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Preface

The branch of physics which focuses on the study of the nature of particles which comprise radiation and 
matter is known as particle physics. It also studies the fundamental interactions which are necessary to 
explain the behavior of the irreducibly small particles. Some of the subatomic particles studied within this 
field are protons, electrons, neutrons, quarks and leptons. The classification of these particles is done using the 
theory of the Standard Model of particle physics. There are numerous other theories which are also studied 
within this field like quantum field theory, effective field theory and lattice field theory. Participle physics is 
applied in varied sectors such as medicine, computing and national security. This book includes some of the 
vital pieces of work being conducted across the world, on various topics related to particle physics. It is an 
upcoming field of science that has undergone rapid development over the past few decades. This book will 
help the readers in keeping pace with the rapid changes in this field.

This book is a result of research of several months to collate the most relevant data in the field. 

When I was approached with the idea of this book and the proposal to edit it, I was overwhelmed. It gave 
me an opportunity to reach out to all those who share a common interest with me in this field. I had 3 main 
parameters for editing this text:

1. Accuracy – The data and information provided in this book should be up-to-date and valuable to the 
readers.

2. Structure – The data must be presented in a structured format for easy understanding and better 
grasping of the readers.

3. Universal Approach – This book not only targets students but also experts and innovators in the field, 
thus my aim was to present topics which are of use to all.

Thus, it took me a couple of months to finish the editing of this book.

I would like to make a special mention of my publisher who considered me worthy of this opportunity and 
also supported me throughout the editing process. I would also like to thank the editing team at the back-end 
who extended their help whenever required.  

Editor





Angular Dependence of 𝜂 Photoproduction in 
Photon-Induced Reaction
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Photoproduction of 𝜂 mesons from nucleons can provide valuable information about the excitation spectrum of the nucleons.
The angular dependence of 𝜂 photoproduction in the photon-induced reaction is investigated in the multisource thermal model.
The results are compared with experimental data from the 𝜂 → 3𝜋0 → 6𝛾 decay mode. They are in good agreement with the
experimental data. It is shown that the movement factor increases linearly with the photon beam energies. And the deformation
and translation of emission sources are visually given in the formalism.

1. Introduction

The excitation spectrum of nucleons is important to under-
standing the nonperturbative behavior of the fundamental
theory of strong interactions, Quantum Chromodynamics
(QCD) [1–4]. The photon-induced meson production off
nucleons is mainly used to achieve more information from
the excitation spectrum of nucleons. It is very important for
missing resonances that the 𝜂 meson production in photon-
induced and hadron-induced reactions on free (and quasi-
free) nucleons and on nuclei [5–8].The advantage of photon-
induced reactions is that the electromagnetic couplings can
provide valuable information related to the details of the
model wave functions. Because the electromagnetic exci-
tations are isospin dependent, we need perform meson-
production reactions off the neutron.

Recently, the photoproduction of 𝜂 mesons from quasi-
free protons and neutrons was measured in 𝜂 → 3𝜋0 → 6𝛾
decay mode by the CBELSA/TAPS detector at the electron
accelerator ELSA in Bonn [9]. At different incident photon
energies, the experiments are performed by the incident
photon beam on a liquid deuterium target. A great number
of 𝜂 mesons are produced in the photon-induced reaction.
The experimental data are regarded as a multiparticle system.
And, their angular distributions represent an obvious regular-
ity at different incident photon energies. In order to explain

the abundant experimental results, some statistical methods
are proposed and developed [10–16]. In this work, we will
extend a multi-source thermal model to the statistical inves-
tigation of the angular distributions in the photon-induced
reaction and try to understand the 𝜂 photoproduction in
the reaction. In our previous wok [17–21], the model was
focused on the investigation of the particle production in
intermediate-energy and high-energy collisions.

2. 𝜂Meson Distribution in the Multi-Source
Thermal Model

In the multi-source thermal model [17–21], many emission
sources are expected to be formed at the final stage of
the photon-induced reaction. Every source emits particles
isotropically in the source rest frame.The observed 𝜂mesons
are from different emission sources. The incident beam
direction is defined as an 𝑜𝑧 axis and the reaction plane is
defined as 𝑦𝑜𝑧 plane. In the source rest frame, the meson
momentum 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧 obeys a normal distribution. The
corresponding transverse momentum 𝑝𝑇 = √𝑝2𝑥 + 𝑝2𝑦 obeys
a Rayleigh distribution:

𝑓𝑝𝑇 (𝑝𝑇) =
𝑝𝑇
𝜎2 𝑒
−𝑝2
𝑇
/2𝜎2 , (1)
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Figure 1: Angular distributions for different bins of incident photon energy 698 MeV ≤ E𝛾 ≤ 1005MeV as a function of cos 𝜃𝜂 in the beam-
target cm system assuming the initial state nucleon at rest. The symbols represent the experimental data from the CBELSA/TAPS detector at
the electron accelerator ELSA in Bonn [9]. The results in the multi-source thermal model are shown with the curves.

where 𝜎 represents a distribution width. The distribution
function of the polar angle 𝜃 is

𝑓𝜃 (𝜃) =
1
2 sin 𝜃 (2)

Because of the interactions with other emission sources,
the considered source deforms and translates along the 𝑜𝑧
axis. Then, the momentum component is revised to

𝑝𝑧 = 𝑎𝑧𝑝𝑧 + 𝑏𝑧𝜎 (3)

where 𝑎𝑧 and 𝑏𝑧 represent the coefficients of the source
deformation and translation along the 𝑜𝑧 axis, respectively.
Themathematical description of the deformable translational
source is formulized simply as a linear relationship between
𝑝𝑧 and 𝑝𝑧, which reflects the mean result of the source
interaction. For 𝑎𝑧 ̸= 1 or 𝑏𝑧 ̸= 0, the 𝑝𝑧 distribution of 𝜂
mesons is anisotropic along the 𝑜𝑧 axis.

By using Monte Carlo method, 𝑝𝑇 and 𝑝𝑧 are given by

𝑝𝑇 = 𝜎√−2 ln 𝑟1, (4)

𝑝𝑧 = 𝑎𝑧𝜎√−2 ln 𝑟2 cos (2𝜋𝑟3) + 𝑏𝑧𝜎, (5)

where 𝑟1, 𝑟2, and 𝑟3 are randomnumbers from0 to 1.Thepolar
angle 𝜃 is revised to

𝜃 = arctan𝑝𝑇𝑝𝑧
= arctan √−2 ln 𝑟1

𝑎𝑧√−2 ln 𝑟2 cos (2𝜋𝑟3) + 𝑏𝑧
. (6)

We can calculate a new distribution function of the polar
angle by this formula.

3. Angular Dependencies
of 𝜂 Photoproduction in the
Photon-Induced Reaction

Figures 1(a)–1(p) show the angular distributions of 𝜂mesons
for different bins of incident photon energy 698 MeV ≤
Ε𝛾 ≤ 1005 MeV as a function of cos 𝜃𝜂. 𝜃𝜂 is the polar
angle of 𝜂 meson in the beam-target cm system assuming
the initial state nucleon at rest. The symbols represent the
experimental data from the CBELSA/TAPS detector at the
electron accelerator ELSA in Bonn [9]. The results obtained
by using the multi-source thermal model are shown with the
curves, which behave in the same way as the experimental
data in the 16 bins of incident photon energy. By minimiz-
ing 𝜒2 per degree of freedom (𝜒2/dof), we determine the
corresponding parameters 𝑎𝑧 and 𝑏𝑧, which are presented in
Table 1. It is found that there is an almost linear relationship
between the 𝑏𝑧 and Ε𝛾. As representative energies of Figure 1,
we give a schematic sketch of these emission sources at the
four different energies in Figure 7(a). The deformations and
translations can be seen intuitively in the figure.

In Figures 2(a)–2(p) andFigures 3(a)–3(p), we present the
angular distributions of 𝜂mesons for different bins of incident
photon energy 1035 MeV ≤ Ε𝛾 ≤ 1835 MeV as a function of
cos 𝜃𝜂. 𝜃𝜂 is the polar angle of 𝜂 meson in the beam-target
cm system assuming the initial state nucleon at rest. Same as
Figure 1, the symbols represent the experimental data from
the CBELSA/TAPS detector at the electron accelerator ELSA
in Bonn [9]. The results obtained by using the multisource
thermal model are shown with the curves, which behave in
the same way as the experimental data in the 28 bins of
incident photon energy. Parameters 𝑎𝑧and 𝑏𝑧 are presented in
Tables 2 and 3. As the representative energies of Figures 1 and
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Table 1: Values of 𝑎𝑧 and 𝑏𝑧 taken in Figure 1 model results.

Figure 1 𝐸𝛾 (MeV) 𝑎𝑧 𝑏𝑧 𝜒2/𝑑𝑜𝑓
(a) 698 1.050 -0.170 0.118
(b) 712 1.020 -0.210 0.105
(c) 730 1.050 -0.170 0.090
(d) 750 1.040 -0.155 0.134
(e) 770 0.985 -0.105 0.182
(f) 790 0.970 -0.125 0.179
(g) 810 0.979 -0.110 0.194
(h) 830 0.960 -0.120 0.192
(i) 850 0.970 -0.110 0.200
(j) 870 0.980 -0.130 0.211
(k) 890 0.950 -0.120 0.175
(l) 910 0.970 -0.140 0.261
(m) 930 0.940 -0.110 0.179
(n) 955 0.950 -0.120 0.154
(o) 980 0.950 -0.090 0.138
(p) 1005 0.920 -0.110 0.150
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Figure 2: Same as Figure 1, but showing angular distributions for different bins of incident photon energy 1035 MeV ≤ E𝛾 ≤ 1475MeV.

2, the schematic sketches of the emission sources are given at
different energies in Figures 7(b) and 7(c).

In Figures 4, 5, and 6, we show angular distributions
in the 𝜂-nucleon cm system for 𝛾𝑝 → 𝑝𝜂 reaction for
the different bins of final state energy 1488 MeV ≤ 𝑊 ≤
1625 MeV, 1635 MeV ≤ 𝑊 ≤ 1830 MeV and 1850 MeV ≤
𝑊 ≤ 2070 MeV, respectively. Same as Figure 1, the model
results and experimental data are indicated by the curves and
symbols, respectively. The model results can also agree with
the experimental data. In the sameway, the deformations and
translations of these emission sources are given in Tables 4–6
and Figures 7(d)–7(f). All the parameter values taken in the
above calculations are also given in Figures 8 and 9. It can be
found that 𝑎𝑧 keeps almost invariable and fluctuates around

1.0 with the increasing Ε𝛾.The parameter 𝑏𝑧 increases linearly
with the increasing Ε𝛾 and their relationship can be expressed
by a linearly function, 𝑏𝑧 = (0.541 ± 0.005) × 10−3Ε𝛾 −
(0.622 ± 0.011). There are similar relationships between the
parameters and different final state energies 𝑊 in Figure 9,
where the fitting function of 𝑏𝑧 is 𝑏𝑧 = (0.808 ± 0.003) ×
10−3𝑊− (1.322 ± 0.007).

4. Discussion and Conclusions

The excitation spectrum of nucleons can especially help us
to understand the strong interaction in the nonperturbative
regime. Before, the hadron induced reactions is a main
experimental method in the investigation. In the last two
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Figure 3: Same as Figure 1, but showing angular distributions for different bins of incident photon energy 1505 MeV ≤ E𝛾 ≤ 1835MeV.

Table 2: Values of 𝑎𝑧 and 𝑏𝑧 taken in Figure 2 model results.

Figure 2 𝐸𝛾 (MeV) 𝑎𝑧 𝑏𝑧 𝜒2/𝑑𝑜𝑓
(a) 1035 0.920 -0.080 0.124
(b) 1065 0.940 -0.090 0.118
(c) 1095 0.970 -0.030 0.132
(d) 1125 0.870 0.030 0.165
(e) 1155 0.850 0.050 0.170
(f) 1185 0.850 0.030 0.168
(g) 1215 0.860 0.070 0.173
(h) 1245 0.860 0.050 0.122
(i) 1270 0.850 0.110 0.121
(j) 1295 0.830 0.150 0.145
(k) 1325 0.910 0.120 0.147
(l) 1355 0.910 0.160 0.142
(m) 1385 0.890 0.110 0.115
(n) 1415 0.930 0.130 0.106
(o) 1445 0.830 0.250 0.122
(p) 1475 0.810 0.210 0.091

Table 3: Values of 𝑎𝑧 and 𝑏𝑧 taken in Figure 3 model results.

Figure 3 𝐸𝛾 (MeV) 𝑎𝑧 𝑏𝑧 𝜒2/𝑑𝑜𝑓
(a) 1505 0.915 0.260 0.243
(b) 1535 0.920 0.260 0.190
(c) 1565 0.920 0.240 0.158
(d) 1595 0.800 0.360 0.315
(e) 1625 0.890 0.310 0.179
(f) 1655 0.930 0.340 0.190
(g) 1685 0.910 0.360 0.206
(h) 1715 0.940 0.400 0.235
(i) 1745 0.960 0.460 0.085
(j) 1775 0.960 0.410 0.144
(k) 1805 1.090 0.400 0.132
(l) 1835 1.060 0.390 0.140
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Table 4: Values of 𝑎𝑧 and 𝑏𝑧 taken in Figure 4 model results.

Figure 4 𝑊 (MeV) 𝑎𝑧 𝑏𝑧 𝜒2/𝑑𝑜𝑓
(a) 1488 0.956 -0.098 0.086
(b) 1492 0.968 -0.069 0.125
(c) 1498 0.966 -0.058 0.101
(d) 1505 0.959 -0.063 0.114
(e) 1515 0.965 -0.052 0.205
(f) 1525 0.952 -0.048 0.192
(g) 1535 0.960 -0.063 0.143
(h) 1545 0.967 -0.066 0.206
(i) 1555 0.948 -0.060 0.174
(j) 1565 0.941 -0.072 0.168
(k) 1575 0.934 -0.059 0.170
(l) 1585 0.955 -0.068 0.235
(m) 1595 0.925 -0.051 0.260
(n) 1605 0.934 -0.039 0.251
(o) 1615 0.942 -0.045 0.307
(p) 1625 0.961 -0.058 0.293
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Figure 4: Angular distributions in the 𝜂-nucleon cm system for the reaction 𝛾𝑝 → 𝑝𝜂 for the different bins of final state energy 1488 MeV
≤ 𝑊 ≤ 1625 MeV. The symbols represent the experimental data from the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn
[9]. The results in the multisource thermal model are shown with the curves.

decades, the photon-induced reaction and electron scattering
experiment are applied to study the electromagnetic excita-
tion of baryons. Recently, the photoproduction of 𝜂 mesons
from quasi-free protons and neutrons are measured by the
CBELSA/TAPS detector. In the paper, we theoretically study
the angular distribution of 𝜂 mesons for different incident
photon energies Ε𝛾 and for different final state energies
𝑊. Then, the results are compared with the experimental
data in detail. The deformation coefficient 𝑎𝑧 and translation
coefficient 𝑏𝑧 are extracted by the comparison. 𝑎𝑧 is almost
independent of incident photon energies and final state
energies. 𝑏𝑧 is linearly dependent on incident photon energies

and final state energies. In particular, we visually give the
deformation and translation of the emission sources by
schematic sketches. From the patterns, it is intuitive and easy
to better understand the motion and configuration of the
emission sources.

A great number of 𝜂mesons are produced in the photon-
induced reaction.These 𝜂mesons are regarded as a multipar-
ticle system, which can be analyzed by the statistical method.
In recent years, we develop such amodel, which is calledmul-
tisource thermal model. Some emission sources of final-state
particles are formed in the reaction. Each emission source
emits particles isotropically in the rest frame of the emission

5Angular Dependence of η Photoproduction in Photon-Induced Reaction



Table 5: Values of 𝑎𝑧 and 𝑏𝑧 taken in Figure 5 model results.

Figure 5 𝑊 (MeV) 𝑎𝑧 𝑏𝑧 𝜒2/𝑑𝑜𝑓
(a) 1635 0.958 -0.042 0.305
(b) 1645 0.940 -0.028 0.350
(c) 1655 0.920 -0.021 0.263
(d) 1670 0.925 -0.009 0.187
(e) 1690 0.902 0.022 0.240
(f) 1710 0.899 0.047 0.209
(g) 1730 0.868 0.095 0.181
(h) 1750 0.843 0.102 0.194
(i) 1770 0.853 0.115 0.235
(j) 1790 0.879 0.125 0.170
(k) 1810 0.855 0.142 0.152
(l) 1830 0.867 0.159 0.138
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Figure 5: Same as Figure 4, but showing angular distributions for the different bins of final state energy 1635 MeV ≤ 𝑊 ≤ 1830 MeV.
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Figure 6: Same as Figure 4, but showing angular distributions for the different bins of final state energy 1850 MeV ≤ 𝑊 ≤ 2070 MeV.
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Figure 7: The deformable and translational source in the reaction plane for different bins of incident photon energy E𝛾 or final state energy
𝑊.
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Table 6: Values of 𝑎𝑧 and 𝑏𝑧 taken in Figure 6 model results.

Figure 6 𝑊 (MeV) 𝑎𝑧 𝑏𝑧 𝜒2/𝑑𝑜𝑓
(a) 1850 0.881 0.168 0.127
(b) 1870 0.872 0.221 0.132
(c) 1890 0.883 0.241 0.135
(d) 1910 0.856 0.252 0.153
(e) 1930 0.867 0.269 0.218
(f) 1950 0.853 0.253 0.295
(g) 1970 0.860 0.249 0.321
(h) 1990 0.875 0.261 0.184
(i) 2010 0.895 0.278 0.359
(j) 2030 0.906 0.299 0.337
(k) 2050 0.932 0.348 0.285
(l) 2070 0.945 0.337 0.304
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Figure 8: 𝑎𝑍 and 𝑏𝑍 for different bins of incident photon energy E𝛾. The symbols are the values taken in Figures 1–3. The straight line is a
fitted curve.
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source. Due to the source interaction, the sources emit
particles anisotropically.The 𝜂mesons are emitted from these
sources. In our previous work, the model can successfully
describe transverse momentum spectra and pseudorapidity
spectra of final-state particles produced in proton-proton
(𝑝𝑝) collisions, proton-nucleus (𝑝𝐴) collisions, and nucleus
-nucleus (𝐴𝐴) collisions at intermediate energy and at high
energy [17–21]. In this work, we extend the multisource
thermal model to the statistical investigation of final-state
particles produced in the photon-induced reaction. The
model is improved to describe the angular dependence of
the 𝜂 photoproduction fromquasi-free protons and neutrons.
The information of the source deformation and translation is
obtained with different beam energies. It is helpful for us to
understand the 𝜂 photoproduction.
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The significant divergence between the SM predictions and experimental measurements for the ratios, 𝑅𝐷(∗) ≡ B(𝐵 →𝐷(∗)𝜏−]𝜏)/B(𝐵 → 𝐷(∗)ℓ−]ℓ )with (ℓ = 𝑒, 𝜇), implies possible hint of new physics in the flavor sector. In this paper, motivated by
the “𝑅𝐷(∗) puzzle” and abundant𝐵∗ data samples at high-luminosity heavy-flavor experiments in the future, we try to probe possible
effects of new physics in the semileptonic 𝐵∗𝑢,𝑑,𝑠 → 𝑃ℓ−]ℓ (𝑃 = 𝐷,𝐷𝑠, 𝜋, 𝐾) decays induced by 𝑏 → (𝑢, 𝑐)ℓ−]ℓ transitions in the
model-independent vector and scalar scenarios. Using the spaces of NP parameters obtained by fitting to the data of 𝑅𝐷 and 𝑅𝐷∗ ,
the NP effects on the observables including branching fraction, ratio 𝑅∗𝑃, lepton spin asymmetry, and lepton forward-backward
asymmetry are studied in detail. We find that the vector type couplings have large effects on the branching fraction and ratio 𝑅∗𝑃.
Meanwhile, the scalar type couplings provide significant contributions to all of the observables. The future measurements of these
observables in the 𝐵∗ → 𝑃ℓ−]ℓ decays at the LHCb and Belle-II could provide a way to crosscheck the various NP solutions to the
“𝑅𝐷(∗) puzzle”.

1. Introduction

Thanks to the fruitful running of the 𝐵 factories and Large
Hadron Collider (LHC) in the past years, most of the 𝐵𝑢,𝑑
mesons decays with branching fractions ≳ O(10−7) have been
measured.The rare𝐵-meson decays play an important role in
testing the standardmodel (SM) and probing possible hints of
new physics (NP). Although most of the experimental mea-
surements are in good agreement with the SM predictions,
several indirect hints for NP, the tensions or the so-called
puzzles, have been observed in the flavor sector.

The semileptonic𝐵 → 𝐷(∗)ℓ]ℓ decays are induced by the
CKM favored tree-level charged current, and therefore, their
physical observables could be rather reliably predicted in the
SM and the effects of NP are expected to be tiny. In particular,
the ratios defined by 𝑅𝐷(∗) ≡ B(𝐵 → 𝐷(∗)𝜏−]𝜏)/B(𝐵 →𝐷(∗)ℓ−]ℓ ) (ℓ = 𝑒, 𝜇) are independent of the CKM matrix
elements, and the hadronic uncertainties canceled to a large
extent; thus they could be predicted with a rather high
accuracy. However, the BaBar [1, 2], Belle [3–5], and LHCb

[6] collaborations have recently observed some anomalies in
these ratios. The latest experimental average values for 𝑅𝐷(∗)
reported by the Heavy-Flavor Average Group (HFAG) are [7]

𝑅Exp𝐷 = 0.403 ± 0.040 ± 0.024,
𝑅Exp𝐷∗ = 0.310 ± 0.015 ± 0.008,

(1)

which deviate from the SM predictions

𝑅SM𝐷 = 0.300 ± 0.008,
𝑅SM𝐷∗ = 0.252 ± 0.003,

(2)

(see [8] in the first equation of (2) and [9] in the second
equation of (2)) at the levels of 2.2𝜎 and 3.4𝜎 errors,
respectively. Moreover, when the correlations between 𝑅𝐷
and 𝑅∗𝐷 are taken into account, the tension would reach
up to 3.9𝜎 level [7]. Besides, the ratio 𝑅𝐽/𝜓 ≡ B(𝐵𝑐 →𝐽/𝜓𝜏−]𝜏)/B(𝐵𝑐 → 𝐽/𝜓𝜇−]𝜇) has recently been measured
by the LHCb collaboration [10], which also shows an excess
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of about 2𝜎 from the central value range of the corresponding
SM predictions [0.25, 0.28]. In addition, another mild hint
of NP in the 𝑏 → 𝑢ℓ] induced 𝐵 → 𝜏] decay has been
observed by the BaBar and Belle collaborations [11–14]; the
deviation is at the level of 1.4𝜎 [15].

The large deviations in 𝑅𝐷(∗) and possible anomalies in
the other decay channels mentioned above imply possible
hints of NP relevant to the lepton flavor violation (LFV)
[15]. The investigations for these anomalies have been made
extensively both withinmodel-independent frameworks [16–
37] and in some specific NP models where the 𝑏 → 𝑐𝜏]𝜏
transition is mediated by leptoquarks [16, 17, 38–46], charged
Higgses [16, 47–59], charged vector bosons [16, 60, 61], and
sparticles [62–65].

In addition to 𝐵 mesons, the vector ground states of 𝑏𝑞
system, 𝐵∗ mesons, with quantum number of 𝑛2𝑠+1𝐿𝐽 = 13𝑆1
and 𝐽𝑃 = 1− [66–69], also can decay through the 𝑏 →(𝑢, 𝑐)ℓ]ℓ transitions at quark-level.Therefore, in principle, the
corresponding NP effects might enter into the semileptonic𝐵∗ decays as well. The 𝐵∗ decay occurs mainly through
the electromagnetic process 𝐵∗ → 𝐵𝛾, and the weak
decay modes are very rare. Fortunately, thanks to the rapid
development of heavy-flavor experiments instruments and
techniques, the 𝐵∗ weak decays are hopeful to be observed
by the running LHC and forthcoming SuperKEK/Belle-II
experiments [70–72] in the near future. For instance, the
annual integrated luminosity of Belle-II is expected to reach
up to ∼13 𝑎𝑏−1 and the 𝐵∗ weak decays with branching
fractions > O(10−9) are hopeful to be observed [70, 73, 74].
Moreover, the LHC experiment also will provide a lot of
experimental information for 𝐵∗ weak decays due to the
much larger beauty production cross-section of 𝑝𝑝 collision
relative to 𝑒+𝑒− collision [75].

Recently, some interesting theoretical studies for the𝐵∗ weak decays have been made within the SM in [73,
74, 76–82]. In this paper, motivated by the possible NP
explanation for the 𝑅𝐷(∗) puzzles, the corresponding NP
effects on the semileptonic 𝐵∗ decays will be studied in a
model-independent way. In the investigation, the scenarios
of vector and scalar NP interactions are studied, respectively;
their effects on the branching fraction, differential branching
fraction, lepton spin asymmetry, forward-backward asym-
metry, and ratio 𝑅∗𝑃 (𝑃 = 𝐷, 𝜋,𝐾) of semileptonic 𝐵∗ decays
are explored by using the spaces of various NP couplings
obtained through the measured 𝑅𝐷(∗) .

Our paper is organized as follows. In Section 2, after a
brief description of the effective Lagrangian for the 𝑏 →(𝑢, 𝑐)ℓ]ℓ transitions, the theoretical framework and calcula-
tions for the𝐵∗ → 𝑃ℓ]ℓ decays in the presence of variousNP
couplings are presented. Section 3 is devoted to the numerical
results and discussions for the effects of variousNP couplings.
Finally, we give our conclusions in Section 4.

2. Theoretical Framework and Calculation

2.1. Effective Lagrangian and Amplitudes. We employ the
effective field theory approach to compute the amplitudes of𝐵∗ → 𝑃ℓ]ℓ decays in a model-independent scheme. The

most general effective Lagrangian at 𝜇 = O(𝑚𝑏) for the 𝑏 →𝑝ℓ−]ℓ (𝑝 = 𝑢, 𝑐) transition can be written as [19, 21, 40, 46]

Leff = −2√2𝐺𝐹 ∑
𝑝=𝑢,𝑐

𝑉𝑝𝑏 {(1 + 𝑉𝐿) 𝑝𝐿𝛾𝜇𝑏𝐿ℓ𝐿𝛾𝜇]𝐿
+ 𝑉𝑅𝑝𝑅𝛾𝜇𝑏𝑅ℓ𝐿𝛾𝜇]𝐿 + �̃�𝐿𝑝𝐿𝛾𝜇𝑏𝐿ℓ𝑅𝛾𝜇]𝑅
+ �̃�𝑅𝑝𝑅𝛾𝜇𝑏𝑅ℓ𝑅𝛾𝜇]𝑅 + 𝑆𝐿𝑝𝑅𝑏𝐿ℓ𝑅]𝐿 + 𝑆𝑅𝑝𝐿𝑏𝑅ℓ𝑅]𝐿
+ 𝑆𝐿𝑝𝑅𝑏𝐿ℓ𝐿]𝑅 + 𝑆𝑅𝑝𝐿𝑏𝑅ℓ𝐿]𝑅 + 𝑇𝐿𝑝𝑅𝜎𝜇]𝑏𝐿ℓ𝑅𝜎𝜇]]𝐿
+ �̃�𝐿𝑝𝐿𝜎𝜇]𝑏𝑅ℓ𝐿𝜎𝜇]]𝑅} + h.c.,

(3)

where 𝐺𝐹 is the Fermi coupling constant, 𝑉𝑝𝑏 denotes the
CKM matrix elements, and 𝑃𝐿,𝑅 = (1 ± 𝛾5)/2 is the nega-
tive/positive projection operator. Assuming the neutrinos are
left-handed and neglecting the tensor couplings, the effective
Lagrangian can be simplified as

Leff = −𝐺𝐹√2
⋅ ∑
𝑝=𝑢,𝑐

𝑉𝑝𝑏 {(1 + 𝑉𝐿) 𝑝𝛾𝜇 (1 − 𝛾5) 𝑏ℓ𝛾𝜇 (1 − 𝛾5) ]
+ 𝑉𝑅𝑝𝛾𝜇 (1 + 𝛾5) 𝑏ℓ𝛾𝜇 (1 − 𝛾5) ]
+ 𝑆𝐿𝑝 (1 − 𝛾5) 𝑏ℓ (1 − 𝛾5) ]
+ 𝑆𝑅𝑝 (1 + 𝛾5) 𝑏ℓ (1 − 𝛾5) ]} + h.c.,

(4)

where 𝑉𝐿,𝑅 and 𝑆𝐿,𝑅 are the effective NP couplings (Wilson
coefficients) defined at 𝜇 = O(𝑚𝑏). In the SM, all the NP
couplings will be zero.

We use the method of [83–87] to calculate the helicity
amplitudes. The square of amplitudes for the 𝐵∗ → 𝑃ℓ−]ℓ
decay can be written as the product of leptonic (𝐿𝜇]) and
hadronic (𝐻𝜇]) tensors,

M (𝐵∗ → 𝑃ℓ−]ℓ)2 = ⟨𝑃ℓ−]ℓ Leff
 𝐵∗⟩2

= ∑
𝑖,𝑗

𝐿𝑖𝑗𝜇]𝐻𝑖𝑗,𝜇], (5)

where the superscripts 𝑖 and 𝑗 refer to four operators in the
effective Lagrangian given by (4) (the tensors related to the
scalar and pseudoscalar operators can be understood through
the relations given by (21) and (22)); in the SM, 𝑖 = 𝑗
corresponds to the operator 𝑝𝛾𝜇(1 − 𝛾5)𝑏ℓ𝛾𝜇(1 − 𝛾5)]. For
convenience in writing, these superscripts are omitted below.
Inserting the completeness relation

∑
𝑚,𝑛

𝜖𝜇 (𝑚) 𝜖∗] (𝑛) 𝑔𝑚𝑛 = 𝑔𝜇], (6)

the product of 𝐿𝜇] and𝐻𝜇] can be further expressed as

𝐿𝜇]𝐻𝜇] = ∑
𝑚,𝑚,𝑛,𝑛

𝐿 (𝑚, 𝑛)𝐻 (𝑚, 𝑛) 𝑔𝑚𝑚𝑔𝑛𝑛 . (7)

11Probing the Effects of New Physics in B* →Pℓνℓ Decays

−

−

−−



Here, 𝜖𝜇 is the polarization vector of the virtual intermediate
states, which is𝑊∗ boson in the SM and named as 𝜔 in this
paper for convenience of expression.The quantities 𝐿(𝑚, 𝑛) ≡𝐿𝜇]𝜖𝜇(𝑚)𝜖∗] (𝑛) and 𝐻(𝑚, 𝑛) ≡ 𝐻𝜇]𝜖∗𝜇(𝑚)𝜖](𝑛) are Lorentz
invariant and therefore can be evaluated in different reference
frames. In the following evaluation, 𝐻(𝑚, 𝑛) and 𝐿(𝑚, 𝑛) will
be calculated in the𝐵∗-meson rest frame and the ℓ−]ℓ center-
of-mass frame, respectively.

2.2. Kinematics for 𝐵∗ → 𝑃ℓ−]ℓ Decays. In the 𝐵∗-meson
rest frame with daughter 𝑃-meson moving in the positive 𝑧-
direction, the momenta of particles 𝐵∗ and 𝑃 are

𝑝𝜇𝐵∗ = (𝑚𝐵∗ , 0, 0, 0) ,
𝑝𝜇𝑃 = (𝐸𝑃, 0, 0, →𝑝) .

(8)

For the four polarization vectors, 𝜖𝜇(𝜆𝜔 = 𝑡, 0, ±), one can
conveniently choose [83, 84]

𝜖𝜇 (𝑡) = 1
√𝑞2 (𝑞0, 0, 0, −

→𝑝) ,

𝜖𝜇 (0) = 1
√𝑞2 (

→𝑝 , 0, 0, −𝑞0) ,

𝜖𝜇 (±) = 1√2 (0, ±1, −𝑖, 0) ,

(9)

where 𝑞0 = (𝑚2
𝐵∗ − 𝑚2

𝑃 + 𝑞2)/2𝑚𝐵∗ and |→𝑝| = 𝜆1/2(𝑚2
𝐵∗ ,𝑚2

𝑃, 𝑞2)/2𝑚𝐵∗ , with 𝜆(𝑎, 𝑏, 𝑐) ≡ 𝑎2+𝑏2+𝑐2−2(𝑎𝑏+𝑏𝑐+𝑐𝑎)and𝑞2 = (𝑝𝐵∗ − 𝑝𝑃)2 being the momentum transfer squared, are
the energy and momentum of the virtual 𝜔. The polarization
vectors of the initial 𝐵∗-meson can be written as

𝜖𝜇 (0) = (0, 0, 0, 1) ,
𝜖𝜇 (±) = 1√2 (0, ∓1, −𝑖, 0) .

(10)

In the ℓ − ]ℓ center-of-mass frame, the four momenta of
lepton and antineutrino pair are given as

𝑝𝜇ℓ = (𝐸ℓ, →𝑝 ℓ sin 𝜃, 0, →𝑝 ℓ cos 𝜃) ,
𝑝𝜇]ℓ = (→𝑝 ℓ , − →𝑝 ℓ sin 𝜃, 0, − →𝑝 ℓ cos 𝜃) ,

(11)

where 𝐸ℓ = (𝑞2 +𝑚2
ℓ)/2√𝑞2, |→𝑝 ℓ| = (𝑞2 −𝑚2

ℓ)/2√𝑞2, and 𝜃 is
the angle between the 𝑃 and ℓ three-momenta. In this frame,
the polarization vector 𝜖𝜇 takes the form

𝜖𝜇 (𝑡) = (1, 0, 0, 0) ,
𝜖𝜇 (0) = (0, 0, 0, 1) ,
𝜖𝜇 (±) = 1√2 (0, ∓1, −𝑖, 0) .

(12)

2.3. Hadronic Helicity Amplitudes. For the 𝐵∗ → 𝑃ℓ−]ℓ
decay, the hadronic helicity amplitudes 𝐻𝑉𝐿,𝑅

𝜆𝐵∗𝜆𝜔
and 𝐻𝑆𝐿,𝑅

𝜆𝐵∗𝜆𝜔
are defined by

𝐻𝑉𝐿
𝜆𝐵∗𝜆𝜔

(𝑞2)
= 𝜖∗𝜇 (𝜆𝜔) ⟨𝑃 (𝑝𝑃) 𝑝𝛾𝜇 (1 − 𝛾5) 𝑏 𝐵∗ (𝑝𝐵∗ , 𝜆𝐵∗)⟩ ,

(13)

𝐻𝑉𝑅
𝜆𝐵∗𝜆𝜔

(𝑞2)
= 𝜖∗𝜇 (𝜆𝜔) ⟨𝑃 (𝑝𝑃) 𝑝𝛾𝜇 (1 + 𝛾5) 𝑏 𝐵∗ (𝑝𝐵∗ , 𝜆𝐵∗)⟩ ,

(14)

𝐻𝑆𝐿
𝜆𝐵∗𝜆𝜔

(𝑞2) = ⟨𝑃 (𝑝𝑃) 𝑝 (1 − 𝛾5) 𝑏 𝐵∗ (𝑝𝐵∗ , 𝜆𝐵∗)⟩ , (15)

𝐻𝑆𝑅
𝜆𝐵∗𝜆𝜔

(𝑞2) = ⟨𝑃 (𝑝𝑃) 𝑝 (1 + 𝛾5) 𝑏 𝐵∗ (𝑝𝐵∗ , 𝜆𝐵∗)⟩ , (16)

which describe the decay of three helicity states of 𝐵∗ meson
into a pseudoscalar 𝑃 meson and the four helicity states of
virtual 𝜔. It should be noted that 𝜆𝜔 in 𝐻𝑆𝐿,𝑅

𝜆𝐵∗𝜆𝜔
(𝑞2), (15) and

(16), should always be equal to 𝑡.
For 𝐵∗ → 𝑃 transition, the matrix elements of the vector

and axial-vector currents can be written in terms of form
factors𝑉(𝑞2) and 𝐴0,1,2(𝑞2) as
⟨𝑃 (𝑝𝑃) 𝑝𝛾𝜇𝑏 𝐵∗ (𝜖, 𝑝𝐵∗)⟩ = − 2𝑖𝑉 (𝑞

2)
𝑚𝐵∗ + 𝑚𝑃

⋅ 𝜀𝜇]𝜌𝜎𝜖]𝑝𝜌𝑃𝑝𝜎𝐵∗ ,
(17)

⟨𝑃 (𝑝𝑃) 𝑝𝛾𝜇𝛾5𝑏 𝐵∗ (𝜖, 𝑝𝐵∗)⟩ = 2𝑚𝐵∗𝐴0 (𝑞2) 𝜖 ⋅ 𝑞𝑞2 𝑞𝜇
+ (𝑚𝑃 + 𝑚𝐵∗) 𝐴1 (𝑞2) (𝜖𝜇 − 𝜖 ⋅ 𝑞𝑞2 𝑞𝜇) + 𝐴2 (𝑞2)
⋅ 𝜖 ⋅ 𝑞
𝑚𝑃 + 𝑚𝐵∗

[(𝑝𝐵∗ + 𝑝𝑃)𝜇 − 𝑚
2
𝐵∗ − 𝑚2

𝑃𝑞2 𝑞𝜇] ,
(18)

with the sign convention 𝜖0123 = −1. Furthermore, using the
equations of motion,

𝑖𝜕𝜇 (𝑝𝛾𝜇𝑏) = [𝑚𝑏 (𝜇) − 𝑚𝑝 (𝜇)] 𝑝𝑏, (19)

𝑖𝜕𝜇 (𝑝𝛾𝜇𝛾5𝑏) = − [𝑚𝑏 (𝜇) + 𝑚𝑝 (𝜇)] 𝑝𝛾5𝑏, (20)

one can write the matrix elements of scalar and pseudoscalars
currents as

⟨𝑃 (𝑝𝑃) 𝑝𝑏 𝐵∗ (𝜖, 𝑝𝐵∗)⟩ = 1
𝑚𝑏 (𝜇) − 𝑚𝑝 (𝜇)

⋅ 𝑞𝜇 ⟨𝑃 (𝑝𝑃) 𝑝𝛾𝜇𝑏 𝐵∗ (𝜖, 𝑝𝐵∗)⟩ = 0,
(21)

⟨𝑃 (𝑝𝑃) 𝑝𝛾5𝑏 𝐵∗ (𝜖, 𝑝𝐵∗)⟩ = − 1
𝑚𝑏 (𝜇) + 𝑚𝑝 (𝜇)

⋅ 𝑞𝜇 ⟨𝑃 (𝑝𝑃) 𝑝𝛾𝜇𝛾5𝑏 𝐵∗ (𝜖, 𝑝𝐵∗)⟩ = − (𝜖 ⋅ 𝑞)
⋅ 2𝑚𝐵∗𝑚𝑏 (𝜇) + 𝑚𝑝 (𝜇)𝐴0 (𝑞2) ,

(22)

in which𝑚𝑏(𝜇) and𝑚𝑝(𝜇) are the running quark masses.
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Then, by contracting above hadronic matrix elements
with the polarization vectors in the 𝐵∗-meson rest frame, we
obtain five nonvanishing helicity amplitudes

𝐻0𝑡 (𝑞2) = 𝐻𝑉𝐿
0𝑡 (𝑞2) = −𝐻𝑉𝑅

0𝑡 (𝑞2) = 2𝑚𝐵∗
→𝑝

√𝑞2
⋅ 𝐴0 (𝑞2) ,

(23)

𝐻00 (𝑞2) = 𝐻𝑉𝐿
00 (𝑞2) = −𝐻𝑉𝑅

00 (𝑞2)
= 1
2𝑚𝐵∗√𝑞2

[
[
(𝑚𝐵∗ + 𝑚𝑃) (𝑚2

𝐵∗ − 𝑚2
𝑃 + 𝑞2)

⋅ 𝐴1 (𝑞2) + 4𝑚
2
𝐵∗
→𝑝2𝑚𝐵∗ + 𝑚𝑃

𝐴2 (𝑞2)]]
,

(24)

𝐻±∓ (𝑞2) = 𝐻𝑉𝐿
±∓ (𝑞2) = −𝐻𝑉𝑅

∓± (𝑞2) = − (𝑚𝐵∗ + 𝑚𝑃)
⋅ 𝐴1 (𝑞2) ∓ 2𝑚𝐵∗

→𝑝𝑚𝐵∗ + 𝑚𝑃

𝑉(𝑞2) , (25)

𝐻
0𝑡 (𝑞2) = 𝐻𝑆𝐿

0𝑡 (𝑞2) = −𝐻𝑆𝑅
0𝑡 (𝑞2)

= − 2𝑚𝐵∗
→𝑝𝑚𝑏 (𝜇) + 𝑚𝑐 (𝜇)𝐴0 (𝑞2) .

(26)

It is obvious that only the amplitudes with 𝜆𝐵∗ = 𝜆𝑃 − 𝜆𝜔 =−𝜆𝜔 survive.
2.4. Leptonic Helicity Amplitudes. Expanding the leptonic
tensor in terms of a complete set of Wigner’s 𝑑𝐽-functions
[9, 83, 87], 𝐿𝜇]𝐻𝜇] can be rewritten as a compact form

𝐿𝜇]𝐻𝜇] = 18 ∑
𝜆ℓ,𝜆]ℓ

,𝜆𝜔,𝜆

𝜔,𝐽,𝐽


(−1)𝐽+𝐽

⋅ ℎ𝑖𝜆ℓ,𝜆]ℓ
ℎ𝑗∗
𝜆ℓ,𝜆]ℓ

𝛿𝜆𝐵∗ ,−𝜆𝜔𝛿𝜆𝐵∗ ,−𝜆𝜔
× 𝑑𝐽𝜆𝜔,𝜆ℓ−1/2𝑑𝐽𝜆𝜔,𝜆ℓ−1/2𝐻𝑖

𝜆𝐵∗𝜆𝜔
𝐻𝑗∗

𝜆𝐵∗𝜆

𝜔

,
(27)

in which 𝐽 and 𝐽 run over 1 and 0, 𝜆()𝜔 and 𝜆ℓ run over their
components, and massless right-handed antineutrinos with𝜆]ℓ = 1/2. In (27), ℎ𝑖,𝑗

𝜆ℓ,𝜆]ℓ
are the leptonic helicity amplitudes

defined as

ℎ𝑉𝐿,𝑅𝜆ℓ,𝜆]ℓ
= 𝑢ℓ (𝜆ℓ) 𝛾𝜇 (1 − 𝛾5) ]] (12) 𝜖𝜇 (𝜆𝜔) , (28)

ℎ𝑆𝐿,𝑅
𝜆ℓ,𝜆]ℓ

= 𝑢ℓ (𝜆ℓ) (1 − 𝛾5) ]] (12) . (29)

In the ℓ − ]ℓ center-of-mass frame, taking the exact forms of
the spinors and polarization vectors, we finally obtain four
nonvanishing contributions

ℎ𝑉𝐿,𝑅−1/2,1/2


2 = 8 (𝑞2 − 𝑚2

ℓ) , (30)

ℎ𝑉𝐿,𝑅1/2,1/2


2 = 8 𝑚2

ℓ2𝑞2 (𝑞2 − 𝑚2
ℓ) , (31)

ℎ𝑆𝐿,𝑅1/2,1/2


2 = 8𝑞2 − 𝑚2

ℓ2 , (32)

ℎ𝑉𝐿,𝑅1/2,1/2

 ×
ℎ𝑆𝐿,𝑅1/2,1/2

 = 8 𝑚ℓ

2√𝑞2 (𝑞
2 − 𝑚2

ℓ) . (33)

2.5. Observables of 𝐵∗ → 𝑃ℓ−]ℓ Decays. With the ampli-
tudes obtained in above subsections, we then present the
observables considered in our following evaluations. The
double differential decay rate of𝐵∗ → 𝑃ℓ−]ℓ decay iswritten
as

𝑑Γ𝑑𝑞2𝑑 cos 𝜃 =
𝐺2𝐹 𝑉𝑝𝑏2(2𝜋)3

→𝑝8𝑚2
𝐵∗

13 (1 −
𝑚2
ℓ𝑞2 )

⋅ M (𝐵∗ → 𝑃ℓ−]ℓ)2 ,
(34)

where the factor 1/3 is caused by averaging over the spins
of initial state 𝐵∗. Using the standard convention for 𝑑𝐽-
function [88], we finally obtain the double differential decay
rates with a given leptonic helicity state (𝜆ℓ = ±1/2), which
are

𝑑2Γ [𝜆ℓ = −1/2]𝑑𝑞2𝑑 cos 𝜃 = 𝐺2𝐹
𝑉𝑝𝑏2 →𝑝256𝜋3𝑚2

𝐵∗

13𝑞2 (1 −
𝑚2
ℓ𝑞2 )

2

× {1 + 𝑉𝐿2 [(1 − cos 𝜃)2𝐻2
−+ + (1 + cos 𝜃)2𝐻2

−+

+ 2 sin2 𝜃𝐻2
00] + 𝑉𝑅2 [(1 − cos 𝜃)2𝐻2

+−

+ (1 + cos 𝜃)2𝐻2
−+ + 2 sin2 𝜃𝐻2

00]
− 4R𝑒 [(1 + 𝑉𝐿) 𝑉∗𝑅 ] [(1 + cos 𝜃2)𝐻+−𝐻−+

+ sin2 𝜃𝐻2
00]} ,

(35)

𝑑2Γ [𝜆ℓ = 1/2]𝑑𝑞2𝑑 cos 𝜃 = 𝐺2𝐹
𝑉𝑝𝑏2 →𝑝256𝜋3𝑚2

𝐵∗

13𝑞2 (1 −
𝑚2
ℓ𝑞2 )

2 𝑚2
ℓ𝑞2

× {{{{{
(1 + 𝑉𝐿2 + 𝑉𝑅2) [sin2 𝜃 (𝐻2

−+ + 𝐻2
+−)

+ 2 (𝐻0𝑡 − cos 𝜃𝐻00)2] − 4R𝑒 [(1 + 𝑉𝐿) 𝑉∗𝑅 ]
⋅ [sin2 𝜃𝐻−+𝐻+− + (𝐻0𝑡 − cos 𝜃𝐻00)2]
+ 4R𝑒 [(1 + 𝑉𝐿 − 𝑉𝑅) (𝑆∗𝐿 − 𝑆∗𝑅)]
⋅ √𝑞2𝑚ℓ

[𝐻
0𝑡 (𝐻0𝑡 − cos 𝜃𝐻00)] + 2 𝑆𝐿 − 𝑆𝑅2 𝑞

2

𝑚2
ℓ

⋅ 𝐻2
0𝑡

}}}}}
.

(36)
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Using (35) and (36), one can get the explicit forms of various
observables of 𝐵∗ → 𝑃ℓ−]ℓ decays as follows:

(i) The differential decay rate is

𝑑Γ𝑑𝑞2 =
𝐺2𝐹 𝑉𝑝𝑏2 →𝑝96𝜋3𝑚2

𝐵∗

13𝑞2 (1 −
𝑚2
ℓ𝑞2 )

2

× {{{{{
(1 + 𝑉𝐿2 + 𝑉𝑅2)

⋅ [(𝐻2
−+ + 𝐻2

+− + 𝐻2
00) (1 + 𝑚

2
ℓ2𝑞2) +

3𝑚2
ℓ2𝑞2 𝐻2

0𝑡]
− 2R𝑒 [(1 + 𝑉𝐿) 𝑉∗𝑅 ]
⋅ [(2𝐻−+𝐻+− + 𝐻2

00) (1 + 𝑚
2
ℓ2𝑞2) +

3𝑚2
ℓ2𝑞2 𝐻2

0𝑡]
+ 3R𝑒 [(1 + 𝑉𝐿 − 𝑉𝑅) (𝑆∗𝐿 − 𝑆∗𝑅)]𝐻

0𝑡𝐻0𝑡

𝑚ℓ

√𝑞2

+ 32 𝑆𝐿 − 𝑆𝑅2𝐻2
0𝑡

}}}}}
.

(37)

(ii) The 𝑞2 dependent ratio is

𝑅∗𝑃 (𝑞2) ≡ 𝑑Γ (𝐵∗ → 𝑃𝜏−]𝜏) /𝑑𝑞2
𝑑Γ (𝐵∗ → 𝑃ℓ−]ℓ) /𝑑𝑞2 , (38)

where ℓ denotes the light lepton.
(iii) The lepton spin asymmetry is

𝐴𝑃𝜆 (𝑞2)
= 𝑑Γ [𝜆ℓ = −1/2] /𝑑𝑞2 − 𝑑Γ [𝜆ℓ = 1/2] /𝑑𝑞2𝑑Γ [𝜆ℓ = −1/2] /𝑑𝑞2 + 𝑑Γ [𝜆ℓ = 1/2] /𝑑𝑞2 .

(39)

(iv) The forward-backward asymmetry is

𝐴𝑃𝜃 (𝑞2)
= ∫

0

−1
𝑑 cos 𝜃 (𝑑2Γ/𝑑𝑞2𝑑 cos 𝜃) − ∫1

0
𝑑 cos 𝜃 (𝑑2Γ/𝑑𝑞2𝑑 cos 𝜃)

𝑑Γ/𝑑𝑞2 . (40)

The SM results can be obtained from above formulae by
taking 𝑉𝐿 = 𝑉𝑅 = 𝑆𝐿 = 𝑆𝑅 = 0.

In the following evaluations, in order to fit the NP spaces,
we also need the observables of 𝐵 → 𝐷(∗)ℓ−]ℓ decays, which
have been fully calculated in the past years. In this paper, we
adopt the relevant theoretical formulae given in [46].

3. Numerical Results and Discussions

3.1. Input Parameters. Before presenting our numerical
results and analyses, we would like to clarify the values of
input parameters used in the calculation. For theCKMmatrix
elements, we use [89]

𝑉𝑐𝑏 = 4.181+0.028−0.060 × 10−2,𝑉𝑢𝑏 = 3.715+0.060−0.060 × 10−3.
(41)

For the well-measured Fermi coupling constant 𝐺𝐹, the
masses of mesons and leptons, and the running masses of
quarks at 𝜇 = 𝑚𝑏, we take their central values given by PDG
[88]. The total decay widths (or lifetimes) of 𝐵∗ mesons are
essential for estimating the branching fraction; however there
is no available experimental data until now. According to the
fact that the electromagnetic process 𝐵∗ → 𝐵𝛾 dominates
the decays of 𝐵∗meson, we take the approximation Γtot(𝐵∗) ≃Γ(𝐵∗ → 𝐵𝛾); the latter has been evaluated within different
theoretical models [90–96]. In this paper, we adopt the most
recent results [95, 96]

Γtot (𝐵∗+) ≃ Γ (𝐵∗+ → 𝐵+𝛾) = (468+73−75) eV, (42)

Γtot (B∗0) ≃ Γ (𝐵∗0 → 𝐵0𝛾) = (148 ± 20) eV, (43)

Γtot (𝐵∗0𝑠 ) ≃ Γ (𝐵∗0𝑠 → 𝐵0𝑠𝛾) = (68 ± 17) eV. (44)

Then the residual inputs are the transition form factors,
which are crucial for evaluating the observables of 𝐵∗ →𝑃ℓ−]ℓ and 𝐵 → 𝐷(∗)ℓ−]ℓ decays. For the 𝐵 → 𝐷(∗) tran-
sitions, the scheme of Caprini, Lellouch, and Neubert (CLN)
parametrization [97] is widely used, and the CLN parameters
can be precisely extracted from the well-measured 𝐵 →𝐷(∗)ℓ−]ℓ decays; numerically, their values read [7]

𝜌2𝐷 = 1.128 ± 0.033,
𝑉1 (1) 𝑉𝑐𝑏 = (41.30 ± 0.99) × 10−3;

(45)

𝜌2𝐷∗ = 1.205 ± 0.026,
ℎ𝐴1 (1) 𝑉𝑐𝑏 = (35.38 ± 0.43) × 10−3,

𝑅1 (1) = 1.404 ± 0.032,
𝑅2 (1) = 0.854 ± 0.020.

(46)

However, for the 𝐵∗𝑢,𝑑,𝑠 → 𝑃𝑢,𝑑,𝑠 transition, there is no
experimental data and ready-made theoretical results to use
at present. Here, we employ the Bauer-Stech-Wirbel (BSW)
model [98, 99] to evaluate the form factors for both 𝐵∗ → 𝑃
and 𝐵 → 𝐷(∗) transitions. Using the inputs 𝑚𝑢 = 𝑚𝑑 =0.35GeV, 𝑚𝑠 = 0.55GeV, 𝑚𝑐 = 1.7GeV, 𝑚𝑏 = 4.9GeV, and
𝜔 = √⟨→𝑝 2⊥⟩ = 0.4GeV, we obtain the results at 𝑞2 = 0,

𝐴𝐵∗→𝐷
0 (0) = 0.71,

𝐴𝐵∗→𝐷
1 (0) = 0.75,
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𝐴𝐵∗→𝐷
2 (0) = 0.62,

𝑉𝐵∗→𝐷 (0) = 0.76;
(47)

𝐴𝐵∗𝑠 →𝐷𝑠
0 (0) = 0.66,

𝐴𝐵∗𝑠 →𝐷s
1 (0) = 0.69,

𝐴𝐵∗𝑠 →𝐷𝑠
2 (0) = 0.59,

𝑉𝐵∗𝑠 →𝐷𝑠 (0) = 0.72;

(48)

𝐴𝐵∗→𝜋
0 (0) = 0.34,

𝐴𝐵∗→𝜋
1 (0) = 0.38,

𝐴𝐵∗→𝜋
2 (0) = 0.30,

𝑉𝐵∗→𝜋 (0) = 0.35;

(49)

𝐴𝐵∗𝑠 →𝐾
0 (0) = 0.28,

𝐴𝐵∗𝑠 →𝐾
1 (0) = 0.29,

𝐴𝐵∗𝑠 →𝐾

2 (0) = 0.26,
𝑉𝐵∗𝑠 →𝐾 (0) = 0.30;

(50)

𝐹𝐵→𝐷
0 (0) = 𝐹𝐵→𝐷

1 (0) = 0.70; (51)

𝐴𝐵→𝐷∗

0 (0) = 0.63,
𝐴𝐵→𝐷∗

1 (0) = 0.66,
𝐴𝐵→𝐷∗

2 (0) = 0.69,
𝑉𝐵→𝐷∗ (0) = 0.71.

(52)

To be conservative, 15% uncertainties are assigned to these
values in our following evaluation. Moreover, with the
assumption of nearest pole dominance, the dependences of
form factors on 𝑞2 read [98, 99]

𝐹0 (𝑞2) ≃ 𝐹0 (0)1 − 𝑞2/𝑚2
𝐵𝑞(0
+)

,

𝐹1 (𝑞2) ≃ 𝐹1 (0)1 − 𝑞2/𝑚2
𝐵𝑞(1
−)

,

𝐴0 (𝑞2) ≃ 𝐴0 (0)1 − 𝑞2/𝑚2
𝐵q(0
−)

,

𝐴1 (𝑞2) ≃ 𝐴1 (0)1 − 𝑞2/𝑚2
𝐵𝑞(1
+)

,

𝐴2 (𝑞2) ≃ 𝐴2 (0)1 − 𝑞2/𝑚2
𝐵𝑞(1
+)

,

𝑉 (𝑞2) ≃ 𝑉 (0)1 − 𝑞2/𝑚2
𝐵𝑞(1
−)

,
(53)

where 𝐵𝑞(𝐽𝑃) is the state of 𝐵𝑞 with quantum number of 𝐽𝑃
(𝐽 and 𝑃 are the quantum numbers of total angular momenta
and parity, respectively).

With the theoretical formulae and inputs given above,
we then proceed to present our numerical results and dis-
cussion, which are divided into two scenarios with different
simplification for our attention to the types of NP couplings
as follows:

(i) Scenario I: taking 𝑆𝐿 = 𝑆𝑅 = 0, i.e., only considering
the NP effects of 𝑉𝐿,𝑅 couplings

(ii) Scenario II: taking 𝑉𝐿 = 𝑉𝑅 = 0, i.e., only considering
the NP effects of 𝑆𝐿,𝑅 couplings

In these two scenarios, we consider all the NP parameters
to be real for our analysis. In addition, we assume that only
the third generation leptons get corrections from the NP in
the 𝑏 → (𝑢, 𝑐)ℓ]ℓ processes and for ℓ = 𝑒, 𝜇 the NP is
absent. In the following discussion, the allowed spaces of NP
couplings are obtained by fitting to 𝑅𝐷 and 𝑅𝐷∗ (1), with
the data varying randomly within their 1𝜎 error, while the
theoretical uncertainties are also considered and obtained by
varying the inputs randomly within their ranges specified
above.

3.2. Scenario I: Effects of 𝑉𝐿 and 𝑉𝑅 Type Couplings. In this
subsection, we vary couplings 𝑉𝐿 and 𝑉𝑅 while keeping all
other NP couplings to zero. Under the constraints from
the data of 𝑅𝐷 and 𝑅∗𝐷, the allowed spaces of new physics
parameters, 𝑉𝐿 and 𝑉𝑅, are shown in Figure 1. In the fit, the𝐵 → 𝐷(∗) form factors based on CLN parametrization
and BSW model are used, respectively; it can be seen from
Figure 1 that their corresponding fitting results are consistent
with each other, but the constraint with the former is
much stronger due to the relatively small theoretical error.
Therefore, in the following evaluations and discussions, the
results obtained by using CLN parametrization are used. In
addition, our fitting result in Figure 1 agreeswell with the ones
obtained in the previous works, for instance, [26, 35].

From Figure 1, we find that (i) the allowed spaces of(𝑉𝐿, 𝑉𝑅) are bounded into four separate regions, namely,
solutions A-D. (ii) Except for solution A, the other solutions
are all far from the zero point (0, 0) and result in very large
NP contributions. Taking solution C (D) as an example,
the SM contribution is completely canceled out by the NP
contribution related to 𝑉𝐿, and the 𝑉𝑅 coupling presents
sizable positive (negative) NP contribution to fit data. The
situation of solutionB is similar, but only𝑉𝐿 coupling presents
sizableNP contribution.Numerically, one can easily conclude
that the NP contributions of solutions B-D are about two
times larger than the SM,which seriously exceeds our general
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Figure 1:The allowed spaces of𝑉𝐿 and𝑉𝑅 obtained by fitting to𝑅𝐷 and𝑅𝐷∗ .The red and green regions are obtained by using the form factors
of CLN parametrization and BSWmodel, respectively. (b) shows the minimal result (solution A) of the four solutions shown in (a).

expectation that the amplitudes should be dominated by the
SM and the NP only presents minor corrections. In this point
of view, the minimal solution (solution A) is much favored
than solutions B-D. So, in our following discussions, we pay
attention only to solution A, which is replotted in Figure 1(b)
and numerical result is

𝑉𝐿 = 0.14+0.06−0.06,
𝑉𝑅 = 0.05+0.06−0.07.

solution A

(54)

Using the values of NP couplings given by (54), we then
present our theoretical predictions for B(𝐵∗ → 𝑃𝜏−]𝜏)
and 𝑞2-integrated 𝑅∗𝑃 in Table 1, in which the SM results are
also listed for comparison. The 𝑞2-dependence of differential
observables 𝑑Γ/𝑑𝑞2, 𝑅∗𝑃, 𝐴𝑃𝜆, and 𝐴𝑃𝜃 for 𝐵∗− → 𝐷0𝜏−]𝜏
and 𝜋0𝜏−]𝜏 decays is shown in Figure 2; the case of 𝐵∗0 →
𝐷+𝜏−]𝜏 and 𝐵∗0𝑠 → 𝐷+

𝑠 𝜏−]𝜏 (𝐵∗0 → 𝜋+𝜏−]𝜏 and 𝐵∗0𝑠 →𝐾+𝜏−]𝜏) is similar to the one of 𝐵∗− → 𝐷0𝜏−]𝜏 (𝐵∗− →𝜋0𝜏−]𝜏) decay, not shown here. The following are some
discussions and comments:

(1) From Table 1, it can be seen that the branching
fractions of 𝑏 → 𝑐𝜏]𝜏 induced 𝐵∗𝑢,𝑑,𝑠 decays are at the
level of O(10−8 − 10−7), while the 𝑏 → 𝑢𝜏]𝜏 induced
decays are relatively rare due to the suppression
caused by the CKM factor. In addition, the difference
between the branching fractions of three decaymodes
induced by 𝑏 → 𝑐𝜏]𝜏 (or 𝑏 → 𝑢𝜏]𝜏) transition is
mainly attributed to the relation of total decay widths,
Γtot(𝐵∗−) : Γtot(𝐵∗0) : Γtot(𝐵∗0𝑠 ) ∼ 1 : 2 : 6, illustrated
by (42), (43), and (44).

(2) Comparing with the SM results, one can easily find
from Table 1 that B(𝐵∗ → 𝑃𝜏−]𝜏) are enhanced

about 20% by the NP contributions of 𝑉𝐿 and 𝑉𝑅.
It can also be clearly seen from Figures 2(a) and
2(b). However, as shown in Figures 2(a) and 2(b),
due to the large theoretical uncertainties caused by
the form factors, the NP hints are hard to be totally
distinguished from the SM results.

(3) The theoretical uncertainties can be well controlled
by using the ratio 𝑅∗𝑃 instead of decay rate due to the
cancelation of nonperturbative errors; therefore 𝑅∗𝑃
is much suitable for probing the NP hints. From the
last three rows of Table 1, it can be found that the NP
prediction for 𝑅∗𝑃 significantly deviates from the SM
result. In particular, as Figures 2(c) and 2(d) show,
the NP effects can be totally distinguished from the
SM at 𝑞2 ≳ 7GeV2 even though the theoretical errors
are considered. So, future measurements on 𝐵∗ →𝑃𝜏−]𝜏 decays can make further test on the NPmodels
which provide possible solutions to the 𝑅𝐷 and 𝑅𝐷∗
problems.

(4) From Figures 2(e)–2(h) it can be found that the
NP contribution of solution A has little effect on
the observables 𝐴𝑃𝜆 and 𝐴𝑃𝜃 in the whole 𝑞2 region,
which can be understood from the following analyses.
Because the NP contribution of solution A is dom-
inated by the left-handed coupling 𝑉𝐿, we can find
that |M(𝐵∗ → 𝑃ℓ−]ℓ)| ∝ |(1 + 𝑉𝐿)|2 in the limit
of (1 + 𝑉𝐿) ≫ 𝑉𝑅. As a result, the NP contributions
(solution A) to the numerator and denominator of𝐴𝑃𝜆
and 𝐴𝑃𝜃 cancel each other out to a large extent. For𝐴𝑃𝜆, the cases of solutions B, C, and D are similar to
solution A.

3.3. Scenario II: Effects of 𝑆𝐿 and 𝑆𝑅 Type Couplings. In this
subsection, we only consider the effects of scalar interactions𝑆𝐿 and 𝑆𝑅 and take the other NP couplings to be zero. Under
the 1𝜎 constraint from the data of 𝑅𝐷 and 𝑅∗𝐷, the allowed
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Figure 2: The 𝑞2-dependence of the differential observables 𝑑Γ/𝑑𝑞2, 𝑅∗𝑃, 𝐴𝑃
𝜆, and 𝐴𝑃

𝜃 for 𝐵∗− → 𝐷0𝜏−]𝜏 and 𝜋0𝜏−]𝜏 decays within the SM
and scenario I.
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Figure 3: The allowed spaces of 𝑆𝐿 and 𝑆𝑅 obtained by fitting to the data of 𝑅𝐷 and 𝑅𝐷∗ . The other captions are the same as in Figure 1.

Table 1:The theoretical predictions for the branching fractions of 𝐵∗ → 𝑃𝜏−]𝜏 decays and 𝑅∗𝑃 within the SM and the two scenarios.The first
error is caused by the uncertainties of form factors, CKM factors, and Γ𝑡𝑜𝑡(𝐵∗); and the second error given in the last two columns is caused
by the NP couplings.

Obs. SM Prediction Scenario I Scenario II
B(𝐵∗− → 𝐷0𝜏−]𝜏) 0.87+0.46−0.32 × 10−8 1.04+0.54+0.06−0.38−0.05 × 10−8 1.00+0.51+0.03−0.36−0.04 × 10−8
B(𝐵∗0 → 𝐷+𝜏−]𝜏) 2.74+1.29−0.94 × 10−8 3.27+1.66+0.19−1.14−0.15 × 10−8 3.13+1.52+0.10−1.13−0.11 × 10−8
B(𝐵∗0𝑠 → 𝐷+

𝑠 𝜏−]𝜏) 5.13+3.67−2.13 × 10−7 6.13+4.51+0.35−2.48−0.28 × 10−7 5.89+3.93+0.20−2.39−0.22 × 10−7
B(𝐵∗− → 𝜋0𝜏−]𝜏) 1.42+0.79−0.50 × 10−10 1.71+0.91+0.09−0.63−0.07 × 10−10 1.74+0.94+0.10−0.62−0.10 × 10−10
B(𝐵∗0 → 𝜋+𝜏−]𝜏) 0.99+0.38−0.41 × 10−9 1.08+0.55+0.06−0.37−0.05 × 10−9 1.09+0.52+0.06−0.39−0.06 × 10−9
B(𝐵∗0𝑠 → 𝐾+𝜏−]𝜏) 0.95+0.65−0.40 × 10−9 1.14+0.78+0.06−0.46−0.05 × 10−9 1.20+0.87+0.08−0.47−0.08 × 10−9𝑅∗𝐷 0.298+0.012−0.010 0.355+0.015+0.020−0.011−0.016 0.341+0.048+0.011−0.026−0.012𝑅∗𝜋 0.677+0.013−0.014 0.816+0.017+0.044−0.012−0.035 0.827+0.126+0.046−0.073−0.048𝑅∗𝐾 0.638+0.017−0.015 0.770+0.021+0.042−0.015−0.034 0.810+0.144+0.052−0.084−0.054

spaces of 𝑆𝐿 and 𝑆𝑅 are shown in Figure 3. Similar to scenario
I, four solutions for 𝑆𝐿 and 𝑆𝑅 are found in scenario II,
which can be seen from Figure 3(a); and the fitting results
obtained by using form factors in CLN parametrization and
BSW model are consistent with each other. Solutions B-D
result in so large NP contributions; therefore, in the following
discussion, we pay our attention to solution A, which are
replotted in Figure 3(b). The numerical result of solution A
is

𝑆𝐿 = −0.46+0.24−0.24,
𝑆𝑅 = 0.70+0.23−0.24.

(55)

Using these values, we present in Table 1 our numerical
predictions of scenario II for the observables, B(𝐵∗ →𝑃𝜏−]𝜏) and 𝑞2-integrated 𝑅∗𝑃. Moreover, the 𝑞2 distributions
of differential observables 𝑑Γ/𝑑𝑞2, 𝑅∗𝑃,𝐴𝑃𝜆, and𝐴𝑃𝜃 are shown
in Figure 4. The following are some discussions for these
results:

(1) From Table 1 and Figures 4(a) and 4(b), it can be
found that the B(𝐵∗ → 𝑃𝜏−]𝜏) and 𝑅∗𝑃 can be

enhanced about 15% compared with the SM results
by the NP contributions. Similar to the situation of
scenario I, the NP effect of 𝑆𝐿 and 𝑆𝑅 on 𝑅∗𝑃 is much
more significant than the one on branching fraction
due to the theoretical uncertainties of 𝑅∗𝑃 which can
be well controlled. In particular, as Figures 4(a) and
4(b) show, the spectra of the SM and NP for 𝑅∗𝑃 can
be clearly distinguished at middle 𝑞2 region.

(2) The main difference between the effects of scalar and
vector couplings on the 𝐵∗ → 𝑃𝜏−]𝜏 decays is
that the former only contributes to the longitudinal
amplitude, which can be found from (37). As a result,
their effects on B(𝐵∗ → 𝑃𝜏−]𝜏) and 𝑅∗𝑃 are a little
different, which can be seen by comparing Figures
2(a)–2(d) with Figures 4(a)–4(d).

(3) Another significant difference between the scalar and
vector couplings is that only the leptonic helicity
amplitudes of scalar type with 𝜆ℓ = 1/2 survive,
which can be easily found from (35) and (36).
Therefore, as Figures 4(e) and 4(f) show, the scalar
couplings lead to significant NP effects on 𝐴𝑃𝜆, which
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Figure 4: The 𝑞2-dependence of the differential observables 𝑑Γ/𝑑𝑞2, 𝑅∗𝑃, 𝐴𝑃
𝜆, and 𝐴𝑃

𝜃 for 𝐵∗− → 𝐷0𝜏−]𝜏 and 𝜋0𝜏−]𝜏 decays within the SM
and scenario II.
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is obviously different from predictions of vector cou-
plings in scenario I (Figures 2(e) and 2(f)). Besides,
as Figures 4(e) and 4(f) show, 𝑆𝐿 and 𝑆𝑅 couplings
also have large contributions to the𝐴𝑃𝜃 at all 𝑞2 region,
which is another difference with the vector couplings
(Figures 2(g) and 2(h)). Therefore, the future mea-
surements on these observables will provide strict
tests on the SM and various NP models.

4. Summary

In this paper, motivated by the observed “𝑅𝐷∗ and 𝑅𝐷
puzzles” and its implication of NP, we have studied the
NP effects on the 𝑏 → (𝑐, 𝑢)ℓ−]ℓ induced semileptonic𝐵∗𝑢,𝑑,𝑠 → 𝑃ℓ−]ℓ (𝑃 = 𝐷,𝐷𝑠, 𝜋, 𝐾) decays in a model-
independent scheme. Using the allowed spaces of vector and
scalar couplings obtained by fitting to the data of 𝑅𝐷∗ and𝑅𝐷, the NP effects on the decay rate, ratio 𝑅∗𝑃, lepton spin
asymmetry, and forward-backward asymmetry are studied in
vector and scalar scenarios, respectively. It is found that the
vector couplings present large contributions to the decay rate
and 𝑅∗𝑃, but their effects on𝐴𝑃𝜆 and𝐴𝑃𝜃 are very tiny. Different
from the vector couplings, the scalar couplings present sig-
nificant effects not only on the decay rate and 𝑅∗𝑃 but also on
𝐴𝑃𝜆 and𝐴𝑃𝜃.The future measurements on the 𝐵∗𝑢,𝑑,𝑠 → 𝑃ℓ−]ℓ
decays will further test the predictions of the SM and NP and
confirm or refute possible NP solutions to 𝑅𝐷∗ and 𝑅𝐷.
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In this paper, the top quark pair production events are analyzed as a source of neutral Higgs bosons of the two Higgs doublet model
type I at LHC. The production mechanism is 𝑝𝑝 → 𝐻/𝐴 → 𝑡𝑡 assuming a fully hadronic final state through 𝑡 → 𝑊𝑏 → 𝑗𝑗𝑏.
In order to distinguish the signal from the main background which is the standard model 𝑡𝑡, we benefit from the fact that the top
quarks in signal events acquire large Lorentz boost due to the heavy neutral Higgs boson. This feature leads to three collinear jets
(a fat jet) which is a discriminating tool for identification of the top quarks from the Higgs boson resonances. Events with two
identified top jets are selected and the invariant mass of the top pair is calculated for both signal and background. It is shown that
the low tan 𝛽 region has still some parts which can be covered by this analysis and has not yet been excluded by flavor physics data.

1. Introduction

The standard model (SM) of particle physics has taken a
major step forward by observing the Higgs boson at LHC
[1, 2] based on a theoretical framework known as the Higgs
mechanism [3–8]. The observed particle may belong to a
single SU(2) doublet (SM) or a two Higgs doublet model
(2HDM) [9–11] whose lightest Higgs boson respects the
observed particle properties.

One of the motivations for the two Higgs doublet model
is supersymmetry where each particle has a superpartner.
The supersymmetry provides an elegant solution to the gauge
coupling unification, dark matter candidate, and the Higgs
boson mass radiative correction by a natural parameters
tuning. In such a model two Higgs doublets are required to
give mass to the double space of the particles [12–14].

There are four types of 2HDMs with different scenarios
of Higgs-fermion couplings.The ratio of vacuum expectation
values of the two Higgs doublets (tan𝛽 = V2/V1) is a measure
of the Higgs-fermion coupling in all 2HDM types [15].

In general, 2HDM involves five physical Higgs bosons
due to the extended degrees of freedom added to the model
by introducing the second Higgs doublet. The lightest Higgs
boson, ℎ, is like the SMHiggs boson. The rest are two neutral

Higgs bosons, 𝐻,𝐴 (subjects of this study), and two charged
bosons, 𝐻±. A review of the theory and phenomenology of
2HDM can be found in [16].

In addition to direct searches for the 2HDMHiggs bosons
at colliders, there are indirect searches based on flavor physics
data by investigating sources of deviations from SM when
processes containing 2HDM Higgs bosons are introduced
[17]. Limits obtained from these types of studies are one of the
strongest limits on the mass of the charged and neutral Higgs
bosons and tan 𝛽 and will be referred to when presenting the
final results.

The adopted scenario in this analysis is a search for heavy
neutral Higgs boson with mass in the range 0.5-1 TeV at
LHC operating at √𝑠 = 14 TeV. All heavy Higgs bosons
(CP-even, CP-odd, and the charged Higgs) are assumed to
be degenerate, i.e., 𝑚𝐻 = 𝑚𝐴 = 𝑚𝐻± . The region of
interest is low tan 𝛽 and the final results will be limited
to tan 𝛽 < 2. The signal process is 𝑝𝑝 → 𝐻/𝐴 →
𝑡𝑡 → 𝑊+𝑏𝑊−𝑏 → 𝑗𝑗𝑏𝑗𝑗𝑏. The fully hadronic final state is
expected to result in two fat jets (each consisting of three sub-
jets associated with the top quark) which are examined using
the updated HEPTopTagger 2 [18, 19]. Events which contain
two identified (tagged) top jets are used to fill the top pair
invariant mass distribution histogram. The same approach is
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Table 1: Different types of 2HDM in terms of the Higgs boson couplings with 𝑈 (up-type quarks),𝐷 (down-type quarks), and 𝐿 (leptons).

Type
I II III IV

𝜌𝐷 𝜅𝐷 cot𝛽 −𝜅𝐷 tan 𝛽 −𝜅𝐷 tan𝛽 𝜅𝐷 cot 𝛽
𝜌𝑈 𝜅𝑈 cot𝛽 𝜅𝑈 cot𝛽 𝜅𝑈 cot𝛽 𝜅𝑈 cot𝛽
𝜌𝐿 𝜅𝐿 cot 𝛽 −𝜅𝐿 tan𝛽 𝜅𝐿 cot𝛽 −𝜅𝐿 tan 𝛽

applied on background events and final shape discrimination
is performed to evaluate the signal significance. Before going
to the details of the analysis, a brief review of the theoretical
framework is presented in the next section.

2. The Higgs Sector of 2HDM

The 2HDM Lagrangian for neutral Higgs-fermion couplings
as introduced in [20] takes the following form:

L𝑌 =
1
√2

∑
𝑓

𝑓 [𝜅𝑓𝑠𝛽−𝛼 + 𝜌𝑓𝑐𝛽−𝛼] 𝑓ℎ

+ 1
√2

∑
𝑓

𝑓 [𝜅𝑓𝑐𝛽−𝛼 − 𝜌𝑓𝑠𝛽−𝛼] 𝑓𝐻

+ 𝑖
√2

𝑓𝛾5𝜌
𝑓𝑓𝐴

(1)

where ℎ,𝐻, 𝐴 are the neutral Higgs boson fields, 𝜅𝑓 =
√2(𝑚𝑓/V) for any fermion type 𝑓 and 𝑠𝛽−𝛼 = sin(𝛽 − 𝛼),
and 𝑐𝛽−𝛼 = cos(𝛽 − 𝛼). The 𝜌𝑓 parameters define the model
type and are proportional to 𝜅𝑓 as in Table 1 [21]. Therefore
the four types of interactions (2HDM types) depend on the
values of 𝜌𝑓 [22].

In this study, we require 𝑠𝛽−𝛼 = 1 which has two advan-
tages.The first one is that the 𝑠𝛽−𝛼 factor in the lightest Higgs-
gauge coupling is set to unity while the heavier Higgs, 𝐻,
decouples from gauge bosons [16]. On the other hand, the
SM-like Higgs-fermion interactions are tan 𝛽 independent.

According to Table 1, the type I is interesting for low tan 𝛽
as all couplings in the neutral Higgs sector are proportional to
cot𝛽.This feature leads to cancellation of this factor as long as
Higgs boson branching ratio of decay to leptons and quarks is
concerned. The mass of the fermion thus plays an important
role in the decay rate, and as seen from Figures 1 and 2,
the Higgs boson decay to 𝑡𝑡 dominates for all relevant Higgs
boson masses and tan 𝛽 values. The decay to a pair of gluons
proceeds through a preferably top quark loop and stands as
the second channel. The third channel is 𝐻/𝐴 → 𝑏𝑏 which
has been shown to be visible at LHC [23]. The current study
focuses on 𝐻/𝐴 → 𝑡𝑡 with branching ratio being near
unity and independent of the Higgs boson mass (Figure 1)
and tan 𝛽 (Figure 2).

3. Signal Identification and
the Search Scenario

The signal process under study is a Higgs boson production
with the Higgs boson masses in the range 500 − 1000
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Figure 1: The branching ratio of neutral Higgs boson decays as a
function of the mass. The tan 𝛽 is set to 1.
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Figure 2: The branching ratio of neutral Higgs boson decays as a
function of tan 𝛽. The Higgs boson mass is set to 500 GeV.

GeV. The three Higgs bosons masses are set to be equal
for minimizing Δ𝜌 [24]. All selected points are checked to
be consistent with the potential stability, perturbativity, and
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unitarity requirements and the current experimental limits
on Higgs boson masses using 2HDMC 1.6.3 [25, 26].

There has been phenomenological searches for lep-
tophilic Higgs boson within type IV 2HDM at LHC [27]
and linear colliders [28, 29]. These searches are based on
leptonic decay of the Higgs boson. On the other hand, the
type I 2HDM can be considered as a leptophobic model
where the Higgs boson decay to quarks plays an important
role. At the first glance, decays to all fermions are relevant at
low tan 𝛽 values. However, the fermion mass in the Higgs-
fermion vertex enhances the top quark coupling dramatically
compared to other channels. This is due to the fact that the
common cot 𝛽 factors cancel out when calculating branching
ratio of Higgs decays to fermions. Therefore in this analysis,
the Higgs boson decay to 𝑡𝑡 is considered as the signal.

While the neutral Higgs boson searches at LEP [30, 31]
lead to 𝑚𝐴 ≥ 93.4 GeV, the LHC results [32, 33] indicate
that the neutral Higgs boson mass in the range 𝑚𝐻/𝐴 =
200 − 400 GeV is excluded for tan 𝛽 ≥ 5. This result is based
on minimal supersymmetric standard model (MSSM) which
has a different Higgs boson spectrum from 2HDM due to
supersymmetry constraints. Since our region of interest is
Higgs boson masses above 500 GeV, no constraints from LEP
or LHC limit the current analysis and the Higgs bosonmasses
under study.

There are also results from flavor physics data. The
strongest limit in this category comes from 𝑏 → 𝑠𝛾 analysis
which imposes lower limit on the chargedHiggsmass in types
II and III at 600 GeV [34–36]. There are other analyses such
as 𝐵 → 𝜏], 𝐷𝑠 → 𝜏], 𝐵𝑠 → 𝜇𝜇, 𝐵 → 𝐾∗𝛾, and
meson mixing. Such observables have a smaller impact than
𝑏 → 𝑠𝛾. All limits from the above observables as well as
the one from 𝑏 → 𝑠𝛾 are mainly relevant at types II and
III while types I and IV are less affected due to the fact that
the charged Higgs-quark coupling in processes which raise
deviation from standard model is suppressed in types I and
IV with increasing tan 𝛽.

In order to compare the two categories of types I/IV and
II/III, one may notice that types I and IV behave differently
from types II and III as far as the charged Higgs coupling
to quarks is concerned. In the former, the charged Higgs
coupling to all quark types is suppressed at low tan 𝛽, while,
in the latter, coupling with at least one type of the quarks (up
type or down type) is enhanced with tan 𝛽.Therefore charged
Higgs limits from flavor physics in types I and IV are very
soft and basically relevant at tan 𝛽 values as low as 2. This is
the region of search in this analysis. Although we are dealing
with neutral Higgs bosons, since the scenario under study is
a degenerate scenario based on 𝑚𝐻 = 𝑚𝐴 = 𝑚𝐻± , limits on
the charged Higgs are propagated into the final results.

4. Software Setup and Cross Sections

The signal cross section is obtained from PYTHIA 8.2.15
[37] using 2HDM spectrum files in LHA format [38, 39]
extracted from 2HDMC 1.6.3 [25, 26]. The LHA files contain
information about the parameters of the theoretical model as
well as properties of any particle which may not be present
in standard model, like 2HDM Higgs bosons. In this case,
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Figure 3:The signal cross section times BR(𝐻/𝐴 → 𝑡𝑡) at√𝑠 = 14
TeV as a function of the Higgs boson mass.
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Figure 4:The signal cross section times BR(𝐻/𝐴 → 𝑡𝑡) at√𝑠 = 14
TeV as a function of tan𝛽.

it contains Higgs bosons masses and their branching ratio
of decays. For each benchmark point a separated LHA file is
generated using 2HDMC and is passed to PYTHIA for event
generation and cross section calculation. Results are shown in
Figures 3 and 4 which show that the cross section decreases
with increasing the Higgs boson mass as well as tan 𝛽.
Therefore the most suitable area for search is where the mass
is as low as possible and tan 𝛽 is also very small. The main
SMbackground processes are 𝑡𝑡, gauge bosonpair production
𝑊𝑊,𝑊𝑍,𝑍𝑍, 𝑠−channel and 𝑡−channel single top, single𝑊
and single𝑍/𝛾∗, andQCDmultijet events. These background
processes are generated using PYTHIA except for the QCD
multijet background for which Alpgen 2.14 [40–42] is used
for the hard scattering generation. The output of Alpgen
is stored as LHE file [38, 39] and is passed to PYTHIA for
multiparticle interaction and final state showering. The cross
sections are obtained using PYTHIA except for QCD samples
which is obtained from Alpgen and 𝑡𝑡 for which we adopt
the NLO (next to leading order) cross section calculated
using MCFM [43–46]. The signal (benchmark points) and
background cross sections are listed in Table 2. The QCD
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Table 2:The signal and background cross sections at√𝑠 = 14 TeV.The “sts” and “stt” denote the 𝑠-channel and 𝑡-channel single top processes
and QCD 6j represents QCD multijet events with 6 jets in the final state.

(a)

Signal
𝑚(𝐻/𝐴) [GeV] 500 600 700 800 900 1000
𝜎 × 𝐵𝑅 [fb] 61.1 36.0 25.4 15.0 9.1 5.6

(b)

Background
tt WW WZ ZZ sts stt W Z QCD 6j

𝜎 × 𝐵𝑅 [pb] 390 32.6 12.1 5.33 5.6 117 1.02 × 105 5.7 × 104 4 × 103

Table 3: Signal selection efficiencies and number of events at tan𝛽 = 0.5 before the mass window cut.

Signal
𝑚𝐻 [GeV] 500 600 700 800 900 1000
eff 0.0005 0.00244 0.0055 0.0079 0.096 0.104
Events 9238 25981 41967 35703 26150 17614

multijet has a large cross section. Therefore only events with
6 jets in the final state are generated to produce the same jet
multiplicity in the final state. This is based on the assumption
that events with more or less number of jets do not contribute
to the signal region at the end. Samples with less number of
jets have a larger cross section but do not pass the selection
cuts (e.g., 6 jet requirement) and those with more number of
jets have much smaller cross sections and do not contribute
to the signal region sizably.

5. Signal Selection and Analysis

The generation of signal and background events starts
with PYTHIA 8 [37] followed by jet reconstruction using
FASTJET 2.8 [47, 48].

The analysis uses the top tagging algorithm to identify
two top jets in the final state; however, before going to
that step, two selection cuts are applied to purify the signal
sample. The first requirement is to have at least 2 b-jets in
the final state (as there are two b-jets from the top quark
decays in signal events). The b-tagging is based on amatching
algorithm which uses generator level information of b quarks
and compares them with reconstructed jets. If a jet is flying
adjacent to a b-quark, it is considered as a b-jet with 70%
probability. A 10% fake rate from c-jets is also considered as
the mistagging rate.

The second requirement is a lepton veto which requires
events to be free of leptons (with a transverse energy thresh-
old of 10GeV).This is to select fully hadronic events and reject
QCDmultijet events with possibility of heavy meson leptonic
decays.

At this step the top tagging algorithm is applied on signal
and background events. The top tagging algorithm uses a
different jet reconstruction algorithm from the one used for
b-tagging.The b-tagging jet algorithm is anti-kt while the top
tagging algorithm is CA (Cambridge-Aachen) as discussed in
what follows.

The jet reconstruction algorithms are classified according
to their different subjet distance measures which can be writ-
ten as 𝑑𝑗1𝑗2 = Δ𝑅2𝑗1𝑗2/𝐷2 ×min(𝑝2𝑛𝑇,𝑗1, 𝑝

2𝑛
𝑇,𝑗2) with 𝑛 = −1, 0, 1

for anti-𝑘𝑇, Cambridge/Aachen (CA), and 𝑘𝑇 algorithms,
respectively. The 𝑘𝑇 algorithm first combines the soft and
collinear subjets and is suitable for reconstructing the QCD
splitting history in top tagging algorithm. The anti-𝑘𝑇 algo-
rithm, first combines the hardest subjets to obtain a stable jet
with clean jet boundary. The CA algorithm always combines
the most collinear subjets while not being sensitive to soft
splittings and therefore is suitable for top tagging reconstruc-
tion. The algorithm adopted by HEPTopTagger is thus CA
with a cone size of Δ𝑅 = 1.5.

The HEPTopTagger is one of recent algorithms intro-
duced for boosted top quark reconstruction [49]. It is based
on a CA jet reconstruction with Δ𝑅 = 1.5 and the top jet
candidate 𝑝𝑇 above 200 GeV. The threshold can be lowered
down to 150GeVwithout significant loss of efficiency [50, 51].
Having the collection of fat jets in the first step, the top
tagging algorithm starts with undoing the last clustering of
the top jet candidate 𝑗 and requiring the mass drop criterion
as min𝑚𝑗𝑖 < 0.8𝑚𝑗 where 𝑗𝑖 is the 𝑖th subjet from the jet
𝑗. Subjets with 𝑚𝑗 < 30 GeV are not considered to end the
unclustering iteration.

In the second step a filtering is applied to find a three-
subjet combination with a jet mass within 𝑚𝑡 ± 25 GeV.

In the last step, having sorted jets in 𝑝𝑇, several require-
ments are applied to find the best combination of subjets
with two subjets giving the best𝑊 boson invariant mass and
the whole three subjets to be consistent with the top quark
invariant mass. Details of these criteria are expressed in [50].

Performing the algorithm, selection efficiency for each
signal sample is obtained. The same procedure is applied on
background samples. Results are shown in Tables 3 and 4
for signal and background samples, respectively. These tables
also include the number of events before the mass window
cut. An event is required to have two top jets identified.
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Table 4: Background selection efficiencies and number of events at tan𝛽 = 0.5 before the mass window cut. The QCD sample is the 6-jet
final state and STS (STT) denote the single top 𝑠-(𝑡-) channel.

Background
Process 𝑡𝑡 QCD WW WZ ZZ STS STT W Z
eff 0.0027 3 × 10−5 6 × 10−7 2.3 × 10−6 2.5 × 10−6 3.8 × 10−5 1.0 × 10−5 0 0
Events 353525 40000 5.9 8.3 4.0 63.8 365.7 0 0

Table 5: Signal and background analysis results at tan 𝛽 = 0.5 and 1. The S and B denote the final number of signal and background events
after the mass window cut.

𝑚(𝐻/𝐴) [GeV]
500 600 700 800 900 1000

Mass window [GeV] 450 − 600 530 − 620 630 − 710 710 − 820 810 − 920 870 − 1020
𝑆 4600 16312 26915 24619 16438 12041
𝐵 59183 63947 75728 82082 55146 52082
𝑆
𝐵

0.08 0.25 0.35 0.3 0.3 0.23
𝑆
√𝐵 18.9 64.5 97.8 85.9 70 52.8
tan 𝛽 = 0.5
𝑆
√𝐵 2.8 6.7 6.8 5.1 3.7 2.6
tan 𝛽 = 1
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Figure 5: The signal distributions on top of the total background
(shown in blue). The signal from Higgs boson masses in the range
500-1000 GeV is shown in different colors.

The invariant mass of the two top jets is calculated as the
Higgs boson candidate mass. Both signal and background
distributions of top quark pair invariant masses are normal-
ized according to the corresponding cross sections.The signal
on top of the background is then plotted for each benchmark
point as seen in Figure 5.

The invariant mass of the top pair has a large resolution
due to uncertainties in the four-momentum reconstruction
of the jets as well as the top tagging algorithm. In the top
tagging algorithm a 𝜒2 based method is used to find the
correct combination of the jets with their invariant mass in
agreement with the𝑊 boson and the top quarkmasses.There
can be still ways to improve the top tagging algorithm such as
normalizing the light jet four momenta to set their invariant
mass equal to the 𝑊 boson mass before reconstructing the

top quark. Since there are two 𝑊 bosons in the event, this
method has some difficulties but can be studied in a detailed
analysis related to the performance of the algorithm.

It should be noted that the signal distribution shown
in Figure 5 has a single peak for each Higgs boson mass
hypothesis due to equal masses of the Higgs bosons. Dif-
ferent masses hypothesis can also be considered. However,
the signal distribution can not be distinguished from the
equal mass scenario as long as the difference between the
Higgs bosons masses is within the invariant mass resolution.
Therefore scenarios with |𝑚𝐻 − 𝑚𝐴| > 100 GeV might be
observable with two distinguishable peaks; however, such a
large mass splitting raises the problem of large Δ𝜌 which
should be avoided.

Since a large number of backgrounds fill the signal region,
a mass window cut is applied to select the signal and increase
the signal to background ratio. The position of the mass
window (both left and right sides) is determined in an
automatic search based on requiring the maximum signal
significance. This is performed in a loop over bins of the
histogram and finding the left and right bins inside which the
signal significance is maximum.

Table 5 showsmass window position, total efficiencies for
signal and background events, final number of signal and
background events passing the mass window cut, their ratio,
and the signal significance as 𝑆/√𝐵 at two values of tan 𝛽 =
0.5 and 1.The integrated luminosity is set to 300𝑓𝑏−1. Table 5
clearly shows the high sensitivity of the signal significance to
tan 𝛽 parameter. The analysis is thus relevant to tan 𝛽 values
as low as ∼ 2.

Figure 6 shows the signal significance as a function of
the Higgs boson mass for different tan 𝛽 values. The dashed
horizontal line indicates the 5𝜎 significance. As seen from
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Figure 6: The signal significance at 300 𝑓𝑏−1 as a function of the
Higgs boson mass for different values of tan𝛽.
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Figure 3 and Table 3, the signal cross section decreases with
increasing Higgs boson mass while selection efficiencies
increase. Therefore the product of the cross section times
selection efficiency has a peak somewhere near the middle of
the Higgs boson mass range where none of the cross section
or selection efficiency are too small. This peak happens at
𝑚𝐻 = 700GeV in this analysis. Lower masses suffer from the
low selection efficiencywhile highermasses have the problem
of low cross section.

Using the analysis results for Higgs boson masses from
500 GeV to 1000 GeV, one can obtain the 95% C.L. exclusion
region and the 5𝜎 discovery contours. Figure 7 shows the
exclusion region at 95% C.L. including the recent result
from [35] (the result reported in [35] is based on charged
Higgs mass as a function of tan 𝛽; however, it is included
in the current work as a limit for all Higgs bosons since the
Higgs boson masses are equal in the scenario adopted in this
analysis). The 5𝜎 contour is also shown in Figure 8.

As seen from Figures 7 and 8, both exclusion and
discovery are possible at regions not yet excluded by LHC.
Therefore any sign of extra top pair signals on top of SM
background could be regarded as a signal for new physics
especially 2HDM. It should be noted that, in this analysis,
a full set of background processes was studied. However, all
background processes led to very small number of events
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Figure 8: The 5𝜎 discovery region at 300 𝑓𝑏−1.

which were negligible compared to the SM 𝑡𝑡. Therefore final
plots are based on signal on top of the 𝑡𝑡 distribution without
any sizable error.

The LHC sensitivity to the signal studied in this analysis
at integrated luminosity of 3000 𝑓𝑏−1 can be estimated
as follows. If the signal significance grows like √𝐿 (𝐿 is
the integrated luminosity), at 𝐿 = 3000 𝑓𝑏−1, the signal
significance will be roughly three times larger compared to
when 𝐿 = 300 𝑓𝑏−1. The signal cross section, however,
decreases from tan 𝛽 = 1 to 2 by a factor of 4 as shown in
Figure 4. Therefore the signal significance acquires a factor
of 3/4 by increasing tan 𝛽 and integrated luminosity from 1
and 300𝑓𝑏−1 to 2 and 3000𝑓𝑏−1.This means that points with
𝑚𝐻 = 600 and 700GeVwill be observable at tan 𝛽 = 2 at 3000
𝑓𝑏−1. All above considerations are of course affected by the
systematic uncertainties due to the jet energy scale and four-
momentum resolution as well as uncertainties in theoretical
cross section calculation. A detailed analysis and estimate of
such uncertainties are needed before the final assessment.

6. Discussion

TheHiggs boson decay to 𝑡𝑡 is already known to dominate at
2HDMtype I, and there are thorough studies of 2HDMwhich
cover this area [52]. The aim of this work was to perform
an event selection analysis based on LHC data environment
and show the signal on top of the background and present
exclusion contours. The scenario is taken to be a very limited
case (degenerate Higgs bosons masses) to study the best
possible cases (benchmark points in the parameter space).
The selected benchmark points indeed lead to positive results
which make the whole analysis interesting for LHC program.
Furthermore, we benefit from top tagging technique which
enhances the signal to background ratio and reduces the
fake rate. This is in turn a test of the algorithm itself as well
as benefiting from its ability in identifying the signal and
reducing the background.

7. Conclusions

Extra sources of 𝑡𝑡 events fromwhat we expect from standard
model can appear from theories beyond standard model such
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as two Higgs doublet models. In 2HDM type I, the heavy
neutral (CP-even or odd) Higgs decay to 𝑡𝑡 dominates at low
tan 𝛽. In such a scenario a proton-proton collision may create
a neutral Higgs decaying to 𝑡𝑡. The signal from such a process
can be observed as an excess of top pair events over what
is expected from SM. The discriminating tool can be a top
pair invariant mass distribution filled with events containing
two top jets from both signal and background processes. The
analysis performed in this work shows that such a signal
is observable at integrated luminosity of 300 𝑓𝑏−1 for tan 𝛽
values which depend on the Higgs boson mass.The exclusion
at 95% C.L. is also possible at the same integrated luminosity
for tan 𝛽 < 2 with 𝑚(𝐻/𝐴) = 600 GeV as the best point.
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We study the approximate scattering state solutions of the Duffin-Kemmer-Petiau equation (DKPE) and the spinless Salpeter
equation (SSE) with the Hellmann potential. The eigensolutions, scattering phase shifts, partial-waves transitions, and the total
cross section for all the partial waves are obtained and discussed. The dependence of partial-waves transitions on total angular
momentum number, angular momentum number, mass combination, and potential parameters was presented in the figures.

1. Introduction

Therelativistic and nonrelativistic quantummechanical study
of Hellmann potential is a long-standing and a well-known
problem.TheHellmannpotential in this studymay bewritten
as [1–5]

𝑉 (𝑟) = −𝑎𝑟 + 𝑏𝑟 𝑒−𝜌𝑟, (1)

where the first part is theCoulombpotential with the strength
parameter 𝑎 and the second part is the screening Coulomb
and/or Yukawa potential with the strength parameter 𝑏.
The parameter 𝜌 is the potential screening parameter which
regulates the shape of the potential. The Coulomb potential
has been investigated by some authors in all the limits
of quantum mechanics due to its importance in atomic
physics [6–8]. Both eigenfunctions and eigenvalues and their
structures have been presented in the previous work. The
bound and scattering states of the screening Coulomb and/or
Yukawa potential have been studied by some researchers in
various dimensions [9–12].The energy levels, wave functions,
phase shifts, scattering amplitude, and the effect of the screen-
ing parameter on quantum systems have been extensively
discussed.The importance of these two parts necessitates the
study of Hellmann potential in quantum mechanics.

However, most of the recent studies on the quantum
mechanical treatment of Hellmann potential focused on the
relativistic and nonrelativistic bound state problems [1–5].
Just recently a good number of researchers have explored the
study of the scattering states of Hellmann problems so as to
obtain new results that will provide a better understanding of
quantum systems. In this regard, Yazarloo et al. extended the
study to scattering states of Dirac equation with Hellmann
potential under the spin and pseudospin symmetries [4].
The Dirac phase shift and normalized wave function for
the spin and pseudospin symmetries were reported. Arda
and Sever studied the approximate nonrelativistic bound and
scattering states with any 𝑙 values using the PT-/non-PT
symmetry and non-Hermitian Hellmann potential [13]. The
phase shift was calculated in terms of the angular momentum
quantum number. Also, in one of our previous papers,
we studied the scattering state solution of Klein-Gordon
equation with Hellmann potential [14]. Again, Arda studied
the approximate bound state solution of two-body spinless
Salpeter equation for Hellmann potential [15]. He obtained
energy levels and eigenfunctions in terms of hypergeometric
functions. He also treated Yukawa potential and Coulomb
potential as special cases. The Hellmann potential finds its
applications in nuclear and high energy physics.
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The motivation behind this work is to investigate the
approximate scattering state solutions of Duffin-Kemmer-
Petiau equation (DKPE) and spinless Salpeter equation (SSE)
with Hellmann Potential. The SSE explains in detail the
dynamics of semirelativistic of and two-body effects particle
[see [16] and the references therein] whereas the DKPE
explains explicitly the dynamics of relativistic spin 0 and spin
1 particles [see [17–26] and the references therein].

This work is organized as follows: Section 2 presents
scattering state solutions of DKPE with Hellmann potential.
The scattering state solution of SSE with Hellmann potential
is presented in Section 3. In Section 4, we discuss the results
and the conclusion are given in Section 5.

2. Scattering States of
the Duffin-Kemmer-Petiau Equation
(DKPE) with Hellman Potential

TheDKP equation with energy𝐸𝑛,𝐽, total angular momentum
centrifugal term, and the mass m of the particle is given as
follows [17–22]:

𝑈𝑛,𝐽 (𝑟) − 𝐽 (𝐽 + 1)𝑟2 + [(𝐸𝑛,𝐽 + 𝑉0V )2 − 𝑚2]𝑈𝑛,𝐽 (𝑟) = 0, (2)

where 𝑈𝑛,𝐽(𝑟) is the radial wave function depending on the
principal quantum number 𝑛 and total angular momentum
quantum number 𝐽 and 𝑉0V is the vector potential represent-
ing Hellmann potential of (1) in this study. The subscript “V”
symbolizes vector while the superscript zero (“0”) stands for
the spin zero for the particle. 𝐸𝑛,𝐽 is the energy levels of the
spin-zero particle.

The effect of total angular momentum centrifugal term in
(2) can be subdued using approximation scheme of the type
[1–3, 14, 22, 27]

1𝑟2 ≈ 𝜌2(1 − 𝑒−𝜌𝑟)2 . (3)

The above approximation has been reported to be valid for𝜌𝑟 ≪ 1 [14, 22, 27]. The approximate schemes to centri-
fugal terms have been applied by several authors in several
important quantum problems. Also, its development is used
in treating centrifugal terms by several authors in several
important works; [see [28–32] and the references therein].
Substituting (1) and (3) into (2) and transform using mapping
function 𝑧 = 1 − 𝑒−𝜌𝑟 lead to

𝑧2 (1 − 𝑧)2𝑈𝑛,𝐽 (𝑧) − 𝑧2 (1 − 𝑧)𝑈𝑛,𝐽 (𝑧)
+ [−𝛽1𝑧2 + 𝛽2𝑧 − 𝛽3]𝑈𝑛,𝐽 (𝑧) = 0, (4)

where we have employed the following parameters for sim-
plicity:

−𝛽1 = 𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1)
− 𝑘2𝜌2 ,

(5)

𝛽2 = −2𝐸𝑛,𝐽𝜌 (𝑎 + 𝑏) + 2𝑏 (𝑎 − 𝑏) , (6)

−𝛽3 = 𝐽 (𝐽 + 1) − (𝑎 − 𝑏)2 , (7)

and 𝑘 = √(𝐸2𝑛,𝐽 − 𝑚2) + 𝑎2𝜌2 − 2𝑎𝜌𝐸𝑛,𝐽 − 𝐽(𝐽 + 1)𝜌2 is the
wave propagation constant.

Choosing the trial wave function of the type,

𝑈𝑛,𝐽 (𝑧) = 𝑧𝛾 (1 − 𝑧)−𝑖(𝑘/𝜌) 𝑢𝑛,𝐽 (𝑧) , (8)

and substituting it into (4), we obtain the hypergeometric
type equation [33]

𝑧 (1 − 𝑧) 𝑢𝑛,𝐽 (𝑧) + [2𝛾 − (2𝛾 − 2𝑖 𝑘𝜌 + 1) 𝑧] 𝑢𝑛,𝐽 (𝑧)
+ [(𝛾 − 𝑖 𝑘𝜌)

2 + 𝛽1]𝑢𝑛,𝐽 (𝑧) = 0,
(9)

where

𝛾 = 12 + √(𝐽 + 12)
2 − (𝑎 − 𝑏)2, (10)

𝜏1 = 𝛾 − 𝑖 𝑘𝜌
− √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2 ,

(11)

𝜏2 = 𝛾 − 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2 ,

(12)

𝜏3 = 2𝛾. (13)

Therefore, the DKP radial wave functions for any arbitrary 𝐽−
states may be written as

𝑈𝑛,𝐽 (𝑟)
= 𝑁𝑛,𝐽 (1 − 𝑒−𝜌𝑟)𝛾 𝑒𝑖𝑘𝑟 2𝐹1 (𝜏1, 𝜏2, 𝜏3; 1 − 𝑒−𝜌𝑟) , (14)

where𝑁𝑛,𝐽 is the normalization factor.
The phase shifts 𝛿𝐽 and normalization factor 𝑁𝑛,𝐽 can be

obtained by applying the analytic-continuation formula [33].

2𝐹1 (𝜏1, 𝜏2, 𝜏3; 𝑧) = D (𝜏3)D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)

⋅ 2𝐹1 (𝜏1; 𝜏2; 1 + 𝜏1 + 𝜏2 − 𝜏3; 1 − 𝑧)
+ (1 − 𝑧)𝜏3−𝜏1−𝜏2 D (𝜏3)D (𝜏1 + 𝜏2 − 𝜏3)

D (𝜏1)D (𝜏2)
⋅ 2𝐹1 (𝜏3 − 𝜏1; 𝜏3 − 𝜏2; 𝜏3 − 𝜏1 − 𝜏2 + 1; 1 − 𝑧) .

