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PREFACE

The purpose of this book is to help students understand the fundamental concepts of this discipline. It
is designed to motivate students to learn and prosper. I am grateful for the support of my colleagues.
I would also like to acknowledge the encouragement of my family.

The discipline of mathematics is concerned with the study of topics such as quantity, space, change
and structure. It uses patterns for the formulation of new conjectures. Pure mathematics and applied
mathematics are two of the major domains of mathematics. Pure mathematics focuses on the study of
mathematical concepts such as quantity and structure. Applied mathematics deals with the application
of mathematical concepts in different fields such as computer science, engineering, business, science
and industry. Some of the other subdisciplines within this field are arithmetic, geometry, algebra and
analysis. The concepts included in this book on mathematics are of utmost significance and bound to
provide incredible insights to readers. Some of the diverse topics covered herein address the varied
branches that fall under this category. Those with an interest in this field would find it helpful.

A foreword for all the chapters is provided below:
Chapter - Introduction

The study of numbers, basic shapes, sequences of numbers, patterns, etc. is called mathematics. It is
bifurcated into pure and applied mathematics. Several branches of mathematics include arithmetic,
geometry, trigonometry, integration, mensuration, algebra, etc. This is an introductory chapter which
will briefly introduce all the significant aspects of mathematics.

Chapter - Arithmetic

Arithmetic is the branch of mathematics which refers to the study of properties and manipulation
of numbers. Number theory, addition, subtraction, multiplication, division, decimal, etc. are some the
concepts that fall under its domain. All the diverse concepts of arithmetic have been carefully analyzed
in this chapter.

Chapter - Geometry

Geometry is a sub-discipline of mathematics which deals with the study of points, lines, surfaces, shapes,
size, relative position of figures, etc. Euclidean geometry, analytical geometry, non-Euclidean geometry,
projective geometry, etc. are some of the branches of geometry. The topics elaborated in this chapter
will help in gaining a better perspective of geometry.

Chapter - Algebra

Algebra is concerned with the study of mathematical symbols and the postulates used to manipulate
these symbols. These symbols are used to represent numbers and quantities. It is divided into elementary
algebra, abstract algebra, universal algebra, etc. This chapter closely examines these concepts of algebra
to provide an extensive understanding of the subject.
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Chapter - Trigonometry

The branch of mathematics which deals with the relation of lines and angles in a triangle is referred to
as trigonometry. Some of its basic principles are Pythagorean triple, Pythagorean theorem, trigonometric
functions, inverse trigonometric functions, etc. All the diverse principles of trigonometry have been
carefully analyzed in this chapter.

Chapter - Probability and Statistics

Probability helps to determine how likely an event can occur. The practice of collection, arrangement,
presentation and analysis of numerical data is called statistics. This chapter delves into probability
theory, statistical theory, decision theory, estimation theory, Bayes theorem, probability axioms, etc. to
provide an easy understanding of the subject.

Diana Marks
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Introduction

Mathematics
The Nature of Mathematics
Branches of Mathematics

Pure Mathematics

Applied Mathematics

The study of numbers, basic shapes, sequences of numbers, patterns, etc. is called mathemat-
ics. It is bifurcated into pure and applied mathematics. Several branches of mathematics include
arithmetic, geometry, trigonometry, integration, mensuration, algebra, etc. This is an introductory
chapter which will briefly introduce all the significant aspects of mathematics.

C Mathematics j

Mathematics is the science that deals with the logic of shape, quantity and arrangement. Math is
all around us, in everything we do. It is the building block for everything in our daily lives, includ-
ing mobile devices, architecture (ancient and modern), art, money, engineering, and even sports.

Since the beginning of recorded history, mathematic discovery has been at the forefront of every
civilized society, and in use in even the most primitive of cultures. The needs of math arose based
on the wants of society. The more complex a society, the more complex the mathematical needs.
Primitive tribes needed little more than the ability to count, but also relied on math to calculate the
position of the sun and the physics of hunting.

Several civilizations — in China, India, Egypt, Central America and Mesopotamia — contributed to
mathematics as we know it today. The Sumerians were the first people to develop a counting system.
Mathematicians developed arithmetic, which includes basic operations, multiplication, fractions
and square roots. The Sumerians’ system passed through the Akkadian Empire to the Babylonians
around 300 B.C. Six hundred years later, in America, the Mayans developed elaborate calendar sys-
tems and were skilled astronomers. About this time, the concept of zero was developed.

As civilizations developed, mathematicians began to work with geometry, which computes areas
and volumes to make angular measurements and has many practical applications. Geometry is
used in everything from home construction to fashion and interior design.
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Geometry went hand in hand with algebra, invented in the ninth century by a Persian mathemati-
cian, Mohammed ibn-Musa al-Khowarizmi. He also developed quick methods for multiplying and
diving numbers, which are known as algorithms — a corruption of his name.

Algebra offered civilizations a way to divide inheritances and allocate resources. The study of alge-
bra meant mathematicians were solving linear equations and systems, as well as quadratics, and
delving into positive and negative solutions. Mathematicians in ancient times also began to look at
number theory. With origins in the construction of shape, number theory looks at figurate num-
bers, the characterization of numbers, and theorems.

Math and the Greeks

The study of math within early civilizations was the building blocks for the math of the Greeks,
who developed the model of abstract mathematics through geometry. Greece, with its incredible
architecture and complex system of government, was the model of mathematic achievement until
modern times. Greek mathematicians were divided into several schools:

« The Ionian School, founded by Thales, who is often credited for having given the first de-
ductive proofs and developing five basic theorems in plane geometry.

« The Pythagorean School, founded by Pythagoras, who studied proportion, plane and solid
geometry, and number theory.

« The Eleatic School, which included Zeno of Elea, famous for his four paradoxes.

« The Sophist School, which is credited for offering higher education in the advanced Greek
cities. Sophists provided instruction on public debate using abstract reasoning.

« The Platonic School, founded by Plato, who encouraged research in mathematics in a set-
ting much like a modern university.

« The School of Eudoxus, founded by Eudoxus, who developed the theory of proportion and
magnitude and produced many theorems in plane geometry.

« The School of Aristotle, also known as the Lyceum, was founded by Aristotle and followed
the Platonic school.

In addition to the Greek mathematicians listed above, a number of Greeks made an indelible mark
on the history of mathematics. Archimedes, Apollonius, Diophantus, Pappus, and Euclid all came
from this era.

During this time, mathematicians began working with trigonometry. Computational in nature,
trigonometry requires the measurement of angles and the computation of trigonometric functions,
which include sine, cosine, tangent, and their reciprocals. Trigonometry relies on the synthetic
geometry developed by Greek mathematicians like Euclid. For example, Ptolemy’s theorem gives
rules for the chords of the sum and difference of angles, which correspond to the sum and differ-
ence formulas for sines and cosines. In past cultures, trigonometry was applied to astronomy and
the computation of angles in the celestial sphere.

After the fall of Rome, the development of mathematics was taken on by the Arabs, then the Euro-
peans. Fibonacci was one of the first European mathematicians, and was famous for his theories on
arithmetic, algebra, and geometry. The Renaissance led to advances that included decimal fractions,
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logarithms, and projective geometry. Number theory was greatly expanded upon, and theories like
probability and analytic geometry ushered in a new age of mathematics, with calculus at the forefront.

Development of Calculus

In the 17th century, Isaac Newton and Gottfried Leibniz independently developed the foundations
for calculus. Calculus development went through three periods: anticipation, development and
rigorization. In the anticipation stage, mathematicians were attempting to use techniques that
involved infinite processes to find areas under curves or maximize certain qualities. In the de-
velopment stage, Newton and Leibniz brought these techniques together through the derivative
and integral. Though their methods were not always logically sound, mathematicians in the 18th
century took on the rigorization stage, and were able to justify them and create the final stage of
calculus. Today, we define the derivative and integral in terms of limits.

In contrast to calculus, which is a type of continuous mathematics, other mathematicians have tak-
en a more theoretical approach. Discrete mathematics is the branch of math that deals with objects
that can assume only distinct, separated value. Discrete objects can be characterized by integers,
whereas continuous objects require real numbers. Discrete mathematics is the mathematical lan-
guage of computer science, as it includes the study of algorithms. Fields of discrete mathematics
include combinatorics, graph theory, and the theory of computation.

People often wonder what relevance mathematicians serve today. In a modern world, math such
as applied mathematics is not only relevant, it’s crucial. Applied mathematics is the branches of
mathematics that are involved in the study of the physical, biological, or sociological world. The
idea of applied math is to create a group of methods that solve problems in science. Modern areas
of applied math include mathematical physics, mathematical biology, control theory, aerospace
engineering, and math finance. Not only does applied math solve problems, but it also discovers
new problems or develops new engineering disciplines. Applied mathematicians require exper-
tise in many areas of math and science, physical intuition, common sense, and collaboration. The
common approach in applied math is to build a mathematical model of a phenomenon, solve the
model, and develop recommendations for performance improvement.

While not necessarily an opposite to applied mathematics, pure mathematics is driven by abstract
problems, rather than real world problems. Much of what’s pursued by pure mathematicians can
have their roots in concrete physical problems, but a deeper understanding of these phenomena
brings about problems and technicalities. These abstract problems and technicalities are what
pure mathematics attempts to solve, and these attempts have led to major discoveries for man-
kind, including the Universal Turing Machine, theorized by Alan Turing in 1937. The Universal
Turing Machine, which began as an abstract idea, later laid the groundwork for the development
of the modern computer. Pure mathematics is abstract and based in theory, and is thus not con-
strained by the limitations of the physical world.

According to one pure mathematician, pure mathematicians prove theorems, and applied math-
ematicians construct theories. Pure and applied are not mutually exclusive, but they are rooted
in different areas of math and problem solving. Though the complex math involved in pure and
applied mathematics is beyond the understanding of most average Americans, the solutions devel-
oped from the processes have affected and improved the lives of all.
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(C The Nature of Mathematics ))

Mathematics relies on both logic and creativity, and it is pursued both for a variety of practical
purposes and for its intrinsic interest. For some people, and not only professional mathema-
ticians, the essence of mathematics lies in its beauty and its intellectual challenge. For others,
including many scientists and engineers, the chief value of mathematics is how it applies to
their own work. Because mathematics plays such a central role in modern culture, some ba-
sic understanding of the nature of mathematics is requisite for scientific literacy. To achieve
this, students need to perceive mathematics as part of the scientific endeavor, comprehend
the nature of mathematical thinking, and become familiar with key mathematical ideas and
skills.

Patterns and Relationships

Mathematics is the science of patterns and relationships. As a theoretical discipline, mathemat-
ics explores the possible relationships among abstractions without concern for whether those ab-
stractions have counterparts in the real world. The abstractions can be anything from strings of
numbers to geometric figures to sets of equations. In addressing, say, “Does the interval between
prime numbers form a pattern?” as a theoretical question, mathematicians are interested only in
finding a pattern or proving that there is none, but not in what use such knowledge might have. In
deriving, for instance, an expression for the change in the surface area of any regular solid as its
volume approaches zero, mathematicians have no interest in any correspondence between geo-
metric solids and physical objects in the real world.

A central line of investigation in theoretical mathematics is identifying in each field of study a
small set of basic ideas and rules from which all other interesting ideas and rules in that field
can be logically deduced. Mathematicians, like other scientists, are particularly pleased when
previously unrelated parts of mathematics are found to be derivable from one another, or from
some more general theory. Part of the sense of beauty that many people have perceived in
mathematics lies not in finding the greatest elaborateness or complexity but on the contrary,
in finding the greatest economy and simplicity of representation and proof. As mathematics
has progressed, more and more relationships have been found between parts of it that have
been developed separately—for example, between the symbolic representations of algebra and
the spatial representations of geometry. These cross-connections enable insights to be devel-
oped into the various parts; together, they strengthen belief in the correctness and underlying
unity of the whole structure.

Mathematics is also an applied science. Many mathematicians focus their attention on solving
problems that originate in the world of experience. They too search for patterns and relationships,
and in the process they use techniques that are similar to those used in doing purely theoretical
mathematics. The difference is largely one of intent. In contrast to theoretical mathematicians,
applied mathematicians, in the examples given above, might study the interval pattern of prime
numbers to develop a new system for coding numerical information, rather than as an abstract
problem. Or they might tackle the area/volume problem as a step in producing a model for the
study of crystal behavior.
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The results of theoretical and applied mathematics often influence each other. The discoveries
of theoretical mathematicians frequently turn out—sometimes decades later—to have unantici-
pated practical value. Studies on the mathematical properties of random events, for example, led
to knowledge that later made it possible to improve the design of experiments in the social and
natural sciences. Conversely, in trying to solve the problem of billing long-distance telephone us-
ers fairly, mathematicians made fundamental discoveries about the mathematics of complex net-
works. Theoretical mathematics, unlike the other sciences, is not constrained by the real world,
but in the long run it contributes to a better understanding of that world.

Mathematics, Science and Technology

Because of its abstractness, mathematics is universal in a sense that other fields of human thought
are not. It finds useful applications in business, industry, music, historical scholarship, politics,
sports, medicine, agriculture, engineering, and the social and natural sciences. The relationship
between mathematics and the other fields of basic and applied science is especially strong. This is
so for several reasons, including the following;:

« The alliance between science and mathematics has a long history, dating back many cen-
turies. Science provides mathematics with interesting problems to investigate, and math-
ematics provides science with powerful tools to use in analyzing data. Often, abstract pat-
terns that have been studied for their own sake by mathematicians have turned out much
later to be very useful in science. Science and mathematics are both trying to discover gen-
eral patterns and relationships, and in this sense they are part of the same endeavor.

« Mathematics is the chief language of science. The symbolic language of mathematics
has turned out to be extremely valuable for expressing scientific ideas unambiguously.
The statement that a=F/m is not simply a shorthand way of saying that the acceleration
of an object depends on the force applied to it and its mass; rather, it is a precise state-
ment of the quantitative relationship among those variables. More important, math-
ematics provides the grammar of science—the rules for analyzing scientific ideas and
data rigorously.

« Mathematics and science have many features in common. These include a belief in un-
derstandable order; an interplay of imagination and rigorous logic; ideals of honesty
and openness; the critical importance of peer criticism; the value placed on being the
first to make a key discovery; being international in scope; and even, with the develop-
ment of powerful electronic computers, being able to use technology to open up new
fields of investigation.

« Mathematics and technology have also developed a fruitful relationship with each other.
The mathematics of connections and logical chains, for example, has contributed greatly
to the design of computer hardware and programming techniques. Mathematics also con-
tributes more generally to engineering, as in describing complex systems whose behavior
can then be simulated by computer. In those simulations, design features and operating
conditions can be varied as a means of finding optimum designs. For its part, computer
technology has opened up whole new areas in mathematics, even in the very nature of
proof, and it also continues to help solve previously daunting problems.
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Mathematical Inquiry

Using mathematics to express ideas or to solve problems involves at least three phases: (1) rep-
resenting some aspects of things abstractly, (2) manipulating the abstractions by rules of logic to
find new relationships between them, and (3) seeing whether the new relationships say something
useful about the original things.

Abstraction and Symbolic Representation

Mathematical thinking often begins with the process of abstraction—that is, noticing a simi-
larity between two or more objects or events. Aspects that they have in common, whether con-
crete or hypothetical, can be represented by symbols such as numbers, letters, other marks, di-
agrams, geometrical constructions, or even words. Whole numbers are abstractions that
represent the size of sets of things and events or the order of things within a set. The circle
as a concept is an abstraction derived from human faces, flowers, wheels, or spreading rip-
ples; the letter A may be an abstraction for the surface area of objects of any shape, for the
acceleration of all moving objects, or for all objects having some specified property; the sym-
bol + represents a process of addition, whether one is adding apples or oranges, hours, or
miles per hour. And abstractions are made not only from concrete objects or processes; they
can also be made from other abstractions, such as kinds of numbers (the even numbers, for
instance).

Such abstraction enables mathematicians to concentrate on some features of things and re-
lieves them of the need to keep other features continually in mind. As far as mathematics is
concerned, it does not matter whether a triangle represents the surface area of a sail or the
convergence of two lines of sight on a star; mathematicians can work with either concept in the
same way. The resulting economy of effort is very useful—provided that in making an abstrac-
tion, care is taken not to ignore features that play a significant role in determining the outcome
of the events being studied.

Manipulating Mathematical Statements

After abstractions have been made and symbolic representations of them have been selected, those
symbols can be combined and recombined in various ways according to precisely defined rules.
Sometimes that is done with a fixed goal in mind; at other times it is done in the context of experi-
ment or play to see what happens. Sometimes an appropriate manipulation can be identified easily
from the intuitive meaning of the constituent words and symbols; at other times a useful series of
manipulations has to be worked out by trial and error.

Typically, strings of symbols are combined into statements that express ideas or propositions. For
example, the symbol A for the area of any square may be used with the symbol s for the length of
the square’s side to form the proposition A = s2. This equation specifies how the area is related to
the side—and also implies that it depends on nothing else. The rules of ordinary algebra can then
be used to discover that if the length of the sides of a square is doubled, the square’s area becomes
four times as great. More generally, this knowledge makes it possible to find out what happens
to the area of a square no matter how the length of its sides is changed, and conversely, how any
change in the area affects the sides.
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Mathematical insights into abstract relationships have grown over thousands of years, and they
are still being extended—and sometimes revised. Although they began in the concrete experience
of counting and measuring, they have come through many layers of abstraction and now depend
much more on internal logic than on mechanical demonstration. In a sense, then, the manipula-
tion of abstractions is much like a game: Start with some basic rules, then make any moves that fit
those rules—which includes inventing additional rules and finding new connections between old
rules. The test for the validity of new ideas is whether they are consistent and whether they relate
logically to the other rules.

Application

Mathematical processes can lead to a kind of model of a thing, from which insights can be
gained about the thing itself. Any mathematical relationships arrived at by manipulating ab-
stract statements may or may not convey something truthful about the thing being modeled.
For example, if 2 cups of water are added to 3 cups of water and the abstract mathematical
operation 2+3 = 5 is used to calculate the total, the correct answer is 5 cups of water. How-
ever, if 2 cups of sugar are added to 3 cups of hot tea and the same operation is used, 5 is an
incorrect answer, for such an addition actually results in only slightly more than 4 cups of very
sweet tea. The simple addition of volumes is appropriate to the first situation but not to the
second—something that could have been predicted only by knowing something of the physical
differences in the two situations. To be able to use and interpret mathematics well, therefore,
it is necessary to be concerned with more than the mathematical validity of abstract opera-
tions and to also take into account how well they correspond to the properties of the things
represented.

Sometimes common sense is enough to enable one to decide whether the results of the mathemat-
ics are appropriate. For example, to estimate the height 20 years from now of a girl who is 5’ 57 tall
and growing at the rate of an inch per year, common sense suggests rejecting the simple “rate times
time” answer of 7’ 1”7 as highly unlikely, and turning instead to some other mathematical model,
such as curves that approach limiting values. Sometimes, however, it may be difficult to know just
how appropriate mathematical results are—for example, when trying to predict stock-market pric-
es or earthquakes.

Often a single round of mathematical reasoning does not produce satisfactory conclusions, and
changes are tried in how the representation is made or in the operations themselves. Indeed,
jumps are commonly made back and forth between steps, and there are no rules that determine
how to proceed. The process typically proceeds in fits and starts, with many wrong turns and dead
ends. This process continues until the results are good enough.

But what degree of accuracy is good enough? The answer depends on how the result will be
used, on the consequences of error, and on the likely cost of modeling and computing a more
accurate answer. For example, an error of 1 percent in calculating the amount of sugar in a
cake recipe could be unimportant, whereas a similar degree of error in computing the tra-
jectory for a space probe could be disastrous. The importance of the “good enough” question
has led, however, to the development of mathematical processes for estimating how far off
results might be and how much computation would be required to obtain the desired degree
of accuracy.
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C Branches of Mathematics ))

Arithmetic

Arithmetic or arithmetics is the oldest and most elementary branch of mathematics, used by al-
most everyone, for tasks ranging from simple day-to-day counting to advanced science and busi-
ness calculations. It involves the study of quantity, especially as the result of combining numbers.
In common usage, it refers to the simpler properties when using the traditional operations ofaddi-
tion, subtraction, multiplication and division with smaller values of numbers. Professional math-
ematicians sometimes use the term (higher) arithmetic when referring to more advanced results
related to number theory, but this should not be confused with elementary arithmetic.

Geometry

Geometry or “Earth-Measuring” is a part of mathematics concerned with questions of size, shape,
relative position of figures, and the properties of space. Geometry is one of the oldest sciences. Ini-
tially a body of practical knowledge concerning lengths, areas, and volumes, in the 3rd century BC
geometry was put into anaxiomatic form by Euclid, whose treatment—Euclidean geometry—set a
standard for many centuries to follow. The field of astronomy, especially mapping the positions of
the stars and planets on the celestial sphere, served as an important source of geometric problems
during the next one and a half millennia. A mathematician who works in the field of geometry is
called a geometer.
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Trigonometry

Trigonometry is a branch of mathematics that studies triangles, particularly right triangles. Trigo-
nometry deals with relationships between the sides and the angles of triangles and with the trigo-
nometric functions, which describe those relationships, as well as describing angles in general and
the motion of waves such as sound and light waves.

Mensuration

That branch of applied geometry which gives rules for finding the length of lines, the areas of sur-
faces, or the volumes of solids, from certain simple data of lines and angles.

Algebra

Algebra is the branch of mathematics concerning the study of the rules of operations and relations,
and the constructions and concepts arising from them, including terms, polynomials, equations
and algebraic structures. Together with geometry, analysis, topology, combinatorics, and number
theory, algebra is one of the main branches of pure mathematics. The part of algebra called ele-
mentary algebra is often part of the curriculum in secondary education and introduces the concept
of variables representing numbers. Statements based on these variables are manipulated using
the rules of operations that apply to numbers, such as addition. This can be done for a variety of
reasons, including equation solving. Algebra is much broader than elementary algebra and studies
what happens when different rules of operations are used and when operations are devised for
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things other than numbers. Addition and multiplication can be generalized and their precise defi-
nitions lead to structures such as groups, rings and fields.

Calculus

Calculus (Latin, calculus, a small stone used for counting) is a branch in mathematics focused on
limits, functions, derivatives, integrals, and infinite series. This subject constitutes a major part of
modern mathematics education. It has two major branches, differential calculus and integral cal-
culus, which are related by the fundamental theorem of calculus. Calculus is the study of change,
in the same way that geometry is the study of shape andalgebra is the study of operations and their
application to solving equations. A course in calculus is a gateway to other, more advanced courses
in mathematics devoted to the study of functions and limits, broadly called mathematical analysis.
Calculus has widespread applications in science, economics, and engineering and can solve many
problems for which algebra alone is insufficient.

C Pure Mathematicsj)

Pure mathematics studies the properties and structure of abstract objects, such as the E8 group, in group theory. This
may be done without focusing on concrete applications of the concepts in the physical world.

Pure mathematics is the study of mathematical concepts independently of any application outside
mathematics. These concepts may originate in real-world concerns, and the results obtained may
later turn out to be useful for practical applications, but the pure mathematicians are not primarily
motivated by such applications. Instead, the appeal is attributed to the intellectual challenge and
aesthetic beauty of working out the logical consequences of basic principles.

While pure mathematics has existed as an activity since at least Ancient Greece, the concept
was elaborated upon around the year 1900, after the introduction of theories with counter-in-
tuitive properties (such as non-Euclidean geometries and Cantor’s theory of infinite sets),
and the discovery of apparent paradoxes (such as continuous functions that are nowhere
differentiable, and Russell’s paradox). This introduced the need of renewing the concept of
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mathematical rigor and rewriting all mathematics accordingly, with a systematic use of axi-
omatic methods. This led many mathematicians to focus on mathematics for its own sake, that
is, pure mathematics.

