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Preface

This book has been written, keeping in view that students want more practical information. Thus, my 
aim has been to make it as comprehensive as possible for the readers. I would like to extend my thanks 
to my family and co-workers for their knowledge, support and encouragement all along.

A signal is a function that gives information about a phenomenon. The field of electrical engineering that 
studies output and input signals, and mathematical representations between systems is known as signals 
and systems. The four main domains of signals and systems are frequency, time, s and z. It is a subset 
of mathematical modeling. Signal processing involves analyzing, synthesizing and modifying signals. Its 
techniques are used to improve efficiency and subjective quality, and transmission. It receives signals as well 
as produces them. System is a physical set of components. It has one or more input and output signals. In 
signals and systems, signals are classified according to many criteria. Different types of signals include analog, 
digital, deterministic, random, energy, power, etc. The book aims to shed light on some of the unexplored 
aspects of signals and systems. Such selected concepts that redefine the subject have been presented in it. 
For all those who are interested in signals and systems, this book can prove to be an essential guide.

A brief description of the chapters is provided below for further understanding:

Chapter – Introduction

A signal is defined as an electronic pulse or wave which is transmitted and received. A few of its aspects 
are analog to digital conversion, discrete-time signal, signal processing, time shifting, time reversal, time 
scaling, etc. This is an introductory chapter which will briefly introduce all these aspects related to signals.

Chapter – Signal Processing and Quantization

Quantization refers to the process of mapping infinite input values from a large set to a finite set of 
output values. Digital signal processing, analog signal processing, Nyquist–Shannon sampling theorem, 
aliasing, etc. fall under the domain of signal processing. This chapter has been carefully written to 
provide an easy understanding of signal processing and quantization.

Chapter – Systems used in Signal Processing

A field of electric engineering which aims at analyzing, synthesizing and modifying electromagnetic 
signals such as of sound, images, videos, etc. is called signal processing. It includes significant systems 
such as lumped parameter and distributed parameter systems, casual and non-casual systems, linear 
and non-linear systems and discrete time system. This chapter closely examines these systems used in 
signal processing to provide an extensive understanding of the subject.

Chapter – Fourier Series and Fourier Transform

Fourier series represents an expansion of periodic operation in terms of an infinite sum sines and cosines. 
Fourier transform converts a general and non-periodic operation into its constituent frequencies. The 
topics elaborated in this chapter will help in gaining a better perspective about the fourier series and 
fourier transform.
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Chapter – Laplace Transform

A transformation which is used to convert an operation of a real variable (t) into complex variable (s) is 
termed as laplace transform. It is used for analysing and developing circuits such as filters. This chapter 
delves into various concepts such as laplace transform properties, region of convergence, the laplace 
transform of a function, existence of laplace transform, etc. which will provide in-depth knowledge of 
the subject.

Chapter – Z-Transform

In signal processing, Z-transformation is used to transform a series of real or complex values into a 
complex frequency domain representation. Region of convergence, properties of Z transform, pole zero 
plot, inverse Z transform, etc. are some of the principles associated with it. This chapter discusses these 
principles related to Z Transform in detail.

Andrew Burton
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Introduction

A signal is defined as an electronic pulse or wave which is transmitted and received.  A few of its 
aspects are analog to digital conversion, discrete-time signal, signal processing, time shifting, 
time reversal, time scaling, etc. This is an introductory chapter which will briefly introduce all 
these aspects related to signals.

Signals

A signal is defined as any physical or virtual quantity that varies with time or space or any other 
independent variable or variables.

Graphically, the independent variable is represented by horizontal axis or x-axis. And the depen-
dent variable is represented by vertical axis or y-axis.

Mathematically, a signal is a function of one or more than one independent variables.

1
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	 Signals and Systems: An Engineering Perspective2

Single Variable Signal

It depends on a single independent variable. It either varies linearly or non-linearly depending on 
the expression of the signal. Examples of single variable signal are:

S(x) x 5= +
2S(x) x 5= +  Where x  is the variable,

S(t) cos(wt )θ= +  Where t  is the variable.

Two Variables Signal

A two-variable signal varies with the change in the two independent variables. Example of a 
two-variable signal is:

S(x,y) 2x 5y= +

Characteristics of Signal

A signal is defined by its characteristics. It shows the nature of the signal. These characteristics are 
given below:

Amplitude

Amplitude is the strength or height of the signal waveform. Visually, it is the height of the wave-
form from its centerline or x-axis. The y-axis of a signal’s waveform shows the amplitude of a sig-
nal. The amplitude of a signal varies with time.

For example, the amplitude of a sine wave is the maximum height of the waveform on Y-axis.

The signal’s strength is usually measured in decibels db.

Frequency

Frequency is the rate of repetitions of a signal’s waveform in a second.

________________________ WORLD TECHNOLOGIES ________________________
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Periodic signals repeat its cycle after some time. The number of cycles in a second is known as 
Frequency. The unit of Frequency is hertz (Hz) and one hertz is equal to one cycle per second. It is 
measured along the x-axis of the waveform.

For example, a sine wave of 5 hertz will complete its 5 cycles in a one second.

Time Period

The time period of a signal is the time in which it completes its one full cycle. The unit of the time 
period is Second. The time period is denoted by ‘T’ and it is the inverse of frequency. i.e.

T=1/F

For example, a sine wave of time period 10 sec will complete its one full cycle in 10 seconds.

Phase

The phase of a sinusoidal signal is the shift or offset in its origin or starting point. The phase shift 
can be lagging or leading. Usually, the original sinusoidal signals have 0° degree phase and start at 
0 amplitude but an offset in phase will shift its starting amplitude to other than 0.

An example of 45° phase shift is given below. The signal remains the same but its origin is shifted 
to 45°.
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The phase shift can be from 0° to 360° in degrees or 0 to 2π in radians. 360° degree or 2π radians 
is one complete period.

Signal Size

The size of a signal is a number that shows the strength or largeness of that signal. As we know, 
a signal’s amplitude varies with respect to time. Because of this variation, we cannot say that its 
amplitude can be its size. To measure the signal size, we have to take into account the area covered 
by the amplitude of the signal within the time duration.

According to the size of the signal, there are two parameters.

Signal Energy

The energy of the signal is the area of the signal under its curve. But the signal can be in both posi-
tive and negative region. Due to which, it will cancel each other’s effect resulting in a smaller signal. 
To eradicate this problem, we take the square of the signal’s amplitude which is always positive.

For a signal g(t), the area under the g2(t) is known as the Energy of the signal.

2 ( )gE g t dt
∞

−∞
= ∫

Unit of Energy of Signal

This energy is not taken as in its conventional sense, but it shows the signal size. Therefore, its unit 
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is not joule. The unit of energy depends on the signal. If it is a voltage signal then its unit will be 
volts2/second.

Limitation

The energy of a signal can be measured only if the signal is finite. The infinite signal will have in-
finite energy, which is absurd. A finite signal’s amplitude goes to 0 as the time (t) approaches to 
infinity (∞).

So it is necessary that the signal is a finite signal if you want to measure its energy.

Signal Power

If the signal is an infinite signal i.e. its amplitude does not go to 0 as time t approaches to ∞, we 
cannot measure its energy. In such a case, we take the time average (Time period) of the energy of 
the signal as the power of the signal.

/2 2

/2

1lim ( )
T

g TT
P g t dt

T −→∞
= ∫

Unit of Power

Similar to Energy of the signal, this power is also not taken in the conventional sense. It will also 
depend on the signal to be measured. If the signal is a voltage signal, then the power will be in 
volts2.

Limitation

Just like the energy of the signal, the measurement of the power of a signal also has some limita-
tion that the signal must be of a periodic nature. An infinite and non-periodic signal neither have 
energy nor power.

Operation of Signal

Some basic operation of signals are given below.

Time Shifting

Time-shifting means movement of the signal across the time axis (horizontal axis). A time shift 
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in a signal does not change the signal itself but only shifts the origin of the signal from its original 
point along time-axis.

Basically, addition in time is time shifting. To time-shift a signal g(t), t should be replaced with (t-
T), where T is the seconds of time-shift. Therefore, g(t-T) is the time-shifted signal by T seconds.

Time shift can be right-shift (delay) or left-shift (advance).

If the time-shift T is positive than the signal will shift to the right (delay). For example, the signal 
g(t-4) is the shifted version of g(t) with 4 seconds delay.

If the time-shift T is negative than the signal will shift to the left (advance). The signal g(t+4) is the 
shifted version of g(t) with 4 seconds to the left.

Time Scaling

Time scaling of a signal means to compress or expand the signal. It is achieved by multiplying the 
time variable of the signal by a factor. The signal expands or compresses depending on the factor. 
Suppose a signal g(t) than its scaled version is g(at).

If the factor a>1 then the signal will compress. And the operation is called signal compression. 
Compressing a signal will make the signal fast as it becomes smaller and its time duration become 
less.

________________________ WORLD TECHNOLOGIES ________________________
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If a<1 then the signal will expand. And the operation is called signal dilation.

After scaling, the origin of the signal remains unchanged. Expanding the signal will make the sig-
nal slow as it becomes wider and covers more time duration.

Time Inversion

In time inversion, the signal is flipped about the y-axis (vertical axis). The resultant signal is the 
mirror image of the original signal.

Time inversion is a special case of time-scaling in which the factor a=-1. Therefore to invert a sig-
nal, we replace it’s (t) with (-t).

Mathematically, the time-invert of signal g(t) is g(-t).

Analog Signal

Analog is best explained by the transmission of signal such as sound or human speech, over an 
electrified copper wire. In its native form, human speech is an oscillatory disturbance in the air. 
Which varies in terms of its volume or power (amplitude) and its pitch or tone (frequency)? Analo-
gous variations in electrical or radio waves are created in order to transmit the analog information 
signal for video or audio or both over a network from a transmitter to a receiver (TV set, computer 
connected with antenna). At the receiving end an approximation (analog) of the original informa-
tion is presented.

Information which is analog in its native form can vary continuously in terms of intensity (volume 
or brightness) and frequency (tone or color). Those variations in the native information stream are 
translated in an analog electrical network into variations in -the amplitude and frequency of the 
carrier signal. In other words, the carrier signal is modulated (varied) in order to create an analog 
of the original information stream.

The electromagnetic sinusoidal (waveform) or sine wave can be varied in amplitude at a fixed fre-
quency, using Amplitude Modulation (AM). Alternatively, the frequency of the sine wave can be 
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varied at constant amplitude using Frequency Modulation (FM). Additionally, both frequency and 
amplitude can be modulated simultaneously.

• Analog signal can have infinite number of values and varies continuously with time.

• Analog signal is usually represented by sine wave.

• As shown in figure each cycle consists of a single arc above the time axis followed by a single
arc below the time axis.

• Example of analog signal is human voice. When we speak, we use air to transmit an analog
signal. Electrical signal from an audio tape, can also be in analog form.

Characteristics of Analog Signal 

Amplitude

• Amplitude of a signal refers to the height of the signal.

• It is equal to the vertical distance from a given point on the waveform to the horizontal axis.

• The maximum amplitude of a sine wave is equal to the highest value it reaches on the ver-
tical axis as shown in figure.

• Amplitude is measured in volts, amperes or watts depending on the type of signal. A volt is
used for voltage, ampere for current and watts for power.

Period

• Period refers to the amount of time in which a signal completes one cycle.

• It is measured in seconds.

• Other units used to measure period are millisecond (10-3 sec.) microsecond (10-6 sec),
nanosecond (10-9 sec) and picoseconds (10-12 sec).

Frequency

• It refers to the number of wave patterns completed in a given period of time.

• To be more precise, frequency refers to number of periods in one second or number of
cycles per second.

________________________ WORLD TECHNOLOGIES ________________________
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•	 Frequency is measured in Hertz (Hz)

•	 Other units used to express frequency are kilohertz (103 Hz) Megahertz (106 Hz), gigahertz 
(109 Hz) and terahertz (1012 Hz).

•	 Frequency and period are the inverse of each other. Period is the inverse of frequency and 
frequency is the inverse of period.

Phase

•	 Phase describes the position of the waveform relative to time zero.

•	 Phase describes the amount by which the waveform shifts forward or backward along the 
time axis.

•	 It indicates the status of first cycle.

•	 Phase is measured in degrees or radians.

•	 A phase shift of 3600 indicates a shift of a complete period, a phase shift of 180° indicates 
a shift of half period and a phase shift of 90° indicates a shift of a quarter of a period as 
shown in fig. below.

A shift of a quarter of a period or ¼ cycle.

A shift of half period or ½ cycle.
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A shift of ¾ cycle.

Advantages of Analog Signals

• Best suited for the transmission of audio and video.

• Consumes less bandwidth than digital signals to carry the same information.

• Analog systems are readily in place around the world.

• Analog signal is less susceptible to noise.

Digital Signal

Computers are digital in nature. Computers process, store, and communicate information in 
binary form, i.e. in the combination of 1s and 0s which has specific meaning in computer lan-
guage. A binary digit (bit) is an individual 1 or O. Multiple bit streams are used in a computer 
network.

Contemporary computer systems communicate in binary mode through variations in electrical 
voltage. Digital signaling, in an electrical network, ‘involves a signal which varies in voltage 
to represent one of two discrete and well-defined states as depicted in figure such as either a 
positive (+) voltage and a null or zero (0) voltage (unipolar) or a positive (+) or a negative (-) 
voltage (bipolar).

Although analog voice and video can be converted into digital, and digital data can be converted to 
analog, each format has its own advantages.

• It can have only a limited number of defined values such as 1 and O.

• The transition of a digital signal from one value to other value is instantaneous.

• Digital signals are represented by square wave.

________________________ WORLD TECHNOLOGIES ________________________
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•	 In digital signals 1 is represented by having a positive voltage and 0 is represented by hav-
ing no voltage or zero voltage as shown in figure.

•	 All the signals generated by computers and other digital devices are digital in nature.

Characteristics of Digital Signals

Bit Interval

It is the time required to send one single bit.

Bit Rate

•	 It refers to the number of bit intervals in one second.

•	 Therefore bit rate is the number of bits sent in one second.

•	 Bit rate is expressed in bits per second (bps).

•	 Other units used to express bit rate are Kbps, Mbps and Gbps.

◦◦ 1 kilobit per second (Kbps) = 1,000 bits per second.

◦◦ 1 Megabit per second (Mbps) = 1,000,000 bits per second.

◦◦ 1 Gigabit per second (Gbps) = 1,000,000,000 bits per second.

Advantages of Digital Signals

•	 Digital Data: Digital transmission certainly has the advantage where binary computer data 
is being transmitted. The equipment required to convert digital data to analog format and 
transmitting the digital bit streams over an analog network can be expensive, susceptible 
to failure, and can create errors in the information.

•	 Compression: Digital data can be compressed relatively easily, thereby increasing the 
efficiency of transmission. As a result, substantial volumes of voice, data, video and image 
information can be transmitted using relatively little raw bandwidth.

•	 Security: Digital systems offer better security. While analog systems offer some measure 
of security through the scrambling of several frequencies. Scrambling is fairly simple to 
defeat. Digital information, on the other hand, can be encrypted to create the appearance 
of a single, pseudorandom bit stream. Thereby, the true meaning of individual bits, sets 
of bits, or the total bit stream cannot be determined without having the key to unlock the 
encryption algorithm employed.

•	 Quality: Digital transmission offers improved error performance (quality) as compared 
to analog. This is due to the devices that boost the signal at periodic intervals in the 
transmission system in order to overcome the effects of attenuation. Additionally, dig-
ital networks deal more effectively with noise, which always is present in transmission 
networks.
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•	 Cost: The cost of the computer components required in digital conversion and transmis-
sion has dropped considerably, while the ruggedness and reliability of those components 
has increased over the years.

•	 Upgradeability: Since digital networks are comprised of computer (digital) compo-
nents, they are relatively easy to upgrade. Such upgrading can increase bandwidth, 
reduces the incidence of error and enhance functional value. Some upgrading can be 
effected remotely over a network, eliminating the need to dispatch expensive techni-
cians for that purpose.

•	 Management: Generally speaking, digital networks can be managed much more easily and 
effectively due to the fact that such networks consist of computerized components. Such 
components can sense their own level of performance, isolate and diagnose failures, initi-
ate alarms, respond to queries, and respond to commands to correct any failure. Further, 
the cost of these components continues to drop.

Analog to Digital Conversion

The following techniques can be used for Analog to Digital Conversion:

Pulse Code Modulation

The most common technique to change an analog signal to digital data is called pulse code modu-
lation (PCM). A PCM encoder has the following three processes:

•	 Sampling.

•	 Quantization.

•	 Encoding.

Low Pass Filter

The low pass filter eliminates the high frequency components present in the input analog signal to 
ensure that the input signal to sampler is free from the unwanted frequency components.This is 
done to avoid aliasing of the message signal.

Sampling: The first step in PCM is sampling. Sampling is a process of measuring the amplitude of a 
continuous-time signal at discrete instants, converting the continuous signal into a discrete signal. 
There are three sampling methods:

•	 Ideal Sampling: In ideal Sampling also known as Instantaneous sampling pulses from the an-
alog signal are sampled. This is an ideal sampling method and cannot be easily implemented.

•	 Natural Sampling: Natural Sampling is a practical method of sampling in which pulse have 
finite width equal to T.The result is a sequence of samples that retain the shape of the an-
alog signal.

________________________ WORLD TECHNOLOGIES ________________________
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•	 Flat top sampling: In comparison to natural sampling flat top sampling can be easily ob-
tained. In this sampling technique, the top of the samples remains constant by using a 
circuit. This is the most common sampling method used.

Nyquist Theorem

One important consideration is the sampling rate or frequency. According to the Nyquist theorem, 
the sampling rate must be at least 2 times the highest frequency contained in the signal. It is also 
known as the minimum sampling rate and given by:

Fs =2*fh

Quantization

The result of sampling is a series of pulses with amplitude values between the maximum and 
minimum amplitudes of the signal. The set of amplitudes can be infinite with non-integral values 
between two limits.

The following are the steps in Quantization:

•	 We assume that the signal has amplitudes between Vmax and Vmin.

________________________ WORLD TECHNOLOGIES ________________________
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•	 We divide it into L zones each of height d where:

d= (Vmax- Vmin)/ L	

•	 The value at the top of each sample in the graph shows the actual amplitude.

•	 The normalized pulse amplitude modulation(PAM) value is calculated using the formula 
amplitude/d.

•	 After this we calculate the quantized value which the process selects from the middle of 
each zone.

•	 The Quantized error is given by the difference between quantised value and normalised 
PAM value.

•	 The Quantization code for each sample based on quantization levels at the left of the graph.

Encoding 

The digitization of the analog signal is done by the encoder. After each sample is quantized and the 
number of bits per sample is decided, each sample can be changed to an n bit code. Encoding also 
minimizes the bandwidth used.

Delta Modulation

Since PCM is a very complex technique, other techniques have been developed to reduce the com-
plexity of PCM. The simplest is delta Modulation. Delta Modulation finds the change from the 
previous value.

Modulator – The modulator is used at the sender site to create a stream of bits from an analog 
signal. The process records a small positive change called delta. If the delta is positive, the process 
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records a 1 else the process records a 0. The modulator builds a second signal that resembles a 
staircase. The input signal is then compared with this gradually made staircase signal.

We have the following rules for output:

•	 If the input analog signal is higher than the last value of the staircase signal, increase delta 
by 1, and the bit in the digital data is 1.

•	 If the input analog signal is lower than the last value of the staircase signal, decrease delta 
by 1, and the bit in the digital data is 0.

Adaptive Delta Modulation

The performance of a delta modulator can be improved significantly by making the step size of the 
modulator assume a time-varying form. A larger step-size is needed where the message has a steep 
slope of modulating signal and a smaller step-size is needed where the message has a small slope. 
The size is adapted according to the level of the input signal. This method is known as adaptive 
delta modulation (ADM).

________________________ WORLD TECHNOLOGIES ________________________
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Discrete-time Signal

A discrete-time signal is represented as a sequence of numbers:

[ ] { [ ]}, .x n x n n= = −∞ < < ∞

Here n  is an integer, and [ ]x n is the n th sample in the sequence.

Discrete-time signals are often obtained by sampling continuous-time signals. In this case the nth 
sample of the sequence is equal to the value of the analogue signal ( )ax t at time t nT= :

[ ] ( ), .ax n x nT n= −∞ < < ∞

The sampling period is then equal toT , and the sampling frequency is 1/ .sf T=

Discrete-time signals and systems
See Oppenheim and Schafer, Second Edition pages 8–93, or First Edition
pages 8–79.

1 Discrete-time signals

A discrete-time signal is represented as a sequence of numbers:

x D fxŒn�g; �1 < n < 1:

Here n is an integer, and xŒn� is the nth sample in the sequence.

Discrete-time signals are often obtained by sampling continuous-time signals.
In this case the nth sample of the sequence is equal to the value of the analogue
signal xa.t/ at time t D nT :

xŒn� D xa.nT /; �1 < n < 1:

The sampling period is then equal to T , and the sampling frequency is
fs D 1=T .

x[1]

... ...

t

xa.1T /

For this reason, although xŒn� is strictly the nth number in the sequence, we
often refer to it as the nth sample. We also often refer to “the sequence xŒn�”
when we mean the entire sequence.

Discrete-time signals are often depicted graphically as follows:

1

x[3]

... ...

n
0−1−2−3−4

1 2 3
4

x[−2]x[−4]
x[4]

x[0]

x[−1]
x[−3]

x[1]

x[2]

(This can be plotted using the MATLAB function stem.) The value xŒn� is
undefined for noninteger values of n.

Sequences can be manipulated in several ways. The sum and product of two
sequences xŒn� and yŒn� are defined as the sample-by-sample sum and product
respectively. Multiplication of xŒn� by a is defined as the multiplication of
each sample value by a.

A sequence yŒn� is a delayed or shifted version of xŒn� if

yŒn� D xŒn � n0�;

with n0 an integer.

The unit sample sequence
1

n
0

is defined as

ıŒn� D

8

<

:

0 n ¤ 0

1 n D 0:

This sequence is often referred to as a discrete-time impulse, or just impulse.
It plays the same role for discrete-time signals as the Dirac delta function does
for continuous-time signals. However, there are no mathematical

2

For this reason, although [ ]x n  is strictly the nth number in the sequence, we often refer to it as the 
n th sample. We also often refer to “the sequence [ ]x n ” when we mean the entire sequence. 
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Discrete-time signals are often depicted graphically as follow:

Discrete-time signals and systems
See Oppenheim and Schafer, Second Edition pages 8–93, or First Edition
pages 8–79.

1 Discrete-time signals

A discrete-time signal is represented as a sequence of numbers:

x D fxŒn�g; �1 < n < 1:

Here n is an integer, and xŒn� is the nth sample in the sequence.

Discrete-time signals are often obtained by sampling continuous-time signals.
In this case the nth sample of the sequence is equal to the value of the analogue
signal xa.t/ at time t D nT :

xŒn� D xa.nT /; �1 < n < 1:

The sampling period is then equal to T , and the sampling frequency is
fs D 1=T .

x[1]

... ...

t

xa.1T /

For this reason, although xŒn� is strictly the nth number in the sequence, we
often refer to it as the nth sample. We also often refer to “the sequence xŒn�”
when we mean the entire sequence.

Discrete-time signals are often depicted graphically as follows:

1

x[3]

... ...

n
0−1−2−3−4

1 2 3
4

x[−2]x[−4]
x[4]

x[0]

x[−1]
x[−3]

x[1]

x[2]

(This can be plotted using the MATLAB function stem.) The value xŒn� is
undefined for noninteger values of n.

Sequences can be manipulated in several ways. The sum and product of two
sequences xŒn� and yŒn� are defined as the sample-by-sample sum and product
respectively. Multiplication of xŒn� by a is defined as the multiplication of
each sample value by a.

A sequence yŒn� is a delayed or shifted version of xŒn� if

yŒn� D xŒn � n0�;

with n0 an integer.

The unit sample sequence
1

n
0

is defined as

ıŒn� D

8

<

:

0 n ¤ 0

1 n D 0:

This sequence is often referred to as a discrete-time impulse, or just impulse.
It plays the same role for discrete-time signals as the Dirac delta function does
for continuous-time signals. However, there are no mathematical
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respectively. Multiplication of xŒn� by a is defined as the multiplication of
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with n0 an integer.

The unit sample sequence
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0

is defined as
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:
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1 n D 0:

This sequence is often referred to as a discrete-time impulse, or just impulse.
It plays the same role for discrete-time signals as the Dirac delta function does
for continuous-time signals. However, there are no mathematical

2

is defined as:

0 0
[ ]

1 0.
n

n
n

δ
≠

=  =

This sequence is often referred to as a discrete-time impulse, or just impulse. It plays the same role 
for discrete-time signals as the Dirac delta function does for continuous-time signals. However, 
there are no mathematical complications in its definition. 

An important aspect of the impulse sequence is that an arbitrary sequence can be represented as a 
sum of scaled, delayed impulses. For example, the sequence.
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complications in its definition.

An important aspect of the impulse sequence is that an arbitrary sequence can
be represented as a sum of scaled, delayed impulses. For example, the
sequence

... ...

n
0−1−2−3−4

1 2 3
4

a�4

a�3 a�2
a�1

a0

a1

a2

a3

a4

can be represented as

xŒn� D a�4ıŒn C 4� C a�3ıŒn C 3� C a�2ıŒn C 2� C a�1ıŒn C 1� C a0ıŒn�

Ca1ıŒn � 1� C a2ıŒn � 2� C a3ıŒn � 3� C a4ıŒn � 4�:

In general, any sequence can be expressed as

xŒn� D

1
X

kD�1

xŒk�ıŒn � k�:

The unit step sequence

1

n
0

is defined as

uŒn� D

8

<

:

1 n � 0

0 n < 0:

3

The unit step is related to the impulse by

uŒn� D

n
X

kD�1

ıŒk�:

Alternatively, this can be expressed as

uŒn� D ıŒn� C ıŒn � 1� C ıŒn � 2� C � � � D

1
X

kD0

ıŒn � k�:

Conversely, the unit sample sequence can be expressed as the first backward
difference of the unit step sequence

ıŒn� D uŒn� � uŒn � 1�:

Exponential sequences are important for analysing and representing
discrete-time systems. The general form is

xŒn� D A˛n:

If A and ˛ are real numbers then the sequence is real. If 0 < ˛ < 1 and A is
positive, then the sequence values are positive and decrease with increasing n:

...

n
0

...

For �1 < ˛ < 0 the sequence alternates in sign, but decreases in magnitude.
For j˛j > 1 the sequence grows in magnitude as n increases.

A sinusoidal sequence

...
n

0

...

4

can be represented as:

4 3 2 1 0

1 2 3 4

[ ] [ 4] [ 3] [ 2] [ 1] [ ]
[ 1] [ 2] [ 3] [ 4].

x n a n a n a n a n a n
a n a n a n a n

δ δ δ δ δ
δ δ δ δ

− − − −= + + + + + + + +
+ − + − + − + −

In general, any sequence can be expressed as:

[ ] [ ] [ ].
k

x n x k n kδ
∞

=−∞

= −∑

The unit step sequence:
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1

n
0
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8

<

:

1 n � 0
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3

The unit step is related to the impulse by

uŒn� D

n
X

kD�1

ıŒk�:

Alternatively, this can be expressed as

uŒn� D ıŒn� C ıŒn � 1� C ıŒn � 2� C � � � D

1
X

kD0

ıŒn � k�:

Conversely, the unit sample sequence can be expressed as the first backward
difference of the unit step sequence

ıŒn� D uŒn� � uŒn � 1�:

Exponential sequences are important for analysing and representing
discrete-time systems. The general form is

xŒn� D A˛n:

If A and ˛ are real numbers then the sequence is real. If 0 < ˛ < 1 and A is
positive, then the sequence values are positive and decrease with increasing n:

...

n
0

...

For �1 < ˛ < 0 the sequence alternates in sign, but decreases in magnitude.
For j˛j > 1 the sequence grows in magnitude as n increases.

A sinusoidal sequence

...
n

0

...

4

Is defined as:

1 0
[ ]

0 0.
n

u n
n
≥

=  <

The unit step is related to the impulse by:

[ ] [ ].
n

k
u n kδ

=−∞

= ∑

Alternatively, this can be expressed as:

[ ] [ ] [ 1] [ 2] [ ].
n

k
u n n n n n kδ δ δ δ

=−∞

= + − + − + ⋅⋅⋅ = −∑

Conversely, the unit sample sequence can be expressed as the first backward difference of the unit 
step sequence:

[ ] [ ] [ 1].n u n u nδ = − −
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Exponential sequences are important for analysing and representing discrete-time systems. The 
general form is:

[ ] .nx n Aα=

If A and α are real numbers then the sequence is real. If 0 < α  < 1 and A is positive, then the se-
quence values are positive and decrease with increasing n:

complications in its definition.

An important aspect of the impulse sequence is that an arbitrary sequence can
be represented as a sum of scaled, delayed impulses. For example, the
sequence

... ...

n
0−1−2−3−4

1 2 3
4

a�4

a�3 a�2
a�1

a0

a1

a2

a3

a4
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Ca1ıŒn � 1� C a2ıŒn � 2� C a3ıŒn � 3� C a4ıŒn � 4�:

In general, any sequence can be expressed as

xŒn� D

1
X

kD�1

xŒk�ıŒn � k�:

The unit step sequence

1

n
0

is defined as

uŒn� D

8

<

:

1 n � 0

0 n < 0:

3

The unit step is related to the impulse by

uŒn� D

n
X

kD�1

ıŒk�:

Alternatively, this can be expressed as

uŒn� D ıŒn� C ıŒn � 1� C ıŒn � 2� C � � � D

1
X

kD0

ıŒn � k�:

Conversely, the unit sample sequence can be expressed as the first backward
difference of the unit step sequence

ıŒn� D uŒn� � uŒn � 1�:

Exponential sequences are important for analysing and representing
discrete-time systems. The general form is

xŒn� D A˛n:

If A and ˛ are real numbers then the sequence is real. If 0 < ˛ < 1 and A is
positive, then the sequence values are positive and decrease with increasing n:

...

n
0

...

For �1 < ˛ < 0 the sequence alternates in sign, but decreases in magnitude.
For j˛j > 1 the sequence grows in magnitude as n increases.

A sinusoidal sequence

...
n

0

...

4

For -1 < α < 0 the sequence alternates in sign, but decreases in magnitude. For α > 1 the se-
quence grows in magnitude as n increase: 

complications in its definition.

An important aspect of the impulse sequence is that an arbitrary sequence can
be represented as a sum of scaled, delayed impulses. For example, the
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... ...

n
0−1−2−3−4
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X
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1

n
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8

<

:

1 n � 0

0 n < 0:

3

The unit step is related to the impulse by

uŒn� D

n
X

kD�1

ıŒk�:

Alternatively, this can be expressed as

uŒn� D ıŒn� C ıŒn � 1� C ıŒn � 2� C � � � D

1
X

kD0

ıŒn � k�:

Conversely, the unit sample sequence can be expressed as the first backward
difference of the unit step sequence

ıŒn� D uŒn� � uŒn � 1�:

Exponential sequences are important for analysing and representing
discrete-time systems. The general form is

xŒn� D A˛n:

If A and ˛ are real numbers then the sequence is real. If 0 < ˛ < 1 and A is
positive, then the sequence values are positive and decrease with increasing n:

...

n
0

...

For �1 < ˛ < 0 the sequence alternates in sign, but decreases in magnitude.
For j˛j > 1 the sequence grows in magnitude as n increases.

A sinusoidal sequence

...
n

0

...

4

has the form:

0[ ] cos( ) for all ,x n A n nω φ= +

with A and φ real constants. The exponential sequence nAα with complex 0je ωα α= and jA A e φ=
can be expressed as:

0 0( )

0 0

[ ]

cos( ) sin( ),

n nj j nn j n

n n

x n A A e e A e

A n j A n

ω ω φφα α α

α ω φ α ω φ

+= = =

= + + +

so the real and imaginary parts are exponentially weighted sinusoids. When 1α = the sequence is 
called the complex exponential sequence:

0( )
0 0[ ] cos ( ) sin ( ).j nx n A e A n j A nω φ ω φ ω φ+= = + + +

The frequency of this complex sinusoid is 0ω , and is measured in radians per sample. The phase of 
the signal isφ . 

The index n is always an integer. This leads to some important differences between the properties 
of discrete-time and continuous-time complex exponentials:

Consider the complex exponential with frequency 0( 2 )ω π+ .

0 0 0( 2 ) 2[ ] .j j n j nj nx n Ae Ae e Aeω π ω ωπ+= = =
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Thus the sequence for the complex exponential with frequency 0ω  is exactly the same as that for 
the complex exponential with frequency 0( 2 )ω π+ . More generally, complex exponential sequenc-
es with frequencies 0( 2 )rω π+ , where r is an integer, are indistinguishable from one another. Sim-
ilarly, for sinusoidal sequences:

0 0[ ] cos[( 2 ) ] cos ( ).x n A r n A nω π φ ω φ= + + = +

In the continuous-time case, sinusoidal and complex exponential sequences are always periodic. 
Discrete-time sequences are periodic (with period N) if:

[ ] [ ] for all .x n x n N n= +

Thus the discrete-time sinusoid is only periodic if:

0 0 0cos ( ) cos ( ),A n A n Nω φ ω ω φ+ = + +

which requires that:

0 2 for an integer.N k kω π=

The same condition is required for the complex exponential sequence 0j nCe ω to be periodic.

The two factors just described can be combined to reach the conclusion that there are only N dis-
tinguishable frequencies for which the corresponding sequences are periodic with period N. One 
such set is:

2 , 0,1,..., 1.k
k k N

N
πω = = −

Additionally, for discrete-time sequences the interpretation of high and low frequencies has to be 
modified: the discrete-time sinusoidal sequence 0[ ] cos ( )x n A nω φ= + oscillates more rapidly as 

0ω  increases from 0 toπ , but the oscillations become slower as it increases further fromπ  to 2π .
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The sequence corresponding to !0 D 0 is indistinguishable from that with
!0 D 2� . In general, any frequencies in the vicinity of !0 D 2�k for integer
k are typically referred to as low frequencies, and those in the vicinity of
!0 D .� C 2�k/ are high frequencies.

7

2 Discrete-time systems

A discrete-time system is defined as a transformation or mapping operator that
maps an input signal xŒn� to an output signal yŒn�. This can be denoted as

yŒn� D T fxŒn�g:

y[n]x[n]
T f�g

Example: Ideal delay

yŒn� D xŒn � nd � W

y[n]=x[n−2]

... ...

n
0 1 2 3−1−2−3

... ...

n
0 1 2 3−1 4 5

x[n]

This operation shifts input sequence later by nd samples.

8
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The sequence corresponding to 0 0ω = is indistinguishable from that with 0 2ω π= . In general, any 
frequencies in the vicinity of 0 2 kω π= for integer k are typically referred to as low frequencies, and 
those in the vicinity 0 ( 2 )kω π π= +  are high frequencies.

Elementary Signals

The elementary signals are used for analysis of systems. Such signals are,

•	 Step,

•	 Impulse,

•	 Ramp,

•	 Exponential,

•	 Sinusoidal.

Unit Step Signal

•	 Unit Step Sequence: The unit step signal has amplitude of 1 for positive value and ampli-
tude of 0 for negative value of independent variable.

•	 It have two different parameter such as CT unit step signal u(t) and DT unit step signal 
u(n).

•	 The mathematical representation of CT unit step signal u(t).

Ramp Signal

•	 The amplitude of every sample is linearly increased with the positive value of independent 
variable.

•	 Mathematical representation of CT unit ramp signal is given by:

( ) ( )r t t u t= ⋅

________________________ WORLD TECHNOLOGIES ________________________



WT

Signals and Systems: An Engineering Perspective22

Unit Impulse Function

Amplitude of unit impulse approaches 1 as the width approaches zero and it has zero value at all 
other values.

The mathematical representation of unit impulse signal for CT is given by:

(0)
(0) O, 0

1, 0
( )

0, 0
t

t
t

t dt
t

δ
δ

δ
−∞

= ∞
= ≠

>
=  <

∫

It is used to determine the impulse response of system.

Sinusoidal Signal

A continuous time sinusoidal signal is given by:

0x(t) A cos ( t )
Where, A amplitute phaseanglein radians

α
α

= Ω +
− −

Exponential Signal

•	 It is exponentially growing or decaying signal.

•	 Mathematical representation for CT exponential signal is:

( ) , ,atx t Ce whereC a= ∈ �
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Basic Operations on Signals

A signal, comprises of a set of information expressed as a function of any number of independent vari-
ables, that can be given as an input to a system, or derived as output from the system, to realize its true 
practical utility. The signal we derive out of a complex system might not always be in the form we want, 
being well acquainted with some basic signal operations may come really handy to enhance the 
understandability and applicability of signals.

The mathematical transformation from one signal to another can be expressed as:

( ) ( )Y t TX t=

Where, ( )Y t represents the modified signal derived from the original signal ( )X t , having only one 
independent variable t.

Time Shifting

Time shifting is, the shifting of a signal in time. This is done by adding or subtracting a quantity 
of the shift to the time variable in the function. Subtracting a fixed positive quantity from the time 
variable will shift the signal to the right (delay) by the subtracted quantity, while adding a fixed 
positive amount to the time variable will shift the signal to the left (advance) by the added quantity.

f(t−T) moves (delays) f to the right by T.

Time Reversal

Whenever signal’s time is multiplied by -1, it is known as time reversal of the signal. In this case, 
the signal produces its mirror image about Y-axis. Mathematically, this can be written as:

( ) ( ) ( )x t y t x t→ → −

This can be best understood by the following example.

In the above example, we can clearly see that the signal has been reversed about its Y-axis. So, it is 
one kind of time scaling also, but here the scaling quantity is −1 always.

For any complex signal ( ), ( , )x n n∈ −∞ ∞ , we have:

) Flip( ) Flip(x X↔
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where Flip ( ) ( )n x x n∆= − .

Proof:

( )DTFT (Flip( )) ( ) ( ) ( )

Flip ( )

j n j m

n m
x x n e x m e X

X

ω ω
ω

ω

ω
∞ −∞

∆ − − −

=−∞ =∞

∆

= −=−

=

∑ ∑

Arguably, Flip( )x should include complex conjugation. Let:

Flip ' ( ) FLIP ( ) ( )n nx x x n∆= = −

denote such a definition. Then in this case we have:

Flip '( ) Xx ↔

Proof:

DTFT (Flip ( )) ( ) ( ) ( )   j n j m

n m
x x n e x m e Xω ω

ω ω
∞ −∞

∆ ∆′ − −

=−∞ =∞

= − ==∑ ∑

In the typical special case of real signals ( ( ) ),x n ∈R  we have Flip( ) Flip ( )x x′= so that:

Flip( ) .x X↔

Amplitude Scaling

Amplitude scaling means changing an amplitude of given continuous time signal. We will 
denote continuous time signal by ( )x t . If it is multiplied by some constant ‘B’ then resulting 
signal is:

( ) ( )y t = B x t

Example: Sketch ( ) ( )y t 5u t=
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Solution: we know that ( )u t  is unit step function. So if we multiply it with 5, its amplitude will 
become 5 and it shown as follows:

Amplitude scaling.

Time Scaling

Time scaling compresses or dilates a signal by multiplying the time variable by some quantity. If 
that quantity is greater than one, the signal becomes narrower and the operation is called com-
pression, while if the quantity is less than one, the signal becomes wider and is called dilation.

( )f at compresses f by a .

Example: 

Given ( )f t we would like to plot ( )f at b− . The figure below describes a method to accomplish this.

Basic Operations in Signal Processing

Addition and Subtraction of Signals

The first and foremost operation which we will consider will be addition. The addition of signals 
is very similar to traditional mathematics. That is, if 1( )x t and 2 ( )x t are the two continuous time 
signals, then the addition of these two signals is expressed as 1 2 ) ( ) (x t x t+ .
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The resultant signal can be represented as  ( ) y t from which we can write:

1 2( ) ( ) ( )     y t x t x t= +

Similarly for discrete time signals, 1( )x t and 2 ( )x t , we can write:

1 2[ ] [ ] [ ]     y n x n x n= +

Figure shows an example of addition operation performed over the continuous time signals 1( )x t
and 2 ( )x t .

Addition operation performed on two continuous time signals.

By following the green-coloured dotted line in figure, you can note the value of ( )y t at.  1.5t = − to 
be 0 which is nothing but the summation of 1( )x t at  1.5t = − which is 1 and that of 2 ( ) x t at 1.5t = −
which is -1. Similarly, by moving along the purple-coloured dotted line, the value of ( )0.5  y − is 
seen to be 0 which is equal to ( ) ( )1 20.5  0.5 1 1x x− + − = − + .

Hence it can be concluded that all the values of the resultant signal ( ) y t can be obtained by adding 
the corresponding values of the signals 1( )x t and 2 ( )x t . Although we have depicted the example of 
continuous time signals, the conclusion stated holds good even for discrete time signals.

Practical Scenario

A practical aspect in which signal addition plays its role is in the case of transmission of a signal 
through a communication channel. This is because, here, we see that the undesired noise gets add-
ed up with the desired signal.

________________________ WORLD TECHNOLOGIES ________________________



WT

27Introduction	

Another example which can be quoted is of dithering where the noise is added to the signal inten-
tionally. This is because, when done so, one can effectively reduce undesired artifacts created as an 
aftermath of quantization errors.

Subtraction

Similar to the case of addition, subtraction deals with the subtraction of two or more signals in 
order to obtain a new signal. Mathematically it can be represented as:

1 2 1 2                 )     for m( ) ( ) ( )  continuous t (i e signals,  and ) (y t x t x t x t x t= − …,1 2 1 2                 )     for m( ) ( ) ( )  continuous t (i e signals,  and ) (y t x t x t x t x t= − …

and

1 2 1 2            ]        for e[ ] [ ] [ ]  discrete ti [m  signals,  an [d ]y n x n x n x n x n= − …,1 2 1 2            ]        for e[ ] [ ] [ ]  discrete ti [m  signals,  an [d ]y n x n x n x n x n= − …

Subtraction operation performed over two discrete time signals 1[ ]x n  and 2[ ]x n .

Subtraction operation performed on two discrete time signals.

Even in the case of subtraction operation, all the values of the resultant signal y[n] can be obtained 
by subtracting the corresponding values of the signals x1[n] and x2[n].

This is evident from the figure as the discontinuous green-colored dotted line shows [ ]1 3y − =
which is equal to [ ] [ ] ( )1 21  1 2 – 1x x− − − = − . Another example of a similar kind is shown by the 
discontinuous purple-colored dotted line, wherein [ ] [ ] [ ]1 21.5  1.5  1.5  0.4 –1.5 1.1.y x x= − = = −

It can be stated that the conclusion we arrive at in the case of subtraction operation is very similar 
to that of the addition operation and applies to both continuous and discrete time signals.
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Practical Scenario

One practical aspect which connects with that of subtracting the signals is that of a Moving Target 
Indicator (MTI) used in radar communications. Here the most recent signal is subtracted from its 
previous version so as to obtain the signal which indicates just the moving targets by eliminating 
the stationary ones. This is very much necessary so as to facilitate PPI (Plan Position Indicator) 
display of radar systems.

Yet another example which extensively makes use of signal subtraction is the design of closed-loop 
control systems. Such systems employ negative feedback in order to accurately control an output 
variable, and this negative-feedback structure relies upon subtraction (the feedback signal is sub-
tracted from the setpoint signal).

Multiplication, Differentiation and Integration of Signals

The next basic signal operation performed over the dependent variable is multiplication. In this case, as 
you might have already guessed, two or more signals will be multiplied so as to obtain the new signal.

Mathematically, this can be given as:

1 2 1 2             )       for m( ) ( ) ( ) continuous ti e si s (gnal  ) (  y t x t x t x t and x t= × … −,1 2 1 2             )       for m( ) ( ) ( ) continuous ti e si s (gnal  ) (  y t x t x t x t and x t= × … −

and

1 2 1 2                 for ]e[ ] [ ] [ ] discrete t [im  signals  an [d ]y n x n x n x n x n= × … −,1 2 1 2                 for ]e[ ] [ ] [ ] discrete t [im  signals  an [d ]y n x n x n x n x n= × … −

The resultant discrete-time signal [ ]y n obtained by multiplying the two discrete-time signals 1[ ]x n
and 2[ ] x n shown in figures (a) and 1(b), respectively.
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The next basic signal operation performed over the dependent variable is multiplication. In this case, as you might have
already guessed, two or more signals will be multiplied so as to obtain the new signal.

Mathematically, this can be given as:

y(t) = x1(t) × x2(t)                     … for continuous-time signals x1(t) and x2(t)

and

y[n] = x1[n] × x2[n]                  … for discrete-time signals x1[n] and x2[n]

Figure 1(c) shows the resultant discrete-time signal y[n] obtained by multiplying the two discrete-time signals x1[n] and
x2[n] shown in Figures 1(a) and 1(b), respectively.

 

Figure 1. Multiplication operation performed over two discrete-time signals

Here the value of y[n] at n = -0.8 is seen to be 0.17, which is found to be equal to the product of the values of x1[n] and
x2[n] at n = -0.8, which are 0.75 and 0.23, respectively. In other words, by tracing along the green dotted-dashed line, one
gets 0.75 × 0.23 = 0.17.

Similarly, if we move along the purple dotted-dashed line (at n = 0.2) to collect the values of x1[n], x2[n], and y[n], we find
that they are -0.94, 0.94, and -0.88, respectively. Here also we find that -0.94 × 0.94 = -0.88, which in turn implies x1[0.2]
× x2[0.2] = y[0.2].

Multiplication operation performed over two discrete-time signals.
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Here the value of [ ]y n at  0.8n= − is seen to be 0.17, which is found to be equal to the product of 
the values of 1[ ]x n and 2[ ]x n at  0.8n= − , which are 0.75 and 0.23, respectively. In other words, by 
tracing along the green dotted-dashed line, one gets 0.75 × 0.23 = 0.17.

Similarly, if we move along the purple dotted-dashed line (at  0.2n= ) to collect the values of
1 2, ][ ] [x n x n , and [ ]y n , we find that they are -0.94, 0.94, and -0.88, respectively. Here also we find 

that -0.94 × 0.94 = -0.88, which in turn implies [ ] [ ] [ ]1 20.2  0.2  0.2x x y× = .

Thus, we can conclude that the multiplication operation results in the generation of a signal whose 
values can be obtained by multiplying the corresponding values of the original signals. This is true 
irrespective of whether we are dealing with a continuous-time or discrete-time signal.

Practical Scenario

Multiplication of signals is exploited in the field of analog communication when performing am-
plitude modulation (AM). In AM, the message signal is multiplied with the carrier signal so as to 
obtain a modulated signal.

Another example in which signal multiplication plays an important role is frequency shifting in RF 
(radio frequency) systems. Frequency shifting is a fundamental aspect of RF communication, and 
it is accomplished using a mixer, which is similar to an analog multiplier.

Differentiation

The next signal operation which is important in signal processing is differentiation. A signal is dif-
ferentiated to determine the rate at which it changes. That is, if x(t) is the continuous-time signal, 

then its differentiation yields the output signal ( )y t , given by ( ) ( ){ }d .
d

y t x t
t

=

Figure shows an example of a signal along with its differentiation. The figure shows the first deriv-
ative of a parabola—in figure (a)—spanning from t = 0 to 2 to be a ramp—in figure (b)—which has 
its values ranging from 0 to 4. The first derivative of the ramp in figure (a) spanning from  2t = to 
6 is shown to be a constant amplitude of 1 in figure (b).
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Figure 2. An original signal and its differentiation

Next, you should note that the differentiation operation is not restricted to continuous-time signals; it is also applicable to
discrete-time signals.

Also, keep in mind that a signal can be differentiated more than once. For example, differentiating an original signal leads
to a "first derivative" and differentiating this first derivative produces the "second derivative". 

 

Practical Scenario

Differentiation of a signal takes the form of the gradient operator in the field of image or video processing. In the case of
image processing, the gradient technique is a popular method which is used to detect the edges in the given image. With
video processing, this operator is used for motion detection. This kind of processing is important in the field of robotics.

In addition, many control and tracking applications, such as in aeronautical systems, make use of real-time differentiators.
This is because these applications require highly accurate data pertaining to velocity and acceleration. By using
differentiators, this data can be obtained directly from position sensors, reducing the need for other sensors.

5. Integration

Integration is the counterpart of differentiation. If we integrate a signal x(t), the result y(t) is represented as

An original signal and its differentiation.
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Next, you should note that the differentiation operation is not restricted to continuous-time sig-
nals; it is also applicable to discrete-time signals.

Also, keep in mind that a signal can be differentiated more than once. For example, differentiating 
an original signal leads to a “first derivative” and differentiating this first derivative produces the 
“second derivative”. 

Practical Scenario

Differentiation of a signal takes the form of the gradient operator in the field of image or video 
processing. In the case of image processing, the gradient technique is a popular method which is 
used to detect the edges in the given image. With video processing, this operator is used for motion 
detection. This kind of processing is important in the field of robotics.

In addition, many control and tracking applications, such as in aeronautical systems, make use of 
real-time differentiators. This is because these applications require highly accurate data pertaining 
to velocity and acceleration. By using differentiators, this data can be obtained directly from posi-
tion sensors, reducing the need for other sensors.

Integration

Integration is the counterpart of differentiation. If we integrate a signal ( )x t , the result ( ) y t is 
represented as ( )x t∫ . Graphically, the act of integration computes the area under the curve of the 
original signal.

In figure, a composite signal composed of a ramp extending from   0t = to 2 and a constant value 
ranging from   2t = to 5 is being integrated. The output obtained is shown in figure (b); the integra-
tion of the ramp has resulted in a parabola (extending from   0t = to 2), and the integration of the 
constant value has created a ramp (ranging from   2t = to 5).

As with differentiation, we can integrate a signal multiple times.
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Figure 3. The integration operation

Practical Scenario

Integration is fundamental in signal-processing operations such as the Fourier transform, correlation, and convolution.
These are, in turn, used to analyze different properties of a signal.

Other applications that employ integration are those in which small input currents are converted, via integration, into
larger output voltages. Charge amplifiers are used with piezoelectric sensors, photodiodes, and CCD imagers. Also,
charge amplifiers can be used to convert an accelerometer output into velocity and displacement signals,
because integrating acceleration yields velocity, and integrating velocity yields displacement.

Summary

This article discusses three operations that act on a signal's dependent variable: multiplication, differentiation, and
integration.

In the next article of this series, we will discuss the second category of basic signal operations, i.e., those which
manipulate the characteristics of a signal by influencing its independent variable.

Continue to site
QUOTE OF THE DAY
“

The integration operation.
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Practical Scenario

Integration is fundamental in signal-processing operations such as the Fourier transform, correla-
tion, and convolution. These are, in turn, used to analyze different properties of a signal.

Other applications that employ integration are those in which small input currents are converted, 
via integration, into larger output voltages. Charge amplifiers are used with piezoelectric sensors, 
photodiodes, and CCD imagers. Also, charge amplifiers can be used to convert an accelerometer 
output into velocity and displacement signals, because integrating acceleration yields velocity, and 
integrating velocity yields displacement.
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Quantization

Quantization refers to the process of mapping infinite input values from a large set to a finite 
set of output values. Digital signal processing, analog signal processing, Nyquist–Shannon 
sampling theorem, aliasing, etc. fall under the domain of signal processing.  This chapter has 
been carefully written to provide an easy understanding of signal processing and quantization.

Signal Processing

The processing of signals by means of hardwired or programmable devices, the signals being re-
garded as continuous or discrete and being approximated by analog or digital devices accordingly. 
Filtering and image processing are examples of signal processing.

Digital Signal Processing

Digital signal processing (DSP) is the use of digital processing, such as by computers or more spe-
cialized digital signal processors, to perform a wide variety of signal processing operations. The 
signals processed in this manner are a sequence of numbers that represent samples of a continu-
ous variable in a domain such as time, space, or frequency. 

Digital signal processing and analog signal processing are subfields of signal processing. DSP ap-
plications include audio and speech processing, sonar, radar and other sensor array processing, 
spectral density estimation, statistical signal processing, digital image processing, signal pro-
cessing for telecommunications, control systems, biomedical engineering, seismology, among 
others. 

DSP can involve linear or nonlinear operations. Nonlinear signal processing is closely related to 
nonlinear system identification and can be implemented in the time, frequency, and spatio-tem-
poral domains. 

The application of digital computation to signal processing allows for many advantages over analog 

2
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processing in many applications, such as error detection and correction in transmission as well as 
data compression. DSP is applicable to both streaming data and static (stored) data. 

Domains

In DSP, engineers usually study digital signals in one of the following domains: time domain 
(one-dimensional signals), spatial domain (multidimensional signals), frequency domain, and 
wavelet domains. They choose the domain in which to process a signal by making an informed 
assumption (or by trying different possibilities) as to which domain best represents the essential 
characteristics of the signal and the processing to be applied to it. A sequence of samples from a 
measuring device produces a temporal or spatial domain representation, whereas a discrete Fou-
rier transform produces the frequency domain representation. 

Time and Space Domains

The most common processing approach in the time or space domain is enhancement of the input 
signal through a method called filtering. Digital filtering generally consists of some linear trans-
formation of a number of surrounding samples around the current sample of the input or output 
signal. There are various ways to characterize filters; for example: 

•	 A linear filter is a linear transformation of input samples; other filters are nonlinear. Linear 
filters satisfy the superposition principle, i.e. if an input is a weighted linear combination of 
different signals, the output is a similarly weighted linear combination of the correspond-
ing output signals.

•	 A causal filter uses only previous samples of the input or output signals; while a non-causal 
filter uses future input samples. A non-causal filter can usually be changed into a causal 
filter by adding a delay to it.

•	 A time-invariant filter has constant properties over time; other filters such as adaptive fil-
ters change in time.

•	 A stable filter produces an output that converges to a constant value with time, or remains 
bounded within a finite interval. An unstable filter can produce an output that grows with-
out bounds, with bounded or even zero input.

•	 A finite impulse response (FIR) filter uses only the input signals, while an infinite impulse 
response (IIR) filter uses both the input signal and previous samples of the output signal. 
FIR filters are always stable, while IIR filters may be unstable.

A filter can be represented by a block diagram, which can then be used to derive a sample process-
ing algorithm to implement the filter with hardware instructions. A filter may also be described 
as a difference equation, a collection of zeros and poles or an impulse response or step response. 

The output of a linear digital filter to any given input may be calculated by convolving the input 
signal with the impulse response. 

Frequency Domain

Signals are converted from time or space domain to the frequency domain usually through use of 
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the Fourier transform. The Fourier transform converts the time or space information to a magni-
tude and phase component of each frequency. With some applications, how the phase varies with 
frequency can be a significant consideration. Where phase is unimportant, often the Fourier trans-
form is converted to the power spectrum, which is the magnitude of each frequency component 
squared. 

The most common purpose for analysis of signals in the frequency domain is analysis of signal 
properties. The engineer can study the spectrum to determine which frequencies are present in the 
input signal and which are missing. Frequency domain analysis is also called spectrum- or spectral 
analysis. 

Filtering, particularly in non-realtime work can also be achieved in the frequency domain, apply-
ing the filter and then converting back to the time domain. This can be an efficient implementation 
and can give essentially any filter response including excellent approximations to brickwall filters. 

There are some commonly-used frequency domain transformations. For example, the cepstrum 
converts a signal to the frequency domain through Fourier transform, takes the logarithm, then 
applies another Fourier transform. This emphasizes the harmonic structure of the original spec-
trum. 

Z-plane Analysis

Digital filters come in both IIR and FIR types. Whereas FIR filters are always stable, IIR filters 
have feedback loops that may become unstable and oscillate. The Z-transform provides a tool for 
analyzing stability issues of digital IIR filters. It is analogous to the Laplace transform, which is 
used to design and analyze analog IIR filters. 