(15)

Considering (15) with the property 2𝐹1(𝜏1, 𝜏2, 𝜏3; 0) = 1,
when 𝑟 → ∞, yields
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2𝐹1 (𝜏1, 𝜏2, 𝜏3; 1 − 𝑒−𝜌𝑟) →𝑟 → ∞ D (𝜏3) 
D (𝜏3 − 𝜏1 − 𝜏2)

D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2) + 𝑒−2𝑖𝑘𝑟 
D (𝜏3 − 𝜏1 − 𝜏2)

D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)

∗ . (16)

The following relations have been introduced in the process
of derivation

𝜏3 − 𝜏1 − 𝜏2 = (𝜏1 + 𝜏2 − 𝜏3)∗ = 2𝑖 (𝑘𝜌) , (17)

𝜏3 − 𝜏2 = 𝛾 + 𝑖 𝑘𝜌
− √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2
= 𝜏1∗,

(18)

𝜏3 − 𝜏1 = 𝛾 + 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2
= 𝜏2∗.

(19)

Now, defining a relation,

D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2) =


D (𝜏3 − 𝜏1 − 𝜏2)

D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)
 𝑒𝑖𝛿, (20)

and inserting it into (16) yield

2𝐹1 (𝜏1, 𝜏2, 𝜏3; 1 − 𝑒−𝜌𝑟) →𝑟 → ∞ D (𝜏3) [ D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)] 𝑒−𝑖𝑘𝑟 [𝑒𝑖(𝑘𝑟−𝛿) + 𝑒−𝑖(𝑘𝑟−𝛿)] (21)

Thus, we have the asymptotic form of (14) when 𝑟 → ∞ as

𝑈𝑛,𝐽 (𝑟) →𝑟 → ∞ 2𝑁𝑛,𝐽D (𝜏3) [ D (𝜏3 − 𝜏1 − 𝜏2)
D (𝜏3 − 𝜏1)D (𝜏3 − 𝜏2)] sin (𝑘𝑟 +

𝜋2 + 𝛿) . (22)

Accordingly, with the appropriate boundary condition
imposed by [34], (22) yields

𝑈𝑛,𝐽 (∞) → 2 sin(𝑘𝑟 − 𝑙𝜋2 + 𝛿𝐽) . (23)

Comparing (22) and (23), the DKP phase shift and the corre-
sponding normalization factor can be found, respectively, as
follows:

𝛿𝐽 = 𝜋2 (𝐽 + 1) + argD (𝜏3 − 𝜏1 − 𝜏2) − argD (𝜏3 − 𝜏1)
− arg D (𝜏3 − 𝜏2)

= 𝜋2 (𝐽 + 1) + argD(2𝑖𝑘𝜌 ) − argD (𝜏2∗)
− arg D (𝜏1∗)

(24)

and

𝑁𝑛,𝐽 = 1√𝜏3

D (𝜏3 − 𝜏2)D (𝜏3 − 𝜏1)

D (𝜏3 − 𝜏1 − 𝜏2)


= 1√𝜏3

D (𝜏1∗)D (𝜏2∗)
D (2𝑖 (𝑘/𝜌))

 .
(25)

TheDKP total cross section for the sum of partial-wave cross
sections 𝜎𝐽 is defined as [27]

𝜎𝑡𝑜𝑡𝑎𝑙 = ∞∑
𝑙=0

𝜎𝐽 = 𝜋𝑘2
∞∑
𝑙=0

(2𝑙 + 1) 𝑇𝐽, (26)

where𝑇𝐽 = 4 sin2𝛿𝐽 defines the DKP partial-wave transitions.
A straightforward substitution of phase shift formula in

(24) into (26) yields the total cross section

𝜎𝑡𝑜𝑡𝑎𝑙 = 4𝜋𝑘2
∞∑
𝑙=0

(2𝑙 + 1) sin2 [𝜋2 (𝐽 + 1) + argD(2𝑖𝑘𝜌 )
− argD (𝜏2∗) − argD (𝜏1∗)]

(27)

Also, we need to analyze the gamma function D(𝜏3 − 𝜏1) [34]
from the S-matrix as

𝜏3 − 𝜏1 = 𝛾 + 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2 .

(28)

The first-order poles of D(𝛾 + 𝑖(𝑘/𝜌) +√𝑎(𝑎 − 2𝐸𝑛,𝐽/𝜌) + 𝑏(𝑏 − 2𝐸𝑛,𝐽/𝜌) − 𝐽(𝐽 + 1) − 𝑘2/𝜌2) are
situated at
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D(𝛾 + 𝑖 𝑘𝜌
+ √𝑎(𝑎 − 2𝐸𝑛,𝐽𝜌 ) + 𝑏(𝑏 − 2𝐸𝑛,𝐽𝜌 ) − 𝐽 (𝐽 + 1) − 𝑘2𝜌2)
+ 𝑛 = 0 (𝑛 = 0, 1, 2, . . .) .

(29)

By applying algebraic means to (29), we obtain the DKP
bound state energy levels equation for theHellmann potential
as follows:

𝑘2 = −𝜌2 [(𝑛 + 𝛾)2 + 𝑎 (2𝐸𝑛,𝐽/𝜌 − 𝑎) + 𝑏 (2𝐸𝑛,𝐽/𝜌 − 𝑏) − 𝐽 (𝐽 + 1)2 (𝑛 + 𝛾) ]2 . (30)

3. Scattering States Solutions of
the Spinless Salpeter Equation (SSE) with
Hellmann Potential

The spinless Salpeter equation for two different particles
interacting in a spherically symmetric potential in the center
of mass system is given by [see [35–38] and the references
therein]

[∑
𝑖=1,2

(√− + 𝑚2𝑖 − 𝑚𝑖) + (𝑉 (𝑟) − 𝐸𝑛,𝑙)]𝜒 (𝑟) = 0, (31)

where 𝜒(𝑟) = 𝑅𝑛𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜑). Also, using appropriate trans-
formation equation 𝑅𝑛𝑙(𝑟) = 𝜓𝑛𝑙(𝑟)/𝑟, the radial component
of SSE in the case of heavy interacting particles may be
written as [see details in [35–38]]

𝜓𝑛𝑙 (𝑟) + [−𝑙 (𝑙 + 1)𝑟2 + 2𝜇 (𝐸𝑛,𝑙 − 𝑉 (𝑟))
+ (𝜇𝜂)

3 (𝐸𝑛,𝑙 − 𝑉 (𝑟))2]𝜓𝑛𝑙 (𝑟) = 0,
(32)

where

𝜇 = 𝑚1𝑚2(𝑚1 + 𝑚2) , (33)

(𝜂𝜇)
3 = 𝑚1𝑚2(𝑚1𝑚2 − 3𝜇2) . (34)

The units ℏ = 𝑐 = 1 have been employed in the process of
derivation and 𝐸𝑛,𝑙 is the semirelativistic energy of the two
particles having arbitrary masses 𝑚1 and 𝑚2. 𝜇 and 𝜂 are the
reduced mass and mass index, respectively. The solution to
(32) becomes nonrelativistic as the term with the mass index
tends to zero.

Substituting the potential in (1) and approximation in (3)
into (32) and applying the same procedure in Section 2, the
radial wave functions for the spinless Salpeter equation with
Hellmann potential are obtained as follows:

𝜓𝑛𝑙 (𝑟) = 𝑁𝑛,𝑙 (1 − 𝑒−𝜌𝑟)𝜐 𝑒𝑖𝑘𝑟 2𝐹1 (𝜉1, 𝜉2, 𝜉3; 1 − 𝑒−𝜌𝑟) , (35)

having the following useful parameters:

𝑘 = √2𝜇 (𝐸𝑛,𝑙 + 𝑎𝜌) + (𝜇𝜂)
3 (𝐸𝑛,𝑙 + 𝑎)2 − 𝑙 (𝑙 + 1) 𝜌2, (36)

𝜐 = 12 + √(𝑙 + 12)
2 − (𝜇𝜂)

3 (𝑎𝜌 − 𝑏)2, (37)

𝜉1 = 𝜐 − 𝑖 𝑘𝜌 − √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 , (38)

𝜉2 = 𝜐 − 𝑖 𝑘𝜌 + √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 , (39)

𝜉3 = 2𝜐. (40)

The corresponding phase shift for the spinless Salpeter equa-
tion containing Hellmann potential is obtained as
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Figure 1: DKP partial-wave transition for the Hellman potential as a function of total angular momentum 𝐽 with 𝑎 = 𝑏 = 0.15 and 𝐸𝑛,𝐽 =𝑚 = 1.

𝛿𝑙 = 𝜋2 (𝑙 + 1) + argD(2𝑖 (𝑘𝜌)) − arg D (𝜉2∗) − arg D (𝜉1∗) , (41)

𝜉1∗ = 𝜉3 − 𝜉2 = 𝜐 + 𝑖 𝑘𝜌 − √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 , (42)

𝜉2∗ = 𝜉3 − 𝜉1 = 𝜐 + 𝑖 𝑘𝜌 + √ 2𝜇𝑎𝜌 + (𝜇𝜂)
3 [2𝐸𝑛,𝑙𝜌 (𝑎𝜌 − 𝑏) + (𝑎𝜌 − 𝑏)(𝑎𝜌 + 𝑏)] − 𝑙 (𝑙 + 1) − 𝑘2𝜌2 . (43)

and the normalization constant

𝑁𝑛,𝑙 = 1
D (𝜉3)


D (𝜉1∗)D (𝜉2∗)
D (2𝑖 (𝑘/𝜌))

 . (44)

The energy eigenvalue equation for the spinless Salpeter
equation with Hellmann potential is

𝑘2 = −𝜌2 [[
(𝑛 + 𝜐)2 − 2𝜇𝑎/𝜌 + (𝜇/𝜂)3 (2𝑏𝐸𝑛,𝑙/𝜌 − 2𝑎𝐸𝑛,𝑙/𝜌2 − 𝑎2/𝜌2 + 𝑏2) + 𝑙 (𝑙 + 1)

2 (𝑛 + 𝜐) ]
]
2

. (45)

The total scattering cross section for the sum of partial-wave
cross sections 𝜎𝑙 is given as

𝜎𝑡𝑜𝑡. = ∞∑
𝑙=0

𝜎𝑙 = 𝜋𝑘2
∞∑
𝑙=0

(2𝑙 + 1) 𝑇𝑙, (46)

where

𝑇𝑙 = 4 sin2𝛿𝑙 (47)

which defines the partial-wave transitions for the SSE with
Hellmann potential in this present study.

4. Discussion

We have used the units ℏ = 𝑐 = 1 in partial-wave transition
illustrations. For equal mass cases, we used (𝜇/𝜂)3 = 1/4 and𝜇 = 𝑚1/2 while (𝜇/𝜂)3 = 1 and 𝜇 = 𝑚1/100 were used for
unequalmasses cases. In all the cases, we consider𝑚2 = 𝐸𝑛,𝑙 =1 and𝑚1 = 1 for the equal masses case only. For the screening
parameters 𝜌 = 0.1, 𝜌 = 0.2, and 𝜌 = 0.3, the DKP partial-
waves transitions increase exponentially (see Figure 1). The
two-body effect here appears as a shift of the phases of
the partial waves. For lower partial-waves, say 𝑙 < 5, the
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Figure 2: (a) Partial-wave transition for the spinless Salpeter equation with the Hellmann potential as a function of angular momentum
quantum number 𝑙 with 𝑎 = 0.2, 𝑏 = −1, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5. (b) Partial-wave transition for the spinless Salpeter equation with the Hellmann
potential as a function of angular momentum quantum number 𝑙 with 𝑎 = 2, 𝑏 = −1, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5.
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Figure 3: Partial-wave transition for the spinless Salpeter equation with theHellmann potential as a function of angular momentumquantum
number 𝑙 with 𝑎 = 0, 𝑏 = −3, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5.

partial-waves transition decays exponentially whereas, for
higher partial waves, say 𝑙 > 5, the partial-waves transition
rises exponentially (see Figures 2–4). Also alteration of
potential parameters has a serious effect on the partial-wave
transition illustrations. Compare Figure 2(a) with Figures
2(b) and 3 and Figure 4(a) with Figure 4(b).

5. Conclusion

We have investigated the approximate scattering state solu-
tions of DKPE and SSE with Hellman potential via analytical
method. The approximate DKP and semirelativistic scatter-
ing phase shifts, partial-wave transitions, eigenvalues, and
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Figure 4: (a) Partial-wave transition for the spinless Salpeter equation with the Hellmann potential as a function of angular momentum
quantum number 𝑙 with 𝑎 = −2, 𝑏 = 0, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5. (b) Partial-wave transition for the spinless Salpeter equation with the Hellmann
potential as a function of angular momentum quantum number 𝑙 with 𝑎 = 3, 𝑏 = 0, 𝐸𝑛,𝑙 = 1, 𝜌 = 0.5.

normalized eigenfunctions have been obtained. The DKP
and semirelativistic partial-wave transition calculations for
the Hellmann potential were shown in Figures 1–4, respect-
ively.

It is clearly shown that the total angular momentum num-
ber, angular momentum number, and potential parameters
contribute significantly to the partial-wave transition and that
the two-body effects modify the phases of the partial waves
and are usually noticeable for lower partial waves.
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In this study, the coupling constants of 𝐷∗�푠𝐷∗𝐾∗ and 𝐷�푠1𝐷1𝐾∗ vertices were determined within the three-point Quantum
chromodynamics sum rules method with and without consideration of the 𝑆𝑈�푓(3) symmetry. The coupling constants were
calculated for off-shell charm and K∗ cases. Considering the nonperturbative effect of the correlation function, as the most
important contribution, the quark-quark, quark-gluon, andgluon-gluon condensate correctionswere estimated andwere compared
with other predictive methods.

1. Introduction

Considerable attention has been focused on the strong form
factors and coupling constants of meson vertices in the
context of quantum chromodynamics (QCD) since the last
decade. In high energy physics, understanding the functional
form of the strong form factors plays very important role in
explaining of the meson interactions. Therefore, accurate
determination of the strong form factors and coupling con-
stants associated with the vertices involving mesons has
attracted great interest in recent studies of the high energy
physics.

Quantum chromodynamics sum rules (QCDSR) formal-
ism has been used extensively to study about the “exotic”
mesons made of quark- gluon hybrid (𝑞𝑞𝑔), tetraquark states
(𝑞𝑞𝑞𝑞),molecular states of twoordinarymesons, glueballs [1],
and vertices involving charmedmesons such as𝐷∗𝐷∗𝜌 [2, 3],𝐷∗𝐷𝜋 [2, 4], 𝐷𝐷𝜌 [5], 𝐷∗𝐷𝜌 [6], 𝐷𝐷𝐽/𝜓 [7], 𝐷∗𝐷𝐽/𝜓 [8],𝐷∗𝐷�푠𝐾, 𝐷∗�푠𝐷𝐾, 𝐷∗0𝐷�푠𝐾, 𝐷∗�푠0𝐷𝐾 [9], 𝐷∗𝐷∗𝑃, 𝐷∗𝐷𝑉, 𝐷𝐷𝑉
[10], 𝐷∗𝐷∗𝜋 [11], 𝐷�푠𝐷∗𝐾, 𝐷∗�푠𝐷𝐾 [12], 𝐷𝐷𝜔 [13], 𝐷�푠0𝐷𝐾
and𝐷0𝐷�푠𝐾 [14],𝐷�푠1𝐷∗𝐾,𝐷�푠1𝐷∗𝐾∗0 [15, 16],𝐷�푠𝐷�푠𝑉,𝐷∗�푠𝐷∗�푠𝑉
[17, 18], and 𝐷1𝐷∗𝜋,𝐷1𝐷0𝜋,𝐷1𝐷1𝜋 [19].

In this study, 3-point sum rules (3PSR) method is used
to calculate the strong form factors and coupling constants
of the𝐷∗�푠𝐷∗𝐾∗ and 𝐷�푠1𝐷1𝐾∗ vertices. The 3PSR correlation

function is investigated from the phenomenological and the
theoretical points of view. Regarding the phenomenological
(physical) approach, the representation can be expressed in
terms of hadronic degrees of freedom which can be consid-
ered as responsible for the introduction of the form factors,
decay constant, and masses.The theoretical (QCD) approach
usually can be divided into two main contributions as per-
turbative and nonperturbative. In this approach, the quark-
gluon language and Wilson operator product expansion
(OPE) are usually used to evaluate the correlation function
in terms of the QCD degrees of freedom such as quark
condensate, gluon condensate, etc. Equating the two sides
and applying the double Borel transformations with respect
to themomentum of the initial and final states to suppress the
contribution of the higher states, and continuum, the strong
form factors can be estimated.

The effective Lagrangian of the interaction for the𝐷∗�푠𝐷∗𝐾∗ and 𝐷�푠1𝐷1𝐾∗ vertices can be written as [20]

L�퐷∗
𝑠
�퐷∗�퐾∗ = 𝑖𝑔�퐷∗

𝑠
�퐷∗�퐾∗ [𝐷∗�푠 �휇 (𝜕�휇𝐾∗]𝐷∗] − 𝐾∗]𝜕�휇𝐷∗] )

+ (𝜕�휇𝐷∗�푠 ]𝐾∗] − 𝐷∗�푠 ]𝜕�휇𝐾∗] )𝐷∗�휇
+ 𝐾∗�휇 (𝐷∗�푠 ]𝜕�휇𝐷∗] − 𝜕�휇𝐷∗�푠 ]𝐷∗] )] ,

(1)
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Figure 1: Perturbative diagrams for off-shell𝐾∗ (a) and off-shell𝐷∗ (b).

L�퐷𝑠1�퐷1�퐾∗ = 𝑖𝑔�퐷𝑠1�퐷1�퐾∗ [𝐷�푠1�휇 (𝜕�휇𝐾∗]𝐷1] − 𝐾∗]𝜕�휇𝐷1])
+ (𝜕�휇𝐷�푠1]𝐾∗] − 𝐷�푠1]𝜕�휇𝐾∗] )𝐷�휇1
+ 𝐾∗�휇 (𝐷�푠1]𝜕�휇𝐷1] − 𝜕�휇𝐷�푠1]𝐷1])] ,

(2)

where 𝑔�퐷∗
𝑠
�퐷∗�퐾∗ and 𝑔�퐷𝑠1�퐷1�퐾∗ are the strong form factor. Using

the introduced form of the Lagrangian, the elements related
to the 𝐷∗�푠𝐷∗𝐾∗ and 𝐷�푠1𝐷1𝐾∗ vertices can be derived in
terms of the strong form factor as

⟨𝐷∗ (𝑝, 𝜀)𝐷∗�푠 (𝑝�耠, 𝜀�耠) | 𝐾∗ (𝑞, 𝜀�耠�耠)⟩
= 𝑖𝑔�퐷∗

𝑠
�퐷∗�퐾∗ (𝑞2)

× [(𝑞�훼 + 𝑝�耠�훼) 𝑔�휇] − (𝑞�휇 + 𝑝�휇) 𝑔]�훼 + 𝑞]𝑔�훼�휇]
× 𝜀�훼 (𝑝) 𝜀�耠�휇 (𝑝�耠) 𝜀�耠�耠] (𝑞) ,

(3)

⟨𝐷1 (𝑝, 𝜀)𝐷�푠1 (𝑝�耠, 𝜀�耠) | 𝐾∗ (𝑞, 𝜀�耠�耠)⟩
= 𝑖𝑔�퐷𝑠1�퐷1�퐾∗ (𝑞2)
× [(𝑞�훼 + 𝑝�耠�훼) 𝑔�휇] − (𝑞�휇 + 𝑝�휇) 𝑔]�훼 + 𝑞]𝑔�훼�휇]
× 𝜀�훼 (𝑝) 𝜀�耠�휇 (𝑝�耠) 𝜀�耠�耠] (𝑞) ,

(4)

where 𝑞 = 𝑝 − 𝑝�耠.
The organization of the paper is as follows: In Section 2,

the quark-quark, quark-gluon, and gluon-gluon condensate
contributions, considering the nonperturbative effects of the
Borel transform scheme, are discussed in order to calculate
the strong form factors of the𝐷∗�푠𝐷∗𝐾∗ and𝐷�푠1𝐷1𝐾∗ vertices
in the framework of the 3PSR. The numerical analysis of
the strong form factors estimation as well as the coupling
constants, with and without consideration of the 𝑆𝑈�푓(3)
symmetry, is described in Section 3 and the conclusion is
made in Section 4.

2. The Strong Form Factor of 𝐷∗�푠𝐷∗𝐾∗ and𝐷�푠1𝐷1𝐾∗ Vertices
To compute the strong form factor of the 𝐷∗�푠𝐷∗𝐾∗ and𝐷�푠1𝐷1𝐾∗ vertices via the 3PSR, we start with the correlation

function. When the 𝐾∗ meson is off-shell, the correlation
function can be written in the following form:

Π�퐾∗�휇]�훼 (𝑝, 𝑝�耠) = 𝑖2 ∫𝑑4𝑥𝑑4𝑦𝑒�푖(�푝�푥−�푝�푦)
⋅ ⟨0 | T {𝑗�퐷∗𝑠�휇 (𝑥) 𝑗�퐾∗] † (0) 𝑗�퐷∗�훼 † (𝑦)} | 0⟩ ,

(5)

Π�퐾∗�휇]�훼 (𝑝, 𝑝�耠) = 𝑖2 ∫𝑑4𝑥𝑑4𝑦𝑒�푖(�푝�푥−�푝�푦)
⋅ ⟨0 | T {𝑗�퐷𝑠1�휇 (𝑥) 𝑗�퐾∗] † (0) 𝑗�퐷1�훼 † (𝑦)} | 0⟩ .

(6)

For off-shell charm meson, the correlation function can be
written as

Π�퐷∗�휇�훼] (𝑝, 𝑝�耠) = 𝑖2 ∫𝑑4𝑥𝑑4𝑦𝑒�푖(�푝�푥−�푝�푦)
⋅ ⟨0 | T {𝑗�퐷∗𝑠�휇 (𝑥) 𝑗�퐷∗�훼 † (0) 𝑗�퐾∗] † (𝑦)} | 0⟩ ,

(7)

Π�퐷1�휇�훼] (𝑝, 𝑝�耠) = 𝑖2 ∫𝑑4𝑥𝑑4𝑦𝑒�푖(�푝�푥−�푝�푦)
⋅ ⟨0 | T {𝑗�퐷𝑠1�휇 (𝑥) 𝑗�퐷1�훼 † (0) 𝑗�퐾∗] † (𝑦)} | 0⟩ ,

(8)

where 𝑗�퐷∗𝑠�휇 = 𝑐𝛾�휇𝑠, 𝑗�퐷∗�훼 = 𝑐𝛾�훼𝑢, 𝑗�퐷𝑠1�휇 = 𝑐𝛾�휇𝛾5𝑠, 𝑗�퐷1�훼 = 𝑐𝛾�훼𝛾5𝑢,
and 𝑗�퐾∗] = 𝑢𝛾]𝑠 are interpolating currents with the same
quantum numbers of 𝐷∗�푠 , 𝐷∗, 𝐷�푠1, 𝐷1, and 𝐾∗ mesons. As
described in Figure 1,T, 𝑝, and 𝑝�耠 are time ordering product
and fourmomentum instances of the initial and final mesons,
respectively.

Considering the OPE scheme in the phenomenological
approach, the correlation functions (see (5) to (8)) can be
written in terms of several tensor structures and their
coefficients are found using the sum rules. It is clear from
(3) and (4) that the form factor 𝑔�퐷∗

𝑠
�퐷∗�퐾∗ is used for the

fourth Lorentz structurewhich can be extracted from the sum
rules. We choose the Lorentz structure because of its fewer
ambiguities in the 3PSR approach, i.e., less influence of higher
dimension of the condensates and better stability as function
of the Borel mass parameter [2]. For these reasons, the 𝑔�휇�훼𝑞]
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Figure 2: Nonperturbative diagrams for the off-shell𝐷∗ meson.

structure is chosen which is assumed to better formulate the
problem.

In order to calculate the phenomenological part of the
correlation functions in (5) to (8), three complete sets of
intermediate states with the same quantum number as the
currents 𝑗�퐷∗𝑠�휇 , 𝑗�퐷∗�훼 , 𝑗�퐷𝑠1�휇 , 𝑗�퐷1�훼 , and 𝑗�퐾∗] are selected. The matrix
elements ⟨0 | 𝑗�퐷∗𝑠�휇 | 𝐷∗�푠 (𝑝, 𝜀)⟩, ⟨0 | 𝑗�퐷∗�훼 | 𝐷∗(𝑝)⟩, ⟨0 | 𝑗�퐷𝑠1�휇 |
𝐷�푠1(𝑝, 𝜀)⟩, ⟨0 | 𝑗�퐷1�훼 | 𝐷1(𝑝)⟩, and ⟨0 | 𝑗�퐾∗] | 𝐾∗(𝑞, 𝜀)⟩ are
defined as

⟨0 | 𝑗�푉�휇 | 𝑉 (𝑝, 𝜀)⟩ = 𝑚�푉𝑓�푉𝜀�휇 (𝑝) , (9)

where 𝑚�푉 and 𝑓�푉 are the masses and decay constants
of mesons 𝑉(𝐷∗�푠 , 𝐷∗, 𝐷�푠1, 𝐷1, 𝐾∗) and 𝜀�휇 is introduced as
the polarization vector of the vector meson 𝑉(𝐷∗�푠 , 𝐷∗,𝐷�푠1, 𝐷1, 𝐾∗).

The phenomenological part of the 𝑔�휇�훼𝑞] structure associ-
ated with the𝐷∗�푠𝐷∗𝐾∗ vertex for off-shell𝐷∗ and𝐾∗mesons
can be expressed as

Π�퐷∗�휇]�훼 = −𝑔�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑞2)

⋅ 𝑚�퐾∗𝑓�퐾∗𝑓�퐷∗𝑓�퐷∗
𝑠

(3𝑚2�퐷∗ + 𝑚2�퐾∗ − 𝑞2)
2𝑚�퐷∗

𝑠

(𝑞2 − 𝑚2�퐷∗) (𝑝2 − 𝑚2�퐾∗) (𝑝�耠2 − 𝑚2�퐷∗
𝑠

) + ⋅ ⋅ ⋅ ,

Π�퐾∗�휇]�훼 = 𝑔�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑞2)

⋅ 𝑚�퐾∗𝑓�퐾∗𝑓�퐷∗𝑓�퐷∗
𝑠

(3𝑚2�퐷∗
𝑠

+ 𝑚2�퐷∗ − 𝑞2)
2𝑚�퐷∗

𝑠

(𝑞2 − 𝑚2�퐾∗) (𝑝2 − 𝑚2�퐷∗) (𝑝�耠2 − 𝑚2�퐷∗
𝑠

) + ⋅ ⋅ ⋅ ,

(10)

The phenomenological part of the 𝑔�휇�훼𝑞] structure associ-
ated with the𝐷�푠1𝐷1𝐾∗ vertex for off-shell𝐷1 and𝐾∗mesons
can be expressed as

Π�퐷1�휇]�훼 = −𝑔�퐷1�퐷𝑠1�퐷1�퐾∗ (𝑞2)
⋅ 𝑚�퐾∗𝑓�퐾∗𝑓�퐷1𝑓�퐷𝑠1 (3𝑚2�퐷1 + 𝑚2�퐾∗ − 𝑞2)2𝑚�퐷𝑠1 (𝑞2 − 𝑚2�퐷1) (𝑝2 − 𝑚2�퐾∗) (𝑝�耠2 − 𝑚2�퐷𝑠1) + ⋅ ⋅ ⋅ ,

Π�퐾∗�휇]�훼 = 𝑔�퐾∗�퐷𝑠1�퐷1�퐾∗ (𝑞2)
⋅ 𝑚�퐾∗𝑓�퐾∗𝑓�퐷1𝑓�퐷𝑠1 (3𝑚2�퐷𝑠1 + 𝑚2�퐷1 − 𝑞2)2𝑚�퐷𝑠1 (𝑞2 − 𝑚2�퐾∗) (𝑝2 − 𝑚2�퐷∗) (𝑝�耠2 − 𝑚2�퐷𝑠1) + ⋅ ⋅ ⋅ .

(11)

Using the operator product expansion in Euclidean
region and assuming 𝑝2, 𝑝�耠2 → −∞, one can calculate the
QCD side of the correlation function (see (5) to (8)) which
contains perturbative and nonperturbative terms. Using the
double dispersion relation for the coefficient of the Lorentz
structure 𝑔�휇�훼𝑞] appearing in the correlation function (see (3)
and (4)), we get

Π�푀�푝�푒�푟 (𝑝2, 𝑝�耠2, 𝑞2)
= − 14𝜋2 ∫𝑑𝑠∫ 𝑑𝑠�耠 𝜌�푀 (𝑠, 𝑠�耠, 𝑞2)

(𝑠 − 𝑝2) (𝑠�耠 − 𝑝�耠2)
+ subtraction terms,

(12)

where 𝜌�푀(𝑠, 𝑠�耠, 𝑞2) is spectral density and 𝑀 stands for off-
shell charm and 𝐾∗ mesons. The Cutkoskys rule allows us to
obtain the spectral densities of the correlation function for
the Lorentz structure appearing in the correlation function.
As shown in Figure 1, the leading contribution comes from
the perturbative term. As a result, the spectral densities are
obtained in the case of the double discontinuity in (12) for
the vertices; see Appendix A.

In order to consider the nonperturbative part of the cor-
relation functions for the case of spectator light quark (for
off-shell charm meson), we proceed to calculate the non-
perturbative contributions in the QCD approach which
contain the quark-quark and quark-gluon condensates [23].
Figure 2 describes the important quark-quark and quark-
gluon condensates from the nonperturbative contribution of
the off-shell charm mesons [23].

In the 3PSR frame work, when the heavy quark is a
spectator (for off-shell 𝐾∗ meson), the gluon-gluon contri-
bution can be considered. Figure 3 shows related diagrams
of the gluon-gluon condensate. More details about the non-
perturbative contributions 𝐶�퐷∗�퐷∗

𝑠
�퐷∗�퐾∗ and 𝐶�퐷1�퐷𝑠1�퐷1�퐾∗(sum con-

tributions of quark-quark and quark-gluon condensates)
and 𝐶�퐾∗�퐷∗

𝑠
�퐷∗�퐾∗ and 𝐶�퐾∗�퐷𝑠1�퐷1�퐾∗(for gluon-gluon condensates)

corresponding to Figures 2 and 3 are given in Appendix B,
respectively.

Considering the perturbative and nonperturbative parts
of the correlation function in order to suppress the contri-
butions of the higher states, the strong form factors can be
calculated in the phenomenological side by equating the two
representations of the correlation function and applying the
Borel transformations with respect to 𝑝2(𝑝2 → 𝑀21) and
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Figure 3: Nonperturbative diagrams for the off-shell𝐾∗ meson.

𝑝�耠2(𝑝�耠2 → 𝑀22). The equations for the strong form factors𝑔�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ and 𝑔�퐷∗�퐷∗

𝑠
�퐷∗�퐾∗ are obtained as

𝑔�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑞2) = 2𝑚�퐷∗

𝑠

(𝑞2 − 𝑚2�퐾∗)
𝑚�퐾∗𝑓�퐾∗𝑓�퐷∗𝑓�퐷∗

𝑠

(3𝑚2�퐷∗
𝑠

+ 𝑚2�퐷∗ − 𝑞2)
⋅ 𝑒�푚2𝐷∗ /�푀21 𝑒�푚2𝐷∗𝑠 /�푀22 {{{

− 14𝜋2 ∫
�푠
𝐷
∗
𝑠

0

(�푚𝑐+�푚𝑠)
2

𝑑𝑠�耠

⋅ ∫�푠𝐷
∗

0

(�푚𝑢+�푚𝑐)
2

𝑑𝑠𝜌�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑠, 𝑠�耠, 𝑞2) 𝑒−�푠/�푀21 𝑒−�푠/�푀22

− 𝑖𝑀21𝑀22 ⟨𝛼�푠𝜋 𝐺2⟩ × 𝐶�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗

}}}
,

𝑔�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑞2) = 2𝑚�퐷∗

𝑠

(𝑞2 − 𝑚2�퐷∗)𝑚�퐾∗𝑓�퐾∗𝑓�퐷∗𝑓�퐷∗
𝑠

(3𝑚2�퐷∗ + 𝑚2�퐾∗ − 𝑞2)
⋅ 𝑒�푚2𝐾∗ /�푀21 𝑒�푚2𝐷∗𝑠 /�푀22 {{{

− 14𝜋2 ∫
�푠
𝐷
∗
𝑠

0

(�푚𝑐+�푚𝑠)
2

𝑑𝑠�耠

⋅ ∫�푠𝐾
∗

0

(�푚𝑢+�푚𝑠)
2

𝑑𝑠𝜌�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑠, 𝑠�耠, 𝑞2) 𝑒−�푠/�푀21 𝑒−�푠/�푀22

+𝑀21𝑀22 ⟨𝑠𝑠⟩ × 𝐶�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗

}}}
.

(13)

The equations describing the strong form factors𝑔�퐾∗�퐷𝑠1�퐷1�퐾∗
and 𝑔�퐷1�퐷𝑠1�퐷1�퐾∗ can be written as

𝑔�퐾∗�퐷𝑠1�퐷1�퐾∗ (𝑞2) = 2𝑚�퐷𝑠1 (𝑞2 − 𝑚2�퐾∗)𝑚�퐾∗𝑓�퐾∗𝑓�퐷1𝑓�퐷𝑠1 (3𝑚2�퐷𝑠1 + 𝑚2�퐷1 − 𝑞2)
⋅ 𝑒�푚2𝐷1 /�푀21 𝑒�푚2𝐷𝑠1 /�푀22 {− 14𝜋2 ∫

�푠
𝐷𝑠1

0

(�푚𝑐+�푚𝑠)
2

𝑑𝑠�耠

⋅ ∫�푠
𝐷1

0

(�푚𝑢+�푚𝑐)
2

𝑑𝑠𝜌�퐾∗�퐷𝑠1�퐷1�퐾∗ (𝑠, 𝑠�耠, 𝑞2) 𝑒−�푠/�푀21 𝑒−�푠/�푀22

− 𝑖𝑀21𝑀22 ⟨𝛼�푠𝜋 𝐺2⟩ × 𝐶�퐾∗�퐷𝑠1�퐷1�퐾∗} ,

𝑔�퐷1�퐷𝑠1�퐷1�퐾∗ (𝑞2) = 2𝑚�퐷𝑠1 (𝑞2 − 𝑚2�퐷1)𝑚�퐾∗𝑓�퐾∗𝑓�퐷1𝑓�퐷𝑠1 (3𝑚2�퐷1 + 𝑚2�퐾∗ − 𝑞2)
⋅ 𝑒�푚2𝐾∗ /�푀21 𝑒�푚2𝐷𝑠1 /�푀22 {− 14𝜋2 ∫

�푠
𝐷𝑠1

0

(�푚𝑐+�푚𝑠)
2

𝑑𝑠�耠

⋅ ∫�푠𝐾
∗

0

(�푚𝑢+�푚𝑠)
2

𝑑𝑠𝜌�퐷1�퐷𝑠1�퐷1�퐾∗ (𝑠, 𝑠�耠, 𝑞2) 𝑒−�푠/�푀21 𝑒−�푠/�푀22

+𝑀21𝑀22 ⟨𝑠𝑠⟩ × 𝐶�퐷1�퐷𝑠1�퐷1�퐾∗} .
(14)

where the quantities 𝑠�퐷∗𝑠0 , 𝑠�퐷∗0 𝑠�퐷𝑠10 , 𝑠�퐷10 , and 𝑠�퐾∗0 are intro-
duced as the continuum thresholds in 𝐷∗�푠 , 𝐷∗ 𝐷�푠1, 𝐷1, and𝐾∗ mesons, respectively, and 𝜌�퐾∗�퐷∗

𝑠
�퐷∗�퐾∗ , 𝜌�퐷∗�퐷∗

𝑠
�퐷∗�퐾∗ , 𝐶�퐾∗�퐷∗

𝑠
�퐷∗�퐾∗ ,𝐶�퐷∗�퐷∗

𝑠
�퐷∗�퐾∗ , 𝜌�퐾∗�퐷𝑠1�퐷1�퐾∗ , 𝜌�퐷1�퐷𝑠1�퐷1�퐾∗ , 𝐶�퐾∗�퐷𝑠1�퐷1�퐾∗ , and 𝐶�퐷1�퐷𝑠1�퐷1�퐾∗ are

defined in Appendices A and B.

3. Numerical Analysis

In order to numerically estimate the strong form factors and
coupling constants of the vertices𝐷∗�푠 𝐷∗𝐾∗ and𝐷�푠1𝐷1𝐾∗, the
values of the quark and meson masses are chosen as 𝑚�푠 =0.14 ± 0.01 GeV, 𝑚�퐾∗ = 0.89 GeV, 𝑚�퐷∗

𝑠

= 2.11 GeV, 𝑚�퐷𝑠1 =2.46 GeV, and 𝑚�퐷1 = 2.42 GeV [24]. Moreover, the leptonic
decay constants of the vertices are 𝑓�퐾∗ = 220 ± 5 [24], 𝑓�퐷∗

𝑠

=314 ± 19 [25], 𝑓�퐷∗ = 242 ± 12 [25], 𝑓�퐷𝑠1 = 225 ± 20 [26], and𝑓�퐷1 = 219 ± 11 [27]
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Figure 4: The strong form factors 𝑔�퐷∗
𝑠
�퐷∗�퐾∗ (left) and 𝑔�퐷𝑠1�퐷1�퐾∗ (right) as functions of the Borel mass parameter𝑀21 for off-shell charm and

K∗ mesons.

Table 1: Parameters appearing in the fit functions for the 𝐷∗�푠𝐷∗𝐾∗ and 𝐷�푠1𝐷1𝐾∗ vertices for various 𝑚�푐 and (𝛿, 𝛿�耠), where (𝛿1, 𝛿�耠1) =(0.50, 0.30), (𝛿2, 𝛿�耠2) = (0.70, 0.50), and (𝛿3, 𝛿�耠3) = (0.90, 0.70) GeV.
Set I Set II

Form factor 𝐴(𝛿1, 𝛿�耠1) 𝐵(𝛿1, 𝛿�耠1) 𝐴(𝛿2, 𝛿�耠2) 𝐵(𝛿2, 𝛿�耠2) 𝐴(𝛿3, 𝛿�耠3) 𝐵(𝛿3, 𝛿�耠3) 𝐴(𝛿2, 𝛿�耠2) 𝐵(𝛿2, 𝛿�耠2)𝑔�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑄2) 4.04 183.10 4.95 197.49 5.93 215.62 4.43 266.52

𝑔�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑄2) 3.67 61.46 4.42 52.33 5.56 47.96 4.18 57.95

𝑔�퐾∗�퐷𝑠1�퐷1�퐾∗(𝑄2) 4.19 15.24 4.39 21.18 4.68 29.21 4.22 7.69
𝑔�퐷1
�퐷𝑠1�퐷1�퐾

∗(𝑄2) 2.62 13.27 3.13 19.47 4.02 25.32 3.03 14.87

There are four auxiliary parameters containing the Borel
mass parameters𝑀1 and𝑀2 and continuum thresholds 𝑠�퐾∗0 ,
𝑠�퐷∗(�퐷1)0 , and 𝑠�퐷∗𝑠 (�퐷𝑠1)0 in ((13) and (14)).The strong form factors
and coupling constants are physical quantities which are
independent of the mass parameters and continuum thresh-
olds. However, the continuum thresholds are not completely
arbitrary and can be related to the energy of the first exited
state. The values of the continuum thresholds are taken to be𝑠�퐾∗0 = (𝑚�퐾∗ + 𝛿)2, 𝑠�퐷∗(�퐷1)0 = (𝑚�퐷∗(�퐷1) + 𝛿�耠)2, and 𝑠�퐷∗𝑠 (�퐷𝑠1)0 =
(𝑚�퐷∗

𝑠
(�퐷𝑠1)

+ 𝛿�耠)2 where 0.50 GeV ≤ 𝛿 ≤ 0.90 GeV and 0.30
GeV ≤ 𝛿�耠 ≤ 0.70 GeV [2–4].

Our results should be almost insensitive to the intervals
of the Borel parameters. In this work, the Borel masses are
related as 𝑀21/𝑀22 = (𝑚2�퐾∗ + 𝑚2�푐)/𝑚2�퐷∗

𝑠
(�퐷𝑠1)

and 𝑀21 = 𝑀22
for off-shell charm mesons and 𝐾∗, respectively [5, 6]. The
form factors for the 𝐷∗�푠𝐷∗𝐾∗ and 𝐷�푠1𝐷1𝐾∗ vertices with
respect to the Borel parameters𝑀21 are shown in Figure 4. It
is found from the figure that the stability of the form factors,
as function of Borel parameters, is good in the region of13 GeV2 < 𝑀21 < 18 GeV2 for off-shell 𝐾∗ and charm

mesons. We get𝑀21 = 15 GeV2 and calculate the strong form
factors 𝑔�퐷∗

𝑠
�퐷∗�퐾∗ in some points of𝑄2 via the 3PSR formalism.

To extract the coupling constants from the form factors,
it is needed to extend the 𝑄2 dependency of the strong
form factors to the ranges that the sum rule results are
not valid. Therefore, we fitted two sets of points (boxes
and circles) imposing the condition that the two resulting
parameterizations lead to the same result for 𝑄2 = −𝑚2�푚,
where𝑚�푚 is the mass of the off-shell mesons. This procedure
is sufficient to reduce the uncertainties. It is found that the
sum rule predictions of the form factors in ((13) and (14)) are
well fitted to the function

𝑔 (𝑄2) = 𝐴𝑒−�푄2/�퐵. (15)

The values of the parameters 𝐴 and 𝐵 are given in Table 1.
Variations of the strong form factors 𝑔�퐾∗�퐷∗

𝑠
�퐷∗�퐾∗ and

𝑔�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ for 𝐷∗�푠𝐷∗𝐾∗ vertex and 𝑔�퐾∗�퐷𝑠1�퐷1�퐾∗ and 𝑔�퐷1�푠1�퐷1�퐾∗ for𝐷�푠1𝐷1𝐾∗ vertex with respect to the 𝑄2 parameter are shown

in Figure 5. The boxes and circles show the results of the
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Figure 5:The strong form factors 𝑔�퐷∗
𝑠
�퐷∗�퐾∗ (left) and 𝑔�퐷𝑠1�퐷1�퐾∗ (right) as functions of 𝑄2 for off-shell charm and K∗ mesons.

Table 2: The coupling constant of the vertices𝐷∗�푠𝐷∗𝐾∗ and𝐷�푠1𝐷1𝐾∗.
𝑔 Set I Set II

off-shell charmed off-shell𝐾∗ off-shell charmed off-shell𝐾∗
𝑔�퐷∗
𝑠
�퐷∗�퐾∗ 4.77 ± 0.63 4.96 ± 0.64 4.48 ± 0.58 4.45 ± 0.58

𝑔�퐷𝑠1�퐷1�퐾∗ 4.22 ± 0.55 4.56 ± 0.59 4.48 ± 0.58 4.67 ± 0.62
Table 3: Parameters appearing in the fit functions for the 𝑔�퐷∗

𝑠
�퐷∗�퐾∗ and 𝑔�퐷𝑠1�퐷1�퐾∗ form factors in 𝑆𝑈�푓(3) symmetry with 𝑚�푐 = 1.26 GeV and(𝛿, 𝛿�耠) = (0.70, 0.50) GeV.

Form factor 𝐴 𝐵 Form factor 𝐴 𝐵
𝑔�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑄2) 5.01 218.91 𝑔�퐾∗�퐷𝑠1�퐷1�퐾∗ (𝑄2) 4.56 20.63

𝑔�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ (𝑄2) 4.54 52.08 𝑔�퐷1

�퐷𝑠1�퐷1�퐾
∗ (𝑄2) 3.66 20.89

numerical evaluation of the form factors via the 3PSR. It
is clear from the figure that the form factors are in good
agreement with the fitted function.

So-called harder is used. In the present analysis we find
that the form factor is harder when the lighter meson is off-
shell.This is in line with the results of our previous work [17],
whereas this is in contrast with other previous calculations
quoted by the authors [28, 29].

The value of the strong form factors at 𝑄2 = −𝑚2�푚
is defined as coupling constant. Calculation results of the
coupling constant of the vertices 𝐷∗�푠𝐷∗𝐾∗ and 𝐷�푠1𝐷1𝐾∗
are summarized in Table 2. It should be noted that the
coupling constants 𝑔�퐷∗

𝑠
�퐷∗�퐾∗ and 𝑔�퐷𝑠1�퐷1�퐾∗ are in the unit of

GeV−1.
In order to estimate the error of the calculated parame-

ters, variations of the Borel parameter, continuum thresholds,
and leptonic decay constants, as the most significant reasons
of the uncertainties, are considered.

To investigate the value of the strong coupling constant
via the 𝑆𝑈�푓(3) symmetry, themass of the 𝑠 quark is ignored in
all equations. Calculated parameters𝐴 and 𝐵 for the 𝑔�퐷∗

𝑠
�퐷∗�퐾∗

and 𝑔�퐷𝑠1�퐷1�퐾∗ vertices, considering (𝛿, 𝛿�耠) = (0.70, 0.50) GeV,
are given in Table 3.

Estimated coupling constants of the vertices 𝐷∗�푠𝐷∗𝐾∗,
and 𝐷�푠1𝐷1𝐾∗, considering the 𝑆𝑈�푓(3) symmetry, are sum-
marized in Table 4. The comparisons of the coupling con-
stants 𝑔�퐷∗

𝑠
�퐷∗�퐾∗ with 𝑔�퐷∗�퐷∗�휌, considering other methods

described in [2, 3], are given in Table 5. It is found that
the results of the calculated parameters are in reasonable
agreement with that of [2, 3] and a factor of two orders of
magnitude larger in comparison with [21, 22].

4. Conclusion

Strong form factors and coupling constants of 𝐷∗�푠𝐷∗𝐾∗
and 𝐷�푠1𝐷1𝐾∗ vertices were calculated in the frame work of
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Table 4: The coupling constant of the vertices𝐷∗�푠𝐷∗𝐾∗ and𝐷�푠1𝐷1𝐾∗, in 𝑆𝑈�푓(3) symmetry.

𝑔 off-shell charmed off-shell𝐾∗ 𝑔 off-shell charmed off-shell𝐾∗
𝑔�퐷∗
𝑠
�퐷∗�퐾∗ 4.88 ± 0.64 5.03 ± 0.65 𝑔�퐷𝑠1�퐷1�퐾∗ 4.85 ± 0.63 4.75 ± 0.62

Table 5: Values of the strong coupling constant reporting different reference of the coupling constant 𝑔�퐷∗�퐷∗�휌 [2, 3, 21, 22].
𝑔 Ours Reference [2, 3] Reference [21, 22]
𝑔�퐷∗
𝑠
�퐷∗�퐾∗ 4.95 ± 0.64 6.60 ± 0.30 2.52

3-point sum rules of quantum chromodynamics with and
without consideration of the 𝑆𝑈�푓(3) symmetry. Considering
nonperturbative contributions of the correlation functions,
the quark-quark, quark-gluon, and gluon-gluon condensate
corrections were estimated as the most effective terms. It was
found from the numerical results that the obtained coupling
constants are in good agreement with the other prediction
methods described in [2, 3].

Appendix

A. Explicit Expressions of Spectral Densities

In this appendix, the explicit expressions of spectral densities
are given as

𝜌�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ = 3𝐼0 [3𝑚2�푠 − 2𝑚�푐𝑚�푠 − 𝑠 − Δ + 4𝐴
+ (𝐶1 − 𝐶2) (2𝑢 + 2𝑚�푐𝑚�푠 − 2𝑠) − 8 (𝐸1 − 𝐸2)]

𝜌�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ = 3𝐼0 [3𝑚2�푐 − 2𝑚�푐𝑚�푠 − 𝑠 − Δ�耠 + 4𝐴�耠
+ 2 (𝐶�耠1 − 𝐶�耠2) (𝑢 + 2𝑚�푐𝑚�푠 − 2𝑠) − 8 (𝐸�耠1 − 𝐸�耠2)]

𝜌�퐷1�퐷𝑠1�퐷1�퐾∗ = 3𝐼0 [3𝑚2�푠 + 2𝑚�푐𝑚�푠 − 𝑠 − Δ + 4𝐴
+ (𝐶1 − 𝐶2) (2𝑢 − 2𝑚�푐𝑚�푠 − 2𝑠) − 8 (𝐸1 − 𝐸2)]

𝜌�퐾∗�퐷𝑠1�퐷1�퐾∗ = 3𝐼0 [3𝑚2�푐 + 2𝑚�푐𝑚�푠 − 𝑠 − Δ�耠 + 4𝐴�耠
+ 2 (𝐶�耠1 − 𝐶�耠2) (𝑢 − 2𝑚�푐𝑚�푠 − 2𝑠) − 8 (𝐸�耠1 − 𝐸�耠2)]

(A.1)

where coefficients in the spectral densities are given as

𝐼0 (𝑠, 𝑠�耠, 𝑞2) = 14𝜆1/2 (𝑠, 𝑠�耠, 𝑞2) ,
𝜆 (𝑎, 𝑏, 𝑐) = 𝑎2 + 𝑏2 + 𝑐2 − 2𝑎𝑐 − 2𝑏𝑐 − 2𝑎𝑐,
Δ = 𝑠�耠 + 𝑚2�푠 − 𝑚2�푐 ,
Δ�耠 = 𝑠�耠 + 𝑚2�푐 − 𝑚2�푠 ,
Δ�耠�耠 = 𝑠 + 𝑚2�푠 ,
𝑢 = 𝑠 + 𝑠�耠 − 𝑞2,
𝐶1 = 1𝜆 (𝑠, 𝑠�耠, 𝑞2) [2𝑠�耠Δ�耠�耠 − 𝑢Δ] ,

𝐶2 = 1𝜆 (𝑠, 𝑠�耠, 𝑞2) [2𝑠Δ − 𝑢Δ�耠�耠] ,
𝐴 = − 12𝜆 (𝑠, 𝑠�耠, 𝑞2) [4𝑠𝑠�耠𝑚2�푠 − 𝑠Δ2 − 𝑠�耠Δ�耠�耠2 − 𝑚2�푠𝑢2

+ 𝑢ΔΔ�耠�耠] ,
𝐸1 = 12𝜆2 (𝑠, 𝑠�耠, 𝑞2) [8𝑠𝑠�耠2𝑚2�푠Δ�耠�耠 − 2𝑠�耠𝑚2�푠𝑢2Δ�耠�耠

− 4𝑠𝑠�耠𝑚2�푠𝑢Δ + 𝑚2�푠𝑢3Δ − 2𝑠�耠2Δ�耠�耠3 + 3𝑠�耠𝑢ΔΔ�耠�耠2
− 2𝑠𝑠�耠Δ2Δ�耠�耠 − 𝑢2Δ2Δ�耠�耠 + 𝑠𝑢Δ3] ,

𝐸2 = 12𝜆2 (𝑠, 𝑠�耠, 𝑞2) [8𝑠2𝑠�耠𝑚2�푠Δ − 2𝑠𝑚2�푠𝑢2Δ�耠�耠
− 4𝑠𝑠�耠𝑚2�푠𝑢Δ�耠�耠 + 𝑚2�푠𝑢3Δ�耠�耠 − 2𝑠2Δ3 + 3𝑠𝑢Δ2Δ�耠�耠
− 2𝑠𝑠�耠ΔΔ�耠�耠2 − 𝑢2ΔΔ�耠�耠2 + 𝑠�耠𝑢Δ�耠�耠3] ,

(A.2)

and also 𝐴�耠 = 𝐴 |𝑚𝑐←→𝑚𝑠 , 𝐶�耠1 = 𝐶1|𝑚𝑐←→𝑚𝑠 , 𝐶�耠2 = 𝐶2|𝑚𝑐←→𝑚𝑠 , 𝐸�耠1 =𝐸1|𝑚𝑐←→𝑚𝑠 , and 𝐸�耠2 = 𝐸2|𝑚𝑐←→𝑚𝑠 .
B. Explicit Expressions of the Coefficients

In this appendix, the explicit expressions of the coefficients of
the quark and gluon condensate contributions of the strong
form factors in the Borel transform scheme for all the vertices
are presented.

𝐶�퐷∗�퐷∗
𝑠
�퐷∗�퐾∗ = (−6𝑚�푠𝑚�푐2𝑀22 − 2𝑚02𝑚�푐𝑀22 + 6𝑚�푐𝑚�푠2𝑀22
+ 3𝑚�푠𝑞2𝑀22 + 3

𝑚�푐𝑞2𝑚�푠2𝑀12𝑀22 −
𝑚02𝑚�푐𝑞2𝑀12𝑀22 − 3

𝑚�푐3𝑚�푠2𝑀12𝑀22
+ 𝑚02𝑚�푐3𝑀12𝑀22 − 3

𝑚�푐3𝑚�푠2𝑀24 + 32 𝑚0
2𝑚�푐3𝑀24 + 3𝑚�푠)

× 𝑒−�푚2𝑐 /�푀22 ,
𝐶�퐷1�퐷𝑠1�퐷1�퐾∗ = (2𝑚02𝑚�푐𝑀22 − 6𝑚�푠𝑚�푐2𝑀22 + 3𝑚�푠𝑞2𝑀22
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− 6𝑚�푐𝑚�푠2𝑀22 − 𝑚02𝑚�푐3𝑀12𝑀22 − 3
𝑚�푐𝑞2𝑚�푠2𝑀12𝑀22 +

𝑚02𝑚�푐𝑞2𝑀12𝑀22
+ 3 𝑚�푐3𝑚�푠2𝑀12𝑀22 + 3

𝑚�푐3𝑚�푠2𝑀24 − 32 𝑚0
2𝑚�푐3𝑀24 + 3𝑚�푠)

× 𝑒−�푚2𝑐/�푀22 ,
(B.1)

𝐶�퐾∗�퐷∗
𝑠
�퐷∗�퐾∗ = 𝐼0 (3, 2, 2)𝑚6�푐 − 𝐼0 (3, 2, 2)𝑚5�푐𝑚�푠
+ 𝐼0 (3, 2, 2)𝑚3�푐𝑚3�푠 + 𝐼[1,0]1 (3, 2, 2)𝑚4�푐
+ 3𝐼0 (4, 1, 1)𝑚4�푐 − 𝐼[1,0]2 (3, 2, 2)𝑚4�푐 + 2𝐼6 (3, 2, 2)
⋅ 𝑚4�푐 + 2𝐼2 (2, 1, 3)𝑚3�푐𝑚�푠 + 2𝐼0 (2, 1, 3)𝑚3�푐𝑚�푠
− 2𝐼1 (2, 2, 2)𝑚3�푐𝑚�푠 − 2𝐼1 (2, 1, 3)𝑚3�푐𝑚�푠
− 𝐼1 (3, 2, 1)𝑚3�푐𝑚�푠 + 𝐼2 (3, 2, 1)𝑚3�푐𝑚�푠
− 3𝐼0 (4, 1, 1)𝑚3�푐𝑚�푠 + 2𝐼2 (2, 2, 2)𝑚3�푐𝑚�푠
+ 𝐼0 (2, 2, 2)𝑚2�푐𝑚2�푠 − 2𝐼6 (3, 2, 2)𝑚2�푐𝑚2�푠
+ 𝐼[0,1]0 (3, 2, 2)𝑚2�푐𝑚2�푠 + 𝐼[1,0]2 (3, 2, 2)𝑚2�푐𝑚2�푠
− 𝐼[1,0]1 (3, 2, 2)𝑚2�푐𝑚2�푠 + 2𝐼2 (3, 1, 2)𝑚�푐𝑚3�푠
− 𝐼[1,0]2 (3, 2, 2)𝑚�푐𝑚3�푠 − 2𝐼1 (3, 1, 2)𝑚�푐𝑚3�푠
+ 6𝐼0 (1, 1, 4)𝑚�푐𝑚3�푠 + 𝐼[1,0]1 (3, 2, 2)𝑚�푐𝑚3�푠
+ 𝐼0 (3, 1, 2)𝑚4�푠 + 2𝐼[1,0]6 (3, 2, 2)𝑚2�푐 + 𝐼0 (2, 1, 2)
⋅ 𝑚2�푐 + 8𝐼8 (3, 2, 1)𝑚2�푐 + 4𝐼[0,1]8 (3, 2, 2)𝑚2�푐
+ 2𝐼[0,1]6 (3, 2, 2)𝑚2�푐 − 4𝐼6 (3, 2, 1)𝑚2�푐
− 4𝐼[0,1]7 (3, 2, 2)𝑚2�푐 + 3𝐼[1,0]1 (4, 1, 1)𝑚2�푐
+ 6𝐼6 (4, 1, 1)𝑚2�푐 + 6𝐼6 (3, 1, 2)𝑚2�푐 − 8𝐼7 (3, 2, 1)
⋅ 𝑚2�푐 − 12𝐼7 (4, 1, 1)𝑚2�푐 + 2𝐼0 (2, 2, 1)𝑚2�푐
+ 12𝐼8 (4, 1, 1)𝑚2�푐 − 3𝐼[1,0]2 (4, 1, 1)𝑚2�푐
+ 8𝐼6 (2, 1, 3)𝑚�푐𝑚�푠 + 4𝐼6 (2, 2, 2)𝑚�푐𝑚�푠
− 𝐼[1,1]0 (3, 2, 2)𝑚�푐𝑚�푠 − 3𝐼1 (1, 3, 1)𝑚�푐𝑚�푠
− 2𝐼[0,1]1 (3, 1, 2)𝑚�푐𝑚�푠 + 3𝐼[1,0]1 (3, 2, 1)𝑚�푐𝑚�푠
− 2𝐼6 (3, 2, 1)𝑚�푐𝑚�푠 + 3𝐼2 (1, 3, 1)𝑚�푐𝑚�푠
+ 2𝐼[0,1]2 (3, 1, 2)𝑚�푐𝑚�푠 − 𝐼0 (2, 1, 2)𝑚�푐𝑚�푠
− 2𝐼6 (3, 1, 2)𝑚�푐𝑚�푠 − 3𝐼[1,0]2 (3, 2, 1)𝑚�푐𝑚�푠
− 2𝐼[1,0]6 (3, 2, 2)𝑚2�푠 − 12𝐼6 (1, 1, 4)𝑚2�푠

− 𝐼0 (2, 1, 2)𝑚2�푠 − 3𝐼0 (1, 1, 3)𝑚2�푠 − 2𝐼[0,1]0 (3, 1, 2)
⋅ 𝑚2�푠 + 3𝐼[1,0]0 (1, 1, 4)𝑚2�푠 + 𝐼[1,1]0 (3, 2, 2)𝑚2�푠
+ 6𝐼[1,0]2 (1, 1, 4)𝑚2�푠 + 𝐼0 (3, 1, 1)𝑚2�푠
+ 24𝐼7 (1, 1, 4)𝑚2�푠 − 24𝐼8 (1, 1, 4)𝑚2�푠 + 4𝐼6 (2, 2, 2)
⋅ 𝑚2�푠 − 6𝐼[1,0]1 (1, 1, 4)𝑚2�푠 − 2𝐼[1,0]0 (2, 2, 2)𝑚2�푠
+ 3𝐼[0,1]0 (1, 1, 4)𝑚2�푠 + 2𝐼6 (3, 1, 2)𝑚2�푠
+ 3𝐼[0,1]1 (2, 1, 2) − 2𝐼2 (2, 1, 1) + 3𝐼6 (1, 3, 1)
− 3𝐼[0,1]2 (2, 1, 2) − 4𝑆1, 1 (3, 2, 2) + 4𝐼[1,0]7 (3, 2, 1)
− 8𝐼8 (2, 2, 1) − 2𝐼[0,1]6 (2, 2, 2) − 2𝐼[0,1]6 (3, 1, 2)
+ 8𝐼7 (2, 2, 1) − 4𝐼[1,0]8 (3, 2, 1) − 4𝐼[1,0]6 (3, 2, 1)
+ 2𝐼[1,1]6 (3, 2, 2) − 12𝐼8 (3, 1, 1) + 3𝐼[1,0]1 (3, 1, 2)
+ 2𝐼1 (2, 1, 1) − 2𝐼[1,0]2 (1, 2, 2) + 2𝐼[1,0]1 (1, 2, 2)
+ 4𝐼[0,1]7 (2, 2, 2) − 4𝐼[0,1]8 (2, 2, 2) + 4𝐼6 (2, 2, 1)
− 𝐼[0,1]0 (3, 1, 1) − 3𝐼[1,1]2 (3, 1, 2) + 𝐼[2,0]2 (2, 2, 2)
− 𝐼[2,0]1 (2, 2, 2) + 12𝐼7 (3, 1, 1) − 8𝐼6 (2, 1, 2)
+ 4𝐼[1,1]8 (3, 2, 2) + 𝐼[2,0]0 (3, 2, 1) − 2𝐼[1,0]0 (1, 2, 2)
− 𝐼[0,1]0 (2, 1, 2) − 3𝐼0 (2, 1, 1) − 4𝐼6 (3, 1, 1)
− 2𝐼[1,0]6 (2, 2, 2) + 4𝐼[1,0]7 (2, 2, 2) − 4𝐼[1,0]8 (2, 2, 2)
+ 2𝐼0 (1, 1, 2) − 𝐼[1,0]0 (3, 1, 1) − 6𝐼7 (1, 3, 1)
+ 6𝐼8 (1, 3, 1) ,

𝐶�퐾∗�퐷𝑠1�퐷1�퐾∗ = 𝐼0 (3, 2, 2)𝑚6�푐 + 𝐼2 (3, 2, 2)𝑚3�푐𝑚3�푠
− 𝐼1 (3, 2, 2)𝑚3�푐𝑚3�푠 − 𝐼0 (3, 2, 2)𝑚3�푐𝑚3�푠
− 4𝐼7 (3, 2, 2)𝑚4�푐 + 3𝐼0 (2, 2, 2)𝑚4�푐 + 2𝐼6 (3, 2, 2)
⋅ 𝑚4�푐 + 4𝐼8 (3, 2, 2)𝑚4�푐 + 3𝐼0 (4, 1, 1)𝑚4�푐
− 2𝐼2 (2, 2, 2)𝑚3�푐𝑚�푠 + 2𝐼1 (2, 2, 2)𝑚3�푐𝑚�푠
− 2𝐼2 (2, 1, 3)𝑚3�푐𝑚�푠 + 2𝐼1 (2, 1, 3)𝑚3�푐𝑚�푠
+ 𝐼1 (3, 2, 1)𝑚3�푐𝑚�푠 + 𝐼[0,1]0 (3, 2, 2)𝑚3�푐𝑚�푠
− 𝐼2 (3, 2, 1)𝑚3�푐𝑚�푠 − 𝐼0 (3, 1, 2)𝑚3�푐𝑚�푠
− 2𝐼6 (3, 2, 2)𝑚2�푐𝑚2�푠 − 𝐼[1,0]1 (3, 2, 2)𝑚2�푐𝑚2�푠
− 6𝐼0 (1, 1, 4)𝑚2�푐𝑚2�푠 + 𝐼[1,0]2 (3, 2, 2)𝑚2�푐𝑚2�푠
+ 6𝐼2 (1, 1, 4)𝑚�푐𝑚3�푠 − 6𝐼1 (1, 1, 4)𝑚�푐𝑚3�푠
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+ 𝐼0 (3, 1, 2)𝑚4�푠 + 𝐼1 (2, 1, 2)𝑚2�푐 − 𝐼1 (3, 1, 1)𝑚2�푐
+ 2𝐼0 (2, 2, 1)𝑚2�푐 + 𝐼[2,0]1 (3, 2, 2)𝑚2�푐 + 8𝐼8 (3, 2, 1)
⋅ 𝑚2�푐 + 4𝐼[0,1]8 (3, 2, 2)𝑚2�푐 + 2𝐼[0,1]6 (3, 2, 2)𝑚2�푐
− 12𝐼7 (4, 1, 1)𝑚2�푐 − 4𝐼[0,1]7 (3, 2, 2)𝑚2�푐
+ 4𝐼[1,0]8 (3, 2, 2)𝑚2�푐 + 𝐼2 (3, 1, 1)𝑚2�푐
+ 2𝐼[1,0]8 (3, 2, 2)𝑚2�푐 − 𝐼[2,0]2 (3, 2, 2)𝑚2�푐
− 4𝐼6 (3, 2, 1)𝑚2�푐 − 8𝐼7 (3, 2, 1)𝑚2�푐 − 𝐼[0,1]0 (2, 2, 2)
⋅ 𝑚2�푐 + 𝐼0 (2, 1, 2)𝑚2�푐 + 6𝐼6 (4, 1, 1)𝑚2�푐
− 𝐼2 (2, 1, 2)𝑚2�푐 − 4𝐼[1,0]7 (3, 2, 2)𝑚2�푐 + 6𝐼6 (3, 1, 2)
⋅ 𝑚2�푐 + 12𝐼8 (4, 1, 1)𝑚2�푐 − 4𝐼1 (1, 1, 3)𝑚�푐𝑚�푠
+ 4𝐼2 (1, 1, 3)𝑚�푐𝑚�푠 − 4𝐼6 (2, 2, 2)𝑚�푐𝑚�푠
− 3𝐼2 (1, 3, 1)𝑚�푐𝑚�푠 + 2𝐼0 (1, 2, 2)𝑚�푐𝑚�푠
+ 2𝐼6 (3, 1, 2)𝑚�푐𝑚�푠 + 𝐼0 (2, 1, 2)𝑚�푐𝑚�푠
− 2𝐼[0,1]2 (3, 1, 2)𝑚�푐𝑚�푠 − 8𝐼6 (2, 1, 3)𝑚�푐𝑚�푠
+ 2𝐼[1,0]0 (2, 1, 3)𝑚�푐𝑚�푠 + 2𝐼6 (3, 2, 1)𝑚�푐𝑚�푠
+ 𝐼2 (2, 1, 2)𝑚�푐𝑚�푠 + 2𝐼[0,1]1 (3, 1, 2)𝑚�푐𝑚�푠
− 𝐼1 (2, 1, 2)𝑚�푐𝑚�푠 + 3𝐼1 (1, 3, 1)𝑚�푐𝑚�푠
+ 3𝐼0 (2, 2, 1)𝑚�푐𝑚�푠 − 3𝐼0 (1, 1, 3)𝑚2�푠 + 4𝐼6 (2, 2, 2)
⋅ 𝑚2�푠 − 6𝐼[1,0]1 (1, 1, 4)𝑚2�푠 + 3𝐼[0,1]0 (1, 1, 4)𝑚2�푠
− 12𝐼6 (1, 1, 4)𝑚2�푠 − 2𝐼[0,1]0 (3, 1, 2)𝑚2�푠
− 𝐼0 (2, 1, 2)𝑚2�푠 + 6𝐼[1,0]2 (1, 1, 4)𝑚2�푠 + 2𝐼6 (3, 1, 2)
⋅ 𝑚2�푠 − 2𝐼[1,0]6 (3, 2, 2)𝑚2�푠 − 2𝐼[1,0]2 (1, 2, 2)
+ 𝐼[1,0]2 (3, 1, 1) − 4𝐼[1,0]6 (3, 2, 1) − 𝐼[1,0]0 (3, 1, 1)
− 8𝐼8 (2, 2, 1) − 𝐼[0,1]0 (2, 1, 2) − 12𝐼8 (3, 1, 1)
− 2𝐼[1,0]6 (2, 2, 2) + 12𝐼7 (3, 1, 1) − 8𝐼8 (2, 1, 2)
− 8𝐼6 (2, 1, 2) − 𝐼[1,0]1 (3, 1, 1) + 8𝐼7 (2, 1, 2)
+ 4𝐼[1,0]7 (3, 2, 1) − 4𝐼[1,0]8 (3, 2, 1) + 4𝐼[0,1]7 (3, 1, 2)
− 4𝐼[0,1]8 (3, 1, 2) + 2𝐼[0,1]1 (1, 2, 2) + 2𝐼1 (2, 1, 1)
− 4𝐼[1,1]7 (3, 2, 2) + 4𝐼[1,1]8 (3, 2, 2) + 3𝐼6 (1, 3, 1)
− 2𝐼[0,1]6 (3, 1, 2) − 2𝐼[0,1]6 (2, 2, 2) − 4𝐼6 (3, 1, 1)
+ 𝐼[0,2]0 (3, 1, 2) − 𝐼[0,1]0 (3, 1, 1) − 3𝐼0 (2, 1, 1)

+ 4𝐼6 (2, 2, 1) + 2𝐼[1,1]6 (3, 2, 2) − 2𝐼2 (2, 1, 1)
+ 8𝐼7 (2, 2, 1) − 2𝐼[0,1]0 (2, 2, 1) ,

(B.2)

where

𝐼[�훼,�훽]�휇 (𝑎, 𝑏, 𝑐) = [𝑀21]�훼

⋅ [𝑀22]�훽 𝑑�훼
𝑑 (𝑀21)�훼

𝑑�훽
𝑑 (𝑀22)�훽 [𝑀

2
1]�훼 [𝑀22]�훽 𝐼�휇 (𝑎, 𝑏, 𝑐) ,

𝐼�푘 (𝑎, 𝑏, 𝑐) = 𝑖 (−1)�푎+�푏+�푐+116𝜋2Γ (𝑎) Γ (𝑏) Γ (𝑐) (𝑀21)
1−�푎−�푏+�푘

⋅ (𝑀22)4−�푎−�푐−�푘𝑈0 (𝑎 + 𝑏 + 𝑐 − 5, 1 − 𝑐 − 𝑏) ,
𝐼�푚 (𝑎, 𝑏, 𝑐) = 𝑖 (−1)�푎+�푏+�푐+116𝜋2Γ (𝑎) Γ (𝑏) Γ (𝑐) (𝑀21)

−�푎−�푏−1+�푚

⋅ (𝑀22)7−�푎−�푐−�푚𝑈0 (𝑎 + 𝑏 + 𝑐 − 5, 1 − 𝑐 − 𝑏) ,
𝐼6 (𝑎, 𝑏, 𝑐) = 𝑖 (−1)�푎+�푏+�푐+132𝜋2Γ (𝑎) Γ (𝑏) Γ (𝑐) (𝑀21)

3−�푎−�푏 (𝑀22)3−�푎−�푐
⋅ 𝑈0 (𝑎 + 𝑏 + 𝑐 − 6, 2 − 𝑐 − 𝑏) ,

𝐼�푛 (𝑎, 𝑏, 𝑐) = 𝑖 (−1)�푎+�푏+�푐32𝜋2Γ (𝑎) Γ (𝑏) Γ (𝑐) (𝑀21)
−4−�푎−�푏+�푛

⋅ (𝑀22)11−�푎−�푐−�푛𝑈0 (𝑎 + 𝑏 + 𝑐 − 7, 2 − 𝑐 − 𝑏) ,

(B.3)

where 𝑘 = 1, 2, 𝑚 = 3, 4, 5 and 𝑛 = 7, 8. We can define the
function 𝑈0(𝑎, 𝑏) as

𝑈0 (𝑎, 𝑏) = ∫∞
0

𝑑𝑦 (𝑦 +𝑀21 +𝑀22)�푎

⋅ 𝑦�푏exp [−𝐵−1𝑦 − 𝐵0 − 𝐵1𝑦] ,
(B.4)

where

𝐵−1 = 1𝑀22𝑀21 (𝑚
2
�푠 (𝑀21 +𝑀22)2 −𝑀22𝑀21𝑄2) ,

𝐵0 = 1𝑀21𝑀22 (𝑚
2
�푠 + 𝑚2�푐) (𝑀21 +𝑀22) ,

𝐵1 = 𝑚2�푐𝑀21𝑀22 .
(B.5)

Conflicts of Interest

The authors of the manuscript declare that there are no
conflicts of interest regarding publication of this article.

47Analysis of Ds*D*K* and Ds1D1K* Vertices in Three-Point Sum Rules



References

[1] M. Du, W. Chen, X. Chen, and S. Zhu, “Exotic 𝑄𝑄𝑞𝑞, 𝑄𝑄𝑞𝑠,
and 𝑄𝑄𝑠𝑠 states,” Physical Review D, vol. 87, Article ID 014003,
2013.

[2] F.Navarra,M.Nielsen,M.Bracco,M.Chiapparini, andC. Schat,
“𝐷*𝐷𝜋 and 𝐵*𝐵𝜋 form factors from QCD sum rules,” Physics
Letters B, vol. 489, no. 3, pp. 319–328, 2000.

[3] M. E. Bracco, M. Chiapparini, F. S. Navarra, and M. Nielsen,
“𝜌𝐷*𝐷* vertex fromQCD sum rules,” Physics Letters B, vol. 659,
no. 3, pp. 559–564, 2008.

[4] F. S. Navarra, M. Nielsen, and M. E. Bracco, Physical Review D:
Particles, Fields, Gravitation and Cosmology, vol. 65, no. 3, 2002.

[5] M. Bracco, M. Chiapparini, A. Lozéa, F. Navarra, and M.
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We investigate the implications of a sterile neutrino on the physics potential of the proposed experiment DUNE and future runs
of NO]A using latest NO]A results. Using combined analysis of the disappearance and appearance data, NO]A reported preferred
solutions at normal hierarchy (NH) with two degenerate best-fit points: one in the lower octant (LO) and 𝛿13 = 1.48𝜋 and the other
in higher octant (HO) and 𝛿13 = 0.74𝜋. Another solution of inverted hierarchy (IH), which is 0.46𝜎 away from best fit, was also
reported. We discuss chances of resolving these degeneracies in the presence of sterile neutrino.

1. Introduction

Sterile neutrinos are hypothetical particles that do not
interact via any of the fundamental interactions other than
gravity. The term sterile is used to distinguish them from
active neutrinos, which are charged under weak interaction.
The theoretical motivation for sterile neutrino explains the
active neutrino mass after spontaneous symmetry breaking,
by adding a gauge singlet term (sterile neutrino) to the
Lagrangian under 𝑆𝑈(3)𝑐 ⊗ 𝑆𝑈(2)𝐿 ⊗ 𝑈(1)𝑟 where the Dirac
term appears through the Higgs mechanism, and Majorana
mass term is a gauge singlet and hence appears as a bare mass
term [1].The diagonalization of the mass matrix gives masses
to all neutrinos due to the See-Saw mechanism.

Some experimental anomalies also point towards the
existence of sterile neutrinos. Liquid Scintillator Neutrino
Detector (LSND) detected ]𝜇 → ]𝑒 transitions indicatingΔ𝑚2 ≈ 1𝑒𝑉2 which is inconsistent with Δ𝑚232, Δ𝑚221 (LSND
anomaly) [2]. Measurement of the width of Z boson by LEP
gave number of active neutrinos to be 2.984 ± 0.008 [3].
Thus the new neutrino introduced to explain the anomaly
has to be a sterile neutrino. MiniBooNE, designed to verify
the LSND anomaly, observed an unexplained excess of events
in low-energy region of ]𝑒, ]𝑒 spectra, consistent with LSND

[4]. SAGE and GALLEX observed lower event rate than
expected, explained by the oscillations of ]𝑒 due to Δ𝑚2 ≥1𝑒𝑉2(Gallium anomaly) [5–7]. Recent precise predictions of
reactor antineutrino flux have increased the expected flux by
3% over old predictions. With the new flux evaluation, the
ratio of observed and predicted flux deviates at 98.6% C.L
(Confidence level) from unity; this is called “reactor antineu-
trino anomaly” [8].This anomaly can also be explained using
sterile neutrino model.

Short-baseline (SBL) experiments are running to search
for sterile neutrinos. SBL experiments are the best place
to look for sterile neutrino, as they are sensitive to new
expected mass-squared splitting Δm2 ≃ 1eV2. However,
SBL experiments cannot study all the properties of sterile
neutrinos, mainly new CP phases introduced by sterile
neutrino models. These new CP phases need long distances
to become measurable [9, 10] and thus can be measured
using long baseline (LBL) experiments. With the discovery of
relatively large value for 𝜃13 by Daya Bay [11], the sensitivity
of LBL experiments towards neutrino mass hierarchy and
CP phases increased significantly. In this context, some
phenomenological studies regarding the sensitivity of LBL
experiments can be found in recent works [12–16]. Using
recent global fits of oscillation parameters in the 3+1 scenario
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[17], current LBL experiments can extract two out of three
CP phases (one of them being standard 𝛿13) [10]. The
phenomenological studies of LBL experiments in presence of
sterile neutrino is studied by several groups [18–23]. Now, the
sensitivity of LBL experiments towards their original goals
decreases due to sterile neutrinos. It is seen in case of the CPV
measurement; new CP phases will decrease the sensitivity
towards standard CP phase (𝛿13).This will reduce degeneracy
resolution capacities of LBL experiments. In this paper, we
study hierarchy-𝜃23-𝛿13 degeneracies using contours in 𝜃23-𝛿13 plane and how they are affected by the introduction of
sterile neutrinos. We attempt to find the extent to which these
degeneracies can be resolved in future runs of NO]A and
DUNE.

The outline of the paper is as follows. In Section 2, we
present the experimental specifications of NO]A and DUNE
used in our simulation. We introduce the effect of sterile
neutrino on parameter degeneracies resolution in Section 3.
Section 4 contains the discussion about the degeneracy
resolving capacities of future runs of NO]A and DUNE
assuming latest NO]A results—NH- (normal hierarchy-) LO
(lower octant); NH-HO (higher octant); and IH- (inverted
hierarchy-) HO—as true solutions for both 3 and 3+1models.
Finally, Section 5 contains concluding comments on our
results.

2. Experiment Specifications

We used GLoBES (General Long Baseline Experiment Sim-
ulator) [24, 25] to simulate the data for different LBL experi-
ments including NO]A and DUNE. The neutrino oscillation
probabilities for the 3+1 model are calculated using the new
physics engine available from [26].

NO]A [27, 28] is an LBL experiment which started its
full operation from October 2014. NO]A has two detectors:
the near detector is located at Fermilab (300 ton, 1 km from
NuMI beam target) while the far detector (14 Kt) is located
at Northern Minnesota 14.6 mrad off the NuMI beam axis
at 810 km fromNuMI beam target, justifying “off-axis” in the
name.This off-axis orientation gives us a narrowbeamof flux,
peak at 2 GeV [29]. For simulations, we used NO]A setup
from [30]. We used the full projected exposure of 3.6 × 1021
p.o.t (protons on target) expected after six years of runtime
at 700kW beam power. Assuming the same runtime for
neutrino and antineutrino modes, we get 1.8 × 1021 p.o.t for
each mode. Following [31] we considered 5% normalization
error for the signal and 10% error for the background for
appearance and disappearance channels.

DUNE (Deep Underground Neutrino Experiment) [32,
33] is the next generation LBL experiment. Long Base
Neutrino Facility (LBNF) of Fermilab is the source forDUNE.
Near detector of DUNE will be at Fermilab. Liquid Argon
detector of 40 kt to be constructed at Sanford Underground
Research Facility, situated 1300 km from the beam target,
will act as the far detector. DUNE uses the same source as
of NO]A; we will observe beam flux peak at 2.5GeV. We
used DUNE setup give in [34] for our simulations. Since
DUNE is still in its early stages, we used simplified systematic

treatment, i.e., 5% normalization error on signal and 10%
error on the background for both appearance and disappear-
ance spectra. We give experimental details described above in
tabular form in Tables 1 and 2.

Oscillation parameters are estimated from the data by
comparing observed and predicted ]𝑒 and ]𝜇 interaction
rates and energy spectra. GLoBES calculates event rates of
neutrinos for energy bins taking systematic errors, detector
resolutions, MSW effect due to earth’s crust, etc. into account.
The event rates generated for true and test values are used
to plot 𝜒2 contours. GLoBES uses its inbuilt algorithm
to calculate 𝜒2 values numerically considering parameter
correlations as well as systematic errors. In our calculations
we used 𝜒2 as
𝜒2 = #ofbins∑

i=1
∑

En=E1,E2 ...

(OEn,i − (1 + aF + aEn
)TE,i)2

OEn,i
+ a2F𝜎2F

+ a2En𝜎2En

(1)

where OE1,i,OE2,i . . . are the event rates for the ith bin in
the detectors of different experiments, calculated for true
values of oscillation parameters; TEn,i are the expected event
rates for the 𝑖𝑡ℎ bin in the detectors of different experiments
for the test parameter values; aF, aEn

are the uncertainties
associated with the flux and detectormass; and 𝜎𝐹, 𝜎𝐸𝑛 are the
respective associated standard deviations. The calculated 𝜒2
function gives the confidence level in which tested oscillation
parameter values can be ruled out with referenced data.
It provides an excellent preliminary evaluation model to
estimate the experiment performance.

3. Theory

In a 3+1 sterile neutrino model, the flavour and mass
eigenstates are connected through a 4 × 4 mixing matrix. A
convenient parametrization of the mixing matrix is [36]

𝑈 = 𝑅34𝑅24𝑅14𝑅23𝑅13𝑅12. (2)

Here 𝑅𝑖𝑗 and 𝑅𝑖𝑗 represent real and complex 4 × 4 rotation in
the plane containing the 2 × 2 subblock in (i, j) subblock

𝑅2×2𝑖𝑗 = ( 𝑐𝑖𝑗 𝑠𝑖𝑗
−𝑠𝑖𝑗 𝑐𝑖𝑗) 𝑅𝑖𝑗2×2 = ( 𝑐𝑖𝑗 𝑠𝑖𝑗

−𝑠𝑖𝑗∗ 𝑐𝑖𝑗) (3)

where, 𝑐𝑖𝑗 = cos 𝜃𝑖𝑗, 𝑠𝑖𝑗 = sin 𝜃𝑖𝑗, 𝑠𝑖𝑗 = 𝑠𝑖𝑗𝑒−𝑖𝛿𝑖𝑗 , and 𝛿𝑖𝑗 are the
CP phases.

There are three mass-squared difference terms in 3+1
model: Δm221(solar)≃ 7.5 × 10−5eV2, Δm231 (atmospheric)≃2.4 × 10−3eV2, and Δm241(sterile)≃ 1eV2. The mass-squared
difference term towards which the experiment is sensitive
depends on L/E of the experiment. Since SBL experiments
have a very small L/E, sin2(Δ𝑚2𝑖𝑗𝐿/4𝐸) ≃ 0 for Δm221
and Δm231. Δm241 term survives. Hence, SBL experiments
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Table 1: Details of experiments.

Name of Exp NO]A DUNE
Location Minnesota South Dakota
POT(𝑦𝑟−1) 6.0x1020 1.1x1021
Baseline(Far/Near) 812 km/1km 1300 km/500 m
Target mass(Far/Near) 14 kt/290 t 40 kt/8 t
Exposure(years) 6 10
Detector type Tracking Calorimeters LArTPCs

Table 2: Systematic errors associated with NO]A and DUNE.

Name of Exp Rule Normalization error
signal(%) background(%)

NO]A

]𝑒 appearance 5 10
]𝜇 disappearance 2 10
]𝑒 appearance 5 10

]𝜇 disappearance 2 10

DUNE

]𝑒 appearance 5 10
]𝜇 disappearance 5 10
]𝑒 appearance 5 10

]𝜇 disappearance 5 10

depend only on sterile mixing angles and are insensitive
to the CP phases. The oscillation probability, P𝜇𝑒 for LBL
experiments in 3+1 model, after averaging Δm241 oscillations
and neglecting MSW effects, [37] is expressed as sum of the
four terms

𝑃4]𝜇𝑒 ≃ 𝑃1 + 𝑃2 (𝛿13) + 𝑃3 (𝛿14 − 𝛿24)
+ 𝑃4 (𝛿13 − (𝛿14 − 𝛿24)) . (4)

These terms can be approximately expressed as follows:

𝑃1 = 12 sin22𝜃4]𝜇𝑒 + [𝑎2sin22𝜃3]𝜇𝑒 − 14sin22𝜃13sin22𝜃4]𝜇𝑒]
⋅ sin2Δ 31 + [𝑎2𝑏2 − 14 sin22𝜃12
⋅ (cos4𝜃13sin22𝜃4]𝜇𝑒 + 𝑎2sin22𝜃3]𝜇𝑒)] sin2Δ 21,

(5)

𝑃2 (𝛿13) = 𝑎2𝑏 sin 2𝜃3]𝜇𝑒 (cos 2𝜃12 cos 𝛿13sin2Δ 21 − 12
⋅ sin 𝛿13 sin 2Δ 21) ,

(6)

𝑃3 (𝛿14 − 𝛿24) = 𝑎𝑏 sin 2𝜃4]𝜇𝑒cos2𝜃13 [cos 2𝜃12
⋅ cos (𝛿14 − 𝛿24) sin2Δ 21 − 12 sin (𝛿14 − 𝛿24)
⋅ sin 2Δ 21] ,

(7)

𝑃4 (𝛿13 − (𝛿14 − 𝛿24)) = 𝑎 sin 2𝜃3]𝜇𝑒 sin 2𝜃4]𝜇𝑒 [cos 2𝜃13
⋅ cos (𝛿13 − (𝛿14 − 𝛿24)) sin2Δ 31 + 12
⋅ sin (𝛿13 − (𝛿14 − 𝛿24)) sin 2Δ 31 − 14 sin22𝜃12
⋅ cos2𝜃13 cos (𝛿13 − (𝛿14 − 𝛿24)) sin2Δ 21] ,

(8)

with the parameters defined as

Δ 𝑖𝑗 ≡ Δ𝑚2𝑖𝑗𝐿4𝐸 , a function of baseline (L)
and neutrino energy (E)

𝑎 = cos 𝜃14 cos 𝜃24,
𝑏 = cos 𝜃13 cos 𝜃23 sin 2𝜃12,
sin 2𝜃3]𝜇𝑒 = sin 2𝜃13 sin 𝜃23,
sin 2𝜃4]𝜇𝑒 = sin 2𝜃14 sin 𝜃24.

(9)

The CP phases introduced due to sterile neutrinos persist
in the P𝜇𝑒 even after averaging out Δm241 lead oscillations.
Last two terms of (4) give the sterile CP phase dependence
terms. P3(𝛿14 − 𝛿24) depends on the sterile CP phases 𝛿14 and𝛿24, while P4 depends on a combination of 𝛿13 and 𝛿14 − 𝛿24.
Thus, we expect LBL experiments to be sensitive to sterile
phases. We note that the probability P𝜇𝑒 is independent 𝜃34.
One can see that 𝜃34 will effect P𝜇𝑒 if we consider earth
mass effects. Since matter effects are relatively small for
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Figure 1:The oscillation probability P𝜇𝑒 as a function of energy.The top (bottom) panel is NO]A (DUNE).The bands correspond to different
values of 𝛿14, ranging from -180∘ to 180∘ when 𝛿24 = 0∘. Inside each band, the probability for 𝛿14 = 90∘ (𝛿14 = -90∘) case is shown as the solid
(dashed) line. The left (right) panel corresponds to neutrinos (antineutrinos).

NO]A and DUNE, their sensitivity towards 𝜃34 is negligible.
The amplitudes of atmospheric-sterile interference term (8)
and solar-atmospheric interference term (6) are of the same
order. This new interference term reduces the sensitivity of
experiments to the standard CP phase (𝛿13).

In Figure 1, we plot the oscillation probability (P𝜇𝑒) as
a function of energy while varying 𝛿14 (-180∘ to 180∘) and
keeping 𝛿24 = 0 for the three best-fit values of latest NO]A
results [35], i.e., NH-LO-1.48𝜋[𝛿13], NH-HO-0.74𝜋, and IH-
HO-1.48𝜋, where HO implies sin2𝜃23 = 0.62 and LO implies
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Figure 2:The oscillation probability P𝜇𝑒 as a function of energy.The top (bottom) panel is NO]A (DUNE).The bands correspond to different
values of 𝛿24, ranging from -180∘ to 180∘when 𝛿14 = 0∘. Inside each band, the probability for 𝛿24 =90∘ (𝛿24 = -90∘) case is shown as solid (dashed)
line.The left (right) panel is for neutrinos (antineutrinos).

sin2𝜃23 = 0.40. For the flux peak of NO]A, E ≈ 2GeV,
we observe a degeneracy between all best-fit values due to
the presence of 𝛿14 band for neutrino case, while only NH-
HO and IH-HO bands overlap in antineutrino case. We see
that 𝛿14 phase decreases both octant and hierarchy resolution
capacity for neutrino case and only mass hierarchy resolution

capacity for antineutrino case. The second row plots P𝜇𝑒
for DUNE at baseline 1300 km. We observe smaller overlap
between bands compared to NO]A. Thus, the decrease of
degeneracy resolution capacity for DUNE is less than NO]A.
Similarly we plot P𝜇𝑒 while varying 𝛿24(-180∘ to 180∘) in
Figure 2 and keeping 𝛿14 = 0∘. We see that 𝛿24 has similar
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Table 3: Oscillation parameters considered in numerical analysis. The sin2𝜃23 and 𝛿13 are taken from latest NO]A results [35].

Parameter True value Marginalization Range
sin2𝜃12 0.304 Not Marginalized
sin22𝜃13 0.085 [0.075,0.095]
sin2𝜃23 0.623(HO),0.404(LO) [0.32,0.67]
sin2𝜃14 0.025 Not Marginalized
sin2𝜃24 0.025 Not Marginalized
sin2𝜃34 0.025 Not Marginalized𝛿13 135(NH-HO),-90(NH-LO,IH) [-180,180]𝛿14 [-180,180] [-180,180]𝛿24 [-180,180] [-180,180]Δ𝑚221 7.50 × 10−5 eV2 Not MarginalizedΔ𝑚231(NH) 2.40 × 10−3 eV2 Not MarginalizedΔ𝑚231(IH) −2.33 × 10−3 eV2 Not MarginalizedΔ𝑚241 1 eV2 Not Marginalized

effect to that of 𝛿14; the only change is reversal of 𝛿24 band
extrema; i.e., 𝛿24 = −90∘ gives the same result as 𝛿14 = 90∘ and
vice versa.This can be explained using (4) in whichwe see 𝛿14
and 𝛿24 are always together with opposite signs. Overall from
the probability plots, we observe that the addition of new
CP phases decreases octant and mass hierarchy resolution
capacities.

In the next section, we explore how parameter degenera-
cies are affected in the 3+1 model and the extent to which
these degeneracies can be resolved in future runs of NO]A
and DUNE.

4. Results for NO^A and DUNE

We explore allowed regions in sin2𝜃23-𝛿𝑐𝑝 plane from NO]A
and DUNE simulation data with different runtimes, consid-
ering latest NO]A results as true values. Using combined
analysis of the disappearance and appearance data, NO]A
reported preferred solutions [35] at normal hierarchy (NH)
with two degenerate best-fit points: one in the lower octant
(LO) and 𝛿𝑐𝑝 = 1.48𝜋 and the other in higher octant (HO)
and 𝛿𝑐𝑝 = 0.74𝜋. Another solution of inverted hierarchy (IH),
0.46𝜎 away from best fit, is also reported. Table 3 shows true
values of oscillation parameters and their marginalization
ranges we used in our simulation. By studying the allowed
regions, we understand the extent to which future runs of
NO]A and DUNEwill resolve these degeneracies, if the best-
fit values are true values.

In the first row of Figure 3, we show allowed areas for
NO]A[3+0]. In first plot of first row, we show 90% C.L
allowed regions for true values of 𝛿13 = 135∘ and 𝜃23 =52∘ and normal hierarchy. We plot test values for both NH
and IH, of 3 and 3+1 neutrino models. We observe that
introducing sterile neutrino largely decreases the precision of𝜃23.TheWO-RH region, for 3] case confined between 45∘ and−180∘ of 𝛿13, confines the whole 𝛿13 region for 4] case. The
WH-RO region of 3] case doubles, covering the entire region
of 𝛿13 for 4] case.The 3+1model also introduces a small WH-
WO region, which was absent in 3]model. In the second plot

of first row (true value 𝛿13 = −90∘, 𝜃23 = 40∘ and normal
hierarchy), for the 3] case, we see RH-RO region excluding45∘ to 150∘ of 𝛿13, while RH-WO region covers the whole
of the 𝛿13 region. In 3+1 model, both RH-RO and RH-WO
regions cover the whole of the 𝛿13 region. WH-RO solution
occupies a small region for 3] case, covering half of 𝛿13 region
for 4] case.WH-WO region covers thewhole of the 𝛿13 region
for 4] case. In the third plot of first row, true values are taken
as 𝛿13 = −90∘, 𝜃23 = 52∘ and inverted hierarchy. The RH-RO
region covers the entire range of 𝛿13 for both 3] and 4] case,
whereas RH-WO region almost doubles from 3] case to 4]
case. A small range of 𝛿13 excluded fromWH-RO for 3] case
is covered in 4] case. WH-WO region of 3] case excludes 60∘
to 150∘ of 𝛿13 while full 𝛿13 range is covered for 4] case.

In the second rowof the figure, we plot allowed regions for
NO]A[3+1]. We take true values as best-fit points obtained
by NO]A. We observe an increase in precision of parameter
measurement, due to an increase in statistics, from added 1 yr
of antineutrino run. In the first plot of the second row, the
RH-RO octant region covers entire 𝛿13 range for both 3] and
4] case. RH-WO region includes −180∘ to 45∘ of 𝛿13 for 3]
case, while the whole range of 𝛿13 is covered in 4] case. A
slight increase in the area of WH-RO is observed form 3] to
4] case. 4] introducesWH-WOregionwhichwas resolved for
3] case. In the second plot, RH-RO region allows full range
of 𝛿13 for 4] case, while it was restricted to lower half of CP
range in 3] case. We see that WH-RO solution, which was
resolved in 3] case, is reintroduced in 4] case. We also see a
slight increase in the size of WH-WO solution from 3] to 4].
In third plot, RH-RO region covers the whole CP range for
4]while 35∘ to 125∘ of 𝛿13 are excluded in 3] case.The almost
resolved RH-WOsolution for 3] doubles for 4] case.WH-RO
and WH-WO cover the entire region of 𝛿13 for 4] case.

In the third row,we show allowed regions forNO]A[3+3].
In the first plot, it can be seen that small area of RH-WO
in case of 3] now covers the whole of 𝛿13 region for 4]
case. While the 3] case has WH-W𝛿13 degeneracy, 4] case
introduces equal sizedWH-WO-W𝛿13 degeneracy. In second
plot, for 3] case most of 𝛿13 values above 0∘ are excluded, but
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Figure 3: Contour plots of allowed regions in the test plane, 𝜃23 versus 𝛿13, at 90% C.I with top, middle, and bottom rows for NO]A runs of3 + 0, 3 + 1, and 3 + 3 years, respectively.

for 4] case we see that contour covers the whole of 𝛿13 range.
Already present small area of RH-WO of 3] is also increased
for 4] case. 4] case also introduces a small region of WH
solutions which were not present in 3] case. In the third plot,

we see that 4] introduces RH-WO region of the almost equal
size of RH-RO region of 3] case.Weobserved a slight increase
in WH-RO region for 4] over 3] case, while the WH-WO
region almost triples for 4] case.
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Figure 4: Contour plots of allowed regions in the test plane 𝜃23 versus 𝛿13 at 99% C.L with top, middle, and bottom rows for DUNE runs of1 + 0, 1 + 1 years and DUNE[1 + 1]+NO]A[3 + 3], respectively.
In Figure 4, we show allowed parameter regions for

DUNE experiment for different runtimes. DUNE, being the
next generation LBL experiment, is expected to have excellent
statistics. Hence, we plot 99% C.L regions for DUNE. In the

first row of Figure 4, we show 99% C.L for DUNE[1+0]. In
the first plot, RH-RO region covers the entire 𝛿13 range for
both 3] and 4] case. The RH-WO region which covers only
lower half of 𝛿13 region for 3] case covers the whole range
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Figure 5: Contour plots of allowed regions in the test plane 𝜃23 versus 𝛿13 at 99% C.L with top and bottom rows for DUNE[5 + 5] and
NO]A[3 + 3] + DUNE[5 + 5], respectively.

for 4] case. A small region of WH is also observed. In the
second plot we see that all WH solutions are resolved. RH-
WO covers the whole range of 𝛿13 for both 3] and 4] case.
RH-RO solutions exclude 0∘ to 155∘ of 𝛿13 for 3] case, while20∘ to 100∘ of 𝛿13 are excluded for 4] case. In third plot, we see
that 4] case extends RH-RO to the whole range of 𝛿13 while30∘ to 140∘ of 𝛿13 were excluded for 3] case. We can see that
DUNE clearly has better precision than NO]A experiment.
In the second row, we show allowed regions for DUNE[1+1].
We see theWHsolutions are resolved for both 3] and 4] cases
for all the best-fit values. In the first plot, 4] case introduces
RH-WO solution of similar size as RH-RO region of 3] case.
In the second plot, there is no considerable change in 4],
compared to 3] case for RH-RO region, while RH-WOoctant
is approximately doubled for 4] case compared to 3] case.
In the third plot, 4] case introduces small region of RH-
WO which covers −45∘ to −170∘ of 𝛿13. In the third row, we
combine statistics of DUNE[1+1] and NO]A[3+3]. There is
a small improvement in precision from the combined result
over the result from DUNE[1+1] alone. In the first plot, we

see that a small RH-WO region is introduced by 4] case. In
the second plot, there is no considerable change between 3]
and 4] case for RH-RO region, while RH-WO octant almost
doubles over 3] case for 4] case. In the third plot, 4] case
introduces small region of RH-WO which covers −35∘ to−160∘ of 𝛿13.

In Figure 5, we show allowed parameter regions for
DUNE experiment, at 99% C.L for DUNE[5+5]. We see
that WH regions completely disappear for all the true value
assumptions. In the first plot, RH-RO region covers a small𝛿13 range for both 3] and 4] case indicating high precision
measurement capacity of DUNE. We see that 𝛿13 range for
4] case is approximately doubled as compared to the 3]
case. A small region of RH-WO is observed for 4] case. In
the second plot, RH-RO region covers small 𝛿13 range of
equal area for both 3] and 4] case. A small region of RH-
WO is observed for 4] case. In the third plot, the RH-WO
solution is resolved. There is an increase in precision due
to an increase in statistics. DUNE[5+5] clearly has a better
precision compared to the NO]A[3+3] experiment. In the
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second row, we combine full run of NO]A and DUNE to
check their degeneracy resolution capacity.TheWHsolutions
are resolved for both 3] and 4] cases for all the best-fit
values. In the first plot, RH-WO solution is almost resolved
for 4] case. In the second plot, RH-RO region covers small𝛿13 range of equal area for both 3] and 4] case. A small
region of RH-WO is observed for 4] case.We observe a slight
improvement in degeneracy resolution, on consideration
of combined statistics of full run DUNE and NO]A, over
DUNE[5+5].

5. Conclusions

We have discussed how the presence of a sterile neutrino
will affect the physics potential of the proposed experiment
DUNE and future runs of NO]A, in the light of latest NO]A
results [35]. The best-fit parameters reported by NO]A still
contain degenerate solutions. We attempt to see the extent to
which these degeneracies could be resolved in future runs for
the 3+1 model. Latest NO]A best-fit values are taken as our
true values. First, we show the degeneracy resolution capacity,
for future runs of NO]A.We conclude that NO]A[3+3] could
resolve WH-WO solutions for first two true value cases, at
90% C.L for 3] case, but not for 4] case. DUNE[1+1] could
resolve WH and RH-W𝛿𝑐𝑝 solutions for both 3] and 4] case.
WO degeneracy is resolved for 3] case at 99% C.L except
for small RH-WO region for the second case of true values.
DUNE[1+1] combined with NO]A[3+3] shows increased
sensitivity towards degeneracy resolution. Finally, for the full
planned run of DUNE[5+5], all the degeneracies are resolved
at 99% C.L for 3] case while a tiny region of WO lingers
on for 4] case. For combined statistics of DUNE[5+5] and
NO]A[3+3], we observe that all the degeneracies are resolved
at 99% C.L for both 3] and 4] case except for the NH-LO
case. Thus, we conclude that NO]A and DUNE experiments
together can resolve all the degeneracies at 99% C.L even in
the presence of sterile neutrino, if one of the current best-fit
values of NO]A is the true value.
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In the present work, the mass spectra of the bound states of heavy quarks cc, bb, and 𝐵𝑐 meson are studied within the framework of
the nonrelativistic Schrödinger’s equation. First, we solve Schrödinger’s equation with a general polynomial potential by Nikiforov-
Uvarov (NU) method. The energy eigenvalues for any L- value is presented for a special case of the potential. The results obtained
are in good agreement with the experimental data and are better than previous theoretical studies.

1. Introduction

The study of quarkonium systems provides a good under-
stating of the quantitative description of quantum chro-
modynamics (QCD) theory, the standard model and par-
ticle physics [1–7]. The quarkonia with a heavy quark
and antiquark and their interaction are well described by
Schrödinger’s equation. The solution of this equation with a
spherically symmetric potentials is one of the most impor-
tant problems in quarkonia systems [8–11]. These potentials
should take into account the two important features of the
strong interaction, namely, asymptotic freedom and quark
confinement [2–6].

In the present work, an interaction potential in the quark-
antiquark bound system is taken as a general polynomial
to get the general eigenvalue solution. In the next step,
we chose a specific potential according to the physical
properties of the system. Several methods are used to solve
Schrödinger’s equation. One of them is the Nikiforov-Uvarov
(NU) method [12–14], which gives asymptotic expressions
for the eigenfunctions and eigenvalues of the Schrödinger’s
equation. Hence one can calculate the energy eigenstates for
the spectrum of the quarkonia systems [12–15].

The paper is organized as follows: In Section 2, the
Nikiforov-Uvarov (NU) method is briefly explained. In Sec-
tion 3, the Schrödinger equation with a general polynomial

potential is solved by the Nikiforov-Uvarov (NU) method. In
Section 4, results and discussion are presented. In Section 5,
the conclusion is given.

2. The Nikiforov-Uvarov (NU) Method [12–15]

The Nikiforov-Uvarov (NU) method is based on solving the
hypergeometric-type second-order differential equation.

Ψ̈ (𝑠) + 𝜏 (𝑠)𝜎 (𝑠) Ψ̇ (𝑠) + �̃� (𝑠)𝜎2 (𝑠)Ψ (𝑠) = 0. (1)

Here 𝜎(𝑠) and �̃�(𝑠) are second-degree polynomials, 𝜏(𝑠) is
a first-degree polynomial, and 𝜓(s) is a function of the
hypergeometric-type.

By taking Ψ(𝑠) = 𝜑(𝑠)Υ(𝑠) and substituting in equation
(1), we get the following equation

Ϋ (𝑠) + [2 �̇� (𝑠)𝜑 (𝑠) + 𝜏 (𝑠)𝜎 (𝑠)] Υ (𝑠)
+ [�̈� (𝑠)𝜑 (𝑠) + �̇� (𝑠)𝜑 (𝑠) 𝜏 (𝑠)𝜎 (𝑠) + �̃� (𝑠)𝜎2 (𝑠)] Υ (𝑠) = 0.

(2)

7

http://orcid.org/0000-0003-0223-0646
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7269657


By taking

2 �̇� (𝑠)𝜑 (𝑠) + 𝜏 (𝑠)𝜎 (𝑠) = 𝜏 (𝑠)𝜎 (𝑠) ,
�̇� (𝑠)𝜑 (𝑠) = 𝜋 (𝑠)𝜎 (𝑠)

(3)

we get

𝜏 (𝑠) = 𝜏 (𝑠) + 2𝜋 (𝑠) , (4)

where both 𝜋(𝑠) and 𝜏(s) are polynomials of degree at most
one.