Nevertheless, almost all mathematical theories remained motivated by problems coming from the
real world or from less abstract mathematical theories. Also, many mathematical theories, which
had seemed to be totally pure mathematics, were eventually used in applied areas, mainly phys-
ics and computer science. A famous early example is Isaac Newton’s demonstration that his law
of universal gravitation implied that planets move in orbits that are conic sections, geometrical
curves that had been studied in antiquity by Apollonius. Another example is the problem of fac-
toring large integers, which is the basis of the RSA cryptosystem, widely used to secure internet
communications.

It follows that, presently, the distinction between pure and applied mathematics is more a philo-
sophical point of view or a mathematician’s preference than a rigid subdivision of mathematics.
In particular, it is not uncommon that some members of a department of applied mathematics
describe themselves as pure mathematicians.

Generality and Abstraction

An illustration of the Banach—Tarski paradox, a famous result in pure mathematics. Although it
is proven that it is possible to convert one sphere into two using nothing but cuts and rotations,
the transformation involves objects that cannot exist in the physical world.

One central concept in pure mathematics is the idea of generality; pure mathematics often exhibits
a trend towards increased generality. Uses and advantages of generality include the following:

» Generalizing theorems or mathematical structures can lead to deeper understanding of the
original theorems or structures.

« Generality can simplify the presentation of material, resulting in shorter proofs or argu-
ments that are easier to follow.

« One can use generality to avoid duplication of effort, proving a general result instead of hav-
ing to prove separate cases independently, or using results from other areas of mathematics.

« Generality can facilitate connections between different branches of mathematics. Category
theory is one area of mathematics dedicated to exploring this commonality of structure as
it plays out in some areas of math.

Generality’s impact on intuition is both dependent on the subject and a matter of personal prefer-
ence or learning style. Often generality is seen as a hindrance to intuition, although it can certainly
function as an aid to it, especially when it provides analogies to material for which one already has
good intuition.
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As a prime example of generality, the Erlangen program involved an expansion of geometry to
accommodate non-Euclidean geometries as well as the field of topology, and other forms of geom-
etry, by viewing geometry as the study of a space together with a group of transformations. The
study of numbers, called algebra at the beginning undergraduate level, extends to abstract algebra
at a more advanced level; and the study of functions, called calculus at the college freshman level
becomes mathematical analysis and functional analysis at a more advanced level. Each of these
branches of more abstract mathematics have many sub-specialties, and there are in fact many
connections between pure mathematics and applied mathematics disciplines. A steep rise in ab-
straction was seen mid 20th century.

In practice, however, these developments led to a sharp divergence from physics, particularly from
1950 to 1983. Later this was criticised, for example by Vladimir Arnold, as too much Hilbert, not
enough Poincaré. The point does not yet seem to be settled, in that string theory pulls one way,
while discrete mathematics pulls back towards proof as central.

C Applied Mathematics ))

\\ _ >
Efficient solutions to the vehicle routing problem require tools from combinatorial
optimization and integer programming.

Applied mathematics is the application of mathematical methods by different fields such as sci-
ence, engineering, business, computer science, and industry. Thus, applied mathematics is a com-
bination of mathematical science and specialized knowledge. The term “applied mathematics” also
describes the professional specialty in which mathematicians work on practical problems by for-
mulating and studying mathematical models. In the past, practical applications have motivated
the development of mathematical theories, which then became the subject of study in pure mathe-
matics where abstract concepts are studied for their own sake. The activity of applied mathematics
is thus intimately connected with research in pure mathematics.

Divisions

Today, the term “applied mathematics” is used in a broader sense. It includes the classical areas
noted above as well as other areas that have become increasingly important in applications. Even
fields such as number theory that are part of pure mathematics are now important in applications
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(such as cryptography), though they are not generally considered to be part of the field of applied
mathematics per se. Sometimes, the term “applicable mathematics” is used to distinguish between
the traditional applied mathematics that developed alongside physics and the many areas of math-
ematics that are applicable to real-world problems today.
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Fluid mechanics is often considered a branch of applied mathematics and mechanical engineering.

There is no consensus as to what the various branches of applied mathematics are. Such categori-
zations are made difficult by the way mathematics and science change over time, and also by the
way universities organize departments, courses, and degrees.

Many mathematicians distinguish between “applied mathematics”, which is concerned with mathe-
matical methods, and the “applications of mathematics” within science and engineering. A biologist
using a population model and applying known mathematics would not be doing applied mathematics,
but rather using it; however, mathematical biologists have posed problems that have stimulated the
growth of pure mathematics. Mathematicians such as Poincaré and Arnold deny the existence of “ap-
plied mathematics” and claim that there are only “applications of mathematics.” Similarly, non-math-
ematicians blend applied mathematics and applications of mathematics. The use and development of
mathematics to solve industrial problems is also called “industrial mathematics”.

The success of modern numerical mathematical methods and software has led to the emergence
of computational mathematics, computational science, and computational engineering, which use
high-performance computing for the simulation of phenomena and the solution of problems in the
sciences and engineering. These are often considered interdisciplinary.

Utility
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Mathematical finance is concerned with the modelling of financial markets.
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Historically, mathematics was most important in the natural sciences and engineering. However,
since World War 1II, fields outside the physical sciences have spawned the creation of new ar-
eas of mathematics, such as game theory and social choice theory, which grew out of economic
considerations.

The advent of the computer has enabled new applications: studying and using the new computer
technology itself (computer science) to study problems arising in other areas of science (compu-
tational science) as well as the mathematics of computation (for example, theoretical computer
science, computer algebra, numerical analysis). Statistics is probably the most widespread mathe-
matical science used in the social sciences, but other areas of mathematics, most notably econom-
ics, are proving increasingly useful in these disciplines.

Status in Academic Departments

Academic institutions are not consistent in the way they group and label courses, programs,
and degrees in applied mathematics. At some schools, there is a single mathematics depart-
ment, whereas others have separate departments for Applied Mathematics and (Pure) Mathe-
matics. It is very common for Statistics departments to be separated at schools with graduate
programs, but many undergraduate-only institutions include statistics under the mathematics
department.

Many applied mathematics programs (as opposed to departments) consist of primarily
cross-listed courses and jointly appointed faculty in departments representing applications.
Some Ph.D. programs in applied mathematics require little or no coursework outside mathe-
matics, while others require substantial coursework in a specific area of application. In some
respects this difference reflects the distinction between “application of mathematics” and “ap-
plied mathematics”.

Some universities in the UK host departments of Applied Mathematics and Theoretical Phys-
ics, but it is now much less common to have separate departments of pure and applied mathe-
matics. A notable exception to this is the Department of Applied Mathematics and Theoretical
Physics at the University of Cambridge, housing the Lucasian Professor of Mathematics whose
past holders include Isaac Newton, Charles Babbage, James Lighthill, Paul Dirac and Stephen
Hawking.

Schools with separate applied mathematics departments range from Brown University, which has
a large Division of Applied Mathematics that offers degrees through the doctorate, to Santa Clara
University, which offers only the M.S. in applied mathematics. Research universities dividing their
mathematics department into pure and applied sections include MIT. Brigham Young University
also has an Applied and Computational Emphasis (ACME), a program that allows student to grad-
uate with a Mathematics degree, with an emphasis in Applied Math. Students in this program also
learn another skill (Computer Science, Engineering, Physics, Pure Math, etc.) to supplement their
applied math skills.

Associated Mathematical Sciences

Applied mathematics is closely related to other mathematical sciences.
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Applied mathematics has substantial overlap with statistics.

Scientific Computing

Scientific computing includes applied mathematics (especially numerical analysis), computing
science (especially high-performance computing), and mathematical modelling in a scientific
discipline.

Computer Science

Computer science relies on logic, algebra, graph theory, and combinatorics. It entails software
engineering.

Operations Research and Management Science

Operations research and management science are often taught in faculties of engineering, busi-
ness, and public policy.

Statistics

Applied mathematics has substantial overlap with the discipline of statistics. Statistical theo-
rists study and improve statistical procedures with mathematics, and statistical research often
raises mathematical questions. Statistical theory relies on probability and decision theory,
and makes extensive use of scientific computing, analysis, and optimization; for the design of
experiments, statisticians use algebra and combinatorial design. Applied mathematicians and
statisticians often work in a department of mathematical sciences (particularly at colleges and
small universities).
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Actuarial Science

Actuarial science applies probability, statistics, and economic theory to assess risk in insurance,
finance and other industries and professions.

Mathematical Economics

Mathematical economics is the application of mathematical methods to represent theories and
analyze problems in economics. The applied methods usually refer to nontrivial mathematical
techniques or approaches. Mathematical economics is based on statistics, probability, mathemat-
ical programming (as well as other computational methods), operations research, game theory,
and some methods from mathematical analysis. In this regard, it resembles (but is distinct from)
financial mathematics, another part of applied mathematics.

According to the Mathematics Subject Classification (MSC), mathematical economics falls into
the Applied mathematics/other classification of category 91: Game theory, economics, social and
behavioral sciences with MSC2010 classifications for ‘Game theory’ at codes 91Axx and for ‘Math-
ematical economics’ at codes 91Bxx.

Applicable Mathematics

Applicable mathematics is a subdiscipline of applied mathematics, although there is no consensus
as to a precise definition. Sometimes the term “applicable mathematics” is used to distinguish be-
tween the traditional applied mathematics that developed alongside physics and the many areas of
mathematics that are applicable to real-world problems today.

Mathematicians often distinguish between “applied mathematics” on the one hand, and the “ap-
plications of mathematics” or “applicable mathematics” both within and outside of science and
engineering, on the other. Some mathematicians emphasize the term applicable mathematics to
separate or delineate the traditional applied areas from new applications arising from fields that
were previously seen as pure mathematics. For example, from this viewpoint, an ecologist or ge-
ographer using population models and applying known mathematics would not be doing applied,
but rather applicable, mathematics. Even fields such as number theory that are part of pure math-
ematics are now important in applications (such as cryptography), though they are not generally
considered to be part of the field of applied mathematics per se.

Other authors prefer describing applicable mathematics as a union of “new” mathematical appli-
cations with the traditional fields of applied mathematics. With this outlook, the terms applied
mathematics and applicable mathematics are thus interchangeable.

Other Disciplines

The line between applied mathematics and specific areas of application is often blurred. Many
universities teach mathematical and statistical courses outside the respective departments, in
departments and areas including business, engineering, physics, chemistry, psychology, biology,
computer science, scientific computation, and mathematical physics.
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Arithmetic

Number Theory
Addition

Subtraction

Multiplication

Division

Decimal

Arithmetic is the branch of mathematics which refers to the study of properties and manipulation
of numbers. Number theory, addition, subtraction, multiplication, division, decimal, etc. are some
the concepts that fall under its domain. All the diverse concepts of arithmetic have been carefully
analyzed in this chapter.

Arithmetic is the branch of mathematics in which numbers, relations among numbers, and obser-
vations on numbers are studied and used to solve problems.

Arithmetic refers generally to the elementary aspects of the theory of numbers, arts of mensura-
tion (measurement), and numerical computation (that is, the processes of addition, subtraction,
multiplication, division, raising to powers, and extraction of roots). Its meaning, however, has not
been uniform in mathematical usage. An eminent German mathematician, Carl Friedrich Gauss,
in Disquisitiones Arithmeticae, and certain modern-day mathematicians have used the term to
include more advanced topics.

Fundamental Definitions and Laws

Natural Numbers

In a collection (or set) of objects (or elements), the act of determining the number of objects pres-
ent is called counting. The numbers thus obtained are called the counting numbers or natural
numbers (1, 2, 3, ...). For an empty set, no object is present, and the count yields the number o,
which, appended to the natural numbers, produces what are known as the whole numbers.

If objects from two sets can be matched in such a way that every element from each set is uniquely
paired with an element from the other set, the sets are said to be equal or equivalent. The concept
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of equivalent sets is basic to the foundations of modern mathematics and has been introduced into
primary education, notably as part of the “new math” that has been alternately acclaimed and de-
cried since it appeared in the 1960s.

Addition and Multiplication

Combining two sets of objects together, which contain a and b elements, a new set is formed that con-
tains a + b = c objects. The number c is called the sum of a and b; and each of the latter is called a sum-
mand. The operation of forming the sum is called addition, the symbol + being read as “plus.” This is
the simplest binary operation, where binary refers to the process of combining two objects.

From the definition of counting it is evident that the order of the summands can be changed and
the order of the operation of addition can be changed, when applied to three summands, without
affecting the sum. These are called the commutative law of addition and the associative law of ad-
dition, respectively.

If there exists a natural number k such that a =b+k, it is said that a is greater than b (written
a > b) and that b is less than a (written b < a ). If a and b are any two natural numbers, then it is
the case that either a=b or a > b or a < b (the trichotomy law).

From the above laws, it is evident that a repeated sum such as 5 + 5 + 5 is independent of the way
in which the summands are grouped; it can be written 3 x 5. Thus, a second binary operation called
multiplication is defined. The number 5 is called the multiplicand; the number 3, which denotes
the number of summands, is called the multiplier; and the result 3 x 5 is called the product. The
symbol x of this operation is read “times.” If such letters as a and b are used to denote the num-
bers, the product a xb is often written a.h or simply ab.

If three rows of five dots each are written, as illustrated below:

It is clear that the total number of dots in the array is 3 x 5, or 15. This same number of dots can
evidently be written in five rows of three dots each, whence 5 x 3 = 15. The argument is general,
leading to the law that the order of the multiplicands does not affect the product, called the com-
mutative law of multiplication. But it is notable that this law does not apply to all mathematical
entities. Indeed, much of the mathematical formulation of modern physics, for example, depends
crucially on the fact that some entities do not commute.

By the use of a three-dimensional array of dots, it becomes evident that the order of multiplication
when applied to three numbers does not affect the product. Such a law is called the associative law
of multiplication. If the 15 dots written above are separated into two sets, as shown,
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then the first set consists of three columns of three dots each, or 3 x 3 dots; the second set consists
of two columns of three dots each, or 2 x 3 dots; the sum (3 x 3) + (2 x 3) consistsof 3 + 2 =5
columns of three dots each, or (3 + 2) x 3 dots. In general, one may prove that the multiplication
of a sum by a number is the same as the sum of two appropriate products. Such a law is called the
distributive law.

Integers

Subtraction has not been introduced for the simple reason that it can be defined as the inverse
of addition. Thus, the difference a —b of two numbers a and b is defined as a solution x of the
equation b+ x =a. If a number system is restricted to the natural numbers, differences need not
always exist, but, if they do, the five basic laws of arithmetic, as already discussed, can be used to
prove that they are unique. Furthermore, the laws of operations of addition and multiplication
can be extended to apply to differences. The whole numbers (including zero) can be extended to
include the solution of 1+ x =0, that is, the number —1, as well as all products of the form —1 x n
, in which n is a whole number. The extended collection of numbers is called the integers, of which
the positive integers are the same as the natural numbers. The numbers that are newly introduced
in this way are called negative integers.

Exponents

Just as a repeated sum a+a +:--+a of £ summands is written ka, so a repeated product

axax---xaof k factorsiswritten ¢*. The number £ is called the exponent, and @ the base of the
k

power a".

The fundamental laws of exponents follow easily from the definitions, and other laws are immedi-
ate consequences of the fundamental ones.

Fundamental laws of exponents

Products: bmpn = pm+n
Ratios: g_.:r = pm-n
Powers: b = bmn
Roots: ibn =  bnfg

Theory of Divisors

At this point an interesting development occurs, for, so long as only additions and multiplications
are performed with integers, the resulting numbers are invariably themselves integers—that is,
numbers of the same kind as their antecedents. This characteristic changes drastically, however,
as soon as division is introduced. Performing division (its symbol +, read “divided by”) leads to
results, called quotients or fractions, which surprisingly include numbers of a new kind—namely,
rationals—that are not integers. These, though arising from the combination of integers, patently
constitute a distinct extension of the natural-number and integer concepts as defined above. By
means of the application of the division operation, the domain of the natural numbers becomes
extended and enriched immeasurably beyond the integers.
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The preceding illustrates one of the proclivities that are often associated with mathematical
thought: relatively simple concepts (such as integers), initially based on very concrete operations
(for example, counting), are found to be capable of assuming novel meanings and potential uses,
extending far beyond the limits of the concept as originally defined. A similar extension of basic
concepts, with even more powerful results, will be found with the introduction of irrationals.

A second example of this pattern is presented by the following: Under the primitive definition
of exponents, with & equal to either zero or a fraction, a* would, at first sight, appear to be
utterly devoid of meaning. Clarification is needed before writing a repeated product of either
zero factors or a fractional number of factors. Considering the case k=0, a little reflection
shows that a’ can, in fact, assume a perfectly precise meaning, coupled with an additional and
quite extraordinary property. Since the result of dividing any (nonzero) number by itself is 1,
or unity, it follows that,

a"+a"=a""=a"= 1.
Not only can the definition of a* be extended to include the case k =0, but the ensuing result also
possesses the noteworthy property that it is independent of the particular (nonzero) value of the
base a. A similar argument may be given to show that ¢* is a meaningful expression even when k
is negative, namely,

a*=1/a".
The original concept of exponent is thus broadened to a great extent.

Fundamental Theory

If three positive integers a, b, and c are in the relation ab = ¢, it is said that a and b are divisors
or factors of ¢, or that a divides ¢ (written a|c), and b divides c. The number c is said to be a
multiple of a and a multiple of b.

The number 1 is called the unit, and it is clear that 1 is a divisor of every positive integer. If ¢ can
be expressed as a product ab in which a and b are positive integers each greater than 1, then ¢
is called composite. A positive integer neither 1 nor composite is called a prime number. Thus, 2,
3, 5,7, 11, 13, 17, 19, ... are prime numbers. The ancient Greek mathematician Euclid proved in his
Elements that there are infinitely many prime numbers.

The fundamental theorem of arithmetic was proved by Gauss in his Disquisitiones Arithmeticae.
It states that every composite number can be expressed as a product of prime numbers and that,
save for the order in which the factors are written, this representation is unique. Gauss’s theorem
follows rather directly from another theorem of Euclid to the effect that if a prime divides a prod-
uct, then it also divides one of the factors in the product; for this reason the fundamental theorem
is sometimes credited to Euclid.

For every finite set a,, a,,..., a, of positive integers, there exists a largest integer that divides each
of these numbers, called their greatest common divisor (GCD). If the GCD = 1, the numbers are
said to be relatively prime. There also exists a smallest positive integer that is a multiple of each of
the numbers, called their least common multiple (LCM).
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A systematic method for obtaining the GCD and LCM starts by factoring each (wherei=1, 2, ..., k)
into a product of primes p,, p,, ..., p,, with the number of times that each distinct prime occurs
indicated by qi; thus,

_ 41,92 gh
a,=p; P, Py

Then the GCD is obtained by multiplying together each prime that occurs in every a, as many
times as it occurs the fewest (smallest power) among all of the g,. The LCM is obtained by multi-
plying together each prime that occurs in any of the @, as many times as it occurs the most (largest
power) among all of the a,. An example is easily constructed. Given a, =3,000= 2’ x 3'x5’and

a,= 2,646 = 2'x 3’x 7, the GCD=2'x3"=6and the LCM =2’x3’x5"x7*=1,323,000.

When only two numbers are involved, the product of the GCD and the LCM equals the product of
the original numbers.

Some Divisibility Rules

Divisor Condition

1 The number is even.

2 The sum of the digits in the number is divisible by 3.

The last two digits in the number form a number that is divisible by 4.

The number ends in 0 or 5.

The number is even and the sum of its digits is divisible by 3.

The last three digits in the number form a number that is divisible by 8.

The sum of the digits in the number is divisible by 9.

The number ends in 0.

O | ||| |~ |W

The difference between the sum of the number’s digits in the odd places and that of the digits
in the even places is either o or divisible by 11.

Ifaandb are two positive integers, with a > b, two whole numbers q and rexist such that a = gb + r,

with 7 less than . The number ¢ is called the partial quotient (the quotient if » =0), and r is
called the remainder. Using a process known as the Euclidean algorithm, which works because the
GCD of a and b is equal to the GCD of » and r, the GCD can be obtained without first factoring
the numbers a and b into prime factors. The Euclidean algorithm begins by determining the
values of ¢ and r, after which » and r assume the role of a and b and the process repeats until
finally the remainder is zero; the last positive remainder is the GCD of the original two numbers.
For example, starting with 544 and 119:

. 544 = 4 x 119 + 68;

. 119 = 1 x 68 + 51;
68 = 1 x 51 + 17;
51 =3 x 17.

Thus, the GCD of 544 and 119 is 17.
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Rational Numbers

From a less abstract point of view, the notion of division, or of fraction, may also be considered to
arise as follows: if the duration of a given process is required to be known to an accuracy of better
than one hour, the number of minutes may be specified; or, if the hour is to be retained as the fun-

damental unit, each minute may be represented by 1/60 or by %

In general, the fractional unit 1/d is defined by the property d x 1/d = 1. The number n x 1/d is
written n/d and is called a common fraction. It may be considered as the quotient of n divided by
d. The number d is called the denominator (it determines the fractional unit or denomination),
and n is called the numerator (it enumerates the number of fractional units that are taken). The
numerator and denominator together are called the terms of the fraction. A positive fraction n/d
is said to be proper if n < d; otherwise it is improper.

The numerator and denominator of a fraction are not unique, since for every positive integer k, the
numerator and denominator of a fraction can each simultaneously be multiplied by the integer k
without altering the fractional value. Every fraction can be written as the quotient of two relatively
prime integers, however. In this form it is said to be in lowest terms.

The integers and fractions constitute what are called the rational numbers. The five fundamental laws
stated earlier with regard to the positive integers can be generalized to apply to all rational numbers.

Adding and Subtracting Fractions

From the definition of fraction it follows that the sum (or difference) of two fractions having the
same denominator is another fraction with this denominator, the numerator of which is the sum
(or difference) of the numerators of the given fractions. Two fractions having different denomina-
tors may be added or subtracted by first reducing them to fractions with the same denominator.
Thus, to add a/b and c/d, the LCM of b and d, often called the least common denominator of the
fractions, must be determined. It follows that there exist numbers k and 1 such that kb = Id, and
both fractions can be written with this common denominator, so that the sum or difference of the
fractions is obtained by the simple operation of adding or subtracting the new numerators and
placing the value over the new denominator.

Multiplying and Dividing Fractions

In order to multiply two fractions—in case one of the numbers is a whole number, it is placed over
the number 1 to create a fraction—the numerators and denominators are multiplied separately to
produce the new fraction’s numerator and denominator: a/bxc/d = ac/bd. In order to divide by
a fraction, it must be inverted—that is, the numerator and denominator interchanged—after which
it becomes a multiplication problem: a/b+c/d =a/bxd/c=ad /bc.

Theory of Rationals

A method of introducing the positive rational numbers that is free from intuition (that is, with all
logical steps included) was given in 1910 by the German mathematician Ernst Steinitz. In consid-
ering the set of all number pairs (a, b), (¢, d), ...in which a, b, ¢, d, ... are positive integers, the
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equals relation (a, b)=(c, d) is defined to mean that ad = bc, and the two operations + and x are
defined so that the sum of a pair (a, b)+(c, d)=(ad +bc, bd) is a pair and the product of a pair

(a, b)x(c, d)=(ac, bd) is a pair. It can be proved that, if these sums and products are properly
specified, the fundamental laws of arithmetic hold for these pairs and that the pairs of the type
(a, 1) are abstractly identical with the positive integers a. Moreover, bx(a, b)=a, so that the pair
(a, b) is abstractly identical with the fraction a/b.