Wavelet

An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is 
high-pass filtered, yielding the three large images, each describing local changes in brightness (de-
tails) in the original image. It is then low-pass filtered and downscaled, yielding an approximation 
image; this image is high-pass filtered to produce the three smaller detail images, and low-pass 
filtered to produce the final approximation image in the upper-left.
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In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet 
transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key 
advantage it has over Fourier transforms is temporal resolution: it captures both frequency and 
location information.The accuracy of the joint time-frequency resolution is limited by the uncer-
tainty principle of time-frequency. 

Applications

Applications of DSP include audio signal processing, audio compression, digital image processing, 
video compression, speech processing, speech recognition, digital communications, digital syn-
thesizers, radar, sonar, financial signal processing, seismology and biomedicine. Specific examples 
include speech coding and transmission in digital mobile phones, room correction of sound in hi-
fi and sound reinforcement applications, weather forecasting, economic forecasting, seismic data 
processing, analysis and control of industrial processes, medical imaging such as CAT scans and 
MRI, MP3 compression, computer graphics, image manipulation, audio crossovers and equaliza-
tion, and audio effects units. 

Implementation

DSP algorithms may be run on general-purpose computers and digital signal processors. DSP 
algorithms are also implemented on purpose-built hardware such as application-specific in-
tegrated circuit (ASICs). Additional technologies for digital signal processing include more 
powerful general purpose microprocessors, field-programmable gate arrays (FPGAs), digital 
signal controllers (mostly for industrial applications such as motor control), and stream pro-
cessors. 

For systems that do not have a real-time computing requirement and the signal data (either input 
or output) exists in data files, processing may be done economically with a general-purpose com-
puter. This is essentially no different from any other data processing, except DSP mathematical 
techniques (such as the FFT) are used, and the sampled data is usually assumed to be uniformly 
sampled in time or space. An example of such an application is processing digital photographs 
with software such as photoshop. 

When the application requirement is real-time, DSP is often implemented using specialized or 
dedicated processors or microprocessors, sometimes using multiple processors or multiple pro-
cessing cores. These may process data using fixed-point arithmetic or floating point. For more de-
manding applications FPGAs may be used. For the most demanding applications or high-volume 
products, ASICs might be designed specifically for the application. 

Downsampling

In digital signal processing, downsampling and decimation are terms associated with the pro-
cess of resampling in a multi-rate digital signal processing system. Both terms are used by var-
ious authors to describe the entire process, which includes lowpass filtering, or just the part of 
the process that does not include filtering.  When downsampling (decimation) is performed on 
a sequence of samples of a signal or other continuous function, it produces an approximation of 
the sequence that would have been obtained by sampling the signal at a lower rate (or density, 
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as in the case of a photograph). The decimation factor is usually an integer or a rational frac-
tion greater than one. This factor multiplies the sampling interval or, equivalently, divides the 
sampling rate. For example, if compact disc audio at 44,100 samples/second is decimated by a 
factor of 5/4, the resulting sample rate is 35,280. A system component that performs decimation 
is called a decimator. 

Downsampling by an Integer Factor

Rate reduction by an integer factor M can be explained as a two-step process, with an equivalent 
implementation that is more efficient: 

•	 Reduce high-frequency signal components with a digital lowpass filter.

•	 Decimate the filtered signal by M; that is, keep only every Mth sample. A notation for this 
operation is: [ ] [ ] .Mx Mn x n ↓=

Step 2 alone allows high-frequency signal components to be misinterpreted by subsequent users of 
the data, which is a form of distortion called aliasing. Step 1, when necessary, suppresses aliasing 
to an acceptable level. In this application, the filter is called an anti-aliasing filter, 

When the anti-aliasing filter is an IIR design, it relies on feedback from output to input, prior to the 
second step. With FIR filtering, it is an easy matter to compute only every Mth output. The calcula-
tion performed by a decimating FIR filter for the nth output sample is a dot product: 

1

0
[ ] [ ] [ ],

K

k
y n x nM k h k

−

=

= − ⋅∑

where the h[•] sequence is the impulse response, and K is its length.  x[•] represents the input 
sequence being downsampled. In a general purpose processor, after computing y[n], the easiest 
way to compute y[n+1] is to advance the starting index in the x[•] array by M, and recompute the 
dot product. In the case M=2, h[•] can be designed as a half-band filter, where almost half of the 
coefficients are zero and need not be included in the dot products. 

Impulse response coefficients taken at intervals of M form a subsequence, and there are M such 
subsequences (phases) multiplexed together. The dot product is the sum of the dot products of 
each subsequence with the corresponding samples of the x[•] sequence. Furthermore, because of 
downsampling by M, the stream of x[•] samples involved in any one of the M dot products is never 
involved in the other dot products. Thus M low-order FIR filters are each filtering one of M multi-
plexed phases of the input stream, and the M outputs are being summed. This viewpoint offers a 
different implementation that might be advantageous in a multi-processor architecture. In other 
words, the input stream is demultiplexed and sent through a bank of M filters whose outputs are 
summed. When implemented that way, it is called a polyphase filter. 

For completeness, we now mention that a possible, but unlikely, implementation of each 
phase is to replace the coefficients of the other phases with zeros in a copy of the h[•] array, 
process the original x[•] sequence at the input rate, and decimate the output by a factor of M. 
The equivalence of this inefficient method and the implementation is known as the first Noble 
identity. 
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Spectral effects of decimation compared on 3 popular frequency scale conventions.

The requirements of the anti-aliasing filter can be deduced from any of the three pairs of graphs in 
figure. Note that all three pairs are identical, except for the units of the abscissa variables. The up-
per graph of each pair is an example of the periodic frequency distribution of a sampled function, 
x(t), with Fourier transform, X(f). The lower graph is the new distribution that results when x(t) is 
sampled three times slower, or (equivalently) when the original sample sequence is decimated by 
a factor of M=3. In all three cases, the condition that ensures the copies of X(f) do not overlap each 

other is the same: 
1 1 ,

2
B

M T
< ⋅   where T is the interval between samples, 1/T is the sample-rate, 

and 1/(2T) is the Nyquist frequency. The anti-aliasing filter that can ensure the condition is met 

has a cutoff frequency less than 
1
M

times the Nyquist frequency. 

The abscissa of the top pair of graphs represents the discrete-time Fourier transform (DTFT), 
which is a Fourier series representation of a periodic summation of X(f): 

[ ]
i2

DTFT

1( ) e .  ( )
x n

fnT

n k

kx nT X f
T T

π
∞ ∞

−

=−∞ =−∞

= −∑ ∑


When T has units of seconds, f has units of hertz. Replacing T with MT in the formulas above 
gives the DTFT of the decimated sequence, x[nM]: 

( )i2 ( ) 1( ) e .fn MT k
MT

n k
x n MT X f

MT
π

∞ ∞
−

=−∞ =−∞

⋅ = −∑ ∑

The periodic summation has been reduced in amplitude and periodicity by a factor of M, as 
depicted in the second graph of figure.  Aliasing occurs when adjacent copies of X(f) overlap. 
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The purpose of the anti-aliasing filter is to ensure that the reduced periodicity does not create 
overlap. 

In the middle pair of graphs, the frequency variable, f has been replaced by normalized frequency, 
which creates a periodicity of 1 and a Nyquist frequency of ½. A common practice in filter design 
programs is to assume those values and request only the corresponding cutoff frequency in the same 

units. In other words, the cutoff frequency 1 1
2 ,max M TB = ⋅ is normalized to 

1 1 0.5 .
2maxTB

M M
= ⋅ =   The 

units of this quantity are (seconds/sample)×(cycles/second) = cycles/sample. 

The bottom pair of graphs represent the Z-transforms of the original sequence and the decimated 
sequence, constrained to values of complex-variable, z, of the form ie .z ω=   Then the transform of 
the x[n] sequence has the form of a Fourier series. By comparison with Eq.1, we deduce: 

i
2

2
2

1[ ] ( ) e ,( )
( )

n n k
T T

n n k
kX

T

x n z x nT X
T

ω ω
π

ω π
π

∞ ∞ ∞
− −

=−∞ =−∞ =−∞
−

= = −∑ ∑ ∑ 

which is depicted by the fifth graph in figure.  Similarly, the sixth graph depicts: 
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By a Rational Factor

Let M/L denote the decimation factor, where: M, L ∈ ℤ; M > L. 

•	 Increase (resample) the sequence by a factor of L. This is called Upsampling, or interpola-
tion.

•	 Decimate by a factor of M.

Step 1 requires a lowpass filter after increasing (expanding) the data rate, and step 2 requires a 
lowpass filter before decimation. Therefore, both operations can be accomplished by a single filter 

with the lower of the two cutoff frequencies. For the M > L case, the anti-aliasing filter cutoff,  
0.5
Mcycles per intermediate sample, is the lower frequency. 

By an Irrational Factor

Techniques for decimation (and sample-rate conversion in general) by factor R ∈ ℝ+ include poly-
nomial interpolation and the farrow structure. 

Combined Methods of Decimation

An important factor in the development of digital antenna arrays for radars and Massive MIMO 
is the need to reduce the cost per channel. Combining the decimation process not only with an 
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anti-aliasing filter, but also with the digital frequency shifting and I/Q-demodulation as well can 
help to bring down this cost. 

In the simpler case of decimation of OFDM signals by an integer factor M, the algorithm may be 
used: 

1
i2

0
[ ] [ ] e , 0,1,..,

M
fkT

k
y n x nM k n Nπ

−
−

=

= + =∑
,

where T is interval between samples of signal and f is the central carrier frequency of the OFDM 
signal. 

This algorithm is only one filter of the full discrete Fourier transform and can be useful to decimate 
samples in an ADC before digital beamforming in digital antenna arrays. 

If more effective anti-aliasing filtering is required then this method may be modified to produce: 
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Upsampling

In digital signal processing, upsampling, expansion, and interpolation are terms associated with the 
process of resampling in a multi-rate digital signal processing system. Upsampling can be synony-
mous with expansion, or it can describe an entire process of expansion and filtering (interpolation).  
When upsampling is performed on a sequence of samples of a signal or other continuous function, 
it produces an approximation of the sequence that would have been obtained by sampling the signal 
at a higher rate (or density, as in the case of a photograph). For example, if compact disc audio at 
44,100 samples/second is upsampled by a factor of 5/4, the resulting sample-rate is 55,125. 

Upsampling by an Integer Factor

Rate increase by an integer factor L can be explained as a 2-step process, with an equivalent imple-
mentation that is more efficient: 

•	 Expansion: Create a sequence, [ ]Lx n , comprising the original samples, [ ],x n separated by 
L − 1 zeros.  A notation for this operation is: [ ] ( ) .L Lx n x n ↑=

•	 Interpolation: Smooth out the discontinuities with a lowpass filter, which replaces the ze-
ros.

In this application, the filter is called an interpolation filter, When the interpolation filter is an FIR 
type, its efficiency can be improved, because the zeros contribute nothing to its dot product calcu-
lations. It is an easy matter to omit them from both the data stream and the calculations. The cal-
culation performed by an efficient interpolating FIR filter for each output sample is a dot product: 

0
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k
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where the h[•] sequence is the impulse response, and K is the largest value of k for which h[j + kL] 
is non-zero. In the case L = 2, h[•] can be designed as a half-band filter, where almost half of the 
coefficients are zero and need not be included in the dot products. Impulse response coefficients 
taken at intervals of L form a subsequence, and there are L such subsequences (called phases) 
multiplexed together. Each of L phases of the impulse response is filtering the same sequential 
values of the x[•] data stream and producing one of L sequential output values. In some multi-pro-
cessor architectures, these dot products are performed simultaneously, in which case it is called a 
polyphase filter. 

For completeness, we now mention that a possible, but unlikely, implementation of each phase is 
to replace the coefficients of the other phases with zeros in a copy of the h[•] array, and process the 

[ ]Lx n  sequence at L times faster than the original input rate.  Then L-1 of every L outputs are zero. 
The desired y[•] sequence is the sum of the phases, where L-1 terms of the each sum are identically 
zero.  Computing L-1 zeros between the useful outputs of a phase and adding them to a sum is ef-
fectively decimation. It’s the same result as not computing them at all. That equivalence is known 
as the second Noble identity. 

Spectral depictions of zero-fill and interpolation by lowpass filtering.

Interpolation Filter Design

Let X(f) be the Fourier transform of any function, x(t), whose samples at some interval, T, equal 
the x[n] sequence. Then the discrete-time Fourier transform (DTFT) of the x[n] sequence is the 
Fourier series representation of a periodic summation of X(f): 
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When T has units of seconds, f has units of hertz. Sampling L times faster (at interval T/L) in-
creases the periodicity by a factor of L: 

,
k

L LX f k
T T

∞

∞=−

 − ⋅ 
 

∑

which is also the desired result of interpolation. An example of both these distributions is depicted 
in the top two graphs of Fiure. 

When the additional samples are inserted zeros, they increase the data rate, but they have no 
effect on the frequency distribution until the zeros are replaced by the interpolation filter. Many 
filter design programs use frequency units of cycles/sample, which is achieved by normalizing the 
frequency axis, based on the new data rate (L/T). The result is shown in the third graph of figure. 
Also shown is the passband of the interpolation filter needed to make the third graph resemble the 

second one. Its cutoff frequency is  
0.5 .
L

 In terms of actual frequency, the cutoff is  
0.5 .
T

Hz, which 

is the Nyquist frequency of the original x[n] sequence. 

The same result can be obtained from Z-transforms, constrained to values of complex-variable, z, 
of the form .iz e ω=   Then the transform is the same Fourier series with different frequency nor-
malization. By comparison with Eq.1, we deduce: 
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which is depicted by the fourth graph in figure.  When the zeros are inserted, the transform be-
comes: 
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depicted by the bottom graph. In these normalizations, the effective data-rate is always represent-
ed by the constant 2π (radians/sample) instead of 1.  In those units, the interpolation filter band-

width is π/L, as show on the bottom graph. The corresponding physical frequency is  
0.5

L T T
⋅ =   

Hz, the original Nyquist frequency. 

Upsampling by a Rational Fraction

Let L/M denote the upsampling factor, where L > M. 

•	 Upsample by a factor of L.

•	 Downsample by a factor of M.
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•	 Upsampling requires a lowpass filter after increasing the data rate, and downsampling re-
quires a lowpass filter before decimation. Therefore, both operations can be accomplished 
by a single filter with the lower of the two cutoff frequencies. For the L > M case, the inter-

polation filter cutoff, 
0.5
L

cycles per intermediate sample, is the lower frequency. 

Analog Signal Processing

Analog signal processing is a type of signal processing conducted on continuous analog signals 
by some analog means (as opposed to the discrete digital signal processing where the signal pro-
cessing is carried out by a digital process). “Analog” indicates something that is mathematically 
represented as a set of continuous values. This differs from “digital” which uses a series of discrete 
quantities to represent signal. Analog values are typically represented as a voltage, electric current, 
or electric charge around components in the electronic devices. An error or noise affecting such 
physical quantities will result in a corresponding error in the signals represented by such physical 
quantities. 

Examples of analog signal processing include crossover filters in loudspeakers, “bass”, “treble” 
and “volume” controls on stereos, and “tint” controls on TVs. Common analog processing elements 
include capacitors, resistors and inductors (as the passive elements) and transistors or opamps (as 
the active elements). 

Tools used in Analog Signal Processing

A system’s behavior can be mathematically modeled and is represented in the time domain as 
h(t) and in the frequency domain as H(s), where s is a complex number in the form of s=a+ib, or 
s=a+jb in electrical engineering terms (electrical engineers use “j” instead of “i” because current is 
represented by the variable i). Input signals are usually called x(t) or X(s) and output signals are 
usually called y(t) or Y(s). 

Convolution

Convolution is the basic concept in signal processing that states an input signal can be combined 
with the system’s function to find the output signal. It is the integral of the product of two wave-
forms after one has reversed and shifted; the symbol for convolution is *. 

( ) ( * )( ) ( ) ( )
b

a
y t x h t x h t dτ τ τ= = −∫

That is the convolution integral and is used to find the convolution of a signal and a system; typi-
cally a = -∞ and b = +∞. 

Consider two waveforms f and g. By calculating the convolution, we determine how much a re-
versed function g must be shifted along the x-axis to become identical to function f. The convolu-
tion function essentially reverses and slides function g along the axis, and calculates the integral 
of their (f and the reversed and shifted g) product for each possible amount of sliding. When the 
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functions match, the value of (f*g) is maximized. This occurs because when positive areas (peaks) 
or negative areas (troughs) are multiplied, they contribute to the integral. 

Fourier Transform

The Fourier transform is a function that transforms a signal or system in the time domain into 
the frequency domain, but it only works for certain functions. The constraint on which systems or 
signals can be transformed by the Fourier Transform is that: 

| ( ) |x t dt
∞

−∞
< ∞∫

This is the Fourier transform integral: 

( ) ( ) j tX j x t e dtωω
∞ −

−∞
= ∫

Usually the Fourier transform integral isn’t used to determine the transform; instead, a table of 
transform pairs is used to find the Fourier transform of a signal or system. The inverse Fourier 
transform is used to go from frequency domain to time domain: 

1( ) ( )
2

j tx t X j e dωω ω
π

∞

−∞
= ∫

Each signal or system that can be transformed has a unique Fourier transform. There is only one 
time signal for any frequency signal, and vice versa. 

Laplace Transform

The Laplace transform is a generalized Fourier transform. It allows a transform of any system or 
signal because it is a transform into the complex plane instead of just the jω line like the Fourier 
transform. The major difference is that the Laplace transform has a region of convergence for 
which the transform is valid. This implies that a signal in frequency may have more than one signal 
in time; the correct time signal for the transform is determined by the region of convergence. If the 
region of convergence includes the jω axis, jω can be substituted into the Laplace transform for s 
and it’s the same as the Fourier transform. The Laplace transform is: 

0
( ) ( ) stX s x t e dt

−

∞ −= ∫

and the inverse Laplace transform, if all the singularities of X(s) are in the left half of the complex 
plane, is: 

1( ) ( )
2

stx t X s e ds
π

∞

−∞
= ∫

Bode Plots

Bode plots are plots of magnitude vs. frequency and phase vs. frequency for a system. The 
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magnitude axis is in [Decibel] (dB). The phase axis is in either degrees or radians. The frequency 
axes are in a [logarithmic scale]. These are useful because for sinusoidal inputs, the output is the 
input multiplied by the value of the magnitude plot at the frequency and shifted by the value of the 
phase plot at the frequency. 

Domains

Time Domain

This is the domain that most people are familiar with. A plot in the time domain shows the ampli-
tude of the signal with respect to time. 

Frequency Domain

A plot in the frequency domain shows either the phase shift or magnitude of a signal at each fre-
quency that it exists at. These can be found by taking the Fourier transform of a time signal and are 
plotted similarly to a bode plot. 

Signals

While any signal can be used in analog signal processing, there are many types of signals that are 
used very frequently. 

Sinusoids

Sinusoids are the building block of analog signal processing. All real world signals can be repre-
sented as an infinite sum of sinusoidal functions via a Fourier series. A sinusoidal function can be 
represented in terms of an exponential by the application of Euler’s Formula. 

Impulse

An impulse (Dirac delta function) is defined as a signal that has an infinite magnitude and an 
infinitesimally narrow width with an area under it of one, centered at zero. An impulse can be rep-
resented as an infinite sum of sinusoids that includes all possible frequencies. It is not, in reality, 
possible to generate such a signal, but it can be sufficiently approximated with a large amplitude, 
narrow pulse, to produce the theoretical impulse response in a network to a high degree of accu-
racy. The symbol for an impulse is δ(t). If an impulse is used as an input to a system, the output 
is known as the impulse response. The impulse response defines the system because all possible 
frequencies are represented in the input 

Step

A unit step function, also called the Heaviside step function, is a signal that has a magnitude of zero 
before zero and a magnitude of one after zero. The symbol for a unit step is u(t). If a step is used as 
the input to a system, the output is called the step response. The step response shows how a system 
responds to a sudden input, similar to turning on a switch. The period before the output stabilizes 
is called the transient part of a signal. The step response can be multiplied with other signals to 
show how the system responds when an input is suddenly turned on. 
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The unit step function is related to the Dirac delta function by:

u( ) ( )
t

t s dsδ
−∞

= ∫

Systems

Linear Time-invariant (LTI)

Linearity means that if you have two inputs and two corresponding outputs, if you take a linear 
combination of those two inputs you will get a linear combination of the outputs. An example of 
a linear system is a first order low-pass or high-pass filter. Linear systems are made out of analog 
devices that demonstrate linear properties. These devices don’t have to be entirely linear, but must 
have a region of operation that is linear. An operational amplifier is a non-linear device, but has 
a region of operation that is linear, so it can be modeled as linear within that region of operation. 
Time-invariance means it doesn’t matter when you start a system, the same output will result. 
For example, if you have a system and put an input into it today, you would get the same output 
if you started the system tomorrow instead. There aren’t any real systems that are LTI, but many 
systems can be modeled as LTI for simplicity in determining what their output will be. All systems 
have some dependence on things like temperature, signal level or other factors that cause them 
to be non-linear or non-time-invariant, but most are stable enough to model as LTI. Linearity 
and time-invariance are important because they are the only types of systems that can be easily 
solved using conventional analog signal processing methods. Once a system becomes non-linear 
or non-time-invariant, it becomes a non-linear differential equations problem, and there are very 
few of those that can actually be solved. 

Signal Sampling

Signal sampling representation. The continuous signal is represented with a green  
colored line while the discrete samples are indicated by the blue vertical lines.

In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time sig-
nal. A common example is the conversion of a sound wave (a continuous signal) to a sequence of 
samples (a discrete-time signal). 
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A sample is a value or set of values at a point in time and/or space. 

A sampler is a subsystem or operation that extracts samples from a continuous signal. 

A theoretical ideal sampler produces samples equivalent to the instantaneous value of the contin-
uous signal at the desired points. 

The original signal is retrievable from a sequence of samples, up to the Nyquist limit, by passing 
the sequence of samples through a type of low pass filter called a reconstruction filter.

Theory

Sampling can be done for functions varying in space, time, or any other dimension, and similar 
results are obtained in two or more dimensions. 

For functions that vary with time, let s(t) be a continuous function (or “signal”) to be sampled, and 
let sampling be performed by measuring the value of the continuous function every T seconds, 
which is called the sampling interval or the sampling period.  Then the sampled function is given 
by the sequence: 

s(nT),   for integer values of n.

The sampling frequency or sampling rate, fs, is the average number of samples obtained in one 
second (samples per second), thus fs = 1/T. 

Reconstructing a continuous function from samples is done by interpolation algorithms. The Whittak-
er–Shannon interpolation formula is mathematically equivalent to an ideal lowpass filter whose input 
is a sequence of Dirac delta functions that are modulated (multiplied) by the sample values. When 
the time interval between adjacent samples is a constant (T), the sequence of delta functions is called 
a Dirac comb. Mathematically, the modulated Dirac comb is equivalent to the product of the comb 
function with s(t). That purely mathematical abstraction is sometimes referred to as impulse sampling. 

Most sampled signals are not simply stored and reconstructed. But the fidelity of a theoretical re-
construction is a customary measure of the effectiveness of sampling. That fidelity is reduced when 
s(t) contains frequency components whose periodicity is smaller than two samples; or equivalently 
the ratio of cycles to samples exceeds ½ . The quantity ½ cycles/sample × fs samples/sec = fs/2 
cycles/sec (hertz) is known as the Nyquist frequency of the sampler. Therefore, s(t) is usually the 
output of a lowpass filter, functionally known as an anti-aliasing filter. Without an anti-aliasing 
filter, frequencies higher than the Nyquist frequency will influence the samples in a way that is 
misinterpreted by the interpolation process. 

Practical Considerations

In practice, the continuous signal is sampled using an analog-to-digital converter (ADC), a device 
with various physical limitations. This results in deviations from the theoretically perfect recon-
struction, collectively referred to as distortion. 

Various types of distortion can occur, including: 

•	 Aliasing: Some amount of aliasing is inevitable because only theoretical, infinitely long, 

________________________ WORLD TECHNOLOGIES ________________________



WT

47Signal Processing and Quantization 	

functions can have no frequency content above the Nyquist frequency. Aliasing can be 
made arbitrarily small by using a sufficiently large order of the anti-aliasing filter.

•	 Aperture error results from the fact that the sample is obtained as a time average within a 
sampling region, rather than just being equal to the signal value at the sampling instant. 
In a capacitor-based sample and hold circuit, aperture errors are introduced by multiple 
mechanisms. For example, the capacitor cannot instantly track the input signal and the 
capacitor can not instantly be isolated from the input signal.

•	 Jitter or deviation from the precise sample timing intervals.

•	 Noise, including thermal sensor noise, analog circuit noise, etc.

•	 Slew rate limit error, caused by the inability of the ADC input value to change sufficiently 
rapidly.

•	 Quantization as a consequence of the finite precision of words that represent the converted 
values.

•	 Error due to other non-linear effects of the mapping of input voltage to converted output 
value (in addition to the effects of quantization).

Although the use of oversampling can completely eliminate aperture error and aliasing by shifting 
them out of the pass band, this technique cannot be practically used above a few GHz, and may be 
prohibitively expensive at much lower frequencies. Furthermore, while oversampling can reduce 
quantization error and non-linearity, it cannot eliminate these entirely. Consequently, practical 
ADCs at audio frequencies typically do not exhibit aliasing, aperture error, and are not limited 
by quantization error. Instead, analog noise dominates. At RF and microwave frequencies where 
oversampling is impractical and filters are expensive, aperture error, quantization error and alias-
ing can be significant limitations. 

Jitter, noise, and quantization are often analyzed by modeling them as random errors added to the 
sample values. Integration and zero-order hold effects can be analyzed as a form of low-pass filter-
ing. The non-linearities of either ADC or DAC are analyzed by replacing the ideal linear function 
mapping with a proposed nonlinear function. 

Applications

Audio Sampling

Digital audio uses pulse-code modulation and digital signals for sound reproduction. This includes 
analog-to-digital conversion (ADC), digital-to-analog conversion (DAC), storage, and transmis-
sion. In effect, the system commonly referred to as digital is in fact a discrete-time, discrete-level 
analog of a previous electrical analog. While modern systems can be quite subtle in their methods, 
the primary usefulness of a digital system is the ability to store, retrieve and transmit signals with-
out any loss of quality. 

Sampling Rate

A commonly seen unit of sampling rate is Hz, which stands for Hertz and means “samples per 
second”. As an example, 48 kHz is 48,000 samples per second. 
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When it is necessary to capture audio covering the entire 20–20,000 Hz range of human 
hearing, such as when recording music or many types of acoustic events, audio waveforms 
are typically sampled at 44.1 kHz (CD), 48 kHz, 88.2 kHz, or 96 kHz. The approximately dou-
ble-rate requirement is a consequence of the Nyquist theorem. Sampling rates higher than 
about 50 kHz to 60 kHz cannot supply more usable information for human listeners. Early 
professional audio equipment manufacturers chose sampling rates in the region of 40 to 50 
kHz for this reason. 

There has been an industry trend towards sampling rates well beyond the basic requirements: 
such as 96 kHz and even 192 kHz Even though ultrasonic frequencies are inaudible to humans, 
recording and mixing at higher sampling rates is effective in eliminating the distortion that can 
be caused by foldback aliasing. Conversely, ultrasonic sounds may interact with and modulate the 
audible part of the frequency spectrum (intermodulation distortion), degrading the fidelity. One 
advantage of higher sampling rates is that they can relax the low-pass filter design requirements 
for ADCs and DACs, but with modern oversampling sigma-delta converters this advantage is less 
important. 

The Audio Engineering Society recommends 48 kHz sampling rate for most applications but gives 
recognition to 44.1 kHz for Compact Disc (CD) and other consumer uses, 32 kHz for transmis-
sion-related applications, and 96 kHz for higher bandwidth or relaxed anti-aliasing filtering. Both 
Lavry Engineering and J. Robert Stuart state that the ideal sampling rate would be about 60 kHz, 
but since this is not a standard frequency, recommend 88.2 or 96 kHz for recording purposes. 

A more complete list of common audio sample rates is: 

Sampling rate Use 

8,000 Hz Telephone and encrypted walkie-talkie, wireless intercom and wireless microphone transmis-
sion; adequate for human speech but without sibilance (ess sounds like eff (/s/, /f/)). 

11,025 Hz One quarter the sampling rate of audio CDs; used for lower-quality PCM, MPEG audio and for 
audio analysis of subwoofer bandpasses. 

16,000 Hz Wideband frequency extension over standard telephone narrowband 8,000 Hz. Used in most 
modern VoIP and VVoIP communication products. 

22,050 Hz 
One half the sampling rate of audio CDs; used for lower-quality PCM and MPEG audio and for 
audio analysis of low frequency energy. Suitable for digitizing early 20th century audio formats 
such as 78s. 

32,000 Hz 

miniDV digital video camcorder, video tapes with extra channels of audio (e.g. DVCAM with 
four channels of audio), DAT (LP mode), Germany’s Digitales Satellitenradio, NICAM digital 
audio, used alongside analogue television sound in some countries. High-quality digital wireless 
microphones. Suitable for digitizing FM radio. 

37,800 Hz CD-XA audio.

44,056 Hz Used by digital audio locked to NTSC color video signals (3 samples per line, 245 lines per field, 
59.94 fields per second = 29.97 frames per second). 

44,100 Hz 

Audio CD, also most commonly used with MPEG-1 audio (VCD, SVCD, MP3). Originally chosen 
by Sony because it could be recorded on modified video equipment running at either 25 frames 
per second (PAL) or 30 frame/s (using an NTSC monochrome video recorder) and cover the 
20 kHz bandwidth thought necessary to match professional analog recording equipment of the 
time. A PCM adaptor would fit digital audio samples into the analog video channel of, for exam-
ple, PAL video tapes using 3 samples per line, 588 lines per frame, 25 frames per second. 

47,250 Hz world’s first commercial PCM sound recorder by Nippon Columbia (Denon).
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48,000 Hz 

The standard audio sampling rate used by professional digital video equipment such as tape 
recorders, video servers, vision mixers and so on. This rate was chosen because it could recon-
struct frequencies up to 22 kHz and work with 29.97 frames per second NTSC video – as well as 
25 frame/s, 30 frame/s and 24 frame/s systems. With 29.97 frame/s systems it is necessary to 
handle 1601.6 audio samples per frame delivering an integer number of audio samples only every 
fifth video frame.  Also used for sound with consumer video formats like DV, digital TV, DVD, and 
films. The professional Serial Digital Interface (SDI) and High-definition Serial Digital Interface 
(HD-SDI) used to connect broadcast television equipment together uses this audio sampling 
frequency. Most professional audio gear uses 48 kHz sampling, including mixing consoles, and 
digital recording devices. 

50,000 Hz First commercial digital audio recorders from the late 70s from 3M and Soundstream. 

50,400 Hz Sampling rate used by the Mitsubishi X-80 digital audio recorder. 

64,000 Hz Uncommonly used, but supported by some hardware and software. 

88,200 Hz 
Sampling rate used by some professional recording equipment when the destination is CD 
(multiples of 44,100 Hz). Some pro audio gear uses (or is able to select) 88.2 kHz sampling, 
including mixers, EQs, compressors, reverb, crossovers and recording devices. 

96,000 Hz 

DVD-Audio, some LPCM DVD tracks, BD-ROM (Blu-ray Disc) audio tracks, HD DVD 
(High-Definition DVD) audio tracks. Some professional recording and production equipment is 
able to select 96 kHz sampling. This sampling frequency is twice the 48 kHz standard common-
ly used with audio on professional equipment. 

176,400 Hz Sampling rate used by HDCD recorders and other professional applications for CD production. 
Four times the frequency of 44.1 kHz. 

192,000 Hz 

DVD-Audio, some LPCM DVD tracks, BD-ROM (Blu-ray Disc) audio tracks, and HD DVD 
(High-Definition DVD) audio tracks, High-Definition audio recording devices and audio editing 
software. This sampling frequency is four times the 48 kHz standard commonly used with audio 
on professional video equipment. 

352,800 Hz Digital eXtreme Definition, used for recording and editing Super Audio CDs, as 1-bit Direct 
Stream Digital (DSD) is not suited for editing. Eight times the frequency of 44.1 kHz. 

2,822,400 Hz SACD, 1-bit delta-sigma modulation process known as Direct Stream Digital, co-developed by 
Sony and Philips. 

5,644,800 Hz Double-Rate DSD, 1-bit Direct Stream Digital at 2× the rate of the SACD. Used in some profes-
sional DSD recorders. 

11,289,600 Hz Quad-Rate DSD, 1-bit Direct Stream Digital at 4× the rate of the SACD. Used in some uncom-
mon professional DSD recorders. 

22,579,200 Hz Octuple-Rate DSD, 1-bit Direct Stream Digital at 8× the rate of the SACD. Used in rare experi-
mental DSD recorders. Also known as DSD512. 

Bit Depth

Audio is typically recorded at 8-, 16-, and 24-bit depth, which yield a theoretical maximum sig-
nal-to-quantization-noise ratio (SQNR) for a pure sine wave of, approximately, 49.93 dB, 98.09 
dB and 122.17 dB. CD quality audio uses 16-bit samples. Thermal noise limits the true number of 
bits that can be used in quantization. Few analog systems have signal to noise ratios (SNR) ex-
ceeding 120 dB. However, digital signal processing operations can have very high dynamic range, 
consequently it is common to perform mixing and mastering operations at 32-bit precision and 
then convert to 16- or 24-bit for distribution. 
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Speech Sampling

Speech signals, i.e., signals intended to carry only human speech, can usually be sampled at a 
much lower rate. For most phonemes, almost all of the energy is contained in the 100 Hz–4 kHz 
range, allowing a sampling rate of 8 kHz. This is the sampling rate used by nearly all telephony 
systems, which use the G.711 sampling and quantization specifications. 

Video Sampling

Standard-definition television (SDTV) uses either 720 by 480 pixels (US NTSC 525-line) or 720 by 
576 pixels (UK PAL 625-line) for the visible picture area. 

High-definition television (HDTV) uses 720p (progressive), 1080i (interlaced), and 1080p (pro-
gressive, also known as Full-HD). 

In digital video, the temporal sampling rate is defined the frame rate – or rather the field rate 
– rather than the notional pixel clock. The image sampling frequency is the repetition rate of 
the sensor integration period. Since the integration period may be significantly shorter than the 
time between repetitions, the sampling frequency can be different from the inverse of the sample 
time: 

•	 50 Hz – PAL video.

•	 60 / 1.001 Hz ~= 59.94 Hz – NTSC video.

Video digital-to-analog converters operate in the megahertz range (from ~3 MHz for low quality 
composite video scalers in early games consoles, to 250 MHz or more for the highest-resolution 
VGA output). 

When analog video is converted to digital video, a different sampling process occurs, this time at 
the pixel frequency, corresponding to a spatial sampling rate along scan lines. A common pixel 
sampling rate is: 

•	 13.5 MHz – CCIR 601, D1 video.

Spatial sampling in the other direction is determined by the spacing of scan lines in the raster. 
The sampling rates and resolutions in both spatial directions can be measured in units of lines per 
picture height. 

Spatial aliasing of high-frequency luma or chroma video components shows up as a moiré pat-
tern. 

3D Sampling

The process of volume rendering samples a 3D grid of voxels to produce 3D renderings of sliced 
(tomographic) data. The 3D grid is assumed to represent a continuous region of 3D space. Volume 
rendering is common in medial imaging, X-ray computed tomography (CT/CAT), magnetic reso-
nance imaging (MRI), positron emission tomography (PET) are some examples. It is also used for 
seismic tomography and other applications. 
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Complex Sampling

Complex sampling (I/Q sampling) is the simultaneous sampling of two different, but related, 
waveforms, resulting in pairs of samples that are subsequently treated as complex numbers. When 
one waveform , ˆ( ), s t   is the Hilbert transform of the other waveform , ( ),s t   the complex-valued 
function, ( ) ( ) ( ),ˆas t s t i s t+ ⋅�   is called an analytic signal,  whose Fourier transform is zero for all 
negative values of frequency. In that case, the Nyquist rate for a waveform with no frequencies ≥ 

B can be reduced to just B (complex samples/sec), instead of 2B (real samples/sec). More appar-

ently, the equivalent baseband waveform,  
2

2( ) ,
Bi t

as t e
π−

⋅   also has a Nyquist rate of B, because all 

of its non-zero frequency content is shifted into the interval [-B/2, B/2). 

Although complex-valued samples can be obtained as described above, they are also created by ma-
nipulating samples of a real-valued waveform. For instance, the equivalent baseband waveform can 

be created without explicitly computing ˆ( ),s t   by processing the product sequence
2

2, ( ) ,
Bi Tn

s nT e
π− 

⋅ 
 

through a digital lowpass filter whose cutoff frequency is B/2. Computing only every other sample of 
the output sequence reduces the sample-rate commensurate with the reduced Nyquist rate. The re-
sult is half as many complex-valued samples as the original number of real samples. No information 
is lost, and the original s(t) waveform can be recovered, if necessary.

Undersampling

In signal processing, undersampling or bandpass sampling is a technique where one samples a 
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bandpass-filtered signal at a sample rate below its Nyquist rate (twice the upper cutoff frequency), 
but is still able to reconstruct the signal. 

When one undersamples a bandpass signal, the samples are indistinguishable from the samples 
of a low-frequency alias of the high-frequency signal. Such sampling is also known as bandpass 
sampling, harmonic sampling, IF sampling, and direct IF-to-digital conversion.

The top 2 graphs depict Fourier transforms of 2 different functions that produce the same re-
sults when sampled at a particular rate. The baseband function is sampled faster than its Nyquist 
rate, and the bandpass function is undersampled, effectively converting it to baseband. The lower 
graphs indicate how identical spectral results are created by the aliases of the sampling process.

Plot of sample rates (y axis) versus the upper edge frequency (x axis) for a band of width 1; grays 
areas are combinations that are “allowed” in the sense that no two frequencies in the band alias to 
same frequency. The darker gray areas correspond to undersampling with the maximum value of 
n in the equations.
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The Fourier transforms of real-valued functions are symmetrical around the 0 Hz axis. After sam-
pling, only a periodic summation of the Fourier transform (called discrete-time Fourier trans-
form) is still available. The individual frequency-shifted copies of the original transform are called 
aliases. The frequency offset between adjacent aliases is the sampling-rate, denoted by fs. When 
the aliases are mutually exclusive (spectrally), the original transform and the original continuous 
function, or a frequency-shifted version of it (if desired), can be recovered from the samples. The 
first and third graphs of figure depict a baseband spectrum before and after being sampled at a rate 
that completely separates the aliases. 

The second graph of figure depicts the frequency profile of a bandpass function occupying the band 
(A, A+B) (shaded blue) and its mirror image (shaded beige). The condition for a non-destructive 
sample rate is that the aliases of both bands do not overlap when shifted by all integer multiples of 
fs. The fourth graph depicts the spectral result of sampling at the same rate as the baseband func-
tion. The rate was chosen by finding the lowest rate that is an integer sub-multiple of A and also 
satisfies the baseband Nyquist criterion: fs > 2B.  Consequently, the bandpass function has effec-
tively been converted to baseband. All the other rates that avoid overlap are given by these more 
general criteria, where A and A+B are replaced by fL and fH, respectively: 

2 2
1

H L
s

f ff
n n

≤ ≤
−

, for any integer n satisfying: 1 H

H L

fn
f f

 
≤ ≤  − 

.

The highest n for which the condition is satisfied leads to the lowest possible sampling rates. 

Important signals of this sort include a radio’s intermediate-frequency (IF), radio-frequency (RF) 
signal, and the individual channels of a filter bank. 

If n > 1, then the conditions result in what is sometimes referred to as undersampling, band-
pass sampling, or using a sampling rate less than the Nyquist rate (2fH). For the case of a given 
sampling frequency, simpler formulae for the constraints on the signal’s spectral band are given 
below. 

Spectrum of the FM radio band (88–108 MHz) and its baseband alias under 44 MHz (n = 5) sampling.  
An anti-alias filter quite tight to the FM radio band is required, and there’s not room  

for stations at nearby expansion channels such as 87.9 without aliasing.
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Spectrum of the FM radio band (88–108 MHz) and its baseband alias under 56 MHz (n = 4)  
sampling, showing plenty of room for bandpass anti-aliasing filter transition bands.  

The baseband image is frequency-reversed in this case (even n).

Example: Consider FM radio to illustrate the idea of undersampling.

In the US, FM radio operates on the frequency band from fL = 88 MHz to fH = 108 MHz. The band-
width is given by

108 MHz 88 MHz 20 MHzH LW f f= − = − =

The sampling conditions are satisfied for:

108 MHz1 5.4
20 MHz

n
 

≤ ≤ =    
 

Therefore, n can be 1, 2, 3, 4, or 5.

The value n = 5 gives the lowest sampling frequencies interval s43.2 MHz 44 MHzf< < and this 
is a scenario of undersampling. In this case, the signal spectrum fits between 2 and 2.5 times the 
sampling rate (higher than 86.4–88 MHz but lower than 108–110 MHz).

A lower value of n will also lead to a useful sampling rate. For example, using n = 4, the FM band 
spectrum fits easily between 1.5 and 2.0 times the sampling rate, for a sampling rate near 56 MHz 
(multiples of the Nyquist frequency being 28, 56, 84, 112, etc.). 

When undersampling a real-world signal, the sampling circuit must be fast enough to capture 
the highest signal frequency of interest. Theoretically, each sample should be taken during an in-
finitesimally short interval, but this is not practically feasible. Instead, the sampling of the signal 
should be made in a short enough interval that it can represent the instantaneous value of the 
signal with the highest frequency. This means that in the FM radio example above, the sampling 
circuit must be able to capture a signal with a frequency of 108 MHz, not 43.2 MHz. Thus, the 
sampling frequency may be only a little bit greater than 43.2 MHz, but the input bandwidth of 
the system must be at least 108 MHz. Similarly, the accuracy of the sampling timing, or aperture 
uncertainty of the sampler, frequently the analog-to-digital converter, must be appropriate for the 
frequencies being sampled 108MHz, not the lower sample rate.

If the sampling theorem is interpreted as requiring twice the highest frequency, then the required 
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sampling rate would be assumed to be greater than the Nyquist rate 216 MHz. While this does 
satisfy the last condition on the sampling rate, it is grossly oversampled.

Note that if a band is sampled with n > 1, then a band-pass filter is required for the anti-aliasing 
filter, instead of a lowpass filter.

As we have seen, the normal baseband condition for reversible sampling is that X(f) = 0 outside 

the interval: s s
1 1, ,
2 2

f f − 
 

and the reconstructive interpolation function, or lowpass filter impulse response, is sinc(t/T).

To accommodate undersampling, the bandpass condition is that X(f) = 0 outside the union of open 
positive and negative frequency bands:

s s s s
1 1, ,

2 2 2 2
n n n nf f f f− −   − − ∪   

   
for some positive integer n.

which includes the normal baseband condition as case n = 1 (except that where the intervals come 
together at 0 frequency, they can be closed).

The corresponding interpolation function is the bandpass filter given by this difference of lowpass 
impulse responses: 

( 1)sinc ( 1)sincnt n tn n
T T

−   − −   
   

.

On the other hand, reconstruction is not usually the goal with sampled IF or RF signals. Rather, 
the sample sequence can be treated as ordinary samples of the signal frequency-shifted to near 
baseband, and digital demodulation can proceed on that basis, recognizing the spectrum mirror-
ing when n is even. 

Further generalizations of undersampling for the case of signals with multiple bands are possible, 
and signals over multidimensional domains (space or space-time) and have been worked out in 
detail by Igor Kluvánek. 

Oversampling

In signal processing, oversampling is the process of sampling a signal at a sampling frequency sig-
nificantly higher than the Nyquist rate. Theoretically, a bandwidth-limited signal can be perfectly 
reconstructed if sampled at the Nyquist rate or above it. The Nyquist rate is defined as twice the 
highest frequency component in the signal. Oversampling is capable of improving resolution and 
signal-to-noise ratio, and can be helpful in avoiding aliasing and phase distortion by relaxing an-
ti-aliasing filter performance requirements. 

A signal is said to be oversampled by a factor of N if it is sampled at N times the Nyquist rate. 

Motivation

There are three main reasons for performing oversampling,
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Anti-aliasing

Oversampling can make it easier to realize analog anti-aliasing filters. Without oversampling, it is 
very difficult to implement filters with the sharp cutoff necessary to maximize use of the available 
bandwidth without exceeding the Nyquist limit. By increasing the bandwidth of the sampling sys-
tem, design constraints for the anti-aliasing filter may be relaxed. Once sampled, the signal can be 
digitally filtered and downsampled to the desired sampling frequency. In modern integrated cir-
cuit technology, the digital filter associated with this downsampling are easier to implement than 
a comparable analog filter required by a non-oversampled system. 

Resolution

In practice, oversampling is implemented in order to reduce cost and improve performance of an 
analog-to-digital converter (ADC) or digital-to-analog converter (DAC). When oversampling by 
a factor of N, the dynamic range also increases a factor of N because there are N times as many 
possible values for the sum. However, the signal-to-noise ratio (SNR) increases by N , because 
summing up uncorrelated noise increases its amplitude by N , while summing up a coherent 
signal increases its average by N. As a result, the SNR increases by N . 

For instance, to implement a 24-bit converter, it is sufficient to use a 20-bit converter that can run 
at 256 times the target sampling rate. Combining 256 consecutive 20-bit samples can increase the 
SNR by a factor of 16, effectively adding 4 bits to the resolution and producing a single sample with 
24-bit resolution. While with N=256 there is an increase in dynamic range by 8 bits, and the level 
of coherent signal increases by a factor of N, the noise changes by a factor of N =16, so the net 
SNR improves by a factor of 16, 4 bits or 24 dB. 

The number of samples required to get n bits of additional data precision is:

2 2number of samples (2 ) 2 .n n= =

To get the mean sample scaled up to an integer with n additional bits, the sum of 22 n samples is 
divided by 2n : 

2 22 1 2 1

0 0
2

2 data data
scaled mean .

2 2

n n

n
i i

i i
n n

− −

= == =
∑ ∑

This averaging is only effective if the signal contains sufficient uncorrelated noise to be recorded by 
the ADC. If not, in the case of a stationary input signal, all 2n samples would have the same value 
and the resulting average would be identical to this value; so in this case, oversampling would have 
made no improvement. In similar cases where the ADC records no noise and the input signal is 
changing over time, oversampling improves the result, but to an inconsistent and unpredictable 
extent. 

Adding some dithering noise to the input signal can actually improve the final result because the 
dither noise allows oversampling to work to improve resolution. In many practical applications, a 
small increase in noise is well worth a substantial increase in measurement resolution. In practice, 
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the dithering noise can often be placed outside the frequency range of interest to the measure-
ment, so that this noise can be subsequently filtered out in the digital domain—resulting in a final 
measurement, in the frequency range of interest, with both higher resolution and lower noise. 

Noise

If multiple samples are taken of the same quantity with uncorrelated noise added to each sample, 
then because, uncorrelated signals combine more weakly than correlated ones, averaging N sam-
ples reduces the noise power by a factor of N. If, for example, we oversample by a factor of 4, the 
signal-to-noise ratio in terms of power improves by factor of 4 which corresponds to a factor of 2 
improvement in terms of voltage. 

Certain kinds of ADCs known as delta-sigma converters produce disproportionately more quan-
tization noise at higher frequencies. By running these converters at some multiple of the target 
sampling rate, and low-pass filtering the oversampled signal down to half the target sampling rate, 
a final result with less noise (over the entire band of the converter) can be obtained. Delta-sigma 
converters use a technique called noise shaping to move the quantization noise to the higher fre-
quencies. 

Example:

Consider a signal with a bandwidth or highest frequency of B = 100 Hz. The sampling theorem 
states that sampling frequency would have to be greater than 200 Hz. Sampling at four times that 
rate requires a sampling frequency of 800 Hz. This gives the anti-aliasing filter a transition band 
of 300 Hz ((fs/2) − B = (800 Hz/2) − 100 Hz = 300 Hz) instead of 0 Hz if the sampling frequency 
was 200 Hz. Achieving an anti-aliasing filter with 0 Hz transition band is unrealistic whereas an 
anti-aliasing filter with a transition band of 300 Hz is not difficult. 

Oversampling in Reconstruction

The term oversampling is also used to denote a process used in the reconstruction phase of digi-
tal-to-analog conversion, in which an intermediate high sampling rate is used between the digital 
input and the analogue output. Here, samples are interpolated in the digital domain to add addi-
tional samples in between, thereby converting the data to a higher sample rate, which is a form 
of upsampling. When the resulting higher-rate samples are converted to analog, a less complex/
expensive analog low pass filter is required to remove the high-frequency content, which will con-
sist of reflected images of the real signal created by the zero-order hold of the digital-to-analog 
converter. Essentially, this is a way to shift some of the complexity of the filtering into the digital 
domain and achieves the same benefit as oversampling in analog-to-digital conversion. 

Sampling Rate

Sampling rate determines the sound frequency range (corresponding to pitch) which can be rep-
resented in the digital waveform. The range of frequencies represented in a waveform is often 
called its bandwidth. Waveforms sampled at a high sampling rate can represent a broad range 
of frequencies and hence have broad bandwidth. In fact, the maximum bandwidth of a sampled 
waveform is determined exactly by its sampling rate; the maximum frequency representable in 
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a sampled waveform is termed its Nyquist frequency, and is equal to one half the sampling rate. 
Thus, for example, a waveform sampled at 16,000 Hz can represent all frequencies up to its Ny-
quist frequency of 8,000 Hz.

A problem called aliasing occurs when a signal to be sampled contains energy at frequencies above 
the sampling Nyquist frequency. The next figure illustrates how aliasing would occur when the 
sampling rate is much too low for the frequency of an input signal. The solid curve represents 
the analog signal at a comparatively high frequency. Circles show where samples were taken at 
a relatively low sampling rate. The dotted line illustrates the apparent frequency of the sampled 
waveform, completing about two cycles in the period that the original signal completed 20 cycles.

Obviously, aliasing has the effect of producing sounds of lower frequency from sounds that are 
higher in frequency than the Nyquist frequency. Once aliasing has occurred, it is absolutely impos-
sible to distinguish a component generated by aliasing from one that was actually present in the 
input signal. This effect is one of the most common sources of distortion in digitized waveforms. 
Fortunately, most modern computer hardware for digitizing sound has builtin filters which are 
tuned to remove sound energy at frequencies beyond the Nyquist frequency for whatever sampling 
rate is being used.

Nyquist–Shannon Sampling Theorem

In the field of digital signal processing, the sampling theorem is a fundamental bridge between 
continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample 
rate that permits a discrete sequence of samples to capture all the information from a continu-
ous-time signal of finite bandwidth. 

Strictly speaking, the theorem only applies to a class of mathematical functions having a Fourier 
transform that is zero outside of a finite region of frequencies. Intuitively we expect that when one 
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reduces a continuous function to a discrete sequence and interpolates back to a continuous func-
tion, the fidelity of the result depends on the density (or sample rate) of the original samples. The 
sampling theorem introduces the concept of a sample rate that is sufficient for perfect fidelity for 
the class of functions that are bandlimited to a given bandwidth, such that no actual information is 
lost in the sampling process. It expresses the sufficient sample rate in terms of the bandwidth for 
the class of functions. The theorem also leads to a formula for perfectly reconstructing the original 
continuous-time function from the samples. 

Example of magnitude of the Fourier transform of a bandlimited function.

Perfect reconstruction may still be possible when the sample-rate criterion is not satisfied, provid-
ed other constraints on the signal are known. In some cases (when the sample-rate criterion is not 
satisfied), utilizing additional constraints allows for approximate reconstructions. The fidelity of 
these reconstructions can be verified and quantified utilizing Bochner’s theorem. 

The name Nyquist–Shannon sampling theorem honours Harry Nyquist and Claude Shannon al-
beit the fact that it had already been discovered in 1933 by Vladimir Kotelnikov. The theorem 
was also discovered independently by E. T. Whittaker and by others. It is thus also known by 
the names Nyquist–Shannon–Kotelnikov, Whittaker–Shannon–Kotelnikov, Whittaker–Nyquist–
Kotelnikov–Shannon, and cardinal theorem of interpolation. 

Sampling is a process of converting a signal (for example, a function of continuous time and/or 
space) into a sequence of values (a function of discrete time and/or space). Shannon’s version of 
the theorem states: 

If a function ( )x t contains no frequencies higher than B hertz, it is completely determined 
by giving its ordinates at a series of points spaced 1/ (2 )B seconds apart.

A sufficient sample-rate is therefore anything larger than 2B samples per second. Equivalently, 
for a given sample rate sf , perfect reconstruction is guaranteed possible for a bandlimit / 2sB f< . 

When the bandlimit is too high (or there is no bandlimit), the reconstruction exhibits imperfec-
tions known as aliasing. Modern statements of the theorem are sometimes careful to explicitly 
state that ( )x t must contain no sinusoidal component at exactly frequency B, or that B must be 
strictly less than ½ the sample rate. The threshold 2B is called the Nyquist rate and is an attribute 
of the continuous-time input ( )x t to be sampled. The sample rate must exceed the Nyquist rate 
for the samples to suffice to represent x(t). The threshold fs/2 is called the Nyquist frequency and 
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is an attribute of the sampling equipment. All meaningful frequency components of the properly 
sampled x(t) exist below the Nyquist frequency. The condition described by these inequalities is 
called the Nyquist criterion, or sometimes the Raabe condition. The theorem is also applicable to 
functions of other domains, such as space, in the case of a digitized image. The only change, in the 
case of other domains, is the units of measure applied to t, fs, and B. 

The normalized sinc function: sin(πx) / (πx) showing the central  
peak at x = 0, and zero-crossings at the other integer values of x.

The symbol T = 1/fs is customarily used to represent the interval between samples and is called the 
sample period or sampling interval. And the samples of function x(t) are commonly denoted by 
x[n] = x(nT) (alternatively “xn” in older signal processing literature), for all integer values of n. A 
mathematically ideal way to interpolate the sequence involves the use of sinc functions. Each sam-
ple in the sequence is replaced by a sinc function, centered on the time axis at the original location 
of the sample, nT, with the amplitude of the sinc function scaled to the sample value, x[n]. Subse-
quently, the sinc functions are summed into a continuous function. A mathematically equivalent 
method is to convolve one sinc function with a series of Dirac delta pulses, weighted by the sample 
values. Neither method is numerically practical. Instead, some type of approximation of the sinc 
functions, finite in length, is used. The imperfections attributable to the approximation are known 
as interpolation error. 

Practical digital-to-analog converters produce neither scaled and delayed sinc functions, nor ideal 
Dirac pulses. Instead they produce a piecewise-constant sequence of scaled and delayed rectan-
gular pulses (the zero-order hold), usually followed by a lowpass filter (called an “anti-imaging 
filter”) to remove spurious high-frequency replicas of the original baseband signal. 

