
]

Γ𝑚 (]) 2𝐹1 (], 𝛽 − 𝛼; 𝛽; (𝐼𝑚 + Ω)
−1
)

etr (−𝑋)

⋅ det (𝑋)]−(𝑚+1)/2 1𝐹1 (𝛼; 𝛽; −Ω
−1
𝑋) , 𝑋 > 0,

(83)

which is a special case of the generalized hypergeometric
function density defined by Roux [14].

Theorem 35. Let 𝑍 | Σ ∼ InvGa(𝑚, 𝜇, 𝜃, Σ−1). Further,
let the prior distribution of Σ be a generalized matrix variate
confluent hypergeometric kind 1 distribution with parameters
], 𝛼, 𝛽, 𝜃, Ω, and Ψ, Σ ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, Ψ, kind 1). Then,

the marginal distribution of 𝑍 is a generalized inverted matrix
variate beta with the density
𝑚(𝑍)

=

Γ𝑚 (𝜇 + ]) det (Ψ−1
+ Ω

−1
)
]

Γ𝑚 (]) Γ𝑚 (𝜇) 2𝐹1 (], 𝛽 − 𝛼; 𝛽; (Ψ−1 + Ω−1)
−1
Ω−1)

⋅
det (𝑍)−𝜇−(𝑚+1)/2

det (Ψ−1 + Ω−1 + 𝑍−1)
𝜇+]

⋅ 2𝐹1 (𝜇 + ], 𝛽 − 𝛼; 𝛽; (Ψ−1
+ Ω

−1
+ 𝑍

−1
)
−1
Ω
−1
) ,

(84)

where 𝑍 > 0.

Proof. By definition, the marginal density of 𝑍, denoted by
𝑚(𝑍), is obtained as

𝑚(𝑍) = ∫
Σ>0

𝑓 (𝑍 | Σ) 𝜋 (Σ) dΣ. (85)

Now, substituting for 𝑓(𝑍 | Σ) and 𝜋(Σ), we get
𝑚(𝑍)

=

𝜃
−𝑚(]+𝜇) det (Ψ−1

+ Ω
−1
)
]

Γ𝑚 (]) Γ𝑚 (𝜇) 2𝐹1 (], 𝛽 − 𝛼; 𝛽; (Ψ−1 + Ω−1)
−1
Ω−1)

⋅ det (𝑍)−𝜇−(𝑚+1)/2 ∫
Σ>0

det (Σ)𝜇+]−(𝑚+1)/2

⋅ etr [−1
𝜃
(Ψ

−1
+ Ω

−1
+ 𝑍

−1
) Σ]

⋅ 1𝐹1 (𝛽 − 𝛼; 𝛽;
1

𝜃
Ω
−1
Σ) dΣ.

(86)

Finally, evaluating the above expression by using (21) and
simplifying, we get the desired result.

Theorem 36. Let 𝑍 | Σ ∼ InvGa(𝑚, 𝜇, Σ−1). Further, let the
prior distribution ofΣ be a generalizedmatrix variate confluent
hypergeometric function kind 1 distribution parameters ], 𝛼,
𝛽, 𝜃, Ω, and Ψ, Σ ∼ CH𝑚(], 𝛼, 𝛽, 𝜃, Ω, Ψ, kind 1). Then,
the posterior distribution of Σ is a generalized matrix variate
confluent hypergeometric kind 1 distribution with parameters
𝜇 + ], 𝛼, 𝛽, 𝜃, Ω, and (Ψ−1

+ 𝑍
−1
)
−1.

Proof. By definition andTheorem 35, we have

𝜋 (Σ | 𝑍) =
𝑓 (𝑍 | Σ) 𝜋 (Σ)

𝑚 (𝑍)
. (87)

Now, substituting appropriately, we get
𝜋 (Σ | 𝑍)

=

𝜃
−𝑚(]+𝜇) det (Ψ−1

+ Ω
−1
+ 𝑍

−1
)
]+𝜇

Γ𝑚 (] + 𝜇) 2𝐹1 (] + 𝜇, 𝛽 − 𝛼; 𝛽; (Ψ−1 + Ω−1 + 𝑍−1)
−1
Ω−1)

⋅ etr [−1
𝜃
(Ψ

−1
+ 𝑍

−1
) Σ] det (Σ)]+𝜇−(𝑚+1)/2

⋅ 1𝐹1 (𝛼; 𝛽; −
1

𝜃
Ω
−1
Σ) , Σ > 0,

(88)

which is the desired result.
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From the above results it is quite clear that the generalized
matrix variate confluent hypergeometric function kind 1
distribution as the prior distribution is conjugate. Thus, this
distribution may be used as an alternative to matrix variate
gamma distribution.
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The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is
vital in parametric statistical modeling and inference.Thus, this study develops a new class of distributions called the extended odd
Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet
Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and
the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The
maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of
the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from
the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.

1. Introduction

The fundamental reason for parametric statistical modeling
is to identify the most appropriate model that adequately
describes a data set obtained from experiment, observa-
tional studies, surveys, and so on. Most of these modeling
techniques are based on finding the most suitable proba-
bility distribution that explains the underlying structure of
the given data set. However, there is no single probability
distribution that is suitable for different data sets. Thus,
this has triggered the need to extend the existing classical
distributions or develop new ones. Barrage of methods for
defining new families of distributions have been proposed in
literature for extending or generalizing the existing classical
distributions in recent time. Some of these methods include
Weibull-G [1], odd generalized exponential family [2], odd
Lindley-G family [3], Topp-Leone odd log-logistic-G family
[4], odd Burr-G family [5], odd Fréchet-G family [6], odd
gamma-G family [7], transformed-transformer method [8],
exponentiated transformed-transformer method [9], expo-
nentiated generalized transformed-transformer method [10],
alpha power transformed family [11], alpha logarithmic trans-
formed family [12], Kumaraswamy-G family [13], beta-G
family [14], Kumaraswamy transmuted-G family [15], trans-
muted geometric-G family [16], and beta extended Weibull
family [17].Thesemethods are developedwith themotivation

of defining new models with different kinds of failure
rates (monotonic and nonmonotonic), constructing heavy-
tailed distributions for modeling different kinds of data
sets, developing distributions with symmetric, right skewed,
left skewed, reversed J shape, and consistently providing a
reasonable parametric fit to given data sets.

Recently, [6] developed the odd Fréchet family of dis-
tributions and defined its cumulative distribution function
(CDF) as

𝐻(𝑥) = 𝑒−[(1−𝐺(𝑥;𝜓))/𝐺(𝑥;𝜓)]𝜃 , 𝑥 ∈ R, (1)

where 𝐺(𝑥;𝜓) is the baseline CDF and 𝜓 is a 𝑝 × 1 vector
of associated parameters. Using the transformed-transformer
method proposed by [8], an extension of the odd Fréchet
family of distributions called the extended odd Fréchet-G
(EOF-G) family of distributions is developed by integrating
the Fréchet probability density function (PDF). Hence, the
CDF of the EOF-G family is defined as

𝐹 (𝑥) = ∫𝐺(𝑥;𝜓)𝛼/(1−𝐺(𝑥;𝜓)𝛼)
0

𝜃𝑥−𝜃−1𝑒−𝑥−𝜃𝑑𝑥
= 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃 , 𝛼 > 0, 𝜃 > 0, 𝑥 ∈ R,

(2)

where𝛼 and 𝜃 are extra shape parameters.The corresponding
PDF of the new family is obtained by differentiating equation
(2) and is given by
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𝑓 (𝑥)
= 𝛼𝜃g (𝑥;𝜓) (1 − 𝐺 (𝑥;𝜓)𝛼)

𝜃−1

𝐺(𝑥;𝜓)𝛼𝜃+1 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃 ,
𝛼 > 0, 𝜃 > 0, 𝑥 ∈ R.

(3)

The associated hazard rate function of the EOF-G family is
defined as

ℎ (𝑥) = 𝛼𝜃g (𝑥;𝜓) (1 − 𝐺 (𝑥;𝜓)𝛼)𝜃−1
𝐺(𝑥;𝜓)𝛼𝜃+1 (1 − 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃)
⋅ 𝑒−[(1−𝐺(𝑥;𝜓)𝛼)/𝐺(𝑥;𝜓)𝛼]𝜃 ,

𝛼 > 0, 𝜃 > 0, 𝑥 ∈ R.
(4)

Hereafter, a randomvariable𝑋 following the EOF-Gdistribu-
tion is denoted by𝑋 ∼ EOF−G(𝑥; 𝛼, 𝜃,𝜓) and for the purpose
of simplicity, 𝐺(𝑥;𝜓) can be written as 𝐺(𝑥). The CDF of the
EOF-G family of distributions is tractablewhichmakes it easy
to generate random numbers provided that the CDF of the
baseline distribution is also tractable. The 𝑢𝑡ℎ quantile of the
EOF-G family is given by

𝑥𝑢 = 𝐺−1[[
( 1
1 + (− log (𝑢))1/𝜃)

1/𝛼]
]
, 𝑢 ∈ [0, 1] , (5)

where 𝐺−1(𝑢) is the baseline quantile function. When 𝛼 =1, the EOF-G family of distributions reduces to the odd
Fréchet family of distributions. Adopting the interpretation
of the CDF of the odd Weibull family as given in [18], the
physical interpretation of the CDF of the EOF-G family is
given as follows: Suppose𝑌 is a lifetime random variable with
continuous CDF, 𝐺(𝑥;𝜓)𝛼. The odds ratio that an individual
(component) having the lifetime 𝑌 will die (fail) at time 𝑥
is 𝐺(𝑥;𝜓)𝛼/1 − 𝐺(𝑥;𝜓)𝛼. Given that the variability of these
odds of death is denoted by the random variable 𝑋 and that
it follows the Fréchet distribution, then

P (𝑌 ≤ 𝑥) = P(𝑋 ≤ 𝐺 (𝑥;𝜓)𝛼
1 − 𝐺 (𝑥;𝜓)𝛼) = 𝐹 (𝑥) , (6)

which is given in (2).The rest of the paper is organized as fol-
lows: In Section 2, special distributions of the EOF-G family
are discussed. In Section 3, the mixture representation of the
PDF and CDF of the EOF-G family is given. The statistical
properties of the new family are derived in Section 4. In
Section 5, the estimators for the parameters of the family are
developed using the technique of maximum likelihood esti-
mation. Monte Carlo simulations are performed in Section 6
to assess the performance of the estimators. In Section 7, the
application of the special distributions is demonstrated using
real data set. Finally, the concluding remarks of the study are
given in Section 8.

2. Special Distributions of the EOF-G Family

In this section, two special distributions of the EOF-G family
are discussed.

2.1. EOF-Nadarajah-Haghighi (EOFNH) Distribution. Sup-
pose the baseline CDF is that of the Nadarajah-Haghighi
distribution; that is, 𝐺(𝑥; 𝛽, 𝜆) = 1 − 𝑒(1−(1+𝜆𝑥)𝛽) with corre-
sponding PDF g(𝑥; 𝛽, 𝜆) = 𝛽𝜆(1 + 𝜆𝑥)𝛽−1𝑒(1−(1+𝜆𝑥)𝛽) and
positive parameters 𝛽, 𝜆 > 0. The PDF of the EOFNH
distribution is given by

𝑓 (𝑥)
= 𝛼𝛽𝜆𝜃 (1 + 𝜆𝑥)

𝛽−1 𝑒(1−(1+𝜆𝑥)𝛽) [1 − (1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼]𝜃−1
(1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼𝜃+1

⋅ 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−𝛼−1]𝜃 ,
(7)

where 𝛼, 𝛽, 𝜃 > 0 are shape parameters, 𝜆 > 0 is a scale
parameter, and 𝑥 > 0. Figure 1 shows the plots of the PDF of
the EOFNH distribution for some selected parameter values.
The density function exhibits different kinds of shapes.

The corresponding hazard rate function is given by

ℎ (𝑥)
= 𝛼𝛽𝜆𝜃 (1 + 𝜆𝑥)

𝛽−1 𝑒(1−(1+𝜆𝑥)𝛽) [1 − (1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼]𝜃−1
(1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝛼𝜃+1 (1 − 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−𝛼−1]𝜃)

⋅ 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−𝛼−1]𝜃 , 𝑥 > 0.
(8)

The plots of the hazard rate function of the EOFNH distribu-
tion for some selected parameter values are shown inFigure 2.
The hazard rate function can assume decreasing, bathtub,
upside down bathtub, and other nonmonotonic failure rate
forms.

The quantile function of the EOFNHdistribution is given by

𝑥𝑢 = [1 − log (1 − (1 + (− log (𝑢))1/𝜃)−1/𝛼)]1/𝛽 − 1
𝜆 ,

𝑢 ∈ [0, 1] .
(9)

Equation (9) can be used to generate random numbers from
the EOFNH distribution. The first quartile, median, and
upper quartile of the distribution are obtained by substituting𝑢 = 0.25, 0.5, and 0.75, respectively, into (9).
2.2. EOF-Weibull (EOFW) Distribution. Consider the
Weibull distribution with shape parameter 𝛽 > 0 and scale
parameter 𝜆 > 0, where the CDF and PDF for 𝑥 > 0 are
given by 𝐺(𝑥; 𝛽, 𝜆) = 1 − 𝑒−𝜆𝑥𝛽 and g(𝑥; 𝛽, 𝜆) = 𝛽𝜆𝑥𝛽−1𝑒−𝜆𝑥𝛽 .
Substituting the PDF and CDF of the Weibull distribution in
(3), the PDF of the EOFW distribution is defined as

𝑓 (𝑥) = 𝛼𝛽𝜆𝜃𝑥
𝛽−1𝑒−𝜆𝑥𝛽 [1 − (1 − 𝑒−𝜆𝑥𝛽)𝛼]𝜃−1

(1 − 𝑒−𝜆𝑥𝛽)𝛼𝜃+1
⋅ 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−𝛼−1]𝜃 ,

(10)

where𝛼,𝛽, 𝜃 > 0 are shape parameters, 𝜆 > 0 is scale parameter,
and 𝑥 > 0. Figure 3 displays some of the possible shapes of
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Figure 1: Plots of the EOFNH distribution density function.

the density function of the EOFW distribution. The density
exhibits unimodal and reversed J-shape among others.

The hazard rate function of the EOFW distribution is
given by

ℎ (𝑥) = 𝛼𝛽𝜆𝜃𝑥
𝛽−1𝑒−𝜆𝑥𝛽 [1 − (1 − 𝑒−𝜆𝑥𝛽)𝛼]𝜃−1

(1 − 𝑒−𝜆𝑥𝛽)𝛼𝜃+1 (1 − 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−𝛼−1]𝜃)
⋅ 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−𝛼−1]𝜃 , 𝑥 > 0.

(11)

The hazard rate function can assume decreasing, bathtub,
and upside down bathtub forms for some selected parameter
values as shown in Figure 4.

The quantile function of the EOFW distribution is
defined as

𝑥𝑢 =
{{{{{{{
− log [1 − (1 + (− log (𝑢))1/𝜃)−1/𝛼]

𝜆
}}}}}}}

1/𝛽

,
𝑢 ∈ [0, 1] .

(12)

The generation of random numbers from the EOFW distri-
bution can easily be done using (12).

3. Mixture Representation

In this section, the mixture representation of the PDF and
CDF of the EOF-G family of distributions is discussed.
The mixture representation is useful when deriving the
statistical properties of this new family of distributions.
Using the Taylor series expansion, the PDF can be written
as

𝑓 (𝑥) = 𝛼𝜃∞∑
𝑖=0

(−1)𝑖 g (𝑥;𝜓) [1 − 𝐺 (𝑥;𝜓)𝛼]𝜃(𝑖+1)−1
𝑖!𝐺 (𝑥;𝜓)𝛼𝜃(𝑖+1)+1 . (13)

Equation (13) can be written as
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Figure 2: Plots of the EOFNH distribution hazard rate function.

𝑓 (𝑥) = 𝛼𝜃∞∑
𝑖=0

(−1)𝑖 g (𝑥;𝜓) [1 − 𝐺 (𝑥;𝜓)𝛼]𝜃(𝑖+1)−1 [1 − (1 − 𝐺 (𝑥;𝜓))]−[𝛼𝜃(𝑖+1)+1]
𝑖! . (14)

Applying the generalized binomial series expansion yields

𝑓 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

(−1)𝑖𝑖! (𝛼𝜃 (𝑖 + 1) + 𝑗𝑗 ) g (𝑥;𝜓)
⋅ [1 − 𝐺 (𝑥;𝜓)]𝑗 [1 − 𝐺 (𝑥;𝜓)𝛼]𝜃(𝑖+1)−1 .

(15)

Now using the binomial series expansion, (1 − 𝑧)𝜂−1 =∑∞𝑗=0(−1)𝑗 ( 𝜂−1𝑗 ) 𝑧𝑗, |𝑧| < 1, thrice yields

𝑓 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞g (𝑥;𝜓) 𝐺 (𝑥;𝜓)𝑞 , (16)

where

𝜔𝑖𝑗𝑘𝑚𝑞 = (−1)𝑖+𝑘+𝑚+𝑞𝑖!
⋅ (𝛼𝜃 (𝑖 + 1) + 𝑗𝑗 )(𝜃 (𝑖 + 1) − 1𝑘 )(𝛼𝑘𝑚)(

𝑚 + 𝑗
𝑞 ) .

(17)

Alternatively (16) can be written in terms of the
exponentiated-G (exp-G) density function as

𝑓 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔∗𝑖𝑗𝑘𝑚𝑞𝜋𝑞+1 (𝑥) , (18)

where 𝜔∗𝑖𝑗𝑘𝑚𝑞 = 𝜔𝑖𝑗𝑘𝑚𝑞/(𝑞 + 1) and 𝜋𝑞+1(𝑥) = (𝑞 +1)g(𝑥;𝜓)𝐺(𝑥;𝜓)𝑞 is the exp-G density function with power
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Figure 3: Plots of the EOFW distribution density function.

parameter 𝑞 + 1. By integrating (18), the mixture representa-
tion of the CDF is given by

𝐹 (𝑥) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔∗𝑖𝑗𝑘𝑚𝑞Π𝑞+1 (𝑥) , (19)

where Π𝑞+1(𝑥) = 𝐺(𝑥;𝜓)𝑞+1 is the CDF of the exp-G family
with power parameter 𝑞 + 1.
4. Statistical Properties

In this section, the moments, incomplete moments, gener-
ating function, entropies, and order statistics of the EOF-G
family are derived.

4.1. Moments. The 𝑟𝑡ℎ noncentral moment of a random
variable 𝑋 is given by 𝐸(𝑋𝑟) = ∫∞

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥. Hence, using

this definition the 𝑟𝑡ℎ noncentral moment of the EOF-G
random variable is given by

𝐸 (𝑋𝑟) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞𝜏𝑟,𝑞, (20)

where 𝜏𝑟,𝑞 = ∫∞
−∞

𝑥𝑟g(𝑥;𝜓)𝐺(𝑥;𝜓)𝑞𝑑𝑥 is the probability
weighted moment of the baseline distribution. The 𝑟𝑡ℎ non-
central moment can also be expressed in terms of the quantile
of the baseline distribution. Letting 𝐺(𝑥; (𝜓)) = 𝑢, the 𝑟𝑡ℎ
noncentral moment in terms of the quantile is given by

𝐸 (𝑋𝑟) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫1
0
𝑄𝐺 (𝑢)𝑟 𝑢𝑞𝑑𝑢, (21)

where𝑄𝐺(𝑢) is the quantile function of the baseline distribu-
tion.

4.2. Incomplete Moments. The 𝑟𝑡ℎ incomplete moment of a
random variable 𝑋 is defined as 𝑚𝑟(𝑦) = ∫𝑦

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥.

Thus, the 𝑟𝑡ℎ incomplete moment of the EOF-G random
variable is given by

𝑚𝑟 (𝑦)
= 𝛼𝜃 ∞∑

𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫𝑦
0
𝑥𝑟g (𝑥;𝜓) 𝐺 (𝑥;𝜓)𝑞 𝑑𝑥 (22)
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Figure 4: Plots of the EOFW distribution hazard rate function.

In terms of the quantile function of the baseline distribution,
the 𝑟𝑡ℎ incomplete moment is given by

𝑚𝑟 (𝑦) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫𝐺(𝑦)
0

𝑄𝐺 (𝑢)𝑟 𝑢𝑞𝑑𝑢. (23)

Utilize the power series expansion of the quantile of the
baseline; that is,

𝑄𝐺 (𝑢) = ∞∑
ℎ=0

𝑒ℎ𝑢ℎ, (24)

where 𝑒ℎ(ℎ = 0, 1, . . .) are suitably chosen real numbers
that depend on the parameters of the 𝐺(𝑥;𝜓) distribution.
Furthermore, for positive integer 𝑟 (𝑟 ≥ 1),

𝑄𝐺 (𝑢)𝑟 = (∞∑
ℎ=0

𝑒ℎ𝑢ℎ)
𝑟 = ∞∑

ℎ=0

𝑒𝑟,ℎ𝑢ℎ, (25)

where 𝑒𝑟,ℎ = (ℎ𝑒0)−1∑ℎ𝑧=1[𝑧(𝑟+1)−ℎ]𝑒𝑧𝑒𝑟,ℎ−𝑧 and 𝑒𝑟,0 = (𝑒0)ℎ.
For more details on quantile power series expansion, see [19].
Hence,

𝑚𝑟 (𝑦) = 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫𝐺(𝑦)
0

∞∑
ℎ=0

𝑒𝑟,ℎ𝑢ℎ+𝑞𝑑𝑢

= 𝛼𝜃 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞𝑒𝑟,ℎ𝐺(𝑦)
ℎ+𝑞+1

ℎ + 𝑞 + 1 .
(26)

The incomplete moments are used in the computation of
other useful statistical measures such as the mean deviations
about the mean (𝛿1 = 𝐸(|𝑋 − 𝜇1|)) and about the median(𝛿2 = 𝐸(|𝑋 −𝑀|)). The mean deviation about the mean and
about the median can further be expressed as

𝛿1 = 2𝜇1𝐹 (𝜇1) − 2𝑚1 (𝜇1) ,
𝛿2 = 𝜇1 − 2𝑚1 (𝑀) , (27)

where 𝜇1 = 𝜇 is the mean obtained by putting 𝑟 = 1 into (20),𝑀 is themedian obtained by substituting 𝑢 = 0.5 into (5), and𝑚1(𝑦) = ∫𝑦−∞ 𝑥𝑓(𝑥)𝑑𝑥 is the first incomplete moment which
can be obtained from (23) by substituting 𝑟 = 1.
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4.3. Generating Function. In this subsection, two formulae
for the computation of the moment generating function𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) are given. Using the Taylor series expansion,𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∑∞

𝑟=0(𝑡𝑟/𝑟!)𝐸(𝑋𝑟). Thus, the moment
generating function is given by

𝑀𝑋 (𝑡) = ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

∞∑
𝑟=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞𝜏𝑟,𝑞. (28)

Alternatively, the moment generating function can be
expressed in terms of the quantile function of the baseline
distribution as

𝑀𝑋 (𝑡) = ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜔𝑖𝑗𝑘𝑚𝑞 ∫1
0
𝑒𝑡𝑄𝐺(𝑢)𝑢𝑞𝑑𝑢. (29)

4.4. EntropyMeasures. Entropies aremeasures of uncertainty
or variation of a random variable. In this subsection, the
Rényi, Shannon, and 𝛿 entropies are studied. The Rényi
entropy [20] of a random variable𝑋with PDF𝑓(𝑥) is defined
as

𝐼𝑅 (𝛿) = 11 − 𝛿 log [∫∞
−∞

𝑓 (𝑥)𝛿 𝑑𝑥] , 𝛿 > 0, 𝛿 ̸= 1. (30)

Using similar concepts for expanding the PDF,

𝑓 (𝑥)𝛿 = (𝛼𝜃)𝛿 ∞∑
𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜛𝑖𝑗𝑘𝑚𝑞g (𝑥;𝜓)𝛿 𝐺 (𝑥;𝜓)𝑞 , (31)

where

𝜛𝑖𝑗𝑘𝑚𝑞 = (−1)𝑖+𝑘+𝑚+𝑞 𝛿𝑖𝑖!
⋅ (𝛼𝜃 (𝑖 + 𝛿) + 𝛿 + 𝑗 − 1𝑗 )(𝜃 (𝑖 + 𝛿) − 𝛿𝑘 )(𝛼𝑘𝑚)(

𝑚 + 𝑗
𝑞 ) .

(32)

Hence,

𝐼𝑅 (𝛿) = 11 − 𝛿 log[
[
(𝛼𝜃)𝛿 ∞∑

𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜛𝑖𝑗𝑘𝑚𝑞

⋅ ∫∞
−∞

g (𝑥;𝜓)𝛿 𝐺 (𝑥;𝜓)𝑞 𝑑𝑥]
]
, 𝛿 > 0, 𝛿 ̸= 1.

(33)

The Shannon entropy [21] of a random variable 𝑋, say 𝜂𝑋 =𝐸(− log𝑓(𝑋)). The Shannon entropy is a special case of the
Rényi entropy when 𝛿 ↑ 1. The 𝛿−entropy is given by

𝐻(𝛿) = 1𝛿 − 1 log [1 − ∫
∞

−∞
𝑓 (𝑥)𝛿 𝑑𝑥] ,

𝛿 > 0, 𝛿 ̸= 1.
(34)

Thus, the 𝛿−entropy is

𝐻(𝛿) = 1𝛿 − 1 [[
1 − (𝛼𝜃)𝛿 ∞∑

𝑖,𝑗=0

∞∑
𝑘,𝑚=0

𝑚+𝑗∑
𝑞=0

𝜛𝑖𝑗𝑘𝑚𝑞

⋅ ∫∞
−∞

g (𝑥;𝜓)𝛿 𝐺(𝑥;𝜓)𝑞 𝑑𝑥]
]
, 𝛿 > 0, 𝛿 ̸= 1.

(35)

4.5. Order Statistics. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 represent a random
sample from EOF-G family and 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑋𝑛:𝑛

be the order statistics. Then the PDF, 𝑓𝑝:𝑛(𝑥), of the 𝑝𝑡ℎ order
statistic 𝑋𝑝:𝑛 is

𝑓𝑝:𝑛 (𝑥) = 𝑛!(𝑝 − 1)! (𝑛 − 𝑝)!
𝑛−𝑝∑
𝑖=0

(−1)𝑖 𝐹 (𝑥)𝑝+𝑖−1 𝑓 (𝑥) . (36)

Substituting the PDF and the CDF of the EOF-G random
variable into the last equation yields

𝑓𝑝:𝑛 (𝑥) = 𝑛!𝛼𝜃(𝑝 − 1)! (𝑛 − 𝑝)!
⋅ ∞∑
𝑗,𝑘=0

∞∑
𝑞,𝑠=0

𝑘+𝑠∑
𝑤=0

𝑛−𝑝∑
𝑖=0

𝜑𝑖𝑗𝑘𝑞𝑠𝑤g (𝑥;𝜓) 𝐺 (𝑥;𝜓)𝑤 ,
(37)

after some algebraic manipulation, where

𝜑𝑖𝑗𝑘𝑞𝑠𝑤 = (−1)𝑖+𝑗+𝑞+𝑠+𝑤 (𝑝 + 𝑖)
𝑗

𝑗!
⋅ (𝑛 − 𝑝𝑖 )(𝛼𝜃 (𝑗 + 1) + 𝑘𝑘 )(𝜃 (𝑗 + 1) − 1𝑞 )(𝛼𝑞𝑠 )(

𝑘 + 𝑠
𝑤 ) .

(38)

The PDF of the 𝑝𝑡ℎ order statistic can be expressed in terms
of the exp-G density function as

𝑓𝑛:𝑝 (𝑥)
= 𝑛!𝛼𝜃(𝑝 − 1)! (𝑛 − 𝑝)!

∞∑
𝑗,𝑘=0

∞∑
𝑞,𝑠=0

𝑘+𝑠∑
𝑤=0

𝑛−𝑝∑
𝑖=0

𝜑∗𝑖𝑗𝑘𝑞𝑠𝑤Δ𝑤+1 (𝑥) , (39)

where 𝜑∗𝑖𝑗𝑘𝑞𝑠𝑤 = 𝜑𝑖𝑗𝑘𝑞𝑠𝑤/(𝑤 + 1) and Δ𝑤+1(𝑥) = (𝑤 +1)g(𝑥;𝜓)𝐺(𝑥;𝜓)𝑤 is the exp-G density function with power
parameter 𝑤 + 1.
5. Parameter Estimation

In this section, the maximum likelihood technique is
employed to develop estimators for estimating the parameters
of the EOF-G family of distributions. Suppose 𝑥1, 𝑥2, . . . , 𝑥𝑛
are possible outcomes of a random sample obtained from
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𝑋 ∼ EOF − G(𝑥; 𝛼, 𝜃,𝜓) and 𝜗 = (𝛼, 𝜃,𝜓)𝑇 is a parameter
vector; then the total log-likelihood function is given by

ℓ = 𝑛 log (𝛼𝜃) + 𝑛∑
𝑖=1

log g (𝑥𝑖;𝜓)

+ (𝜃 − 1) 𝑛∑
𝑖=1

log [1 − 𝐺 (𝑥𝑖;𝜓)𝛼]

− (𝛼𝜃 + 1) 𝑛∑
𝑖=1

log𝐺(𝑥𝑖;𝜓)

− 𝑛∑
𝑖=1

[1 − 𝐺 (𝑥𝑖;𝜓)𝛼𝐺 (𝑥𝑖;𝜓)𝛼 ]𝜃 .

(40)

By finding the partial derivatives of (40), the components of
the score vector 𝑈(𝜗) = (𝜕ℓ/𝜕𝛼, 𝜕ℓ/𝜕𝜃, 𝜕ℓ/𝜕𝜓)𝑇 are
𝜕ℓ𝜕𝛼 = 𝑛𝛼 + (𝜃 − 1)

𝑛∑
𝑖=1

𝐺 (𝑥𝑖;𝜓)𝛼 log𝐺 (𝑥𝑖;𝜓)1 − 𝐺 (𝑥𝑖;𝜓)
− 𝜃 𝑛∑

𝑖=1

log𝐺 (𝑥𝑖;𝜓)

+ 𝜃 𝑛∑
𝑖=1

[1 − 𝐺 (𝑥𝑖;𝜓)𝛼]𝜃−1 log𝐺 (𝑥𝑖;𝜓)
𝐺 (𝑥𝑖;𝜓)𝛼𝜃 ,

(41)

𝜕ℓ𝜕𝜃 = 𝑛𝜃 +
𝑛∑
𝑖=1

log [1 − 𝐺 (𝑥𝑖;𝜓)𝛼] − 𝛼 𝑛∑
𝑖=1

log𝐺(𝑥𝑖;𝜓)

− 𝑛∑
𝑖=1

[1 − 𝐺 (𝑥𝑖;𝜓)𝛼𝐺(𝑥𝑖;𝜓)𝛼 ]𝜃 log[1 − 𝐺 (𝑥𝑖;𝜓)𝛼𝐺 (𝑥𝑖;𝜓)𝛼 ] ,
(42)

𝜕ℓ𝜕𝜓 =
𝑛∑
𝑖=1

g (𝑥𝑖;𝜓)
g (𝑥𝑖;𝜓)

+ 𝛼 (𝜃 − 1) 𝑛∑
𝑖=1

𝐺 (𝑥𝑖;𝜓) 𝐺 (𝑥𝑖;𝜓)𝛼−11 − 𝐺 (𝑥𝑖;𝜓)
− (𝛼𝜃 + 1) 𝑛∑

𝑖=1

𝐺 (𝑥𝑖;𝜓)𝐺 (𝑥𝑖;𝜓)

+ 𝛼𝜃 𝑛∑
𝑖=1

𝐺 (𝑥𝑖;𝜓) [1 − 𝐺 (𝑥𝑖;𝜓)𝛼]𝜃−1
𝐺 (𝑥𝑖;𝜓)𝛼𝜃+1 ,

(43)

where g(𝑥𝑖;𝜓) = 𝜕g(𝑥𝑖;𝜓)/𝜕𝜓 and𝐺(𝑥𝑖;𝜓) = 𝜕𝐺(𝑥𝑖;𝜓)/𝜕𝜓.
In order to obtain the estimators for the parameters, we set
(41), (42), and (43) to zero and solve the system numerically
using methods such as the quasi-Newton algorithms since
the equations do not have closed form. To obtain interval
estimates of the parameters, a 𝑝 × 𝑝 observed information

matrix can be estimated as 𝐽(𝜗) = 𝜕2ℓ/𝜕𝑞𝜕𝑟 (for 𝑞, 𝑟 =𝛼, 𝜃,𝜓), whose elements are evaluated numerically. To com-
pute the approximate confidence intervals of the parameters,
the multivariate normal distribution 𝑁𝑝(0, 𝐽(�̂�)−1). Here,𝐽(�̂�) is the observed information evaluated at �̂�. To investigate
whether the EOF-G distributions are superior to the odd
Fréchet family of distributions for given data sets, the like-
lihood ratio (LR) test can be performed using the following
hypotheses: 𝐻0 : 𝛼 = 1 versus 𝐻𝑎 : 𝐻0 is false. The
LR test statistic is given by 𝐿𝑅 = 2{ℓ(�̂�) − ℓ(𝜗)}, where
�̂� is the vector of unrestricted estimates under 𝐻𝑎 and 𝜗 is
the vector of restricted maximum likelihood estimates under𝐻0. The LR test statistic is asymptotically distributed as Chi-
square random variable with degrees of freedom equal to the
difference between the numbers of parameters of the two
models. As a decision rule, the null hypothesis is rejected
when the LR test statistic exceeds the upper 100(1 − 𝜂)%
quantile of the Chi-square distribution.

6. Simulation Study

In this section, Monte Carlo simulations are performed
to assess the accuracy and consistency of the maximum
likelihood estimators. For the purpose of illustration, the sim-
ulations are performed using the estimators of the parameters
of the EOFNHdistribution.Thequantile function given in (9)
is used to generate random observations from the EOFNH
distribution. The simulations are repeated 𝑁 = 1, 000 times
each with sample size 𝑛 = 25, 75, 150, 300, 600, 800 and
parameter values I : 𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5, 𝜃 = 0.5,
II : 𝛼 = 3.3, 𝛽 = 0.8, 𝜆 = 0.2, 𝜃 = 0.8, and III :𝛼 = 0.9, 𝛽 = 0.4, 𝜆 = 0.2, 𝜃 = 0.6. Table 1 presents the
average bias (AB), the root mean square error (RMSE), and
coverage probability (CP) of the 95% confidence intervals for
the estimators of the parameters. The results indicated that
the ABs and RMSEs decrease as the sample size increases.
These results clearly show the accuracy and the consistency of
the maximum likelihood estimators. Also, the CPs are quite
close to the nominal value. Thus, the maximum likelihood
technique works very well to estimate the parameters of the
EOFNH distribution.

7. Application

In this section, the application of the EOFNH and EOFW
distributions is illustrated using a real data set. The data
consists of the Fatigue time of 101 6061-T6 aluminumcoupons
cut parallel to the direction of rolling and oscillated at 18
cycles per second. The data set given in Table 2 can be
found in Birnbaum and Saunders [22]. The performance of
the EOFNH and EOFW distributions is compared with that
of the odd Fréchet Nadarajah-Haghighi (OFNH) and odd
FréchetWeibull (OFW) distributions using the Akaike infor-
mation criterion (AIC) [23, 24] and Bayesian information
criterion (BIC) [25]. The maximum likelihood estimates of
the parameters of the fitted distributions are computed by
maximizing the log-likelihood function via the subroutine
mle2 uisng the bbmle package in the R software [26].
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Table 2: Fatigue time of 101 6061-T6 aluminum coupons.

70 90 96 97 99 100 103 104 104 105 107 108 108 108 109
109 112 112 113 114 114 114 116 119 120 120 120 121 121 123
124 124 124 124 124 128 128 129 129 130 130 130 131 131 131
131 131 132 132 132 133 134 134 134 134 134 136 136 137 138
138 138 139 139 141 141 142 142 142 142 142 142 144 144 145
146 148 148 149 151 151 152 155 156 157 157 157 157 158 159
162 163 163 164 166 166 168 170 174 196 212

Table 3: Maximum likelihood estimates and goodness-of-fit statistics.

Model Parameter estimates −ℓ AIC BIC

EOFNH

�̂� = 1.5838 (0.2023)
𝛽 = 1.1413 (0.4131) -470.3600 948.7255 959.1860
�̂� = 0.0071 (0.0041)
𝜃 = 2.7505 (0.1088)

OFNH
�̂� = 0.4650 (0.4204)
�̂� = 0.0174 (0.0263) -473.6000 953.1958 961.0412
𝜃 = 4.7456 (1.8584)

EOFW

�̂� = 2.2281 (1.0985)
𝛽 = 1.0205 (0.3152) -471.2600 950.5259 960.9864
�̂� = 0.0099 (0.0166)
𝜃 = 2.3066 (0.6716)

OFW
𝛽 = 0.2785 (0.0181)
�̂� = 0.1823 (0.0156) -473.8200 953.6325 961.4778
𝜃 = 13.2247 (0.0007)

The PDFs of the OFNH and OFW distributions are,
respectively, given by

𝑓 (𝑥)

= 𝛽𝜆𝜃 (1 + 𝜆𝑥)
𝛽−1 𝑒(1−(1+𝜆𝑥)𝛽) [1 − (1 − 𝑒1−(1+𝜆𝑥)𝛽)]𝜃−1
(1 − 𝑒(1−(1+𝜆𝑥)𝛽))𝜃+1

⋅ 𝑒−[(1−𝑒(1−(1+𝜆𝑥)𝛽))−1−1]𝜃 , 𝑥 > 0,

(44)

and

𝑓 (𝑥) = 𝛽𝜆𝜃𝑥
𝛽−1𝑒−𝜆𝑥𝛽 [1 − (1 − 𝑒−𝜆𝑥𝛽)]𝜃−1

(1 − 𝑒−𝜆𝑥)𝜃+1
⋅ 𝑒−[(1−𝑒−𝜆𝑥𝛽 )−1−1]𝜃 , 𝑥 > 0.

(45)

Table 3 displays the maximum likelihood estimates of the
parameters of the EOFNH, EOFW, OFNH, and OFW distri-
butions with their corresponding standard errors in bracket
and the model selection criteria. The results revealed that
the EOFNH distribution provided the best fit for the data
since it has the least values of AIC and the BIC. The EOFW
distribution also performed better than the OFNH and
OFW distributions. The OFNH distribution is a submodel

of the EOFNH distribution with 𝛼 = 1. Hence, testing𝐻0 : 𝛼 = 1 versus 𝐻𝑎 : 𝛼 ̸= 1 using the LR test
gave a test statistic of 6.4703 with corresponding 𝑝−value
of 0.01097. This implies that there is enough evidence to
reject 𝐻0 at the 5% significance level and conclude that the
EOFNH distribution provides better fit to the data than the
OFNH distribution. Similarly, the LR test was performed to
compare the performances of the EOFW distribution and
the OFW distribution. The analysis gave a test statistic of
5.1065 with a corresponding 𝑝−value of 0.0238. This implies
that the EOFW distribution performs better than the OFW
distribution at the 5% significance level.

Figure 5 displays the histogram of the data with the fitted
densities and the empirical CDF with the fitted CDFs.

The P-P plots of the fitted distributions are displayed in
Figure 6.

8. Conclusion

The development of new statistical distribution plays a
critical role in parametric statistical inference. Because of
this, researchers in the field of distribution theory attempt
to develop generators for generalizing the existing distri-
butions. In line with this, the study developed and studied
a new class of distributions called the EOF-G family. The
statistical properties including the moments, incomplete
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Figure 6: P-P plots of fitted distributions.
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moments, generating function, entropies, and order statistics
are derived. The maximum likelihood method is used to
develop estimators for the parameters of the new family. The
application of the special distributions developed using the
EOF-G family is demonstrated using a real data set and the
result compared with other existing distributions. From the
application, it is evident that the special models developed
from the EOF-G family can provide reasonable parametric
fit to a given data set. Hence, it is hoped that the new class of
distributions will attract wider applications in different fields
of study.
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This paper proposes the use of the statistics of similarity values to evaluate the clusterability or structuredness associated with a
cell formation (CF) problem. Typically, the structuredness of a CF solution cannot be known until the CF problem is solved. In
this context, this paper investigates the similarity statistics of machine pairs to estimate the potential structuredness of a given
CF problem without solving it. One key observation is that a well-structured CF solution matrix has a relatively high percentage of
high-similarity machine pairs.Then, histograms are used as a statistical tool to study the statistical distributions of similarity values.
This study leads to the development of the U-shape criteria and the criterion based on the Kolmogorov-Smirnov test. Accordingly, a
procedure is developed to classify whether an input CF problem can potentially lead to awell-structuredor ill-structuredCFmatrix.
In the numerical study, 20 matrices were initially used to determine the threshold values of the criteria, and 40 additional matrices
were used to verify the results. Further, these matrix examples show that genetic algorithm cannot effectively improve the well-
structured CF solutions (of high grouping efficacy values) that are obtained by hierarchical clustering (as one type of heuristics).
This result supports the relevance of similarity statistics to preexamine an input CF problem instance and suggest a proper solution
approach for problem solving.

1. Introduction

Theresearch of this paper is like a crossroad ofmanufacturing
systems and computer science. Based on our disciplinary
background, we initially study the cell formation (CF) prob-
lem that seeks for the clustering of similar machines and
parts to support mass customization in [1]. In other words,
a CF problem is a two-mode clustering problem [2]. Due to
the NP-hard nature of the CF problem [3], many algorithms,
including exact, metaheuristic, and heuristic approaches,
have been proposed (to be discussed in Section 2.2.3). In
the study of hierarchical clustering (abbreviated as HC,
classified as a greedy-based heuristic approach), although
HC is not the most powerful in searching for near-optimal
solutions, it can yield satisfactory results comparable to some
powerful metaheuristic approaches (e.g., genetic algorithms)
for “well-structured” solutions. In this context, this research
investigates the conditions based on the statistics of similarity
values to estimate the potential structuredness of a given CF
problem without solving it.

In the domain of computer science, the notion of struc-
turedness somehow corresponds to the clusterability concept
[4]. Intuitively, clusterability can be interpreted as a measure
of an “intrinsic structure” of a dataset to be clustered [5].
Computer scientists have observed that a dataset of good
clusterability can be clustered quite effectively (i.e., less
impact from the NP-hard nature of the clustering problem).
This observation has been summarized in a statement that
“clustering is difficult only when it does not matter” (abbrevi-
ated as the CDNM thesis) [4, 6].

Notably, the measure of clusterability remains an open
topic in computer science. Ackerman andBen-David [4] have
surveyed different definitions of clusterability and shown
their incompatibility in pairwise comparisons. Nowakowska
et al. [5] argued that a clusterability measure should be
partition-independent so that it does not depend on the
clustering algorithms and the resulting solutions. Ackerman
et al. [7] proposed the use of the statistical distributions
of pairwise distances between any two objects to evaluate
clusterability.
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Example of a well-structured matrix Example of an ill-structured matrix

Grouping efficacy = 0.8142 Grouping efficacy = 0.4780

81 (out of 435) machine pairs have similarity 

values higher than or equal to 0.80 

4 (out of 435) machine pairs have similarity 

values higher than or equal to 0.50

1 1 1 1 1 0 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 0 1 1 1 1

0 1 1 1 1 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 0 1 1 1 1 0

1 0 0 0 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

1 1 0 1 1 1 1

1 1 1 1 1 1 0

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1

1 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0

1 1 1 1 0 1 1 1 0

1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1 0 1

1 1 1 1 1 1 1 1 0

1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1

0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1

0 1 0 1 1 1 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1

1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1

0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1

1 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1

1 0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1

0 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

0 1 1 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0

1 1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 1

1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1

1 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1

0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1

1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0

0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1
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Figure 1: Comparison of well-structured and ill-structured matrices.

Back to the context of the CF problem, in response to
the CDNM thesis, we also observed that a heuristic approach
(e.g., HC in our case) can yield satisfactory results. To further
utilize this observation in practice, this research develops
the criteria that assess the potential structuredness (corre-
sponding to clusterability in computer science) of a given CF
problem and suggest either using HC or genetic algorithm
(GA) for problem solving. To verify the development, we
have applied numerical examples to examine the results of the
structuredness criteria and the quality of CF solutions via HC
and GA.

Though developed independently, we want to acknowl-
edge that our approach of evaluating the structuredness
criteria is similar to the statistical approach by Ackerman et
al. [7]. The difference lies in our application’s focus on the
CF problem, while Ackerman et al. [7] have focused on the
relatively high-level development for clustering tasks. This
difference explains our use of similarity measures (instead of
distances) in statistical analysis since they are common for the
CF problem and allow for some normalization in setting the
structuredness criteria. Further, our work numerically checks
the relations between structuredness criteria and the solution
quality by two different clustering approaches (i.e., HC and
GA).

Notably, this paper was extended from our conference
paper [8] with the improvement of the techniques (e.g., the
threshold setting and the normalization approach). Also,
additional numerical examples have been used in the eval-
uation.

The rest of this paper is organized as follows. Section 2
will overview theCFproblemanddiscuss the three properties
of a well-structured CF solution in order to clarify the logical
relation of similarity statistics. Section 3 will introduce the
histogram analysis of similarity values and develop the U-
shape criteria. Section 4 will introduce the Kolmogorov-
Smirnov (K-S) test, which is used to develop another criterion
to inform the matrix’s structuredness. Section 5 will discuss
the procedure that applies the developed criteria to classify

well-structured and ill-structured matrices. Section 6 will
examine the structuredness criteria via numerical examples,
which are also used to check the effectiveness of metaheuris-
tics via a two-stage solution process. Section 7 will conclude
this paper.

2. Background: Cell Formation Problem

2.1. Problem Introduction. In the design of a cellular man-
ufacturing system, one early and important decision is the
formation of machine groups and part families, and it is often
referred to as the cell formation (CF) problem. A simple
CF problem can be compactly captured by a machine-part
incidence matrix. Let M = {𝑚𝑖} (for i = 1 to m) be the set of
machines and P = {𝑝𝑗} (for j = 1 to n) be the set of parts.
Then, an incidence matrix, denoted as B = [b𝑖𝑗], indicates
whether machine m𝑖 is required to produce part p𝑗 (if so, b𝑖𝑗
= 1; otherwise, b𝑖𝑗 = 0). After solving the CF problem, the
matrix’s rows and columns can be reordered to reveal which
subset of machines (i.e., a machine group) is highly related to
which subset of parts (i.e., a part family).

By using the incidence matrices to represent CF solutions
(i.e., block-diagonal matrices), they can be roughly classified
into two types: well-structured and ill-structured matrix [2,
9]. As illustrated in Figure 1, a well-structured matrix has
few nonzero matrix entries outside the blocks (defined as
exceptional elements) and few zero matrix entries inside the
blocks (defined as voids). Precisely, exceptional elements are
the matrix entries of b𝑖𝑗 = 1 with m𝑖 and p𝑗 in different cells,
and voids are the matrix entries of b𝑖𝑗 = 0 with m𝑖 and
p𝑗 in the same call. The opposite conditions apply for
an ill-structured matrix (i.e., a matrix solution with many
exceptional elements and voids). A well-structured matrix
implies that part families can be produced quite exclusively by
somemachine groups so that the changes of few part families
will not be adversely impacting the production of other parts.
This is one desirable feature of cellularmanufacturing systems
[1].
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Toquantify the structuredness of aCFmatrix solution, we
use the traditional grouping efficacy (denoted as 𝜇), which is
formulated as follows [10].

𝜇 =
𝑛𝑒 − 𝑛𝑜𝑢𝑡

𝑛𝑒 + 𝑛𝑖𝑛
(1)

where n𝑒, n𝑜𝑢𝑡, n𝑖𝑛 are the total number of nonzero matrix
entries, exceptional elements, and voids, respectively. In a
perfect CF solution where n𝑜𝑢𝑡 = n𝑖𝑛 = 0, the grouping
efficiency is equal to its maximum value, i.e., one. When
there aremore exceptional elements (n𝑜𝑢𝑡 ) and voids (n𝑖𝑛), the
grouping efficacy value will become smaller.

Yet, not all incidence matrices can be converted to a
well-structured matrix due to the original complex interde-
pendency of the production requirements among machines
and parts. This situation cannot be resolved by advanced
optimization techniques as the root cause stems from the
original inputs of the CF problem. However, we cannot
practically know whether a given CF problem is going to
have a well-structured matrix or not until we actually solve
this problem. In this context, the purpose of this paper is to
assess the structuredness of a given CF problem by analyzing
the similarity of machines without actually solving it. In the
traditional CF notion, two machines can be said similar if
they are required mainly to produce a subset of common
parts. In this work, the Jaccard similarity coefficient is applied
[11, 12]. Let s𝑥𝑦 be the similarity value between machines m𝑥
and m𝑦. The formulation of the Jaccard similarity coefficient
is provided below.

𝑠𝑥𝑦 =

𝑎𝑥𝑦

𝑎𝑥𝑦 + 𝑏𝑥𝑦 + 𝑐𝑥𝑦
(2)

where a𝑥𝑦 is the number of parts that need both machinem𝑥
and m𝑦; b𝑥𝑦 is the number of parts that need machine m𝑥
but not machine m𝑦; c𝑥𝑦 is the number of parts that need
machine m𝑦 but not machine m𝑥. Conceptually, the Jaccard
similarity coefficient focuses on the number of common
features (e.g., a𝑥𝑦) that is normalized by the total number of
relevant features (e.g., a𝑥𝑦, b𝑥𝑦, and c𝑥𝑦). Notably, similarity is
only evaluated for any two machines (i.e., a machine pair).

After specifying the notion of machine similarity, let us
revisit the two examples in Figure 1. Each example has 30
machines, leading to 30×(30-1)/2 = 435 machine pairs. By
examining the similarity of any two machines (or machine
pairs), we find that the well-structured matrix has a higher
number of machine pairs with high-similarity values. In the
examples of Figure 1, we can get the following two statements
concerning the statistics of the machine similarity values.

(i) Well-structured matrix: 81 (out of 435) machine pairs
have similarity values higher than or equal to 0.80.

(ii) Ill-structured matrix: 4 (out of 435) machine pairs
have similarity values higher than or equal to 0.50.

In this illustration, it is roughly identified that a well-
structured matrix can have quite a different statistical distri-
bution of machine similarity values as compared to an ill-
structured matrix. This observation leads to an investiga-
tion question on the statistical conditions in which a well-
structured matrix can be classified. This investigation is the

focus of this paper. By knowing such statistical conditions,
engineers in the design of cellular manufacturing systems can
initially assess their production requirements via the statistics
ofmachine similarity. If the statistical data shows unfavorable
results (i.e., chance of getting a well-structured matrix is
low), they can either modify the production requirements
(e.g., buy more machines) or seek for other manufacturing
systems. It can save the efforts to solve the CF problem with
such initial assessment. Also, this paper will show that a
well-structured matrix can be satisfactorily obtained by some
less time-consuming heuristics (where complex optimization
methods may not bring additional benefits).

2.2. Properties of a Well-Structured CF Solution. To investi-
gate the statistical conditions of the structuredness of a CF
solution, this section will discuss the three properties of a
well-structured matrix. These three properties include (1)
high grouping efficacy, (2) high percentage of high-similarity
machine pairs, and (3) relative ease of obtaining satisfactory
CF solutions. Afterward, a research plan will be discussed.

2.2.1. Property I: High Grouping Efficacy. The original for-
mulation of the grouping efficacy (GE) in (1) can be found
in Kumar and Chandrasekharan [10], and it is intended to
replace a weighted sum function with a simple ratio to assess
the goodness of a CF solution (in a block-diagonal form).
Since then, the GE measure has become popular in the CF
research (e.g., [9, 13]). Despite its popularity, some researchers
have criticized its “built-in weights” [14], where a lower
number of voids (i.e., n𝑖𝑛) tend to give a better GE measure
(as compared to exceptional elements (i.e., n𝑜𝑢𝑡)). Brusco [15]
has commented that the nonlinearity of the GE measure has
incurred a challenge for finding the exact solutions for the CF
problems. As commented by Sarker and Mondal [16] in their
survey paper, it is not easy to develop a standard measure that
fits all CF problems. It is generally recognized that the GE
measure is good to discern the structuredness of the matrix-
based CF solutions [2]. Thus, we choose the GE measure in
this study.

Based on its definition, a well-structured matrix should
have few exceptional elements and voids, leading to a high
value of GE. While GE is effective in indicating the struc-
turedness of a CF solution (high value → well-structured
matrix), this value cannot be known until the CF problem
is solved. Thus, in this research, GE is used as a verification
measure to examine how well machine similarity can be
related to the structuredness of a CF solution.

2.2.2. Property II: High Percentage of High-SimilarityMachine
Pairs. Compared to the property of high grouping efficacy,
it is less obvious to know that a well-structured matrix has a
high percentage of high-similarity machine pairs. In view of
the Jaccard similarity coefficient in (2), there are two types
of factors used to assess the machine similarity. While a𝑥𝑦
(i.e., the number of common parts) is taken as a commonality
factor, both b𝑥𝑦 and c𝑥𝑦 (i.e., the number of parts processed
in one machine but not another one) serve as differentiating
factors to normalize the similarity measure. In turn, if the
similarity value of both machines is high, a𝑥𝑦 cannot be zero
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and the values of b𝑥𝑦 and c𝑥𝑦 should be small, implying
not only commonality but also exclusiveness of these two
machines to process their common parts. This feature can
potentially lead to smaller numbers of voids and exceptional
numbers, leading to a well-structured matrix.

In literature, the notion of similarity has been applied
for many years to address the CF problem, and the Jaccard
similarity coefficient is one of the early applications [11]. Since
then, many similarity coefficients have been proposed, and
the comparison study of similarity coefficients can be found
in Sarker [17], Mosier et al. [18], and Yin and Yasuda [19].
Notably, similarity is a context-dependent concept, and it
depends on the application and relevant information to assess
how similar between two objects. In our investigation, we
choose the Jaccard similarity coefficient because its notion
on the commonality and differentiating factors is straightfor-
ward to the simple CF application.

While similarity coefficients have been studied exten-
sively forCFproblems, the statistical distribution of similarity
values of a CF problem has not been investigated reasonably
in our understanding. Notably, these similarity values can be
found without solving the CF problems. Then, if we know
the relation between the statistical distribution of similarity
values and the GE measure, we can use the statistical
distribution of similarity values to assess the potential of
yielding a well-structured matrix for a CF problem. This is
the major aim of this paper.

2.2.3. Property III: Relative Ease of Obtaining Satisfactory CF
Solutions. At this point, we may wonder why it is important
to know the potential of yielding a well-structured matrix
before solving the CF problems. First of all, it has been
recognized that a CF problem is a NP-hard problem [3] so
that there will be less likely to find a practical algorithm that
can guarantee an exact solution for a moderate-size problem.
As a result, the effort required to solve a CF problem is
not trivial. In literature, many metaheuristic algorithms have
been proposed to solve the CF problems such as genetic
algorithms [20, 21] and simulated annealing [22, 23]. Related
comprehensive reviews can be found in Papaioannou and
Wilson [24] and Renzi et al. [25]. While metaheuristic
algorithms have capacities to yield high-quality solutions,
they generally require users to have good mathematical skills
to understand these algorithms [26] and good experiences
to make some “implementation decisions” [15, p. 293] (e.g.,
terminating conditions in genetic algorithms).

In contrast to metaheuristic algorithms, heuristic algo-
rithms are easier to implement but the quality of their
solutions is often targeted [27, p. 159]; [24]. In a nutshell, a
common feature of heuristic algorithms is their greedy or hill-
climbing approaches that focus on best solutions at a stage
without backtracking for other solution possibilities. This
feature allows them to converge to some feasible solutions
quickly with the trade-off of checking a smaller solution
space (thus, potentially weaker solution quality). Hierarchical
clustering (HC), which was one early approach for CF
problems [11], is one example of heuristic algorithms since
HC always groups the object pairs with the highest similarity
values progressively without backtracking.

As its third property, it is observed that a well-structured
matrix can be obtained relatively easily by a heuristic
approach (referred toHC specifically in this paper), where the
metaheuristic approach does not necessarily have an advan-
tage for getting higher-quality solutions. Alternately, the
advantage of the metaheuristic approach is observed more
often in the case of ill-structured matrices. As discussed
before, a well-structured matrix demonstrates sharp differ-
ences between similar and dissimilar machine pairs. This fea-
ture supports the “greedy” nature of the heuristic approach,
which can easily distinguish high-similarity pairs in the
progressive grouping process. In contrast, an ill-structured
matrix has moremachine pairs with middle-similarity values
so that some borderline cases can potentially lead to solutions
of lower quality. While this third property may not be
obvious, more verifying examples will be reported later in
Section 6.3 as part of the investigation effort of this paper.

Given this third property of a well-structured matrix,
the statistical analysis of similarity values can then lead to
another application, i.e., supporting the choice of the algo-
rithmic approach for solving CF problems. If the statistical
analysis shows a high potential to obtain a well-structured
matrix, we can choose a heuristic approach to solve the CF
problems. Alternately, if it indicates a high chance of getting
an ill-structured matrix, we may consider revising the input
incidence matrix (e.g., adding more machines or changing
some part requirements). Also, we can prepare to use the
metaheuristic approach to seek for high-quality solutions.
In sum, the statistical analysis can preliminarily probe the
structure of a given CF problem in order to determine the
next problem solving step.

2.3. Research Plan. In view of the three properties of a
well-structured matrix discussed above, the research and
development questions are set as follows.

(i) What are the criteria related to the statistics of
similarity values to assess the potential of getting a
well-structured matrix?

(ii) How do we decide on whether using a metaheuristic
or heuristic approach for solving a CF problem?

To address the first question, this paper will utilize two
statistical tools: histogram and the Kolmogorov-Smirnov (K-
S) test. Histogram will be used to analyze the distribution
of machine similarity values of a given CF problem, and
twenty CF solutions will be set to investigate the threshold
values for informing the potential structuredness of a matrix.
The K-S test will be used to assess the normality of the
distribution of machine similarity values. That is, if the set
of similarity values roughly follow the normal distribution, it
means that many machine pairs have the average similarity
value, implying a low proportion of high-similarity values
(i.e., an ill-structured matrix).

Based on the investigation using the histogram and the
K-S test, we will develop a procedure to probe the struc-
ture of a given CF matrix and suggest whether using a
metaheuristic or heuristic for problem solving (i.e., address
the second question). In this paper, we have implemented
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Figure 2: Histograms of well-structured and ill-structured matrices.

genetic algorithm (GA) and hierarchical clustering (HC) as
the metaheuristic and heuristic approaches, respectively, for
solving the CF problems. To verify the procedure, additional
forty CFmatrices will be set.These CFmatrices will be solved
by HC and then genetic algorithm to observe the relation
between the matrix’s structuredness and the utility of the
metaheuristic approach for better CF solutions.

3. Histogram Analysis of Similarity Values

3.1. Histogram and the U-Shape. In this study, histograms
are used to report the frequency distribution of machine
similarity values with an increment of 0.1. Figure 2 shows two
histograms for thewell-structured and ill-structuredmatrices
of Figure 1, respectively. In these histograms, the horizontal
axis stands for the machine similarity values ranging from 0
to 1, and the vertical axis stands for the number of machine
pairs within those ranges of similarity values. Notably, these
histograms are independent of the orders of a matrix’s
rows and columns. That is, we can get these histograms of
similarity values without solving the CF problem.

From these two histograms, it is observed that a well-
structured matrix tends to yield an U-shape histogram, i.e.,
relatively high numbers of extreme similarity values. The
right peak of the U-shape can be explained by the property of
high percentage of high-similaritymachine pairs discussed in
Section 2.2.2. While the numbers of low-similarity machine
pairs are high in both cases of well-structured and ill-
structured matrices, a well-structured matrix has a low
number of machine pairs of similarity values between 0.2
and 0.4. In contrast, an ill-structured matrix has a good
number of those middle-similarity machine pairs, which
cause a challenge of clear grouping in cell formation. Given
this general U-shape observation, the next subsections will
discuss the criteria that classify the structuredness of amatrix

(i.e., well-structured or ill-structured) based on the histogram
data.

3.2. Setup of 20 Benchmark Matrices. Since the frequency
distribution of a histogram will not be altered by the orders
of a matrix’s rows and columns, we can set the CF solu-
tion matrices with known structuredness and then observe
their histograms to develop the structuredness criteria. In
this investigation, twenty 30×40 solution matrices (i.e., 30
machines and 40 parts) with three cells (or blocks) are set.
These matrices are varied by two factors: (1) block sizes and
(2) numbers of exceptional elements and voids. Concerning
the block sizes, five cases are set as follows, where each bracket
indicates the size of a block as (number ofmachines×number
of parts).

(i) Case A → even case: (10×13) (10×13) (10×14)
(ii) Case B → uneven case with a large block: (20×26)

(5×7) (5×7)
(iii) Case C→ uneven numbers of machines and parts in

two blocks: (20×7) (5×26) (5×7)
(iv) Case D→ uneven numbers of machines and parts in

three blocks: (20×5) (5×17) (5×18)
(v) Case E→ uneven case with two large blocks: (14×18)

(14×19) (2×3)

Besides, four cases are set below to characterize the struc-
turedness of matrices via the control of the numbers of
exceptional elements and voids.

(i) Case I (well-structured): few exceptional elements
and no voids

(ii) Case II (well-structured): no exceptional elements
and few voids
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Figure 3: The resulting matrices of 20 benchmark cases.

(iii) Case III (well-structured): few exceptional elements
and few voids

(iv) Case IV: (ill-structured): good numbers of excep-
tional elements and voids

The resulting 20 matrices are shown in Figure 3. As general
inspections, the matrices in Cases I and II have clear bound-
aries of three cells. Thematrices in Case III have more excep-
tional elements and voids but their structures are still quite
discernible. In contrast, the structure of matrices in Case
IV is messier with higher numbers of exceptional elements
and voids. Based on these matrices, the next subsection will
investigate their histograms and develop the U-shape criteria
to classify the matrix’s structuredness.

3.3. Histogram-Based U-Shape Criteria. To inform the
matrix’s structuredness, two conditions as the U-shape

criteria are set toward the low and high-similarity values. Let
F𝑙𝑒𝑓𝑡 (x) be the fraction of similarity values that are lower
than x and F𝑟𝑖𝑔ℎ𝑡 (y) be the fraction of similarity values that
are higher than y. Then, the general U-shape criteria can be
expressed as follows.

𝐹𝑙𝑒𝑓𝑡 (𝑥) ≥ 𝑎 (3)

𝐹𝑟𝑖𝑔ℎ𝑡 (𝑦) ≥ 𝑏 (4)

where a and b are the thresholds of the minimum fractions of
low and high-similarity values, respectively, to characterize
the U-shape of a well-structured matrix. The setup of these
parametric values (i.e., x, y, a, and b) will be based on the
above 20 benchmark matrices.

Figure 4 shows the histograms of the 20 benchmark
matrices. As the preliminary observations, the frequency
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Figure 4: Histograms of 20 benchmark matrices.

distributions of these histograms are perceived quite different
between the well-structured (i.e., Cases I, II, and III) and ill-
structuredmatrices (i.e., Case IV). Yet, someU-shapes are not
plainly obvious (e.g., Cases A-III and C-II), and the peaks of
high-similarity values of the well-structured matrices are not

located at the rightmost region (e.g., Cases C-I and D-I). The
U-shape criteria will then be set based on these observations.

Concerning the region of low-similarity values (i.e., the
left side of the U-shape), it is found that both well-structured
(i.e., Cases I, II, and III) and ill-structured (i.e., Case IV)
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Table 1: Number of machine pairs with similarity values equal to zero.

Case I Case II Case III Case IV
A 34 300 110 32
B 7 225 83 23
C 23 240 121 57
D 22 225 116 15
E 11 252 73 14

Table 2: Number of machine pairs with similarity values greater than or equal to 0.5.

Case I Case II Case III Case IV
A 135 106 109 38
B 200 104 194 4
C 136 91 194 38
D 139 203 158 19
E 182 175 103 10

matrices have high proportions because many machines, as
long as they are not in the same cell, have less common parts
toworkwith in both cases. As a result, the proportions of low-
similarity values from a well-structured matrix can become
less discernible statistically. Thus, we choose to investigate
the extreme value when the similarity values equal to zero,
i.e., F𝑙𝑒𝑓𝑡(x=0). Table 1 records the number of machine pairs
with the similarity values equal to zero. As observed, while
thematrices of Cases II and III have low right-side peaks, they
have high proportions of such zero-similarity machine pairs.
As the U-shape criteria will be used for the early screening,
we set this criterion rather strictly as follows.

𝐹𝑙𝑒𝑓𝑡 (0) ≥ 0.5 (5)

This criterion requires 50% of machine pairs to have zero-
similarity values in order to qualify a well-structured matrix.
By checking the benchmark matrices with 30 machines (i.e.,
435 machine pairs), the threshold is 218 machine pairs, and
the matrices in Case II pass this criterion.

Concerning the region of high-similarity values (i.e., the
right side of the U-shape), as discussed earlier, not all well-
structured matrices have high proportions of high-similarity
values at the rightmost region. By inspecting the histograms
in Figure 4, we identify a reasonable cut-off of high-similarity
values should be 0.5, i.e., F𝑟𝑖𝑔ℎ𝑡(y=0.5). Table 2 records the
number of machine pairs with the similarity values greater
than or equal to 0.5. As observed, the proportions of high-
similarity values (s𝑥𝑦 ≥ 0.5) in Case IV (i.e., ill-structured
matrices) are relatively low. In contrast, Case C-II is the well-
structured matrix with the lowest number of high-similarity
values (i.e., 91), and the corresponding fraction is 91/435 ≈
0.21. As a result, another U-shape criterion for the right-hand
side is set as follows.

𝐹𝑟𝑖𝑔ℎ𝑡 (0.5) ≥ 0.2 (6)

In sum, if an input incidence matrix satisfies one of the
two U-shape criteria formulated in (5) and (6), this matrix
has a good chance to yield a well-structured CF solution.

Notably, we treat the histogram-based U-shape criteria as
a preliminary filter in this work. That is, if a matrix does
not satisfy these criteria, it does not immediately imply that
this matrix is ill-structured. In fact, other parameters of an
input incidence matrix, such as the number of machines
and the density of nonzero matrix entries, can impact the
frequency distribution of a histogram. Thus, the next section
will develop another criterion based on the K-S test.

4. Criterion Setting Based on
the Kolmogorov-Smirnov (K-S) Test

4.1. Background. The Kolmogorov-Smirnov (K-S) test is one
type of hypothesis testing in statistics (Corder and Foreman)
[28]. As one of its applications, the K-S test is used in this
paper to evaluate how well a dataset represents a normal
distribution (i.e., the normality of the dataset). The use of the
K-S test in this study is mainly motivated by the observation
of the histograms in Figure 2 that a well-structure matrix will
tend to give a U-shape. As the U-shape will generally exhibit
two peaks in the histogram representation, the normality of
the associated data (i.e., similarity values) will be weak in
comparison to that of an ill-structured matrix.

Figure 5 illustrates the concept of the normality of sim-
ilarity values with two cases: single-peak histogram and U-
shape histogram.TheK-S test essentially compares the curves
of two cumulative distribution functions (CDFs) [29, 30].
While one CDF represents the empirical data points (i.e.,
empirical CDF, solid line), another CDF is based on the
normal distribution curve fitted by the empirical data (i.e.,
hypothesized normal CDF, dashed line). As seen in Figures
5(c) and 5(d), the single-peak histogramhas higher normality
than the U-shape histogram since the single-peak histogram
yields a closer match between the empirical and hypothesized
normal CDFs. In contrast, the U-shape histogram yields its
empirical CDF in Figure 5(d) with rapid increases at the
beginning and the end, along with a relatively flat region in
the middle, and this CDF curve significantly deviates from
normality [31].
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(a) A single-peak histogram
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(b) A U-shape histogram
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(d) CDFs of the U-shape histogram

Figure 5: CDFs of similarity values (solid line: empirical CDF; dashed line: hypothesized normal CDF).

The P value is a common concept in hypothesis testing
[32]. It can be interpreted as the smallest probability value
associated with a given dataset to reject the null hypothesis
(i.e., smaller P value → more likely to reject the null
hypothesis). In this work, we treat the P value of a K-S test
as a proxy measure on the normality of a set of similarity
values. That is, if the P value is smaller, the dataset tends to
be less-normal [33]. Interpreted in our context, a less-normal
condition implies a U-shape and thus a well-structured
matrix. For example, the P value of the single-peak histogram
in Figure 5(c) is 7.44×10-4, and the P value of the U-shape
histogram in Figure 5(d) is 9.27×10-22.

Notably, the purpose of using the K-S test in this work is
not about hypothesis testing, but only using its P value as a
proxy measure to assess the normality of a set of similarity
values and then inform the structuredness of a CF matrix.
Yet, the P values in our applications tend to be very small.
To conveniently handle this proxy measure, let P𝑣𝑎𝑙𝑢𝑒 be the
P value of a set of similarity values based on the K-S test, and
an alternative proxy measure (denoted as L𝑝) is defined as
follows:

𝐿𝑝 = −log10 𝑃V𝑎𝑙𝑢𝑒 (7)

As L𝑝 is the negative logarithm of the P value, a higher value
of L𝑝 implies a higher tendency of having a U-shape of the
dataset. For example, the values of L𝑝 for the single-peak
histogram (i.e., Figure 5(c)) and the U-shape histogram (i.e.,
Figure 5(d)) are 3.13 and 21.03, respectively. In other words, if
a CF matrix yields a higher value of L𝑝, it has a better chance
to be solved as a well-structured CF solution.

By knowing the property of the trend associated with
L𝑝, it leads to the next investigation question on setting
the threshold value of L𝑝 to classify ill-structured and well-
structured matrices. To do so, it is recognized that the values
of L𝑝 can be sensitive to the number of machines and the
density of nonzero entries of a given matrix. Thus, the next
subsection will investigate the upper bound of L𝑝 of a given
matrix to normalize the value of L𝑝 .Then, wewill apply the 20
benchmark matrices in Figure 3 to determine the threshold.

4.2. Estimate the Upper Bound of L𝑝 for Normalization. The
upper bound of L𝑝 can be estimated by a perfect block-
diagonal matrix, where the numbers of exceptional elements
(n𝑜𝑢𝑡) and voids (n𝑖𝑛) are zero (i.e., the grouping efficacy 𝜇 =
1). In this case, the machine pairs have similarity values equal
to either one (when two machines belong to the same block)
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Table 3: Lp, Lbp and their ratios of the benchmarkmatrices.

Case I Case II
Lp Lbp Lp/Lbp Lp Lbp Lp/Lbp

Case A 43.44 62.39 0.70 69.58 85.40 0.81
Case B 22.03 31.35 0.70 44.35 72.93 0.61
Case C 14.80 70.55 0.21 42.57 97.73 0.44
Case D 13.13 75.90 0.17 43.58 96.69 0.45
Case E 23.06 39.67 0.58 53.56 65.65 0.82

Case III Case IV
Lp Lbp Lp/Lbp Lp Lbp Lp/Lbp

Case A 39.67 76.05 0.52 10.77 73.53 0.15
Case B 26.84 54.38 0.49 3.77 72.19 0.05
Case C 23.06 88.52 0.26 7.69 86.15 0.09
Case D 18.77 91.49 0.21 3.13 83.92 0.04
Case E 17.56 67.29 0.26 1.97 67.14 0.03

or zero (when twomachines are in different blocks).This kind
of “bipolar” distribution can be viewed as a far extreme of the
normal distribution, and the corresponding P value can be
taken as the upper bound of L𝑝.

In the normalization process, we can first identify the size
and the number of nonzero entries of a given matrix. Let m
and n be the numbers of machines and parts, respectively, as
the size of the matrix. The number of nonzero matrix entries
has been denoted as n𝑒. Then, the density of nonzero entries
of a matrix (denoted as D𝑠) can be determined as follows.

𝐷𝑠 =
𝑛𝑒

𝑚 × 𝑛
(8)

Given an incidence matrix, its upper bound of L𝑝 can be
considered in a case when its nonzero entries can be freely
moved to form a nearly perfect block-diagonal matrix. By
fixing the values ofm, n, andD𝑠, there can be a corresponding
theoretical upper bound of L𝑝. Let L𝑏𝑝 denote such an
upper bound of L𝑝 of a given matrix. Then, for any given
matrix, we can determine its L𝑝 and L𝑏𝑝, where L𝑏𝑝 is
treated as a normalizing factor. Since this paper focuses on
machine similarity, we drop the consideration of n to simplify
the investigation. Then, the next step is to determine the
following function.

𝐿𝑏𝑝 = 𝑓 (𝑚,𝐷𝑠) (9)

To estimate the function of L𝑏𝑝, our strategy is to system-
atically generate a good number of perfect block-diagonal
matrices by varying the numbers of machines, parts, and
even-size cells (note: the number of even-size cells will
determine the number of nonzero entries). The ranges of
these varying parameters in this work are listed as follows.

(i) Number of machines: from 10 to 50 machines
(ii) Number of parts: from 10 to 110 parts (with an

increment of 10)
(iii) Number of even-size cells: from 2 to 14 cells (also

restricted by the matrix’s size to avoid extremely large
and small cells)

Further details of the setup of these perfect matrices can
be found in Zhu [34]. As a result, this work has generated
2519 perfect matrices. Then, the values of P value and L𝑝
are determined for these matrices, giving 2519 points to
approximate the function formulated in (9) via curve fitting
techniques. The resulting regression equation is found as
follows.

𝐿𝑏𝑝 (𝑚,𝐷𝑠) = −29.08 + 2.164𝑚 + 132.3𝐷𝑠

+ 0.1049𝑚
2
− 10.35𝑚𝐷𝑠

(10)

In practice, we can determine the values of L𝑝 via (7) and L𝑏𝑝
via (10) for a given matrix. Then, we can check its ratio of L𝑝
to L𝑏𝑝 and examine the U-shapeness and then the possible
structuredness of the matrix.The next subsection will discuss
the criterion based on the ratio of L𝑝 to L𝑏𝑝.

4.3. Ratio Criterion Based on L𝑝 and L𝑏𝑝. The setting of the
ratio threshold for L𝑝 and L𝑏𝑝 is based on the 20 benchmark
matrices in Figure 3. The values of L𝑝, L𝑏𝑝 and their ratios
are recorded in Table 3. As a recall, Cases I, II, and III are
set to represent the well-structured matrices, and Case IV
represents ill-structured matrices. As an initial assessment,
the average of the ratios of Cases I, II, and III (i.e., well-
structured matrices) is 0.48, while the ratio average of Case
IV is 0.07.This observation indicates that the ratio L𝑝/L𝑏𝑝 can
make distinctions between well-structured and ill-structured
matrices quite effectively from a statistical standpoint.

Yet, when we examine the extreme situations, the lowest
ratio of the well-structured cases is 0.17 (i.e., Case D-I, bold
in Table 3), and the highest ratio of the ill-structured cases is
0.15 (i.e., Case A-IV, also bold in Table 3). As observed, the
gap between the two is close, and we intend to impose a tight
criterion to classify well-structured matrices. As a result, we
set the threshold value at 0.2, formulated as follows.

𝐿𝑝

𝐿𝑏𝑝

≥ 0.2 (11)

At this point, Case D-I is the only well-structured matrix that
does not satisfy this criterion. Yet, Case D-I satisfies one of
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Figure 6: Procedure to assess the potential structuredness of an
incidence matrix.

the earlier U-shape criteria. Thus, our next step is to combine
the U-shape criteria and the ratio criterion in a procedure to
examine the potential structuredness of an incidence matrix.
That is, if a given matrix satisfies one of these criteria, it
is indicated that this matrix has a high potential to yield a
well-structured CF solution. The next section will discuss
this procedure to apply these criteria to inform the potential
structuredness of a given matrix.

5. Procedure

This section provides a four-step procedure below to assess
the potential structuredness of an incidence matrix using the
histogram-based U-shape criteria and the criterion based on
the P value of the K-S test. Figure 6 illustrates the decision
branches of this procedure.

Step 1 (construct histogram). By receiving an incidence
matrix as an input, the similarity values of machine pairs are
first determined based on (2). If there are mmachines, there
will bem×(m-1)/2 machine pairs with their similarity values,
forming the dataset of the statistical analysis. A histogram is
then constructed to analyze these similarity values.

Step 2 (apply the histogram-based U-shape criteria). This
represents the preliminary check based on the frequencies
of having high and low-similarity values. If either one of
the criteria F𝑙𝑒𝑓𝑡(0) ≥ 0.5 or F𝑟𝑖𝑔ℎ𝑡(0.5) ≥ 0.2 is satisfied, the
incidence matrix is considered having a good potential to
yield a well-structured CF solution. If none of these two
criteria is satisfied, we will move on to the analysis based on
the P value of the K-S test.

Step 3 (compute 𝐿𝑝 and 𝐿𝑏𝑝). The dataset of similarity values
is treated as the input to determine the P value of the K-S

test in view of assessing the normality of the dataset. This
calculation can be performed via some statistics software
tools. In this work, we have used the statistics functions from
Matlab to compute the P value. Then, the value of L𝑝 can be
evaluated using (7). With the incidence matrix, the value of
L𝑏𝑝 can be evaluated using (10) by identifying the number of
machines (i.e.,m) and the density of nonzero entries (i.e.,D𝑠).

Step 4 (apply the ratio criterion 𝐿𝑝 / 𝐿𝑏𝑝). With the values
of L𝑝 and L𝑏𝑝, we can check the criterion if L𝑝 / L𝑏𝑝 ≥ 0.2.
If this criterion is satisfied, the input matrix should have a
good potential to yield a well-structured CF solution. If not,
the input matrix would have a good chance to result in an
ill-structured CF solution. The practitioners may consider
modifying the input matrix by adding machines or revising
the production requirements.

6. Application and Verification

To examine the statistical analysis of similarity values for CF
problems in this paper, other 40 matrices (in addition to
the earlier 20 benchmark matrices, making up a total of 60
matrices) will be generated and applied in this section. These
60 matrices will be used to examine the following two issues
specifically.

(i) Given the three criteria for assessing the potential
structuredness of a matrix, we are going to use these
60 matrices to examine their effectiveness to distin-
guish well-structured and ill-structured matrices.

(ii) While Property III (i.e., relative ease of obtaining
satisfactory CF solutions) of a well-structured matrix
has been discussed in Section 2.3, it will be verified via
these 60matrices by two stages of CF problem solving.

6.1. Setup of the 60 Incidence Matrices. The strategy to
generate 60 matrices is based on the extension of getting the
20 benchmarkmatrices in Section 3.2.The additional varying
factors include the following.

(i) In addition to the size of 30×40 matrix, another size
of 40×100 matrix is set.

(ii) We add cases with more numbers of cells (from 3 to
6, 8, and 12 cells)

(iii) The evenness of cell sizes is also varied for each case.

Table 4 shows the setup of 60 matrices, where Cases A and
E are repeated from Section 3.2 for comparison. Notably, the
structuredness of matrices, which were classified as Cases
I, II, III, and IV in Section 3.2, is also applied, leading to
the study of 15×4 = 60 incidence matrices. As the intention
of the setup, the matrices of Cases I and II have no voids
and exceptional elements, respectively. Then, they should
be classified as well-structured matrices. The matrices of
Case III have only few exceptional elements and voids, and
they should also be classified as well-structured matrices.
In contrast, the matrices of Case IV have more exceptional
elements and voids, and they should be classified as ill-
structured matrices. The images and histograms of these 60
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matrices are provided as supplementary materials (available
here).

6.2. Examination of the Criteria. To evaluate the effectiveness
of the criteria to assess the structuredness of the matrices,
we have evaluated the criteria values for the 60 matrices. The
results are provided in Table 5, where the values satisfying the
criteria of well-structured matrices are bold. As observed in
these results, the structuredness criteria can discern the well-
structured matrices of Cases I, II, and III, where each matrix
there satisfies at least one criterion. In contrast, no matrices
of Case IV satisfy any criteria of well-structured matrices.

In view of the effectiveness of individual criteria, it is
observed that F𝑙𝑒𝑓𝑡(0) is effective in filtering the matrices of
Case II (i.e., few voids and no exceptional elements). Due
to the absence of exceptional elements in this case, any two
machines of different blocks will have similarity values equal
to zero. This explains the high values of F𝑙𝑒𝑓𝑡(0) observed in
Case II. In contrast, F𝑟𝑖𝑔ℎ𝑡(0.5) is less effectiveness when the
matrices have more cells (e.g., Cases H and I) and large sizes
(e.g., Cases J to O). Notably, the values of F𝑟𝑖𝑔ℎ𝑡(0.5) for Case
IV are quite low (ranging from 0.00 to 0.09). In this view, the
criterion of F𝑟𝑖𝑔ℎ𝑡(0.5) is quite tight.

By comparison, the ratio criterion (i.e., L𝑝/L𝑏𝑝) seems
effective in distinguishing well-structured matrices, where
Case D-I is the only case not identified as a well-structured
matrix by this criterion only. Notably, the discernible gap of
well-structured matrices (lowest at 0.17 in Case D-I) and ill-
structured matrices (highest 0.16 in Case L-IV) is small. It
explains the need of having F𝑙𝑒𝑓𝑡(0) and F𝑟𝑖𝑔ℎ𝑡(0.5), along with
the ratio criterion, in the assessment of the structuredness of
the matrices.

6.3. Examination of Property III via Optimization. As a recall
from Section 2.2.3, Property III states that a well-structured
matrix can be fairly obtained via a heuristic approach, where
more complex metaheuristics may not bring in additional
benefits. To verify this property, the sixty matrices were tested
with a two-stage solution process. First, each matrix will
be solved by a hierarchical clustering (HC) method as one
heuristic to yield a CF solution. Then, we examine if we can
further optimize the obtained CF solution via the genetic
algorithm (GA), representing a metaheuristic method. In
this way, we can check the correlation between grouping
efficiency and the percentage of improvement of solution
quality by GA.The algorithmic details of the HCmethod and
the implementation details of GA applied in this study can be
found in Zhu [34].

Table 6 lists the grouping efficacy (𝜇) results for the
60 matrices after running hierarchical clustering (HC) and
then genetic algorithm (HC+GA). Also, the percentages of
improvement in view of grouping efficacy by GA are reported
for comparison. As observed, the matrix solutions in Cases I
and II cannot be further improved by GA, while three matrix
solutions in Case III can be improved by GA with small
percentages (between 0.20% and 0.25%). In contrast, the
ill-structured matrix solutions in Case IV can be improved
by GA in the percentages of improvement between 0.63%
and 22.69%. Overall, we consider that the numerical results
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Figure 7: Percentage of solution improvement versus grouping
efficacy.

generally follow Property III, given that the matrices in Case
III are close to the boundary between well-structured and ill-
structured matrices.

Figure 7 shows the plots of the percentages of solution
improvement versus the values of grouping efficacy based
on HC+GA. Based on the 60 matrices studied in this paper,
GA did not improve the quality of matrix solutions that
have 0.60 or higher grouping efficacy. For the data points
of grouping efficacy values less than 0.60, we find that these
data points are negatively correlated, where the correlation
value [32, p. 173] is -0.62. In the statistical interpretation,
we can state that a lower value of grouping efficacy tends to
allow a larger room of improvement by GA but its linearity
is not strong. Notably, the capabilities of HC and GA to
yield high-quality solutions can depend on other factors (e.g.,
density of nonzero entries in a matrix). Thus, it is not easy
to observe a linear correlation just between the percentage of
improvement and the grouping efficacy. More control factors
and samples should be required for an in-depth investigation.

7. Conclusions

This paper has explored the statistics of similarity values to
investigate the structuredness of cell formation (CF) matrix
solutions. Using grouping efficacy (𝜇) as one recognized
index to inform the quality of a CF matrix, it is found
that a well-structured matrix has a high percentage of high-
similarity machine pairs (i.e., Property II). Accordingly,
this paper sets up 20 benchmark matrices, with varying
structuredness, to develop the U-shape criteria and the
criterion based on the Kolmogorov-Smirnov test. Then, a
procedure is developed to assess the potential structuredness
of a CF matrix without solving the CF problem. The criteria
for assessing structuredness of matrices are examined via
additional 40 matrices, and agreeable results are observed.
Genetic algorithm (GA) is used to see if it can improve the
CF solutions obtained by hierarchical clustering (as one type
of heuristics). The results show that the matrix solutions with
high grouping efficacy values (i.e., well-structured matrices)
cannot be effectively improved by GA.

While the worst-case computational complexity of clus-
tering problems (e.g., NP hardness) is well recognized, the
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CDNM thesis (discussed in Section 1) has implied that not
all clustering problems in practice are difficult to solve. This
research corresponds to the “clustering pipeline” proposed by
Ackerman et al. [7], where clusterability (or structuredness
in our context) can be evaluated to inform the selection of
effective clustering algorithms. In this view, one intended
contribution of this work is to implement this idea in the
context of the CF problem. In future work, we will explore
more applications in manufacturing systems that require
grouping and combinatorial decisions (e.g., product and
systems modularity). Also, we can explore more statistical
and machine learning techniques such as multimodality
tests and random forest to replace the K-S test for better
predication performance.
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Mixtures of symmetric distributions, in particular normal mixtures as a tool in statistical modeling, have been widely studied. In
recent years, mixtures of asymmetric distributions have emerged as a top contender for analyzing statistical data. Tukey’s 𝑔 family
of generalized distributions depend on the parameters, namely, 𝑔, which controls the skewness.This paper presents the probability
density function (pdf) associated with amixture of Tukey’s 𝑔 family of generalized distributions.Themixture of this class of skewed
distributions is a generalization of Tukey’s 𝑔 family of distributions. In this paper, we calculate a closed form expression for the
density and distribution of the mixture of two Tukey’s 𝑔 families of generalized distributions, which allows us to easily compute
probabilities, moments, and related measures. This class of distributions contains the mixture of Log-symmetric distributions as a
special case.

1. Introduction

The main focus of interest in financial economics is the dis-
tribution of stock market returns. Mandelbrot [1] suggested
the family of stable Paretian distributions for stock market
returns. Fama [2] established that the normality assumption
of the empirical data does not hold as the distribution is
fat tailed. Kon [3] and Tse [4] used a mixture of normal
distributions for stock return. Fielitz andRozelle [5] proposed
a mixture of nonnormal stable distributions for stock price.
Consequently, greater emphasis has been placed on using
distributions which have asymmetry and leptokurtic prop-
erties. Recently Jiménez et al. [6] proposed option pricing
based mixture of log-skew-normal distributions. If extreme
events tend to occur more frequently than normal events,
then skewness and kurtosis of nonnormal distributions play
an essential role for the volatility smile.

The most important and useful characteristic of Tukey’s
𝑔-ℎ family of distributions introduced by Tukey [7] is that it
covers most of the Pearsonian family of distributions. It can
also generate several known distributions, for example, log-
normal, Cauchy, exponential, and Chi-squared (seeMart́ınez
and Iglewicz [8], page 363). From Tukey’s 𝑔-ℎ family of
distribution, we obtain 𝑔 distribution, which is closely related

to lognormal distribution and possesses similar properties of
moments. Tukey’s 𝑔-ℎ family of distributions have been used
to study financial markets. Badrinath and Chatterjee [9, 10]
and Mills [11] used 𝑔-ℎ to model the return on a stock index,
as well as the return on shares in several markets. Dutta and
Babbel [12] found that the skewness and leptokurtic behavior
of LIBOR were modeled effectively using 𝑔-ℎ distribution.
Dutta and Babbel [13] used 𝑔-ℎ to model interest rates and
options on interest rates, while Tang and Wu [14] proposed
a new method for the Decomposition of Portfolio VaR.
Dutta and Perry [15] and recently Jiménez and Arunachalam
[16] used 𝑔-ℎ distribution to study the operational risk for
heavy tailed severity models. Jiménez and Arunachalam [17]
provided explicit expressions for VaR and CVaR calculations
using the family of Tukey’s 𝑔-ℎ distributions. Currently
Jiménez et al. [18] studied generalization of Tukey’s𝑔-ℎ family
of distributions, when the standard normal random variable
is replaced by a continuous random variable 𝑈 with mean 0

and variance 1.
The subfamily of 𝑔 distributions exhibits skewness and

has great importance in the study of asymmetric distributions
for analyzing data. This kind of distribution allows us to
obtain scaled Log-symmetric distributions. Vitiello and Poon
[19] considered a simple mixture of two 𝑔 distributions

7



for option pricing data. The purpose of this paper is to
present a mixture of Tukey’s 𝑔 distributions and derive
some statistical properties including the pdf and moment
generating function and its properties.

The paper is organized as follows: Section 2 presents
Tukey’s 𝑔-ℎ family of generalized distributions and its pdf,
as well as the cumulative distribution function (cdf). In Sec-
tion 3, some theoretical results of the mixture of two Tukey’s
𝑔 families of generalized distributions are presented and
Section 4 explains the methodology of calculating estimation
of parameters by themethod ofmoments. Section 5 discusses
the adjustment methodology of our proposed model to real
data of Heating-Degree-Days (HDD) indices and finally, in
Section 6, we conclude.

2. Tukey’s 𝑔 Family of Generalized
Distributions

Tukey [7] introduced the family 𝑔-ℎ distributions by means
of two nonlinear transformations given by

𝑌 = 𝑇𝑔,ℎ (𝑍) =
1

𝑔
(exp {𝑔𝑍} − 1) exp{

ℎ𝑍
2

2
} (1)

with 𝑔 ̸= 0, ℎ ∈ R, where the distribution of 𝑍 is standard
normal. When these transformations are applied to a contin-
uous randomvariable𝑈withmean 0 and variance 1 such that
its pdf 𝑓𝑈(⋅) is symmetric about the origin and cdf 𝐹𝑈(⋅), the
transformation 𝑇𝑔,ℎ(𝑈) is obtained, which henceforth will be
termed Tukey’s 𝑔-ℎ generalized distribution. If ℎ = 0, Tukey’s
𝑔-ℎ generalized distribution reduces to

𝑇𝑔,0 (𝑈) =
1

𝑔
(exp {𝑔𝑈} − 1) (2)

which is known as Tukey’s 𝑔 generalized distribution.
In order to model an arbitrary random variable 𝑋 using

the transformation given in (2), Hoaglin and Peters [20]
introduced two new parameters, 𝐴 (location) and 𝐵 (scale),
and proposed the following linear transformation:

𝑋 = 𝐴 + 𝐵𝑌 with 𝑌 = 𝑇𝑔,0 (𝑈) . (3)

The following properties for pdf, cdf, and quantile functions
of Tukey’s 𝑔 generalized distribution were established by
Jiménez et al. [18] in terms of the pdf and cdf of𝑋 as follows:

pdf: 𝑓𝑋 (𝑥; 𝜆, 𝑔, 𝜃) =
1

𝑔 (𝑥 − 𝜃)
𝑓𝑈 (

1

𝑔
ln(

𝑥 − 𝜃

𝐵/𝑔
))

if 𝑔 (𝑥 − 𝜃) > 0,

cdf: 𝐹𝑋 (𝑥; 𝜆, 𝑔, 𝜃) = 𝐹𝑈 (
1

𝑔
ln(

𝑥 − 𝜃

𝐵/𝑔
))

if 𝑔 (𝑥 − 𝜃) > 0,

qf: 𝐹−1𝑈 (𝑞) = 𝑢𝑞 =
1

𝑔
ln(

𝑥𝑞 − 𝜃

𝐵/𝑔
)

if 𝑔 (𝑥𝑞 − 𝜃) > 0,

(4)

where 𝜆 = ln(𝐵/|𝑔|) and 𝜃 = 𝐴 − 𝐵/𝑔. We say that the
random variable 𝑋 has a Log-symmetric distribution (such
distributions are all asymmetric; see for reference Johnson
et al. [21] and Stuart and Ord [22]) with three parameters:
threshold (𝜃), scale (𝜆), and shape (𝑔), denoted by 𝑋 ∼

LS(𝜆, 𝑔, 𝜃).
Thefirst expression of (4) allows us to obtain the following

pdf associated with Tukey’s 𝑔 distribution. Table 1 shows the
parameters of the pdf of𝑋 that we obtain using a selected set
of well known symmetrical distributions (from Jiménez et al.
[18]).

The 𝑛th moment of the random variable 𝑌 = 𝑇𝑔,0(𝑈) is
given by

𝜇

𝑛 (𝑌) =

1

𝑔𝑛

𝑛

∑

𝑘=0

(−1)
𝑘
(

𝑛

𝑘
)𝑀𝑈 (�̃�) , if 𝑔 ̸= 0, (5)

where �̃� = (𝑛 − 𝑘)𝑔 and 𝑀𝑈(𝑡) is the moment generating
function of the random variable 𝑈, which are even function;
that is,𝑀𝑈(𝑡) = 𝑀𝑈(−𝑡).Table 2 shows parameters of the pdf
and themoment generating function for a randomvariable𝑈,
using a selected set of well known symmetrical distributions.

Expression (5) allows us to obtain themoments of Tukey’s
𝑔 generalized distribution. The 𝑛th moment of the random
variable𝑋 given by (3) can be obtained using the formula

E [(𝑋 − E [𝑋])
𝑛
] = 𝜇𝑛 (𝑋)

= (
𝐵

𝑔
)

𝑛 𝑛

∑

𝑘=0

(−1)
𝑘
(

𝑛

𝑘
)𝑀𝑈 (�̃�)𝑀

𝑘
𝑈 (𝑔) ,

(6)

where 𝐵/𝑔 = sgn(𝑔)𝑒𝜆. Note that the above expression
of the 𝑛th moment does not depend on the parameter 𝜃.
Formulas for calculating the standardized skewness, 𝛽1(𝑋),
and standardized excess kurtosis, 𝛽2(𝑋), are given by

𝛽1 (𝑋) = sgn (𝑔)

⋅

(𝑀𝑈 (3𝑔) − 𝑀
3
𝑈 (𝑔)) − 3 (𝑀𝑈 (2𝑔) − 𝑀

2
𝑈 (𝑔))𝑀𝑈 (𝑔)

[𝑀𝑈 (2𝑔) − 𝑀
2
𝑈 (𝑔)]

3/2
,

𝛽2 (𝑋) =
𝑀𝑈 (4𝑔) − 4𝑀𝑈 (3𝑔)𝑀𝑈 (𝑔) + 3𝑀

2
𝑈 (2𝑔)

[𝑀𝑈 (2𝑔) − 𝑀
2
𝑈 (𝑔)]

2
− 3,

(7)

where sgn(⋅) denote the signum function. Note that these
expressions only depend on the parameter 𝑔 and its sign,
respectively. Any LS distribution should satisfy the following
test given in Stuart and Ord [22]:

𝛽2 (𝑋) − 𝛽
2
1 (𝑋) − 1 ≥ 0. (8)

3. The Mixture of Two 𝑔 Distributions

Weassume that𝑌 follows a Log-SymmetricMixture (LSMIX)
distribution. Let us assume that 𝑓𝑌(𝑦) is the weighted sum of
𝑚-component LS densities; that is,

𝑓𝑌 (𝑦;Λ) =
𝑚

∑

𝑗=1

𝜔𝑗𝑓𝑈 (𝑦; 𝜆𝑗, 𝑔𝑗, 𝜃𝑗) . (9)
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Table 1: Parameters of the pdf of the random variable 𝑍 = ln(𝑋).

