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PREFACE

The branch of biology which employs mathematical models and abstractions of the living organisms 
is known as mathematical biology. These models and abstractions are employed for the purpose of 
investigating the principles which govern the development, behavior and structure of the systems. 
This discipline uses techniques and tools of applied mathematics for the modeling and mathematical 
representation of biological processes. Mathematical models are primarily used for describing systems in 
a quantitative manner. This facilitates the simulation of their behavior which in turn helps in predicting 
their properties, which might not have been visible otherwise. Some of the various areas of research 
under this discipline are abstract relational biology, algebraic biology, complex systems biology and 
evolutionary biology. While understanding the long-term perspectives of the topics, the book makes an 
effort in highlighting their impact as a modern tool for the growth of the discipline. The various studies 
that are constantly contributing towards advancing technologies and evolution of mathematical biology 
are examined in detail. This book will serve as a reference to a broad spectrum of readers.

This book is a result of research of several months to collate the most relevant data in the field. 

When I was approached with the idea of this book and the proposal to edit it, I was overwhelmed. It 
gave me an opportunity to reach out to all those who share a common interest with me in this field. I 
had 3 main parameters for editing this text:

1.	 Accuracy – The data and information provided in this book should be up-to-date and valuable 
to the readers.

2.	 Structure – The data must be presented in a structured format for easy understanding and better 
grasping of the readers.

3.	 Universal Approach – This book not only targets students but also experts and innovators in 
the field, thus my aim was to present topics which are of use to all.

Thus, it took me a couple of months to finish the editing of this book.

I would like to make a special mention of my publisher who considered me worthy of this opportunity 
and also supported me throughout the editing process. I would also like to thank the editing team at 
the back-end who extended their help whenever required.  

Editor

_______________________ WORLD TECHNOLOGIES _______________________



WT

_______________________ WORLD TECHNOLOGIES _______________________



WT

Descriptor-based Fitting of Lysophosphatidic 
Acid Receptor 3 Antagonists into a Single 

Predictive Mathematical Model

Olaposi Idowu Omotuyi, Hiroshi Ueda

Department of Pharmacology and Therapeutic Innovation

University Graduate School of Biomedical Sciences, 852-8521

Nagasaki, Japan

Email: bbis11r104@cc.nagasaki-u.ac.jp

Abstract—Sixty six diverse compounds previously
reported as Lysophosphatidic Acid Receptor (LPA3)
inhibitors have been used to derive a mathematical
model based on partial least square (PLS) clustering
of 41 molecular descriptors and pIC50 values. The
pre- and post- cross-validated correlation coeffi-
cient (R2) is 0.94462 (RMSE=0.21390) and 0.74745
(RMSE=0.49055) respectively. Bivariate contingency
analysis tools implemented in MOE was used to
prune the descriptors and refit the equations at a
descriptor-pIC50 correlation coefficient of 0.8 cut-
off. A new equation was derived with R2 and
RMSE values estimated at 0.88074 and 0.31388
respectively. Both equations correctly predicted the
95% of the pIC50 values of the test dataset. Prin-
cipal component analysis (PCA) was also used to
reduce the dimension and linearly transform the raw
data; 8 principal components sufficiently account for
more than 98% of the variance of the dataset. The
numerical model derived here may be adapted for
screening chemical database for LPA3 antagonism.

Keywords-upscaling; LPA3; LPA3 antagonists;
Mathematical Model; PCA; Molecular descriptors

I. INTRODUCTION

Quantitative structure activity relationship

(QSAR) allows statistical analysis of experimental

data and building of predictive mathematical

models from the dataset. The numerical models

built using this approach has been successfully

implemented in screening of large database of

chemical compounds for hit-compound detection

[1]. In the presence of experimental dataset

[2], the success of QSAR depends on two

key factors: array of descriptors that optimally

represent the structural parameters required for

molecular interaction or reactions [3] and an

appropriate statistical learning and validation

algorithms [4]. In practice, physical properties

descriptors (1D-descriptor), pharmacophore

descriptors (2D-descriptors) and geometrical

descriptors (3D-descriptors, often requires prior

knowledge of target protein binding-pocket) are

the most commonly used descriptor types for

QSAR modeling [5,6,7]. We seek to answer

a single question here, what combination of

1
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molecular predictors would numerically and

accurately predict the experimental antagonist

activities of LPA3 inhibitors? When answered,

the mathematical relationship derived from the

descriptors will enable screening of chemical

databases for compounds exhibiting LPA3

antagonism required for the treatment of diseased

conditions such as ovarian cancer [8] and

neuropathic pain [9] with LPA3 etiology.

II. STATISTICAL BASIS OF QSAR MODELING

USING PARTIAL LEAST SQUARE METHOD

The QSAR/PLS modeling equations and algo-

rithms have been well described in MOE docu-

mentations [10]. Given m molecules of a training

dataset, suppose that each of the molecules is

described by an n-vector of descriptors xi =
(xi1, ..., xin), for one of the molecules denoted as

i. Let yi be a representation of the experimental

result (pIC50) for a molecule i. A linear model

for y (the experimental result) is given by Eq. (1)

[11].

y = a0 + aTX , (1)

where a0 is a scalar, and aT is a n-vector. If

each molecule has an importance weight (non-

negative) w representing the relative probability

that the associated molecule will be encountered,

and that the sum of all the weights are designated

as W . The mean square error is given as Eq. (2)

[12].

MSEa0,a =
1

w

m∑
i=1

[yi − (y = a0+aTXi)]
2 . (2)

Differentiating MSE with respect to the pa-

rameters satisfying the normal Eqs (3,4,5,6 &7)

solvable by matrix diagonalization:

a0 = y0 − aTXi , (3)

y0 =
1

w

m∑
i=1

[wiyi] , (4)

x0 =
1

w

m∑
i=1

[wixi] , (5)

Sa = b =
1

W

m∑
i=1

[wiyi(xi − x0)] , (6)

S =
1

w

m∑
i=1

[wi(xi − x0)(xi − x0)
T ] . (7)

Starting from the normal equations above,

an estimate of a can be computed if columns

of the weight matrix (GA) (Eq. (8)) is ob-

tained through Gram-Schmidt orthogonalization

[13] of the vectors generated by Krylov sequence

b, Sb, S2b, ..., SA−1b [14]. The Ath PLS coeffi-

cient vector is then estimated using Eq. (9).

GA = (gi, g2, . . . , gA) . (8)

a = GA(G
T
ASGA)

−1GT
Ab . (9)

Noting that gi is the column vectors of length

n and A is the degree of the PLS fit; an integer

less than or equals n. MOE [10] descriptor

calculator was used to generate the numerical

representations (a aro, ASA, ASA H, a hyd,

SlogP, SlogP VSA0, SlogP VSA1, SlogP VSA2,

SlogP VSA3, SlogP VSA4, SlogP VSA5,

SlogP VSA6, SlogP VSA7, SlogP VSA8,

SlogP VSA9, SMR VSA0, SMR VSA1,

SMR VSA2, SMR VSA3, SMR VSA4,

SMR VSA5, SMR VSA6, SMR VSA7,

a acc, Kier1, Kier2, Kier3, KierA1, KierA2,

KierA3, KierFlex, chi0, chi0v, chi0v C, chi0 C,

chi1, chi1v, chi1v C, chi1 C, chiral, chiral u)

of the 66 (Supplementary fig. 1) randomly

selected LPA3 antagonists retrieved from the

European Institute of Bioinformatics dataset

(https://www.ebi.ac.uk/chembl/) representing

our training dataset (CHEMBL3250). Using

the PLS method as described above, Eq.

(10) was generated relating the descriptors

to the pIC50 with a correlation coefficient

(R2) 0.94462 (RMSE = 0.21390) (Fig. 1, blue

2 Mathematical Biology
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circles and line); when cross validated, R2 was

estimated as 0.74745 (RMSE = 0.49055).

Fig. 1: Scatter plot of the experimental pIC50 vs.

pIC50-predictions of Eq. (10) (blue) and Eq. (12)

(green).

pIC50 =

3.57363 − 0.25353 · a aro − 0.00361 · ASA
+ 0.23510 · a hyd+ 0.05890 · SlogP
− 0.02287 · SlogP V SA0

+0.00032 · SlogP V SA1 + 0.03125 · SlogP V SA2

−0.02059 · SlogP V SA3 + 0.02954 · SlogP V SA4

+0.07226 · SlogP V SA5 + 0.02879 · SlogP V SA6

+0.04687 · SlogP V SA7 + 0.03836 · SlogP V SA8

+0.06880 · SlogP V SA9 + 0.04912 · SMR V SA0

+0.02536 · SMR V SA1 + 0.08743 · SMR V SA2

+0.00289 · SMR V SA3 − 0.01524 · SMR V SA4

+0.04694 · SMR V SA5 + 0.09067 · SMR V SA6

− 0.01442 · SMR V SA7 + 0.18393 · a acc

− 0.77650 · Kier1 − 0.43968 · Kier2

− 0.30735 · Kier3 − 0.43752 · KierA1

− 0.03578 · KierA2 + 0.76916 · KierA3

− 0.09573 · KierF lex+ 0.00332 · chi0
+ 0.55223 · chi0v + 0.13554 · chi0v C

− 0.16530 · chi0 C + 0.59498 · chi1
+ 0.05911 · chi1v − 0.93262 · chi1v C

− 1.22808 · chi1 C − 0.16986 · chiral
− 0.56204 · chiral u. (10)

Fig. 2: Bar chart representations of the residual (Ex-

perimental pIC50-Predicted pIC50 values of the test

dataset. Only 1 out of tested compounds (compound 23,

see supplementary Fig. 2 for structural details) showed

> 1.0 pIC50 unit (indication of wrong prediction).

Noting that root mean square error (RMSE) is

the square root of MSE function (Eq. (2)) at a

given parameter value and the correlation coef-

ficient (R2) is 1-MSE/YVAR with values raging

between 0 and 1 (0= no fit, 1 is perfect fit and

YVAR is the sample variance of the yi values). The

predictive suitability of our equation was tested

on 23 compounds (Supplementary Fig. 2) with

experimentally determined IC50 for LPA3 antag-

onism. If we assume that residual value above 1.0
pIC50 unit represents poor fitting. Our data (Fig.

3) suggest that Eq. (10) accurately predicted 22 of

the 23 test compounds.

III. DESCRIPTOR CONTINGENCY ANALYSIS

To determine the level of significance of each of

the descriptors to the overall equation and we per-

formed contingency analysis. The data presented

here provides a window of decision on whether

pruning of the descriptor set is required. In MOE

[10], QSAR-contingency tool performs a bivariate

contingency analysis for each descriptor and the

experimental activity value and produces a table of

correlation coefficients (Eq. (11)) for each descrip-

tor given that X represents a randomly selected

molecular descriptor and Y is a randomly selected

activity value for a randomly selected sample m,

V ar(X) and V ar(Y ), then the covariance of

3Descriptor-based Fitting of Lysophosphatidic Acid Receptor 3 Antagonists into a Single Predictive...
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the random variables X and Y is defined to be

Cov(X,Y ) = E(XY ) − E(X)E(Y ) [10, 15].

R2 =
[E(XY ) − E(X)E(Y )]2

V ar(X)V ar(Y )
. (11)

Given that the values of R2 ranges from 0 to 1,

and 1 represents a perfectly linear correlation, we

therefore proposed that only descriptors R2 values

≥ 0.8 are useful and that the descriptors outside

this range can be pruned. Our data suggest that 31
out of the original 41 descriptors have R2 values

≥ 0.8 (Fig. 3, Supplementary Table 1). With the

exclusion of the descriptors with unsatisfactory

coefficient, QSAR is re-calculated using the resid-

ual set of descriptors. New numerical relationship

was generated (Eq. (12)) with R2 (0.88074) and

RMSE values (0.31388). The scatter plot of the

predicted pIC50 and the experimental values for

the new Eq. (12) is given in Fig. 1 (green circles

and line).

lpIC50 =

2.23199 − 0.00516xASA − 0.00516xASA H

− 0.48596xa hyd − 0.33917xSlogP

−0.05298xSlogPV SA0 − 0.03967xSlogPV SA1

−0.02243xSlogPV SA2 + 0.01681xSlogPV SA7

+ 0.02107xSlogPV SA9

−0.00757xSMRV SA0 − 0.00087xSMRV SA1

− 0.00089xSMRV SA3

−0.01173xSMRV SA4 + 0.00955xSMRV SA5

− 0.01412xSMRV SA6

− 0.02508xSMRV SA7 − 0.26771xKier1

+ 0.15306xKier20.56650xKier3

− 0.30504xKierA2 + 0.98837xKierA3

− 0.28849xKierF lex+ 0.48535xchi0

+ 0.90693xchi0v + 0.10234xchi0vC

+ 0.24407xchi0C + 0.66154xchi1

+ 0.36006xchi1v − 1.03589xchi1vC

− 0.62474xchi1C − 0.36725xaaro . (12)

When this equation was used for predicting the

Fig. 3: Bar chart representations of Descriptor-

experimental pIC50 correlation coefficient. Only 31 out

of 41 descriptors lie above 0.8 coefficient cutoff.

Fig. 4: The 3D plot of the first three principal compo-

nents. Each point represents a compound in the training

dataset and each colour represents a distinct cluster of

pIC50 values.

pIC50 values of the test set, only one compound

lies above the 1.0 pIC50 unit cutoff (data not

shown). Thus, Eq. (12) is less bulky and as ac-

curate as Eq. (10) in predicting LPA3 antagonism.

IV. PRINCIPAL COMPONENT ANALYSIS OF

EQUATION

We sought to further study the dataset descrip-

tors along the principle components through the

reduction of the dimensionality and linear trans-

formation of the raw data [13]. Given the initial

66 training dataset compounds (represented as m)

and for one of the compounds say i its descriptors

are represented by n-vector of real numbers xi =

4 Mathematical Biology
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(xi1, ..., xin), where n = 1 − 31, new Eq. (12).

Assuming that each molecule i has an associated

importance weight wi, (non-negative, real number)

and that the weights is relative probability that

the associated molecule xi will be encountered

(adding up to 1); If W denotes the sum of all

the weights then, the eigenvalues and eigenvectors

for the final data are estimable from the raw data

using Eq. (1). If S is a symmetric, semi-definite

sample covariance matrix, S can be diagonalized

such that S = QTDDQ (Q is orthogonal, D is

diagonal-sorted in descending order from top left

to bottom right) [13, 14].

E(x) ≈ x = x0 =
1

w

m∑
i=1

[wixi] (13)

Cov(x) ≈ S =
1

w

m∑
i=1

[wixix
T
i − xxT ]. (14)

The effect of the each of the principal com-

ponents (eigenvectors) on the condition and the

variance shows that nine (8) principal components

sufficiently accounts for more than 98% of the

variance in the dataset [15]. The 3D-scatter plot of

the first three principal components (PCA1, PCA2

and PCA3) with respect to pIC50 values is shown

in Fig. (4); each point in the plot corresponds to

a dataset molecule colored according to clustered

pIC50 values.

V. CONCLUSION

Given the good mathematical correlation be-

tween the set of descriptors and LPA3 antagonism,

it is not unusual to propose that the equation is

prejudiced for those set of compounds with highly

related descriptor properties and therefore may

not be a universal formula for LPA3 antagonist

screening. That said, it will however capture the

compounds with structural properties found within

the dataset accurately and therefore may be piped

as into ligand-based screening protocol for more

successful hit-compound identification.
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APPENDIX

Desciptors Corr. Coefficient

SlogP_VSA6 0.57623
chiral_u 0.65734
SlogP_VSA4 0.66609
SlogP_VSA5 0.6996
chiral 0.72218
SMR_VSA2 0.78566
SlogP_VSA8 0.78621
a_acc 0.78922
SlogP_VSA3 0.79094
KierA1 0.79264
a_aro 0.80122
SlogP_VSA9 0.80481
SlogP_VSA1 0.80575
chi0_C 0.806
chi1v 0.80603
KierFlex 0.80836
chi1v_C 0.81041
KierA3 0.81376
SlogP_VSA2 0.81493
SMR_VSA7 0.81623
ASA 0.81908
ASA_H 0.81908
chi0v 0.82223

24 chi0v_C 0.82394
25 SMR_VSA4 0.82512
26 chi1_C 0.82535
27 KierA2 0.82725
28 chi0 0.82827
29 SlogP_VSA7 0.82933
30 SMR_VSA5 0.82941
31 Kier2 0.83257
32 SlogP_VSA0 0.83519
33 Kier1 0.83644
34 SMR_VSA1 0.83839
35 chi1 0.84721
36 SMR_VSA6 0.84762
37 SMR_VSA3 0.8525
38 Kier3 0.85924
39 SlogP 0.86886
40 SMR_VSA0 0.87545
41 a_hyd 0.88264

Scatter plot of the experimental pIC50 vs. pIC50-

predictions of Eq.(10) (blue) and Eq. (12).

5Descriptor-based Fitting of Lysophosphatidic Acid Receptor 3 Antagonists into a Single Predictive...
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$PRED: 6.6310

$RES: -0.2563

15

N

OO

P

O

O
O

NO

pIC50: 6.0292

$PRED: 6.1727

$RES: -0.1435

16

O

O

N

N

N
O

O

pIC50: 4.5229

$PRED: 4.5776

$RES: -0.0547

17

O

O
P

S

O O

pIC50: 5.6308

$PRED: 5.6943

$RES: -0.0635

18

N

OO

P

S

O
O

NO

pIC50: 6.6003

$PRED: 6.4167

$RES: 0.1836

19

O

N

O

P

O

O
O

O

pIC50: 5.1649

$PRED: 5.1271

$RES: 0.0379

20

O

N

O

P

O

O
O

O

pIC50: 5.1904

$PRED: 5.5739

$RES: -0.3834
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O

O

N

N

N

N

O

N

S

O

O

pIC50: 5.6364

$PRED: 5.7584

$RES: -0.1220

22

O

O

N

N
N Cl

pIC50: 4.5229

$PRED: 4.4398

$RES: 0.0830

23

O

O

N

N
N

pIC50: 4.5229

$PRED: 4.4673

$RES: 0.0556

24

O

P

S

O
O

pIC50: 6.9136

$PRED: 6.9600

$RES: -0.0463

25

O

O

O

P O

O

O

O

O

pIC50: 6.8447

$PRED: 6.6932

$RES: 0.1515

26

O

N

O

P

O

O
O

O

N

pIC50: 6.0269

$PRED: 6.4243

$RES: -0.3974

27

O

O
P

S

O O

pIC50: 5.8962

$PRED: 5.8462

$RES: 0.0500

28

O

O

N

N

N

N

O

O

pIC50: 4.6588

$PRED: 4.2947

$RES: 0.3641

29

O

N

O

P OO

O

O

N

pIC50: 5.0334

$PRED: 5.2622

$RES: -0.2288

30

O

N

O

P

O

O

O

O

pIC50: 5.1931

$PRED: 5.3161

$RES: -0.1230

31

O

P

S
O

O

pIC50: 7.5528

$PRED: 7.3033

$RES: 0.2495

32

O
P

S

O

O

pIC50: 6.4685

$PRED: 6.8160

$RES: -0.3474

33

O

O

F

P
O

O O

pIC50: 5.1124

$PRED: 4.9684

$RES: 0.1439

34

O

O

N

N

N

O

O

F

pIC50: 5.0830

$PRED: 4.9372

$RES: 0.1458

35

O
P

O

O

O

pIC50: 6.1135

$PRED: 6.1509

$RES: -0.0374

36

O

N

O

P

O

O

O

O

pIC50: 5.1593

$PRED: 5.3161

$RES: -0.1568

37

O N

O

P

O

O
O

O

pIC50: 5.0000

$PRED: 4.7783

$RES: 0.2217

38

O

O

O

N

O

O

N

O

O

+

-

pIC50: 6.1238

$PRED: 6.1151

$RES: 0.0087

39

O

P

S

O
O

pIC50: 7.5686

$PRED: 7.1552

$RES: 0.4134

40

O

O N

N

N

O O

F

F
F

pIC50: 6.3206

$PRED: 6.3223

$RES: -0.0018
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N

O

N

SN

O

O

NO

O

O

N

O

O

O

O

+
-

+

-

pIC50: 7.6198

$PRED: 7.6400

$RES: -0.0202

42

N

O

N

SN

O

O

NO

O

O

N

O

O

O

O

+
-

+

-

pIC50: 7.6198

$PRED: 7.6400

$RES: -0.0202

43

O

P

O

O

O

pIC50: 6.0809

$PRED: 6.3361

$RES: -0.2551

44

O

O N

N

N

O O

pIC50: 5.0788

$PRED: 4.8447

$RES: 0.2341

45

O

O

O

P OO

O

O

O

pIC50: 7.0706

$PRED: 6.8724

$RES: 0.1982

46

O

P

S

O

O

pIC50: 7.5528

$PRED: 7.0811

$RES: 0.4717

47

P

O
O

O

pIC50: 6.1844

$PRED: 6.2144

$RES: -0.0299

48

O

P

O
O

O

pIC50: 6.9872

$PRED: 6.7202

$RES: 0.2669

49

O

N

O

P

O

O
O

O

O

pIC50: 5.1415

$PRED: 5.0991

$RES: 0.0424

50

O

O

P

O

O

O

O

pIC50: 6.8447

$PRED: 6.6623

$RES: 0.1824

51

O

P

O
O

O

pIC50: 7.0177

$PRED: 6.7353

$RES: 0.2824

52

O

O

N

N

N

O

O

pIC50: 4.5229

$PRED: 4.7671

$RES: -0.2443

53

O

O

N

O

O

O

pIC50: 5.5240

$PRED: 5.5696

$RES: -0.0456

54

O

P

S

O
O

pIC50: 6.7905

$PRED: 7.2006

$RES: -0.4101

55

O

N

O

P OO

O

O

pIC50: 5.6364

$PRED: 5.6100

$RES: 0.0264

56

O

N

O

P OO

O

O

N

pIC50: 5.5800

$PRED: 5.2622

$RES: 0.3179

57

N

OO

P

O

O
O

NO

pIC50: 6.3830

$PRED: 6.1727

$RES: 0.2103

58

O

ON

N N

N

ON

SO O

F

F

F

pIC50: 7.1871

$PRED: 7.1826

$RES: 0.0045

59

O

O

N

N
N

F

Cl

pIC50: 4.5229

$PRED: 5.0926

$RES: -0.5698

60

O

O

O

P S

O

O

O

O

pIC50: 6.7352

$PRED: 6.9852

$RES: -0.2500
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61

O

N

O

P

O
O

O

O

pIC50: 5.9259

$PRED: 5.7730

$RES: 0.1529

62

O

O

P

S

O

O

O

pIC50: 6.7352

$PRED: 7.0541

$RES: -0.3189

63

O

N

O

P

O

O
O

OO

pIC50: 5.2541

$PRED: 5.5111

$RES: -0.2570

64

O

N

O

P

O

O
O

O

N

pIC50: 6.7570

$PRED: 6.4243

$RES: 0.3327

65

P

O

O
O

pIC50: 5.9208

$PRED: 6.0663

$RES: -0.1455

66

O

O N

N O

S

O

OCl

pIC50: 6.5214

$PRED: 6.2442

$RES: 0.2772
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Abstract—Neurophysiological models of the brain
typically utilize systems of ordinary differential
equations to simulate single-cell electrodynamics.
To accurately emulate neurological treatments and
their physiological effects on neurodegenerative dis-
ease, models that incorporate biologically-inspired
mechanisms, such as neurotransmitter signalling,
are necessary. Additionally, applications that exam-
ine populations of neurons, such as multiscale mod-
els, can demand solving hundreds of millions of these
systems at each simulation time step. Therefore, ro-
bust numerical solvers for biologically-inspired neu-
ron models are vital. To address this requirement, we
evaluate the numerical accuracy and computational
efficiency of three L-stable implicit Runge-Kutta
methods when solving kinetic models of the ligand-
gated glutamate and γ-aminobutyric acid (GABA)
neurotransmitter receptors. Efficient implementa-
tions of each numerical method are discussed, and
numerous performance metrics including accuracy,
simulation time steps, execution speeds, Jacobian
calculations, and LU factorizations are evaluated
to identify appropriate strategies for solving these
models. Comparisons to popular explicit methods
are presented and highlight the advantages of the
implicit methods. In addition, we show a machine-
code compiled implicit Runge-Kutta method imple-

mentation that possesses exceptional accuracy and
superior computational efficiency.

Keywords-implicit Runge-Kutta; neuroreceptor
model; numerical stiffness; ODE simulation

I. INTRODUCTION

Mathematical modeling and computational sim-

ulation provide an in silico environment for in-

vestigating cerebral electrophysiology and neuro-

logical therapies including neurostimulation. Tra-

ditionally, volume-conduction models have been

used to emulate electrical potentials and currents

within the head cavity. In particular, these models

can reproduced electroencephalograph (EEG) sur-

face potentials [1]–[3], and have been successful

in predicting cerebral current density distributions

from neurostimulation administrations [1], [4]–

[7]. As these models become more refined, their

utility in diagnosing, treating, and comprehending

neurological disorders greatly increases.

Progress in field of computational neurology

has motivated a migration towards models that

incorporate cellular-level bioelectromagnetics. For

example, bidomain based models have been used

to simulate the effects of extracellular electrical

2
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current on cellular transmembrane voltage(s) [8]–

[13]. In addition, multiscale models have repro-

duced EEG measurements originating from action

potentials [14], [15], and have also demonstrated

an ability to simulate the influence of transcranial

electrical stimulation on neuronal depolarization

[16].

These models typically utilize a system of or-

dinary differential equations (ODEs) to emulate

cellular-level electrophysiology. While the com-

putational expense of simulating a single cell is

essentially negligible, this is not the case with

large-scale applications that may include hundreds

of millions of cells; in multiscale applications,

solving this set of ODEs is the computational

bottleneck [17]. In these applications, choosing an

appropriate numerical solver and using efficient

implementation approaches become paramount.

Alterations in neurotransmitter signalling is

a hallmark of many neurodegenerative condi-

tions and treatments. Parkinson’s disease (PD),

for example, which affects approximately one

million individuals in the United States alone

[18], culminates with pathological glutamate and

γ-aminobutyric acid (GABA) binding activity

throughout the basal ganglia-thalamocortical net-

work [19], [20]. As a treatment for PD, deep

brain stimulation (DBS) electrically stimulates ar-

eas of the basal ganglia, such as the subthala-

matic nucleus (STN) [21], to restore normal glu-

tamate and GABA synaptic concentrations [22]–

[24]. Therefore, models that incorporate funda-

mental neurotransmitter-based signalling provide

utility to the neurological research community.

Models of metabotropic and slow-responding

ligand-gated receptors, such as the GABAB

and N-methyl-D-aspartate (NMDA) glutamate

receptors, can be efficiently solved with ex-

plicit Runge-Kutta (ERK) methods [25]. On

the contrary, fast-responding ionotropic recep-

tors, such as the α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) and

the GABAA receptor (GABAAR) result in models

that are classified as stiff [26], which is an attribute

of an ODE system that demands relatively small

step sizes in portions of the numerical solution

[27]. For these ODE systems, L-stable implicit

Runge-Kutta (IRK) solvers with adaptive time-

stepping are ideal given their exceptional stability

properties [28].

In this paper, we examine L-stable IRK methods

when solving models that represent the AMPA

and GABAA neuroreceptors. Three L-stable IRK

methods that are highly effective at solving stiff

ODE systems were selected and implemented with

custom Matlab [29] programming. Features in-

cluding adaptive step-sizing, embedded error esti-

mation, error-based step size selection, and sim-

plified Newton iterations are incorporated [30].

Numerical experiments were then used to identify

the optimal maximum number of inner Newton

iterations for each method. Then, for both the

AMPAR and GABAAR models, simulation time

step results of each IRK method are compared to

commonly used ERK methods. In addition, the

numerical accuracy and computational efficiency

of each IRK method is compared to one other, as

well as the highly-popular fifth order, variable step

size Dormand-Prince method. Finally, a C++ based

IRK implementation demonstrates exceptionally

accurate and expedient performances, showcasing

its potential to support large-scale multi-cellular

brain simulations.

II. MATERIALS AND METHODS

A. Neuroreceptor models

1) AMPA: Glutamate is the single most abun-

dant neurotransmitter in the human brain [31].

It is produced by glutamatergic neurons, and is

classified as excitatory in the sense that it predom-

inately depolarizes post-synaptic neurons towards

generating action potentials [32]. Given the large

concentration of glutamate in the nervous system,

alterations in its production are associated with

many neurodegenerative diseases and treatments.

In PD patients, for example, stimulating the STN

with DBS causes a cascade of cellular effects

within the basal-ganglia thalamocortical pathway

through its afferent and efferent projections, in-

cluding increased glutamate secretion to the globus

9Efficient Implicit Runge-Kutta Methods for Fast-Responding Ligand-Gated Neuroreceptor Kinetic Models
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pallidus external (GPe), globus pallidus internal

(GPi), and substantia nigra pars reticulata (SNr)

[23].

Ligand-gated AMPA receptors for glutamate are

permeable to sodium and potassium, have a rever-

sal potential of 0 mV, and possess fast channel

opening rates. Therefore, these receptors produce

fast excitatory post-synaptic currents [33]. Figure

1a displays the Markov kinetic binding model

for the ligand-gated AMPAR that was utilized

in this paper [34]. In this network, there is the

unbound AMPAR form C0, singly and doubly

bound receptor forms C1 and C2, which can lead

to desensitized states D1 and D2, respectively, and

the open receptor form O [35]. In addition, vari-

able T represents neurotransmitter concentration.

Mass action kinetics gives the following system of

ODEs for the AMPA neuroreceptor model:

dC0

dt
= −kbC0T + C1ku1, (1a)

dC1

dt
= kbC0T + ku2C2 + kudD1 − ku1C1

− kbC1T − kdC1,
(1b)

dC2

dt
= kbC1T + kudD2 + kcO − ku2C2

− kdC2 − koC2,
(1c)

dD1

dt
= kdC1 − kudD1, (1d)

dD2

dt
= kdC2 − kudD2, (1e)

dO

dt
= C2ko − kcO, (1f)

dT

dt
= −kbC0T + ku1C1 − kbC1T + ku2C2.

(1g)

State transition rates were assigned as follows:

kb = 1.3 x 107, ko = 2.7 x 103, kc = 200,

ku1 = 5.9, ku2 = 8.6 x 104, kd = 900,

and kud = 64, each with units [1/sec]. Initial

concentrations of C1, C2, D1, D2, and O were

set to 0 M [33], and initial values for C0 and T
were computed from a nonlinear least squares fit

of the model to the whole cell recording data in

Destexhe et al. [35].

2) GABA: GABA is the most abundant in-

hibitory neurotransmitter in the human brain [36].

Like glutamate, GABA concentrations are altered

by neurological disease and treatment. In STN

DBS, for example, increased glutamate to the GPe

increases GABA secretion to the GPi and SNr,

resulting in greater GABA neuroreceptor binding

in these regions [24].

There are two main categories of GABA neu-

roreceptors. Metabotropic GABAB receptors are

slow-responding due to the secondary messenger

biochemical network cascade necessary for ion

channel activation. On the contrary, ligand-gated

GABAA receptors are fast-responding due to their

expedient ion channel opening rates. GABAA re-

ceptors are selective to chlorine with a reversal

potential of approximately -70 mV. In addition,

this receptor has two bound forms that can both

trigger channel activation [35].

Figure 1b displays the kinetic binding model for

the GABAA receptor that was utilized in this paper

[26]. In this model, there is the unbound receptor

form C0, singly and doubly bound receptor forms

C1 and C2, slow and fast desensitized states Ds

and Df , and singly open and doubly open receptor

forms O1 and O2. This model incorporates the

minimal forms needed to accurately reproduce

GABAAR kinetics [37]. Mass action kinetics gives

the following ODE system for the GABAA neu-

roreceptor model:

dC0

dt
= −2kbC0T + kuC1, (2a)

dC1

dt
= 2kbC0T − kuC1 + kuDsDs − kDsC1

+ 2kuC2 − kbC1T + kc1O1 − ko1C1,
(2b)

dC2

dt
= kbC1T − 2kuC2 + kc2O2 − ko2C2

+ kuDfDf − kDfC2,
(2c)

dDs

dt
= kfsDf − ksfDsT + kDsC1 − kuDsDs,

(2d)

dDf

dt
= ksfDsT − kfsDf + kDfC2 − kuDfDf ,

(2e)

10 Mathematical Biology
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(a) AMPA receptor (b) GABA receptor

Fig. 1: Kinetic models for ligand-gated neuroreceptors.

dO1

dt
= ko1C1 − kc1O1, (2f)

dO2

dt
= ko2C2 − kc2O2, (2g)

dT

dt
= kuC1 − 2kbC0T + 2kuC2 − kbC1T

+ kfsDf − ksfDsT.
(2h)

Transition rates for the GABAAR ODE system

were assigned as follows: kb = 5 x 106, ku = 131,

kuDs = 0.2, kDs = 13, kc1 = 1100, ko1 = 200,

kc2 = 142, ko2 = 2500, kuDf = 25, kDf = 1250,

kfs = 0.01, and ksf = 2, each with units [1/sec].

Initial values of C1, C2, Ds, Df , O1, and O2 were

set 0 M, and C0 and T were assigned the values

1 x 10−6 M and 4096 x 10−6 M, respectively [26].

B. Stiff ordinary differential equations

The stiffness ratio is defined as

L =
max |Re(λi)|
min |Re(λi)|

,

where λi is the ith eigenvalue of the local Jacobian

matrix [38], given by

Jij =
∂fi(t, ȳ)

∂yj
.

A general non-linear ODE system is stiff when

L � 1. For each neuroreceptor model, we esti-

mated the eigenvalues numerically; a local Jaco-

bian matrix is computed at each simulation time

step using finite differences, and then its eigen-

values are computed using Matlab’s eig function

[39]. For the AMPAR model L = 1.6 x 1011, and

for the GABAAR model L = 3.5 x 1011. Thus,

both of these systems are classified as stiff.

C. Implicit Runge-Kutta methods

Runge-Kutta methods are a family of numeri-

cal integrators that solve ODE systems with trial

steps within the time step. These methods can be

expressed with the following formulas:

Z̄i = h

s∑
j=1

aijF̄ (tn + cjh, ȳn + Z̄j), i = 1, ..., s

(3a)

ȳn+1 = ȳn + h

s∑
j=1

bjF̄ (tn + cjh, ȳn + Z̄j),

(3b)

where ȳn is the current solution at time tn, h
is the current time step, [aij ] is the Runge-Kutta

matrix, F̄ is the ODE system, [cj ] represents inter-

time trial step nodes, [bj ] is the trial step solution

weights, s is the number of stages, and ȳn+1 is the

11Efficient Implicit Runge-Kutta Methods for Fast-Responding Ligand-Gated Neuroreceptor Kinetic Models
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numerical solution at time tn+1 [28]. A Runge-

Kutta method can be fully defined with a Butcher

table, i.e. a specific [aij ], [bj ], and [cj ] [40].

L-stable IRK methods are highly effective at

solving stiff ODE systems [30]; these methods

have no step size constraint to maintain numerical

stability and quickly converge [41]. Methods with

second and third order accuracy were considered

as these orders best match the numerical accuracy

of fractional step algorithms typically employed

with partial differential equation based multiscale

models [16], [39].

The following L-stable IRK methods were se-

lected for examination: SDIRK(2/1) [42], ES-

DIRK23A [17], and RadauIIa(3/2) [30], [43]. Each

has demonstrated accuracy and computational effi-

ciency when solving extremely stiff ODE systems.

In addition, each provide an efficient local error

estimator that enables error-based adaptive time-

stepping. For simplicity, these solvers will be

referred to as SDIRK, ESDIRK, and Radau for the

remainder of this paper. Butcher tables for these

methods are displayed in Fig. 2.

γ γ
1 1 − γ γ

b 1 − γ γ

b̂ 1 − γ̂ γ̂

(a) SDIRK(2/1)

1
3

5
12 - 1

12
1 3

4
1
4

b 3
4

1
4

b̂ 3
4 −

√
6
4

1
4 +

√
6

12

(b) RadauIIA(3/2)

0 0

2γ γ γ

1 b̂1 b̂2 γ
1 b1 b2 b3 γ

b 6γ−1
12γ

−1
(24γ−12)γ

−6γ2+6γ−1
6γ−3 γ

b̂ −4γ2+6γ−1
4γ

−2γ+1
4γ γ 0

(c) ESDIRK23A

Fig. 2: Butcher tables for the three implicit Runge-

Kutta methods evaluated in this paper. In Fig. 2a,

γ = 1−
√
2
2 and γ̂ = 2− 5

4

√
2, and in Fig. 2c, γ =

0.4358665215. In each Butcher table, b̂ specifies

the lower-order trial step solution weights.

The SDIRK method is second order with an

embedded first order formula for local error es-

timation. Each trial step, Z̄i, of the SDIRK

solver can be solved for sequentially. Specif-

ically, since a12 = 0 (see Fig. 2a), the

first stage of this method can be written as

Z̄1 = h
(
a11F̄ (tn + c1h, ȳn + Z̄1)

)
, and Z̄1 can

be solved for first and used directly in the solution

of Z̄2 = h
(
a21F̄ (tn + c1h, ȳn + Z̄1) + a22F̄ (tn +

c2h, ȳn + Z̄2)
)
.

The Radau method has two stages like the

SDIRK method (see Fig. 2b), but has third order

accuracy with a second order error formula. This

method’s Runge-Kutta matrix is full, therefore the

trial stages are solved as a coupled implicit system:

Z̄1 = h[a11F̄ (tn + c1h, ȳn + Z̄1)+

a12F̄ (tn + c2h, ȳn + Z̄2)],

Z̄2 = h[a21F̄ (tn + c1h, ȳn + Z̄1)+

a22F̄ (tn + c2h, ȳn + Z̄2)].

Trial steps in the ESDIRK method are solved

sequentially like the SDIRK method, after the

initial explicit first stage (see Fig. 2c). This method

is third order with an embedded second order

formula for local error estimation, similar to the

Radau solver.

D. Implementation

The three IRK methods were programmed in

Matlab using principles specified in [30] and [44];

we refer these resources for a detailed explanation

of Runge-Kutta method implementation and in this

section provide just a brief overview of key aspects

utilized in our implementations.

For each IRK method, Newton’s method is used

in solving system (3a). Typically, each inner New-

ton iteration involves computing the local Jacobian

matrix and performing an LU factorization. To

greatly decrease run-time, at each time step the

Jacobian computation and LU factorization are

performed just once on the first Newton iteration

and retained for all remaining iterations. Execu-

tion time is further decreased by retaining the

Jacobian in the subsequent time step if the IRK

method converges with just one Newton iteration,

or
‖Z̄k+1−Z̄k‖
‖Z̄k−Z̄k−1‖ ≤ 10−3, where k is the number of

12 Mathematical Biology
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inner iterations for convergence and ‖ · ‖ is an

error-normalized 2-norm [30], [45].

Efficient starting values for each Newton iter-

ation are produced via a Lagrange interpolation

polynomial of degree s [30], [42]. For the Radau

method, for example, we use the data points:

q(0) = 0, q(13) = Z̄1, and q(1) = Z̄2, and obtain

the following Lagrange polynomial:

q(w) =q(0)
(w − 1

3)(w − 1)

(0 − 1
3)(0 − 1)

+

q

(
1

3

)
(w − 0)(w − 1)

(13 − 0)(13 − 1)
+

q(1)
(w − 0)(w − 1

3)

(1 − 0)(1 − 1
3)

=
w(w − 1)

−2
9

Z̄1 +
w(w − 1

3)
2
3

Z̄2.

Newton iteration starting values are then given by:

Z̄1 = q(1 + wc1) + ȳn − ȳn+1,

Z̄2 = q(1 + wc2) + ȳn − ȳn+1,where w =
hnew
hold

.

For each time step, local error is calculated and

used for (i) step acceptance and (ii) subsequent

step size prediction. The error at time step tn+1

can be computed by err = ŷn+1 − ȳn+1, where

ŷn+1 = ȳn+b̂0hF̄ (tn, ȳn)+

h

s∑
j=1

b̂jF̄ (tn + cjh, Z̄j + ȳn).
(4)

The error calculations in the SDIRK and ES-

DIRK methods are suitable for stiff systems [39],

[41]. For the Radau method, however, ŷn+1−ȳn+1

will become unbounded and is therefore not appro-

priate for stiff systems [46]. Instead, we use the

formula err = (I − hb̂0J)
−1(ŷn+1 − ȳn+1) which

is equivalent to

err =(I − hb̂0J)
−1[b̂0hF̄ (tn, ȳn) +

(b̂1 − b1)hF̄ (tn + c1h, Z̄1 + ȳn) +

(b̂2 − b2)hF̄ (tn + c2h, Z̄2 + ȳn)],

(5)

where I is the identity matrix, J is the Jacobian,

and b̂0 =
√
6
6 [46].

We can write ŷn+1 − ȳn+1 as follows [47]:

ŷn+1 − ȳn+1 = b̂0hF̄ (tn, ȳn)+ e1Z̄1 + e2Z̄2. (6)

To identify the coefficients e1 and e2, we substitute

Z̄1 and Z̄2 (3a) into (6):

ŷn+1 − ȳn+1 = b̂0hF̄ (tn, ȳn)

+e1[ha11F̄ (tn + c1h, Z̄1 + ȳn)+

ha12F̄ (tn + c2h, Z̄2 + ȳn)]

+e2[ha21F̄ (tn + c1h, Z̄1 + ȳn)+

ha22F̄ (tn + c2h, Z̄2 + ȳn)].

Collecting terms gives:

ŷn+1−ȳn+1 = b̂0hF̄ (tn, ȳn)+

(e1a11 + e2a21)hF̄ (tn + c1h, Z̄1 + ȳn)+

(e1a12 + e2a22)hF̄ (tn + c2h, Z̄2 + ȳn).
(7)

From (5) and (7), we end up with the following

system of equations:

b̂1 − b1 = e1a11 + e2a21,

b̂2 − b2 = e1a12 + e2a22.

Using the Radau Butcher table (Fig. 2b) gives

(e1, e2) = b̂0
(−9

2 , 12
)
. The error estimation is used

to predict step size via the strategy proposed by

Gustafsson [45]. Further, step size following a

rejected step due to excessive local error, namely

‖err‖ > 1, is 1
3h.

For large-scale simulations, e.g. multiscale ap-

plications, hundreds of millions of ODE systems

may be solved at each time step. For these com-

putationally intensive simulations, scripting lan-

guages such as Matlab are not ideal, and machine-

compiled programs are generally necessary to

achieve simulation results within reasonable com-

puting time [48]. Due to its superior accuracy in

solving both the GABAAR and AMPAR models

(see Sec. III), we selected the Radau method and

configured a C++ implementation of it. Execution

results of this version provide a measure of opti-

mally expected computational performance.

We validated the implementation of each IRK

method by comparing their GABAAR simulation

results to those presented in Qazi et al. [37],
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and their AMPAR simulation results to whole cell

recording data in Destexhe et al. [35].

E. Simulations

Numerical simulations were performed to assess

the robustness of the IRK methods when solving

the AMPAR and GABAAR models. Simulations

were one second in duration, with rates and initial

conditions as specified in Section II-A. Absolute

and relative error tolerances were both set to

10−8, and initial step size, h, was set to 10−4.

For each IRK method, the optimal number of

maximum Newton iterations, kmax, was identified

by solving the AMPAR and GABAAR models

with kmax = 5, 6, ..., 20. For each value of kmax,

the mean execution time of five simulations was

computed, and the value of kmax that produced the

lowest mean execution time was selected. Figure

3a displays the kmax values selected for each

model and method.

For each method, it was observed that a thresh-

old value of kmax exists, such that higher values

do not result in faster simulations. Therefore, we

selected the minimum kmax value associated with

the fastest execution speed. For example, for the

Radau method solving the GABAAR model, sim-

ulation times begin to plateau for kmax ≥ 10, and

simulation times with kmax ≥ 15 were the same

(see Fig. 3b). Therefore, for this model and IRK

method, kmax = 15 was selected.

Figure 3b also shows that faster run times

correlate with fewer solution time steps and LU

factorizations, until a floor is reached; in the case

of the Radau method solving the GABAAR model,

this floor is 29 time steps and 30 LU factoriza-

tions. To a point, higher values of kmax increase

the probability of Newton method convergence,

resulting in fewer time steps and fewer compu-

tationally expensive LU factorizations [30]. For

the Radau method solving the GABAAR model,

values of kmax ≥ 15 yield the fewest number

of simulation times steps in addition to no steps

where the Newton iteration fails to converge. Thus,

when kmax = 15, time steps and associated LU

factorizations are minimized, yielding the fastest

execution speeds.

Model SDIRK ESDIRK Radau

GABAAR 7 10 15

AMPAR 14 12 17

(a) Values of kmax selected for each model and method

(b) Radau method solving the GABAAR model: run time, time
steps, and LU factorizations, for kmax = 5, 6, ..., 20

Fig. 3: Maximum Newton iteration metrics and

results.

To evaluate the advantages that IRK methods

have when solving fast-responding neuroreceptor

models, we first compare the total number of

simulation time steps and simulation step sizes

of each IRK method to the following commonly

used ERK methods: forward euler (FE), midpoint

method (Mid), and 4th order Runge-Kutta (RK4).

Next, to compare each IRK method to one another

and to the adaptive 5th order Dormand-Prince

method (DP5) [49], metrics including local and

global error, total simulation time steps, step sizes,

execution times, and numbers of Jacobian com-

putations and LU factorizations were evaluated.

Absolute and relative error tolerances of the DP5

method were set to 10−8, matching the tolerances

of the three implicit methods.

To more comprehensively assess performance

differences amoung the IRK methods, work-

precision diagrams using solution run times and

scd values, where scd = -log10(‖relative error at

t = 1.0 sec ‖∞), were then generated [50]. For the

work-precision diagrams, relative error tolerances

14 Mathematical Biology
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Closed bound = C1+C2; Desensitized = Ds+Df ; Open
= O1 +O2

Fig. 4: SDIRK method solution of GABAAR model.

were set to rtol = 10−(4+
m

5
), m = 0, 1, ..., 25,

absolute error tolerance was set to 10−4 · rtol, and

initial step size was 10−4. In addition, solution run

times presented in these diagrams are the mean of

five runs. For all accuracy calculations, solutions

with a 5th order adaptive time-stepping L-stable

implicit Runge-Kutta method with a maximum

step size of 10−6 and both absolute and relative

tolerances set to 10−14 were used as true solutions.

Finally, the execution time of the Radau C++

implementation when solving both neuroreceptor

models was assessed. All simulations were run on

a Linux machine with an Intel i7 processor with a

clock speed of 2.40 GHz.

III. RESULTS AND DISCUSSION

A. GABAAR Model

Figure 4 presents the solution of the GABAAR

model with the SDIRK method; ESDIRK and

Radau solutions look identical. The sharp transi-

tion in the total open state concentration, O1(t) +
O2(t), at the onset of neurotransmitter stimulus

at t = 0 displays the necessity for smaller time

steps in this region of the solution (Fig. 4a). Upon

examining all receptor forms during the first 1.5

ms of the simulation, it is observed that both

the unbound closed form, C0(t), and total bound

closed form, C1(t)+C2(t), possess concentration

transitions even greater than the open receptor

form (Fig. 4b). These results show the stiffness

possessed by the GABAAR system.

Table I displays simulation time step metrics for

the three IRK methods and the FE, Mid, and RK4

ERK methods. The maximum step size of each

explicit method was calculated with the GABAAR

model stiffness index and the method’s stability

region [28], giving the largest step that can be

taken while maintaining numerical stability. Then,

the number of time steps required for each ERK

method was computed by dividing the simulation

duration by the maximum step size. The FE and

Mid methods both require 2.1 x 104 time steps,

and the RK4 method requires 1.5 x 104, which

is lower than the FE and Mid methods due to its

larger stability region [30]. On the contrary, each

implicit method requires less than 30 simulation

time steps. As displayed in Figure 4a, the majority

of these time steps for the SDIRK method occur at

the beginning of the simulation, within the region

of rapid solution transition.

Similarly, the ESDIRK and Radau solvers de-

mand noticeably more time steps at the onset

of neurotransmitter stimulation (Fig. 5). Rejected

steps, totalling three for the ESDIRK method (Fig.
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Fig. 5: Simulation step sizes for the GABAAR model.

TABLE I: Simulation time steps results for

the ERK and IRK methods when solving the

GABAAR model.

Method (Order) Max Step Time

Size (s) Steps

FE (1) 4.8 x 10−5 2.1 x 104

Mid (2) 4.8 x 10−5 2.1 x 104

RK4 (4) 6.8 x 10−5 1.5 x 104

SDIRK (2/1) Adaptive 28

ESDIRK (3/2) Adaptive 26

Radau (3/2) Adaptive 29

5a) and two for the Radau method (Fig. 5b) all

occur at time t = 0; once the solution in this

region has been accurately resolved, no further

rejected steps occur. In addition, for all three IRK

methods, all Newton iterations converged, which

was facilitated by identifying optimal kmax values

(see Sec. II-E). Further, the smallest step sizes

of the IRK methods, namely 1.4 x 10−5 for the

SDIRK and ESDIRK methods and 1.2 x 10−5

for the Radau method, have the same order of

magnitude as the largest stable step sizes of the

ERK methods.

Next the accuracy and computational efficiency

of the IRK methods were compared to one another
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Fig. 6: GABAAR model open state concentration

solution error.

and with the DP5 method (Table II). While the

DP5 method possesses the lowest maximal local

true solution deviation (3.2 x 10−10), the 2-norm

of its global error is one to two orders of mag-

nitude higher than all three IRK methods. These

results are explained by the fact that the solution of

the DP5 solver oscillates around the true solution

(Fig. 6). In addition, the DP5 method requires

approximately 50,000 simulation time steps and

takes 49.0 seconds to run. In comparison, the
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TABLE II: Accuracy and simulation run-time metrics of the DP5 and IRK methods when solving the

GABAAR model. Boldface font denotes best results of each column.

Method (Order) ‖ Error ‖2 Max |Error| Time Steps Run Time (s)

DP5 (5/4) 252.0 x 10−10 3.2 x 10–10 5.0 x 104 49.0

SDIRK (2/1) 45.6 x 10−10 19.6 x 10−10 28 0.21
ESDIRK (3/2) 18.3 x 10−10 8.8 x 10−10 26 0.27

Radau (3/2) 8.7 x 10–10 3.7 x 10−10 29 0.69

ESDIRK method requires 26 time steps and the

SDIRK method executes in 0.21 seconds. DP5

solution accuracy can be improved with either

stricter error tolerances or a decreased time step

[51], however, these approaches will result in even

greater run times.

The Radau method has the greatest execution

time of the three IRK methods, at 0.69 seconds.

While the number of simulation time steps amoung

the IRK methods are comparable, two factors

contribute to the longer run time of the Radau

method. First, this solver generally requires a

greater number of iterations for Newton’s method

to converge (Fig. 3a). Second, the Radau method

requires 30 Jacobian computations, versus just four

for the SDIRK and ESDIRK methods.
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Fig. 7: GABAAR work-precision diagram with

solver run time vs. scd for each IRK method.

Integer exponential tolerances, i.e. 10−4, 10−5, ...,

are presented with enlarged symbols. The symbol

for rtol = 10−6 is distinguished by the yellow

circle.

Despite its run time disadvantages amongst the

IRK methods, the accuracy of the Radau method

stands out as superior. It has the lowest global

error 2-norm (8.7 x 10−10), and its maximal

deviation from the true solution (−3.7 x 10−10) is

comparable to that of the 5th order DP5 method,

the only IRK method examined where this is

the case. Further, the Radau method has greater

accuracy at every time step than both the SDIRK

and ESDIRK methods.

These findings are reinforced by the work-

precision diagram for the three IRK methods when

solving the GABAAR model (Fig. 7). This diagram

highlights the higher precisions attained by the

third order methods, and in addition, also confirms

the slower execution speeds achieved by the Radau

method. However, when comparing graph points

of similar relative tolerances, such as the symbols

marked in yellow that represent rtol = 10−6, the

Radau method is consistently more accurate.

B. AMPAR Model

Figure 8 presents solution results of the AMPAR

model solved with the Radau method. Like the

GABAAR model, the rapid transition in the open

state concentration upon neurotransmitter stimula-

tion demands a greater number of time steps (Fig.

8a). Specifically, the first 10% of the simulation

(0.1 sec) encompasses approximately 96% of the

simulation time steps. Once beyond this initial

region, step size eventually increases by seven

orders of magnitude (Fig. 8b). Similar to the

GABAAR model, both unbound closed and bound

closed forms contribute to the system’s stiffness.

A noticeable difference, compared to the

GABAAR simulation results, is the number of time
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Fig. 8: Radau method solution of the AMPAR model.

steps needed by the implicit methods to solve the

AMPAR model. The Radau method, for example,

requires 199 time steps (Fig. 8b), a 586% increase

from the 29 steps needed to solve the GABAAR

model. Similar increases are observed with the

SDIRK and ESDIRK solvers, most notably the

531 steps required by the SDIRK method (Table

III). In addition, the smallest step sizes of the IRK

methods are two orders of magnitude lower with

the AMPAR model (Fig. 8b), due to the stiffness

index of the AMPAR system [27]. Despite the

elevated simulation time step counts, each IRK

method still outperforms the explicit methods (Ta-

ble III); maximum stable step sizes and simulation

time steps for the explicit methods were again

computed with their stiffness indices and stability

regions [28].

While greater kmax values eliminated non-

convergent Newton iterations in the GABAAR

model, this is not the case with the AMPAR

model. Each IRK method has two instances where

Newton’s method did not converge. In addition,

the SDIRK method has four rejected steps, and

the ESDIRK and Radau methods each have two,

all occurring at time t = 0.

Table IV displays accuracy and execution effi-

ciency results for the IRK methods. An interesting

TABLE III: Simulation time steps results for the

ERK and IRK methods when solving the AMPAR

model.

Method (Order) Max Step Time

Size (s) Steps

FE (1) 1.7 x 10−5 5.9 x 104

Mid (2) 1.7 x 10−5 5.9 x 104

RK4 (4) 2.4 x 10−5 4.2 x 104

SDIRK (2/1) Adaptive 531

ESDIRK (3/2) Adaptive 211

Radau (3/2) Adaptive 199

result is the seemingly uncorrelated relationship

between simulation time steps and run time. For

example, despite having the lowest number of

simulation time steps, the Radau method has the

longest run time. Along these same lines, the

Radau method has less than 50% of the simulation

time steps of the SDIRK method, yet no noticeable

computational advantage. Moreover, the ESDIRK

method has approximately 40% of the SDIRK

method’s time steps, yet it requires 72% of its run-

time.

With a comparable number of rejected and

non-convergent steps (Table V), a culprit for this

behavior is the number of Jacobian computations
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TABLE IV: Accuracy and simulation run-time metrics of the DP5 and IRK methods when solving the

AMPAR model. Boldface font denotes best results of each column.

Method (Order) ‖ Error ‖2 Max |Error| Time Steps Run Time (s)

DP5 (5/4) 3.3 x 10−8 2.7 x 10−9 1.1 x 105 32.4

SDIRK (2/1) 3.0 x 10−8 2.7 x 10−9 531 1.34

ESDIRK (3/2) 1.7 x 10−8 2.7 x 10−9 211 0.97
Radau (3/2) 1.6 x 10–8 2.7 x 10−9 199 1.38
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Fig. 9: Method comparison when solving the AMPAR model.

performed by these solvers. Figure 9a displays the

Jacobian computations and LU factorizations of

the SDIRK and ESDIRK methods. Each method

has a near identical number of LU factorizations,

however, the ESDIRK method requires 51 Jaco-

bian computations, which is more than double the

24 performed by the SDIRK method. In addition,

the Radau method requires 162 Jacobian compu-

tations. Therefore, despite having a lower number

of simulation time steps, the computational ad-

vantages of the ESDIRK and Radau methods are

diminished due to this elevated number of Jacobian

computations.

Once again, the accuracy and computational

performances of the IRK methods were compared

to the DP5 method (Table IV). As observed with

the GABAAR model, the DP5 method has inferior

execution performance, requiring 1.1×105 simula-

TABLE V: Number of rejected and non-

convergent steps for each IRK method when solv-

ing the AMPAR model.

Model Rejected Non-convergent

SDIRK 2 2

ESDIRK 4 2

Radau 2 2

tion time steps and 32.4 seconds for a numerically

stable solution, both of which are significantly

greater than results attained with the IRK methods.

All four methods generate the same maximum

local error (2.7×10−9), which occurs at t = 0 for

all methods. Also, differences among the global

errors are relatively smaller with the AMPAR

model. The oscillatory nature of the DP5 solution

around the true solution (Fig. 9b) contributes to its
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global error 2-norm (3.3 × 10−8), which is again

larger than those of the three IRK methods. The

Radau method once again has the lowest global

error 2-norm (1.6×10−8) of all methods inspected.
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Fig. 10: AMPAR work-precision diagram with

solver run time vs. scd for each IRK method.

Integer exponential tolerances, i.e. 10−4, 10−5, ...,

are presented with enlarged symbols. The symbol

for rtol = 10−6 is distinguished by the yellow

circle.

The work-precision diagram for the AMPAR

model (Fig. 10) again confirms the higher pre-

cision achieved by the third order ESDIRK and

Radau solvers. More noticeable in this graph are

the differences in the “slopes” of the curves, where

“flatter” curves, i.e. ESDIRK and Radau, have

more precision per unit CPU time [30]. For the

AMPAR model, the Radau method is slower than

the ESDIRK method at all work-precision toler-

ances examined, yet at relative tolerances greater

than 10−6, the Radau method becomes faster than

the SDIRK method. Further, the Radau method

is generally the most accurate of all three IRK

methods.

C. C++ Radau Implementation

The Radau method consistently demonstrates

the greatest accuracy of the methods examined,

however, its main disadvantage is execution speed.

For this reason, we selected the Radau method and

configured a C++ implementation of it. Table VI

displays execution times for the previous Radau

Matlab implementation, as well as the new C++

version.

As expected, the C++ version is significantly

faster. Specifically, the GABAAR model has a

99.6% decrease in execution time, and the AM-

PAR model has a 99.7% decrease in execution

time. Because the implementation algorithms be-

tween the two versions are the same, the C++

version maintains the accuracy of the Matlab pro-

totype.

TABLE VI: Run times (seconds) for the Mat-

lab and C++ Radau method when solving the

GABAAR and AMPAR models.

Implementation GABAAR AMPAR

Matlab 0.69 1.38

C++ 2.7 x 10-3 3.5 x 10-3

IV. CONCLUSIONS

Computational neurology is a valuable con-

tributor in the diagnosis, treatment, and com-

prehension of neurological disease. To provide

maximal utility to the scientific community, com-

putational simulations should incorporate highly-

detailed, neurotransmitter-based neuron models.

Therefore, large-scale simulations involving popu-

lations of neurons will inevitably produce compu-

tational challenges. In this paper, we have shown

that appropriate numerical solvers with efficient

implementation strategies can alleviate computa-

tional difficulties.

Commonly used explicit methods are capable

in solving a limited number of fast-responding

ligand-gated neuroreceptor models. However, we

have shown that poor stability properties make

them non-ideal for large-scale applications. Rather,

by addressing the stiffness possessed by these

models, we show that implicit methods are highly

advantageous. In particular, we demonstrate that

L-stable implicit Runge-Kutta methods offer su-

perior accuracy and run-time efficiency compared

20 Mathematical Biology
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to their explicit siblings when solving biologically-

based AMPA and GABAA neuroreceptor models.

To accelerate solutions, we utilize a range of

strategies including embedded error estimators and

simplified Newton iterations. In addition, we show

that optimal execution times are achieved when

costly Jacobian computations and LU factoriza-

tions are minimized.

The third order Radau IRK method demon-

strates exceptional local and global accuracy com-

pared to all other explicit and implicit methods

examined. In addition, its numerical stability prop-

erties yield a relatively low number of simulation

time steps and efficient step sizes when solving

the AMPA and GABAA neuroreceptor models.

Further, a C++ implementation of the Radau solver

displays the computational faculty to enable large-

scale multi-cellular simulations. In future work,

we plan to continue our investigation of numerical

solvers for neurotransmitter-based neuron models

by comparing the IRK methods to multi-step meth-

ods and exponential integrators.
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I. INTRODUCTION

In this paper we discuss some computational,

modelling and approximation issues related to

several classes of sigmoid functions. Sigmoid

functions find numerous applications in various

fields related to life sciences, chemistry, physics,

artificial intelligence, etc. In fields such as signal

processing, pattern recognition, machine learning,

artificial neural networks, sigmoid functions are

also known as “activation” and “squashing” func-

tions. In this work we concentrate on several

practically important classes of sigmoid functions.

Two of them are the cut (or ramp) functions and

the step functions. Cut functions are continuous

but they are not smooth (differentiable) at the two

endpoints of the interval where they increase. Step

functions can be viewed as limiting case of cut

functions; they are not continuous but they are

Hausdorff continuous (H-continuous) [4], [43]. In

some applications smooth sigmoid functions are

preferred, some authors even require smoothness

in the definition of sigmoid functions. Two famil-

iar classes of smooth sigmoid functions are the

logistic and the Gompertz functions. There are

situations when one needs to pass from nonsmooth

sigmoid functions (e. g. cut functions) to smooth

sigmoid functions, and vice versa. Such a neces-

sity rises the issue of approximating nonsmooth

sigmoid functions by smooth sigmoid functions.

One can encounter similar approximation prob-

lems when looking for appropriate models for

fitting time course measurement data coming e. g.

from cellular growth experiments. Depending on

the general view of the data one can decide to use

3
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initially a cut function in order to obtain rough

initial values for certain parameters, such as the

maximum growth rate. Then one can use a more

sophisticate model (logistic or Gompertz) to obtain

a better fit to the measurement data. The presented

results may be used to indicate to what extend and

in what sense a model can be improved by another

one and how the two models can be compared.

Section 2 contains preliminary definitions and

motivations. In Section 3 we study the uniform and

Hausdorff approximation of the cut functions by

logistic functions. Curiously, the uniform distance

between a cut function and the logistic function of

best uniform approximation is an absolute constant

not depending on the slope of the functions, a

result observed in [18]. By contrast, it turns out

that the Hausdorff distance (H-distance) depends

on the slope and tends to zero when increasing the

slope. Showing that the family of logistic functions

cannot approximate the cut function arbitrary well,

we then consider the limiting case when the cut

function tends to the step function (in Hausdorff

sense). In this way we obtain an extension of a

previous result on the Hausdorff approximation

of the step function by logistic functions [4]. In

Section 4 we discuss the approximation of the

cut function by a family of squashing functions

induced by the logistic function. It has been shown

in [18] that the latter family approximates uni-

formly the cut function arbitrary well. We propose

a new estimate for the H-distance between the

cut function and its best approximating squashing

function. Our estimate is then extended to cover

the limiting case of the step function. In Section 5

the approximation of the cut function by Gompertz

functions is considered using similar techniques

as in the previous sections. The application of the

logistic and Gompertz functions in life sciences

is briefly discussed. Numerical examples are pre-

sented throughout the paper using the computer

algebra system MATHEMATICA.

II. PRELIMINARIES

Sigmoid functions. In this work we consider

sigmoid functions of a single variable defined on

the real line, that is functions s of the form

s : R −→ R. Sigmoid functions can be defined

as bounded monotone non-decreasing functions on

R. One usually makes use of normalized sigmoid

functions defined as monotone non-decreasing

functions s(t), t ∈ R, such that lim s(t)t→−∞ = 0
and lim s(t)t→∞ = 1. In the fields of neural

networks and machine learning sigmoid-like func-

tions of many variables are used, familiar under the

name activation functions. (In some applications

the sigmoid functions are normalised so that the

lower asymptote is assumed −1: lim s(t)t→−∞ =
−1.)

Cut (ramp) functions. Let Δ = [γ − δ, γ + δ] be

an interval on the real line R with centre γ ∈ R

and radius δ ∈ R. A cut function (on Δ) is defined

as follows:

Definition 1. The cut function cγ,δ on Δ is defined
for t ∈ R by

cγ,δ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t < Δ,

t − γ + δ

2δ
, if t ∈ Δ,

1, if Δ < t.

(1)

Note that the slope of function cγ,δ(t) on the

interval Δ is 1/(2δ) (the slope is constant in the

whole interval Δ). Two special cases are of interest

for our discussion in the sequel.

Special case 1. For γ = 0 we obtain a cut

function on the interval Δ = [−δ, δ]:

c0,δ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t < −δ,

t+ δ

2δ
, if −δ ≤ t ≤ δ,

1, if δ < t.

(2)

Special case 2. For γ = δ we obtain the cut

function on Δ = [0, 2δ]:

cδ,δ(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if t < 0,

t

2δ
, if 0 ≤ t ≤ 2δ,

1, if 2δ < t.

(3)
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Step functions. The step function (with “jump” at

γ ∈ R) can be defined by

hγ(t) = cγ,0(t) =

⎧⎪⎨⎪⎩
0, if t < γ,

[0, 1], if t = γ,

1, if t > γ,

(4)

which is an interval-valued function (or just in-
terval function) [4], [43]. In the literature various

point values, such as 0, 1/2 or 1, are prescribed

to the step function (4) at the point γ; we prefer

the interval value [0, 1]. When the jump is at the

origin, that is γ = 0, then the step function is

known as the Heaviside step function; its “inter-

val” formulation is:

h0(t) = c0,0(t) =

⎧⎪⎨⎪⎩
0, if t < 0,

[0, 1], if t = 0,

1, if t > 0.

(5)

H-distance. The step function can be perceived

as a limiting case of the cut function. Namely,

for δ → 0, the cut function cδ,δ tends in “Haus-

dorff sense” to the step function. Here “Haus-

dorff sense” means Hausdorff distance, briefly

H-distance. The H-distance ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance

between their completed graphs F (f) and F (g)
considered as closed subsets of Ω × R [24], [41].

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A − B||, (6)

sup
B∈F (g)

inf
A∈F (f)

||A − B||},

wherein ||.|| is any norm in R
2, e. g. the maximum

norm ||(t, x)|| = max |t|, |x|.
To prove that (3) tends to (5) let h be the H-

distance between the step function (5) and the

cut function (3) using the maximum norm, that

is a square (box) unit ball. By definition (6) h
is the side of the smallest unit square, centered

at the point (0, 1) touching the graph of the cut

function. Hence we have 1 − cδ,δ(h) = h, that is

1 − h/(2δ) = h, implying

h =
2δ

1 + 2δ
= 2δ +O(δ2).

For the sake of simplicity throughout the pa-

per we shall work with some of the special cut

functions (2), (3), instead of the more general

(arbitrary shifted) cut function (1); these special

choices will not lead to any loss of generality

concerning the results obtained. Moreover, for all

sigmoid functions considered in the sequel we

shall define a “basic” sigmoid function such that

any member of the corresponding class is obtained

by replacing the argument t by t − γ, that is by

shifting the basic function by some γ ∈ R.

Logistic and Gompertz functions: applications
to life-sciences. In this work we focus on two

familiar smooth sigmoid functions, namely the

Gompertz function and the Verhulst logistic func-

tion. Both their inventors, B. Gompertz and P.-

F. Verhulst, have been motivated by the famous

demographic studies of Thomas Malthus.

The Gompertz function was introduced by

Benjamin Gompertz [22] for the study of de-

mographic phenomena, more specifically human

aging [38], [39], [47]. Gompertz functions find

numerous applications in biology, ecology and

medicine. A. K. Laird successfully used the Gom-

pertz curve to fit data of growth of tumors [32];

tumors are cellular populations growing in a con-

fined space where the availability of nutrients is

limited [1], [2], [15], [19].

A number of experimental scientists apply

Gompertz models in bacterial cell growth, more

specifically in food control [10], [31], [42], [48],

[49], [50]. Gompertz models prove to be useful in

animal and agro-sciences as well [8], [21], [27],

[48]. The Gompertz model has been applied in

modelling aggregation processes [25], [26]; it is a

subject of numerous theoretical modelling studies

as well [6], [7], [9], [20], [37], [40].

The logistic function was introduced by Pierre

François Verhulst [44]–[46], who applied it to

human population dynamics. Verhulst derived his

logistic equation to describe the mechanism of

the self-limiting growth of a biological population.

The equation was rediscovered in 1911 by A.

G. McKendrick [35] for the bacterial growth in
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broth and was tested using nonlinear parameter

estimation. The logistic function finds applications

in an wide range of fields, including biology, ecol-

ogy, population dynamics, chemistry, demography,

economics, geoscience, mathematical psychology,

probability, sociology, political science, financial

mathematics, statistics, fuzzy set theory, to name

a few [12], [13], [11], [14], [18].

Logistic functions are often used in artificial

neural networks [5], [16], [17], [23]. Any neural

net element computes a linear combination of its

input signals, and applies a logistic function to the

result; often called “activation” function. Another

application of logistic curve is in medicine, where

the logistic differential equation is used to model

the growth of tumors. This application can be

considered an extension of the above-mentioned

use in the framework of ecology. In (bio)chemistry

the concentration of reactants and products in

autocatalytic reactions follow the logistic function.

Other smooth sigmoid functions. The integral

(antiderivative) of any smooth, positive, “bump-

shaped” or “bell-shaped” function will be sig-

moidal. A famous example is the error function,

which is the integral (also called the cumulative

distribution function) of the Gaussian normal dis-

tribution. The logistic function is also used as a

base for the derivation of other sigmoid functions,

a notable example is the generalized logistic func-

tion, also known as Richards curve [37]. Another

example is the Dombi-Gera-squashing function

introduced and studied in [18] obtained as an

antiderivative (indefinite integral) of the difference

of two shifted logistic functions.

In what follows we shall be interested in the

approximation of the cut function by smooth sig-

moid functions, more specifically the Gompertz,

the logistic and the Dombi-Gera-squashing func-

tion. We shall focus first on the Verhulst logistic

function.

III. APPROXIMATION OF THE CUT FUNCTION

BY LOGISTIC FUNCTIONS

Definition 2. Define the logistic (Verhulst) func-
tion v on R as [44]–[46]

vγ,k(t) =
1

1 + e−4k(t−γ)
. (7)

Note that the logistic function (7) has an inflec-

tion at its “centre” (γ, 1/2) and its slope at γ is

equal to k.

Proposition 1. [18] The function vγ,k(t) defined

by (7) with k = 1/(2δ): i) is the logistic func-

tion of best uniform one-sided approximation to

function cγ,δ(t) in the interval [γ,∞) (as well as

in the interval (−∞, γ]); ii) approximates the cut

function cγ,δ(t) in uniform metric with an error

ρ = ρ(c, v) =
1

1 + e2
= 0.11920292.... (8)

Proof. Consider functions (1) and (7) with same

centres γ = δ, that is functions cδ,δ and vδ,k. In

addition chose c and v to have same slopes at their

coinciding centres, that is assume k = 1/(2δ), cf.

Figure 1. Then, noticing that the largest uniform

distance between the cut and logistic functions is

achieved at the endpoints of the underlying interval

[0, 2δ], we have:

ρ = vδ,k(0) − cδ,δ =
1

1 + e4kδ
=

1

1 + e2
. (9)

This completes the proof of the proposition.

We note that the uniform distance (9) is an

absolute constant that does not depend on the

width of the underlying interval Δ, resp. on the

slope k. The next proposition shows that this is

not the case whenever H-distance is used.

Proposition 2. The function v(t) = v0,k(t) with

k = 1/(2δ) is the logistic function of best Haus-

dorff one-sided approximation to function c(t) =
c0,k(t) in the interval [0,∞) (resp. in the interval

(−∞, 0]). The function v(t), approximates func-

tion c(t) in H-distance with an error h = h(c, v)
that satisfies the relation:

ln
1 − h

h
= 2 + 4kh. (10)
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Fig. 1. The cut and logistic functions for γ = δ = 1,
k = 1/2.