Irrational Numbers

It was known to the Pythagoreans that, given a straight line segment a and a unit segment u, it is not
always possible to find a fractional unit such that both ¢ and » are multiples of it. For instance, if the
sides of an isosceles right triangle have length 1, then by the Pythagorean theorem the hypotenuse has
a length the square of which must be 2. But there exists no rational number the square of which is 2.

Eudoxus of Cnidus, a contemporary of Plato, established the technique necessary to extend num-
bers beyond the rationals. His contribution, one of the most important in the history of mathemat-
ics, was included in Euclid’s Elements and elsewhere, and then it lay dormant until the modern
period of growth in mathematical analysis in Germany in the 19th century.

It is customary to assume on an intuitive basis that, corresponding to every line segment and every
unit length, there exists a number (called a positive real number) that represents the length of the
line segment. Not all such numbers are rational, but every one can be approximated arbitrarily
closely by a rational number. That is, if x is a positive real number and ¢ is any positive rational
number—no matter how small—it is possible to find two positive rational numbers a and b within
e distance from each other such that x is between them; in symbols, given any ¢ >0, there exist
positive rational numbers a and b such that b—a <& and a <x<b. In problems in mensuration,
irrational numbers are usually replaced by suitable rational approximations.

A rigorous development of the irrational numbers is beyond the scope of arithmetic. They are most
satisfactorily introduced by means of Dedekind cuts, as introduced by the German mathematician
Richard Dedekind, or sequences of rationals, as introduced by Eudoxus and developed by the Ger-
man mathematician Georg Cantor. These methods are discussed in analysis.

The employment of irrational numbers greatly increases the scope and usefulness of arithmetic.
For instance, if n is any whole number and a is any positive real number, there exists a unique
positive real number 7V a, called the nth root of a , whose nth power is a . The root symbol V is a
conventionalized » for radix, or “root.” The term evolution is sometimes applied to the process of
finding a rational approximation to an nth root.

(C Number Theory ))

Number theory is the branch of mathematics concerned with properties of the positive integers
(1,2, 3, ...). Sometimes called “higher arithmetic,” it is among the oldest and most natural of math-
ematical pursuits.
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Number theory has always fascinated amateurs as well as professional mathematicians. In con-
trast to other branches of mathematics, many of the problems and theorems of number theory can
be understood by laypersons, although solutions to the problems and proofs of the theorems often
require a sophisticated mathematical background.

Until the mid-20th century, number theory was considered the purest branch of mathematics,
with no direct applications to the real world. The advent of digital computers and digital communi-
cations revealed that number theory could provide unexpected answers to real-world problems. At
the same time, improvements in computer technology enabled number theorists to make remark-
able advances in factoring large numbers, determining primes, testing conjectures, and solving
numerical problems once considered out of reach.

Modern number theory is a broad subject that is classified into subheadings such as elementary
number theory, algebraic number theory, analytic number theory, geometric number theory, and
probabilistic number theory. These categories reflect the methods used to address problems con-
cerning the integers.

From Prehistory through Classical Greece

The ability to count dates back to prehistoric times. This is evident from archaeological artifacts,
such as a 10,000-year-old bone from the Congo region of Africa with tally marks scratched upon
it—signs of an unknown ancestor counting something. Very near the dawn of civilization, peo-
ple had grasped the idea of “multiplicity” and thereby had taken the first steps toward a study of
numbers.

It is certain that an understanding of numbers existed in ancient Mesopotamia, Egypt, China, and
India, for tablets, papyri, and temple carvings from these early cultures have survived. A Baby-
lonian tablet known as Plimpton 322 is a case in point. In modern notation, it displays number
triples x, y and z with the property that x* + y* = z>. One such triple is 2,291, 2,700, and 3,541,
where 2,2912 + 2,7002 = 3,5412 This certainly reveals a degree of number theoretic sophistication
in ancient Babylon.

Despite such isolated results, a general theory of numbers was nonexistent. For this—as with so
much of theoretical mathematics—one must look to the Classical Greeks, whose groundbreaking
achievements displayed an odd fusion of the mystical tendencies of the Pythagoreans and the se-
vere logic of Euclid’s Elements.

Pythagoras

According to tradition, Pythagoras worked in southern Italy amid devoted followers. His philoso-
phy enshrined number as the unifying concept necessary for understanding everything from plan-
etary motion to musical harmony. Given this viewpoint, it is not surprising that the Pythagoreans
attributed quasi-rational properties to certain numbers.

For instance, they attached significance to perfect numbers—i.e., those that equal the sum of their
proper divisors. Examples are 6 (whose proper divisors 1, 2, and 3 sumto 6) and 28 (1+2+4 + 7
+ 14). The Greek philosopher Nicomachus of Gerasa (flourished c. AD 100), writing centuries after
Pythagoras but clearly in his philosophical debt, stated that perfect numbers represented “virtues,
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wealth, moderation, propriety, and beauty.” (Some modern writers label such nonsense numerical
theology).

In a similar vein, the Greeks called a pair of integers amicable (“friendly”) if each was the sum of
the proper divisors of the other. They knew only a single amicable pair: 220 and 284. One can eas-
ily check that the sum of the proper divisors of 284 is 1 + 2 + 4 + 71 + 142 = 220 and the sum of the
proper divisors of 220is 1+ 2 + 4 + 5+ 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. For those prone
to number mysticism, such a phenomenon must have seemed like magic.

Euclid

By contrast, Euclid presented number theory without the flourishes. He began Book VII of his El-
ements by defining a number as “a multitude composed of units.” The plural here excluded 1; for
Euclid, 2 was the smallest “number.” He later defined a prime as a number “measured by a unit
alone” (i.e., whose only proper divisor is 1), a composite as a number that is not prime, and a per-
fect number as one that equals the sum of its “parts” (i.e., its proper divisors).

From there, Euclid proved a sequence of theorems that marks the beginning of number theory as
a mathematical (as opposed to a numerological) enterprise. Four Euclidean propositions deserve
special mention.

The first, Proposition 2 of Book VII, is a procedure for finding the greatest common divisor of two
whole numbers. This fundamental result is now called the Euclidean algorithm in his honour.

Second, Euclid gave a version of what is known as the unique factorization theorem or the funda-
mental theorem of arithmetic. This says that any whole number can be factored into the product of
primes in one and only one way. For example, 1,060 = 2 x 2 x 2 x 5 x 7 x 71is a decomposition into
prime factors, and no other such decomposition exists. Euclid’s discussion of unique factorization
is not satisfactory by modern standards, but its essence can be found in Proposition 32 of Book VII
and Proposition 14 of Book IX.

Third, Euclid showed that no finite collection of primes contains them all. His argument, Proposi-
tion 20 of Book IX, remains one of the most elegant proofs in all of mathematics. Beginning with
any finite collection of primes—say, a, b, ¢, ..., n —Euclid considered the number formed by add-

ing one to their product: N =(abc---n)+1. He then examined the two alternatives:

(1) If Nis prime, then it is a new prime not among a, b, ¢, ..., n becauseitislarger than all of these.
For example, if the original primes were 2, 3, and 7, then N = (2 x3x7 ) +1=43 is alarger prime. (2)
Alternately, if N is composite, it must have a prime factor which, as Euclid demonstrated, cannot
be one of the originals. To illustrate, begin with primes 2, 7, and 11, so that N = (2 xTx1 1) +1=155.
This is composite, but its prime factors 5 and 31 do not appear among the originals. Either way,
a finite set of primes can always be augmented. It follows, by this beautiful piece of logic, that the
collection of primes is infinite.

Fourth, Euclid ended Book IX with a blockbuster: if the series 1+2+4 + 8 +...+2 sums to a
prime, then the number N =2° (1 +2+4+...+ 2") must be perfect. For example, 1+2+4=7, a

prime, so 4(1+ 2+4)=281is perfect. Euclid’s “recipe” for perfect numbers was a most impressive
achievement for its day.
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Diophantus

Of later Greek mathematicians, especially noteworthy is Diophantus of Alexandria, author of
Arithmetica. This book features a host of problems, the most significant of which have come
to be called Diophantine equations. These are equations whose solutions must be whole num-
bers. For example, Diophantus asked for two numbers, one a square and the other a cube, such

that the sum of their squares is itself a square. In modern symbols, he sought integers x, y, and
z such that (x2 )2 +( Vv )2 = 7. It is easy to find real numbers satisfying this relationship (e.g.,

x=V2, y=1, and z="5), but the requirement that solutions be integers makes the problem more

difficult. (One answer is x=6, y =3, and z=45). Diophantus’s work strongly influenced later
mathematics.

Number Theory in the East

The millennium following the decline of Rome saw no significant European advances, but
Chinese and Indian scholars were making their own contributions to the theory of numbers.
Motivated by questions of astronomy and the calendar, the Chinese mathematician Sun Zi
tackled multiple Diophantine equations. As one example, he asked for a whole number that
when divided by 3 leaves a remainder of 2, when divided by 5 leaves a remainder of 3, and
when divided by 7 leaves a remainder of 2 (his answer: 23). Almost a thousand years later, Qin
Jiushao gave a general procedure, now known as the Chinese remainder theorem, for solving
problems of this sort.

Meanwhile, Indian mathematicians were hard at work. In the 7th century Brahmagupta took up
what is now (erroneously) called the Pell equation. He posed the challenge to find a perfect square
that, when multiplied by 92 and increased by 1, yields another perfect square. That is, he sought
whole numbers x and y such that 92x” +1=»* — a. Diophantine equation with quadratic terms.
Brahmagupta suggested that anyone who could solve this problem within a year earned the right
to be called a mathematician. His solution was x =120 and y=1,151.

In addition, Indian scholars developed the so-called Hindu-Arabic numerals—the base-10 no-
tation subsequently adopted by the world’s mathematical and civil communities. Although
more number representation than number theory, these numerals have prevailed due to their
simplicity and ease of use. The Indians employed this system—including the zero—as early as
AD 8oo0.

At about this time, the Islamic world became a mathematical powerhouse. Situated on trade routes
between East and West, Islamic scholars absorbed the works of other civilizations and augmented
these with homegrown achievements. For example, Thabit ibn Qurrah (active in Baghdad in the
oth century) returned to the Greek problem of amicable numbers and discovered a second pair:
17,296 and 18,416.

Modern Number Theory

As mathematics filtered from the Islamic world to Renaissance Europe, number theory received lit-
tle serious attention. The period from 1400 to 1650 saw important advances in geometry, algebra,
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and probability, not to mention the discovery of both logarithms and analytic geometry. But num-
ber theory was regarded as a minor subject, largely of recreational interest.

Pierre de Fermat

Credit for changing this perception goes to Pierre de Fermat, a French magistrate with time on his
hands and a passion for numbers. Although he published little, Fermat posed the questions and
identified the issues that have shaped number theory ever since. Here are a few examples:

+ In 1640 he stated what is known as Fermat’s little theorem—namely, that if p is prime and
a is any whole number, then p divides evenly into a” —a. Thus, if p=7 and a=12, the
far-from-obvious conclusion is that 7 is a divisor of 127 —12 =35,831,796 . This theorem is
one of the great tools of modern number theory.

« Fermat investigated the two types of odd primes: those that are one more than a multi-
ple of 4 and those that are one less. These are designated as the 4k + 1 primes and the
4k — 1 primes, respectively. Among the former are 5=4x1+1 and 97=4x24+1; among
the latter are 3=4x1-1 and 79=4x20-1. Fermat asserted that any prime of the form
4k +1 can be written as the sum of two squares in one and only one way, whereas a prime
of the form 4k —1 cannot be written as the sum of two squares in any manner whatever.
Thus, 5=2°+1% and 97 = 9° + 4%, and these have no alternative decompositions into sums
of squares. On the other hand, 3 and 79 cannot be so decomposed. This dichotomy among
primes ranks as one of the landmarks of number theory.

« In 1638 Fermat asserted that every whole number can be expressed as the sum of four or
fewer squares. He claimed to have a proof but did not share it.

« Fermat stated that there cannot be a right triangle with sides of integer length whose area
is a perfect square. This amounts to saying that there do not exist integers x, y, z, and w

such that x* + y? = z* (the Pythagorean relationship) and that w* =1/2(base)(height)=xy /2.

Uncharacteristically, Fermat provided a proof of this last result. He used a technique called in-
finite descent that was ideal for demonstrating impossibility. The logical strategy assumes that
there are whole numbers satisfying the condition in question and then generates smaller whole
numbers satisfying it as well. Reapplying the argument over and over, Fermat produced an endless
sequence of decreasing whole numbers. But this is impossible, for any set of positive integers must
contain a smallest member. By this contradiction, Fermat concluded that no such numbers can
exist in the first place.

Two other assertions of Fermat should be mentioned. One was that any number of the form
2% +1 must be prime. He was correct if n = 0, 1, 2, 3 and 4, for the formula yields primes
2% 4 1=3,2" +1=5, 27 +1=17, 2° +1=257,and 2> +1=65,537. These are now called Fermat
primes. Unfortunately for his reputation, the next such number 2> + 1 = 22+ 1 = 4,294,967,297

is not a prime (more about that later). Even Fermat was not invincible.

The second assertion is one of the most famous statements from the history of mathematics. While
reading Diophantus’s Arithmetica, Fermat wrote in the book’s margin: “To divide a cube into two
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cubes, a fourth power, or in general any power whatever into two powers of the same denomina-
tion above the second is impossible.” He added that “I have assuredly found an admirable proof of
this, but the margin is too narrow to contain it.”

In symbols, he was claiming that if »>2,there are no whole numbers x, y, z such that
x"+y" =z", a statement that came to be known as Fermat’s last theorem. For three and a half
centuries, it defeated all who attacked it, earning a reputation as the most famous unsolved
problem in mathematics.

Despite Fermat’s genius, number theory still was relatively neglected. His reluctance to supply
proofs was partly to blame, but perhaps more detrimental was the appearance of the calculus in
the last decades of the 17th century. Calculus is the most useful mathematical tool of all, and schol-
ars eagerly applied its ideas to a range of real-world problems. By contrast, number theory seemed
too “pure,” too divorced from the concerns of physicists, astronomers, and engineers.

Number Theory in the 18th Century

Credit for bringing number theory into the mainstream, for finally realizing Fermat’s dream, is due
to the 18th century’s dominant mathematical figure, the Swiss Leonhard Euler. Euler was the most
prolific mathematician ever—and one of the most influential—and when he turned his attention to
number theory, the subject could no longer be ignored.

Initially, Euler shared the widespread indifference of his colleagues, but he was in correspondence
with Christian Goldbach, a number theory enthusiast acquainted with Fermat’s work. Like an in-
sistent salesman, Goldbach tried to interest Euler in the theory of numbers, and eventually his
insistence paid off.

It was a letter of December 1, 1729, in which Goldbach asked Euler, “Is Fermat’s observation
known to you, that all numbers 2% +1 are primes?” This caught Euler’s attention. Indeed, he
showed that Fermat’s assertion was wrong by splitting the number 2¥ + 1 into the product of 641
and 6,700,417.

Through the next five decades, Euler published over a thousand pages of research on number theory,
much of it furnishing proofs of Fermat’s assertions. In 1736 he proved Fermat’s little theorem. By mid-
century he had established Fermat’s theorem that primes of the form 4% +1 can be uniquely expressed
as the sum of two squares. He later took up the matter of perfect numbers, demonstrating that any even
perfect number must assume the form discovered by Euclid 20 centuries earlier. And when he turned
his attention to amicable numbers—of which, by this time, only three pairs were known—Euler vastly
increased the world’s supply by finding 58 new ones.

Of course, even Euler could not solve every problem. He gave proofs, or near-proofs, of Fermat’s
last theorem for exponents » =3 and » =4 but despaired of finding a general solution. And he was
completely stumped by Goldbach’s assertion that any even number greater than 2 can be written
as the sum of two primes. Euler endorsed the result—today known as the Goldbach conjecture—
but acknowledged his inability to prove it.

Euler gave number theory a mathematical legitimacy, and thereafter progress was rapid. In 1770,
for instance, Joseph-Louis Lagrange proved Fermat’s assertion that every whole number can be
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written as the sum of four or fewer squares. Soon thereafter, he established a beautiful result
known as Wilson’s theorem: p is prime if and only if p divides evenly into:

[(p—1) x (p=2) x -+ x 3 x2x1]+ 1L

Number Theory in the 19th Century
Disquisitiones Arithmeticae

Of immense significance was the 1801 publication of Disquisitiones Arithmeticae by Carl Frie-
drich Gauss. This became, in a sense, the holy writ of number theory. In it Gauss organized and
summarized much of the work of his predecessors before moving boldly to the frontier of re-
search. Observing that the problem of resolving composite numbers into prime factors is “one
of the most important and useful in arithmetic,” Gauss provided the first modern proof of the
unique factorization theorem. He also gave the first proof of the law of quadratic reciprocity, a
deep result previously glimpsed by Euler. To expedite his work, Gauss introduced the idea of
congruence among numbers—i.e., he defined a and b to be congruent modulo m (written a =
b mod m) if m divides evenly into the difference a — b. For instance, 39 = 4 mod 7. This inno-
vation, when combined with results like Fermat’s little theorem, has become an indispensable
fixture of number theory.

From Classical to Analytic Number Theory

Inspired by Gauss, other 19th-century mathematicians took up the challenge. Sophie Ger-
main, who once stated, “I have never ceased thinking about the theory of numbers,” made
important contributions to Fermat’s last theorem, and Adrien-Marie Legendre and Peter Gus-
tav Lejeune Dirichlet confirmed the theorem for n=5—ie. they showed that the sum of two
fifth powers cannot be a fifth power. In 1847 Ernst Kummer went further, demonstrating that
Fermat’s last theorem was true for a large class of exponents; unfortunately, he could not rule
out the possibility that it was false for a large class of exponents, so the problem remained
unresolved.

The same Dirichlet (who reportedly kept a copy of Gauss’s Disquisitiones Arithmeticae by his bed-
side for evening reading) made a profound contribution by proving that, if a and b have no com-
mon factor, then the arithmetic progression a, a + b, a + 2b, a + 3b, ... must contain infinitely
many primes. Among other things, this established that there are infinitely many 44 +1 primes
and infinitely many 4k —1primes as well. But what made this theorem so exceptional was Dir-
ichlet’s method of proof: he employed the techniques of calculus to establish a result in number
theory. This surprising but ingenious strategy marked the beginning of a new branch of the sub-
ject: analytic number theory.

Prime Number Theorem

One of the supreme achievements of 19th-century mathematics was the prime number theorem,
and it is worth a brief digression. To begin, designate the number of primes less than or equal to
n by 71'(1’1). Thus ﬂ(lO) =4 because 2, 3, 5, and 7 are the four primes not exceeding 10. Similarly

7(25)=9 and 7(100)=25. Next, consider the proportion of numbers less than or equal to n that
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are prime—i.e., z(n)/n. Clearly 7(10)/10=0.40, meaning that 40 percent of the numbers not
exceeding 10 are prime. Other proportions are shown in the table:

Prime number theorem

(illustrated by selected values n from 10% to 10™)

=) proportion of primes 4 predicted pmoportion

) - g e minin g - o e ot
102 25 0.2500 0.2172
104 1,229 0.1228 01086
10s 78,498 0.0785 00724
104 5,761,455 0.0570 0.0543
g0 455,052,511 0.0455 0.0434
1012 37,807,912018 0.0377 0.0382
1014 3,204,941,750,802 0.0320 0.0310

A pattern is anything but clear, but the prime number theorem identifies one, at least approxi-
mately, and thereby provides a rule for the distribution of primes among the whole numbers. The
theorem says that, for large n, the proportion 7(n)/n is roughly 1/log n, where log n is the natu-
ral logarithm of #. This link between primes and logs is nothing short of extraordinary.

One of the first to perceive this was the young Gauss, whose examination of log tables and prime
numbers suggested it to his fertile mind. Following Dirichlet’s exploitation of analytic techniques
in number theory, Bernhard Riemann and Pafnuty Chebyshev made substantial progress before
the prime number theorem was proved in 1896 by Jacques Hadamard and Charles Jean de la
Vallée-Poussin. This brought the 19th century to a triumphant close.

Number Theory in the 20th Century

The next century saw an explosion in number theoretic research. Along with classical and analyt-
ic number theory, scholars now explored specialized subfields such as algebraic number theory,
geometric number theory, and combinatorial number theory. The concepts became more abstract
and the techniques more sophisticated. Unquestionably, the subject had grown beyond Fermat’s
wildest dreams.

One of the great contributors from early in the 20th century was the incandescent genius Srinivasa
Ramanujan. Ramanujan, whose formal training was as limited as his life was short, burst upon the
mathematical scene with a series of brilliant discoveries. Analytic number theory was among his
specialties, and his publications carried titles such as “Highly composite numbers” and “Proof that
almost all numbers n are composed of about log(log n) prime factors.”

A legendary figure in 20th-century number theory was Paul Erdés, a Hungarian genius known for
his deep insights, his vast circle of collaborators, and his personal eccentricities. At age 18, Erdds
published a much-simplified proof of a theorem of Chebyshev stating that, if »>2, then there
must be a prime between n and 2x. This was the first in a string of number theoretic results that
would span most of the century. In the process, Erd6s—who also worked in combinatorics, graph
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theory, and dimension theory—published over 1,500 papers with more than 500 collaborators
from around the world. He achieved this astonishing output while living more or less out of a suit-
case, traveling constantly from one university to another in pursuit of new mathematics. It was not
uncommon for him to arrive, unannounced, with the declaration that “My brain is open” and then
to plunge into the latest problem with gusto.

Two later developments deserve mention. One was the invention of the electronic computer, whose
speed has been advantageously applied to number theoretic questions. As an example, Euler once
speculated that at least four fourth powers must be added together for the sum to be a fourth pow-
er. But in 1988, using a combination of mathematical insight and computer muscle, the American
Noam Elkies discovered that 2,682,440* +15,365,639* + 18,796,760* = 20,615,673* —a stupendous
counterexample that destroyed Euler’s conjecture. The number on the right contains 30 digits, so
there is little wonder that Euler missed it.

Second, number theory acquired an applied flavour, for it became instrumental in designing en-
cryption schemes widely used in government and business. These rely upon the factorization
of gigantic numbers into primes—a factorization that the code’s user knows and the potential
code-breaker does not. This application runs counter to the long-held perception of number theory
as beautiful but essentially useless.

Twentieth-century number theory reached a much-publicized climax in 1995, when Fermat’s last
theorem was proved by the Englishman Andrew Wiles, with timely assistance from his British
colleague Richard Taylor. Wiles succeeded where so many had failed with a 130-page proof of in-
credible complexity, one that certainly would not fit into any margin.

Unsolved Problems

This triumph notwithstanding, number theory remains the source of many unsolved problems,
some of the most perplexing of which sound innocent enough. For example:

« Do any odd perfect numbers exist?
« Are there infinitely many primes of the form n? + 1 (i.e., one more than a perfect square)?

« Are there infinitely many pairs of twin primes (i.e., primes that differ by 2, like 5 and 7
or 41 and 43)?

« Is Goldbach’s conjecture true? (Euler failed to prove it; so has everyone since).