Distribution
of the r.v. 𝑈

Parameters Distribution
of the r.v. 𝑍

Parameters
𝜇, 𝑎 𝜎, 𝑏 𝑔 ̸= 0 𝜇, 𝑎 𝜎, 𝑏

Laplace 0
√2

2
|𝑔| <

√2

𝑛
Log-Laplace ln(

𝐵

|𝑔|
)

√2

2
|𝑔|

Logistic 0
√3

𝜋
|𝑔| <

𝜋

√3𝑛
Log-Logistic ln(

𝐵

|𝑔|
)

√3

𝜋
|𝑔|

Normal 0 1 𝑔 ∈ R Lognormal ln(
𝐵

|𝑔|
) |𝑔|

HyperSec 0
2

𝜋
|𝑔| <

𝜋

2𝑛
LoghyperSec ln(

𝐵

|𝑔|
)

2

𝜋
|𝑔|

HyperCsc 0
√2

𝜋
|𝑔| <

𝜋

√2𝑛
LoghyperCsc ln(

𝐵

|𝑔|
)

√2

𝜋
|𝑔|

Table 2: Parameters of the pdf andmoment generating functions of
the random variable 𝑈.

Distribution
of the r.v. 𝑈

Parameters
𝑀𝑈 (𝑔)

𝜇, 𝑎 𝜎, 𝑏 𝑔 ̸= 0

Laplace 0
√2

2
|𝑔| <

√2

𝑛

2

2 − 𝑔2

Logistic 0
√3

𝜋
|𝑔| <

𝜋

√3𝑛

√3𝑔 csc (√3𝑔)

Normal 0 1 𝑔 ∈ R exp {
1

2
𝑔
2
}

HyperSec 0
2

𝜋
|𝑔| <

𝜋

2𝑛
sec (𝑔)

HyperCsc 0
√2

𝜋
|𝑔| <

𝜋

√2𝑛

sec2 (
𝑔

√2

)

We use the notation 𝑌 ∼ LSMIX(Λ), where Λ = (𝜉1, . . . , 𝜉𝑚),
and each element 𝜉𝑗 = (𝜔𝑗, 𝜆𝑗, 𝑔𝑗, 𝜃𝑗) is the parameter vector
that defines the 𝑗th component and probability weights, 𝜔𝑗,
satisfying the conditions

𝑚

∑

𝑗=1

𝜔𝑗 = 1, 0 < 𝜔𝑗 < 1, for each 𝑗. (10)

According to Titterington et al. [23] the two-component
mixture of known distributions is set by two weights. Let

𝑋 = 𝐴 + 𝐵𝑌 with 𝑌 ∼ LSMIX (Λ) . (11)

Then we can assume that 𝑓𝑋(𝑥) is the weighted sum of two
Tukey’s 𝑔mixture densities such that 𝑔1𝑔2 > 0. Thus

𝑓𝑋 (𝑥)

=

{{{{{{

{{{{{{

{

0, if 𝑥 ≤ 𝜃1,

𝜔1

𝑔1 (𝑥 − 𝜃1)
𝑓𝑈 (𝑧1) , if 𝜃1 < 𝑥 ≤ 𝜃2,

𝜔1

𝑔1 (𝑥 − 𝜃1)
𝑓𝑈 (𝑧1) +

1 − 𝜔1

𝑔2 (𝑥 − 𝜃2)
𝑓𝑈 (𝑧2) , if 𝑥 > 𝜃2,

(12)

where, without loss of generality, we let 𝜃1 < 𝜃2, 0 ≤ 𝜔1 ≤ 1

and for 𝑗 = 1, 2

𝑧𝑗 =
1

𝑔𝑗

ln(

𝑥 − 𝜃𝑗

𝐵/𝑔𝑗

) (13)

with 𝜃𝑗 = 𝐴 − (𝐵/𝑔𝑗), 𝜆𝑗 = (𝐵/|𝑔𝑗|). We use the notation
𝑋 ∼ GTMIX(𝐴, 𝐵, 𝑔1, 𝑔2, 𝜔1). Vitiello and Poon [19] did not
provide the piecewise nature of the mixture density function
above in (12). In this case the cdf of𝑋 is given by

𝐹𝑋 (𝑥) =

{{{{{{{

{{{{{{{

{

0, if 𝑥 ≤ 𝜃1,

𝜔1𝐹𝑈(
ln (𝑥 − 𝜃1) − 𝜆1

𝑔1

) , if 𝜃1 < 𝑥 ≤ 𝜃2,

𝜔1𝐹𝑈(
ln (𝑥 − 𝜃1) − 𝜆1

𝑔1

) + 𝜔2𝐹𝑈(
ln (𝑥 − 𝜃2) − 𝜆2

𝑔2

) , if 𝑥 > 𝜃2,

(14)

where 𝜔2 = 1 − 𝜔1. Begin with the fact that the quartile
function is the inverse of the cdf. Thus, replacing 𝑥𝑞 > 𝜃2 in
(14), we obtain

𝐹𝑋 (𝑥𝑞) = 𝜔1𝐹𝑈(

ln (𝑥𝑞 − 𝜃1) − 𝜆1

𝑔1

)

+ 𝜔2𝐹𝑈(

ln (𝑥𝑞 − 𝜃2) − 𝜆2

𝑔2

) .

(15)

If we assume that 𝑈 ∼ 𝑁(0, 1), (12) can be written as

𝑓𝑋 (𝑥)

=

{{{{{{

{{{{{{

{

0, if 𝑥 ≤ 𝜃1,

𝜔1

𝑔1 (𝑥 − 𝜃1)
𝜑 (𝑧1) , if 𝜃1 < 𝑥 ≤ 𝜃2,

𝜔1

𝑔1 (𝑥 − 𝜃1)
𝜑 (𝑧1) +

1 − 𝜔1

𝑔2 (𝑥 − 𝜃2)
𝜑 (𝑧2) , if 𝑥 > 𝜃2,

(16)
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where 𝜑(𝑧) is the standard normal pdf. Note that the expres-
sion above matches the pdf of a mixture of three-parameter
lognormal distributions. Letting 𝜃1 = 𝜃2 = 0, the above
pdf reduces to that of a mixture of two-parameter lognormal
distributions.

Given that every normal pdf is a version of the standard
normal pdf then if 𝑈 ∼ 𝑁(𝜇, 𝜎

2
) we have

𝑓𝑈 (𝑢, 𝜇, 𝜎) =
1

𝜎
𝜑(

𝑢 − 𝜇

𝜎
) , with 𝜇 ∈ R, 𝜎 > 0, (17)

and (12) can be written as

𝑓𝑋 (𝑥)

=

{{{{{{

{{{{{{

{

0, if 𝑥 ≤ 𝜃
∗
1 ,

𝜔1

𝑔
∗
1 (𝑥 − 𝜃

∗
1 )

𝜑 (𝑧1) , if 𝜃
∗
1 < 𝑥 ≤ 𝜃

∗
2 ,

𝜔1

𝑔
∗
1 (𝑥 − 𝜃

∗
1 )

𝜑 (𝑧1) +
1 − 𝜔1

𝑔
∗
2 (𝑥 − 𝜃

∗
2 )

𝜑 (𝑧2) , if 𝑥 > 𝜃
∗
2 .

(18)

If the parameters 𝑔𝑗 are scaled by 𝜎, that is, 𝑔∗𝑗 = 𝜎𝑔𝑗, then

𝑧𝑗 =

ln (𝑥 − 𝜃
∗
𝑗 ) − 𝜆

∗
𝑗

𝑔
∗
𝑗

(19)

with 𝜃
∗
𝑗 = 𝐴 − (𝐵𝜎/𝑔

∗
𝑗 ), 𝜆

∗
𝑗 = ln(𝐵𝜎/|𝑔∗𝑗 |) + (𝜇/𝜎)𝑔

∗
𝑗 .

Note that the expression above matches the pdf of a mix-
ture of three-parameter lognormal distributions, which is
a generalization of the pdf given in (16), and we use the
notation𝑋 ∼ LSMIX(𝜆∗1 , 𝜆

∗
2 , 𝑔

∗
1 , 𝑔

∗
2 , 𝜃

∗
1 , 𝜃

∗
2 , 𝜔1). Similarly, we

can obtain pdf of a mixture of distributions for the random
variables listed in Table 1.

4. Estimation of the Mixtures of
Two Tukey’s 𝑔 Distributions

In this section, we explain the estimation of the mixture of
two Tukey’s 𝑔 distributions. The expected value of𝑋 is given
by

E [𝑋] = 𝜇

1 =

2

∑

𝑗=1

𝜔𝑗 (𝜃𝑗 +
𝐵

𝑔𝑗

𝑀𝑈 (𝑔𝑗)) . (20)

The 𝑛th raw moment of the random variable𝑋 is given by

E [𝑋
𝑛
] =

2

∑

𝑗=1

𝜔𝑗

𝑛

∑

𝑘=0

(

𝑛

𝑘
)(

𝐵

𝑔𝑗

)

𝑛−𝑘

𝜃
𝑘
𝑗𝑀𝑈 (𝑔𝑗) , (21)

where 𝑔1𝑔2 ̸= 0, 𝑔𝑗 = (𝑛 − 𝑘)𝑔𝑗 and 𝑀𝑈(𝑡) is the moment
generating function of the random variable 𝑈. The central
moments 𝜇𝑛 of the random variable𝑋 are given by

E [(𝑋 − 𝜇

1)

𝑛
] = 𝜇𝑛 (𝑋)

=

2

∑

𝑗=1

𝜔𝑗

𝑛

∑

𝑘=0

(

𝑛

𝑘
)(

𝐵

𝑔𝑗

)

𝑛−𝑘

(𝜃𝑗 − 𝜇

1)

𝑘
𝑀𝑈 (𝑔𝑗) .

(22)

The first five central moments are as follows:

𝜇1 = 𝜔1𝜂1 + 𝜔2𝜂2 = 0,

𝜇2 = 𝜔1 (𝜎
2
1 + 𝜂

2
1) + 𝜔2 (𝜎

2
2 + 𝜂

2
2) ,

𝜇3 = 𝜔1 (3𝜎
2
1 + 𝜂

2
1) 𝜂1 + 𝜔2 (3𝜎

2
2 + 𝜂

2
2) 𝜂2,

𝜇4 = 𝜔1 (3𝜎
4
1 + 6𝜂

2
1𝜎

2
1 + 𝜂

4
1)

+ 𝜔2 (3𝜎
4
2 + 6𝜂

2
2𝜎

2
2 + 𝜂

4
2) ,

𝜇5 = 𝜔1 (15𝜎
4
1 + 10𝜂

2
1𝜎

2
1 + 𝜂

4
1) 𝜂1

+ 𝜔2 (15𝜎
4
2 + 10𝜂

2
2𝜎

2
2 + 𝜂

4
2) 𝜂2,

(23)

where for 𝑗 = 1, 2

𝜂𝑗 =
𝐵

𝑔𝑗

𝑀𝑈 (𝑔𝑗) + 𝜃𝑗 − 𝜇

1,

𝜎
2
𝑗 = (

𝐵

𝑔𝑗

)

2

[𝑀𝑈 (2𝑔𝑗) − 𝑀
2
𝑈 (𝑔𝑗)] .

(24)

Because 𝜃1 < 𝜃2, upon equating population moments to the
corresponding sample moments, it follows from (23) that

𝜔1 (
𝐵

𝑔1

𝑀𝑈 (𝑔1) + 𝜃1 − 𝑚1)

+ 𝜔2 (
𝐵

𝑔2

𝑀𝑈 (𝑔2) + 𝜃2 − 𝑚1) = 0.

(25)

Left-hand side of system (23) is multiplied by 𝜔1+𝜔2 = 1; the
equations take the following form:

𝜔1𝜂1 + 𝜔2𝜂2 = 0,

𝜔1 (𝜎
2
1 + 𝜂

2
1 − 𝑚2) + 𝜔2 (𝜎

2
2 + 𝜂

2
2 − 𝑚2) = 0,

𝜔1 (3𝜂1𝜎
2
1 + 𝜂

3
1 − 𝑚3) + 𝜔2 (3𝜂2𝜎

2
2 + 𝜂

3
2 − 𝑚3) = 0,

𝜔1 (3𝜎
4
1 + 6𝜂

2
1𝜎

2
1 + 𝜂

4
1 − 𝑚4)

+ 𝜔2 (3𝜎
4
2 + 6𝜂

2
2𝜎

2
2 + 𝜂

4
2 − 𝑚4) = 0,

𝜔1 (15𝜂1𝜎
4
1 + 10𝜂

3
1𝜎

2
1 + 𝜂

5
1 − 𝑚5)

+ 𝜔2 (15𝜂2𝜎
4
2 + 10𝜂

3
2𝜎

2
2 + 𝜂

5
2 − 𝑚5) = 0,

(26)

where 𝑚𝑖 (𝑖 = 1, 2, . . .) denote the 𝑖th central moment of the
sample. Equations (26) accordingly constitute a system of five
equations to be solved simultaneously for the estimates of the
five parameters 𝐴, 𝐵, 𝑔1, 𝑔2, and 𝜔1.
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Note that, from the first equation of system of (26), it
follows that

𝜔1 =
𝜂2

𝜂2 − 𝜂1

. (27)

We eliminate 𝜔1 between the first and the subsequent equa-
tions of (26) in turn and thereby reduce the system to the
following four equations in four unknowns 𝐴, 𝐵, 𝑔1, and 𝑔2:

𝜂
−1
1 (𝜎

2
1 + 𝜂

2
1 − 𝑚2) = 𝜂

−1
2 (𝜎

2
2 + 𝜂

2
2 − 𝑚2) ,

𝜂
−1
1 (3𝜂1𝜎

2
1 + 𝜂

3
1 − 𝑚3) = 𝜂

−1
2 (3𝜂2𝜎

2
2 + 𝜂

3
2 − 𝑚3) ,

𝜂
−1
1 (3𝜎

4
1 + 6𝜂

2
1𝜎

2
1 + 𝜂

4
1 − 𝑚4)

= 𝜂
−1
2 (3𝜎

4
2 + 6𝜂

2
2𝜎

2
2 + 𝜂

4
2 − 𝑚4) ,

𝜂
−1
1 (15𝜂1𝜎

4
1 + 10𝜂

3
1𝜎

2
1 + 𝜂

5
1 − 𝑚5)

= 𝜂
−1
2 (15𝜂2𝜎

4
2 + 10𝜂

3
2𝜎

2
2 + 𝜂

5
2 − 𝑚5) .

(28)

These systems of equations are solved computationally by
using scientific software package andwe do not need to verify
the unique solution of the system as the parameter estimates.
We skip further details and numerical illustration owing to
space constraint.

5. Illustration

In this section we discuss some examples and applications of
the results derived in Section 3 with two examples. In the
first example, we discuss the pricing of a call option using
a mixture of two Tukey’s 𝑔-generalized distributions as an
example to illustrate the results of Section 3. In the second
example, we examine the empirical real data of Heating-
Degree-Day to demonstrate usefulness of our approach of
mixture of LS distributions.

Jiménez et al. [24] derived the option price of anEuropean
option assuming that the terminal price distribution follows a
𝑔-generalized distribution. Instead if we use a mixture of two
Tukey’s classes of 𝑔-generalized distributions, then the price
of the call option denoted by 𝐶(𝑡, 𝜏; 𝐾) with a strike price 𝐾

and maturity date 𝑇 = 𝑡 + 𝜏 can be expressed as follows:

𝐶 (𝑡, 𝜏; 𝐾) =

2

∑

𝑗=1

𝜔𝑗𝑒
−𝑟𝜏

⋅ [∫

∞

−𝛿𝑗

𝑒
𝜆𝑗+𝑔𝑗𝑢𝑓𝑈 (𝑢) 𝑑𝑢 − (𝐾 − 𝜃𝑗) 𝐹𝑈 (𝛿𝑗)] ,

(29)

where𝐾 > 𝜃2 and

𝛿𝑗 =

𝜆𝑗 − ln (𝐾 − 𝜃𝑗)

𝑔𝑗

for 𝑗 = 1, 2. (30)

When 𝑈 ∼ 𝑁(0, 1), (29) reduces to

𝐶 (𝑡, 𝜏; 𝐾) =

2

∑

𝑗=1

𝜔𝑗𝑒
−𝑟𝜏

⋅ [𝑒
𝜆𝑗+(1/2)𝑔

2

𝑗Φ(𝛿𝑗 − 𝑔𝑗) − (𝐾 − 𝜃𝑗)Φ (𝛿𝑗)] ,

(31)

where Φ(⋅) denotes the cdf of a standard univariate normal
variable. If we assume that 𝜃1 = 𝜃2 = 0, then (31) reduces to

𝐶 (𝑡, 𝜏; 𝐾)

=

2

∑

𝑗=1

𝜔𝑗𝑒
−𝑟𝜏

[𝑒
𝜆𝑗+(1/2)𝑔

2

𝑗Φ(𝛿𝑗 − 𝑔𝑗) − 𝐾Φ(𝛿𝑗)] .

(32)

Note that when 𝑔𝑗 = 𝜎𝑗√𝜏, these expressions coincide with
the option pricing formula given in Bahra [25]. The authors
also established closed form formula for the calculation of the
sensitives measures of option pricing (Greek parameters of
the option). Here we wish to observe that our mixture model
uses less unknown parameters for calculating the option
pricing, whereas Vitiello and Poon [19] used nine unknown
parameters to obtain the same for the mixture of two 𝑔-
distributions. It has been known that when we increase the
number of parameters, we lose degrees of freedom and it
is no longer acceptable for the best fit of data. This gives
an advantage of our approach for the mixture of two 𝑔-
generalized distributions.

We now present, as an example, the use of Heating-
Degree-Days (HDD) in relation to winter temperature risk as
a substitute for gas demand. HDD based contracts are listed
on the ChicagoMercantile Exchange (CME). We consider an
example that consists of monthly aggregate Heating-Degree-
Day (HDD) data values at the Chicago O’Hare International
Airport from December 1979 to December 2000 given in
Wang [26] and explored also by Vitiello and Poon [19]. We
describe first a LS distribution with three parameters based
method to infer the implied risk-neutral probability density
(RND). In Table 3, we present the estimated values of the
three parameters of lognormal and Log-Logistic distribu-
tions; our interest is to compare with Vitiello and Poon [19]
risk-neutral densities with our proposed mixture model.

The smaller value of the Kolmogorov-Smirnov (KS) test
confirms that the data obeys the LS distributions with three
parameters.We wish to observe that Anderson-Darling (AD)
test is more sensitive to the tails of the LS distributions in
comparison with KS test. In this case, we choose the Log-
Logistic distribution as the best fit for the HDD data.

The implicit risk-neutral densities (RND) of LS distri-
butions are shown in Figure 1 and compared with Figure 6

of Vitiello and Poon [19]. We have obtained a similar plot
by our method with less unknown parameters than method
given by Vitiello and Poon [19]. Furthermore, their KS test
value of 13.6326% which is higher than the KS test values
of Table 3 favors the best fit for the frequency of the LS
distributions. Therefore, finite mixtures are attractive from
the application viewpoint because of its flexibility and permit
us to model various kinds of shaped distributions. In Table 4,
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Table 3: Estimates for adjusting the LS(Λ).

Distribution of three parameters Parameters Test of adjusted
𝜆 𝑔 𝜃 AD (%) KS (%)

Lognormal 5.7407 0.5265 798.2540 37.53 12.3041
Log-Logistic 3.0225 283.8185 824.1814 32.68 11.1367

Table 4: Estimates for adjusting the mixture of LS(Λ).

Mixture of distributions Parameters KS (%) test
(𝜆1; 𝜆2) (𝑔1; 𝑔2) (𝜃1; 𝜃2) 𝜔

Lognormal
6.5749

11.0933

−0.1268

5.7574 × 10
−4

1797.9995

−64213.6284

0.8188 8.0866

Log-Logistic
10.1338

303.7429

−538.2433

6818.2894

1620.7711

−5309.4256

0.8182 8.5928
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Figure 1: Empirical and LS(Λ) densities estimated from HDD.

we give the estimate values of the parameters of the mixture
LS distributions. These parameters are estimated using (28).
The estimated two 𝑔-densities and the implied risk-neutral
densities (RND) are shown in Figure 2.

We observe that the bimodal LS mixture distribution
has same fitting performance of the empirical distribution
function (EDF) and lognormal mixture distribution gives
best goodness of fit using the KS test.

6. Conclusions

This paper presents a mixture of Tukey’s 𝑔-generalized distri-
butions and its properties.Themethodology of estimating the
unknown parameters by the method of moments is also pre-
sented.Theproposedmodel has the advantage that it provides
flexibility, when skewness, kurtosis, or other moments of the
underlying distribution do not follow a normal distribution.
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Figure 2: Empirical and two-𝑔 densities estimated from HDD.

Some special cases of well known distributions are obtained
from the proposed model.
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We consider the problem of modelling count data with excess zeros using Zero-Inflated Poisson (ZIP) regression. Recently, various
regularizationmethods have been developed for variable selection in ZIPmodels. Among these, EMLASSO is a popularmethod for
simultaneous variable selection and parameter estimation. However, EM LASSO suffers from estimation inefficiency and selection
inconsistency. To remedy these problems, we propose a set of EM adaptive LASSOmethods using a variety of data-adaptive weights.
We show theoretically that the new methods are able to identify the true model consistently, and the resulting estimators can be
as efficient as oracle. The methods are further evaluated through extensive synthetic experiments and applied to a German health
care demand dataset.

1. Introduction

Modern research studies routinely collect information on a
broad array of outcomes including count measurements with
excess amount of zeros. Modeling such zero-inflated count
outcomes is challenging for several reasons. First, traditional
count models such as Poisson and Negative Binomial are
suboptimal in accounting for excess variability due to zero-
inflation [1, 2]. Second, alternative zero-inflated models such
as the Zero-Inflated Poisson (ZIP) [2] and Zero-Inflated
Negative Binomial (ZINB) [1] models are computationally
prohibitive in the presence of high-dimensional and collinear
variables.

Regularization methods have been proposed as a pow-
erful framework to mitigate these problems, which tend to
exhibit significant advantages over traditional methods [3,
4]. Essentially all these methods enforce sparsity through a

suitable penalty function and identify predictive features by
means of a computationally efficient Expectation Maximiza-
tion (EM) algorithm. Among these, EM LASSO is particu-
larly attractive due to its capability to perform simultaneous
model selection and stable effect estimation. However, recent
research suggests that EM LASSO may not be fully efficient
and its model selection result could be inconsistent [5, 6].
This led to a simple modification of the LASSO penalty,
namely, the EM adaptive LASSO (EM AL). EM AL achieves
“oracle selection consistency” by allowing different amounts
of shrinkage for different regression coefficients.

Previous studies have not, however, investigated the EM
AL at sufficient depth to evaluate its properties under diver-
sified and realistic scenarios. It is not yet clear, for example,
how reliable the resulting parameter estimates are in the
presence ofmulticollinearity. In particular, the actual variable
selection performance of EM AL depends on the proper
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construction of the data-adaptive weight vector. When the
features to be associated possess an inherent collinearity, EM
AL is expected to produce suboptimal results, a phenomenon
that is especially evident when the sample size is limited
[7]. Several remedies have been suggested for linear and
generalized linear models (GLMs) such as the standard error-
adjusted adaptive LASSO (SEAL) [7, 8]. However, there is
a lack of similar published methods for zero-inflated count
regression models. In addition, complete software packages
of these methods have not been made available to the
community.

We address these issues by providing a set of flexible vari-
able selection approaches to efficiently identify correlated fea-
tures associated with zero-inflated count outcomes in a ZIP
regression framework. We have implemented this method as
AMAZonn (A Multicollinearity-adjusted Adaptive LASSO
for Zero-inflated Count Regression). AMAZonn considers
two data-adaptive weights: (i) the inverse of the maximum
likelihood (ML) estimates (EM AL) and (ii) inverse of the
ML estimates divided by their standard errors (EM SEAL).
We show theoretically that AMAZonn is able to identify the
true model consistently, and the resulting estimator is as effi-
cient as oracle. Numerical studies confirmed our theoretical
findings. The rest of the article is organized as follows. The
AMAZonn method is proposed in the next section, and its
theoretical properties are established in Section 3. Simulation
results are reported in Section 4 and one real dataset is
analyzed in Section 5.Then, the article concludes with a short
discussion in Section 6. All technical details are presented in
the Appendix.

2. Methods

2.1. Zero-Inflated Poisson (ZIP) Model. Zero-inflated count
models assume that the observations originate either from
a “susceptible” population that generates zero and positive
counts according to a count distribution or from a “nonsus-
ceptible” population, which produces additional zeros [1, 2].
Thus, while a subject with a positive count is considered to
belong to the “susceptible” population, individuals with zero
counts may belong to either of the two latent populations.
We denote the observed values of the response variable as
y = (𝑦1, 𝑦2, . . . , 𝑦𝑛). Following Lambert [2], a ZIP mixture
distribution can be written as

𝑃 (𝑦𝑖 = 𝑘) = {{{{{
𝑝𝑖 + (1 − 𝑝𝑖) 𝑒−𝜆𝑖 if 𝑘 = 0,
(1 − 𝑝𝑖) 𝑒−𝜆𝑖𝜆𝑘𝑖𝑘! if 𝑘 = 1, 2, . . . , (1)

where 𝑝𝑖 is the probability of belonging to the nonsusceptible
population and 𝜆𝑖 is the Poisson mean corresponding to the
susceptible population for the 𝑖th individual (𝑖 = 1, . . . , 𝑛). It
can be seen from (1) that ZIP reduces to the standard Poisson
model when 𝑝𝑖 = 0. Also, 𝑃(𝑦𝑖 = 0) > 𝑒−𝜆𝑖 , indicating zero-
inflation.Theprobability of belonging to the “nonsusceptible”
population, 𝑝𝑖, and the Poisson mean, 𝜆𝑖, are linked to the
explanatory variables through the logit and log links as

logit (𝑝𝑖) = z𝑖𝛾 and (2)

Table 1:The AMAZonn data-adaptive weights. 𝛽ML and 𝛾ML denote
the ML estimates based on the unpenalized ZIP model, corre-
sponding to count and zero submodels, respectively. SE denotes the
standard errors of the corresponding ML estimates.

Weighting Scheme Count Zero

AMAZonn - EM AL 1𝛽𝑗ML


1𝛾𝑗ML


AMAZonn - EM SEAL

𝑆𝐸 (𝛽𝑗ML
)𝛽𝑗ML


𝑆𝐸 (𝛾𝑗ML

)𝛾𝑗ML


log (𝜆𝑖) = x𝑖𝛽, (3)

where x𝑖 and z𝑖 are vectors of covariates for the 𝑖th subject
(𝑖 = 1, . . . , 𝑛) corresponding to the count and zero models,
respectively, and 𝛾 = (𝛾0, 𝛾1, . . . , 𝛾𝑞) and 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑝)
are the corresponding regression coefficients including the
intercepts.

For 𝑛 independent observations, the ZIP log-likelihood
function can be written as

𝐿 (𝛽, 𝛾) = ∑
𝑦𝑖=0

log {𝑒𝑧𝑖𝛾 + 𝑒−𝑒𝑥𝑖𝛽}
+ ∑
𝑦𝑖>0

{𝑦𝑖𝑥𝑖𝛽 + 𝑒−𝑥𝑖𝛽} − 𝑛∑
𝑖=1

log {1 + 𝑒𝑧𝑖 𝛾}
− ∑
𝑦𝑖>0

log (𝑦𝑖!) .
(4)

2.2. 	e AMAZonn Method. AMAZonn considers two data-
adaptive weights in the EM adaptive LASSO framework: (i)
the inverse of the maximum likelihood (ML) estimates (EM
AL) and (ii) inverse of the ML estimates divided by their
standard errors (EM SEAL). As defined by Tang et al. [6], the
EM adaptive LASSO formulation for ZIP regression is given
by

�̂�
∗ = argmin {−𝐿 (𝜃)} + ]1

𝑝∑
𝑗=1

𝑤1𝑗 𝛽𝑗 + ]2
𝑝∑
𝑗=1

𝑤2𝑗 𝛾𝑗 , (5)

where 𝜃 = {𝛽, 𝛾} is the parameter vector of interest with
known weights 𝑤1 = (𝑤11, . . . , 𝑤1𝑝) and 𝑤2 = (𝑤21, . . . ,𝑤2𝑝). As noted by Qian and Yang [7], the inverse of the
maximum likelihood (ML) estimates as weights may not
always be stable, especially when the multicollinearity of
the design matrix is a concern. In order to adjust for this
instability, AMAZonn additionally considers the inverse of
the ML estimates divided by their standard errors as weights.
We refer to these two methods as AMAZonn - EM AL and
AMAZonn - EM SEAL, respectively (Table 1).

2.3. 	e EM Algorithm. In order to efficiently estimate the
parameters in the above optimization problem (5), we resort
to the EM algorithm. To this end, we define a set of latent
variables 𝑧𝑖 as follows:𝑧𝑖 = 1 if 𝑦𝑖 is from the zero state, and
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𝑧𝑖 = 0 if 𝑦𝑖 is from the count state, 𝑖 = 1, . . . , 𝑛.
(6)

We consider the latent variables 𝑧𝑖’s as the “missing data” and
rewrite the complete-data log-likelihood function in (4) as
follows:

𝐿 (𝜃) = 𝑛∑
𝑖=1

[𝑧𝑖𝑋𝑖𝛾 − log (1 + exp (𝑋𝑖𝛾))
+ (1 − 𝑧𝑖) {𝑦𝑖𝑋𝑖𝛽 − (𝑦𝑖 + 1) log (1 + 𝑋𝑖𝛽)}] .

(7)

With the above formulation, the objective function in (5) can
be rewritten as

𝑄∗ (𝜃) = −𝐿 (𝜃) + ]1
𝑝∑
𝑗=1

𝑤1𝑗 𝛽𝑗 + ]2
𝑝∑
𝑗=1

𝑤2𝑗 𝛾𝑗 , (8)

which can be iteratively solved as follows:

(1) At iteration t, the E step computes the expectation of𝑄∗(𝜃) by substituting 𝑧𝑖 with its conditional expec-
tation given observed data and current parameter
estimates

�̂�(𝑡)𝑖 = {{{{{{{{{
(1 + [[[

exp (−𝑋𝑖�̂�(𝑡))1 + exp (−𝑋𝑖�̂�(𝑡))]]]) if 𝑦𝑖 = 0,
0 if 𝑦𝑖 > 0.

(9)

(2) In theM step, the expected penalized complete-data
log-likelihood (5) can be minimized the with respect
to 𝜃 as

𝑄∗ (𝜃 | 𝜃(𝑡)) = −2𝐸(𝐿 (𝜃 | 𝜃(𝑡)) + ]1
𝑝∑
𝑗=1

𝑤1𝑗 𝛽𝑗
+ ]2
𝑝∑
𝑗=1

𝑤2𝑗 𝛾𝑗 .
(10)

(3) Continue this process until convergence, 𝑡 = 1, 2, . . ..
It is to be noted that (10) can be further decomposed as

𝑄∗ (𝜃 | 𝜃(𝑡)) = 𝑄∗1 (𝛽 | 𝜃(𝑡)) + 𝑄∗2 (𝛾 | 𝜃(𝑡)) , (11)

where 𝑄∗1 is the weighted penalized Poisson log-likelihood
defined as

𝑄∗1 (𝛽 | 𝜃(𝑡)) = −2 [ 𝑛∑
𝑖=1

(1 − �̂�(𝑡)𝑖 )
⋅ {𝑦𝑖𝑋𝑖𝛽 − (𝑦𝑖 + 1) log (1 + 𝑋𝑖𝛽)}]
+ ]1
𝑝∑
𝑗=1

𝑤1𝑗 𝛽𝑗 ,
(12)

and 𝑄∗2 is the penalized logistic log-likelihood defined as

𝑄∗2 (𝛾 | 𝜃(𝑡)) = −2[ 𝑛∑
𝑖=1

�̂�(𝑡)𝑖 𝑋𝑖𝛾 − log (1 + exp (𝑋𝑖𝛾))]
+ ]2
𝑝∑
𝑗=1

𝑤2𝑗 𝛾𝑗 ,
(13)

both of which can be minimized separately using computa-
tionally efficient coordinate descent algorithms developed for
GLMs [9].

2.4. Selection of Tuning Parameters. We select the tuning
parameters based on the minimum BIC [10] criterion, which
is known to provide better variable selection performance
as compared to other information criteria [11]. This can be
effortlessly incorporated in our formulation by using existing
implementations for zero-inflated count models [3, 4, 6].

3. Oracle Properties

Recently, Tang et al. [6] showed that the EM adaptive
LASSO (i.e., AMAZonn - EMAL) enjoys the so-called oracle
properties, i.e., the estimator is able to identify the true model
consistently, and the resulting estimator is as efficient as
oracle. Here we extend these results to the AMAZonn - EM
SEAL estimator and show that the AMAZonn - EM SEAL
estimator also maintains the same theoretical properties. For
the sake of completeness, we provide a combined general
proof for both AMAZonn estimators.

Without being too rigorous mathematically, recall that
the log-likelihood function for the ZIP regression model is
given by

𝐿 (𝜃; 𝜐𝑖) = ∑
𝑦𝑖=0

log [𝜓𝑖 + (1 − 𝜓𝑖) 𝑓 (0; 𝜆𝑖)]
+ ∑
𝑦𝑖>0

log [(1 − 𝜓𝑖) 𝑓 (𝑦𝑖; 𝜆𝑖)] , (14)

where 𝜐𝑖’s are the observed data (i.i.d observations from the
ZIP distribution), 𝑓(.; 𝜆𝑖) is the probability mass function
of Poisson distribution with parameter 𝜆𝑖 = exp(𝑋𝑖𝛽) and𝜓𝑖 = exp(𝑋𝑖𝛾)/(1+exp(𝑋𝑖𝛾)), 𝑖 = 1, . . . , 𝑛.The corresponding
penalized log-likelihood is given by

𝑄 (𝜃) = −𝐿 (𝜃; 𝜐𝑖) + ]1𝑛
𝑝∑
𝑗=1

𝑤1𝑗 𝛽𝑗 + ]2𝑛
𝑝∑
𝑗=1

𝑤2𝑗 𝛾𝑗 . (15)

Let us denote the true coefficient vector as 𝜃0 = (𝛽𝑇0 , 𝛾𝑇0 )𝑇.
Decompose 𝜃0 = (𝜃𝑇10, 𝜃𝑇20)𝑇 and assume that 𝜃𝑇20 contains
all zero coefficients. Let us denote the subset of true nonzero
coefficients as A = {𝑗 : 𝜃𝑗0 ̸= 0} and the subset of selected
nonzero coefficients as Â = {𝑗 : 𝜃𝑗 ̸= 0}. With this
formulation, the Fisher information matrix can be written as

𝐼 (𝜃0) = [𝐼11 𝐼12𝐼21 𝐼22] , (16)
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where 𝐼11 is the Fisher information corresponding the true
nonzero submodel.The oracle property of AMAZonnmay be
developed based on certain mild regularity conditions which
are as follows:

(A1): The Fisher information matrix 𝐼(𝜃) is finite and
positive definite for all values of 𝜃.

(A2): There exists functions 𝐺𝑗𝑘𝑙 such that

𝜕3𝐿 (𝜃; 𝜐𝑖)𝜕𝜃𝑗𝜕𝜃𝑘𝜕𝜃𝑙 ≤ 𝐺𝑗𝑘𝑙 (𝜐𝑖) ∀𝜃, (17)

where 𝑔𝑗𝑘𝑙 = 𝐸𝜃0(𝐺𝑗𝑘𝑙(𝜐𝑖)) < ∞ for all 𝑗, 𝑘, 𝑙.
Theorem 1. Under (A1) and (A2), if ]1𝑛 → ∞, ]2𝑛 → ∞,
]1𝑛/√𝑛 → 0, ]2𝑛/√𝑛 → 0, then the AMAZonn estimators
obey the following oracle properties:

(1) consistency in variable selection: lim𝑛𝑃(Â = A) = 1,
and

(2) asymptotic normality of the nonzero coefficients:√𝑛(�̂�−
𝜃0)→𝑑N(0, 𝐼−111 ).

4. Simulation Studies

In this section, we conduct simulation studies to evaluate
the finite sample performance of AMAZonn. For compar-
ison purposes, the performance of both AMAZonn and
EM LASSO is evaluated. For each simulated dataset, the
associated tuning parameters are selected by the minimum
BIC criterion for all the methods under consideration. All
the examples reported in this section are obtained from
published papers with slight modifications within the scope
of the current study [11, 12].

Specially, three scenarios are considered: in the data
generatingmodels of Simulations 1 and 2, we consider all con-
tinuous predictors, whereas in Simulation 3, both continuous
and categorical variables are included. For each experimental
instance, we randomly partition the data into training and
test sets: models are fitted on the training set and prediction
errors based on mean absolute scaled error (MASE) are
calculated on the held-out samples in the test set. For an
exhaustive comparison, we considered three sets of sample
sizes {𝑛𝑇, 𝑛𝑃} = {200, 200}, {500, 500}, and {1000, 1000},
where 𝑛𝑇 and 𝑛𝑃 represent the size of the training and test
data, respectively. The corresponding regression coefficients
and intercepts are chosen so that a desired level of sparsity
proportion (𝜙) is achieved. In order to remain as model-
agnostic as possible, we consider the same set of predictors
for both zero and count submodels (i.e., X = Z). Such
models are common in many practical applications where no
domain-specific prior information about the zero-inflation
mechanism is available. Below we provide the detailed data
generation steps for both simulation examples:

Simulation 1.

(1) Generate 40 predictors from the multivariate normal
distribution with mean vector 0, variance vector 1,

and variance-covariance matrix 𝑉, where the ele-
ments of 𝑉 are 𝜌|𝑗1−𝑗2| ∀𝑗1 ̸= 𝑗2 = 1, . . . , 40.
The values of pairwise correlation 𝜌 varies from 0
(uncorrelated) to 0.4 (moderate collinearity) to 0.8
(high collinearity).

(2) The count and zero regression parameters are chosen
as follows:(𝛽1, . . . , 𝛽8)= (−1, −0.5, −0.25, −0.1, 0.1, 0.25, 0.5, 0.75) ,

(𝛽9, . . . , 𝛽16) = (0.2, . . . , 0.2) ,
(𝛽17, . . . , 𝛽40) = (0, . . . , 0) ,
(𝛾1, . . . , 𝛾8)= (−0.4, −0.3, −0.2, −0.1, 0.1, 0.2, 0.3, 0.4) ,
(𝛾9, . . . , 𝛾16) = (0.2, . . . , 0.2) ,
(𝛾17, . . . , 𝛾40) = (0, . . . , 0) .

(18)

(3) The zero-inflated count outcome 𝑦 is simulated
according to (1) with the above parameters and input
data.

Simulation 2. It is similar to Simulation 1 except that the
count and zero regression parameters are chosen as follows:

(𝛽1, . . . , 𝛽10) = (0.05, −0.25, 0.05, 0.25,
− 0.15, 0.15, 0.25, −0.2, 0.25, −0.25) ,

(𝛽11, . . . , 𝛽30) = (−0.2, 0.25, 0.15,
− 0.25, 0.2, 0, . . . , 0) ,

(𝛽31, . . . , 𝛽40) = (0.27, −0.27, 0.14, 0.2,
− 0.2, 0.2, 0, . . . , 0) ,

(𝛾1, . . . , 𝛾10) = (−0.5, −0.4, −0.3, −0.2,
− 0.1, 0.1, 0.2, 0.3, 0.4, 0.5) ,

(𝛾11, . . . , 𝛾30) = (−0.2, 0.25, 0.15, −0.25, 0.2, 0, . . . , 0) ,
(𝛾31, . . . , 𝛾40) = (0.27, −0.27, −0.14, −0.2,

− 0.2, 0.2, 0, . . . , 0) .

(19)

Simulation 3.

(1) First simulate 𝑋1, . . . , 𝑋6 independently from the
standard normal distribution. Consider the fol-
lowing as the continuous predictors: {𝑋1}, {𝑋2},{𝑋3, 𝑋23, 𝑋33}, {𝑋4}, {𝑋5} and {𝑋6, 𝑋26, 𝑋36}.

(2) Simulate 5 continuous variables from themultivariate
normal distribution with mean 0, variance 1, and
AR(𝜌) correlation structure for varying 𝜌 in {0, 0.4,
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Table 2: Results of Simulations 1–3. Average (over 200 replications) of Mean Absolute Scale Errors (MASEs) of AMAZonn and EM LASSO
is reported.

𝜌 𝜙 𝑛 Simulation 1 Simulation 2 Simulation 3
AMAZonn

- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

AMAZonn
- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

AMAZonn
- EM
SEAL

AMAZonn
- EM AL

EM
LASSO

0.0

0.3 200 0.91 0.92 0.91 0.60 0.61 0.62 0.97 1.03 1.00500 0.90 0.90 0.91 0.60 0.60 0.61 0.97 0.99 1.001000 0.91 0.91 0.92 0.58 0.58 0.60 0.97 0.98 0.980.4 200 1.12 1.13 1.12 0.75 0.75 0.76 1.18 1.23 1.23500 1.05 1.05 1.06 0.73 0.73 0.74 1.11 1.17 1.201000 1.03 1.03 1.04 0.71 0.71 0.72 1.11 1.16 1.160.5 200 1.28 1.28 1.27 0.87 0.87 0.87 1.40 1.46 1.46500 1.16 1.16 1.17 0.84 0.84 0.85 1.28 1.33 1.361000 1.15 1.15 1.19 0.80 0.80 0.82 1.23 1.30 1.31

0.4

0.3 200 1.05 1.06 1.09 0.63 0.63 0.63 0.96 1.01 0.99500 1.04 1.04 1.05 0.61 0.61 0.62 0.95 0.97 0.991000 0.96 0.96 0.98 0.58 0.58 0.59 0.97 0.98 0.980.4 200 1.21 1.22 1.22 0.75 0.75 0.76 1.19 1.22 1.23500 1.18 1.18 1.21 0.71 0.71 0.72 1.14 1.19 1.221000 1.13 1.14 1.18 0.68 0.68 0.70 1.13 1.18 1.170.5 200 1.42 1.43 1.42 0.83 0.84 0.83 1.34 1.40 1.43500 1.26 1.26 1.32 0.80 0.81 0.82 1.27 1.32 1.351000 1.23 1.23 1.30 0.75 0.75 0.77 1.27 1.34 1.33

0.8

0.3 200 1.32 1.31 1.36 0.62 0.63 0.63 0.96 1.00 1.01500 1.13 1.13 1.23 0.59 0.59 0.61 0.97 0.99 1.011000 1.13 1.13 1.21 0.56 0.56 0.58 0.95 0.96 0.960.4 200 1.52 1.52 1.58 0.71 0.72 0.72 1.18 1.21 1.23500 1.31 1.32 1.45 0.68 0.68 0.69 1.12 1.19 1.201000 1.24 1.24 1.37 0.64 0.64 0.64 1.12 1.17 1.160.5 200 1.56 1.58 1.61 0.78 0.78 0.78 1.37 1.42 1.44500 1.44 1.45 1.65 0.73 0.73 0.76 1.29 1.34 1.391000 1.33 1.36 1.52 0.69 0.70 0.69 1.26 1.33 1.34

0.8} as before, and quantile-discretize each of them
into 5 new variables based on their quantiles: (−∞,Φ−1(1/5)], (Φ−1(1/5),Φ−1(2/5)], (Φ−1(2/5),Φ−1(3/5)], (Φ−1(3/5),Φ−1(4/5)], and (Φ−1(4/5),∞), leading
to a total of 20 categorical variables.

(3) With the above input data and parameters, the zero-
inflated count outcome 𝑦 is simulated according to
(1), where the two sets of regression parameters are
chosen as follows:

(𝛽1, . . . , 𝛽10) = (0, 0, 0.1, 0.2, 0.1, 0, 0, 23 , −1, 13) ,(𝛽11, . . . , 𝛽30) = (−2, −1, 1, 2, 0, . . . , 0) ,
(𝛾1, . . . , 𝛾10) = (0, 0, 0.1, 0.2, 0.1, 0, 0, 23 , −1, 13) ,(𝛾11, . . . , 𝛾30) = (−2, −1, 1, 2, 0, . . . , 0) .

(20)

The resulting performance measures iterated over 200 repli-
cations (Table 2) reveal that AMAZonn performs as well
as or better than EM LASSO in most of the simulation
scenarios. For highly collinear designs, AMAZonn - EM
SEAL stands out to be the best estimator for almost every
sample size and zero-inflation proportion, highlighting the
benefit of incorporating data-adaptive weights based on both
ML estimates and their standard errors. This phenomenon is
also apparent in the analysis of German health care data in
Section 5, where the parameter estimates from theAMAZonn
- EM SEAL method appear to be more parsimonious than
those from other methods.

5. Application to German Health Care
Demand Data

Next, we apply our method to the German health care
demand data [3], a subset of the German Socioeconomic
Panel (GSOEP) dataset [13], which has also been used for

87A Note on the Adaptive LASSO for Zero-Inflated Poisson Regression



Table 3: Summary of predictors in German health care demand data.

Variables Mean (sd) or Frequency Description
health 6.84 (2.19) health satisfaction: 0 (low) - 10 (high)
handicap 216 / 1596 1 : handicap, 0 : otherwise
hdegree 6.16 (18.49) degree of handicap in percentage points
married 1257 / 555 1 :married, 0 : otherwise
schooling 11.83 (2.49) years of schooling
hhincome 4.52 (2.13) household income per month in German marks/1000
children 703 / 1109 1 : children under 16 in household, 0 : otherwise
self 153 / 1659 1 : self-employed, 0 : otherwise
civil 198 / 1614 1 : civil servant, 0 : otherwise
bluec 566 / 1246 1 : blue collar employee, 0 : otherwise
employed 1506 / 306 1 : employed, 0 : otherwise
public 1535 / 277 1 : public health insurance, 0 : otherwise
addon 33 / 1779 1 : addon insurance, 0 : otherwise
age30 1480 / 332 1 if age ≥ 30
age35 1176 / 636 1 if age ≥ 35
age40 919 / 893 1 if age ≥ 40
age45 716 / 1096 1 if age ≥ 45
age50 535 / 1227 1 if age ≥ 50
age55 351 / 1461 1 if age ≥ 55
age60 147 / 1665 1 if age ≥ 60

Table 4: Model selection performance of EM LASSO and AMA-
Zonn on German health care data.

Methods BIC Time (in seconds)
EM LASSO 9062.744 50.252
AMAZonn - EM AL 9002.487 26.215
AMAZonn - EM SEAL 8982.924 26.528

illustration purposes in previous studies [3, 14]. The original
data contains number of doctor office visits for 1, 812 West
German men aged 25 to 65 years in the last three months of
1994 (response variable of interest), which is supplemented
with complementary information on twelve annual waves
from 1984 to 1995 including health care utilization, cur-
rent employment status, and insurance arrangements under
which subjects are protected [3].Thegoal of the original study
was to investigate how the employment characteristics of the
Germannationals are related to their health care demand.The
distribution of the dependent variable (Figure 1) reveals that
many doctor visits are zeros (41.2%), confirming that classical
methods such as Poisson regression are inappropriate for
modeling this outcome.

In the model fitting process, along with the original
variables, the interactions between age groups and health
condition are also considered, resulting in 28 candidate
predictors (Table 3). The fitting results from the full models
indicate that both EM adaptive LASSO methods provide
competitive model selection performance (Table 4), often
leading to sparser model selection than EM LASSO (Table 5).
In addition, the AMAZonn - EM SEAL method appears
to choose even fewer numbers of variables. Such feature of
AMAZonn - EM SEAL can be appealing in many practical

situations, where data collinearity between variables is a
concern and a more aggressive feature selection is desired.
While the computational overheads of both EM adaptive
LASSO methods are similar, they are an order of magnitude
faster than EM LASSO (Table 4), further confirming that
AMAZonn offers a viable alternative to existing methods.

6. Discussion

In recent years, there has been a huge influx of zero-
inflated count measurements spanning several disciplines
including biology, public health, and medicine. This has
motivated the widespread use of zero-inflated count models
in many practical applications such as metagenomics, single-
cell RNA sequencing, and health care research. In this
article, we propose the AMAZonn method for adaptive
variable selection in ZIP regression models. Both our sim-
ulation and real data experience suggest that AMAZonn
can outperform EM LASSO under a variety of regression
settings while maintaining the desired theoretical properties
and computational convenience. Our preliminary results are
rather encouraging, and for practical purposes, we provide
a publicly available R package implementing this method:
https://github.com/himelmallick/AMAZonn.

We envision a number of improvements that may further
refine AMAZonn’s performance. While AMAZonn relies on
ML estimates to construct the weight vector, these estimates
may not be available in ultrahigh dimensions [7]. Alternative
initialization schemes could further improve on this such
as the ridge estimates [15]. Extension to other zero-inflated
models such as marginalized zero-inflated count regression
[16, 17], two-part and hurdle models [18], and multiple-
inflation models [19] can form a useful basis for further
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Figure 1: Number of doctor office visits in the German health care data.

investigations. Although we only focused on variable selec-
tion for fixed effects models, future work could include an
extension to other regularization problems such as grouped
variable selection [12, 20] as well as sparse mixed effects
models [21].

Appendix

Proof. It is to be noted that both logistic and Poisson
distributions belong to the exponential family. Since the
objective function in (10) can be decomposed into weighted
logistic and Poisson log-likelihoods (each belonging to the
GLM family without the penalties), Theorem 1 is the direct
application ofTheorem4 inZou [22].Therefore, if ]1𝑛 → ∞,
]2𝑛 → ∞, ]1𝑛/√𝑛 → 0, and ]2𝑛/√𝑛 → 0, then both the
AMAZonn - EM AL and AMAZonn - EM SEAL estimators
hold the oracle properties: with probability tending to 1, the
estimate of zero coefficients is 0, and the estimate for nonzero
coefficients has an asymptotic normal distribution withmean
being the true value and variance which approximately equals
the submatrix of the Fisher information matrix containing
nonzero coefficients. Hence the proof is complete.
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We propose a quasi-likelihood nonlinear model with random effects, which is a hybrid extension of quasi-likelihood nonlinear
models and generalized linear mixed models. It includes a wide class of existing models as examples. A novel penalized quasi-
likelihood estimation method is introduced. Based on the Laplace approximation and a penalized quasi-likelihood displacement,
local influence of minor perturbations on the data set is investigated for the proposed model. Four concrete perturbation schemes
are considered in the local influence analysis. The effectiveness of the proposed methodology is illustrated by some numerical
examinations on a pharmacokinetics dataset.

1. Introduction

In this paper, we propose a quasi-likelihood nonlinear model
with random effects (QLNMWRE) and investigate local
influence of the model. The QLNMWRE is a hybrid gener-
alization of quasi-likelihood nonlinear models [1, 2] and gen-
eralized linear mixed models, and it combines the advantages
of both models. Generalized linear mixed models (GLMMs)
are extensions of the well-known generalized linear models
[3] by adding random effects to the linear predictor. GLMMs
are effective and flexible for modeling nonnormal responses,
repeated measurements, and other forms of clustered data.
Efficient inference for theGLMMsdepends on the underlying
distribution of the data. Nevertheless, the exact distribution
is rarely known in practice. In contrast, the quasi-likelihood
method [4] requires only the first and second moments
assumptions about the distribution and has been widely
applied in the theory and practice of statistics (see, e.g., [5–
8]).

Detecting influential observations is important in data
analysis. The local influence analysis has become a general
tool for detecting a group of points with great influence
on the fitted model through perturbation schemes [9]. This
approach has been successfully applied in many models,

such as mixed models [10, 11], generalized linear models
[12], generalized linearmixedmodels [13], exponential family
nonlinear models [14], nonlinear reproductive dispersion
mixed model [15], nonlinear mixed-effect models [16, 17],
and multivariate threshold time series models [1]. However,
in these references the local influence method severely
depends on the likelihood displacement, which is rarely
known in practice. Instead, quasi-likelihood methods do
not require the exact likelihood function except the first
two moments of the response variables. Hence, we con-
duct influence analysis of the QLNMWRE using a novel
penalized quasi-likelihood estimation method.The proposed
methodology is illustrated by analyzing the pharmacokinetics
dataset.

The remainder of this paper is organized as follows.
In Section 2, we introduce the QLNMWRE and the cor-
responding estimation method. A Fisher-scoring iteration
algorithm is advanced to calculate the estimators. In Sec-
tion 3, a penalized quasi-likelihood displacement (PQLD)
is proposed, and assessment of local influence under four
different perturbation schemes is investigated. In Section 4,
the pharmacokinetics dataset is employed to illustrate the
effectiveness of the proposed methodology. Finally, we make
discussion in Section 5.
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2. Models and Estimation Method

Let𝑌 be a response vector of length 𝑛, and let𝑋 and𝑍 be 𝑛×𝑘
and 𝑛 × 𝑞 matrices of explanatory variables associated with
fixed and random effects, respectively. Conditional on the𝑞−dimensional vector of random effects, b, the observations,{𝑦𝑖, 𝑖 = 1, . . . , 𝑛}, are independent and satisfy that

𝐸 (𝑦𝑖 | b) = ℎ (x𝑖,𝛽) + z𝑇𝑖 b ≜ 𝜇𝑖
var (𝑦𝑖 | b) = 𝜎2V (𝜇𝑖) , (1)

where 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑝)𝑇 (𝑝 < 𝑛) is an unknown param-
eter vector defined in a compact subsetB ⊂ 𝑅𝑝, x𝑖 and z𝑖 are
defined in a subsetX of𝑅𝑘 and a subsetZ of𝑅𝑞, respectively,
V(⋅) is a knownvariance function,𝜎2 is a dispersion parameter
that is known or can be estimated separately, ℎ(⋅, ⋅) is a
continuously differentiable function such that the derivative
matrix 𝐷 = 𝐷𝛽(𝛽) = 𝜕ℎ(𝛽)/𝜕𝛽𝑇 has rank 𝑝 for all 𝛽, with
ℎ(𝛽) = (ℎ(x1,𝛽), . . . , ℎ(x𝑛,𝛽))𝑇, and the random effects b are
assumed to be multivariate normally distributed:

b ∼ 𝑁(0, 𝜎2Σ) , (2)

with Σ being a known nonnegative definite matrix. Following
[2, 3, 18, 19], the conditional log quasi-likelihood on b is
defined as

𝑄1 (𝛽; y) = 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡, (3)

where 𝜇𝑖 = ℎ(x𝑖,𝛽) + z𝑇𝑖 b ≜ 𝜇𝑖(𝛽). Themodel defined by (1)-
(3) is the so-called QLNMWRE.

Clearly, this QLNMWRE encompasses some important
special cases. If Σ = 0, then the above model is just the
quasi-likelihood nonlinear model discussed by [2]; if 𝜇𝑖(𝛽) =ℎ(x𝑇𝑖 𝛽) + z𝑇𝑖 b, and 𝑦𝑖 are independently drawn from a one-
parameter exponential family of distributions with density

exp {𝜃𝑇𝑖 𝑦𝑖 − 𝑘 (𝜃𝑖)} 𝑑𝛾 (𝑦𝑖) , 𝑖 = 1, . . . , 𝑛, (4)

where 𝛾(⋅) is a measure, then it reduces to generalized
linear models with random effects (see [20, 21]). Hence, the
QLNMWRE is a hybrid extension of the quasi-likelihood
nonlinear models and the generalized linear models with
random effects.

Let 𝑝(b|𝜎2) be a probability density function of random
effect b. Then the joint log quasi-likelihood function of y =(𝑦1, . . . , 𝑦𝑛)𝑇 and b is

𝑄(𝛽, 𝜎2; y, b) = 𝑄1 (𝛽; y) + log𝑝 (b | 𝜎2)
= 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 𝑞2 log (2𝜋𝜎2)
− 12 log |Σ| − 12𝜎2 b𝑇Σ−1b.

(5)

Similar to the relationship between the joint log-likelihood
function and the marginal log -likelihood function, we have

𝑄(𝛽, 𝜎2; y, b) = 𝑄 (𝛽, 𝜎2; y) + 𝑄 (𝛽, 𝜎2; b | y) , (6)

where 𝑄(𝛽, 𝜎2; y) is the marginal log quasi-likelihood func-
tion of y and 𝑄(𝛽, 𝜎2; b | y) is the log quasi-likelihood
function of b given y, i.e.,

𝑄(𝛽, 𝜎2; y) = log∫ exp {𝑄 (𝛽, 𝜎2; y, b)} 𝑑b,
𝑄 (𝛽, 𝜎2; b | y) = log{ exp {𝑄 (𝛽, 𝜎2; y, b)}

∫ exp {𝑄 (𝛽, 𝜎2; y, b)} 𝑑b} .
(7)

Following the arguments in [20], the integrated log quasi-
likelihood function used to estimate 𝛽 is defined by

exp {𝑄 (𝛽, 𝜎2; y)} ∝ |Σ|−1/2
⋅ ∫ exp{− 12𝜎2

𝑛∑
𝑖=1

𝑑𝑖 (𝑦𝑖, 𝜇𝑖) − 12𝜎2 b𝑇Σ−1b}𝑑b, (8)

where 𝑑𝑖(𝑦; 𝜇) = −2∫𝑦
𝜇
((𝑦 − 𝑡)/V(𝑡))𝑑𝑡 denotes the deviance

measure of fit. If, conditional on b, 𝑦𝑖 is a member of the
exponential family, then −𝑑𝑖(𝑦𝑖; 𝜇𝑖)/(2𝜎2) is the conditional
log-likelihood of 𝑦𝑖 given b, and 𝐸b[∑𝑛𝑖=1 𝑑𝑖(𝑦𝑖; 𝜇𝑖)/(2𝜎2)] is
the log-likelihood function.

In general, no analytical expressions are available for the
integral in (8) and approximate techniques are needed. The
simplest approach is the Laplace approximation [22, 23].
Obviously, the right-hand side of (8) is

𝑐 |Σ|−1/2 ∫𝑒−𝑚(b)𝑑b, (9)

where𝑚(b) = (1/2𝜎2) ∑𝑛𝑖=1 𝑑𝑖(𝑦𝑖, 𝜇𝑖)+ (1/2𝜎2)b𝑇Σ−1b. When
the Laplace method is applied to approximate the integrated
quasi-likelihood function (8), estimates of 𝛽 for fixed 𝜎2
are obtained by maximizing the penalized quasi-likelihood
(PQL) (8):

𝑄𝑝 (𝛽) = − 12𝜎2
𝑛∑
𝑖=1

𝑑𝑖 (𝑦𝑖, 𝜇𝑖) − 12𝜎2 b̃𝑇Σ−1b̃

= 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃
= 𝑄1 (𝛽; 𝑌)𝜇𝑖=𝜇𝑖 − 12𝜎2 b̃𝑇Σ−1b̃,

(10)

where 𝜇𝑖 = 𝑓(x𝑖,𝛽) + z𝑇𝑖 b̃, and b̃ ≜ b̃(𝛽) is the root of𝜕𝑚(b)/𝜕b = 0 for fixed 𝛽. We will use the penalized quasi-
likelihood𝑄𝑝(𝛽) to estimate 𝛽 and to conduct local influence
analysis. To this end, we need the following assumptions.

Assumption A.

(i) 𝐸(V(𝜇𝑖))−1(𝑦𝑖 − 𝜇𝑖)|𝜇𝑖=𝜇𝑖 = 0, ∀𝑖 = 1, . . . , 𝑛;
(ii) there exists some constant 𝑀 > 0 and some compact

subsetB1 ⊂ B such that
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sup
𝑖≥1,𝛽⊆B1

𝐸 ((V (𝜇𝑖))−1 (𝑦𝑖 − 𝜇𝑖)𝜇𝑖=𝜇𝑖)2 ≤ 𝑀. (11)

It is easily seen that Assumption A holds in generalized
linear mixed models and exponential family nonlinear ran-
dom effects models. Assumption A guarantees existence of
the variance-covariance matrix of ẽ, where ẽ = (𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑛)𝑇
with 𝑒𝑖 = V(𝜇𝑖)−1(𝑦𝑖 − 𝜇𝑖)|𝜇𝑖=𝜇𝑖 . Let 𝑍 = (z1, . . . , z𝑛)𝑇 and𝐾 = 𝜕ẽ/𝜕𝜇𝑇 = diag(𝑘1, . . . , 𝑘𝑛), where

𝑘𝑖 = 𝜕𝜕𝜇𝑖 (
𝑦𝑖 − 𝜇𝑖
V (𝜇𝑖) )𝜇𝑖=𝜇𝑖 . (12)

PutΩ1 = 𝐾−1−𝑍Σ𝑍𝑇,𝑊 = 𝜕2ℎ(𝛽)/𝜕𝛽𝜕𝛽𝑇,Ω = 𝐾−10 −𝑍Σ𝑍𝑇,
and𝐾0 = 𝐸𝑦(𝐾). Under AssumptionA, we have the following
result.

Theorem 1. For the model defined by (1)-(3), conditional on
b̃, the quasi-score function, the quasi-observed information
matrix, and the quasi-Fisher information matrix for 𝛽 admit
the following representations:

𝑆𝑛 (𝛽) ≜ �̇�𝑝 (𝛽) = 𝜎−2 (𝜕ℎ (𝛽)
𝜕𝛽𝑇 )𝑇 ẽ = 𝜎−2𝐷𝑇ẽ, (13)

𝐻𝑛 (𝛽) ≜ −�̈�𝑝 (𝛽) = −𝜕2𝑄𝑝 (𝛽)
𝜕𝛽𝜕𝛽𝑇

= −𝜎−2 ([ẽ𝑇] [𝑊] + 𝐷𝑇Ω1𝐷) ,
(14)

𝐹𝑛 (𝛽) ≜ 𝐸𝑦 (−�̈�𝑝 (𝛽)) = −𝜎−2𝐷𝑇Ω−1𝐷, (15)

where [⋅][⋅] indicates the array multiplication.

Let �̂�𝑛 denote the maximum quasi-likelihood estimator
(MQLE) of 𝛽, which is the solution of equation �̇�𝑝(𝛽) = 0.
Then the Fisher-scoring iteration method can be used for
computing �̂�𝑛 by iteratively solving the following equation
(see [14, 24]):

𝛽
𝑖+1 = 𝛽𝑖 + 𝐹−1𝑛 (𝛽𝑖) 𝑆𝑛 (𝛽𝑖)

= 𝛽𝑖 − (𝐷𝑇Ω−1𝐷)−1𝐷𝑇ẽ (𝑖 = 0, 1, 2, ⋅ ⋅ ⋅ ) (16)

where 𝐷,Ω, and ẽ are all evaluated at 𝛽𝑖 and b𝑖.
On the other hand, it follows from (5) that the quasi-score

function and the quasi-Fisher information matrix for b can
be, respectively, expressed as

𝑆 (b) ≜ 𝜕𝑄 (𝛽, 𝜎2; y, b)
𝜕b = 𝜎−2 (𝑍𝑇e − Σ−1b) ,

𝐹 (b) ≜ 𝐸𝑦(−𝜕2𝑄(𝛽, 𝜎2; y, b)
𝜕b𝜕b𝑇 )

= 𝜎−2 (𝑍𝑇𝑉−1𝑍 + Σ−1) ,

(17)

where e = e(𝛽) = (𝑒1, . . . , 𝑒𝑛)𝑇 with 𝑒𝑖 = (𝑦𝑖 − 𝜇𝑖)/V(𝜇𝑖), and
𝑉−1 = diag (V−1 (𝜇1) , . . . , V−1 (𝜇𝑛)) . (18)

Hence, the Fisher-scoring iteration algorithm for computing
the predictor of b𝑗 under known 𝛽𝑗 is given by

b(𝑗𝑖+1) = b(𝑗𝑖) + (𝑍𝑇𝑉−1𝑍 + Σ−1)−1 (𝑍𝑇e − Σ−1b(𝑗𝑖)) ,
𝑗𝑖 = 0, 1, 2, . . . , (19)

where𝑉 and 𝑒 are all evaluated at b(𝑗𝑖) and 𝛽𝑗. As the iteration
scheme (19) converges, b𝑗𝑖 converges to b𝑗.

In general, the choice of initial value 𝛽0 is important for
the Fisher-scoring iteration algorithm. We use the algorithm
in [2] for quasi-likelihood nonlinear models to find the
starting values of parameter𝛽 forQLNMWREwith 𝑏0 = ⋅ ⋅ ⋅ =𝑏𝑞 = 0. Hence, the MQLE �̂� of 𝛽 can be obtained by solving
(16) and (19) until convergence.

In order to investigate the statistical diagnostic measures
for QLNMWRE, we rewrite (16)

𝛽𝑖+1 = (𝐷𝑇Ω−1𝐷)−1𝐷𝑇Ω−1𝐺𝛽𝑖 , (20)

where 𝐺 = 𝐷𝛽𝑖 − Ωẽ. When 𝛽𝑖 converges to �̂�, �̂� can be
expressed as

�̂� = (𝐷𝑇Ω−1𝐷)−1𝐷−1Ω−1𝐺�̂� , (21)

where 𝐺 = 𝐷�̂� − Ωê, 𝐷,Ω and ê are all evaluated at �̂�.

3. Local Influence

The aim of local influence analysis is to investigate the behav-
ior of some influencemeasure𝑇(𝜔)when small perturbations
are made in the model/data, where 𝜔 is an m-dimensional
vector of perturbations restricted to some open subset Θ ∈𝑅𝑚. For simple statistical models, Cook constructed in [9]
the likelihood displacement 𝐿𝐷(𝜔) and used it to assess
the local influence of a minor perturbation. Although this
approach is very useful, serious difficulties are encountered
when applying it to complicated models, because of the
intractable likelihood function. For the sake of coping with
those difficulties, some authors have considered alternatives
to replace LD(𝜔). For instance, Zhu et al. proposed in [25]
the Q-likelihood displacement and established an approach
to assess local influence of statistical models with incom-
plete data, and Jung presented in [26] a quasi-likelihood
displacement to obtain local influence analysis in generalized
estimating equations. Inspired by [25, 26], we define in this
work a new penalized quasi-likelihood displacement and
then adapt the local influence approach introduced by [9] to
the QLNMWRE.

Let𝑄𝑝(𝛽) and𝑄𝑝(𝛽|𝜔) be the penalized quasi-likelihood
for the unperturbed and perturbed models, respectively. We
assume that there is an 𝜔0 such as 𝑄𝑝(𝛽|𝜔0) = 𝑄𝑝(𝛽).
Let �̂� and �̂�(𝜔) be the MQLE of 𝛽 under the unperturbed
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and perturbed models, respectively. Similar to the likelihood
displacement [9], we define the penalized quasi-likelihood
displacement (PQLD) as

𝑃𝑄𝐿𝐷 (𝜔) = 2 {𝑄𝑝 (�̂�) − 𝑄𝑝 (�̂� (𝜔))} . (22)

The influence graph is defined as 𝛼(𝜔) = (𝜔𝑇, 𝑃𝑄𝐿𝐷(𝜔))𝑇.
Following the approach developed in [9, 25, 26], the normal
curvature𝐶l of 𝛼(𝜔) at𝜔0 in the direction of some unit vector
l can be used to summarize the local behavior of the penalized
quasi-likelihood displacement. As shown in [9], the normal
curvature 𝐶l in the unit direction l(‖l‖ = 1) at 𝜔0 is given by

𝐶𝑙 = 2 l𝑇�̈�l , (23)

where �̈� = −(𝜕2𝑄𝑝(𝛽 | 𝜔)/𝜕𝜔𝜕𝜔𝑇)|𝜔=𝜔0 = −△𝑇�̈�−1𝑝 △, in
which △ = 𝜕2𝑄𝑝(𝛽|𝜔)/𝜕𝛽𝜕𝜔𝑇 is a 𝑝 × 𝑚 matrix evaluated
at 𝛽 = �̂� and 𝜔 = 𝜔0, �̈�𝑝 = 𝜕2𝑄𝑝(𝛽)/𝜕𝛽𝜕𝛽𝑇 is a 𝑝 × 𝑝
Hessian matrix evaluated at 𝛽 = �̂�. The maximum curvature𝐶𝑚𝑎𝑥, which is the largest absolute eigenvalue of 2�̈�, and
the corresponding direction vector l𝑚𝑎𝑥 are usually used for
identifying locally influential observations. A large value of𝐶𝑚𝑎𝑥 is an indication of a serious local problem, and if the 𝑖-th
element in l𝑚𝑎𝑥 is relatively large special attention should be
paid to the element being perturbed by 𝜔𝑖. To apply the local
influence method in [9] to the QLNMWRE, we consider the
following four perturbation schemes.

3.1. Case-Weights Perturbation. Let𝜔 be an 𝑛×1 perturbation
vector such that 𝜔0 = (1, ⋅ ⋅ ⋅ , 1)𝑇. The joint log quasi-
likelihood function for the perturbed model is given by

𝑄(𝛽, 𝜎2; y,b,𝜔) = 𝐶 + 𝑛∑
𝑖=1

𝜔𝑖 ∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡
− 12𝜎2 b𝑇Σ−1b,

(24)

where 𝐶 = −(𝑞/2) log(2𝜋𝜎2) − (1/2)|Σ|. Then the penalized
quasi-likelihood function can be expressed as

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑖=1

𝜔𝑖 ∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃, (25)

where 𝜇𝑖 = ℎ(x𝑖,𝛽) + z𝑇𝑖 b̃,𝑍 = (z1, z2, . . . , z𝑛)𝑇, and b̃ satisfies
𝑛∑
𝑖=1

𝑤𝑖 𝑦𝑖 − 𝜇𝑖
V (𝜇𝑖) z𝑖 − Σ−1b̃ = 0. (26)

Hence, b̃ = Σ𝑍𝑇𝑊ẽ, where 𝑊 = diag(𝜔1, . . . , 𝜔𝑛). Then

𝜕2𝑄𝑝 (𝛽 | 𝑤)
𝜕𝛽𝜕𝑤𝑖

𝜔0,�̂� = 𝜎−2𝐷𝑇𝛿𝑖𝑒𝑖 + 𝜎−2𝐷𝑇𝐾
⋅ 𝐾−1 (Ω−1𝐾−1 − 𝐼) 𝛿𝑖𝑒𝑖

= 𝜎−2𝐷𝑇Ω−11 𝐾−1𝛿𝑖𝑒𝑖,
(27)

and thus

△ = 𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑇

𝜔0 ,�̂� = 𝜎−2𝐷𝑇Ω−11 𝐾−1𝐸, (28)

where 𝐸 = diag(𝑒1, . . . , 𝑒𝑛).
3.2. Response Variable Perturbation. A perturbation of the
response variables (𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛)𝑇 is introduced by replacing𝑦𝑖 by 𝑦𝑖𝜔 = 𝑦𝑖 + 𝜔𝑖, where 𝜔 = (𝜔1, ⋅ ⋅ ⋅ , 𝜔𝑛)𝑇, and 𝜔0 =(0, . . . , 0)𝑇 represents the situation with no perturbation.
In this case, the joint log quasi-likelihood function for the
perturbed model is given by

𝑄(𝛽, 𝜎2; y, b,𝜔) = 𝐶 + 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖+𝜔𝑖

𝑦𝑖 + 𝜔𝑖 − 𝑡𝜎2V (𝑡) 𝑑𝑡
− 12𝜎2 b𝑇Σ−1b,

(29)

where C is a constant. It follows from Section 2 that the
penalized quasi-likelihood function is

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖+𝜔𝑖

𝑦𝑖 + 𝜔𝑖 − 𝑡𝜎2V (𝑡) 𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃, (30)

where 𝜇𝑖 = ℎ(x𝑖,𝛽) + z𝑇𝑖 b̃, and b̃ satisfies

𝑛∑
𝑖=1

𝑦𝑖 + 𝑤𝑖 − 𝜇𝑖
V (𝜇𝑖) z𝑖 − Σ−1b̃ = 0. (31)

It follows that b̃ = Σ𝑍𝑇(ẽ + 𝑊V), where 𝑊V = (𝑤V1, . . . , 𝑤V𝑛)𝑇
with 𝑤V𝑖 = (𝑤𝑖/V(𝜇𝑖))|𝜇𝑖=𝜇𝑖 . Then

𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑖

𝜔0 ,�̂� = 𝜎−2𝐷𝑇 ( 𝜕ẽ𝜕𝜔𝑖 +
𝜕𝑊V𝜕𝜔𝑖 )

𝜔0,�̂�
= 𝜎−2𝐷𝑇(( 𝜕ẽ

𝜕�̃�𝑇)
𝑇 𝜕�̃�𝜕𝜔𝑖 + 𝛿𝑇𝑖 1

V (𝜇𝑖))
𝜔0,�̂�

= 𝜎−2𝐷𝑇 [Ω−11 (𝐾−1 − Ω1) 𝛿𝑇𝑖 1
V (𝜇𝑖) + 𝛿𝑇𝑖 1

V (𝜇𝑖)]
= 𝜎−2𝐷𝑇Ω−11 𝐾−1𝛿𝑇𝑖 1

V (𝜇𝑖) ,

(32)

and

△ = 𝜕2𝑄𝑝 (𝛽 | 𝑤)
𝜕𝛽𝜕𝜔𝑇

𝜔0,�̂� = 𝜎−2𝐷𝑇Ω−11 𝐾−1𝐸∗, (33)

where 𝐸∗ = diag(𝑒∗1 , . . . , 𝑒∗𝑛 ) with 𝑒∗𝑖 = 1/V(𝜇𝑖) and 𝜇𝑖 =ℎ(x𝑖, �̂�) + z𝑇𝑖 b̂.

3.3. ExplanatoryVariables Perturbation. In this case, we focus
on the perturbation of a specific explanatory variable. Under
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this condition we have the perturbed explanatory matrix𝑋𝜔 = (x1, ⋅ ⋅ ⋅ , x𝑡𝜔, ⋅ ⋅ ⋅ , x𝑛)𝑇 with x𝑡𝜔 = x𝑡 + 𝜔, where x𝑡 is
a single explanatory variable of matrix 𝑋𝜔 corresponding to𝑦𝑡 and 𝜔0 = (0, . . . , 0)𝑇 denotes no perturbation. Then the
joint log quasi-likelihood function for the perturbed model
is

𝑄(𝛽, 𝜎2; y, b,𝜔) = 𝐶 + 𝑛∑
𝑗=1

∫𝜇𝑗𝑤
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡
− 12𝜎2 bΣ−1b,

(34)

where C is a constant, 𝜇𝑗𝜔 = ℎ(x𝑗,𝛽) + z𝑇𝑗 b (𝑗 ̸= 𝑖), and 𝜇𝑡𝜔 =
ℎ(x𝑡𝜔𝛽) + z𝑇𝑡 b. It follows from Section 2 that

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑗=1

∫𝜇𝑗𝑤
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃Σ−1b̃, (35)

where 𝜇𝑗𝜔 = ℎ(x𝑗,𝛽) + z𝑇𝑗 b̃ (𝑗 ̸= 𝑡), 𝜇𝑡𝜔 = ℎ(x𝑡𝜔,𝛽) + z𝑇𝑡 b̃, and
b̃ satisfies

𝑛∑
𝑗=1

𝑦𝑖 − 𝜇𝑗𝑤
V (𝜇𝑗𝑤) z𝑖 − Σ−1b̃ = 0. (36)

Therefore, b̃ = Σ𝑍𝑇ẽ𝑤 and ẽ𝑤 = ((𝑦1 − 𝜇1)/V(𝜇1), ⋅ ⋅ ⋅ , (𝑦𝑛 −𝜇𝑛)/V(𝜇𝑛))𝑇. Let ℎ𝑇𝑡 = 𝜕ℎ(x𝑡, 𝛽)/𝜕x𝑇𝑡 |𝛽=�̂� and 𝐻𝑏𝑡 =
𝜕2ℎ(𝛽)/𝜕𝛽𝜕x𝑇𝑡 |𝛽=�̂�. Then

△ = 𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑇

𝜔0,�̂�
= 𝜎−2 [ê𝑇𝜔] [ 𝜕𝜕𝜔𝑇 (𝜕ℎ (𝛽)𝜕𝛽 )]𝜔0 ,�̂�

+ 𝜎−2𝐷𝑇𝜕ẽ𝑤𝜕�̃� 𝜕�̃�𝜕𝜔𝑇
𝜔0,�̂�

= 𝜎−2 [ê𝑇] [𝐻𝑏𝑡] + 𝜎−2𝐷𝑇Ω−11 𝛿𝑡ℎ𝑇𝑡 ,

(37)

where [⋅][⋅] indicates the array multiplication.

3.4. Perturbation of Covariates in Random Effects. Consider
perturbing the data for the 𝑘th explanatory variable of 𝑍, by
modifying the data matrix Z as 𝑍𝑤 = 𝑍 + 𝜔d𝑇𝑘 , where d𝑘 is
a 𝑞−vector with 1 at 𝑘th position and zeros elsewhere. Under
this situation, the perturbed joint log quasi-likelihood can be
expressed as

𝑄(𝛽, 𝜎2; y,b | 𝜔) = 𝐶 + 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡
− 12𝜎2 b𝑇Σ−1b,

(38)

where 𝐶 is a quantity that does not depend on 𝛽 and 𝜔, and
𝜇 = ℎ(𝛽) + 𝑍𝑤b. When 𝜔0 = 0, it indicates no perturbation.
It follows from Section 2 that

𝑄𝑝 (𝛽 | 𝜔) = 𝑛∑
𝑖=1

∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡 − 12𝜎2 b̃𝑇Σ−1b̃, (39)

where �̃� = ℎ(𝛽) + 𝑍𝑤b̃, and b̃ satisfies

𝑍𝑇𝑤ẽ𝑤 − Σ−1b̃ = 0, (40)

and therefore, b̃ = Σ𝑍𝑇𝑤ẽ𝑤 with ẽ𝑤 = ((𝑦1 −𝜇1)/V(𝜇1), ⋅ ⋅ ⋅ , (𝑦𝑛 − 𝜇𝑛)/V(𝜇𝑛))𝑇. Then

𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝑤𝑖

𝜔0 ,�̂� = 𝜎−2𝐷𝑇(𝜕ẽ𝑤𝜕�̃�𝑇)
𝑇 𝜕�̃�𝜕𝑤𝑖

𝜔0,�̂�
= 𝜎−2𝐷𝑇𝐾 (𝐼 − 𝑍Σ𝑍𝑇𝐾)−1 [𝛿𝑖�̂�𝑘 + 𝑍Σ𝑑𝑘𝑒𝑖]
= 𝜎−2𝐷𝑇Ω−11 (𝛿𝑖�̂�𝑘 + 𝑍Σ𝑑𝑘𝑒𝑖)

(41)

Hence,

△ = 𝜕2𝑄𝑝 (𝛽 | 𝜔)
𝜕𝛽𝜕𝜔𝑇

𝜔0 ,�̂�
= 𝜎−2𝐷𝑇Ω−11 {[𝛿1�̂�𝑘 𝛿2�̂�𝑘 ⋅ ⋅ ⋅ 𝛿𝑛�̂�𝑘]
+ 𝑍Σ [𝑑𝑘𝑒1 𝑑𝑘𝑒2 ⋅ ⋅ ⋅ 𝑑𝑘𝑒𝑛]} = 𝜎−2𝐷𝑇Ω−11 [𝐼𝑛�̂�𝑘
+ 𝑍Σ𝑑𝑘ê𝑇] .

(42)

4. Numerical Results

To illustrate how to use the proposed methodology, we
consider the data set reported by [27]. The data came from
a study of the pharmacokinetics of indomethacin following
bolus intravenous injection of the same dose in six human
volunteers. For each subject, the plasma concentrations of
indomethacin were measured at 11 time points from 15min to
8 hours postinjection. Davidian et al. used nonlinear repeated
model to analyze the dataset in [28]; we model it using the
following QLNMWRE:

𝜇𝑖𝑗 = 𝑓 (𝑥𝑖𝑗,𝛽) + 𝑏𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 6; 𝑗 = 1, ⋅ ⋅ ⋅ , 11) , (43)

where response variables 𝑦𝑖𝑗|𝑏𝑖 belong to the Gumbel distri-
bution (cf. [29]) with the density function

𝑝 (𝑦𝑖𝑗 | 𝑏𝑖) = exp {𝑦𝑖𝑗 − 𝜃 − exp (𝑦𝑖𝑗 − 𝜃)} ,
−∞ < 𝑦𝑖𝑗 < ∞, −∞ < 𝜃 < ∞, (44)

𝑏𝑖 ∼ 𝑁(0, 𝑎), and 𝑓(𝑥,𝛽) = 𝑒𝛽1 exp(−𝑒𝛽2𝑥) + 𝑒𝛽3 exp(−𝑒𝛽4𝑥).
By [29], we have 𝐸(𝑦) = 𝜃 − 𝛾 and Var(𝑦) = 𝜋2/6 =𝜎2V(𝜇), where 𝛾 = 0.5772 is called the Euler constant,𝜎2 = 𝜋2/6 and V(⋅) = 1. It is easily shown that Assumption
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Figure 1: Index plots of -𝐹𝑖𝑖 and |𝑙𝑚𝑎𝑥| for case-weights perturbation.
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Figure 2: Index plots of perturbation of explanatory variables.

A holds for our proposed model. Therefore, we can apply
our proposed methodology to estimate the parameters in
model (43). Using the algorithm in Section 2, we obtain the
MQLE of 𝛽, the predictive values of 𝑏1, ⋅ ⋅ ⋅ , 𝑏6 as follows:
�̂� = (0.8317, 0.0446, −13.2203, −1.2535)𝑇 and

b̂ = (−0.1133, 0.0825, 0.1600, 0.0500,
− 0.0625, 0.1133)𝑇 . (45)

Now we present local influence analysis for the above
fitting results. Under case-weight perturbation, cases 23, 45,

and 56 aremost influential, as depicted as in Figure 1(a). Cases
1, 12, 23, 45, and 56 are identified as influential points, and
case 23 is the most influential, as shown in Figure 1(b). The
index plots of −�̈� and |l𝑚𝑎𝑥| for perturbation on explanatory
variables are given in Figures 2(a) and 2(b), respectively.
From Figure 2(a) we can see that cases 12, 23, 45, and 56
are identified as influential points. Figure 2(b) shows that
cases 1, 12, 23, 34, 45, and 56 are influential. Figure 3 displays
the index plots of |l𝑚𝑎𝑥| for the perturbation of random
effects. For these types of perturbation, case 23 is identified
as being the most influential. Note that case 23 exerts great
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Figure 3: Index plots of |𝑙𝑚𝑎𝑥| for perturbation of random effects design matrix.

influence in each perturbation scheme, which indicates that
the results obtained through different perturbation schemes
are quite consistent. Special attention should be paid to those
influential cases, which may be worthwhile to consider a
more formal test to check whether they are outliers.

5. Conclusion

In this work, we have assessed the local influence of minor
perturbations of our proposed models. The key idea of the
previous approach is to study the behavior of the likeli-
hood displacement obtained from a relevant perturbation.
However, it is difficult to apply it directly to the proposed
model due to the fact that the marginal quasi-likelihood
function of the QLNMWRE involves the intractable integral.
To solve this problem, we have employed Laplace’s method
to approximate the marginal quasi-likelihood function of the
QLNMWRE, which results in the penalized quasi-likelihood
(PQL). Based on the PQL and the penalized quasi-likelihood
displacement, the estimates of unknown parameters have
been proposed, and local influence analysis has been inves-
tigated. Our numerical example has demonstrated that our
proposed local influence technique is rather useful in the
detection of influential points. Although the focus of this
article is on the assessment of influential points in the

QLNMWRE, the local influence approach can be extended
to other complicated models.

Appendix

Proof of Theorem 1. Differentiating (10) with respect to 𝛽
yields that

�̇�𝑝 (𝛽) = 𝜕𝑄1 (y;𝜇)𝜕𝛽
𝜇𝑖=𝜇𝑖 − 𝜎−2 ( 𝜕b̃

𝜕𝛽𝑇)
𝑇 Σ−1b̃

= ( 𝜕𝜇
𝜕𝛽𝑇)

𝑇 𝜕𝑄1 (y;𝜇)𝜕𝜇
𝜇=�̃�

− 𝜎−2 ( 𝜕b̃
𝜕𝛽𝑇)

𝑇 Σ−1b̃

= (𝐷 + 𝑍 𝜕b̃
𝜕𝛽𝑇)

𝑇 𝜕𝑄1 (y;𝜇)𝜕𝜇
𝜇=�̃�

− 𝜎−2 ( 𝜕b̃
𝜕𝛽𝑇)

𝑇 Σ−1b̃.

(A.1)
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It follows from the definition of b̃ and (10) that
𝑛∑
𝑖=1

𝜕𝜕𝜇𝑖 (∫𝜇𝑖
𝑦𝑖

𝑦𝑖 − 𝑡𝜎2V (𝑡)𝑑𝑡)𝜇𝑖=𝜇𝑖
𝜕𝜇𝑖𝜕b

b=b̃ − 𝜎−2Σ−1b̃

= 𝜎−2 𝑛∑
𝑖=1

(𝑦𝑖 − 𝜇𝑖) (V (𝜇𝑖))−1 z𝑖𝜇𝑖=𝜇𝑖 − 𝜎−2Σ−1b̃
= 𝜎−2𝑍𝑇ẽ − 𝜎−2Σ−1b̃ = 0,

(A.2)

which implies

b̃ = Σ𝑍𝑇ẽ. (A.3)

Substituting (A.3) into (A.1) yields (13). Differentiating (13)
with respect to 𝛽 leads to

�̈�𝑝 (𝛽) = 𝜕
𝜕𝛽𝑇

{{{
(𝜕ℎ (𝛽)

𝜕𝛽𝑇 )𝑇 𝜕𝑄1 (y;𝜇)𝜕𝜇
𝜇=�̃�

}}}
= [

[
( 𝜕𝑄1 (y;𝜇)𝜕𝜇

𝜇=�̃�)
𝑇]
]

[𝜕2ℎ (𝛽)
𝜕𝛽𝜕𝛽𝑇 ]

+ 𝐷𝑇𝜕2𝑄1 (y;𝜇)𝜕𝜇𝜕𝜇𝑇
𝜇=�̃�

𝜕�̃�
𝜕𝛽𝑇

= 𝜎−2 [𝑒𝑇] [𝑊] + 𝜎−2𝐷𝑇𝐾 𝜕�̃�
𝜕𝛽𝑇 .

(A.4)

Differentiating (A.3) with respect to 𝛽 yields

𝜕b̃𝜕𝛽 = Σ𝑍𝑇𝐾 𝜕�̃�
𝜕𝛽𝑇 . (A.5)

Note that �̃� = ℎ(𝑋,𝛽) + 𝑍b̃; it follows that
𝜕�̃�
𝜕𝛽𝑇 = 𝜕ℎ (𝛽)

𝜕𝛽𝑇 + 𝑍 𝜕b̃
𝜕𝛽𝑇 . (A.6)

Combining (A.5) and (A.6) leads to

𝜕�̃�
𝜕𝛽𝑇 = 𝐷 + 𝑍 𝜕b̃

𝜕𝛽𝑇 = 𝐷 + 𝑍Σ𝑍𝑇𝐾 𝜕�̃�
𝜕𝛽𝑇 , (A.7)

which implies

𝜕�̃�
𝜕𝛽𝑇= (𝐼 − 𝑍Σ𝑍𝑇𝐾)−1𝐷

= 𝐾−1 (𝐾−1 − 𝑍Σ𝑍𝑇)−1𝐷 = 𝐾−1Ω−11 𝐷.
(A.8)

Substituting (A.8) into (A.4) yields (14). It follows from
Assumption A and 𝐾0 = 𝐸𝑦(𝐾) that (15) holds. Thus, the
proof is completed.
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The elimination of insignificant predictors and the combination of predictors with indistinguishable coefficients are the two issues
raised in searching for the true model. Pairwise Absolute Clustering and Sparsity (PACS) achieves both goals. Unfortunately, PACS
is sensitive to outliers due to its dependency on the least-squares loss functionwhich is known to be very sensitive to unusual data. In
this article, the sensitivity of PACS to outliers has been studied. Robust versions of PACS (RPACS) have been proposed by replacing
the least squares and nonrobust weights in PACSwithMM-estimation and robust weights depending on robust correlations instead
of person correlation, respectively. A simulation study and two real data applications have been used to assess the effectiveness of
the proposed methods.

1. Introduction

The latest developments in data aggregation have generated
huge number of variables. The large amounts of data pose
a challenge to most of the standard statistical methods.
In many regression problems, the number of variables is
huge. Moreover, many of these variables are irrelevant.
Variable selection (VS) is the process of selecting significant
variables for use in model construction. It is an important
step in the statistical analysis. Statistical procedures for VS
are characterized by improving the model’s prediction, pro-
viding interpretable models while retaining computational
efficiency. VS techniques, such as stepwise selection and best
subset regression,may suffer from instability [1]. To tackle the
instability problem, regularization methods have been used
to carry out VS. They have become increasingly popular, as
they supply a tool with which the VS is carried out during
the process of estimating the coefficients in the model, for
example, LASSO [2], SCAD [3], elastic-net [4], fused LASSO
[5], adaptive LASSO [6], group LASSO [7], OSCAR [8],
adaptive elastic-net [9], and MCP [10].

Searching for the correct model raises two matters: the
exclusion of insignificant predictors and the combination of

predictors with indistinguishable coefficients (IC) [11]. The
above approaches can remove insignificant predictors but be
unsuccessful to merge predictors with IC. Pairwise Absolute
Clustering and Sparsity (PACS, [11]) achieves both goals.
Moreover, PACS is an oracle method for simultaneous group
identification and VS.

Unfortunately, PACS is sensitive to outliers due to its
dependency on the least-squares loss function which is
known as very sensitive to unusual data. In this article,
the sensitivity of PACS to outliers has been studied. Robust
versions of PACS (RPACS) have been proposed by replacing
the least squares and nonrobust weights in PACS with MM-
estimation and robust weights depending on robust correla-
tions instead of person correlation, respectively. RPACS can
completely estimate the parameters of regression and select
the significant predictors simultaneously, while being robust
to the existence of possible outliers.

The rest of this article proceeds as follows. In Section 2,
PACS has been briefly reviewed. The robust extension of
PACS is detailed in Section 3. Simulation studies under
different settings are presented in Section 4. In Section 5, the
proposed robust PACS has been applied to two real datasets.
Finally, a discussion concludes in Section 6.
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2. A Brief Review of PACS

Under the linear regression model setup with standardized
predictors 𝑥𝑖𝑗 and centered response values 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑁
and 𝑗 = 1, 2, . . . , 𝑝. Sharma et al. [11] proposed an oracle
method PACS for simultaneous group identification and VS.
PACS has less computational cost than OSCAR approach.
In PACS, the equality of coefficients is attained by adding
penalty to the pairwise differences and pairwise sums of
coefficients. The PACS estimates are the minimizers of the
following:

𝑁∑
𝑖=1

(𝑦𝑖 − 𝑝∑
𝑗=1

𝑥𝑖𝑗𝛽𝑗)
2

+ 𝜆{{{
𝑝∑
𝑗=1

𝜔𝑗 𝛽𝑗
+ ∑
1≤𝑗<𝑘≤𝑝

𝜔𝑗𝑘(−) 𝛽𝑘 − 𝛽𝑗 + ∑
1≤𝑗<𝑘≤𝑝

𝜔𝑗𝑘(+) 𝛽𝑘 + 𝛽𝑗}}} ,
(1)

where 𝜆 ≥ 0 is the regularization parameter and 𝜔 is the
nonnegative weights.

The penalty in (1) consists of 𝜆{∑𝑝𝑗=1 𝜔𝑗|𝛽𝑗|} that
encourages sparseness, 𝜆{∑1≤𝑗<𝑘≤𝑝 𝜔𝑗𝑘(−)|𝛽𝑘 − 𝛽𝑗|}, and𝜆{∑1≤𝑗<𝑘≤𝑝 𝜔𝑗𝑘(+)|𝛽𝑘 + 𝛽𝑗|} that encourages equality of
coefficients. The second term of the penalty encourages the
same sign coefficients to be set as equal, while the third term
encourages opposite sign coefficients to be set as equal in
magnitude.

Choosing of appropriate adaptive weights is very impor-
tant for PACS to be an oracle procedure. Consequently,
Sharma et al. [11] suggested adaptive PACS that incorporate
correlations into the weights which are given as follows:

𝜔𝑗 = 𝛽𝑗−1 ,
𝜔𝑗𝑘(−) = (1 − 𝑟𝑗𝑘)−1 𝛽𝑘 − 𝛽𝑗−1 ,
𝜔𝑗𝑘(+) = (1 + 𝑟𝑗𝑘)−1 𝛽𝑘 + 𝛽𝑗−1

for 1 ≤ 𝑗 < 𝑘 ≤ 𝑝,
(2)

where 𝛽 is√𝑛 consistent estimator of 𝛽, such as the ordinary
least squares (OLS) estimates or other shrinkage estimates
like ridge regression estimates and 𝑟𝑗𝑘 is Pearson’s correlation
between the (𝑗, 𝑘)th pair of predictors.

Sharma et al. [11] suggest using ridge estimates as initial
estimates for 𝛽’s to obtain weights perform well in studies
with collinear predictors.