When ( )x t is a function with a Fourier transform ( )X f :

2( ) ( ) d ,i ftX f x t e tπ∞ −

−∞∫�
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The samples of two sine waves can be identical when at least one of them is at a frequency above half the sample rate.

the Poisson summation formula indicates that the samples, ( )x nT , of ( )x t are sufficient to create 
a periodic summation of ( )X f . The result is: 

( ) 2( ) ( ) ,i nTf
s s

k n
X f X f kf T x nT e π

∞ ∞
−

=−∞ =−∞

− = ⋅∑ ∑�

X(f) (top blue) and XA(f) (bottom blue) are continuous Fourier transforms of two different func-
tions, ( )x t and ( )Ax t . When the functions are sampled at rate sf , the images (green) are added to 
the original transforms (blue) when one examines the discrete-time Fourier transforms (DTFT) of 
the sequences. In this hypothetical example, the DTFTs are identical, which means the sampled 
sequences are identical, even though the original continuous pre-sampled functions are not. If 
these were audio signals, ( )x t and ( )Ax t might not sound the same. But their samples (taken at 
rate fs) are identical and would lead to identical reproduced sounds; thus xA(t) is an alias of x(t) at 
this sample rate.

which is a periodic function and its equivalent representation as a Fourier series, whose coeffi-
cients are ( ).T x nT⋅ This function is also known as the discrete-time Fourier transform (DTFT) of 
the sample sequence. 

As depicted, copies of ( )X f are shifted by multiples of sf and combined by addition. For a 
band-limited function  ( ( ) 0,  for all | | )X f f B= ≥   and sufficiently large sf it is possible for the 
copies to remain distinct from each other. But if the Nyquist criterion is not satisfied, adjacent 
copies overlap, and it is not possible in general to discern an unambiguous ( )X f Any frequency 
component above / 2sf is indistinguishable from a lower-frequency component, called an alias, 
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associated with one of the copies. In such cases, the customary interpolation techniques produce 
the alias, rather than the original component. When the sample-rate is pre-determined by other 
considerations (such as an industry standard), ( )x t is usually filtered to reduce its high frequencies 
to acceptable levels before it is sampled. The type of filter required is a lowpass filter, and in this 
application it is called an anti-aliasing filter. 

Spectrum, Xs(f), of a properly sampled bandlimited signal (blue) and the adjacent DTFT images (green)  
that do not overlap. A brick-wall low-pass filter, H(f), removes the images, leaves the  

original spectrum, X(f), and recovers the original signal from its samples.

Derivation as a Special Case of Poisson Summation

When there is no overlap of the copies of ( )X f , the 0k = term of can be recovered by the product: 

( ) ( ) ( ), sX f H f X f= ⋅

where,

1 | |
( )

0 | | .s

f B
H f

f f B
<

 > −
�

The sampling theorem is proved since ( )X f uniquely determines ( )x t .

All that remains is to derive the formula for reconstruction. ( )H f need not be precisely defined 
in the region [ ,  ]sB f B− because ( )sX f is zero in that region. However, the worst case is when 

/ 2,sB f= the Nyquist frequency. A function that is sufficient for that and all less severe cases is: 

1 | |
2( ) rect

0 | | ,
2

s

ss

fffH f
ff f

 <  = =  
   >



where rect(•) is the rectangular function. Therefore: 

( ) rect ( )s
s

fX f X f
f

 
= ⋅ 

 
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2rect( ) ( ) i nTf

n
Tf T x nT e π
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=−∞
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The inverse transform of both sides produces the Whittaker–Shannon interpolation formula: 

( ) ( ) sinc ,
n

t nTx t x nT
T

∞

=−∞

− = ⋅  
 

∑

which shows how the samples, ( ),x nT can be combined to reconstruct ( ).x t

•	 Larger-than-necessary values of fs (smaller values of T), called oversampling, have no ef-
fect on the outcome of the reconstruction and have the benefit of leaving room for a tran-
sition band in which H(f) is free to take intermediate values. Undersampling, which causes 
aliasing, is not in general a reversible operation.

•	 Theoretically, the interpolation formula can be implemented as a low pass filter, whose 
impulse response is sinc(t/T) and whose input is ( ) ( ),

n
x nT t nT∞

∞
δ

=−
⋅ −∑  which is a Dirac 

comb function modulated by the signal samples. Practical digital-to-analog converters 
(DAC) implement an approximation like the zero-order hold. In that case, oversampling 
can reduce the approximation error.

Shannon’s original Proof

Poisson shows that the Fourier series produces the periodic summation of ( )X f , regardless of 
f and B . Shannon, however, only derives the series coefficients for the case 2sf B= . Virtually 

quoting Shannon’s original paper: 

Let ( )X ω be the spectrum of ( ).x t Then

2

2

1 1( ) ( ) d ( ) d ,
2 2

Bi t i t

B
x t X e X e

πω ω

π
ω ω ω ω

π π
∞

−∞ −
= =∫ ∫

because ( ) is assumed to be zero outside the band .
2

Bω
π

<  If we let ,
2
nt
B

= where n is any 
positive or negative integer, we obtain:

( )
2

2
2 2

1 ( ) d .
2

nB i
n B
B B

x X e
π ω

π
ω ω

π −
= ∫

On the left are values of ( )  x t at the sampling points. The integral on the right will be recognized 

as essentially[a] the nth coefficient in a Fourier-series expansion of the function ( )X ω taking the 

interval B− to B as a fundamental period. This means that the values of the samples ( / 2 )x n B de-

termine the Fourier coefficients in the series expansion of ( )X ω   Thus they determine ( )X ω since 
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( )X ω is zero for frequencies greater than B, and for lower frequencies ( )X ω is determined if its 
Fourier coefficients are determined. But ( )X ω determines the original function ( )  x t completely, 
since a function is determined if its spectrum is known. Therefore the original samples determine 
the function ( )  x t completely.

Shannon’s proof of the theorem is complete at that point, but he goes on to discuss reconstruction 
via sinc functions, what we now call the Whittaker–Shannon interpolation formula. He does not 
derive or prove the properties of the sinc function, but these would have been familiar to engineers 
reading his works at the time, since the Fourier pair relationship between rect (the rectangular 
function) and sinc was well known. 

Let nx be the nth sample. Then the function ( )  x t is represented by:

sin (2 )( ) .
(2 )n

n

Bt nx t x
Bt n

π
π

∞

=−∞

−
=

−∑

As in the other proof, the existence of the Fourier transform of the original signal is assumed, so 
the proof does not say whether the sampling theorem extends to bandlimited stationary random 
processes. 

Application to Multivariable Signals and Images

The sampling theorem is usually formulated for functions of a single variable. Consequently, the 
theorem is directly applicable to time-dependent signals and is normally formulated in that con-
text. However, the sampling theorem can be extended in a straightforward way to functions of 
arbitrarily many variables. Grayscale images, for example, are often represented as two-dimen-
sional arrays (or matrices) of real numbers representing the relative intensities of pixels (picture 
elements) located at the intersections of row and column sample locations. As a result, images 
require two independent variables, or indices, to specify each pixel uniquely—one for the row, and 
one for the column. 

Color images typically consist of a composite of three separate grayscale images, one to represent 
each of the three primary colors—red, green, and blue, or RGB for short. Other colorspaces using 
3-vectors for colors include HSV, CIELAB, XYZ, etc. Some colorspaces such as cyan, magenta, 
yellow, and black (CMYK) may represent color by four dimensions. All of these are treated as vec-
tor-valued functions over a two-dimensional sampled domain. 

Similar to one-dimensional discrete-time signals, images can also suffer from aliasing if the sam-
pling resolution, or pixel density, is inadequate. For example, a digital photograph of a striped 
shirt with high frequencies (in other words, the distance between the stripes is small), can cause 
aliasing of the shirt when it is sampled by the camera’s image sensor. The aliasing appears as a 
moiré pattern. The “solution” to higher sampling in the spatial domain for this case would be to 
move closer to the shirt, use a higher resolution sensor, or to optically blur the image before ac-
quiring it with the sensor. 

Another example is shown to the right in the brick patterns. The top image shows the effects when 
the sampling theorem’s condition is not satisfied. When software rescales an image (the same 
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process that creates the thumbnail shown in the lower image) it, in effect, runs the image through 
a low-pass filter first and then downsamples the image to result in a smaller image that does not 
exhibit the moiré pattern. The top image is what happens when the image is downsampled without 
low-pass filtering: aliasing results. 

Subsampled image showing a Moiré pattern.

Properly sampled image.

The sampling theorem applies to camera systems, where the scene and lens constitute an analog 
spatial signal source, and the image sensor is a spatial sampling device. Each of these components 
is characterized by a modulation transfer function (MTF), representing the precise resolution 
(spatial bandwidth) available in that component. Effects of aliasing or blurring can occur when 
the lens MTF and sensor MTF are mismatched. When the optical image which is sampled by the 
sensor device contains higher spatial frequencies than the sensor, the under sampling acts as a 
low-pass filter to reduce or eliminate aliasing. When the area of the sampling spot (the size of the 
pixel sensor) is not large enough to provide sufficient spatial anti-aliasing, a separate anti-aliasing 
filter (optical low-pass filter) may be included in a camera system to reduce the MTF of the optical 
image. Instead of requiring an optical filter, the graphics processing unit of smartphone cameras 
performs digital signal processing to remove aliasing with a digital filter. Digital filters also apply 
sharpening to amplify the contrast from the lens at high spatial frequencies, which otherwise falls 
off rapidly at diffraction limits. 
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The sampling theorem also applies to post-processing digital images, such as to up or down sam-
pling. Effects of aliasing, blurring, and sharpening may be adjusted with digital filtering imple-
mented in software, which necessarily follows the theoretical principles. 

Critical Frequency

To illustrate the necessity of 2sf B> , consider the family of sinusoids generated by different val-
ues of θ in this formula: 

cos(2 )( )   cos(2 ) sin(2 ) tan( ), / 2 / 2.
cos( )

Btx t Bt Btπ θ π π θ π θ π
θ
+

= = − − < <

A family of sinusoids at the critical frequency, all having the same sample sequences of alternating +1 and –1. That is, 
they all are aliases of each other, even though their frequency is not above half the sample rate.

With 2sf B= or equivalently 1/ 2T B= , the samples are given by: 

0

( ) cos( ) sin( ) tan( ) ( 1)nx nT n nπ π θ= − = −


regardless of the value of θ . That sort of ambiguity is the reason for the strict inequality of the 
sampling theorem’s condition. 

Sampling of Non-baseband Signals

As discussed by Shannon: 

A similar result is true if the band does not start at zero frequency but at some higher val-
ue, and can be proved by a linear translation (corresponding physically to single-sideband 
modulation) of the zero-frequency case. In this case the elementary pulse is obtained from 
sin(x)/x by single-side-band modulation.
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That is, a sufficient no-loss condition for sampling signals that do not have baseband components 
exists that involves the width of the non-zero frequency interval as opposed to its highest frequen-
cy component. 

For example, in order to sample the FM radio signals in the frequency range of 100–102 MHz, it 
is not necessary to sample at 204 MHz (twice the upper frequency), but rather it is sufficient to 
sample at 4 MHz (twice the width of the frequency interval). 

A bandpass condition is that X(f) = 0, for all nonnegative f outside the open band of frequencies: 

s s
1, ,

2 2
N Nf f+ 

 
 

for some nonnegative integer N. This formulation includes the normal baseband condition as the 
case N=0. 

The corresponding interpolation function is the impulse response of an ideal brick-wall bandpass 
filter (as opposed to the ideal brick-wall lowpass filter used above) with cutoffs at the upper and low-
er edges of the specified band, which is the difference between a pair of lowpass impulse responses: 

( 1)( 1)sinc sinc .N t NtN N
T T
+   + −   

   

Other generalizations, for example to signals occupying multiple non-contiguous bands, are possible 
as well. Even the most generalized form of the sampling theorem does not have a provably true con-
verse. That is, one cannot conclude that information is necessarily lost just because the conditions 
of the sampling theorem are not satisfied; from an engineering perspective, however, it is generally 
safe to assume that if the sampling theorem is not satisfied then information will most likely be lost. 

Nonuniform Sampling

The sampling theory of Shannon can be generalized for the case of nonuniform sampling, that is, 
samples not taken equally spaced in time. The Shannon sampling theory for non-uniform sampling 
states that a band-limited signal can be perfectly reconstructed from its samples if the average sam-
pling rate satisfies the Nyquist condition. Therefore, although uniformly spaced samples may result 
in easier reconstruction algorithms, it is not a necessary condition for perfect reconstruction. 

The general theory for non-baseband and nonuniform samples was developed in 1967 by Henry 
Landau. He proved that the average sampling rate (uniform or otherwise) must be twice the occu-
pied bandwidth of the signal, assuming it is a priori known what portion of the spectrum was oc-
cupied. In the late 1990s, this work was partially extended to cover signals of when the amount of 
occupied bandwidth was known, but the actual occupied portion of the spectrum was unknown. In 
the 2000s, a complete theory was developed using compressed sensing. In particular, the theory, 
using signal processing language, They show, among other things, that if the frequency locations 
are unknown, then it is necessary to sample at least at twice the Nyquist criteria; in other words, 
you must pay at least a factor of 2 for not knowing the location of the spectrum. Note that mini-
mum sampling requirements do not necessarily guarantee stability. 
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Sampling below the Nyquist Rate under Additional Restrictions

The Nyquist–Shannon sampling theorem provides a sufficient condition for the sampling and re-
construction of a band-limited signal. When reconstruction is done via the Whittaker–Shannon 
interpolation formula, the Nyquist criterion is also a necessary condition to avoid aliasing, in the 
sense that if samples are taken at a slower rate than twice the band limit, then there are some sig-
nals that will not be correctly reconstructed. However, if further restrictions are imposed on the 
signal, then the Nyquist criterion may no longer be a necessary condition. 

A non-trivial example of exploiting extra assumptions about the signal is given by the recent field of 
compressed sensing, which allows for full reconstruction with a sub-Nyquist sampling rate. Specifical-
ly, this applies to signals that are sparse (or compressible) in some domain. As an example, compressed 
sensing deals with signals that may have a low over-all bandwidth (say, the effective bandwidth EB), 
but the frequency locations are unknown, rather than all together in a single band, so that the pass-
band technique does not apply. In other words, the frequency spectrum is sparse. Traditionally, the 
necessary sampling rate is thus 2B. Using compressed sensing techniques, the signal could be perfectly 
reconstructed if it is sampled at a rate slightly lower than 2EB. With this approach, reconstruction is no 
longer given by a formula, but instead by the solution to a linear optimization program. 

Another example where sub-Nyquist sampling is optimal arises under the additional constraint 
that the samples are quantized in an optimal manner, as in a combined system of sampling and 
optimal lossy compression. This setting is relevant in cases where the joint effect of sampling and 
quantization is to be considered, and can provide a lower bound for the minimal reconstruction 
error that can be attained in sampling and quantizing a random signal. For stationary Gaussian 
random signals, this lower bound is usually attained at a sub-Nyquist sampling rate, indicating 
that sub-Nyquist sampling is optimal for this signal model under optimal quantization.

Aliasing

In signal processing and related disciplines, aliasing is an effect that causes different signals to 
become indistinguishable (or aliases of one another) when sampled. It also often refers to the 
distortion or artifact that results when a signal reconstructed from samples is different from the 
original continuous signal.

A properly sampled image of a brick wall requires a screen of sufficient resolution to prevent a moiré pattern.
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Spatial aliasing in the form of a moiré pattern.

Aliasing can occur in signals sampled in time, for instance digital audio, and is referred to as tem-
poral aliasing. It can also occur in spatially sampled signals; this type of aliasing is called spatial 
aliasing. 

Aliasing is generally avoided by applying low pass filters or anti-aliasing filters (AAF) to the input 
signal before sampling and when converting a signal from a higher to a lower sampling rate. Suit-
able reconstruction filtering should then be used when restoring the sampled signal to the continu-
ous domain or converting a signal from a lower to a higher sampling rate. For spatial anti-aliasing, 
the types of anti-aliasing include fast sample anti-aliasing (FSAA), multisample anti-aliasing, and 
supersampling. 

Left: An aliased image of the letter A in Times New Roman. Right: An anti-aliased image.

When a digital image is viewed, a reconstruction is performed by a display or printer device, and by 
the eyes and the brain. If the image data is processed in some way during sampling or reconstruc-
tion, the reconstructed image will differ from the original image, and an alias is seen. 

An example of spatial aliasing is the moiré pattern observed in a poorly pixelized image of a brick 
wall. Spatial anti-aliasing techniques avoid such poor pixelizations. Aliasing can be caused either 
by the sampling stage or the reconstruction stage; these may be distinguished by calling sampling 
aliasing prealiasing and reconstruction aliasing postaliasing. 

Temporal aliasing is a major concern in the sampling of video and audio signals. Music, for in-
stance, may contain high-frequency components that are inaudible to humans. If a piece of music 
is sampled at 32000 samples per second (Hz), any frequency components at or above 16000 Hz 
(the Nyquist frequency for this sampling rate) will cause aliasing when the music is reproduced 
by a digital-to-analog converter (DAC). To prevent this, an anti-aliasing filter is used to remove 
components above the Nyquist frequency prior to sampling. 
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In video or cinematography, temporal aliasing results from the limited frame rate, and causes the 
wagon-wheel effect, whereby a spoked wheel appears to rotate too slowly or even backwards. Alias-
ing has changed its apparent frequency of rotation. A reversal of direction can be described as a 
negative frequency. Temporal aliasing frequencies in video and cinematography are determined by 
the frame rate of the camera, but the relative intensity of the aliased frequencies is determined by 
the shutter timing (exposure time) or the use of a temporal aliasing reduction filter during filming. 

Like the video camera, most sampling schemes are periodic; that is, they have a characteristic 
sampling frequency in time or in space. Digital cameras provide a certain number of samples (pix-
els) per degree or per radian, or samples per mm in the focal plane of the camera. Audio signals 
are sampled (digitized) with an analog-to-digital converter, which produces a constant number of 
samples per second. Some of the most dramatic and subtle examples of aliasing occur when the 
signal being sampled also has periodic content. 

Bandlimited Functions

Actual signals have a finite duration and their frequency content, as defined by the Fourier trans-
form, has no upper bound. Some amount of aliasing always occurs when such functions are sam-
pled. Functions whose frequency content is bounded (bandlimited) have an infinite duration in 
the time domain. If sampled at a high enough rate, determined by the bandwidth, the original 
function can, in theory, be perfectly reconstructed from the infinite set of samples. 

Bandpass Signals

Sometimes aliasing is used intentionally on signals with no low-frequency content, called 
bandpass signals. Undersampling, which creates low-frequency aliases, can produce the same 
result, with less effort, as frequency-shifting the signal to lower frequencies before sampling 
at the lower rate. Some digital channelizers exploit aliasing in this way for computational ef-
ficiency. 

Sampling Sinusoidal Functions

Sinusoids are an important type of periodic function, because realistic signals are often modeled as 
the summation of many sinusoids of different frequencies and different amplitudes (for example, 
with a Fourier series or transform). Understanding what aliasing does to the individual sinusoids 
is useful in understanding what happens to their sum. 

When sampling a function at frequency fs (intervals 1/fs), the following functions yield identical 
sets of samples: {sin(2π( f+Nfs) t + φ), N = 0, ±1, ±2, ±3,...}. A frequency spectrum of the samples 
produces equally strong responses at all those frequencies. Without collateral information, the 
frequency of the original function is ambiguous. So the functions and their frequencies are said to 
be aliases of each other. Noting the trigonometric identity: 

sin(2 ( ) ), 0
sin(2 ( ) )

sin(2 | | ), 0
s s

s
s s

f Nf t f Nf
f Nf t

f Nf t f Nf
π φ

π φ
π φ

+ + + + ≥
+ + = − + − + <

we can write all the alias frequencies as positive values:  fN( f ) Δ= | f+N fs|. 
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Two different sinusoids that fit the same set of samples.

For example, here a plot depicts a set of samples with parameter fs = 1, and two different sinusoids 
that could have produced the samples. Nine cycles of the red sinusoid and one cycle of the blue 
sinusoid span an interval of 10 samples. The corresponding number of cycles per sample are  fred = 
0.9fs  and  fblue = 0.1fs.  So the N = −1  alias of  fred  is  fblue  (and vice versa). 

Aliasing matters when one attempts to reconstruct the original waveform from its samples. The most 
common reconstruction technique produces the smallest of the  fN( f )  frequencies. So it is usually 
important that  f0( f )  be the unique minimum.  A necessary and sufficient condition for that is  fs/2 > 
| f |,  where  fs/2  is commonly called the Nyquist frequency of a system that samples at rate  fs.  In our 
example, the Nyquist condition is satisfied if the original signal is the blue sinusoid ( f = fblue).  But if  
f = fred = 0.9fs,  the usual reconstruction method will produce the blue sinusoid instead of the red one. 

Folding

In the example above,  fred  and  fblue  are symmetrical around the frequency  fs/2.  And in general, as  
f  increases from 0 to  fs/2,   f−1( f )  decreases from  fs  to  fs/2.  Similarly, as  f  increases from  fs/2  
to  fs,   f−1( f )  continues decreasing from  fs/2  to 0. 

A graph of amplitude vs frequency for a single sinusoid at frequency  0.6 fs  and some of its aliases 
at  0.4 fs,  1.4 fs,  and  1.6 fs  would look like the 4 black dots in the first figure below. The red lines 
depict the paths (loci) of the 4 dots if we were to adjust the frequency and amplitude of the sinusoid 
along the solid red segment (between  fs/2  and  fs).  No matter what function we choose to change 
the amplitude vs frequency, the graph will exhibit symmetry between 0 and  fs.  This symmetry is 
commonly referred to as folding, and another name for  fs/2  (the Nyquist frequency) is folding fre-
quency. Folding is often observed in practice when viewing the frequency spectrum of real-valued 
samples, such as the second figure below. 

The black dots are aliases of each other. The solid 
red line is an example of amplitude varying  with fre-
quency. The dashed red lines are the corresponding 

paths of the aliases.

The Fourier transform of music sampled at 44100 sam-
ples/sec exhibits symmetry  (called “folding”) around the 

Nyquist frequency (22050 Hz).
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Graph of frequency aliasing, showing folding frequency and periodicity. Frequencies  
above fs/2 have an alias below fs/2, whose value is given by this graph.

 
Two complex sinusoids, colored gold and cyan, that fit the same sets of real and imaginary sample points when sam-

pled at the rate (fs) indicated by the grid lines. The case shown here is: fcyan = f−1(fgold) = fgold – fs.

Complex Sinusoids

Complex sinusoids are waveforms whose samples are complex numbers, and the concept of neg-
ative frequency is necessary to distinguish them. In that case, the frequencies of the aliases are 
given by just:  fN( f ) = f + N fs.  Therefore, as  f  increases from  fs/2  to  fs,   f−1( f )  goes from  –fs/2  
up to 0.  Consequently, complex sinusoids do not exhibit folding. Complex samples of real-valued 
sinusoids have zero-valued imaginary parts and do exhibit folding. 

Sample Frequency

4 waveforms reconstructed from samples taken at six different rates. Two of the waveforms  
are sufficiently sampled to avoid aliasing at all six rates. The other two illustrate  

increasing distortion (aliasing) at the lower rates.
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When the condition  fs/2 > f   is met for the highest frequency component of the original signal, 
then it is met for all the frequency components, a condition called the Nyquist criterion. That is 
typically approximated by filtering the original signal to attenuate high frequency components 
before it is sampled. These attenuated high frequency components still generate low-frequency 
aliases, but typically at low enough amplitudes that they do not cause problems. A filter chosen in 
anticipation of a certain sample frequency is called an anti-aliasing filter. 

The filtered signal can subsequently be reconstructed, by interpolation algorithms, without sig-
nificant additional distortion. Most sampled signals are not simply stored and reconstructed. But 
the fidelity of a theoretical reconstruction (via the Whittaker–Shannon interpolation formula) is a 
customary measure of the effectiveness of sampling. 

Angular Aliasing

Aliasing occurs whenever the use of discrete elements to capture or produce a continuous signal 
causes frequency ambiguity. 

Spatial aliasing, particular of angular frequency, can occur when reproducing a light field or sound 
field with discrete elements, as in 3D displays or wave field synthesis of sound. 

This aliasing is visible in images such as posters with lenticular printing: if they have low angular 
resolution, then as one moves past them, say from left-to-right, the 2D image does not initially 
change (so it appears to move left), then as one moves to the next angular image, the image sud-
denly changes (so it jumps right) – and the frequency and amplitude of this side-to-side movement 
corresponds to the angular resolution of the image (and, for frequency, the speed of the viewer’s 
lateral movement), which is the angular aliasing of the 4D light field. 

The lack of parallax on viewer movement in 2D images and in 3-D film produced by stereoscopic 
glasses (in 3D films the effect is called “yawing”, as the image appears to rotate on its axis) can 
similarly be seen as loss of angular resolution, all angular frequencies being aliased to 0 (con-
stant).

Online Audio Example

The qualitative effects of aliasing can be heard in the following audio demonstration. Six sawtooth 
waves are played in succession, with the first two sawtooths having a fundamental frequency of 
440 Hz (A4), the second two having fundamental frequency of 880 Hz (A5), and the final two at 
1760 Hz (A6). The sawtooths alternate between bandlimited (non-aliased) sawtooths and aliased 
sawtooths and the sampling rate is 22.05 kHz. The bandlimited sawtooths are synthesized from 
the sawtooth waveform’s Fourier series such that no harmonics above the Nyquist frequency are 
present. 

The aliasing distortion in the lower frequencies is increasingly obvious with higher fundamental 
frequencies, and while the bandlimited sawtooth is still clear at 1760 Hz, the aliased sawtooth is 
degraded and harsh with a buzzing audible at frequencies lower than the fundamental. 

Direction Finding

A form of spatial aliasing can also occur in antenna arrays or microphone arrays used to estimate 
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the direction of arrival of a wave signal, as in geophysical exploration by seismic waves. Waves 
must be sampled at more than two points per wavelength, or the wave arrival direction becomes 
ambiguous.

Anti-Aliasing Filter

An anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a 
signal to approximately or completely satisfy the Nyquist–Shannon sampling theorem over the 
band of interest. Since the theorem states that unambiguous reconstruction of the signal from its 
samples is possible when the power of frequencies above the Nyquist frequency is zero, a real an-
ti-aliasing filter trades off between bandwidth and aliasing. A realizable anti-aliasing filter will typ-
ically either permit some aliasing to occur or else attenuate some in-band frequencies close to the 
Nyquist limit. For this reason, many practical systems sample higher than would be theoretically 
required by a perfect AAF in order to ensure that all frequencies of interest can be reconstructed, 
a practice called oversampling. 

Optical Applications

Simulated photographs of a brick wall without (left) and with (right) an optical low-pass filter.

In the case of optical image sampling, as by image sensors in digital cameras, the anti-aliasing 
filter is also known as an optical low-pass filter (OLPF), blur filter, or AA filter. The mathematics 
of sampling in two spatial dimensions is similar to the mathematics of time-domain sampling, but 
the filter implementation technologies are different. The typical implementation in digital cameras 
is two layers of birefringent material such as lithium niobate, which spreads each optical point into 
a cluster of four points. 

The choice of spot separation for such a filter involves a tradeoff among sharpness, aliasing, and 
fill factor (the ratio of the active refracting area of a microlens array to the total contiguous area 
occupied by the array). In a monochrome or three-CCD or Foveon X3 camera, the microlens array 
alone, if near 100% effective, can provide a significant anti-aliasing effect, while in color filter array 
(CFA, e.g. Bayer filter) cameras, an additional filter is generally needed to reduce aliasing to an 
acceptable level. 
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The Pentax K-3 from Ricoh introduced a unique sensor-based anti-aliasing filter. The filter works 
by micro vibrating the sensor element. The user can turn the vibration on or off, selecting an-
ti-aliasing or no anti-aliasing. 

Audio Applications

Anti-aliasing filters are commonly used at the input of digital signal processing system’s analog 
to digital converter; similar filters are used as reconstruction filters at the output of such systems, 
for example in music players. In the latter case, the filter prevents imaging, the reverse process of 
aliasing where in-band frequencies are mirrored out of band. 

Oversampling

A technique known as oversampling is commonly used in audio ADCs. The idea is to use a higher 
intermediate digital sample rate, so that a nearly ideal digital filter can sharply cut off aliasing near 
the original low Nyquist frequency and give better phase response, while a much simpler analog 
filter can stop frequencies above the new higher Nyquist frequency. Because analog filters have 
relatively high cost and limited performance, relaxing the demands on the analog filter can greatly 
reduce both aliasing and cost. Furthermore, because some noise is averaged out, the higher sam-
pling rate can moderately improve SNR. 

Alternatively, a signal may be intentionally oversampled without an intermediate frequency to 
reduce the requirements on the anti-alias filter. For example, CD audio typically extends up 
to 20 kHz, but is sampled with a 22.05 kHz Nyquist rate. By oversampling by 2.05 kHz, both 
aliasing and attenuation of higher audio frequencies can be prevented even with less than ideal 
filters. 

Bandpass Signals

Often, an anti-aliasing filter is a low-pass filter; this is not a requirement, however. Generalizations 
of the Nyquist–Shannon sampling theorem allow sampling of other band-limited passband signals 
instead of baseband signals. 

For signals that are bandwidth limited, but not centered at zero, a band-pass filter can be used 
as an anti-aliasing filter. For example, this could be done with a single-sideband modulated 
or frequency modulated signal. If one desired to sample an FM radio broadcast centered at 
87.9 MHz and bandlimited to a 200 kHz band, then an appropriate anti-alias filter would be 
centered on 87.9 MHz with 200 kHz bandwidth (or pass-band of 87.8 MHz to 88.0 MHz), and 
the sampling rate would be no less than 400 kHz, but should also satisfy other constraints to 
prevent aliasing. 

Signal Overload

It is very important to avoid input signal overload when using an anti-aliasing filter. If the signal is 
strong enough, it can cause clipping at the analog-to-digital converter, even after filtering. When 
distortion due to clipping occurs after the anti-aliasing filter, it can create components outside the 
passband of the anti-aliasing filter; these components can then alias, causing the reproduction of 
other non-harmonically related frequencies. 
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Signal Quantization

The digitization of analog signals involves the rounding off of the values which are approximately 
equal to the analog values. The method of sampling chooses a few points on the analog signal and 
then these points are joined to round off the value to a near stabilized value. Such a process is 
called as Quantization.

Quantizing an Analog Signal

The analog-to-digital converters perform this type of function to create a series of digital values 
out of the given analog signal. The following figure represents an analog signal. This signal to get 
converted into digital, has to undergo sampling and quantizing.

The quantizing of an analog signal is done by discretizing the signal with a number of quantization 
levels. Quantization is representing the sampled values of the amplitude by a finite set of levels, 
which means converting a continuous-amplitude sample into a discrete-time signal.

The following figure shows how an analog signal gets quantized. The blue line represents analog 
signal while the brown one represents the quantized signal.

Both sampling and quantization result in the loss of information. The quality of a Quantizer output 
depends upon the number of quantization levels used. The discrete amplitudes of the quantized 
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output are called as representation levels or reconstruction levels. The spacing between the two 
adjacent representation levels is called a quantum or step-size.

The following figure shows the resultant quantized signal which is the digital form for the given 
analog signal.

This is also called as Stair-case waveform, in accordance with its shape.

Types of Quantization

There are two types of Quantization - Uniform Quantization and Non-uniform Quantization.

The type of quantization in which the quantization levels are uniformly spaced is termed as a 
Uniform Quantization. The type of quantization in which the quantization levels are unequal and 
mostly the relation between them is logarithmic, is termed as a Non-uniform Quantization.

There are two types of uniform quantization. They are Mid-Rise type and Mid-Tread type. The 
following figures represent the two types of uniform quantization.

Mid-Rise type Uniform Quantization. Mid-Tread type Uniform Quantization.

The first figure shown above shows the mid-rise type and second figure shown above shows the 
mid-tread type of uniform quantization.

•	 The Mid-Rise type is so called because the origin lies in the middle of a raising part of the 
stair-case like graph. The quantization levels in this type are even in number.

•	 The Mid-tread type is so called because the origin lies in the middle of a tread of the stair-
case like graph. The quantization levels in this type are odd in number.
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•	 Both the mid-rise and mid-tread type of uniform quantizers are symmetric about the ori-
gin.

Quantization Error

For any system, during its functioning, there is always a difference in the values of its input and 
output. The processing of the system results in an error, which is the difference of those values.

The difference between an input value and its quantized value is called a Quantization Error. A 
Quantizer is a logarithmic function that performs Quantization (rounding off the value). An ana-
log-to-digital converter (ADC) works as a quantizer.

The following figure illustrates an example for a quantization error, indicating the difference be-
tween the original signal and the quantized signal.

Quantization Noise

It is a type of quantization error, which usually occurs in analog audio signal, while quantizing it 
to digital. For example, in music, the signals keep changing continuously, where a regularity is not 
found in errors. Such errors create a wideband noise called as Quantization Noise.

Companding in PCM

The word Companding is a combination of Compressing and Expanding, which means that it does 
both. This is a non-linear technique used in PCM which compresses the data at the transmitter and 
expands the same data at the receiver. The effects of noise and crosstalk are reduced by using this 
technique.

There are two types of Companding techniques. 

A-law Companding Technique

•	 Uniform quantization is achieved at A = 1, where the characteristic curve is linear and no 
compression is done.
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•	 A-law has mid-rise at the origin. Hence, it contains a non-zero value.

•	 A-law companding is used for PCM telephone systems.

µ-law Companding Technique

•	 Uniform quantization is achieved at µ = 0, where the characteristic curve is linear and no 
compression is done.

•	 µ-law has mid-tread at the origin. Hence, it contains a zero value.

•	 µ-law companding is used for speech and music signals.

µ-law is used in North America and Japan.
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Systems used in Signal  

Processing

A field of electric engineering which aims at analyzing, synthesizing and modifying electromagnet-
ic  signals such as of sound, images, videos, etc. is called signal processing. It includes significant 
systems such as lumped parameter and distributed parameter systems, casual and non-casual sys-
tems, linear and non-linear systems and discrete time system. This chapter closely examines these 
systems used in signal processing to provide an extensive understanding of the subject.

System can be considered as a physical entity which manipulates one or more input signals applied 
to it. For example a microphone is a system which converts the input acoustic (voice or sound) sig-
nal into an electric signal. A system is defined mathematically as a unique operator or transforma-
tion that maps an input signal in to an output signal. This is defined as ( ) ( ) y t T x t   where ( )x t
is input signal, ( )y t is output signal, T[] is transformation that characterizes the system behavior.

Lumped Parameter and Distributed  
Parameter Systems

•	 A lumped system is one in which the dependent variables of interest are a function of time 
alone. In general, this will mean solving a set of ordinary differential equations (ODEs).

•	 A distributed system is one in which all dependent variables are functions of time and one or 
more spatial variables. In this case, we will be solving partial differential equations (PDEs).

For example, consider the following two systems:

3

________________________ WORLD TECHNOLOGIES ________________________



WT

81Systems used in Signal Processing 	

•	 The first system is a distributed system, consisting of an infinitely thin string, supported at 
both ends; the dependent variable, the vertical position of the string y(x,t) is indexed con-
tinuously in both space and time.

•	 The second system, a series of beads connected by massless string segments, constrained 
to move vertically, can be thought of as a lumped system, perhaps an approximation to the 
continuous string.

•	 For electrical systems, consider the difference between a lumped RLC network and a trans-
mission line.

•	 The importance of lumped approximations to distributed systems will become obvious lat-
er, especially for waveguide-based physical modeling, because it enables one to cut com-
putational costs by solving ODEs at a few points, rather than a full PDE (generally much 
more costly).

Static and Dynamic Systems

Static Systems

Definition: It is a system in which output at any instant of time depends on input sample at the 
same time.

Example:

 ( ) ( )y n 9x n=

In this example 9 is constant which multiplies input x(n). But output at nth instant that means y(n) 
depends on the input at the same (nth) time instant x(n). So this is static system.

( ) ( ) ( )y n x2 n 8x n 17= + +
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Here also output at nth instant, y(n) depends on the input at nth instant. So this is static sys-
tem.

Why static systems are memory less systems?

Answer:

Observe the input output relations of static system. Output does not depend on delayed ( )x n k  −  
or advanced ( )x n k+   input signals. It only depends on present input (nth) input signal. If out-
put depends upon delayed input signals then such signals should be stored in memory to calculate 
the output at nth instant. This is not required in static systems. Thus for static systems, memory is 
not required. Therefore static systems are memory less systems.

Dynamic Systems

It is a system in which output at any instant of time depends on input sample at the same time as 
well as at other times.

Here other time means, other than the present time instant. It may be past time or future time. 
Note that if ( )x n represents input signal at present instant then,

( )x n k− ; that means delayed input signal is called as past signal.

( )x n + k ; that means advanced input signal is called as future signal.

Thus in dynamic systems, output depends on present input as well as past or future inputs.

Examples:

( ) ( ) ( )6 2y n x n x n= + −

Here output at nth instant depends on input at nth instant, ( )x n as well as (n-2)th instant x(n-2) 
is previous sample. So the system is dynamic.

( ) ( ) ( )4 7y n x n x n= + +

Here x(n+7) indicates advanced version of input sample that means it is future sample therefore 
this is dynamic system.

Why dynamic system has a memory?

Observe input output relations of dynamic system. Since output depends on past or future input 
sample; we need a memory to store such samples. Thus dynamic system has a memory.

For continuous time (CT) systems:

A continuous time system is static or memoryless if its output depends upon the present input 
only.
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Example:

Voltage drop across a resistor.

It is given by,

( ) ( )v t =  i t *R

Here the voltage drop depends on the value of the current at that instant. So it is static system.

On the other hand a CT system is dynamic if output depends on present as well as past values.

Causal and Non-causal Systems

Causal Systems

A system is said to be causal system if its output depends on present and past inputs only and not 
on future inputs.

Examples: The output of casual system depends on present and past inputs, it means ( )y n is a 
function of ( ) ( ) ( )x n 1 ,  x n 2 ,  x n 3− − − …etc. Some examples of causal systems are given below:

( ) ( ) ( )y n x n x n 2= + −

( ) ( ) ( )y n x n 1 x n 3= − − −

( ) ( )y n 7x n 5= −

Significance of causal systems:

Since causal system does not include future input samples; such system is practically realizable. 
That mean such system can be implemented practically. Generally all real time systems are causal 
systems; because in real time applications only present and past samples are present. Since future 
samples are not present; causal system is memory less system.

Anti Causal or Non-causal System

Definition: A system whose present response depends on future values of the inputs is called as a 
non-causal system.

Examples: In this case, output ( )Y n is function of ( )x n , ( ) ( )x n 1 ,  x n 2− − …etc. as well as it is 
function of ( ) ( ) ( )x n +1 , x n +2 , x n +3 , etc. following are some examples of non-causal systems:

( ) ( ) ( )Y n  = x n  + x n+1  
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( ) ( )Y n  = 7x n+2

( ) ( ) ( )Y n  = x n  + 9x n+5

Significance of Non-causal Systems

Since non-causal system contains future samples; a non-causal system is practically not realizable. 
That means in practical cases it is not possible to implement a non-causal system.

But if the signals are stored in the memory and at a later time they are used by a system then such 
signals are treated as advanced or future signal. Because such signals are already present, before 
the system has started its operation. In such cases it is possible to implement a non-causal system.

Some practical examples of non-causal systems are as follows:

•	 Population growth,

•	 Weather forecasting,

•	 Planning commission etc.

For Continuous Time (C.T.) System

A C.T. system is said to be causal if it produces a response ( )y t only after the application of exci-
tation ( )x t . That means for a causal system the response does not begin before the application of 
the input ( )x t .

The other way of defining the causal system is as follows:

A system is said to be causal if its output depends on present and past values of the input and not 
on the future inputs. If the input is applied at t = tm then the output at t = tm y(tm) will be depen-
dent only on the values of ( )x t for t = tm.

Condition for causality: ( ) ( )y tm f x t ;  t = tm  =

Causal systems are physically realizable systems. The non-causal systems do not satisfy above con-
dition. Non-causal systems are not physically realizable.

Condition for causality in terms of impulse response ( )y t :

The relation between ( )y t and ( )x t is given by:

( ) ( ) ( )y t x t *h t=

Where * represents convolution and ( )h t is the impulse response of the system. The condition for 
causality in terms of the impulse response is as follows:

Condition for causality: ( )h t 0= for t 0<

This condition states that a linear time invariant (LTI) system is causal if its impulse response ( )h t
has a zero value for negative values of time.
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Solved Problems on Causal and Non-causal System

Determine if the systems described by the following equations are causal or non-causal. 

( ) ( ) ( )y n x n x n 3= + −

Solution: the given system is causal because its output (y(n)) depends only on the present ( )x n
and past ( )x n 3− inputs.

( ) ( )y n x n 2= − +

Solution: this is non-causal system. This is because at n 1= −  we get ( ) ( ) ( )y 1  x 1 2 x 3 .+  − = − − =
Thus present output at n 1= − , expects future input i.e. ( )x 3 .

Invertible and Non-invertible Systems

A system is said to be invertible if distinct inputs lead to distinct outputs. For such a system there 
exists an inverse transformation (inverse system) denoted by 1T []− which maps the outputs of orig-
inal systems to the inputs applied. Accordingly we can write:

 1 -1TT  T T I− = =

Where I = 1one for single input and single output systems.

A non-invertible system is one in which distinct inputs leads to same outputs. For such a system 
an inverse system will not exist.

Linear and Non-linear Systems

A linear system is a system which follows the superposition principle. Let us consider a system 
having its response as ‘T’, input as ( )x n and it produces output ( )y n . 

Let us consider two inputs. Input ( )x1 n produces output ( )y1 n and input ( )x2 n produces output 
( )y2 n . Now consider two arbitrary constants a1  and a2 . Then simply multiply these constants 

with input ( )x1 n and ( )x2 n respectively. Thus ( )a1x1 n produces output ( )a1y1 n and ( )a2x2 n  
produces output ( )a2y2 n .

Theorem for Linearity of the System

A system is said to be linear if the combined response of a1x1(n) and a2x2(n) is equal to the addi-
tion of the individual responses.

That means:

( ) ( ) ( ) ( ) )T a1 x1 n a2 x2 n a1 T x1 n a2 T x2 n .1          =+ + ……………
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The above theorem is also known as superposition theorem.

Important Characteristic:

Linear system has one important characteristic: If the input to the system is zero then it produces 
zero output. If the given system produces some output (non-zero) at zero input then the system is 
said to be Non-linear system. If this condition is satisfied then apply the superposition theorem to 
determine whether the given system is linear or not?

For continuous time system:

Similar to the discrete time system a continuous time system is said to be linear if it follows the 
superposition theorem.

Let us consider two systems as follows:

( ) ( )y1 t   f x1 t=   

And ( ) ( )y2 t f x2 t=   

Here ( )y1 t and ( )y2 t are the responses of the system and ( )x1 t and ( )x2 t are the excitations. 
Then the system is said to be linear if it satisfies the following expression:

( ) ( ) ( ) ( ) ) f a1 x1 t a2 x2 t a1 y1 t a2 y2 t .1  + = + ……………

Where a1  and a2  are constants.

A system is said to be non-linear system if does not satisfies the above expression. Communication 
channels and filters are examples of linear systems.

How to determine whether the given system is Linear or not?

To determine whether the given system is Linear or not, we have to follow the following steps:

Step 1: Apply zero input and check the output. If the output is zero then the system is linear. If this 
step is satisfied then follow the remaining steps.

Step 2: Apply individual inputs to the system and determine corresponding outputs. Then add all 
outputs. Denote this addition by ( )y’ n . This is the R.H.S. of the 1st equation.

Step 3: Combine all inputs. Apply it to the system and find out y”(n). This is L.H.S. of equation.

Step 4: if ( ) ( )y’ n y” n=  then the system is linear otherwise it is non-linear system.

Example:

Determine whether the following system is linear or not.

( ) ( )y n  = n x n
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Solution:

Step 1: When input x(n) is zero then output is also zero. Here first step is satisfied so we will check 
remaining steps for linearity.

Step 2: Let us consider two inputs ( )x1 n and ( )x2 n be the two inputs which produces outputs 
( )y1 t and ( )y2 t respectively. It is given as follows:

( ) ( ) ( )
( ) ( ) ( )

T

T

x1 n y1 n n x1 n

And  x2 n y2 n n x2 n

→ =

→ =

Now add these two output to get ( )y’ n

Therefore ( ) ( ) ( ) ( ) ( )ny n y1 n y2 n n x1 n  ' n x2= + + +

Therefore ( ) ( ) ( )y' n n x1 n x2 n  = +

Step 3: Now add ( )x1 n  and ( )x2 n  and apply this input to the system.

Therefore:

( ) ( ) ( ) ( ) ( ) ( ) ( )Tx1 n x2 n y'' x1 n x2 n x1n nT x2n n→ = =        + ++ 

We know that the function of system is to multiply input by ‘n’.

Here ( ) ( )x1 n x2 n+   acts as one input to the system. So the corresponding output is:

( ) ( ) ( )y'' x1 n 2n n x n+=   

Step 4: Compare ( )y' n and ( )y'' n .

Here ( ) ( )y' n ny''= . hence the given system is linear.

Stable and Unstable Systems

To define stability of a system we will use the term ‘BIBO’. It stands for Bounded Input Bounded 
Output. The meaning of word ‘bounded’ is some finite value. So bounded input means input signal 
is having some finite value. i.e. input signal is not infinite. Similarly bounded output means, the 
output signal attains some finite value i.e. the output is not reaching to infinite level.

An infinite system is BIBO stable if and only if every bounded input produces bounded output.

Mathematical representation:

Let us consider some finite number Mx whose value is less than infinite. That means Mx 8< , so it’s 
a finite value. Then if input is bounded, we can write:

( )x n Mx 8= <
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Similarly for C.T. system:

( )x t Mx 8= <

Similarly consider some finite number My whose value is less than infinity. That means My < 8 , 
so it’s a finite value. Then if output is bounded, we can write:

( )y n  = My < 8

Similarly for continuous time system:

( )y  = Mt y < 8

An initially system is said to be unstable if bounded input produces unbounded (infinite) out-
put.

Significance

•	 Unstable system shows erratic and extreme behavior.

•	 When unstable system is practically implemented then it causes overflow.

Solved Problem on Stability

Determine whether the following discrete time functions are stable or not.

( ) ( )y n x n= −

Solution: we ( )x n−  (-n) should be finite. So when input is bounded output will be bounded. Thus 
the given function is Stable system.

Continuous-time System

A continuous time system operates on a continuous time signal input and produces a continuous 
time signal output. There are numerous examples of useful continuous time systems in signal pro-
cessing as they essentially describe the world around us. The class of continuous time systems that 
are both linear and time invariant, known as continuous time LTI systems, is of particular interest 
as the properties of linearity and time invariance together allow the use of some of the most im-
portant and powerful tools in signal processing.

Linearity and Time Invariance

A system H is said to be linear if it satisfies two important conditions. The first, additivity, states 
for every pair of signals ,x y that ( ) ( ) ( )H x y H x H y+ = +  The second, homogeneity of degree one, 
states for every signal x and scalar a we have ( ) ( )H ax aH x= . It is clear that these conditions can 
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be combined together into a single condition for linearity. Thus, a system is said to be linear if for 
every signals ,x y and scalars ,a b  we have that:

) ( ) ( ) (H ax by aH x bH y+ = +

Linearity is a particularly important property of systems as it allows us to leverage the powerful 
tools of linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

A system H  is said to be time invariant if a time shift of an input produces the corresponding 
shifted output. In other, more precise words, the system H  commutes with the time shift operator 

TS for every T R∈ . That is:

.T TS H HS=

Time invariance is desirable because it eases computation while mirroring our intuition that, all 
else equal, physical systems should react the same to identical inputs at different times.

When a system exhibits both of these important properties it allows for a more straigtforward 
analysis than would otherwise be possible. As will be explained and proven in subsequent mod-
ules, computation of the system output for a given input becomes a simple matter of convolving 
the input with the system’s impulse response signal. Also proven later, the fact that complex expo-
nential are eigenvectors of linear time invariant systems will enable the use of frequency domain 
tools such as the various Fouier transforms and associated transfer functions, to describe the be-
havior of linear time invariant systems.

Example: 

Consider the system H in which:

( ( )) ( )2H f t f t=

for all signals f . Given any two signals f , g  and scalars ,a b

( ( ) ( ))) ( ( ) ( )) ( ) ( ) ( ( )) ( (2 2 ))2H af t bg t af t bg t a f t b g t aH f t bH g t+ = + = + = +

for all real t . Thus, H is a linear system. For all real T and signals f ,

( ( ( ))) ( ( )) ( ) ( ( )) ( ( ( )))2 2ST H f t ST f t f t T H f t T H ST f t= = − = − =

for all real . Thus, H  is a time invariant system. Therefore, H  is a linear time invariant system.

Differential Equation Representation

It is often useful to to describe systems using equations involving the rate of change in some quantity. 
For continuous time systems, such equations are called differential equations. One important class 
of differential equations is the set of linear constant coefficient ordinary differential equations.

Example: 

Consider the series RLC circuit shown in figure. This system can be modeled using differential 
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equations. We can use the voltage equations for each circuit element and Kirchoff’s voltage law to 
write a second order linear constant coefficient differential equation describing the charge on the 
capacitor.

The voltage across the battery is simplyV . The voltage across the capacitor is 
1
C

q. The voltage 

across the resistor is
dqR
dt

. Finally, the voltage across the inductor is
2

2

d qL
dt

. Therefore, by Kir-

choff’s voltage law, it follows that:

2

2

1 .d q dqL R q V
dt dt C

+ + =

A series RLC circuit.

Discrete Time System

A discrete time system operates on a discrete time signal input and produces a discrete time signal 
output. There are numerous examples of useful discrete time systems in digital signal processing, 
such as digital filters for images or sound. The class of discrete time systems that are both linear 
and time invariant, known as discrete time LTI systems, is of particular interest as the properties 
of linearity and time invariance together allow the use of some of the most important and powerful 
tools in signal processing.

Linearity and Time Invariance

A system H  is said to be linear if it satisfies two important conditions. The first, additivity, states 
for every pair of signals ,x y  that ( ) ( ) ( )H x y H x H y+ = + . The second, homogeneity of degree 
one, states for every signal x and scalar a we have ( ) ( )H ax aH x= . It is clear that these conditions 
can be combined together into a single condition for linearity. Thus, a system is said to be linear if 
for every signals ,x y  and scalars ,a b  we have that:

( ) ( ) ( ).H ax by aH x bH y+ = +

Linearity is a particularly important property of systems as it allows us to leverage the powerful 
tools of linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

________________________ WORLD TECHNOLOGIES ________________________



WT

91Systems used in Signal Processing 	

A system H  is said to be time invariant if a time shift of an input produces the corresponding 
shifted output. In other, more precise words, the system H  commutes with the time shift operator 

TS  for everyT Z∈ . That is:

.T TS H HS=

Time invariance is desirable because it eases computation while mirroring our intuition that, all 
else equal, physical systems should react the same to identical inputs at different times.

When a system exhibits both of these important properties it opens. As will be explained and prov-
en in subsequent modules, computation of the system output for a given input becomes a simple 
matter of convolving the input with the system’s impulse response signal. the fact that complex 
exponential are eigenvectors of linear time invariant systems will encourage the use of frequency 
domain tools such as the various Fouier transforms and associated transfer functions, to describe 
the behavior of linear time invariant systems.

Example: 

Consider the system H  in which:

( ( )) ( )2H f n f n=

for all signals f . Given any two signals ,f g  and scalars a b

( ( ) ( ))) ( ( ) ( )) ( ) ( ) ( ( )) ( (2 2 ))2H af n bg n af n bg n a f n b g n aH f n bH g n+ = + = + = +

for all integers n . Thus, H  is a linear system. For all integers T  and signals f ,

( ( ( ))) ( ( )) ( ) ( ( )) ( ( ( )))2 2T T TS H f n S f n f n T H f n T H S f n= = − = − =

for all integers n . Thus, H  is a time invariant system. Therefore, H  is a linear time invariant system.

Difference Equation Representation

It is often useful to to describe systems using equations involving the rate of change in some quan-
tity. For discrete time systems, such equations are called difference equations, a type of recurrence 
relation. One important class of difference equations is the set of linear constant coefficient differ-
ence equations.

Example: 

Recall that the Fibonacci sequence describes a (very unrealistic) model of what happens when a 
pair rabbits get left alone in a black box. The assumptions are that a pair of rabits never die and 
produce a pair of offspring every month starting on their second month of life. This system is de-
fined by the recursion relation for the number of rabit pairs ( )y n at month n :

)1) ) 2( ( (y n y n y n= − + −

with the initial conditions 0(0)y = and 1(1)  y = . The result is a very fast growth in the sequence. 
This is why we never leave black boxes open.
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Finite Impulse Response System

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response 
(or response to any finite length input) is of finite duration, because it settles to zero in finite time. 
This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and 
may continue to respond indefinitely (usually decaying). 

The impulse response (that is, the output in response to a Kronecker delta input) of an Nth-or-
der discrete-time FIR filter lasts exactly N + 1 samples (from first nonzero element through last 
nonzero element) before it then settles to zero. 

FIR filters can be discrete-time or continuous-time, and digital or analog. 

A direct form discrete-time FIR filter of order N. The top part is an N-stage delay line with N + 1 
taps. Each unit delay is a z−1 operator in Z-transform notation.

A lattice-form discrete-time FIR filter of order N. Each unit delay is a z−1 operator in Z-transform 
notation.

For a causal discrete-time FIR filter of order N, each value of the output sequence is a weighted 
sum of the most recent input values: 

0 1

0

[ ] [ ] [ 1] [ ]

[ ],

N
N

i
i

y n b x n b x n b x n N

b x n i
=

= + − + + −

= ⋅ −∑



where: 

•	 [ ]x n is the input signal,

•	 [ ]y n is the output signal,

•	 N is the filter order; an N th-order filter has ( 1)N+ terms on the right-hand side,
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•	 ib is the value of the impulse response at the i’th instant for 0 i N≤ ≤ of an N th-order 
FIR filter. If the filter is a direct form FIR filter then ib is also a coefficient of the filter.

This computation is also known as discrete convolution. 

The [ ]x n i− in these terms are commonly referred to as taps, based on the structure of a tapped 
delay line that in many implementations or block diagrams provides the delayed inputs to the mul-
tiplication operations. One may speak of a 5th order/6-tap filter, for instance. 

The impulse response of the filter as defined is nonzero over a finite duration. Including zeros, the 
impulse response is the infinite sequence: 

0

0
[ ] [ ]

0 otherwise.

N
n

i
i

b n N
h n b n iδ

=

≤ ≤
= ⋅ − = 


∑

If an FIR filter is non-causal, the range of nonzero values in its impulse response can start before 
n = 0, with the defining formula appropriately generalized. 

Properties

An FIR filter has a number of useful properties which sometimes make it preferable to an infinite 
impulse response (IIR) filter. FIR filters: 

•	 Require no feedback. This means that any rounding errors are not compounded by summed 
iterations. The same relative error occurs in each calculation. This also makes implemen-
tation simpler.

•	 Are inherently stable, since the output is a sum of a finite number of finite multiples of the 
input values, so can be no greater than | |ib∑ times the largest value appearing in the input.

•	 Can easily be designed to be linear phase by making the coefficient sequence symmetric. 
This property is sometimes desired for phase-sensitive applications, for example data com-
munications, seismology, crossover filters, and mastering.

The main disadvantage of FIR filters is that considerably more computation power in a general 
purpose processor is required compared to an IIR filter with similar sharpness or selectivity, espe-
cially when low frequency (relative to the sample rate) cutoffs are needed. However, many digital 
signal processors provide specialized hardware features to make FIR filters approximately as effi-
cient as IIR for many applications. 