Also we one can take

�̈� (𝑠)𝜑 (𝑠) + �̇� (𝑠)𝜑 (𝑠) 𝜏 (𝑠)𝜎 (𝑠) + �̃� (𝑠)𝜎2 (𝑠) = 𝜎 (𝑠)𝜎2 (𝑠) (5)

where

�̈� (𝑠)𝜑 (𝑠) = [ �̇� (𝑠)𝜑 (𝑠)]
. + [�̇� (𝑠)𝜑 (𝑠)]

2 = [𝜋 (𝑠)𝜎 (𝑠)]
. + [𝜋 (𝑠)𝜎 (𝑠)]

2

(6)

And

𝜎 (𝑠) = �̃� (𝑠) + 𝜋2 (𝑠) + 𝜋 (𝑠) [𝜏 (𝑠) − �̇� (𝑠)]
+ �̇� (𝑠) 𝜎 (𝑠) . (7)

So equation (2) becomes

Ϋ (𝑠) + 𝜏 (𝑠)𝜎 (𝑠)Υ (𝑠) + 𝜎 (𝑠)𝜎2 (𝑠)Υ (𝑠) = 0. (8)

An algebraic transformation fromequation (1) to equation (8)
is systematic. Hence one can divide 𝜎(𝑠) by 𝜎(𝑠) to obtain a
constant �; i.e.,

𝜎 (𝑠) = � 𝜎 (𝑠) . (9)

Equation (8) can be reduced to a hypergeometric equation in
the form

𝜎 (𝑠) Ϋ (𝑠) + 𝜏 (𝑠) Υ (𝑠) + �Υ (𝑠) = 0. (10)

Substituting from equation (9) in equation (7) and solving the
quadratic equation for 𝜋(𝑠), we obtain

𝜋2 (𝑠) + 𝜋 (𝑠) [𝜏 (𝑠) − �̇� (𝑠)] + �̃� (𝑠) − 𝑘𝜎 (𝑠) = 0, (11)

where

𝑘 = � −�̇� (𝑠) . (12)

𝜋 (𝑠) = �̇� (𝑠) − 𝜏 (𝑠)2
± √(�̇� (𝑠) − 𝜏 (𝑠)2 )2 − �̃� (𝑠) + 𝑘𝜎 (𝑠).

(13)

The possible solutions for 𝜋(𝑠)depend on the parameter 𝑘
according to the plus and minus signs of 𝜋(𝑠) [13]. Since 𝜋(s)

is a polynomial of degree at most one, the expression under
the square root has to be the square of a polynomial. In this
case, an equation of the quadratic form is available for the
constant 𝑘. To determine the parameter 𝑘, one must set the
discriminant of this quadratic expression to be equal to zero.
After determining the values of 𝑘 one can find the values of𝜋(𝑠), � 𝑎𝑛𝑑 𝜏(𝑠).

Applying the same systematic way for equation (10), we
get

�𝑛 = −𝑛 ̇𝜏 (𝑠) − 𝑛 (𝑛 − 1)2 �̈� (𝑠) , (14)

where 𝑛 is the principle quantum number.
By comparing equations (12) and (14), we get an equation

for the energy eigenvalues.

3. The Schrödinger Equation with a General
Polynomial Potential

The radial Schrödinger equation of a quark and antiquark
system is

𝑑2𝑄𝑑𝑟2 + [2𝜇ℎ2 (𝐸 − 𝑉) − 𝑙 (𝑙 + 1)𝑟2 ]𝑄 = 0. (15)

We will use a generalized polynomial potential

𝑉 (𝑟) = 𝑚∑
𝑚=0

𝐴𝑚−2𝑟𝑚−2, 𝑚 = 0, 1, 2, 3, 4, . . . (16)

By substituting in equation (15), we get

𝑑2𝑄𝑑𝑟2 + [2𝜇ℎ2 𝐸 − 2𝜇ℎ2
𝑚∑
𝑚=0

𝐴𝑚−2𝑟𝑚−2 − 𝑙 (𝑙 + 1)𝑟2 ]𝑄 = 0. (17)

Let

2𝜇ℎ2 𝐴𝑚−2 = 𝑎𝑚−2,
𝑏−2 = 𝑙 (𝑙 + 1) + 𝑎−2,
𝑏0 = 𝑎0 − 2𝜇ℎ2 𝐸 = 𝑎0 − 𝜖0

(18)

and hence,

𝑑2𝑄𝑑𝑟2 + [
𝑚∑
𝑚=0

𝐴 (𝑎, 𝑏)𝑚−2𝑟𝑚−2]𝑄 = 0, (19)

where

𝑚∑
𝑚=0

𝐴 (𝑎, 𝑏)𝑚−2𝑟𝑚−2
= − [𝑏−2𝑟−2 + 𝑎−1𝑟−1 + 𝑏0 + 𝑎1𝑟 + 𝑎2𝑟2 + 𝑎3𝑟3 + ⋅ ⋅ ⋅] .

(20)
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Let r = 1/x; hence
𝑑2𝑄𝑑𝑟2 = 𝑑𝑑𝑟 (𝑑𝑄𝑑𝑟 ) = 𝑑𝑑𝑥 𝑑𝑥𝑑𝑟 (𝑑𝑄𝑑𝑟 ) = 𝑑𝑑𝑥 (𝑥4 𝑑𝑄𝑑𝑥 )

= 4𝑥3 𝑑𝑄𝑑𝑥 + 𝑥4 𝑑
2𝑄𝑑𝑥2

(21)

And
𝑚∑
𝑚=0

𝐴 (𝑎, 𝑏)𝑚−2 ( 1𝑥)
𝑚−2

= −[𝑏−2𝑥2 + 𝑎−1𝑥 + 𝑏0 + 𝑚∑
𝑚=1

𝑎𝑚 ( 1𝑥)
𝑚] .

(22)

By substituting in equation (19), we get

𝑥4 𝑑2𝑄𝑑𝑥2 + 4𝑥3 𝑑𝑄𝑑𝑥
+ [−𝑏−2𝑥2 − 𝑎−1𝑥 − 𝑏0 − 𝑚∑

𝑚=1

𝑎𝑚 ( 1𝑥)
𝑚]𝑄 = 0.

(23)

We propose the following approximation scheme on the term𝑎𝑚(1/𝑥)𝑚. Let us assume that there is a characteristic radius
(residual radius) 𝑟0 of the quark and antiquark system (which
is the smallest distance between the two quarks where they
cannot collide with each other). This scheme is based on
the expansion of 𝑎𝑚(1/𝑥)𝑚 in a power series around 𝑟0, i.e.,
around 𝛿 = 1/𝑟0 in the x-space, up to the second order,
so that the 𝑎𝑚, dependent term, preserves the original form
of equation (23). This is similar to Pekeris approximation
[14, 15], which helps to deform the centrifugal potential such
that the modified potential can be solved by the Nikiforov-
Uvarov (NU) method. Setting 𝑦 = (𝑥 − 𝛿) around 𝑦 = 0 (the
singularity), one can expand into a power series as follows

𝑚∑
𝑚=1

𝑎𝑚 ( 1𝑥)
𝑚 = 𝑚∑
𝑚=1

𝑎𝑚(𝑦 + 𝛿)𝑚 =
𝑚∑
𝑚=1

𝑎𝑚𝛿𝑚 [1 + 𝑦𝛿]
−𝑚 . (24)

𝑚∑
𝑚=1

𝑎𝑚 ( 1𝑥)
𝑚

≈ 𝑚∑
𝑚=1

[𝑎𝑚𝛿𝑚 − 𝑚𝑎𝑚𝛿𝑚+1 𝑥 + 𝑚 (𝑚 + 1) 𝑎𝑚2𝛿𝑚+2 𝑥2] .
(25)

By substituting from equation (25) in equation (23), dividing
by 𝑥4 where 𝑥 ̸= 0, and rearranging this equation, we get

𝑑2𝑄𝑑𝑥2 + 4𝑥𝑥2 𝑑𝑄𝑑𝑥 + 1𝑥4 [−(𝑏0 +
𝑚∑
𝑚=1

𝑎𝑚𝛿𝑚)

+ ( 𝑚∑
𝑚=1

𝑚𝑎𝑚𝛿𝑚+1 − 𝑎−1)𝑥

− (𝑏−2 + 𝑚∑
𝑚=1

𝑚(𝑚 + 1) 𝑎𝑚2𝛿𝑚+2 )𝑥2]𝑄 = 0.

(26)

We define

(𝑏0 + 𝑚∑
𝑚=1

𝑎𝑚𝛿𝑚) = 𝑞,

( 𝑚∑
𝑚=1

𝑚𝑎𝑚𝛿𝑚+1 − 𝑎−1) = 𝑤,

(𝑏−2 + 𝑚∑
𝑚=1

𝑚(𝑚 + 1) 𝑎𝑚2𝛿𝑚+2 ) = 𝑧

(27)

And, hence, equation (26) becomes

𝑑2𝑄𝑑𝑥2 + (4𝑥𝑥2 ) 𝑑𝑄𝑑𝑥 + 1𝑥4 [−𝑞 + 𝑤𝑥 − 𝑧𝑥2]𝑄 = 0. (28)

Comparing with equation (1), we get

𝜏 = 4𝑥,
𝜎 = 𝑥2,
�̃� = −𝑞 + 𝑤𝑥 − 𝑧𝑥2

(29)

And, by substituting in equation (13), we get

𝜋 (𝑥) = −𝑥 ± √(1 + 𝑘 + 𝑧) 𝑥2 − 𝑤𝑥 + 𝑞. (30)

Now one can obtain the value of the parameter 𝑘, by knowing
that𝜋(𝑥) is a polynomial of degree atmost one and by putting
the discriminant of this expression under the square root
equal to zero.

𝑤2 − 4 (1 + 𝑘 + 𝑧) 𝑞 = 0 → 𝑘 = 𝑤24𝑞 − 𝑧 − 1 (31)

By substituting in equation (30) and taking the negative value
of 𝜋(𝑥), for bound state solutions, one finds that the solution
is in agreement with the free hydrogen atom spectrum,
because of the Coulomb term

𝜋 (𝑥) = −𝑥 − 𝑤2√𝑞𝑥 + √𝑞. (32)

Hence, by substituting in equation (4), we get the following.

𝜏 (𝑥) = [2 − 𝑤
√𝑞]𝑥 + 2√𝑞.,

where (2 − 𝑤
√𝑞) < 0

(33)

Substituting in equation (12), we obtain

�= 𝑘 + �̇� (𝑥) = 𝑤24𝑞 − 𝑤2√𝑞 − 𝑧 − 2. (34)

Using equation (14), we obtain

�𝑛 = −𝑛 [2 − 𝑤
√𝑞] − 𝑛 (𝑛 − 1)

= −2𝑛 + 𝑤
√𝑞𝑛 − 𝑛2 + 𝑛.[5𝑝𝑡] (35)
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Equalizing equations (34) and (35), we get

𝑞 = 𝑤2
4 [√𝑧 + 9/4 + (𝑛 + 1/2)]2 . (36)

By substituting the values of (𝑞, 𝑤, 𝑧 and 𝛿) in equation (36),
we get

𝜖0 = 𝑎0 + 𝑚∑
𝑚=1

𝑎𝑚𝑟0𝑚 − (∑𝑚𝑚=1𝑚𝑎𝑚𝑟0𝑚+1 − 𝑎−1)2
4 [√(𝑙 (𝑙 + 1) + 𝑎−2 + (1/2)∑𝑚𝑚=1𝑚(𝑚 + 1) 𝑎𝑚𝑟0𝑚+2) + 9/4 + (𝑛 + 1/2)]2

. (37)

Equation (37) is the desired equation of the energy eigen-
values in spherical symmetric coordinates with a general
polynomial radial potential using theNikiforov-Uvarov (NU)
method.

A special case of the above potential was chosen to
describe the 𝑞𝑞 interaction, namely,

𝑉 (𝑟) = 𝑏𝑟 + 𝑎𝑟 + 𝑑𝑟2 + 𝑝𝑟4 (38)

where the first term is the Coulomb potential because the two
quarks are charged and the second term is the linear term in

𝑟 which means that 𝑉(𝑟) continues growing as 𝑟 → ∞. It
is this linear term that leads to quark confinement. One of
the striking properties ofQCDasymptotic freedom is that the
interaction strength between quarks becomes smaller as the
distance between them gets shorter.

The third term is a harmonic term and the fourth is an
anharmonic term and they are responsible also for quark
confinement.

For the above chosen potential, we put 𝑎−2 = 𝑎0 = 0 and𝑚 = 1, 2, 4, and hence

𝜖0 = 𝑎1𝑟0 + 𝑎2𝑟02 + 𝑎4𝑟04 − (𝑎1𝑟02 + 2𝑎2𝑟03 + 4𝑎4𝑟05 − 𝑎−1)2
4 [√𝑙 (𝑙 + 1) + 𝑎1𝑟03 + 3𝑎2𝑟04 + 10𝑎4𝑟06 + 9/4 + (𝑛 + 1/2)]2

. (39)

Now, we can rewrite equation (39) in a different form which
depends on the parameters of the potential as follows

𝐸 = 𝑎𝑟0 + 𝑑𝑟02 + 𝑝𝑟04 − (2𝜇/ℎ2) (𝑎𝑟02 + 2𝑑𝑟03 + 4𝑝𝑟05 − 𝑏)2
4 [√(2𝜇𝑎/ℎ2) 𝑟03 + (6𝜇𝑑/ℎ2) 𝑟04 + (20𝜇𝑝/ℎ2) 𝑟06 + 𝑙 (𝑙 + 1) + 9/4 + (𝑛 + 1/2)]2

. (40)

4. Results and Discussion

In this section, we will calculate the spectra for the bound
states of heavy quarks such as charmonium, bottomonium,
and BC meson. To determine the mass spectra in three

dimensions, we use the following relation.

𝑀 = 𝑚𝑞 + 𝑚𝑞 + 𝐸 (41)

By substituting in equation (40), we get

𝑀 = 2𝑚𝑞 + 𝑎𝑟0 + 𝑑𝑟02 + 𝑝𝑟04 − (2𝜇/ℎ2) (𝑎𝑟02 + 2𝑑𝑟03 + 4𝑝𝑟05 − 𝑏)2
4 [√(2𝜇𝑎/ℎ2) 𝑟03 + (6𝜇𝑑/ℎ2) 𝑟04 + (20𝜇𝑝/ℎ2) 𝑟06 + 𝑙 (𝑙 + 1) + 9/4 + (𝑛 + 1/2)]2

. (42)
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It is clear that equation (42) depends on the potential
parameters (𝑎, 𝑏, 𝑑, 𝑝 𝑎𝑛𝑑 𝑟0) which will be obtained from
the experimental data.

In the case of charmonium [Ψ = cc], the rest mass
equation is as follows.

𝑀 = 2𝑚𝑐 + 𝑎𝑟0 + 𝑑𝑟02 + 𝑝𝑟04 − 32.743 ∗ (𝑎𝑟02 + 2𝑑𝑟03 + 4𝑝𝑟05 − 𝑏)2
4 [√32.743𝑎𝑟03 + 98.229𝑑𝑟04 + 327.43𝑝𝑟06 + 𝑙 (𝑙 + 1) + 9/4 + (𝑛 + 1/2)]2 (43)

In the case of bottomonium [� = bb], the rest mass equation
is as follows.

𝑀 = 2𝑚𝑏 + 𝑎𝑟0 + 𝑑𝑟02 + 𝑝𝑟04 − 107.86 ∗ (𝑎𝑟02 + 2𝑑𝑟03 + 4𝑝𝑟05 − 𝑏)2
4 [√107.86 ∗ 𝑎𝑟03 + 323.58 ∗ 𝑑𝑟04 + 1078.6 ∗ 𝑝𝑟06 + 𝑙 (𝑙 + 1) + 9/4 + (𝑛 + 1/2)]2 (44)

And in the case of themeson [B𝑐 = bc], the restmass equation
is as follows.

𝑀 = 𝑚𝑐 + 𝑚𝑏 + 𝑎𝑟0 + 𝑑𝑟02 + 𝑝𝑟04 − 50.24 ∗ (𝑎𝑟02 + 2𝑑𝑟03 + 4𝑝𝑟05 − 𝑏)2
4 [√50.24 ∗ 𝑎𝑟03 + 150.72 ∗ 𝑑𝑟04 + 502.4 ∗ 𝑝𝑟06 + 𝑙 (𝑙 + 1) + 9/4 + (𝑛 + 1/2)]2 (45)

Comparing our theoretical work with the experimental data,
we found that the maximum errors are 0.229% for the
charmonium, 0.0742% for the bottomonium, and 0.00123%
for the BC meson. These may be due to errors in the mea-
surements of the device. The spin can also be taken into
account if one uses relativistic corrections and the appropriate
relativistic Schrödinger’s equation. Our results are shown in
Tables 1, 2, and 3, with a comparison between our results
and those obtained in previous calculations in the literature.
In the charmonium system, the maximum distance where
a quark and antiquark can approach each other is 𝑟0 =0.8043 𝑓𝑚. Similarly the maximum distances in the cases
of the bottomonium system and 𝐵𝐶 meson system are 𝑟0 =0.47 𝑓𝑚 and 𝑟0 = 0.4256 𝑓𝑚, respectively. The positive and
negative signs of the coefficient of the harmonic potential
refer to the direction ofmotion of the oscillation.Thenegative
sign of the coefficient of the Coulomb potential refers to the
charges of the two quarks, but the positive sign refers to the
existence of another negative contribution. The positive and
negative signs of the coefficient of the anharmonic potential
give a correction to the linear potential.

5. Conclusion

The mass spectra of the quarkonia (charmonium, bottomo-
nium, and BC meson) using our potential were studiedwithin
the framework of the nonrelativistic Schrödinger’s equation
by using the Nikiforov-Uvarov (NU) method. In [16, 17], the
authors used an iteration method and the same potential
when 𝑝 = 0. It is found that adding the anharmonic potential
gives a good accuracy and our work is comparable with
them. In [18, 19], the authors used also the same potential
when 𝑎 = 𝑝 = 0. We found that our work gives better
results in comparison with experimental data. In [20, 21,
28, 29], the authors used the same method and the same
potential when 𝑝 = 0. We noticed that our work is in
better agreement with the experimental data. In [22, 23], the
authors used the Cornell potential only and used the same
method. It is found that their results are comparable with
our work. In [24, 25], the authors used the same potential
when 𝑝 = 0 and the same method used in the present
work. We found that our work is comparable with them. In
[22, 23, 30–37] for the mass spectra of 𝑡ℎ𝑒 𝐵𝐶 meson, there is
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Table 1: Mass spectra of charmonium in comparison with other works [𝑟0 = 0.8043 𝑓𝑚, 𝑎 = 3.03857 𝐺𝑒𝑉/𝑓𝑚, 𝑑 =−0.7054 𝐺𝑒𝑉/(𝑓𝑚)2, 𝑏 = −0.49842 𝐺𝑒𝑉.𝑓𝑚, 𝑃 = −0.2379 𝐺𝑒𝑉/(𝑓𝑚)4].
Type present work [16, 17] [18, 19] [20, 21] [22, 23] [24, 25] EXP [26, 27]
1s 3.0969 3.078 3.096 3.096 3.096 3.078 3.0969
1p - 3.415 3.433 3.433 3.255 3.415 -
2s - 4.187 3.686 3.686 3.686 3.581 -
1d 3.6861 3.752 3.676 3.770 3.504 3.749 3.6861
2p 3.7702 4.143 3.910 4.023 3.779 3.917 3.773
3s - 5.297 3.984 4.040 4.040 4.085 -
4s - 6.407 4.150 4.358 4.269 4.589 -
2d - - - 4.096 - 3.078 -
4d 4.160 - - - - - 4.159
1g 4.039 - - - - - 4.039
6d 4.263 - - - - - 4.263

Table 2: Mass spectra of bottomonium in comparison with other works [𝑟0 = 0.47 𝑓𝑚, 𝑎 = 10.7 𝐺𝑒𝑉/𝑓𝑚, 𝑑 = −4.95 𝐺𝑒𝑉/(𝑓𝑚)2, 𝑏 =6.39286 𝐺𝑒𝑉.𝑓𝑚, 𝑃 = 7.1 𝐺𝑒𝑉/(𝑓𝑚)4].
Type present work [16, 17] [18, 19] [28, 29] [22, 23] [24, 25] EXP [26, 27]
1s 9.4600 9.510 9.460 9.460 9.460 9.510 9.4601
1p - 9.612 9.840 9.811 9.916 9.862 -
2s - 10.627 10.023 10.023 10.023 10.038 -
1d - 10.214 10.140 10.161 9.864 10.214 -
2p - 10.944 10.160 10.374 10.114 10.390 -
3s - 11.726 10.280 10.355 10.355 10.655 -
2d 10.02 - - - - - 10.023
4s 10.571 12.834 10.420 10.655 10.567 11.094 10.579
3d 10.358 - - - - - 10.355
6S 11.0198 - - - - - 11.019
5d 10.873 - - - - - 10.876

Table 3: Mass spectra of 𝐵𝐶 𝑚𝑒𝑠𝑜𝑛 in comparison with other works [𝑟0 = 0.4256 𝑓𝑚, 𝑎 = 4.196 𝐺𝑒𝑉/𝑓𝑚, 𝑑 = −2.6064 𝐺𝑒𝑉/(𝑓𝑚)2, 𝑏 =9.5675 𝐺𝑒𝑉.𝑓𝑚, 𝑃 = 6.0631 𝐺𝑒𝑉/(𝑓𝑚)4].
Type present work [30–32] [33, 34] [35–37] [22, 23] EXP [26, 27]
1s 6.227 6.349 6.264 6.270 6.278 6.277
1p 6.287 6.715 6.700 6.699 6.486 -
2s 6.714 6.821 6.856 6.853 6.866 -
1d 6.398 - - - 6.772 -
2p 6.759 7.102 7.108 7.091 6.973 -
3s 7.09 7.175 7.244 7.193 7.181 -
4s 7.386 - - - 7.369 -
2d 6.85 - - - 7.128 -
4d 7.469 - - - - -
1g 6.728 - - - - -

no enough experimental data to comparewith. In conclusion,
comparing with the experimental data, we found that our
results are better than those given by previous theoretical
estimates.
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In this paperwe revisited phenomenological potentials.We studied S-wave heavy quarkonium spectra by two potentialmodels.The
first one is power potential and the second one is logarithmic potential. We calculated spin averaged masses, hyperfine splittings,
Regge trajectories of pseudoscalar and vector mesons, decay constants, leptonic decay widths, two-photon and two-gluon decay
widths, and some allowed M1 transitions. We studied ground and 4 radially excited S-wave charmonium and bottomonium states
via solving nonrelativistic Schrödinger equation. Although the potentials which were studied in this paper are not directly QCD
motivated potential, obtained results agree well with experimental data and other theoretical studies.

1. Introduction

Heavy quarkonium is the bound state of 𝑏𝑏 and 𝑐𝑐 and one
of the most important playgrounds for our understanding
of the strong interactions of quarks and gluons. Quantum
chromodynamics (QCD) is thought to be the true theory of
these strong interactions. QCD is a nonabelian local gauge
field theory with the symmetry group 𝑆𝑈(3). In principle,
one should be able to calculate hadronic properties such as
mass spectrum and transitions by using QCD principles. But
QCD does not readily supply us these hadronic properties.
This challenge can be attributed to the several features that
are not present in other local gauge field theories.

Foremost, being a nonabelian gauge theory, gluons which
are gauge bosons, have color charge and interact among
themselves. Unlike from quantum electrodynamics (QED),
where a photon does not interact with other photon, in
QCD one must consider interactions among gluons. This
nonabelian nature of the theory makes some calculations
complicated, for example, loops in propagators.

There are three other important features of QCD: asymp-
totic freedom, confinement, and dynamical breaking of chiral
symmetry. Asymptotic freedom says that strong interaction
coupling constant, 𝛼𝑠, is a function of momentum transfer.
When the momentum transfer in a quark-quark collision

increases (at short distances), the coupling constant becomes
weaker whereas it becomes larger when momentum transfer
decreases (at large distances). The idea behind confinement
is that, there are no free quarks outside of a hadron; i.e., color
charged particles (quarks and gluons) cannot be isolated out
of hadrons. Flux tube model gives a reasonable explanation
of confinement. When the distance between quark-antiquark
(or quarks) pair increases, the gluon field between a pair of
color charges forms a flux tube (or string) between them
resulting a potential energy which depends linearly on the
distance, 𝑉(𝑟) =∼ 𝜎𝑟 where 𝜎 is the string constant. As
distance increases between quarks, the potential energy can
create new quark-antiquark pairs in colorless forms instead of
a free quark. Up to now, nobody has been able to prove that
confinement from QCD. Lattice QCD calculations simulate
this confinement well and give a value for the string tension
[1]. The last feature of QCD is the dynamical breaking of
chiral symmetry. The QCD Lagrangian with 𝑁 quark flavor
has an exact chiral 𝑆𝑈(𝑁) × 𝑆𝑈(𝑁) symmetry but breaks
down to 𝑆𝑈(𝑁) symmetry because of the nonvanishing
expectation value of QCD vacuum [2, 3]. The Goldstone
bosons corresponding to this symmetry breaking are the
pseudoscalar mesons.

The present aspects of the QCD caused other approaches
to deal with these challenges. QCD sum rules, Lattice QCD,

8

http://orcid.org/0000-0002-6794-0879
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/5961031


and potential models (quark models) are examples of these
approaches. These approaches are nonperturbative since the
strong interaction coupling constant, which should be the
perturbation parameter of QCD is of the order one in low
energies, hence the truncation of the perturbative expansion
cannot be carried out. Since perturbation theory is not appli-
cable, a nonperturbative approach has to be used to study
systems that involve strong interactions. QCD sum rules
and lattice QCD are based on QCD itself whereas in poten-
tial models, one assumes an interquark potential and solves a
Schrödinger-like equation. The advantage of potential model
is that, excited states can be studied in the framework of
potentialmodels whereas inQCD sum rules and latticeQCD,
only the ground state or in some exceptional cases excited
states can be studied.

After the discovery of charmonium (𝑐𝑐) states, potential
models have played a key role in understanding of heavy
quarkonium spectroscopy [4, 5]. These potentials were in
type of Coulomb plus linear confining potential with spin
dependent interactions. The discovery of bottomonium (𝑏𝑏)
states were well described by the potential model picture
which was used in the charmonium case. Heavy quarkonium
spectroscopy was studied since that era with fruitful works
[6–18]. A general review about potential models can be found
in [19, 20] and references therein.

In the potential models, many features such as mass
spectra and decay properties of heavy quarkonium could
be described by an interquark potential in two-body
Schrödinger equation. Interquark potentials are obtained
both from phenomenology and theory. In the phenomeno-
logical method, it is assumed that a potential exist with
some parameters to be determined by fits to the data. In
the theory side, one can use perturbative QCD to determine
the potential form at short distances and use lattice QCD at
long distances [19].These potentials can be classified as QCD
motivated potentials [21–25] and phenomenological poten-
tials [26–31]. The most commonly used phenomenological
potentials are power-law potentials, for example [26] and log-
arithmic potentials, for example [30].The detailed properties
of these type potentials are studied extensively in [29]. All
the potentials which are mentioned here have almost similar
behaviour in the range of 0.1 fm ≤ 𝑟 ≤ 1 fmwhich is charac-
teristic region of charmonium and bottomonium systems [32,
33]. Outside the range, the behaviour of potentials differ. Up
to now, no one was able to obtain a potential which is compat-
ible at the whole range of distances by using QCD principles.

The potential model calculations have been quite suc-
cessful in describing the hadron spectrum. Most of the
phenomenological potentials must satisfy the following con-
ditions: 𝑑𝑉𝑑𝑟 > 0,

𝑑2𝑉𝑑𝑟2 ≤ 0. (1)

It means that static potential is a monotone nondecreasing
and concave function of 𝑟 which is a general property of gauge
theories [34].

The great success of quarkonium phenomenology was
somehow cracked at 2003 after the observation of 𝑋(3872)
[35]. The properties of this exotic particle are not compatible
with the conventional quark model, the reason why it is
named exotic. For example in [36], the authors studied𝑋(3872) near threshold zero in the 𝐷0𝐷∗0 S-wave. There
are other exotic states, 𝑋𝑌𝑍, and the exotic particle zoo is
growing. In this paper we will present some exotic states in
the framework of quark model.

Energy spectra of heavy quarkonium are a rich source of
the information on the nature of interquark forces and decay
mechanisms. The prediction of mass spectrum in accordance
with the experimental data does not verify the validity
of a model for explaining hadronic interactions. Different
potentials can produce reliable spectra with the experimental
data. Thus other physical properties such as decay constants,
leptonic decay widths, radiative decay widths, etc. need to be
calculated.

A specific formof theQCDpotential in thewhole range of
distances is not known. Therefore one needs to use potential
models. In this work we revisited a power-law potential
[26] and a logarithmic potential [30] to study S-wave heavy
quarkonium. These potentials satisfy Eqn. (1), i.e. having
nonsingular behaviour for 𝑟 → 0. For our purposes, it must
be mentioned that power-law and logarithmic potentials
have nice scaling properties when used with a nonrelativistic
Schrödinger equation [19]. We generated S-wave charmo-
nium and bottomonium mass spectrum with the decays and
M1 transitions. At Section 2 we give out theoretical model.
In Sections 3 and 4, we generate S-wave heavy quarkonium
spectrum, decays and transitions. In Section 5 we discuss our
results and in Section 6 we conclude our results.

2. Formulation of the Model

When quark model was proposed, many authors treated
baryons in detail with the harmonic oscillator quark model
by using harmonic oscillator wave functions [37–39].Mesons
comparing to baryons are simpler objects since they are
composites of two quarks. The reason for using harmonic
oscillator wave function is that they form a complete set for a
confining potential [40].

In order to obtain mass spectra, we solved Schrödinger
equation by variational method. The variational method
by using harmonic oscillator wave function gave successful
results for heavy and light meson spectrum [15, 41, 42]. The
procedure for this method is calculating expectation value of
the Hamiltonian via the trial wave function:

𝐸 = ⟨Ψ |𝐻|Ψ⟩⟨Ψ|Ψ⟩ . (2)

Themass of the meson is found by adding two times the mass
of quark to the eigenenergy𝑀 = 2𝑚𝑞 + 𝐸. (3)

The Hamiltonian we consider is

𝐻 = 𝑀 + 𝑝22𝜇 + 𝑉 (𝑟) (4)
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Table 1: Spin-averaged mass spectrum of charmonium (in MeV).

State Power Logarithmic [15] [12]
1S 3067 3067 3067 3117
2S 3701 3655 3667 3684
3S 4054 3980 4121 4078
4S 4306 4204 4513 4407
5S 4504 4376 4866

where 𝑀 = 𝑚𝑞 + 𝑚𝑞, 𝑝 is the relative momentum, 𝜇 is the
reduced mass, and 𝑉(𝑟) is the potential between quarks. The
spectrum can be obtained via solving Schrödinger equation

𝐻Ψ𝑛⟩ = 𝐸𝑛 Ψ𝑛⟩ (5)

with the harmonic oscillator wave function defined as

Ψ𝑛𝑙𝑚 (𝑟, 𝜃, 𝜙) = 𝑅𝑛𝑙 (𝑟) 𝑌𝑙𝑚 (𝜃, 𝜙) . (6)

Here 𝑅𝑛𝑙 is the radial wave function given as

𝑅𝑛𝑙 = 𝑁𝑛𝑙𝑟𝑙𝑒−]𝑟2𝐿𝑙+1/2(𝑛−𝑙)/2 (2]𝑟2) (7)

with the associated Laguerre polynomials 𝐿𝑙+1/2
(𝑛−𝑙)/2

and the
normalization constant

𝑁𝑛𝑙 = √√2]3𝜋 2 ((𝑛 − 𝑙) /2)!]𝑙((𝑛 + 𝑙) /2 + 1)!! . (8)

𝑌𝑙𝑚(𝜃, 𝜙) is the well-known spherical harmonics.
Armed with these, the expectation value of the given

Hamiltonian can be calculated. In the variational method,
one chooses a trial wave function depending on one or more
parameters and then finds the values of these parameters
by minimizing the expectation value of the Hamiltonian. It
is a good tool for finding ground state energies but as well
as energies of excited states. The condition for obtaining
excited states energies is that the trial wave function should be
orthogonal to all the energy eigenfunctions corresponding to
states having a lower energy than the energy level considered.
In (7), ] is treated as a variational parameter and it is
determined for each state by minimizing the expectation
value of the Hamiltonian.

In the following sections we study power-law and loga-
rithmic potentials in order to obtain full spectrum.

3. Mass Spectra of Power-Law and
Logarithmic Potentials

Power-law potential is given by [26]

𝑉(𝑟) = −8.064 GeV + 6.898 GeV 𝑟0.1. (9)

They showed that upsilon and charmonium spectra can be
fitted with that potential. The small power of 𝑟 refers to a
situation in which the spacing of energy levels is independent
of the quark masses. This situation is also valid for the purely
logarithmic potential [30]

𝑉 (𝑟) = −0.6635 GeV + 0.733 GeV ln (𝑟 × 1 GeV) . (10)

At first step we obtained spin averaged mass spectrum
for 𝑐𝑐 and 𝑏𝑏 systems, respectively. The constituent quark
masses are 𝑚𝑐 = 1.8 GeV and 𝑚𝑏 = 5.174 GeV for power-
law potential and 𝑚𝑐 = 1.5 GeV and 𝑚𝑏 = 4.906 GeV
for logarithmic potential. Table 1 shows the charmonium
spectrum and Table 2 shows the bottomonium spectrum.

Since the interquark potential does not contain the spin
dependent part, (2) gives the spin averaged mass for the
corresponding states. The calculated masses agree well with
the available experimental data and with the values obtained
from other theoretical studies. A general potential usually
includes spin-spin interaction, spin-orbit interaction, and
tensor force terms. To obtain whole picture, it is necessary
to consider spin dependent terms within the potential. For𝑙 ≥ 1, there are spin-orbit and tensor force terms which
contribute to the fine structure. For equal mass 𝑚, the spin-
orbit interaction is given by

𝑉𝑆𝑂 = 2 𝛼𝑠𝑚2𝑞𝑟3 (3 (S1 + S2) ⋅ L) (11)

and is responsible for the 𝑃 wave splittings. Again for equal
mass𝑚, the tensor potential is given by

𝑉𝑇 = 43 𝛼𝑠𝑚2𝑞𝑟3 (
3 (S1 ⋅ r) (S2 ⋅ r)𝑟2 − S1 ⋅ S2) . (12)

For 𝑙 = 0, there is spin-spin term which we will consider
in the present work. In the model of the spin averaged mass
spectra discussion, all the spin dependent effects are ignored
and hence it fails to take into account the splittings due to
spin. For example, such splitting exist between the 𝜂𝑐(1S) and𝐽/𝜓 mesons by Δ𝑚 ≃ 110 MeV. These mesons occupy the𝑙 = 0 level. The 𝑐𝑐 in the 𝜂𝑐(1S) have 𝑠 = 0, while in the 𝐽/𝜓,𝑠 = 1. As a result of this, the mass difference should be related
to spin dependent interaction.

3.1. Spin-Spin Interaction. Mass splitting is closely connected
with the Lorentz-structure of the quark potential [45]. The
origin of the spin-spin interaction term lies in the one-gluon
exchange term which is related to 1/𝑟. Spin is proportional
of the magnetic moment of a particle. Magnetic moments
generate short range fields ∼ 1/𝑟3. In the case of heavy
quarkonium systems which are nonrelativistic, wave func-
tions of two particles overlap in a significant amount. This
means that particles are very close to each other. So spin-spin
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Table 2: Spin-averaged mass spectrum of Bottomonium (in MeV).

State Power Logarithmic [15] [12]
1S 9473 9444 9443 9523
2S 10049 10033 9729 10035
3S 10384 10357 10312 10373
4S 10624 10581 10593
5S 10813 10753 10840
6S 10986 10964 11065

Table 3: Charmonium mass spectrum (in MeV). In [18] LP denotes linear potential and SP denotes screened potential.

State Exp. [43] Power Logarithmic [13] [11] [18] LP [18] SP𝜂𝑐(1S) 2984 2980 2954 2979 2982 2983 2984𝜂𝑐(2S) 3639 3624 3555 3623 3630 3635 3637𝜂𝑐(3S) 3983 3887 3991 4043 4048 4004𝜂𝑐(4S) 4240 4117 4250 4384 4388 4264𝜂𝑐(5S) 4441 4294 4446 4690 4459𝐽/𝜓 3097 3096 3104 3097 3090 3097 3097𝜓(2S) 3686 3727 3689 3673 3672 3679 3679𝜓(3S) 4040 4078 4011 4022 4072 4078 4030𝜓(4S) 4328 4233 4273 4406 4412 4281𝜓(5S) 4525 4403 4463 4711 4472

interactions play a significant role in the dynamics. The spin-
spin interaction term of two particles can be written as

𝑉𝑆𝑆 (𝑟) = 32𝜋𝛼𝑠9𝑚𝑞𝑚𝑞 Sq ⋅ Sq𝛿 (r) . (13)

This term can explain 𝑠 wave splittings and has no contri-
bution to 𝑙 ̸= 0 states. Putting this term into Schrödinger
equation we get

𝐸𝐻𝐹 = 32𝜋𝛼𝑠9𝑚𝑞𝑚𝑞 ∫𝑑3𝑟Ψ⋆ (r)Ψ (r) 𝛿 (r) ⟨Sq ⋅ Sq⟩ . (14)

Implementing Dirac-delta function property

∫𝑓 (𝑥) 𝛿 (𝑥) 𝑑𝑥 = 𝑓 (0) , (15)

we obtain

𝐸𝐻𝐹 = 32𝜋𝛼𝑠9𝑚𝑞𝑚𝑞 |Ψ (0)|2 ⟨Sq ⋅ Sq⟩ . (16)

The matrix element of spin products can be obtained via

S1 ⋅ S2 = 12 (S2 − S21 − S22) = 12 (𝑆 (𝑆 + 1) − 32) (17)

so that

⟨Sq ⋅ Sq⟩ = {{{{{
14 , for →𝑆 = 1
−34 , for →𝑆 = 0. (18)

Therefore we obtain hyperfine splittings energy as

𝐸𝐻𝐹 = {{{{{{{
8𝜋𝛼𝑠9𝑚𝑞𝑚𝑞 |Ψ (0)|2 , for →𝑆 = 1

− 8𝜋𝛼𝑠3𝑚𝑞𝑚𝑞 |Ψ (0)|2 , for →𝑆 = 0. (19)

Here Ψ(0) is the wave function at the origin and can be
obtained by the following relation:

|Ψ (0)|2 = 𝜇2𝜋ℎ ⟨𝑑𝑉 (𝑟)𝑑𝑟 ⟩ . (20)

Expectation value is obtained by the wave function given in
(6). S-wave charmonium and bottomonium masses can be
seen in Tables 3 and 4. In this calculation, 𝛼𝑠 is taken to be
0.37 for charmonium and 0.26 for bottomonium [15].

The mass differences are shown in Tables 5 and 6 for
charmonium and bottomonium, respectively.

As can be seen from Tables 3, 4, 5, and 6 our results are
compatible with both experimental and theoretical results.

The Regge trajectories for pseudoscalar and vector
mesons are shown in Figures 1 and 2 for charmonium and
in Figures 3 and 4 for bottomonium.

As can be seen from figures, Regge trajectories show
nonlinear behaviour.

4. Dynamical Properties

4.1. Decay Constants. Leptonic decay constants give infor-
mation about short distance structure of hadrons. In the
experiments this regime is testable since the momentum
transfer is very large. The pseudoscalar (𝑓𝑝) and the vector
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Table 4: Bottomonium mass spectrum (in MeV).

State Exp. [43] Power Logarithmic [14] [18] [44] [16]𝜂𝑏(1S) 9399 9452 9420 9389 9390 9402 9455𝜂𝑏(2S) 9999 10030 10011 9987 9990 9976 9990𝜂𝑏(3S) 10367 10338 10330 10326 10336 10330𝜂𝑏(4S) 10608 10562 10595 10584 10623𝜂𝑏(5S) 10798 10735 10817 10800 10869𝜂𝑏(6S) 11005 10990 11011 10988 11097Υ(1S) 9460 9480 9452 9460 9460 9465 9502Υ(2S) 10023 10055 10040 10016 10015 10003 10015Υ(3S) 10355 10393 10364 10351 10343 10354 10349Υ(4S) 10579 10629 10588 10611 10597 10635 10607Υ(5S) 10865 10818 10759 10831 10811 10878 10818Υ(6S) 11019 11019 11006 11023 10997 11102 10995

Table 5: Mass differences of S-wave charmonium states (in MeV).

State Exp. [43] Power Logarithmic [13] [11] [18] LP [18] SP𝐽/𝜓-𝜂𝑐(1S) 113 116 150 118 108 114 113𝜓(2S)-𝜂𝑐(2S) 47 103 134 50 42 44 42𝜓(3S)-𝜂𝑐(3S) 95 124 31 29 30 26𝜓(4S)-𝜂𝑐(4S) 88 116 23 22 24 17𝜓(5S) - 𝜂𝑐(5S) 84 109 17 21 13
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Figure 1: Regge trajectories of pseudoscalar charmonium in (𝑛,𝑀2)
plane. The polynomial fit is 𝑀2 = −0.397857 n2 + 5.04014 n +4.356 (GeV2) for power potential and 𝑀2 = −0.382143 n2 +4.65786 n + 4.55 (GeV2) for logarithmic potential.

(𝑓V) decay constants are defined, respectively, through the
matrix elements [12]

𝑝𝜇𝑓𝑝 = 𝑖 ⟨0 Ψ𝛾𝜇𝛾5Ψ 𝑝⟩ (21)

and

𝑚V𝑓V𝜖𝜇 = ⟨0 Ψ𝛾𝜇Ψ V⟩ . (22)

In the first relation, 𝑝𝜇 is meson momentum and |𝑝⟩ is
pseudoscalar meson state. In the second relation, 𝑚V is mass,𝜖𝜇 is the polarization vector, and |V⟩ is the state vector of
meson.
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Figure 2: Regge trajectories of vector charmonium in (𝑛,𝑀2) plane.
The polynomial fit is𝑀2 = −0.405 n2 + 5.091 n + 4.986 (GeV2) for
power potential and𝑀2 = −0.403571 n2+4.80643 n+5.316 (GeV2)
for logarithmic potential.

The matrix elements can be calculated by quark model
wave function in the momentum space. The result is

𝑓𝑝 = √ 3𝑚𝑝 ∫ 𝑑3𝑘(2𝜋)3√1 + 𝑚𝑞𝐸𝑘 √1 + 𝑚𝑞𝐸𝑘 (1
− 𝑘2(𝐸𝑘 + 𝑚𝑞) (𝐸𝑘 + 𝑚𝑞))𝜙 (→𝑘)

(23)
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Table 6: Mass differences of S-wave bottomonium states (in MeV).

State Exp. [43] Power Log [14] [18] [44] [16]Υ(1S)-𝜂𝑏(1S) 61 28 32 71 70 63 47Υ(2S)-𝜂𝑏(2S) 24 25 29 29 25 27 25Υ(3S)-𝜂𝑏(3S) 26 26 21 17 18 19Υ(4S)-𝜂𝑏(4S) 21 26 16 13 12Υ(5S)-𝜂𝑏(5S) 20 24 14 11 9Υ(6S)-𝜂𝑏(6S) 14 16 12 9
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Figure 3: Regge trajectories of pseudoscalar bottomonium in(𝑛,𝑀2) plane. The polynomial fit is 𝑀2 = −0.79 n2 + 11.5586 n +79.36 (GeV2) for power potential and 𝑀2 = −0.636071 n2 +10.3054 n + 80.92 (GeV2) for logarithmic potential.

for pseudoscalar meson and

𝑓V = √ 3𝑚V
∫ 𝑑3𝑘(2𝜋)3√1 + 𝑚𝑞𝐸𝑘 √1 + 𝑚𝑞𝐸𝑘 (1

+ 𝑘23 (𝐸𝑘 + 𝑚𝑞) (𝐸𝑘 + 𝑚𝑞))𝜙 (→𝑘)
(24)

for the vector meson [12].
In the nonrelativistic limit, these two equations take a

simple form which is known to be Van Royen andWeisskopf
relation [46] for the meson decay constants

𝑓2𝑝/V = 12 Ψ𝑝/V (0)2𝑚𝑝/V . (25)

The first-order correction which is also known as QCD
correction factor is given by

𝑓2𝑝/V = 12 Ψ𝑝/V (0)2𝑚𝑝/V 𝐶2 (𝛼𝑠) (26)

where 𝐶(𝛼𝑠) is given by [47]

𝐶 (𝛼𝑠) = 1 − 𝛼𝑠𝜋 (Δ𝑝/V − 𝑚𝑞 − 𝑚𝑞𝑚𝑞 + 𝑚𝑞 ln
𝑚𝑞𝑚𝑞) . (27)
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Figure 4: Regge trajectories of vector bottomonium in (𝑛,𝑀2)
plane. The polynomial fit is 𝑀2 = −0.809286 n2 + 11.6401 n +79.812 (GeV2) for power potential and 𝑀2 = −0.7475 n2 +11.1579 n + 79.936 (GeV2) for logarithmic potential.

Here Δ𝑝 = 2 for pseudoscalar mesons and Δ V = 8/3 for
vector mesons. Decay constants are given in Tables 7 and 8
for pseudoscalar and vector mesons, respectively.

4.2. LeptonicDecayWidths. Leptonic decay of a vectormeson
with 𝐽𝑃𝐶 = 1−− quantum numbers can be pictured by the
following annihilation via a virtual photon

𝑉 (𝑞𝑞) → 𝛾 → 𝑒+𝑒−. (28)

This state is neutral and in principle can decay into a different
lepton pair rather than electron-positron pair. The above
amplitude can be calculated by the Van Royen andWeisskopf
relation [46]

Γ (𝑛3S1 → 𝑒+𝑒−) = 16𝜋𝛼2𝑒2𝑞 |Ψ (0)|2𝑚2𝑛
× (1 − 16𝛼𝑠3𝜋 + ⋅ ⋅ ⋅) ,

(29)

where 𝛼 = 1/137 is the fine structure constant, 𝑒𝑞 is the
quark charge, 𝑚𝑛 is the mass of 𝑛3S1 state, and |Ψ𝑝/V(0)| is
the wave function at the origin of initial state. The term in
the parenthesis is the first-order QCD correction factor while⋅ ⋅ ⋅ represents higher corrections. The obtained values for
leptonic decay widths can be found in Tables 9 and 10 for
charmonium and bottomonium, respectively.

72 Particle Physics: Concepts and Applications



Table 7: Pseudoscalar decay constants (in MeV).

State Exp. [43] Power 𝑓𝑝 Power 𝑓𝑝 Logarithmic 𝑓𝑝 Logarithmic 𝑓𝑝 [15] 𝑓𝑝 [15] 𝑓𝑝 [12]𝜂𝑐(1S) 335 ± 75 543 415 578 442 471 360 402𝜂𝑐(2S) 473 362 497 380 374 286 240𝜂𝑐(3S) 330 252 442 338 332 254 193𝜂𝑐(4S) 325 248 412 315 312 239𝜂𝑐(5S) 253 193 387 304𝜂𝑏(1S) 517 431 585 488 834 694 599𝜂𝑏(2S) 479 400 535 447 567 472 411𝜂𝑏(3S) 345 288 504 421 508 422 354𝜂𝑏(4S) 313 261 482 402 481 401𝜂𝑏(5S) 283 236 465 388𝜂𝑏(6S) 208 186 434 374

Table 8: Vector decay constants (in MeV).

State Exp. [43] Power 𝑓V Power 𝑓V Logarithmic 𝑓V Logarithmic 𝑓V [15] 𝑓𝑝 [15] 𝑓𝑝 [12]𝐽/𝜓 335 ± 75 529 363 563 386 462 317 393𝜓(2S) 279 ± 8 463 318 487 334 369 253 293𝜓(3S) 174 ± 18 324 222 436 299 329 226 258𝜓(4S) 319 219 406 279 310 212𝜓(5S) 248 170 382 262 290 199Υ(1S) 708 ± 8 516 402 584 455 831 645 665Υ(2S) 482 ± 10 482 373 535 416 566 439 475Υ(3S) 346 ± 50 350 269 504 393 507 393 418Υ(4S) 325 ± 60 316 243 482 375 481 373 388Υ(5S) 369 ± 93 285 222 464 362 458 356 367Υ(6S) 241 203 442 354 439 341

Table 9: Charmonium leptonic decay widths (in keV). The widths calculated with and without QCD corrections are denoted by Γ𝑙+ 𝑙− andΓ0𝑙+𝑙− .
Power Logarithmic [13] [15] Exp. [43]

State Γ0𝑙+ 𝑙− Γ𝑙+ 𝑙− Γ0𝑙+ 𝑙− Γ𝑙+ 𝑙− Γ0𝑙+𝑙− Γ𝑙+ 𝑙− Γ0𝑙+ 𝑙− Γ𝑙+ 𝑙−𝐽/𝜓 3.435 1.277 3.154 1.173 11.8 6.60 6.847 2.536 5.55 ± 0.14 ± 0.02𝜓(2S) 2.880 1.071 2.362 0.878 4.29 2.40 3.666 1.358 2.33 ± 0.07𝜓(3S) 2.153 0.800 1.888 0.702 2.53 1.42 2.597 0.962 0.86 ± 0.07𝜓(4S) 1.839 0.684 1.642 0.610 1.73 0.97 2.101 0.778 0.58 ± 0.07𝜓(5S) 1.590 0.591 1.551 0.576 1.25 0.70 1.710 0.633

Table 10: Bottomonium leptonic decay widths (in keV). The widths calculated with and without QCD corrections are denoted by Γ𝑙+ 𝑙− andΓ0𝑙+𝑙− .
Power Logarithmic [25] [15] Exp. [43]

State Γ0𝑙+ 𝑙− Γ𝑙+𝑙− Γ0𝑙+ 𝑙− Γ𝑙+ 𝑙− Γ0𝑙+𝑙− Γ𝑙+𝑙− Γ0𝑙+𝑙− Γ𝑙+𝑙−Υ(1S) 0.817 0.456 0.847 0.473 2.31 1.60 1.809 0.998 1.340 ± 0.018Υ(2S) 0.686 0.383 0.709 0.396 0.92 0.64 0.797 0.439 0.612 ± 0.011Υ(3S) 0.610 0.340 0.630 0.352 0.64 0.44 0.618 0.341 0.443 ± 0.008Υ(4S) 0.557 0.311 0.576 0.322 0.51 0.35 0.541 0.298 0.272 ± 0.029Υ(5S) 0.526 0.294 0.535 0.299 0.42 0.29 0.481 0.265 0.31 ± 0.07Υ(6S) 0.492 0.278 0.501 0.282 0.31 0.22 0.432 0.238 0.130 ± 0.030
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4.3. Two-Photon Decay Width. 1S0 states with 𝐽𝑃𝐶 = 0−+
quantum number of charmonium and bottomonium can
decay into two photons. In the nonrelativistic limit, the decay
width for 1S0 state can be written as [48]

Γ (1S0 → 𝛾𝛾) = 12𝜋𝛼2𝑒4𝑞 |Ψ (0)|2𝑚2𝑞 × (1 − 3.4𝛼𝑠𝜋 ) . (30)

The term in the parenthesis is the first-order QCD radiative
correction. The results are listed in Table 11.

4.4. Two-Gluon Decay Width. Two-gluon decay width is
given by [48]

Γ (1S0 → 𝑔𝑔) = 8𝜋𝛼2𝑠 |Ψ (0)|23𝑚2𝑞
× {{{

(1 + 4.8𝛼𝑠𝜋) for 𝜂𝑐(1 + 4.4𝛼𝑠𝜋) for 𝜂𝑏.
(31)

The terms in the parenthesis refer to QCD corrections.
The obtained results are given in Table 12.

4.5. M1 Transitions. M1 (magnetic dipole transition) decay
widths can give more information about spin-singlet states.
Moreover M1 transition rates show the validity of theory
against experiment [11]. Magnetic transitions conserve both
parity and orbital angular momentum of the initial and final
states but in the M1 transitions the spin of the state changes.
M1 width between two S-wave states is given by [51]

Γ (𝑛3S1 → 𝑛1S0 + 𝛾)
= 4𝛼𝑒2𝑞𝐸3𝛾3𝑚2𝑞 (2𝐽𝑓 + 1) ⟨𝑓 𝑗0 (𝑘𝑟2 ) 𝑖⟩


2 , (32)

where 𝐸𝛾 = (𝑀2𝑖 − 𝑀2𝑓)/2𝑀𝑖 is the photon energy and𝑗0(𝑥) is the zeroth-order spherical Bessel function. In the case
of small 𝐸𝛾, spherical Bessel function 𝑗0(𝑘𝑟/2) tends to 1,𝑗0(𝑘𝑟/2) → 1. Thus transitions between the same principal
quantum numbers, 𝑛 = 𝑛, are favored and usually known to
be allowed. In the other case, when 𝑛 ̸= 𝑛 the overlap integral
between initial and final state is 0 and generally designated
as forbidden transitions. The obtained transition rates for the
allowed ones of S-wave charmoniumand bottomonium states
are given in Tables 13 and 14, respectively.

5. Results and Discussion

In the present paper we studied S-wave heavy quarkonium
spectra with two phenomenological potentials. We have
computed spin averaged masses, hyperfine splittings, Regge
trajectories for pseudoscalar and vector mesons, decay con-
stants, leptonic decay widths, two-photon and gluon decay
widths, and allowed M1 partial widths of S-wave heavy
quarkonium states.

In general, most of the quark model potentials tend to
be similar, having a Coulomb term and a linear term. For
example, in [11] they used standard color Coulomb plus
linear scalar form, and also included a Gaussian smeared
contact hyperfine interaction in the zeroth-order potential. In
[13], the authors used a nonrelativistic potential model with
screening effect. In [18] nonrelativistic linear potential and
screened potential, in [14, 16, 44] amodified of nonrelativistic
potential models and in [15] Hulthen potential are used.
Potential models give reliable results with the appropriate
parameters in themodel.Therefore, the shape of the potential
at the limits 𝑟 → 0 and 𝑟 → ∞ have similar behaviours.

Spin averaged mass spectra give idea about the formu-
lation of model since the results are close to experimental
values due to contributions from spin dependent interactions
are small compared to contribution from potential part. If
one ignores all spin dependent interactions, obtained results
under this assumption are thought to be averages over
related spin states for principal quantum number. Including
hyperfine interaction, we obtained the mass spectra for pseu-
doscalar and vector mesons. The obtained spectra for both
charmonium and bottomonium are in good agreement with
the experimentally observed spectra and other theoretical
studies.

Both power and logarithmic potentials produced approx-
imately same mass differences and are in agreement with
experiment for the lowest state in charmonium sector. But
for the highest states, the shift is not compatible with the
references. The reason for this should be the behaviour of
linear part of the potential. In the case of bottomonium sector,
mass differences of both power and logarithmic potentials are
in accord with the given studies except the lowest state.

The fundamental point in the Regge trajectories is that
they can predictmasses of unobserved states. For the hadrons
constituting of light quarks, the Regge trajectories are approx-
imately linear but for the heavy quarkonium case Regge
trajectories can be nonlinear. In the present work, we found
that all Regge trajectories show nonlinear properties.

The decay constants are calculated for pseudoscalar and
vector mesons by equating their field theoretical definition
with the analogous quark model potential definition. This is
valid in the nonrelativistic and weak binding limits where
quark model state vectors form good representations of
the Lorentz group [52, 53]. For pseudoscalar mesons, the
corrected value of power and logarithmic potentials are a few
MeV above than the available experimental data. For the rest
of the pseudoscalar mesons, obtained results are compatible
with other studies. In the case of vector mesons, logarithmic
potential gave higher values than power potential. In the Υ
meson,when the radially states are excited, both twopotential
gave similar results within the error of experimental value.
Computations of the vector decay constant beyond the weak
binding limit can be important in the quark potential model
frame and need more elaboration [12].

Obtained leptonic decay widths are comparable with the
experimental values and other theoretical studies. The QCD
corrected factors are more close to experimental values for
power and logarithmic potential and this can be referred as
the importance of the QCD correction factor in calculating
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Table 11: Two-photon decay widths (in keV). The widths calculated with and without QCD corrections are denoted by Γ𝛾𝛾 and Γ0𝛾𝛾.
Power Logarithmic [15] [8] [12] Exp. [43]

State Γ0𝛾𝛾 Γ𝛾𝛾 Γ0𝛾𝛾 Γ𝛾𝛾 Γ0𝛾𝛾 Γ𝛾𝛾 Γ𝛾𝛾 Γ𝛾𝛾𝜂𝑐(1S) 1.10 0.664 1.450 0.869 11.17 6.668 3.69 7.18 7.2 ± 0.7 ± 0.2𝜂𝑐(2S) 0.987 0.592 1.291 0.774 8.48 5.08 1.4 1.71𝜂𝑐(3S) 0.907 0.543 1.184 0.710 7.57 4.53 0.930 1.21𝜂𝑐(4S) 0.847 0.508 1.105 0.662 0.720𝜂𝑐(5S) 0.801 0.480 1.044 0.620𝜂𝑏(1S) 0.277 0.199 0.277 0.199 0.58 0.42 0.214 0.45𝜂𝑏(2S) 0.212 0.153 0.246 0.177 0.29 0.20 0.121 0.11𝜂𝑏(3S) 0.195 0.142 0.226 0.162 0.24 0.17 0.09 0.063𝜂𝑏(4S) 0.188 0.136 0.211 0.151 0.07𝜂𝑏(5S) 0.176 0.129 0.199 0.143𝜂𝑏(6S) 0.164 0.116 0.182 0.134

Table 12: Two-gluon decay widths (in MeV).The widths calculated with and without QCD corrections are denoted by Γ𝑔𝑔 and Γ0𝑔𝑔.
Power Logarithmic [15] [49] Exp. [43]

State Γ0𝑔𝑔 Γ𝑔𝑔 Γ0𝑔𝑔 Γ𝑔𝑔 Γ0𝑔𝑔 Γ𝑔𝑔 Γ0𝑔𝑔 Γ𝑔𝑔𝜂𝑐(1S) 32.04 50.15 41.93 32.44 50.82 66.68 15.70 26.7 ± 3.0𝜂𝑐(2S) 28.55 44.70 37.32 24.64 38.61 5.08 8.10 14 ± 7𝜂𝑐(3S) 26.22 41.04 34.23 53.59 21.99𝜂𝑐(4S) 24.50 38.35 31.96 50.03𝜂𝑐(5S) 23.15 36.24 30.18 47.24𝜂𝑏(1S) 5.50 7.50 12.82 17.49 13.72 18.80 11.49𝜂𝑏(2S) 4.90 6.69 11.41 15.56 6.73 9.22 5.16𝜂𝑏(3S) 4.50 6.14 10.46 14.28 5.58 7.64 3.80𝜂𝑏(4S) 4.20 5.74 9.77 13.33𝜂𝑏(5S) 3.97 5.42 9.22 12.58𝜂𝑏(6S) 3.62 5.18 8.68 10.86

Table 13: Radiative M1 decay widths of charmonium. In [18] LP stands for linear potential and SP stands for screened potential.

Initial Final Power Logarithmic [15] [18] Exp. [43]𝐸𝛾 (MeV) Γ (keV) 𝐸𝛾 (MeV) Γ (keV) Γ (keV) Γ𝐿𝑃 (keV) Γ𝑆𝑃 (keV) Γ (keV)𝐽/𝜓 𝜂𝑐(1S) 114.9 1.96 113.8 2.83 3.28 2.39 2.44 1.13 ± 0.35𝜓(2S) 𝜂𝑐(2S) 111.5 1.39 101.5 2.01 1.45 0.19 0.19𝜓(3S) 𝜂𝑐(3S) 93.8 1.10 93.8 1.59 0.051 0.088𝜓(4S) 𝜂𝑐(4S) 87.1 0.88 87.1 1.27𝜓(5S) 𝜂𝑐(5S) 83.2 0.74 83.2 1.10

Table 14: Radiative M1 decay widths of bottomonium.

Initial Final Power Logarithmic [10] [44] [16] Exp. [43]𝐸𝛾 (MeV) Γ (eV) 𝐸𝛾 (MeV) Γ (eV) Γ (eV) Γ (eV) Γ (eV) Γ (eV)Υ(1S) 𝜂𝑏(1S) 27.9 0.88 31.9 1.46 5.8 10 9.34Υ(2S) 𝜂𝑏(2S) 24.9 0.62 28.9 1.09 1.4 0.59 0.58Υ(3S) 𝜂𝑏(3S) 25.9 0.54 25.9 0.78 0.8 0.25 0.66Υ(4S) 𝜂𝑏(4S) 20.9 0.37 20.9 0.41Υ(5S) 𝜂𝑏(5S) 19.9 0.32 19.9 0.35Υ(6S) 𝜂𝑏(6S) 14.3 0.29 14.4 0.27
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Table 15: Exotic states. Experimental data are taken from [43] unless stated.The units for mass and strong decays are inMeV and two-photon
decay is in keV.

Mass Strong decay Two-photon decay
Power Logarithmic Experiment Power Logarithmic Experiment Power Logarithmic Experiment𝑋(3940) 3942+7−6 ± 6 37+26−15 ± 8𝜂𝑐(3S) 3983 3887 41.04 53.59 0.543 0.710𝑋(4160) 4191 ± 5 70 ± 10 0.48 ± 0.22 [50]𝜂𝑐(4S) 4240 4117 38.35 50.03 0.508 0.612𝜓(4415) 4421 ± 4 62 ± 20 0.58 ± 0.07𝜂𝑐(5S) 4441 4297 36.24 47.24 0.480 0.620

the decay constants and other short range phenomena using
potential models.
1𝑆0 levels of charmonium and bottomonium states can

decay into two photons or gluons. Especially two- photon
decays of these levels are important for understanding the
accuracy of theoretical models. Obtained results are smaller
than the nonrelativistic widths including the one-loop QCD
correction factor. For example, results of power and logarith-
mic potentials in 𝜂𝑐(1S) are not in accord with experimental
data. The reason of these differences can be due to the static
potential between quarks that we used in the solution of
two-body Schrödinger equation. For higher states, power
and logarithmic potentials results are comparable with other
studies. Two-photon decays are complicated processes such
as pseudoscalar meson decay to two photons is governed by
an intermediate vector meson followed by a meson domi-
nance transition to a photon [12]. These schematic diagrams
must be added to calculations to obtain a whole picture. For
two-gluon decay widths, two phenomenological potentials
gave comparable results with the available experimental data.
Notice that in some cases QCD corrected factor is in accord
with the experimental data whereas in some cases it is not.
The reason for this can be that, there are significant radiative
corrections from three-gluon decays so computing only two-
gluon decay width could not explain the mechanism in all
details.

Finally M1 transitions are calculated. The M1 radiative
decay rates are very sensitive to relativistic effects. Even
for allowed transitions relativistic and nonrelativistic results
differ significantly. An important example is the decay of𝐽/𝜓 → 𝜂𝑐𝛾. The nonrelativistic predictions for its rate are
more than two times larger than the experimental data [10].
In the charmonium sector, the available experimental data
for 𝐽/𝜓 → 𝜂𝑐(1S) is comparable with the power potential
result, while logarithmic potential result is 1 eV higher. In the
bottomonium sector, there is no experimental data available
on M1 transitions. Since photon energies and transition
rates are very small, the detection of these transitions is an
objection. And this can be a reason why no spin-singlet
S-wave levels 𝜂𝑏(𝑛1S0) have been observed yet [10]. The
obtained values for M1 transitions are comparable with the
references.

Some states in the charmonium and bottomonium sector
show properties different from the conventional quarkonium

state. Some examples are 𝑋(3940), 𝑋(4160), and 𝜓(4415).
For 𝑋(3940), there is not much available experimental
data and more is needed. Wang et al. studied two-body
open charm OZI-allowed strong decays of 𝑋(3940) and𝑋(4160) considered as 𝜂𝑐(3S) and 𝜂𝑐(4S), respectively, by
the improved Bethe-Salpeter method combined with the 3P0
[54]. They calculated strong decay width of 𝑋(3940) as Γ =(33.5+18.4−15.3) MeV and 𝑋(4160) as Γ = (69.9+22.4−21.1) MeV where
the experimental values are Γ = (37+26−15 ±8) MeV for𝑋(3940)
and Γ = (70 ± 10) MeV for 𝑋(4160) [43]. They concluded
that 𝜂𝑐(3S) is a good candidate of 𝑋(3940) and 𝜂𝑐(4S) is a
not good candidate of 𝑋(4160) due to larger decay width ofΓ(𝐷𝐷∗)/Γ(𝐷∗𝐷∗) comparing to experimental data. We give
our results comparing to these exotic states in Table 15.

Looking at Table 15, we can deduce that, according to our
model and results, we can assign 𝑋(3940) as 𝜂𝑐(3S),𝑋(4160)
as 𝜂𝑐(4S), and 𝜓(4415) as 𝜂𝑐(5S). To be more accurate,
more data is needed to corroborate whether these states are
conventional quarkonium or not.

6. Conclusions

Quark potential models have been very successful to study on
various properties of mesons. The short distance behaviour
of interquark potential appears to be similar where QCD
perturbation theory can be applied where at large distance
the potential is linear in 𝑟 where nonperturbative methods
are need to be used. The improvements on the potentials
can be made and spin-spin, spin-orbit type interactions can
be added to model to arrive high accuracy. The potential
model approach is a valuable task, which has given to usmany
insights into the nature of both heavy and light quarkonium
physics. Using a relativistic approach together with a model
in which 𝐵𝐵 and 𝐷𝐷 thresholds are taken into account,
detailed analysis can be made on various aspects of heavy
quarkonium.
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We apply the BPS Lagrangian method to derive BPS equations of monopole and dyon in the 𝑆𝑈(2) Yang-Mills-Higgs model,
Nakamula-Shiraishimodels, and their generalized versions.We argue that, by identifying the effective fields of scalar field,𝑓, and of
time-component gauge field, 𝑗, explicitly by 𝑗 = 𝛽𝑓 with 𝛽 being a real constant, the usual BPS equations for dyon can be obtained
naturally. We validate this identification by showing that both Euler-Lagrange equations for 𝑓 and 𝑗 are identical in the BPS limit.
The value of 𝛽 is bounded to |𝛽| < 1 due to reality condition on the resulting BPS equations. In the Born-Infeld type of actions,
namely, Nakamula-Shiraishimodels and their generalized versions, we find a new feature that, by adding infinitesimally the energy
density up to a constant 4𝑏2, with 𝑏 being the Born-Infeld parameter, it might turn monopole (dyon) to antimonopole (antidyon)
and vice versa. In all generalized versions there are additional constraint equations that relate the scalar-dependent couplings of
scalar and of gauge kinetic terms or 𝐺 and 𝑤, respectively. For monopole the constraint equation is 𝐺 = 𝑤−1, while for dyon it is𝑤(𝐺−𝛽2𝑤) = 1−𝛽2 which further gives lower bound to𝐺 as such𝐺 ≥ |2𝛽√1 − 𝛽2|.We also write down the complete square-forms
of all effective Lagrangians.

1. Introduction

Monopole has been known to exist in nonabelian gauge
theory. One of the main developments was given by ’t Hooft
in [1] and in parallel with a work by Polyakov in [2], in which
he showed that monopole could arise as soliton in a Yang-
Mills-Higgs theory, without introducing Dirac’s string [3], by
spontaneously breaking the symmetry of 𝑆𝑂(3) gauge group
into 𝑈(1) gauge group. Later on, Julia and Zee showed that a
more general configuration of soliton called dyon may exist
as well within the same model [4]. Furthermore, the exact
solutions were given by Prasad and Sommerfiled in [5] by
taking some limit where 𝑉 → 0. These solutions were
proved by Bogomolnyi in [6] to be solutions of the first-order
differential equations which turn out to be closely related to
the study of supersymmetric system [7] (in this article, we

shall call the limit 𝑉 → 0 as BPS limit and the first-order
differential equations as BPS equations).

At high energy the Yang-Mills theory may receive contri-
butions from higher derivative terms. This can be realized in
string theory in which the effective action of open string the-
ory may be described by the Born-Infeld type of actions [8].
However, there are several ways in writing the Born-Infeld
action for nonabelian gauge theory because of the ordering
of matrix-valued field strength [8–13]. Further complications
appear when we add Higgs field into the action. One of
examples has been given byNakamula and Shiraishi in which
the action exhibits the usual BPS monopole and dyon [14].
Unfortunately, the resulting BPS equations obviously do not
capture essential feature of the Born-Infeld action; namely,
there is no dependency over the Born-Infeld parameter. In
other examples such as in [15], themonopole’s profile depends
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on the Born-Infeld parameter, but the BPS equations are not
known so far.

In this article, we would like to derive the well-known
BPS equations of monopole and dyon in the 𝑆𝑈(2) Yang-
Mills-Higgs model and their Born-Infeld type extensions,
which we shall call them Nakamula-Shiraishi models, using
a procedure called BPS Lagrangian method developed in
[16]. We then extend those models to their generalized
versions by adding scalar-dependent couplings to each of the
kinetic terms and derive the BPS equations for monopole
and dyon. In Section 2, we will first discuss in detail the BPS
Lagrangian method. In Section 3, we describe how to get
the BPS equations for monopole (dyon) from energy density
of the 𝑆𝑈(2) Yang-Mills-Higgs model using Bogomolny’s
trick. We write explicitly its effective action and effective
actions of the Nakamula-Shiraishi models by taking the ’t
Hooft-Polyakov (Julia-Zee) ansatz for monopole(dyon). In
Section 4, we use the BPS Lagrangian approach to reproduce
the BPS equations formonopole and dyon in the 𝑆𝑈(2)Yang-
Mills-Higgs model and Nakamula-Shiraishi models. Later, in
Section 5, we generalize the 𝑆𝑈(2) Yang-Mills-Higgs model
by adding scalar-dependent couplings to scalar and gauge
kinetic terms and derive the corresponding BPS equations.
We also generalize Nakamula-Shiraishi models in Section 6
and derive their corresponding BPS equations. We end with
discussion in Section 7.

2. BPS Lagrangian Method

In deriving BPS equations of a model, we normally use the
so-called Bogomolny’s trick by writing the energy density
into a complete square form [6]. However, there are several
rigorous methods which have been developed in doing so.
The first one is based on Bogomolny’s trick by assuming the
existence of a homotopy invariant term in the energy density
that does not contribute to Euler-Lagrange equations [17].
The second method called first-order formalism which works
by solving a first integral of themodel, together with stressless
condition [18–20].The third method called On-Shell method
which works by adding and solving auxiliary fields into
the Euler-Lagrange equations and assuming the existence
of BPS equations within the Euler-Lagrange equations [16,
21]. The forth method called First-Order Euler-Lagrange
(FOEL) formalism, which is generalization of Bogomolnyi
decomposition using a concept of strong necessary condition
developed in [22], which works by adding and solving a
total derivative term into the Lagrangian [23] (in our opinion
the procedure looks similar to the On-Shell method by
means that adding total derivative terms into the Lagrangian
is equivalent to introducing auxiliary fields in the Euler-
Lagrange equations. However, we admit that the procedure
is written in a more covariant way). The last method, which
we shall call BPS Lagrangian method, works by identifying
the (effective) Lagrangian with a BPS Lagrangian such that
its solutions of the first-derivative fields give out the desired
BPS equations [16].This method was developed based on the
On-Shell method by one of the authors of this article and it
is much easier to execute compared to the On-Shell method.
We chose to use the BPS Lagrangian method to find BPS

equations of all models considered in this article.Themethod
is explained in the following paragraphs.

In general the total static energy of N-fields system,→𝜙 = (𝜙1, . . . , 𝜙𝑁), with Lagrangian density L, is defined by𝐸static = −∫ 𝑑𝑑𝑥L. Bogomolny’s trick explains that the static
energy can be rewritten as

𝐸static = (∫𝑑𝑑𝑥 𝑁∑
𝑖=1

Φ𝑖 (→𝜙, 𝜕→𝜙)) + 𝐸BPS, (1)

where {Φ𝑖} is a set of positive-semidefinite functions and𝐸BPS is the boundary contributions defined by 𝐸BPS =−∫ 𝑑𝑑𝑥LBPS. Neglecting the contribution from boundary
terms in LBPS, as they do not affect the Euler-Lagrange
equations, configurations that minimize the static energy are
also solutions of the Euler-Lagrange equations and they are
given by {Φ𝑖 = 0} known as BPS equations. Rewriting the
static energy to be in the form of (1) is not always an easy
task. However it was argued in [16] that one does not need
to know the explicit form of (1) in order to obtain the BPS
equations. By realizing that, in the BPS limit, where the BPS
equations are assumed to exist, remaining terms in the total
static energy are in the formof boundary terms,𝐸static = 𝐸BPS.
Therefore we may conclude that BPS equations are solutions
ofL −L𝐵𝑃𝑆 = ∑𝑁𝑖=1Φ𝑖(→𝜙 , 𝜕→𝜙) = 0.

Now let us see in detail what is insideLBPS. Suppose that
in spherical coordinates the system effectively depends on
only radial coordinate 𝑟. As shown by the On-Shell method
on models of vortices [21], the total static energy in the BPS
limit can be defined as𝐸BPS = 𝑄 (𝑟 → ∞) − 𝑄 (𝑟 → 0) = ∫𝑟→∞

𝑟→0
𝑑𝑄, (2)

where 𝑄 is called BPS energy function. The BPS energy
function 𝑄 does not depend on the coordinate 𝑟 explicitly;
however in general it can also depend on 𝑟 explicitly in
accordance with the chosen ansatz. In most of the cases if
we choose the ansatz that does not depend explicitly on
coordinate 𝑟, then we would have 𝑄 ̸= 𝑄(𝑟). Hence, with a
suitable ansatz, we could write 𝑄 = 𝑄(�̃�1, . . . , �̃�𝑁) in which�̃�𝑖 is the effective field of 𝜙𝑖 as a function of coordinate 𝑟 only.
Assume that 𝑄 can be treated with separation of variables

𝑄 ≡ 𝑁∏
𝑖=1

𝑄𝑖 (�̃�𝑖) , (3)

this give us a pretty simple expression of 𝐸BPS, i.e.,
𝐸BPS = ∫ 𝑁∑

𝑖=1

𝜕𝑄𝜕�̃�𝑖 𝑑�̃�𝑖𝑑𝑟 𝑑𝑟, (4)

and we could obtain LBPS in terms of the effective fields and
their first-derivative.

Now we proceed to find the Φ𝑖s from L − L𝐵𝑃𝑆 =∑𝑁𝑖=1Φ𝑖(→𝜙, 𝜕→𝜙). As we mentioned Φ𝑖 must be positive-
semidefinite function and we restrict that it has to be a
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function of
→̃𝜙 and 𝜕𝑟�̃�𝑖 for each 𝑖 = 1, . . . , 𝑁. The BPS

equation Φ𝑖 = 0 gives solutions to 𝜕𝑟�̃�𝑖 as follows:𝜕𝑟�̃�𝑖 = {𝐹(1)𝑖 , 𝐹(2)𝑖 , . . . , 𝐹(𝑚)𝑖 } , (5)

with 𝐹(𝑘)𝑖 = 𝐹(𝑘)𝑖 (→̃𝜙 ; 𝑟) (𝑘 = 1, . . . , 𝑚). Positive-semidefinite
condition fixes 𝑚 to be an even number and further there
must be even number of equal solutions in {𝐹(𝑘)𝑖 }. As an
example if 𝑚 = 2 for all 𝑖, then Φ𝑖 = 0 is a quadratic
equation in 𝜕𝑟�̃�𝑖 and so we will have 𝐹(1)𝑖 = 𝐹(2)𝑖 . The
restriction on Φ𝑖 ≡ Φ𝑖(𝜕𝑟�̃�𝑖) forces us to rewrite the function
L − L𝐵𝑃𝑆 into partitions ∑𝑁𝑖=1Φ𝑖 explicitly. This is difficult
to apply on more general forms of Lagrangian, since there
exists a possibility that there are terms with 𝜕�̃�𝑖𝜕�̃�𝑗 where𝑖 ̸= 𝑗. Another problem is ambiguity in choosing which terms
contain nonderivative of fields that should belong to which
partitions Φ𝑖.

For more general situations, the BPS equations can be
obtained by procedures explained in [16] which we describe
below. On a closer look, we can consider L −LBPS = 0 as a
polynomial equation of first-derivative fields. Seeing it as the
polynomial equation of 𝜕𝑟�̃�1, whose maximal power is𝑚1, its
roots are 𝜕𝑟�̃�1 = {𝐺(1)1 , 𝐺(2)1 , . . . , 𝐺(𝑚1)1 } , (6)

with 𝐺(𝑘)1 = 𝐺(𝑘)1 (→̃𝜙 , 𝜕𝑟�̃�2, . . . , 𝜕𝑟�̃�𝑁; 𝑟) and 𝑘 = 1, . . . , 𝑚1.
Then we haveΦ1 ∝ (𝜕𝑟�̃�1 − 𝐺(1)1 ) (𝜕𝑟�̃�1 − 𝐺(2)1 ) . . . (𝜕𝑟�̃�1 − 𝐺(𝑚1)1 ) . (7)

As we mentioned before here 𝑚1 must be an even number
and to ensure positive-definiteness at least two or more even
number of roots must be equal. This will result in some
constraint equations that are polynomial equations of the
remaining first-derivative fields (𝜕𝑟�̃�2, . . . , 𝜕𝑟�̃�𝑁). Repeate the
previous procedures for 𝜕𝑟�̃�2 until 𝜕𝑟�̃�𝑁 whoseΦ𝑁 isΦ𝑁∝ (𝜕𝑟�̃�𝑁 − 𝐺(1)𝑁 ) (𝜕𝑟�̃�𝑁 − 𝐺(2)𝑁 ) ⋅ ⋅ ⋅ (𝜕𝑟�̃�𝑁 − 𝐺(𝑚𝑁)𝑁 ) , (8)

with 𝑚𝑁 being also an even number. Now all 𝐺(𝑘)𝑁 are only

functions of
→̃𝜙 and equating some of the roots will become

constraint equations that we can solve order by order for each
power series of 𝑟. As an example let us take 𝑁 = 2 and𝑚1, 𝑚2 = 2. Then the constraint 𝐺(1)1 −𝐺(2)1 = 0 can be seen as
a quadratic equation of 𝜕𝑟�̃�2. This give us the last constraint𝐺(1)2 − 𝐺(2)2 = 0. Since the model is valid for all 𝑟, we could
write the constraint as 𝐺(1)2 −𝐺(2)2 = ∑𝑛 𝑎𝑛𝑟𝑛, where all 𝑎𝑛s are
independent of 𝜕𝑟�̃�1 and 𝜕𝑟�̃�2.Then all 𝑎𝑛s need to be zero and
from them we can find each 𝑄𝑖(�̃�𝑖). Then the BPS equations
for 𝜕𝑟�̃�𝑖 can be found.

We can see that this more general method is straightfor-
ward for any Lagrangian. This will be used throughout this

paper, since we will later use some DBI-type Lagrangian that
contains terms inside square root which is not easy to write
the partitions explicitly. In [16], with particular ansatz for the
fields, writing 𝑄 = 2𝜋𝐹(𝑓)𝐴(𝑎) is shown to be adequate
for some models of vortices. Here, we show that the method
is also able to do the job, at least for some known models
of magnetic monopoles and dyons, using the well-known ’t
Hooft-Polyakov ansatz.

3. The ’t Hooft-Polyakov Monopole and
Julia-Zee Dyon

The model is described in a flat (1 + 3)-dimensional space-
time whose Minkowskian metric is 𝜂𝜇] = diag (1, −1, −1, −1).
The standard Lagrangian for BPS monopole, or the 𝑆𝑈(2)
Yang-Mills-Higgs model, has the following form [1, 2]:

Ls = 12D𝜇𝜙𝑎D𝜇𝜙𝑎 − 14𝐹𝑎𝜇]𝐹𝑎𝜇] − 𝑉 (𝜙) , (9)

with 𝑆𝑈(2) gauge group symmetry and 𝜙𝑎, 𝑎 = 1, 2, 3, being
a triplet real scalar field in adjoint representation of 𝑆𝑈(2).
The potential 𝑉 is a function of |𝜙| = 𝜙𝑎𝜙𝑎 which is invariant
under 𝑆𝑈(2) gauge transformations. Here we use Einstein
summation convention for repeated index. The definitions
of covariant derivative and field strength tensor of the 𝑆𝑈(2)
Yang-Mills gauge field are as follows:

D𝜇𝜙𝑎 = 𝜕𝜇𝜙𝑎 + 𝑒𝜖𝑎𝑏𝑐𝐴𝑏𝜇𝜙𝑐, (10a)𝐹𝑎𝜇] = 𝜕𝜇𝐴𝑎] − 𝜕]𝐴𝑎𝜇 + 𝑒𝜖𝑎𝑏𝑐𝐴𝑏𝜇𝐴𝑐], (10b)

with 𝑒 being the gauge coupling and 𝜖𝑎𝑏𝑐 being the Levi-
Civita symbol. The Latin indices (𝑎, 𝑏, 𝑐) denote the “vector
components” in the vector space of 𝑆𝑈(2) algebra with
generators 𝑇𝑎 = (1/2)𝜎𝑎, where 𝜎𝑎 is Pauli’s matrix. The
generators satisfy commutation relation [𝑇𝑎, 𝑇𝑏] = 𝑖𝜖𝑎𝑏𝑐𝑇𝑐
and their trace is tr (𝑇𝑎𝑇𝑏) = (1/2)𝛿𝑎𝑏. With these generators,
the scalar field, gauge field, adjoint covariant derivative, and
field strength tensor can then be rewritten in a compact form,
respectively, as 𝜙 = 𝜙𝑎𝑇𝑎, 𝐴𝜇 = 𝐴𝑎𝜇𝑇𝑎,

D𝜇𝜙 = D𝜇𝜙𝑎𝑇𝑎 = 𝜕𝜇𝜙 − 𝑖𝑒 [𝐴𝜇, 𝜙] , (11a)𝐹𝜇] = 𝐹𝑎𝜇]𝑇𝑎 = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 − 𝑖𝑒 [𝐴𝜇, 𝐴]] . (11b)

These lead to the Lagrangian

Ls = tr (D𝜇𝜙D𝜇𝜙 − 12𝐹𝜇]𝐹𝜇]) − 𝑉 (𝜙) . (12)

Varying (9) with respect to the scalar field and the gauge
field yields

D𝜇 (D𝜇𝜙𝑏) = − 𝜕𝑉𝜕𝜙𝑏 , (13a)

D]𝐹𝑏𝜇] = 𝑒𝜖𝑏𝑐𝑎𝜙𝑐D𝜇𝜙𝑎, (13b)

with additional Bianchi identity

D𝜇�̃�𝑎𝜇] = 0, (14)
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where �̃�𝑎𝜇] = (1/2)𝜖𝜇]𝜅𝜆𝐹𝑎𝜅𝜆. Throughout this paper, we will
consider only static configurations. The difference between
monopole and dyon is whether 𝐴𝑎0 is zero or nonzero,
respectively. For monopole, the Bianchi identity becomes

D𝑖𝐵𝑎𝑖 = 0. (15)

Here 𝐵𝑎𝑖 = (1/2)𝜖𝑖𝑗𝑘𝐹𝑗𝑘 and 𝑖, 𝑗, 𝑘 = 1, 2, 3 are the spatial
indices. For dyon, 𝐴𝑎0 ̸= 0, there are additional equations of
motion for “electric” part since the Gauss law is nontrivial,

D𝑖𝐸𝑏𝑖 = −𝑒𝜖𝑏𝑐𝑎𝜙𝑐D0𝜙𝑎, (16)

where 𝐸𝑎𝑖 = 𝐹𝑎0𝑖.
We could write the energy-momentum tensor 𝑇𝜇] by

varying the action with respect to the space-time metric. The
energy density is then given by 𝑇00 component,𝑇00 = 12 (D0𝜙𝑎D0𝜙𝑎 +D𝑖𝜙𝑎D𝑖𝜙𝑎 + 𝐸𝑎𝑖 𝐸𝑎𝑖 + 𝐵𝑎𝑖 𝐵𝑎𝑖 )+ 𝑉 (𝜙) . (17)

In [5], it is possible to obtain the exact solutions of the Euler-
Lagrange equations in the BPS limit, i.e., 𝑉 = 0, but still
maintaining the asymptotic boundary conditions of 𝜙, and
we define a new parameter 𝛼 such that𝑇00 = 12 (D0𝜙𝑎D0𝜙𝑎 +D𝑖𝜙𝑎D𝑖𝜙𝑎sin2𝛼 + 𝐸𝑎𝑖 𝐸𝑎𝑖+D𝑖𝜙𝑎D𝑖𝜙𝑎cos2𝛼 + 𝐵𝑎𝑖 𝐵𝑎𝑖 ) = 12 ((D0𝜙𝑎)2+ (D𝑖𝜙𝑎 sin 𝛼 ∓ 𝐸𝑎𝑖 )2 + (D𝑖𝜙𝑎 cos 𝛼 ∓ 𝐵𝑎𝑖 )2)± 𝐸𝑎𝑖D𝑖𝜙𝑎 sin 𝛼 ± 𝐵𝑎𝑖D𝑖𝜙𝑎 cos 𝛼.

(18)

The last two terms can be converted to total derivative𝐸𝑎𝑖D𝑖𝜙𝑎 = 𝜕𝑖 (𝐸𝑎𝑖 𝜙𝑎) − (D𝑖𝐸𝑎𝑖 ) 𝜙𝑎 = 𝜕𝑖 (𝐸𝑎𝑖 𝜙𝑎) , (19a)𝐵𝑎𝑖D𝑖𝜙𝑎 = 𝜕𝑖 (𝐵𝑎𝑖 𝜙𝑎) − (D𝑖𝐵𝑎𝑖 ) 𝜙𝑎 = 𝜕𝑖 (𝐵𝑎𝑖 𝜙𝑎) , (19b)

after employing the Gauss law (16) and Bianchi identity (15).
They are related to the “Abelian” electric and magnetic fields
identified in [1], respectively. Since the total energy is 𝐸 =∫𝑑3𝑥𝑇00, the total derivative terms can be identified as the
electric and magnetic charges accordingly

Q𝐸 = ∫𝑑𝑆𝑖𝐸𝑎𝑖 𝜙𝑎, (20a)

Q𝐵 = ∫𝑑𝑆𝑖𝐵𝑎𝑖 𝜙𝑎, (20b)

with 𝑑𝑆𝑖 denoting integration over the surface of a 2-sphere
at 𝑟 → ∞. Therefore the total energy is 𝐸 ≥ ±(Q𝐸 sin 𝛼 +
Q𝐵 cos 𝛼) since the other terms are positive semidefinite. The
total energy is saturated if the BPS equations are satisfied as
follows [24]:

D0𝜙𝑎 = 0, (21a)

D𝑖𝜙𝑎 sin 𝛼 = 𝐸𝑎𝑖 , (21b)

D𝑖𝜙𝑎 cos 𝛼 = 𝐵𝑎𝑖 . (21c)

Solutions to these equations are called BPS dyons; they are
particularly called BPS monopoles for 𝛼 = 0. The energy of
this BPS configuration is simply given by𝐸𝐵𝑃𝑆 = ± (Q𝐸 sin 𝛼 + Q𝐵 cos 𝛼) . (21d)

Adding the constant 𝛼 contained in sin 𝛼 and cos 𝛼 is some-
how a bit tricky. We will show later using BPS Lagrangian
method that this constant comes naturally as a consequence
of identifying two of the effective fields.

Employing the ’t Hooft-Polyakov, together with Julia-Zee,
ansatz [1, 2, 4]

𝜙𝑎 = 𝑓 (𝑟) 𝑥𝑎𝑟 , (22a)

𝐴𝑎0 = 𝑗 (𝑟)𝑒 𝑥𝑎𝑟 , (22b)

𝐴𝑎𝑖 = 1 − 𝑎 (𝑟)𝑒 𝜖𝑎𝑖𝑗 𝑥𝑗𝑟2 , (22c)

where 𝑥𝑎 ≡ (𝑥, 𝑦, 𝑧) and 𝑥𝑖 ≡ (𝑥, 𝑦, 𝑧) as well, denotes the
Cartesian coordinate. Notice that the Levi-Civita symbol 𝜖𝑎𝑖𝑗
in ((22a), (22b), and (22c)) mixes the space-index and the
group-index. Substituting the ansatz ((22a), (22b), and (22c))
into Lagrangian (9) we can arrive at the following effective
Lagrangian:

Ls = −𝑓22 − (𝑎𝑓𝑟 )2 + 𝑗22𝑒2 + (𝑎𝑗𝑒𝑟)2 − (𝑎𝑒𝑟)2
− 12 (𝑎2 − 1𝑒𝑟2 )2 − 𝑉 (𝑓) ,

(23)

where  ≡ 𝜕/𝜕𝑟; otherwise it means taking derivative over the
argument. As shown in the effective Lagrangian above there
is no dependency over angles coordinates 𝜙 and 𝜃 despite the
fact that the ansatz ((22a), (22b), and (22c)) depends on 𝜙 and𝜃.Thus wemay derive the Euler-Lagrange equations from the
effective Lagrangian (23) which are given by

− 1𝑟2 (𝑟2𝑓) + 2𝑎2𝑓𝑟2 = −𝑉 (𝑓) , (24a)

−(𝑟2𝑗)𝑒𝑟2 + 2𝑎2𝑗𝑒𝑟2 = 0, (24b)

𝑎 (𝑎2 − 1)𝑟2 + 𝑎 (𝑒2𝑓2 − 𝑗2) − 𝑎 = 0. (24c)

Later we will also consider the case for generalize Lagrangian
of (9) by adding scalar-dependent couplings to the kinetic
terms as follows [25]:

LG = −14𝑤 (𝜙) 𝐹𝑎𝜇]𝐹𝑎𝜇] + 12𝐺 (𝜙)D𝜇𝜙𝑎D𝜇𝜙𝑎− 𝑉 (𝜙) . (25)
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The equations of motions are now given by

D𝜇 (𝐺 D
𝜇𝜙𝑏) = − 𝜕𝑉𝜕𝜙𝑏 + 12 𝜕𝐺𝜕𝜙𝑏D𝜇𝜙𝑎D𝜇𝜙𝑎− 14 𝜕𝑤𝜕𝜙𝑏𝐹𝑎𝜇]𝐹𝑎𝜇], (26a)

D] (𝑤 𝐹𝑏𝜇]) = 𝑒𝜖𝑏𝑐𝑎𝜙𝑐𝐺D𝜇𝜙𝑎. (26b)

In [25, 26], they found BPS monopole equations and a con-
straint equation 𝐺 = 𝑤−1. Using our method in the following
sections, we obtain the similar BPS monopole equations and
constraint equation. Furthermore, we generalize it to BPS
dyon equations with a more general constraint equation.

There are other forms of Lagrangian for BPS monopole
and dyon which were presented in the Born-Infeld type of
action by Nakamula and Shiraishi in [14]. The Lagrangian
for BPS monopole is different from the BPS dyon. The
Lagrangians are defined such that the BPS equations ((21a),

(21b), (21c), and (21d)) satisfy the Euler-Lagrange equations in
the usual BPS limit. The Lagrangian for monopole and dyon
is given, respectively, by [14]

LNSm = −𝑏2 tr(√1 − 2𝑏2D𝜇𝜙D𝜇𝜙√1 + 1𝑏2𝐹𝜇]𝐹𝜇]
− 1) − 𝑉 (𝜙) , (27)

LNSd = −𝑏2 tr ({1 − 2𝑏2D𝜇𝜙D𝜇𝜙 + 1𝑏2𝐹𝜇]𝐹𝜇]− 14𝑏4 (𝐹𝜇]�̃�𝜇])2 + 4𝑏4 �̃�𝜇]�̃�𝜇𝜆D]𝜙D𝜆𝜙}1/2 − 1)− 𝑉 (𝜙) ,
(28)

with 𝑏2 being the Born-Infeld parameter and the potential𝑉 is taken to be the same as in (9). It is apparent that, even
though𝐸𝑎𝑖 = 0,LNSd ̸=LNSm. Using the ansatz ((22a), (22b),
and (22c)), both Lagrangians can be effectively written as

LNSm = −2𝑏2(√1 + 12𝑏2 (𝑓2 + 2𝑎2𝑓2𝑟2 )√1 + 12𝑏2 (2𝑎2𝑒2𝑟2 + (𝑎2 − 1)2𝑒2𝑟4 ) − 1) − 𝑉(𝑓) , (29)

LNSd = −2𝑏2({{{1 + 12𝑏2 (𝑓2 + 2𝑎
2𝑓2𝑟2 + 2𝑎2𝑒2𝑟2 + (𝑎2 − 1)2𝑒2𝑟4 − 𝑗2𝑒2 − 2𝑎2𝑗2𝑒2𝑟2 )

+ 14𝑏4 (−(−(𝑎2 − 1) 𝑗𝑒2𝑟2 − 2𝑎𝑗𝑎𝑒2𝑟2 )2 + ((𝑎2 − 1)𝑓𝑒𝑟2 + 2𝑎𝑓𝑎𝑒𝑟2 )2)}}}
1/2 − 1) − 𝑉 (𝑓) . (30)

We can see immediately that LNSd(𝑗 = 0) ̸= LNSm.
However, by assuming the BPS equations 𝐵𝑎𝑖 = ±D𝑖𝜙𝑎 is valid
beforehand we would get LNSd = LNSm. Hence from both
Lagrangians, we could obtain the same BPS equations when
we turn off the “electric” part for monopole.

4. BPS Equations in 𝑆𝑈(2) Yang-Mills-Higgs
and Nakamula-Shiraishi Models

Here we will show that the BPS Lagrangian method [16]
can also be used to obtain the known BPS equations for
monopole and dyon in the 𝑆𝑈(2) Yang-Mills model (9) and
the Nakamula-Shiraishi models, (27) and (28). To simplify
our calculations, from here on we will set the gauge coupling
to unity, 𝑒 = 1.
4.1. BPS Monopole and Dyon in 𝑆𝑈(2) Yang-Mills-Higgs
Model. Writing the ansatz ((22a), (22b), and (22c)) in spher-
ical coordinates,𝜙𝑎 ≡ 𝑓 (cos𝜑 sin 𝜃, sin 𝜑 sin 𝜃, cos 𝜃) , (31a)

𝐴𝑎0 ≡ 𝑗 (cos𝜑 sin 𝜃, sin 𝜑 sin 𝜃, cos 𝜃) , (31b)𝐴𝑎𝑟 ≡ (0, 0, 0) , (31c)𝐴𝑎𝜃 ≡ (1 − 𝑎) (sin 𝜑, − cos𝜑, 0) , (31d)𝐴𝑎𝜑 ≡ (1 − 𝑎) sin 𝜃 (cos𝜑 cos 𝜃, sin 𝜑 cos 𝜃, − sin 𝜃) , (31e)

we find that there is no explicit 𝑟 dependent in all fields above.
Therefore we propose that the BPS energy function for the
case of monopole, where 𝑗 = 0, should take the following
form: 𝑄 (𝑎, 𝑓) = 4𝜋𝐹 (𝑓)𝐴 (𝑎) . (32)

Since ∫𝑑3𝑥LBPS = −∫𝑑𝑄, we have the BPS Lagrangian
LBPS = −𝐹𝐴 (𝑎)𝑟2 𝑎 − 𝐹 (𝑓)𝐴𝑟2 𝑓. (33)

Before showing our results, for convenience we define
through all calculations in this article 𝑥 = 𝑓, 𝑦 = 𝑎, 𝑄𝑎 =𝐹𝐴(𝑎), and 𝑄𝑓 = 𝐹(𝑓)𝐴.
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EmployingLs −LBPS = 0, whereLs is (23) andLBPS is
(33), we can consider it as a quadratic equation of either 𝑎 or𝑓. Here we show the roots of 𝑓 (or 𝑥) first which are𝑓±
= 𝑄𝑓 ± √𝑄2𝑓 − 𝑎4 − 2𝑎2 (𝑓2𝑟2 − 1) − 2𝑟2𝑦 (𝑦 − 𝑄𝑎) − 2𝑟4𝑉 − 1𝑟2 . (34)

The two roots will be equal, 𝑓+ = 𝑓−, if the terms inside
the square root is zero, which later can be considered as a
quadratic equation for 𝑎 (or 𝑦) with roots𝑎± = 12𝑄𝑎 ± 12𝑟⋅ √−2𝑎4 + 𝑎2 (4 − 4𝑓2𝑟2) + 𝑄2𝑎𝑟2 + 2𝑄2𝑓 − 4𝑟4𝑉 − 2. (35)

Again, we need the terms inside the square root to be zero
for two roots to be equal, 𝑎+ = 𝑎−. The last equation can be
written in power series of 𝑟,(2𝑄2𝑓 − 2 (𝑎2 − 1)2) + (𝑄2𝑎 − 4𝑎2𝑓2) 𝑟2 − 4𝑉𝑟4 = 0, (36)

Demanding it is valid for all values of 𝑟, we may take 𝑉 = 0,
which is just the same BPS limit in [5]. From the terms with
quadratic and zero power of 𝑟, we obtain𝐹𝐴 (𝑎) = ±2𝑎𝑓, (37)𝐹 (𝑓)𝐴 = ± (𝑎2 − 1) , (38)

which implies 𝐹𝐴 = ± (𝑎2 − 1) 𝑓. (39)

Inserting this into (34) and (35), we reproduce the knownBPS
equations for monopole,

𝑓 = ±𝑎2 − 1𝑟2 , (40a)

𝑎 = ±𝑎𝑓. (40b)

Now let us take 𝑗(𝑟) ̸= 0 and consider the BPS limit,𝑉 → 0. In this BPS limit, we can easily see from the effective
Lagrangian (23) that the Euler-Lagrange equations for both
fields 𝑓 and 𝑗 are equal. Therefore it is tempted to identify𝑗 ∝ 𝑓. Let us write it explicitly as𝑗 (𝑟) = 𝛽𝑓 (𝑟) , (41)

where 𝛽 is a real-valued constant. With this identification,
we can again use (32) as the BPS energy function for dyon
and hence give the same BPS Lagrangian (33). Now the only
difference, from the previous monopole case, is the effective
Lagrangian (23) which takes a simpler form

Ls = − (1 − 𝛽2) (𝑓22 + (𝑎𝑓𝑟 )2) − (𝑎𝑟 )2
− 12 (𝑎2 − 1𝑟2 )2 − 𝑉.

(42)

Here we still keep the potential 𝑉 and we will show later that𝑉 must be equal to zero in order to get the BPS equations
using the BPS Lagrangian method.

Applying (41) and solving Ls − LBPS = 0 as quadratic
equation for 𝑓 (or 𝑥) give us two roots

𝑓± = 𝑄𝑓 ± √DD(1 − 𝛽2) 𝑟2 , (43)

with

DD = (𝛽2 − 1) (𝑎4 − 2𝑎2 ((𝛽2 − 1) 𝑓2𝑟2 + 1)+ 2𝑟2𝑦 (𝑦 − 𝑄𝑎) + 2𝑟4𝑉 + 1) + 𝑄2𝑓. (44)

Next, requiring 𝑓+ = 𝑓−, we obtain
𝑎± = 12 (𝑄𝑎 ± √ DDD(𝛽2 − 1) 𝑟2) , (45)

where we arrange DDD in power series of 𝑟, i.e.,
DDD = 2 ((1 − 𝑎2)2 (1 − 𝛽2) − 𝑄2𝑓)+ (1 − 𝛽2) (4𝑎2 (1 − 𝛽2)𝑓2 − 𝑄2𝑎) 𝑟2+ 4𝑉 (1 − 𝛽2) 𝑟4. (46)

Again, 𝑎− = 𝑎+; we get 𝐷𝐷𝐷 = 0. Solving the last equa-
tion, whichmust be valid for all values of 𝑟, we conclude𝑉 = 0
from 𝑟4-terms, for nontrivial solution, and from the remain-
ing terms we have

𝐹𝐴 (𝑎) = ±2𝑎𝑓√1 − 𝛽2, (47a)

𝐹 (𝑓)𝐴 = ± (𝑎2 − 1)√1 − 𝛽2, (47b)

which give us

𝐹𝐴 = ± (𝑎2 − 1)𝑓√1 − 𝛽2. (48)

The BPS equations are then

𝑓√1 − 𝛽2 = ±𝑎2 − 1𝑟2 , (49a)

𝑎 = ±𝑎𝑓√1 − 𝛽2. (49b)

Since 𝑓 and 𝑎 are real valued, 𝛽 should take values |𝛽| <1. They become the BPS equations for monopole ((40a) and
(40b)) when we set 𝛽 = 0. We can see that this constant is
analogous to the constant 𝛼, or precisely 𝛽 = − sin 𝛼, in (18);
see [27] for detail. Substituting 𝛽 = − sin 𝛼 into ((49a) and
(49b)), we get the same BPS equations as in [5, 24]. Here we
can see the constant 𝛽 is naturally bounded as required by the
BPS equations ((49a) and (49b)).
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4.2. BPS Monopole and Dyon in Nakamula-Shiraishi Model.
In this subsection we will show that the Lagrangians (27) and
(28) of Nakamula-Shiraishi model do indeed possess the BPS
equations ((40a) and (40b) and (49a) and (49b)), respectively,

after employing the BPS Lagrangian method. Substituting
(29) and (32) intoLNSm −LBPS = 0 and following the same
procedures as the previous subsection give us the roots of𝑎,

𝑎± = 𝑄𝑎𝑟4 (2𝑏2 − 𝑉) + 𝑄𝑎𝑄𝑓𝑟2𝑥 ± √𝑟2 (2𝑎2𝑓2 + 𝑟2 (2𝑏2 + 𝑥2))DD𝑟2 (4𝑎2𝑓2 + 2𝑟2 (2𝑏2 + 𝑥2) − 𝑄2𝑎) , (50)

where

DD = −4𝑎6𝑓2 + 𝑎4 (−2𝑟2 (2𝑏2 + 𝑥2) + 8𝑓2 + 𝑄2𝑎)− 2𝑎2 (𝑓2 (4𝑏2𝑟4 + 2) − 2𝑟2 (2𝑏2 + 𝑥2) + 𝑄2𝑎)+ 2𝑏2𝑟4 (𝑄2𝑎 + 4𝑄𝑓𝑥 − 2𝑟2 (2𝑉 + 𝑥2)) − 4𝑏2𝑟2+ 𝑄2𝑎+ 2𝑟2 (−𝑄𝑓𝑥 + 𝑟2𝑉 + 𝑥) (𝑟2𝑉 − (𝑄𝑓 + 1) 𝑥) .
(51)

Solving DD = 0 gives us
𝑓±
= 2𝑄𝑓𝑟4 (2𝑏2 − 𝑉) ± √−2𝑟2 ((𝑎2 − 1)2 + 2𝑏2𝑟4)DDD2𝑟2 (𝑎4 − 2𝑎2 + 2𝑏2𝑟4 − 𝑄2

𝑓
+ 1) , (52)

where

DDD = 2𝑏2𝑟4 (4𝑎2𝑓2 − 𝑄2𝑎)+ 4𝑏2𝑟2 ((𝑎2 − 1)2 − 𝑄2𝑓)+ ((𝑎2 − 1)2 − 𝑄2𝑓) (4𝑎2𝑓2 − 𝑄2𝑎)+ 2𝑟6𝑉(4𝑏2 − 𝑉) .
(53)

Then the last equation DDD = 0 gives us 𝑉 = 0, or 𝑉 = 4𝑏2,
𝐹𝐴 (𝑎) = ±2𝑎𝑓, (54a)𝐹 (𝑓)𝐴 = ± (𝑎2 − 1) , (54b)

which again gives us 𝐹𝐴 = ± (𝑎2 − 1) 𝑓, (55)

and thus we have 𝑎 and 𝑓, with 𝑉 = 0,
𝑓 = ±𝑎2 − 1𝑟2 , (56a)

𝑎 = ±𝑎𝑓. (56b)

the same BPS equations ((40a) and (40b)) for monopole.The
other choice of potential 𝑉 = 4𝑏2 will result in the same BPS
equations with opposite sign relative to the BPS equations of𝑉 = 0,

𝑓 = ∓𝑎2 − 1𝑟2 , (57a)

𝑎 = ∓𝑎𝑓. (57b)

For dyon, using the same identification (41), we have the
effective Lagrangian (30) shortened to

LNSd = −2𝑏2({{{1 + 1 − 𝛽
22𝑏2 (𝑓2 + 2𝑎2𝑓2𝑟2 )

+ 12𝑏2 (2𝑎2𝑟2 + (𝑎2 − 1)2𝑟4 )
+ 1 − 𝛽24𝑏4 ((𝑎2 − 1) 𝑓𝑟2 + 2𝑎𝑓𝑎𝑟2 )2}}}

1/2 − 1)
− 𝑉.