3. Robust PACS

3.1. Methodology of Robust PACS. The satisfactory perfor-
mance of PACS under normal errors has been demonstrated
in [11]. However, the high sensitivity to outliers is the main
drawback of PACSwhere a single outlier can change the good
performance of PACS estimate completely.

Note that, in (1), the least-squares criterion is used
between the predictors and the response. Also, the weighted

penalty contains weights which depend on Pearson’s cor-
relation in their calculations. However, the least-squares
criterion and Pearson’s correlation are not robust to out-
liers. To achieve the robustness in estimation and select
the informative predictors robustly, the authors propose
replacing the least-squares criterion with MM-estimation
[12] where the MM- estimators are efficient and have high
breakdown points.Moreover, the nonrobust weights replaced
with robust weights depend on robust correlations such as
the fast consistent high breakdown (FCH) [13], reweighted
multivariate normal (RMVN) [13], Spearman’s correlation
(SP), and Kendall’s correlation (KN). The RPACS estimates
minimizing the following:

𝑁∑
𝑖=1

𝜌1 (𝑅𝑖 (𝛽)𝑆𝑛 ) + 𝜆{{{
𝑝∑
𝑗=1

𝑅𝑜𝜔𝑗 𝛽𝑗
+ ∑
1≤𝑗<𝑘≤𝑝

𝑅𝑜𝜔𝑗𝑘(−) 𝛽𝑘 − 𝛽𝑗
+ ∑
1≤𝑗<𝑘≤𝑝

𝑅𝑜𝜔𝑗𝑘(+) 𝛽𝑘 + 𝛽𝑗}}} ,
(3)

where 𝜆 ≥ 0 is the regularization parameter and 𝑅𝑜𝜔 is the
robust version of the nonnegativeweightswhich are describes
in (2). 𝑅𝑖(𝛽) = 𝑦𝑖 −∑𝑝𝑗=1 𝑥𝑖𝑗𝛽𝑗, 𝑆𝑛 is M-estimate of scale of the
residuals, and it is defined as a solution of

1𝑁
𝑁∑
𝑖=1

𝜌0 (𝑅𝑖𝑆𝑛) = 𝐾, (4)

where 𝐾 is a constant and 𝜌0 function satisfies the following
conditions:

(1) 𝜌0 is symmetric and continuously differentiable, and𝜌0(0) = 0.
(2) There exist 𝑎 > 0 such that 𝜌0 is strictly increasing on[0, 𝑎] and constant on [𝑎,∞).
(3) 𝐾/𝜌0(𝑎) = 1/2.

The MM estimator in the first part of (3) is defined as an M-
estimator of 𝛽 using a redescending score function, 𝜓(𝑢) =𝜕𝜌1(𝑢)/𝜕𝑢, and 𝑆𝑛 obtained from (4). It is a solution to

𝑁∑
𝑖=1

𝑥𝑖𝑗𝜓(𝑅𝑖 (𝛽)𝑆𝑛 ) = 0 𝑗 = 1, 2, . . . , 𝑝, (5)

where 𝜌1 is another bounded 𝜌 function such that 𝜌1 ≤ 𝜌0.
3.2. Choosing the Robust Weights. The process of choosing
the suitable weights is very important in order to obtain an
oracle procedure [11]. The weights, which are described in
(2), depend on Pearson’s correlation in their calculations.
From a practical point of view, it is well known that Pearson’s
correlation is not resistant to outliers and thus choosing
weights in (2) based on this correlation will cause uncertain
and deceptive results. Consequently, in order to get robust
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weights, there is a need to estimate the correlation by using
robust approaches. There are two types of robust versions
for Pearson’s correlation. The first type consists of those that
are robust to the outliers, without interest in the general
structure of the data, whereas the second type gives attention
to the general structure of the data when dealing with outliers
[14]. KN and MCD (minimum covariance determinant) are
examples for the first and second types, respectively. Olive
and Hawkins [13] proposed FCH and RMVN methods as
practical consistent, outlier resistant estimators formultivari-
ate location and dispersion. Alkenani and Yu [15] employed
FCH and RMVN estimators instead of Pearson’s correlation
in the canonical correlation analysis (CCA) to obtain robust
CCA. The authors showed that these estimators have good
performance under different settings of outliers.

In this article, the FCH, RMVN, SP, and KN correlations
have been employed instead of Pearson’s correlation in order
to obtain robust weights as follows:

𝑅𝑜𝜔𝑗 =  ̆𝛽𝑗−1 ,
𝑅𝑜𝜔𝑗𝑘(−) = (1 − 𝑅𝑜𝑟𝑗𝑘)−1  ̆𝛽𝑘 − ̆𝛽𝑗−1,
𝑅𝑜𝜔𝑗𝑘(+) = (1 + 𝑅𝑜𝑟𝑗𝑘)−1  ̆𝛽𝑘 + ̆𝛽𝑗−1

for 1 ≤ 𝑗 < 𝑘 ≤ 𝑝,

(6)

where 𝑅𝑜𝑟 is a robust version of Pearson’s correlation such as
FCH, RMVN, SP, and KN correlations. ̆𝛽 is a robust initial
estimate for 𝛽 and we suggest using robust ridge estimates as
initial estimates for 𝛽’s.
4. Simulation Study

In this section, five examples have been used to assess our
proposed method RPACS by comparing it with PACS which
is suggested in [11]. A regressionmodel has been generated as
follows:

𝑦 = 𝑋𝛽 + 𝜖 𝜖 ∼ 𝑁(0, 𝜎2𝐼) . (7)

In all examples, predictors are standard normal. The
distributions of the error term 𝜖 and the predictors are
contaminated by two types of distributions, 𝑡 distribution
with 5 degrees of freedom (𝑡(5)) and Cauchy distribution with
mean equal to 0 and variance equal to 1 (Cauchy (0, 1)). Also,
different contamination ratios (5%, 10%, 15%, 20%, and 25%)
were used. The performance of the methods is compared
by using model error (ME) criterion for prediction accuracy
which is defined by (𝛽 − 𝛽)𝑉(𝛽 − 𝛽) where 𝑉 represents the
population covariance matrix of𝑋. The sample sizes were 50
and 100 and the simulated model was replicated 1000 times.

Example 1. In this example, we choose the true parameters for
the model of study as 𝛽 = (2, 2, 2, 0, 0, 0, 0, 0)𝑇, 𝑋 ∈ R8. The
first three predictors are highly correlated with correlation
equal to 0.7 and their coefficients are equal in magnitude,
while the rest are uncorrelated.

Example 2. In this example, the true coefficients have been
assumed as𝛽 = (0.5, 1, 2, 0, 0, 0, 0, 0)𝑇,𝑋 ∈ R8.The first three
predictors are highly correlated with correlation equal to 0.7
and their coefficients differ in magnitude, while the rest are
uncorrelated.

Example 3. In this example, the true parameters are 𝛽 =(1, 1, 1, 0.5, 1, 2, 0, 0, 0, 0)𝑇,𝑋 ∈ R10.The first three predictors
are highly correlated with correlation equal to 0.7 and their
coefficients are equal in magnitude, while the second three
predictors have lower correlation equal to 0.3 and different
magnitudes. The rest of predictors are uncorrelated.

Example 4. In this example, true parameters are 𝛽 =(1, 1, 1, 0.5, 1, 2, 0, 0, 0, 0)𝑇, 𝑋 ∈ R10. The first three pre-
dictors are correlated with correlation equal to 0.3 and
their coefficients are equal in magnitude, while the second
three predictors have correlation equal to 0.7 and different
magnitudes. The rest of predictors are uncorrelated.

Example 5. In this example, the true parameters are assumed
as 𝛽 = (2, 2, 2, 1, 1, 0, 0, 0, 0, 0)𝑇, 𝑋 ∈ R10. The first three
predictors are highly correlated with pairwise correlation
equal to 0.7 and the second two predictors have pairwise
correlation of 0.7, while the rest are uncorrelated. It can be
observed that the groups of three and two highly correlated
predictors have coefficients which are equal in magnitude.

To avoid repetition, the observations about the results in
Tables 1–5 have been summarized as follows.

From Tables 1, 2, 3, 4, and 5, when there is no contami-
nation data, PACS has good performance compared with our
proposed methods. It is clear, when the contamination ratio
of 𝑡(5) or Cauchy (0, 1) goes up the performance of PACS
goes down while RPACS with all the robust weights has a
stable performance, and the preference is for RPACS.RMVN
and RPACS.RFCH, respectively, for all the samples sizes.
The variations in ME values for the RPACS estimates with
all the robust weights are close under different setting of
contamination and sample sizes, and they are less than the
variations of PACS estimates.

5. Analysis of Real Data

In this section, the RPACS methods with all the robust
weights and PACSmethod have been applied in real data.The
NCAA sports data fromMangold et al. [16] and the pollution
data fromMcDonald and Schwing [17] have been studied.

The response variable was centered and the predictors
were standardized. To verify RPACS, the two data sets have
been analyzed by including outliers in the response variable
and the predictors.The two data sets have been contaminated
with (5%, 10%, 15%, and 20%) data from multivariate 𝑡
distribution with three degrees of freedom.

To evaluate the estimation accuracy of the RPACS
methods, the correlation between the estimated parameters
according to the different methods under consideration
and the estimated parameters from PACS without outliers,
denoted as Corr(𝛽, 𝛽PACS,0), was presented. Also, the effective
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Table 1: ME results of Example 1.

Dist. 𝑛 Outliers% PACS RPACS.KN RPACS.SP RPACS.FCH RPACS.RMVN

𝑡(5)

50

0 0.02304 0.02964 0.03083 0.02979 0.02902
5 0.20135 0.08124 0.08135 0.05575 0.04655
10 0.25043 0.14048 0.14543 0.06579 0.05664
15 0.30788 0.17578 0.18152 0.07225 0.06153
20 0.34708 0.19266 0.21286 0.08195 0.06939
25 0.40692 0.21584 0.22533 0.10242 0.08238

100

0 0.02004 0.02644 0.02863 0.02772 0.02700
5 0.19100 0.07100 0.08030 0.05111 0.04025
10 0.23012 0.13011 0.14002 0.06116 0.05013
15 0.28715 0.15523 0.17137 0.06899 0.05902
20 0.32520 0.18670 0.19234 0.07115 0.06005
25 0.36692 0.20522 0.21404 0.09032 0.07784

Cauchy (0, 1)
50

5 0.18112 0.07004 0.07237 0.04390 0.03581
10 0.23263 0.12001 0.12273 0.05472 0.04454
15 0.28368 0.15274 0.16138 0.06237 0.05079
20 0.33511 0.17162 0.18556 0.07381 0.05848
25 0.38488 0.19330 0.20405 0.09342 0.07211

100

5 0.17214 0.06111 0.07335 0.04277 0.03581
10 0.22263 0.11001 0.11273 0.04672 0.03854
15 0.27368 0.14274 0.15138 0.05237 0.04079
20 0.31511 0.16162 0.17556 0.06381 0.04848
25 0.35488 0.18330 0.19405 0.08342 0.06211

Table 2: ME results of Example 2.

Dist. 𝑁 Outliers% PACS RPACS.KN RPACS.SP RPACS.FCH RPACS.RMVN

𝑡(5)

50

0 0.11372 0.12032 0.12151 0.12047 0.11970
5 0.29201 0.17191 0.17203 0.14644 0.13725
10 0.34113 0.23117 0.23611 0.15646 0.14730
15 0.39857 0.26647 0.27221 0.16294 0.15222
20 0.43778 0.28336 0.30355 0.17263 0.16006
25 0.49761 0.30653 0.31602 0.19312 0.17308

100

0 0.10354 0.11022 0.11131 0.10407 0.10050
5 0.28171 0.16170 0.17100 0.14180 0.13094
10 0.32082 0.22080 0.23072 0.15185 0.14082
15 0.37783 0.24591 0.26205 0.15967 0.14970
20 0.41560 0.27700 0.28300 0.16185 0.15071
25 0.45762 0.29592 0.30473 0.18101 0.16854

Cauchy (0, 1)
50

5 0.27182 0.16072 0.16306 0.13460 0.12650
10 0.32333 0.21071 0.21342 0.14541 0.13523
15 0.37434 0.24340 0.25204 0.15303 0.14145
20 0.42581 0.26232 0.27626 0.16451 0.14918
25 0.47558 0.284 0.29475 0.18412 0.16281

100

5 0.26282 0.15181 0.16405 0.13345 0.12651
10 0.31331 0.20071 0.20343 0.13742 0.12923
15 0.36435 0.23341 0.24205 0.14304 0.13149
20 0.40581 0.25232 0.26625 0.15451 0.13916
25 0.44557 0.27400 0.28473 0.17412 0.15281
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Table 3: ME results of Example 3.

Dist. 𝑁 Outliers% PACS RPACS.KN RPACS.SP RPACS.FCH RPACS.RMVN

𝑡(5)

50

0 0.14172 0.14831 0.14950 0.14844 0.14743
5 0.32001 0.19991 0.20003 0.17441 0.16522
10 0.36913 0.25915 0.26411 0.18444 0.17530
15 0.42653 0.29443 0.30021 0.19094 0.18022
20 0.46576 0.31135 0.33154 0.20063 0.18806
25 0.52561 0.33453 0.34402 0.22112 0.20107

100

0 0.13042 0.13501 0.13645 0.13344 0.13255
5 0.30971 0.18971 0.19901 0.16982 0.15894
10 0.34882 0.24883 0.25872 0.17985 0.16882
15 0.40582 0.27391 0.29003 0.18765 0.17774
20 0.44365 0.30501 0.31103 0.18983 0.17871
25 0.48562 0.32392 0.33271 0.20901 0.19650

Cauchy (0, 1)
50

5 0.29982 0.18872 0.19106 0.1626 0.1545
10 0.35133 0.23871 0.24142 0.17341 0.16323
15 0.40234 0.2714 0.28004 0.18103 0.16945
20 0.45381 0.29032 0.30426 0.19251 0.17718
25 0.50358 0.312 0.32275 0.21212 0.19081

100

5 0.32001 0.19991 0.20003 0.17445 0.16525
10 0.36913 0.25917 0.26411 0.18441 0.17536
15 0.42655 0.29444 0.30021 0.19093 0.18022
20 0.46575 0.31134 0.33153 0.20063 0.18804
25 0.525610 0.33453 0.34401 0.22112 0.20106

Table 4: ME results of Example 4.

Dist. 𝑁 Outliers% PACS RPACS.KN RPACS.SP RPACS.FCH RPACS.RMVN

𝑡(5)

50

0 0.15251 0.15910 0.16035 0.15921 0.15823
5 0.33081 0.21070 0.21082 0.18520 0.17601
10 0.37991 0.26993 0.27491 0.19523 0.18612
15 0.43732 0.30521 0.31101 0.20175 0.19102
20 0.47653 0.32216 0.34233 0.21143 0.19887
25 0.53641 0.34531 0.35482 0.23192 0.21185

100

0 0.13342 0.13901 0.14125 0.13814 0.13713
5 0.32051 0.20051 0.20981 0.18062 0.16973
10 0.35962 0.25965 0.26952 0.19067 0.17962
15 0.41662 0.28471 0.30083 0.19847 0.18853
20 0.45446 0.31581 0.32183 0.20066 0.18951
25 0.49642 0.33472 0.34351 0.21981 0.20757

Cauchy (0, 1)
50

5 0.31062 0.19952 0.20188 0.1734 0.16538
10 0.36216 0.24951 0.25222 0.18421 0.17404
15 0.41316 0.2822 0.29087 0.19184 0.18025
20 0.46461 0.30112 0.31507 0.20331 0.18798
25 0.51438 0.32284 0.33357 0.22294 0.20161

100

5 0.33083 0.21071 0.21083 0.18525 0.17606
10 0.37993 0.26995 0.27491 0.19521 0.18613
15 0.43733 0.30522 0.31101 0.20175 0.19102
20 0.47653 0.32217 0.34233 0.21143 0.19886
25 0.53641 0.34533 0.354814 0.23192 0.21188
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Table 5: ME results of Example 5.

Dist. 𝑁 Outliers% PACS RPACS.KN RPACS.SP RPACS.FCH RPACS.RMVN

𝑡(5)

50

0 0.06031 0.06695 0.06815 0.06701 0.06602
5 0.23861 0.11851 0.11862 0.09305 0.08381
10 0.28771 0.177735 0.182712 0.10303 0.09392
15 0.34512 0.21301 0.21881 0.10955 0.09886
20 0.38433 0.22996 0.25015 0.11923 0.10667
25 0.44424 0.25315 0.26262 0.13972 0.11965

100

0 0.04125 0.04684 0.04908 0.04597 0.04496
5 0.22837 0.108313 0.11765 0.08846 0.07755
10 0.26744 0.16745 0.17733 0.09846 0.08743
15 0.32445 0.19256 0.20865 0.10627 0.09636
20 0.36228 0.22365 0.22966 0.10844 0.09733
25 0.40425 0.24257 0.25131 0.12761 0.11537

Cauchy (0, 1)

50

0 0.06031 0.06695 0.06815 0.06701 0.06602
5 0.21845 0.10737 0.10963 0.08125 0.07316
10 0.26997 0.15734 0.16006 0.09206 0.08183
15 0.32095 0.19007 0.19865 0.09963 0.08806
20 0.37244 0.20896 0.22289 0.11115 0.09579
25 0.42217 0.23067 0.24135 0.13073 0.10948

100

0 0.04125 0.04684 0.04908 0.04597 0.04496
5 0.23865 0.11854 0.11865 0.09308 0.08389
10 0.28775 0.17779 0.18274 0.10303 0.09397
15 0.34513 0.21304 0.21885 0.10958 0.09885
20 0.38435 0.22998 0.25015 0.11926 0.10667
25 0.44423 0.25314 0.26261 0.13977 0.11967

model size after accounting for equality of absolute coefficient
estimates has been reported.

5.1. NCAA Sports Data. The NCAA sport data is taken from
a study of the effects of sociodemographic indicators and the
sports programs on graduation rates. The dataset is avail-
able from the website (http://www4.stat.ncsu.edu/∼boos/var
.select/ncaa.html). The data size is 𝑛 = 94 and 𝑝 = 19
predictors. The response variable is the average of 6 year
graduation rate for 1996–1999. The predictors are students
in top 10% HS (X1), ACT COMPOSITE 25TH (X2), on
living campus (X3), first-time undergraduates (X4), Total
Enrollment/1000 (X5), courses taught byTAs (X6), composite
of basketball ranking (X7), in-state tuition/1000 (X8), room
and board/1000 (X9), avg BB home attendance (X10), Full
Professor Salary (X11), student to faculty ratio (X12), white
(X13), assistant professor salary (X14), population of city
where located (X15), faculty with PHD (X16), acceptance rate
(X17), receiving loans (X18), and out of state (X19).

5.2. Pollution Data (PD). The PD is taken from a study
of the effects of different air pollution indicators and
sociodemographic factors on mortality. The dataset is avail-
able from the website (http://www4.stat.ncsu.edu/∼boos/var
.select/pollution.html). The data contains 𝑛 = 60 observa-
tions and 𝑝 = 15 predictors. The response is the total Age

Adjusted Mortality Rate (y). The predictors are Mean annual
precipitation (X1),mean January temperature (X2),mean July
temperature (X3), % population that is 65 years of age or
over (X4), population per household (X5), median school
years (X6), % of housing with facilities (X7), population per
square mile (X8), % of population that is nonwhite (X9), %
employment in white-collar occupations (X10), % of families
with income under 3; 000 (X11), relative population potential
(RPP) of hydrocarbons (X12), RPP of oxides of nitrogen
(X13), RPP of sulfur dioxide (X14), and % relative humidity
(X15).

From Tables 6 and 7, we have the following findings in
terms of estimation accuracy and the effective model size:

(1) In case of no contamination, it can be observed
that RPACS methods give comparable results as
PACS. In addition, it can be seen that RPACS.RMVN
and RPACS.FCH achieve better performance than
RPACS.KN and RPACS.SP.

(2) In case of contamination, the performance of PACS
is dramatically affected. Also, it is obvious that
RPACS.RMVN and RPACS.FCH methods give very
consistent results, even with the high contamina-
tion percentages. The performance of RPACS.KN
and RPACS.SP is less efficient than RPACS.RMVN
and RPACS.FCH especially for all the contamination
percentages.
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Table 6: The Corr(𝛽, 𝛽PACS,0) and the effective model size values for the methods under consideration based on the NCAA sport data.

Methods Outliers%
0 5 10 15 20

Corr(𝛽, 𝛽PACS,0)
PACS 1 0.9033 0.8069 0.4112 0.1345

RPACS.KN 0.9843 0.9839 0.9530 0.9019 0.8499
RPACS.SP 0.9840 0.9837 0.9526 0.9006 0.8490
RPACS.FCH 0.9850 0.9846 0.9843 0.9841 0.9839
RPACS.RMVN 0.9856 0.9852 0.9850 0.9847 0.9845

The effective model size

PACS 5 6 7 9 10
RPACS.KN 5 5 6 6 7
RPACS.SP 5 5 6 6 7
RPACS.FCH 5 5 5 5 5
RPACS.RMVN 5 5 5 5 5

Table 7: The Corr(𝛽,𝛽PACS,0) and the effective model size values for the methods under consideration based on the pollution data.

Methods Outliers%
0 5 10 15 20

Corr(𝛽, 𝛽PACS,0)
PACS 1 0.9247 0.8259 0.7001 0.5925

RPACS.KN 0.9882 0.9866 0.9552 0.9044 0.8518
RPACS.SP 0.9877 0.9862 0.9545 0.9038 0.8511
RPACS.FCH 0.9890 0.9887 0.9884 0.9882 0.9879
RPACS.RMVN 0.9897 0.9895 0.9893 0.9890 0.9888

The effective model size

PACS 5 6 6 8 9
RPACS.KN 5 5 6 7 7
RPACS.SP 5 5 6 7 7
RPACS.FCH 5 5 5 5 5
RPACS.RMVN 5 5 5 5 5

6. Conclusions

In this paper, robust consistent group identification and VS
procedures have been proposed (RPACS) which combine
the strength of both robust and identifying relevant groups
and VS procedure. The simulation studies and analysis of
real data demonstrate that RPACS methods have better
predictive accuracy and identifying relevant groups than
PACS when outliers exist in the response variable and the
predictors. In general, the preference is for RPACS.RMVN
and RPACS.RFCH, respectively, for all the samples sizes.

Abbreviations

LASSO: Least absolute shrinkage and selection
operator

PACS: Pairwise Absolute Clustering and
Sparsity

RPACS: Robust Pairwise Absolute Clustering
and Sparsity

VS: Variable selection
SCAD: Smoothly clipped absolute deviation
Fused LASSO: Fused least absolute shrinkage and

selection operator
Adaptive LASSO: Adaptive least absolute shrinkage and

selection operator

Group LASSO: Group least absolute shrinkage and
selection operator

OSCAR: Octagonal shrinkage and clustering
algorithm for regression

MCP: Minimax concave penalty
IC: Indistinguishable coefficients
FCH: Fast consistent high breakdown
RMVN: Reweighted multivariate normal
SP: Spearman’s correlation
KN: Kendall’s correlation
MCD: Minimum covariance determinant
CCA: Canonical correlation analysis
NCAA: National Collegiate Athletic Association
PD: Pollution data.
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Structured spatial point patterns appear inmany applications within the natural sciences.The points often record the location of key
features, called landmarks, on continuous object boundaries, such as anatomical features on a human face. In other situations, the
points may simply be arbitrarily spaced marks along a smooth curve, such as on handwritten numbers. This paper proposes novel
exploratorymethods for the identification of structure within point datasets. In particular, points are linked together to form curves
which estimate the original shape from which the points are the only recorded information. Nonparametric regression methods
are applied to polar coordinate variables obtained from the point locations and periodic modelling allows closed curves to be fitted
even when data are available on only part of the boundary. Further, the model allows discontinuities to be identified to describe
rapid changes in the curves. These generalizations are particularly important when the points represent shapes which are occluded
or are intersecting. A range of real-data examples is used to motivate the modelling and to illustrate the flexibility of the approach.
The method successfully identifies the underlying structure and its output could also be used as the basis for further analysis.

1. Introduction

Many scientific investigations involve the recording of spa-
tially located data. This data might summarize objects within
an image as digitized versions of continuous curves. Once the
data are collected often the original context is lost and the aim
of the analysis is to identify which points are associated with
each other and to link the points to reconstruct the original
shape. These can then be seen as estimates of continuous
curves and object outlines. If the original scene contains
multiple structures, then the analysis must also divide the
points into groups with separate curves used to describe the
points in each group. It is important to note that this is likely
to form only the first part of an analysis and hence can be seen
as exploratory data analysis.

This paper looks at the use of smoothing splines to
identify and describe geometric patterns in sets of points. It
is assumed that the points lie on smooth curves but that a
dataset may contain multiple intersecting curves. It is vital
that this be done in a nonparametric way so that the widest

possible range of patterns can be highlighted. In general, these
are closed, or nearly closed, curves and so a transformation to
polar coordinates is used to simplify the analysis. Intersecting
curves are described by allowing discontinuities in the fitted
curves. These procedures are illustrated using simulated data
and varied real datasets describing human faces, gorilla skulls,
handwritten number 3’s, and an archaeological site. These
provide awide variety of point patterns and reinforce the gen-
eral usefulness of the proposed methods. For mathematical
detailed description and applications of shape-based analysis
of points, refer to, for example, Batschelet [1], Bookstein [2],
Dryden and Mardia [3], and Lele and Richtsmeier [4].

To allow for this wide variety of possible curves a
nonparametric fitting approach, such as splines, can be used
(see, e.g., [5, 6]). The flexibility is helpful in the exploratory
statistical analysis of a dataset, and the results can be used
to suggest parametric equations for later analysis. Nonpara-
metric regression is the general name for a range of curve
fitting techniques whichmake few a priori assumptions about
the true shape. In nonparametric regression, several different
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families of basis functions can be used to describe curves;
one of the common kinds of basis for smooth curves is the
spline. Splines are generally defined as piecewise polynomials
in which curve, or line, segments are joined together to
form a continuous function. The spline smoothing approach
to nonparametric regression is discussed, for example, by
Silverman [7] and extended to deal with branching curves
by defining a roughness penalty by Silverman and Wood [8].
For an introduction to natural cubic spline see Green and
Silverman [9]. Formore review of splinemethods in statistics
see Wegman and Wright [10], Silverman [11], Silverman [7],
Nychka [12], and Wahba [13].

It is important to note that there are many existing gen-
eral frameworks for performing spline-based regression. For
example, multivariate adaptive regression splines (MARS)
[14] or its more robust generalizations, RMARS [15] and
RCMARS [16], with a good overview and comparison in
[17]. These follow the general approach of general additive
modelling [18] and give a formal framework for fitting and
model selection.

A brief introduction to splines, along with the extension
to circular data, is given in Section 2. The main results of
this paper are given in Section 3 by considering modelling
for single curves with occlusions and multiple intersecting
curves. Although simulated examples are used to illustrate,
the main real-data examples are given in Section 4. General
discussion appears in Section 5.

2. Nonparametric Curve
Estimation and Periodic Splines

A smoothing spline is a nonparametric curve estimator that is
defined as the solution to aminimization problem. It provides
a flexible smooth function for situations in which a simple
polynomial or nonlinear regressionmodel is not suitable. For
a set of 𝑛 observations 𝜒 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, . . . , 𝑛} consider
a regression problem where the observations are assumed to
satisfy

𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜖𝑖, 𝑖 = 1, 2, . . . , 𝑛, (1)

where the errors 𝜖𝑖 are uncorrelated with zero mean and
constant variance, 𝜎2. Then the spline smoothing method
uses the data to construct a curve 𝑓 by minimizing the
objective function

𝐽 (𝑓; 𝜒, 𝜆) = 1
𝑛
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓 (𝑥𝑖))2

+ 𝜆∫−∞
∞

(𝑓(𝑚) (𝑥))2 𝑑𝑥,
(2)

where 𝑓(𝑚) represents the 𝑚th derivative of 𝑓, with 𝑚
being a positive integer, and 𝜆 is a smoothing parameter.
For more details of smoothing splines see, for example,
Eubank [19], Eubank [6], and Cantoni and Hastie [20]. An
alternative definition of the level of smoothing is in terms
of an equivalent degrees of freedom, Df, which describes the
amount of information in the data needed to estimate the

residuals. The function smooth.spline [21] allows 𝜆 or Df to
be specified, but the degrees of freedom have been used in
what follows as this gives a more intuitive interpretation.

The above objective function consists of two parts: the
first measures the agreement of the function and the data
and the second is a roughness penalty reflecting the total
curvature—this can also be interpreted in a Bayesian setting
as the likelihood and prior. Hence, for given Df, the estimate
of 𝑓 is given by

�̂� (𝑥, Df) = min
𝑓

𝐽 (𝑓; 𝜒, Df) , 𝑥 ∈ R. (3)

If Df is large then the function is rough but closely fits the
data, whereas when Df is small then the function is smooth
but may not fit the data well. Here the choice of Df is made
automatically using standard leave-one-out cross-validation
[22]; that is,

D̂f = min
Df

𝑛∑
𝑖=1

(𝑦𝑖 − �̂�−𝑖 (𝑥𝑖, Df))2 , (4)

where �̂�−𝑖(⋅, Df) is the fitted spline curve, for given parameter
Df, and with the 𝑖th data point, (𝑥𝑖, 𝑦𝑖), being removed. Then
�̂�(⋅, D̂f) is the fitted curve using the cross-validation estimate
of the degrees of freedom.

Figure 1 shows fitted curves using splines with different
degrees of freedom, Df.The true curve is a sine function with
noise level 𝜎 = 1/4 which corresponds to a signal to noise
ratio (SNR = 𝜎𝑓/𝜎) of about 2. In (a) Df is about half the
value found using cross-validation which is used in (b), with
(c) using double the cross-validation degrees of freedom.The
small degrees-of-freedom value gives a smoother fitted curve
that ignores many of the points in the data whereas a large
value produces a rougher fit which more closely follows the
data. The automatic choice was D̂f = 5.5 which gives a very
good fit to the data reproducing the sin curve well.

For this dataset, the periodic nature of the sin function
has, so far, been ignored, and it is clear that the extreme left
and right do not match exactly. For such datasets, made up
of angles or directions, ignoring the periodic nature of the
measurements when smoothing may produce unacceptable
edge effects. A simple approach for dealing with this issue will
now be considered.

Suppose that the dataset is made up of paired angles and
distances which will be denoted as 𝜗 = {(𝜃𝑖, 𝑟𝑖) : 𝑖 = 1, . . . , 𝑛}
for a sample of size 𝑛. A simple approach for periodic data
measured in the interval (0, 2𝜋), say, is to repeat the data.
That is, for each angle 𝜃𝑖, the corresponding new angular
values are (𝜃𝑖 − 𝑝𝜋, . . . , 𝜃𝑖 − 𝜋, 𝜓, 𝜃𝑖 + 𝜋, . . . , 𝜃𝑖 + 𝑝𝜋), where𝑝 = 1, 2, . . ., and similarly repeat the corresponding radial
distances 𝑟𝑖 to be (𝑟𝑖, . . . , 𝑟𝑖). This produces a dataset, 𝜗𝑝 ={(𝜃𝑖, 𝑟𝑖) : 𝑖 = 1, . . . , 𝑛}, with 𝑛 = (2𝑝 + 1) × 𝑛 data values,
and even for small 𝑝 (e.g., 𝑝 = 1 or 2) this gives a very
good approximation to the full periodic spline. Cogburn and
Davis [23] present the theory of periodic smoothing spline
with application to the estimation of periodic functions and
the R function periodicSpline from the package splines
might provide an alternative computational approach.
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Figure 1: Smoothing spline fits to sin data: (a) Df = 3; (b) D̂f = 5.5; (c) Df = 11.
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Figure 2: Periodic spline fits to sin data: (a) Df = 7; (b) DfCV = 15; (c) Df = 30.

As illustration consider Figure 2 which shows fitted
curves equivalent to those in Figure 1 butwith𝑝 = 1.The solid
circles are the original data with open circles representing
the copied data points. Similarly, the solid line is the spline
fitted curve over the original interval with the dashed line
showing the fitted curve over the copied data points. In all
cases the fit is better than in Figure 1, with the periodic nature,
reproduced well, and as before the cross-validation choice of
smoothing has produced an excellent reconstruction of the
true sin curve.

Once fitted a residual sum of squares, RSS, calculated
on the original data values, can be used as a measure of
goodness-of-fit. Here this will be calculated using the radial
distances with definition

RSS = 𝑛∑
𝑖=1

(𝑟𝑖 − �̂� (𝜃𝑖, D̂f))2 (5)

but other versions could be used, for example, the Euclidean
distance between fitted and observed points.

Of course, the approach could lead to a poor fit if the data
is not periodic, but to prevent this it is possible to allow for
a discontinuity in the relationship. Here the approach of Gu

[24], who considered discontinuities in cubic splines with a
jump at a known location, will be extended to the periodic
case and with an unknown discontinuity location.

Suppose that the points 𝜗 = {(𝑟𝑖, 𝜃𝑖) : 𝑖 = 1, . . . , 𝑛} are
partitioned into two groups with the first, 𝜗1, containing all
the points with angles up to and including the change point
and 𝜗2 those with angles above. Assuming that the points are
ordered in increasing value of the angle, so that 𝜃1 ≤ ⋅ ⋅ ⋅ ≤ 𝜃𝑛,
then let 𝜗1 = {(𝜃𝑖, 𝑟𝑖); 𝑖 = 1, . . . , 𝑘} be the data before the
change point and 𝜗2 = {(𝜃𝑖, 𝑟𝑖); 𝑖 = 𝑘+1, . . . , 𝑛} the remaining
data. For change point at 𝜃𝑘 two curves are fitted to the data
such that

�̂� (𝜃, D̂f) = {{{
min
𝑟
𝐽 (𝑟; 𝜗1, D̂f1) , for 𝜃 ≤ 𝜃𝑘

min
𝑟
𝐽 (𝑟; 𝜗2, D̂f2) , for 𝜃 > 𝜃𝑘, (6)

where cross-validation is used separately on the two parts
leading to two degrees of freedom, D̂f = (D̂f1, D̂f2). The
significance of the change point could be assessed through
a chi-squared test, but here a change point influence graph is
considered based on the goodness-of-fit.

Consider the sin data shown in Figure 3(a) which has a
change point of size about 1 introduced at 𝜃 = 𝜃[10] ≈ 2.3.
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Figure 3: (a) Data from sin function with a discontinuity; (b) best two-part curve; (c) residual sum of square for two-part curves.

The curve in Figure 3(a) is fitted using a smoothing spline, but
ignoring the change point, it is possible that the curves in Fig-
ure 3(b) are fitted using smoothing splines with change point
at the estimated location. The automatically chosen value for
the degrees of freedom, D̂f, for the single curve in (a) is 14.5
whereas for the two-part curve the overall degrees of freedom
are D̂f1 + D̂f2 = 11. Figure 3(c) shows the residual sum of
squares, RSS, for each possible change point location with a
very clear minimum. The RSS for the curve in Figure 3(a) is1.3 while, in (b), it has reduced to 0.45, which is substantially
smaller and provides a much better description of the data.
Hence this approach provides an intuitive approach to finding
change points in data automatically.

3. A Model for Multiple Overlapping Curves

3.1. Motivation. To motivate the modelling, consider an
unobserved true scene containing a few objects of various
shape and sizes, with possible overlap. However, instead of
the scene being recorded faithfully, only partial information
is taken and, in particular, only points along the edges of the
objects are recorded.These pointsmight be chosen to identify
features with special significance or they might simply be at
equal or random locations along the edge. Further, due to
overlaps, points from the full edge may not be in the dataset.
Once collected, there is no record of which points are from
which object, and no record is kept of possible object shapes
nor even the number of objects. Hence, let the dataset consists
of a collection of 𝑛 points, 𝜒 = {(𝑥𝑖, 𝑦𝑦) : 𝑖 = 1, . . . , 𝑛},
recorded within some small region in 2D.

Figure 4 shows example datasets which will be analysed
later. Panel (a) shows a human face profile with the forehead,
eyes, nose, mouth, and chin clearly identifiable on the left—
the points on the right locate the back of the neck and the
hairline. Panel (b) shows points located along a handwritten
number 3 at approximately equally spaced intervals.

3.2. Modelling a Single Curve with Occlusion. Before the peri-
odic smoothing spline approach can be applied it is necessary

for the data to be first transformed to polar coordinates.
First define a centre, (𝜉, 𝜁), which can be estimated using the
data centroid (�̂�, �̂�) = (𝑥, 𝑦) and then use the one-to-one
transformation

𝑟𝑖 = ((𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2)1/2 ,
𝜃𝑖 = tan−1 ((𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥)) ,

𝑖 = 1, . . . , 𝑛.
(7)

This gives rise to an alternative data representation via the
centre (𝑥, 𝑦) and polar coordinates 𝜑 = {(𝑟𝑖, 𝜃𝑖) : 𝑖 = 1, . . . , 𝑛}.
Note that although this representation contains 𝑛+2 pieces of
information, by construction, the polar coordinate variables
are not independent. Of course, other estimates of centre
could be considered, such as the point which minimizes the
variance of the radii. In particular, this measure should be
more robust to presence of occlusions.

To illustrate the transformation and the subsequent spline
smoothing consider the simulated data in Figure 5. Panel (a)
shows the given points along with the sample centre marked
with a “+”; the points in (b) are the corresponding polar
coordinates relative to this centre. Also shown in (b) are
the nonperiodic smoothing spline (continuous black line)
and the period smoothing spline (dashed red line). These
are all closely aligned except at the extreme angles. Once
transformed back into Cartesian coordinates, as shown in
panel (c), the slight discrepancies between the fitted splines
are more clearly visible. At the far right of the plot, the
periodic spline curve is closed and more naturally represents
a possible object, whereas the nonperiodic spline is not closed
making it difficult to interpret if this were part of the edge of
a real object.

Figure 6 shows a second elliptical dataset but where part
of the ellipse is missing. The Cartesian data are shown in
(a) and (c), with the polar transformed data in (b). Panel
(b) shows the nonperiodic spline and the period spline with
dramatic differences which are even more obvious when the
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Figure 4: Real datasets: (a) human face and (b) handwritten number 3.
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Figure 5: (a) Simulated data; (b) polar coordinate data with fitted spline curve; (c) data with back-transformed fitted curves. In (b) and (c)
the solid curves use standard splines, whereas the dashed use the periodic spline.
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Figure 6: (a) Occluded data; (b) polar coordinate data with fitted spline curve; (c) data with back-transformed fitted curves. In (b) and (c)
the solid curves use standard splines, whereas the dashed use the periodic spline.
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fitted curves are transformedback intoCartesian coordinates,
as shown in panel (c). The periodic smoothing spline has
done a very good job of interpolating the missing part of
the curve and the results can easily be relied upon in further
analysis. In particular, slight changes in the position of a
few critical point will lead to very different shapes for the
nonperiodic spline.

To summarize, application of smoothing splines to peri-
odic point data has proved very successful. The modification
of the duplicated data is a simple, yet effective way to create
closed curves and to interpolate where data are missing. The
approach has provided a robust and informative reconstruc-
tion of the unknown curve from the data.

3.3.ModellingMultiple IntersectingCurves. To allow for inter-
secting and overlapping curves the points are partitioned into𝑚 groups, 𝑆𝑗, where 𝑗 = 1, 2, . . . , 𝑚. That is, 𝑆𝑗 ⊆ (1, . . . , 𝑛)
with 𝑆𝑖 ∩ 𝑆𝑗 = 0 when 𝑖 ̸= 𝑗 and 𝑆1 ∪ ⋅ ⋅ ⋅ ∪ 𝑆𝑚 = (1, . . . , 𝑛). To
record group membership a matrix𝑊𝑛×𝑚 = (𝑤𝑖𝑗) is defined,
where𝑤𝑖𝑗 = 1 if point 𝑖 belongs to group 𝑗 (𝑖 ∈ 𝑆𝑗) and𝑤𝑖𝑗 = 0
otherwise. Then, ∑𝑗 𝑤𝑖𝑗 = 1 and ∑𝑖 𝑤𝑖𝑗 = 𝑛𝑗, where 𝑛𝑗 is
the number of points in the 𝑗th group; that is, 𝑛𝑗 = |𝑆𝑗|. For
each group, working in polar coordinates, there is a centre,(𝜉𝑗, 𝜁𝑗), and coordinates relative to the centre, 𝜗𝑗 = {(𝑟𝑖𝑗, 𝜃𝑖𝑗) :𝑖 = 1, . . . , 𝑛𝑗}, with the full set of parameters denoted as 𝜗 ={𝜗𝑗 : 𝑗 = 1, . . . , 𝑚}. The corresponding Cartesian coordinates
can be written as Γ𝑗 = {(𝜇𝑖𝑗, ]𝑖𝑗) : 𝑖 = 1, . . . , 𝑛𝑗}, with

𝜇𝑖𝑗 = 𝜉𝑗 + 𝑟𝑖𝑗 cos (𝜃𝑖𝑗) ,
]𝑖𝑗 = 𝜁𝑗 + 𝑟𝑖𝑗 sin (𝜃𝑖𝑗) ,

for 𝑖 = 1, . . . , 𝑛𝑗, 𝑗 = 1, . . . , 𝑚,
(8)

and the full collection of data as Γ = {Γ𝑗 : 𝑗 = 1, . . . , 𝑚}.
Further, it is assumed that the point locations are recorded
with error giving observed measurements

𝑥𝑖𝑗 = 𝜇𝑖𝑗 + 𝜖𝑖𝑗,
𝑦𝑖𝑗 = ]𝑖𝑗 + 𝜀𝑖𝑗,

for 𝑖 = 1, . . . , 𝑛𝑗, 𝑗 = 1, . . . , 𝑚,
(9)

where 𝜖 and 𝜀 are independent Gaussian random variables
with zero mean and constant variance 𝜎2.

In what follows the full dataset will, without further
explanation, be referred to using either 𝜒 = {(𝑥𝑖𝑗, 𝑦𝑖𝑗) : 𝑖 =1, . . . , 𝑛𝑗, 𝑗 = 1, . . . , 𝑚} and 𝜗 = {(𝜃𝑖𝑗, 𝑟𝑖𝑗) : 𝑖 = 1, . . . , 𝑛𝑗, 𝑗 =1, . . . , 𝑚} or equivalently, but without explicit reference to
the group membership, 𝜒 = {(𝑥𝑖, 𝑦𝑖) : 𝑖 = 1, . . . , 𝑛} and𝜗 = {(𝜃𝑖, 𝑟𝑖) : 𝑖 = 1, . . . , 𝑛} as is most convenient and intuitive.

3.4. Estimation with Multiple Intersecting Curves. Now con-
sider estimation of the model unknowns from observed data.
Start by supposing that a dataset is available but that the group

membership information is intact; then the group centres
could be estimated as

�̂�𝑗 = 𝑥𝑗 = ∑𝑛𝑖=1 𝑤𝑖𝑗𝑥𝑖
∑𝑖 𝑤𝑖𝑗 ,

�̂�𝑗 = 𝑦𝑗 = ∑𝑛𝑖=1 𝑤𝑖𝑗𝑦𝑖
∑𝑖 𝑤𝑖𝑗

(10)

and, although some of these are unimportant, corresponding
polar coordinate representation of point 𝑖 relative to group
centre 𝑗 is

�̂�𝑖𝑗 = ((𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2)1/2 , (11)

�̂�𝑖𝑗 = tan−1 (𝑦𝑖 − 𝑦𝑗𝑥𝑖 − 𝑥𝑗) , (12)

where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚. The overall residual sum
of squares is then the sum of the separate components

RSS = 𝑚∑
𝑗=1

RSS𝑗 =
𝑚∑
𝑗=1

𝑛𝑗∑
𝑖=1

(𝑟𝑖𝑗 − �̂� (𝜃𝑖𝑗, D̂f𝑗))2 . (13)

Now consider the case when the group membership is
unknown and must be inferred from the data. The aim is
to find linked points by fitting curves. Some datasets have
more than one curve and some have intersecting curves.Then
classifying the points into groups may help to fit the correct
curves that represent the data.

In general, this can be thought of as a change point prob-
lem, as already discussed, to address the lack of stationarity in
the values. A change point occurs at some point in the data if
all of the values up to and including it share a common curve
while all those after the change point share another. This is
exactly the same situation as the discussion in Section 2 and
hence the same method of solution is applied.

4. Application to Real Data

4.1. General. The previous sections have illustrated the pro-
posed exploratory data analysis tools on simulated example,
whereas in this section the success of the approach is
demonstrated on a varied range of real datasets. There is no
wish to construct formal equations to define the shape but to
stimulate further analyses.

4.2. Example 1: Face Data. The first experiment is conducted
on data extracted from the human face [25] in a study looking
at changes in shape due to growth in children. Figure 7(a)
shows the data with points joining the points; then (b) shows
the points transformed to polar coordinates along with fitted
spline curves. Figure 7(c) shows the data set with back-
transformation fitted values, and the solid curve shows those
from the standard spline while the dotted curve shows those
from the periodic spline. It is clear from the fitted curves
that there is not much difference between the periodic and
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Figure 7: (a) Face data; (b) polar coordinate data with fitted spline curves; (c) back-transformed fitted curves. In (b) and (c) the solid curves
use standard splines, whereas the dotted use periodic splines.
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Figure 8: (a) Schematic diagram of a gorilla skull with anatomical landmarks for a male gorilla; (b) landmarks in polar coordinate and spline
curves; (c) landmarks along with back-transformed fitted spline curves. In (b) and (c) the solid curves use standard splines, whereas the
dotted use the periodic spline.

the standard smoothing splines. Both produce well fitted
curves for the face. It is worth noting that the fitted curve
can be evaluated at arbitrarily close locations, not only at the
data points, and hence a smoothly interpolated curve can be
drawn.

4.3. Example 2: Gorilla Skulls. This dataset, taken from Dry-
den and Mardia [3], is composed of 8 anatomical landmarks
from the skulls of 29male and 30 female gorillas. A landmark
is defined as a point of correspondence on each object that
matches between and within populations [3]. Figure 8(a)
shows a schematic diagram of a typical skull with the
landmarks indicated.

Figure 8(c) shows landmarks for one of the male gorillas
and Figure 8(b) the corresponding points in polar coordi-
nates alongwith spline fitting to the dataset and in Figure 8(c)
after back-transforming. For both, the fits are good but at the
expense of low smoothing in the spline.This fitting procedure
was repeated for the other gorilla skulls and surprisingly the
smoothed curves give good summaries allowing the skulls to
be easily categorised into four main groups covering mainly
male skulls which are rather elongated and two covering
mainly female skulls which appear more rounded. The males

lead to generally larger values of the degrees of freedom
(6 < Df < 8) than the females (Df ≈ 2). In fact, the automatic
choice of the degrees-of-freedom parameter can be used as
a simple discrimination variable giving only 8 out of 59
incorrectly classified skulls. It is important to note that this
was not a preconceived discriminator but was identified by
the exploratory analysis. This has highlighted the usefulness
of simple and flexible tools as a preliminary step in a more
wide-ranging investigation.

4.4. Example 3: The Number 3. Another dataset, again taken
from Dryden and Mardia [3], is made up of 13 landmarks
from 30 handwritten number 3’s; see Figure 9(a). Suppose the
data are divided into two subsets with 𝑛1 and 𝑛2 observations,
respectively. The best partition is made according to the
minimum value of the overall residual sum of squares, RSS,
which is displayed in panel (c). Each subset is transformed
to polar coordinates using the different centres marked “+”
in panel (a). Each subset is indicated by different marks
along with their fitted spline curves as plotted in panel (b)
with the back-transformed fitted curves in panel (a). Clearly,
this has described the two-part curves very well. Again, this
demonstrates the flexibility of the procedure.

115Exploratory Methods for the Study of Incomplete and Intersecting Shape Boundaries from Landmark Data



0

40

30

20

10

10 20 30 40

(a)

20

15

10

5

0

−𝜋 −𝜋/2 0 𝜋/2 𝜋

(b)

Change point

RS
S

12108642

500

400

300

200

100

(c)

Figure 9: (a) A typical number 3 dataset along with the back-transformed fitted two-part spline; (b) points in polar coordinates and two-part
spline curve; (c) RSS plotted against change point position.
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Figure 10: (a) Magnetic survey data for part of an iron-age archaeological site; (b) selected pits along with back-transformed fitted two-part
spline curve; (c) polar coordinates and fitted two-part spline curve.

4.5. Example 4: Archaeological Site Data. The data in Fig-
ure 10(a) shows part of a typical image dataset (supplied by
Alistair Marshall of the Guiting Power Amenity Trust; see
Aykroyd et al. [26] for details) from a magnetic survey of an
archaeological site. As well as linear features, which represent
ditches, there are also several drifts of pits, but blurring and
noise tend to camouflage the exact locations. Panel (b) shows
the locations of some of these pits, appearing as small circles,
and panel (c) shows the corresponding polar coordinates
relative to the twodata centres (marked “+” in (b)). According
to theminimumvalue of the residual sumof squares, RSS, the
observations can be classified automatically into two groups.

The data centres are calculated for each subset, the small
circles are the data in the first subset, and “×” are the
data in the second subset, with the fitted curves plotted in
Figure 10(c). Then the fitted curves are back-transformed
into Cartesian coordinate as shown in panel (b). The solid
curve is for the first subset while the dotted curve is for the
second subset. The aim of the analysis is to identify which
points are associated with each other and to fit curves to the
points, and this has been achieved well. The resulting linked
pointsmight then formpart of further analysis or aid physical
excavation.

5. Discussion

Making sense of clouds of points, apparently randomly placed
across a 2D region, is a key task in many statistical investiga-
tions.When the points are recorded without additional infor-
mation, the first task is to infer structure by linking points
using a data-driven approach. This paper has proposed and
investigated a simple, yet effective method based on change
point identification and nonparametric spline smoothing. It
provides an intuitive explanatory tool to identify patterns in
the point locations. When it is assumed that the structures
form lines and curves, the change points divide the data into
subsets, with the splines providing a flexible method to infer
the shape of the structures. The method has easily dealt with
occlusions and intersections in scenes with multiple curves.
Similar results might be achieved by applying more general
modelling approaches, such as MARS, RARS, RCMARS; for
details see, for example, [17], but we believe that a more
straightforward and intuitive approach can have equal impact
by bringing a range of easy-to-use tool to a wider audience.
Further, for all users the methods considerations can be
used to suggest further analyses based on more sophisticated
approaches.
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There is scope for extending the approach to include
larger numbers of curves where it is not possible to divide
the curves with a single change point. The nature of the
problem is closely related to classification where the group
membership is missing. This strongly suggests that a prob-
abilistic approach might be considered based on statistical
distribution models. This would then fit into the general
framework where the EM algorithm has proven very useful.
Also, there is a need to extend the approach to deal with
unordered points and ones which are not star-shaped. These
are areas of possible future work. Further, it is of interest
to develop a similar procedure which would allow more
formal modelling and model section, perhaps following the
approach of general additive modelling [18].

The applications are various and varied with an illustra-
tive example of themethodwhen the data points are anatomi-
cal landmarks defined by geometrical features, equally spaced
but blindly placed points along smooth curves and from
extreme intensity points in grey-scale images. Further, the
results of the analysis have provided new variables which
could be the starting point for other analyses. Hence there is
potential for this to be a valuable exploratory data analysis
method in the tool-kit of applied statisticians and applied
scientists.
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We relate the matrix SB of the second moments of a spherically truncated normal multivariate to its full covariance matrix Σ

and present an algorithm to invert the relation and reconstruct Σ from SB. While the eigenvectors of Σ are left invariant by the
truncation, its eigenvalues are nonuniformly damped.We show that the eigenvalues of Σ can be reconstructed from their truncated
counterparts via a fixed point iteration, whose convergence we prove analytically. The procedure requires the computation of
multidimensional Gaussian integrals over an Euclidean ball, for which we extend a numerical technique, originally proposed by
Ruben in 1962, based on a series expansion in chi-square distributions. In order to study the feasibility of our approach, we examine
the convergence rate of some iterative schemes on suitably chosen ensembles of Wishart matrices. We finally discuss the practical
difficulties arising in sample space and outline a regularization of the problem based on perturbation theory.

1. Introduction

It has been more than forty years since Tallis [1] worked out
the moment-generating function of a normal multivariate
𝑋 ≡ {𝑋𝑘}

V
𝑘=1 ∼ NV(0, Σ), subject to the conditional event

𝑋 ∈ EV (𝜌; Σ) , EV (𝜌; Σ) ≡ {𝑥 ∈ R
V

: 𝑥
T

Σ
−1

𝑥 ≤ 𝜌} . (1)

The perfect match between the symmetries of the ellipsoid
EV(𝜌; Σ) and those of NV(0, Σ) allows for an exact analytic
result, from which the complete set of multivariate truncated
moments can be extracted upon differentiation. Consider,
for instance, the matrix SE(𝜌; Σ) of the second truncated
moments, expressing the covariances among the components
of 𝑋 within EV(𝜌; Σ). From Tallis’ paper it turns out that

SE (𝜌; Σ) = 𝑐T (𝜌) Σ, 𝑐T (𝜌) ≡
𝐹V+2 (𝜌)

𝐹V (𝜌)
, (2)

with𝐹V denoting the cumulative distribution function of a𝜒
2-

variable with V degrees of freedom. Inverting (2)—so as to
expressΣ as a function ofSE—is trivial, since 𝑐T(𝜌) is a scalar

damping factor independent of Σ. In this paper, we shall refer
to such inverse relation as the reconstruction of Σ from SE.
Unfortunately, life is not always so easy. In general, the effects
produced on the expectation of functions of 𝑋 by cutting off
the probability density outside a generic domainD ⊂ RV can
be hardly calculated in closed form, especially if the boundary
ofD is shaped in a way that breaks the ellipsoidal symmetry
of NV(0, Σ). Thus, for instance, unlike (2), the matrix of the
second truncated moments is expected in general to display
a nonlinear/nontrivial dependence upon Σ.

In the present paper, we consider the case where D is a
V-dimensional Euclidean ball with center in the origin and
square radius 𝜌. Specifically, we discuss the reconstruction of
Σ from the matrix SB of the spherically truncated second
moments. To this aim, we need to mimic Tallis’ calculation,
with (1) being replaced by the conditional event

𝑋 ∈ BV (𝜌) , BV (𝜌) ≡ {𝑥 ∈ R
V

: 𝑥
T

𝑥 ≤ 𝜌} . (3)

This is precisely an example of the situation described in
the previous paragraph: althoughBV(𝜌) has a higher degree
of symmetry than EV(𝜌; Σ), still there is no possibility
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of obtaining a closed-form relation between Σ and SB,
since BV(𝜌) breaks the ellipsoidal symmetry of NV(0, Σ):
technically speaking, in this case we cannot perform any
change of variable under the defining integral of themoment-
generating function, which may reduce the dimensionality of
the problem, as in Tallis’ paper.

In spite of that, the residual symmetries characterizing
the truncated distribution help simplify the problem in the
following respects: (i) the reflection invariance of the whole
setup still yields E[𝑋𝑘 | 𝑋 ∈ BV(𝜌)] = 0 ∀𝑘 and (ii)
the rotational invariance of BV(𝜌) preserves the possibility
of defining the principal components of the distribution
just like in the unconstrained case. In particular, the latter
property means thatSB and Σ share the same orthonormal
eigenvectors. In fact, the reconstruction of Σ from SB

amounts to solving a system of nonlinear integral equations,
having the eigenvalues 𝜆 ≡ {𝜆𝑘}

V
𝑘=1 ofΣ as unknown variables

and the eigenvalues𝜇 ≡ {𝜇𝑘}
V
𝑘=1 ofSB as input parameters. In

a lack of analytic techniques to evaluate exactly the integrals
involved, we resort to a numerical algorithm, of which we
investigate feasibility, performance, and optimization.

The paper is organized as follows. In Section 2, we
describe a few examples illustrating the occurrence of spher-
ical truncations in practical situations. In Section 3, we
show that the aforementioned integral equations have the
analytic structure of a fixed point vector equation; that is to
say, 𝜆 = 𝑇(𝜆). This suggests achieving the reconstruction
of 𝜆 numerically via suitably chosen iterative schemes. In
Section 4, we prove the convergence of the simplest of them
by inductive arguments, the validity of which relies upon the
monotonicity properties of ratios of Gaussian integrals over
BV(𝜌). In Section 5, we review some numerical techniques
for the computation of Gaussian integrals over BV(𝜌) with
controlled systematic error. These are based on and extend
a classic work by Ruben [2] on the distribution of quadratic
forms of normal variables. For the sake of readability, we defer
proofs of statements made in this section to the appendix.
In Section 6, we report on our numerical experiences:
since the simplest iterative scheme, namely, the Gauss–Jacobi
iteration, is too slow for practical purposes, we investigate the
performance of its improved version based on overrelaxation;
as expected, we find that the latter has a higher convergence
rate; yet it still slows down polynomially in 1/𝜌 as 𝜌 → 0

and exponentially in V as V → ∞; in order to reduce the
slowing down, we propose an acceleration technique, which
boosts the higher components of the eigenvalue spectrum.
A series of Monte Carlo simulations enables us to quantify
the speedup. In Section 7 we discuss the problems arising
when 𝜇 is affected by statistical uncertainty and propose a
regularization technique based on perturbation theory. To
conclude, we summarize our findings in Section 8.

2. Motivating Examples

Spherical truncations ofmultinormal distributionsmay char-
acterize different kinds of experimental devices and may
occur in various problems of statistical and convex analysis.
In this section, we discuss two motivating examples.

2.1. A Two-Dimensional Gedanken Experiment in Classical
Particle Physics. Consider the following ideal situation. An
accelerator physicist prepares an elliptical beam of classical
particles with Gaussian transversal profile. The experimenter
knows a priori the spatial distribution of the beam, that is,
the covariance matrix Σ of the two-dimensional coordinates
of the particles on a plane orthogonal to their flight direction.
We can assume with no loss of generality that the transversal
coordinate system has origin at the maximum of the beam
intensity and axes along the principal components of the
beam; thus it holds Σ = diag(𝜆1, 𝜆2). The beam travels
straightforward until it enters a linear coaxial pipeline with
circular profile, schematically depicted in Figure 1, where the
beam is longitudinally accelerated. While the outer part of
the beam is stopped by an absorbing wall, the inner part
propagates within the pipeline. At the end of the beam flight
the physicist wants to know if the transversal distribution of
the particles is changed, due to unknown disturbance factors
arisen within the pipeline. Accordingly, he measures again
the spatial covariance matrix of the beam. Unfortunately, the
absorbing wall has cut off the Gaussian tail, thus damping
the covariance matrix and making it no more comparable
to the original one. To perform such a comparison in the
general case 𝜆1 ̸= 𝜆2, the covariance matrix of the truncated
circular beamhas to go through the reconstruction procedure
described in next sections.

2.2. A Multivariate Example: Connections to Compositional
Data Analysis. Compositional Data Analysis (CoDA) has
been the subject of a number of papers, pioneered by
Aitchison [3] over the past forty years. As a methodology
of statistical investigation, it finds application in all cases
where themain object of interest is amultivariate with strictly
positive continuous components to be regarded as portions of
a total amount 𝜅 (the normalization 𝜅 = 1 is conventionally
adopted in the mathematical literature). In other words,
compositional variates belong to the 𝜅-simplex:

SV = {𝑧 ∈ R
V
+ : |𝑧|1 = 𝜅} , V ≥ 2, (4)

with |𝑧|1 = ∑
V
𝑘=1 𝑧𝑘 the taxi-cab norm of 𝑧, while compo-

sitions with different norms can be always projected onto SV
via the closure operatorC⋅𝑥 ≡ {𝜅𝑥1/|𝑥|1, . . . , 𝜅𝑥V/|𝑥|1}.There
are countless types of compositional data, whose analysis
raises problems of interest for statistics [4], for example,
geochemical data, balance sheet data, and election data. The
simplex constraint induces a kind of dependency among the
parts of a composition that goes beyond the standard concept
of covariance. This invalidates many ordinary techniques of
statistical analysis.

In order to measure distances on SV, Aitchison intro-
duced a positive symmetric function 𝑑𝐴 : SV × SV → R+,
explicitly defined by

𝑑𝐴 (𝑥, 𝑦) = √
1

2V

V

∑

𝑖,𝑘=1

[log(
𝑥𝑖

𝑥𝑘

) − log(
𝑦𝑖

𝑦𝑘

)]

2

. (5)

The Aitchison distance is a key tool in CoDA. It is scale
invariant in both its first and second arguments; that is, it
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tical beam

Figure 1: A classical particle beam with elliptical transversal profile is cut off upon entering a circular coaxial pipeline.

is left invariant by redefinitions 𝑧 → {𝛼𝑧1, . . . , 𝛼𝑧V} with
𝛼 ∈ R+. Accordingly, its support can be extended toRV

+ × RV
+

by imposing

𝑑𝐴 (𝑥, 𝑦) ≡ 𝑑𝐴 (C ⋅ 𝑥,C ⋅ 𝑦) , 𝑥, 𝑦 ∈ R
V
+. (6)

It was proved in [5] that 𝑑𝐴 is a norm-induced metric on
SV, provided the latter is given an appropriate normed vector
space structure. Owing to the compositional constraint | ⋅ |1 =

𝜅, it holds dimSV = V − 1. Accordingly, the description
of SV in terms of V components is redundant: an essential
representation requires compositions to be properly mapped
onto (V−1)-tuples. Among various possibilities, the Isometric
Log-Ratio (ILR) transform introduced in [5] is the only
known map of this kind leaving 𝑑𝐴 invariant. More precisely,
the ILR fulfills

𝑑𝐴 (𝑥, 𝑦) = 𝑑𝐸 (ilr (𝑥) , ilr (𝑦)) ,

𝑑𝐸 (𝑢, V) ≡ √

V−1

∑

𝑘=1

(𝑢𝑘 − V𝑘)
2
.

(7)

It is known from [6] that if 𝑋 ∼ logNV(𝜇, Σ) is a log-
normal V-variate, thenC ⋅ 𝑋 ∼ 𝐿V(𝜇


, Σ


) is a logistic-normal

V-variate (the reader should notice that in [6] the simplex
is defined by SV = {𝑧 ∈ RV

+ : |𝑧|1 < 1}; thus property
2.2 of [6] is here reformulated so as to take into account
such difference), with a known relation between (𝜇, Σ) and
(𝜇

, Σ


). Analogously, it is not difficult to show that ilr(C⋅𝑋) ∼

NV−1(𝜇


, Σ


) is a normal (V−1)-variate, with (𝜇


, Σ


) related
to (𝜇


, Σ


) via the change of basis matrices derived in [5]. Just

to sum up, it holds

𝑋 ∼ logNV (𝜇, Σ) ⇒

C ⋅ 𝑋 ∼ 𝐿V (𝜇

, Σ


) ⇐⇒

ilr (C ⋅ 𝑋) ∼ NV−1 (𝜇


, Σ


) .

(8)

Now, suppose that (i) 𝑋 fulfills (8) and has a natural inter-
pretation as a composition, (ii) a representative set D𝑋

of observations of 𝑋 is given, and (iii) we wish to select
from D𝑋 those units which are compositionally closer to
the center of the distribution, according to the Aitchison
distance. To see that the problem is well posed, we first turn
D𝑋 into a set DC⋅𝑋 ≡ {𝑦 : 𝑦 = C ⋅ 𝑥, 𝑥 ∈ D𝑋} of
compositional observations of 𝑌 = C ⋅ 𝑋. Then, we consider
the special point cen[𝑌] = C ⋅ exp{E[ln𝑌]}, representing
the center of the distribution of 𝑌 in a compositional sense:
cen[𝑌] minimizes the expression E[𝑑

2
𝐴(𝑌, cen[𝑌])] over SV

and fulfills cen[𝑌] = ilr−1(E[ilr(𝑌)]), see [7]. By virtue of (8)
this entails ilr(cen[𝑌]) = E[ilr(𝑌)] = 𝜇

. In order to select the
observations which are closer to cen[𝑌], we set a threshold
𝛿 > 0 and consider only those elements 𝑦 ∈ DC⋅𝑋 fulfilling
𝑑
2
𝐴(𝑦, cen[𝑦]) < 𝛿, with cen[𝑦] being a sample estimator of

cen[𝑌] on DC⋅𝑋. Such selection rule operates a well-defined
truncation of the distribution of 𝑌. Moreover, in view of (7)
and (8), we have

P [𝑑
2
𝐴 (𝑌, cen [𝑌]) < 𝛿 | 𝑌 ∼ 𝐿V (𝜇


, Σ


)]

= P [𝑑
2
𝐸 (𝑍, 𝜇


) < 𝛿 | 𝑍 ∼ NV−1 (𝜇


, Σ


)] ,

(9)

with 𝑍 = ilr(C ⋅ 𝑋). As a consequence, we see that a
compositional selection rule based on the Aitchison distance
and (8) is equivalent to a spherical truncation of a multi-
normal distribution. Obviously, once 𝑍 has been spherically
truncated, the covariance matrix of the remaining data is
damped; thus an estimate of the full covariance matrix
requires the reconstruction procedure described in next
sections.

2.3. Compositional Outlier Detection via Forward Search
Techniques. Outlier detection inCoDA is a practical problem
where the considerations made in Section 2.2 find concrete
application. Most of the established methods for outlier
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detection make use of the Mahalanobis metric. This is
however unfit to describe the distance between compositions.
Log-ratio transforms allow to get rid of the compositional
constraint and make it possible to apply standard statistical
methods [8]. Here we consider an innovative approach,
namely, the Forward Search Algorithm (FSA), introduced
in [9] and thoroughly discussed in [10]. The FSA admits
an elegant extension to CoDA, of which the covariance
reconstruction is a key step. In the next few lines we sketch
the original algorithm and outline its extension to CoDA.

2.3.1. Construction of the Signal. In its standard formulation
the FSA applies to normal data. It assumes a dataset D𝑋 =

{𝑥
(𝑘)

}
𝑁
𝑘=1 with𝑥

(𝑘)
∈ R(V)

+ for 𝑘 = 1, . . . , 𝑁.The null hypothesis
is that all the elements ofD𝑋 are independent realizations of
a stochastic variable 𝑋 ∼ N(𝜇0, Σ0). The FSA consists of a
sequence of steps where data are recursively sorted. Along the
recursion a signal is built and tested.

As a preliminary step, 𝑚0 observations are randomly
chosen from the bulk of D𝑋. Let 𝑆(𝑚0) be the set of these
observations. S(𝑚0) is used to provide initial estimates
𝜇(𝑚0), Σ(𝑚0) of the true mean 𝜇0 and the true covariance
matrix Σ0, respectively. For 𝑚 = 𝑚0 + 1, 𝑚0 + 2, . . ., the
(𝑚 − 𝑚0)th step of the algorithm goes as follows:

(i) sort the elements of D𝑋 according to the increasing
values of the square Mahalanobis distance:

𝑑𝑚 (𝑥)
2

= [𝑥 − 𝜇 (𝑚 − 1)]
T

Σ (𝑚 − 1)
−1

[𝑥 − 𝜇 (𝑚 − 1)] ;

(10)

(ii) take the 𝑚th element 𝑥
(𝑚) of the newly sorted dataset

and regard 𝑠𝑚 = 𝑑𝑚(𝑥
(𝑚)

)
2 as the (𝑚 − 𝑚0)th

component of the signal;
(iii) let S(𝑚) be the set of the first 𝑚 observations of the

newly sorted dataset;
(iv) use S(𝑚) to provide new estimates 𝜇(𝑚), Σ(𝑚)

of the true mean and the true covariance matrix,
respectively.

Notice that S(𝑚) is a truncated dataset. Therefore, Σ(𝑚)

must include the Tallis’ correction factor, (2) with 𝜌 = 𝑠𝑚.
While the recursion proceeds, the inliers of D𝑋 populate
progressivelyS(𝑚).The recursion stops at the𝑚th step, when
the first outlier 𝑥

(𝑚) of D𝑋 produces a statistically relevant
discontinuity in the signal.

2.3.2. Statistical Test of the Signal. Statistical tests are needed
to assess the relevance of discontinuities observed in the
signal. At each step of the algorithm a new test is actually
performed. Specifically, at the 𝑚th step, 𝑠𝑚 is computed
together with the lowest and highest values, respectively,
𝛿𝑠𝑚,𝛼 and 𝛿𝑠𝑚,1−𝛼, which are theoretically admissible for 𝑠𝑚

under the null hypothesis at (1 − 𝛼) significance level for
some 𝛼. These values are nothing but the 𝛼- and (1 − 𝛼)-
percentage points of 𝑠𝑚. Their envelopes for 𝑚 − 𝑚0 > 0

generate two curves that surround the signal when plotted

versus𝑚. More precisely, one curve lies below it and the other
lies above, provided the null hypothesis is not broken. The
violation of one of the curves by the signal is interpreted as
the result of the entrance of an outlier into S(𝑚). Although
the distribution of 𝑠𝑚 cannot be calculated in closed form, its
percentage points are obtained from a general formula, first
derived in [11], yielding

𝛿𝑠𝑚,𝛼 = (𝜒
2
V)
−1

(
𝑚

𝑚 + (𝑁 − 𝑚 − 1) 𝑓2(𝑁−𝑚−1),2𝑚;1−𝛼

) , (11)

with 𝑓𝑎,𝑏;𝛼 the 𝛼-percentage point of the Fisher distribution
with parameters (𝑎, 𝑏). Equation (11) holds with decent
approximation, as confirmed by numerical simulations.

2.3.3. Extension of the Forward Search to CoDA. When D𝑋

is a compositional dataset, it is unnatural to assume that its
elements are realizations of a multivariate 𝑋 ∼ N(𝜇0, Σ0).
In this case the use of the FSE as outlined above does not
make sense at all. Sometimes it is reasonable to assume 𝑋 ∼

𝐿V(𝜇0, Σ0), as first argued in [6]. In this case we can use
the FSA to find outliers, provided that we first modify the
algorithm in two respects:

(i) we replace theMahalanobis distance by the Aitchison
one;

(ii) we perform statistical tests consistently with the
change of null hypothesis.

Specifically, at the 𝑚th step of the algorithm, we sort D𝑋

according to the increasing values of the square Aitchison
distance:

𝑑𝐴 (𝑥)
2

=
1

2V

V

∑

𝑖,𝑘=1

[log(
𝑥𝑖

𝑥𝑘

) − log(
(𝑐𝑚−1)𝑖

(𝑐𝑚−1)𝑘

)]

2

, (12)

where 𝑐𝑚−1 = cen[𝑦 | 𝑦 ∈ S(𝑚 − 1)] is the center ofS(𝑚 − 1).
Analogously, given the 𝑚th element 𝑥

(𝑚) of the newly sorted
dataset, we regard 𝑠𝑚 = 𝑑𝐴(𝑥

(𝑚)
)
2 as the 𝑚th component

of the signal. The percentage points of 𝑠𝑚 are obtained
from ilr(S(𝑚)) by using the probability correspondence
established in (9). Since ilr(S(𝑚)) is a spherically truncated
dataset, the estimate of the covariance matrix Σ(𝑚) derived
from itmust undergo the reconstruction procedure described
in next sections.

2.4. General Covariance Reconstruction Problem. The exam-
ples discussed in the previous subsections are special cases of
a more general inverse problem, namely, the reconstruction
of the covariance matrix Σ of a normal multivariate 𝑋 on the
basis of the covariance matrix SD of 𝑋 truncated to some
(convex) regionD. This is the simplest yet nontrivial inverse
problem, which can be naturally associated with the normal
distribution. The case D = BV(𝜌) corresponds to a setup
where theoretical and practical aspects of the problem can
be investigated with relatively modest mathematical effort.
It is certainly a well-defined framework where to study
regularization techniques for nonlinear inverse problems in
statistics, for which there is still much room for interesting
work [12, 13].
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3. Definitions and Setup

Let 𝑋 ∈ RV be a random vector with jointly normal
distribution NV(0, Σ) in V ≥ 1 dimensions. The probability
that𝑋 falls withinBV(𝜌) ismeasured by theGaussian integral

𝛼 (𝜌; Σ) ≡ P [𝑋 ∈ BV (𝜌)]

=
1

(2𝜋)
V/2

|Σ|
1/2

∫
BV(𝜌)

dV𝑥 exp {−
1

2
𝑥
T

Σ
−1

𝑥} .

(13)

Since Σ is symmetric positive definite, it has orthonormal
eigenvectors ΣV(𝑖) = 𝜆𝑖V

(𝑖). Let us denote by 𝑅 ≡ {V(𝑗)𝑖 }
V
𝑖,𝑗=1

the orthogonalmatrix having these vectors as columns and by
Λ ≡ diag(𝜆) = 𝑅

T
Σ𝑅 the diagonal counterpart of Σ. From the

invariance ofBV(𝜌) under rotations, it follows that𝛼 depends
uponΣ just byway of 𝜆. Accordingly, we rename theGaussian
probability content ofBV(𝜌) as

𝛼 (𝜌; 𝜆) ≡ ∫
BV(𝜌)

dV𝑥
V

∏

𝑚=1

𝛿 (𝑥𝑚, 𝜆𝑚) ,

𝛿 (𝑦, 𝜂) =
1

√2𝜋𝜂
exp{−

𝑦
2

2𝜂
} .

(14)

Note that (14) is not sufficient to fully characterize the random
vector 𝑋 under the spherical constraint, for which we need
to calculate the distribution law P[𝑋 ∈ 𝐴 | 𝑋 ∈ BV(𝜌)] as a
function of 𝐴 ⊂ RV. Alternatively, we can describe 𝑋 in terms
of the complete set of its truncated moments

𝑚𝑘1 ⋅⋅⋅𝑘V
(𝜌; Σ) ≡ E [𝑋

𝑘1
1 𝑋 ⋅ ⋅ ⋅ ∈ 𝑋

𝑘V
V BV (𝜌)] ,

{𝑘𝑖}𝑖=1,...,V ∈ N
V
.

(15)

As usual, these can be all obtained from the moment-
generating function

𝛼𝑚 (𝑡)

=
1

(2𝜋)
V/2

|Σ|
1/2

∫
BV(𝜌)

dV𝑥 exp {𝑡
T

𝑥 −
1

2
𝑥
T

Σ
−1

𝑥} ,

𝑡 ∈ R
V
,

(16)

by differentiating the latter an arbitrary number of times with
respect to the components of 𝑡; namely,

𝑚𝑘1 ⋅⋅⋅𝑘V
(𝜌; Σ) =

𝜕
𝑘1+⋅⋅⋅+𝑘V𝑚 (𝑡)

(𝜕𝑡1)
𝑘1

⋅ ⋅ ⋅ (𝜕𝑡V)
𝑘V

𝑡=0

. (17)

It will be observed that 𝑚(𝑡) is in general not invariant
under rotations of 𝑡. Therefore, unlike 𝛼, the moments 𝑚𝑘1 ⋅⋅⋅𝑘V
depend effectively on both 𝜆 and 𝑅. For instance, for the
matrix of the second moments SB ≡ {𝜕

2
𝑚/𝜕𝑡𝑖𝜕𝑡𝑗|𝑡=0}

V
𝑖,𝑗=1

such dependence amounts to

𝛼 (SB)𝑖𝑗 =

V

∑

𝑘,ℓ=1

𝑅𝑘𝑖𝑅ℓ𝑗 ∫
BV(𝜌)

dV𝑥 𝑥𝑘𝑥ℓ

V

∏

𝑚=1

𝛿 (𝑥𝑚, 𝜆𝑚) . (18)

By parity, the only nonvanishing terms in the above sum are
those with 𝑘 = ℓ. Hence, it follows that Σ and SB share 𝑅

as a common diagonalizing matrix. In other words, if 𝑀 ≡

diag(𝜇) is the diagonal matrix of the eigenvalues ofSB, then
𝑀 = 𝑅

TSB𝑅. Moreover, 𝜇𝑘 is related to 𝜆𝑘 by

𝜇𝑘 = 𝜆𝑘

𝛼𝑘

𝛼
,

𝛼𝑘 (𝜌; 𝜆) ≡ ∫
BV(𝜌)

dV𝑥
𝑥
2
𝑘

𝜆𝑘

V

∏

𝑚=1

𝛿 (𝑥𝑚, 𝜆𝑚) ,

𝑘 = 1, . . . , V.

(19)

The ratios 𝛼𝑘/𝛼 are naturally interpreted as adimensional
correction factors to the eigenvalues of Σ, so they play the
same role as 𝑐T(𝜌) in (2). However, 𝛼𝑘/𝛼 depends explicitly
on the subscript 𝑘; thus each eigenvalue is damped differently
from the others as a consequence of the condition𝑋 ∈ BV(𝜌).

Remark 1. In practical terms, (18)-(19) tell us that estimating
the sample covariance matrix of 𝑋 ∼ NV(0, Σ) from
a spherically truncated population {𝑥

(𝑚)
}
𝑀
𝑚=1, made of 𝑀

independent units, via the classical estimator 𝑄𝑖𝑗 = (𝑀 −

1)
−1

∑
𝑀
𝑚=1(𝑥

(𝑚)
𝑖 −�̃�

(𝑚)
𝑖 )(𝑥

(𝑚)
𝑗 −�̃�

(𝑚)
𝑗 ), being �̃� = 𝑀

−1
∑
𝑀
𝑚=1 𝑥

(𝑚)

the sample mean, yields a damped result. Nonetheless, the
damping affects only the eigenvalues of the estimator, whereas
its eigenvectors are left invariant.

3.1. Monotonicity Properties of Ratios of Gaussian Integrals.
Equations (14) and (19) suggest introducing a general nota-
tion for theGaussian integrals overBV(𝜌), under the assump-
tion Σ = Λ. So, we define

𝛼𝑘ℓ𝑚⋅⋅⋅ (𝜌; 𝜆) ≡ ∫
BV(𝜌)

dV𝑥
𝑥
2
𝑘

𝜆𝑘

𝑥
2
ℓ

𝜆ℓ

𝑥
2
𝑚

𝜆𝑚

⋅ ⋅ ⋅

V

∏

𝑛=1

𝛿 (𝑥𝑛, 𝜆𝑛) , (20)

with each subscript 𝑞 on the left-hand side addressing an
additional factor of𝑥

2
𝑞/𝜆𝑞 under the integral sign on the right-

hand side (no subscriptsmeans 𝛼). Several analytic properties
of such integrals are discussed in [14]. In the following
proposition, we lay emphasis on some issues concerning the
monotonicity trends of the ratios 𝛼𝑘/𝛼.

Proposition 2 (monotonicities). Let 𝜆(𝑘) ≡ {𝜆𝑖}
𝑖 ̸=𝑘
𝑖=1,...,V denote

the set of the full eigenvalues without 𝜆𝑘. The ratios 𝛼𝑘/𝛼 fulfill
the following properties:

(𝑝1) 𝜆𝑘(𝛼𝑘/𝛼)(𝜌; 𝜆) is amonotonic increasing function of𝜆𝑘

at fixed 𝜌 and 𝜆(𝑘);
(𝑝2) (𝛼𝑘/𝛼)(𝜌; 𝜆) is a monotonic decreasing function of 𝜆𝑘

at fixed 𝜌 and 𝜆(𝑘);
(𝑝3) (𝛼𝑘/𝛼)(𝜌; 𝜆) is a monotonic decreasing function of

𝜆𝑖 (𝑖 ̸= 𝑘) at fixed 𝜌 and 𝜆(𝑖),

where an innocuous abuse of notation has been made on
writing (𝛼𝑘/𝛼)(𝜌; 𝜆) in place of 𝛼𝑘(𝜌; 𝜆)/𝛼(𝜌; 𝜆).

Proof. Let the symbol 𝜕𝑘 ≡ 𝜕/𝜕𝜆𝑘 denote a derivative with
respect to 𝜆𝑘. In order to prove property (𝑝1), we apply the
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chain rule of differentiation to 𝜆𝑘𝛼𝑘/𝛼 and then we pass 𝜕𝑘

under the integral sign in 𝜕𝑘𝛼 and 𝜕𝑘𝛼𝑘. In this way, we obtain

𝜕𝑘 (𝜆𝑘

𝛼𝑘

𝛼
) =

1

2
(

𝛼𝑘𝑘

𝛼
−

𝛼
2
𝑘

𝛼2
)

=
1

2𝜆
2
𝑘

{E [𝑋
4
𝑘 | 𝑋 ∈ BV (𝜌)]

− E [𝑋
2
𝑘 | 𝑋 ∈ BV (𝜌)]

2
} =

1

2𝜆
2
𝑘

⋅ var (𝑋
2
𝑘 | 𝑋 ∈ BV (𝜌)) ≥ 0.

(21)

Moreover, since the truncated marginal density of 𝑋
2
𝑘 is

positive within a set of nonzeromeasure inR, the monotonic
trend of 𝜆𝑘𝛼𝑘/𝛼 in 𝜆𝑘 is strict.

Properties (𝑝2) and (𝑝3) are less trivial than (𝑝1). Indeed,
the same reasoning as above now yields on the one hand

𝜆𝑘𝜕𝑘 (
𝛼𝑘

𝛼
) = 𝜕𝑘 (𝜆𝑘

𝛼𝑘

𝛼
) −

𝛼𝑘

𝛼

=
1

2𝜆
2
𝑘

{var (𝑋
2
𝑘 | 𝑋 ∈ BV (𝜌))

− 2𝜆𝑘E [𝑋
2
𝑘 | 𝑋 ∈ BV (𝜌)]} ≤ 0,

(22)

and on the other

𝜆𝑖𝜕𝑖 (
𝛼𝑘

𝛼
) =

1

2
(

𝛼𝑖𝑘

𝛼
−

𝛼𝑖𝛼𝑘

𝛼2
)

=
1

2𝜆𝑖𝜆𝑘

cov (𝑋
2
𝑖 , 𝑋

2
𝑘 | 𝑋 ∈ BV (𝜌)) ≤ 0

(𝑖 ̸= 𝑘) .

(23)

Despite being not a priori evident, the right-hand side of
both (22) and (23) is negative (and vanishes in the limit
𝜌 → ∞). The inequalities var(𝑋

2
𝑘) ≤ 2𝜆𝑘E[𝑋

2
𝑘] within

Euclidean balls have been first discussed in [14], while the
inequalities cov(𝑋

2
𝑗 , 𝑋

2
𝑘) within generalized Orlicz balls have

been discussed in [15, 16] for the case where the probability
distribution of 𝑋 is flat instead of being normal. More
recently, a complete proof of both inequalities has been
given in [17]. Despite the technical difficulties in proving
them, their meaning should be intuitively clear. The vari-
ance inequality quantifies the squeezing affecting 𝑋

2
𝑘 as a

consequence of the truncation (in the unconstrained case it
would be var(𝑋

2
𝑘) = 2𝜆

2
𝑘). The covariance inequality follows

from the opposition arising among the square components in
proximity of the boundary ofBV(𝜌). Indeed, if 𝑋

2
𝑗 ↗ 𝜌, then

𝑋
2
𝑘 ↘ 0 ∀𝑘 ̸= 𝑗 in order for 𝑋 to stay withinBV(𝜌).

3.2. Definition Domain of the Reconstruction Problem. A
consequence of Proposition 2 is represented by the following.

Corollary 3. Given V, 𝜌, and 𝜆, 𝜇𝑘 is bounded by

𝜌

𝑟 (V, 𝜌/2𝜆𝑘)
≤ 𝜇𝑘 ≤

𝜌

3
,

𝑟 (V, 𝑧) ≡ (2V + 1)
𝑀 (V, V + 1/2, 𝑧)

𝑀 (V, V + 3/2, 𝑧)
,

(24)

with 𝑀 denoting the Kummer function; namely,

𝑀 (𝑎, 𝑏, 𝑧) =

∞

∑

𝑛=0

1

𝑛!

(𝑎)𝑛

(𝑏)𝑛

𝑧
𝑛
,

(𝑥)𝑛 ≡
Γ (𝑥 + 𝑛)

Γ (𝑥)
.

(25)

Proof. Theupper bound of (24) corresponds to the value of𝜇𝑘

in the V-tuple limit 𝜆𝑘 → ∞, 𝜆(𝑘) → {0, . . . , 0}. This is indeed
the maximum possible value allowed for 𝜇𝑘 according to
properties (𝑝1) and (𝑝3) of Proposition 2. In order to perform
this limit, we observe that

lim
𝜂→0+

𝛿 (𝑦, 𝜂) = 𝛿 (𝑦) , (26)

with the 𝛿 symbol on the right-hand side representing the
Dirac delta function (the reader who is not familiar with the
theory of distributions may refer, for instance, to [18] for an
introduction). Accordingly,

lim
𝜆𝑘→∞

lim
𝜆(𝑘)→{0,...,0}

𝜇𝑘 =

∫
+√𝜌

−√𝜌
d𝑥𝑘 𝑥

2
𝑘

∫
+√𝜌

−√𝜌
d𝑥𝑘

=
𝜌

3
. (27)

The lower bound corresponds instead to the value taken by
𝜇𝑘 as 𝜆(𝑘) → {∞, . . . , ∞} and 𝜆𝑘 is kept fixed. In this limit,
all the Gaussian factors in the probability density function
except the 𝑘th one flatten to one. Hence,

lim
𝜆(𝑘)→{∞,...,∞}

𝜇𝑘

= lim
𝜆(𝑘)→{∞,...,∞}

∫
+√𝜌

−√𝜌
d𝑥𝑘𝑥

2
𝑘𝛿 (𝑥𝑘, 𝜆𝑘) 𝛼

(V−1)
(𝜌 − 𝑥

2
𝑘; 𝜆(𝑘))

∫
+√𝜌

−√𝜌
d𝑥𝑘𝛿 (𝑥𝑘, 𝜆𝑘) 𝛼(V−1) (𝜌 − 𝑥

2
𝑘
; 𝜆(𝑘))

=

∫
+√𝜌

−√𝜌
d𝑥𝑘𝑥

2
𝑘e
−𝑥2
𝑘
/2𝜆𝑘 (𝜌 − 𝑥

2
𝑘)

V−1

∫
+√𝜌

−√𝜌
d𝑥𝑘e−𝑥

2

𝑘
/2𝜆𝑘 (𝜌 − 𝑥

2
𝑘
)
V−1

= 𝜌

∫
1

0
d𝑥𝑘𝑥

2
𝑘e
−(𝜌/2𝜆𝑘)𝑥

2

𝑘 (1 − 𝑥
2
𝑘)

V−1

∫
1

0
d𝑥𝑘e−(𝜌/2𝜆𝑘)𝑥

2

𝑘 (1 − 𝑥
2
𝑘
)
V−1

.

(28)

Numerator and denominator of the rightmost ratio are
easily recognized to be integral representations of Kummer
functions (see, e.g., [19, ch. 13]).
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The upper bound of (24) can be sharpened, as clarified by
the following.

Proposition 4 (bounds on the truncated moments). Let V, 𝜌,
and 𝜆 be given. If {𝑖1, . . . , 𝑖V} is a permutation of {1, . . . , V} such
that 𝜇𝑖1

≤ 𝜇𝑖2
≤ ⋅ ⋅ ⋅ ≤ 𝜇𝑖V

, then the following upper bounds
hold:

(𝑖)

V

∑

𝑘=1

𝜇𝑘 ≤ 𝜌;

(𝑖𝑖) 𝜇𝑖𝑘
≤

𝜌

V − 𝑘 + 1
,

𝑘 = 1, . . . , V.

(29)

Proof. The overall upper bound on the sum of truncated
moments follows from

V

∑

𝑘=1

𝜇𝑘 =
1

𝛼

V

∑

𝑘=1

𝜆𝑘𝛼𝑘

=
1

𝛼
∫
BV(𝜌)

dV𝑥 (

V

∑

𝑘=1

𝑥
2
𝑘)

V

∏

𝑚=1

𝛿 (𝑥𝑚, 𝜆𝑚) ≤ 𝜌.

(30)

At the same time, the sum can be split and bounded from
below by

V

∑

𝑘=1

𝜇𝑖𝑘
=

𝑛

∑

𝑘=1

𝜇𝑖𝑘
+

V

∑

𝑘=𝑛+1

𝜇𝑖𝑘
≥

𝑛

∑

𝑘=1

𝜇𝑖𝑘
+ (V − 𝑛) 𝜇𝑖𝑛+1

,

𝑛 = 0, 1, . . . , V − 1.

(31)

The single upper bounds on the 𝜇𝑘’s are then obtained from
(30)-(31). It will be noted that (29) (𝑖𝑖) is sharper than the
upper bound of (24) only for V > 3 and 𝑘 < V − 2.

From now on, we shall assume, with no loss of generality,
that the eigenvalues of Σ are increasingly ordered, namely,
0 < 𝜆1 ≤ ⋅ ⋅ ⋅ ≤ 𝜆V (we can always permute the labels of the
coordinate axes, so as to let this be the case). An important
aspect related to the eigenvalue ordering is provided by the
following.

Proposition 5 (eigenvalue ordering). Let V, 𝜌, and 𝜆 be given.
If 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤ 𝜆V, then 𝜇1 ≤ 𝜇2 ≤ ⋅ ⋅ ⋅ ≤ 𝜇V holds as well.

Proof. In order to show that the spherical truncation does not
violate the eigenvalue ordering, we make repeated use of the
monotonicity properties of Proposition 2. Specifically, if 𝑖 < 𝑗,
then

𝜇𝑖 = 𝜆𝑖

𝛼𝑖

𝛼
(𝜌; {𝜆1, . . . , 𝜆𝑖, . . . , 𝜆𝑗, . . . , 𝜆V})

≤ 𝜆𝑗

𝛼𝑖

𝛼
(𝜌; {𝜆1, . . . , 𝜆𝑗, . . . , 𝜆𝑗, . . . , 𝜆V})

 increasing monotonicity of 𝜆𝑖

𝛼𝑖

𝛼

= 𝜆𝑗

𝛼𝑗

𝛼
(𝜌; {𝜆1, . . . , 𝜆𝑗, . . . , 𝜆𝑗, . . . , 𝜆V})

 exchange symmetry 𝑖 ←→ 𝑗

≤ 𝜆𝑗

𝛼𝑗

𝛼
(𝜌; {𝜆1, . . . , 𝜆𝑖, . . . , 𝜆𝑗, . . . , 𝜆V})

 decreasing monotonicity of
𝛼𝑗

𝛼

= 𝜇𝑗,

(32)

where the symbol “” is used to explain where the inequality
sign preceding it comes from and the “exchange symmetry”
refers to the formal property of the one-index Gaussian inte-
grals over BV(𝜌) to fulfill 𝛼𝑖(𝜌; {𝜆1, . . . , 𝜆𝑖, . . . , 𝜆𝑗, . . . , 𝜆V}) =

𝛼𝑗(𝜌; {𝜆1, . . . , 𝜆𝑗, . . . , 𝜆𝑖, . . . , 𝜆V}).

Let us now focus on (19). They have to be solved in order
to reconstruct 𝜆 from 𝜇. Formally, if we introduce a family
of truncation operators 𝜏𝜌 : RV

+ → RV
+ (parametrically

depending on 𝜌), such that

(𝜏𝜌 ⋅ 𝜆)
𝑘

≡ 𝜆𝑘

𝛼𝑘

𝛼
(𝜌; 𝜆) , 𝑘 = 1, . . . , V, (33)

then the reconstruction of 𝜆 from 𝜇 amounts to calculating
𝜆 = 𝜏

−1
𝜌 ⋅ 𝜇. One should be aware that 𝜏𝜌 is not a surjective

operator in view of Corollary 3 and Proposition 4. Therefore,
𝜏
−1
𝜌 is only defined within a bounded domain D(𝜏

−1
𝜌 ). If we

define

D0 = {𝜇 ∈ R
V
+ : 𝜇1 ≤ ⋅ ⋅ ⋅ ≤ 𝜇V, 𝜇𝑘 = 𝜆𝑘

𝛼𝑘

𝛼
for 𝑘

= 1, . . . , V, for some 𝜆 ∈ R
V
+} ,

(34)

thenwehaveD(𝜏
−1
𝜌 ) = {𝜇 : 𝜇 = 𝜎⋅𝜇0 for some 𝜇0 ∈ D0, 𝜎 ∈

𝑆V}, where 𝑆V is the set of permutations of V elements. From
Proposition 4 we conclude thatD0 ⊆ 𝐻V(𝜌), being

𝐻V (𝜌) ≡ {𝑥 ∈ R
V
+ : 𝑥𝑘 ≤ min {

𝜌

3
,

𝜌

V − 𝑘 + 1
} ,

V

∑

𝑘=1

𝑥𝑘

≤ 𝜌, ∀𝑘} .

(35)

In fact, there are vectors 𝜇 ∈ RV
+ fulfilling 𝜇 ∈ 𝐻V(𝜌) and

𝜇 ∉ D0; thus we conclude thatD0 is a proper subset of 𝐻V(𝜌).
Numerical experiences based on the techniques discussed in
the next sections show indeed that

D (𝜏
−1
𝜌 ) =

V

⋂

𝑘=1

{

{

{

𝜇 ∈ R
V
+ :

1⋅⋅⋅V

∑

𝑗 ̸=𝑘

𝜇𝑗 + 3𝜇𝑘 ≤ 𝜌

}

}

}

. (36)
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Figure 2: (a) Numerical reconstruction ofD(𝜏
−1
𝜌 ) in V = 2 dimensions. (b) Numerical reconstruction ofD(𝜏

−1
𝜌 ) in V = 3 dimensions.

A graphical representation of (36) in V = 2 and V = 3

dimensions is depicted in Figure 2. The reader should note
that until Section 7 we shall always assume that 𝜇 comes
from the application of 𝜏𝜌 to some 𝜆; thus 𝜇 ∈ D(𝜏

−1
𝜌 ) by

construction.
Now, we observe that (19) can be written in the equivalent

form

𝜆 = 𝑇 (𝜆; 𝜇; 𝜌) , (37)

𝑇 : R
V
+ × R

V
+ × R+ → R

V
+;

𝑇𝑘 (𝜆; 𝜇; 𝜌) = 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆) , 𝑘 = 1, . . . , V.