Frequency Response

The filter’s effect on the sequence [ ]x n is described in the frequency domain by the convolution 
theorem: 


( ) ( )( )

{ * } { } { }
X HY

x h x h
ω ωω

= ⋅

  

 and 1[ ] [ ] [ ] { ( ) ( )},y n x n h n X Hω ω−= ∗ = ⋅

where operators  and 1− respectively denote the discrete-time Fourier transform (DTFT) and 
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its inverse. Therefore, the complex-valued, multiplicative function ( )H ω is the filter’s frequency 
response. It is defined by a Fourier series: 

( ) ( )2
0

( ) [ ] ,
Nn ni i

n
n n

H h n e b e
∞

ω ω
π

∞

ω
− −

=− =

⋅ = ⋅∑ ∑�

where the added subscript denotes 2π-periodicity. Here ω represents frequency in normalized units 
(radians/sample). The substitution 2 ,fω π=   favored by many filter design programs, changes 
the units of frequency ( )f to cycles/sample and the periodicity to 1.  When the x[n] sequence has 
a known sampling-rate, sf   samples/second,  the substitution 2 / sf fω π=   changes the units of 
frequency ( )f to cycles/second (hertz) and the periodicity to sf   The value ω π=   corresponds to 

a frequency of 
2

sff = Hz  
1
2

= cycles/sample, which is the Nyquist frequency. 

2 ( )H π ω can also be expressed in terms of the Z-transform of the filter impulse response: 

�H( ) [ ] .n

n

z h n z
∞

∞

−

=−

⋅∑�

2
ˆ ˆ( ) ( ) ( ).

j

j

z e
H H z H e

ω

ω
π ω

=
= =

Filter Design

An FIR filter is designed by finding the coefficients and filter order that meet certain specifications, 
which can be in the time domain (e.g. a matched filter) and/or the frequency domain (most com-
mon). Matched filters perform a cross-correlation between the input signal and a known pulse 
shape. The FIR convolution is a cross-correlation between the input signal and a time-reversed 
copy of the impulse response. Therefore, the matched filter’s impulse response is designed by sam-
pling the known pulse-shape and using those samples in reverse order as the coefficients of the 
filter. 

When a particular frequency response is desired, several different design methods are common: 

•	 Window design method.

•	 Frequency Sampling method.

•	 Weighted least squares design.

•	 Parks-McClellan method (also known as the Equiripple, Optimal, or Minimax method). 
The Remez exchange algorithm is commonly used to find an optimal equiripple set of co-
efficients. Here the user specifies a desired frequency response, a weighting function for 
errors from this response, and a filter order N. The algorithm then finds the set of ( 1)N+
coefficients that minimize the maximum deviation from the ideal. Intuitively, this finds the 
filter that is as close as possible to the desired response given that only ( 1)N+ coefficients 
can be used. This method is particularly easy in practice since at least one text includes a 
program that takes the desired filter and N, and returns the optimum coefficients.
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•	 Equiripple FIR filters can be designed using the FFT algorithms as well. The algorithm is 
iterative in nature. The DFT of an initial filter design is computed using the FFT algorithm 
(if an initial estimate is not available, h[n]=delta[n] can be used). In the Fourier domain 
or FFT domain the frequency response is corrected according to the desired specs, and the 
inverse FFT is then computed. In the time-domain, only the first N coefficients are kept 
(the other coefficients are set to zero). The process is then repeated iteratively: the FFT is 
computed once again, correction applied in the frequency domain and so on.

Software packages like MATLAB, GNU Octave, Scilab, and SciPy provide convenient ways to apply 
these different methods. 

Window Design Method

In the window design method, one first designs an ideal IIR filter and then truncates the infinite im-
pulse response by multiplying it with a finite length window function. The result is a finite impulse 
response filter whose frequency response is modified from that of the IIR filter. Multiplying the in-
finite impulse by the window function in the time domain results in the frequency response of the 
IIR being convolved with the Fourier transform (or DTFT) of the window function. If the window’s 
main lobe is narrow, the composite frequency response remains close to that of the ideal IIR filter. 

The ideal response is usually rectangular, and the corresponding IIR is a sinc function. The result 
of the frequency domain convolution is that the edges of the rectangle are tapered, and ripples ap-
pear in the passband and stopband. Working backward, one can specify the slope (or width) of the 
tapered region (transition band) and the height of the ripples, and thereby derive the frequency 
domain parameters of an appropriate window function. Continuing backward to an impulse re-
sponse can be done by iterating a filter design program to find the minimum filter order. Another 
method is to restrict the solution set to the parametric family of Kaiser windows, which provides 
closed form relationships between the time-domain and frequency domain parameters. In gener-
al, that method will not achieve the minimum possible filter order, but it is particularly convenient 
for automated applications that require dynamic, on-the-fly, filter design. 

The window design method is also advantageous for creating efficient half-band filters, because 
the corresponding sinc function is zero at every other sample point (except the center one). The 
product with the window function does not alter the zeros, so almost half of the coefficients of the 
final impulse response are zero. An appropriate implementation of the FIR calculations can exploit 
that property to double the filter’s efficiency. 

Moving Average Example

(a) Block diagram of a simple FIR filter (2nd-order/3-tap filter in this case, implementing a moving average).
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(b) Pole–zero diagram of a second-order FIR filter.

(c) Magnitude and phase responses. (d) Amplitude and phase responses.

A moving average filter is a very simple FIR filter. It is sometimes called a boxcar filter, especially 
when followed by decimation. The filter coefficients, 0 , , Nb b… , are found via the following equa-
tion: 

1
1ib

N
=

+

To provide a more specific example, we select the filter order: 

2N =

The impulse response of the resulting filter is: 

1 1 1[ ] [ ] [ 1] [ 2]
3 3 3

h n n n nδ δ δ= + − + −
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The fig. (a) on the right shows the block diagram of a 2nd-order moving-average filter. The transfer 
function is: 

2
1 2

2

1 1 1 1 1( ) .
3 3 3 3

z zH z z z
z

− − + +
= + + =

fig. (b) on the right shows the corresponding pole–zero diagram. Zero frequency (DC) corresponds 
to (1, 0), positive frequencies advancing counterclockwise around the circle to the Nyquist fre-

quency at (−1, 0). Two poles are located at the origin, and two zeros are located at 1
1 3
2 2

z j= − +

, 2
1 3
2 2

z j= − − . 

The frequency response, in terms of normalized frequency ω, is: 

( ) 21 1 1 .
3 3 3

j j jH e e eω ω ω− −= + +

fig. (c) on the right shows the magnitude and phase components of ( ).jH e ω   But plots like these 
can also be generated by doing a discrete Fourier transform (DFT) of the impulse response. And 
because of symmetry, filter design or viewing software often displays only the [0, π] region. The 
magnitude plot indicates that the moving-average filter passes low frequencies with a gain near 1 
and attenuates high frequencies, and is thus a crude low-pass filter. The phase plot is linear except 
for discontinuities at the two frequencies where the magnitude goes to zero. The size of the discon-
tinuities is π, representing a sign reversal. They do not affect the property of linear phase. That fact 
is illustrated in fig. (d). 

Infinite Impulse Response System

The impulse response, even of IIR systems, usually approaches zero and can be neglected past a 
certain point. However the physical systems which give rise to IIR or FIR responses are dissimilar, 
and therein lies the importance of the distinction. For instance, analog electronic filters composed 
of resistors, capacitors, and/or inductors (and perhaps linear amplifiers) are generally IIR filters. 
On the other hand, discrete-time filters (usually digital filters) based on a tapped delay line em-
ploying no feedback are necessarily FIR filters. The capacitors (or inductors) in the analog filter 
have a “memory” and their internal state never completely relaxes following an impulse (assuming 
the classical model of capacitors and inductors where quantum effects are ignored). But in the lat-
ter case, after an impulse has reached the end of the tapped delay line, the system has no further 
memory of that impulse and has returned to its initial state; its impulse response beyond that point 
is exactly zero.

Implementation and Design

Although almost all analog electronic filters are IIR, digital filters may be either IIR or FIR. The 
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presence of feedback in the topology of a discrete-time filter generally creates an IIR response. The 
z domain transfer function of an IIR filter contains a non-trivial denominator, describing those 
feedback terms. The transfer function of an FIR filter, on the other hand, has only a numerator as 
expressed in the general form derived below. All of the ia coefficients with 0i >  (feedback terms) 
are zero and the filter has no finite poles. 

The transfer functions pertaining to IIR analog electronic filters have been extensively studied 
and optimized for their amplitude and phase characteristics. These continuous-time filter func-
tions are described in the Laplace domain. Desired solutions can be transferred to the case of 
discrete-time filters whose transfer functions are expressed in the z domain, through the use of 
certain mathematical techniques such as the bilinear transform, impulse invariance, or pole–zero 
matching method. Thus digital IIR filters can be based on well-known solutions for analog filters 
such as the Chebyshev filter, Butterworth filter, and elliptic filter, inheriting the characteristics of 
those solutions. 

Transfer Function Derivation

Digital filters are often described and implemented in terms of the difference equation that defines 
how the output signal is related to the input signal: 

[ ] 0 1
0

1 2

1 ( [ ] [ 1] [ ]

[ 1] [ 2] [ ])

P

Q

y n b x n b x n b x n P
a

a y n a y n a y n Q

= + − + + −

− − − − − − −





where: 

•	 P is the feedforward filter order.

•	 ib are the feedforward filter coefficients.

•	 Q is the feedback filter order.

•	 ia are the feedback filter coefficients.

•	 [ ]x n is the input signal.

•	 [ ]y n is the output signal.

A more condensed form of the difference equation is: 

0 10

1[ ] [ ] [ ]
QP

i j
i j

y n b x n i a y n j
a = =

 
= − − − 

 
∑ ∑

which, when rearranged, becomes: 

0 0
[ ] [ ]

Q P

j i
j i

a y n j b x n i
= =

− = −∑ ∑
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To find the transfer function of the filter, we first take the Z-transform of each side of the above 
equation, where we use the time-shift property to obtain: 

0 0
( ) ( )

Q P
j i

j i
j i

a z Y z b z X z− −

= =

=∑ ∑

We define the transfer function to be: 

0

0

( )( )
( )

P i
ii

P j
ji

Y zH z
X z

b z

a z

−
=

−
=

=

= ∑
∑

Considering that in most IIR filter designs coefficient 0a is 1, the IIR filter transfer function takes 
the more traditional form: 

0

1

( )
1

P i
ii

Q j
jj

H
b z

z
a z

−

=

−

=

=
+

∑
∑

An example of a block diagram of an IIR filter. The 1z− block is a unit delay.

Stability

The transfer function allows one to judge whether or not a system is bounded-input, bounded-out-
put (BIBO) stable. To be specific, the BIBO stability criterion requires that the ROC of the system 
includes the unit circle. For example, for a causal system, all poles of the transfer function have to 
have an absolute value smaller than one. In other words, all poles must be located within a unit 
circle in the z -plane. 

The poles are defined as the values of z which make the denominator of ( )H z equal to 0: 

0
0

Q
j

j
j

a z−

=

=∑

Clearly, if 0ja ≠ then the poles are not located at the origin of the z -plane. This is in contrast to 
the FIR filter where all poles are located at the origin, and is therefore always stable. 
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IIR filters are sometimes preferred over FIR filters because an IIR filter can achieve a much sharp-
er transition region roll-off than an FIR filter of the same order. 

Example:

Let the transfer function ( )H z of a discrete-time filter be given by: 

1

( ) 1( )
( ) 1

B zH z
A z az−= =

−

governed by the parameter a , a real number with 0 | | 1a< < . ( )H z is stable and causal with a pole 
at a . The time-domain impulse response can be shown to be given by: 

( ) ( )nh n a u n=

where ( )u n is the unit step function. It can be seen that ( )h n is non-zero for all 0n ≥ , thus an im-
pulse response which continues infinitely. 

IIR filter example.

Advantages and Disadvantages

The main advantage digital IIR filters have over FIR filters is their efficiency in implementation, 
in order to meet a specification in terms of passband, stopband, ripple, and/or roll-off. Such a set 
of specifications can be accomplished with a lower order (Q in the above formulae) IIR filter than 
would be required for an FIR filter meeting the same requirements. If implemented in a signal 
processor, this implies a correspondingly fewer number of calculations per time step; the compu-
tational savings is often of a rather large factor. 

On the other hand, FIR filters can be easier to design, for instance, to match a particular frequency 
response requirement. This is particularly true when the requirement is not one of the usual cases 
(high-pass, low-pass, notch, etc.) which have been studied and optimized for analog filters. Also 
FIR filters can be easily made to be linear phase (constant group delay vs frequency)—a property 
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that is not easily met using IIR filters and then only as an approximation (for instance with the 
Bessel filter). Another issue regarding digital IIR filters is the potential for limit cycle behavior 
when idle, due to the feedback system in conjunction with quantization. 

IIR and FIR Systems

IIR Systems

•	 IIR stands for infinite impulse response systems.

•	 IIR filters are less powerful than FIR filters, & require less processing power and less work 
to set up the filters.

•	 They are more easy to change “on the fly”.

•	 These are less flexible.

•	 It cannot implement linear-phase filtering.

•	 It cannot be used to correct frequency-response errors in a loudspeaker.

•	 IIRs can provide good resolution even at low frequencies.

•	 Usage is generally more easier than FIR filters.

•	 IIR filter uses current input sample value, past input and output samples to obtain current 
output sample value.

•	 Simple IIR equation is mention below. y(n)= b(0)x(n) + b(1)x(n-1) + b(2)x(n-2) + b(3)x(n-
3) + a(1)y(n-1) + a(2)y(n-2) + a(3)y(n-3).

•	 Transfer function of IIR filter will have both zeros and poles and will require less memory 
than FIR counterpart.

•	 IIR filters are not stable as they are recursive in nature and feedback is also involved in the 
process of calculating output sample values.

•	 IIR filter need more power due to more coefficients in the design.

•	 IIR filters have analog equivalent.
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•	 IIR filters are more efficient.

•	 IIR filters are used as notch(band stop),band pass functions.

•	 IIR filter need lower order than FIR filter to achieve same performance.

•	 Delay is less than FIR filter.

•	 It has higher sensitivity than FIR filter.

FIR Systems

•	 FIR stands for finite impulse response systems.

•	 FIR filters are more powerful than IIR filters, but also require more processing power and 
more work to set up the filters.

•	 They are also less easy to change “on the fly” as you can by tweaking (say) the frequency 
setting of a parametric (IIR) filter.

•	 Their, greater power means more flexibility and ability to finely adjust the response of your 
active loudspeaker.

•	 It can implement linear-phase filtering.

•	 It can be used to correct frequency-response errors in a loudspeaker to a finer degree of 
precision than using IIRs.

•	 FIRs can be limited in resolution at low frequencies, and the success of applying  
FIR  filters depends greatly on the program that is used to generate the filter coeffi-
cients.

•	 Usage is generally more complicated and time-consuming than IIR filters.

•	 FIR filter uses only current and past input digital samples to obtain a current output sam-
ple value. It does not utilize past output samples.

•	 Simple FIR equation is: y(n)= h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + h(3)x(n-3) + h(4)
x(n-4).

•	 Transfer function of FIR filter will have only zeros, need more memory.
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•	 FIR filters are preferred due to its linear phase response and also they are non-recursive. 
Feedback is not involved in FIR, hence they are stable.

•	 FIR filter consume low power.

•	 FIR have no analog equivalent.

•	 FIR filters are less efficient.

•	 FIR filters are used as anti-aliasing, low pass and baseband filters.

•	 FIR filter need higher order than IIR filter to achieve same performance.

•	 Delay is more than IIR filter.

•	 It has lower sensitivity than IIR filter.

Time Variant and Time Invariant Systems

A system is said to be time variant if its input and output characteristics vary with time. Otherwise, 
the system is considered as time invariant.

The condition for time invariant system is:

( ) ( ),y n t y n t= −

The condition for time variant system is:

( ) ( ),y n t y n t≠ −

Where,

( ) ( ),y n t T x n t= −   =  input change

( )  y n t− = output change

Example:

( ) ( )y n x n= −

( ) ( ) ( ),  y n t T x n t x n t= −   − = −

( ) ( ) ( ),  y n t T x n t x n t= −   − = −

( ) ( ),  . y n t y n t∴ ≠ −

Hence, the system is time variant.
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Fourier Series and Fourier 

Transform

Fourier series represents an expansion of periodic operation in terms of an infinite sum sines 
and cosines. Fourier transform converts a general and non-periodic operation into its constit-
uent frequencies. The topics elaborated in this chapter will help in gaining a better perspective 
about the fourier series and fourier transform.

To represent any periodic signal x(t), Fourier developed an expression called Fourier series. This is 
in terms of an infinite sum of sines and cosines or exponentials. Fourier series uses orthoganality 
condition.

Fourier Series Representation of Continuous Time Periodic Signals

A signal is said to be periodic if it satisfies the condition x (t) = x (t + T) or x (n) = x (n + N).

Where T = fundamental time period,

ω0 = fundamental frequency = 2π/T.

There are two basic periodic signals:

1. 0c( ) osx t tω=  (sinusoidal).

2. 
0( ) j tx t e ω= (complex exponential).

These two signals are periodic with period:

02 /T π ω=

A set of harmonically related complex exponentials can be represented as{ ( )}k tφ .

0
( )2

( ) { } { }where 0 1, 2..
tjk t jk T

k t e e k n
π

ωφ = = = ± ±

All these signals are periodic with period T.

4
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According to orthogonal signal space approximation of a function x (t) with n, mutually orthogonal 
functions is given by:

0( ) jk t
k

k
x t a e ω

∞

=−∞

= ∑

0jk t
k

k
a ke ω

∞

=−∞

= ∑

Where ka = Fourier coefficient = coefficient of approximation.

This signal ( )x t is also periodic with period T.

Equation 2 represents Fourier series representation of periodic signal x(t).

The term k = 0 is constant.

The term 1k = ±  having fundamental frequency 0ω , is called as 1st harmonics.

The term 2k = ± having fundamental frequency 02ω , is called as 2nd harmonics, and so on.

The term k n= ± having fundamental frequency 0nω , is called as nth harmonics.

Deriving Fourier Coefficient

We know that 0( ) jk t
kk

x t a e ω∞

=−∞
=∑

Multiply 0jn te ω− on both sides. 

0 0 0.( ) jn t jk t jn t
k

k
x t e a e eω ω ω

∞
− −

=−∞

= ∑

Consider integral on both sides.

0 0 0

0 0
.( )

T Tjk t jk t jn t
k

k
x t e dt a e e dtω ω ω

∞
−

=−∞

= ∑∫ ∫

0( )

0
.

T j k n t
k

k
a e dtω

∞
−

=−∞

= ∑∫

0 0( )

0 0
( ) .

T Tjk t j k n t
k

k
x t e dt a e dtω ω

∞
−

=−∞

=∑∫ ∫

by Euler’s formula:

0( )
0 00 0 0

. cos( ) sin( )
T T Tj k n te dt k n dt j k n t dtω ω ω− = − + −∫ ∫ ∫
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{0( )
00

.
T j k n t T k n

k ne dtω− =
≠=∫

Hence in equation, the integral is zero for all values of k except at k = n. Put k = n in equation:

0

0
( )

T jn t
nx t e dt a Tω−⇒ =∫

0

0

1 T jn t
na e dt

T
ω−⇒ = ∫

Replace n by k.

0

0

1 T jk t
ka e dt

T
ω−⇒ = ∫

0( )( ) j k n t
k

k
x t a e ω

∞
−

=−∞

∴ = ∑

where 0

0

1where
T jk t

ka e dt
T

ω−= ∫
Properties of Fourier Series

These are properties of Fourier series:

Linearity Property

If ( ) fourier series coefficient
xnx t f←→  and ( ) fourier series coefficient

yny t f←→

then linearity property states that,

( b( a)a b ) fourier series coefficientx t y t fxn fyn←  + →+

Time Shifting Property

If ( ) fourier series coefficient
xnx t f←→

then time shifting property states that:

0 0
0( ) jn tfourier series coefficient

xnx t t e fω−←− →

Frequency Shifting Property

If ( ) fourier series coefficient
xnx t f←→

then frequency shifting property states that:

0 0

0( )( ).jn t fourier series coefficient
x n ne x t fω−

−←→

________________________ WORLD TECHNOLOGIES ________________________



WT

	 Signals and Systems: An Engineering Perspective108

Time Reversal Property

If ( ) fourier series coefficient
xnx t f←→ .

Then time reversal property states that:

( ) fourier series coefficient
xnx t f−− ←→

Time Scaling Property

If ( ) fourier series coefficient
xnx t f←→

then time Scaling property states that:

If ( ) fourier series coefficient
xnfax t ←→

Time scaling property changes frequency components from 0ω  to 0aω .

Differentiation and Integration Properties

If ( ) fourier series coefficient
xnx t f←→

then differentiation property states that:

If 0
) .( fourier series coefficient

xn
dx t jn f

dt
ω←→

& integration property states that:

If 0( .) fourier series coefficient
xnx t jn fdt ω←→∫

Multiplication and Convolution Properties

If ( ) fourier series coefficient
xnx t f←→  and ( ) fourier series coefficient

yny t f←→

Then multiplication property states that:

( ). ( ) fourier series coefficient
ynxntx t T fy f←→ ∗

Convolution property states that:

( ) ( ) .fourier series coefficien
yx nn

tx y t Tt ff∗ ←→

Conjugate and Conjugate Symmetry Properties

If ( ) fourier series coeffici
xn

entx ft ←→

Then conjugate property states that:

( ) fourier series coefficien
xn

tx ft∗ ←→ ∗
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Conjugate symmetry property for real valued time signal states that:

xnf f xn∗ = −

& Conjugate symmetry property for imaginary valued time signal states that:

xn xnf f−∗ = −

Fourier Transform

The Fourier transform (FT) decomposes a function of time (a signal) into its constituent frequen-
cies. This is similar to the way a musical chord can be expressed in terms of the volumes and fre-
quencies of its constituent notes. The term Fourier transform refers to both the frequency domain 
representation and the mathematical operation that associates the frequency domain representa-
tion to a function of time. The Fourier transform of a function of time is itself a complex-valued 
function of frequency, whose magnitude (modulus) represents the amount of that frequency pres-
ent in the original function, and whose argument is the phase offset of the basic sinusoid in that 
frequency. The Fourier transform is not limited to functions of time, but the domain of the original 
function is commonly referred to as the time domain. There is also an inverse Fourier transform 
that mathematically synthesizes the original function from its frequency domain representation. 

A sinusoidal curve, with peak amplitude (1), peak-to-peak (2), RMS (3), and wave period (4).

Illustration of phase shift θ. 
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A sinusoidal curve, with peak
amplitude (1), peak-to-peak
(2), RMS (3), and wave
period (4).

 

Illustration of phase shift θ.

Fourier transforms

Continuous Fourier transform

Fourier series

Discrete-time Fourier transform

Discrete Fourier transform

Discrete Fourier transform over a
ring

Fourier analysis

Related transforms

Fourier transform
The Fourier transform (FT) decomposes a function of time (a signal) into its constituent frequencies. This is similar to the way a musical chord can be expressed in terms

of the volumes and frequencies of its constituent notes. The term Fourier transform refers to both the frequency domain representation and the mathematical operation that

associates the frequency domain representation to a function of time. The Fourier transform of a function of time is itself a complex-valued function of frequency, whose

magnitude (modulus) represents the amount of that frequency present in the original function, and whose argument is the phase offset of the basic sinusoid in that

frequency. The Fourier transform is not limited to functions of time, but the domain of the original function is commonly referred to as the time domain. There is also an

inverse Fourier transform that mathematically synthesizes the original function from its frequency domain representation.

Linear operations performed in one domain (time or frequency) have corresponding operations in the other

domain, which are sometimes easier to perform. The operation of differentiation in the time domain

corresponds to multiplication by the frequency,[remark 1] so some differential equations are easier to analyze

in the frequency domain. Also, convolution in the time domain corresponds to ordinary multiplication in the

frequency domain (see Convolution theorem). After performing the desired operations, transformation of

the result can be made back to the time domain. Harmonic analysis is the systematic study of the

relationship between the frequency and time domains, including the kinds of functions or operations that

are "simpler" in one or the other, and has deep connections to many areas of modern mathematics.

Functions that are localized in the time domain have Fourier transforms that are spread out across the

frequency domain and vice versa, a phenomenon known as the uncertainty principle. The critical case for

this principle is the Gaussian function, of substantial importance in probability theory and statistics as well

as in the study of physical phenomena exhibiting normal distribution (e.g., diffusion). The Fourier transform

of a Gaussian function is another Gaussian function. Joseph Fourier introduced the transform in his study of

heat transfer, where Gaussian functions appear as solutions of the heat equation.

The Fourier transform can be formally defined as an improper Riemann integral, making it an integral transform,

although this definition is not suitable for many applications requiring a more sophisticated integration

theory.[remark 2] For example, many relatively simple applications use the Dirac delta function, which can be treated

formally as if it were a function, but the justification requires a mathematically more sophisticated

viewpoint.[remark 3] The Fourier transform can also be generalized to functions of several variables on Euclidean

space, sending a function of 3-dimensional 'position space' to a function of 3-dimensional momentum (or a function

of space and time to a function of 4-momentum). This idea makes the spatial Fourier transform very natural in the

study of waves, as well as in quantum mechanics, where it is important to be able to represent wave solutions as

functions of either position or momentum and sometimes both. In general, functions to which Fourier methods are

applicable are complex-valued, and possibly vector-valued.[remark 4] Still further generalization is possible to

functions on groups, which, besides the original Fourier transform on  or n (viewed as groups under addition),

notably includes the discrete-time Fourier transform (DTFT, group = ), the discrete Fourier transform (DFT, group

=  mod N) and the Fourier series or circular Fourier transform (group = S1, the unit circle ≈ closed finite interval

with endpoints identified). The latter is routinely employed to handle periodic functions. The fast Fourier transform

(FFT) is an algorithm for computing the DFT.

Definition
History
Introduction
Example
Properties of the Fourier transform

Basic properties
Linearity
Translation / time shifting
Modulation / frequency shifting
Time scaling
Conjugation
Real and imaginary part in time
Integration

Invertibility and periodicity
Units and duality
Uniform continuity and the Riemann–Lebesgue lemma
Plancherel theorem and Parseval's theorem
Poisson summation formula
Differentiation
Convolution theorem
Cross-correlation theorem

In the first row of the figure is the graph of the unit
pulse function f (t) and its Fourier transform f ̂(ω),
a function of frequency ω. Translation (that is,
delay) in the time domain is interpreted as
complex phase shifts in the frequency domain. In
the second row is shown g(t), a delayed unit
pulse, beside the real and imaginary parts of the
Fourier transform. The Fourier transform
decomposes a function into eigenfunctions for the
group of translations.

Contents

In the first row of the figure is the graph of the unit pulse function f (t) and its Fourier transform 
f̂  (ω), a function of frequency ω. Translation (that is, delay) in the time domain is interpreted as 
complex phase shifts in the frequency domain. In the second row is shown g(t), a delayed unit 
pulse, beside the real and imaginary parts of the Fourier transform. The Fourier transform decom-
poses a function into eigenfunctions for the group of translations.

Linear operations performed in one domain (time or frequency) have corresponding operations in 
the other domain, which are sometimes easier to perform. The operation of differentiation in the 
time domain corresponds to multiplication by the frequency, so some differential equations are 
easier to analyze in the frequency domain. Also, convolution in the time domain corresponds to 
ordinary multiplication in the frequency domain. After performing the desired operations, trans-
formation of the result can be made back to the time domain. Harmonic analysis is the systematic 
study of the relationship between the frequency and time domains, including the kinds of func-
tions or operations that are “simpler” in one or the other, and has deep connections to many areas 
of modern mathematics. 

Functions that are localized in the time domain have Fourier transforms that are spread out across 
the frequency domain and vice versa, a phenomenon known as the uncertainty principle. The crit-
ical case for this principle is the Gaussian function, of substantial importance in probability theory 
and statistics as well as in the study of physical phenomena exhibiting normal distribution (e.g., 
diffusion). The Fourier transform of a Gaussian function is another Gaussian function. Joseph 
Fourier introduced the transform in his study of heat transfer, where Gaussian functions appear 
as solutions of the heat equation. 

The Fourier transform can be formally defined as an improper Riemann integral, making it an 
integral transform, although this definition is not suitable for many applications requiring a 
more sophisticated integration theory. For example, many relatively simple applications use 
the Dirac delta function, which can be treated formally as if it were a function, but the justi-
fication requires a mathematically more sophisticated viewpoint. The Fourier transform can 
also be generalized to functions of several variables on Euclidean space, sending a function 
of 3-dimensional ‘position space’ to a function of 3-dimensional momentum (or a function of 
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space and time to a function of 4-momentum). This idea makes the spatial Fourier transform 
very natural in the study of waves, as well as in quantum mechanics, where it is important to 
be able to represent wave solutions as functions of either position or momentum and some-
times both. In general, functions to which Fourier methods are applicable are complex-val-
ued, and possibly vector-valued. Still further generalization is possible to functions on groups, 
which, besides the original Fourier transform on ℝ or ℝn (viewed as groups under addition), 
notably includes the discrete-time Fourier transform (DTFT, group = ℤ), the discrete Fourier 
transform (DFT, group = ℤ mod N) and the Fourier series or circular Fourier transform (group 
= S1, the unit circle ≈ closed finite interval with endpoints identified). The latter is routinely 
employed to handle periodic functions. The fast Fourier transform (FFT) is an algorithm for 
computing the DFT. 

The Fourier transform of a function f is traditionally denoted f̂ , by adding a circumflex to the 
symbol of the function. There are several common conventions for defining the Fourier transform 
of an integrable function :f →  . One of them is:

2ˆ ( ) ( ) ,ixf f x e dxπ ξξ
∞ −

−∞
= ∫

for any real number ξ. 

A reason for the negative sign in the exponent is that it is common in electrical engineering to 
represent by 02( ) i xf x e π ξ= a signal with zero initial phase and frequency 0.ξ  The negative sign con-

vention causes the product 02 2i x i xe eπ ξ π ξ− to be 1 (frequency zero) when 0 ,ξ ξ= causing the integral 
to diverge. The result is a Dirac delta function at 0 ,ξ ξ= which is the only frequency component of 
the sinusoidal signal 02 .i xe π ξ

When the independent variable x represents time, the transform variable ξ represents frequency 
(e.g. if time is measured in seconds, then frequency is in hertz). Under suitable conditions, f is de-
termined by f̂ via the inverse transform: 

2ˆ( ) ( ) ,ixf x f e dπ ξξ ξ
∞

−∞
= ∫

for any real number x. 

The statement that f can be reconstructed from f̂ is known as the Fourier inversion theorem, and 
was first introduced in Fourier’s Analytical Theory of Heat, although what would be considered 
a proof by modern standards was not given until much later. The functions f and f̂ often are re-
ferred to as a Fourier integral pair or Fourier transform pair. 

For other common conventions and notations, including using the angular frequency ω instead 
of the frequency ξ, The Fourier transform on Euclidean space is treated separately, in which the 
variable x often represents position and ξ momentum. The conventions chosen here are those of 
harmonic analysis, and are characterized as the unique conventions such that the Fourier trans-
form is both unitary on L2 and an algebra homomorphism from L1 to L∞, without renormalizing the 
Lebesgue measure. 

Many other characterizations of the Fourier transform exist. For example, one uses the Stone–von 
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Neumann theorem: the Fourier transform is the unique unitary intertwiner for the symplectic and 
Euclidean Schrödinger representations of the Heisenberg group. 

One motivation for the Fourier transform comes from the study of Fourier series. In the study of 
Fourier series, complicated but periodic functions are written as the sum of simple waves mathe-
matically represented by sines and cosines. The Fourier transform is an extension of the Fourier 
series that results when the period of the represented function is lengthened and allowed to ap-
proach infinity. 

Due to the properties of sine and cosine, it is possible to recover the amplitude of each wave in a 
Fourier series using an integral. In many cases it is desirable to use Euler’s formula, which states that 
e2πiθ = cos(2πθ) + i sin(2πθ), to write Fourier series in terms of the basic waves e2πiθ. This has the ad-
vantage of simplifying many of the formulas involved, and provides a formulation for Fourier series 
that more closely resembles the definition followed here. Re-writing sines and cosines as complex 
exponentials makes it necessary for the Fourier coefficients to be complex valued. The usual inter-
pretation of this complex number is that it gives both the amplitude (or size) of the wave present in 
the function and the phase (or the initial angle) of the wave. These complex exponentials sometimes 
contain negative “frequencies”. If θ is measured in seconds, then the waves e2πiθ and e−2πiθ both com-
plete one cycle per second, but they represent different frequencies in the Fourier transform. Hence, 
frequency no longer measures the number of cycles per unit time, but is still closely related. 

There is a close connection between the definition of Fourier series and the Fourier transform for 
functions f that are zero outside an interval. For such a function, we can calculate its Fourier series 
on any interval that includes the points where f is not identically zero. The Fourier transform is 
also defined for such a function. As we increase the length of the interval in which we calculate the 
Fourier series, then the Fourier series coefficients begin to resemble the Fourier transform and the 
sum of the Fourier series of f begins to resemble the inverse Fourier transform. More precisely, 
suppose T is large enough that the interval [−T/2, T/2] contains the interval in which f is not iden-
tically zero. Then, the nth series coefficient cn is given by: 

2
2

2

1 ( ) .
nT i x
T

Tnc f x e dx
T

π  −  
 

−
= ∫

Comparing this to the definition of the Fourier transform, it follows that: 

1 ˆ
n

nc f
T T

 =  
 

since f (x) is zero outside[ , ]
2 2
T T

− . Thus, the Fourier coefficients are equal to the values of the Fou-

rier transform sampled on a grid of width
1
T

, multiplied by the grid width 
1
T

. 

Under appropriate conditions, the Fourier series of f will equal the function f. In other words, f can 
be written: 

2
2( ) ( ) ,ˆ n

ni x
i xT

n n
n n

f x c e f e
∞ ∞π

π ξ

∞ ∞

ξ ξ
 
 
 

=− =−

= = ∆∑ ∑
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where the last sum is simply the first sum rewritten using the definitions n
n
T

ξ = , and
 1 1 .n n

T T T
ξ +

∆ = − =  

This second sum is a Riemann sum. By letting T → ∞ it will converge to the integral for the inverse 
Fourier transform as expressed above. Under suitable conditions, this argument may be made precise. 

In the study of Fourier series the numbers cn could be thought of as the “amount” of the wave pres-
ent in the Fourier series of f. Similarly, the Fourier transform can be thought of as a function that 
measures how much of each individual frequency is present in our function f, and we can recom-
bine these waves by using an integral (or “continuous sum”) to reproduce the original function. 

Example:

The following figures provide a visual illustration how the Fourier transform measures whether a 
frequency is present in a particular function. The depicted function f (t) = cos(6πt) e−πt2 oscillates 
at 3 Hz (if t measures seconds) and tends quickly to 0. (The second factor in this equation is an 
envelope function that shapes the continuous sinusoid into a short pulse. Its general form is a 
Gaussian function). This function was specially chosen to have a real Fourier transform that can be 
easily plotted. The first image contains its graph. In order to calculate ˆ (3)f  we must integrate e−2πi(3t)

f (t). The second image shows the plot of the real and imaginary parts of this function. The real part 
of the integrand is almost always positive, because when f (t) is negative, the real part of e−2πi(3t) is 
negative as well. Because they oscillate at the same rate, when f (t) is positive, so is the real part 

of e−2πi(3t). The result is that when you integrate the real part of the integrand you get a relatively 

large number (in this case 
1
2

). On the other hand, when you try to measure a frequency that is not 

present, as in the case when we look at ˆ (5)f , you see that both real and imaginary component of this 
function vary rapidly between positive and negative values, as plotted in the third image. There-
fore, in this case, the integrand oscillates fast enough so that the integral is very small and the value 
for the Fourier transform for that frequency is nearly zero. 

The general situation may be a bit more complicated than this, but this in spirit is how the Fourier 
transform measures how much of an individual frequency is present in a function f (t). 

Original function showing oscillation 3 Hz. Magnitude of Fourier transform, with 3 and 5 Hz labeled.
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Real and imaginary parts of integrand for Fourier trans-
form at 3 Hz.

Real and imaginary parts of integrand for Fourier trans-
form at 5 Hz.

Properties of the Fourier Transform

Here we assume f (x), g(x) and h(x) are integrable functions.

Lebesgue-measurable on the real line satisfying: 

| ( ) | .f x dx
∞

∞
∞

−
<∫

We denote the Fourier transforms of these functions as f̂  (ξ), ĝ(ξ) and ĥ(ξ) respectively. 

The Fourier transform has the following basic properties: 

Linearity

For any complex numbers a and b, if h(x) = af (x) + bg(x), then ĥ(ξ) = a · f̂  (ξ) + b · ĝ(ξ).

Translation or Time Shifting

For any real number x0, if h(x) = f (x − x0), then ĥ(ξ) = e−2πix0ξ f̂  (ξ).

Modulation or Frequency Shifting

For any real number ξ0, if h(x) = e2πixξ0 f (x), then ĥ(ξ) = f̂  (ξ − ξ0).

Time Scaling

For a non-zero real number a, if h(x) = f (ax).

The case a = −1 leads to the time-reversal property, which states: if h(x) = f (−x), then ĥ(ξ) = f̂  (−ξ).
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Conjugation

If h(x) = f (x),  

In particular, if f is real, then one has the reality condition. 

That is, f̂  is a Hermitian function. And if f is purely imaginary. 

Real and Imaginary Part in Time

•	 If ( ) ( ( ))h x f xℜ= , then 
1( ) ( ( ) ( ))ˆ ˆ ˆ
2

h f fξ ξ ξ= + − .

•	 If ( ) ( ( ))h x f xℑ= , then )ˆ 1( ) ( ( ( )
2

ˆ ) ˆh f f
i

ξ ξ ξ= − − .

Integration

Substituting ξ = 0 in the definition, we obtain:

ˆ (0) ( ) .f f x dx
∞

−∞
= ∫

That is, the evaluation of the Fourier transform at the origin (ξ = 0) equals the integral of f over all 
its domain.

Invertibility and Periodicity

Under suitable conditions on the function f, it can be recovered from its Fourier transform f̂ . 
Indeed, denoting the Fourier transform operator by F, so F( f ) := f̂, then for suitable functions, 
applying the Fourier transform twice simply flips the function: F2( f )(x) = f (−x), which can be in-
terpreted as “reversing time”. Since reversing time is two-periodic, applying this twice yields F4( f ) 
= f, so the Fourier transform operator is four-periodic, and similarly the inverse Fourier transform 
can be obtained by applying the Fourier transform three times: F3( f̂ ) = f. In particular the Fourier 
transform is invertible (under suitable conditions). 

More precisely, defining the parity operator P that inverts time, P[ f ] : t ↦ f (−t): 

0 1

2 3 1

4

Id, ,
, ,

Id

−

= =

= = = ° = °

=

  

       



These equalities of operators require careful definition of the space of functions in question, de-
fining equality of functions (equality at every point? equality almost everywhere?) and defining 
equality of operators – that is, defining the topology on the function space and operator space in 
question. These are not true for all functions, but are true under various conditions, which are the 
content of the various forms of the Fourier inversion theorem. 

This fourfold periodicity of the Fourier transform is similar to a rotation of the plane by 90°, par-
ticularly as the two-fold iteration yields a reversal, and in fact this analogy can be made precise. 
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While the Fourier transform can simply be interpreted as switching the time domain and the fre-
quency domain, with the inverse Fourier transform switching them back, more geometrically it 
can be interpreted as a rotation by 90° in the time–frequency domain (considering time as the 
x-axis and frequency as the y-axis), and the Fourier transform can be generalized to the fraction-
al Fourier transform, which involves rotations by other angles. This can be further generalized 
to linear canonical transformations, which can be visualized as the action of the special linear 
group SL2(ℝ) on the time–frequency plane, with the preserved symplectic form corresponding to 
the uncertainty principle, below. This approach is particularly studied in signal processing, under 
time–frequency analysis. 

Units and Duality

In mathematics, one often does not think of any units as being attached to the two variables t and 
ξ. But in physical applications, ξ must have inverse units to the units of t. For example, if t is mea-
sured in seconds, ξ should be in cycles per second for the formulas here to be valid. If the scale of t 
is changed and t is measured in units of 2π seconds, then either ξ must be in the so-called “angular 
frequency”, or one must insert some constant scale factor into some of the formulas. If t is mea-
sured in units of length, then ξ must be in inverse length, e.g., wavenumbers. That is to say, there 
are two copies of the real line: one measured in one set of units, where t ranges, and the other in 
inverse units to the units of t, and which is the range of ξ. So these are two distinct copies of the 
real line, and cannot be identified with each other. Therefore, the Fourier transform goes from 
one space of functions to a different space of functions: functions which have a different domain 
of definition. 

In general, ξ must always be taken to be a linear form on the space of ts, which is to say that 
the second real line is the dual space of the first real line. This point of view becomes essential 
in generalisations of the Fourier transform to general symmetry groups, including the case of 
Fourier series. 

That there is no one preferred way (often, one says “no canonical way”) to compare the two copies 
of the real line which are involved in the Fourier transform—fixing the units on one line does not 
force the scale of the units on the other line—is the reason for the plethora of rival conventions on 
the definition of the Fourier transform. The various definitions resulting from different choices of 
units differ by various constants. If the units of t are in seconds but the units of ξ are in angular 
frequency, then the angular frequency variable is often denoted by one or another Greek letter, for 
example, ω = 2πξ is quite common. 

1 )ˆ ˆ( ) (
2

i tx x x t e dt
∞ ω

∞

ωω
π

−

−

 = = 
  ∫

as before, but the corresponding alternative inversion formula would then have to be:

1
1 ˆ( ) ( ) .

2
itx t x e dωω ω

π
∞

−∞
= ∫

To have something involving angular frequency but with greater symmetry between the Fourier 
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transform and the inversion formula, one very often sees still another alternative definition of the 
Fourier transform, with a factor of 2π , thus:

2 )ˆ 1( ) ( ,
2

itx x t e dtωω
π

∞ −

−∞
= ∫

and the corresponding inversion formula then has to be:

2
1 ˆ( ) ( ) .
2

itx t x e dωω ω
π

∞

−∞
= ∫

In some unusual conventions, such as those employed by the FourierTransform command of the 
Wolfram Language, the Fourier transform has i in the exponent instead of −i, and vice versa for 
the inversion formula. Many of the identities involving the Fourier transform remain valid in those 
conventions, provided all terms that explicitly involve i have it replaced by −i. 

For example, in probability theory, the characteristic function ϕ of the probability density function 
f of a random variable X of continuous type is defined without a negative sign in the exponential, 
and since the units of x are ignored, there is no 2π either: 

( ) ( ) .i xf x e dxλφ λ
∞

−∞
= ∫

(In probability theory, and in mathematical statistics, the use of the Fourier—Stieltjes transform 
is preferred, because so many random variables are not of continuous type, and do not possess a 
density function, and one must treat not functions but distributions, i.e., measures which possess 
“atoms”.) 

From the higher point of view of group characters, which is much more abstract, all these arbitrary 
choices disappear, which treats the notion of the Fourier transform of a function on a locally com-
pact Abelian group. 

Uniform continuity and the Riemann–Lebesgue lemma

The rectangular function is Lebesgue integrable.
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The sinc function, which is the Fourier transform of the rectangular function,  
is bounded and continuous, but not Lebesgue integrable.

The Fourier transform may be defined in some cases for non-integrable functions, but the Fourier 
transforms of integrable functions have several strong properties. 

The Fourier transform f̂ of any integrable function f is uniformly continuous:

1
f̂ f

∞
≤

By the Riemann–Lebesgue lemma:

( ) 0 as | | .f̂ ξ ξ ∞→ →

However, f̂ need not be integrable. For example, the Fourier transform of the rectangular func-
tion, which is integrable, is the sinc function, which is not Lebesgue integrable, because its improp-
er integrals behave analogously to the alternating harmonic series, in converging to a sum without 
being absolutely convergent. 

It is not generally possible to write the inverse transform as a Lebesgue integral. However, when 
both f and f̂ are integrable, the inverse equality:

2ˆ( ) ( ) i xf x f e dπ ξξ ξ
∞

−∞
= ∫

holds almost everywhere. That is, the Fourier transform is injective on L1(ℝ). (But if f is continu-
ous, then equality holds for every x).

Plancherel Theorem and Parseval’s Theorem

Let f (x) and g(x) be integrable, and let f̂ (ξ) and ĝ(ξ) be their Fourier transforms. If f (x) and g(x) 
are also square-integrable, then the Parseval formula follows: 

ˆ ˆ( ) ( ) ( ) ( ) ,f x g x dx f g dξ ξ ξ
∞ ∞

−∞ −∞
=∫ ∫
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where the bar denotes complex conjugation. 

The Plancherel theorem, which follows from the above, states that:

22 ˆ( ) ( ) ,f x dx f dξ ξ
∞ ∞

−∞ −∞
=∫ ∫

Plancherel’s theorem makes it possible to extend the Fourier transform, by a continuity argu-
ment, to a unitary operator on L2(ℝ). On L1(ℝ) ∩ L2(ℝ), this extension agrees with original Fou-
rier transform defined on L1(ℝ), thus enlarging the domain of the Fourier transform to L1(ℝ) + 
L2(ℝ) (and consequently to Lp(ℝ) for 1 ≤ p ≤ 2). Plancherel’s theorem has the interpretation in 
the sciences that the Fourier transform preserves the energy of the original quantity. The ter-
minology of these formulas is not quite standardised. Parseval’s theorem was proved only for 
Fourier series, and was first proved by Lyapunov. But Parseval’s formula makes sense for the 
Fourier transform as well, and so even though in the context of the Fourier transform it was 
proved by Plancherel, it is still often referred to as Parseval’s formula, or Parseval’s relation, or 
even Parseval’s theorem. 

Poisson Summation Formula

The Poisson summation formula (PSF) is an equation that relates the Fourier series coefficients of 
the periodic summation of a function to values of the function’s continuous Fourier transform. The 
Poisson summation formula says that for sufficiently regular functions f:

ˆ ( ) ( ).
n n

f n f n=∑ ∑

It has a variety of useful forms that are derived from the basic one by application of the Fouri-
er transform’s scaling and time-shifting properties. The formula has applications in engineering, 
physics, and number theory. The frequency-domain dual of the standard Poisson summation for-
mula is also called the discrete-time Fourier transform. 

Poisson summation is generally associated with the physics of periodic media, such as heat con-
duction on a circle. The fundamental solution of the heat equation on a circle is called a theta 
function. It is used in number theory to prove the transformation properties of theta functions, 
which turn out to be a type of modular form, and it is connected more generally to the theory of 
automorphic forms where it appears on one side of the Selberg trace formula. 

Differentiation

Suppose f (x) is an absolutely continuous differentiable function, and both f and its derivative f ′ are 
integrable. Then the Fourier transform of the derivative is given by:

.ˆ( ) 2 ( )f i fξ π ξ ξ=′

More generally, the Fourier transformation of the nth derivative f(n) is given by:

( ) ˆ( ) (2 ) ( ).n nf i fξ π ξ ξ=
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By applying the Fourier transform and using these formulas, some ordinary differential equations 
can be transformed into algebraic equations, which are much easier to solve. These formulas also 
give rise to the rule of thumb “f (x) is smooth if and only if f̂ (ξ) quickly falls to 0 for |ξ| → ∞.” By 
using the analogous rules for the inverse Fourier transform, one can also say “f (x) quickly falls to 
0 for |x| → ∞ if and only if f̂ (ξ) is smooth.” 

Convolution Theorem

The Fourier transform translates between convolution and multiplication of functions. If f (x) and 
g(x) are integrable functions with Fourier transforms f̂ (ξ) and ĝ(ξ) respectively, then the Fourier 
transform of the convolution is given by the product of the Fourier transforms f̂ (ξ) and ĝ(ξ) (un-
der other conventions for the definition of the Fourier transform a constant factor may appear). 

This means that if: 

( ) ( )( ) ( ) ( ) ,h x f g x f y g x y dy
∞

∞−
= ∗ = −∫

where ∗ denotes the convolution operation, then: 

.ˆ( ) ( )ˆ ˆ ( )h f gξ ξ ξ= ⋅

In linear time invariant (LTI) system theory, it is common to interpret g(x) as the impulse response 
of an LTI system with input f (x) and output h(x), since substituting the unit impulse for f (x) yields 
h(x) = g(x). In this case, ĝ(ξ) represents the frequency response of the system. 

Conversely, if f (x) can be decomposed as the product of two square integrable functions p(x) and 
q(x), then the Fourier transform of f (x) is given by the convolution of the respective Fourier trans-
forms p̂(ξ) and q̂(ξ). 

Cross-correlation Theorem

In an analogous manner, it can be shown that if h(x) is the cross-correlation of f (x) and g(x): 

( ) ( )( ) ( )( )h x f g x f y x y dy
∞

−∞
= = +∫

then the Fourier transform of h(x) is: 

.ˆ( ) ( )ˆ ˆ ( )h f gξ ξ ξ= ⋅

As a special case, the autocorrelation of function f (x) is: 

( ) ( )( ) ( ) ( )h x f f x f y f x y dy
∞

−∞
= = +∫

for which:

2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) .h f f fξ ξ ξ ξ= =
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Eigenfunctions

One important choice of an orthonormal basis for L2(ℝ) is given by the Hermite functions:

( )2
4 2( ) He 2 ,

!
x

n nx e x
n

πψ π−=

where Hen(x) are the “probabilist’s” Hermite polynomials, defined as:

2 2

2 2He ( ) ( 1)
nx x

n
n

dx e e
dx

− = −  
 

Under this convention for the Fourier transform, we have that:

ˆ ( ) ( ) ( )n
n niψ ξ ψ ξ= − .

In other words, the Hermite functions form a complete orthonormal system of eigenfunctions for 
the Fourier transform on L2(ℝ). However, this choice of eigenfunctions is not unique. There are 
only four different eigenvalues of the Fourier transform (±1 and ±i) and any linear combination of 
eigenfunctions with the same eigenvalue gives another eigenfunction. As a consequence of this, it 
is possible to decompose L2(ℝ) as a direct sum of four spaces H0, H1, H2, and H3 where the Fourier 
transform acts on Hek simply by multiplication by ik. 

Since the complete set of Hermite functions provides a resolution of the identity, the Fourier trans-
form can be represented by such a sum of terms weighted by the above eigenvalues, and these 
sums can be explicitly summed. This approach to define the Fourier transform was first done by 
Norbert Wiener. Among other properties, Hermite functions decrease exponentially fast in both 
frequency and time domains, and they are thus used to define a generalization of the Fourier trans-
form, namely the fractional Fourier transform used in time-frequency analysis. In physics, this 
transform was introduced by Edward Condon. 

Connection with the Heisenberg Group

The Heisenberg group is a certain group of unitary operators on the Hilbert space L2(ℝ) of square 
integrable complex valued functions f on the real line, generated by the translations (Ty f )(x) = f 
(x + y) and multiplication by e2πixξ, (Mξ f )(x) = e2πixξ f (x). These operators do not commute, as their 
(group) commutator is:

( )1 1 2( ) ( )iy
y yM T M T f x e f xπ ξ

ξ ξ
− − =

which is multiplication by the constant (independent of x) e2πiyξ ∈ U(1) (the circle group of unit 
modulus complex numbers). As an abstract group, the Heisenberg group is the three-dimensional 
Lie group of triples (x, ξ, z) ∈ ℝ2 × U(1), with the group law:

( ) ( ) ( )( )1 1 2 2 1 22
1 1 1 2 2 2 1 2 1 2 1 2, , , , , , i x x xx t x t x x t t e π ξ ξ ξξ ξ ξ ξ + +⋅ = + +
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Denote the Heisenberg group by H1. The above procedure describes not only the group structure, 
but also a standard unitary representation of H1 on a Hilbert space, which we denote by ρ : H1 → 
B(L2(ℝ)). Define the linear automorphism of ℝ2 by:

.
x

J
x
ξ

ξ
−   

=   
   

so that J2 = −I. This J can be extended to a unique automorphism of H1: 

( ) ( )2, , , , .ixj x t x te π ξξ ξ −= −

According to the Stone–von Neumann theorem, the unitary representations ρ and ρ ∘ j are unitar-
ily equivalent, so there is a unique intertwiner W ∈ U(L2(ℝ)) such that:

*.j W Wρ ρ° =

This operator W is the Fourier transform. 

Many of the standard properties of the Fourier transform are immediate consequences of this 
more general framework. For example, the square of the Fourier transform, W2, is an intertwiner 
associated with J2 = −I, and so we have (W2f )(x) = f (−x) is the reflection of the original function f. 

Complex Domain

The integral for the Fourier transform:

2 (ˆ ( ) )i tf e f t dt
∞ π ξ

∞
ξ −

−
= ∫

can be studied for complex values of its argument ξ. Depending on the properties of f, this might 
not converge off the real axis at all, or it might converge to a complex analytic function for all values 
of ξ = σ + iτ, or something in between. 

The Paley–Wiener theorem says that f is smooth (i.e., n-times differentiable for all positive inte-
gers n) and compactly supported if and only if f̂ (σ + iτ) is a holomorphic function for which there 
exists a constant a > 0 such that for any integer n ≥ 0:

| |ˆ ( )n af Ce τξ ξ ≤

for some constant C. (In this case, f is supported on [−a, a].) This can be expressed by saying that 
f̂ is an entire function which is rapidly decreasing in σ (for fixed τ) and of exponential growth in 
τ (uniformly in σ). 

(If f is not smooth, but only L2, the statement still holds provided n = 0.) The space of such func-
tions of a complex variable is called the Paley—Wiener space. This theorem has been generalised 
to semisimple Lie groups. 

If f is supported on the half-line t ≥ 0, then f is said to be “causal” because the impulse response 
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function of a physically realisable filter must have this property, as no effect can precede its cause. 
Paley and Wiener showed that then f̂ extends to a holomorphic function on the complex lower 
half-plane τ < 0 which tends to zero as τ goes to infinity. The converse is false and it is not known 
how to characterise the Fourier transform of a causal function. 

Laplace Transform

The Fourier transform f̂ (ξ) is related to the Laplace transform F(s), which is also used for the 
solution of differential equations and the analysis of filters. 

It may happen that a function f for which the Fourier integral does not converge on the real axis 
at all, nevertheless has a complex Fourier transform defined in some region of the complex plane. 

For example, if f (t) is of exponential growth, i.e., 
| || ( ) | a tf t Ce<

for some constants C, a ≥ 0, then:

2ˆ ( ) ( ) ,tf i e f t dtπττ
∞

−∞
= ∫

convergent for all 2πτ < −a, is the two-sided Laplace transform of f. 

The more usual version (“one-sided”) of the Laplace transform is:

0
( ) ( ) .stF s f t e dt

∞ −= ∫

If f is also causal, then:

.ˆ ( ) ( 2 )f i Fτ πτ= −

Thus, extending the Fourier transform to the complex domain means it includes the Laplace trans-
form as a special case—the case of causal functions—but with the change of variable s = 2πiξ. 

Inversion

If f̂ is complex analytic for a ≤ τ ≤ b, then:

2 2ˆ ˆ( ) ( )i t i tf ia e d f ib e dπ ξ π ξσ σ σ σ
∞ ∞

−∞ −∞
+ = +∫ ∫

by Cauchy’s integral theorem. Therefore, the Fourier inversion formula can use integration along 
different lines, parallel to the real axis. 

Theorem: If f (t) = 0 for t < 0, and |f (t)| < Cea|t| for some constants C, a > 0, then:

2ˆ( ) ( ) ,i tf t f i e dπ ξσ τ σ
∞

−∞
= +∫

for any τ < −a/2π. 
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This theorem implies the Mellin inversion formula for the Laplace transformation:

1( ) ( )
2

b i st

b i
f t F s e ds

i
∞

∞π
+

−
= ∫

for any b > a, where F(s) is the Laplace transform of f (t). 