(58)

Equating the above effective Lagrangian withLBPS, using the
same BPS energy density (32), and solving this for 𝑎 give us

𝑎± = −2𝑎3𝛽2𝑓𝑥 + 2𝑎3𝑓𝑥 + 2𝑎𝛽2𝑓𝑥 − 2𝑎𝑓𝑥 − 2𝑏2𝑄𝑎𝑟2 − 𝑄𝑎𝑄𝑓𝑥 + 𝑄𝑎𝑟2𝑉 ± √DD4𝑎2 (𝛽2 − 1)𝑓2 − 4𝑏2𝑟2 + 𝑄2𝑎 , (59)
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where

DD = (2𝑎 (𝑎2 − 1) (𝛽2 − 1) 𝑓𝑥 + 2𝑏2𝑄𝑎𝑟2+ 𝑄𝑎 (𝑄𝑓𝑥 − 𝑟2𝑉))2 + (4𝑎2 (𝛽2 − 1) 𝑓2 − 4𝑏2𝑟2+ 𝑄2𝑎) × [2𝑏2 (𝑎4 − 2𝑎2 ((𝛽2 − 1) 𝑓2𝑟2 + 1)− 2𝑄𝑓𝑟2𝑥 + 𝑟4 (2𝑉 − 𝛽2𝑥2 + 𝑥2) + 1)− 𝑥2 (𝑎4 (𝛽2 − 1) − 2𝑎2 (𝛽2 − 1) + 𝛽2 + 𝑄2𝑓 − 1)+ 2𝑄𝑓𝑟2𝑉𝑥 − 𝑟4𝑉2] .
(60)

Solving DD = 0 for 𝑓 gives us
𝑓± = K ± √2√M DDD

L
(61)

where

K = 2𝑎3 (𝛽2 − 1)𝑓𝑄𝑎𝑟2 (2𝑏2 − 𝑉) − 4𝑎2 (𝛽2 − 1)⋅ 𝑓2𝑄𝑓𝑟2 (2𝑏2 − 𝑉) − 2𝑎 (𝛽2 − 1)𝑓𝑄𝑎𝑟2 (2𝑏2− 𝑉) + 8𝑏4𝑄𝑓𝑟4 − 4𝑏2𝑄𝑓𝑟4𝑉, (62)

L = −4𝑎 (𝑎2 − 1) (𝛽2 − 1) 𝑓𝑄𝑎𝑄𝑓− 4 [𝑎4𝑏2 (𝛽2 − 1) 𝑟2− 𝑎2 (𝛽2 − 1) (𝑓2 (2𝑏2 (𝛽2 − 1) 𝑟4 + 𝑄2𝑓) + 2𝑏2𝑟2)+ 𝑏2𝑟2 ((𝛽2 − 1) (2𝑏2𝑟4 + 1) + 𝑄2𝑓)] + (𝛽2 − 1)⋅ 𝑄2𝑎 (𝑎4 − 2𝑎2 + 2𝑏2𝑟4 + 1) ,
(63)

M = −𝑏2 (𝑎4 − 2𝑎2 ((𝛽2 − 1)𝑓2𝑟2 + 1) + 2𝑏2𝑟4 + 1)⋅ (4𝑎2 (𝛽2 − 1)𝑓2 − 4𝑏2𝑟2 + 𝑄2𝑎) , (64)

DDD = −2𝑟4 (𝑏2 (𝛽2 − 1) (4𝑎2 (𝛽2 − 1) 𝑓2 + 𝑄2𝑎))− (𝛽2 − 1) ((𝑎2 − 1)𝑄𝑎 − 2𝑎𝑓𝑄𝑓)2+ 4𝑏2𝑟2 (𝑎4 (𝛽2 − 1) − 2𝑎2 (𝛽2 − 1) + 𝛽2 + 𝑄2𝑓− 1) + 2 (𝛽2 − 1) 𝑟6𝑉(4𝑏2 − 𝑉) .
(65)

We may set 𝑀 = 0, but this will imply 𝑏2 = 0 which is not
what we want. Requiring DDD = 0 valid for all values of 𝑟,

the terms with 𝑟6 give us𝑉 = 0 or𝑉 = 4𝑏2. The terms with 𝑟0
imply

𝐹𝐴 (𝑎) = 2𝑎𝑓𝐹 (𝑓)𝐴𝑎2 − 1 . (66)

This is indeed solved by the remaining terms which imply

𝐹𝐴 (𝑎) = ±2𝑎𝑓√1 − 𝛽2, (67)

𝐹 (𝑓)𝐴 = ± (𝑎2 − 1)√1 − 𝛽2. (68)

This again gives us

𝐹𝐴 = ± (𝑎2 − 1)𝑓√1 − 𝛽2, (69)

and hence, for 𝑉 = 0,
𝑓 = ± 𝑎2 − 1√1 − 𝛽2𝑟2 , (70a)

𝑎 = ±𝑎𝑓√1 − 𝛽2, (70b)

the same BPS equations ((49a) and (49b)) for dyon. Similar to
the monopole case choosing 𝑉 = 4𝑏2 will switch the sign in
the BPS equations. It is apparent that, in the limit of 𝛽 → 0,
the BPS equations for dyon become the ones for monopole.
This indicates that, in the BPS limit and 𝛽 → 0, LNSd →
LNSm, since in general, even though in the limit of 𝛽 → 0,
LNSd��→LNSm.

Now we know that the method works. In the next
sections, we use it in some generalized Lagrangianwhose BPS
equations, for monopole or dyon, may or may not be known.

5. BPS Equations in Generalized 𝑆𝑈(2)
Yang-Mills-Higgs Model

In this section, we use the Lagrangian (25) whose effective
Lagrangian is given by

LG = −𝐺(𝑓22 + 𝑎2𝑓2𝑟2 ) + 𝑤(𝑗22 + 𝑎2𝑗2𝑟2 )
− 𝑤(𝑎2𝑟2 + (𝑎2 − 1)22𝑟4 )− 𝑉. (71)

We will see later that it turns out that 𝐺 and 𝑤 are related to
each other by some constraint equations.

5.1. BPS Monopole Case. In this case, the BPS equations are
already known [25, 26]. Setting 𝑗 = 0 and employing LG −
LBPS = 0 we get

𝑓± = 𝑄𝑓𝑟2 ± √−𝑟4 (𝐺 (𝑎4𝑤 + 2𝑎2 (𝑓2𝐺𝑟2 − 𝑤) + 2𝑟2𝑦 (𝑤𝑦 − 𝑄𝑎) + 2𝑟4𝑉 + 𝑤) − 𝑄2𝑓)𝐺𝑟4 , (72)
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and from 𝑓+ = 𝑓− we have the roots of 𝑎 (or 𝑦)
𝑎± = 𝐺𝑄𝑎𝑟2 − √𝐺𝑟2 {𝐺 (𝑄2𝑎𝑟2 − 2𝑤 (2𝑟2 (𝑎2𝑓2𝐺 + 𝑟2𝑉) + (𝑎2 − 1)2 𝑤)) + 2𝑄2𝑓𝑤}2𝐺𝑟2𝑤 . (73)

The terms inside the curly bracket in the square root must be
zero in which after rearranging in power series of 𝑟2𝑤 (𝑄2𝑓 − (𝑎2 − 1)2 𝐺𝑤) + 𝐺𝑟2 (𝑄2𝑎 − 4𝑎2𝑓2𝐺𝑤)− 4𝑟4 (𝐺𝑉𝑤) = 0, (74)

we obtain 𝑉 = 0, 𝐹𝐴 (𝑎) = ±2𝑎𝑓√𝐺𝑤, (75)𝐹 (𝑓)𝐴 = ± (𝑎2 − 1)√𝐺𝑤. (76)

These imply 𝜕𝜕𝑓 (𝑓√𝐺𝑤) = √𝐺𝑤, (77)

and hence 𝑤 = 𝑐𝐺, (78)

where 𝑐 is a positive constant. The BPS equations are given by

𝑓 = ±(𝑎2 − 1)𝑟2 √𝑤𝐺, (79a)

𝑎 = ±𝑎𝑓√𝐺𝑤, (79b)

with a constraint equation 𝑤𝐺 = 𝑐, where 𝑐 is a positive
constant. This constant can be fixed to one, 𝑐 = 1, by recalling
that in the corresponding nongeneralized version, in which𝐺 = 𝑤 = 1, we should get back the same BPS equations of
(40a) and (40b).

5.2. BPS Dyon Case. As previously setting 𝑗 = 𝛽𝑓 and
employingLG −LBPS = 0 we get

𝑓± = 𝑄𝑓𝑟2 ± √𝑟4DD𝑟4 (𝐺 − 𝛽2𝑤) , (80)

with

DD = 𝑄2𝑓 − (𝐺 − 𝛽2𝑤) (𝑎4𝑤+ 2𝑎2 (𝑓2𝑟2 (𝐺 − 𝛽2𝑤) − 𝑤) + 2𝑟2𝑦 (𝑤𝑦 − 𝑄𝑎)+ 2𝑟4𝑉 + 𝑤) , (81)

and from DD = 0 we have the roots of 𝑎
𝑎± = 𝑄𝑎 ± √DDD/𝑟2 (𝐺 − 𝛽2𝑤)2𝑤 , (82)

where
DDD = 𝑟2 (𝐺 − 𝛽2𝑤) (4𝑎2𝑓2𝑤(𝛽2𝑤 − 𝐺) + 𝑄2𝑎)+ 2𝑤 ((𝑎2 − 1)2𝑤(𝛽2𝑤 − 𝐺) + 𝑄2𝑓)+ 4𝑟4𝑉𝑤 (𝛽2𝑤 − 𝐺) . (83)

Requiring DDD = 0 we obtain 𝑉 = 0,𝐹𝐴 (𝑎) = ±2𝑎𝑓√𝑤 (𝐺 − 𝛽2𝑤), (84)

𝐹 (𝑓)𝐴 = ± (𝑎2 − 1)√𝑤 (𝐺 − 𝛽2𝑤). (85)

Similar to the monopole case these imply𝑤(𝐺 − 𝛽2𝑤) = 𝑐, (86)

where 𝑐 is a positive constant and it can also be fixed to 𝑐 =1 − 𝛽2 demanding that at 𝐺 = 𝑤 = 1 we should get the same
BPS equations ((49a) and (49b)). At 𝛽 → 0, we get back the
constraint equation (78) for monopole case.These give us the
BPS equations

𝑓 = ±(𝑎2 − 1)𝑟2 √ 𝑤𝐺 − 𝛽2𝑤, (87a)

𝑎 = ±𝑎𝑓√𝐺 − 𝛽2𝑤𝑤 , (87b)

in which at 𝛽 → 0 we again get back the BPS equations for
monopole case ((79a) and (79b)).

6. BPS Equations in Generalized
Nakamula-Shiraishi Model

Here we present the generalized version of the Nakamula-
Shiraishi models (27) and (28) for both monopole and dyon,
respectively.

6.1. BPS Monopole Case. A generalized version of (27) is
defined by

LNSmG = −𝑏2⋅ tr(√1 − 2𝑏2𝐺(𝜙)D𝜇𝜙D𝜇𝜙√1 + 1𝑏2𝑤 (𝜙)F𝜇]F𝜇]− 1) − 𝑉 (𝜙) ,
(88)
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where after inserting the ansatz, we write its effective Lagran-
gian as

LNSmG = −2𝑏2(√1 + 𝐺2𝑏2 (𝑓2 + 2𝑎2𝑓2𝑟2 )√1 + 𝑤2𝑏2 (2𝑎2𝑟2 + (𝑎2 − 1)2𝑟4 ) − 1) − 𝑉. (89)

Using the similar BPS Lagrangian (33), we solve LNSmG−LBPS = 0 as a quadratic equation of 𝑎 (or 𝑦) first as such
the roots are given by

𝑎 = 𝑄𝑎𝑟4 (2𝑏2 − 𝑉) + 𝑄𝑎𝑄𝑓𝑟2𝑥 ± √𝑟2 (2𝑎2𝑓2𝐺 + 𝑟2 (2𝑏2 + 𝐺𝑥2))DD𝑟2 (2𝑤 (2𝑎2𝑓2𝐺 + 𝑟2 (2𝑏2 + 𝐺𝑥2)) − 𝑄2𝑎) , (90)

with

DD = 𝑤((𝑎2 − 1)2 (𝑄2𝑎 − 2𝐺𝑤(2𝑎2𝑓2 + 𝑟2𝑥2))+ 2 (𝑟3𝑉 − 𝑄𝑓𝑟𝑥)2) + 2𝑏2𝑟2 (𝑄2𝑎𝑟2 − 2𝑤(𝑎4𝑤+ 2𝑎2 (𝑓2𝐺𝑟2 − 𝑤) + 𝑟4 (𝐺𝑥2 + 2𝑉) − 2𝑄𝑓𝑟2𝑥+ 𝑤)) .
(91)

Taking DD = 0, we obtain the roots for 𝑓,
𝑓
= 2𝑄𝑓𝑟4𝑤(2𝑏2 − 𝑉) ± √2𝑟2𝑤((𝑎2 − 1)2𝑤 + 2𝑏2𝑟4)DDD2𝑟2𝑤((𝑎2 − 1)2 𝐺𝑤 + 2𝑏2𝐺𝑟4 − 𝑄2

𝑓
) , (92)

with

DDD = 2𝑏2𝐺𝑟4 (𝑄2𝑎 − 4𝑎2𝑓2𝐺𝑤)+ 4𝑏2𝑟2𝑤(𝑄2𝑓 − (𝑎2 − 1)2 𝐺𝑤)+ (𝑄2𝑓 − (𝑎2 − 1)2 𝐺𝑤) (4𝑎2𝑓2𝐺𝑤 − 𝑄2𝑎)+ 2𝐺𝑟6𝑉𝑤(𝑉 − 4𝑏2) .
(93)

Requiring DDD = 0, we obtain from the terms with 𝑟6 that𝑉 = 0 or 𝑉 = 4𝑏2. The remaining terms are also zero if 𝑄𝑎 =±2𝑎𝑓√𝐺𝑤 and 𝑄𝑓 = ±(𝑎2 − 1)√𝐺𝑤. These again imply

𝐺 = 1𝑤, (94)

which is equal to the constraint equation (78) for monopole
in Generalized 𝑆𝑈(2)Yang-Mills-Higgs model.Then the BPS
equations, with 𝑉 = 0, are

𝑓 = ±(𝑎2 − 1)𝑟2 √𝑤𝐺, (95a)

𝑎 = ±𝑎𝑓√𝐺𝑤, (95b)

which are equal to BPS equations ((79a) and (79b)) for
monopole in theGeneralized 𝑆𝑈(2)Yang-Mills-Higgsmodel.

6.2. BPS Dyon Case. The generalization of Lagrangian (28) is
defined as

LNSdG = −𝑏2 tr({1 − 2𝑏2𝐺 (𝜙)D𝜇𝜙D𝜇𝜙+ 1𝑏2𝑤 (𝜙)F𝜇]F𝜇] − 14𝑏4𝐺1 (𝜙) (F𝜇]F̃𝜇])2+ 4𝑏4𝐺2 (𝜙) F̃𝜇]F̃𝜇𝜆D]𝜙D𝜆𝜙}1/2 − 1)− 𝑉 (𝜙) .
(96)

Employing the relation 𝑗(𝑓) = 𝛽𝑓, its effective Lagrangian is

LNSdG = −2𝑏2({{{1 + 𝐺 − 𝑤𝛽
22𝑏2 (𝑓2 + 2𝑎2𝑓2𝑟2 )

+ 𝑤2𝑏2 (2𝑎2𝑟2 + (𝑎2 − 1)2𝑟4 )
+ 𝐺2 − 𝐺1𝛽24𝑏4 ((𝑎2 − 1)𝑓𝑟2 + 2𝑎𝑓𝑎𝑟2 )2}}}

1/2 − 1)
− 𝑉.

(97)
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EmployingLNSdG−LBPS = 0, with the same BPS Lagrangian
(33), and solving it as a quadratic equation of 𝑎, first we get

𝑎 = 2𝑎3𝛽2𝑓𝐺1𝑥 − 2𝑎3𝑓𝐺2𝑥 − 2𝑎𝛽2𝑓𝐺1𝑥 + 2𝑎𝑓𝐺2𝑥 + 2𝑏2𝑄𝑎𝑟2 + 𝑄𝑎𝑄𝑓𝑥 − 𝑄𝑎𝑟2𝑉 ± (1/2)√DD4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1) + 4𝑏2𝑤𝑟2 − 𝑄2𝑎 , (98)

where
DD = (−4𝑎 (𝑎2 − 1) 𝑓𝑥 (𝐺2 − 𝛽2𝐺1) + 4𝑏2𝑄𝑎𝑟2+ 𝑄𝑎 (2𝑄𝑓𝑥 − 2𝑟2𝑉))2− 4 (−4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1) − 4𝑏2𝑤𝑟2 + 𝑄2𝑎)H,

(99)

H = 𝑥2 ((𝑎2 − 1)2 𝛽2𝐺1 − (𝑎2 − 1)2 𝐺2 + 𝑄2𝑓)− 2𝑏2J − 2𝑄𝑓𝑟2𝑉𝑥 + 𝑟4𝑉2, (100)

J = 𝑟2 (2𝑎2𝑓2𝐺 − 2𝑄𝑓𝑥 + 𝑟2 (2𝑉 + 𝐺𝑥2)) + 𝑤 (𝑎4− 2𝑎2 (𝛽2𝑓2𝑟2 + 1) − 𝛽2𝑟4𝑥2 + 1) . (101)

Then fromDD = 0we have a quadratic equation of 𝑓 whose
roots are 𝑓 = K ± (1/2)√DDD

L
, (102)

where
K = −4𝑎3𝑏2𝛽2𝑓𝐺1𝑄𝑎𝑟2 + 4𝑎3𝑏2𝑓𝐺2𝑄𝑎𝑟2+ 2𝑎3𝛽2𝑓𝐺1𝑄𝑎𝑟2𝑉 − 2𝑎3𝑓𝐺2𝑄𝑎𝑟2𝑉+ 8𝑎2𝑏2𝛽2𝑓2𝐺1𝑄𝑓𝑟2 − 8𝑎2𝑏2𝑓2𝐺2𝑄𝑓𝑟2− 4𝑎2𝛽2𝑓2𝐺1𝑄𝑓𝑟2𝑉 + 4𝑎2𝑓2𝐺2𝑄𝑓𝑟2𝑉+ 4𝑎𝑏2𝛽2𝑓𝐺1𝑄𝑎𝑟2 − 4𝑎𝑏2𝑓𝐺2𝑄𝑎𝑟2− 2𝑎𝛽2𝑓𝐺1𝑄𝑎𝑟2𝑉 + 2𝑎𝑓𝐺2𝑄𝑎𝑟2𝑉− 8𝑏4𝑤𝑄𝑓𝑟4 + 4𝑏2𝑤𝑄𝑓𝑟4𝑉,

(103)

L = −𝛽2𝐺1 (𝑎2 (−𝑄𝑎) + 2𝑎𝑓𝑄𝑓 + 𝑄𝑎)2 + 2𝑏2𝑟2M+ 𝐺2N + 8𝑏4𝑤𝑟6 (𝛽2𝑤 − 𝐺) , (104)

where in L we define M and N as
M = 𝑟2𝐺(4𝑎2𝛽2𝑓2𝐺1 + 𝑄2𝑎) + 𝑤 (2𝑄2𝑓− 𝛽2 (𝑄2𝑎𝑟2 − 2𝐺1 (𝑎4 − 2𝑎2 (𝛽2𝑓2𝑟2 + 1) + 1))) , (105)
N = −4𝑎4𝑏2𝑤𝑟2 + 4𝑎2 (𝑓2 (𝑄2𝑓 − 2𝑏2𝑟4 (𝐺 − 𝛽2𝑤))+ 2𝑏2𝑤𝑟2) − 4 (𝑎2 − 1) 𝑎𝑓𝑄𝑎𝑄𝑓 + (𝑎2 − 1)2𝑄2𝑎− 4𝑏2𝑤𝑟2, (106)

and

DDD = 𝑇0 − 8𝑇2𝑟2 + 8𝑇4𝑟4 + 16𝑏2𝑇6𝑟6 + 𝑇8𝑟8− 32𝑇10𝑟10 + 𝑇12𝑟12, (107a)

where𝑇0 = 8 (𝑎2 − 1)2 𝑏2𝑤(𝐺2 − 𝛽2𝐺1) ((𝑎2 − 1)𝑄𝑎− 2𝑎𝑓𝑄𝑓)2 (4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1) − 𝑄2𝑎) , (107b)

𝑇2 = −4 (𝑎2 − 1)2 𝑏4𝑤2 ((𝑎2 − 1)2 𝛽2𝐺1 − (𝑎2− 1)2 𝐺2 + 𝑄2𝑓) (4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1) − 𝑄2𝑎)− 𝑏2 (𝐺2 − 𝛽2𝐺1) ((𝑎2 − 1)𝑄𝑎 − 2𝑎𝑓𝑄𝑓)2× (4 (𝑎2 − 1)2 𝑏2𝑤2 − 2𝑎2𝑓2 (𝐺 − 𝛽2𝑤) (𝑄2𝑎− 4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1))) ,
(107c)

𝑇4 = 2 (𝑎2 − 1)2 𝑏4𝑤(𝛽2𝑤 − 𝐺) (𝑄2𝑎 − 4𝑎2𝑓2 (𝐺2− 𝛽2𝐺1))2 + 2𝑎2𝑓2 (𝑉 − 2𝑏2)2 (𝐺2 − 𝛽2𝐺1)2⋅ ((𝑎2 − 1)𝑄𝑎 − 2𝑎𝑓𝑄𝑓)2 + 4𝑏4𝑤((𝑎2 − 1)2⋅ 𝛽2𝐺1 − (𝑎2 − 1)2 𝐺2 + 𝑄2𝑓) × (4 (𝑎2 − 1)2⋅ 𝑏2𝑤2 − 2𝑎2𝑓2 (𝐺 − 𝛽2𝑤) (𝑄2𝑎− 4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1))) − 2 (𝐺2 − 𝛽2𝐺1) ((𝑎2− 1)𝑄𝑎 − 2𝑎𝑓𝑄𝑓)2 × (𝑏4 (4𝑎2𝑓2𝑤(𝛽2𝑤 − 𝐺)+ 𝑄2𝑎) − 4𝑎2𝑏2𝑓2𝑉(𝐺2 − 𝛽2𝐺1) + 𝑎2𝑓2𝑉2 (𝐺2− 𝛽2𝐺1)) ,

(107d)

𝑇6 = −4 (𝑎2 − 1)2 𝑏4𝑤2 (𝐺 − 𝛽2𝑤) (4𝑎2𝑓2 (𝐺2− 𝛽2𝐺1) − 𝑄2𝑎) + 𝑏2 (𝐺 − 𝛽2𝑤) (𝑄2𝑎− 4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1)) × (4 (𝑎2 − 1)2 𝑏2𝑤2− 2𝑎2𝑓2 (𝐺 − 𝛽2𝑤) (𝑄2𝑎 − 4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1)))
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− 4𝑎𝑓𝑤𝑄𝑓 (𝑉 − 2𝑏2)2 (𝐺2 − 𝛽2𝐺1) ((𝑎2 − 1)𝑄𝑎− 2𝑎𝑓𝑄𝑓) + 𝑤𝑉 (4𝑏2 − 𝑉) (𝐺2 − 𝛽2𝐺1) ((𝑎2
− 1)𝑄𝑎 − 2𝑎𝑓𝑄𝑓)2 + 4𝑤((𝑎2 − 1)2 𝛽2 (−𝐺1)
+ (𝑎2 − 1)2 𝐺2 − 𝑄2𝑓)
× (𝑏4 (4𝑎2𝑓2𝑤(𝛽2𝑤 − 𝐺) + 𝑄2𝑎)− 4𝑎2𝑏2𝑓2𝑉(𝐺2 − 𝛽2𝐺1) + 𝑎2𝑓2𝑉2 (𝐺2− 𝛽2𝐺1)) ,

(107e)

𝑇8 = 64𝑏4𝑤2𝑄2𝑓 (𝑉 − 2𝑏2)2 − 8 (8𝑏6𝑤(𝐺 − 𝛽2𝑤)
⋅ (4 (𝑎2 − 1)2 𝑏2𝑤2 − 2𝑎2𝑓2 (𝐺 − 𝛽2𝑤)
⋅ (𝑄2𝑎 − 4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1))) + 4𝑏2 (𝐺 − 𝛽2𝑤)
⋅ (𝑄2𝑎 − 4𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1))⋅ (𝑏4 (4𝑎2𝑓2𝑤(𝛽2𝑤 − 𝐺) + 𝑄2𝑎)− 4𝑎2𝑏2𝑓2𝑉(𝐺2 − 𝛽2𝐺1)+ 𝑎2𝑓2𝑉2 (𝐺2 − 𝛽2𝐺1)) + 8𝑏4𝑤2𝑉(4𝑏2 − 𝑉)
⋅ ((𝑎2 − 1)2 𝛽2 (−𝐺1) + (𝑎2 − 1)2 𝐺2 − 𝑄2𝑓)) ,

(107f)

𝑇10 = 𝑏4𝑤(𝛽2𝑤 − 𝐺) (4𝑏4 (4𝑎2𝑓2𝑤(𝛽2𝑤 − 𝐺)+ 𝑄2𝑎) + 4𝑏2𝑉(𝑄2𝑎 − 8𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1))+ 𝑉2 (8𝑎2𝑓2 (𝐺2 − 𝛽2𝐺1) − 𝑄2𝑎)) ,
(107g)

𝑇12 = 128𝑏6𝑤2𝑉(4𝑏2 − 𝑉) (𝛽2𝑤 − 𝐺) . (107h)

In order to find 𝑉,𝑄𝑓, 𝑄𝑎, 𝐺1, and 𝐺2, we have to solve
equation DDD = 0. Since the model is valid for all 𝑟, then
each 𝑇0 until 𝑇12 must be equal to zero. From 𝑇12 = 0 we
need either 𝑉 = 0 or 𝑉 = 4𝑏2. This verifies that the BPS limit
is indeed needed to obtain the BPS equations. Putting 𝑉 = 0
into DDD we simplify a little (107a), (107b), (107c), (107d),
(107e), (107f), (107g), and (107h). From 𝑇0 = 0 we have

𝑄𝑓 = (𝑎2 − 1)𝑄𝑎2𝑎𝑓 , (108)

which we input into DDD again. From𝑇2 = 0we obtain𝑄𝑎 =±2𝑎𝑓√𝐺2 − 𝛽2𝐺1. Now we will input each into two separate
cases.

(1) Setting 𝑄𝑎 = −2𝑎𝑓√𝐺2 − 𝛽2𝐺1, only 𝑇8 and 𝑇10 are
not vanished. Both can vanish if 𝛽2(𝑤2 − 𝐺1) + (𝐺2 −𝑤𝐺) = 0; hence we have 𝐺2 − 𝛽2𝐺1 = 𝑤𝐺 − 𝑤2𝛽2.

(2) Setting 𝑄𝑎 = 2𝑎𝑓√𝐺2 − 𝛽2𝐺1, we also arrive at the
same destination.

From these steps, we obtain that𝐹𝐴 (𝑎) = ±2𝑎𝑓√𝑤 (𝐺 − 𝛽2𝑤), (109)

𝐹 (𝑓)𝐴 = ± (𝑎2 − 1)√𝑤 (𝐺 − 𝛽2𝑤), (110)

which again imply that𝑤(𝐺 − 𝛽2𝑤) = 1 − 𝛽2, (111)

which is equal to the constraint equation (86) for dyon in
the Generalized 𝑆𝑈(2) Yang-Mills-Higgs model. Substituting
everything, we obtain the BPS equations, with 𝑉 = 0,

𝑓 = ±(𝑎2 − 1)𝑟2 √ 𝑤𝐺 − 𝛽2𝑤, (112)

𝑎 = ±𝑎𝑓√𝐺 − 𝛽2𝑤𝑤 , (113)

which is again equal to the BPS equations ((87a) and (87b))
for dyon in the Generalized 𝑆𝑈(2) Yang-Mills-Higgs model.

7. Discussion

We have shown that the BPS Lagrangian method, which was
used before in [16] for BPS vortex, can also be applied to
the case of BPS monopole and dyon in 𝑆𝑈(2) Yang-Mills-
Higgs model (9). One main reason is because the effective
Lagrangian (23) only depends on radial coordinate similar
to the case of BPS vortex. We also took similar ansatz for the
BPS Lagrangian (33) in which the BPS energy function𝑄 (32)
does not depend on the radial coordinate explicitly and it is a
separable function of 𝑓 and 𝑎. This due to no explicit depen-
dent over radial coordinate on the ansatz for the fields written
in spherical coordinates as in (31a), (31b), (31c), (31d), and
(31e).

The BPS dyon could be obtained by identifying the
effective field of the time-component gauge fields 𝑗 to be
proportional with the effective field of the scalars 𝑓 by
a constant 𝛽, 𝑗 = 𝛽𝑓. This identification seems natural
by realizing that both effective fields give the same Euler-
Lagrange equation in the BPS limit. Fortunately we found
that the BPS Lagrangian method forced us to take this limit
when solving the last equation with explicit power of radial
coordinate order by order, which are also the case for all other
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models considered in this article. In this article we used this
simple identification which gives us the known result of BPS
dyon [5]. It turns out that the constant 𝛽 takes values |𝛽| < 1
and it will be equal to BPS dyon in [5, 24] if we set 𝛽 = − sin 𝛼,
with 𝛼 being a constant. There is also a possibility where both
effective fields are independent, or having no simple relation,
but this will be discussed elsewhere.

Applying the BPS Lagrangian method to Born-Infeld
extensions of the 𝑆𝑈(2) Yang-Mills-Higgs model, which is
called Nakumula-Shiraishi models, we obtained the same
BPS equations as shown in [14]. Those BPS equations switch
the sign if we shift the potential to a nonzero constant 4𝑏2,𝑉 → 𝑉+4𝑏2 inwhich theBPS limit nowbecomes𝑉 → 4𝑏2,
as shown in (53). Therefore adding infinitesimally the energy
density up to a constant 4𝑏2 seems to be related to a transition
frommonopole (dyon) to antimonopole (antidyon) and vice
versa. Since this transition is between BPS monopoles, or
dyons, it would be interesting to study continuous transitions
by adding the energy density slowly from 0 to 4𝑏2, which
we would guess to be transition from BPS monopole(dyon)
to non-BPS monopole and then to the corresponding BPS
antimonopole (antidyon) with higher energy. This transition
also appears in all Born-Infeld type of action discussed in this
article and we wonder if this transition is generic in all other
types of Born-Infeld actions at least with the ones possessing
BPSmonopole (dyon) in the BPS limit. However, this kind of
transition does not appear in 𝑆𝑈(2) Yang-Mills-Higgs model
and its generalized version since it would correspond to
taking 𝑏 → ∞ in the Nakamula-Shiraishi models, which
means adding an infinite potential energy to the Lagrangians.

In particular case of monopole Lagrangian (27), wemight
try to use the identification 𝑗 = 𝛽𝑓, as previously, into the
Lagrangian (27) and look for theBPS equations for dyon from
it. However, there is no justification for this identification
because the Euler-Lagrange equations for 𝑓 and 𝑗 are not
identical even after substituting 𝑗 = 𝛽𝑓 into both Euler-
Lagrange equations in the BPS limit. We might also try to
consider 𝑓 and 𝑗 independently by adding a term that is
proportional to 𝑗 in the BPS Lagrangian (33), but it will turn
out that this term must be equal to zero and thus forces us to
set 𝑗 = 0. Surprisingly, for the case of dyon Lagrangian (28),

the effective action (30) gives the identical Euler-Lagrange
equations for 𝑓 and 𝑗 upon substituting 𝑗 = 𝛽𝑓 in the
BPS limit. Therefore it is valid to use this identification for
particular Born-Infeld type action of (28) for dyon.

We also applied the BPS Lagrangian method to the
generalized version of 𝑆𝑈(2) Yang-Mills-Higgs model (25)
in which the effective action is given by (71). For monopole
case, we found there is a constraint between the scalar-
dependent couplings of gauge kinetic term 𝑤 and of scalar
kinetic term𝐺, which is𝐺 = 1/𝑤, similar to the one obtained
in [25]. The BPS equations are also modified and depend
explicitly on these scalar-dependent couplings. For dyon case,
the constraint is generalized to 𝑤(𝐺 − 𝛽2𝑤) = 1 − 𝛽2, with𝛽 < |1|, and the BPS equations are modified as well. This
is relatively new result compared to [25, 26] in which they
did not discuss dyon. As previously assumed 𝑤,𝐺 > 0, the
constraint leads to 𝑤± = (1/2𝛽2)(𝐺 ± √𝐺2 − 4𝛽2(1 − 𝛽2)).
Reality condition on 𝑤± gives lower bound to 𝐺 as such 𝐺 ≥|2𝛽√1 − 𝛽2| in all values of radius 𝑟. The generalized version
of Nakamula-Shiraishi model for monopole, with Lagrangian
(88) and effective Lagrangian (89), has also been computed.
The results are similar to the generalized version of 𝑆𝑈(2)
Yang-Mills-Higgs model for monopole in the BPS limit. In
the case for generalized version of Nakamula-Shiraishi model
for dyon, with Lagrangian (96) and effective Lagrangian
(97), the results are similar to the generalized version of𝑆𝑈(2) Yang-Mills-Higgs model for dyon, even though there
are two additional scalar-dependent couplings 𝐺1 and 𝐺2.
These additional couplings are related to the kinetic terms’
couplings by𝐺2−𝛽2𝐺1 = 𝑤(𝐺−𝛽2𝑤). In the appendix, based
on our results, we write down explicitly the complete square-
forms of all effective Lagrangians (29), (30), (89), and (97).

Appendix

A. Complete Square-Forms for Monopoles in
Nakamula-Shiraishi Model

For 𝑉 = 0, the effective Lagrangian (29) can be rewritten in
complete square-forms as the following:

LNSm = − 𝑏2√(1 + (1/2𝑏2) (2𝑎2/𝑟2 + (𝑎2 − 1)2 /𝑟4)) (1 + (1/2𝑏2) (𝑓2 + 2𝑎2𝑓2/𝑟2))
× ((2𝑏2 + 𝑓2)2𝑏4𝑟2 (𝑎 − 𝑎𝑓(𝑎2 − 1)𝑓 ± 2𝑏2𝑟2𝑟2 (2𝑏2 + 𝑓2) )2 + (2𝑎2𝑓2 + 𝑟2 (2𝑏2 + 𝑓2))2𝑏2𝑟2 (2𝑏2 + 𝑓2) (𝑓 ∓ 𝑎2 − 1𝑟2 )2

+(√(1 + 12𝑏2 (2𝑎2𝑟2 + (𝑎2 − 1)2𝑟4 ))(1 + 12𝑏2 (𝑓2 + 2𝑎2𝑓2𝑟2 )) − 1 ∓(𝑎2 − 12𝑏2𝑟2 𝑓 + 𝑎𝑓𝑏2𝑟2 𝑎))2)
∓ (2𝑎𝑓𝑟2 𝑎 + 𝑎2 − 1𝑟2 𝑓) .

(A.1)
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The above expression is different from the one presented in
[14].

For 𝑉 = 4𝑏2, it becomes

LNSm = − 𝑏2√(1 + (1/2𝑏2) (2𝑎2/𝑟2 + (𝑎2 − 1)2 /𝑟4)) (1 + (1/2𝑏2) (𝑓2 + 2𝑎2𝑓2/𝑟2))
× ((2𝑏2 + 𝑓2)2𝑏4𝑟2 (𝑎 − 𝑎𝑓(𝑎2 − 1) 𝑓 ∓ 2𝑏2𝑟2𝑟2 (2𝑏2 + 𝑓2) )2 + (2𝑎2𝑓2 + 𝑟2 (2𝑏2 + 𝑓2))2𝑏2𝑟2 (2𝑏2 + 𝑓2) (𝑓 ± 𝑎2 − 1𝑟2 )2
+(√(1 + 12𝑏2 (2𝑎2𝑟2 + (𝑎2 − 1)2𝑟4 ))(1 + 12𝑏2 (𝑓2 + 2𝑎2𝑓2𝑟2 )) − 1 ±(𝑎2 − 12𝑏2𝑟2 𝑓 + 𝑎𝑓𝑏2𝑟2 𝑎))2)
± (2𝑎𝑓𝑟2 𝑎 + 𝑎2 − 1𝑟2 𝑓) − 4𝑏2.

(A.2)

Its general expression can be written as

LNSm = − 2𝑏2 ((𝑉/2𝑏2 − 1)2 + 1)−1√(1 + (1/2𝑏2) (2𝑎2/𝑟2 + (𝑎2 − 1)2 /𝑟4)) (1 + (1/2𝑏2) (𝑓2 + 2𝑎2𝑓2/𝑟2)) ×((2𝑏2 + 𝑓2)2𝑏4𝑟2 (𝑎
− 𝑎𝑓(𝑎2 − 1)𝑓 ± (2𝑏2 − 𝑉) 𝑟2𝑟2 (2𝑏2 + 𝑓2) )2 + (2𝑎2𝑓2 + 𝑟2 (2𝑏2 + 𝑓2))2𝑏2𝑟2 (2𝑏2 + 𝑓2) (𝑓 ∓ 𝑎2 − 12𝑏2𝑟2 (2𝑏2 − 𝑉))2
+(( 𝑉2𝑏2 − 1)(√(1 + 12𝑏2 (2𝑎2𝑟2 + (𝑎2 − 1)2𝑟4 ))(1 + 12𝑏2 (𝑓2 + 2𝑎2𝑓2𝑟2 )) − 1)
± (𝑎2 − 12𝑏2𝑟2 𝑓 + 𝑎𝑓𝑏2𝑟2 𝑎))

2 + 𝑉4𝑏4 (4𝑏2 − 𝑉)((𝑎2 − 1)22𝑏2𝑟4 + 1)( 2𝑎2𝑓2𝑟2 (2𝑏2 + 𝑓2) + 1)) ± 2 (𝑉/2𝑏2 − 1)(𝑉/2𝑏2 − 1)2 + 1 (2𝑎𝑓𝑟2
⋅ 𝑎 + 𝑎2 − 1𝑟2 𝑓) − 𝑉2 (𝑉 − 2𝑏2)8𝑏4 − 4𝑏2𝑉 + 𝑉2 ,

(A.3)

which is valid only if 𝑉 = 0 or 𝑉 = 4𝑏2.
B. Complete Square-Forms for Dyons in

Nakamula-Shiraishi Model

General expression for the complete square-forms of effective
Lagrangian (30) is given by

LNSd
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= − (2𝑏2) ((1 − 𝑉/2𝑏2)2 + 1)−1√1 + (1 − 𝛽2) (𝑓2 + 2𝑎2𝑓2/𝑟2) /2𝑏2 + ((𝑎2 − 1)2 /𝑟4 + 2𝑎2/𝑟2) /2𝑏2 + (1 − 𝛽2) ((𝑎2 − 1)𝑓/𝑟2 + 2𝑎𝑎𝑓/𝑟2)2 /4𝑏4
×((1 − 𝛽2)2𝑏2 (𝑓 ± (𝑎2 − 1) 𝑟2 (𝑉 − 2𝑏2)2𝑏2√1 − 𝛽2𝑟4 )2 + 1𝑏2𝑟2 (𝑎 ± 𝑎𝑓 ( 𝑉2𝑏2 − 1)√1 − 𝛽2)2
+ 𝑉 (4𝑏2 − 𝑉)8𝑏6𝑟4 (2𝑟2 (𝑎2 (1 − 𝛽2) 𝑓2) + (𝑎2 − 1)2 + 2𝑏2𝑟4)
+(( 𝑉2𝑏2 − 1)√1 + (𝑓2 + 2𝑎2𝑓2/𝑟2)2𝑏2 (1 − 𝛽2)−1 + ((𝑎2 − 1)

2 /𝑟4 + 2𝑎2/𝑟2)2𝑏2 + ((𝑎2 − 1) 𝑓/𝑟2 + 2𝑎𝑎𝑓/𝑟2)24𝑏4 (1 − 𝛽2)−1 + 1 − 𝑉2𝑏2
± √1 − 𝛽2 ( 𝑎𝑓𝑏2𝑟2 𝑎 + (𝑎2 − 1)2𝑏2𝑟2 𝑓))

2)∓ 2(1 − 𝑉/2𝑏2)√1 − 𝛽2(1 − 𝑉/2𝑏2)2 + 1 (2𝑎𝑓𝑟2 𝑎 + (𝑎2 − 1)𝑟2 𝑓) + 𝑉2 (2𝑏2 − 𝑉)8𝑏4 − 4𝑏2𝑉 + 𝑉2 ,
(B.1)

which is valid only if 𝑉 = 0 or 𝑉 = 4𝑏2.
C. Complete Square-Forms for Monopoles in

Generalized Nakamula-Shiraishi Model

General expression for the complete square-forms of effective
Lagrangian (89) is given by

LNSmG = − 2𝑏2 ((1 − 𝑉/2𝑏2)2 + 1)−1√(1 + (𝑤/2𝑏2) ((𝑎2 − 1)2 /𝑟4 + 2𝑎2/𝑟2)) (1 + (𝐺/2𝑏2) (2𝑎2𝑓2/𝑟2 + 𝑓2)) ×(𝐺(𝑎2𝑤 + 𝑏2𝑟2)2𝑏4𝑟2 (𝑓
− 2𝑎 (𝑎2 − 1) 𝑎𝑓𝐺𝑤 ± (𝑎2 − 1)√𝐺𝑤𝑟2 (2𝑏2 − 𝑉)2𝐺𝑟2 (𝑎2𝑤 + 𝑏2𝑟2) )2 + 𝑤(𝑤((𝑎2 − 1)2 + 2𝑎2𝑟2) + 2𝑏2𝑟4)2𝑏2𝑟4 (𝑎2𝑤 + 𝑏2𝑟2) (𝑎
∓ 2𝑎𝑓√𝐺𝑤(2𝑏2 − 𝑉)4𝑏2𝑤 )2 + 𝑉(4𝑏2 − 𝑉) (𝑤((𝑎2 − 1)2 + 2𝑎2𝑟2) + 2𝑏2𝑟4) (𝑎2𝑓2𝐺 + 𝑏2𝑟2)8𝑏6𝑟4 (𝑎2𝑤 + 𝑏2𝑟2)
+(( 𝑉2𝑏2 − 1)(√(1 + 𝑤((𝑎2 − 1)2 /𝑟4 + 2𝑎2/𝑟2)2𝑏2 )(1 + 𝐺(2𝑎2𝑓2/𝑟2 + 𝑓2)2𝑏2 ) − 1)
± (𝑎𝑓√𝐺𝑤𝑏2𝑟2 𝑎 + (𝑎2 − 1)√𝐺𝑤2𝑏2𝑟2 𝑓))2)∓ 2 (1 − 𝑉/2𝑏2)(1 − 𝑉/2𝑏2)2 + 1 (2𝑎𝑓√𝐺𝑤𝑟2 𝑎 + (𝑎2 − 1)√𝐺𝑤𝑟2 𝑓)
+ 𝑉2 (2𝑏2 − 𝑉)8𝑏4 − 4𝑏2𝑉 + 𝑉2 ,

(C.1)

which is valid only if 𝑉 = 0 or 𝑉 = 4𝑏2.
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D. Complete Square-Forms for Dyons in
Generalized Nakamula-Shiraishi Model

General expression for the complete square-forms of effective
Lagrangian (97) is given by

LNSdG

= − 2𝑏2 ((1 − 𝑉/2𝑏2)2 + 1)−1√1 + (𝐺 − 𝛽2𝑤) (𝑓2 + 2𝑎2𝑓2/𝑟2) /2𝑏2 + 𝑤 (2𝑎2/𝑟2 + (𝑎2 − 1)2 /𝑟4) /2𝑏2 + (𝐺2 − 𝛽2𝐺1) ((𝑎2 − 1)𝑓/𝑟2 + 2𝑎𝑎𝑓/𝑟2)2 /4𝑏4
×((𝐺 − 𝛽2𝑤)2𝑏2 (𝑓 ∓ (𝑎2 − 1)√𝐺2 − 𝛽2𝐺1 (2𝑏2 − 𝑉)2𝑏2𝑟2 (𝐺 − 𝛽2𝑤) )2 + 𝑤𝑏2𝑟2 (𝑎 ∓ (2𝑏2 − 𝑉) (4𝑎𝑓)√𝐺2 − 𝛽2𝐺18𝑏2𝑤 )2 + (𝛽2 (𝐺1 − 𝑤2)
− (𝐺2 − 𝐺𝑤)) (2𝑎2𝑓2𝑟2 (𝐺 − 𝛽2𝑤) + (𝑎2 − 1)2𝑤)8𝑏6𝑟4𝑤 (𝐺 − 𝛽2𝑤) (𝑉 − 2𝑏2)−2 + 𝑉 (4𝑏2 − 𝑉) (2𝑎2𝑓2𝑟2 (𝐺 − 𝛽2𝑤) + (𝑎2 − 1)2𝑤)8𝑏6𝑟4
+(( 𝑉2𝑏2 − 1)√1 + (𝑓2 + 2𝑎2𝑓2/𝑟2)2𝑏2 (𝐺 − 𝛽2𝑤)−1 + (2𝑎2/𝑟2 + (𝑎2 − 1)

2 /𝑟4)2𝑏2𝑤−1 + ((𝑎2 − 1) 𝑓/𝑟2 + 2𝑎𝑎𝑓/𝑟2)24𝑏4 (𝐺2 − 𝛽2𝐺1)−1 + 1 − 𝑉2𝑏2
±(𝑎𝑓√𝐺2 − 𝛽2𝐺1𝑏2𝑟2 𝑎 + (𝑎2 − 1)√𝐺2 − 𝛽2𝐺12𝑏2𝑟2 𝑓))2)∓ 2 (1 − 𝑉/2𝑏2)√𝐺2 − 𝛽2𝐺1(1 − 𝑉/2𝑏2)2 + 1 (2𝑎𝑓𝑟2 𝑎 + (𝑎2 − 1)𝑟2 𝑓)
+ 𝑉2 (2𝑏2 − 𝑉)8𝑏4 − 4𝑏2𝑉 + 𝑉2 ,

(D.1)

which is valid only if 𝑉 = 0 or 𝑉 = 4𝑏2, and 𝛽2(𝐺1 − 𝑤2) =𝐺2 − 𝐺𝑤.
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The scintillating properties of activematerials used in high energy and particle physics experiments play an important role regarding
the performances of both calorimeters and experiments. Two scintillator materials, a scintillating glass and an inorganic crystals,
were examined to be used for collider experiments showing good optical and scintillating properties. This paper discusses the
simulated performances of two materials of interest assembled in a scintillator-photodetector combination. The computational
study was carried out with Geant4 simulation program to determine energy resolutions of such calorimeter with different beam
energies and calorimeter sizes.

1. Introduction

Scintillator materials are used in high energy physics exper-
iments as active materials of calorimeters to measure energy
and position of particles passing through calorimeters gen-
erating photons proportional to incoming beam energies.
Two types of calorimeters could be constructed: sampling
or homogenous [1, 2]. A sampling calorimeter consists of an
absorber and an active material in alternating layers resulted
in absorption of only some part of incident beam energy
in active materials. A homogenous calorimeter is entirely
made of an active material with no absorber, thus leading
to absorption of the most of incident energy depending on
thickness and radiation length of the material. Sampling
calorimeters serve for both electromagnetic and hadronic
interactions but homogenous calorimeters are used for only
electromagnetic interactions due to their long interaction
length. In such detector systems, several properties of active
materials affect the performance of calorimeters and exper-
iments. First of all, light yield of a scintillator should be
high enough to obtain required energy resolution. Next,
the rate of data taking is important when considering short
time intervals between collisions. Therefore, the response

time of detectors should be as fast as possible to detect
even rare events. Decay times of scintillator materials affect
the time interval of signal formation and thus they are key
factors for data taking rate in calorimeters. High density
in scintillating materials increases stopping power and it
is important in two ways. One is that it increases energy
and spatial resolutions and it enables construction of more
compact systems. Moreover, a scintillator with a good optical
transmission has significant impact on the formation of
proper electrical signal in photodetectors to which photon
pulses produced in the scintillator are directed. Beyond these
facts, scintillator materials could show very good properties
in some features but could also have some drawbacks for
the remaining aspects. In summary, scintillating materials
with high densities, required light yield, producing fast, and
short light pulses have crucial role to build detector systems
which are compact, enabling fast data taking and achieving
required energy and spatial resolutions. For example, lead
tungsten crystals (PWO) with high density and fast decay
times are used in electromagnetic part of the Compact Muon
Selenoid (CMS) to measure incident electron or photon
beam energies which is used to search Higgs boson [1,
2]. New experiments are also searching for scintillating
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materials with good optical and scintillating properties as
much as possible as an active material in calorimeter designs.
This report presents a computational study concentrated
on energy resolution performances of different scintillating
materials which could be used as an active material of a
homogenous calorimeter in particle physics experiments.The
interested materials are Ce doped HfG (Hafnium Fluoride
Glass) [3, 4] and Ce doped Gd2Y1Ga2.7Al2.3O12 [5] due to
their good optical and scintillating properties. Here, HfG is
a scintillating glass and the other is inorganic crystal. To the
best to our knowledge, both scintillating materials were not
used in a high energy physics experiment as an activematerial
of a homogenous calorimeter or their simulation studies were
not presented for energy resolution calculation belonging to
a certain size or sets of calorimeter setups. These materials
have mass production capabilities. Generally, scintillation
glasses are potentiallymore homogenous compared to crystal
scintillators and light yield of scintillation glasses could be
increased by changing their elemental compositions. The
selected glass material has been preferred among some heavy
metal fluoride glass due to its optical and scintillation prop-
erties. On the other hand, these improvements in crystals
could be achieved by increasing purity of the crystals and
with better understanding of luminescence mechanisms.
Scintillation glasses have less light yield compared to crystals
but generally fast decay times [6].

This study determines energy resolution of homogenous
calorimeter setups with certain sizes to see the performance
of the selected materials. The detailed explanation of the
materials belonging to their physical and scintillation prop-
erties and the simulation procedure are given in detail in
Section 2.

2. Materials and Methods

The energy resolution of a scintillator could be characterized
with four parameters: lateral part, photostatistics contribu-
tion, constant, and noise term. The energy resolution is the
quadratic summation of all four terms as indicated in

𝜎 (𝐸)𝐸 = 𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝐸1/4 ⊕ 𝑎𝑝𝑒√𝐸 ⊕ 𝑏 ⊕ 𝑐𝐸 (1)

Here, 𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙, 𝑎𝑝𝑒, 𝑏, and 𝑐 refer to lateral part, photoelectron
statistics contribution, constant, and noise terms, respec-
tively.The lateral part represents fluctuations of shower devel-
opment inside the scintillating material (𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙) belonging
to lateral shower containment and contribution from the
statistics of the photoelectrons produced in a photodetector,
which converts photons reaching its active area into electrons
in terms of its wavelength dependent quantum efficiency
and its internal gain, is represented with 𝑎𝑝𝑒. The total
energy resolution is calculated as the quadratic summation
of all terms excluding noise term in this study. The constant
term refers to other inhomogeneities of the material such as
variations of reflectance of different surfaces of the scintillator
or impurities in the material. This is also some portion of

the energy deposition fluctuation. The contribution from
photoelectron statistics is given by [2]

𝑎𝑝𝑒 = √ 𝐹𝑁𝑝𝑒 (2)

Here, Npe is the number of photoelectrons per GeV and F is
the emission weighted excess noise factor due to avalanche
gain process.Npe depends on the number of photons reaching
the rear edge of the scintillator, active area of photode-
tectors, and wavelength dependent quantum efficiencies of
the photodetectors. In the presented study, noise term is
not included in energy resolution calculation. Four different
photodetectors were used in the study: two PIN diodes
and two avalanche photo diodes (APD). Recently, several
experiments used the pin diode: Babar [7], BELLE [8], and
BesIII [9] used Hamamatsu S2744-08 PIN diode to collect
photons from crystals. APD S8664-55, on the other hand,
are used in CMS [10] with PWO calorimeter. The pin diode
S2744-08 and APD S8664-55 have spectral ranges of 340 to
1100 nm and 320 nm and 1100 nm, respectively [11]. These
were used with Gd2Y1Ga2.7Al2.3O12 scintillator. Another Si
APD and PIN diode were used for HfG by considering their
emission spectra which peak at relatively lower wavelength. It
is Si APD S5345 whose spectral range is between 200 nm and
1000 nm and Si PIN diode S1227-1010BQwith 190 to 1000 nm
spectral range [11]. The photodetectors used in the presented
study have the active areas of 1 cm x 2 cm, 5 mm x 5 mm,
and 5 mm in diameter, and 10 mm x 10 mm for S2744-08
pin diode, APDS8664-55, andADPS5345, and S1227-1010BQ
pin, respectively. The quantum efficiency of the pin diode
S2744-08 is around 10% at the wavelength of 300 nm, 50% at
400 nm, and reaches 83% at 580 nmwavelength of the photon
emission. On the other hand, those efficiency values are seen
for APD S8664-55 as 23%, 70%, and 85% indicating obviously
that APD is more efficient at relatively higher wavelengths.
Si photodiodes have fast response, high sensitivity, and low
noise. PIN diodes have no internal gain, so they do not
contribute to photoelectron statistics due to excess noise
factor. Since APD has avalanche gain process, it contributes
to the photoelectron statistics term as excess noise factor
due to fluctuations in gain process. This factor is wavelength
dependent and the excess noise factor is determined as
2 for the emission wavelength below 500 nm [12]. This
value was used for HfG scintillator-photodetector systems.
On the other hand, this factor was calculated as 2.346 for
the Gd2Y1Ga2.7Al2.3O12 by taking into account its emission
spectrum together with excess noise factor distribution of an
APD as a function of wavelength [12] according to

𝐹 = ∫𝐹 (𝜆) 𝐸𝑚 (𝜆) 𝑑𝜆∫𝐸𝑚 (𝜆) 𝑑𝜆 (3)

where 𝐹(𝜆) is the excess noise factor as a function of wave-
length and 𝐸𝑚(𝜆) is the emission weights of the spectrum for
a given scintillator material.

The scintillating process in Geant4 [13–15] is as fol-
lows: energy lost for each step determines the number
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of optical photons which has Gaussian distribution shape
and statistical fluctuations occur around average light yield
entered as scintillation yield. Photons are generated along
beam direction emitted uniformly into 4𝜋. They are emitted
according to random linear polarization and scintillation
time components. This process produces optical photons
which are directly used in a desired application. Instead
of working directly with optical photons, the following
method is reasonable by taking into account required infor-
mation belonging the material and electronics coupled to
it.

The number of optical photons produced in a scintillation
process is proportional to energy deposition in the material
during the process. If there is no self-absorption in the mate-
rial, these produced photons will be directed to the rear back
of the material in theoretical limits. Therefore, the following
procedure to calculate energy resolution is an appropriate
method by usingGeant4 program: First of all, the distribution
of energy deposition event to event is obtained for the
related beam energies. Fitting this distribution with suitable
function will give energy resolution value for the interested
calorimeter setup. This value refers to the contribution to
energy resolution due to event to event fluctuations of the
number of produced optical photons. The remaining part of
the fluctuation is due to photoelectron statistics. In this study,
since pin diodes have no internal gain, and the contribution
from variance of the gain process in the photodetector is
neglected for pin diodes. Here, the calculation of the average
number of photoelectrons produced in the photodetectors
determines the photoelectron statistics contribution. Clearly,
it depends on the number of photons produced in the mate-
rial and reaching to the active areas of the photodetectors.The
light yield is the main scintillation property of a scintillating
material. In this study, the yield values per MeV were used
to determine the average number of photons produced in the
optical process. Then, the number of photons reaching the
rear edge of the material was calculated by taking account
of transmission spectra of the interested materials. The next
step was to determine the number of photons hitting the
photodetector active area by taking account of the ratio of
the photodetector area to the total back face area of the
scintillator. The final step was to determine the number of
photoelectrons produced in the photodetectors according to
their emission weighted quantum efficiencies.

In the present study, two beam facing areas (20 mm
x 20 mm and 25 mm x 25 mm) were selected for each
scintillator forming 5 x 5 matrix geometry. In this way, the
total beam facing area was either 100 mm x 100 mm or
125 mm x 125 mm. The areas of beam facing and back face
of each scintillator were set equally in the simulation. Five
different thicknesses (17 cm, 20 cm, 23 cm, 25 cm, and 27
cm) were tested for calorimeter performances. Totally, ten
geometric configurationswere examined to see the changes of
calorimeter performances with detector sizes and to compare
obtained results with previous experimental or simulation
results in certain sizes. Gamma was used as an incident beam
with different energies ranging from 100 MeV to 2 GeV by
directing the beam to the center of the matrix. The ratios of
the active area of the APDs S8664-55 and S5345 to the total

area of the calorimeter back face were calculated as 0,125 and
0,0982 for 20 mm x 20 mm and 0,08 and 0,0628 for 25 mm
x 25 mm back face areas of the detectors, respectively, taking
into account the fact that each scintillators locates a pair of
diodes at the back faces. These values were calculated for pin
S2744 and pin S1227 as 1,0 and 0,5 with 20 mm x 20 mm and
0,64 and 0,32 with 25 mm x 25 mm back face areas of the
detectors, respectively.

The previous studies with CsI(Tl), PWO, and LYSO
crystals showed that the mentioned simulation procedure
gives compatible and reasonable results compared to experi-
mental results [16, 17]. It was shown that number of average
photoelectrons determined at the end of whole process is
reasonable if considering it with experimental ones and
energy resolution values obtained are in agreement. In this
study, the standard electromagnetic process was used to
obtain energy deposition distribution per event. In Geant4,
the processes belonging to the interactions of beams with
matter are determined in seven categories: electromagnetic,
hadronic, decay, photolepton-hadron, optics, parameteri-
zation, and transportation. The electromagnetic processes
could be summarized as follows. Photon processes include
gamma conversion or pair production, photoelectric effect,
Compton scattering, Rayleigh scattering, and muon pair
production. Electron/positron processes cover ionization and
delta-ray production, Bremsstrahlung radiation, electron-
positron pair production, annihilation to two gammas of a
positron, multiple scattering, the annihilation to two muons
of a positron, and annihilation to two hadrons of a positron.
On the other handmuon processes include the following pro-
cesses: ionization and delta-ray production, Bremsstrahlung
radiation, electron/positron pair production, and multiple
scattering. Hadron and ions also include ionization for
hadron and ions in addition to the standard electromagnetic
processes. Coulomb scattering in the model is considered
different for ions and charged particles. In addition, the
production of optical photons is determined with Cherenkov
and scintillation processes. The standard electromagnetic
package uses physics tables which are reconstructed between
100 eV and 100 TeV energy range.

HfG (Hafnium Fluoride Glass) is based on HfF4-BaF2-
NaF-AlF3-YF3 systemwithmolarmass fractions of 0.56, 0.28,
0.12, 0.02, and 0.02, respectively. 2.5% Ce doped HfG was
used in the present study since it shows good transparency
within emission spectra indicating no self-absorption. Ce
doped fluorohafnate glass showed very fast decay time with
short and long time constants of 8 ns and 25 ns, respectively.
Its emission spectra range between 290 nm and 400 nm
peaking at the wavelength of 310 nm. It has a density of
5.95 g/cm3 with the refractive index of 1.495. Its radiation
length is 1.6 cm and light yield of 150 photon/MeV. When
it is compared to newly produced scintillation glass of Ce
doped DSB [18], the following expressions could be stated:
DSB glass lower stopping power. Its density and radiation
length are 3.8 g/cm3 and, 3.3 cm, respectively. DSB has fast
decay time of 30 ns and additionally slower decay time of 180
ns.On the other hand, its light output is about five times larger
than that of PWO. HfG’s emission weighted transmission

98 Particle Physics: Concepts and Applications



Table 1: Number of photoelectrons per MeV (Npe/MeV) produced for different scintillator back face areas and photodetector combinations.

Material
Number of photoelectrons per MeV (Npe/MeV)

APD PIN
Area (20 mm x 20 mm) Area (25 mm x 25 mm) Area (20 mm x 20 mm) Area (25 mm x 25 mm)

GdY 5402 3457 40881 26164
HfG 5,1 3,3 33 21

Table 2: The photostatistics parts of the parameterized energy resolution function (ape) with different scintillator back face areas and
photodetector combinations.

Material
Photodetector signal fluctuations (ape as % in the unit of GeV1/2)

APD PIN
Area (20 mm x 20 mm) Area (25 mm x 25 mm) Area (20 mm x 20 mm) Area (25 mm x 25 mm)

GdY 0.066 0.082 0.016 0.020
HfG 1.973 2.467 0.548 0.685

rate was determined as 80%. Emission weighted quantum
efficiencies with APD and PIN were calculated as 43.7%
and 55.5%, respectively. Transmission spectra and emission
weighted quantum efficiencies together with APD and PIN
diode indicate that 34.9% and 44.4% of the produced photons
create an electron in the photodetector without considering
photodetector active areas.

Ce1%:Gd2Y1Ga2.7Al2.3O12 is a new single crystal grown
by Czochralski method. Its emission spectra range between
490 nm and 590 nm peaking at 530 nm. It reached the
65000 photons/MeV with two decay time constants of 93.5
ns and 615 ns, the relative intensities of which is 40.2%
and 50.8%, respectively. Its good optical and scintillation
properties together with its relatively high density of 6.3
g/cm3 make it a good alternative for gamma-ray detection
and nuclear nonproliferation applications. It was seen from
the report that its transmission spectra are well within its
emission spectra indicating no significant self-absorption.
Additionally, its emission spectra are well matched with
pin diode efficiencies and APD quantum efficiency spec-
tra. The emission weighted transmission value was deter-
mined as 79% for Ce1%:Gd2Y1Ga2.7Al2.3O12 scintillator. Both
APD and PIN diode were used as a photodetector with
Ce1%:Gd2Y1Ga2.7Al2.3O12 scintillator. Emission weighted
quantum efficiencies were calculated as 84.1% and 79.5%
with APD and PIN diode, respectively. When the spectra
of the quantum efficiencies are considered with transmis-
sion spectra it is found that 66.5% and 62.9% of the pro-
duced photons contribute the production of photoelectron
in APD and PIN diode, respectively. This will decrease
when the active areas of the photodetectors are taken into
account.

The simulation study was performed with Geant4 high
energy physics simulation package to determine the energy
resolution of the interested scintillatingmaterials as homoge-
nous calorimeters. The intrinsic energy resolution caused by
event to event energy deposition fluctuation was defined as
the ratio of the sigma to the mean value of the logarithmic
Gaussian fit function on the distributions of energy deposi-
tion in scintillatormaterial per event.The fit function is given

with (4) [19]. Later, photodetector signal fluctuations were
calculated with the appropriate process mentioned above.

𝐹 (𝑥) ≡ 𝑁 exp(− 12𝜎02 ln2 (1 −
𝑥 − 𝑥𝑝𝜎𝐸 𝜂) − 𝜎022 ) (4)

where 𝜎0 = 2/𝜉 sinh−1(𝜂𝜉/2) and 𝜉 = 2√ln 4. In the formula,𝑥𝑝 is the peak value, 𝜂 is the asymmetry parameter, 𝑁 is
the normalization factor, and 𝜎𝐸 is the full width at half
maximum (FWHM) divided by 𝜉. The energy resolution was
defined as the ratio of 𝜎𝐸 to the peak value 𝑥𝑝.
3. Results and Discussion

After this point, the name of the Ce1%:Gd2Y1Ga2.7Al2.3O12
scintillator will be abbreviated as GdY in histograms and
in the text. First of all, photoelectron production rates
and the ratios of the active areas of the photodetectors to
scintillator back face area were evaluated together and the
average number of photoelectrons (Npe) per MeV produced
at the photodetector in an event was obtained for different
scintillator backface detector geometries and photodetector
combinations. This is given in Table 1.

As expected HfG will give the lowest photoelectrons and
this will cause significant contribution to energy resolution.
The contributions from photodetector signal fluctuations(𝑎𝑝𝑒), which was calculated with (2), are given in Table 2 for
different detector combinations.

As it is seen, they are very low and negligible for GdY
material with both photodetectors. Those are significant for
HfG scintillator. Indeed, Pin diode S1227makes this contribu-
tion less harmful with its size and high UV sensitivity. Here,
it can be said that new pin diode technology could make a
scintillator more efficient compared to older photodetectors
with unmatched scintillator emission spectrum at relatively
lower wavelengths. A typical fit to the energy deposition
distribution to obtain intrinsic energy resolution for a certain
beam energy and detector geometry is shown in Figure 1. It is
for the 1 GeV beam energy on the HfG calorimeter with the
size of 25 mm x 25 mm back face and 27 cm in thickness.
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Figure 1: Typical energy resolution fitting belonging to HfG scintillator for 1 GeV beam energy.

Figures 2–5 show intrinsic energy resolution results for all
detector geometries as a function of beam energies. First of
all, with evaluating all histograms the thicknesses of 17 cm
and 20 cm will not be considered as material thicknesses
since they do not follow a good shape with beam energies
even the resolutions decrease with beam energies. For GdY
and 20 mm × 20 mm cross area of each scintillator, the
energy resolutions were determined as 2.14% and 1.76% for
the material thicknesses of 25 cm and 27 cm, respectively, at
2 GeV/c beam energy.

For GdY and 25 mm × 25 mm back face area, the
resolution values has been obtained as 1.55% for 27 cm
material thickness. In the case of 25 cm thick GdY, energy
resolution has no proper shape fluctuating around a line with
beam energy. For HfG and 20 mm × 20 mm back face area,
energy resolution reached 2.23%, 1.83%, and 1.58% for 23
cm, 25 cm, and 27 cm calorimeter thicknesses, respectively.
For HfG and 25 mm × 25 mm cross section area of each
scintillator, these values were determined as 2.11%, 1.69%, and
1.41%. It is seen that the resolutions increase with back face
areas and calorimeter thicknesses. It can be stated that the
resolutions belonging to the geometries of 25 mm × 25 mm
beam facing area and calorimeter thicknesses of 25 cm or 27
cmgivemore compatible resultswith previous studies [16, 17].
Therefore, energy resolution functions were parameterized
with these detector geometries. Considering the selected
material thicknesses and detector back face geometries, the
parameters of the total energy resolution function were
obtained with the function given in (1) excluding noise
term (c). Here, photoelectron statistics contribution was
determined according to (2). These parameters are given
in Tables 3 and 4 for 25 mm × 25 mm and 20 mm ×
20 mm back face detector geometries, respectively. These
values could not be determined for GdY material with 25
mm x 25 mm cross area and 25 mm thickness since the
energy resolution values do not follow good shape with

beam energies fluctuating around a line. Figures 6–8 show
parameterized energy resolution functions and resolution
values calculated with the related parameterized function at
certain beam energies for the scintillators with back face area
of 25 mm × 25 mm and the thicknesses of 25 cm and 27 cm
with APD and PIN. It should be noted that the resolutions
are quite different especially at lower beam energies below
1 GeV/c whether PIN or APD is used with HfG. Finally,
the followings are the best parameters obtained over the
examined detector combinations with the scintillator sizes of
25 mm × 25 mm back face area and 27 cm thickness:

𝜎𝐸 = 0.84%𝐸1/4 ⊕ 0.08%√𝐸 ⊕ 1.39% 𝑓𝑜𝑟 𝐺𝑑𝑌 + 𝐴𝑃𝐷
𝜎𝐸 = 0.84%𝐸1/4 ⊕ 0.02%√𝐸 ⊕ 1.39% 𝑓𝑜𝑟 𝐺𝑑𝑌 + 𝑃𝐼𝑁
𝜎𝐸 = 1.17%𝐸1/4 ⊕ 2.47%√𝐸 ⊕ 1.05% 𝑓𝑜𝑟 𝐻𝑓𝐺 + 𝐴𝑃𝐷
𝜎𝐸 = 1.17%𝐸1/4 ⊕ 0.69%√𝐸 ⊕ 1.05% 𝑓𝑜𝑟 𝐻𝑓𝐺 + 𝑃𝐼𝑁

(5)

After this point, the same parameterized results were
obtained as 3x3 matrix with the optimized detector geome-
tries of 27 cm in thickness and 25 mm × 25 mm back
face area for scintillator-PIN diode combinations.The results
were shown together with 5x5 matrices for GdY and HfG
in Figures 9 and 10, respectively. It is obvious that energy
resolutions increase with transverse sizes. It is also seen that
transverse size is more effective at lower beam energies below
1 GeV/c.

4. Conclusions

A computational study was carried out to determine energy
resolutions of two different scintillatormaterials to be used as
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Figure 2: Energy resolutions as a function of beam energy for GdY with 20 mm x 20 mm back face area and five different thicknesses.
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Figure 3: Energy resolutions as a function of beam energy for GdY with 25 mm x 25 mm back face area and five different thicknesses.
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Figure 4: Energy resolutions as a function of beam energy for HfG with 20 mm x 20 mm back face area and five different thicknesses.

a homogenous calorimeter in particle physics experiments.
Since GdY has very high light yield and its emission spec-
trum matches well with two photodetectors, photostatistics
contribution to the total energy resolution is negligible. For
HfG, in both case there will be significant contribution but
with APD this will be enormous resulting in huge decrease

on energy resolution especially at lower beam energies below
1 GeV/c. Above 1 GeV/c, this contribution could be thought
as reasonable. On the other hand, it could be stated that the
resolution will increase significantly at lower beam energies
below 1 GeV/c if the number of photodiodes are increased.
In addition, the calculation procedure of the average number
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Figure 5: Energy resolutions as a function of beam energy for HfG with 25 mm x 25 mm back face area and five different thicknesses.
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Figure 7: Parameterized energy resolution function (dashed lines) and energy resolution values at certain energies (points) for scintillator-
photodetector combinations belonging to HfG with 25 mm x 25 mm back face area and 25 cm thickness.

of photoelectrons will give the estimation of the minimum
number of photons detected. In a real experiment, the
possibility of detection of the number of the photons will
increase due to randomly polarized photons and scattering
via surface reflectors. If PIN diode is used with HfG, this

contribution will be very reasonable especially at relatively
high energies. It could be stated that both scintillators will
give very compatible results for material thicknesses of 25 or
27 cm and with appropriate photodetectors when compared
to previous studies. This allows being stated that these
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Figure 9: Parameterized energy resolution function for GdY as 3x3 and 5x5 matrices. Each scintillator has 27 cm thickness and back face
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Figure 10: Parameterized energy resolution function for HfG as 3x3 and 5x5 matrices. Each scintillator has 27 cm thickness and back face
area of 25 mm × 25 mm.

materials could be seen as alternatives in particle physics
experiments by taking into account their advantages. GdY’s
very high light yield could make it preferable especially for
relatively low beam energies.Themain advantage ofHfG is its

very fast decay times of 8 ns and 25 ns. Finally, their relatively
high densities allow reaching compatible resolutions results
with smaller detector sizes compared to scintillators with
lower densities.
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We propose a general expression for the probability distribution of real-valued tunneling times of a localized particle, as measured
by the Salecker-Wigner-Peres quantum clock.This general expression is used to obtain the distribution of times for the scattering of
a particle through a static rectangular barrier and for the tunneling decay of an initially bound state after the sudden deformation of
the potential, the latter case being relevant to understand tunneling times in recent attosecond experiments involving strong field
ionization.

1. Introduction

The search for a proper definition of quantum tunneling
times for massive particles, having well-behaved properties
for a wide range of parameters, has remained an important
and open theoretical problem since, essentially, the incep-
tion of quantum mechanics (see, e.g., [1, 2] and references
therein). However, such tunneling times were beyond the
experimental reach until recent advances in ultrafast physics
have made possible measurements of time in the attosecond
scale, opening up the experimental possibility of measuring
electronic tunneling times through a classically forbidden
region [3–6] and reigniting the discussion of tunneling times.
Still, the intrinsic experimental difficulties associated with
both the measurements and the interpretation of the results
have, so far, prevented an elucidation of the problem and,
in fact, contradictory results persist, with some experiments
obtaining a finite nonzero result [3, 6] and others compatible
with instantaneous tunneling [4]. It should be noticed that
the similarity between Schrödinger and Helmholtz equations
allows for analogies between quantum tunneling of massive
particles and photons [7], and a noninstantaneous tunneling
time is supported by this analogy and experiments measuring
photonic tunneling times [8], as well as by many theoretical
calculations based on both the Schrödinger (for reviews see,
e.g., [1, 2]) and the Dirac equations (e.g., [9–16]).

The conceptual difficulty in obtaining an unambiguous
and well-defined tunneling time is associated with the impos-
sibility of obtaining a self-adjoint time operator in quantum
mechanics [17], therefore leading to the need for operational
definitions of time. Several such definitions exist, such as
phase time [18], dwell time [19], the Larmor times [20–23],
and the Salecker-Wigner-Peres (SWP) time [17, 24], and in
some situations these lead to different, or even contradictory,
results. This is not surprising, since by their own nature
operational definitions can only describe limited aspects of
the phenomena of tunneling, and it is unlikely that any one
definition will be able to provide a unified description of
the quantum tunneling times in a broad range of situations.
Nevertheless, it remains an important task to obtain a well-
defined and real time scale that accurately describes the
recent experiments [3–6, 25–27].

It is important to notice that the time-independent
approach to tunneling times (i.e., for incident particles with
sharply defined energy), which comprises the vast majority of
the literature, is ill-suited to accomplish the above-mentioned
goal, since it ignores the essential role of localizability in
defining a time scale [23, 28]; see, however, [29], which
applies the time defined in [30] to investigate the half-life
of 𝛼-decaying nuclei. A few works (e.g., [23, 28, 31, 32])
address the issue of localizability and, consequently, arrive
at a probabilistic definition of tunneling times (that is, an
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average time). In particular, in [28] the SWP clockwas used to
obtain an average tunneling time of transmission (reflection)
for an incident wave packet, and such time was employed to
investigate the Hartman effect [33] for a particle scattered off
a square barrier and it was shown that it does not saturate in
the opaque regime [28, 34].

The tunneling time scales considered in [23, 28, 31]
involve taking an average over the spectral components of
the transmitted wave packet and, thus, obscure the interpre-
tation of the resulting average time. In this paper, we take
as a starting point the real-valued average tunneling time
obtained in [28], using the SWP quantum clock, and obtain
a probability distribution of transmission times, by using
a standard transformation between random variables. In
addition to providing a more accurate time characterization
of the tunneling process, this should provide a clearer con-
nection with the experiments (which measure a distribution
of tunneling times; see, e.g., Figure 4 in [3]). It is worth noting
that some approaches using Feynman’s path integrals address
the problem of obtaining a probabilistic distribution of the
tunneling times (see, e.g., [35]). However, these methods in
general result in a complex time (or, equivalently, multiple
time scales), and some arbitrary procedure is needed to select
the physically meaningful real time a posteriori.

After obtaining a general formula for the distribution of
tunneling times, which is the main result of this work, we
apply it to two specific cases. First, to illustrate the formalism
in a simple scenario, we consider the situation of a particle
tunneling through a rectangular barrier. Then, we consider
a slight modification of the model proposed in [36] for the
tunneling decay of an initially bound state, after the sudden
deformation of the binding potential by the application of
a strong external field; the modification considered here
allows us to investigate the whole range of possibilities for
the tunneling times, without having an “upper cutoff”, as
is the case in the original model. Finally, some additional
comments on the results are reserved for the last section.

2. The SWP Clock’s Average Tunneling Time

We start by briefly reviewing the time-dependent application
of the SWP clock to the scattering of a massive particle off a
localized static potential barrier in one dimension (for details
see [28]) which is appropriate, since it follows from the three-
dimensional Schrödinger equation for this problem that the
dynamics is essentially one-dimensional [3].

The SWP clock is a quantum rotor weakly coupled to
the tunneling particle and that runs only when the particle
is within the region in which 𝑉(𝑥) ̸= 0, where 𝑉(𝑥) is
the potential energy. The Hamiltonian of the particle-clock
system is given by (we use ℏ = 2𝜇 = 1, where 𝜇 is the particle’s
mass) [17]

𝐻 = − 𝜕2𝜕𝑥2 + 𝑉 (𝑥) +P (𝑥)𝐻𝑐, (1)

whereP(𝑥) = 1 if 𝑉(𝑥) ̸= 0 and zero otherwise. The clock’s
Hamiltonian is𝐻𝑐 = −𝑖𝜔(𝜕/𝜕𝜃), where the angle 𝜃 ∈ [0, 2𝜋)
is the clock’s coordinate and 𝜔 = 2𝜋/(2𝑗 + 1)𝜗 is the clock’s

angular frequency, with 𝑗 being a nonnegative integer or half-
integer giving the clock’s total angular momentum, and 𝜗 is
the clock’s resolution. The weak coupling condition amounts
to assume that 𝜗 is large, in such a way that the clock’s energy
eigenvalues, 𝜂𝑚 ≡ 𝑚𝜔 (−𝑗 < 𝑚 < 𝑗), are very small compared
to the barrier height and the particle’s energy. It is assumed
that, at 𝑡 = 0, well before it reaches the barrier, the particle
is well-localized far to the left of the barrier and the wave
function of the system is a product state of the form

Φ(𝜃, 𝑥, 𝑡 = 0) = 𝜓 (𝑥) V0 (𝜃) , (2)

where𝜓(𝑥) is the particle’s initial state, represented by a wave
packet centered around an energy 𝐸0, and the clock initial
state is assumed to be “in the zero-th hour” [17]

V0 (𝜃) = 1
√2𝑗 + 1

𝑗∑
𝑚=−𝑗

𝑢𝑚 (𝜃) , (3)

where 𝑢𝑚(𝜃) = e𝑖𝑚𝜃/√2𝜋 are the clock’s eigenfunctions
corresponding to the energy eigenvalues 𝜂𝑚.

The state V0(𝜃) is strongly peaked at 𝜃 = 0, thus allowing
the interpretation of the angle 𝜃 as the clock’s hand, since for
a freely running clock the peak evolves to 𝜔𝑡𝑐, where 𝑡𝑐 is the
timemeasured by the clock [17]. Since here clock and particle
are coupled according to (1), when the particle passes through
the region𝑉(𝑥) ̸= 0 it becomes entangled with the clock, with
the wave function for the entire system given by

Φ (𝜃, 𝑥, 𝑡) = 1
√2𝑗 + 1

𝑗∑
𝑚=−𝑗

Ψ(𝑚) (𝑥, 𝑡) 𝑢𝑚 (𝜃) ,

Ψ(𝑚) (𝑥, 𝑡) = ∫∞
0
𝑑𝑘𝐴 (𝑘)𝜓(𝑚)𝑘 (𝑥) e−𝑖𝐸𝑡,

(4)

where 𝐸 is the incident particle’s energy, 𝑘 = √𝐸, and 𝐴(𝑘) is
the Fourier spectral decomposition of the initial wave packet𝜓(𝑥) in terms of the free particle eigenfunctions (we are
assuming delta-normalized eigenfunctions). The functions𝜓(𝑚)
𝑘
(𝑥) satisfy a time-independent Schrödinger equation

with a constant potential 𝜂𝑚 in the barrier region. Outside
the potential barrier region and for a particle incident from
the left, the (unnormalized) solution 𝜓(𝑚)

𝑘
(𝑥) of the time-

independent Schrödinger equation is given by [28]

𝜓(𝑚)𝑘 (𝑥) = {{{
e𝑖𝑘𝑥 + 𝑅(𝑚) (𝑘) e−𝑖𝑘𝑥, 𝑥 ≤ −𝐿
𝑇(𝑚) (𝑘) e𝑖𝑘𝑥, 𝑥 ≥ 𝐿, (5)

where 𝑇(𝑚)(𝑘) [𝑅(𝑚)(𝑘)] stands for the transmission (reflec-
tion) coefficient, and it is assumed, without loss of generality,
that the potential is located in the region −𝐿 < 𝑥 <𝐿. Considering only the transmitted solution in (5) and
substituting it into the time-dependent solution (4), it can be
shown that for weak coupling

Φ𝑡𝑟 (𝜃, 𝑥, 𝑡)
= ∫∞
0
𝑑𝑘𝐴 (𝑘) 𝑇 (𝑘) e𝑖(𝑘𝑥−𝐸𝑡)V0 (𝜃 − 𝜔𝑡𝑇𝑐 (𝑘)) , (6)
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where

𝑡𝑇𝑐 (𝑘) = −(𝜕𝜑
(𝑚)
𝑇𝜕𝜂𝑚 )𝜂𝑚=0 (7)

is the stationary transmission clock time corresponding to
the wave number component 𝑘 [17, 37]. The transmission
coefficient 𝑇(𝑘) corresponds to the stationary problem in the
absence of the clock.

For tunneling times one is interested only in the clock’s
reading for the postselected asymptotically transmitted wave
packet.Thus, tracing out the particle’s degrees of freedom, the
expectation value of the clock’s measurement can be defined,
resulting in the average tunneling time [28]

⟨𝑡𝑇𝑐 ⟩ = ∫𝑑𝑘 𝜌 (𝑘) 𝑡𝑐 (𝑘) , 𝜌 (𝑘) = 𝑁 |𝐴 (𝑘) 𝑇 (𝑘)|2 , (8)

where 𝑁 = 1/ ∫ 𝑑𝑘|𝐴(𝑘)𝑇(𝑘)|2 is a normalization constant
and 𝜌(𝑘) is the probability density of finding the component𝑘 in the transmitted wave packet. Similar expressions can be
obtained for the reflection time.

3. The Tunneling Times Distribution

An important aspect of the average tunneling time considered
in the previous section is that it emphasizes the probabilistic
nature of the tunneling process. However, since the average in
(8) is over the time taken by the spectral components of the
wave packet, it does not lend itself to an easy interpretation,
given the spectral components of the wave packet tunnel with
different times. Thus, instead of (8), one would rather obtain
an average over (real) times of the form

⟨𝑡𝑐⟩ = ∫∞
0
𝑑𝜏 𝜏 𝜌𝑡 (𝜏) , (9)

where 𝜌𝑡(𝜏) stands for the probability density for observing a
particular tunneling time 𝜏 for the asymptotically transmitted
wave packet. This can easily be achieved by noticing that
in probability theory (8) and (9), which must be equal,
are related by a standard transformation between the two
random variables 𝑘 and 𝜏 through a function 𝑡𝑇𝑐 (𝑘). It follows
that the probability distribution of times is given by

𝜌𝑡 (𝜏) = ∫𝜌 (𝑘) 𝛿 (𝜏 − 𝑡𝑇𝑐 (𝑘)) 𝑑𝑘 (10)

which, in essence, is the statement that all the 𝑘-components
in the transmitted packet for which 𝑡𝑇𝑐 (𝑘) = 𝜏must contribute
to the value of 𝜌𝑡(𝜏) with a weight 𝜌(𝑘). Finally, using the
properties of the Dirac delta function (specifically, we use
the fact that 𝛿(𝑔(𝑥)) = ∑𝑗(𝛿(𝑥 − 𝑥𝑗)/|𝑔(𝑥𝑗)|), where {𝑥𝑗} is
the set of zeros of the function 𝑔(𝑥) and the prime indicates
a derivative with respect to the independent variable), we
obtain

𝜌𝑡 (𝜏) = ∑
𝑗

𝜌 (𝑘𝑗 (𝜏))𝑡𝑇𝑐 (𝑘𝑗 (𝜏)) , (11)

where {𝑘𝑗(𝜏)} is the set of zeros of the function𝑔(𝑘) ≡ 𝑡𝑇𝑐 (𝑘)−𝜏
and 𝑡𝑇𝑐 is the derivative of 𝑡𝑇𝑐 (𝑘) with respect to 𝑘.

A similar definition of the distribution of tunneling
times given in (10)-(11) can be obtained for any time scale
which is probabilistic in nature, that is, of the form (8).
Although several other probabilistic tunneling times exist in
the literature (e.g., [23, 31, 32, 35]), the SWP clock has proven
to yieldwell-behaved real times both in the time-independent
[17, 37, 38] and time-dependent approaches [28, 34, 39] and
it provides a simple procedure to derive the probabilistic
expression (8). In addition, the role exerted by circularly
polarized light in attoclock experiments [3, 25] seems to
provide a natural possibility for interpretation in terms of the
SWP clock.

As will be illustrated below, for the simple application of
this formalism to the problem of a wave packet scattered off
a rectangular potential barrier, the distribution of times (10)-
(11) cannot, in general, be obtained analytically even for the
simplest cases, except in trivial cases such as for a single Dirac
delta potential barrier [40–42], in which case 𝑡𝑇𝑐 (𝑘) = 0 and𝜌𝑡(𝜏) = 𝛿(𝜏) ∫ 𝑑𝑘𝜌(𝑘).

It should also be noticed that, despite the fact that the
derivation of the previous section leading to (8) and, thus
(10)-(11), assumed a scattering situation, these expressions
can be shown to be valid for any situation involving prese-
lection of an initial state localized to the left of a potential
“barrier” followed by postselection of an asymptotic trans-
mitted wave packet. This allows us to obtain the distribution
of times for a model that simulates the tunneling decay of an
initially bound particle by ionization induced by the sudden
application of a strong external field; the model considered
below is a variant of that introduced in [36].

4. The Distribution of Tunneling Times for
a Rectangular Barrier

As a first illustration of the formalism developed above, let
us consider a rectangular barrier of height 𝑉0 located in the
region 𝑥 ∈ (−𝐿, 𝐿). The particle’s initial state 𝜙0(𝑥) ≡ 𝜓(𝑥, 𝑡 =0) is assumed to be a Gaussian wave packet

𝜙0 (𝑥) = 1
(2𝜋)1/4√𝜎 exp[𝑖𝑘0𝑥 − (𝑥 − 𝑥0)

2

4𝜎2 ] , (12)

where the parameters 𝑥0, 𝜎, and 𝑘0 are chosen such that the
wave packet is sharply peaked in a tunneling wave number𝑘0 = √𝐸0 < √𝑉0 and is initiallywell-localized around𝑥 = 𝑥0,
far to the left of the barrier; in the calculations that follow we
take 𝑥0 = −8𝜎, such that at 𝑡 = 0 the probability of finding the
particle within or to the right of the barrier is negligible. The
transmission coefficient 𝑇(𝑘) and the spectral function 𝐴(𝑘)
are well-known and given by

𝑇 (𝑘) = 2𝑖𝑘𝑞𝑒−2𝑖𝑘𝐿
(𝑘2 − 𝑞2) sinh (2𝐿𝑞) + 2𝑖𝑘𝑞 cosh (2𝐿𝑞) (13)
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𝐴 (𝑘) = ( 2𝜋)
1/4√𝜎 exp [4𝑘𝜎 (𝑘0𝜎 + 4𝑖)

− 𝜎 (𝑘 + 𝑘0) (𝑘𝜎 + 𝑘0𝜎 + 8𝑖)] ,
(14)

where 𝑞 = √𝑉0 − 𝑘2. The stationary transmission clock time
(7) is [22, 28]

𝑡𝑇𝑐 (𝑘) = 𝑘𝑞
⋅ (𝑞2 + 𝑘2) tanh (2𝑞𝐿) + 2𝑞𝐿 (𝑞2 − 𝑘2) sech2 (2𝑞𝐿)4𝑞2𝑘2 + (𝑞2 − 𝑘2)2 tanh2 (2𝑞𝐿) ,

(15)

with tunneling times corresponding to real values of 𝑞 (i.e.,𝑉0 > 𝑘2). Figure 1 shows a plot for the stationary transmission
times 𝑡𝑇𝑐 (𝑘), the distribution of wave numbers 𝜌(𝑘) in the
transmitted wave packet, and the distribution |𝐴(𝑘)|2 of
wave numbers (momenta) in the incident packet, for two
values of the barrier width. For the chosen parameters and
barrier widths both the incident and the transmitted wave
packets have an energy distribution very strongly peaked in
a tunneling component (in the bottom plot of Figure 1 the
barrier is much more opaque than that in the top plot and we
can observe that—despite being with a negligible probability
for the parameters chosen for this plot—in this situation
some above-the-barrier components start to appear in the
distribution of the transmitted wave packet. So, in order to
consider mainly transmission by tunneling we must restrict
the barrier widths to not too large ones). We also observe
the very well-known fact that the transmitted wave packet
“speeds up” when compared to the incident particle [28].
As a general rule, the larger is the barrier width (i.e., the
more opaque is the barrier), the greater is the translation
of the central component towards higher momenta. In what
concerns the off-resonance stationary transmission time, it
initially grows with the barrier width, and saturates for very
opaque barriers (the Hartman effect); on the other hand,
it presents peaks at resonant wave numbers that grow and
narrow with the barrier width; for a detailed discussion see
[28]).

Figure 2 shows plots of the probability distribution 𝜌𝑡(𝜏)
of the tunneling times according to (10)-(11), corresponding
to both the barrier widths shown in Figure 1 [to obtain
these plots we used a Monte Carlo procedure to generate
a large number of 𝑘 outcomes from the distribution 𝜌(𝑘),
which afterwards were transformed into 𝜏 values by using
the function 𝜏 = 𝑡𝑇𝑐 (𝑘)]. The vertical grey lines in these
plots correspond to the time the light takes to cross the
barrier distance. It is observed that for the two distributions
shown in Figure 2 the probability to observe superluminal
tunneling times is negligible. It is also observed that these
distributions have a shape that resembles that of the 𝑘
distribution, albeit with a more pronounced skewness. This
shape could be inferred from Figure 1 and from (11), since𝑡T𝑐 (𝑘) grows very smoothly in the region were 𝜌(𝑘) is
nonvanishing. Furthermore, a comparison between the two
plots in Figure 2 shows that the tunneling times do not grow
linearly with the barrier width and, therefore, the distribution
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Figure 1: Stationary transmission clock time 𝑡𝑇𝑐 (𝑘) (green) and the
distributions 𝜌(𝑘) (orange and arbitrary scale) and |𝐴(𝑘)|2 (blue,
dashed, and arbitrary scale) for the transmitted and incident wave
packets, respectively. Rydberg atomic units ℏ = 2𝜇 = 1 are used
in all plots; the tunneling energies correspond to 0 < 𝑘 < √7,
corresponding to a barrier height 𝑉0 = 7 (the maximum tunneling
wave number√7 is shown by a vertical grey line in the plots). In both
plots the incident wave packet parameters are 𝑘0 = 1.5, 𝜎 = 5, 𝑥0 =−8𝜎. Top: barrier width 2𝐿 = 2. Bottom: barrier width 2𝐿 = 16.

in the bottom plot of Figure 2 is “closer” to the light time
than the distribution shown in the top plot; [28] already
observed that for intermediate values of barrier widths the
average transmission time—corresponding to the mean of
the distribution 𝜌𝑡—reaches a plateau.

5. Distribution of Ionization Tunneling Times

In this section we obtain a distribution for tunneling times for
a particle that is initially in a bound state of a given binding
potential. The potential is then suddenly deformed in such a
way that the particle can escape from the initially confining
region by tunneling. The model considered here is a slight
modification of that proposed by Ban et al. [36] to simulate,
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Figure 2: Probability distribution 𝜌𝑡(𝜏) for the tunneling times 𝜏,
obtained by Monte Carlo samplings of 𝑘-values from the distribu-
tion 𝜌(𝑘) and then transforming these to time values through 𝜏 =𝑡𝑇𝑐 (𝑘). The parameters are the same as in the corresponding plots in
Figure 1 and are all expressed in Rydberg atomic units. Top: 2𝐿 = 2.
Bottom: 2𝐿 = 16. These plots are in the same range and scale and
can be compared. The vertical grey line in both plots corresponds
to the time the light takes to traverse the barrier distance. The ticks
in the horizontal axes correspond to the light time, the minimum,
the median and the maximum values of 𝜏 in the histogram (in the
bottom plot the maximum 𝜏 is out of the plot’s range).

in a simple scenario, key features of the decay of a localized
state by tunneling ionization induced by the application of a
strong external field with a finite duration.

In [36], for 𝑡 < 0, the particle is in an eigenstate of a semi-
infinite square-well potential 𝑉1(𝑥),

𝑉1 (𝑥) =
{{{{{{{{{

+∞ 𝑥 < 0
0 0 ≤ 𝑥 ≤ 𝑎
𝑉0 𝑥 > 𝑎,

(16)

and, therefore, it cannot decay by tunneling. At 𝑡 = 0 the
potential is suddenly deformed to 𝑉2(𝑥),

𝑉2 (𝑥) =
{{{{{{{{{{{{{{{

+∞ 𝑥 < 0
0 0 ≤ 𝑥 ≤ 𝑎
𝑉0 𝑎 < 𝑥 < 𝑏
0 𝑥 ≥ 𝑏,

(17)

such that the particle can now tunnel through the potential
barrier; it is assumed that the wave function does not
change during the sudden change of the potential. Finally,
after a finite time 𝑡0 the potential returns to its original
configuration, 𝑉1(𝑥), and tunneling terminates. The cutoff
time 𝑡0 mimics the natural upper bound for tunneling times
measured in recent attoclock experiments (see, e.g., [3, 6]
and references therein), since the opening and closing of the
tunneling channel in these experiments occur in intervals of
half the laser field’s period.

Here, we deviate from [36] by setting 𝑡0 → ∞; i.e., once
deformed the potential does not return to its original form
and, after a long enough time, the particle will be transmitted
with unit probability; thus, by eliminating the cutoff (which
is just an experimental limitation) we are able to explore the
whole range of possibilities for the ionization tunneling time.
In addition, for 𝑡 ≥ 0, the particle is assumed to be coupled
to a SWP quantum clock running only in the region (𝑎, 𝑏), so
that the clock’s readings for the asymptotic transmitted wave
packet give the time the particle spent within the barrier after𝑡 = 0. Following [36], we assume that for 𝑡 < 0 the particle
is in the ground state of the potential 𝑉1(𝑥), whose stationary
wave function is given by

𝜙0 (𝑥) = 𝑁{{{
sin (𝑘0𝑥) , 0 < 𝑥 ≤ 𝑎
sin 𝑘0e𝑞0(𝑎−𝑥), 𝑥 > 𝑎, (18)

where 𝑁 is a normalization constant, 𝑘0 = √𝐸0, 𝐸0 is the
ground state energy, and 𝑞0 = √𝑉0 − 𝑘20. It is also assumed, as
in [36], that immediately after the sudden deformation of the
potential from𝑉1(𝑥) to𝑉2(𝑥), at 𝑡 = 0, the wave function does
not change. However, for 𝑡 ≥ 0 the particle state, which is no
longer an energy eigenstate, is given by a superposition of the
energy eigenstates 𝜓𝑘(𝑥) (𝑘 = √𝐸) of the potential 𝑉2(𝑥), i.e.,
[36]

𝜓 (𝑥, 𝑡 = 0) = 𝜙0 (𝑥) = ∫∞
0
𝑆 (𝑘) 𝜓𝑘 (𝑥) 𝑑𝑘, (19)

where

𝑆 (𝑘) = ∫∞
0
𝜙0 (𝑥) 𝜓∗𝑘 (𝑥) 𝑑𝑥, (20)

with

𝜓𝑘 (𝑥) =
{{{{{{{{{{{

𝐴(𝑘) sin (𝑘𝑥) , 0 < 𝑥 ≤ 𝑎
𝐶 (𝑘) e𝑞𝑥 + 𝐷 (𝑘) e−𝑞𝑥, 𝑎 < 𝑥 ≤ 𝑏
√ 2𝜋 cos [𝑘 (𝑥 − 𝑏) + Ω (𝑘)] , 𝑥 > 𝑏,

(21)

where 𝑞 = √𝑉0 − 𝑘2 and the coefficients 𝐴(𝑘), 𝐶(𝑘), 𝐷(𝑘)
and the phase Ω(𝑘) are determined by the usual boundary
conditions at 𝑥 = 𝑎 and 𝑥 = 𝑏 and are such that the
normalization ⟨𝜓𝑘(𝑥), 𝜓𝑘(𝑥)⟩ = 𝛿(𝑘 − 𝑘) holds [36]. From
the above expressions it follows that, without any loss of
generality, we can take 𝑆(𝑘) and all the eigenfunctions (21)
to be real.
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In order to consider the coupling with the SWP clock
for times 𝑡 ≥ 0 we proceed as follows. At 𝑡 = 0 the system
particle+clock is described by the product state 𝜓(𝑥, 0)V0(𝜃),
where 𝜓(𝑥, 0) is the state (19) and V0(𝜃) is the initial clock
state given by (3). After 𝑡 = 0 the particle and the clock states
become entangled. For the procedure of postselection of the
asymptotically transmitted wave function we notice that the
role of the transmission coefficient for the wave function
(21) is played by √2/𝜋 e𝑖(−𝑘𝑏+Ω(𝑚)(𝑘)), where the superscript𝑚 indicates the weak coupling with the clock. The right
moving asymptotic wave packet representing the coupled
system formed by the transmitted particle and the clock is

Φ𝑡𝑟 (𝜃, 𝑥, 𝑡) = ∫∞
0
𝑑𝑘𝑆 (𝑘) e𝑖[𝑘(𝑥−𝑏)+Ω(𝑚)(𝑘)−𝐸𝑡]

× V0 [𝜃 − 𝜔𝑡𝑇𝑐 (𝑘)] ,
(22)

where, as before, 𝑡𝑇𝑐 (𝑘) = −(𝜕Ω(𝑚)(𝑘)/𝜕𝜂𝑚)𝜂𝑚=0 = −(1/2𝑞)(𝜕Ω/𝜕𝑞) [with quantities without the subscript “(𝑚)”
representing the limit 𝜂𝑚 → 0]. By following the same steps
described in [28], we trace out the clock’s degree of freedom in
the asymptotic transmitted wave packet in order to obtain the
distribution 𝜌(𝑘) of the wave numbers for the asymptotically
transmitted wave packet, which in this case is simply given by

𝜌 (𝑘) = |𝑆 (𝑘)|2 ; (23)

i.e., the probability to find a wave number 𝑘 in the asymptotic
transmitted wave packet is the same as in the initial state,
which is as expected, since after a long enough time the
initial wave packet will be transmitted with probability unit,
as mentioned earlier.

The general behavior of 𝑡𝑇𝑐 (𝑘) and 𝜌(𝑘) is illustrated in
Figures 3 and 4, corresponding to two barriers with different
opacities (𝑏 − 𝑎 = 2 and 4, respectively). These plots show, as
expected, that the distribution 𝜌(𝑘) is strongly peaked at the
wave number 𝑘0, corresponding to the energy of the initially
bound state and is negligible for nontunneling components.
For tunneling wave numbers (𝑘 < √𝑉0) the function𝑡𝑇𝑐 (𝑘) is also strongly peaked at the same wave number 𝑘0,
which corresponds to a local maximum (for nontunneling
wave numbers there are several other resonance peaks).
From (11) we would expect that the peaks in the tunneling
times distribution 𝜌𝑡(𝜏) would occur for times 𝜏 = 𝑡𝑇𝑐 (𝑘)
corresponding to values of 𝑘 for which 𝑡𝑇𝑐 (𝑘) ≈ 0—which
occur at points of local maxima and minima of the function𝑡𝑇𝑐 (𝑘)—and corresponding to nonnegligible 𝜌(𝑘). Therefore,
from the plots in Figures 3 and 4 one could expect the
first peak of the tunneling time distribution 𝜌𝑡(𝜏) at 𝜏 ≈0.105 𝑎.𝑢. (the local minimum of 𝑡𝑇𝑐 (𝑘), which is similar for
both barrier widths, since nonresonant times 𝑡𝑇𝑐 (𝑘) change
little with the barrier width for opaque barriers, as is the
case in Figures 3 and 4); a second peak in 𝜌𝑡(𝜏) is expected
to occur around the local maximum of 𝑡𝑇𝑐 (𝑘), which corre-
sponds to 𝜏 ≈ 𝑡𝑇𝑐 (𝑘0) (this local maximum—corresponding
to resonant wave numbers—changes significantly with the
barrier widths; see, e.g., [28]). On the other hand, peaks in
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Figure 3: Top: the stationary transmission clock time 𝑡𝑇𝑐 (𝑘) (blue)
and the wave number distribution 𝜌(𝑘) = |𝑆(𝑘)|2 (orange, dashed,
and arbitrary scale), for 𝑉0 = 7, 𝑎 = 1, 𝑏 = 3, and 𝑘0 ≈ 2.175932),
with the initial state given by (18). Bottom: close view of the above
plot for small times. The vertical grey lines in the plots correspond
to 𝑘 = 𝑘0 and 𝑘 = √𝑉0. The regions in which 𝑡𝑇𝑐 (𝑘) ≈ 0 (around the
local maximum and minimum of 𝑡𝑇𝑐 (𝑘)) correspond to times 𝜏 ≈𝑡𝑇𝑐 (𝑘0) and 𝜏 ≈ 0.105 𝑎.𝑢. Rydberg atomic units were used in all the
plots.

𝜌𝑡(𝜏) coming from local maxima (resonances) and minima
associated with nontunneling values of 𝑘 are suppressed,
since 𝜌(𝑘) ≈ 0 in these cases. Figure 5 confirm these
claims. For both barrier widths considered, the distribution
of tunneling times is “U” shaped, having peaks at the times
corresponding to the local maxima and minima of the
stationary time 𝑡𝑇𝑐 (𝑘) inside the tunneling region. It should
be observed that the larger is the barrier width, the broader is
the tunneling time distribution, due to the strong increase of
the resonant tunneling time with the barrier width.