(38)

Since 𝜌 and 𝜇 are (nonindependent) input parameters for the
covariance reconstruction problem (and in order to keep the
notation light), in the sequel we shall leave the dependence
of 𝑇 upon 𝜌 and 𝜇 implicitly understood; that is, we shall
write (37) as 𝜆 = 𝑇(𝜆). Hence, we see that the full eigenvalue
spectrum 𝜆 is a fixed point of the operator 𝑇. This suggests
obtaining it as the limit of a sequence

𝜆
(0)

= 𝜇,

𝜆
(𝑛+1)

= 𝑇 (𝜆
(𝑛)

) ,

𝑛 = 0, 1, . . . ,

(39)

𝜆 = lim
𝑛→∞

𝜆
(𝑛)

, (40)

provided that this can be shown to converge. Note that since
𝛼𝑘 < 𝛼, it follows that 𝑇𝑘(𝜆

(𝑛)
) > 𝜇𝑘 ∀𝑛, so the sequence is

bounded from below by 𝜇. In particular, this holds for 𝑛 = 0.

Therefore, the sequencemoves to the right direction at least at
the beginning. A formal proof of convergence, based on the
monotonicity properties stated by Proposition 2, is given in
the next section.

4. Convergence of the Fixed Point Equation

We split our argument into three propositions, describing
different properties of the sequence 𝜆

(𝑛). They assert, respec-
tively, that (i) the sequence is componentwise monotically
increasing; (ii) the sequence is componentwise bounded from
above by any fixed point of 𝑇; and (iii) if 𝑇 has a fixed point,
this must be unique. Statements (i) and (ii) are sufficient
to guarantee the convergence of the sequence to a finite
limit (the unconstrained spectrum is a fixed point of 𝑇). In
addition, the limit is easily recognized to be a fixed point of 𝑇.
Hence, statement (iii) guarantees that the sequence converges
to the unconstrained eigenvalue spectrum.We remark that all
the monotonicities discussed in Proposition 2 are strict; that
is, the ratios 𝛼𝑘/𝛼 have no stationary points at finite 𝜌 and 𝜆,
which is crucial for the proof.

Proposition6 (increasingmonotonicity). Given V,𝜌, and𝜇 ∈

D(𝜏
−1
𝜌 ), the sequence 𝜆

(0)
= 𝜇, 𝜆

(𝑛+1)
= 𝑇(𝜆

(𝑛)
), 𝑛 = 0, 1, . . ., is

monotically increasing; namely, 𝜆
(𝑛+1)
𝑘

> 𝜆
(𝑛)
𝑘

∀𝑘 = 1, . . . , V.

Proof. The proof is by induction. We first notice that

𝜆
(1)
𝑘 = 𝑇𝑘 (𝜆

(0)
) = 𝑇𝑘 (𝜇) = 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜇) > 𝜇𝑘 = 𝜆
(0)
𝑘 ,

𝑘 = 1, . . . , V;

(41)
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the inequality follows from 𝛼𝑘(𝜌; 𝜇) < 𝛼(𝜌; 𝜇). Suppose
now that the property of increasing monotonicity has been
checked off up to the nth element of the sequence. Then,

𝜆
(𝑛+1)
𝑘 = 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆
(𝑛)

) > 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆
(𝑛−1)

) = 𝜆
(𝑛)
𝑘 ; (42)

the inequality follows this time from the inductive hypothesis
and from properties (𝑝2) and (𝑝3) of Proposition 2.

Proposition 7 (boundedness). Given V, 𝜌, and 𝜇 ∈ D(𝜏
−1
𝜌 ),

the sequence 𝜆
(0)

= 𝜇, 𝜆(𝑛+1) = 𝑇(𝜆
(𝑛)

), 𝑛 = 0, 1, . . ., is bounded
from above; namely, 𝜆

(𝑛)
𝑘

< 𝜆
∗
𝑘 ∀𝑘 = 1, . . . , V, 𝜆

∗ being a fixed
point of 𝑇.

Proof. We proceed again by induction. We first notice that

𝜆
(0)
𝑘 = 𝜇𝑘 < 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆
∗

) = 𝜆
∗
𝑘 , 𝑘 = 1, . . . , V; (43)

the inequality follows as previously from 𝛼𝑘(𝜌; 𝜆
∗

) <

𝛼(𝜌; 𝜆
∗

). Suppose now that the property of boundedness has
been checked off up to the nth element of the sequence.Then,

𝜆
(𝑛+1)
𝑘 = 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆
(𝑛)

) = 𝜆
∗
𝑘

𝛼𝑘

𝛼
(𝜌; 𝜆

∗
)

𝛼

𝛼𝑘

(𝜌; 𝜆
(𝑛)

)

< 𝜆
∗
𝑘

𝛼𝑘

𝛼
(𝜌; 𝜆

(𝑛)
)

𝛼

𝛼𝑘

(𝜌; 𝜆
(𝑛)

) = 𝜆
∗
𝑘 ;

(44)

the inequality follows for the last time from the inductive
hypothesis and from properties (𝑝2) and (𝑝3) of Proposi-
tion 2.

According to Propositions 6 and 7, the sequence con-
verges. Now, let �̃� = lim𝑛→∞𝜆

(𝑛) be the limit of the sequence.
Effortlessly, we prove that �̃� is a fixed point of 𝑇. Indeed,

�̃�𝑘 = lim
𝑛→∞

𝜆
(𝑛)
𝑘 = lim

𝑛→∞
𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆
(𝑛−1)

)

= 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; lim
𝑛→∞

𝜆
(𝑛−1)

) = 𝑇𝑘 (�̃�) .

(45)

Note that passing the limit over 𝑛 under the integral sign is
certainly allowed for Gaussian integrals.

Proposition 8 (uniqueness of the fixed point). Let 𝜆


= 𝑇(𝜆

)

and 𝜆


= 𝑇(𝜆


) be two fixed points of 𝑇, corresponding to the
same choice of V, 𝜌, and 𝜇 ∈ D(𝜏

−1
𝜌 ). Then, it must be that

𝜆


= 𝜆
.

Proof. According to the hypothesis, 𝜆
 and 𝜆

 fulfill the
equations

𝜆

𝑘 = 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆

) ⇒

𝜇𝑘 = 𝜆

𝑘

𝛼𝑘

𝛼
(𝜌; 𝜆


) ,

𝜆

𝑘 = 𝜇𝑘

𝛼

𝛼𝑘

(𝜌; 𝜆


) ⇒

𝜇𝑘 = 𝜆

𝑘

𝛼𝑘

𝛼
(𝜌; 𝜆


) .

(46)

Hence,

0 = 𝜇𝑘 − 𝜇𝑘 = 𝜆

𝑘

𝛼𝑘

𝛼
(𝜌; 𝜆


) − 𝜆


𝑘

𝛼𝑘

𝛼
(𝜌; 𝜆


)

=

V

∑

ℓ=1

[∫

1

0
d𝑡 𝐽𝑘ℓ (𝜌; 𝜆


+ 𝑡 (𝜆


− 𝜆


))] (𝜆


ℓ − 𝜆


ℓ ) ,

(47)

where 𝐽 denotes the Jacobian matrix of 𝜏𝜌 and is given by

𝐽𝑘ℓ (𝜌; 𝜆) = 𝜕𝑘 (𝜆ℓ

𝛼ℓ

𝛼
(𝜌; 𝜆)) =

1

2

𝜆ℓ

𝜆𝑘

(
𝛼𝑘ℓ

𝛼
−

𝛼𝑘𝛼ℓ

𝛼2
)

= [Λ
−1

Ω (𝜌; 𝜆) Λ]
𝑘ℓ

,

(48)

having set Ω𝑘ℓ ≡ (1/2)(𝛼𝑘ℓ/𝛼 − 𝛼𝑘𝛼ℓ/𝛼
2
). It will be noted

that Ω = {Ω𝑘ℓ}
V
𝑘,ℓ=1 is essentially the covariance matrix of the

square components of 𝑋 under spherical truncation (we have
come across its matrix elements in (21)–(23)). As such, Ω is
symmetric positive definite. Indeed,

Ω𝑘ℓ =
1

2𝜆𝑘𝜆ℓ

cov (𝑋
2
𝑘, 𝑋

2
ℓ | 𝑋 ∈ BV (𝜌)) =

1

2𝜆𝑘𝜆ℓ

⋅ E [(𝑋
2
𝑘 − E [𝑋

2
𝑘 | 𝑋 ∈ BV (𝜌)])

⋅ (𝑋
2
ℓ − E [𝑋

2
ℓ | 𝑋 ∈ BV (𝜌)]) | 𝑋 ∈ BV (𝜌)] .

(49)

On setting 𝑍𝑘 = (𝑋
2
𝑘 − E[𝑋

2
𝑘 | 𝑋 ∈ BV(𝜌)])/√2𝜆𝑘, we can

represent Ω as Ω = E[𝑍𝑍
T

| 𝑋 ∈ BV(𝜌)]. If 𝑥 ∈ RV is not
the null vector, then 𝑥

T
Ω𝑥 = E[𝑥

T
𝑍𝑍

T
𝑥 | 𝑋 ∈ BV(𝜌)] =

E[(𝑥
T

𝑍)
2

| 𝑋 ∈ BV(𝜌)] > 0. Moreover, the eigenvalues of Ω

fulfill the secular equation

0 = det (Ω − 𝜙IV) = det [Λ
−1

(Ω − 𝜙IV) Λ]

= det (Λ
−1

ΩΛ − 𝜙IV) = det (𝐽 − 𝜙IV) ,

(50)

whence it follows that 𝐽 is positive definite as well (though it
is not symmetric). Since the sum of positive definite matrices
is positive definite, we conclude that ∫

1

0
d𝑡 𝐽(𝜌; 𝜆


+𝑡(𝜆


−𝜆


))

is positive definite too. As such, it is nonsingular. Therefore,
from (47), we conclude that 𝜆


= 𝜆

.

5. Numerical Computation of Gaussian
Integrals overBV(𝜌)

Let us now see how to compute 𝛼𝑘ℓ𝑚⋅⋅⋅ with controlled
precision. Most of the relevant work has been originally done
by Ruben in [2], where the case of 𝛼 is discussed. We extend
Ruben’s technique to Gaussian integrals containing powers of
the integration variable. Specifically, it is shown in [2] that
𝛼(𝜌; 𝜆) can be represented as a series of chi-square cumulative
distribution functions:

𝛼 (𝜌; 𝜆) =

∞

∑

𝑚=0

𝑐𝑚 (𝑠; 𝜆) 𝐹V+2𝑚 (
𝜌

𝑠
) . (51)
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The scale factor 𝑠 has the same physical dimension as 𝜌 and
𝜆. It is introduced in order to factorize the dependence of 𝛼

upon 𝜌 and 𝜆 at each order of the expansion. The series on
the right-hand side of (51) converges uniformly on every finite
interval of 𝜌. The coefficients 𝑐𝑚 are given by

𝑐𝑚 (𝑠; 𝜆) =
1

𝑚!

𝑠
V/2+𝑚

|Λ|
1/2

Γ (V/2 + 𝑚)

Γ (V/2)
M [(−𝑄)

𝑚
] ,

𝑚 = 0, 1, . . . ,

(52)

having defined 𝑄(𝑥) ≡ 𝑥
T

[Λ
−1

− 𝑠
−1IV]𝑥 for 𝑥 ∈ RV andM as

the uniform average operator on the (V− 1)-sphere 𝜕BV(1) ≡

{𝑢 ∈ RV
: 𝑢

T
𝑢 = 1}; namely,

M [𝜙] ≡
Γ (V/2)

2𝜋V/2 ∫
𝜕BV(1)

d𝑢 𝜙 (𝑢) ,

∀𝜙 ∈ C
0

(𝜕BV (1)) a.e.

(53)

Unfortunately, (52) is not particularly convenient for numer-
ical computations, since M[(−𝑄)

𝑚
] is only given in integral

form. However, it is also shown in [2] that the coefficients 𝑐𝑚

can be extracted from the Taylor expansion (at 𝑧0 = 0) of the
generating function

𝜓 (𝑧) =

V

∏

𝑘=1

(
𝑠

𝜆𝑘

)

1/2

[1 − (1 −
𝑠

𝜆𝑘

) 𝑧]

−1/2

,

that is 𝜓 (𝑧) =

∞

∑

𝑚=0

𝑐𝑚 (𝑠; 𝜆) 𝑧
𝑚

.

(54)

This series converges uniformly for |𝑧| < min𝑖|1 − 𝑠/𝜆𝑖|
−1. On

evaluating the derivatives of 𝜓(𝑧), it is then shown that 𝑐𝑚’s
fulfill the recursion:

𝑐0 =

V

∏

𝑚=1

√
𝑠

𝜆𝑚

;

𝑐𝑛 =
1

2𝑛

𝑛−1

∑

𝑟=0

𝑔𝑛−𝑟𝑐𝑟,

𝑛 = 1, 2, . . . ;

𝑔𝑛 ≡

V

∑

𝑚=1

(1 −
𝑠

𝜆𝑚

)

𝑛

.

(55)

Finally, the systematic error produced on considering only
the lowest 𝑘 terms of the chi-square series of (51) is estimated
by

R𝑛 (𝜌; 𝜆) ≡



∞

∑

𝑚=𝑛

𝑐𝑚 (𝑠; 𝜆) 𝐹V+2𝑚 (
𝜌

𝑠
)



≤ 𝑐0 (𝑠; 𝜆)

⋅

Γ (
V
2

+ 𝑛)

Γ (
V
2

)

𝜂
𝑛

𝑛!
(1 − 𝜂)

−(
V
2
+𝑛)

𝐹V+2𝑛 [
(1 − 𝜂) 𝜌

𝑠
]

≡ R𝑛,

(56)

with 𝜂 = max𝑖|1 − 𝑠/𝜆𝑖|.
Now, as mentioned, it is possible to extend the above

expansion to all Gaussian integrals 𝛼𝑘ℓ𝑚⋅⋅⋅. Here, we are
interested only in 𝛼𝑘 and 𝛼𝑗𝑘, since these are needed in
order to implement the fixed point iteration and to compute
the Jacobian matrix of 𝜏𝜌. The extension is provided by the
following.

Theorem 9 (Ruben’s expansions). The integrals 𝛼𝑘 and 𝛼𝑗𝑘

admit the series representations:

𝛼𝑘 (𝜌; 𝜆) =

∞

∑

𝑚=0

𝑐𝑘;𝑚 (𝑠; 𝜆) 𝐹V+2(𝑚+1) (
𝜌

𝑠
) , (57)

𝛼𝑗𝑘 (𝜌; 𝜆) =

∞

∑

𝑚=0

𝑐𝑗𝑘;𝑚 (𝑠; 𝜆) 𝐹V+2(𝑚+2) (
𝜌

𝑠
) , (58)

with 𝑠 being an arbitrary positive constant. The series coeffi-
cients are given, respectively, by

𝑐𝑘;𝑚 (𝑠; 𝜆) =
𝑠

𝜆𝑘

V + 2𝑚

𝑚!

𝑠
V/2+𝑚

|Λ|
1/2

Γ (V/2 + 𝑚)

Γ (V/2)

⋅ M [(−𝑄)
𝑚

𝑢
2
𝑘] ,

(59)

𝑐𝑗𝑘;𝑚 (𝑠; 𝜆) = (1 + 2𝛿𝑗𝑘)
𝑠

𝜆𝑗

𝑠

𝜆𝑘

(V + 2𝑚 + 2) (V + 2𝑚)

𝑚!

⋅
𝑠
V/2+𝑚

|Λ|
1/2

Γ (V/2 + 𝑚)

Γ (V/2)
M [(−𝑄)

𝑚
𝑢
2
𝑗𝑢
2
𝑘] ,

(60)

with 𝛿𝑗𝑘 denoting the Kronecker symbol. The series on the
right-hand side of (57)-(58) converge uniformly on every finite
interval of 𝜌. The functions

𝜓𝑘 (𝑧) = (
𝑠

𝜆𝑘

)

3/2

[1 − (1 −
𝑠

𝜆𝑘

) 𝑧]

−3/2

∏

𝑖 ̸=𝑘

(
𝑠

𝜆𝑖

)

1/2

⋅ [1 − (1 −
𝑠

𝜆𝑖

) 𝑧]

−1/2

,

(61)
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𝜓𝑘𝑘 (𝑧) = 3 (
𝑠

𝜆𝑘

)

5/2

[1 − (1 −
𝑠

𝜆𝑘

) 𝑧]

−5/2

⋅ ∏

𝑖 ̸=𝑘

(
𝑠

𝜆𝑖

)

1/2

[1 − (1 −
𝑠

𝜆𝑖

) 𝑧]

−1/2

,

(62)

𝜓𝑗𝑘 (𝑧) = (
𝑠

𝜆𝑗

𝑠

𝜆𝑘

)

3/2

⋅ {[1 − (1 −
𝑠

𝜆𝑗

) 𝑧] [1 − (1 −
𝑠

𝜆𝑘

) 𝑧]}

−3/2

× ∏

𝑖 ̸=𝑗,𝑘

(
𝑠

𝜆𝑖

)

1/2

[1 − (1 −
𝑠

𝜆𝑖

) 𝑧]

−1/2

(𝑗 ̸= 𝑘)

(63)

are generating functions, respectively, for the coefficients 𝑐𝑘;𝑚,
𝑐𝑘𝑘;𝑚 and 𝑐𝑗𝑘;𝑚 (𝑗 ̸= 𝑘); that is, they fulfill

𝜓𝑘 (𝑧) =

∞

∑

𝑚=0

𝑐𝑘;𝑚 (𝑠; 𝜆) 𝑧
𝑚

,

𝜓𝑗𝑘 (𝑧) =

∞

∑

𝑚=0

𝑐𝑗𝑘;𝑚 (𝑠; 𝜆) 𝑧
𝑚

,

(64)

for |𝑧| < min𝑖|1 − 𝑠/𝜆𝑖|
−1. Finally, the coefficients 𝑐𝑘;𝑚, 𝑐𝑘𝑘;𝑚,

and 𝑐𝑗𝑘;𝑚 (𝑗 ̸= 𝑘) can be obtained iteratively from the recursions

𝑐𝑘;0 = (
𝑠

𝜆𝑘

) 𝑐0;

𝑐𝑘;𝑚 =
1

2𝑚

𝑚−1

∑

𝑟=0

𝑔𝑘;𝑚−𝑟𝑐𝑘;𝑟;

𝑔𝑘;𝑚 ≡

V

∑

𝑖=1

𝑒𝑘;𝑖 (1 −
𝑠

𝜆𝑖

)

𝑚

,

𝑚 ≥ 1;

(65)

𝑐𝑗𝑘;0 = (1 + 2𝛿𝑗𝑘) (
𝑠

𝜆𝑗

) (
𝑠

𝜆𝑘

) 𝑐0;

𝑐𝑗𝑘;𝑚 =
1

2𝑚

𝑚−1

∑

𝑟=0

𝑔𝑗𝑘;𝑚−𝑟𝑐𝑗𝑘;𝑟;

𝑔𝑗𝑘;𝑚 ≡

V

∑

𝑖=1

𝑒𝑗𝑘;𝑖 (1 −
𝑠

𝜆𝑖

)

𝑚

,

𝑚 ≥ 1,

(66)

where the auxiliary coefficients 𝑒𝑘;𝑖 and 𝑒𝑗𝑘;𝑖 are defined by

𝑒𝑘;𝑖 =

{

{

{

3 if 𝑖 = 𝑘

1 otherwise,
(67)

𝑒𝑘𝑘;𝑖 =

{

{

{

5 if 𝑖 = 𝑘

1 otherwise,

𝑒𝑗𝑘;𝑖 =

{

{

{

3 if 𝑖 = 𝑗 𝑜𝑟 𝑘

1 otherwise
(𝑗 ̸= 𝑘) .

(68)

It is not difficult to further generalize this theorem, so as
to provide a chi-square expansion for any Gaussian integral
𝛼𝑘ℓ𝑚⋅⋅⋅. The proof follows closely the original one given by
Ruben. We reproduce it in the appendix for 𝛼𝑘, just to
highlight the differences arising when the Gaussian integral
contains powers of the integration variable.

Analogously to (56), it is possible to estimate the system-
atic error produced when considering only the lowest 𝑘 terms
of the chi-square series of 𝛼𝑘 and 𝛼𝑗𝑘. Specifically, we find that

R𝑘;𝑛 ≡



∞

∑

𝑚=𝑛

𝑐𝑘;𝑚 (𝑠; 𝜆) 𝐹V+2(𝑚+1) (
𝜌

𝑠
)



≤ 𝑐𝑘;0

⋅
𝜂
𝑛

𝑛!
(1 − 𝜂)

−(V/2+𝑛+1) Γ (V/2 + 𝑛 + 1)

Γ (V/2)

⋅ 𝐹V+2(𝑛+1) [
(1 − 𝜂) 𝜌

𝑠
] ≡ R𝑘;𝑛,

R𝑗𝑘;𝑛 ≡



∞

∑

𝑚=𝑛

𝑐𝑗𝑘;𝑚 (𝑠; 𝜆) 𝐹V+2(𝑚+2) (
𝜌

𝑠
)



≤ 𝑐𝑗𝑘;0

⋅
𝜂
𝑛

𝑛!
(1 − 𝜂)

−(V/2+𝑛+2) Γ (V/2 + 𝑛 + 2)

Γ (V/2)

⋅ 𝐹V+2(𝑛+2) [
(1 − 𝜂) 𝜌

𝑠
] ≡ R𝑗𝑘;𝑛.

(69)

In order to evaluate all Ruben series with controlled uncer-
tainty, we first set (see once more [2] for an exhaustive
discussion on how to choose 𝑠) 𝑠 = 2𝜆1𝜆V/(𝜆1 + 𝜆V); then
we choose a unique threshold 𝜀 representing the maximum
tolerable systematic error; for example, 𝜀dp = 1.0 × 10

−14

(roughly corresponding to double floating-point precision),
for all 𝛼, 𝛼𝑘, and 𝛼𝑗𝑘, and finally for each 𝛼𝑋 we compute the
integer

𝑘th ≡ min
𝑛≥1

{𝑛 : R𝑋;𝑛 < 𝜀} , (70)

providing the minimum number of chi-square terms, for
which the upper bound R𝑋;𝑛 to the residual sum R𝑋;𝑛 lies
below 𝜀. Of course, this procedure overshoots the minimum
number of terms really required for the R’s to lie below
𝜀, since we actually operate on the R’s instead of the
R’s. Nevertheless, the computational overhead is acceptable,
as it will be shown in the next section. For the sake of
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completeness, it must be said that typically the values of 𝑘th
for 𝛼, 𝛼𝑘, and 𝛼𝑗𝑘 with the same 𝜖 (and 𝜌, 𝜆) are not much
different from each other.

To conclude, we notice that 𝑘th depends nontrivially upon
𝜆. By contrast, since 𝐹V(𝑥) is monotically increasing in 𝑥,
we clearly see that 𝑘th is monotically increasing in 𝜌. Now,
should one evaluate 𝛼 and the like for a given 𝜆 at several
values of 𝜌, say 𝜌1 ≤ 𝜌2 ≤ ⋅ ⋅ ⋅ ≤ 𝜌max, it is advisable to
save computing resources and work out Ruben coefficients
just once, up to the order 𝑘th corresponding to 𝜌max, since
𝑘th(𝜌1) ≤ ⋅ ⋅ ⋅ ≤ 𝑘th(𝜌max). We made use of this trick
throughout our numerical experiences, as reported in the
sequel.

6. Numerical Analysis of the
Reconstruction Process

The fixed point (39) represents the simplest iterative scheme
that can be used in order to reconstruct the solution 𝜆 =

𝜏
−1
𝜌 ⋅ 𝜇. In the literature of numerical methods, this scheme
is known as a nonlinear Gauss–Jacobi (GJ) iteration (see, e.g.,
[20]). Accordingly, we shall rewrite it as 𝜆

(𝑛+1)
GJ,𝑘 = 𝑇𝑘(𝜆

(𝑛)
GJ ). As

we have seen, the sequence 𝜆
(𝑛)
GJ converges with no exception

as 𝑛 → ∞, provided𝜇 ∈ D(𝜏
−1
𝜌 ). Given 𝜖T > 0, the number of

steps 𝑛it needed for an approximate convergence with relative
precision 𝜖T, that is,

𝑛it ≡ min
𝑛≥1

{

{

{

𝑛 :


𝜆
(𝑛)
GJ − 𝜆

(𝑛−1)
GJ

∞

𝜆
(𝑛−1)
GJ

∞

< 𝜖T
}

}

}

, (71)

depends not only upon 𝜖T, but also on 𝜌 and 𝜇 (note that the
stopping rule is well conditioned, since ‖𝜆

(𝑛)
‖∞ > 0 ∀𝑛 and

also lim𝑛→∞‖𝜆
(𝑛)

‖∞ > 0). In order to characterize statistically
the convergence rate of the reconstruction process, we must
integrate out the fluctuations of 𝑛it due to changes of 𝜇;
that is, we must average 𝑛it by letting 𝜇 fluctuate across its
own probability space. In this way, we obtain the quantity
𝑛it ≡ E𝜇[𝑛it | 𝜖T, 𝜌], which better synthesizes the cost of the
reconstruction for given 𝜖T and 𝜌. It should be evident that
carrying out this idea analytically is hard, for on the one hand
𝑛it depends upon 𝜇 nonlinearly and on the other hand 𝜇 has
a complicated distribution, as we briefly explain below.

6.1. Choice of the Eigenvalue Ensemble. Since 𝜆 is the eigen-
value spectrum of a full covariance matrix, it is reasonable to
assume its distribution to be a Wishart WV(𝑝, Σ0) for some
scale matrix Σ0 and for some number of degrees of freedom
𝑝 ≥ V. In the sequel, we shall make the ideal assumption
Σ0 = 𝑝

−1
⋅ IV, so that the probability measure of 𝜆 is (see,

e.g., [21])

d𝑤V (𝑝; 𝜆) = 𝑝
(𝑝+V2−1)/2

⋅

𝜋
V2/2

∏
V
𝑘=1𝜆

(𝑝−V−1)/2
𝑘

exp ((−𝑝/2) ∑
V
𝑘=1 𝜆𝑘) ∏𝑘<𝑗 (𝜆𝑗 − 𝜆𝑘)

2V𝑝/2ΓV (𝑝/2) ΓV (V/2)

⋅ dV𝜆.

(72)

Under this assumption, the probability measure of 𝜇 is
obtained by performing the change of variable 𝜆 = 𝜏

−1
𝜌 ⋅ 𝜇

in (72). Unfortunately, we have no analytic representation of
𝜏
−1
𝜌 . Thus, we have neither an expression for the distribution
of 𝜇. However, 𝜇 can be extracted numerically as follows:

(i) generate randomly Σ ∼ WV(𝑝, 𝑝
−1

⋅ IV) by means of
the Bartlett decomposition [22];

(ii) take the ordered eigenvalue spectrum 𝜆 of Σ;
(iii) obtain 𝜇 by applying the truncation operator 𝜏𝜌 to 𝜆.

Note that since WV(𝑝, 𝑝
−1

⋅ IV) is only defined for 𝑝 ≥ V, we
need to rescale 𝑝 as V increases.The simplest choice is to keep
the ratio𝑝/V fixed.The larger this ratio, the closerΣ fluctuates
around IV (recall that if Σ ∼ WV(𝑝, 𝑝

−1
⋅ IV), then E[Σ𝑖𝑗] = 𝛿𝑖𝑗

and var(Σ𝑖𝑗) = 𝑝
−1

[1+𝛿𝑖𝑗]). In view of this, large values of 𝑝/V
are to be avoided, since they reduce the probability of testing
the fixed point iteration on eigenvalue spectra characterized
by large condition numbers 𝑛cond ≡ 𝜆V/𝜆1. For this reason,
we have set 𝑝 = 2V in our numerical study.

Having specified an ensemble of matrices fromwhich the
eigenvalue spectra are extracted, we are now ready to perform
numerical simulations. To begin with, we report in Figure 3
the marginal probability density function of the ordered
eigenvalues {𝜆𝑘}

V
𝑘=1 and their truncated counterparts {𝜇𝑘}

V
𝑘=1

for the Wishart ensemble W10(20, 20
−1

⋅ I10) at 𝜌 = 1, as
obtained numerically from a rather large sample of matrices
(≃106 units). It will be noted that (i) the effect of the truncation
is severe on the largest eigenvalues, as a consequence of the
analytic bounds of Corollary 2.1 and Proposition 2.2; (ii)
while the skewness of the lowest truncated eigenvalues is
negative, it becomes positive for the largest ones. This is due
to a change of relative effectiveness of (29) (𝑖) with respect to
(29) (𝑖𝑖).

6.2. Choice of the Simulation Parameters. In order to explore
the dependence of 𝑛it upon 𝜌, we need to choose one or
more simulation points for the latter. Ideally, it is possible
to identify three different regimes in our problem: 𝜌 ≲ 𝜆1

(strong truncation regime), 𝜆1 ≲ 𝜌 ≲ 𝜆V (crossover), and
𝜌 ≲ 𝜆V (weak truncation regime). We cover all of them with
the following set of points:

𝜌 ∈ {Mo (𝜆1) , . . . ,Mo (𝜆V)}

∪ {
1

2
Mo (𝜆1) , 2Mo (𝜆V)} ,

(73)

where Mo(⋅) stands for the mode. In principle, it is possible
to determine Mo(𝜆𝑘) with high accuracy by using analytic
representations of the marginal probability densities of the
ordered eigenvalues [24]. In practice, the latter become
computationally demanding at increasingly large values of V:
for instance, the determination of the probability density of
𝜆2 requires (V!)

2 sums, which is unfeasible even at V ∼ 10.
Moreover, to our aims, it is sufficient to choose approximate
values, provided that these lie not far from the exact ones.
Accordingly, we have determined the eigenvalue modes
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Figure 3: Monte Carlo simulation of the probability density function of the ordered eigenvalues 𝜆𝑘 (even rows) and their truncated
counterparts 𝜇𝑘 at 𝜌 = 1 (odd rows) for the Wishart ensembleW10(20, 20

−1
⋅ I10). The last two plots (bottom right) display the distribution of

the sum of eigenvalues.
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Table 1: Numerical estimates of the mode of the ordered eigenvalues {𝜆1, . . . , 𝜆V} of Σ ∼ WV(2V, (2V)
−1

⋅ IV) with V = 3, . . . , 10. The estimates
have been obtained from Grenander’s mode estimator [23].

V = 3 V = 4 V = 5 V = 6 V = 7 V = 8 V = 9 V = 10

M̂o(𝜆1) 0.1568 0.1487 0.1435 0.1383 0.1344 0.1310 0.1269 0.1258
M̂o(𝜆2) 0.6724 0.4921 0.4017 0.3424 0.3039 0.2745 0.2554 0.2399
M̂o(𝜆3) 1.6671 1.0112 0.7528 0.6071 0.5138 0.4543 0.4048 0.3693
M̂o(𝜆4) — 1.8507 1.2401 0.9621 0.7854 0.6684 0.5858 0.5288
M̂o(𝜆5) — — 2.0150 1.4434 1.1269 0.9263 0.7956 0.7032
M̂o(𝜆6) — — — 2.1356 1.5789 1.2559 1.0527 0.9111
M̂o(𝜆7) — — — — 2.2190 1.6764 1.3673 1.1603
M̂o(𝜆8) — — — — — 2.2763 1.7687 1.4624
M̂o(𝜆9) — — — — — — 2.3210 1.8473
M̂o(𝜆10) — — — — — — — 2.3775

numerically from samples of 𝑁 ≃ 10
6 Wishart matrices. Our

estimates are reported in Table 1 for V = 3, . . . , 10. They have
been obtained from Grenander’s estimator [23]:

Mo (𝜆𝑘)𝑟𝑠 =
1

2

∑
𝑁−𝑟
𝑖=1 (𝜆

(𝑖)
𝑘

+ 𝜆
(𝑖+𝑟)
𝑘

) (𝜆
(𝑖)
𝑘

− 𝜆
(𝑖+𝑟)
𝑘

)
−𝑠

∑
𝑁−𝑟
𝑖=1 (𝜆

(𝑖)
𝑘

− 𝜆
(𝑖+𝑟)
𝑘

)
−𝑠 , (74)

with properly chosen parameters 𝑟, 𝑠.
We are now in the position to investigate numerically how

many terms in Ruben’s expansions must be considered as 𝜀

is set to 𝜀dp = 1.0 × 10
−14, for our choice of the eigenvalue

ensemble 𝜆 ∼ WV(2V, (2V)
−1

⋅ IV) and with 𝜌 set as in Table 1.
As an example, we report in Figure 4 the discrete distributions
of 𝑘th for the basic Gaussian integral 𝛼 at V = 10, the largest
dimension that we have simulated. As expected, we observe
an increase of 𝑘thwith𝜌. Nevertheless, we see that the number
of Ruben’s components to be taken into account for a double
precision result keeps altogether modest even in the weak
truncation regime, which proves the practical usefulness of
the chi-square expansions.

6.3. Fixed Point Iteration atWork. TheGJ iteration is too slow
to be of practical interest. For instance, at V = 10, 𝜌 ≃ Mo(𝜆1)

and 𝜖T = 1.0 × 10
−7 (corresponding to a reconstruction

of 𝜆 with single floating-point precision), it is rather easy
to extract realizations of 𝜇 which require 𝑛it ≃ 15, 000 to
converge. An improvement of the GJ scheme is achieved via
overrelaxation (GJOR); that is,

𝜆
(0)
GJOR,𝑘 = 𝜇𝑘,

𝜆
(𝑛+1)
GJOR,𝑘 = 𝜆

(𝑛)
GJOR,𝑘 + 𝜔 [𝑇𝑘 (𝜆

(𝑛)
GJOR) − 𝜆

(𝑛)
GJOR,𝑘] ,

𝑘 = 1, . . . , V.

(75)

Evidently, at 𝜔 = 1, the GJOR scheme coincides with the
standard GJ one. The optimal value 𝜔opt of the relaxation
factor𝜔 is not obvious even in the linear Jacobi scheme,where
𝜔opt depends upon the properties of the coefficient matrix of
the system. For instance, if the latter is symmetric positive
definite, it is demonstrated that the best choice is provided by
𝜔opt ≡ 2(1 + √1 − 𝜎2)

−1, 𝜎 being the spectral radius of the

Jacobi iteration matrix [25]. In our numerical tests with the
GJOR scheme, we found empirically that the optimal value
of 𝜔 at 𝜌 ≲ 𝜆V is close to the linear prediction, provided that
𝜎 is replaced by ‖𝐽‖∞, 𝐽 being defined as in Section 3 (note
that ‖𝐽‖∞ < 1).

By contrast, the iteration diverges after few steps with
increasing probability as 𝜌/𝜆V → ∞ if 𝜔 is kept fixed at
𝜔 = 𝜔opt; in order to restore the convergence, 𝜔 must be
lowered towards 𝜔 = 1 as such limit is taken.

To give an idea of the convergence rate of the GJOR
scheme, we show in Figure 5(a) a joint box-plot of the
distributions of 𝑛it at V = 10 and 𝜖T = 1.0 × 10

−7. From the
plot we observe that the distribution of 𝑛it shifts rightwards
as 𝜌 decreases: clearly, the reconstruction is faster if 𝜌 is in
the weak truncation regime (where 𝜇 is closer to 𝜆), whereas
it takes more iterations in the strong truncation regime.
The dependence of 𝑛it upon 𝜌, systematically displayed in
Figure 6, is compatible with a scaling law

log 𝑛it (𝜌, V, 𝜖T) = 𝑎 (V, 𝜖T) − 𝑏 (V, 𝜖T) log 𝜌, (76)

apart from small corrections occurring at large 𝜌. Equation
(76) tells us that 𝑛it increases polynomially in 1/𝜌 at fixed V. In
order to estimate the parameters 𝑎 and 𝑏 in the strong trunca-
tion regime (where the algorithm becomes challenging), we
performed jackknife fits to (76) of data points with 𝜌 ≲ 1.
Results are collected in Figure 5(b), showing that 𝑏 is roughly
constant, while 𝑎 increases almost linearly in V. Thus, while
the cost of the eigenvalue reconstruction is only polynomial
in 1/𝜌 at fixed V, it is exponential in V at fixed 𝜌. The scaling
law of the GJOR scheme is therefore better represented
by 𝑛it = 𝐶e𝜅V/𝜌

𝑏, with 𝐶 being a normalization constant
independent of 𝜌 and V and 𝜅 representing approximately the
slope of 𝑎 as a function of V. Although the GJOR scheme
improves the GJ one, the iteration reveals to be still inefficient
in a parameter subspace, which is critical for the applications.

6.4. Boosting the GJOR Scheme. A further improvement can
be obtained by letting 𝜔 depend on the eigenvalue index
in the GJOR scheme. Let us discuss how to work out
such an adjustment. On commenting on Figure 3, we have
already noticed that the largest eigenvalues are affected by the
truncation to a larger extent than the smallest ones.Therefore,
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Figure 4:Monte Carlo simulation of the probabilitymass function of the parameter 𝑘th for theGaussian probability content𝛼.The histograms
refer to the eigenvalue ensemble 𝜆 of Σ ∼ W10(20, 20

−1
⋅ I10), with 𝜌 chosen as in Table 1 and 𝜀 = 1.0 × 10

−14.

they must perform a longer run through the fixed point
iteration, in order to converge to the untruncated values.This
is a possible qualitative explanation for the slowing down of
the algorithm as 𝜌 → 0. In view of it, we expect to observe
some acceleration of the convergence rate, if 𝜔 is replaced,
for instance, by

𝜔 → 𝜔𝑘 ≡ (1 + 𝛽 ⋅ 𝑘) 𝜔opt, 𝛽 ≥ 0, 𝑘 = 1, . . . , V. (77)

The choice 𝛽 = 0 corresponds obviously to the standard
GJOR scheme. Any other choice yields 𝜔𝑘 > 𝜔opt. Therefore,
the new scheme is also expected to display a higher rate
of failures than the GJOR one at 𝜌 ≫ 𝜆V, for the reason
explained in Section 5.3. The componentwise overrelaxation
proposed in (77) is only meant to enhance the convergence
speed in the strong truncation regime and in the crossover,
where the improvement is actually needed.
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Figure 5: (a) Box-plot of 𝑛it in the GJOR scheme at V = 10, with 𝜖T = 1.0 × 10
−7 and 𝜌 chosen as in Table 1. The distributions have been

reconstructed from a sample of 𝑁 ≃ 10
3 eigenvalue spectra extracted fromW10(20, 20

−1
⋅ I10). The whiskers extend to the most extreme data

point within (3/2)(75%−25%) data range. (b) Numerical estimates of the scaling parameters 𝑎 and 𝑏 of the GJOR scheme, as obtained from
jackknife fits to (76) of data points with 𝜌 ≲ 1 and 𝜖T = 1.0 × 10

−7. We quote in parentheses the jackknife error.

In order to confirm this picture, we have explored system-
atically the effect of 𝛽 on 𝑛it by simulating the reconstruction
process at V = 3, . . . , 10, with 𝛽 varying from 0 to 2 in
steps of 1/5. First of all, we have observed that the rate of
failures at large 𝜌 is fairly reduced if the first 30 ÷ 50 iterations
are run with 𝜔𝑘 = 𝜔opt, and only afterwards 𝛽 is switched
on. Having minimized the failures, we have checked that for
each value of 𝛽, the scaling law assumed in (76) is effectively
fulfilled. Then, we have computed jackknife estimates of the
scaling parameters 𝑎 and 𝑏. These are plotted in Figure 7
as functions of V. Each trajectory (represented by a dashed
curve) corresponds to a given value of 𝛽. Those with darker
markers refer to smaller values of 𝛽 and the other way round.
From the plots we notice that

(i) all the trajectories with 𝛽 > 0 lie below the one with
𝛽 = 0;

(ii) the trajectories of 𝑎 display a clear increasing trend
with V; yet their slope lessens as 𝛽 increases. By con-
trast, the trajectories of 𝑏 develop a mild increasing
trend with V as 𝛽 increases, though this is not strictly
monotonic;

(iii) the trajectories of both 𝑎 and 𝑏 seem to converge to a
limit trajectory as 𝛽 increases; we observe a saturation
phenomenon, which thwarts the benefit of increasing
𝛽 beyond a certain threshold close to 𝛽max ⋍ 2.

We add that pushing 𝛽 beyond 𝛽max is counterproductive,
as the rate of failures becomes increasingly relevant in the
crossover and eventually also in the strong truncation regime.

By contrast, if 𝛽 ≲ 𝛽max the rate of failures keeps very low for
essentially all simulated values of 𝜌.

Our numerical results signal a strong reduction of the
slowing downof the convergence rate. Indeed, (i)means qual-
itatively that 𝐶 and 𝑏 are reduced as 𝛽 increases. (ii) means
that 𝜅 is reduced as 𝛽 increases (this is the most important
effect, as 𝜅 is mainly responsible for the exponential slowing
down with V). The appearance of a slope in the trajectories
of 𝑏 as 𝛽 increases indicates that a mild exponential slowing
down is also developed at denominator of the scaling law
𝑛it = 𝐶e𝜅V/𝜌

𝑏, but the value of 𝑏 is anyway smaller than at
𝛽 = 0. Finally, (iii) means that choosing 𝛽 > 𝛽max has aminor
impact on the performance of the algorithm. In Figure 8, we
report a plot of the parameter 𝜅 (obtained from least-squares
fits of data to a linear model 𝑎 = 𝑎0 + 𝜅 ⋅ V) as a function
of 𝛽. We see that 𝜅(𝛽 = 0)/𝜅(𝛽 = 2) ≃ 4. This quantifies
the maximum exponential speedup of the convergence rate,
which can be achieved by our proposal. When 𝛽 is close to
𝛽max, 𝑛it amounts to few hundreds at V = 10 and 𝜌 ≃ 𝜆1/2.

7. On the Ill-Posedness of the Reconstruction
in Sample Space

So far we have discussed the covariance reconstruction under
the assumption that 𝜇 = 𝜏𝜌 ⋅ 𝜆 represents the exact truncated
counterpart of some 𝜆 ∈ RV and we have looked at
the algorithmic properties of the iteration schemes which
operatively define 𝜏

−1
𝜌 . Such analysis is essential in order to

characterize 𝜏
−1
𝜌 mathematically; yet it is not sufficient in real

situations, specificallywhen𝜇 is perturbed by statistical noise.
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Figure 6: Log-log plots of 𝑛it versus 𝜌 in the GJOR scheme at 𝜖T = 1.0 × 10
−7.The parameter 𝜌 has been chosen as in Table 1.The (red) dashed

line in each plot represents our best jackknife linear fit to (76) of data points with 𝜌 ≲ 1.

In this section, we examine the difficulties arising when
performing the covariance reconstruction in sample space.
We first recall that, according to Hadamard [26], a mathe-
matical problem is well posed provided that the following
conditions are fulfilled:
(H1) there exists always a solution to the problem;
(H2) the solution is unique;
(H3) the solution depends smoothly on the input data.

Inverse problems are often characterized by violation of
one or more of them; see, for instance, [13]. In such cases,

the standard practice consists in regularizing the inverse
operator, that is, in replacing it by a stable approximation.
With regard to our problem, the reader will recognize that
(H1) is violated (and the problem becomes ill-posed) as soon
as the space of the input data is allowed to be a superset
of D(𝜏

−1
𝜌 ): once clarifying how 𝜇 is concretely estimated

in the applications (Sections 7.1 and 7.2), we propose a
perturbative regularization of 𝜏

−1
𝜌 , which improves effectively

the fulfillment of (H1) (Section 7.3). By contrast, Proposition 8
guarantees that whenever a solution exists, it is also unique;
thus (H2) is never of concern. Finally, the fulfillment of (H3)
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obtained from least-squares fits of data to a linearmodel 𝑎 = 𝑎0+𝜅⋅V.

depends on how the statistical noise on 𝜇 is nonlinearly
inflated by the action of 𝜏

−1
𝜌 . For the sake of conciseness, in

the present paper, we just sketch the main ideas underlying
the perturbative regularization of 𝜏

−1
𝜌 , whereas a technical

implementation of it and a discussion of (H3) are deferred to
a separate paper [27].

7.1. Definition of the Sample Truncated Covariance Matrix.
The examples of Section 2 assume that (i) spherical trunca-
tions are operated on a representative sampleP𝑁 = {𝑥

(𝑘)
}
𝑁
𝑘=1

of 𝑋 ∼ NV(0, Σ) with finite size 𝑁, (ii) 𝜌 is known exactly,
and (iii) the input budget for the covariance reconstruction is
given by the subset

Q𝑀 = {𝑥 ∈ P𝑁 : ‖𝑥‖
2

< 𝜌} , with Q𝑀
 = 𝑀 ≤ 𝑁. (78)

As usual in the analysis of stochastic variables in sample
space, we assume that the observations 𝑥

(𝑘) are realizations

of i.i.d. stochastic variables 𝑋
(𝑘)

∼ NV(0, Σ), 𝑘 = 1, . . . , 𝑁.
Thus, 𝑀 is itself a stochastic variable in sample space, where
it reads

𝑀 =

𝑁

∑

𝑘=1

IBV(𝜌)
(𝑋

(𝑘)
) ≡

𝑁

∑

𝑘=1

I𝑘, (79)

with IBV(𝜌)
(⋅) denoting the characteristic function of BV(𝜌)

and I𝑘 ≡ IBV(𝜌)
(𝑋

(𝑘)
) being just a shortcut for its extended

counterpart. It is easily recognized that 𝑀 ∼ 𝐵(𝑁, 𝛼) is
a binomial variate. If we indeed denote by E the sample
expectation operator (i.e., the integral with respect to the
product measure of the joint variables {𝑋

(𝑘)
}
𝑁
𝑘=1), then a

standard calculation yields

E [𝑀] = E[

𝑁

∑

𝑘=1

I𝑘] =

𝑁

∑

𝑘=1

E [I𝑘] =

𝑁

∑

𝑘=1

𝛼 = 𝛼𝑁,

var [𝑀] = E [𝑀
2
] − E [𝑀]

2

=

𝑁

∑

𝑘=1

E [I
2
𝑘] +

1⋅⋅⋅𝑁

∑

𝑘,𝑠:𝑘 ̸=𝑠

E [I𝑘I𝑠] − 𝛼
2
𝑁
2

=

𝑁

∑

𝑘=1

E [I𝑘] +

1⋅⋅⋅𝑁

∑

𝑘,𝑠:𝑘 ̸=𝑠

E [I𝑘]E [I𝑠] − 𝛼
2
𝑁
2

= 𝛼𝑁 + 𝛼
2
𝑁 (𝑁 − 1) − 𝛼

2
𝑁
2

= 𝛼 (1 − 𝛼) 𝑁.

(80)
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Hence, we see that the relative dispersion of 𝑀 is 𝑂(𝑁
−1/2

).
Now, the simplest way to measure Σ and SB, respectively,
from the setsP𝑁 and Q𝑀 is via the classical estimators

Σ̂𝑖𝑗 =
1

𝑁 − 1
∑

𝑥∈P𝑁

(𝑥 − 𝑥)𝑖 (𝑥 − 𝑥)𝑗 ,

𝑥𝑖 =
1

𝑁
∑

𝑥∈P𝑁

𝑥𝑖,

(81)

(ŜB)
𝑖𝑗

=
1

𝑀 − 1
∑

𝑥∈Q𝑀

(𝑥 − �̃�)𝑖 (𝑥 − �̃�)𝑗 ,

�̃�𝑖 =
1

𝑀
∑

𝑥∈Q𝑀

𝑥𝑖.

(82)

We define the sample estimates �̂� and �̂�, respectively, of 𝜆

and 𝜇 as the eigenvalue spectra of Σ̂ and ŜB. By symmetry
arguments we see that �̃�𝑖 is unbiased. Indeed, it holds

E [�̃�𝑖] =

𝑁

∑

𝑘=1

E[𝑋
(𝑘)
𝑖

I𝑘

∑
𝑁
𝑠=1 I𝑠

] . (83)

The right-hand side of (83) makes only sense if we conven-
tionally define the integrand to be zero in the integration
subdomain {𝑋

(𝑘)
∉ BV(𝜌), ∀𝑘} or equivalently if we interpret

E[�̃�𝑖] as the conditional oneE[�̃�𝑖 | 𝑀 > 0] (the event 𝑀 > 0

occurs a.s. only as 𝑁 → ∞). Since the sample measure is
even under 𝑋

(𝑘)
→ −𝑋

(𝑘) while the integrand is odd, we
immediately conclude that bias[�̃�𝑖] = 0.

7.2. Bias of the Sample Truncated Covariance Matrix. The sit-
uation gets somewhat less trivial with ŜB: the normalization
factor (𝑀 − 1)

−1, which has been chosen in analogy with (81),
is not sufficient to remove completely the bias of ŜB at finite
𝑁, though we aim at showing here that the residual bias is
exponentially small and asymptotically vanishing. In order to
see this, we observe that

E [(ŜB)
𝑖𝑗

]

=

𝑁

∑

𝑘=1

E[(𝑋
(𝑘)
𝑖 − �̃�𝑖) (𝑋

(𝑘)
𝑗 − �̃�𝑗)

I𝑘

∑
𝑁
𝑠=1 I𝑠 − 1

]

=

V

∑

ℓ,𝑟=1

𝑅𝑖ℓ𝑅𝑗𝑟

⋅

𝑁

∑

𝑘=1

Ediag [(𝑋
(𝑘)
ℓ − �̃�ℓ) (𝑋

(𝑘)
𝑟 − �̃�𝑟)

I𝑘

∑
𝑁
𝑠=1 I𝑠 − 1

] ,

(84)

withEdiag denoting the sample expectation corresponding to
a multinormal measure with diagonal covariance matrix Λ =

diag(𝜆) = 𝑅
T

Σ𝑅, conditioned to 𝑀 > 1. Having diagonalized
the product measure, we observe that the integrand on the
right-hand side is odd for ℓ ̸= 𝑟 and even for ℓ = 𝑟 under
the joint change of variables 𝑋

(𝑘)
ℓ → −𝑋

(𝑘)
ℓ for 𝑘 = 1, . . . , 𝑁,

similarly to what we did in Section 2. As a consequence, it
holds

E [(ŜB)
𝑖𝑗

]

=

V

∑

ℓ=1

𝑅𝑖ℓ𝑅𝑗ℓ {

𝑁

∑

𝑘=1

Ediag [(𝑋
(𝑘)
ℓ − �̃�ℓ)

2 I𝑘

∑
𝑁
𝑠=1 I𝑠 − 1

]} ,

(85)

whencewe infer that thematrixE[ŜB] is diagonalized by the
same matrix 𝑅 as Σ. From (85) we also conclude that

bias [ŜB] = 𝑅 diag (𝑤) 𝑅
T

,

𝑤𝑖 ≡

𝑁

∑

𝑘=1

Ediag [(𝑋
(𝑘)
𝑖 − �̃�𝑖)

2 I𝑘

∑
𝑁
𝑠=1 I𝑠 − 1

]

− 𝜇𝑖,

(86)

𝑖 = 1, . . . , V. It should be observed that in general 𝑤𝑖 ̸=

bias[�̂�𝑖] since the computation of �̂�𝑖 requires the diagonaliza-
tion of ŜB, which is in general performed by a diagonalizing
matrix �̂� ̸= 𝑅. Nevertheless, if 𝑤 vanishes then bias[ŜB]

vanishes too. Now, we observe that 𝑤𝑖 splits into three
contributions:

𝑤𝑖1 =

𝑁

∑

𝑘=1

Ediag [(𝑋
(𝑘)
𝑖 )

2 I𝑘

∑
𝑁
𝑠=1 I𝑠 − 1

] − 𝜇𝑖,

𝑤𝑖2 = −2

𝑁

∑

𝑘=1

Ediag [𝑋
(𝑘)
𝑖 �̃�𝑖

I𝑘

∑
𝑁
𝑠=1 I𝑠 − 1

] ,

𝑤𝑖3 =

𝑁

∑

𝑘=1

Ediag [(�̃�𝑖)
2 I𝑘

∑
𝑁
𝑠=1 I𝑠 − 1

] ,

(87)

which can be exactly calculated and expressed in terms of 𝜇𝑖,
𝛼, and 𝑁. For instance,

𝑤𝑖1 = 𝑁Ediag [
1

𝑀 − 1
(𝑋

(1)
𝑖 )

2
I1 | 𝑀 > 1] − 𝜇𝑖

= 𝑁

𝑁

∑

𝑚=2

1

𝑚 − 1
Ediag [(𝑋

(1)
𝑖 )

2
I1 | 𝑀 = 𝑚] − 𝜇𝑖

= 𝑁

𝑁

∑

𝑚=2

1

𝑚 − 1
𝛼𝜇𝑖 (

𝑁 − 1

𝑚 − 1
) 𝛼

𝑚−1
(1 − 𝛼)

𝑁−𝑚
− 𝜇𝑖

= 𝜇𝑖

𝑁

∑

𝑚=2

𝑚

𝑚 − 1
(

𝑁

𝑚
) 𝛼

𝑚
(1 − 𝛼)

𝑁−𝑚
− 𝜇𝑖.

(88)

Analogously, we have

𝑤𝑖2 = −2𝜇𝑖

𝑁

∑

𝑚=2

1

𝑚 − 1
(

𝑁

𝑚
) 𝛼

𝑚
(1 − 𝛼)

𝑁−𝑚
,

𝑤𝑖3 = 𝜇𝑖

𝑁

∑

𝑚=2

1

𝑚 − 1
(

𝑁

𝑚
) 𝛼

𝑚
(1 − 𝛼)

𝑁−𝑚
.

(89)
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Hence, it follows that

𝑤𝑖 = −𝜇𝑖 [1 + 𝛼 (𝑁 − 1)] (1 − 𝛼)
𝑁−1

. (90)

Since 𝛼 > 0, we see that lim𝑁→∞𝑤𝑖 = 0. Thus, we conclude
that ŜB is asymptotically unbiased.

A discussion of the variance of the sample truncated
covariance matrix is beyond the scope of the present paper.
We just observe that, apart from the above calculation,
studying the sample properties of the truncated spectrum
is made hard by the fact that eigenvalues and eigenvectors
of a diagonalizable matrix are intimately related from their
very definition; thus such study would require a careful
consideration of the distribution of the sample diagonalizing
matrix �̂� ̸= 𝑅 of Ŝ𝐵.

7.3. Perturbative Regularization of 𝜏
−1
𝜌 . When 𝜇 is critically

close to the internal boundary of D(𝜏
−1
𝜌 ), a sample estimate

�̂� may fall outside of it due to statistical fluctuations. In that
case the iterative procedure described in the previous sections
diverges. On the quantitative side, the ill-posedness of the
reconstruction problem ismeasured by the failure probability

𝑝fail (𝜌, Σ, 𝑁) = P [�̂� ∉ D (𝜏
−1
𝜌 ) | 𝑋

(𝑘)
∼ NV (0; Σ) , 𝑘

= 1, . . . , 𝑁] ,

(91)

which is a highly nontrivial function of 𝜌, Σ, and 𝑁. An illus-
trative example of it is reported in Figure 9(a), which refers to
a specific case with V = 4 and Σ = diag(0.1, 0.3, 0.8, 2.2). The
plot suggests that the iterative procedure becomes severely ill-
posed in the regime of strong truncation.

In order to regularize the problem, we propose to go
back to (19) and consider it from a different perspective.
Specifically, we move from the observation that a simplified
framework occurs in the special circumstance when the
eigenvalue spectra are fully degenerate, which is essentially
equivalent to the setup of [1]. If 𝜇1 = ⋅ ⋅ ⋅ = 𝜇V ≡ �̃�, by
symmetry arguments it follows that 𝜆1 = ⋅ ⋅ ⋅ = 𝜆V ≡ �̃� and
the other way round. Equation (19) reduces in this limit to

�̃� = �̃�
𝐹V+2

𝐹V
(

𝜌

�̃�

) ≡ T𝜌 (�̃�) . (92)

It can be easily checked that the functionT𝜌(�̃�) is monoton-
ically increasing in �̃�. In addition, we have

(i) lim
�̃�→0

T𝜌 (�̃�) = 0,

(ii) lim
�̃�→∞

T𝜌 (�̃�) =
𝜌

V + 2
;

(93)

thus (92) can be surely (numerically) inverted provided that
0 < �̃� < 𝜌/(V+ 2). We can regard (92) as an approximation to
the original problem (19). When 𝜇 is not degenerate, we must
define �̃� in terms of the components of 𝜇. One possibility is
to average them, that is, to choose

�̃� =
1

V

V

∑

𝑖=1

𝜇𝑖. (94)

Subject to this, we expect �̃� to lie somewhere between 𝜆1

and 𝜆V. Equation (92) can be thought of as the lowest order
approximation of a perturbative expansion of (19) around
the point 𝜆T = {�̃�, . . . , �̃�}. If the condition number of Σ is
not extremely large, such an expansion is expected to quickly
converge, so that a few perturbative corrections to 𝜆T should
be sufficient to guarantee a good level of approximation.

As mentioned above, a technical implementation of the
perturbative approach and a thorough discussion of its
properties are deferred to a separate paper [27]. Here, we
limit ourselves to observing that the definition domain of
perturbation theory is ultimately set by its lowest order
approximation, since corrections to (92) are all algebraically
built in terms of it, with no additional constraints. Following
(94), the domain ofT−1

𝜌 comes to be defined as

D (T
−1
𝜌 ) = {𝜇 ∈ R

V
+ :

V

∑

𝑖=1

𝜇𝑖 ≤
𝜌V
V + 2

} , (95)

and it is clear that D(𝜏
−1
𝜌 ) ⊂ D(T−1

𝜌 ) (it is sufficient to sum
term by term all the inequalities contributing to (36)). In
Figure 10, we show the set difference D(T−1

𝜌 ) \ D(𝜏
−1
𝜌 ) in

V = 2 and V = 3 dimensions. When 𝜇 ∈ D(𝜏
−1
𝜌 ) but its

estimate �̂� ∉ D(𝜏
−1
𝜌 ), it may well occur �̂� ∈ D(T−1

𝜌 ); that is,
the set difference acts as an absorbing shield of the statistical
noise. Therefore, if we define the failure probability of the
perturbative reconstruction as

𝑞fail (𝜌, Σ, 𝑁) = P [�̂� ∉ D (T
−1
𝜌 ) | 𝑋

(𝑘)

∼ NV (0; Σ) , 𝑘 = 1, . . . , 𝑁] ,

(96)

we expect the inequality 𝑞fail(𝜌, Σ, 𝑁) ≪ 𝑝fail(𝜌, Σ, 𝑁) to
generously hold. An example is given in Figure 9(b): we see
that 𝑞fail becomes lower than 𝑝fail by orders of magnitude
as soon as 𝜌 and 𝑁 are not exceedingly small. In this
sense, the operator T−1

𝜌 can be regarded as the lowest order
approximation of a regularizing operator for 𝜏

−1
𝜌 .

8. Conclusions

In this paper we have studied how to reconstruct the
covariance matrix Σ of a normal multivariate 𝑋 ∼ NV(0, Σ)

from the matrix SB of the spherically truncated second
moments, describing the covariances among the components
of 𝑋 when the probability density is cut off outside a centered
Euclidean ball. We have shown that Σ andSB share the same
eigenvectors. Therefore, the problem amounts to relating the
eigenvalues of Σ to those of SB. Such relation entails the
inversion of a system of nonlinear integral equations, which
admits unfortunately no closed-form solution. Having found
a necessary condition for the invertibility of the system,
we have shown that the eigenvalue reconstruction can be
achieved numerically via a converging fixed point iteration.
In order to prove the convergence, we rely ultimately upon
some probability inequalities, known in the literature as
square correlation inequalities, which have been recently
proved in [17].
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Figure 9: (a) Numerical reconstruction of the failure probability of the iterative procedure as V = 4 and Σ = diag(0.1, 0.3, 0.8, 2.2), for several
values of 𝜌 and for 𝑁 = 200, 250, . . . , 1000. (b) Failure probability of the perturbative regularization with the same parameters.
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Figure 10: (a) Set differenceD(T−1
𝜌 ) \ D(𝜏

−1
𝜌 ) in V = 2 dimensions. (b) Set differenceD(T−1

𝜌 ) \ D(𝜏
−1
𝜌 ) in V = 3 dimensions.

In order to explore the convergence rate of the fixed
point iteration, we have implemented some variations of the
nonlinear Gauss–Jacobi scheme. Specifically, we have found
that overrelaxing the basic iteration enhances the conver-
gence rate by a moderate factor. However, the overrelaxed
algorithm still slows down exponentially in the number of
eigenvalues and polynomially in the truncation radius of the
Euclidean ball. We have shown that a significant reduction

of the slowing down can be achieved in the regime of
strong truncation by adapting the relaxation parameter to the
eigenvalue that is naturally associated with, so as to boost the
higher components of the spectrum.

We have also discussed how the iterative procedure works
when the eigenvalue reconstruction is performed on sample
estimates of the truncated covariance spectrum. Specifically,
we have shown that the statistical fluctuations make the
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problem ill-posed.We have sketched a possible way out based
on perturbation theory, which is thoroughly discussed in a
separate paper [27].

A concrete implementation of the proposed approach
requires the computation of a set of multivariate Gaussian
integrals over the Euclidean ball. For this, we have extended to
the case of interest a technique, originally proposed by Ruben
for representing the probability content of quadratic forms
of normal variables as a series of chi-square distributions. In
the paper, we have shown the practical feasibility of the series
expansion for the integrals involved in our computations.

Appendix

Proof of Theorem 9. As already mentioned in Section 4, the
proof follows in the tracks of the original one of [2].We detail
the relevant steps for 𝛼𝑘, while for 𝛼𝑗𝑘 we only explain why it
is necessary to distinguish between equal or different indices
and the consequences for either case.

In order to prove (57), we first express 𝛼𝑘 in spherical
coordinates; that is, we perform the change of variable𝑥 = 𝑟𝑢,
being 𝑟 = ‖𝑥‖ and 𝑢 ∈ 𝜕BV(1) (recall that dV𝑥 = 𝑟

V−1d𝑟 d𝑢,
with d𝑢 embodying the angular part of the spherical Jacobian
and the differentials of V − 1 angles); then we insert a factor
of 1 = exp(𝑟

2
/2𝑠) exp(−𝑟

2
/2𝑠) under the integral sign. Hence,

𝛼𝑘 reads

𝛼𝑘 (𝜌; 𝜆) =
1

(2𝜋)
V/2

|Λ|
1/2

∫

√𝜌

0
d𝑟 𝑟

V−1 𝑟
2

𝜆𝑘

exp(−
𝑟
2

2𝑠
)

⋅ ∫
𝜕BV(1)

d𝑢 𝑢
2
𝑘 exp(−

𝑄 (𝑢) 𝑟
2

2
) .

(A.1)

The next step consists in expanding the inner exponential in
Taylor series (in his original proof, Ruben considers a more
general setup, with the center of the Euclidean ball shifted by
a vector 𝑏 ∈ RV from the center of the distribution. In that
case, the Gaussian exponential looks different and must be
expanded in series of Hermite polynomials. Here, we work in
a simplified setup, where the Hermite expansion reduces to
Taylor’s); namely,

exp(−
𝑄 (𝑢) 𝑟

2

2
) =

∞

∑

𝑚=0

1

𝑚!

𝑟
2𝑚

2𝑚
(−𝑄)

𝑚
. (A.2)

This series converges uniformly in 𝑢. We review the estimate
just for the sake of completeness:



∞

∑

𝑚=0

1

𝑚!

𝑟
2𝑚

2𝑚
(−𝑄)

𝑚



≤

∞

∑

𝑚=0

1

𝑚!

𝑟
2𝑚

2𝑚
𝑞
𝑚
0 = exp(

𝑟
2
𝑞0

2
) , (A.3)

where 𝑞0 = max𝑖|1/𝑠 − 1/𝜆𝑖|. It follows that we can integrate
the series term by term.With the help of the uniform average
operator introduced in (53), 𝛼𝑘 is recast to

𝛼𝑘 (𝜌; 𝜆)

=

∞

∑

𝑚=0

1

𝑚!

1

𝜆𝑘

1

|Λ|
1/2

M [(−𝑄)
𝑚

𝑢
2
𝑘]

1

2V/2+𝑚−1Γ (V/2)

⋅ ∫

√𝜌

0
d𝑟 𝑟

V+2𝑚+1 exp(−
𝑟
2

2𝑠
) .

(A.4)

The presence of an additional factor of 𝑢
2
𝑘 in the angular

average is harmless, since |𝑢
2
𝑘| < 1. We finally notice that the

radial integral can be expressed in terms of a cumulative chi-
square distribution function on replacing 𝑟 → √𝑟𝑠; namely,

∫

√𝜌

0
d𝑟 𝑟

V+2𝑚+1exp(−
𝑟
2

2𝑠
)

= 2
V/2+𝑚

𝑠
V/2+𝑚+1

Γ (
V
2

+ 𝑚 + 1) 𝐹V+2(𝑚+1) (
𝜌

𝑠
) .

(A.5)

Inserting (A.5) into (A.4) results in Ruben’s representation of
𝛼𝑘. This completes the first part of the proof.

As a next step, we wish to demonstrate that the function
𝜓𝑘 of (61) is the generating function of the coefficients 𝑐𝑘;𝑚.
To this aim, we first recall the identities

𝑎
−1/2

= (2𝜋)
−1/2

∫

∞

−∞
d𝑥 exp(−

𝑎

2
𝑥
2
) ,

𝑎
−3/2

= (2𝜋)
−1/2

∫

∞

−∞
d𝑥 𝑥

2 exp (−
𝑎

2
𝑥
2
) ,

(A.6)

valid for 𝑎 > 0. On setting 𝑎𝑖 = [1 − (1 − 𝑠/𝜆𝑖)𝑧], we see that
𝜓𝑘 can be represented in the integral form

𝜓𝑘 (𝑧) = (
𝑠

𝜆𝑘

)

3/2

(2𝜋)
−V/2

∫

∞

−∞
d𝑥𝑘𝑥

2
𝑘

⋅ exp(−
1

2
[1 − (1 −

𝑠

𝜆𝑘

) 𝑧] 𝑥
2
𝑘) × ∏

𝑖 ̸=𝑘

(
𝑠

𝜆𝑖

)

1/2

⋅ ∫

∞

−∞
d𝑥𝑖 exp(−

1

2
[1 − (1 −

𝑠

𝜆𝑘

) 𝑧] 𝑥
2
𝑖 ) =

𝑠

𝜆𝑘

⋅
𝑠
V/2

(2𝜋)
V/2

|Λ|
1/2

∫
RV

dV𝑥 𝑥
2
𝑘

⋅ exp(−
1

2
𝑧𝑠𝑄 (𝑥) −

𝑥
T

⋅ 𝑥

2
) ,

(A.7)

provided |𝑧| < min𝑖|1 − 𝑠/𝜆𝑖|
−1. As previously done,

we introduce spherical coordinates 𝑥 = 𝑟𝑢 and expand
exp{−(1/2)𝑧𝑠𝑄(𝑥)} = exp{−(1/2)𝑧𝑠𝑟

2
𝑄(𝑢)} in Taylor series.
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By the same argument as above, the series converges uni-
formly in 𝑢 (the factor of 𝑧𝑠 does not depend on 𝑢), thus
allowing term-by-term integration. Accordingly, we have

𝜓𝑘 (𝑧) =
𝑠

𝜆𝑘

𝑠
V/2

(2𝜋)
V/2

|Λ|
1/2

∞

∑

𝑚=0

𝑧
𝑚 𝑠

𝑚

2𝑚𝑚!

⋅ ∫

∞

0
d𝑟 𝑟

V+2(𝑚+1)−1e−𝑟
2/2

⋅ ∫
𝜕BV(1)

d𝑢 [−𝑄 (𝑢)]
𝑚

𝑢
2
𝑘.

(A.8)

We see that the right-hand side of (A.8) looks similar to (A.4),
the only relevant differences being the presence of the factor
of 𝑧

𝑚 under the sum sign and the upper limit of the radial
integral. With some algebra, we arrive at

𝜓𝑘 (𝑧) =

∞

∑

𝑚=0

𝑧
𝑚

{
2

𝑚!

𝑠

𝜆𝑘

𝑠
V/2+𝑚

|Λ|
1/2

Γ (V/2 + 𝑚 + 1)

Γ (V/2)

⋅ M [(−𝑄)
𝑚

𝑢
2
𝑘]} .

(A.9)

The series coefficients are recognized to be precisely those of
(59).

In the last part of the proof, we derive the recursion
fulfilled by the coefficients 𝑐𝑘;𝑚. To this aim, the𝑚th derivative
of 𝜓𝑘 has to be evaluated at 𝑧 = 0 and then identified
with 𝑚!𝑐𝑘;𝑚. The key observation is that differentiating 𝜓𝑘

reproduces 𝜓𝑘 itself; that is to say,

𝜓

𝑘 (𝑧) = Ψ𝑘 (𝑧) 𝜓𝑘 (𝑧) , (A.10)

with

Ψ𝑘 (𝑧) =
1

2

V

∑

𝑖=1

𝑒𝑘;𝑖 (1 −
𝑠

𝜆𝑖

) [1 − (1 −
𝑠

𝜆𝑖

) 𝑧]

−1

, (A.11)

and the auxiliary coefficient 𝑒𝑘;𝑖 being defined as in (67).
Equation (A.10) lies at the origin of the recursion. Indeed,
from (A.10), it follows that that 𝜓


𝑘 is a function of 𝜓


𝑘 and 𝜓𝑘;

namely, 𝜓

𝑘 = Ψ


𝑘𝜓𝑘 + Ψ𝑘𝜓


𝑘. Proceeding analogously yields

the general formula

𝜓
(𝑚)
𝑘 (𝑧) =

𝑚−1

∑

𝑟=0

(

𝑚 − 1

𝑟
) Ψ

(𝑚−𝑟−1)
𝑘 (𝑧) 𝜓

(𝑟)
𝑘 (𝑧) . (A.12)

At 𝑧 = 0, this reads

𝑚!𝑐𝑘;𝑚 =

𝑚−1

∑

𝑟=0

(𝑚 − 1)!

(𝑚 − 𝑟 − 1)!𝑟!
Ψ
(𝑚−𝑟−1)
𝑘 (0) 𝑟!𝑐𝑘;𝑟. (A.13)

The last step consists in proving that

Ψ
(𝑚)
𝑘 (0) =

1

2
𝑚!𝑔𝑘;𝑚+1, (A.14)

with 𝑔𝑘;𝑚 defined as in (65). This can be done precisely as
explained in [2].

Having reiterated Ruben’s proof explicitly in a specific
case, it is now easy to see how the theorem is extended to
any other Gaussian integral. First of all, from (A.1), we infer
that each additional subscript in 𝛼𝑘ℓ𝑚⋅⋅⋅ enhances the power
of the radial coordinate under the integral sign by 2 units.
This entails a shift in the number of degrees of freedom of
the chi-square distributions in Ruben’s expansion, amounting
to twice the number of subscripts. For instance, since 𝛼𝑗𝑘

has two subscripts, its Ruben’s expansion starts by 𝐹V+4,
independently of whether 𝑗 = 𝑘 or 𝑗 ̸= 𝑘. In second place,
we observe that in order to correctly identify the generating
functions of Ruben’s coefficients for a higher-order integral
𝛼𝑘ℓ𝑚⋅⋅⋅, we need to take into account the multiplicities of the
indices 𝑘, ℓ, 𝑚,. . .. As an example, consider the case of 𝜓𝑗𝑘

(𝑗 ̸= 𝑘) and 𝜓𝑘𝑘. By going once more through the argument
presented in (A.7), we see that (A.6) are sufficient to show that
(63) is the generating function of 𝛼𝑗𝑘. By contrast, in order to
repeat the proof for the case of 𝜓𝑘𝑘, we need an additional
integral identity; namely,

𝑎
−5/2

=
1

3
(2𝜋)

−1/2
∫

+∞

−∞
d𝑥 𝑥

4 exp(−
𝑎

2
𝑥
2
) , (A.15)

valid once more for 𝑎 > 0. Hence, we infer that 𝜓𝑘𝑘 must
depend upon 𝜆𝑘 via a factor of [1 − (1 − 𝑠/𝜆𝑘)𝑧]

−5/2, whereas
𝜓𝑗𝑘 (𝑗 ̸= 𝑘) must depend on 𝜆𝑗 and 𝜆𝑘 via factors of,
respectively, [1−(1−𝑠/𝜆𝑗)𝑧]

−3/2 and [1−(1−𝑠/𝜆𝑘)𝑧]
−3/2.The

different exponents are ultimately responsible for the specific
values taken by the auxiliary coefficients 𝑒𝑘𝑘;𝑖 and 𝑒𝑗𝑘;𝑖 of (68).

To conclude, we observe that the estimates of the residuals
R𝑘;𝑚 and R𝑗𝑘;𝑚, presented in Section 4 without an explicit
proof, do not require any further technical insight than
already provided by [2] plus our considerations. We leave
them to the reader, since they can be obtained once more in
the tracks of the original derivation ofR𝑚.
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We have proposed a generalized class of exponential type estimators for population mean under the framework of systematic
sampling using the knowledge of two auxiliary variables. The expressions for the mean square error of the proposed class of
estimators have been corrected up to first order of approximation. Comparisons of the efficiency of the proposed class of estimators
under the optimal conditions with the other existing estimators have been presented through a real secondary data. The statistical
study provides strong evidence that the proposed class of estimators in survey estimation procedure results in substantial efficiency
improvements over the other existing estimation approaches.

1. Introduction

In the literature of survey sampling, it is well known that the
efficiencies of the estimators of the population parameters
of the variable of interest can be increased by the use of
auxiliary information related to auxiliary variable 𝑥, which
is highly correlated with the variable of interest 𝑦. Auxiliary
information may be efficiently utilized either at planning
stage or at design stage to arrive at an improved estima-
tor compared to those estimators, not utilizing auxiliary
information. A simple technique of utilizing the known
knowledge of the population parameters of the auxiliary
variables is through ratio, product, and regression method
of estimations using different probability sampling designs
such as simple random sampling, stratified random sampling,
cluster sampling, systematic sampling, and double sampling.

In the present paper we will use knowledge of the auxil-
iary variables under the framework of systematic sampling.
Due to its simplicity, systematic sampling is the most com-
monly used probability design in survey of finite populations;
see W. G. Madow and L. H. Madow [1]. Apart from its
simplicity, systematic sampling provides estimators which are

more efficient than simple random sampling or stratified ran-
dom sampling for certain types of population; see Cochran
[2], Gautschi [3], and Hajeck [4]. Later on the problem
of estimating the population mean using information on
auxiliary variable has also been discussed by various authors
including Quenouille [5], Hansen et al. [6], Swain [7], Singh
[8], Shukla [9], Srivastava and Jhajj [10], Kushwaha and Singh
[11], Bahl and Tuteja [12], Banarasi et al. [13], H. P. Singh and
R. Singh [14], Kadilar and Cingi [15], Koyuncu and Kadilar
[16], Singh et al. [17], Singh and Solanki [18], Singh and Jatwa
[19], Tailor et al. [20], Khan and Singh [21], and Khan and
Abdullah [22].

Let us consider a finite population 𝑃 of size𝑁 of distinct
and identifiable units, 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑁 and number it from 1
to 𝑁 unitsin some order. A random sample of size 𝑛 units is
selected from the first 𝑘 units and then every 𝑘th subsequent
unit is selected; thus there will be 𝑘 samples (clusters), each of
size 𝑛 and observe the study variable 𝑦 and auxiliary variable
𝑥 for each and every unit selected in the sample. Let (𝑦𝑖𝑗,𝑥𝑖𝑗)
for 𝑖 = 1, 2, . . . , 𝑘 and 𝑗 = 1, 2, . . . , 𝑛: denote the value of
𝑗th unit in the 𝑖th sample. Then the systematic sample means
are defined as 𝑦∗ = (1/𝑛)∑

𝑛
𝑗=1 𝑦𝑖𝑗 and 𝑥

∗
= (1/𝑛)∑

𝑛
𝑗=1 𝑥𝑖𝑗
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are the unbiased estimators of the population means 𝑌 =

(1/𝑁)∑
𝑁
𝑗=1 𝑦𝑖𝑗 and𝑋 = (1/𝑁)∑

𝑁
𝑗=1 𝑥𝑖𝑗, respectively.

Further let

𝜌
∗
𝑦 = {1 + (𝑛 − 1) 𝜌𝑦} ,

𝜌
∗
𝑥 = {1 + (𝑛 − 1) 𝜌𝑥} ,

𝜌
∗
𝑧 = {1 + (𝑛 − 1) 𝜌𝑧} ,

(1)

where

𝜌𝑦 =

(𝑦𝑖𝑗 − 𝑌) (𝑦𝑖𝑗 − 𝑌)

𝐸 (𝑦𝑖𝑗 − 𝑌)
2

,

𝜌𝑥 =

(𝑥𝑖𝑗 − 𝑋) (𝑥𝑖𝑗 − 𝑋)

𝐸 (𝑥𝑖𝑗 − 𝑋)
2

,

𝜌𝑧 =

(𝑧𝑖𝑗 − 𝑍) (𝑧𝑖𝑗 − 𝑍)

𝐸 (𝑧𝑖𝑗 − 𝑍)
2

(2)

are the corresponding intraclass correlation coefficients for
the study variable 𝑦 and the auxiliary variables 𝑥 and 𝑧,
respectively.

Similarly 𝜌𝑦𝑥 = 𝑆𝑦𝑥/𝑆𝑦𝑆𝑥, 𝜌𝑦𝑧 = 𝑆𝑦𝑧/𝑆𝑦𝑆𝑧, and 𝜌𝑥𝑧 =

𝑆𝑥𝑧/𝑆𝑥𝑆𝑧 are the correlation coefficients of the study and
the auxiliary variables, respectively, where 𝑆𝑦, 𝑆𝑥, and 𝑆𝑧 are
the population standard deviation of study variable 𝑦 and
auxiliary variables 𝑥 and 𝑧, respectively. Also 𝑆𝑦𝑥, 𝑆𝑦𝑧, and
𝑆𝑥𝑧 are the population covariances between 𝑦 and 𝑥, 𝑦 and
𝑧, and 𝑧 and 𝑥, respectively. Also let 𝐶𝑦 and 𝐶𝑥 and 𝐶𝑧 be
the population coefficients of variation of the study and the
auxiliary variables, respectively.

The variance of the classical estimator unbiased estimator
𝑦1 is given by

𝑉 (𝑦1) = 𝜃𝑌
2
𝜌
∗
𝑦𝐶

2
𝑦,

(3)

where 𝜃 = ((𝑁 − 1)/𝑛𝑁).
Swain [7] proposed a ratio estimator in systematic sam-

pling given by

𝑦2 = 𝑦
∗
(
𝑋

𝑥
∗) . (4)

The mean squared error of the above estimator is as follows:

MSE (𝑦2) = 𝜃𝑌
2
[𝜌

∗
𝑦𝐶

2
𝑦 + 𝜌

∗
𝑥𝐶

2
𝑥 (1 − 2𝑘√𝜌

∗∗)] , (5)

where 𝜌∗∗ = 𝜌
∗
𝑦 /𝜌

∗
𝑥 and 𝑘 = 𝜌𝑦𝑥𝐶𝑦/𝐶𝑥.

Shukla [9] suggested the following product estimator
for population mean of the study variable;the suggested
estimator and their mean squared error are given as follows:

𝑦3 = 𝑦
∗exp(𝑧

∗

𝑍

) , (6)

MSE (𝑦3) = 𝜃𝑌
2
[𝜌

∗
𝑦𝐶

2
𝑦 + 𝜌

∗
𝑧𝐶

2
𝑧 (1 + 2𝑘

∗
√𝜌

∗∗
2 )] , (7)

where 𝜌∗∗2 = 𝜌
∗
𝑦 /𝜌

∗
𝑧 and 𝑘∗ = 𝜌𝑦𝑧𝐶𝑦/𝐶𝑧.

The usual regression estimator for population mean
under systematic sampling is given as follows:

𝑦4 = 𝑦
∗
+ 𝑏𝑦𝑥 (𝑋 − 𝑥

∗
) , (8)

where 𝑏𝑦𝑥 is the sample regression coefficient between 𝑥 and
𝑦.

The variance of the estimator 𝑦4, up to first order of
approximation, is as follows:

MSE (𝑦4) = 𝜃𝜌
∗
𝑦𝑆

2
𝑦 [1 − 𝜌

2
𝑦𝑥] . (9)

Singh et al. [17] recommended ratio-product type exponen-
tial estimators and are given by

𝑦5 = 𝑦
∗ exp(𝑋 − 𝑥

∗

𝑋 + 𝑥
∗
) ,

𝑦6 = 𝑦
∗ exp(𝑥

∗
− 𝑋

𝑥
∗
+ 𝑋

) .

(10)

The mean square errors of the Singh et al. [17], using first
order of approximation, are given as follows:

MSE (𝑦5) = 𝜃𝑌
2
[𝜌

∗
𝑦𝐶

2
𝑦 +

𝜌
∗
𝑥𝐶

2
𝑥

4
(1 − 4𝑘√𝜌∗∗)] , (11)

MSE (𝑦6) = 𝜃𝑌
2
[𝜌

∗
𝑦𝐶

2
𝑦 +

𝜌
∗
𝑥𝐶

2
𝑥

4
(1 + 4𝑘√𝜌∗∗)] . (12)

Tailor et al. [20] suggested a ratio-cum-product estimator
for finite population mean; the recommended estimator and
their first order mean square error are shown as follows:

𝑦7 = 𝑦
∗
(
𝑋

𝑥
∗)(

𝑧
∗

𝑍

) ,

MSE (𝑦7) = 𝜃𝑌
2
[𝜌

∗
𝑦𝐶

2
𝑦 + 𝜌

∗
𝑥𝐶

2
𝑥 (1 − 2𝑘√𝜌

∗∗)

+ 𝜌
∗
𝑧𝐶

2
𝑧 (1 − 2𝑘

∗∗
√𝜌

∗∗
1 ) + 2𝑘

∗
𝐶
2
𝑧√𝜌

∗
𝑦𝜌

∗
𝑧 ] ,

(13)

where 𝜌∗∗1 = 𝜌
∗
𝑥 /𝜌

∗
𝑧 .

2. The Generalized Class of
Exponential Estimators

In this section, we have proposed a generalized class of
exponential type estimators for populationmean of the study
variable 𝑦, under the framework of systematic sampling as
given by

𝑦𝑝

= 𝑦
∗exp(

𝑓(𝑋 − 𝑥
∗
)

𝑋 + (𝑔 − 1) 𝑥
∗
) exp(

ℎ (𝑍 − 𝑧
∗
)

𝑍 + (𝜂 − 1) 𝑧
∗
) ,

(14)

where −∞ < 𝑓 < ∞, −∞ < ℎ < ∞, 𝑔 > 0, and 𝜂 > 0.

143A Generalized Class of Exponential Type Estimators for Population Mean under Systematic Sampling...



Table 1: Some members of the proposed class of estimators.

Estimator Values of constants
f h 𝑔 𝜂

𝑦𝑝1 = 𝑦
∗ [simple estimator] 0 0 0 0

𝑦𝑝2 = 𝑦
∗ exp(𝑋 − 𝑥

∗

𝑋 + 𝑥
∗
) Singh et al. [17] 1 0 2 0

𝑦𝑝3 = 𝑦
∗ exp(𝑍 − 𝑧

∗

𝑍 + 𝑧
∗
) 0 1 0 2

𝑦𝑝4 = 𝑦
∗ exp(𝑋 − 𝑥

∗

𝑋

) 1 0 1 0

𝑦𝑝5 = 𝑦
∗ exp(𝑍 − 𝑧

∗

𝑍

) 0 1 0 1

𝑦𝑝6 = 𝑦
∗ exp( 𝑋 − 𝑥

∗

𝑋 + (𝑔 − 1) 𝑥
∗
) 1 0 𝑔 𝜂

𝑦𝑝7 = 𝑦
∗ exp( 𝑍 − 𝑧

∗

𝑍 + (𝜂 − 1) 𝑧
∗
) 0 1 𝑔 𝜂

𝑦𝑝8 = 𝑦
∗ exp(

𝑓(𝑋 − 𝑥
∗
)

𝑋 + 𝑥
∗

) f 0 2 𝜂

𝑦𝑝9 = 𝑦
∗ exp(

ℎ (𝑍 − 𝑧
∗
)

𝑍 + 𝑧
∗

) 0 h 𝑔 2

𝑦𝑝10 = 𝑦
∗ exp(𝑋 − 𝑥

∗

𝑋 + 𝑥
∗
) exp(𝑍 − 𝑧

∗

𝑍 + 𝑧
∗
) 1 1 𝑔 𝜂

𝑦𝑝11 = 𝑦
∗ exp(𝑋 − 𝑥

∗

𝑋

) exp(𝑍 − 𝑧
∗

𝑍

) 1 1 1 1

𝑦𝑝12 = 𝑦
∗ exp(𝑥

∗
− 𝑋

𝑥
∗
+ 𝑋

) Singh et al. [17] −1 0 2 𝜂

𝑦𝑝13 = 𝑦
∗ exp(𝑧

∗
− 𝑍

𝑧
∗
+ 𝑍

) 0 −1 𝑔 2

𝑦𝑝14 = 𝑦
∗ exp(𝑥

∗
− 𝑋

𝑥
∗
+ 𝑋

) exp(𝑧
∗
− 𝑍

𝑧
∗
+ 𝑍

) −1 −1 2 2

𝑦𝑝15 = 𝑦
∗ exp(𝑋 − 𝑥

∗

𝑋 + 𝑥
∗
) exp(𝑧

∗
− 𝑍

𝑧
∗
+ 𝑍

) 1 −1 2 2

𝑦𝑝16 = 𝑦
∗ exp(𝑥

∗
− 𝑋

𝑥
∗
+ 𝑋

) exp(𝑍 − 𝑧
∗

𝑍 + 𝑧
∗
) −1 1 2 2

𝑦𝑝17 = 𝑦
∗ exp(𝑋 − 𝑥

∗

𝑋

) exp(𝑧
∗
− 𝑍

𝑍

) 1 −1 1 1

𝑦𝑝18 = 𝑦
∗ exp(𝑥

∗
− 𝑋

𝑋

) exp(𝑍 − 𝑧
∗

𝑍

) −1 1 1 1

A set of some new and knownmembers of the generalized
class of exponential estimators generated from (14) for some
suitable values of 𝑓, ℎ, 𝑔, and 𝜂 are listed in Table 1.

To obtain the properties of the proposed class of estima-
tors up to first-order approximation, we use the following
relative errors, symbols, and notations:

𝜓0 =
𝑦
∗
− 𝑌

𝑌

,

𝜓1 =
𝑥
∗
− 𝑋

𝑋

,

𝜓2 =
𝑧
∗
− 𝑍

𝑍

,

(15)

such that

𝐸 (𝜓0) = 𝐸 (𝜓1) = 𝐸 (𝜓2) = 0; (16)

also

𝐸 (𝜓
2
0) = 𝜃𝜌

∗
𝑦𝐶

2
𝑦,

𝐸 (𝜓
2
1) = 𝜃𝜌

∗
𝑥𝐶

2
𝑥,

𝐸 (𝜓
2
2) = 𝜃𝜌

∗
𝑧𝐶

2
𝑧,

𝐸 (𝜓0𝜓1) = 𝜃𝑘𝐶
2
𝑥√𝜌

∗
𝑦𝜌

∗
𝑥 ,
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𝐸 (𝜓0𝜓2) = 𝜃𝑘
∗
𝐶
2
𝑧√𝜌

∗
𝑦𝜌

∗
𝑧 ,

𝐸 (𝜓1𝜓2) = 𝜃𝑘
∗∗
𝐶
2
𝑧√𝜌

∗
𝑥𝜌

∗
𝑧 .

(17)

Expanding (14) in terms of 𝜓’s up to the first order of
approximation, we have

𝑦𝑝 = 𝑌 (1 + 𝜓0) exp(
−𝑓𝜓1

1 + (𝑔 − 1) (1 + 𝜓1)
)

⋅ exp(
−ℎ𝜓2

1 + (𝜂 − 1) (1 + 𝜓2)
) .

(18)

Further simplify

𝑦𝑝 − 𝑌 = 𝑌[𝜓0 −
𝑓

𝑔
𝜓1 −

ℎ

𝜂
𝜓2 −

𝑓

𝑔
𝜓0𝜓1 −

ℎ

𝜂
𝜓0𝜓2

+ 𝛿1𝜓
2
1 + 𝛿2𝜓

2
2 + 𝛿3𝜓1𝜓2] ,

(19)

where 𝛿1 = 𝑓/𝑔−𝑓/𝑔
2
+𝑓

2
/2𝑔

2, 𝛿2 = ℎ/𝜂 − ℎ/𝜂
2
+ℎ

2
/2𝜂

2,
and 𝛿3 = 𝑓ℎ/𝑔𝜂.

On squaring and taking expectation on both sides of (19),
we get the mean square error of 𝑦𝑝, up to the first degree of
approximation, as

MSE (𝑦𝑝) = 𝜃𝑌
2
[𝜌

∗
𝑦𝐶

2
𝑦 + 𝜆

2
1𝜌

∗
𝑥𝐶

2
𝑥 + 𝜆

2
2𝜌

∗
𝑧𝐶

2
𝑧

− 2𝜆1𝑘𝐶
2
𝑥√𝜌

∗
𝑦𝜌

∗
𝑥 − 2𝜆2𝑘

∗
𝐶
2
𝑧√𝜌

∗
𝑦𝜌

∗
𝑧

+ 2𝜆1𝜆2𝑘
∗∗
𝐶
2
𝑧√𝜌

∗
𝑥𝜌

∗
𝑧 ] ,

(20)

where 𝜆1 = 𝑓/𝑔 and 𝜆2 = ℎ/𝜂.
By partially differentiating (20) with respect to 𝜆1 and 𝜆2,

we get the optimum value of 𝜆1 and 𝜆2 as given by

𝜆1 =
𝛿1√𝜌

∗∗

𝛿2

,

𝜆2 =
𝛿3𝐶

2
𝑥√𝜌

∗∗
2

𝛿2

,

(21)

where 𝛿1 = 𝑘𝐶
2
𝑥 − 𝑘

∗
𝑘
∗∗
𝐶
2
𝑧, 𝛿2 = 𝐶

2
𝑥 − 𝑘

2∗∗
𝐶
2
𝑧, and 𝛿3 =

𝑘
∗
− 𝑘𝑘

∗∗.
Substituting the optimal values of 𝜆1 and 𝜆2 in (20) we

obtain the minimum mean square error of the estimator 𝑦𝑚
as follows:

MSE (𝑦𝑝)min
= 𝜃𝑌

2
𝜌
∗
𝑦 [𝐶

2
𝑦

+
𝐶
2
𝑥

𝛿
2
2

{(𝛿
2
1 + 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧 + 2𝑘

∗∗
𝐶
2
𝑧𝛿1𝛿3)

− 2𝛿2 (𝑘𝛿1 + 𝑘
∗
𝐶
2
𝑧𝛿3)}] .

(22)

3. Comparison of Efficiency

In this section, we have found some theoretical efficiencies
conditions under which the proposed estimator performs
better than the other relevant existing estimators by compar-
ing the generalized class of exponential type estimators with
other existing estimators.

(i) By (22) and (3), MSE(𝑦𝑝) ≤ MSE(𝑦1) if

[2𝛿1𝛿2𝑘 + 2𝛿2𝛿3𝑘
∗
𝐶
2
𝑧 − 𝛿

2
1 − 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧 − 2𝑘

∗∗
𝐶
2
𝑧𝛿1𝛿3]

≥ 0.

(23)

(ii) By (22) and (5), MSE(𝑦𝑝) ≤ MSE(𝑦2) if

[𝛿
2
2𝜌

∗
𝑥 (1 − 2𝑘√𝜌

∗∗) − 𝜌
∗
𝑦 (𝛿

2
1 + 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧

+ 2𝛿1𝛿3𝑘
∗∗
𝐶
2
𝑧 − 2𝛿1𝛿2𝑘 − 2𝛿2𝛿3𝑘

∗
𝐶
2
𝑧)] ≥ 0.

(24)

(iii) By (22) and (7), MSE(𝑦𝑝) ≤ MSE(𝑦3) if

[𝜌
∗
𝑧𝐶

2
𝑧𝛿

2
2 (1 + 2𝑘

∗
√𝜌

∗∗
2 ) − 𝜌

∗
𝑦𝐶

2
𝑥 (𝛿

2
1 + 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧

+ 2𝑘
∗∗
𝐶
2
𝑧𝛿1𝛿3 − 2𝑘𝛿1𝛿2 − 2𝛿2𝛿3𝑘

∗
𝐶
2
𝑧)] ≥ 0.

(25)

(iv) By (22) and (9), MSE(𝑦𝑝) ≤ MSE(𝑦4) if

[𝐶
2
𝑥 (2𝑘𝛿1𝛿2 + 2𝛿2𝛿3𝑘

∗
𝐶
2
𝑧 − 𝛿

2
1 − 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧

− 2𝑘
∗∗
𝐶
2
𝑧𝛿1𝛿3) − 𝜌

2
𝑦𝑥𝛿

2
2𝐶

2
𝑦] ≥ 0.

(26)

(v) By (22) and (11), MSE(𝑦𝑝) ≤ MSE(𝑦5) if

[
𝜌
∗
𝑥

4
(1 − 4𝑘√𝜌∗∗) −

𝜌
∗
𝑦

𝛿
2
2

(𝛿
2
1 + 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧

+ 2𝑘
∗∗
𝐶
2
𝑧𝛿1𝛿3 − 2𝑘𝛿1𝛿2 − 2𝛿2𝛿3𝑘

∗
𝐶
2
𝑧)] ≥ 0.

(27)

(vi) By (22) and (12), MSE(𝑦𝑝) ≤ MSE(𝑦6) if

[
𝜌
∗
𝑥

4
(1 + 4𝑘√𝜌∗∗) −

𝜌
∗
𝑦

𝛿
2
2

(𝛿
2
1 + 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧

+ 2𝑘
∗∗
𝐶
2
𝑧𝛿1𝛿3 − 2𝑘𝛿1𝛿2 − 2𝛿2𝛿3𝑘

∗
𝐶
2
𝑧)] ≥ 0.

(28)

(vii) By (22) and (13),MSE(𝑦𝑝) ≤ MSE(𝑦7) if
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Table 2: The mean square errors (MSEs) of the estimators and the percent relative efficiencies (PREs) with respect to 𝑦1.