The hypotheses can be weakened, as in the results of Carleman and Hunt, to f (t) e−at being L1, pro-
vided that f is of bounded variation in a closed neighborhood of t (cf. Dirichlet-Dini theorem), the 
value of f at t is taken to be the arithmetic mean of the left and right limits, and provided that the 
integrals are taken in the sense of Cauchy principal values. 

L2 versions of these inversion formulas are also available. 

Fourier Transform on Euclidean Space

The Fourier transform can be defined in any arbitrary number of dimensions n. As with the one-di-
mensional case, there are many conventions. For an integrable function f (x), 

2( ) ( )( ) (ˆ )
n

if f f e d− π ⋅= = ∫ xx x


 ξξ ξ

where x and ξ are n-dimensional vectors, and x · ξ is the dot product of the vectors. The dot prod-
uct is sometimes written as 〈x, ξ〉. 

All of the basic properties listed above hold for the n-dimensional Fourier transform, as do 
Plancherel’s and Parseval’s theorem. When the function is integrable, the Fourier transform is still 
uniformly continuous and the Riemann–Lebesgue lemma holds. 

Uncertainty Principle

Generally speaking, the more concentrated f (x) is, the more spread out its Fourier transform f̂ (ξ) 
must be. In particular, the scaling property of the Fourier transform may be seen as saying: if we 
squeeze a function in x, its Fourier transform stretches out in ξ. It is not possible to arbitrarily con-
centrate both a function and its Fourier transform. 

The trade-off between the compaction of a function and its Fourier transform can be formalized in 
the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate 
variables with respect to the symplectic form on the time–frequency domain: from the point of 
view of the linear canonical transformation, the Fourier transform is rotation by 90° in the time–
frequency domain, and preserves the symplectic form. 

Suppose f (x) is an integrable and square-integrable function. Without loss of generality, assume 
that f (x) is normalized: 

2| ( ) | 1.f x dx
∞

−∞
=∫

It follows from the Plancherel theorem that f̂ (ξ) is also normalized. 
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The spread around x = 0 may be measured by the dispersion about zero defined by:

2 2
0 ( ) | ( ) | .D f x f x dx

∞

−∞
= ∫

In probability terms, this is the second moment of |f (x)|2 about zero. 

The uncertainty principle states that, if f (x) is absolutely continuous and the functions x·f (x) and 
f ′(x) are square integrable, then:

( )0 0 2

1ˆ( )
16

D f D f
π

≥
.

The equality is attained only in the case:

2

2

2 2

1

1

( )
ˆ ( )

x

f x C e

f C e

π
σ

πσ ξξ σ

−

−

=

∴ =

where σ > 0 is arbitrary and C1 = 
4

2
σ

so that f is L2-normalized. In other words, where f is a 

(normalized) Gaussian function with variance σ2, centered at zero, and its Fourier transform is a 
Gaussian function with variance σ−2. 

In fact, this inequality implies that: 

( ) 2
2 2 2

0 0 2

1ˆ( ) | ( ) | ( ) ( )
16

x x f x dx f dξ ξ ξ ξ
π

∞ ∞

−∞ −∞

 − − ≥ 
 ∫ ∫

for any x0, ξ0 ∈ ℝ. 

In quantum mechanics, the momentum and position wave functions are Fourier transform pairs, 
to within a factor of Planck’s constant. With this constant properly taken into account, the inequal-
ity above becomes the statement of the Heisenberg uncertainty principle. 

A stronger uncertainty principle is the Hirschman uncertainty principle, which is expressed as: 

( ) 22 ˆ log
2
eH f H f   + ≥      

where H(p) is the differential entropy of the probability density function p(x): 

( ) ( ) log( ( ))H p p x p x dx
∞

∞−
= −∫

where the logarithms may be in any base that is consistent. The equality is attained for a Gaussian, 
as in the previous case. 
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Sine and Cosine Transforms

Fourier’s original formulation of the transform did not use complex numbers, but rather sines and 
cosines. Statisticians and others still use this form. An absolutely integrable function f for which 
Fourier inversion holds good can be expanded in terms of genuine frequencies (avoiding negative 
frequencies, which are sometimes considered hard to interpret physically) λ by:

~0
( ) ( ) cos(2 ) ( )sin(2 ) .( )f t a t b t dλ πλ λ πλ λ

∞
= +∫

This is called an expansion as a trigonometric integral, or a Fourier integral expansion. The coef-
ficient functions a and b can be found by using variants of the Fourier cosine transform and the 
Fourier sine transform (the normalisations are, again, not standardised): 

( ) 2 ( ) cos(2 )a f t t dtλ πλ
∞

−∞
= ∫

and 

( ) 2 ( )sin(2 ) .b f t t dtλ πλ
∞

−∞
= ∫

Older literature refers to the two transform functions, the Fourier cosine transform, a, and the 
Fourier sine transform, b. 

The function f can be recovered from the sine and cosine transform using:

0
( ) 2 ( ) cos 2 ( ) .( )f t f t d dτ πλ τ τ λ

∞ ∞

−∞
= −∫ ∫

together with trigonometric identities. This is referred to as Fourier’s integral formula. 

Spherical Harmonics

Let the set of homogeneous harmonic polynomials of degree k on ℝn be denoted by Ak. The set Ak 
consists of the solid spherical harmonics of degree k. The solid spherical harmonics play a sim-
ilar role in higher dimensions to the Hermite polynomials in dimension one. Specifically, if f (x) 
= e−π|x|2P(x) for some P(x) in Ak, then f̂ (ξ) = i−k f (ξ). Let the set Hk be the closure in L2(ℝn) of linear 
combinations of functions of the form f (|x|)P(x) where P(x) is in Ak. The space L2(ℝn) is then a di-
rect sum of the spaces Hk and the Fourier transform maps each space Hk to itself and is possible to 
characterize the action of the Fourier transform on each space Hk. 

Let f (x) = f0(|x|)P(x) (with P(x) in Ak), then:

0
ˆ ( ) (| |) ( )f F Pξ ξ ξ=

where:

2 2 2
2 2

0 0 2 20
2

( ) 2 ( ) (2 ) .
n k n k

k
n kF r i r f s J rs s dsπ π

+ − +
−−

+ −

∞
= ∫
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Here Jn + 2k − 2/2 denotes the Bessel function of the first kind with order n + 2k − 2/2. When k = 0 this 
gives a useful formula for the Fourier transform of a radial function. This is essentially the Hankel 
transform. Moreover, there is a simple recursion relating the cases n + 2 and n allowing to com-
pute, e.g., the three-dimensional Fourier transform of a radial function from the one-dimensional 
one. 

Restriction Problems

In higher dimensions it becomes interesting to study restriction problems for the Fourier trans-
form. The Fourier transform of an integrable function is continuous and the restriction of this 
function to any set is defined. But for a square-integrable function the Fourier transform could be 
a general class of square integrable functions. As such, the restriction of the Fourier transform of 
an L2(ℝn) function cannot be defined on sets of measure 0. It is still an active area of study to un-
derstand restriction problems in Lp for 1 < p < 2. Surprisingly, it is possible in some cases to define 
the restriction of a Fourier transform to a set S, provided S has non-zero curvature. The case when 
S is the unit sphere in ℝn is of particular interest. In this case the Tomas–Stein restriction theorem 
states that the restriction of the Fourier transform to the unit sphere in ℝn is a bounded operator 

on Lp provided 1 ≤ p ≤
2 2

3
n
n
+
+

. 

One notable difference between the Fourier transform in 1 dimension versus higher dimensions 
concerns the partial sum operator. Consider an increasing collection of measurable sets ER in-
dexed by R ∈ (0,∞): such as balls of radius R centered at the origin, or cubes of side 2R. For a given 
integrable function f, consider the function fR defined by: 

2ˆ( ) ( ) , .
R

ix n
R E

f x f e d xπ ξξ ξ⋅= ∈∫ �

Suppose in addition that f ∈ Lp(ℝn). For n = 1 and 1 < p < ∞, if one takes ER = (−R, R), then fR con-
verges to f in Lp as R tends to infinity, by the boundedness of the Hilbert transform. Naively one 
may hope the same holds true for n > 1. In the case that ER is taken to be a cube with side length R, 
then convergence still holds. Another natural candidate is the Euclidean ball ER = {ξ : |ξ| < R}. In 
order for this partial sum operator to converge, it is necessary that the multiplier for the unit ball 
be bounded in Lp(ℝn). For n ≥ 2 it is a celebrated theorem of Charles Fefferman that the multiplier 
for the unit ball is never bounded unless p = 2. In fact, when p ≠ 2, this shows that not only may fR 
fail to converge to f in Lp, but for some functions f ∈ Lp(ℝn), fR is not even an element of Lp. 

Fourier Transform on Function Spaces

On Lp Spaces

On L1:

The definition of the Fourier transform by the integral formula:

2ˆ ( ) ( )
n

i xf f x e dxπ ξξ − ⋅= ∫
is valid for Lebesgue integrable functions f; that is, f ∈ L1(ℝn). 
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The Fourier transform F : L1(ℝn) → L∞(ℝn) is a bounded operator. This follows from the observation 
that:

ˆ ( ) | ( ) | ,
n

f f x dxξ ≤ ∫
which shows that its operator norm is bounded by 1. Indeed, it equals 1, which can be seen, for 
example, from the transform of the rect function. The image of L1 is a subset of the space C0(ℝn) of 
continuous functions that tend to zero at infinity (the Riemann–Lebesgue lemma), although it is 
not the entire space. Indeed, there is no simple characterization of the image. 

On L2

Since compactly supported smooth functions are integrable and dense in L2(ℝn), the Plancherel 
theorem allows us to extend the definition of the Fourier transform to general functions in L2(ℝn) 
by continuity arguments. The Fourier transform in L2(ℝn) is no longer given by an ordinary Leb-
esgue integral, although it can be computed by an improper integral, here meaning that for an L2 
function f, 

2

| |
ˆ ( ) lim ( ) ix

x RR
f f x e dxπ ξξ − ⋅

≤→∞
= ∫

where the limit is taken in the L2 sense. (More generally, you can take a sequence of functions that 
are in the intersection of L1 and L2 and that converges to f in the L2-norm, and define the Fourier 
transform of f as the L2 -limit of the Fourier transforms of these functions). 

Many of the properties of the Fourier transform in L1 carry over to L2, by a suitable limiting argument. 

Furthermore, F : L2(ℝn) → L2(ℝn) is a unitary operator. For an operator to be unitary it is sufficient 
to show that it is bijective and preserves the inner product, so in this case these follow from the 
Fourier inversion theorem combined with the fact that for any f, g ∈ L2(ℝn) we have:

( ) ( ) ( ) ( ) .
n n

f x g x dx f x g x dx=∫ ∫� �
 

In particular, the image of L2(ℝn) is itself under the Fourier transform. 

On Other Lp

The definition of the Fourier transform can be extended to functions in Lp(ℝn) for 1 ≤ p ≤ 2 by de-
composing such functions into a fat tail part in L2 plus a fat body part in L1. In each of these spaces, 
the Fourier transform of a function in Lp(ℝn) is in Lq(ℝn), where q = p/p − 1 is the Hölder conju-
gate of p (by the Hausdorff–Young inequality). However, except for p = 2, the image is not easily 
characterized. Further extensions become more technical. The Fourier transform of functions in 
Lp for the range 2 < p < ∞ requires the study of distributions. In fact, it can be shown that there are 
functions in Lp with p > 2 so that the Fourier transform is not defined as a function. 

Tempered Distributions

One might consider enlarging the domain of the Fourier transform from L1 + L2 by considering 
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generalized functions, or distributions. A distribution on ℝn is a continuous linear functional on 
the space Cc(ℝn) of compactly supported smooth functions, equipped with a suitable topology. The 
strategy is then to consider the action of the Fourier transform on Cc(ℝn) and pass to distributions 
by duality. The obstruction to doing this is that the Fourier transform does not map Cc(ℝn) to 
Cc(ℝn). In fact the Fourier transform of an element in Cc(ℝn) can not vanish on an open set; The 
right space here is the slightly larger space of Schwartz functions. The Fourier transform is an 
automorphism on the Schwartz space, as a topological vector space, and thus induces an automor-
phism on its dual, the space of tempered distributions. The tempered distributions include all the 
integrable functions mentioned above, as well as well-behaved functions of polynomial growth and 
distributions of compact support. 

For the definition of the Fourier transform of a tempered distribution, let f and g be integrable 
functions, and let f̂  and ĝ be their Fourier transforms respectively. Then the Fourier transform 
obeys the following multiplication formula:

ˆ ˆ( ) ( ) ( ) ( ) .
n n

f x g x dx f x g x dx=∫ ∫� �

Every integrable function f defines (induces) a distribution Tf by the relation:

( ) ( ) ( )
nfT f x x dxϕ ϕ= ∫

for all Schwartz functions φ. So it makes sense to define Fourier transform T̂f of Tf by:

( )ˆ ˆ( )f fT Tϕ ϕ=

for all Schwartz functions φ. Extending this to all tempered distributions T gives the general defi-
nition of the Fourier transform. 

Distributions can be differentiated and the above-mentioned compatibility of the Fourier trans-
form with differentiation and convolution remains true for tempered distributions. 

Generalizations

Fourier–Stieltjes Transform

The Fourier transform of a finite Borel measure μ on ℝn is given by: 

2 .ˆ ( )
n

ixe dπ ξµ ξ µ− ⋅= ∫
This transform continues to enjoy many of the properties of the Fourier transform of integrable 
functions. One notable difference is that the Riemann–Lebesgue lemma fails for measures. In 
the case that dμ = f (x) dx, then the formula above reduces to the usual definition for the Fourier 
transform of f. In the case that μ is the probability distribution associated to a random variable 
X, the Fourier–Stieltjes transform is closely related to the characteristic function, but the typical 
conventions in probability theory take eixξ instead of e−2πixξ. In the case when the distribution has a 
probability density function this definition reduces to the Fourier transform applied to the proba-
bility density function, again with a different choice of constants. 
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The Fourier transform may be used to give a characterization of measures. Bochner’s theorem charac-
terizes which functions may arise as the Fourier–Stieltjes transform of a positive measure on the circle. 

Furthermore, the Dirac delta function, although not a function, is a finite Borel measure. Its Fou-
rier transform is a constant function (whose specific value depends upon the form of the Fourier 
transform used). 

Locally Compact Abelian Groups

The Fourier transform may be generalized to any locally compact abelian group. A locally compact 
abelian group is an abelian group that is at the same time a locally compact Hausdorff topological space 
so that the group operation is continuous. If G is a locally compact abelian group, it has a translation 
invariant measure μ, called Haar measure. For a locally compact abelian group G, the set of irreducible, 
i.e. one-dimensional, unitary representations are called its characters. With its natural group structure 
and the topology of pointwise convergence, the set of characters Ĝ is itself a locally compact abelian 
group, called the Pontryagin dual of G. For a function f in L1(G), its Fourier transform is defined by:

( ) ( ) ( ) for any .ˆ ˆ
G

f x f x d Gξ ξ µ ξ= ∈∫
The Riemann–Lebesgue lemma holds in this case; f̂ (ξ) is a function vanishing at infinity on Ĝ. 

Gelfand Transform

The Fourier transform is also a special case of Gelfand transform. In this particular context, it is 
closely related to the Pontryagin duality map defined above. 

Given an abelian locally compact Hausdorff topological group G, as before we consider space L1(G), 
defined using a Haar measure. With convolution as multiplication, L1(G) is an abelian Banach al-
gebra. It also has an involution given by:

( )* 1( ) .f g f g −=

Taking the completion with respect to the largest possibly C*-norm gives its enveloping C*-alge-
bra, called the group C*-algebra C*(G) of G. (Any C*-norm on L1(G) is bounded by the L1 norm, 
therefore their supremum exists.) 

Given any abelian C*-algebra A, the Gelfand transform gives an isomorphism between A and 
C0(A^), where A^ is the multiplicative linear functionals, i.e. one-dimensional representations, on 
A with the weak-* topology. The map is simply given by:

( )( )a aϕ ϕ 

It turns out that the multiplicative linear functionals of C*(G), after suitable identification, are ex-
actly the characters of G, and the Gelfand transform, when restricted to the dense subset L1(G) is 
the Fourier–Pontryagin transform. 

Compact Non-abelian Groups

The Fourier transform can also be defined for functions on a non-abelian group, provided that 
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the group is compact. Removing the assumption that the underlying group is abelian, irreducible 
unitary representations need not always be one-dimensional. This means the Fourier transform 
on a non-abelian group takes values as Hilbert space operators. The Fourier transform on compact 
groups is a major tool in representation theory and non-commutative harmonic analysis. 

Let G be a compact Hausdorff topological group. Let Σ denote the collection of all isomor-
phism classes of finite-dimensional irreducible unitary representations, along with a definite 
choice of representation U(σ) on the Hilbert space Hσ of finite dimension dσ for each σ ∈ Σ. If μ 
is a finite Borel measure on G, then the Fourier–Stieltjes transform of μ is the operator on Hσ 
defined by:

( ) )ˆ , , (gH G
U d g

σ

σµξ η ξ η µ= ∫

where U(σ) is the complex-conjugate representation of U(σ) acting on Hσ. If μ is absolutely continu-
ous with respect to the left-invariant probability measure λ on G, represented as:

d f dµ λ=

for some f ∈ L1(λ), one identifies the Fourier transform of f with the Fourier–Stieltjes transform of 
μ. 

The mapping:

ˆµ µ

defines an isomorphism between the Banach space M(G) of finite Borel measures and a closed 
subspace of the Banach space C∞(Σ) consisting of all sequences E = (Eσ) indexed by Σ of (bounded) 
linear operators Eσ : Hσ → Hσ for which the norm:

supE Eσ
σ∈∑

=|| || || ||

is finite. The “convolution theorem” asserts that, furthermore, this isomorphism of Banach spaces 
is in fact an isometric isomorphism of C* algebras into a subspace of C∞(Σ). Multiplication on M(G) 
is given by convolution of measures and the involution * defined by:

( )1( ) ,f g f g∗ −=

and C∞(Σ) has a natural C*-algebra structure as Hilbert space operators. 

The Peter–Weyl theorem holds, and a version of the Fourier inversion formula (Plancherel’s theo-
rem) follows: if f ∈ L2(G), then:

( )( )ˆ( ) tr ( ) gf g d f U σ
σ

σ

σ
∈Σ

= ∑

where the summation is understood as convergent in the L2 sense. 

The generalization of the Fourier transform to the noncommutative situation has also in part 
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contributed to the development of noncommutative geometry. In this context, a categorical gen-
eralization of the Fourier transform to noncommutative groups is Tannaka–Krein duality, which 
replaces the group of characters with the category of representations. However, this loses the con-
nection with harmonic functions. 

Alternatives

In signal processing terms, a function (of time) is a representation of a signal with perfect time 
resolution, but no frequency information, while the Fourier transform has perfect frequency res-
olution, but no time information: the magnitude of the Fourier transform at a point is how much 
frequency content there is, but location is only given by phase (argument of the Fourier transform 
at a point), and standing waves are not localized in time – a sine wave continues out to infinity, 
without decaying. This limits the usefulness of the Fourier transform for analyzing signals that are 
localized in time, notably transients, or any signal of finite extent. 

As alternatives to the Fourier transform, in time-frequency analysis, one uses time-frequency 
transforms or time-frequency distributions to represent signals in a form that has some time in-
formation and some frequency information – by the uncertainty principle, there is a trade-off be-
tween these. These can be generalizations of the Fourier transform, such as the short-time Fourier 
transform or fractional Fourier transform, or other functions to represent signals, as in wavelet 
transforms and chirplet transforms, with the wavelet analog of the (continuous) Fourier transform 
being the continuous wavelet transform. 

Applications

Some problems, such as certain differential equations, become easier to solve when the Fourier 
transform is applied. In that case the solution to the original problem is recovered using the in-
verse Fourier transform.

Perhaps the most important use of the Fourier transformation is to solve partial differential 
equations. Many of the equations of the mathematical physics of the nineteenth century can be 
treated this way. Fourier studied the heat equation, which in one dimension and in dimension-
less units is:

2

2

( , ) ( , ) .y x t y x t
x t

∂ ∂
=

∂ ∂

The example we will give, a slightly more difficult one, is the wave equation in one dimension, 

2 2

2 2

( , ) ( , ) .y x t y x t
x t

∂ ∂
∂ ∂

=
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As usual, the problem is not to find a solution: there are infinitely many. The problem is that of the 
so-called “boundary problem”: find a solution which satisfies the “boundary conditions”:

( ,0)( ,0) ( ), ( ).y xy x f x g x
t

∂
= =

∂

Here, f and g are given functions. For the heat equation, only one boundary condition can be re-
quired (usually the first one). But for the wave equation, there are still infinitely many solutions 
y which satisfy the first boundary condition. But when one imposes both conditions, there is only 
one possible solution. 

It is easier to find the Fourier transform ŷ of the solution than to find the solution directly. This is 
because the Fourier transformation takes differentiation into multiplication by the variable, and 
so a partial differential equation applied to the original function is transformed into multiplication 
by polynomial functions of the dual variables applied to the transformed function. After ŷ is deter-
mined, we can apply the inverse Fourier transformation to find y. 

Fourier’s method is as follows. First, note that any function of the forms:

cos 2 ( )  or sin 2 ( )( ) ( )x t x tπξ πξ± ±

satisfies the wave equation. These are called the elementary solutions. 

Second, note that therefore any integral:

( )
0

( , ) ( ) cos 2 ( ) ( ) cos 2 ( ) ( )sin 2 ( ) ( )sin 2 ( )( ) ( ) ( )y x t a x t a x t b x t b x t dξ πξ ξ πξ ξ πξ ξ πξ ξ
∞

+ − + −= + + − + + + −∫

(for arbitrary a+, a−, b+, b−) satisfies the wave equation. (This integral is just a kind of continuous 
linear combination, and the equation is linear.) 

Now this resembles the formula for the Fourier synthesis of a function. In fact, this is the real in-
verse Fourier transform of a± and b± in the variable x. 

The third step is to examine how to find the specific unknown coefficient functions a± and b± that 
will lead to y satisfying the boundary conditions. We are interested in the values of these solutions 
at t = 0. So we will set t = 0. Assuming that the conditions needed for Fourier inversion are satis-
fied, we can then find the Fourier sine and cosine transforms (in the variable x) of both sides and 
obtain:

2 ( ,0)cos(2 )y x x dx a a
∞

∞
πξ + −−

= +∫

and 

2 ( ,0)sin( .2 )y x x dx b b
∞

∞
πξ + −−

= +∫

Similarly, taking the derivative of y with respect to t and then applying the Fourier sine and cosine 
transformations yields,
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( )2
( ,0) sin(2 ) (2 )y u x dx a a

t
∞

∞

∂ πξ πξ
∂ + −−

= − +∫

and 

( )2
( ,0) cos(2 ) (2 ) .y u x dx b b

t
∞

∞

∂ πξ πξ
∂ + −−

= −∫

These are four linear equations for the four unknowns a± and b±, in terms of the Fourier sine and 
cosine transforms of the boundary conditions, which are easily solved by elementary algebra, pro-
vided that these transforms can be found. 

In summary, we chose a set of elementary solutions, parametrised by ξ, of which the general solu-
tion would be a (continuous) linear combination in the form of an integral over the parameter ξ. 
But this integral was in the form of a Fourier integral. The next step was to express the boundary 
conditions in terms of these integrals, and set them equal to the given functions f and g. But these 
expressions also took the form of a Fourier integral because of the properties of the Fourier trans-
form of a derivative. The last step was to exploit Fourier inversion by applying the Fourier trans-
formation to both sides, thus obtaining expressions for the coefficient functions a± and b± in terms 
of the given boundary conditions f and g. 

From a higher point of view, Fourier’s procedure can be reformulated more conceptually. Since 
there are two variables, we will use the Fourier transformation in both x and t rather than operate 
as Fourier did, who only transformed in the spatial variables. Note that ŷ must be considered in 
the sense of a distribution since y(x, t) is not going to be L1: as a wave, it will persist through time 
and thus is not a transient phenomenon. But it will be bounded and so its Fourier transform can 
be defined as a distribution. The operational properties of the Fourier transformation that are 
relevant to this equation are that it takes differentiation in x to multiplication by 2πiξ and differen-
tiation with respect to t to multiplication by 2πif where f is the frequency. Then the wave equation 
becomes an algebraic equation in ŷ: 

2 2ˆ ˆ( , ) ( , ).y f f y fξ ξ ξ=

This is equivalent to requiring ŷ(ξ, f ) = 0 unless ξ = ±f. Right away, this explains why the choice 
of elementary solutions we made earlier worked so well: obviously f̂ = δ(ξ ± f ) will be solu-
tions. Applying Fourier inversion to these delta functions, we obtain the elementary solutions 
we picked earlier. But from the higher point of view, one does not pick elementary solutions, but 
rather considers the space of all distributions which are supported on the (degenerate) conic 
ξ2 − f2 = 0. 

We may as well consider the distributions supported on the conic that are given by distributions 
of one variable on the line ξ = f plus distributions on the line ξ = −f as follows: if ϕ is any test 
function:

ˆ ( , ) ( , ) ( , ) ,y f d df s d s dφ ξ ξ φ ξ ξ ξ φ ξ ξ ξ+ −= + −∫∫ ∫ ∫
where s+, and s−, are distributions of one variable. 
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Then Fourier inversion gives, for the boundary conditions, something very similar to what we had 
more concretely above (put ϕ(ξ, f ) = e2πi(xξ+tf ), which is clearly of polynomial growth): 

2 0( ,0) { ( ) ( )} i xy x s s e dπ ξξ ξ ξ+
+ −= ∫ +

and 

2 0( ,0) ( ) ( ) 2 .{ } i xy x s s i e d
t

π ξξ ξ π ξ ξ+
+ −

∂
= −

∂ ∫

Now, as before, applying the one-variable Fourier transformation in the variable x to these func-
tions of x yields two equations in the two unknown distributions s± (which can be taken to be ordi-
nary functions if the boundary conditions are L1 or L2). 

From a calculational point of view, the drawback of course is that one must first calculate the 
Fourier transforms of the boundary conditions, then assemble the solution from these, and then 
calculate an inverse Fourier transform. Closed form formulas are rare, except when there is some 
geometric symmetry that can be exploited, and the numerical calculations are difficult because of 
the oscillatory nature of the integrals, which makes convergence slow and hard to estimate. For 
practical calculations, other methods are often used. 

The twentieth century has seen the extension of these methods to all linear partial differential 
equations with polynomial coefficients, and by extending the notion of Fourier transformation to 
include Fourier integral operators, some non-linear equations as well. 

Fourier Transform Spectroscopy

The Fourier transform is also used in nuclear magnetic resonance (NMR) and in other kinds of 
spectroscopy, e.g. infrared (FTIR). In NMR an exponentially shaped free induction decay (FID) 
signal is acquired in the time domain and Fourier-transformed to a Lorentzian line-shape in the 
frequency domain. The Fourier transform is also used in magnetic resonance imaging (MRI) and 
mass spectrometry. 

Quantum Mechanics

The Fourier transform is useful in quantum mechanics in two different ways. To begin with, the 
basic conceptual structure of Quantum Mechanics postulates the existence of pairs of complemen-
tary variables, connected by the Heisenberg uncertainty principle. For example, in one dimension, 
the spatial variable q of, say, a particle, can only be measured by the quantum mechanical “position 
operator” at the cost of losing information about the momentum p of the particle. Therefore, the 
physical state of the particle can either be described by a function, called “the wave function”, of q 
or by a function of p but not by a function of both variables. The variable p is called the conjugate 
variable to q. In Classical Mechanics, the physical state of a particle (existing in one dimension, for 
simplicity of exposition) would be given by assigning definite values to both p and q simultaneous-
ly. Thus, the set of all possible physical states is the two-dimensional real vector space with a p-axis 
and a q-axis called the phase space. 

In contrast, quantum mechanics chooses a polarisation of this space in the sense that it picks a 
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subspace of one-half the dimension, for example, the q-axis alone, but instead of considering only 
points, takes the set of all complex-valued “wave functions” on this axis. Nevertheless, choosing 
the p-axis is an equally valid polarisation, yielding a different representation of the set of possible 
physical states of the particle which is related to the first representation by the Fourier transfor-
mation:

2
( ) ( ) .

pqi
hp q e dq

π
φ ψ= ∫

Physically realisable states are L2, and so by the Plancherel theorem, their Fourier transforms are 
also L2. Note that since q is in units of distance and p is in units of momentum, the presence of 
Planck’s constant in the exponent makes the exponent dimensionless, as it should be.

Therefore, the Fourier transform can be used to pass from one way of representing the state of the 
particle, by a wave function of position, to another way of representing the state of the particle: 
by a wave function of momentum. Infinitely many different polarisations are possible, and all are 
equally valid. Being able to transform states from one representation to another is sometimes 
convenient. 

The other use of the Fourier transform in both quantum mechanics and quantum field theory is to 
solve the applicable wave equation. In non-relativistic quantum mechanics, Schrödinger’s equa-
tion for a time-varying wave function in one-dimension, not subject to external forces, is:

2

2 ( , ) ( , ).
2
hx t i x t

x t
ψ ψ

π
∂ ∂

=
∂ ∂

This is the same as the heat equation except for the presence of the imaginary unit i. Fourier meth-
ods can be used to solve this equation. 

In the presence of a potential, given by the potential energy function V(x), the equation becomes:

2

2 ( , ) ( ) ( , ) ( , ).
2
hx t V x x t i x t

x t
ψ ψ ψ

π
∂ ∂

+ =
∂ ∂

The “elementary solutions”, as we referred to them above, are the so-called “stationary states” of 
the particle, and Fourier’s algorithm, as described above, can still be used to solve the boundary 
value problem of the future evolution of ψ given its values for t = 0. Neither of these approaches 
is of much practical use in quantum mechanics. Boundary value problems and the time-evolution 
of the wave function is not of much practical interest: it is the stationary states that are most im-
portant. 

In relativistic quantum mechanics, Schrödinger’s equation becomes a wave equation as was usual 
in classical physics, except that complex-valued waves are considered. A simple example, in the 
absence of interactions with other particles or fields, is the free one-dimensional Klein–Gordon–
Schrödinger–Fock equation, this time in dimensionless units:

2 2

2 21 ( , ) ( , ).x t x t
x t
∂ ∂ψ ψ
∂ ∂

 
+ = 

 
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This is, from the mathematical point of view, the same as the wave equation of classical physics 
solved above (but with a complex-valued wave, which makes no difference in the methods). This is 
of great use in quantum field theory: each separate Fourier component of a wave can be treated as 
a separate harmonic oscillator and then quantized, a procedure known as “second quantization”. 
Fourier methods have been adapted to also deal with non-trivial interactions. 

Signal Processing

The Fourier transform is used for the spectral analysis of time-series. The subject of statistical 
signal processing does not, however, usually apply the Fourier transformation to the signal itself. 
Even if a real signal is indeed transient, it has been found in practice advisable to model a signal 
by a function (or, alternatively, a stochastic process) which is stationary in the sense that its char-
acteristic properties are constant over all time. The Fourier transform of such a function does not 
exist in the usual sense, and it has been found more useful for the analysis of signals to instead take 
the Fourier transform of its autocorrelation function. 

The autocorrelation function R of a function f is defined by:

1( ) lim ( ) ( ) .
2

T

f TT
R f t f t dt

T∞
τ τ

−→
= +∫

This function is a function of the time-lag τ elapsing between the values of f to be correlated. 

For most functions f that occur in practice, R is a bounded even function of the time-lag τ and for 
typical noisy signals it turns out to be uniformly continuous with a maximum at τ = 0. 

The autocorrelation function, more properly called the autocovariance function unless it is nor-
malized in some appropriate fashion, measures the strength of the correlation between the values 
of f separated by a time lag. This is a way of searching for the correlation of f with its own past. It is 
useful even for other statistical tasks besides the analysis of signals. For example, if f (t) represents 
the temperature at time t, one expects a strong correlation with the temperature at a time lag of 
24 hours. 

It possesses a Fourier transform:

2( ) ( ) .i
f fP R e d

∞ π ξτ

∞
ξ τ τ−

−
= ∫

This Fourier transform is called the power spectral density function of f. (Unless all periodic compo-
nents are first filtered out from f, this integral will diverge, but it is easy to filter out such periodicities.) 

The power spectrum, as indicated by this density function P, measures the amount of variance 
contributed to the data by the frequency ξ. In electrical signals, the variance is proportional to 
the average power (energy per unit time), and so the power spectrum describes how much the 
different frequencies contribute to the average power of the signal. This process is called the spec-
tral analysis of time-series and is analogous to the usual analysis of variance of data that is not a 
time-series (ANOVA). 

Knowledge of which frequencies are “important” in this sense is crucial for the proper design of 
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filters and for the proper evaluation of measuring apparatuses. It can also be useful for the scien-
tific analysis of the phenomena responsible for producing the data. 

The power spectrum of a signal can also be approximately measured directly by measuring the average 
power that remains in a signal after all the frequencies outside a narrow band have been filtered out. 

Spectral analysis is carried out for visual signals as well. The power spectrum ignores all phase 
relations, which is good enough for many purposes, but for video signals other types of spectral 
analysis must also be employed, still using the Fourier transform as a tool. 

Other Notations

Other common notations for f̂ (ξ) include: 

( ) ( )( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), { }, ( ) , ( ) .( ) { }f f F f f f F j f f t f tξ ω ξ ξ ξ ω ω ω         

Denoting the Fourier transform by a capital letter corresponding to the letter of function being 
transformed (such as f (x) and F(ξ)) is especially common in the sciences and engineering. In elec-
tronics, omega (ω) is often used instead of ξ due to its interpretation as angular frequency, some-
times it is written as F( jω), where j is the imaginary unit, to indicate its relationship with the Laplace 
transform, and sometimes it is written informally as F(2πf ) in order to use ordinary frequency. In 
some contexts such as particle physics, the same symbol f may be used for both for a function as 
well as it Fourier transform, with the two only distinguished by their argument: 1 2( )f k k+ would 
refer to the Fourier transform because of the momentum argument, while 0( )f x rπ+ 

would refer 
to the original function because of the positional argument. Although tildes may be used as in f to 
indicate Fourier transforms, tildes may also be used to indicate a modification of a quantity with a 

more Lorentz invariant form, such as � 3(2 ) 2
dkdk
π ω

= , so care must be taken. 

The interpretation of the complex function f̂ (ξ) may be aided by expressing it in polar coordinate 
form:

( )ˆ ( ) ( ) if A e ϕ ξξ ξ=

in terms of the two real functions A(ξ) and φ(ξ) where: 

,ˆ( ) ( )A fξ ξ=

is the amplitude and,

( )ˆ( ) arg ( ) ,fϕ ξ ξ=

is the phase. 

Then the inverse transform can be written: 

(2 ( ))( ) ( ) ,i xf x A e d
∞ πξ ϕ ξ

∞
ξ ξ+

−
= ∫
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which is a recombination of all the frequency components of f (x). Each component is a complex 
sinusoid of the form e2πixξ whose amplitude is A(ξ) and whose initial phase angle (at x = 0) is φ(ξ). 

The Fourier transform may be thought of as a mapping on function spaces. This mapping is here 
denoted F and F( f ) is used to denote the Fourier transform of the function f. This mapping is 
linear, which means that F can also be seen as a linear transformation on the function space and 
implies that the standard notation in linear algebra of applying a linear transformation to a vec-
tor (here the function f ) can be used to write F f instead of F( f ). Since the result of applying the 
Fourier transform is again a function, we can be interested in the value of this function evaluated 
at the value ξ for its variable, and this is denoted either as F f (ξ) or as ( F f )(ξ). Notice that in the 
former case, it is implicitly understood that F is applied first to f and then the resulting function is 
evaluated at ξ, not the other way around. 

In mathematics and various applied sciences, it is often necessary to distinguish between a func-
tion f and the value of f when its variable equals x, denoted f (x). This means that a notation like 
F( f (x)) formally can be interpreted as the Fourier transform of the values of f at x. Despite this 
flaw, the previous notation appears frequently, often when a particular function or a function of a 
particular variable is to be transformed. For example, 

rect( ) sinc( )( )x ξ=

is sometimes used to express that the Fourier transform of a rectangular function is a sinc func-
tion:

02
0( ( )) ( ( )) i xf x x f x e π ξ+ = 

is used to express the shift property of the Fourier transform. 

Notice, that the last example is only correct under the assumption that the transformed function 
is a function of x, not of x0. 

Other Conventions

The Fourier transform can also be written in terms of angular frequency: 

2 ,ω πξ=

whose units are radians per second. 

The substitution ξ = 
2
ω
π

into the formulas above produces this convention: 

ˆ ( ) ( ) .
n

i xf f x e dxωω − ⋅= ∫�
Under this convention, the inverse transform becomes: 

ˆ1( ) ( ) .
(2 ) n

i x
nf x f e dωω ω

π
⋅= ∫
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Unlike the convention followed here, when the Fourier transform is defined this way, it is no lon-
ger a unitary transformation on L2(ℝn). There is also less symmetry between the formulas for the 
Fourier transform and its inverse. 

Another convention is to split the factor of (2π)n evenly between the Fourier transform and its in-
verse, which leads to definitions: 

2

2

1( ) ( ) ,
(2 )

1( ) ( ) .
(

ˆ

ˆ

2 )

n

n

i x
n

i x
n

f f x e dx

f x f e d

ω

ω

ω
π

ω ω
π

− ⋅

⋅

=

=

∫

∫





Under this convention, the Fourier transform is again a unitary transformation on L2(ℝn). It also 
restores the symmetry between the Fourier transform and its inverse. 

Variations of all three conventions can be created by conjugating the complex-exponential kernel 
of both the forward and the reverse transform. The signs must be opposites. Other than that, the 
choice is (again) a matter of convention. 

Summary of popular forms of the Fourier transform, one-dimensional 

Ordinary frequency 
ξ (Hz) Unitary 

def
2

1 2 3

2
1

( )  ( ) 2 (2 ) (2 )

( ) (

ˆ ˆ ˆ

)ˆ

ix

ix

f f x e dx f f

f x f e d

∞ π ξ

∞

∞ π ξ

∞

ξ π πξ πξ

ξ ξ

− ⋅

−

⋅

−

= ⋅ = ⋅ =

= ⋅

∫
∫

Angular frequency 
ω (rad/s) 

Unitary 

def

2 1 3

2

1 1 1( )  ( ) ( )
22 2 2

1( )

ˆ

( )

ˆ ˆ

ˆ
2

i x

i x

f f x e dx f f

f x f e d

∞ ω

∞

∞ ω

∞

ωω ω
ππ π π

ω ω
π

− ⋅

−

⋅

−

 = ⋅ = ⋅ = ⋅ 
 

= ⋅

∫

∫

Non-uni-
tary 

def

3 1 2

3

( )  ( ) 2 ( )
2

1( ) ( )
2

ˆ ˆ ˆ

ˆ

i x

i x

f f x e dx f f

f x f e d

∞ ω

∞

∞ ω

∞

ωω π ω
π

ω ω
π

− ⋅

−

⋅

−

 = ⋅ = = ⋅ 
 

= ⋅

∫

∫

Generalization for n-dimensional functions 

Ordinary frequency 
ξ (Hz) Unitary 

def
2 2

1 2 3

2
1

( )  ( ) (2 ) (2 ) (2 )

( ) ( )

ˆ ˆ ˆ

ˆ
n

n

n
ix

ix

f f x e dx f f

f x f e d

π ξ

π ξ

ξ π πξ πξ

ξ ξ

− ⋅

⋅

= = =

=

∫
∫



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Angular frequency 
ω (rad/s) 

Unitary 

def

2 1 3
2 2 2

2
2

1 1 1( )  ( ) ( )
2(2 ) (2 ) (2 )

1( ) ( )
(2

ˆ ˆ ˆ

ˆ

)

n

n

i x
n n n

i x
n

f f x e dx f f

f x f e d

ω

ω

ωω ω
π

π π π

ω ω
π

− ⋅

⋅

 = = = 
 

=

∫

∫





Non-uni-
tary 

def
2

3 1 2

3

( )  ( ) (2 ) ( )
2

1( ) ( )
(2

ˆ ˆ ˆ

)
ˆ

n

n

n
i x

i x
n

f f x e dx f f

f x f e d

ω

ω

ωω π ω
π

ω ω
π

− ⋅

⋅

 = = = 
 

=

∫

∫





The characteristic function of a random variable is the same as the Fourier–Stieltjes transform of 
its distribution measure, but in this context it is typical to take a different convention for the con-
stants. Typically characteristic function is defined:

( ) ( ).it X it x
Xe e d xµ⋅ ⋅= ∫

As in the case of the “non-unitary angular frequency” convention above, the factor of 2π appears 
in neither the normalizing constant nor the exponent. Unlike any of the conventions appearing 
above, this convention takes the opposite sign in the exponent. 

Computation Methods

The appropriate computation method largely depends how the original mathematical function is 
represented and the desired form of the output function. 

Since the fundamental definition of a Fourier transform is an integral, functions that can be ex-
pressed as closed-form expressions are commonly computed by working the integral analytically 
to yield a closed-form expression in the Fourier transform conjugate variable as the result. 

Many computer algebra systems such as Matlab and Mathematica that are capable of symbolic 
integration are capable of computing Fourier transforms analytically. For example, to compute 
the Fourier transform of f (t) = cos(6πt) e−πt2 one might enter the command integrate cos(6*pi*t) 
exp(−pi*t^2) exp(-i*2*pi*f*t) from -inf to inf into Wolfram Alpha. 

Numerical Integration of Closed-form Functions

If the input function is in closed-form and the desired output function is a series of ordered pairs 
(for example a table of values from which a graph can be generated) over a specified domain, then 
the Fourier transform can be generated by numerical integration at each value of the Fourier con-
jugate variable (frequency, for example) for which a value of the output variable is desired. Note 
that this method requires computing a separate numerical integration for each value of frequency 
for which a value of the Fourier transform is desired. The numerical integration approach works 
on a much broader class of functions than the analytic approach, because it yields results for func-
tions that do not have closed form Fourier transform integrals. 

________________________ WORLD TECHNOLOGIES ________________________



WT

	 Signals and Systems: An Engineering Perspective142

Numerical Integration of a Series of Ordered Pairs

If the input function is a series of ordered pairs (for example, a time series from measuring an 
output variable repeatedly over a time interval) then the output function must also be a series of 
ordered pairs (for example, a complex number vs. frequency over a specified domain of frequen-
cies), unless certain assumptions and approximations are made allowing the output function to be 
approximated by a closed-form expression. In the general case where the available input series of 
ordered pairs are assumed be samples representing a continuous function over an interval (am-
plitude vs. time, for example), the series of ordered pairs representing the desired output function 
can be obtained by numerical integration of the input data over the available interval at each value 
of the Fourier conjugate variable (frequency, for example) for which the value of the Fourier trans-
form is desired. 

Explicit numerical integration over the ordered pairs can yield the Fourier transform output value 
for any desired value of the conjugate Fourier transform variable (frequency, for example), so that 
a spectrum can be produced at any desired step size and over any desired variable range for accu-
rate determination of amplitudes, frequencies, and phases corresponding to isolated peaks. Unlike 
limitations in DFT and FFT methods, explicit numerical integration can have any desired step size 
and compute the Fourier transform over any desired range of the conjugate Fourier transform 
variable (for example, frequency). 

Discrete Fourier Transforms and Fast Fourier Transforms

If the ordered pairs representing the original input function are equally spaced in their input vari-
able (for example, equal time steps), then the Fourier transform is known as a discrete Fourier 
transform (DFT), which can be computed either by explicit numerical integration, by explicit eval-
uation of the DFT definition, or by fast Fourier transform (FFT) methods. In contrast to explicit 
integration of input data, use of the DFT and FFT methods produces Fourier transforms described 
by ordered pairs of step size equal to the reciprocal of the original sampling interval. For example, 
if the input data is sampled every 10 seconds, the output of DFT and FFT methods will have a 0.1 
Hz frequency spacing. 

Fourier Transform of Standards Signals

Impulse Function δ (t)

Given ( ) ( ),x t tδ=

1 for t 0
(t)

0 for t 0
=

δ =  ≠

Then

jù t jù t jù tX( ) x(t)e (t =)e t 0 1ù dt dt eδ
∞

−

− −∞

∞

−

−∞
= = = =∫ ∫
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FT
F[ (t)] 1 or (t) 1δ δ∴ = ↔

Hence, the Fourier Transform of a unit impulse function is unity.

X( ) 1 for allω ω=

X( ) 0 for allω ω=  

The impulse function with its magnitude and phase spectra are shown in below figure:

 

∴                                                                          F δ t  = 1           or δ t FT
 1 

Hence , the Fourier Transform of a unit impulse function is unity.   
 X ω  = 1     for all ω 

      X ω = 0     for all ω   
The impulse  function with its magnitude and phase spectra are shown in below figure: 

 
 
Similarly,  

F δ t − to  =  δ t − to e−jωtdt = e−jωt0  i. e. δ(t − to)
FT
 e−jωto

∞

−∞

 

2. Single Sided Real exponential function 𝐞𝐞−𝐚𝐚𝐭𝐭𝐮𝐮(𝐭𝐭) 

Given  x t = e−at u t ,                  u(t) =  1  fort ≥ 0
0  fort < 0

  
Then 

X ω =  x t e−jωtdt =  e−at u t e−jωtdt
∞

−∞

∞

−∞

 

=  e−at e−jωtdt =  e−(a+jω)tdt =  e(− a +jω  t

− a + jω  
∞

0

∞

0 0

∞

=   e−∞ − e0

−(a + jω) 

= 0 − 1
−(a + jω) = 1

a + jω 

∴ F e−at u t  = 1
a+jω    or e−at u t FT

 1
a+jω 

Now,   X ω = 1
a+jω =  a−jω

 a+jω (a−jω) 

                       = a−jω
a2+ω2 = a

a2+ω2 − j ω
a2+ω2 =  1

 a2+ω2  – tan−1 ω
a
  

∴  X(ω) = 1
 a2 + ω2  ,  X ω =  − tan−1 ω

a
 forallω 

Figure shows the single-sided exponential function with its magnitude and phase spectra. 

Similarly,

( )0 0
FT

o o
j t j tj t

odt F[ (t t t  e  i. .)] ( ät  e  t t)e e−
∞

− ω − ωω

−∞

δ − = δ − ↔= −∫

Single Sided Real Exponential Function 𝐞 –𝐚𝐭 u(𝐭)

Given at 1 fort 0
x(t) = e u(t), u(t) =

0 fort 0
− ≥

 <
Then,

j t at j tx( ) = x(t) e dt = e u(t) e dt
∞ ∞

− ω − − ω

−∞ −∞

ω ∫ ∫

( a+j ) t at 0
at j t (a+j ) t

0 0 0

e e e= e e dt = e dt
(a+j ) (a j )

∞∞ ∞ − ω −
− − ω − ω   −

= = − ω − + ω 
∫ ∫

0 1 1=
(a j ) a j
−

=
− + ω + ω

FT
at at1 1F[e u(t)] or e u(t)

a j a j
− −∴ = ↔

+ ω + ω

Now,

1 a jX( )
a j (a )(a )

− ω
ω = =

+ ω +ω −ω
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1
2 2 2 2 2 2 2 2

a j a 1j tan
a a a aa

−− ω ω ω = = − = − +ω +ω +ω  +ω

1

2 2

1X( ) , X( ) tan for all
aa

− ω ∴ ω = ω = − ω  +ω

Figure shows the single-sided exponential function with its magnitude and phase spectra.

 
 

3.Double sided real exponential function 𝐞𝐞−𝐚𝐚 𝐭𝐭  
Given x t = e−a t  

∴ x t = e−a t =  e−a −t =eat fort ≤ 0
e−at = e−at fort ≥ 0 

  

 = e−a −t u −t + e−at u t  
= eat u −t + e−at u(t) 

X ω =  x t e−jωtdt
∞

−∞

 

=  eat e−jωtdt +  e−at e−jωtdt =  e a−jω tdt +  e− a+jω tdt
∞

0

0

−∞

∞

0

0

−∞

 

 =  e− a−jω tdt +   e− a+jω tdt = ∞
0

∞
0  e− a−jω  t

−(a−jω)  0

∞
+  e− a +jω  t

−(a+jω)  0

∞
 

=  e
−∞−e−0

−(a−jω) + e−∞−e−0

−(a+jω) = 1
a−jω + 1

a+jω =  2a
a2+ω2 

∴ F e−a t  =  2a
a2 + ω2 ore−a t FT

 2a
a2 + ω2 

∴  X ω  =  2a
a2 + ω2 forallω 

And                         X ω = 0      forallω  
A Two sided exponential function and its amplitude and phase spectra are shown in figures 
below: 
 

 
4.  Complex Exponential Function𝐞𝐞𝐣𝐣𝛚𝛚𝟎𝟎𝐭𝐭 : 

Double Sided Real Exponential Function e−a|t|

Given a tx t)  e( = −

a( t) = at
a t

at at

e e fo
0

x(t) 
=

=
rt 0

e
e  

 
e fort

− −
−

− −

 ≤∴ = 
≥

ate a( t) + e u(t)−= − −

at at=e u( t) + e u(t)−−

j t tx e( )= (t) dx  
∞

− ω

−∞

ω ∫

j )at j t at t (a j (a+t ) t

0

j

0

= de e dt+ e e dt e dt+ e t
∞ ∞

ω−
∞ ∞

ω ω ω

−∞ −

− − −

∞

− =∫ ∫ ∫ ∫

(a j (a+j
(a j (

) t ) t
) t ) t

.

a+

0 0
0 .0

j e ee d e d
(

+
a +

t t =
) )j (a j

− ∞−∞ −
− − −

∞ω ω∞ω ω

− − −
   

+   ω ω   
∫ ∫

2

0 0

2

e
j

1 1 2a
) )

e e e
(a j (a + a j a + j a  + 

−∞ − −∞ −

ω
− −

−
+ = +

ω− − −
=

ω ω ω

a
2 2

FT
a[t] [t]

2 2

2a 2aF( ) oe e
a  + a  

r
+ 

− −∴ ↔=
ω ω
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2 2 r
a

2a[x( )] fo all
 + 

∴ ω = ω
ω

And x( ) 0 for allω = ω  

A Two sided exponential function and its amplitude and phase spectra are shown in figures below:

 
 

3.Double sided real exponential function 𝐞𝐞−𝐚𝐚 𝐭𝐭  
Given x t = e−a t  

∴ x t = e−a t =  e−a −t =eat fort ≤ 0
e−at = e−at fort ≥ 0 

  

 = e−a −t u −t + e−at u t  
= eat u −t + e−at u(t) 

X ω =  x t e−jωtdt
∞

−∞

 

=  eat e−jωtdt +  e−at e−jωtdt =  e a−jω tdt +  e− a+jω tdt
∞

0

0

−∞

∞

0

0

−∞

 

 =  e− a−jω tdt +   e− a+jω tdt = ∞
0

∞
0  e− a−jω  t

−(a−jω)  0

∞
+  e− a +jω  t

−(a+jω)  0

∞
 

=  e
−∞−e−0

−(a−jω) + e−∞−e−0

−(a+jω) = 1
a−jω + 1

a+jω =  2a
a2+ω2 

∴ F e−a t  =  2a
a2 + ω2 ore−a t FT

 2a
a2 + ω2 

∴  X ω  =  2a
a2 + ω2 forallω 

And                         X ω = 0      forallω  
A Two sided exponential function and its amplitude and phase spectra are shown in figures 
below: 
 

 
4.  Complex Exponential Function𝐞𝐞𝐣𝐣𝛚𝛚𝟎𝟎𝐭𝐭 : 

Complex Exponential Function ejw0t

To find the Fourier Transform of complex exponential function 0j te ω , consider finding the inverse 
Fourier transform of 0( )δ ω−ω . Let,

) =  (ω δ ω−ω

1 1
0

j t1x(t) = F [ )] F [  ( )] )X( X( de
2

∞− − ω

−∞
∴ ω = δ ω−ω = ω ω

π ∫

0tt
0

jj1 1=  d( ) e e
2 2

∞ ωω

−∞
δ ω−ω ω =

π π∫

0
0

j t
t

0
j1 1

0
eF [ )] o (r F [2 )] e
2

(
ω

ω− −∴ δ ω−ω = πδ ω−ω =
π

0t
0

jF[e ] = 2 )(ω= πδ ω−ω

Or 0
F

j t
0

T
e 2 )(ω πδ ω−ω↔

Constant Amplitude

Let x(t) =1  t−∞ ≤ ≤ ∞

 The waveform of a constant function is shown in below figure .Let us consider a small section of 
constant function, say, of duration 𝜏.If we extend the small duration to infinity, we will get back 
the original function. Therefore, 

t

tx(t) Lt [rect ]
→∞ τ

 =  
 
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To find the Fourier Transform of complex exponential function ejω0t  , consider finding the 
inverse Fourier transform of   δ(ω−ω0). Let  

X ω = δ(ω−ω0) 
∴ x t = F−1 X ω  = F−1[δ(ω−ω0)] = 1

2π  X ω ejωtdω∞
−∞  

= 1
2π  δ(ω−ω0)ejωtdω∞

−∞ =  1
2π ejω0t 

∴ F−1 δ ω−ω0  = ejω0t

2π orF−1 2πδ ω−ω0  = ejω0t  

= F ejω0t = 2πδ(ω−ω0) 

Or    ejω0t FT
  2πδ(ω−ω0)  

 
5.  Constant Amplitude (1) 

Let       x t = 1                   − ∞ ≤ t ≤ ∞ 
The waveform of a constant function is shown in below figure .Let us consider a small section of 
constant function, say, of duration 𝜏𝜏.If we extend the small duration to infinity, we will get back 
the original function.Therefore  

x t = Lt 
t→∞

[rect  t
τ ] 

 

 

Where      rect  t
τ =  1                for−τ2 ≤ t ≤ τ

2
0                      elesewhere

  

By definition, the Fourier transform of x(t) is: 

X(ω) = F[x(t)] = F Lt 
t→∞

rect t
τ   = Lt 

t→∞
F rect  t

τ   

          = Lt 
t→∞

  1 τ 2 
−τ 2 e−jωt dt = Lt 

t→∞
 e−jω t

−jω  −τ 2 

τ 2 
 

          = Lt 
t→∞

 e−jω (τ 2 )−ejω (τ 2 )

−jω   = Lt 
t→∞

 2sin⁡[ω τ2 ]
ω   = Lt 

t→∞
 τ sin⁡[ω τ2 ]

ω(τ2)   

          = Lt 
t→∞

τ sa(ωτ2 ) = 2π  Lt 
t→∞

τ 2 
π sa(ωτ2 )  

Using the sampling property of the delta function  i. e.  Lt 
t→∞

τ 2 
π sa(ωτ2 ) =  δ(ω) , we get 

X(ω) = F Lt 
t→∞

rect t
τ   = 2πδ ω  

 

Where 
1trect
0
  = 

 τ



 
elesewhere

for t
2 2
τ−
≤ ≤

τ

By definition, the Fourier transform of x(t) is:

t t

t tx( ) F[x(t)] F Lt rect Lt F rect
→∞ →∞

      ω = = =      τ τ      

/2j t/2 j t

t /2
/

t
2

eLt (1)e dt = Lt
j

− ω
− ω

−→∞ →∞
−

τ
τ

τ
τ

 
=  − ω 

∫

2j t( j/ ) /2)(

t t t

2sin[ ] sin[ ]
e e 2 2Lt Lt Lt

j ( )
2

ô
τ τ− ω ω

→∞ →∞ →∞

      ω ω       −       = = =    − ω ω     ω


τ

   

τ



τ



t t
Lt Lt sa ( ) / 2sa  

2 2
( ) = 2

→∞ →∞

τ τ τ τ π  
ω

π
ω


=

Using the sampling property of the delta function ( )
t

)/ ,2e Lt sa (  i. .
2→∞

τ ωτ
=   = δ
 
 π

ω
   

we get,

( ) ( )
t

tX F Lt rect 2
→∞

ω δ ω = =τ
π

Signum Function sgn(t)

The signum function is denoted by sgn(t) and is defined by:

1 for t 0
sgn(t)

1 for t 0
>

= − <

This function is not absolutely integrable. So we cannot directly find its Fourier transform. There-
fore, let us consider the function a te− sgn(t) and substitute the limit a→0 to obtain the above sgn(t):

Given 
a 0 a

at

0

a t at )x(t) sgn(t) Lt sgn(t) tLte e u( ) ( t[ e u
→ →

− − −= = = − −
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a

at t j t

0

aX e u(t) e u( t)e d( ) F [sgn(t)] Lt [ ]t
∞ ω

−∞

− −

→

−∴ − −ω = = ∫

at j t a

0

t

a

j te e u(t)dt e e u( t dtL )t − − ω

∞

− ω∞ ∞

−∞ −→

 − −  
= ∫ ∫

(a+j t)t (a j )t (a+j )t (a j0

0

)t

0 0 0a 0 a
e dt e dt e dt e dtLt Lt

∞ ∞ ∞− ω − ω − ω

−∞→

−

→

− ω   = − = −      ∫ ∫ ∫ ∫

2F[sgn(t ]
j

) =
ω

FT

j
2sgn(t)
ω

↔

2X and )
2 2

( ) ( 0  > 0X f o ar f ornd ω ω ω
π π ∴ = = < ω

ω  −
 

Figure below shows the signum function and its magnitude and phase spectra.