Although there has been no lack of effort, these questions remain open. Perhaps, like Fermat’s
last theorem, they will eventually be resolved. Or perhaps they will remain as challenges into the
indefinite future. In order to spur research efforts across a wide range of mathematical disciplines,
the privately funded Clay Mathematics Institute of Cambridge, Massachusetts, named seven “Mil-
lennium Prize Problems” in 2000, each with a million-dollar award for a correct solution. In any
case, these mysteries justify Eric Temple Bell’s characterization of number theory as “the last great
uncivilized continent of mathematics.”

The theory of numbers, then, is a vast and challenging subject as old as mathematics and as fresh
as today’s news. Its problems retain their fascination because of an apparent (often deceptive)
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simplicity and an irresistible beauty. With such a rich and colorful history, number theory surely
deserves to be called, in the famous words of Gauss, “the queen of mathematics.”

( Addition )

Addition is an operation that finds the total number when two or more numbers are put together.
In other words, addition is the process to find the sum of two or more numbers.

Examples of Addition:
« 3and 4 add up to give 7.
« 50 and 50 add up to give 100.
Examples:
31+45+71+2
Choices:
A. 149
B. 139
C.147
D. 150
Correct Answer: A
Solution:

Step 1: 31 + 45 + 71 + 2 = 149

(C Subtraction )

Subtraction is an arithmetic operation that represents the operation of removing objects from a collec-
tion. The result of a subtraction is called a difference. Subtraction is signified by the minus sign (-). For
example, in the adjacent picture, there are 5 — 2 apples—meaning 5 apples with 2 taken away, which
is a total of 3 apples. Therefore, the difference of 5 and 2 is 3, that is, 5 — 2 = 3. Subtraction represents
removing or decreasing physical and abstract quantities using different kinds of objects including neg-
ative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices.

Subtraction follows several important patterns. It is anticommutative, meaning that changing the
order changes the sign of the answer. It is also not associative, meaning that when one subtracts
more than two numbers, the order in which subtraction is performed matters. Because 0 is the
additive identity, subtraction of it does not change a number. Subtraction also obeys predictable
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rules concerning related operations such as addition and multiplication. All of these rules can be
proven, starting with the subtraction of integers and generalizing up through the real numbers and
beyond. General binary operations that continue these patterns are studied in abstract algebra.

Performing subtraction is one of the simplest numerical tasks. Subtraction of very small numbers
is accessible to young children. In primary education, students are taught to subtract numbers in
the decimal system, starting with single digits and progressively tackling more difficult problems.

In advanced algebra and in computer algebra, an expression involving subtraction like 4-B is
generally treated as a shorthand notation for the addition A+ (—B). Thus, 4- B contains two
terms, namely 4 and —B . This allows an easier use of associativity and commutativity.

Notation and Terminology

Subtraction of numbers 0—10. Line labels = minuend. X axis = subtrahend. Y axis = difference.

Subtraction is written using the minus sign “~” between the terms; that is, in infix notation. The
result is expressed with an equals sign. For example,

2-1=1 (verbally, “two minus one equals one”)
4 -2 =2 (verbally, “four minus two equals two”)
6—3=3 (verbally, “six minus three equals three”)
4—6=-2 (verbally, “four minus six equals negative two”)
There are also situations where subtraction is “understood” even though no symbol appears:

A column of two numbers, with the lower number in red, usually indicates that the lower
number in the column is to be subtracted, with the difference written below, under a line.
This is most common in accounting.

Formally, the number being subtracted is known as the subtrahend, while the number it is sub-
tracted from is the minuend. The result is the difference.

All of this terminology derives from Latin. “Subtraction” is an English word derived from the Latin
verb subtrahere, which is in turn a compound of sub “from under” and trahere “to pull”; thus to
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subtract is to draw from below, take away. Using the gerundive suffix -nd results in “subtra-
hend”, “thing to be subtracted”. Likewise from minuere “to reduce or diminish”, one gets “minu-
end”, “thing to be diminished”.

Of Integers and Real Numbers

Integers

= C

Imagine a line segment of length b with the left end labeled a and the right end labeled c. Starting
from a, it takes b steps to the right to reach c. This movement to the right is modeled mathemati-
cally by addition:

a+b=c.

From c, it takes b steps to the left to get back to a. This movement to the left is modeled by subtraction:

c—b=a.

LN N

i
e —

L -
1 pa 3

Now, a line segment labeled with the numbers 1, 2, and 3. From position 3, it takes no steps to the
left to stay at 3, so 3 — 0 = 3. It takes 2 steps to the left to get to position 1, so 3 — 2 = 1. This picture
is inadequate to describe what would happen after going 3 steps to the left of position 3. To repre-
sent such an operation, the line must be extended.

To subtract arbitrary natural numbers, one begins with a line containing every natural num-
ber (0, 1,2, 3 4,56, ) . From 3, it takes 3 steps to the left to getto 0,s03 -3 =0.But3 - 4
is still invalid since it again leaves the line. The natural numbers are not a useful context for
subtraction.

The solution is to consider the integer number line (...,—3,—2,—1, 0,1, 2, 3, ) . From 3, it takes 4
steps to the left to get to —1:

3-4=-1
Natural Numbers

Subtraction of natural numbers is not closed. The difference is not a natural number unless the
minuend is greater than or equal to the subtrahend. For example, 26 cannot be subtracted from 11
to give a natural number. Such a case uses one of two approaches:

« Say that 26 cannot be subtracted from 11; subtraction becomes a partial function.

« Give the answer as an integer representing a negative number, so the result of subtracting
26 from 11 is —-15.
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Real Numbers

Subtraction of real numbers is defined as addition of signed numbers. Specifically, a number is
subtracted by adding its additive inverse. Then we have 3 - =3+ (- ). This helps to keep the ring

of real numbers “simple” by avoiding the introduction of “new” operators such as subtraction. Or-
dinarily a ring only has two operations defined on it; in the case of the integers, these are addition
and multiplication. A ring already has the concept of additive inverses, but it does not have any
notion of a separate subtraction operation, so the use of signed addition as subtraction allows us
to apply the ring axioms to subtraction without needing to prove anything.

Properties
Anticommutativity

Subtraction is anti-commutative, meaning that if one reverses the terms in a difference left-to-right,
the result is the negative of the original result. Symbolically, if a and b are any two numbers, then:

a—-b= —(b—a).

Non-associativity

Subtraction is non-associative, which comes up when one tries to define repeated subtraction.
Should the expression:

n

"a-b-c

be defined to mean (a—5b) —¢ or a— (b—¢)? These two possibilities give different answers. To re-
solve this issue, one must establish an order of operations, with different orders giving different results.

Predecessor

In the context of integers, subtraction of one also plays a special role: for any integer a, the integer
(a—1)is the largest integer less than a, also known as the predecessor of a.

Units of Measurement

When subtracting two numbers with units of measurement such as kilograms or pounds, they must
have the same unit. In most cases the difference will have the same unit as the original numbers.

Percentages

Changes in percentages can be reported in at least two forms, percentage change and percentage point
change. Percentage change represents the relative change between the two quantities as a percentage,
while percentage point change is simply the number obtained by subtracting the two percentages.

As an example, suppose that 30% of widgets made in a factory are defective. Six months later, 20%

of widgets are defective. The percentage change is —331% , while the percentage point change is
—10 percentage points. 3
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In Computing

The method of complements is a technique used to subtract one number from another using only
addition of positive numbers. This method was commonly used in mechanical calculators and is
still used in modern computers.

Binary Digit Ones’ Complement
0 1
1 o}

To subtract a binary number y (the subtrahend) from another number x (the minuend), the ones’
complement of y is added to x and one is added to the sum. The leading digit “1” of the result is
then discarded.

The method of complements is especially useful in binary (radix 2) since the ones’ complement is

13 » K

very easily obtained by inverting each bit (changing “0” to “1” and vice versa). And adding 1 to get
the two’s complement can be done by simulating a carry into the least significant bit. For example:

01100100 (X, equals decimal 100)
— 00010110 (y, equals decimal 22)

becomes the sum:

01100100 (X)
+ 11101001 (ones’ complement of y)

+ 1 (to get the two’s complement)
101001110

[ {2

Dropping the initial “1” gives the answer: 01001110 (equals decimal 78).

Teaching of Subtraction in Schools

Methods used to teach subtraction to elementary school vary from country to country, and within a
country, different methods are in fashion at different times. In what is, in the United States, called
traditional mathematics, a specific process is taught to students at the end of the 1st year or during
the 2nd year for use with multi-digit whole numbers, and is extended in either the fourth or fifth
grade to include decimal representations of fractional numbers.

In America

Almost all American schools currently teach a method of subtraction using borrowing or regroup-
ing (the decomposition algorithm) and a system of markings called crutches. Although a method of
borrowing had been known and published in textbooks previously, the use of crutches in American
schools spread after William A. Brownell published a study claiming that crutches were beneficial
to students using this method. This system caught on rapidly, displacing the other methods of
subtraction in use in America at that time.
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In Europe

Some European schools employ a method of subtraction called the Austrian method, also known
as the additions method. There is no borrowing in this method. There are also crutches (markings
to aid memory), which vary by country.

Comparing the two Main Methods

Both these methods break up the subtraction as a process of one digit subtractions by place value.
Starting with a least significant digit, a subtraction of subtrahend:

S8 jeesS)

from minuend:

mom,_,...m,

where each s, and m, is a digit, proceeds by writing down m, —s,,m, —s,, and so forth, as long as s,
s, does not exceed m.. Otherwise, m, is increased by 10 and some other digit is modified to correct
for this increase. The American method corrects by attempting to decrease the minuend digit m,

1+1

by one (or continuing the borrow leftwards until there is a non-zero digit from which to borrow).
The European method corrects by increasing the subtrahend digit s,, by one.

Example: 704 — 512 = 192.

-1 < carry

U

4 <« Minuend

2« Subtrahend

2 <« Rest or Difference

C
7
5
1

© - o T

The minuend is 704, the subtrahend is 512. The minuend digits are m, = 7,m, = 0 and m, = 4.
The subtrahend digits are s, = 5,5, = 1 and s, = 2. Beginning at the one’s place, 4 is not less than
2 so the difference 2 is written down in the result’s one’s place. In the ten’s place, 0 is less than 1, so
the o is increased by 10, and the difference with 1, which is 9, is written down in the ten’s place. The
American method corrects for the increase of ten by reducing the digit in the minuend’s hundreds
place by one. That is, the 7 is struck through and replaced by a 6. The subtraction then proceeds
in the hundreds place, where 6 is not less than 5, so the difference is written down in the result’s
hundred’s place. We are now done, the result is 192.

The Austrian method does not reduce the 7 to 6. Rather it increases the subtrahend hundred’s
digit by one. A small mark is made near or below this digit (depending on the school). Then the
subtraction proceeds by asking what number when increased by 1, and 5 is added to it, makes 7.
The answer is 1, and is written down in the result’s hundred’s place.

There is an additional subtlety in that the student always employs a mental subtraction table in the
American method. The Austrian method often encourages the student to mentally use the addition
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table in reverse. In the example above, rather than adding 1 to 5, getting 6, and subtracting that from 7,
the student is asked to consider what number, when increased by 1, and 5 is added to it, makes 7.

Subtraction by Hand
Austrian Method
Example:
753 753
-491 -491
2
1+..=3 The difference is written
under the line.
a3 Fick
-491 -491
1 ]
62 62
9+..=15 4+1)+..=7
Now we can find the differ-

ence like before.

Subtraction from Left to Right

Example:
753 783
-491 -491
3 2
7-4=3 Because the next digit of the min-

uend is smaller than the subtra-
hend, we subtract one from our
penciled-in-number and mentally
add ten to the next.

This result is only
penciled in.

American Method

a3 a3
-491 -491
1
2 2
9+..=5 So, we add 10 to it and put
The required sum (5) istoo a1 under the next higher
small. place in the subtrahend.
753 753
-491 -491
- S
262 262

The difference is written The total difference.

under the line.

753 /758

-49 -491 -491
26 26 262
15-9=6 Because the next digit 3-1=2

in the minuend is not

smaller than the sub-

trahend, We keep this
number.

In this method, each digit of the subtrahend is subtracted from the digit above it starting from
right to left. If the top number is too small to subtract the bottom number from it, we add 10 to
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it; this 10 is “borrowed” from the top digit to the left, which we subtract 1 from. Then we move
on to subtracting the next digit and borrowing as needed, until every digit has been subtracted.

Example:

615
755 753 753 753
-491 -491 -491 -491
2 2 2
3-1=.. We write the differ- 5-9=.. So, we add 10 to it. The 10 is “bor-
ence under the line. The minuend (5) is rowed” from the digit on the left,
too small. which goes down by 1.
615 615 615 615
753 753 753 753
-491 -491 -491 -491
62 62 262 262
15-9=... 6-—4=.. We write the differ- The total difference.
Now the subtraction works, ence under the line.
and we write the difference
under the line.
Trade First

A variant of the American method where all borrowing is done before all subtraction.

Example:
614 614 614 614
-1';i/ _,,4’i: ,dr"11/ A1 A1
781 78X 751 78X 751
-493 -493 -493 -493 -493
8 58 258
1 - 3 = not possible. 4 — 9 =notpossi-  Working from right 14-9=5 6-4=2
We add a 10 to the 1. Because the ble. to left:
10 is “borrowed” from the nearby 5, So we proceed as in 11-3=8
the 5 is lowered by 1. step 1.

Partial Differences

The partial differences method is different from other vertical subtraction methods because no
borrowing or carrying takes place. In their place, one places plus or minus signs depending on
whether the minuend is greater or smaller than the subtrahend. The sum of the partial differences

is the total difference.
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Example:
753 753 753 zgf
-491 -491 -491 i
+300 +300 +300 f‘*_&‘,ﬁ
- 4.0 + 2
The smaller number is sub- The smaller number is sub- The smaller number is sub-  +300 — 40 + 2 = 262
tracted from the greater: tracted from the greater: tracted from the greater:
700 — 400 = 300 90 - 50 = 40 3-1=2

Because the minuend is great-  Because the minuend is small-  Because the minuend is great-
er than the subtrahend, this er than the subtrahend, this er than the subtrahend, this
difference has a plus sign. difference has a minus sign. difference has a plus sign.

Nonvertical Methods
Counting Up

Instead of finding the difference digit by digit, one can count up the numbers between the subtra-
hend and the minuend.

Example: 1234 — 567 = can be found by the following steps:
* 567+3=570
e 570+ 30 =600
e 600 + 400 = 1000
e 1000 + 234 = 1234

Add up the value from each step to get the total difference: 3 + 30 + 400 + 234 = 667.

Breaking up the Subtraction
Another method that is useful for mental arithmetic is to split up the subtraction into small steps.
Example: 1234 — 567 = can be solved in the following way:
* 1234 - 500 =734
* 734-60=0674
+ 674-7=0667
Same Change

The same change method uses the fact that adding or subtracting the same number from the min-
uend and subtrahend does not change the answer. One adds the amount needed to get zeros in the
subtrahend.
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Example:
1234 — 567 = can be solved as follows:

1234 — 567 = 1237 — 570 = 1267 — 600 = 667

(' Multiplication )

Multiplication (often denoted by the cross symbol “x”, by a point “-”, by juxtaposition, or, on com-

puters, by an asterisk “+”) is one of the four elementary mathematical operations of arithmetic,
with the others being addition, subtraction and division.

The multiplication of whole numbers may be thought as a repeated addition; that is, the multipli-
cation of two numbers is equivalent to adding as many copies of one of them, the multiplicand,
as the value of the other one, the multiplier. The multiplier can be written first and multiplicand
second (though the custom can vary by culture); both can be called factors.

axb=b+---+b
-

a

For example, 4 multiplied by 3 (often written as 3x4 and spoken as “3 times 4”) can be calculated
by adding 3 copies of 4 together:

3x4=4+4+4=12
Here 3 and 4 are the factors and 12 is the product.

One of the main properties of multiplication is the commutative property: adding 3 copies of 4
gives the same result as adding 4 copies of 3:

4x3=3+3+3+3=12

Thus the designation of multiplier and multiplicand does not affect the result of the multiplication.

The multiplication of integers (including negative numbers), rational numbers (fractions) and real
numbers is defined by a systematic generalization of this basic definition.

Multiplication can also be visualized as counting objects arranged in a rectangle (for whole
numbers) or as finding the area of a rectangle whose sides have given lengths. The area of a
rectangle does not depend on which side is measured first, which illustrates the commutative
property. The product of two measurements is a new type of measurement, for instance mul-
tiplying the lengths of the two sides of a rectangle gives its area, this is the subject of dimen-
sional analysis.

The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals
12, then 12 divided by 3 equals 4. Multiplication by 3, followed by division by 3, yields the original
number (since the division of a number other than o by itself equals 1).

Multiplication is also defined for other types of numbers, such as complex numbers, and more
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abstract constructs, like matrices. For some of these more abstract constructs, the order in which
the operands are multiplied together matters.

Notation and Terminology

The multiplication sign x.

In arithmetic, multiplication is often written using the sign “x” between the terms; that is, in infix
notation. For example,

2x3=6 (verbally, “two times three equals six”)

3x4=12
2x3x5=6x5=30

2x2x2x2%x2=32

There are other mathematical notations for multiplication:

Multiplication is also denoted by dot signs, usually a middle-position dot (rarely period):
5-20r5.3

The middle dot notation, encoded in Unicode as U+22C5 - DOT OPERATOR, is standard in
the United States, the United Kingdom, and other countries where the period is used as a
decimal point. When the dot operator character is not accessible, the interpunct (-) is used.
In other countries that use a comma as a decimal mark, either the period or a middle dot
is used for multiplication.

In algebra, multiplication involving variables is often written as a juxtaposition (e.g.,
xy for x times y or 5x for five times x), also called implied multiplication. The nota-
tion can also be used for quantities that are surrounded by parentheses. This implicit
usage of multiplication can cause ambiguity when the concatenated variables happen
to match the name of another variable, when a variable name in front of a parenthesis
can be confused with a function name, or in the correct determination of the order of
operations.

In vector multiplication, there is a distinction between the cross and the dot symbols. The cross
symbol generally denotes the taking a cross product of two vectors, yielding a vector as the re-
sult, while the dot denotes taking the dot product of two vectors, resulting in a scalar.
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In computer programming, the asterisk (as in 5%2) is still the most common notation. This is due
to the fact that most computers historically were limited to small character sets (such as ASCII and
EBCDIC) that lacked a multiplication sign (such as - or x), while the asterisk appeared on every
keyboard. This usage originated in the FORTRAN programming language.

The numbers to be multiplied are generally called the “factors”. The number to be multiplied is the
“multiplicand”, and the number by which it is multiplied is the “multiplier”. Usually the multiplier is
placed first and the multiplicand is placed second; however sometimes the first factor is the multipli-
cand and the second the multiplier.

Also as the result of a multiplication does not depend on the order of the factors, the distinction be-
tween “multiplicand” and “multiplier” is useful only at a very elementary level and in some multiplica-
tion algorithms, such as the long multiplication. Therefore, in some sources, the term “multiplicand” is
regarded as a synonym for “factor”. In algebra, a number that is the multiplier of a variable or expres-
sion (e.g., the 3 in 3xy?) is called a coefficient.

The result of a multiplication is called a product. A product of integers is a multiple of each factor.
For example, 15 is the product of 3 and 5, and is both a multiple of 3 and a multiple of 5.

Computation

The common methods for multiplying numbers using pencil and paper require a multiplication
table of memorized or consulted products of small numbers (typically any two numbers from
0 to 9), however one method, the peasant multiplication algorithm, does not.

Multiplying numbers to more than a couple of decimal places by hand is tedious and error prone.
Common logarithms were invented to simplify such calculations, since adding logarithms is equiv-
alent to multiplying. The slide rule allowed numbers to be quickly multiplied to about three places
of accuracy.

Beginning in the early 20th century, mechanical calculators, such as the Marchant, automated
multiplication of up to 10 digit numbers. Modern electronic computers and calculators have great-
ly reduced the need for multiplication by hand.

Historical Algorithms

Methods of multiplication were documented in the Egyptian, Greek, Indian and Chinese civilizations.
The Ishango bone, dated to about 18,000 to 20,000 BC, hints at a knowledge of multiplication in
the Upper Paleolithic era in Central Africa.

Egyptians

The Egyptian method of multiplication of integers and fractions, documented in the Ahmes Pa-
pyrus, was by successive additions and doubling. For instance, to find the product of 13 and 21
one had to double 21 three times, obtaining 2 x 21 =42,4 x21=2x42=84,8 x 21 =2 x 84 =
168. The full product could then be found by adding the appropriate terms found in the doubling
sequence:

13x21=(1+4+8)x21=(1x21)+(4x21)+(8x21)=21+84+168 =273,
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Babylonians

The Babylonians used a sexagesimal positional number system, analogous to the modern day dec-
imal system. Thus, Babylonian multiplication was very similar to modern decimal multiplication.
Because of the relative difficulty of remembering 60 x 60 different products, Babylonian mathe-
maticians employed multiplication tables. These tables consisted of a list of the first twenty mul-
tiples of a certain principal number n:n, 2n, ..., 20n; followed by the multiples of 10n:30n,40n,
and 50n. Then to compute any sexagesimal product, say 53n, one only needed to add 50n and 3n
computed from the table.

Chinese

Il
=

m L

38 x 76 = 2888

In the mathematical text Zhoubi Suanjing, dated prior to 300 BC, and the Nine Chapters on the
Mathematical Art, multiplication calculations were written out in words, although the early Chi-
nese mathematicians employed Rod calculus involving place value addition, subtraction, multipli-
cation and division. Chinese were already using a decimal multiplication table since the Warring
States period.

Modern Methods

Product of 45 and 256. Note the order of the numerals in 45 is reversed down the left column. The carry
step of the multiplication can be performed at the final stage of the calculation (in bold), returning the final
product of 45 x 256 = 11520. This is a variant of Lattice multiplication.

The modern method of multiplication based on the Hindu—Arabic numeral system was first de-
scribed by Brahmagupta. Brahmagupta gave rules for addition, subtraction, multiplication and
division. Henry Burchard Fine, then professor of Mathematics at Princeton University, wrote the
following;:

The Indians are the inventors not only of the positional decimal system itself, but of most
of the processes involved in elementary reckoning with the system. Addition and subtrac-
tion they performed quite as they are performed nowadays; multiplication they effected in
many ways, ours among them, but division they did cumbrously.
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These place value decimal arithmetic algorithms were introduced to Arab countries by
Al Khwarizmi in the early 9th century, and popularized in the Western world by Fibo-
nacci in the 13th century.

Grid Method

Grid method multiplication or the box method, is used in primary schools in England and Wales
& in some areas of the United States to help teach an understanding of how multiple digit multi-
plication works. An example of multiplying 34 by 13 would be to lay the numbers out in a grid like:

30 4
10 300 40
3 90 12
and then add the entries.
Computer Algorithms

The classical method of multiplying two » — digit numbers requires »* digit multiplications. Mul-
tiplication algorithms have been designed that reduce the computation time considerably when
multiplying large numbers. Methods based on the discrete Fourier transform reduce the com-
putational complexity to O(n log nlog logn). Recently, the factor log log n has been replaced by a
function that increases much slower although it is still not constant (as it can be hoped).

In March, 2019, David Harvey and Joris van der Hoeven submitted an article presenting an inte-
ger multiplication algorithm with a claimed complexity of O(n log n).

Products of Measurements

One can only meaningfully add or subtract quantities of the same type but can multiply or divide
quantities of different types. Four bags with three marbles each can be thought of as:

[4 bags] x [3 marbles per bag] = 12 marbles.

When two measurements are multiplied together the product is of a type depending on the types of
the measurements. The general theory is given by dimensional analysis. This analysis is routinely
applied in physics but has also found applications in finance.