Population
Estimator MSE (𝑦∗) PRE (𝑦∗, 𝑦1)
𝑦1 1455.08 100.00
𝑦2 373.32 389.62
𝑦3 768.06 189.45
𝑦4 43.74 3326.66
𝑦5 820.09 177.43
𝑦6 1044.42 139.32
𝑦7 187.08 777.79
𝑦𝑝 23.63 6158.08

𝜌
∗
𝑦 ≤

𝛿
2
2 [𝜌

∗
𝑥𝐶

2
𝑥 (1 − 2𝑘√𝜌

∗∗) + 𝜌
∗
𝑧𝐶

2
𝑧 (1 − 2𝑘

∗∗
√𝜌

∗∗
1 ) + 2𝑘

∗
𝐶
2
𝑧√𝜌

∗
𝑦𝜌

∗
𝑧 ]

𝐶2
𝑥 (𝛿

2
1 + 𝛿

2
3𝐶

2
𝑥𝐶

2
𝑧 + 2𝑘

∗∗𝐶2
𝑧𝛿1𝛿3 − 2𝑘𝛿1𝛿2 − 2𝛿2𝛿3𝑘

∗𝐶2
𝑧)

.
(29)

4. Empirical Study

To examine the merits of the proposed estimator over the
other existing estimators at optimum conditions, we have
considered natural population data sets from the literature.
The sources of population are given as follows.

Population (Source: Tailor et al. [20]). Consider

𝑁 = 15,

𝑛 = 3,

𝑋 = 44.47,

𝑌 = 80,

𝑍 = 48.40,

𝐶𝑦 = 0.56,

𝐶𝑥 = 0.28,

𝐶𝑧 = 0.43,

𝑆
2
𝑦 = 2000,

𝑆
2
𝑥 = 149.55,

𝑆
2
𝑧 = 427.83,

𝑆𝑦𝑥 = 538.57,

𝑆𝑦𝑧 = −902.86,

𝑆𝑥𝑧 = −241.06,

𝜌𝑦𝑥 = 0.9848,

𝜌𝑦𝑧 = −0.9760,

𝜌𝑥𝑧 = −0.9530,

𝜌𝑦 = 0.6652,

𝜌𝑥 = 0.707,

𝜌𝑧 = 0.5487.

(30)

The percent relative efficiencies (PREs) of the stated
estimators with respect to the usual unbiased estimator are
obtained from the following mathematical formula:

PRE (𝑦∗, 𝑦1) =
MSE (𝑦1)
MSE (𝑦∗)

× 100, (31)

where ∗ = 1, 2, 3, 4, 5, 6, 7, and 𝑝.

5. Conclusion

In this paper we proposed a generalized class of exponential
type estimators for the population mean of study variable
𝑦, when information is available on two auxiliary variables
under the framework of systematic sampling scheme. The
properties of the proposed estimator are derived up to first
order of approximation. The proposed estimator is com-
pared with other present estimators, both as theoretical and
empirical efficiency comparisons. We have also judged the
performance of the proposed estimator for a known natural
population dataset; see Tailor et al. [20]. Results are given
in Table 2 which shows that performances of the proposed
generalized class of exponential type estimator are more
efficient than the other existing estimators by smaller mean
square errors and the higher percent relative efficiencies of
the estimators. Hence it is preferable to use the proposed
estimator in practical surveys.
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The analysis of misspecification was extended to the recently introduced stochastic restricted biased estimators when multi-
collinearity exists among the explanatory variables.The Stochastic Restricted Ridge Estimator (SRRE), Stochastic RestrictedAlmost
Unbiased Ridge Estimator (SRAURE), Stochastic Restricted Liu Estimator (SRLE), Stochastic Restricted Almost Unbiased Liu
Estimator (SRAULE), Stochastic Restricted Principal Component Regression Estimator (SRPCRE), Stochastic Restricted 𝑟-𝑘 (SRrk)
class estimator, and Stochastic Restricted 𝑟-𝑑 (SRrd) class estimator were examined in the misspecified regression model due to
missing relevant explanatory variables when incomplete prior information of the regression coefficients is available. Further, the
superiority conditions between estimators and their respective predictors were obtained in the mean square error matrix (MSEM)
sense. Finally, a numerical example and a Monte Carlo simulation study were used to illustrate the theoretical findings.

1. Introduction

Misspecification due to left out relevant explanatory variables
is very often when considering the linear regression model,
which causes these variables to become a part of the error
term. Consequently, the expected value of error term of the
model will not be zero. Also, the omitted variables may be
correlated with the variables in the model. Therefore, one
or more assumptions of the linear regression model will
be violated when the model is misspecified, and hence the
estimators become biased and inconsistent. Further, it is
well-known that the ordinary least squares estimator (OLSE)
may not be very reliable if multicollinearity exists in the
linear regression model. As a remedial measure to solve
multicollinearity problem, biased estimators based on the
sample model 𝑦 = 𝑋𝛽 + 𝜀 with prior information which
can be exact or stochastic restrictions have received much
attention in the statistical literature.The intention of thiswork
is to examine the performance of the recently introduced
stochastic restricted biased estimators in the misspecified
regression model with incomplete prior knowledge about

regression coefficients when there exists multicollinearity
among explanatory variables.

When we consider the biased estimation in misspecified
regression model without any restrictions on regression
parameters, Sarkar [1] discussed the consequences of exclu-
sion of some important explanatory variables from a linear
regression model when multicollinearity exists. Şiray [2] and
Wu [3] examined the efficiency of the 𝑟-𝑑 class estima-
tor and 𝑟-𝑘 class estimator over some existing estimators,
respectively, in the misspecified regression model. Chandra
and Tyagi [4] studied the effect of misspecification due to
the omission of relevant variables on the dominance of the𝑟-(𝑘, 𝑑) class estimator. Recently, Kayanan and Wijekoon [5]
examined the performance of existing biased estimators and
the respective predictors based on the sample information in
a misspecified linear regression model without considering
any prior information about regression coefficients.

It is recognized that the mixed regression estimator
(MRE) introduced by Theil and Goldberger [6] outperforms
ordinary least squares estimator (OLSE) when the regression
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model is correctly specified. The biased estimation with
stochastic linear restrictions in the misspecified regression
model due to inclusion of an irrelevant variable with the
incorrectly specified prior information was discussed by
Teräsvirta [7]. Later Mittelhammer [8], Ohtani and Honda
[9], Kadiyala [10], and Trenkler and Wijekoon [11] discussed
the efficiency of MRE under misspecified regression model
due to exclusion of a relevant variable with correctly specified
prior information. Further, the superiority of MRE over the
OLSE under the misspecified regression model with incor-
rectly specified sample and prior information was discussed
by Wijekoon and Trenkler [12]. Hubert and Wijekoon [13]
have considered the improvement of Liu estimator (LE)
under amisspecified regressionmodelwith stochastic restric-
tions and introduced the Stochastic Restricted Liu Estimator
(SRLE).

In this paper, the performance of the recently intro-
duced stochastic restricted estimators, namely, the Stochastic
Restricted Ridge Estimator (SRRE) proposed by Li and Yang
[14], Stochastic Restricted Almost Unbiased Ridge Estimator
(SRAURE), and Stochastic Restricted Almost Unbiased Liu
Estimator (SRAULE) proposed byWuandYang [15], Stochas-
tic Restricted Principal Component Regression Estimator
(SRPCRE) proposed byHe andWu [16], Stochastic Restricted𝑟-𝑘 (SRrk) class estimator, and Stochastic Restricted 𝑟-𝑑
(SRrd) class estimator proposed by Wu [17], was examined
in the misspecified regression model when multicollinearity
exists among explanatory variables. Further, a generalized
form to represent these estimators is also proposed.

The rest of this article is organized as follows. The model
specification and the estimators are written in Section 2.
In Section 3, the mean square error matrix (MSEM) com-
parison between two estimators and respective predictors is
considered. In Section 4, a numerical example and a Monte
Carlo simulation study are given to illustrate the theoretical
results in ScalarMean Square Error (SMSE) criterion. Finally,
some concluding remarks are mentioned in Section 5. The
references and appendixes are given at the end of the paper.

2. Model Specification and the Estimators

Assume that the true regression model is given by𝑦 = 𝑋1𝛽1 + 𝑋2𝛽2 + 𝜀 = 𝑋1𝛽1 + 𝛿 + 𝜀, (1)

where 𝑦 is the 𝑛 × 1 vector of observations on the dependent
variable, 𝑋1 and 𝑋2 are the 𝑛 × 𝑙 and 𝑛 × 𝑝 matrices of
observations on the 𝑚 = 𝑙 + 𝑝 regressors, 𝛽1 and 𝛽2 are
the 𝑙 × 1 and 𝑝 × 1 vectors of unknown coefficients, and 𝜀
is the 𝑛 × 1 vector of disturbances such that 𝐸(𝜀) = 0 and𝐸(𝜀𝜀) = Ω = 𝜎2𝐼.

Let us say that the researcher misspecifies the regression
model by excluding 𝑝 regressors as𝑦 = 𝑋1𝛽1 + 𝑢. (2)

Let us also assume that there exists prior information on 𝛽1
in the form of 𝑟 = 𝑅𝛽1 + 𝑔 + V, (3)

where 𝑟 is the 𝑞×1 vector,𝑅 is the given 𝑞×𝑙matrix with rank𝑞, 𝑔 is the 𝑞 × 1 unknown fixed vector, V is the 𝑞 × 1 vector of
disturbances such that 𝐸(V) = 0, 𝐷(V) = 𝐸(VV) = Ψ = 𝜎2𝑊,
where𝑊 is positive definite, and 𝐸(V𝑢) = 0

By combining sample model (2) and prior information
(3), Theil and Goldberger [6] proposed the mixed regression
estimator (MRE) as

𝛽MRE = (𝑋1Ω−1𝑋1 + 𝑅Ψ−1𝑅)−1 (𝑋1Ω−1𝑦 + 𝑅Ψ−1𝑟)
= (𝑋1𝑋1 + 𝑅𝑊−1𝑅)−1 (𝑋1𝑦 + 𝑅𝑊−1𝑟) . (4)

To combat multicollinearity, several researchers introduce
different types of stochastic restricted estimators in place
of MRE. Seven such estimators are SRRE, SRAURE, SRLE,
SRALUE, SRPCRE, SRrk class estimator, and SRrd class
estimator defined below, respectively:

𝛽SRRE = (𝑋1𝑋1 + 𝑘𝐼)−1𝑋1𝑋1𝛽MRE

𝛽SRAURE = (𝐼 − 𝑘2 (𝑋1𝑋1 + 𝑘𝐼)−2) 𝛽MRE

𝛽SRLE = (𝑋1𝑋1 + 𝐼)−1 (𝑋1𝑋1 + 𝑑𝐼) 𝛽MRE

𝛽SRAULE = (𝐼 − (1 − 𝑑)2 (𝑋1𝑋1 + 𝐼)−2) 𝛽MRE

𝛽SRPCRE = 𝑇ℎ𝑇ℎ𝛽MRE

𝛽SRrk = 𝑇ℎ𝑇ℎ (𝑋1𝑋1 + 𝑘𝐼)−1𝑋1𝑋1𝛽MRE

𝛽SRrd = 𝑇ℎ𝑇ℎ (𝑋1𝑋1 + 𝐼)−1 (𝑋1𝑋1 + 𝑑𝐼) 𝛽MRE,

(5)

where 𝑘 > 0, 0 < 𝑑 < 1, and 𝑇ℎ = (𝑡1, 𝑡2, . . . , 𝑡ℎ) are the first ℎ
columns of 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡ℎ, . . . , 𝑡𝑙) which is an orthogonal
matrix of the standardized eigenvectors of𝑋1𝑋1.

According to Kadiyala [10], now we apply the simultane-
ous decomposition to the two symmetric matrices𝑋1𝑋1 and𝑅Ψ−1𝑅, as

𝐵𝑋1𝑋1𝐵 = 𝐼,
𝐵𝑅Ψ−1𝑅𝐵 = Λ, (6)

where 𝑋1𝑋1 is a positive definite matrix and 𝑅Ψ−1𝑅 is a
positive semidefinite matrix, 𝐵 is a 𝑙 × 𝑙 nonsingular matrix,
and Λ is a 𝑙 × 𝑙 diagonal matrix with eigenvalues 𝜆𝑖 > 0 for𝑖 = 1, 2, . . . , 𝑞 and 𝜆𝑖 = 0 for 𝑖 = 𝑞 + 1, . . . , 𝑙.

Let 𝑋∗ = 𝑋1𝐵, 𝑅∗ = 𝑅𝐵, 𝛾 = 𝐵−1𝛽1, 𝑋∗𝑋∗ = 𝐼, and𝑅∗Ψ−1𝑅∗ = Λ; then themodels (1), (2), and (3) can be written
as

𝑦 = 𝑋∗𝛾 + 𝛿 + 𝜀, (7)

𝑦 = 𝑋∗𝛾 + 𝑢, (8)

𝑟 = 𝑅∗𝛾 + 𝑔 + V. (9)
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According toWijekoon and Trenkler [12], the corresponding
MRE is given by

𝛾MRE = (𝑋∗𝑋∗ + 𝑅∗Ψ−1𝑅∗)−1 (𝑋∗𝑦 + 𝑅∗𝑊−1𝑟)
= (𝐼 + 𝜎2Λ)−1 (𝑋∗𝑦 + 𝑅∗𝑊−1𝑟) . (10)

Hence, the respective expectation vector, bias vector, and
dispersion matrix are given by

𝐸 (𝛾MRE) = 𝛾 + (𝐼 + 𝜎2Λ)−1 (𝑋∗𝛿 + 𝑅∗𝑊−1𝑔) ,
Bias (𝛾MRE) = (𝐼 + 𝜎2Λ)−1 (𝑋∗𝛿 + 𝑅∗𝑊−1𝑔) ,
𝐷 (𝛾MRE) = 𝜎2 (𝐼 + 𝜎2Λ)−1 .

(11)

In the case of misspecification, now the SRRE, SRAURE,
SRLE, SRAULE, SRPCRE, SRrk, and SRrd for model (7) can
be written as𝛾SRRE = (𝑋∗𝑋∗ + 𝑘𝐼)−1𝑋∗𝑋∗𝛾MRE

= (1 + 𝑘)−1 𝛾MRE = 𝐶𝑘𝛾MRE

𝛾SRAURE = (𝐼 − 𝑘2 (𝑋∗𝑋∗ + 𝑘𝐼)−2) 𝛾MRE

= (1 + 𝑘)−2 (1 + 2𝑘) 𝛾MRE= (1 + 2𝑘) (𝐶𝑘)2 𝛾MRE = 𝐶∗𝑘𝛾MRE

𝛾SRLE = (𝑋∗𝑋∗ + 𝐼)−1 (𝑋∗𝑋∗ + 𝑑𝐼) 𝛾MRE

= 2−1 (1 + 𝑑) 𝛾MRE = 𝐶𝑑𝛾MRE

𝛾SRAULE = (𝐼 − (1 − 𝑑)2 (𝑋∗𝑋∗ + 𝐼)−2) 𝛾MRE

= 2−2 (1 + 𝑑) (3 − 𝑑) 𝛾MRE= 2−1 (3 − 𝑑) 𝐶𝑑𝛾MRE = 𝐶∗𝑑𝛾MRE𝛾SRPCRE = 𝑇ℎ𝑇ℎ𝛾MRE = 𝐶ℎ𝛾MRE𝛾SRrk = (1 + 𝑘)−1 𝑇ℎ𝑇ℎ𝛾MRE = 𝐶𝑘𝐶ℎ𝛾MRE= 𝐶ℎ𝑘𝛾MRE𝛾SRrd = 2−1 (1 + 𝑑) 𝑇ℎ𝑇ℎ𝛾MRE = 𝐶𝑑𝐶ℎ𝛾MRE= 𝐶ℎ𝑑𝛾MRE,

(12)

respectively, where 𝐶𝑘 = (1 + 𝑘)−1, 𝐶∗𝑘 = (1 + 2𝑘)(𝐶𝑘)2, 𝐶𝑑 =2−1(1 + 𝑑), 𝐶∗𝑑 = 2−1(3 − 𝑑)𝐶𝑑, 𝐶ℎ = 𝑇𝑟𝑇𝑟 , 𝐶ℎ𝑘 = 𝐶𝑘𝐶ℎ, and𝐶ℎ𝑑 = 𝐶𝑑𝐶ℎ.
It is clear that𝐶𝑘,𝐶∗𝑘 ,𝐶𝑑, and𝐶∗𝑑 are positive definite and𝐶ℎ, 𝐶ℎ𝑘, and 𝐶ℎ𝑑 are nonnegative definite.
Since all these estimators can be written by incorporating𝛾MRE, now we write a generalized form to represent SRRE,

SRAURE, SRLE, SRAULE, SRPCRE, SRrk, and SRrd as given
below: 𝛾(𝑗) = 𝐺(𝑗)𝛾MRE, (13)

where 𝐺(𝑗) is positive definite matrix if it stands for 𝐶𝑘, 𝐶∗𝑘 ,𝐶𝑑, and 𝐶∗𝑑 , and it is nonnegative definite matrix if it stands
for 𝐶ℎ, 𝐶ℎ𝑘, and 𝐶ℎ𝑑.

Now the expectation vector, bias vector, the dispersion
matrix, and the mean square error matrix can be written as𝐸 (𝛾(𝑗)) = 𝐺(𝑗)𝐸 (𝛾MRE)

= 𝐺(𝑗) (𝛾 + (𝐼 + 𝜎2Λ)−1 (𝑋∗𝛿 + 𝑅∗𝑊−1𝑔))= 𝐺(𝑗) (𝛾 + 𝜏𝐴)
Bias (𝛾(𝑗)) = 𝐸 (𝛾(𝑗) − 𝛾) = 𝐺(𝑗) (𝛾 + 𝜏𝐴) − 𝛾

= (𝐺(𝑗) − 𝐼) 𝛾 + 𝐺(𝑗)𝜏𝐴
𝐷(𝛾(𝑗)) = 𝐺(𝑗)𝐷(𝛾MRE) 𝐺(𝑗) = 𝜎2𝐺(𝑗) (𝐼 + 𝜎2Λ)−1

⋅ 𝐺(𝑗) = 𝜎2𝐺(𝑗)𝜏𝐺(𝑗)
MSEM (𝛾(𝑗)) = 𝐸 (𝛾(𝑗) − 𝛾) (𝛾(𝑗) − 𝛾) = 𝐷(𝛾(𝑗))

+ Bias (𝛾(𝑗))Bias (𝛾(𝑗)) = 𝜎2𝐺(𝑗)𝜏𝐺(𝑗)
+ ((𝐺(𝑗) − 𝐼) 𝛾 + 𝐺(𝑗)𝜏𝐴) ((𝐺(𝑗) − 𝐼) 𝛾 + 𝐺(𝑗)𝜏𝐴) ,

(14)

where 𝜏 = (𝐼 + 𝜎2Λ)−1 and 𝐴 = (𝑋∗𝛿 + 𝑅∗𝑊−1𝑔).
Based on (14), the respective bias vector, dispersion

matrix, and MSEM of the MRE, SRRE, SRAURE, SRLE,
SRAULE, SRPCRE, SRrk, and SRrd can easily be obtained
and are given in Table B1 in Appendix B.

By using the approach of Kadiyala [10] and (3) and (4), the
generalized prediction function can be defined as follows:𝑦0 = 𝑋∗𝛾 + 𝛿𝑦(𝑗) = 𝑋∗𝛾(𝑗), (15)

where 𝑦0 is the actual value and 𝑦(𝑗) is the corresponding
predictor.

The MSEM of the generalized predictor is given by

MSEM (𝑦(𝑗)) = 𝐸 (𝑦(𝑗) − 𝑦0) (𝑦(𝑗) − 𝑦0)
= 𝑋∗ (MSEM (𝛾(𝑗)))𝑋∗− 𝑋∗ (Bias (𝛾(𝑗))) 𝛿

− 𝛿 (Bias (𝛾(𝑗)))𝑋∗ + 𝛿𝛿.
(16)

Note that the predictors based on the MRE, SRRE, SRAURE,
SRLE, SRAULE, SRPCRE, SRrk, and SRrd are denoted by𝑦MRE,𝑦SRRE,𝑦SRAURE,𝑦SRLE,𝑦SRAULE,𝑦SRPCRE,𝑦SRrk, and𝑦SRrd,
respectively.

3. Mean Square Error Matrix
(MSEM) Comparisons

If two generalized biased estimators 𝛾(𝑖) and 𝛾(𝑗) are given,
the estimator 𝛾(𝑗) is said to be superior to 𝛾(𝑖) with respect to
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MSEM sense if and only if MSEM(𝛾(𝑖)) − MSEM(𝛾(𝑗)) ≥ 0.
Also, if two generalized predictors 𝑦(𝑖) and 𝑦(𝑗) are given, the
predictor 𝑦(𝑗) is said to be superior to 𝑦(𝑖) with respect to
MSEM sense if and only if MSEM(𝑦(𝑖)) −MSEM(𝑦(𝑗)) ≥ 0.

Now let 𝐷(𝑖,𝑗) = 𝐷(𝛾(𝑖)) − 𝐷(𝛾(𝑗)), 𝑏(𝑖) = Bias(𝛾(𝑖)), 𝑏(𝑗) =
Bias(𝛾(𝑗)), and Δ (𝑖,𝑗) = MSEM(𝛾(𝑖)) − MSEM(𝛾(𝑗)) = 𝐷(𝑖,𝑗) +𝑏(𝑖)𝑏(𝑖) − 𝑏(𝑗)𝑏(𝑗).

By applying Lemma A1 (see Appendix A), the following
theorem can be stated for the superiority of 𝛾(𝑗) over 𝛾(𝑖) with
respect to the MSEM criterion.

Theorem 1. If 𝐷(𝑖,𝑗) is positive definite, then 𝛾(𝑗) is superior to𝛾(𝑖) in MSEM sense when the regression model is misspecified
due to excluding relevant variables if and only if

𝑏(𝑗) (𝐷(𝑖,𝑗) + 𝑏(𝑖)𝑏(𝑖))−1 𝑏(𝑗) ≤ 1. (17)

Proof. Let 𝐷(𝑖,𝑗) be a positive definite matrix. According to
Lemma A1 (see Appendix A), Δ (𝑖,𝑗) is nonnegative definite
matrix if 𝑏(𝑗)(𝐷(𝑖,𝑗) + 𝑏(𝑖)𝑏(𝑖))−1𝑏(𝑗) ≤ 1. This completes the
proof.

The following theorem can be stated for the superiority of𝑦(𝑗) over 𝑦(𝑖) with respect to the MSEM criterion.

Theorem 2. If 𝐴 ≥ 0, 𝑦(𝑗) is superior to 𝑦(𝑖) in MSEM sense
when the regression model is misspecified due to excluding
relevant variables if and only if 𝜃 ∈ R(𝐴) and 𝜃𝐴−1𝜃 ≤ 1,
where 𝐴 = 𝑋∗Δ (𝑖,𝑗)𝑋∗ + 𝑋∗(𝑏(𝑖) − 𝑏(𝑗))(𝑏(𝑖) − 𝑏(𝑗))𝑋∗ + 𝛿𝛿,𝜃 = 𝛿 +𝑋∗(𝑏(𝑖) − 𝑏(𝑗)), andR(𝐴) stands for column space of 𝐴
and 𝐴−1 is an independent choice of 𝑔-inverse of 𝐴.
Proof. According to (16), we can write MSEM(𝑦(𝑖)) −
MSEM(𝑦(𝑗)) as

MSEM (𝑦(𝑖)) −MSEM (𝑦(𝑗))
= 𝑋∗ (MSEM (𝛾(𝑖)) −MSEM (𝛾(𝑗)))𝑋∗− 𝑋∗ (Bias (𝛾(𝑖)) − Bias (𝛾(𝑗))) 𝛿

− 𝛿 (Bias (𝛾(𝑖)) − Bias (𝛾(𝑗)))𝑋∗= 𝑋∗Δ (𝑖,𝑗)𝑋∗ − 𝑋∗ (𝑏(𝑖) − 𝑏(𝑗)) 𝛿
− 𝛿 (𝑏(𝑖) − 𝑏(𝑗))𝑋∗.

(18)

After some straight forward calculation, it can be written as

MSEM (𝑦(𝑖)) −MSEM (𝑦(𝑗)) = 𝐴 − 𝜃𝜃, (19)

where 𝐴 = 𝑋∗(Δ (𝑖,𝑗) + (𝑏(𝑖) − 𝑏(𝑗))(𝑏(𝑖) − 𝑏(𝑗)))𝑋∗ + 𝛿𝛿 and𝜃 = 𝛿 + 𝑋∗(𝑏(𝑖) − 𝑏(𝑗)).
Due to Lemma A3 (see Appendix A), MSEM(𝑦(𝑖)) −

MSEM(𝑦(𝑗)) is nonnegative definite matrix if and only if 𝐴 ≥0, 𝜃 ∈ R(𝐴) and 𝜃𝐴−1𝜃 ≤ 1, whereR(𝐴) stands for column
space of 𝐴 and 𝐴−1 is an independent choice of 𝑔-inverse of𝐴. This completes the proof.

Based on Theorems 1 and 2, we can define Corollaries
C1–C28, written in Appendix C, for the superiority condi-
tions between two selected estimators and for the respec-
tive predictors by substituting the relevant expressions for
Bias(𝛾(𝑖)), Bias(𝛾(𝑗)), 𝐷(𝛾(𝑖)), and 𝐷(𝛾(𝑗)) given in Table B1 in
Appendix B.

4. Illustration of Theoretical Results

4.1. Numerical Example. To illustrate the theoretical results,
we considered the dataset which gives the total National
Research and Development Expenditures as a Percent of
Gross National Product by Country from 1972 to 1986. The
dependent variable 𝑌 of this dataset is the percentage spent
by theUnited States, and the four other independent variables
are𝑋1,𝑋2,𝑋3, and𝑋4.The variable𝑋1 represents the percent
spent by the former Soviet Union,𝑋2 that spent by France,𝑋3
that spent by West Germany, and𝑋4 that spent by the Japan.
The data has been analysed by Gruber [18], Akdeniz and Erol
[19], and Li and Yang [14], among others. Now we assemble
the data as follows:

𝑋 =
((((((((((((((((
(

1.9 2.2 1.9 3.71.8 2.2 2.0 3.81.8 2.4 2.1 3.61.8 2.4 2.2 3.82.0 2.5 2.3 3.82.1 2.6 2.4 3.72.1 2.6 2.6 3.82.2 2.6 2.6 4.02.3 2.8 2.8 3.72.3 2.7 2.8 3.8

))))))))))))))))
)

𝑦 =
((((((((((((((((
(

2.32.22.22.32.42.52.62.62.72.7

))))))))))))))))
)

.

(20)

Note that the eigenvalues of𝑋𝑋 are 302.96, 0.728, 0.044, and
0.035, the condition number is 93, and the Variance Inflation
Factor (VIF) values are 6.91, 21.58, 29.75, and 1.79.This implies
the existence of serious multicollinearity in the dataset.

The corresponding OLS estimator of 𝛽 is𝛽 = (𝑋𝑋)−1𝑋𝑦 = (0.645, 0.089, 0.143, 0.152) and the
estimate of 𝜎2 is �̂�2 = 0.00153. In this example, we consider
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𝑅 = (1, −2, −2, −2) and 𝑔 = 𝑐(1, −1, 2, 0). The SMSE values of
the estimators are summarized in Tables B2-B3 in Appendix
B.

Table B2 shows the estimated SMSEvalues ofMRE, SRRE,
SRAURE, SRLE, SRAULE, SRPCRE, SRrk, and SRrd for the
regression model when (𝑙, 𝑝) = (4, 0), (𝑙, 𝑝) = (3, 1), and(𝑙, 𝑝) = (2, 2) with respect to shrinkage parameters (𝑘/𝑑),
where 𝑙 denotes the number of variables in the model and 𝑝
denotes the number of misspecified variables. Table B3 shows
the estimated SMSE values of the predictor of MRE, SRRE,
SRAURE, SRLE, SRAULE, SRPCRE, SRrk, and SRrd for the
regression model when (𝑙, 𝑝) = (4, 0), (𝑙, 𝑝) = (3, 1), and(𝑙, 𝑝) = (2, 2) for some selected shrinkage parameters (𝑘/𝑑).

Note that when (𝑙, 𝑝) = (4, 0) the model is correctly
specified, when (𝑙, 𝑝) = (3, 1) one variable is omitted from
the model, and when (𝑙, 𝑝) = (2, 2) two variables are
omitted from the model. For simplicity, we choose shrinkage
parameter values 𝑘 and 𝑑 in the range (0, 1).

From Table B2, we can observe that the MRE is superior
to the other estimators when (𝑙, 𝑝) = (4, 0) and SRAULE,
SRRE, SRLE, and SRAURE outperform the other estimators
for (𝑘/𝑑) < 0.2, 0.2 ≤ (𝑘/𝑑) < 0.5, 0.5 ≤ (𝑘/𝑑) < 0.7, and(𝑘/𝑑) ≥ 0.7, respectively, when (𝑙, 𝑝) = (3, 1). Similarly, SRLE
and SRRE are superior to the other estimators for (𝑘/𝑑) < 0.5
and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (2, 2).

From Table B3, we further observe that predictors based
on SRLE and SRRE outperform the other predictors for(𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (4, 0)
and (𝑙, 𝑝) = (3, 1), and predictors based on SRrd and SRrk
are superior to the other predictors for (𝑘/𝑑) < 0.5 and(𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (2, 2).
4.2. Simulation. For further clarification, a Monte Carlo
simulation study is done at different levels of misspecification
using R 3.2.5. Following McDonald and Galarneau [20], we
can generate the explanatory variables as follows:

𝑥𝑖𝑗 = (1 − 𝜌2)1/2 𝑧𝑖𝑗 + 𝜌𝑧𝑖,𝑚;𝑖 = 1, 2, . . . , 𝑛. 𝑗 = 1, 2, . . . , 𝑚, (21)

where 𝑧𝑖𝑗 is an independent standard normal pseudorandom
number and 𝜌 is specified so that the theoretical correlation
between any two explanatory variables is given by 𝜌2. A
dependent variable is generated by using the following
equation:

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + 𝛽4𝑥𝑖4 + 𝛽5𝑥𝑖5 + 𝜀𝑖;𝑖 = 1, 2, . . . , 𝑛, (22)

where 𝜀𝑖 is a normal pseudorandom number with mean zero
and variance one. Also, we select 𝛽 = (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5)
as the normalized eigenvector corresponding to the largest
eigenvalue of 𝑋𝑋 for which 𝛽𝛽 =1. Further we choose 𝑅 =(1, 1, 1, 1, 1) and 𝑔 = (1, −2, 0, 3, 1).

Then the following setup is considered to investigate
the effects of different degrees of multicollinearity on the
estimators:

(i) 𝜌 = 0.9, condition number = 9.49, and VIF =(5.99, 5.88, 5.94, 5.96, 20.47).
(ii) 𝜌 = 0.99, condition number = 34.77, and VIF =(57.66, 56.50, 57.26, 57.31, 225.06).
(iii) 𝜌 = 0.999, condition number = 115.66, and VIF =(574.3, 562.8, 570.7, 570.8, 2271.4).

Three different sets of observations are considered by select-
ing (𝑙, 𝑝) = (5, 0), (𝑙, 𝑝) = (4, 1), and (𝑙, 𝑝) = (3, 2) when𝑛 = 50, where 𝑙 denotes the number of variables in the model
and𝑝 denotes the number ofmisspecified variables. Note that
when (𝑙, 𝑝) = (5, 0) the model is correctly specified, when(𝑙, 𝑝) = (4, 1) one variable is omitted from the model, and
when (𝑙, 𝑝) = (3, 2) two variables are omitted from themodel.
For simplicity, we select values 𝑘 and 𝑑 in the range (0, 1).

The simulation is repeated 2000 times by generating new
pseudorandom numbers and the simulated SMSE values of
the estimators andpredictors are obtained using the following
equations:

SMSE (𝛾(𝑗)) = 12000 2000∑𝑟=1 tr (MSEM (𝛾(𝑗)𝑟)) ,
SMSE (𝑦(𝑗))

= 12000 2000∑𝑟=1 tr (MSEM (𝑦(𝑗)𝑟)) respectively.
(23)

The simulation results are summarized in Tables B4–B9 in
Appendix B.

Tables B4, B5, and B6 show the estimated SMSE values
of the estimators for the regression model when (𝑙, 𝑝) =(5, 0), (𝑙, 𝑝) = (4, 1), and (𝑙, 𝑝) = (3, 2) and 𝜌 = 0.9, 𝜌 =
0.99, and 𝜌 = 0.999 for the selected values of shrinkage
parameters (𝑘/𝑑), respectively. Tables B7, B8, and B9 show
the corresponding estimated SMSE values of the predictors
for the above regression models, respectively.

From Table B4, we can observe that MRE and SRAULE
outperform the other estimators for (𝑘/𝑑) < 0.8 and (𝑘/𝑑) ≥0.8, respectively, when (𝑙, 𝑝) = (5, 0) and (𝑙, 𝑝) = (4, 1).
Further, SRLE and SRRE are superior to the other estimators
for (𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) =(3, 2) under 𝜌 = 0.9.

From Table B5, we can observe that SRAULE, MRE, and
SRAURE outperform the other estimators for (𝑘/𝑑) < 0.3,0.3 ≤ (𝑘/𝑑) < 0.7, and (𝑘/𝑑) ≥ 0.7, respectively, when(𝑙, 𝑝) = (5, 0). Similarly, SRAULE, SRRE, SRLE, and SRAURE
are superior to the other estimators when (𝑘/𝑑) < 0.2, 0.2 ≤(𝑘/𝑑) < 0.5, 0.5 ≤ (𝑘/𝑑) < 0.7, and (𝑘/𝑑) ≥ 0.7, respectively,
when (𝑙, 𝑝) = (4, 1), and both SRLE and SRRE outperform the
other estimators for (𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively,
when (𝑙, 𝑝) = (3, 2) and 𝜌 = 0.99.

The results in Table B6 indicate that MRE is superior
to the other estimators when (𝑙, 𝑝) = (5, 0), and SRAULE,
SRRE, SRLE, and SRAURE outperform the other estimators
for (𝑘/𝑑) < 0.2, 0.2 ≤ (𝑘/𝑑) < 0.5, 0.5 ≤ (𝑘/𝑑) < 0.7, and(𝑘/𝑑) ≥ 0.7, respectively, when (𝑙, 𝑝) = (4, 1). Further, SRLE
and SRRE outperform the other estimators for (𝑘/𝑑) < 0.5
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Figure 1: SMSE values of the estimators in the misspecified
regression model ((𝑙, 𝑝) = (3, 2)) when 𝑛 = 50 and 𝜌 = 0.9.
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Figure 2: SMSE values of the estimators in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.99.
and (𝑘/𝑑) ≥ 0.5, respectively, when (𝑙, 𝑝) = (3, 2) and 𝜌 =0.999.

From Tables B7–B9, we further observe that the predic-
tors based on SRrd and SRrk always outperform the other
predictors for (𝑘/𝑑) < 0.5 and (𝑘/𝑑) ≥ 0.5, respectively, when(𝑙, 𝑝) = (5, 0), (𝑙, 𝑝) = (4, 1), and (𝑙, 𝑝) = (3, 2).

The SMSE values of the selected estimators are plotted
with different 𝜌 values to demonstrate the results graphically
when (𝑙, 𝑝) = (3, 2). Figures 1–3 show the graphical illus-
tration of the performance of estimators in the misspecified
regression model ((𝑙, 𝑝) = (3, 2)) when 𝜌 = 0.9, 𝜌 = 0.99,

MRE
SRRE
SRAURE
SRLE

SRAULE
SRPCRE
r-k class estimator
r-d class estimator

0

5

10

15

20

25

30

35

40

45

50

Es
tim

at
ed

 S
M

SE
 v

al
ue

s

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1
Shrinkage parameter (k/d) values

Figure 3: SMSE values of the estimators in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.999.
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Figure 4: SMSE values of the predictors in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.9.
and 𝜌 = 0.999, respectively. Similarly, Figures 4–6 present the
graphical illustration of the performance of predictors in the
misspecified regression model ((𝑙, 𝑝) = (3, 2)) when 𝜌 = 0.9,𝜌 = 0.99, and 𝜌 = 0.999, respectively.

5. Conclusion

Theorems 1 and 2 give the common form of superiority
conditions to compare the estimators (MRE, SRRE, SRAURE,
SRLE, SRAULE, SRPCRE, SRrk, and SRrd) and their respec-
tive predictors in MSEM criterion in the misspecified linear
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Figure 5: SMSE values of the predictors in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.99.
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Figure 6: SMSE values of the predictors in the misspecified
regression model when 𝑛 = 50 and 𝜌 = 0.999.

regression model when the prior information of the regres-
sion coefficients is incomplete, and the multicollinearity
exists among the explanatory variables.

From the simulation study, the superior estimators and
predictors over the others when the conditions are different
can be identified. The results obtained in this research will
produce significant improvements in the parameter estima-
tion in misspecified regression models with incomplete prior
information, and the results are applicable to real-world
applications.
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Forecasting the tendencies of time series is a challenging task which gives better understanding. The purpose of this paper is
to present the hybrid model of support vector regression associated with Autoregressive Integrated Moving Average which is
formulated by hybrid methodology. The proposed model is more convenient for practical usage. The tendencies modeling of time
series for Thailand’s south insurgency is of interest in this research article. The empirical results using the time series of monthly
number of deaths, injuries, and incidents for Thailand’s south insurgency indicate that the proposed hybrid model is an effective
way to construct an estimated hybrid model which is better than the classical time series model or support vector regression. The
best forecast accuracy is performed by using mean square error.

1. Introduction

Time series modeling and forecasting are a challenge for
describing dynamic phenomena and pattern behavior of the
time series. In recent years, the issue of accurate Thailand’s
south insurgency trends has been receiving more attention.
There are many research papers that studied the unrest in
southernThailand. According to the database of Deep South
Watch [1], Jitpiromsri and Mccargo [2] and Jitpiromsri [3]
reported the trends of Thailand’s south insurgency using
diagram for comparing the monthly number of the unrest
incidents. By applying a polynomial least-square regression,
they provided the forecastingmodel for describing the unrest
incidents in the south of Thailand. This polynomial is not
indeed fitting the monthly number of the unrest incidents as
well.

In this study, wewould like to identify patterns and trends
of Thailand’s south insurgency and to evaluate the accuracy
of model for modeling and forecasting. By doing this, we
use the traditional regression models such as Autoregressive

(AR), Moving Average (MA), Autoregressive Moving Aver-
age (ARMA), and Autoregressive IntegratedMoving Average
(ARIMA). These models are also called the Box-Jenkins
models.

In general, time series data ofThailand’s south insurgency
can be categorized as nonstationary time by using Box-
Jenkins methodology. Then an estimated model of time
series data ofThailand’s south insurgency can be obtained by
support vector regression (SVR).We aim to combineARIMA
and SVR for making an adequately estimated model in order
to forecast time series of Thailand’s south insurgency.

This paper is organized as follows. Section 2 provides
some backgrounds of mathematical theories related to time
series modeling and forecasting and SVR. The detail of pro-
posed hybrid model is explained in Section 3. Section 4 gives
experimental results obtaining the proposed hybrid model
with the first difference in time series of Thailand’s south
insurgency. Finally, the main conclusions are summarized in
Section 5.
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2. Background and Mathematical Theory

2.1. Autoregressive Integrated Moving Average Modeling.
Three basic methods for forecasting time series are näıve
model, exponential smoothing model, and ARIMA model.
The first two models relate to a random walk as the formu-
lation of the model. In this section, ARIMA model will be
reviewed.

An autoregressive model of order 𝑝 abbreviated as AR(𝑝)
model is

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋅ ⋅ ⋅ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑤𝑡 =
𝑝∑
𝑖=1

𝜙𝑖𝑦𝑡−𝑖, (1)

where 𝑦𝑡 is stationary, 𝜙1, . . . , 𝜙𝑝 are constants (𝑝 ̸= 0), and
𝑤𝑡 is a white noise series with zero mean and variance 𝜎2𝑤.
AR(𝑝) model of (1) predicts the current value 𝑦𝑡 by the 𝑝
past function 𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝑝 which explains 𝑦𝑡 as a linear
combination of 𝑦𝑡−1, 𝑦𝑡−2, . . . , 𝑦𝑡−𝑝.

The Moving Average model of order 𝑞 abbreviated as
MA(𝑞) model is

𝑦𝑡 = 𝜃1𝑤𝑡−1 + 𝜃2𝑤𝑡−2 + ⋅ ⋅ ⋅ + 𝜃𝑞𝑤𝑡−𝑞 + 𝑤𝑡 =
𝑞∑
𝑗=1

𝜃𝑗𝑤𝑗−𝑞, (2)

where 𝑦𝑡 is stationary, 𝜙1, . . . , 𝜙𝑞 are constants (𝑞 ̸= 0), and𝑤𝑡
is aGaussianwhite noise series withmean zero.MA(𝑞)model
of (2) explains the current value 𝑦𝑡 by a linear combination of
the 𝑞 white noise 𝑤𝑡−1, 𝑤𝑡−2, . . . , 𝑤𝑡−𝑞.

Autoregressive Moving Average model abbreviated as
ARMA(𝑝, 𝑞) model developed by Box and Jenkins [4] is
defined by the combined autoregressive and the Moving
Average model. It has the form

𝑦𝑡 = 𝛿 + 𝑝∑
𝑖=1

𝜙𝑖𝑦𝑡−𝑖 +
𝑞∑
𝑗=1

𝜃𝑗𝑤𝑡−𝑗 + 𝑤𝑡. (3)

According to the original Box-Jenkins methodology, an
integrated process is the stationary process obtained by dif-
ferenced a nonstationary process.The stationary ARMA(𝑝,𝑞)
process after being differenced 𝑑 times is denoted by
ARIMA(𝑝, 𝑑, 𝑞):

Δ𝑑𝑦𝑡 = 𝛿 + 𝜙1Δ𝑑𝑦𝑡−1 + ⋅ ⋅ ⋅ + 𝜙𝑝Δ𝑑𝑦𝑡−𝑝 + 𝜃1𝑤𝑡−1 + ⋅ ⋅ ⋅
+ 𝜃𝑞𝑤𝑡−𝑞 + 𝑤𝑡,

(4)

whereΔ𝑑 denoted𝑑th difference time series [5].Thesemodels
are as foundation model for time series forecasting.

2.2. Box-Jenkins Methodology. Plots of autocorrelation func-
tion (acf) and partial autocorrelation function (pacf) are
the main tools in order to identify parameters for AR,
MA, ARMA, and ARIMA models. AR(𝑝) is used to obtain
an estimated model for time series when the acf exhibits
tendency to die down quickly, either by an exponential decay
or by a damped sine wave whereas the pacf exhibits tendency
to show spike (significant autocorrelation) for lags up to𝑝 and
then will die down immediately.

Opposite to AR(𝑝), MA(𝑞) is used to obtain an estimated
model of time series when the acf exhibits tendency to die
down quickly, either by an exponential decay or by a damped
sine wave whereas the pacf exhibits tendency to show spike
(significant autocorrelation) for lags up to 𝑝 and then will die
down immediately.

A mixed process ARMA(𝑝, 𝑞) is suggested when either
the acf or the pacf exits tend to show spike for lags up,
respectively, to 𝑝 and 𝑞 and then die down quickly, either by
an exponential decay or by a damped sine wave. Proceeding
diagnostic checking to identify 𝑝 and 𝑞 for the mixed process
ARMA(𝑝, 𝑞) which is able to fit to times series is the best
performance [6].

This identification as described in this section will be
important to diagnose a model of our study.

2.3. Hybrid Models. In recent years, the forecasting model
used in the literature can be classified into three categories:
statistical models, artificial intelligence model (AI), and
hybrid model.

Statisticalmodels are known as time seriesmodels includ-
ing näıve model, AR model, MA model, ARIMA model,
exponential smoothing, and generalized autoregressive con-
ditional heteroskedasticity (GARCH) volatility which aim to
utilize time series analysis to identify the pattern of time series
and provide the future value based on the obtained pattern.

ARIMAmodel is known as Box-Jenkins model [4] which
includes AR and MA models identified by Box-Jenkins
methodology.Thesemodels are based on the assumption that
the time series under study are stationary and linear which
means that the relationship between the input and output
series is linear.

AI models are the second kinds of forecast time series,
practically artificial neural networks (ANNs), genetic algo-
rithm (GA), and supported vector machine (SVM). AI
models can capture nonlinear pattern and improved forecast
performance.

Many of the literatures introduce a hybrid model in order
to capture the linear and nonlinear characteristics in time
series. Wang et al. [7] reported that using a statistical model
alone or using an AI model alone are not adequate in making
forecasts for stock price time series.

2.4. Hybrid Methodology. A hybrid model is described by a
combination of models with mixed methodology for formu-
lation. Many literatures suggested that time series consists of
linear 𝐿 𝑡 and nonlinear𝑁𝑡 as in the form

𝑦𝑡 = 𝐿 𝑡 + 𝑁𝑡. (5)

An estimated model of (5) is formulated as follows: using
linear statistic model to obtain an estimated model of linear
component 𝐿 𝑡 denoted by �̂� 𝑡 and after that modeling the
residual𝑦𝑡−�̂� 𝑡 which contains only the nonlinear relationship
to obtain an estimated model of nonlinear component 𝑁𝑡
denoted by �̂�𝑡.

Zhang [8] utilized the hybrid model by introducing
the estimated model of (5) in the form 𝑦𝑡 = �̂� 𝑡 + �̂�𝑡,
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where �̂� 𝑡 is prescribed by ARIMA model and �̂�𝑡 is pre-
scribed by feedforward neural networks model. Modified
Zhang’s hybrid approach with estimated �̂�𝑡 by support vector
machine (SVM) model can be found in many literatures,
for example, De Oliveira and Ludermir [9], while Aladag et
al. [10] estimated �̂�𝑡 by Elman’s recurrent neural networks
(ERNN) model and applied to Canadian Lynx data.

2.5. SupportedVector Regression. Let the dot product paceR𝑑

be our data universe with vectors x ∈ R𝑑 as objects. Let 𝑆 be
a sample set such that 𝑆 ⊂ R𝑑. Let 𝑓 : R𝑑 → R be the
target function. Let 𝐷 = {(x, 𝑦) | x ∈ 𝑆 and 𝑦 = 𝑓(x)} be the
training set.

The regression problem is to find the best approximate
model 𝑓 : R𝑑 → 𝑦 for the true underlying function 𝑓
mapping input x to output 𝑦 by using 𝐷 such that 𝑓(x) ≅𝑓(x).

The regression problem is classified as linear or nonlinear
type. For the linear regression model, the best approximate
model 𝑓 can be obtained from the set of possible functions
with the following set of specifications:

{𝑓 | 𝑓 (x) = 𝜔𝑇x + 𝑏, 𝜔 ∈ R
𝑑, 𝑏 ∈ R} , (6)

where 𝜔 is a weight vector and 𝑏 is a constant.
Generally, in order to describe nonlinear relationship

between input and output, the SVR allied Φ : R𝑑 → F
transform the nonlinear regression problem in the lower
dimension input space R𝑑 into a linear regression problem
in a high dimension feature space F. In the new space F, a
linear model 𝑓 is formulated, which represents a nonlinear
model in the original space:

𝑦 = 𝑓 (x,𝜔) = ⟨𝜔, Φ (x)⟩ + 𝑏, (7)

where ⟨⋅, ⋅⟩ denotes the dot product in F. Linear SVR model
𝑓 in (6) is obtained from (7) by using the identity functionΦ(x) → x.

Performing SVR to fit linear regression 𝑓 to the training
data by estimate 𝜔 and 𝑏 in (7) as minimization of the
following regularized function:

minimize
w,𝑏

𝑅 (𝐶) = 1
2 ‖𝜔‖2 + 𝐶 ℓ∑

𝑖=1

𝐿𝜀2 (𝑓 (x𝑖) , 𝑦𝑖) , (8)

where both 𝐶 and 𝜀 are user-given parameters and
𝐿𝜀2(𝑓(x), 𝑦) is quadratic 𝜀-insensitive loss function defined
by 𝐿𝜀2(𝑦, 𝑓(x)) = |𝑦 − 𝑓(x)|2𝜀 .

The following two propositions related to the formulation
of an estimated model.These propositions are modified from
[11, 12] for our study.

Proposition 1. Given a regression training set 𝐷 ={(x1, 𝑦1), . . . , (xℓ, 𝑦ℓ)} ⊆ R𝑛 × R the optimal support vector
regression model is computed by 𝑓∗(x) = ⟨𝜔∗, x⟩ − 𝑏∗, where

the parameters 𝜔∗ and 𝑏∗ solved the following optimization
problem:

minimize
w,𝑏

𝑅 (𝐶) = 1
2 ‖𝜔‖2 + 𝐶

2
ℓ∑
𝑖=1

(𝜉2𝑖 + 𝜉2𝑖 ) ,
subject to 𝑦𝑖 − 𝑓 (x𝑖) ≤ 𝜀 + 𝜉𝑖,

𝑓 (x𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖,
𝜉𝑖, 𝜉𝑖 ≥ 0,
∀𝑖 = 1, . . . , ℓ

(9)

hold with 𝑦 = 𝑓(x) = ⟨𝜔, x⟩ + 𝑏.
The constant 𝐶 is called the penalty constant which is

trade-off between margin maximization and the minimiza-
tion of the slack variables.

Proposition 2. Given a regression training set 𝐷 = {(x1,𝑦1), . . . , (xℓ, 𝑦ℓ)} ⊆ R𝑛 × R the optimal support vector
regression model is computed by 𝑓∗(x) = 𝜔∗ ∙ x − 𝑏∗, where

𝜔
∗ = ℓ∑
𝑖=1

(𝛼∗𝑖 − �̃�∗𝑖 ) x𝑖,

𝑏∗ = 1
ℓ
ℓ∑
𝑖=1

𝜔
∗ ∙ x𝑖 − (𝑦𝑖 + 𝜀 + 𝛼∗𝑖𝐶 )

(10)

and 𝛼∗ are the parameters solved by the following dual
quadratic optimization problem:

minimize
𝛼,�̃�

ℓ∑
𝑖=1

𝑦𝑖 (𝛼𝑖 − �̃�𝑖) − 𝜀 ℓ∑
𝑖=1

(𝛼𝑖 + �̃�𝑖)

− 1
2
ℓ∑
𝑖=1

ℓ∑
𝑗=1

((𝛼𝑖 − �̃�𝑖) (𝛼𝑗 − �̃�𝑗) x𝑖 ∙ x𝑗 + 1
𝐶𝛿𝑖𝑗) ,

subject to
ℓ∑
𝑖=1

(𝛼𝑖 − �̃�𝑖) = 0, 𝛼𝑖 ≥ 0, �̃�𝑖 ≥ 0, ∀𝑖 = 1, . . . , ℓ.

(11)

Theparameter𝜔∗ is obtained by𝛼∗𝑖 and �̃�∗𝑖 which satisfied
optimization (11). The parameter 𝑏∗ is solved as follows:
obtain 𝜉𝑖 = 𝛼∗𝑖 /𝐶 from (11) and substitute 𝑓∗(x) = 𝜔∗ ∙ x − 𝑏∗
and 𝜉𝑖 = 𝛼∗𝑖 /𝐶 in the constraint 𝑓(x𝑖) = 𝑦𝑖 + 𝜀 + 𝜉𝑖; then solve
for 𝑏∗𝑖 . Define 𝑏∗ as the average of 𝑏∗𝑖 .

The optimal regression model is obtained by substituting
𝜔
∗ into 𝑏∗ and into 𝑓∗(x) = 𝜔∗ ∙ x − 𝑏∗ where we have the

following lemma.

Lemma 3. The optimal regression model is

𝑓∗ (x) = ℓ∑
𝑖=1

(𝛼∗𝑖 − �̃�∗𝑖 ) x𝑖 ∙ x − 1
ℓ
ℓ∑
𝑖=1

ℓ∑
𝑗=1

(𝛼∗𝑖 − �̃�∗𝑖 ) x𝑖

∙ x𝑗 − (𝑦𝑗 + 𝜀 + 𝛼∗𝑗
𝐶 ) ,

(12)
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where the coefficient (𝛼∗𝑖 −�̃�∗𝑖 ) is nonzero as support vector.The
optimal regression model 𝑓∗(x) depends only on the support
vectors.

3. Formulation of the Proposed Model

In this section, we want to formulate the proposed model.
We begin by using the hybrid models that combine several
models in order to reduce the risk of using an inappropriate
model, obtain the results that are more accurate than the
previous one, and improve overall forecasting performance.

Assume that (𝑦𝑡) is the under-study time series based on
the assumption of linear and stationary time series. Then, we
use the Box-Jenkins methodology to check behavior of (𝑦𝑡).
After this step, we can get a suitablemodel of AR(𝑝) orMA(𝑞)
or ARIMA(𝑝, 𝑑, 𝑞) in order to estimate 𝑦𝐴𝑡 . By fitting under-
study time series with (2) or (3) or (4), we can get 𝑦𝐴𝑡 in the
form 𝑔Δ(𝑎𝑡−1, 𝑎𝑡−2, . . . , 𝑎𝑡−𝑝, 𝑤𝑡−1, 𝑤𝑡−2, . . . , 𝑤𝑡−𝑞). According
to Lemma 3, perform SVR for under-study time series in
order to evaluate 𝑦𝑆𝑡 from (12). This model is a function of
its past 𝑁 values in the form 𝑔∗(𝛽𝑡1 , 𝛽𝑡2 , . . . , 𝛽𝑡𝑁 , 𝑏∗) with𝑡1 ≤ ⋅ ⋅ ⋅ ≤ 𝑡𝑁−1 ≤ 𝑡𝑁.

Consider a time set {𝑡1, . . . , 𝑡𝑘, 𝑡𝑘+1, . . . , 𝑡𝑁} with 𝑦𝑡1 = 𝑎
and 𝑦𝑡𝑁 = 𝑏 ̸= 𝑎. There is only one single time point
(necessarily from time 𝑡1 to time 𝑡𝑁) precisely on time𝑦 ≃ 𝑦𝑆𝑡∗
satisfying 𝑒𝑆𝑡∗ < 𝑒𝐴𝑡∗ for all 𝑡∗ ∈ {𝑡1, . . . , 𝑡𝑘} and 𝑦 ≃ 𝑦𝐴𝑡
satisfying 𝑒𝐴𝑡 < 𝑒𝑆𝑡 for all 𝑡 ∈ {𝑡𝑘+1, . . . , 𝑡𝑁}. The proposed
hybrid model 𝑦 is the estimated model defined by setting
𝑦 ≃ 𝑦𝑆𝑡∗ for all 𝑡∗ ∈ {𝑡1, . . . , 𝑡𝑘} and vanishing otherwise
and setting 𝑦 ≃ 𝑦𝐴𝑡 for all 𝑡 ∈ {𝑡𝑘+1, . . . , 𝑡𝑁} and vanishing
otherwise. The proposed hybrid model can be extended to
include two or more time intervals.

The under-study time series (𝑦𝑡) is initially modeled by
the proposed hybrid model as follows:

𝑦𝑡 = 𝑦𝑡 + 𝑒𝑡 = (𝑦𝑆𝑡∗ + 𝑦𝐴𝑡) + 𝑒𝑡, (13)

where 𝑒𝑡 is residuals of the time series model in the time 𝑡 that
is as obtained from (13),

𝑒𝑡 = 𝑦𝑡 − 𝑦𝑡 = (𝑦𝑡∗ − 𝑦𝑆𝑡∗) + (𝑦𝑡 − 𝑦𝐴𝑡) = 𝑒𝑆𝑡∗ + 𝑒𝐴𝑡 , (14)

where 𝑒𝑆𝑡∗ and 𝑒𝐴𝑡 are residuals of the under-study time series
model in the time 𝑡 of the estimatedmodel of𝑦𝑆𝑡∗ , respectively,
to 𝑒𝐴𝑡 .
4. Application of the Proposed Hybrid
Model to Thailand’s South Insurgency
Movement Direction Forecasting

4.1. Data Set. In this research, we are interested in studying
the unrest in the four southern provinces of Thailand,
particularly in Pattani, Yala, Narathiwat, and parts of Songkla.
We consider the monthly number of deaths, injuries, and
incidents in these provinces. At the time of working research,
we can get the latest data from Deep South Watch (DSW)
[1] and Deep South Coordination Center (DSCC) [13]. By
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Figure 1: Number of unrest incidents in the four southern provinces
of Thailand (Pattani, Yala, Narathiwat, and Songkla) from 2005 to
2015.
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Figure 2: Monthly number of deaths, injuries, and incidents for
unrest in the four southern provinces of Thailand.

using the proposed hybrid model, our aim is to formulate an
estimatemodel for the trend of the number of deaths, injuries,
and incidents in these regions.

Figure 1 illustrates a diagram of the number of unrest
incidents in the four southern provinces from 2005 to 2015.
This diagram presents a high frequency of the number of
unrest incidents with a small fluctuation in the first period
(2005 to 2008), a decreasing frequency of the number of
unrest incidents in the middle period (2009 to 2012), and an
increasing frequency of the number of unrest incidents from
2013 to 2014, the lowest frequency in 2015.

The data series of our study consists of 40 months of
deaths, injuries, and incidents in the four southern provinces
of Thailand from September 2012 to December 2015.

Figure 2 presents three graphs describing three data series
of monthly number for deaths, injuries, and incidents. It
shows that the graph of deaths is in the bottom for all periods
of time, while the graph of injuries is in the middle between
the graphs of deaths and incidents in almost all periods of
time. Moreover, the graph of incidents is in the top in almost
all periods of time.
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Figure 3: (a) Monthly number of deaths is plotted against its first
differenced series, acf (b) and pacf (c) plots for the first difference in
monthly number of deaths.

From Figure 2, we can see that the number of incidents is
not necessary to be equal to the sumof numbers of deaths and
injuries. Sometimes, there is an unrest incident; no deaths or
no injures occurs. Or there are high numbers of deaths and
injuries in some incidents.

Monthly numbers of injures and incidents are apparently
stationary. A candidate model for monthly number of two
data series can be determined by plotting of acf and pacf.
However, the monthly number of deaths exhibits a linear
trend in the mean since it has a clear downward slope.

Figure 3 shows comparing of monthly number of deaths
plotted against its first differenced series for monthly number
of deaths (a) and plotting of acf (b) and pacf (c). The data
series of injures plotted against its first differenced series is
shown in Figure 4 and the data series of incidents plotted
against its first differenced series is shown in Figure 5.

Plotting of the first differenced series (Figures 3, 4, and 5)
shows that it looks like a stationary process, although plotting
acf and pacf of series of deaths, injuries, and incidents cannot
clearly identify parameter for constructing an estimated
model formulated by the ARIMA model.

The acf for the first difference in monthly number of
deaths tends to die down quickly whereas the pacf tends to
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Figure 4: (a) Monthly number of injuries is plotted against its first
differenced series, acf (b) and pacf (c) plots for the first difference in
monthly number of injuries.

show spike for lags up to 1 which ignores significant spikes in
each plot when it is outside the limits. This suggests that the
first difference in monthly number of deaths can be a model
as an AR(1).

Similarly, the first differenced series of injures and
incidents can be a model as an AR(1). After checking of
residual in diagnosis stage, this indicates that ARMA(2, 3)
is a candidate model for formulating an estimate model
for the first difference in monthly number of deaths and
injuries. MA(1) is also a candidate model for the first
difference in monthly number of incidents. With notation of
ARIMA(𝑝, 𝑑, 𝑞), ARIMA(2, 1, 3) is an estimated model for
monthly number of deaths and injuries and ARIMA(0, 1, 1)
for monthly number of incidents.

Table 1 reportsmean square error (mse) of three estimated
models formonthly number of deaths, injuries, and incidents
formulated by ARIMA, SVR, and hybrid. The mean square
error of the formal model is calculated by choosing the best
trajectory: 1 × 106 trajectories simulated by ARIMA for each
series.

Plotting a convergent of mean square error is calculated
from monthly number and an estimated model with 2,500,
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Table 1: Some reports of mean square error for fitting and forecasting the series.

Time series Model
ARIMA∗ SVR Hybrid

Deaths series 9.4383 7.0882 0.7922
Injuries series 28.0352 20.4161 0.9921
Incident series 41.8077 31.7669 1.469
Note. ARIMA(2,1,3) for monthly number of deaths and injuries and ARIMA(0,1,1) for monthly number of incidents.
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Figure 5: (a) Monthly number of incidents is plotted against its first
differenced series, acf (b) and pacf (c) plots for its first difference in
monthly number of incidents.

5,000, . . . , 1 × 106 trajectories for monthly number of deaths,
injuries, and incidents illustrated in Figure 6.

Setting 𝜀 = 0.0025, 𝑐 = 150000, 𝛾 = 3.25, and 𝑏 = 2.75 for
SVRmodel andusingARIMA(2, 1, 3)model in order to select
from the best trajectory from 1 × 106 trial trajectories, then
bothmodels are combined in order to formulate an estimated
model for monthly number of deaths: 𝑦𝑡 = 𝑦𝑆𝑡 + 𝑦𝐴𝑡 , where

𝑦𝐴𝑡 = −1.079 − 0.046Δ𝑦𝑡−1 − 0.751Δ𝑦𝑡−2 − 0.915𝑤𝑡−1
− 0.915𝑤𝑡−2 − 𝑤𝑡−3 + 𝑤𝑡, (15)
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Figure 6: Fitting performance for monthly number of deaths (a)
and injuries (b) with ARIMA(2, 1, 3) and for monthly number of
incidents (c) with ARIMA(0, 1, 1).

𝑡 ∈ {35, . . . , 40}, and 𝑦𝑆𝑡 = ∑35𝑖=1 𝛽∗𝑖 𝐾(xi, 𝑥) + 𝑏∗ where 𝑡 ∈{1, . . . , 36}, 𝑏∗ = −0.7115, and 𝛽∗𝑖 , 𝑖 = 1, . . . , 35, where it has
specified a value.
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Figure 8: The actual, fitted, and forecasted series by hybrid model
for series of injuries.

Predictive performance of SVR-ARIMA(2, 1, 3) hybrid
model for monthly number of deaths and injuries, respec-
tively, is shown in Figure 7.

In the same way, for monthly number of injures, setting 𝜀
= 0.025, 𝑐 = 350000, 𝛾 = 2.755, and 𝑏 = 0.00125 for SVRmodel
and using ARIMA(2, 1, 3) model in order to select from the
best trajectory from 1 × 106 trial trajectories, both models
are combined in order to formulate an estimated model for
monthly number of injuries: 𝑦𝑡 = 𝑦𝑆𝑡 + 𝑦𝐴𝑡 , where

𝑦𝐴𝑡 = −5.851 − 1.560Δ𝑦𝑡−1 − 0.773Δ𝑦𝑡−2 − 0.618𝑤𝑡−1
− 0.618𝑤𝑡−2 − 𝑤𝑡−3 + 𝑤𝑡, (16)

𝑡 ∈ {35, . . . , 40}, and 𝑦𝑆𝑡 = ∑35𝑖=1 𝛽∗𝑖 𝐾(xi, 𝑥) + 𝑏∗, where 𝑡 ∈{1, . . . , 36}, 𝑏∗ = −3.0611, and 𝛽∗𝑖 , 𝑖 = 1, . . . , 35, where it has
specified a value.

Predictive performance of SVR-ARIMA(2, 3) hybrid
model for difference monthly number of injuries is shown in
Figure 8.

For monthly number of incidents, set 𝜀 = 0.025, 𝑐 =
200000, 𝛾 = 1.555, and 𝑏 = 0.725 for SVR model and use
ARIMA(0, 1, 1) model to select from the best trajectory
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Figure 9: The actual, fitted, and forecasted series by hybrid model
for number of incidents.

from 1 × 106 trial trajectories. Then these two models are
combined in order to formulate an estimated model for
monthly number of incidents: 𝑦𝑡 = 𝑦𝑆𝑡 + 𝑦𝐴𝑡 , where

𝑦𝐴𝑡 = −0.193 − 𝑤𝑡−1 + 𝑤𝑡, (17)

𝑡 ∈ {36, . . . , 40}, and 𝑦𝑆𝑡 = ∑35𝑖=1 𝛽∗𝑖 𝐾(xi, 𝑥) + 𝑏∗, where 𝑡 ∈{1, . . . , 35}, 𝑏∗ = −1.4121, and 𝛽∗𝑖 , 𝑖 = 1, . . . , 35, where it has
specified a value.

Predictive performance of SVR-ARIMA(0, 1, 1) hybrid
model for monthly number of incidents is shown in Figure 9.

5. Conclusions

The hybrid SVR-ARIMA model has been investigated to
formulate time series model of monthly number of Thai-
land’s south insurgency in this study. In particular, we
consider the first difference in monthly number of deaths,
injuries, and incidents in Pattani, Yala, Narathiwat, and
Songkla provinces in 40 months from September 2012
to December 2015. According to the hybrid methodology,
the SVR-ARIMA(𝑝, 𝑑, 𝑞) model is obtained by combining
ARIMA(𝑝, 𝑑, 𝑞) and SVR model. Plotting of autocorrelation
and partial autocorrelation indicates that the first difference
in monthly number of deaths, injuries, and incidents is linear
and stationary.

The test results of the estimated model are obtained from
the proposed hybridmodel and compared with the estimated
model of the AR(𝑝), MA(𝑞), ARIMA(𝑝, 𝑑, 𝑞), and SVM
models.This presents the fact that the proposed hybridmodel
performs better than the remaining models. For time series
of Thailand’s south insurgency, SVR-ARIMA(2, 1, 3) is the
estimated model for monthly number of deaths and injuries
and SVR-ARIMA(0, 1, 1) is the estimated model for monthly
number of incidents. In particular, SVR-ARIMA(2, 1, 3)
consists of two components: the first component uses the
SVR model in order to formulate the estimated model for
historical data and the second component uses the ARIMA
model in order to formulate the estimated model for the
unseen value in the short future.
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In a recent paper, the authors derived the exact solution for the probability mass function of the geometric distribution of order
𝑘, expressing the roots of the associated auxiliary equation in terms of generating functions for Fuss-Catalan numbers. This paper
applies the above formalism for the Fuss-Catalan numbers to treat additional problems pertaining to occurrences of success runs.
New exact analytical expressions for the probability mass function and probability generating function and so forth are derived.
First, we treat sequences of Bernoulli trials with 𝑟 ≥ 1 occurrences of success runs of length 𝑘 with ℓ-overlapping. The case ℓ < 0,
where there must be a gap of at least |ℓ| trials between success runs, is also studied. Next we treat the distribution of the waiting
time for the 𝑟th nonoverlapping appearance of a pair of successes separated by at most 𝑘 − 2 failures (𝑘 ≥ 2).

1. Introduction

In a recent paper [1], the authors derived the exact analytical
solution for the probability mass function of the geometric
distribution of order 𝑘. The roots of the auxiliary equation of
the associated recurrence relation were derived in terms of
generating functions for Fuss-Catalan numbers. (See the text
by Graham et al. [2] for details about Fuss-Catalan numbers.)
In this paper, we employ our formalism for the Fuss-
Catalan numbers to treat additional problems pertaining
to occurrences of success runs in sequences of Bernoulli
trials. Throughout our paper, we treat only sequences of
independent identically distributed (i.i.d.) Bernoulli trials
with constant success probability 𝑝 (and failure probability
𝑞 = 1−𝑝).The theory of success runs is discussed extensively
in the texts by Balakrishnan and Koutras [3] and Johnson et
al. [4]. Our formalism provides a new perspective to treat
problems of success runs in sequences of Bernoulli trials
and complements and extends results derived by previous
authors (especially Feller [5, pp. 322–326]). Citations and
comparisons to the works of others will be presented in
Sections 3 and 4, after we have derived our results.

We treat two main problems in this paper. First, we
consider sequences with multiple 𝑟 ≥ 1 occurrences of

success runs of length 𝑘. The success runs are permitted
to overlap, with a maximum of ℓ ≥ 0 overlaps between
success runs. This is known as “ℓ-overlapping.” The case
ℓ < 0 is perhaps surprising at first sight but is also of
interest. In this case there must be a gap or “buffer” of at
least |ℓ| trials (of arbitrary outcomes) between success runs.
We call this “|ℓ|-buffering.” We also consider the scenario
in which the length of the sequence 𝑛 is held fixed and the
number of success runs 𝑟 ≥ 0 is allowed to vary. This is the
binomial distribution of order 𝑘 with ℓ-overlapping success
runs. An encyclopedia article on binomial distributions of
order 𝑘 has been published by Philippou and Antzoulakos
[6]. Using Fuss-Catalan numbers, we present new concise
expressions for the probability mass functions of these
distributions.

In Section 4 we study a different problem.We analyze the
distribution of the waiting time for the 𝑟th nonoverlapping
appearance of a pair of successes separated by at most 𝑘 − 2
failures (𝑘 ≥ 2). Our main reference for this problem is the
elegant analysis by Koutras [7], who also gives an excellent
bibliography on the subject. For 𝑟 = 1 and 𝑘 ≥ 2, the problem
is a special case of the detection waiting game when a 2-out-
of-𝑘 moving (or sliding) window detector is employed. See
Koutras [7] for additional details and references. Note that
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our material in Section 4 is self-contained and is a different
problem from that mentioned above.

2. Notation and Definitions

We summarize the basic notation and definitions presented
in our earlier paper [1]. For a sequence of independent iden-
tically distributed Bernoulli trials with success probability 𝑝
(and failure probability 𝑞 = 1 − 𝑝), let𝑋𝑘 be the waiting time
for the first run of 𝑘 consecutive successes. Then𝑋𝑘 is said to
have the geometric distribution of order 𝑘. This distribution
was studied by Feller in his classic text [5, pp. 322–326]. It is
also known as the negative binomial distribution of order 𝑘
with parameter (1, 𝑝); see Philippou [8].The probabilitymass
function 𝑓𝑘 of𝑋𝑘 satisfies the recurrence relation, for 𝑛 > 𝑘,

𝑓𝑘 (𝑛) = 𝑞𝑓𝑘 (𝑛 − 1) + 𝑝𝑞𝑓𝑘 (𝑛 − 2) + 𝑝
2
𝑞𝑓𝑘 (𝑛 − 3)

+ ⋅ ⋅ ⋅ + 𝑝
𝑘−1
𝑞𝑓𝑘 (𝑛 − 𝑘) .

(1)

The initial conditions are 𝑓𝑘(𝑛) = 0 for 𝑛 = 1, . . . , 𝑘 − 1 and
𝑓𝑘(𝑘) = 𝑝

𝑘. We define the auxiliary polynomial

A𝑝,𝑘 (𝑧) = 𝑧
𝑘
− 𝑞𝑧

𝑘−1
− 𝑞𝑝𝑧

𝑘−2
− 𝑞𝑝

2
𝑧
𝑘−3
− ⋅ ⋅ ⋅

− 𝑞𝑝
𝑘−1
.

(2)

The auxiliary equation is A𝑝,𝑘(𝑧) = 0. We will drop the
subscripts 𝑝 and 𝑘 unless necessary. Feller [5] proved that the
roots of the auxiliary equation are distinct and also that there
is a unique positive real root, and it lies in (0, 1), and the real
positive root has a strictly larger magnitude than all the other
roots. Additional properties of the roots were derived in [1].
We denote the roots by 𝜆𝑗(𝑝, 𝑘), 𝑗 = 0, 1, . . . , 𝑘−1, where 𝜆0 is
the positive real root. We call 𝜆0 the “principal root” and the
other roots “secondary roots.” Unless required, we will omit
the arguments 𝑝 and 𝑘. It is useful to multiplyA(𝑧) by (𝑧−𝑝)
to obtain the polynomial

B (𝑧) = (𝑧 − 𝑝)A (𝑧) = 𝑧
𝑘
(𝑧 − 1) + 𝑝

𝑘
(1 − 𝑝) . (3)

Remark 1 (Fuss-Catalan numbers and roots of auxiliary
polynomial). Relevant definitions, formulas, and identities
for the Fuss-Catalan numbers can be found in the text by
Graham et al. [2]. The Fuss-Catalan numbers are given by

𝐴𝑚 (], 𝑟) =
𝑟

𝑚!

𝑚−1

∏

𝑗=1

(𝑚] + 𝑟 − 𝑗)

=
𝑟

Γ (𝑚 + 1)

Γ (𝑚] + 𝑟)
Γ (𝑚 (] − 1) + 𝑟 + 1)

.

(4)

The first form (finite product) is valid in general, while the
second form (Gamma functions) is well defined provided
𝑚] + 𝑟 ̸= 0. The generating function of the Fuss-Catalan
numbers is 𝐵](𝑧) and [2, p. 363]

𝐵] (𝑧) =

∞

∑

𝑚=0

𝐴𝑚 (], 1) 𝑧
𝑚
, (5a)

𝐵] (𝑧)
𝑟
=

∞

∑

𝑚=0

𝐴𝑚 (], 𝑟) 𝑧
𝑚
. (5b)

We will also require the following formula:

𝐵] (𝑧) − 1 = 𝑧𝐵] (𝑧)
]
. (6)

It was proved in [1] that, for all 0 < 𝑝 < 1,

𝜆𝑗 = 1 −
1

𝐵1+1/𝑘 (𝑒
2𝜋𝑖𝑗/𝑘𝑝𝑞1/𝑘)

(1 ≤ 𝑗 < 𝑘) . (7)

For 𝑘/(𝑘 + 1) < 𝑝 < 1, the above expression also applies for
𝜆0, while, for 0 < 𝑝 < 𝑘/(𝑘 + 1),

𝜆0 =
1

𝐵𝑘+1 (𝑝
𝑘𝑞)
. (8)

For ease of reference, we list several relevant properties
of the roots in the following.The proofs of all the results were
given in [1], or references cited therein, and are omitted in the
following.

Remark 2. All the roots of the auxiliary equation are distinct.

Remark 3. For 𝑝 ∈ (0, 1), the auxiliary equation has a unique
positive real root, which lies in (0, 1). We denote the positive
real root by 𝜆0, or 𝜆0(𝑝, 𝑘), as stated above. For any 𝑝 ∈ (0, 1),
exactly one of the three following statements is true:

(i) 0 < 𝑝 < 𝑘/(𝑘 + 1) < 𝜆0 < 1,
(ii) 0 < 𝜆0 < 𝑘/(𝑘 + 1) < 𝑝 < 1,
(iii) 𝜆0 = 𝑝 = 𝑘/(𝑘 + 1).

Remark 4. For 𝑝 ∈ (0, 1), the principal root 𝜆0 has a strictly
greater magnitude than all the other roots of the auxiliary
equation; that is, 0 < |𝑧𝑟| < 𝜆0 < 1, where 𝑧𝑟 ∈ C \ 𝜆0 is
a root ofA(𝑧). We employ the term “secondary roots” for the
set {𝜆𝑗, 𝑗 = 1, . . . , 𝑘 − 1}.

Remark 5. For any 𝑝 ∈ (0, 1), the secondary roots 𝜆𝑗, 𝑗 =
1, . . . , 𝑘 − 1 satisfy the inequality

0 <

𝜆𝑗


< min {𝑝, 𝜆0} ≤

𝑘

𝑘 + 1
≤ max {𝑝, 𝜆0} < 1. (9)

The inequalities involving 𝑘/(𝑘 + 1) are strict if 𝑝 ̸= 𝑘/(𝑘 + 1).

Remark 6. For 𝑝 ∈ (0, 1), let 𝑅(𝑝) denote the set of 𝑘+1 roots
of the equation 𝑧𝑘(1 − 𝑧) = 𝑝𝑘(1 − 𝑝). Let 𝑝1, 𝑝2 ∈ (0, 1).
Then 𝑅(𝑝1) = 𝑅(𝑝2) if 𝑝2 = 𝑝1 or 𝑝2 = 𝜆0(𝑝1); otherwise
𝑅(𝑝1) ∩ 𝑅(𝑝2) = ⌀.

In addition to the above properties of the roots, we will
also need the following two results, which were not proved in
[1], as well as a lemma about sums of series.

Proposition 7 (distinctness of roots for different 𝑘). Consider
fixed 𝑝 ∈ (0, 1). Suppose 𝑧𝑟 is a root of the auxiliary equation
A(𝑧) = 0 for 𝑘 = 𝑘1. Then 𝑧𝑟 is not a root for any other value
of 𝑘.

Proof. We are given that

𝑧
𝑘1
𝑟 (1 − 𝑧𝑟) = 𝑝

𝑘1𝑞. (10)
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Suppose that 𝑧𝑟 is also a root for 𝑘 = 𝑘2 ̸= 𝑘1. Then by
hypothesis

𝑧
𝑘2
𝑟 (1 − 𝑧𝑟) = 𝑝

𝑘2𝑞. (11)

From (9), 𝑧𝑟 ̸= 0 and 𝑧𝑟 ̸= 1 for 0 < 𝑝 < 1; hence we can
divide the two equations to deduce

𝑧
𝑘2−𝑘1
𝑟 = 𝑝

𝑘2−𝑘1 . (12)

Hence |𝑧𝑟| = |𝑝|. Also from (9), |𝑧𝑟| < 𝑝 for all the secondary
roots. Thus the only possibility is that 𝑧𝑟 is the positive real
root. Hence 𝑧𝑟 = 𝑝, but this is a root if and only if 𝑝 =

𝑘/(𝑘 + 1) (see Remark 3). However, for arbitrary 𝑝 ∈ (0, 1),
the constraint 𝑝 = 𝑘/(𝑘 + 1) has either no solution for 𝑘 or at
most one solution for 𝑘.

Proposition 8 (comparison of principal roots for different 𝑘,
for fixed 𝑝). For fixed 𝑝 ∈ (0, 1), if 𝑘1 < 𝑘2 the principal roots
𝜆0(𝑝, 𝑘1) and 𝜆0(𝑝, 𝑘2), for 𝑘 = 𝑘1, 𝑘2 respectively, satisfy the
inequality

𝜆0 (𝑝, 𝑘1) < 𝜆0 (𝑝, 𝑘2) . (13)

Proof. To exhibit the dependence on 𝑘, we denote the auxil-
iary polynomial byA𝑝,𝑘(𝑧). Then from (2)

A𝑝,𝑘+1 (𝑧) = 𝑧A𝑝,𝑘 (𝑧) − 𝑞𝑝
𝑘
. (14)

Then set 𝑧 = 𝜆0(𝑝, 𝑘) to obtain

A𝑝,𝑘+1 (𝜆0 (𝑝, 𝑘)) = 𝜆0 (𝑝, 𝑘)A𝑝,𝑘 (𝜆0 (𝑝, 𝑘)) − 𝑞𝑝
𝑘

= −𝑞𝑝
𝑘
< 0.

(15)

NowA𝑝,𝑘+1(𝑧) has exactly one real root in 𝑧 ∈ (0, 1), which is
𝜆0(𝑝, 𝑘 + 1). AlsoA𝑝,𝑘+1(0) < 0 andA𝑝,𝑘+1(1) > 0. It follows
that

𝜆0 (𝑝, 𝑘) < 𝜆0 (𝑝, 𝑘 + 1) . (16)

By extension, this establishes (13) for all 𝑘1 < 𝑘2.

Lemma 9. For 𝑛 ≥ 𝑚 ≥ 1 and 𝜉 ̸= 1,

𝜉
𝑚−1

𝑛

∑

𝑖=𝑚

(

𝑖 − 1

𝑚 − 1
) 𝜉

𝑖−𝑚

=
1

(𝑚 − 1)!
[
𝑑
𝑚−1

𝑑𝑥𝑚−1

1 − (𝜉𝑥)
𝑛

1 − 𝜉𝑥
]

𝑥=1

.

(17)

Next, for 𝑗 ≥ 𝑛 ≥ 0 and 𝜉 ̸= 1,

[
𝑑
𝑛

𝑑𝑥𝑛
(

𝑥
𝑗

1 − 𝜉𝑥
)]

𝑥=1

= 𝑛!

𝑛

∑

𝑖=0

(

𝑗

𝑖
)

𝜉
𝑛−𝑖

(1 − 𝜉)
𝑛−𝑖+1

. (18)

The expressions on the right hand sides of both equations are
clearly well defined for all 𝜉 ̸= 1.

Proof. To derive (17) we define the sum

𝑍 (𝑥) =
1 + 𝜉𝑥 + (𝜉𝑥)

2
+ ⋅ ⋅ ⋅ + (𝜉𝑥)

𝑛−1

(𝑚 − 1)!

=
1 − (𝜉𝑥)

𝑛

(𝑚 − 1)! (1 − 𝜉𝑥)
.

(19)

Then differentiate the sum in (19)𝑚 − 1 times to obtain

𝑑
𝑚−1
𝑍 (𝑥)

𝑑𝑥𝑚−1
= 𝜉

𝑚−1
[(

𝑚 − 1

𝑚 − 1
) + (

𝑚

𝑚 − 1
) 𝜉𝑥

+ (

𝑚 + 1

𝑚 − 1
) (𝜉𝑥)

2
+ ⋅ ⋅ ⋅ + (

𝑛 − 1

𝑚 − 1
) (𝜉𝑥)

𝑛−𝑚
] .

(20)

Evaluation at 𝑥 = 1 yields (17). The derivation of (18) is an
application of Leibniz’s rule:

𝑑
𝑛

𝑑𝑥𝑛
(

𝑥
𝑗

1 − 𝜉𝑥
) =

𝑛

∑

𝑖=0

(

𝑛

𝑖
)(

𝑑
𝑖
𝑥
𝑗

𝑑𝑥𝑖
)(

𝑑
𝑛−𝑖

𝑑𝑥𝑛−𝑖

1

1 − 𝜉𝑥
)

=

𝑛

∑

𝑖=0

𝑛!

𝑖! (𝑛 − 𝑖)!

𝑗!

(𝑗 − 𝑖)!
𝑥
𝑗−𝑖 (𝑛 − 𝑖)!𝜉

𝑛−𝑖

(1 − 𝜉𝑥)
𝑛−𝑖+1

= 𝑛!

𝑛

∑

𝑖=0

𝑗!

𝑖! (𝑗 − 𝑖)!

𝜉
𝑛−𝑖
𝑥
𝑗−𝑖

(1 − 𝜉𝑥)
𝑛−𝑖+1

.

(21)

Evaluation at 𝑥 = 1 yields (18).

3. Multiple 𝑟 ≥ 1 Success Runs in Sequences of
Bernoulli Trials

3.1. Probability Generating Function,Mean, andVariance. We
now turn to the first problem of interest in this paper, namely,
the waiting time to obtain 𝑟 > 1 success runs of length 𝑘.
We begin by displaying the following expressions for the case
𝑟 = 1. They were derived by Feller [5] and will be required in
the following.

Remark 10 (probability generating function for 𝑟 = 1). Let
𝑠 ∈ C. The probability generating function (p.g.f.) for the
geometric distribution of order 𝑘 is [5, eq. (7.6)]

𝜙 (𝑠, 𝑘) =
𝑝
𝑘
𝑠
𝑘
(1 − 𝑝𝑠)

1 − 𝑠 + 𝑞𝑝𝑘𝑠𝑘+1

=
𝑝
𝑘
𝑠
𝑘

1 − 𝑞𝑠 (1 + 𝑝𝑠 + ⋅ ⋅ ⋅ + 𝑝𝑘−1𝑠𝑘−1)
.

(22)

The p.g.f. exists for |𝑠| < 1/𝜆0(𝑝, 𝑘) [5]. The mean and
variance are given by [5, eq. (7.7)]

𝜇 (𝑘) =
1 − 𝑝

𝑘

𝑞𝑝𝑘
,

𝜎
2
(𝑘) =

1

(𝑞𝑝𝑘)
2
−
2𝑘 + 1

𝑞𝑝𝑘
−
𝑝

𝑞2
.

(23)

The dependences on 𝑝 and 𝑘 will be omitted in the following
unless necessary.
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We now calculate the probability generating function,
mean, and variance for multiple 𝑟 > 1 overlapping runs. The
success runs have length 𝑘 and there can be at most 0 ≤ ℓ < 𝑘
overlaps between consecutive success runs. We denote the
waiting time by𝑋𝑟,𝑘,ℓ. The case ℓ = 0 of nonoverlapping runs
was extensively analyzed by Philippou [8], who named the
distribution as the negative binomial distribution of order 𝑘
with vector parameter (𝑟, 𝑝). Ling (1989) [9] and Hirano et al.
[10] derived results for the special case ℓ = 𝑘 − 1. The text
by Balakrishnan and Koutras [3] lists the special cases ℓ = 0
and ℓ = 𝑘 − 1 as, respectively, Type I and Type III negative
binomial distributions of order 𝑘.

Proposition 11 (probability generating function for 𝑟 ≥ 1).
Let the probability generating function for 𝑟 ≥ 1 success runs of
length 𝑘 with at most ℓ overlaps be 𝜙𝑟,𝑘,ℓ(𝑠). We will omit the
subscripts 𝑘 and ℓ unless necessary. Then

𝜙𝑟,𝑘,ℓ (𝑠) =
𝜙 (𝑠, 𝑘)

𝑟

𝜙 (𝑠, ℓ)
𝑟−1
. (24)

Notice that, for 𝑟 = 1, we obtain 𝜙1,𝑘,ℓ(𝑠) = 𝜙(𝑠, 𝑘) (see (22)),
as required.

Proof. Define 𝑋𝑗(= 𝑋𝑗,𝑘,ℓ) as the waiting time to complete
𝑗 success runs. So suppose we have completed 𝑗 − 1 success
runs. Hence by definition the last 𝑘 trials are all successes.
Then exactly one of the following 𝑘− ℓ+1mutually exclusive
events will occur:

(i) The next 𝑘 − ℓ trials are all successes. This yields the
𝑗th success run.

(ii) The next 𝜅 trials are successes, followed by a failure,
where 𝜅 = 0, 1, . . . , 𝑘 − ℓ − 1. Then we restart the
waiting time for the next success run from scratch
(conditioned on an initial failure). We denote this
additional waiting time by𝑌𝑗. Clearly,𝑌𝑗 has the same
distribution as𝑋1.

Since the events are mutually exclusive, we add the probabil-
ities to obtain

E (exp (𝑡𝑋𝑗)) = 𝑝
𝑘−ℓ

E (exp (𝑡 (𝑋𝑗−1 + 𝑘 − ℓ)))

+

𝑘−ℓ−1

∑

𝜅=0

𝑝
𝜅
𝑞E (exp (𝑡 (𝑋𝑗−1 + 𝑌𝑗 + 𝜅 + 1)))

= 𝑝
𝑘−ℓ
𝑒
𝑡(𝑘−ℓ)

E (exp (𝑡𝑋𝑗−1)) +

𝑘−ℓ−1

∑

𝜅=0

𝑝
𝜅
𝑞𝑒

𝑡(𝜅+1)

⋅ E (exp (𝑡𝑋𝑗−1))E (exp (𝑡𝑌𝑗))

= E (exp (𝑡𝑋𝑗−1))

⋅ [𝑝
𝑘−ℓ
𝑒
𝑡(𝑘−ℓ)

+ 𝜙 (𝑒
𝑡
)

𝑘−ℓ−1

∑

𝜅=0

𝑝
𝜅
𝑞𝑒

𝑡(𝜅+1)
] .

(25)

Now set 𝑠 = 𝑒𝑡 and note that 𝜙𝑗(𝑠) = E(exp(𝑡𝑋𝑗)). Hence
we obtain the following recurrence relation and solution for
𝜙𝑟(𝑠):

𝜙𝑟 (𝑠) = 𝜙𝑟−1 (𝑠) [(𝑝𝑠)
𝑘−ℓ
+ 𝜙 (𝑠)

𝑘−ℓ−1

∑

𝜅=0

𝑝
𝜅
𝑞𝑠

𝜅+1
] , (26a)

= 𝜙 (𝑠) [(𝑝𝑠)
𝑘−ℓ
+ 𝜙 (𝑠) 𝑞𝑠

1 − (𝑝𝑠)
𝑘−ℓ

1 − 𝑝𝑠
]

𝑟−1

. (26b)

Define 𝑍 as the term in the brackets. After some tedious
algebra we obtain

𝑍 = (𝑝𝑠)
𝑘−ℓ
+
(𝑝𝑠)

𝑘
(1 − 𝑝𝑠)

1 − 𝑠 + 𝑞𝑝𝑘𝑠𝑘+1

𝑞𝑠 (1 − (𝑝𝑠)
𝑘−ℓ
)

1 − 𝑝𝑠

=
(𝑝𝑠)

𝑘
(1 − 𝑝𝑠)

1 − 𝑠 + 𝑞𝑝𝑘𝑠𝑘+1

1 − 𝑠 + 𝑞𝑝
ℓ
𝑠
ℓ+1

(𝑝𝑠)
ℓ
(1 − 𝑝𝑠)

=
𝜙 (𝑠, 𝑘)

𝜙 (𝑠, ℓ)
.

(27)

In the last line it is necessary to exhibit the dependences on 𝑘
and ℓ explicitly. Then (24) follows immediately.

Proposition 12 (domain of convergence). The probability
generating function for 𝑟 ≥ 1 success runs 𝜙𝑟,𝑘,ℓ(𝑠) converges
for

|𝑠| <
1

𝜆0 (𝑝, 𝑘)
. (28)

Hence the domain of convergence of the probability generating
function is the same for all 𝑟 ≥ 1.

Proof. Clearly, the function 𝜙𝑟,𝑘,ℓ(𝑠) is well defined if and only
if the sums of the series for𝜙(𝑠, 𝑘) and𝜙(𝑠, ℓ) both converge. It
was proved by Feller [5] that 𝜙(𝑠, 𝑘) exists for |𝑠| < 1/𝜆0(𝑝, 𝑘).
Hence 𝜙𝑟,𝑘,ℓ(𝑠) exists if

|𝑠| < min{ 1

𝜆0 (𝑝, 𝑘)
,

1

𝜆0 (𝑝, ℓ)
} . (29)

However, because ℓ < 𝑘, it follows from Proposition 8 that
𝜆0(𝑝, ℓ) < 𝜆0(𝑝, 𝑘). Hence 1/𝜆0(𝑝, 𝑘) < 1/𝜆0(𝑝, ℓ). This
proves (28).

Proposition 13 (mean and variance). The mean 𝜇𝑟,𝑘,ℓ and
variance 𝜎2𝑟,𝑘,ℓ for the waiting time for 𝑟 ≥ 1 success runs are
given by

𝜇𝑟,𝑘,ℓ = 𝑟𝜇 (𝑘) − (𝑟 − 1) 𝜇 (ℓ) , (30a)

𝜎
2
𝑟,𝑘,ℓ = 𝑟𝜎

2
(𝑘) − (𝑟 − 1) 𝜎

2
(ℓ) . (30b)

Proof. We put 𝑠 = 𝑒𝑡 and differentiate with respect to 𝑡 and
evaluate at 𝑡 = 0. We differentiate ln𝜙𝑟(𝑒

𝑡
) to obtain

𝜙

𝑟 (𝑒

𝑡
)

𝜙𝑟 (𝑒
𝑡
)
= 𝑟
𝜙

(𝑒
𝑡
, 𝑘)

𝜙 (𝑒
𝑡, 𝑘)

− (𝑟 − 1)
𝜙

(𝑒
𝑡
, ℓ)

𝜙 (𝑒
𝑡, ℓ)

. (31)
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Evaluating at 𝑡 = 0 and noting that 𝜙(1, 𝑘) = 𝜙(1, ℓ) = 1 yield

𝜇𝑟,𝑘,ℓ = 𝑟𝜇 (𝑘) − (𝑟 − 1) 𝜇 (ℓ) . (32)

This proves (30a). We differentiate again to obtain

𝜙

𝑟 (𝑒

𝑡
)

𝜙𝑟 (𝑒
𝑡
)
−
𝜙
2
𝑟 (𝑒

𝑡
)

𝜙𝑟 (𝑒
𝑡
)
2

= 𝑟(
𝜙

(𝑒
𝑡
, 𝑘)

𝜙 (𝑒
𝑡, 𝑘)

−
𝜙
2
(𝑒
𝑡
, 𝑘)

𝜙 (𝑒
𝑡, 𝑘)

2
)

− (𝑟 − 1) (
𝜙

(𝑒
𝑡
, ℓ)

𝜙 (𝑒
𝑡, ℓ)

−
𝜙
2
(𝑒
𝑡
, ℓ)

𝜙 (𝑒
𝑡, ℓ)

2
) .

(33)

We again evaluate at 𝑡 = 0 to obtain

𝜎
2
𝑟,𝑘,ℓ = 𝑟𝜎

2
(𝑘) − (𝑟 − 1) 𝜎

2
(ℓ) . (34)

This proves (30b).

We now show that various results derived by other
authors are special cases of our results above. As stated above,
the case ℓ = 0 of nonoverlapping runs was solved by
Philippou [8], while Ling (1989) [9] and Hirano et al. [10]
treated the case ℓ = 𝑘 − 1 of overlapping runs.

Remark 14 (Philippou (1984)). Philippou [8, Lemma 2.2]
stated “Let 𝑋 be a 𝑟V distributed as 𝑁𝐵𝑘(𝑥; 𝑟, 𝑝). Then its
probability generating function, to be denoted by 𝛾𝑘,𝑟(𝑠), is
given by”

𝛾𝑘,𝑟 (𝑠) = [
𝑝
𝑘
𝑠
𝑘
(1 − 𝑝𝑠)

(1 − 𝑠 + 𝑞𝑝𝑘𝑠𝑘+1)
]

𝑟

, |𝑠| ≤ 1. (35)

The mean and variance are given by [8, Proposition 2.1]

E (𝑋) =
𝑟 (1 − 𝑝

𝑘
)

𝑞𝑝𝑘
, (36a)

𝜎
2
(𝑋) =

𝑟 [1 − (2𝑘 + 1) 𝑞𝑝
𝑘
− 𝑝

2𝑘+1
]

𝑞2𝑝2𝑘
. (36b)

Proof. By definition, Philippou’s notation 𝛾𝑘,𝑟(𝑠) is the same
as our 𝜙𝑟,𝑘,ℓ(𝑠) with ℓ = 0. From (22), it is easy to show
that 𝜙(𝑠, ℓ) = 1 for ℓ = 0, whence 𝜙𝑟,𝑘,0(𝑠) = 𝜙(𝑠, 𝑘)

𝑟 and
(35) follows. Note that Philippou [8] stated the domain of
convergence to be |𝑠| ≤ 1, but we have shown that it is
|𝑠| ≤ 1/𝜆0(𝑝, 𝑘), which is a larger domain. Next, it is also
easy to show that 𝜇(ℓ) = 𝜎

2
(ℓ) = 0 for ℓ = 0, whence

𝜇𝑟,𝑘,0 = 𝑟𝜇(𝑘) and 𝜎
2
𝑟,𝑘,0 = 𝑟𝜎

2
(𝑘) which yield (36a) and (36b),

respectively.