Proof. Using δ = 1/(2k) we can write δ+ h =
(1 + 2hk)/(2k), resp.:

v(−δ − h) =
1

1 + e2(1+2hk)
.

The H-distance h using square unit ball (with a

side h) satisfies the relation v(−δ − h) = h,

which implies (10). This completes the proof of

the proposition.

Relation (10) shows that the H-distance h de-

pends on the slope k, h = h(k). The next result

gives additional information on this dependence.

Proposition 3. For the H-distance h(k) the fol-
lowing holds for k > 5:

1

4k + 1
< h(k) <

ln(4k + 1)

4k + 1
. (11)

Proof. We need to express h in terms of k, using

(10). Let us examine the function

f(h) = 2 + 4hk − ln(1 − h) − ln
1

h
.

From

f ′(h) = 4k +
1

1 − h
+

1

h
> 0

we conclude that function f is strictly monotone

increasing. Consider the function

g(h) = 2 + h(1 + 4k) − ln
1

h
.

Then g(h)− f(h) = h+ ln(1−h) = O(h2) using

the Taylor expansion ln(1 − h) = −h + O(h2).
Hence g(h) approximates f(h) with h → 0 as

O(h2). In addition g′(h) = 1 + 4k + 1/h > 0,

hence function g is monotone increasing. Further,

for k ≥ 5

g

(
1

1 + 4k

)
= 3 − ln(1 + 4k) < 0,

g

(
ln(4k + 1)

4k + 1

)
= 2 + ln ln(1 + 4k) > 0.

This completes the proof of the proposition.

Relation (11) implies that when the slope k of

functions c and v tends to infinity, the h-distance

h(c, v) between the two functions tends to zero

(differently to the uniform distance ρ(c, v) which

remains constant).

The following proposition gives more precise

upper and lower bounds for h(k). For brevity

denote K = 4k + 1.

Proposition 4. For the H-distance h the following
inequalities hold for k ≥ 5:

lnK

K
− 2 + ln lnK

K
(
1 + 1

lnK

) < h(k) < (12)

lnK

K
+

2 + ln lnK

K
(

ln lnK
1−lnK − 1

) ,K = 4k + 1.

Proof. Evidently, the second derivative of g(h) =
2 + h(1 + 4k) − ln(1/h), namely g′′(h) =
− 1

h2 < 0, has a constant sign on [ 1K , lnK
K ]. The

straight line, defined by the points
(
1
K , g( 1

K )
)

and(
lnK
K , g( lnK

K )
)
, and the tangent to g at the point(

lnK
K , g( lnK

K )
)

cross the abscissa at the points

lnK

K
+

2 + ln lnK

K
(

ln lnK
1−lnK − 1

) , lnK

K
− 2 + ln lnK

K
(
1 + 1

lnK

) ,
respectively. This completes the proof of the

Proposition.

Propositions 2, 3 and 4 extend similar results

from [4] stating that the Heaviside interval-valued

step function is approximated arbitrary well by
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logistic functions in Hausdorff metric. The Haus-

dorff approximation of the Heaviside step function

by sigmoid functions is discussed from various

computational and modelling aspects in [28], [29],

[30].

IV. APPROXIMATION OF THE CUT FUNCTION

BY A SQUASHING FUNCTION

The results obtained in Section 3 state that

the cut function cannot be approximated arbitrary

well by the family of logistic functions. This

result justifies the discussion of other families

of smooth sigmoid functions having better ap-

proximating properties. Such are the squashing

functions proposed in [18] further denoted DG-

squashing functions.

Definition 3. The DG-squashing function sΔ on

the interval Δ = [γ − δ, γ + δ] is defined by

s
(β)
Δ (t) = s

(β)
γ,δ (t) =

1

2δ
ln

(
1 + eβ(t−γ+δ)

1 + eβ(t−γ−δ)

) 1

β

.

(13)

Note that the squashing function (13) has an

inflection at its “centre” γ and its slope at γ is

equal to (2δ)−1.

The squashing function (13) with centre γ = δ:

s
(β)
δ,δ (t) =

1

2δ
ln

(
1 + eβt

1 + eβ(t−2δ)

) 1

β

, (14)

is the function of best uniform approximation to

the cut function (3). Indeed, functions cδ,δ and s
(β)
γ,δ

have same centre γ = δ and equal slopes 1/(2δ)
at their coinciding centres. As in the case with

the logistic function, one observes that the uniform

distance ρ = ρ(c, s) between the cut and squashing

function is achieved at the endpoints of the interval

Δ, more specifically at the origin. Denoting the

width of the interval Δ by w = 2δ we obtain

ρ = s
(β)
δ,δ (0) =

1

w
ln(

2

1 + eβ(−w)
)1/β < (15)

ln 2

w

1

β
= const

1

β
.

The estimate (15) has been found by Dombi

and Gera [18]. This result shows that any cut

Fig. 2. The functions F (d) and G(d).

function cΔ can be approximated arbitrary well by

squashing functions s
(β)
Δ from the class (13). The

approximation becomes better with the increase of

the value of the parameter β. Thus β affects the

quality of the approximation; as we shall see below

the practically interesting values of β are integers

greater than 4.

In what follows we aim at an analogous result

using Hausdorff distance. Let us fix again the

centres of the cut and squashing functions to be

γ = δ so that the form of the cut function is cδ,δ,

namely (3), whereas the form of the squashing

function is s
(β)
δ,δ as given by (14). Both functions

cδ,δ and s
(β)
δ,δ have equal slopes 1/w, w = 2δ, at

their centres δ.

Denoting the square-based H-distance between

cδ,δ and s
(β)
δ,δ by d = d(w;β), w = 2δ, we have

the relation

s
(β)
δ,δ (w + d) =

1

w
ln

(
1 + eβ(w+d)

1 + eβd

) 1

β

= 1 − d

or

ln
1 + eβ(w+d)

1 + eβd
= βw(1 − d). (16)

The following proposition gives an upper bound

for d = d(w;β) as implicitly defined by (16):

Proposition 5. For the distance d the following
holds for β ≥ 5:

d < ln 2
ln(4βw + 1)

4wβ + 1
. (17)
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Proof. We examine the function:

F (d) = −βw(1−d)+ln(1+eβ(w+d))+ln
1

1 + eβd
.

From F ′(d) > 0 we conclude that function

F (d) is strictly monotone increasing. We define

the function

G(d) = −βw + ln(1 + eβw)+

dβ

(
w +

eβw

1 + eβw

)
+ ln

1

1 + eβd
.

We examine G(d) − F (d):

G(d) − F (d) =

ln(1 + eβw) +
eβwβd

1 + eβw
− ln(1 + eβ(w+d)).

From Taylor expansion

ln(1+eβ(w+d)) = ln(1+eβw)+
eβwβd

1 + eβw
+O(d2)

we see that function G(d) approximates F (d) with

d → 0 as O(d2) (cf. Fig. 2).

In addition G(0) < 0 and G
(
ln 2 ln(4βw+1)

4wβ+1

)
>

0 for β ≥ 5. This completes the proof of the

proposition.

Some computational examples using relation

(16) and (17) for various β and w are presented

in Table 1.

w β d(w;β) from(16) d(w;β) from(17)
1 30 0.016040 0.027472
5 10 0.012639 0.018288
6 100 0.001068 0.002247
14 5 0.009564 0.013908
50 100 0.000137 0.000343
500 1000 1.38× 10−6 5.02× 10−6

1000 5000 1.3× 10−7 5.8× 10−7

TABLE I
BOUNDS FOR d(w;β) COMPUTED BY (16) AND (17),

RESPECTIVELY

The numerical results are plotted in Fig. 3 (for

the case β = 5, w = 3; d = 0.0398921) and Fig.

4 (for the case β = 10, w = 4; d = 0.0154697).

Fig. 3. Functions cδ,δ and s
(β)
δ,δ for β = 5, w = 3; d ≤ 0.4.

Fig. 4. Functions cδ,δ and s
(β)
δ,δ for β = 10, w = 4; d ≤

0.016.

V. APPROXIMATION OF THE STEP FUNCTION

BY THE GOMPERTZ FUNCTION

In this section we study the Hausdorff approxi-

mation of the step function by the Gompertz func-

tion and obtain precise upper and lower bounds

for the Hausdorff distance. Numerical examples,

illustrating our results are given.

Definition 4. The Gompertz function σα,β(t) is

defined for α, β > 0 by [22]:

σα,β(t) = e−αe−βt . (18)

Special case 3. For α∗ = ln 2 = 0.69314718... we

obtain the special Gompertz function:

σα∗,β(t) = e−α∗e−βt , (19)

such that σα∗,β(0) = 1/2.
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Fig. 5. The Gompertz function with α = ln 2 and β = 5;
H-distance d = 0.212765.

We study the Hausdorff approximation of the

Heaviside step function c0 = h0(t) by Gompertz

functions of the form (18) and find an expression

for the error of the best approximation.

The H-distance d = d(α∗, β) between the

Heaviside step function h0(t) and the Gompertz

function (19) satisfies the relation

σα∗,β(d) = e−α∗e−βd = 1 − d,

or

ln(1 − d) + α∗e−βd = 0. (20)

The following theorem gives upper and lower

bounds for d(α∗, β). For brevity we denote α = α∗

in Theorem 1 and its proof.

Theorem 1. The Hausdorff distance d = d(α, β)
between the step function h0 and the Gompertz

function (19) can be expressed in terms of the

parameter β for any real β ≥ 2 as follows:

2α − 1

1 + αβ
< d <

ln(1 + αβ)

1 + αβ
. (21)

Proof. We need to express d in terms of α and β,

using (20). Let us examine the function F (d) =
ln(1 − d) + αe−βd. From

F ′(d) = − 1

1 − d
− αβe−βd < 0

we conclude that the function F is strictly mono-

tone decreasing. Consider function G(d) = α −
(1 + αβ)d. From Taylor expansion

α − (1 + αβ)d − ln(1 − d) − αe−βd = O(d2)

we obtain G(d)−F (d) = α− (1+αβ)d− ln(1−
d) − αe−βd = O(d2). Hence G(d) approximates

F (d) with d → 0 as O(d2). In addition G′(d) =
−(1 + αβ) < 0. Further, for β ≥ 2,

G

(
2α − 1

1 + αβ

)
= 1 − α > 0,

G

(
ln(1 + αβ)

1 + αβ

)
= α − ln(1 + αβ) < 0.

This completes the proof of the theorem.

Some computational examples using relation

(20) are presented in Table 2.

β d(α∗, β)
2 0.310825
5 0.212765
10 0.147136
50 0.0514763
100 0.0309364
500 0.00873829
1000 0.00494117

TABLE II
BOUNDS FOR d(α∗, β) COMPUTED BY (20) FOR VARIOUS

β .

The calculation of the value of the H-distance

between the Gompertz sigmoid function and the

Heaviside step function is given in Appendix 1.

The numerical results are plotted in Fig. 5

(for the case α∗ = ln 2, β = 5, H-distance

d = 0.212765) and Fig. 6 (for the case α∗ = ln 2,

β = 20, H-distance d = 0.0962215).

Remark 1. For some comparisons of the Gom-

pertz and logistic equation from both practical and

theoretical perspective, see [6], [8], [40]. As can

be seen from Figure 6 the graph of the Gompertz

function is “skewed”, it is not symmetric with

respect to the inflection point. In biology, the

Gompertz function is commonly used to model

growth process where the period of increasing

growth is shorter than the period in which growth

decreases [8], [33].
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Fig. 6. The logistic (dotted line) and the Gompertz function
(dense line) with same point and same rate (at that point).

Remark 2. For k > 0, β > 0 consider the

differential equation

y′ = ke−βty,
k

β
= α. (22)

We have

dy

dt
= ke−βty;

dy

y
= ke−βtdt

ln y = −k

β
e−βt = −αe−βt; y = e−αe−βt .

We see that the solution of differential equation

(22) is the Gompertz function σα,β(t) (18) [6]).

As shown in [28], equation (22) can be interpreted

as y′ = ksy, wherein s = s(t) is the nutrient

substrate used for the growth of the population;

one see that s is a decay exponential function in

the Gompertz model (a similar interpretation can

be found in [21]), [40]). For other interpretations

see [6]), [8], [20].

VI. CONCLUSION

In this paper we discuss several computational,

modelling and approximation issues related to two

familiar classes of sigmoid functions—the logis-

tic (Verhulst) and the Gompertz functions. Both

classes find numerous applications in various fields

of life sciences, ecology, medicine, artificial neural

networks, fuzzy set theory, etc.

bigskip

We study the uniform and Hausdorff approxima-

tion of the cut functions by logistic functions. We

demonstrate that the best uniform approximation

between a cut function and the respective logistic

function is an absolute constant not depending on

the (largest) slope k. On the other side we show

that the Hausdorff distance (H-distance) depends

on the slope k and tends to zero with k → ∞. We

also discuss the limiting case when the cut function

tends to the Heaviside step function in Hausdorff

sense, thereby extending a related previous result

[4].

The approximation of the cut function by a

family of squashing functions induced by the lo-

gistic function is also discussed. We propose a new

estimate for the H-distance between a cut function

and its best approximating squashing function.

Our estimate extends a known result stating that

the cut function can be approximated arbitrary

well by squashing functions [18]. Our estimate

is also extended to cover the limiting case of the

Heaviside step function.

Finally we study the approximation of the cut

and step functions by the family of Gompertz func-

tions. New estimates for the H-distance between a

cut function and its best approximating Gompertz

function are obtained.

REFERENCES

[1] A. Akanuma, Parameter Analysis of Gompertz Function
Growth Model in Clinical Tumors, European J. of Cancer
14 (1978) 681–688.

[2] G. Albano and V. Giono, On the First Exit Time Problem
for a Gompertz-type Tumor Growth, Lecture Notes in
Computer Science 5717 (2009) 113–120,
http://dx.doi.org/10.1007/978-3-642-04772-5 16

[3] R. Alt and S. Markov, Theoretical and Computational
Studies of some Bioreactor Models, Computers and Math-
ematics with Applications 64(3) (2012) 350–360,
http://dx.doi.org/10.1016/j.camwa.2012.02.046

[4] R. Anguelov and S. Markov, Hausdorff Continuous Inter-
val Functions and Approximations, LNCS (SCAN 2014
Proceedings), to appear.

[5] I. A. Basheer and M. Hajmeer, Artificial Neural Net-
works: Fundamentals, Computing, Design, and Applica-
tion, Journal of Microbiological Methods 43(1) (2000)
3–31, http://dx.doi.org/10.1016/S0167-7012(00)00201-3

[6] Z. Bajzer and S. Vuk-Pavlovic, New Dimensions in
Gompertz Growth, J. of Theoretical Medicine 2(4) (2000)
307–315, http://dx.doi.org/10.1080/10273660008833057

32 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WT

[7] D. E. Bentila, B. M. Osei, C. D. Ellingwood and J. P.
Hoffmann, Analysis of a Schnute Postulate-based Uni-
fied Growth Mode for Model Selection in Evolutionary
Computations, Biosystems 90(2) (2007) 467–474,
http://dx.doi.org/10.1016/j.biosystems.2006.11.006

[8] R. D. Berger, Comparison of the Gompertz and Logis-
tic Equation to Describe Plant Disease Progress, Phy-
topathology 71 (1981) 716–719,
http://dx.doi.org/10.1094/Phyto-71-716

[9] M. Carrillo and J. M. Gonzalez, A New Approach to
Modelling Sigmoidal Curves, Technological Forecasting
and Social Change 69(3) (2002) 233–241,
http://dx.doi.org/10.1016/S0040-1625(01)00150-0

[10] M. E. Cayre, G. Vignolob and O. Garroa, Modeling Lac-
tic Acid Bacteria Growth in Vacuum-packaged Cooked
Meat Emulsions Stored at Three Temperatures, Food
Microbiology 20(5) (2003) 561–566,
http://dx.doi.org/10.1016/S0740-0020(02)00154-5

[11] Y. Chalco-Cano, H. Roman-Flores and F. Gomida, A
New Type of Approximation for Fuzzy Intervals, Fuzzy
Sets and Systems 159(11) (2008) 1376–1383,
http://dx.doi.org/10.1016/j.fss.2007.12.025

[12] Z. Chen and F. Cao, The Approximation Operators with
Sigmoidal Functions, Computers & Mathematics with
Applications 58(4) (2009) 758–765,
http://dx.doi.org/10.1016/j.camwa.2009.05.001

[13] Z. Chen and F. Cao, The Construction and Approxi-
mation of a Class of Neural Networks Operators with
Ramp Functions, Journal of Computational Analysis and
Applications 14(1) (2012) 101–112.

[14] Z. Chen, F. Cao and J. Hu, Approximation by Network
Operators with Logistic Activation Functions, Applied
Mathematics and Computation 256 (2015) 565–571,
http://dx.doi.org/10.1016/j.amc.2015.01.049

[15] E. S. Chumerina, Choice of Optimal Strategy of Tumor
Chemotherapy in Gompertz Model, J. Comp. and Syst.
Sci. Int. 48(2) (2009) 325–331,
http://dx.doi.org/10.1134/S1064230709020154

[16] D. Costarelli and R. Spigler, Approximation Results
for Neural Network Operators Activated by Sigmoidal
Functions, Neural Networks 44 (2013) 101–106,
http://dx.doi.org/10.1016/j.neunet.2013.03.015

[17] D. Costarelli and R. Spigler, Constructive Approxi-
mation by Superposition of Sigmoidal Functions, Anal.
Theory Appl. 29(2) (2013) 169–196,
http://dx.doi.org/10.4208/ata.2013.v29.n2.8

[18] J. Dombi and Z. Gera, The Approximation of Piecewise
Linear Membership Functions and Lukasiewicz Opera-
tors, Fuzzy Sets and Systems 154(2) (2005) 275–286,
http://dx.doi.org/10.1016/j.fss.2005.02.016

[19] H. Enderling and M. A. J. Chaplain, Mathematical
Modeling of Tumor Growth and Treatment, Curr. Pharm.
Des. 20(30) (2014) 4934–4940,
http://dx.doi.org/10.2174/1381612819666131125150434

[20] R. I. Fletcher, A General Solution for the Complete
Richards Function, Mathematical Biosciences 27(3-4)

(1975) 349–360,
http://dx.doi.org/10.1016/0025-5564(75)90112-1

[21] J. France, J. Dijkstra and M. S. Dhanoa, Growth Func-
tions and Their Application in Animal Science, Annales
de Zootechnie 45(Suppl 1) (1996) 165–174.

[22] B. Gompertz, On the Nature of the Function Expressive
of the Law of Human Mortality, and on a New Mode of
Determining the Value of the Life Contingencies, Philos.
Trans. R. Soc. London 115 (1825) 513–585.

[23] J. Han and C. Morag, The Influence of the Sigmoid
Function Parameters on the Speed of Backpropagation
Learning, In: Mira, J., Sandoval, F. (Eds) From Natural
to Artificial Neural Computation 930 (1995) 195–201,
http://dx.doi.org/10.1007/3-540-59497-3 175

[24] F. Hausdorff, Set Theory (2 ed.), New York, Chelsea
Publ. (1962 [1957]) (Republished by AMS-Chelsea
2005), ISBN: 978–0–821–83835–8.

[25] M. Kodaka, Requirements for Generating Sigmoidal
Time-course Aggregation in Nucleation-dependent Poly-
merization Model, Biophys. Chem. 107(3) (2004) 243–
253, http://dx.doi.org/10.1016/j.bpc.2003.09.013

[26] M. Kodaka, Interpretation of Concentration-dependence
in Aggregation Kinetics, Biophys. Chem. 109(2) (2004)
325–332, http://dx.doi.org/10.1016/j.bpc.2003.12.003

[27] M. Koivula, M. Sevon-Aimonen, I. Stranden, K. Mati-
lainen, T. Serenius, K. Stalder and E. Mantysaari, Ge-
netic (Co)Variances and Breeding Value Estimation of
Gompertz Growth Curve Parameters in Finish Yorkshire
Boars, Gilts and Barrows, J. Anim. Breed. Genet. 125(3)
(2008) 168–175,
http://dx.doi.org/10.1111/j.1439-0388.2008.00726.x

[28] N. Kyurkchiev and S. Markov, Sigmoidal Functions:
Some Computational and Modelling Aspects, Biomath
Communications 1(2), (2014),
http://dx.doi.org/10.11145/j.bmc.2015.03.081

[29] N. Kyurkchiev and S. Markov, On the Hausdorff Dis-
tance Between the Heaviside Step Function and Verhulst
Logistic Function, J. Math. Chem., to appear.

[30] N. Kyurkchiev and S. Markov, Sigmoid Functions: Some
Approximation and Modelling Aspects. Some Moduli in
Programming Environment Mathematica, LAP (Lambert
Acad. Publ.) (2015), ISBN: 978–3–659–76045–7.

[31] T. P. Labuza and B. Fu, Growth Kinetics for Shelf-life
Prediction: Theory and Practice, Journal of Industrial
Microbiology 12(3–5) (1993) 309–323,
http://dx.doi.org/10.1007/BF01584208

[32] A. K. Laird, Dynamics of Tumor Growth, Br. J. Cancer
18(3) (1964) 490–502.

[33] D. Lin, Z. Shkedy, D. Yekutieli, D. Amaratunda and
L. Bijnens (Eds.), Modeling Dose Responce Microarray
Data in Early Drug Development Experiments Using R,
Springer (2012), ISBN: 978–3–642–24006–5.

[34] S. Markov, Cell Growth Models Using Reaction
Schemes: Batch Cultivation, Biomath 2(2) (2013),
1312301,
http://dx.doi.org/10.11145/j.biomath.2013.12.301

[35] A. G. McKendrick and M. Kesava Pai, The Rate of Mul-

33On the Approximation of the Cut and Step Functions by Logistic and Gompertz Functions

_______________________ WORLD TECHNOLOGIES _______________________



WT

tiplication of Micro-organisms: A Mathematical Study,
Proc. of the Royal Society of Edinburgh 31 (1912) 649–
653, http://dx.doi.org/10.1017/S0370164600025426

[36] N. Radchenkova, M. Kambourova, S. Vassilev, R. Alt
and S. Markov, On the Mathematical Modelling of EPS
Production by a Thermophilic Bacterium, Biomath 3(1)
(2014), 1407121,
http://dx.doi.org/10.11145/j.biomath.2014.07.121

[37] F. J. Richards, A Flexible Growth Function for Empiri-
cal Use, J. Exp. Bot. 10 (1959) 290–300,
http://dx.doi.org/10.1093/jxb/10.2.290

[38] R. Rickles and A. Scheuerlein, Biological Imlications
of the Weibull and Gompertz Models of Aging, J. of
Gerontology: Biologica Sciences 57(2) (2002) B69–B76,
http://dx.doi.org/10.1093/gerona/57.2.B69

[39] A. Sas, H. Snieder and J. Korf, Gompertz’ Survivorship
Law as an Intrinsic Principle of Aging, Medical Hypothe-
ses 78(5) (2012) 659–663,
http://dx.doi.org/10.1016/j.mehy.2012.02.004

[40] M. A. Savageau, Allometric Morphogenesis of Complex
Systems: Derivation of the Basic Equations from the First
Principles, Proc. of the National Academy of Sci. USA
76(12) (1979) 6023–6025.

[41] B. Sendov, Hausdorff Approximations, Kluwer (1990),
ISBN: 978–94–010–6787–4, e-ISBN: 978–94–009–
0673–0, http://dx.doi.org/10.1007/978-94-009-0673-0

[42] C. J. Stannard, A. P. Williams and P. A. Gibbs, Tem-
perature/growth Relationship for Psychrotrophic Food-
spoilage Bacteria, Food Microbiol. 2(2) (1985) 115–122,
http://dx.doi.org/10.1016/S0740-0020(85)80004-6

[43] J. H. Van der Walt, The Linear Space of Hausdorff
Continuous Interval Functions, Biomath 2(2) (2013),
1311261,
http://dx.doi.org/10.11145/j.biomath.2013.11.261

[44] P.-F. Verhulst, Notice Sur la Loi Que la Population
Poursuit dans Son Accroissement, Correspondance Math-
ematique et Physique 10 (1838) 113–121.

[45] P.-F. Verhulst, Recherches Mathematiques sur la Loi
D’accroissement de la Population (Mathematical Re-
searches into the Law of Population Growth Increase),
Nouveaux Memoires de l’Academie Royale des Sciences
et Belles-Lettres de Bruxelles 18 (1845) 1–42.

[46] P.-F. Verhulst, Deuxieme Memoire sur la Loi
D’accroissement de la Population, Memoires de
l’Academie Royale des Sciences, des Lettres et des
Beaux-Arts de Belgique 20 (1847) 1–32.

[47] D. L. Wilson, The Analysis of Survival (Mortality) Data:
Fitting Gompertz, Weibull, and Logistic Functions, Mech.
Ageing Devel. 74(1–2) (1994) 15–33,
http://dx.doi.org/10.1016/0047-6374(94)90095-7

[48] C. P. Winsor, The Gompertz Curve as a Growth Curve,
Proceedings of the National Academy of Sciences 18(1)
(1932) 1–8.

[49] M. H. Zwietering, I. Jongenburger, F. M. Rombouts and
K. van′t Riet, Modeling of the Bacterial Growth Curve,
Appl. Envir. Microbiol. 56(6) (1990) 1875–1881.

[50] M. H. Zwietering, H. G. Cuppers, J. C. de Wit and

K. van′t Riet, Evaluation of Data Transformations and
Validation of a Model for the Effect of Temperature on
Bacterial Growth, Appl. Environ. Microbiol. 60(1) (1994)
195–203.

34 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WTFig. 7. Module in programming environment MATHEMATICA.

Fig. 8. The test provided on our control example.

APPENDIX1.

The Module “Computation of the distance d and visualization of the cut function cΔ and squashing

function s
(β)
Δ ” in CAS MATHEMATICA.
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Abstract—Biological control is a sustainable agri-
cultural practice that was introduced to improve
crop yields and has been highlighted among the var-
ious pest control techniques. However, real mathe-
matical models that describe biological control mod-
els can have error measurements or even incorporate
lack of information. In these cases, intervals may be
feasible for indicating the lack of information or
even measurement errors. Therefore, we consider
interval mathematical models to represent the bio-
logical control problem. Specifically, in the present
paper, we illustrate the solution of a discrete-time
interval optimal control problem for a practical ap-
plication in biological control. To solve the problem,
we use single-level constrained interval arithmetic
[9] and the dynamic programming technique [3]

along with the idea proposed in [23] for the solution
of the interval problem.

Keywords-Interval optimal control problem; inter-
val mathematical models; single-level constrained in-
terval arithmetic; dynamic programming; biological
control.

I. INTRODUCTION

Sugarcane culture plays an important role in the

Brazilian economy. It is estimated that the country

has more than 8 million hectares of cultivated area

[1] and that sugarcane is responsible for over 4.5

million jobs [38]. In addition to the production

of sugar, ethanol and various other byproducts, it

is also used to produce electricity with the use
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of biomass (bagasse and straw). Thus, sustain-

able management of this culture is fundamental.

Among the various types of management that can

be implemented (control of pests and weeds, soil

handling, etc.) and the various methods of manu-

facture (biological control, use of insecticide and

herbicide, manual and mechanical control, etc.),

pest control through biological control stands out.

Biological control is sustainable because it does

not affect the environment. For the culture of

sugarcane, the control involves the caterpillar and

wasp. The caterpillar (Diatraea Saccharalis) is an

insect that causes damage to the crop, and its

natural predator, Cotesia Flavipes, is a wasp that

deposits its eggs on the caterpillar and inhibits

the development of the caterpillar. Hence, the

caterpillar dies without completing its life cycle

and without causing economic loss to the crop.

The spread of the caterpillar can cause damage

to the crop such as weight loss and reduction in

germination, leading to the death of germinating

plants, which directly reflects on the costs of

production. Thus, the biological control of pests is

a good alternative to the feasibility of such crops

for the country. In addition, the biological control

process is part of the integrated crop protection

[11] that is a benchmark for sustainable farming

practices.

Control theory study began in the USA in the

1930s with studies of problems in electrical en-

gineering and mechanical engineering [8]. In the

1950s, with optimization methods developed by

Bellmann in 1957 (see [2]) and Pontryagin in 1958

(see [29], [30]), modern control theory or optimal

control theory was born. Such theory brought

advances in several areas such as Agriculture,

Biology, Economics, Engineering and Medicine.

In Agriculture or Biology, deterministic optimal

control problems are widely studied, and some

biomathematical models illustrating deterministic

models can be found in [7], [15], [16], [19],

[37]. In these studies, conventional models were

assumed with fixed coefficients.

For problems with uncertain parameters, the op-

timal control problem usually utilizes stochasticity

[4], [16] or, more recently, fuzzy set theory [12],

[10], [28]. In the two cases, the coefficients are

viewed as random variables or as fuzzy sets, and

it is assumed that their probability distributions or

membership functions, respectively, are known.

In biological problems, uncertainty arises fre-

quently because it is inherent to the determination

of biological data; for example, uncertainty arises

due to measurement errors, inaccuracies in the

equipment, climatic factors, and lack of speci-

fication, among many others. Thus, we propose

interval uncertainty to describe the uncertainty in

obtaining data in biological problems. We can

represent a parameter of the model, such as the

mortality rate of predators, as an interval. This is

relevant because we can model an environment

with several variations in the mortality rates of

predators and not have to consider a unique rate

for all the predators, especially if this information

has been obtained imprecisely.

Optimal control problems involving uncertain

systems are described in [6], [13], [14], [39].

However, in these approaches, the functional is a

real number and thus differs from the approach

proposed in this paper. Additionally, the problem

discussed here does not include state feedback.

References on control problems that present inter-

val uncertainty but still differ from that proposed

in this paper can be found in [20], [17], [32].

Thus, in this work, we consider a new kind of

problem called the interval optimal control prob-
lem. The interval arithmetic used in this approach

is described in [9], [21], [22] and is different from

the standard interval arithmetic proposed in [24].

To solve the interval optimal control problem, we

choose single-level constrained interval arithmetic

[9] because it eliminates certain problems related

to other types of interval arithmetic, such as the

existence of the additive inverse or the distribu-

tive law property. Single-level constrained interval

arithmetic also has properties closer to the space

of real numbers. Therefore, we study the discrete

time interval optimal control problem with the

interval initial condition or interval parameters in

the dynamic equation.
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The paper is arranged as follows. Section II

presents the application in Biology, and some

biological aspects will be demonstrated. We also

present the deterministic and interval optimal con-

trol problem. In Section III, we present the solu-

tions of the discrete time interval optimal control

problems previously proposed. The discussion of

the results is provided in Section IV.

II. THE BIOMATHEMATICAL MODEL

The biological situation studied is a problem

encountered in sugarcane culture. According to

Silva and Bergamasco [35], the environmental

management of sugarcane culture requires perfor-

mance prediction in production and environmental

risk at various levels of control in sugarcane pro-

duction because manipulation of the soil, planting

depth and density, pest and diseases, among other

factors, and biological control have proven to be

effective in operational management of the culture.

Thus, the problem studied corresponds to a

model of competition between the wasp (Cotesia

Flavipes) and the caterpillar (Diatraea Saccharalis)

in terms of sugarcane, represented using the Lotka-

Volterra two-species model.

Tusset and Rafikov in [37] ran a simulation of

the dynamics of the system without application

control and showed that the system begins to

stabilize at 350 days and that during this period,

economic losses are experienced. Thus, we need

to apply control in previous periods, and the ap-

plication of control corresponds to the introduction

of wasps in sugarcane culture.

Tusset and Rafikov [37] solve the continuous

deterministic optimal control problem using the

Riccati equation. Campos [7] also solved the de-

terministic and discrete problem using dynamic

programming, and the results are similar for the

two approaches.

The goal here is to present the interval op-

timal control problem and solve the biological

control problem encountered in sugarcane culture.

We analyze the biological situation and describe

the biomathematical model. According to Tusset

and Rafikov [37], the Lotka-Volterra two-species

model used in the problem of sugarcane culture is

given by {
ẋ = x (a − γ x − c y)
ẏ = y (−d+ r x) + u∗ + u

, (1)

where x(t) is the number of preys and y(t) is the

number of predators for t ≥ 0. Here, u∗ is the

control that carries the system to the desired equi-

librium point, and u is the control that stabilizes

the system at this point.

The dynamic model (1) is a Lotka-Volterra

model for the case of the caterpillar that is the

sugarcane parasitoid, where the coefficient a repre-

sents the interspecific growth of the preys, the co-

efficient d represents the mortality of the predators,

c represents the capture rate, r is the maximum

rate of growth of the predator population, and γ
is the self-inhibition coefficient of growth of the

preys due to restriction of food.

According to [37], the parameter a is calculated

assuming the absence of predators in (1). Then, we

obtain

ẋ = x (a − γ x), (2)

where we suppose that γ = a/k. Solving the

differential equation (2) and isolating the value of

the parameter a, we obtain

a = −1

t

[
ln

(
k−x
x

k−x0

x0

)]
.

Assuming k = 25000 and considering that

the caterpillar lives on average 70 days and after

mating lays on average 300 eggs (see [27]), we

find that t = 70 days with x(70) = 300 caterpillars

per hectare. Assuming an initial number of preys

equal to x0 = 2 caterpillars per hectare, it follows

that the interspecific growth of the caterpillar is

a = 0.0716 caterpillars per hectare per day.

The calculation of the other parameters of the

dynamic equation of problem (1) can be found in

[37], following a similar analysis.

Thus, in this work, we obtain the numerical

coefficients a, γ, c, d and r in [37] as well as the

expression for the functional of the optimal control
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problem. The problem proposed in [37] with a

quadratic objective function subject to nonlinear

restrictions is given by

minC =
1

2

∫ tf

0
8(x−x∗)2+0.2841(y−y∗)2+u2dt

subject to

{
ẋ = x (0.0716 − 0.0000029x − 0.0000464 y)
ẏ = y (−1 + 0.000520235x) + u∗ + u

,

(3)

where tf is the final time, the initial conditions are

x0 = 5000 and y0 = 1500, and the final conditions

are the desired equilibrium point (x∗, y∗). From

a biological point of view, Segato et al. [33]

show that when the number of preys (Diatraea

Saccharalis) reaches 5000 caterpillars per hectare,

application of control u corresponds to the release

of predators (Cotesia Flavipes).

The calculations for the numerical coefficients

of the states x and y in the functional of problem

(3) are extensive and can be found in [37]; such

calculations are based on [34], [31]. Furthermore,

Tusset and Rafikov consider in [37] a positive

semidefinite and symmetric quadratic functional in

order to take the system to the desired equilibrium

point the fastest way possible when considering

only small oscillations in the path of the system.

This is important for the biological control prob-

lem studied.

To solve problem (3), Tusset and Rafikov in

[37] considered a problem with a linear dynamic

equation. The linearization of the model is feasible

because we suppose that the linear and nonlin-

ear dynamic system behaviors are qualitatively

equivalent in the vicinity of the equilibrium point

(see [25], Grobman-Hartman Theorem). Thus, the

dynamic equation of problem (3) is linearized (see

[25]) assuming that the initial conditions are near

the equilibrium point (2000, 1418.10). In a real

system, this is possible when we apply a value

several times that of the control.

According to Botelho and Macedo [5] for the

sugarcane crop, greater than or equal to 2500
caterpillars per hectare causes damage to the

culture. We fix x∗ = 2000 (a value that does

not cause damage) and hence obtain the value

y∗ using the equation f(x∗, y∗) = 0, where

f(x, y) = 0.0716 − 0.0000029x − 0.0000464 y.

Therefore, the desired equilibrium point for the

prey and the predator is represented by (x∗, y∗) =
(2000, 1418.10) and used in the final condition of

the problem.

Finally, the optimal control problem with a

quadratic objective function subject to linear re-

strictions proposed in [37] is given by

minC =
1

2

∫ tf

0
8 z21 + 0.2841 z22 + u2 dt

subject to

ż =

[
−0.0058 −0.0928
0.7386 0.0405

]
z +

[
0
1

]
u, (4)

with initial conditions z1 0 = 3000 and z2 0 =
80.17 due to translation to the equilibrium point.

Note that z = (z1, z2)
T = (x−x∗, y−y∗)T , where

z is the translation of the point of equilibrium

(x∗, y∗) to the origin and T denotes the transposed

vector. In particular, the change in coordinates to

problem (4) is performed assuming that we are

close to the fixed point; furthermore, the change

in coordinates facilitates the computational imple-

mentation.

To find the solution of the problem of biological

control of the sugarcane caterpillar (4) with a

discrete dynamic programming method, Campos

[7] discretized problem (4).

The discrete model (and match) proposed in [7]

is

minC =
h

2

N∑
k=0

8 z21 k + 0.284 z22 k + u2k

subject to

zk+1 =

[
0.960 −0.093
0.743 1.006

]
zk +

[
−0.047
1.009

]
uk,

(5)
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where zk = (z1 k, z2 k)
T and the initial conditions

are z1 0 = 3000 and z2 0 = 80.17. Here, k denotes

the discrete iterations in days for the problem. Fur-

thermore, for problem (5), the simulation period

equals N = 18 days, and hence, tf = hN = 18
days.

Campos in [7] used the zero-order hold method

(function c2d in MATLAB 7.4) to discretize the

dynamic equation of problem (4). Thus, the zero-

order hold method provides an exact match be-

tween the continuous dynamic system of problem

(4) and the discrete dynamic system of problem

(5). For the biological analysis of the optimal

control problem, we are assuming that the control

decision uk, introduction of predators, occurs only

once a day.

The discretization of the functional of problem

(4) introduces an error because it is approximated

using a numerical quadrature. However, the error

in the discretization of the functional does not

change the behavior of the dynamic equations of

problems (4) and (5). Furthermore, the weight

assigned to the coefficient of control uk in the

functional of problem (5) can be modified and

adapted according to the costs involved in the

operations.

Next, we illustrate the formulation of interval

control problems for two distinct situations. The

first involves the problem with the interval initial

condition. The second formulation considers an

interval coefficient in the dynamic equation.

A. Uncertainty in the Initial Condition

Suppose that the model (5) uses the in-

terval initial condition because we consider

there to be inaccurate information in the

data. We use an interval initial condition of

Z1 0 = [2970, 3030], which represents an error of

2%. The second initial condition used is Z2 0 =
80.17 and represents a degenerate interval.

Therefore, the problem with the interval initial

condition is described below. It is given by

minC =
h

2
⊗

N∑
k=0

8 ⊗Z2
1 k ⊕ 0.284 ⊗Z2

2 k ⊕U2
k

subject to

{
Z1k+1=0.960⊗Z1k�0.093⊗Z2k � 0.047⊗Uk

Z2k+1=0.743⊗Z1k⊕1.006⊗Z2k ⊕ 1.009⊗Uk

(6)

where Z1 k, Z2 k, Uk and C are intervals and

the initial conditions are Z1 0 = [2970, 3030]
and Z2 0 = 80.17. For the interval problem, the

symbols ⊕,�,⊗ and � represent the sum, sub-

traction, multiplication and division of intervals,

respectively, according to single-level constrained

interval arithmetic. This model is presented in [7];

however, here it is presented as an interval prob-

lem. In particular, the initial condition is also an

interval. Problem (6) is called the interval optimal

control problem. Furthermore, we emphasize that

the functional is an interval and that its optimality

is given by the order relation of single-level con-

strained interval arithmetic (see [18]). According

to Leal [18], given two intervals A = [a, ā] and

B = [b, b̄], the order relation between them is

given by

A ≤SL B iff A(λ) ≤ B(λ) for all λ ∈ [0, 1],

where ≤SL denotes the inequality between

intervals according to single-level constrained

interval arithmetic and A(λ) and B(λ) are

the convex constraint functions associated

with A and B, respectively. Note that

A(λ) = (1 − λ) a+ λ ā, 0 ≤ λ ≤ 1.

Initially, the interval optimal control problem

(6) can be transformed into a real classic problem

using single-level constrained interval arithmetic.

Thus, the interval optimal control problem (6),

rewritten as the single-level constrained interval

arithmetic [9], is given by

minC =
h

2

N∑
k=0

8Z2
1k(λ) + 0.284Z2

2k(λ) + U2
k (λ)

subject to

Zk+1(λ)=

[
0.960 −0.093
0.743 1.006

]
Zk(λ)+

[
−0.047
1.009

]
Uk(λ),

(7)
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where Zk(λ) = (Z1 k(λ), Z2 k(λ))
T and the initial

conditions areZ1 0(λ) = 2970+60λ and Z2 0(λ) =
80.17, 0 ≤ λ ≤ 1. Here, Zk(λ) and Uk(λ) are

the convex constraint functions associated with

intervals Zk and Uk, respectively. Furthermore,

we also suppose Zk(λ) and Uk(λ) to have the

appropriate dimensions.

Now, problem (7) is a classic optimal control

problem for all fixed λ ∈ [0, 1]. Therefore, we use

dynamic programming as our solution technique

for the discrete time optimal control problem. The

advantage of dynamic programming is that it deter-

mines the optimal solution of a multistage problem

by breaking it into stages, where each stage is a

subproblem. Solving a subproblem is a simpler

task in terms of calculation than dealing with all

the stages simultaneously. Moreover, a dynamic

programming model is a recursive equation that

links the different stages of the problem, ensuring

that the optimal solution at each stage is also

optimal for the entire problem (see [36]). Details

on dynamic programming can be found in [3].

Finally, we solve problem (7) for all fixed λ ∈
[0, 1], and we present the solution in the interval

space in accordance with the ideas proposed in [9]

and [23], i.e., we return the solution to the interval

space using the minimum and maximum of the

values obtained for each stage of the problem,

provided that the minimum and maximum exist.

B. Uncertainty in the Dynamic Equation

For the interval problem with uncertainty in

the dynamic equation, we consider again the

biomathematical model (5) described previously.

Suppose that, due to some biological factors, the

first parameter of the first dynamic equation is an

interval. Specifically, consider that due to some

inaccuracy in obtaining the data for the model,

the interval optimal control problem represents

the first parameter of the dynamic equation as an

interval, that is, the value 0.960 is substituted by

the interval [0.760, 1.160]. This interval represents

41.67% of the error in relation to the deterministic

value.

Therefore, the interval optimal control problem

is

minC =
h

2
⊗

N∑
k=0

8 ⊗ Z2
1 k ⊕ 0.284 ⊗ Z2

2 k ⊕ U2
k

subject to

{
Z1k+1=[0.760, 1.160]⊗Z1k�0.093⊗Z2k�0.047⊗Uk

Z2k+1=0.743⊗Z1 k⊕1.006⊗Z2 k⊕1.009⊗Uk

(8)

where Z1 k, Z2 k, Uk and C are intervals and

the initial conditions are Z1 0 = 3000 and Z2 0 =
80.17 (degenerate intervals) due to translation of

the equilibrium point.

Similar to Subsection II-A, we rewrite the inter-

val problem according to single-level constrained

interval arithmetic [9]. We then solve the cor-

responding problem using dynamic programming

[3]. According to the methodology proposed in

[23] and [9], we find the solution interval.

The numerical solution to the problems (6) and

(8) will be presented in the next section.

III. NUMERICAL ANALYSIS AND SIMULATIONS

The implementation and adaptation of the dy-

namic programming algorithm to solve problems

(6) and (8) were performed using MATLAB 7.4.

Furthermore, problems (6) and (8) were solved

using a microcomputer with a Dual-Core AMD

E 300 processor and 3 GB of memory. For the

interval problems, we chose N = 18 days. The

computational time to solve problem (6) was ap-

proximately 4.5 minutes, and the computational

time required to solve problem (8) was approxi-

mately 26 minutes.

The interval cost found in the solution is called

the optimal interval cost. The interval state ob-

tained is called the optimal interval state, and

the interval control obtained for each iteration in

the interval optimal control problem is called the

optimal interval control.

The following figures represent the numerical

results of problems (6) and (8). The deterministic

and discrete solutions are also introduced in the

figures. In the solutions presented, the translation

of the solution has been reversed. In addition, the

points representing the deterministic and interval
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Fig. 1. Preys for problem (6).

solutions to the problem are connected by line

segments for facilitating the visualization of the

temporal evolution. The solutions given by the

minimum and maximum values correspond to the

optimal interval solutions.

Graphical solutions are provided for the sit-

uations described in problem (6). Figure 1 il-

lustrates the number of preys for the problem

with uncertainty in the initial condition. Figure 2

illustrates the number of predators for the same

problem. The predators are introduced in Figure

3, and the negative values that appear in the figure

correspond to the number of predators that should

be removed using some sustainable agricultural

practice.

The optimal cost of the deterministic problem is

1.3716× 108. The optimal interval cost of problem

(6) is [1.3443 × 108, 1.3992 × 108]. Thus, the

interval uncertainty inserted in the initial condi-

tion of the problem results in a variation in the

cost of approximately 4.00% compared with the

deterministic solution.

The graphical solution to problem (8) is pre-

sented below. Figure 4 illustrates the number of

preys for this problem. Figure 5 illustrates the

number of predators for (8). The values of the

control variable are presented in Figure 6.

The optimal interval cost of problem (8) is

Fig. 2. Predators for problem (6).

Fig. 3. Introduction of predators for problem (6).

[7.8523 × 107, 2.7181 × 108]. The uncertainty

introduced into the dynamic equation generated a

variation of approximately 140.92% in the func-

tional in relation to the deterministic solution.

Remark 3.1: The solutions of the interval prob-

lems (6) and (8) converge to the desired equilib-

rium point. The interval solutions converge to the

desired equilibrium point if the distance between

them tends to zero according to the definition of

the distance between intervals given by [9]. Thus,

the approximate interval X to x∗ means that the
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Fig. 4. Preys for problem (8).

Fig. 5. Predators for problem (8).

distance between them, given by max
0≤λ≤1

|X(λ)−x∗|
where X(λ) is a convex constraint function asso-

ciated with X , tends to zero. Further, analyzing

the interval problems (6) and (8) according to the

associated convex constraint functions (see, for

example, problem (7)), we have that the corre-

sponding optimal control problems are classical

optimal control problems for all fixed λ ∈ [0, 1]
and satisfy the stability criterion (see [26], [3]) for

optimal control problems with quadratic functional

and linear constraints.

Fig. 6. Introduction of predators for problem (8).

Remark 3.2: Other interval optimal control

problems can be investigated, such as the prob-

lem with interval initial conditions and interval

parameters in the interval dynamic equation. Thus,

considering the interval optimal control problem

given by

minC =
h

2
⊗

N∑
k=0

8 ⊗ Z2
1 k ⊕ 0.284 ⊗ Z2

2 k ⊕ U2
k

subject to

{
Z1k+1=[0.760, 1.160]⊗Z1k�0.093⊗Z2k�0.047⊗Uk

Z2k+1 = 0.743 ⊗ Z1 k ⊕ 1.006 ⊗ Z2 k ⊕ 1.009 ⊗ Uk

(9)

where Z1 k, Z2 k, Uk and C are intervals and the

interval initial conditions are Z1 0 = [2970, 3030]
and Z2 0 = 80.17, we have that the optimal interval

cost is given by [7.6959 × 107, 2.7729 × 108].
Furthermore, the solution of the interval problem

(9) shows basically the same qualitative behavior

as that of the solution of the interval problem (8).

IV. DISCUSSION OF THE RESULTS

In the problems studied, the initial condition

or the dynamic equation has intervals because

the data are generally inaccurate and may be

represented by interval uncertainty. Consequently,
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this implies a variation in the functional, state

and control at each iteration (cost, state and con-

trol represented by intervals). The decision maker

should consider whether it is feasible to run the

model for the values obtained in these intervals.

Therefore, to analyze if the number of preys

or predators achieves the minimum or maximum

values is an important question in the decision-

making process of a manager because it can lead

to financial loss and environmental damage. Fur-

thermore, the analysis of interval costs is also very

important for the company.

We now emphasize some points from the

solutions obtained previously.

A. Analysis of the interval problem (6)

In the solution presented for the interval prob-

lem (6), we found consistency with the determin-

istic results as can be seen from Figures 1, 2 and 3.

The behaviors of the interval state variable and in-

terval control variable are also quite regular and in

accordance with the variation of the deterministic

solution. The extremes of the intervals of the state

interval solutions X and Y approached the desired

value, as was observed with the interval control

U . Therefore, the decision maker obtains values

close to those found for the deterministic solution;

associated with this, we observe only a small

variation in the functional. Thus, an error caused

by lack of information in obtaining the initial

condition generated small variations in cost and

did not result in drastic changes for the decision

maker.

B. Analysis of the interval problem (8)

For the interval problem (8), the behaviors of

the interval state variable X and interval control

variable U followed the same trajectory as that of

the deterministic solution after the thirteenth day.

Thus, for the state variable X (preys) and with the

introduction of predators U , there was no large

variation in comparison with the deterministic

solution after the thirteenth day. However, in the

initial periods, the introduction of predators U pre-

sented a large variation, with direct implications

for agricultural practice of pest control.

We emphasize the large variation of the interval

state variable Y , which represents the variation of

the predators (Figure 5). For the third period, we

obtained a variation of 5.1270× 103 up to 1.4565×
104 corresponding to the Y optimal interval state

given by the interval [5.1270× 103, 1.4565× 104].
For this variable, we obtained an approximation

of the extremes of the interval, which represents

the interval solution, to the deterministic solution

after the fifteenth day. Furthermore, the problem

presents a large variation in the optimal interval

cost.

Finally, we can conclude that the facts described

above will certainly influence the company’s deci-

sion making.

C. Conclusion

In Section III, we perceive that the optimal

interval state X was approximately 2000 in prob-

lems (6) and (8). The optimal interval state Y
(predators) also approximated the desired value.

The optimal interval control tends to the value of

16 wasps per day for the two situations.

These values approximated the results presented

in [5]. Botelho and Macedo in [5] show that

the application of control in the population of

caterpillars in the State of São Paulo - Brazil

utilizing the parasitoid Cotesia Flavipes stabilized

the number of caterpillars to x = 1900 per hectare.

The number of wasps per hectare stabilized to

y = 1423 with the average rate of introduction

of 16.4 wasps per day.

Thus, considering the deterministic or interval

problem, the values that represent the solution to

the problem are near the desired values and in

accordance with the actual situation practiced in

the State of São Paulo.

For the implementation of biological control

in practice, the simulation results show us that

we should introduce a daily number of predators

(Cotesia Flavipes) in the tillage, and this number

should be contained in the interval solution. We

remark that inserting large numbers of predators

does not necessarily guarantee a higher cost com-

pared to the costs that are contained in the optimal

interval cost and does not necessarily guarantee
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a control of the infestation in a shorter time,

although this is a likely outcome for both interval

problems studied. We only know that independent

of the number of predators inserted in tillage, and

because this number of predators is contained in

the interval solution, we can control the infestation

with a cost contained in the optimal interval cost

state and control contained in the optimal interval

state and optimal interval control, respectively.

Furthermore, the daily number of predators in-

serted in tillage corresponds to the difference, in

absolute value, between the number of predators

inserted the previous day and the number that will

be inserted the day after.
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matemática, 22: 1–16, 2012.

[20] B. Li, R. Chiong and M. Lin, A two-layer optimization
framework for UAV path planning with interval uncer-
tainties, Computational Intelligence in Production and
Logistics Systems, 120–127, 2014.

[21] W. A. Lodwick, Constrained interval arithmetic, CCM
Report 138, 1999.
http://dx.doi.org/10.1109/CIPLS.2014.7007170

[22] W. A. Lodwick, Interval and fuzzy analysis: an unified
approach, In: Advances in Imagining and Electronic
Physics, Academic Press, 148: 75–192, 2007.

45Biological control of sugarcane caterpillar (Diatraea saccharalis) using interval mathematical models

_______________________ WORLD TECHNOLOGIES _______________________



WT

[23] W. A. Lodwick and O. A. Jenkins, Constrained interval
and interval spaces, Soft Computing, 17: 1393–1402,
2013. http://dx.doi.org/10.1007/s00500-013-1006-x

[24] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduc-
tion to interval analysis, Philadelphia: SIAM - Society
for Industrial and Applied Mathematics, 2009.

[25] L. H. Monteiro, Sistemas dinâmicos, São Paulo: Editora
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dos e funcional quadrático, In: Anais do 3◦ Congresso
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Abstract—Many bacteria have developed a possi-
bility to recognise aspects of their environment or to
communicate with each other by chemical signals.
The so-called Quorum sensing (QS) is a special case
of this kind of communication. Such an extracellular
signalling via small diffusible compounds (called
autoinducers) is known for many bacterial species,
including pathogenic and beneficial bacteria. Using
this mechanism allows them to regulate their be-
haviour, e.g. virulence. We will focus on the typical
QS system of Gram negative bacteria of the so-called
lux type, based on a gene regulatory system with a
positive feedback loop.
There is increasing evidence that autoinducer sys-
tems themselves are controlled by various factors,
often reflecting the cells’ nutrient or stress state.
We model and analyse three possible interaction
patterns. Typical aspects are e.g. the range of
bistability, the activation threshold and the long
term behaviour. Additionally, we aim towards un-
derstanding the differences with respect to the bio-

logical outcomes and estimating potential ecological
or evolutionary consequences, respectively.

Keywords-Quorum Sensing, ODE system, bifurca-
tions, nutrients, qualitative behaviour

I. INTRODUCTION

Extracellular signalling via small diffusible

compounds (autoinducers) is known for an in-

creasing number of bacterial species, including

pathogenic and human health promoting bacteria.

Briefly, bacteria release autoinducers and simulta-

neously regulate target gene expression dependent

on the environmental autoinducer concentration.

Regulated behaviour often includes critical life

style switches, e.g. from non-virulent to virulent.

Thus mechanistic understanding of autoinducer

regulation and its ecological significance is of

high relevance for the development of treatment

strategies. Autoinducer regulation was originally

5
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assumed to be a strategy enabling coordinated

responses of whole bacteria populations dependent

on the cell density (Quorum sensing) [15]. The

later detected influence of other aspects such as

mass transfer properties of the environment and

cell distribution led to the alternative concept of

diffusion sensing (assuming that the mass trans-

fer properties of the environment around a cell

- including diffusion conditions - are estimated

by autoinducers) and of the unifying efficiency

sensing [31, 19]. The autoinducer mechanism was

first described in the gram-negative Vibrio fischeri,
which possesses an autoinducer system of lux-type

with an AHL (acylhomoserine lactone) acting as

signal. The signal is produced by the synthase

LuxI. It binds to a receptor molecule (LuxR).

Dimers of the AHL-LuxR complex bind to the

lux box in the lux operon, where the autoinducer

synthase (LuxI) and luminescence genes are up-

regulated (Fig. 1), but also to other target genes

of the regulon [15]. This AHL system, including

the positive feedback loop, represents an archety-

pal example for the architecture of autoinducer

mediated gene regulation of many gram negative

bacteria. Autoinducer systems in other bacteria

often follow similar design principles, although

details may vary.

There is increasing evidence that autoinducer sys-

tems themselves are controlled by various factors,

often reflecting the cells’ nutrient or stress state

[12, 27]. Recently it has been suggested that such

controls allow for integrating the demand of the

cells for the regulated behaviour into the signal

strength, generating a kind of hybrid push/pull

control [20]. Here, “demand” reflects the strength

of the potential benefit a group of cells could

have from this behaviour under the current en-

vironmental conditions. For example, the demand

for the release of an exoprotease might be low

as long as available essential amino acids abound

in the environment, but increase when the amino

acids deplete. Integration of the demand into signal

strength can be realised by tuning Quorum sensing

dependent on the environmental conditions. The

factors have been shown to interfere with the

autoinducer regulation pathway in various ways.

The reasons for this variety remain largely unclear.

We hypothesise that different ecological and/or

evolutionary impacts emerge. A number of fine-

tuning strategies with respect to autoinducer sys-

tems are realised or at least possible, including

e.g. degradation of autoinducers, control of the

availability or activity of autoinducers, control of

the activity of autoinducer synthases or receptors,

or a combination of these. The existence of mul-

tiple regulation systems within the same species,

controlled by different environmental or cellular

factors, respectively, has been reported (e.g. [27]).

In this study, we focus on three basic interaction

principles affecting the signal synthase and recep-

tor by control of production and degradation:

1) Regulation of the LuxR-type signal receptor

(termed LuxR)

2) Regulation of the LuxI-type signal synthase

(termed LuxI)

3) Regulation of LuxI and LuxR

Different scenarios are analysed by mathematical

modelling. Our aim is to understand the differ-

ences with respect to resulting regulation dynamics

and the reached equilibria, and to estimate po-

tential ecological and evolutionary consequences,

respectively. Relevant aspects are the range of

bistability, the activation threshold and long term

behaviour. From a mathematical point of view,

bifurcation analysis can help to answer these

questions. We mainly study single effects on sin-

gle cells using deterministic models; nevertheless

combinations of effects are also possible.

However, small numbers of cellular molecules in

the regulatory system or spatial inhomogeneity of

environmental factors controlling the regulatory

system may cause stochastic differences between

cells. We therefore consider shortly the potential

relevance of stochasticity in the regulation systems

on a small population. Remark that we neglect

any spatial structure itself, as our goal here is to

understand the basic principles of the regulation

system and its qualitative behaviour. For the same

reason, but also due to the differences between

species or even strains and the general lack of
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Fig. 1: Scheme of the lux-type Quorum sensing

system with potential influences of regulators

available experimentally derived quantitative data,

we do not emphasize on real parameter values,

which are realised in a specific species.

The paper is organised as follows: We start in

section II by introducing the basic model for

Quorum sensing of LuxI-LuxR type and explain

the influences by nutrient-governed regulators. To

focus on the signal dynamics, we assume that

all other processes not involving AHL are fast

and thus in equilibrium, including concentration

of the regulators of Quorum sensing ([28]). The

qualitative behaviour of these modified systems

is examined in section III, e.g. by considering

bifurcation diagrams. Some stochastic influences

caused possibly by small numbers of molecules

are simulated in section IV. As an example we

consider coupled influences of different regulators

in the stochastic case

II. THE BASIC MATHEMATICAL MODEL AND ITS

MODIFICATIONS

In order to focus on the basic qualitative be-

haviour of our system we neglect any spatial struc-

ture and assume a homogeneous intracellular dis-

tribution of all involved regulators and substances.

Also in the extracellular space, spatial structure

is neglected, which is a reasonable assumption,

e.g. for well stirred batch cultures or continuous

cultures. For the typical Quorum sensing system

of LuxI/LuxR type, basic ODE models were intro-

duced, e.g. in [9, 28]. We start with the following

Name Variable

xe extracellular AHL concentration

xc intracellular AHL concentration

l concentration of LuxI

r concentration of LuxR

y1 concentration of the LuxR-AHL

complex

y2 concentration of the dimer of

LuxR-AHL complexes

TABLE I: Model variables of the basic Quorum

sensing model

ODE system for a single cell which distinguishes

between intracellular and extracellular AHL (xc
resp. xe), including equations for LuxR, LuxR-

AHL complex, the corresponding dimer and LuxI:

ẋe = dcxc − dexe − γexe (1)

ẋc = βll − γcxc − dcxc + dexe (2)

−π+
1 rxc + π−1 y1

ṙ = αr + π−1 y1 − π+
1 rxc − γrr (3)

ẏ1 = π+
1 rxc − π−1 y1 + 2π−2 y2 − 2π+

2 y
2
1 (4)

ẏ2 = π+
2 y

2
1 − π−2 y2 (5)

l̇ = αl − γll + βy
y2

1 + (βy/κy)y2
. (6)

For the meaning of all variables and parameters

see Tables I and II. The model assumes the typical

positive feedback which leads to a Hill function

in the equation for LuxI (the AHL producing

enzyme, denoted by l) with Hill coefficient n = 2,

assuming that LuxR-AHL dimers (denoted by y2)

are relevant for the increased LuxI production.

Exchange of AHL between intracellular and ex-

tracellular space is described by rates de and

dc. For LuxR (r), a constitutive basic production

is assumed. The notation of the model terms is

chosen in a similar way as in previous publications

(e.g. [28, 23]), to keep it comparable to the simpler

models.

Even though V. fischeri possesses at least two

Quorum sensing systems, we restrict ourselves to

the well-known lux system, i.e., there is only one

positive feedback via LuxI. Degradation of LuxR
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Name Parameter

αl Basal/Background production rate of LuxI

αr Basal/Background production rate of LuxR

βc Maximum increase of/Slope of increase of LuxR-production by cAMP

βl Production rate of AHL by LuxI

βy Maximum increase of/Slope of increase of LuxI-production by AHL-LuxR dimer

γc Degradation rate of AHL in the cytoplasm

γe Degradation rate of AHL outside of the cell

γl Degradation rate of LuxI

γr Degradation rate of LuxR

κr Asymptotics of increase of LuxR-production (high cAMP concentration)

κy Asymptotics of increase of LuxI-production (high AHL-LuxR dimer concentration)

μl Production rate of LuxI induced by regulator nl, ñl

μr Production rate of LuxR induced by GroESL

π+
1 Rate of AHL binding to LuxR (complex association)

π−1 Rate of AHL-LuxR complex dissociation

π+
2 Rate of AHL-LuxR dimer association (binding of two AHL-LuxR complexes)

π−2 Rate of AHL-LuxR dimer dissociation

dc Diffusion rate of AHL from the cell to the extracellular space

de Diffusion rate of AHL from the extracellular space into the cell

nl, ñl Regulator nl, ñl which influences the LuxI-production

nr GroESL, a regulator, which influences the LuxR-production

a LexA, a regulator, which inhibits binding of the AHL-LuxR dimer to the LuxI-operon

b Affinity of a regulator (LexA or cAMP) to the lux operon compared

to the AHL-LuxR dimer

c cAMP, which influences LuxI as well as LuxR

nl,thr Michaelis constant for destabilisation of LuxI by regulator ñl

nr,thr Michaelis constant for destabilisation of LuxR by GroESL

pnl
Strength of destabilisation of LuxI by regulator ñl

pnr
Strength of destabilisation of LuxR by GroESL

pq Strength of destabilisation of LuxR by QteE

q QteE, which destabilises LuxR

qthr Michaelis constant for destabilisation of LuxR by QteE

TABLE II: Model parameters of the basic and the modified Quorum sensing models

is for simplicity only assumed to take place in the

state of a single LuxR, not within the LuxR-AHL

complex and not within the dimer.

In order to derive the model, we essentially assume

that all dynamics of the more detailed model

(Eq.(1) - (6)) are fast but that of xc and xe. E.g.

complex association or dissociation is faster than

the production of a larger molecule. This results

in

ẋe = dcxc − dexe − γexe

ẋc = βll−γcxc−dcxc+dexe −π+
1 rxc+π−1 y1

εṙ = αr + π−1 y1 − π+
1 rxc − γrr

εẏ1 = π+
1 rxc − π−1 y1 + 2π−2 y2 − 2π+

2 y
2
1

εẏ2 = π+
2 y

2
1 − π−2 y2

εl̇ = αl − γll + βy
y2

1 + (βy/κy)y2
.
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This mathematical assumption is valid as consider-

ing the whole system shows qualitatively the same

behaviour as the reduced system.

For ε → 0 we obtain a function for l, only

depending on xc ,

l =
αl

γl
+

βy
γl

x2c
π−2
π+
2

(
π−1 γr

π+
1 αr

)2
+ x2cβy/κy

.

Hence we obtain the simplified model

ẋc = βl

⎛⎜⎝αl

γl
+

βy
γl

x2c
π−2
π+
2

(
π−1 γr

π+
1 αr

)2
+ x2cβy/κy

⎞⎟⎠
−(γc + dc)xc + dexe

ẋe = dcxc − dexe − γexe

or, lumping parameters together,

ẋc = f(xc) − dcxc + dexe

ẋe = dcxc − dexe − γexe (7)

f(xc) := α+
βx2c

x2thresh + x2c
− γcxc.

In a further step we introduce some typical addi-

tional influences to the mathematical models.

A. Influences on the dynamics of LuxR

Increase of the LuxR production: It was re-

ported, e.g. [1] that the protein GroESL in V.
fischeri appears in high numbers, when there

are insufficient nutrients available. Although the

mechanisms behind this are not fully understood,

GroESL seems to cause, besides a stabilisation of

LuxR, an up-regulation of the gene expression.

Production of LuxR-type autoinducers by environ-

mental factors has been reported also for other

species such as Pseudomonas aeruginosa [32].

Focusing on the regulation of LuxR production, we

change the equation, which describes the dynamics

of LuxR, to

ṙ = μrnr + αr + π−1 y1 − π+
1 rxc − γrr, (8)

where nr describes the available concentration of

e.g. GroESL. As the copy number of the protein

in the cell is low, we neglect saturation effects.

Using this equation instead of the basic equation

3 for LuxR and applying again the idea of different

time scales yields

ẋc =Bαl +Bβy
Arx

2
c

1 + (βy/κy)Arx2c
− γcxc − dcxc + dexe,

(9)

where B := βl

γl
and Ar :=

π+
2

π−2

(
π+
1 (αr+μrnr)

π−1 γr

)2
.

Destabilisation of LuxR: The protein QteE

destabilises the LuxR-homologue LasR in Pseu-
domonas aeruginosa resulting in a faster degra-

dation of LasR [35]. Although the regulation of

qteE expression yet needs to be investigated in

detail, environmental factors seem to be involved

[40]. This extension can be described by a slight

modification of the LuxR-governing equation

ṙ = αr+π−1 y1−π+
1 rxc−(1+

pqq

q + qthr
)γrr. (10)

Proceeding in the same way as done for GroESL

results in

ẋc =Bαl +Bβy
Aqx

2
c

1 + (βy/κy)Aqx2c
− γcxc − dcxc + dexe,

(11)

where

Aq :=
π+
2

π−2

(
π+
1 αr(q + qthr)

π−1 (pq + q + qthr)γr

)2

.

Increase of the LuxR production and destabil-
isation of LuxR: Typically a number of mecha-

nisms regulating Quorum sensing systems occur in

the same species (see e.g. [3]). As a hypothetical

example, we assume that both mechanisms anal-

ysed before, i.e., up-regulation of LuxR production

and destabilisation of the LuxR protein, are in-

duced at the same time by environmental triggers,

in our case by a single regulator. Such a combina-

tion can be assumed to help the bacteria to react

faster to environmental changes. The equation of

LuxR has the following form:

ṙ =μrnr + αr + π−1 y1 − π+
1 rxc

−
(
1 +

pnr
nr

nr + nr,thr

)
γrr.

(12)
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Using the same mathematical tools as in the para-

graphs above yields

ẋc =Bαl +Bβy
Anew

r x2c
1 + (βy/κy)Anew

r x2c
− γcxc − dcxc + dexe,

(13)

where

Anew
r := π+

2

π−2

(
π+
1

π−1

)2(
nr+nr,thr

(1+pnr )nr+nr,thr

)2(
μrnr+αr

γr

)2
.

LuxR feedback: LuxR type receptors may be

able to induce the expression of their own gene

after binding to its autoinducer [34]. Considering

the possibility of a self-induced positive feedback

of LuxR leads to qualitatively similar results as the

addition of GroESL into our model. We thus omit

the analysis in this study for the reason of brevity.

B. Influences on the dynamics of LuxI

Increase of the LuxI production: Stress factors

as starvation have been reported to up-regulate

the transcription of the lux operon in V. fischeri,
including the luxI gene, via σ32 [38]. AHL syn-

thase genes in other species also are known to

be controlled in an environment dependent way

(e.g. [8]). Regulation of AHL synthase can be

incorporated in two different ways: Either only the

basal synthase expression (and correlated with this

the basal autoinducer production) is increased by

the addition of a regulator nl, or both, the basal

and the induced production, are increased. Unfor-

tunately, experimental studies usually do not allow

to discriminate between both variants. However

as the qualitative behaviour is the same in both

approaches, we will only consider the second in

this study. This modification leads to the following

governing equation for LuxI:

l̇ =

(
αl + βy

y2
1 + (βy/κy)y2

)
(1 + μlnl) − γll.

(14)

Assuming again different time scales and reducing

the system to a two component model changes the

governing equation for the intracellular concentra-

tion of AHL accordingly (equation not shown here

for the reason of brevity).

Inhibition of the LuxI production: LexA is a

repressor enzyme, which usually acts on SOS

response genes. In V. fischeri, it has been reported

to act antagonistically with LuxR-AHL dimers by

competing for the same binding site on the lux
operon. LexA binding does not induce transcrip-

tion of the lux operon, the transcription is not

increased [37]. Repressors of AHL synthase genes

have also been shown in other species (see e.g.

[43]). Neglecting the details about the binding

mechanism, we follow a non-classic approach (as

used in [23]): The percentage of present molecules

determines if transcription is possible and the

grade of transcription is determined as usual by the

Monod term. The corresponding modified equation

for LuxI reads

l̇ = αl − γll + βy
y2

1 + (βy/κy)y2
· by2
by2 + a

. (15)

The modified equation for xc is left out again.

The influence of oxygen concentration on the

expression of the lux operon, which is mediated

via ArcA, may act similarly [5].

Increase of the LuxI production and destabil-
isation of LuxI: Although much more evidence

exists for regulation of stability of LuxR type AHL

receptors, similar behaviour was also reported for

LuxI type AHL synthase. In P. aeruginosa, the

half-life of LasI is controlled by the LON protease,

which itself has been reported to be induced by

environmental stress due to certain antibiotics [36,

25]. Analogue to the analysis of effects on LuxR,

we thus analyse a combination of a destabilising

effect on LuxI and an increased LuxI-production

by a single regulator. This changes the equation

for LuxI in a similar way as in the corresponding

regulation of LuxR:

l̇ =

(
αl + βy

y2
1 + (βy/κy)y2

)
(1 + μlñl)

−
(
1 +

pnl
ñl

ñl + nl,thr

)
γll. (16)
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The resulting governing equation for the intracel-

lular AHL concentration reads

ẋc =
ñl + nl,thr

(1 + pnl
)ñl + nl,thr

(1 + μlñl) ·(
Bαl +Bβy

Alx
2
c

1 + (βy/κy)Alx2c

)
(17)

−γcxc − dcxc + dexe.

C. Influence on the dynamics of LuxI and LuxR

Regulation factors can have pleiotropic effects

on different target molecules. Starvation induces

an increased occurrence of 3’:5’-cyclic AMP

(cAMP) in bacteria such as V. fischeri [12]. This

molecule is able to bind to the cAMP receptor

protein (CRP). The so-formed complex influences

the lux system in V. fischeri on two different sites.

On the one hand it amplifies the production of

LuxR. On the other hand cAMP inhibits the LuxI-

production using a similar mechanism as LexA.

We analysed the effect of cAMP as an example

for more complex regulation mechanisms. From

now on for the reason of simplicity the (cAMP-

CRP)-complex will be referred to as cAMP.

Adding cAMP to the model yields a change in the

dynamics of LuxI and LuxR resulting in

ṙ = αr + βc
c

1 + (βc/κr)c
+ π−1 y1 − π+

1 rxc−γrr

l̇ = αl − γll + βy
y2

1 + (βy/κy)y2

by2
by2 + c

.

The reduction of the so modified system obvi-

ously affects the governing equation of xc. Those

changes lead to the following equation:

ẋc =Bαl +Bβy
PA2

cx
2
c

1 + (βy/κy)PA2
cx

2
c

bPA2
cx

2
c

bPA2
cx

2
c + c

− γcxc − dcxc + dexe,
(18)

where P := π+
2

π−2

(
π+
1

π−1

)2
and Ac :=

βc

γr

c
1+(βc/κr)c

.