Figures 6 and 7 show close views of the tunneling
time distributions 𝜌𝑡(𝜏) for small and large tunneling times
(Figure 6 corresponds to the plot at the top of Figure 5, while
Figure 7 corresponds to the plot at the bottom of Figure 5).
In the top plots of these Figures we can clearly observe the
first peak around the local minimum of 𝑡𝑐(𝑘) in the tunneling
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Figure 4: Top: the stationary transmission clock time 𝑡𝑇𝑐 (𝑘) (blue)
and the wave number distribution 𝜌(𝑘) = |𝑆(𝑘)|2 (orange, dashed,
and arbitrary scale), for 𝑉0 = 7, 𝑎 = 1, 𝑏 = 5, and 𝑘0 ≈ 2.175932),
with the initial state given by (18). Bottom: close view of the above
plot for small times. The vertical grey lines in the plots correspond
to 𝑘 = 𝑘0 and 𝑘 = √𝑉0. The region of relatively slow growth of
the derivative 𝑡𝑇(𝑘) correspond to times around 0.105 𝑎.𝑢. Rydberg
atomic units were used in all the plots.

region, which in both plots corresponds to almost the same
value 𝜏 ≈ 0.105 𝑎.𝑢 ≈ 5.1 attoseconds. The top plot of
Figure 6 shows that for the less opaque barrier there exists a
(very small) probability to observe a superluminal tunneling
time. Even if this possibility cannot be precluded in principle
(see, e.g., [16]), in the present case the possibility of emergence
of such small times was expected, since at 𝑡 = 0 there
was a significant portion of the wave packet (roughly 27%)
penetrating the whole distance of the barrier, and this has an
important contribution to the emergence of small times in
the clock’s readings associated with the transmitted particle.
On the other hand, the top plot of Figure 7 shows that for
the thicker barrier the probability for superluminal times is
negligible; the portion of the wave packet already inside the
barrier at 𝑡 = 0 is the same (∼27%), but the wave packet
penetrates proportionally a smaller distance inside the barrier
and, thus, it does not contribute in a significant way to the
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Figure 5: Distributions of tunneling decay times 𝜌𝑡(𝜏) through
the barrier of the potential 𝑉2(𝑥) for the initial bound state 𝜙0(𝑥)
given by (18). The histograms were built by using the Monte Carlo
procedure described in Figure 2 and in the main text. The vertical
grey lines indicate percentiles of the distribution (the first and the
last correspond to 1% and 99%, the remaining ones range from 5%
to 95%, in steps of 5%); the three thick vertical lines indicate the
first quartile (percentile 25%), the median, and the third quartile
(percentile 75%). Rydberg atomic units were used in all the plots.
Top: barrier width 𝑏 − 𝑎 = 2 and bin length ≈ 0.0031𝑎.𝑢. (≈ 0.15
attoseconds).Bottom: barrier width 𝑏−𝑎 = 4 and bin length≈ 40𝑎.𝑢.
(≈ 1,935 attoseconds).

emergence of very small times in the clock readings. We note
that the introduction of the cutoff 𝑡0, as in [36], would result
in a time distribution similar to the truncated distributions
shown in the top plots of Figures 6 and 7.

It is also worth observing that, for small times, the
distributions obtained here resemble qualitatively those in
Figure 4 of [3], except for the presence of several peaks at
discrete values of the time in the latter. The considerations
above, relating the peaks of the distribution of clock times𝜌𝑡(𝜏) to the local maxima and minima of the stationary
time 𝑡𝑇𝑐 (𝑘) and the magnitude of distribution 𝜌(𝑘) in the
neighborhood of these points, suggest a scenario in which
such multiple peaks at discrete values of time can appear in
the distribution 𝜌𝑡(𝜏) of transmission times. Indeed, if above-
the-barrier wave numbers had a significant contribution to
the initial wave packet, then the several local maxima and
minima present in the vicinities of the resonant nontunneling
components will also contribute in a significant way to build
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Figure 6: Close views of the plot at the top of Figure 5, correspond-
ing to the barrier width 𝑏 − 𝑎 = 2, with the bin length ≈ 0.0031𝑎.𝑢.
(≈ 0.15 attoseconds). Top: small tunneling times. The vertical grey
line in the left of this plot corresponds to the time the light takes to
travel the barrier distance.The second grey vertical line corresponds
to the percentile 1%.Bottom: large tunneling times.The vertical grey
lines correspond to the percentiles 95% and 99%, respectively.

multiple peaks in the distribution of transmission times; these
peaks, however, could not be associated with the tunneling
process. We can consider such a scenario by choosing as
the initial state a tightly localized state given by 𝜓(𝑥, 0) =√2 sin 𝑘0𝑥, with 𝑘0 = 𝜋 and the barrier parameters 𝑎 = 1,𝑏 = 2, and 𝑉0 = 11, in Rydberg atomic units. In this situation
the initial wave function is perfectly confined to the left of
the barrier (0 < 𝑥 < 1), and above-the-barrier components
contribute in a significant way to build the wave packet, as
can be seen from 𝜌(𝑘) in the top plot of Figure 8 (in this
case the probability of finding a nontunneling 𝑘 component
in the wave packet is approximately 75%). In this plot we can
also observe that all the local maxima and minima of 𝑡𝑇𝑐 (𝑘)
shown occur in neighborhoods of wave numbers 𝑘 for which𝜌(𝑘) is nonnegligible; therefore, all these local maxima and
minima contribute significantly to build multiple peaks in
the distribution of transmission times 𝜌𝑡(𝜏). The middle and
the bottom plots of Figure 8 confirm this statement: all the
peaks of the distribution of transmission times correspond
very closely to the local maxima and minima of 𝑡𝑐(𝑘), as can
be seen by comparing the plots in the top and the bottom
of this figure (except for the first, all the other significant
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Figure 7: Close views of the plot at the bottom of Figure 5,
corresponding to the barrier width 𝑏 − 𝑎 = 4. Top: small tunneling
times and bin length ≈ 0.0031𝑎.𝑢. (≈ 0.15 attoseconds).The vertical
grey line in the left of this plot corresponds to the time the light takes
to travel the barrier distance. The percentile 1% (corresponding to≈ 5.1 𝑎.𝑢. ≈ 247 attoseconds) is out of the range of this plot. Bottom:
large tunneling times, with bin length ≈ 2 𝑎.𝑢 ≈ 100 attoseconds.
The vertical grey line corresponds to the percentile 99%.

peaks in the bottom plot are associated with nontunneling
components).

6. Conclusions

Taking as a starting point the probabilistic (average) tunneling
time obtained in [28] with the use of a SWP clock [17, 24, 37],
we obtained a probability distribution of times (10)-(11). An
important advantage of using the SWP clock, in addition to
those already mentioned, is that by running only when the
particle is inside the barrier it allows us to address the concept
of tunneling time in a proper way, since the time spent by
the particle standing in the well before penetrating the barrier
is not computed. A clear advantage of having a probability
distribution of transmission (tunneling) times is that, in
addition to the usual expectation value, we can obtain all the
statistical properties of this time, such as its most probable
values (peaks of the distribution), the dispersion around the
mean value, and the probability to observe extreme outcomes
(superluminal times, for instance).

As an initial test, the distribution of times (10)-(11) was
applied to the simple problem of a particle tunneling through
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Figure 8: Top: the stationary time 𝑡𝑇𝑐 (𝑘) and the wave number
distribution 𝜌(𝑘), for 𝑉0 = 11, barrier width 𝑏 − 𝑎 = 36, 𝑘0 = 𝜋,
and an initial state 𝜓(𝑥, 0) = √2 sin 𝑘0𝑥, with 𝑘0 = 𝜋. The vertical
lines correspond to 𝑘 = 𝑘0 and 𝑘 = √𝑉0. Middle: distribution𝜌𝑡(𝜏) for the transmission times, with the histogram built by the
Monte Carlo procedure described in the text. Vertical lines indicate
the percentiles, as in the Figure 5. Bottom: close view of the above
histogram for the range of small times. The first vertical line at the
left indicates the time the light takes to cross the barrier distance.
In both the histograms we used a bin length ≈ 0.0031 𝑎.𝑢. ≈ 0.15
attoseconds. Rydberg atomic units were used in all these plots.

a rectangular barrier. Unsurprisingly, it revealed behavior
similar to that already known from previous works using
a distribution of wave numbers (momentum)—see, e.g.,
[28]—although, using 𝜌𝑡(𝜏) these conclusions are muchmore
transparent. For example, one could answer the question
about the possibility of superluminal tunneling by direct
calculation from the probability distribution 𝜌𝑡(𝜏). In the
nonstationary case—which is the correct to address this
question—this problem is usually answered by considering

just the average tunneling time. But, given its probabilistic
nature, an answer based only on the average time may not
be satisfactory, especially if the dispersion of the distribution
of tunneling times is large, which is often the case when one
deals with well-localized particles, as suggested by the two
situations addressed in the present work.

As a main application of (10)-(11), we considered a
slight modification of the problem considered in [36] to
model strong field ionization by tunneling. The modification
considered here was the elimination of the cutoff time that
was introduced in [36] to simulate the upper bound that
arises in attoclock experiments [3, 6] due to the opening
and closing of the tunneling channel, naturally associated
with the oscillations in the laser field intensity. This cutoff
is not a fundamental requirement, but rather it is associated
with the experimental methods employed—in any case, its
implementation is rather trivial, since it just truncates the
distribution of times. The consideration of the full range
of the distribution of times allowed us to show that an
important contribution to 𝜌𝑡(𝜏) comes from very large times
associated with the resonance peaks in the tunneling region;
these very long tunneling times occur with a probability
comparable to very short ones, thus having an important
impact on the average tunneling times and, therefore, cause
difficulties when comparing theoretical predictions based on
an average time with the outcomes of experiments presenting
a natural cutoff in the possible time measurements. In
particular, in the attoclock experiments the relevant measure
is often associated with the peak of the tunneling time, which
may be promptly identified once one knows the probability
distribution for all possible times. A remark is in place; the
distribution of times proposed here, built on the SWP clock
readings, refers to the time the particle dwells within the
barrier, while the tunneling times often measured in recent
attoclock experiments actually refer to exit times [43].

In sum, the approach introduced above and resulting in
(10)-(11) builds upon the already (conceptually) well tested
SWP clock to provide a real-valued distribution of times
that, in the simplemodels considered here, was demonstrated
to have physically sound properties and, in fact, (rough)
similarities with the time distribution obtained in recent
experiments [3], therefore warrantying further investigation
with more realistic potentials.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] H. G. Winful, “Tunneling time, the Hartman effect, and super-
luminality: a proposed resolution of an old paradox,” Physics
Reports, vol. 436, no. 1-2, pp. 1–69, 2006.

115A Probability Distribution for Quantum Tunneling Times



[2] H. G. Winful, “The meaning of group delay in barrier tun-
nelling: a re-examination of superluminal group velocities,”
New Journal of Physics, vol. 8, Article ID 101, 2006.

[3] A. S. Landsman,M.Weger, J.Maurer et al., “Ultrafast resolution
of tunneling delay time,”Optica, vol. 1, no. 5, pp. 343–349, 2014.

[4] L. Torlina, F. Morales, J. Kaushal et al., “Interpreting attoclock
measurements of tunnelling times,” Nature Physics, vol. 11, no.
6, pp. 503–508, 2015.

[5] O. Pedatzur, G. Orenstein, V. Serbinenko et al., “Attosecond
tunnelling interferometry,” Nature Physics, vol. 11, no. 10, pp.
815–819, 2015.

[6] T. Zimmermann, S.Mishra, B. R. Doran, D. F. Gordon, andA. S.
Landsman, “Tunneling time and weak measurement in strong
field ionization,” Physical Review Letters, vol. 116, no. 23, Article
ID 233603, 2016.

[7] R. Chiao, P. Kwiat, and A. Steinberg, “Analogies between
electron and photon tunneling: a proposed experiment to
measure photon tunneling times,” Physica B: CondensedMatter,
vol. 175, no. 1–3, pp. 257–262, 1991.

[8] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of
the single-photon tunneling time,” Physical Review Letters, vol.
71, no. 5, pp. 708–711, 1993.

[9] C. R. Leavens and R. Sala Mayato, “Are predicted superluminal
tunneling times an artifact of using nonrelativistic Schrödinger
equation?”Annalen der Physik, vol. 7, no. 7-8, pp. 662–670, 1999.

[10] P. Krekora, Q. Su, and R. Grobe, “Effects of relativity on the
time-resolved tunneling of electron wave packets,” Physical
Review A: Atomic, Molecular and Optical Physics, vol. 63, no. 3,
Article ID 032107, 2001.

[11] C.-F. Li andX.Chen, “Traversal time forDirac particles through
a potential barrier,” Annalen der Physik, vol. 11, no. 12, pp. 916–
925, 2002.

[12] V. Petrillo and D. Janner, “Relativistic analysis of a wave
packet interacting with a quantum-mechanical barrier,” Physi-
cal Review A: Atomic, Molecular and Optical Physics, vol. 67, no.
1, Article ID 012110, 2003.

[13] X. Chen and C. Li, “Negative group delay for Dirac particles
traveling through a potential well,” Physical Review A: Atomic,
Molecular and Optical Physics, vol. 68, no. 6, Article ID 052105,
2003.

[14] S. De Leo andP. Rotelli, “Dirac equation studies in the tunneling
energy zone,”The European Physical Journal C, vol. 51, no. 1, pp.
241–247, 2007.

[15] J. T. Lunardi and L. A.Manzoni, “Relativistic tunneling through
two successive barriers,” Physical Review A: Atomic, Molecular
and Optical Physics, vol. 76, no. 4, Article ID 042111, 2007.

[16] J. T. Lunardi, L. A.Manzoni, A. T. Nystrom, and B.M. Perreault,
“Average transmission times for the tunneling of wave packets,”
Journal of Russian Laser Research, vol. 32, no. 5, pp. 431–438,
2011.

[17] A. Peres, “Measurement of time by quantum clocks,” American
Journal of Physics, vol. 48, no. 7, pp. 552–557, 1980.

[18] E. P. Wigner, “Lower limit for the energy derivative of the
scattering phase shift,”Physical Review, vol. 98, no. 1, p. 145, 1955.

[19] F. T. Smith, “Lifetime matrix in collision theory,” Physical
Review, vol. 118, no. 1, p. 349, 1960.

[20] A. I. Baz’, “Lifetime of intermediate states,” Soviet Journal of
Nuclear Physics, vol. 4, p. 182, 1967.

[21] V. F. Rybachenko, “Time penetration of a particle through a
potential barrier,” Soviet Journal of NuclearPhysics, vol. 5, p. 635,
1967.
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We study the 𝐶𝑃 violation induced by the interference between two intermediate resonances𝐾∗(892)+ and𝐾∗(892)− in the phase
space of singly-Cabibbo-suppressed decay 𝐷0 → 𝐾+𝐾−𝜋0. We adopt the factorization-assisted topological approach in dealing
with the decay amplitudes of𝐷0 → 𝐾±𝐾∗(892)∓.The𝐶𝑃 asymmetries of two-body decays are predicted to be very tiny, which are(−1.27 ± 0.25) × 10−5 and (3.86 ± 0.26) × 10−5, respectively, for𝐷0 → 𝐾+𝐾∗(892)− and𝐷0 → 𝐾−𝐾∗(892)+, while the differential𝐶𝑃 asymmetry of 𝐷0 → 𝐾+𝐾−𝜋0 is enhanced because of the interference between the two intermediate resonances, which can
reach as large as 3×10−4. For someNPswhich have considerable impacts on the chromomagnetic dipole operator𝑂8𝑔 , the global𝐶𝑃
asymmetries of𝐷0 → 𝐾+𝐾∗(892)− and𝐷0 → 𝐾−𝐾∗(892)+ can be then increased to (0.56±0.08)×10−3 and (−0.50±0.04)×10−3,
respectively. The regional 𝐶𝑃 asymmetry in the overlapped region of the phase space can be as large as (1.3 ± 0.3) × 10−3.

1. Introduction

Charge-Parity (𝐶𝑃) violation, whichwas first discovered in𝐾
meson system in 1964 [1], is one of themost important pheno-
mena in particle physics. In the Standard Model (SM), 𝐶𝑃
violation originates from the weak phase in the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [2, 3] and the unitary
phases which usually arise from strong interactions. One rea-
son for the smallness of𝐶𝑃 violation is that the unitary phase
is usually small. Nevertheless, 𝐶𝑃 violation can be enhanced
in three-body decays of heavy hadrons, when the correspond-
ing decay amplitudes are dominated by overlapped interme-
diate resonances in certain regions of phase space. Owing to
the overlapping, a regional 𝐶𝑃 asymmetry can be generated
by a relative strong phase between amplitudes correspond-
ing to different resonances. This relative strong phase has
nonperturbative origin. As a result, the regional 𝐶𝑃 asym-
metry can be larger than the global one. In fact, such kind
of enhanced 𝐶𝑃 violation has been observed in several three-
body decay channels of 𝐵 meson [4–7], which was followed
by a number of theoretical works [8–19].

The study of 𝐶𝑃 violation in singly-Cabibbo-suppressed
(SCS) 𝐷 meson decays provides an ideal test of the SM and

exploration of New Physics (NP) [20–23]. In the SM, 𝐶𝑃 vio-
lation is predicted to be very small in charm system. Experi-
mental researches have shown that there is no significant𝐶𝑃 violation so far in charmed hadron decays [24–33]. 𝐶𝑃
asymmetry in SCS 𝐷meson decay can be as small as

𝐴𝐶𝑃 ∼ 𝑉∗
𝑐𝑏𝑉𝑢𝑏

𝑉∗
𝑐𝑠𝑉𝑢𝑠


𝛼𝑠𝜋 ∼ 10−4, (1)

or even less, due to the suppression of the penguin diagrams
by the CKM matrix as well as the smallness of Wilson coef-
ficients in penguin amplitudes. The SCS decays are sensitive
to new contributions to the Δ𝐶 = 1 QCD penguin and chro-
momagnetic dipole operators, while such contributions can
affect neither the Cabibbo-favored (CF) (𝑐 → 𝑠𝑑𝑢) nor the
doubly-Cabibbo-suppressed (DCS) (𝑐 → 𝑑𝑠𝑢) decays [34].
Besides, the decays of charmed mesons offer a unique oppor-
tunity to probe 𝐶𝑃 violation in the up-type quark sector.

Several factorization approaches have been wildly used
in nonleptonic 𝐵 decays. In the naive factorization approach
[35, 36], the hadronic matrix elements were expressed as a
product of a heavy to light transition form factor and a decay
constant. Based on Heavy Quark Effect Theory, it is shown
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in the QCD factorization approach that the corrections to
the hadronic matrix elements can be expressed in terms of
short-distance coefficients andmeson light-cone distribution
amplitudes [37, 38]. Alternative factorization approach based
on QCD factorization is often applied in study of quasi two-
body hadronic 𝐵 decays [19, 39, 40], where they introduced
unitary meson-meson form factors, from the perspective of
unitarity, for the final state interactions. Other QCD-inspired
approaches, such as the perturbative approach (pQCD) [41]
and the soft-collinear effective theory (SCET) [42], are also
wildly used in 𝐵meson decays.

However, for 𝐷 meson decays, such QCD-inspired fac-
torization approaches may not be reliable since the charm
quarkmass, which is just above 1GeV, is not heavy enough for
the heavy quark expansion [43, 44]. For this reason, several
model-independent approaches for the charm meson decay
amplitudes have been proposed, such as the flavor topological
diagram approach based on the flavor 𝑆𝑈(3) symmetry
[44–47] and the factorization-assisted topological-amplitude
(FAT) approach with the inclusion of flavor 𝑆𝑈(3) breaking
effect [48, 49]. One motivation of these aforementioned
approaches is to identify as complete as possible the dominant
sources of nonperturbative dynamics in the hadronic matrix
elements.

In this paper, we study the 𝐶𝑃 violation of SCS 𝐷meson
decay 𝐷0 → 𝐾+𝐾−𝜋0 in the FAT approach. Our attention
will bemainly focused on the region of the phase space where
two intermediate resonances, 𝐾∗(892)+ and 𝐾∗(892)−, are
overlapped. Before proceeding, it will be helpful to point out
that direct 𝐶𝑃 asymmetry is hard to be isolated for decay
process with 𝐶𝑃-eigen-final-state. When the final state of
the decay process is 𝐶𝑃 eigenstate, the time integrated 𝐶𝑃
violation for 𝐷0 → 𝑓, which is defined as

𝑎𝑓 ≡ ∫∞

0
Γ (𝐷0 → 𝑓) 𝑑𝑡 − ∫∞

0
Γ (𝐷0 → 𝑓)𝑑𝑡

∫∞

0
Γ (𝐷0 → 𝑓) 𝑑𝑡 + ∫∞

0
Γ (𝐷0 → 𝑓)𝑑𝑡 , (2)

can be expressed as [34]

𝑎𝑓 = 𝑎𝑑𝑓 + 𝑎𝑚𝑓 + 𝑎𝑖𝑓, (3)

where 𝑎𝑑𝑓, 𝑎𝑚𝑓 , and 𝑎𝑖𝑓 are the 𝐶𝑃 asymmetries in decay, in
mixing, and in the interference of decay and mixing, respec-
tively. As is shown in [34, 50, 51], the indirect 𝐶𝑃 violation𝑎ind ≡ 𝑎𝑚 + 𝑎𝑖 is universal and channel-independent for two-
body 𝐶𝑃-eigenstate. This conclusion is easy to be generalized
to decay processes with three-body 𝐶𝑃-eigenstate in the final
state, such as 𝐷0 → 𝐾+𝐾−𝜋0. In view of the universality of
the indirect 𝐶𝑃 asymmetry, we will only consider the direct𝐶𝑃 violations of the decay 𝐷0 → 𝐾+𝐾−𝜋0 throughout this
paper.

The remainder of this paper is organized as follows. In
Section 2, we present the decay amplitudes for various decay
channels, where the decay amplitudes of𝐷0 → 𝐾±𝐾∗(892)∓
are formulated via the FAT approaches. In Section 3, we study
the 𝐶𝑃 asymmetries of 𝐷0 → 𝐾±𝐾∗(892)∓ and the 𝐶𝑃
asymmetry of 𝐷0 → 𝐾+𝐾−𝜋0 induced by the interference

between different resonances in the phase space. Discussions
and conclusions are given in Section 4. We list some useful
formulas and input parameters in the Appendix.

2. Decay Amplitude for 𝐷0
→ 𝐾+𝐾−𝜋0

In the overlapped region of the intermediate resonances𝐾∗(892)+ and𝐾∗(892)− in the phase space, the decay process𝐷0 → 𝐾+𝐾−𝜋0 is dominated by two cascade decays,𝐷0 →𝐾+𝐾∗(892)− → 𝐾+𝐾−𝜋0 and 𝐷0 → 𝐾−𝐾∗(892)+ →𝐾−𝐾+𝜋0, respectively. Consequently, the decay amplitude of𝐷0 → 𝐾+𝐾−𝜋0 can be expressed as

M𝐷0→𝐾+𝐾−𝜋0 = M𝐾∗+ + 𝑒𝑖𝛿M𝐾∗− (4)

in the overlapped region, where M𝐾∗+ and M𝐾∗− are the
amplitudes for the two cascade decays and 𝛿 is the relative
strong phase. Note that nonresonance contributions have
been neglected in (4).

The decay amplitude for the cascade decay 𝐷0 →𝐾+𝐾∗(892)− → 𝐾+𝐾−𝜋0 can be expressed as

M𝐾∗− = ∑𝜆 M
𝜆
𝐾∗−→𝐾−𝜋0 ⋅M𝜆

𝐷0→𝐾∗−𝐾+𝑠𝜋0𝐾− − 𝑚2
𝐾∗−

+ 𝑖𝑚𝐾∗−Γ𝐾∗− , (5)

where M𝜆
𝐾∗−→𝐾−𝜋0 and M𝜆

𝐷0→𝐾+𝐾∗− represent the ampli-
tudes corresponding to the strong decay 𝐾∗− → 𝐾−𝜋0 and
weak decay 𝐷0 → 𝐾+𝐾∗−, respectively, 𝜆 is the helicity
index of 𝐾∗−, 𝑠𝜋0𝐾− is the invariant mass square of 𝜋0𝐾−

system, and 𝑚𝐾∗− and Γ𝐾∗− are the mass and width of𝐾∗(892)−, respectively. The decay amplitude for the cascade
decay, 𝐷0 → 𝐾−𝐾∗(892)+ → 𝐾−𝐾+𝜋0, is the same as (5)
except replacing the subscripts𝐾∗− and𝐾± with𝐾∗+ and𝐾∓,
respectively.

For the strong decays 𝐾∗(892)± → 𝜋0𝐾±, one can ex-
press the decay amplitudes as

M𝐾∗±→𝜋0𝐾± = 𝑔𝐾∗±𝐾±𝜋0 (𝑝𝜋0 − 𝑝𝐾±) ⋅ 𝜀𝐾∗± (𝑝, 𝜆) , (6)

where 𝑝𝜋0 and 𝑝𝐾± represent the momentum for 𝜋0 and 𝐾±

mesons, respectively, and 𝑔𝐾∗±𝐾±𝜋0 is the effective coupling
constant for the strong interaction, which can be extracted
from the experimental data via

𝑔2
𝐾∗±𝐾±𝜋0 = 6𝜋𝑚2

𝐾∗±Γ𝐾∗±→𝐾±𝜋0𝜆3
𝐾∗±

, (7)

with

𝜆𝐾∗± = 12𝑚𝐾∗±

⋅ √[𝑚2
𝐾∗±

− (𝑚𝜋0 + 𝑚𝐾±)2] ⋅ [𝑚2
𝐾∗±

− (𝑚𝜋0 − 𝑚𝐾±)2],
(8)

and Γ𝐾∗±→𝐾±𝜋0 = Br(𝐾∗± → 𝐾±𝜋0) ⋅ Γ𝐾∗± . The isospin
symmetry of the strong interaction implies that Γ𝐾∗±→𝐾±𝜋0 ≃(1/3)Γ𝐾∗± .

The decay amplitudes for the weak decays, 𝐷0 →𝐾+𝐾∗(892)− and 𝐷0 → 𝐾−𝐾∗(892)+, will be handled with
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Figure 1: The relevant topological diagrams for 𝐷 → 𝑃𝑉 with (a) the color-favored tree amplitude 𝑇𝑃(𝑉), (b) the 𝑊-exchange amplitude𝐸𝑃(𝑉), (c) the color-favored penguin amplitude 𝑃𝑇𝑃(𝑉), (d) the gluon-annihilation penguin amplitude 𝑃𝐸𝑃(𝑉), and (e) the gluon-exchange
penguin amplitude 𝑃𝐴𝑃(𝑉).

the aforementioned FAT approach [48, 49]. The relevant to-
pological tree and penguin diagrams for 𝐷 → 𝑃𝑉 are dis-
played in Figure 1, where 𝑃 and𝑉 denote a light pseudoscalar
and vector meson (representing 𝐾± and 𝐾∗± in this paper),
respectively.

The two tree diagrams in first line of Figure 1 represent the
color-favored tree diagram for𝐷 → 𝑃(𝑉) transition and the𝑊-exchange diagram with the pseudoscalar (vector) meson
containing the antiquark from the weak vertex, respectively.
The amplitudes of these two diagrams will be, respectively,
denoted as 𝑇𝑃(𝑉) and 𝐸𝑃(𝑉).

According to these topological structures, the amplitudes
of the color-favored tree diagrams 𝑇𝑃(𝑉), which are domi-
nated by the factorizable contributions, can be parameterized
as

𝑇𝑃 = 𝐺𝐹√2𝜆𝑠𝑎2 (𝜇) 𝑓𝑉𝑚𝑉𝐹𝐷→𝑃
1 (𝑚2

𝑉) 2 (𝜀∗ ⋅ 𝑝𝐷) , (9)

and

𝑇𝑉 = 𝐺𝐹√2𝜆𝑠𝑎2 (𝜇) 𝑓𝑃𝑚𝑉𝐴𝐷→𝑉
0 (𝑚2

𝑃) 2 (𝜀∗ ⋅ 𝑝𝐷) , (10)

respectively, where𝐺𝐹 is the Fermi constant,𝜆𝑠 = 𝑉𝑢𝑠𝑉∗
𝑐𝑠, with𝑉𝑢𝑠 and 𝑉𝑐𝑠 being the CKM matrix elements, 𝑎2(𝜇) = 𝑐2(𝜇) +𝑐1(𝜇)/𝑁𝑐, with 𝑐1(𝜇) and 𝑐2(𝜇) being the scale-dependentWil-

son coefficients, and the number of color 𝑁𝑐 = 3, 𝑓𝑉(𝑃) and𝑚𝑉(𝑃) are the decay constant and mass of the vector (pseu-
doscalar) meson, respectively, 𝐹𝐷→𝑃

1 and 𝐴𝐷→𝑉
0 are the

form factors for the transitions 𝐷 → 𝑃 and 𝐷 → 𝑉,
respectively, 𝜀 is the polarization vector of the vector meson,
and 𝑝𝐷 is the momentum of 𝐷 meson. The scale 𝜇 of
Wilson coefficients is set to energy release in individual decay
channels [52, 53], which depends onmasses of initial and final
states and is defined as [48, 49]

𝜇 = √Λ𝑚𝐷 (1 − 𝑟2𝑃) (1 − 𝑟2𝑉), (11)

with the mass ratios 𝑟𝑉(𝑃) = 𝑚𝑉(𝑃)/𝑚𝐷, where Λ represents
the soft degrees of freedom in the 𝐷 meson, which is a free
parameter.

For the 𝑊-exchange amplitudes, since the factorizable
contributions to these amplitudes are helicity-suppressed,
only the nonfactorizable contributions need to be considered.
Therefore, the𝑊-exchange amplitudes are parameterized as

𝐸𝑞
𝑃,𝑉 = 𝐺𝐹√2𝜆𝑠𝑐2 (𝜇) 𝜒𝐸

𝑞 𝑒𝑖𝜙𝐸𝑞𝑓𝐷𝑚𝐷

𝑓𝑃𝑓𝑉𝑓𝜋𝑓𝜌 (𝜀∗ ⋅ 𝑝𝐷) , (12)

where 𝑚𝐷 is the mass of 𝐷 meson, 𝑓𝐷, 𝑓𝜋, and 𝑓𝜌 are the
decay constants of the 𝐷, 𝜋, and 𝜌 mesons, respectively, and𝜒𝐸
𝑞 and 𝜙𝐸

𝑞 characterize the strengths and the strong phases of
the corresponding amplitudes, with 𝑞 = 𝑢, 𝑑, 𝑠 representing
the strongly produced 𝑞 quark pair. The ratio of 𝑓𝑃𝑓𝑉 over𝑓𝜋𝑓𝜌 indicates that the flavor 𝑆𝑈(3) breaking effects have
been taken into account from the decay constants.

The penguin diagrams shown in the second line of Fig-
ure 1 represent the color-favored, the gluon-annihilation, and
the gluon-exchange penguin diagrams, respectively, whose
amplitudes will be denoted as 𝑃𝑇𝑃(𝑉), 𝑃𝐸𝑃(𝑉), and 𝑃𝐴𝑃(𝑉),
respectively.

Since a vector meson cannot be generated from the scalar
or pseudoscalar operator, the amplitude 𝑃𝑇𝑃 does not include
contributions from the penguin operator 𝑂5 or 𝑂6. Conse-
quently, the color-favored penguin amplitudes 𝑃𝑇𝑃 and 𝑃𝑇𝑉

can be expressed as

𝑃𝑇𝑃 = −𝐺𝐹√2𝜆𝑏𝑎4 (𝜇) 𝑓𝑉𝑚𝑉𝐹𝐷→𝑃
1 (𝑚2

𝑉) 2 (𝜀∗ ⋅ 𝑝𝐷) , (13)

and

𝑃𝑇𝑉 = −𝐺𝐹√2𝜆𝑏 [𝑎4 (𝜇) − 𝑟𝜒𝑎6 (𝜇)] 𝑓𝑃𝑚𝑉𝐴𝐷→𝑉
0 (𝑚2

𝑃)
⋅ 2 (𝜀∗ ⋅ 𝑝𝐷) ,

(14)
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respectively, where 𝜆𝑏 = 𝑉𝑢𝑏𝑉∗
𝑐𝑏 with 𝑉𝑢𝑏 and 𝑉∗

𝑐𝑏 being the
CKM matrix elements, 𝑎4,6(𝜇) = 𝑐4,6(𝜇) + 𝑐3,5(𝜇)/𝑁𝑐, with𝑐3,4,5,6 being the Wilson coefficients, and 𝑟𝜒 is a chiral factor,
which takes the form

𝑟𝜒 = 2𝑚2
𝑃(𝑚𝑢 + 𝑚𝑞) (𝑚𝑞 + 𝑚𝑐) , (15)

with 𝑚𝑢(𝑐,𝑞) being the masses of 𝑢(𝑐, 𝑞) quark. Note that the
quark-loop corrections and the chromomagnetic-penguin
contribution are also absorbed into 𝑐3,4,5,6 as shown in [49].

Similar to the amplitudes 𝐸𝑃,𝑉, the amplitudes 𝑃𝐸 only
include the nonfactorizable contributions as well. Therefore,
the amplitudes 𝑃𝐸𝑃,𝑉, which are dominated by 𝑂4 and 𝑂6

[48], can be parameterized as

𝑃𝐸𝑞
𝑃,𝑉 = −𝐺𝐹√2𝜆𝑏 [𝑐4 (𝜇) − 𝑐6 (𝜇)] 𝜒𝐸

𝑞 𝑒𝑖𝜙𝐸𝑞𝑓𝐷𝑚𝐷

⋅ 𝑓𝑃𝑓𝑉𝑓𝜋𝑓𝜌 (𝜀∗ ⋅ 𝑝𝐷) .
(16)

For the amplitudes𝑃𝐴𝑃 and𝑃𝐴𝑉, the helicity suppression
does not apply to the matrix elements of 𝑂5,6, so the factor-
izable contributions exist. In the pole resonance model [54],
after applying the Fierz transformation and the factorization
hypothesis, the amplitudes 𝑃𝐴𝑃 and 𝑃𝐴𝑉 can be expressed as

𝑃𝐴𝑞
𝑃 = −𝐺𝐹√2𝜆𝑏 [(−2) 𝑎6 (𝜇) (2𝑔𝑆)

⋅ 1𝑚2
𝐷 − 𝑚2

𝑃∗
(𝑓𝑃∗𝑚0

𝑃∗)(𝑓𝐷𝑚
2
𝐷𝑚𝑐

) + 𝑐3 (𝜇)
⋅ 𝜒𝐴

𝑞 𝑒𝑖𝜙𝐴𝑞 𝑓𝐷𝑚𝐷

𝑓𝑃𝑓𝑉𝑓𝜋f𝜌 ] (𝜀∗ ⋅ 𝑝𝐷) ,
(17)

and

𝑃𝐴𝑞
𝑉 = −𝐺𝐹√2𝜆𝑏 [(−2) 𝑎6 (𝜇) (−2𝑔𝑆)

⋅ 1𝑚2
𝐷 − 𝑚2

𝑃∗
(𝑓𝑃∗𝑚0

𝑃∗)(𝑓𝐷𝑚
2
𝐷𝑚𝑐

) + 𝑐3 (𝜇)
⋅ 𝜒𝐴

𝑞 𝑒𝑖𝜙𝐴𝑞 𝑓𝐷𝑚𝐷

𝑓𝑃𝑓𝑉𝑓𝜋𝑓𝜌 ] (𝜀∗ ⋅ 𝑝𝐷) ,
(18)

respectively, where 𝑔𝑆 is an effective strong coupling constant
obtained from strong decays, e.g., 𝜌 → 𝜋𝜋, 𝐾∗ → 𝐾𝜋,
and 𝜙 → 𝐾𝐾, and is set as 𝑔𝑆 = 4.5 [54] in this work, 𝑚𝑃∗

and 𝑓𝑃∗ are the mass and decay constant of the pole resonant
pseudoscalar meson 𝑃∗, respectively, and 𝜒𝐴

𝑞 and 𝜙𝐴
𝑞 are the

strengths and the strong phases of the corresponding ampli-
tudes.

From Figure 1, the decay amplitudes of 𝐷0 →𝐾+𝐾∗(892)− and 𝐷0 → 𝐾−𝐾∗(892)+ in the FAT approach
can be easily written down

M
𝜆
𝐷0→𝐾+𝐾∗− = 𝑇𝐾∗− + 𝐸𝑢

𝐾+ + 𝑃𝑇𝐾∗− + 𝑃𝐸𝑠
𝐾∗− + 𝑃𝐸𝑢

𝐾+

+ 𝑃𝐴𝑠
𝐾∗− , (19)

and

M
𝜆
𝐷0→𝐾−𝐾∗+ = 𝑇𝐾− + 𝐸𝑢

𝐾∗+ + 𝑃𝑇𝐾− + 𝑃𝐸𝑠
𝐾− + 𝑃𝐸𝑢

𝐾∗+

+ 𝑃𝐴𝑠
𝐾− , (20)

respectively, where 𝜆 is the helicity of the polarization vector𝜀(𝑝, 𝜆). In the FAT approach, the fitted nonperturbative
parameters, 𝜒𝐸

𝑞,𝑠, 𝜙𝐸
𝑞,𝑠, 𝜒𝐴

𝑞,s, 𝜙𝐴
𝑞,𝑠, are assumed to be universal

and can be determined by the data [49].
In Table 1, we list the magnitude of each topological

amplitude for 𝐷0 → 𝐾+𝐾∗(892)− and 𝐷0 → 𝐾−𝐾∗(892)+
by using the global fitted parameters for 𝐷 → 𝑃𝑉 in [49].
One can see from Table 1 that the penguin contributions
are greatly suppressed. 𝑃𝑇 is dominant in the penguin
contributions of 𝐷0 → 𝐾−𝐾∗(892)+, while 𝑃𝑇 is small
in 𝐷0 → 𝐾+𝐾∗(892)−, which is even smaller than the
amplitude 𝑃𝐴. This difference is because of the chirally
enhanced factor contained in (14) while not in (13). The
very small 𝑃𝐸 do not receive the contributions from the
quark-loop and chromomagnetic penguins, since these two
contributions to c4 and 𝑐6 are canceled with each other in
(16). Besides, the relations 𝑃𝐸𝑠

𝑉 = 𝑃𝐸𝑠
𝑃, 𝑃𝐸𝑢

𝑉 = 𝑃𝐸𝑢
𝑃, and𝑃𝐸𝑠

𝑉 ̸= 𝑃𝐸𝑢
𝑉 can be read from Table 1; this is because that the

isospin symmetry and the flavor 𝑆𝑈(3) breaking effect have
been considered.

Since the form factors are inevitably model-dependent,
we list in Table 2 the branching ratios of𝐷0 → 𝐾+𝐾∗(892)−
and 𝐷0 → 𝐾−𝐾∗(892)+ predicted by the FAT approach, by
various form factor models. The pole, dipole, and covariant
light-front (CLF) models are adopted. The uncertainties in
Table 2 mainly come from decay constants. The CLF model
agrees well with the data for both decay channels, and other
models are also consistent with the data. However, themodel-
dependence of form factor leads to large uncertainty of the
branching fraction, as large as 20%. Because of the smallness
of the Wilson coefficients and the CKM-suppression of the
penguin amplitudes, the branching ratios are dominated by
the tree amplitudes. Therefore, there is no much difference
for the branching ratios whether we consider the penguin
amplitudes or not.

3. 𝐶𝑃 Asymmetries for 𝐷0
→ 𝐾±𝐾∗(892)∓ and𝐷0

→ 𝐾+𝐾−𝜋0

The direct 𝐶𝑃 asymmetry for the two-body decay 𝐷 → 𝑃𝑉
is defined as

𝐴𝐷→𝑃𝑉
𝐶𝑃 = M𝐷→𝑃𝑉

2 − M𝐷→𝑃𝑉
2M𝐷→𝑃𝑉

2 + M𝐷→𝑃𝑉
2 , (21)

where M𝐷→𝑃𝑉 represents the decay amplitude of the 𝐶𝑃
conjugate process 𝐷 → 𝑃𝑉, such as 𝐷0 → 𝐾+𝐾∗(892)−
or 𝐷0 → 𝐾−𝐾∗(892)+. In the framework of FAT approach,
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Table 1:Themagnitude of tree and penguin contributions (in unit of 10−3) corresponding to the topological amplitudes in (19) and (20).The
factors “(𝐺𝐹/√2)𝜆𝑠(𝜀∗ ⋅ 𝑝𝐷)” and “−(𝐺𝐹/√2)𝜆𝑏(𝜀∗ ⋅ 𝑝𝐷)” are omitted in this table.

Decay modes 𝑇𝐾∗− 𝐸𝑢
𝐾+ 𝑃𝑇𝐾∗− 𝑃𝐸𝑠

𝐾∗− 𝑃𝐸𝑢
𝐾+ 𝑃𝐴𝑠

𝐾∗−𝐷0 → 𝐾+𝐾∗(892)− 0.23 −0.02 + 0.15i 3.83 + 4.32i 0.96 − 0.03i 0.13 − 0.81i 6.73 + 8.22i𝑇𝐾− 𝐸𝑢
𝐾∗+ 𝑃𝑇𝐾− 𝑃𝐸𝑠

𝐾− 𝑃𝐸𝑢
𝐾∗+ 𝑃𝐴𝑠

𝐾−𝐷0 → 𝐾−𝐾∗(892)+ 0.44 −0.02 + 0.15i −23.3 − 19.3i 0.96 − 0.03i 0.13 − 0.81i −8.53 − 5.53i
Table 2: Branching ratios (in unit of 10−3) of singly-Cabibbo-suppressed decays 𝐷0 → 𝐾+𝐾∗(892)− and 𝐷0 → 𝐾−𝐾∗(892)+. Both
experimental data [55–57] and theoretical predictions of FAT approach of the branching ratios are listed.

Form factors Br(𝐷0 → 𝐾+𝐾∗(892)−) Br(𝐷0 → 𝐾−𝐾∗(892)+)
Pole 1.57 ± 0.04 3.73 ± 0.17
Dipole 1.69 ± 0.04 4.02 ± 0.19
CLF 1.45 ± 0.04 4.44 ± 0.20
Exp. 1.56 ± 0.12 4.38 ± 0.21

we predict very small direct 𝐶𝑃 asymmetries of 𝐷0 →𝐾+𝐾∗(892)− and 𝐷0 → 𝐾−𝐾∗(892)+ presented in Table 3.
The uncertainties induced by the model-dependence of form
factor to the 𝐶𝑃 asymmetries of 𝐷0 → 𝐾+𝐾∗(892)− and𝐷0 → 𝐾−𝐾∗(892)+ are about 30% and 10%, respectively.

The differential 𝐶𝑃 asymmetry of the three-body decay𝐷0 → 𝐾+𝐾−𝜋0, which is a function of the invariant mass of𝑠𝜋0𝐾+ and 𝑠𝜋0𝐾− , is defined as

𝐴𝐷0→𝐾+𝐾−𝜋0

𝐶𝑃 (𝑠𝜋0𝐾+ , 𝑠𝜋0𝐾−)
= M𝐷0→𝐾+𝐾−𝜋0

2 − M𝐷
0
→𝐾−𝐾+𝜋0

2M𝐷0→𝐾+𝐾−𝜋0
2 + M𝐷

0
→𝐾−𝐾+𝜋0

2
, (22)

where the invariant mass 𝑠𝜋0𝐾± = (𝑝𝜋0 + 𝑝𝐾±)2. As can be
seen from (4), the differential 𝐶𝑃 asymmetry 𝐴𝐷0→𝐾+𝐾−𝜋0

𝐶𝑃
depends on the relative strong phase 𝛿, which is impossible
to be calculated theoretically because of its nonperturbative
origin. Despite this, we can still acquire some information
of this relative strong phase 𝛿 from data. By using a Dalitz
plot technique [55, 58, 59], the phase difference 𝛿exp between𝐷0 decays to𝐾+𝐾∗(892)− and 𝐾−𝐾∗(892)+ can be extracted
from data. One should notice that 𝛿exp is not the same as the
strong phase 𝛿 defined in (4).The strong phase𝛿 is the relative
phase between the decay amplitudes of 𝐷0 → 𝐾+𝐾∗(892)−
and 𝐷0 → 𝐾−𝐾∗(892)+. On the other hand, the phase 𝛿exp
is defined through

M𝐷0→𝐾+𝐾−𝜋0 = (M𝐾∗+
 + 𝑒𝑖𝛿exp M𝐾∗−

) 𝑒𝑖𝛿𝐾∗+ (23)

in the overlapped region of the phase space, where 𝛿𝐾∗± is the
phase of the amplitudeM𝐾∗± :

M𝐾∗± = M𝐾∗±
 𝑒𝑖𝛿𝐾∗± . (24)

Therefore, neglecting the CKM suppressed penguin ampli-
tudes, 𝛿exp and 𝛿 can be related by

𝛿exp − 𝛿 ≈ 𝛿𝐾∗−𝐾+ − 𝛿𝐾∗+𝐾− , (25)

where 𝛿𝐾∗∓𝐾± = arg(𝑇𝐾∗∓ + 𝐸𝑢
𝐾±) are the phases in tree-level

amplitudes of𝐷0 → 𝐾±𝐾∗(892)∓ and are equivalent to 𝛿𝐾∗∓
if the penguin amplitudes are neglected. With the relation
of (25), and 𝛿exp = −35.5∘ ± 4.1∘ measured by the BABAR
Collaboration [56], we have 𝛿 ≈ −51.85∘ ± 4.1∘.

In Figure 2, we present the differential 𝐶𝑃 asymmetry of𝐷0 → 𝐾+𝐾−𝜋0 in the overlapped region of 𝐾∗(892)− and𝐾∗(892)+ in the phase space, with 𝛿 = −51.85∘. Namely, we
will focus on the region 𝑚𝐾∗ − 2Γ𝐾∗ < √𝑠𝜋0𝐾− , √𝑠𝜋0𝐾+ <𝑚𝐾∗ + 2Γ𝐾∗ of the phase space. One can see from Figure 2
that the differential 𝐶𝑃 asymmetry of 𝐷0 → 𝐾+𝐾−𝜋0 can
reach 3.0 × 10−4 in the overlapped region, which is about 10
times larger than the 𝐶𝑃 asymmetries of the corresponding
two-body decay channels shown in Table 3.

The behavior of the differential 𝐶𝑃 asymmetry of𝐷0 →𝐾+𝐾−𝜋0 in Figure 2 motivates us to separate this region into
four areas, area A (𝑚𝐾∗ < √𝑠𝜋0𝐾− < 𝑚𝐾∗+2Γ𝐾∗ , 𝑚𝐾∗−2Γ𝐾∗ <√𝑠𝜋0𝐾+ < 𝑚𝐾∗), area B (𝑚𝐾∗ < √𝑠𝜋0𝐾− < 𝑚𝐾∗ + 2Γ𝐾∗ , 𝑚𝐾∗ <√𝑠𝜋0𝐾+ < 𝑚𝐾∗ + 2Γ𝐾∗), area C (𝑚𝐾∗ − 2Γ𝐾∗ < √𝑠𝜋0𝐾− <𝑚𝐾∗ , 𝑚𝐾∗ −2Γ𝐾∗ < √𝑠𝜋0𝐾+ < 𝑚𝐾∗), and area D (𝑚𝐾∗−2Γ𝐾∗ <√𝑠𝜋0𝐾− < 𝑚𝐾∗ , 𝑚𝐾∗ < √𝑠𝜋0𝐾+ < 𝑚𝐾∗ + 2Γ𝐾∗). We further
consider the observable of regional 𝐶𝑃 asymmetry in areas
A, B, C, and D displayed in Table 4, which is defined by

𝐴Ω
𝐶𝑃 = ∫

Ω
(Mtot

2 − Mtot
2) d𝑠𝜋0𝐾−𝑠𝜋0𝐾+

∫
Ω
(Mtot

2 + Mtot
2) d𝑠𝜋0𝐾−𝑠𝜋0𝐾+

, (26)

whereΩ represents a certain region of the phase space.
Comparingwith the𝐶𝑃 asymmetries of two-body decays,

the regional 𝐶𝑃 asymmetries, from Table 4, are less sensitive
to the models we have used. We would like to use only the
CLF model for the following discussion. The uncertainties
in Table 4 come from decay constants as well as the relative
phase 𝛿exp. In addition, if we focus on the right part of area A,
that is, 𝑚𝐾∗ < √𝑠𝜋0𝐾− < 𝑚𝐾∗ + 2Γ𝐾∗ , 𝑚𝐾∗ − Γ𝐾∗ < √𝑠𝜋0𝐾+ <𝑚𝐾∗ , the regional 𝐶𝑃 violation will be (1.09 ± 0.16) × 10−4.

The energy dependence of the propagator of the inter-
mediate resonances can lead to a small correction to 𝐶𝑃
asymmetry. For example, if we replace the Breit-Wigner
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Table 3: 𝐶𝑃 asymmetries (in unit of 10−5) of𝐷0 → 𝐾+𝐾∗(892)− and𝐷0 → 𝐾−𝐾∗(892)+ predicted by the FAT approach with pole, dipole,
and CLF models adopted. The uncertainties in this table are mainly from decay constants.

Form factors 𝐴𝐶𝑃(𝐷0 → 𝐾+𝐾∗(892)−) 𝐴𝐶𝑃(𝐷0 → 𝐾−𝐾∗(892)+)
Pole −1.45 ± 0.25 3.60 ± 0.23
Dipole −1.63 ± 0.26 3.70 ± 0.24
CLF −1.27 ± 0.25 3.86 ± 0.26

A B
C D

×10-3
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Figure 2: The differential 𝐶𝑃 asymmetry distribution of 𝐷0 → 𝐾+𝐾−𝜋0 in the overlapped region of 𝐾∗(892)− and 𝐾∗(892)+ in the phase
space.

propagator by the Flatté Parametrization [60], the correction
to the regional 𝐶𝑃 asymmetry will be about 1%.

Since the 𝐶𝑃 asymmetry of𝐷0 → 𝐾+𝐾−𝜋0 is extremely
suppressed, it should be more sensitive to the NP. For
example, some NPs have considerable impacts on the chro-
momagnetic dipole operator 𝑂8𝑔 [34, 61–66]. Consequently,
the 𝐶𝑃 violation in SCS decays may be further enhanced.
In practice, the NP contributions can be absorbed into the
corresponding effective Wilson coefficient 𝑐eff8𝑔 [67, 68]. For
comparison, we first consider a relative small value of 𝑐eff8𝑔 (as
in [48, 64]) lying within the range (0, 1) and the global 𝐶𝑃
asymmetry of𝐷0 → 𝐾∗(892)±𝐾∓ are no larger than 5×10−5 .
Moreover, if we follow [49] taking 𝑐eff8𝑔 ≈ 10 (while 𝑐eff8𝑔 = 10,
which is extracted from Δ𝐴𝐶𝑃 measured by LHCb [69], is a
quite large quantity even for the coefficients corresponding
tree-level operators, however, such large contribution can
be realized if some NPs effects are pulled in. For example,
the up squark-gluino loops in supersymmetry (SUSY) can
arise significant contributions to 𝑐8𝑔. More details about the
squark-gluino loops and other models in SUSY can be found
in [34, 62, 70–72]), the global 𝐶𝑃 asymmetries of 𝐷0 →𝐾+𝐾∗(892)− and𝐷0 → 𝐾−𝐾∗(892)+ are then (0.56±0.08)×10−3 and (−0.50 ± 0.04) × 10−3, respectively.

We further display the𝐶𝑃 asymmetry of𝐷0 → 𝐾+𝐾−𝜋0

in the overlapped region of 𝐾∗(892)− and 𝐾∗(892)+ in Fig-
ures 3(a) and 3(b) for 𝑐eff8𝑔 = 1 and 𝑐eff8𝑔 = 10, respectively. After
taking the interference effect into account, the differential 𝐶𝑃

asymmetry of 𝐷0 → 𝐾+𝐾−𝜋0 can be increased as large as5.5×10−4 and 2.8×10−3 for 𝑐eff8𝑔 = 1 and 𝑐eff8𝑔 = 10, respectively.
The regional ones (in phase space of √0.74 GeV < √𝑠𝜋0𝐾− <√0.81 GeV, √0.84 < √𝑠𝜋0𝐾+ < 𝑚𝐾∗ + 2Γ𝐾∗ ) can reach(2.7±0.5)×10−4 and (1.3±0.3)×10−3 for 𝑐eff8𝑔 = 1 and 𝑐eff8𝑔 = 10,
respectively.

4. Discussion and Conclusion

In this work, we studied 𝐶𝑃 violations in 𝐷0 →𝐾∗(892)±𝐾∓ → 𝐾+𝐾−𝜋0 via the FAT approach. The 𝐶𝑃
violations in two-body decay processes 𝐷0 → 𝐾+𝐾∗(892)−
and 𝐷0 → 𝐾−𝐾∗(892)+ are very small, which are (−1.27 ±0.25) × 10−5 and (3.86 ± 0.26) × 10−5, respectively. Our
discussion shows that the 𝐶𝑃 violation can be enhanced by
the interference effect in three-body decay 𝐷0 → 𝐾+𝐾−𝜋0.
The differential 𝐶𝑃 asymmetry can reach 3.0× 10−4 when the
interference effect is taken into account, while the regional
one can be as large as (1.09 ± 0.16) × 10−4.

Besides, since the chromomagnetic dipole operator 𝑂8𝑔

is sensitive to some NPs, the inclusion of this kind of NPs
will lead to a much larger global 𝐶𝑃 asymmetries of 𝐷0 →𝐾+𝐾∗(892)− and 𝐷0 → 𝐾−𝐾∗(892)+, which are (0.56 ±0.08) × 10−3 and (−0.50 ± 0.04) × 10−3, respectively, while
the regional 𝐶𝑃 asymmetry of 𝐷0 → 𝐾+𝐾−𝜋0 can be
also increased to (1.3 ± 0.3) × 10−3 when considering the
interference effect in the phase space. Since the O(10−3) of
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Table 4: Three from factor models: the pole, dipole, and CLF models are used for the regional 𝐶𝑃 asymmetries (in unit of 10−4) in the four
areas, A, B, C, and D, of the phase space.

Form factors 𝐴A
𝐶𝑃 𝐴B

𝐶𝑃 𝐴C
𝐶𝑃 𝐴D

𝐶𝑃 𝐴All
𝐶𝑃

Pole 0.87 ± 0.11 0.42 ± 0.08 0.39 ± 0.07 −0.30 ± 0.08 0.33 ± 0.05
Dipole 0.87 ± 0.11 0.41 ± 0.08 0.38 ± 0.07 −0.30 ± 0.08 0.32 ± 0.05
CLF 0.84 ± 0.10 0.45 ± 0.08 0.42 ± 0.07 −0.25 ± 0.08 0.36 ± 0.06

×10-3
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Figure 3: The differential 𝐶𝑃 asymmetry distribution of 𝐷0 → 𝐾+𝐾−𝜋0 for (a) 𝑐eff8𝑔 = 1 and (b) 𝑐eff8𝑔 = 10, in the overlapped region of𝐾∗(892)− and𝐾∗(892)+ in the phase space.

𝐶𝑃 asymmetry is attributed to the large 𝑐eff8𝑔 , which is almost
impossible for the SM to generate such large contribution, it
will indicate NP if such 𝐶𝑃 violation is observed. Here, we
roughly estimate the number of𝐷0𝐷0 needed for testing such
kind of asymmetries, which is about (1/𝐵𝑟)(1/𝐴2

𝐶𝑃) ∼ 109.
This could be observed in the future experiments at Belle II
[73, 74], while the current largest 𝐷0𝐷0 yields are about 108
at BABAR and Belle [75, 76] and 107 at BESIII [77].
Appendix

Some Useful Formulas and Input Parameters

(1) Effective Hamiltonian and Wilson Coefficients. The weak
effective Hamiltonian for SCS 𝐷 meson decays, based on
the Operator Product Expansion (OPE) and Heavy Quark
Effective Theory (HQET), can be expressed as [78]

Heff = 𝐺𝐹√2 [
[
∑
𝑞=𝑑,𝑠

𝜆𝑞 (𝑐1𝑂𝑞
1 + 𝑐2𝑂𝑞

2)

− 𝜆𝑏 ( 6∑
𝑖=3

𝑐𝑖𝑂𝑖 + 𝑐8𝑔𝑂8𝑔)]]
+ h.c.,

(A.1)

where 𝐺𝐹 is the Fermi constant, 𝜆𝑞 = 𝑉𝑢𝑞𝑉∗
𝑐𝑞, 𝑐𝑖 (𝑖 = 1, . . . , 6)

is the Wilson coefficient, and 𝑂𝑞
1 , 𝑂𝑞

2 , 𝑂𝑖 (𝑖 = 1, . . . , 6),
and 𝑂8𝑔 are four-fermion operators which are constructed
fromdifferent combinations of quark fields.The four-fermion
operators take the following form:

𝑂𝑞
1 = 𝑢𝛼𝛾𝜇 (1 − 𝛾5) 𝑞𝛽𝑞𝛽𝛾𝜇 (1 − 𝛾5) 𝑐𝛼,

𝑂𝑞
2 = 𝑢𝛾𝜇 (1 − 𝛾5) 𝑞𝑞𝛾𝜇 (1 − 𝛾5) 𝑐,

𝑂3 = 𝑢𝛾𝜇 (1 − 𝛾5) 𝑐∑
𝑞

𝑞𝛾𝜇 (1 − 𝛾5) 𝑞,
𝑂4 = 𝑢𝛼𝛾𝜇 (1 − 𝛾5) 𝑐𝛽∑

𝑞

𝑞𝛽𝛾𝜇 (1 − 𝛾5) 𝑞𝛼,
𝑂5 = 𝑢𝛾𝜇 (1 − 𝛾5) 𝑐∑

𝑞

𝑞𝛾𝜇 (1 + 𝛾5) 𝑞,
𝑂6 = 𝑢𝛼𝛾𝜇 (1 − 𝛾5) 𝑐𝛽∑

𝑞

𝑞𝛽𝛾𝜇 (1 + 𝛾5) 𝑞𝛼,
𝑂8𝑔 = − 𝑔𝑠8𝜋2

𝑚𝑐𝑢𝜎𝜇] (1 + 𝛾5) 𝐺𝜇]𝑐,

(A.2)

where 𝛼 and 𝛽 are color indices and 𝑞 = 𝑢, 𝑑, 𝑠. Among all
these operators, 𝑂𝑞

1 and 𝑂𝑞
2 are tree operators, 𝑂3 − 𝑂6 are

QCD penguin operators, and 𝑂8𝑔 is chromomagnetic dipole
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operator.The electroweak penguin operators are neglected in
practice. One should notice that SCS decays receive contribu-
tions from all aforementioned operators while only tree
operators can contribute to CF decays and DCS decays.

The Wilson coefficients used in this paper are evaluated
at 𝜇 = 1GeV, which can be found in [48].

(2) CKM Matrix. We use the Wolfenstein parameterization
for the CKM matrix elements, which up to order O(𝜆8) read
[79, 80]

𝑉𝑢𝑠 = 𝜆 − 12𝐴2𝜆7 (𝜌2 + 𝜂2) ,
𝑉𝑐𝑠 = 1 − 12𝜆2 − 18𝜆4 (1 + 4𝐴2)

− 116𝜆6 (1 − 4𝐴2 + 16𝐴2 (𝜌 + 𝑖𝜂))
− 1128𝜆8 (5 − 8𝐴2 + 16𝐴4) ,

𝑉𝑢𝑏 = 𝐴𝜆3 (𝜌 − 𝑖𝜂) ,
𝑉𝑐𝑏 = 𝐴𝜆2 − 12𝐴3𝜆8 (𝜌2 + 𝜂2) ,

(A.3)

where 𝐴, 𝜌, 𝜂, and 𝜆 are the Wolfenstein parameters, which
satisfy following relation:

𝜌 + 𝑖𝜂 = √1 − 𝐴2𝜆4 (𝜌 + 𝑖𝜂)√1 − 𝜆2 [1 − 𝐴2𝜆4 (𝜌 + 𝑖𝜂)] . (A.4)

Numerical values ofWolfenstein parameters which have been
used in this work are as follows:

𝜆 = 0.22548+0.00068−0.00034,
𝐴 = 0.810+0.018−0.024,
𝜌 = 0.145+0.013−0.007,
𝜂 = 0.343+0.011−0.012.

(A.5)

(3) Decay Constants and Form Factors. In (17) and (18),
the pole resonance model was employed for the matrix
element ⟨𝑃𝑉|𝑞1𝑞2|0⟩ in the annihilation diagrams. By con-
sidering angular momentum conservation at weak vertex
and all conservation laws are preserved at strong vertex,
the matrix element ⟨𝑃𝑉|𝑞1𝑞2|0⟩ is therefore dominated by a
pseudoscalar resonance [54],

⟨𝑃𝑉 𝑞1𝑞2 0⟩ = ⟨𝑃𝑉 | 𝑃∗⟩ ⟨𝑃∗ 𝑞1𝑞2 0⟩
= 𝑔𝑃∗𝑃𝑉 𝑚𝑃∗𝑚2

𝐷 − 𝑚2
𝑃∗
𝑓𝑃∗ , (A.6)

where 𝑔𝑃∗𝑃𝑉 is a strong coupling constant and 𝑚𝑃∗ and 𝑓𝑃∗
are the mass and decay constant of the pseudoscalar reso-
nance 𝑃∗. Therefore, 𝜂 and 𝜂 are the dominant resonances

for the final states of𝐾∗±𝐾∓, which can be expressed as flavor
mixing of 𝜂𝑞 and 𝜂𝑠,

(𝜂
𝜂) = (cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙 )(𝜂𝑞𝜂𝑠) (A.7)

where 𝜙 is the mixing angle and 𝜂𝑞 and 𝜂𝑠 are defined by

𝜂𝑞 = 1√2 (𝑢𝑢 + 𝑑𝑑) ,
𝜂𝑠 = 𝑠𝑠.

(A.8)

The decay constants of 𝜂 and 𝜂 are defined by

⟨0 𝑢𝛾𝜇𝛾5𝑢 𝜂 (𝑝)⟩ = 𝑖𝑓𝑢
𝜂 𝑝𝜇,

⟨0 𝑢𝛾𝜇𝛾5𝑢 𝜂 (𝑝)⟩ = 𝑖𝑓𝑢
𝜂𝑝𝜇,

⟨0 𝑑𝛾𝜇𝛾5𝑑 𝜂 (𝑝)⟩ = 𝑖𝑓𝑑
𝜂 𝑝𝜇,

⟨0 𝑑𝛾𝜇𝛾5𝑑 𝜂 (𝑝)⟩ = 𝑖𝑓𝑑
𝜂𝑝𝜇,

⟨0 𝑠𝛾𝜇𝛾5𝑠 𝜂 (𝑝)⟩ = 𝑖𝑓𝑠
𝜂𝑝𝜇,

⟨0 𝑠𝛾𝜇𝛾5𝑠 𝜂 (𝑝)⟩ = 𝑖𝑓𝑠
𝜂𝑝𝜇,

(A.9)

where

𝑓𝑢
𝜂 = 𝑓𝑑

𝜂 = 1√2𝑓𝑞
𝜂 ,

𝑓𝑢
𝜂 = 𝑓𝑑

𝜂 = 1√2𝑓𝑞

𝜂
.

(A.10)

According to [81, 82], the decay constants of 𝜂 and 𝜂 can be
expressed as

𝑓𝑞
𝜂 = 𝑓𝑞 cos 𝜙,

𝑓𝑞

𝜂
= 𝑓𝑞 sin 𝜙,

𝑓𝑠
𝜂 = −𝑓𝑠 sin 𝜙,

𝑓𝑠
𝜂 = 𝑓𝑠 cos 𝜙,

(A.11)

where 𝑓𝑞 = (1.07 ± 0.02)𝑓𝜋 and 𝑓𝑠 = (1.34 ± 0.02)𝑓𝜋 [81], and
themixing angle 𝜙 = (40.4±0.6)∘ [83]. Other decay constants
used in this paper are listed in Table 5.

The transition form factors𝐴𝐷0→𝐾∗−

0 and 𝐹𝐷0→𝐾−

1 , based
on the relativistic covariant light-front quark model [85], are
expressed as amomentum-dependent, 3-parameter form (the
parameters can be found in Table 6):

𝐹 (𝑞2) = 𝐹 (0)
1 − 𝑎 (𝑞2/𝑚2

𝐷) + 𝑏 (𝑞2/𝑚2
𝐷)2 . (A.12)

(4) Decay Rate.The decay width takes the form

Γ𝐷→𝐾𝐾∗ =
p1

38𝜋𝑚2
𝐾∗


M𝐷→𝐾𝐾∗𝜀∗ ⋅ 𝑝𝐷


2 , (A.13)

125Analysis of CP Violation in D0 →K+K−π0



Table 5: The meson decay constants used in this paper (MeV) [57, 84].

𝑓𝐾∗ 𝑓𝜌 𝑓𝐾 𝑓𝜋 𝑓𝐷220(5) 216(3) 156(0.4) 130(1.7) 208(10)

Table 6: The parameters of𝐷 → 𝐾∗, 𝐾 transitions form factors in
(A.12).

Form factor 𝐴𝐷→𝐾∗

0 𝐹𝐷→𝐾
1𝐹(0) 0.69 0.78𝑎 1.04 1.05𝑏 0.44 0.23

where p1 represents the center of mass (c.m.) 3-momentum
of each meson in the final state and is given by

p1


= √[(𝑚2
𝐷 − (𝑚𝐾∗ + 𝑚𝐾)2) (𝑚2

𝐷 − (𝑚𝐾∗ − 𝑚𝐾)2)]2𝑚𝐷

. (A.14)

M is the corresponding decay amplitude.
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Charged particles' production in the 𝑒+𝑒−, 𝑝𝑝, and 𝑝𝑝 collisions in full phase space as well as in the restricted phase space slices,
at high energies, is described with predictions from shifted Gompertz distribution, a model of adoption of innovations. The
distribution has been extensively used in diffusion theory, social networks, and forecasting. A two-componentmodel in which PDF
obtained from the superposition of two shifted Gompertz distributions is introduced to improve the fitting of the experimental
distributions by several orders. The two components correspond to the two subgroups of a data set, one representing the soft
interactions and the other semihard interactions. Mixing is done by appropriately assigning weights to each subgroup. Our first
attempt to analyse the data with shifted Gompertz distribution has produced extremely good results. It is suggested that the
distribution may be included in the host of distributions more often used for the multiplicity analyses.

1. Introduction

The shifted Gompertz distribution was introduced by Bem-
maor [1] in 1994 as a model of adoption of innovations. It
is the distribution of the largest of two independent random
variables one of which has an exponential distribution with
parameter 𝑏 and the other has a Gumbel distribution, also
known as log-Weibull distribtion, with parameters 𝜂 and𝑏. Several of its statistical properties have been studied by
Jiménez and Jodrá [2] and Jiménez Torres [3]. In machine
learning, the Gumbel distribution is also used to generate
samples from the generalised Bernoulli distribution, which is
a discrete probability distribution that describes the possible
results of a random variable that can take on one of the
K-possible elementary events, with the probability of each
elementary event separately specified. The shifted Gompertz
distribution has mostly been used in the market research
and diffusion theory, social networks, and forecasting. It has
also been used to predict the growth and decline of social
networks and online services and shown to be superior to
the Bass model and Weibull distribution [4]. It is interesting
to study the statistical phenomena in high energy physics
in terms of this distribution. Recently, Weibull distribution

has been used to understand the multiplicity distributions
in various particle-particle collisions at high energies and
more recently [5] to explain the LHC data. Weibull models
studied in the literature were appropriate for modelling a
continuous random variable which assumes that the variable
takes on real values over the interval [0,∞]. In situations
where the observed data values are very large, a continuous
distribution is considered an adequate model for the discrete
random variable; for example, in case of a particle collider,
the luminosity during a fill decreases roughly exponentially.
Therefore, the mean collision rate will likewise decrease.
That decrease will be reflected in the number of observed
particles per unit time. In the same way a photon detector
counts photons in a continuous train of time bins. If the
photons are antibunched in time, that is, they tend to be
separated from each other, onewill get a different distribution
of photon counts than if the photons are bunched, that is,
bunched together in time. By analyzing the photon counting
statistics one can infer information about the continuous
underlying distribution of the temporal spacing of photons.
The shifted Gompertz distribution with non-negative fit
parameters identified with the scale and shape parameters,
can in this way be used for studying the distributions of
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particles produced in collisions at accelerators. One of the
studies in statistics is when the variables take on discrete
values. The idea was first introduced by Nakagawa and Osaki
[6], as they introduced discreteWeibull distribution with two
shape parameters 𝑞 and𝛽, where 0 < 𝑞 < 1 and𝛽 > 0.Models
which assume only nonnegative integer values for modelling
discrete random variables are useful for modelling the kind
of problems mentioned above.

The charged-particle multiplicity is one of the simplest
observables in collisions of high energy particles, yet it
imposes important constraints on the dynamics of particle
production. The particle production has been studied in
terms of several theoretical, phenomenological, and statistical
models. Each of these models has been reasonably successful
in explaining the results from different experiments and
useful for extrapolations to make predictions. Although
Weibull distributionhas been studied recently, no attempt has
been made so far to analyze the high energy collision data in
terms of shifted Gompertz distribution. Our first attempt to
analyse the data produced good results and encouraged us to
do a comprehensive analysis.

The aim of the present work is to introduce a statistical
distribution, the shifted Gompertz distribution to investigate
themultiplicity distributions of charged particles produced in𝑒+𝑒−,𝑝𝑝, and𝑝𝑝 collisions at different center ofmass energies
in full phase space as well as in restricted phase space win-
dows. Energy-momentum conservation strongly influences
the multiplicity distribution for the full phase space. The
distribution in restricted rapidity window, however, is less
prone to such constraints and thus can be expected to be a
more sensitive probe to the underlying dynamics of QCD, as
inferred in references [7, 8].

In Section 2, details of Probability Distribution Function
(PDF) of the shifted Gompertz distribution is discussed.
For 𝑒+𝑒− collisions a two-component model has been used
and modification of distributions done in terms of these
two components, one from soft events and another from
semihard events. Superposition of distributions from these
two components, by using appropriate weights, is done to
build the full multiplicity distribution. When multiplicity
distribution is fitted with the weighted superposition of two
shifted Gompertz distributions, we find that the agreement
between the data and the model improves considerably. The
fraction of soft events, 𝛼 for various energies have been taken
from [9, 10] which use the 𝐾𝑇 clustering algorithm, the most
extensively used algorithm for LEP 𝑒+𝑒− data analyses. The
corresponding fractions for 𝑝𝑝 and 𝑝𝑝 are not available in
different rapidity bins. For 𝑝𝑝 data at all energies under study,
the 𝛼 values for full phase space are taken from [11]. We also
tried to fit the multiplicity distribution to find the best fit
alpha value. It is found that the fit values agree very closely
with values obtained from [11]. We thus fitted distributions in
restricted rapidity windows for 𝑝𝑝 and 𝑝𝑝 data in terms of
soft and semihard components to get the best fit 𝛼 values.

In a recent publication, Wilk and W ́lodarczyk [12] have
developed a method of retrieving additional information
from the multiplicity distributions. They propose, in case of a
conventional Negative Binomial Distribution fit [11], making

the parameters dependent on the multiplicity in place of
having a 2-component model. They demonstrated that the
additional valuable information from the MDs, namely, the
oscillatory behaviour of the counting statistics can be derived.
In a future extension of the present work, we shall analyse the
shifted Gompertz distribution, using the approach proposed
and described by the authors [12].

Section 3 presents the analysis of experimental data and
the results obtained by the two approaches. Discussion and
conclusion are presented in Section 4.

2. Shifted Gompertz Distribution

The dynamics of hadron production can be probed using
the charged particle multiplicity distribution. Measurements
of multiplicity distributions provide relevant constraints for
particle-production models. Charged particle multiplicity
is defined as the average number of charged particles, 𝑛
produced in a collision ⟨𝑛⟩ = ∑𝑛𝑚𝑎𝑥𝑛=0 𝑛𝑃𝑛. Hadron production
depends upon the center of mass energy available for particle
production nearly independent of the types of particles
undergoing collisions. Subsequently, it is the fragmentation of
quarks and gluonswhich produce hadrons nonperturbatively.
Thus the same PDFs can be used to describe behaviour
of multiplicity distributions. In numerous works in the
past, the most popular Negative Binomial Distribution has
been successfully used for a wide variety of collisions [13].
Universality of multiparticle production in 𝑒+𝑒−, 𝑝𝑝, and𝑝𝑝 has been discussed in several papers; a detailed paper
amongst these is [14].

We briefly outline the probability density function (PDF)
of the shifted Gompertz distribution used for studying the
multiplicity distributions. Equations (1)-(3) define the PDF
and the mean value of the distribution;

𝑃 (𝑛 | 𝑏, 𝜂) = 𝑏𝑒−𝑏𝑛𝑒−𝜂𝑒−𝑏𝑛 [1 + 𝜂 (1 − 𝑒−𝑏𝑛] 𝑓𝑜𝑟 𝑛 > 0 (1)

Mean of the distribution is given by

(−1𝑏) (𝐸 [ln (𝑋)] − ln (𝜂)) 𝑤ℎ𝑒𝑟𝑒 𝑋 = 𝜂𝑒−𝑏𝑛 (2)

and

𝐸 [ln (𝑋)] = [1 + 1𝜂]∫
∞

0
𝑒−𝑋 [ln (𝑋)] 𝑑𝑋

− 1𝜂 ∫
∞

0
𝑋𝑒−𝑋 [ln (𝑋)] 𝑑𝑋

(3)

where 𝑏 ≥ 0 is a scale parameter and 𝜂 ≥ 0 is a
shape parameter. Similar to the Weibull distribution, shifted
Gompertz distribution is also a two parameter distribution,
in terms of its shape and scale.

2.1. Two-Component Approach. It is well established that at
high energies, charged particlemultiplicity distribution in full
phase space becomes broader than a Poisson distribution.
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This behaviour has been successfully described by a two
parameters negative binomial (NB) distribution defined by

𝑃 (𝑛 | ⟨𝑛⟩ , 𝑘) = Γ (𝑛 + 𝑘)Γ (𝑛 + 1) Γ (𝑘) (⟨𝑛⟩ /𝑘)𝑛
(1 + ⟨𝑛⟩ /𝑘)𝑛+𝑘 (4)

where 𝑘 is related to the dispersion𝐷 by

𝐷2
⟨𝑛⟩2 =

1⟨𝑛⟩ + 1𝑘 (5)

𝑘 parameter of the distribution is negative in the lower
energy domain, where the distribution is binomial like. 𝑘 is
positive in the higher energy domain and the distribution
is truly NB, the two particle correlations dominate and 1/𝑘
is closely related to the integral over full phase space of
the two particle correlation function. NB distribution was
very successful until the results from UA5 collaboration [15]
showed a shoulder structure in the multiplicity distribution
on 𝑝𝑝 collisions. To explain this NB regularity violations,
C. Fuglesang [16] suggested the violations as the effect of
the weighted superposition of soft events (events without
minijets) and semihard events (events with mini-jets), the
weight 𝛼 being the fraction of soft events. The multiplicity
distribution of each component being NB. This idea was
successfully implemented in several analyses at high energies
to fit the multiplicity distributions with superposed NB
functions.

Adopting this suggestion for themultiplicity distributions
in 𝑒+𝑒−, 𝑝𝑝, and 𝑝𝑝 collisions at high energies, we have used
a superposition of two shifted Gompertz components. The
two components are interpreted as soft and hard components,
as explained above. TheMultiplicity distribution is produced
by adding weighted superposition of multiplicity in soft
events and multiplicity distribution in semi-hard events.
This approach combines two classes of events, not two
different particle-production mechanisms in the same event.
Therefore, no interference terms are needed to be introduced.
The final distribution is the sum of the two independent
distributions, henceforth called modified shifted Gompertz
distribution.

𝑃 (𝑛) = 𝛼𝑃𝑠ℎ𝐺𝑜𝑚𝑝
𝑠𝑜𝑓𝑡 (𝑛) + (1 − 𝛼) 𝑃𝑠ℎ𝐺𝑜𝑚𝑝𝑠𝑒𝑚𝑖−ℎ𝑎𝑟𝑑 (𝑛) (6)

In this approach, the multiplicity distribution depends on five
parameters as given below:

𝑃𝑛 (𝛼 : 𝑏1, 𝜂1; 𝑏2, 𝜂2) = 𝛼𝑃𝑛 (𝑠𝑜𝑓𝑡)
+ (1 − 𝛼) 𝑃𝑛 (𝑠𝑒𝑚𝑖-ℎ𝑎𝑟𝑑) (7)

As described by A. Giovannini et al. [11], the superimposed
physical substructures in the cases of 𝑒+𝑒− annihilation
and hadron-hadron interactions are different, the weighted
superposition mechanism is the same.

3. The Data

Thedata from different experiments and three collision types
are considered:

(i) 𝑒+𝑒− annihilations at different collision energies, from
91 GeV up to the highest energy of 206.2 GeV at LEP2, from
two experiments L3 [17] and OPAL [18–21], are analysed.

(ii) 𝑝𝑝 collisions at LHC energies from 900 GeV, 2360
GeV, and 7000GeV [22] are analysed in five restricted rapidity
windows, |𝑦| = 0.5, 1.0, 1.5, 2.0, and 2.4.

(iii) 𝑝𝑝 collisions at energies from 200 GeV, 540 GeV, and
900 GeV [15, 23] are analysed in full phase space as well as in
restricted rapidity windows, |𝑦| = 0.5, 1.5, 3.0, and 5.0.

3.1. Results and Discussion. The PDF defined by (1), (6)
are used to fit the experimental data. Figures 1 and 2
show the shifted Gompertz function and the modified (two-
component) shifted Gompertz function fits to the data 𝑒+𝑒−
from L3 and OPAL experiments. Parameters of the fits,𝜒2/𝑛𝑑𝑓, and the p-values are documented in Table 1. Figure 3
shows the ratio of data over modified shifted Gompertz fit
plots for 𝑒+𝑒− collisions at two energies. The plots correspond
to the worst and the best fits depending upon the maximum
and minimum 𝜒2/𝑛𝑑𝑓 values and show that fluctuations
between the data and the fits are acceptably small, as the ratio
is nearly one.

Figure 4 shows the modified shifted Gompertz distri-
bution, equation (6) fitted to the 𝑝𝑝 data at energies from
200 GeV to 900 GeV in four rapidity windows. To avoid
cluttering of figures, the plots for shifted Gompertz are not
shown. Figure 5 shows the shifted Gompertz and modified
shifted Gompertz distributions, fitted to the 𝑝𝑝 collisions
in full phase space for the same energies. The comparison
can be seen from the parameters of the fits, 𝜒2/𝑛𝑑𝑓, and the
p-values documented in Table 2. Figure 6 shows the ratio
plots of the data over modified shifted Gompertz fit for 𝑝𝑝
collisions at different energies in full phase space. The plots
show acceptable fluctuations with the ratio values around
unity.

Figure 7 shows the modified shifted Gompertz distribu-
tion, (6) fitted to the 𝑝𝑝 collisions at LHC energies from
900 GeV to 7000 GeV in four rapidity windows. Again
for restricting the number of figures, only the modified
distributions are shown. Comparison between the two types
of distributions can be seen from the parameters of the fits,𝜒2/𝑛𝑑𝑓 and the p-values documented in Table 3. Figure 8
shows the ratio plots of data over modified shifted Gompertz
fit for the collisions at different energies in full phase space.
The plots show acceptable fluctuations with the ratio values
around unity.

Comparison of the fits and the parameters shows that
overall shifted Gompertz distribution is able to reproduce
the data at most of the collision energies in full phase space
as well as in the restricted rapidity windows for 𝑒+𝑒−, 𝑝𝑝,
and 𝑝𝑝 collisions. It does fail and is excluded statistically for
some energies where p-value is < 0.1%, in particular for 540
GeV 𝑝𝑝 data for some rapidity intervals and for LHC data at
the highest energy of 7000 GeV. However, comparison of the
fits and the parameters from the (two-component) modified
shifted Gompertz distribution shows that though the data
are very well reproduced in full phase space as well as in all
rapidity intervals for all collision energies in 𝑒+𝑒−, 𝑝𝑝, and 𝑝𝑝
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Figure 1: Charged multiplicity distributions from L3 experiment.
Solid lines represent the Gompertz distributions.

collisions, the distribution does fail for the 𝑒+𝑒− collisions at
91 GeV. The 𝜒2/𝑛𝑑𝑓 value in each case reduces enormously,
when modified shifted Gompertz fit is used. In each case the
fit is accepted with p-value > 0.1%.

For shifted Gompertz distribution, the scale parameter𝑏 and the shape parameter 𝜂 values are plotted in Figure 9
for 𝑒+𝑒− interactions for LEP data from L3 and OPAL
experiments. A power law is fitted to the data. It is observed
that both 𝑏 and 𝜂 values decrease with increase in collision
energy and are parametrised as

𝑏 = (1.514 ± 0.084)√𝑠(−0.459±0.012) (8)

𝜂 = (357.693 ± 96.837)√𝑠(−0.524±0.053) (9)

For minimisation of 𝜒2 for the fits, CERN library
MINUIT2 has been used. In case of modified shifted Gom-
pertz, the fit parameters are doubled while introducing the
modification. This causes large error limits on the parameters

n
10 20 30 40 50 60

Shifted Gompertz
OPAL data

n
10 20 30 40 50 60

Modified Shifted Gompertz
OPAL data

105

104
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０
Ｈ
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０
Ｈ
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189 GeV ( x 103 )
183 GeV ( x 102 )

161 GeV ( x 101 )
91 GeV ( x 100 )

Figure 2: Charged multiplicity distributions from OPAL experi-
ment. Solid lines represent the Gompertz distributions.

resulting in the very large 𝑝 values, particularly close to 1. In
addition, the LEP data for 𝑒+𝑒− collisions suffer from very
small sample size at some energies, thereby adding to the
errors on the fit parameters.

Using shifted Gompertz distribution, the multiplicity
distribution for 500 GeV 𝑒+𝑒− collisions at a future Collider is
predicted, as shown in Figure 10.The value ofmeanmultiplic-
ity ⟨𝑛⟩ is predicted to be the 37.14 ± 1.12. Figure 11 shows the
dependence of mean multiplicity from experimental data on
energy √𝑠. The fitted curve in (10) represents Fermi-Landau
model [24, 25] and fits the data reasonably well with 𝑎1 = -
10.609 ± 2.003 and 𝑏1 = 10.156 ± 0.561

⟨𝑛⟩ = 𝑎1 + 𝑏1√𝑠1/4 (10)

Itmay be observed that the value of ⟨𝑛⟩predicted from shifted
Gompertz distribution at 500 GeV fits well on the curve, as
shown in the Figure 11. A parameterization of the multiplicity
data in 𝑒+𝑒− collisions at the next-to-leading-order QCD was
done by D.E. Groom et al [14, 26] and is given in (9) of the
reference

⟨𝑛 (𝑠)⟩ = 𝑎. exp[ 4𝛽0√
6𝜋𝛼𝑠 (𝑠) + (

14 +
10𝑛𝑓27𝛽0 ) ln 𝛼𝑠 (𝑠)]

+ 𝑐
(11)
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Figure 3: Ratio plots of data over modified shifted Gompertz fit
values.

where 𝑎 and 𝑐 are constants and 𝛽0 is defined in (9.4b).⟨𝑛⟩ versus √𝑠 dependence was shown in [27]. Parameters 𝑎
and 𝑐 were fitted to the experimental data and a very good
agreement was shown. It is observed that both formulae, (10)
and (11), provide excellent extrapolations for √𝑠 > 206. The
mean multiplicity ⟨𝑛⟩ at 500 GeV is predicted to be 39.18 by
NLO QCD equation. In the present work, the mean value
predicted by the shifted Gompertz distribution as 37.14 ± 1.23
agrees very closely with the value derived from NLO QCD.
This is a good test of the validity of the proposed distribution.

An interesting description of universality of multiplic-
ity in 𝑒+𝑒− and 𝑝 + 𝑝(𝑝) has been discussed by Grosse-
Oetringhaus et al. [14]. It is shown that although the mul-
tiplicity distributions differ between 𝑝 + 𝑝(𝑝) and 𝑒+𝑒−
collisions, their average multiplicities as a function of √𝑠
show similar trends that can be unified using the concepts
of effective energy and inelasticity. It is also shown that the
Fermi-Landau form ⟨𝑛⟩ ∼ 𝑠1/4 fails to describe the 𝑝𝑝
multiplicity data. But the data is well described by ⟨𝑛⟩ = 𝐴 +𝐵 ln𝑠 + 𝐶 ln2𝑠. The universality appears to be valid at least up
to Tevatron energies. The multiplicities in 𝑒+𝑒− and 𝑝 + 𝑝(𝑝)
collisions become strikingly similar when the effective energy𝐸𝑒𝑓𝑓 in 𝑝+𝑝(𝑝) collisions, available for particle production is
used.
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Figure 4: Chargedmultiplicity distributions in 𝑝𝑝 collisions in four
rapidity windows. Solid lines represent modified shifted Gompertz
function.

𝐸𝑒𝑓𝑓 = √𝑠 − (𝐸𝑙𝑒𝑎𝑑, 1 + 𝐸𝑙𝑒𝑎𝑑, 2) ,
⟨𝐸𝑒𝑓𝑓⟩ = √𝑠 − 2 ⟨𝐸𝑙𝑒𝑎𝑑𝑖𝑛𝑔⟩ (12)

where 𝐸𝑙𝑒𝑎𝑑 is the energy of the leading particle and the
inelasticity 𝐾 is defined as 𝐾 = 𝐸𝑒𝑓𝑓/√𝑠. 𝐾 is estimated in𝑝+𝑝(𝑝) collisions by comparing 𝑝+𝑝(𝑝)with 𝑒+𝑒− collisions.
Given a parameterization 𝑓𝑒𝑒(√𝑠) of the √𝑠 dependence of
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n
10 20 30 40 50 60

|y| < 0.5

Modified Shifted Gompertz
pp

n
0 20 40 60 80 100

|y| < 1.0

Modified Shifted Gompertz
pp

n
0 20 40 60 80 100 120 140

|y| < 2.0

Modified Shifted Gompertz
pp

n
0 20 40 60 80 100 120 140 160 180

|y| < 2.4

Modified Shifted Gompertz
pp

23

105

104

103

102
10
1

10−1

10−2

10−3

10−4

10−5

10−6

０
Ｈ

105

104

103

102
10
1

10−1

10−2

10−3

10−4

10−5

10−7
10−6

０
Ｈ

105

104

103

102
10
1

10−1

10−2

10−3

10−4

10−5

10−6

０
Ｈ

105

104

103

102
10
1

10−1

10−2

10−3

10−4

10−5

10−6

０
Ｈ

7000 GeV ( x 102 )
2360 GeV ( x 101 )
900 GeV ( x 100 )

7000 GeV ( x 102 )
2360 GeV ( x 101 )
900 GeV ( x 100 )

7000 GeV ( x 102 )
2360 GeV ( x 101 )
900 GeV ( x 100 )

7000 GeV ( x 102 )
2360 GeV ( x 101 )
900 GeV ( x 100 )

Figure 7: Charged multiplicity distributions in 𝑝𝑝 collisions in four
rapidity windows for the modified shifted Gompertz distributions.

the charged multiplicity ⟨𝑛⟩ in 𝑒+𝑒− collisions, one can fit the𝑝 + 𝑝(𝑝) data with
𝑓𝑝𝑝 (√𝑠) = 𝑓𝑒𝑒 (𝐾.√𝑠) + 𝑛0 (13)

The parameter 𝑛0 corresponds to the contribution from the
two leading protons to the total multiplicity and is expected
to be close to 𝑛0 = 2. One can use this fit of 𝑝 + 𝑝(𝑝) data
to predict the multiplicities at the LHC. As described in [14],
using a fit with (13), Jan Fiete Grosse-Oetringhaus et al. have
estimated 𝐾 = 0.35 ± 0.01 and 𝑛0 = 2.2 ± 0.19. Under the
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assumptions that inelasticity remains constant at about 0.35
at LHC energies and that the extrapolation of the 𝑒+𝑒− data
with theQCD form is still reliable, authors fit the𝑝+𝑝(𝑝) data
to predict the multiplicities at the LHC. They find ⟨𝑛⟩=88.9.
We use these values of inelasticity and average multiplicity to
build the multiplicity distribution at√𝑠=14 TeV using shifted
Gompertz function.

Figure 12 shows the multiplicity distribution predicted
from shifted Gompertz PDF for 𝑝𝑝 collisions at √𝑠 = 14 TeV
at the LHC. The mean value of the multiplicity is predicted
to be ⟨𝑛⟩ ≈89.2. It is observed that, in general, at all energies
for different types of collisions, the multiplicity distributions
can be described by shifted Gompertz function. However the
LHC data at 7000 GeV in the lower rapidity windows are
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Figure 10: Probability distribution for 𝑒+𝑒− collisions predicted
from shifted Gompertz function.
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Figure 11: Averagemultiplicity in 𝑒+𝑒− collisions as a function of√𝑠.
The fitted curve represents Fermi-Landau model.

an exception, whereby the fits are statistically excluded with𝐶𝐿 < 0.1%. At all energies, both the scale parameter 𝑏 and the
shape parameter 𝜂 decrease with the collision energy in the
center of momentum. In the rapidity windows, 𝑏 decreases
with the increase in the rapidity. The shape parameter 𝜂
increases with rapidity as it determines the width of the
distribution.

The fact that multiplicity distributions at higher energies
show a shoulder structure is well established. In order to
improve upon shiftedGompertz fits to the data, themultiplic-
ity distribution is reproduced by a weighted superposition of
two shifted Gompertz distributions corresponding to the soft
component and the semi-hard component. It is observed that
this modified shifted Gompertz distribution improves the
fits excellently and the 𝜒2 values diminish by several orders.
However, distributions fail for 91 GeV 𝑒+𝑒− data.

The data for 𝑝𝑝 collisions at 7 TeV fail for shifted
Gompertz distribution in three rapidity windows. But the
modified shifted Gompertz distribution shows a very good
agreement with the data for all rapidities, as shown in Table 3.
For each of the rapidity bins, 𝜒2/dof values are reduced
manifold with 𝐶𝐿 > 0.1%.
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Using the shifted Gompertz function and the analysis,
the multiplicity distributions at future collider and the mean
multiplicity predicted for 500 GeV 𝑒+𝑒− agree very well with
the predictions fromNLOQCD prediction and also with the
Fermi-Landau model of particle production.

4. Conclusion

The aim of this paper is to propose the use of a new statistical
distribution for studying themultiplicity distributions in high
energy collisions; the shifted Gompertz distribution function
often used in model of adoption of innovations describes the
multiplicity data extremely well. A detailed analysis of data
from 𝑒+𝑒−, 𝑝𝑝, and 𝑝𝑝 collisions at high energies in terms
of shifted Gompertz distribution shows that, in general, the
distribution fits the data very well at most of the energies
and in various rapidity intervals with the exception of a very
few. Very similar to the Weibull distribution, which recently
has been extensively used, it determines two nonnegative
parametersmeasuring the scale and shape of the distribution.
A power law dependence of the scale parameter and shape
parameter on the collision energy is established for the 𝑒+𝑒−
data. The parametrisation as a power law is inspired by the
observation that single particle energy distribution obeys a
power law behaviour.

The occurrence of a shoulder structure in the multiplicity
distribution (MD) of charged particles at high energy is well
established. This affects the shape of the distribution fit. To
improve upon the fits to the data, a weighted superposition
of the distributions using shifted Gompertz function for
the soft events (events with mini-jets) and the semihard
events (events without mini-jets) is done. The concept of
superposition originates from purely phenomenological and
very simple considerations. The two fragments of the dis-
tribution suggest the presence of the substructure. The two-
component shifted Gompertz distribution fits the data from
different types of collisions at different energies, extremely
well. Describing the MD in terms of soft and semihard
components allows one to model, under simple assumptions
the new energy domain. While predicting the multiplicity

distribution using shifted Gompertz Distribution at 14 TeV, it
remains interesting to determine the dependence of fraction
of minijet events, 𝛼 upon the rapidity windows compared
to the events without minijets. To predict the more accurate
multiplicity distributions in different rapidity windows at 14
TeV, modified shifted Gompertz PDF is required, for which𝛼 value in each rapidity window is needed. The analysis
presented for 7 TeV data shows that the minijet fraction of
events decreases with energy as well as with the increasing
size of rapidity window.This trend has also been shown in [11]
where the 𝛼 fraction for full rapidity range of 𝑝𝑝 collisions
at 14 TeV has been estimated as 0.30. When multiplicity
distributions in full phase space at higher energies like 7 TeV
become available, the extrapolations from the lower energy
domain to the highest energies can be well established, as
predicted in other works also, using different approaches
[16, 28].

A good agreement between themeanmultiplicity and the
multiplicity dependence on energy, predicted by NLO QCD
and the Fermi-Landau model of particle production, with the
predictions made by shifted Gompertz distribution, serves as
a good test of the validity of the proposed distribution.

The future extension of the present work shall focus
on analysis of multiplicities from lower energy domains,
in hadron-nucleus interactions and nucleus-nucleus interac-
tions using shifted Gompertz distribution, and deriving the
additional information from the oscillatory behaviour of the
counting statistics, as suggested byWilk andW ́lodarczyk [12].
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In this work, the generalized Dirac oscillator in cosmic string space-time is studied by replacing the momentum p𝜇 with its
alternative p𝜇+m𝜔𝛽f𝜇(x𝜇). In particular, the quantumdynamics is considered for the function f𝜇(x𝜇) to be taken asCornell potential,
exponential-type potential, and singular potential. For Cornell potential and exponential-type potential, the corresponding radial
equations can be mapped into the confluent hypergeometric equation and hypergeometric equation separately. The corresponding
eigenfunctions can be represented as confluent hypergeometric function and hypergeometric function. The equations satisfied by
the exact energy spectrum have been found. For singular potential, the wave function and energy eigenvalue are given exactly by
power series method.

1. Introduction

In quantum mechanics, there has been an increasing interest
in finding the analytical solutions that play an important role
for getting complete information about quantummechanical
systems [1–3]. The Dirac oscillator proposed in [4] is one of
the important issues in this relativistic quantum mechanics
recently. In this quantum model, the coupling proposed is
introduced in such a way that the Dirac equation remains
linear in both spatial coordinates and momenta and recovers
the Schrödinger equation for a harmonic oscillator in the
nonrelativistic limit of the Dirac equation [4–11]. As a
solvable model of relativistic quantum mechanical system,
the Dirac oscillator has many applications and has been
studied extensively in different field such as high-energy
physics [12–15], condensed matter physics [16–18], quantum
Optics [19–25], and mathematical physics [26–33]. On the
other hand, the analysis of gravitational interactions with a
quantum mechanical system has recently attracted a great
deal attention and has been an active field of research [5,
6, 34–43]. The study of quantum mechanical problems in
curved space-time can be considered as a new kind of
interaction between quantum matter and gravitation in the
microparticle world. In recent years, the Dirac oscillator

embedded in a cosmic string background has inspired a great
deal of research such as the dynamics ofDirac oscillator in the
space-time of cosmic string [44–47], Aharonov-Casher effect
on the Dirac oscillator [5, 48], and noninertial effects on the
Dirac oscillator in the cosmic string space-time [49–51]. It is
worth mentioning that based on the coupling corresponding
to the Dirac oscillator a new coupling into Dirac equation
first has been proposed by Bakke et al. [52] and used in
different fields [53–57]. This model is called the generalized
Dirac oscillator which in special case is reduced to ordinary
Dirac oscillator. Inspired by the above work, the main aim
of this paper is to analyze the generalized Dirac oscillator
model with the interaction functions f𝜇(x𝜇) taken as Cornell
potential, singular potential and exponential-type potential
in cosmic string space-time and to find the corresponding
energy spectrum and wave functions. This work is organized
as follows. In Section 2, the new coupling is introduced
in such a way that the Dirac equation remains linear in
momenta, but not in spatial coordinates in a curved space-
time. In Sections 3, 4, and 5, we concentrate our efforts
in analytically solving the quantum systems with different
function f𝜇(x𝜇) and find the corresponding energy spectrum
and spinors, respectively. In Section 6, we make a short
conclusion.
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2. Generalized Dirac Oscillator with
a Topological Defect

In cosmic string space-time, the general form of the cosmic
string metric in cylindrical coordinates read [41, 42, 44, 58,
59]

ds2 = −𝑑𝑡2 + 𝑑𝜌2 + 𝛼2𝜌2𝑑𝜑2 + 𝑑𝑧2, (1)

with −∞ < (𝑡, 𝑧) < +∞, 0 < 𝜌 < +∞, and 0 < 𝜑 < 2𝜋. The
parameter 𝛼 is related to the linear mass density of string 𝜂
by 𝛼 = 1 − 4𝜂 and runs in the interval (0, 1]. In the limit as𝛼 → 1we get the line element of cylindrical coordinates.The
Dirac equation in the curved space-time (ℏ = 𝑐 = 1) reads[𝑖𝛾𝜇 (𝑥) 𝜕𝜇 − 𝑖𝛾𝜇 (𝑥) Γ𝜇 (𝑥) − 𝑚]𝜓 (𝑡, 𝑥) = 0, (2)

where the 𝛾𝜇 matrices are the generalized Dirac matrices
defining the covariant Clifford algebra {𝛾𝜇, 𝛾]} = 2𝑔𝜇], m is
mass of the particle, and Γ𝜇 is the spinor affine connection.
We choose the basis tetrad 𝑒𝜇𝑎 as

𝑒𝜇𝑎 = (1 0 0 00 cos𝜑 sin𝜑 00 sin𝜑𝛼𝜌 cos𝜑𝛼𝜌 00 0 0 1), (3)

then in this representation the matrices 𝛾𝜇 [44] can be found
to be 𝛾0 = 𝛾t,𝛾1 = 𝛾𝜌 = 𝛾1 cos𝜑 + 𝛾2 sin𝜑,𝛾2 = 𝛾𝜑 = −𝛾1 sin𝜑 + 𝛾2 cos𝜑,𝛾3 = 𝛾z,𝛾𝜇Γ𝜇 (x) = 1 − 𝛼2𝛼𝜌 𝛾𝜌.

(4)

It is well known that, in both Minkowski space-time and
curved space-time, usual Dirac oscillator can be obtained by
the carrying out nonminimal substitution p𝜇 → p𝜇+m𝜔𝛽x𝜇
in Dirac equation where m and 𝜔 are the mass and oscillator
frequency. In the following, we will construct the generalized
oscillator in curved space-time. To do this end, we can replace
momenta p𝜇 in the Dirac equation of curved space-time by

p𝜇 → p𝜇 + m𝜔𝛽f𝜇 (x𝜇) , (5)

where f𝜇(x𝜇) are undetermined functions of x𝜇. It is to
say that we introduce a new coupling in such a way that
the Dirac equation remains linear in momenta but not in
coordinates. In particular, in this work, we only consider the
radial component the nonminimal substitution

f𝜇 (x𝜇) = (0, f𝜌 (𝜌) , 0, 0) . (6)

By introducing this new coupling (6) into (2) and with
the help of (4), in cosmic string space-time the eigenvalue
equation of generalized Dirac oscillator can be written as{−i𝛾t𝜕t + i𝛾𝜌 (𝜕𝜌 − 1 − 𝛼2𝛼𝜌 + m𝜔𝜌f (𝜌)) + i𝛾𝜑𝜕𝜑𝛼𝜌+ i𝛾z𝜕z − m}𝜓 = 0. (7)

We choose the following ansatz:𝜓 = e−iEt+i(l+1/2−Σ
3/2)𝜑+ikz (𝜒1 (𝜌)𝜒2 (𝜌)) , (8)

then we have[𝛼1 ( d
d𝜌 + 12𝜌 − m𝜔𝜌f (𝜌)) − 𝜆𝜌𝛼2 − k𝛼3]⋅ [𝛼1 ( d

d𝜌 + 12𝜌 + m𝜔f (𝜌)) − 𝜆𝜌𝛼2 − k𝛼3] 𝜒1= (E2 − m2) 𝜒1,
(9)

[𝛼1 ( d
d𝜌 + 12𝜌 + m𝜔f (𝜌)) − 𝜆𝜌𝛼2 − k𝛼3]⋅ [𝛼1 ( d

d𝜌 + 12𝜌 − m𝜔f (𝜌)) − 𝜆𝜌𝛼2 − k𝛼3] 𝜒2= (E2 − m2) 𝜒2,
(10)

where 𝛼1 = i (𝜎1 cos𝜑 + 𝜎2 sin𝜑) ,𝛼2 = −𝜎1 sin𝜑 + 𝜎2 cos𝜑,𝛼3 = 𝜎3. (11)

It is straightforward to prove the following relations satisfied
above matrices 𝛼i:𝛼21 = −𝛼22 = 𝛼23 = −1,𝛼1𝛼2 = −𝛼2𝛼1 = i𝜎1𝜎2,𝛼1𝛼3 = −𝛼3𝛼1 = i (𝜎1𝜎3 cos𝜑 + 𝜎2𝜎3 sin𝜑) ,𝛼3 = −𝛼3𝛼2 = −𝜎1𝜎3 sin𝜑 + 𝜎2𝜎3 cos𝜑. (12)

With help of (12) and simple algebraic calculus, (9) becomes{𝜕2𝜌 + 1𝜌𝜕𝜌 − 1𝜌2 [14 + i𝜆𝜎1𝜎2 + 𝜆2]}𝜒1 + {−2m𝜔
⋅ f (𝜌)𝜌 [ik𝜌 (𝜎1𝜎3 cos𝜑 + 𝜎2𝜎3 sin𝜑) + i𝜎1𝜎2𝜆]}
⋅ 𝜒1 + {m2 + k2 − E

2 + m𝜔 f (𝜌)𝜌 − m2𝜔2f2 (𝜌)}⋅ 𝜒1 = 0.
(13)
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It is easy to prove the following relation [44]:

i𝜎1𝜎2𝜆 + ik𝜌 (𝜎1𝜎3 cos𝜑 + 𝜎2𝜎3 sin𝜑) = −2→s .→L , (14)

where →s = →𝜎/2. The eigenvalue of →s .→L can be assumed as(l + 1/2)/2𝛼 and (13) reads

d2𝜒1
d𝜌2 + 1𝜌 d

d𝜌𝜒1
− [𝜆2𝜌2 + 𝜇 f (𝜌)𝜌 − m𝜔df (𝜌)

d𝜌 + m2𝜔2f2 (𝜌)] 𝜒1+ ]𝜒1 = 0,
(∗a)

where 𝜆 = ( l + 1/2𝛼 − 12) ,𝜇 = −2 (l + 1/2)m𝜔𝛼 ,
] = E2 − m2 − k2. (15)

For the component 𝜒2, from (10) an analog equation can be
also obtained

d2𝜒2
d𝜌2 + 1𝜌 d

d𝜌𝜒2
− [𝜆2𝜌2 + 𝜇 f (𝜌)𝜌 + m𝜔df (𝜌)

d𝜌 + m2𝜔2f2 (𝜌)] 𝜒2+ ]𝜒2 = 0,
(∗b)

where 𝜆 = ( l + 1/2𝛼 + 12) ,𝜇 = −2 (l + 1/2)m𝜔𝛼 ,
] = E2 − m2 − k2. (16)

In particular, (∗a) and (∗b) will be reduced to the result
obtained in [44] when the function f(𝜌) is taken as f(𝜌) =𝜌. As we can see, (∗a) and (∗b) have the same form. So
without loss of generality in remaining parts of this work, our
main tasks is only to solve the equation (∗a) with different
functions f(𝜌) and find corresponding eigenvalue and eigen-
function. While with regard to (∗b), it is straightforward to
obtain the corresponding solution.

3. The Solution with 𝑓(𝜌) to Be
Cornell Potential

The Cornell potential that consists of Coulomb potential
and linear potential has gotten a great deal of attention in
particle physics and was used with considerable success in

models describing systems of boundheavy quarks [60–62]. In
Cornell potential, the short-distance Coulombic interaction
arises from the one-gluon exchange between the quark and
its antiquark, and the long-distance interaction is included to
take into account confining phenomena.