Remark 15 (Ling (1989)). Ling (1989) [9, Theorem 4.1] stated
that, for |𝑠| ≤ 1,

𝜙
(𝑘)
𝑟 (𝑠) = 𝑠𝜙

(𝑘)
𝑟−1 (𝑠) [𝑝 + 𝑞𝜙

(𝑘)
1 (𝑠)] , (37a)

𝜙
(𝑘)
𝑟 (𝑠) = 𝜙

(𝑘)
1 (𝑠) [𝑠 (𝑝 + 𝑞𝜙

(𝑘)
1 (𝑠))]

𝑟−1
. (37b)

Proof. Ling wrote 𝜙(𝑘)𝑟 (𝑠) and 𝜙
(𝑘)
1 (𝑠) where we have written

𝜙𝑟,𝑘,ℓ(𝑠) and 𝜙(𝑠), but the connection between the notations is
clear. Setting ℓ = 𝑘 − 1 in (26a) yields

𝜙𝑟 (𝑠) = 𝜙𝑟−1 (𝑠) [𝑝𝑠 + 𝑞𝑠𝜙 (𝑠)]

= 𝑠𝜙𝑟−1 (𝑠) [𝑝 + 𝑞𝜙 (𝑠)] .

(38)

This yields (37a). Next (37b) follows immediately by solving
the recurrence relation

𝜙𝑟 (𝑠) = 𝜙 (𝑠) [𝑠 (𝑝 + 𝑞𝜙 (𝑠))]
𝑟−1
. (39)

Similar to Philippou [8], Ling (1989) [9] also stated the
domain of convergence to be |𝑠| ≤ 1, but we have shown that
it is larger, given by |𝑠| ≤ 1/𝜆0(𝑝, 𝑘).

Remark 16 (Hirano et al. (1991)). Hirano et al. [10, Theorem
4.1] stated that “Let 𝜙𝑁𝐵𝑟 (𝑡) be the p.g.f. of 𝑁𝐵III𝑘 (𝑟, 𝑝).” They
wrote

𝜙
𝑁𝐵
𝑟 (𝑡) = {𝑝𝑡 + 𝑞𝑡𝜙

𝑁𝐵
1 (𝑡)}

𝑟−1
𝜙
𝑁𝐵
1 (𝑡) . (40)

They also wrote

𝜙
𝑁𝐵
1 (𝑡) =

(𝑝𝑡)
𝑘

1 − 𝑞∑
𝑘−1
𝑖=0 𝑝

𝑖𝑡𝑖+1
. (41)

Then they derived the solution

𝜙
𝑁𝐵
𝑟 (𝑡) =

(𝑝𝑡 − 1) (𝑝𝑡)
𝑘+𝑟−1

(−𝑞𝑝
𝑘−1
𝑡
𝑘
+ 𝑡 − 1)

𝑟−1

(−𝑞𝑝𝑘𝑡𝑘+1 + 𝑡 − 1)
𝑟 . (42)

They also gave expressions for the mean and variance. The
mean is

E (𝑁
(𝑘)
𝑟 ) =

𝑞𝑟 + 𝑝 − 𝑝
𝑘

𝑝𝑘𝑞
. (43)

Proof. The connection between the notations is that they
write 𝜙𝑁𝐵𝑟 (𝑡) and 𝜙𝑁𝐵1 (𝑡) where we write 𝜙𝑟(𝑠) and 𝜙(𝑠),
respectively. They employ 𝑡 as the independent variable,
where we use 𝑠. It is simple to derive that their expression
for 𝜙𝑁𝐵1 (𝑡) in (42) equals that for 𝜙(𝑠, 𝑘) in (22). Next, (40)
is simply (39) with the changes of notation listed above. Next,
setting ℓ = 𝑘−1 and changing the independent variable from
𝑠 to 𝑡,

𝜙𝑟,𝑘,𝑘−1 (𝑡) =
𝜙 (𝑡, 𝑘)

𝑟

𝜙 (𝑡, 𝑘 − 1)
𝑟−1

=
(𝑝𝑡)

𝑘𝑟
(1 − 𝑝𝑡)

𝑟

(1 − 𝑡 + 𝑞𝑝𝑘𝑡𝑘+1)
𝑟

(1 − 𝑡 + 𝑞𝑝
𝑘−1
𝑡
𝑘
)
𝑟−1

(𝑝𝑡)
(𝑘−1)(𝑟−1)

(1 − 𝑝𝑡)
𝑟−1

=

(𝑝𝑡 − 1) (𝑝𝑡)
𝑘+𝑟−1

(−𝑞𝑝
𝑘−1
𝑡
𝑘
+ 𝑡 − 1)

𝑟−1

(−𝑞𝑝𝑘𝑡𝑘+1 + 𝑡 − 1)
𝑟 .

(44)
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This is exactly (42). From (30a), the mean for ℓ = 𝑘 − 1 is

𝜇𝑟,𝑘,𝑘−1 = 𝑟𝜇 (𝑘) − (𝑟 − 1) 𝜇 (𝑘 − 1)

= 𝑟
1 − 𝑝

𝑘

𝑝𝑘𝑞
− (𝑟 − 1)

1 − 𝑝
𝑘−1

𝑝𝑘−1𝑞
=
𝑞𝑟 + 𝑝 − 𝑝

𝑘

𝑝𝑘𝑞
.

(45)

This is exactly (43). Hirano et al. [10] also displayed an
expression for the variance. The proof of equivalence with
our expression involves merely tedious algebra and is omit-
ted.

3.2. Probability Mass Function. We derive an expression for
𝑓𝑟,𝑘,ℓ(𝑛), the probability mass function (p.m.f.) that the 𝑟th
success run of length 𝑘 with ℓ-overlapping occurs at the 𝑛th
Bernoulli trial, where 𝑟 ≥ 1 and 𝑛 ≥ 1. Clearly 𝑓𝑟,𝑘,ℓ(𝑛) = 0
for 𝑛 < ℓ+𝑟(𝑘−ℓ) = 𝑟𝑘−(𝑟−1)ℓ and 𝑓𝑟,𝑘,ℓ(𝑛) = 𝑝

𝑟𝑘−(𝑟−1)ℓ for
𝑛 = 𝑟𝑘−(𝑟−1)ℓ. An expression for the p.m.f. for the case 𝑟 = 1
was derived in [1]. By definition, the probability generating
function is related to the probability mass function via

𝜙𝑟,𝑘,ℓ (𝑠) =

∞

∑

𝑛=0

𝑠
𝑛
𝑓𝑟,𝑘,ℓ (𝑛) . (46)

We derived an expression for 𝜙𝑟,𝑘,ℓ(𝑠) above and we will use
it to derive an expression for 𝑓𝑟,𝑘,ℓ(𝑛) in the following. From
the second form for 𝜙(𝑠, 𝑘) in (22), with 𝑧 = 1/𝑠,

𝜓 (𝑧) = 𝜙 (
1

𝑧
) =

𝑝
𝑘

A𝑝,𝑘 (𝑧)
. (47)

Hence for 𝑟 ≥ 1 success runs,

𝜓𝑟,𝑘,ℓ (𝑧) ≡ 𝜙𝑟,𝑘,ℓ (
1

𝑧
) =

𝜓 (𝑧, 𝑘)
𝑟

𝜓 (𝑧, ℓ)
𝑟−1

= 𝑝
𝑟𝑘−(𝑟−1)ℓ

A𝑝,ℓ (𝑧)
𝑟−1

A𝑝,𝑘 (𝑧)
𝑟 .

(48)

The right hand side is a rational function of two polynomials.
From Proposition 7, the auxiliary polynomials A𝑝,ℓ(𝑧) and
A𝑝,𝑘(𝑧) have no roots in common. Furthermore, because ℓ <
𝑘, the numerator polynomial is of a lower degree than the
denominator polynomial. We also know that all the roots of
the auxiliary polynomials are distinct. Hence we can expand
𝜓𝑟,𝑘,ℓ(𝑧) as a sum of partial fractions with repeated roots (of
the denominator polynomial)

𝜓𝑟,𝑘,ℓ (𝑧) =

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

𝑎𝑗𝑚

(𝑧 − 𝜆𝑗 (𝑝, 𝑘))
𝑚 . (49)

Here the coefficients 𝑎𝑗𝑚 are parameters which depend on 𝑟,
𝑘, and ℓ but not on 𝑧. For brevity, we drop the subscripts 𝑘
and ℓ on 𝜓𝑟,𝑘,ℓ and also write the roots as 𝜆𝑗 in the following.
The coefficients 𝑎𝑗𝑚 can be evaluated explicitly in terms of
the roots {𝜆𝑖(𝑝, 𝑘), 𝑖 = 0, . . . , 𝑘 − 1} via the standard residues
formula

𝑎𝑗𝑚 =
1

(𝑟 − 𝑚)!
[
𝑑
𝑟−𝑚

𝑑𝑧𝑟−𝑚
((𝑧 − 𝜆𝑗)

𝑟
𝜓𝑟 (𝑧))]

𝑧=𝜆𝑗

. (50)

Returning to the use of 𝑠 = 1/𝑧, we see that

𝜙𝑟 (𝑠) = 𝜓𝑟 (
1

𝑠
) =

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

𝑎𝑗𝑚𝑠
𝑚

(1 − 𝜆𝑗𝑠)
𝑚 . (51)

We expand the right hand side using the negative binomial
theorem and equate 𝑓𝑟,𝑘,ℓ(𝑛) to the coefficient of 𝑠𝑛.

Proposition 17. The probability mass function 𝑓𝑟,𝑘,ℓ(𝑛) for the
𝑟𝑡ℎ success run of length 𝑘 with ℓ-overlapping is given by

𝑓𝑟,𝑘,ℓ (𝑛) =

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

(

𝑛 − 1

𝑚 − 1
)𝑎𝑗𝑚𝜆𝑗 (𝑝, 𝑘)

𝑛−𝑚
. (52)

Hence 𝑓𝑟,𝑘,ℓ(𝑛) is given by a sum of exactly 𝑟𝑘 terms, indepen-
dently of 𝑛. Recall from above that𝑓𝑟(𝑛) = 0 for 𝑛 < 𝑟𝑘−(𝑟−1)ℓ
so the above formula is only required for 𝑛 ≥ 𝑟𝑘−(𝑟−1)ℓ; hence
the binomial coefficients are well defined.

The derivation of the above expression has already
been given above, where all notation has been defined and
explained.

3.3. Binomial Distribution of Order 𝑘 with ℓ-Overlapping.
Consider a sequence of Bernoulli trials of fixed length 𝑛 > 0
and let 𝑁𝑛,𝑘,ℓ denote the number of success runs of length 𝑘
with a maximum of ℓ overlaps between success runs. This
is the binomial distribution of order 𝑘 with ℓ-overlapping
success runs and has been reviewed in the encyclopedia
article by Philippou and Antzoulakos [6]. Good overviews
have also been given byMakri andPhilippou [11] andMakri et
al. [12]; see the bibliographies in both references. Ling (1988)
[13] introduced the case of ℓ = 𝑘− 1 and called it the “Type II
binomial distribution of order 𝑘.”

The case 𝑟 = 0 is the probability that the longest success
run in the first 𝑛 trials has length less than 𝑘. It is also known
as the probability that the waiting time to attain the first
success run of length 𝑘 exceeds 𝑛 trials.This scenario has been
solved by many authors. For example, Feller [5] presented
an asymptotic solution in terms of the principal root. In our
paper [1], we extended Feller’s solution to include all the
roots. Solutions have also been derived by Burr andCane [14],
Godbole [15], Philippou and Makri [16], and Muselli [17],
all of whom expressed their results using (possibly nested)
binomial or multinomial sums.

Let 𝑔𝑛,𝑘,ℓ(𝑟) = 𝑃(𝑁𝑛,𝑘,ℓ = 𝑟), where 𝑟 = 0, 1, . . ., be the
probability mass function for𝑁𝑛,𝑘,ℓ. We derive an expression
for 𝑔𝑛,𝑘,ℓ(𝑟) in the following. Note that, to obtain a nontrivial
distribution, we must have 𝑛 ≥ ℓ + 𝑟(𝑘 − ℓ) so for fixed 𝑛 we
must have 0 ≤ 𝑟 ≤ 𝑟∗ ≡ ⌊(𝑛 − ℓ)/(𝑘 − ℓ)⌋.

Proposition 18. The probability mass function 𝑔𝑛,𝑘,ℓ(𝑟) =
𝑃(𝑁𝑛,𝑘,ℓ = 𝑟) for the binomial distribution of order 𝑘 with ℓ-
overlapping is given by

𝑔𝑛,𝑘,ℓ (𝑟) =
𝑓𝑟+1,𝑘,ℓ (𝑛 + 𝑘 + 1)

𝑝𝑘𝑞
−
𝑓𝑟,𝑘,ℓ (𝑛 + ℓ + 1)

𝑝ℓ𝑞
. (53)
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Here 𝑟 = 0, 1, . . . , ⌊(𝑛 − ℓ)/(𝑘 − ℓ)⌋. Note that the last term
vanishes for 𝑟 = 0; hence the above expression agrees with our
result in [1].

Proof. We solve the problem as follows. Suppose the 𝑟th
success run is completed on the 𝑛th trial. Then by definition
the outcomes of the last 𝑘 trials are all successes. There
are now two mutually exclusive and exhaustive possibilities,
according as the (𝑟−1)th success run is contiguous with (and
possibly overlaps) the 𝑟th success run, or there is at least one
failure between the runs.

(i) In the former case, the (𝑟−1)th success run terminates
at the trial 𝑛 − 𝑘 + ℓ. (This event is null if 𝑟 = 1.) The
outcome of the (𝑛 − 𝑘)th trial is a success.

(ii) In the latter case, the outcome of the (𝑛 − 𝑘)th trial is
a failure. The first 𝑛 − 𝑘 − 1 trials contain exactly 𝑟 − 1
success runs.

Since the events are mutually exclusive and exhaustive, we
add the probabilities to obtain

𝑓𝑟,𝑘,ℓ (𝑛) = 𝑝
𝑘−ℓ
𝑓𝑟−1,𝑘,ℓ (𝑛 − 𝑘 + ℓ)

+ 𝑝
𝑘
𝑞𝑔𝑛−𝑘−1,𝑘,ℓ (𝑟 − 1) .

(54)

Rearranging terms and replacing 𝑛 by 𝑛 + 𝑘 + 1 and 𝑟 by 𝑟 + 1
yield (53). Our expression for 𝑔𝑛,𝑘,ℓ(𝑟) is given by a sum of
exactly 𝑘(𝑟+1) terms, independently of 𝑛. Note, however, that
𝑓𝑟+1,𝑘,ℓ(𝑛 + 𝑘 + 1) and 𝑓𝑟,𝑘,ℓ(𝑛 + ℓ + 1)must be calculated for
each 𝑟. In practice, this means we must calculate 𝑓𝑟,𝑘,ℓ(𝑛) in
(52) for 𝑟 = 1, . . . , 𝑟∗.This requires a total of 𝑟∗(𝑟∗+1)/2 sums,
to obtain the full probability mass distribution.

Wenow summarize results for the p.m.f. and p.g.f. derived
by other authors. Aki and Hirano (2000) [18, Proposition
2.2] derived an expression for the p.g.f. as a nested sum
of multinomial terms. Makri and Philippou [11, Theorem
2.1] derived the p.m.f. 𝑃(𝑁𝑛,𝑘,ℓ = 𝑥), 𝑥 = 0, 1, . . . , ⌊(𝑛 −

ℓ)/(𝑘 − ℓ)⌋ as a sum of multinomial terms. They also derived
an alternative expression for the p.m.f. [11, Theorem 2.2] in
terms of 𝐶(𝑛,𝑚, 𝑟), which is the number of possible ways
of distributing 𝑛 identical balls into 𝑚 urns such that the
maximum allowed number of balls in any one urn is 𝑟 [11,
Lemma 2.1]. They also calculated the mean [11, Proposition
2.1]

E (𝑁𝑛,𝑘,ℓ)

= 𝑝
ℓ
𝑟∗

∑

𝑟=1

{1 + (1 − 𝑝) [𝑛 − ℓ − 𝑟 (𝑘 − ℓ)]} 𝑝
𝑟(𝑘−ℓ)

.

(55)

The special case ℓ = 0 is Proposition 2.4 of Aki and Hirano
(1988) [19]; see also Antzoulakos and Chadjiconstantinidis
[20].The special case ℓ = 𝑘−1 is equivalent toTheorem 4.1(i)
of Ling (1988) [13]

E (𝑁𝑛,𝑘,𝑘−1) = (𝑛 − 𝑘 + 1) 𝑝
𝑘
. (56)

Ling (1988) [13, Theorem 3.1] gave a recursive relation for
the p.m.f. and also an explicit expression for the p.m.f.

[13, Theorem 3.2], in terms of nested multinomial sums. Ling
derived the mean [13, Theorem 4.1(i)] and the variance [13,
Theorem 4.1(ii)] and a recurrence relation for the m.g.f.
[13, Theorem 4.1(iii)]. Inoue and Aki [21, Proposition 3]
derived an explicit expression for the p.g.f. 𝜙(+)𝑛 (𝑧) in terms
of restricted multiple sums and multinomials. They stated
that their expression for the special case ℓ = 𝑘 − 1 was
derived by Inoue and Aki [21, Proposition 4]. Hirano et al.
[10] studied the case ℓ = 𝑘 − 1 in some detail. They give an
explicit expression for the p.g.f. 𝜙𝑛(𝑡) in terms of restricted
multiple sums and multinomials [10, Theorem 2.2]. Hirano
et al. [10, Theorem 2.3] give an explicit expression for the
p.m.f. in terms of nestedmultinomial sums, but different from
Ling (1988) [13,Theorem 3.1]. Han andAki [22,Theorem 2.1]
presented a recurrence formula to calculate the p.m.f.

3.4. Success Runs with ℓ < 0. The case ℓ < 0 is not without
interest. In this scenario, there must be a gap or buffer of
at least |ℓ| trials (of arbitrary outcomes) between success
runs.We call this scenario “|ℓ|-buffering.” First, we derive the
probability mass function, probability generating function,
mean, and variance of the negative binomial distribution of
order 𝑘 for 𝑟 ≥ 1 success runs of length 𝑘 with ℓ-overlapping.
Next, we treat sequences with a fixed total length 𝑛 and study
the binomial distribution of order 𝑘with buffer |ℓ|. The value
of 𝑟 of the number of success runs spans the interval 0 ≤ 𝑟 ≤
⌊(𝑛 − ℓ)/(𝑘 − ℓ)⌋. This is the same formula as for ℓ ≥ 0. We
derive an expression for the probability mass function for the
above distribution.

Most of the published literature for the case ℓ < 0

has treated sequences of fixed length 𝑛. Inoue and Aki [21,
Section 4.2] published results for sequences of Markov trials.
They derived an expression for the p.g.f. as a nested sum
of multinomial terms [21, Proposition 4]. Han and Aki [22]
treated sequences of i.i.d. Bernoulli trials. They derived a
recurrence relation for the p.g.f. [22, Theorem 4.1].

The results for the negative binomial case (fixed 𝑟 ≥ 1,
variable 𝑛 ≥ 1) are straightforward to derive for ℓ < 0. The
following results are stated without proof.

Proposition 19. For ℓ < 0, the probability mass function
𝑓𝑟,𝑘,ℓ(𝑛) for 𝑟 success runs of length 𝑘with |ℓ|-buffering satisfies
the obvious identity

𝑓𝑟,𝑘,ℓ (𝑛) = 𝑓𝑟,𝑘,0 (𝑛 + (𝑟 − 1) ℓ) . (57)

The probability generating function is then given by

𝜙𝑟,𝑘,ℓ (𝑠) = 𝜙𝑟,𝑘,0 (𝑠) 𝑠
(𝑟−1)ℓ

= 𝜙 (𝑠, 𝑘)
𝑟
𝑠
(𝑟−1)ℓ

. (58)

The domain of convergence of the p.g.f. is clearly the same as in
the case ℓ ≥ 0 (see (28)) and is |𝑠| < 1/𝜆0(𝑝, 𝑘). It follows easily
from (58) that the mean and variance are given by

𝜇𝑟,𝑘,ℓ = 𝑟𝜇 (𝑘) + (𝑟 − 1) ℓ, (59a)

𝜎
2
𝑟,𝑘,ℓ = 𝑟𝜎

2
(𝑘) . (59b)

For sequences of fixed length 𝑛, the analysis of the
binomial distribution of order 𝑘 is nontrivial for ℓ < 0. We
first state the following obvious result for all ℓ.
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Remark 20. For any ℓ ∈ Z, let ℎ𝑟,𝑘,ℓ(𝑛) be the probability of
attaining, after 𝑛 trials, 𝑟 or fewer success runs of length 𝑘with
ℓ-overlapping for ℓ ≥ 0 or |ℓ|-buffering for ℓ < 0.Then clearly

ℎ𝑟,𝑘,ℓ (𝑛) =

∞

∑

𝑗=1

𝑓𝑟,𝑘,ℓ (𝑛 + 𝑗) . (60)

Hence, for fixed 𝑛, the probability mass function 𝑔𝑛,𝑘,ℓ(𝑟) for
𝑟 = 0, 1, . . . , ⌊(𝑛 − ℓ)/(𝑘 − ℓ)⌋ is given by

𝑔𝑛,𝑘,ℓ (𝑟) = ℎ𝑟,𝑘,ℓ (𝑛) − ℎ𝑟−1,𝑘,ℓ (𝑛)

=

∞

∑

𝑗=1

[𝑓𝑟,𝑘,ℓ (𝑛 + 𝑗) − 𝑓𝑟−1,𝑘,ℓ (𝑛 + 𝑗)] .

(61)

The above expression is valid for all ℓ ∈ Z but requires the
summation of an infinite series. For ℓ ≥ 0, (53) offers a more
concise expression for 𝑔𝑛,𝑘,ℓ(𝑟). For ℓ < 0, we can also derive
a more concise expression for 𝑔𝑛,𝑘,ℓ(𝑟) as follows.

Proposition 21. For fixed 𝑛 and fixed ℓ < 0, the probability
mass function 𝑔𝑛,𝑘,ℓ(𝑟) = 𝑃(𝑁𝑛,𝑘,ℓ = 𝑟) for the binomial
distribution of order 𝑘 with |ℓ|-buffering is given by

𝑔𝑛,𝑘,ℓ (𝑟) =
𝑓𝑟+1,𝑘,ℓ (𝑛 + 𝑘 − ℓ) − 𝑝

𝑘+1
𝑓𝑟,𝑘,ℓ (𝑛)

𝑝𝑘𝑞

+

|ℓ|−1

∑

𝑗=1

𝑓𝑟+1,𝑘,ℓ (𝑛 + 𝑗) .

(62)

Here 𝑟 = 0, 1, . . . , ⌊(𝑛 − ℓ)/(𝑘 − ℓ)⌋. Note by definition that
𝑓𝑟,𝑘,ℓ(𝑛) = 0 for 𝑟 = 0.

Proof. We omit the indices 𝑘 and ℓ in the following. Consider
𝑓𝑟(𝑛), where 𝑟 success runs have taken place, ending at trial
𝑛. Hence the last 𝑘 outcomes are all successes. We then have
the followingmutually exclusive and exhaustive possibilities.

(i) The outcome of trial 𝑛 − 𝑘 is a success. Then the (𝑟 −
1)th success run must end at trial 𝑛 − 𝑘 + ℓ. The |ℓ|
trials in the sequence from 𝑛 − 𝑘 + ℓ + 1 through 𝑛 −
𝑘 constitute the buffer between the two success runs.
Theprobability of this event is𝑝𝑘+1𝑓𝑟−1(𝑛−𝑘+ℓ). (This
event is null if 𝑟 = 1. Note that 𝑓0,𝑘,ℓ(𝑛 − 𝑘 + ℓ) = 0.)

(ii) The outcome of trial 𝑛 − 𝑘 is a failure. Then we must
attain 𝑟−1 success runs by trial 𝑛−𝑘+ℓ. However, we
must subtract the possibility that the 𝑟th success run
ends at one of the trials 𝑛−𝑘+ℓ+1 through 𝑛−𝑘−1.
(Note that if ℓ = −1, this set is empty.)The probability
of this event is𝑝𝑘𝑞(𝑔𝑛−𝑘+ℓ(𝑟−1)−∑

|ℓ|−1
𝑗=1 𝑓𝑟(𝑛−𝑘+ℓ+𝑗)).

The events are mutually exclusive and exhaustive (noting that
there can be at most one success run completed from trials

𝑛 − 𝑘 + ℓ + 1 through 𝑛 − 𝑘 − 1 because of the buffering
requirement); hence we add the probabilities to obtain

𝑓𝑟 (𝑛)

= 𝑝
𝑘+1
𝑓𝑟−1 (𝑛 − 𝑘 + ℓ)

+ 𝑝
𝑘
𝑞[

[

𝑔𝑛−𝑘+ℓ (𝑟 − 1) −

|ℓ|−1

∑

𝑗=1

𝑓𝑟 (𝑛 − 𝑘 + ℓ + 𝑗)
]

]

.

(63)

Rearranging terms and replacing 𝑛 by 𝑛 + 𝑘 − ℓ and 𝑟 by 𝑟 + 1
yield (62). For ℓ = −1, the last sum is absent and the above
expression is the same as (53).

4. Pairs of Successes Separated by
At Most 𝑘−2 Failures

In this section we study a different problem. We treat the
distribution of waiting time for the 𝑟th nonoverlapping
appearance of a pair of successes separated by at most 𝑘 − 2
failures (𝑘 ≥ 2). Our main reference is the elegant analysis
by Koutras [7], who also gives an excellent bibliography on
the subject. To avoid cluttering the notation in this paper
with too many symbols, we will reuse some of the symbols
such as 𝑓𝑟,𝑘(𝑛) for the probability mass function, and so
forth. It should be understood that we are treating a new
problem, and the following notation is self-contained. We
begin with 𝑟 = 1. Koutras [7] gave a recurrence relation for
the probability mass function 𝑓𝑟,𝑘(𝑛). We will suppress the
indices 𝑟 and 𝑘 unless required. We derive the exact solutions
for the roots of the auxiliary polynomial associated with the
recurrence relation, in terms of Fuss-Catalan numbers. We
also derive various pertinent properties of the roots. We then
solve a Vandermonde matrix system of equations to derive
an expression for the p.m.f. as a sum over powers of the roots.
We also derive an expression for the probability of the waiting
time to exceed 𝑛 trials.

Let us denote the waiting time by 𝑇𝑟,𝑘. Note that Koutras
[7] writes 𝑇𝑘,𝑟, but we write 𝑇𝑟,𝑘 to maintain consistency with
the notation in the earlier parts of our paper. We begin with
the case 𝑟 = 1 and drop the subscripts.

Remark 22 (Koutras [7], Theorem 3.1). The probability mass
function 𝑓(𝑛) = 𝑃(𝑇 = 𝑛) satisfies the recurrence relation [7,
eq. 3.1]

𝑓 (𝑛) = 𝑞𝑓 (𝑛 − 1) + 𝑝𝑞
𝑘−1
𝑓 (𝑛 − 𝑘) (𝑛 > 𝑘) . (64)

The initial conditions are [7, eq. 3.2]

𝑓 (0) = 𝑓 (1) = 0, (65a)

𝑓 (𝑛) = (𝑛 − 1) 𝑝
2
𝑞
𝑛−2
, 1 < 𝑛 ≤ 𝑘. (65b)

The auxiliary polynomial associatedwith the above recur-
rence relation is

A (𝑧) = 𝑧
𝑘
− 𝑞𝑧

𝑘−1
− 𝑝𝑞

𝑘−1
. (66)

The auxiliary equation isA(𝑧) = 0.
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Proposition 23 (properties of roots). For fixed 0 < 𝑝 < 1, the
roots of the auxiliary polynomial have the following properties:

(a) There are no repeated roots.
(b) There is a unique positive real root.
(c) The positive real root lies in (𝑞, 1).
(d) If 𝑘 is odd, there are no other real roots. If 𝑘 is even,

there is exactly one negative real root.
(e) The magnitude of the positive real root exceeds that of

all the other roots.

Proof. BothA(𝑧) andA
(𝑧)must vanish simultaneously at a

repeated root. Next

A

(𝑧) = 𝑘𝑧

𝑘−1
− 𝑞 (𝑘 − 1) 𝑧

𝑘−2

= 𝑘𝑧
𝑘−2
[𝑧 −

𝑞 (𝑘 − 1)

𝑘
] .

(67)

Hence A
(𝑧) vanishes at 𝑧 = 0 (not a root of A(𝑧)) or 𝑧 =

𝑞(𝑘 − 1)/𝑘. Note that 0 < 𝑞(𝑘 − 1)/𝑘 < 𝑞. Now for 0 < 𝑧 < 𝑞,

𝑧
𝑘
− 𝑞𝑧

𝑘−1
= (𝑧 − 𝑞) 𝑧

𝑘−1
< 0. (68)

Hence for 0 < 𝑧 < 𝑞,

A (𝑧) = (𝑧 − 𝑞) 𝑧
𝑘−1
− 𝑝𝑞

𝑘−1
< −𝑝𝑞

𝑘−1
< 0. (69)

Hence A(𝑧) ̸= 0 for 𝑧 = 𝑞(𝑘 − 1)/𝑘. Hence A(𝑧) has
no repeated roots. Next note that A(0) = −𝑝𝑞𝑘−1, A(𝑞) =
−𝑝𝑞

𝑘−1, and A(1) = 𝑝(1 − 𝑞𝑘−1). Hence A(𝑧) has an odd
number of positive real roots for 𝑧 ∈ (𝑞, 1). Now from (67),
A
(𝑧) > 0 for 𝑧 > 𝑞(1 − 1/𝑘), so A

(𝑧) > 0 for 𝑧 > 𝑞. It
follows thatA(𝑧) has exactly one positive real root, and it lies
in the interval 𝑧 ∈ (𝑞, 1). Also if 𝑘 is odd then A(𝑧) < 0 for
𝑧 < 0 and there are no negative real roots. If 𝑘 is even then
A(𝑧) increases as 𝑧 decreases through negative values; hence
for even 𝑘,A(𝑧) has exactly one negative real root. Next, if 𝑧𝑟
is a root, by the triangle inequality,

𝑧𝑟


𝑘
=

𝑞𝑧

𝑘−1
𝑟 + 𝑝𝑞

𝑘−1
≤ 𝑞
𝑧𝑟


𝑘−1
+ 𝑝𝑞

𝑘−1
. (70)

Hence

𝑧𝑟


𝑘
− 𝑞
𝑧𝑟


𝑘−1
− 𝑝𝑞

𝑘−1
≤ 0. (71)

The inequality is strict unless 𝑧𝑟 is real and positive (so that
both 𝑧𝑘𝑟 and 𝑧𝑘−1𝑟 are real and positive) and we have shown
that there is only one real positive root.Hence the real positive
root has a larger magnitude than all the other roots.

We will call the positive real root the “principal root”
and refer to all the other roots as “secondary roots.” We will
denote the roots by 𝜇𝑗(𝑝, 𝑘), 𝑗 = 0, . . . , 𝑘 − 1, where the
principal root is 𝜇0. Although our the following analysis is
for 0 < 𝑝 < 1, it is helpful to note the following limiting cases
for 𝑝 = 0 and 𝑝 = 1.

Proposition 24 (limiting cases for roots). If 𝑝 = 0, the
principal root is 𝜇0 = 1. If 𝑝 = 1, the principal root is 𝜇0 = 0.
All the secondary roots vanish for both 𝑝 = 0 and 𝑝 = 1. None
of the roots vanish if 0 < 𝑝 < 1.

Proof. We have already seen that A(0) = −𝑝𝑞
𝑘−1; hence

obviously 𝑧 = 0 is not a root if 0 < 𝑝 < 1. If 𝑝 = 1, the
auxiliary equation is 𝑧𝑘 = 0; hence all the roots vanish. If
𝑝 = 0, the auxiliary equation is 𝑧𝑘−1(𝑧 − 1) = 0, so one root
is 𝑧 = 1 and the others are all 𝑧 = 0. Hence 𝜇0 = 1 for 𝑝 = 0
and 𝜇0 = 0 for 𝑝 = 1, and all the secondary roots vanish for
both 𝑝 = 0 and 𝑝 = 1.

Proposition 25 (principal root decreases monotonically with
increasing 𝑝). For fixed 𝑘 ≥ 2, let 0 < 𝑝1 < 𝑝2 < 1 and
denote the respective principal roots by 𝜇(𝑝1) and 𝜇(𝑝2). Then
𝜇(𝑝2) < 𝜇(𝑝1).

Proof. Note that the auxiliary polynomial can be expressed in
the following alternative form:

A𝑝 (𝑧) = 𝑧
𝑘
− 𝑞𝑧

𝑘−1
− 𝑝𝑞

𝑘−1

= 𝑧
𝑘
− (1 − 𝑝) 𝑧

𝑘−1
− 𝑝𝑞

𝑘−1

= 𝑧
𝑘−1
(𝑧 − 1) + 𝑝 (𝑧

𝑘−1
− 𝑞

𝑘−1
) .

(72)

For brevity write 𝜇∗ = 𝜇0(𝑝1). Then by definition

0 = A𝑝1
(𝜇∗) = 𝜇

𝑘−1
∗ (𝜇∗ − 1) + 𝑝1 (𝜇

𝑘−1
∗ − 𝑞

𝑘−1
1 ) . (73)

Then because 𝑞2 < 𝑞1, it follows that 𝜇
𝑘−1
∗ −𝑞

𝑘−1
2 > 𝜇

𝑘−1
∗ −𝑞

𝑘−1
1

and so (because 𝑝2 > 𝑝1) it also follows that 𝑝2(𝜇
𝑘−1
∗ −𝑞

𝑘−1
2 ) >

𝑝1(𝜇
𝑘−1
∗ − 𝑞

𝑘−1
1 ). Hence

A𝑝2
(𝜇∗) = 𝜇

𝑘−1
∗ (𝜇∗ − 1) + 𝑝2 (𝜇

𝑘−1
∗ − 𝑞

𝑘−1
2 )

= A𝑝1
(𝜇∗)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ 𝑝2 (𝜇
𝑘−1
∗ − 𝑞

𝑘−1
2 ) − 𝑝1 (𝜇

𝑘−1
∗ − 𝑞

𝑘−1
1 )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

>0

> 0.

(74)

Hence A𝑝2
(𝜇0(𝑝1)) > 0. Since we know A𝑝2

(𝑞2) < 0 and
A𝑝2

(1) > 0 and also 𝑞2 < 𝑞1 < 𝜇0(𝑝1) < 1 and the real
positive root 𝜇0(𝑝2) is unique, it follows that 𝜇0(𝑝2) < 𝜇0(𝑝1).

As already stated earlier in this paper, details about the
Fuss-Catalan numbers can be found in the text by Graham et
al. [2]. See the expressions above, in (4), (5a), and (5b), which
will be essential in the following. We require the following
lemma for the domain of convergence of the generating
functions of the Fuss-Catalan numbers.

Lemma26 (domain of convergence). Thegenerating function
of the Fuss-Catalan numbers 𝐵](𝑧) converges for

|𝑧| ≤ 𝜌∗ ≡
|] − 1|]−1

]]
. (75)
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The proof was derived in our earlier paper [1, Corollary 22 and
Proposition 23] and is omitted. The proof was actually derived
for 𝐵𝑘+1(𝑧) but note (this is important) that 𝑘 does not have
to be an integer; hence we write ] above. It was also proved
in [1] that the domain of convergence includes the circle of
convergence.

Proposition 27 (solutions for roots using Fuss-Catalan num-
bers). Define 𝑝∗ = 𝜌∗/(1 + 𝜌∗). For 0 < 𝑝 ≤ 𝑝∗, the principal
and secondary roots are given by

𝜇0 (𝑝, 𝑘) =
𝑞

𝐵𝑘 (−𝑝/𝑞)
, (76a)

𝜇𝑗 (𝑝, 𝑘) = 𝑞 −
𝑞

𝐵𝑘/(𝑘−1) (𝑒
𝜋𝑖(2𝑗−1)/(𝑘−1) (𝑝/𝑞)

1/(𝑘−1)
)

1 ≤ 𝑗 ≤ 𝑘 − 1.

(76b)

For 𝑝∗ ≤ 𝑝 ≤ 1, the principal and secondary roots are given by

𝜇𝑗 (𝑝, 𝑘) =
𝑞

1 − 𝐵1/𝑘 (−𝑒
−2𝜋𝑖𝑗/𝑘 (𝑞/𝑝)

1/𝑘
)

0 ≤ 𝑗 ≤ 𝑘 − 1.

(77)

For 𝑝 = 𝑝∗, either set of solutions may be employed.

Proof. It is simpler to set 𝑧 = 𝑞𝜁 and solve for 𝜁. Then the
auxiliary equation is

𝜁
𝑘
− 𝜁

𝑘−1
−
𝑝

𝑞
= 0. (78)

We also require 𝜔𝑘 = 𝑒
2𝜋𝑖/𝑘 and 𝜔𝑘−1 = 𝑒

2𝜋𝑖/(𝑘−1). It is simpler
to begin with the case 𝑝∗ ≤ 𝑝 < 1, because all the roots are
given by a unified formula.We rewrite (78) in the form 𝜁𝑘(1−
1/𝜁) = 𝑝/𝑞. Now take the 𝑘th root to obtain 𝜁(1 − 1/𝜁)1/𝑘 =
𝜔
𝑗

𝑘
(𝑝/𝑞)

1/𝑘. Next put (1 − 1/𝜁)1/𝑘 = 𝐶1/𝑘, so 𝜁 = 1/(1−𝐶) and
then

𝐶 (𝜁) − 1 = −𝜔
−𝑗

𝑘
(
𝑞

𝑝
)

1/𝑘

𝐶 (𝜁)
1/𝑘
. (79)

We now employ (6) with ] = 1/𝑘 and 𝜁 = −𝜔−𝑗
𝑘
(𝑞/𝑝)

1/𝑘. Then

𝐶 (𝜁) = 𝐵1/𝑘 (−𝜔
−𝑗

𝑘
(
𝑞

𝑝
)

1/𝑘

) . (80)

This yields (77).Wemust establish the set of values of𝑝where
the above result is valid. Using (75), the above solution is valid
for



𝑞

𝑝



≤ (
|1/𝑘 − 1|

1/𝑘−1

(1/𝑘)
1/𝑘

)

𝑘

=
𝑘
𝑘

|𝑘 − 1|
𝑘−1

=
1

𝜌∗

. (81)

Hence (1 − 𝑝)/𝑝 ≤ 1/𝜌∗ or 𝑝∗ ≤ 𝑝 < 1. This establishes (77).
Next we derive (76a).We rewrite (78) in the form 𝜁𝑘−1(𝜁−

1) = 𝑝/𝑞. Then put 𝜁 = 1/�̃� and we obtain

�̃� (𝜁) − 1 = −(
𝑝

𝑞
) �̃� (𝜁)

𝑘
. (82)

We now employ (6) with ] = 𝑘 and 𝜁 = −(𝑝/𝑞). Then

�̃� (𝜁) = 𝐵𝑘 (−
𝑝

𝑞
) . (83)

The domain of convergence is clearly |𝑝/(1 − 𝑝)| ≤ 𝜌∗ or
0 < 𝑝 ≤ 𝑝∗. This establishes (76a). We now solve for the
remaining (secondary) roots. We again rewrite (78) in the
form 𝜁

𝑘−1
(𝜁 − 1) = 𝑝/𝑞. We now take the (𝑘 − 1)th root to

obtain

𝜁 (𝜁 − 1)
1/(𝑘−1)

= 𝜔
𝑗

𝑘−1
(
𝑝

𝑞
)

1/(𝑘−1)

. (84)

Now put (𝜁 − 1)1/(𝑘−1) = (−1/𝐷)1/(𝑘−1) and then 𝜁 = 1 − 1/𝐷.
Hence

(1 − 𝐷
−1
) (
1

𝐷
)

1/(𝑘−1)

= (−1)
−1/(𝑘−1)

𝜔
𝑗

𝑘−1
(
𝑝

𝑞
)

1/(𝑘−1)

.

(85)

After some algebra this yields

𝐷 (𝜁) − 1 = 𝑒
𝜋𝑖(2𝑗−1)/(𝑘−1)

(
𝑝

𝑞
)

1/(𝑘−1)

𝐷 (𝜁)
𝑘/(𝑘−1)

. (86)

We now employ (6) with ] = 𝑘/(𝑘 − 1) and 𝜁 =

𝑒
𝜋𝑖(2𝑗−1)/(𝑘−1)

(𝑝/𝑞)
1/(𝑘−1). Then

𝐷 = 𝐵𝑘/(𝑘−1) (𝑒
𝜋𝑖(2𝑗−1)/(𝑘−1)

(
𝑝

𝑞
)

1/(𝑘−1)

) . (87)

This yields (76b). Note that this solution yields only 𝑘 − 1
distinct roots. If 𝑘 is odd all the roots are complex. If 𝑘 is even,
then for 𝑗 = 𝑘/2 we obtain 𝑒𝜋𝑖(2𝑗−1)/(𝑘−1) = 𝑒𝑖𝜋 = −1; hence
𝜁 = −(𝑝/𝑞)

1/(𝑘−1), which yields the negative real root. For all
𝑘, we can index the roots by 1 ≤ 𝑗 ≤ 𝑘 − 1. Using (75), the
above solution is valid for



𝑝

𝑞



≤ (
|𝑘/(𝑘 − 1) − 1|

𝑘/(𝑘−1)−1

(𝑘/(𝑘 − 1))
𝑘/(𝑘−1)

)

𝑘−1

=
|𝑘 − 1|

𝑘−1

𝑘𝑘

= 𝜌∗.

(88)

Hence 𝑝/(1 − 𝑝) ≤ 𝜌∗ or 0 < 𝑝 ≤ 𝑝∗. This establishes (76b).

We now derive an expression for the probability mass
function in terms of a sum over the roots.

Proposition 28. The probability mass function 𝑓(𝑛) is given
by

𝑓 (𝑛) = 𝑝
2
𝑞
𝑘−1

𝑘−1

∑

𝑗=0

(1 − 𝜇𝑗) 𝜇
𝑛−𝑘+1
𝑗

(𝜇𝑗 − 𝑞)
2
(𝑘 (𝜇𝑗 − 𝑞) + 𝑞)

. (89)
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Proof. It is known from the theory of recurrence relations that
we may express the p.m.f. in the form

𝑓 (𝑛) =

𝑘−1

∑

𝑖=0

𝑐𝑖𝜇
𝑛−1
𝑖 . (90)

We must solve for the coefficients 𝑐𝑖. Because there are no
repeated roots, 𝑐𝑖 do not depend on 𝑛. We can derive the
solution using a Vandermonde matrix

(
(
(
(

(

1 1 ⋅ ⋅ ⋅ 1

𝜇0 𝜇1 ⋅ ⋅ ⋅ 𝜇𝑘−1

𝜇
2
0 𝜇

2
1 ⋅ ⋅ ⋅ 𝜇

2
𝑘−1

.

.

.
.
.
.

𝜇
𝑘−1
0 𝜇

𝑘−1
1 ⋅ ⋅ ⋅ 𝜇

𝑘−1
𝑘−1

)
)
)
)

)

(
(
(

(

𝑐0

𝑐1

𝑐2

.

.

.

𝑐𝑘−1

)
)
)

)

= 𝑝
2((
(

(

0

1

2𝑞

.

.

.

(𝑘 − 1) 𝑞
𝑘−2

)
)
)

)

.

(91)

To solve this we need the Lagrange basis polynomials 𝐿 𝑖(𝑧).
The Lagrange basis polynomials have degree 𝑘 − 1 and have
the property 𝐿 𝑖(𝜇𝑗) = 𝛿𝑖𝑗 for 𝑖, 𝑗 = 0, . . . , 𝑘 − 1. They can be
written as

𝐿 𝑖 (𝑧) =

∏𝑗 ̸=𝑖 (𝑧 − 𝜇𝑗)

∏𝑗 ̸=𝑖 (𝜇𝑖 − 𝜇𝑗)

. (92)

Let us write 𝐿 𝑖(𝑧) = ∑
𝑘−1
𝑗=0 𝐿 𝑖𝑗𝑧

𝑗. Then

𝑐𝑖 =

𝑘−1

∑

𝑗=0

𝐿 𝑖𝑗𝑓 (𝑗 + 1) = 𝑝
2
𝑘−1

∑

𝑗=0

𝐿 𝑖𝑗𝑗𝑞
𝑗−1
= 𝑝

2
𝐿

𝑖 (𝑞) . (93)

Next express the ratio in (92) as 𝐿 𝑖(𝑧) = 𝑁𝑖(𝑧)/𝐷𝑖. Note that
𝐷𝑖 = 𝑁𝑖(𝜇𝑖). Then

𝐷𝑖 = A

(𝜇𝑖) = (𝑘 (𝜇𝑖 − 𝑞) + 𝑞) 𝜇

𝑘−2
𝑖 . (94)

Next𝑁𝑖(𝑧) = A(𝑧)/(𝑧 − 𝜇𝑖) so

𝑁𝑖 (𝑧) =
𝑧
𝑘
− 𝑞𝑧

𝑘−1
− 𝑝𝑞

𝑘−1

𝑧 − 𝜇𝑖

. (95)

Differentiate with respect to 𝑧 to obtain

𝑁

𝑖 (𝑧) =

(𝑘𝑧 − (𝑘 − 1) 𝑞) 𝑧
𝑘−2

𝑧 − 𝜇𝑖

−
𝑧
𝑘
− 𝑞𝑧

𝑘−1
− 𝑝𝑞

𝑘−1

(𝑧 − 𝜇𝑖)
2

. (96)

Then after some algebra we obtain

𝑁

𝑖 (𝑞) =

(𝑘𝑞 − (𝑘 − 1) 𝑞) 𝑞
𝑘−2

𝑞 − 𝜇𝑖

+
𝑝𝑞

𝑘−1

(𝑞 − 𝜇𝑖)
2

=
(1 − 𝜇𝑖) 𝑞

𝑘−1

(𝑞 − 𝜇𝑖)
2
.

(97)

Hence the coefficient 𝑐𝑖 is given by

𝑐𝑖 = 𝑝
2
𝐿

𝑖 (𝑞) =

(1 − 𝜇𝑖)

(𝜇𝑖 − 𝑞)
2
(𝑘 (𝜇𝑖 − 𝑞) + 𝑞)

𝑝
2
𝑞
𝑘−1

𝜇
𝑘−2
𝑖

. (98)

Then

𝑓 (𝑛) = 𝑝
2
𝑞
𝑘−1

𝑘−1

∑

𝑗=0

(1 − 𝜇𝑗) 𝜇
𝑛−𝑘+1
𝑗

(𝜇𝑗 − 𝑞)
2
(𝑘 (𝜇𝑗 − 𝑞) + 𝑞)

. (99)

This establishes (89).

The probability generating function 𝜙(𝑠) was derived by
Koutras [7, Theorem 3.2]:

𝜙 (𝑠) =
(𝑝𝑠)

2

1 − 𝑞𝑠 − 𝑝𝑞𝑘−1𝑠𝑘

𝑘−2

∑

𝑖=0

(𝑞𝑠)
𝑖

=
(𝑝𝑠)

2

1 − 𝑞𝑠 − 𝑝𝑞𝑘−1𝑠𝑘

1 − (𝑞𝑠)
𝑘−1

1 − 𝑞𝑠
, |𝑠| ≤ 1.

(100)

Koutras stated that the p.g.f. exists for |𝑠| ≤ 1. Using our
solutions for the roots above, we can state the full domain of
convergence. Note that

𝜙 (𝑠) =

∞

∑

𝑛=0

𝑠
𝑛
𝑓 (𝑛) =

𝑘−1

∑

𝑗=0

𝑐𝑗

1 − 𝜇𝑗𝑠
. (101)

The series in the above sum converge for |𝑠| < min{1/𝜇𝑗},
𝑗 = 0, . . . , 𝑘 − 1. Since the principal root 𝜇0 has the largest
magnitude of all the roots, the p.g.f. in (100) exists in the
domain

|𝑠| <
1

𝜇0 (𝑝, 𝑘)
. (102)

This is a larger domain than |𝑠| ≤ 1 and is clearly the maximal
domain where the p.g.f. exists. We can also see this using
(100). The denominator of 𝜙(s) isA(1/𝑠) = 𝑠−𝑘∏𝑘−1

𝑗=0 (1 − 𝜇𝑗𝑠).
Then 𝜙(𝑠) exists in an open neighborhood of 𝑠 = 0 until
one of the factors in the product vanishes, which also yields
|𝑠| < min{1/𝜇𝑗}, 𝑗 = 0, . . . , 𝑘 − 1, thence (102). We have
given an explicit expression for the principal root 𝜇0(𝑝, 𝑘) in
Proposition 27.

The probability for the waiting time 𝑃(𝑇 > 𝑛) is clearly
given by the sum 𝑃(𝑇 > 𝑛) = ∑∞

𝑖=1 𝑓(𝑛 + 𝑖), so

𝑃 (𝑇 > 𝑛) = 𝑝
2
𝑞
𝑘−1

𝑘−1

∑

𝑗=0

𝜇
𝑛−𝑘+2
𝑗

(𝜇𝑗 − 𝑞)
2
(𝑘 (𝜇𝑗 − 𝑞) + 𝑞)

. (103)

Asymptotically, the sum is dominated by the principal root;
hence for sufficiently large 𝑛wemay retain only the principal
root

𝑃 (𝑇 > 𝑛) ≍
𝑝
2
𝑞
𝑘−1
𝜇
𝑛−𝑘+2
0

(𝜇0 − 𝑞)
2
(𝑘 (𝜇0 − 𝑞) + 𝑞)

. (104)
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Next we treat the case of 𝑟 > 1 nonoverlapping
appearances of a pair of successes separated by at most 𝑘 − 2
failures. Following Koutras [7], the probability mass function
and probability generating function are defined via (also
followingKoutras we drop the subscript 𝑘 andwrite𝑇𝑟 = 𝑇𝑟,𝑘,
etc.)

𝑓𝑟 (𝑛) = 𝑃 (𝑇𝑟 = 𝑛) , (105a)

𝜙𝑟 (𝑠) =

∞

∑

𝑛=0

𝑠
𝑛
𝑓𝑟 (𝑛) . (105b)

Following the procedure in the earlier part of our paper, we
will derive an expression for the p.m.f.𝑓𝑟(𝑛) via the p.g.f.𝜙𝑟(𝑠)
and a partial fraction decomposition. Since the enumeration
is nonoverlapping and the trials are i.i.d. random variables,
the p.g.f. is given by [7, Theorem 4.1] 𝜙𝑟(𝑠) = 𝜙(𝑠)

𝑟. Then we
set 𝑧 = 1/𝑠 and obtain

𝜓𝑟 (𝑧) = 𝜙𝑟 (
1

𝑧
) = 𝑝

2𝑟
[

∑
𝑘−2
𝑖=0 𝑞

𝑖
𝑧
𝑘−2−𝑖

𝑧𝑘 − 𝑞𝑧𝑘−1 − 𝑝𝑞𝑘−1
]

𝑟

. (106)

This is a rational function of two polynomials in 𝑧. The
numerator of the term inside the brackets has degree 𝑘 −
2 while the denominator has degree 𝑘. Note also that the
numerator equals (𝑧𝑘−1 − 𝑞𝑘−1)/(𝑧 − 𝑞) and vanishes at 𝑧∗ =
𝑞𝑒

2𝜋𝑖𝑗/(𝑘−1), 𝑗 = 1, . . . , 𝑘 − 1. However, at such values the
denominator equals (𝑧∗ − 1)𝑞

𝑘−1, which is nonzero. Hence
the numerator and denominator have no roots in common.
Furthermore, the denominator polynomial has no repeated
roots. Hence we may employ exactly the same reasoning as
was used to derive (49), to obtain

𝜓𝑟 (𝑧) =

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

�̃�𝑗𝑚

(𝑧 − 𝜇𝑗)
𝑚 . (107)

Here we employ the notation �̃�𝑗𝑚 to avoid confusion with 𝑎𝑗𝑚
in (49). The coefficients �̃�𝑗𝑚 depend on 𝑟 and 𝑘 but not on
𝑧. As with 𝑎𝑗𝑚, the coefficients �̃�𝑗𝑚 are given via the standard
residues formula

�̃�𝑗𝑚 =
1

(𝑟 − 𝑚)!
[
𝑑
𝑟−𝑚

𝑑𝑧𝑟−𝑚
((𝑧 − 𝜇𝑗)

𝑟
𝜓𝑟 (𝑧))]

𝑧=𝜇𝑗

. (108)

Then (see (51))

𝜙𝑟 (𝑠) = 𝜓𝑟 (
1

𝑠
) =

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

�̃�𝑗𝑚𝑠
𝑚

(1 − 𝜇𝑗𝑠)
𝑚 . (109)

We expand the right hand side using the negative binomial
theorem and equate 𝑓𝑟(𝑛) to the coefficient of 𝑠𝑛

𝑓𝑟 (𝑛) =

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

(

𝑛 − 1

𝑚 − 1
) �̃�𝑗𝑚𝜇

𝑛−𝑚
𝑗 . (110)

Hence 𝑓𝑟(𝑛) is given by a sum of exactly 𝑟𝑘 terms, indepen-
dently of 𝑛. Note that 𝑓𝑟(𝑛) = 0 for 𝑛 < 2𝑟, because of
the nonoverlapping enumeration. An alternative method to

derive the probability mass function 𝑓𝑟(𝑛) for 𝑟 > 1 was
given byKoutras, where the p.m.f. is obtained via a recurrence
relation (unnumbered equations after Theorem 4.1 in [7]).
Our expression in (110) is essentially the solution of that
recurrence.

Next consider a fixed number of trials 𝑛. Following
Koutras [7], let 𝑁𝑛,𝑘 denote the number of occurrences of a
strand of 𝑘 (at most) trials containing two successes in the
first 𝑛 outcomes. Then [7, eq. 2.1]

𝑃 (𝑁𝑛,𝑘 ≥ 𝑟) = 𝑃 (𝑇𝑟,𝑘 ≤ 𝑛) . (111)

Note that trivially 𝑃(𝑁𝑛,𝑘 ≥ 𝑟) = 1 for 𝑟 = 0. For 𝑟 ≥ 1,
the right hand side is easily evaluated using (110). Clearly
𝑃(𝑁𝑛,𝑘 ≥ 𝑟) = 0 and 𝑃(𝑇𝑟,𝑘 ≤ 𝑛) = 0 for 𝑛 < 2𝑟, because of
the nonoverlapping enumeration. Then for 𝑟 ≥ 1 and 𝑛 ≥ 2𝑟,
using (110),

𝑃 (𝑁𝑛,𝑘 ≥ 𝑟) =

𝑛

∑

𝑖=2𝑟

𝑓𝑟,𝑘 (𝑖)

=

𝑛

∑

𝑖=2𝑟

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

(

𝑖 − 1

𝑚 − 1
) �̃�𝑗𝑚𝜇

𝑖−𝑚
𝑗 .

(112)

We now use (17) and (18) to evaluate the sum over 𝑖 (note
that 𝑚 ≤ 𝑟 so all the binomial coefficients are nonzero, also
𝜇𝑗 ̸= 0):

𝑆𝑗𝑚 ≡

𝑛

∑

𝑖=2𝑟

(

𝑖 − 1

𝑚 − 1
)𝜇

𝑖−𝑚
𝑗 =

1

(𝑚 − 1)!𝜇
𝑚−1
𝑗

[

[

𝑑
𝑚−1

𝑑𝑥𝑚−1

⋅

1 − (𝜇𝑗𝑥)
𝑛

1 − 𝜇𝑗𝑥

]

]𝑥=1

− [

[

𝑑
𝑚−1

𝑑𝑥𝑚−1

1 − (𝜇𝑗𝑥)
2𝑟−1

1 − 𝜇𝑗𝑥

]

]𝑥=1

=
1

(𝑚 − 1)!𝜇
𝑚−1
𝑗

[

[

𝑑
𝑚−1

𝑑𝑥𝑚−1

⋅

(𝜇𝑗𝑥)
2𝑟−1

− (𝜇𝑗𝑥)
𝑛

1 − 𝜇𝑗𝑥

]

]𝑥=1

=
1

𝜇
𝑚−1
𝑗

⋅

𝑚−1

∑

𝑖=0

[𝜇
2𝑟−1
𝑗 (

2𝑟 − 1

𝑖
) − 𝜇

𝑛
𝑗 (

𝑛

𝑖
)]

𝜇
𝑚−1−𝑖
𝑗

(1 − 𝜇𝑗)
𝑚−𝑖

=

𝑚−1

∑

𝑖=0

[𝜇
2𝑟−1
𝑗 (

2𝑟 − 1

𝑖
) − 𝜇

𝑛
𝑗 (

𝑛

𝑖
)]

1

𝜇
𝑖
𝑗 (1 − 𝜇𝑗)

𝑚−𝑖
.

(113)

This is a sum of exactly 𝑚 terms, independently of 𝑛. Note
also that 𝜇𝑗 ̸= 1 for 0 ≤ 𝑗 ≤ 𝑘 − 1; hence the right hand side is
well defined for all the roots. Substituting in (112) yields

𝑃 (𝑁𝑛,𝑘 ≥ 𝑟) =

𝑘−1

∑

𝑗=0

𝑟

∑

𝑚=1

(

𝑖 − 1

𝑚 − 1
) �̃�𝑗𝑚𝑆𝑗𝑚. (114)

Because each 𝑆𝑗𝑚 is itself a sum of 𝑚 terms, the number of
summands on the right hand side is 𝑂(𝑘𝑟2). However, the
overall computational complexity is independent of 𝑛.
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Nakagami distribution is considered. The classical maximum likelihood estimator has been obtained. Bayesian method of
estimation is employed in order to estimate the scale parameter of Nakagami distribution by using Jeffreys’, Extension of Jeffreys’,
and Quasi priors under three different loss functions. Also the simulation study is conducted in R software.

1. Introduction

Nakagami distribution can be considered as a flexible lifetime
distribution. It has been used tomodel attenuation of wireless
signals traversing multiple paths (for details see Hoffman
[1]), fading of radio signals, data regarding communicational
engineering, and so forth. The distribution may also be
employed to model failure times of a variety of products
(and electrical components) such as ball bearing, vacuum
tubes, and electrical insulation. It is also widely considered
in biomedical fields, such as to model the time to the
occurrence of tumors and appearance of lung cancer. It
has the applications in medical imaging studies to model
the ultrasounds especially in Echo (heart efficiency test).
Shanker et al. [2] and Tsui et al. [3] use the Nakagami
distribution to model ultrasound data in medical imaging
studies. This distribution is extensively used in reliability
theory and reliability engineering and to model the constant
hazard rate portion because of its memory less property. Yang
and Lin [4] investigated and derived the statistical model of
spatial-chromatic distribution of images. Through extensive
evaluation of large image databases, they discovered that a
two-parameter Nakagami distribution well suits the purpose.
Kim and Latchman [5] used the Nakagami distribution in
their analysis of multimedia.

The probability density function (pdf) of the Nakagami
distribution is given as mentioned in Figure 1:

𝑓 (𝑦; 𝜃, 𝑘) =
2𝑘

𝑘

Γ (𝑘) 𝜃
𝑘
𝑦
2𝑘−1 exp(

−𝑘𝑦
2

𝜃
)

for 𝑦 > 0, 𝑘, 𝜃 > 0,

(1)

where 𝜃 and 𝑘 are the scale and the shape parameters,
respectively.

2. Materials and Methods

There are twomain philosophical approaches to statistics.The
first is called the classical approach which was founded by
Professor R. A. Fisher in a series of fundamental papers round
about 1930. In classical approach we use the same method as
obtained by Ahmad et al. [6].

The alternative approach is the Bayesian approach
which was first discovered by Reverend Thomas Bayes. In
this approach, parameters are treated as random variables
and data is treated as fixed. Recently Bayesian estimation
approach has received great attention by most researchers
among them are Al-Aboud [7] who studied Bayesian estima-
tion for the extreme value distribution using progressive cen-
sored data and asymmetric loss. Ahmed et al. [8] considered

17



1.2

1.0

0.8

0.6

0.4

0.2

0.0

y

f
(y
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

k = 1.0, 𝜃 = 1.0

k = 1.0, 𝜃 = 1.5

k = 1.5, 𝜃 = 1.0

k = 1.5, 𝜃 = 1.5

k = 2.0, 𝜃 = 1.0

k = 2.0, 𝜃 = 1.5

Figure 1: The pdf ’s of Nakagami distribution under various values
of 𝑘 and theta.

Bayesian Survival Estimator for Weibull distribution with
censored data. An important prerequisite in this approach is
the appropriate choice of prior(s) for the parameters. Very
often, priors are chosen according to one’s subjective knowl-
edge and beliefs.The other integral part of Bayesian inference
is the choice of loss function. A number of symmetric and
asymmetric loss functions have been shown to be functional;
see Pandey et al. [9], Al-Athari [10], S. P. Ahmad and K.
Ahmad [11], Ahmad et al. [12, 13], and so forth.

Theorem 1. Let (𝑦1, 𝑦2, . . . , 𝑦𝑛) be a random sample of size n
having pdf (1); then the maximum likelihood estimator of scale
parameter 𝜃, when the shape parameter 𝑘 is known, is given by

𝜃 =
∑
𝑛
𝑖=1 𝑦𝑖

2

𝑛
. (2)

Proof. The likelihood function of the pdf (1) is given by

𝐿 (𝑦; 𝜃, 𝑘) =

(2𝑘
𝑘
)
𝑛

(Γ𝑘)
𝑛
𝜃𝑛𝑘

𝑛

∏

𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
) . (3)

The log likelihood function is given by

log𝐿 (𝑦; 𝜃, 𝑘) = 𝑛 log (2𝑘𝑘) − 𝑛 log Γ𝑘 − 𝑛𝑘 log 𝜃

+ (2𝑘 − 1)

𝑛

∑

𝑖=1

log𝑦𝑖 −
𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
.

(4)

Differentiating (4) with respect to 𝜃 and equating to zero, we
get

𝜃 =
∑
𝑛
𝑖=1 𝑦𝑖

2

𝑛
. (5)

2.1. Loss Functions Used in This Paper. (i) The quadratic loss
function which is given by

𝐿qd (𝜃, 𝜃) = (
(𝜃 − 𝜃)

𝜃
)

2

; 𝜃 > 0, (6)

which is a symmetric loss function; 𝜃 and 𝜃 represent the true
and estimated values of the parameter.

(ii) The Al-Bayyati new loss function is of the form

𝐿nl (𝜃, 𝜃) = 𝜃
𝑐
1 (𝜃 − 𝜃)

2
; 𝑐1𝜀𝑅,

(7)

which is an asymmetric loss function; 𝜃 and 𝜃 represent the
true and estimated values of the parameter.

(iii) The entropy loss function is given by

𝐿ef (𝜃, 𝜃) = (
𝜃

𝜃
− log(𝜃

𝜃
) − 1) ; 𝜃 > 0, (8)

where 𝜃 and 𝜃 represent the true and estimated values of the
parameter.

3. Bayesian Method of Estimation

In this section Bayesian estimation of the scale parameter of
Nakagami distribution is obtained by using various priors
under different symmetric and asymmetric loss functions.

3.1. Posterior Density under Jeffreys’ Prior. Let (𝑦1, 𝑦2, . . . , 𝑦𝑛)
be a random sample of size 𝑛 having the probability density
function (1) and the likelihood function (2).

Jeffreys’ prior for 𝜃 is given by

𝑔 (𝜃) =
1

𝜃
; 𝜃 > 0. (9)

By using the Bayes theorem, we have

𝜋1 (𝜃 | 𝑦) ∝ 𝐿 (𝑦 | 𝜃) 𝑔 (𝜃) . (10)

Using (2) and (9) in (10),

𝜋1 (𝜃 | 𝑦)

∝

(2𝑘
𝑘
)
𝑛

Γ (𝑘)
𝑛
𝜃𝑛𝑘+1

𝑛

∏

𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
) ,

𝜋1 (𝜃 | 𝑦) = 𝜌
1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
) ,

(11)

where 𝜌 is independent of 𝜃 and

𝜌 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘

Γ𝑛𝑘
.

(12)

Using the value of 𝜌 in (11),

𝜋1 (𝜃 | 𝑦)

= (

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
)) .

(13)
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3.2. Posterior Density under Extension of Jeffreys’ Prior. Let
(𝑦1, 𝑦2, . . . , 𝑦𝑛) be a random sample of size 𝑛 having the
probability density function (1) and the likelihood function
(2).

The extension of Jeffreys’ for 𝜃 is given by

𝑔1 (𝜃) =
1

𝜃2𝑐
; 𝜃 > 0. (14)

By using the Bayes theorem, we have

𝜋2 (𝜃 | 𝑦) ∝ 𝐿 (𝑦 | 𝜃) 𝑔1 (𝜃) . (15)

Using (2) and (14) in (15),

𝜋2 (𝜃 | 𝑦)

∝

(2𝑘
𝑘
)
𝑛

Γ (𝑘)
𝑛
𝜃𝑛𝑘+2𝑐

𝑛

∏

𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
) .

(16)

Thus

𝜋2 (𝜃 | 𝑦) = 𝜌
1

𝜃𝑛𝑘+2𝑐
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
) , (17)

𝜌 =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖)

𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)
. (18)

By using the value of 𝜌 in (17), we have

𝜋2 (𝜃 | 𝑦) = (

((−𝑘/𝜃)∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)

1

𝜃𝑛𝑘+2𝑐

⋅ exp(−𝑘
𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
)) .

(19)

3.3. Posterior Density under Quasi Prior. Let (𝑦1, 𝑦2, . . . , 𝑦𝑛)
be a random sample of size 𝑛 having the probability density
function (1) and the likelihood function (2).

Quasi prior for 𝜃 is given by

𝑔2 (𝜃) =
1

𝜃𝑑
; 𝜃 > 0, 𝑑 > 0. (20)

By using the Bayes theorem, we have

𝜋3 (𝜃 | 𝑦) ∝ 𝐿 (𝑦 | 𝜃) 𝑔2 (𝜃) . (21)

Using (2) and (20) in (21),

𝜋3 (𝜃 | 𝑦) ∝

(2𝑘
𝑘
)
𝑛

Γ (𝑘)
𝑛
𝜃𝑛𝑘+𝑑

𝑛

∏

𝑖=1

𝑦𝑖
2𝑘−1 exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
)

𝜋3 (𝜃 | 𝑦) = 𝜌
1

𝜃𝑛𝑘+𝑑
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
) ,

(22)

where 𝜌 is independent of 𝜃 and

𝜌 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)
.

(23)

Using the value of 𝜌 in (22),

𝜋3 (𝜃 | 𝑦)

= (

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
)) .

(24)

4. Bayesian Estimation by Using Jeffreys’ Prior
under Different Loss Functions

Theorem 2. Assuming the loss function 𝐿𝑞𝑑(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑞𝑑 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 1)
. (25)

Proof. The risk function of the estimator 𝜃 under the
quadratic loss function 𝐿qd(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
(

(𝜃 − 𝜃)

𝜃
)

2

𝜋1 (𝜃 | 𝑦) 𝑑𝜃.
(26)

Using (13) in (26), we get

𝑅 (𝜃) = ∫

∞

0
(

(𝜃 − 𝜃)

𝜃
)

2

⋅

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
)𝑑𝜃.

(27)

On solving (27), we get

𝑅 (𝜃) =
𝜃
2
Γ (𝑛𝑘 + 2)

Γ𝑛𝑘 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
2
−

2𝜃Γ (𝑛𝑘 + 1)

Γ𝑛𝑘 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
+ 1. (28)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃qd =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 1)
. (29)

Theorem 3. Assuming the loss function 𝐿𝑛𝑙(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑛𝑙 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 − 𝑐1 − 1)
. (30)

178 Probability and Statistics: Concepts and Applications



Proof. The risk function of the estimator 𝜃 under the Al-
Bayyati loss function 𝐿nl(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
𝜃
𝑐
1 (𝜃 − 𝜃)

2
𝜋1 (𝜃 | 𝑦) 𝑑𝜃. (31)

On substituting (13) in (31), we have

𝑅 (𝜃) = ∫

∞

0
𝜃
𝑐
1 (𝜃 − 𝜃)

2
(

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1

⋅ exp(−𝑘
𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
))𝑑𝜃.

(32)

Solving (32), we get

𝑅 (𝜃) = [

[

𝜃
2
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1

Γ (𝑛𝑘 − 𝑐1)

Γ𝑛𝑘

+

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1
+2
Γ (𝑛𝑘 − 𝑐1 − 2)

Γ𝑛𝑘

−

2𝜃 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1
+1
Γ (𝑛𝑘 − 𝑐1 − 1)

Γ𝑛𝑘

]

]

.

(33)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃nl =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 − 𝑐1 − 1)
. (34)

Theorem 4. Assuming the loss function 𝐿𝑒𝑓(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑒𝑓 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

𝑛𝑘
. (35)

Proof. The risk function of the estimator 𝜃 under entropy loss
function 𝐿ef(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)𝜋1 (𝜃 | 𝑦) 𝑑𝜃. (36)

Using (13) in (36), we get

𝑅 (𝜃) = ∫

∞

0
(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)

⋅

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+1
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
)𝑑𝜃.

(37)

On solving (37), we get

𝑅 (𝜃) = 𝜃
Γ (𝑛𝑘 + 1)

Γ (𝑛𝑘) (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
− log (𝜃) + ℎ (𝜃) − 1. (38)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃ef =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

𝑛𝑘
. (39)

5. Bayesian Estimation by
Using Extension Jeffreys’ Prior under
Different Loss Functions

Theorem 5. Assuming the loss function 𝐿𝑞𝑑(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑞𝑑 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 2𝑐)
. (40)

Proof. The risk function of the estimator 𝜃 under the
quadratic loss function 𝐿qd(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
(

(𝜃 − 𝜃)

𝜃
)

2

𝜋2 (𝜃 | 𝑦) 𝑑𝜃.
(41)

Using (19) in (41), we get

𝑅 (𝜃) = ∫

∞

0
(

(𝜃 − 𝜃)

𝜃
)

2

(

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)

1

𝜃𝑛𝑘+2𝑐

⋅ exp(−𝑘
𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
))𝑑𝜃.

(42)

On solving (42), we get

𝑅 (𝜃) =
𝜃
2
Γ (𝑛𝑘 + 2𝑐 + 1)

Γ𝑛𝑘 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
2
−

2𝜃Γ (𝑛𝑘 + 2𝑐)

Γ𝑛𝑘 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
+ 1. (43)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃qd =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 2𝑐)
. (44)

Remark 6. By replacing 𝑐 = 1/2 in (44), the same Bayes
estimate is obtained as in (29).

Theorem 7. Assuming the loss function 𝐿𝑛𝑙(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑛𝑙 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 2𝑐 − 𝑐1 − 2)
. (45)

Proof. The risk function of the estimator 𝜃 under the Al-
Bayyati loss function 𝐿nl(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
𝜃
𝑐
1 (𝜃 − 𝜃)

2
𝜋2 (𝜃 | 𝑦) 𝑑𝜃. (46)
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On substituting (19) in (46), we have

𝑅 (𝜃) = ∫

∞

0
𝜃
𝑐
1 (𝜃 − 𝜃)

2
(

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘

Γ𝑛𝑘

1

𝜃𝑛𝑘+2𝑐

⋅ exp(−𝑘
𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
))𝑑𝜃.

(47)

Solving (47), we get

𝑅 (𝜃) = [

[

𝜃
2
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1

Γ (𝑛𝑘 + 2𝑐 − 𝑐1 − 1)

Γ (𝑛𝑘 + 2𝑐 − 1)

+

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1
+2
Γ (𝑛𝑘 + 2𝑐 − 𝑐1 − 3)

Γ (𝑛𝑘 + 2𝑐 − 1)

−

2𝜃 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1
+1
Γ (𝑛𝑘 + 2𝑐 − 𝑐1 − 2)

Γ (𝑛𝑘 + 2𝑐 − 1)

]

]

.

(48)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃nl =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 2𝑐 − 𝑐1 − 2)
. (49)

Remark 8. By replacing 𝑐 = 1/2 in (49), the same Bayes
estimate is obtained as in (34).

Theorem 9. Assuming the loss function 𝐿𝑒𝑓(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑒𝑓 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 2𝑐 − 1)
. (50)

Proof. The risk function of the estimator 𝜃 under entropy loss
function 𝐿ef(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)𝜋2 (𝜃 | 𝑦) 𝑑𝜃. (51)

Using (19) in (51), we get

𝑅 (𝜃) = ∫

∞

0
(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)

⋅

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+2𝑐−1

Γ (𝑛𝑘 + 2𝑐 − 1)

1

𝜃𝑛𝑘+2𝑐
exp(−𝑘

𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
)𝑑𝜃.

(52)

On solving (52), we get

𝑅 (𝜃) = 𝜃
Γ (𝑛𝑘 + 2𝑐)

Γ (𝑛𝑘 + 2𝑐 − 1) (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
− log (𝜃)

+ ℎ (𝜃) − 1.

(53)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃ef =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 2𝑐 − 1)
. (54)

Remark 10. By replacing 𝑐 = 1/2 in (54), the same Bayes
estimate is obtained as in (39).

6. Bayesian Estimation by Using Quasi Prior
under Different Loss Functions

Theorem 11. Assuming the loss function 𝐿𝑞𝑑(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑞𝑑 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 𝑑)
. (55)

Proof. The risk function of the estimator 𝜃 under the
quadratic loss function 𝐿qd(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
(

(𝜃 − 𝜃)

𝜃
)

2

𝜋3 (𝜃 | 𝑦) 𝑑𝜃.
(56)

Using (24) in (56), we get

𝑅 (𝜃) = ∫

∞

0
(

(𝜃 − 𝜃)

𝜃
)

2

(

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+𝑑

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑

⋅ exp(−𝑘
𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
))𝑑𝜃.

(57)

On solving (57), we get

𝑅 (𝜃) =
𝜃
2
Γ (𝑛𝑘 + 𝑑 + 1)

Γ𝑛𝑘 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
2
−

2𝜃Γ (𝑛𝑘 + 𝑑)

Γ𝑛𝑘 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
+ 1. (58)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃qd =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 𝑑)
. (59)

Remark 12. By replacing 𝑑 = 1 in (59), the same Bayes
estimate is obtained as in (29).

Theorem 13. Assuming the loss function 𝐿𝑛𝑙(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑛𝑙 =
(∑

𝑛
𝑖=1 𝑦𝑖)

(𝑛𝑘 + 𝑑 − 𝑐1 − 2)
. (60)
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Proof. The risk function of the estimator 𝜃 under the Al-
Bayyati loss function 𝐿nl(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
𝜃
𝑐
1 (𝜃 − 𝜃)

2
𝜋3 (𝜃 | 𝑦) 𝑑𝜃. (61)

On substituting (24) in (61), we have

𝑅 (𝜃) = ∫

∞

0
𝜃
𝑐
1 (𝜃 − 𝜃)

2
(

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑

⋅ exp(−𝑘
𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
))𝑑𝜃.

(62)

Solving (62), we get

𝑅 (𝜃) = [

[

𝜃
2
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1

Γ (𝑛𝑘 + 𝑑 − 𝑐1 − 1)

Γ (𝑛𝑘 + 𝑑 − 1)

+

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1
+2
Γ (𝑛𝑘 + 𝑑 − 𝑐1 − 3)

Γ (𝑛𝑘 + 𝑑 − 1)

−

2𝜃 (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑐
1
+1
Γ (𝑛𝑘 + 𝑑 − 𝑐1 − 2)

Γ (𝑛𝑘 + 𝑑 − 1)

]

]

.

(63)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃nl =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 𝑑 − 𝑐1 − 2)
. (64)

Remark 14. By replacing 𝑑 = 1 in (64), the same Bayes
estimate is obtained as in (34).

Theorem 15. Assuming the loss function 𝐿𝑒𝑓(𝜃, 𝜃), the Bayes
estimate of the scale parameter 𝜃, if the shape parameter 𝑘 is
known, is of the form

𝜃𝑒𝑓 =

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 𝑑 − 1)
. (65)

Proof. The risk function of the estimator 𝜃 under the entropy
loss function 𝐿ef(𝜃, 𝜃) is given by the formula

𝑅 (𝜃) = ∫

∞

0
(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)𝜋3 (𝜃 | 𝑦) 𝑑𝜃. (66)

Using (24) in (66), we get

𝑅 (𝜃) = ∫

∞

0
(
𝜃

𝜃
− log(𝜃

𝜃
) − 1)

⋅ (

(𝑘∑
𝑛
𝑖=1 𝑦𝑖

2
)
𝑛𝑘+𝑑−1

Γ (𝑛𝑘 + 𝑑 − 1)

1

𝜃𝑛𝑘+𝑑

⋅ exp(−𝑘
𝜃

𝑛

∑

𝑖=1

𝑦𝑖
2
))𝑑𝜃.

(67)

On solving (67), we get

𝑅 (𝜃) = 𝜃
Γ (𝑛𝑘 + 𝑑)

Γ (𝑛𝑘 + 𝑑 − 1) (𝑘∑
𝑛
𝑖=1 𝑦𝑖

2)
− log (𝜃)

+ ℎ (𝜃) − 1.

(68)

Minimization of the riskwith respect to 𝜃 gives us the optimal
estimator:

𝜃ef =
(𝑘∑

𝑛
𝑖=1 𝑦𝑖

2
)

(𝑛𝑘 + 𝑑 − 1)
. (69)

Remark 16. By replacing 𝑑 = 1 in (69), the same Bayes
estimate is obtained as in (39).

7. Results and Discussion

We primarily studied the classical maximum likelihood esti-
mation and Bayesian estimation for Nakagami distribution
using Jeffreys’, extension of Jeffreys’, and Quasi priors under
three different symmetric and asymmetric loss functions.
Here our main focus was to find out the estimate of scale
parameter for Nakagami distribution. The mathematical
derivations were checked by using the different data sets and
the estimate was obtained.

For descriptive manner, we generate different random
samples of size 25, 50, and 100 to represent small, medium,
and large data set for the Nakagami distribution in R
Software; a simulation study was carried out 3,000 times for
each pairs of (𝜃, 𝑘) where (𝑘 = 0.5, 1.0) and (𝜃 = 1.0, 1.5).
The values of extension were (𝐶 = 0.5, 1.0) and (𝑑 = 1.0, 1.5).
The value for the loss parameter was (𝐶1 = −1 and 1). This
was iterated 2000 times and the estimates of scale parameter
for each method were calculated.The results are presented in
(Tables 1, 2, and 3), respectively.

8. Conclusion

In this paper we have generated three types of data sets with
different sample sizes for Nakagami distribution. These data
sets were simulated with the help of programs and the behav-
ior of the datawas checked in case of parameter estimation for
Nakagami distribution in R Software. With these data sets we
have obtained the estimate of scale parameter for Nakagami
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Table 1: Estimates by using Jeffreys’ prior under three different loss functions.

𝑛 𝑘 𝜃 𝜃ML 𝜃qd 𝜃ef
𝜃nl

𝐶1 = −1 𝐶1 = 1

25 0.5 1.0 221.9361 205.4964 221.9361 221.9361 264.2096
1.0 1.5 20.05983 19.2883 20.05983 20.05983 21.80416

50 0.5 1.0 354.8246 341.1775 354.8246 354.8246 385.6789
1.0 1.5 49.986 49.00588 49.986 49.986 52.06875

100 0.5 1.0 863.8767 846.938 863.8767 863.8767 899.8716
1.0 1.5 122.1739 120.9643 122.1739 122.1739 124.6672

ML: maximum likelihood, qd: quadratic loss function, ef: entropy loss function, and nl: Al-Bayyati’s new loss function.

Table 2: Estimates by using Extension Jeffreys’ prior under three different loss functions.

𝑛 𝑘 𝜃 𝐶 𝜃ML 𝜃qd 𝜃ef
𝜃nl

𝐶1 = −1.0 𝐶1 = 1.0

25
0.5 1.0 0.5

1.0
221.9361
221.9361

205.4964
191.3242

221.9361
205.4964

221.931
205.494

264.2096
241.2349

1.0 1.5 0.5
1.0

20.05983
20.05983

19.2883
18.57392

20.05983
19.2883

20.05983
19.2883

21.80416
20.89565

50
0.5 1.0 0.5

1.0
354.8246
354.8246

341.1775
328.5413

354.8246
341.1775

354.8246
341.1775

385.6789
369.6089

1.0 1.5 0.5
1.0

49.986
49.986

49.00588
48.06346

49.986
49.00588

49.986
49.00588

52.06875
51.00612

100
0.5 1.0 0.5

1.0
863.8767
863.8767

846.938
830.6507

863.8767
846.938

863.8767
846.938

899.8716
881.5069

1.0 1.5 0.5
1.0

122.1739
122.1739

120.9643
119.7783

122.1739
120.9643

122.1739
120.9643

124.6672
123.408

ML: maximum likelihood, qd: quadratic loss function, ef: entropy loss function, and nl: Al-Bayyati’s new loss function.

Table 3: Estimates by using Quasi prior under three different loss functions.

𝑛 𝑘 𝜃 𝑑 𝜃ML 𝜃qd 𝜃ef
𝜃nl

𝐶1 = −1 𝐶1 = 1.0

25
0.5 1.0 1.0

1.5
221.9361
221.9361

205.4964
198.1572

221.9361
213.4001

221.9361
213.4001

264.2096
252.2001

1.0 1.5 1.0
1.5

20.05983
20.05983

19.2883
18.92437

20.05983
19.6665

20.05983
19.6665

21.80416
21.34024

50
0.5 1.0 1.0

1.5
354.8246
354.8246

341.1775
334.7401

354.8246
347.8672

354.8246
347.8672

385.6789
377.4729

1.0 1.5 1.0
1.5

49.986
49.986

49.00588
48.5301

49.986
49.49109

49.986
49.49109

52.06875
51.53196

100
0.5 1.0 1.0

1.5
863.8767
863.8767

846.938
838.7153

863.8767
855.3235

863.8767
855.3235

899.8716
890.5946

1.0 1.5 1.0
1.5

122.1739
122.1739

120.9643
120.3684

122.1739
121.5661

122.1739
121.5661

124.6672
124.0344

ML: maximum likelihood, qd: quadratic loss function, ef: entropy loss function, and nl: Al-Bayyati’s new loss function.

distribution under three different symmetric and asymmetric
loss functions by using three different priors. With the help
of these results we can also do comparison between loss
functions and the priors.
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A new three-parameter generalized distribution, namely, half-logistic generalized Weibull (HLGW) distribution, is proposed. The
proposed distribution exhibits increasing, decreasing, bathtub-shaped, unimodal, and decreasing-increasing-decreasing hazard
rates. The distribution is a compound distribution of type I half-logistic-G and Dimitrakopoulou distribution. The new model
includes half-logisticWeibull distribution, half-logistic exponential distribution, and half-logistic Nadarajah-Haghighi distribution
as submodels. Some distributional properties of the new model are investigated which include the density function shapes and
the failure rate function, raw moments, moment generating function, order statistics, L-moments, and quantile function. The
parameters involved in the model are estimated using the method of maximum likelihood estimation.The asymptotic distribution
of the estimators is also investigated via Fisher’s information matrix. The likelihood ratio (LR) test is used to compare the HLGW
distribution with its submodels. Some applications of the proposed distribution using real data sets are included to examine the
usefulness of the distribution.

1. Introduction

Statistical distributions are the basic aspects of all parametric
statistical techniques including inference, modeling, survival
analysis, and reliability. For the analysis of lifetime data, it is
an important task to fit the data by a statisticalmodel. A num-
ber of lifetime distributions have been developed in literature
for this purpose. The widely used lifetime models usually
have a limited range of behaviors. Such type of distributions
cannot give a better fit to model all the practical situations.
Recently, several authors have developed a number of families
of statistical models by applying different techniques. Various
techniques have been introduced in the literature to derive
new flexible models as discussed by Lai [1].

Marshall and Olkin [2] introduced an effective technique
to extend a family of distributions by addition of another
parameter. By applying this technique, they generalized the
exponential and the Weibull distributions. Al-Zahrani and
Sagor [3] proposed the Poisson Lomax model by com-
pounding the Poisson Lomax distributions. Bidram and
Nadarajah [4] introduced the exponentiatedEG2distribution
by using the method of resilience parameter. Kus [5] consid-
ered compounding of Poisson and exponential distribution.

Gurvich et al. [6] generalized the Weibull distribution offer-
ing a new distribution function elucidating a wide range
of functional forms of the effect of size on the strength
distribution, using a simple method of evaluation of the basic
statistical parameters. Nadarajah and Kotz [7], Lai et al. [8],
Lai et al. [9], and Xie et al. [10] further discussed some
modifications of the Weibull model.

In this paper, another extension of the extended Weibull
distribution is introduced using half-logistic-G generator. So
we propose the half-logistic generalized Weibull (HLGW)
distribution without adding any extra parameter to the
baselinemodel.The newmodel is the compound distribution
of two previously known distributions, one of which follows
the class proposed by Gurvich et al. [6] and the other is type
I half-logistic-G model. The proposed model is able to depict
more complex hazard rates and provides a good alternate to
the Weibull distribution that does not exhibit upside-down
bathtub-shaped or unimodal failure rates.

Dimitrakopoulou et al. [11] established a three-parameter
lifetime model with PDF𝑔 (𝑥; 𝜔, 𝜂, 𝛾)

= 𝜔𝜂𝛾𝑥𝜂−1 (1 + 𝛾𝑥𝜂)𝜔−1 exp {1 − (1 + 𝛾𝑥𝜂)𝜔} , (1)

18

http://orcid.org/0000-0001-8745-2453
https://doi.org/10.1155/2018/8767826


where 𝑥 > 0 and 𝜔, 𝜂 > 0 are the shape parameters and 𝛾 > 0
is a scale parameter. The CDF corresponding to (1) is

𝐺 (𝑥; 𝜔, 𝜂, 𝛾) = 1 − exp {1 − (1 + 𝛾𝑥𝜂)𝜔} . (2)

In this paper, a three-parameter lifetime model is pre-
sented which is the compound model of the previously
known models introduced by Dimitrakopoulou et al. [11]
and half-logistic-G (HL-G) distribution called half-logistic
generalized Weibull (HLGW) distribution. The half-logistic-
G distribution is presented by Cordeiro et al. [12] with the
CDF

𝐺 (𝑥; 𝛾, 𝜃) = ∫− ln(1−𝐹(𝑥;𝜃))
0

2𝛾𝑒−𝛾𝑥(1 + 𝑒−𝛾𝑥)2 𝑑𝑥
= 1 − [1 − 𝐹 (𝑥; 𝜃)]𝛾1 + [1 − 𝐹 (𝑥; 𝜃)]𝛾 ,

(3)

where 𝐹(𝑥; 𝜃) is the CDF of the baseline distribution and𝛾 > 0 is the shape parameter. As a special case, for 𝛾 = 1, the
TIHL-G is the half-logistic-G (HL-G)model with cumulative
distribution function

𝐺 (𝑥; 𝜃) = 𝐹 (𝑥; 𝜃)1 + 𝐹 (𝑥; 𝜃) . (4)

The corresponding PDF to (4) is given by

𝑔 (𝑥; 𝜃) = 2𝑓 (𝑥; 𝜃)
[1 + 𝐹 (𝑥; 𝜃)]2 , (5)

where 𝑓(𝑥) = (𝑑/𝑑𝑥)𝐹(𝑥) and 𝐹(𝑥; 𝜃) = 1 − 𝐹(𝑥; 𝜃).
The rest of the paper is unfolded as follows. Section 2

contains the introduction of the half-logistic generalized
Weibull (HLGW) distribution and provides the plots of
its density function. Section 3 explores the distributional
properties of the HLGW model. In Section 4, the method
of maximum likelihood estimation is used to obtain the
estimators of unknown parameters. The asymptotic distribu-
tion of the estimators is also investigated in this section via
Fisher’s information matrix. A simulation study is discussed
in Section 5 to check out the accuracy of point and interval
estimates of the HLGW parameters. Section 6 involves some
applications of the HLGW distribution using lifetime data
sets to examine the fitness of the proposed model. Section 7
provides concluding remarks about the paper.

2. The Half-Logistic Generalized
Weibull Distribution

Substitution of (1) and (2) in (5) results the following PDF of
the HLGW distribution:

𝑔 (𝑥; 𝜔, 𝜂, 𝛾)
= 2𝜔𝜂𝛾𝑥𝜂−1 (1 + 𝛾𝑥𝜂)𝜔−1 exp (1 − (1 + 𝛾𝑥𝜂)𝜔)

[1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔)]2 ,
for 𝑥 > 0.

(6)

The CDF associated with (6) is as follows:

𝐺 (𝑥) = 1 − exp (1 − (1 + 𝛾𝑥𝜂)𝜔)
1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔) , (7)

The parameters 𝜔, 𝜂 > 0 are the shape parameters and 𝛾 > 0
is a scale parameter. From now on, a random variable𝑋 with
PDF (6) will be written as𝑋∼HLGW(𝜔, 𝜂, 𝛾).
3. Distributional Properties

This section deals with the investigation of the distributional
properties of HLGW distribution. The statistical properties
include the plots of the density function, the failure rate
function, raw moments, moment generating function, order
statistics, L-moments, and quantile function.

3.1. Special Cases. The HLGW distribution includes the
following distributions as special cases:

(i) For 𝜔 = 1, the HLGW model reduces to the half-
logistic Weibull (HLW) model with the PDF

𝑔 (𝑥; 𝜂, 𝛾) = 2𝜂𝛾𝑥𝜂−1 exp (−𝛾𝑥𝜂)
[1 + exp (−𝛾𝑥𝜂)]2 , (8)

where 𝜂 is the shape parameter and 𝛾 is the scale
parameter. For −𝛾 = 𝛼, the half-logistic Weibull
model is also called the power half-logistic distribu-
tion (PHLD) proposed and studied by Krishnarani
[13].

(ii) For 𝜔 = 𝜂 = 1, the HLGW model generates a new
model, the half-logistic exponential (HLE) model,
with scale parameter 𝛾 and the PDF

𝑔 (𝑥; 𝛾) = 2𝛾 exp (−𝛾𝑥)
[1 + exp (−𝛾𝑥)]2 . (9)

(iii) For 𝜂 = 1, the HLGW model gives another
new model, the half-logistic Nadarajah-Haghighi
(HLNH) model, with the PDF

𝑔 (𝑥; 𝜔, 𝛾) = 2𝜔𝛾 (1 + 𝛾𝑥)𝜔−1 exp (1 − (1 + 𝛾𝑥)𝜔)
[1 + exp (1 − (1 + 𝛾𝑥)𝜔)]2 , (10)

where 𝜔 and 𝛾 are the shape and scale parameters,
respectively.

3.2. The Shapes of HLGWDistribution. The following are the
conditions under which the PDF of the HLGW distribution
(6) shows different behaviors:

(i) For 𝜂 < 1, the PDF is monotone decreasing with
lim𝑥→0+𝑔(𝑥; 𝜃) = ∞, lim𝑥→∞𝑔(𝑥; 𝜃) = 0.

(ii) For 𝜂 = 1, the same shape is exhibited with
lim𝑥→0+𝑔(𝑥; 𝜃) = 𝜔𝛾/2 and lim𝑥→∞𝑔(𝑥; 𝜃) = 0.

185The Half-Logistic Generalized Weibull Distribution



D
en

sit
y

omega = 1.2; eta = 0.8
omega = 0.9; eta = 1.5 
omega = 0.2; eta = 4.5 

omega = 1.5; eta = 2.5 
omega = 2.0; eta = 0.7

0.5 1.0 1.5 2.0 2.5 3.0 3.50.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 1: The shapes of the PDF of the HLGW distribution.

(iii) For 𝜂 > 1, the PDF has the value zero at the origin;
then it increases to a higher value and then decreases,
falling towards the value of zero at infinity.

Various behaviors of the PDF are shown in Figure 1, for some
parameter values; 𝛾 = 1. The mode of density (6) can be
obtained from (𝑑/𝑑𝑥)[log(𝑔(𝑥))]|𝑥=𝑥0 = 0.
3.3. Hazard Rate Function (HRF). For𝑋 is a randomvariable,
the HRF is given as ℎ(𝑥) = 𝑔(𝑥)/𝐺(𝑥), where 𝐺 = 1 − 𝐺
represents the survival function given by

𝐺 (𝑥) = 2 exp (1 − (1 + 𝛾𝑥𝜂)𝜔)
1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔) . (11)

The HRF of𝑋∼HLGW(𝜔, 𝜂, 𝛾) can be written as

ℎ (𝑥; 𝜔, 𝜂, 𝛾) = 𝜔𝜂𝛾𝑥𝜂−1 (1 + 𝛾𝑥𝜂)𝜔−1
[1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔)] , (12)

for 𝑥 > 0, demonstrating different shapes for different
parameter values. By differentiating (12), it can be easily
checked that

(a) for 𝜔 = 1 and 𝜂 = 1, the value of HRF ℎ(𝑥) is zero at
the origin; then it increases to its maximum; after that
it is constant,

(b) for 𝜔 ≥ 1 and 𝜂 > 1 or 𝜔 < 1 and 𝜂 ≤ 1, ℎ(𝑥) has
increasing or decreasing behavior,

(c) for 𝜔 ≥ 1 and 𝜂 < 1,
(i) if 𝜔𝜂 ≤ 1, ℎ(𝑥) is decreasing or decreasing-

increasing-decreasing (DID),
(ii) if 𝜔𝜂 > 1, ℎ(𝑥) is increasing or bathtub-shaped,

(d) for 𝜔 ≤ 1 and 𝜂 > 1,
(i) if 𝜔𝜂 < 1, ℎ(𝑥) has upside-down bathtub shape

(unimodal),
(ii) if 𝜔𝜂 ≥ 1, ℎ(𝑥) is monotone increasing.