III. MODEL ANALYSIS AND RESULTS

In this section we analyse the effects of different

strengths of the regulation impact on Quorum

sensing signals. Therefore we take a look at sim-

ulations made with the above derived models for

the different influences of regulators. The variables

(listed in Table III) and parameters are used in a

non-dimensional form. The values of the parame-

ters in the simulations are shown in Table IV. We

aim in this study at comparing the potential qual-

itative consequences of different regulators on the

function of the AHL-type Quorum sensing system

in a generic approach. The parameter values were

chosen in a way to disclose the full complexity of

such a system, including e.g. the maximum num-

ber of stationary states. We assume that evolution

of a system enabling complex behaviour suggests

that the bacterium at least under certain conditions

exploits this complexity. Using an experimentally

derived parameter set of a specific bacterium,

which was gained under certain environmental

conditions, was thus not meaningful, and would

have been difficult due the lack of such data and

variability of parameters in response to changes

of the environmental conditions ([18]). Note that

other parameter values might cause more simple

behaviour, including absence of multistationarity.

However, the qualitative messages in the results

with respect to time and strength of Quorum sens-

ing induction will hold. As the basal production

rate of the autoinducer synthase, which is critical

for induction dynamics, may vary between differ-

ent species, we use two different parameter values.

Changes due to the variation of the basal LuxR-

production rate are not subject to this study and

hence the same value was used throughout. In the

following solid lines in the bifurcation diagrams

represent stable stationary states whereas dashed

lines represent unstable stationary states.

For the time courses in this section an initial

condition of zero intra/extracellular AHL was as-

sumed.

The numerical analyses were done with XPPAUT

Version 5.41 [13].

A. Influences on LuxR

Increase of the LuxR production: For low basal

production rates of LuxI (αl) we observe a bistable

behaviour of the lux system (Fig. 2(a)), when as-

suming the strength of the regulator (e.g. GroESL)

to be the bifurcation parameter. This means that for
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Regulator Influence Eq. Fig.

LuxR nr Increased production 9 2(a)+(b)

LuxR QteE Destabilisation 11 2(c)+(d)

LuxR ñr Increased production & Destabilisation 13 2(e)+(f)

LuxI nl Increased production 14∗ 3(a)+(b)

LuxI LexA Inhibited production 15∗ 3(c)+(d)

LuxI ñl Increased production & Destabilisation 17 3(e)+(f)

LuxI/LuxR cAMP Increased LuxR production & Inhibited LuxI production 18 4

TABLE III: Different scenarios. ∗Equation referenced has to be inserted into Eq.(2) assuming a quasi-

steady state.

Parameter Value Parameter Value

αl refer to figures αr 0.1

βc 1 βl 0.1

βy 1 γc 0.03

γe 0.03 γl 0.1

γr 0.1 κr 1

κy 1 μl 0.1

μr 0.1 π+
1 1

π−1 1 π+
2 1

π−2 10 dc 0.5

de 0.5 b 1

nl,thr 1 nr,thr 1

pnl
10 pnr

10

pq 5 qthr 1

TABLE IV: Values of the dimensionless parameters for the simulations

concentrations of GroESL (or similar acting regu-

lators) larger than a certain threshold (the bifurca-

tion point, here at about nr = 1.9) the system will

always be induced in the used parameter value set-

ting. For concentrations of regulator beneath this

threshold the final AHL-concentration within the

cells depends on the extra- and intracellular con-

centration of AHL at the beginning of the simula-

tion. The unstable stationary state (dashed region

of the black line in Fig. 2(a)) marks the thresh-

old: a starting AHL-concentration lower than the

threshold causes the system to stay non-induced,

while higher AHL-concentrations lead to consid-

erably higher stationary AHL-concentrations, i.e.

an induction of the whole system.

Assuming higher basal rates αl shifts the bifur-

cation diagram to the left and hence bistability is

lost. In this case independent of the starting AHL-

concentration the system always gets activated

(Fig.2(a) red line).

Fig. 2(b) shows the time course of the extra-

cellular AHL-concentration for different GroESL-

concentrations in the low basal production case,

corresponding to the black line in Fig. 2(a). In case

the GroESL concentration is above the bifurcation

point, increasing the GroESL concentration results

in an earlier induction of the cell. The final AHL-

concentration of the induced cells does not depend
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Influences on LuxR. (a) Bifurcation diagram for the extracellular AHL-concentration, where only the

increase in the LuxR-production by GroESL was considered. The basal LuxI-production rate αl is 0.001 (black

line) resp 0.1 (red). (b) Time courses for the extracellular AHL-concentration, which were generated by cells

with different GroESL-concentrations. Those time courses correspond to the bifurcation diagram shown in (a)

by the black line, i.e., αl = 0.001. (c) Bifurcation diagram for the extracellular AHL-concentration, where the

influence of QteE on the system is examined. QteE destabilises LuxR and hence leads to a faster degradation of

LuxR. Basal LuxI-production rate is assumed to be 0.001 (black) resp αl = 0.1 (red). (d) Time courses for the

extracellular AHL-concentration, which were generated by cells with different QteE-concentrations. Those time

courses correspond to the bifurcation diagram shown in the red line in (c), i.e., αl = 0.1. (e) Bifurcation diagram,

where both, an up-regulation of LuxR-production, and a destabilising effect on the LuxR protein is assumed.

Basal LuxI-production rate is 0.001. The destabilising effect is pnr
= 1 (black) or pnr

= 10 (red) (f) Time

courses for the extracellular AHL-concentration, which were generated by cells with different concentrations of

the GroESL-like regulator. Those time courses correspond to the bifurcation diagram shown in (e) with pnr = 10.

on the amount of GroESL.

Destabilisation of LuxR: Here (Fig. 2(c)-(d)) we

choose the concentration of a QteE-like regulator

as the bifurcation parameter. The bifurcation dia-

grams show that a high level of QteE completely

prevents an activation of the Quorum sensing

system. Even induced systems will switch to the

non-induced state after some time, when there is

a high concentration of QteE present. In addition

the basic production rate of LuxI (αl) also plays

a significant role: if αl is large, q must be large

as well to prevent an induction of the lux system.

However, if αl is very low, a non-induced system

will never, i.e., independent of the concentration

of QteE, be able to activate itself. The presence

of QteE may shift the potential stationary states,

but typically keeps the bistable behaviour with

the possibility to switch on for growing bacteria,

see Fig. 2(c). Fig. 2(d) shows the time course for

cells which are provided with different amounts of

QteE. It is evident that the time of induction and

the height of the final AHL-concentration depend

on the amount of present QteE. The more QteE

available the lower is the final AHL-concentration.
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The moment of induction - in case the system

is induced - is late if the concentration of QteE

is close to the QteE-concentration at which the

bifurcation occurs.

Increase of the LuxR production and destabili-
sation of LuxR: The results of a combined impact

on LuxR, i.e., an increase of the LuxR-production

and a faster degradation of LuxR, which could be

interpreted as a combined effect of GroESL- and

QteE-like regulators, is shown in Figures 2(e) -

2(f). As we have already discussed different basal

production rates αl, we now focus on changing

the ratio between the strength of degradation of

LuxR and the increase of the LuxR-production by

varying the latter. As a bifurcation parameter we

use GroESL concentration.

For weak effects of GroESL on LuxR stability the

bifurcation diagram is similar to the one, where no

influence on the degradation of LuxR was assumed

(compare Figures 2(a) and 2(e) black lines). When

assuming a stronger destabilisation of LuxR, an in-

termediate range of GroESL-concentrations exists

for which the system is never able to get activated

in our parameter setting (Fig. 2(e) red line). By

increasing the destabilisation strength, the bistable

range increases.

As already seen for Fig. 2(b) the moment of

induction depends on the GroESL-concentration.

The closer it is to the bifurcation point the later

the system gets activated (Fig. 2(f)).

B. Influences on LuxI

Increase of the LuxI production: In contrast to a

regulator which acts by increasing the production

of LuxR, introducing regulator nl into the system

changes the concentration of AHL in the stationary

phase (Fig. 3(a)). While the system acts bistable

when a small basal LuxI-production rate αl is

assumed, this bistability is lost for high basal rates.

In Fig. 3(b) the time courses of AHL concen-

tration for different amounts of regulator nl are

shown. Increasing nl does not only result in higher

maximum concentrations of AHL, but - similar to

a factor up-regulating the production of LuxR -

promotes an earlier induction

Inhibition of the LuxI production: Inhibition

of LuxI production by LexA results in similar

effects as described for the LuxR destabilising

regulator above (Figures 3(c) - 3(d)), including

a decrease of maximum AHL concentration in

stationary phase, and a delay of activation for

higher LexA concentrations. A similar effect takes

place if one considers LuxI destabilisation only,

due to the “simple” production of AHL by LuxI,

formulated as a linear term, no further non-trivial

effects appear in that context.

Increase of the LuxI production and destabili-
sation of LuxI: The results are shown in Figures

3(e) - 3(f) (Please note the logarithmic axes in

Fig. 3(e)). Similar to the corresponding regula-

tion of LuxR, in our parameter setting using a

stronger destabilisation effect, there is an interme-

diate range of concentrations of regulator ñl, in

which the system cannot be activated. As a main

difference between regulation of LuxR and LuxI,

the maximum concentration of AHL in an acti-

vated state increases significantly with increasing

concentrations of regulator ñl. Again similar to

LuxR regulation, the intermediate range vanishes

for small values of pnl
.

C. Influence on the dynamics of LuxI and LuxR

Increasing the affinity of cAMP to the lux
operon (parameter b) stretches the bifurcation di-

agram, but keeps its shape (compare the black

with the red lines in Figures 4(a),(c) and (e),

respectively).

In Figures 4(a) - 4(b) a low basal LuxI-production

rate was assumed. With this assumption and our

parameter setting a system which starts in a non-

activated state is not able to get induced (Fig. 4(b)).

The four different curves are all close to zero (thus

indistinguishable from each other).

Using our set of parameters and an intermediate

basal production rate αl the bacteria will always

get activated as long as they are neither starving

nor drowned with nutrients, i.e., an intermediate

amount of cAMP is present (Fig. 4(c)). Contrarily,

the system is never activated with very low or

very high amounts of cAMP. Regions of bistability

exist, i.e., dependent on the initial concentration,
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Fig. 3: Influences on LuxI. (a) Bifurcation diagram for the extracellular AHL-concentration, where only the

increase in the LuxI-production by regulator nl was considered. The basal LuxI-production rate αl is 0.001
(black line) or 0.1 (red line), respectively. (b) Time courses for the extracellular AHL-concentration, which were

generated by cells with different concentrations of regulator nl. Those time courses correspond to the bifurcation

diagram shown in (a), with αl = 0.001. (c) Bifurcation diagram for the extracellular AHL-concentration, where

the influence of LexA on the system is examined. LexA destabilises LuxI and hence leads to a faster degradation of

LuxI. Basal LuxI-production rate is assumed to be αl = 0.001 (black line) or αl = 0.1 (red line), respectively. (d)

Time courses for the extracellular AHL-concentration, which were generated by cells with different concentrations

of regulator nl. Those time courses correspond to the bifurcation diagram shown in (c), with αl = 0.1. (e)

Bifurcation diagram, where in addition to the increased LuxI-production by regulator ñl, a destabilising effect

of regulator ñl on LuxI is assumed. Basal LuxI-production rate is 0.1. The destabilising effect is pnl
= 1 (black

line) or pnl
= 10 (red line). (f) Time courses for the extracellular AHL-concentration, which were generated

by cells with different concentrations of regulator ñl. Those time courses correspond to the bifurcation diagram

shown in (e), with pnl
= 10.

the system will either be activated or not. The time

course, which is shown in Fig. 4(d), displays simi-

lar effects as already seen for LexA-, QteE- and nl-

type regulators. Depending on the proximity of the

cAMP-concentration to the bifurcation point the

lux system is induced at different time points. The

final AHL-concentration in an activated system

changes with different concentrations of cAMP.

The bistability behaviour of the previous figures

is lost, when assuming a high basal production

rate αl. The system is induced independently of

the added cAMP-concentration (Fig. 4(e)). All sys-

tems are induced at about the same time (Fig. 4(f)).

They only differ in the final AHL-concentrations.

IV. STOCHASTIC INFLUENCES

So far, any stochasticity was neglected in our

modelling approach. Nevertheless, as e.g. some

parts of the intracellular regulation system may

consist only of few molecules, and the regula-

tion system acts non-linearly, the behaviour of

individual cells might significantly differ from the
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(d) (e) (f)

Fig. 4: Influences on LuxI and LuxR simultaneously. (a) Bifurcation diagram for the extracellular AHL-

concentration, where the effect of cAMP on the competitive inhibition of the LuxI-production and the increase

of the LuxR-production is considered. The basal LuxI-production rate αl is 0.001. Affinity of cAMP to the lux
operon compared to the AHL-LuxR dimer is assumed to be equal. This is achieved by setting b = 1 (black line)

or by assuming the affinity of cAMP to the lux operon to be stronger compared to the AHL-LuxR dimer by

setting b = 10 (red line). (b) Time courses for the extracellular AHL-concentration, which were generated by

cells with different cAMP-concentrations. Those time courses correspond to the bifurcation diagram shown in

(a), with b = 1 and αl = 0.001. (c) Same figure as seen in (a), only the basal LuxI-production rate is increased

to 0.1. (d) Time courses for the extracellular AHL-concentration, which were generated by cells with different

cAMP-concentrations. Those time courses correspond to the bifurcation diagram shown in (c), with b = 1 and

αl = 0.1. (e) Same figure as seen in (a), only αl = 1. (f) Time courses for the extracellular AHL-concentration,

which were generated by cells with different concentrations of regulator nl. Those time courses correspond to

the bifurcation diagram shown in (e), with b = 1 and αl = 1

bulk behaviour. This is also the case for nutrient-

dependent regulators, as nutrients often are hetero-

geneously distributed under natural conditions. As

an example we will consider nutrient-dependent

influences in this section. Of course, the dynamic

behaviour itself is the same as in the deterministic

setting. But this stochastic approach allows us to

track a number of cells with typical variations in

molecule numbers and hence, leads to a better

understanding of how realistic cell populations

could behave.

The numerical analyses were done with MATLAB

Version R2010a [26], using the solver ode45 with

its standard precision.

A. Influence of a single regulator on the system

We start by considering the influence of stochas-

ticity of a single regulator on the whole Quo-

rum sensing system. For the number of regulator

molecules per cell we assume a normal distribution

with a fixed expected value and variance. This

can be interpreted as a normal distributed nutrient

availability under natural conditions, which then

transfers to the nutrient-dependent regulator.
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For the simulations, we set the number of cells

to ten. For higher numbers of cells the results

are qualitatively the same (not shown). A fixed

cell number can be realised experimentally e.g.

in a chemostat-like setting. Above, a deterministic

single cell model was introduced. Now we slightly

alter this model in order to obtain a model with

n cells and a random distribution of regulators,

i.e., we focus on the influence of stochasticity by

the regulators but neglect other stochastic effects

on the Quorum sensing system. This means that

we still assume AHL production in each cell to be

deterministic but dependent on the random number

of regulator molecules in each cell. Assuming once

again different time scales, we reduce the model to

a two component hybrid model. While the basic

equation for the intracellular AHL-concentration

in the reduced model (Eq. (7)) stays the same, the

governing equation for xe changes to be

ẋe =

n∑
k=1

dcx
(k)
c − ndexe − γexe, (19)

where the superscript describes the k-th cell, as

now, each cell may have an individual intracel-

lular AHL-concentration, dependent on its avail-

able regulators. When regarding the above men-

tioned assumptions, the governing equations for

xc are modified only slightly. As an example we

show how the equation for the intracellular AHL-

concentration under the influence of a regulator

controlling LuxR production in a way as reported

for GroESL (Eq. (9)) changes:

ẋ(k)c = Bαl +Bβy
Ar

(
x
(k)
c

)2
1 + (βy/κy)Ar

(
x
(k)
c

)2
−γcx

(k)
c − dcx

(k)
c + dexe, (20)

for k = 1, ..., n and Ar := π+
2

π−2
·
(
π+
1

π−1

)2
·(

αr+μrNr

γr

)2
.

Note that the only difference to the non-stochastic

equation concerns the superscript k, which

describes the k-th cell, and the random variable

Nr instead of the fixed nr. This random variable

Nr is, as stated above, normally distributed with

an expected value E[Nr] and a variance Var[Nr].
In the following we choose the variances relatively

high such that the effects due to the randomness

in the regulator distribution become visible. The

realisations of Nr will be different concentrations

of GroESL-like regulators in different cells. All

the other equations are altered in a similar way

but omitted here for the reason of brevity. For the

hybrid model, which includes a higher number

of cells, the diffusion constants dc and de are

changed. This helps to identify the studied effects

better. In the simulations the diffusion constants

are set to dc = de = 0.05 in contrast to 0.5 in

the simulations without a stochastic distribution

of regulators in order to keep the extracellular

concentration of AHL comparable to the single

cell scenario, i.e., we implicitly assume that the

extracellular volume of n cells is n times the

extracellular volume of one cell.

Taking these changes into account, the bifur-

cation points in the simulations with multiple

cells are considerably lower, i.e., lower regulator-

concentrations - in the case of regulator nl and

GroESL - are bifurcation points than the ones

identified in the single cell simulations (results not

shown). Introducing LexA- or QteE-like regulators

into the equations and assuming that the basal

production rate of LuxI (αl) to be 0.001 obviously

never leads to an activation of the bacteria in

the ten cell setting, under the given conditions,

when starting with zero AHL and an arbitrary

concentration of LexA or QteE (Figures 2(d) and

3(d)).

From here on it is important to keep the differences

between the following figures - especially Figures

6, 8, 9 and 10 - and the time courses in Figures

2, 3 and 4 in mind. While the single cells were

not able to influence each other in the previous

sections, there is now an influence between the

different cells within one colony.

Running 1000 simulations with the amount of

a regulator near the bifurcation point in each

run, results in large differences of the final intra-

and extracellular AHL concentrations due to non-
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linearity (Fig.5(a) for extracellular AHL concen-

tration). We use the same amount of regulators for

each run as we only want to examine the effect of

the distribution of the regulator on the final AHL-

concentration. Each data point in the box plot can

be interpreted as one colony, where each colony

has the same size and the same amount of regulator

available. The only difference between the runs is

the distribution of the regulator over the cells. This

result gives rise to the idea that the distribution of

a regulator is to some extent responsible for the

activation of the system, neglecting the time course

for a moment which also might be influenced by

the stochastic regulatory effects. The same result

was attained for the other effects of regulators on

the system, but they are omitted here.

Effects due to GroESL-variation: When run-

ning a simulation with one colony, one can com-

pare the cell with the highest intracellular AHL-

concentration at the end of a simulation (tend =
1000) within the colony with the one having

the lowest final intracellular AHL-concentration.

Subtracting those concentrations from each other

gives information about variation between cells

within a colony. Doing this for one thousand

colonies - again assuming the same size of the

colonies - leads to the box plot shown in Figure

5(b). Most cells within a colony - when assum-

ing an inhomogeneous distribution of GroESL-

like regulators - have a similar final intracellular

AHL-concentration as the difference between the

cells is low compared to the relative deviation

of regulator nl of approximately 40% (Fig. 5(c)).

However, some outliers occur in Figure 5(b) (red

crosses). A possible interpretation for those is that

the distribution of regulators within one colony

might influence the time of activation as some cells

are already activated while others are not yet. This

idea will be supported in section IV-B (see below).

Effects due to nl-variation: Proceeding with

regulator nl in the same way as with GroESL

leads to the box plot shown in Fig. 5(c). There,

one can see that on the one hand the system as a

whole is always either induced or non-induced as

the difference of the AHL-concentrations of the

x
e
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x
m

a
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i
−
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m
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Fig. 5: Box plots of AHL-concentrations under differ-

ent conditions. The colours mean the following: red line

is the median, blue box is the 25−75%-quantile, black

limiters (whiskers) extend to the most extreme values

which are no more than 1.57/
√
1000 · (75%−quantile

−25%−quantile) away from the box and red crosses

show outliers not belonging to the region limited by the

whiskers. (a) Extracellular AHL-concentration within

one colony. Each colony had the same amount of regu-

lator nl available and the same number of cells. How-

ever, the concrete distribution of regulator nl amongst

the individuals is different in each colony. The AHL-

concentration is measured at the end of the simulation

at time tend = 1000. The values of regulator nl are

simulated with E[Nl] = 6.5 and V ar[Nl] ≈ 5.2.

(b) Box plot, where each data point is obtained by

subtracting the cell with the lowest intracellular AHL-

concentration at the end of the simulation (tend =
1000) from the cell with the highest intracellular AHL-

concentration within one colony. The difference of the

intracellular AHL-concentration between the cells is

- in this subfigure - due to the influence of GroESL

on the LuxR-production. One thousand colonies were

simulated to create this box plot. E[Nr] = 6 and

V ar[Nr] ≈ 0.055. (c) Box plot was created in the same

way as in (b), only the influence of regulator nl on the

LuxI-production is varying this time. E[Nl] = 6.5 and

V ar[Nl] ≈ 5.2. End of simulation at time tend = 1000.

two cells is considerably lower than between an

activated and a non-activated state (compare to

Fig. 5(a)). This means that regulator nl has no

relevant effect on the time of activation within

one colony in our parameter setting. On the other

hand the AHL-concentration level at the end of the

simulation (tend = 1000) depends on the amount

of nl (Fig. 5(c)), which is different compared to

the influence of GroESL where the distance be-

tween the cells containing most and fewest AHL-

molecules is considerably lower than here (Fig.

5(b)).
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x
i

time

Fig. 6: Time course of the intracellular AHL-

concentration of ten cells within one colony with a

inhomogeneous distribution of cAMP (i.e. E[c] =
0.03, V ar[c] = 0.00005; αl = 0.05)

Effects due to cAMP-variation: The simulations

on cAMP are done with αl = 0.05 since otherwise

the system never gets activated in our parameter

setting. In this case the lower bifurcation point

of cAMP is lower than in the (deterministic)

one cell setting (see Fig. 4(d)), whereas the up-

per bifurcation point is even higher (results not

shown). The effect which cAMP has on the system

is a combination of the effects of GroESL and

regulator nl, similar as in the deterministic model

system. On the one hand cells with low cAMP-

concentration will get activated later than cells

with intermediate cAMP concentration. A low

concentration of cAMP on the other hand leads

to a lower final intracellular concentration of AHL

than an intermediate concentration (Fig. 6). In Fig.

6 the expected value for cAMP is c = 0.03 and

the variance is 0.00005, i.e., quite small.

Here, as well as below, one can see that the

system is quite stable with respect to the vari-

ation of the different regulators, i.e., the result-

ing relative deviation in the AHL-concentration

was below 10% even though the coefficient of

variation (
√
Var/E) of c was 24% approximately,

in our parameter setting. Nevertheless the figures

are included to see the possible effects of the

different regulators on the Quorum sensing system.

In contrast to this, Fig. 7 was included, in which

a range of concentrations of regulator nl was dis-

tributed over the different cells within one colony.

This means that the different regulators may yield

different resulting variability in the system, due to

their non-linear influences.

x
i

time

Fig. 7: Time course of the intracellular AHL-

concentration of ten cells which all belong to the same

colony. The distribution of regulator nl fixed and given

by the vector (1, 2, 3, 6, 7, 8, 9, 12, 13, 15).

B. Combining several regulators

So far only the influence of a single regulator

on the system has been studied. In the following

we investigate the effect of several regulators in-

fluencing the Quorum sensing system at the same

time. We show the governing equation for xc in the

reduced model for an influence of the exemplarily

chosen regulators GroESL, LexA and nl on the

Quorum sensing system:

ẋ(k)c = (1 + μlNl) ·(
Bαl +Bβy

Ar(x(k)
c )

2

1+(βy/κy)Ar(x(k)
c )

2

bArx(k)
c

bArx
(k)
c +A

)
−γcx

(k)
c − dcx

(k)
c + dexe, (21)

where Ar :=
π+
2

π−2

(
π+
1

π−1

)2 (
αr+μrNr

γr

)2
.

Again Nl, Nr and A are random variables rep-

resenting the different amounts of regulator nl,

GroESL and LexA in the cells. To get a deeper

understanding of the functionality of the respective

regulators, we only examine the influence of two

regulators on the system at a time, one with a fixed

value, the other one with the usual variation. The

expected values and variances of the simulations

in this section are given in Table V. The values of

expectation and variance are chosen such that all

regulators have the same coefficient of variation

(0.5). Note however that we had to increase the

values of Nl significantly in Figure 9. Elsewise

the system would not activate which is due to the

inhibition of LexA even though it seems negligi-

ble.

In the deterministic model approach, we guessed

that GroESL affects the time of activation of our
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Nl Nr LexA

Expected value Variance Expected value Variance Expected value Variance

Fig. 8 (a) 3 2.25 1.5 0 0 0

Fig. 8 (b) 3 0 1.5 0.5625 0 0

Fig. 9 (a) 20 100 0 0 0.01 0

Fig. 9 (b) 20 0 0 0 0.01 0.000025

Fig. 10 (a) 0 0 1.5 0.5625 0.01 0

Fig. 10 (b) 0 0 1.5 0 0.01 0.000025

TABLE V: Expected values and variances for the different regulators in the Figures 8 (a) - 10 (b)

system. This behaviour can also be found in the

stochastic approach under the additional presence

of nl, see Fig. 8(b). Additionally, note that the final

concentrations are basically indistinguishable. The

earlier expressed assertion that nl changes the final

concentration, but has no impact on the time-point

of activation, is visible in Fig. 8(a).

x
i

time

(a) constant GroESL, vary-
ing Nl

x
i

time

(b) constant Nl, varying
GroESL

Fig. 8: Time course of the intracellular AHL-

concentration of ten cells within one colony influenced

by GroESL and Regulator nl

Regarding the inhibitor LexA, a connection be-

tween the time of activation and the LexA-

concentration becomes visible now. The lower

the concentration of LexA, the earlier the cell is

activated (Fig. 9(b)). Fig. 9(a) shows qualitatively

the same behaviour as Fig. 8(a) suggesting that the

qualitative impact of LexA and Nr is similar, at

least once the colony gets activated.

This fact is confirmed by Figures 10(a) and (b)

which show the effect of the coupled influence

of LexA and GroESL. The pictures are similar,

the only slight difference being that the time-

point of activation with varying GroESL leads to

a rather homogeneous distribution of activation

x
i

time

(a) constant LexA, varying
Nl

x
i

time

(b) constant Nl, varying
LexA

Fig. 9: Time course of the intracellular AHL-

concentration of ten cells within one colony influenced

by LexA and Regulator nl

time-points, whereas varying LexA only favours

a single cell to activate and afterwards the bulk is

induced. This means: some regulators, especially

inhibitors may affect first mainly single cells and

later the whole colony.

x
i

time

(a) constant LexA, varying
GroESL

x
i

time

(b) constant GroESL, vary-
ing LexA

Fig. 10: Time course of the intracellular AHL-

concentration of ten cells within one colony influenced

by GroESL and LexA

V. DISCUSSION AND CONCLUSION

Although a number of studies use mathematical

models to investigate traits of different Quorum
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sensing systems, little is known about the im-

pact of external regulation factors (see e.g. [22,

41, 39]). To our knowledge, we present the first

comparison of different mechanisms affecting the

typical basic motif of AHL based communication

systems.

Modelling the full gene regulatory system for Quo-

rum sensing of lux type, including all mentioned

influencing regulators and mechanisms, leads to a

large system of ODEs in the classical deterministic

approach, containing a vast amount of (quantita-

tively unknown) parameters. The application of

singular perturbation on the resulting mathematical

model can shrink down the system essentially, and

allows for a clearer analysis of the system, e.g.

concerning bifurcations. Especially the possibility

of bistable regions is of great interest in this

context, as it allows (via a kind of hysteretic

behaviour) the stabilisation of the system against

perturbations [28].

Our results indicate that depending on the mode

of action some regulators mainly affect the time

of induction (e.g. Fig. 2(b),(f), Fig. 3(b)), which

is connected with a critical cell density (plank-

ton) or cell number (colonies). Others change the

maximum signal concentration (e.g. Fig. 2(d), Fig.

3(d)) or both (e.g. 4(d)). The potential ecologi-

cal and/or evolutionary benefit of these different

regulator effects depends on the context, in which

the population lives. For example, under spatially

structured conditions such as populations living

in microcolonies which support development of

heterogeneity between cells, synchronicity of re-

sponses on a population level could be supported

by higher induced AHL production. Hense and

Schuster [18] argue that the fitness benefit of Quo-

rum sensing regulated activity typically is not only

a function of its potential strength, influenced by

the cell density and some other factors, but also of

the cells which demand it. Furthermore, it is highly

desirable to control the timing of induction as a

function of environmental conditions. Bistability

can be interpreted as a simple kind of memory. The

underlying positive autoregulation of components

of Quorum sensing often seems to be heritable

and can thus be understood as an epigenetic con-

trol [30]. It supports stability of the population

e.g. against environmental fluctuations. When a

Quorum sensing controlled switch between two

cellular states is costly, such stability helps to min-

imise costs, however, at the expense of adaptation

rate. Shifts of range of stability enable the cells to

optimise trade-off between these opposing aspects.

By combinations of various regulators, or multiple

effects of one regulator on Quorum sensing via

different mechanisms the cell can realise complex

reaction patterns such as maximum or minimum

Quorum sensing at an intermediate strength of the

environmental control factor.

For example our model predicts that under

certain conditions environmental factors acting

via cAMP show such an intermediate maximum.

cAMP is connected with starvation strength. [37]

showed experimentally an intermediate maximum

in a dilution series of culture medium for V. fis-
cheri. Although the biochemical mechanisms be-

hind were not fully clarified and their experimental

design did not exactly reflect our model, their ex-

periments show that such complex regulation pat-

terns are relevant in vivo. This intermediate peak

is interesting, as usually a more monotone relation

between environmental factors and Quorum sens-

ing systems has been reported (see e.g. Hense and

Schuster, and citations therein.). Unfortunately,

quantitative information about dose-response rela-

tions over a larger range of the strength of these

factors are largely lacking, which impedes state-

ments about the prevalence of such intermediate

peaks. An exception is the well-studied Bacillus
subtilis, in which mild starvation induce sacrifice

of a fraction of the population ([24]). The purpose

of this highly cooperative activity seems to be

to supply nutrients for the remaining cells which

might help to delay a costly sporulation. However,

if starvation increases even more, the population

induces sporulation. Induction of sacrifice thus

peaks at intermediate starvation levels. Similarly,

B. subtilis induces competence in a certain window

of environmental intermediate stress conditions

([33]). Quorum sensing is involved in the control
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of these processes. However the architecture of

Quorum sensing in B. subtilis differs strongly

from that of the AHL-type. The Com Quorum

sensing system of B. subtilis and the influence of

stress act rather in parallel in regulation of their

target competence in B. subtilis. In contrast, in the

scenario analysed in our study, cAMP impacts the

Quorum sensing system directly. In more abstract

terms, Quorum sensing usually induces coopera-

tive behaviour, often as a stress response ([18]).

Stress as a promoter of cooperation is a well-

established concept also in other areas of ecol-

ogy ([21]). [21] state that extreme stress does no

longer support cooperation, but other aspects like

competition tend to become dominant. As a conse-

quence, under very severe stress conditions cells

may induce other phenotypes like persistence or

motility to escape from stress. Intermediate stress

levels as optimal activator conditions for Quorum

sensing fits to this concept. Based on these hints

we speculate that such a regulation strategy may

occur more frequently. More experimental dose-

response studies investigating the relation between

environmental conditions and regulation of Quo-

rum sensing systems are thus desirable. Although

a number of external regulators have been exper-

imentally identified for an increasing number of

Quorum sensing systems, the effect of most of

these regulators on dynamics of Quorum sensing

is usually unclear. RsaL in P. aeruginosa acts by

suppressing the expression of the LuxI homologue

and thereby delays the induction in experiments,

which fits to our results for LexA-like regulators

[11, 7]. LitR promotes the expression of LuxR

in V. fischeri. In accordance to what we predict

for GroESL-like regulators, litR mutants show

delayed expression of Quorum sensing regulated

phenotypes (Lupp and Ruby, 2005). However, for

both, RsaL and LitR, effects on maximum AHL

production and the potential ecological relevance

of it have not been determined experimentally yet.

In a second step, we combined the deterministic

behaviour of a single cell with a stochastic distri-

bution of regulators in a number of cells, allowing

for simulations of more realistic populations with

some individual variations. Our study indicates

that, depending on how a regulator of Quorum

sensing systems acts on the molecular level, such a

stochastic distribution may have effects on timing

of induction and/or strength of induction, due to

the non-linearity and the interaction of the single

cells via the signalling molecule AHL.

As Quorum sensing regulation has been regarded

as a source of synchronous responses of cell pop-

ulations, the existence of stochastic heterogeneity

on Quorum sensing systems of isogenic popula-

tions has only recently been recognised ([16]).

Underlying mechanisms, as well as ecological

effects and potential benefits are far from being

understood. Generally, Quorum sensing systems

are thought to be prone to fluctuations due to often

low numbers of receptors and signals. However,

mechanisms to suppress dominance of stochastic-

ity and hence making the system more reliable

have been described (e.g. [29, 42]). There are

hints that heterogeneity of expression in QS genes

and/or QS regulated target genes may be a com-

mon phenomenon even in isogenic populations

[2, 6]. Stochastic differences between cells play a

stronger role if only a few cells are involved in the

autoinducer based decision making process, e.g. in

extreme if a single cell is induced by highly limited

mass transfer in a pore (diffusion sensing) [17].

Our study investigates, how regulators of Quorum

sensing can cause heterogeneity in Quorum sens-

ing dynamics.

Such a heterogeneity can be an unavoidable side

effect. However, if it causes significant phenotypic

differences, it might have an ecological purpose,

as it is often interpreted in terms of division of

work [6]. The benefit of division of work strongly

depends on the environmental conditions. It thus

seems probable that stochastic heterogeneity of

environment-dependent regulators are involved in

the emergence of molecular heterogeneities be-

tween cells. Therefore, cells may not just suppress

noise in their Quorum sensing systems, but rather

control its level or its impact on the Quorum

sensing regulation [10].
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in the concentration of factors regulating Quorum

sensing influence inter-cell heterogeneity of Quo-

rum sensing response. Dependent on the mode

of action of the regulator respectively the combi-

nation of different regulators, both timing and/or

strength of the response can vary. Stochastic dif-

ferences in timing of Quorum sensing induced

mobility resulting in a removal of single cells

from colonies has been reported for Pseudomonas
putida ([6]). In other bacteria rather the expression

levels of Quorum sensing regulated genes seem

to vary ([16]), although the design of the exper-

imental studies often impedes a clear discrimina-

tion. In almost all cases both the causes of the

heterogeneity and the ecological or evolutionary

benefit of heterogeneity are unknown yet. By

investigating the potential impact of regulators on

heterogeneity, our study aims to shed some light

on these questions. The differences of the Quorum

sensing response between the cells caused by the

regulators, i.e., the strength of heterogeneity, was

limited in our simulations. However, they might

be larger in the real world, as they depend on the

variability of the regulator concentration, and on

the degree of coupling between cells. The latter,

which is mediated by the Quorum sensing signal,

has been predicted to be controlled by the cells

dependent on the environmental conditions ([14]).

Interestingly, [14] predicted in a mathematical

model that fluctuations on the molecular level,

which are regulated by environmental factors,

cause a switch between all-or-none and graded

responses of Quorum sensing systems on a pop-

ulation level. Stochastic heterogeneities between

cells can also impact the functionality of Quorum

sensing systems, e.g. on the induction threshold on

a population level [42]. It is thus highly desirable

to get a deeper understanding of sources and

outcome of Quorum sensing associated stochastic

heterogeneity.

Our analysis focuses on typical AHL based Quo-

rum sensing systems, but also Quorum sensing

systems with other architectures exist. The ex-

act net effect of different regulation mechanisms

depends on the design of the complete cellu-

lar regulation network (see e.g. [3]). As most

pathogens and many other bacteria relevant from a

human perspective use Quorum sensing to regulate

virulence or factors beneficial for human health,

the qualitative and quantitative understanding of

the underlying mechanisms are critical for the

development of adequate treatment strategies. Fur-

thermore, knowledge of the behaviour of such

motifs is required in the growing field of synthetic

biology (see e.g. [4]). Thus, the qualitative and

quantitative impact of regulators in QS systems

should be investigated in more depth, both exper-

imentally and theoretically.

VI. SUPPLEMENTARY INFORMATION

Figures 11 and 12 allow for the comparison of

the qualitative behaviour of the full basic model

system with the basic system with quasi-steady

state assumption. Please note that the large initial

differences are due to the fact that we continued

to take our “standard initial values”, which are

not close to the quasi-steady state and needs some

adaptation first.

Fig. 11: Simulation of the basic model (Eq.(1)-

(6)) with parameters from Table IV, αl = 0.001
and initial conditions xe = 10 and xc = r = y1 =
y2 = l = 0.
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Fig. 12: Simulation of the basic model (Eq.(1)-

(6)) with parameters from Table IV, αl = 0.001
and initial conditions xe = 10 and xc = r =
y1 = y2 = l = 0. The variables xqssac and xqssae

correspond to the basic system with quasi-steady

state assumption.
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Abstract—Metastasis is a complex and multi-step
stochastic process. The study of the probabilities of
generating a tumor from a primary site in another
organs is the aim of this work. Based on statistics of
National Institute of Cancer of Argentina (INC), a
characterization of the routes of metastasis for the
principal organs is presented by using Absorbing
Markov chains. The metastasis propagation from
different primary sites towards secondary and ter-
tiary sites is also shown, emphasizing the relation
and analysis about absorbing states.
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I. INTRODUCTION

Cells have a specific and stipulated time

of death (apoptosis) and reproduction rate to

maintain cell balance. A tumor is the result of an

uncontrolled growth of abnormal cells or when

cells lose the ability to die. These cells form

accumulations that affect the normal functioning

of the organs, and can spread to other organs so

as to cause metastasis. Metastasis is the spread of

circulating tumor cells (CTC) from a primary site

to near or distant locations by different ways. This

depends on the organ and its initial localization

through either the bloodstream or the lymphatic

system (a collection of vessels that carry fluid

and immune cells)[1], [2].

Markov chains are used to model different

natural systems based on statistics and applications

([3], [4]), making the dynamic and continuous

processes where the states depend only on the

actual state and not as a result of previous

events[5]. Recently, some works ([6], [7]) give

different approaches by using Markov chains

in metastasis processes from the lung, where

mechanisms of progression and time scales of

systemic disease are quantized. In the present

work, we use absorbing Markov chains to analyse

the metastasis transmission of solid tumors of

different organs: from the primary site to a

secondary site (called metastasis from primary

site), and from there to a tertiary site (metastasis

of secondary site) for the principal cancers in

Argentina. The probabilities of having a tumor in

a tertiary or secondary site from a primary site

and their differences depending on each organ is

analysed, as well as the probabilities that from a

primary site ends in those organs that have very

low probability of spreading CTCs are calculated.

Finally, the steps (meaning the stages between

metastasis from a primary to secondary or tertiary

6
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site) based in absorbing states (in our case, organs

with low probability of generating metastasis)

are found. The aim of the present work is to

understand how the organs are related to each

other giving a characterization of the routes of

metastasis.

The metastasis are different for males and fe-

males. However the analysis performed here is

similar in both cases, although different organs are

affected (ovaries, vagina or uterus in females and

prostate or testicles in males). In this paper we

refer only the metastasis in males as a case study.

This work is organized as follow: In Section

II a brief description of the methodology is

given; Section III is devoted to describe transition

matrices and absorbing states; The transition

matrix for tertiary sites is shown in Section IV;

An analysis of expected number of steps and

probability of absorption by absorbing states

is found in Section V; Finally, comments and

conclusions are drawn in Section VI.

II. METHODOLOGY

The Markov chain transition matrix P was

assembled and it is determined by the number

of organs with higher probabilities of developing

metastasis. This matrix shows the probability that

an organ can be reached by CTCs[8] from another

organ and has been built under the assumption of

developing metastasis. Up to now, three leading

routes of metastasis are known: Hematogenous
(blood circulation), lymphatic and transcoelomic.

With this information, the statistics of National

Institute of Cancer of Argentina[9] of the principal

tumors and quantitative data on the main organs

affected depending on the primary site (obtained

from National Cancer Institute at the National

Institutes of Health of United States)[10], we

performed the graph (depicted in Fig. 1) showing

the most common tumors and the principal sites

where they can generate metastasis.

The graph was designed by free software

Visone 2.15[11]. The size of the nodes represents

Fig. 1: Graph for the principal links of metastasis

for tumors in males based in statistics. The name

of the organs were referred by a symbol as de-

picted in Table I.

the proportion of cases for the main tumors

mentioned in reference [9]. The connection of

these nodes (the links) is based on the main sites

of metastasis, for each specific organ, according to

the data of the reference [10]. Besides, the shapes

of the nodes depends on the amount of linked

organs: Circle, 6 or more organs to propagate

metastasis; Rhombuses, 4 or more; Hexagons, 2

or more; and finally Octagons, organs with low

probability of propagate metastasis. It is important

to note that the organs with low probability of

generating metastasis, compared to the rest, are

shown in the graph as a link on themselves (not to

be confused as to metastasize about themselves).

In Fig. 1, it can be seen that the Lung is the

principal link. Although the principal primary

sites are Prostate, Colon or Rectum, Lung tumor

is the most common but usually comes from

some primary site, being the principal secondary

site ([12], [13]).
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TABLE I: Symbols for organs

ORGAN NAME

Adrenal Gland A

Bladder Bl

Bone Bo

Brain Bra

Breast Bre

Colon/Rectum CR

Gallbladder G

Kidney K

Liver Li

Lung L

Melanoma M

Pancreas Pa

Peritoneum Pe

Prostate Pr

Skin/Muscle SM

Stomach St

Testicular Te

Thyroid Th

III. TRANSITION MATRIX, PROBABILITIES AND

ABSORBING STATES

A. Transition matrix and its probabilities

The characterization of metastatic evolution is

developed by using Markov chains, based on a

network construction from a primary site.

Let X0 (primary site) be the organ where the

tumor was originated, and X1 the state of the pro-

cess where the new tumor is formed coming from

the primary site and develop metastasis (Note: The

transition time, sub index of X , does not refer

to a calendar time, it refers to a general time in

which has already been observed a new tumor).

The probability that an organ develops metastasis

from another one is:

pij = P [X1 = j|X0 = i] (1)

where i, j = 1, 2, 3...,m number of organs.

The values pij are called transition probabili-
ties[14] and have two properties:

•
∑m

j=1 pij = pi1 + pi2 + . . .+ pim = 1, since

the system must be in one of these states m,

the sum of probabilities must be equal to 1.

This means that the elements in any row of

the matrix transition must add 1.

• Each element pij ≥ 0

Based in the transition probabilities, the transi-
tion matrix P is given by:

P = [pij ], P ∈ R
m×m (2)

The routes for metastasis from one organ to

another are known; although, in the literature,

no information is available about their relative

likelihood on which organs have an advantage over

others. Given this slight uncertainty, the qualitative

information ([10], [15]), we assume an equal prob-

ability that an organ X0 (primary site), reaches

other one X1 (secondary site), this is under the

assumption a metastasis is detected and based

in the possibles routes as previously discussed.

For other cases, where there are not predominant

organs for metastasis from a specific primary site

(according references [10], [12] and [13]), we will

assume zero probability in order to work only the

predominant sites of metastasis.

Looking at matrix P , if a tumor of a primary

site, for example Prostate (Fig. 3a), has a non

null probability of developing a new tumor in a

secondary site, this will be 1/4 for L, Li, Bo
and Pe. The same considering a tumor in Stomach

(3b), that probability will be 1/3 for Li, Pe and

L.

The matrix P is given in the Appendix

A. Another way to visualize the matrix P is

displayed in the Fig. 2, where, in RGB scale,

the probabilities expressed in Eq. 2 can been seen.

B. Absorbing states

It is worth to notice the existence of absorbing

states in the system, these are states where it is

impossible to leave and are found if any row of

the matrix satisfies[14]:

pii = 1 and pij �= 0 (if i �= j) (3)
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Fig. 2: Visualization of the transition matrix, in

gray scale, for secondary sites.

The properties of an Absorbing Markov chain

are:

• At least, it has one absorbing state

• The absorption ends in an absorbing state

with probability 1

In this work, the transition matrix was per-

formed from the principal organs with higher

probability for developing metastasis. However,

for some organs, if the tumor is originated there

or if it is developed elsewhere (first or secondary

sites), do not evolve as metastasis from there. The

absorbent states are organs that rarely metastasize,

i.e. these are organs do not generate metastasis

in the next step of the transition matrix. The

Absorbing States of P are: Bone (Bo), Brain
(Bra), Liver (Li), Peritoneum (Pe), Adrenal
Gland (A) and Skin/Muscle (SM ).

IV. TRANSITION MATRIX FOR TERTIARY SITES

(SECOND METASTASIS)

For the process to move from state i to state j
in two steps, it must go through an intermediate

state k. If a tumor in a secondary site spreads to

a new organ (tertiary site), this will be labelled as

X2. The probability of generate a new tumor in a

tertiary site from a primary site is given by:

p
(2)
ij = P [X2 = j|X0 = i] =

m∑
k=1

pik.pkj (4)

Li

Bo

Pr

25%

��
25%

��

25%

��

25% �� L

Pe

(a)

L

St

33.33%

��

33.33%

��

33.33% �� Pe

Li

(b)

Fig. 3: Probabilities (in percentage) of metastasis

in organs from Prostate (a) and Stomach (b) cancer

respectively.

where i, j, k = 1, 2, 3...,m number of organs.

Similarly Eq. 2, the new transition matrix for
Second Step P (2) is built for males and this is

given by:

P (2) = [p
(2)
ij ], P (2) ∈ R

m×m (5)

Eq. 5 gives information how to obtain a second

metastasis from the original tumor going through

the possible connections. Although the metastasis

from metastasis is unlikely, some clinical evidence

was found in cites [16], [17]. The matrix P (2) is

shown Appendix B.

Therefore, P (2) allows to find the probabilities

of metastasis in a tertiary site from a primary site.

For sake of clarity, examples are shown in Fig. 4a

and 4b.

A global analysis of the matrix P (2) shows

that if the primary site is the Lung (L), absorbing
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(a)

(b)

Fig. 4: Probabilities (in percentage) for tumors in

tertiary site from (a) Colon/Rectum (CR) and (b)

Lung (L).

states are the most probable tertiary sites as

discussed in Sec. 3 (Bo,Bra, Li, Pe,A and

SM ). This remarks the role of Lung as the

principal link between organs[18]. For other

organs (disregarding the absorbing states), if the

tumor is developed, there is some probability to

generate metastasis in a tertiary site.

In sum, according with recent statistics[8],

the principal tumors in the population are Lung

(L) and Colon/Rectum (CR) tumor. In the

P matrix can be observed the probabilities

for evolving a tertiary site tumor from those

two. If Colon/Rectum tumor is a primary site,

the principal tertiary sites are Liver (Li) and

Peritoneum (Pe). And, if there is a Lung tumor,

the principal tertiary sites are the absorbing

states (Bo,Bra, Li, Pe,A and SM ), as it was

previously discussed. This can be visualized in

the Fig. 5.

Fig. 5: Visualization of the transition matrix, in

gray scale, for tertiary sites.

V. ANALYSIS OF THE EXPECTED NUMBER OF

STEPS AND PROBABILITY OF ABSORPTION BY

ABSORBING STATES

When the processes are absorbing, the number

of steps before the system is absorbed, as well

as, the probability of absorption of any absorbing

state can be found. In order to find this process,

each transition matrix will be represented in its

canonical form[14], called J . It is composed by

4 sub-matrices: N (this sub-matrix contains the

probabilities are moving from a non-absorbing

state to another non-absorbing state), A (sub-

matrix that contains the probabilities of going from

a non-absorbing state to another absorbing state),

O (zero sub-matrix) and I (identity sub-matrix).

J=

(
N A

O I

)
The matrices with smaller probability contain

elements that originate a absorbing states and n
non-absorbing states. There are a+ n = m states
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of the system.

Let be the fundamental matrix F = I + N +
N2+· · · = (I−N)−1[14]. We can calculate from a

transient state the expected number of steps before

being absorbed by an absorbing state. Let ti be

the expected number of steps before the chain is

absorbed when this begins in a transient state i,
and let t̄ be the column vector whose i− th entry

is ti. Then, the vector t̄ can be estimated by the

following expression[14]:

t̄ = F. c̄ (6)

where c̄ is vector whose entries are all one.

t̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

steps

L 2.237
Bre 1.559
Bla 2.810
St 1.745
Th 2.810
M 1.447
K 2.118
Pr 1.559
CR 1.745
Pa 1.745
Te 1.745
G 1.745

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In t̄ are shown the tumors with more than one

stage of metastasis (given the nearest integer,

one stage or a step is the first metastasis in

a secondary site, and two steps is the second

metastasis in a tertiary site). Bladder and Thyroid

have a higher number of steps, Lung and Kidney

have the maximal steps around two, this coincides

with the main trend of mortality in males due to

these tumors[12], [21].

In addition, the probability of absorption of any

non-absorbing state by any absorbing states can be

calculated, and this is given by[14]:

Z = F.A (7)

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bo Bra Li Pe A SM

L 0.190 0.120 0.283 0.169 0.133 0.10
Bre 0.297 0.280 0.320 0.042 0.033 0.025
Bla 0.164 0.128 0.322 0.197 0.068 0.118
St 0.063 0.040 0.427 0.389 0.044 0.033
Th 0.164 0.128 0.322 0.197 0.068 0.118
M 0.238 0.224 0.256 0.033 0.026 0.220
K 0.095 0.060 0.141 0.084 0.566 0.050
Pr 0.297 0.030 0.320 0.042 0.283 0.025
CR 0.063 0.040 0.427 0.389 0.044 0.033
Pa 0.063 0.040 0.427 0.389 0.044 0.033
Te 0.063 0.040 0.427 0.389 0.044 0.033
G 0.063 0.040 0.427 0.389 0.044 0.033

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, the matrix Z shows the probability that

a specific organ (not belonging to the absorbing

states) is absorbed by an absorbing specific organ.

If we take as a reference the estimated sum of

all elements of each column (i.e., each absorbing

state), the main probabilities are Liver(Li) and

Bones (Bo), following by Peritoneum (Pe) and

Adrenal Gland (A).

VI. CONCLUSIONS

In order to search new ways to understand

the metastasis process and its interactions among

organs sites of possible metastasis, Absorbing

Markov chains were used as a mathematical tool to

achieve this goal. A characterization of the route of

metastasis was developed. The Lung as the main

connector between the primary site and the tertiary

site, with defined probabilities in emphasized.

The graphs and their connections, in order to

develop the transition matrices for the occurrence

of tumors, are a good approximation to the reality.

These matrices exhibit the connections and the

existence of absorbing states in organs with lower

probabilities (almost null) to generate metastasis

([19], [20]) in secondary sites, absorbing states

represent organs that are not the source of

metastasis (sponges as Newton calls in [6]).

By the analysis of the expected steps number

and the probability of absorption by absorbing

states, it is possible to predict the tertiary sites

from the secondary sites[22] (or at least estimated
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them). Furthermore, a quantized approximation

of the transition matrices of second step P (2) can

be obtained. It is a result useful for treatments

and therapies given its predictive character. Also,

we know that as we get more data on statistics

of metastasis, our analysis will be more accurate.

This can be through statistical methods or by

predominant tumor cells (Stems, progenitors

or differentiated) prevailing in each organ (or

migrated from other organs such as CTCs). The

latter is our immediate study object.

On the other hand, by the properties of

Absorbing Markov chains, it was found that

in no more than 2 steps (second metastasis in

tertiary site) any absorbing states are reached:

Bo,Bra, Li, Pe,A and SM as can be seen in

the references [23], [24], [25], [26] and [27]. This

also can be seen as a result from the point of

view of our model, the main point is the fact that

in 3 steps (P 3), we reach an absorbing state with

a high probability (see Appendix C), where the

sum of probabilities of each row, in the columns

of absorbing organs, is near to 1.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑6
abs=1 pabs

L 0.845
Bre 0.928
Bla 0.790
St 0.905
Th 0.790
M 0.943
K 0.857
Pr 0.928
CR 0.905
Pa 0.905
Te 0.905
G 0.905

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Where abs = Bo, Bra, Li, Pe, A and SM (The absorbing
states).

This analysis is quite similar for females,

taking into account the specific organs (Ovaries,

Vagina and Uterus).
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APPENDIX

A. Matrix P : Probabilities to generate metastasis in a secondary site from a primary site.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L Bre Bla St Th M K Pr CR Pa Te G Bo Bra Li Pe A SM

L 0 1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

1
17

Bre
1
4

0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

0 0 0

Bla
1
3

0 0 1
3

0 1
3

0 0 0 0 0 0 0 0 0 0 0 0

St
1
3

0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

1
3

0 0

Th
1
3

0 0 1
3

0 1
3

0 0 0 0 0 0 0 0 0 0 0 0

M
1
5

0 0 0 0 0 0 0 0 0 0 0 1
5

1
5

1
5

0 0 1
5

K
1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0

Pr
1
4

0 0 0 0 0 0 0 0 0 0 0 1
4

0 1
4

0 1
4

0

CR
1
3

0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

1
3

0 0

Pa
1
3

0 0 0 0 0 0 0 0 0 0 0 0 0 1
3

1
3

0 0

Te
1
3

0 0 0 0 0 0 0 0 0 0 0 1
3

0 1
3

0 0 0

G
1
3

0 0 0 0 0 0 0 0 0 0 0 1
3

0 1
3

0 0 0
Bo 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Bra 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Li 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Pe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

SM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B. Matrix P (2): Probabilities to generate metastasis in a tertiaryy site from a primary site.

P (2)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L Bre Bla St Th M K Pr CR Pa Te G Bo Bra Li Pe A SM

L
53
255

0 0 2
51

0 2
51

0 0 0 0 0 0 71
510

29
340

101
510

2
17

7
68

6
85

Bre 0 1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

9
34

9
34

9
34

1
68

1
68

1
68

Bla
8
45

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

22
255

22
255

151
765

20
153

1
51

22
255

St 0 1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

6
17

6
17

1
51

1
51

Th
8
45

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

22
255

22
255

151
765

20
153

1
51

22
255

M 0 1
85

1
85

1
85

1
85

1
85

1
85

1
85

1
85

1
85

1
85

1
85

18
85

18
85

18
85

1
85

1
85

18
85

K 0 1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

1
34

9
17

1
34

Pr 0 1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

1
68

9
34

1
68

9
34

1
68

9
34

1
68

CR 0 1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

6
17

6
17

1
51

1
51

Pa 0 1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

6
17

6
17

1
51

1
51

Te 0 1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

6
17

1
51

6
17

1
51

1
51

1
51

G 0 1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

1
51

6
17

1
51

6
17

1
51

1
51

1
51

Bo 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Bra 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Li 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Pe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

SM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C. Matrix P (3)

P (3)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L Bre Bla St Th M K Pr CR Pa Te G Bo Bra Li Pe A SM

L
16
765

5
409

5
409

5
409

5
409

5
409

5
409

5
409

5
409

5
409

5
409

5
409

18
113

55
522

43
186

1
7

41
356

33
364

Bre
49
943

0 0 1
102

0 1
102

0 0 0 0 0 0 268
941

35
129

183
611

1
34

7
272

3
170

Bla
53
765

8
765

8
765

2
85

8
765

2
85

8
765

8
765

8
765

8
765

8
765

8
765

21
170

19
180

15
59

41
255

3
67

77
765

St
53
765

0 0 2
153

0 2
153

0 0 0 0 0 0 20
431

23
809

244
611

19
51

7
204

2
85

Th
53
765

8
765

8
765

2
85

8
765

2
85

8
765

8
765

8
765

8
765

8
765

8
765

21
170

19
180

15
59

41
255

3
67

77
765

M
18
433

0 0 2
255

0 2
255

0 0 0 0 0 0 18
79

28
129

98
409

2
85

7
340

91
425

K
53
510

0 0 1
51

0 1
51

0 0 0 0 0 0 41
589

29
680

91
919

1
17

75
136

3
85

Pr
49
943

0 0 1
102

0 1
102

0 0 0 0 0 0 268
941

10
469

183
611

1
34

75
272

3
170

CR
53
765

0 0 2
153

0 2
153

0 0 0 0 0 0 20
431

23
809

244
611

19
51

7
204

2
85

Pa
53
765

0 0 2
153

0 2
153

0 0 0 0 0 0 20
431

23
809

244
611

19
51

7
204

2
85

Te
53
765

0 0 2
153

0 2
153

0 0 0 0 0 0 20
431

23
809

244
611

19
51

7
204

2
85

G
53
765

0 0 2
153

0 2
153

0 0 0 0 0 0 20
431

23
809

244
611

19
51

7
204

2
85

Bo 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Bra 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Li 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Pe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

SM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Abstract—In this work, we present a numerical
scheme for the approximate solutions of the one-
dimensional parabolic convection-diffusion model
problems which arise in biological models. The pre-
sented method is based on the Laguerre collocation
method used for ordinary differential equations.
The approximate solution of the problem in the
truncated Laguerre series form is obtained by this
method. By substituting truncated Laguerre series
solution into the problem and by using the matrix
operations and the collocation points, the suggested
scheme reduces the problem to a linear algebraic
equation system. By solving this equation system,
the unknown Laguerre coefficients can be computed.
The accuracy and efficiency of the method is studied
by comparing with other numerical methods when
used to solve some numerical experiments.

Keywords-Convection-diffusion equation models,
Parabolic problem, Laguerre collocation method.

I. INTRODUCTION

Diffusion models form a reasonable basis

for studying insect and animal dispersal and

invasion, which arise from the question of

persistence of endangered species, biodiversity,

disease dynamics, multi-species competition so

on. Convection-diffusion problem is also a form

of heat and mass transfer in biological models

[1-3].

Fig. 1. (a) Flow between imaginary compartments in a
continuous one-dimensional system. (b) Discrete grid system
used in two-dimensional transport models. (c) A close-up
of five grid points showing the similarity to compartment
models.

Compartment models are general framework

7
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Fig. 2. A conceptual rate equation with respect to the convection-diffusion model

that has many applications in biology, ecosystems

and enzyme kinetics which can be mostly shown

by forrester diagrams. The system is decomposed

into flows of material as possibly large number

of discrete compartments which are very useful.

Conversely, it is also useful for the quantities

nominally not flow, for instance, blood or water

pressure in animal and plant physiological sys-

tems. Furthermore, complex interconnection net-

works can be addressed by these type of models

with respect to link many of them together in many

different complicated ways (Fig. 1).

On the other hand, in transport models, we

have a physical quantity, such as energy i.e. heat

or a quantity of matter, that flows from spatial

point to point. There are many forces that could

influence the flow of the matter, but the following

simplified view uses two that will illustrate the

qualitative model formulation. Convection moves

the substance with a physical flow of water from

point to point (i.e. river flow). Diffusion moves

a substance in any direction according to the

concentration of the substance around each point

(Fig. 2) [4-5].

In this study, we consider the one-dimensional

parabolic convection-diffusion problem

∂u

∂t
=

∂2u

∂x2
+A(x)

∂u

∂x
+B(x)u+ f(x, t),

0 ≤ x ≤ l, 0 ≤ t ≤ T,
(1)

with the initial conditions

u(x, 0) = g(x), 0 ≤ x ≤ l < ∞, (2)

and the boundary conditions

u(0, t) = h(t), u(l, t) = K(t), 0 ≤ t ≤ T < ∞
(3)

where f(x, t), A(x), B(x), g(x) and h(t) are func-

tions defined in [0, l] × [0, T ]; l and T are ap-

propriate constants. In this study, we develop the

Laguerre collocation method given in [9,10] and

use to obtain the approximate solution of Eq. (1)

in the truncated Laguerre series form

u(x, t) =

N∑
r=0

N∑
s=0

ar,sLr,s(x, t); (4)

Lr,s(x, t) = Lr(x)Ls(t)

where ar,s, r, s = 0, ..., N, are the unknown La-

guerre coefficients and Ln(x), n = 0, 1, 2, ..., N
are the Laguerre polynomials defined by [6-8]

Ln(x) =

n∑
k=0

(−1)k

k!

(
n

k

)
xk, n ∈ N, 0 ≤ x < ∞.

(5)

II. NUMERICAL METHOD

We first consider the series (4) for N = 2, as

follows:

u(x, t) =

2∑
r=0

2∑
s=0

ar,sLr(x)Ls(t)

= a00L0(x)L0(t) + a10L1(x)L0(t)

+a20L2(x)L0(t) + a01L0(x)L1(t) (6)

+a11L1(x)L1(t) + a21L2(x)L1(t)

+a02L0(x)L2(t) + a12L1(x)L2(t)

+a22L2(x)L2(t)

Then we can generalize the approximate solu-

tion (6) for any truncated limit N and can write

the obtained series in the matrix form

[u(x, t)] = L(x)L(t)A (7)
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where

L(x) =
[
L0(x) L1(x) · · · LN (x)

]
,

L(t) =

⎡⎢⎢⎢⎣
L(t) 0 · · · 0
0 L(t) · · · 0
...

...
. . .

...

0 0 · · · L(t)

⎤⎥⎥⎥⎦
and

A = [a0,0 a0,1 · · · a0,N · · · aN,0 aN,1 · · · aN,N ]T

Also, we can put the matrix L(x) in the matrix

form

L(x) = X(x)H (8)

where X(x) and H are defined as

X(x) =
[
1 x1 · · · xN

]
and

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)0

0!

(
0
0

)
0 · · · 0

(−1)0

0!

(
1
0

)
(−1)1

1!

(
1
1

)
· · · 0

.

.

.

.

.

.
.
.
.

.

.

.

(−1)0

0!

(
N
0

)
(−1)1

1!

(
N
1

)
· · · (−1)N

N!

(
N
N

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Moreover, it is clearly seen that the relations

between the matrix X(x) and its derivatives X′(x)
and X′′(x) are

X′(x) = X(x)B and X′′(x) = X(x)B2 (9)

where

B =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · N
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ .

Then, by using the expressions (8) and (9) we

easily find the matrix relations

L′(x) = X(x)BH and L′′(x) = X(x)B2H (10)

L(t) = X(t)H and L
′
(t) = X(t)BH (11)

Now, by means of the relations (7)-(11) we obtain

the following matrix forms:

[u(x, t)] = L(x)L(t)A = X(x)HX(t)HA (12)

[ux(x, t)] = L′(x)L(t)A

= X(x)BHX(t)HA (13)

[uxx(x, t)] = L′′(x)L(t)A

= X(x)B2HX(t)HA (14)

[ut(x, t)] = L(x)L(t)A

= X(x)HX(t)BHA (15)

By putting the expressions (8), (12), (13), (14) and

(15) into Eq. (1), we obtain the matrix equation

{X(x)HX(t)B − X(x)B2HX(t)

−A(x)X(x)BHX(t) (16)

−B(x)X(x)HX(t)}HA = f(x, t)

or briefly,

W(x, t)A = f(x, t)

Besides, by substituting the collocation points de-

fined by

xi =
l

N
i, tj =

T

N
j, i, j = 0, 1, 2, ..., N,

into the Eq.(16), we have the system of the matrix

equations W(xi, tj)A = f(xi, tj) or briefly the

fundamental matrix equation

WA = F =⇒ [W;F]

By using the same procedure for the initial and

boundary conditions we obtain the matrix relations

for

i, j = 0, 1, ..., N :

u(xi, 0) = X(xi)HX(0)HA = g(xi) = λi

u(0, tj) = X(0)HX(tj)HA = h(tj) = μj

u(y, tj) = X(y)HX(tj)HA = K(tj) = γj

or briefly,

UA = [λ]; [U;λ],VA = [μ]; [V;μ],ZA = [γ]; [Z; γ].

To obtain the approximate solution of Eq. (1) un-

der conditions (2) and (3), we form the augmented

matrix
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TABLE I
COMPARISON OF THE ABSOLUTE ERRORS WITH TCM AND LCM FOR N = 25, 50 IN EXAMPLE 2.

TCM LCM TCM LCM
x E25 E25 E50 E50

0.0 0.69500E-17 7.000000E-13 0.10000E-18 0.0000000000

0.1 0.15886E-03 3.681538E-06 0.15886E-03 1.040134E-07

0.2 0.63428E-03 2.207214E-05 0.63428E-03 4.157153E-08

0.3 0.14208E-02 4.966673E-05 0.14208E-02 9.332459E-08

0.4 0.25078E-02 5.150761E-05 0.25078E-02 1.652982E-05

0.5 0.38799E-02 2.543790E-11 0.38799E-02 2.569605E-15

0.6 0.55168E-02 1.324508E-04 0.55168E-02 3.676180E-06

0.7 0.73934E-02 3.734395E-04 0.73934E-02 4.964259E-06

0.8 0.94802E-02 7.505606E-04 0.94802E-02 6.423988E-06

0.9 0.11744E-01 1.291408E-03 0.11744E-01 8.044241E-07

1.0 0.14146E-01 2.023575E-03 0.14146E-01 9.812752E-07

[W̃; F̃] =

⎡⎢⎢⎣
W;F
U;λ
V;μ
Z; γ

⎤⎥⎥⎦
Hence, the unknown Laguerre coefficients are
computed by

A = ( ˜̃W)−1 ˜̃F

where [ ˜̃W; ˜̃F] is obtained by using the Gauss

elimination method and then removing zero rows

of augmented matrix [W̃; F̃] [9-11]. By substitut-

ing the determined coefficients into Eq. (4), we

have the Laguerre series solution

uN (x, t) =

N∑
r=0

N∑
s=0

ar,sLr,s(x, t),

Lr,s(x, t) = Lr(x)Ls(t).

III. NUMERICAL RESULTS

Test case[11]

∂u

∂t
=

∂2u

∂x2
+ (2x+ 1)

∂u

∂x
+ x2u+

ex+t

ε
,

0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (17)

with conditions

u(x, 0) =
ex

ε
, 0 ≤ x ≤ 1

u(0, t) =
et

ε
, u(y, t) =

e1+t

ε
0 ≤ t ≤ 1,

with ε = 2.10−4 and the exact solution of the

problem is u(x, t) = ex+t

ε . From Table 1, it is seen

that the errors from Laguerre Collocation Method

(LCM) are in general less than Taylor Collocation

Method (TCM).
Table I. shows the comparison between absolute

errors of LCM solutions and TCM solutions for

different N values.

IV. CONCLUSION

We have presented and illustrated the Laguerre

collocation method is based on computing the co-

efficients in the Laguerre expansion of solution of

a one dimensional parabolic convection-diffusion

model problems. A considerable advantage of the

method is that the Laguerre polynomial coeffi-

cients of the solution are found very easily by

using computer programs; Maple and Matlab.
Illustrative example is included to show the

validity and applicability of the technique. Shorter

computation time and lower operation count re-

sults in reduction of cumulative truncation errors

and improvement of overall accuracy.
As a result, the method can also be extended to

the system of reaction-diffusion-advection model

problems with their residual error analysis, but

some modifications are required.
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[11] Ş. Yüzbaşı, N. Şahin, Numerical solutions of
singularly perturbed one-dimensional parabolic
convection-diffusion problems by the Bessel collocation
method, Appl. Math. Comput. 174(2006) 910–920.
doi:http://dx.doi.org/10.1016/j.amc.2013.06.027

82 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WT

Bifurcations in valveless pumping techniques 
from a coupled fluid-structure-

electrophysiology model in heart development

Nicholas A. Battista1, Laura A. Miller2

1Dept. of Mathematics and Statistics, The College of New Jersey

Ewing Township, NJ, USA

battistn@tcnj.edu
2Dept. of Biology, Dept. of Mathematics, University of North Carolina at Chapel Hill

Chapel Hill, NC, USA

lam9@unc.edu

Abstract—We explore an embryonic heart model
that couples electrophysiology and muscle-force gen-
eration to induce flow using a 2D fluid-structure in-
teraction framework based on the immersed bound-
ary method. The propagation of action potentials
are coupled to muscular contraction and hence
the overall pumping dynamics. In comparison to
previous models, the electro-dynamical model does
not use prescribed motion to initiate the pumping
motion, but rather the pumping dynamics are fully
coupled to an underlying electrophysiology model,
governed by the FitzHugh-Nagumo equations. Per-
turbing the diffusion parameter in the FitzHugh-
Nagumo model leads to a bifurcation in dynamics of
action potential propagation. This bifurcation is able
to capture a spectrum of different pumping regimes,
with dynamic suction pumping and peristaltic-like
pumping at the extremes. We find that more bulk
flow is produced within the realm of peristaltic-like
pumping.

Keywords-valveless pumping; heart development;
immersed boundary method; fluid-structure inter-
action; mathematical biology; biomechanics

I. INTRODUCTION

Various kinds of hearts are found throughout

the animal kingdom [1], [2], [3]. In particular

many invertebrates have valveless, tubular hearts

from their infancy throughout adulthood [4]. These

tubular hearts are similar to vertebrate heart mor-

phologies during their first stage of vertebrate heart

morphogenesis, e.g., the linear heart tube stage.

We begin our discussion of heart tube morpholo-

gies by considering the evolution of hearts in the

animal kingdom.

Figure 1 shows the evolution of hearts from

tunicates to humans. Tunicates have an open cir-

culatory system from infancy through adulthood,

in which blood is pushed through out the organism
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WTFig. 1: Figure adapted from Grosskurth et al. [5] illustrating the evolution of hearts from the valveless

heart tubes in the open circulatory systems of tunicates to the adult multi-chambered-valvular of

vertebrates. Tunicate, amphioxus, and lamprey images adapted from [6], [7], [8], respectively.

by a valveless-tubular heart [1], [9], which is com-

posed of only a single layer of myocardial cells.

Next on the evolutionary chain is the amphioxus.

The amphioxus heart is a rostrocaudally extended

tube from its infancy through adulthood [10].

Similar to the tunicate heart, an amphioxus heart

consists only of a monolayer of myocardial cells.

The amphioxus heart has no chambers, valves,

endocardium, epicardium, or other differentiated

features of vertebrate hearts. Still, the amphioxus

is regarded as the closest living invertebrate rela-

tive to vertebrates [11] and appears fish-like.

Furthermore, Figure 1 illustrates an evolutionary

morphological change to multi-chambered hearts

in a vertebrate - the lamprey. Lampreys are jawless

fishes that are a very ancient lineage of verte-

brates [12]. The lamprey is considered to have

four heart chambers, which are the sinus venosus,

atrium, ventricle, and conus arteriosus [13]. This

is similar as to the zebrafish heart, which con-

tains four chambers - the sinus venosus, atrium,

ventricle, and bulbus arteriosus. Lamprey hearts

also are valvular pumping systems, containing

valve leaflets between chambers [14]. Moreover,

lampreys are the first organism to develop an

endocardial layer in addition to a myocardium,

as well as, the first organism to develop cardiac

valves [15]. An evolutionary depiction of heart

morphology is illustrated in Figure 2, which was

adapted from [16]. Note that the additional layer

of endocardial cells in lamprey hearts is present

during its associated linear heart tube stage and

make the heart noticeably more stiff than the tuni-

cate tubular hearts, not including the pericardium.

However, as discussed, the vertebrate embryonic

heart begins as a valveless tube, similar to those

in various invertebrates, such as urochordates and

cephalochordates [17], [18], making invertebrates

like sea squirts a possible model for heart develop-

ment [19]. Historically, the pumping mechanism

in these hearts has been described as peristalsis

[17], [20], while more recently, dynamic suction

pumping (DSP) has been proposed as a novel

cardiac pumping mechanism for the vertebrate

embryonic heart by Kenner et. al. in 2000 [21],

and later declared the main pumping mechanism in

vertebrate embryonic hearts by Forouhar et. al. in

2006 [22]. Debate over which is the actual pump-
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Fig. 2: Figure illustrating the phylogenetic rela-

tionship and general heart structure of the Chor-

date subphyla. Cephalochordates, like amphioxus,

have a series of four peristaltic vessels that serve

as a pump, while tunicates have a single-chamber

pump, which is composed of a single layer of

myocardium (red) surrounded by stiff pericar-

dial layer (pink). The earliest vertebrates, e.g.,

lampreys, have at least a two-chambered heart

composed of a layer of cardiac myocardial cells

(red), an endocardial cellular layer (yellow), valves

that separate distinct chambers, and a surrounding

pericardium (pink). Figure adapted from [16].

ing mechanism of the embryonic heart continues

today, with the possibility that the mechanism may

vary between species or may be some hybrid of

both mechanisms [23], [24].