Now we let the function f(𝜌) be Cornell potential
f (𝜌) = a𝜌 − b𝜌 , (17)

where a and b are two constants. Substituting (17) into (∗a)
and (∗b) leads to following equation:

d2𝜒
d𝜌2 + 1𝜌 d

d𝜌𝜒 + [−𝜏21𝜌2 − 𝜏2𝜌2 + 𝜏3]𝜒 = 0, (18)

where 𝜏21 = 𝜆2 − 𝜇b + m2𝜔2b2 − 𝜔mb,𝜏2 = m2𝜔2a2,𝜏3 = 𝜐 + 2abm2𝜔2 − a𝜇 + m𝜔a. (19)

We make a change in variables 𝜉 = m𝜔a𝜌2 and then (18) can
be rewritten as𝜉d2𝜒

d𝜉2 + d
d𝜉𝜒 + [−𝜏214𝜉 − 14𝜉 + 𝜏34ma𝜔]𝜒 = 0. (20)

Taking account of the boundary conditions satisfied by the
wave function 𝜒, i.e., 𝜒 ∝ 𝜉𝜏1/2 for 𝜉 → 0 and 𝜒 ∝ e−𝜉/2 for𝜉 → ∞, physical solutions 𝜒 can be expressed as [44, 60, 63,
64] 𝜒 = 𝜉|𝜏1|/2e−𝜉/2g (𝜉) . (21)

If we insert this wave function 𝜒 into (20), we have the
second-order homogeneous linear differential equation in the
following form:𝜉d2g

d𝜉2 + (𝜏1 + 1 − 𝜉) d
d𝜉g + [ 𝜏34ma𝜔 − 𝜏12 − 12]g= 0. (22)

It is well known that (22) is the confluent hypergeometric
equation and it is immediate to obtain the corresponding
eigenvalues and eigenfunctions

g (𝜉) = F[−( 𝜏34ma𝜔 − 𝜏1 + 12 ) , 𝜏1 + 1, 𝜉] , (23)

E2n = 𝛿1 − 2 (l + 1/2)m𝜔a𝛼+ 4ma𝜔[n + 12 + 𝛿22 ] , (24)

with 𝛿1 = m2 + k2 − 2abm2𝜔2 + m𝜔a,𝛿2 = √𝜆2 − 𝜇b + b2m2𝜔2 − m𝜔b. (25)
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In particular, if we assume that 𝛼 = 1, from (24), the
energy levels of generalized Dirac oscillator with f(𝜌) to be
Cornell potential in the absence of a topological defect can
be obtained. In addition if we let a = 1, b = 0 in (24) the
energy levels given here will be reduced to that one obtained
in [44].

4. The Solution with 𝑓(𝜌) to Be
Singular Potential

The investigation of singular potentials in quantum mechan-
ics is almost as old as quantum mechanics itself and covers
a wide range of physical and mathematical interest because
the real world interactions were likely to be highly singular
[65]. The singular potentials of v(r) ∝ 1/rn type, with n ≥ 2,
are of great current physical interest and are relevant to many
problems such as the three-body problem in nuclear physics
[66, 67], point-dipole interactions in molecular physics [68],
the tensor force between nucleons [69], and the interaction
between a charges and an induced dipole [70], respectively.
Recently, in cosmic string background, singular inverse-
square potential with aminimal length had been studied [71].

Next let us take f(𝜌) to be singular inverse-square-type
potential [72]

f𝜌 (𝜌) = a + b𝜌 + c𝜌2 . (26)

Substituting (26) into (∗a), the corresponding radial equation
reads{ d2

d𝜌2 + 1𝜌 d
d𝜌 − 𝛿1𝜌 − 𝜆2 + 𝛿2𝜌2 − 𝛿3𝜌3 − 𝛿4𝜌4 + 𝛾}𝜒 = 0, (27)

where 𝛾 = 𝜐 − m2a2𝜔2𝛿1 = 2abm2𝜔2 + a𝜇,𝛿2 = 𝜇b + m𝜔b + b2m2𝜔2 + 2acm2𝜔2,𝛿3 = 𝜇c + 2m𝜔c + 2bcm2𝜔2,𝛿4 = c2m2𝜔2.
(28)

It is obvious that (27) has the same mathematical struc-
ture with the Schrödinger equation of fourth-order inverse-
potential in [73]. So (27) can be solved by power series
method.

We look for an exact solution of (27) via the following
ansatz to the radial wave function [73–75]:𝜒 = Θ (𝜌) exp [g (𝜌)] ,

g (𝜌) = − 𝛿12𝜌 − 𝛿22 𝜌 − 𝛿32 log 𝜌. (29)

Thence, (27) can be transformed into the following form:{ d2

d𝜌2 + [−𝛿1 + 1 − 𝛿3𝜌 + 𝛿2𝜌2 ] d
d𝜌 + 𝛾 + 𝛿214+ 𝛿1 (𝛿3 − 3)2𝜌 + 𝛿23 − 4𝛿2 − 2𝛿1𝛿2 − 4𝜆24𝜌2+ −𝛿2 (1 + 𝛿3) − 𝛿32𝜌3 + 𝛿22 − 4𝛿44𝜌4 }Θ (𝜌) = 0.

(30)

Now we take Θ(𝜌) in following series form:Θ(𝜌) = ∞∑
𝑛=0

𝑎𝑛𝜌𝑛+𝜆+1/2, a0 ̸= 0, a1 ̸= 0. (31)

Substituting (31) into (30) gives rise to following equation:

∞∑
n=0

an {−[𝛿1 (n + 𝜆 + 2 − 𝛿32 )] 𝜌n+𝜆−1/2 + [𝛾 + 𝛿214 ]
⋅ 𝜌n+𝜆+1/2 + [(2n + 2𝜆 + 1) (2n + 2𝜆 + 1 − 2𝛿3)4− 𝛿2 (𝛿1 + 2)2 − 𝜆2 + 𝛿234 ] 𝜌n+𝜆−3/2

− [𝛿1 (n + 𝜆 + 2 − 𝛿32 )] 𝜌n+𝜆−1/2 + [𝛾 + 𝛿214 ]
⋅ 𝜌n+𝜆+1/2} = 0.

(32)

To make (32) be valid for all values of 𝜌, the coefficients
of each term of the polynomial of 𝜌 must be equal to zero
separately. We, therefore, obtain2 (𝛿1 + 2) (n + 𝜆 + 2) = 4𝜆2 − 9 − 4, (33a)𝛿2 = − (n + 𝜆 + 2) , (33b)𝛿3 = 2 (n + 𝜆 + 2) , (33c)2𝛿4 = (n + 𝜆 + 2)2 , (33d)𝛾 = −𝛿214 . (33e)

Using (∗a), (33a), and (33e) and after simple algebraic
calculation, the corresponding energy can be written as

E2n = m2 + k2 + m2a2𝜔2 − 116 ( 4𝜆2 − 9
n + 𝜆 + 2)2. (34)

The general radial wave functions corresponding to the
energy spectra given in (34) areΘ(𝜌) = ∞∑

𝑛=0

𝑎𝑛𝜌𝑛+𝜆+1/2exp [− 𝛿12𝜌 − 𝛿22 𝜌 − 𝛿32 log 𝜌] . (35)
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With the help of (32) and (33a)–(33e), the expansion coeffi-
cients an in (35) satisfy the following recursion relation [73]:

an+1 = 4𝜆2 − 9 − 4 (n + 𝜆 + 2)2 (n + 𝜆 + 2)2 an−1. (36)

From the recursion relation (36) we can determine the
coefficients an (𝑛 ̸= 0, 1) of the power series in terms of a0
and a1. In addition the above recursion relation implies that
(35) yields one solution as a power series in even powers of 𝜌
and another in odd powers of 𝜌.

In addition, (27) can be also mapped to the double-
confluent Heun equation by appropriate function transfor-
mation [76]. Sowhen f(𝜌) is taken as singular inverse-square-
type potential, the solutions of (27) can be also given by the
solution of the double-confluent Heun equation [76, 77].

5. The Solution with 𝑓(𝜌) to Be
Exponential-Type Potential

The exponential-type potentials are very important in the
study of various physical systems, particularly for modeling
diatomic molecules. The typical exponential-type potentials
include Eckart potentials [78], the Morse potential [79, 80],
the Wood–Saxon potential [81], and Hulthén potential [82,
83]. The research work on the Dirac equation with the above
potential is mainly concentrated on Minkowski time and
space. However, it has been noticed recently that it is also
interesting to study this kind quantum systems in a cosmic
string background [84]. In this section wewill take the f(𝜌) as
exponential-type function and solve the correspondingDirac
equation in cosmic string space-time.

As is known to all, the Dirac equation and Schrödinger
equation have been studied by resorting different methods. A
usual way is transforming the eigenvalue equation of quan-
tum system considered into a solvable equation via suitable
variable substitutions and function transformations [85–87].
In order to obtain solution for f(𝜌) being exponential-type
potential, we firstly consider the following linear second-
order differential equation

x2 (1 − x)2 d2y
dx2

+ x (1 − x)2 dy
dx− (L1 + L2x − L3x
2) y = 0, (37)

where Li, (i = 1, 2, 3) are constants. It is known that
singular points of a differential equation determine the form
of solutions. In this equation, there are two singular points,
i.e., x = 0 and x = 1. In order to remove these singularities
and get physically acceptable solutions we use the following
ansatz:

y = xΩ (1 − x)Λ R (x) . (38)

whereΛ andΩ are two real parameters. Further wemake this
two parameters to satisfy following relationships:Ω = ±√L1,Λ = 12 [1 ± √1 − 4 (L3 − L2−L1)] , (39)

and by substituting (38) into (37), the differential equation for𝜒(x) can be written as(1 − x) x 𝜕2𝜕x2R (x)+ [2Ω + 1 − (2Ω + 2Λ + 1)] x 𝜕𝜕xR (x)− (Ω + Λ + Δ) (Ω + Λ − Δ)R (x) = 0, (40)

with Δ = ±√−L3. In other words, (37) is reduced to the
well-known hypergeometric equation, when condition (39)
is imposed. Making use of the boundary conditions at r = 0
and r = ∞ [87, 88], we can find the equation obeyed by the
energy eigenvalue: Ω + Λ + Δ = −n, (41)

and the corresponding eigenfunctions is given in terms of the
Gauss hypergeometric functions below

R (x) = AF (𝜏1, 𝜏2; 1 + 2Ω; x) ,𝜏1 = Ω + Λ + Δ,𝜏2 = Ω + Λ − Δ, (42)

where A is normalization constant. Next, we will use the
results given here to obtain the solutions of Dirac equation
exponential-type interaction in cosmic string space-time.
As a direct application of the above method, let us take
the function f(𝜌) to be as Yukawa potential, Hulthén-Type
potential, and generalized Morse potential, respectively.

Case 1 (f(𝜌) being Yukawa potential). In Yukawa meson the-
ory, the Yukawa potential firstly was introduced to describe
the interactions between nucleons [89]. Afterwards, it has
been applied to many different areas of physics such as high-
energy physics [90, 91], molecular physics [92], and plasma
physics [93]. In recent years, the considerable efforts have
also been made to study the bound state solutions by using
different methods.

Now let us choose f(𝜌) to be Yukawa potential
f (𝜌) = a𝜌e−𝛽𝜌, (43)

then (∗a) takes the form
d2𝜒
d𝜌2 + 1𝜌 d𝜒

d𝜌 − [𝜆2𝜌2 + m𝜔a𝜌2 e−𝛽𝜌 + 𝜇a + am𝜔𝛽𝜌 e−𝛽𝜌

+ a2m2𝜔2𝜌2 e−2𝛽𝜌]𝜒 + ]𝜒 = 0. (44)
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However, the radial equation (44) cannot accept exact
solution due to the presence of the centrifugal term [86].
In order to find analytical solution, we have to use some
approximation approaches for the centrifugal term potential.
Following [87], the approximation for the centrifugal term
reads 1𝜌2 ≈ 𝛽2(1 − e−𝛽𝜌)2 ,1𝜌 ≈ 𝛽1 − e−𝛽𝜌

. (45)

It is worth mentioning that the above approximations are
valid for 𝛽𝜌 ≪ 1 [87]. So if we make the control parameter𝛽 small enough, then we can guarantee that the above
approximations in (45) hold for larger values 𝜌. In other
words, this approximation (45) is valid in our work.

Using the approximation in (45) and setting𝜒 = 1√𝜌Θ (𝜌) ,
x = e−𝛽𝜌, (46)

in the new function 𝜒 and new variable x, (44) becomes

x2 (1 − x)2 d2Θ
dx2

+ x (1 − x)2 dΘ
dx− (L1 + L2x − L3x
2)Θ = 0, (47)

where

L1 = −𝜆2𝛽2 + m2 + k2 − E
2,

L2 = −m𝜔a𝛽2 − a𝜇𝛽 + 2m2 + 2k2 − 2E2,
L3 = m2𝜔2a2 − a𝜇𝛽 − am𝜔𝛽2 − m2 − k2 + E

2. (48)

Comparing (47) with (37) and using the results given in
(41) and (42), it is not difficult to find the equation obeyed
by eigenvalues and eigenfunctions and they can be given,
respectively,

E2n − 𝑞1 − √𝑞2 − E2n+ [n + 12 (1 + √1 + 𝑞3 − 16E2n)] = 0,Θ (𝜌) = Ae−𝛽Ω𝜌 (1 − e−𝛽𝜌)Λ F (𝜏1, 𝜏2; 1 + 2Ω; e−𝛽𝜌) , (49)

where 𝑞1 = 𝜆2𝛽2 − m2 − k2,𝑞2 = m2 + k2 + a𝜇𝛽 + am𝜔𝛽2−m2𝜔2a2,𝑞3 = 4 (4m2 + 4k2 − am2𝜔2) ,𝜏1 = Ω + Λ + Δ,𝜏2 = Ω + Λ − Δ.
(50)

Case 2 (f(𝜌) being Hulthén-type potential). In this section,
we are interested in considering the Hulthén potential that
describes the interaction between two atoms and has been
used in different areas of physics and attracted a great of
interest for some decades [82, 83, 94]. Next we take the
interaction function f(𝜌) being Hulthén-Type potential

f (𝜌) = a + be−𝛽𝜌1 − e−𝛽𝜌
, (51)

where a, b, and 𝛽 are real constants. Inserting (45) and (51)
into (∗a), then (∗a) can written as

d2𝜒
d𝜌2 + 1𝜌 d𝜒

d𝜌 − [𝜆2𝜌2 + 𝜇a𝜌 + a2m2𝜔2
+ (𝜇b𝜌 + 2abm2𝜔2) e−𝛽𝜌1 − e−𝛽𝜌

]𝜒 + (b2m2𝜔2e−𝛽𝜌
+ m𝜔b𝛽) e−𝛽𝜌(1 − e−𝛽𝜌)2𝜒 + ]𝜒 = 0.

(52)

In the same way as in previous section, taking into con-
sideration approximation (45) for the centrifugal term and
using the variable transformation x = e−𝛽𝜌 and function
transformation 𝜒 = (1/√𝜌)Θ(𝜌), (51) changes

x2 (1 − x)2 d2Θ
dx2

+ x (1 − x)2 dΘ
dx− (L1 + L2x − L3x
2)Θ = 0, (53)

where

L1 = 𝜆2𝛽2 + m2𝜔2a2 + 𝛽𝜇a + m2 + k2 − E
2,

L2 = m𝜔b𝛽 + (b − a) (𝜇𝛽 − 2m𝜔)+ 2m2 + 2k2 − 2E2,
L3 = −m2𝜔2 (a − b)2 − m2 − k2 + E

2.
(54)

With the help of (38), (41), and (42), the solutions for
f(𝜌) being Hulthén-Type potential can be easily obtained
and the corresponding eigenvalues and eigenfunctions are,
respectively,

E2n − 𝑞4 − √𝑞5 − E2n + [n + 12 (1 + √1 + 𝑞6 − 16E2n)]= 0, (55)

Θ(𝜌) = Ae−𝛽Ω𝜌 (1 − e−𝛽𝜌)Λ F (𝜏1, 𝜏2; 1 + 2Ω; e−𝛽𝜌) , (56)
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where𝑞4 = 𝜆2𝛽2 + m2𝜔2a2 + 𝛽𝜇a + m2 + k
2,𝑞5 = m2𝜔2 (a − b)2 + m2 + k

2,𝑞6 = 4 (m2 + k2) + 4m2𝜔2 (2a2 − 2ab + b2) + 4𝛽2𝜆2+ 4𝛽𝜇a + 4m𝜔b𝛽 + 4 (a − b) (𝜇𝛽 − 2m𝜔) ,𝜏1 = Ω + Λ + Δ,𝜏2 = Ω + Λ − Δ.
(57)

Case 3 (f(𝜌) being generalized Morse potential). The Morse
potential [79, 80] as an important molecular potential
describes the interaction between two atoms. We choose the
interaction function f(𝜌) being generalized Morse potential

f (𝜌) = a𝜌2 (e−𝛽𝜌 − e−2𝛽𝜌) . (58)

As before, substitution of form (59) into (∗a) and straightfor-
ward calculation lead to the following equation:

d2𝜒
d𝜌2 + 1𝜌 d𝜒

d𝜌 − [𝜆2𝜌2 + 𝜇a + 2m𝜔a𝜇𝜌3 (e−𝛽𝜌 − e−2𝛽𝜌)
− a𝛽m𝜔𝜌2 (2e−2𝛽𝜌 − e−𝛽𝜌)] 𝜒 + a2m2𝜔2𝜌4 (e−𝛽𝜌− e−2𝛽𝜌)2 𝜒 + ]𝜒 = 0.

(59)

Letting x = e−𝛽𝜌 and 𝜒 = (1/√𝜌)Θ(𝜌), the above differential
equation (59) changes into the form

x2 (1 − x)2 d2Θ
dx2

+ x (1 − x)2 dΘ
dx− (L1 + L2x − L3x
2)Θ = 0, (60)

where

L1 = 𝜆2𝛽2 + m2 + k2 − E
2,

L2 = 𝜇a (1 + 2m𝜔) + 2am𝜔𝛽 − 2m2 − 2k2 + 2E2,
L3 = E2 − m

2𝜔2a2 + 2m𝜔a𝛽 − m2 − k
2. (61)

It is easy to see that the differential equation (60) is also
similar to (37). So again according to the quantization
condition (40) the corresponding expression of eigenvalues
can be written as

E2n − 𝑞7 − √𝑞8 − E2n + [n + 12 (1 + √1 + 𝑞9 − 16E2n)]= 0,𝑞7 = 𝜆2𝛽2 + m2 + k
2,𝑞8= m2𝜔2a2 − 2m𝜔a𝛽 + m2 + k

2,𝑞9 = 4 [𝜇a (1 − 2m𝜔) − 2m𝜔a𝛽 + a2m2𝜔2 + 𝜆2𝛽2] .
(62)

The wave function in this case readΘ(𝜌) = Ae−𝛽Ω𝜌 (1 − e−𝛽𝜌)Λ F (𝜏1, 𝜏2; 1 + 2Ω; e−𝛽𝜌) , (63)

where 𝜏1 = Ω + Λ + Δ,𝜏2 = Ω + Λ − Δ. (64)

The above results show that the radial equation of the gener-
alized Dirac oscillator with interaction function f𝜇(x𝜇) to be
taken as the exponential-type potential can be mapped into
the well-known hypergeometric equation and the analytical
solutions can have been found.

6. Conclusion

In this work, the generalized Dirac oscillator has been
studied in the presence of the gravitational fields of a cosmic
string. The corresponding radial equation of generalized
Dirac oscillator is obtained. In our generalized Dirac oscil-
lator model, we take the interaction function f𝜇(x𝜇) to be
as Cornell potential, Yukawa potential, generalized Morse
potential, Hulthén-Type potential, and singular potential,
respectively. By solving the corresponding wave equations
the corresponding energy eigenvalues and thewave functions
have been obtained and we have showed how the cosmic
string leads to modifications in the spectrum and wave
function. Based on consideration that Dirac oscillator has
been studied extensively in high-energy physics, condensed
matter physics, quantum optics, mathematical physics, and
even connection with Higgs symmetry it also makes sense to
generalize the generalized Dirac oscillator to these fields.
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The transverse momentum spectra of 𝜋−, 𝜋+, 𝐾−, 𝐾+, 𝑝, and 𝑝 produced in Au+Au collisions at center-of-mass energy √𝑠𝑁𝑁 =7.7, 11.5, 19.6, 27, 39, 62.4, 130, and 200GeV are analyzed in the framework of a multisource thermal model. The experimental
data measured at midrapidity by the STAR Collaboration are fitted by the (two-component) standard distribution. The effective
temperature of emission source increases obviously with the increase of the particle mass and the collision energy. At different
collision energies, the chemical potentials of up, down, and strange quarks are obtained from the antiparticle to particle yield ratios
in given transverse momentum ranges available in experiments. With the increase of logarithmic collision energy, the chemical
potentials of light flavor quarks decrease exponentially.

1. Introduction

The constructions of the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC) have been
opening a new epoch for the studies of nuclear and quark
matters. One of themajor goals of the RHIC and LHC studies
is to obtain information on the quantum chromodynamics
(QCD) phase diagram [1].Thephase diagram includes at least
a fundamental phase transition between the hadron gas and
the quark-gluon plasma (QGP) or quark matter and is usu-
ally plotted as chemical freeze-out temperature (𝑇𝑐ℎ) versus
baryon chemical potential (𝜇𝑏𝑎𝑟𝑦𝑜𝑛). Nowadays, the detailed
characteristics of the phase diagram are not known yet. The
experimental and theoretical nuclear physicists have been
focusing their attentions on the searching for the critical end
point and phase boundary. Lattice QCD calculations show
that a system is produced at small 𝜇𝑏𝑎𝑟𝑦𝑜𝑛 or high energies
through a crossover at the quark-hadron phase transition [2–
4]. Based on the lattice QCD [5] and several QCD-based
models calculations [6–9], as well asmathematical extensions
of lattice techniques [10–13], researchers suggest that the

transition at larger 𝜇𝑏𝑎𝑟𝑦𝑜𝑛 is the first order and the QCD
critical end point is existent.

Pinpointing the phase boundary and the critical end
point is the central issue to understand the properties of
interacting matter under extreme conditions and to map the
QCD phase diagram. The matter produced in high-energy
heavy-ion collisions provides the opportunity to search for
the phase boundary and the critical end point [6, 14]. To this
end, the STAR Collaboration at the RHIC has undertaken
the first phase of the beam energy scan (BES) program [15–
17], starting the second phase from 2018 to 2019 [18]. The
program is to vary the collision energy which enables a
search for nonmonotonic excitation functions over a broad
domain of the phase diagram. Before looking for an evidence
for the existence of a critical end point and the phase
boundary, it is important to know the (𝑇𝑐ℎ, 𝜇𝑏𝑎𝑟𝑦𝑜𝑛) region
of phase diagram one can access. The produced particles
spectra and yield ratios allow us only to infer the values
of 𝑇𝑐ℎ and 𝜇𝑏𝑎𝑟𝑦𝑜𝑛 [19]. Furthermore, the bulk properties
such as rapidity density 𝑑𝑁/𝑑𝑦, mean transverse momentum⟨𝑝𝑇⟩, particle ratios, and freeze-out properties may provide
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an insight into the particle production mechanisms at BES
energies. Therefore, it is very important to study these bulk
properties systematically, whichmay reveal the evolution and
the changes of the system created in high-energy heavy-ion
collisions.

As one of the most important measured quantities, the
transverse momentum (𝑝𝑇) spectrum includes abundant
information which is related to the excitation degree of
the collision system. The spectra of identified particles can
also provide useful information about temperature, particle
ratio, and chemical potential by using thermal and statistical
investigations [20]. For any system, one can determine the
direction and limitation of mass transfer by comparing the
chemical potentials of particles; that is to say, the chemical
potential is a sign to mark the direction of spontaneous
chemical reaction. The chemical potential can also be a cri-
terion for determining whether thermodynamic equilibrium
does exist in the interacting region in high-energy collisions
[1]. Generally, a low absolute value of chemical potential
corresponds to a high degree of thermodynamic equilibrium.
Therefore, the chemical potential is also one of the major
solutions for investigating the QGP. One can see that the
chemical potentials of quarks are an important subject at high
energy. Therefore, we are very interested in measuring the
chemical potentials of quarks.

In this paper, we extract the chemical potentials of light
flavor quarks from the yield ratios of negatively to positively
charged particles. By using the (two-component) standard
distribution, the 𝑝𝑇 spectra of 𝜋−, 𝜋+, 𝐾−, 𝐾+, 𝑝, and 𝑝
produced in Au+Au collisions at center-of-mass energy (per
nucleon pair) √𝑠𝑁𝑁 = 7.7, 11.5, 19.6, 27, 39, 62.4, 130, and
200GeVmeasured by the STARCollaboration inmidrapidity
interval (|𝑦| < 0.1) [19, 21] are described. The considered
energies stretch across a wide energy range which covers the
main range of the RHIC at its BES.

2. The Model and Method

To extract the chemical potentials of quarks, we need to know
the yield ratios of negatively to positively charged particles.
Although we can have the values of yield ratios directly in
experiments, they are not complete and comprehensive in
some cases. Usually, the 𝑝𝑇 spectra of charged particles are
given in many experiments and we can get the yield ratios
by fitting the available data. Then, the values of chemical
potentials for the up, down, and strange quarks can be
obtained from the yield ratios 𝜋−/𝜋+,𝐾−/𝐾+, and 𝑝/𝑝which
are synthetically considered in special ways.

In this paper, the 𝑝𝑇 spectra are analyzed in the frame-
work of a multisource thermal model [22], which assumes
that various sources are involved in high-energy collisions.
These sources are divided into few groups by different inter-
action mechanisms, geometrical relations, or event samples.
Each group of sources forms a relatively large emission
source which stays in a local thermal equilibrium state at
the chemical or kinetic freeze-out. Each emission source is
considered to emit particles in its rest frame and treated as
a thermodynamic system of relativistic and quantum ideal
gas. This means that each emission source can be described

by the thermal and statistical model or other similar models
and distributions. The final-state distribution is attributed to
all sources in the whole system, which results in a multi-
characteristic emission process [22] if we use the standard
distribution [23–26]. This also means that 𝑝𝑇 spectrum can
be described by a multicomponent standard distribution in
which each component describes a given emission source.

We now structure the multicomponent standard distri-
bution. It is assumed that there are 𝑙 components to be
considered. For the 𝑖-th component, the standard Boltzmann,
Fermi-Dirac, and Bose-Einstein distributions [23–26] can be
uniformly expressed as

𝑓𝑖 (𝑝𝑇) = 1𝑁 𝑑𝑁𝑑𝑝𝑇
= 𝐶𝑖𝑝𝑇√𝑝2𝑇 + 𝑚20 ∫𝑦max

𝑦min

cosh𝑦
× [[[exp(

√𝑝2𝑇 + 𝑚20 cosh𝑦 − 𝜇𝑇𝑖 )+ 𝑆]]]
−1

𝑑𝑦,
(1)

where 𝐶𝑖 is the normalization constant which results in∫∞
0
𝑓𝑖(𝑝𝑇)𝑑𝑝𝑇 = 1; 𝑁, 𝑚0, 𝜇, and 𝑇𝑖 denote the particle

number, the rest mass of the considered particle, the chem-
ical potential of the considered particle, and the effective
temperature for the 𝑖-th component, respectively; 𝑦min is the
minimum rapidity and 𝑦max is the maximum rapidity; the
values of 𝑆 are 0, +1, and −1, which denote the Boltzmann,
Fermi-Dirac, and Bose-Einstein distributions, respectively.
We neglect the existence of 𝜇 in (1) due to the fact that it has
mainly effect on the normalization which can be redone, but
not the trend of curve.

In the final state, 𝑝𝑇 spectrum is resulting from 𝑙 compo-
nents; that is,

𝑓 (𝑝𝑇) = 1𝑁 𝑑𝑁𝑑𝑝𝑇 =
𝑙∑
𝑖=1

𝑤𝑖𝑓𝑖 (𝑝𝑇) , (2)

where 𝑤𝑖 (𝑖 = 1, 2, . . . , 𝑙) is the relative weight resulting from
the 𝑖-th component. Because of the probability distribution
being acquiescently normalized to 1, the coefficient obeys
the normalization condition of ∑𝑤𝑖 = 1. Considering the
relative contribution of each component, we have the mean
effective temperature to be 𝑇𝑒𝑓𝑓 = ∑𝑤𝑖𝑇𝑖, which reflects the
mean excitation degree of different sources corresponding to
different components and can be used to describe the effective
temperature of whole interacting system. It should be noted
that the effective temperature contains the contributions of
transverse flow and thermal motion. It is not the “real”
temperature of the interacting system.

According to [27, 28], the relation between antiproton to
proton yield ratios can be written as𝑝𝑝 = exp(−2𝜇𝑝𝑇𝑐ℎ ) ≈ exp(−2𝜇𝑏𝑎𝑟𝑦𝑜𝑛𝑇𝑐ℎ ) , (3)

where 𝜇𝑝 denotes the chemical potential of proton. In the
framework of the statistical thermal model of noninteracting
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gas particles with the assumption of standard Maxwell-
Boltzmann statistics, there is an empirical expression for 𝑇𝑐ℎ
[29–32]; one has

𝑇𝑐ℎ = 𝑇lim 11 + exp [2.60 − ln (√𝑠𝑁𝑁) /0.45] , (4)

where √𝑠𝑁𝑁 is in the units of GeV and the “limiting”
temperature 𝑇lim = 0.164GeV [29, 30].

In a similar way, the yield ratios of antiparticles to
particles for other hadrons can be written as

𝑘𝜋 ≡ 𝜋−𝜋+ = exp(−2𝜇𝜋𝑇𝑐ℎ ) ,
𝑘𝐾 ≡ 𝐾−𝐾+ = exp(−2𝜇𝐾𝑇𝑐ℎ ) ,
𝑘𝑝 ≡ 𝑝𝑝 = exp(−2𝜇𝑝𝑇𝑐ℎ ) ,
𝑘𝐷 ≡ 𝐷−𝐷+ = exp(−2𝜇𝐷𝑇𝑐ℎ ) ,
𝑘𝐵 ≡ 𝐵−𝐵+ = exp(−2𝜇𝐵𝑇𝑐ℎ ) ,

(5)

where 𝑘𝑗 (𝑗 = 𝜋, 𝐾, 𝑝, 𝐷, and 𝐵) denote the yield ratios
of negatively to positively charged particles obtained from
the normalization constants of 𝑝𝑇 spectra. The symbols 𝜇𝜋,𝜇𝐾, 𝜇𝐷, and 𝜇𝐵 represent the chemical potentials of 𝜋, 𝐾, 𝐷,
and 𝐵, respectively. In the above discussion, the symbol of a
given particle is used for its yield for the purpose of simplicity.
Furthermore, we have

𝜇𝜋 = −12𝑇𝑐ℎ ⋅ ln (𝑘𝜋) ,
𝜇𝐾 = −12𝑇𝑐ℎ ⋅ ln (𝑘𝐾) ,
𝜇𝑝 = −12𝑇𝑐ℎ ⋅ ln (𝑘𝑝) ,
𝜇𝐷 = −12𝑇𝑐ℎ ⋅ ln (𝑘𝐷) ,
𝜇𝐵 = −12𝑇𝑐ℎ ⋅ ln (𝑘𝐵) .

(6)

Let 𝜇𝑞 denote the chemical potential for quark flavor,
where 𝑞 = 𝑢, 𝑑, 𝑠, 𝑐, and 𝑏 represent the up, down, strange,
charm, and bottom quarks, respectively. In principle, we can
use 𝑘𝑗 to give relations among different 𝜇𝑞. The values of 𝜇𝑞
are then expected from these relations. According to [33, 34],
based on the same 𝑇𝑐ℎ, 𝑘𝑗 in terms of 𝜇𝑞 are

𝑘𝜋 = exp [− (𝜇𝑢 − 𝜇𝑑) /𝑇𝑐ℎ]
exp [(𝜇𝑢 − 𝜇𝑑) /𝑇𝑐ℎ] = exp[−2 (𝜇𝑢 − 𝜇𝑑)𝑇𝑐ℎ ] ,

𝑘𝐾 = exp [− (𝜇𝑢 − 𝜇𝑠) /𝑇𝑐ℎ]
exp [(𝜇𝑢 − 𝜇𝑠) /𝑇𝑐ℎ] = exp[−2 (𝜇𝑢 − 𝜇𝑠)𝑇𝑐ℎ ] ,

𝑘𝑝 = exp [− (2𝜇𝑢 + 𝜇𝑑) /𝑇𝑐ℎ]
exp [(2𝜇𝑢 + 𝜇𝑑) /𝑇𝑐ℎ]

= exp[−2 (2𝜇𝑢 + 𝜇𝑑)𝑇𝑐ℎ ] ,
𝑘𝐷 = exp [− (𝜇𝑐 − 𝜇𝑑) /𝑇𝑐ℎ]

exp [(𝜇𝑐 − 𝜇𝑑) /𝑇𝑐ℎ] = exp[−2 (𝜇𝑐 − 𝜇𝑑)𝑇𝑐ℎ ] ,
𝑘𝐵 = exp [− (𝜇𝑢 − 𝜇𝑏) /𝑇𝑐ℎ]

exp [(𝜇𝑢 − 𝜇𝑏) /𝑇𝑐ℎ] = exp[−2 (𝜇𝑢 − 𝜇𝑏)𝑇𝑐ℎ ] .
(7)

Thus, we have

𝜇𝑢 = −16𝑇𝑐ℎ ⋅ ln (𝑘𝜋 ⋅ 𝑘𝑝) ,
𝜇𝑑 = −16𝑇𝑐ℎ ⋅ ln (𝑘−2𝜋 ⋅ 𝑘𝑝) ,
𝜇𝑠 = −16𝑇𝑐ℎ ⋅ ln (𝑘𝜋 ⋅ 𝑘−3𝐾 ⋅ 𝑘𝑝) ,
𝜇𝑐 = −16𝑇𝑐ℎ ⋅ ln (𝑘−2𝜋 ⋅ 𝑘𝑝 ⋅ 𝑘3𝐷) ,
𝜇𝑏 = −16𝑇𝑐ℎ ⋅ ln (𝑘𝜋 ⋅ 𝑘𝑝 ⋅ 𝑘−3𝐵 ) .

(8)

As can be seen from (8), 𝜇𝑞 are obtained from 𝑘𝑗. In
addition to the yield ratios 𝜋−/𝜋+, 𝐾−/𝐾+, and 𝑝/𝑝, other
combinations can also give 𝜇𝑞 if the spectra in the numerator
and denominator are under the same experimental condi-
tions.

3. Results and Discussion

The energy dependent double-differential 𝑝𝑇 spectra of 𝜋−,𝜋+, 𝐾−, 𝐾+, 𝑝, and 𝑝 produced in central Au+Au collisions
at √𝑠𝑁𝑁 = 7.7, 11.5, 19.6, 27, 39, 62.4, 130, and 200GeV at
the midrapidity |𝑦| < 0.1 are presented in Figure 1, where the
centrality interval at 130GeV is 0–6% and at other energies is
0–5%. The different symbols represent the data measured by
the STARCollaboration [19, 21], and the curves are the results
fitted here by the (two-component) standard distribution.
Generally, the standard distribution is firstly used in the
fit process. If it does not fit the data, the two-component
standard distribution is used. It is because of the quality of the
measurements that (two-component) standard distribution
is used. In the case of using the two-component standard
distribution, the first component results in narrow 𝑝𝑇 region
and the second component results in wide 𝑝𝑇 regions. That
is, in low 𝑝𝑇 region both components contribute to the
spectra, and in high 𝑝𝑇 region only the second component
contributes to the spectra. In the calculation, the values of the
free parameters (𝑇1, 𝑤1, and 𝑇2), the normalization constant
(𝑁0), and 𝜒2 obtained by fitting the data are listed in Table 1
including the degrees of freedom (dof). One can see that
the data are well fitted by the (two-component) standard
distribution. From the parameter values, one can see that
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Figure 1: Midrapidity (|𝑦| < 0.1) double-differential 𝑝𝑇 spectra for 𝜋−, 𝜋+, 𝐾−, 𝐾+, 𝑝, and 𝑝 in central Au+Au collisions at √𝑠𝑁𝑁 = 7.7,
11.5, 19.6, 27, 39, 62.4, 130, and 200 GeV, where the centrality interval at 130 GeV is 0–6% and at other energies is 0–5%.The different symbols
represent themeasurements done by the STAR experiment [19, 21] and the curves represent the results fitted by the (two-component) standard
distribution. The values of parameters can be found in Table 1.

the effective temperature increases with the increase of the
particle mass and the collision energy for emissions of the six
types of particles.

Based on the above successful fits of the 𝑝𝑇 spectra of
antiparticles and particles, we can use (8) and the 𝑝𝑇 spectra
in Figure 1 to study the dependence of 𝜇𝑞 on √𝑠𝑁𝑁. This
is done by integrating the yield over the given 𝑝𝑇 ranges
available in experiments at different energies. Figure 2 shows
the correlations between 𝜇𝑞 and √𝑠𝑁𝑁, where 𝜇 is used
on the vertical axis to replace 𝜇𝑞 which are marked in the
panel for different styles of symbols. With the increase of
logarithmic√𝑠𝑁𝑁, an exponential decrease of 𝜇𝑞 is observed.
Corresponding to the solid, dashed, and dotted curves which

fit to the dependences of 𝜇𝑢, 𝜇𝑑, and 𝜇𝑠 on√𝑠𝑁𝑁, respectively,
we have𝜇𝑢 = (820.1 ± 0.1) (√𝑠𝑁𝑁 [GeV])−(0.914±0.025) MeV,

𝜇𝑑 = (681.1 ± 0.1) (√𝑠𝑁𝑁 [GeV])−(0.834±0.031) MeV,
𝜇𝑠 = (420.7 ± 0.2) (√𝑠𝑁𝑁 [GeV])−(1.004±0.063) MeV

(9)

with the 𝜒2/dof = 1.67/6, 2.73/6, and 1.04/6, respectively.
The similarity in up and down quark masses renders

the similarity in their chemical potentials. The difference
between the chemical potentials of up (or down) and strange
quarks is caused by the difference between their masses. At
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Figure 2: Correlations between 𝜇𝑞 and √𝑠𝑁𝑁 for central Au+Au
collisions at RHIC. The symbols represent 𝜇𝑞 obtained from the
ratios by integrating the yield over the given 𝑝𝑇 ranges available in
experiments in Figure 1. The solid, dashed, and dotted curves are
fitted results corresponding to 𝜇𝑢, 𝜇𝑑, and 𝜇𝑠, respectively.
the lowest BES energy the difference between the chemical
potentials is dozens ofMeV, while at the highest RHIC energy
these quantities are around a few MeV. The decrease in 𝜇𝑞
is obvious, which indicates the change of mean free path of
produced quarks in the middle state. If the produced quarks
at the lowest BES energy have a small mean free path which
looks as if a liquid-like middle state is formed, the produced
quarks at the highest RHIC energy should have a large mean
free path which looks as if a gas-like middle state is formed.
Themain difference at different energies is differentmean free
paths of the produced quarks. To search for the critical energy
at which the change from a liquid-like middle state to a gas-
like middle state had happenned is beyond the focus of the
present work.

From (9)we can obtain a linear relation between ln𝜇𝑞 and
ln√𝑠𝑁𝑁,

ln 𝜇𝑞 = 𝑎 − |𝑏| ⋅ ln√𝑠𝑁𝑁, (10)

where the intercept 𝑎 and slope −|𝑏| can be obtained from the
parameters in (9). In particular, −|𝑏| is close to −1. The large
negative slope shows an obvious anticorrelation between
ln 𝜇𝑞 and ln√𝑠𝑁𝑁. It is expected that ln 𝜇𝑞 will be smaller at
higher energy or larger at lower energy. In particular, at the
LHC energies, ln 𝜇𝑞 will be negative since 𝜇𝑞 will be less than
1MeV. The limiting value of 𝜇𝑞 is close to 0 at the LHC [35],
which results in an obvious negative ln 𝜇𝑞.

The main conclusion observed from Figure 2 is that 𝜇𝑞
is high (from dozens of MeV to ∼100MeV) at the BES and
close to 0 at the LHC [35].This is consistent with the trend of𝜇𝑏𝑎𝑟𝑦𝑜𝑛 (∼100–300MeV at the BES and ∼1MeV at the LHC)
obtained from other works [1, 29–32, 36]. This is natural due
to the fact that baryon consists of valence quarks. If we regard

𝜇𝑏𝑎𝑟𝑦𝑜𝑛 = Σ𝜇𝑞, where Σ denotes the sum over all valence
quarks in baryon, the present work is consistent with the
models which study 𝜇𝑏𝑎𝑟𝑦𝑜𝑛 [1, 29–32, 36].

We would like to point out that although we have used
the (two-component) standard distribution in the fits of 𝑝𝑇
spectra and 𝑇1 (𝑇2) has been used, the values of 𝜇𝑞 obtained
by us are independent of models and parameters. In fact, 𝜇𝑞
is only related to 𝑘𝑗 if 𝑇𝑐ℎ is known. We can use directly the
yield ratios of data to obtain 𝜇𝑞. The reason why we use the
function form instead of data is to extend 𝑝𝑇 spectrum in
intermediate region to low and high regions where the data
are not available. In our opinion, the function that fitted the
data in intermediate 𝑝𝑇 region can predict approximately the
trends in low and high 𝑝𝑇 regions.
4. Conclusions

In summary, we found a good fit of the transversemomentum
spectra of charged particles produced in central Au+Au
collisions at the RHIC at its BES energies. It is shown that the
(two-component) standard distribution successfully fitted
the datameasured at midrapidity by the STARCollaboration,
though other distributions are also acceptable. The effective
temperature parameter increases with the increase of the
particle mass and the collision energy.

At BES energies, the chemical potentials of light flavor
quarks were obtained from the yield ratios of negatively to
positively charged particles in given transverse momentum
ranges available in experiments. At low energy, the chemical
potentials of up and down quarks are consistent but differ
from that of strange quark. At high energy, the three chemical
potentials seem to deviate from each other, and they finally
approach zero at very high energy.

From the lowest BES energy to the highest RHIC energy,
with the increase of logarithmic collision energy, an expo-
nential decrease of the chemical potentials of light flavor
quarks is observed. The similarity in up and down quark
masses renders the similarity in their chemical potentials.
The difference between the chemical potentials of up (or
down) and strange quarks is caused by their different masses.
The difference between the chemical potentials changes from
dozens of MeV to a few MeV. The decrease in chemical
potential indicates that the mean free path of produced
quarks changes from a small value to a large one.
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We introduce the third five-parametric ordinary hypergeometric energy-independent quantum-mechanical potential, after the
Eckart and Pöschl-Teller potentials, which is proportional to an arbitrary variable parameter and has a shape that is independent
of that parameter. Depending on an involved parameter, the potential presents either a short-range singular well (which behaves as
inverse square root at the origin and vanishes exponentially at infinity) or a smooth asymmetric step-barrier (with variable height
and steepness). The general solution of the Schrödinger equation for this potential, which is a member of a general Heun family
of potentials, is written through fundamental solutions each of which presents an irreducible linear combination of two Gauss
ordinary hypergeometric functions.

1. Introduction

The solutions of the Schrödinger equation in terms of special
mathematical functions for energy-independent potentials
which are proportional to an arbitrary variable parameter and
have a shape independent of that parameter are very rare [1–
10] (see the discussion in [11]). It is a common convention
to refer to such potentials as exactly solvable in order to
distinguish them from the conditionally integrable ones for
which a condition is imposed on the potential parameters
such that the shape of the potential is not independent of the
potential strength (e.g., a parameter is fixed to a constant or
different term-strengths are not varied independently).While
there is a relatively large set of potentials of the latter type (see,
e.g., [12–20] for some examples discussed in the past and [21–
25] for some recent examples), the list of the known exactly
integrable potentials is rather limited even for the potentials
of themost flexible hypergeometric class.The list of the exactly
solvable hypergeometric potentials currently involves only
ten items [1–10]. Six of these potentials are solved in terms
of the confluent hypergeometric functions [1–6]. These are
the classical Coulomb [1], harmonic oscillator [2], andMorse

[3] potentials and the three recently derived potentials, which
are the inverse square root [4], the Lambert-W step [5],
and Lambert-W singular [6] potentials. The remaining four
exactly integrable potentials which are solved in terms of the
Gauss ordinary hypergeometric functions are the classical
Eckart [7] and Pöschl-Teller [8] potentials and the two new
potentials that we have introduced recently [9, 10].

An observation worth mentioning here is that all five
classical hypergeometric potentials, both confluent and ordi-
nary, involve five arbitrary variable parameters, while all new
potentials are four-parametric. In this communication we
show that the two four-parametric ordinary hypergeometric
potentials [9, 10] are in fact particular cases of a more general
five-parametric potential which is solved in terms of the
hypergeometric functions. This generalization thus suggests
the third five-parametric ordinary hypergeometric quantum-
mechanical potential after the ones by Eckart [7] and Pöschl-
Teller [8].

The potential we introduce belongs to one of the eleven
independent eight-parametric general Heun families [25]
(see also [26]). From the mathematical point of view, a
peculiarity of the potential is that this is the only known
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case when the location of a singularity of the equation to
which the Schrödinger equation is reduced is not fixed to a
particular point but stands for a variable potential-parameter.
Precisely, in our case the third finite singularity of the Heun
equation, located at a point 𝑧 = 𝑎 of the complex 𝑧-plane
(that is, the singularity which is additional if compared with
the ordinary hypergeometric equation), is not fixed but is
variable; it stands for the fifth free parameter of the potential.

The potential is in general defined parametrically as a
pair of functions 𝑉(𝑧), 𝑥(𝑧). However, in several cases the
coordinate transformation 𝑥(𝑧) is inverted thus producing
explicitly written potentials given as 𝑉 = 𝑉(𝑧(𝑥)) through
an elementary function 𝑧 = 𝑧(𝑥). All these cases are achieved
by fixing the parameter 𝑎 to a particular value; hence, all these
particular potentials are four-parametric.Thementioned two
recently presented four-parametric ordinary hypergeometric
potentials [9, 10] are just such cases.

The potential we present is either a singular well (which
behaves as the inverse square root in the vicinity of the
origin and exponentially vanishes at infinity) or a smooth
asymmetric step-barrier (with variable height, steepness,
and asymmetry). The general solution of the Schrödinger
equation for this potential is written through fundamen-
tal solutions each of which presents an irreducible linear
combination of two ordinary hypergeometric functions 2𝐹1.
The singular version of the potential describes a short-range
interaction and for this reason supports only a finite number
of bound states. We derive the exact equation for energy
spectrum and estimate the number of bound states.

2. The Potential

The potential is given parametrically as

𝑉(𝑧) = 𝑉0 + 𝑉1𝑧 , (1)

𝑥 (𝑧) = 𝑥0 + 𝜎 (𝑎 ln (𝑧 − 𝑎) − ln (𝑧 − 1)) , (2)

where 𝑎 ̸= 0, 1 and 𝑥0, 𝜎, 𝑉0, 𝑉1 are arbitrary (real or complex)
constants. Rewriting the coordinate transformation as

(𝑧 − 𝑎)𝑎𝑧 − 1 = 𝑒(𝑥−𝑥0)/𝜎, (3)

it is seen that for real rational 𝑎 the transformation is rewritten
as a polynomial equation for 𝑧; hence, in several cases it can
be inverted.

Since 𝑎 ̸= 0, 1, the possible simplest case is when the
polynomial equation is quadratic. This is achieved for 𝑎 =−1, 1/2, 2. It is checked, however, that these three cases lead
to four-parametric subpotentials which are equivalent in the
sense that each is derived from another by specifications of
the involved parameters. For 𝑎 = −1 the potential reads [9]

𝑉 (𝑥) = 𝑉0 + 𝑉1√1 + 𝑒(𝑥−𝑥0)/𝜎 , (4)

where we have changed 𝜎 → −𝜎.
The next are the cubic polynomial reductions which are

achieved in six cases: 𝑎 = −2, −1/2, 1/3, 2/3, 3/2, 3. It is
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Figure 1: Potential (1), (2) for 𝑎 = −2 and (𝜎, 𝑥0, 𝑉0, 𝑉1) =(2, 0, 5, −5).The inset presents the coordinate transformation 𝑧(𝑥) ∈(0, 1) for 𝑥 ∈ (0,∞).

again checked, however, that these choices produce only one
independent potential. This is the four-parametric potential
presented in [10]:

𝑉 = 𝑉0 + 𝑉1𝑧 ,
𝑧 = −1 + 1

(𝑒𝑥/(2𝜎) + √1 + 𝑒𝑥/𝜎)2/3
+ (𝑒𝑥/(2𝜎) + √1 + 𝑒𝑥/𝜎)2/3 ,

(5)

where one should replace 𝑥 by 𝑥 − 𝑥0. Similar potentials in
terms of elementary functions through quartic and quintic
reductions of (3) are rather cumbersome; we omit those.

For arbitrary real 𝑎 ̸= 0, 1, assuming 𝑧 ∈ (0, 1) and
shifting

𝑥0 → 𝑥0 − 𝜎𝑎 ln (−𝑎) + 𝑖𝜋𝜎, (6)

the potential (1), (2) presents a singular well. In the vicinity of
the origin it behaves as 𝑥−1/2,

𝑉|𝑥→0 ∼ √ (𝑎 − 1) 𝜎2𝑎 𝑉1√𝑥, (7)

and exponentially approaches a constant, 𝑉0 + 𝑉1, at infinity,
𝑉|𝑥→+∞ ∼ (𝑎 − 1𝑎 )𝑎 𝑉1𝑒−𝑥/𝜎. (8)

The potential and the two asymptotes are shown in Figure 1.
A potential of a different type is constructed if one allows

the parameterization variable 𝑧 to vary within the interval 𝑧 ∈(1,∞) for 𝑎 < 1 or within the interval 𝑧 ∈ (1, 𝑎) for 𝑎 > 1.
This time, shifting (compare with (6))

𝑥0 → 𝑥0 − 𝜎𝑎 ln (1 − 𝑎) , (9)

we derive an asymmetric step-barrier the height of which
depends on 𝑉0 and 𝑉1, while the asymmetry and steepness
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Figure 2: Potential (1), (2) for 𝑎 = −2 and (𝑥0, 𝑉0, 𝑉1) = (0, 1, −1) (left figure) and for 𝑎 = 1.25 and (𝑥0, 𝑉0, 𝑉1) = (0, 5, −5) (right figure);𝜎 = −2, −1, −1/2. The fixed points are marked by filled circles. The insets present the coordinate transformation 𝑧(𝑥) for 𝜎 = −1.

are controlled by the parameters 𝑎 and 𝜎. The shape of the
potential is shown in Figure 2 for 𝑎 = −2 and 𝑎 = 1.25.
We note that in the limit 𝜎 → 0 the potential turns into
the abrupt-step potential and that the subfamily of barriers
generated by variation of 𝜎 at constant 𝑉0 and 𝑉1 has a 𝜎-
independent fixed point located at𝑥 = 𝑥0 (marked in Figure 2
by filled circles).

3. Reduction to the General Heun Equation

The solution of the one-dimensional Schrödinger equation
for potential (1), (2),

𝑑2𝜓𝑑𝑥2 + 2𝑚ℏ2 (𝐸 − 𝑉 (𝑥)) 𝜓 = 0, (10)

is constructed via reduction to the general Heun equation
[27–29]

𝑑2𝑢𝑑𝑧2 + ( 𝛾𝑧 − 𝑎1 +
𝛿𝑧 − 𝑎2 +

𝜀𝑧 − 𝑎3)
𝑑𝑢𝑑𝑧

+ 𝛼𝛽𝑧 − 𝑞(𝑧 − 𝑎1) (𝑧 − 𝑎2) (𝑧 − 𝑎3)𝑢 = 0.
(11)

The details of the technique are presented in [11, 25]. It
has been shown that the energy-independent general-Heun
potentials, which are proportional to an arbitrary variable
parameter and have shapes which are independent of that
parameter, are constructed by the coordinate transformation𝑧 = 𝑧(𝑥) of the Manning form [30] given as

𝑑𝑧𝑑𝑥 = (𝑧 − 𝑎1)𝑚1 (𝑧 − 𝑎2)𝑚2 (𝑧 − 𝑎3)𝑚3𝜎 , (12)

where𝑚1,2,3 are integers or half-integers and 𝜎 is an arbitrary
scaling constant. As it is seen, the coordinate transformation
is solely defined by the singularities 𝑎1,2,3 of the general Heun
equation. The canonical form of the Heun equation assumes
two of the three finite singularities at 0 and 1, and the third
one at a point 𝑎, so that 𝑎1,2,3 = (0, 1, 𝑎) [27–29]. However, it
may be convenient for practical purposes to apply a different

specification of the singularities, so for a moment we keep the
parameters 𝑎1,2,3 unspecified.

The coordinate transformation is followed by the change
of the dependent variable

𝜓 = (𝑧 − 𝑎1)𝛼1 (𝑧 − 𝑎2)𝛼2 (𝑧 − 𝑎3)𝛼3 𝑢 (𝑧) (13)

and application of the ansatz

𝑉 (𝑧) = V0 + V1𝑧 + V2𝑧2 + V3𝑧3 + V4𝑧4(𝑧 − 𝑎1)2 (𝑧 − 𝑎2)2 (𝑧 − 𝑎3)2 (𝑑𝑧𝑑𝑥)
2 ,

V0,1,2,3,4 = const.
(14)

The form of this ansatz and the permissible sets of the param-
eters 𝑚1,2,3 are revealed through the analysis of the behavior
of the solution in the vicinity of the finite singularities of
the general Heun equation [11]. This is a crucial point which
warrants that all the parameters involved in the resulting
potentials can be varied independently.

It has been shown that there exist in total thirty-five
permissible choices for the coordinate transformation each
being defined by a triad (𝑚1, 𝑚2, 𝑚3) satisfying the inequali-
ties −1 ≤ 𝑚1,2,3 ≤ 1 and 1 ≤ 𝑚1 +𝑚2 +𝑚3 ≤ 3 [25]. However,
because of the symmetry of the general Heun equation with
respect to the transpositions of its singularities, only eleven
of the resultant potentials are independent [25].The potential
(1), (2) belongs to the fifth independent family with 𝑚1,2,3 =(1, 1, −1) for which from (14) we have

𝑉 (𝑧) = 𝑉4 + 𝑉3𝑧 + 𝑉2𝑧2 + 𝑉1𝑧3 + 𝑉0𝑧4(𝑧 − 𝑎3)4 (15)

with arbitrary 𝑉0,1,2,3,4 = const, and, from (12),

𝑥 − 𝑥0𝜎 = 𝑎1 − 𝑎3𝑎1 − 𝑎2 ln (𝑧 − 𝑎1) + 𝑎3 − 𝑎2𝑎1 − 𝑎2 ln (𝑧 − 𝑎2) . (16)
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It is now convenient to have a potential which does not
explicitly involve the singularities. Hence, we put 𝑎3 = 0 and
apply the specification 𝑎1,2,3 = (𝑎, 1, 0) to derive the potential

𝑉(𝑧) = 𝑉0 + 𝑉1𝑧 + 𝑉2𝑧2 + 𝑉3𝑧3 + 𝑉4𝑧4 (17)

with
(𝑥 − 𝑥0)𝜎/ (𝑎 − 1) = 𝑎 ln (𝑧 − 𝑎) − ln (𝑧 − 1) . (18)

The solution of the Schrödinger equation (10) for this
potential is written in terms of the general Heun function𝐻𝐺
as

𝜓 = (𝑧 − 𝑎)𝛼1 𝑧𝛼2 (𝑧 − 1)𝛼3
⋅ 𝐻𝐺 (𝑎1, 𝑎2, 𝑎3; 𝑞; 𝛼, 𝛽, 𝛾, 𝛿, 𝜀; 𝑧) , (19)

where the involved parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜀, and 𝑞 are given
through the parameters 𝑉0,1,2,3,4 of potential (17) and the
exponents 𝛼1,2,3 of the prefactor by the equations [25]

(𝛾, 𝛿, 𝜀) = (1 + 2𝛼1, 1 + 2𝛼2, −1 + 2𝛼3) , (20)

1 + 𝛼 + 𝛽 = 𝛾 + 𝛿 + 𝜀,
𝛼𝛽 = (𝛼1 + 𝛼2 + 𝛼3)2 + 2𝑚𝜎2 (𝐸 − 𝑉0)ℏ2 , (21)

𝑞 = 2𝑚𝜎2ℏ2 (𝑉1 − (1 + 𝑎) (𝐸 − 𝑉0))
+ (−𝛼22 + (−1 + 𝛼1 + 𝛼3) (𝛼1 + 𝛼3))
+ 𝑎 (−𝛼21 + (−1 + 𝛼2 + 𝛼3) (𝛼2 + 𝛼3)) ;

(22)

the exponents 𝛼1,2,3 of the prefactor are defined by the
equations

𝛼21 = 2𝑚𝜎2𝑎2 (𝑎 − 1)2 ℏ2 (𝑉4 + 𝑎𝑉3 + 𝑎2𝑉2 + 𝑎3𝑉1
+ 𝑎4 (𝑉0 − 𝐸)) ,

(23)

𝛼22 = − 2𝑚𝜎2(𝑎 − 1)2 ℏ2 (𝐸 − 𝑉0 − 𝑉1 − 𝑉2 − 𝑉3 − 𝑉4) , (24)

𝛼3 (𝛼3 − 2) = 2𝑚𝜎2𝑉4𝑎2ℏ2 . (25)

4. The Solution of the Schrödinger Equation in
Terms of the Gauss Functions

Having determined the parameters of the Heun equation,
the next step is to examine the cases when the general Heun
function𝐻𝐺 is written in terms of the Gauss hypergeometric
functions 2𝐹1. An observation here is that the direct one-
termHeun-to-hypergeometric reductions discussed bymany
authors (see, e.g., [27, 28, 31–34]) are achieved by such
restrictions and imposed on the involved parameters (three
or more conditions), which are either not satisfied by the

Heun potentials or produce very restrictive potentials. It is
checked that the less restrictive reductions reproduce the
classical Eckart and Pöschl-Teller potentials, while the other
reductions result in conditionally integrable potentials.

More advanced are the finite-sum solutions achieved by
termination of the series expansions of the general Heun
function in terms of the hypergeometric functions [35–39].
For such reductions, only two restrictions are imposed on the
involved parameters and, notably, these restrictions are such
that in many cases they are satisfied. The solutions for the
above-mentioned four-parametric subpotentials [9, 10] have
been constructed right in this way. Other examples achieved
by termination of the hypergeometric series expansions of
the functions of the Heun class include the recently reported
inverse square root [4], Lambert-W step [5], and Lambert-W
singular [6] potentials.

The series expansions of the general Heun function
in terms of the Gauss ordinary hypergeometric functions
are governed by three-term recurrence relations for the
coefficients of the successive terms of the expansion. A useful
particular expansion in terms of the functions of the form
2𝐹1(𝛼, 𝛽; 𝛾0 − 𝑛; 𝑧) which leads to simpler coefficients of the
recurrence relation is presented in [25, 39]. If the expansion
functions are assumed irreducible to simpler functions, the
termination of this series occurs if 𝜀 = −𝑁, 𝑛 = 0, 1, 2, . . .,
and a (𝑁+1)th degree polynomial equation for the accessory
parameter 𝑞 is satisfied. For 𝜀 = 0 the latter equation is𝑞 = 𝑎𝛼𝛽, which corresponds to the trivial direct reduction
of the general Heun equation to the Gauss hypergeometric
equation. This case reproduces the classical Eckart and
Pöschl-Teller potentials [25]. For the first nontrivial case 𝜀 =−1 the termination condition for singularities 𝑎1,2,3 = (𝑎, 1, 0)
takes a particularly simple form:

𝑞2 + 𝑞 (𝛾 − 1 + 𝑎 (𝛿 − 1)) + 𝑎𝛼𝛽 = 0. (26)

The solution of the Heun equation for a root of this equation
is written as [39]

𝑢 = 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑎 − 𝑧𝑎 − 1) + 𝛾 − 1𝑞 + 𝑎 (𝛿 − 1)
⋅ 2𝐹1 (𝛼, 𝛽; 𝛾 − 1; 𝑎 − 𝑧𝑎 − 1) ,

(27)

This solution has a representation through Clausen’s general-
ized hypergeometric function 3𝐹2 [40, 41].

Consider if the termination condition (26) for 𝜀 = −1 is
satisfied for the parameters given by (20)-(25). From (20) we
find that for 𝜀 = −1 holds 𝛼3 = 0. It then follows from (25)
that 𝑉4 = 0. With this, (26) is reduced to

𝑉2 + 𝑉3 (1 + 𝑎𝑎 − 2𝑚𝜎2𝑎2ℏ2 𝑉3) = 0. (28)

This equation generally defines a conditionally integrable
potential in that the potential parameters 𝑉2 and 𝑉3 are not
varied independently. Alternatively, if the potential parame-
ters are assumed independent, the equation is satisfied only
if 𝑉2 = 𝑉3 = 0. Thus, we put 𝑉2,3,4 = 0 and potential
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(17) is reduced to that given by (1). Furthermore, since 𝜎 is
arbitrary, in order for (18) to exactly reproduce the coordinate
transformation (2), we replace 𝜎/(1 − 𝑎) → 𝜎.

With this, the solution of the Schrödinger equation (10)
for potential (1) is written as

𝜓 = (𝑧 − 𝑎)𝛼1 (𝑧 − 1)𝛼2 ( 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑎 − 𝑧𝑎 − 1)
+ 2𝛼1𝑎𝛼2 − 𝛼1 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾 − 1; 𝑎 − 𝑧𝑎 − 1))

(29)

with (𝛼, 𝛽, 𝛾) = (𝛼1 + 𝛼2 + 𝛼0, 𝛼1 + 𝛼2 − 𝛼0, 1 + 2𝛼1) , (30)

𝛼0,1,2 = (±√2𝑚𝜎2 (𝑎 − 1)2ℏ2 (𝑉0 − 𝐸),

± √2𝑚𝜎2𝑎2ℏ2 (𝑉0 − 𝐸 + 𝑉1𝑎 ),
± √2𝑚𝜎2ℏ2 (𝑉0 − 𝐸 + 𝑉1)) .

(31)

This solution applies for any real or complex set of the
involved parameters. Furthermore, we note that any combi-
nation for the signs of 𝛼1,2 is applicable. Hence, by choosing
different combinations, one can construct different indepen-
dent fundamental solutions. Thus, this solution supports the
general solution of the Schrödinger equation.

A final remark is that using the contiguous functions
relations for the hypergeometric functions one can replace
the second hypergeometric function in (29) by a linear
combination of the first hypergeometric function and its
derivative. In this way we arrive at the following representa-
tion of the general solution of the Schrödinger equation:

𝜓 = (𝑧 − 𝑎)𝛼1 (𝑧 − 1)𝛼2 (𝐹 + 𝑧 − 𝑎𝛼1 + 𝑎𝛼2
𝑑𝐹𝑑𝑧 ) , (32)

where 𝐹 = 𝑐1 ⋅ 2𝐹1 (𝛼, 𝛽; 𝛾; 𝑎 − 𝑧𝑎 − 1) + 𝑐2
⋅ 2𝐹1 (𝛼, 𝛽; 1 + 𝛼 + 𝛽 − 𝛾; 𝑧 − 1𝑎 − 1) .

(33)

5. Bound States

Consider the bound states supported by the singular version
of potential (1), (2), achieved by shifting 𝑥0 → 𝑥0 −𝜎𝑎 ln(−𝑎) + 𝑖𝜋𝜎 in (2). Since the potential vanishes at
infinity exponentially, it is understood that this is a short-
range potential. The integral of the function 𝑥𝑉(𝑥) over the
semiaxis 𝑥 ∈ (0, +∞) is finite, hence, according to the general
criterion [42–46], the potential supports only a finite number
of bound states. These states are derived by demanding the
wave function to vanish both at infinity and in the origin (see
the discussion in [47]). We recall that for this potential the
coordinate transformation maps the interval 𝑥 ∈ (0, +∞)
onto the interval 𝑧 ∈ (0, 1). Thus, we demand 𝜓(𝑧 = 0) =𝜓(𝑧 = 1) = 0.
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Figure 3: Graphical representation of the spectrum equation (35)
for𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2.

The condition𝑉(+∞) = 0 assumes𝑉0 +𝑉1 = 0; hence, 𝛼2
is real for negative energy. Choosing, for definiteness, the plus
signs in (31), we have 𝛼2 > 0. Then, examining the equation𝜓(𝑧 = 1) = 0, we find that

𝜓𝑧→1 ∼ 𝑐1𝐴1 (1 − 𝑧)−𝛼2 + 𝑐2𝐴2 (1 − 𝑧)𝛼2 (34)

with some constants 𝐴1,2. Since for positive 𝛼2 the first term
diverges, we conclude 𝑐1 = 0. The condition 𝜓(𝑧 = 0) = 0
then gives the following exact equation for the spectrum:

𝑆 (𝐸) ≡ 1 + 𝛼1 + 𝑎𝛼22 (1 − 𝑎) 𝛼2
⋅ 2𝐹1 (𝛼 + 1, 𝛽 + 1; 1 + 2𝛼2; 1/ (1 − 𝑎))

2𝐹1 (𝛼, 𝛽; 2𝛼2; 1/ (1 − 𝑎)) = 0. (35)

The graphical representation of this equation is shown in
Figure 3. The function 𝑆(𝐸) has a finite number of zeros. For
the parameters 𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2 applied in the
figure there are just three bound states.

According to the general theory, the number of bound
states is equal to the number of zeros (not counting 𝑥 = 0) of
the zero-energy solution, which vanishes at the origin [42–
46]. We note that for 𝐸 = 0 the lower parameter of the
second hypergeometric function in (33) vanishes: 1 + 𝛼 +𝛽 − 𝛾 = 0. Hence, a different second independent solution
should be applied. This solution is constructed by using the
first hypergeometric functionwith𝛼1 everywhere replaced by−𝛼1.The result is rather cumbersome. It is more conveniently
written in terms of the Clausen functions as

𝜓𝐸=0 = 𝑐1 (𝑧 − 𝑎)𝛼1 3𝐹2 (−√𝑎 − 1𝑎 𝛼1 + 𝛼1, √ 𝑎 − 1𝑎 𝛼1
+ 𝛼1, 1 + 𝛼1; 𝛼1, 1 + 2𝛼1; 𝑎 − 𝑧𝑎 − 1) + 𝑐2 (𝑧 − 𝑎)−𝛼1
⋅ 3𝐹2 (−√𝑎 − 1𝑎 𝛼1 − 𝛼1, √ 𝑎 − 1𝑎 𝛼1 − 𝛼1, 1 − 𝛼1𝑎 ;
− 𝛼1𝑎 , 1; 𝑧 − 1𝑎 − 1) ,

(36)
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Figure 4: The zero-energy solution for 𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2.
The dashed line shows the logarithmic asymptote at infinity:𝜓0|𝑥→∞ ∼ 𝐴 + 𝐵 ln(1 − 𝑧).

where 𝛼1 = √2𝑎(𝑎 − 1)𝑚𝜎2𝑉0/ℏ2 and the relation between 𝑐1
and 𝑐2 is readily derived from the condition 𝜓𝐸=0(0) = 0. This
solution is shown in Figure 4. It is seen that for parameters𝑚, ℏ,𝑉0, 𝜎, 𝑎 = 1, 1, 5, 2, −2 used in Figure 3 the number of
zeros (excluded the origin) is indeed 3.

For practical purposes, it is useful to have an estimate for
the number of bound states. The absolute upper limit for this
number is given by the integral [42, 43]

𝐼𝐵 = ∫∞
0

𝑟 𝑉(𝑥 → 𝑟ℏ√2𝑚) 𝑑𝑟 = (1 − 𝑎)
⋅ (𝐿𝑖2 ( 11 − 𝑎) + 2𝑎 coth−1 (1 − 2𝑎)2) 2𝑚𝜎2𝑉0ℏ2 .

(37)

where 𝐿𝑖2 is Jonquière’s polylogarithm function of order 2
[48, 49]. Though of general importance, however, in many
cases this is a rather overestimating limit. Indeed, for the
parameters applied in Figure 3 it gives 𝑛 ≤ 𝐼𝐵 ≈ 24.

More stringent are the estimates by Calogero [44] and
Chadan [45] which are specialized for everywhere monoton-
ically nondecreasing attractive central potentials. Calogero’s
estimate reads 𝑛 ≤ 𝐼𝐶 with [44]

𝐼𝐶 = 2/𝜋ℏ/√2𝑚 ∫∞
0

√−𝑉 (𝑥)𝑑𝑥
= (1 + (√1 − 𝑎 − √−𝑎)2)√2𝑚𝜎2𝑉0ℏ2 ,

(38)

We note that 𝐼𝐶 ≈ √2𝐼𝐵. The result by Chadan further tunes
the upper limit for the number of bound states to the half of
that by Calogero; that is 𝑛 ≤ 𝐼𝐶/2 [45]. For the parameters
applied in Figure 3 this gives 𝑛 ≤ 3.48, which is, indeed, an
accurate estimate. The dependence of the function 𝑛𝑐 = 𝐼𝐶/2
on the parameter 𝑎 for 𝑎 ∈ (−∞, 0) ∪ (1, +∞) is shown in
Figure 5. It is seen that more bound states are available for𝑎 close to zero. The maximum number achieved in the limit𝑎 → 0 is √2𝑚𝜎2𝑉0/ℏ2; hence, for sufficiently small 𝑉0 or 𝜎
such that 2𝑚𝜎2𝑉0 < ℏ2, bound states are not possible at all.
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Figure 5: The dependence of Chadan’s estimate 𝑛𝑐 = 𝐼𝐶/2 for the
number of bound states on the parameter 𝑎 (𝑚, ℏ,𝑉0, 𝜎 = 1, 1, 5, 2).

6. Discussion

Thus, we have presented the third five-parametric quantum-
mechanical potential for which the solution of the
Schrödinger equation is written in terms of the Gauss
ordinary hypergeometric functions. The potential involves
five (generally complex) parameters which are varied
independently. Depending on the particular specifications
of these parameters, the potential suggests two different
appearances. In one version we have a smooth step-barrier
with variable height, steepness, and asymmetry, while in the
other version this is a singular potential-well which behaves
as the inverse square root in the vicinity of the origin and
exponentially vanishes at infinity.

The potential is in general given parametrically; how-
ever, in several cases the involved coordinate transformation
allows inversion thus leading to particular potentials which
are explicitly written in terms of elementary functions. These
reductions are achieved by particular specifications of a
parameter standing for the third finite singularity of the
general Heun equation. The resultant subpotentials all are
four-parametric (see, e.g., [9, 10]). These particular cases are
defined by coordinate transformations which are roots of
polynomial equations. It turns out that different polynomial
equations of the same degree produce the same potential
(with altered parameters). The reason for this is well under-
stood in the case of quadratic equations. In that case the
third singularity of the general Heun equation, to which the
Schrödinger equation is reduced, is specified as 𝑎 = −1, 1/2
or 2. We then note that the form-preserving transformations
of the independent variable map the four singularities of the
Heun equation, 𝑧 = 0, 1, 𝑎,∞, onto the points 𝑧 = 0, 1, 𝑎1,∞
with 𝑎1 adopting one of the six possible values 𝑎, 1/𝑎, 1 −𝑎, 1/(1−𝑎), 𝑎/(1−𝑎), (𝑎−1)/𝑎 [27–29]. It is seen that the triad(−1, 1/2, 2) is a specific set which remains invariant at form-
preserving transformations of the independent variable.

The potential belongs to the general Heun family𝑚1,2,3 =(1, 1, −1). This family allows several conditionally integrable
reductions too [25]. A peculiarity of the exactly integrable
potential that we have presented here is that the location of
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a finite singularity of the general Heun equation is not fixed
to a particular point of the complex 𝑧-plane but serves as a
variable potential-parameter. In the step-barrier version of
the potential, this parameter stands for the asymmetry of the
potential.

The solution of the Schrödinger equation for the poten-
tial we have presented is constructed via termination of a
series expansion of the general Heun equation in terms of
the Gauss ordinary hypergeometric functions. The general
solution of the problem is composed of fundamental solu-
tions each of which is an irreducible combination of two
hypergeometric functions. Several other potentials allowing
solutions of this type have been reported recently [4–6, 9,
10, 23–25]. Further cases involve the solutions for super-
symmetric partner potentials much discussed in the past
[15, 50, 51] and for several nonanalytic potentials discussed
recently [52–54]. One should distinguish these solutions
from the case of reducible hypergeometric functions [55–59]
when the solutions eventually reduce to quasi-polynomials,
e.g., discussed in the context of quasi-exactly solvability
[57–59]. We note that, owing to the contiguous functions
relations [60], the two-term structure of the solution is a
general property of all finite-sum hypergeometric reductions
of the general Heun functions achieved via termination of
series solutions. It is checked that in our case the linear
combination of the involved Gauss functions is expressed
through a single generalized hypergeometric function 3𝐹2
[40, 41].

We have presented the explicit solution of the problem
and discussed the bound states supported by the singular
version of the potential. We have derived the exact equation
for the energy spectrum and estimated the number of bound
states. The exact number of bound states is given by the
number of zeros of the zero-energy solution which we have
also presented.
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[36] A. Erdélyi, “The Fuchsian equation of second order with four
singularities,” Duke Mathematical Journal, vol. 9, pp. 48–58,
1942.
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We visited mass spectra and decay constants of pseudoscalar and vector heavy-light mesons (𝐵, 𝐵�푠, 𝐷, and 𝐷�푆) in the framework
of QCD sum rule and quark model. The harmonic oscillator wave function was used in quark model while a simple interpolating
current was used in QCD sum rule calculation. We obtained good results in accordance with the available experimental data and
theoretical studies.

1. Introduction

The ultimate objective of particle physics is to investigate
and examine the structure and the origin of matter. For this
purpose many theoretical and experimental endeavors are
made, and a resulting model was theorized, which we call
the Standard Model of particle physics. Quark model which
was proposed by Gell-Mann and Zweig in 1964 [1] is a part of
the Standard Model, and interprets hadrons fairly compatible
with the experimental data. According to the quark model,
mesons are made of quark-antiquark pairs (𝑞𝑞) and baryons
are made of three quarks 𝑞𝑞𝑞 or antiquarks 𝑞 𝑞 𝑞. These
quarks interact with each other via emitting and/or absorbing
gluons.The resulting theorywhich explains these interactions
is the Quantum Chromodynamics (QCD).

The interaction of quarks is described by QCD, which
is part of the Standard Model of particle physics. QCD is
thought to be the true theory of strong interactions. QCD is a
SU(3) gauge theory describing the interactions of six quarks
which transform under the fundamental representation of
SU(3) group via the exchange of gluons that transform
under the adjoint representation. Although it has been more
than 50 years that QCD has been proposed, a solution has
been evaded. Contrary to electroweak theory, where it is
possible to obtain precise results using perturbation theory,
the order of precision obtained in QCD has been lower
by orders of magnitude. The main reason for this is that

the coupling constant (which should be the perturbation
parameter) of QCD is of the order one in low energies;
hence the truncation of the perturbative expansion cannot be
carried out. However, it is an important subject to study the
spectrum of particles predicted by QCD.

Since perturbation theory is not applicable, a nonpertur-
bative approach has to be used to study systems that involve
strong interactions. Some of the nonperturbative approaches
to strongly interacting systems are the QCD sum rules, quark
models, and lattice QCD. The advantage of QCD sum rules
and latticeQCD is that they are based onQCD itself, whereas,
in quark models, one assumes a potential energy between the
quarks and solves a Schrödinger-like equation. The advantage
of quark models, on the other hand, is that it allows one to
study also the excited states, whereas, in QCD sum rules and
lattice QCD, only the ground state or in some exceptional
cases the first excited state can be studied.

In quark models one assumes a potential interaction
among quarks which makes model as a nonrelativistic
approach.Therefore, the systems that are best suited for study
in quark models are the heavy quark system which contain 𝑐
or 𝑏 quarks. The bare masses of 𝑢, 𝑑, and 𝑠 quarks are 2MeV,
4MeV, and 96MeV, respectively [2]. At a first look, quark
model seems rather difficult to apply to light quarks. Capstick
et al. presented reasonable explanations to link quark models
including a minimal amount of relativity to the basics of
QCD [3]. Although the pole masses of 𝑢, 𝑑 and 𝑠 quarks are
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very low and hence they are relativistic, in constituent quark
models, instead of treating the physical 𝑢,𝑑, and 𝑠 quarks, one
treats the so-called constituent quarks, which are nothing else
than quarks dressed by gluons and other sea quarks inside
the hadron. The masses of constituent quarks are around
300MeV and hence they can also be treated in nonrelativistic
quark models. Such an approach has been applied to light
quark systems with a surprising success [4–6], leading to that
model so-called Constituent Quark Model (CQM), which,
based on the Gell Mann-Zweig idea, explains meson and
baryon bound systems.

A different situation is for heavy-light quark systems(𝑄𝑞). For example an electron is more relativistic in the
hydrogen atom (𝑝, 𝑒−) than in the positronium atom (𝑒+𝑒−)
[7]. Positronium can be taken as a naive model for quarko-
nium. The binding energy of the positronium is half of the
hydrogen atom and is small compared to the electron mass.
For this reason the positronium bound state can be described
by nonrelativistic quantum mechanics. But the decay of the
positronium resonance is a purely relativistic phenomenon.
Nevertheless, we can attempt to apply the quark model to
heavy-light mesons. The outcome of this attempt is not
directly using of Heavy Quark Symmetry (HQS), but one
aspect of it. Mesons are two particle systems and the reduced
mass is dominated by the light quark mass, 1/𝜇 = 1/𝑚 +1/𝑀 ≃ 1/𝑀 if 𝑀 ≫ 𝑚. The spectra for (𝑐𝑞) and (𝑏𝑞)
should be very similar under this assumption [7]. Indeed
reasonable spectroscopy of 𝐷 and 𝐵 mesons can be obtained.
There is a rich literature for the spectrum and dynamics of the
heavy-light mesons, for example [8–25]. In [26], they studied
semileptonic 𝐷 and 𝐷�푠 decays based on the predictions of
the relevant form factors from the covariant light-front quark
model. In [27], the authors studied the Cabibbo-Kobayashi-
Maskawamatrix element |𝑉�푢�푏| which is not determined up to
now in inclusive or exclusive 𝐵 decays.

Light quark physics is a key topic to understand the
nature of QCD. They can be thought of a probe of the strong
interactions bymeans of nonperturbative effects [28]. Heavy-
light meson systems (𝑄𝑞) is also central to enlighten the
nature of QCD and strong interactions. Heavy-light meson
spectroscopy has been the subject of both theoretical and
experimental studies since the 2000s. Especially in the charm
sector, new excited states were observed in 𝐷 and 𝐷�푠 mesons
[28–32].

An important feature of B meson physics is that it is
sensitive to New Physics (NP) Beyond the Standard Model
(BSM) via rare decays. Furthermore hadronic decay channels
of B mesons might have more systematic uncertainties due to
the model indetermination, compared to the lepton/photon
decay channels. Thus studying 𝐵 → 𝑙𝑒𝑝𝑡𝑜𝑛/𝑝ℎ𝑜𝑡𝑜𝑛 decays
present a play field for the search of NP. Besides that, B factory
experiments BaBar and Belle were built to test the description
of quark mixing in the Standard Model. The first theoretical
description of quark mixing was proposed by Cabibo in 1963
[33]. One year later in 1964, Christenson et al. discovered
CP violation in neutral kaon decays with a tiny friction
[34]. This phenomenon is referred to as conclusion that
matter and antimatter might behave differently. Kobayashi
and Maskawa generalized Cabibbo’s idea by adjusting new

quarks to the model [35]. In the framework of Standard
Model, CP violation can be accommodated by introducing
a complex phase in the 3 × 3 unitary Cabibo-Kobayashi-
Maskawa (CKM) matrix. Indeed this phase can be measured
in experiments. The cost of adding a parameter is to use a
third generation of quarks. CP violation also occurs in B
decays. The B factories were built to test for this purpose. B
factories gave a substantial contribution to particle physics
such as first observation of CP violation apart from the kaon,
measurements of CKM matrix elements, measurements of
purely leptonic Bmesondecays, and searches for newphysics.

In this work, we obtained mass spectrum and decay
constants of the 𝐷 and 𝐵 mesons via QCD Sum Rule and a
Quark Model potential. We also predicted decay constant for
the 𝐵�푠 meson where there are no specific experimental data.
Harmonic oscillator wave function is used in the quarkmodel
and a sufficiently trivial interpolating current is used in QCD
Sum Rule calculations. We studied ground states since they
are accessible in the framework of QCD Sum Rules.

2. QCD Sum Rule Formalism

In perturbation theory we assume that the eigenvalues and
eigenfunctions can be expanded in a power series as follows:

𝐸�푛 = 𝐸0�푛 + 𝜆𝐸1�푛 + 𝜆2𝐸2�푛 + ⋅ ⋅ ⋅
| 𝑛⟩ =  𝑛0⟩ + 𝜆  𝑛1⟩ + 𝜆2 𝑛2⟩ + ⋅ ⋅ ⋅ , (1)

where 𝑛 is the principal quantum number and 𝜆 is a
parameter. These series are in principle divergent, but they
are asymptotic. This means that when the perturbation
parameter is small, the first two or three terms are convergent
so that the rest of the series can be ignored. In the case of
QCD, due to the largeness of the parameter in lower energies,
such a truncation, cannot be performed.Thenonperturbative
aspect of QCD makes it almost impossible to study bound
states in terms of perturbation theory. For this reason, there
is a need of nonperturbative methods to overwhelm this
situation and study bound states. Among others such as
Effective Field Theory and Lattice QCD, QCD Sum Rule is
maybe the most popular nonperturbative method.

QCD SumRule is first formulated by Shifman, Vansthein,
and Zakharov for mesons in [36] and generalized to baryons
by Iofe in [37]. The basic idea of the this formalism is to
study bound state phenomena in QCD from the asymptotic
freedom side, 𝑖.𝑒., to start evaluation of correlation function
at short distances, where quark-gluondynamics are perturba-
tive andmove to larger distanceswhere hadronization occurs,
including nonperturbative effects and using some approxi-
mate procedure to get information on hadronic properties
[38].

To obtain physical observables from QCD sum rules,
a correlator of two hadronic currents which is defined as
follows

Π = 𝑖 ∫ 𝑑4𝑥𝑒�푖�푝�푥 ⟨0 T𝑗 (𝑥) 𝑗† (0) 0⟩ , (2)

is studied. Here 𝑝 is momentum and 𝑗(𝑥) is a current
composed of quarks and gluon fields with the hadron’s
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quantum numbers. When this operator is applied to vacuum,
it can create the hadron that we study. Equation (2) is
known as correlation function. The fundamental assumption
of the QCD sum rules is that there is a region of 𝑝 where
correlation function can be equivalently described at both
quark and hadron sector. The former is known as QCD or
OPE (Operator Product Expansion) side, and the latter is
known as the phenomenological side. Matching these two
sides of the sum rule, one can obtain information about
hadron properties [38].

For 𝑝2 > 0, resolution of identity operator of hadron
states can be written between the operators. This results in
correlation function as follows:

Π = ∑
ℎ

⟨0 𝑗 ℎ (𝑝)⟩ 1𝑝2 − 𝑚2
ℎ

⟨ℎ (𝑝) 𝑗† 0⟩
+ higher states. (3)

It can be seen from (3) the poles in the correlation function,
which indicates the presence of hadrons, created by operator𝑗(𝑥).

For −𝑝2 ≫ Λ2�푄�퐶�퐷(𝑝2 < 0), major contribution to the
correlation function will come from the 𝑥 ∼ 0 region [39].
In this case the product of two operators can be written in
terms of OPE:

T𝑗 (𝑥) 𝑗† (0) = ∑
�푑

𝐶�푑 (𝑥) 𝑂�푑. (4)

Here 𝐶�푑(𝑥) are the coefficients, which can be calculated by
the perturbation theory, and 𝑂�耠�푑𝑠 are the operators with the
mass dimension 𝑑. If Fourier transformation applies to (4),
correlation function can be written as follows:

Π = ∑
�푑

𝐶�푓�푑 (𝑝) ⟨𝑂�푑⟩𝑝�푑 , (5)

where ⟨𝑂�푑⟩ are the vacuum condensates that cannot be
calculated by perturbation theory except 𝑑 = 0. 𝑑 = 0
corresponds to unitary operator and can be calculated via
perturbation theory. Other operators can be written as ⟨𝑞𝑞⟩
(𝑑 = 3); 𝑚�푞⟨𝑞𝑞⟩ (𝑑 = 4), ⟨𝐺�휇]𝐺�휇]⟩ (𝑑 = 4), ⟨𝑞𝑔𝜎𝐺𝑞⟩ (𝑑 = 5).
For 𝑑 = 1 and 𝑑 = 2 there exists no operator. As a result of
this, the expansion converges quickly although it is an infinite
summation.

In order to get sum rules we must equate (3) and (5).
But these two expressions are obtained in different regions
of 𝑝. By using spectral density representation of correlation
function, this matching can be made:

Π (𝑝2) = ∫∞
0

𝜌 (𝑠)𝑠 − 𝑝2 + polynomials of 𝑝2. (6)

Spectral density 𝜌(𝑠) can be acquired from (3). Inserting𝜌(𝑠) into (6), an expression of correlation function can
be obtained from (3) for 𝑝2 < 0 region. If we denote

𝜌�푝ℎ�푒�푛(𝑠) as spectral density from (3) and 𝜌�푄�퐶�퐷(𝑠) from (5), we
get

∫∞
0

𝑑𝑠𝜌�푝ℎ�푒�푛 (𝑠)𝑠 − 𝑝2 + polynomials

= ∫∞
0

𝑑𝑠𝜌�푄�퐶�퐷 (𝑠)𝑠 − 𝑝2 + polynomials.
(7)

In order to extract physical properties from this expres-
sion, one must eliminate the polynomial terms, for example,
by using derivatives. In principle, no one knows the poly-
nomial degree and how many polynomials are. The correct
procedure is then to use the Borel transformation, which
contains infinite derivative:

B
2
�푀 [Π (𝑞2)]
= lim
−�푞2,�푛�㨀→∞,−�푞2/�푛=�푀2

− (𝑞2)�푛+1𝑛! ( 𝑑𝑑𝑞2)
�푛Π (𝑞2) . (8)

Here 𝑀2 is defined as the Borel parameter [36]. This trans-
formation effectively removes the polynomials and makes

1𝑠 − 𝑝2 → 𝑒−�푠/�푀2 . (9)

Then,

∑
ℎ

⟨0 𝑗 ℎ (𝑝)⟩2 𝑒−�푚2ℎ/�푀2 + higher states

= ∫∞
0

𝜌�푄�퐶�퐷 (𝑠) 𝑒−�푠/�푀2 , (10)

which resembles QCD parameters and hadronic properties.
This equation still shows presence of unknown parameters.
The 𝑒−�푚2ℎ/�푀2 factor makes the contribution of small masses
dominant. To parameterize contributions of higher states,
quark-hadron duality approximation is used. According to
quark-hadron duality, for 𝑠 > 𝑠0, 𝜌�푝ℎ�푒�푛(𝑠) ≃ 𝜌�푄�퐶�퐷(𝑠). 𝜌�푝ℎ�푒�푛(𝑠)
has contribution of higher states and heavier hadrons when𝑠 > 𝑠0. 𝑠0 is called as continuum threshold and is related mass
of the hadron that is studied in sum rules. So, we can write
(10) as follows:

⟨0 𝑗 𝑚ℎ (𝑝)⟩2 𝑒−�푚2ℎ/�푀2 = ∫�푠0
0

𝜌�푄�퐶�퐷 (𝑠) 𝑒−�푠/�푀2 . (11)

In this equation 𝑚ℎ is the hadron of the smallest mass which
can be created by 𝑗.

Physical properties extracted from the sum rules must
be independent of Borel parameter, (𝑀2). Here we assume
that there exist a range of 𝑀2, called Borel window, in which
two sides have a good overlap and information on the lowest
state can be extracted. Minimum and maximum values of
Borel window can be extracted in a way that QCD side
convergence gives the minimum value, and the condition
that pole contribution should be bigger than the continuum
contribution gives the maximum value of Borel window [38].
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2.1. Mass Sum Rule. The mass sum rule can be obtained by
matching QCD and phenomenological sides of correlation
function [36, 38, 39]. Here we will give the following formula:

𝑚2 = ∫�푠0
�푠𝑚𝑖𝑛

𝑑𝑠𝑒−�푠/�푀2𝑠𝜌�푄�퐶�퐷 (𝑠)
∫�푠0
�푠𝑚𝑖𝑛

𝑑𝑠𝑒−�푠/�푀2𝜌�푄�퐶�퐷 (𝑠) . (12)

2.2. Decay Constant. The decay constant can be obtained
from the formula [40] as follows:

𝑓2�푚ℎ = 𝑒�푚ℎ/�푀2 1𝑚2
ℎ

∫�푠0
�푠𝑚𝑖𝑛

𝑑𝑠𝑒−�푠/�푀2𝜌�푄�퐶�퐷 (𝑠) , (13)

where 𝑚ℎ is the hadron mass extracted from sum rules.

3. Quark Model

Also known as potential model or quark potential model,
quark model considers one or more interacting particles
under a given potential. In the early 60s quarksweremodelled
and experimental evidences were found subsequently. This
approach provided a reliable basis to study and investigate
particle physics and gave compatible results with the exper-
iments.

Themost important part of the quark model is the poten-
tial. After theNovember revolution of particle physics in 1974,
the year in which charmonium states were observed, new
models were proposed to calculate spectrum and radiative
transitions [41–43].The so-called Cornell potential, proposed
in [42], reads as

𝑉 (𝑟) = −𝑎𝑟 + 𝑏𝑟 + 𝑐, (14)

where 𝑎, 𝑏, and 𝑐 are some parameters to extract from
fit to the experimental data. This potential is still used with
some modifications to account, for example, for hyperfine
splittings in the energy levels. The other potentials such
as power law potential [44], logarithmic potential [45],
Richardson potential [46], Buchmüller-Tye potential [47],
and Song-Lin potential [48] were used to fit quarkonium
spectra and gave good results in agreement with experiments.
These were phenomenological spin-independent potentials
and not directly QCD motivated. The interquark potential
was not derived from first principles of QCD in the early
quarkonium phenomenology. This means, in terms of QCD,
that potential is universal (flavour independent) and since
quarks are colorless particles, it was reasonable to assume
the universality as valid, despite the fact that gluons couple
to color charge. These spin-independent potential models
performed good but not complete explanation of the energy
level splittings. If we want to accommodate these splittings in
the theory, we have to take care, 𝑖.𝑒., of spin-spin and spin-orbit
interactions in the model. Reference [49] reports an example
of a QCD-motivated, spin- and velocity-dependent potential.
These potentials deliver reliable results.

Table 1: Mass spectra of heavy-light mesons in MeV. QM denotes
quark model and SR denotes sum rule calculations. The parameters
are 𝜅 = 0.471, 𝑎 = 0.192 𝐺𝑒𝑉2, 𝑚�푐 = 1.320 𝐺𝑒𝑉, 𝑚�푏 = 4.740 𝐺𝑒𝑉
[52], ⟨𝑞𝑞⟩ = 0.241 𝐺𝑒𝑉3, 𝑚�푢 = 𝑚�푑 = 0.340 𝐺𝑒𝑉, and 𝑚�푠 =0.600 𝐺𝑒𝑉.

Meson Exp. [2] QM SR [9] [14]𝐷0/𝐷+ 1869.3 ± 0.4 1859 1972 ± 94 1870.82 1854.7𝐷+�푠 1968.2 ± 0.4 2056 2118 ± 75 1966.62 1974.5𝐵+/𝐵0 5279.0 ± 0.5 5260 5259 ± 109 5273.50 5277.2𝐵0�푠 5367.7 ± 1.8 5442 5488 ± 76 5365.99 5384.8

4. Elaboration of the Problem

4.1. QCD Sum Rules. In QCD sum rules, the choice of the𝑗(𝑥) current is important, since it creates hadrons from
vacuum. We used the following current:

𝑗 (𝑥) = 𝑖𝑄�푎 (𝑥) 𝛾5𝑞�푎 (𝑥) , (15)

where 𝑄 is heavy quark, 𝑞 is light quark, 𝑎 is the color
index, and 𝛾5 is the Dirac matrix. We take care of 𝑚�푞 →0 limit. In the limit of 𝑚�푞 → 0, there appears a flavor
symmetry between 𝑏 and 𝑐 quarks. By this symmetry it is
possible to extract information about 𝑐 and 𝑏 sector with
the same current. 𝑏 and 𝑐 quarks are heavy quarks so that it
cannot be expected to be in the vacuum by themselves. So it
is possible to ignore such condensate terms like ⟨𝛼�푠(𝐺𝐺/𝜋)⟩
and ⟨𝑞𝑔�푠𝜎𝐺𝑞⟩. By introducing the current term into (2), one
can obtain the following spectral density:

𝐹 (𝑠0, 𝑀2) = − ⟨𝑞𝑞⟩ 𝑒−�푚2𝑄/�푀2𝑚�푄
+ 6𝑒−�푠0/�푀2𝑒−�푠𝑢/�푀2 (𝑢1 − 𝑢2)
× [𝑒−�푠0/�푀2𝑀2 (𝑚2�푄 + 𝑠 (𝑢) + 𝑀2)
− 𝑒−�푠𝑢/�푀2 (𝑚4�푄 + 𝑀2 (𝑠0 + 𝑀2))]

(16)

where ⟨𝑞𝑞⟩ is the condensate, and 𝑢1 and 𝑢2 are solutions
of 𝑠(𝑢) = 𝑚2�푄/(1 − 𝑢) + 𝑚2�푞/𝑢 = 𝑠0.

The mass sum rule can be obtained by taking derivative
with respect to 1/𝑀2 and dividing the result by (16):

𝑚2ℎ = 𝑀4 1𝐹 (𝑠0, 𝑀2)
𝑑𝐹 (𝑠0, 𝑀2)𝑑𝑀2 . (17)

The decay constant sum rule can be obtained as follows:

𝑓2�푚ℎ = 𝑒�푚2ℎ/�푀2 1𝑚2
ℎ

𝐹 (𝑠0, 𝑀2) . (18)

The mass values and decays constants for heavy-light
mesons are presented in Tables 1 and 2 and Figures 1–8.

4.2. Quark Model. Energy eigenvalues can be obtained by
solving the Schrödinger equation in the quark model. The
Schrödinger equation reads as follows:

𝐻 Ψ�푛⟩ = 𝐸�푛 Ψ�푛⟩ , (19)

169Mass Spectra and Decay Constants of Heavy-Light Mesons: A Case Study of QCD Sum Rules and Quark Model



Table 2: Pseudoscalar and vector decay constants of heavy-light mesons in MeV. QM denotes quark model and SR denotes sum rule
calculations.

Meson Exp. QM SR [9] [16] [53]𝐷0/𝐷+ 206 ± 8.9 199 210.25 ± 11.60 205.14 206.2 ± 7.3 ± 5.1 207.53𝐷+�푠 249 253 245.70 ± 7.46 241.84 245.3 ± 15.7 ± 4.5 262.56𝐵+/𝐵0 204 ± 31 209 223.45 ± 12.4 201.09 193.4 ± 12.3 ± 4.3 208.13𝐵0�푠 275 277.22 ± 11 292.04 232.5 ± 18.6 ± 2.4 262.39
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Figure 1: Borel parameter dependence of the 𝐷0/𝐷+ masses.
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Figure 2: Borel parameter dependence of the 𝐷+�푠 mass.

where 𝑛 denotes the principal quantum number. We can
separate the wave function into radial 𝑅�푛�푙 and angular parts𝑌�푙�푚(𝜃, 𝜙) as follows:

Ψ�푛�푙�푚 (𝑟, 𝜃, 𝜙) = 𝑅�푛�푙 (𝑟) 𝑌�푙�푚 (𝜃, 𝜙) . (20)
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Figure 3: Borel parameter dependence of the 𝐵+/𝐵0 masses.
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Figure 4: Borel parameter dependence of the 𝐵0�푠 mass.

𝑅�푛�푙 is the radial wave function given as follows:

𝑅�푛�푙 = 𝑁�푛�푙𝑟�푙𝑒−]�푟2𝐿�푙+1/2(�푛−�푙)/2 (2]𝑟2) , (21)
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Figure 5: Borel parameter dependence of the 𝐷0/𝐷+ decay con-
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Figure 6: Borel parameter dependence of the 𝐷+�푠 decay constant.

with the associated Laguerre polynomials 𝐿�푙+1/2
(�푛−�푙)/2

and the
normalization constant:

𝑁�푛�푙 = √√ 2]3𝜋 2 ((𝑛 − 𝑙) /2)!]�푙((𝑛 + 𝑙) /2 + 1)!! . (22)

With the wave function in hand one can obtain masses
as well as decay constants for heavy and light mesons.
The mass spectra can be obtained by solving (19). For
the decay constants we employ the following formu-
las:
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Figure 7: Borel parameter dependence of the 𝐵+/𝐵0 decay con-
stants.
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Figure 8: Borel parameter dependence of the 𝐵0�푠 decay constant.
The results are as follows:

𝑓�푝 = √ 3𝑚�푝 × ∫ 𝑑3𝑘(2𝜋)3√1 + 𝑚�푞𝐸�푘 × √1 + 𝑚�푞𝐸�푘
× (1 − 𝑘2(𝐸�푘 + 𝑚�푞) (𝐸�푘 + 𝑚�푞)) 𝜙 (→𝑘 ) ,

(23)

for pseudoscalar mesons and

𝑓V = √ 3𝑚V
× ∫ 𝑑3𝑘(2𝜋)3√1 + 𝑚�푞𝐸�푘 × √1 + 𝑚�푞𝐸�푘

× (1 + 𝑘23 (𝐸�푘 + 𝑚�푞) (𝐸�푘 + 𝑚�푞)) 𝜙 (→𝑘 ) , (24)

for the vector mesons [50].
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In the nonrelativistic limit, these two equations take a
simple form, which is known to be Van Royen andWeisskopf
relation [51]. For the meson decay constants,

𝑓2�푝/V = 12 Ψ�푝/V (0)2𝑚�푝/V . (25)

Here 𝑚�푝/V denotes the pseudoscalar and vector mass of the
related meson.

The results are shown in Tables 1 and 2.

5. Summary and Conclusions

In this paper, we calculated mass spectra and decay constants
of pseudoscalar and vector heavy-light mesons (𝐵, 𝐵�푠, 𝐷,
and 𝐷�푆) in the framework of QCD sum rule and quark
model. Obtained results for masses of 𝐵 and 𝐷 mesons are in
good agreement with the available experimental data. In the
mass spectra, the extrapolation via quark model gave close
results to experimental data compared to the QCD sum rule
consideration.TheQCD sum rules approach gives reasonable
but not very good-matching results compared to the experi-
mental values, because of the adopted approximation when
evaluating the current, whereas the higher dimension of that
operator could improve the estimates. Other potentials and
further studies should be taken into consideration for a better
understanding.

The heavy-light mesons under study in this paper are
well established indeed, and any prediction or reproduction
of mass spectrum does not directly guarantee the validity of
the model, but shows a possible path to follow for a further
investigation. Therefore other physical observables such as
decay constants should be experimentally investigated to give
more inputs to the theory. For example the only precise value
of decay constant is known for 𝐷 mesons, and systematics
are evaluated. The other mesons in this study need more
experimental data. For 𝐵�푠 there is no available experimental
data. We predicted for the first time decay constant value for𝐵�푠 in this manner.

Decay constants give information about short distance
structure of hadrons.The obtained results for decay constants
are in agreement with the other studies and available data. We
did not consider in this work relativistic corrections.

InQCDSumRule calculations, physical observablesmust
be independent of the Borel parameter. In Figures 1–8 the
smoothness of the graphs is compatible with existing data.
It is worthy to note that in Figures 1 and 5 the ’slope’ of
the two curves of 𝐷0/𝐷+ is not in the same range. The
reason for that could be the smallness of the Borel parameter
and continuum threshold energy, since correlation function
receives main contribution at 𝑠 ̸= 𝑀2. On the other hand, the
smallness of Borel parameter can blow up the corrections to
the perturbative part of the correlation function.

In summary, we obtained good results in accordance
with the available data and theoretical studies. As mentioned
before, other potential models and interpolating currents can
be used to study mass spectra and decay constants. Heavy-
light systems in view of the quark model are important to
study hadronic interactions. In particular, Heavy Quark Spin

Symmetry can play an essential role in heavy-light systems.
The higher dimensions of the operators in interpolating
currents would deliver more accurate results.
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[43] T. Appelquist, A. De Rújula, H. D. Politzer, and S. L. Glashow,
“Spectroscopy of the new mesons,” Physical Review Letters, vol.
34, no. 6, pp. 365–369, 1975.

[44] A. Martin, “A fit of upsilon and charmonium spectra,” Physics
Letters B, vol. 93, no. 3, pp. 338–342, 1980.

[45] C. Quigg and J. L. Rosner, “Quarkonium level spacings,” Physics
Letters B, vol. 71, no. 1, pp. 153–157, 1977.

[46] J. L. Richardson, “The heavy quark potential and the Υ, J/𝜓
systems,” Physics Letters B, vol. 82, no. 2, pp. 272–274, 1979.

[47] W. Buchmüller and S.-H. H. Tye, “Quarkonia and quantum
chromodynamics,” Physical Review D: Particles, Fields, Gravi-
tation and Cosmology, vol. 24, no. 1, pp. 132–156, 1981.

[48] S. Xiaotong and L. Hefen, “A new phenomenological potential
for heavy quarkonium,” Zeitschrift für Physik C Particles and
Fields, vol. 34, no. 2, pp. 223–231, 1987.

[49] E. Eichten and F. Feinberg, “Spin-dependent forces in quantum
chromodynamics,” Physical Review D: Particles, Fields, Gravita-
tion and Cosmology, vol. 23, no. 11, pp. 2724–2744, 1981.

[50] O. Lakhina and E. S. Swanson, “Dynamic properties of char-
monium,” Physical Review D: Particles, Fields, Gravitation and
Cosmology, vol. 74, no. 1, 2006.

[51] R. Van Royen and V. F. Weisskopf, “Protsyessy raspada adronov
i modyelcyrillic small soft sign kvarkov,” Il Nuovo Cimento A,
vol. 50, no. 3, pp. 617–645, 1967.

[52] S. Jacobs, M. G. Olsson, and C. Suchyta, “Comparing the
Schrödinger and spinless Salpeter equations for heavy-quark
bound states,” Physical Review D: Particles, Fields, Gravitation
and Cosmology, vol. 33, no. 11, pp. 3338–3348, 1996.

[53] S. Nam, “Extended nonlocal chiral-quarkmodel for the D- and
B-meson weak-decay constants,” Physical Review D, vol. 85, no.
3, Article ID 034019, 2012.

173Mass Spectra and Decay Constants of Heavy-Light Mesons: A Case Study of QCD Sum Rules and Quark Model



Remark on Remnant and Residue Entropy with 
GUP

Hui-Ling Li ,1 Wei Li,1 and Yi-Wen Han2

1College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
2School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing 400070, China

Correspondence should be addressed to Hui-Ling Li; lhl51759@126.com

Academic Editor: Edward Sarkisyan-Grinbaum

In this article, close to the Planck scale, we discuss the remnant and residue entropy from a Rutz-Schwarzschild black hole in
the frame of Finsler geometry. Employing the corrected Hamilton-Jacobi equation, the tunneling radiation of a scalar particle is
presented, and the revised tunneling temperature and revised entropy are also found. Taking into account generalized uncertainty
principle (GUP), we analyze the remnant stability and residue entropy based on thermodynamic phase transition. In addition, the
effects of the Finsler perturbation parameter, GUP parameter, and angular momentumparameter on remnant and residual entropy
are also discussed.