6.Signum function sgn(t) 
The signum function is denoted by sgn(t) and is defined by 

 sgn(t) =  1        for t > 0
−1        for t < 0

  
This function is not absolutely integrable. So we cannot directly find its Fourier transform. 
Therefore, let us consider the function e−a⎹t⎸sgn(t) and substitute the limit a→0 to obtain the 
above sgn(t) 
Given x(t) = sgn(t) = Lt 

a→0
e−a⎹t⎸  sgn(t) = Lt 

a→0
[ e−at u t − e−at u −t  

∴ X(ω) = F[sgn(t)] =  Lt 
a→0

[ e−at u t − e−at u −t e−jωt∞
−∞ dt 

 = Lt 
a→0

  e−at e−jωtu t dt −  eat e−jωtu −t dt ∞
−∞

∞
−∞   

 = Lt 
a→0

  e−(a+jω)tdt −  e(a−jω)tdt 0
−∞

∞
0   = Lt 

a→0
  e−(a+jω)tdt −  e−(a−jω)tdt ∞

0
∞

0   

 = Lt 
a→0

  e−(a +jω )t

−(a+jω)  0

∞
−  e−(a−jω )t

−(a−jω)  0

∞
  = Lt 

a→0
 1

a+jω −
1

a−jω  = 1
𝑗𝑗𝜔𝜔 − 1

−𝑗𝑗𝜔𝜔  = 2
𝑗𝑗𝜔𝜔  

  F[sgn(t)] = 2
𝑗𝑗𝜔𝜔  

sgn(t)
𝐹𝐹𝑇𝑇
 2

𝑗𝑗𝜔𝜔  

∴ ⎹X(⍵)⎸ = 2
𝜔𝜔 and  𝑋𝑋(⍵)  = 𝜋𝜋

2 𝑓𝑓𝑜𝑜𝑟𝑟 𝜔𝜔 < 0 𝑎𝑎𝑛𝑛𝑑𝑑 − 𝜋𝜋
2 𝑓𝑓𝑜𝑜𝑟𝑟 𝜔𝜔 > 0 

Figure below shows the signum function and its magnitude and phase spectra 

 
 

7. Unit step function u(t) 
The unit step function is defined by 

u(t) =  1        for t ≥ 0
0        for t < 0

  
since the unit step function is not absolutely integrable, we cannot directly find its Fourier 
transform. So express the unit step function in terms of signum function as: 
         u(t) = 1

2 + 1
2  𝑠𝑠𝑔𝑔𝑛𝑛 𝑡𝑡  

         x(t)= u(t) = 1
2 [1 +  𝑠𝑠𝑔𝑔𝑛𝑛 𝑡𝑡 ] 

X(𝜔𝜔) = F[u(t)] = F 1
2 [1 +  𝑠𝑠𝑔𝑔𝑛𝑛 𝑡𝑡 ]  

          = 12  𝐹𝐹 1 +  𝐹𝐹[𝑠𝑠𝑔𝑔𝑛𝑛 𝑡𝑡 ]  

Unit step function u(t) .

The unit step function is defined by:

1 for t 0
u(t)

0 for t 0
≥

=  <

since the unit step function is not absolutely integrable, we cannot directly find its Fourier trans-
form. So express the unit step function in terms of signum function as:

1 1u(t) sgn (t)
2 2

= +

1x(t) u(t) [1 sgn (t)]
2

= = +
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[X 1( ) F[u(t)] F 1 sgn(t)]
2

 ω = = + 
 

1{F[1] F[sgn(t)]}
2

= +

We know that F[1] 2 ( )= πδ ω and 
2F[sgn(t)]
j

=
ω

,

FT 1u(t) ( )
j

↔πδ ω +
ω

)X(∴ ω = ∞ at  = 0ω and is equal to 0 at  = ω −∞ and  = ω −∞ù  = ∞ . Figure shows the unit step function 
and its spectrum.

We know that   F[1] = 2𝜋𝜋𝛿𝛿(𝜔𝜔) and F[sgn(t)] = 2
𝑗𝑗𝜔𝜔  

F[u(t)]= 12  2𝜋𝜋𝛿𝛿 𝜔𝜔 + 2
𝑗𝑗𝜔𝜔   = 𝜋𝜋𝛿𝛿 𝜔𝜔 + 1

𝑗𝑗𝜔𝜔  

u(t)
𝐹𝐹𝑇𝑇
  𝜋𝜋𝛿𝛿 𝜔𝜔 + 1

𝑗𝑗𝜔𝜔  

∴ ⎹X(⍵)⎸=∞ at ⍵=0 and is equal to 0 at ⍵=−∞ and ⍵=∞ 
Figure shows the unit step function and its spectrum. 

 
 

8. Rectangular pulse ( Gate pulse)   𝐭𝐭𝛕𝛕  or rect 𝐭𝐭𝛕𝛕  
Consider a rectangular pulse as shown in below figure. This is called a unit gate function and is 
defined as 

 

  x(t) = rect t
τ  =   t

τ  =  1    𝑓𝑓𝑜𝑜𝑟𝑟⎹ t⎸ < τ
2

0      𝑜𝑜𝑡𝑡𝑕𝑕𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
  

Then  X(⍵) = F[ x(t)] = F   𝑡𝑡𝜏𝜏   =    t
τ 

∞
−∞ 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 

                    =   1 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡𝜏𝜏 2 
−𝜏𝜏 2 =  𝑒𝑒

−𝑗𝑗𝜔𝜔𝑡𝑡

−𝑗𝑗𝜔𝜔  
𝜏𝜏 2 

𝜏𝜏 2 
 = 𝑒𝑒

−𝑗𝑗𝜔𝜔 (𝜏𝜏 2)  − 𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏 2) 

−𝑗𝑗𝜔𝜔  

                    = 𝜏𝜏
𝜔𝜔(𝜏𝜏 2)  𝑒𝑒

𝑗𝑗𝜔𝜔 (𝜏𝜏 2)  – 𝑒𝑒−𝑗𝑗𝜔𝜔 (𝜏𝜏 2) 

2𝑗𝑗   = 𝜏𝜏  sin 𝜔𝜔(𝜏𝜏 2) 
𝜔𝜔(𝜏𝜏 2)   

                   = 𝜏𝜏 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐 𝜔𝜔(𝜏𝜏 2)  

∴ F   𝑡𝑡𝜏𝜏   = 𝜏𝜏 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐 𝜔𝜔(𝜏𝜏 2) , that is  

  rect t
τ  =   t

τ 
𝐹𝐹𝑇𝑇
 𝜏𝜏 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐 𝜔𝜔(𝜏𝜏 2)  

Figure shows the spectra of the gate function  

Rectangular Pulse (Gate Pulse) 
 
 
 

t
Π

τ
 or 

 
 
 

trect
τ

Consider a rectangular pulse as shown in below figure. This is called a unit gate function and is 
defined as:

We know that   F[1] = 2𝜋𝜋𝛿𝛿(𝜔𝜔) and F[sgn(t)] = 2
𝑗𝑗𝜔𝜔  

F[u(t)]= 12  2𝜋𝜋𝛿𝛿 𝜔𝜔 + 2
𝑗𝑗𝜔𝜔   = 𝜋𝜋𝛿𝛿 𝜔𝜔 + 1

𝑗𝑗𝜔𝜔  

u(t)
𝐹𝐹𝑇𝑇
  𝜋𝜋𝛿𝛿 𝜔𝜔 + 1

𝑗𝑗𝜔𝜔  

∴ ⎹X(⍵)⎸=∞ at ⍵=0 and is equal to 0 at ⍵=−∞ and ⍵=∞ 
Figure shows the unit step function and its spectrum. 

 
 

8. Rectangular pulse ( Gate pulse)   𝐭𝐭𝛕𝛕  or rect 𝐭𝐭𝛕𝛕  
Consider a rectangular pulse as shown in below figure. This is called a unit gate function and is 
defined as 

 

  x(t) = rect t
τ  =   t

τ  =  1    𝑓𝑓𝑜𝑜𝑟𝑟⎹ t⎸ < τ
2

0      𝑜𝑜𝑡𝑡𝑕𝑕𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
  

Then  X(⍵) = F[ x(t)] = F   𝑡𝑡𝜏𝜏   =    t
τ 

∞
−∞ 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 

                    =   1 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡𝜏𝜏 2 
−𝜏𝜏 2 =  𝑒𝑒

−𝑗𝑗𝜔𝜔𝑡𝑡

−𝑗𝑗𝜔𝜔  
𝜏𝜏 2 

𝜏𝜏 2 
 = 𝑒𝑒

−𝑗𝑗𝜔𝜔 (𝜏𝜏 2)  − 𝑒𝑒𝑗𝑗𝜔𝜔 (𝜏𝜏 2) 

−𝑗𝑗𝜔𝜔  

                    = 𝜏𝜏
𝜔𝜔(𝜏𝜏 2)  𝑒𝑒

𝑗𝑗𝜔𝜔 (𝜏𝜏 2)  – 𝑒𝑒−𝑗𝑗𝜔𝜔 (𝜏𝜏 2) 

2𝑗𝑗   = 𝜏𝜏  sin 𝜔𝜔(𝜏𝜏 2) 
𝜔𝜔(𝜏𝜏 2)   

                   = 𝜏𝜏 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐 𝜔𝜔(𝜏𝜏 2)  

∴ F   𝑡𝑡𝜏𝜏   = 𝜏𝜏 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐 𝜔𝜔(𝜏𝜏 2) , that is  

  rect t
τ  =   t

τ 
𝐹𝐹𝑇𝑇
 𝜏𝜏 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐 𝜔𝜔(𝜏𝜏 2)  

Figure shows the spectra of the gate function  

T1 for tt tx(t) rect 2
0 otherwise

 <   = = Π =    τ τ    

Then,

j tt tX( ) F[x(t)] F  = e dt
∞ − ω

−∞

    ω = = Π Π    τ τ    
∫

________________________ WORLD TECHNOLOGIES ________________________



WT

149Fourier Series and Fourier Transform	

/2j t j t( /2) j ( /2)/2 j t

/2
/2

edt e
j j

e(1)e
τ− ω − ω τ ω τ

τ−

τ − ω

τ

  −
= = − ω − ω 

= ∫

j ( /2) j ( /2) sin ( / 2)
( /2) )

e e
2j ( / 2

ω τ − ω τ   τ − ω τ
= = τ   ω −τ ω τ  

sinc ( / 2)= τ ω τ

tF sinc ( / 2),  ∴ Π = τ ω τ  τ  
that is

FTt trect sinc ( / 2)   = Π ↔ τ ω τ   τ τ   

Figure shows the spectra of the gate function.

 
The amplitude spectrum is obtained as follows: 

At 𝜔𝜔 = 0, sinc(𝜔𝜔𝜏𝜏/2)=1. Therefore, ⎹X(𝜔𝜔)⎸ 𝑎𝑎𝑡𝑡 𝜔𝜔 = 0 is equal to 𝜏𝜏. At (𝜔𝜔𝜏𝜏/2)=±𝑛𝑛𝜋𝜋, i.e. 
at 

𝜔𝜔 = ± 2𝑛𝑛𝜋𝜋
𝜋𝜋  , n = 1, 2, ……sinc(𝜔𝜔𝜏𝜏/2) =0 

The phase spectrum is:  𝑋𝑋(𝜔𝜔)    = 0     if sinc(𝜔𝜔𝜏𝜏/2)> 0 
                                                  = ±𝜋𝜋  if sinc(𝜔𝜔𝜏𝜏/2) < 0 
The amplitude response between the first two zero crossings is known as main lobe and the 

portions of the response for 𝜔𝜔 < − 2𝜋𝜋
𝜏𝜏   and 𝜔𝜔 >  2𝜋𝜋

𝜏𝜏   are known as side lobes. From the 
amplitude spectrum, we can find that majority of the energy of the signal is contained in the main 

lobe. The first zero crossing occurs at 𝜔𝜔 =  2𝜋𝜋
𝜏𝜏   or at f =1

𝜏𝜏 Hz. As the width of the rectangular 
pulse is made longer, the main lobe becomes narrower. The phase spectrum is odd function of 𝜔𝜔. 
If the amplitude spectrum is positive, then phase is zero, and if the amplitude spectrum is 
negative, then the phase is – 𝜋𝜋 𝑜𝑜𝑟𝑟 𝜋𝜋. 
 
 
9. Triangular Pulse ∆  t

τ  
Consider the triangular pulse as shown in below figure. It is defined as: 
 

The amplitude spectrum is obtained as follows:

At  = 0ω , sinc ( / 2) =1ωτ . Therefore, X( )ω  at ù  = 0  is equal to .At( /2) n ,τ ωτ = ± π at

2n , n =1,2,......sinc ( / 2) = 0π
ω = ± ωτ

π

The phase spectrum is:

 

X( ) 0 if sinc ( / 2) > 0
= if sinc ( / 2) < 0

ω = ωτ  
± π ωτ

The amplitude response between the first two zero crossings is known as main lobe and the 

portions of the response for 
2π ω < − τ 

 and 
2 > π ω  τ 

are known as side lobes. From the ampli-

tude spectrum, we can find that majority of the energy of the signal is contained in the main lobe. 
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The first zero crossing occurs at 
2 = π ω  τ 

 or at 
1f =
τ

Hz. As the width of the rectangular pulse is 

made longer, the main lobe becomes narrower. The phase spectrum is odd function of 𝜔. If the 
amplitude spectrum is positive, then phase is zero, and if the amplitude spectrum is negative, then 
the phase is – 𝜋 𝑜𝑟 𝜋.

Triangular Pulse  
 
 

t
∆

τ
Consider the triangular pulse as shown in below figure. It is defined as:

 
 

x(t) = ∆  t
τ  = 

 
 

 
1
τ 2  t + τ

2 =   1 + 2 t
τ     for − τ

2 < 𝑡𝑡 < 0
1
τ 2  t − τ

2 =   1 − 2 t
τ     for  0 < 𝑡𝑡 < τ

2
0                                       elsewhere

  

i.e. as     x(t) = ∆  t
τ =  1 − 2⎹t⎸

τ          for ⎹t⎸ < τ
2

0                   otherwise
  

Then  X(⍵) = F[ x(t)] = F ∆  t
τ   =  ∆  t

τ 
∞
−∞ 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 

                                    =   1 + 2t
τ  

0
−𝜏𝜏 2 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 +    1 − 2t

τ  
𝜏𝜏 2 

0 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 

                                    =   1 − 2t
τ  

𝜏𝜏 2 
0 𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 +    1 − 2t

τ  
𝜏𝜏 2 

0 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 

                                    =  𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡𝜏𝜏 2 
0 𝑑𝑑𝑡𝑡 −   2t

τ  
𝜏𝜏 2 

0 𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 +   𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝜏𝜏 2 
0 𝑑𝑑𝑡𝑡 −   2t

τ  
𝜏𝜏 2 

0 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡 

                                    =  [𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 +𝜏𝜏 2 
0 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 ]𝑑𝑑𝑡𝑡 −  2

τ  𝑡𝑡[𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 +𝜏𝜏 2 
0 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 ]𝑑𝑑𝑡𝑡 

                                    =  2 cos𝜔𝜔𝑡𝑡𝜏𝜏 2 
0 𝑑𝑑𝑡𝑡 − 2

τ  2𝑡𝑡 cos𝜔𝜔𝑡𝑡𝜏𝜏 2 
0 𝑑𝑑𝑡𝑡 

                                    = 2 sin 𝜔𝜔𝑡𝑡
𝜔𝜔  

0

𝜏𝜏 2 
−  4

𝜏𝜏   𝑡𝑡
sin 𝜔𝜔𝑡𝑡
𝜔𝜔  

0

𝜏𝜏 2 
+  cos 𝜔𝜔𝑡𝑡

𝜔𝜔2  
0

𝜏𝜏 2 
  

                                   = 2
𝜔𝜔  sin𝜔𝜔 𝜏𝜏

2 −
4
𝜔𝜔𝜏𝜏  

𝜏𝜏
2 sin 𝜔𝜔𝜏𝜏

2  −
4

𝜔𝜔2𝜏𝜏  cos 𝜔𝜔𝜏𝜏
2 − 1  

   = 4
𝜔𝜔2𝜏𝜏  1 − cos 𝜔𝜔𝜏𝜏

2   = 4
𝜔𝜔2𝜏𝜏  2 𝑠𝑠𝑖𝑖𝑛𝑛2 𝜔𝜔𝜏𝜏

4   

= 8
𝜔𝜔2𝜏𝜏  

𝜔𝜔𝜏𝜏
4  

2 sin 2 𝜔𝜔𝜏𝜏4  
 𝜔𝜔𝜏𝜏4  

 = 𝜏𝜏2 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐
2  𝜔𝜔𝜏𝜏4   

  F ∆  t
τ  = 𝜏𝜏

2 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐
2  𝜔𝜔𝜏𝜏4   

                        Or        ∆  t
τ 

𝐹𝐹𝑇𝑇
 𝜏𝜏

2 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐
2  𝜔𝜔𝜏𝜏4   

Figure shows the amplitude spectrum of a triangular pulse. 

elsewhere

1 tt 1 2 for t 0
/2 2 2tx(t) 1 tt 1 2 for 0 t
/2 2 2

 τ τ   + = + − < <   τ τ    = ∆ =   τ τ   τ   − = − < <   τ τ    

otherwise

2 t
t T1x(t) for t

2
0


− = ∆ = <τ τ  

0

j t

j t j0 /2

0

/2

t

/2

/2 j t j t

/2 /

0 0

0

2j t j t j t

0

t tThen X(

d

e

1 e 1 e

1 e

) F[x(t)] F dt
ô ô

2t 2tdt + t
ô

2t 2tdt + dt

2 et dt  dt d

1 e

e e  +  t

∞ − ω

−∞

τ− ω − ω

τ

τ τω − ω

τ τ

−

ω ω − ω



= + −

= − −

= −

    ω = = ∆ = ∆       
   
   τ   
   
   τ τ   

  − τ 

∫ ∫

∫

∫

∫

∫ ∫
/2 /2 j t

/2 /2 /2 /2j t j t j t j t

/2 /2

0

0 0 0 0

0 0

/2 /2 /

2
0 0 0

2

2t dt

2t 2t dt  dt +  dt dt

2t dt t dt

sin

e

e e e e

2co

t 4 sin t cos t2 t

s 2t co

s

s

2 in

τ τ − ω

τ τ τ τω ω − ω − ω

τ τ

τ τ τ

 
 τ 

   −   τ τ   

= ω ω
τ
 ω ω ω     = − +      ω τ ω ω       

τ

= −

= ω

−

ω

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

2

2
2 2

4 4sin cos 1
2 2 2 2

4 41 cos 2sin
2 2

τ ωτ ωτ     − − −     ωτ ω τ     
ωτ ωτ   = − =   ω τ ω τ   
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0

j t

j t j0 /2

0

/2

t

/2

/2 j t j t

/2 /

0 0

0

2j t j t j t

0

t tThen X(

d

e

1 e 1 e

1 e

) F[x(t)] F dt
ô ô

2t 2tdt + t
ô

2t 2tdt + dt

2 et dt  dt d

1 e

e e  +  t

∞ − ω

−∞

τ− ω − ω

τ

τ τω − ω

τ τ

−

ω ω − ω



= + −

= − −

= −

    ω = = ∆ = ∆       
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   τ   
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  − τ 

∫ ∫

∫

∫

∫

∫ ∫
/2 /2 j t

/2 /2 /2 /2j t j t j t j t

/2 /2

0

0 0 0 0

0 0
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Figure shows the amplitude spectrum of a triangular pulse.

 
 
10. Cosine wave cos ⍵0𝑡𝑡 
Given x(t) = cos⍵0𝑡𝑡 
Then  X(⍵) = F[ x(t)] = F[cos⍵0𝑡𝑡] = F 1

2  𝑒𝑒
𝑗𝑗⍵0𝑡𝑡 + 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   

                    = 12  𝐹𝐹 𝑒𝑒
𝑗𝑗⍵0𝑡𝑡 +  𝐹𝐹 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   = 1

2  2𝜋𝜋𝛿𝛿 ⍵−⍵𝑜𝑜 + 2𝜋𝜋𝛿𝛿 ⍵ + ⍵𝑜𝑜   
                    = 𝜋𝜋 𝛿𝛿 ⍵−⍵𝑜𝑜 + 𝛿𝛿 ⍵ + ⍵𝑜𝑜   
∴ F[cos ⍵0𝑡𝑡] = 𝜋𝜋 𝛿𝛿 ⍵− ⍵𝑜𝑜 + 𝛿𝛿 ⍵ + ⍵𝑜𝑜    or    cos ⍵0𝑡𝑡

𝐹𝐹𝑇𝑇
 𝜋𝜋 𝛿𝛿 ⍵−⍵𝑜𝑜 + 𝛿𝛿 ⍵ + ⍵𝑜𝑜   

Below Figure shows the cosine wave and its amplitude and phase spectra. 
 

 
11. Sine wave sin ⍵0𝑡𝑡 
Given x(t) = sin⍵0𝑡𝑡 
Then  X(⍵) = F[ x(t)] = F[sin⍵0𝑡𝑡] = F 1

2𝑗𝑗  𝑒𝑒
𝑗𝑗⍵0𝑡𝑡 − 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   

                    = 1
2𝑗𝑗  𝐹𝐹 𝑒𝑒

𝑗𝑗⍵0𝑡𝑡 −  𝐹𝐹 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   = 1
2𝑗𝑗  2𝜋𝜋𝛿𝛿 ⍵−⍵𝑜𝑜 − 2𝜋𝜋𝛿𝛿 ⍵ + ⍵𝑜𝑜   

                    = −𝑗𝑗𝜋𝜋 𝛿𝛿 ⍵− ⍵𝑜𝑜 − 𝛿𝛿 ⍵ + ⍵𝑜𝑜   
∴ F[cos⍵0𝑡𝑡] = −𝑗𝑗𝜋𝜋 𝛿𝛿 ⍵− ⍵𝑜𝑜 − 𝛿𝛿 ⍵ + ⍵𝑜𝑜    or   cos ⍵0𝑡𝑡

𝐹𝐹𝑇𝑇
 −𝑗𝑗𝜋𝜋 𝛿𝛿 ⍵−⍵𝑜𝑜 − 𝛿𝛿 ⍵ + ⍵𝑜𝑜   

Below Figure shows the sine wave and its amplitude and phase spectra. 
 
 

Cosine Wave ( ) 0cos tω

0 0
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0

j t j t
0

j t j t
o o

o o
FT

0 o o 0 o

Given x(t) = cos t 
1Then X( ) F[x(t)] = F[cos t] = F (e e )
2

1 1[F(e ) F(e )] [2 ( ) 2 ( )]
2 2
[ ( ) (  + )]

F[cos t] = [ ( ) ( )] or cos t [ ( ) (

ω − ω

ω − ω

ω

 ω = ω +  

= + = πδ ω−ω + πδ ω+ω

= π δ ω−ω + δ ω ω

∴ ω π δ ω−ω + δ ω+ω ω ↔π δ ω−ω + δ ω+ωo )]
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Below figure shows the cosine wave and its amplitude and phase spectra.

 
 
10. Cosine wave cos ⍵0𝑡𝑡 
Given x(t) = cos⍵0𝑡𝑡 
Then  X(⍵) = F[ x(t)] = F[cos⍵0𝑡𝑡] = F 1

2  𝑒𝑒
𝑗𝑗⍵0𝑡𝑡 + 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   

                    = 12  𝐹𝐹 𝑒𝑒
𝑗𝑗⍵0𝑡𝑡 +  𝐹𝐹 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   = 1

2  2𝜋𝜋𝛿𝛿 ⍵−⍵𝑜𝑜 + 2𝜋𝜋𝛿𝛿 ⍵ + ⍵𝑜𝑜   
                    = 𝜋𝜋 𝛿𝛿 ⍵−⍵𝑜𝑜 + 𝛿𝛿 ⍵ + ⍵𝑜𝑜   
∴ F[cos ⍵0𝑡𝑡] = 𝜋𝜋 𝛿𝛿 ⍵− ⍵𝑜𝑜 + 𝛿𝛿 ⍵ + ⍵𝑜𝑜    or    cos ⍵0𝑡𝑡

𝐹𝐹𝑇𝑇
 𝜋𝜋 𝛿𝛿 ⍵−⍵𝑜𝑜 + 𝛿𝛿 ⍵ + ⍵𝑜𝑜   

Below Figure shows the cosine wave and its amplitude and phase spectra. 
 

 
11. Sine wave sin ⍵0𝑡𝑡 
Given x(t) = sin⍵0𝑡𝑡 
Then  X(⍵) = F[ x(t)] = F[sin⍵0𝑡𝑡] = F 1

2𝑗𝑗  𝑒𝑒
𝑗𝑗⍵0𝑡𝑡 − 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   

                    = 1
2𝑗𝑗  𝐹𝐹 𝑒𝑒

𝑗𝑗⍵0𝑡𝑡 −  𝐹𝐹 𝑒𝑒−𝑗𝑗⍵0𝑡𝑡   = 1
2𝑗𝑗  2𝜋𝜋𝛿𝛿 ⍵−⍵𝑜𝑜 − 2𝜋𝜋𝛿𝛿 ⍵ + ⍵𝑜𝑜   

                    = −𝑗𝑗𝜋𝜋 𝛿𝛿 ⍵− ⍵𝑜𝑜 − 𝛿𝛿 ⍵ + ⍵𝑜𝑜   
∴ F[cos⍵0𝑡𝑡] = −𝑗𝑗𝜋𝜋 𝛿𝛿 ⍵− ⍵𝑜𝑜 − 𝛿𝛿 ⍵ + ⍵𝑜𝑜    or   cos ⍵0𝑡𝑡

𝐹𝐹𝑇𝑇
 −𝑗𝑗𝜋𝜋 𝛿𝛿 ⍵−⍵𝑜𝑜 − 𝛿𝛿 ⍵ + ⍵𝑜𝑜   

Below Figure shows the sine wave and its amplitude and phase spectra. 
 
 

Sine Wave (sin( ) 0cos tω )
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0
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FT

0 o o 0 o

Given x(t) = sin t 

1Then X( ) F[x(t)] = F[sin t] = F (e e )
2 j

1 1[F(e ) F(e )] [2 ( ) 2 ( )]
2 j 2

j [ ( ) (  + )]

F[cos t] = j [ ( ) ( )] or cos t j [ (

ω − ω

ω − ω

ω

 
ω = ω + 

 

= + = πδ ω−ω + πδ ω+ω

= − π δ ω−ω + δ ω ω

∴ ω − π δ ω−ω −δ ω+ω ω ↔ π δ ω−ω o) ( )]+ δ ω+ω

Below figure shows the sine wave and its amplitude and phase spectra.

 
Fourier transform of a periodic signal 
 The periodic functions can be analysed using Fourier series and that non-periodic 
function can be analysed using Fourier transform. But we can find the Fourier transform of a 
periodic function also. This means that the Fourier transform can be used as a universal 
mathematical tool in the analysis of both non-periodic and periodic waveforms over the entire 
interval. Fourier transform of periodic functions may be found using the concept of impulse 
function. 
 We know that using Fourier series , any periodic signal can be represented as a sum of 
complex exponentials. Therefore, we can represent a periodic signal using the Fourier integral. 
Let us consider a periodic signal x(t) with period T. Then, we can express x(t) in terms of 
exponential Fourier series as: 

x(t) =  𝐶𝐶𝑛𝑛  𝑒𝑒𝑗𝑗𝑛𝑛⍵0𝑡𝑡∞
𝑛𝑛=−∞  

The Fourier transform of x(t) is: 
X(⍵) = F[x(t)] = F  𝐶𝐶𝑛𝑛  𝑒𝑒𝑗𝑗𝑛𝑛⍵0𝑡𝑡∞

𝑛𝑛=∞   
          =  𝐶𝐶𝑛𝑛  𝐹𝐹  𝑒𝑒𝑗𝑗𝑛𝑛 ⍵0𝑡𝑡 ∞

𝑛𝑛=∞  
Using the frequency shifting theorem, we have  
𝐹𝐹  1𝑒𝑒𝑗𝑗𝑛𝑛⍵0𝑡𝑡   = 𝐹𝐹  1 ⎹⍵=⍵−𝑛𝑛⍵0  = s𝜋𝜋𝛿𝛿 ⍵− 𝑛𝑛⍵0  
 X(⍵) = 2𝜋𝜋 𝐶𝐶𝑛𝑛  𝛿𝛿 ⍵− 𝑛𝑛⍵0 ∞

𝑛𝑛=∞  
Where 𝐶𝐶𝑛𝑛  𝑠𝑠 are the Fourier coefficients associated  with x(t) and are given by  

𝐶𝐶𝑛𝑛  = 1
𝑇𝑇  𝑥𝑥(𝑡𝑡)𝑇𝑇 2 

−𝑇𝑇 2 𝑒𝑒−𝑗𝑗𝑛𝑛⍵0𝑡𝑡𝑑𝑑𝑡𝑡 
Thus, the Fourier transform of a periodic function consists of a train of equally spaced impulses. 
These impulses are located at the harmonic frequencies of the signal and the strength of each 
impulse is given as 2𝜋𝜋𝐶𝐶𝑛𝑛  . 
Solved Problems: 
Problem 1:Find the Fourier transform of the signals e3tu(t) 
Solution: 
Given     x(t) = e3tu(t) 
The given signal is not absolutely integrable. That is  e3tu t =  ∞∞

−∞ . Therefore, Fourier 
transform of x(t) = e3tu(t) does not exist. 
 
Problem 2: Find the Fourier transform of the signals cosωotu(t) 
Solution: 

Fourier Transform of a Periodic Signal 

The periodic functions can be analysed using Fourier series and that non-periodic function can 
be analysed using Fourier transform. But we can find the Fourier transform of a periodic function 
also. This means that the Fourier transform can be used as a universal mathematical tool in the 
analysis of both non-periodic and periodic waveforms over the entire interval. Fourier transform 
of periodic functions may be found using the concept of impulse function.

We know that using Fourier series, any periodic signal can be represented as a sum of complex 
exponentials. Therefore, we can represent a periodic signal using the Fourier integral. Let us 
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consider a periodic signal x(t)  with period T. Then, we can express x(t) in terms of exponential 
Fourier series as:

0x(t) jn
nn

C e tω∞

=−∞
=∑

The Fourier transform of x(t) is:

0

0

X( ) x(F[ t)]

[ ]

tjn
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nn

CF e

C F e

ω

ω

∞

=∞

∞

=∞

 =ω 

=

= ∑
∑

Using the frequency shifting theorem, we have:

0

0

t
0

0

[1] s ( )

X( ) 2 ( )

F[1 ] = jn

nn

ne F

C

n

n

ω
ω

=

=ω−

∞

ω

∞

ω− ω

ω ω

=

−

πδ

π δ ω= ∑
where nC s  are the Fourier coefficients associated with x(t)  and are given by:

0
/2

/2

1 ( )
T tjn

n T
C x t e dt

T
ω−

−
= ∫

Thus, the Fourier transform of a periodic function consists of a train of equally spaced impulses. 
These impulses are located at the harmonic frequencies of the signal and the strength of each im-
pulse is given as 2 nCπ .

Solved Problems:

Problem : Find the Fourier transform of the signals 3te (t) .

Solution:

Given,

3tGiven x(t)=e u(t)

The given signal is not absolutely integrable. That is 3te u(t) .
∞

−∞
= ∞∫ Therefore, Fourier transform 

of 3tx(t)=e u(t)  does not exist.

Problem: Find the Fourier transform of the signals ocos t u(t)ω .

Solution:

0 0

0
j t j t

Given x(t) = cos t u(t)

e ei.e. u(t)
2

ω−ω

ω

+
=
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0 0
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0 0

j( ) t j( + )t
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1 e dt e dt
2

1 e e
2

1 e e
2

ω ω∞ ω

−∞

∞ ∞− ω−ω − ω+ω
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 
= + 

 

 − −
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 

∫

∫ ∫

With impulses of strength π  at 0 = ω ω and 0 = ω −ω .

0 0
0 0

0 02 2
0

0 02 2
0

1 1 1X( ) ( ) + (  + )]
2 j( ) j(  + )

1 j2 ( ) + (  + )
2 (j )

j 1 [ ( ) + (  + )]
(j ) 2

 
∴ ω = + + πδ ω−ω πδ ω ω ω−ω ω ω 

 ω
= + πδ ω−ω πδ ω ω ω −ω 

ω
= + πδ ω−ω πδ ω ω

ω −ω

Problem: Find the Fourier transform of the signals 0sin t u(t)ω .

Solution:

o o

o
j t j t

Given x(t) = sin t u(t)

e ei.e. u(t)
2 j

ω ω−

ω

−
=

0 0

0 0

0 0

0 0

0 0

j t j t
j t
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j( ) t j( ) t

0 0

j( ) t j( + )t

j( ) j( + )
0
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e eX( ) F[sin t u(t)] u(t)e dt
2

1 e dt e dt
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1 e e
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ω ω∞ ω
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∞− ω−ω − ω ω

− ω−ω − ω ω
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−

ω ω
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∴ ω = ω =
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 

∫

∫ ∫

With impulses of strength π  at 0 = ω ω and 0 = ω −ω .

0 0
0 0

0
0 02 2

0

0
0 02 2

0

1 1 1X( ) ( )  (  + )
2 j j( ) j(  + )

j21 ( )  (  + )
2 j (j ) +

j [ ( ) + (  + )]
(j ) + 2

 
∴ ω = − + πδ ω−ω − πδ ω ω ω−ω ω ω 

 ω
= + πδ ω−ω − πδ ω ω ω ω 

ω π
= − δ ω−ω δ ω ω

ω ω
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0 0
0 0

0
0 02 2

0

0
0 02 2

0

1 1 1X( ) ( )  (  + )
2 j j( ) j(  + )

j21 ( )  (  + )
2 j (j ) +

j [ ( ) + (  + )]
(j ) + 2

 
∴ ω = − + πδ ω−ω − πδ ω ω ω−ω ω ω 

 ω
= + πδ ω−ω − πδ ω ω ω ω 

ω π
= − δ ω−ω δ ω ω

ω ω

Continuous Time Fourier Transform

The Fourier expansion coefficient [ ]X k  ( ka in OWN) of a periodic signal ( ) ( )T Tx t x t T= +  is:

0 1  1[ ] ( ) ( 0, , 2, )jk t
TT

X k x t e dt k
T

ω−= = ± ±∫ 

and the Fourier expansion of the signal is:

0( ) [  ] jk t
T

k
x t X k e ω

∞

=−∞

= ∑

which can also be written as:

0 00
0

1( ) ( [ ]) ( )  ( )
2

jk t jk t
T

k k
x t TX k e X k e a

T
ω ω

π
ω ω

∞ ∞

=−∞ =−∞

== ∑ ∑

where 0( )X kω  is defined as:

0
0( ) [ ] ( (  ) )jk t

TT
X k T X k x t e dt bωω −∆= = ∫

When the period of ( )Tx t approaches infinityT →∞ , the periodic signal ( )Tx t becomes a non-pe-
riodic signal ( )x t and the following will result: 

Interval between two neighboring frequency components becomes zero:

0  2 / 0T Tω π→∞⇒ = →

Discrete frequency becomes continuous frequency:

00 0  |k ωω ω→ ⇒

Summation of the Fourier expansion in equation (a) becomes an integral:

0

0
0 00 8

1 1( ) lim ( ) lim ( ) ( )
2 2

jk t j t
TT k

x t x t X k e X e d
∞ ∞ω ω

−∞→∞ →
=−

∆

ω
= = ω ω = ω ω

π π∑ ∫
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The second equal sign is due to the general fact:

0
 lim ( ) ( )

x k
f k x x f x dx

∞ ∞

−∞∆ →
=−∞

∆ ∆ =∑ ∫

Time integral over T in equation becomes over the entire time axis:

0
0( ) lim ( ) lim ( ) ( )T

tk j t

T T

j

T
X X k t tx dt x t e de ω ωω ω

∞ −

−∞

−

→∞

∆

→∞
= = =∫ ∫

In summary, when the signal is non-periodic ( ) lim ( )TT
x t x t

→∞
= , the Fourier expansion becomes Fou-

rier transform. The forward transform (analysis) is:

2( ) ( ) or ( ) ( )j t j ftX x t e dt X f x t e dtω πω
∞ ∞− −

−∞ −∞
= =∫ ∫

and the inverse transform (synthesis) is:

21( ) ( ) ( )
2

j t j ftx t X e d X f e dfω πω ω
π

∞ ∞

−∞ −∞
= =∫ ∫

Note that ( )X ω is denoted by ( )X jω in own.

Comparing Fourier coefficient of a periodic signal ( )Tx t  with Fourier spectrum of a non-periodic 
signal ( )x t :

0
1[ ] ( ) , ( )  ( )jk t j t

TT
X k x t e dt X x t e dt

T
ω ωω

∞− −

−∞
= =∫ ∫

we see that the dimension of ( )X ω  is different from that of [ ]X k :

If 2| [ ] |X k  represents the energy contained in the kth frequency component of a periodic signal 
( )Tx t , then 2| ( ) |X ω  represents the energy density of a non-periodic signal ( )x t distributed along 

the frequency axis. We can only speak of the energy contained in a particular frequency band 
1 2ω ω ω< < :

2

1

2
1 2Energycontained in band | ( ) |X d

ω

ω
ω ω ω ω< = ∫

The spectrum of a time signal can be denoted by ( )X ω  or ( )X f to emphasize the fact that the 
spectrum represents how the energy contained in the signal is distributed as a function of frequen-
cy ω or f . Moreover, if ( )X f  is used, the factor 1/ 2π in front of the inverse transform is dropped 
so that the transform pair takes a more symmetric form. On the other hand, as Fourier transform 
can be considered as a special case of Laplace transform when the real part σ of the complex argu-
ment s j jσ ω ω= + =  is zero:

( ) | ( ) ( ) ( )st j t
s j s jX s x t e x td e dt jt Xω

ω ω ω=

∞ ∞− −
= −∞ −∞

= = =∫ ∫
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It is also natural to denote the spectrum of ( )x t by ( )X jω  (in OWN).

Example:

Consider the unit impulse function:

( ) ( )x t tδ=

( ) (  ) 1j tX j t e dtωω δ
∞ −

−∞
= =∫

Example:

If the spectrum of a signal ( )x t  is a delta function in frequency domain ( ) 2 ( )X jω π δ ω= , the 
signal can be found to be:

1 01( ) [ ( )] 2 ( ) 1
2

 j tx t F X j e d eωω π δ ω ω
π

∞−

−∞
= = = =∫

i.e.,

[ ( )] 2 ( )j tF x t e dtω π δ ω
∞ −

−∞
= =∫

Example:

The spectrum is:

1 2( ) | ( )
a j t j t a

aa
X j e dt e sin a

j
ω ωω ω

ω ω
− −

−−
= = =

−∫

This is the sinc  function with a parameter a , as shown in the figure.
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Note that the height of the main peak is 2a  and it gets taller and narrower as a gets larger. Also 
note:

( )( ) 2  2sin aX j d dωω ω ω π
ω

∞ ∞

−∞ −∞
= =∫ ∫

When a approaches infinity, ( ) 1x t = for all t , and the spectrum becomes:

 2( ) lim[ sin( )] 2 ( ) ( )j t

a
X j e dt a fωω ω πδ ω δ

ω
∞ −

−∞ −∞
= = = =∫

Recall that the Fourier coefficient of ( ) 1x t = is:

1 0
[ ] [ ]

0 else
k

X k kδ
=

= = 


which represents the energy contained in the signal at 0k = (DC component at zero frequency), 
and the spectrum ( ) [ ] /X j X kω ω= is the energy density or distribution which is infinity at zero 
frequency.

The integral in the above transform is an important formula to be used frequently later:

22  ( ) ( )j t j fte dt or e dt fω ππδ ω δ
∞ ∞− −

−∞ −∞
= =∫ ∫

which can also be written as:

[c  o ] ( ) ( )s( ) sin( ) cosj t t j j te dt dt t dt fω ω ω ω δ
∞ ∞ ∞−

−∞ −∞ −∞
= − =+ =∫ ∫ ∫

Switching t  and f  in the equation above, we also have:

2  cos (2 ) ( )j fte df ft df tπ π δ
∞ −

−∞
= =∫

representing a superposition of an infinite number of cosine functions of all frequencies, which 
cancel each other any where along the time axis except at 0t = where they add up to infinity, an 
impulse.

Example:

0 0
0

1( ) ( ) [ ]
2

 j t j tx t cos t e eω ωω −= = +

The spectrum of the cosine function is:

0 0 0

0 0

1( ) : ( ) [ ]
2

: [ ( ) ( )]

j t j t j tj tX j x t e dt e e e dtω ω ωωω

π δ ω ω δ ω ω

∞ ∞ − −−

−∞ −∞
= +

− + +

∫ ∫
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The spectrum of the sine function:

0 0
0

1( ) ( ) [ ]
2

 j t j tx t sin t e e
j

ω ωω −= = −

can be similarly obtained to be:

0 0 0 0( ) [ ( ) ( )] [ ( ) ( )]X j j
j
πω δ ω ω δ ω ω π δ ω ω δ ω ω= − − + = − − − +

Again, these spectra represent the energy density distribution of the sinusoids, while the corre-
sponding Fourier coefficients:

0  1[ ] [ ( )] [ [ 1] [ 1]]
2

X k F cos t k kω δ δ= = − + +

And 

0
1[ ] [sin( )] [  [ 1] [ 1]]

2
X k F t k k

j
ω δ δ= = − − +

Represent the energy contained at frequency 0ω ω= .

Properties of Continuous-time Fourier Transform

Linearity

The combined addition and scalar multiplication properties in the table above demonstrate the ba-
sic property of linearity. What you should see is that if one takes the Fourier transform of a linear 
combination of signals then it will be the same as the linear combination of the Fourier transforms 
of each of the individual signals. This is crucial when using a table of transforms to find the trans-
form of a more complicated signal.

Example :

We will begin with the following signal:

1 2( ) ( ) ( )z t af t bf t= +

Now, after we take the Fourier transform, shown in the equation below, notice that the linear com-
bination of the terms is unaffected by the transform.

1 2( ) ( ) ( )Z aF bFω ω ω= +

Symmetry

Symmetry is a property that can make life quite easy when solving problems involving Fourier 
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transforms. Basically what this property says is that since a rectangular function in time is a sinc 
function in frequency, then a sinc function in time will be a rectangular function in frequency. This 
is a direct result of the similarity between the forward CTFT and the inverse CTFT. The only differ-
ence is the scaling by 2p and a frequency reversal.

Time Scaling

This property deals with the effect on the frequency-domain representation of a signal if the time 
variable is altered. The most important concept to understand for the time scaling property is that 
signals that are narrow in time will be broad in frequency and vice versa. The simplest example 
of this is a delta function, a unit pulse with a very small duration, in time that becomes an in-
finite-length constant function in frequency.

The table above shows this idea for the general transformation from the time-domain to the fre-
quency-domain of a signal. You should be able to easily notice that these equations show the rela-
tionship mentioned previously: if the time variable is increased then the frequency range will be 
decreased.

Time Shifting

Time shifting shows that a shift in time is equivalent to a linear phase shift in frequency. Since the 
frequency content depends only on the shape of a signal, which is unchanged in a time shift, then 
only the phase spectrum will be altered. This property is proven below:

Example:

We will begin by letting ( ) ( )z t f t τ= − . Now let us take the Fourier transform with the previous 
expression substituted in for ( )z t .

( )( ) ( ) i tz f t dte ωτω −∞

−∞
= −∫

Now let us make a simple change of variables, where σ = t - τ. Through the calculations below, you 
can see that only the variable in the exponential are altered thus only changing the phase in the 
frequency domain.

( (

( )

( )

) )

( )

( )

( ) ( )

( )

i t

i

ii

z f d

e f d

e

e

e

F

ω σ τ

ωσωτ

ωτ

σ τ

σ

ω

ω

σ

∞

−∞

∞−

−∞

−

− +

−

=

=

=

∫
∫

Convolution

Convolution is one of the big reasons for converting signals to the frequency domain, since con-
volution in time becomes multiplication in frequency. This property is also another excellent ex-
ample of symmetry between time and frequency. It also shows that there may be little to gain by 
changing to the frequency domain when multiplication in time is involved.
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We will introduce the convolution integral here, but if you have not seen this before or need to 
refresh your memory, then look at the continuous-time convolution module for a more in depth 
explanation and derivation.

2

1 2

1

( ) ( ( ) ( ), )

( ) ( )

y

t

t f f t

df

t

f ττ τ
∞

−∞

=

= −∫

Time Differentiation

Since LTI systems can be represented in terms of differential equations, it is apparent with this 
property that converting to the frequency domain may allow us to convert these complicated dif-
ferential equations to simpler equations involving multiplication and addition. This is often looked 
at in more detail during the study of the Laplace Transform.

Parseval’s Relation

2 2(| ( ) |) (| ( ) |)f t dt F dfω
∞ ∞

−∞ −∞
=∫ ∫

Parseval’s relation tells us that the energy of a signal is equal to the energy of its Fourier transform.

Modulation (Frequency Shift)

Modulation is absolutely imperative to communications applications. Being able to shift a signal 
to a different frequency, allows us to take advantage of different parts of the electromagnetic spec-
trum is what allows us to transmit television, radio and other applications through the same space 
without significant interference.

The proof of the frequency shift property is very similar to that of the time shift; however, here we 
would use the inverse Fourier transform in place of the Fourier transform.

Since we went through the steps in the previous, time-shift proof, below we will just show the ini-
tial and final step to this proof:

1; ( )
2

( ) i tz t F e dωω ϕ ω
π

∞

−∞
= −∫

Now we would simply reduce this equation through another change of variables and simplify the 
terms. Then we will prove the property expressed in the table above:

( ) ( ) i tz t f t e ϕ=
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Laplace Transform

A transformation which is used to convert an operation of a real variable (t) into complex vari-
able (s) is termed as laplace transform. It is used for analysing and developing circuits such as 
filters. This chapter delves into various concepts such as laplace transform properties, region 
of convergence, the laplace transform of a function, existence of laplace transform, etc. which 
will provide in-depth knowledge of the subject.

The Laplace transform is an integral transform perhaps second only to the Fourier transform 
in its utility in solving physical problems. The Laplace transform is particularly useful in solv-
ing linear ordinary differential equations such as those arising in the analysis of electronic 
circuits.

The (unilateral) Laplace transform L is defined by:

0
[ ( )]( ) ( ) ,st

t f t s f t e dt
∞ −= ∫L

where ( )f t is defined for t 0≥ . The unilateral Laplace transform is almost always what is meant 
by “the” Laplace transform, although a bilateral Laplace transform is sometimes also defined 
as:

(2)[ ( )]( ) ( ) st
t f t s f t e dt

∞ −

−∞
= ∫L

The unilateral Laplace transform [ ( )]( )t f t sL  is implemented in the Wolfram Language as Laplace 
Transform[ [ ], , ]f t t s and the inverse Laplace transform as Inverse Radon Transform.

The inverse Laplace transform is known as the Bromwich integral, sometimes known as the Fou-
rier-Mellin integral.

A table of several important one-sided Laplace transforms is given below.

f [ ( )]( )t f t sL conditions

1
1
s

5
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t 2

1
s

nt 1

!
n

n
s + 0n∈ ≥� ℤ 0n∈ ≥�

at 1

( 1)
a

a
s +

Γ + R[ ] 1a > −

ate
1

s a−

cos( )tω 2 2

s
s ω+ ω∈� ℝ

sin( )tω 2 2s
ω
ω+

| I[ ] |s ω>

cosh( )tω 2 2

s
s ω−

| R[ ] |s ω>

sinh( )tω 2 2s
ω
ω−

| I[ ] |s ω>

sin( )at b te 2 2( )
b

s a b− +
| [ ] |s a I b> +

cos( )at b te 2 2( )
s a

s a b
−

− + b∈� ℝ

( )t cδ − cse−

( )cH t

1 for 0

for 0
cs

c
s
e c
s

 ≤

 >


0 ( )J t
2

1
1s +

( )nJ at ( )2 2

2 2

n

n

s a s

a s a

+ −

+
0n∈ ≥� ℤ 0n∈ ≥�

In the above table, 0 (J t is the zeroth-order Bessel function of the first kind, ( )tδ is the delta func-
tion, and ( )cH t is the Heaviside step function.
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The Laplace transform has many important properties. The Laplace transform existence theorem 
states that, if ( )f t is piecewise continuous on every finite interval in (0, )∞ satisfying:

 | ( ) | atf t Me≤

For all (0, )t∈ ∞ , then [ ( )]( )t f t sL  exists for all s a> . The Laplace transform is also unique, in the 
sense that, given two functions 1 ( )F t and 2 ( )F t with the same transform so that:

1 2[ ( )]( ) [ ( )]( ) ( ),t tF t s L F t s f s= =L

Then Lerch’s theorem guarantees that the integral:

0
( ) 0

a
N t d t =∫

Vanishes for all 0a > for a null function defined by:

1 2( ) ( ) ( ).N t F t F t= −

The Laplace transform is linear since:

( )

0

( )

0 0

[ ( )] [ ( )].

)[ ( ) ( )] [ ( ) ( ] st
t

st st

t t

af t bg t af t bg t e dt

a fe

f

dt b

a t

dt

b

ge

g t

∞ −

∞ ∞− −

+ = +

= +

= +

∫
∫ ∫

L

L L

The Laplace transform of a convolution is given by:

1 1 1

[ ( ) ( )] [ ( )] [ ( )]
[ ] [ ] [ ].

t t t

t t t

f t g t f t L g t
FG F G− − −

∗ =

= ∗

L L

L L L

Now consider differentiation. Let ( )f t be continuously differentiable n-1 times in[0, )∞ . If
| ( ) | atf t Me≤ , then:

( ) 1 2 ( 1)[ ( )]( ) [ ( )] (0) '(0) ... (0).n n n n n
t tf t s s f t s f s f f− − −= − − − −L L

This can be proved by integration by parts,

{ }
0

0 0

0

[ '( )]( ) lim '( )

lim ( ) ( )

lim ( ) (0) ( )

[ ( )] (0).

a st

a

aast st

a

as s

t

a t

a

t

f t s e f t

e f t s e f t dt

e f a f s e f t dt

s f t f

−

→∞

− −

→∞

− −

→∞

=

 = + 

 = − +  
= −

∫

∫

∫

L

L
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Continuing for higher-order derivatives then gives:
2[ ''( )]( ) [ ( )]( ) (0) '(0).t tf t s s f t s sf f= − −L L

This property can be used to transform differential equations into algebraic equations, a procedure 
known as the Heaviside calculus, which can then be inverse transformed to obtain the solution. 
For example, applying the Laplace transform to the equation:

1 0''( ) '( ) ( ) 0f t a f t a f t+ + =

Gives,

{ } { }

( )2
1 0

2
1

0

1

[ ( )]( ) (0) '(0) [ ( )]( ) (0)

[ ( )]( ) 0

[ ( )]( ) (0) '(0) (0) 0,

t t

t

t

s f t s sf f a s f t s f

a f t s

f t s s sf aa fa s f

− − + −

+ =

− − −+ + =

L L

L

L

which can be rearranged to,

1
2

1 0

(0) '(0) (0)[ ( )]( )t
sf f a ff t s

s a s a
+ +

=
+ +

L

If this equation can be inverse Laplace transformed, then the original differential equation is solved.

The Laplace transform satisfied a number of useful properties. Consider exponentiation. If 
[ ( )]( ) ( )t f t s F s=L  for s α>  (i.e., ( ) F s is the Laplace transform of f ), then ( )[ ]( ) ( )at

t e f s F s a= −L
for s a α> + . This follows from,

( )

0

0

( )

( )

[ ( )]( ).

s a t

at st

at
t

F s a fe dt

f t e e dt

e f t s

∞ − −

∞ −

− =

 =  

=

∫
∫
L

The Laplace transform also has nice properties when applied to integrals of functions. If ( )f t is 
piecewise continuous and | ( ) | atf t M e≤ , then,

0

1( ') ' [ ( )]( ).t t

t
f t dt f t s

s
  =  ∫L L

Laplace Transform Properties

We are aware that the Laplace transform of a continuous signal ( )x t is given by,

( ) ( ) sts x t e dtx
∞

−

−∞

= ∫
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And inverse Laplace transform is given by:

1( ) ( )
2

j
st

j

x t X s e ds
j

σ

σπ

+ ∞

− ∞

= ∫

The Properties of Laplace transform simplifies the work of finding the s-domain equivalent of a 
time domain function when different operations are performed on signal like time shifting, time 
scaling, time reversal etc. These properties also signify the change in ROC because of these oper-
ations. 

These properties are also used in applying Laplace transform to the analysis and characterization 
of LTI systems.

Linearity of the Laplace Transform 

Statement:

If 1 1( ) ( )x t X s↔


with a region of convergence denoted as 1R

and 2 2( ) ( )x t X s↔


with a region of convergence denoted as 2R

then 1 2 1 2( ) ( ) ( ) ( )ax t bx t aX s bX s+ ↔ +


, with ROC containing 1 2R R∩

Proof: 

Consider the linear combination of two signals ( )1x t and ( )2x t as ( ) 1 2( ) ( )z ax t bx tt = + . Now, take 
the Laplace transform of ( )z t  as:

1 2 1 2

1 2

1 2

{ ( )} { ( ) ( )} { ( ) ( )}

( ) ( )

( ) ( )

st

st st

z t ax t bx t ax t bx t e dt

a x t e dt b x t e dt

aX s bX s

∞
−

−∞

∞ ∞− −

−∞ −∞

= + = +

= +

= +

∫

∫ ∫

 

The resulting ROC is as large as the region in common between the independent ROCs. However, 
there may be pole-zero cancellation in the linear combination, which results in extending the ROC 
beyond the common region.

In this example, we illustrate the fact that the ROC for the Laplace transform of a linear combination of 
signals can sometimes extend beyond the intersection of the ROCs for the individual terms. Consider,

1 2( ) ( ) ( )x t x t x t= −

where the Laplace transforms of 1( )x t and ( )2x t are, respectively:

1 2
1 1( ) , Re{ } 1 and ( ) , Re{ } 1

1 ( 1)( 2)
X s s X s s

s s s
= > − = > −

+ + +
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The pole-zero plot, including the ROCs for 1( )X s and 1( )X s v, is shown below respectively in figure 
(a) and (b).