Thedifferent hazard shapes are shown in Figure 2 for different
parameter values. By restricting 𝜔(𝑛 + 1) − 1 ∈ 𝑁, the failure
rate function (12) can also be depicted as

ℎ (𝑥; 𝜔, 𝜂, 𝛾)
= ∞∑
𝑘=1

∞∑
𝑛=0

𝜔(𝑛+1)−1∑
𝑟=0

(−1)𝑛+𝑘−1 𝑒𝑘−1 (𝑘 − 1)𝑛(𝑛 + 1)! 𝛾𝑟𝜂𝑟𝑥𝜂𝑟−1, (13)

for 𝑥 > 0, where 𝛾𝑟 = ( 𝜔(𝑛+1)
𝑟+1

) 𝛾𝑟+1 and 𝜂𝑟 = 𝜂(𝑟+1).Thus the
HRF can be written as the sum of 𝜔 terms and hence (13) is
the failure rate function of a series system of 𝜔 components.

3.4. Moments. In this section, the 𝑟th moment 𝜇𝑟 = 𝐸[𝑋𝑟]
of the HLGW model is presented as an infinite sum repre-
sentation. The first four moments for 𝑟 = 1, 2, 3, 4 have been
calculated accordingly.

Theorem 1. Let 𝑋∼HLGW(𝜔, 𝜂, 𝛾) be a random variable,
where 𝜔, 𝜂, 𝛾 > 0, and the 𝑟th moment of𝑋 about the origin is
as follows:

𝜇𝑟 = 𝐸 (𝑋𝑟)
= 2𝜔𝛾𝑟/𝜂

𝑟/𝜂∑
𝑗=0

∞∑
𝑘=1

∞∑
𝑛=0

(𝑟𝜂𝑗)
𝑒𝑘𝑘𝑛+1 (−1)𝑗+𝑘+𝑛+𝑟/𝜂[𝑗 + 𝜔 (𝑛 + 1)] 𝑛! , (14)

where 𝑟 = 1, 2, 3, 4 and 𝑟/𝜂 ∈ N.

Corollary 2. Let 𝑋∼HLGW(𝜔, 𝜂, 𝛾) be a random variable,
where 𝜔, 𝜂, 𝛾 > 0 and 𝑟/𝜂 ∈ N. The first four moments of the
random variable are

𝜇 = 𝐸 [𝑋]
= 2𝜔𝛾1/𝜂

1/𝜂∑
𝑗=0

∞∑
𝑘=1

∞∑
𝑛=0

(1𝜂𝑗)
𝑒𝑘𝑘𝑛+1 (−1)𝑗+𝑘+𝑛+1/𝜂[𝑗 + 𝜔 (𝑛 + 1)] 𝑛!

𝜇2 = 𝐸 [𝑋2]
= 2𝜔𝛾2/𝜂

2/𝜂∑
𝑗=0

∞∑
𝑘=1

∞∑
𝑛=0

(2𝜂𝑗)
𝑒𝑘𝑘𝑛+1 (−1)𝑗+𝑘+𝑛+2/𝜂[𝑗 + 𝜔 (𝑛 + 1)] 𝑛!

𝜇3 = 𝐸 [𝑋3]
= 2𝜔𝛾3/𝜂

3/𝜂∑
𝑗=0

∞∑
𝑘=1

∞∑
𝑛=0

(3𝜂𝑗)
𝑒𝑘𝑘𝑛+1 (−1)𝑗+𝑘+𝑛+3/𝜂[𝑗 + 𝜔 (𝑛 + 1)] 𝑛!

𝜇4 = 𝐸 [𝑋4]
= 2𝜔𝛾4/𝜂

4/𝜂∑
𝑗=0

∞∑
𝑘=1

∞∑
𝑛=0

(4𝜂𝑗)
𝑒𝑘𝑘𝑛+1 (−1)𝑗+𝑘+𝑛+4/𝜂[𝑗 + 𝜔 (𝑛 + 1)] 𝑛! .

(15)

3.5. Moment Generating Function (MGF). The MGF of 𝑋 is
retrieved from𝑀𝑋(𝑡) = 𝐸[𝑒𝑡𝑋] = ∫ 𝑒𝑡𝑥𝑔(𝑥)𝑑𝑥.
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Figure 2: Continued.
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Figure 2: The HRF of HLGW distribution for different parameter values.

Theorem 3. let𝑋∼HLGW(𝜔, 𝜂, 𝛾) be a random variable, and
the moment generating function (MGF) of𝑋 is given by

𝑀𝑋 (𝑡) = 2𝜔𝛾𝑗/𝜂
⋅ ∞∑
𝑘=1

∞∑
𝑛=0

𝑛∑
𝑗=0

𝑗/𝜂∑
𝑖=0

(𝑛𝑗)(𝑗𝜂𝑖 )
𝑒𝑘𝑘𝑛−𝑗+1𝑡𝑗 (−1)𝑖+𝑗+𝑘+𝑛+𝑗/𝜂[𝑖 + 𝜔 (𝑛 − 𝑗 + 1)] 𝑛! ,

(16)

where 𝑗/𝜂 ∈ N.

3.6. Order Statistics. Let𝑋1, 𝑋2, . . . , 𝑋𝑚 be a random sample
of size 𝑚 from a distribution with PDF 𝑔(𝑥) and CDF 𝐺(𝑥)
and 𝑋1:𝑚, 𝑋2:𝑚, . . . , 𝑋𝑚:𝑚 are the analogous order statistics.
The PDF and CDF of𝑋𝑟:𝑚, 1 ⩽ 𝑟 ⩽ 𝑚, are

𝑔𝑟:𝑚 (𝑥) = 1𝐵 (𝑟,𝑚 − 𝑟 + 1)𝑔 (𝑥) [𝐺 (𝑥)]𝑟−1
⋅ [1 − 𝐺 (𝑥)]𝑚−𝑟 = 1𝐵 (𝑟,𝑚 − 𝑟 + 1)𝑔 (𝑥)
⋅ 𝑚−𝑟∑
𝑖=0

(𝑚𝑗)(𝑚 − 𝑟
𝑖 ) (−1)𝑖 [𝐺 (𝑥)]𝑖+𝑟−1 ,

𝐺𝑟:𝑚 = 𝑚∑
𝑘=𝑟

(𝑚𝑘) [𝐺 (𝑥)]𝑘 [1 − 𝐺 (𝑥)]𝑚−𝑘 ,

(17)

where 𝐵(𝑟,𝑚 − 𝑟 + 1) is the beta function.
Theorem 4. Let 𝑔(𝑥) and 𝐺(𝑥) be the PDF and CDF of
random variable 𝑋∼HLGW(𝜔, 𝜂, 𝛾); then the PDF of𝑋𝑟:𝑚 is

𝑔𝑟:𝑚 (𝑥) = 2𝜔𝜂𝛾𝐶𝑟:𝑚𝑚−𝑟∑
𝑖=0

(𝑚 − 𝑟
𝑖 ) (−1)𝑖

⋅ 𝑥𝜂−1 (1 + 𝛾𝑥𝜂)𝜔−1 exp [1 − (1 + 𝛾𝑥𝜂)𝜔]
[1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔)]2

× [1 − exp (1 − (1 + 𝛾𝑥𝜂)𝜔)
1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔)]

𝑖+𝑟−1

,
(18)

where 𝐶𝑟:𝑚 = 𝐵[(𝑟, 𝑚 − 𝑟 + 1)]−1.
The CDF corresponding to (18) is

𝐺𝑟:𝑚 (𝑥) = 𝑚∑
𝑘=𝑟

(𝑚𝑘)[1 − exp (1 − (1 + 𝛾𝑥𝜂)𝜔)
1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔)]

𝑘

⋅ [ 2 exp (1 − (1 + 𝛾𝑥𝜂)𝜔)
1 + exp (1 − (1 + 𝛾𝑥𝜂)𝜔)]

𝑚−𝑘

.
(19)

3.7. L-Moments. Suppose that we have a random sample𝑋1, 𝑋2, . . . , 𝑋𝑛 collected from 𝑋∼HLGW(𝜔, 𝜂, 𝛾). The 𝑟th
population L-moments are as follows:

𝐸 [𝑋𝑟:𝑛] = ∫∞
0

𝑥𝑔 (𝑋𝑟:𝑛) 𝑑𝑥 = ∫∞
0

𝑥𝑛−𝑟∑
𝑖=0

(𝑛 − 𝑟
𝑖 ) (−1)𝑖

⋅ 2𝜔𝜂𝛾𝐶𝑟:𝑛𝑥𝜂−1 (1 + 𝛾𝑥𝜂)𝜔−1 𝑒1−(1+𝛾𝑥𝜂)𝜔
(1 + 𝑒1−(1+𝛾𝑥𝜂)𝜔)2

× (1 − 𝑒1−(1+𝛾𝑥𝜂)𝜔1 + 𝑒1−(1+𝛾𝑥𝜂)𝜔 )
𝑖+𝑟−1 𝑑𝑥.

(20)

We use the substitution 𝑦 = 1+𝛾𝑥𝜂, so 𝑥 = ((𝑦−1)/𝛾)1/𝜂 and𝑑𝑥 = (1/𝛾𝜂)((𝑦 − 1)/𝛾)1/𝜂−1𝑑𝑦, where 1/𝜂 ∈ N. Therefore, we
get
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𝐸 [𝑋𝑟:𝑛] = 2𝜔𝐶𝑟:𝑛𝑛−𝑟∑
𝑖=0

𝑖+𝑟−1∑
𝑘=0

∞∑
𝑗=0

1/𝜂∑
𝑙=0

∞∑
𝑚=0

(𝑛 − 𝑟
𝑖 )(𝑖 + 𝑟 − 1

𝑘 )(− (𝑖 + 𝑟 + 1)
𝑗 )(1𝜂𝑙 ) × (−1𝛾 )1/𝜂

⋅ (−1)𝑗+𝑘+𝑙+𝑚 𝑒𝑗+𝑘+1 (𝑗 + 𝑘 + 1)𝑚𝑚! ∫∞
1

𝑦𝑙+𝑚𝜔+𝜔−1𝑑𝑦.
(21)

By working out the integration, we arrive at the following
formula:

𝐸 [𝑋𝑟:𝑛]
= 2𝜔𝑛−𝑟∑
𝑖=0

𝑖+𝑟−1∑
𝑘=0

∞∑
𝑗=0

1/𝜂∑
𝑙=0

∞∑
𝑚=0

(−1𝛾 )1/𝜂 (𝑗 + 𝑘 + 1)𝑚 𝑒𝑗+𝑘+1𝑙 + 𝜔 (𝑚 + 1)𝑚! 𝐴 𝑖𝑗𝑘𝑙, (22)

where

𝐴 𝑖𝑗𝑘𝑙 = 𝐶𝑟:𝑛 (−1)𝑗+𝑘+𝑙+𝑚+1
⋅ (𝑛 − 𝑟

𝑖 )(𝑖 + 𝑟 − 1
𝑘 )(− (𝑖 + 𝑟 + 1)

𝑗 )(1𝜂𝑙 ) . (23)

The relation (22) can be used to find out the first L-moments
of𝑋𝑟:𝑛; that is, for 𝑟 = 𝑛 = 1 we get 𝜆1 = 𝐸[𝑋1 : 1].

𝜆1 = 2𝜔∞∑
𝑗=0

∞∑
𝑚=0

1/𝜂∑
𝑙=0

(−2𝑗 )(1𝜂𝑙 )(−1𝛾 )1/𝜂

⋅ (−1)𝑗+𝑙+𝑚+1 𝑒𝑗+1 (𝑗 + 1)𝑚(𝑙 + 𝜔 (𝑚 + 1))𝑚! .
(24)

The other twomoments, 𝜆2 and 𝜆3, are, respectively, given by
𝜆2 = 4𝜔∞∑

𝑗=0

1/𝜂∑
𝑙=0

∞∑
𝑚=0

(1𝜂𝑙 )
(−1/𝛾)1/𝜂(𝑙 + 𝜔 (𝑚 + 1))𝑚!

× [ 1∑
𝑖=0

𝑖∑
𝑘=0

(1𝑖)(𝑖𝑘)(−2 − i
𝑗 ) (−1)𝑗+𝑘+𝑙+𝑚+1

⋅ 𝑒𝑗+𝑘+𝑙 (𝑗 + 𝑘 + 𝑙)𝑚 + 1∑
𝑘=0

(1𝑘)(−3𝑗 ) (−1)𝑗+𝑘+𝑙+𝑚+1

⋅ 𝑒𝑗+𝑘+1 (𝑗 + 𝑘 + 1)𝑚] .

𝜆3 = 2𝜔∞∑
𝑗=0

1/𝜂∑
𝑙=0

∞∑
𝑚=0

(1𝜂𝑙 )

⋅ (−1/𝛾)1/𝜂 (−1)𝑗+𝑘+𝑙+𝑚+1 𝑒𝑗+𝑘+1 (𝑗 + 𝑘 + 1)𝑚(𝑙 + 𝜔 (𝑚 + 1))𝑚!

× [ 2∑
𝑖=0

𝑖∑
𝑘=0

(2𝑖)(𝑖
𝑘)(−2 − 𝑖

𝑗 )

+ 3! 1∑
𝑖=0

𝑖+1∑
𝑘=0

(1𝑖)(𝑖 + 1
𝑘 )(−3 − 𝑖

𝑗 )

+ 3 2∑
𝑘=0

(2𝑘)(−4 − 𝑖
𝑗 )]

(25)

3.8. Quantile Function. For 𝑋 to be a random variable with
the PDF (6), the quantile function 𝑄(𝑢) is

𝑄 (𝑢) = inf {𝑥 ∈ 𝑅 : 𝐺 (𝑥) ⩾ 𝑢} , where 0 < 𝑢 < 1. (26)

The above relation is used to find the quantile function of
HLGW distribution. Therefore, we have

𝑄 (𝑢) = [1𝛾 {(1 − ln(1 − 𝑢1 + 𝑢))
1/𝜔 − 1}]1/𝜂 . (27)

Hence, the generator for 𝑋 can be given by the following
algorithm:

(1) Generate 𝑈∼uniform(0, 1).
(2) Use (27) and obtain an outcome of𝑋 by𝑋 = 𝑄(𝑈).
By using the quantile function (27), we can examine the

Bowley skewness [14] and Moors kurtosis [15] for HLGW as
follows:

𝑠𝑘 = 𝑄 (3/4) + 𝑄 (1/4) − 2𝑄 (2/4)𝑄 (3/4) − 𝑄 (1/4)
𝜅 = 𝑄 (3/8) − 𝑄 (1/8) + 𝑄 (7/8) − 𝑄 (5/8)𝑄 (3/4) − 𝑄 (1/4) .

(28)

Table 1 illustrates the values of skewness and kurtosis for the
HLGWmodel for some values of 𝜔, 𝜂, and 𝛾. It can be noted
that the skewness and kurtosis are free of parameter 𝛾 and
they are decreasing functions of the parameters 𝜔 and 𝜂.
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Table 1: Skewness and kurtosis of HLGW for different values of 𝜔, 𝜂, and 𝛾.
𝛾 𝜔 𝜂 = 0.5 𝜂 = 1.0 𝜂 = 2.0𝑠𝑘 𝑘𝑢 𝑠𝑘 𝑘𝑢 𝑠𝑘 𝑘𝑢

0.5

0.5 0.6530 2.4642 0.3366 1.4540 0.1303 1.2492
1.0 0.4634 1.6286 0.1808 1.2395 0.0197 1.2074
1.5 0.3913 1.4463 0.1264 1.1952 −0.0196 1.2045
2.0 0.3541 1.3700 0.0989 1.1779 −0.0396 1.2054
2.5 0.3314 1.3286 0.0824 1.1691 −0.0517 1.2067

1.5

0.5 0.6530 2.4642 0.3366 1.4540 0.1303 1.2492
1.0 0.4634 1.6286 0.1808 1.2395 0.0197 1.2074
1.5 0.3913 1.4463 0.1264 1.1952 −0.0196 1.2045
2.0 0.3541 1.3700 0.0989 1.1779 −0.0396 1.2054
2.5 0.3314 1.3286 0.0824 1.1691 −0.0517 1.2067

2.0

0.5 0.6530 2.4642 0.3366 1.4540 0.1303 1.2492
1.0 0.4634 1.6286 0.1808 1.2395 0.0197 1.2074
1.5 0.3913 1.446 0.1264 1.1952 −0.0196 1.2045
2.0 0.3541 1.3700 0.0989 1.1779 −0.0396 1.2054
2.5 0.3314 1.3286 0.0824 1.1691 −0.0517 1.2067

3.0

0.5 0.6530 2.4642 0.3366 1.4540 0.1303 1.2492
1.0 0.4634 1.6286 0.1808 1.2395 0.0197 1.2074
1.5 0.3913 1.4463 0.1264 1.1956 −0.0196 1.2045
2.0 0.3541 1.3700 0.0989 1.1779 −0.0396 1.2054
2.5 0.3314 1.3286 0.0824 1.1691 −0.0517 1.2067

4. Estimation

The log-likelihood function is expressed as

ℓ (𝑥; 𝜔, 𝜂, 𝛾)= 𝑛 ln (2) + 𝑛 ln (𝜔) + 𝑛 ln (𝜂) + 𝑛 ln (𝛾)
+ (𝜂 − 1) 𝑛∑

𝑖=1

ln𝑥𝑖 + (𝜔 − 1) 𝑛∑
𝑖=1

ln (1 + 𝛾𝑥𝜂𝑖 )
+ 𝑛∑
𝑖=1

(1 − (1 + 𝛾𝑥𝜂𝑖 )𝜔)
− 2 𝑛∑
𝑖=1

ln [1 + exp (1 − (1 + 𝛾𝑥𝜂𝑖 )𝜔)] .

(29)

Taking the first partial derivatives of ℓ(𝑥; 𝜔, 𝜂, 𝛾) with respect
to 𝜔, 𝜂, and 𝛾 and letting them equal zero, we obtain a
nonlinear system of equations.

𝜕ℓ𝜕𝜔 = 𝑛𝜔 + 𝑛∑
𝑖=1

ln (1 + 𝛾𝑥𝜂𝑖 )
− 𝑛∑
𝑖=1

(1 + 𝛾𝑥𝜂𝑖 )𝜔 ln (1 + 𝛾𝑥𝜂𝑖 )
+ 2 𝑛∑
𝑖=1

(1 + 𝛾𝑥𝜂𝑖 )𝜔 ln (1 + 𝛾𝑥𝜂𝑖 ) 𝑒1−(1+𝛾𝑥𝜂𝑖 )𝜔1 + 𝑒1−(1+𝛾𝑥𝜂𝑖 )𝜔 = 0.
𝜕ℓ𝜕𝜂 = 𝑛𝜂 + 𝑛∑

𝑖=1

ln𝑥𝑖 + (𝜔 − 1) 𝑛∑
𝑖=1

𝛾𝑥𝜂𝑖 ln𝑥𝑖1 + 𝛾𝑥𝜂𝑖

− 𝜔𝛾 𝑛∑
𝑖=1

𝑥𝜂𝑖 ln𝑥𝑖 (1 + 𝛾𝑥𝜂𝑖 )𝜔−1

+ 2𝜔 𝑛∑
𝑖=1

𝛾𝑥𝜂𝑖 ln𝑥𝑖 (1 + 𝛾𝑥𝜂𝑖 )𝜔−1 𝑒1−(1+𝛾𝑥𝜂𝑖 )𝜔1 + 𝑒1−(1+𝛾𝑥𝜂𝑖 )𝜔 = 0
𝜕ℓ𝜕𝛾 = 𝑛𝛾 + (𝜔 − 1) 𝑛∑

𝑖=1

𝑥𝜂𝑖1 + 𝛾𝑥𝜂𝑖 − 𝜔 𝑛∑
𝑖=1

(1 + 𝛾𝑥𝜂𝑖 )𝜔−1 𝑥𝜂𝑖
+ 2𝜔 𝑛∑
𝑖=1

𝑥𝜂𝑖 (1 + 𝛾𝑥𝜂𝑖 )𝜔−1 𝑒1−(1+𝛾𝑥𝜂𝑖 )𝜔1 + 𝑒1−(1+𝛾𝑥𝜂𝑖 )𝜔 = 0
(30)

The above equations cannot be solved analytically, and
statistical software can be used to solve them numerically via
iterative methods and get the maximum likelihood estimate
(MLE) of 𝜔, 𝜂, and 𝛾.
4.1. Asymptotic Distribution. In order to have approximate
confidence intervals (CIs) of the involved parameters, we
require the estimated values of the elements of variance-
covariance matrix 𝑉 of the MLEs. The variance-covariance
matrix 𝑉 is estimated by the observed information matrix 𝑉,
where

�̂� = −[[
[
𝐼11 𝐼12 𝐼13𝐼21 𝐼22 𝐼23𝐼31 𝐼32 𝐼33

]]
]
, (31)
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Table 2: Bias and MSE for the HLGW parameters.

𝜔 𝜂 𝛾 𝑛 Bias (𝜔) MSE (𝜔) Bias (𝜂) MSE (𝜂) Bias (𝛾) MSE (𝛾)

1.5 5 0.5

20 0.2103 0.0392 1.1935 3.2415 0.3454 0.9104
40 0.1732 0.0314 1.1431 2.9381 0.2931 0.5830
60 0.1526 0.0283 1.1063 2.4897 0.2480 0.3148
80 0.1473 0.0231 0.9733 2.1738 0.1812 0.1908
100 0.1332 0.0207 0.8910 1.9318 0.1317 0.0813
250 0.1171 0.0113 0.5337 1.3877 0.0811 0.0031
500 0.1010 0.0061 0.2701 1.0814 0.0213 0.0008

1.5 10 1

20 0.3118 0.0433 2.6754 15.9312 0.6125 10.2311
40 0.2918 0.0395 2.3487 12.3471 0.2451 7.6401
60 0.2554 0.0365 2.1174 9.2877 0.1615 4.3881
80 0.2375 0.0335 2.0968 6.2514 0.0941 1.9722
100 0.2114 0.0317 2.0532 4.9934 0.0532 1.5531
250 0.1783 0.0307 0.0065 1.9951 0.0113 0.4899
500 0.1265 0.0299 0.0013 0.2164 0.0095 0.0989

where 𝐼𝑖𝑗, 𝑖, 𝑗 = 1, 2, 3, are the second partial derivatives of
(29) with respect to𝜔, 𝜂, and 𝛾.They are the entries of Fisher’s
information matrix analogous to 𝜔, 𝜂, and 𝛾, respectively,
which are given in Appendix. The diagonal of matrix in (31)
gives the variances of the MLEs of 𝜔, 𝜂, and 𝛾, respectively.

Approximation by a standard normal (SN) distribution
of the distribution of 𝑍𝜃𝑘 = (𝜃𝑘 − 𝜃𝑘)/√V̂ar(𝜃𝑘), where 𝜃 =(�̂�, 𝜂, 𝛾), results in an approximate 100(1 − 𝜗)% confidence
interval for 𝜃𝑘 as

𝜃𝑘 ± 𝑧𝜗/2√V̂ar (𝜃𝑘), 𝑗 = 1, 2, 3, (32)

where 𝑧𝜗/2 is the upper (𝜗/2)100th percentile of SN distribu-
tion. We can use the likelihood ratio (LR) test to compare
the fit of the HLGW distribution with its submodels for a
given data set. For example, to test 𝛾 = 0, the LR statistic is
w = 2[ln(𝐿(�̂�, 𝜂, 𝛾))− ln(𝐿(�̃�, 𝜂, 0))], where �̂�, 𝜂, and 𝛾 are the
unrestricted estimates and �̃�, 𝜂 are the restricted estimates.
The LR test rejects the null hypothesis if w > 𝜒2𝜖 , where 𝜒2𝜖
denotes the upper 100 ∈ % point of the 𝜒2-distribution with
1 degree of freedom.

5. Simulation Study

The MLEs can be checked out by a simulation study. The
following steps can be followed:

(1) By using (6), 5,000 samples of size 𝑛 are achieved.
The variates of the HLGW distribution are developed
using

𝑋 = [1𝛾 {(1 − ln(1 − 𝑢1 + 𝑢))
1/𝜔 − 1}]1/𝜂 , (33)

for 𝑢∼𝑈(0, 1).
(2) The MLEs are computed for the samples, say Θ̂𝑗 =(�̂�𝑗, 𝜂𝑗, 𝛾𝑗) for 𝑗 = 1, 2, . . . , 5,000.

(3) The mean square errors (MSEs) are calculated for
every parameter.

The above steps were repeated for 𝑛 = 20, 40, 60, 80, 100, 250,
and 500 with 𝜔 = 1.5, 𝜂 = 5, 𝛾 = 0.5 and 𝜔 = 1.5, 𝜂 =10, 𝛾 = 1. Table 2 shows the bias and MSEs of 𝜔, 𝜂, and 𝛾. It
can be deduced through the table that MSEs for individual
parameters fall to zero when sample size increases.

6. Applications

This section deals with the applications of the HLGWmodel
to two lifetime data sets, that is, the data of 213 observed
values of intervals between failures of air conditioning system
of Boeing 720 jet airplanes and the data ofwaiting times (min)
of 100 bank customers. Estimates of the parameters ofHLGW
distribution (standard errors in parentheses) and Cramer-
von Mises 𝑊∗, Anderson Darling 𝐴∗, and K-S statistics are
presented for the data sets. In general, the smaller the values
of 𝑊∗, 𝐴∗, and K-S statistics, the better the fit. We compare
the proposed model with other models for the same data sets
to check the potentiality and flexibility of new model.

6.1. Air Conditioning Systems Failure Data. The first appli-
cation concerns 213 observed values of intervals between
failures of air conditioning system of Boeing 720 jet airplanes
firstly analysed by Proschan [16]. We have compared the
performance of the HLGW distribution with its submodels
as well as with some other well-known models given below.

TheWeibull Poisson (WP) distribution by Lu and Shi [17]
with the PDF:

𝑔 (𝑡; 𝛼, 𝛽, 𝜆) = 𝛼𝛽𝜆𝑡𝛼−11 − 𝑒−𝜆 𝑒−𝜆−𝛽𝑡𝛼+𝜆 exp(−𝛽𝑡𝛼), 𝑡 > 0, (34)

for 𝛼, 𝛽, and 𝜆 > 0.
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Table 3: Estimates of models for the air conditioning systems failure data.

Distributions Estimates −2ℓ(𝜃) Statistics�̂� 𝜂 𝛾 𝑊∗ 𝐴∗ K-S 𝑝 value

HLGW 0.3470 1.3814 0.0296 2349.674 0.0339 0.2587 0.0394 0.8957
(0.0885) (0.2462) (0.0127)

HLW 0.7804 0.0442 2360.630 0.2099 1.2851 0.0577 0.4770
(0.0426) (0.0098)

HLE 0.0144 2383.325 0.3446 2.0606 0.1407 0.0004
(0.0009)

HLNH 0.5596 0.0482 2352.930 0.0850 0.5534 0.0445 0.7926
(0.0515) (0.0108)

Weibull 0.0158 0.9226 2355.171 0.1373 0.8552 0.0514 0.6270
(0.0038) (0.0459)

CWG 0.2890 0.0079 4.1050 2362.329 0.1519 1.0253 0.0502 0.6563
(0.0238) (0.0032) (2.8847)

WP 0.4015 0.4967 −8.0978 2351.850 0.0440 0.3305 0.0412 0.8624
(0.0584) (0.1838) (2.5766)

The complementary Weibull geometric (CWG) distribu-
tion by Tojeiro et al. [18] with the PDF:

𝑔 (𝑡) = 𝛾𝜆𝛾𝜃𝑡𝛾−1𝑒−(𝜆𝑡)𝛾
[𝜃 + (1 − 𝜃) 𝑒−(𝜆𝑡)𝛾]2 , (35)

for 𝑡, 𝜆, 𝛾, and 𝜃 > 0.
The Weibull (W) distribution with PDF:

𝑔 (𝑦; 𝛽, 𝛾) = 𝛽𝛾𝑦𝛾−1 exp (−𝛽𝑦𝛾) , (36)

for 𝑦 > 0, 𝛽 > 0, and 𝛾 > 0.
The estimated values of the parameters with standard

errors (SE) are found using the method of maximum like-
lihood estimation. Table 3 gives the estimated values of the
parameters along with their standard errors and the test
statistics have the smallest values of𝑊∗,𝐴∗, and K-S statistic
for the data set under HLGW distribution as compared to
the other models. Based on these values, it is concluded that
HLGW distribution is the best model as compared to the
other models to fit this data set. This conclusion can also
be made by the CDF plots for empirical and fitted HLGW
distributions using data of 213 values of intervals between
failures of air conditioning system in Figure 3(a) for the data.
In Figure 3(b), the TTT plot is shown for the data set. The
failure rate shape for this data set is decreasing, as its TTT
plot is convex.

The LR test statistics of hypotheses 𝐻0: HLW versus 𝐻𝑎:
HLGW, 𝐻0: HLE versus 𝐻𝑎: HLGW, and 𝐻0: HLNH versus𝐻𝑎: HLGW are 10.956 (𝑝 value = 0.00093), 33.651 (𝑝 value
= 0.00001), and 3.256 (𝑝 value = 0.071163), respectively. We
conclude that there is a significant difference between HLW
andHLGWdistributions, HLE andHLGW, and also between
HLNH and HLGW distributions at the 10% level.

6.2. Waiting Time Data. The data encountered in the second
application involves data of waiting times (min) of 100
bank customers used by Bidram and Nadarajah [4]. We

have compared the performance of the HLGW distribution
with its submodels as well as with some other well-known
distributions, such as the Weibull and the complementary
Weibull geometric distribution. We also use the LR test to
compare the HLGW distribution and its submodels.

The estimated values of the parameters, the standard
errors, and the goodness-of-fit test statistics𝑊∗,𝐴∗, and K-S
statistic for the data of waiting time are given in Table 4.These
tables illustrate that HLGW model shows a good fit for this
data set as compared to the other distributions.The CDF plot
for empirical and HLGW distributions using the data set of
waiting time in Figure 4(a) also confirms the fitness ofHLGW
distribution. Figure 4(b) expresses the TTT plot for this data
set. Since the TTT plot of the data set is concave, the data set
has increasing hazard rate shape. The LR test statistics of the
hypotheses𝐻0: HLW versus𝐻𝑎: HLGW,𝐻0: HLE versus𝐻𝑎:
HLGW, and𝐻0: HLNH versus𝐻𝑎: HLGW are 5.501 (𝑝 value
= 0.019006), 11.85 (𝑝 value = 0.000577), and 9.271 (𝑝 value =0.002328).TheHLGWdistribution is significantly better than
HLW, HLE, and HLNH distributions. There is no difference
between HLGW and Weibull distribution based on the LR
test; however the goodness-of-fit statistics 𝑊∗, 𝐴∗, and K-S
statistic clearly show that HLGW distribution is better than
Weibull distribution for the data.

7. Conclusion

Wehave proposed a three-parameter lifetime generalized dis-
tribution, referred to as the half-logistic generalized Weibull
(HLGW) distribution. The HLGW distribution has three
other distributions like the half-logistic exponential, the half-
logistic Weibull, and the half-logistic Nadarajah-Haghighi
distributions, as its submodels.Thenewmodel exhibits a vari-
ety of shapes of the failure rate function, that is, increasing,
increasing and then constant, decreasing, bathtub, unimodal,
and decreasing-increasing-decreasing (DID) shapes. Various
statistical properties of the HLGW distribution are derived
and studied in detail. We estimated the parameters involved
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Figure 3: TTT plot and CDF plot for the air conditioning systems failure data.

Table 4: Estimates of models for the waiting time data.

Distributions Estimates −2ℓ(𝜃) Statistics�̂� 𝜂 𝛾 𝑊∗ 𝐴∗ K-S 𝑝 value

HLGW 0.3610 2.1425 0.0773 634.226 0.0176 0.1277 0.0368 0.9992
(0.1268) (0.5257) (0.0340)

HLW 1.2336 0.0772 639.730 0.0934 0.5740 0.0627 0.8267
(0.0978) (0.0216)

HLE 0.1446 646.076 0.0583 0.3624 0.1213 0.1053
(0.0119)

HLNH 1.4044 0.0846 643.497 0.1032 0.6355 0.0877 0.4257
(0.3411) (0.0316)

Weibull 0.0305 1.4582 637.461 0.0629 0.3961 0.0577 0.8938
(0.0095) (0.1089)

CWG 0.5066 0.0126 2.2254 645.742 0.0745 0.4653 0.0485 0.9726
(0.0779) (0.0097) (1.7142)

in themodel by using themethod ofMLEs. Two real data sets
are used to illustrate the flexibility, potentiality, andusefulness
of HLGW distribution. It is concluded that HLGW model
delivers better fitting than the other lifetime models and
we hope that HLGW distribution may attract wider range
of practical applications and this research may serve as a
reference and benefit future research in the subject field of
study.

Appendix

Fisher’s Information Matrix

The elements of Fisher’s information matrix analogous to 𝜔,𝜂, and 𝛾:

𝜕2ℓ𝜕𝜔2 = − 𝑛𝜔2 −
𝑛∑
𝑖=1

𝐴𝜔𝑖 (ln𝐴 𝑖)2

+ 2 𝑛∑
𝑖=1

(ln𝐴 𝑖)2 𝐴𝜔𝑖 𝑒1−𝐴𝜔𝑖(1 + 𝑒1−𝐴𝜔𝑖 )2 (1 − 𝐴𝜔𝑖 + 𝑒1−𝐴𝜔𝑖 )
𝜕2ℓ𝜕𝜔𝜕𝜂 = 𝜕2𝜕𝜂𝜕𝜔 = 𝑛∑

𝑖=1

𝛾𝑥𝜂𝑖 ln𝑥𝑖𝐴 𝑖 [1 − 𝐴𝜔𝑖 (1 + 𝜔 ln𝐴 𝑖)
+ 2𝐴𝜔𝑖 𝑒1−𝐴𝜔𝑖1 + 𝑒1−𝐴𝜔𝑖
+ 2𝜔𝐴𝜔𝑖 ln𝐴 𝑖𝑒1−𝐴𝜔𝑖(1 + 𝑒1−𝐴𝜔𝑖 )2 (1 − 𝐴𝜔𝑖 + 𝑒1−𝐴𝜔𝑖 )]
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Figure 4: TTT plot and CDF plot for the waiting time data.

𝜕2ℓ𝜕𝜔𝜕𝛾 = 𝜕2ℓ𝜕𝛾𝜕𝜔 = 𝑛∑
𝑖=1

𝑥𝜂𝑖𝐴 𝑖 [1 − 𝐴𝜔𝑖 (1 + 𝜔 ln𝐴 𝑖)
+ 2𝐴𝜔𝑖 𝑒1−𝐴𝜔𝑖1 + 𝑒1−𝐴𝜔𝑖
+ 2𝜔𝐴𝜔𝑖 ln𝐴 𝑖𝑒1−𝐴𝜔𝑖(1 + 𝑒1−𝐴𝜔𝑖 )2 (1 − 𝐴𝜔𝑖 + 𝑒1−𝐴𝜔𝑖 )]

𝜕2ℓ𝜕𝜂2 = − 𝑛𝜂2 +
𝑛∑
𝑖=1

𝛾𝑥𝜂𝑖 (ln𝑥𝑖)2𝐴 𝑖 [−𝜔𝐴𝜔𝑖 + (𝜔 − 1)
⋅ (1 − 𝛾𝑥𝜂𝑖𝐴 𝑖 −

𝜔𝐴𝜔𝑖 𝛾𝑥𝜂𝑖𝐴 𝑖 + 2𝜔𝐴𝜔𝑖 𝛾𝑥𝜂𝑖 𝑒1−𝐴𝜔𝑖𝐴 𝑖 (1 + 𝑒1−𝐴𝜔𝑖 ) )
+ 2𝜔𝐴𝜔𝑖 𝑒1−𝐴𝜔𝑖1 + 𝑒1−𝐴𝜔𝑖 (1 − 𝜔𝐴𝜔𝑖 𝛾𝑥𝜂𝑖𝐴 𝑖 (1 + 𝑒1−𝐴𝜔𝑖 ))]

𝜕2ℓ𝜕𝜂𝜕𝛾 = 𝜕2ℓ𝜕𝛾𝜕𝜂 = 𝑛∑
𝑖=1

𝑥𝜂𝑖 ln𝑥𝑖𝐴 𝑖 [−𝜔𝐴𝜔𝑖 + (𝜔 − 1)
⋅ (1 − 𝛾𝑥𝜂𝑖𝐴 𝑖 −

𝜔𝐴𝜔𝑖 𝛾𝑥𝜂𝑖𝐴 𝑖 + 2𝜔𝐴𝜔𝑖 𝛾𝑥𝜂𝑖 𝑒1−𝐴𝜔𝑖𝐴 𝑖 (1 + 𝑒1−𝐴𝜔𝑖 ) )
+ 2𝜔𝐴𝜔𝑖 𝑒1−𝐴𝜔𝑖1 + 𝑒1−𝐴𝜔𝑖 (1 − 𝜔𝐴𝜔𝑖 𝛾𝑥𝜂𝑖𝐴 𝑖 (1 + 𝑒1−𝐴𝜔𝑖 ))]

𝜕2ℓ𝜕𝛾2 = − 𝑛𝛾2 −
𝑛∑
𝑖=1

𝑥2𝜂𝑖𝐴2𝑖 [(𝜔 − 1)

⋅ (1 + 𝜔𝐴𝜔𝑖 − 2𝜔𝐴𝜔𝑖 𝑒1−𝐴𝜔𝑖1 + 𝑒1−𝐴𝜔𝑖 ) + 2𝜔2𝐴2𝜔𝑖 𝑒1−𝐴𝜔𝑖(1 + 𝑒1−𝐴𝜔𝑖 )2 ] .
(A.1)
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The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM) is tracked from a given observational
sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce
an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a
useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible
optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction
approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order
to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially
with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model
parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based
order-transformation forward algorithm (EOTFA) to compute the optimal state sequence of any generalized HHMM.This EOTFA
algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based
decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on
the observational sequence and it requires𝑂(𝑇�̃�2) calculations, where �̃� is the number of states in an equivalent first-order model
and 𝑇 is the length of observational sequence.

1. Introduction

State sequence for the Hidden Markov Model (HMM) is
invisible but we can track the most likelihood state sequence
based on the model parameter and a given observational
sequence.The restored state has many applications especially
when the hidden state sequence has meaningful interpre-
tations for making predictions. For example, Ciriza et al.
[1] have determined the optimal printing rate based on the
HMM model parameter and an optimal time-out based on
the restored states.The classical Viterbi algorithm is the most
common technique for tracking state sequence from a given
observational sequence [2]. However, it does not measure
the uncertainty present in the solution. Proakis and Salehi
[3] proposed a method for measuring the error of a single
state but this method is unable to measure the error of

the entire state sequence. Hernando et al. [4] proposed a
method of using entropy formeasuring the uncertainty of the
state sequence of a first-order HMM tracked from a single
observational sequence with a length of 𝑇. The method is
based on the forward recursion algorithm integrated with
entropy for computing the optimal state sequence. Mann and
McCallum [5] developed an algorithm for computing the
subsequent constrained entropy of HMM which is similar
to the probabilistic model conditional random fields (CRF).
Ilic [6] developed an algorithm based on forward-backward
recursion over the entropy semiring, namely, the Entropy
Semiring Forward-Backward (ESRFB) algorithm for a first-
order HMM with a single observational sequence. ESRFB
has lower memory requirement as compared with Mann and
McCallum’s algorithm for subsequent constrained entropy
computation.
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This paper is organized as follows. In Section 2, we
define the generalized HHMM and present the extended
entropy-based algorithm for computing the optimal state
sequence developed by Hernando et al. [4] from a first-order
to a generalized HHMM. In Section 3, we first review the
high-order transformation algorithm proposed byHadar and
Messer [7] and then we introduce EOTFA, an entropy-based
order-transformation forward algorithm for computing the
optimal state sequence for any generalized HHMM. We
discuss future research in Section 4 on entropy associated
with state sequence of a generalized high-order HMM.

2. Entropy-Based Decoding Algorithm with
an Extended Approach

The uncertainty appearing in a HHMM can be quantified
by entropy. This concept is applied for quantifying the
uncertainty of the state sequence tracked from a single
observational sequence and model parameters. The entropy
of the state sequence equals 0 if there is only one possible state
sequence that could have generated the observation sequence
as there is no uncertainty in the solution. The higher this
entropy the higher the uncertainty involved in tracking the
hidden state sequence. We extend the entropy-based Viterbi
algorithm developed by Hernando et al. [4] for computing
the optimal state sequence from a first-order HMM to a high-
orderHMM, that is, 𝑘th-order, where 𝑘 ≥ 2.The state entropy
in HHHM is computed recursively for the reason of reducing
the computational complexity from 𝑂(𝑁𝑘𝑇) which used
direct evaluation method to 𝑂(𝑇𝑁𝑘+1) in a HHMM where𝑁 is the number of states, 𝑇 is the length of observational
sequence, and 𝑘 is the order of the HiddenMarkovModel. In
terms of memory space, the entropy-based Viterbi algorithm
is more efficient which requires 𝑂(𝑁𝑘+1) as compared to
the classical Viterbi algorithm which requires𝑂(𝑇𝑁𝑘+1). The
memory space for the classical Viterbi algorithm is dependent
on the length of the observational sequence due to the
involvement of the process of “back tracking” in computing
the optimal state sequence.

Before introducing the extended entropy-based Viterbi
algorithm, we define a generalized high-order HMM, that is,𝑘th-order HMM, where 𝑘 ≥ 2. These are followed by the
definition of forward and backward probability variables for
a generalized high-order HMM.These variables are required
for computing the optimal state sequence in our decoding
algorithm.

2.1. Elements of HHMM. HHMM involves two stochastic
processes, namely, hidden state process and observation
process.Thehidden state process cannot be directly observed.
However, it can be observed through the observation process.
The observational sequence is generated by the observation
process incorporated with the hidden state process. For a
discrete HHMM, it must satisfy the following conditions.

Thehidden state process {𝑞𝑡}𝑇𝑡=2−𝑘 is the 𝑘th-orderMarkov
chain that satisfies

𝑃 (𝑞𝑡 | {𝑞𝑙}𝑙<𝑡) = 𝑃 (𝑞𝑡 | {𝑞𝑙}𝑡−1𝑙=𝑡−𝑘) , (1)

where 𝑞𝑡 denotes the hidden state at time 𝑡 and 𝑞𝑡 ∈ 𝑆, where𝑆 is the finite set of hidden states.
The observation process {𝑜𝑡}𝑇𝑡=1 is incorporated with

the hidden state process according to the state probability
distribution that satisfies

𝑃 (𝑜𝑡 | {𝑜𝑙}𝑙<𝑡 , {𝑞𝑙}𝑙≤𝑡) = 𝑃 (𝑜𝑡 | {𝑞𝑙}𝑡𝑙=𝑡−𝑘+1) , (2)

where 𝑜𝑡 denotes the observation at time 𝑡 and 𝑜𝑡 ∈ 𝑉, where𝑉 is the finite set of observation symbols.
The elements for the 𝑘th-order discrete HMM are as

follows:

(i) Number of distinct hidden states,𝑁
(ii) Number of distinct observed symbols,𝑀
(iii) Length of observational sequence, 𝑇
(iv) Observational sequence, 𝑂 = {𝑜𝑡, 𝑡 = 1, 2, . . . , 𝑇}
(v) Hidden state sequence, 𝑄 = {𝑞𝑡, 𝑡 = 2 − 𝑘, . . . , 𝑇}
(vi) Possible values for each state, 𝑆 = {𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑁}
(vii) Possible symbols per observation, 𝑉 = {V𝑤, 𝑤 =1, 2, . . . ,𝑀}
(viii) Initial hidden state probability vector,𝜋𝑖1 , 𝜋𝑖1𝑖2 , . . . , 𝜋𝑖1 ⋅⋅⋅𝑖𝑘

where 𝜋𝑖1 is the probability that model will transit
from state 𝑠𝑖1 ,

𝜋𝑖1 = 𝑃 (𝑞1 = 𝑠𝑖1) ,
𝑁∑
𝑖1=1

𝜋𝑖1 = 1,
𝜋𝑖1 ≥ 0, 1 ≤ 𝑖1 ≤ 𝑁

(3)

𝜋𝑖1𝑖2 is the probability that model will transit from
state 𝑠𝑖1 and state 𝑠𝑖2 ,

𝜋𝑖1𝑖2 = 𝑃 (𝑞0 = 𝑠𝑖1 , 𝑞1 = 𝑠𝑖2) ,
𝑁∑
𝑖2=1

𝜋𝑖1𝑖2 = 1,
𝜋𝑖1𝑖2 ≥ 0, 1 ≤ 𝑖1, 𝑖2 ≤ 𝑁,

...

(4)

𝜋𝑖1 ⋅⋅⋅𝑖𝑘 is the probability that model will transit from
state 𝑠𝑖1 , state 𝑠𝑖2 , . . ., and state 𝑠𝑖𝑘 ,

𝜋𝑖1 ⋅⋅⋅𝑖𝑘 = 𝑃 (𝑞2−𝑘 = 𝑠𝑖1 , 𝑞3−𝑘 = 𝑠𝑖2 , . . . , 𝑞1 = 𝑠𝑖𝑘) ,
𝑁∑
𝑖𝑘=1

𝜋𝑖1 ⋅⋅⋅𝑖𝑘 = 1,
𝜋𝑖1 ⋅⋅⋅𝑖𝑘 ≥ 0, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁

(5)
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(ix) State transition probability matrix, 𝐴1 = {𝑎𝑖1𝑖2}, 𝐴2 ={𝑎𝑖1𝑖2𝑖3}, . . . , 𝐴𝑘 = {𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1},
where 𝐴𝑗−1 is the 𝑗-dimensional state transition
probability matrix and 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑗 , is the probability of a
transition to state 𝑠𝑖𝑗 given that it has had a transition
from state 𝑠𝑖1 to state 𝑠𝑖2 to ⋅ ⋅ ⋅ and to state 𝑠𝑖𝑗−1 where𝑗 = 2, . . . , 𝑘 + 1,

𝑎𝑖1 ⋅⋅⋅𝑖𝑗 = 𝑃 (𝑞𝑡 = 𝑠𝑖𝑗 | 𝑞𝑡−1 = 𝑠𝑖𝑗−1 , 𝑞𝑡−2 = 𝑠𝑖𝑗−2 , . . . , 𝑞𝑡−𝑗+1
= 𝑠𝑖1) ,
𝑁∑
𝑖𝑗=1

𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑗 = 1,
𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑗 ≥ 0

(6)

(x) Emission probability matrix, 𝐵1 = {𝑏𝑖1(V𝑚)}, 𝐵2 ={𝑏𝑖1𝑖2(V𝑚)}, . . . , 𝐵𝑘 = {𝑏𝑖1 ⋅⋅⋅𝑖𝑘(V𝑚)},
where𝐵1 is the two-dimensional emission probability
matrix and 𝑏𝑖1(V𝑚) is a probability of observing V𝑚 in
state 𝑠𝑖1 ,

𝑏𝑖1 (V𝑚) = 𝑃 (𝑜𝑡 = V𝑚 | 𝑞𝑡 = 𝑠𝑖1) ,
𝑀∑
𝑚=1

𝑏𝑖1 (V𝑚) = 1,
𝑏𝑖1 (V𝑚) ≥ 0, 1 ≤ 𝑖1 ≤ 𝑁,

(7)

where𝐵𝑗 is the 𝑗+1-dimensional emission probability
matrix and 𝑏𝑖1 ⋅⋅⋅𝑖𝑗(V𝑚) is a probability of observing V𝑚
in state 𝑠𝑖1 at time 𝑡 − 𝑗 + 1, 𝑠𝑖2 at time 𝑡 − 𝑗 + 2, . . ., and𝑠𝑖𝑗 at time 𝑡 where 𝑗 = 2, . . . , 𝑘,

𝑏𝑖1 ⋅⋅⋅𝑖𝑗 (V𝑚)
= 𝑃 (𝑜𝑡 = V𝑚 | 𝑞𝑡 = 𝑠𝑖𝑗 , 𝑞𝑡−1 = 𝑠𝑖𝑗−1 , . . . , 𝑞𝑡−𝑗+1 = 𝑠𝑖1) ,
𝑀∑
𝑚=1

𝑏𝑖1⋅⋅⋅𝑖𝑗 (V𝑚) = 1,
𝑏𝑖1 ⋅⋅⋅𝑖𝑗 (V𝑚) ≥ 0, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑗 ≤ 𝑁

(8)

For the 𝑘th-order discrete HMM, we summarize the
parameters by using the components of 𝜆 = (𝜋𝑖1 , 𝜋𝑖1𝑖2 ,. . . , 𝜋𝑖1𝑖2 ⋅⋅⋅𝑖𝑘 , 𝐴1, 𝐴2, . . . , 𝐴𝑘, 𝐵1, 𝐵2, . . . , 𝐵𝑘).

Note that throughout this paper, we will use the following
notations.

(i) 𝑞1:𝑡 denotes 𝑞1, 𝑞2, . . . , 𝑞𝑡
(ii) 𝑜1:𝑡 denotes 𝑜1, 𝑜2, . . . , 𝑜𝑡

2.2. Forward and Backward Probability. The entropy-based
algorithm proposed by Hernando et al. [4] for computing the
optimal state sequence of a first-order HMM is incorporated
with forward recursion process. Recently, high-order HMM
are widely used in a variety of applications such as speech
recognition [8, 9] and longitudinal data analysis [10, 11]. For
the HHMM, the Markov assumption has been weakened
since the next state not only depends on the current state but
also depends on other historical states. The state dependency
is subjected to the order of HMM. Hence we have to modify
the classical forward and backward probability variables for
the HHMM, that is, the 𝑘th-order HMM where 𝑘 ≥ 2 are
shown as follows.

Definition 1. The forward variable 𝛼𝑡(𝑖2, 𝑖3, . . . , 𝑖𝑘+1) in the𝑘th-order HMM is a joint probability of the partial observa-
tion sequence 𝑜1, 𝑜2, . . . , 𝑜𝑡 and the hidden state of 𝑠𝑖2 at time𝑡−𝑘+1, 𝑠𝑖3 at time 𝑡−𝑘+2, . . . , 𝑠𝑖𝑘+1 at time 𝑡where 1 ≤ 𝑡 ≤ 𝑇.
It can be denoted as

𝛼𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝜆) .

(9)

From (9), 𝑡 = 1 and 1 ≤ 𝑖2, 𝑖3, . . . , 𝑖𝑘+1 ≤ 𝑁, we obtain the
initial forward variable as

𝛼1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)
= 𝑃 (𝑜1, 𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1 | 𝜆)
= 𝑃 (𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1)
⋅ 𝑃 (𝑜1 | 𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1)
= 𝜋𝑖2𝑖3⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜1) .

(10)

From (9), (10), and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘, 𝑖𝑘+1 ≤ 𝑁, we obtain the
recursive forward variable for 𝑡 = 2, . . . , 𝑇,
𝛼𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘+1 = 𝑠𝑖2 ,

𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝜆)
= 𝑁∑
𝑖1=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2
= 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝜆)
= 𝑁∑
𝑖1=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡−1, 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝜆) 𝑃 (𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘
= 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘) × 𝑃 (𝑜𝑡 | 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1)
= [ 𝑁∑
𝑖1=1

𝛼𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1] 𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡) .

(11)
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Definition 2. The backward probability variable 𝛽𝑡(𝑖1, 𝑖2, . . . ,𝑖𝑘) in the 𝑘th-order HMM is a conditional probability of
the partial observation sequence 𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 given the
hidden state of 𝑠𝑖1 at time 𝑡 − 𝑘+1, 𝑠𝑖2 at time 𝑡 − 𝑘+2, . . ., and𝑠𝑖𝑘 at time 𝑡. It can be denoted as

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1
= 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆) ,

(12)

where 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁.
We obtain the initial backward probability variable as

𝛽𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 1. (13)

From (12) and (13), we obtain the recursive backward proba-
bility variable for 𝑡 = 1, 2, . . . , 𝑇 − 1,

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 ,
𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆)
= 𝑁∑
𝑖𝑘+1=1

𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇, 𝑞𝑡+1 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘+1
= 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆)

= 𝑁∑
𝑖𝑘+1=1

𝑃 (𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡+1
= 𝑠𝑖𝑘+1 , 𝜆) 𝑃 (𝑞𝑡+1 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘 , 𝜆) × 𝑃 (𝑜𝑡+1 | 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡+1 = 𝑠𝑖𝑘+1)
= 𝑁∑
𝑖𝑘+1=1

𝛽𝑡+1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡+1) .
(14)

The probability of the observational sequence given the
model parameter for the first-orderHMMcan be represented
by using the classical forward probability and backward
probability variables [2]. We extend it to HHMM by using
our modified forward probability and backward probability
variables. The proof is due to Rabiner [2].

Definition 3. Let 𝛼𝑡(𝑖1, 𝑖2, . . . , 𝑖𝑘) and 𝛽𝑡(𝑖1, 𝑖2, . . . , 𝑖𝑘) be the
forward probability variable and backward probability vari-
able, respectively; 𝑃(𝑂 | 𝜆) is presented using the forward
and backward probability variables as

𝑃 (𝑂 | 𝜆) = 𝑃 (𝑜1, . . . , 𝑜𝑇 | 𝜆)
= 𝑁∑
𝑖𝑖=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝛼𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) . (15)

Proof.

𝑃 (𝑂 | 𝜆) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑇 | 𝜆) = 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑇, 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 | 𝜆)

= 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 | 𝜆)

× 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝜆)

= 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝛼𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) .

(16)

We now normalize both of the forward and backward prob-
ability variables. These normalized variables are required as
the intermediate variables for the algorithm of state entropy
computation.

Definition 4. The normalized forward probability variable�̂�𝑡(𝑖2, 𝑖3, . . . , 𝑖𝑘+1) in the 𝑘th-order HMM is defined as the
probability of the hidden state of 𝑠𝑖2 at time 𝑡 − 𝑘 + 1, 𝑠𝑖3 at
time 𝑡 − 𝑘 + 2, . . . , 𝑠𝑖𝑘+1 at time 𝑡 given the partial observation
sequence 𝑜1, 𝑜2, . . . , 𝑜𝑡 where 1 ≤ 𝑡 ≤ 𝑇.

�̂�𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘+1 | 𝑜1, 𝑜2, . . . , 𝑜𝑡) .

(17)

From (10), (17), 𝑡 = 1, and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁, we obtain the
initial normalized forward probability variable as

�̂�1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)
= 𝑃 (𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1 | 𝑜1)
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= 𝑃 (𝑞2−𝑘 = 𝑠𝑖2 , 𝑞3−𝑘 = 𝑠𝑖3 , . . . , 𝑞1 = 𝑠𝑖𝑘+1 , 𝑜1)𝑃 (𝑜1)
= 𝜋𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜1)𝑟0 ,

(18)

where

𝑟0 = 𝑁∑
𝑗𝑘=1

⋅ ⋅ ⋅ 𝑁∑
𝑗1=1

𝜋𝑗1𝑗2 ⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2⋅⋅⋅𝑗𝑘 (𝑜1) . (19)

From (11), (17), (18), and 𝑡 = 2, . . . , 𝑇, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘, 𝑖𝑘+1 ≤𝑁, we obtain the recursive normalized forward probability
variable as

�̂�𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)
= 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑜1, 𝑜2, . . . , 𝑜𝑡)

= 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1, 𝑜2, . . . , 𝑜𝑡)𝑃 (𝑜𝑡 | 𝑜1, 𝑜2, . . . , 𝑜𝑡−1)

= [∑𝑁𝑖1=1 �̂�𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1] 𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡)𝑟𝑡 ,

(20)

where

𝑟𝑡 = 𝑁∑
𝑗𝑘=1

⋅ ⋅ ⋅ 𝑁∑
𝑗1=1

𝑁∑
𝑖1=1

𝛼𝑡−1 (𝑖1, 𝑗1, . . . , 𝑗𝑘−1)
⋅ 𝑎𝑖1𝑗1⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2 ⋅⋅⋅𝑗𝑘 (𝑜𝑡) .

(21)

Note that the normalization factor 𝑟𝑡 ensures that the prob-
abilities sum to one and it also represents the conditional
observational probability [2].

Definition 5. The normalized backward probability variable𝛽𝑡(𝑖1, 𝑖2, . . . , 𝑖𝑘) in the 𝑘th-order HMM is defined as the
quotient of a conditional probability of the partial obser-
vation sequence 𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 given the hidden state of𝑠𝑖1 at time 𝑡 − 𝑘 + 1, 𝑠𝑖2 at time 𝑡 − 𝑘 + 2, . . . , 𝑠𝑖𝑘 at
time 𝑡, and a conditional probability of the partial observa-
tion sequence 𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 given the entire observation
sequence 𝑜1, 𝑜2, . . . , 𝑜𝑇. It can be denoted as

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘)
= 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘)𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇) , (22)

where 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘 ≤ 𝑁
From (14) and (22), we obtain the recursive normalized

backward probability variable as

𝛽𝑡 (𝑖1, 𝑖2, . . . , 𝑖𝑘) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘)𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
= ∑𝑁𝑖𝑘+1=1 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑞𝑡−𝑘+1 = 𝑠𝑖1 , 𝑞𝑡−𝑘+2 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘 , 𝑞𝑡+1 = 𝑠𝑖𝑘+1)𝑃 (𝑜𝑡+1, . . . , 𝑜𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
= ∑𝑁𝑖𝑘+1=1 𝛽𝑡+1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜𝑡+1)𝑟𝑡+1 ,

(23)

where

𝑟𝑡+1 = 𝑁∑
𝑗𝑘=1

⋅ ⋅ ⋅ 𝑁∑
𝑗1=1

𝑁∑
𝑖1=1

𝛼𝑡 (𝑖1, 𝑗1, . . . , 𝑗𝑘−1)
⋅ 𝑎𝑖1𝑗1 ⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2 ⋅⋅⋅𝑗𝑘 (𝑜𝑡+1) .

(24)

Our extended algorithm includes the normalized forward
recursion given by (18) and (20). The extended algorithm for
the 𝑘th-order HMM requires 𝑂(𝑇𝑁𝑘+1) calculations if we
include either normalized forward recursion given by (18)
and (20) or the normalized backward recursion given by
(13) and (23). The direct evaluation method, in comparison,
requires 𝑂(𝑁𝑇+𝑘−1) calculations where 𝑁 is the number of
states, 𝑇 is the length of observational sequence, and 𝑘 is the
order of the Hidden Markov Model.

2.3. The Algorithm by Hernando et al. Hernando et al. [4]
are pioneers for using entropy to compute the optimal state
sequence of a first-order HMM with a single observational
sequence. This algorithm is based on a first-order HMM
normalized forward probability,

�̂�𝑡 (𝑗) = 𝑃 (𝑞𝑡 = 𝑠𝑗 | 𝑜1, 𝑜2, . . . , 𝑜𝑡) , (25)

auxiliary probability,

𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) , (26)

and intermediate entropy,

𝐻𝑡 (𝑠𝑗) = 𝐻(𝑞1:𝑡−1 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) . (27)

The entropy-based algorithm for computing the optimal state
sequence of a first-order HMM is as follows [4].
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(1) Initialization. For 𝑡 = 1 and 1 ≤ 𝑗 ≤ 𝑁,

𝐻1 (𝑠𝑗) = 0,
�̂�1 (𝑗) = 𝜋𝑗𝑏𝑗 (𝑜1)

∑𝑁𝑖=1 𝜋𝑖𝑏𝑖 (𝑜1) .
(28)

(2) Recursion. For 𝑡 = 2, . . . , 𝑇 − 1, and 1 ≤ 𝑗 ≤ 𝑁,

�̂�𝑡 (𝑗) = ∑𝑁𝑖=1 �̂�𝑡−1 (𝑖) 𝑎𝑖𝑗𝑏𝑗 (𝑜𝑡)∑𝑁𝑘=1∑𝑁𝑖=1 �̂�𝑡−1 (𝑖) 𝑎𝑖𝑘𝑏𝑘 (𝑜𝑡) ,

𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) = 𝑎𝑖𝑗�̂�𝑡−1 (𝑖)
∑𝑁𝑘=1∑𝑁𝑖=1 𝑎𝑖𝑘�̂�𝑡−1 (𝑖) ,

𝐻𝑡 (𝑠𝑗) = 𝑁∑
𝑖=1

[𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖)]

− 𝑁∑
𝑖=1

[𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ log2𝑃 (𝑞𝑡−1 = 𝑠𝑖 | 𝑞𝑡 = 𝑠𝑗)] .

(29)

(3) Termination

𝐻𝑇 (𝑞1:𝑇 | 𝑜1:𝑇) = 𝑁∑
𝑖=1

𝐻𝑇 (𝑠𝑖) �̂�𝑇 (𝑖)

− 𝑁∑
𝑖=1

�̂�𝑇 (𝑖) log2�̂�𝑇 (𝑖) .
(30)

This algorithm performs the computation linearly with
respect to the length of the observation sequence with
computational complexity 𝑂(𝑇𝑁2). It requires the memory
space of 𝑂(𝑁2) which indicates that the memory space is
independent of the observational sequence.

2.4. The Computation of the Optimal State Sequence for a
HHMM. The extended classical Viterbi algorithm is com-
monly used for computing the optimal state sequence for
HHMM. This algorithm provides the solution along with its
likelihood. This likelihood probability can be determined as
follows.

𝑃 (𝑞1, 𝑞2, . . . , 𝑞𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
= 𝑃 (𝑞1, 𝑞2, . . . , 𝑞𝑇, 𝑜1, 𝑜2, . . . , 𝑜𝑇)𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑇) . (31)

This probability can be used as a measure of quality of the
solution. The higher the probability of our “solution,” the
better our “solution.” Entropy can also be used for measuring
the quality of the state sequence of the 𝑘th-order HMM.
Hence, state entropy is proposed to be used for obtaining the
optimal state sequence of a HHMM.

Wedefine entropy of a discrete randomvariable as follows
[12].

Definition 6. Theentropy𝐻(𝑋) of a discrete random variable𝑋 with a probability mass function 𝑃(𝑋 = 𝑥) is defined as

𝐻(𝑋) = − ∑
𝑥∈𝑋

𝑃 (𝑥) log2𝑃 (𝑥) . (32)

When the log has a base of 2, the unit of the entropy is bits.
Note that 0 log 0 = 0.

From (32), the entropy of the distribution for all possible
state sequences is as follows:

𝐻(𝑞1, 𝑞2, . . . , 𝑞𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇) = −∑
𝑄

[𝑃 (𝑞1
= 𝑠𝑖1 , 𝑞2 = 𝑠𝑖2 , . . . , 𝑞𝑇 = 𝑠𝑖𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
⋅ log2𝑃 (𝑞1 = 𝑠𝑖1 , 𝑞2 = 𝑠𝑖2 , . . . , 𝑞𝑇
= 𝑠𝑖𝑇 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)] .

(33)

For the first-order HMM, if all 𝑁𝑇 possible state sequences
are equally likely to generate a single observational sequence
with a length of 𝑇, then the entropy equals 𝑇 log2𝑁. The
entropy is 𝑘𝑇 log2𝑁 in the 𝑘th-orderHMM if all𝑁𝑘𝑇 possible
state sequences are equally likely to produce the observational
sequence.

For this extended algorithm, we require an intermediate
state entropy variable, 𝐻𝑡(𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) that can be com-
puted recursively using the previous variable,𝐻𝑡−1(𝑠𝑖1 , 𝑠𝑖2 , . . . ,𝑠𝑖𝑘).

We define the state entropy variable for the 𝑘th-order
HMM as follows.

Definition 7. The state entropy variable, 𝐻𝑡(𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1),
in the 𝑘th-orderHMMis the entropy of all the state sequences
that lead to state of 𝑠𝑖2 at time 𝑡 − 𝑘 + 1, 𝑠𝑖3 at time 𝑡 −𝑘 + 2, . . ., and 𝑠𝑖𝑘+1 at time 𝑡, given the observation sequence𝑜1, 𝑜2, . . . , 𝑜𝑡. It can be denoted as

𝐻𝑡 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) = 𝐻(𝑞2−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) .

(34)

We analyse the state entropy for the 𝑘th-order HMM in
detail, shown as follows.

From (34) and 𝑡 = 1, we obtain the initial state entropy
variable as

𝐻1 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) = 0. (35)

From (34) and (35) we obtain the recursion on the entropy
for 𝑡 = 2, . . . , 𝑇, and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘+1 ≤ 𝑁,

𝐻𝑡 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑖𝑘+1) = 𝐻(𝑞2−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
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= 𝐻(𝑞𝑡−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘+1 , 𝑜1:𝑡) + 𝐻(𝑞2−𝑘:𝑡−2 | 𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2

= 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) ,
(36)

where

𝐻(𝑞𝑡−𝑘:𝑡−1 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
= − 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡))] ,

𝐻 (𝑞2−𝑘:𝑡−2 | 𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
= 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
⋅ 𝐻 (𝑞2−𝑘:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)]
= 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)] .

(37)

The auxiliary probability 𝑃(𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 =𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) is required for
our extended entropy-based algorithm. It can be computed as
follows:

𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
= 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑜1:𝑡−1) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑜1:𝑡−1)𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑜1:𝑡−1)
= 𝑃 (𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1) 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑜1:𝑡−1)𝑃 (𝑜𝑡−𝑘+1, . . . , 𝑜𝑡 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1) 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑜1:𝑡−1)
= 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑜1:𝑡−1)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝑃 (𝑞𝑡−𝑘+1 = 𝑠𝑗2 , . . . , 𝑞𝑡 = 𝑠𝑗𝑘+1 | 𝑞𝑡−𝑘 = 𝑠𝑗1 , . . . , 𝑞𝑡−1 = 𝑠𝑗𝑘) 𝑃 (𝑞𝑡−𝑘 = 𝑠𝑗1 , . . . , 𝑞𝑡−1 = 𝑠𝑗𝑘 | 𝑜1:𝑡−1)
= 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘𝑖𝑘+1 �̂�𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝑎𝑗1𝑗2⋅⋅⋅𝑗𝑘𝑖𝑘+1 �̂�𝑡−1 (𝑗1, 𝑗2, . . . , 𝑗𝑘) .

(38)

For the final process of our extended algorithm, we are
required to compute the conditional entropy 𝐻(𝑞1:𝑇 | 𝑜1:𝑇)
which can be expanded as follows:

𝐻(𝑞1:𝑇 | 𝑜1:𝑇) = 𝐻 (𝑞1:𝑇−𝑘 | 𝑞𝑇−𝑘+1 = 𝑠𝑖1 , 𝑞𝑇−𝑘+2 = 𝑠𝑖2 ,
𝑞𝑇−𝑘+3 = 𝑠𝑖3 , . . . , 𝑞𝑇 = 𝑠𝑖𝑘 , 𝑜1:𝑇) + 𝐻 (𝑞𝑇−𝑘+1:𝑇 | 𝑜1:𝑇)
= 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝐻𝑇 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)
⋅ �̂�𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)

− 𝑁∑
𝑖1=1

𝑁∑
𝑖2=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

�̂�𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)
⋅ log2 (�̂�𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)) .

(39)

The following basic properties of HMM and entropy are used
for proving Lemma 8.

(i) According to the generalized high-order HMM, state𝑞𝑡−𝑘−𝑗+1, 𝑗 ≥ 2 and 𝑞𝑡 are statistically independent given𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1, 𝑞𝑡−𝑘+2, . . . , 𝑞𝑡−1. The same applies to 𝑞𝑡−𝑘−𝑗+1,
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𝑗 ≥ 2 and 𝑜𝑡 are statistically independent given 𝑞𝑡−𝑘, 𝑞𝑡−𝑘+1,𝑞𝑡−𝑘+2, . . . , 𝑞𝑡−1.
(ii) According to the basic property of entropy [12],

𝐻(𝑋 | 𝑌 = 𝑦) = 𝐻 (𝑋)
if 𝑋 and 𝑌 are independent. (40)

We now introduce the following lemma for the 𝑘th-order
HMM.The following proof is due to Hernando et al. [4].

Lemma 8. For the 𝑘th-order HMM, the entropy of the state
sequence up to time 𝑡 − 𝑘− 1, given the states from time 𝑡 − 𝑘 to
time 𝑡−1 and the observations up to time 𝑡−1, is conditionally
independent of the state and observation at time 𝑡

𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘) = 𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1
= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) .

(41)

Proof.

𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡
= 𝑠𝑖𝑘+1 , 𝑜1:𝑡) = 𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1

= 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑜1:𝑡−1, 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜𝑡)
= 𝐻(𝑞1:𝑡−2 | 𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2
= 𝑠𝑖3 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 , 𝑜1:𝑡−1) = 𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘) .

(42)

Our extended entropy-based algorithm for computing
the optimal state sequence is based on normalized forward
recursion variable, state entropy recursion variable, and
auxiliary probability. From (18), (20), (35), (36), (38), and (39),
we construct the extended entropy-based decoding algorithm
for the kth-order HMM as follows:

(1) Initialization. For 𝑡 = 1 and 1 ≤ 𝑖2, 𝑖3, . . . , 𝑖𝑘+1 ≤ 𝑁,

𝐻1 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) = 0,
�̂�1 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1)

= 𝜋𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 (𝑜1)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝜋𝑗1𝑗2⋅⋅⋅𝑗𝑘𝑏𝑗1𝑗2 ⋅⋅⋅𝑗𝑘 (𝑜1) .
(43)

(2) Recursion. For 𝑡 = 2, . . . , 𝑇−1, and 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑘+1 ≤ 𝑁,

�̂�𝑡 (𝑖2, 𝑖3, . . . , 𝑖𝑘+1) = ∑𝑁𝑖1=1 �̂�𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘) 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘𝑖𝑘+1𝑏𝑖2𝑖3 ⋅⋅⋅𝑖𝑘𝑖𝑘+1 (𝑜𝑡)∑𝑁𝑗𝑘=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1∑𝑁𝑖1=1 �̂�𝑡−1 (𝑖1, 𝑗1, . . . , 𝑗𝑘−1) 𝑎𝑖1𝑗1⋅⋅⋅𝑗𝑘𝑏𝑗2𝑗3⋅⋅⋅𝑗𝑘+1 (𝑜𝑡) ,

𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) = 𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑘𝑖𝑘+1 �̂�𝑡−1 (𝑖1, 𝑖2, . . . , 𝑖𝑘)∑𝑁𝑗𝑘=1∑𝑁𝑗𝑘−1=1 ⋅ ⋅ ⋅ ∑𝑁𝑗1=1 𝑎𝑗1𝑗2 ⋅⋅⋅𝑗𝑘𝑖𝑘+1 �̂�𝑡−1 (𝑗1, 𝑗2, . . . , 𝑗𝑘) ,

𝐻𝑡 (𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1) =
𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)]

− 𝑁∑
𝑖1=1

[𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡))] .

(44)

(3) Termination

𝐻(𝑞1:𝑇 | 𝑜1:𝑇) = 𝑁∑
𝑖1=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

𝐻𝑇 (𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘)
⋅ �̂�𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘)
− 𝑁∑
𝑖1=1

⋅ ⋅ ⋅ 𝑁∑
𝑖𝑘=1

�̂�𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) log2 �̂�𝑇 (𝑖1, 𝑖2, . . . , 𝑖𝑘) .
(45)

This extended algorithmperforms the computation of the
optimal state sequence linearly with respect to the length of
observational sequence which requires𝑂(𝑇𝑁𝑘+1) calculation
and it has memory space that is independent of the length

of observational sequence, 𝑂(𝑁𝑘+1), since �̂�𝑡(𝑖2, 𝑖3, . . . , 𝑖𝑘+1),𝐻𝑡(𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1), 𝑃(𝑞𝑡−𝑘 = 𝑠𝑖1 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘 | 𝑞𝑡−𝑘+1 =𝑠𝑖2 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1 , 𝑜1:𝑡) should be computed only once in 𝑡th
iteration and, having been used for the computation of (𝑡 +1)th, they can be deleted from the space storage.

2.5. Numerical Illustration for the Second-Order HMM. We
consider a second-order HMM for illustrating our extended
entropy-based algorithm in computing the optimal state
sequence. Let us assume that this second-orderHMMhas the
state space 𝑆, which is 𝑆 = {𝑠1, 𝑠2} and the possible symbols
per observation which is 𝑂 = {V1, V2, V3}.

The graphical representation of the first-order HMM that
is used for the numerical example in this section is given in
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a11 = 0.5

a12 = 0.5

a21 = 1

b1(1) = 0.5 b1(2) = 0.5 b2(3) = 1

S2S1

V1 V2 V3

Figure 1: The graphical diagram shows a first-order HMM with 2
states and 3 observational symbols.

V1
V1 V2V3

V3

a111 = 0.5

a212 = 1

a121 = 0.5

a112 = 0.5

a122 = 0.5

b11(V3) = 0.5

b11(V1) = 0.5
b21(V3) = 1

b12(V1) = 0.5

b12(V2) = 0.5

S2S1

Figure 2: The graphical diagram shows a second-order HMM with
2 states and 3 observational symbols.

Figure 1. The second-order HMM in Figure 2 is developed
based on the first-order HMM in Figure 1 which has two
states and three observational symbols. A HMM of any order
has the parameters of 𝜆 = (𝜋, 𝐴, 𝐵) where 𝜋 is the initial
state probability vector, 𝐴 is the state transition probability
matrix, and𝐵 is the emission probabilitymatrix. Note that the
matrices of 𝐴 and 𝐵 whose components are indicated as 𝑎𝑖1𝑖2 ,𝑎𝑖1𝑖2𝑖3, 𝑏𝑖2(𝑜𝑡 = V𝑚) and 𝑏𝑖2𝑖3(𝑜𝑡 = V𝑚) where 1 ≤ 𝑖1, 𝑖2, 𝑖3 ≤ 2
and 1 ≤ 𝑚 ≤ 3 can be obtained from Figures 1 and 2.
However, the initial state probability vector is not shown in
the above graphical diagrams.

The initial state probability vectors for the first-order and
second-order HMM are shown as follows:

𝜋1 = [0.5 0.5] ,
𝜋2 = [0.5 0] ,
𝜋3 = [0.5 0] .

(46)

𝜋1 = {�̇�𝑖2} is the initial state probability vector for the first-
order HMM and 𝜋2 = {�̇�𝑖21} and 𝜋3 = {�̇�𝑖22} are the initial
state probability vectors for the second-order HMM where�̇�𝑖2 = 𝑃(𝑞1 = 𝑠𝑖2), �̇�𝑖21 = 𝑃(𝑞1 = 𝑠1, 𝑞0 = 𝑠𝑖2), �̇�𝑖22 = 𝑃(𝑞1 =𝑠2, 𝑞0 = 𝑠𝑖2), and 1 ≤ 𝑖2 ≤ 2.

The state transition probabilitymatrices for the first-order
and second-order HMMs are shown as follows:

𝐴1 = [0.5 0.5
1 0 ] ,

𝐴2 = [0.5 0.5
0 0 ] ,

𝐴3 = [0.5 0.5
1 0 ] .

(47)

𝐴1 = {𝑎𝑖1𝑖2} is the state transition probability matrix for the
first-order HMM and 𝐴2 = {𝑎𝑖1𝑖21} and 𝐴3 = {𝑎𝑖1𝑖22} are
the state transition probability matrices for the second-order
HMMwhere 𝑎𝑖1𝑖2 = 𝑃(𝑞𝑡 = 𝑠𝑖2 | 𝑞𝑡−1 = 𝑠𝑖1), 𝑎𝑖1𝑖21 = 𝑃(𝑞𝑡 = 𝑠1 |𝑞𝑡−1 = 𝑠𝑖2 , 𝑞𝑡−2 = 𝑠𝑖1), 𝑎𝑖1𝑖22 = 𝑃(𝑞𝑡 = 𝑠2 | 𝑞𝑡−1 = 𝑠𝑖2 , 𝑞𝑡−2 = 𝑠𝑖1),
and 1 ≤ 𝑖1, 𝑖2 ≤ 2

The emission probability matrices for the first-order and
second-order HMMs are shown as follows:

𝐵1 = [[
[
0.5 0
0.5 0
0 1

]]
]
,

𝐵2 = [0.5 0.5
0 0 ] ,

𝐵3 = [0 0.5
0 0 ] ,

𝐵4 = [0.5 0
1 0] .

(48)

𝐵1 = {𝑏𝑖2(𝑜𝑡 = V𝑚)} is the emission probability matrix for the
first-order HMM and 𝐵2 = {𝑏𝑖2𝑖3(𝑜𝑡 = V1)}, 𝐵3 = {𝑏𝑖2𝑖3(𝑜𝑡 =
V2)}, and 𝐵4 = {𝑏𝑖2𝑖3(𝑜𝑡 = V3)} are the emission probability
matrices for the second-order HMM where 𝑏𝑖2(𝑜𝑡 = V𝑚) =𝑃(𝑜𝑡 = V𝑚 | 𝑞𝑡 = 𝑠𝑖2), 𝑏𝑖2𝑖3(𝑜𝑡 = V1) = 𝑃(𝑜𝑡 = V1 | 𝑞𝑡 =𝑠𝑖3 , 𝑞𝑡−1 = 𝑠𝑖2), 𝑏𝑖2𝑖3(𝑜𝑡 = V2) = 𝑃(𝑜𝑡 = V2 | 𝑞𝑡 = 𝑠𝑖3 , 𝑞𝑡−1 = 𝑠𝑖2),
and 𝑏𝑖2𝑖3(𝑜𝑡 = V3) = 𝑃(𝑜𝑡 = V3 | 𝑞𝑡 = 𝑠𝑖3 , 𝑞𝑡−1 = 𝑠𝑖2).

The following is the observational sequence that we used
for illustrating our extended algorithm:

𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6
= V1) . (49)

We applied our extended algorithm for computing the opti-
mal state sequence based on state entropy. The computed
value of the state entropy is shown in Figure 3.

The total entropy after each time step is displayed at the
bottom of Figure 3. For example, after receiving the second
observation, that is, 𝑜1:2 = (𝑜1 = V1, 𝑜2 = V1), it has produced
two state sequences which are 𝑞1:2 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠1)
and 𝑞1:2 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2) as shown by the bold arrows.
Each possible state sequence has a probability of 0.5; that is,�̂�2(1, 1) = �̂�2(1, 2) = 0.5, and hence the total entropy is 1 bit.
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Obs

State

Total
entropy

1 1 1.41 0 0 0

s1

s2

o1 = 1 o2 = 1 o3 = 3 o4 = 2 o5 = 3 o6 = 1

H1(1, 1) = 0

1(1, 1) = 0.5

H1(2, 1) = 0

1(2, 1) = 0

H1(1, 2) = 0

1(1, 2) = 0.5

H1(2, 2) = 0

1(2, 2) = 0

H2(1, 2) = 0

2(1, 2) = 0.5

H2(2, 2) = 0

2(2, 2) = 0

H3(1, 2) = 0

3(1, 2) = 0

H3(2, 2) = 0

3(2, 2) = 0

H4(1, 2) = 0

4(1, 2) = 1

H4(2, 2) = 0

4(2, 2) = 0

H3(1, 2) = 0

3(1, 2) = 0

H3(2, 2) = 0

3(2, 2) = 0

H6(1, 2) = 0

6(1, 2) = 1

H6(2, 2) = 0

6(2, 2) = 0

H6(1, 1) = 0

6(1, 1) = 0

H6(2, 1) = 0

6(2, 1) = 0

H5(1, 1) = 0

5(1, 1) = 0

H5(2, 1) = 0

5(2, 1) = 1

H3(1, 1) = 0.5

3(1, 1) = 0.33

H3(2, 1) = 0.5

3(2, 1) = 0.67

H2(1, 1) = 0

2(1, 1) = 0.5

H2(2, 1) = 0

2(2, 1) = 0

H4(1, 1) = 0

4(1, 1) = 0

H4(2, 1) = 0

4(2, 1) = 0

Figure 3:The evolution of the trellis structure of the second-order HMMwith the observation sequence 𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 =
V2, 𝑜5 = V3, 𝑜6 = V1).

However, after receiving the fourth observation, that is, 𝑜1:4 =(𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2), it has produced one state
sequence which is 𝑞1:4 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2, 𝑞3 = 𝑠1, 𝑞4 = 𝑠2) as
shown by the dashed arrow. This possible state sequence has
a probability of 1, that is, �̂�4(1, 2) = 1, and hence the total
entropy is 0 bit. After receiving the sixth observation, this
second-order HMM has produced only one possible optimal
state sequence; that is, 𝑞1:6 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2, 𝑞3 = 𝑠1, 𝑞4 =𝑠2, 𝑞5 = 𝑠1, 𝑞6 = 𝑠2)with the total entropy of 0 which indicates
that there is no uncertainty.

3. Entropy-Based Decoding Algorithm with
a Reduction Approach

The extended entropy-based Viterbi algorithm in Section 2
has addressed only the issue related to memory space
but this algorithm is not able to overcome the compu-
tational complexity. In this section, we introduce an effi-
cient entropy-based algorithm that used reduction approach,
namely, entropy-based order-transformation forward algo-
rithm (EOTFA) to compute the optimal state sequence based
on entropy of any generalized HHMM. This algorithm has
addressed issues related to memory space and computational
complexity.

3.1. Transforming a High-Order HMM with a Single Observa-
tional Sequence. This EOTFA algorithm involves a transfor-
mation of a generalized high-order HMM into an equivalent
first-order HMM and an algorithm is developed based on
the equivalent first-order HMM. This algorithm performs
the computation based on the observational sequence and
it requires 𝑂(𝑇�̃�2) calculations, where �̃� is the number of

states in an equivalent first-order model and 𝑇 is the length
of observational sequence.

The transformation of a generalized high-order HMM
into an equivalent first-order HMM is based on Hadar and
Messer’s method [7].

Suppose 𝑄𝑡 = (𝑞𝑡, 𝑞𝑡−1, . . . , 𝑞𝑡−𝑘+1) for 1 ≤ 𝑡 ≤ 𝑇; then the
hidden state process {𝑄𝑡}𝑇𝑡=1 of the 𝑘th-order Markov chain
satisfies

𝑃 (𝑄𝑡 | {𝑄𝑙}𝑙<𝑡)
= 𝑃 (𝑞𝑡, 𝑞𝑡−1, . . . , 𝑞𝑡−𝑘+1 | 𝑞𝑡−1, 𝑞𝑡−2, . . . , 𝑞2−𝑘)
= 𝑃 (𝑞𝑡 | 𝑞𝑡−1, 𝑞𝑡−2, . . . , 𝑞𝑡−𝑘)
= 𝑃 (𝑞𝑡, 𝑞𝑡−1, . . . , 𝑞𝑡−𝑘+1 | 𝑞𝑡−1, 𝑞𝑡−2, . . . , 𝑞𝑡−𝑘)
= 𝑃 (𝑄𝑡 | 𝑄𝑡−1) ,

(50)

where 𝑄𝑡 takes the value from the set of hidden states 𝑆 ={𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑁}𝑘. Hence, the hidden state process {𝑄𝑡}𝑇𝑡=1
forms the first-order HMMMarkov process.

The observation process {𝑜𝑡}𝑇𝑡=1 satisfies
𝑃(𝑜𝑡 | {𝑜𝑙}𝑙<𝑡 , {𝑄𝑙}𝑙≤𝑡) = 𝑃 (𝑜𝑡 | {𝑜𝑙}𝑙≤𝑡−1 , {𝑞𝑙}𝑙≤𝑡)

= 𝑃 (𝑜𝑡 | {𝑞𝑙}𝑙≤𝑡) = 𝑃 (𝑜𝑡 | {𝑞𝑙}𝑡𝑙=𝑡−𝑘)
= 𝑃 (𝑜𝑡 | 𝑄𝑡) .

(51)

Hence, the hidden state process {𝑄𝑡}𝑇𝑡=1 and the observation
process {𝑜𝑡}𝑇𝑡=1 form the first-order HMM.
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Remarks 9. (i)

𝑃 (𝑄𝑡 | 𝑄𝑡−1) = 𝑃 (𝑄𝑡
= [𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1] | 𝑄𝑡−1
= [𝑞𝑡−𝑘 = 𝑠𝑖1 , 𝑞𝑡−𝑘+1 = 𝑠𝑖2 , . . . , 𝑞𝑡−1 = 𝑠𝑖𝑘]) = 𝑃 (𝑄𝑡
= [𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] | 𝑄𝑡−1 = [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘])
= 𝑃 (𝑄𝑡 = 𝑠𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 | 𝑄𝑡−1 = 𝑠𝑖1𝑖2 ⋅⋅⋅𝑖𝑘) ,

(52)

where [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] and [𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] ∈ 𝑆.
(ii)

𝑃 (𝑜𝑡 | 𝑄𝑡) = 𝑃 (𝑜𝑡 | 𝑄𝑡
= [𝑞𝑡−𝑘+1 = 𝑠𝑖2 , 𝑞𝑡−𝑘+2 = 𝑠𝑖3 , . . . , 𝑞𝑡 = 𝑠𝑖𝑘+1])
= 𝑃 (𝑜𝑡 | 𝑄𝑡 = [𝑠𝑖2 , . . . , 𝑠𝑖𝑘+1]) = 𝑃 (𝑜𝑡 | 𝑄𝑡
= 𝑠𝑖2𝑖3⋅⋅⋅𝑖𝑘+1) ,

(53)

where [𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] ∈ 𝑆.
Note that we assume 𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘 = 𝑠𝑖1𝑖2⋅⋅⋅𝑖𝑘 and 𝑠𝑖2 , 𝑠𝑖3 ,. . . , 𝑠𝑖𝑘+1 = 𝑠𝑖2𝑖3 ⋅⋅⋅𝑖𝑘+1 .
The elements for the transformation of a high-order into

an equivalent first-order discrete HMM are as follows:

(i) Number of distinct hidden states, �̃�
(ii) Number of distinct observed symbols,𝑀
(iii) Length of observational sequence, 𝑇
(iv) Observational sequence, 𝑂 = {𝑜𝑡, 𝑡 = 1, 2, . . . , 𝑇}
(v) Hidden state sequence, 𝑄 = {𝑄𝑡, 𝑡 = 1, 2, . . . , 𝑇}
(vi) Possible values for each state, 𝑆 = {𝑠𝑖, 𝑖 =1, 2, . . . , 𝑁}𝑘
(vii) Possible symbols per observation, �̃� = {]𝑤, 𝑤 =1, 2, . . . ,𝑀}
(viii) Initial hidden state probability vector, �̃� = {�̃�𝑖}, and�̃�𝑖 is the probability that model will transit from state𝑠𝑖 = [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] = 𝑠𝑖1𝑖2 ⋅⋅⋅𝑖𝑘 , where

�̃�𝑖 = 𝑃 (𝑄1 = 𝑠𝑖) ,
�̃�∑
𝑖=1

�̃�𝑖 = 1,
�̃�𝑖 ≥ 0

(54)

(ix) State transition probability matrix, 𝐴 = {𝑎𝑖𝑗} and𝑎𝑖𝑗 is the probability of a transition from state

𝑠𝑖 = [𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] at time 𝑡 − 1 to state 𝑠𝑗 =[𝑠𝑖2 , 𝑠𝑖3 , . . . , 𝑠𝑖𝑘+1] at time 𝑡 where
𝑎𝑖𝑗 = 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑄𝑡−1 = 𝑠𝑖) ,
�̃�∑
𝑗=1

𝑎𝑖𝑗 = 1,
𝑎𝑖𝑗 ≥ 0,

(55)

where the first 𝑘 − 1 entries of 𝑠𝑖 are equal to the last𝑘 − 1 entries of 𝑠𝑗
(x) Emission probability matrix, 𝐵 = {�̃�𝑖(V𝑚)}, and�̃�𝑖(V𝑚) is a probability of observing V𝑚 in state 𝑠𝑖 =[𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘] at time 𝑡:

�̃�𝑖 (V𝑚) = 𝑃 (𝑜𝑡 = V𝑚 | 𝑄𝑡 = 𝑠𝑖) ,
𝑀∑
𝑚=1

�̃�𝑖 (V𝑚) = 1,
�̃�𝑖 (V𝑚) ≥ 0.

(56)

3.2. The Forward and Backward Probabilities Variables for the
Transformed Model. In this subsection, we omit the deriva-
tions for forward and backward probability variables since the
derivations are similar to the derivations in Section 2.2.

The forward recursion variable for the transformedmodel
at time 𝑡 is as follows:

�̃�𝑡 (𝑗) = 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑄𝑡 = 𝑠𝑗 | 𝜆)
= 𝑃 (𝑜1, 𝑜2, . . . , 𝑜𝑡, 𝑄𝑡 = 𝑠𝑖2𝑖3 ⋅⋅⋅𝑖𝑘 | 𝜆)
= �̃�∑
𝑖=1

�̃�𝑡−1 (𝑖) 𝑎𝑖𝑗�̃�𝑗 (𝑜𝑡) .
(57)

The backward recursion variable for the transformed model
at time 𝑡 is as follows:

𝛽𝑡 (𝑖) = 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑄𝑡 = 𝑠𝑖, 𝜆)
= 𝑃 (𝑜𝑡+1, 𝑜𝑡+2, . . . , 𝑜𝑇 | 𝑄𝑡 = 𝑠𝑖1𝑖2 ⋅⋅⋅𝑖𝑘)
= [
[
�̃�∑
𝑗=1

𝛽𝑡+1 (𝑗) 𝑎𝑖𝑗]]
�̃�𝑗 (𝑜𝑡+1) .

(58)

The normalized forward variable at time 𝑡 is as follows:
�̃�∙𝑡 (𝑗) = 𝑃 (𝑄𝑡 | 𝑜1:𝑡) = ∑�̃�𝑖=1 �̃�∙𝑡−1 (𝑖) 𝑎𝑖𝑗�̃�𝑗 (𝑜𝑡)𝑟∙𝑡 , (59)

where 𝑟∙𝑡 = ∑�̃�𝑗=1∑�̃�𝑖=1 �̃�𝑡−1(𝑖)𝑎𝑖𝑗�̃�𝑗(𝑜𝑡).
The normalized backward variables at time 𝑡 is as follows:
𝛽∙𝑡 (𝑖) = 𝑃 (𝑜𝑡+1:𝑇 | 𝑄𝑡)𝑃 (𝑜𝑡+1:𝑇 | 𝑜𝑜:𝑡) = ∑�̃�𝑗=1 𝛽∙𝑡+1 (𝑗) 𝑎𝑖𝑗�̃�𝑗 (𝑜𝑡+1)𝑟∙𝑡+1 , (60)

where 𝑟∙𝑡+1 = ∑�̃�𝑗=1∑�̃�𝑖=1 �̃�𝑡(𝑖)𝑎𝑖𝑗�̃�𝑗(𝑜𝑡+1).
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3.3. The Computation of the Optimal State Sequence for a
HHMM. For EOFTA algorithm, we require state entropy
variable, 𝐻𝑡(𝑠𝑗), that can be computed recursively using the
previous variable,𝐻𝑡−1(𝑠𝑖).

We define the state entropy variable as follows.

Definition 10. The state entropy variable,𝐻𝑡(𝑠𝑗), in an order-
transformationHMM, is the entropy of all the paths that lead
to state of 𝑠𝑗 at time 𝑡, given the observations 𝑜1, 𝑜2, . . . , 𝑜𝑡. It
can be denoted as

𝐻𝑡 (𝑠𝑗) = 𝐻(𝑄1:𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) . (61)

From (61) at 𝑡 = 1, we obtain the initial state entropy variable
as

𝐻1 (𝑠𝑗) = 0. (62)

From (61) and (62), we obtain the recursion on the entropy
for 𝑡 = 2, . . . , 𝑇 − 1, and 1 ≤ 𝑖, 𝑗 ≤ �̃�

𝐻𝑡 (𝑠𝑗) = 𝐻(𝑄1:𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= 𝐻(𝑄1:𝑡−2, 𝑄𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= 𝐻(𝑄𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)

+ 𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) ,
(63)

where

𝐻(𝑄𝑡−1 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= − �̃�∑
𝑖=1

[𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡))] ,

𝐻 (𝑄1:𝑡−2 | 𝑄𝑡−1, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= �̃�∑
𝑖=1

[𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ 𝐻 (𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)]
= �̃�∑
𝑖=1

[𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) 𝐻𝑡−1 (𝑠𝑖)] .

(64)

The auxiliary probability 𝑃(𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) is
required for our EOTFA algorithm. It can be computed as
follows:

𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) = 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜𝑡, 𝑜1:𝑡−1)
= 𝑃 (𝑄𝑡 = 𝑠𝑗, 𝑜𝑡 | 𝑄𝑡−1 = 𝑠𝑖, 𝑜1:𝑡−1) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑜1:𝑡−1)

𝑃 (𝑄𝑡 = 𝑠𝑗, 𝑜𝑡 | 𝑜1:𝑡−1)
= 𝑃 (𝑜𝑡 | 𝑄𝑡 = 𝑠𝑗) 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑄𝑡−1 = 𝑠𝑖) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑜1:𝑡−1)

𝑃 (𝑜𝑡 | 𝑄𝑡 = 𝑠𝑗) 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑜1:𝑡−1)

= 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑞𝑡−1 = 𝑠𝑖) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑜1:𝑡−1)
∑�̃�𝑘=1 𝑃 (𝑄𝑡 = 𝑠𝑗 | 𝑄𝑡−1 = 𝑠𝑘) 𝑃 (𝑄𝑡−1 = 𝑠𝑘 | 𝑜1:𝑡−1)

= 𝑎𝑖𝑗�̃�∙𝑡−1 (𝑖)
∑�̃�𝑘=1 𝑎𝑘𝑗�̃�∙𝑡−1 (𝑘) .

(65)

For the final process, we compute𝐻(𝑞1:𝑇 | 𝑜1:𝑇)which can be
expanded as follows:

𝐻(𝑄1:𝑇 | 𝑜1:𝑇) = 𝐻(𝑄1:𝑇−1 | 𝑄𝑇 = 𝑠𝑗, 𝑜1:𝑇)
+ 𝐻(𝑄𝑇 | 𝑜1:𝑇)

= �̃�∑
𝑖=1

𝐻𝑇 (𝑠𝑖) �̃�∙𝑇 (𝑖)

− �̃�∑
𝑖=1

�̃�∙𝑇 (𝑖) log2 (�̃�∙𝑇 (𝑖)) .