A common example is multiplying speed by time gives distance, so:
50 kilometers per hour x 3 hours = 150 kilometers.
In this case, the hour units cancel out and we are left with only kilometer units.

Other examples:
2.5 meters x 4.5 meters = 11.25 square meters.
11 meters/seconds x 9 seconds = 99 meters.

4.5 residents per house x 20 houses = 90 residents.

WORLD TECHNOLOGIES




CHAPTER 2  Arithmetic | 47

Products of Sequences
Capital Pi Notation

The product of a sequence of terms can be written with the product symbol, which derives from the
capital letter IT (Pi)in the Greek alphabet. Unicode position U +220F (I1) contains a glyph for de-
noting such a product, distinct from U + 0340 (IT), the letter. The meaning of this notation is given by:

4
[Ti=1-2-3-4,
i=1

that is:
4
[1i=24
i=1

The subscript gives the symbol for a dummy variable (i in this case), called the “index of multipli-
cation” together with its lower bound (1), whereas the superscript (here 4) gives its upper bound.
The lower and upper bound are expressions denoting integers. The factors of the product are ob-
tained by taking the expression following the product operator, with successive integer values sub-
stituted for the index of multiplication, starting from the lower bound and incremented by 1 up to
and including the upper bound. So, for example:

6
Hi:1-2-3~4-5~6=720

i=1

More generally, the notation is defined as:

where m and n are integers or expressions that evaluate to integers. In case m = n, the value of the prod-
uct is the same as that of the single factor x_. If m > n, the product is the empty product, with the value 1.

Infinite Products

One may also consider products of infinitely many terms; these are called infinite products. Nota-
tionally, we would replace n above by the lemniscate «. The product of such a series is defined as
the limit of the product of the first n terms, as n grows without bound. That is, by definition,

Hxl. =lim

n

I I X;.
n—x0

=m

i=m i=

One can similarly replace m with negative infinity, and define:
© 0 n
Hxi :( lim Hxi] -(limnxij,
im0 m-—»—0 i—m n—>»0 i-1
provided both limits exist.
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Properties

120

y=xx0
y=x xl
y=xx2
y=rx3

y=x x4
y=rx5
8Ok R R S y=x6
y=x xT
y=rx8
y=xx4
= 60} [UTTTTR A TP P y=x x10

40} s AR

201

Multiplication of numbers 0—10. Line labels = multiplicand. X axis = multiplier. Y axis = product.
Extension of this pattern into other quadrants gives the reason why a negative number times a
negative number yields a positive number.

For the real and complex numbers, which includes for example natural numbers, integers, and
fractions, multiplication has certain properties:

Commutative Property

The order in which two numbers are multiplied does not matter:

x.y:y.x.

Associative Property

Expressions solely involving multiplication or addition are invariant with respect to order of
operations:

(x-y)-z=x-(y-2)

Distributive Property

Holds with respect to multiplication over addition. This identity is of prime importance in simpli-
fying algebraic expressions:

x-(y+z)=x-y+x-z

Identity Element

The multiplicative identity is 1; anything multiplied by 1 is itself. This feature of 1 is known as the
identity property:

x-1=x
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Property of o

Any number multiplied by o0 is 0. This is known as the zero property of multiplication:
x-0=0

Negation

—1 times any number is equal to the additive inverse of that number.
(-1)-x=(—x) where (-x)+x=0

—1times —11is 1.

(-D-(-D =1

Inverse Element

c e e 1 1
Every number x, except 0, has a multiplicative inverse, —, such that x- (—j =1.
X X

Order Preservation

Multiplication by a positive number preserves order:
For a > o0, if b > ¢ then ab > ac.

Multiplication by a negative number reverses order:
Fora < 0,if b > cthen ab < ac.

The complex numbers do not have an ordering.

Other mathematical systems that include a multiplication operation may not have all these prop-
erties. For example, multiplication is not, in general, commutative for matrices and quaternions.

Axioms

In the book Arithmetices principia, nova methodo exposita, Giuseppe Peano proposed axioms
for arithmetic based on his axioms for natural numbers. Peano arithmetic has two axioms for
multiplication:

xx0=0
xxS(y)=(xxy)+x

Here S(y) represents the successor of y, or the natural number that follows y. The various proper-
ties like associativity can be proved from these and the other axioms of Peano arithmetic including
induction. For instance S(0), denoted by 1, is a multiplicative identity because:

xx1=xx80)=(xx0)+x=0+x=x
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The axioms for integers typically define them as equivalence classes of ordered pairs of natural
numbers. The model is based on treating (x,y) as equivalent to x — y when x and y are treated as
integers. Thus both (0,1) and (1,2) are equivalent to —1. The multiplication axiom for integers de-
fined this way is:

(xp’xm)x(ypﬂym):(xpxyp+xmxym’xpxym+xmxyp)

The rule that —1 x —1 = 1 can then be deduced from:

(0,1)%(0,1) = (0x 0 +1x1,0x 1 +1x 0) = (1,0)
Multiplication is extended in a similar way to rational numbers and then to real numbers.

Multiplication with Set Theory

The product of non-negative integers can be defined with set theory using cardinal numbers
or the Peano axioms. How to extend this to multiplying arbitrary integers, and then arbitrary
rational numbers. The product of real numbers is defined in terms of products of rational
numbers.

Multiplication in Group Theory

There are many sets that, under the operation of multiplication, satisfy the axioms that define
group structure. These axioms are closure, associativity, and the inclusion of an identity element
and inverses.

A simple example is the set of non-zero rational numbers. Here we have identity 1, as opposed to
groups under addition where the identity is typically 0. Note that with the rationals, we must ex-
clude zero because, under multiplication, it does not have an inverse: there is no rational number
that can be multiplied by zero to result in 1. In this example we have an abelian group, but that is
not always the case.

Look at the set of invertible square matrices of a given dimension, over a given field. Now it is straight-
forward to verify closure, associativity, and inclusion of identity (the identity matrix) and inverses.
However, matrix multiplication is not commutative, therefore this group is nonabelian.

Another fact of note is that the integers under multiplication is not a group, even if we exclude
zero. This is easily seen by the nonexistence of an inverse for all elements other than 1 and -1.

Multiplication in group theory is typically notated either by a dot, or by juxtaposition (the omission
of an operation symbol between elements). So multiplying element a by element b could be notat-
ed a.b or ab. When referring to a group via the indication of the set and operation, the dot is used,
e.g., our first example could be indicated by (Q \ {0},-)

Multiplication of Different Kinds of Numbers

Numbers can count (3 apples), order (the 3rd apple), or measure (3.5 feet high); as the history
of mathematics has progressed from counting on our fingers to modelling quantum mechanics,
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multiplication has been generalized to more complicated and abstract types of numbers, and
to things that are not numbers (such as matrices) or do not look much like numbers (such as
quaternions).

Integers

N x M is the sum of N copies of M when N and M are positive whole numbers. This gives the num-
ber of things in an array N wide and M high.

Generalization to negative numbers can be done by:
Nx(-M)=(-N)xM =—(NxM)and (-N)x(-M)=NxM

The same sign rules apply to rational and real numbers.

Rational Numbers

Generalization to fractions 4 X < is by multiplying the numerators and denominators respective-
ly: éxgz(AXC) n

B D (BxD)
number of things in an array when the rational numbers happen to be whole numbers.

. This gives the area of a rectangle % high and %wide, and is the same as the

Real Numbers

Real numbers and their products can be defined in terms of sequences of rational numbers.

Complex Numbers

Considering complex numbers z and z, as ordered pairs of real numbers (a,,5,) and (a,,b,), the
product z, xz,is (a, xa, —b, xb,,a,xb, +a, xb,). This is the same as for reals, a, xa,,when the

imaginary parts b, and b, are zero.

Equivalently, denoting +/—1 as i, we have:
z,xz, =(a, +bi)(a, +b,i) = (a,xa,) + (a, xb,i) + (b, x ayi) + (b, x b,i*) = (a,a, —bb,) + (ab, + ba,)i.
Further Generalizations

A very general, and abstract, concept of multiplication is as the “multiplicatively denoted” (second)
binary operation in a ring. An example of a ring that is not any of the above number systems is a
polynomial ring (you can add and multiply polynomials, but polynomials are not numbers in any
usual sense).

Division
c . x . cqe e . 1 T
Often division, —, is the same as multiplication by an inverse, x(—). Multiplication for some
Yy

types of “numbers” may have corresponding division, without inverses; in an integral domain x
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. 1 X c . . . X
may have no inverse “—” but — may be defined. In a division ring there are inverses, but — may be
X

. . . . 1 1
ambiguous in non-commutative rings since x(—] need not be the same as [—j X.
Y Y

Exponentiation

When multiplication is repeated, the resulting operation is known as exponentiation. For instance,
the product of three factors of two (2x2x2) is “two raised to the third power”, and is denoted by
23, a two with a superscript three. In this example, the number two is the base, and three is the
exponent. In general, the exponent (or superscript) indicates how many times the base appears in
the expression, so that the expression:

a'"=axax---xa
—_—

n

indicates that n copies of the base a are to be multiplied together. This notation can be used when-
ever multiplication is known to be power associative.

( Division )

Division is one of the four basic operations of arithmetic, the others being addition, subtraction,
and multiplication. The mathematical symbols used for the division operator are the obelus (+),
the colon (:) and the slash (/).

At an elementary level the division of two natural numbers is — among other possible inter-
pretations — the process of calculating the number of times one number is contained within
another one. This number of times is not always an integer, and this led to two different
concepts.

The division with remainder or Euclidean division of two natural numbers provides a quotient,
which is the number of times the second one is contained in the first one, and a remainder, which
is the part of the first number that remains, when in the course of computing the quotient, no fur-
ther full chunk of the size of the second number can be allocated.

For a modification of this division to yield only one single result, the natural numbers must be
extended to rational numbers or real numbers. In these enlarged number systems, division is the
inverse operation to multiplication, that is a=c+b means axb=c, as long as b is not zero. If

b =0, then this is a division by zero, which is not defined.

Both forms of divisions appear in various algebraic structures. Those in which a Euclidean division
(with remainder) is defined are called Euclidean domains and include polynomial rings in one
indeterminate. Those in which a division (with a single result) by all nonzero elements is defined
are called fields and division rings. In a ring the elements by which division is always possible are
called the units (for example, 1 and —1 in the ring of integers).
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In its simplest form, division can be viewed either as a quotition or a partition. In terms of
quotition, 20+5 means the number of 5s that must be added to get 20. In terms of partition,
20+5 means the size of each of 5 parts into which a set of size 20 is divided. For example, 20
apples divide into four groups of five apples, meaning that twenty divided by five is equal to

four. This is denoted as 20/5=4,20+5=4,, or ? =4 . Notationally, the dividend is divided by

the divisor to get a quotient. In the example, 20 is the dividend, 5 is the divisor, and 4 is the
quotient.

Unlike the other basic operations, when dividing natural numbers there is sometimes a re-
mainder that will not go evenly into the dividend; for example, 10+3 leaves a remainder of 1,
as 10 is not a multiple of 3. Sometimes this remainder is added to the quotient as a fractional

. 1 . . C
part, so 10+3 is equal to 35 or 3.33..., but in the context of integer division, where numbers

have no fractional part, the remainder is kept separately or discarded. When the remainder
is kept as a fraction, it leads to a rational number. The set of all rational numbers is created
by every possible division using integers. In modern mathematical terms, this is known as
extending the system.

Unlike multiplication and addition, Division is not commutative, meaning that a + b is not always
equal to b+a. Division is also not, in general, associative, meaning that when dividing multiple

times, the order of division can change the result. For example, (20+5)+ 2=2,but 20+(5+2)=8

(where the use of parentheses indicates that the operations inside parentheses are performed be-
fore the operations outside parentheses).

Division is, however, distributive, in the sense that (a+b)+c=(a+c)+(b+c) for every num-
ber. Specifically, division has the right-distributive property over addition and subtraction.
That means:

b

ath =(a+b)+c=£+—
c c

This is the same as multiplication: (a +b)x ¢ =axc + b xc . However, division is not left-distributive:

-1
a =a+(b+c)=(é+£j 4.4
b+c a a b

Which is unlike the case in multiplication.

If there are multiple divisions in a row,the order of calculation traditionally goes from left to right,
which is called left-associative:

a+b+c=(a+b)+c=a=+(bxc)=axb ' xc™.
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Notation

Division is often shown in algebra and science by placing the dividend over the divisor with
a horizontal line, also called a fraction bar, between them. For example, “a divided by b” can
written as:

a
b

which can also be read out loud as “a by b” or “a over b”. A way to express division all on one
line is to write the dividend (or numerator), then a slash, then the divisor (or denominator),
as follows:

alb

This is the usual way of specifying division in most computer programming languages, since it
can easily be typed as a simple sequence of ASCII characters. Some mathematical software, such
as MATLAB and GNU Octave, allows the operands to be written in the reverse order by using the
backslash as the division operator:

b\a

A typographical variation halfway between these two forms uses a solidus (fraction slash) but ele-
vates the dividend, and lowers the divisor:

alb

Any of these forms can be used to display a fraction. A fraction is a division expression where both
dividend and divisor are integers (typically called the numerator and denominator), and there is
no implication that the division must be evaluated further. A second way to show division is to use
the obelus (or division sign), common in arithmetic, in this manner:

a+b

This form is infrequent except in elementary arithmetic. ISO 80000-2-9.6 states it should not be
used. The obelus is also used alone to represent the division operation itself, as for instance as a
label on a key of a calculator. The obelus was introduced by Swiss mathematician Johann Rahn in
1659 in Teutsche Algebra.

a:b

In some non-English-speaking countries colon is used to denote division. This notation was intro-
duced by Gottfried Wilhelm Leibniz in his 1684 Acta eruditorum. Leibniz disliked having separate
symbols for ratio and division. However, in English usage the colon is restricted to expressing the
related concept of ratios.

Since the 19th century US textbooks have used b)a or b)a to denote a divided by b, especially
when discussing long division. The history of this notation is not entirely clear because it evolved
over time.
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Computing
Manual Methods

Division is often introduced through the notion of “sharing out” a set of objects, for example a pile
of lollies, into a number of equal portions. Distributing the objects several at a time in each round
of sharing to each portion leads to the idea of “chunking” — a form of division where one repeated-
ly subtracts multiples of the divisor from the dividend itself.

By allowing one to subtract more multiples than what the partial remainder allows at a given stage,
more flexible methods, such as the bidirectional variant of chunking, can be developed as well.

More systematic and more efficient (but also more formalised, more rule-based, and more re-
moved from an overall holistic picture of what division is achieving), a person who knows the mul-
tiplication tables can divide two integers with pencil and paper using the method of short division,
if the divisor is small, or long division, if the divisor is larger.

If the dividend has a fractional part (expressed as a decimal fraction), one can continue the algo-
rithm past the ones place as far as desired. If the divisor has a fractional part, one can restate the
problem by moving the decimal to the right in both numbers until the divisor has no fraction.

A person can calculate division with an abacus by repeatedly placing the dividend on the abacus,
and then subtracting the divisor the offset of each digit in the result, counting the number of divi-
sions possible at each offset.

A person can use logarithm tables to divide two numbers, by subtracting the two numbers’ loga-
rithms, then looking up the antilogarithm of the result.

A person can calculate division with a slide rule by aligning the divisor on the C scale with the
dividend on the D scale. The quotient can be found on the D scale where it is aligned with the
left index on the C scale. The user is responsible, however, for mentally keeping track of the
decimal point.

By Computer or with Computer Assistance

Modern computers compute division by methods that are faster than long division, with the more
efficient ones relying on approximation techniques from numerical analysis.

In modular arithmetic (modulo a prime number) and for real numbers, nonzero numbers have
a multiplicative inverse. In these cases, a division by x may be computed as the product by the
multiplicative inverse of x. This approach is often associated with the faster methods in computer
arithmetic.

Division in Different Contexts
Euclidean Division

The Euclidean division is the mathematical formulation of the outcome of the usual process of di-
vision of integers. It asserts that, given two integers, a , the dividend, and b, the divisor, such that
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b #0, there are unique integers ¢, the quotient, and r, the remainder, such that a=5bg+r and
0<r<|p|, where |b| denotes the absolute value of 5.

Integers

Integers are not closed under division. Apart from division by zero being undefined, the quotient
is not an integer unless the dividend is an integer multiple of the divisor. For example, 26 cannot
be divided by 11 to give an integer. Such a case uses one of five approaches:

« Say that 26 cannot be divided by 11; division becomes a partial function.

. . . . . 26
« Give an approximate answer as a decimal fraction or a mixed number, so T 2.36 or

EL 2 % . This is the approach usually taken in numerical computation.

11
Give the answer as a fraction representing a rational number, so the result of the division

of 26 by 11 is ? . But, usually, the resulting fraction should be simplified: the result of the

division of 52 by 22 is also 26 . This simplification may be done by factoring out the great-
est common divisor. I

. . . . 26 .
« Give the answer as an integer quotient and a remainder, so b - 2 remainder.

« To make the distinction with the previous case, this division, with two integers as result,
is sometimes called Euclidean division, because it is the basis of the Euclidean algorithm.

. . . 26 . . . . ..
» Givetheinteger quotient as the answer, so T 2. This is sometimes called integer division.

Dividing integers in a computer program requires special care. Some programming languages,
such as C, treat integer division as in case above, so the answer is an integer. Other languages, such
as MATLAB and every computer algebra system return a rational number as the answer, as in case
above. These languages also provide functions to get the results of the other cases, either directly
or from the result of case.

Names and symbols used for integer division include div, /, \, and %. Definitions vary regarding integer
division when the dividend or the divisor is negative: rounding may be toward zero (so called T-divi-
sion) or toward — (F-division); rarer styles can occur.

Divisibility rules can sometimes be used to quickly determine whether one integer divides exactly
into another.

Rational Numbers

The result of dividing two rational numbers is another rational number when the divisor is not o.
The division of two rational numbers p/q and r/s can be computed as:

plg_p s_ps
rls q r gqr

All four quantities are integers, and only p may be0. This definition ensures that division is the
inverse operation of multiplication.
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Real Numbers

Division of two real numbers results in another real number (when the divisor is nonzero). It is
defined such that a/b=c if and only if a=cbh and 6#0.

Complex Numbers

Dividing two complex numbers (when the divisor is nonzero) results in another complex number,
which is found using the conjugate of the denominator:

p+iqg (p+ig)(r—is) pr+gs+i(qr— ps) _pr+qs+iqr—ps
r+is  (r+is)(r—is) r’+s’ Pt +s’ st

This process of multiplying and dividing by r —is s called ‘realisation’ or (by analogy) rationalisa-
tion. All four quantities p,q,r,s are real numbers, and » and s may not both be 0.

Division for complex numbers expressed in polar form is simpler than the definition above:

pe"”
is

re” re“e™  r

iq _—is
— pe-e _£ei(q7s)

Again all four quantities p,q,r,s are real numbers, and r may not be 0.

Polynomials

One can define the division operation for polynomials in one variable over a field. Then, as in the
case of integers, one has a remainder.

Matrices

One can define a division operation for matrices. The usual way to do thisisto define 4/ B = AB™,
where B! denotes the inverse of B, but it is far more common to write out AB! explicitly

to avoid confusion. An elementwise division can also be defined in terms of the Hadamard
product.
Left and Right Division

Because matrix multiplication is not commutative, one can also define a left division or so-called
backslash-division as 4\ B = A™!' B. For this to be well defined, B! need not exist, however A~ does
need to exist. To avoid confusion, division as defined by:

A/ B=AB!
Is sometimes called right division or slash-division in this context.

With left and right division defined this way, 4/(BC) is in general not the same as (4/ B)/C, nor
is (AB)\C the same as A4\(B\C).However, 4/(BC)=(A4/C)/B and (4B)\C=B\(4\C).
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Pseudoinverse

To avoid problems when 4™ and/or B™' do not exist, division can also be defined as multiplication

by the pseudoinverse. That is, 4/ B=A4B" and 4\B=A'B, where 4"and B"denote the pseudo-
inverses of 4 and B.

Abstract Algebra

In abstract algebra, given a magma with binary operation * (which could nominally be termed
multiplication), left division of b by a (written a \ b) is typically defined as the solution x to the
equation a * x = b, if this exists and is unique. Similarly, right division of b by a (written b / a) is the
solution y to the equation y * a = b. Division in this sense does not require * to have any particular
properties (such as commutativity, associativity, or an identity element).

“Division” in the sense of “cancellation” can be done in any magma by an element with the can-
cellation property. Examples include matrix algebras and quaternion algebras. A quasigroup is a
structure in which division is always possible, even without an identity element and hence invers-
es. In an integral domain, where not every element need have an inverse, division by a cancellative
element a can still be performed on elements of the form ab or ca by left or right cancellation, re-
spectively. If a ring is finite and every nonzero element is cancellative, then by an application of the
pigeonhole principle, every nonzero element of the ring is invertible, and division by any nonzero
element is possible. To learn about when algebras (in the technical sense) have a division opera-
tion, refer to the page on division algebras. In particular Bott periodicity can be used to show that
any real normed division algebra must be isomorphic to either the real numbers R, the complex
numbers C, the quaternions H, or the octonions O.

Calculus

The derivative of the quotient of two functions is given by the quotient rule:

(1]' _ S-S
g g’
Division by Zero

Division of any number by zero in most mathematical systems is undefined, because zero multi-
plied by any finite number always results in a product of zero. Entry of such an expression into
most calculators produces an error message. However, in certain higher level mathematics divi-
sion by zero is possible by the zero ring and algebras such as wheels. In these algebras, the meaning
of division is different from traditional definitions.

(C Decimal )

The decimal numeral system (also called base-ten positional numeral system, and occasionally
called denary or decanary) is the standard system for denoting integer and non-integer numbers.
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It is the extension to non-integer numbers of the Hindu—Arabic numeral system. The way of de-
noting numbers in the decimal system is often referred to as decimal notation.

A decimal numeral, or just decimal, or casually decimal number, refers generally to the notation of
a number in the decimal numeral system. Decimals may sometimes be identified for containing a

decimal separator (for example the “.” in 10.00 or 3.14159). “Decimal” may also refer specifically to
the digits after the decimal separator, such as in “3.14 is the approximation of 7 to two decimals”.

The numbers that may be represented in the decimal system are the decimal fractions, that is the
fractions of the form a/10", where a is an integer, and n is a non-negative integer.

The decimal system has been extended to infinite decimals, for representing any real number, by
using an infinite sequence of digits after the decimal separator. In this context, the decimal nu-
merals with a finite number of non—zero places after the decimal separator are sometimes called
terminating decimals. A repeating decimal is an infinite decimal that after some place repeats
indefinitely the same sequence of digits (for example 5.123144144144144... = 5.123144). An infinite
decimal represents a rational number if and only if it is a repeating decimal or has a finite number
of nonzero digits.

Ten fingers on two hands, the possible starting point of the decimal counting.

Many numeral systems of ancient civilisations use ten and its powers for representing numbers,
possibly because there are ten fingers on two hands and people started counting by using their fin-
gers. Examples are Brahmi numerals, Greek numerals, Hebrew numerals, Roman numerals, and
Chinese numerals. Very large numbers were difficult to represent in these old numeral systems,
and only the best mathematicians were able to multiply or divide large numbers. These difficulties
were completely solved with the introduction of the Hindu—Arabic numeral system for represent-
ing integers. This system has been extended to represent some non-integer numbers, called deci-
mal fractions or decimal numbers for forming the decimal numeral system.