Illustration: 

In this example, we illustrate the fact that the ROC for the Laplace transform of a 
linear combination of signals can sometimes extend beyond the intersection of the 
ROCs for the individual terms. Consider 

𝑥𝑥 𝑡𝑡 = 𝑥𝑥1 𝑡𝑡 − 𝑥𝑥2(𝑡𝑡) 

where the Laplace transforms of x1(t) and x2(t) are, respectively 

𝑋𝑋1 𝑠𝑠 = 1
𝑠𝑠+1 , Re{s}>-1 and  𝑋𝑋2 𝑠𝑠 = 1

(𝑠𝑠+1)(𝑠𝑠+2) , Re{s}>-1 

The pole-zero plot, including the ROCs for X1(s) and X2(s), is shown below 
respectively in figure (a) and (b)  

 

𝑋𝑋 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 − 𝑋𝑋2 𝑠𝑠 = 1
(𝑠𝑠 + 1) −

1
 𝑠𝑠 + 1  𝑠𝑠 + 2 = 𝑠𝑠 + 1

 𝑠𝑠 + 1  𝑠𝑠 + 2 = 1
𝑠𝑠 + 2 

Thus, in the linear combination of x1(t) and x2(t), the pole t s=-1 is cancelled by a zero 
at s=-1. The pole-zero plot for X(s) is shown below 

 

The intersection of ROCs for X1(s) and X2(s) is Re{s}>-1. However, since the ROC is 
always bounded by a pole or infinity, for this example the ROC for X(s) can be 
extended to the left to be bounded by the pole at s=-2, because of the pole-zero 
cancellation at s=-1. 

2. Time Shifting 
Statement: 

If 𝑥𝑥(𝑡𝑡)
ℒ
 𝑋𝑋(𝑠𝑠)with ROC= R 

then 𝑥𝑥 𝑡𝑡 − 𝜏𝜏 
ℒ
 𝑒𝑒−𝑠𝑠𝜏𝜏𝑋𝑋 𝑠𝑠 with ROC= R 

Proof: 

1 2
1 1 1 1( ) ( ) ( )

( 1) ( 1)( 2) ( 1)( 2) 1
sX s X s X s

s s s s s s
+

= − = − = =
+ + + + + +

Thus, in the linear combination of 1( )x t and 1( )x t , the pole t s=-1 is cancelled by a zero at 1s = − . 
The pole-zero plot for ( )X s is shown below.

Illustration: 

In this example, we illustrate the fact that the ROC for the Laplace transform of a 
linear combination of signals can sometimes extend beyond the intersection of the 
ROCs for the individual terms. Consider 

𝑥𝑥 𝑡𝑡 = 𝑥𝑥1 𝑡𝑡 − 𝑥𝑥2(𝑡𝑡) 

where the Laplace transforms of x1(t) and x2(t) are, respectively 

𝑋𝑋1 𝑠𝑠 = 1
𝑠𝑠+1 , Re{s}>-1 and  𝑋𝑋2 𝑠𝑠 = 1

(𝑠𝑠+1)(𝑠𝑠+2) , Re{s}>-1 

The pole-zero plot, including the ROCs for X1(s) and X2(s), is shown below 
respectively in figure (a) and (b)  

 

𝑋𝑋 𝑠𝑠 = 𝑋𝑋1 𝑠𝑠 − 𝑋𝑋2 𝑠𝑠 = 1
(𝑠𝑠 + 1) −

1
 𝑠𝑠 + 1  𝑠𝑠 + 2 = 𝑠𝑠 + 1

 𝑠𝑠 + 1  𝑠𝑠 + 2 = 1
𝑠𝑠 + 2 

Thus, in the linear combination of x1(t) and x2(t), the pole t s=-1 is cancelled by a zero 
at s=-1. The pole-zero plot for X(s) is shown below 

 

The intersection of ROCs for X1(s) and X2(s) is Re{s}>-1. However, since the ROC is 
always bounded by a pole or infinity, for this example the ROC for X(s) can be 
extended to the left to be bounded by the pole at s=-2, because of the pole-zero 
cancellation at s=-1. 

2. Time Shifting 
Statement: 

If 𝑥𝑥(𝑡𝑡)
ℒ
 𝑋𝑋(𝑠𝑠)with ROC= R 

then 𝑥𝑥 𝑡𝑡 − 𝜏𝜏 
ℒ
 𝑒𝑒−𝑠𝑠𝜏𝜏𝑋𝑋 𝑠𝑠 with ROC= R 

Proof: 

The intersection of ROCs for 1( )X s and 2 ( )X s is Re{ } 1s > − . However, since the ROC is always 
bounded by a pole or infinity, for this example the ROC for ( )X s can be extended to the left to be 
bounded by the pole at 2s = − , because of the pole-zero cancellation at 1s = − .

Time Shifting

Statement:

If ( ) ( )x t X s↔


with ROC=R

then ( ) ( )stx t e X sτ −− ↔


with ROC=R
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Proof:

( )

{ ( )} ( )

Let

( )

( )

( )

st

s p

st sp

st

x t x t e dt

t p

x p e dt

e x p e dt

e X s

τ

τ τ

τ

∞
−

−∞

∞
− +

−∞

∞
− −

−∞

−

− = −

− =

=

=

=

∫

∫

∫



Illustration:

As productof ( )X s with ste− will not effect the poles of ( )X s , ROC remains unaltered.

Shifting in S-domain

Statement:

If ( ) ( )x t X s↔


with ROC R=

then 0
0( ) ( )s te x t X s s− ↔ −


with oRe{s }ROC R= +

Proof:

0 0

0( )

0

( ) ( )

( )

{ }

( )

st

s s t

s t s t e dt

d

e x t e x t

X

t

s

x e

s

t

∞
−

−∞

∞ − −

−∞

=

=

= −

∫

∫



That is, the ROC associated with 0( )X s s− is that of ( )X s , shifted by oRe{s }.Thus, for any value s 
that is in R, the value os Re{s }+ will be in R1.This is illustrated in figure below. Figure (a) and (b) 
represents ROC of ( )X s and 0( )X s s−  respectively.

ℒ 𝑥𝑥 𝑡𝑡 − 𝜏𝜏  =  𝑥𝑥 𝑡𝑡 − 𝜏𝜏 𝑒𝑒−𝑠𝑠𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞

 

Let t-τ=p 

      =  𝑥𝑥 𝑝𝑝 𝑒𝑒−𝑠𝑠(𝑝𝑝+𝜏𝜏)𝑑𝑑𝑡𝑡∞
−∞  

= 𝑒𝑒−𝑠𝑠𝜏𝜏  𝑥𝑥 𝑝𝑝 𝑒𝑒−𝑠𝑠𝑝𝑝𝑑𝑑𝑡𝑡
∞

−∞

 

= 𝑒𝑒−𝑠𝑠𝜏𝜏𝑋𝑋 𝑠𝑠  
Illustration: 

As productof X(s) with e-sτ will not effect the poles of X(s), ROC remains unaltered 

3. Shifting in s-Domain 
Statement: 

If 𝑥𝑥(𝑡𝑡)
ℒ
 𝑋𝑋(𝑠𝑠)  with ROC= R 

then 𝑒𝑒𝑠𝑠𝑜𝑜𝑡𝑡𝑥𝑥 𝑡𝑡 
ℒ
 𝑋𝑋 𝑠𝑠 − 𝑠𝑠𝑜𝑜   with ROC= R+Re{so} 

Proof: 

ℒ 𝑒𝑒𝑠𝑠𝑜𝑜𝑡𝑡𝑥𝑥 𝑡𝑡  =  𝑒𝑒𝑠𝑠𝑜𝑜𝑡𝑡𝑥𝑥 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞

 

      =  𝑥𝑥 𝑡𝑡 𝑒𝑒−(𝑠𝑠−𝑠𝑠𝑜𝑜 )𝑡𝑡𝑑𝑑𝑡𝑡∞
−∞  

= 𝑋𝑋 𝑠𝑠 − 𝑠𝑠𝑜𝑜  
Illustration: 

That is, the ROC associated with X(s-so) is that of X(s), shifted by Re{so}.Thus, for 
any value s that is in R, the value s+Re{so} will be in R1.This is illustrated in figure 
below. Figure (a) and (b) represents ROC of X(s) and X(s-so) respectively. 

 

Note that if X(s) has a pole or zero at s=a, then X(s-so) has a pole or zero at s-so=a, 
i.e.,s=a+so. 
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Note that if ( )X s has a pole or zero at s=a, then 0( )X s s− has a pole or zero at s-so=a, i.e., 0 ,s s a− = .

A special case is observed when 0 os = jω , i.e., when a signal is used to modulate a periodic complex 
exponential e oj tω .

In this case e ( ) ( )oj t
ox t X s jω ω↔ −


with ROC R.=

This is true because ROC depends on real part of ‘s’ not the imaginary part.

Time Scaling

Statement:

If ( ) ( )x t X s↔


with ROC R= m

then
1( ) sx at X
a a

 ↔  
 



with 1ROC R Ra= =

Proof: 

To prove this we have to consider two cases: a (real) is positive and a is negative. Case: For 0a > :

{ }( ) ( ) stx at x at te d
∞

−

−∞

= ∫

Using the substitution of atλ = ; dt = adl.

1 ( )

1

s
ax e d

a
sX

a a

λ
λ λ

 −∞  
 

−∞
=

 =  
 

∫

Case: For 0a < .

{ }( ) ( ) stx at x at te d
∞

−

−∞

= ∫

Using the substitution of atλ = ; dt adλ= .

1 ( )

1

s
ax e d

a
sX

a a

λ
λ λ

 −∞  
 

−∞
=

 = −  
 

∫

Combining the two cases, we get 
1( ) sx at X
a a

 ↔  
 



 with 1ROC R Ra= = .

Illustration: For example Laplace transform of ( ) ( )btx t e u t=  is 
1( )X s

s b
=

+
 with
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ROC:Re{s} bσ= > −  representing right-sided signal. Then 
1 1 1sX

sa a a b
a

  =     + 
 

 with 

ROC:Re{s} ( ) Re{s} ( )a b a b> − ⇒ > −  representing 1ROC:R Ra= .

Let the ROC ( )X s  is given as shown below.Let the ROC of X(s) is given as shown below 

 

Change in ROC is also explained with different ranges of a 

(i) If a >1 then the resultant ROC is expanded 

 
 

(ii) If a <-1 then the resultant ROC expands and the bounds get reversed 
 

 
(iii) If 0 < a < 1 then the resultant ROC is compressed 

 
 

Change in ROC is also explained with different ranges of a.

•	 If 1a >  then the resultant ROC is expanded.

Let the ROC of X(s) is given as shown below 

 

Change in ROC is also explained with different ranges of a 

(i) If a >1 then the resultant ROC is expanded 

 
 

(ii) If a <-1 then the resultant ROC expands and the bounds get reversed 
 

 
(iii) If 0 < a < 1 then the resultant ROC is compressed 

 
 

•	 If 1a < −  then the resultant ROC expands and the bounds get reversed.

Let the ROC of X(s) is given as shown below 

 

Change in ROC is also explained with different ranges of a 

(i) If a >1 then the resultant ROC is expanded 

 
 

(ii) If a <-1 then the resultant ROC expands and the bounds get reversed 
 

 
(iii) If 0 < a < 1 then the resultant ROC is compressed 

 
 

•	 If 0 1a< <  then the resultant ROC is compressed.
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Let the ROC of X(s) is given as shown below 

 

Change in ROC is also explained with different ranges of a 

(i) If a >1 then the resultant ROC is expanded 

 
 

(ii) If a <-1 then the resultant ROC expands and the bounds get reversed 
 

 
(iii) If 0 < a < 1 then the resultant ROC is compressed 

 
 

•	 If 1 1a− < <  then the resultant ROC is compressed and the bounds get reversed.(iv) If -1 < a < 0 then the resultant ROC is compressed and the bounds get reversed 

 
(v) If a = -1, then it gives rise to Time Reversal operation with the statement 

𝑥𝑥 −𝑡𝑡 
ℒ
 𝑋𝑋 −𝑠𝑠   with ROC= R1=-R 

 
 
 

5. Conjugation 
Statement: 

If 𝑥𝑥(𝑡𝑡)
ℒ
 𝑋𝑋(𝑠𝑠)  with ROC= R 

then 𝑥𝑥∗ 𝑡𝑡 
ℒ
 𝑋𝑋∗ 𝑠𝑠∗   with ROC= R 

Proof: 

ℒ 𝑥𝑥∗ 𝑡𝑡  =  𝑥𝑥∗ 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞

 

as we know that s=σ+jω 

      =  𝑥𝑥∗ 𝑡𝑡 𝑒𝑒−𝜎𝜎𝑡𝑡𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡∞
−∞  

=   𝑥𝑥 𝑡𝑡 𝑒𝑒−𝜎𝜎𝑡𝑡𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡
∞

−∞

 
∗

 

=   𝑥𝑥 𝑡𝑡 𝑒𝑒−(𝜎𝜎−𝑗𝑗𝜔𝜔 )𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞

 
∗

 

•	 If 1a = − , then it gives rise to Time Reversal operation with the statement ( ) ( )x t X s− ↔ −


 
with 1R R= − .

(iv) If -1 < a < 0 then the resultant ROC is compressed and the bounds get reversed 

 
(v) If a = -1, then it gives rise to Time Reversal operation with the statement 

𝑥𝑥 −𝑡𝑡 
ℒ
 𝑋𝑋 −𝑠𝑠   with ROC= R1=-R 

 
 
 

5. Conjugation 
Statement: 

If 𝑥𝑥(𝑡𝑡)
ℒ
 𝑋𝑋(𝑠𝑠)  with ROC= R 

then 𝑥𝑥∗ 𝑡𝑡 
ℒ
 𝑋𝑋∗ 𝑠𝑠∗   with ROC= R 

Proof: 

ℒ 𝑥𝑥∗ 𝑡𝑡  =  𝑥𝑥∗ 𝑡𝑡 𝑒𝑒−𝑠𝑠𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞

 

as we know that s=σ+jω 

      =  𝑥𝑥∗ 𝑡𝑡 𝑒𝑒−𝜎𝜎𝑡𝑡𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡∞
−∞  

=   𝑥𝑥 𝑡𝑡 𝑒𝑒−𝜎𝜎𝑡𝑡𝑒𝑒𝑗𝑗𝜔𝜔𝑡𝑡 𝑑𝑑𝑡𝑡
∞

−∞

 
∗

 

=   𝑥𝑥 𝑡𝑡 𝑒𝑒−(𝜎𝜎−𝑗𝑗𝜔𝜔 )𝑡𝑡𝑑𝑑𝑡𝑡
∞

−∞

 
∗

 

Conjugation

Statement:

If ( ) ( )x t X s↔


with ROC R=

Then *( ) *( *)x t X s↔


with ROC R=

{ *( )} *( ) stx t x t e dt
∞

−

−∞

= ∫
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As we know that s jσ ω= + ,

( )

*

*

( )

*

( )

** * *

*( )

( )

( )

( )

( ) ( )

t j t

t j t

j t

s t

x t e e dt

x t e e dt

x t e dt

x t e dt

X s X s

σ ω

σ ω

σ ω

∞ − −

−∞

∞
− −

−∞

∞
− −

−∞

∞
−

−∞

=

 
=  
 

 
=  
 

 
 
 

= =

∫

∫

∫

∫

Also * *( ) ( )X s X s= when ( )x t is real.

Illustration: If ( )x t is real then and if ( )X s has a pole or zero at s so= , then ( )X s also has a pole or 
zero at the complex conjugate point *s so= . As only imaginary part changes and not the real part, 
ROC remains unaltered.

Convolution Property

Statement:

If 1 1( ) ( )x t X s↔


with 1ROC=R

and 2 2( ) ( )x t X s↔


with 2ROC=R

Then 1 2 1 2( ) ( ) ( ). ( )x t x t X s X s∗ ↔


, with ROC containing 1 2R R∩ .

Proof:

{ }
1 2

2

1 2

1

{ } { ( ) ( )

( ) ( )

( ) { ( ) ( )} st

st

t x tz x t x t e dt

x x t d e

x t

dtτ τ τ

∞
−

−∞

∞ ∞ −

−∞ −∞

∗= ∗ =

= −

∫

∫ ∫

 

Interchanging the order of integrations:

1 2

1 2

2

1 2

1 2

1

{ }

( ){ ( )} (Since from time shifting property)

=X ( )

X ( ).X ( )

( ) ( ) ( ) ( )

( )

st

st

st

x x e dt d

x e X s d

s e

t t x x t

x d

s s

τ τ τ

τ τ

τ τ

∞ ∞
−

−∞ −∞

∞ −

−∞

∞
−

−∞

 
∗ − 

 
=

=

=

∫ ∫

∫

∫


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1 2

1 2

2

1 2

1 2

1

{ }

( ){ ( )} (Since from time shifting property)

=X ( )

X ( ).X ( )

( ) ( ) ( ) ( )

( )

st

st

st

x x e dt d

x e X s d

s e

t t x x t

x d

s s

τ τ τ

τ τ

τ τ

∞ ∞
−

−∞ −∞

∞ −

−∞

∞
−

−∞

 
∗ − 

 
=

=

=

∫ ∫

∫

∫



In a manner, like the linearity property, the ROC of 1 2X ( ).X ( )s s includes the intersection of the 
ROCs of 1X ( )s  and 2X ( )s and may be larger if pole-zero cancellation occurs in the product. 

For example: If,

1
1X ( ) ,Re{s} 2
2

ss
s
+

= > −
+

and 2
2X ( ) ,Re{s} 1,
1

ss
s
+

= > −
+

then 1 2X ( ).X ( ) 1s s = , and its ROC is the entire s-plane.

This property plays an important role in the analysis of LTI systems.

Region of Convergence

The region of convergence, known as the ROC, is important to understand because it defines 
the region where the Laplace transform exists. The Laplace transform of a sequence is defined 
as:

( )( ) ( ) stH s h t e dt
∞ −

−∞
= ∫

The ROC for a given ( )h t , is defined as the range of t for which the Laplace transform converges. If 
we consider a causal, complex exponential, ( ) ( ) ( )ath t e u t−= , we get the equation,

( ) ( ) (( ) )

0 0

at st a s te e dt e dt
∞ ∞− − − +=∫ ∫

Evaluating this, we get:

( )(( ) )1 limit 1s a t

t
e

s a
− +

→∞

−
−

+

Notice that this equation will tend to infinity when (( ) )limit s a t

t
e− +

→∞
tends to infinity. To understand 

when this happens, we take one more step by using s iσ ω= + to realize this equation as:

( ) (( ) )limit a t

t

i te eω σ− − +

→∞

Recognizing that ( )i te ω− is sinusoidal, it becomes apparent that (( ) )a te σ− + is going to determine 
whether this blows up or not. What we find is that if aσ + is positive, the exponential will be to a 
negative power, which will cause it to go to zero as t tends to infinity. On the other hand, if aσ + is 
negative or zero, the exponential will not be to a negative power, which will prevent it from tending 
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to zero and the system will not converge. What all of this tells us is that for a causal signal, we have 
convergence when.

Condition for Convergence

( )s aℜ > −

Alternatively, we can note that since the Laplace transform is a power series, it converges when 
( )( ) sth t e− is absolutely summable. Therefore,

( )( ) sth tt e d
∞ −

−∞
< ∞∫

must be satisfied for convergence.

Although we will not go through the process again for anticausal signals, we could. In doing so, we 
would find that the necessary condition for convergence is when.

Necessary Condition for Anti-causal Convergence

( )s aℜ < −

Properties of the Region of Convergence

The Region of Convergence has a number of properties that are dependent on the characteristics 
of the signal, ( ).h t

The ROC cannot contain any poles. By definition a pole is a where ( )H s is infinite. Since ( )H s must 
be finite for all s for convergence, there cannot be a pole in the ROC.

If ( )h t is a finite-duration sequence, then the ROC is the entire s-plane, except possibly 0s = or
| |s = ∞ . A finite-duration sequence is a sequence that is nonzero in a finite interval 1 2t t t≤ ≤ . As 
long as each value of ( )h t is finite then the sequence will be absolutely summable. When 2 0t >
there will be a 1s− term and thus the ROC will not include 0s = . When 1 0t < then the sum will be 
infinite and thus the ROC will not include |s|=∞. On the other hand, when 2 0t ≤ then the ROC will 
include 0s = , and when 1 0t ≥ the ROC will include | |s = ∞ . With these constraints, the only sig-
nal, then, whose ROC is the entire z-plane is ( ) ( )h t c tδ= .

An example of a finite duration sequence.
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The next properties apply to infinite duration sequences. As noted above, the z-transform converg-
es when  | ( ) |H s < ∞ . So we can write,

( ) ( ) ( ) | ( ) | ( ) ( ) ( )st st sth t e dt h t e dt h t e dtH s
∞ ∞ ∞− − −

−∞ −∞ −∞
= ≤ =∫ ∫ ∫

We can then split the infinite sum into positive-time and negative-time portions. So,

| ( ) | ( ) ( )H s N s P s≤ +

where,

1 ( )( ) ( ) stN h t e ts d
− −

−∞
= ∫

and

( )

0
( ) ( ) sth t eP ts d

∞ −= ∫

In order for ( )H s to be finite, ( )h t must be bounded. Let us then set,

1 1( ) th t C r≤

for,

0t <

2 2( ) th t C r≤

for,

0t ≥

From this some further properties can be derived:

If ( )h t is a right-sided sequence, then the ROC extends outward from the outermost pole in ( )H s
. A right-sided sequence is a sequence where ( ) 0h t = for 1t t< < ∞ . Looking at the positive-time 

portion from the above derivation, it follows that,

( )
2 2 ( )0

2
20

( ) st
st

t rP tC e dt ds r C
e

∞ ∞−
−

= =∫ ∫

Thus in order for this integral to converge, 2| |se r− > , and therefore the ROC of a right-sided se-

quence is of the form 2| |se r− > .
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A right-sided sequence.

The ROC of a right-sided sequence.

If ( )h t is a left-sided sequence, then the ROC extends inward from the innermost pole in ( )H s . A 
left-sided sequence is a sequence where ( ) 0h t = for 1t t> > −∞ . Looking at the negative-time por-
tion from the above derivation, it follows that,

) 1
11

1 1(
1 1

1
1( )

t ks
st

s
t rP k

e
C e dt C dt Cs

re
r d

−
− − ∞−

−−∞ −∞

   
   = =
   
 

≤
 

∫ ∫ ∫

Thus in order for this integral to converge, 1| |se r− < , and therefore the ROC of a left-sided se-
quence is of the form 1| |se r− < .

A left-sided sequence.
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The ROC of a left-sided sequence.

If ( )h t is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on the in-
terior and exterior by a pole. A two-sided sequence is an sequence with infinite duration in the 
positive and negative directions. From the derivation of the above two properties, it follows that if 

2 2| |sr e r−< < converges, then both the positive-time and negative-time portions converge and thus 
( )H s converges as well. Therefore the ROC of a two-sided sequence is of the form 2 2.| |sr e r−− < <

A two-sided sequence.

The ROC of a two-sided sequence.

Examples:

To gain further insight it is good to look at a couple of examples.

Example: 

Lets take:

1
1 1( ) ( )
2

( )
4

t t

h t u t u t   = +   
   
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The Laplace-transform of
1 ( )
2

t

u t 
 
 

is 1
2

s

s −
with an ROC at

1 .
2

s >

The ROC of
1 ( )
2

t

u t 
 
 

The z-transform of 
1 ( )

4

t

u t− 
 
 

is 1
4

s

s +
with an ROC at 

1.
4

s −
>

The ROC of
1 ( )

4

t

u t− 
 
 

Due to linearity,

1( ) 1 1
2 4

12
8

1 1
2 4

H s s s

s s

s s

s s

= +
− +

 − 
 =

  − +  
  
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By observation it is clear that there are two zeros, at 0 and 
1
8 , and two poles, at 

1
2 , and 

1
4
−

. Fol-

lowing the above properties, the ROC is
1
2

s > .

The ROC of 1 2
( ) ( ) ( )1 1

4

t t

h t u t u t−   = +   
   

Example: 

Now take:

2 )( ) ( )1 1 (( ) 1
4 2

t t

h t u t u t−   = − −   
  

−


The z-transform and ROC of )1
4

(
t

u t− 
 
 

was shown in the example above. The Laplace-transorm of 

1 (( ) 1)
2

t

u t
  − − −     

is
1
2

s

s −
with an ROC at

1 .
2

s >

The ROC of
1 (( ) 1)
2

t

u t
  − − −     
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Once again, by linearity,

2 ( ) 1 1
4 2

12
8

1 1
4 2

H s ss
s s

s s

s s

+
+ −

 − 
 =

  + −  

=

  

By observation it is again clear that there are two zeros, at 0 and
1

16
, and two poles, at

1
2

, and 
1

4
−

. 

in this case though, the ROC is
1 .
2

s <

The ROC of 2
1 1( ) (( ) 1).( )

4 2

t t

h t u t u t−   = − − −   
   

The Laplace Transform of a Function

The Laplace Transform of a function ( )y t is defined by:

( )

0
( ) [ ( )]( ) ( )stY L y t s e y t dts

∞ −= = ∫
if the integral exists. The notation [ ( )]( )L y t s means take the Laplace transform of ( )y t . The func-
tions ( )y t and ( )Y s are partner functions. Note that ( )Y s is indeed only a function of s since the 
definite integral is with respect to t.

Examples:

Let ( ) ( ).y t exp t=  We have:

( ) ( 1)

0 0

1( )
1

st t s tY s e e dt e dt
s

∞ ∞− − −= =
−∫ ∫
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The integral converges if 1s > . The functions ( )exp t and ( )1/ 1s − are partner functions.

Let ( ) ( )cos 3y t t= . We have,

( )
20

1( ) cos(3 )
9

stY e t dt
s

s
∞ −= =

+∫

The integral converges for 0s > . The integral can be computed by doing integration by parts twice 
or by looking in an integration table.

Existence of the Laplace Transform

If ( )y t  is piecewise continuous for 0t >= and of exponential order, then the Laplace Transform 
exists for some values of s. A function ( )y t is of exponential order c if there is exist constants M 
and T such that,

( ) ctMe t Ty t ≤ ≥

All polynomials, simple exponentials ( ( )exp at , where a is a constant), sine and cosine functions, 
and products of these functions are of exponential order. An example of a function not of exponen-
tial order is exp ( 2)t∧ . This function grows too rapidly. The integral:

2

0

st te e dt
∞ −∫

does not converge for any value of s.

Table of Laplace Transforms

The following table lists the Laplace Transforms for a selection of functions.

Function ( )y t Transform ( )Y s s

1 1/s s>0

t 1/s 2∧ s>0

t n,n=integer∧ n!/s (n+1)∧ s>0

exp(at),a=constant 1/(s-a) s>a

cos(bt), b=constant s/(s 2+b 2)∧ ∧ s>0

sin(bt), b=constant b/(s 2+b 2)∧ ∧ s>0

exp(at) cos(bt) (s-a)/[(s-a) 2+b 2]∧ ∧ s>a

exp(at)sin(bt) b/[(s-a) 2+b 2]∧ ∧ s>a
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Rules for Computing Laplace Transforms of Functions

There are several formulas and properties of the Laplace transform which can greatly simplify 
calculation of the Laplace transform of functions.

Linearity

Like differentiation and integration the Laplace transformation is a linear\ operation. What does 
this mean? In words, it means that the Laplace transform of a constant times a function is the 
constant times the Laplace transform of the function. In addition the Laplace transform of a sum 
of functions is the sum of the Laplace transforms.

Let us restate the above in mathspeak. Let c and ( )Y_1 s denote the Laplace transforms of ( )y_1 t  
and ( )y_2 t , respectively, and let c_1be a constant. Recall that ( ) ( )L f t s   denotes the Laplace 
transform of ( )f t . We have,

1 1 1 1 1 1[ ( )]( ) [ ( )]( ) ( )L c y t s c L y t s c Y s= =

1 2 1 2 1 2[ ( ) ( )]( ) [ ( )]( ) [ ( )]( ) ( ) ( )L y t y t s L y t s L y t s Y s Y s+ = + = +

As a corollary, we have the third formula:

1 1 2 2 1 1 2 2[ ( ) ( )]( ) ( ) ( )L c y t c y t s c Y s c Y s+ = +

Here are several examples:

1 3[3 ]( ) 3 [ ]( ) 3
1 1

t tL e s L e s
s s

= = ⋅ =
− −

Here we have used the results in the table for the Laplace transform of the exponential. Here are a 
couple of more examples:

2

1[ cos 2 ]( ) [ ]( ) [cos 2 ]( )
1 4

t t sL e t s L e s L t s
s s

+ = + = +
− +

2

3 4[3 4cos 2 ]( ) 3 [ ]( ) 2 [cos 2 ]( )
1 4

t t sL e t s L e s L t s
s s

+ = + = +
− +

Translation Property

The translation formula states that )(Y s  is the Laplace transform of ( )y t , then,

2
2

1[ ]( ) ( 2)
( 2)

tL e t s Y s
s

= − =
−
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Laplace Transform of the Derivative

Suppose that the Laplace transform of ( )y t  is )(Y s . Then the Laplace Transform of ( )'y t is,

( ) )[ '( )]( ) (0L st s sY yy = −

For the second derivative we have,

( )2 (0) '(0)[ ''( )]( )L y t s s Y s sy y−= −

For the n’th derivative we have,

( )( ) 1 ( 1)2[ ( )]( ) (0 )( ...' (0) 0)n n nn nL y t s s Y s y s ys y− − −− − −= −

Derivatives of the Laplace Transform

Let Y(s) be the Laplace Transform of ( )y t . Then,

[ ( )]( ) ( 1) ( )
n

n n
n

d YL t y t s s
ds

= −

Here is an example. Suppose we wish to compute the Laplace transform of ( )tsin t . The Laplace 
transform of ( )sin t is 1/ ( 2 1).s∧ +  Hence, we have,

2 2 2

1 2[ sin ] [ ]
1 ( 1)

d sL t t
ds s s

= − =
+ +

Existence of Laplace Transform

The Laplace transform ( )L f x   exists provided the integral,

0 0
( ) lim ( )px px

a
f x e dx f x e dx

∞ ∞− −

→∞
=∫ ∫

exists for sufficiently large p.

Preliminary

Absolute Convergence

If the integral,

( )
b

a
f x dx∫
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converges, then the integral,

( )
b

a
f x dx∫

converges absolutely. Note that it is okay for a, b to be ±∞ .

Comparison Test

If ( ) ( )  f x g x≤  for all     a x b≤ ≤ and the integral,

( )
b

a
g x dx∫

converges, then the integral,

( )
b

a
f x dx∫

also converges absolutely.

Triangle Inequality

( ) ( )
b b

a a
f x dx f x dx≤∫ ∫

Exponential Order

The function ( )f x is said to have exponential order if there exist constants M, c, and n such that,

( )    cxf x Me≤

for all   x n≥ .

Criteria for Convergence (I)

The Laplace transform ( )L f x   exists if it has exponential order,

0
( )

b
f x dx∫

exists for any   0b > . Since we only need to show convergence for sufficiently large p, assume 
  p c>  and   0p > .

0 0

0

0

( )

0

( )

0

( ) ( ) ( )

( ) ( ) 0 1

( ) exponential order

= ( )

( )

npx px px

n
n px px

n
n px cx

n

c p xn

n
c p nn

f x e dx f x e dx f x e dx

f x dx e f x dx e

f x dx e Me dx

ef x dx M p c
c p

ef x dx M
p c

∞ ∞− − −

∞ − −

∞ −

∞−

−

= +

≤ + < ≤

≤ +

 
+ > − 

= +
−

∫ ∫ ∫
∫ ∫
∫ ∫

∫

∫
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0 0

0

0

( )

0

( )

0

( ) ( ) ( )

( ) ( ) 0 1

( ) exponential order

= ( )

( )

npx px px

n
n px px

n
n px cx

n

c p xn

n
c p nn

f x e dx f x e dx f x e dx

f x dx e f x dx e

f x dx e Me dx

ef x dx M p c
c p

ef x dx M
p c

∞ ∞− − −

∞ − −

∞ −

∞−

−

= +

≤ + < ≤

≤ +

 
+ > − 

= +
−

∫ ∫ ∫
∫ ∫
∫ ∫

∫

∫

The first integral exists by assumption, and the second term is finite for p c> , so the integral,

0
( ) pxf x e dx

∞ −∫
converges absolutely and the Laplace transform ( )[ ]L f x  exists.

Criteria for Convergence (II)

The Laplace transform ( )[ ]L f x  exists if:

•	 ( )f x has exponential order,

•	 On every closed interval [ ]0,  b ,

•	 ( )f x is bounded,

•	 ( )f x is piecewise continuous, 

•	 ( )f x has at most a finite number of discontinuities.

Requirements ( )2 a c− imply that,

0
( )

b
f x dx∫

will always exist, so we automatically satisfy criterion (I).

( )   0 as   F p p→ → ∞

Assume ( )f x satisfies criterion (I) This implies ( ) ( )  F p L f x=     will exist if if   p m≥ for some 
m. I want to show that ( )F p can be made arbitrarily close to 0 for sufficiently large p. Choose an 

0∈ > . Fix a p. We will discover how large p needs to be as we go; we only care about   p → ∞ , so 
we may choose p to be as large as we need.

0 0
( ( ) ( ) ( ).px pxF p f x e dx f x e dx G p

∞ ∞− −= ≤ =∫ ∫

Note that as p →∞ , 0pxe− →  for 0x > , so that I should be able to make the integral arbitrarily small 
for large p. The only potential complication is near 0x = , so we will need to deal with that separately. 
The important point here is that the part near 0 does not contribute very much to the integral. Let,

( ) ( ) px
a a

K p f x e dx
∞ −= ∫
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Then, ( ) ( )
0

lim aa
G p K p

+→
= . By the definition of a limit, there exists an 0δ > such that,

( ) ( ) .for all0
2aK p F p a δ− < ≤
∈

<

Using this (with a = δ),

( )
0

( ) ( )
2

px pf x e d K PFx
δ

δ
− ∈

= − <∫

If I assume p m> , then,

( )

( )

( )

( ) ( )
2

( )
2

( ) since
2

( )
2

px

p n x nx

p n nx

p n nx

F p f x e dx

f x e e dx

f x e e dx x

e f x e dx

δ

δ

δ

δ

δ

δ

δ

∞ −

∞ − − −

∞ − − −

∞− − −

∈
< +

∈
= +

∈
≤ + ≥

∈
= +

∫

∫

∫

∫

Criterion (I) gives us that,

0
( ) ( )nx nxA f x e dx f x e dx

δ

∞ ∞− −= ≤∫ ∫
Choose 

1 2Alnp n
δ

 ≥ +  ∈ 
, so that,

2

(

Aln

)( )
2

2

2 2

p nF p Ae

Ae

δ

 
 


− −

∈ 
−

∈
< +

∈

=

≥ +

∈ ∈
+ =∈

Since I can make ( )F p arbitrarily close to 0 for large p, I have ( ) 0 as F p p→ →∞ .

Advantages of Laplace Transform

Laplace transforms methods offer the following advantages over the classical methods.

•	 It gives complete solution.

•	 Initial conditions are automatically considered in the transformed equations.
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•	 Much less time is involved in solving differential equations.

•	 It gives systematic and routine solutions for differential equations.

Applications of Laplace Transforms

The Laplace transform is designed to analyze a specific class of time domain signals: impulse re-
sponses consisting of sinusoids and exponentials. The importance of this being that systems be-
longing to this class are extremely common in the sciences and engineering. The reason for this 
being they are quite often the solution to a differential equation as well as the fact that they are 
naturally occurring in the world. This makes it especially useful in signal processing, specifically 
analog signal processing, in which case the signal is continuous and is going to consist of a sinusoid 
or an exponential. The way in which analog signals are processed can be illustrated by the follow-
ing diagram:

L{l} = � s 
Now, we also know that s > 0 since if it is 0, the equation is undefined, and it cannot be 
negative since when we invert it, it is impossible to have a negative answer. This is due 
to the fact that time can't be negative. So we end up with 

1 L{l} = -, s > 0 s 
QED 

We can do a proof for each of the equations on the Laplace transform table, but to save 
time let's assume that they are all true. 

4. ANALOG SIGNAL PROCESSING 

[2] The Laplace transform is designed to analyze a specific class of time domain signals: 
impulse responses consisting of sinusoids and exponentials. The importance of this being 
that systems belonging to this class are extremely common in the sciences and engineer­
ing. The reason for this being they are quite often the solution to a differential equation 
as well as the fact that they are naturally occurring in the world. This makes it especially 
useful in signal processing, specifically analog signal processing, in which case the signal 
is continuous and is going to consist of a sinusoid or an exponential. The way in which 
analog signals are processed can be illustrated by the following diagram: 

ANALOG ANALOG ANALOG 
INPUT � SIGNAL � OUTPUT 
SIGNAL PROCESSOR SIGNAL 

The system's input, processor and output are continuous time functions. For the input 
and output, the labels are x(t) and y(t) respectively. Also, for the purposes of this 
example we will label the analog signal processor in the middle by h( t). Now, this is where 
the Laplace transform will finally come into play when doing analog signal processing. 
We will use the Laplace transform to figure out how the system behaves depending on 
what input is applied to it, and from there we can discover quite a few things about the 
system. This means we are trying to find out what the values of y(t) are when we plug in 
x(t) to the system. We can take the Laplace transform of this to get it into the complex s 
domain. By taking the Laplace transform, we get X(s) and Y(s}, replacing our previous 
functions,x(t) and y(t), along with getting the transfer function, H(s). Note that H(s) 
is the analog signal processor from the previous diagram and that the equation that will 
be mentioned below applies to many more fields than just analog signal processing. The 

5 

The system’s input, processor and output are continuous time functions. For the input and output, 
the labels are ( )x t  and ( )y t  respectively. Also, for the purposes of this example we will label the 
analog signal processor in the middle by ( )h t . Now, this is where the Laplace transform will finally 
come into play when doing analog signal processing. We will use the Laplace transform to figure 
out how the system behaves depending on what input is applied to it, and from there we can dis-
cover quite a few things about the system. This means we are trying to find out what the values of 

( )y t  are when we plug in ( )x t  to the system. We can take the Laplace transform of this to get it into 
the complex s domain. By taking the Laplace transform, we get ( )X s and ( )Y s , replacing our pre-
vious functions, ( )x t and ( )y t , along with getting the transfer function, H(s). Note that ( )H s  is the 
analog signal processor from the previous diagram and that the equation that will be mentioned 
below applies to many more fields than just analog signal processing. The reason we include it is 
because we take the Laplace transform of the processor as well so to get an accurate equation. It is 
also the processor that ( )X s goes through to give the output ( )X s . This relationship can be seen 
in the following diagram, replacing the previous diagram with another one where the variables are 
now in the complex plane:

reason we include it is because we take the Laplace transform of the processor as well 
so to get an accurate equation. It is also the processor that X(s) goes through to give 
the output Y{s). This relationship can be seen in the following diagram, replacing the 
previous diagram with another one where the variables are now in the complex plane: 

X(s)� 
H(s) 

Transfer 
Function 

�Y(s) 

With this new system in the s plane, we can now figure out what the value of the transfer 
function,H(s), is. We do this by first writing the equation in the form we know we can 
write it as, by recognizing that to get Y(s) we have to multiply the other two together. 

Y(s) = H(s)X(s) 
However, while knowing Y(s) is useful, we truly want to know what H(s) is, so we just 
divide both sides by X(s), 

H( ) = Y(s) 
8 X(s) 

The importance of the equation directly above cannot be stressed enough when doing 
signal process1Y' as well as many other fields where a transfer function is employed. By 
figuring out �<:>,we can find the transfer function of the system's value, giving us a lot 
of necessary information so we can then proceed to doing other work such as adjusting 
the filter or the signal to get the desired output wave. [3) We can then use Laplace 
transforms to discover what x(t) and y(t) are, if we need to, these two being the original 
measures of the signal wave's input and output with respect to time. By doing this, we 
can gleam some information on what exactly we are working with if the value of original 
wave is one that we are unaware of. For now though, we are more focused on H ( s) and 
h( t) as these two give us much more information that is extremely crucial. The most 
important aspect of the equation giving us H(s) is that by knowing what H(s)is, we can 
discover if the system is stable. If it is, then we can discover what the frequency response 
of the system is, a rather important value to know. With the frequency response, we will 
know what our filter is doing and how to get the final result we are aiming for, as well 
as allowing us to adjust our sound waves to fix any issues with the filter if we need to. 
These pieces of information that are so vital to signal processing come from, as we have 
shown, the Laplace transform. 

For a tangible example, we can see how exactly a filter works in reality by creating a 
sound wave and running it through a mathematical software capable of processing these 
signals. Using these types of software, the Laplace transform and all the resulting com­
putation is done for us, making it much more convenient. It even includes the frequency 

6 

With this new system in the s plane, we can now figure out what the value of the transfer function, 
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( )H s , is. We do this by first writing the equation in the form we know we can write it as, by recog-
nizing that to get ( )Y s we have to multiply the other two together.

( ) ( ) ( )Y s H s X s=

However, while knowing ( )Y s is useful, we truly want to know what H(s) is, so we just divide both 
sides by ( )X s ,

( )( )
( )

Y sH s
X s

=

The importance of the equation directly above cannot be stressed enough when doing signal pro-

cess Y’ as well as many other fields where a transfer function is employed. By figuring out 
( )
( )

Y s
X s

, we 

can find the transfer function of the system’s value, giving us a lot of necessary information so we 
can then proceed to doing other work such as adjusting the filter or the signal to get the desired 
output wave. We can then use Laplace transforms to discover what ( )x t and ( )y t are, if we need to, 
these two being the original measures of the signal wave’s input and output with respect to time. 
By doing this, we can gleam some information on what exactly we are working with if the value of 
original wave is one that we are unaware of. For now though, we are more focused on ( )H s and 
h(t) as these two give us much more information that is extremely crucial. The most important as-
pect of the equation giving us ( )H s is that by knowing what ( )H s is, we can discover if the system 
is stable. If it is, then we can discover what the frequency response of the system is, a rather im-
portant value to know. With the frequency response, we will know what our filter is doing and how 
to get the final result we are aiming for, as well as allowing us to adjust our sound waves to fix any 
issues with the filter if we need to. These pieces of information that are so vital to signal processing 
come from, as we have shown, the Laplace transform.

For a tangible example, we can see how exactly a filter works in reality by creating a sound wave 
and running it through a mathematical software capable of processing these signals. Using these 
types of software, the Laplace transform and all the resulting computation is done for us, making 
it much more convenient. It even includes the frequency response to discover how exactly to adjust 
the filter.

Example: Here are all of the diagrams of the process.

response to discover how exactly to adjust the filter. 

The following example was in Maple using a sound wave created from a . wav file of a song. 

Example ,4..1: Here are all of the diagrams of the process: 

c 
�-"5 'a -
i ·--35 VJ 

-45 

-55 

-2S 
-JO 
-JS 

i:j'-40 
�4S • a-so iii-ss 

-60 
-65 
-70 

Original Input Signal and Frequency Response Respectively 

-20 
0 ---·� 
-g -40 

1-60 
ti5 -110 

I- input - oug,ut! 

Input Wave vs. Output Wave 

7 

Original Input Signal and Frequency Response Respectively.
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response to discover how exactly to adjust the filter. 

The following example was in Maple using a sound wave created from a . wav file of a song. 

Example ,4..1: Here are all of the diagrams of the process: 
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Input Wave vs. Output Wave

response to discover how exactly to adjust the filter. 

The following example was in Maple using a sound wave created from a . wav file of a song. 

Example ,4..1: Here are all of the diagrams of the process: 

c 
�-"5 'a -
i ·--35 VJ 

-45 

-55 

-2S 
-JO 
-JS 

i:j'-40 
�4S • a-so iii-ss 

-60 
-65 
-70 

Original Input Signal and Frequency Response Respectively 

-20 
0 ---·� 
-g -40

1-60 
ti5 -110 

I- input - oug,ut! 

Input Wave vs. Output Wave

7 Frequency-Time Response for the Input Signal and Output Signal respectively.

The first diagram is the original signal before it has gone through any filter, with the second being 
its frequency response so we can alter the filter to work for the signal. The filter used in this exam-
ple is an analog low pass filter with the cut off frequency boundaries being 1000 to 5000. We can 
see in the third diagram a comparison between the two filters with the blue wave being the input 
and the red wave being the output. However, this doesn’t exactly give us a clear image of anything 
other than the frequency being lower, this is where the the last two diagrams come in. When com-
paring the two images, we can see that at the end of the signal, the curves become much smoother 
in the output signal, showcasing how much of an impact the filter truly had on the signal wave. 
While it is harder to see in graph form, the 3-D model does an excellent job of depicting the stark 
contrast between input and output.

Example: Let’s look at another signal wave with a different type of filter, still utilizing the Laplace 
transform, in order to help showcase the versatility of it. To start, here are all the diagrams along 
with their labels:

Frequency-Time Response for the Input Signal and Output Signal respectively

The first diagram is the original signal before it has gone through any filter, with the
second being its frequency response so we can alter the filter to work for the signal. The
filter used in this example is an analog low pass filter with the cut off frequency bound­
aries being 1000 to 5000. We can see in the third diagram a comparison between the two
filters with the blue wave being the input and the red wave being the output. However,
this doesn't exactly give us a clear image of anything other than the frequency being
lower, this is where the the last two diagrams come in. When comparing the two images,
we can see that at the end of the signal, the curves become much smoother in the output
signal, showcasing how much of an impact the filter truly had on the signal wave. While
it is harder to see in graph form, the 3-D model does an excellent job of depicting the
stark contrast between input and output.

Example 4,.2: Let's look at another signal wave with a different type of filter, still
utilizing the Laplace transform, in order to help showcase the versatility of it. To start,
here are all the diagrams along with their labels:

Frc"1cncy lllzl 
6_ IC 10:1. IC IIY 2. IC Jo' 6. IC loll. IC ICT 2. IC I Frequency [HzJ 

I. ,c I o2 I. ,c I o-1 I. ,c 104 
•20 
-iii 

-15 

-25 
;;;' _ 35 � 
r.1-45 
.2!1-55 • · 
rl'l 

-65 
-7S 

-31l 
-35 

�-40 
1-45 
ol-50 
-�-55 rr. 

-6oL..... ...... � ....-"" 
-65 
-70 
-75 

Original Input Signal and Frequency Response respectively 

-20
c"-40

I. IC 1(¥
Froqucncy [Hz] 

l. ,c I o-1 

� -601---....___, 
1-HO 
jr,-100 r-___ .,,,.._ 

-120

1-- inplt - 0Ulff%1 

Input Wave vs. Output Wave 

8 

[. IC IW 

Original Input Signal and Frequency Response respectively.

.
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Frequency-Time Response for the Input Signal and Output Signal respectively

The first diagram is the original signal before it has gone through any filter, with the
second being its frequency response so we can alter the filter to work for the signal. The
filter used in this example is an analog low pass filter with the cut off frequency bound­
aries being 1000 to 5000. We can see in the third diagram a comparison between the two
filters with the blue wave being the input and the red wave being the output. However,
this doesn't exactly give us a clear image of anything other than the frequency being
lower, this is where the the last two diagrams come in. When comparing the two images,
we can see that at the end of the signal, the curves become much smoother in the output
signal, showcasing how much of an impact the filter truly had on the signal wave. While
it is harder to see in graph form, the 3-D model does an excellent job of depicting the
stark contrast between input and output.

Example 4,.2: Let's look at another signal wave with a different type of filter, still
utilizing the Laplace transform, in order to help showcase the versatility of it. To start,
here are all the diagrams along with their labels:
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Input Wave vs. Output Wave.

Frequency-Time Response for the Input Signal and Output Signal respectively 

The diagrams are in the same order as the previous example, with the first being the 
original input, the second being the frequency response, the third being the input vs. 
ouput and the last two being 3D images of the waves to showcase what truly is happen­
ing. We can see just how useful this filter is, the input wave is a complete mess while the 
output wave is almost completely smooth. The big difference in this example, versus the 
previous one, being that instead of a low pass filter, a Band-pass filter was used instead
with the upper and lower boundaries being 4000 to 6000. An example of one of these is
an RLC circuit. What this filter does is allow frequencies within a certain range to go 
through it whilst rejecting all other ones, as does the majority of other filters. The signi­
fance of this one is that it is another filter that utilizies the Laplace transform, meaning
it is an analog filter. 

The process discussed above is an extremely significant process to the world today and 
as such is one of the major areas where the Laplace transform is used. It is important 
to note that this type of analysis, and subsequent processing of the signal is used in 
cellphones, a device that many would be unable to part with in modem society along
with speakers, microphones and many other devices used by the general population. 

5. CIRCUIT ANALYSIS 

The Laplace transform actually gained its popularity from its use in analyzing electrical 
circuits due to Oliver Heaviside, an electrical engineer. By using Laplace transforms we 
can analyze an electrical circuit to discover its current, its maximum capacity and figure 
out if anything is wrong with the circuit. This is crucial for engineers, electrical engi­
neers in particular, in doing their jobs to ensure the necessary machines and technology 
is working properly. 
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Frequency-Time Response for the Input Signal and Output Signal respectively.

The diagrams are in the same order as the previous example, with the first being the original input, 
the second being the frequency response, the third being the input vs. ouput and the last two being 
3D images of the waves to showcase what truly is happening. We can see just how useful this filter 
is, the input wave is a complete mess while the output wave is almost completely smooth. The big 
difference in this example, versus the previous one, being that instead of a low pass filter, a Band-
pass filter was used instead with the upper and lower boundaries being 4000 to 6000. An example 
of one of these is an RLC circuit. What this filter does is allow frequencies within a certain range to 
go through it whilst rejecting all other ones, as does the majority of other filters. The signifance of 
this one is that it is another filter that utilizies the Laplace transform, meaning it is an analog filter.

The process discussed above is an extremely significant process to the world today and as such is 
one of the major areas where the Laplace transform is used. It is important to note that this type of 
analysis, and subsequent processing of the signal is used in cellphones, a device that many would 
be unable to part with in modem society along with speakers, microphones and many other devic-
es used by the general population.

Circuit Analysis 

The Laplace transform actually gained its popularity from its use in analyzing electrical circuits
due to Oliver Heaviside, an electrical engineer. By using Laplace transforms we can analyze an 
electrical circuit to discover its current, its maximum capacity and figure out if anything is wrong 
with the circuit. This is crucial for engineers, electrical engineers in particular, in doing their jobs 
to ensure the necessary machines and technology is working properly.
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To start, let’s show how this works in a simple RLC circuit. However, this does not mean it isn’t 
used for more advanced types of circuits as well. For a visual aid, here is a diagram of a RLC circuit:

To start, let's show how this works in a simple RLC circuit. However, this does not 
mean it isn't used for more advanced types of circuits as well. For a visual aid, here is a 
diagram of a RLC circuit: 

C 

R 

First let's identify the individual symbols on the circuit and what they mean. Also, while 
doing this it would help to identify what is used to measure each of these different pieces 
of the circuit for future reference. The symbols are as follows: R means resistor which 
is measured in ohms, L means the inductor which has inductance measured in henrys, 
C is the capacitor which has capacitance measured in farads and finally, V stands for 
the generator or battery and is measured in volts. Something to note is that another 
symbol commonly used for V is E when making diagrams of circuits. We can measure 
the charges of the capacitors and the currents by modeling them as functions of time. 
The equation that is used to model circuits and then subsequently used to analyze the 
circuits after solving it is as follows, 

V(t) = RI +L' + �Q 

The remaining variable left to be defined is Q, which is normally the variable used to 
represent the charge of a circuit. [1) We get this equation due to the fact that the voltage 
drop across a circuit is modeled by the following equations: 

• The voltage drop across a resistor of a circuit is modeled by RI where I = � 

• Across an inductor it is modeled by L :f, and since we know I = �, we simplify 
this to get L� which we can then reduce even further to LI'. 

• Across a capacitor it is modeled by �Q 

• Across a generator it's modeled by -V 

By taking the Laplace transform of this equation, after plugging in values for the indi­
vidual pieces of the circuit, and manipulating the resulting equation to take the inverse 
transform we can get a final solution to our circuit. 
Before we go further, it is necessary to note that when we acquired the equation for V(t), 
we actually used Kirchhoff's Laws. [1] Due to the necessity of knowing these laws when 
doing circuit analysis, they are as follows: 

10 

First let’s identify the individual symbols on the circuit and what they mean. Also, while doing 
this it would help to identify what is used to measure each of these different pieces of the circuit 
for future reference. The symbols are as follows: R means resistor which is measured in ohms, L 
means the inductor which has inductance measured in henrys, C is the capacitor which has ca-
pacitance measured in farads and finally, V stands for the generator or battery and is measured in 
volts. Something to note is that another symbol commonly used for V is E when making diagrams 
of circuits. We can measure the charges of the capacitors and the currents by modeling them as 
functions of time. The equation that is used to model circuits and then subsequently used to ana-
lyze the circuits after solving it is as follows,

1( ) 'V t RI L Q
C

= +

The remaining variable left to be defined is Q, which is normally the variable used to represent 
the charge of a circuit. We get this equation due to the fact that the voltage drop across a circuit is 
modeled by the following equations:

•	 The voltage drop across a resistor of a circuit is modeled by RI where
dQI
dt

= .

•	 Across an inductor it is modeled by 
dIL
dt

, and since we know 
dQI
dt

= , we simplify this to 

get 
2

2

d QL
dt

 which we can then reduce even further to 'LI .

•	 Across a capacitor it is modeled by
1 Q
C

.

•	 Across a generator it’s modeled by V− .

By taking the Laplace transform of this equation, after plugging in values for the individual pieces 
of the circuit, and manipulating the resulting equation to take the inverse transform we can get a 
final solution to our circuit.

Before we go further, it is necessary to note that when we acquired the equation for ( )V t , we actu-
ally used Kirchhoff’s Laws. Due to the necessity of knowing these laws when doing circuit analysis, 
they are as follows: 

•	 The algebraic sum of the currents flowing toward any junction point is equal to zero. 
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•	 The algebraic sum of the potential drops, or the voltage drops, around any closed loop is 
equal to zero.

The first of these two laws is often referred to as Kirchhoff’s Current Law and the second of the two 
as Kirchhoff’s Voltage Law. These two laws are extremely important to circuit analysis, as without 
them, the equation that we are using to model the circuit would not work. In some cases, only of 
the laws needs to be applied to get the equations. However, this is usually due to it being a rather 
simple circuit, such as the circuit in the first example.

Now that the circuit’s components have been labeled we can showcase how exactly a Laplace trans-
form is used in an introductory example followed by a more complex example. 

Example:

 

1. The algebraic sum of the currents flowing toward any junction point is equal to 
zero. 

2. The algebraic sum of the potential drops, or the voltage drops, around any closed 
loop is equal to zero. 

The first of these two laws is often referred to as Kirchhoff's Current Law and the second 
of the two as Kirchhoff's Voltage Law. These two laws are extremely important to circuit 
analysis, as without them, the equation that we are using to model the circuit would not 
work. In some cases, only of the laws needs to be applied to get the equations. However, 
this is usually due to it being a rather simple circuit, such as the circuit in the first 
example. 

Now that the circuit's components have been labeled we can showcase how exactly 
a Laplace transform is used in an introductory example followed by a more complex 
example. 