(66)

The basic entropy concept in (40) and the following basic
properties of HMM are used for proving our Lemma 11.
According to the transformation of a high-order into an
equivalent first-order HMM, state 𝑄𝑡−𝑟, 𝑟 ≥ 2, and 𝑄𝑡 are
statistically independent given𝑄𝑡−1.The same applies to𝑄𝑡−𝑟,𝑟 ≥ 2 and 𝑜𝑡 are statistically independent given 𝑄𝑡−1.

The following proof is due to Hernando et al. [4].

Lemma 11. For the transformation of a high-order into an
equivalent first-order HMM, the entropy of the state sequence
up to time 𝑡−2, given the states at time 𝑡−1 and the observations
up to time 𝑡 − 1, is conditionally independent on the state and
observation at time 𝑡

𝐻𝑡−1 (𝑠𝑖) = 𝐻 (𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) . (67)

Proof.

𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
= 𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑜1:𝑡−1, 𝑄𝑡 = 𝑠𝑗, 𝑜𝑡)
= 𝐻(𝑄1:𝑡−2 | 𝑄𝑡−1 = 𝑠𝑖, 𝑜1:𝑡−1) = 𝐻𝑡−1 (𝑠𝑖) .

(68)

Our EOTFA algorithm for computing the optimal state
sequence is based on the normalized forward recursion
variable, state entropy recursion variable, and auxiliary prob-
ability. From (59), (60), (61), (62), (63), and (66), we construct
our EOTFA algorithm as follows.

(1) Initialization. For 𝑡 = 1 and 1 ≤ 𝑗 ≤ �̃�,

𝐻1 (𝑠𝑗) = 0,
�̃�∙1 (𝑗) = �̃� (𝑗) �̃�𝑗 (𝑜1)

∑�̃�𝑖=1 �̃� (𝑖) �̃�𝑖 (𝑜1) .
(69)
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(2) Recursion. For 𝑡 = 2, . . . , 𝑇 and 1 ≤ 𝑗 ≤ �̃�,

�̃�∙𝑡 (𝑗) = ∑�̃�𝑖=1 �̃�∙𝑡−1 (𝑖) 𝑎𝑖𝑗�̃�𝑗 (𝑜𝑡)
∑�̃�𝑘=1∑�̃�𝑖=1 �̃�∙𝑡−1 (𝑖) 𝑎𝑖𝑘�̃�𝑘 (𝑜𝑡) ,

𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡) = 𝑎𝑖𝑗�̃�∙𝑡−1 (𝑖)
∑�̃�𝑘=1 𝑎𝑘𝑗�̃�∙𝑡−1 (𝑘) ,

𝐻𝑡 (𝑠𝑗) = �̃�∑
𝑖=1

𝐻𝑡−1 (𝑠𝑖) 𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)

− �̃�∑
𝑖=1

𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡)
⋅ log2 (𝑃 (𝑄𝑡−1 = 𝑠𝑖 | 𝑄𝑡 = 𝑠𝑗, 𝑜1:𝑡))] .

(70)

(3) Termination

𝐻(𝑄1:𝑇 | 𝑜1:𝑇) = �̃�∑
𝑖=1

𝐻𝑇 (𝑠𝑖) �̃�∙𝑇 (𝑖)

− �̃�∑
𝑖=1

�̃�∙𝑇 (𝑖) log2 (�̃�∙𝑇 (𝑖)) .
(71)

The direct evaluation algorithm, Hernando et al.’s algo-
rithm, and our algorithm perform the computation of state
entropy exponentially with respect to the order of HMM.
Our algorithm proposes the transformation of a generalized
high-order into an equivalent first-order HMM and then
compute the state entropy based on the equivalent first-order
model; hence our algorithm is the most efficient in which
it requires 𝑂(𝑇�̃�2) calculations as compared to the direct
evaluation method which requires 𝑂(𝑁𝑇+𝑘−1) calculations
and the extended algorithm which requires 𝑂(𝑇𝑁𝑘+1) cal-
culations where 𝑁 is the number of states in a model, �̃� is
the number of states in an equivalent first-order model, 𝑇 is
the length of observational sequence, and 𝑘 is the order of
HMM.

3.4. Numerical Illustration for an Equivalent First-Order
HMM. We consider the second-order HMM in Section 2.5
for illustrating our EOTFA algorithm in computing the
optimal state sequence. According to our proposed novel
algorithm, we first transformed the second-order HMM in
Section 2.5 into the equivalent first-order HMM by using
Hadar and Messer method [7]. The equivalent first-order
HMM has the following model parameters �̃� = (�̃�, 𝐴, 𝐵),
where �̃� is the initial state probability vector, 𝐴 is the
state transition probability matrix, and 𝐵 is the emission
probability matrix.

�̃� = [0.5 0.5 0 0] ,

𝐴 = [[[[[
[

0.5 0.5 0 0
0 0 0.5 0.5
0 1 0 0
0 0 0 0

]]]]]
]
,

𝐵 = [[
[
0.5 0.5 0 0
0 0.5 0 0
0.5 0 1 0

]]
]
.

(72)

Note that the above state transition probability and
the emission probability matrices whose components are
indicated as 𝑎𝑖1𝑖2 and �̃�𝑖2(𝑜𝑡 = V𝑚) where 1 ≤ 𝑖1, 𝑖2 ≤ 4 and1 ≤ 𝑚 ≤ 3 can be obtained from the graphical diagram in
Figure 4.

The state space for the equivalent first-order HMM is 𝑆 ={𝑠1, 𝑠2, 𝑠3, 𝑠4}, where 𝑠1 = [𝑠1, 𝑠1], 𝑠2 = [𝑠1, 𝑠2], 𝑠3 = [𝑠2, 𝑠1],
and 𝑠4 = [𝑠2, 𝑠2], and the possible symbols per observation are𝑂 = {V1, V2, V3}. Note that �̃�1 = {̃̇𝜋𝑖2}, where ̃̇𝜋𝑖2 = 𝑃(𝑄𝑡 = 𝑠𝑖2),𝐴 = {𝑎𝑖1𝑖2}, where 𝑎𝑖1𝑖2 = 𝑃(𝑄𝑡 = 𝑠𝑖2 | 𝑄𝑡−1 = 𝑠𝑖1), and 𝐵 =
{�̃�𝑖2(𝑜𝑡 = V𝑚)}, where �̃�𝑖2(𝑜𝑡 = V𝑚) = 𝑃(𝑜𝑡 = V𝑚 | 𝑄𝑡 = 𝑠𝑖2).

The equivalent first-order HMMwas developed based on
Hadar and Messer’s method [7] is shown in Figure 4.

Secondly, the optimal state sequence is computed based
on the equivalent first-order HMM by using our proposed
algorithm. Finally, the optimal state sequence of the second-
order HMM is inferred from the optimal state sequence from
the equivalent first-order HMM.

The following is the observational sequence used for
illustrating our algorithm:

𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6
= V1) . (73)

We applied our EOFTA algorithm for computing the
optimal state sequence based on the state entropy. The
computed value of state entropy is shown in Figure 5.

The total entropy after each time step for the transformed
model, that is, the second-order transformed into the equiv-
alent first-order HMM is displayed at the bottom of Figure 5.
For example, this model has produced only one possible state
sequence; that is, 𝑄1:5 = (𝑄1 = 𝑠1, 𝑄2 = 𝑠2, 𝑄3 = 𝑠3, 𝑄4 =𝑠2, 𝑄5 = 𝑠3), as shown by the bold arrow with a probability
of 1 after receiving the fifth observation. The total entropy
is 0 at 𝑡 = 5 which indicates that there is no uncertainty.
After receiving the sixth observation, that is, 𝑜1:6 = (𝑜1 =
V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6 = V1), this equivalent
first-order HMM has produced one possible optimal state
sequence 𝑄1:6 = (𝑄1 = 𝑠1, 𝑄2 = 𝑠2, 𝑄3 = 𝑠3, 𝑄4 = 𝑠2, 𝑄5 =𝑠3, 𝑄6 = 𝑠2) which is similar to 𝑞1:6 = (𝑞1 = 𝑠1, 𝑞2 = 𝑠2, 𝑞3 =𝑠1, 𝑞4 = 𝑠2, 𝑞5 = 𝑠1, 𝑞6 = 𝑠2) that is produced by the second-
order HMM in Section 2.5 with a total entropy of 0 which
indicates that there is no uncertainty. As a result, the optimal
state sequence of the high-order HMM is inferred from the
optimal state sequence of the equivalent first-order HMM.
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a11 = 0.5

a12 = 0.5
a23 = 0.5

a24 = 0.5

a32 = 1

s1 s2 s3 s4

1 1 2 33

b1(1) = 0.5 b1(3) = 0.5

b2(1) = 0.5 b2(3) = 0.5 b3(3) = 1

Figure 4: The graphical diagram shows an equivalent first-order HMM.
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Figure 5:The evolution of the trellis structure for a transformation of a second-order into an equivalent first-orderHMMwith the observation
sequence 𝑜1:6 = (𝑜1 = V1, 𝑜2 = V1, 𝑜3 = V3, 𝑜4 = V2, 𝑜5 = V3, 𝑜6 = V1).

Our proposed algorithm is based on the equivalent first-order
HMM and only requires𝑂(𝑇�̃�2) computation and hence we
can conclude that our EOTFA algorithm is more efficient.

4. Conclusion and Future Work

We have introduced a novel algorithm for computing the
optimal state sequence for HHMM that requires 𝑂(𝑇�̃�2)
calculations and 𝑂(�̃�2) memory space where �̃� is the
number of states in an equivalent first-order HMM and 𝑇 is
the length of observational sequence. This algorithm is to be
running with Viterbi algorithm in tracking the optimal state
sequence as well as the entropy of the distribution of the state
sequence. We have developed this algorithm for the case of
a generalized discrete high-order HMM. This research can
be also extended for continuous high-order HMMs and these
models are widely used in speech recognition.
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A simple and efficient empirical likelihood ratio (ELR) test for normality based on moment constraints of the half-normal
distribution was developed.The proposed test can also be easily modified to test for departures from half-normality and is relatively
simple to implement in various statistical packages with no ordering of observations required. Using Monte Carlo simulations,
our test proved to be superior to other well-known existing goodness-of-fit (GoF) tests considered under symmetric alternative
distributions for small to moderate sample sizes. A real data example revealed the robustness and applicability of the proposed test
as well as its superiority in power over other common existing tests studied.

1. Introduction

Testing for distributional assumptions for normality is of
paramount importance in applied statistical modelling. Sev-
eral well-known numerical tests for normality are widely
used by investigators to supplement the graphical techniques
in assessing departures from normality. Amongst others,
these tests include the Kolmogorov-Smirnov (KS) test [1], the
Lilliefors (LL) test [2], the Anderson-Darling (AD) test [3, 4],
the Shapiro-Wilks (SW) test [5], the Jarque-Bera (JB) test [6],
and the DAgostino and Pearson (DP) test [7]. These tests
differ on certain characteristics of the normal distribution
on which they focus. That is, some focus on the empirical
distribution function (EDF), some are moment based, and
some are based on regression as well as correlation. Of these
tests, some use normalized sample data whilst some use
observed values. However, though these tests are commonly
used in practice they do have major drawbacks. For example,
some of these tests require complete specification of the null
distribution, some require computation of critical values to
be done for each specified null distribution, and some require
ordering of the sample data when computing the test statistic.
Generally, most of these tests are not supported when certain
combinations of parameters of a specified distribution are
estimated.

Of these, the most well-known goodness-of-fit (GoF)
test is the SW test but it was originally restricted to small
sample sizes (i.e., 𝑛 ≤ 50). Several modifications have been
proposed by several researchers. These include Royston [8]
who suggested a normalized transformation for the test in
order to resolve the limitations on the sample size, Shapiro
and Francia [9] who also modified the test so that it can
be ideal for large sample sizes, Chen and Shapiro [10] who
proposed normalized spacings for an alternative test of the
SW test, and Rahman and Govindarajulu [11] who defined
new weights for the SW test statistic. However, the major
drawback of the SW test is computation time in dealing with
large samples when computing the covariance matrix that
corresponds to order statistics of the vector of weights and
the standard normal distribution.

However, we also have GoF tests that are based on
moment constraints such as the skewness and kurtosis
coefficients and these are well known to be efficient tools
for evaluating normality. These moment based tests include
the skewness test, the kurtosis test, the DP test, and the
JB test. These tests combine moment constraints to check
for deviations from normality. They are often referred to as
omnibus tests because of their ability to detect departures
from normality whilst not depending upon the parameters of
the normal distribution. The adoption of the use of moment
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based tests coupled with the empirical likelihood method-
ology has recently attracted the attention of researchers
in developing GoF tests for normality [12, 13]. Dong and
Giles [12] proposed an empirical likelihood ratio (ELR) test
utilizing the empirical likelihood (EL) methodology of Owen
[14]. They monitored the first four moment conditions of
the normal distribution and their test outperformed alternate
common existing tests studied against several alternative
distributions. Our study followed from the works of Shan
et al. [13] who proposed a simple ELR test for normality
based on moment constraints using a standardized normal
variable. Their test proved to be more powerful than other
well-known GoF tests on small to moderate sample sizes for
several alternative distributions. In this study we adopted
their approach and focused on the construction of a simple
ELR test for normality using the moment constraints of
the half-normal distribution. The next section will outline
the development of our proposed test followed by Monte
Carlo simulations. A real data example will be presented.
Discussions and conclusion of the findings aswell as potential
areas of future research will be highlighted.

2. ELR Test Development

Let us assume we have independent and identically dis-
tributed (𝑖.𝑖.𝑑) nonordered random variables𝑋1, 𝑋2, . . . , 𝑋𝑛.
The intention being to assess whether the observed data is
normally distributed. Thus we intend testing the following
null hypothesis:

𝐻0 : 𝑋 ∼ 𝑁(𝜇, 𝜎2) , (1)

where 𝜇 and 𝜎2 are considered to be unknown parameters.
We proposed using the standardized random variables of the
normal distribution by using the following transformations:

𝑍⋆𝑖 = 𝑋𝑖 − 𝜇𝑆𝐷 , 𝑖 = 1, 2, . . . , 𝑛, (2)

where 𝜇 = 𝑋 = (1/𝑛)∑𝑛𝑖=1𝑋𝑖 and 𝑆𝐷 is the standard
deviation to be estimated by an unbiased quantity 𝑠2 =𝑆/(𝑛−1). One can also decide to use themaximum likelihood
estimate (MLE) �̂�2 = 𝑆/𝑛, where 𝑆 = ∑𝑛𝑖=1(𝑋𝑖 − 𝑋)2 and𝑋 = (1/𝑛)∑𝑛𝑖=1𝑋𝑖. Both quantities 𝑠2 and �̂�2 are known to
converge to𝜎2 as 𝑛 approaches∞.We also used an alternative
transformation following Lin and Mudholkar’s [17] work
which also eliminates the dependency that exists between 𝜇
and 𝜎 on the data distribution.Thus we also transformed our
observations using

𝑍∗𝑖 = √𝑛/ (𝑛 − 1) (𝑋𝑖 − 𝑋)
𝑆𝐷−𝑖 , 𝑖 = 1, 2, . . . , 𝑛, (3)

where 𝑋 = (1/𝑛)∑𝑛𝑗=1𝑋𝑗, 𝑆𝐷2−𝑖 = (1/(𝑛 − 2))∑𝑛𝑗=1,𝑗 ̸=𝑖(𝑋𝑗 −𝑋−𝑖)2, and 𝑋−𝑖 = (1/(𝑛 − 1))∑𝑛𝑗=1,𝑗 ̸=𝑖𝑋𝑗. As 𝑛 gets large the
standardized data points 𝑍1, 𝑍2, . . . , 𝑍𝑛 become asymptoti-
cally independent. If 𝑋 ∼ 𝑁(0, 𝜎2), then the absolute value|𝑋| ∼ 𝐻𝑁(𝜇, 𝜎2). It also follows that if𝑋 ∼ 𝑁(𝜇, 𝜎2), then the

modulus of the standardized normal random variables, 𝑍⋆
and 𝑍∗, follows a standardized half-normal random variable
with mean = √2/𝜋 and variance = 1. The standardized form
of the half-normal distribution is also known as the 𝜒2-
distribution with ] = 1. The standardized half-normal
random variable has a PDF that is given by

𝑓𝑍 (𝑧) = {{{
2√2𝜋𝑒−(1/2)𝑧

2

for 𝑧 ≥ 0,
0 for 𝑧 < 0. (4)

and we denote it as 𝑍 ∼ 𝐻𝑁(𝜇, 𝜎2). Following Prudnikov
et al. [18], the 𝑘th moment of the standardized half-normal
variable for some integer 𝑘 > 0 is as outlined in the
proposition below.

Proposition 1. Let 𝑍 ∼ 𝐻𝑁(√2/𝜋, 1), for k = 1, 2,..., n, and
then the 𝑘𝑡ℎ moments are given by

𝐸 (𝑍𝑘) = 𝜇𝑘 = 1√𝜋2𝑘/2Γ(𝑘 + 12 ) , (5)

where Γ(⋅) denotes the gamma function.

We then derived the first four moments using the func-
tion given in (5). These moments are easily obtained as
follows.

Corollary 2. Let 𝑍 ∼ 𝐻𝑁(𝜇, 𝜎2). The first two moments of 𝑍,
that is 𝜇 and 𝜎 are given by

𝐸 (𝑍) = 𝜇 = √ 2𝜋Γ (1) = √ 2𝜋 ≈ 0.7979, (6)

var (𝑍) = 2√𝜋Γ(32) = 1. (7)

Corollary 3. Let 𝑍 ∼ 𝐻𝑁(𝜇, 𝜎2). The skewness and kurtosis
coefficients of 𝑍 are given by

𝛾 (𝑍1) = 𝐸 (𝑍3) = 𝜇3 = √23𝜋 Γ (2) = 2√ 2𝜋 ≈ 1.5958, (8)

𝛾 (𝑍2) = 𝐸 (𝑍4) = 𝜇4 = 4√𝜋Γ(52) = 3. (9)

In this study we used the first four moment constraints of
the standardized half-normal distribution.

2.1. The ELR Based Test Statistic. We used an empirical
likelihood ratio test (ELR) to construct our test statistic.
Our aim was to compare the GoF test under 𝐻0 against the
alternative (𝐻𝑎). In order to achieve this, we constructed our
test statistic as follows. Let us consider 𝑛 nonordered observa-
tions𝑋1, 𝑋2, . . . , 𝑋𝑛 that are independent and identically dis-
tributed and assumed to have unknown 𝜇 and 𝜎. The inten-
tion is to perform aGoF test for the distributional assumption
that𝑋1, 𝑋2, . . . , 𝑋𝑛 are consistent with a normal distribution.
Now consider that the random variables 𝑍1, 𝑍2, . . . , 𝑍𝑛 are
absolute standardized normal variables from the random
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variables𝑋1, 𝑋2, . . . , 𝑋𝑛. Thus the transformed/standardized
observations have a moment function given in Proposition 1
above. Following the EL methodology we assigned 𝑝𝑖, which
is a probability parameter to each transformed observation𝑍𝑖, and then formulated the EL function that is given by

𝐿 (𝐹) = 𝑛∏
𝑖=1

𝑝𝑖, (10)

where 𝑝𝑖’s satisfy the fundamental properties of probability;
that is 0 ≤ 𝑝𝑖 ≤ 1 and ∑𝑛𝑖=1 𝑝𝑖 = 1. Probability
parameters, 𝑝𝑖’s, will then be chosen subject to unbiased
moment conditions and the EL method will utilize these𝑝𝑖’s in order to maximize the EL function. Following this
EL technique, 𝐸(𝑍𝑘) has sample moments ∑𝑛𝑖=1 𝑝𝑖𝑍𝑘𝑖 and the
probability parameters (𝑝𝑖’s) are elements of the EL function.
Under 𝐻0, the four unbiased empirical moment equations
have the form

𝑛∑
𝑖=1

𝑝𝑖𝑍𝑘𝑖 − 𝜇𝑘 = 0, 𝑘 = 1, 2, . . . , 𝑛. (11)

The composite hypotheses for the ELR test are given by

𝐻0 : 𝑧𝑖 𝑠 ∼ 𝐻𝑁(𝜇, 𝜎2)
vs 𝐻𝑎 : 𝑧𝑖 𝑠 ≁ 𝐻𝑁(𝜇, 𝜎2) . (12)

Alternatively considering the above unbiased empirical
moment equations, the hypotheses for the ELR test can be
written as

𝐻0 : 𝐸 (𝑍𝑘) = 𝜇𝑘
vs 𝐻𝑎 : 𝐸 (𝑍𝑘) ̸= 𝜇𝑘,

(13)

The nonparametric empirical likelihood function corre-
sponding to the given hypotheses has the form:

𝐿 (𝐹) = 𝐿 (𝑍1, 𝑍2, . . . , 𝑍𝑛 | 𝜇𝑘) = 𝑛∏
𝑖=1

𝑝𝑖, (14)

where the unknown probability parameters and 𝑝𝑖’s are
attained under 𝐻0 and 𝐻𝑎. Under 𝐻0 the EL function is
maximized with respect to the 𝑝𝑖’s subject to two constraints

𝑛∑
𝑖=1

𝑝𝑖 = 1,
𝑛∑
𝑖=1

𝑝𝑖𝑍𝑘𝑖 = 𝜇𝑘.
(15)

Following this, the weights of 𝑝𝑖’s are identified as

𝑝1, 𝑝2, . . . , 𝑝𝑛 = sup
𝑛∏
𝑖=1

𝑎𝑖 | 𝑛∑
𝑖=1

𝑎𝑖 = 1,
𝑛∑
𝑖=1

𝑎𝑖𝑍𝑘𝑖 = 𝜇𝑘,
(16)

where 0 ≤ 𝑎𝑗 ≤ 1, for 𝑗 = {1, 2, . . . , 𝑛}. If we then use the
Lagrangian multipliers technique, it can be shown that the
maximum EL function under 𝐻0 can be expressed by the
given form:

𝐿 (𝐹𝐻0) = 𝐿 (𝑍1, 𝑍2, . . . , 𝑍𝑛 | 𝜇𝑘)
= 𝑛∏
𝑖=1

1
𝑛 (1 + 𝜆𝑘 (𝑍𝑘𝑖 − 𝜇𝑘)) ,

(17)

where 𝜆𝑘 is a root of
𝑛∑
𝑖=1

(𝑍𝑘𝑖 − 𝜇𝑘)1 + 𝜆𝑘 (𝑍𝑘𝑖 − 𝜇𝑘) = 0. (18)

Under the alternative hypothesis, ∑𝑛𝑖=1 𝑝𝑖𝑍𝑘𝑖 = 𝜇𝑘 is not
required to identify the weights, 𝑝𝑖, in order to maximize
the EL function but only ∑𝑛𝑖=1 𝑝𝑖 = 1. Thus under 𝐻𝑎 the
nonparametric EL function is given by

𝐿 (𝐹𝐻𝑎) = 𝐿 (𝑍1, 𝑍2, . . . , 𝑍𝑛) = 𝑛∏
𝑖=1

(1𝑛) = (1𝑛)
𝑛 . (19)

Now let us consider (−2𝐿𝐿𝑅)𝑘 to be -2 log likelihood test
statistic for the hypotheses 𝐻0 : 𝐸(𝑍𝑘) = 𝜇𝑘 vs 𝐻𝑎 :𝐸(𝑍𝑘) ̸= 𝜇𝑘. It should be noted that, under 𝐻0, minus
two times the log ELR has an asmymptotic 𝜒2 limiting
distribution [19]. Thus considering the null and alternative
hypotheses, the above test statistic will simply be transformed
to

(−2𝐿𝐿𝑅)𝑘 = −2 log 𝐿 (𝐹𝐻0)𝐿 (𝐹𝐻𝑎)
= −2 log 𝐿 (𝑍1, 𝑍2, . . . , 𝑍𝑛 | 𝜇𝑘)𝐿 (𝑍1, 𝑍2, . . . , 𝑍𝑛) .

(20)

With simple substitution the above can be simplified to

(−2𝐿𝐿𝑅)𝑘 = −2 log ∏𝑛𝑖=1 (1/𝑛 (1 + 𝜆𝑘 (𝑍𝑘𝑖 − 𝜇𝑘)))∏𝑛𝑖=1 (1/𝑛)
= 2 𝑛∑
𝑖=1

log [1 + 𝜆𝑘 (𝑍𝑘𝑖 − 𝜇𝑘)] .
(21)

We used the likelihood ratio to compare to size adjusted
critical values in order to decide whether or not to reject𝐻0.
We then proposed to reject the null hypothesis if

ELR𝑍 = max
𝑘∈𝐺

(−2𝐿𝐿𝑅)𝑘 > 𝐶𝛼, (22)

where𝐶𝛼 is the test threshold and is 100(1−𝛼)%percentile of
the𝜒2(1) distributionwhilst𝐺 are integer values representing
the set ofmoment constraints thatmaximizes the test statistic.
As recommended by Dong and Giles [12], we used the first
four moment constraints; that is, we set 𝐺 = {1, 2, 3, 4}. In
this study we used the abbreviation ELR𝑍1 to refer to the
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first test where we transformed data using (2) and we used
the abbreviation ELR𝑍2 to refer to the second alternative
test where we transformed data using (3). Our test statistic
ELR𝑍 = max𝑘∈𝐺(−2𝐿𝐿𝑅)𝑘 is a CUSUM-type statistic as
classified by Vexler and Wu [20]. In their article, Vexler and
Wu [20] stated that based on the change point literature,
another commonalternative is to utilize the Shiryaev-Roberts
(SR) statistic in replacement of the CUSUM-type statistic
(see, for example, [21, 22]). In our case the classical SR
statistic was of the form ∑𝑘∈𝐺 exp(−2𝐿𝐿𝑅)𝑘. Vexler, Liu, and
Pollak [23] showed that the classical SR statistic and the
simple CUSUM-type statistic have almost equivalent optimal
statistical properties due to their common null-martingale
basis. Moreover, the classical SR statistic is adapted from the
CUSUM-type statistic.

Shan et al. [13] usedMonte Carlo experiments to compare
the CUSUM-type statistic for their ELR test for normality
with an equivalent classical SR statistic and based on the
relative simplicity of the CUSUM-type statistic, as well as
its power properties, the authors opted to use the CUSUM-
type statistic for their study. We conducted a numerical
experiment to compare power for the CUSUM-type and
SR statistic for our proposed test statistics with increased
moment constraints and, based on the same reasons given by
Shan et al. [13], we decided to use the CUSUM-type statistic
for our Monte Carlo comparisons. Also, from the results,
ELR𝑍2 outperformed ELR𝑍1, hence ELR𝑍2 was our preferred
test. For all further comparisons, ELR𝑍1 was excluded in
this study. Findings for this Monte Carlo experiment are
presented in Table 4. However, it should be noted from these
findings that ELR𝑍1 has the potential to be superior to ELR𝑍2
under certain alternatives. Further investigations to uncover
the alternatives in which ELR𝑍1 is superior to ELR𝑍2 are a
potential area of future research which will not be further
addressed in this study. The next section will outline the
Monte Carlo simulation procedures using the R statistical
package.

3. Monte Carlo Simulation Study

We used the R statistical package to implement our Monte
Carlo simulation procedures in power comparisons as well as
assessment of our preferred proposed test (ELR𝑍2). It should
be noted that other standard statistical packages can easily
be used to implement our proposed tests. In order for us to
conduct any assessments and evaluations of the proposed test,
firstly we had to determine the size adjusted critical values.

3.1. Size Adjusted Critical Values. Since the proposed ELR test
is an asymptotic test, we therefore computed the unknown
actual sizes for finite samples using Monte Carlo simulations
with 50,000 replications. Motivated by practical applications,
we considered critical values for relatively small sample sizes,
i.e., 10 ≤ 𝑛 ≤ 200 because most applied statistical sciences
datasets fall within this range. The actual rejection rate for
a given sample size (𝑛) is considered to be the total number
of the rejections divided by the total number of replications.
Data was simulated from a standard normal distribution.The
stored ordered test statistics were then used to determine

the percentiles of the empirical distribution. This makes it
possible to obtain the 30%, 25%, 20%, . . . , 1%, size adjusted
critical values.

3.2. ELR Test Assessment. The power of the proposed test
(ELR𝑍2) was compared to that of common existing GoF tests
that include the Anderson-Darling (AD) test [3, 4] test, the
modified Kolmogorov-Smirnov (KS) test [2] the Cramer-
von Mises (CVM) test [24–26], the Jarque-Bera (JB) test [6],
the Shapiro-Wilk (SW) test [5], the density based empirical
likelihood ratio based (DB) test [16], and the simple and exact
empirical likelihood test based onmoment relations (SEELR)
[13] at the 5% significance level. Power simulations were done
using 5,000 replications for all tests with varying sample
sizes (𝑛 = 20, 30, 50 and 80) against different alternative
distributions. We adopted alternative distributions used by
Shan et al. [13] which covers a wide range of both symmetric
and asymmetric applied distributions. To assess robustness
and applicability of our proposed test (ELR𝑍2), we conducted
a bootstrap study using some real data.

4. Results of the Monte Carlo Simulations

This section presents the findings of the power comparisons
for the different categories of the alternative distributions
considered. The results of the power comparisons are pre-
sented in Tables 5–8. Under symmetric cases defined on(−∞,∞) our new test ELR𝑍2 outperformed all other studied
tests against the considered alternative distributions but
slightly inferior to the JB test. For symmetric distributions
defined on (0, 1) our proposed test (ELR𝑍2) was comparable
to the DB test and significantly outperformed other alternate
tests studied. However, when the alternative is Beta (0.5, 0.5),
the ELR𝑍2 test is comparable to the SW and SEELR tests
whilst only outperforming the KS test, the CVM test and the
JB test.

As for asymmetric distributions defined on (0,∞), the
SW and SEELR are the most powerful tests and should be
the preferred tests under these cases. The AD and DB tests
are comparable and they performed better than the proposed
test as well as the KS and CVM tests. Lastly, in the category of
asymmetric alternative distributions defined on (−∞,∞) the
ELR𝑍2 test was comparable to the SEELR test at low sample
sizes (i.e., 𝑛 = 20, 30) for the non-central 𝑡-distributions.
The SW test outperformed all the tests considered in this
study under these asymmetric alternative distributions. For
the ELR based tests only the SEELR test was comparable to
the common existing tests studied, that is, the AD test, the
KS𝑀 test, the CVM test, and the JB test.

Overall, when considering all the normality tests with
respect to all of the alternative distributions considered, it can
be seen that, the JB, the ELR𝑍2 and the SW tests are generally
the most powerful tests given symmetric alternatives defined
on (−∞,∞), whilst the DB and the ELR𝑍2 tests are the most
powerful tests for symmetric alternatives defined on (0, 1).
On the other hand, the SEELR and the SW tests are the most
powerful tests for asymmetric alternatives defined on (0,∞),
whereas, the JB and SW tests are the most powerful tests for
asymmetric alternatives defined on (−∞,∞).
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Table 1: Comparisons of computational times (in seconds) for the studied tests.

Test Replications Elapsed Relative User.self Sys.self
AD 5,000 1.14 2.000 1.14 0.00
CVM 5,000 0.82 1.439 0.81 0.00
DB 5,000 17.00 29.825 16.94 0.04
ELR𝑍2 5,000 44.83 78.649 44.78 0.01
JB 5,000 252.64 443.228 252.60 0.00
KS𝑀 5,000 0.89 1.561 0.90 0.00
SEELR 5,000 45.42 79.684 45.41 0.00
SW 5,000 0.57 1.000 0.58 0.00

Table 2: The baby boom data.

Times between births (in min)
59 14 37 62 68 2 15 9 157 27 37 2 55 86 14
4 40 36 47 9 61 1 26 13 28 77 26 45 25 18
29 15 38 2 2 19 27 14 13 19 54 70 28
Note. Data appeared in the newspaper the Sunday Mail on December 21, 1997 [15].

It was of paramount importance for us to determine the
computational cost of the new algorithms by focusing on the
computation time of the proposed test as compared to that
of the considered existing tests. To assess this, we used the R
benchmark tool on a notebook installed with 64 BitWindows
10 Home addition. Equipped with a 4th generation Intel Core
i5-4210U processor which has a speed of 1.7 GHz cache and
memory (RAM) of 4GB PC3 DDR3L SDRAM, we set our
simulations to 5,000 for each test with sample size set at 𝑛 =80. The results (see Table 1) show only a clear advantage of
our proposed approach to that of the widely known JB test.
Also from the results, our proposed methods are comparable
to the SEELR test but inferior to the DB test. The SW, CVM,
KS and AD tests are computationally more efficient in terms
of time than the rest of the studied tests.

5. A Real Data Example

In this example we used baby boom data from an observa-
tional study with records of forty-four (44) babies born at
a 24-hour hospital in Brisbane, Australia. We opted for this
dataset because it can be used to demonstrate applicability
of various statistical procedures to some common applied
distributions which include the normal (by modelling the
birth weights), the binomial (inferences in the number of
boys/girls born), the geometric (by considering the number
of births until a boy/girl is born), the Poisson (births per
hour for each hour), and the exponential (inference on
times between births). Recently, Miecznikowski et al. [27]
used the baby boom dataset in a resampling study on the
application of their ELR based goodness-of-fit test. For more
information regarding this dataset one can refer toDunn [28].
For our application we opted to make use of the exponential
distribution; thuswewere interested in inference on the times
between births. Table 2 shows the times between births which
were computed by taking the differences between successive
times of birth after midnight of birth times.
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Figure 1: Histogram for times between births for baby boom data.

The goal of this examplewas to carry out a bootstrap study
in assessing the robustness and applicability of our proposed
test (ELR𝑍2) on uniformly distributed data. However, the
times between births are known to be consistent with the
exponential distribution (see Figure 1). By assessing the
histogram one can easily see that the data resembles the
exponential distribution revealing that the times between
births are exponentially consistent. We used the inverse
exponential distribution to transform the times between
births so that they can be uniformly distributed. We then
used the density based empirical likelihood ratio based test
(dbEmpLikeGOF) to check if the transformed baby boom
data are uniformly distributed. The dbEmpLikeGOF test
returned a 𝑝 value of 0.6950 suggesting that the transformed
data are consistent with the uniform distribution.
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Table 3: Bootstrapping using the inverse exponential transformed baby boom data.

Bootstrap power comparisons:𝐻0 : data is normally distributed
Observations removed AD KS𝑀 CVM JB SW DB SEELR ELR𝑍2
3 0.0000 0.0000 0.0000 0.0000 0.1012 0.6040 0.0000 0.6132
8 0.0164 0.0006 0.0012 0.0000 0.1182 0.4486 0.0146 0.4054
13 0.0281 0.0073 0.0066 0.0011 0.1023 0.3488 0.0568 0.2714

Table 4: A numerical assessment on power using the Shiryaev-Roberts (S-R) and CUSUM-type (C-t) statistics for the proposed tests (ELR𝑍1
and ELR𝑍2) with increased moment constraints at 𝛼 = 0.05.
𝑛 ELR𝑍1 ELR𝑍2𝑘 = {1, 2, 3, 4} 𝑘 = {1, 2, 3, 4, 5} 𝑘 = {1, 2, 3, 4} 𝑘 = {1, 2, 3, 4, 5}

S-R C-t S-R C-t S-R C-t S-R C-t
𝑡(2)

30 0.0416 0.0330 0.0020 0.0010 0.6980 0.6998 0.6166 0.5912
50 0.5142 0.4112 0.1666 0.1356 0.8766 0.8774 0.8320 0.8030
80 0.8732 0.8336 0.7476 0.7184 0.9718 0.9684 0.9544 0.9488

Cauchy(0,1)
30 0.3262 0.3438 0.0000 0.0000 0.9560 0.9556 0.9248 0.9192
50 0.9538 0.9344 0.7246 0.6754 0.9970 0.9974 0.9928 0.9900
80 0.9996 0.9996 0.9964 0.9940 1.0000 1.0000 0.9998 0.9996

Uniform(0,1)
30 0.7230 0.1958 0.7208 0.7206 0.5772 0.5986 0.6996 0.7004
50 0.9458 0.5222 0.9532 0.9474 0.9032 0.9122 0.9434 0.9398
80 0.9966 0.8462 0.9978 0.9980 0.9940 0.9956 0.9986 0.9976

Exp(1)
30 0.0094 0.0304 0.0070 0.0068 0.4638 0.4818 0.3874 0.3772
50 0.0836 0.8096 0.0022 0.0042 0.6274 0.6306 0.5628 0.5380
80 0.3764 0.9972 0.2504 0.2346 0.7942 0.8070 0.7558 0.7506

𝑡(𝛿 = 1, ] = 2)
30 0.0476 0.0136 0.0012 0.0028 0.7168 0.7230 0.6476 0.6280
50 0.5204 0.4172 0.1932 0.1676 0.8904 0.8908 0.8450 0.8294
80 0.8752 0.8610 0.7736 0.7700 0.9714 0.9766 0.9636 0.9558

SN(0,1,5)
30 0.0514 0.0520 0.0486 0.0442 0.1394 0.1242 0.1048 0.0944
50 0.0404 0.0362 0.0350 0.0352 0.1408 0.1432 0.1114 0.0904
80 0.0358 0.0338 0.0272 0.0204 0.1592 0.1646 0.1158 0.1226
Note. Our proposed tests are maximized on 𝑘 ∈ 𝐺, where 𝐺 can take any integer to represent the moment constraints used to maximise the test statistics for
specified sample sizes at 5% level of significance using 5,000 simulations. 𝑛 is the sample size. Bold represents the powerful test statistic for the given simulation
scenarios.

For the resampling study we performed a power simu-
lation study by randomly removing 3, 8, and 13 observations
from the transformed baby boomdata at 5% significance level
using 20,000 replications for each simulation. For compari-
son’s sakewe considered theAD test, themodifiedKS test, the
CVM test, the JB test, the SW test, theDB test, the SEELR test,
and our proposed test (ELR𝑍2). The Monte Carlo bootstrap
simulation results are presented in Table 3. It is undeniably
clear that our test outperformed all the common existing
tests and therefore suggests its robustness and applicability
on real data. It should be noted that we opted for uniformly
distributed data for our application since our proposed
test (ELR𝑍2) proved to be more powerful for symmetric
alternative distributions which are defined on (0, 1).

6. Conclusion

An empirical likelihood ratio test for normality based on
moment constraints of the half-normal distribution has been
developed. Overall, the proposed ELR test has good power
properties and significantly outperformed the considered
well-known common existing tests against the studied alter-
native symmetric distributions. In our case, the attractive
power properties of the proposed ELR test resulted from
the EL method being able to integrate most of the available
information by utilizing the first four moment constraints
and also through the utilization of the EL function which
leads to additional power benefits. We advocate for our
proposed test (ELR𝑍2) to be the preferred choice when one
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Table 5: Results of the Monte Carlo power comparisons based on samples with sizes (𝑛) from symmetric alternative distributions defined
on (−∞,∞) at 𝛼 = 0.05.

Symmetric alternative distributions defined on (−∞,∞) at 𝛼 = 0.05
Distribution 𝑛 AD KS𝑀 CVM JB SW DB SEELR ELR𝑍2
t(2) 20 0.5068 0.4482 0.5138 0.5632 0.5282 0.2806 0.3774 0.5268

30 0.6834 0.5832 0.6552 0.7016 0.6908 0.3946 0.4228 0.7004
50 0.8538 0.7782 0.8370 0.8812 0.8572 0.5640 0.4800 0.8726
80 0.9602 0.9200 0.9554 0.9646 0.9566 0.8010 0.5420 0.9658

t(4) 20 0.2270 0.1768 0.2114 0.2898 0.2410 0.0922 0.1698 0.2450
30 0.3002 0.2182 0.2764 0.3788 0.3338 0.1084 0.2164 0.3398
50 0.4150 0.3176 0.3794 0.5400 0.4520 0.1388 0.2468 0.4784
80 0.5558 0.3994 0.5210 0.7064 0.6282 0.2094 0.2784 0.6760

t(7) 20 0.1162 0.0952 0.1006 0.1670 0.1398 0.0492 0.1066 0.1346
30 0.1404 0.1008 0.1306 0.2222 0.1806 0.0552 0.1188 0.1664
50 0.1806 0.1272 0.1578 0.2954 0.2362 0.0502 0.1422 0.2276
80 0.2380 0.1618 0.2086 0.4010 0.3122 0.0650 0.1590 0.3324

Cauchy(0,1) 20 0.8780 0.8386 0.8898 0.8622 0.8674 0.7012 0.6368 0.8450
30 0.9672 0.9410 0.9622 0.9574 0.9610 0.8606 0.6910 0.9542
50 0.9976 0.9950 0.9964 0.9954 0.9958 0.9712 0.7424 0.9976
80 1.0000 1.0000 0.9998 0.9998 0.9998 0.9992 0.8882 1.0000

Cauchy(0,5) 20 0.8778 0.8374 0.8796 0.8650 0.8704 0.6902 0.6454 0.8550
30 0.9628 0.9414 0.9648 0.9512 0.9590 0.8664 0.6950 0.9542
50 0.9968 0.9948 0.9976 0.9968 0.9966 0.9730 0.7468 0.9962
80 1.0000 1.0000 1.0000 0.9998 1.0000 0.9996 0.8872 1.0000

Logistic 20 0.1090 0.0872 0.0982 0.1460 0.1138 0.0436 0.0944 0.1158
30 0.1176 0.0908 0.1220 0.1982 0.1474 0.0452 0.1044 0.1482
50 0.1562 0.1184 0.1456 0.2620 0.1986 0.0414 0.1216 0.1900
80 0.2098 0.1406 0.1870 0.3474 0.2662 0.0468 0.1266 0.2908

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSM) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test
ELR𝑍2.

Table 6: Results of the Monte Carlo power comparisons based on samples with sizes (𝑛) from symmetric alternative distributions defined
on (0, 1) at 𝛼 = 0.05.

Symmetric alternative distributions defined on (0, 1) at 𝛼 = 0.05
Distribution 𝑛 AD KS𝑀 CVM JB SW DB SEELR ELR𝑍2
Beta(2,2) 20 0.0564 0.0544 0.0594 0.0052 0.0516 0.1310 0.0696 0.0970

30 0.0786 0.0520 0.0812 0.0012 0.0768 0.2004 0.0550 0.1962
50 0.1222 0.0852 0.1172 0.0010 0.1528 0.3468 0.0628 0.4252
80 0.2340 0.1256 0.1834 0.0128 0.3170 0.5978 0.1128 0.7204

Beta(3,3) 20 0.0404 0.0474 0.0408 0.0076 0.0372 0.0780 0.0518 0.0620
30 0.0786 0.0520 0.0812 0.0046 0.0768 0.1112 0.0392 0.1030
50 0.0736 0.0524 0.0650 0.0014 0.0682 0.1654 0.0326 0.1906
80 0.1076 0.0762 0.0826 0.0022 0.1128 0.2772 0.0298 0.3458

Beta(0.5,0.5) 20 0.6160 0.3098 0.5058 0.0066 0.7190 0.9094 0.7092 0.7015
30 0.8576 0.4998 0.7332 0.0052 0.9392 0.9914 0.8830 0.8960
50 0.9902 0.7976 0.9568 0.3822 0.9992 1.0000 0.9916 0.9956
80 1.0000 0.9724 0.9990 0.9872 1.0000 1.0000 1.0000 1.0000

Uniform(0,1) 20 0.1640 0.1014 0.1396 0.0040 0.1886 0.4064 0.2598 0.3332
30 0.3004 0.1422 0.2262 0.0020 0.3894 0.6622 0.3202 0.6002
50 0.5780 0.2532 0.4282 0.0118 0.7546 0.9358 0.5624 0.9120
80 0.8636 0.4578 0.7092 0.3706 0.9688 0.9990 0.8730 0.9944

Logit-norm(0,1) 20 0.0648 0.0442 0.0562 0.0056 0.0578 0.1294 0.0700 0.1010
30 0.0858 0.0574 0.0748 0.0024 0.0796 0.1974 0.0658 0.1990
50 0.1394 0.0812 0.1220 0.0010 0.1612 0.3420 0.0676 0.4156
80 0.2630 0.1368 0.2114 0.0126 0.3408 0.5830 0.1094 0.7108

Logit-norm(0,2) 20 0.3758 0.1844 0.2934 0.0046 0.4366 0.7034 0.4806 0.5348
30 0.6092 0.2884 0.4822 0.0030 0.7342 0.9150 0.6512 0.8258
50 0.9016 0.5412 0.7814 0.1174 0.9742 0.9976 0.9006 0.9818
80 0.9942 0.8170 0.9644 0.8594 1.0000 1.0000 0.9958 0.9996

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSM) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test
ELR𝑍2.
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Table 7: Results of the Monte Carlo power comparisons based on samples with sizes (𝑛) from asymmetric alternative distributions defined
on (0,∞) at 𝛼 = 0.05.

Asymmetric alternative distributions defined on (0,∞) at 𝛼 = 0.05
Distribution 𝑛 AD KS𝑀 CVM JB SW DB SEELR ELR𝑍2
Exp(1) 20 0.7850 0.5722 0.7222 0.6230 0.8334 0.8384 0.8522 0.3642

30 0.9296 0.7780 0.8922 0.8286 0.9646 0.9754 0.9996 0.4752
50 0.9972 0.9594 0.9878 0.9756 0.9998 0.9992 1.0000 0.6400
80 1.0000 0.9990 0.9998 0.9998 1.0000 1.0000 1.0000 0.8114

Gamma(2,1) 20 0.4590 0.3066 0.4136 0.4080 0.5380 0.4420 0.5684 0.2264
30 0.6662 0.4776 0.6072 0.5852 0.7502 0.6876 0.8094 0.2844
50 0.8960 0.6926 0.8436 0.8242 0.9500 0.9180 0.9668 0.3822
80 0.9840 0.8962 0.9682 0.9782 0.9976 0.9914 0.9984 0.5210

Lognorm(0,1) 20 0.9080 0.7760 0.8846 0.8172 0.9350 0.9210 0.9418 0.6036
30 0.9838 0.9304 0.9730 0.9466 0.9888 0.9906 1.0000 0.7418
50 1.0000 0.9942 0.9998 0.9976 1.0000 1.0000 1.0000 0.9068
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9838

Lognorm(0,2) 20 0.9986 0.9904 0.9970 0.9840 0.9990 0.9998 0.9999 0.8894
30 0.9998 0.9998 1.0000 0.9994 1.0000 1.0000 1.0000 0.9684
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Weibull(2,1) 20 0.1348 0.0980 0.1142 0.1258 0.1582 0.1264 0.1626 0.0932
30 0.1828 0.1306 0.1654 0.1704 0.2274 0.1958 0.2718 0.0892
50 0.3050 0.2000 0.2530 0.2738 0.4086 0.3446 0.5202 0.1120
80 0.4954 0.3186 0.4200 0.4346 0.6644 0.5634 0.7812 0.1080

Weibull(0.5,1) 20 0.9962 0.9810 0.9954 0.9562 0.9990 0.9996 0.9986 0.8014
30 1.0000 0.9990 1.0000 0.9972 1.0000 1.0000 1.0000 0.9168
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9866
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSM) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test
ELR𝑍2.

Table 8: Results of the Monte Carlo power comparisons based on samples with sizes (𝑛) from asymmetric alternative distributions defined
on (−∞,∞) at 𝛼 = 0.05.

Asymmetric alternative distributions defined on (−∞,∞) at 𝛼 = 0.05
Distribution 𝑛 AD KS𝑀 CVM JB SW DB SEELR ELR𝑍2𝑡(𝛿 = 1, ] = 2) 20 0.6446 0.5692 0.6440 0.6556 0.6498 0.4612 0.5688 0.5542

30 0.8060 0.7178 0.7934 0.8080 0.8072 0.6210 0.6678 0.7242
50 0.9492 0.8900 0.9394 0.9414 0.9410 0.7820 0.7782 0.8872
80 0.9928 0.9762 0.9892 0.9924 0.9924 0.9294 0.8410 0.9726𝑡(𝛿 = 1, ] = 4) 20 0.3180 0.2368 0.2848 0.3606 0.3142 0.1638 0.2790 0.2744
30 0.4086 0.3246 0.3884 0.4810 0.4518 0.2262 0.3584 0.3718
50 0.5912 0.4618 0.5538 0.6592 0.6360 0.3202 0.4830 0.5344
80 0.7642 0.6370 0.7296 0.8290 0.8108 0.4626 0.5826 0.7084𝑡(𝛿 = 1, ] = 7) 20 0.1490 0.1138 0.1404 0.1934 0.1692 0.0766 0.1420 0.1492
30 0.1958 0.1424 0.1736 0.2722 0.2318 0.0940 0.1876 0.1936
50 0.2846 0.1968 0.2522 0.3834 0.3372 0.1194 0.2556 0.2738
80 0.3848 0.2756 0.3542 0.5102 0.4556 0.1620 0.3300 0.3798

SN(0,1,2) 20 0.0896 0.0756 0.0882 0.1054 0.1068 0.0636 0.0978 0.0710
30 0.1194 0.0912 0.1062 0.1214 0.1422 0.0784 0.1336 0.0792
50 0.1666 0.1260 0.1488 0.1810 0.1968 0.1164 0.2080 0.0800
80 0.2434 0.1918 0.2258 0.2712 0.2940 0.1550 0.3074 0.0890

SN(0,1,5) 20 0.2406 0.1744 0.2212 0.2060 0.2660 0.2092 0.2810 0.1144
30 0.3586 0.2604 0.3152 0.3056 0.4230 0.3346 0.4742 0.1278
50 0.5796 0.4098 0.5430 0.4768 0.6672 0.5250 0.7110 0.1372
80 0.8080 0.6084 0.7554 0.7378 0.8888 0.7394 0.9020 0.1722

SC(0,2,5) 20 0.9660 0.9360 0.9658 0.9410 0.9736 0.9436 0.9462 0.8482
30 0.9978 0.9884 0.9954 0.9910 0.9970 0.9882 0.9774 0.9524
50 1.0000 0.9998 1.0000 0.9998 0.9998 0.9992 0.9844 0.9940
80 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 0.9998

Anderson-Darling (AD) test, Modified Kolmogorov-Smirnov (KSM) test [2], Cramer-von Mises test (CVM) test, Jarque-Bera (JB) test, Shapiro-Wilk (SW)
test, density based empirical likelihood ratio based (DB) test [16], simple and exact empirical likelihood ratio based (SEELR) test [13], and the proposed test
ELR𝑍2.
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is testing for departures from normality against symmetric
alternative distributions for small to moderate sample sizes.
However, our test has low power in the considered asymmet-
ric alternatives and further modifications in improving the
power of the test under these alternatives would be much
appreciated.

In this study we used the moment constraints of the
standardized variables of the half-normal distribution. It will
be of interest for one to use the raw moments (nonstandard-
ized data points) of the half-normal distribution. However,
according to Dong and Giles [12], the power of the ELR test
using standardized observations is within the same range
as it is when using nonstandardized data points. Also of
interest are the findings by Mittelhammer et al. [29] where
they suggested that the power of ELR based tests increases
as the moment constraints increase. From our numerical
experiment we did not extensively explore this conjecture
and this is a potential area of future research and it might be
interesting to carry out a more detailed investigation for the
proposed tests. We focused on tests for normality, which is a
common distribution to test in applied statistical modelling
and we believe that our proposed test will assist investigators
to use empirical likelihood approaches using moment con-
straints for goodness-of-fit tests of other applied distributions
in practice. By simply ignoring the absolute values of the
transformed observations and utilizing standardized half-
normal data points our proposed test will simply transform
to a GoF test for assessing departures from half-normality.
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The maximum likelihood method is the most widely used estimation method. On the other hand, it can produce substantial bias,
and an approximate confidence interval based on the maximum likelihood estimator cannot be valid when the sample size is
small. Because the sizes of the record values are considerably smaller than the original sequence observed in the majority of cases,
a method appropriate for this situation is required for precise inference. This paper provides the exact confidence intervals for
unknown parameters and exact predictive intervals for the future upper record values by providing some pivotal quantities in the
two-parameter Rayleigh distribution based on the upper record values. Finally, the validity of the proposed inference methods was
examined fromMonte Carlo simulations and real data.

1. Introduction

The cumulative distribution function (cdf) and probability
density function (pdf) of the random variable (RV), 𝑋, with
the Rayleigh distribution are given, respectively, by

𝐹 (𝑥) = 1 − exp[−(𝑥 − 𝜇)22𝜎2 ] , (1)

𝑓 (𝑥) = 𝑥 − 𝜇𝜎2 exp[−(𝑥 − 𝜇)22𝜎2 ] , 𝑥 > 𝜇, 𝜎 > 0, (2)

where𝜇 is the location parameter and𝜎 is the scale parameter.
TheRayleigh distribution is used because the life of themodel
theory reliability plays an important role in modeling the
life of the random phenomenon. Moreover, it is used in
many applications, such as reliability, life tests, and survival
analysis because its failure rate is a linear function of time.
Therefore, this distribution has been studied bymany authors
in the case, where samples are censored due to a range of
reasons. Dyer and Whisenand [1] examined the properties
of the 𝑘-optimum best linear unbiased estimators (BLUEs)
of the scale parameter in the Rayleigh distribution and
provided an approximate 𝑘-optimumBLUE based on 𝑘 order

statistics. Sinha and Howlader [2] derived the highest poste-
rior density (HPD) credible interval for the scale parameter
and the reliability function in a Rayleigh distribution. Ali
Mousa and Al-Sagheer [3] obtained themaximum likelihood
estimators (MLEs) and Bayes estimators for 𝜇, 𝜎, and the
reliability function of the Rayleigh distribution obtained
based on the progressively Type-II censored data. Raqab
and Madi [4] discussed the Bayesian predictive methods for
the total time on test using doubly censored data with a
Rayleigh distribution and the scale parameter and applied
the methods to a real data set that represented the deep-
groove ball bearing failure times. For the same real data,
Kim and Han [5] applied a Bayesian inference method
based on the conjugate prior of the scale parameter of the
Rayleigh distribution under general progressive censoring
and S. Dey and T. Dey [6] applied this by providing point
and interval estimation methods for the scale parameter of
the Rayleigh distribution under progressive Type-II censor-
ing with binomial removal. This paper considered a two-
parameter Rayleigh distribution based on the upper record
values that are used extensively to build statistical modeling
arising in many real-life situations involving weather, sports,
economics, and life tests. The record values are described as
follows.
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Let {𝑋𝑖, 𝑖 = 1, . . . , 𝑛} be a sequence of independent
and identically distributed (iid) RVs from a continuous
probability distribution. If 𝑋𝑗 > 𝑋𝑗 for all 𝑖 < 𝑗, then 𝑋𝑗 is
an upper record value. The indices at which the upper record
values occur are given by the record times {𝑈(𝑘), 𝑘 ≥ 1},
where 𝑈(𝑘) = min{𝑗 | 𝑗 > 𝑈(𝑘 − 1), 𝑋𝑗 > 𝑋𝑈(𝑘−1)},𝑘 ≥ 1 with 𝑈(1) = 1. Chandler [7] first studied the record
values and their basic properties. Ahsanullah [8] provided
detailed descriptions of the general theory and applications
for the well-known probability distributions based on the
records. Seo and Kim [9] provided inference methods to
estimate unknown parameters and predicted future upper
record values from the extreme value distribution using both
frequentist and Bayesian approaches. Note that the sizes of
the record values are actually considerably smaller than the
observed original sequence in the majority of case; a method
appropriate for this situation is required for precise inference.
The maximum likelihood method is the most extensively
used estimationmethod. On the other hand, the approximate
confidence intervals (CIs) based on the asymptotic normality
of the MLE can yield inappropriate results because 𝜇 and 𝜎
are supported by (−∞, 𝑥) and (0,∞), respectively. Moreover,
the asymptotic normality of the MLE requires the suitable
regularity conditions and it is difficult to prove that the
regularity conditions are satisfied when the record values are
observed from the two-parameter Rayleigh distribution.This
paper constructs exact CIs for unknown parameters (𝜇, 𝜎) of
the Rayleigh distribution based on the upper record values
by providing some pivotal quantities, which are much more
efficient than the maximum likelihood method in terms of
computation cost. Another aim of this paper is to construct
exact predictive intervals (PIs) for the future upper record
values based on the past upper record values from the
Rayleigh distribution because it is very important to correctly
predict inmany fields such as earthquakes, flood, and rainfall.

The remainder of the paper is structured as follows.
Section 2 provides some pivotal quantities and derives the
exact CIs for unknown parameters and PIs for the future
upper record values in the Rayleigh distribution based on
the upper record values. Section 3 assesses the validity of the
proposed method through Monte Carlo simulations and real
data. Section 4 concludes the paper.

2. Inference Based on Pivotal Quantity

The likelihood function for 𝜃 is given by Arnold et al., [10] as

𝐿 (𝜃) = 𝑘∏
𝑖=1

𝑓 (𝑥𝑖𝜃) . (3)

Let 𝑋𝑈(1), . . . , 𝑋𝑈(𝑘) be the first 𝑘 upper record values
from the two-parameter Rayleigh distribution. The likeli-
hood function based on record values is given by

𝐿 (𝜇, 𝜎) = exp[−(𝑥𝑈(𝑘) − 𝜇)22𝜎2 ] 𝑘∏
𝑖=1

𝑥𝑈(𝑖) − 𝜇𝜎2 . (4)

The MLEs �̂� and �̂� can be found by solving the following
likelihood equations for 𝜇 and 𝜎 simultaneously:

𝜕𝜕𝜇 log 𝐿 (𝜇, 𝜎) = 𝑥𝑈(𝑘) − 𝜇𝜎2 − 𝑘∑
𝑖=1

1𝑥𝑈(𝑖) − 𝜇 = 0,
𝜕𝜕𝜎 log 𝐿 (𝜇, 𝜎) = (𝑥𝑈(𝑘) − 𝜇)2𝜎3 − 2𝑘𝜎 = 0.

(5)

On the other hand, the MLEs cannot be expressed in
closed form and their exact distributions are difficult to
derive. Alternatively, by the asymptotic normality of theMLE,
the approximate 100(1−𝛼)%CIs for 𝜇 and 𝜎 can be obtained
as

�̂� ± 𝑍𝛼/2√Var (�̂�),
�̂� ± 𝑍𝛼/2√Var (�̂�), (6)

where 𝑍𝛼/2 denotes the upper 𝛼/2 point of the standard
normal distribution and the variances Var (�̂�) and Var (�̂�) are
the diagonal elements of the asymptotic variance-covariance
matrix obtained by inverting the Fisher information matrix
for unknown parameters (𝜇, 𝜎):
𝐼 (𝜇, 𝜎)

= [[[[[[
𝐸(− 𝜕2𝜕𝜇2 log 𝐿 (𝜇, 𝜎)) 𝐸(− 𝜕2𝜕𝜇𝜕𝜎 log 𝐿 (𝜇, 𝜎))
𝐸(− 𝜕2𝜕𝜎𝜕𝜇 log 𝐿 (𝜇, 𝜎)) 𝐸(− 𝜕2𝜕𝜎2 log 𝐿 (𝜇, 𝜎))

]]]]]]
, (7)

under certain regularity conditions. Nevertheless, it can
provide inappropriate results because the supports of 𝜇 and𝜎 do not coincide with that of the normal distribution and
the record values are rarely observed, as mentioned before.

2.1. Confidence Interval. This subsection develops inference
methods based on the pivotal quantities to construct exact
CIs for unknown parameters (𝜇, 𝜎) and PIs for the future
upper record values. Note that the proposed method is much
easier to calculate than themaximum likelihoodmethod.The
following provides some pivotal quantities.

Let

𝑍𝑖 = − log [1 − 𝐹 (𝑥𝑈(𝑖))] = (𝑋𝑈(𝑖) − 𝜇)22𝜎2 ,
𝑖 = 1, . . . , 𝑘. (8)
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𝑍1 < ⋅ ⋅ ⋅ < 𝑍𝑘 are the upper record values with
a standard exponential distribution. From this result, the
following spacing can be obtained:

𝑆𝑖 = 𝑍𝑖 − 𝑍𝑖−1 = 12𝜎2 [(𝑋𝑈(𝑖) − 𝜇)2 − (𝑋𝑈(𝑖−1) − 𝜇)2] ,𝑖 = 1, . . . , 𝑘 (𝑍0 ≡ 0) , (9)

which are the iid RVs from the standard exponential distribu-
tion (see Arnold et al., [10]). Based on the spacing, a pivotal
quantity 𝑇 = 2𝑆1 having a 𝜒2 distribution with 2 degrees of
freedom and a pivotal quantity can be derived as

𝑉 = 2 𝑘∑
𝑖=2

𝑆𝑖 = (𝑋𝑈(𝑘) − 𝜇)2𝜎2 − (𝑋𝑈(1) − 𝜇)2𝜎2 , (10)

having the 𝜒2 distribution with 2(𝑘 − 1) degrees of freedom.
Because they have independent RVs, the following pivotal
quantity is obtained:

𝑊(𝜇) = 𝑉/2 (𝑘 − 1)𝑇/2 = 1𝑘 − 1 [(𝑋𝑈(𝑘) − 𝜇𝑋𝑈(1) − 𝜇)
2 − 1] , (11)

which has a 𝐹 distribution with 2(𝑘 − 1) and 2 degrees of
freedom. An exact 100(1 − 𝛼)% CI for 𝜇 based on the pivotal
quantity𝑊(𝜇) can be constructed as

(𝑋𝑈(𝑘) − 𝑋𝑈(1)√(𝑘 − 1) 𝐹𝛼/2,(2(𝑘−1),2) + 11 − √(𝑘 − 1) 𝐹𝛼/2,(2(𝑘−1),2) + 1 < 𝜇
< 𝑋𝑈(𝑘) − 𝑋𝑈(1)√(𝑘 − 1) 𝐹1−𝛼/2,(2(𝑘−1),2) + 11 − √(𝑘 − 1) 𝐹1−𝛼/2,(2(𝑘−1),2) + 1 ) ,

(12)

for any 0 < 𝛼 < 1, where 𝐹𝛼,(]1 ,]2) is the upper 𝛼 percentile of
the 𝐹 distribution with ]1 and ]2 degrees of freedom.

Moreover, because 𝑄(𝜎) = 𝑇 + 𝑉 has the 𝜒2 distribution
with 2𝑘 degrees of freedom, an exact 100(1 − 𝛼)% CI for 𝜎
based on the pivotal quantity 𝑄 can be constructed as

(√(𝑋𝑈(𝑘) − 𝜇)2𝜒2
2𝑘,𝛼

< 𝜎 < √ (𝑋𝑈(𝑘) − 𝜇)2𝜒2
2𝑘,1−𝛼

)
for any 0 < 𝛼 < 1,

(13)

where𝜒2𝛼,𝑘 is the upper𝛼 percentile of the𝜒2 distributionwith𝑘 degrees of freedom. Note that because the precise CI (13)
depends on the nuisance parameter 𝜇, this paper shows how

to address the nuisance parameter 𝜇 based on a generalized
pivotal quantity, and an exact CI for 𝜎 is proposed based on
the generalized pivotal quantity.

Let 𝜇∗ be the unique solution of𝑊(𝜇) = 𝑊, where𝑊 has
a 𝐹 distribution with 2(𝑘 − 1) and 2 degrees of freedom. The
unique solution can then be given by

𝜇∗ = 𝑋𝑈(𝑘) − 𝑋𝑈(1)√(𝑘 − 1)𝑊 + 11 − √(𝑘 − 1)𝑊 + 1 . (14)

Moreover, let 𝑄 be the RV from the 𝜒2 distribution with2𝑘 degrees of freedom.The generalized pivotal quantity from
the pivotal quantity 𝑄(𝜎) is given by

𝑊(𝜇∗) = √ (𝑋𝑈(𝑘) − 𝜇∗)2𝑄 . (15)

Here, the samples 𝑊(𝜇∗)(1), . . . ,𝑊(𝜇∗)(𝑁) can be
obtained by generating 𝑁(≥ 10,000) the RVs 𝑊 and 𝑄.𝑊(𝜇∗)𝑖s are ordered as 𝑊(𝜇∗)(1), . . . ,𝑊(𝜇∗)(𝑁). Therefore,
an exact 100(1 − 𝛼)% CI for 𝜎 based on the generalized
pivotal quantity𝑊(𝜇∗) can be constructed:

(𝑊 (𝜇∗)[(𝑁/100)×𝛼/2] ,𝑊 (𝜇∗)[(𝑁/100)×(1−𝛼/2)]) , (16)

where [𝑧] denotes the largest integer less than or equal to 𝑧.
In Section 3, the proposed CIs are examined in terms of the
coverage probability (CPs) to determine if they are valid CIs.

2.2. Predictive Interval. This subsection develops a method
for predicting the future upper record values based on the
observed upper record values 𝑥𝑈(𝑖), . . . , 𝑥𝑈(𝑘) by providing a
pivotal quantity. Let 𝑋𝑈(𝑠) (𝑠 > 𝑘) be a future upper record
value. The conditional density function of 𝑋𝑈(𝑠), given 𝑥𝑈(𝑘),
defined by Ahsanullah [11], is given by

𝑓𝑋𝑈(𝑠)|𝑥𝑈(𝑘) (𝑥𝑈(𝑠) | 𝜇, 𝜎)
= 1Γ (𝑠 − 𝑘) [log (1 − 𝐹 (𝑥𝑈(𝑘)))
− log (1 − 𝐹 (𝑥𝑈(𝑠)))]𝑠−𝑘−1 𝑓 (𝑥𝑈(𝑠))1 − 𝐹 (𝑥𝑈(𝑘)) ,𝜇 < 𝑥𝑈(𝑘) < 𝑥𝑈(𝑠),

(17)

from the Markov property of the record values. Assuming
that the observed upper record values, 𝑥𝑈(𝑖), . . . , 𝑥𝑈(𝑘), arise
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from the Rayleigh distribution with the pdf (2), the condi-
tional density function (17) is written as

𝑓𝑋𝑈(𝑠)|𝑥𝑈(𝑘) (𝑥𝑈(𝑠) | 𝜇, 𝜎)
= 1Γ (𝑠 − 𝑘) [(𝑥𝑈(𝑠) − 𝜇)

2

2𝜎2 − (𝑥𝑈(𝑘) − 𝜇)22𝜎2 ]𝑠−𝑘−1

⋅ 𝑥𝑈(𝑠) − 𝜇𝜎2 exp[(𝑥𝑈(𝑘) − 𝜇)22𝜎2 − (𝑥𝑈(𝑠) − 𝜇)22𝜎2 ] .
(18)

Let

𝑌 = 1𝜎2 [(𝑋𝑈(𝑠) − 𝜇)2 − (𝑥𝑈(𝑘) − 𝜇)2] . (19)

Because the Jacobian of transformation is

𝑑𝑑𝑦𝑋𝑈(𝑠) = 𝜎22√𝜎2𝑦 + (𝑥𝑈(𝑘) − 𝜇)2 , (20)

the density function of 𝑌 is given by

𝑓 (𝑦) = 12𝑠−𝑘Γ (𝑠 − 𝑘)𝑦𝑠−𝑘−1𝑒−𝑦/2, 0 < 𝑦 < ∞, (21)

which is the pdf of the 𝜒2 distribution with 2(𝑠−𝑘) degrees of
freedom. Suppose that 𝜇 and 𝜎 are known. An exact 100(1 −𝛼)% PI based on the pivotal quantity 𝑌 for the future upper
record value𝑋𝑈(𝑠) is obtained as

(𝜇 + √𝜎2𝜒2
1−𝛼/2,2(𝑠−𝑘)

+ (𝑥𝑈(𝑘) − 𝜇)2, 𝜇
+ √𝜎2𝜒2

𝛼/2,2(𝑠−𝑘)
+ (𝑥𝑈(𝑘) − 𝜇)2) . (22)

When 𝜇 and 𝜎 are unknown, they can be substituted with
by 𝜇∗ and𝑊(𝜇∗) in PI (22) based on the fact that𝑊(𝜇∗) is the
generalized pivotal quantity for constructing the exact CI for𝜎. In the same way, the generalized pivotal quantity is given
by

𝑌 (𝜇∗)
= (𝜇∗ + √𝑊(𝜇∗)2 𝜒2

1−𝛼/2,2(𝑠−𝑘)
+ (𝑥𝑈(𝑘) − 𝜇∗)2) , (23)

and an exact 100(1−𝛼)%PI for𝑋𝑈(𝑠) based on the generalized
pivotal quantity 𝑌(𝜇∗) can be constructed as follows:

(𝑌 (𝜇∗)[(𝑁/100)×𝛼/2] , 𝑌 (𝜇∗)[(𝑁/100)×(1−𝛼/2)]) . (24)

3. Application

This section assesses the proposed methods through aMonte
Carlo simulation and presents a real data set.

3.1. Simulation Study. The proposed exact CIs (12) and (16)
are assessed in terms of their CPs and average lengths
(ALs). The upper record values were first generated from the
standard Rayleigh distribution with 𝜇 = 0 and 𝜎 = 1 for
different 𝑘, and the CIs (12) and (16) were calculated based
on the generated samples by using the provided methods in
Section 2.1. The CPs and ALs of the exact CIs were obtained
over 10,000 simulations. These values are reported in Table 1.

Table 1 shows that the CPs matched their corresponding
nominal levels even in a small sample size and that all ALs
decrease with increasing sample size.

3.2. Real Data. To illustrate the proposed inference proce-
dure, the survival times in (days) of a group of lung cancer
patients (fromLawless [12, p. 319])were considered as follows:

6.96, 9.30, 6.96, 7.24, 9.30, 4.90, 8.42, 6.05, 10.18, 6.82, 8.58, 7.77, 11.94, 11.25, 12.94, and 12.94. (25)

From the data, the observed upper record values were
6.96, 9.30, 10.18, 11.94, and 12.94. Soliman and Al-Aboud [13]
showed that the Rayleigh distribution fits the observed record
values well. These record values are employed to obtain the
proposed CIs (12) and (16). Moreover, the exact PIs for the
future upper record values𝑋𝑈(𝑠) (𝑠 = 6, 7)were computed, as
listed in Table 2.

4. Concluding Remarks

This paper proposes methods for inferencing the exact CIs
for unknown parameters (𝜇, 𝜎) in the Rayleigh distribution
based on the upper record values and exact PIs for the future
upper record values by providing some pivotal quantities.

Because the proposed exact CI (13) and PI (22) depend on
the nuisance parameters, this study proposed generalized
pivotal quantities 𝑊(𝜇∗) and 𝑌(𝜇∗) to solve the drawback.
The proposed methods were more computationally con-
venient than the maximum likelihood method. Moreover,
the proposed exact CIs provide very good performance
even in small sample sizes. If the location parameter of
the Rayleigh distribution is of interest, the exact CI (12)
should be used because it does not have any nuisance
parameter.
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Table 1: CPs (ALs) of exact 95% CIs for 𝜇 and 𝜎.
𝑘 𝜇 𝜎
5 0.949 (6.135) 0.952 (2.468)
7 0.953 (4.926) 0.954 (1.723)
9 0.951 (4.353) 0.950 (1.329)
11 0.947 (4.044) 0.953 (1.127)
13 0.949 (3.845) 0.954 (0.995)
15 0.950 (3.688) 0.951 (0.901)

Table 2: Results for real data.𝜇 𝜎 𝑋𝑈(6) 𝑋𝑈(7)
(−13.771,
6.444) (1.768, 9.840) (12.963, 18.818) (13.148, 21.961)
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A synthetic double sampling (SDS) chart is commonly evaluated based on the assumption that process parameters (namely, mean
and standard deviation) are known. However, the process parameters are usually unknown and must be estimated from an in-
control Phase-I dataset. This will lead to deterioration in the performance of a control chart. The average run length (ARL) has
been implemented as the common performance measure in process monitoring of the SDS chart. Computation of ARL requires
practitioners to determine shift size in advance. However, this requirement is too restricted as practitioners may not have the
experience to specify the shift size in advance.Thus, the expected average run length (EARL) is introduced to assess the performance
of the SDS chart when the shift size is random. In this paper, the SDS chart, with known and estimated process parameters, was
evaluated based on EARL and compared with the performance measure, ARL.

1. Introduction

The quality of products and services is an essential factor in
the world of business [1]. In order to enhance the quality
of products and services, statistical process control (SPC)
is used to monitor and attain the process of manufacturing
and services. Among the SPC techniques, control charts are
one of the most prominent techniques for detecting shifts
in a process. The first control chart was proposed by Dr.
Walter A. Shewhart, and it was named the Shewhart chart.
The Shewhart chart is frequently used to detect large process
mean shifts due to its simplicity [2]. However, the main
limitation of the Shewhart chart is that it is insensitive in
detecting moderate and small process mean shifts.

In recent years, Khoo et al. [3] suggested synthetic double
sampling (SDS) chart, which combines double sampling (DS)
subchart and conforming run length (CRL) subchart. From
the findings, the SDS chart is efficient in detecting moderate
and small process mean shifts compared to the synthetic
chart and double sampling chart. The implementation of
the SDS chart is based on the assumption that the process
parameters are known. Nevertheless, the process parameters
are generally unknown in practice. This requires for an

estimation of the process parameters from the in-control
Phase-I samples.

Saleh andMahmoud [4] claimed that when the estimated
process parameters are used in place of the known process
parameters, the performance of the control chart is affected
due to the existence of variability in the estimation. Woodall
and Montgomery [5] recognised the importance of examin-
ing the effects of parameter estimation on the performance of
a particular control chart. Therefore, the effects of parameter
estimation need to be considered when designing a control
chart. Among others, [6–8] have examined the impacts
of Phase-I parameter estimation on the performance of a
control chart.

The performance of a control chart is crucial in deter-
mining the appropriate control chart to be implemented
in a process. A common performance measure in process
monitoring is average run length (ARL). ARL is the number
of samples (on average) plotted on a control chart before it
signals an out-of-control [9]. By using ARL as a performance
measure, the chart’s user needs to determine the process shift
size.

You et al. [10] investigated the ARL performance of the
SDS chart when process parameters were estimated and this

22

http://orcid.org/0000-0003-0305-0911
https://doi.org/10.1155/2018/7583610


has motivated the current research work. In most practical
situations, it is usual that the next shift size is unknown in
advance [11, 12]. To circumvent this problem, the expected
average run length (EARL) is proposed to examine the
performance of the SDS chart when the process shift size is
unknown and random. Hence, the performance of the SDS
chart, with known and estimated process parameters, is inves-
tigated using EARL. In addition, the proposed alternative
performance measure, i.e., EARL of the SDS chart, will be
compared with the corresponding chart using ARL.

The rest of this paper is structured as follows: Section 2
presents the operation and steps to implement the SDS chart.
Moreover, the run length properties of the SDS chart with
known and estimated process parameters are also given in
Section 2. Section 3 illustrates the performance comparison
of the SDS chart, based on EARL and ARL, for known
process parameters and that of the corresponding chart with
estimated process parameters. Finally, concluding remarks
are drawn in the last section.

2. Materials and Methods

Khoo et al. [3] developed the SDS chart, which comprises
the DS subchart and a CRL subchart. The CRL subchart
is an attribute chart, with one lower limit, i.e., 𝐿3. Figure 1
illustrates the operation of the SDS chart with known process
parameters.

Step 1. Set the charting parameters 𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, and 𝐿3.
Step 2. At sampling time 𝑖 = 1, 2, . . ., take the first sample of
size 𝑛1 and the sample mean,𝑌1,𝑖 = ∑𝑛1𝑗=1 𝑌1𝑗/𝑛1, is calculated.
Step 3. Compute the standardised statistic 𝑍1,𝑖 = [(𝑌1,𝑖 −𝜇0)√𝑛1]/𝜎0 corresponding to the first sample.

Step 4. If𝑍1,𝑖 is in 𝐼1, the 𝑖th sampling time is conforming and
the control flow returns to Step 2.

Step 5. If𝑍1,𝑖 is in 𝐼3, the 𝑖th sampling time is nonconforming
and the control flow goes to Step 9.

Step 6. If 𝑍1,𝑖 is in 𝐼2, take a second sample with 𝑛2 and
compute the sample mean, 𝑌2,𝑖 = ∑𝑛2𝑗=1 𝑌2𝑗/𝑛2.
Step 7. Calculate the sample mean of the combined samples𝑌𝑖 = (𝑛1𝑌1,𝑖 + 𝑛2𝑌2,𝑖)/(𝑛1 + 𝑛2) and the standardised statistic𝑍𝑖 = [(𝑌𝑖 − 𝜇0)√𝑛1 + 𝑛2]/𝜎0 corresponding to the combined
samples.

Step 8. If Z𝑖 is in 𝐼4, and the 𝑖th sampling time is conforming,
then return to Step 2. Otherwise, the sampling time is
regarded as nonconforming and the control flow goes to
Step 9.

Step 9. Count the number of inspected sampling times
between the present and last nonconforming sampling times
inclusive of the present nonconforming sampling time, and
denote it as the CRL value.

L1

L

−L

−L1

nonconforming (I3)

take a second sample (I2)

conforming (I1)

take a second sample (I2)

nonconforming (I3)

Z1,i =
Y1,i − 0

0/n1

(a) First sample

L2

−L2

conforming (I4)

nonconforming

nonconforming 

Zi =
Yi − 0

0/n1 + n2

(b) Combined samples

Figure 1: DS subchart.

Step 10. If CRL > 𝐿3, the process is in-control and the
control flow returns to Step 2. Otherwise, the process is out-
of-control and immediate actions are required to eliminate
the assignable cause(s). Then, return to Step 2.

Without loss of generality, the in-control mean, 𝜇0, and
in-control standard deviation, 𝜎0, are assumed as known. Let𝑃 = 1 −𝑃𝑎 −𝑃𝑏 be the probability of deciding that a sampling
time is nonconforming in the DS subchart. Note that 𝑃𝑎 and𝑃𝑏 can be expressed as follows [3]:𝑃𝑎 = Pr (𝑍1,𝑖 ∈ 𝐼1) = Φ (𝐿 + 𝛿√𝑛1) − Φ (−𝐿 + 𝛿√𝑛1) ,𝑃𝑏 = Pr (𝑍𝑖 ∈ 𝐼4, 𝑍1,𝑖 ∈ 𝐼2)

= ∫
𝑧∈𝐼∗
2

[Φ(𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1𝑛2)
− Φ(−𝑐𝐿2 + 𝑟𝑐𝛿 − 𝑧√𝑛1𝑛2)]𝜙 (𝑧) 𝑑𝑧,

(1)

where Φ(⋅) and 𝜙(⋅) are the cumulative distribution function
(cdf) and probability density function (pdf) for a standard
normal random variable, respectively. Here, 𝑟 = √𝑛1 + 𝑛2,𝑐 = 𝑟/√𝑛2, and 𝐼∗2 = [−𝐿1+𝛿√𝑛1, −𝐿+𝛿√𝑛1)∪(𝐿+𝛿√𝑛1, 𝐿1+𝛿√𝑛1].

Finally, for the SDS chart when process parameters are
known, the ARL is equal to

ARL = 1𝑃 × 11 − (1 − 𝑃)𝐿3 (2)

Moreover, when the exact shift size is unknown, it is essen-
tial to consider the EARL for an overall range of shifts(𝛿min, 𝛿max), where𝛿min and𝛿max indicate the lower andupper
bounds of the mean shift, respectively. The EARL of the SDS
chart with known process parameters is

EARL = ∫𝛿max

𝛿min

𝑓𝛿 (𝛿)ARLd𝛿, (3)

where ARL can be obtained from (2) and 𝑓𝛿(𝛿) is the pdf
of the shift size 𝛿. Since the actual shape of 𝑓𝛿(𝛿) is usually
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unknown, it is assumed that the shifts in process mean
happen with equal probability; i.e., 𝛿 is uniformly distributed
with 𝑈(𝛿min, 𝛿max). Therefore, (3) reduces to

EARL = 1𝛿max − 𝛿min
∫𝛿max

𝛿min

ARL 𝑑𝛿. (4)

In reality, 𝜇0 and 𝜎0 are unknown and need to be esti-
mated from m Phase-I samples, each of size n, i.e.,{𝑋𝑖,1, 𝑋𝑖,2, ..., 𝑋𝑖,𝑛}, for i = 1, 2, . . .,m. The estimators of 𝜇0 and𝜎0 are [10]

𝜇0 = 1𝑚𝑛 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑋𝑖,𝑗, (5)

�̂�0 = √ 1𝑚 (𝑛 − 1) 𝑚∑𝑖=1
𝑛∑
𝑗=1

(𝑋𝑖,𝑗 − 𝑋𝑖)2, (6)

respectively. As the values of 𝜇0 and 𝜎0 are both unknown
and need to be estimated using 𝜇0 and �̂�0, the standardised
statistic for the first sample and combined samples at the
sampling time 𝑖 of the DS subchart with estimated process
parameters becomes

𝑍1,𝑖 = 𝑋1,𝑖 − 𝜇0�̂�0/√𝑛1 , (7)

𝑍𝑖 = 𝑋𝑖 − 𝜇0�̂�0/√𝑛1 + 𝑛2 , (8)

respectively.
Here, 𝑛1 and 𝑛2 represent the sample sizes of the SDS chart

with the estimated process parameters. Similarly, 𝐿, 𝐿1, 𝐿2,
and 𝐿3 correspond to the limits of the SDS chart when the
process parameters are estimated.

Then, the probability for the DS subchart with the
estimated process parameters to identify a nonconform-
ing sampling time is given as �̂� = 1 − �̂�𝑎 − �̂�𝑏; i.e.,
[10],

�̂� = 1 − [[Φ(𝑊√
𝑛1𝑚𝑛 + 𝑅𝐿 − 𝛿√𝑛1)

− Φ(𝑊√ 𝑛1𝑚𝑛 − 𝑅𝐿 − 𝛿√𝑛1)]]
− (∫
𝑧∈𝐼2

�̂�4 × 𝑓𝑍1,𝑖 (𝑧 | 𝜇0, �̂�0) 𝑑𝑧) ,
(9)

with

�̂�4 = Φ[[[𝑊
√ 𝑛2𝑚𝑛 + 𝑅(𝐿


2√𝑛1 + 𝑛2 − 𝑧√𝑛1√𝑛2 )

− 𝛿√𝑛2]]] − Φ
[[[𝑊

√ 𝑛2𝑚𝑛
− 𝑅(𝐿2√𝑛1 + 𝑛2 + 𝑧√𝑛1√𝑛2 )− 𝛿√𝑛2]]] ,

𝑓𝑍1,𝑖 (𝑧 | 𝜇0, �̂�0) = 𝑅𝜙(𝑊√ 𝑛1𝑚𝑛 + 𝑅𝑧 − 𝛿√𝑛1) .

(10)

Here, 𝑊 and 𝑅 are random variables denoted
as

𝑊 = (𝜇0 − 𝜇0) √𝑚𝑛𝜎0 , (11)

𝑅 = �̂�0𝜎0 , (12)

respectively.
As 𝜇0 ∼ 𝑁[𝜇0, 𝜎20/(𝑚𝑛)], it can be deduced that the pdf of𝑊 is 𝑓𝑊 (𝑤) = 𝜙 (𝑤) . (13)

For the random variable 𝑅, it is known that �̂�20/𝜎20 ∼𝛾(𝑚(𝑛−1)/2, 2/(𝑚(𝑛−1))), i.e., the gamma distribution with
parameters [𝑚(𝑛−1)]/2 and 2/[𝑚(𝑛−1)]. Using this property,
the pdf of 𝑅 is as follows:

𝑓𝑅 (𝑟 | 𝑚, 𝑛) = 2𝑟𝑓𝛾 (𝑟2 | 𝑚 (𝑛 − 1)2 , 2𝑚 (𝑛 − 1)) , (14)

where 𝑓𝛾(⋅) is the pdf of the gamma distribution with
parameters [𝑚(𝑛 − 1)]/2 and 2/[𝑚(𝑛 − 1)]. Note that, for
complete and detailed derivation, reader can refer to You et
al. [10].

Thus, the ARL of the SDS chart with estimated process
parameters is

ARL𝑚 = ∫+∞
−∞

∫+∞
0

1̂𝑃 × 11 − (1 − �̂�)𝐿3 𝑓𝑊 (𝑤)
⋅ 𝑓𝑅 (𝑟 | 𝑚, 𝑛) 𝑑𝑟 𝑑𝑤.

(15)

Consequently, when the process parameters are estimated
from the in-control Phase-I samples, the computation of the
EARL is

EARL𝑚

= ∫+∞
−∞

∫+∞
0

EARL𝑓𝑊 (𝑤) 𝑓𝑅 (𝑟 | 𝑚, 𝑛) 𝑑𝑟 𝑑𝑤, (16)

where EARL can be obtained from (3) by replacing 𝑃 and 𝐿3
with �̂� and 𝐿3, respectively.
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Table 1: Optimal charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) and the corresponding EARL1s for 𝑛 = {3, 4, 5, 6} with different combinations of(𝑚, 𝛿min, 𝛿max) when EARL0 = 370.4.
𝑛 𝛿min 𝛿max 𝑛1 𝑛2 𝐿 𝐿1 𝐿2 𝐿3 𝑚

30 50 80 200 500 +∞
3 0.2 1.0 2 6 1.3830 5.2804 2.0239 9 3.56 3.36 3.26 3.18 3.15 3.13

1.0 2.0 2 2 0.6745 4.8576 2.0503 2 1.02 1.02 1.02 1.01 1.01 1.01

4 0.2 1.0 3 6 1.3830 5.2804 2.0539 7 2.60 2.51 2.46 2.42 2.40 2.40
1.0 2.0 3 3 0.9674 4.9920 2.0086 2 1.00 1.00 1.00 1.00 1.00 1.00

5 0.2 1.0 3 8 1.1503 5.0443 2.0618 6 2.05 2.00 1.98 1.96 1.96 1.95
1.0 2.0 4 3 0.9674 4.9920 2.0363 2 1.00 1.00 1.00 1.00 1.00 1.00

6 0.2 1.0 4 9 1.2206 5.1630 2.0210 5 1.73 1.71 1.69 1.68 1.68 1.67
1.0 2.0 5 3 0.9674 4.9920 2.0527 2 1.00 1.00 1.00 1.00 1.00 1.00

3. Results and Discussion

In practice, the exact shift size of a process is unknown. In this
situation, if the corresponding optimal charting parameters
are employed based on a particular shift size, the performance
of the control chart will be significantly different if different
shift occurred in the process. Therefore, it is essential to
evaluate the performance of the SDS chart using alternative
performance measure, i.e., EARL. In this paper, the optimal
charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) of the SDS chart
were computed using a nonlinear minimisation problem, i.e.,
optimal statistical design that minimises the out-of-control
EARL (EARL1).Theprogrammes arewritten in the ScicosLab
software version 4.4.2 (http://www.scicoslab.org).

The optimal charting parameters and the correspond-
ing EARL1s with different combinations of sample size,𝑛 = {3, 4, 5, 6}, the number of Phase-I samples, 𝑚 ={30, 50, 80, 200, 500, +∞} with (𝛿min, 𝛿max) = (0.2, 1.0) and(𝛿min, 𝛿max) = (1.0, 2.0) with the in-control EARL, i.e.,
EARL0 = 370.4, are presented in Table 1. Here, 𝑚 = +∞
denotes the known process parameters case, while 𝑚 ={30, 50, 80, 200, 500} denotes the estimated process param-
eters case. The performance of the SDS chart for both
the known and estimated process parameters cases was
calculated using the optimal charting parameters in columns
4–9, which were obtained by minimising EARL1 when the
process parameters are known.

From Table 1, for the same 𝑛, 𝛿min, and 𝛿max, the value
of EARL1 decreases with the increases in 𝑚. This is due
to the fact that as the more Phase-I samples are taken,
the performance of the estimated process parameters SDS
chart approaches to the corresponding chart with known
process parameters; i.e., EARL1 value decreases to indicate
better performance. For instance, when 𝑛 = 3, 𝛿min =0.2, and 𝛿max = 1.0, the optimal charting parameters(𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) = (2, 6, 1.3830, 5.2804, 2.0239, 9) yield
the lowest EARL1 = 3.13, when the process parameters are
known. With these optimal charting parameters, EARL1 ={3.56, 3.36, 3.26, 3.18, 3.15} for 𝑚 = {30, 50, 80, 200, 500},
respectively. It is noticeable that the EARL1 for the estimated
process parameters case is deviated from the known process
parameters. However, the EARL1 value approaches to the
EARL1 value which corresponds to the 𝑚 = +∞ when

the number of Phase-I samples increased. These findings
show that more than 80 Phase-I samples are required to
reduce the effects of process parameters estimation when
estimating the process parameters from the in-control Phase-
I samples.

To illustrate the implementation of the proposed optimal
charting parameters, Table 2 presents the optimal charting
parameters for the known process parameters SDS chart
based on minimising out-of-control ARL (ARL1) and the
corresponding ARL1s for the same combinations of (𝑚, 𝑛)
in Table 1. Here, the in-control ARL, i.e., ARL0 = 370.4
is intended. Note that 𝛿 = {0.2, 0.5, 0.9, 1.2, 1.5, 1.9} are
considered here to accommodate the (𝛿min, 𝛿max) that are
considered in Table 1; i.e., 𝛿 ∈ {0.2, 0.5, 0.9} and 𝛿 ∈{1.2, 1.5, 1.9} are included in (𝛿min, 𝛿max) = (0.2, 1.0) and(𝛿min, 𝛿max) = (1.0, 2.0), respectively. In Table 1, when 𝑛 = 3,𝛿min = 0.2, and 𝛿max = 1.0, the EARL1 = 3.13 is obtained
using the optimal charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) =(2, 6, 1.3830, 5.2804, 2.0239, 9). Here, by using the same opti-
mal charting parameters for 𝛿 = 0.5 (i.e. 𝛿 ∈ (𝛿min, 𝛿max)),
it yields ARL1 = {17.76, 14.32, 12.89, 11.72, 11.32} when𝑚 = {30, 50, 80, 200, 500} using the ScicolsLab program. It is
observed that the ARL1 value is almost the same to those in
Table 2 when 𝑛 = 3 and 𝛿 = 0.5, although the optimal chart-
ing parameters based on minimising ARL1 are different, i.e.,(𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) = (2, 6, 1.3830, 5.2804, 2.1867, 18) (see
Table 2). This indicates that the optimal charting parameters
obtained based on minimising EARL1 can be employed as
long as 𝛿 ∈ (𝛿min, 𝛿max), i.e., when the practitioners do not
have knowledge to determine the exact process shift size in
advance.

4. Conclusions

In the production andmanufacturing industries, it is a typical
situation where quality practitioners are undecided about the
process shift size to be implemented. The findings showed
that the performance criterion EARL is capable of tackling
the random shift size situation. Furthermore, the results also
revealed that the performance of the SDS chart was adversely
affected by process parameters estimation. This was proven
whenmore than 80Phase-I sampleswere needed for the chart
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Table 2: Optimal charting parameters (𝑛1, 𝑛2, 𝐿, 𝐿1, 𝐿2, 𝐿3) and the corresponding ARL1s for 𝑛 = {3, 4, 5, 6} with different combinations of(𝑚, 𝛿) when ARL0 = 370.4.
𝑛 𝛿 𝑛1 𝑛2 𝐿 𝐿1 𝐿2 𝐿3 𝑚

30 50 80 200 500 +∞
3

0.2 2 6 1.3830 5.2804 2.4572 68 247.22 168.88 136.75 110.56 101.56 96.01
0.5 2 6 1.3830 5.2804 2.1867 18 16.68 13.35 12.03 10.99 10.63 10.41
0.9 2 6 1.3830 5.2804 1.9945 8 2.83 2.72 2.67 2.62 2.60 2.59
1.2 2 4 1.1503 5.0443 2.0178 4 1.64 1.62 1.60 1.59 1.58 1.58
1.5 2 3 0.9674 4.9920 2.0523 3 1.24 1.23 1.23 1.22 1.22 1.22
1.9 2 3 0.9674 4.9920 2.0523 3 1.06 1.06 1.06 1.05 1.05 1.05

4

0.2 3 8 1.5341 5.1956 2.3954 60 149.45 113.15 95.73 80.45 75.01 71.62
0.5 3 8 1.5341 5.1956 2.0910 15 9.65 8.45 7.93 7.49 7.33 7.23
0.9 3 6 1.3830 5.2804 2.0153 6 2.12 2.07 2.04 2.02 2.01 2.00
1.2 3 4 1.1503 5.0443 2.0185 3 1.34 1.33 1.32 1.32 1.32 1.31
1.5 3 3 0.9674 4.9920 2.0086 2 1.10 1.10 1.10 1.09 1.09 1.09
1.9 3 3 0.9674 4.9920 2.0086 2 1.01 1.01 1.01 1.01 1.01 1.01

5

0.2 4 10 1.6449 5.1247 2.3394 55 108.31 84.83 73.06 62.63 58.92 56.60
0.5 3 10 1.2816 5.1041 2.1216 12 6.64 6.05 5.78 5.54 5.46 5.40
0.9 3 8 1.1503 5.0443 2.0186 5 1.73 1.71 1.69 1.68 1.68 1.67
1.2 4 4 1.1503 5.0443 2.0615 3 1.20 1.19 1.19 1.18 1.18 1.18
1.5 4 4 1.1503 5.0443 1.9647 2 1.05 1.04 1.04 1.04 1.04 1.04
1.9 4 3 0.9674 4.9920 2.0363 2 1.00 1.00 1.00 1.00 1.00 1.00

6

0.2 4 12 1.3830 5.2804 2.3744 44 84.09 66.77 58.05 50.35 47.62 45.91
0.5 4 12 1.3830 5.2804 2.0727 11 5.02 4.69 4.54 4.40 4.35 4.32
0.9 4 8 1.1503 5.0443 2.0178 4 1.50 1.48 1.47 1.46 1.46 1.46
1.2 5 5 1.2816 5.1041 2.0235 3 1.12 1.11 1.11 1.11 1.11 1.11
1.5 5 4 1.1503 5.0443 1.9954 2 1.02 1.02 1.02 1.02 1.02 1.02
1.9 5 3 0.9674 4.9920 2.0527 2 1.00 1.00 1.00 1.00 1.00 1.00

with the estimated process parameters to behave similarly like
the one with known process parameters. Therefore, future
research works can consider the optimal charting parameters
by minimising EARL1 for the SDS chart when the process
parameters are estimated.
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