1. Introduction

Although a complete self-consistent theory of quantum
gravity has not been established, it is an effective way to
understand the behavior of gravity by combining various
models of quantum gravitational effects. In various quantum
gravitation models, such as string theory, loop quantum
gravity, and non-commutative geometry, it is believed that
there exists aminimumobservable length, and thisminimum
observable length should have the order of the Planck scale.
Considering a minimum observable length, a Hilbert space
representation of quantum mechanics has been formulated
by Kempf et al. in [1], which plays an important role on
modifications of general relativity and black hole physics for
research programs in recent years. Furthermore, Nozari and
Etemad generalized the seminal work of Kempf et al. to the
case that there is also amaximal particles’ momentum, which
resolved some shortcomings such as an infinite amount of
energy for a free test particle and provided several novel
and interesting features [2]. Especially, very recently, Nozari
et al. have addressed the origin of natural cutoff, including
a minimal measurable length, and suggested that quantum
gravity cutoffs are global (topological) properties of the sym-
plectic manifolds [3]. Now, one of the research directions of
quantum gravity is to construct new theoretical models from
the minimum observable scale, including Double Special

Relativity (DSR) [4], Gravity’s Rainbow [5, 6], Modified
DispersionRelation (MDR) [7], andGeneralizedUncertainty
Principle (GUP) [1, 8–10]. Due to the problems of semiclas-
sical tunneling radiation, the quantum gravitational effect
caused by GUP is considered to study the quantum tunneling
radiation of black holeswhich leading to a very interesting
result: GUP can prevent a black hole from evaporating
completely, leaving remnant.

Recently, based on GUP, people began to study the quan-
tum tunneling and remnant of black hole. Combining the
GUP with the minimum observed length into the tunneling
method of Parikh and Wilczek, Nozari and Mehdipour [11]
have successfully derived the quantum tunneling radiation of
scalar particles froma Schwarzschild black hole.They pointed
out that GUP has an important correction to the final state of
black hole evaporation, and the black hole cannot evaporate
completely. Following that, the possible effects of natural
cutoffs as a minimal length, a maximal momentum, and a
minimal momentum on the quantum tunneling have been
completely discussed [12]. Later, by utilizing the deformed
Hamilton-Jacobi equations, Benrong et al. pointed out that
breaking covariance in quantum gravity effective models is a
key for a black hole to have the remnant left in the evaporation
[13]. In addition, in the frame of improved exponential GUP
[14], the remnant of a Schwarzschild black hole has been
given at the end of the evaporation process [15]. On the other
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hand, considering the quantum gravitational effect under the
influence of GUP, adopting the fermion tunneling method
and the modified Dirac equation, Chen and Wang etc. [16–
18] elaborated the fermion tunneling of black holes and black
rings. It is shown that GUP may slow down the temperature
of the black hole increase and prevent the black hole from
evaporating completely, which leads to the existence of the
minimum non-zero mass, that is, the black hole remnant.
Subsequently, the quantum tunneling radiation and remnant
of Gödel black hole and high dimensional Myers-Perry black
hole have also been deeply studied [19–21]. Above research
proves that the black hole remnant can exist, but related issues
of the stability of remnant and residue entropy have been
comparatively less discussed for a Finsler black hole.

Although Einstein’s general relativity described by Rie-
mannian geometry is one of the most successful gravitational
theories, it still has some problems in explaining the acceler-
ating expansion of the universe and establishing a complete
theory of quantum gravity. One has considered that the
difficulties caused by general relativity may have something
to do with the mathematical tools it uses. So, people try to
establish amodified gravitational theory described by Finsler
geometry. Finsler geometry is the most general differential
geometry, which regards Riemannian geometry as its special
case, and it is just Riemannian geometry without quadratic
restriction [22]. In recent years, the application of Finsler
geometry in black hole physics has gradually aroused people’s
interest. People began to construct field equations of all kinds
of Finsler spacetime. With the study of Finsler field equation,
people try to construct various solutions of Finsler black hole
[22–25]. The study of these black hole solutions makes us
understand the physical properties of Finsler spacetime more
deeply. In this paper, based on GUP, we take a simple Finsler
black hole as an example and investigate the remnant and
residue entropy from a Rutz-Schwarzschild black hole.

2. Tunneling Radiation of a Scalar Particle
Based on GUP

In this section, considering the effect of GUP, applying with
the corrected Hamilton-Jacobi equation, we will focus on
investigating the scalar particle’s tunneling radiation from a
Rutz-Schwarzschild black hole. Under the frame of Finsler
geometry, Rutz constructed the generalized Einstein field
equation and derived a Finsler black hole solution.Themetric
(Rutz-Schwarzschild black hole) is given by [24]

𝑑𝑠2 = −(1 − 2𝑀𝑟 )(1 − 𝜀𝑑Ω𝑑𝑡 ) 𝑑𝑡2
+ (1 − 2𝑀𝑟 )−1 𝑑𝑟2 + 𝑟2𝑑Ω2. (1)

Here 𝜀 ≪ 1 is the Finsler perturbation parameter, and
the line element reduces to the Schwarzschild metric when𝜀 = 0. The solution is a non-Riemannian solution, and the
time component of the metric depends on the tangent vector𝑑Ω/𝑑𝑡. It is obvious that the correction term 𝜀𝑑Ω/𝑑𝑡 remains
while the mass vanishes and still exists when 𝑟 → ∞. The
metric is very different from the Schwarzschild black hole,

and it is very interesting to discuss on the scalar particle’s
tunneling radiation based on GUP.

By taking into account the effect of GUP, in a curved
spacetime, the revised Hamilton-Jacobi equation for the
motion of scalar particles can be expressed as [26]

𝑔00 (𝜕0𝑆 + 𝑒𝐴0)2 + [𝑔𝑘𝑘 (𝜕𝑘S + 𝑒𝐴𝑘)2 + 𝑚2]
× {1 − 2𝛽 [𝑔𝑗𝑗 (𝜕𝑗𝑆)2 + 𝑚2]} = 0. (2)

Here 𝛽 = 𝛽0𝑙2𝑝/ℏ2 = 𝛽0/𝑀2𝑝𝑐2, 𝛽0(≤ 1034) is a dimensionless
constant and 𝑙𝑃 and 𝑀𝑃 are Planck length and Planck
mass. Adopting rational approximation, according to the line
element and the modified Hamilton-Jacobian equation, we
can get the following motion equation of a scalar particle:

− [(1 − 2𝑀𝑟 )(1 − 𝜀𝑑Ω𝑑𝑡 )]−1 (𝜕𝑡𝑆)2
− [(1 − 2𝑀𝑟 ) (𝜕𝑟𝑆)2 + 1𝑟2 (𝜕𝜃𝑆)2
+ 1𝑟2 sin2 𝜃 (𝜕𝜑𝑆)2 + 𝑚2] {1 − 2𝛽 [(1 − 2𝑀𝑟 ) (𝜕𝑟𝑆)2
+ 1𝑟2 (𝜕𝜃𝑆)2 + 1𝑟2 sin2 𝜃 (𝜕𝜑𝑆)2 + 𝑚2]} = 0.

(3)

Setting 𝑆 = −𝜔𝑡 + 𝑊(𝑟) + Θ(𝜃, 𝜑), with 𝜔 standing for the
energy of a scalar particle and inserting the action 𝑆 into (3),
we have

2𝛽 (1 − 2𝑀𝑟 )2 (𝜕𝑟𝑊(𝑟))4 − (1 − 2𝑀𝑟 ) (𝜕𝑟𝑊(𝑟))2
+ [(1 − 2𝑀𝑟 ) (𝜕𝑟𝑊(𝑟))2 + 1𝑟2 (𝜕𝜃Θ(𝜃, 𝜑))2
+ 1𝑟2 sin2 𝜃 (𝜕𝜑Θ(𝜃, 𝜑))2] × [4𝛽 (1 − 2𝑀𝑟 )
⋅ (𝜕𝑟𝑊(𝑟))2 − 1] + 𝜔2 [(1 − 2𝑀𝑟 )(1 − 𝜀𝑑Ω𝑑𝑡 )]−1
= −𝜆

(4)

and

2𝛽 [ 1𝑟2 (𝜕𝜃Θ(𝜃, 𝜑))2 + 1𝑟2 sin2 𝜃 (𝜕𝜑Θ(𝜃, 𝜑))2] = 𝜆 , (5)

For (5), the mode of angular momentum of a tunneling
particle is associated with its components 𝜕𝜃Θ and 𝜕𝜑Θ as
follows [27]: 1𝑟2 (𝜕𝜃𝑆)2 + 1𝑟2 sin2 𝜃 (𝜕𝜑𝑆)2 = 𝐿2. (6)

Equations (5) and (6) yield

2 (𝐿2)2 = 𝜆𝛽. (7)
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Formula (7) shows that 𝜆 is related to the angular momentum𝐿 of the scalar particle, and it is pointed out that the angular
part will have an effect on the tunneling radiation of the scalar
particle. Thus, (4) can change to

2𝛽 (1 − 2𝑀𝑟 )2 (𝜕𝑟𝑊(𝑟))4 + (4𝑚2𝛽 + √8𝛽𝜆 − 1)
× (1 − 2𝑀𝑟 ) (𝜕𝑟𝑊(𝑟))2

+ (2𝑚2𝛽 + √8𝛽𝜆 − 1)𝑚2
+ 𝜔2 [(1 − 2𝑀𝑟 )(1 − 𝜀𝑑Ω𝑑𝑡 )]−1 − √ 𝜆2𝛽 + 𝜆

= 0.
(8)

Equation (8) is solved and the higher-order term of 𝛽 is
ignored; then𝑊(𝑟) is taken as

𝑊(𝑟)± = ±∫ √(1 − 2𝑀/𝑟) (1 − 𝜀𝑑Ω/𝑑𝑡) (𝑚2 (1 − 2𝛽𝑚2) − 𝜆 + √𝜆/2𝛽) + 𝜔2√(1 − 𝜀𝑑Ω/𝑑𝑡) (1 − 2𝑀/𝑟)
× {1 + 𝛽[𝑚2 + 𝜔2 [(1 − 2𝑀𝑟 )(1 − 𝜀𝑑Ω𝑑𝑡 )]−1] + 𝛽𝜆2 }𝑑𝑟,

(9)

where +(−) represents the solution of the outgoing (ingoing)
wave.The Laurent series is expanded at the event horizon 𝑟 =𝑟+, and the solution of (9) is obtained by using the contour
integral

𝑊(𝑟+)± = ±𝑖 2𝜋𝑀𝜔√1 − 𝜀𝑑Ω/𝑑𝑡 [[1
+ 12𝛽(3𝑚2 + 𝜆 + 4𝜔21 − 𝜀𝑑Ω/𝑑𝑡) + √𝛽𝜆8 ]]+ real part.

(10)

Applying the invariant tunneling rate under the canonical
transformation [28, 29], considering the influence of the time
part on the tunneling rate, through the Kruskal coordinate(𝑇, 𝑅), that is, 𝑇 = 𝑒𝜅𝑟∗ sinh(𝜅𝑡) and 𝑅 = 𝑒𝜅𝑟∗ cosh(𝜅𝑡), we
get the contribution of the extra imaginary part of the time
segment and have Im𝜔𝑡𝑜𝑢𝑡(𝑖𝑛) = −𝜋𝜔/2𝜅. As a result, the total
tunneling rate of a scalar particle passing through the event
horizon of Rutz-Schwarzschild black hole is as follows:

Γ ∝ exp {[Im (𝜔𝑡𝑜𝑢𝑡) + Im (𝜔𝑡𝑖𝑛) − Im∮𝑃𝑑𝑟]}
= exp

{{{−4𝜋 2𝑀𝜔√1 − 𝜀𝑑Ω/𝑑𝑡 [[1
+ 12𝛽(3𝑚2 + 𝜆 + 4𝜔21 − 𝜀𝑑Ω/𝑑𝑡) + √𝛽𝜆8 ]]

}}} .
(11)

Compared with the Boltzmann factor Γ = exp(−𝜔/𝑇), the
corrected tunneling temperature of the black hole is

𝑇 = √1 − 𝜀𝑑Ω/𝑑𝑡8𝜋𝑀 [[1
+ 12𝛽(3𝑚2 + 𝜆 + 4𝜔21 − 𝜀𝑑Ω/𝑑𝑡) + √𝛽𝜆8 ]]

−1

= 𝑇𝐻[[1 + 12𝛽(3𝑚2 + 𝜆 + 4𝜔21 − 𝜀𝑑Ω/𝑑𝑡)
+ √𝛽𝜆8 ]]

−1 .

(12)

Here 𝑇𝐻 = √1 − 𝜀𝑑Ω/𝑑𝑡/8𝜋𝑀 is the Hawking temperature.
According to the first law of black hole thermodynamics, the
entropy of Rutz-Schwarzschild black hole is calculated as

𝑆 = ∫ 𝑑𝑀𝑇 = ∫ 8𝜋𝑀√1 − 𝜀𝑑Ω/𝑑𝑡 [[1
+ 12𝛽(3𝑚2 + 𝜆 + 4𝜔21 − 𝜀𝑑Ω/𝑑𝑡)
+ √𝛽𝜆8 ]]𝑑𝑀.

(13)

From (11)–(13), we obviously find that the scalar particle’s
tunneling rate, tunneling temperature, and the entropy are
all not only dependent on the black hole mass 𝑀, tunneling
scalar particle’s mass 𝑚, and energy 𝜔, but also dependent
on Finsler perturbation parameter 𝜀, GUP parameter 𝛽, and
angular momentum parameter 𝜆.
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3. Remnant and Entropy Based on
Thermodynamics Phase Transition

On the basis of the above scalar particle’s tunneling radiation,
considering the GUP, now we focus on discussing on the
remnant and entropy at the end of evaporation. Since all the
tunneling particles at the event horizon can be regarded as
massless, the mass of scalar particles is no longer considered
in the following process. According to the uncertainty rela-
tion Δ𝑝 ≥ ℏ/Δ𝑥 and the lower limit of tunneling particle
energy [30, 31] 𝜔 ≥ ℏ/Δ𝑥, near the event horizon, the
uncertainty of the position can be taken as the radius of the
black hole [30, 31]; that is, Δ𝑥 ≈ 𝑟𝐵𝐻 = 𝑟+. Consequently, the
tunneling temperature of the black hole evaporating to Planck
scale is

𝑇 = √1 − 𝜀𝑑Ω/𝑑𝑡8𝜋𝑀 {{{1 + 12𝛽(𝜆 + 4𝜔21 − 𝜀𝑑Ω/𝑑𝑡)
+ √𝛽𝜆8 }}}

−1 = 𝑇𝐻{{{1
− 12𝛽(𝜆 + 4ℏ2(1 − 𝜀𝑑Ω/𝑑𝑡) 𝑟2+) − √𝛽𝜆8 }}} .

(14)

It can be seen that the modified tunneling temperature near
Planck scale is related to the properties of the background
spacetime of Finsler black hole, the energy of a tunneling
particle, and the parameter of quantum gravitational effect.
When the radius of the black hole satisfies

𝑟+ < √ 8𝛽ℏ2(1 − 𝜀𝑑Ω/𝑑𝑡) (4 − 2𝛽𝜆 − √2𝛽𝜆) , (15)

the revised tunneling temperature 𝑇 < 0 violates the third
law of thermodynamics. This means that, by considering the
effect of GUP, the evaporation will stop when the tunneling
temperature is infinitely close to absolute zero, which leads to
a minimum radius; namely,

𝑟𝑖 = √ 8𝛽ℏ2(1 − 𝜀𝑑Ω/𝑑𝑡) (4 − 2𝛽𝜆 − √2𝛽𝜆)
= ℓ𝑝√ 8ℏ2𝛽0(1 − 𝜀𝑑Ω/𝑑𝑡) (4ℏ2 − 2𝜆𝛽0ℓ2𝑝 − ℓ𝑝ℏ√2𝜆𝛽0) .

(16)

Expression (16) is represented by the mass. By using the
relation between event horizon and mass 𝑟+ = 2𝑀, near the
Planck scale, the tunneling temperature can be expressed as

𝑇 = √1 − 𝜀𝑑Ω/𝑑𝑡8𝜋𝐺𝑀 {{{1
− 12𝛽(𝜆 + ℏ2(1 − 𝜀𝑑Ω/𝑑𝑡) 𝐺2𝑀2) − √𝛽𝜆8 }}} .

(17)

In order to ensure the temperature 𝑇 ≥ 0, the mass of the
black hole satisfies

𝑀 ≥ √ 2𝛽ℏ2(1 − 𝜀𝑑Ω/𝑑𝑡) (4 − 2𝛽𝜆 − √2𝛽𝜆)𝐺2 , (18)

which implies the minimum mass of a black hole

𝑀𝑚𝑖𝑛 = √ 2𝛽ℏ2(1 − 𝜀𝑑Ω/𝑑𝑡) (4 − 2𝛽𝜆 − √2𝛽𝜆)𝐺2
= 𝑀𝑝√ 2𝛽0ℏ2𝑐2 (1 − 𝜀𝑑Ω/𝑑𝑡) (4 − 2𝜆𝛽0/𝑀2𝑝𝑐2 − √2𝜆𝛽0/𝑀2𝑝𝑐2) .

(19)

Thevalue is theRutz-Schwarzschild black hole’s remnant; that
is, 𝑀𝑟𝑒𝑠 = 𝑀𝑚𝑖𝑛. In order to explain the problem better, we
can analyze heat capacity 𝐶, which is

𝐶 = 𝑇( 𝜕𝑆𝜕𝑇) = 𝑇 𝜕𝑆𝜕𝑀 𝜕𝑀𝜕𝑇 = 𝑇 𝜕𝑆𝜕𝑀 ( 𝜕𝑇𝜕𝑀)−1 = 𝑁𝐹 . (20)

Here 𝑆 is the modified black hole entropy; at the Planck scale
it can be rewritten as

𝑆 = ∫ 𝑑𝑀𝑇 = ∫ 8𝜋𝐺𝑀√1 − 𝜀𝑑Ω/𝑑𝑡 {{{(1 + 12𝛽𝜆 + √𝛽𝜆8 )
+ ( 𝛽ℏ22 (1 − 𝜀𝑑Ω/𝑑𝑡) 𝐺2𝑀2)}}}𝑑𝑀
= 4𝜋𝐺𝑀2√1 − 𝜀𝑑Ω/𝑑𝑡 (1 + 12𝛽𝜆 + √𝛽𝜆8 )
+ 4𝜋𝛽ℏ2𝐺 (1 − 𝜀𝑑Ω/𝑑𝑡)3/2 ln𝑀,

(21)

and the coefficients 𝑁 and 𝐹 are, respectively,

𝑁 = [[2𝐺2𝑀2 (1 − 𝜀𝑑Ω/𝑑𝑡)(1 − 12𝛽𝜆 − √𝛽𝜆8 )
− 𝛽ℏ2]] × [16𝜋𝐺3𝑀4√1 − 𝜀𝑑Ω/𝑑𝑡]

(22)

and

𝐹 = [[2𝐺2𝑀2 (1 − 𝜀𝑑Ω/𝑑𝑡)(1 + 12𝛽𝜆 + √𝛽𝜆8 )
+ 𝛽ℏ2]] × [[3𝛽ℏ2
− 2𝐺2𝑀2(1 − 12𝛽𝜆 − √𝛽𝜆8 ) (1 − 𝜀𝑑Ω/𝑑𝑡)]] .

(23)
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Figure 1: The figure shows the temperature 𝑇 versus the radius of
event horizon 𝑟+ for varying 𝛽. Above blue dashed curve is 𝛾 = 0.1
and 𝛽 = 0. Below orange curve is 𝛾 = 0.1 and 𝛽 = 1.
From expression (20), we find

𝑀 = 𝑀𝐶𝑟
= 𝑀𝑝√ 6𝛽0ℏ2𝑐2 (1 − 𝜀𝑑Ω/𝑑𝑡) (4 − 2𝜆𝛽0/𝑀2𝑝𝑐2 − √2𝜆𝛽0/𝑀2𝑝𝑐2) ,

𝐶 → 0,
(24)

𝑀 → 𝑀𝑚𝑖𝑛 = 𝑀𝑟𝑒𝑠
= 𝑀𝑝√ 2𝛽0ℏ2𝑐2 (1 − 𝜀𝑑Ω/𝑑𝑡) (4 − 2𝜆𝛽0/𝑀2𝑝𝑐2 − √2𝜆𝛽0/𝑀2𝑝𝑐2) ,

𝐶 → 0.
(25)

Expression (25) is consistent with expression (19). From the
above equations we can see that, for the Rutz-Schwarzschild
black hole, considering the tunneling of scalar particles, when
the black hole evaporates to the Planck scale, the phase
transition takes place, leaving a stable remnant. Then, based
on expressions (14), (17), (20), and (21), we draw the following
thermodynamic curves 1—5 and further analyze the entropy
and remnant in detail. We set 𝛾 = 𝜀𝑑Ω/𝑑𝑡 and 𝑀𝑝 = 𝑐 = ℏ =1 in all of the following drawings for research convenience.

As Figures 1 and 2 show, in a large range of radius and
mass, for the cases 𝛽 = 0 and 𝛽 = 1, the tunneling
temperatures tend to be consistent. But as the radius (ormass)
closes to the critical value 𝑟𝑐𝑟 (or 𝑀𝑐𝑟), these curves become
markedly different. The tunneling temperature reaches the
maximum value at 𝑟𝑐𝑟 (or 𝑀𝑐𝑟) for the case of 𝛽 = 1; then
it decreases with the decrease of radius (or mass). Finally,
the tunneling temperature tends to zero when the radius (or
mass) attains to theminimumvalue 𝑟𝑖 (or𝑀𝑟𝑒𝑠) for the case of𝛽 = 1, which leads to remnant. We can also explain it through
Figure 3.

In Figure 3, the heat capacity monotonically increases
with the mass increasing for the case of 𝛽 = 0, and it is
always negative. However, for the case of 𝛽 = 1, we find that,
at 𝑀 = 𝑀𝑐𝑟, heat capacity is divergent, which means the
existence of phase transition. That is the black hole undergoes
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Figure 2:The figure shows the temperature𝑇 versus themass𝑀 for
varying 𝛽. Above purple dashed curve is 𝛾 = 0.1 and 𝛽 = 0. Below
black curve is 𝛾 = 0.1 and 𝛽 = 1.

0.5 1.0 1.5 2.0 2.5
M

−400

−200

200

400
C

－＝Ｌ
－Ｌ？Ｍ

Figure 3:Thefigure shows the heat capacity𝐶 versus themass𝑀 for
varying 𝛽. The blue dashed curve is 𝛾 = 0.1 and 𝛽 = 0. The orange
curve is 𝛾 = 0.1 and 𝛽 = 1.
a phase transition from𝐶 < 0 (unstable hole) to𝐶 > 0 (stable
hole), which also corresponds to the phase transitions in
Figures 1 and 2 at the critical values 𝑟𝑐𝑟 and𝑀𝑐𝑟. Furthermore,
we can see that the mass tends to minimum value (namely𝑀𝑚𝑖𝑛 = 𝑀𝑟𝑒𝑠) when 𝐶 → 0. In addition, we also note that
the same problem is treated in noncommutative geometry in
[32] (see Figure 7). The result shows that the heat capacity
tends to zero when the mass approaches a certain value, but
some unusual feature is also presented.

In Figures 4 and 5, the crucial difference is shown for the
two curves. To clearly see the difference between them,we can
refer to Figure 5. The traditional entropy is zero as the mass
becomes zero for the case of 𝛽 = 0. However, by considering
GUP, the entropy is also revised for the case of 𝛽 = 1, and
there exits minimum 𝑆𝑚𝑖𝑛 (namely, residual entropy 𝑆𝑟𝑒𝑠 =𝑆𝑚𝑖𝑛) at the remnant, which means the entropy is no longer
zero in the final stages of black hole evaporation.

To see clearly the Finsler perturbation parameter and
angular momentum parameter effect on remnant and resid-
ual entropy, we present Tables 1 and 2 for different 𝛾 and 𝜆
when 𝛽 = 1. From Tables 1 and 2, we can find that rem-
nant and residual entropy increase as Finsler perturbation
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Figure 4: The figure shows the entropy 𝑆 versus the mass 𝑀 for
varying𝛽 on a large scale of entropy.The blue dashed curve is 𝛾 = 0.1
and 𝛽 = 0. The orange curve is 𝛾 = 0.1 and 𝛽 = 1.
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Figure 5: The figure shows the entropy 𝑆 versus the mass 𝑀 for
varying 𝛽 within a small scale of entropy. The blue dashed curve is𝛾 = 0.1 and 𝛽 = 0. The orange curve is 𝛾 = 0.1 and 𝛽 = 1.
Table 1: Remnant and residual entropy with 𝜆 = 0.001 for different𝛾.
𝛾 𝑀𝑟𝑒𝑠 𝑆𝑟𝑒𝑠
0.1 0.749748 3.29388
0.01 0.714856 1.90766
0.0001 0.711309 1.76666

Table 2: Remnant and residual entropy with 𝛾 = 0.1 for different 𝜆.
𝜆 𝑀𝑟𝑒𝑠 𝑆𝑟𝑒𝑠
0.5 1.054090 22.8521
0.1 0.814124 7.17324
0.01 0.760867 3.95553

parameter increases, and they are also increase as angular
momentum parameter increases.

In addition, when 𝛽 = 0 and 𝜀 = 0 (namely, 𝛾 = 0),
the results reduce to that of Schwarzschild black hole without
GUP. In this case, the black hole can radiate continuously
until the mass and entropy decrease to zero. In the case of

𝛽 = 1 and 𝜀 = 0, the results reduce to that of Schwarzschild
black hole with GUP. From (21) and (25), we can see that
the remnant and the residue entropy in the frame of Finsler
geometry are larger than those of Schwarzschild black hole.
Moreover, we also see the influence of Finsler parameter on
remnant and residue entropy from Table 1.

4. Discussion on Remnant Based on
Parikh-Wilczek Tunneling

Based on GUP, using Parikh-Wilczek tunneling method, we
continue to explore the quantum tunneling and remnant
of a Rutz-Schwarzschild black hole in the frame of Finsler
geometry. The Rutz-Schwarzschild metric in the Painleve
coordinate system can be rewritten as

𝑑𝑠2 = −(1 − 2𝑀𝑟 )(1 − 𝜀𝑑Ω𝑑𝑡 ) 𝑑𝑡2
+ 2√2𝑀𝑟 (1 − 𝜀𝑑Ω𝑑𝑡 )𝑑𝑡𝑑𝑟 + 𝑑𝑟2 + 𝑟2𝑑Ω2, (26)

which is obtained by the coordinate transformation

𝑑𝑡 → 𝑑𝑡 − √2𝑀/𝑟1 − 2𝑀√1 − 𝜀𝑑Ω/𝑑𝑡/𝑟𝑑𝑟. (27)

We can derive the radial null geodesics

̇𝑟 ≡ 𝑑𝑟𝑑𝑡 = √1 − 𝜀𝑑Ω𝑑𝑡 (±1 − √2𝑀𝑟 ) , (28)

where +(−) represents the solution of the outgoing (ingoing)
geodesics. Now, we consider the influence of GUP with a
minimal length on quantum tunneling. The expression GUP
with a minimal length is [12]

Δ𝑥Δ𝑝 ≥ ℏ [1 + 𝛽 (Δ𝑝)2] , (29)

and the generalized energy [11] is

𝜔 = 𝐸 (1 + 𝛽𝐸2) , (30)

where 𝛽 = 𝛼2𝑙2𝑝. From the GUP expression, the revised
commutation relation between the radial coordinate and the
conjugate momentum becomes

[𝑟, 𝑝𝑟] = 𝑖ℏ (1 + 𝛽𝑝2𝑟 ) . (31)

In the classical limit, the above commutation relation can be
replaced by the following poisson bracket:

{𝑟, 𝑝𝑟} = 1 + 𝛽𝑝2𝑟 . (32)

In order to obtain the imaginary part of the action, we use the
following deformed Hamiltonian equation:

̇𝑟 = {𝑟,𝐻} = {𝑟, 𝑝𝑟} 𝑑𝐻𝑑𝑝𝑟 𝑟 . (33)
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In the framework of Parikh and Wilczek’s tunneling radia-
tion, the imaginary part of the action can be given by

Im 𝐼 = Im∫𝑟𝑜𝑢𝑡
𝑟𝑖𝑛

𝑝𝑟𝑑𝑟 = Im∫𝑟𝑜𝑢𝑡
𝑟𝑖𝑛

∫𝑝𝑟
0

𝑝𝑟𝑑𝑟. (34)

According to thework in [12], theHamiltonian is𝐻 = 𝑀−𝜔,𝑝2𝑟 ≈ 𝜔2, 𝑝𝑟 ≈ 𝜔.Thus, by eliminating the momentum in the
favor of the energy in (34), we have

Im 𝐼 = Im∫𝑀−𝜔
𝑀

∫𝑟𝑜𝑢𝑡
𝑟𝑖𝑛

1 + 𝛽𝜔2̇𝑟 𝑑𝑟𝑑𝐻
= Im∫𝑀−𝜔

𝑀
∫𝑟𝑜𝑢𝑡
𝑟𝑖𝑛

1 + 𝛽𝜔2(1 − 𝜀𝑑Ω/𝑑𝑡) (1 − 2 (𝑀 − 𝜔) /𝑟)𝑑𝑟𝑑 (𝑀 − 𝜔)
= 4𝜋𝑀𝜔(1 − 𝜀𝑑Ω/𝑑𝑡) [1 − 𝜔2𝑀 + 𝛽𝜔2 (13 − 𝜔4𝑀)] .

(35)

The tunneling rate with effect of GUP with a minimal length
is therefore

Γ ∼ exp (−2 Im 𝑆) = exp [− 8𝜋𝑀𝐸(1 − 𝜀𝑑Ω/𝑑𝑡)
+ 4𝜋𝐸2(1 − 𝜀𝑑Ω/𝑑𝑡) − 32𝜋𝑀𝐸33 (1 − 𝜀𝑑Ω/𝑑𝑡)
+ 10𝜋𝛽𝐸4(1 − 𝜀𝑑Ω/𝑑𝑡) +O (𝛽2)] = exp (Δ𝑆) ,

(36)

where Δ𝑆 is the difference in black hole entropies before and
after emission [11, 12, 33]. It is shown that Parikh-Wilczek’s
procedure is also valid for the Rutz-Schwarzschild metric.
When 𝛽 = 0 and 𝜀 = 0, the result reduces to the result of
Schwarzschild black hole, which is the same with that derived
by Parikh and Wilczek [33]. Note that, for a Schwarzschild
black hole, with Parikh-Wilczek tunneling mechanism, the
quantum tunneling of massless particles from black hole
horizon has been studied based on GUP [11, 12]. It is obvious
that our result coincides with the one in [12] when 𝜀 = 0. We
find that (36) gives tunneling rate’s correction which caused
by the varied background spacetime and GUP. When 𝛽 = 0,
the tunneling temperature

𝑇 = (1 + 𝐸2𝑀)𝑇𝐻 (37)

is higher than the original temperature 𝑇𝐻. This predicts
the varied spacetime can accelerate the evaporation and the
remnant does not arise. when GUP is taken into account, the
tunneling temperature

𝑇 = (1 + 𝐸2𝑀 − 43𝛽𝐸2 + 54𝑀𝛽𝐸3)𝑇𝐻 (38)

is lower than the original Hawking temperature 𝑇𝐻, which
implies that GUP can slow down the increase of the Hawking
temperature and stop the black hole from completely evapo-
rating. As a result, a remnant of the black hole is left at the
end of evaporation.

5. Conclusion

In conclusion, employing the tunneling radiation of a scalar
particle and generalized uncertainty principle, we study the
remnant and residue entropy from a Rutz-Schwarzschild
black hole based on black hole thermodynamic. Firstly, based
on the Hamilton-Jacobi equation revised by GUP, we present
the modified tunneling temperature-uncertainty relation and
modified entropy-uncertainty relation by using quantum
tunneling method. Then, using the generalized uncertainty
principle, we calculate the remnant and residual entropy
after evaporation when the black hole reaches the Planck
scale. Finally, based on black hole thermodynamic phase
transition, a detailed analysis of whether there is a stable
remnant and residual entropy in the final stage of evaporation
is given; that is, the thermodynamic stability of a black hole
is related to its thermal capacity and temperature. In order
to ensure the thermal stability of a black hole, when the
black hole evaporates to the Planck scale, the black hole
with negative heat capacity must be transformed into a black
hole with positive heat capacity. As a result, at remnant,
the modified tunneling temperature and heat capacity tend
to zero and modified entropy reaches the minimum value,
which imply the black holes are in thermal equilibrium with
the outside environment. In addition, the effects of the Finsler
perturbation parameter and angular momentum parameter
on remnant and residual entropy are also discussed.

The emergence of Finsler black hole solution infuses
new vitality into general relativity and puts forward a new
research and development idea for black hole physics theory.
In this paper, we consider a simple Finsler black hole. For the
Rutz-Schwarzschild black hole, we investigate the remnant
and residue entropy based on the scalar particles’ tunneling
radiation via semiclassical Hamilton-Jacobi method. In view
of the size of the Finsler perturbation parameter 𝜀 < 3.15 ×10−4𝑠 in geometrical units [24], the small physical quantity
is ignored and we approximately adopt Hamilton-Jacobi
equation based on GUP to study tunneling radiation from
horizon. Strictly speaking, we should apply new Hamilton-
Jacobi equation in the framework of complicated Finsler
geometry to discuss the related problems. Up to now, Finsler
gravity theory has not been established completely. Here,
adopting the approximate method we only to understand
simply some quantum results of Finsler gravity. We hope
that our research can provide some enlightenments for the
thermodynamic evolution of black hole physics.

We also note that, the expression of GUP is not unique,
which gives rise to different correction on tunneling radia-
tion. Therefore, the remnant and residue entropy should also
be distinct from that in the frameworks of other GUPS. We
are going to discuss the related issues in further.
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We studied in detail the propagation of a massive tachyonic scalar field in the background of a five-dimensional (5𝐷)
Einstein–Yang–Mills–Born–Infeld–dilaton black string: the massive Klein–Gordon equation was solved, exactly. Next we obtained
complete analytical expressions for the greybody factor, absorption cross section, and decay rate for the tachyonic scalar field in the
geometry under consideration. The behaviors of the obtained results are graphically represented for different values of the theory’s
free parameters. We also discuss why tachyons should be used instead of ordinary particles for the analytical derivation of the
greybody factor of the dilatonic 5𝐷 black string.

1. Introduction

A wealth of information about quantum gravity can be
obtained by studying the unique and fascinating objects
known as black holes (BHs). In BH physics, greybody factors
(GFs) modify black-body radiation, or predicted Hawking
radiation [1, 2], within the limits of geometrical optics [3].
In other words, GFs modify the Hawking radiation spectrum
observed at spatial infinity (SI), so that the radiation is not
purely Planckian [4].

GF, absorption cross section (ACS), and decay rate
(DR) are quantities dependent upon both the frequency of
radiation and the geometry of spacetime. Currently, although
there are many studies of GF, ACS, and DR (see, for example,
[5–10] and the references therein), the number of analytical
studies of GFs that consider modified black-body radiation
of higher-dimensional (𝐷 > 4) spacetimes, like the BHs in
string theory and black strings [11–13], is rather limited (see,
for instance, [6, 7, 14–18]). This paucity of studies has arisen
from the mathematical difficulty of obtaining an analytical
solution to the wave equation of the stringent geometry
being considered; in fact, analytical GF computations apply to
spacetimes in which the metric components are independent

of time. It is also worth noting that although BSs are defined
as a higher-dimensional generalization of a BH, in which
the event horizon is topologically equivalent to 𝑆2 × 𝑆1 and
spacetime is asymptotically 𝑀𝐷−1 × 𝑆1, four-dimensional
(4𝐷) BSs are also derived. Lemos and Santos [19–21] showed
that cylindrically symmetric static solutions, with a negative
cosmological constant, of the Einstein–Maxwell equations
admit charged 4𝐷 BSs. A rotating version of the charged 4𝐷
BSs [22, 23] exhibits features similar to the Kerr-Newman BH
in spherical topology.The problem of analyzing GFs of scalar
fields from charged 4𝐷 BSs has recently been discussed by
Ahmed and Saifullah [24]. An interesting point about GFs
has been reported by [25]: BH energy loss during Hawking
radiation depends, crucially, on the GF and the particles’
degrees of freedom.

As mentioned above, further study of the GFs of BSs
is required. To fill this literature gap, in the current study,
we considered dilatonic 5𝐷 BS [26], which is a solution
to the Einstein–Yang–Mills–Born–Infeld–dilaton (EYMBID)
theory. We analytically studied its GF, ACS, and DR for
massive scalar fields; however, we considered tachyonic
scalar particles instead of ordinary ones. The main reason
for this consideration is that using ordinary mass in the
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Klein–Gordon equation (KGE) of the dilatonic 5𝐷 BS (as will
be explained in detail later) leads to the diverging of GFs.
Roughly speaking, this is due to the flux of the propagating
waves of the ordinary massive scalar fields. Namely, once
the scalar fields to be considered belong to the massive
ordinary particles, the incoming SI flux becomes zero. The
latter remark implies that detectable radiation emitted from a
dilatonic 5𝐷 BS spacetime belongs to the massive tachyonic
scalar fields.Therefore, the current study focuses on the wave
dynamics of tachyonic particles moving in dilatonic 5𝐷 BS
spacetime. However, using tachyonic modes in 5𝐷 geometry
should not be seen as nonphysical; instead they should be
considered as the imaginary mass fields rather than faster-
than-light particles [27]. First, Feinberg [28, 29] proposed
that tachyonic particles could be quanta of a quantum field
with imaginary mass. It was soon realized that excitations of
such imaginary mass fields do not in fact propagate faster than
light [30].

Following the idea of Kaluza–Klein [31], any 4𝐷 physical
trajectory is the projection of higher-dimensional worldlines.
Effective 4𝐷 worldlines associated with massive particles are
causality constrained to be timelike. However, the corre-
sponding higher-dimensional worldlines need not be exclu-
sively timelike, which gives rise to a topological classification
of physical objects. In particular, elementary particles in a 5𝐷
geometry should be viewed as tachyonic modes. The exis-
tence of tachyons in higher dimensions has been thoroughly
studied byDavidson andOwen [32]. Furthermore, the reader
may refer to [33] to understand tachyon condensation in the
evaporation process of a BS. To find the analytical GF, ACS,
andDR,we have shownhow to obtain the complete analytical
solution to themassive KGE in the geometry of a dilatonic 5𝐷
BS.

Our work is organized as follows. Following this intro-
duction, a brief overview of the geometry of the dilatonic5𝐷 BS is provided in Section 2. Section 3 describes the KGE
of the tachyonic fields in the dilatonic 5𝐷 BS geometry; we
present the exact solution of the radial equation in terms
of hypergeometric functions. In Section 4, we compute the
GF and consequently the ACS and DR of the dilatonic 5𝐷
BS, respectively. We then graphically exhibit the results of
the ACS and DR. Section 5 concludes with the final remarks
drawn from our study.

2. Dilatonic 5𝐷 BS in EYMBID Theory

𝐷 (= 𝑑 + 1)-dimensional action in the EYMBID theory is
given by [26]

𝐼𝐸𝑌𝑀𝐵𝐼𝐷 = − 116𝜋𝐺(𝐷) ∫M 𝑑𝑑𝑥√−𝑔

⋅ [[R − 4 (𝜓)2𝐷 − 2 + 4𝜒2𝑒−𝑏𝜓(1 − √1 + 𝐹𝑒2𝑏2𝜒2 )]] ,
(1)

where 𝜓 is the dilaton field, 𝜒 denotes the Born–Infeld
parameter [34], and 𝑏 = −(4/(𝑑 − 2))𝛼 with the dilaton
parameter 𝛼 = 1/√𝑑 − 1. 𝐺(𝐷) represents the𝐷-dimensional

Newtonian constant and its relation to its 4𝐷 form (𝐺(4)) is
given by

𝐺(𝐷) = 𝐺(4)𝐿𝐷−4, (2)

where 𝐿 is the upper limit of the compact coordinate (∫𝐿
0
𝑑𝑧 =𝐿). Furthermore, R stands for the Ricci scalar and 𝐹 =𝐹(𝑎)𝜆𝜌 𝐹(𝑎)𝜆𝜌 where the 2-form Yang–Mills field is given by

𝐹(𝑎) = 𝑑𝐴(𝑎) + 12𝜎𝐶(𝑎)(𝑏)(𝑐) (𝐴(𝑏) ∧ 𝐴(𝑐)) , (3)

with 𝐶(𝑎)
(𝑏)(𝑐)

and 𝜎 being structure and coupling constants,
respectively. The Yang–Mills potential 𝐴(𝑎) is defined by
following the Wu-Yang ansatz [35]

𝐴(𝑎) = 𝑄𝑟2 (𝑥𝑖𝑑𝑥𝑗 − 𝑥𝑗𝑑𝑥𝑖) , (4)

𝑟2 = 𝑑−1∑
𝑖=1

𝑥2𝑖 ,
2 ≤ 𝑗 + 1 ≤ 𝑖 ≤ 𝑑 − 1, 1 ≤ 𝑎 ≤ (𝑑 − 1) (𝑑 − 2)2 ,

(5)

where𝑄 is the Yang–Mills charge.The solution for the dilaton
is as follows:

𝜓 = −(𝑑 − 2)2 𝛼 ln 𝑟𝛼2 + 1 . (6)

On the other hand, the line-element of the dilatonic 5𝐷 BS is
given by [26]

𝑑𝑠20 = −𝑓 (𝑟)𝛽 𝑑�̃�2 + 𝛽𝑑𝑟2𝑟𝑓 (𝑟) + 𝑟𝑑�̃�2
+ 𝛽 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2) ,

(7)

where 𝑓(𝑟) = 𝑟 − 𝑟+ and 𝛽 = 4𝑄2/3. 𝑟+ represents the outer
event horizon having the following (𝑑+1)−dimensional form:

32𝐿𝑑−4 ( 𝑄2𝑑𝑑 − 1)
(𝑑−2)/2 = 𝑟(𝑑(𝑑−2)+2)/𝑑+ . (8)

Because, in our case, 𝐷 = 5 (i.e., 𝑑 = 4), the horizon
becomes

𝑟+ = 4𝛽2/5 = 4.488𝑄4/5. (9)

After rescaling the metric (7)

𝑑𝑠2 = 𝑑𝑠20𝛽
= −𝑓 (𝑟)𝛽2 𝑑�̃�2 + 𝑑𝑟2𝑟𝑓 (𝑟) + 𝑟𝛽𝑑�̃�2 + 𝑑𝜃2 + sin2 𝜃𝑑𝜙2,

(10)

and in sequel assigning �̃� and �̃� coordinates to the new
coordinates

�̃� → 𝛽𝑡,
�̃� → 𝛽𝑧, (11)
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we get the metric that will be used in our computations:

𝑑𝑠2 = −𝑓 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑟𝑓 (𝑟) + 𝛽𝑟𝑑𝑧2 + 𝑑𝜃2 + sin2 𝜃𝑑𝜙2. (12)

It is worth noting that the surface gravity [36] of the
dilatonic 5𝐷 BS can be evaluated by

𝜅2 = −12 𝜌Υ𝜎𝜌Υ𝜎𝑟=𝑟+ , (13)

in which Υ𝜇 represents the timelike Killing vector:

Υ𝜇 = [1, 0, 0, 0, 0] . (14)

Then, (13) results in

𝜅 = √𝑟𝑓2
𝑟=𝑟+ =

√𝑟+2 , (15)

where the prime denotes the derivative with respect to 𝑟. Fur-
thermore, the associated Hawking temperature is expressed
by

𝑇𝐻 = 𝜅2𝜋 = √𝑟+4𝜋 . (16)

It is important to remark that theHawking temperature of
the dilatonic BS given in (40) of [26] is incorrect.The authors
of [26] computed the Hawking temperature of the dilatonic5𝐷 BS considering the metric to be symmetric, which is not
the case since 𝑔𝑡𝑡 ̸= 1/𝑔𝑟𝑟. Meanwhile, it is obvious that
dilatonic 5𝐷 BS (12) has a nonasymptotically flat structure.
Therefore, it possesses a quasilocal mass [37–39], which can
be computed as follows:

𝑀𝑄𝐿 = 16𝛽𝑟3/2ℎ 𝐿 = 43𝛽8/5𝐿 ≅ 2.113𝑄16/5𝐿. (17)

Thus, the first law of thermodynamics is satisfied:

𝑑𝑀𝑄𝐿 = 𝑇𝐻𝑑𝑆𝐵𝐻, (18)

where 𝑆𝐵𝐻 denotes the Bekenstein-Hawking entropy [36],
which takes the following form for the dilatonic 5𝐷 BS:

𝑆𝐵𝐻 = 𝐴𝐻4 = 14𝛽𝑟ℎ ∫
𝜋

0
sin 𝜃𝑑𝜃∫2𝜋

0
𝑑𝜙∫𝐿

0
𝑑𝑧

= 𝜋𝛽𝐿𝑟ℎ.
(19)

3. Wave Equation of a Massive Scalar
Tachyonic Field in Dilatonic 5𝐷 BS

As the scalar waves being studied belong to themassive scalar
tachyons, the corresponding KGE is given by

[◻ − (𝑖𝜇)2]Ψ (𝑡, r) = [◻ + 𝜇2]Ψ (𝑡, r) = 0. (20)

We chose the ansatz as follows:

Ψ (𝑡, r) = 𝑅 (𝑟) 𝑌𝑚𝑙 (𝜃, 𝜙) 𝑒𝑖𝑘𝑧𝑒−𝑖𝜔𝑡, (21)

where 𝑌𝑚𝑙 (𝜃, 𝜙) is the usual spherical harmonics and 𝑘 is
a constant. After making straightforward calculations, we
obtained the radial equation as follows:

𝑟𝑓�̈�𝑅 + �̇�𝑅 (𝑓 + 𝑟�̇�) + 𝜔2𝑓 − 𝑘2𝛽𝑟 + 𝜇2 − 𝜆 = 0, (22)

where 𝜆 = 𝑙(𝑙 + 1) and a dot mark denotes a derivative with
respect to 𝑟. Multiplying each term by 𝑟𝛽𝑓(𝑟)𝑅(𝑟) and using
the ansatz 𝑦 = (𝑟+ −𝑟)/𝑟+, which in turn implies 𝑟 = 𝑟+ −𝑦𝑟+,
one gets

𝑦 (1 − 𝑦) 𝑅 + (1 − 2𝑦) 𝑅
+ [ 𝜔2𝑦𝑟+ +

𝑘2𝛽 (1 − 𝑦) 𝑟+ − 𝜇2 + 𝜆]𝑅 = 0, (23)

where prime denotes derivative with respect to 𝑦. Setting
[ 𝜔2𝑦𝑟+ +

𝑘2𝛽 (1 − 𝑦) 𝑟+ − 𝜇2 + 𝜆] =
𝐴2𝑦 − 𝐵21 − 𝑦 + 𝐶, (24)

one can obtain

𝐴 = − 𝜔2𝜅 ,
𝐵 = 𝑖𝑘2𝜅√𝛽,
𝐶 = 𝜆 − 𝜇2.

(25)

Equation (23) can be solved by comparing it with the
standard hypergeometric differential equation [40] which
admits the following solution:

𝑅 = 𝜉1 (−𝑦)𝑖𝐴 (1 − 𝑦)−𝐵 𝐹 (𝑎, 𝑏; 𝑐; 𝑦)
+ 𝜉2 (−𝑦)−𝑖𝐴 (1 − 𝑦)−𝐵 𝐹 (𝛼, 𝜍; 𝜂; 𝑦) , (26)

where

𝑎 = 12 (1 + √1 + 4𝐶) + 𝑖𝐴 − 𝐵, (27)

𝑏 = 12 (1 − √1 + 4𝐶) + 𝑖𝐴 − 𝐵, (28)

𝑐 = 1 + 2𝑖𝐴. (29)

And

𝛼 = 𝑎 − 𝑐 + 1, (30)

𝜍 = 𝑏 − 𝑐 + 1, (31)

𝜂 = 2 − 𝑐. (32)

According to our calculations, to have a nonzero SI incoming
flux (see (53)) or nondivergent GF (see (55)), √1 + 4𝐶 must
be imaginary. To this end, we must impose the following
condition:

4𝜇2 > 4𝜆 + 1, (33)
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such that

√1 + 4𝐶 = 𝑖𝜏, (34)

where

𝜏 = √4𝜇2 − 4𝜆 − 1, 𝜏 ∈ R. (35)

To obtain a physically acceptable solution, wemust terminate
the outgoing solution at the horizon, which can be simply
done by imposing 𝜉1 = 0. Thus, the physical radial solution
reduces to

𝑅 = 𝜉2 (−𝑦)−𝑖𝐴 (1 − 𝑦)−𝐵 𝐹 (𝛼, 𝜍; 𝛾; 𝑦) . (36)

It should be noted that checking the forms of (36) both at
the horizon and at SI is essential. Section 3 shows that both
are needed for the evaluation of the GF. For the near horizon
(NH) where 𝑦 → 0, one can state

𝑅𝑁𝐻 = 𝜉2 (−𝑦)−𝑖𝐴 , (37)

which implies that the purely ingoing plane wave reads

𝜓𝑁𝐻 = 𝜉2𝑒−𝑖𝜔(𝑟∗+𝑡)𝑒𝑖𝑘𝑧, (38)

where

𝑟∗ = ∫ 𝑑𝑟√𝑟𝑓 →
�̂�∗ = lim

𝑟→𝑟+
𝑟∗ ≃ ln (−𝑦)√𝑟+ ,

�̂�∗ ≃ 12𝜅 ln (−𝑦) ⇒
𝑦 = −𝑒2𝜅𝑟∗ .

(39)

On the other hand, for 𝑦 → ∞, the inverse transforma-
tion of the hypergeometric function is given by [41]

𝐹 (𝛼, 𝜍; 𝜂; 𝑦) = (−𝑦)−𝛼 Γ (𝜂) Γ (𝜍 − 𝛼)Γ (𝜍) Γ (𝜂 − 𝛼)
× 𝐹(𝛼, 𝛼 + 1 − 𝜂; 𝛼 + 1 − 𝜍; 1𝑦)
+ (−𝑦)−𝜍 Γ (𝜂) Γ (𝛼 − 𝜍)Γ (𝛼) Γ (𝜂 − 𝜍)
× 𝐹(𝜍, 𝜍 + 1 − 𝜂; 𝜍 + 1 − 𝛼; 1𝑦) ,

(40)

which yields the following asymptotic solution:

𝑅𝑆𝐼 ≃ 𝜉2 (−𝑦)−𝑖𝐴−𝐵−𝛼 Γ (𝜂) Γ (𝜍 − 𝛼)Γ (𝜍) Γ (𝜂 − 𝛼)
+ 𝜉2 (−𝑦)−𝑖𝐴−𝐵−𝜍 Γ (𝜂) Γ (𝛼 − 𝜍)Γ (𝛼) Γ (𝜂 − 𝜍) .

(41)

To express (41) in a more compact form, let us perform the
following simplifications. Considering

−𝑖𝐴 − 𝐵 − 𝛼 = −12 (1 + 𝑖𝜏) , (42)

together with

−𝑖𝐴 − 𝐵 − 𝜍 = −12 (1 − 𝑖𝜏) , (43)

and letting 𝑥 = −𝑦, the radial equation for 𝑟 → ∞ takes
the form

𝑅𝑆𝐼 = 1√𝑥 [𝜉2𝑥−𝑖𝜏/2 Γ (𝜂) Γ (𝜍 − 𝛼)Γ (𝜍) Γ (𝜂 − 𝛼)
+ 𝜉2𝑥𝑖𝜏/2 Γ (𝜂) Γ (𝛼 − 𝜍)Γ (𝛼) Γ (𝜂 − 𝜍)] .

(44)

One can express 𝑥 in terms of the tortoise coordinate at SI as

𝑟∗ = ∫ 𝑑𝑟√𝑟𝑓 →
�̂�∗ = lim

𝑟→∞
𝑟∗ ≃ − 2√𝑟 ,

(45)

such that

𝑥 = 𝑟 − 𝑟+
𝑥|𝑟→∞ ≃ 𝑟 = 4𝑒−2𝑟∗ , (46)

where �̂�∗ = ln 𝑟∗. Therefore, we have

𝑅𝑆𝐼 = 1√𝑟 [Λ 1𝑒𝑖𝑟∗𝜏 + Λ 2𝑒−𝑖𝑟∗𝜏] , (47)

where

Λ 1 = 2−𝑖𝜏𝜉2 Γ (𝜂) Γ (𝜍 − 𝛼)Γ (𝜍) Γ (𝜂 − 𝛼) , (48)

Λ 2 = 2−𝑖𝜏𝜉2 Γ (𝜂) Γ (𝛼 − 𝜍)Γ (𝛼) Γ (𝜂 − 𝜍) . (49)

Thus, the asymptotic wave solution becomes

𝜓𝑆𝐼 = 𝑒𝑖𝑘𝑧√𝑟 [Λ 1𝑒𝑖(𝑟∗𝜏−𝜔𝑡) + Λ 2𝑒−𝑖(𝑟∗𝜏+𝜔𝑡)] . (50)

4. Radiation of Dilatonic 5𝐷 BS

4.1. The Flux Computation. In this section, we compute the
ingoing flux at the horizon (𝑟 → 𝑟+) and the asymptotic
flux for the SI region (𝑟 → ∞). The evaluation of these flux
values will enable us to calculate the GF and, subsequently,
the ACS and DR.

The NH-flux can be calculated via [42, 43]

�𝑁𝐻 = 𝐴𝐵𝐻2𝑖 (𝜓𝑁𝐻𝜕𝑟∗𝜓𝑁𝐻 − 𝜓𝑁𝐻𝜕𝑟∗𝜓𝑁𝐻) , (51)
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which, after a few manipulations, can be written as

�𝑁𝐻 = −4𝜋𝛽 𝜉22 𝑟+. (52)

The incoming flux at SI is computed via

�𝑆𝐼 = 𝐴𝐵𝐻2𝑖 (𝜓𝑆𝐼𝜕𝑟∗𝜓𝑆𝐼 − 𝜓𝑆𝐼𝜕𝑟∗𝜓𝑆𝐼) . (53)

Having performed the steps to evaluate the derivatives with
respect to the tortoise coordinate, the incoming flux at SI
takes the form

�𝑆𝐼 = −4𝜋𝛽 Λ 2
2 𝜏. (54)

It is important to remark that if we were dealing with
the standard particles rather than tachyons, 𝜏 (35) would be
imaginary, i.e., 𝜏 → 𝑖𝜏, and therefore SI incoming wave
would lead this flux evaluation (53) to be zero. This would
indicate the existence of a divergent GF.

4.2. ACS of Dilatonic 5𝐷 BS. The GF of the dilatonic 5𝐷 BS
is obtained by the following expression [6, 8]:

𝛾𝑙,𝑘 = �𝑁𝐻
�𝑆𝐼

= −4𝜋𝛽 𝜉22 𝑟+−4𝜋𝛽 Λ 2
2 𝜏 , (55)

which is nothing but

𝛾𝑙,𝑘 = 𝜉22 𝑟+Λ 2
2 𝜏 . (56)

After a few manipulations, with (see [40])

Γ (𝑖𝑦)2 = 𝜋𝑦 sinh (𝜋𝑦) , (57)

Γ (1 + 𝑖𝑦)2 = 𝜋𝑦
sinh (𝜋𝑦) , (58)

Γ (12 + 𝑖𝑦)

2 = 𝜋

cosh (𝜋𝑦) , (59)

(56) can be presented as

𝛾𝑙,𝑘 = 𝜅𝑟+𝜔 (𝑒2𝜋𝜔/𝜅 − 1) Ξ, (60)

where

Ξ = 𝑒2𝜋𝜏 − 1[𝑒𝜋(𝜏+𝜔/𝜅−𝑘/𝜅√𝛽) + 1] [𝑒𝜋(𝜏+𝜔/𝜅+𝑘/𝜅√𝛽) + 1] . (61)

To evaluate the ACS of the dilatonic 5𝐷 BS concerned, we
follow the study of [44].Thus, one can get the ACS expression
in 5𝐷 as follows:

𝜎𝑙,𝑘 = 4𝜋 (𝑙 + 1)2𝜔3 𝛾𝑙,𝑘, (62)
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Figure 1: Plots of the ACS (𝜎𝑙,𝑘) versus frequency 𝜔. The plots are
governed by (63). The configuration of the dilatonic 5𝐷 BS is as
follows: 𝜇 = 3 and 𝑄 = 0.2.

which, in our case, becomes

𝜎𝑙,𝑘 = 4𝜋 (𝑙 + 1)2 𝜅𝑟+𝜔4 (𝑒2𝜋𝜔/𝜅 − 1) Ξ. (63)

Furthermore, one can also get the total ACS as follows
[45]:

𝜎𝑇𝑜𝑡𝑎𝑙𝑎𝑏𝑠 = ∞∑
𝑙=0

𝜎𝑙,𝑘. (64)

In Figure 1, the relationship between absorption ACS and
frequency is examined; the figure is drawn based on (63).
In the high frequency regime, all ACSs tend to vanish by
following the same curve. Unlike the high frequency regime,
ACSs diverge in the low frequency regime as 𝜔 → 0. As a
final remark, negative 𝜎𝑙,𝑘 behavior has not been observed in
our graphical analyses, which means that superradiance does
not occur [46], as expected (as the dilatonic 5𝐷 BS (12) does
not rotate).

4.3. DR of Dilatonic 5𝐷 BS. The final step follows from
the ACS evaluation. The DR of the dilatonic 5𝐷 BS can be
computed via [8]

Γ𝑙,𝑘𝐷𝑅 = 𝜎𝑙,𝑘𝑒2𝜋𝜔/𝜅 − 1 = 4𝜋 (𝑙 + 1)2 𝜅𝑟+𝜔4 Ξ. (65)

Figure 2 shows how the DR behaves with respect to
the frequency. By taking (65) as the reference, the plots for
increasing 𝑙 are illustrated. In the high frequency regime, all
DRs fade in the same way. In the low frequency regime, DRs
tend to diverge. However, it can be observed that when 𝑙 has
larger values, the correspondingDR diverges when𝜔 is much
closer to zero.
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Figure 2: Plots of the DR (Γ𝑙,𝑘𝐷𝑅) versus frequency 𝜔. The plots are
governed by (65). The configuration of the dilatonic 5𝐷 BS is as
follows: 𝜇 = 3 and 𝑄 = 0.2.

5. Conclusion

This article evaluated the GF, ACS, and DR for the dilatonic5𝐷 BS geometry arising from the EYMBID theory. As a
result of the analytical method we followed, it was shown that
the radiation of the dilatonic 5𝐷 BS spacetime can only be
caused by tachyons. The crucial point here is that if standard
scalar particles had been used rather than tachyonic ones,
zero incoming flux at SI would have been obtained, which
would lead to the diverging of the GF.Therefore, in a way, we
were forced to use tachyons to solve this problem, and this
carries great importance as it implies that the fifth dimension
could be directly linked to tachyons. In short, according to
our analytical method, we obtained results (compatible with
boundary conditions) when the radiation of the dilatonic 5𝐷
BS was provided by the tachyons.

In future study, we want to extend our analysis to the
Dirac equation for the geometry of the dilatonic 5𝐷 BS.
Hence, we are planning to undertake similar analysis for
fermions and compare the results with scalar ones.
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We analyze the possibility of hadron Dark Matter carriers consisting of singlet quark and the light standard one. It is shown that
stable singlet quarks generate effects of new physics which do not contradict restrictions from precision electroweak data. The
neutral and charged pseudoscalar low-lying states are interpreted as the DarkMatter particle and its mass-degenerated partner. We
evaluate their masses and lifetime of the charged component and describe the potential asymptotes of low-energy interactions of
these particles with nucleons andwith each other. Some peculiarities of Sommerfeld enhancement effect in the annihilation process
are also discussed.

1. Introduction

The problem of Dark Matter (DM) explanation has been
in the center of fundamental physics attention for a long
time. The existence of the DM is followed from astrophysical
data and remains the essential phenomenological evidence
of new physics’ manifestations beyond the Standard Model
(SM) [1, 2]. Appropriate candidates as DM carriers should be
stable particles which weakly interact with ordinary matter
(so called, WIMPs). Such particles usually are considered
in the framework of supersymmetric, hypercolor, or other
extensions of the SM (see, for instance, review [3]). The
last experimental rigid restrictions on cross section of spin-
independent WIMP-nucleon interaction [4] exclude many
variants of WIMPs as the DM carriers. So, another scenarios
are discussed in literature, such as quarks from fourth gener-
ation, hypercolor quarks, dark atoms, and axions [3]. In spite
of some theoretical peculiarities, the possibility of hadronic
DM is not excluded and considered, for example, in [5–11].
The possibility of new hadrons existence, which can be inter-
preted as carriers of the DM,was analyzed in detail within the
framework of the SM chiral-symmetric extension [11].

Principal feature of the hadronic DM structure is that
the strong interaction of new stable quarks with standard
ones leads to the formation of neutral stable meson or

baryon heavy states. Such scenario can be realized in the
extensions of the SM with extra generation [5–9], in mirror
and chiral-symmetric models [11, 12] or in extensions with
singlet quark [13–17]. The second variant was considered
in detail in [11], where the quark structure and low-energy
phenomenology of new heavy hadrons were described. It was
shown that the scenario does not contradict cosmochemical
data, cosmological tests, and known restrictions for new
physics effects. However, the explicit realization of the chiral-
symmetric scenario faces some theoretical troubles, which
can be eliminated with the help of artificial assumptions.
The extensions of SM with fourth generation and their
phenomenology were considered during last decades in spite
of strong experimental restrictions which, for instance, follow
from invisible Z-decay channel, unitary condition for CM-
matrix, FCNC, etc.Themain problem of 4th generation is the
contribution of new heavy quarks to the Higgs boson decays
[18]. The contribution of new heavy quarks to vector boson
coupling may be compensated by the contribution of 50 GeV
neutrino [19–21]; however, such assumption seems artificial.
In this paper, we analyze the hypothesis of hadronic Dark
Matter which follows from the SM extension with singlet
quark.

The paper is organised as follows. In the second section
we describe the extension of the SM with singlet quark and
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consider the restrictions on its phenomenology, following
from precision electroweak data. Quark composition and
interaction of new hadrons with the standard ones at low
energies are analyzed in the third section. The masses of
new hadrons, decay properties of charged partner of the DM
carrier, and annihilation cross section are analyzed in the
fourth section.

2. Standard Model Extension with
Stable Singlet Quark

There is a wide class of high-energy extensions of the SMwith
singlet quarks which are discussed during many decades.
Here, we consider the simplest extension of the SM with
singlet quarks as the framework for description of the DM
carrier. Singlet (or vector-like) quark is defined as fermion
with standard 𝑈�푌(1) and 𝑆𝑈�퐶(3) gauge interactions but it
is singlet under 𝑆𝑈�푊(2) transformations. The low-energy
phenomenology of both down- and up-type quarks (D and
U) was considered in detail in large number of works (see, for
instance, [10, 22–24] and references therein). As a rule, singlet
quark is supposed to be unstable due to the mixing with the
ordinary ones. This mixing leads to the FCNC appearing at
the tree level. As a consequence, we get additional contribu-
tions into rare processes, such as rare lepton and semileptonic
decays, andmixing in the systems of neutralmesons (𝑀0−𝑀0

oscillations). The current experimental data on new physics
phenomena give rigid restrictions for the angles of ordinary-
singlet quark mixing. In this work, we consider alternative
aspect of the extensions with singlet quark 𝑄, namely, the
scenario with the absence of such mixing. As a result, we
get stable singlet quark which has no decay channels due to
absence of nondiagonal 𝑄-quark currents. More exactly, due
to confinement, the singlet quark forms bound states with
the ordinary ones, for instance (𝑄𝑞), and the lightest state
is stable. In this work, we consider some properties of such
particles and analyze the possibility of interpreting the stable
neutral meson𝑀0 = (𝑄𝑞) as the DM carrier.

Now, we examine the minimal variants of the SM exten-
sion with singlet quark𝑄�퐴, where subscript𝐴 = 𝑈,𝐷 denotes
up- or down- type with charge 𝑞 = 2/3, −1/3. According to
the definition, the field 𝑄 is singlet with respect to 𝑆𝑈�푊(2)
group and has standard transformations under abelian𝑈�푌(1)
and color 𝑆𝑈�퐶(3) groups. So, the minimal additional gauge-
invariant Lagrangian has the form

𝐿�푄 = 𝑖𝑄𝛾�휇 (𝜕�휇 − 𝑖𝑔1𝑌2 𝑉�휇 − 𝑖𝑔�푠𝜆�푎2 𝐺�푎
�휇)𝑄 −𝑀�푄𝑄𝑄, (1)

where 𝑌/2 = 𝑞 is charge in the case of singlet 𝑄, and𝑀�푄 denotes phenomenological mass of quark. Note, singlet
quark (SQ) cannot get mass term from the standard Higgs
mechanism because the Higgs doublet is fundamental rep-
resentation of 𝑆𝑈(2) group. Abelian part of the interaction
Lagrangian (1), which will be used in further considerations,
includes the interactions with physical photon 𝐴 and 𝑍
boson:

𝐿�푖�푛�푡�푄 = 𝑔1𝑞𝑉�휇𝑄𝛾�휇𝑄 = 𝑞𝑔1 (𝑐�푤𝐴�휇 − 𝑠�푤𝑍�휇)𝑄𝛾�휇𝑄, (2)

where 𝑐�푤 = cos 𝜃�푤, 𝑠�푤 = sin 𝜃�푤, 𝑔1𝑐�푤 = 𝑒, and 𝜃�푤 is Weinberg
angle of mixing. Note, the left and right parts of the singlet
field 𝑄 have the same transformation properties, interaction
(2) has vector-like (chiral-symmetric) form, and singlet quark
usually is named vector-like quark [23, 24].

First of all, we should take into account direct and indirect
restrictions on new physics (NF)manifestations which follow
from the precision experimental data. The additional chiral
quarks, for instance from standard fourth generation, are
excluded at the 5 𝜎 level by LHC data on Higgs searches
[22]. As the vector-like (nonchiral) singlet fermions do not
receive theirmasses from aHiggs doublet, they are allowed by
existing experimental data on Higgs physics. The last limits
on new colored fermions follow from the jets data from
the LHC [25]. The corresponding limits for effective colored
factors 𝑛�푒�푓�푓 = 2, 3, 6 are about 200 GeV, 300 GeV, and 400
GeV. Note that these limits are much less than the estimation
of quark mass which follows from the DM analysis (see the
fourth section). Theoretical and experimental situation for
long-lived heavy quarks were considerably discussed in the
review [10], where it was noted that vector-like new heavy
quarks can elude experimental constraints from LHC.

Indirect limits on new fermions follow from precision
electroweak measurements of the effects, such as flavor-
changing neutral currents (FCNC) and vector boson polar-
ization, which take place at the loop level in the SM. Because
we consider the case of stable singlet quark, there is nomixing
with ordinary quarks and, consequently, FCNC effects are
absent.TheNFmanifestations in polarization effects of gauge
bosons 𝛾, 𝑍,𝑊 are usually described by oblique Peskin-
Takeuchi parameters [26] (PT parameters). From (2), it
follows that the singlet quark gives nonzero contributions
into polarization of 𝛾- and 𝑍-bosons which are described by
the values of Π�훾�훾, Π�훾�푍, Π�푍�푍. As 𝑊-boson does not interact
with the SQ, corresponding contribution into polarization
operator is zero, Π�푊�푊 = 0. These parameters are expressed
in terms of vector bosons polarization Π�푎�푏(𝑝2), where 𝑎, 𝑏 =𝑊,𝑍, 𝛾. Here, we use the definition Π�휇](𝑝2) = 𝑝�휇𝑝]𝑃(𝑝2) +𝑔�휇]Π(𝑝2) and the expressions for PToblique parameters from
[27]. In the case under consideration, Π�푎�푏(0) = 0 and PT
parameters can be represented by the following expressions:

𝛼𝑆 = 4𝑠2�푤𝑐2�푤 [Π�푍�푍 (𝑀2
�푍,𝑀2

�푈)𝑀2
�푍

− 𝑐2�푤 − 𝑠2�푤𝑠�푤𝑐�푤 Π�耠
�훾�푍 (0,𝑚2

�푈)

− Π�耠
�훾�훾 (0,𝑀2

�푈)] ;

𝛼𝑈 = −4𝑠2�푤 [𝑐2�푤Π�푍�푍 (𝑀2
�푍,𝑀2

�푈)𝑀2
�푍

+ 2𝑠�푤𝑐�푤Π�耠
�훾�푍 (0,𝑀2

�푈)

+ 𝑠2�푤Π�耠
�훾�훾 (0,𝑀2

�푈)] ;

𝛼𝑇 = −Π�푍�푍 (0,𝑀2
�푈)𝑀2

�푍

= 0;
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𝛼𝑉 = Π�耠
�푍�푍 (𝑀2

�푍,𝑀2
�푈) − Π�푍�푍 (𝑀2

�푍,𝑀2
�푈)𝑀2

�푍

;
𝛼𝑊 = 0 (𝑊 ∼ Π�푊�푊 = 0) ;
𝛼𝑋 = −𝑠�푤𝑐�푤 [Π�훾�푍 (𝑀2

�푍,𝑀2
�푈)𝑀2

�푍

− Π�耠
�훾�푍 (0,𝑀2

�푈)] .
(3)

In (3) polarization Π�푎�푏(𝑝2,𝑀2
�푈), where 𝑎, 𝑏 = 𝛾, 𝑍, in one-

loop approach can be represented in simple form (for the case
of SQ with 𝑞 = 2/3):

Π�푎�푏 (𝑝2,𝑀2
�푈) = 𝑔219𝜋2 𝑘�푎�푏𝐹 (𝑝2,𝑀2

�푈) ;
𝑘�푍�푍 = 𝑠2�푤,
𝑘�훾�훾 = 𝑐2�푤,
𝑘�훾�푍 = −𝑠�푤𝑐�푤;

𝐹 (𝑝2,𝑀2
�푈) = −13𝑝2 + 2𝑀2

�푈 + 2𝐴0 (𝑀2
�푈)

+ (𝑝2 + 2𝑀2
�푈) 𝐵0 (𝑝2,𝑀2

�푈) .

(4)

In (4) the function 𝐹(𝑝2,𝑀2
�푈) contains divergent terms in

the one-point,𝐴0(𝑀2
�푈), and two-point, 𝐵0(𝑝2,𝑀2

�푈), Veltman
functions which are exactly compensated in physical param-
eters (3). Using standard definitions of the functions 𝐴0(𝑀2

�푈)
and 𝐵0(𝑝2,𝑀2

�푈) and the equality 𝐵�耠0(0,𝑀2
�푈) = 𝑀2

�푈/6, by
straightforward calculations we get simple expressions for
oblique parameters:

𝑆 = −𝑈 = 16𝑠4�푤9𝜋 [−13
+ 2(1 + 2𝑀2

�푄𝑀2
�푍

)(1 − √𝛽 arctan 1
√𝛽)] ,

(5)

where 𝛽 = 4𝑀2
�푄/𝑀2

�푍 − 1. We check that in the limit𝑀2
�푄/𝑀2

�푍 → ∞ the values of 𝑆 and 𝑈 go to zero as ∼𝑀2
�푍/𝑀2

�푄 in accordance with well-known results for the case
of vector-like interactions [2, 27]. From (5) it follows that
beginning from 𝑀�푄 = 500 GeV the parameter 𝑆 < 10−2
and the remaining nonzero parameters have nearly the same
values. These values are significantly less than the current
experimental limits [28]: 𝑆 = 0.00 + 0.11(−0.10), 𝑈 =0.08 ± 0.11, 𝑇 = 0.02 + 0.11(−0.12); that is, the scenario
with up-type singlet quark satisfies the restrictions on indirect
manifestations of heavy new fermions. Note that the parame-
ters 𝑉,𝑊,𝑋 describe the contributions of new fermions with
masses close to the electroweak scale. In the case of down-
type singlet quark, having charge 𝑞 = −1/3, the contributions
into all polarization and, consequently, into PT parameters
are four times smaller.

In the quark-gluon phase (QGP) of the Universe evo-
lution, stable SQ interacts with standard quarks through
exchanges by gluons 𝑔, 𝛾, and 𝑍 according to (1). So, we have
large cross section for annihilation into gluons and quarks,𝑄𝑄 → 𝑔𝑔 and 𝑄𝑄 → 𝑞𝑞 correspondingly, and also small
additional contributions in electroweak channels 𝑄𝑄 →𝛾𝛾,𝑍𝑍. These cross sections can be simply derived from the
known expressions for the processes 𝑔𝑔 → 𝑄𝑄 and 𝑞𝑞 →𝑄𝑄 (see review in [28]) by time inversion. Two-gluon cross
section in the low-energy limit looks like

𝜎 (𝑈𝑈 → 𝑔𝑔) = 14𝜋3
𝛼2�푠

V�푟𝑀2
�푈

, (6)

where 𝑀�푈 is mass of 𝑈-quark and 𝛼�푠 = 𝛼�푠(𝑀�푈) is strong
coupling at the corresponding scale. Two-quark channel in
the massless limit𝑚�푞 → 0 is as follows:

𝜎 (𝑈𝑈 → 𝑞𝑞) = 2𝜋9
𝛼2�푠

V�푟𝑀2
�푈

. (7)

So, the two-gluon channel dominates. We should note that
the cross section of SQ-annihilation is suppressed by large𝑀�푈 in comparison with the annihilation of standard quarks.

After the transition from quark-gluon plasma to
hadronization stage, the singlet quarks having standard
strong interactions (gluon exchange) form coupled states
with ordinary quarks. New heavy hadrons can be constructed
as coupled states which consist of heavy stable quark 𝑄 and
a light quark from the SM quark sector. Here, we consider
the simplest two-quark states, neutral and charged mesons.
The lightest of them, for instance, neutral meson 𝑀 = (𝑄𝑞),
is stable and can be considered as the carrier of cold Dark
Matter. Possibility of existence of heavy stable hadrons
was carefully analyzed in [11], where it was shown that
this hypothesis does not contradict cosmochemical data
and cosmological test. This conclusion was based on the
important property of new hadron, namely, repulsive strong
interaction with nucleons at large distances. The effect will
be qualitatively analyzed for the case of 𝑀𝑀 and 𝑀𝑁
interactions in the next section.

3. Quark Composition of New Hadrons and
Their Interactions with Nucleons

At the hadronization stage, heavy SQ form the coupled states
with the ordinary light quarks. Classification of these new
heavy hadrons was considered in [11], where quark composi-
tion of two-quark (meson) and three-quark (fermion) states
was represented for the case of up- and down-types of quark𝑄. Stable and long-lived new hadrons are divided into three
families of particles with characteristic values of masses M,
2M and 3M, where M is the mass of 𝑄-quark. Quantum
numbers and quark content of these particles for the case of
up-type quark 𝑄 = 𝑈 are represented in Table 1.

Some states in Table 1 were also considered in [10] for
the case of long-lived vector-like heavy quark and in [29],
where𝑈-type quark belongs to the sequential 4th generation.
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Table 1: Characteristics of 𝑈-type hadrons.
𝐽�푃 = 0− 𝑇 = 12 𝑀 = (𝑀0 𝑀−) 𝑀0 = 𝑈𝑢,𝑀− = 𝑈𝑑
𝐽 = 12 𝑇 = 1 𝐵1 = (𝐵++

1 𝐵+
1 𝐵0

1) 𝐵++
1 = 𝑈𝑢𝑢, 𝐵+

1 = 𝑈𝑢𝑑, 𝐵0
1 = 𝑈𝑑𝑑

𝐽 = 12 𝑇 = 12 𝐵2 = (𝐵++
2 𝐵+

2 ) 𝐵++
2 = 𝑈𝑈𝑢, 𝐵+

2 = 𝑈𝑈𝑑
𝐽 = 32 𝑇 = 0 (𝐵++

3 ) 𝐵++
3 = 𝑈𝑈𝑈

Table 2: Characteristics of𝐷-type hadrons.

𝐽�푃 = 0− 𝑇 = 12 𝑀�퐷 = (𝑀+
�퐷 𝑀0

�퐷) 𝑀+
�퐷 = 𝐷𝑢,𝑀0

�퐷 = 𝐷𝑑
𝐽 = 12 𝑇 = 1 𝐵1�퐷 = (𝐵+

1�퐷 𝐵0
1�퐷 𝐵−

1�퐷) 𝐵+−
1�퐷 = 𝐷𝑢𝑢(𝐷𝑑𝑑), 𝐵0

1�퐷 = 𝐷𝑢𝑑
𝐽 = 12 𝑇 = 12 𝐵2�퐷 = (𝐵0

2�퐷 𝐵−
2�퐷) 𝐵0

2�퐷 = 𝐷𝐷𝑢, 𝐵−
2�퐷 = 𝐷𝐷𝑑

𝐽 = 32 𝑇 = 0 (𝐵−
3�퐷) 𝐵−

3�퐷 = 𝐷𝐷𝐷

In [30], an important property of suppression of hadronic
interaction of heavy quark systems containing three new
quarks, like (𝑈𝑈𝑈) states, was considered. This model has𝑆𝑈(3) × 𝑆𝑈(2) × 𝑆𝑈(2) × 𝑈(1) symmetry and offers a novel
alternative for the DM carriers—they can be an electromag-
netically bound states made of terafermions. The charged𝑀− and neutral 𝑀0 particles can manifest themselves in
cosmic rays and as carrier of the DM. In [7–9] a possibility
is discussed that new stable charged hadrons exist but are
hidden from detection, being bounded inside neutral dark
atoms. For instance, stable particles with charge 𝑄 = −2 can
be bound with primordial helium.

Interactions of the baryon-type particles 𝐵1 and 𝐵2 (the
second and third line in Table 1) are similar to the nucleonic
ones, and they may compose atomic nuclei together with
nucleons. As it was demonstrated in [11], this circumstance
does not prevent the 𝐵1 and 𝐵2 burnout in the course of
cosmochemical evolution. There are no problems also with
interaction of 𝐵3 isosinglet with nucleons which proceeds
mainly through exchange by mesons, 𝜂 and 𝜂�耠. The constants
of such interactions, as it follows from the quark model of
the mesonic exchange (see [11]), are not a large one; i.e.,𝐵3𝑁 interaction is suppressed in comparison with the 𝑁𝑁
interaction.

There is another type of hypothetical hadrons which
possess analogous properties of strong interactions. They are
constructed from stable quark of the down-type (D-quark)
with𝑄 = −1/3 electric charge. Quantum numbers and quark
content of these particles are represented in Table 2 (see the
corresponding analysis and comments in [11]).

In this table, the states 𝑀+
�퐷, 𝐵01�퐷, 𝐵02�퐷, 𝐵−3�퐷 are stable.

Particles possessing a similar quark composition appear in
various high-energy generalizations of SM, in which𝐷-quark
is a singlet with respect to weak interactions group. For
example, each quark-lepton generation in 𝐸(6) × 𝐸(6)-model
contains two singlet 𝐷-type quarks. This quark appears, also,
from the Higgs sector in supersymmetric generalization of𝑆𝑈(5) Great Unification model. As a rule, with reference to

cosmological restrictions, it is assumed that new hadrons
are unstable due to the mixing of singlet 𝐷-quarks with
the standard quarks of the down-type. Note that the conse-
quences for cosmochemical evolution, caused by existence
of the hypothetical stable 𝑈- and 𝐷-types hadrons, are very
different.

Cosmochemical evolution of new hadrons at hadroniza-
tion stage was qualitatively studied both for 𝑈 and 𝐷 cases
in [11]. A very important conclusion was arrived from this
analysis: baryon asymmetry in new quark sector must exist
and has a sign opposite to asymmetry in standard quark
sector (quarks 𝑈 disappear but antiquarks 𝑈 remain). This
conclusion follows from the strong cosmochemical restric-
tion for the ratio “anomalous/natural” hydrogen 𝐶 ⩽ 10−28
for𝑀�푄 ≲ 1 TeV [31] and anomalous helium𝐶 ⩽ 10−12−10−17
for 𝑀�푄 ≤ 10 TeV [32]. In our case, the state 𝐵+1 = (𝑈𝑢𝑑)
is heavy (anomalous) proton which can form anomalous
hydrogen. At the stage of hadronization, 𝐵+1 can be formed
by direct coupling of quarks and as a result of reaction 𝑀0 +𝑁 → 𝐵+1 + 𝑋, where 𝑋 is totality of leptons and photons
in the final state. The antiparticles 𝐵+1 are burning out due to
the reaction 𝐵+1 + 𝑁 → 𝑀0 + 𝑋. The states like (𝑝𝑀0) can
also manifest themselves as anomalous hydrogens, but as it
was shown in [11], interaction of 𝑝 and 𝑀0 has a potential
barrier at large distances. So, formation of coupled states(𝑝𝑀0) at low energies is strongly suppressed. As it follows
from the experimental restrictions on anomalous hydrogen
and helium [31, 32] that baryon symmetry in extra sector of
quarks is not excluded for the case of superheavy new quarks
with masses 𝑀�푄 ≫ 1 TeV (see, also, the fourth section).
Further, we consider the interaction of new hadrons with
nucleons and their self-interaction in more detail.

At low energies the hadrons interactions can be approx-
imately described by a model of meson exchange in terms
of an effective Lagrangian. It was shown in [33] that low-
energy baryon-meson interactions are effectively described
by 𝑈(1) × 𝑆𝑈(3) gauge theory, where 𝑈(1) is the group of
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semistrong interaction and 𝑆𝑈(3) is group of hadronic uni-
tary symmetry. Effective physical Lagrangian which was used
for calculation of 𝑀𝑁 interaction potential is represented
in [11]. By straightforward calculations, it was demonstrated
there that the dominant contribution resulted from the
exchanges by 𝜌 and 𝜔 mesons. This Lagrangian at low
energies can be applied for analyzing both 𝑀𝑁 and 𝑀𝑀
interactions. Here, we give the part of Lagrangian with vector
meson exchange which will be used for evaluation of the
potential:

𝐿 �푖�푛�푡 = 𝑔�휔𝜔�휇𝑁𝛾�휇𝑁 + 𝑔�휌𝑁𝛾�휇𝜌�휇𝑁
+ 𝑖𝑔�휔�푀𝜔�휇 (𝑀†𝜕�휇𝑀− 𝜕�휇𝑀†𝑀)
+ 𝑖𝑔�휌�푀 (𝑀†𝜌�휇𝜕�휇𝑀− 𝜕�휇𝑀†𝜌�휇𝑀) .

(8)

In (8) 𝑁 = (𝑝, 𝑛),𝑀 = (𝑀0,𝑀−),𝑀† = (𝑀0,𝑀+), and
coupling constants are the following [11]:

𝑔�휌 = 𝑔�휌�푀 = 𝑔2 ,
𝑔�휔 = √3𝑔2 cos 𝜃 ,

𝑔�휔�푀 = 𝑔
4√3 cos 𝜃 ,

𝑔24𝜋 ≈ 3.16,
cos 𝜃 = 0.644.

(9)

Note that the one-pion exchange, which is dominant in 𝑁𝑁
interaction, is forbidden in the 𝑀𝑀𝜋-vertex due to parity
conservation.

In Born approximation, the potential of interaction and
the nonrelativistic amplitude of scattering for the case of
nonpolarized particles are connected by the relation:

𝑈(→𝑟 ) = − 14𝜋2𝜇 ∫𝑓 (𝑞) exp (𝑖→𝑞→𝑟 ) 𝑑3𝑞, (10)

where 𝜇 is the reduced mass of scattering particles. For the
case of𝑀 scattering off nucleons, this potential was calculated
in [11], where the relation 𝑓(𝑞) = −2𝜋𝑖𝜇𝐹(𝑞) between
nonrelativistic amplitude, 𝑓(𝑞), and Feynman amplitude,𝐹(𝑞), was utilized. As it was shown, contributions of scalar
and two-pion exchanges are suppressed by the factor ∼𝑚�푁/𝑚�푀. Expressions for potentials of interaction of various
pairs from doublets (𝑀0,𝑀−) and (𝑝, 𝑛) have the following
form:

𝑈(𝑀0, 𝑝; 𝑟) = 𝑈 (𝑀−, 𝑛; 𝑟) ≈ 𝑈�휔 (𝑟) + 𝑈�휌 (𝑟) ,
𝑈 (𝑀0, 𝑛; 𝑟) = 𝑈 (𝑀−, 𝑝; 𝑟) ≈ 𝑈�휔 (𝑟) − 𝑈�휌 (𝑟) . (11)

In (11) the terms𝑈�휔(𝑟) and𝑈�휌(𝑟) are defined by the following
expressions:

𝑈�휔 = 𝑔2𝐾�휔16𝜋cos2𝜃 1𝑟 exp(− 𝑟𝑟�휔) ,

𝑈�휌 = 𝑔2𝐾�휌16𝜋 1𝑟 exp(− 𝑟𝑟�휌) ,
(12)

where 𝐾�휔 = 𝐾�휌 ≈ 0.92, 𝑟�휔 = 1.04/𝑚�휔, 𝑟�휌 = 1.04/𝑚�휌.
Taking into account these values and 𝑚�휔 ≈ 𝑚�휌, we rewrite
expressions (11) in the form

𝑈 (𝑀0, 𝑝; 𝑟) = 𝑈 (𝑀−, 𝑛; 𝑟) ≈ 2.51𝑟 exp(− 𝑟𝑟�휌) ,

𝑈 (𝑀0, 𝑛; 𝑟) = 𝑈 (𝑀−, 𝑝; 𝑟) ≈ 1.01𝑟 exp(− 𝑟𝑟�휌) .
(13)

Two consequences can be deduced from expressions (13).
Firstly, all the four pairs of particles have repulsive potential
(𝑈 > 0) of interaction at long distances, where Born approx-
imation is valid. Secondly, due to potential barrier the DM
particles at low energies cannot interact with nucleons; i.e.,
they cannot form the coupled states (𝑝𝑀0) which manifest
themselves as anomalous protons. So, they cannot be directly
detected. To overcome the barrier, nucleons should have
energy ∼ 1 𝐺𝑒𝑉 or more and this situation takes place in
high-energy cosmic rays.

Potential of 𝑀𝑀 interaction can be also reconstructed
with the help of the above given method. Here, we deter-
mine only the sign of potential which defines characteristic
(attractive or repulsive) of interaction at long distances. This
characteristic plays crucial role for low-energy collisions
of the DM particles and nucleons. To determine the sign
of potential we use the definition of Lagrangian in the
nonrelativistic limit:

𝐿 = 𝐿0 + 𝐿 �푖�푛�푡 → 𝑊�푘 − 𝑈, (14)

where 𝑊�푘 is kinetic part and 𝑈 is potential. There is a
relation between effective 𝐿 �푖�푛�푡(𝑞) and Feynman amplitude𝐹(𝑞): 𝐹(𝑞) = 𝑖𝑘𝐿 �푖�푛�푡(𝑞), where 𝑘 > 0 is real coefficient
depending on the type of particles. As a result, we get equality𝑠𝑖𝑔𝑛𝑢𝑚(𝑈) = 𝑠𝑖𝑔𝑛𝑢𝑚(𝑖𝐹), where amplitude of interaction
is determined by one-particle exchange diagrams for the
process 𝑀1𝑀2 → 𝑀�耠

1𝑀�耠
2. Here, 𝑀 = (𝑀0,𝑀0) and

vertexes are defined by the low-energy Lagrangian (8). With
the help of this simple approach, one can check previous
conclusion about repulsive character of 𝑀𝑁 interactions.
First of all it should be noted that low-energy effective
Lagrangians of 𝑁𝑀0 and 𝑁𝑀0 have opposite sign due to
different sign of vertexes 𝜔𝑀0𝑀0 and 𝜔𝑀0𝑀0. This effect
can be seen from the differential structure of corresponding
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part of Lagrangian (8) and representation of field function of
the𝑀-particle in the form:

𝑀(𝑥) = ∑
�푝

𝑎−�푝 (𝑀) exp (−𝑖𝑝𝑥) + 𝑎+�푝 (𝑀) exp (𝑖𝑝𝑥) ,
𝑀† (𝑥) = ∑

�푝

𝑎+�푝 (𝑀) exp (𝑖𝑝𝑥) + 𝑎−�푝 (𝑀) exp (−𝑖𝑝𝑥) . (15)

In (15), 𝑎±�푝 (𝑀) and 𝑎±�푝 (𝑀) are the operators of creation and
destruction of particles𝑀 and antiparticles𝑀 with momen-
tum 𝑝. As a result, we get the vertexes 𝜔(𝑞)𝑀0(𝑝)𝑀0(𝑝 −
𝑞) and 𝜔(𝑞)𝑀0(𝑝)𝑀0(𝑝 − 𝑞) in momentum representation
with opposite signs, 𝐿 �푖�푛�푡 = ±𝑔�휔�푀(2𝑝 − 𝑞), respectively.
This leads to the repulsive and attractive potentials of 𝑁𝑀
and 𝑁𝑀 low-energy effective interactions via 𝜔 exchange.
Thus, the absence of potential barrier in the last cases gives
rise to the problem of coupled states 𝑝𝑀0 (the problem of
anomalous hydrogen). As it was noted earlier, to overcome
this problem we make the suggestion that the hadronic DM
is baryon asymmetric (𝑀0 is absent at low-energy stage of
hadronization) or particles𝑀0 are superheavy. Properties of
interactions of baryons 𝐵1 and 𝐵2 are similar to nucleonic
one (the main contribution gives one-pion and vector meson
exchanges) and together with nucleons they may compose
an atomic nuclei. So, new baryons can form superheavy
nucleons which in the process of evolution are concentrated
due to gravitation in the center of massive planets or stars.

Further, we have checked that the potential of 𝑀0𝑀0

and 𝑀0𝑀0 interactions is attractive (𝑈 < 0) for the
case of scalar meson exchange and repulsive for the case
of vector meson exchange. Potential of 𝑀0𝑀0 scattering
has attractive asymptotes both for scalar and vector meson
exchanges. Thus, the presence of potential barrier in the
processes of 𝑀0𝑀0 and 𝑀0𝑀0 scattering depends on the
relative contribution of scalar and vector mesons. In the case
of 𝑀0𝑀0 scattering the total potential is attractive and this
property can lead to increasing of annihilation cross section
in an analogy with Sommerfeld effect [34].

4. Main Properties of New Hadrons as
the DM Carriers

The mass of heavy quark 𝑀�푄 and the mass splitting of the
charged 𝑀− and neutral 𝑀0 mesons, 𝛿𝑚 = 𝑚− − 𝑚0, are
significant characteristics of these states both for their phys-
ical interpretation and for application in cosmology. In this
analysis, we take into consideration standard electromagnetic
and strong interactions only. So, some properties of new
mesons doublet𝑀 = (𝑀0,𝑀−) are analogous to properties of
standardmesons consisting of pairs of heavy and light quarks.
From experimental data on mass splitting in neutral-charged
meson pairs𝐾 = (𝐾0, 𝐾±),𝐷 = (𝐷0, 𝐷±), and 𝐵 = (𝐵0, 𝐵±), it
is seen that, for down-typemesons𝐾 and𝐵, themass splitting𝛿𝑚 < 0, while for up-typemeson𝐷, the value of 𝛿𝑚 > 0. Such
results can be explained by the fitting data on current masses

of quarks, 𝑚�푑 > 𝑚�푢, and binding energy of the systems (𝑄𝑢)
and (𝑄𝑑), where Coulomb contributions have different signs.
The absolute value of 𝛿𝑚 for the case of 𝐾− and 𝐷−mesons
is 𝑂(MeV), but for 𝐵− mesons it is less. Taking into account
these data, for the case of up SQ we assume

𝛿𝑚 = 𝑚 (𝑀−) − 𝑚 (𝑀0) > 0,
𝛿𝑚 = 𝑂 (𝑀𝑒𝑉) . (16)

Then, we conclude that neutral state𝑀0 = (𝑈𝑢) is stable and
can play the role of theDMcarrier.The charged partner𝑀− =(𝑈𝑑) has only one decay channel with very small phase space:

𝑀− → 𝑀0𝑒−]�푒, (if 𝛿𝑚 > 𝑚�푒) . (17)

This semileptonic decay resulted from the weak transition𝑑 → 𝑢 + 𝑊− → 𝑢 + 𝑒−]�푒, where heavy quark 𝑈 is
considered as spectator. The width of decay can be calculated
in a standard way and final expression for differential width
as follows (see also review by R. Kowalski in [28]):

𝑑Γ𝑑𝜔
= 𝐺2

�퐹48𝜋3 𝑈�푢�푑
2 (𝑚− + 𝑚0)2𝑚3

0 (𝜔2 − 1)3/2 𝐺2 (𝜔) .
(18)

In the case under consideration 𝑚− ≈ 𝑚0, 𝜔 = 𝑘0/𝑚0 ≈ 1
and𝐺(𝜔) ≈ 1 (HQS approximation). Here,𝐺(𝜔) is equivalent
to normalized form factor 𝑓+(𝑞), where 𝑞 is the transferred
momentum. In the vector dominance approach this form
factor is defined as 𝑓+(𝑞) = 𝑓+(0)/(1 − 𝑞2/𝑚2

V), where 𝑚V is
themass of vector intermediate state. So, HQS approximation
corresponds to the conditions 𝑞2 ≪ 𝑚2

V and 𝑓+(0) ≈ 1 for the
case 𝜔 = 𝑘0/𝑚0 ≈ 1. Using (18), for the total width we get

Γ ≈ 𝐺2
�퐹
𝑈�푢�푑

2 𝑚5
012𝜋3 ∫�휔𝑚

1
(𝜔2 − 1)3/2 𝑑𝜔;

𝜔�푚 = 𝑚2
0 + 𝑚2

−2𝑚0𝑚−

.
(19)

After integration, expression (19) can be written in the simple
form:

Γ ≈ 𝐺2
�퐹60𝜋3 (𝛿𝑚)5 , (20)

where weak coupling constant is taken at a low-energy scale
because of small transferred momentum in the process. From
expression (20) one can see that the width crucially depends
on the mass splitting, Γ ∼ (𝛿𝑚)5, and does not depend on the
mass of meson 𝑀. For instance, in the interval 𝛿𝑚 = (1 −10) MeV we get the following estimations:

Γ ∼ (10−29 − 10−24)GeV;
𝜏 ∼ (105 − 100) s. (21)
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Thus, charged partner of 𝑀0, which is long-lived
(metastable), can be directly detected in the processes
of 𝑀0𝑁− collisions with energetic nucleons, 𝑁. This
conclusion is in accordance with the experimental evidence
of heavy charged metastable particles presence in cosmic
rays (see [11] and references therein). Note also that the
models of DM with a long-lived coannihilation partner are
discussed in literature (see, for instance, [10, 35]).

Experimental and theoretical premises of new heavy
hadron existence were discussed in [11]. With the help
of low-energy model of baryon-meson interactions, it was
shown that the potential of 𝑀𝑁-interaction has repulsive
asymptotics. So, the low-energy particles 𝑀 do not form
coupled states with nucleon and the hypothesis of their
existence does not contradict the cosmochemical data.

Now, we estimate the mass of new hadrons which are
interpreted as carriers of the DM. The data on Dark Matter
relic concentration result in value of the cross section of
annihilation at the level

(𝜎V�푟)�푒�푥�푝 ≈ 10−10 𝐺𝑒𝑉−2. (22)

Comparing the model annihilation cross section (which
depends on the mass) to this value, we estimate the mass
of the meson 𝑀0. Note that the calculations are fulfilled
for the case of hadron-symmetrical DM; that is, the relic
abundance is suggested the same for 𝑀0 and 𝑀0. To escape
the contradiction with strong restriction on anomalous
helium, we should expect the mass of 𝑀0 above 10 TeV.
Approximate evaluation of the model cross section 𝜎(𝑀0𝑀0)
can be fulfilled in spectator approach 𝜎(𝑀0𝑀0) ∼ 𝜎(𝑈𝑈)
considering the light 𝑢-quarks as spectators. Main contribu-
tions to this cross section result from subprocesses 𝑈𝑈 →𝑔𝑔 and 𝑈𝑈 → 𝑞𝑞, where 𝑔 and 𝑞 are standard gluon
and quark. Corresponding cross sections are represented in
the second section ((6) and (7)) and their sum is used for
approximate evaluation of the full annihilation cross section
of the processes 𝑀0𝑀0 → hadrons. Thus, we can estimate𝑀�푈 mass from the following approximate equation:

(𝜎V�푟)�푒�푥�푝 ≈ 44𝜋9
𝛼2�푠𝑀2
�푈

. (23)

Now, from (22) and (23) we get 𝑚(𝑀0) ≈ 𝑀�푈 ≈ 20 TeV at𝛼�푠 = 𝛼�푠(𝑀�푈). Note that this value gets into the range (10–100)
TeV which was declared for the case of heavy WIMPonium
states in [36].

As it was noted in the previous section, attractive poten-
tial of 𝑀0𝑀0 interaction at long distances can increase the
cross section due to the light meson exchange. This effect
leads to Sommerfeld enhancement [34] of the cross section:

𝜎V�푟 = (𝜎V�푟)0 𝑆 (𝛼V ) , (24)

where (𝜎V�푟)0 is initial cross section which results from the
left side of the expression (23); 𝛼 = 𝑔2/4𝜋 is defined by
the effective coupling according to (9) and V = V�푟/2. At

𝑚 ≪ 𝑀 ≈ 𝑀�푈, where 𝑚 is mass of mesons (the light
force carriers), Sommerfeld enhancement (SE) factor can be
represented in the form [34]

𝑆 (𝛼
V
) = 𝜋𝛼/V1 − exp (−𝜋𝛼/V) . (25)

In our case, the light force carriers are 𝜔- and 𝜌-mesons
and 𝛼 ∼ 1 (see (8) and (9)), so from (25), we get 102 ≲𝑆(𝛼/V)/𝜋 ≲ 103 in the interval 10−2 > V > 10−3. In
this case, from (23)-(25) it follows that at V ∼ 10−2 the
mass of new quark 𝑀�푈 ∼ 102 TeV, which agrees with the
evaluation of the mass of baryonic DM in [37] (𝑀 ∼ 100
TeV). Thus, we get too heavy 𝑀0 which cannot be detected
in the searching for signals of anomalous hydrogen (𝑀�푚�푎�푥 ≲1 TeV) and anomalous helium (𝑀�푚�푎�푥 ≲ 10 TeV). Note,
however, that in these calculations we take into account the
light mesons only, (𝑚 ≪ 𝑀�푈), which act at long distances𝑟 ∼ 𝑚−1

�휌 . At short distance, near the radius of coupling state
𝑀0 = (𝑈𝑢), i.e., at 𝑟 ∼ 𝑀−1

�푈 , the exchange by heavy mesons
containing heavy quark 𝑈 is possible, for instance, by vector
or scalar 𝑀-mesons. In this case, expression (25) is not valid
because of 𝑀�휒 ∼ 𝑀�푈, where 𝑀�휒 is the mass of heavy
force carriers. To evaluate SE factor in this case, we use its
numerical calculation from [38], where isocontours of the SE
corrections are presented as functions of 𝑦 = 𝛼𝑀/𝑀�휒 and𝑥 = 𝛼/V. Then 𝑦 ≈ 1, and from [38] (see Figure 1 there) it
follows that 𝑆 ≈ 10 in the interval 10−1 > V > 10−3. As a
result, from (23) and (25) it follows that𝑀�푈 ≈ 60 𝑇𝑒𝑉 which
does not change the situation crucially. It should be noted
that full description of SE requires an account of weak vector
bosons 𝑍,𝑊 which interact with light quarks only. Thus, SE
effect is formed at various energy regions corresponding to
various distances and has very complicated and vague nature
(see, also, [39]).

5. Conclusion

We have analyzed a scenario of the hadronic DM based
on the simplest extension of the SM with singlet quark. It
was shown in a previous work that the existence of new
heavy hadrons does not contradict cosmological constraints.
Here, we demonstrate that the scenario is in accordance with
the precision electroweak restrictions on manifestations of
new physics. With the help of effective model Lagrangian,
we describe the asymptotes of interaction potential at low
energies for interactions of new hadrons with nucleons and
with each other.These asymptotics, both attractive and repul-
sive, occur for different pairs of interacting particles 𝑁,𝑀
and their antiparticles. The cosmochemical constrictions on
anomalous hydrogen and anomalous helium lead to the
conclusion that abundance of particles𝑀 and antiparticles𝑀
is strongly asymmetrical, or new hadrons 𝑀 are superheavy
(with mass larger 10 TeV).

Approximate value of the mass splitting for charged and
neutral components was evaluated and lifetime of charged
metastable hadron component was calculated; it is rather
large, 𝜏 ≫ 1 s. Using the value of the DM relic concen-
tration and the expression for the model cross section of
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annihilation, mass of the hadronic DM carrier is estimated.
The value of mass without account of SE effect is near 20
TeV and the SE increases it up to an order of 102 TeV. These
results agree with the evaluations of mass of baryonic DM,
which are represented in literature (see previous section). So,
superheavy new hadrons cannot be generated in the LHC
experiments and detected in the searching for anomalous
hydrogen and helium. Some peculiarities of Sommerfeld
enhancement effect in the process of annihilation are ana-
lyzed. It should be underlined that the model annihilation
cross sectionwas evaluated at the level of subprocesses. So, for
the description of the hadronic Dark Matter in more detail, it
is necessary to clarify the mechanism of annihilation process
at various energy scales.
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Large liquid xenon detectors aiming for dark matter direct detection will soon become viable tools also for investigating neutrino
physics. Information on the effects of nuclear structure in neutrino-nucleus scattering can be important in distinguishing neutrino
backgrounds in such detectors. We perform calculations for differential and total cross sections of neutral-current neutrino
scattering off the most abundant xenon isotopes. The nuclear-structure calculations are made in the nuclear shell model for
elastic scattering and also in the quasiparticle random-phase approximation (QRPA) andmicroscopic quasiparticle-phononmodel
(MQPM) for both elastic and inelastic scattering. Using suitable neutrino energy distributions, we compute estimates of total
averaged cross sections for 8B solar neutrinos and supernova neutrinos.

1. Introduction

When the idea of neutrinos was first suggested by Pauli
in 1930, it was thought that they would never be observed
experimentally. Only two decades later interaction of neu-
trinos with matter was detected in the famous Cowan-
Reines experiment [1]. More recently, detection and research
of neutrinos have become more and more of an everyday
commodity, and various more versatile ways to examine
interactions of the little neutral one have emerged and are
being tested in laboratories all over the world.

Coherent elastic neutrino-nucleus scattering (CE]NS) is
a process where the neutrino interacts with the target nucleus
as a whole instead of a single nucleon. Although CE]NS
has been predicted since the 1970s [2], it was discovered
only very recently by the COHERENT collaboration [3].
Due to the coherent enhancement, this experiment had the
remarkable feature of detecting neutrinos with a compact
14.6 kg detector instead of a massive detector volume which
is used in conventional neutrino experiments. Coherent
neutrino-nucleus scattering is on one hand an important
potential source of information for beyond-standard-model
physics [4–11], but on the other hand it may also hinder new

discoveries as it will start disturbing dark matter detectors in
the near future.

A great experimental effort has been put into directly
detecting dark matter in the past few decades (see [12] for
a review). The next-generation detectors are expected to
be sensitive enough to probe cross sections low enough
to start observing CE]NS as an irreducible background
[13, 14]. Solar neutrinos, atmospheric neutrinos, and diffuse
supernova background neutrinos provide a natural source
of background neutrinos, which for obvious reasons cannot
be shielded against. As there are uncertainties in the fluxes
of each of the aforementioned neutrino types, the sensitivity
of WIMP (weakly interacting massive particle) detection is
basically limited to the magnitude of this uncertainty. To
make matters worse, it has been shown that for some specific
WIMPmasses and cross sections the recoil spectra of CE]NS
very closely mimic that of scattering WIMPs [14].