The Liebau pump, a dynamic suction pump, was

first described in 1954 [25], and was studied as a

novel way to pump water. It has not been until

the past 20 years that scientists started looking

at the pump as a valveless pumping mechanism

in many biological systems and biomedical appli-

cations, including microelectromechanical systems

(MEMs) and micro-fluidic devices. Direct applica-

tions of such pumps include tissue engineering,

implantable micro electrodes, and drug delivery

[26], [27], [28], [25].

The Womersley Number (Wo) is used to quan-

tify the effects from pulsatile flow in relation to

viscous effects. It is a dimensionless number that

is traditionally written as

Wo = L

(
2πfρ

μ

)1/2

(1)

where L is a characteristic length scale, f a

characteristic frequency, ρ the fluid density, and μ
the fluid velocity. For tubular pumping problems

the width of the tube is commonly used as the

length scale and the pulsation period is used to

compute the characteristic frequency.

With extensive industrial applications, dynamic

suction pumping has proven to be a suitable means

of transport for fluids and other materials in a

valveless system, for scales of Wo > 1 [29].

DSP can be most simply described by an isolated

region of actuation, located asymmetrically along

a flexible tube with stiffer ends. Flexibility of the

tube is required to allow passive elastic traveling

waves, which augment bulk transport throughout

the system. The rigid ends of the tube cause the

elastic waves to reflect and continue to propagate

in the opposite direction, which when coupled

with an asymmetric actuation point, can promote

unidirectional flow. DSP is illustrated in Figure 3.

Fig. 3: Schematic diagram illustrating dynamic

suction pumping [20]. (A) The flexible tube is at

rest, assuming the inflow tract (ifl) is on the left

and outflow tract (oft) on the right. (B) Active

contraction of the tube in a non-central location

along the tube. (C) Contraction induces an elastic

passive bidirectional wave to propagate along the

tube. (D) Wave reflects off rigid portion of the

tube on side nearest to contraction point. (E) The

reflected wave travels down the tube. (F) The

waves reflect off the rigid section at the far side of

the tube. Notice the the reflected wave amplitude

is smaller than the reflected wave off the other end.

Due to a coupling between the system’s ge-

ometry, material properties of the tube wall, and
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pumping mechanics, there is a complex, nonlin-

ear relationship between volumetric flow rate and

pumping frequency [29], [30], [31]. Analytic mod-

els of DSP have been developed to address this

relationship [32], [33], [34], [35], [30], [36]. Most

models use simplifications, such as an inviscid

assumption, long wave approximation, small con-

traction amplitude, and/or one-dimensional flow.

Furthermore, no analytical model has described

flow reversals, which can occur with changes in

the pumping frequency. Relaxing many of these

assumptions, physical experiments have been per-

formed to better understand DSP [31], [37], [30],

[25], as well as in silico investigations [38], [39],

[40], [29], [41], [42]. Most of the joint experimen-

tal and computational studies focus on the ‘high’

Wo regime (Wo >> 1), besides studies by Baird

et al. [41], which also looked at the biologically

relevant cases of Wo ≤ 1.

Fig. 4: The embryonic heart tube of a Zebrafish

30 hours post fertilization (hpf), courtesy of [43].

Spherical blood cells are seen within the tubular

heart. The heart tube is roughly 5 blood cells thick

in diameter.

In this paper we will investigate the pumping

phenomena that occurs as a result of a coupled

fluid-structure-electrophysiology model [44], and

the bulk flow rates thereby induced. The elec-

trophysiology model governs the propagation of

action potentials, which then are coupled to mus-

cular contraction, and hence the overall pumping

dynamics. We then perturb the diffusion parameter

in the electrophysiology model to investigate the

bifurcation in pumping dynamics that occurs as

a result of differing action potential propagation.

This bifurcation is able to capture a spectrum of

different pumping regimes, i.e., dynamic suction

pumping to peristaltic-like waves of contraction.

Baird et al. 2015 [44] only explored the resulting

dynamics for one particular value of the diffusiv-

ity within the peristaltic regime; we instead will

investigate a spectrum of pumping behaviors. This

is the first paper to use an electrophysiology model

and demonstrate that a range of pumping behav-

iors is possible through variations of the action

potential diffusivity. The electrophysiology model

is governed by the FitzHugh-Nagumo equations

[45], [44].

II. METHODS

The immersed boundary method (IB) is a nu-

merical method developed to solve problems in-

volving viscous, incompressible fluid coupled to

the movement of an immersed elastic structure

[46], [47], [48]. Since its development in the

1970s by Charles Peskin [49], it has been applied

to a wide spectrum of biomathematical models,

ranging from blood flow through the heart [49],

[46], aquatic locomotion [50], [51], insect flight

[52], [53], to plant biomechanics [54], [55], and

muscle mechanics [56], [48].

The power of this method is that it can be

used to describe flow around complicated time-

dependent geometries using a regular Cartesian

discretization of the fluid domain. The elastic

fibers describing the structure are discretized on a

moving curvilinear mesh defined in the Lagrangian

frame. The fluid and elastic fibers constitute a

coupled system, in which the structure moves at

the local fluid velocity and the structure applies

a singular force of delta-layered thickness to the

fluid.

A. Equations of the IB

Assume that the immersed boundary is de-

scribed on a curvilinear, Lagrangian mesh, S,

that is free to move. The fluid is described on a

fixed Cartesian, Eulerian grid, Ω, that has periodic

boundary conditions. Given the size of the domain

and the localization of the flow to the tube, the
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boundary conditions do not significantly affect

the fluid motion. The governing equations for the

fluid, the Navier-Stokes equations, are given by

ρ

[
∂u

∂t
(x, t) + u(x, t) · ∇u(x, t)

]
= −∇p(x, t)

+μΔu(x, t) + f(x, t)
(2)

∇ · u(x, t) = 0. (3)

Eqs.(2) and (3) are the Navier-Stokes equations

written in Eulerian form, where Eq.(2) is the

conservation of momentum for a fluid and Eq.(3)

is the conservation of mass, i.e., incompressibility

condition. The two constant parameters in these

equations are the fluid density, ρ, and the dynamic

viscosity of the fluid, μ. The fluid velocity, u(x, t),
pressure, p(x, t), and body force, f(x, t), are un-

known functions of the Eulerian coordinate, x,

and time, t. The body force describes the transfer

of momentum onto the fluid due to the restoring

forces arising from deformations of the elastic

structure. It is this term, f(x, t), that is unique to

the particular model being studied.
The material properties of the structure may

be modeled to resist bending, stretching, and dis-
placement from a tethered position. Other forces
that can have been modeled include the action
of virtual muscles, electrostatic (contact) forces,
molecular bonds, porosity, and other external
forces [46], [57], [58], [59], [56], [48]. The im-
mersed structure may deform due to bending
forces and/or stretching and compression forces.
This forces are commonly written in terms of
X(s, t), which gives the position in Cartesian
coordinates of the elastic structure at local material
point, s, and time t. In this paper, elastic forces
are calculated as beams that may undergo large
deformations and Hookean springs, i.e.,

Fbeam = −kbeam
∂4

∂s4

(
X(s, t)−XB(s)

)
(4)

Fspring = −kspring

(
1− RL

||XS −XM ||
)
· (XM −XS) .

(5)

Eq.(4) is the beam equation, which describes

forces arising from bending of the elastic structure

and Eq.(5) describes the force generated from

stretching and compression of the structure. The

parameters, kbeam and kspring, are the stiffness

coefficients of the beam and spring, respectively,

and RL is the resting length of the Hookean spring.

The variables XM and XS give the positions

in Cartesian coordinates of the master and slave

nodes in the spring formulations, respectively,

and XB(s) describes the deviation from the pre-

ferred curvature of the structure. In all simulations,

XB(s) = 0 along the straight portion of the tube.

A target point formulation can be used to tether

the structure or subset thereof in place, holding the

Lagrangian mesh in a preferred position that may

be time dependent. An immersed boundary point

with position X(s, t) that is tethered to a target

point, with position Y(s, t) undergoes a penalty

force that is proportional to the displacement be-

tween them. The force that results is given by

the equation for a linear spring with zero resting

length,

Ftarget = −ktarget (X(s, t) − Y(s, t)) , (6)

where ktarget is the stiffness coefficient of the

target point springs. ktarget can be varied to control

the deviation allowed between the actual location

of the boundary and its preferred position. The

total deformation force that will be applied to the

fluid is a sum of the above forces,

F(s, t) = Fspring + Fbeam + Ftarget (7)

A more detailed description of existing fiber

models can be found in [48]. Once the total

force from Eq.(7) has been calculated, it needs

to be spread from the Lagrangian frame to the

Eulerian grid. This is achieved through an integral

transform with a delta function kernel,

f(x, t) =

∫
F(s, t)δ(x − X(s, t))ds. (8)

Similarly, to interpolate the local fluid velocity

onto the Lagrangian mesh, the same delta function

transform is used,

U(s, t) =
∂X

∂t
(s, t) =

∫
u(x, t)δ(x−X(s, t))dx.

(9)

Eqs.(8) and (9) describe the coupling between the

immersed boundary and the fluid, e.g., the commu-

nication between the Lagrangian framework and

87Bifurcations in valveless pumping techniques from a coupled fluid-structure-electrophysiology model...

_______________________ WORLD TECHNOLOGIES _______________________



WT

Eulerian framework. The delta functions in these

equations make up the heart of the IB, as they are

used to spread and interpolate dynamic quantities

between the fluid grid and elastic structure, e.g.,

forces and velocity. Recall that X(s, t) gives the

position in Cartesian coordinates of the elastic

structure at local material point, s, and time t.
In approximating these integral transforms, a dis-

cretized and regularized delta function, δh(x) [46],

is used,

δh(x) =
1

h2
φ
(x
h

)
φ
(y
h

)
, (10)

where φ(r) is defined as

φ(r) =

⎧⎨⎩
1
4

[
1 + cos

(
πr
2

)]
|r| ≤ 2

0 otherwise.
(11)

B. Numerical Algorithm

As stated above, we impose periodic boundary

conditions on the rectangular domain. To solve

Eqs. (2), (3),(8) and (9) we need to update the

velocity, pressure, position of the boundary, and

force acting on the boundary at time n+ 1 using

data from time n. IB does this in the following

steps [46]:

Step 1: Find the force density, Fn on the

immersed boundary, from the current boundary

configuration, Xn.

Step 2: Use Eq.(8) to spread this boundary force

from the curvilinear mesh to nearby fluid lattice

points.

Step 3: Solve the Navier-Stokes equations,

Eqs.(2) and (3), on the Eulerian domain. In doing

so, we are updating un+1 and pn+1 from un

and fn. Note: because of the periodic boundary

conditions on our computational domain, we can

easily use the Fast Fourier Transform (FFT) [60],

[61], to solve for these updates at an accelerated

rate.

Step 4: Update the material positions, Xn+1,

using the local fluid velocities, Un+1 with un+1

and Eq.(9).

The above steps outline the process used by the

IB to update the positions and velocities of both

the fluid and elastic structure. A more detailed

discussion of the IB can be found in [46].

C. Computational Model

We numerically model a 2D closed racetrack

where the walls of the tube are modeled as

1D fibers. The closed tube is composed of two

straight portions, of equal length, connected by

two half circles, of equal inner and equal outer

radii. The tube, or racetrack, has uniform diam-

eter throughout. This is similar to the racetrack

model geometry as in [44]. Furthermore, as in

[44], we include the presence of an idealized stiff

pericardium surrounding the flexible region of the

heart tube.

The tunicate heart consists of a myocardium

which is surrounded by a stiff pericardium [62],

[63], which provides structural support to the

myocardium. Muscle fibers spiral around the heart

tube itself, and action potentials propagate to in-

duce myocardial contraction. These action poten-

tials have been previously measured [17]. My-

ocardial contractions may begin at either end of

the heart tube, allowing the propagation of the

action potential to occur in either direction [64].

However, we do not concern ourselves with flow

reversals in this model. Although the tunicate

heart tube has different material properties and

physiological properties than the vertebrate em-

bryonic heart, it still is an interesting model for

vertebrate heart morphogenesis [19]. However, the

conduction properties, e.g., velocities, of action

potentials are much more uniform in tunicates than

mammalian hearts [65].

The computational model we investigate is

shown in Figure 5. Linear springs and beams

connect adjacent Lagrangian points in the flexi-

ble region of the racetrack geometry. All other

Lagrangian points of the boundary are modeled

using target points, to hold the stiff portions of

the racetrack and pericardium region nearly rigid.

The flexible region models the myocardial layer

of the tunicate heart, while the pericardium is held

nearly rigid. As described below, the myocardial
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Fig. 5: Computational geometry for the electro-

mechanical pumping model. The racetrack is held

stiff (black), except for the bottom straight-tube

portion, which is flexible (red). There is a stiff

pericardium model surrounding the flexible region

(blue).

region will actively contract based on an under-

lying electrophysiology-muscular force generation

model. The parameters used in the model are

found in Table I below.

Parameter Value
Length/Width of comp. domain (m) 5.0× 10−4

Diameter of tube [d] (m) 3.5× 10−5

Outer Radius [Ro] (m) 1× 10−5

Inner Radius [Ri] (m) d−Ro

Length of Straight Tube (m) 5.0× 10−4

Eulerian Resolution [dx] (m) 8.33× 10−7

Lagrangian Resolution [ds] (m) 4.17× 10−7

Density of fluid (ρ)
[

kg
m3

]
1025

Viscosity of fluid (μ)
[

kg
ms

]
varied

Stretching stiffness of the boundary

(kspr)
[
kg
s2

]
3.24× 105

Stretching stiffness of target points

(ktarget)[Nm2] 3.24× 105

Bending coefficient of boundary

(kbeam)
[
kg
s2

]
3.24× 105

TABLE I: Table of the parameters associated with

the fluid and the immersed boundary fiber models.

Instead of prescribing contraction, we develop a

model for the underlying electrophysiology of the

heart, i.e., traveling action potentials arising from

a single pacemaker region, to couple to myocardial

contraction and hence intracardiac fluid flow. The

model of action potential propagation is given by

Parameter Value
Threshold potential (va) 0.1
Strength of blocking (ε) 0.1

Diffusive coefficient (D)
[
m2/s

]
0.1− 100

Resetting rate (γ) 0.5
Current injection (I) 0.5
Frequency (f ) (Hz) 1.0

TABLE II: Table of the parameters associated with

the FitzHugh-Nagumo electrophysiology model.

the FitzHugh-Nagumo equations [45], [44] below,

∂v

∂t
= D∇2v+v(v−va)(v−1)−w−I(t) (12)

∂w

∂t
= ε(v − γw), (13)

where v(s, t) is the membrane potential, w(s, t) is

the blocking mechanism, D is the diffusion rate

of the membrane potential, va is the threshold

potential, γ is the resetting rate, ε is the blocking

strength parameter, and I(t) is an applied current,

e.g., an initial stimulus potentially from pacemaker

signal activation. Note that v is the action potential

and that w can be thought to model a sodium

blocking channel. We note that the FitzHugh-

Nagumo equations (12)-(13) are a reduced order

model of the Hodgkin-Huxley equations, which

were the first quantitative model to describe the

propagation of an electrical signal across excitable

cells [66]. The parameters used in the electrophys-

iology model are found in Table II.

Next we need to interpolate the information

from the electrophysiology model to the fluid-

structure interaction solver, i.e., immersed bound-

ary method. Time is scaled in order to match the

dynamics of the generated action potentials to the

desired active wave of contraction and is given by:

dtf =
dtF

T
, (14)

where dt is the time-step associated with the fluid

solver, F is a non-dimensional scaling parameter,

and T is the desired pumping period. When the

propagating action potential reaches one of the

muscles along the tube, the associated spring stiff-
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ness of said muscle model is given by

ke(s, t) = km
(
v4(s, t)

)
. (15)

The simplified muscle model is given by a

dynamic spring stiffness coefficient, given by

ke(s, t), which is a non-linear function of the

traveling action potential, v(s, t). This idea was

adapted from Baird et al. [41], [44]. The choice of

raising v4(s, t) was adopted to mimic a non-linear

stress response using a basic spring-like relation.

The force generated by the springs, with non-linear

stiffnesses, that connect the bottom and top of the

elastic tube can then be computed. These forces

represents muscular contraction. The value of km
is tuned to produce the amount of contraction

observed in Ciona hearts, as in [41], [44].

Fig. 6: Schematic of electrodynamical pumping.

(1) The tube at rest; the springs connecting the top

and bottom of the tube are the muscles. (2) The

pacemaker initates an action potential, in which

the tube will contract based on the magnitude of

the signal (3)-(4) The action potential propagates

along the tube, induing contraction.

The idea for electro-dynamic pumping can be

seen in Figure 6, which is a schematic for electro-

dynamical pumping behavior. First the tube is at

rest until a pacemaker initiates a potential signal,

which contracts the tube in one singular region.

Next the action potential propagates along the tube

inducing contraction. Once the action potential

passes outside a region on the tube, that location

no longer has active contraction, but can return to

its resting position.

Fig. 7: Schematic of electrodynamical pumping.

(1) The tube at rest; the springs connecting the top

and bottom of the tube are the muscles. (2) The

pacemaker initates an action potential, in which

the tube will contract based on the magnitude of

the signal (3)-(4) The action potential propagates

along the tube, inducing contraction.

Furthermore the main electrophysiology idea

behind the model is illustrated in Figure 7. In

diagram 1 the flexible tube is at rest. Next 2 depicts

a pacemaker initiating an input signal (current).

Then that voltage (action potential) travels down

the tube, while the input signal dissipates. Once

the action potential reaches a muscle fiber, the

tube contracts based on a non-linear relationship

between spring stiffness and the magnitude of the

action potential (voltage).

III. RESULTS

In this study, we conducted numerical exper-

iments of the electro-dynamic pumping model,

which encompassed fully coupled electrophysiol-

ogy to pumping behavior for a heart tube, modeled

as a closed racetrack geometry. We investigated

90 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WT

various diffusivities, D, which give rise to different

pumping regimes, e.g., either a ‘dynamic suc-

tion pumping-esque’ or ‘peristaltic-like’ pumping

regime. Furthermore, we explored these regimes

for over 3 orders of magnitude in Wo.

A. Results of the FitzHugh-Nagumo Model

Here we present the varying action potential dy-

namics given via the FitzHugh-Nagumo equations,

which models the electrophysiology. We explored

this model for a variety of diffusive coefficients,

D = {0.1, 1.0, 10.0, 100.0}.

Fig. 8: Different traveling wave propagation

properties arising out of the FitzHugh-

Nagumo equations for varying diffusivities,

D = {0.1, 1.0, 10.0, 100.0}. These solutions

assume a pacemaker frequency of 1 Hz and the

time here corresponds to the same time, t, as in

Figures 9-11.

Figure 8 illustrates the kinds of traveling action

potentials that arise out of the electrophysiology

model. These solutions suggest that different D

give rise to different action potential signals. It is

clear that the D = 0.1 case resembles a signal that

could be reminiscent of that of dynamic suction

pumping. This is because the action potential’s

signal is localized to a particular region on the

tube. In comparison, D = 100 gives rise to a

propagating action potential that could model a

more peristaltic-like contraction. This is indicative

of a coordinated peristaltic-type wave; when the

action potential propagates down the tube, it in

turn causes active muscular contraction along the

tube, such as those shown in Figure 6. It is clear

that as the diffusivity, D increases, the waves

propagate outwards, and with greater wave-speed.

Furthermore, the wave-form itself gets wider.

The remainder of the results will be shown for

full fluid-structure interaction model that incor-

porates these action potential signals to induce

muscular contraction. In our model, the action

potential only travels down the flexible portion of

the tube, shown in Figure 5. The flexible portion

then can active contract and relax according to

the action potential signal, muscular contraction

model, and material properties of the tube.

B. Results of the electro-dynamical heart tube
model

In this section we present the results describing

how bulk flow rates are affected by varying the

diffusivity, to capture different pumping behaviors

for a variety of Wo. All the simulations were run

with a pacemaker frequency of 1 Hz. We note

that the maximal closure of the tube was at most

approximately 90% occlusion during any of the

simulations.

Figures 9 and 10 illustrate the non-dimensional

spatially-averaged velocity computed across a

cross-section of the top of the race-track geometry

vs non-dimensional time for D = 0.1 (Figure

9) and D = 100.0 (Figure 10). It is clear that

when D = 0.1 there is not significant bulk flow

produced regardless of Wo, unlike the case when

D = 100.0, where significant bulk flow is pro-

duced over all Wo = {0.1, 10, 10}. It is also

clear that the wave-form produced for D = 0.1
undergoes many more high frequency oscillations

as compared to the case for D = 100.

Comparing corresponding Wo pumping mech-

anisms for a variety of D = {0.1, 1.0, 10.0, 100.0}
are shown in Figure 11, where Figure 11a com-

pares pumping regimes for Wo = 0.1 and Figure

11b for Wo = 10. It is clear that in both cases that

the most bulk flow is produced when D = 100, and

some flow is produced in the cases of D = {1, 10}.
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Fig. 9: The non-dimensional spatially-averaged velocity computed across a cross-section of the top of

the race-track geometry vs non-dimensional time for D = 0.1, e.g., the ‘dynamic suction pumping’

regime, for Wo = {0.1, 1.0, 10.0}. The zoomed in portion illustrates the resulting wave-form and the

high frequency oscillations that result from this pumping regime.

Fig. 10: The non-dimensional spatially-averaged velocity computed across a cross-section of the top

of the race-track geometry vs non-dimensional time for D = 100.0, e.g., the ‘peristaltic’ regime, for

Wo = {0.1, 1.0, 10.0}. The zoomed in portion illustrates the resulting wave-form.

There is still backflow in the D = 100 case and

less overall backflow in the D = 10 case.

Furthermore, the wave-form in the D = 100
case is different between the Wo = 0.1 and

Wo = 10 cases. There is a single peak for the

case when Wo = 10 and dual peaks for Wo = 0.1
for the forward flow; however, in the backflow,

the situation is reversed, where a dual-peak is

observed for Wo = 10 and a single peak for

Wo = 0.1.

In attempt to maximize bulk flow for the

dynamic suction pumping-esque regime, the

stretching-stiffness and bending stiffness coeffi-

cients of the tube were varied. The results are
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(a)

(b)

Fig. 11: A comparison of non-dimensional

spatially-averaged velocity computed across a

cross-section at the top of the racetrack vs non-

dimensional time in the simulation for varying

diffusive coefficients, D = {0.1, 1.0, 10.0, 100.0}.

The two plots compare different Wo, e.g., (a)

Wo = 0.1 and (b) Wo = 10.

shown in Figure 12. It is clear that as the stiff-

ness is varied there is a non-linear relationships

between flow speed (spatially- and temporally-

averaged non-dimensional velocity across a cross-

section of the racetrack) and stiffness. However,

not a considerable amount of more bulk flow was

produced from increasing these stiffness coeffi-

cients.

Lastly we compared the spatially- and

temporally-averaged non-dimensional velocities

across a cross-section of the racetrack against

Fig. 12: A plot of non-dimensional spatially-

averaged velocity computed across a cross-

section at the top of the racetrack vs the non-

dimensional stretching and bending stiffness co-

efficients for pumping in the ‘dynamic suction

pumping’ regime, for a variety of diffusivities,

D = {0.1, 0.25, 0.5, 0.75, 1.0}.

Fig. 13: A comparison of the spatially- and

temporally-averaged non-dimensional velocities

computed across a cross-section of the race-

track vs. Wo for varying diffusivities, D =
{0.1, 1.0, 10.0, 100.0}.

Wo for a variety of D. Each simulation was

spatially-averaged for the same cross-sectional

area and temporally-averaged across each entire

simulation of 8s. The results are shown in Figure

13. It is clear there is a non-linear relationship in

average velocity and scale arising from this model

of pumping in every pumping regime, given by

D. Furthermore, the highest bulk flow rates were

seen in the case of D = 100 for Wo ∼ 0.8, which

correspond to the Wo around that of tunicate
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tubular hearts [29], [41].

IV. DISCUSSION AND CONCLUSION

This 2D model coupled the propagation of

action potentials, given via the FitzHugh-Nagumo

equations, to the force generation and myocardial

contraction, given through a non-linear spring-

like muscle model, to induce pumping behavior

in a flexible tube, where the fully coupled fluid-

structure interaction model was solved using the

immersed boundary method. This model was first

described in [44], but was not used to explore

a range of pumping behaviors possible due to

variations on action potential diffusivity until now.

We explored this effect of perturbing the diffu-

sive coefficient of the electrophysiology model to

capture different pumping regimes, including both

dynamic suction pumping-esque and peristaltic-

like contractile waves.

It was clear that by varying this diffusive term,

D, the model was able to recreate a spectrum of

pumping mechanisms, ranging from one that in

which the action potential remained localized and

did not diffusive, i.e., a dynamic suction pumping-

esque behavior, and one where the action potential

diffused along the heart tube in as a more traveling

wave, e.g., peristaltic-like active wave of contrac-

tion. Our model showed that when D was in the

more peristaltic-like regime, i.e., D ∼ 100, more

bulk flow was produced in the racetrack geometry,

as compared to more negligible amounts from the

dynamic suction pumping-esque regime, D ∼ 0.1.
This result was consistent for the range of Wo
considered.

Moreover, in all cases considered, there was a

non-linear relationship between average flow rate,

scale (Wo), and diffusivity (pumping behavior).

More bulk flow was produced on average (both

spatially and temporally), with a maximum around

Wo ∼ 0.8 than for higher Wo, up to Wo = 30,

in the peristalic-like regime. Similar behavior, in

that peristalsis produces more bulk flow than DSP,

has been observed before when using prescribed

pumping behavior, as in [29], [42].

However, perturbing the material properties of

the tube could potentially affect bulk flow rates

across all pumping regimes, given by D. Our

focus was limited to perturbing the stretching and

bending stiffnesses of the tube specifically within

the dynamic suction pumping-esque regime, D ∼
[0.1, 1]. Furthermore, our study only considered

increasing the stiffnesses and not decreasing them.

For the regime and material properties considered,

we found a non-linear relationship between flow

rates and stiffness.

As blood flow and the resulting hemodynamic

forces are essential for proper heart development

[67], it is important that the pumping model cap-

ture as much biology as possible. Each pumping

regime considered here, given by the diffusivity

of action potential propagation, will give rise to

a different force distribution along the endothelial

lining of the heart and hence impact the epigenetic

signals that are transmitted through mechanotrans-

duction [68], [69]. Furthermore the flow profiles

resulting from each pumping mechanism would

be different. These differences in the flow patterns

itself could impact the way morphogens advect

and diffuse during embryogenesis [70], [71], open-

ing the realm to a lot more interesting biological

questions to explore.
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Abstract—Effective methods of fluid transport
vary across scale. A commonly used dimensionless
number for quantifying the effective scale of fluid
transport is the frequency based Reynolds number,
Ref , which gives the ratio of inertial to viscous
forces in a fluid flow. What may work well for one
Ref regime may not produce significant flows for
another. These differences in scale have implications
for many organisms, ranging from the mechanics
of how organisms move through their fluid environ-
ment to how hearts pump at various stages in devel-
opment. Some organisms, such as soft pulsing corals,
actively contract their tentacles to generate mixing
currents that enhance photosynthesis. Their unique
morphology and the intermediate Ref regime at
which they function, where both viscous and inertial
forces are significant, make them a unique model
organism for understanding fluid mixing. In this
paper, 3D fluid-structure interaction simulations of a
pulsing soft coral are used to quantify fluid transport
and describe fluid mixing across a wide range of
Ref . The results show that net transport is negligible

for Ref < O(101), and continuous upward flow is
produced for Ref ≥ O(101). Sustained net transport
is necessary to bring in new fluid for sampling and
to remove waste. As the Re is increased well above
O(101), the slow region of mixing necessary for gas
exchange between the tentacles is reduced. Since
corals live at Ref between about 8 and 36, the flows
they produce are defined by sustained net transport
of fluid away from the coral in a continuous upward
jet and a slow region of mixing between the tentacles
necessary for gas exchange.

Keywords-pulsing coral; coral reefs; immersed
boundary; fluid-structure interaction; computa-
tional fluid dynamics;

I. INTRODUCTION

Biological fluid transport is not only dependent

upon the method of movement, but also the fluid’s

physical properties and the size and velocity of

the organ or organism. While one mechanism

for transport may work well at the macroscale,
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that same mechanism may not work well at the

mesoscale or microscale. For example, reciprocal

motion of a fish’s caudal fin may not produce

adequate forward propulsion if the fish is put into

a considerably more viscous fluid than water. If

the viscosity is high enough, the fish might not

swim at all as no reciprocal fin stroke will yield

any net transport of fluid. The fact that reciprocal

motions do not generate net movement at small

scales is famously known as the Scallop Theorem

[1]. The Reynolds number, Ref , is a dimensionless

quantity that describes the ratio of inertial to

viscous forces in a fluid and is used to compare

fluid transport across scales. For a fluid of density

ρ, dynamic viscosity μ, and some characteristic

length and frequency scale L and f , respectively,

a frequency-based Ref may be defined as

Ref =
ρL2f

μ
. (1)

For a Newtonian fluid in a large domain and with

a sufficiently low Ref , it is necessary to use non-

reciprocal motions to produce the net transport of

fluid. One common example of a non-reciprocal

motion is the use of a rotating flagellum like in

many bacteria and sperm cells [2], [3]. Beyond

locomotion, there are many other applications of

fluid transport within biological systems such as

the generation of feeding currents [4], the genera-

tion of flow for oxygen and nutrient transport [5],

the internal pumping of fluids (e.g. the cardiovas-

cular system) [6], flows generated for filtering [7],

and flows for photosynthetic enhancement [8]. As

is the case for locomotion, different pumping and

feeding mechanisms may only be effective over

some range of Ref [9], [10].

In this paper, we quantify the flows produced by

a variety of soft corals, including the genera Xenia
and Heteroxenia, that actively pulse and contribute

substantially to local ocean mixing, enhancing nu-

trient availability in reefs. Each individual polyp is

made up of eight feather-like tentacles (see Figure

1) positioned at the end of an approximately 5 cm

long stalk [11]. These soft corals form colonies

up to 60 cm across [11], and polyps within a

colony do not normally pulse in synchrony but

Fig. 1: Xeniid coral colonies at the Underwater

Observatory, Eilat, Israel.

out of phase [12]. The pulsing motion is generated

by active contraction of the muscles in the tenta-

cles, and the expansion of the tentacles is due to

passive elastic recoil. Although this behaviour is

reminiscent of feeding and prey capture behaviours

in other phyla like molluscs or bryozoans, past

research has shown that the pulsing is linked to

the removal of oxygen from the tissues [12]. This

is achieved through increased mixing around the

polyps and by allowing oxygen-rich water to be

advected away faster than when the corals are

not pulsing. Accelerating the removal of oxygen

allows for the coral’s symbionts to increase their

photosynthetic rates, thus increasing the organ-

ism’s metabolic rate.

On average, the polyp pulsing frequency is

about 0.5-1 Hz, and the frequency-based Reynolds

number of an individual polyp ranges from about

8 to 36 (see Section II). These corals operate at
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an Ref that is much lower than most other puls-

ing cnidarians, including jellyfish. In particular,

the pulsing soft corals operate in a much lower

Ref regime than the only other benthic cnidarian

known to actively pulse to generate exchange

currents, the upside-down jellyfish Cassiopea spp.

Upside-down jellyfish host zooxanthellae in their

tissues and, like corals, also benefit from their

photosynthetic symbionts [13], [14]. Unlike soft

corals that generate exchange currents with their

tentacles, upside-down jellyfish create flow by

actively contracting and relaxing their gelatinous

bell. The biologically relevant Ref for upside-

down jellyfish pulsing in the benthic layer ranges

from about 100 to approximately 450 (adult) [15].

As such they operate completely within the inertial

range (Ref >> 1) where reciprocal motions are

effective. Several experimental and computational

investigations have described the fluid dynamics

of upside-down jellyfish [4], [16], [17].

In this paper, we quantify the fluid dynamics of

one pulsing polyp over a range of Ref , both above

and below the biologically relevant range. This

fully coupled fluid-structure interaction problem is

solved using the 3D immersed boundary method.

We find that within the biologically relevant range,

individual polyps generate a continuous upward

jet using a reciprocal motion of the tentacles.

This drives new fluid between the tentacles during

each pulse and minimizes resampling of the same

fluid volume. A slow mixing region is produced

during tentacle expansion that is separated from

the upward jet, which would provide sufficient

time for the uptake of nutrients from the fluid

and removal of waste from the tissues. Upon the

next contraction, this volume of fluid is expelled

and a new volume of fluid is driven between

the tentacles upon the subsequent expansion. The

continuous upward jet, formation of a slow mixing

region during expansion, and continual flow of

new fluid toward the polyp in the radial direction

are not evident at Re < 5 when the flow becomes

nearly reversible. For Re > 40, the magnitude of

flow between the tentacles and the average vertical

velocity of the upward jet is reduced.

II. METHODS

A. Coral Motion and Geometry

In this study, we use the frequency-based

Reynolds number, Ref , to describe the flows pro-

duced by the coral. The characteristic length, LT ,

is set to the tentacle length and the characteristic

frequency, fcoral, is set to the pulsation frequency.

The fluid density and dynamic viscosity are set to

that of sea water (see Table I).

To determine the biologically relevant range of

Ref , videos were taken of three coral colonies

in the Red Sea off the coast of Eilat, Israel, and

of three colonies of cultured corals in the lab. In

each video, five individual polyps were tracked

to determine the pulse period averaged over 20

cycles. Measurements were also taken from one

tentacle on each polyp to determine the length of

the tentacle. The pulsing frequency is given as

a function of tentacle length in Figure 2. There

was no significant correlation between pulsing

frequency and size of the coral. The average Ref
was 19.64 ± 7.28 with a minimum of 8.74 and a

maximum of 36.0. The average tentacle length was

(6.13 ± 0.10) × 10−3 m and the average pulsing

frequency was 0.53 ± 0.043 Hz. For the numerical

simulations performed here, we set the frequency

and tentacle length to that of a typical coral where

fcoral = 1/1.9 s−1 and LT = 0.0045 m. The

dynamic viscosity was varied in the simulations

to study a range of Ref , above and below that

typical of soft corals. The range of Ref studied

here is 0.5, 1, 5, 10, 20, 40, and 80.

The pulsing motion of the coral was based

on kinematics of five live polyps and is detailed

elsewhere [18]. To summarize, the motion of

the tentacles was quantified by tracking positions

along a single tentacle for five pulses. Each polyp

was filmed using a single Photron SA3 120K

camera at either 125 or 60 frames per second in a

quiescent fluid, focusing on the motion of a single

tentacle that moved within the plane of focus. In

each frame six approximately equispaced points

were tracked along the tentacle using DLTdv5

[19]. These positions were then fit with third order

polynomials. An averaged motion was constructed
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Fig. 2: Pulsing frequency vs. tentacle length for 15

corals in the field (Red Sea, Eilat, Israel) and 15

cultured corals in the lab. There is not a significant

relationship between pulsing frequency and size.

Parameter Variable Units Value

Domain Size D m 0.06
Spatial

Grid Size
dx m D/1024

Lagrangian
Grid Size

ds m D/2048

Time Step Size dt s 1.22×10−4

Total
Simulation Time

T pulses 10

Fluid Density ρ kg/m3 1000
Fluid Dynamic

Viscosity
μ kg/(ms) varied

Tentacle Length LT m 0.0045
Pulsing Period P s 1.9
Target Point

Stiffness
ktarget kg ·m/s2 9.0×10−9

TABLE I: Numerical parameters used in the three-

dimensional simulations.

by averaging the motion over the five pulses and

across five polyps. The averaged motion of the ten-

tacle was used to describe the preferred position of

the immersed boundary by tethering the immersed

boundary describing the tentacles to time varying

target points.

The overall numerical model of the coral con-

sisted of eight tentacles, a base, and no stem. This

numerical polyp was placed in the bottom center

of the computational domain (see Figure 4). Note

that the presence of the stem does not significantly

alter the flow and was neglected. The base of the

tentacles was positioned 0.005 m above the bottom

of the domain, approximating the length of the

stem of the single polyp. The distance from the

center of the polyp to the tip of its tentacles at

full expansion was approximately 0.0045 m. The

distance from the base of the polyp to the tip of

the tentacles at full contraction was 0.0037 m. The

length of the tentacle was determined by averaging

the length measured in each frame for each polyp

and then averaging over all five polyps.

The shape of each tentacle was approximated

as an isosceles trapezoid with a basal width of

0.00108 m, the average width across all mea-

sured polyp tentacles. This average was found

by measuring the width of the tentacle base in

one frame from each video when a tentacle was

parallel to the plane of focus. This distance was

then used to construct the numerical tentacle. The

width of the top of the tentacle was set to be

one fifth of the basal width to circumvent any

possible tentacle overlap when the simulated polyp

is fully contracted. The average diameter of the

polyp’s base was measured by finding the distance

between the bottom of two oppositely arranged

tentacles in each frame and then averaging across

all frames and all videos. This resulted in an

average base diameter of 0.00106 m.

A pulsing cycle was divided into three phases

as described below (see also Figure 3).

1. The coral begins with all its tentacles in

an open, relaxed state. The tentacles then

actively contract and the polyp closes. This

takes about 28% of the pulse cycle.

2. From the contracted state, the tentacles relax

back to their original expanded, resting state.

The expansion phase takes about 43% of the

pulse cycle.

3. The tentacles remain open and at rest for

about 29% of the pulse cycle.

This process then repeats itself.

B. Numerical Method

The immersed boundary method (IB) [20] was

used to solve the fully coupled fluid-structure
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Fig. 3: A single polyp’s pulsation cycle. The

coral moves from its relaxed state to an actively

contracted state and then relaxes back to its orig-

inal, open, resting state. The two tentacle colors

were chosen to differentiate the tentacles in the

foreground and background.

interaction problem of a pulsing soft coral in an

incompressible, viscous fluid. The IB method has

been successfully applied to a variety of problems

in biological fluid dynamics with an intermediate

Ref regime, i.e. 0.01 < Ref < 1000, including

heart development [21], [22], insect flight [23],

swimming [24], [25], and dating and relationships

[26]. A fully parallelized implementation of the IB

method with adaptive mesh refinement, IBAMR

[27], was used for the simulations described here.

More details on the IB method and IBAMR are

found in the Appendix A.

All parameter values used in the computational

model are given in Table I. A depiction of the

computational domain is given in Figure 4. Note

that periodic boundaries are used in the x and z
directions, and no-slip conditions are used in the

y-direction, corresponding to a solid boundary on

the top and bottom of the domain (u = 0 at y =
−0.15 and y = 0.45). The initial conditions of the

fluid are set to zero and there is no ambient flow

considered. For a study including ambient flow see

[28].

C. Lagrangian Coherent Structures

We computed the finite-time Lyapunov expo-

nent (FTLE) to determine Lagrangian coherent

structures (LCSs) [29], [30] using Visit 2.12.3

[31]. Within flow fields, LCSs can reveal particle

transport patterns that are of potential biological

importance, such as in particle capture, predator-

prey interactions [32], [33], and locomotion [34].

Fig. 4: The computational domain for a single

coral polyp. Note that the boundaries in the x- and

z-directions are periodic. The boundary conditions

in the y-direction are no slip (u = 0 at y = −0.15
and y = 0.45) .

In essence, LCSs provide a method to untangle

the overall dynamics of the system in a simplified

framework. Trajectories were computed using an

instantaneous snapshot of the 3D vector field, and

the FTLEs were computed on a regular 1283 grid

using a forward Dormand-Prince (Runge-Kutta)

integrator with a relative tolerance of 0.001, an

absolute tolerance of 0.0001, a maximum advec-

tion time of 0.1s, and a maximum number of steps

of 1000.

III. RESULTS

Figures 5-7 show snapshots of the velocity

and vorticity generated during the fourth pulsation

cycle for three different numerical simulations

corresponding to Ref = 0.5, 10, and 80. The

velocity vectors point in the direction of flow, the

length of the vectors correspond to the magnitude

of the flow, and the colormap corresponds to the

value of the vorticity taken in the z-direction (out

of plane). Both vorticity and fluid velocity were

taken on a 2D plane passing through the central

axis of the polyp. The tentacles are shown in pink

in 3D. The snapshots taken correspond to 5%,
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Fig. 5: The z-component of vorticity and the

velocity vector field taken on a 2D plane through

the central axis of the coral at Ref = 0.5. This

Ref corresponds to a smaller scale than would be

observed in nature. The colormap shows the value

of ωz , the arrows point in the direction of flow,

and the length of the vectors correspond to the

magnitude of the flow. Shapshots are taken during

the fourth pulse at times that are 5%, 15%, 25%,

35%, 45%, 55%, 65%, and 75% through the cycle.

Fig. 6: The z-component of vorticity and the

velocity vector field taken on a 2D plane through

the central axis of the coral at Ref = 10. This Ref
corresponds to a typical coral polyp.The colormap

shows the value of ωz , the arrows point in the

direction of flow, and the length of the vectors

correspond to the magnitude of the flow. Snapshots

are taken during the fourth pulse at times that are

5%, 15%, 25%, 35%, 45%, 55%, 65%, and 75%

through the cycle.
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Fig. 7: The z-component of vorticity and the

velocity vector field taken on a 2D plane through

the central axis of the coral at Ref = 80. This

Ref corresponds to a very large, fast pulsing coral

polyp. The colormap shows the value of ωz , the

arrows point in the direction of flow, and the length

of the vectors correspond to the magnitude of the

flow. Snapshots are taken during the fourth pulse

at times that are 5%, 15%, 25%, 35%, 45%, 55%,

65%, and 75% through the cycle.

15%, 25%, 35%, 45%, 55%, 65%, and 75% of the

pulsing cycle such that the first three frames show

the contraction phase, the next four frames show

the expansion phase, and the last frame shows the

polyp at rest.

During contraction, regardless of Ref , there

is a clear upwards jet. In addition, vorticity is

generated at the tips of the tentacles. At the

beginning of expansion (t = 0.35T ), oppositely

spinning vortices are formed at the tips of each

tentacle. At higher Ref , particularly Ref = 80,

the vortices formed during contraction separate

from the tentacle tips and are advected upwards.

The motion of these vortices helps to maintain a

strong upward jet above the polyp. At the lower

Ref , (e.g. Ref = 0.5), these vortices quickly

dissipate. The direction of flow above the coral

also reversed such that fluid is pulled downward

between the tentacles. For Ref < 1, the flow is

nearly reversible, that is, any fluid pushed away

from the polyp during contraction is pulled back

during expansion. At intermediate Ref (e.g. Ref
= 10), an upward jet is observed above the polyp

during expansion, and fluid below this jet mixes

between the tentacles.

During the resting phase (last frame), the fluid

comes to rest in the lower Ref cases. Although the

strength of the upwards jet in the Ref = 80 case

is greatest, the magnitude of the flow between the

tentacles produced by vortices generated during

expansion are greater in the Ref = 0.5 and 10

cases. We find strong mixing between the ten-

tacles for Ref ≤ 30; this mixing decreases for

Ref > 30. This indicates that, near the biologi-

cally relevant Ref , the morphology and motion of

the tentacles allow for greater mixing close to the

polyp itself.

To compare the relative strength of the upward

jets generated by coral polyps across scales, we

averaged the y-component of the velocity (in the

vertical direction) within a box that was drawn

from the tips of the tentacles during full con-

traction to one tentacle length above that point

(−0.0063m < Y < −0.0018m). The width of

the box was set equal to the diameter of the fully
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Fig. 8: The spatially averaged dimensionless ver-

tical flow upwards over the polyp (uy) versus

time for five pulse cycles. Ref = 0.5, 1, 5,

10, 20, 40, and 80 are shown. Flow velocity is

nondimensionalized using the tentacle length and

pulse duration.

Fig. 9: The spatially averaged dimensionless hor-

izontal flow towards the polyp (ux) over time

during five pulse cycles. Ref = 0.5, 1, 5, 10, 20,

40, and 80 are shown. Velocity is given as tentacle

lengths per pulse.

expanded polyp (−0.0045m < X,Z < 0.0045m).

The average vertical velocity versus time for five

pulses is shown in Figure 8 for Ref = 0.5, 1,

5, 10, 20, 40, and 80. Note that the velocities

are nondimensionalized by the tentacle length and

pulse duration such that U ′ = U/LT

P = U/0.0045
1.9 .

Each Ref investigated showed a peak average

velocity in the upward jet that corresponds to the

end of the contraction phase. Moreover, the largest

maximal peak in average velocity corresponds to

the lowest Ref = 0.5 case, while the lowest peak

corresponds to the highest case, Ref = 80. This

is partially due to the fact that we average over

a relatively large box. Additionally, the region

of motion is larger at lower Ref due to the

relatively large boundary layers (recall that Ref
is lowered by increasing only dynamic viscosity).

Immediately following contraction, as the polyp

begins to expand, the average velocity drops for

each Ref . In the cases for Ref < 5 there is

significant backflow, where the average velocity

becomes negative, reaches a minimum, and then

slowly approaches zero. Around Ref ≥ 10 the

average vertical flow decreases during tentacle

expansion; however, the net average flow remains

upwards. This is significant as the continuous

upward jet allows new fluid to be brought to the

polyp throughout the pulsing cycle.

While the transition to continuous upward flow

occurs at Ref = 10, for 10 ≤ Ref ≤ 30, we

have also seen that the tentacle morphology allows

for greater mixing near the polyp itself. This

suggests that the polyp may be able to enhance its

nutrient uptake or waste removal. Note that since

the Ref = 80 case has a continuous upward jet

but little mixing near the polyp, wastes as well

as nutrients would continuously be expelled away

from the polyp, leaving less possibility for nutrient

absorption. The opposite occurs for the case of

Ref < 10, where there is more mixing near the

polyp, but the resulting flows are unable to remove

wastes away from the polyp.

To compare the relative strength of the flow

towards the polyp, we averaged the x-component

of the velocity (in the horizontal direction) within

a box that was drawn from the tips of the tenta-

cles during full expansion to one tentacle length

to the left of that point (−0.009m < X <
−0.0045m), and in the z-direction, the box was

drawn along the diameter of the polyp fully ex-

panded (−0.0045m < Z < 0.0045m). In the

vertical direction, the box was drawn from the

polyp base to the top of the fully contracted ten-
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tacle (−0.01m < Y < −0.0063m). The average

horizontal dimensionless velocity (tentacle lengths

per pulse) versus time for five pulses is given in

Figure 9 for Ref = 0.5, 1, 5, 10, 20, 40, and 80.

For all cases of Ref considered as the polyp be-

gins to contract, the average flow is away from the

polyp during the first 5% of the pulsation period,

with the highest average velocities corresponding

to the lowest Ref , Ref = 0.5. The lowest average

velocity corresponds to the highest Ref , Ref = 80.

The initial negative values are due to the whip-

like motion of the tentacles at the beginning of

contraction. Highest average velocities are seen at

the lowest Ref due to the relatively larger bound-

ary layers. After the initial contraction motion,

the average velocities become positive, indicating

bulk flow towards the polyp. For all Ref , the

average velocity increases until the contraction

phase is over. The highest peak average velocity,

again, corresponds to the lowest Ref , Ref = 0.5;

however, for Ref ≥ 10, their associated peaks of

average velocity are almost equivalent. Moreover,

for Ref ≥ 10, the average velocity remains

towards the polyp and almost constant during the

expansion and relaxation phases. At the start of the

next contraction phase, the average velocity dips,

once again within the first ∼ 5% of the pulsation

cycle. In contrast, for Ref ≤ 5, once the expansion

phase begins, the average velocity decreases. For

Ref ≤ 1, the average velocity decreases, reaches

a minimum, and then approaches zero. In the case

of Ref = 5, during expansion, the average velocity

monotonically decreases toward zero before the

start of the next pulsation cycle.

Figure 10 shows temporally and spatially aver-

aged flows as a function of Ref . The vertical flow

above the coral from Figure 8 is temporally aver-

aged during the fourth pulse and plotted in Figure

10A. Figure 10B illustrates the horizontal flow in

Figure 9 temporally averaged over the fourth pulse

as a function of the Ref . Both graphs highlight

two flow phenomena that depend on Ref . As the

Ref is lowered, the tentacles entrain a larger vol-

ume of fluid. This in turn leads to larger spatially

averaged velocities due to the wider jet. Also as the

Fig. 10: Temporally and spatially averaged vertical

flow above the polyp (A), horizontal flow in the

x−direction towards the polyp (B), and velocity

magnitude between the tentacles (C) as a function

of Ref . Note that the velocities are nondimension-

alized by the tentacle length and pulse duration.

106 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WT

Ref is decreased, the flow becomes increasingly

reversible: the flow moves up and away from the

polyp during contraction and back towards the

polyp during expansion. Net volumetric flow is

maximized for Ref between about 20 and 30.

Reduction in net flow is observed for Ref ≈ 1
and lower because the flow becomes reversible.

The net flow is reduced as Ref increases above 30

because the width of the upwards jet decreases.

As a coarse metric of the amount of mixing

near the polyp, the magnitude of the velocity of

the flow between the tentacles, was spatially and

temporally averaged during the last pulse in a

volume defined by −0.001m < X < 0.001m,

−0.009m < Y < −0.001m, and −0.001m <
Z < 0.001m. This averaged flow as a function

of Ref is shown in Figure 10C. The magnitude

of flow generally decreases for increasing Ref ,

suggesting that more of the fluid is directed into a

narrow upward jet as the polyps grow larger. On

the other hand, strong flow is generated between

the tentacles at Ref below the biologically relevant

range.

A. Lagrangian Coherent Structures

Figure 11 shows contours of the logarithm of

the finite-time Lyapunov exponents (FTLE) which

illustrate the instantaneous Lagrangian coherent

structures (LCS). The contours are shown in a

2D slice through the central axis during the fourth

pulsing cycle for Ref =0.5, 20, and 80. Note that

the LCS were calculated using the entire 3D flow

field. Small values of the FTLE highlight regions

where flow is attractive, and large values of the

FTLE indicate areas in which the flow is repelling

[30]. In the case of the polyp, LCSs can be used

to highlight regions of fluid that the polyp may

sample or that may pass by without interacting

with it.

In the biologically relevant case (B) and at

higher Ref (C), we see that fluid is pulled to-

wards the polyp and pushed into the upward jet

during the contraction phase (t = 0.073T and

t = 0.17T ). The FTLE values are small between

the tentacles during contraction, indicating that this

fluid is pushed upward and into the vertical jet

Fig. 11: Contour plot of the finite time Lyapunov

exponents (FTLE) illustrating the instantaneous

Lagrangian coherent structures during a single

polyp’s pulsing cycle for (A) Ref = 0.5, (B)

Ref = 20 and (C) Ref = 80, using a logarithmic

scale.
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during this phase. The large FTLE values near

the tentacles show that fluid is repelling around

the tentacles and the starting vortices. Comparison

with the viscous dominated case at Ref = 0.5
(A) shows a region of larger FTLE values between

the tentacles. This indicates that the fluid near the

bottom of the polyp does not mix as well with

the upward jet and is not fully expelled during

contraction.

During expansion (t = 0.37T and t = 0.51T ),

large FTLE values directly above the polyp and

between the tentacles indicate a region of mixing

that is separated from the upward jet in the bio-

logically relevant case (Ref = 20). We also see

larger FTLE values in the higher Ref case (C),

but now a more complicated pattern between the

tentacles indicating separated mixing regions. For

the viscous dominated case (A), the FTLE values

are low once the tentacles have partially expanded

(t = 0.51T ). This indicates that the upward jet

and the mixing region between the tentacles is

no longer separated, and indeed fluid is pulled

from above the polyp and into the region between

the tentacles. At this Ref , a new volume of fluid

would not be sampled during each pulse.

IV. CONCLUSION

The results of this paper highlight important

Ref transitions in the exchange currents generated

by pulsing soft coral. From field measurements,

we determined the Ref of a coral polyp to be

19.64 ± 7.82 with a range of about 8 to 36. In this

regime, the flow around the coral polyp is defined

by a continuous upward jet, nearly continual radial

flow towards the polyp, a slow region of mixing

between the tentacles during expansion, and the

ejection of the fluid volume into the upward jet

during contraction. This pattern implies that a new

volume of fluid is brought to the polyp during

each polyp cycle that is slow mixed around the

tentacles, allowing time for the removal of oxygen

from the tissues. Note that the continuous upward

jet is significant since, at these scales, the polyp is

able to remove waste up and away from the coral

colony.

For Ref ≤ 5 (below the biologically relevant

range), significant backflow is observed during the

pulsing cycle. This would result in resampling

of the same fluid and reduce waste removal and

nutrient exchange. For Ref ≥ 40 (above the bi-

ologically relevant range), the continuous upward

jet becomes narrower, reducing the net transport of

fluid away from the coral. The magnitude of flow

between the tentacles is also reduced, which could

result in less nutrient absorption and exchange.

Spatially and temporally averaged horizontal

flow towards the polyp and vertical flow above the

polyp show that mass transfer is enhanced across

the biologically relevant range of 8 < Ref < 36.

Spatially and temporally averaged velocity mag-

nitude between the tentacles show that there is

less transport near the tentacle base at higher Ref .

Our limited sample of live polyps is insufficient,

however to show that an active polyp may not be

found at either higher or lower Ref . Accordingly,

it would be interesting to extensively search for the

smallest and largest pulsing corals, calculate their

effective Ref , and determine whether or not their

pulsing behavior is adapted to push the behavior

into more viscous or inertial dominated regimes.
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APPENDIX

A three-dimensional formulation of the im-

mersed boundary method is discussed here. For
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a full review of the immersed boundary method,

please see Peskin [20].

A. Governing Equations of IB

The governing equations for an incompressible,

viscous fluid motion are given below:

ρ
[∂u
∂t

(x, t) + u(x, t) · ∇u(x, t)
]

= ∇p(x, t) + μΔu(x, t) + F(x, t), (2)

∇·u(x, t) = 0, (3)

where u(x, t) is the fluid velocity, p(x, t) is the

pressure, F(x, t) is the force per unit area applied

to the fluid by the immersed boundary, ρ and

μ are the fluid’s density and dynamic viscosity,

respectively. The independent variables are the

time t and the position x. The variables u, p, and

F are all written in an Eulerian frame on the fixed

Cartesian mesh, x.

The interaction equations, which handle the

communication between the Eulerian (fluid) grid

and Lagrangian (boundary) grid are written as the

following two integral equations:

F(x, t) =

∫
f(s, t)δ (x − X(s, t)) dq (4)

U(X(s, t)) =

∫
u(x, t)δ (x − X(s, t)) dx (5)

where f(s, t) is the force per unit length applied

by the boundary to the fluid as a function of

Lagrangian position, s, and time, t, δ(x) is a three-

dimensional delta function, and X(s, t) gives the

Cartesian coordinates at time t of the material

point labeled by the Lagrangian parameter, s.

The Lagrangian forcing term, f(s, t), gives the

deformation forces along the boundary at the La-

grangian parameter, s. Equation (4) applies this

force from the immersed boundary to the fluid

through the external forcing term in Equation (2).

Equation (5) moves the boundary at the local fluid

velocity. This enforces the no-slip condition. Each

integral transformation uses a three-dimensional

Dirac delta function kernel, δ, to convert La-

grangian variables to Eulerian variables and vice

versa.

The way deformation forces are computed, e.g.,

the forcing term, f(s, t), in the integrand of Equa-

tion (4), is specific to the application. To prescribe

the motion of the coral boundary, the boundary

points are tethered to target points, which can

be moved in a prescribed fashion. The prescribed

motion of the boundary itself comes through a

penalty term, tethering the Lagrangian points to

the target points. The equation describing this

model is

f(s, t) = ktarg (Y(s, t) − X(s, t)) , (6)

where ktarg is a stiffness coefficient and Y(s, t)
is the prescribed position of the target boundary.

Note that Y(s, t) is a function of both the La-

grangian parameter, s, and time, t. Details on other

forcing terms can be found in [26], [35].

The delta functions in these Eqs.(4-5) are the

heart of the IB. In approximating these integral

transformations, the following discretized and reg-

ularized delta functions, δh(x) [20], are used,

δh(x) =
1

h3
φ
(x
h

)
φ
(y
h

)
φ
( z
h

)
, (7)

where φ(r) is defined as

φ(r)=

⎧⎨⎩
1
8(3−2|r|+

√
1+4|r|−4r2), 0≤|r|<1,

1
8(5−2|r|+

√
−7+12|r|−4r2), 1≤|r|<2,

0, 2 ≤ |r|.
B. Numerical Algorithm

As stated in the main text, we impose periodic

and no slip boundary conditions on the rectangular

domain . To solve Equations (2), (3),(4) and (5) we

need to update the velocity, pressure, position of

the boundary, and force acting on the boundary at

time n + 1 using data from time n. The IB does

this in the following steps [20], with an additional

step (4b) for IBAMR [36], [27]:

Step 1: Find the force density, Fn on the

immersed boundary, from the current boundary

configuration, Xn.

Step 2: Use Equation (4) to spread this bound-

ary force from the Lagrangian boundary mesh to

the Eulerian fluid lattice points.

Step 3: Solve the Navier-Stokes equations,

Equations (2) and (3), on the Eulerian grid. Upon
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doing so, we are updating un+1 and pn+1 from un,

pn, and fn. Note that a staggered grid projection

scheme is used to perform this update.

Step 4: (4a) Update the material positions,

Xn+1, using the local fluid velocities, Un+1, com-

puted from un+1 and Equation (5). (4b) If on a

selected time-step for adaptive mesh refinement,

refine the Eulerian grid in areas of the domain

that contain the immersed structure or where the

vorticity exceeds a predetermined threshold, .

We note that Step 4b is from the IBAMR

implementation of IB. IBAMR is an IB frame-

work written in C++ that provides discretization

and solver infrastructure for partial differential

equations on block-structured locally refined Eu-

lerian grids [37], [38] and on Lagrangian meshes.

Adaptive mesh refinement (AMR) achieves higher

accuracy between the Lagrangian and Eulerian

mesh by increasing grid resolution in areas of

the domain where the vorticity exceeds a certain

threshold and in areas of the domain that contain

an immersed boundary. AMR improves the com-

putational efficiency by decreasing grid resolution

in areas that do not necessitate high resolution.

The Eulerian grid was locally refined near both

the immersed boundaries and regions of vortic-

ity where |ω| > 0.50. This Cartesian grid was

structured as a hierarchy of four nested grid levels

where the finest resolved grid was assigned a reso-

lution of dx = D/1024, see Table I. A 1:4 spatial

step size ratio was used between each successive

grid refinements. The Lagrangian spatial step res-

olution was chosen to be twice the resolution of

the finest Eulerian grid, with ds = D/2048.
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rant, J. M. Favre, P. Navrátil, VisIt: An End-User
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SUPPLEMENTARY MATERIAL LINKED TO THE

ONLINE VERSION

1. Movie of velocity and vorticity of flow field

around pulsing coral at Ref = 0.5.

2. Movie of velocity and vorticity of flow field

around pulsing coral at Ref = 10.

3. Movie of velocity and vorticity of flow field

around pulsing coral at Ref = 80.
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Abstract—Motivated by the need of developing
numerical tools for the simulation of plant root
growth, this article deals with the numerical res-
olution of the C-Root model. This model describes
the dynamics of plant root apices in the soil and
it consists in a time dependent advection-reaction-
diffusion equation whose unique unknown is the
density of apices. The work is focused on the
implementation and validation of a suitable nu-
merical method for the resolution of the C-Root
model on unstructured meshes. The model is solved
using Discontinuous Galerkin (DG) finite elements
combined with an operator splitting technique. After
a brief presentation of the numerical method, the
implementation of the algorithm is validated in a
simple test case, for which an analytic expression
of the solution is known. Then, the issue of the
positivity preservation is discussed. Finally, the DG-
splitting algorithm is applied to a more realistic root
system and the results are discussed.

Keywords-Time dependent advection-reaction-
diffusion; Operator splitting; Discontinuous

Galerkin method; Plant root growth simulation;

I. INTRODUCTION

The article is devoted to the numerical mod-

eling of plant root growth. This work has been

originally motivated by the need of developing

numerical tools for the simulation of plant growth

dynamics. Due to the difficulty of doing non-

destructive observations of the underground part

of plants (that allow to do long term studies of the

dynamics of tree roots for example), mathematical

models are achieving an essential role. Several

theoretical and numerical challenges arise in the

field of the simulation of the dynamics of plant

roots [48], [47], [38], [2], [39]. The mathemat-

ical description of plant root is not trivial, due

to the presence of many interactions arising in

the rhizosphere and also due to the diversity of

plant root types. Mathematical models based on

the use of partial differential equations are useful

tools to simulate the evolution of root densities in
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space and time [43], [44], [44], [45], [46], [41],

[40], [1]. This formalism facilitates the coupling

with physical models such as water and nutrient

transports [42], [43], [44], [41], [49]. And the com-

putational time for the simulation of such models

is not dependent on the number of roots which is

useful for applications at large scale. The C-Root

model [1] is a generic model of the dynamics of

root density growth. This model takes only one

unknown which is related to root densities such

as the density of apices, root length density or

biomass density. It has only three parameters. The

model is said to be generic in the sense that it

can apply to a wide variety of root system types.

The model consists in a single time-dependent

advection-reaction-diffusion equation, and one of

the challenge is to numerically solve the equation.

In [1] and [2] the authors solved the problem

with the finite difference method on Cartesian

mesh grids combined with an operator splitting

technique. Unfortunately, Cartesian mesh grids do

not allow easily to mesh complex soil geometries.

From the theoretical and computational point of

view, Cartesian grids also lead to difficulties for a

rigorous study and validation of the model. That

is why this article focus on the development and

implementation of a suitable numerical method

for the resolution of the C-Root model on tri-

angular mesh grids, that allow to mesh complex

geometries. However, one of the main difficulties

in the C-root model is that the advection and

diffusion terms are not always of the same order

of magnitude. It depends on the phase of the root

system development [2]. As a result, the properties

of the equation may vary along the simulation:

it can be either close to a hyperbolic problem or

close to a parabolic problem.

In a previous work [3], the use of the Discon-

tinuous Galerkin method has been implemented

and validated. Indeed, the usual choice of the

classical Lagrange finite element method suffers

from a lack of stability when the advection term

is dominant [4]. For this reason, we implemented

a discontinuous Galerkin (DG) method for both

the advection and diffusion terms. All the three

operators where solved simultaneously using the

same time approximation scheme (θ-scheme).

However, as explained in [6], for multi-

biophysic problems it is not efficient to use the

same numerical scheme for the different operators

of the system. For example, we may want to use

the Euler explicit scheme for the advection term

and an Euler implicit scheme for the diffusion.

The operator splitting technique [7], [8] is a well

known alternative for the resolution of equations

having a multi-biophysic behaviour that allows the

use of different time schemes for each operator of

the equation. The idea of the splitting technique is

to split the problem into smaller and simpler parts

of the problem so that each part can be solved

by an efficient and suitable time scheme. This

methods has been used for a wide range of applica-

tions dealing with the advection-reaction-diffusion

equation [9]. Operator splitting techniques have

been extensively used in combination with finite

difference methods [10], [2], finite volume meth-

ods [11], [12] but also with Continuous Galerkin

methods [13], [14], [15], [16], [17]. To the best

of my knowledge, only very few articles deal

with the use of the operator splitting technique

in combination with the discontinuous Galerkin

approximation [18], [19], [20], [21]. In this paper,

we present a new application of the operator

splitting technique combined with discontinuous

finite elements.

The paper is structured as follows. In section

II, the C-root growth model [1], [2], [3] is briefly

described. An analysis is also provided, where I

showed the existence and uniqueness of a positive

real solution. In section III, the splitting operator

technique is introduced and applied to the C-Root

model, combined with the use of discontinuous

Galerkin approximations. In section IV, the algo-

ritm is implemented and validated using a simple

test case for which an analytic expression of the

solution is known. As an application, I provide

simulations of the development of eucalyptus roots

in section V. Finally, the paper ends with a con-

clusion and further improvements.
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II. THE MODEL

A. Modelling root growth with PDE: the C-Root
model

The C-Root model [1] was developed to sim-

ulate the growth of dense root networks, usually

composed of fine roots, with negligible secondary

thickening. As presented in [1], the unknown vari-

able u is the number of apices per unit volume,

but it can also stand for the density of fine root

biomass. The soil is considered as a subdomain

of R
d (with d = 1, 2 or 3). It is assumed that Ω

has smooth boundaries (Lipschitz boundaries) de-

noted ∂Ω. The C-Root model combines advection,

diffusion and reaction, which aggregate the main

biological processes involved in root growth, such

as primary growth, ramification and root death.

The reaction operator gives the quantity of apices

(or root biomass) produced in time, whereas ad-

vection and diffusion operators spatially distribute

the whole apices (or biomass) in the domain.

The reaction operator describes the evolution in

time of the root biomass in a given domain. In

the C-Root model it is a linear term characterized

by the scalar parameter ρ which is the growth

rate of the root system. The diffusion corresponds

to the spread of the root biomass over space.

It is described by the parameter σ which is a

d × d matrix that characterizes the growth of

the root biomass in any direction exploiting free

space in the soil. The advection corresponds to the

displacement of the root biomass in a direction and

velocity given by v which is a vector in R
d.

On the boundaries of Ω, what happens for the

quantity being transported is different depending

if the growth makes the roots to come inside Ω
or to go outside of Ω. If v is going inside Ω (at

the inlet boundary) the root biomass u will enter

the domain and increase. On edges where v is

going out of the domain (outlet boundary) the root

biomass u is going to be pushed out of Ω. Since

this phenomena is oriented (causality) and the

behaviour of the solution is different on inlet and

outlet boundaries, we need to specify in the model

these parts of the boundaries. Mathematically, it is

required to define the inlet boundary with respect

to v as

∂Ω− = {x ∈ ∂Ω : (v · n)(x) < 0} . (1)

The outlet boundary Ω+ is given by ∂Ω+ =
∂Ω\∂Ω−. The dynamics of the root system is stud-

ied between the time t0 and t1 with 0 ≤ t0 < t1.

The problem reads as follow: find u such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu+ v · ∇u − ∇ · (σ∇u) + ρu = 0
in ]t0, t1[×Ω

u(t0) = u0 at {t0} × Ω

n · σ∇u = g on ]t0, t1[×∂Ω

(n · v)u = gin on ]t0, t1[×∂Ω−

(2)

where g ∈ L2(∂Ω) and gin ∈ L2(∂Ω−) are given.

And u0 is the given initial solution.

Problem (2) is known as the time dependent

advection- reaction-diffusion problem and belongs

to the class of parabolic partial differential equa-

tions. This equation is a model problem that often

occurs in fluid mechanics but also in many other

applications in life sciences (see for instance [22],

[23], [24]).

Depending on the boundary conditions, the

problem has different meanings. To simplify

the presentation we only consider the Neumann

boundary condition combined with an inlet bound-

ary condition at the inlet of the domain. The Neu-

mann condition specifies the value of the normal

derivative of the solution at the boundary of the

domain. The inlet boundary condition specifies the

quantity of u convected by v that enters in the

domain.

B. The weak problem

Since the goal is to solve the problem on

unstructured meshes, the spatial operators are ap-

proximated using finite element methods. Within

this framework, it is classical to write the problem

in a variational form. Let us first introduce some

functional spaces [50].

• The space H1(Ω) defined such that H1(Ω) =
{v ∈ L2(Ω) : ∇v ∈ L2(Ω)} is a Hilbert space

when equipped with the norm ‖ · ‖1,Ω. We

recall that ∀v ∈ H1(Ω), ‖v‖1,Ω = (v, v)1,Ω
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and the scalar product (·, ·)1,Ω is defined by

∀v ∈ H1(Ω),

(u, v)1,Ω =

∫
Ω
uv dx+

∫
Ω

∇u · ∇v dx.

• We denote L2(]t0, t1[, H) the space of H-

valued functions whose norm in H is in

L2(]t0, t1[). This space is a Hilbert space for

the norm

‖u‖L2(]t0,t1[,H) =

(∫ t1

t0

‖u(t)‖2H
)1/2

.

• Let B0 ⊂ B1 be two reflexive Hilbert

spaces with continuous embedding, we de-

note W(B0, B1) the space of functions v :
]t0, t1[−→ B0 such that v ∈ L2(]t0, t1[, B0)
and dtv ∈ L2(]t0, t1[, B1). Equipped with the

norm

‖u‖W(B0,B1) = ‖u‖L2(]t0,t1[,B0)

+‖dtu‖L2(]t0,t1[,B1),

the space W(B0, B1) is a Hilbert space [25].

Using the previous functional spaces, I now

define the problem in the following weak form:

Find u in W such that ∀v ∈ H

〈dtu(t),v(t)〉H′,H+a(t, u, v)=�(t,v) a.e. t∈]t0,t1[
u(t0) = u0,

(3)

where W = W(H1(Ω), (H1(Ω))′) and H =
H1(Ω) and

�(t, v) =

∫
∂Ω

g(t)vdγ (4)

a(t,u,v)=aA(t,u,v)+aD(t,u,v)+aR(t,u,v) (5)

with

aA(t, u, v) =

∫
Ω
v(v(t,x) · ∇u) dx, (6)

aD(t, u, v) =

∫
Ω

∇v · σ(t,x) · ∇u dx, (7)

aR(t, u, v) =

∫
Ω
ρ(t)uv dx. (8)

One can prove that problems (3) and (2) are

equivalent almost everywhere in ]t0, t1[×Ω. Let us

assume that there is a constant σ0 > 0 such that

∀ξ ∈ R
d,

d∑
i,j=1

σijξiξj ≥ σ0‖ξ‖2d a.e. in Ω. (9)

In addition, I assume that

inf
x∈Ω

(
σ − 1

2
(∇ · v)

)
> 0 and inf

x∈∂Ω
(v · n) ≥ 0.

(10)

Under assumption (9) and (10), one can prove

that the problem is well-posed for sufficiently

smooth v, σ and ρ (see for instance [25]).

C. The positivity preserving property of the solu-
tion

In the framework of our applications to the

simulation of root biomass densities one of the

crucial property of the problem is the preservation

of the positity of the solution along time. For a

positive initial solution u0, the solution of (3) stays

positive.

Proposition II-C.1. Let u0 ∈ L2(Ω) and f ∈
L2(]t0, t1[, L

2(Ω)). We consider u the solution of
(3) in W . We assume that u0(x) ≥ 0 a.e. in Ω and
g(t,x) ≥ 0 a.e. in ]t0, t1[×∂Ω. Then u(t,x) ≥ 0
a.e in ]t0, t1[×Ω.

Proof: I follow [25]. See also [26], [27]. We

consider the function u− defined by

u− =
1

2
(|u| − u).

Let us note that

u−=

{
0 a.e in ]t0,t1[×Ω, if u≥0 a.e in ]t0,t1[×Ω,

−u a.e in ]t0,t1[×Ω, if u<0 a.e in ]t0,t1[×Ω.

That is we have

u− ≥ 0 a.e. in ]t0, t1[×Ω. (11)

We verify that u− is an admissible test function in

W . Using the following obvious equations

(∇|u|)2 = (∇u)2

∇|u| · ∇|u| = ∇u · ∇u

u∇|u| = |u|∇u

u∇u = |u|∇|u|
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that are valid a.e in ]t0, t1[×Ω we can verify that

a(t, u−, u−) = −a(t, u, u−).

By adding the same quantity on both sides of the

equation we get

〈dtu−,u−〉+a(t,u−,u−)=〈dtu−,u−〉−a(t,u,u−).