Decimal Notation

For writing numbers, the decimal system uses ten decimal digits, a decimal mark, and, for negative
numbers, a minus sign “~”. The decimal digits are o, 1, 2, 3, 4, 5, 6, 7, 8, 9; the decimal separator

“ »

is the dot “.” in many countries (including all English speaking ones), but may be a comma “,” in
other countries (mainly in continental Europe).

For representing a non-negative number, a decimal consists of
« Either a (finite) sequence of digits such as 2017, or in full generality,

a,a, ,...d,

(in this case, the (entire) decimal represents an integer).
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« Two sequence of digits separated by a decimal mark such as 3.14159, 15.00, or in full
generality:

a,a, ,...a,.bb,...b,

It is generally assumed that, if m > o, the first digit a, is not zero, but, in some circumstances, it
may be useful to have one or more 0’s on the left. This does not change the value represented by the
decimal. For example, 3.14 = 03.14 = 003.14. Similarly, if b_ =0, it may be removed, and converse-
ly, trailing zeros may be added without changing the represented number: for example, 15 = 15.0
=15.00 and 5.2 = 5.20 = 5.200 . Sometimes the extra zeros are used for indicating the accuracy of
a measurement. For example, 15.00 m may indicate that the measurement error is less than one
centimeter (0.01 m), while 15 m may mean that the length is roughly fifteen meters, and that the
error may exceed 10 cm.

For representing a negative number, a minus sign is placed before a, .
The numeral a,a, ,...a,bb,...b represents the number:

a, 10" +a, 10" +---+a,10° +b—ll+b—22+---+ b,
100 10 10"

Therefore, the contribution of each digit to the value of a number depends on its position in the
numeral. That is, the decimal system is a positional numeral system.

Decimal Fractions

The numbers that are represented by decimal numerals are the decimal fractions (sometimes
called decimal numbers), that is, the rational numbers that may be expressed as a fraction, the
denominator of which is a power of ten. For example, the numerals 0.8, 14.89, 0.00024 represent

the fractions 8 1489 24

10”100 “100000

resents the fraction with denominator 10", whose numerator is the integer obtained by removing
the separator.

More generally, a decimal with n digits after the separator rep-

Expressed as a fully reduced fraction, the decimal numbers are those whose denominator is a
product of a power of 2 and a power of 5. Thus the smallest denominators of decimal numbers
are:

1=2°.5°2=2".5"4=2%.5°5=2°.5"8=2°.5"10=2"-5",16 =27 -5°,25=2°.5%, ...

The integer part or integral part of a decimal is the integer written to the left of the decimal sep-
arator. For a non-negative decimal, it is the largest integer that is not greater than the decimal.
The part from the decimal separator to the right is the fractional part, which equals the difference
between the numeral and its integer part.

When the integral part of a numeral is zero, it may occur, typically in computing, that the inte-
ger part is not written (for example .1234, instead of 0.1234). In normal writing, this is generally
avoided because of the risk of confusion between the decimal mark and other punctuation.
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Real Number Approximation

Decimal numerals do not allow an exact representation for all real numbers, e.g. for the real num-
ber z. Nevertheless, they allow approximating every real number with any desired accuracy, e.g.,
the decimal 3.14159 approximates the real s, being less than 1075 off; and so decimals are widely
used in science, engineering and everyday life.

More precisely, for every real number x, and every positive integer n,there are two decimals L
and u, with at most n digits after the decimal mark, such that L<x<wuand (u—L)= 10"

Numbers are very often obtained as the result of a measurement. As measurements are generally
afflicted with some measurement error with a known upper bound, the result of a measurement
is well represented by a decimal with n digits after the decimal mark, as soon as the absolute mea-
surement error is bounded from above by 10™. In practice, measurement results are often given
with a certain number of digits after the decimal point, which indicate the error bounds. For ex-
ample, although 0.080 and 0.08 denote the same decimal number, the numeral 0.080 suggests
a measurement with an error less than 0.001, while the numeral 0.08 indicates an absolute error
bounded by 0.01. In both cases, the true value of the measured quantity could be, for example,
0.0803 or 0.0796.

Infinite Decimal Expansion

For a real number x and an integer n>0, let [x]n denote the (finite) decimal expansion of the
greatest number that is not greater than x, which has exactly n digits after the decimal mark. Let
d, denote the last digit of [x]i .It is straightforward to see that [x]n may be obtained by appending

d, to the right of [x] . This way one has:

[x]n =[x]0.afl d,..d .d

n—1"n>

and the difference of [x] . and [x]n amounts to:

‘[x]n - [X]H‘ =d, 10" <107,
which is either o, if d, = 0, or gets arbitrarily small, when n tends to infinity. According to the defi-
nition of a limit, x is the limit of [x] when n tends to infinity. This is written as x=1im,_ [x], or

xz[x]o.d1 d,..d,..,

n—)co[

which is called an infinite decimal expansion of x.

Conversely, for any integer [x] , and any sequence of digits (d,),_,the (infinite) expression
[x],-d, d,...d,... is an infinite decimal expansion of a real number x. This expansion is unique if
neither all 4, are equal to 9 nor all d, are equal to o for n large enough (for all n greater than some
natural number N).

Ifall d, for n> N equalto9and [x] =[x] .dd,..d,,the limit of the sequence ([x],);, is the deci-

mal fraction obtained by replacing the last digit thatisnota 9, i.e.: d,,, by d, +1, and replacing all
subsequent 9s by 0s.
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Any such decimal fraction, i.e., d, =0 for n > N, may be converted to its equivalent infinite decimal
expansion by replacing d,byd, —1,and replacing all subsequent 0s by 9s.

In summary, every real number that is not a decimal fraction has a unique infinite decimal expan-
sion. Each decimal fraction has exactly two infinite decimal expansions, one containing only 0s
after some place, which is obtained by the above definition of [x]n , and the other containing only
9s after some place, which is obtained by defining [x]n as the greatest number that is less than x,
having exactly n digits after the decimal mark.

Rational Numbers

Long division allows computing the infinite decimal expansion of a rational number. If the rational
number is a decimal fraction, the division stops eventually, producing a decimal numeral, which
may be prolongated into an infinite expansion by adding infinitely many zeros. If the rational
number is not a decimal fraction, the division may continue indefinitely. However, as all successive
remainders are less than the divisor, there are only a finite number of possible remainders, and
after some place, the same sequence of digits must be repeated indefinitely in the quotient. That is,
one has a repeating decimal. For example,

é = 0.012345679012... (with the group 012345679 indefinitely repeating).

Conversely, every eventually repeating sequence of digits is the infinite decimal expansion of a ra-
tional number. This is a consequence of the fact that the recurring part of a decimal representation
is, in fact, an infinite geometric series which will sum to a rational number. For example,

0.0123123123...=11i20001k 123 1 _123 41

00005 N 10000 1-0.001 9990 3330

Decimal Computation

1/2 Els 2 3 4| 5 _I 6 7 8 9 10 20 30 40 50 60 70 80 g0

45 90 180 270 360 450 540 630 720 810 900 1800 2700 3600 4500 5400 6300 7200 8100 o 30

40 80 160 240 320 400 480 560 640 720 800 1600 2400 3200 4000 4800 5600 6400 7200 - 80
35 70 140 210 280 350 420 490 560 630 700 1400 2100 2800 3500 4200 4900 5600 6300 - 70
30 60 120 180 240 300 360 420 480 540 600 1200 1800 2400 3000 3600 4200 4800 5400 - 60
25 50 100 150 200 250 300 350 400 450 500 1000 1500 2000 2500 3000 3500 4000 4500 - 50
20 40 80 120 160 200 240 280 320 360 400 800 1200 1600 2000 2400 2800 3200 3600 - 40
15 30 60 90 120 150 180 210 240 270 300 600 900 1200 1500 1800 2100 2400 2700 - 30
10 20 40 60 80 100 120 140 160 180 200 400 600 800 1000 1200 1400 1600 1800 - 20
= 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600 700 800 900 - 10
4.5 9 18 27 36 45 54 63 72 81 90 180 270 360 450 540 630 720 810 - o)
4 8 16 24 32 40 48 56 64 72 80 160 240 320 400 480 560 640 720 - 8
35 7 14 21 28 35 42 49 56 63 70 140 210 280 350 420 490 560 630 - %
3 6 12 18 24 30 36 42 48 54 60 120 180 240 300 360 420 480 540 - 6
25 5 10 15 20 25 30 35 40 45 50 100 150 200 250 300 350 400 450 . 5
2 4 8 12 16 20 PL AN 32 36 40 80 120 160 200 240 280 320 360 - e
ibis & 6 9 12 i3 118 21 24 27 30 60 90 120 150 180 210 240 270 - 3
1 % 4 6 8 10 12 14 16 18 20 40 60 80 100 120 140 160 180 - 2
0.5 % 2 & 4 5 6 7 8 o 10 20 30 40 50 60 70 80 90 - il
0.25 0.5 SIS 2 25 B30 BT 4 45 5 10 15 20 25 30 35 40 45 . 1/2

Diagram of the world’s earliest multiplication table from the Warring States period.

Most modern computer hardware and software systems commonly use a binary representation
internally (although many early computers, such as the ENIAC or the IBM 650, used decimal
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representation internally). For external use by computer specialists, this binary representation is
sometimes presented in the related octal or hexadecimal systems.

For most purposes, however, binary values are converted to or from the equivalent decimal values
for presentation to or input from humans; computer programs express literals in decimal by de-
fault. (123.1, for example, is written as such in a computer program, even though many computer
languages are unable to encode that number precisely).

Both computer hardware and software also use internal representations which are effectively dec-
imal for storing decimal values and doing arithmetic. Often this arithmetic is done on data which
are encoded using some variant of binary-coded decimal, especially in database implementations,
but there are other decimal representations in use (such as in the new IEEE 754 Standard for
Floating-Point Arithmetic).

Decimal arithmetic is used in computers so that decimal fractional results of adding (or subtract-
ing) values with a fixed length of their fractional part always are computed to this same length
of precision. This is especially important for financial calculations, e.g., requiring in their results
integer multiples of the smallest currency unit for book keeping purposes. This is not possible in
binary, because the negative powers of 10 have no finite binary fractional representation; and is
generally impossible for multiplication (or division).
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Euclidean Geometry

Analytic Geometry

Non-euclidean Geometry
Differential Geometry

Projective Geometry

Geometry is a sub-discipline of mathematics which deals with the study of points, lines, surfaces,
shapes, size, relative position of figures, etc. Euclidean geometry, analytical geometry, non-Euclid-
ean geometry, projective geometry, etc. are some of the branches of geometry. The topics elaborat-
ed in this chapter will help in gaining a better perspective of geometry.

Geometry is an original field of mathematics, and is indeed the oldest of all sciences, going back
at least to the times of Euclid, Pythagoras, and other “natural philosophers” of ancient Greece.
Initially, geometry was studied to understand the physical world we live in, and the tradition con-
tinues to this day. Witness for example, the spectacular success of Einstein’s theory of general rel-
ativity, a purely geometric theory that describes gravitation in terms of the curvature of a four-di-
mensional “spacetime”. However, geometry transcends far beyond physical applications, and it is
not unreasonable to say that geometric ideas and methods have always permeated every field of
mathematics.

In modern language, the central object of study in geometry is a manifold, which is an object that
may have a complicated overall shape, but such that on small scales it “looks like” ordinary space
of a certain dimension. For example, a 1-dimensional manifold is an object such that small pieces
of it look like a line, although in general it looks like a curve rather than a straight line. A 2-dimen-
sional manifold, on small scales, looks like a (curved) piece of paper — there are two independent
directions in which we can move at any point. For example, the surface of the Earth is a 2-dimen-
sional manifold. An n-dimensional manifold likewise looks locally like an ordinary n-dimensional
space. This does not necessarily correspond to any notion of “physical space”. As an example, the
data of the position and velocity of N particles in a room is described by 6N independent variables,
because each particle needs 3 numbers to describe its position and 3 more numbers to describe its
velocity. Hence, the “configuration space” of this system is a 6N-dimensional manifold. If for some
reason the motion of these particles were not independent but rather constrained in some way,
then the configuration space would be a manifold of smaller dimension.
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Usually, the set of solutions of a system of partial differential equations has the structure of some
high dimensional manifold. Understanding the “geometry” of this manifold often gives new in-
sight into the nature of these solutions, and to the actual phenomenon that is modeled by the
differential equations, whether it comes from physics, economics, engineering, or any other quan-
titative science.

A typical problem in geometry is to “classify” all manifolds of a certain type. That is, we first de-
cide which kinds of manifolds we are interested in, then decide when two such manifolds should
basically be considered to be the same, or “equivalent”, and finally try to determine how many in-
equivalent types of such manifolds exist. For example, we might be interested in studying surfaces
(2-dimensional manifolds) that lie inside the usual 3-dimensional space that we can see, and we
might decide that two such surfaces are equivalent if one can be “transformed” into the other by
translations or rotations. This is the study of the Riemannian geometry of surfaces immersed in
3-space, and was classically the first subfield of “differential geometry”, pioneered by mathemati-
cal giants such as Gauss and Riemann in the 1800’s.

Today, there are many different subfields of geometry that are actively studied. Here we describe
only a few of them:

« Riemannian geometry: This is the study of manifolds equipped with the additional structure
of a Riemannian metric, which is a rule for measuring lengths of curves and angles between
tangent vectors. A Riemannian manifold has curvature, and it is precisely this curvature that
makes the laws of classical Euclidean geometry, that we learn in elementary school, to be differ-
ent. For example, the sum of the interior angles of a “triangle” on a curved Riemannian mani-
fold can be more or less than 7 if the curvature is positive or negative, respectively.

« Algebraic geometry: This is the study of algebraic varieties, which are solution sets of systems
of polynomial equations. They are sometimes manifolds but also often have “singular points” at
which they are not “smooth”. Because they are defined algebraically, there are many more tools
available from abstract algebra to study them, and conversely many questions in pure algebra
can be understood better by reformulating the problem in terms of algebraic geometry. More-
over, one can study varieties over any field, not just the real or complex numbers.

« Symplectic geometry: This is the study of manifolds equipped with an additional structure
called a symplectic form. A symplectic form is in some sense (that can be made precise)
the opposite of a Riemannian metric, and symplectic manifolds exhibit very different be-
haviour from Riemannian manifolds. For example, a famous theorem of Darboux says that
all symplectic manifolds are “locally” the same, although globally they can be extremely
different. Such a theorem is far from true in Riemannian geometry. Symplectic manifolds
arise naturally in physical systems from classical mechanics, and are called “phases spaces”
in physics. This branch of geometry is very topological in nature.

« Complex geometry: This is the study of manifolds which locally “look like” ordinary n-di-
mensional spaces that are modeled on the complex numbers rather than the real numbers.
Because the analysis of holomorphic (or complex-analytic) functions is much more rigid
than the real case (for example not all real smooth functions are real-analytic) there are
many fewer “types” of complex manifolds, and there has been more success in (at least
partial) classifications. This field is also very closely related to algebraic geometry.
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For example, the field of Kaehler geometry is in some sense the study of manifolds which lie in the
intersection of the above four subfields.

Finally, another very important area of geometry is the study of connections (and their curvature)
on vector bundles, also commonly called “gauge theory”. This field was independently developed
by both physicists and mathematicians around the 1950’s. When the two camps finally got togeth-
er in the 1970’s to communicate, led by renowned figures such as Atiyah, Bott, Singer, and Witten,
there resulted a spectacular succession of important new advances in both fields. Some of these
accomplishments include the existence of “exotic” 4-dimensional manifolds and the discovery of
new invariants that distinguish different types of spaces.

C Euclidean Geometry )

Euclidean geometry is the study of plane and solid figures on the basis of axioms and theorems
employed by the Greek mathematician Euclid. In its rough outline, Euclidean geometry is the
plane and solid geometry commonly taught in secondary schools. Indeed, until the second half
of the 19th century, when non-Euclidean geometries attracted the attention of mathematicians,
geometry meant Euclidean geometry. It is the most typical expression of general mathematical
thinking. Rather than the memorization of simple algorithms to solve equations by rote, it de-
mands true insight into the subject, clever ideas for applying theorems in special situations, an
ability to generalize from known facts, and an insistence on the importance of proof. In Euclid’s
great work, the Elements, the only tools employed for geometrical constructions were the ruler and
the compass—a restriction retained in elementary Euclidean geometry to this day.

In its rigorous deductive organization, the Elements remained the very model of scientific expo-
sition until the end of the 19th century, when the German mathematician David Hilbert wrote
his famous Foundations of Geometry. The modern version of Euclidean geometry is the theory of
Euclidean (coordinate) spaces of multiple dimensions, where distance is measured by a suitable
generalization of the Pythagorean theorem.

Fundamentals

Euclid realized that a rigorous development of geometry must start with the foundations. Hence,
he began the Elements with some undefined terms, such as “a point is that which has no part” and
“aline is a length without breadth.” Proceeding from these terms, he defined further ideas such as
angles, circles, triangles, and various other polygons and figures. For example, an angle was de-
fined as the inclination of two straight lines, and a circle was a plane figure consisting of all points
that have a fixed distance (radius) from a given centre.

As a basis for further logical deductions, Euclid proposed five common notions, such as “things
equal to the same thing are equal,” and five unprovable but intuitive principles known variously as
postulates or axioms. Stated in modern terms, the axioms are as follows:

« Given two points, there is a straight line that joins them.

» A straight line segment can be prolonged indefinitely.
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« Acircle can be constructed when a point for its centre and a distance for its radius are given.
« All right angles are equal.

» Ifastraight line falling on two straight lines makes the interior angles on the same side less
than two right angles, the two straight lines, if produced indefinitely, will meet on that side
on which the angles are less than the two right angles.

Hilbert refined axioms are as follows:

« For any two different points, (a) there exists a line containing these two points, and (b) this
line is unique.

« For any line L and point p not on L, (a) there exists a line through p not meeting L, and (b)
this line is unique.

The fifth axiom became known as the “parallel postulate,” since it provided a basis for the unique-
ness of parallel lines. It also attracted great interest because it seemed less intuitive or self-evident
than the others. In the 19th century, Carl Friedrich Gauss, Janos Bolyai, and Nikolay Lobachevsky
all began to experiment with this postulate, eventually arriving at new, non-Euclidean, geometries.
All five axioms provided the basis for numerous provable statements, or theorems, on which Eu-
clid built his geometry.

Plane Geometry
Congruence of Triangles

Two triangles are said to be congruent if one can be exactly superimposed on the other by a
rigid motion, and the congruence theorems specify the conditions under which this can occur.
The first such theorem is the side-angle-side (SAS) theorem: If two sides and the included
angle of one triangle are equal to two sides and the included angle of another triangle, the
triangles are congruent. Following this, there are corresponding angle-side-angle (ASA) and
side-side-side (SSS) theorems.

Congruent triangles

<N

.

A S o
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The figure illustrates the three basic theorems that triangles are congruent (of equal
shape and size) if: two sides and the included angle are equal (SAS); two angles and the included
side are equal (ASA); or all three sides are equal (SSS).
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The first very useful theorem derived from the axioms is the basic symmetry property of isosceles
triangles—i.e., that two sides of a triangle are equal if and only if the angles opposite them are
equal. Euclid’s proof of this theorem was once called Pons Asinorum (“Bridge of Asses”), suppos-
edly because mediocre students could not proceed across it to the farther reaches of geometry. The
Bridge of Asses opens the way to various theorems on the congruence of triangles.

The parallel postulate is fundamental for the proof of the theorem that the sum of the angles of a
triangle is always 180 degrees. A simple proof of this theorem was attributed to the Pythagoreans.

Dw

A

Proof that the sum of the angles in a triangle is 180 degrees. According to an ancient theorem, a
transversal through two parallel lines (DE and AB in the figure) forms several equal angles, such
as the alternating angles a/a’ and B/f’, labeled in the figure. By definition, the three angles o', v,
and 8’ on the line DE must sum to 180 degrees. Since a = a’ and 3 = ', the sum of the angles in the
triangle (a, 3, and y) is also 180 degrees.

Similarity of Triangles

As indicated above, congruent figures have the same shape and size. Similar figures, on the other
hand, have the same shape but may differ in size. Shape is intimately related to the notion of pro-
portion, as ancient Egyptian artisans observed long ago. Segments of lengths a, b, ¢, and d are said
to be proportional if a:b = c:d (read, a is to b as c is to d; in older notation a:b::c:d). The fundamen-
tal theorem of similarity states that a line segment splits two sides of a triangle into proportional
segments if and only if the segment is parallel to the triangle’s third side.

Fundamental theorem of similarity

k:l=m:n <=> DEIAB B

The formula in the figure reads k is to 1 as m is to n if and only if line DE is parallel to
line AB. This theorem then enables one to show that the small and large triangles are similar.

The similarity theorem may be reformulated as the AAA (angle-angle-angle) similarity theorem:
two triangles have their corresponding angles equal if and only if their corresponding sides are
proportional. Two similar triangles are related by a scaling (or similarity) factors: if the first trian-
gle has sides a, b, and c, then the second one will have sides sa, sb, and sc. In addition to the ubiq-
uitous use of scaling factors on construction plans and geographic maps, similarity is fundamental
to trigonometry.
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Areas

Just as a segment can be measured by comparing it with a unit segment, the area of a polygon or
other plane figure can be measured by comparing it with a unit square. The common formulas for
calculating areas reduce this kind of measurement to the measurement of certain suitable lengths.
The simplest case is a rectangle with sides a and b, which has area ab. By putting a triangle into an
appropriate rectangle, one can show that the area of the triangle is half the product of the length of
one of its bases and its corresponding height— 5% /2 . One can then compute the area of a general
polygon by dissecting it into triangular regions. If a triangle has area A, a similar triangle with a
scaling factor of s will have an area of s°4.

Proof that the area of a triangle = % base - height
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Similarly, ABFCis Euf CBECF.

Thus, the area of AABC = %area of JADEC = %AC- BF =

The right triangle AAFBis 5 of the rectangle CJADBF,

1
2

bh.
"

Pythagorean Theorem

For a triangle AABC the Pythagorean theorem has two parts: (1) if ZACB is a right angle, then
a’+b’=c?; (2) if @’ +b* =c?, then £ACB is a right angle. For an arbitrary triangle, the Pythagorean
theorem is generalized to the law of cosines: a*+b>=c* — 2abcos (LACB) . When £ACB is 90 de-

grees, this reduces to the Pythagorean theorem because cos(90°)=0.

Since Euclid, a host of professional and amateur mathematicians (even U.S. President James Gar-
field) have found more than 300 distinct proofs of the Pythagorean theorem. Despite its antiq-
uity, it remains one of the most important theorems in mathematics. It enables one to calculate
distances or, more important, to define distances in situations far more general than elementary
geometry. For example, it has been generalized to multidimensional vector spaces.

Circles

A chord 4B is a segment in the interior of a circle connecting two points ( 4 and B) on the circum-
ference. When a chord passes through the circle’s centre, it is a diameter, d . The circumference of
a circle is given by 7zd , or 2zr where r is the radius of the circle; the area of a circle is z7*. In each
case, ris the same constant (3.14159...). The Greek mathematician Archimedes used the method
of exhaustion to obtain upper and lower bounds for 7 by circumscribing and inscribing regular
polygons about a circle.

A semicircle has its end points on a diameter of a circle. Thales is generally credited with having
proved that any angle inscribed in a semicircle is a right angle; that is, for any point C on the
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semicircle with diameter 4B, ZACB will always be 90 degrees. Another important theorem states
that for any chord 4B in a circle, the angle subtended by any point on the same semiarc of the
circle will be invariant. Slightly modified, this means that in a circle, equal chords determine equal
angles, and vice versa.