It is therefore of utmost importance to devise a way to go
through this neutrino floor. One potential way of achieving
this is having directional sensitivity in the detector [15, 16]. As
solar and atmospheric neutrinos have a distinct sourcewithin
the solar system, it is expected that their recoil direction
would be different to that of WIMPs, which are typically
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assumed to be gravitationally bound in a halo spanning the
galaxy. Also arising from the different origin of neutrinos
and WIMPs is the idea of using timing information to
discriminate between neutrino and WIMP induced events
in a detector [17]. Due to the motion of the Earth around
the Sun, it is expected that the solar neutrino flux peaks
around January, but the WIMP flux peaks in June when
the velocities of the Sun and Earth are the most in phase.
The recoil spectra of WIMPs and neutrinos could also be
distinguished if the WIMP-nucleus interaction happens via
a nonstandard operator emerging in the effective field theory
framework [18, 19].

Some of the leading dark matter experiments use a
liquid xenon target [20–24], which allows for easy scalability
to larger detector volumes. It is expected that the xenon
detectors are the first to hit the neutrino floor. In this article
we compute cross sections for elastic and inelastic neutrino-
nucleus scattering for the most abundant xenon isotopes.
For the coherent scattering we use the quasiparticle random-
phase approximation (QRPA) framework and the nuclear
shell model to model the nuclear structure and we compare
the results between the twomodels.Thewave functions of the
states of odd-mass xenon isotopes are obtained by using the
microscopic quasiparticle-phonon model (MQPM) on top of
a QRPA calculation. Inelastic scattering is computed in the
QRPA/MQPM formalism. In our calculations we consider 8B
solar neutrinos and supernova neutrinos.

A similar QRPA calculation has been made in [25]
for 136Xe, where both charged-current and neutral-current
inelastic scattering was examined. Similar computations of
neutral-current neutrino-nucleus scattering cross sections
have been made before for the stable cadmium isotopes in
[26] and for molybdenum isotopes in [27]. Both calcula-
tions used the QRPA/MQPM approach. To our knowledge
this article presents the first calculation of neutral-current
neutrino-nucleus scattering within a complete microscopic
nuclear framework for Xe isotopes other than 136Xe.

This article is organized as follows. In Section 2we outline
the formalism used to compute neutral-current neutrino-
nucleus scattering. In Section 3 we summarize the nuclear-
structure calculations made for the target xenon isotopes.
In Section 4 we discuss the results of our cross-section
calculations and in Section 5 conclusions are drawn.

2. Neutral-Current
Neutrino-Nucleus Scattering

In this section we summarize the formalism used to compute
neutral-current neutrino-nucleus scattering processes. We
examine standard-model reactions mediated by the neutral𝑍0 boson, namely, the processes

] + (𝐴, 𝑍) → ] + (𝐴, 𝑍) , (1)

] + (𝐴, 𝑍) → ] + (𝐴, 𝑍)∗ , (2)

i.e., the elastic and inelastic scattering of neutrinos off a
nucleus (with 𝐴 nucleons and 𝑍 protons), respectively. In
the elastic process the initial and final states of the target

]

]

qk

(A, Z)

(A, Z)

(∗)

Z0 p


k


p

Figure 1: A diagram of the neutral-current scattering process. The
four momenta of the involved particles are labeled in the figure.

nucleus are the same, while in the inelastic process excitation
of the target nucleus takes place. The kinematics of the
scattering process is illustrated in Figure 1. We label the four
momenta of the incoming and outgoing neutrino as 𝑘�휇 and𝑘�耠�휇, respectively. The momenta of the target nucleus before
and after interacting with the neutrino are 𝑝�휇 and 𝑝�耠�휇. The
momentum transfer to the nucleus is referred to as 𝑞�휇 =𝑘�耠�휇 − 𝑘�휇 = 𝑝�휇 − 𝑝�耠�휇. The neutrino kinetic energy before and
after scattering is 𝐸�푘 and 𝐸�푘 .

The neutral-current neutrino-nucleus scattering differen-
tial cross section to an excited state of energy 𝐸ex can be
written as [28]

𝑑2𝜎𝑑Ω𝑑𝐸ex
= 𝐺2F k�耠 𝐸�푘𝜋 (2𝐽�푖 + 1) (∑

�퐽≥0

𝜎�퐽CL + ∑
�퐽≥1

𝜎�퐽T) , (3)

which comprises the Coulomb-longitudinal (𝜎�퐽CL) and trans-
verse (𝜎�퐽T) parts. They are defined as

𝜎�퐽CL = (1 + cos 𝜃) ⟨𝐽�푓 M�퐽 (𝑞) 𝐽�푖⟩2
+ (1 + cos 𝜃 − 2𝑏 sin2𝜃) ⟨𝐽�푓 L�퐽 (𝑞) 𝐽�푖⟩2
+ 𝐸ex𝑞 (1 + cos 𝜃)
× 2Re {⟨𝐽�푓 M�퐽 (𝑞) 𝐽�푖⟩∗ ⟨𝐽�푓 L�퐽 (𝑞) 𝐽�푖⟩} ,

(4)

and

𝜎�퐽T = (1 − cos 𝜃 + 𝑏 sin2𝜃)
⋅ [⟨𝐽�푓 Tmag

�퐽 (𝑞) 𝐽�푖⟩2 + ⟨𝐽�푓 Tel
�퐽 (𝑞) 𝐽�푖⟩2]

∓ 𝐸�푘 + 𝐸�푘𝑞 (1 − cos 𝜃) × 2
⋅ Re {⟨𝐽�푓 Tmag

�퐽 (𝑞) 𝐽�푖⟩ ⟨𝐽�푓 Tel
�퐽

 𝐽�푖⟩∗} ,

(5)

where the minus sign is taken for neutrino scattering and the
plus sign for antineutrino scattering. 𝐽�푖 and 𝐽�푓 are the initial
and final state angular momenta of the nucleus. We use the
abbreviation

𝑏 = 𝐸k𝐸k𝑞2 , (6)
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and 𝑞 is the magnitude of the three-momentum transfer.
The formalism and various different operators involved are
discussed in detail in [28, 29].

To compute the averaged cross section ⟨𝜎⟩, we need to
fold the computed cross sections with the energy distribution
of the incoming neutrinos. We take the supernova neutrino
spectrum to be of a two-parameter Fermi-Dirac character

𝑓FD (𝐸�푘) = 1𝐹2 (𝛼]) 𝑇]

(𝐸�푘/𝑇])21 + 𝑒�퐸𝑘/(�푇]−�훼]) , (7)

where 𝛼] is the so-called pinching parameter and 𝑇] is the
neutrino temperature. The normalization factor 𝐹2(𝛼]) is
defined by the formula

𝐹�푘 (𝛼]) = ∫ 𝑥�푘𝑑𝑥1 + 𝑒�푥−�훼] , (8)

and the temperature andmean energy of neutrinos are related
by

⟨𝐸]⟩𝑇]
= 𝐹3 (𝛼])𝐹2 (𝛼]) . (9)

We also examine solar neutrinos from 8B beta decay. We use
an 8B neutrino energy spectrum from [30].

3. Nuclear Structure of the Target Nuclei

In this section we outline the nuclear-structure
calculations performed for the investigated nuclei
128,129,130,131,132,134,136Xe. We have performed computations
in the quasiparticle random-phase approximation (QRPA),
microscopic quasiparticle-phonon model (MQPM), and the
nuclear shell model.

3.1. QRPA/MQPM Calculations. The nuclear structure of
even-even Xe isotopes was computed by using the charge-
conserving QRPA framework. The QRPA is based on a
BCS calculation [31], where quasiparticle creation and anni-
hilation operators are defined via the Bogoliubov-Valatin
transformation as

𝑎†�훼 = 𝑢�푎𝑐†�훼 + V�푎𝑐�훼,
𝑎�훼 = 𝑢�푎𝑐�훼 − V�푎𝑐†�훼 ,

(10)

with the regular particle creation and annihilation operators𝑐†�훼 and 𝑐 defined in [32]. Here 𝛼 contains the quantum
numbers (𝑎,𝑚�훼) with 𝑎 = (𝑛�푎, 𝑙�푎, 𝑗�푎). The excited states with
respect to the QRPA vacuum are created with the phonon
creation operator

𝑄†�휔 = ∑
�푎�푏

N�푎�푏 (𝐽�휔) (𝑋�휔�푎�푏 [𝑎†�푎𝑎†�푏]�퐽𝜔�푀𝜔 + 𝑌�휔�푎�푏 [𝑎�푎𝑎�푏]�퐽𝜔�푀𝜔) (11)

for an excited state 𝜔 = (𝐽�휔,𝑀�휔, 𝜋�휔, 𝑘�휔), where 𝑘�휔 is a
number labeling the excited states of given 𝐽�휋. In the above
equation

N�푎�푏 (𝐽�휔) = √1 + 𝛿�푎�푏 (−1)�퐽𝜔1 + 𝛿�푎�푏 , (12)

and𝑋�휔�푎�푏 and 𝑌�휔�푎�푏 are amplitudes describing the wave function
that are solved from the QRPA equation

[ A B
−B∗ −A∗][X�휔

Y�휔
] = 𝐸�휔 [X

�휔

Y�휔
] , (13)

where the matrix A is the basic Tamm-Dankoff matrix and B
is the so-called correlation matrix, both defined in detail in
[32].

We perform the QRPA calculations using large model
spaces consisting of the entire 0𝑠–0𝑑, 1𝑝–0𝑓–0𝑔, 2𝑠–1𝑑–0ℎ,
and 1𝑓–2𝑝 major shells, adding also the 0𝑖13/2 and 0𝑖11/2
orbitals. The single-particle bases are constructed by solving
the Schrödinger equation for a Coulomb-corrected Woods-
Saxon potential. We use the Woods-Saxon parameters given
in [33]. We make an exception for 136Xe, adopting the set of
adjusted values of single-particle energies from [25]. Due to
the neutron-magic nature of 136Xe, adjusted single-particle
energies are necessary to get agreement with experimental
energy levels. The Bonn one-boson exchange potential [34]
was used to estimate the residual two-body interaction.

The QRPA formalism involves several parameters that
have to be fixed by fitting observables to experimental data.
In the BCS calculation we fit the proton and neutron pairing
strengths 𝐺p

pair and 𝐺n
pair so that the lowest quasiparticle

energy matches the empirical pairing gap given by the three-
point formula [35]:

Δ p (𝐴, 𝑍) = 14 (−1)�푍+1 [𝑆p (𝐴 + 1, 𝑍 + 1) − 2𝑆p (𝐴, 𝑍)
+ 𝑆p (𝐴 − 1, 𝑍 − 1)] ,

Δ n (𝐴, 𝑍) = 14 (−1)�퐴−�푍+1 [𝑆n (𝐴 + 1, 𝑍) − 2𝑆n (𝐴, 𝑍)
+ 𝑆n (𝐴 − 1, 𝑍)] .

(14)

It should be noted that for the neutron-magic 136Xe this
procedure cannot be done for the neutron pairing strength.
We have instead used a bare value of 𝐺pair = 1.0 for 136Xe.

The particle-particle and particle-hole terms of the two-
body matrix elements are scaled by strength parameters 𝐺pp
and 𝐺ph, respectively. The energies of the computed QRPA
states are quite sensitive to these model parameters. We fit
the lowest excited states of each 𝐽�휋 separately to experimental
values from [36] by altering the values of 𝐺pp and 𝐺ph. The
values used for the model parameters are given in Table 1.

The QRPA process is known to produce states that are
spurious, namely, the first excited 0+ state and the first 1−
state. The first 0+ state has been deemed spurious in [26, 37].
The first 1− state is spurious due to center-of-mass motion
as described in [32]. We have fitted the energies of these
states to zero, if possible, by using the model parameters𝐺pp and 𝐺ph, and subsequently the states have been omitted
from calculations for the even-mass isotopes and also from
the MQPM calculations for the odd-mass isotopes. The
contributions of these spurious states to the total neutrino-
nucleus scattering cross section would be tiny in any case.
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Table 1: Model parameters used in the BCS and QRPA calculations. For each nucleus (column 1) the values of 𝐺pp and 𝐺ph (column 2) are
given for the important 𝐽�휋 phonons in columns 3 to 9.

Nucleus 𝐺 0+ 1− 2+ 3− 4+ 5− 6+
128Xe pp 0.796 1.000 1.000 1.000 1.000 1.000 1.000

ph 0.298 0.500 0.527 0.500 0.652 0.883 0.934
130Xe pp 0.730 1.000 1.000 1.000 1.000 1.000 1.000

ph 0.303 0.500 0.531 0.500 0.581 0.833 0.788
132Xe pp 0.653 1.000 1.000 1.000 1.000 1.000 1.000

ph 0.319 0.500 0.533 0.500 0.436 0.933 1.000
134Xe pp 0.500 1.000 1.000 1.000 1.000 1.000 1.000

ph 0.370 0.500 0.511 0.500 0.596 1.000 0.891
136Xe pp 0.843 1.000 1.000 1.000 1.000 1.000 1.000

ph 0.100 0.500 0.583 0.500 0.700 0.747 0.891

Table 2:Thevalence-space truncationsmade in the shell-model calculations.Thefirst column labels theXe isotope; the followingfive columns
give the minimum/maximum number of neutrons on the single-particle orbitals 0𝑔7/2, 1𝑑5/2, 1𝑑3/2, 2𝑠1/2, and 1ℎ11/2, respectively.
Nucleus 0𝑔7/2 1𝑑5/2 1𝑑3/2 2𝑠1/2 1ℎ11/2
128Xe 8/8 6/6 0/4 0/2 4/12
129Xe 8/8 6/6 0/4 0/2 4/12
130Xe 8/8 4/6 0/4 0/2 0/12
131Xe 8/8 6/6 0/4 0/2 0/12
132Xe 0/8 0/8 0/4 0/2 0/12
134Xe 0/8 0/8 0/4 0/2 0/12
136Xe 0/8 0/8 0/4 0/2 0/12

Odd-mass xenon isotopes 129,131Xe are then computed by
using the MQPM formalism, in which we use a combination
of one- and three-quasiparticle states by coupling a quasi-
particle with a QRPA phonon to form the three-quasiparticle
configurations. TheMQPM basic excitation can be written in
terms of quasiparticle and QRPA-phonon creation operators
as [38]

Γ†�푘 (𝑗𝑚) = ∑
�푛

𝐶�푘�푛𝑎†�푛�푗�푚 +∑
�푎,�휔

𝐷�푘�푎�휔 [𝑎†�푎𝑄†�휔]�푗�푚 . (15)

The amplitudes 𝐶 and𝐷 are computed by solving the MQPM
equations of motion. The detailed description of the process
can be found in [38]. No additional model parameters are
required for the MQPM calculation aside for the parameters
fitted for the BCS/QRPA calculation described above. We do
the MQPM calculations of 129Xe and 131Xe using 130Xe and
132Xe as reference nuclei, respectively. We select all QRPA
phonons of 𝐽 ≤ 6 with an energy less than 10 MeV to be used
in the calculation.

3.2. Shell-Model Calculations. We perform shell-model cal-
culations for Xe isotopes using the shell-model code
NuShellX@MSU [39]. We use the 0𝑔7/2, 1𝑑5/2, 1𝑑3/2, 2𝑠1/2,
and 0ℎ11/2 valence space and the SN100PN interaction [40].
The single-particle energies associated with the aforemen-
tioned orbitals in the SN100PN interaction are 0.8072, 1.5623,
3.3160, 3.2238, and 3.6051 MeV, respectively, for protons, and−10.6089, −10.2893, −8.7167, −8.6944, and −8.8152MeV for
neutrons.

The matrix dimension in the shell-model calculation
increases rapidly when moving away from the 𝑁 = 82 shell
closure of 136Xe. For 132,134,136Xe we were able to do a full
calculation with no truncations, but for 128−131Xe we had to
put restrictions on the neutron valence space.The truncations
made for each isotope are shown in detail in Table 2. For the
isotopes 128−131Xe we assume a completely filled 0𝑔7/2 orbital
and for 128,129,131Xewe also assume the 1𝑑5/2 orbital to be full.
These should be reasonable approximations when aiming to
describe the ground state and low-lying excited states in the
xenon nuclei. The orbitals 0𝑔7/2 and 1𝑑5/2 have the lowest
single-particle energies and the excitations are likely to take
place from higher orbitals when the neutron number of the
nuclei is quite large.

The computed energy levels of the even-mass xenon
isotopes are given in Figure 2 and the odd-mass isotopes
in Figure 3. For the even-mass isotopes the experimental
energy spectra are very well reproduced by the shell-model
calculations. The accuracy is somewhat diminished when
moving to lower masses from the closed neutron major shell
of 136Xe, but a decent correspondence between experimental
and theoretical levels can be found. For the odd-mass iso-
topes the situation is more complex, but the positive-parity
states are well reproduced by the calculations. However, the
negative-parity states 11/2− and 9/2− are computed to be
much lower than in the experimental spectrum. This effect
has been observed in earlier calculations using the SN100PN
interaction in thismass region [41].The experimental data for
the xenon isotopes was obtained from [36].
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Figure 2: Experimental and shell-model energy spectra of even-mass xenon isotopes. A maximum of eight lowest energy levels are shown
for each isotope. From left to right: 128Xe, 130Xe, 132Xe, 134Xe, and 136Xe.
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Figure 3: Experimental and shell-model energy spectra of odd-
mass xenon isotopes 129Xe (left) and 131Xe (right).

To give a further measure of accuracy of our calculation,
we computed the ground state magnetic moments for 129Xe
and 131Xe. For 129Xe the experimental magnetic moment of
the 1/2+ ground state is 𝜇exp = −0.7779763(84)𝜇N while the
shell-model calculated value is 𝜇sm = −1.360𝜇N. For 131Xe3/2+ ground state the numbers are 𝜇exp = +0.691862(4)𝜇N
and 𝜇sm = +1.059𝜇N for experiment and shell model,
respectively. The sign of the magnetic moment in both cases
is correct, but the magnitude of both of our calculated values
is somewhat larger than that of the experimental ones.

4. Neutrino Scattering Results

In this section we present the results of our calculations
for neutrino-nucleus scattering cross sections by methods

described in Section 2.We have computed total cross sections
for coherent and inelastic neutrino-nucleus scattering as a
function of the neutrino energy and also averaged total cross
sections for solar 8B neutrinos and supernova neutrinos
scattering off the most abundant xenon isotopes. In the
following calculations of averaged supernova neutrino cross
sections we have used two different neutrino temperatures
corresponding to different neutrino flavors. We follow the
choices of [26, 37] and have the electron neutrinos described
by parameters 𝛼 = 3.0, ⟨𝐸]⟩ = 11.5 MeV, and 𝑇] =2.88 MeV, and the muon and tau neutrinos by 𝛼 = 3.0,⟨𝐸]⟩ = 16.3 MeV, and 𝑇] = 4.08 MeV. Whenever we refer
to supernova neutrinos in the following text these parameter
values are used in the calculations.

4.1. Coherent Elastic Scattering. In Table 3 we present the
total cross section for coherent neutrino-nucleus scattering
off the target xenon isotopes as a function of neutrino energy.
In Table 3 we only show calculations in the nuclear shell
model, but the values for the QRPA/MQPM formalism are
very similar, which is reflected on the total averaged cross
sections shown later. The cross sections rise rapidly for small
neutrino energies and start to saturate when approaching 100
MeV. The cross sections are larger for the higher-𝐴 isotopes,
following the𝑁2 coherent enhancement.

We present the total averaged cross section for supernova
neutrinos as well as solar 8B neutrinos in Table 4. Results
for coherent scattering are shown for the shell model and
QRPA/MQPM calculations. The results between the shell
model and quasiparticle approaches are very similar. Some
small differences can be observed in the results for the odd-
mass isotopes, but those are still not very significant. The
cross sections for the supernova neutrinos are larger than
for 8B neutrinos by roughly a factor of 3 or 5 depending on
the neutrino flavor. This is due to the average energy of the
supernova neutrinos being larger at 11.5 MeV or 16.3 MeV,
while the 8B spectrum peaks at around 7 MeV.
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Table 3: Coherent elastic neutral-current scattering cross section for neutrinos scattering off xenon targets as a function of neutrino energy.
The cross sections for each isotope are given in units of cm2 in columns 2-8 as a function of the neutrino energy (column 1).The computations
were made in the nuclear shell model.

𝐸] 𝜎 (cm2)(MeV) 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe
5 5.16 × 10−40 5.31 × 10−40 5.46 × 10−40 5.61 × 10−40 5.76 × 10−40 6.08 × 10−40 6.40 × 10−40
10 2.02 × 10−39 2.08 × 10−39 2.14 × 10−39 2.20 × 10−39 2.26 × 10−39 2.38 × 10−39 2.50 × 10−39
20 7.44 × 10−39 7.65 × 10−39 7.86 × 10−39 8.07 × 10−39 8.29 × 10−39 8.73 × 10−39 9.19 × 10−39
30 1.47 × 10−38 1.51 × 10−38 1.55 × 10−38 1.59 × 10−38 1.63 × 10−38 1.71 × 10−38 1.80 × 10−38
40 2.19 × 10−38 2.25 × 10−38 2.31 × 10−38 2.37 × 10−38 2.43 × 10−38 2.55 × 10−38 2.67 × 10−38
50 2.80 × 10−38 2.88 × 10−38 2.94 × 10−38 3.02 × 10−38 3.09 × 10−38 3.24 × 10−38 3.39 × 10−38
60 3.25 × 10−38 3.33 × 10−38 3.40 × 10−38 3.49 × 10−38 3.57 × 10−38 3.73 × 10−38 3.91 × 10−38
70 3.55 × 10−38 3.64 × 10−38 3.72 × 10−38 3.81 × 10−38 3.89 × 10−38 4.07 × 10−38 4.25 × 10−38
80 3.75 × 10−38 3.84 × 10−38 3.92 × 10−38 4.02 × 10−38 4.10 × 10−38 4.28 × 10−38 4.48 × 10−38

Table 4: Total averaged cross section for 8B solar neutrinos and electron and muon/tau supernova neutrinos (SN]e/SN]x) scattering off
xenon targets. The results are shown for calculations in the nuclear shell model (SM) and the QRPA/MQPM formalisms. Cross sections for
coherent scattering are given in units of 10−39 cm2 and for inelastic scattering in 10−43 cm2.

⟨𝜎⟩coh,8B ⟨𝜎⟩coh,SN]e ⟨𝜎⟩coh,SN]x ⟨𝜎⟩inel,8B ⟨𝜎⟩inel,SN]e ⟨𝜎⟩inel,SN]x
Nucleus Model (10−39 cm2) (10−39 cm2) (10−39 cm2) (10−43 cm2) (10−43 cm2) (10−43 cm2)
128Xe SM 1.064 3.051 5.692 - - -

QRPA 1.065 3.052 5.696 1.567 38.10 152.0
129Xe SM 1.095 3.138 5.853 - - -

MQPM 1.105 3.166 5.903 2.208 45.11 173.4
130Xe SM 1.125 3.223 6.008 - - -

QRPA 1.126 3.225 6.013 1.564 40.94 161.0
131Xe SM 1.157 3.313 6.173 - - -

MQPM 1.167 3.336 6.215 3.699 54.14 195.4
132Xe SM 1.188 3.401 6.335 - - -

QRPA 1.189 3.403 6.339 2.341 48.21 180.4
134Xe SM 1.253 3.585 6.671 - - -

QRPA 1.253 3.585 6.673 3.107 56.10 201.7
136Xe SM 1.320 3.773 7.016 - - -

QRPA 1.320 3.773 7.016 2.102 53.43 200.5

4.2. Inelastic Scattering. Due to the limitations of the shell
model in describing high-lying excited states, we compute
inelastic scattering properties using only the QRPA/MQPM
formalism, which is known to depict well the collective
properties of excited nuclear states.The total cross section as a
function of neutrino energy is given in Table 5 for each xenon
isotope. For smaller neutrino energies, 0 to 30MeV, the cross
sections are slightly larger for the odd-mass isotopes than for
their neighboring isotopes. The energies of solar neutrinos
fit completely into this range, which leads to the averaged
cross sections for solar neutrinos to be larger for the odd-mass
isotopes.

The total averaged inelastic cross sections are listed in
Table 4.The inelastic scattering cross sections are some orders
of magnitude smaller than the coherent cross sections, as
expected. Here the cross sections of the supernova neutrinos
are an order of magnitude or two larger than of 8B solar
neutrinos, again due to the supernova neutrinos having
on average a higher energy. The effect of neutrino energy

appears more pronounced in inelastic scattering than in
coherent scattering, however. The cross sections of the odd-
mass isotopes are again slightly larger than those of the
neighboring isotopes.

We can compare our inelastic scattering results with those
calculated in [26] for Cd isotopes using the same supernova
neutrino parameters. The results for Cd isotopes in [26] in
the case of electron neutrino range from 4.38× 10−42 cm2 for
106Cd to 4.96×10−42 cm2 for 111Cd, with a general decreasing
trend with increasing mass number for even-mass nuclei.
Our results for Xe isotopes in Table 4 are very similar in
magnitude, but the trend is rather rising than decreasing with
increasingmass number.This could be a shell effect, as adding
neutrons to Cd isotopes takes the nucleus further away from
a closed major shell, but for the xenon nuclei it gets closer to
a shell closure. Same conclusions can be made for the other
neutrino flavors.

We show the contributions from different multipole
channels to the total averaged cross sections in Figure 4
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Table 5: Inelastic neutral-current scattering cross section for neutrinos scattering off xenon targets as a function of neutrino energy. The
cross sections are given in units of cm2. The computations were made in the QRPA/MQPM formalism.

𝐸] 𝜎 (cm2)(MeV) 128Xe 129Xe 130Xe 131Xe 132Xe 134Xe 136Xe
5 1.71 × 10−45 2.10 × 10−45 1.29 × 10−46 2.74 × 10−44 7.74 × 10−45 1.28 × 10−44 2.00 × 10−47
10 3.56 × 10−43 5.27 × 10−43 3.54 × 10−43 8.49 × 10−43 5.49 × 10−43 7.57 × 10−43 4.75 × 10−43
20 1.41 × 10−41 1.71 × 10−41 1.53 × 10−41 2.00 × 10−41 1.78 × 10−41 2.06 × 10−41 2.02 × 10−41
30 6.50 × 10−41 7.45 × 10−41 6.85 × 10−41 8.18 × 10−41 7.53 × 10−41 8.29 × 10−41 8.41 × 10−41
40 1.85 × 10−40 1.94 × 10−40 1.91 × 10−40 2.05 × 10−40 2.02 × 10−40 2.16 × 10−40 2.20 × 10−40
50 3.99 × 10−40 3.85 × 10−40 4.05 × 10−40 3.95 × 10−40 4.20 × 10−40 4.38 × 10−40 4.47 × 10−40
60 7.17 × 10−40 6.41 × 10−40 7.20 × 10−40 6.45 × 10−40 7.35 × 10−40 7.55 × 10−40 7.66 × 10−40
70 1.14 × 10−39 9.51 × 10−40 1.14 × 10−39 9.44 × 10−40 1.15 × 10−39 1.16 × 10−39 1.18 × 10−39
80 1.66 × 10−39 1.30 × 10−39 1.64 × 10−39 1.28 × 10−39 1.65 × 10−39 1.66 × 10−39 1.67 × 10−39
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Figure 4: The contributions of multipole channels 𝐽 ≤ 4 to the total averaged cross section for inelastic scattering of supernova electron
neutrinos. Bar plots are shown for a representative sample of 128Xe (top left), 129Xe (top right), 134Xe (bottom left), and 131Xe (bottom right).
A division to vector, axial-vector, and interference parts of the interaction is shown. Cross sections are given in units of 10−42 cm2.

for supernova electron neutrinos and Figure 5 for solar
neutrinos. It is evident that the most dominant contribution
comes from an axial-vector 1+ multipole transition in all
cases but one. Smaller, yet still important contributions
arise from the axial-vector 1− and 2− channels for higher

neutrino energies. This is characteristic behavior for neutral-
current scattering, which has been observed in [26] for Cd
isotopes and in [27] for Mo isotopes. The contributions get
more evenly distributed among the different multipoles with
increasing neutrino energy.
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Figure 5: The contributions of multipole channels 𝐽 ≤ 4 to the total averaged cross section for inelastic scattering of solar 8B neutrinos. Bar
plots are shown for a representative sample of 128Xe (top left), 129Xe (top right), 134Xe (bottom left), and 131Xe (bottom right). A division to
vector, axial-vector, and interference parts of the interaction is shown. Cross sections are given in units of 10−42 cm2.

For the odd-mass nuclei our calculations also show a sig-
nificant contribution from a vector 0+ channel, and for solar
neutrinos scattering off 129Xe this channel in fact becomes the
strongest. For the even-mass isotopes this channel is more
suppressed, but it becomes more significant for the lower
energy solar neutrinos. Similar large 0+ contributions were
observed in [26] for Cd isotopes. This is problematic as, in
principle, the 0+ contribution is expected to be small because
it vanishes at the limit 𝑞 → 0.The particle-number violation
of the quasiparticle framework can be an explanation for the
large computed 0+ contribution. A detailed examination on
the origins of the 0+ anomaly will be conducted in a later
study. At this time one should regard the 0+ contributions
with caution as they are probably at least partially spurious.

In Figures 6 and 7 we show the dominating contribu-
tions to the inelastic scattering cross section from various
final states of 128Xe and 131Xe, respectively. We notice that
the major contributions are very similar for the solar and
supernova electron neutrinos for the even-mass 128Xe, where
the leading contributions come from 1+ states at 8.4 MeV,
5.0 MeV, and 6.7 MeV. For solar neutrinos there is also a

notable contribution from a 0+ state at 2.4MeV.The situation
is very much different for the odd-mass 131Xe, where for
supernova neutrinos there is a pile-up of 5/2+, 3/2+, and1/2+ states at roughly 8 MeV giving large contributions to
the total cross section in addition to the large contributions
from lower-lying 5/2+ and 3/2+ states. However, for solar 8B
neutrinos this peak at 8MeV is much smaller, and the leading
contributions are more localized to the 5/2+ state at 1.8 MeV
and the 3/2+ state at 2.9 MeV. It is interesting that a relatively
small change in the average neutrino energy can lead to the
higher-lying states to give much larger contributions to the
total cross section.

Following the discussion on the anomalously large 0+
multipole contribution in 129Xe we show the dominant final
states for neutrinos scattering off 129Xe in Figure 8. As
expected from the large 0+ multipole, the largest contribu-
tions here come from 1/2+ states at energies of roughly 2 − 3
MeV. Something in the nuclear-structure calculation seems
to favor the 0+ multipole transition to 1/2+ final states over
the 1+ multipole transition to 3/2+ states. Otherwise similar
conclusions can be made for 129Xe as for 131Xe above about
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Figure 6: Contributions to the inelastic scattering averaged cross section arising from various final states of 128Xe at energies 𝐸ex. Results are
shown for 8B solar neutrinos (left panel) and supernova electron neutrinos (right panel). Cross sections are given in units of 10−44 cm2 for
solar neutrinos and 10−42 cm2 for supernova neutrinos.
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the location of the peaks in energy and differences between
solar and supernova neutrinos.

5. Conclusions

We have computed various properties of cross sections
of neutral-current neutrino-nucleus scattering off the most
abundant Xe isotopes. The nuclear structure of our target Xe
nuclei was computed in the nuclear shell model for elastic
scattering and in the QRPA framework for both elastic and
inelastic scattering. For the odd-mass nuclei 129Xe and 131Xe
an MQPM calculation was performed based on the QRPA
calculation for 130Xe and 132Xe, respectively. We used realistic
neutrino energy distributions for solar neutrinos from 8B
beta decay and supernova neutrinos to compute the averaged
cross sections for each neutrino scenario.

The total averaged cross sections for supernova neutrinos
are dependent on the values of the parameters 𝛼] and ⟨𝐸]⟩.
We have shown results of only one set of parameters for
electron neutrinos and one for muon/tau neutrinos. The
dependence of the cross sections on the parameter 𝛼] is
typically quite mild, unless the change is large [25, 26].
The values 𝛼] = 3.0, ⟨𝐸]e⟩ = 11.5 MeV, and ⟨𝐸]x⟩ =16.3 MeV used in this work are reasonable estimates and
allow comparison of results with the 8B solar neutrinos, for
which the energy distribution is better known. A mapping of
cross sections for various supernova neutrino parameters is
out of scope of this work. However, we have tabulated total
cross section as a function of neutrino energy, which can be
used to obtain estimates of total averaged cross sections for
any neutrino energy profile.

The scattering process in even-even nuclei is dominated
by transitions to high-lying 1+ states and for odd-mass nuclei
typically by states differing from the initial state by one unit
of angular momentum. We found that in even-mass nuclei
the leading contributions from various final states are quite
similar between solar neutrinos and supernova neutrinos. In
odd-mass nuclei, however, the smaller energy of the solar
neutrinos does not allow large contributions to the total cross
section to arise from high-lying states. We also noted that the
smaller energies of solar neutrinos lead into an enhancement
in the vector 0+ multipole channel in comparison to the
otherwise dominating 1+ axial-vector channel, especially in
the odd-massXenuclei. However, the large contribution from
the 0+ multipole can be mostly spurious, possibly due to
the particle-number violation of the quasiparticle framework.
This matter will be investigated further and subsequently
reported elsewhere.
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This article reports on the feasibility of testing of the symmetry under reversal in time in a purely leptonic system constituted by
positronium atoms using the J-PET detector. The present state ofT symmetry tests is discussed with an emphasis on the scarcely
explored sector of leptonic systems. Two possible strategies of searching for manifestations ofT violation in nonvanishing angular
correlations of final state observables in the decay of metastable triplet states of positronium available with J-PET are proposed and
discussed. Results of a pilot measurement with J-PET and assessment of its performance in reconstruction of three-photon decays
are shown along with an analysis of its impact on the sensitivity of the detector for the determination of T-violation sensitive
observables.

1. Introduction

The concept of symmetry of Nature under discrete transfor-
mations has been exposed to numerous experimental tests
ever since its introduction by E. Wigner in 1931 [1]. The
first evidence of violation of the supposed symmetries under
spatial (P) and charge (C) parity transformations in theweak
interactions has been found already in 1956 and 1958, respec-
tively [2, 3]. However, observation of noninvariance of a

physical system under reversal in time required over 50 years
more and was finally performed in the system of entangled
neutral B mesons in 2012 [4]. Although many experiments
proved violation of the combined CP symmetry, leading to
T violation expected on the ground of the CPT theorem,
experimental evidence for noninvariance under time reversal
remains scarce to date.

The Jagiellonian PET (J-PET) experiment aims at per-
forming a test of the symmetry under reversal in time
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in a purely leptonic system constituted by orthopositron-
ium (o-Ps) with a precision unprecedented in this sector.
The increased sensitivity of J-PET with respect to previous
discrete symmetry tests with o-Ps→3𝛾 is achieved by a
large geometrical acceptance and angular resolution of the
detector as well as by improved control of the positronium
atoms polarization. In this work, we report on the results of
feasibility studies for the planned T violation searches by
determination of angular correlations in the o-Ps→3𝛾 decay
based on a test run of the J-PET detector.

This article is structured as follows: next section briefly
discusses the properties of time and time reversal in quantum
systems. Subsequently, Section 3 provides an overview of
the present status and available techniques of testing of the
symmetry under reversal in time and points out the goals of
the J-PET experiment in this field. A brief description of the
detector and details of the setup used for a test measurement
are given in Section 4. Section 5 discusses possible strategies
to test the time reversal symmetry with J-PET. Results of the
feasibility studies are presented in Section 6 and their impact
on the perspectives for a T test with J-PET is discussed in
Section 7.

2. Time and Reversal of Physical
Systems in Time

Although the advent of special relativity made it common
equate time with spatial coordinates, time remains a distinct
concept. Its treatment as an external parameter used in
classical mechanics still cannot be consistently avoided in
today’s quantum theories [5]. As opposed to position and
momentum, time lacks a corresponding operator in standard
quantum mechanics and thus, countering the intuition,
cannot be an observable. Moreover, a careful insight into the
time evolution of unstable quantum systems reveals a number
of surprising phenomena such as deviations fromexponential
decay law [6, 7] or emission of electromagnetic radiation
at late times [8]. The decay process, inevitably involved in
measurements of unstable systems is also a factor restrict-
ing possible studies of the symmetry under time reversal
[9].

While efforts are taken to define a time operator, obser-
vation of CP violation in the decaying meson systems
disproves certain approaches [10]. Alternatively, concepts of
time intervals not defined through an external parameter
may be considered using tunneling and dwell times [11, 12].
However, also in this case invariance under time reversal is
an important factor [13].

It is important to stress that all considerations made
herein are only valid if gravitational effects are not considered.
In the framework of general relativity with a generic curved
spacetime, the concept of inversion of time (as well as the
P transformation) loses its interpretation specific only to the
linear affine structure of spacetime [14].

The peculiar properties of time extend as well to the
operation of reversing physical systems in time (the T
operator), which results in grave experimental challenges
limiting the possibilities of T violation measurements. In

contrast to the unitary P and C operators, T can be shown
to be antiunitary. As a consequence, no conserved quantities
may be attributed to the T operation [15] excluding symmetry
tests by means of, e.g., testing selection rules.

Feasibility of T tests based on a comparison between
time evolution of a physical system in two directions, i.e.,
|𝜓(𝑡)⟩ → |𝜓(𝑡 + 𝛿𝑡)⟩ and |𝜓(𝑡 + 𝛿𝑡)⟩ → |𝜓(𝑡)⟩, is also
limited as most of the processes which could be used involve
a decaying state making it impractical to obtain a reverse
process with the same conditions in an experiment. The
only exception exploited to date is constituted by transitions
of neutral mesons between their flavour-definite states and
CP eigenstates [16, 17]. A comparison of such reversible
transitions in a neutral B meson system with quantum
entanglement of B0B0 pairs produced in a decay of Υ(4𝑠)
yielded the only direct experimental evidence of violation of
the symmetry under reversal in time obtained to date [4].
While a similar concept of T violation searches is currently
pursued with the neutral kaon system [17–19], no direct tests
of this symmetry have been proposed outside the systems of
neutral mesons.

In the absence of conserved quantities and with the
difficulties of comparing mutually reverse time evolution
processes in decaying systems, manifestations ofT violation
may still be sought in nonvanishing expectation values of
certain operators odd under the T transformation [20]. It
follows from the antiunitarity of the T operator that for any
operator O

⟨𝜙 O
𝜓⟩ = ⟨𝜙  𝑇†𝑇O𝑇†𝑇 𝜓⟩ = ⟨𝜙�푇 O�푇

𝜓�푇⟩
∗ , (1)

where the 𝑇 subscript denotes states and operators trans-
formed by the operator of reversal in time. Therefore, an
operator odd with respect to the T transformation (i.e., O�푇 =
−O) must satisfy

⟨𝜙  𝑂
𝜓⟩ = − ⟨𝜙�푇  𝑂

𝜓�푇⟩
∗ . (2)

For stationary states or in systems where conditions on
interaction dynamics such as absence of significant final state
interactions are satisfied [21], the mean value of a T-odd
and Hermitian operator must therefore vanish in case of T
invariance:

⟨𝑂⟩�푇 = − ⟨𝑂⟩ , (3)

and violation of theT symmetry may thus be manifested as
a nonzero expectation value of such an operator.

3. Status and Strategies of T
Symmetry Testing

Anumber of experiments based on the property of T operator
demonstrated in (1)-(3) have been conducted to date. The
electric dipole moment of elementary systems, constituting
a convenient T-odd operator, has been sought for neutrons
and electrons in experiments reaching a precision of 10−26
and 10−28, respectively [22, 23]. However, none of such
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experiments has observed T violation to date despite their
excellent sensitivity. In another class of experiments, a T-
odd operator is constructed out of final state observables in
a decay process, such as the weak decay 𝐾+ → 𝜋0𝜇+]
studied by the KEK-E246 experiment [24] in which the
muon polarization transverse to the decay plane (P�푇 =
P�퐾 ⋅ (p�휋 × p�휇)/|p�휋 × p�휇|) was determined as an observable
whose nonzero mean value would manifest T violation.
However, neither this measurement nor similar studies using
decay of polarized 8Li nuclei [25] and of free neutrons [26]
have observed significant mean values of T-odd final state
observables.

Notably, although the property of reversal in time shown
in (1)-(3) is not limited to any particular system nor interac-
tion, it has been mostly exploited to test the T symmetry in
weak interactions. Whereas the latter is the most promising
candidate due to well proven CP violation, evidence for
T noninvariance may be sought in other physical systems
and phenomena using the same scheme of a symmetry
test. Systems constituted by purely leptonic matter are an
example of a sector where experimental results related to
the time reversal symmetry—and to discrete symmetries
in general—remain rare. Several measurements of neutrino
oscillations are being conducted by the NO]A and T2K
experiments searching for CP violation in the ]�휇 →
]�푒 and ]�휇 → ]�푒 channels [27, 28], which may provide
indirect information on the T symmetry. Another notable
test of discrete symmetries in the leptonic sector is the
search for the violation of Lorentz and CPT invariance
based on the Standard Model Extension framework [29] and
anti-CPT theorem [30] which has also been performed by
T2K [31, 32]. Other possible tests of these symmetries with
the positronium system include spectroscopy of the 1S-2S
transition [33] and measuring the free fall acceleration of
positronium [34]. However, the question of the T, CP,
andCPT symmetries in the leptonic systems remains open
as the aforementioned experiments have not observed a
significant signal of a violation.

Few systems exist which allow for discrete symmetry tests
in a purely leptonic sector. However, a candidate competitive
with respect to neutrino oscillations is constituted by the
electromagnetic decay of positronium atoms, exotic bound
states of an electron and a positron.With a reducedmass only
twice smaller than that of a hydrogen atom, positronium is
characterized by a similar energy level structure. At the same
time, it is ametastable statewith a lifetime strongly dependent
on the spin configuration. The singlet state referred to as
parapositronium, may only decay into an even number of
photons due to charge parity conservation, and has a lifetime
(in vacuum) of 0.125ns. The triplet state (orthopositronium,
o-Ps) is limited to decay into an odd number of photons and
lives in vacuum over three orders of magnitude longer than
the singlet state (𝜏�표−�푃�푠 = 142ns) [35–37].

Being an eigenstate of the parity operator alike atoms,
positronium is also characterized by symmetry under charge
conjugation typical for particle-antiparticle systems. Positro-
nium atoms are thus a useful system for discrete symme-
try studies. Moreover, they may be copiously produced in

laboratory conditions using typical sources of 𝛽+ radia-
tion [38], giving positronium-based experiments a technical
advantage over those using, e.g., aforementioned neutrino
oscillations. However, few results on the discrete symmetries
in the positronium system have been reported to date. The
most precise measurements studied the angular correlation
operators in the decay of orthopositronium states into three
photons and determined mean values of final state operators
odd under the CP and CPT conjugations, finding no
violation signal at the sensitivity level of 10−3 [39, 40].
Although the aforementioned studies sought for violation of
CP and CPT, it should be emphasized that the operators
used therein were odd under the T operation as well, leading
to an implicit probe also for the symmetry under reversal in
time.

The results obtained to date, showing no sign of viola-
tion, were limited in precision by technical factors such as
detector geometrical acceptance and resolution, uncertainty
of positronium polarization, and data sample size. In terms
of physical restrictions, sensitivity of such discrete symmetry
tests with orthopositronium decay is only limited by possible
false asymmetries arising from photon-photon final state
interactions at the precision level of 10−9 [41, 42]. The J-
PET experiment thus sets its goal to explore the T-violating
observables at precision beyond the presently established
10−3 level [43].

4. The J-PET Detector

The J-PET (Jagiellonian Positron Emission Tomograph) is
a photon detector constructed entirely with plastic scintil-
lators. Along with constituting the first prototype of plastic
scintillator-based cost-effective PET scanner with a large field
of view [44, 45], it may be used to detect photons in the sub-
MeV range such as products of annihilation of positronium
atoms, thus allowing for a range of studies related to discrete
symmetries and quantum entanglement [43].

J-PET consists of three concentric cylindrical layers of
axially arranged 𝛾 detection modules based on strips of EJ-
230 plastic scintillator as shown schematically in Figure 1.
Each scintillator strip is 50 cm long with a rectangular cross-
section of 7 × 19mm2. Within a detection module, both ends
of a scintillator strip are optically coupled to photomultiplier
tubes. Due to low atomic number of the elements constituting
plastic scintillators, 𝛾 quanta interact mostly through Comp-
ton scattering in the strips, depositing a part of their energy
dependent on the scattering angle. The lack of exact photon
energy determination in J-PET is compensated by fast decay
time of plastic scintillators resulting in high time resolution
and allowing for use of radioactive sources with activity as
high as 10MBq.The energy deposited by photons scattered in
a scintillator is converted to optical photons which travel to
both ends of a strip undergoing multiple internal reflections.
Consequently, the position of 𝛾 interaction along a detection
module is determined using the difference between effective
light propagation times to the two photomultiplier tubes
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Figure 1: Schematic view of the J-PET detector consisting of 192
plastic scintillator strips arranged in three concentric layers with
radii ranging from 42.5 cm to 57.5 cm. The strips are oriented along
the Z axis of the detector barrel.

attached to a scintillator strip [46]. In the transverse plane of
the detector, 𝛾 interactions are localized up to the position of
a single module, resulting in an azimuthal angle resolution of
about 1∘.

Although the J-PET 𝛾 detection modules do not allow
for a direct measurement of total photon energy, recording
interactions of all photons from a 3𝛾 annihilation allows for
an indirect reconstruction of photons’ momenta based on
event geometry and 4-momentum conservation [47].

As J-PET is intended for a broad range of studies from
medical imaging [48] through quantum entanglement [49,
50] to tests of discrete symmetries [43], its data acquisition is
operating in a triggerless mode [51] in order to avoid any bias
in the recorded sample of events. Electric signals produced by
the photomultipliers are sampled in the time domain at four
predefined voltage thresholds allowing for an estimation of
the deposited energy using the time over threshold technique
[52]. Further reconstruction of photon interactions as well as
data preselection and handling is performed with dedicated
software [53, 54]. Several extensions of the detector are
presently in preparation such as improvements of the J-PET
geometrical acceptance by inclusion of additional detector
layers [47] as well as enhanced scintillator readout with
silicon photomultipliers [55] and new front-end electronics
[52].

5. Discrete Symmetry Tests with
the J-PET Detector

5.1. Measurements Involving Orthopositronium Spin. The
symmetry under reversal in time can be put to test in the
o-Ps→3𝛾 decay by using the properties of T conjugation
demonstrated by (1)-(3). Spin→𝑆 of the decaying orthopositro-
nium atom and momenta of the three photons produced

→
S

o-Ps
→
k1

→
k2

→
k3

Figure 2: Vectors describing the final state of an o-Ps→3𝛾 annihi-
lation in the o-Ps frame of reference. →𝑆 denotes orthopositronium
spin and

→𝑘 1,2,3 are the momentum vectors of the annihilation
photons, lying in a single plane. The operator defined in (4) is a
measure of angular correlation between the positronium spin and
the decay plane normal vector.

in the decay
→𝑘 1,2,3 (ordered according to their descending

magnitude, i.e., |→𝑘 1| > |→𝑘 2| > |→𝑘 3|) allow for construction of
an angular correlation operator odd under reversal in time:

𝐶�푇 =
→𝑆 ⋅ (→𝑘 1 ×

→𝑘 2) , (4)

which corresponds to an angular correlation between the
positronium spin direction and the decay plane as illustrated
in Figure 2.

Such an approach which requires estimation of the spin
direction of decaying positronia was used by both previous
discrete symmetry tests conducted with orthopositronium
decay [39, 40]. These two experiments, however, adopted
different techniques to control the o-Ps spin polarization. In
the CP violation search, positronium atoms were produced
in strong external magnetic field resulting in their polariza-
tion along a thus imposed direction [39]. A setup required
to provide the magnetic field, however, was associated with
a limitation of the geometrical acceptance of the detectors
used.The second measurement, testing theCPT symmetry
using the Gammasphere detector which covered almost a full
solid angle, did not therefore rely on external magnetic field.
Instead, positronium polarization was evaluated statistically
by allowing for o-Ps atoms formation only in a single
hemisphere around a point-like positron source, resulting in
estimation of the polarization along a fixed quantization axis
with an accuracy limited by a geometrical factor of 0.5 [40].
Neither of the previous experiments attempted to reconstruct
the position of o-Ps→3𝛾 decay, instead limiting the volume
of o-Ps creation and assuming the same origin point for all
annihilations.

The J-PET experiment attempts to improve on the latter
approach which does not require the use of external magnetic
field. The statistical knowledge of spin polarization of the
positrons forming o-Ps atoms can be significantly increased
with a positronium production setup depicted in Figure 3,
where polarization is estimated on an event-by-event basis
instead of assuming a fixed quantization axis throughout
the measurement. A trilateration-based technique of recon-
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Figure 3: Scheme of the positronium production setup devised for
positron polarization determination in J-PET experiment. Positrons
are produced in a 𝛽+ source mounted in the center of a cylindrical
vacuum chamber coaxial with the detector. Positronium atoms are
formed by the interaction of positrons in a porousmedium covering
the chamber walls. Determination of an o-Ps→3𝛾 annihilation
position in the cylinder provides an estimate of positronmomentum
direction.

structing the position of o-Ps→3𝛾 decay created for J-PET
allows for estimation of the direction of positron propagation
in a single event with a vector spanned by a point-like
𝛽+ source location and the reconstructed orthopositronium
annihilation point [56].

The dependence of average spin polarization of positrons
(largely preserved during formation of orthopositronium
[57]) on the angular accuracy of the polarization axis deter-
mination is given by (1/2)(1 + cos𝛼) where 𝛼 is the opening
angle of a cone representing the uncertainty of polarization
axis direction [58]. This uncertainty in J-PET results pre-
dominantly from the resolution of determination of the 3𝛾
annihilation point as depicted in Figure 4 and amounts to
about 15∘ [56], resulting in a polarization decrease smaller
than 2%. By contrast, in the previous measurement with
Gammasphere [40] where the polarization axis was fixed, the
same geometrical factor accounted for a 50% polarization
loss.

5.2.MeasurementsUsing Polarization of Photons. Thescheme
of measurement without external magnetic field for positro-
nium polarization may be further simplified with modified
choice of the measured T-odd operator. This novel approach
of testing the T symmetry may be pursued by J-PET with
a spin-independent operator constructed for the o-Ps→3𝛾
annihilations if the polarization vector of one of the final state
photons is included [43]:

𝐶�耠�푇 =
→𝑘 2 ⋅ →𝜀 1, (5)

where →𝜀 1 denotes the electric polarization vector of the
most energetic 𝛾 quantum and

→𝑘 2 is the momentum of
the second most energetic one. Such angular correlation
operators involving photon electric polarization have never
been studied in the decay of orthopositronium. Geometry of

+x

y

→
S

Figure 4: Determination of positron polarization axis using
its momentum direction (black arrow) estimated using the 𝛽+
source position and reconstructed origin of the 3𝛾 annihilation of
orthopositronium in the chamberwall (dark gray band).The shaded
region represents the angular uncertainty of positron flight direction
resulting from achievable resolution of the 3𝛾 annihilation point.

o-Ps


→
k1

→
k2

→
k3

→
k1

→ 1

Figure 5: Scheme of estimation of polarization vector for a photon
produced in o-Ps→3𝛾 at J-PET. Photon of momentum

→𝑘 1 is scat-
tered in one of the detectionmodules and a secondary interaction of

the scattering product
→𝑘
�耠

1 is recorded in a different scintillator strip.
The most probable angle 𝜂 between the polarization vector →𝜀1 and
the scattering plane spanned by

→𝑘 1 and
→𝑘
�耠

1 amounts to 90∘.

the J-PET detector enables a measurement of ⟨𝐶�耠�푇⟩ thanks to
the ability to record secondary interactions of once scattered
photons from the o-Ps→3𝛾 annihilation as depicted in
Figure 5.

6. Test Measurement with the J-PET Detector

The setup presented in Figure 3 was constructed and fully
commissioned in 2017 [59]. One of the first test mea-
surements was dedicated to evaluation of the feasibility of
identification and reconstruction of three-photon events.
A 22Na 𝛽+ source was mounted inside a cylindrical vac-
uum chamber of 14 cm radius. The positronium formation-
enhancing medium, presently under elaboration, was not
included in the measurement. Therefore, the test of 3𝛾
event reconstruction was based on direct 3𝛾 annihilation of
positrons with electrons of the aluminium chamber walls,
with a yield smaller by more than an order of magnitude
than the rate of o-Ps→3𝛾 annihilations expected in the
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Figure 6: Distributions of time over threshold (TOT) values,
for 𝛾 interactions observed in groups of 1, 2 and more within a
coincidence time window of 2.5 ns. In the samples with increasing
number of coincident photons, the contribution of 𝛾 quanta from
3𝛾 annihilations increaseswith respect to other processes. Gray lines
and arrow denote the region used to identify 3𝛾 annihilation photon
candidates.

final measurements with a porous medium for positronium
production.

The capabilities of J-PET to select 3𝛾 events and discrimi-
nate background arising from two-photon 𝑒+𝑒− annihilations
aswell as fromaccidental coincidences are based primarily on
two factors:

(i) a measure of energy deposited by a photon in Comp-
ton scattering, provided by the time over threshold
(TOT) values determined by the J-PET front-end
electronics,

(ii) angular dependencies between relative azimuthal
angles of recorded 𝛾 interaction points, specific to
topology of the event [60].

Distributions of the TOT values, after equalization of
responses of each detectionmodule, are presented in Figure 6.
Separate study of TOT distributions for 𝛾 quanta observed
in groups of 1, 2 and more recorded 𝛾 hits in scintillators
within a short time window reveals the different composition
of photons from 3𝛾 annihilations with respect to those
originating from background processes such as deexcitation
of the 𝛽+ decay products from a 22Na source (1270 keV)
and cosmic radiation. Two Compton edges corresponding to
511 keV and 1270 keV photons are clearly discernible in TOT
distributions, allowing identifying candidates for interactions
of 3𝛾 annihilation products by TOT values located below
the 511 keV Compton edge as marked with dashed lines in
Figure 6.

The second event selection criterion is based on the
correlations between relative azimuthal angles of photon

interactions recorded in the detector in cases of three interac-
tions observed in close time coincidence.The tests performed
with Monte Carlo simulations have shown that annihilations
into two and three photons can be well separated using
such correlations [60]. An exemplary relative distribution of
values constructed using these correlations, obtained with
the test measurement, is presented in Figure 7(a). For a
comparison, the same distribution obtained with a point-like
annihilation medium used in another test measurement of J-
PET is presented in Figure 7(b).

A sharp vertical band at 𝛿𝜃2 + 𝛿𝜃3 ≈ 180∘ seen in
Figure 7(b) originates from events corresponding to anni-
hilations into two back-to-back photons. Broadening of this
2𝛾 band in case of the extensive chamber is a result of the
increased discrepancy between relative azimuthal angles of
detection module locations used for the calculation and the
actual relative angles in events originating in the walls of the
cylindrical chamber as depicted schematically in Figure 8.

The distributions presented in Figure 7 are in good agree-
ment with the simulation-based expectations [60]. Selection
of events with values of 𝛿𝜃2+𝛿𝜃3 significantly larger than 180∘
allows for identification of three-photon annihilations.

The aforementioned event selection techniques allowed
to extract 1164 3𝛾 event candidates from the two-day test
measurement with a 𝛽+ source activity of about 10 MBq
placed in the center of the aluminium cylinder as depicted in
Figure 3. Therefore, a quantitative estimation of the achiev-
able resolution of three-photon event origin points and its
impact on the positronium polarization control capabilities
requires a measurement including a medium enhancing the
positronium production.

Resolution of the detector and its field of view was vali-
dated with a benchmark analysis of the test data performed
using the abundant 2𝛾 annihilation events. Figure 9 presents
the images of the annihilation chamber obtained using 2𝛾
events whose selection and reconstruction was performed
with the same techniques as applied to medical imaging
tests performed with J-PET [48]. Although a large part of
recorded annihilations originate already in the setup holding
the 𝛽+ source, a considerable fraction of positrons reach the
chamber walls. The effective longitudinal field of view of
J-PET for 2𝛾 events which can be directly extended to 3𝛾
annihilations due to similar geometrical constraints spans the
range of approximately |𝑧| < 8 cm.

7. Summary and Perspectives

The J-PET group attempts to perform the first search for
signs of violation of the symmetry under reversal in time
in the decay of positronium atoms. One of the available
techniques is based on evaluation of mean values of final
state observables constructed from photons’ momenta and
positronium spin in an o-Ps→3𝛾 annihilation with a pre-
cision enhanced with respect to the previous realization
of similar measurements by determination of positronium
spin distinctly for each recorded event. Moreover, the J-PET
detector enables a novel test by determination of a T-odd
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Figure 7: Relations between the sum and difference of two smallest relative azimuthal angles (𝛿𝜃2 and 𝛿𝜃3, respectively) between 𝛾 interaction
points in events with three recorded interactions. (a) Distribution obtained in the test measurement with the aluminium chamber presented
in Figure 3. For reference, the same spectrum obtained with a point-like annihilation medium located in the detector center [59] is displayed
in (b). The vertical band around 𝛿𝜃2 + 𝛿𝜃3 ≈ 180∘ arises from two-photon annihilations and is broadened in the first case due to extensive
dimensions of the annihilation chamber used. 3𝛾 annihilation events are expected in the region located at the right side of the 2𝛾 band [60].




Figure 8: Explanation of the broadening of the 2𝛾 annihilation band present in Figures 7(a) and 7(b) at 𝛿𝜃2 + 𝛿𝜃3 ≈ 180∘. Left: when 2𝛾
annihilations originate in a small region in the detector center, the calculated relative azimuthal angles of detectionmodules which registered
the photons correspond closely to actual relative angles between photons’ momenta. Right: with 2𝛾 annihilations taking place in the walls of
an extensive-size annihilation chamber (gray band), the broadening of the band at 180∘ is caused by a discrepancy between the calculated
and actual relative angles. The detector scheme and proportions are not preserved for clarity.

observable constructed using the momenta and polarization
of photons from annihilation.

The pilot measurement conducted with the J-PET detec-
tor demonstrated the possibility of identifying candidates of
annihilation photons interactions in the plastic scintillator
strips by means of the time over threshold measure of
deposited energy and angular dependencies between relative
azimuthal angles of 𝛾 interaction points specific to event
spatial topology. A preliminary selection of three-photon
annihilation events yielded 1164 event candidates from a
two-day test measurement with a yield reduced by more
than an order of magnitude with respect to the planned
experiments with a porous positronium production target
and a centrally located 10 MBq source. The annihilation
reconstruction resolution and performance of the setup

proposed for positron spin determination was validated with
a benchmark reconstruction of two-photon annihilations.
Results obtained from the test measurement confirm the
feasibility of a test of symmetry under reversal in time by
measurement of the angular correlation operator defined
in (4) without external magnetic field once a positronium
production medium is used.
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Figure 9: Tomographic images of the cylindrical chamber used in the test runof J-PET, obtained using reconstructed 𝑒+𝑒− → 2𝛾 annihilation
events. (a) Transverse view of the chamber (the central longitudinal region of |𝑧| < 4 cm was excluded where the image is dominated by
annihilation events originating in the setup of the 𝛽+ source.). (b) Longitudinal view of the imaged chamber. In the central region, a strong
image of the positron source and its mounting setup is visible.
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We study vortices in generalizedMaxwell-Higgsmodels, with the inclusion of a quadratic kinetic termwith the covariant derivative
of the scalar field in the Lagrangian density. We discuss the stressless condition and show that the presence of analytical solutions
helps us to define the model compatible with the existence of first order equations. A method to decouple the first order equations
and to construct the model is then introduced and, as a bonus, we get the energy depending exclusively on a function of the
fields calculated from the boundary conditions. We investigate some specific possibilities and find, in particular, a compact vortex
configuration in which the energy density is all concentrated in a unit circle.

1. Introduction

Vortices are localized structures that appear in two spatial
dimensions. They are present in many areas of nonlinear
science and were firstly investigated in the context of fluid
mechanics [1, 2]. These objects also appear in type II super-
conductors [3] when one deals with the Ginzburg-Landau
theory of superconductivity [4] and may also be present as
magnetic domains in magnetic materials and in many other
applications in condensed matter [5, 6].

In high energy physics, in particular, vortices firstly
appeared in the Nielsen-Olesen work [7], which is perhaps
the simplest relativistic model that supports these structures.
The model consists of a Maxwell gauge field minimally
coupled to a complex scalar field under the Abelian 𝑈(1)
symmetry in the (2, 1) Minkowski spacetime. An interesting
feature of the Nielsen-Olesen vortices is that they are elec-
trically neutral and engender quantized magnetic flux. Their
equations of motion are of second order and present cou-
plings between the fields. To simplify the problem, first order
equations that solve the equations of motion were found in
[8, 9]. In this case, the first and second order equations are
only compatible if the potential is of the Higgs type, a |𝜑|4
potential that engenders spontaneous symmetry breaking.
It is worth mentioning that, even with the Bogomol’nyi

procedure, the analytical solutions that describe the vortices
remain unknown.

Vortices have also been investigated in generalized mod-
els with distinct motivations in several works; see, e.g., [10–
27]. In particular, k-vortices, which are vortices in models
with generalized kinematics, similar to the models studied
before in [28–31], were investigated in [12, 13], without the
presence of a first order formalism and analytical solutions,
but with the search for new effects. Another motivation relies
on the possibility of specifying the form of potential, imposed
by the first order formalism. For instance, in [23], modifi-
cations in the magnetic permeability allowed to develop a
route to make the vortex compact. Also, in [27], we have
developed a method to obtain vortices and to construct a
class of models that supports analytical solutions. Recently,
in [32], we have found vortices with internal structure, which
arise in generalized models with the magnetic permeability
controlled by the addition of a neutral field, enlarging the𝑈(1) symmetry to become 𝑈(1) × 𝑍2.

Motivated by several works that appeared with general-
ized dynamics, we have developed a first order formalism for
these models in [26].This investigation focused on the search
for the conditions that could lead to first order equations
in a case similar to the one considered before in [12], with
the inclusion of a quadratic kinetic term that involves the
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covariant derivative of the scalar field in the Lagrangian
density. In the current work we further explore the subject,
extending the previous results of [26, 27] to this much harder
class of models. The main results show how the presence
of analytical solutions can be used to construct the model,
if one imposes that its equations of motion are solved by
solutions of first order differential equations compatible with
the stressless condition.

Although we are working in the (2, 1) dimensional space-
time with the Minkowski metric, we think that the results
of the current work are also of interest to General Relativity
(RG), in particular to the case of the so-called Ricci-based
theories of gravity (RBG) formulated within the metric-affine
approach. For instance, in the recent work [33], the authors
unveiled an interesting correspondence between the space of
solutions of RBG and RG, under certain circumstances. The
results show that it is sometimes possible to map complicated
nonlinear models into simpler ones, and we think that the
models to be explored in the current work can provide novel
possibilities of current interest to the scenario explored in
[33, 34].

To study the subject, the work is organized in a way such
that in Section 2 we present the model and the procedure,
showing the requirements to make it work in the presence of
first order equations. In Section 3, we illustrate our findings
with some new models that support analytical solutions.
In particular, we also calculate the magnetic field, energy
density, and total energy of the vortex analytically and
investigate the possibility of building compact solutions.
Finally, in Section 4 we end the work with some conclusions
and an outlook for future investigations.

2. Model and Procedure

Weconsider the generalized action 𝑆 = ∫ 𝑑3𝑥L for a complex
scalar field 𝜑 coupled to a gauge field𝐴𝜇 under the local𝑈(1)
symmetry in a three-dimensional Minkowski spacetime with
metric tensor 𝜂𝜇] = diag(+, −, −). The Lagrangian density to
be investigated has the form

L = 𝐾 (𝜑)𝑋 − 𝑄 (𝜑) 𝑋2 + 𝑃 (𝜑) 𝑌 − 𝑉 (𝜑) . (1)

In the above expression, 𝐾(|𝜑|), 𝑄(|𝜑|), and 𝑃(|𝜑|) are
nonnegative functions thatmodify the dynamics of themodel
and 𝑉(|𝜑|) is the potential. The minus sign in the 𝑋2 term is
to keep the vortex energy nonnegative. Also, 𝑋 and 𝑌 define
the kinetic terms of the scalar and gauge fields, respectively,
as

𝑋 = 𝐷𝜇𝜑𝐷𝜇𝜑,
𝑌 = −14𝐹𝜇]𝐹𝜇],

(2)

where 𝐷𝜇 = 𝜕𝜇 + 𝑖𝑒𝐴𝜇, 𝐹𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇, and the overline
stands for the complex conjugation. The equations of motion
for this model are

𝐷𝜇 (𝐾𝐷𝜇𝜑) − 2𝐷𝜇 (𝑄𝑋𝐷𝜇𝜑)
+ + 𝜑2 𝜑 (−𝐾|𝜑|𝑋 + 𝑄|𝜑|𝑋2 − 𝑃|𝜑|𝑌 + 𝑉|𝜑|) = 0, (3a)

𝜕𝜇 (𝑃𝐹𝜇]) = 𝐽], (3b)

where 𝐽𝜇 is the conserved current, given by the expression
𝐽𝜇 = 𝑖𝑒(𝐾 − 2𝑄𝑋)(𝜑𝐷𝜇𝜑 − 𝜑𝐷𝜇𝜑). Also, we are using the
notation 𝑉|𝜑| = 𝜕𝑉/𝜕|𝜑|, etc.

The energy-momentum tensor 𝑇𝜇] for the generalized
model (1) is

𝑇𝜇] = 𝑃𝐹𝜇𝜆𝐹𝜆] + (𝐾 − 2𝑄𝑋) (𝐷𝜇𝜑𝐷]𝜑 + 𝐷]𝜑𝐷𝜇𝜑)
− 𝜂𝜇]L. (4)

We then consider static configurations; take 𝐴0 = 0 and work
with the usual ansatz for vortices

𝜑 (𝑟, 𝜃) = 𝑔 (𝑟) 𝑒𝑖𝑛𝜃, (5a)

𝐴 𝑖 = 𝜖𝑖𝑗 𝑥𝑗𝑒𝑟2 (𝑛 − 𝑎 (𝑟)) , (5b)

in which 𝑟 and 𝜃 are the polar coordinates and 𝑛 = ±1, ±2, . . .
is the vorticity. The boundary conditions for 𝑔(𝑟) and 𝑎(𝑟) are

𝑔 (0) = 0,
𝑎 (0) = 𝑛, (6)

lim
𝑟→∞

𝑔 (𝑟) = V,
lim
𝑟→∞

𝑎 (𝑟) = 0, (7)

where V is the symmetry breaking parameter which is
supposed to be present in the model under investigation. The
ansatz (5a) and (5b) makes 𝑋 and 𝑌 be written as

𝑋 = −𝑔2 − 𝑎2𝑔2𝑟2 ,
𝑌 = − 𝑎22𝑒2𝑟2 ,

(8)

where the prime denotes the derivative with respect to 𝑟. The
magnetic field is given by 𝐵 = −𝐹12 = −𝑎/(𝑒𝑟). This can be
used to show that the magnetic flux Φ = 2𝜋∫∞

0
𝑟𝑑𝑟𝐵(𝑟) is

quantized; that is,

Φ = 2𝜋𝑛𝑒 . (9)

The ansatz (5a) and (5b) can be plugged in the equations of
motion (3a) and (3b), which take the form

1𝑟 (𝑟 (𝐾 − 2𝑄𝑋)𝑔) − (𝐾 − 2𝑄𝑋) 𝑎2𝑔𝑟2
− 12 (−𝐾𝑔𝑋 + 𝑄𝑔𝑋2 − 𝑃𝑔𝑌 + 𝑉𝑔) = 0,

(10a)

𝑟 (𝑃𝑎𝑒𝑟)
 − 2𝑒 (𝐾 − 2𝑄𝑋) 𝑎𝑔2 = 0, (10b)
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where 𝐾𝑔 = 𝜕𝐾/𝜕𝑔, etc. The components of the energy-
momentum tensor are

𝑇00 = −𝐾𝑋 + 𝑄𝑋2 − 𝑃Y + 𝑉, (11a)

𝑇12 = (𝐾 − 2𝑄𝑋)(𝑔2 − 𝑎2𝑔2𝑟2 ) sin (2𝜃) , (11b)

𝑇11 = 𝑃 𝑎2𝑒2𝑟2
+ 2 (𝐾 − 2𝑄𝑋)(𝑔2cos2 𝜃 + 𝑎2𝑔2𝑟2 sin2 𝜃)
+L,

(11c)

𝑇22 = 𝑃 𝑎2𝑒2𝑟2
+ 2 (𝐾 − 2𝑄𝑋)(𝑔2sin2 𝜃 + 𝑎2𝑔2𝑟2 cos2 𝜃)
+L.

(11d)

Up to this point, the scenario is quite similar to the one
investigated before in [12]. Here, however, we want to go
further and search for a first order framework that helps us
to find analytical solutions. We then follow [26] and take the
stressless conditions, 𝑇𝑖𝑗 = 0, which ensure stability of the
solution under radial rescaling. This requires the solutions to
obey the following first order equations

𝑔 = ±𝑎𝑔𝑟 , (12a)

−𝑎𝑒𝑟 = ±√2 (𝑉 − 𝑄𝑋2)
𝑃 . (12b)

They allow us to write 𝑋 = −2𝑔2 = −2𝑎2𝑔2/𝑟2. The above
equations, however, must be compatible with the equations of
motion (10a) and (10b). Similarly to the case that was shown
in [26], for 𝐾(|𝜑|) = 0 and 𝑄(|𝜑|) constant, this requirement
leads to a constraint that depends on 𝑎, 𝑔, and 𝑟. Therefore, it
is hard to obtain a constraint in terms of 𝑔 and reconstruct the
model by finding the explicit form of the potential in terms of𝐾(|𝜑|), 𝑄(|𝜑|), and 𝑃(|𝜑|), as in the case 𝑄(|𝜑|) = 0 that was
carefully investigated in [27].Themain issue appears because𝑋 does not depend exclusively on 𝑔, but also on 𝑎 and 𝑟; see
(8). Nevertheless, if the analytical solutions, as well as their
inverses, are known, we may write 𝑋 exclusively in terms of𝑔, which we call 𝑋(𝑔). By substituting (12a) and (12b) into
(10b), the following constraint arises

𝑑𝑑𝑔√2𝑃 (𝑉 − 𝑄𝑋2 (𝑔)) = −2𝑒𝑔 (𝐾 − 2𝑄𝑋 (𝑔)) . (13)

One may wonder if the compatibility of (12a) and (12b)
with (10a) does not imply another constraint. Nonetheless,
as it was demonstrated in [26], once the above constraint is
satisfied and the solutions solve (12a), (12b), (10a) becomes an

identity. In our model, the choice of the functions 𝑃(𝑔),𝑄(𝑔),
and 𝐾(𝑔) must be done in a way that allows the symmetry
breaking of the potential 𝑉(𝑔) to match with the boundary
conditions in (6).

The energy density 𝜌 = 𝑇00 is given by (11a). By using the
first order equations (12a) and (12b), it can be written as

𝜌 = 𝑃 (𝑔) 𝑎2𝑒2𝑟2 + 2𝐾 (𝑔) 𝑔2 + 8𝑄 (𝑔) 𝑔4
= 2𝑉 (𝑔) − 𝐾 (𝑔)𝑋 (𝑔) .

(14)

Here, we follow the procedure developed in [26] and intro-
duce an additional function 𝑊(𝑎, 𝑔), defined by

𝑊𝑎 = 𝑃 𝑎𝑒2𝑟 , (15)

𝑊𝑔 = 2 (𝐾 − 2𝑄𝑋(𝑔)) 𝑟𝑔, (16)

where 𝑊𝑔 = 𝜕𝑊/𝜕𝑔 and 𝑊𝑎 = 𝜕𝑊/𝜕𝑎. By combining the
first order equations (12a) and (12b) and the constraint (13),
one can show that

𝑊(𝑎, 𝑔) = −𝑎𝑒√2𝑃 (𝑉 − 𝑄𝑋2 (𝑔)). (17)

In this case, we can write the energy density as

𝜌 = 1𝑟 𝑑𝑊𝑑𝑟 , (18)

which can be integrated all over the plane to provide the
energy

𝐸 = 2𝜋 𝑊 (𝑎 (∞) , 𝑔 (∞)) − 𝑊 (𝑎 (0) , 𝑔 (0)) ,
= 2𝜋 |𝑊 (𝑛, 0)| . (19)

Now, we follow the route suggested in [27] and develop a
procedure to build analytical solutions. This can be achieved
by decoupling the first order equations (12a) and (12b), as
we describe below. For simplicity, we consider dimensionless
fields and take 𝑒, V = 1; also, we work with unity vorticity,
setting 𝑛 = 1, which means to consider only the upper signs
in (12a) and (12b).

In order to decouple the first order equations, we intro-
duce the generating function 𝑅(𝑔) such that

𝑟𝑑𝑔𝑑𝑟 = 𝑅 (𝑔) . (20)

Therefore, for a given 𝑅(𝑔), we can solve the above equation
and obtain 𝑔(𝑟) obeying the boundary conditions (6). By
using this into (12a) and (12b) we obtain

𝑎 (𝑟) = 𝑅 (𝑔 (𝑟))𝑔 (𝑟) . (21)

We also introduce another function, 𝑀(𝑔), which is
defined by 𝑀(𝑔) = −√2(𝑉(𝑔) − 𝑄(𝑔)𝑋2(𝑔))/𝑃(𝑔). By using
this and the constraint in (13), we get

𝑉 (𝑔) = 12𝑃 (𝑔)𝑀2 (𝑔) + 𝑄 (𝑔)𝑋2 (𝑔) , (22a)

𝐾 (𝑔) = 12𝑔 𝑑𝑑𝑔 (𝑃 (𝑔)𝑀 (𝑔)) + 2𝑄 (𝑔)𝑋 (𝑔) . (22b)
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One can show that 𝑀(𝑔) is obtained in terms of the given
function 𝑅(𝑔) from (12b):

𝑀(𝑔) = 𝑅 (𝑔)
𝑞2 (𝑔) 𝑑𝑑𝑔 (𝑅 (𝑔)

𝑔 ) , (23)

where 𝑞(𝑔) is the inverse of 𝑔(𝑟). This procedure is valid if 𝑋
is written only as a function of 𝑔. Using the definition in (20),
we find

𝑋(𝑔) = −2𝑅 (𝑔)2
𝑞2 (𝑔) . (24)

We can also take advantage of the function𝑀(𝑔) to write the
magnetic field as

𝐵 (𝑟) = −𝑀(𝑔 (𝑟)) , (25)

and (17) as 𝑊(𝑎, 𝑔) = 𝑎𝑃(𝑔)𝑀(𝑔), which leads to the total
energy

𝐸 = −2𝜋𝑃 (0)𝑀 (0) . (26)

This procedure decouples the first order equations in a
manner that the solutions depend only on the generating
function 𝑅(𝑔). As 𝑀(𝑔) depends only on 𝑅(𝑔) and 𝑞(𝑔), we
see from (22a) and (22b) that we have two equations that
constrain the functions 𝑉(|𝜑|), 𝑃(|𝜑|), 𝐾(|𝜑|), and 𝑄(|𝜑|).
This means that there are several models that support the
same analytical solutions defined by (20). Therefore, to find
the explicit form of the models, we need to suggest two of
the aforementioned functions. Even though these functions
lead to the same solutions and magnetic field, they modify
the energy density in (14). Thus, one must choose functions
that lead to a well defined energy.

We also highlight here that the above procedure to
construct the model, described by (22a), (22b), (23), and (24),
is only valid in the interval |𝜑| ∈ [0, 1], which is the one where
the solution exists, according to the boundary conditions (6).
Nonetheless, it is important to suggest nonnegative functions
and a potential that supports a minimum at |𝜑| = 1, in
order to include spontaneous symmetry breaking and avoid
instabilities and negative energies.

3. Specific Examples

Let us now illustrate our procedure with some examples.
We firstly suggest an 𝑅(𝑔) that leads to analytical solutions
and then apply the method in (22a), (22b), (23), and (24) to
construct the model.

3.1. First Example. The first example arises from the generat-
ing function

𝑅 (𝑔) = 𝑔 (1 − 𝑔2) . (27)

This function was previously considered in [27], but with a
model in which 𝑄(|𝜑|) = 0, which kills the 𝑋2 term in the

Lagrangian density. By substituting the above expression in
(20) and (21) we get the solutions

𝑔 (𝑟) = 𝑟√1 + 𝑟2 ,
𝑎 (𝑟) = 11 + 𝑟2 ,

(28)

which satisfy the boundary conditions (6). The inverse
function of the solution 𝑔(𝑟) in (28), combined with (23) and
(24), allows us to write

𝑞 (𝑔) = 𝑔
√1 − 𝑔2 (29a)

𝑀(𝑔) = −2 (1 − 𝑔2)2 , (29b)

𝑋 (𝑔) = −2 (1 − 𝑔2)3 . (29c)

Notice that these equations and the solutions in (28) are
exclusively determined by the function 𝑅(𝑔) given in (27).
This also occurs with the magnetic field, given by (25), which
leads to

𝐵 (𝑟) = 2
(1 + 𝑟2)2 . (30)

In Figure 1, we display the solutions (28) and the magnetic
field given above. Notice that their behavior is similar to the
one for the Nielsen-Olesen case [7, 9].

In order to construct a model that supports the solutions
in (28), we use (22a) and (22b). Firstly, though, we need
to suggest an explicit form for two of the functions among𝐾(|𝜑|), 𝑄(|𝜑|), 𝑃(|𝜑|), and 𝑉(|𝜑|). We consider the potential

𝑉 (𝜑) = 12 1 − 𝜑2𝑠 , (31)

where 𝑠 > 2 is a real number. It presents a set of minima
at |𝜑| = 1 and a local maximum at |𝜑| = 0 as illustrated in
Figure 2. The other function that we suggest is

𝑄 (𝜑) = 𝛼2 1 − 𝜑2𝑠−6 , (32)

where 𝛼 is a real, nonnegative parameter. The case investi-
gated in [27] is obtained for 𝛼 = 0. By substituting the above𝑄(|𝜑|) and the potential (31) in (22a) and (22b), we obtain

𝑃 (𝜑) = 14 (1 − 4𝛼) 1 − 𝜑2𝑠−4 , (33a)

𝐾 (𝜑) = 12 (𝑠 − 2 − 4𝛼 (𝑠 − 1)) 1 − 𝜑2𝑠−3 . (33b)

In order to avoid negative coefficients in the above functions,
we impose the condition 𝛼 < (𝑠 − 2)/4(𝑠 − 1). The functions
in (31), (32), (33a), and (33b) determine model (1). We want
to emphasize here that this model can only be obtained
explicitly because we know the analytical solutions before its
construction.
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Figure 1: In the left panel, we display the solutions 𝑎(𝑟) (descending line) and 𝑔(𝑟) (ascending line) in (28). In the right panel, we show the
magnetic field in (30).
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Figure 2: The potential in (31) for 𝑠 = 4, 𝑠 = 6, and 𝑠 = 8. The thickness of the lines increases with 𝑠.

r
10.50

0

2

4



Figure 3: The profile of the energy density in (34) for 𝑠 = 8 and𝛼 = 0.1, 0.15, and 0.2. The thickness of the lines increases with 𝛼.

The energy density can be calculated from (14), which
leads us to

𝜌 (𝑟) = (1 − 4𝛼) (𝑠 − 1)
(1 + 𝑟2)𝑠 . (34)

By a direct integration, one can show that the energy is 𝐸 =(1 − 4𝛼)𝜋, which matches with the result obtained by (26).
Notice that only the parameter 𝛼 modifies the energy. The
above energy density can be seen in Figure 3.

Another model can be generated straightforwardly from
the same choice of 𝑅(𝑔) in (27), which presents well defined
V(|𝜑|), 𝑃(|𝜑|), 𝑄(|𝜑|), and 𝐾(|𝜑|) for all 𝜑.
3.2. Second Example. Here, we consider a generalization of
the previous example by considering the generating function
to be

𝑅 (𝑔) = 𝑔 (1 − 𝑔2𝑙) , (35)

where 𝑙 is a nonnegative real parameter. This function was
also investigated in [27], but with 𝑄(|𝜑|) = 0. From (20) and
(21), we get the analytical solutions

𝑔 (𝑟) = 𝑟
(1 + 𝑟2𝑙)1/2𝑙 ,

𝑎 (𝑟) = 11 + 𝑟2𝑙 ,
(36)

which satisfy the boundary conditions (6). From the inverse
of the solution 𝑔(𝑟), combined with (23) and (24), we obtain

𝑞 (𝑔) = 𝑔
(1 − 𝑔2𝑙)1/2𝑙 (37a)

𝑀(𝑔) = −2𝑔2𝑙−2 (1 − 𝑔2𝑙)1+1/𝑙 , (37b)

𝑋(𝑔) = −2 (1 − 𝑔2𝑙)2+1/𝑙 . (37c)
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Figure 4: In the left panel, we display the solutions 𝑎(𝑟) (descending lines) and 𝑔(𝑟) (ascending lines) in (36). In the right panel, we show the
magnetic field in (38). The dotted lines represent the case 𝑙 = 1 and the dashed ones stand for the compact limit in (39a), (39b), and (40).

As in the previous model, these equations and the solutions
in (36) are solely determined by the 𝑅(𝑔) in (27). The same is
valid for the magnetic field in (25), which leads to

𝐵 (𝑟) = 2𝑙𝑟2𝑙−2
(1 + 𝑟2𝑙)2 . (38)

One can show that, as 𝑙 increases, the solutions in (36) tend
to compactify

𝑎𝑐 (𝑟) = {{{
1, 𝑟 ≤ 1
0, 𝑟 > 1, (39a)

𝑔𝑐 (𝑟) = {{{
𝑟, 𝑟 ≤ 1
1, 𝑟 > 1, (39b)

and the same happens for the magnetic field in (38), which
for very large 𝑙 tends to

𝐵𝑐 (𝑟) = 𝛿 (𝑟 − 1)𝑟 , (40)

where 𝛿(𝑧) is the Dirac delta function. In Figure 4, we depict
the solutions (36) and the magnetic field given above for
several values of 𝑙, including the compact limit in (39a) and
(39b).

Again, to find the functions 𝐾(|𝜑|), 𝑄(|𝜑|), 𝑃(|𝜑|), and𝑉(|𝜑|) we must suggest two of them and use (22a) and (22b).
We take the potential in the form

𝑉 (𝜑) = 12𝑙 𝜑2𝑙−2
1 − 𝜑2𝑙𝛽𝑙 , (41)

where 𝛽 > 2 is a real number. This potential presents minima
at |𝜑| = 1 for any 𝑙. The point |𝜑| = 0 is a maximum for𝑙 = 1 and a minimum for 𝑙 > 1. This behavior is shown in
Figure 5. Together with the potential in (41), we keep the same
lines of the previous example and suggest the 𝑋2 term in the
Lagrangian density to be modified by

𝑄 (𝜑) = 12𝛼𝑙 𝜑2𝑙−2
1 − 𝜑2𝑙𝛽𝑙−4−2/𝑙 , (42)
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Figure 5: The potential in (41) for 𝛽 = 8 and several values of 𝑙. The
dotted line stands for the case 𝑙 = 1.
where 𝛼 > 0 is a real parameter. Substituting 𝑉(|𝜑|) and𝑄(|𝜑|) in (22a) and (22b), we obtain

𝑃 (𝜑) = 14𝑙 (1 − 4𝛼) 𝜑2−2𝑙 1 − 𝜑2𝑙𝛽𝑙−2−2/𝑙 , (43)

𝐾(𝜑) = 12 ((1 − 4𝛼) (𝛽𝑙2 − 1) − 𝑙)
× 𝜑2𝑙−2 1 − 𝜑2𝑙

𝛽l−2−1/𝑙 .
(44)

To avoid the presence of negative coefficients in the above
expressions, we impose that 𝛼 < (𝛽𝑙2 − 𝑙 − 1)/4(𝛽𝑙2 − 1).

The energy density is calculated from (14), which leads to

𝜌 (𝑟) = (1 − 4𝛼) (𝛽𝑙2 − 1) 𝑟2𝑙−2
(1 + 𝑟2𝑙)𝛽𝑙+1−1/𝑙 . (45)

One may integrate it to get the total energy 𝐸 = (1 −4𝛼)𝜋, which matches with the value obtained by (26). Again,
only the parameter 𝛼 modifies the energy of the vortices,
meaning that the𝑋2 term in the Lagrangian density (1) plays
a significant role in the model. Following a similar procedure
that was done in [27], one can show that the energy density
tends to compactify into a ringlike region of unit radius in the
plane, described by

𝜌 (𝑟) = 12 (1 − 4𝛼) 𝛿 (𝑟 − 1) . (46)
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dotted line represents the case 𝑙 = 1 and the dashed ones stand for the compact limit in (46).

In Figure 6, we display the energy density for several values of𝛼, including the compact limit given above. Its behavior, even
with the presence of the parameter 𝛼, is qualitatively similar
to the one found in [35] for the compactification of vortices
in a generalized Chern-Simons-Higgs model.

4. Comments and Conclusions

In this work, we have developed a procedure that allows
us to construct k-vortex models that support a first order
framework. As we discussed above, the method is important
because the constraint that dictates the form of the potential
cannot be solved in general in the presence of the squared
kinetic term of the scalar field,𝑋2, in the Lagrangian density.
Thus, it seems to be very hard to start from a model with
this term and find the potential that leads to the first order
equations compatiblewith the stressless condition, vital to the
stability of the system.

Nevertheless, we got inspiration from the recent works
[26, 27] and noticed that, if an analytical solution is known,
we can construct amodel that satisfies the stressless condition
and find the energy depending exclusively on a function of
the fields calculated from the boundary conditions. In order
to achieve this, we have introduced the generating function𝑅(𝑔) that decouples the first order equations. It is interesting
feature of this procedure that it shows there is a class of
models that leads to the same analytical, stressless solutions
and their respective magnetic fields, which only depend on
the generating function. However, the energy density as well
as the total energy depends on the model to be chosen, so
we have to properly define the model, to make it behave
adequately.

It is worth commenting that a similar method can be
developed for the more general Lagrangian density L =𝑓(𝑋, |𝜑|) + 𝑃(|𝜑|)𝑌 − 𝑉(|𝜑|). Thus, among the myriad of
possibilities, one may develop a construction method for the
kinetic term of the scalar field being of the Born-Infeld type,
for instance.Other perspectives should include the possibility
of considering the case in which the dynamics of the gauge
field is driven by the Chern-Simons term, which cannot be
multiplied by 𝑃(|𝜑|) if one wants to keep gauge invariance.
Since the magnetic permeability of the model is generalized,
one may also investigate the presence of vortices in metama-
terials; see, e.g., [36–38]. Furthermore, as the model supports

the 𝑊 in (17), one may seek for supersymmetric extensions,
to investigate how the supersymmetry works in this scenario
to lead us with first order differential equations. One may
also try to extend these results to other topological structures,
such as monopoles and skyrmions. We hope to report on
some of the above issues in the near future.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Wewould like to acknowledge the Brazilian agency CNPq for
partial financial support. D. Bazeia appreciates the support
from grant 306614/2014-6, L. Losano appreciates the support
from grant 303824/2017-4, M. A. Marques appreciates the
support from grant 140735/2015-1, and R. Menezes appreci-
ates the support from grant 306826/2015-1.

References
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4Department of Physics and Electronic, School of Science, Beijing University of Chemical Technology, Beijing 100029, China

Correspondence should be addressed to Shi-Hai Dong; dongsh2@yahoo.com

Academic Editor: Saber Zarrinkamar

In this work, we study the quantum system with the symmetric Razavy potential and show how to find its exact solutions. We find
that the solutions are given by the confluent Heun functions. The eigenvalues have to be calculated numerically. The properties of
the wave functions depending on 𝑚 are illustrated graphically for a given potential parameter 𝜉. We find that the even and odd
wave functions with definite parity are changed to odd and even wave functions when the potential parameter 𝑚 increases. This
arises from the fact that the parity, which is a defined symmetry for very small𝑚, is completely violated for large𝑚. We also notice
that the energy levels 𝜖𝑖 decrease with the increasing potential parameter𝑚.

1. Introduction

It is well-known that the exact solutions of quantum systems
play an important role since the early foundation of the quan-
tummechanics. Generally speaking, two typical examples are
studied for the hydrogen atom and harmonic oscillator in
classical quantum mechanics textbooks [1, 2]. Up till now,
there are a few main methods to solve the quantum soluble
systems. The first is called the functional analysis method.
That is to say, one solves the second-order differential equa-
tion and obtains their solutions [3], which are expressed by
some well-known special functions. The second is called the
algebraic method, which is realized by studying the Hamil-
tonian of quantum system. This method is also related to
supersymmetric quantum mechanics (SUSYQM) [4], further
closely with the factorization method [5]. The third is called
the exact quantization rule method [6], from which we pro-
posed proper quantization rule [7], which showsmore beauty
and symmetry than exact quantization rule. It should be
recognized that almost all soluble potentialsmentioned above
belong to single well potentials. The double-well potentials
have not been studied well due to their complications [8–17],

in which many authors have been searching the solutions of
the double-well potentials for a long history. This is because
the double-well potentials could be used in the quantum
theory of molecules to describe the motion of the particle
in the presence of two centers of force, the heterostructures,
Bose-Einstein condensates, superconducting circuits, etc.

Almost forty years ago, Razavy proposed a bistable
potential [18]:

𝑉 (𝑥) = ℏ2𝛽2
2𝜇 [18𝜉

2 cosh (4𝛽𝑥) − (𝑚 + 1) 𝜉 cosh (2𝛽𝑥)

− 1
8𝜉
2] ,

(1)

which depends on three potential parameters 𝛽, 𝜉, and a
positive integer𝑚. In Figure 1 we plot it as the function of the
variables 𝑥with various𝑚, in which we take 𝛽 = 1 and 𝜉 = 3.
Choose atomic units ℏ = 𝜇 = 1 and also take V(𝑥) = 2𝑉(𝑥).
Using series expansion around the origin, we have

V (𝑥) = (−𝑚𝜉 − 𝜉) + 𝑥2 (−2𝑚𝜉 + 𝜉2 − 2𝜉)
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Figure 1: (Color online) A plot of potential as function of the
variables 𝑥 and𝑚.

+ 2
3𝑥
4 (−𝑚𝜉 + 2𝜉2 − 𝜉)

+ 4
45𝑥
6 (−𝑚𝜉 + 8𝜉2 − 𝜉) + 𝑂 (𝑥7) ,

(2)

which shows that V(𝑥) is symmetric to variable 𝑥. We find
that the minimum value of the potential Vmin(𝑥) = −(𝑚 +
1)2 − 𝜉2/4 at two minimum values 𝑥 = ±(1/2)cosh−1[2(𝑚 +
1)/𝜉]. For a given value 𝜉 = 3, we find that the potential has
a flat bottom for 𝑛 = 0, but for 𝑛 > 1 it takes the form of a
double-well. Razavy presented the so-called exact solutions
by using the “polynomial method” [18]. After studying it
carefully, we find that the solutions cannot be given exactly
due to the complicated three-term recurrence relation. The
method presented there [18] is more like the Bethe Ansatz
method as summarized in our recent book [19]. That is, the
solutions cannot be expressed as one of special functions
because of three-term recurrence relations. In order to obtain
some so-called exact solutions, the author has to take some
constraints on the coefficients in the recurrence relations as
shown in [18]. Inspired by recent study of the hyperbolic
type potential well [20–28], in which we have found that
their solutions can be exactly expressed by the confluent
Heun functions [23], in this work we attempt to study the
solutions of the Razavy potential. We shall find that the
solutions can be written as the confluent Heun functions but
their energy levels have to be calculated numerically since
the energy term is involved within the parameter 𝜂 of the
confluent Heun functions𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧). This constraints
us to use the traditional Bethe Ansatz method to get the
energy levels. Even though the Heun functions have been
studied well, its main topics are focused in the mathematical
area. Only recent connections with the physical problems
have been discovered; in particular the quantum systems for
those hyperbolic type potential have been studied [20–28].
The terminology “semiexact” solutions used in [21] arise from

the fact that the wave functions can be obtained analytically,
but the eigenvalues cannot be written out explicitly.

This paper is organized as follows. In Section 2, we present
the solutions of the Schrödinger equation with the Razavy
potential. It should be recognized that the Razavy potential
is single or double-well depends on the potential parameter
𝑚. In Section 3 some fundamental properties of the solutions
are studied. The energy levels for different 𝑚 are calculated
numerically. Some concluding remarks are given in Section 4.

2. Semiexact Solutions

Let us consider the one-dimensional Schrödinger equation:

− ℏ22𝜇
𝑑2
𝑑𝑥2𝜓 (𝑥) + 𝑉 (𝑥) 𝜓 (𝑥) = 𝐸𝜓 (𝑥) . (3)

Substituting potential (1) into (3), we have

𝑑2
𝑑𝑥2𝜓 (𝑥) + {𝜀

− [18𝜉
2 cosh (4𝑥) − (𝑚 + 1) 𝜉 cosh (2𝑥) − 1

8𝜉
2]}

⋅ 𝜓 (𝑥) = 0,
𝜖 = 2𝐸.

(4)

Take the wave functions of the form

𝜓 (𝑥) = 𝑒𝜉cosh2(𝑥)/2𝑦 (𝑥) . (5)

Substituting this into (4) allows us to obtain

𝑦 (𝑥) + 𝜉 sinh (2𝑥) 𝑦 (𝑥)
+ [(𝑚 + 2) 𝜉 cosh (2𝑥) + 𝜖] 𝑦 (𝑥) = 0. (6)

Take a new variable 𝑧 = cosh2(𝑥). The above equation
becomes

4 (𝑧 − 1) 𝑧𝑦 (𝑧) + [4𝑧 (𝜉 (𝑧 − 1) + 1) − 2] 𝑦 (𝑧)
+ ((𝑚 + 2) 𝜉 (2𝑧 − 1) + 𝜖) 𝑦 (𝑧) = 0 (7)

which can be rearranged as

𝑦 (𝑧) + [𝜉 + 1
2 (

1
𝑧 +

1
𝑧 − 1)]𝑦

 (𝑧)

+ (𝑚 + 2) 𝜉 (2𝑧 − 1) + 𝜖
4 (𝑧 − 1) 𝑧 𝑦 (𝑧) = 0.

(8)

When comparing this with the confluent Heun differential
equation in the simplest uniform form [13]

𝑑2𝐻(𝑧)
𝑑𝑧2 + (𝛼 + 1 + 𝛽

𝑧 + 1 + 𝛾
𝑧 − 1)

𝑑𝐻 (𝑧)
𝑑𝑧

+ (𝜇𝑧 + ]
𝑧 − 1)𝐻 (𝑧) = 0,

(9)
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we find the solution to (8) is given by the acceptable confluent
Heun function𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) with

𝛼 = 𝜉,
𝛽 = −12 ,

𝛾 = −12 ,

𝜇 = 𝜉 (𝑚 + 2) − 𝜀
4 ,

] = 𝜉 (𝑚 + 2) + 𝜀
4 ,

(10)

from which we are able to calculate the parameters 𝛿 and 𝜂
involved in𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂; 𝑧) as

𝛿 = 𝜇 + ] − 1
2𝛼 (𝛽 + 𝛾 + 2) =

1
2 (𝑚 + 1) 𝜉,

𝜂 = 1
2𝛼 (𝛽 + 1) − 𝜇 −

1
2 (𝛽 + 𝛾 + 𝛽𝛾)

= 1
8 [−2 (𝑚 + 1) 𝜉 + 2𝜖 + 3] .

(11)

It is found that the parameter 𝜂 related to energy levels is
involved in the confluent Heun function. The wave function
given by this function seems to be analytical, but the key issue
is how to first get the energy levels. Otherwise, the solution
becomes unsolvable. Generally, the confluent Heun function
can be expressed as a series of expansions:

𝐻𝐶 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧) =
∞

∑
𝑛=0

V𝑛 (𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝜉) 𝑧𝑛,

|𝑧| < 1.
(12)

The coefficients V𝑛 are given by a three-term recurrence
relation:

𝐴𝑛V𝑛 − 𝐵𝑛V𝑛−1 − 𝐶𝑛V𝑛−2 = 0,
V−1 = 0,
V0 = 1,

(13)

with

𝐴𝑛 = 1 + 𝛽
𝑛 ,

𝐵𝑛 = 1 + 1
𝑛 (𝛽 + 𝛾 − 𝛼 − 1)

+ 1
𝑛2 {𝜂 −

1
2 (𝛽 + 𝛾 − 𝛼) −

𝛼𝛽
2 + 𝛽𝛾

2 } ,

𝐶𝑛 = 𝛼
𝑛2 (

𝛿
𝛼 + 𝛽 + 𝛾

2 + 𝑛 − 1) .

(14)

To make the confluent Heun functions reduce to polyno-
mials, two termination conditions have to be satisfied [13, 14]:

𝜇 + ] + 𝑁𝛼 = 0,
Δ𝑁+1 (𝜇) = 0,

(15)

where



𝜇 − 𝑝1 (1 + 𝛽) 0 . . . 0 0 0
𝑁𝛼 𝜇 − 𝑝2 + 𝛼 2 (2 + 𝛽) . . . 0 0 0
0 (𝑁 − 1) 𝛼 𝜇 − 𝑝3 + 2𝛼 . . . 0 0 0
... ... ... d

... ... ...
0 0 0 . . . 𝜇 − 𝑝𝑁−1 + (𝑁 − 2) 𝛼 (𝑁 − 1) (𝑁 − 1 + 𝛽) 0
0 0 0 . . . 2𝛼 𝜇 − 𝑝𝑁 + (𝑁 − 1) 𝛼 𝑁 (𝑁 + 𝛽)
0 0 0 . . . 0 𝛼 𝜇 − 𝑝𝑁+1 + 𝑁𝛼



= 0 (16)

with

𝑝𝑁 = (𝑁 − 1) (𝑁 + 𝛽 + 𝛾) . (17)

For present problem, it is not difficult to see that the first
condition is violated. That is, 𝜇 + ] + 𝛼 = 0 when 𝑁 = 1.
From this we have 𝑚 = −4. This is contrary to the fact that
𝑚 is a positive integer. Therefore, we cannot use this method
to obtain the eigenvalues. On the other hand, we know that
𝑧 ∈ [1,∞).Thus, the series expansion method is invalid.This
is unlike previous study [22, 24], inwhich the quasiexact wave

functions and eigenvalues can be obtained by studying those
two constraints. The present case is similar to our previous
study [20, 21], in which some constraint is violated. We have
to choose other approach to study the eigenvalues as used in
[20, 21].

3. Fundamental Properties

In this section we are going to study some basic properties
of the wave functions as shown in Figures 2–4. We first
consider the positive integer 𝑚. Since the energy spectrum
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Figure 2: (Color online)The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take 𝑚 = 0, 1 and 𝜉 = 3.
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Figure 3: (Color online) The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take𝑚 = 6, 8 and 𝜉 = 3.
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Figure 4: (Color online) The same as the above case but𝑚 = 10, 12.
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Figure 5: (Color online) The characteristics of the potential 𝑉(𝑧) as a function of the position 𝑧. We take𝑚 = −1, −6 and 𝜉 = 3.
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Figure 6: (Color online) The same as the above case but𝑚 = −10, −90.

cannot be given explicitly we have to solve the second-
order differential equation (4) numerically. We denote the
energy levels as 𝜖𝑖 (𝑖 ∈ [1, 6]) in Table 1. We find that the
energy levels 𝜖𝑖 decrease with the increasing 𝑚. Originally,
we wanted to calculate the energy levels numerically by using
powerful MAPLE, which includes some special functions
such as the confluent Heun function that cannot be found in
MATHEMATICA. As we know, the wave function is given
by 𝜓(𝑧) = exp(𝑧𝜉/2)𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂, 𝑧). Generally speaking,
the wave function requires 𝜓(𝑧) → 0 when 𝑧 → ∞;
i.e., 𝑥 → ∞. Unfortunately, the present study is unlike
our previous study [20, 21], in which 𝑧 → 1 when 𝑥 goes
to infinity. The energy spectra can be calculated by series
expansions through taking 𝑧 → 1. On the other hand, the
wave functions have a definite parity; e.g., for 𝑚 = 0 some
wave functions are symmetric. It is found that such properties
are violated when the potential parameter 𝑚 becomes larger
as shown in Figure 4. That is, the wave functions for 𝑚 = 12
are nonsymmetric. In addition, on the contrary to the case
discussed by Razavy [18], inwhich he supposed the𝑚 is taken

as positive integers, we are going to showwhat happens to the
negative𝑚 case.We display the graphics in Figures 5 and 6 for
this case. We find that the wave functions are shrunk towards
the origin. This makes the amplitude of the wave function
increase.

4. Conclusions

In this work we have studied the quantum system with the
Razavy potential, which is symmetric with respect to the
variable 𝑥 and showed how its exact solutions are found
by transforming the original differential equation into a
confluent type Heun differential equation. It is found that the
solutions can be expressed by the confluent Heun functions
𝐻𝑐(𝛼, 𝛽, 𝛾, 𝛿, 𝜂), inwhich the energy levels are involved inside
the parameter 𝜂. This makes us calculate the eigenvalues
numerically. The properties of the wave functions depend-
ing on 𝑚 are illustrated graphically for a given potential
parameter 𝜉. We have found that the even and odd wave
functions with definite parity are changed to odd and even
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Table 1: Energy levels of the Schrödinger equation with potential (1).

] 𝜖1 𝜖2 𝜖3 𝜖4 𝜖5 𝜖6
𝑚 = −6 21.6608 35.7557 51.3448 68.3341 86.6500 106.233
𝑚 = −5 18.1891 31.3844 46.1503 62.3746 79.9715 98.8740
𝑚 = −4 14.6806 26.9167 40.8214 56.2549 73.1150 91.3249
𝑚 = −3 11.1259 22.3314 35.3346 49.9525 66.0599 83.5680
𝑚 = −2 7.51110 17.5996 29.6610 43.4412 58.7838 75.5860
𝑚 = −1 3.81463 12.6800 23.7644 36.6914 51.2639 67.3635
𝑚 = 0 0.00007 7.51170 17.6027 29.6729 43.4799 58.8919
𝑚 = 1 -3.99968 2.00200 11.1343 22.3606 35.4208 50.1750
𝑚 = 2 -8.32288 -3.99300 4.34771 14.7494 27.0959 41.2385
𝑚 = 3 -13.2815 -10.6927 -2.64788 6.87526 18.5501 32.1389
𝑚 = 4 -19.5196 -9.46859 -1.17161 9.87916 22.9677 38.0537
𝑚 = 5 -27.7547 -15.7094 -9.29612 1.24110 13.8439 28.5940
𝑚 = 6 -38.0314 -21.6913 -17.5131 -7.12621 4.89289 19.3065
𝑚 = 7 -49.9928 -28.2027 -25.9897 -14.8827 -3.78434 10.2625
𝑚 = 8 -63.3335 -35.8866 -21.7455 -12.1464 1.51447 17.5661
𝑚 = 9 -77.8339 -44.5255 -27.8571 -20.2355 -6.89162 8.76577
𝑚 = 10 -93.3024 -54.9017 -33.6970 -28.1690 -14.8944 0.229704
𝑚 = 11 -109.592 -65.743 -39.7373 -36.1005 -22.4007 -8.04337
𝑚 = 12 -126.580 -77.2416 -46.3335 -29.3139 -16.0647 1.06475

wave functions when the potential parameter 𝑚 increases.
This arises from the fact that the parity, which is a defined
symmetry for very small𝑚, is completely violated for large𝑚.
We have also noticed that the energy levels 𝜖𝑖 decrease with
the increasing potential parameter 𝑚.
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