Since u satisfy (3) we have

〈dtu−,u−〉+a(t,u−,u−) =〈dtu−,u−〉+〈dtu,u−〉
− �(t, u−).

One can notice that 〈dtu−, u−〉 + 〈dtu, u−〉 = 0.

Then we have

1

2
dt‖u−‖20,Ω + a(t, u−, u−) = −�(t, u−) ≤ 0,

with g(t,x) ≥ 0 a.e. in ]t0, t1[×∂Ω. Now from the

coercivity of the bilinear form a we obtain

1

2
dt‖u−‖20,Ω + c‖u−‖20,Ω

≤ 1

2
dt‖u−‖20,Ω + a(t;u−, u−) ≤ 0,

where c is a strictly positive constant. The estimate

is then

1

2
dt‖u−‖20,Ω ≤ −c‖u−‖20,Ω.

By the Gronwall lemma we have that

∀t ∈ [t0, t1] × Ω, ‖u−(t)‖20,Ω ≤ e−2ct‖u−(0)‖20,Ω.

Since c > 0 and t ≥ t0 ≥ 0 , we have that e−2ct ≤
1 , so we obtain

∀t ∈ [t0, t1] × Ω, ‖u−(t)‖20,Ω ≤ ‖u−(0)‖20,Ω.

Since u(0) = u0 ≥ 0 a.e in Ω we have u−(0) = 0
a.e in Ω. So we deduce that

∀t ∈ [t0, t1] × Ω, ‖u−(t)‖20,Ω ≤ 0.

But from the definition of u− we have u− ≥ 0 a.e

in ]t0, t1[×Ω. So we deduce that ‖u−(t)‖20,Ω = 0
and thus u−(t) = 0 a.e in ]t0, t1[×Ω. It means that

u ≥ 0 a.e in ]t0, t1[×Ω by definition of u−.

III. APPROXIMATION OF THE MODEL

A. The operator splitting technique

Here we focus on the implementation of

the operator splitting technique. The time inter-

val [t0, t1] is divided in N subspaces of size

δt such that [t0, t1] = ∪n=1,N ]tn, tn+1[ with

∩n=1,N ]tn, tn+1[= ∅. At each iteration step we

solve the following problems

• Find uA ∈ H such that ∀v ∈ H , for a.e t ∈
]tn, tn+1[,

〈dtuA(t), v(t)〉H′,H + aA(t, uA, v) = 0

uA(tn) = u(tn).

• Find uD ∈ H such that ∀v ∈ H , for a.e

t ∈]tn, tn+1[,

〈dtuD(t), v(t)〉H′,H + aD(t, uD, v) = �(t, v)

uD(tn) = uA(tn+1).

• Find uR ∈ H such that ∀v ∈ H , for a.e t ∈
]tn, tn+1[,

〈dtuR(t), v(t)〉H′,H + aR(t, uR, v) = 0

uR(tn) = uD(tn+1).

• Set u(tn+1) = uR(tn+1).

The bilinear forms aA(t, u, v), aD(t, u, v) and

aR(t, u, v) are respectively given by (6), (7) and

(8). And �(t, v) is the linear form (4). If the

operators are commutative, then the splitting error

vanishes. Otherwise, if the operators are not com-

mutative, then the splitting error does not vanish

and a second order splitting would be required

(see [6]). In the following, I present the different

schemes related to each operator.

B. The advection step: DG upwind scheme

The advection step consists in solving the fol-

lowing transport problem : Find u such that ∀v ∈
H , for a.e t ∈]tn, tn+1[,

〈dtu(t), v(t)〉H′,H + aA(t, u, v) = 0 (12)

uA(tn) = uR(tn) (13)

where aA(t, u, v) is the bilinear form (6). For the

space approximation of this problem, we imple-

mented the DG upwind method presented below.
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Let Th be a regular family of decomposition in

triangles of the domain Ω such that

Ω =

N⋃
i=1

K̄i and Ki ∩ Kj = ∅, ∀i �= j.

The h subscript in Th denotes the size of the mesh

cells and it is defined by

h = max
K∈Th

hK

where hK is the diameter of the element K. Let Eh

be the set of edges of the elements of Th. Among

the elements of Eh we denote by Eb
h the set of

edges belonging to ∂Ω. The sets Eb,−
h and Eb,+

h
are the sets of edges belonging to ∂Ω− and ∂Ω+

respectively. And E i
h is the set of interior edges.

Let us consider an element of E i
h. We denote by

T+ and T− the two mesh elements sharing the

edge e so that e = ∂T+ ∩ ∂T− where the minus

and plus superscripts depend on the direction of

the advection vector. By convention we suppose

that v goes from T− to T+ that is v ·n+
e < 0 and

v · n−e > 0 where n+
e (resp. n−e ) is the outward

normal vector of e in T+ (resp. T−). When it is

not necessary to distinguish the orientation of the

normal vectors n+
e and n−e we denote by n the

unitary normal of e.

Let us consider the advection problem on each

element Ki of the domain : for all Ki, i = 1, N
we look for u the solution of the equation (12)

defined on Ki. Similarly to the problem defined

on all the domain Ω, we look for a solution u that

is in L2(Ki) and such that ∇u is in L2(Ki) for all

Ki in Th. Let us introduce the following broken

Sobolev space:

H1(Th) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ki)

and v ∈ H1/2+ε(Ki), ∀Ki ∈ Th

}
with ε a positive real number. The trace of the

functions of H1(Th) are meaningful on e ⊂ Ki,

∀Ki ∈ Th. The functions v of H1(Th) have two

traces along the edges e. We denote v+e the trace

of v along e on the side of triangle T+ and v−e the

trace of v along e on the side of T−. On edges

that are subsets of ∂Ω the trace is unique and we

can note

v+e = v if e ∈ Eb,−
h and v−e = v if e ∈ Eb,+

h ,

and by convention, we set

v−e = 0 if e ∈ Eb,−
h and v+e = 0 if e ∈ Eb,+

h .

The jump of functions of H1(Th) across the inter-

nal edge e is defined by:

�v� = v+e − v−e , ∀e ∈ E i
h.

For edges belonging to the boundary of Ω we take

�v� = ve, ∀e ∈ Eb,−
h and �v� = −ve, ∀e ∈ Eb,+

h ,

with ve the trace of v along e. The mean value of

u on e is defined by

{{v}} =
1

2
(v+e + v−e ), ∀e ∈ E i

h.

Besides for edges on the boundaries we take

{{v}} = ve, ∀e ∈ Eb
h.

Let us denote by X the functional space defined

such that

X = {v : ]t0, t1[−→ H1(Th) :

v ∈ L2(]t0, t1[, H
1(Th));

and dtv ∈ L2(]t0, t1[, H
1(Th)

′)}.
This space is a Hilbert space equipped with the

norm

‖v‖X = ‖v‖L2(]t0,t1[,H1(Th))+‖v‖L2(]t0,t1[,H1(Th)′).

The DG variational formulation of the advection

step written on the broken Sobolev space takes

the following form: Find u in X such that for a.e

t ∈]t0, t1[, ∀v ∈ H1(Th)

〈dtu(t), v(t)〉H1(Th)′,H1(Th)+auph (t;u,v)=�uph (t;v),

u(t0) = u0,

where the form auph (t;u, v) is the approximation

of the advection term. It consists in the upwind

formulation of the DG method [28]. It reads:

auph (t;u, v)=
∑
K∈Th

∫
K
u(ρv−v · ∇v)dx

−
∑

e∈Eb,±
h ∪Eb,+

h

∫
e

|v · n+
e |u−e �v�ds. (14)
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The approximated linear form of the the right hand

side reads

�uph (t; v) = −
∑

e∈Eb,−
h

∫
e
(v · n+

e )ginv
+
e ds.

The DG-formulation (14) is consistent and stable,

see for example [32]. The discontinuous Galerkin

method consists in searching the solution in the

approximation space Xh defined such that

Xh =
{
v :]t0, t1[−→ W k

h ; v ∈ L2(]t0, t1[,W
k
h );

and dtv ∈ L2(]t0, t1[, (W
k
h )
′)
}
,

where W k
h is given by

W k
h =

{
vh ∈ L2(Ω); ∀K ∈ Th, vh|K ∈ P

k
}
.

Let us note that the functions of W k
h can be

discontinuous from one element of the mesh to the

other. Let us note that W k
h is embedded in H1(Th)

so that Xh ⊂ X . This problem can be written

in a matrix form. Let us denote (λi)i=1,n the

basis of the finite dimensional subspace W k
h where

n = dim(W k
h ). In this basis the approximated

solution takes the form:

uh(t, x, y) =

n∑
i=1

ξi(t)λi(x, y),

where the ξi(t) are the degrees of freedom. Let us

define X the vector of degrees of freedom:

X(t) = (ξ1(t), . . . , ξn(t))
T .

The approximated problem then reduces to find

X(t) ∈ [C2(0, T )]n such that

M
dX(t)

dt
+Aup(t)X(t) = Lup

h (t)

MX(0) = MX0

where M and Aup(t) are two matrices defined

such that

M = (Mi,j)i,j and Mi,j =
∑
T∈Th

∫
K
λiλjdx,

(15)

Aup =
(
Aup

i,j

)
i,j

and Aup
i,j = auph (t; , u, v), (16)

and Lup
h (t) is the vector of size n defined such that(

Lup
h (t)

)
i
= �uph (t;λi) for i = 1, n. The problem

reduces to a linear system of ordinary differential

equations. The time approximation is based on a

finite difference scheme.

At each iteration step we solve the following

problem: Find XN+1 ∈ R
n such that

1

δt
M
(
XN+1 − XN

)
+ (1 − θ)AupXN + θAupXN+1 (17)

= (1 − θ)Lup,N
h + θLup,N+1

h

and MX0 = MX0,

where θ is a real parameter taken in [0, 1]. For

θ = 0, we have the explicit Euler schema. For

θ = 1, it is the implicit Euler schema. For θ = 1/2,

it is the Crank-Nicolson schema.

C. The diffusion step

The diffusion step consists in solving the fol-

lowing problem : Find u such that ∀v ∈ H , for

a.e t ∈]tn, tn+1[,

〈dtu(t), v(t)〉H′,H + aD(t;u, v) = �(t; v)

u(tn) = uA(tn)

where aD(t;u, v) is the bilinear form (7) and

�(t; v) is the linear form (4). In the setting intro-

duced before, the DG variational formulation of

the diffusion step written in the broken Sobolev

space takes the following form: Find u in X such

that ∀v ∈ H1(Th), for a.e. t ∈]t0, t1[

〈dtu(t), v〉H1(Th)′,H1(Th) + aiph (t;u, v) = �iph (t; v)

u(t0) = u0.

The form aiph (t;u, v) is the approximation of the

diffusion term. It consists in the interior penalty
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formulation (IP) that reads

aiph (t;u, v) =
∑
K∈Th

∫
K
σ∇u · ∇v dx

−
∑
e∈Ei

h

∫
e
{{σ∇u}} · n+

e �v� ds

+
∑
e∈Ei

h

∫
e
{{σ∇v}} · n+

e �u� ds

+
∑
e∈Ei

h

η

he

∫
e
�u��v� ds,

where η is a positive penalization factor. The linear

form �iph (t; v) is given by �iph (t; v) =
∑
e∈Eb

h

∫
e
gv ds.

This formulation was introduced in [31] and

is known as the non-symmetric interior penalty

(NSIP) formulation, see [30], [32]. In matrix form

the problem reduces to find X(t) ∈ [C2(0, T )]n

such that

M
dX(t)

dt
+Aip(t)X(t) = Lip

h (t)

MX(0) = MX0

where M is defined by (15) and Aip is defined

such that

Aip =
(
Aip

i,j

)
i,j

and Aup
i,j = aiph (t; , u, v).

The vector Lip
h (t) is such that

(
Lip
h (t)

)
i

=

�iph (t;λi) for i = 1, n. Similarly to the advection

step, the time approximation of the problem is

based on a finite difference scheme of the form

(17).

D. The reaction step

The reaction step consists in solving the follow-

ing problem : Find u such that ∀v ∈ H , for a.e.

t ∈]tn, tn+1[

〈dtu(t), v(t)〉H′,H + aR(t;u, v) = 0

u(tn) = uD(tn)

where aR(t;u, v) is the bilinear form (8). This

problem takes the following matrix form find

X(t) ∈ [C2(0, T )]n such that

dX(t)

dt
+ ρX(t) = 0

X(0) = X0

where we recall that ρ is a constant real parameter.

This problem can be solved by an exact scheme (a

kind of schemes that provide exact solutions, i.e. a

solution equal to the analytical solution). At each

iteration we find XN+1 such that

1

Φ(δt)

(
XN+1 − XN

)
= −ρXN

with Φ(δt) = 1
ρ(1 − exp(−ρδt)). This scheme

is unconditionally stable, meaning that we can

choose the time step independently from the space

step. It is also positively stable, meaning that if

XN ≥ 0 so is XN+1.

IV. VALIDATION OF THE SPLITTING

ALGORITHM WITH A SIMPLE TEST CASE

Problem (3) has been already solved using dis-

continuous Galerkin elements (DG) [3]. Advection

and Diffusion operators were solved simultane-

ously using the Crank-Nicolson scheme providing

stable results. However, even for simple test cases

some simulations did not always provide positive

numerical solutions. One reason is that the same

time approximation scheme is not necessarily suit-

able for both the advection and for the diffusion.

That is why a new operator splitting algorithm has

been implemented with a different time scheme for

each operator.

The goal of this section is to validate the im-

plementation of the code. To this end I compare

the convergence of the approximation with and

without the splitting technique. I briefly explore

the question of the positivity of the approximated

solution.

A. Description of the simple test-case

First let me introduce a simplified test-case for

the validation of the splitting algorithm. Set L > 0,

and Ω =] − L;L[2. Let v = (v1, v2) ∈ R
2 and
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d ∈ R be a constant and 0 ≤ t0 ≤ t1. Find u such

that

∂u

∂t
+ v · ∇u+ ρu = dΔu in ]t0, t1[×Ω,

u(x, y, 0) = u0(x, y) on {t0} × Ω, (18)

n · ∇u = g on ]t0, t1[×∂Ω.

n · vu = gin on ]t0, t1[×∂Ω−.

The initial condition and the boundary condition

are chosen such that the solution of problem (18)

is explicitly given by ∀(x, y, t) ∈ Ω×]t0, t1[

u(x, y, t) = c0

(
a2

a2 + td

)
κ(x, y, t)e−ρt.

with

κ(x, y, t)

= c0 exp

(
−(x − x0 − tv1)

2 + (y − y0 − tv2)
2

4(a2 + td)

)
where c0 > 0, a > 0, x0 and y0 are real parameters

and v1 and v2 are the two components of v. Notice

that u(x, y, t) > 0 for all (x, y, t) in Ω×]t0, t1[.

B. Numerical validation and convergence

To validate the implementation of the splitting

technique, I ran the previous test case with differ-

ent mesh sizes and time steps and I computed the

global L2-errors such that

eh =

(
δt

N∑
k=1

‖u(tk) − uh(tk)‖20,Ω

)1/2

where tk = t0 + kδt, with k ∈ N
+
∗ and tN = t1.

The flexibility of the splitting technique allows

to choose different time schemes for each operator.

I consider a θ-scheme with θ = 0 (explicit Euler),

θ = 1 (implicit Euler), and θ = 1
2 (Crank-

Nicolson) for both the advection step and the

diffusion step, and I consider an exact scheme for

the reaction step. For the simulations I took the

parameters such that v = (0.1, 0)T , σ = 0.01 and

ρ = −1. The triangular meshes used for the simu-

lations are identified by h which is the size of the

biggest triangle of the mesh. Table I, page 9, gives

the number of triangles and the number of nodes

of each mesh used for the simulations. Choosing

h (≈) number of triangles number of nodes

2.63× 10−1 68 45
1.31× 10−1 272 157
6.57× 10−2 1 088 585
3.29× 10−2 4 352 2 257
1.64× 10−2 17 408 8 865
8.22× 10−3 69 632 35 137
4.11× 10−3 278 528 139 905

TABLE I
TRIANGULAR MESHES USED FOR THE SIMULATIONS.

Fig. 1. Solution of the validation test case at t = t0 (left)
and t = t1 (right) computed using the DG method with p1-
finite elements and the Euler implicit scheme (θ = 1) and
the operator splitting technique with h ≈ 8.2 × 10−3 and
δt = 10−2.

L = 1/2, the simulations are performed between

t0 = 0 and t1 = 1 for different values of the time

step δt. Fig. 1, page 9, shows the solution at t = t0
and t = t1. The code is implemented in Fortran

90 and it is run under a 64-bit Linux operating

system on a 8-core processor Intel R©CoreTMi7-

7820HQ at a frequency of 2.9GHz and with 32 GB

of RAM. The sparse matrices resulting from the

finite element approximation are inverted using a

solver provided by the library MUMPS [51], [52].

According to Fig. 2, page 10, all the three tem-

poral schemes provide results with approximately

the same level of accuracy with a spatial con-

vergence rate of 2 computed with the global L2-
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Fig. 2. Convergence of the solution with respect to the mesh
size: plot of the total L2-error computed between t = 0 and
t = 1 with and without the splitting technique for the explicit
Euler scheme (θ = 0), the implicit Euler scheme (θ = 1) and
the Crank-Nicolson scheme (θ = 1/2) for δt = 5× 10−5.

Fig. 3. Convergence of the solution with respect to the time
step: plot of the total L2-error computed between t = 0 and
t = 1 with and without the splitting technique for the implicit
Euler scheme (θ = 1) and the Crank-Nicolson scheme (θ =
1/2) for h = 4.1× 10−3.

norm. The same order of convergence is obtained

when the problem is solved without the splitting

technique.

Figure 3 on page 10 shows that the Crank-

Nicolson scheme (θ = 1/2) converges in δt2 while

the Euler Implicit scheme (θ = 1) converges in

δt, with and without the splitting technique. The

convergence rate in time has to be computed with

a really refined mesh grid (here h ≈ 4.1 × 10−3).

Fig. 4. Validation of the test case: plot of the CPU time
against the mesh size (h) for the computations performed with
a processor Intel R©CoreTMi7-7820HQ at 2.9 GHz and RAM
32 GB, between t = 0 and t = 1 with and without the
splitting technique for the explicit Euler scheme (θ = 0),
the implicit Euler scheme (θ = 1) and the Crank-Nicolson
scheme (θ = 1/2) for δt = 5× 10−5.

Fig. 5. Validation of the test case: plot of the CPU time
against the time step (δt) for the computations performed with
a processor Intel R©CoreTMi7-7820HQ at 2.9 GHz and RAM
32 GB, between t = 0 and t = 1 with and without the
splitting technique for the explicit Euler scheme (θ = 0),
the implicit Euler scheme (θ = 1) and the Crank-Nicolson
scheme (θ = 1/2) for h ≈ 4.1 × 10−3 and δt ranging from
5× 10−1 to 5× 10−4. Note that the computations performed
here with θ = 0 gave unstable results.
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δt global L2-errors min dof t+ CPU time

1 · 10−3 unstable unstable - 95 s

2 · 10−4 1.24 · 10−4 −1 · 10−4 0.221 475 s

1 · 10−4 1.22 · 10−4 −1 · 10−4 0.218 838 s

5 · 10−5 1.21 · 10−4 −1 · 10−4 0.216 1672 s

2.5 · 10−5 1.20 · 10−4 −9 · 10−5 0.215 3376 s

1 · 10−5 1.20 · 10−4 −9 · 10−5 0.215 10183 s

TABLE II
COMPUTATIONS PERFORMED WITH THE SPLITTING TECHNIQUE AND THE EXPLICIT EULER SCHEME (θ = 0) WITH

h ≈ 1.6 · 10−2 (INTEL R©CORE
TM

I7-7820HQ AT 2.9 GHZ, RAM 32 GB).

It results an additional cost in term of CPU time,

since it behaves like 1/h2, as shown on figure 4

page 10. For bigger values of h the plot of the

errors gave convergence order in time less than

1 and 2 for the implicit Euler scheme and the

Crank-Nicolson scheme respectively. As expected,

the explicit Euler scheme is conditionally stable,

such that, when the CFL condition is fulfilled, the

computational time becomes prohibitive. Indeed,

it behaves like 1/δt, as shown on figure 5. For

instance, the computation with h ≈ 4.1 × 10−3

and δt = 10−5 takes more than 30 hours with the

device specified above. That is why, in the rest of

the paper, we will only focus on implicit Euler and

Crank-Nicolson schemes. However I present here

additional computations performed with a bigger

mesh size (h ≈ 1.6×10−2) and smaller time steps

chosen such that the CFL condition is fulfilled.

The global L2-errors and the CPU time are shown

on table II. Clearly, the mesh is not fine enough

to recover the convergence order in δt, indeed

decreasing the time step results only in an increase

of the computational time but not in a significant

decrease of the errors.

C. Some comments on the positivity

1) Positivity of the full problem: Table III on

page 11 and table V on page 12 give the min-

imum values of the degrees of freedom (dof)

obtained during the simulations performed respec-

tively with and without the splitting technique.

The minimum value of the dof is defined such

that mintk(mini=1,nX
k
i ) where Xk

i is the ith dof

at time tk. This quantity gives an idea about the

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 −7 · 10−1 −7 · 10−1 −7 · 10−1

2 · 10−1 −2 · 10−1 −2 · 10−1 −2 · 10−1

1 · 10−1 −8 · 10−4 −1 · 10−3 −2 · 10−3

4 · 10−2 −2 · 10−4 −6 · 10−4 −1 · 10−3

2 · 10−2 −3 · 10−13 −2 · 10−4 −6 · 10−4

1 · 10−2 −6 · 10−5 −2 · 10−20 −1 · 10−4

4 · 10−3 −3 · 10−4 4 · 10−65 5 · 10−66

2 · 10−3 −3 · 10−4 −9 · 10−11 5 · 10−88

1 · 10−3 −2 · 10−4 −8 · 10−10 8 · 10−114

1 · 10−4 −9 · 10−5 −1 · 10−11 −4 · 10−35

Crank-Nicolson scheme (θ = 1/2)

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 −5 · 10−8 −9 · 10−9 −2 · 10−9

2 · 10−1 4 · 10−9 1 · 10−9 4 · 10−10

1 · 10−1 3 · 10−11 3 · 10−11 1 · 10−11

4 · 10−2 6 · 10−17 5 · 10−17 5 · 10−17

2 · 10−2 3 · 10−23 2 · 10−23 2 · 10−23

1 · 10−2 1 · 10−31 4 · 10−32 3 · 10−32

4 · 10−3 −3 · 10−5 1 · 10−48 6 · 10−49

2 · 10−3 −5 · 10−5 2 · 10−65 2 · 10−66

1 · 10−3 −7 · 10−5 −1 · 10−13 2 · 10−88

1 · 10−4 −9 · 10−5 −7 · 10−12 −3 · 10−43

Implicit Euler scheme (θ = 1)

TABLE III
MINIMUM VALUE OF THE DOF (mini,k X

k
i ) COMPUTED

WITH THE SPLITTING ALGORITHM WITH THE

CRANK-NICOLSON SCHEME (TOP) AND THE IMPLICIT

EULER SCHEME (BOTTOM).

stability and the positivity preserving behaviour of

the schemes. Tables III and V clearly show that

the schemes are not always positivity preserving.

In case where the approximated solution is not

positive for all t > t0 I also check if it becomes

non-negative for larger time ie. if there is t+ > t0
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δt h≈1.6·10−2 h≈8.2·10−3 h ≈4.1·10−3

5 · 10−1 - - -

2 · 10−1 - - -

1 · 10−1 - - -

4 · 10−2 - - -

2 · 10−2 0.24 - -

1 · 10−2 0.07 0.10 -

4 · 10−3 0.172 t0 t0
2 · 10−3 0.202 0.044 t0
1 · 10−3 0.210 0.079 t0
1 · 10−4 0.2140 0.0939 0.0297

Crank-Nicolson scheme (θ = 1/2)

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 1 1 1
2 · 10−1 t0 t0 t0
1 · 10−1 t0 t0 t0
4 · 10−2 t0 t0 t0
2 · 10−2 t0 t0 t0
1 · 10−2 t0 t0 t0
4 · 10−3 0.072 t0 t0
2 · 10−3 0.132 t0 t0
1 · 10−3 0.173 0.029 t0
1 · 10−4 0.2102 0.0874 0.0217

Implicit Euler scheme (θ = 1)

TABLE IV
POSITIVITY THRESHOLD (t+) COMPUTED WITH THE

SPLITTING ALGORITHM AND THE CRANK-NICOLSON

SCHEME (TOP) AND THE IMPLICIT EULER SCHEME

(BOTTOM).

such that Xk
i ≥ 0, ∀i = 1, n for all tk > t+ > t0.

The smallest such t+, if it exists, is referred as

the positivity threshold, as defined in [36]. Table

IV on page 12 and table VI on page 13 give the

positivity thresholds computed with and without

the splitting technique respectively.

For the Crank-Nicolson scheme (θ = 1/2) and

the implicit Euler scheme (θ = 1) the positivity

is obtained under a specific condition on the time

step and the mesh size. For a given mesh size,

the time step δt must be bounded from above,

but also from below to guarantee that the solution

stays positive all along the simulation. In the case

of the splitting technique those bounds are more

restrictive than in the case of the resolution of

the full problem without splitting. Those bounds

are also more restrictive in the case of the Crank-

Nicolson (θ = 1/2) scheme than in the case of the

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 −4 · 10−1 −4 · 10−1 −4 · 10−1

2 · 10−1 −1 · 10−1 −1 · 10−1 −1 · 10−1

1 · 10−1 1 · 10−13 1 · 10−13 1 · 10−13

4 · 10−2 1 · 10−21 1 · 10−21 9 · 10−22

2 · 10−2 3 · 10−30 1 · 10−30 1 · 10−30

1 · 10−2 −6 · 10−5 1 · 10−42 9 · 10−43

4 · 10−3 −3 · 10−4 3 · 10−64 5 · 10−65

2 · 10−3 −3 · 10−4 −8 · 10−11 3 · 10−87

1 · 10−3 −2 · 10−4 −7 · 10−10 3 · 10−113

1 · 10−4 −9 · 10−5 −1 · 10−11 −8 · 10−35

Crank-Nicolson scheme (θ = 1/2)

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 2 · 10−5 2 · 10−5 2 · 10−5

2 · 10−1 1 · 10−7 1 · 10−7 1 · 10−7

1 · 10−1 6 · 10−10 5 · 10−10 5 · 10−10

4 · 10−2 1 · 10−15 1 · 10−15 1 · 10−15

2 · 10−2 6 · 10−22 5 · 10−22 5 · 10−22

1 · 10−2 1 · 10−30 7 · 10−31 6 · 10−31

4 · 10−3 −2 · 10−5 2 · 10−47 8 · 10−48

2 · 10−3 −4 · 10−5 2 · 10−64 2 · 10−65

1 · 10−3 −7 · 10−5 −3 · 10−13 2 · 10−87

1 · 10−4 −9 · 10−5 −7 · 10−12 −1 · 10−42

Implicit Euler scheme (θ = 1)

TABLE V
MINIMUM VALUE OF THE DOF (mini,k X

k
i ) COMPUTED

WITHOUT THE SPLITTING ALGORITHM AND THE

CRANK-NICOLSON SCHEME (TOP) AND IMPLICIT EULER

SCHEME (BOTTOM).

implicit Euler scheme (θ = 1). Refining the mesh

results in less restrictions on the time step but also

lead to additional computational time.

With the Crank-Nicolson scheme (θ = 1/2),

for a given mesh size, if δt is too big, there is

no threshold of positivity in tk ∈]t0, t1] and the

computed solution is not non-negative all along

the simulation. For θ = 1/2 and θ = 1, still

with a given mesh size, if δt is too small, the

simulations showed that there is a threshold of

positivity t+ such that the approximated solution

becomes non-negative for tk ≥ t+. The thresholds

of positivity slightly depend on the time step

and tend to increase when the time step δt is

decreased. The computations clearly showed that

the positivity thresholds diminish with the mesh

size h (see for example [36]).

Altogether, the positivity of the approximated
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δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 - 1 1
2 · 10−1 0.8 0.8 0.8
1 · 10−1 t0 t0 t0
4 · 10−2 t0 t0 t0
2 · 10−2 t0 t0 t0
1 · 10−2 0.08 t0 t0
4 · 10−3 0.188 t0 t0
2 · 10−3 0.208 0.050 t0
1 · 10−3 0.213 0.083 t0
1 · 10−4 0.2143 0.0942 0.0300

Crank-Nicolson scheme (θ = 1/2)

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 t0 t0 t0
2 · 10−1 t0 t0 t0
1 · 10−1 t0 t0 t0
4 · 10−2 t0 t0 t0
2 · 10−2 t0 t0 t0
1 · 10−2 t0 t0 t0
4 · 10−3 0.0720 t0 t0
2 · 10−3 0.1380 t0 t0
1 · 10−3 0.1760 0.0290 t0
1 · 10−4 0.2104 0.0877 0.0221

Implicit Euler scheme (θ = 1)

TABLE VI
POSITIVITY THRESHOLD (t+) COMPUTED WITHOUT THE

SPLITTING ALGORITHM AND THE CRANK-NICOLSON

SCHEME (TOP) AND THE IMPLICIT EULER SCHEME

(BOTTOM).

solution is obtained at the expense of the compu-

tational cost, but for a given mesh size h computa-

tions performed with too small time step can also

lead to a loss of positivity for small tk. In [36] (and

references therein), Thomée showed that threshold

values of tk > 0 may exist such that X(t) > 0
when t > tk.

At this stage, one may wonder how each term of

the splitting behaves in terms of positivity preser-

vation. The reaction term is approximated using

an exact scheme, so obviously the positivity of the

solution is preserved. What about the diffusion and

the advection term ?

2) Positivity of the pure diffusion problem:
Here I set v = (0, 0) and ρ = 0, while keeping all

others parameters to the same values as previously.

Table VII clearly shows that the Crank-Nicolson

scheme (θ = 1/2) is positivity preserving under a

δt h≈1.6·10−2 h≈8.2·10−3 h ≈4.1·10−3

5 · 10−1 −5 · 10−1 −5 · 10−1 −5 · 10−1

2 · 10−1 −2 · 10−1 −2 · 10−1 −2 · 10−1

1 · 10−1 4 · 10−15 4 · 10−15 4 · 10−15

4 · 10−2 6 · 10−23 5 · 10−23 4 · 10−23

2 · 10−2 2 · 10−31 8 · 10−32 6 · 1032
1 · 10−2 −4 · 10−5 1 · 10−43 6 · 1043
4 · 10−3 −3 · 10−4 4 · 10−65 5 · 10−66

2 · 10−3 −3 · 10−4 −5 · 10−11 5 · 10−88

1 · 10−3 −2 · 10−4 −6 · 10−10 8 · 10−114

1 · 10−4 −9 · 10−5 −1 · 10−11 −1 · 10−34

Crank-Nicolson scheme (θ = 1/2)

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 4 · 10−6 4 · 10−6 4 · 10−5

2 · 10−1 2 · 10−8 2 · 10−8 2 · 10−8

1 · 10−1 2 · 10−11 2 · 10−11 2 · 10−11

4 · 10−2 5 · 10−17 5 · 10−17 5 · 10−17

2 · 10−2 3 · 10−23 2 · 10−23 2 · 10−23

1 · 10−2 1 · 10−31 4 · 10−32 3 · 10−32

4 · 10−3 −2 · 10−5 1 · 10−48 6 · 10−49

2 · 10−3 −4 · 10−5 2 · 10−65 2 · 10−66

1 · 10−3 −7 · 10−5 −3 · 10−13 2 · 10−88

1 · 10−4 −9 · 10−5 −7 · 10−12 −2 · 10−42

Implicit Euler scheme (θ = 1)

TABLE VII
MINIMUM VALUE OF THE DOF (mini,k X

k
i ) COMPUTED

FOR THE PURE DIFFUSION PROBLEM WITH THE

CRANK-NICOLSON SCHEME (TOP) AND THE IMPLICIT

EULER SCHEME (BOTTOM).

CFL-like condition with upper and lower bounds,

like in the previous test. The implicit Euler scheme

(θ = 1) seems to be more favorable, since it

preserves the positivity even for big values of the

time step. For both the Crank-Nicolson (θ = 1/2)

and implicit Euler (θ = 1) schemes, the approx-

imated solution suffers from a loss of positivity

for small values of tk when the time step is too

small. According to table VIII, there are positivity

thresholds, like in [36] which indeed deals with

the heat equation.

3) Positivity of the pure advection problem:
Here I set σ = 0 and ρ = 0, while keeping all

others parameters to the same values as in the first

test. Table IX shows that none of the computations

performed gave a non negative solutions, even

though the minimum value of the dof can be really

close to zero for small mesh sizes. Besides, I did
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δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 - - -

2 · 10−1 0.8 0.8 0.8
1 · 10−1 t0 t0 t0
4 · 10−2 t0 t0 t0
2 · 10−2 t0 t0 t0
1 · 10−2 0.1 t0 t0
4 · 10−3 0.2 t0 t0
2 · 10−3 0.216 0.054 t0
1 · 10−3 0.219 0.085 t0
1 · 10−4 0.2203 0.0956 0.0303

Crank-Nicolson scheme (θ = 1/2)

δt h≈1.6· 10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 t0 t0 t0
2 · 10−1 t0 t0 t0
1 · 10−1 t0 t0 t0
4 · 10−2 t0 t0 t0
2 · 10−2 t0 t0 t0
1 · 10−2 t0 t0 t0
4 · 10−3 0.084 t0 t0
2 · 10−3 0.148 t0 t0
1 · 10−3 0.184 0.032 t0
1 · 10−4 0.2165 0.0893 0.0224

Implicit Euler scheme (θ = 1)

TABLE VIII
POSITIVITY THRESHOLD (t+) COMPUTED FOR THE PURE

DIFFUSION PROBLEM WITH THE CRANK-NICOLSON

SCHEME (TOP) AND THE IMPLICIT EULER SCHEME

(BOTTOM).

not observe any positivity threshold. The approx-

imated solution stays non positive all along the

simulation. However I run additional simulations

with even smaller mesh size (h ≈ 2.0 × 10−3

and δt = 10−4). This time the computed solution

was positive at the beginning of the simulation

(before t− = 1.9 × 10−3), pointing the existence

of a threshold of negativity, to finally reaching a

negative minimum values of dof (around −10−44).

Unfortunately, this threshold of negativity is really

small compared to the ending time of the compu-

tation (t1 = 1), while the computational time was

reaching more than 14 hours (Intel R©CoreTMi7-

7820HQ at 2.9 GHz, RAM 32 GB) for both the

Crank-Nicolson and the implicit Euler schemes.

In fact it is well known that for the advection

term the solution can be polluted by overshoot and

undershoot oscillations near a discontinuity or a

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 −2 · 10−1 −2 · 10−1 −2 · 10−1

2 · 10−1 −4 · 10−2 −4 · 10−2 −4 · 10−2

1 · 10−1 −4 · 10−3 −2 · 10−3 −1 · 10−3

4 · 10−2 −1 · 10−3 −4 · 10−7 −5 · 10−7

2 · 10−2 −1 · 10−3 −6 · 10−8 −2 · 10−13

1 · 10−2 −1 · 10−3 −4 · 10−8 −3 · 10−28

4 · 10−3 −1 · 10−3 −3 · 10−8 −1 · 10−28

2 · 10−3 −1 · 10−3 −3 · 10−8 −1 · 10−28

1 · 10−3 −1 · 10−3 −3 · 10−8 −1 · 10−28

1 · 10−4 −1 · 10−3 −3 · 10−8 −1 · 10−28

Crank-Nicolson scheme (θ = 1/2)

δt h≈1.6·10−2 h≈8.2·10−3 h≈4.1·10−3

5 · 10−1 −1 · 10−4 −1 · 10−10 −8 · 10−34

2 · 10−1 −2 · 10−4 −6 · 10−10 −3 · 10−32

1 · 10−1 −4 · 10−4 −1 · 10−9 −2 · 10−31

4 · 10−2 −6 · 10−4 −4 · 10−9 −9 · 10−31

2 · 10−2 −8 · 10−4 −7 · 10−9 −2 · 10−30

1 · 10−2 −9 · 10−4 −1 · 10−8 −5 · 10−30

4 · 10−3 −1 · 10−3 −1 · 10−8 −8 · 10−30

2 · 10−3 −1 · 10−3 −2 · 10−8 −2 · 10−29

1 · 10−3 −1 · 10−3 −2 · 10−8 −4 · 10−29

1 · 10−4 −1 · 10−3 −3 · 10−8 −9 · 10−29

Implicit Euler scheme (θ = 1)

TABLE IX
MINIMUM VALUE OF THE DOF (mini,k X

k
i ) COMPUTED

FOR THE PURE ADVECTION PROBLEM WITH THE

CRANK-NICOLSON SCHEME (TOP) AND THE IMPLICIT

EULER SCHEME (BOTTOM).

sharp layer, see [34], [33], [35], [30]. For low order

accurate spacial approximations one can prove the

positivity preserving property of the scheme [33].

But for high order schemes slopes limiters are

often required to guarantee the positivity of the

approximated solution. When slope limiters are

used, explicit time schemes seem to be suitable

for the advection [6]. However, in the next section

we will only privilege a numerical scheme that

is unconditionally stable, i.e. the Crank-Nicolson

scheme, that is a two-order scheme.

V. APPLICATION TO THE SIMULATION OF ROOT

SYSTEM GROWTH

In this section, I apply the previous DG-splitting

approach to solve numerically the C-Root model.

First, I detail the parameters used for the simula-

tions, then, I present and validate the results of the
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simulations.

A. The C-Root parameters for Eucalyptus root
growth

The parameters and operators’ coefficients are

chosen based on the previous calibration done in

[2]. The diffusion coefficient, σ, is build using the

following Gaussian function

fα,μ(x, y) =
α√
2π

exp

(
−(r(x, y) − μ)2

2

)

where r(x, y) =
√

(x − x0)2 + (y − y0)2 and

(x0, y0) ∈ Ω =] − L,L[. The function fα,μ(x, y)
depends on two real and positive parameters: α,

related to the maximum amplitude of fα,μ, and μ,

the distance from (x0, y0) to the point where the

function fα,μ reaches its maximum.

The diffusion tensor is taken such that

σ(x, y) = fαd,μd
(x, y)

(
1 0
0 1

)
,

for all (x, y) ∈ Ω, and αd, μd ∈ R
+ are given

parameters. The advection vector is taken such that

v(x, y) = (0,−v0)
T , for all (x, y) ∈ Ω, with v0

a positive constant. The reaction term is constant

in space and splited into two contributions: βr and

μr, the branching and mortality rates, respectively.

That is

ρ = βr − μr ∈ R.

The branching rate, βr, is estimated from biologi-

cal knowledge: it is equal to zero before 9 months

and equal to 1/3 after, since no roots die before 9

month. However, for the following simulations we

will not distinguish the contribution of βr and μr,

so that the reaction term will only be described by

the parameter ρ.

Fig. 6. Density of apices computed at t = 6, t = 12, t = 18
and t = 24 months (from the left to the right and from the
top to the bottom).

B. Some simulations

For the simulation the initial solution is chosen

equal to the following function:

u0(x, y) = A

[
exp(b(1 − x))

(exp(−b(1 − x)) + exp(b(1 − x)))

− exp(b(−1 − x))

(exp(−b(−1 − x)) + exp(b(−1 − x)))

]
×
[

exp(b(1 − y))

(exp(−b(1 − y)) + exp(b(1 − y)))

− exp(b(−1 − y))

(exp(−b(−1 − y)) + exp(b(−1 − y)))

]
with A = 2 · 10−4 and b = 1. The parameters’

values μr, αd , μd are estimated using the code
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Fig. 7. L2-error with respect to the solution obtained with
the mesh of size h ≈ 9.87× 10−2 and δt = 10−3 computed
at t = 6, t = 12, t = 18 and t = 24 months and plotted
against the mesh size.

described in [2]. I run the simulations from t0 = 1
to t1 = 24 months, with L = 13. The simulations

are performed for different values of the mesh size.

Fig. 6, page 15, shows the solution computed at

four different stages of the root system develop-

ment. One can notice the diffusion of the apices

in the soil and also the transport of the apices

from the top to the bottom of the soil layer. Since

there is no analytic solution, the convergence of

the computation is evaluated by measuring the L2-

errors with respect to the approximated solution

computed with the finest mesh (h ≈ 8.97× 10−2)

and with δt = 10−3. The curves of the errors

against the mesh size are plotted on figure 7

and clearly show that the DG-splitting algorithm

converges with a convergence rate of almost two.

However, one can note that the mesh sizes and the

time steps chosen for the simulations presented

here might not be small enough. The positivity

of the solution is not preserved at all times and

the full convergence might not be acheived. Un-

fortunatly, refining the mesh sizes and the time

steps can lead to prohibitive computational time

as shown on table X. On top of that simulation of

root system growth can last for a long period of

time, particularly for trees. Finally, this application

shows promising results for future simulations of

h (≈) δt = 10−1 δt = 10−2 δt = 10−3

1.44 1 s. 7 s. 66 s.

7.18× 10−1 16 s. 46 s. 6 min.

3.59× 10−1 70 s. 3.5 min. 27 min.

1.79× 10−1 7 min. 17 min. 2 h.

8.97× 10−2 50 min. 2h30 9 h.

TABLE X
COMPUTATIONAL TIMES FOR THE SIMULATIONS OF A

ROOT SYSTEM GROWTH PERFORMED (WITH THE

PROCESSOR INTEL R©CORE
TM

I7-7820HQ AT 2.9 GHZ,
RAM 32 GB) BETWEEN t = 1 AND t = 24 MONTHS WITH

THE DG-SPLITTING ALGORITHM AND THE

CRANK-NICOLSON SCHEME (θ = 1/2).

the root system growth, provided that the compu-

tational cost is not limiting. Further simulations

requiring much more computational power has to

be done to check if the convergence is acheived.

This application also point out the difficulties

related to the rigorous simulation validation in

realistic test-cases of root system growth.

VI. CONCLUSION

In this work, a discontinuous Galerkin approxi-

mation method based on unstructured mesh com-

bined with operator splitting has been described,

implemented and tested, to solve an advection-

diffusion-reaction equation used to model the

growth of root systems. The code has been val-

idated in a simple test case for which an analytic

expression of the solution is known. The compu-

tations showed that the method convergences with

a convergence rate of two in space with P 1-finite

elements. A convergence rate of one and two in

time were obtained for respectively the implicit

Euler scheme and the Crank-Nicolson scheme

both with and without the splitting technique. The

computations of those convergence rates required

the use of fine mesh grids. For the explicit Euler

scheme, such fine mesh computations were not

performed since they require really small time

steps to fulfill the CFL condition, resulting in

huge additional computational cost. Indeed the

computational time of the DG-splitting algorithm

behaves like 1/δt and 1/h2 where δt and h are

respectively the time step and the mesh size.
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Similarly, the positivity of the approximated

solution is obtained at the expense of the com-

putational time since it requires meshes of small

size and small time steps. In fact, there is a CFL-

like condition for positivity that has to be fulfilled

to guarantee the positivity of the approximated

solution. But for a given mesh size computations

performed with too small time step can also lead

to a loss of positivity at the beginning of the

computation [36]. In that cases, the computations

showed that there is a positivity threshold in time

after which the solution becomes positive. This

positivity threshold clearly appeared to diminish

with the mesh size. This behavior is specific to

the diffusion term. For the advection term, the

computations also showed that the positivity of

the solution can be preserved, but only at the

beginning of the simulation and it required a really

small mesh size and time step leading to huge

computational time. Further studies in terms of

numerical analysis has to be done in that direction.

I also performed a more realistic simulation of

root system growth. The computations showed that

the algorithm converged but additional simulations

with smaller time steps and mesh sizes might be

performed to recover the full convergence order

and positivity. Validation of the computation, but

above all the computational time appeared to be

the major limitations of the root growth simulation

based on the C-Root model, particularly when it

comes to deal with trees for which the life span is

rather a long period of time. Further improvements

on the numerical method has to be done so that

the scheme preserves the positivity of the approxi-

mated solution under acceptable CFL conditions in

terms of computational time. However, our work

shows promising results for the simulation of the

C-Root model which appears to be an appropriate

methodology for future improvements, like root-

soil coupling or nonlinear terms arising to handle

competition phenomena.
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[31] J. Oden, I. Babuŝka and C. E. Baumann, A
discontinuous hp-finite element method for diffusion
problems, Journal of computational physics, Elsevier 146,
491-519, 1998. https://doi.org/10.1006/jcph.1998.6032.

[32] D. A. Di Pietro and A. Ern, Mathematical aspects
of discontinuous Galerkin methods Springer, 69, 2011.
https://doi.org/10.1007/978-3-642-22980-0.

[33] X. Zhang and CW. Shu CW.
Maximum-principle-satisfying and positivity-preserving
high-order schemes for conservation laws: survey
and new developments, Proceedings of the Royal
Society of London A: Mathematical, Physical
and Engineering Sciences, 2011, 467, 2752-2776.
https://doi.org/10.1098/rspa.2011.0153.

[34] B. Cockburn and CW. Shu, Runge-Kutta discontinuous
Galerkin methods for convection-dominated problems.
Journal of scientific computing, Springer, 2001, 16, 173-
261. https://doi.org/10.1023/A:1012873910884.

[35] JS. Hesthaven and T. Warburton, Nodal
discontinuous Galerkin methods: algorithms,
analysis, and applications. Springer, 2007, 54.
https://doi.org/10.1007/978-0-387-72067-8.

[36] V. Thomée, On positivity preservation in some finite
element methods for the heat equation. International Con-
ference on Numerical Methods and Applications, 2014,
13-24. https://doi.org/10.1007/978-3-319-15585-2 2.

[37] J. Zhu, YT. Zhang, SA. Newman and M. Alber,
Application of discontinuous Galerkin methods for
reaction-diffusion systems in developmental biology.
Journal of Scientific Computing, Springer, 2009, 40, 391-
418. https://doi.org/10.1007/s10915-008-9218-4.

[38] J.-F. Barczi, H. Rey, S. Griffon and C. Jourdan, DigR: a
generic model and its open source simulation software
to mimic three-dimensional root-system architecture

129Operator splitting and discontinuous Galerkin methods for advection-reaction-diffusion problem...

_______________________ WORLD TECHNOLOGIES _______________________



WT

diversity. Annals of Botany, 2018, 121, 5, 1089-1104,
https://doi.org/10.1093/aob/mcy018.

[39] L. X. Dupuy, M. Vignes, An algorithm for the
simulation of the growth of root systems on deformable
domains. Journal of Theoretical Biology, 2012, 310, 164-
174. https://doi.org/10.1016/j.jtbi.2012.06.025.

[40] L. Dupuy, P. J. Gregory, A. G. Bengough, Root
growth models: towards a new generation of continuous
approaches. Journal of experimental botany, Soc Experi-
ment Biol, 2010. https://doi.org/10.1093/jxb/erp389.

[41] P. Bastian, A. Chavarria-Krauser, C. Engwer, W. Jäger,
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[49] F. Gérard, Cé Blitz-Frayret, P. Hinsinger, L. Pagès,
Modelling the interactions between root system
architecture, root functions and reactive transport
processes in soil Plant and Soil, 2017, 413, 161-180.
https://doi.org/10.1007/s11104-016-3092-x.

[50] H. Brezis, Functional analysis, Sobolev spaces
and partial differential equations. Springer Science
& Business Media, 2010. https://doi.org/10.1007/
978-0-387-70914-7.

[51] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent,

A fully asynchronous multifrontal solver using distributed
dynamic scheduling, SIAM Journal of Matrix Analysis
and Applications, Vol 23, No 1, pp 15-41 (2001). https:
//doi.org/10.1137/S0895479899358194.

[52] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and
S. Pralet, Hybrid scheduling for the parallel solution of
linear systems. Parallel Computing Vol 32 (2), pp 136-
156 (2006). https://doi.org/10.1016/j.parco.2005.07.004.

130 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WT

Mechanotransduction caused by a point force 
in the extracellular space

Bradley J. Roth

Department of Physics, Oakland University

Rochester, MI, USA

roth@oakland.edu

Abstract—The mechanical bidomain model is a
mathematical description of biological tissue that
focuses on mechanotransduction. The model’s fun-
damental hypothesis is that differences between
the intracellular and extracellular displacements
activate integrins, causing a cascade of biological
effects. This paper presents analytical solutions of
the bidomain equations for an extracellular point
force. The intra- and extracellular spaces are incom-
pressible, isotropic, and coupled. The expressions
for the intra- and extracellular displacements each
contain three terms: a monodomain term that is
identical in the two spaces, and two bidomain terms,
one of which decays exponentially. Near the origin
the intracellular displacement remains finite and
the extracellular displacement diverges. Far from
the origin the monodomain displacement decays in
inverse proportion to the distance, the strain decays
as the distance squared, and the difference between
the intra- and extracellular displacements decays
as the distance cubed. These predictions could be
tested by applying a force to a magnetic nanoparticle
embedded in the extracellular matrix and recording
the mechanotransduction response.

Keywords-analytical solution; extracellular ma-
trix; integrin; intracellular cytoskeleton; mathemat-

ical model; mechanotransduction; mechanical bido-
main model; point source.

I. INTRODUCTION

Mechanotransduction is the process by which

biological tissues grow and remodel in response

to mechanical signals. One cause of mechanotrans-

duction might be a cascade of biological responses

triggered by activation of integrin molecules in

the cell membrane [2], [3], [16]. A force acting

on the extracellular matrix is transmitted to the

cytoskeleton via these integrins, thereby coupling

the intra- and extracellular spaces. Much research

on mechanotransduction is qualitative, but to pre-

dict quantitatively how tissue responds to applied

forces we need a mathematical model [12]. Many

studies in mechanobiology analyze individual cells

and molecules, but to describe tissues and organs

we require a macroscopic model that averages

over the cellular and molecular scales. Yet, this

macroscopic model must predict the activation of

integrin molecules.

One mathematical model that describes mechan-

otransduction is the mechanical bidomain model
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Fig. 1. A schematic illustration of the mechanical bidomain model. The green springs represent the intracellular cytoskeleton,
the blue the extracellular matrix, and the red the integrins. The figure illustrates a two-dimensional version of the model, but
this article analyzes a three-dimensional version.

[11], [15]. It predicts displacements of the intra-

and extracellular spaces individually. The differ-

ence between the intra- and extracellular displace-

ments results in a force on the integrins that couple

the two spaces. A schematic illustration of the

model is shown in Figure 1. One of the most im-

portant properties of a mathematical model is how

it responds to a point source. Often complicated

responses can be expressed as a convolution of

the point source response, so knowing how tissue

responds to a point force provides insight into its

general behavior.

In this paper, I derive analytical expressions

describing how the mechanical bidomain model

responds to a point source in the extracellular

space. Experimentally, this could be approximated

by, for instance, applying a magnetic force on a

superparamagnetic nanoparticle [7], [8]. Magnetic

tweezers [5] have been used to exert forces on sin-

gle cells or individual molecules. The technique,

however, could be applied to intact tissue where

a nanoparticle is embedded in the extracellular

matrix. When a force is exerted by the nanopar-

ticle it pulls on the matrix, which stretches the

integrins embedded in the membranes of nearby

cells, triggering mechanotransduction [9].

II. METHODS

I assume the intra- and extracellular spaces are

incompressible and isotropic, and their strains are

small and linear. Incompressibility implies that

the intracellular displacement u and the extracel-

lular displacement w are both divergenceless. I

use spherical coordinates (r, θ, φ) with the force

applied at the origin and acting along the z axis (θ
= 0). By symmetry there are no displacements or

derivatives in the φ direction. In that case u and

the intracellular strain εi are related by [10]

εirr =
∂ur
∂r

, (1)

εiθθ =
1

r

∂uθ
∂θ

+
ur
r
, (2)

εiφφ =
uθ
r

cot θ +
ur
r
, (3)

εirθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)
, (4)

with analogous relationships in the extracellular

space. The intracellular stress τi and the intracel-

lular strain are related by

τirr = −p+ 2νεirr, (5)
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τiθθ = −p+ 2νεiθθ, (6)

τiφφ = −p+ 2νεiφφ, (7)

τirθ = 2νεirθ, (8)

where p is the intracellular pressure and ν is the

intracellular shear modulus. Similar stress-strain

relationships exist for the extracellular pressure q
and extracellular shear modulus μ. The equations

of mechanical equilibrium are [10], [15]

− ∂p

∂r
+ 2ν

[
∂εirr
∂r

+
1

r

∂εirθ
∂θ

+
1

r

(
2εirr − εiθθ − εiφφ + cot θ εirθ

)]
= K (ur − wr) , (9)

− 1

r

∂p

∂θ
+ 2ν

[
∂εirθ
∂r

+
1

r

∂εiθθ
∂θ

+
1

r

(
(εiθθ − εiφφ) cot θ + 3εirθ

)]
= K (uθ − wθ) , (10)

− ∂q

∂r
+ 2μ

[
∂εerr
∂r

+
1

r

∂εerθ
∂θ

+
1

r

(
2εerr − εeθθ − εeφφ + cot θ εerθ

)]
+ Fδ (r) cos θ

= −K (ur − wr) , (11)

− 1

r

∂q

∂θ
+ 2μ

[
∂εerθ
∂r

+
1

r

∂εeθθ
∂θ

+
1

r

(
(εeθθ − εeφφ) cot θ + 3εerθ

)]
− Fδ (r) sin θ

= −K (uθ − wθ) , (12)

where K is the integrin spring constant coupling

the two spaces, F is the force applied to the

extracellular space, and δ(r) is the delta function.

I assume that the displacements and pressures go

to zero at large r.

To picture the problem physically, imagine that

in Figure 1 a point in the extracellular matrix (one

of the blue dots) is pulled to the right by an at-

tached nanoparticle. This force would displace the

extracellular matrix (blue springs), which would

stretch the integrins coupling the two spaces (red

springs). The integrins would then pull on the

cytoskeleton, causing the intracellular space to be

displaced.

III. RESULTS

Equations 9-12 were solved using the method

of undetermined coefficients. The solution is

ur =
F

8π (ν + μ)
cos θ{

2

r
− 4σ2

r3
+ 4

[
σ2

r3
+

σ

r2

]
e−

r

σ

}
, (13)

uθ =
F

8π (ν + μ)
sin θ{

− 1

r
− 2σ2

r3
+ 2

[
σ2

r3
+

σ

r2
+

1

r

]
e−

r

σ

}
,

(14)

wr =
F

8π (ν + μ)
cos θ{

2

r
+

ν

μ

4σ2

r3
− 4

ν

μ

[
σ2

r3
+

σ

r2

]
e−

r

σ

}
, (15)

wθ =
F

8π (ν + μ)
sin θ{

− 1

r
+

ν

μ

2σ2

r3
− 2

ν

μ

[
σ2

r3
+

σ

r2
+

1

r

]
e−

r

σ

}
,

(16)

p = 0, (17)

q =
F

4π

cos θ

r2
. (18)
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Each expression for the displacement contains a

monodomain term (first term in the brace) that

is the same in the intra- and extracellular spaces,

and two bidomain terms that are different in the

two spaces (one is -ν/μ times the other). The

first bidomain term is proportional to σ2, where

σ =
√

νμ
K(ν+μ) is a length constant characteristic

of the mechanical bidomain model [15]. The ex-

ponential in the second bidomain term decays with

length constant σ.

The displacements (Eqs. 13-16) have interesting

properties as r goes to zero. If you expand the

exponential as a Taylor series, you will find that

the terms in the expression for the intracellular

displacement that are singular at the origin can-

cel and it remains finite there. The extracellular

displacement, however, diverges at the origin as

1/r as expected for a delta function source in the

extracellular space. At large distances (r � σ)

bidomain terms decay more rapidly than mon-

odomain terms.

The fundamental hypothesis of the mechanical

bidomain model is that mechanotransduction de-

pends on the difference u - w [15]. The mon-

odomain terms are the same in the two spaces and

do not contribute to u - w; only the bidomain terms

generate the displacement difference that drives

mechanotransduction,

ur−wr=
F

8πμ
cos θ

{
− 4σ2

r3
+4

[
σ2

r3
+

σ

r2

]
e−

r

σ

}
,

uθ−wθ=
F

8πμ
sin θ

{
− 2σ2

r3
+2

[
σ2

r3
+

σ

r2
+
1

r

]
e−

r

σ

}
.

For r � σ the exponentials are negligible and the

difference in displacements falls as 1/r3.

Figure 2 shows the extracellular displacement,

w, the intracellular displacement, u, and their

difference, u - w, in the plane corresponding to a

constant angle φ. Near the source, u - w resembles

-w. Far from the source, u - w is small compared

to u and w individually.

Fig. 2. The extarcellular displacement, w, the intracellular
displacement, u, and their difference, u-w. The calculation
assumes ν = μ. The black dot indicates the position of the
point source, corresponding to an applied force F acting to
the right.
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WTFig. 3. ur , wr , ur - wr , and εirr as functions of r/σ, for
θ = 0; ur is indicated by short dashes, wr by long dashes, ur

- wr by a solid line, and εirr by dash-dot. All quantities are
normalized so that the intracellular displacement and strain
are equal to one at the origin.

Figure 3 plots the intra- and extracellular dis-

placements and their difference along the direction

of the applied force. It also shows the intracellular

strain, εirr. At large distances, the displacements

fall as 1/r, the strain as 1/r2, and the difference in

the displacements as 1/r3. This result is a testable

prediction. If mechanotransduction depends on the

strain it decays relatively slowly, as 1/r2. If,

however, mechanotransduction depends on u - w
it decays relatively rapidly, as 1/r3.

IV. DISCUSSION

Most biomechanical models treat tissue as a

single phase: a monodomain. These mathematical

models are often valuable tools for predicting

tissue displacements, stresses, and strains [4]. If,

however, mechanotransduction is triggered by ac-

tivation of integrins, and integrins are activated by

differences between the displacements of the intra-

and extracellular spaces, then a bidomain model is

essential for predicting where mechanotransduc-

tion occurs. The activation of integrins could in

principle be determined by measuring the intra-

and extracellular displacements individually, and

then taking their difference. In practice, however,

this difference is very small compared to the

displacements themselves, and a better strategy

would be to measure a mechanotransduction ef-

fect caused by integrin activation, such as tissue

growth, remodeling, or genetic changes associated

with these processes.

The monodomain solution for a point source

is ur = wr = F
8π(ν+μ)

2 cos θ
r and uθ = wθ =

− F
8π(ν+μ)

sin θ
r . This solution is the same as the

expression for the velocity caused by a point force

in an incompressible fluid at low Reynolds number

[10], sometimes referred to as a Stokeslet. When

σ is small the Stokeslet approximates the displace-

ments in the intra- and extracellular spaces, but it

provides no information about where mechano-

transduction occurs because it contributes nothing

to u - w. The monodomain term can be represented

in Fig. 3 as a line that matches the u and w curves

at large radii, and is extrapolated back linearly at

smaller radii.

A key parameter in the model is the length con-

stant σ, which depends on the bidomain constant

K coupling the intra- and extracellular spaces. In

monolayers of stem cells, σ is about 150 microns

[1], which is larger than a cell and much larger

than a nanoparticle, implying that a macroscopic

model should be valid.

The mechanical bidomain model has many sim-

ilarities to the electrical bidomain model [6] used

to describe pacing and defibrillation of the heart.

My analysis of the mechanical bidomain model’s

response to a point force is analogous to the calcu-

lation of the transmembrane potential produced by

a point current using the electrical bidomain model

[13]. In the electrical model, unequal anisotropy

ratios for the intra- and extracellular conductivities

plays a crucial role in determining the transmem-

brane potential distribution. Similar effects might

arise in the mechanical model if it were made

anisotropic.

What experiment can test the predictions of this

135Mechanotransduction caused by a point force in the extracellular space

_______________________ WORLD TECHNOLOGIES _______________________



WT

model? One suggestion is to grow a large cluster

of epithelial cells, with a magnetic particle at its

center. Alternatively, tissue engineering techniques

could be used to grow cells in an extracellular

substrate containing a magnetic particle. Then, a

force could be applied to the particle, and the

mechanotransduction response could be imaged by

monitoring a second messenger activated by the

integrins, or the turning on of a gene associated

with cell growth.

The bidomain model has several limitations. It

assumes a linear relationship between displace-

ment and strain, which is only appropriate for

small strains [10]. In my solution, the extracel-

lular displacement and strain diverge at the origin,

so the small strain assumption is violated there.

However, the delta function is an approximation

that breaks down on a distance scale similar to

the radius of the magnetic nanoparticle used to

exert the force. As long as the strains are small

at this scale, the linear approximation should be

valid. I assume the stress-strain relationships are

linear, whereas in tissue these relationships can

be nonlinear [4]. If the strains are small enough,

however, a linear approximation should suffice. I

assume that the tissue is isotropic, but tissues such

as muscle are anisotropic and the model needs to

be extended to account for anisotropy. I assume

both the intra- and extracellular spaces are in-

compressible. Because both spaces contain mostly

water, the incompressible assumption should be

accurate [14]. My model is for steady-state. If

the applied force varies with time, the solution

might be invalid over short times because of the

propagation of sound waves, or over long times

because of viscoelasticity or tissue growth and

remodeling. Finally, and fundamentally, I assume

that mechanotransduction depends on the differ-

ence in the displacements, u - w. If it depends

on other factors, such as the intracellular stress or

strain, or some microscopic behavior that is not

included in this macroscopic model, the results

might not describe mechanotransduction correctly.

The model could be extended to avoid some

of my limiting assumptions, but in that case an

analytical solution might not exist. Analytical so-

lutions can provide insight into the model behavior

and are valuable even when the model is only an

approximation. Moreover, analytical solutions are

useful for testing limiting cases of complex mod-

els and for evaluating the accuracy of numerical

methods.

V. CONCLUSION

The mechanical bidomain model makes testable

predictions about where mechanotransduction oc-

curs. In particular, the model predicts that the

distribution of mechanotransduction in response

to a point source in the extracellular space falls

off with distance more rapidly if mechanotrans-

duction is driven by the difference in the intra-

and extracellular displacements, and less rapidly

if mechanotransduction is driven by intra- or ex-

tracellular strain. This prediction could be tested

by measuring how the tissue responds to a force

applied using a magnetic nanoparticle embedded

in the extracellular space.
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Abstract—We extend the live-cell motility Fila-
ment Based Lamellipodium Model (FBLM) to incor-
porate the forces exerted on the lamellipodium of the
cells due to cell-cell collision and cadherin induced
cell-cell adhesion. We take into account the nature of
these forces via physical and biological constraints
and modelling assumptions. We investigate the effect
these new components have in the migration and
morphology of the cells through particular experi-
ments. We exhibit moreover the similarities between
our simulated cells and HeLa cancer cells.

I. INTRODUCTION.

Cell adhesion is a key process in a wide range of

biological phenomena. It usually acts along with

cell migration and together they play a fundamen-

tal role in the development of the organism e.g.

during the gastrulation and the patterning phases

of a vertebrates’ body. Cell adhesion and migration

are important after the developmental phase in

the maintenance and repair of the cell and tissue

structure. On the other hand, the dysregulation of

these processes has been associated to a number of

diseases and conditions including tumour metasta-
sis.

Cell adhesion is the result of interactions be-

tween specialized proteins found at the surface of

the cells termed cell-adhesion molecules (CAM).

The CAMs are divided into four main groups: inte-
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grins, immunoglobulins, cadherins, and selectins.

Of these, the integrins participate, primarily, in the

cell-extracellular matrix (ECM) adhesion and play

a pivotal role in the migration of the cells. The

cadherins (calcium dependent adhesions) are fun-

damental in cell-cell adhesion and in the formation

of cell clusters and tissues.

The cadherin proteins, in particular, are com-

prised of three domains, an intracellular, a trans-
membrane, and an extracellular domain. The in-
tracellular domain is linked to the actin fila-
ments (F-actin), whereas the extracellular domain

binds to the extracellular domain of cadherins of

neighbouring cells. The extracellular domain is

highly binding specific and accordingly classifies

the cadherins in several types (E-, N-cadherins
etc.). Variable expression levels of these cadherin
types lead to preferential adhesion organization of

the cells and to the formation of different tissues.

In the current paper, our objective is to model

cadherin induced cell-cell adhesion and combine

it with a mathematical model of cell migration and

cell-ECM adhesion. We focus on a particular type

of cell migration in which the lamellipodium of the

cell plays a pivotal role. It is termed actin-based
cell motility and is employed by fast migrating

cells such as fibroblasts, keratocytes, and cancer
cells.

There have been several efforts to model and

simulate this type of cell migration in the litera-

ture, e.g. [5], [12], [19], [1], [4], [22], [13], [9],

[2], [20], [21]. Here, we use and build on the

Filament Based Lamellipodium Model (FBLM).

This is a two-dimensional, two-phase model that

describes the lamellipodium at the level of actin-

filaments. The FBLM was first derived in [18],

[16] and later extended in [10]. When endowed

with a particular and problem specific Finite Ele-
ment Method (FEM), the resulting FBLM-FEM is

able to reproduce biologically realistic, crawling-

like lamellipodium driven cell motility [11], [3],

[23].

Although the FBLM describes the dynamics

of the actin-filaments and the lamellipodium, the

deduced motility is understood as the motility of

the cell. This is primarily due to the predominant

role of the lamellipodium in the motility of the

model-biological cell (i.e. fish keratocyte) that we

consider, [25]. So, for the rest of this work we will

not distinguish between the two cases, and will use

the term cell motility for both.

The extensions of the FBLM that we propose

in this work, account for two phenomena: the ex-

change of cadherin mediated adhesion forces and

physical collision forces between two neighbour-

ing cells. The cell-cell adhesion forces are attrac-

tive/pulling whereas the cell-cell collision forces

are repulsive/pushing. Both are introduced in the

FBLM through an attractive-repulsive potential

that depends, non-linearly, on the relative distance

of the two cell membranes. When the cells come

close enough, within a distance that justifies the

deployment of cadherin adhesions, an attractive

force is developed between the two membranes.

As the distance between the cells decreases, the

adhesion forces increase in magnitude and grad-

ually collision repulsion forces between the cell

membranes emerge. These increase in magnitude

faster than the cadherin adhesion forces (which

remain bounded) and an equilibrium between the

two types of forces is quickly achieved. The col-

lision forces are not bounded and, if they increase

above a particular threshold (corresponding to an

extremely small distance between the membranes),

the polymerization of the filaments involved in the

collision ceases. This ensures that the two cells

will not overlap.

The rest of the paper is structured as follows: in

Section II we briefly discuss the FBLM and some

of its main components, including the polarization

of the lamellipodium and the calibration of the

polymerization rate. In Section III we present the

new components of the FBLM. We derive in detail

the (sub-)model for the collision and adhesion

forces and justify it biologically. In Section IV we

discuss the coupling of the FBLM with the ex-

tracellular environment and its response to chem-

ical and haptotaxis stimuli. Finally, in Section V

we present three numerical experiments. The first

two exhibit and compare the effects of cell-cell
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F+

F−

B0
0

−1

2π

α

s

Fig. 1. Graphical representation of the F± : B0 → R
2 mappings that define the lamellipodium. The s = 0 boundary of B0

is mapped to the membrane of the cell and the s = −1 to the minus-ends of the filaments inside the cell. The filaments and
the rest of the functions of α are periodic with respect to α. The “filaments” plotted in the lamellipodium correspond to the
discretization interfaces of B0 along the α direction. The grey colour represents the density of F-actin inside the cell.

collision and cell-cell adhesion in the migration

and morphology of the cells, and one that exhibits

the first stages of cell-cluster formation and its

response to a variable chemical and haptotaxis en-

vironment. In the last experiment we compare our

deduced cell morphologies with the ones of HeLa

cancer cells under in vitro cell-cell interaction and

migration.

II. THE FBLM.

We present here only the main components of

the FBLM and refer to [18], [16], [15], [10], [11],

[3], [23] for more details.

The FBLM is a two-dimensional model that

describes the lamellipodium of living cells by in-

cluding key biomechanical processes of the actin-

filaments, the interactions between them, and their

interactions with the extracellular environment.

The basic assumptions behind the FBLM are the

following: the lamellipodium is a two-dimensional

structure, comprised of actin filaments that are or-

ganized in two locally parallel families (which are

denoted by the superscripts ±). The two families

of filaments cover a ring-shaped domain between

the membrane of the cell and its interior. In the

“inside” part of the cell, behind the lamellipodium,

further cellular structures are to be found, e.g.

nucleus and more. We will henceforth refer to

the combined lamellipodium-intracellular space as

“cell” or “FBLM-cell”, see e.g. Figure 1.

The filaments of the two families are indexed

by the continuum variable α ∈ [0, 2π), and are

parametrised by their arclength{
F±(α, s, t) : −L±(α, t) ≤ s ≤ 0

}
⊂ R

2, (1)

where L±(α, t) is the maximal length of the fila-

ment α at time t. The plus ends of the filaments (at

s = 0) of every family define the outer boundary

of the family and “coincide” with the membrane

of the cell,{
F+(α, 0, t) : 0 ≤ α < 2π

}
=
{
F−(α, 0, t) : 0 ≤ α < 2π

}
, ∀ t ≥ 0 . (2)

For every (α, s, t) holds that∣∣∂sF±(α, s, t)∣∣ = 1 ∀ (α, s, t) . (3)

This arclength condition can be understood as an

inextensibility constraint between the subsequent

monomers that comprise the filaments. Moreover,

we assume that filaments of the same family do

not cross, i.e.

det
(
∂αF

±, ∂sF
±) > 0 (4)

and that filaments of different families cross at

most once{
∀(α+, α−) ∃ at most one (s+, s−) :

F+(α+, s+, t) = F−(α−, s−, t)
}
. (5)

The FBLM is comprised of the force balance
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system

0 = μB∂2
s

(
η ∂2

sF
)︸ ︷︷ ︸

bending

− ∂s (η λinext∂sF)︸ ︷︷ ︸
in-extensibility

+μAη DtF︸ ︷︷ ︸
adhesion

+ ∂s

(
p(ρ)∂αF

⊥
)

− ∂α

(
p(ρ)∂sF

⊥
)

︸ ︷︷ ︸
pressure

± ∂s

(
η η∗μ̂T (φ − φ0)∂sF

⊥
)

︸ ︷︷ ︸
twisting

+ η η∗μ̂S (DtF − D∗tF
∗)︸ ︷︷ ︸

stretching

, (6)

where F⊥ = (F1, F2)
⊥ = (−F2, F1) and where

the ± notation has been dropped here to focus on

one of the two filament families. The other family,

for which a similar equation holds, is indicated by

the superscript ∗.
The function η(α, s, t) represents the local den-

sity of filaments of length at least −s at time t with

respect to α. Its evolution is dictated, along with

L(α, t), by a particular submodel that includes

the effects of actin polymerization, filament nu-
cleation, branching, and capping. The derivation

of this submodel is thoroughly discussed in [10].

The first term of the FBLM (6) describes the

resistance of the filaments against bending, the

second term describes the tangential tension force

that enforces the inextensibility constraint (3) with

the Lagrange multiplier λinext(α, s, t), and the

third term describes the friction between the fil-

ament and the substrate. The material derivative
operator

Dt := ∂t − v∂s (7)

describes the velocity of F-actin relative to the

substrate, and v(α, t) ≥ 0 is the polymerization

rate at the leading edge of the filaments. Similarly,

D∗t := ∂t − v∗∂s is the corresponding material

derivative operator for the ∗-family. The pressure

term in (6) encodes the Coulomb repulsion be-

tween neighbouring filaments of the same family,

where the pressure p(ρ) is given through the

density of actin as

ρ =
η

|det(∂αF, ∂sF)|
. (8)

The two last terms in (6) model the resistance

of the cross-link proteins and branch junctions

against changing the inter-filament angle

φ = arccos(∂sF · ∂sF∗)

away from the equilibrium angle φ0, and against

stretching.