A \/ B
Thales of Miletus is generally credited with giving the first proof that for any

chord AB in a circle, all of the angles subtended by points anywhere on
the same semiarc of the circle will be equal.

Summarizing the above material, the five most important theorems of plane Euclidean geometry
are: the sum of the angles in a triangle is 180 degrees, the Bridge of Asses, the fundamental the-
orem of similarity, the Pythagorean theorem, and the invariance of angles subtended by a chord
in a circle. Most of the more advanced theorems of plane Euclidean geometry are proved with the
help of these theorems.

Regular Polygons

A polygon is called regular if it has equal sides and angles. Thus, a regular triangle is an equilateral
triangle, and a regular quadrilateral is a square. A general problem since antiquity has been the
problem of constructing a regular n-gon, for different n, with only ruler and compass. For example,
Euclid constructed a regular pentagon by applying the above-mentioned five important theorems
in an ingenious combination.

Techniques, such as bisecting the angles of known constructions, exist for constructing reg-
ular n-gons for many values, but none is known for the general case. In 1797, following cen-
turies without any progress, Gauss surprised the mathematical community by discovering a
construction for the 17-gon. More generally, Gauss was able to show that for a prime number

p, the regular p-gon is constructible if and only if p is a “Fermat prime”: p=F(k)= 2% +1. Be-
cause it is not known in general which F(k) are prime, the construction problem for regular
n-gons is still open.

Three other unsolved construction problems from antiquity were finally settled in the 19th century
by applying tools not available to the Greeks. Comparatively simple algebraic methods showed
that it is not possible to trisect an angle with ruler and compass or to construct a cube with a vol-
ume double that of a given cube. Showing that it is not possible to square a circle (i.e., to construct
a square equal in area to a given circle by the same means), however, demanded deeper insights
into the nature of the number 7.
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Conic Sections and Geometric Art

The most advanced part of plane Euclidean geometry is the theory of the conic sections (the el-
lipse, the parabola, and the hyperbola). Much as the Elements displaced all other introductions to
geometry, the Conics of Apollonius of Perga, known by his contemporaries as “the Great Geome-
ter,” was for many centuries the definitive treatise on the subject.

Medieval Islamic artists explored ways of using geometric figures for decoration. For example,
the decorations of the Alhambra of Granada, Spain, demonstrate an understanding of all 17 of the
different “Wallpaper groups” that can be used to tile the plane. In the 20th century, internation-
ally renowned artists such as Josef Albers, Max Bill, and Sol LeWitt were inspired by motifs from
Euclidean geometry.

Solid Geometry

The most important difference between plane and solid Euclidean geometry is that human beings
can look at the plane “from above,” whereas three-dimensional space cannot be looked at “from
outside.” Consequently, intuitive insights are more difficult to obtain for solid geometry than for
plane geometry.

Some concepts, such as proportions and angles, remain unchanged from plane to solid geometry.
For other familiar concepts, there exist analogies—most noticeably, volume for area and three-di-
mensional shapes for two-dimensional shapes (sphere for circle, tetrahedron for triangle, box for
rectangle). However, the theory of tetrahedra is not nearly as rich as it is for triangles. Active
research in higher-dimensional Euclidean geometry includes convexity and sphere packings and
their applications in cryptology and crystallography.

Volume

In plane geometry the area of any polygon can be calculated by dissecting it into triangles. A sim-
ilar procedure is not possible for solids. In 1901 the German mathematician Max Dehn showed
that there exist a cube and a tetrahedron of equal volume that cannot be dissected and rearranged
into each other. This means that calculus must be used to calculate volumes for even many simple
solids such as pyramids.

Regular Solids

Regular polyhedra are the solid analogies to regular polygons in the plane. Regular polygons are
defined as having equal (congruent) sides and angles. In analogy, a solid is called regular if its
faces are congruent regular polygons and its polyhedral angles (angles at which the faces meet)
are congruent. This concept has been generalized to higher-dimensional (coordinate) Euclidean
spaces.

Whereas in the plane there exist (in theory) infinitely many regular polygons, in three-dimensional
space there exist exactly five regular polyhedra. These are known as the Platonic solids: the tetra-
hedron, or pyramid, with 4 triangular faces; the cube, with 6 square faces; the octahedron, with
8 equilateral triangular faces; the dodecahedron, with 12 pentagonal faces; and the icosahedron,
with 20 equilateral triangular faces.
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The five Platonic solids

tetrahedron cube octahedron
dodecahedron icosahedron

o X

The five Platonic solids: These are the only geometric solids
whose faces are composed of regular, identical polygons.

In four-dimensional space there exist exactly six regular polytopes, five of them generalizations
from three-dimensional space. In any space of more than four dimensions, there exist exactly
three regular polytopes—the generalizations of the tetrahedron, the cube, and the octahedron.

Calculating Areas and Volumes

Mathematical formulas
Shape Action Formula
Circumference | Circle Multiply diameter by 7 nid
Area Circle Multiply radius squared by 7t mir?
Rectangle Multiply height by length hl
Sphere Surface | Multiply radius squared by 7t by 4 4r?
Square Length of one side squared s?
Trapezoid }Pl’zirgalllltel ns(iidgi‘}ieéle%tlll)yA2 + parallel side length B multiplied by (A + B)h/2
Triangle Multiply base by height and divide by 2 hb/2
Volume Cone Multiply base radius squared by 5t by height and divide by 3 br2nth/3
Cube Length of one edge cubed as
Cylinder Multiply base radius squared by 7 by height br2sth
Pyramid Multiply base length by base width by height and divide by 3 Iwh/3
Sphere Multiply radius cubed by 7t by 4 and divide by 3 4mr3/3

C Analytic Geometry ))

In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian
geometry, is the study of geometry using a coordinate system. This contrasts with synthetic

geometry.
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Analytic geometry is widely used in physics and engineering, and also in aviation, rocketry, space
science, and spaceflight. It is the foundation of most modern fields of geometry, including algebra-
ic, differential, discrete and computational geometry.

Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight
lines, and squares, often in two and sometimes in three dimensions. Geometrically, one stud-
ies the Euclidean plane (two dimensions) and Euclidean space (three dimensions). As taught
in school books, analytic geometry can be explained more simply: it is concerned with defining
and representing geometrical shapes in a numerical way and extracting numerical information
from shapes’ numerical definitions and representations. That the algebra of the real numbers
can be employed to yield results about the linear continuum of geometry relies on the Cantor—
Dedekind axiom.

Coordinates

1

)

|
w

(=1.5,—2.5)

Hlustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates:
(2,3) in green, (-3,1) in red, (-1.5,—2.5) in blue, and the origin (0,0) in purple.

In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real
number coordinates. Similarly, Euclidean space is given coordinates where every point has three
coordinates. The value of the coordinates depends on the choice of the initial point of origin. There
are a variety of coordinate systems used, but the most common are the following:

Cartesian Coordinates (in a Plane or Space)

The most common coordinate system to use is the Cartesian coordinate system, where each point
has an x-coordinate representing its horizontal position, and a y-coordinate representing its verti-

cal position. These are typically written as an ordered pair (x,y). This system can also be used for

three-dimensional geometry, where every point in Euclidean space is represented by an ordered
triple of coordinates (x,y,z).

Polar Coordinates (in a Plane)

In polar coordinates, every point of the plane is represented by its distance r from the origin and
its angle 6 from the polar axis.
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Cylindrical Coordinates (in a Space)

In cylindrical coordinates, every point of space is represented by its height z, its radius r from the
z—axis and the angle @ its projection on the xy — plane makes with respect to the horizontal axis.

Spherical Coordinates (in a Space)

In spherical coordinates, every point in space is represented by its distance 2 from the origin, the
angle @ its projection on the xy — plane makes with respect to the horizontal axis, and the angle
¢ that it makes with respect to the z —axis. The names of the angles are often reversed in physics.

Equations and Curves

In analytic geometry, any equation involving the coordinates specifies a subset of the plane, name-
ly the solution set for the equation, or locus. For example, the equation y = x corresponds to the set
of all the points on the plane whose x-coordinate and y-coordinate are equal. These points form a
line, and y = x is said to be the equation for this line. In general, linear equations involving x and y
specify lines, quadratic equations specify conic sections, and more complicated equations describe
more complicated figures.

Usually, a single equation corresponds to a curve on the plane. This is not always the case: the triv-
ial equation x=x specifies the entire plane, and the equation x*+)’=0 specifies only the single
point (0, 0). In three dimensions, a single equation usually gives a surface, and a curve must be
specified as the intersection of two surfaces, or as a system of parametric equations. The equation
x”+y*=r’ is the equation for any circle centered at the origin (0, 0) with a radius of r.

Lines and Planes

Lines in a Cartesian plane or, more generally, in affine coordinates, can be described algebraically
by linear equations. In two dimensions, the equation for non-vertical lines is often given in the
slope-intercept form:

y=mx+b
where:
m 1is the slope or gradient of the line.
b is the y-intercept of the line.
x is the independent variable of the function y = f(x).

In a manner analogous to the way lines in a two-dimensional space are described using a
point-slope form for their equations, planes in a three dimensional space have a natural de-
scription using a point in the plane and a vector orthogonal to it (the normal vector) to indicate
its “inclination”.

Specifically, let r, be the position vector of some point F, =(x,,y,,z,), and let n=(a,b,c) be a

nonzero vector. The plane determined by this point and vector consists of those points P, with
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position vector r, such that the vector drawn from £, to P is perpendicular to n. Recalling that
two vectors are perpendicular if and only if their dot product is zero, it follows that the desired
plane can be described as the set of all points r such that:

n-(r—r,)=0.

(The dot here means a dot product, not scalar multiplication.) Expanded, this becomes:
a(x—x,)+b(y—y,)+c(z—z,)=0,

which is the point-normal form of the equation of a plane. This is just a linear equation:
ax+by+cz+d =0, where d = —(ax, + by, + cz,).

Conversely, it is easily shown that if a,b,c and d are constants and «,b, and ¢ are not all zero,
then the graph of the equation:

ax+by+cz+d=0,
is a plane having the vector n = (a,b,c) as a normal. This familiar equation for a plane is called the
general form of the equation of the plane.

In three dimensions, lines can not be described by a single linear equation, so they are frequently
described by parametric equations:

x=x,+at
y=y,+bt
z=2z,+ct
where:
X, Yy, and z are all functions of the independent variable t which ranges over the real numbers.
(x,, Y., 2,) is any point on the line.

a, b, and c are related to the slope of the line, such that the vector (a, b, c¢) is parallel to the line.

Conic Sections

In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a
conic section — though it may be degenerate, and all conic sections arise in this way. The equation
will be of the form:

Ax* + Bxy +Cy* + Dx + Ey + F =0 with 4, B, C not all zero.

As scaling all six constants yields the same locus of zeros, one can consider conics as points in the
five-dimensional projective space.

The conic sections described by this equation can be classified using the discriminant:

B*-44C.
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If the conic is non-degenerate, then:
« If B —44C <0, the equation represents an ellipse:
o If A=Cand B =0, the equation represents a circle, which is a special case of an ellipse.
o If B> -44C =0, the equation represents a parabola.
o If B> -4A4C >0, the equation represents a hyperbola:

o If we also have 4+ C =0, the equation represents a rectangular hyperbola.

Quadric Surfaces

A quadric, or quadric surface, is a 2-dimensional surface in 3-dimensional space defined as the
locus of zeros of a quadratic polynomial. In coordinates x,,x,,x,, the general quadric is defined by
the algebraic equation,

ixiQI.jxj +ZS:PI.xl. +R=0.

i,j=1 i=1

Quadric surfaces include ellipsoids (including the sphere), paraboloids, hyperboloids, cylinders,
cones, and planes.

Distance and Angle

(w2, 92)

Y2 — Y1

(x1,71) T2 — T1

The distance formula on the plane follows from the Pythagorean theorem.

In analytic geometry, geometric notions such as distance and angle measure are defined using
formulas. These definitions are designed to be consistent with the underlying Euclidean geometry.
For example, using Cartesian coordinates on the plane, the distance between two points (x,,,)

and (x,,y,) is defined by the formula:

d =% -x) +(, -2,

which can be viewed as a version of the Pythagorean theorem. Similarly, the angle that a line
makes with the horizontal can be defined by the formula:

0 = arctan(m),

where m is the slope of the line.
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In three dimensions, distance is given by the generalization of the Pythagorean theorem:

d=\/(x2 _x1)2 +(y2 _y1)2 +(Zz _Zl)za

while the angle between two vectors is given by the dot product. The dot product of two Euclidean
vectors A and B is defined by:

A-BE[AlIB] cos,

where 0 is the angle between A and B.

Transformations

a)

b) c) d)

s

a)y =f(x) = [x| b) y = f(x+3) o)y =f(x)-3 dy=1/2f(x)

Transformations are applied to a parent function to turn it into a new function with similar
characteristics.

The graph of R(x,y)is changed by standard transformations as follows:

Changing xto x—/Zmoves the graph to the right 4 units.
Changing yto y—k moves the graph up £ units.

Changing x to x /b stretches the graph horizontally by a factor of 5. (think of the xas being
dilated).
Changing yto y/a stretches the graph vertically.

Changing xto xcos A+ ysin 4and changing yto —xsin 4+ ycos 4 rotates the graph by an
angle 4.

There are other standard transformation not typically studied in elementary analytic geometry
because the transformations change the shape of objects in ways not usually considered. Skewing
is an example of a transformation not usually considered.

For example, the parent function y =1/x has a horizontal and a vertical asymptote, and occupies
the first and third quadrant, and all of its transformed forms have one horizontal and vertical
asymptote, and occupies either the 1st and 3rd or 2nd and 4th quadrant. In general, if y = f(x),

then it can be transformed into y = af (b(x —k)) + A. In the new transformed function, a is the fac-

tor that vertically stretches the function if it is greater than 1 or vertically compresses the function
if it is less than 1, and for negative « values, the function is reflected in the x — axis. The »value
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compresses the graph of the function horizontally if greater than 1 and stretches the function hor-
izontally if less than 1, and like a, reflects the function in the y—axis when it is negative. The &
and hvalues introduce translations, %, vertical, and & horizontal. Positive #and k values mean
the function is translated to the positive end of its axis and negative meaning translation towards
the negative end.

Transformations can be applied to any geometric equation whether or not the equation
represents a function. Transformations can be considered as individual transactions or in
combinations.

Suppose that R(x,y)is a relation in the xy plane. For example,
X +y'-1=0

is the relation that describes the unit circle.

Finding Intersections of Geometric Objects

For two geometric objects P and Q represented by the relations P(x,y)and Q(x, y)the intersection
is the collection of all points (x, y) which are in both relations.

For example, P might be the circle with radius 1 and center (0,0): P={(x,y)|x’ +y* =1} and Q might
be the circle with radius 1 and center (1,0): 0 = {(x,») | (x—1)* + y* =1}. The intersection of these two
circles is the collection of points which make both equations true. Does the point (0,0) make both equa-
tions true? Using (0,0) for (x, y), the equation for Q becomes (0—1)* + 0> =1or (-1)> =1 which is true,
so (0,0)is in the relation Q. On the other hand, still using (0,0) for (x, y) the equation for P becomes

0’ +0° =1or 0=1which is false. (0,0)is not in Pso it is not in the intersection.

The intersection of Pand Q can be found by solving the simultaneous equations:
X+t =1
(x=1)7+y*=1.

Traditional methods for finding intersections include substitution and elimination.

Substitution: Solve the first equation for yin terms of x and then substitute the expression for into
the second equation:

X +y =1
Y =1-x".
We then substitute this value for j”into the other equation and proceed to solve for x:
(x-1)*+(1-x")=1
X =2x+1+1-x* =1
—2x=-1
x=1/2.
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Next, we place this value of xin either of the original equations and solve for y:

(1/2) +)° =1

y'=3/4
_+f3
y ==

So our intersection has two points:

(1/2,i-iij and [1/2,22[§J.
2 2

Elimination: Add (or subtract) a multiple of one equation to the other equation so that one of the
variables is eliminated. For our current example, if we subtract the first equation from the second
we get (x—1)> —x* =0. The y”in the first equation is subtracted from the y*in the second equation
leaving no y term. The variable y has been eliminated. We then solve the remaining equation for
x, in the same way as in the substitution method:

X =2x+1+1=-x*=1

We then place this value of xin either of the original equations and solve for y:

(1/27° +y* =1

Y =3/4
43
y 5

So our intersection has two points:

172,73 | and 1/2,1145 .
2 2

For conic sections, as many as 4 points might be in the intersection.

Finding Intercepts

One type of intersection which is widely studied is the intersection of a geometric object with the
x and y coordinate axes.

The intersection of a geometric object and the y —axis is called the y —intercept of the object. The
intersection of a geometric object and the x — axis is called the x — intercept of the object.

For the line y =mx + b, the parameter » specifies the point where the line crosses the y axis. De-
pending on the context, either 5 or the point (0,b) is called the y —intercept.
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Tangents and Normals
Tangent Lines and Planes

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight
line that “just touches” the curve at that point. Informally, it is a line through a pair of infinitely
close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f{x)
at a point x = c on the curve if the line passes through the point (c, f{c)) on the curve and has slope
f(c) where f is the derivative of f. A similar definition applies to space curves and curves in n-di-
mensional Euclidean space.

As it passes through the point where the tangent line and the curve meet, called the point of tan-
gency, the tangent line is “going in the same direction” as the curve, and is thus the best straight-
line approximation to the curve at that point.

Similarly, the tangent plane to a surface at a given point is the plane that “just touches” the surface
at that point. The concept of a tangent is one of the most fundamental notions in differential ge-
ometry and has been extensively generalized.

Normal Line and Vector

In geometry, a normal is an object such as a line or vector that is perpendicular to a given object.
For example, in the two-dimensional case, the normal line to a curve at a given point is the line
perpendicular to the tangent line to the curve at the point.

In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vec-
tor that is perpendicular to the tangent plane to that surface at P. The word “normal” is also used
as an adjective: a line normal to a plane, the normal component of a force, the normal vector, etc.
The concept of normality generalizes to orthogonality.

C Non-euclidean Geometry ))

Non-Euclidean geometry, literally any geometry that is not the same as Euclidean geometry. Al-
though the term is frequently used to refer only to hyperbolic geometry, common usage includes
those few geometries (hyperbolic and spherical) that differ from but are very close to Euclidean
geometry.

Comparison of Euclidean, spherical, and hyperbolic geometries

Given a line and a point not on the line, there exist(s) through the given point and
parallel to the given line.

a) exactly one line (Euclidean)

b) no lines (spherical)

¢) infinitely many lines (hyperbolic)
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Euclid’s fifth postulate is
a) true (Euclidean)
b) false (spherical)
c) false (hyperbolic)

The sum of the interior angles of a triangle 180 degrees.
a)= (Euclidean)
b) > (spherical)
c) < (hyperbolic)

The non-Euclidean geometries developed along two different historical threads. The first thread start-
ed with the search to understand the movement of stars and planets in the apparently hemispherical
sky. For example, Euclid wrote about spherical geometry in his astronomical work Phaenomena. In
addition to looking to the heavens, the ancients attempted to understand the shape of the Earth and
to use this understanding to solve problems in navigation over long distances (and later for large-scale
surveying). These activities are aspects of spherical geometry.

The second thread started with the fifth (“parallel”) postulate in Euclid’s Elements:

» Ifastraight line falling on two straight lines makes the interior angles on the same side less
than two right angles, the two straight lines, if produced indefinitely, will meet on that side
on which the angles are less than the two right angles.

For 2,000 years following Euclid, mathematicians attempted either to prove the postulate as a the-
orem (based on the other postulates) or to modify it in various ways. These attempts culminated
when the Russian Nikolay Lobachevsky and the Hungarian Janos Bolyai independently published
a description of a geometry that, except for the parallel postulate, satisfied all of Euclid’s postulates
and common notions. It is this geometry that is called hyperbolic geometry.

Spherical Geometry

From early times, people noticed that the shortest distance between two points on Earth were
great circle routes. For example, the Greek astronomer Ptolemy wrote in Geography:

It has been demonstrated by mathematics that the surface of the land and water is in its
entirety a sphere and that any plane which passes through the centre makes at its surface,
that is, at the surface of the Earth and of the sky, great circles.

Great circles are the “straight lines” of spherical geometry. This is a consequence of the properties
of a sphere, in which the shortest distances on the surface are great circle routes. Such curves are
said to be “intrinsically” straight. Note, however, that intrinsically straight and shortest are not
necessarily identical, as shown in the figure. Three intersecting great circle arcs form a spherical
triangle; while a spherical triangle must be distorted to fit on another sphere with a different radi-
us, the difference is only one of scale. In differential geometry, spherical geometry is described as
the geometry of a surface with constant positive curvature.
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There are many ways of projecting a portion of a sphere, such as the surface of the Earth, onto a
plane. These are known as maps or charts and they must necessarily distort distances and either
area or angles. Cartographers’ need for various qualities in map projections gave an early impetus
to the study of spherical geometry.

Elliptic geometry is the term used to indicate an axiomatic formalization of spherical geometry
in which each pair of antipodal points is treated as a single point. An intrinsic analytic view of
spherical geometry was developed in the 19th century by the German mathematician Bernhard
Riemann; usually called the Riemann sphere, it is studied in university courses on complex anal-
ysis. Some texts call this (and therefore spherical geometry) Riemannian geometry, but this term

more correctly applies to a part of differential geometry that gives a way of intrinsically describing
any surface.

Riemann sphere || T |_noith pole| "-.. T T I T

soUth pole = complex origin~ —— imaginary axis ", \ \ \
i | | ¥ | | |

Hyperbolic Geometry

The first description of hyperbolic geometry was given in the context of Euclid’s postulates, and it
was soon proved that all hyperbolic geometries differ only in scale (in the same sense that spheres
only differ in size). In the mid-19th century it was shown that hyperbolic surfaces must have con-
stant negative curvature. However, this still left open the question of whether any surface with
hyperbolic geometry actually exists.

Hyperbolic plane, designed and crocheted by Daina Taimina.

In 1868 the Italian mathematician Eugenio Beltrami described a surface, called the pseudosphere,
that has constant negative curvature. However, the pseudosphere is not a complete model for
hyperbolic geometry, because intrinsically straight lines on the pseudosphere may intersect them-
selves and cannot be continued past the bounding circle (neither of which is true in hyperbolic
geometry). In 1901 the German mathematician David Hilbert proved that it is impossible to de-
fine a complete hyperbolic surface using real analytic functions (essentially, functions that can be
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expressed in terms of ordinary formulas). In those days, a surface always meant one defined by
real analytic functions, and so the search was abandoned. However, in 1955 the Dutch mathema-
tician Nicolaas Kuiper proved the existence of a complete hyperbolic surface, and in the 1970s the
American mathematician William Thurston described the construction of a hyperbolic surface.
Such a surface, as shown in the figure, can also be crocheted.

In the 19th century, mathematicians developed three models of hyperbolic geometry that can now
be interpreted as projections (or maps) of the hyperbolic surface. Although these models all suffer
from some distortion—similar to the way that flat maps distort the spherical Earth—they are useful
individually and in combination as aides to understand hyperbolic geometry. In 1869—71 Beltrami
and the German mathematician Felix Klein developed the first complete model of hyperbolic ge-
ometry (and first called the geometry “hyperbolic”). In the Klein-Beltrami model, the hyperbolic
surface is mapped to the interior of a circle, with geodesics in the hyperbolic surface correspond-
ing to chords in the circle. Thus, the Klein-Beltrami model preserves “straightness” but at the cost
of distorting angles. About 1880 the French mathematician Henri Poincaré developed two more
models. In the Poincaré disk model, the hyperbolic surface is mapped to the interior of a circular
disk, with hyperbolic geodesics mapping to circular arcs (or diameters) in the disk that meet the
bounding circle at right angles. In the Poincaré upper half-plane model, the hyperbolic surface is
mapped onto the half-plane above the x-axis, with hyperbolic geodesics mapped to semicircles (or
vertical rays) that meet the x-axis at right angles. Both Poincaré models distort distances while
preserving angles as measured by tangent lines.