Example 5.1: 

.02 farads 

20 ohms 

Based on the diagram above, our circuit has an inductor of 4 henrys, a resistor of 20 
ohms and a capacitor of .02 farads. As for the charge and current, let's set a condition 
so that the charge on the capacitor, and current in the circuit, be O at t=O. Let's find 
the charge on the capacitor at any time t besides 0, where V is equal to 200 volts. So 
then we get the following, 

S. I !!Q. mce = dt, 

dl 1 4- + 201 + -Q = 200 dt .02 

cFQ dQ 
4 dt2 

+ 20
dt 

+ 50Q = 200 

It is important to take into account that we have the following initial conditions due to 
our chaxge at t = 0 being 0. 

11 

Based on the diagram above, our circuit has an inductor of 4 henrys, a resistor of 20 ohms and a 
capacitor of .02 farads. As for the charge and current, let’s set a condition so that the charge on the 
capacitor, and current in the circuit, be 0 at t=0. Let’s find the charge on the capacitor at any time 
t besides 0, where V is equal to 200 volts. So then we get the following,

2
2

14 20 200
.02

Since ,

4 20 50 200

dI I Q
dt

dQI
dt

d Q dQ Q
dt dt

+ + =

=

+ + =2
2

14 20 200
.02

Since ,

4 20 50 200

dI I Q
dt

dQI
dt

d Q dQ Q
dt dt

+ + =

=

+ + =2
2

14 20 200
.02

Since ,

4 20 50 200

dI I Q
dt

dQI
dt

d Q dQ Q
dt dt

+ + =

=

+ + =

It is important to take into account that we have the following initial conditions due to our charge 
at t = 0 being 0.

•	 (0) 0Q = ,

•	 '(0) 0Q = .

Now, we know the following is true:

•	
2

2 ''d Q Q
dt

= ,

•	
dQ Q
dt

= .
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With this, we can rewrite the original equation,

25'' 5 ' 50
2

Q Q Q+ + =

Now, we take the Laplace transform,

2

25'' 5 ' } {50}
2

25 50{ (0) '(0)} 5{ (0)
2

{

}

Q Q Q L

s q sQ Q sq Q q
s

L + + =

= − − + − + =

Recall our initial conditions to simplify this further,

2

2

50( 5 12.5)

50
255
2

q s s
s

q
s s s

+ + =

= =
 + + 
 

The goal is to take the inverse Laplace transform so that we can get the answer back in the origi-
nal domain of time, but as of right now it isn’t clear what function we get when taking the inverse 
transform. Since it isn’t clear what the inverse transform function would be, we need to manipulate 
the equation. To start is partial fraction expansion of the equation, by doing this we get,

22

50
2525 55
22

A Bs C
s s ss s s

+
= +

  + ++ + 
 

So, by way of doing partial fraction expansion,

2 22550 5
2

A s s Bs Cs = + + + + 
 

From here we solve for the individual variables. By plugging in O for s, we solve for A. Then if we 
plug that solution back in we can find B and C. By doing this, we end up with the following for the 
individual variables:

•	 A 4a = ,

•	 4B = − ,

•	 20C = − .

Now, we just plug these back into the original equation,

2

4 4 20
255
2

s
s s s

− −
= −

+ +

________________________ WORLD TECHNOLOGIES ________________________



WT

195Laplace Transform	

From here we manipulate the equation to fit one in the form from the table.

2 2
4 14 10

5 25 5 25
2 2 2 2

s s
= − −

   + + + +   
   

With the equation now fitting the table on Laplace transforms, we can take the inverse transform.

1
2 2

5 5
2 2

5
4 12{ 4 10 }

5 25 5 25
2 4 2 4

5 54 4 cos( ) 4 sin( )
2 2

t t

s
L

s
s s

e t e t

−

− −

+
− −

   + + + +   
   

= − −

So our charge at any time, t, t > 0 is the equation above. We can see what this looks like in the form 
of a graph via Maple to determine exactly what it is.

Now, we just plug these back into the original equation 

4 -4s - 20 = - + -----::,=-s s2 + 5s + 2; 

From here we manipulate the equation to fit one in the form from the table. 

4 s +  i 1 
- - - 4  - 10-�--= - s  (s + i)2 + 2

4
s (s + �)2 + �s 

With the equation now fitting the table on Laplace transforms, we can take the inverse 
transform 

L-i{i - 4 s + i  - 10 1 } 
s (s + �)2 + �s (s + i)2 + 2; 

= 4 - 4e-�tcos(�t) - 4e-itsin(�t) 
2 2 

So our charge at any time, t, t > 0 is the equation above. We can see what this looks 
like in the form of a graph via Maple to determine exactly what it is. 

s 

4 

3 

2 

0 ---------------
4 6 10 

- I  

-2 

We can see from this graph that the charge maxes out a little after 4C and then flattens 
out at 4C. 

After doing an example of a rather basic circuit, let's do one a little more advanced with 
multiple loops to showcase how the Laplace transform is utilized in a more advanced case. 

[l]Example 5.2: 
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We can see from this graph that the charge maxes out a little after 4C and then flattens out at 4C.

After doing an example of a rather basic circuit, let’s do one a little more advanced with multiple 
loops to showcase how the Laplace transform is utilized in a more advanced case.

Example:

36 ohms 

3 henrys 
;. 

6 henrys ;. on 
24 ohms 

We have a circuit with two different branches, let's figure out what the currents are in 
each of these branches when the initial is zero. Due to Kirchhoff's second law, we know 
that the sum of the voltage on a closed loop is zero, and we can see that our loops are 
closed from the diagram above. Let's make Q the current around the top part of the 
circuit, and then let Q'and Q" be the respective currents that divide at the junction point 
so that Q = Q' + Qn . Also, it is important to note that we have the following intitial 
conditions: 

• Q(O) = 0 

• Q'(O) = 0 
Now that we know the initial conditions, let's analyze this circuit. To do this we need to 
apply Kirchhoff's second law to these two loops to get the following equations, 

1 -12Q' - 3� + 6!!fl'.. + 24Q" = 0 • dt dt 

2. 36Q + 3� + 12Q' = 150 

By looking closely, one can recognize we can divide both equations by 3 to get a new set: 
1. -4Q' - � + 2� + SQ" = 0 
2. 12Q + � + 4Q' = 50 

To make things easier, let's work with the first equation. 

L{-4Q' - dQ' + 2dQ" + SQ" } = 0 
dt dt 

= -4q' - (sq' - Q'(O)) + 2(sq" - Q(O)) + Sq" 

= 4q' - sq' + 2sq + Sq 

14 
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We have a circuit with two different branches, let’s figure out what the currents are in each of 
these branches when the initial is zero. Due to Kirchhoff’s second law, we know that the sum of the 
voltage on a closed loop is zero, and we can see that our loops are closed from the diagram above. 
Let’s make Q the current around the top part of the circuit, and then let 'Q and Q” be the respective 
currents that divide at the junction point so that ' nQ Q Q= + . Also, it is important to note that we 
have the following intitial conditions:

•	 (0) 0Q = ,

•	 '(0) 0Q = .

Now that we know the initial conditions, let’s analyze this circuit. To do this we need to apply 
Kirchhoff’s second law to these two loops to get the following equations,

•	
' ''12 ' 3 6 24 '' 0dQ dQQ Q

dt dt
− − + + = ,

•	
'36 3 12 ' 150dQQ Q

dt
+ + = .

To make things easier, let’s work with the first equation.

•	
' ''4 ' 2 8 '' 0dQ dQQ Q

dt dt
− − + + = ,

•	
'12 3 4 ' 150dQQ Q

dt
+ + = .

To make things easier, let’s work with the first equation.

' ''{ 4 ' 2 8 ''} 0

4 ' ( ' '(0)) 2( '' (0)) 8 ''
4 ' ' 2 8
( 4) ' (2 8) ''

dQ dQL Q Q
dt dt

q sq Q sq Q q
q sq sq q
s q s q

− − + + =

=− − − + − +
= − + +
= + − +

' ''{ 4 ' 2 8 ''} 0

4 ' ( ' '(0)) 2( '' (0)) 8 ''
4 ' ' 2 8
( 4) ' (2 8) ''

dQ dQL Q Q
dt dt

q sq Q sq Q q
q sq sq q
s q s q

− − + + =

=− − − + − +
= − + +
= + − +

It follows that,

( 4) ' (2 8)
2 8'

4
' 2 ''

s q s q
sq q

s
q q

+ = +
+

= =
+

= =

Now that we know what 'q is, let’s focus on the second equation. If we apply Kirchhoff’s seocnd 
law, we can alter it to get the following:

' 8 ' 6 '' 50dQ Q Q
dt

+ + =
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The reason for doing this is so we can take the Laplace transform.

'{ 8 ' 6 ''} {50}

50{ ' '(0)) 8 ' 6 '

dQL Q Q L
dt

sq Q q q
s

+ + =

= + + =

Recall our initial condition to simply the equation,

50( 8) ' 6 ''s q q
s

+ + =

Since we know that ' 2 ''q q= , we are going to substitute it in.

50( 8) '' 6 ''

50''(10 14)

50''
(10 14)

s q q
s

q s
s

q
s s

+ + =

= + =

= =
+

Since q'' is now by itself, we can take the inverse Laplace transform of the equation,

1 1

7
5

50{ ''} { }
(10 14)

25 25'' 2
7 7

t

L q L
s s

Q e

− −=
+

= −

It follows that since 'q is double this,

7
550 25' 2

7 7
t

Q e= −

Recall the previous equation, ' "Q Q Q= + . From this, it follows that,

7 7
5 5

7
5

25 25 50 252
7 7 7 7

25
7

75 3
7

t t

t

Q e

Q

e

e=

= − + −

−

At any time , 0t t > the circuit’s current will have the value denoted by the equation given by Q. We 
can see this via a graph to truly understand what this means.
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-so 

. - [00 

- 1 SO 

-200 
We can see from this graph that the charge is exponentially decreasing and will continue 
to drop. 

The process of analyzing circuits is used by engineers who wish to gain a better under­
standing of the circuit they are currently working with. While the two examples are not 
increasingly complex, lacking a switch for both, the same principle is applied to any RLC 
circuit. By using a Laplace transform for circuit analysis, we get the automatic inclu­
sion of the initial conditions, in the examples case these wereQ(O) = 0 and Q'(O) = 0, 
giving us an entirely complete solution of the analysis. The fact that we get our initial 
conditions automatically included in the solution is arguably the main reason why the 
transform gained such popularity in doing circuit analysis. 

6. CONCLUSION 

Laplace transforms have become an integral part of modern science, being used in a vast 
number of different disciplines. Whether they are being used in electrical circuit anal­
ysis, signal processing, or even in modeling radioactive decay in nuclear physics, they 
have quickly gained popularity among the intellectual community that deals with these 
subjects on a day to day basis. From gaining popularity in the late 1900s, the transform 
has cemented itself as a necessary component for those going into mathematics, engineer­
ing, physics, and other sciences to be familiar with and understand how to use it. The 
Laplace transform may have gained its fame for its uses in analyzing circuits, but it is an 
extremely diverse transform that any mathematician should have knowledge of due to its 
versatility. Its applications are numerous, without it many of our technological advances 
would have been stunted, setting back the rapid increase in technology modern society 
has continued to bear witness to. 
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We can see from this graph that the charge is exponentially decreasing and will continue to drop.

The process of analyzing circuits is used by engineers who wish to gain a better understanding of 
the circuit they are currently working with. While the two examples are not increasingly complex, 
lacking a switch for both, the same principle is applied to any RLC circuit. By using a Laplace trans-
form for circuit analysis, we get the automatic inclusion of the initial conditions, in the examples 
case these were ( ) 00Q =  and ( )' 00Q = , giving us an entirely complete solution of the analysis. 
The fact that we get our initial conditions automatically included in the solution is arguably the 
main reason why the transform gained such popularity in doing circuit analysis.

Comparison between Fourier  
and Laplace Transform

First, lets take a look at the Fourier Transform (FT) of a CT signal, ( )x t ,

( ) ( ) ( )  .e j tX F x t x t dtωω −= =  

The FT transforms a time-domain signal into a frequency-domain signal, telling us how the sig-
nal’s energy (―information‖) is spread across sinusoids of different frequencies. This property 
makes the FT invaluable in many signal processing tasks such as audio engineering and wireless 
communications (though, the applications of the FT are limitless). Now, remember that the FT 
had the following condition: the ( )F x t   only exists if

( ) .x t dt∫ < ∞

−∞

In other words, ( )F x t   exists only if the total energy of our signal is bounded, that is, the area 
underneath its curve is finite.
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Why does the FT have this condition? Lets attempt to find the FT of the two unacceptable signals 
shown above. For the first case, we observe a unit step function,

( ) ( ) ,x t u t=

which is defined to have a value of 1 for all positive t. So, attempting to calculate ( )F u t   ,

( ) ( )( ) ( ) ,e j tX F t u dtu t ωω
∞ −

−∞
= = ∫

The integral ∞  is, technically, an improper integral. We will note that by setting a bound to infinity 
we are actually saying R that we will calculate this integral as the upper end approaches infinity in 
the limit. Remembering this fact we find

( ) ( ) ,e j tX u t dtωω
∞ −

−∞
= ∫

Unfortunately for us, the term jù t
tLIM e−
→∞ doesn’t converge to anything in the limit since the term,

j t 1
2e [COS t j SIN t]− ω = ω − ω

and here, again, we see that for our stated condition 0α > , the integral diverges as the term 
t j t

tLIM e eα − ω
→∞ goes to infinity. And so, X( )ω does not exist. While the FT is useful for analyzing 

signals in terms of their frequency composition, many kinds of signals, such as the two we have 
just investigated, defy strict Fourier transformation (though general transforms can be arrived at.)

To analyze a more general set of functions, including functions which may not have FTs, we can 
use the Laplace transform (LT). The LT can be thought of as a generalized FT. The LT is defined as,

j tX( )=F(u(t))= u(t)e ,dt
∞ − ω

−∞
ω ∫

where, 

s j . = σ+ ω

where the FT of a signal, ( )X ω , was a function of only imaginary numbers, the LT of the same 
signal, X(s), is a function of complex numbers consisting for both real and imaginary components. 
We can view the FT as a special case of the LT for which 0.σ =

The inverse FT tells us that the function (t)x can be constructed from complex sinusoids which 
are denoted by the j te ω term. An example of one such complex sinusoid is given in figure. These 
complex sinusoids have a fixed amplitude across time. It is this fixed amplitude which prevents us 
from analyzing signals whose energy is not bounded. Simply put, the FT’s complex sinusoids do 
not have enough explanatory power for these functions.

Now, let us contrast the FT’s construction of (t)x with that of the LT. The inverse LT is defined as,

j1 ( j )
2 jx(t) X( ) dt
Z

e
σ + ∞ σ + ω

πσ − ∞= ω
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Rather than complex sinusoids of fixed amplitude, the LT defines (t)x in terms of complex sinu-
soids whose amplitudes exponentially grow or decay with respect to time, figure gives an exam-
ple of one such exponentially growing sinusoid. The additional exponential term est gives the LT 
much more flexibility than the FT for representing signals whose energy is unbounded.

Now, lets use the LT to find the transformation of the unit step and exponential growth functions 
for which the FT does not exist. Note that we are using the unilateral LT, which integrates over
[ ],−∞ ∞ , rather than the bilateral LT which integrates over [−∞, ∞]. We use the unilateral LT for 
analyzing casual signals, i.e. signals for which (t) 0, t 0x = < . In our case, both the unit step and 
exponential growth functions we analyze here are causal. First, the unit step, Here we see the extra 
leverage that the LT gives us over the FT. We now have an additional term, σ which we can use to 
force this integral to converge. Specifically,

t j t

t
LIM e e 0, 0.−σ − ω

→∞
= σ >

However, that this convergence only occurs for certain values of s, in this case 0σ > . Therefore,

, 0.[ 1]1 1X(s) = L[u(t)]
J s

σ>−

= =
σ+ ω

, s > 0

We make the note here that the region in which the LT exists (in this case, 0σ > ) is called the 
Region of Convergence (ROC) for the LT. Each different LT has a different ROC in which the LT 
exists. Finally, we see that the step function, which did not have a FT due to its infinite energy, does 
indeed have an LT (though only within the ROC).
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such exponentially growing sinusoid. The additional exponential term eσt gives the LT much more 
flexibility than the FT for representing signals whose energy is unbounded. 

Now, lets use the LT to find the transformation of the unit step and exponential growth functions for 
which the FT does not exist. Note that we are using the unilateral LT, which integrates over [0−, ∞], 
rather than the bilateral LT which integrates over [−∞, ∞]. We use the unilateral LT for analyzing 
casual signals, i.e. signals for which x(t) = 0, t < 0. In our case, both the unit step and exponential 
growth functions we analyze here are causal. First, the unit step, Here we see the extra leverage that the 
LT gives us over the FT. We now have an additional term, σ which we can use to force this integral to 
converge. Specifically, 

LIM e−σte−jωt = 0,   σ > 0. 
t→∞ 

Note, however, that this convergence only occurs for certain values of σ, in this case σ > 0. Therefore, 
 
X(s) = L[u(t)] =  

    1 [−1] 
= 

1 ,   σ > 0.  
σ + jω s  

We make the note here that the region in which the LT exists (in this case, σ > 0) is called the Region 
of Convergence (ROC) for the LT. Each different LT has a different ROC in which the LT exists. 
Finally, we see that the step function, which did not have a FT due to its infinite energy, does indeed 
have an LT (though only within the ROC). 

 
Figure 2: Complex sinusoid e(0.1−j)t. 

REGION OF CONVERGENCE (ROC)  

Whether the Laplace transform of a signal exists or not depends on the complex variable 
as well as the signal itself. All complex values of for which the integral in the definition converges 

form a region of convergence (ROC) in the s-plane. exists if and only if the argument is inside 

the ROC. As the imaginary part of the complex variable has no effect in 

terms of the convergence, the ROC is determined solely by the real part .  

Example 1: The Laplace transform of is:  

Complex sinusoid (0.1 j)te − .

Region of Convergence

Whether the Laplace transform X(s)  of a signal (t)x  exists or not depends on the complex variable 
as well as the signal itself. All complex values of for which the integral in the definition converges 
form a region of convergence (ROC) in the s-plane. X(s) exists if and only if the argument is in-

side the ROC. As the imaginary part Im sω =    of the complex variable s jσ ω= + has no effect in 

terms of the convergence, the ROC is determined solely by the real part Re sσ =    .
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Example: The Laplace transform of t( ) e ( )ax t u t−=

( )

0 0

( )
0

X(s) = [ ( )]

1

at st at j t

a j t

x t e e dt e e dt

e
a j

σ ω

σ ω

σ ω

∞ ∞− − − − +

∞− + +

= =

= −
+ +

∫ ∫L

For this integral to converge, we need to have,

0 or Re[ ]a s aσ σ+ > = > −

and the Laplace transform is,

1 1X(s) =
( )a j s aσ ω

=
+ + +

As a special case where 0a = , ( ) ( )x t u t= and we have,

1[ ( )] , Re[ ] 0u t s
s

σ= = >L

Example: The Laplace transform of a signal ( ) ( )atx t e u t−= − − is,

0 0 0( ) ( )1X(s) = at st a j t a j te e dt e dt e
a j

σ ω σ ω

σ ω
− − − + + − + +

−∞−∞ −∞
− = − =

+ +∫ ∫

Only when 0a σ+ <  or Re[ ]s aσ = < −

will the integral converge, and Laplace transform X(s) ,

1 1X(s) =
a j a sσ ω

=
+ + +

Again as a special case when 0a = , ( ) ( )x t u t= − − we have,

1[ ( )] , Re[ ] 0u t s
s

σ− − = = <L

Comparing the two examples above we see that two different signals may have identical Laplace 
transform X(s) , but different ROC. In the first case above, the ROC is Re[ ] 0s > , and in the second 
case, the ROC is Re[ ] 0s < . To determine the time signal (t)x by the inverse Laplace transform, 
we need the ROC as well as X(s) . Now we turn our attention to the exponential growth function, 
And, once again, we see that the LT gives us to ability to force this integral to converge by setting

0σ α− > , that is,σ α> .
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Before we move on, let us make a few observations. First, we see that the LT of the unit step 
function and of the exponential growth function are related. Let us, instead of considering just an 
exponentially growing function, allow α to take on any value, positive or negative. We now have a 
function which:

•	 Grows when α > 0,

•	 Is constant when α = 0,

•	 Decays when α < 0.

When we set 0α = , we see that te u(t) u(t)α → . Thus, 

( =0)tL[e u(t)]= 1/ s L[u(t)].1
s 0

α = =
−

Now, lets look at the ROC for the LT of our general, causal, exponential function, atx(t) e u(t)= . The 
ROC for differing values of α are given in figs. In the case that 0α = or > 0α , i.e. a unit step and an 
exponential growth function, the FT does not exist.
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exponentially growing function, allow α to take on any value, positive or negative. We now have a 
function which 

• Grows when α > 0,  
• Is constant when α = 0,  
• Decays when α < 0.  

When we set α = 0, we see that eαt u(t) → u(t). Thus, 
L[e(α=0)tu(t)] = 1 

s − 0 
= 1 /s = L[u(t)].  

   
Now, lets look at the ROC for the LT of our general, causal, exponential function, x(t) = eαt u(t). The 
ROC for differing values of α are given in Figs. 3–5. In the case that α = 0 or α > 0, i.e. a unit step and 
an exponential growth function, the FT does not exist.  

jω 
 
 
 
 
 

 σ = 0 
 

 
 
 
 
 
 
 
 
Figure 3: ROC on the complex plane for L[eαtu(t)] for α = 0. 

3 & 4, does not contain the jω axis. However, when α < 0, a FT for the exponential function does exist, 
and the jω axis is contained within the ROC of the LT. This makes sense, because the FT is a special 
case of the LT when σ = 0. 

Specifically, if x(t) is causal and its FT exists (in the strict sense), then 
F[x(t)] = X(s)|s=jω 

where X(s) = L[x(t)]. The existence of F[x(t)] is equivalent to having the jω axis of the complex plane 
within the ROC of L[x(t)]. If jω is not within the ROC, then, 

L[x(t)]|s=jω =6 F[x(t)]. 
 
For example, lets look at the unit step, 

• F[u(t)] = jω1 + πδ(ω),  

ROC on the complex plane for atL[e u(t)] for 0α = .

It does not contain the jωaxis. However, when 0α< , a FT for the exponential function does exist, 
and the jωaxis is contained within the ROC of the LT. This makes sense, because the FT is a special 
case of the LT when 0σ = .

Specifically, if x(t) is causal and its FT exists (in the strict sense), then,

s=jF[x(t)]=X(s) ω

where X(s) L[x(t)]= . The existence of F[x(t)]  is equivalent to having the jωaxis of the complex 
plane within the ROC of L[x(t)] . If jω is not within the ROC, then,
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s=jL[x(t)] 6F[x(t)]ω =

For example, lets look at the unit step,

•	
1

jF[u(t)] ( ),ω= +πδ ω

•	
1L[u(t)]=
s

Here, we see that L[u(t)]6 F[u(t)]= because of the ROC of L[u(t)] does not contain the jù axis.

And so, we see that the Laplace transform and the Fourier transform are linked together, with the 
Fourier transform being a special case of the Laplace transform. The Laplace transform exhibits 
greater explanatory power than the Fourier transform as it allows for the transformation of func-
tions with unbounded energy.
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• L[u(t)] = 1𝑠𝑠 
Here, we see that L[u(t)] 6= F[u(t)] because of the ROC of L[u(t)] does not contain the jω axis. 

And so, we see that the Laplace transform and the Fourier transform are linked together, with the 
Fourier transform being a special case of the Laplace transform. The Laplace transform exhibits greater 
explanatory power than the Fourier transform as it allows for the transformation of functions with un-
bounded energy. 

jω      jω 
 

 
 
 
 

 
 
 
 
 
 
 
 

Figure 4: ROC on the complex plane for L[eαtu(t)] for α > 0. 
 σ α < 0 

DIFFERENCE BETWEEN FOURIER AND LAPLACE TRANSFORMATION 
Laplace Transform does a real transformation on complex data but Fourier Transform does a complex 
transformation on real data. it means: 

 
at the presence of some condition you can take the Fourier transformation by placing j instead of s in 
Laplace transform. To use Laplace to find an output given a system and input, you find the Laplace of 
the input X(s), and the system H(s), multiply them together to find the output Y(s), then inverse 
transform that to find y(t). Use Fourier Transforms you split the input signal X(s) into many pure 
sinusoids each of a known amplitude, phase, and frequency w, then directly find the associated output 
sinusoid for each of the inputs (same as the input but with a gain of |H(jw)| and with an added phase of 

ROC on the complex plane for atL[e u(t)] for 0α> .

0σα<

Difference between Fourier and Laplace Transformation 

Laplace Transform does a real transformation on complex data but Fourier Transform does a com-
plex transformation on real data. it means:

0

0
0

{ ( )} ( )

( ) '( ) (by parts)

(0 ) 1 { '( )},

st

st st

f t e f t dt

f t e e f t dt
s s

f f t
s s

∞ −

−

∞− −∞

−
−

=

 
= − − − 

− = − + − 

∫

∫

L

L

At the presence of some condition you can take the Fourier transformation by placing j instead 
of s in Laplace transform. To use Laplace to find an output given a system and input, you find the 
Laplace of the input X(s) , and the system H(s) , multiply them together to find the output Y(s) , 
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then inverse transform that to find Y(t) . Use Fourier Transforms you split the input signal X(s)
into many pure sinusoids each of a known amplitude, phase, and frequency w, then directly find 
the associated output sinusoid for each of the inputs (same as the input but with a gain of H(jw)
and with an added phase of angle (H(jw))) .

Fourier transformation sometimes has physical interpretation, for example for some mechan-
ical models where we have quasi-periodic solutions (usually because of symmetry of the sys-
tem) Fourier transformations gives You normal modes of oscillations. Sometimes even for 
nonlinear system, couplings between such oscillations are weak so nonlinearity may be ap-
proximated by power series in Fourier space. Many systems has discrete spatial symmetry 
(crystals) then solutions of equations has to be periodic so FT is quite natural (for example in 
Quantum mechanics).

With any of normal modes You may tie finite energy, sometimes momentum etc. invariants of 
motion. So during evolution, for linear system, such modes do not couple each other, and system 
in one of this state leaves in it forever. Every linear physical system has its spectrum of normal 
modes, and if coupled with some external random source of energy (white noise), its evolution 
runs through such states from the lowest possible energy to the greatest.

When you Laplace transform the system, you will get the final system response, if you know the 
initial conditions of the system. These conditions are at t =0, can be easily obtained from the 
equation. The Fourier transform helps in analyzing the system response in a way different from 
Laplace. It breaks the signal into a number of sine and cosine waves (actually infinite), where you 
can have an insight to how the system is behaving by observing the amplitudes of each of the sine 
and cosine waves. Fourier transforms are for converting/representing a time-varying function in 
the frequency domain.

A laplace transform are for converting/representing a time-varying function in the “integral do-
main” The Laplace and Fourier transforms are continuous (integral) transforms of continuous 
functions. The Laplace transform maps a function f (t) to a function F(s) of the complex variable s, 
where s =  + jσ ω .

Since the derivative f (t)=df (t) dt maps to sf (s) , the Laplace transform of a linear differential 
equation is an algebraic equation. Thus, the Laplace transform is useful for, among other things, 
solving linear differential equations.

If we set the real part of the complex variable s to zero, 0σ = , the result is the Fourier transform 
F(j )ω which is essentially the frequency domain representation of f (t) .

The Z transform is essentially a discrete version of the Laplace transform and, thus, can be use-
ful in solving difference equations, the discrete version of differential equations. The Z transform 
maps a sequence f (n) to a continuous function F(z) of the complex variable z=rejΩ .

If we set the magnitude of z to unity, r=1, the result is the Discrete Time Fourier Transform (DTFT) 
F( j )Ω which is essentially the frequency domain representation of f [n] .

Fourier transform is defined only for absolutely integrable functions. Laplace transform is a gen-
eralisation to include all functions.
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Z-Transform

In signal processing, Z-transformation is used to transform a series of real or complex values 
into a complex frequency domain representation. Region of convergence, properties of Z trans-
form, pole zero plot, inverse Z transform, etc. are some of the principles associated with it. This 
chapter discusses these principles related to Z Transform in detail.

A special feature of the z-transform is that for the signals and system of interest to us, all of the 
analysis will be in terms of ratios of polynomials. Working with these polynomials is relatively 
straight forward.

•	 Given a finite length signal [ ]x n , the z -transform is defined as: 

0 0
( ) = [ ] [ ]( )

N N
k k k

k k
X z x k z x k z− −

= =

=∑ ∑

where the sequence support interval is [ ]0,  N , and z  is any complex number.

•	 This transformation produces a new representation of [ ]x n  denoted ( ) X z .

•	 Returning to the original sequence (inverse z-transform) [ ]x n requires finding the coeffi-
cient associated with the nth power of 1z− .

•	 Formally transforming from the time/sequence/n-domain to the z -domain is represented as:

Domain  Domain
z

n z− ↔ −

0 0
[ ] [ ] [ ] ( ) [ ]

N Nz
k

k k
x n x k n k X z x k zδ −

= =

= − ↔ =∑ ∑

•	 A sequence and its z-transform are said to form a z -transform pair and are denoted:

[ ] ( )
z

x n X z↔

◦◦ In the sequence or n-domain the independent variable is n.

◦◦ In the z -domain the independent variable is z .

6
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Example: 0[ ] [ ]x n n nδ= −

Using the definition:

0
0

0 0
( ) [ ] [ ]

N N
nk k

k k
X z x k z k n z zδ −− −

= =

= = − =∑ ∑

Thus,

0
0[ ]

z
nn n zδ −− ↔

Example: [ ]  2 [ ] 3 [ –1] 5 [ – 2] 2 [ – 3] x n n n n n= δ + δ + δ + δ

By inspection we find that:
–1 –2 –3( ) 2 3 5 2X z z z z= + + +

Example: –2 –3 –4( ) 4 5 2X z z z z= − + +

By inspection we find that:

[ ]  4 [ ] 5 [ – 2] [ – 3] 2 [ – 4] x n n n n n= δ + δ + δ − δ

What can we do with the z-transform that is useful?

Region of Convergence

With the z-transform, the s-plane represents a set of signals (complex exponentials). For any given 
LTI system, some of these signals may cause the output of the system to converge, while others 
cause the output to diverge (“blow up”).

The set of signals that cause the system’s output to converge lie in the region of convergence (ROC). 

The region of convergence, known as the ROC, is important to understand because it defines the 
region where the z-transform exists. The z-transform of a sequence is defined as:

( ) [ ] n

n
X z x n z

∞
−

=−∞

= ∑

The ROC for a given [ ]x n , is defined as the range of z for which the z-transform converges. Since the 
z-transform is a power series, it converges when [ ]x n nz− is absolutely summable.

Stated differently,

[ ] n

n
x n z

∞
−

=−∞

< ∞∑

must be satisfied for convergence.
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Properties of the Region of Convergencec

The Region of Convergence has a number of properties that are dependent on the characteristics 
of the signal, [ ]x n .

The ROC cannot contain any poles. By definition a pole is a where ( )X z is infinite. Since ( )X z  
must be finite for all z for convergence, there cannot be a pole in the ROC.

If [ ]x n is a finite-duration sequence, then the ROC is the entire z-plane, except possibly 0z = or 
| |z = ∞ . A finite-duration sequence is a sequence that is nonzero in a finite interval 1 2n n n≤ ≤ . As 
long as each value of [ ]x n is finite then the sequence will be absolutely summable. When 2 0n >
there will be a 1z− term and thus the ROC will not include 0z = . When 1 0n < then the sum will be 
infinite and thus the ROC will not include | |z = ∞ . On the other hand, when 2 0n ≤ then the ROC 
will include z=0, and when n1≥0 the ROC will include | |z = ∞ . With these constraints, the only 
signal, then, whose ROC is the entire z-plane is [ ] [ ]x n c nδ= .

An example of a finite duration sequence.

The next properties apply to infinite duration sequences. As noted above, the z-transform converg-
es when | ( ) |X z < ∞ . So we can write:

( )( ) [ ] [ ] [ ]
nn n

n n n
X z x n z x n z x n z

∞ ∞ ∞ −− −

=−∞ =−∞ =−∞

= ≤ =∑ ∑ ∑

We can then split the infinite sum into positive-time and negative-time portions. So,

( ) ( ) ( )X z N z P z≤ +

where,

( )
1

]( ) [
n

n
N zz x n

− −

=−∞

= ∑

and

( )
0

]( ) [
n

n
P z x n z

∞ −

=

=∑
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In order for ( )X z to be finite, [ ]x n must be bounded. Let us then set,

1 1( ) nx n C r≤

For,

0n ≥

From this some further properties can be derived:

If ( )x n is a right-sided sequence, then the ROC extends outward from the outermost pole in ( )X z . 
A right-sided sequence is a sequence where [ ] 0x n =  for 1n n< < ∞ . Looking at the positive-time 
portion from the above derivation, it follows that,

( ) 2
2 2 2

0 0
( )

n
nn

n n
P C rz C r z

z

∞ ∞−

= =

 
≤ =   

 
∑ ∑

Thus in order for this sum to converge, 2| |z r> , and therefore the ROC of a right-sided sequence 
is of the form 2| |z r> .

A right-sided sequence.

The ROC of a right-sided sequence.

If [ ]x n  is a left-sided sequence, then the ROC extends inward from the innermost pole in ( )X z
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a left-sided sequence is a sequence where 20 for[ ]  x n n n= > > −∞ . Looking at the negative-time 
portion from the above derivation, it follows that,

( )
1 1

1
1 1 1 1

1 1

( )
n k

nn

n n k

zrN z C r z C C
z r

− − ∞−

=−∞ =−∞ =

   
≤ = =       

∑ ∑ ∑

Thus in order for this sum to converge, 1z r< , and therefore the ROC of a left-sided sequence is of 
the form 1z r< .

A left-sided sequence.

The ROC of a left-sided sequence.

If [ ]x n is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on the in-
terior and exterior by a pole. A two-sided sequence is an sequence with infinite duration in the 
positive and negative directions. From the derivation of the above two properties, it follows that if

2 2| |r z r− < <  converges, then both the positive-time and negative-time portions converge and thus 
( )X z converges as well. Therefore the ROC of a two-sided sequence is of the form 2 2| |r z r− < < .
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A two-sided sequence.

The ROC of a two-sided sequence.

Example: 

Lets take,

1
1 1[ ] [ ] [ ]
2 4

n n

x n u n u n   = +   
   

The z-transform of 
1 [ ]
2

n

u n 
 
 

is 1
2

z

z −
with an ROC at |

2
| 1 .z >

The ROC of 
1 [ ]
2

n

u n 
 
 

.

The z-transform of 
1 [ ]

4

n

u n− 
 
 

 is 1
4

z

z +
with an ROC at | 1| .

4
z −
>
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The ROC of 
1 [ ]

4

n

u n− 
 
 

.

Due to linearity,

1[ ] 1 1
2 4

12
8

1 1
2 4

z zX z
z z

z z

z z

= +
− +

 − 
 =

  − +  
  

By observation it is clear that there are two zeros, at 0  and 
1

16
, and two poles, at

1
2

, and
1

4
−

. Fol-

lowing the above properties, the ROC is |
2

| 1 .z <

The ROC of 2
1 1[ ] [ ] [( ) 1]

4 2

n n

x n u n u n−   = − − −   
   

.
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Properties of Z-Transform

The z-transform has a set of properties in parallel with that of the Fourier transform (and Laplace 
transform). The difference is that we need to pay special attention to the ROCs. In the following, 
we always assume,

[ [ ]] ( ) xZ x n X z ROC R= =

and

[ [ ]] ( ) yZ y n Y z ROC R= =

Linearity

[ [ ] [ ]] ( ) ( ), ( )x yZ ax n by n aX z bY z ROC R R+ = + ⊇ ∩

While it is obvious that the ROC of the linear combination of [ ]x n and [ ]y n  should be the in-
tersection of the their individual ROCs x yR R∩  in which both ( )X z and ( )Y z exist, note that in
some cases the ROC of the linear combination could be larger than x yR R∩ . For example, for
both [ ] [ ]nx n a u n=  and [ ] [ 1]ny n a u n= − , the ROC is | | | |z a> , but the ROC of their difference 

[ ] [ 1] [ ]n na u n a u n nδ− − =  is the entire z-plane.

Time Shifting

0
0[ [ ]] ( ),n

xZ x n n z X z ROC R−− = =

Proof:

0 0[  [ [ ]] ] n

n
Z x n n x n n z

∞
−

=−∞

− = −∑

Define 0m n n= − , we have 0n m n= + ,

0 0  [ ] ( )n nm

m
x m z z z X z

∞
− −−

=−∞

=∑

The new ROC is the same as the old one except the possible addition/deletion of the origin or in-
finity as the shift may change the duration of the signal.

Time Expansion

1/[ [ / ]] ( ),k k
xZ x n k X z ROC R= =
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The discrete signal [ ]x n cannot be continuously scaled in time as n has to be an integer (for a
non-integer n [ ]x n  is zero). Therefore [ / ]x n k  is defined as:

[ / ] if is a
0

multipleof
[ / ]

else
x n k n k

x n k ∆=




Example: If [ ]x n is ramp.

n 1 2 3 4 5 6

[ ]x n 1 2 3 4 5 6

Then the expanded version [ / 2]x n is:

n 1 2 3 4 5 6

/ 2n 0.5 1 1.5 2 2.5 3

m 1 2 3

[ / 2]x n 0 1 0 2 0 3

where m is the integer part of /n k .

Proof: The z-transform of such an expanded signal.

/  [ [ / ]] [ ] [ ] ( )n km k

n m
Z x n k x n k z x m z X z

∞ ∞
− −

=−∞ =−∞

= = =∑ ∑

Note that the change of the summation index from $n$ to $m$ has no effect as the terms skipped 
are all zeros.

Convolution

[ [ ]* [ ]] ( ) ( (  ), )x yZ x n y n X z Y z ROC R R= ⊇ ∩

The ROC of the convolution could be larger than the intersection of xR and yR , due to the possible 
pole-zero cancellation caused by the convolution.

Time Difference

1[ [ ] [ 1]] (1 ) ( ), xZ x n x n z X z ROC R−− − = − =

Proof:

1 1 1[ [ ] [ 1]] ( ) ( ) (1 ) ( ) ( )zZ x n x n X z z X z z X z X z
z

− − −
− − = − = − =
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Note that due to the additional zero  1 z = and pole 0z = , the resulting ROC is the same as xR ex-
cept the possible deletion of 0z = caused by the added pole and/or addition of  1 z = caused by the 
added zero which may cancel an existing pole.

Time Accumulation

1  1[ [ ]] ( ), [ (| | 1)]
1

n

x
k

Z x k X z ROC R z
z−

=−∞

= ⊇ ∩ >
−∑

Proof: The accumulation of [ ]x n can be written as its convolution with [ ]u n :

[ ] [ ] [ ] [ ] [ ]
n

k k
u n x n u n k x k x k

∞

=−∞ =−∞

∗ = − =∑ ∑

Applying the convolution property, we get:

1

1[ [ ]] [ [ ] [ ]] ( )
1

n

k
Z x k Z u n x n X z

z−
=−∞

= ∗ =
−∑

As 1[ [ ]] 1/ (1 ).Z u n z−= −

Time Reversal

[ [ ]] (1/ ) 1/ xZ x n X z ROC R− = =

Proof:

1[ [ ]] [ ] [ ]( ) (1/ )n m

n m
Z x n x n z x m X z

z

∞ ∞
− −

=−∞ =−∞

− = − = =∑ ∑

where m n= − .

Scaling in Z-domain

|[ [ ]] , |n
x

zZ a x n X ROC a R
a

 = = 
 

Proof:

[ [ ]] [ ]
n

n

n

z zZ a x n x n X
a a

−∞

=−∞

   = =   
   

∑

In particular, if 0ja e ω= , the above becomes:

0 0[ [ ]] ( )jn j
xZ e x n X e z ROC Rω ω−= =

The multiplication by 0je ω−  to z corresponds to a rotation by angle 0ω in the z-plane, i.e., a frequency 
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shift by 0ω . The rotation is either clockwise ( 0 0ω > ) or counter clockwise ( 0 0ω > ) corresponding 
to, respectively, either a left-shift or a right shift in frequency domain. The property is essentially 
the same as the frequency shifting property of discrete Fourier transform.

Conjugation

* * *[ [ ]] ( ), xZ x n X z ROC R= =

Proof: Complex conjugate of the z-transform of [ ]x n is:

* * * *( ) [ [ ] ]  [ ]( )n n

n n
X z x n z x n z

∞ ∞
− −

=−∞ =−∞

= =∑ ∑

Replacing z by *z , we get the desired result.

Differentiation in Z-domain

)[ [ ]] ( , x
dZ nx n z X z ROC R
dz

= − =

Proof:

1 1( ) [ ] ( ) ( ) [ ]  [ ]n n n

n n n

d dX z x n z n x n z nx n z
dz dz z

∞ ∞ ∞
− − − −

=−∞ =−∞ =−∞

−
= − =∑ ∑ ∑

i.e.,

[ [ ]] ( )dZ nx n z X z
dz

= −

Example: Taking derivative with respect to z of the right side of:

1

1[ [ ]] | | | |
1

nZ a u n z a
az−= >

−

We get,

2

1 1 2

1
1 (1 )

d az
dz az az

−

− −

−  = − − 

Due to the property of differentiation in z-domain, we have:

1

1 2[ [ ]] | | | |
(1 )

n azZ na u n z a
az

−

−= >
−
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Note that for a different ROC | | | |z a< , we have:

1

1 2[ [ 1]] | | | |
(1 )

n azZ na u n z a
az

−

−− − − = <
−

Pole Zero Plot

In mathematics, signal processing and control theory, a pole–zero plot is a graphical representa-
tion of a rational transfer function in the complex plane which helps to convey certain properties 
of the system such as: 

• Stability.

• Causal system/anticausal system.

• Region of convergence (ROC).

• Minimum phase/non minimum phase.

A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer 
function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or com-
munications channel. By convention, the poles of the system are indicated in the plot by an X while 
the zeros are indicated by a circle or O. 

A pole-zero plot can represent either a continuous-time (CT) or a discrete-time (DT) system. For a 
CT system, the plane in which the poles and zeros appear is the s plane of the Laplace transform. 
In this context, the parameter s represents the complex angular frequency, which is the domain of 
the CT transfer function. For a DT system, the plane is the z plane, where z represents the domain 
of the Z-transform. 

Continuous-time Systems

In general, a rational transfer function for a continuous-time LTI system has the form: 

2
0 0 1 2

1 2 ( 1)
0 1 2 ( 1)

0

( )( )
( )

M
m

m M
m M

N N N
N n N

n
n

b s
b b s b s b sB sH s

A s a a s a s a s ss a s

=
− −

−

=

+ + + +
= = =

+ + + + ++

∑

∑




where,

• B and A are polynomials in s,

• M is the order of the numerator polynomial,

•	 mb is the m-th coefficient of the numerator polynomial,
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•	 N is the order of the denominator polynomial, 

•	 na is the n-th coefficient of the denominator polynomial.

Either M or N or both may be zero, but in real systems, it should be the case that ; otherwise the 
gain would be unbounded at high frequencies. 

Poles and Zeros

•	 The zeros of the system are roots of the numerator polynomial:

{ | 1, }ms m Mβ= ∈ …  such that ( ) | 0
msB s β= =  

•	 The poles of the system are roots of the denominator polynomial:

{ | 1, }ns n Nα= ∈ …  such that ( ) | 0
nsA s α= =

Region of Convergence

The region of convergence (ROC) for a given CT transfer function is a half-plane or vertical strip, 
either of which contains no poles. In general, the ROC is not unique, and the particular ROC in any 
given case depends on whether the system is causal or anti-causal. 

•	 If the ROC includes the imaginary axis, then the system is bounded-input, bounded-output 
(BIBO) stable.

•	 If the ROC extends rightward from the pole with the largest real-part (but not at infinity), 
then the system is causal.

•	 If the ROC extends leftward from the pole with the smallest real-part (but not at negative 
infinity), then the system is anti-causal.

The ROC is usually chosen to include the imaginary axis since it is important for most practical 
systems to have BIBO stability. 

Example:

2

25( )
6 25

H s
s s

=
+ +

This system has no (finite) zeros and two poles:

1 3 4s jα= = − +

and 

2 3 4s jα= = − −
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The pole-zero plot would be: 

Notice that these two poles are complex conjugates, which is the necessary and sufficient condition 
to have real-valued coefficients in the differential equation representing the system. 

Discrete-time Systems

In general, a rational transfer function for a discrete-time LTI system has the form: 

1 2
0 0 1 2

1 2
1 2

( )( )
( ) 1

m M
b z

b b z b z b zP zH z
Q z a z a z a za z

− − −

− − −

+ + +
= = =

+ + +

∑

∑

where,

• M is the order of the numerator polynomial,

• mb is the m-th coefficient of the numerator polynomial,

• N is the order of the denominator polynomial,

• na is the n-th coefficient of the denominator polynomial.

Either M or N or both may be zero. 

Poles and Zeros

•	 mz β= such that ( ) | 0
mzP z β= = are the zeros of the system.

•	 nz α= such that ( ) | 0
nzQ z α= = are the poles of the system.Region of convergence.

The region of convergence (ROC) for a given DT transfer function is a disk or annulus which 
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contains no poles. In general, the ROC is not unique, and the particular ROC in any given case 
depends on whether the system is causal or anti-causal. 

•	 If the ROC includes the unit circle, then the system is bounded-input, bounded-output 
(BIBO) stable.

•	 If the ROC extends outward from the pole with the largest (but not infinite) magnitude, 
then the system has a right-sided impulse response. If the ROC extends outward from 
the pole with the largest magnitude and there is no pole at infinity, then the system is 
causal.

•	 If the ROC extends inward from the pole with the smallest (nonzero) magnitude, then the 
system is anti-causal.

The ROC is usually chosen to include the unit circle since it is important for most practical systems 
to have BIBO stability. 

Example:

If ( )P z and ( )Q z are completely factored, their solution can be easily plotted in the z-plane. For 
example, given the following transfer function: 

2

2( ) 1
4

zH z
z

+
=

+

The only (finite) zero is located at: 2z = − , and the two poles are located at: 
2
jz = ± , where j is the 

imaginary unit. 

The pole–zero plot would be: 
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Inverse Z-transfrom

If we want to analyze a system, which is already represented in frequency domain, as discrete time 
signal then we go for Inverse Z-transformation.

Mathematically, it can be represented as,

1( ) ( )x n Z X Z−=

where x n  is the signal in time domain and X z  is the signal in frequency domain.

If we want to represent the above equation in integral format then we can write it as

1( ) ( ) (1
2

)x n X Z Z dz
j

−=
Π ∫�

Here, the integral is over a closed path C. This path is within the ROC of the x z  and it does contain 
the origin.

Methods to Find Inverse Z-Transform

When the analysis is needed in discrete format, we convert the frequency domain signal back into 
discrete format through inverse Z-transformation. We follow the following four ways to determine 
the inverse Z-transformation.

• Long Division method.

• Partial Fraction expansion method.

• Residue or Contour integral method.

Long Division Method

In this method, the Z-transform of the signal x z  can be represented as the ratio of polynomial as 
shown below:

( ) ( )/( )x z N Z D Z=

Now, if we go on dividing the numerator by denominator, then we will get a series as shown 
below:

1 2( ) ( ) (0 1 2 ... ... ...) ( )X z x x Z x Z− −= + + +

The above sequence represents the series of inverse Z-transform of the given signal 0forn ≥  and 
the above system is causal.

However for n<0 the series can be written as:

1 2 31 2 3 ... ... ...( ) ( ) ( ) ( )x z x Z x Z x Z= − + − + − +
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Partial Fraction Expansion Method

Here also the signal is expressed first in N z /D z  form.

If it is a rational fraction it will be represented as follows:

1 2
0 1 2

1 2
0 1 2

( ) )
)

... ... ...
/ ... .. ..( . .

m
m

N
n

x z b b Z b Z b Z
a a Z a Z a Z

− − −

− − −

= + + + +

+ + + +

The above one is improper when m < n and an ≠ 0.

If the ratio is not proper i.e., improper, then we have to convert it to the proper form to solve it.

Residue or Contour Integral Method

In this method, we obtain inverse Z-transform x n  by summing residues of 1[ ( ) ]nx z Z − at all poles. 
Mathematically, this may be expressed as:

1[ ( ) ]

( )
( )

nresidues of x z Z

all X zpoles
x n

−

= ∑

Here, the residue for any pole of order m at z β= is:

11 1lim { {( ) ( ) }.
1( 1)!

md m nResidues z X z Z
mm Z dZ

β
β

−
−= −

−− →
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Permissions 

All chapters in this book are published with permission under the Creative Commons Attribution Share 
Alike License or equivalent. Every chapter published in this book has been scrutinized by our experts. 
Their significance has been extensively debated. The topics covered herein carry significant information 
for a comprehensive understanding. They may even be implemented as practical applications or may be 
referred to as a beginning point for further studies.

We would like to thank the editorial team for lending their expertise to make the book truly unique. 
They have played a crucial role in the development of this book. Without their invaluable contributions 
this book wouldn’t have been possible. They have made vital efforts to compile up to date information 
on the varied aspects of this subject to make this book a valuable addition to the collection of many 
professionals and students.

This book was conceptualized with the vision of imparting up-to-date and integrated information in 
this field. To ensure the same, a matchless editorial board was set up. Every individual on the board 
went through rigorous rounds of assessment to prove their worth. After which they invested a large 
part of their time researching and compiling the most relevant data for our readers.

The editorial board has been involved in producing this book since its inception. They have spent rigorous 
hours researching and exploring the diverse topics which have resulted in the successful publishing 
of this book. They have passed on their knowledge of decades through this book. To expedite this 
challenging task, the publisher supported the team at every step. A small team of assistant editors was 
also appointed to further simplify the editing procedure and attain best results for the readers.

Apart from the editorial board, the designing team has also invested a significant amount of their time 
in understanding the subject and creating the most relevant covers. They scrutinized every image to 
scout for the most suitable representation of the subject and create an appropriate cover for the book.

The publishing team has been an ardent support to the editorial, designing and production team. Their 
endless efforts to recruit the best for this project, has resulted in the accomplishment of this book. They 
are a veteran in the field of academics and their pool of knowledge is as vast as their experience in 
printing. Their expertise and guidance has proved useful at every step. Their uncompromising quality 
standards have made this book an exceptional effort. Their encouragement from time to time has been 
an inspiration for everyone.

The publisher and the editorial board hope that this book will prove to be a valuable piece of knowledge 
for students, practitioners and scholars across the globe.
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Amplitude Modulation, 7, 14, 29
Amplitude Scaling, 24-25
Analog Filter, 56, 75, 97, 191
Analog Signal, 7-8, 10, 12, 15, 32, 42, 44-45, 58, 76-77, 188
Analog To Digital Conversion, 1, 12
Anti-aliasing Filter, 36-39, 46-47, 54-57, 62, 65, 69, 73-75

B
Band-pass Filter, 55, 75, 191
Bandwidth, 10-12, 14, 41, 48, 54-59, 65, 67-68, 70, 74-75

C
Complex Sinusoids, 72, 199-200
Continuous-time Signals, 16-17, 28-30, 58
Convolution Theorem, 93, 110, 120, 131
Crossover Filters, 42, 93

D
Data Processing, 35
Delta Modulation, 14-15
Digital Filtering, 33, 66
Digital Signal, 10, 32, 35, 39, 42, 49, 58, 65, 79, 90, 93, 205
Dirac Pulses, 60
Discrete Fourier Transform, 33, 39, 97, 110-111, 142, 216
Discrete-time Signal, 1, 16-17, 28-29, 45, 76
Downsampling, 35-36, 42, 56

E
Eigenvectors, 89-91
Euclidean Space, 110-111, 124
Exponential Signal, 22

F
Finite Impulse Response, 33, 92, 95, 102
Folding Frequency, 71-72
Fourier Transform, 30-31, 33-34, 37, 39-40, 43-44, 51, 53, 
58-61, 64, 70-71, 93, 95, 97, 105, 109-143, 145-147, 152-
156, 159-163, 198, 203-204, 213, 216
Frequency, 2-3, 7-9, 12-13, 16-17, 19-20, 29, 32-39, 41-
44, 46-62, 66-75, 89, 91, 95, 97, 102, 114, 116, 121, 132, 
135, 142, 153, 155-161, 188-191, 199, 204, 206, 217, 221
Frequency Modulation, 8

Index

G
Gaussian Function, 110, 113, 125

H
Harmonic Analysis, 110-111, 131
Hilbert Space, 121-122, 131

I
Image Processing, 29-30, 32, 35
Imaginary Unit, 136, 138, 220
Impulse Function, 22, 142-143, 152, 157
Independent Variables, 1-2, 23, 64
Infinite Impulse Response, 33, 92-93, 95, 97, 101
Input Signal, 12, 15, 20, 33-34, 42, 47, 56, 58, 69, 75, 80, 
82, 87, 92, 94, 98, 189-191, 203-204
Integrated Circuit, 35, 56
Invariant System, 89, 91, 103
Invariant Systems, 89, 91, 103

K
Kirchoff’s Voltage Law, 90

L
Laplace Transform, 34, 43, 123-124, 138, 156, 161, 163, 
165-168, 170, 174-175, 181-195, 197-201, 203-205, 213, 
217
Linear Time Invariant, 84, 89, 91, 120
Low Pass Filter, 12, 46, 57, 63, 190-191

N
Non-causal System, 83-85
Non-invertible System, 85
Nyquist Frequency, 37-38, 41, 46-47, 54, 58-60, 62, 69, 
71, 73-75, 94, 97
Nyquist Theorem, 13, 48

O
Ordinary Differential Equations, 80, 89, 120, 163
Output Signal, 20, 29, 33, 42, 80, 87, 92, 98, 188, 190-191

P
Partial Differential Equations, 80, 132, 135
Periodic Signal, 5, 105-106, 152-153, 155-156
Plancherel Theorem, 110, 118-119, 124, 128, 136
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Poisson Summation, 61-62, 110, 119
Probability Density Function, 117, 125, 129
Pulse Code Modulation, 12

Q
Quantization Error, 47, 78
Quantization Noise, 57, 78

S
Sampling Frequency, 16-17, 46, 49-50, 53-57, 70
Signal Energy, 4
Signal Processing, 1, 25, 28-30, 32, 35, 39, 42, 44-45, 49, 
51, 55, 58, 60, 65, 67-68, 75, 79-80, 88, 90, 92, 116, 132, 
137, 188-189, 198, 205-206, 217
Signal Quantization, 76
Signal-to-noise Ratio, 55-57
Sinc Function, 60, 64, 95, 118, 139, 157, 160
Sine Wave, 2-3, 7-8, 49, 132, 151-152
Sinusoidal Sequence, 18-20
Sinusoidal Signal, 3, 22, 111
Spatial Aliasing, 50, 69, 73
Subsequent Modules, 89, 91
Superposition Principle, 33, 85

T
Tapped Delay Line, 93, 97
Temporal Aliasing, 69-70
Time Reversal, 1, 23, 108, 167, 172, 215
Time Scaling, 1, 6, 23, 25, 108, 110, 114, 160, 167, 170
Time Shifting, 1, 5-6, 23, 107, 110, 114, 160, 167-168, 
173-174, 213
Transition Band, 57, 63, 95
Triangular Pulse, 149-151

U
Uniform Quantization, 77-79
Unit Impulse Function, 22, 143, 157

W
Wavelet Transform, 34-35, 132
Wolfram Language, 117, 163

Z
Z-transform, 34, 92, 94, 99, 176, 179-180, 206-208, 211, 
213-214, 216-217, 221-222
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