The system (6) is also subject to the boundary

conditions

− μB∂s
(
η∂2

sF
)

− p(ρ)∂αF
⊥ + ηλinext∂sF

∓ ηη∗μ̂T (φ − φ0)∂sF
⊥ (9a)

=

{
η (ftan(α)∂sF+finn(α)V(α)) , for s=−L,
±λtetherν, for s = 0,

η∂2
sF = 0, for s = −L, 0 . (9b)

The right-hand side of (9a) describes various

forces applied to the filament ends. At s = 0 (cell

membrane), the force in the direction ν orthogonal

to the leading edge arises from the constraint (2)

with the Lagrange parameter λtether. The forces at

the inner end-point s = −L model the contraction

effect of actin-myosin interaction and are directed

toward the interior of the cell, refer to [10] for

details.

Lamellipodium polarization.

Fundamental to the motility of the cells is the

polarization of the lamellipodium. The effective

pulling force becomes stronger in the direction

of the wider lamellipodium and the cell migrates

accordingly.

This is also encoded in the FBLM where the

maximal filament length L(α, t) (and hence the

local width of the lamellipodium) depends directly

on the local polymerization rate v(α, t). This was

previously modelled in [10], where based on the

capping, severing, and filament nucleation pro-

cesses, it was deduced that

L(α, t)=−κcap

κsev

+

√
κ2cap

κ2sev

+
2v(α, t)

κsev

log
η(0, t)

ηmin

.

(10)

Note the monotonic relation between the polymer-

ization rate v(α, t) and the lamellipodium width
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L(α, t). This is employed in the FBLM to con-

trol the polarization of the lamellipodium and the

migration of the cell.

Adjusting the polymerization rate.

We account for two different mechanisms that

adjust the polymerization rate v(α, t). The first

is the response of the polymerization machinery

to extracellular chemical signals, as they are per-

ceived by the cell through specialized transmem-

brane receptors. The second mechanism represents

various (unspecified in this work) intracellular
processes that might cut off, enhance, or otherwise

destabilize the polymerization rate, independently

of extracellular chemical or other stimuli.

In more detail, the first mechanism responds to

the density of the chemoattractant c at the plus

ends (s = 0) of the filaments

c±(α, t) = c
(
F±(α, 0, t), t

)
. (11a)

We assume that the polymerization rate is adjusted

between two biologically relevant minimum and

maximum values vmin, vmax in the following man-

ner

v±ext(α, t)=vmax−(vmax−vmin)e
−λresc±(α,t), (11b)

where the coefficient λres represents the response

of the cell to changes of the extracellular chemical.

The second mechanism describes the response of

the polymerization machinery to internal destabi-

lization processes that might lead to a plethora of

phenomena such as persistent or abruptly changing

very high or very low polymerization rates, etc. We

understand the biological significance and distinc-

tive functionality of these mechanisms and employ

them both. Overall, the polymerization rate v± is

given by

v±(α, t) = Dstb

(
v±ext(α, t)

)
, (12)

where Dstb describes the internal controlling mech-

anism that can potentially depend on a large num-

ber of cellular processes.

Fig. 2. Cryopreserved human mammary epithelial cells
stained visualize the calcium-dependent cell-cell adhesion
glycoprotein E-cadherin in green. Image by N. Prigozhina
(2015) CIL:48102q doi:10.7295/W9CIL48102.

III. CELL-CELL ADHESION AND COLLISION.

The FBLM is developed in a modular way in

which every contribution accounts for the potential

energy stored in the lamellipodium by the action

of the corresponding biological component, see

e.g. [18], [17], [10]. In a similar fashion, cell-

cell adhesion and collision are incorporated in the

FBLM as additional potential energies acting at the

plus-ends of the filaments. To that end we make

the following simplifying modelling assumptions:

Assumption 1: When two cells come in adhesion

proximity (a given parameter of the model), the

extracellular domains of their cadherins attach

and bind to each other. This introduces attrac-

tive/pulling forces exerted on the plus ends of the

actin-filaments on which the intracellular domain

of the cadherins are linked to. These adhesion

forces increase to a maximum value (a given

parameter of the model) with the decrease of the

cadherin binding length,

Assumption 2: Upon collision, repul-

sion/pushing forces are developed between

the two cells and increase rapidly. By nature,

these forces can be unbounded, and they soon

counteract the effect of the cadherin adhesion

forces. We model the collision forces pro-actively,

i.e. they appear shortly before the two cells

collide (a given distance parameter of the model).

Furthermore, the polymerization of actin ceases
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r > d2.

when the collision forces become too strong (a

given parameter of the model), c.f. [7]..

We combine the assumptions on adhesion

and collision forces, and introduce an attraction-

repulsion potential of the form:

Uar[F ]=

∫ π

−π
η(α,0,t)Φ

(∣∣F (α,0,t)−F̃ (α,0,t)
∣∣) dα,
(13a)

where F̃ (α, 0, t) is the projection of point

F (α, 0, t) on the other cells’ membrane, and

Φ(r)=
μR

2

{
−(r−r1)

2+(1r −r2)
2, if r≤d2,

0, otherwise,
(13b)

where μR represents the intensity of the attraction-

repulsion force, d2 is the maximal distance for

adhesion attraction and r1 and r2 read:{
r2 =

1
1/d2

1−1/d2
2
(d1 − d2 +

1
d3
1

− 1
d3
2
),

r1 = d1 +
1
d3
1

− r2
d2
1

. (13c)

Thus defined, the function Φ(r) is as depicted

in Figure 3, d1 being the size of the repulsion

zone, d2 the maximal attraction distance. Note that

by (13a) the combined adhesion-collision force

is applied on the membranes of the cells and is

compactly supported, in the sense that the two

cells will only interact as long as their membranes

are at a distance smaller than d2.

To incorporate this new mechanical feature in

the FBLM, we compute the variation of Uar from

(13a):

δUarδF =

∫ π

−π
η(α, 0, t)Φ′

(∣∣F −F̃
∣∣
(α,0,t)

)
(
F −F̃

)
(α,0,t)

|F −F̃
∣∣
(α,0,t)

· δF (α,0,t)dα, (14)

and include its contribution in the (membrane)

boundary conditions at s = 0. In effect that Eqs.

(9a)-(9b) recast into

− μB∂s
(
η∂2

sF
)

− p(ρ)∂αF
⊥ + ηλinext∂sF

∓ ηη∗μ̂T (φ − φ0)∂sF
⊥ (15a)

=

{
η (ftan(α)∂sF+finn(α)V(α)) , for s=−L ,

±λtetherν−ηΦ′
(∣∣F −F̃

∣∣) F−F̃
|F−F̃ | , for s = 0 ,

η∂2
sF = 0, for s = −L, 0 . (15b)

Furthermore, we assume that the polymerization

machinery is destabilized by cell-cell interactions.

In particular, when the collision repulsion forces
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become too large (above a given threshold Φ∗ >
0), we set the local polymerization rate to 0. On the

contrary, when the combined adhesion-collision

is attractive, we increase the polymerization rate

locally. These considerations are supported by

biological studies showing the effects of pulling

forces on actin polymerization such as in [7].

More specifically, we adjust the polymerization

rate locally by setting:

v±∗ (α)=

⎧⎨⎩ 0 , if Φ′
(∣∣F − F̃

∣∣) ≤ −Φ∗,

3.5v±(α), if Φ′
(∣∣F − F̃

∣∣) ≥ 0.
(16)

IV. CELL-ENVIRONMENT INTERACTIONS.

To account for more biologically realistic sit-

uations, we embed the FBLM in a complex and

adaptive extracellular environment. The particular

coupling of the FBLM with the extracellular en-

vironment that we consider here was previously

proposed in [23]. We give here a brief description.

We consider an extracellular environment that is

comprised of the ECM —represented by the den-

sity of the glycoprotein vitronectin v onto which

the FBLM cells adhere through the binding of the

integrins— an extracellular chemical component c
that serves as chemoattractant for the FBLM cell(-

s), and the matrix degrading metalloproteinases
(MMPs) m that are secreted by the cell and

participate in the degradation of the matrix. In our

formulation, these environmental components are

represented by the density of the corresponding

(macro-)molecules. Overall the model of the envi-

ronment reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂c

∂t
(x,t)=DcΔc(x,t)+αXP(t)(x)−γ1c(x,t)

− δ1 XC(t)(x)
∂m

∂t
(x,t)=DmΔm(x,t)+βXC(t)(x)−γ2m(x,t)

∂v

∂t
(x,t)=−δ2m(x,t)v(x,t)

(17)

where x ∈ Ω ⊂ R
2, t ≥ 0, Dc, Dm, α, β, γi, δi ≥

0, and where X− is the characteristic function of

the corresponding set. P denotes the support of

the pipette(-s) that inject the chemical c in the

environment, and the FBLM cell(-s) influence the

environment through XC(t)(x), where C(t) ⊂ R
2

represents the full cell (lamellipodium and internal

structures).

The model of the environment (17) and the

FBLM (6) are coupled at three different places: at

the characteristic function XC in (17), where the

cell C produces MMPs and degrades the chemical,

at the adhesion coefficient μA in (6) which reflects

the density of the ECM influences the migration

of the cell, and in the polymerization rates v±ext of

the filaments in (11b) which are primarily adjusted

according to the density of the extracellular chem-

ical c.
Despite the simple structure of the model (17),

and the numerous biological simplifications we

have made, we are able to reconstruct with

the FBLM-environment combination, realistic and

complex biological phenomena, see e.g. Experi-

ment 3.

V. EXPERIMENTS AND SIMULATIONS.

We present three indicative experiments to study

the effect of the collision and adhesion compo-

nents of the FBLM on the migration and morphol-

ogy of the cells. The first experiment highlights

the mechanical effect of cell-cell collisions. In

the second experiment, we include the adhesion

effect of the cadherin protein. In the third experi-

ment, we embed several FBLM cells in the same

environment and study the first stages of a cell

cluster development. In this experiment, we also

compare our results with a particular biological

setting involving the migration of HeLa cells.

Experiment 1 (Cell-cell collision). We embed two

FBLM cells in an environment that it is adhesion

and chemically uniform and fixed. Initially, both

cells are rotationally symmetric, with diameter 50,

and lamellipodia of thickness 8. They are centred

at (50,4) and (-50,-4) respectively and the length

of their filaments is 10. The environment is such

that the adhesion coefficient μA of the FBLM

(common for both cells) is uniform and fixed

μA = 0.4101,
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(i) t = 0.001 (ii) t = 5.001 (iii) t = 10.001

(iv) t = 20.001 (v) t = 30.001 (vi) t = 37.001

Fig. 4. Experiment 1 (Cell-cell collision). (i): Two FBLM cells migrate in opposing east-west directions. (ii)-(iv): The cells
collide and deform due to the exchange of repulsive collision forces. The cells slip by each other. (v)-(vi): The deformation
of the cells is elastic and the cells recover their pre-collision morphology.

and the polymerization rates of the filaments are

given by (11b) and vary in a smooth sinusoidal

manner between a minimum vmin = 1.5 and a

maximum vmax = 8 value from the posterior to the

anterior side of the cell. The direction of the cell

centred at (50, 4) is directed eastwards, and of the

cell centred at (−50,−4) is directed westwards.

This brings the two cells in a collision path.

To avoid physical overlapping of the cells, the

collision forces act proactively, i.e. when the cells

come closer than a pre-defined threshold distance.

In this experiment, this distance is set to 5. When

this occurs, the collision forces increase rapidly

in magnitude, and when they become very strong

(stronger than a predefined threshold), the poly-

merization of the corresponding filaments ceases.

This threshold force is set to be 0.01 in this

experiment; the rest of the parameters are given

in Table I.

In Figure 4 we present the corresponding simu-

lation results. After a short time, during which the

size of the cells is adjusted to the environmental

Fig. 5. Experiment 1 (Cell-cell collision) In a close-up
we visualize the repulsive collision forces in action. The
magnitude of the forces increases rapidly when the cells
come in proximity (closer than a user-defined threshold).
When the forces become too large, the polymerizaiton of the
corresponding filaments ceases.

conditions, the cells collide. The forces that the

cells exchange are repulsive and applied symmet-

rically on the plus ends of the filaments of the

two cells; their effect is seen in the deformation

of the cells. When the collision forces become

very strong (stronger than a predefined threshold),
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(i) t = 0.001 (ii) t = 5.001 (iii) t = 10.001

(iv) t = 20.001 (v) t = 30.001 (vi) t = 37.001

(vii) t = 40.001 (viii) t = 41.001 (ix) t = 43.001

Fig. 6. Experiment 2 (Cell-cell adhesion) As in Figure 4, two cells are found in opposing colliding paths. This time
though, they are able to develop cadherin induced cell-cell-adhesions. This has an impact in the deformation of the cells,
their migrations, and their tendency to stick with each other and to resist their separation. (ii)—(v): The adhesive forces are
stronger at the ends of the colliding parts of their membranes than the middle parts of it. (vi)—(ix): Note the elastic retraction
of the “tail”/rear part of the cell. (ix): Note also the larger time that is needed for the cells to reach the boundary of the
domain, as opposed to the cell-cell collision experiment in Figure 4.

the polymerization of the corresponding filaments

ceases. At the non-colliding regions, the polymer-

ization continuous and as a result the cells slip by

each other. After moving away from each other,

the cells recover the morphology they had before

the collision. This implies that the deformation due

to collision is elastic. This remark can serve as a

starting point to measure the elastic modulus of

the lamellipodium when cell-type specific experi-

mental evidence is considered.
In Figure 5 we visualize the force exchange

between the two cells. When the distance of the

two cells becomes shorter than the (predefined)

threshold, the repulsive forces are applied at the

plus ends of the corresponding filaments. The

magnitude of the forces increases as the distance

between the filaments decreases. When the forces

reach a maximum value, the corresponding poly-

merization rates cease. The overall effect is that the

cells have the tendency to maintain the threshold

distance between each other.
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Experiment 2 (Cell-cell adhesion). In this ex-

periment, the setting, the initial conditions, and

the parameters considered are the same as in the

Experiment 1. We augment this time the FBLM

with the effect of cadherin forces. These forces

are complementary to the cell-cell collision forces

and are incorporated in the FBLM in a similar way,

see Section III.

When the distance between the two cells reaches

the cell-cell collision threshold, the repulsive col-

lision forces are introduced and counterbalance

the attractive adhesion forces. Unless the relative

position of the cells changes (possibly due to other

reasons), the equilibrium between the adhesion

and collision forces is maintained. The adhesion

threshold distance in this experiment is set to 15,

whereas the collision threshold distance is set to

5. When the collision forces become larger than

0.01 the polymerization of the filaments ceases.

In Figure 6 we visualize the simulation results

of the combined effect of collision and adhesion

in the deformation of the cells and their tendency

to “stick together”. It can be seen that at the

end of the contact zones the adhesion forces are

more eminent whereas, in the middle of these

zones, no forces are visible. There, the adhesion

and collision forces are in equilibrium. As the

cells continue their migration, they slip by each

other and their contact zones get stretched due

to the adhesion between them. As a result, each

cell develops a tail that quickly retracts when the

adhesions break.

We can quantify the effect of cadherin forces, by

comparing the average speed of the cells in the two

experiment. In the cell-cell collision Experiment 1,

the cells collide at time t = 5 at x = 0 and reach

x = 100 at time t = 37 i.e. with an average speed

100/(37 − 5) = 3.125. Similarly, the approximate

speed in the cell-cell adhesion case is estimated

by 100/(43− 5) = 2.625. The difference between

the two speeds (although not precisely measured)

is another effect of the adhesion in the migration

of the cells.

In Figure 7 we visualize a close-up in the

tails that the cells develop; there the adhesion

Fig. 7. Experiment 2 (Cell-cell adhesion). With a close-
up in the adhesion zone, we visualize the cadherin adhesion
forces. They are exerted at the plus ends of the filaments and
are opposite to each other. In the middle region, the adhesion
forces have been balanced by the repulsive collision force.

forces are clearly visualized. As noted previously,

these forces come in pairs, are contractile, and

mostly visible at the ends of the contact zone.

The adhesion forces exerted on the filaments in

the middle of the zone have been counterbalanced

by the repulsive collision forces.

Experiment 3 (Cluster formation). In this ex-

periment, we embed several FBLM cells in the

same extracellular environment. They collide and

adhere with each other, they form a cell cluster
and we study the first steps of its migration under

the influence of an adaptive adhesion and chemical

environment.

We consider 14 cells that are initially the same

and rotationally symmetric and reside in the same

extracellular environment. The initial extracellular

adhesion landscape and the chemical environment

are variable and given respectively by

v0(x) = sin2

(
2
x+ 200

400
−
(
y + 150

350

)3
)
π + 1,

(18a)

c0(x) = e−5·10
−4(10−2(x−30)2+(y−40)2), (18b)

where x = (x, y) ∈ [−200, 200] × [−150, 200].
We assume that the cells respond to the chem-

ical and haptotaxis gradients of the environment

while at the same time colliding and adhering to

each other. The overall model is comprised of 14

FBLM equations of the form (6), one for each cell,
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(a) t = 4.308 (b) t = 30.004 (d) t = 60.006

(e) t = 72.517 (f) t = 81.195 (g) t = 90.000

Fig. 8. Experiment 3 (Cluster formation). A number of 14 FBLM cells are placed in a non-uniform and adaptive environment.
The cells collide and adhere with each other, and respond haptotactically to the gradient of the ECM (shown here as the
background landscape with the corresponding colorbar in the second row) and chemotactically to the chemical gradient (shown
as isolines with the colorbar in the first row).

and one system for the environment (17) in which

the characteristic function XC(t), in the degradation

of the chemical and the production of the MMPs,

is replaced by

X∪iCi(t),

where Ci(t), i = 1, . . . , 14 represent the support

of the cells, i.e. the area occupied by the lamel-

lipodium and the inner part of the cells. We assume

that all the cells are of the same type and satisfy

the FBLM (6) with the same parameters; these

are given in Table I. Their adhesion and collision

threshold distances have been set to 15 and5,

respectively, and the collision force threshold to

0.01. The parameters for the environment (17) are

given in Table II.

In Figure 8 we present several snapshots of the

time evolution of the cluster. The cells respond

to the gradient of the ECM v, they elongate and

align themselves with the higher density of the

ECM. The effect of cell-cell adhesion is evident

primarily in the cells that are found in the ridges of

the ECM. As they are pulled by the neighbouring

cells that have already climbed on the higher ECM

density regions, they get stretched and elongate

in a way “perpendicular” to the direction of the

ECM. At the same time the cells, and primarily

the leading ones, are directed towards the source

of the chemical; due to the cell-cell adhesion, the

whole cluster moves slowly in the same direction.

We do not reproduce in this experiment a par-

ticular biological experimental setting. Still, the

resulting cell morphologies are very close to the

biological reality. We exhibit this remark in Figure

9 where we compare our simulation results, taken

from Figure 8 (g), with a specific biological exper-

iment of HeLa cells. In particular, from one frame

of the video [26] —where the time evolution of a

(relatively large) cluster of HeLa cells is observed

in-vitro— we “cut out” some of the HeLa cells

and superimpose them on our simulations.
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(a) A video frame from [26] shows a number of in vitro
migrating HeLa cells. We “extract” the cells by cutting
along their common interfaces.

(b) We superimpose the cut HeLa cells extracted from
(a) on the simulation results from Figure 8 (g).

Fig. 9. Experiment 3 (Cluster formation). We compare the simulation results of Experiment 3, and in particular the morphology
of the resulting cells, with in vitro culture of the HeLa cancer cells studied in [26]. (a): The single frame from the video in
[26] from which HeLa cells were “extracted”. (b): The fit between the HeLa cells from (a) and our numerical simulations
from Figure 8 (g). The comparison follows after properly rotating and scaling the HeLa cells and superimposing them on the
simulation results.

TABLE I
BASIC SET OF PARAMETER VALUES USED IN THE

NUMERICAL SIMULATIONS OF THE FBLM IN ALL THE

EXPERIMENT OF THIS WORK. THESE PARAMETERS HAVE

BEEN ADOPTED FROM [11], [23].

symb. description value comment

μB bending elas-
ticity

0.07 pNμm2 [6]

μA adhesion 0.4101 pNminμm−2 [8], [14]
& [18],
[16], [15]

μT cross-link
twisting

7.1× 10−3 μm

μS cross-link
stretching

7.1×10−3pNminμm−1

φ0 crosslinker
equil. angle

70o [15]

μIP actin-myosin
strength

0.1 pNμm−2

vmin minimal poly-
merization

1.5μmmin−1 in biolog-
ical range

vmax maximal
polymeriza-
tion

8μmmin−1 in biolog-
ical range

μP pressure con-
stant

0.1 pNμm

A0 equilibrium
inner area

650μm2 [27], [24]

λinext inextensibility 20
λtether membrane

tethering
1× 10−3

TABLE II
PARAMETER SETS USED FOR THE SIMULATION OF THE

ENVIRONMENT (17) IN THE EXPERIMENT 3 (CLUSTER

FORMATION).

symb. description value

Dc diffusion of the
chemical

3 ×
103 cm2min−1

Dm diffusion of the
MMPs

3 ×
103 cm2min−1

α1 production rate of
chemical

102 molmin−1

β production of
MMPs

0.1molmin−1

γ1 decay of the chem-
ical

10molmin−1

γ2 decay of the MMPs 10molmin−1

δ1 degr. chemical by
the cell

104 molmin−1

δ2 degr. of the ECM
by the MMPs

0 cm2mol−1min−1

VI. DISCUSSION.

We propose in this work an extension of the

actin-based cell motility model (6), termed FBLM,

to account also for the collisions and the adhe-

sions between cells. This is achieved by mod-

elling the effect of these two phenomena on the

lamellipodium through a single attractive-repulsive
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potential, (13a), which is then incorporated in the

FBLM.

We deduce the adhesion-collision potential

(13a) based on a series of biological assumptions,

namely: the adhesion forces are attractive and

appear when the cells are in proximity, in a dis-

tance justified by the size of the cadherin protein.

As the distance between the cells decreases, the

magnitude of the adhesion forces increases. The

adhesion forces can have a maximum value that

represents the maximum “pulling” strength of the

cadherin protein. When the cells come closer,

repulsive collision forces appear. The collision

forces increase rapidly as the distance between the

cells decreases. They are unbounded in magnitude

and soon counteract the adhesive effect of the

cadherins. Both forces are exerted on the plus-end

of the filaments and through them are transferred

to the cytoskeleton and the rest of the cell. Ac-

cordingly, they participate in the s = 0 boundary

conditions of the FBLM, (15a).

We study the cell-cell collision and adhesion

through three particular experiments: we first sim-

ulate the elastic deformation of two cells when

only collision is considered. We notice there, the

restoration of the cells to their previous mor-

phology after the collision forces cease. We then

incorporate and simulate the effect cadherins in

the FBLM. We notice the differences in the defor-

mation of the cells as opposed to the collision-only

case, the tendency of the cell to “stick together”

and the elastic retraction fo their “tails” when

eventually the adhesion forces break. We then

embed a number of cells in a non-uniform (hap-

totaxis and chemotaxis wise) environment while

allowing them to collide and adhere with each

other. We then compare the results with a in
vitro experiment of migrating HeLa-cell cluster.

We notice the striking similarity of between the

simulated and the experimental.

Overall, the cell-cell collision and adhesion ex-

tensions of the FBLM that we propose in this paper

is of utmost importance for a large number of bio-

logically relevant studies, ranging from cell-cluster
and monolayer formation to cancer invasion.
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Abstract—In this paper we undertake to consider
the inverse problem of parameter identification of
nonlinear system of ordinary differential equations
for a specific case of complete information about
solution of the Holling-Tanner model for finite
number of points for the finite time interval. In this
model the equations are nonlinearly dependent on
the unknown parameters. By means of the proposed
transformation the obtained equations become lin-
early dependent on new parameters functionally
dependent on the original ones. This simplification
is achieved by the fact that the new set of pa-
rameters becomes dependent and the corresponding
constraint between the parameters is nonlinear. If
the conventional approach based on introduction of
the Lagrange multiplier is used this circumstance
will result in a nonlinear system of equations. A
novel algorithm of the problem solution is proposed
in which only one nonlinear equation instead of
the system of six nonlinear equations has to be
solved. Differentiation and integration methods of
the problem solution are implemented and it is
shown that the integration method produces more
accurate results and uses less number of points on
the given time interval.

Keywords-Parameter estimation, Goal function,
Absolute error curves, Inverse method, Holling-

Tanner model, Least square method, Differentiation
method, Integration method

I. INTRODUCTION

The numerical evaluation of known coefficient

of a dynamical system i.e. the problem of dy-

namical system identification, is one of the most

important problem of the mathematical biology

[1], ecology [2], [3], [4], etc. Usually, to identify

a dynamics of a system, it is necessary to have

certain statistical information for time values about

the unknown functions of this system. In the

present paper we consider the inverse problem

of parameter identification of the Holling-Tanner

predator-prey model [5], [6]. This model is widely

used in mathematical biology, for example, in the

study of transmissible disease [7]. Several investi-

gations have been done by various researchers on

the mite-spider-mite, lynx-hare and sparrow-hawk-

sparrow competition [8], [9], [10]. In [11], the

authors proposed a method consisting in the direct

integration of a given dynamical system with the

subsequent application of quadrature rules and the

least square method [12], [13] provided that there

13
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is complete statistical information about the un-

known function. In this paper, we assume that the

complete information about the competing species

is available and the two methods of solution, dif-

ferentiation and integration methods, are proposed.

The problem of the Holling-Tanner model iden-

tification has its specifics, because it nonlinearly

depends on the unknown parameters. It is possible

to transform this model to a new form where the

equations of the system linearly depends on the set

of new parameters. These new parameters are not

independent and we need to consider the constraint

between the parameters, which are nonlinear. The

Holling-Tanner model has only one constraint and

hence, can be simply treated by a novel method

developed by the authors. The theoretical consid-

erations are accompanied by numerical examples

where the developed algorithm is tested for both

differentiation and integration methods of solution.

It is shown that the integration methods is more

accurate than the differentiation one and needs less

amount of experimental information.

II. MAIN RESULTS

In our paper we consider the Holling-Tanner

model [9], [14] described by the following system

of equations:

⎧⎪⎨⎪⎩
ẋ = b1x − b2x

2 − b3
x·y
b4+x ,

ẏ = b5y − b6
y2

x ,

t = 0, x(0) = x0, y(0) = y0

(1)

where x = x(t), y = y(t), ẋ = dx(t)
dt , ẏ = dy(t)

dt ,

t is time and b1, · · · b6 are positive constant pa-

rameters [15]. Initial conditions for this system

are formulated so that at t = 0 : x(t = 0) =
x0 > 0 and y(t = 0) = y0 > 0. The main results

relating to solution of this initial value problem

were obtained in [10], [16], [17], [18] as

• Solution of the initial value problem (1)

{x(t), y(t)} with positive initial conditions is

positive, i.e. x(t) > 0 and y(t) > 0 for t ≥ 0.

• Initial value problem (1) has the positive

steady-state solution [15] (x̃, ỹ) which cor-

responds to either stable focus or stable node

critical point depending on b1, · · · b6 so that:

x̃=
b1b6−b3b5−b2b4b6+

√
Δ

2b2b6
> 0,

(2)

ỹ=
b5(b1b6−b3b5−b2b4b6+

√
Δ)

2b2b26
> 0.

where

Δ = (b1b6−b3b5− b2b4b6)
2+4b1b2b4b

2
6.

• Initial value problem (1) has unstable steady-

state solution

(˜̃x, ˜̃y) = (
b1
b2
, 0),

which corresponds to the saddle critical point.

III. ON SOLVABILITY OF IDENTIFICATION

PROBLEM

Assume that solution of initial problem (1),

x(t) and y(t) is given on the finite time interval

t ∈ [0, T ] with initial t = 0 and terminal t = T
time instants in N + 1 equispaced time instants

ti =
T
N i ∈ [0, T ]:

xi = x(ti), yi = y(ti) (i = 0, · · · , N) (3)

Lets us formulate the identification problem for

parameters b1, · · · b6 from the known solution (3)

This problem can be solved if the conditions of

the following theorem are satisfied:

Theorem 1. Parameters b1, b2, b3, b4 of model
(1) can be identified by the least squares
method if (N + 1) × 1-vector columns
[xi] ,

[
x2i
]
,
[
x3i
]
, [ẋi] , [xi, yi] are linearly

independent. Parameters b5 and b6 of the
above mentioned model can be identified by the
mentioned method if (N + 1) × 1-vector columns
[yi] and [ y

2
i

x1
] are linearly independent.

Proof: By multiplying the first equation of

system (1) by (b4 + x) and grouping the resulting

terms we obtain

C1(−x3(t)) + C2(−x(t)y(t)) + C3(−ẋ(t))

+C4(x(t)) + C5(x
2(t)) + (−x(t)ẋ(t)) = 0, (4)
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where C1 = b2, C2 = b3, C3 = b4, C4 = b1b4,

C5 = b1 − b2b4 are new unknown parameters. It is

easy to check that the parameters C1, C3, C4, C5

satisfy the following constrains: C1C
2
3 + C3C5 −

C4. Considering x(t) and y(t) in time instants t =
ti we obtain the following overdetermined system

of N + 1 linear algebraic equations:

C1
�f1+C2

�f2+C3
�f3+C4

�f4+C5
�f5− �f6=0, (5)

where

�f1 = [f1i] =
[
−x3i

]
, �f2 = [f2i] = [−xiyi] ,

�f3 = [f3i] = [−ẋi] , �f4 = [f4i] = [xi] ,

�f5 = [f5i] =
[
x2i
]
, and �f6 = [f6i] = [xiẋi]

are (N + 1) × 1-vector columns. Hence, the un-

known parameters C1, C2, C3, C4 and C5 can be

found by, for example, the least squares method

[19] by means of the constrained minimization of

function G1:

G1 = G1(C1, C2, C3, C4, C5, λ) =

=
1

2
(C1

�f1+C2
�f2+C3

�f3+C4
�f4+C5

�f5− �f6)
T

(C1
�f1+C2

�f2+C3
�f3+C4

�f4+C5
�f5− �f6)

+ λ(C1C
2
3 + C3C5 − C4) −→ min (6)

This problem can be solved providing that vectors
�f1, · · · , �f5 are linearly independent in (6). The

last term contains the Lagrange multiplier λ and

the constraint between coefficients C1, · · · , C5.

Moreover, the second equation of system (1) can

be rewritten in time instants t = ti as the following

overdetermined system of N + 1 linear algebraic

equations:

C6
�f7 + C7

�f8 − �f9 = 0, (7)

where

�f7 = [f7i] = [yi] , �f8 = [f8i] =

[−y2i
xi

]
,

�f9 = [f9i] = [ẏi] , C6 = b5, C7 = b6.

That is why coefficients C6, C7 can be found by

application of the least square method by means

of minimization of function G2

G2 =G2(C6, C7) =
1

2

(
C6

�f7 + C7
�f8 + �f9

)T
(C6

�f7 + C7
�f8 + �f9) −→ min (8)

This problem can be solved providing that vectors
�f7 and �f8 are linearly independent of (8).

Remark 2. In vectors �f3, �f6 the component ẋi,
and in vector �f9 the components ẏi are calculated
by means of numerical differentiation of xi, yi with
respect to time t and that is why the proposed
method is called the differential method of identi-
fication.

Corollary 3. Parameters b1, b2, b3, b4 of the model
(1) can be identified by the least square method
[19] if (N + 1) × 1-vector columns[∫ ti

0
x(τ)dτ

]
,

[∫ ti

0
x2(τ)dτ

]
,

[∫ ti

0
x3(τ)dτ

]
,

[xi − x0] ,

[∫ ti

0
x(τ)y(τ)dτ

]
are linearly dependent. Parameters b5 and b6 of
the abovementioned model can be identified by
the abovementioned method if (N +1)× 1-vector

columns
[∫ ti

0
y(τ)dτ

]
and

[∫ ti

0

y2(τ)

x(τ)
dτ

]
are

linearly dependent.

Proof: Integrating expression (4) with respect

to time t ∈ [0, T ] we obtain

C1

(
−
∫ t

0
x3(τ)dτ

)
+ C2

(
−
∫ t

0
x(τ)y(τ)dτ

)
+ C3 (x0 − x(t)) + C4

(∫ t

0
x(τ)dτ

)
+ C5

(∫ t

0
x2(τ)dτ

)
−
(
1

2
(x2(t) − x20)

)
= 0.

(9)

Integrating second equation of system 5 with re-

spect to time t ∈ [0, T ] we have

C6

(∫ t

0
y(τ)dτ

)
+ C7

(
−
∫ t

0

y2(τ)

x(τ)
dτ

)
−C3 (y(t) − y0) = 0. (10)
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Performing all integrations in (9) and (10) from 0
to tj ∈ [0, T ] we obtain the following overdeter-

mined systems of N+1 linear algebraic equations

C1 �g1 + C2 �g2 + C3 �g3 + C4 �g4 + C5 �g5 − �g6 = 0,

C6 �g7 + C7 �g8 − �g9 = 0, (11)

where

�g1 =

[
−
∫ ti

0
x3(τ)dτ

]
, �g2=

[
−
∫ ti

0
x(τ)y(τ)dτ

]
,

�g3 = [x0 − xi] , �g4 =

[∫ ti

0
x(τ)dτ

]
,

�g5 =

[∫ ti

0
x2(τ)dτ

]
, �g6 =

[
1

2
(x2i − x20)

]
,

�g7 =

[∫ ti

0
y(τ)dτ

]
, �g8 =

[
−
∫ ti

0

y2(τ)

x(τ)
dτ

]
,

�g9 = [yi − y0]

are the (N+1)×1-vector columns. Now applying

the method used in Theorem 1 we prove the

Corollary.

Remark 4. In vector �g1, �g2, �g4, �g5, �g7, �g8 the inte-
grals are calculated by means of numerical inte-
gration of xi, yi and their combinations with re-
spect to time t and that is why the proposed method
is called the integration method of identification.

Remark 5. Note that expressions (5), (7) and
(11) are linear with respect to unknown constants
C1, · · · , C7. Direct use of the constraint minimiza-
tion using the Lagrange multiplier with constraint:

C1C
2
3 + C3C5 − C4 = 0 (12)

produces nonlinear system of equations for de-
termination of six unknowns C1, C2, C3, C4, C5, λ.
Thus the search is performed in six-dimensional
space of parameters and hence this method sub-
stantially complexifies the solution procedure. De-
termination of parameters and C6 and C7 needs
solution of linear system of two algebraic equa-
tions. In the next section we describe an original
problem solution algorithm reducing the search
space dimension to one and using only linear
matrix manipulations in the process of solution,

which substantially simplifies and accelerates the
problem solution.

IV. SOLUTION OF THE PARAMETER

IDENTIFICATION PROBLEM

There are four original independent parameters

(b1, b2, b3, b4) in the first equation of (1). First

four C- parameters (C1, C2, C3, C4) depend on b-
parameters so that there is one-to-one correspon-

dence between them. The parameter C5 depends

on the first four C-parameter as follows:

C5 =
C4

C3
− C1C

2
3 . (13)

Hence, it is possible to consider (C1, C2, C3, C4)
as independent parameters and introduce new

name for the dependent parameter C5 = −λ. The

novel algorithm will be considered in detail for

the differentiation method of solution, i.e. with
�f1,··· ,9 - vector columns(see expression (5) and

(7). The integration method of solution uses the

same algorithm in which �f1,··· ,9 - vector columns

are changed to �g1,··· ,9 -ones (see (11)). Param-

eter λ will be selected from the given interval

λ ∈ [λmin, λmax] and substituted in goal function

G3 which is composed as follows

G3 = G3(C1, C2, C3, C4, λ)

=
1

2

(
C1

�f1+C2
�f2+C3

�f3+C4
�f4−(λ�f5+ �f6)

)T
(
C1

�f1+C2
�f2+C3

�f3+C4
�f4−(λ�f5+ �f6)

)
(14)

and subjected to minimization. In expression (14),

parameter λ is considered as constant at every

minimization and minimization itself is performed

with respect to parameters C1, C2, C3, C4. Solu-

tion of this problem is given by the following

formula

C(λ) = [C1(λ), C2(λ), C3(λ), C4(λ)]
T

=
(
(LT

1 L1)
−1LT

1

)
R(λ), (15)

where

L1 =
[
�f1 �f2 �f3 �f4

]T
, R(λ) = λ�f5 + �f6. (16)

In expression (15) it is possible to calculate 1 ×
(N+1)- vector row

(
(LT

1 L1)
−1LT

1

)
only once and
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after that perform its multiplication by (N+1)×1-

vector row R(λ), which is very fast operation.

Components of vector C(λ) and C5 = −λ are

substituted in the constraint (12) to obtain the

following nonlinear scalar equation

C1(λ)C
2
3 (λ) − λC3(λ) − C4(λ) = 0, (17)

which is solved with respect to λ. All roots of

Equation (17) are found (sometimes to find all

the roots it is necessary to expand the interval

λ ∈ [λmin, λmax] to the left or to the right or

to both sides). After finding a particular root λ
the corresponding b-parameters are calculated as

follows:

b1(λ) =
C4(λ)

C3(λ)
, b2(λ) = C1(λ),

b3(λ) = C2(λ), b4(λ) = C3(λ). (18)

(See (4)). The estimations of b-parameters are

obtained from the proper selection of root λ = λ̄:

b̄1 = b1(λ̄), b̄2 = b2(λ̄),

b̄3 = b3(λ̄), b̄4 = b4(λ̄) (19)

(one of the criteria of the correct choice of λ̄ must

be positiveness of all estimated b̄ parameters, see

Numerical Examples). Parameters b5 and b6 are

estimated by means of minimization of the goal

function of Equation 8. Solution of this problem

is given by the formulas:[
b̄5

b̄6

]
= (LT

2 L2)
−1LT

2
�f9 (20)

where L2 =
[
�f7 �f8

]
is (N +1)×2- matrix, (See

(7)).

Expression (15)-(20) give solution to the identi-

fication problem by means of the differentiation

method. To find solution of the problem by the

integral method it is necessary to consider vectors

�g1,··· ,9 (See expression 11) instead of �f1,··· ,9. In the

next section you will find more information about

application of the differentiation and integration

methods.

V. NUMERICAL EXAMPLES

Let us solve the initial problem of Equation 1

with the following parameters:

b1 = 0.2 b2 = 0.01 b3 = 0.05

b4 = 1 b5 = 0.062 b6 = 0.0223 (21)

and initial conditions: [x0 y0]
T = [10 5]T . The

stable critical point has coordinates (x̃, ỹ) ≈
(7.77064, 21.4066) (see Equation 2) and it is the

stable focus (eigenvalues of the linearized system

in the vicinity of the critical point are ν1,2 ≈
−0.0138 ± 0.0735i, where i2=−1). The unstable

saddle has coordinates (˜̃x, ˜̃y)=(20,0). Numerical

solution x = x(t) on the time interval t ∈ [0, T =
150] in N + 1 = 25 points is shown in Figure

1 and solution y = y(t) is shown in Figure 2.

Performing solution by means of the differential

Fig. 1. Graph of solution x = x(t)

Fig. 2. Graph of solution y = y(t)

method in accordance with the described algorithm

we obtain nonlinear Equation (12) from which

the parameters are calculated: λ1 ≈ −0.3282,

λ2 ≈ −0.1091 and λ3 ≈ 0.2087. As we see,

only λ3 parameter can be selected from three
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TABLE I
VALUES OF b-PARAMETERS, CORRESPONDING TO DIFFERENT ROOTS OF EQUATION (12) FOR N + 1 = 25

(DIFFERENTIATION METHOD)

Original Values λ1 ≈ −0.3282 λ2 ≈ −0.1091 λ3 ≈ 0.2087

b1 = 0.2000 −0.0580 −0.0621 0.2129

b2 = 0.0100 −0.0150 −0.0045 0.0108

b3 = 0.0500 −0.0295 −0.0026 0.0491

b4 = 1.0000 −18.0380 −10.5185 0.3906

roots, because λ1 and λ2 generate the negative

values of b-parameters. The relative error of the

b-parameters corresponding to λ3-parameter are as

follows:

ERROR%(b1) ≈ 6.437%

ERROR%(b2) ≈ 7.725%

ERROR%(b3) ≈ 1.832%

ERROR%(b4) ≈ 60.943% (22)

Estimation of parameters b5 and b6 gives coinci-

dence with the original values of the parameters in

four decimals with the following relative errors:

ERROR%(b5) ≈ 0.029%

ERROR%(b6) ≈ 0.028% (23)

Comparison of original graphs with graphs ob-

tained by numberical solution of initial problem

(1) with the same initial conditions but with esti-

mated parameters is shown in Figure 3 and Figure

4.

As we see the estimated parameters gives quite

good estimation of the process dynamics. The

estimated values of the steady states are as follows

(˜̃x, ˜̃y) ≈ (7.7143, 21.4282) with relative errors:

ERROR%(x̃) ≈ 0.102%

ERROR%(ỹ) ≈ 0.101% (24)

Estimation of the parameters with N + 1 = 49
points gives λ1 ≈ −0.2585, λ2 ≈ −0.0878, λ3 ≈
0.1914 and the following values of parameters (see

Table 2)

Fig. 3. Graph of original solution x = x(t) (dots) and
solution with estimated parameters (solid line)

Fig. 4. Graph of original solution y = y(t) (dots) and
solution with estimated parameters (solid line)

As we see, only λ3 parameter can be selected

from the three roots, because λ1 and λ2 generate

the negative values of b-parameters. One can see

the substantial improvement of the parameters

estimations. The relative errors of the b-parameters
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TABLE II
VALUES OF b-PARAMETERS, CORRESPONDING TO DIFFERENT ROOTS OF EQUATION (12) FOR N + 1 = 49

(DIFFERENTIATION METHOD)

Original Values λ1 ≈ −0.2585 λ2 ≈ −0.0878 λ3 ≈ 0.1914

b1 = 0.2000 −0.0405 −0.0485 0.2010

b2 = 0.0100 −0.0119 −0.0036 0.0101

b3 = 0.0500 −0.0271 −0.0022 0.0500

b4 = 1.0000 −18.3099 −10.9975 0.9553

corresponding to λ3- parameter are as follows:

ERROR%(b1) ≈ 0.496%

ERROR%(b2) ≈ 0.583%

ERROR%(b3) ≈ 0.087%

ERROR%(b4) ≈ 4.469% (25)

Estimation of parameters b5 and b6 gives coinci-

dence with the original ones in four decimals with

the following relative errors:

ERROR%(b5) ≈ 0.002%

ERROR%(b6) ≈ 0.002% (26)

Comparison of original graphs with graphs ob-

tained by numerical solution of initial problem (1)

with the same initial conditions but with estimated

parameters is shown in Figure 5 and Figure 6.

Fig. 5. Graph of original solution x = x(t) (dots) and
solution with estimated parameters (solid line)

As we see the estimated parameters give very

good estimation of the process dynamics. The

Fig. 6. Graph of original solution y = y(t) (dots) and
solution with estimated parameters (solid line)

estimated values of the steady states are as follows

(˜̃x, ˜̃y) ≈ (7.7077, 21.4102) with relative errors:

ERROR%(x̃) ≈ 0.017%

ERROR%(ỹ) ≈ 0.017% (27)

Absolute errors in calculation of x = x(t) and

y = y(t) in the differentiation method for N +
1 = 25 and N + 1 = 49 points are shown in

Figure 7 and Figure 8. Performing solution by

means of the integration method in accordance

with the described algorithm we obtain three roots

of nonlinear equation (12): λ1 ≈ −0.2391, λ2 ≈
−0.0725, λ3 ≈ 0.1899.

As we see, only λ3 parameter can be selected

from the three roots, because λ1 and λ2 generate

the negative values of b-parameters. The relative

errors of the b-parameters corresponding to λ3-
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TABLE III
VALUES OF b-PARAMETERS, CORRESPONDING DIFFERENT ROOTS OF EQUATION (12) FOR N + 1 = 25 (INTEGRATION

METHOD)

Original Values λ1 ≈ −0.2391 λ2 ≈ −0.0725 λ3 ≈ 0.1899

b1 = 0.2000 −0.0302 −0.0386 0.1999

b2 = 0.0100 −0.0115 −0.0032 0.0100

b3 = 0.0500 −0.0282 −0.0022 0.0500

b4 = 1.0000 −18.1074 −10.6869 0.9997

Fig. 7. Absolute Errors of Calculation for N+1 = 25 points
(Differentiation method)

Fig. 8. Absolute Errors of Calculation for N+1 = 49 points
(Differentiation method)

parameter are as follows:

ERROR%(b1) ≈ 0.052%

ERROR%(b2) ≈ 0.044%

ERROR%(b3) ≈ 0.059%

ERROR%(b4) ≈ 0.033% (28)

Fig. 9. Absolute errors of calculation for N+1 = 25 points
(Integration method) .

Estimation of parameters b5 and b6 gives coinci-

dence with the original values of b-parameter in

four decimals with the following relative errors:

ERROR%(b5) ≈ 0.008%

ERROR%(b6) ≈ 0.007% (29)

Comparison of original graphs with graphs ob-

tained by numerical solution of initial problem (1)

with the same initial conditions but with estimated

parameters are visually indistinguishable from Fig-

ure 5 and Figure 6. Absolute errors in calculation

of x = x(t) and y = y(t) in the integration method

for N + 1 = 25 points are shown in Figure 9.

The parameters are estimated with very high

accuracy at N + 1 = 25 points. The estimated

values of the steady states are as follows (˜̃x, ˜̃y) ≈
(7.7062, 21.4061) with relative errors:

ERROR%(x̃) ≈ 0.002%

ERROR%(ỹ) ≈ 0.002% (30)
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VI. CONCLUSION

Two methods of solution of the inverse problem

on parameter identification of the Holling-Tanner

model with complete information are discussed.

These are the differentiation and integration meth-

ods of solution. The conditions are indicated at

which all parameters of the model can be iden-

tified. The main disadvantage of the conventional

method of constraint minimization by means of

the Lagrange multipliers is that the method gen-

erates a system of six nonlinear equations with

unknown initial guess values. Proposed is the

novel method of the problem solution in which

the six dimensional space of search is reduced

to one dimensional space and the procedure of

the initial guess value is performed by fast vector

multiplication. Numerical examples of the pro-

posed algorithm implementation are demonstrated

for the differentiation and integration methods. It

is shown that the integration method generates

more accurate results than the differentiation one.

The integration method also needs less number

of points on the fixed time interval to produce

accurate results than the differentiation method.
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Abstract—The toxicokinetic and toxicodynamic
models (TK-TD) are very well-known for their abil-
ity, at both the individual and the population level,
to accurately describe life cycles such as the growth,
reproduction and survival of sentinel organisms un-
der the influence of an ecological biomarker. Being
dynamics, the consistent inference of life history and
environmental traits parameters that engender them
is sometimes very complex numerically, especially
as these parameters vary from one individual to
another. In this paper, we estimate the parameters
of a survival model TK-TD already applied and
validated by the implementation of the R package
GUTS (the General Unified Threshold Model of

Survival) by another coding applied to another very
recent implementation of Bayesian inference with
the R package deBInfer in order to evaluate the
survival effects of our ecotoxicological biomarker
called Deltamethrin on our Daphnia sample. The
study allowed us to evaluate from a population point
of view especially the threshold concentration not to
be exceeded to observe a survival effect commonly
known NEC (No effect Concentration) and possibly
determine the correlations between different vari-
ables of life history and the environment traits.

Keywords-Bayesian inference; parameter corre-
lations; Daphnia survival; deBInfer, Deltamethrin;
dynamic; NEC
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I. INTRODUCTION

Statistical methods for the analysis of survival

data have continued to flourish over the last two

decades [7], [31]. Since then, there have been

many publications that deal with this hot topic

in various fields such as medicine [13], [19],

[34], epidemiology [8], [21], criminology [7], [23],

business reliability research [11], [29], [35], and

the social and behavioral sciences [25], [27], [31],

[36]. They are intensively used in biology partic-

ulary ecotoxicology as in [4], [6], [12], [15], [16],

[24], [32], pharmacology and medical research

globally for example in [5], [26], [33].

The simulation of the temporal evolution of

processes leading to toxic effects on organisms

is the major role of the use of toxicokinetic-

toxicodynamic models (TK-TD models) [17].

There is a diversity of TK-TD models for mod-

eling seemingly simple survival according to the

underlying assumptions (individual tolerance or

stochastic death, speed of toxicodynamic dam-

age recovery, threshold distribution). The General

Unified Threshold Model for Survival (GUTS) is

the more general survival TK-TD model from

which a wide range of existing models can be

inferred as special cases [17]. It has special cases

of very appropriate model that can be adjusted

to the survival data. As a result, it is actively

contributing to increasing its application in eco-

toxicology research as well as in the assessment

of environmental risks related to chemicals.

However, it is known that in toxicokinetics

and pharmacokinetics the evolution of xenobiotics

(toxic or therapeutic) in a living organism is qual-

itative and quantitative. By means of a realistic

description (ie anatomical, physiological and bio-

chemical) of the absorption processes (inhalation,

skin contact, ingestion or intravenous injection),

distribution, metabolism and excretion (ADME

process), the mechanistic models , which will

result, allow the understanding and the simulation

of this evolution of the dose of a substance in the

various organs and fluids of the body [9]. The

action of the organism on the substance defines

the toxicokinetics (TK) whereas the opposite effect

translates the toxicodynamics (TD). The equations

that govern them are differential equations.

To answer why some individuals survive after

exposure of chemicals while others die, Ashauer

and al., 2015 [2] established the General Unified

Threshold Model of Survival (GUTS), a mathe-

matical relationship. In GUTS, there is two as-

sumptions: the threshold of tolerance is individ-

ually distributed and that its overcoming causes

sudden death among the individuals of a popu-

lation and the existence of a certain threshold,

above which death occurs stochastically, which

all people share. As a result, GUTS appeared

to be a promising development in the analysis

of traditional survival curves and dose-response

models.

Recently, Roman Ashauer and al., 2017 [3]

treated the paradigm ”dose is poison”. They illus-

trated that it is not only the dose that makes the

poison but also the sequence of exposure taking

into account the toxicokinetic recovery assump-

tions (the lack of effect that once a chemical

is removed from organism) and toxicodynamic

recovery (the neglect of the other homeostasis

recovery process may be rapid or slow depending

on the chemical). To do this, they tested four toxic

substances acting on different targets (diazinon,

propiconazole, 4,6-dinitro-o-cresol, 4-nitrobenzyl

chloride) on the freshwater crustacean Gammarus

pulex.

In this study, special consideration is given to

the application of Bayesian inference to the eval-

uation of the effects of Deltamethrin (a pesticide)

on a toxicokinetic and toxicodynamic (TK-TD)

survival model. Bayesian inference can be a very

sophisticated tool for survival data analysis. It is

well known for its ability to process data of any

sample size, especially small samples as opposed

to conventional methods.

Many statistical methods are currently too com-

plex to be fitted using classical statistical methods,

but they can be fitted using Bayesian computa-

tional methods [14], [23], [28]. However, it may be

reassuring that, in many cases, Bayesian inference

gives answers that numerically closely match those
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obtained by classical methods.

In this article, it is mainly to use, from another

angle, a new approach to very recent Bayesian

implementation [30] allowing the inference of pa-

rameters of the model TK-TD GUTS applicable to

the adjustment of our survival data collected at the

Interdisciplinary Laboratory of Continental Envi-

ronments (LIEC). It is a very rigorous methodol-

ogy insofar as it makes it possible to detect the

different relations that can exist between the ob-

servable quantities of the unobservable quantities,

the states and the parameters of the model. Simple

to implement, it requires a differential equation

TK-TD or DEBtox model, experimental data for

the calculation of the likelihood on these data and

a prior distribution assumption. A Markov Chain

Monte Carlo procedure (MCMC) describes these

inputs to estimate the posterior distributions of

the parameters and any derived error variables,

including model trajectories. This approach is

designed with a MCMC diagnosis of inference,

the visualization of posterior distributions of the

parameters and trajectories of the model used.

This manuscript assesses the long-term survival

effects of a toxic substance (a pesticide) called

Deltamethrin via the use of the highly reputable

GUTS model for assessing the survival of living

organisms under stressors such as toxic or pharma-

ceuticals. The plan adopted for the organization of

this article is as follows: in the second section (II),

we explain the experimental protocol established

in the laboratory and present the model TK-TD

GUTS used to translate our experimental protocol.

In the third section (III), we discuss the results of

the Bayesian analysis. We end in section (IV) with

a conclusion and discussion.

II. MATERIALS AND METHODS

A. Organism test

One of the three most widely used biological

models for the ecotoxicological risk assessment of

toxic substances, Daphnia is a major invertebrate

of freshwater aquatic ecosystems. The experiments

were conducted with clone A of Daphnia magna

Straus 1820 (identified by Professor Calow, Uni-

versity of Sheffield, United Kingdom). They are

more than 40 years old at LIEC (University of

Lorraine, France) [38]. Parthenogenetic cultures

were carried out in 1L aquaria with LCV medium:

a mixture (20/80) of LefevreCzarda (LC) medium

and French mineral water called Volvic (V). This

medium is supplemented with i) Ca and Mg in

order to obtain a total hardness of 250 mg.L−1

and a Ca/Mg molar ratio of 4/1, and ii) a mix-

ture of vitamins (0.1 mL.L−1) containing thiamine

HCl (750 mg.L−1), vitamin B12 (10 mg.L−1) and

biotin (7.5 mg.L−1). Parthenogenetic cultures of

daphnids were maintained under a temperature of

20◦C, a photoperiod of 16 − 8 h lightdark and

at a density of 40 organism per liter of culture

medium. The Daphnia medium was renewed at

least three times weekly and daphnids were fed

with a mixture of three algal species (5×106 Pseu-

dokirchneriella subcapitata, 2.5 × 106 Desmod-

esmus subspicatus, and 2.5 × 106 Chlorella vul-

garis/Daphnia/day). These algae were also contin-

uously cultivated in the laboratory using a nutrient

LC medium.

B. Test chemical

Intensely used in agriculture, Deltamethrin is

a class II pyrethroid insecticide that is harmful

to freshwater ecosystems, especially the clado-

ceran Daphnia magna (Straus 1820) [37], [38].

The Deltamethrin (C22H19Br2NO3) used in the

experiments is the technical active substance of the

formulation DECIS EC25 (25 g.L1) commercial-

ized by Bayer (Germany). Stock solutions were

prepared by dissolving the toxicant in acetone

immediately prior to each experiment.

C. Data sample

The experimental protocol was carried out dur-

ing 21 days of observation. Without the control,

five different doses of Deltamethrin (9, 20, 40, 80

and 160 ng.L-1, respectively) were administered

to Daphnia magna, with a replicate of 10 for each

dose submitted. The survivor count has allowed us

to summarize our data sample in the table I.
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TABLE I
CHRONIC TEST SUMMARY TABLE (21 DAYS) OF

DELTAMETHRIN EFFECTS SURVIVAL.

Time (day) mean ± standard deviation (SD)
of the survivors number during 21 days

Control 10 ± 0

9 ng.L−1 9.667 ± 0.913

20 ng.L−1 9.619 ± 0.921

40 ng.L−1 9.429 ± 1.121

80 ng.L−1 9.333 ± 1.238

160 ng.L−1 8 ± 1.761

D. Model Used

GUTS is part of mathematical modeling to

quantify the temporal evolution of the survival of

an organism population, statistically speaking. It is

highly reputed for its ability to assess a population

survival effects due to a chemical stressor presence

(toxicity in other words) responsible for the indi-

viduals mortality in this population. Indeed, the

toxicokinetic model criterion is explained by the

fact that the ingested chemicals will affect a target

site within the body before exerting a toxic effect

thus causing damage over time. All TK-TD models

including a damage state use either the assumption

of individual tolerance or SD hypothesis (ie the

existence of a single threshold not to be exceeded

for all individuals). The modeling assumptions

are not the same, it is obviously clear that the

results and interpretations that will follow will

differ thereafter. Let us not forget that the term

”hazard” and specific terms of parametrization of

the different models (such as killing rate, recovery

rate constant or elimination rate constant) will be

misinterpreted in both cases [17]. But GUTS was

designed to overcome these confusions because

playing a unifying role that merges different con-

cepts of existing models. GUTS is a synthesis of

all these models by mixing the aforementioned hy-

potheses. More complete documentation of GUTS

formulation hypotheses can be found in [17]. For

all these reasons, we take the GUTS model to

adopt it to our survival data study. As in [1], the

GUTS model considered is as follows: (1).

Ḋ(t) = ke

(
C(t)− D(t)

)
, (1)

Where C(t) represent the toxic dose subjected

linearly causing the time course of damage D(t).
The dominant rate constant denoted ke (in days−1

units) models the slowest process inducing the

recovery of the exposed organism. In fact, the

more slow the recovery in the individual, the

more vulnerable he is to the damage. Note that

in the body, there are systematically compensation

mechanisms and damage repair. The assumption

made in this GUTS model is that damage noted

D(t) (′′damage′′) is considered to be the same

for all individuals while knowing that once we

exceed a certain threshold. The death considered

at individual level as a stochastic event will occur

and whose probability increases linearly with the

damage. At the population level, this threshold

is assumed to vary stochastically over the whole

population. The hazard rate hz(t) (days−1) for

individual with threshold z or NEC (No-Effect

Concentration) in equation (2) below represents

the ”instantaneous probability to die” at individual

level. The NEC define the concentration threshold

not to be exceeded in the body, an amount that

we would like to estimate on average. Once it is

reached, it affects the health of the living organism.

hz(t) = kk max
(

0,D(t)− NEC
)
+hb, (2)

where the proportionality constant kk (in

ng.L−1.days−1 units) is well known called

killing rate and hb (in days−1 units) is the

background mortality rate, that is, the control

mortality rate, which is assumed to be constant

over time [days−1]. The equation (3) expresses

the probability S(t) that an individual of the

population considered will survive until time t
conditionally at the threshold z or NEC.

Ṡz(t) = −hz(t)Sz(t), (3)

Additional information on GUTS model modeling

assumptions can be found on [1], [2], [3], [17].

E. Statistical method

In contrast to visual estimation methods, which

are often considered biased and not robust,
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TABLE II
SURVIVAL MODEL PARAMETERS INFERENCE.

Parameter Symbol Units Prior distribution Initial value

Elimination rate ke days−1 G (1;1) 1 0.001

Killing rate kk ng.L−1.days−1 G (1; 1
4 )

1 0.015

Threshold for effects NEC ng.L−1 G (6;1) 1 1.5
Background hazard rate hb days−1 B(0.1;0.15) 2 0.001

Control correction ec1 [−] L N (0;1) 3 0.005

9 ng.L−1 correction ec2 [−] L N (0;1) 3 0.005

20 ng.L−1 correction ec3 [−] L N (0;1) 3 0.005

40 ng.L−1 correction ec4 [−] L N (0;1) 3 0.005

80 ng.L−1 correction ec5 [−] L N (0;1) 3 0.005

160 ng.L−1 correction ec6 [−] L N (0;1) 3 0.005

Bayesian statistics using kinetic data have been

very successful over the last two decades [9]. For

all these reasons, we use in this paper the Bayesian

approach often considered from a practical point of

view as a descriptive statistical analysis technique

among the others [22]. In Bayesian statistics, any

unknown entity is considered as a random variable,

in particular parameters of the model used. An

assumption of a prior distribution, assigned to each

parameter to be estimated, is necessary before the

experimental data analysis. Via the famous Bayes

theorem, these prior information will be updated

with the experimental data in order to retrieve

posterior information. Only the Bayesian approach

allows to integrate the knowledge that one has of

a system by taking advantage of the experimental

information [22]. It is a conjunction of the infor-

mation provided by the probabilistic model by a

prior distribution and experimental data. The R

package used for our model parameters inferring

is deBInfer [30]. We use the R package deSolve

[20], [39] as underlined in [30] for the resolution

of the implemented TK-TD model. To extrapolate

likelihood on our experimental data, we use the

Poisson log-likelihood function as defined in the

equation (4). The log-likelihood of the data given

the parameters, underlying model, and initial con-

ditions is then a sum over the n observations at

1The Gamma distribution
2The Beta distribution
3The Log-normal distribution

each time point in t ′:

L (Y |θ) =
n

∑
t

Nt logλ − nλ (4)

Here we use small corrections (eci)i=1,··· ,6 that

are needed because of the differential equations

solutions can equal zero, whereas the parameter

lambda of the poison likelihood must be strictly

positive. We infer them later as suggested in [18],

[20]. We set 20,000 iterations for the MCMC pro-

cedure, cnt = 500 worth only 1231.06 seconds of

execution with an Intel (R) Core (TM) i3-2350M

CPU processor running at 2.30 GHz. The prior

distributions assumptions as well as the parameters

measures units are presented in the table II.

III. RESULTS AND DISCUSSION

The inference results are presented in tables

III and IV. They were obtained using the major

functions ode() of the R package deSolve [20]

and de_mcmc() of the R package deBInfer [30].

Tables III and IV respectively give the empirical

mean and standard deviation for each variable,

plus standard error of the mean and the quantiles

for each variable.

The threshold concentration above which there

are effects on the survival of our test species

(Daphnia magna) commonly called NEC is es-

timated cap 6.042 ± 2.418 ng.L−1. It is similar

to that estimated in one of our studies on the

risk assessment of Deltamethrin on growth and

reproduction treated separately [10]. This result is
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TABLE III
EMPIRICAL MEAN AND STANDARD DEVIATION FOR EACH VARIABLE, PLUS STANDARD ERROR OF THE MEAN.

Mean SD Naive SE Time-series SE

ke 0.428169 0.738795 5.224e-03 0.0827944
kk 0.003064 0.010340 7.311e-05 0.0013127

NEC 6.041585 2.418373 1.710e-02 0.1636959
hb 0.002097 0.003396 2.401e-05 0.0001835
ec1 0.723883 0.459832 3.252e-03 0.0303711
ec2 0.593472 0.379989 2.687e-03 0.0211085
ec3 0.662622 0.431101 3.048e-03 0.0245585
ec4 0.699403 0.430309 3.043e-03 0.0244237
ec5 0.938278 0.556387 3.934e-03 0.0313650
ec6 0.808771 0.581670 4.113e-03 0.0385683

TABLE IV
QUANTILES FOR EACH VARIABLE.

2.5% 25% 50% 75% 97.5%

ke 7.848e-04 1.588e-02 9.558e-02 0.542053 2.66691
kk 1.352e-04 2.854e-04 5.183e-04 0.001508 0.02582

NEC 2.150e+00 4.184e+00 5.729e+00 7.690363 10.81920
hb 6.774e-18 1.279e-07 9.653e-05 0.003075 0.01194
ec1 1.023e-01 3.698e-01 6.445e-01 0.997039 1.83111
ec2 9.134e-02 3.152e-01 5.145e-01 0.791141 1.52596
ec3 1.150e-01 3.398e-01 5.604e-01 0.883916 1.73556
ec4 1.089e-01 3.752e-01 6.185e-01 0.936333 1.74968
ec5 1.666e-01 5.078e-01 8.321e-01 1.252371 2.27439
ec6 1.106e-01 3.811e-01 6.464e-01 1.111107 2.26996

very consistent in that death stops any evolution

process. While the recovery process under the

toxic effect is estimated to be around 0.43±0.74.

The dominant rate constant is not so negligible

as that in contrast to the killing rate and the

control mortality rate constants whose respective

values are close to 0.003±0.01 and 0.002±0.03.

These different estimated values would translate

faithfully our experimental realities as shown in

the data table I. With 10 replicates for each

Deltamethrin dose, few deaths were observed

in this experimental protocol. The GUTS model

again reflects the reality of the facts in this study.

The density plots for the various inferred param-

eters can be read in figure 1. In this image, some

chain trajectories are reasonable and consistent

over time in that their posterior distributions are

unimodal, sometimes resembling that of a normal

distribution. We can cite for example the parame-

ters NEC and the small corrections eci=1,··· ,6. Their

prior distributions were those of a log-normal

distribution. Unlike the distributions of the ke, kk
and hb unimodal parameters, but suspect because

they include a large number of outliers. This

aberration would confirm the inference complexity

of these types of studies. Let’s not forget that

these are constant rate. The study results are very

consistent overall. The figure 2 perfectly shows a

lack of detected correlation between parameters.

The highest correlation value is 0.36 between kk
and NEC, the two most important parameters in

GUTS [17].

For proof purposes, we remove a burnin period

of 1500 samples and examine parameter correla-

tions in the figure 2 and overlap between prior

and posterior densities. The figure 2 reflects the

correlation lack between the different parameters

of our dynamics evaluating Daphnia survival in the

presence of our Deltamethrin stressor.

From the posterior, we simulate 500 trajectories

of our TK-TD model while calculating at 95%HDI
(Highest Posterior Density Intervals) for the de-
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Fig. 2. Parameter correlations plotting
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and the red points reflect the experimental data.

terministic part of the model. HDI sets (intervals)

contain all values of the parameter θ such that the

posterior density fθ |y is larger than some constant

cα , where cα ensures that the coverage probability

will be 1 − α . For each exposure concentration,

figure 3 shows in the same graph, the experimental

data and the model output describing the dynamics

of alive Daphnia magna number during the 21

days of experience. It confirms that the inference

procedure actually retrieves the model to our data.

In addition, the fitted curves are obtained with

small estimation errors, see figure 3. Post hoc

trajectories adjust very well our observational data

for different pesticide doses.

IV. CONCLUSION

This paper is very instructive in that it adapts

the GUTS model to our survival data collected

at LIEC through a more recent implementation

of Bayesian inference (the R library deBInfer).

Thus we ignored the use of GUTS (R package

GUTS) implementation. With this new R library,

it is easy to encode any toxicico-kinetic and

toxicodynamic dynamics (TK-TD) then infer the

parameters that compose it. Once differential en-

coding is complete, the R package deBInfer has a

function named de_mcmc() where is integrated

that of ode() function of the R package deSolve

specially designed for system differential solving

such that ordinary, partial or delay differential

equations. These last facilitate access to a lot of

users types whether they are specialists in the field

or not. Most of the life phenomena are modeled

using Ordinary Differential Equations (EDO), Par-

tial Differential Equations (PDE), or the Delay-

Differential Equations (DDE). As a result, this R

package deBInfer facilitates the transition from

determinism to stochastic. As part of our study,

it allowed us to consistently address our survival

analysis with the GUTS TK-TD model use. It

really facilitated the manipulation and inference

of the parameters of a mechanistic model to de-

scribe the bioaccumulation kinetics and dynamics

of survival effects in a contaminated environment

of the pesticide Deltamethrin.
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Abstract—Nestedness is a concept employed to
describe a particular pattern of organization in
species interaction networks and in site-by-species
incidence matrices. Currently the most widely used
nestedness index is the NODF (Nestedness metric
based on Overlap and Decreasing Fill), initially
presented for binary data and later extended to
quantitative data, WNODF. In this manuscript we
present a rigorous formulation of this index for
both cases, NODF and WNODF. In addition, we
characterize the matrices corresponding to the two
extreme cases, (W)NODF=1 and (W)NODF=0, rep-
resenting a perfectly nested pattern and the absence
of nestedness respectively. After permutations of
rows and columns if necessary, the perfectly nested
pattern is a full triangular matrix, which must
of course be square, with additional inequalities
between the elements for WNODF. On the other
hand there are many patterns characterized by the
total absence of nestedness. Indeed, any binary ma-
trix (whether square or rectangular) with uniform
row and column sums (or marginals) satisfies this

condition: the chessboard and a pattern reflecting
an underlying annular ecological gradient, which we
shall call gradient-like, are symmetrical or nearly
symmetrical examples from this class.

Keywords-biogeography, interaction networks,
nestedness, bipartite networks

I. INTRODUCTION

Observing nature is one of the most fascinating

experiences in life. A honeybee visits a daisy, a

rosemary, and other ten different species. Another

bee of the same family is specialized in just one

flower that by its turn is visited by twenty diverse

pollinators. Once we put together the community

of pollinators and flowers an intricate mutualist

network arises [5]. In the opposite side of life a

caterpillar feed on two asteraceae species which

are eaten by another couple of insects, the full

set of herbivorous and plants forms a complex

antagonist network. An central quest in ecology
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of communities today is the search for patterns in

networks that can distinguish between mutualist

and antagonist webs [13, 21]. One network pattern

that is part of this answer is nestedness, the subject

of this manuscript.

Nestedness is a concept used in ecology to study

a specific formation pattern in species interaction

networks and in site-by-species incidence matri-

ces. In general terms, nestedness is a specific kind

of topological organization in adjacency matrices

of bipartite networks where any vertex S, with

m links, tend to be connected to a subset of

the vertices connected to any other vertex with

n links, where n > m. The nestedness concept

was first introduced by [8] to characterize species

distribution pattern in a spatial set of isolated

habitats such as islands. In a perfectly nested

pattern site-by-site incidence matrix there is a

hierarchy of sites such that the set of species

inhabiting any site is a subset of the set inhabiting

any site further up the hierarchy. When applied to

describe the topological organization in ecological

interaction networks this new nestedness concept

was first used to networks formed by pollinators

and flowering plants and by seed dispersers and

flesh-fruited plants [4, 12]. In cases a network is

perfectly nested if (i) there is a hierarchy of plant

species such that the set of animal (pollinator or

seed disperser) species interacting with any plant

is a subset of the set of animals interacting with

any plant further up the hierarchy, and (ii) there

is a similar hierarchy of animals. It is clear that

in such a network generalist species interact with

specialists and generalists, but specialists do not

interact with each other.

The proper mathematical framework for intro-

ducing nestedness is in the context of bipartite

networks. From a general perspective we consider

a bipartite network formed by two sets S1 and

S2. Nestedness is characterized by several indices

[22, 18] and it is not the objective of this work

to compare them. Here we focus on the NODF
index, which has a clear mathematical definition

that allows further analytic developments. The

NODF index, an acronym for Nestedness metric

based on Overlap and Decreasing Fill, is an index

that was introduced in [2] and that has been

widely used in the literature. An extension of this

index to quantitative networks, WNODF , was

recently proposed [3], and we include it in our

analysis because of the importance of quantitative

networks, specially for networks of interacting

species [9, 13].

Null models are an important methodological

tool widely used in ecology to test model fitting,

perform statistical tests or test the validity of

indices and measures [10]. In order to assess an

index a large set of empirical or artificial data is

used as a data bank to explore its limitations and

fragility. This process has already been used to

test a set of nestedness indices [22]. Null models

are necessary because statistical tests are otherwise

always questionable by limitation in the range of

tested parameters, interpretation bias of the results,

or equivocal choice of random models. These

studies emphasis the necessity of analytic results to

strength confidence about nestedness indices and

their applications.

The original definition of the NODF index

depends on how the rows and columns are ordered,

and a frequently used software for calculating

NODF explicitly asks the user if they would like

to order the matrix according to row and column

sums (or marginals) [11]. In this paper we employ

a definition of (W)NODF in which the matrix is

previously sorted before the computation of the

index.

In this paper we give rigorous definitions of

NODF and WNODF and prove two mathemat-

ical theorems in each case. For the sake of clarity,

and for historical reasons, we explore separately

qualitative (binary) and quantitative (weighted)

networks. The treatment of the qualitative case

is more intuitive and helps the reader to follow

the analytic developments. In section 2 we start

with a formal definition of NODF and WNODF
and present two theorems that characterize the

extreme cases, NODF = 0 and WNODF =
0 corresponding to absence of nestedness, and

NODF = 1 and WNODF = 1 corresponding
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to the perfectly nested arrangement. In section 3
we summarize the main ideas of the work and put

the results in a broader context.

II. ANALYTIC TREATMENT

We shall consider a bipartite network of set S1,

containing m elements, and set S2, containing n
elements, with quantitative data for the frequency

wij of the interactions between element i of set

S1 and element j of set S2. In the simplest case

wi,j is equal to 1 or 0, a situation corresponding

to the binary network, qualitative network or pres-

ence/absence matrix. The adjacency matrix for the

network is the m×n matrix A = (aij), where aij
is defined by:

aij =

⎧⎪⎨⎪⎩
1 if wij �= 0, so that element i of S1

and element j of S2 are linked

0 if wij = 0, so that they are not linked.
(1)

We define the row and column marginal totals

MT r
i and MT c

l by

MT r
i =

n∑
j=1

aij and MT c
l =

m∑
k=1

akl, (2)

so that MT r
i is the number of elements of S2

interacting with element i of S1, and MT c
l is the

number of elements of S1 interacting with element

l of S2. Define the row and column decreasing-fill

indicators DF r
ij and DF c

kl by

DF r
ij =

{
1 if MT r

i > MT r
j ,

0 if MT r
i ≤ MT r

j ,
(3)

DF c
kl =

{
1 if MT c

k > MT c
l ,

0 if MT c
k ≤ MT c

l .
(4)

Note that, if i < j, so that row i is above row j,

then DF r
ij = 1 if and only if element i of set S1 is

linked with more elements of set S2 than element

j of S1; similarly, if k < l, so that column k is to

the left of column l, then DF c
kl = 1 if and only if

element k of S2 is linked with more elements of

set S1 than element l of S2. It is always possible to

permute the rows and columns of the matrix so that

MT r
i ≥ MT r

j whenever i < j, and MT c
k ≥ MT r

l

whenever k < l, but the definition does not require

this to be done.

A. Qualitative matrices, the case NODF

In order to define NODF we start with the row

paired-overlap quantifier POr
ij as the fraction of

unit elements in row j that are matched by unit

elements in row i, and the column paired-overlap

quantifier POc
kl as the fraction of unit elements in

column l that are matched by unit elements in row

k, so that

POr
ij =

∑n
p=1 aipajp∑n
p=1 ajp

, POc
kl =

∑n
q=1 akqalq∑n
q=1 alq

.

(5)

Note that POr
ij is the fraction of elements of S2

linked to element j of S1 that are also linked to

element i of S1, and similarly for POc
kl. Define the

row paired nestedness NP r
ij between rows i and j,

and the column paired nestedness NP c
kl between

columns k and l, by

NP r
ij = DF r

ijPOr
ij +DF r

jiPOr
ji, (6)

NP c
kl = DF c

klPOc
kl +DF c

lkPOc
lk. (7)

Note that these definitions are valid whatever the

signs of MT r
i − MT r

j and MT c
k − MT c

l . Finally,

define the row and column nestedness metrics

NODF r and NODF c by

NODF r =

∑m
i=1

∑m
j=i+1NP r

ij
1
2m(m − 1)

, (8)

NODF c =

∑n
k=1

∑n
l=k+1NP c

kl
1
2n(n − 1)

, (9)

and the overall nestedness metric NODF as a

weighted average of these, by

NODF =

m∑
i=1

m∑
j=i+1

NP r
ij +

n∑
k=1

n∑
l=k+1

NP c
kl

1
2m(m − 1) + 1

2n(n − 1)
.

(10)
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1) Conditions for NODF = 0: Our objective

is to characterize all matrices for which NODF =
0. It is clear that NODF = 0 if and only if both

NODF r = 0 and NODF c = 0, so let us first

consider the conditions for which NODF r = 0.

This is true if and only if NP r
ij = 0 for all

pairs (i, j) of rows. From equation (6), NP r
ij = 0

if and only if either MT r
i = MT r

j , so that

DF r
ij = DF r

ji = 0, or
∑n

p=1 aipajp = 0, so that

POr
ij = POr

ji = 0. In other words, either rows

i and j have the same number of unit elements,

so that elements i and j of S1 interact with the

same number of elements of S2, or there is no

p in S2 that interacts with both i and j. If our

bipartite network is connected, then it is possible

to move from any i in S1 to any other j in S1 by

following a path composed of edges of the network

from S1 to S2 to S1 and so on. Hence, in this

connected case, NODF r = 0 if and only if all
elements of S1 are linked to the same number of

elements of S2. Similarly, for a connected network,

NODF c = 0 if and only if all elements of S2

are linked to the same number of elements of

S1, and NODF = 0 if and only if both these

conditions hold. If our network is disconnected,

then NODF = 0 if and only if all elements of

S1 are linked to the same number of elements of

S2, and all elements of S2 are linked to the same

number of elements of S1 within each connected

component, or compartment. This is a necessary

and sufficient condition for NODF = 0. There

are many networks that satisfy this condition. For

example in figure 1 we show a 9×6 network where

each of the nine elements of S1 interact with a dif-

ferent pair of elements of S2, so that each element

of S2 interacts with three elements of S1. Figure

1(c) does not resemble any of the NODF = 0
configurations exhibited in the literature [4, 15],

which are all (including the chessboard after row

and column permutation) compartmented with full

connectivity within the compartments. Case 1(d)

seems to reflect an underlying cyclic ecological

gradient [15], and we call it gradient-like. The

requirement that the gradient be cyclic is manifest

in the occupied cell at the bottom left of the matrix,

and it is occupied to fulfil the rule that there should

be two nonzero elements in each row and three in

each column. It is interesting that the dimensions

(m,n) of the adjacency matrix obey a constraint

in the NODF = 0 case. The total number of

matrix elements that is distributed along columns

and rows should follow the relation:
n∑

i=1

MT c
i =

m∑
j=1

MT r
j . (11)

As MT c
i and MT r

j are constants we can rewrite

11 in the form nMT c = mMT r.

2) Conditions for NODF = 1: We now wish

to characterize all matrices for which NODF = 1,

see figure 2. It is clear that NODF = 1 if and

only if both NODF r = 1 and NODF c = 1,

so let us first consider the conditions under which

NODF r = 1. This is true if and only if NP r
ij =

1 for all pairs (i, j) of rows. From equation (6),

NP r
ij = 1 implies that MT r

i �= MT r
j , so that

either DF r
ij = 1 or DF r

ji = 1. If there are more

elements of S2 interacting with element i in S1

than with j in S1, then MT r
i > MT r

j , so that

DF r
ij = 1, DF r

ji = 0. Then we also require that∑n
p=1 aipajp =

∑n
p=1 ajp, so that POr

ij = 1, in

other words that aip = 1 whenever ajp = 1. Thus

all elements of S2 interacting with element j in

S1 also interact with element i in S1, or the set of

elements of S2 interacting with j in S1 is nested

within (or a proper subset of) the set of elements

of S2 interacting with i in S1 . Similarly, if there

are more elements of S2 interacting with j in S1

than with i in S1, then the set of elements of S2

interacting with i in S1 must be nested within the

set of elements of S2 interacting with j in S1.

Similar results hold for NODF c = 1, so that the

set of elements of S1 interacting with any k in S2

must be a proper subset or superset of the set of

S1 elements interacting with any other l in S2. For

NODF = 1, all (S1 and S2) interaction sets must

be proper sub- or supersets, so that by the pigeon-

hole principle we must have m = n, and it must

be possible to permute the rows and columns of

the matrix A so that aij = 1 if i ≥ j, aij = 0
otherwise. The matrix with NODF = 1 is the
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Fig. 1: Some NODF = 0 patterns. Panels (a) and (b) represent the same matrix after permutation of lines and

columns; this non-chessboard tiling is a composition of three disconnected networks. Panels (c) and (d) show

two connected networks that have NODF = 0, since MT c
i = 3 and MT r

j = 2 for all i and j respectively. Case

(d) represents a gradient-like structure.
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full triangular matrix, unique up to permutation of

rows and columns.

B. Quantitative matrix, the case WNODF

To construct the WNODF index we define the

row-pair dominance quantifier Dr
ij as the fraction

of non-zero weights in row j that are dominated by

(less than) the corresponding weight in row i, and

the column-pair dominance quantifier Dc
kl as the

fraction of non-zero weights in column l that are

dominated by the corresponding weight in column

k, so that

Dr
ij =

∑n
p=1H(wip − wjp)H(wjp)

MT r
j

, (12)

Dc
kl =

∑m
q=1H(wqk − wql)H(wql)

MT c
l

, (13)

where H is the Heaviside step function with

H(0) = 0. Note that Dr
ij is the fraction of

elements of S2 interacting with j in S1 that interact

more strongly with i in S1, and similarly for Dc
kl.

Note that, when calculating NODF for qualitative

networks, the quantity corresponding to Dr
ij is

the row-pair overlap quantifier POr
ij which is the

fraction of elements of S2 interacting with j in

S1 that also interact with i in S1, and similarly

for Dc
kl; the requirement that the interaction be

stronger is not (and cannot be) applied. This is the

essential difference between the index WNODF
for quantitative networks and the index NODF
for qualitative ones. Now define the row-pair

dominance nestedness between rows i and j, and

the column-pair dominance nestedness between

columns k and l, by

DN r
ij = DF r

ijD
r
ij +DF r

jiD
r
ji, (14)

DN c
kl = DF c

klD
c
kl +DF c

lkD
c
lk. (15)

Note that these definitions are valid whatever

the signs of MT r
i − MT r

j and MT c
k − MT c

l . For

example, (i) if MT r
i > MT r

j then DF r
ij = 1 and

DF r
ji = 0, so DN r

ij = Dr
ij , (ii) if MT r

i < MT r
j

then DF r
ij = 0 and DF r

ji = 1, so DN r
ij = Dr

ji,

and (iii) if MT r
i = MT r

j then DF r
ij = DF r

ji = 0,

and DN r
ij = 0. Finally, define the row and

column weighted nestedness metrics WNODF r

and WNODF c by

WNODF r =

∑m
i=1

∑m
j=1DN r

ij

m(m − 1)
, (16)

WNODF c =

∑n
k=1

∑n
l=1DN c

kl

n(n − 1)
, (17)

and the overall weighted nestedness metric

WNODF as a weighted average of these, by

WNODF =

m∑
i=1

m∑
j=1

DN r
ij +

n∑
k=1

n∑
l=1

DN c
kl

m(m − 1) + n(n − 1)
.

1) Conditions for WNODF = 0: The treat-

ment of WNODF = 0 shares some similarities

with the previous analysis of NODF = 0. To

characterize all matrices for which WNODF = 0
we proceed as follows. It is clear that WNODF =
0 if and only if both WNODF r = 0 and

WNODF c = 0, so let us first consider the

conditions for which WNODF r = 0. This is

true if and only if DN r
ij = 0 for all pairs

(i, j) of rows. From equation (14), DN r
ij = 0

if and only if either (i) MT r
i = MT r

j , so that

DF r
ij = DF r

ji = 0, or (ii) MT r
i > MT r

j

and
∑n

p=1H(wip − wjp)H(wjp) = 0, so that

Dr
ij = DF r

ji = 0, or (iii) MT r
i < MT r

j and∑n
p=1H(wjp − wip)H(wip) = 0, so that Dr

ji =
DF r

ij = 0. In case (i), the elements i and j of S1

interact with the same number of S2 elements. In

case (ii), i in S1 interacts with more elements of

S2 than does j in S1, but any interaction between

j and any element p of S2 is at least as strong

as the corresponding interaction between i and p.

Although i in S1 strictly dominates j in S1 in

terms of the number of its interactions, j in S1 (not

necessarily strictly) dominates i in S1 in terms of

the strength of the interactions it does have. Case
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Fig. 2: The maximal nestedness pattern exemplified

for qualitative (a) and quantitative (b) cases. In the

second situation the weight of the link between species

is indicated by grey tones.

(iii) is analogous, with i and j interchanged. There

are many possible ways to obtain WNODF r = 0,

and similarly WNODF c = 0 and WNODF =
0. In particular any connected bipartite network in

which all elements of S1 interact with the same

number of elements of S2, and all elements of

S2 interact with the same number of elements of

S1, has WNODF = 0, as does any network in

which each element of W is either 0 or 1. Note

that WNODF is not a continuous function of the

elements of W ; for example, if W is a 2 × 2
matrix with w11 = 1 + ε, w12 = w21 = 1,

w22 = 0, then WNODF (W ) = 0 if ε = 0 but

WNODF (W ) = 1 if ε is positive, however small

it is.

C. Conditions for WNODF = 1

We now wish to characterize all matrices for

which WNODF = 1, see figure 2. This demon-

stration has some points in common with the case

NODF = 1. It is clear that WNODF = 1 if and

only if both WNODF r = 1 and WNODF c = 1,

so let us first consider the conditions under which

WNODF r = 1. This is true if and only if

DN r
ij = 1 for all pairs (i, j) of rows. From equa-

tion (15), DN r
ij = 1 implies that MT r

i �= MT r
j ,

so that either DF r
ij = 1 or DF r

ji = 1. If there

are more elements of S2 interacting with i in

S1 than with j in S1, then MT r
i > MT r

j , and

DF r
ij = 1, DF r

ji = 0. Then we also require

that
∑n

p=1H(wip − wjp)H(wjp) = MT r
j , so that

Dr
ij = 1, in other words that wip ≥ wjp whenever

wjp �= 0. Thus all elements of S2 interacting

with j in S1 not only interact with i in S1, but

interact more strongly with i than with j. The set

of elements of S2 interacting with j in S1 not only

has to be nested within (or a proper subset of) the

set of S2 elements interacting with i in S1, but

all the interactions with i in S1 must be stronger

than the corresponding interaction with j in S1.

Similarly, if there are more S2 elements interacting

with j in S1 than with i in S1, then the set of S2

elements interacting with i in S1 must be nested

within the set of S2 elements interacting with j
in S1, and each interaction with j in S1 must be

stronger than the corresponding interaction with i
in S1. Similar results hold for WNODF c = 1,

so that the set of elements of S1 interacting with

any k in S2 must be a proper subset or superset

of the set of S1 elements interacting with any

other l in S2, corresponding interactions in subsets

must be weaker, and corresponding interactions in

supersets stronger. For WNODF = 1, all (S1

and S2) interaction sets must be proper sub- or

supersets, so that by the pigeon-hole principle we

must have m = n, and it must be possible to
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permute the rows and columns of the matrix W
so that wij > 0 if i + j ≤ n + 1, wij = 0
otherwise. Any matrix with WNODF = 1 has

the same adjacency matrix, up to permutation of

rows and columns, and also satisfies the row and

column strict dominance properties wik > wjk for

all i < j whenever wjk > 0, wki > wkj for all

i < j whenever wkj > 0.

III. FINAL REMARKS

This work focuses on probably the most com-

monly used nestedness index: the Nestedness met-

ric based on Overlap and Decreasing Fill. Initially

we introduce a rigorous formulation for NODF
and WNODF . We then elucidate the patterns of

maximal and minimal nestedness, (W )NODF =
1 and (W )NODF = 0. The maximal nestedness

pattern is already known in the literature [15, 2],

but an understanding of the minimum nestedness

pattern is substantially extended in this work. The

literature usually presents the chessboard pattern

as the prototype of the zero nestedness arrange-

ment; but this work shows that there is in fact a

large class of matrices that fulfil this condition.

We cite the completely compartmented networks

with equal modules (of which the chessboard is a

special case) and gradient-like matrices. But there

is another class of non-symmetrical matrices that

also have zero nestedness as long as the row and

column sums of the adjacency matrix are uniform.

The theoretical discussion about nestedness to-

day resembles the debate around diversity and its

measurements [14, 16, 17]. In both cases the com-

munity of ecologists is aware of the importance

of the concept in understanding and quantifying

patterns in ecological processes. In both contexts,

also, there is a dynamic debate about the true

meaning of the concepts, and the most adequate

way to transform them into an index [1, 18, 20].

Intriguingly, the comparison between diversity and

nestedness is not just a curiosity in the story of

theoretical ecology, but also a challenging aspect

of theory itself, because beta diversity and nested-

ness show common similarities and dissimilarities

[6, 19].

We hope that this rigorous work that highlight

the nestedeness of (W)NODF will contribute to

the discussion about the general meaning of nest-

edness by clarifying the extreme cases: zero and

maximal nestedness. The basics of the mathemat-

ical framework presented here is flexible enough

to encourage further developments using alterna-

tive pairwise nestedness indices. Despite the large

number of nestedness indices, there are few ana-

lytic results relating the properties of a nestedness

index and the characteristics of the corresponding

adjacent matrix; an exception is [7]. With the

exact results shown in this manuscript we add new

elements to the debate about the real meaning of

nestedness and the best way to measure it.
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Guimarães Jr, R. D. Loyola, and W. Ulrich.

A consistent metric for nestedness analysis in

ecological systems: reconciling concept and

measurement. Oikos, 117:1227, 2008.

[3] M. Almeida-Neto and W. Ulrich. A straight-

forward computational approach for measur-

ing nestedness using quantitative matrices.

Enviromental Modeling & Software, 26:1713,

2011.

[4] J. Bascompte, P. Jordano, C. J. Melián, and

J. M. Olesen. The nested assembly of plant-

animal mutualistic networks. Proc. Natl
Acad. Sci USA, 100:9383, 2003.

[5] Jordi BAscompte and Pedro Jordano. Mutu-
alistic Networks. Princeton University Press,

2013.

[6] A. Baselga. Partitioning the turnover and

nestedness components of beta diversity.

178 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WT

Global Ecology and Biogeography, 19:134–

143, 2010.

[7] G. Corso, A. L. de Araujo, and A. M.

de Almeida. Connectivity and nestedness

in bipartite networks from community ecol-

ogy. Journal of Physics: Conference Series,

285:012009, 2011.

[8] J. P. Darlington. Zoogeography: the geo-
graphical distribution of animals. Wiley,

1957.

[9] Luis J. Gilarranz, Juan M. Pastor, and Javier

Galeano. The architecture of weighted mu-

tualistic networks. Oikos, 121:1154, 2011.

[10] N. J. Gotelli and G.R. Graves. Null models
in ecology. Smithsonian Institution Press,

Washington, D.C., 1996.
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Abstract—In this paper we use Boolean frame-
work to redefine coupled cell networkss, originally
described in [2]. We also analyze some of the impor-
tant properties of Boolean coupled cell networkss.

In the second part of this paper we focus on
properties of a quotient networks. We redefine the
concept of a quotient to suit Boolean network frame-
work. Next, we investigate in details the networks
in which two-cell bidirectional ring and three-cell
bidirectional ring arise as quotients.

Keywords-Boolean networks; coupled cell net-
works; discrete models

I. INTRODUCTION

During the 1980s and early 1990s, Martin Golu-

bitsky and Ian Stewart formulated and developed a

theory of coupled cell networkss (CCNs) [2]. Their

research was primarily focused on quadrupeds’

gaits. Since they were particularly interested in

the change of synchrony between four legs of

an animal, they needed a special framework to

describe this phenomenon. For example, they were

interested in how does the synchrony of four legs

change when the animal speeds up from walk to

gallop.

The most important concept in the CCN theory

is a cell. The cell captures the dynamics of one

unit of the system (for example, one leg of an

animal) and the dynamical system consists of

many identical cells connected to each other. Each

cell has its own state space and evolution equa-

tion(s). Even though models based on identical

cooperating units are common in many areas –

especially in biology, ecology and sociology, [4],

[5], [6], [7], [8] – the CCN setup helps to formulate

questions in terms of symmetry and synchrony

rather than system evolution as a whole.

In this paper, we redefine coupled cell networkss

using the framework of Boolean networks [9],

[10]. This moves the theory to a new setting.

As expected, some phenomena turns out to be

very similar as for continuous networks and some

others do not. In addition we study the phenomena

specific to Boolean networks and not arising in

continuos dynamical systems.

We note that the Boolean coupled cell networkss

are a subclass of Boolean networks, which dif-

fers both from the original Kaufman’s Boolean

switching nets [9], and from cellular automata

[23], [24]. In his work [9], Kaufman focused on

networks with topology based on k−regular graph,

which makes the topology similar to that of CCNs,

however, he chose update rules for each of the

nodes randomly. In contrast, in this paper we

assume that the update rules for each cell-node

in the network are identical. In Cellular Automata

the update rules are the same for every cell-node

in the network, and this makes Cellular Automata

16
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similar to Boolean CCNs. The difference is that a

state of a cell in a cellular automaton depends only

on the states of its immediate neighbors, and this

formulation does not allow for any irregularity in

the network structure. A cell in a cellular automa-

ton might not depend on the cells that are far away

from its physical location on the grid. In contrast,

such a dependence can occur in Boolean CCNs.

Hence, Boolean CCNs share some characteristics

with Boolean switching nets and cellular automata,

and in fact, can be treated as a cross between these

two species of Boolean networks.

The main result in this paper is the analysis of

the Boolean CCNs in which two cell bidirectional

ring and three-cell bidirectional ring arise as a

quotient.

This paper is organized as follows. Section II

contains the definitions of the concepts needed to

describe a Boolean network, and it also containts

the definition of coupled cell networks. Section III

describes the main problem we want to address in

this paper. Section IV points out the differences

between continuous and Boolean dynamics. In the

Section V we define the quotient network, and

form the rules for taking quotients. In this section

we study our first example case, the networks

for which two cell bidirectional ring arise as a

quotient. Section VII provides a biological model

in which the ideas from the previous sections

are used. Section VI is devoted to analyzing the

networks for which three-cell bidirectional ring

arise as a quotient. In the Section IX we present

conclusions and ideas for the future.

II. PRELIMINARIES

A. Boolean functions and dynamical systems

The definitions contained in this subsection

come from the classic literature on Boolean func-

tions and networks, see [9], [10], [12], [15]

By Boolean function we understand a function

f : F
n
2 → F2. Let xi ∈ F2, i = 1, . . . , n. The

Boolean function can be represented in the form

f(x1, x2, . . . , xn).

A Boolean dynamical system is a set of n
ordered Boolean functions from F

n
2 to F2. First

function is an update function for the first vari-

able, second function is an update function for

the second variable, and so on. Thus, a Boolean

dynamical system is defined as F : F
n
2 → F

n
2

where

F = (f1, f2, . . . , fn)

= F (f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn))

There is some ambiguity in the literature on

how multiplication and addition are defined in

the Boolean algebra. For example, Francis Robert

[10] defines 1 ∗ 1 = 0, whereas other authors

(for example [18]) consider 1 ∗ 1 to be 1. Except

of adding and multiplying variables, we are also

allowed to add 1, which is equivalent to negation.

Throughout this paper we use the multiplication

and addition tables given in Figure 1.

x y x+y

1 1 0

1 0 1

0 1 1

0 0 0

x y x*y

1 1 1

1 0 0

0 1 0

0 0 0

x x+1

1 0

0 1

Fig. 1. Multiplication and addition in F2

Multiplication can be also expressed with the

logical operator AND (∧). If X and Y are Boolean

variables, then X AND Y = 1 if and only if the

value of both X and Y is 1 (the logical value is

true). The truth table is then identical to the one

for multiplication.

The addition operation is equivalent to XOR

(�). X XOR Y is true only when either X is true

or Y is true, and false when both are true or both

are false.

Negation (¬) is equivalent to adding 1 to vari-

able. X+1 = 0 if X = 1 and X+1 = 1 if X = 0.

By adding 1 we flip the value of the variable.

Hence, the alternative formulation with AND,

XOR and NEG is

A Boolean dynamical system is a discrete time

system. For a system of a size n there are 2n

181Coupled cell networks: Boolean perspective
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x y x XOR y

1 1 0

1 0 1

0 1 1

0 0 0

x y x AND y

1 1 1

1 0 0

0 1 0

0 0 0

x NEG x

1 0

0 1

Fig. 2. Multiplication and addition in F2

possible states of a system. Throughout this paper

we will assume that all variables are updated

simultaneously.

While classifying Boolean dynamical systems,

we are interested in two phenomena. The first one

is the occurrence and the number of steady states

(attractors). The steady state (SS) of a Boolean

system is a state (x1, x2, . . . , xn) which updates to

itself, i.e. F (x1, x2, . . . , xn) = (x1, x2, . . . , xn).
The second phenomenon is the number and

length of cycles. Let (x1, x2, . . . , xn) be a starting

state. If after p > 1 updates the system returns to

the starting state, we say that a system has a cycle
of length p − 1.

Unlike for continuous systems, we do not have

the tools coming from bifurcation theory. Most

methods are based on statistics, algebra, combi-

natorics and topology, see [9], [12], [13], [14].

We notice that a Boolean dynamical system must

either have a steady state or a cycle or both;

there is no possibility of oscillations and chaotic

behaviors, which occur for continuous networks.

B. Coupled cell networkss: idea

The idea of a coupled cell networks is to look

at the dynamical system not as a whole, but rather

to look at the dynamics of particular members

of the system. In order to do so, we divide the

system into separate entities called cells. The cell

captures one one or more differential equations.

The dynamics of the cell depends upon the cell

itself (self-variable(s)) and couplings (variables of

other cells). There may be more than one type of

coupling since cells may interact with each other

in many different ways.

We can easily represent a coupled cell networks

as a graph. The vertices of the graph are the cells,

and couplings are the edges of the graph. The

different types of couplings are shown as different

types of edges.

C. Boolean coupled cell networks: formal defini-
tions

Definition 1. By cell we understand an entity
of the n-dimensional Boolean dynamical system
together with its update function.

Definition 2. By coupling we understand an in-
fluence that one cell has on the dynamics of the
other cell.

In this paper, we will consider only regular
networks. The cells of regular network are all

identical and there is only one type of coupling.

We assume that every cell has the same number

of couplings (this is enforced by the property of

all cells being identical). Every cell has only one

self-variable.

We assume that if some number of cells couple

to cell A, then we can permute the variables of

coupling cells and we get the same equation up to

permutation of variables. The last statement comes

from the assumption that there is only one type of

coupling. The statement can be formalized as

xk = f(xk, xk1, . . . , xkm)

where xk1, . . . , xkm are the variables of coupling

cells, and overline indicates that we can permute

them. By convention, we write the self-variable

in the first position. Here f stands for a function

template. Since every cell is governed by the

same equation, the template is the same, however,

since cells have different couplings (but always the

same number of couplings) the functions are not

identical.

Thus, the regular Boolean coupled cell networks

is represented as
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x1 = f(x1, x11, . . . , x1m),

x2 = f(x2, x21, . . . , x2m),

. . . . . . . . . . . .

xn = f(xn, xn1, . . . , xnm).

The network shown above has valency m, which

means that every cell receives inputs from m other

cells.

In this paper we consider only update functions

whose formula depends on the variable of self and

all the variables of the couplings. For example, in

a valency 1 network a function

f(x1, x2) = x1 + x2

is a valid function, whereas

f(x1, x2) = x2

is not a valid function. We call the valid functions

admissible functions.

In order to fully define Boolean coupled cell

networks we need a function template and a graph

of connections.

Example 1. Consider function scheme F (x, y) =
x+x∗y and a graph of connection (further called
architecture graph) shown in Figure 3.

1 2

3 4

Fig. 3. Example 1: a graph of connections in a regular
Boolean CCN

Using the template and the graph, we obtain

x1 = x1 + x1 ∗ x4,

x2 = x2 + x2 ∗ x1,

x3 = x3 + x3 ∗ x1,

x4 = x4 + x4 ∗ x1.

Lemma 1. The number of function templates that
could be used in a Boolean CCN with n cells and
valency m < n is given as 22m+2

Proof: We consider the transition table as-

sociated to the Boolean CCN. Every cell in this

network is influenced by m other cells. Hence,

the template function for this network depends on

m+ 1 variables (variable of self and m variables

of couplings). For a given cell, the function is

f(x, y1, . . . , ym).

To fully describe a Boolean function on m+ 1
variables, we need to create a transition table and

assign a 0 or a 1 to all possible 2m+1 states. This

gives 2 choices for every of 2m+1 places, which

is in total 22
m+1

possibilities.

As we stated before, couplings are insensitive

to permutation. For a given cell, let us set up the

variable of self to be 1. Then, we assign 0 or 1
to a state where all couplings are 0s, then 0 or 1
to a state when one coupling is 1 (we emphasize

that it does not matter which of the couplings is

1), two couplings are 1s, and so on until we reach

the state where all the couplings are 1. In total, we

have a choice in 2m+1 places.

Next, we set up the variable of self to be 0 and

we repeat the same process. We get 2m+1 · 2m+1

possibilities. We have then 22m+2 possible func-

tion templates for a network with valency m.

III. PROBLEM STATEMENT

Dynamical systems arising in biology and ecol-

ogy are often large [16]. Large networks are hard

to analyze mathematically, both from discrete and

from continuous point of view [15], [17]. Usually

in such cases a model reduction technique is

applied [13], [17], [18], [19]. The authors of [1]

base their model reduction strategy intended for

CCNs on cell coloring. They cluster cells with

the same color. This clustered network is called

a quotient network, which is formally defined in

Section V. In addition to defining the rules for

forming a quotient network, the authors of [1] go

further. They look at the quotient network and ask

what are the networks that admits this quotient,
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and, if we know the properties of the quotient, what
can be concluded about the original network?

In the next sections we perform a similar

analysis for Boolean CCNs, and we demonstrate

analogous results. We give some insights about

the influence of the network architecture on the

network dynamics.

IV. NETWORK DYNAMICS

A continuous dynamical system is often defined

with one or more parameters [20]. We do not have

this advantage for Boolean dynamical systems

and enforcing the use of parameters is somewhat

artificial. This issue is discussed in details in

[11] and references therein. Bifurcations are tied

to parameters; there are no bifurcations in the

Boolean dynamical systems.

The authors of [1] focused on synchrony-

breaking (pitchfork) bifurcations that are common

in coupled cell networkss and in some cases,

quotient is able to predict their existence in the

original network.

For Boolean CCNs, instead of looking for bifur-

cations, we look for steady states and cycles. We

show that a small Boolean CCN (with 2, 3 and 4
cells) could not have both cycles and steady states

in the same network.

We define a few concepts related to the dynam-

ics of a Boolean CCN.

By canonical steady state we understand a state

of a system when all the cells are working at the

same way. We have 2 such states for a Boolean

network: (0, 0, . . . , 0) and (1, 1, . . . , 1).

An interesting phenomenon that happens in

Boolean coupled cell networkss is that once syn-

chronized, the network could not un-synchronize,

because all the cells use the same update function.

In all Boolean coupled cell networks we have

either canonical steady states or canonical cycle

(a cycle when the system alternates between two

canonical states).

Canonical Steady States and Canonical Cycles
are called the canonical part of the dynamics.

In addition, Boolean coupled cell networkss

often have non-canonical parts, which are steady

states and cycles where the system is not synchro-

nized. The appearance of such structures depends

on the functions and on the architecture graph.

V. QUOTIENTS NETWORKS

All the results shown in [1] regarding quotients

apply directly to Boolean systems, because these

results are based on graph theory and combina-

torics but not on the network dynamics.

Hence, we just re-state the principles of coloring

and taking quotients defined in [1].

By coloring we understand the function that

assigns a color to every cell (node). Of course one

graph could be colored in many different ways.

By balanced coloring we understand a coloring

for which every cell with color a receives the same

number of inputs from the cells with color b, for

each b. An example of balanced coloring is shown

in Figure 4.

1 2

3

Fig. 4. An example of balanced coloring in CCN.

A quotient is defined based on coloring. All

cells with the same color become one meta-cell.

The result is shown in Figure 5.

1 2

Fig. 5. An quotient network for the network from Figure 4
formed based on coloring.

Taking a quotient affects the functions asso-

ciated with the cells. This means that all the

variables of the cells clustered to one meta-cell

are replaced by one variable.

In the examples shown in Figure 4 and Figure

5, the original system of three equations
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´

x1 = f(x1, x2, x3),

x2 = f(x2, x1, x3),

x3 = f(x3, x1, x3),

changes to

x1 = f(x1, x2, x2),

x2 = f(x2, x1, x2),

VI. NETWORKS THAT ADMITTWO-CELL

BIDIRECTIONAL RING AS A QUOTIENT: CASE

STUDY

One of the example cases considered in [1] is a

network named two cell bidirectional ring (shown

in Figure 6).

1 2

Fig. 6. two cell bidirectional ring

Note. The network presented in Figure 6 should

not be confused with the diagram of mutual activa-

tion/inhibition that often appears in mathematical

biology papers [25]. The function that describes

mutual activation/inhibition is a function that as-

signs the cell the state of its coupling. This is not

an admissible function in the context of CCNs,

since it does not involve cell’s own state variable

in the update formula.

A circuit in a graph is a path consisting of

vertices and edges with the property that we can

reach a vertex from itself. We note that networks

that admit two-cell bidirectional ring as a quotient

have a structure of a bipartite graph with in-degree

1. Such a graph could have only one circuit, and

if it had two, it would be disjoint) Hence the

graph that admits the two-cell bidirectional ring is

a circuit with some attached structure, influenced

by the dynamics of the circuit, but not influencing

back. We will call all the graphs having this

structure G2CBR. An example of such a structure

is shown in Figure 7.

1 2 3 4

5 6 7 8

910

1112

Fig. 7. An example pf G2CBR graph

Claim. The dynamics of the system built on the

G2CBR architecture depends on the dynamics of

its single circuit. In particular, if there is a steady

state in the circuit, there is a steady state in the

system. If there is a cycle of length 2 or more,

there is a cycle in the entire system.

Proof: Let us observe that the structure of

all G2CBR graphs is a circuit plus some attached

structure. We will look at the attached part. The

cells belonging to the circuit are influenced only

by other cells that belong to the circuit. If a cell

belongs to the attached structure, it must receive

input from either a cell from the circuit or from

another cell that does not belong to the circuit.

If the attached structure is non-empty, there is at

least one cell in the attached structure that receives

input from the cell from the circuit, because the

graph is connected.

Assume that the circuit achieves a steady state.

Then, all the cells directly influenced by the circuit

achieve steady state as well. The same happens

with the cells influenced by these cells.

Assume that the circuit achieves a cycle of

length greater than 1. This means that the circuit

oscillates between two or more states. The inputs

received by non-circuit cells are either changing

or stay steady. In any case, since the non-circuit

part does not influence the circuit part, the entire
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system could not go to a steady state and there

must be a cycle for the entire system.

Lemma 2. Let G be a graph from the G2BCR

family. Let F (a, b) be a two-variable Boolean
update function template, where a is the variable
of self and b is the variable of a coupling cell.

The network X = {G,F} could either have
a non-canonical cycle(s) or non-canonical steady
state(s), but never both.

Proof: Let us first use the observation from

[1] that the adjacency matrix of such an architec-

ture must have the structure (proved in [1])[
C 0
B1 B2

]
where C is the matrix of a circuit and B2 is a

lower triangular matrix with 0s on the diagonal.

We can imagine such architecture as a circuit of

length l with attached non-circuit structure.

We investigate the dynamics of the circuit alone.

Based on the previous claim, the dynamics of the

non-circuit part strictly depends on the dynamics

of the circuit.

Let us assume that there are l cells in the

circuit. We will write a state of the circuit as

(s1, s2, . . . , sl) assuming that s1 sends input to s2,

s2 to s3 and so forth and sl sends input to s1.

Let us assume that we have a non-canonical

steady state in this structure. This means that

this steady state of the form (. . . , 0, 1, 0, . . .) or

(. . . , 1, 0, 1, . . .)

In both cases we have F (1, 0) = 1 and

F (0, 1) = 0.

Note that we cannot have both F (0, 0) = 1
and F (1, 1) = 0, since this leads to a function

F (a, b) = b + 1 (which is not admissible). We

could not have F (1, 1) = 1 and F (0, 0) = 0
because this leads to F (a, b) = a, which is not

admissible as well.

We have two cases:

• Case 1: F (0, 0) = 0 and F (1, 1) = 0. We

notice that a system driven by such a function

could not oscillate. Once changed to 0, a cell

could not go back to 1.

• Case 2: F (0, 0) = 1 and F (1, 1) = 1. We

notice that here oscillations are impossible as

well. Once a state of a variable is changed to

1, it could not go back to 0.

We conclude that if Boolean CCN from the

G2BCR family has a non-canonical steady state,

it cannot have a non-canonical cycle.

To prove the converse, let us assume that there

is a non-canonical cycle in {G,F}.

As a part of this cycle we must have a transition

between two states of the system as shown below

(. . . , 0︸︷︷︸
xs

, . . .) → (. . . , 1︸︷︷︸
xs

, . . .),

or

(. . . , 1︸︷︷︸
xs

, . . .) → (. . . , 0︸︷︷︸
xs

, . . .),

Thus, for the first case we must have F (0, 0) =
1 or F (0, 1) = 1 and for the second case F (1, 0) =
0 or F (1, 1) = 0.

• Case 1, F (0, 0) = 1. There are 4 possible

options (note that either F (1, 0) = 1 or

F (1, 1) = 1 because xs must eventually

return to the original state.

1)

F (0, 1) = 0

F (1, 0) = 0

F (1, 1) = 1

In this case F (a, b) = a+ b+1. If there

exists a non-canonical steady state, we

must have for some xk and xk+1

(. . . , 0︸︷︷︸
xk

, 1︸︷︷︸
xk+1

. . .) → (. . . , 0︸︷︷︸
xk

, 1︸︷︷︸
xk+1

. . .),

This is, however, impossible because

F (1, 0) = 0.

2)

F (0, 1) = 0

F (1, 0) = 1

F (1, 1) = 0

In this case we have F (a, b) = 1 + b
and this is not a valid update function
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(it does depend only on the coupling

variable).

3)

F (0, 1) = 1

F (1, 0) = 0

F (1, 1) = 1

By the same reasoning as in 1) we ob-

tain that this function could not produce

a non-canonical steady state.

4)

F (0, 1) = 1

F (1, 0) = 1

F (1, 1) = 0

By the same reasoning as in 1) and in

3), we obtain that this function could not

produce a non-canonical steady state.

• Case 1, F (0, 1) = 1
Based on similar reasoning as in the previous

case, points 1), 3) and 4), the template func-

tion with such a property could not produce

a non-canonical steady state.

The proof for Case 2 is analogous. Thus, we

obtain that if there is a non-canonical cycle in

{G,X}, then there cannot be a non-canonical

steady state.

We conclude that non-canonical steady states

and non-canonical cycles do not appear together in

a Boolean CCN that admits two-cell bidirectional

ring as a quotient.

Next, we use the observation that the dynamics

of the non-circuit part of the system depends on

the circuit. Hence, if there is no oscillation in

the circuit, there are no oscillations in the entire

system.

Theorem 3. The following are true:
1) If the 2CBR has non-canonical steady states,

so does the non-quotient network, from
which it arose.

2) If the 2CBR has non-canonical cycles, so
does the non-quotient network, from which
it arose .

Proof:
There are only 22·1+2 = 16 Boolean coupled

cell networks that could be created on a 2CBR

architecture. Eight of them yield only canonical

dynamics and eight do not. We need to exclude

all the networks where we do not have both the

influence of self-variable and of the coupling.

Eventually we are left with four networks.

These are the systems that have non-canonical

cycles:

f1 = x1 ∗ x2 + x1 + 1,

f2 = x2 ∗ x1 + x2 + 1,

and

f1 = x1 ∗ x2 + x2,

f2 = x2 ∗ x1 + x1.

These are the systems that have non-canonical

steady states.

f1 = x1 ∗ x2 + x2 + 1,

f2 = x2 ∗ x1 + x1 + 1,

and

f1 = x1 ∗ x2 + x1,

f2 = x2 ∗ x1 + x2.

Again, we can use the structure that admits

2CBR as a quotient. We know that this structure

consists of a circuit and some circuit-dependent

cells that do not form a circuit themselves.

Similarly as in the proof of Lemma 2, we can

just consider the dynamics of the circuit.

We analyze the above-mentioned four systems

separately.

The first system gives F (0, 0) = 1, F (1, 1) = 1,

F (0, 1) = 1 and F (1, 0) = 0. We can assume that

the cells influence each other in an order (the first

cell influences the second, the second influences

the third and so on, the nth cell influences the

first cell) and consider any starting state, say
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(1, 0, 0, . . . , 0). From the dynamics we have a

sequence of states

(1, 0, 0, . . . , 0)

(0, 1, 1, . . . , 1),

(1, 0, 1, . . . , 1),

(1, 1, 0, . . . , 1),

. . .

(0, 1, 1, . . . , 1),

which is clearly a cycle of length 2 or more.

Since the rest of the dynamics is influenced by

the dynamics of the cells belonging to the circuit

and we have ”pulses” of 0s and 1s, we can only

end up having a cycle for the entire structure.

By Lemma 2, cycles and steady states do not

appear simultaneously and we have a system with

additional cycles.

The second case leads to F (0, 0) = 0, F (1, 1) =
0, F (0, 1) = 1, F (1, 0) = 0. If we start with

(1, 0, . . . , 0), we obtain

(1, 0, 0, . . . , 0),

(0, 1, 0, . . . , 0),

(0, 0, 1, . . . , 0),

. . .

(0, 0, 0, . . . , 1),

(1, 0, 0, . . . , 0),

which is a cycle of length 2 or more. By the same

line of reasoning as for the first case, we get a

system with additional cycles.

The third case gives F (0, 0) = 1, F (1, 1) =
1, F (0, 1) = 0 and F (1, 0) = 1. Let us use the

same argument as for the first case and consider

the circuit separately, and assume that it is ordered.

Let us take a starting state, say (1, 0, . . . , 0). Based

on F , we obtain a sequence of system states

(1, 0, 0, . . . , 0),

(1, 0, 1, . . . , 1),

(1, 0, 1, . . . , 1),

. . .

(1, 0, 1, . . . , 1),

and (1, 0, 1, . . . , 1) is clearly a non-canonical

steady state.

Because of the lack of the circuit in the rest

of the system architecture, we must have a steady

state for the entire system. By the lemma, we must

have a system with additional steady states.

The fourth case gives us F (0, 0) = 0, F (1, 1) =
0, F (0, 1) = 0 and F (1, 0) = 1. We start with

(1, 0, . . . , 0). We obtain a sequence of system

states

(1, 0, 0, . . . , 0),

(1, 0, 0, . . . , 0),

. . .

(1, 0, 0, . . . , 0),

and (1, 0, 0, . . . , 0) is clearly a non-canonical

steady state. By similar reasoning as in previous

cases and Lemma 2 we obtain that this system

must have non-canonical steady states.

VII. BIOLOGICAL EXAMPLE

Most known Boolean models in systems biology

are characterized by cooperating species, each of

which is governed by a different set of rules

[18], [26]. Models based on the idea of identical

entities governed by identical sets of rules are quite

common in ecology, however these models are

usually not Boolean [27].

To illustrate a Boolean network that admits two-

cell bidirectional ring as a quotient, we use a

simple fish schooling model. A reaction of a fish

school to a predator is a well-documented behavior

[29]. There exist a couple of theories explaining

this phenomenon. One of the theories is a many
eyes hypothesis [28]. According to this theory, the

advantage of swimming in a schools is that the

fish can rely on collective vigilance while avoiding

predators, and thus spend more time foraging.

Once a single fish senses a predator, it sends a sig-
nal to neighboring fish [30] (for example, changes

the direction, and the neighboring fish are able

to sense this change rapidly). These neighboring

fish send signal further, until the entire school is
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alert and invokes its defense mechanisms (for ex-

ample, collectively changes direction). Previously,

fish schools have been modeled by both, an ODE

model [31], and discrete agent-based model [27].

In very simplistic terms, a fish in a school has

two possible states: alert and non-alert. An alert

fish spreads the alert signal to other fish, causing

them to change their state to alert. We can assume

that a fish might send a signal to multiple fish, but

receives a signal only from one other fish (say,

closest lateral neighbor). In order for a school to

ensure an efficient spread of information, we must

have a cycle inside the fish network.

We assume that an alert fish stays alert re-

gardless of the state of its coupling fish. In a

school we also have fish who stay ”inside” the

school and base their safety on the vigilance of

the more specialized fish. We note that there might

exist some fishes, who are undervigilant and do

not inform the surroundings, but are still able to

receive the alert information.

Hence, in our network the nodes are fish, state 1
means that the fish is alert and state 0 means that it

is not. A fish has only one coupling, but might be a

coupling to many other fish. A simple illustration

of such behavior is shown on the Figure 8.

Fig. 8. Simple fish school model.

We note that in such a Boolean network, any

state where any of the fish-nodes on the circuit

is alert leads to a state where all the fishes are

alert. Also a state where none of the fish is alert,

is a steady state. We note that such dynamics

is governed by a function F(0,1) = 1 (non-alert

fish changes a state to alert once a coupling is

alert), F (1, 0) = 1, and F (1, 1) = 1 (alert fish

stays alert regardless if its coupling is alert or not)

Time step 1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0

3 0 1 1 1 0 1 0 0 0 0

4 0 1 1 1 1 1 0 0 0 0

5 1 1 1 1 1 1 1 1 0 0

6 1 1 1 1 1 1 1 1 1 1

Fig. 9. Dynamics of fish school model with initial condition:
fish 2 senses predator (time step 1).

and F (0, 0) = 0 (non-alert fish stays non-alert

when the coupling is non-alert). In such a network

there are canonical steady states (0, 0, . . . , 0) and

(1, 1, . . . , 1), many possible non-canonical steady

states, and no cycles. For example, in the network

shown in Figure 8, all the states listed in the table

below are the non-canonical steady states, and this

is not a complete list

(0,0,0,0,0,1,0,0,0,0)

(0,0,0,0,0,0,1,0,0,0)

(0,0,0,0,0,0,0,1,0,0)

(0,0,0,0,0,0,0,0,0,1)

(0,0,0,0,0,1,1,0,0,0)

(0,0,0,0,0,1,0,1,0,0)

(0,0,0,0,0,1,0,0,0,1)

(0,0,0,0,0,0,1,1,0,0)

(0,0,0,0,0,0,1,0,0,1)

(0,0,0,0,0,1,0,1,0,1)

(0,0,0,0,0,1,0,0,1,1)

Fig. 10. Example of non-canonical steady states of the
Boolean CCN shown in Figure 8.

The network presented above reduces to a 2CBR

with 2 steady states (0, 0) and (1, 1) and dynamics

(0, 1) → (1, 1), (0, 1) → (1, 1), (0, 0) → (0, 0),
(1, 1) → (1, 1). The function that governs this

system is F (x1, x2) = (x1 + 1) ∗ (x2 + 1) + 1 =
¬(¬x1 ∧ ¬x2).

This shows that regardless of the size of the

school, one can interpret its behavior in the same

way: if one fish on the circuit is alert (i.e. fish

who is specialized in vigilance), all fish become

alert, and if none of the fish on the circuit is alert,

the school stays non-alert. We note that if the fish
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that is not on the circuit becomes alert, it does

not have an ability to inform the other fish. This

can be thought of as either the fish is currently

foraging, and the other, more specialized fish in

the school would notice the predator anyways, or

the fish is too far away from the school, or the fish

just received false signal. The quotient network is

an simplification of this system where only the

dynamics of the cycle is taken into account.

Fig. 11. Quotient of simple fish school model.

The model presented above is very simple,

however, it illustrates the idea well. A behavior

where one member of the species informs other

members about the danger does occur in plants as

well; for example tomato plants are able to spread

such information [32].

VIII. NETWORKS THAT ADMIT THREE-CELL

BIDIRECTIONAL RING AS A QUOTIENT: CASE

STUDY

According to [1], there are two networks with

4 cells that admit three-cell bidirectional ring as a

quotient and 12 networks with 5 cells that admit

three-cell bidirectional ring as a quotient. The

authors of [1] have shown that the dynamics of

a three-cell bidirectional ring is a good predictor

of the dynamics of a bigger network for both

networks with 4 cells and for the 10 out of 12
networks with 5 cells.

The three-cell bidirectional ring is a structure

shown in Figure 12.

1 2

3

Fig. 12. three-cell bidirectional ring

The two networks with four cells admitting

three-cell bidirectional ring as a quotient are

shown in Figure 13. All twelve five-cell networks

Fig. 13. Four-cell networks that admit three-cell bidirectional
ring as a quotient, taken from [1]

admitting three-cell bidirectional ring as a quotient

are shown in Figure 14. The analysis of the net-

Fig. 14. Five-cell networks that admit three-cell bidirectional
ring as a quotient, taken from [1]

works that admit a particular network as a quotient

was based on the topology, not on the dynamics,

hence we can use the results from [1].

There are 64 Boolean networks of valency 2
(regular network with two couplings). If we apply

those networks to the three-cell bidirectional ring,

it turns out that 32 of these networks have only

canonical structure, and only 4 have additional cy-

cles and the rest have additional steady states. One

of the 4 networks is not admissible since the func-

tion template can be written as F (a, b, c) = 1+ a,
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hence only 3 remain. Similarly to the 2CBR case,

we cannot have non-canonical steady states and

non-canonical cycles in the same network using

the three-cell bidirectional ring as an architecture

graph.

Theorem 4. If a Boolean coupled cell networks
of valency 2 that admits three-cell bidirectional
ring as a quotient is built using any of the three
function templates that result in additional cycles
for the three-cell bidirectional ring, it could not
have non-canonical steady states.

Proof:
• Network 1: For this network we have

F (1, 1, 1) = 0,

F (1, 1, 0) = 0,

F (1, 0, 1) = 0,

F (1, 0, 0) = 0,

F (0, 1, 1) = 1,

F (0, 0, 1) = 1,

F (0, 1, 1) = 1,

F (0, 0, 0) = 0,

We notice that for this network once the cell

changes its state to 1, after update it changes

to 0 regardless of what is the state of the

coupling. Hence the only possible steady state

is a canonical state with all 0s.

• Network 2:

F (1, 1, 1) = 1,

F (1, 1, 0) = 0,

F (1, 0, 1) = 0,

F (1, 0, 0) = 0,

F (0, 1, 1) = 1,

F (0, 0, 1) = 1,

F (0, 1, 1) = 1,

F (0, 0, 0) = 1,

We use the same line of reasoning and notice

that once the cell has a state 0, it must change

the state to 1 regardless what is the state of

couplings. The only steady state is such as a

system could be a canonical state with all 1s.

• Network 3:

F (1, 1, 1) = 1,

F (1, 1, 0) = 0,

F (1, 0, 1) = 0,

F (1, 0, 0) = 0,

F (0, 1, 1) = 1,

F (0, 0, 1) = 1,

F (0, 1, 1) = 1,

F (0, 0, 0) = 0,

Here the situation is not as clear as for the

two previous functions.

Assume that we have a non-canonical steady

state in this network. Since it is non-

canonical, it must have some number of 0s

and 1s. If it is (1, 0, 0, . . . , 0), the first 1
is influenced by 2 0s and we end up in a

canonical steady state. The same happens for

a state with 2 ones. If we take a state with

(1, 1, 1, 0, 0, . . . , 0) and assume that first 3
cells influence each other and all the cells

with 0s influence each other we conclude that

it is a steady state, but in such a case the

network is disjoint. We use the same way of

reasoning for all the states with 4 or more 1s.

We conclude that a network with such an

update scheme could not have non-canonical

steady states.

The characterization of the networks with non-

canonical steady states is much harder. Depend-

ing on the architecture, the networks that admit

three-cell bidirectional ring may have or may not

have both non-canonical steady states and non-

canonical cycles.

Claim The following is true for the networks

that admit three-cell bidirectional ring as a quo-

tient.
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• The dynamics of s three-cell bidirectional

ring is a good predictor of a dynamics of the

network with 4 cells that has admitted it. If

a three-cell bidirectional ring has only non-

canonical cycles, so does the bigger network.

If a three-cell bidirectional ring has only

additional steady states, so does the bigger

network.

• For the 4 out of 12 5-cell networks that admit

a three-cell bidirectional ring as a quotient the

dynamics of a three-cell bidirectional ring is

a good predictor of the dynamics of a bigger

network. For the rest of the networks, non-

canonical cycles may appear, even though

the smaller network has only non-canonical

steady states.

A contribution towards the proof. As men-

tioned earlier, there exist 64 function templates

for Boolean CCN created based on a three-cell

bidirectional ring architecture. 32 of them have

non-canonical dynamics. 28 functions out of the

32 have non-canonical steady states. We used a

CPP code to test two 4-cell networks and twelve

5-cell networks using each of the 28 functions.

• If a 3CBR quotient has a non-canonical

steady state, so does the 4-cell network that

has admitted it. If 3CBR has a non-canonical

cycle, so does the 4-cell network that admit-

ted it. This result was obtained using exhaus-

tive computer simulation.

• For 4 graphs (8, 9, 11, and 12), if the quotient

network has only non-canonical steady states,

so does the networks that admitted it. This re-

sult was obtained using exhaustive computer

simulation.

• If the quotient network has only cycles, so

does the network that admitted it. This is true

for all 12 of the 5-cell networks. This result

was obtained using exhaustive computer sim-

ulation.

Figure 15 shows how many (out of 28) functions

cause the non-qoutient graph to have both non-

canonical cycles and non-canonical steady states.

Fig. 15. Number of function templates that have have both
non-canonical steady states and non-canonical cycles in a 5-
cell non-quotient network.

IX. RELATIONSHIP WITH AGENT-BASED

MODELS

Every coupled cell networks can be viewed as

an agent-based model. The agent-based model is

a model consisting of identical interacting agents.

The framework of agent-based models is very

general; any object could be considered an agent

(network cells, fishes, people susceptible to infec-

tion, bugs, trees etc). Every agent is described by

the state vector (for example, position, infection,

age, alertness) and the state vector is updated

according to the same rules.

The model presented in Section VII can be

viewed as agent-based model. In this model the

fish function as agents. These fish are character-

ized by a state vector with only one variable:

state of alertness (alert or non-alert). In this simple

model fish are stationary, which means they do not

move throughout the domain. The update rules for

the state of a single agent are the same as described

in Section VII.

Typically, agent-based models are large. There

are not many mathematical methods that allow

us to control (predict and change) their behavior

[21], [22]. A method that allows a researcher to

look at the quotient of the model and predict the

behavior of the bigger original model would be a
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desirable tool. There exist a framework that makes

it possible to translate an agent-based model into a

system of Boolean equations [3], and thus, at least

in some cases, it can be translated to a Boolean

CCN.

CONCLUSIONS AND FUTURE WORK

In this paper we show preliminary work regard-

ing Boolean coupled cell networks. We are able

to fully characterize the dynamics of the networks

that admit two-cell bidirectional ring as a quotient,

and we provide a small contribution to character-

izing networks that admit three-cell bidirectional

ring as a quotient. The main contribution in this

paper is showing that CCNs have their Boolean

counterpart and that this new setting brings a

new perspective on Boolean functions and Boolean

networks.

The phenomenon of bifurcations does not arise

in Boolean CNNs, yet it does not make investi-

gating their dynamics easy. In fact, predicting dy-

namics based on the quotient turns out to be a hard

problem for the Boolean CCNs. In the future we

plan to investigate bigger networks (with more that

5 cells) that bring 3CBR as a quotient, possibly

using high performance computing. An efficient

algorithm for easy enumeration and generation of

such networks is needed as well.

In this paper we do not analyze the dependence

between internal symmetries of the network graph

and properties of its dynamics. Such analysis is an

important part of CNN research [2] and we plan to

develop similar techniques and ideas for Boolean

CCNs.

Finding a more powerful, biology-related ap-

plication of Boolean quotient networks is another

goal. This would allow us to confirm the impor-

tance of the results derived in this paper on a new

level.

In this paper we focus on regular Boolean CCNs

with one type of coupling. Expanding the research

to networks with less regularity and two or more

types of coupling is another future goal.
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Abstract—Two-phase models can be used to de-
scribe the dynamics of mixed materials and can be
applied to many physical and biological phenomena.
For example, these types of models have been
used to describe the dynamics of cancer, biofilms,
cytoplasm, and hydrogels. Frequently the physical
domain separates into a region of mixed material
immersed in a region of pure fluid solvent. Previous
works have found a perturbation solution to capture
the front velocity at the initial time of contact
between the polymer network and pure solvent, then
approximated the solution to the sharp-interface at
other points in time. The primary purpose of this
work is to use a symmetry transformation to capture
an exact solution to this two-phase problem with a
sharp-interface. This solution is useful for a variety
of reasons. First, the exact solution replicates the
numeric results, but it also captures the dynamics of
the volume profile at the boundary between phases
for arbitrary time scales. Also, the solution accounts
for dispersion of the network further away from
the boundary. Further, our findings suggest that
an infinite number of exact solutions of various
classes exist for the two-phase system, which may
give further insights into the behaviors of the general
two-phase model.

Keywords-Multi-phase modeling; Two-phase mod-
elling; Free boundary problems; Gel Dynamics;
Analytic solutions; Exact solutions.

I. INTRODUCTION

Two-phase models are useful for capturing the

interactions between fluids and/or viscoelastic ma-

terial. Each phase is averaged over a control

volume, where the volume-averaged phases are

incompressible. There is no inertial component

to the system, and the phases are immiscible.

Each phase is governed by conservation equations.

These models have been successful at describing

how emergent structures develop though the inter-

actions of the two phases. There are several known

applications.

Breward et. al. [1] developed a two-phase model

to understand the role of viscosity and drag-

friction in avascular tumor growth. An asymptotic

solution solved explicitly for the volume fraction

revealed that in the absence of viscosity and

friction, tumor growth was regulated by oxygen

tension. Numerical simulations showed increases

in either the drag coefficient or viscosity param-

eter reduces the speed tumor growth. This leads

credence to the notion that the invasiveness of

tumor cells is related to the viscosity of the cells.

Well-differentiated cells are known to grow more

slowly and considered more viscous due to over-

lapping filopodia. Whereas, poorly differentiated
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(less viscous) cells repel one another, contributing

to the spread of tumors. An extension of this

model with an additional phase [2] contrasts the

role of the expansive growth (passive response)

and foreign body hypotheses (active response)

in tumorigenesis. Numerical simulations showed

capsule formation could not result from an active

response. Another model [3] was used to describe

avascular tumor as a two-phase system where

tumor spheroids exist in two states, one solid

and one liquid. Time independent solutions reveal

tumor size increases at an optimal rate of cell

proliferation under nutrient-rich stress-free condi-

tions. Simulations also provided a critical region

for which a necrotic core forms at the tumor’s

center.

Several forces are required to balance conser-

vation of momentum. For two-phase models, the

viscosity of the phases and interstitial friction must

be accounted, but for biofilm morphology, in ad-

dition to hydrostatic pressure, osmotic pressure is

also needed. One such model [4] describes the role

of a network comprised of an extra-cellular poly-

meric substance (EPS) in structural development

in biofilm. Numerical simulations indicate as EPS

is produced by bacteria, a rise in osmotic pressure

contributes to the expansion of the biofilm region.

Two-phase dynamics have also been used to sim-

ulate biofilm growth and cell motility [5], [6]. A

mobile cell contains polymer network phase com-

prised of actin filaments, intermediate filaments,

and microtubules. This phase is the exoskeleton

to a cytoplasmic phase. The network contracts to

propel the cell forward. Numerical simulations of

these models have shown to contain traveling wave

solutions. Another biological model describes to

formation of channels in biofilm [7]. Steady-state

analysis suggests that there is an optimal range for

the pressure gradient to drive the formation of a

channel between two flat plates.

When regions occupied by differing materials

have free boundaries, numerical methods are use-

ful to track the sharp interface. The location of

the interface can be followed explicitly by inter-

face tracking methods [8]. Alternatively, interface

capturing can be used to implicitly solve the same

equations throughout the domain by capturing the

appropriate interface conditions [9].

One such interface capturing method given by

Du et. al. [10] has analyzed the behavior of a

free boundary problem of a two-phase viscous

fluid mixture with a prevalent viscosity in a single

phase. The solution found by Du et. al. is pertur-

bation solution of the front velocity at time t = 0
for a vanishing solvent phase. This solution was

built to explore how the velocity of the interface

moves in a consistent manner to develop numerical

methods to handle the free boundary problem. The

velocity is then tracked numerically for various

initial profiles with the interface capturing method

developed by the group. In each instance, the

numerical solution is compared to the asymptotic

solution and found to be accurate.

In part, the purpose of this paper is to explore

the accuracy of the perturbation solution given by

[10] in comparison to an exact solution, which was

found using symmetry analysis, also called Lie’s

classical method. In each model previously dis-

cussed, numerical, perturbation, and semi-analytic

methods were used to provide insights into the

behaviors of interest. And though these methods

have had some successes in assessing two-phase

models, few attempts have been made to attain

generalized behavior of these systems with exact

solutions.

Lie’s method produces symmetry transforma-

tions which can reduce a system of Partial Dif-

ferential Equations (PDEs) in one spacial dimen-

sion to a system of ODEs. These symmetries are

generated by introducing infinitesimal transforma-

tions, which leave the original system invariant.

For classical symmetry analysis, expansion of this

infinitesimal transformation, produces a linear sys-

tem of PDEs, called determining equations, whose

solutions provide the forms for the symmetry

transformations. Non-classical methods have also

been developed which, in some cases, lead to

additional symmetries. The infinitesimal transfor-

mations give rise to highly non-linear determining

equations and can be difficult or impossible to
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solve. For this reason, the analysis in the paper

only includes the classical method, as it recovers

the solution given by [10] that we are seeking.

Lie’s classical method for producing symmetries

has been successful in generating exact solutions

for a system of PDEs describing viscous flow

through expanding channels [11]. In this work

conservation laws and point symmetries provide

reductions, some of which lead to exact solutions

of the flow in deformable channels. For elliptic,

hyperbolic and mixed-type PDEs for Ricci flow,

Wang [12] found several solutions, including trav-

eling wave solutions, to hyperbolic geometric flow

of Riemann surfaces. The work by Cimpoiasu et.

al [13] used Lie symmetries to produce classes of

solutions for the 2D nonlinear heat equation. It has

also been shown that Lie symmetries generate the

similarity solution for a class of (2+1) nonlinear

wave equation [14].

In this paper, we generate an exact solution

for the two-phase model using a point symmetry.

In the first section, we outline a derivation of

a two-phase system that represents the simplest

version of the model and can be adapted for a

variety of physical situations. Next, we briefly

discuss how to develop symmetries and find a

time translation, scaling symmetry, and a general

Galilei time group. In the third section, we use a

symmetry transformation to reduce the system of

PDEs to an invariant system of ODEs. We make

parameter assumptions similar to Du et. al. [10]

to recover the exact velocity for their asymptotic

solution and compare the exact to the perturbation

solution. It is shown that the approximated free

boundary solution is a close approximation to the

general solution for t = 0. In the fourth section,

we vary which physical driving forces dominate

the two-phase model and generate additional exact

solutions to the system. In the final section of this

work, we discuss potential uses of exact solutions

for the two-phase model and future directions of

this work.

II. THE TWO-PHASE MODEL

In this section, we derive the equations to de-

scribe a two-phase model as seen in the kinetics

of biological gels as described in [5], [10]. Gels

swell and deswell due to ionic fluctuations and

chemical triggers. An example of this occurs in

crawling cells. Myosin converts chemical energy

in the form of ATP into mechanical energy by

causing actin filament to contract, propelling cells

into motion. Neutrophils and macrophages, cells

integral to the immune system of humans, respond

in this manner. Chemical gradients are left by

cells foreign to the immune system, leaving a

chemotactic trail for the immunological cells to

follow [15].

Like in [10], we assume the viscous terms are

prominent forces and inertial terms are negligi-

ble. Gels are composed of a polymeric network

given by φ1 and a fluid solvent φ2. Both phases

are treated as Newtonian fluids that are immisci-

ble. When considering the redistribution of mass

within a control volume, the flux of the network

is given by ∇ · (φ1u1), where the network moves

with a velocity u1. A similar argument is made

for the solvent to give the following equations to

conserve mass.

∂

∂t
(φ1) +

∂

∂x
(uφ1) = 0, (1)

∂

∂t
(φ2) +

∂

∂x
(vφ2) = 0, (2)

where the sum of the volumes saturate to a fixed

control volume, φ1 + φ2 = 1.

Several forces act upon the network. The first

is the force due to the network stress tensor σ1,

which includes the viscous stress tensor and mass

production.

σ1 = μ̂1(∇u1 + ∇uT1 ) + λ1∇ · u1,

where μ̂1 is the shear viscosity and λ1 is the

bulk viscosity. In 1-D, this becomes

σ1 = μ1
d

dx
u1, (3)

where μ1 = 2μ̂1 + λ1.

Another force that we include is the frictional

force created by interstitial interactions between
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phases. If both fluids move in unison or if either

volume fraction becomes negligible, drag will van-

ish. With a frictional coefficient given by ξ, this

drag force is given by ξφ1φ2(φ1 − φ2). Next, we

need to account for both the hydrostatic pressure

and osmotic pressure caused by swelling. If P
is the total hydrostatic pressure, then the total

pressure P acting on the network is given by

φ1∇P .

Ionizing chemicals in the solvent can cause the

gel to absorb or release the fluid solvent, causing

an osmotic pressure gradient ∇ψ(φ1) acting on

the network. For this reason, φ1 is considered the

active phase. For the form of the osmotic pressure

term, we follow Cogan et. al. [5] and the references

therein, and assume that ψ(φ1) = k2φ
2
1(φ1 − φ0).

The constant k2 accounts for the effects of the

ionic environment, polymeric structure, and sol-

vent concentration that contribute to swelling and

deswelling. The value of φ0 is a reference vol-

ume fraction. This structure allows for osmotic

pressure to vanish in the event of φ1 = 0 or at

some reference fraction φ0 that can be determined

experimentally for various physical applications.

Assuming constant shear and bulk viscosity, the

momentum of these moving fluids can be given by

balancing the forces described above.

μ1
∂

∂x

(
φ1

∂

∂x
u

)
+ φ1

∂

∂x
P (φ1, φ2) (4)

− ∂

∂x
ψ(φ1) − ξφ1φ2(u − v) = 0

Similar arguments can be made to derive the

forces of momentum within the solvent. The

solvent is a Newtonian fluid with only viscous

stresses acting on it. Fluid pressure acts on the

solvent, but osmosis does not create pressure on

the fluid itself. The fluid is actively absorbed and

released by the gel. The final force is the drag or

frictional force created by interstitial interactions.

Combining these gives the momentum for the

solvent.

μ2
∂

∂x

(
φ2

∂

∂x
v

)
+ φ2

∂

∂x
P (φ1, φ2) (5)

+ ξφ1φ2(u − v) = 0,

where μ2 is the viscosity of the solvent. Summing

(4) and (5) gives the following equation.

μ1
∂

∂x

(
φ1

∂

∂x
u

)
+ μ2

∂

∂x

(
φ2

∂

∂x
v

)
+ (φ1 + φ2)

∂

∂x
P (φ1, φ2) − ∂

∂x
ψ(φ1) = 0.

Since φ1 + φ2 = 1, this becomes

μ1
∂

∂x

(
φ1

∂

∂x
u

)
+ μ2

∂

∂x

(
φ2

∂

∂x
v

)
(6)

+ Px − ∂

∂x
ψ(φ1) = 0,

where Px = ∂
∂xP (φ1, φ2). Solving for Px gives

Px =
∂

∂x
ψ(φ1) − μ1

∂

∂x

(
φ1

∂

∂x
u

)
(7)

− μ2
∂

∂x

(
φ2

∂

∂x
v

)
.

Next, we substitute φ2 = 1−φ1 in the equations

of mass (1) and (2), and the momentum equation

(4) to find the following system for analysis.

∂

∂t
(φ1) +

∂

∂x
(uφ1) = 0, (8)

− ∂

∂t
(φ1) +

∂

∂x
(v(1 − φ1)) = 0, (9)

μ1
∂

∂x

(
φ1

∂

∂x
u

)
− ∂

∂x
ψ(φ1) (10)

+φ1Px − ξφ1(1 − φ1)(u − v) = 0.

Together equations (8-10) can be reduced to a

system of ODEs using the following transforma-

tion.

u = f(t − αx),

v = g(t − αx), (11)

φ1 = m(t − αx),
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where f , g, and m are to be determined and

α is an arbitrary constant describing wave speed.

Traveling wave solutions have been shown to exist

for the two phase system [6]. For this reason,

if one were to guess an invariant transforma-

tion to reduce this system, the general traveling

wave solution (11) may seem like an obvious

first choice. But, this specific transformation came

from a more general transformation found using

symmetry analysis. Before producing the general

transformation, a brief explanation of symmetry

analysis is given in the following section.

III. SYMMETRY ANALYSIS

In this section, we give a brief explanation of

the method for generating the invariant transforma-

tions that will be used to generate exact solutions

in later sections. For systems of PDEs in 1-D,

symmetry transformations reduce the PDEs to a

system of ODEs. Derived by Sophus Lie [16],

Symmetry Analysis is the mathematical method

for finding transformations to a system of PDEs

that leaves the set of equations invariant, or un-

changed. More recently, there has been substantial

literature regarding symmetry methods. For further

details, we refer the reader to books by Hydon

[17], Bluman and Kumei [18], and Olver [19].

The following coordinate change is called

the infinitesimal transformations. These can be

thought of as a local perturbation on the original

coordinate system.

φ̄1 = φ1 +Φ1(t, x, u, v)ε+O(ε2),

t̄ = t+ T (t, x, u, v)ε+O(ε2),

x̄ = x+X(t, x, u, v)ε+O(ε2),

ū = u+ U(t, x, u, v)ε+O(ε2), (12)

v̄ = v + V (t, x, u, v)ε+O(ε2),

where Φ1, T , X , U , and V are called the infinites-

imals. In general, one seeks to find invariance of

a system of differential equations of the form

Fi(t, x, u, v, φ1, ut, vt, φ1t, ux, vx, φ1x, ...) = 0, (13)

with i = 1, 2, . . . , n, where u, v, φ1 are functions

of t, x. In the specific case of our two-phase

model, the system Fi is given by the equations (8-

10). Under (12), a set of differential equations is

produced for the infinitesimals T , X , U , and V .

These differential equations are called the deter-

mining equations because they determine the form

for the infinitesimals. Solving these determining

equations produced by (12) provides invariant

transformations for the differential equations given

by (13).

The following is called the invariant surface

condition, so called because it leaves the solution

surface invariant under the change of coordinates.

Tut +Xux = U, (14)

Tvt +Xvx = V, (15)

Tφ1t +Xφ1x = Φ1. (16)

When the infinitesimals are solved in conjunc-

tion with the invariant surface condition given by

(14-16), the solutions u, v, and φ1 provide a trans-

formation which reduces the original PDE (13) to

an ODE. In other words, by using Lie’s method to

find an infinitesimal change of coordinates, a two

variable PDE can be reduced to an equation of a

single variable to become an ordinary differential

equation (ODE). Taking the physical nature of the

problem into account, these reductions can lead to

exact solutions to the PDE.

Applying the transformation given by (12) on

(8-10) yields a large system of linear PDEs.

The determining equations are solved interac-

tively to give the forms of the infinitesimals.

Φ1 = 0,

T = α,

X = δx+ Γ(t), (17)

U = δu+
d

dt
Γ(t),

V = δv +
d

dt
Γ(t).

Due to the size of the equations, details of

the determining equations are omitted. For more
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details on an example, see the details given in the

Appendix (A).

In order for the PDEs given by the determining

equations to be satisfied, two cases arise. Either

δ = 0 or δ �= 0. If δ �= 0, then the friction

coefficient ξ given in the momentum equations

vanishes. The transformation given by α is a time

translation, δ is a scaling symmetry, and Γ(t) is

a general time dependant Galilei group, as used

in fluid mechanics [20]. These symmetries can be

used to find invariant reductions in the original

system. Notice that for δ = 0 and Γ(t) = 1 in

(17) and solving for u, v, and φ1 in (14-16) gives

the transformation

u =
1

α
+ f̂(t − αx),

v =
1

α
+ ĝ(t − αx),

φ1 = m(t − αx),

Letting f̂ = f(t−αx)− 1

α
and ĝ = g(t−αx)− 1

α
gives the transformation (11).

It should be noted that for our purposes, we are

only interested in pursuing a classical symmetry

analysis to recover the solution presented by Du

et. al. [10]. It is possible that more solutions will

arise from other methods as well. Non-classical

symmetries arise in many cases. In the work

performed by Arrigo et. al. [21], a nonclassical

symmetry is emitted by a class of Burgers’ system.

The Steinbergs symmetry method has provided

exact solutions and reductions to the Calogero-

Bogoyavlenskii-Schiff equation [22]. The Gardner

method can generate an infinite hierarchy of sym-

metries, as was shown with the KdV equations,

Camassa-Holm, and sine-Gordon equations [23].

Non-classical symmetries have also been gener-

ated for the fourth-order thin film equation using

non-classical methods [24].

Further analysis could include any of these

methods, as well as a classification of parameters

which has the potential to produce more symme-

tries. The purpose of this work is not an exhaustive

search for symmetries, but an introduction to using

symmetry methods to recover a more general

solution to the two-phase problem described above

and partially recovered by Du et. al. [10].

IV. RECOVERING THE EXACT SOLUTION FOR A

FREE BOUNDARY PROBLEM

As discussed in [10], since the viscosity of the

solvent is of a much higher magnitude than that

of the fluid, we assume the solvent viscosity μ2 is

zero. Since, φ1 + φ2 = 1, we have φ2 = 1 − φ1.

Now, we replace φ2 in the equations of momentum

(4-5) and find

μ1
∂

∂x

(
φ1

∂

∂x
u

)
+ φ1Px − ∂

∂x
ψ(φ1) (18)

−ξφ1(1 − φ1)(u − v) = 0,

(1 − φ1)Px + ξφ1(1 − φ1)(u − v) = 0, (19)

where u, v, and φ1 are all functions of t, x
as previously discussed and Px is the pressure

gradient. Next, we solve (19) for Px to find

Px = −ξφ1(u − v). (20)

We see the mass equations (1-2) have now

become

∂

∂t
(φ1) +

∂

∂x
(uφ1) = 0,

− ∂

∂t
(φ1) +

∂

∂x
(v(1 − φ1)) = 0,

Summing these two equations of mass gives

∂

∂x
(uφ1 + v(1 − φ1)) = 0.

Imposing the average velocity is zero, we have

uφ1 + v(1 − φ1) = 0,

which gives

v = − φ1

1 − φ1
u. (21)

To match the form of equations given by Du

et. al. [10], we let the osmotic swelling term take

the form ψ(φ1) = φ1Ψ(φ1). This, together with
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Multiphase

1, 2>0

1=0

Ω1

Ω2

Fluid

Fig. 1. This shows the region Ω2 of pure solvent (φ1 = 0)
separated at the boundary Γ from the region Ω1 containing
the mixture of both phases.

(20-21), reduces the equation (18) to the following

equation.

(μ1φ1(u)x)x − (φ1Ψ(φ1))x − ξφ1

1 − φ1
u = 0. (22)

As in Figure (1), we assume the mixture occu-

pies the interior region (Ω1), while pure solvent

occupies the external region (Ω2). As the gel-

mixture swells/deswells, the interface between the

regions (Γ) moves. To specify the motion Du et.

al. impose standard jump conditions:

[μ1φ1(u)x − φ1Ψ(φ1)] = 0

[u] = 0.

The solution found by Du et. al. [10] approx-

imates the front velocity for the free boundary

problem at time t = 0. The solution for a piece-

wise constant profile is given by,

φ1 =

{
φ− if x < 0

φ+ if x > 0
,

and the following can be derived

u =

{
Ceβ−x if x < 0

Ce−β+x if x > 0
, (23)

where

β± =

√
ξ

μ1(1 − φ1
±)

,

and

C =
−φ+Ψ(φ+) + φ−Ψ(φ−)

μ1(φ+β+ + φ−β−)
.

The solution (23) was derived by assuming

φ1+ → 0 at t = 0. In biological gels, regions

of gel separate from regions of pure solvent. So,

it is reasonable to assume that the network phase

vanishes in this region of pure solvent. To make a

graph of the solution given by (23), we assign the

following initial profile.

φ1 =

{
φ− = 1

6 if x < 0

φ+ = 0 if x > 0
. (24)

The parameters used to generate the graphs

are taken from [10], but are repeated in (I) for

convenience. The graph Figure (2) represents the

velocity front for a swelling gel in contact with

a fluid solvent. This perturbation solution is an

approximation for the velocity front at t = 0.

However, there exists an exact solution to this

system that captures this behavior for all values

of φ1 at any point in time.

For the infinitesimals given by (17), let δ = 0
and Γ(t) = 1. Solving the invariant surface condi-

tion for u, v, and φ1 will lead to (11) in terms of

the variable r = t − αx. As with the case found

with solving for (23) , we assume the viscosity of

the second phase is negligible in comparison to

that of the first phase, letting μ2 = 0. To make

the analysis easier, we allow only for swelling in

the active phase, making φ0 = 0. Applying (11)

reduces (8-10) to a single ODE.

μ1α
4(αf − 1)2f ′2 − μ1α

3(αf − 1)3f ′′ (25)

+3k2γ
2α3f ′ + ξ(αf − 1)4 = 0,

where

g =
1

α
, (26)

m =
γ

αf − 1
, (27)
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WTFig. 2. This is the perturbation solution given by (23) at
time t = 0. This shows the velocity for a region of vanishing
network (top) in the region x > 0 for an initial profile (24)
(bottom). This would represent expectations of a velocity front
for a swelling gel to contact a fluid solvent.

It should be noted that we could have just

as easily solved (8-10) for f and left m to be

determined. We are choosing to leave f general

to assess the behavior of the velocity, because we

wish to show the exact solution approximated by

Du et. al. [10] can be recovered.

Multiple solutions exist for (25). First, we at-

tempt to recover an exponential solution similar

in form to (23). If we assume the viscosity of

the network phase φ1 has a greater impact on the

system than viscosity and interstitial friction, as

was assumed by Du et al [10]. we can divide by

μ1. This gives the following equation from (25).

α4(αf − 1)2f ′2 − α3(αf − 1)3f ′′ (28)

+3
k2
μ1

γ2α3f ′ +
ξ

μ1
(αf − 1)4 = 0.

For μ1 of a much larger magnitude than k2 and

ξ, this becomes the following:

α(αf − 1)2f ′2 − (αf − 1)3f ′′ = 0, (29)

whose solution is

f(r) =
eα(κr+λ)

α
+

1

α
. (30)

This makes the analytic solution for the original

system (1-2) and (4-5) to be

φ1 =
γ̂

αf − 1
= γe−α(κ(t−αx)+λ),

φ2 = 1 − γe−α(κ(t−αx)+λ),

u =
eα(κ(t−αx)+λ)

α
+

1

α
,

v =
1

α
,

with μ1 = 0, k2 = 0, ξ = 0.

The parameters of this solution can be matched

to the parameters of the solution given by (23). We

can see that if k = − β
α2 and λ = 1

α ln(αC − 1),
then the solution found above becomes:

φ1 =
γ

C
e

β

α
t−βx,

φ2 = 1 − γ

C
e

β

α
t−βx,

u = Ce−
β

α
t+βx +

1

α
, (31)

v =
1

α
,

The parameter α remaining in the velocity of

(31) gives flexibility on scaling time and adjusting

the orientation of the velocity. Notice, as α → ∞,

this solution is the same as (23). The velocity be-

comes identical, and the volume fraction becomes

constant, as in the perturbation solution provided

by (23). So, in essence, we have recovered the

time function that was missed by the perturbation
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method used to find (23). Next, we match the

numerical results of (23) for the parameters given

by (I). To do this, we set t = 0 and separate the

solution for the velocity as follows.

u =

{
Ceβx + 1

α , if x ≤ 0

Ce−βx + 1
α if x > 0

, (32)

In Figure (3), we can see the solutions given by

(23) and (32) super-imposed on the same graph

for parameter values given by (I). It is clear that

the perturbation solution is a close approximation

for the exact solution for large values of α. As we

would expect from inspection of the solution (32),

smaller values of α will adjust the exact solution

away from the perturbation solution. The largest

impact α has on the system is in regards to the

time scale and solvent velocity. Large values of

α require larger time steps for movement in the

system, while decreasing the solvent velocity.

β μ1 ξ α
1 0.0108 0.018 1000

10 0.0037 0.616 10000

100 0.000338 5.64 100000

TABLE I
THE PARAMETERS GIVEN IN THE ROW BEGINNING WITH

β = 1 GENERATES THE RESULTS IN (3) TOP. THE NEXT

ROW FOR β = 10 GIVES (3) MIDDLE WITH THE FINAL ROW

GENERATING (3) BOTTOM WITH β = 100.

There are several benefits of finding the ex-

act solution, instead of using numerical methods.

First, numerical results have a difficult time captur-

ing the behavior at the region of contact between

the phases, while the analytical solution easily

gives interface behaviour without computationally

expensive coding, as can be seen in 4. Here we

can see the region of network at t = 0 moving

uniformly away from the initial contact region

x = 0. Smaller values of β fail to capture the

sharp interface. But as β increases to β = 100, we

see the interface remains sharp as time increases.

This is expected, as these results coincide with the

numerical simulations found in [10] by a moving

mesh.

Fig. 3. These are the perturbation solutions given by (23)
at time t = 0 graphed with the solution given by 32 with
β = 1 and the corresponding values for μ1 and ξ described
in (I) given by the top, β = 10 middle, and β = 100 on
bottom. The perturbation solutions are a close approximations
for the exact solutions near the region of separation. We can
see that the shape of each solution is preserved for each set
of parameters, though the scale is modified.
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WTFig. 4. For network (φ1) profiles for t = 0 (top) and t =
1000 (bottom). As β increases, the exact solution becomes
more accurate at capturing the expected behavior at the sharp
interface.

As we have seen, the analytic solution recovers

the perturbation solution as well as the numerical

results given by Du et. al. [10]. However, this is

just a single solution to the nonlinear equation

given by (25). It is possible that the other solu-

tions are extraneous, but more likely, additional

solutions describe other physical or biological phe-

nomenon yet to be determined. Further exploration

will be required to fit these solutions, but we look

at the others here.

A. Other Solutions to (25)

Being a non-linear system, the solution to (25)

is not unique. Even though the transformation

given by (11) will clearly give traveling wave

solutions, the structure of the traveling wave for

each solution can vary widely as can be seen with

the next two examples.

If the viscosity of the network is negligible μ1 =
0, the following solution to (25) is given by

f(r) = − k
1

3

2 γ
2

3

ξ
1

3α
1

3 (r + δ)
1

3

+
1

α
, (33)

where r = t − αx.

The structure of this solution is different from

(30) in several ways. When plotting at a single

moment in time t = 0, it looks like a pulse as seen

by the first curve in figure (5). When animated (30)

can be seen as a traveling wave solution, given by

the black curves which moves in the positive t
direction.

Fig. 5. The solution given by (33) plotted at t = (0, 10).
The first curve is at t = 0. As seen by the black curves, the
velocity front travels like a wave as time increases.

Alternatively, if the osmotic pressure has less

of an impact than viscosity and friction, then with

k2 = 0 as seen in the absence of ionizing agents

for gels, we find the following solution

f(r) =
e
α(−κr+λ)+ ξ

2μ1
r2

α
+

1

α
. (34)

Like (30) this solution is exponential, but as seen

in (6) the quadratic term gives an unbounded

traveling wave. The velocity at t = 0 is given by

the first curve. As time increases, the front velocity
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travels as a wave moving to the right. This does

not seem to have any physical analogue since the

velocities are unbounded.

Fig. 6. The solution given by (34) plotted at t = [0, 10].
The first curve is at t = 0. The velocity front shifts to the
right as time increases, moving as a traveling wave.

V. ADDITIONAL SOLUTIONS TO THE

TWO-PHASE MODEL

This section also provides theoretical solutions,

which may or may not have physical relevance. We

explore them here to account for the multitude of

solutions that are emitted by the system (8-10).

There are other two-phase models from physics

that might have solutions contained here. For ex-

ample, one such model describes granular flows

where air is considered a non-viscous (nondense)

phase with the rocks, debris, and other materials

considered as a second highly viscous (dense)

phase [25], [26]. Within these works, numerical

simulations describe the flow behaviors air has

on granular flow. The results suggest that drag

has more than a negligible effect on the flow of

granular materials of finite mass.

The traveling wave solutions provided by (11)

are given by a simple choice for Γ(t) in (17). Here,

we explore different choices for the transformation

and follow the reduction of the PDEs to ODEs.

Then, we derive solutions to the ODEs by consid-

ering various changes in the physical nature of the

problem. By adjusting which physical parameters

are the dominating driving force in the problem,

we can generate different solutions, which may

prove useful in exploring the nature of physical

and biological phenomenon.

First, we let δ = 0 and Γ =
1

t
in (17). Solved

with (14-16) will give the following transforma-

tion.

u =
1

αt
+ f

(
x − ln(t)

α

)
,

v =
1

αt
+ g

(
x − ln(t)

α

)
,

φ1 = m

(
x − ln(t)

α

)
.

Neglecting solvent viscosity, μ2 = 0, reduces the

original system (8-10) to the following ODE,

μ1f
2(α − f)f ′2 − μ1f

3f ′′ (35)

−3k2α(2φ0f − 3α)(α − f)f ′ − ξf5 = 0.

with

m =
α

f
,

g =
αf

α − f
.

Again, if we assume the dominating force is the

viscosity and set k2 and ξ2 to zero, this can be

solved to give

f = κeλ(x−
ln(t)

α
) =

κ
α
√
tλ
eλx. (36)

The complete solution to (1-2) and (4-5) becomes

u =
1

αt
+

κ
α
√
tλ
eλx,

v =
1

αt
+

α

α − κ
α
√
tλ
eλx

κ
α
√
tλ
eλx,

φ1 =
κ

α
√
tλ
eλx,

φ2 = 1 − κ
α
√
tλ
eλx.

If we assume friction and pressure dominate and

let μ1 = 0, the ODE yields no real solution without

further assumptions on the constants of integration.
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This may imply that viscosity is required for non-

constant solutions.

Another choice for (17) is to let δ remain

arbitrary and to consider ξ = 0, a requirement for

invariance to be satisfied. Again we consider cases

where the viscosity of the solvent is negligible,

μ2 = 0. Choosing Γ = 0 we find the following

transformation

u = f(xe−
δ

α
t)e

δ

α
t,

v = g(xe−
δ

α
t)e

δ

α
t,

φ1 = m(xe−
δ

α
t),

which reduces (8-10) to the following three

ODEs.

(αf − rδ)m′ + αmf ′ = 0,

−(αg − rδ)m′ + α(1 − m)g′ = 0, (37)

(1 − m)(μ1f
′ − k2m(2φ0 − 3m))m′

+μ1m(1 − m)f ′′ = 0,

with r = xe−
δ

α
t. If both osmotic pressure and

viscosity are negligible such that k2 = 0 and μ1 =
0, then the following solution satisfies (37).

f = γe−λr + δ
λr − 1

λα
,

g =
(λr − 1)δeλr

λα(δeλr − 1)
+

κ

λα(δeλr − 1)
,

m = δeλr.

The complete solution to (1-2) and (4-5), is

u = γe−λxe
− δ

α
t

+ δ
λxe−

δ

α
t − 1

λα
e

δ

α
t,

v =
(λxe−

δ

α
t − 1)δeλxe

− δ
α

t

λα(δeλxe
− δ

α
t − 1)

+
κ

λα(δeλxe
− δ

α
t − 1)

(38)

φ1 = δeλxe
− δ

α
t

, (39)

φ2 = 1 − φ1.

It should be noted that if either viscosity is

the dominating force with k2 = 0, or if osmotic

pressure is the dominating force with μ2 = 0,

then m, f , and g are constant. This implies that

friction is required for non-constant solutions. This

is different from before, where we found viscosity

to be the driving force for the model.

In summary, we have found that each solu-

tion requires a dominating force to generate non-

constant solutions. This gives flexibility in assess-

ing the two-phase model and suggests that exact

solutions may exist for many differing physical

phenomenon of interest. For example, it is possible

that the solution given by (39) can be matched to

results consistent to granular flow, since friction

as a necessary component for granular flow [25],

[26].

VI. DISCUSSION

In this work, we found an exact solution which

accurately replicates the results from a previously

found numerical results. It has been shown that

for α → ∞, the analytic solution found here

is exactly the perturbation solution found by Du

et. al. [10]. The exact solution has the benefit of

time dependence, which is useful for assessing

behavior of the two-phase system without the im-

plementation of numerical methods. Additionally,

we showed that many traveling wave solutions

arise from the two-phase problem. Due to the

time dependent general Galilei group, we have an

unlimited number of choices to adjust the speed

of the wave through time. These solutions also

require specific dominating forces to attain. It is

possible that such solutions only arise in specific

physical circumstances. Though some of these

solutions may be extraneous, further investigation

is warranted to determine their uses.

Although asymptotic and numerical methods

yield useful information concerning the behavior

of multi-phase systems, these methods require

substantial efforts. Exact solutions have the benefit

of being computationally inexpensive to simulate,

and with Lie symmetries, are relatively simple to

generate.

There are several directions for future analysis

that arise from this work. First, exploring the be-

havior of the additional solutions may give further
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insights into the nature of dominating forces in

the two phase system. This may give insight into

specific physical phenomenon in which these addi-

tional solutions may be esoterically relevant. Also,

additional symmetries may exist, which could be

found using non-classical methods. Solutions aris-

ing from non-classical methods would then need to

be assessed to determine relevant matching phys-

ical or biological behavior. Additionally, biofilms

typically include growth terms to account for the

production of new network. It is possible that

symmetry solutions can capture this behavior as

well.

APPENDIX

Deriving the infinitesimals for the two-phase

model generates a large system of linear PDEs.

For this reason, we have provided details of the

process by way of an example in this appendix.

For further details, see [27].

Consider the following nonlinear first order

PDE

ut = u2x (40)

Under the transformation

t̄ = t+ εT (t, x, u) +O(ε2),

x̄ = x+ εX(t, x, u) +O(ε2),

ū = u+ εU(t, x, u) +O(ε2),

to order ε2 (40) becomes

Ut + utUu − ut (Tt + utTu) − ux (Xt + utXu)

− 2ux(Ux + uxUu − ut (Tx + uxTu)

− ux (Xx + uxXu)) = 0.

Using the original equation (40) to eliminate ut
and grouping coefficients of ux, we have

Ut + u2xUu − u2x
(
Tt + u2xTu

)
− ux

(
Xt + u2xXu

)
− 2ux(Ux + uxUu

− u2x (Tx + uxTu) − ux (Xx + uxXu))

= Ut − (Xx + 2Ux)ux + (2Xx − Tt − Uu)u
2
x

= (Xu + 2Tx)u
3
x + Tuu

4
x

= 0.

Invariance requires the coefficients of ux to be

zero, providing us with the following system.

U(t, x, u)t = 0,

X(t, x, u)x + 2U(t, x, u)x = 0,

2X(t, x, u)x − T (t, x, u)t − U(t, x, u)u = 0,

Xu + 2Tx = 0,

Tu = 0.

These are called the determining equations, be-

cause they determine the forms of the infinites-

imals. These are linear PDEs, which are easily

solved with standard techniques of integration. So,

we have the following form for the infinitesimals.

T (t, x, u) = c1 + c2t+ c3x+ c4t
2 + c5tx+ c6x

2,

X(t, x, u) = c7 + c8 + c9x+ c4tx+
1

2
k5x

2

− (2k3 + 2k5t − 4k6x)u,

U(t, x, u) = k10 − 1

2
k8x − 1

4
k4x

2

+ (2k9 − k2)u+ k5xu − 4k6u
2,

where ci and ki are arbitrary constants of inte-

gration. Together with the invariant surface con-

dition given by Tut + Xux = U we can find

a transformation to reduce (40) to an ODE. The

form for the transformation will vary depending

on choices for the constants ci and ki.
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Abstract—Several continuous-time tree-grass
competition models have been developed to study
conditions of long-lasting coexistence of trees
and grass in savanna ecosystems according to
environmental parameters such as climate or
fire regime. In those models, fire intensity is a
fixed parameter while the relationship between
woody plant size and fire-sensitivity is not
systematically considered. In this paper, we propose
a mathematical model for the tree-grass interaction
that takes into account both fire intensity and
size-dependent sensitivity. The fire intensity is
modeled by an increasing function of grass biomass
and fire return time is a function of climate. We
carry out a qualitative analysis that highlights
ecological thresholds that summarize the dynamics
of the system. Finally, we develop a non-standard
numerical scheme and present some simulations to
illustrate our analytical results.

Keywords-Asymmetric competition, Savanna, fire,
continuous-time modelling, qualitative analysis,
Non-standard numerical scheme.

I. Introduction

Savannas are tropical ecosystems characterized

by the durable co-occurrence of trees and grasses

(Scholes 2003, Sankaran et al. 2005) that have

been the focus of researches since many years.

Savanna-like vegetations cover extensive areas,

especially in Africa and understanding savannas

history and dynamics is important both to under-

stand the contribution of those areas to biosphere-

climate interactions and to sustainably manage the

natural resources provided by savanna ecosystems.

At biome scale, vegetation cover is known to dis-

play complex interactions with climate that often

feature delays and feed-backs. For instance any

shift from savanna to forest vegetation not only

means increase in vegetation biomass and carbon

sequestration but also may translate into changes

in the regional patterns of rainfall (Scheffer et

al. 2003, Bond et al. 2005). In the face of the

ongoing global change, it is therefore important to

understand how climate along with local factors
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drive the dynamics of savannas ecosystems. In

many temperate and humid tropical biomes, forest

vegetation in known to recover quickly from dis-

turbances and woody species are expected to take

over herbaceous species. Yet in the dry tropics,

it is well-known that grassy and woody species

may coexist over decades although their relative

proportion may show strong variations (Scholes

2003, Sankaran et al. 2005, 2008).

Savanna-like ecosystems are diverse and expla-

nations found in the literature about the long-

lasting coexistence of woody and grassy vegeta-

tion components therefore relate to diverse factors

and processes depending on the location and the

ecological context. Several studies have pointed

towards the role of stable ecological factors in

shaping the tree to grass ratio along large-scale

gradients of rainfall or soil fertility (Sankaran et

al. 2005, 2008). Other studies have rather em-

phasized the reaction of vegetation to recurrent

disturbances such as herbivory or fire (Langevelde

et al. 2003, D’Odorico et al. 2006, Sankaran et

al. 2008, Smit et al. 2010, Favier et al. 2012

and references therein). Those two points of view

are not mutually-exclusive since both environ-

mental control and disturbances may co-occur in

a given area, although their relative importance

generally varies among ecosystems. Bond et al.

(2003) proposed the name of climate-dependent

for ecosystems that are highly dependent on cli-

matic conditions (rainfall, soil moisture) and fire-

dependent or herbivore-dependent for ecosystems

which evolution are strongly dependent on fires or

herbivores. In a synthesis gathering data from 854

sites across Africa, Sankaran et al. (2005) showed

that the maximal observed woody cover appears

as water-controlled in arid to semi-arid sites since

it directly increase with mean annual precipitation

(MAP) while it shows no obvious dependence on

rainfall in wetter locations, say above c. 650 mm

MAP where it is probably controlled by distur-

bance regimes. Above this threshold, fire, grazing

and browsing are therefore required to prevent tree

canopy closure and allow the coexistence of trees

and grasses.

Several models using a system of ordinary dif-

ferential equations (ODES) have been proposed

to depict and understand the dynamics of woody

and herbaceous components in savanna-like veg-

etation. A first attempt (Walker et al. 1981) was

orientated towards semiarid savannas and analyzed

the effect of herbivory and drought on the bal-

ance between woody and herbaceous biomass.

This model refers to ecosystems immune to fire

due to insufficient annual rainfall. Indeed, fires

in savanna-like ecosystems mostly rely on herba-

ceous biomass that has dried up during the dry

season. As long as rainfall is sufficient, fire can

thus indirectly increase the inhibition of grass on

tree establishment in a way far more pervasive

than the direct competition between grass tufts and

woody seedlings.

More recently, several attempts have been made

(see Accatino et al. 2010, De Michele et al. 2011

and references therein) to model the dynamics

of fire-prone savannas on the basis of the initial

framework of Tilman (1994) that used coupled

ODES to model the competitive interactions be-

tween two kinds of plants. On analogous grounds,

Langevelde et al. (2003) have developed a model

taking into account fires, browsers, grazers and

Walter’s (1971) hypothesis of niche separation by

rooting zone depth. Models relying on stochas-

tic differential equations have also been used

(Baudena et al. 2010). Notably, Accatino et al.

(2010) and De Michele et al. (2011) focused on

the domain of stability of tree-grass coexistence

with respect to influencing ”biophysical” variables

(climate, herbivory). However, fire was consid-

ered as a forcing factor independent of climate

and vegetation, while woody cover was treated

as a single variable with no distinction between

seedling/saplings which are highly fire sensitive

and mature trees which are largely immune to

fire damages. The way in which the fundamental,

indirect retroaction of grass onto tree dynamics

is modeled is therefore to be questioned. In the

present paper we therefore a model that differs in

this respect.

Thus, to take into account the role of fire in
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savanna dynamics, we consider a tree-grass com-

partmental model with one compartment for grass

and two for trees, namely fire-sensitive individuals

(like seedlings, saplings, shrubs) and non-sensitive

mature trees. Based on field observations and ex-

periments reported by Scholes and Archer (1997)

and by Scholes (2003), we develop a system

of three coupled non-linear ordinary differential

equations (ODES), one equation per vegetation

compartment that describes savanna dynamics. In

addition, we model fire intensity (i.e. impact on

sensitive woody plants) as an increasing function

of grass biomass. Compared to existing models,

our model aims to properly acknowledge two ma-

jor phenomena, namely the fire-mediated negative

feedback of grasses onto sensitive trees and the

negative feed-back of grown-up, fire insensitive

trees on grasses. We therefore explicitly model

the asymmetric nature of tree-grass competitive

interactions in fire-prone savannas.

After some theoretical results of the continuous

fire model, though which we highlighted some

ecological thresholds that summarize savanna dy-

namics and some interesting bistability, we present

an appropriate non-standard numerical scheme

(see Anguelov et al. 2012, 2013, 2014 and Dumont

et al. 2010, 2012) for the model considered and we

end with numerical simulations. We show that the

fire frequency and the competition parameters are

bifurcation parameters which allow the continuous

fire model of asymmetric tree-grass competition to

converge to different steady states.

II. THE CONTINUOUS FIRE MODEL OF

ASYMMETRIC TREE-GRASS COMPETITION

(COFAC)

As we have mentioned before, we consider the

class of sensitive tree biomass (TS ), the class of

non-sensitive tree biomass (TNS ) and the class of

grass biomass (G). We model the fire intensity

by an increasing function of grass biomass w(G).

To built up our model, we consider the following

assumptions.

1) The grass vs. sensitive-tree competition has a

negative feedback on sensitive tree dynamics.

2) The grass vs. non sensitive-tree competition

has a negative feedback on grass dynamics.

3) After an average time expressed in years, the

sensitive tree biomass becomes non sensitive

to fire.

4) Fire only impacts grass and sensitive Tree.

We also consider the following parameters.

• There exists a carrying capacity KT for tree

biomass (in tons per hectare, t.ha−1).

• There exists a carrying capacity KG for grass

biomass (in tons per hectare, t.ha−1).

• Sensitive tree biomass is made up from

non sensitive tree biomass with the rate

γNS (in yr−1) and from existing sensitive tree

biomass with the rate γS (in yr−1).

• Sensitive tree biomass has a natural death rate

μS (in yr−1).

• Non sensitive tree biomass has a natural death

rate μNS (in yr−1).

• f is the fire frequency (in yr−1).

• Grass biomass has a natural death rate

μG (in yr−1).

• 1
ωS

is the average time, expressed in year, that

a sensitive tree takes to become non sensitive

to fire.

• 1
ωS + μS

is the average time that a tree spends

in the sensitive tree class without competition

and fires.

• σG is the competition rate, for light or/and

nutrients, between sensitive tree and grass (in

ha.t−1.yr−1).

• σNS is the competition rate, for light or/and

nutrients, between non sensitive tree and grass

(in ha.t−1.yr−1).

• ηS is the proportion of sensitive tree biomass

that is consumed by fire.

• ηG is the proportion of grass biomass that is

consumed by fire.

Remark 1. Competition parameters σG and σNS

are asymmetric, indeed σG inhibits sensitive tree
(TS ) growth and there is no reciprocal inhibition;
likewise, σNS inhibits grass (G) growth.

Based on these ecological premises, and taking
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into account the effect of fire as a forcing con-

tinuous in time, which is the classical approach,

we propose a model for the savanna vegetation

dynamics through a system of three interrelate

non-linear equations.

The COFAC is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dTS

dt
= (γS TS + γNS TNS )

(
1 − TS + TNS

KT

)

−TS (μS + ωS + σGG + fηS w(G)),
dTNS

dt
= ωS TS − μNS TNS ,

dG
dt

= γG

(
1 − G

KG

)
G − (σNS TNS + fηG + μG)G,

(1)

with

TS (0) = TS 0
> 0, TNS (0) = TNS 0

≥ 0 , G(0) = G0 > 0.

(2)

For this continuous fire model, the fire intensity

function w is chosen as a sigmoidal function of

grass biomass because we want first to inves-

tigate the ecological consequences of the non-

linear response of fire intensity to grass biomass,

while nearly all published models using differen-

tial equations so far assumed a linear response.

Non linearity is justified since whenever grass

biomass is low fires are virtually absent while fire

impact increases rapidly with grass biomass before

reaching saturation. Thus,

w(G) =
G2

G2 + g2
0

, (3)

where G0 = g2
0 is the value of grass biomass at

which fire intensity reaches its half saturation (g0

in tons per hectare, t.ha−1).

The feasible region for system (1) is the set Ω

defined by

Ω = {(TS , TNS ,G) ∈ R3
+ | 0 ≤ TS + TNS ≤ KT , 0 ≤

G ≤ KG}.

III. MATHEMATICAL ANALYSIS

A. Existence of equilibria, ecological thresholds
and stability analysis

We set

R0
1
=
γSμNS + γNSωS

μNS (μS + ωS )
and R0

2 =
γG

fηG + μG
.

1) Existence of equilibria:
Setting the right hand-side of system (1) to zero,

straightforward computations lead to the following

proposition

Proposition 1. System (1) has four kinds of equi-
libria

• The desert equilibrium point E0 = (0, 0, 0)

which always exists.
• The forest equilibrium point ET =

(T S ; T NS ; 0), with

T S =
KTμNS

ωS + μNS

⎛⎜⎜⎜⎜⎝1 − 1

R0
1

⎞⎟⎟⎟⎟⎠ and

T NS =
KTωS

ωS + μNS

⎛⎜⎜⎜⎜⎝1 − 1

R0
1

⎞⎟⎟⎟⎟⎠
which is ecologically meaningful whenever
R0

1
> 1.

• The point EG = (0, 0,G), with

G = KG

⎛⎜⎜⎜⎜⎝1 − 1

R0
2

⎞⎟⎟⎟⎟⎠ ,
is ecologically meaningful when R0

2
> 1

The point EG when it exists is the grassland
equilibrium.

• The savanna equilibrium point ETG =

(T ∗
S , T

∗
NS ,G

∗), with T ∗
S , T ∗

NS and G∗ given in
Appendix A, has an ecological significance
whenever

R0
1 > 1, R0

2 > 1 and 0 < G∗ < KG

⎛⎜⎜⎜⎜⎝1 − 1

R0
2

⎞⎟⎟⎟⎟⎠ .
Remark 2. The number of savanna equilibria
depends on the form of the function w.

• If w(G) = G, then the COFAC has at most
one savanna equilibrium.

• If w(G) =
G

G +G0

(the Holling type II

function), then the COFAC has at most two
savanna equilibria.
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• If w(G) =
G2

G2 +G0

(the Holling type III

function), then the COFAC has at most three
savanna equilibria.

2) Ecological thresholds interpretation:
The qualitative behaviors of the COFAC depend

on the following thresholds

R0
1
, R0

2
,

RG
1
=

γSμNS + γNSωS

μNS (μS + ωS + σGG + fηS w(G))
,

RT NS
2
=

γG

fηG + μG + σNS T NS
,

where

• R0
1

is the sum of the average amount of

biomass produced by a sensitive/young plant,

without fires and competition with grass, and

the average amount of biomass produced by

a mature plant multiplied by the proportion

of young plants which reach the mature stage.

• RG
1

is the sum of the average amount of

biomass produced by a sensitive/young plant,

in presence of fires and competition with

grass, and the average amount of biomass

produced by a mature plant multiplied by the

proportion of young plants which reach the

mature stage.

• R0
2

is the average amount of biomass pro-

duced per unit of grass biomass during

its whole lifespan in presence of fires and

and free from competition with non-sensitive

trees.

• RT NS
2

is the average biomass produced per unit

of grass biomass during its whole lifespan in

presence of fires and experiencing competi-

tion from non-sensitive trees.

Remark 3. The following relations hold

RG
1 < R0

1, RT NS
2
< R0

2.

3) Stability analysis:
Let

R = R(G∗) =
γG (μNS + ωS ) (γSμNS + γNSωS )

KGKTμNSωSσNS (σG + fηS w′(G�))
.

We have the following result:

Theorem 1. If R0
1
< 1 and R0

2
< 1, then the desert

equilibrium E0 is globally asymptotically stable.

Proof: See Appendix B.

Theorem 2. If R0
1
> 1, then the forest equilibrium

ET exists.
• If RT NS

2
< 1, then the forest equilibrium ET is

locally asymptotically stable.
• If R0

2
< 1, then the forest equilibrium ET is

globally asymptotically stable.
• If R0

2
> 1, RT̄NS

2
< 1, RḠ

1
> 1 and R < 1,

then the forest equilibrium ET is globally
asymptotically stable.

Proof: See Appendix C.

Furthermore, using the same approach as in

the proof of Theorem 2, we derive the following

results

Theorem 3. Suppose R0
2
> 1 so that the grassland

equilibrium EG exists.
• If RG

1
< 1, then the grassland equilibrium EG

is locally asymptotically stable.
• If R0

1
< 1, then the grassland equilibrium EG

is globally asymptotically stable.
• If R0

1
> 1, RT̄NS

2
> 1,RḠ

1
< 1 and R < 1,

then the grassland equilibrium EG is globally
asymptotically stable.

Theorem 4. Suppose that R0
1
> 1, R0

2
> 1 and

R > 1. We have the following three cases:
• The savanna equilibrium ETG is locally

asymptotically stable (LAS) when it is unique.
• When there exists two savanna equilibria, one

is LAS and the other is unstable.
• When there exists three savanna equilibria,

two are LAS and one is unstable. Thus System
(1) will converges to one of the two stable
savanna equilibria depending on initial con-
ditions.

Proof: See Appendix D.
4) Summary table of the qualitative analysis:

The qualitative behavior of system (1) is sum-

marized in the following Table in which we present
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only the most realistic, from an ecological point of

view, case i.e R0
1
> 1 and R0

2
> 1.

TABLE I
Summary table of the qualitative analysis of system (1)

Thresholds E0 ET EG ETG

R0
1

R0
2

RḠ
1

RT̄NS
2
> 1 R > 1 U U U L�

> > > RT̄NS
2
< 1 R > 1 U L U L

1 1 1 R < 1 U G U U

RḠ
1

RT̄NS
2
> 1 R > 1 U U L L

< R < 1 U U G U

1 RT̄NS
2
< 1 R > 1 U L L L

R < 1 U L L U

In Table I, the notations U, L and G stand for

unstable, locally asymptotically stable, globally

asymptotically stable, respectively, while the

notation L� means that we have the global

stability if there are no periodic solutions.

Remark 4. From an ecological point of view,
Lignes 1 to 7 of Table I are interesting because in
these cases, one ton of grass biomass will produce
during it lifespan at least one ton of grass biomass
(R0

2
> 1) and simultaneously, one ton of tree

biomass (sensitive and non sensitive) will produce
during it lifespan at least one ton of tree biomass
(R0

1
> 1). Moreover, it is also in these cases that

we have the most interesting situations of savanna
dynamics, namely bistability cases (Lines 2, 4, 7
in Table 1) and a tristability case (Line 6 in Table
1).

IV. NUMERICAL SIMULATIONS

Compartmental models are usually solved using

standard numerical methods, for example, Euler

or Runge Kutta methods included in software

package such as Scilab [18] and Matlab [19]. Un-

fortunately, these methods can sometimes present

spurious behaviors which are not in adequacy

with the continuous system properties that they

aim to approximate i.e, lead to negative solutions,

exhibit numerical instabilities, or even converge to

the wrong equilibrium for certain values of the

time discretization or the model parameters (see

Anguelov et al. 2012, Dumont et al. 2010 for

further investigations). For instance, we provided

in Appendix E some numerical simulations done

with Runge Kutta schemes to illustrate some of

its spurious behaviors. In this section, following

Anguelov et al. 2012, 2013, 2014 and Dumont et

al. 2010, 2012, we perform numerical simulations

using an implicit nonstandard algorithm to illus-

trate and validate analytical results obtained in the

previous sections.

A. A nonstandard scheme for the COFAC
System (1) is discretized as follows:

T k+1
NS − T k

NS

φ(h)
= ωS T k+1

S − μNS T k+1
NS ,

Gk+1 −Gk

φ(h)
= γG

(
1 − Gk

KG

)
Gk+1 − σNS T k

NS Gk+1

−(μG + fηG)Gk+1,

T k+1
S − T k

S

φ(h)
= (γS − (μS + ωS ))T k+1

S + γNS T k+1
NS

− γS
KT

T k+1
S (T k

S + T k
NS ) − γNS

KT
T k

NS T k+1
NS

−
(
γNS
KT

T k
NS + (σGGk + fηS w(Gk))

)
T k+1

S ,

(4)
where the denominator function φ is such that

φ(h) = h + O(h2), ∀h > 0. Systems (1) − (2) can

be written in the following matrix form:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dX
dt

= A(X)X,

X(0) = X0,
(5)
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where X = (TNS ,G, TS ) ∈ R3
+ and A(X) =

(Ai j)1≤i, j≤3 with A11 = −μNS , A12 = 0, A13 = ωS ,

A21 = 0, A22(X) = γG

(
1 − G

KG

)
− (σNS TNS +

fηG + μG), A23 = 0, A31(X) = γNS

(
1 − TS+TNS

KT

)
,

A32 = 0, A33(X) = γS

(
1 − TS+TNS

KT

)
− (μS + ωS +

σGG + fηS w(G)).

Using (5), the numerical scheme (4) can be

rewritten as follows:

B(Xk)Xk+1 = Xk,

where

B(Xk) = (Id3 − φ(h)A(Xk)). (6)

Thus B(Xk) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + φ(h)μNS 0 −ωSφ(h)

0 1 − φ(h)Ak
22

0

−φ(h)Ak
31

0 1 − φ(h)Ak
33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
It suffices now to choose φ(h) such that the matrix

B(Xk)) is an M-matrix for all h > 0, which implies

that B−1(Xk) is a nonnegative matrix, for all h > 0.

In particular, choosing φ such that

1 − φ(h)(γG − (μG + fηG)) ≥ 0

1 − φ(h)(γS − (μS + ωS )) ≥ 0,
(7)

lead to positive diagonal terms and nonpositive

off diagonal terms. We need to show that B(Xk)

is invertible. Obviously 1 − φ(h)Ak
22

is a positive

eigenvalue. Let us define N, a submatrix of matrix

B(Xk), as follows

N =
(

1 + φ(h)μNS −ωSφ(h)

−φ(h)Ak
31

1 − φ(h)Ak
33

)
.

We already have trace(N) > 0. Then, a direct

computation shows that det(N) > 0 if φ(h) is

choosen such that

1 − φ(h)

(
γS +

γNSωS

μNS
− (μS + ωS )

)
≥ 0.

Thus we have α(N) > 0, i.e. the eigenvalues have

positive real parts, which implies that B(Xk) is

invertible. Finally, choosing

φ(h) =
1 − e−Qh

Q
, (8)

with

Q ≥ max
(
γG − (μG + fηG), γS − (μS + ωS ) +

γNSωS
μNS

)
,

(9)

matrix B(Xk) is an M-matrix. Furthermore, assum-

ing Xk ≥ 0, we deduce

Xk+1 = B−1(Xk)Xk ≥ 0.

Lemma 1. Using the expression of φ defined in
(8), the numerical scheme (4) is positively stable
( i.e for Xk ≥ 0, we obtain Xk+1 ≥ 0).

An equilibrium Xe of the continuous model

(1) verifies A(Xe)Xe = 0. Multiplying the above

expression by φ(h) and summing with Xe yields

(Id3 − φ(h)A(Xe))Xe = Xe,

Thus, we deduce that the numerical scheme (4)

and the continuous model (1) have the same equi-

libria which are (assumed to be) hyperbolic.

The dynamics of model (1) can be captured by

any number Q satisfying

Q ≥ max

{ |λ|2
2|Re(λ)|

}
, (10)

where λ ∈ sp(J) with Ji j =
∂Ai
∂Xj

.

We also have the following result:

Lemma 2. If φ(h) is chosen as in Eqs. (8), (9) and
(10), then the numerical scheme (4) is elementary
stable ( i.e local stability properties of equilibria
are preserved).

The proof of Lemma 2 follows the proof of

Theorem 2 in Dumont et al., 2010.

B. NUMERICAL SIMULATIONS AND BIFUR-
CATION PARAMETERS

In literature we found the following parameters
values
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TABLE II
Parameters values found in literature

Parameters values References

f 0-1 Langevelde et al. 2003
0-2 Accatino et al. 2010

γG 0.4(1) − 4.6(2) (1) Penning de Vries 1982
(2) Menaut et al. 1979

γS + γNS 0.456-7.2 Breman et al. 1995
μS + μNS 0.03-0.3 Accatino et al. 2010

0.4 Langevelde et al. 2003
μG 0.9 Langevelde et al. 2003
ηG 0.1(a)-1(b) (a) Van de Vijver 1999

(b) Accatino et al. 2010
ηS 0.02-0.6 Accatino et al. 2010
ωS 0.05-0.2 Walkeling et al. 2011

We now provide some numerical simulations to

illustrate the theoretical results and for discussions.

1) Some monostability and bistability situa-
tions:

• Monostability.

We choose

γS γNS γG ηS ηG
1 2 3.1 0.5 0.5

μS μNS μG σNS σG
0.1 0.3 0.3 0.3 0.05

G0 ωS KT KG f
2 0.05 50 12 0.5 yr−1

R0
1

R0
2

RG
1

RT NS
2

R
8.8889 5.6364 1.5006 1.2644 2.9424

With the chosen parameters, the savanna equi-

librium is stable, i.e. sensitive trees, non-

sensitive trees and grasses coexist. Figure

1 presents the 3D plot of the trajectories

of system (1). It illustrates that the savanna

equilibrium point is stable. Figure 1 also il-

lustrates the monostability situation presented

in Ligne 1 of Table I.

0

10

20

30

0.511.522.533.54

0

5

10

TS (t)

TNS(t)

G
(t)

ETG•

•
•

•

•

•

•
•

Fig. 1. 3D plot of the trajectories of system (1) showing
that the savanna equilibrium point ETG point is stable. The
red bullets represent different initial conditions.

• Bistability

– Bistability involving forest and grassland

equilibria. The state trajectories of the

model will converge to a state depending

of initial quantity.

We choose

γS γNS γG μS μNS μG f

0.4 2 2.1 0.1 0.3 0.3 0.5 yr−1

ηS =0.5, ηG = 0.5, KT=50, KG = 12

R0
1

R0
2

RG
1

RT NS
2

R σG σNS

4.8889 3.8182 0.5731 0.9315 0.2958 0.1 0.3

The 3D plot of the trajectories of system

(1) is depicted in Figure 2. It clearly ap-

pears that the forest and grassland equi-

libria are stables. Figure 2 illustrates the

bistability situation presented in Ligne 7

of Table I.

0 5 10 15 20 25 30 35

5

10

15

20

0

5

10

TNS(t)

TS (t)

G
(t)

Only grasses (grassland)

•
• •

•
•

•

••

• •

•

•

Only trees (forest)

•
ET

EG•

•

Fig. 2. 3D plot of the trajectories of system (1) showing that
the forest (ET ) and grassland (EG) equilibria are stable. The
green bullets represent different initial conditions.

– Bistability involving forest and savanna

equilibria. The state trajectories of the

model will converge to a state depending

on initial quantity.

We choose

γS γNS γG μS μNS μG f
0.6 2 2.1 0.1 0.3 0.3 0.5 yr−1

ηS =0.5, ηG = 0.5, KT=50, KG = 12

R0
1

R0
2

RG
1

RT NS
2

R σG σNS

6.2222 3.8182 1.1156 0.8942 1.2985 0.05 0.3

For these parameters, there exist two

savanna equilibria but only one is stable

as shown in Figure 3. Figure 3 also illus-

trates the bistability situation presented in

Ligne 2 of Table I.
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0

5
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15

0

2

4

6

8

10

TNS(t)

TS (t)

G
(t)

•

•

•

•

•
• •

•

•
•

•

•

•

Forest

Savanna

•

Fig. 3. 3D plot of the trajectories of system (1) showing that
the forest (ET ) and savanna (ETG) equilibria are stable. The
green and red bullets represent different initial conditions.

Remark 5. Note also that we didn’t observed
periodic behaviors in the previous simulations,
considering the set of parameters presented in
Table 2, while their existence cannot be completely
ruled out by the analytical analysis.

C. Some bifurcation parameters

In this section we emphasize on some bifurca-

tion parameters of system (1) which are such that

the COFAC can converge to different steady state

depending on the variation of these parameters.

• The grass vs. sensitive-tree competition pa-

rameter σG is a bifurcation parameter. Figure

4 presents how the system (1) changes from

the savanna state to the grassland state as a

function of the grass vs. sensitive-tree com-

petition parameter σG.

We choose

γS γNS γG μS μNS μG ηS σNS f

0.4 1 4 0.1 0.3 0.1 0.5 0.3 0.2 yr−1

ηG = 0.5, KT=45, KG = 10

For these parameters values, system (1) un-

dergoes a transcritical bifurcation. Indeed, we

move from ligne 1 to ligne 5 of Table I. From

left to right, (R0
1
= 3.7778, R0

2
= 20, RG

1
=

2.2865, RT NS
2
= 2.4721, R = 99.3058) →

(R0
1
= 3.7778, R0

2
= 20, RG

1
= 1.2943,

RT NS
2
= 2.4721, R = 5.6803) → (R0

1
= 3.7778,

R0
2
= 20, RG

1
= 0.9026, RT NS

2
= 2.4721). For

the last case, the savanna equilibrium ETG is

undefined.

0 50 100 150 200 250 300
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5

10

15

20

25

Time (year)

(a)

Sensitive Tree
Non Sensitive Tree
Grass

0 50 100 150 200 250 300
0

5

10

15

20

25

Time (year)

(b)

0 50 100 150 200 250 300
0

5

10

15

20

25

Time (year)

(c)

Fig. 4. From savanna to grassland as a function of the grass
vs. sensitive-tree competition parameter σG. From left to right,
the fire period τ = 1

f is fixed, while the grass vs. sensitive-tree
competition parameter σG increases. In (a) (τ = 5, σG = 0),
in (b) (τ = 5, σG = 0.02) and in (c) (τ = 5, σG = 0.04)

• The fire period parameter τ = 1
f is a bifur-

cation parameter. Figure 5 presents a shift of

the convergence of system (1) from the forest

state to the grassland state as a function of

the fire period τ.
We choose

TABLE III
Parameters values for Figures 5 and 6

γS γNS γG μS μNS μG ηS σNS f

0.4 2 2.1 0.1 0.3 0.3 0.5 0.3 yr−1

ηG = 0.5, KT=50, KG = 12

For these parameters values, system (1) un-

dergoes a forward bifurcation. Indeed, we

move from ligne 3 to ligne 7 of Table I. From

left to right, (R0
1
= 4.8889, R0

2
= 1.0678, RG

1
=

1.3025, RT NS
2
= 0.5720) → (R0

1
= 4.8889,

R0
2
= 1.3548, RG

1
= 0.5446, RT NS

2
= 0.6453,

R = 0.0983) → (R0
1
= 4.8889, R0

2
= 1.6154,

RG
1
= 0.5679, RT NS

2
= 0.6989, R = 0.1201).

For the first case, the savanna equilibrium

ETG is undefined.
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(a)

Sensitive Tree
Non Sensitive Tree
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 (b)
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2.5

3

3.5

4

4.5

5

Time (year)

 (c)

Fig. 5. From forest to grassland as a function of the fire
period τ. From left to right, the fire period τ increased, while
the sensitive tree-grass competition parameter σG is fixed. In
(a) (τ = 0.3, σG = 0.05), in (b) (τ = 0.4, σG = 0.05) and in
(c) (τ = 0.5, σG = 0.05)
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Suppose now that fire period is fixed and the

grass vs. sensitive-tree competition parameter

σG varies. Figure 6 illustrates a shift of the

convergence of system (1) from the forest

state to the grassland state through a savanna

state as a function of the grass vs. sensitive-

tree competition parameter σG.

For the parameters values in Table III, sys-

tem (1) exhibits to bifurcation phenomena: a

pitchfork bifurcation and a transcritical bifur-

cation. We move from ligne 3 (figure 6 (a),

-(b)) to ligne 7 (figure 6 (e), -(f)) through

ligne 2 (figure 6 (c), -(d)) of Table I. Indeed,

in figure 6 (a), -(b) ETG is undefined, EG is

unstable, ET is stable. In in figure 6 (c), -(d),

EG remains unstable but we have bistability

between ETG and ET : it is a case of pitchfork

bifurcation. In figure 6 (d), -(f), ETG becomes

unstable and we have a bistability between ET

and EG: it is a case of transcritical bifurcation.

Values of R0
1
, R0

2
, RG

1
, RT NS

2
and R are given

in Appendix F.
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0 50 100 150 200
0

5

10

15
(c). σG =0.04
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 (d). σG =0.045
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Fig. 6. From forest to grassland, with a transition through
a savanna state, as a function of the sensitive tree-grass
competition parameter. From left to right, the fire period τ
is fixed at 4, while the grass vs. sensitive-tree competition
parameter σG increased.

• The grass vs. non sensitive-tree competition

parameter σNS is a bifurcation parameter. A

shift of the convergence of system (1) from

the grassland state to the forest state as a

function of the grass vs. non sensitive-tree

competition parameter σNS is depicted in Fig.

7.

We choose

γS γNS γG μS μNS μG σG ηS f

0.4 1 4 0.1 0.3 0.1 0.05 0.5 yr−1

ηG = 0.5, KT=45, KG = 10

For these parameters values, system (1) ex-

hibits a pitchfork bifurcation. We move from

ligne 5 (figure 7 (a), -(b)) to ligne 7 (figure

7 (c), -(d)) of Table I. Indeed, in figure 7 (a),

-(b) ETG is undefined, ET is unstable, EG is

stable. In figure 7 (c), -(d), ETG exits but it is

unstable and we have bistability between EG

and ET : it is a case of pitchfork bifurcation.

Values of R0
1
, R0

2
, RG

1
, RT NS

2
and R are given

in Appendix G.

0 100 200 300
0

5

10

15

20

25

Time (year)

G
(t)

, T
S
(t)

, T
N

S(t)

(a). τ =0.5, σNS =0.5
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(b). τ =0.5, σNS =0.6
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(c). τ =0.5, σNS =0.65
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(d). τ =0.5, σNS =0.7
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Fig. 7. From grassland to forest as a function of the grass
vs. non sensitive-tree competition parameter σNS . From left
to right, the fire period τ is fixed, while the grass vs. non
sensitive-tree competition parameter σNS increases.

V. Conclusion and discussion

In this work, we present and analyze a new

mathematical model to study the interaction of

tree and grass that explicitly makes fire intensity

dependent on the grass biomass and distinguishes

two levels of fire sensitivity within the woody

biomass (implicitly relating to plant size and

bark thickness). Fire was considered as a time-

continuous forcing as in several existing models

(Langevelde et al. 2003, Accatino et al. 2010,

De Michele et al. 2011 and reference therein)

with a constant frequency of fire return that can

be interpreted as mainly expressing an external

forcing to the tree-grass system from climate and

human practices. What is novel in our model is

that fire impact on tree biomass is modeled as a

non-linear function w of the grass biomass. Using

a non-linear function is to our knowledge only

found in Staver et al. 2011. But this latter model

made peculiar assumptions and does not predict

grassland and forest as possible equilibria (only

desert and savanna). The advantage of a non-linear

function is that it can account for the absence

of fire at low biomass. As a consequence and
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although keeping the same modeling paradigm as

in Langevelde et al. 2003, Accatino et al. 2010, De

Michele et al. 2011, we reached different results

and predictions.

Distinguishing fire sensitive vs. fire insensi-

tive woody biomass lead to three variables ex-

pressing fractions of the above ground phy-

tomass, namely grass and both fire-sensitive and -

insensitive woody vegetation. It featured three cou-

pled, non-linear ordinary differential equations.As

several existing models (Baudena et al. 2010,

Staver et al. 2011), our model acknowledges two

major phenomena that regulate savanna dynamics,

namely the fire-mediated negative feedback of

grasses onto sensitive trees and the negative feed-

back of grown-up, fire insensitive trees on grasses.

We therefore explicitly model the asymmetric na-

ture of tree-grass competitive interactions in fire-

prone savannas.

The analytical study of the model reveals three

possible equilibria excluding tree-grass coexis-

tence (desert, grassland, forest) along with equilib-

ria for which woody and grassy components show

durable coexistence (i.e. savanna vegetation). The

number of such equilibrium points depends on the

function used to model the increase of fire intensity

with grass biomass(see Remark 2); for our model,

we can have at most three savanna equilibria. We

identified four ecologically meaningful thresholds

that defined in parameter space regions of monos-

tability, bistability as in Accatino et al. 2010, De

Michele et al. 2011 and tristability with respect to

the equilibria. Tristability of equilibria may mean

that shifts from one stable state to another may

often be less spectacular that hypothesized from

previous models and that scenarios of vegetation

changes may be more complex.

The model features some parameters that have

been analytically identified as liable to trigger

bifurcations (i.e., the state variables of the model

converges to different steady states), notably pa-

rameters σNS and σG of asymmetric competi-

tion that embody the depressing influence of fire

insensitive trees on grasses and of grasses on

sensitive woody biomass respectively. Since tree-

grass asymmetric competition is largely mediated

by fire, this finding of the role of those two

parameters is not intuitive and is the result of

the modeling effort and of the analytical anal-

ysis. Since such parameters that quantify direct

interactions between woody and grassy compo-

nents appear crucial to understand the tree-grass

dynamics in savanna ecosystems and for enhanced

parameter assessment, they could be the focus of

straightforward field experiments that would not

request manipulating fire regime. Another bifur-

cation parameter is the fire frequency, f , (or fire

period parameter τ = 1
f ) which has been assumed

to be an external forcing parameter that integrates

both climatic and human influences. Frequent fires

preclude tree-grass coexistence and turn savannas

into grasslands. In the wettest situations, or under

subequatorial climates, very high fire frequencies

(above one fire per year) seem to be needed to

prevent the progression of forests over savannas

(unpublished data of experiments carry out at La

Lopé National Park in Gabon).

However, it is questionable to model fire as a

continuous forcing that regularly removes frac-

tions of fire sensitive biomass. Indeed, several

months can past between two successive fires, such

that fire may be considered as an instantaneous

perturbation of the savanna ecosystem. Several

recent papers have proposed to model fires as

stochastic events while keeping the continuous-

time differential equation framework (Beckage et

al. 2011) or using time discrete matrix models

(Accatino & De Michele 2013). But in all those

examples, fire characteristics remain mainly a lin-

ear function of grass biomass. Another framework

that we will explore in a forthcoming work in

order to acknowledge the discrete nature of fire

events is based on system of impulsive differential

equations (Lakshmikantham et al. 1989, Bainov

and Simeonov 1993).
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Appendix A: Expressions of T ∗
S , T ∗

NS and G∗

After straightforward but long

computation, we show that

T ∗
NS =

γG

σNS

⎛⎜⎜⎜⎜⎝1 − 1

R0
2

− G∗

KG

⎞⎟⎟⎟⎟⎠ ,

T ∗
S =

μNS
ωS

T ∗
NS ,

1

KT

(
1 +
ωS

μNS

)
T ∗

S = 1 − 1

R0
1

−μNS (σGG∗ + fηS w(G∗))
γSμNS + γNSωS

,

where G∗ is solution of

w(G) = AG + B = F(G), (11)

with

A =
1

fηS

(
γG(ωS + μNS )(γSμNS + γNSωS )

KGKTσNSμNSωS
− σG

)
,

B =

(γSμNS + γNSωS )
[
1 − 1

R0
1

− γG(ωS+μNS )

KTσNSωS

(
1 − 1

R0
2

)]
fηSμNS

.

We summarize the problem of existence of

solutions of equation (11) in the following Table

TABLE IV
Existence of solutions of equation (11)

A B Number of solutions

> 0 > 0 0 or 2 solutions

< 0 1 or 3 solutions

< 0 > 0 1 solution

< 0 0 solution

Note that solutions G∗ of (11) that give rise

to savanna equilibria must satisfy 0 < G∗ <

KG

⎛⎜⎜⎜⎜⎝1 − 1

R0
2

⎞⎟⎟⎟⎟⎠ .
Appendix B: Proof of Theorem 1

let R0
0
=

γS

μS + ωS + μNS
. In a matrical writing,

System (1) reads as

dX
dt

= A(X)X < Amax(X)X, (12)

with X = (TS , TNS ,G) ∈ R3
+, A(X) = (Ai j)1≤i, j≤3

with A11 = γS

(
1 − TS+TNS

KT

)
− (μS + ωS + σGG +

fηS w(G)), A12 = γNS

(
1 − TS+TNS

KT

)
, A13 = 0,

A21 = ωS , A22 = −μNS , A23 = 0, A31 = 0,

A32 = 0, A33 = γG

(
1 − G

KG

)
−(σNS TNS+ fηG+μG).

and

Amax(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
γS − μS − ωS γNS 0

ωS −μNS 0

0 0 γG

⎛⎜⎜⎜⎜⎝1 − 1

R0
2

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =(
A B
C D

)
,

with A =

(
γS − μS − ωS γNS

ωS −μNS

)
, B =(

0

0

)
,C =

(
0 0

)
, and D = γG

⎛⎜⎜⎜⎜⎝1 − 1

R0
2

⎞⎟⎟⎟⎟⎠ .
Matrix Amax(X) is a Metzler matrix ( i.e all its off-

diagonal terms are nonnegative) and α(Amax(X)) ≤
0 if α(A) ≤ 0 and α(D) ≤ 0 where α denotes

the stability modulus. Moreover, for matrix D,

α(D) ≤ 0 if

R0
2 < 1. (13)
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For matrix A, α(A) ≤ 0 if trace(A) < 0 and

det(A) > 0.

trace(A) = γS − μS − ωS − μNS

= γS

⎛⎜⎜⎜⎜⎝1 − 1

R0
0

⎞⎟⎟⎟⎟⎠ . (14)

det(A) = μNS (μS + ωS ) − (μNS γS + ωS γNS )

= μNS (μS + ωS )(1 − R0
1
).

(15)

Furthermore,

R0
0
< R0

1 (16)

Thus, from relations (13), (14), (15) and (16)

we deduce that the desert equilibrium (0; 0; 0) is

globally asymptotically stable whenever R0
1
< 1

and R0
2
< 1.

Appendix C: Proof of Theorem 2

If R0
1
> 1, then the forest equilibrium ET exists.

• Using the Jacobian matrix of system (1) at

ET , one can prove that ET is locally asymp-

totically stable if RT NS
2
< 1.

• The solution G of system (1) verify

dG
dt

≤ (γG − ( fηG + μG))G,

≤ γG

⎛⎜⎜⎜⎜⎝1 − 1

R0
2

⎞⎟⎟⎟⎟⎠ . (17)

So, if R0
2
< 1, then

lim
t→+∞G(t) = 0. (18)

Moreover, the solutions TS and TNS of system

(1) admit as a limit system, the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dTS

dt
= (γS TS + γNS TNS )

(
1 − TS + TNS

KT

)

−TS (μS + ωS ) = F1(TS , TNS ),
dTNS

dt
= ωS TS − μNS TNS = F2(TS ; TNS ).

(19)

Now, let h(TS , TNS ) = T−1
S . Then, one has

∂F1h
∂TS
+ ∂F2h
∂TNS
= −γNS

TNS

T 2
S

(
1 − TS+TNS

KT

)
− 1

KT TS
(γS TS + γNS TNS ) − μNS T−1

S .

Furthermore, we have

∂F1h
∂TS

+
∂F2h
∂TNS

< 0 in Ω◦2 where Ω2 =

{(TS , TNS ) ∈ R2
+ | 0 ≤ TS +TNS ≤ KT }, and by

the Bendixson-Dulac theorem, we deduce that

system (19) don’t admits a periodic solution

in Ω2.

Moreover, the equilibrium (T̄S , T̄NS ) exists

if R0
1
> 1 and using the Jacobian matrix

of system (19), we deduce that (T̄S , T̄NS ) is

locally asymptotically stable and then, glob-

ally asymptotically stable since there is no

periodic solution. Thus, if R0
2
< 1, then one

has

lim
t→+∞(TS , TNS ,G)(t) = ET .

• Suppose that

R0
1
=
γSμNS + γNSωS

μNS (μS + ωS )
> 1 and R0

2 =
γG

fηG + μG
> 1,

then equilibria (T̄ , T̄NS , 0), (0, 0, Ḡ) and

(T�S , T
�
NS ,G

�) are defined.

The Jacobian matrix of system (1) at an

arbitrarily equilibrium point is

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
J11 J12 J13

J21 J22 0

0 J32 J33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where
J11 = γS

(
1 − X+Y

KT

)
− 1

KT
(γS X + γNS Y)

−μS − ωS − σGZ − fηS w(Z),

J12 = γNS

(
1 − X+Y

KT

)
− 1

KT
(γS X + γNS Y),

J13 = −σGX − X fηS w′(Z),
J21 = ωS ,
J22 = −μNS ,
J32 = −σNS Z,
J33 = γG − 2

γG
KG

Z − σNS Y − fηG − μG.

The second additive compound matrix of J is

J[2] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
J11 + J22 0 −J13

J32 J11 + J33 J12

0 J21 J22 + J33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
(20)

From the Jacobian matrix of system (1),

the equilibria (0, 0, Ḡ) and (T�S , T
�
NS ,G

�) are

unstable if RḠ
2
> 1 and R < 1.

In the sequel, we suppose that RT̄NS
2
< 1 to

process with the discussion.

222 Mathematical Biology

_______________________ WORLD TECHNOLOGIES _______________________



WT

The second additive compound matrix

(20) at the equilibrium (T̄S , T̄NS , 0) is

J[2](T̄S , T̄NS , 0) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
J11 + J22 0 σT̄S

0 J11 + J33 J12

0 J21 J22 + J33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(T̄S ,T̄NS ,0)

.

Let

B =
(

J11 + J33 J12

J21 J22 + J33

)
.

Then, a simple calculation gives

(J11 + J22)(T̄S ,T̄NS ,0) = γS

(
1 − T̄S + T̄NS

KT

)
−

1

KT
(γS T̄S + γNS T̄NS ) − μS − ωS − μNS .

Using the relations

−μS −ωS = −
(
γS + γNS

ωS

μNS

) (
1 − T̄S + T̄NS

KT

)

and

(
1 − T̄S + T̄NS

KT

)
> 0, we have

(J11 + J22)(T̄S ,T̄NS ,0) = − 1

KT
T̄S

(
γS + γNS

ωS

μNS

)

−γNS
ωS

μNS

(
1 − T̄S + T̄NS

KT

)
− μNS < 0.

Since J11 + J22 < 0 and RT̄NS
2
< 1, one has

tr(B) = (J11 + J22 + 2J33)(T̄S ;T̄NS ;0),

= J11 + J22 + 2γG

⎛⎜⎜⎜⎜⎜⎜⎝1 − 1

RT̄NS
2

⎞⎟⎟⎟⎟⎟⎟⎠ < 0.

Also, if RT̄NS
2
< 1, one has

J11J33 =
(
− γG

KT
T̄S

(
γS + γNS

ωS
μNS

)
−γGγNS

ωS
μNS

(
1 − T̄S+T̄NS

KT

))
×
(
1 − 1

RT̄NS
2

)
> 0,

and

J33(J22 + J33) =

γG

⎛⎜⎜⎜⎜⎜⎜⎝1 − 1

RT̄NS
2

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝−μNS + γG

⎛⎜⎜⎜⎜⎜⎜⎝1 − 1

RT̄NS
2

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ > 0.

With this in mind, we have

det(B) = (J11 + J33)(J22 + J33) − J12J21,
= J11J22 − J21J12 + J11J33

+J33(J22 + J33),

=
μNS

KT
T̄S

(
γS + γNS

ωS

μNS

)

+
ωS

KT
(γS T̄S + γNS T̄NS )

+J11J33 + J33(J22 + J33) > 0.

Thus, if RT̄NS
2

< 1, one has

(J11 + J22)(T̄S ,T̄NS ,0) < 0, tr(B) < 0

and det(B) > 0. This implies that

s(J[2](T̄S , T̄NS , 0)) < 0 where s denotes

the stability modulus. Following Theorem

3.3 in Li and Wang 1998, we can deduce

that there is no hopf bifurcation points

for J(T̄S , T̄NS , 0). Since RT̄NS
2

< 1, the

equilibrium point (T̄S , T̄NS , 0) is locally

asymptotically stable and one can conclude

that this equilibrium point is globally

asymptotically stable if RT̄NS
2
< 1,RḠ

2
> 1 and

R < 1. This completes the proof.

Appendix D: Proof of Theorem 4

Suppose that the savanna equilibrium ETG ex-

ists. The Jacobian matrix of system (1) at ETG is

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
J11 J12 J13

J21 J22 0

0 J32 J33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where

J11 = γS

(
1 − TS+TNS

KT

)
− 1

KT
(γS TS + γNS TNS )

−μS − ωS − σGG − fηS w(G),

J12 = γNS

(
1 − TS+TNS

KT

)
− 1

KT
(γS TS + γNS TNS ),

J13 = −σGTS − TS fηS w′(G),
J21 = ωS ,
J22 = −μNS ,
J32 = −σNS G,
J33 = − γG

KG
G.

Let

A1 = −J11J22J33,
A2 = J21J12J33,
A3 = −J21J32J13,
C1 = −J11 − J22 − J33,
C2 = A1 + A2 + A3,

C3 = J11J33 + J11J22 − J21J12 + J22J33 − C2

C1
.
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Note that, by the Routh-Hurwitz theorem, the

savanna equilibrium ETG is locally asymptotically

stable if

C1 > 0, C2 > 0 and C3 > 0.
Moreover, components of the savanna equilibrium

ETG satisfy⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

TNS =
ωS
μNS

TS ,

−μS − ωS − σGG − fηS w(G) = −
(
γS + γNS

ωS
μNS

)
×(

1 − TS+TNS
KT

)
,

thus,

C1 = −J11 − J22 − J33,

= 1
KT

(γS TS + γNS TNS ) + γNS
ωS
μNS

(
1 − TS+TNS

KT

)
+μNS +

γG
KG

G,
> 0.

C3 = J11J33 + J11J22 − J21J12 + J22J33 − C2

C1
,

= 1
KT

(μNS + ωS )(γS TS + γNS TNS )

+
γGG
KG

(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
μNS

(
1 − TS+TNS

KT

)
+ μNS

)
− C2

C1
,

= 1
KT

(μNS + ωS )(γS TS + γNS TNS )

−
γGG

KG KT
(μNS+ωS )(γS TS+γNS TNS )

C1

+
ωSσNS G(σGTS fηS w′(G)TS )

C1

+
γGG
KG

(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
μNS

(
1 − TS+TNS

KT

)
+ μNS

)
,

= 1
KT

(μNS + ωS )(γS TS + γNS TNS )

(
1 −

γGG
KG
C1

)

+
ωSσNS G(σGTS fηS w′(G)TS )

C1

+
γGG
KG

(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
μNS

(
1 − TS+TNS

KT

)
+ μNS

)
,

= 1
KT C1

(μNS + ωS )(γS TS + γNS TNS )×(
1

KT
(γS TS + γNS TNS )

+γNS
ωS
μNS

(
1 − TS+TNS

KT

)
+ μNS

)

+
ωSσNS G(σGTS fηS w′(G)TS )

C1
+
γGG
KG

(
1

KT
(γS TS

+γNS TNS ) + γNS
ωS
μNS

(
1 − TS+TNS

KT

)
+ μNS

)
,

C3 > 0.

C2 = A1 + A2 + A3,

=
γGG

KG KT
(μNS + ωS )(γS TS + γNS TNS )

−ωSσNS G(σGTS + fηS w′(G)),

= ωSσNS GTS

(
γG

KG KTωSσNS
(μNS + ωS )×(

γS +
γNSωS
μNS

)
− σG − fηS w′(G)

)
,

= ωSσNS GTS (σG + fηS w′(G))(R − 1).

Thus, C2 > 0 if and only if R > 1.

Finally, we deduce that the savanna equilibrium

ETG, when it is unique, is locally asymptotically

stable if R = R(G) > 1. The first part of Theorem

4 holds.

One should note that C2 > 0 means that the

slope of w (the sigmoidal function) is less than

the slope of F where F is given by (11).

Furthermore, by using relation (11) we deduce

part 2 and part 3 of Theorem 4 graphically as

follow

Fig. 8. There exist two savanna equilibria but one is stable
and the other is unstable.

Fig. 9. There exist three savanna equilibria two are stable
and one is unstable. Thus system (1) will converge to one of
the two stable equilibria depending on initial conditions.
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Fig. 10. For these figure, μG = 0.4. The ODE’s routine which
is a standard numerical algorithms shows a spurious negative
solutions.

Appendix E: Spurious behaviors of Runge Kutta

methods to approximate solutions of system (1)

For the following figures we choose

γS γNS γG ηS ηG

0.1 2 0.6 0.5 0.5

μS μNS μG σNS σG

0.3 0.3 0.02 0.05

G0 ωS KT KG f
2 0.05 50 12 0.5

Other examples of spurious solutions given by

standard methods are also given in (Anguelov et

al. 2009).

Appendix F: Values of R0
1
, R0

2
, RG

1
, RT NS

2
and R in

figure 6

• Figure 6 (a):

R0
1

R0
2

RG
1

RT NS
2

4.8889 4.9412 2.6928 0.9863

• Figure 6 (b):
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Fig. 11. For these figure, μG = 0.5. The ODE’s routine which
is a standard numerical algorithms shows again a spurious
negative solutions.

R0
1

R0
2

RG
1

RT NS
2

4.8889 4.9412 1.5813 0.9861

• Figure 6 (c):

R0
1

R0
2

RG
1

RT NS
2

R
4.8889 4.9412 1.1193 0.9861 1.3984

• Figure 6 (d):

R0
1

R0
2

RG
1

RT NS
2

R
4.8889 4.9412 1.0431 0.9861 1.2980

• Figure 6 (e):

R0
1

R0
2

RG
1

RT NS
2

R
4.8889 4.9412 0.9766 0.9861 0.5936

• Figure 6 (f):

R0
1

R0
2

RG
1

RT NS
2

R
4.8889 4.9412 0.8662 0.9861 0.5746
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Appendix G: Values of R0
1
, R0

2
, RG

1
, RT NS

2
and R in

figure 7

• Figure 7 (a):

R0
1

R0
2

RG
1

RT NS
2

3.7778 3.6364 0.3840 1.1549

• Figure 7 (b):

R0
1

R0
2

RG
1

RT NS
2

3.7778 3.6364 0.3840 1.0162

• Figure 7 (c):

R0
1

R0
2

RG
1

RT NS
2

R
3.7778 3.6364 0.3840 0.9587 0.2066

• Figure 7 (d):

R0
1

R0
2

RG
1

RT NS
2

R
3.7778 3.6364 0.3840 0.9073 0.1453
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