Models of hyperbolic geometry

Klein-Beltrami model Poincaré disk mode!

N

Poincaré upper half-piane model

In the Klein-Beltrami model for the hyperbolic plane, the shortest paths, or geodesics, are chords
(several examples, labeled k, 1, m, n, are shown). In the Poincaré disk model, geodesics are por-
tions of circles that intersect the boundary of the disk at right angles; and in the Poincaré upper
half-plane model, geodesics are semicircles with their centres on the boundary.

(C Differential Geometry ))

Differential geometry is a branch of mathematics that studies the geometry of curves, surfaces,
and manifolds (the higher-dimensional analogs of surfaces). The discipline owes its name to its
use of ideas and techniques from differential calculus, though the modern subject often uses al-
gebraic and purely geometric techniques instead. Although basic definitions, notations, and ana-
lytic descriptions vary widely, the following geometric questions prevail: How does one measure
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the curvature of a curve within a surface (intrinsic) versus within the encompassing space (extrin-
sic)? How can the curvature of a surface be measured? What is the shortest path within a surface
between two points on the surface? How is the shortest path on a surface related to the concept of
a straight line?

While curves had been studied since antiquity, the discovery of calculus in the 17th century opened
up the study of more complicated plane curves—such as those produced by the French mathema-
tician René Descartes with his “compass”. In particular, integral calculus led to general solutions
of the ancient problems of finding the arc length of plane curves and the area of plane figures. This
in turn opened the stage to the investigation of curves and surfaces in space—an investigation that
was the start of differential geometry.

Some of the fundamental ideas of differential geometry can be illustrated by the strake, a spiraling
strip often designed by engineers to give structural support to large metal cylinders such as smoke-
stacks. A strake can be formed by cutting an annular strip (the region between two concentric
circles) from a flat sheet of steel and then bending it into a helix that spirals around the cylinder,
as illustrated in the figure. What should the radius r of the annulus be to produce the best fit? Dif-
ferential geometry supplies the solution to this problem by defining a precise measurement for the
curvature of a curve; then r can be adjusted until the curvature of the inside edge of the annulus
matches the curvature of the helix.

An important question remains - can the annular strip be bent, without stretching, so that it forms
a strake around the cylinder? In particular, this means that distances measured along the surface
(intrinsic) are unchanged. Two surfaces are said to be isometric if one can be bent (or transformed)
into the other without changing intrinsic distances. (For example, because a sheet of paper can
be rolled into a tube without stretching, the sheet and tube are “locally” isometric—only locally
because new, and possibly shorter, routes are created by connecting the two edges of the paper.)
Thus, the second question becomes: Are the annular strip and the strake isometric? To answer this
and similar questions, differential geometry developed the notion of the curvature of a surface.

Curvature of Curves

Although mathematicians from antiquity had described some curves as curving more than others
and straight lines as not curving at all, it was the German mathematician Gottfried Leibniz who,
in 1686, first defined the curvature of a curve at each point in terms of the circle that best approxi-
mates the curve at that point. Leibniz named his approximating circle (as shown in the figure) the
osculating circle, from the Latin osculare (“to kiss”). He then defined the curvature of the curve
(and the circle) as 1/r, where r is the radius of the osculating circle. As a curve becomes straighter, a
circle with a larger radius must be used to approximate it, and so the resulting curvature decreases.
In the limit, a straight line is said to be equivalent to a circle of infinite radius and its curvature
defined as zero everywhere.

The only curves in ordinary Euclidean space with constant curvature are straight lines, circles, and
helices. In practice, curvature is found with a formula that gives the rate of change, or derivative, of
the tangent to the curve as one moves along the curve. This formula was discovered by Isaac New-
ton and Leibniz for plane curves in the 17th century and by the Swiss mathematician Leonhard
Euler for curves in space in the 18th century.
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Osculating circles

The curvature at each point of a line is defined to be 1/r, where r is the radius of the osculating,
or “kissing,” circle that best approximates the line at the given point.

With these definitions in place, it is now possible to compute the ideal inner radius r of the annular
strip that goes into making the strake shown in the figure. The annular strip’s inner curvature '/,
must equal the curvature of the helix on the cylinder. If R is the radius of the cylinder and H is the
height of one turn of the helix, then the curvature of the helix is 47°R/[H* + (27R)’]. For example,
if R=1 metre and H =10 metres, then » =3.533 metres.

Curvature of Surfaces

To measure the curvature of a surface at a point, Euler, in 1760, looked at cross sections of
the surface made by planes that contain the line perpendicular (or “normal”) to the surface
at the point. Euler called the curvatures of these cross sections the normal curvatures of the
surface at the point. For example, on a right cylinder of radius r, the vertical cross sections
are straight lines and thus have zero curvature; the horizontal cross sections are circles, which
have curvature '/,. The normal curvatures at a point on a surface are generally different in dif-
ferent directions. The maximum and minimum normal curvatures at a point on a surface are
called the principal (normal) curvatures, and the directions in which these normal curvatures
occur are called the principal directions. Euler proved that for most surfaces where the normal
curvatures are not constant (for example, the cylinder), these principal directions are perpen-
dicular to each other. Note that on a sphere all the normal curvatures are the same and thus
all are principal curvatures. These principal normal curvatures are a measure of how “curvy”
the surface is:

normal tangent planes

cylinder

The normal, or perpendicular, at each point of a surface defines the
corresponding tangent plane, and vice versa.

The theory of surfaces and principal normal curvatures was extensively developed by French ge-
ometers led by Gaspard Monge. It was in an 1827 paper, however, that the German mathematician
Carl Friedrich Gauss made the big breakthrough that allowed differential geometry to answer the
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question raised above of whether the annular strip is isometric to the strake. The Gaussian curva-
ture of a surface at a point is defined as the product of the two principal normal curvatures; it is
said to be positive if the principal normal curvatures curve in the same direction and negative if
they curve in opposite directions. Normal curvatures for a plane surface are all zero, and thus the
Gaussian curvature of a plane is zero. For a cylinder of radius r, the minimum normal curvature is
zero (along the vertical straight lines), and the maximum s '/, (along the horizontal circles). Thus,
the Gaussian curvature of a cylinder is also zero.

If the cylinder is cut along one of the vertical straight lines, the resulting surface can be flattened
(without stretching) onto a rectangle. In differential geometry, it is said that the plane and cylinder
are locally isometric. These are special cases of two important theorems:

o Gauss’s Theorem: If two smooth surfaces are isometric, then the two surfaces have the
same Gaussian curvature at corresponding points. Athough defined extrinsically, Gaussian
curvature is an intrinsic notion.

« Minding’s theorem: Two smooth (“cornerless”) surfaces with the same constant Gaussian
curvature are locally isometric.

As corollaries to these theorems:

« A surface with constant positive Gaussian curvature c has locally the same intrinsic geome-

try as a sphere of radius 4/'/, . This is because a sphere of radius r has Gaussian curvature
/7.

« A surface with constant zero Gaussian curvature has locally the same intrinsic geometry as
a plane. Such surfaces are called developable.

« A surface with constant negative Gaussian curvature c has locally the same intrinsic geom-
etry as a hyperbolic plane.

The Gaussian curvature of an annular strip (being in the plane) is constantly zero. So to answer
whether or not the annular strip is isometric to the strake, one needs only to check whether a
strake has constant zero Gaussian curvature. The Gaussian curvature of a strake is actually nega-
tive, hence the annular strip must be stretched—although this can be minimized by narrowing the
shapes.

Shortest Paths on a Surface

From an outside, or extrinsic, perspective, no curve on a sphere is straight. Nevertheless, the great
circles are intrinsically straight—an ant crawling along a great circle does not turn or curve with re-
spect to the surface. About 1830 the Estonian mathematician Ferdinand Minding defined a curve
on a surface to be a geodesic if it is intrinsically straight—that is, if there is no identifiable curvature
from within the surface. A major task of differential geometry is to determine the geodesics on a
surface. The great circles are the geodesics on a sphere.

A great circle arc that is longer than a half circle is intrinsically straight on the sphere, but it is not
the shortest distance between its endpoints. On the other hand, the shortest path in a surface is not
always straight, as shown in the figure.
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overhead view

B S e

The shaded elevation and the surrounding plane form one continuous surface. Therefore, the red
path from A to B that rises over the elevation is intrinsically straight (as viewed from within the
surface). However, it is longer than the intrinsically bent green path, demonstrating that an intrin-
sically straight line is not necessarily the shortest distance between two points.

On a surface which is complete (every geodesic can be extended indefinitely) and smooth, every
shortest curve is intrinsically straight and every intrinsically straight curve is the shortest curve
between nearby points.

C Projective Geometry )

Projective geometry is the branch of mathematics that deals with the relationships between geo-
metric figures and the images, or mappings, that result from projecting them onto another surface.
Common examples of projections are the shadows cast by opaque objects and motion pictures
displayed on a screen.

Projective geometry has its origins in the early Italian Renaissance, particularly in the architec-
tural drawings of Filippo Brunelleschi and Leon Battista Alberti, who invented the method of per-
spective drawing. By this method, as shown in the figure, the eye of the painter is connected to
points on the landscape (the horizontal reality plane, RP) by so-called sight lines. The intersection
of these sight lines with the vertical picture plane (PP) generates the drawing. Thus, the reality
plane is projected onto the picture plane, hence the name projective geometry.

Although some isolated properties concerning projections were known in antiquity, particularly in
the study of optics, it was not until the 17th century that mathematicians returned to the subject.
The French mathematicians Girard Desargues and Blaise Pascal took the first significant steps by
examining what properties of figures were preserved (or invariant) under perspective mappings.
The subject’s real importance, however, became clear only after 1800 in the works of several other
French mathematicians, notably Jean-Victor Poncelet. In general, by ignoring geometric measure-
ments such as distances and angles, projective geometry enables a clearer understanding of some
more generic properties of geometric objects. Such insights have since been incorporated in many
more advanced areas of mathematics.
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Parallel Lines and the Projection of Infinity

A theorem from Euclid’s Elements states that if a line is drawn through a triangle such that it is
parallel to one side, then the line will divide the other two sides proportionately; that is, the ratio
of segments on each side will be equal. This is known as the proportional segments theorem, or
the fundamental theorem of similarity, and for triangle ABC, shown in the diagram, with line
segment DE parallel to side AB, the theorem corresponds to the mathematical expression CD/
DA = CE/EB.

Fundamental theorem of similarity

k:l=m:n <=> DE||AB B

The formula in the figure reads k is to | as m is to n if and only if line DE is parallel to line AB.
This theorem then enables one to show that the small and large triangles are similar.

Now consider the effect produced by projecting these line segments onto another plane as shown
in the figure. The first thing to note is that the projected line segments A’B’ and D’E’ are not par-
allel; i.e., angles are not preserved. From the point of view of the projection, the parallel lines AB
and DE appear to converge at the horizon, or at infinity, whose projection in the picture plane is la-
beled Q. It was Desargues who first introduced a single point at infinity to represent the projected
intersection of parallel lines. Furthermore, he collected all the points along the horizon in one line
at infinity. With the introduction of Q, the projected figure corresponds to a theorem discovered
by Menelaus of Alexandria in the 1st century AD:

C'D'/DA=CE/EB -QB/QA'.

Since the factor QB’/ QA’ corrects for the projective distortion in lengths, Menelaus’s theorem can
be seen as a projective variant of the proportional segments theorem.

Projective version of the fundamental theorem of similarity. In RP, Euclid’s fundamental theorem
of similarity states that CD/DA = CE/EB. By introducing a scaling factor, the theorem can be saved
in RP as C'D'/D'A'=C'E'/ E'B' - QB'/ QA'. Note that while lines AB and DE are parallel in RP,
their projections onto PP intersect at the infinitely distant horizon (Q).
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Projective Invariants

With Desargues’s provision of infinitely distant points for parallels, the reality plane and the pro-
jective plane are essentially interchangeable—that is, ignoring distances and directions (angles),
which are not preserved in the projection. Other properties are preserved, however. For instance,
two different points have a unique connecting line, and two different lines have a unique point of
intersection. Although almost nothing else seems to be invariant under projective mappings, one
should note that lines are mapped onto lines. This means that if three points are collinear (share a
common line), then the same will be true for their projections. Thus, collinearity is another invari-
ant property. Similarly, if three lines meet in a common point, so will their projections.

The following theorem is of fundamental importance for projective geometry. In its first variant,
by Pappus of Alexandria as shown in the figure, it only uses collinearity:

Pappus’s projective theorem: Pappus of Alexandria proved that the three points (x, y, z)
formed by intersecting the six lines that connect two sets of three collinear
points (A, B, C; and D, E, F) are also collinear.

Let the distinct points A, B, C and D, E, F be on two different lines. Then the three intersection
points—x of AE and BD, y of AF and CD, and z of BF and CE—are collinear. The second variant, by
Pascal, as shown in the figure, uses certain properties of circles:

Pascal’s projective theorem: The 17th-century French mathematician Blaise Pascal proved
that the three points (x, y, z) formed by intersecting the six lines that connect any
six distinct points (A, B, C, D, E, F) on a circle are collinear.

If the distinct points A, B, C, D, E, and F are on one circle, then the three intersection points x,
y, and z (defined as above) are collinear. There is one more important invariant under projective
mappings, known as the cross ratio. Given four distinct collinear points A, B, C, and D, the cross
ratio is defined as:

CRat(4,B,C,D) =AC/BC -BD/ AD.
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It may also be written as the quotient of two ratios:

CRat(A4,B,C,D) =AC/BC:AD/ BD.

Cross ratio.

Although distances and ratios of distances are not preserved under projection, the cross ratio, de-
fined as AC/BC - BD/AD, is preserved. That is, AC/BC - BD/AD = A’C’/B’C’ - B’'D’/A’'D’.

The latter formulation reveals the cross ratio as a ratio of ratios of distances. And while neither
distance nor the ratio of distance is preserved under projection, Pappus first proved the startling
fact that the cross ratio was invariant—that is,

CRat(4,B,C,D) = CRat(4,B',C',D').

However, this result remained a mere curiosity until its real significance became gradually clear in
the 19th century as mappings became more and more important for transforming problems from
one mathematical domain to another.

Projective Conic Sections

Conic sections can be regarded as plane sections of a right circular cone. By regarding a plane
perpendicular to the cone’s axis as the reality plane (RP), a “cutting” plane as the picture plane
(PP), and the cone’s apex as the projective “eye,” each conic section can be seen to correspond to
a projective image of a circle. Depending on the orientation of the cutting plane, the image of the
circle will be a circle, an ellipse, a parabola, or a hyperbola.

hyperbola

circle

D

A plane passing through the apex and parallel to PP defines the line at infinity in the projective
plane PP. The situation of Q relative to RP determines the conic section in PP: If QQ intersects RP
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outside the base circle (the circle formed by the intersection of the cone and RP), the image of the
circle will be an ellipse. If Q is tangent to the base circle (in effect, tangent to the cone), the image
will be a parabola. If Q intersects the base circle (thus, cutting the circle in two), a hyperbola will
result.

Pascal’s theorem, quoted above, also follows easily for any conic section from its special case for
the circle. Start by selecting six points on a conic section and project them back onto the base circle.
As given earlier, the three relevant intersection points for six points on the circle will be collinear.
Now project all nine points back to the conic section. Since collinear points (the three intersection
points from the circle) are mapped onto collinear points, the theorem holds for any conic section.
In this way the projective point of view unites the three different types of conics.

Similarly, more complicated curves and surfaces in higher-dimensional spaces can be unified
through projections. For example, Isaac Newton showed that all plane curves defined by polyno-
mials in x and y of degree 3 (the highest power of the variables is 3) can be obtained as projective
images of just five types of polynomials.
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Algebra

e Elementary Algebra

o Abstract Algebra

e Universal Algebra

Algebra is concerned with the study of mathematical symbols and the postulates used to manipu-
late these symbols. These symbols are used to represent numbers and quantities. It is divided into
elementary algebra, abstract algebra, universal algebra, etc. This chapter closely examines these
concepts of algebra to provide an extensive understanding of the subject.

Algebra is the branch of mathematics in which arithmetical operations and formal manipulations
are applied to abstract symbols rather than specific numbers. The notion that there exists such a
distinct subdiscipline of mathematics, as well as the term algebra to denote it, resulted from a slow
historical development.

Classical Algebra

Francois Viete’s work at the close of the 16th century, described in the section Viete and the formal
equation, marks the start of the classical discipline of algebra. Further developments included sev-
eral related trends, among which the following deserve special mention: the quest for systematic
solutions of higher order equations, including approximation techniques; the rise of polynomials
and their study as autonomous mathematical entities; and the increased adoption of the algebraic
perspective in other mathematical disciplines, such as geometry, analysis, and logic. During this
same period, new mathematical objects arose that eventually replaced polynomials as the main
focus of algebraic study.

Analytic Geometry

The creation of what came to be known as analytic geometry can be attributed to two great 17th-century
French thinkers: Pierre de Fermat and René Descartes. Using algebraic techniques developed by Viete
and Girolamo Cardano, Fermat and Descartes tackled geometric problems that had remained un-
solved since the time of the classical Greeks. The new kind of organic connection that they established
between algebra and geometry was a major breakthrough, without which the subsequent development
of mathematics in general, and geometry and calculus in particular, would be unthinkable.

In his famous book La Géométrie, Descartes established equivalences between algebraic oper-
ations and geometric constructions. In order to do so, he introduced a unit length that served
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as a reference for all other lengths and for all operations among them. For example, suppose
that Descartes was given a segment 4B and was asked to find its square root. He would draw
the straight line DB, where DA was defined as the unit length. Then he would bisect DB at
C, draw the semicircle on the diameter DB with centre C, and finally draw the perpendicu-
lar from 4 to E on the semicircle. Elementary properties of the circle imply that ZDEB =90°,
which in turn implies that Z4DE = ZAEB and £ZDEA= ZEBA . Thus, A DEA is similar to A EBA, or
in other words, the ratio of corresponding sides is equal. Substituting x, 1, and y for AB, DA, and
AE, respectively, one obtains x/y =y /1. Simplifying, x = )? or y is the square root of x. Thus, in
what might appear to be an ordinary application of classical Greek techniques, Descartes demon-
strated that he could find the square root of any given number, as represented by a line segment.
The key step in his construction was the introduction of the unit length DA. This seemingly trivial
move, or anything similar to it, had never been done before, and it had enormous repercussions for
what could thereafter be done by applying algebraic reasoning to geometry.
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The French mathematician René Descartes demonstrated that the square root of any line segment
could be constructed by the simple, but ingenious, addition of a line segment with unit length.

Descartes also introduced a notation that allowed great flexibility in symbolic manipulation. For
instance, he would write,

\/C.a3 —b* +abb

to denote the cubic root of this algebraic expression. This was a direct continuation (with some
improvement) of techniques and notations introduced by Viete. Descartes also introduced a new
idea with truly far-reaching consequences when he explicitly eliminated the demand for homoge-
neity among the terms in an equation—although for convenience he tried to stick to homogeneity
wherever possible.

Descartes’s program was based on the idea that certain geometric loci (straight lines, circles, and
conic sections) could be characterized in terms of specific kinds of equations involving magnitudes
that were taken to represent line segments. However, he did not envision the equally important,
reciprocal idea of finding the curve that corresponded to an arbitrary algebraic expression. Des-
cartes was aware that much information about the properties of a curve—such as its tangents and
enclosed areas—could be derived from its equation, but he did not elaborate.

On the other hand, Descartes was the first to discuss separately and systematically the algebraic
properties of polynomial equations. This included his observations on the correspondence be-
tween the degree of an equation and the number of its roots, the factorization of a polynomial with
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known roots into linear factors, the rule for counting the number of positive and negative roots of
an equation, and the method for obtaining a new equation whose roots were equal to those of a
given equation, though increased or diminished by a given quantity.

The Fundamental Theorem of Algebra

Descartes’s work was the start of the transformation of polynomials into an autonomous object
of intrinsic mathematical interest. To a large extent, algebra became identified with the theory
of polynomials. A clear notion of a polynomial equation, together with existing techniques
for solving some of them, allowed coherent and systematic reformulations of many questions
that had previously been dealt with in a haphazard fashion. High on the agenda remained
the problem of finding general algebraic solutions for equations of degree higher than four.
Closely related to this was the question of the kinds of numbers that should count as legitimate
solutions, or roots, of equations. Attempts to deal with these two important problems forced
mathematicians to realize the centrality of another pressing question, namely, the number of
solutions for a given polynomial equation.

The answer to this question is given by the fundamental theorem of algebra, first suggested by the
French-born mathematician Albert Girard in 1629, and which asserts that every polynomial with
real number coefficients could be expressed as the product of linear and quadratic real number
factors or, alternatively, that every polynomial equation of degree n with complex coefficients had
n complex roots. For example, x’ + 2x> —x— 2 can be decomposed into the quadratic factor x* - 1
and the linear factor x+ 2, that is, x’ +2x’—x— 2 = (x* —1)(x +2). The mathematical beauty of
having » solutions for » —degree equations overcame most of the remaining reluctance to consider
complex numbers as legitimate.

Although every single polynomial equation had been shown to satisfy the theorem, the essence
of mathematics since the time of the ancient Greeks has been to establish universal principles.
Therefore, leading mathematicians throughout the 18th century sought the honour of being the
first to prove the theorem. The flaws in their proofs were generally related to the lack of rigorous
foundations for polynomials and the various number systems. Indeed, the process of criticism and
revision that accompanied successive attempts to formulate and prove some correct version of the
theorem contributed to a deeper understanding of both.

The first complete proof of the theorem was given by the German mathematician Carl Friedrich
Gauss in his doctoral dissertation of 1799. Subsequently, Gauss provided three additional proofs.
A remarkable feature of all these proofs was that they were based on methods and ideas from cal-
culus and geometry, rather than algebra. The theorem was fundamental in that it established the
most basic concept around which the discipline as a whole was built. The theorem was also funda-
mental from the historical point of view, since it contributed to the consolidation of the discipline,
its main tools, and its main concepts.

Impasse with Radical Methods

A major breakthrough in the algebraic solution of higher-degree equations was achieved by the
Italian-French mathematician Joseph-Louis Lagrange in 1770. Rather than trying to find a gen-
eral solution for quintic equations directly, Lagrange attempted to clarify first why all attempts to
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do so had failed by investigating the known solutions of third- and fourth-degree equations. In
particular, he noticed how certain algebraic expressions connected with those solutions remained
invariant when the coefficients of the equations were permuted (exchanged) with one another.
Lagrange was certain that a deeper analysis of this invariance would provide the key to extending
existing solutions to higher-degree equations.

Using ideas developed by Lagrange, in 1799 the Italian mathematician Paolo Ruffini was the first
to assert the impossibility of obtaining a radical solution for general equations beyond the fourth
degree. He adumbrated in his work the notion of a group of permutations of the roots of an equa-
tion and worked out some basic properties. Ruffini’s proofs, however, contained several significant

gaps.

Between 1796 and 1801, in the framework of his seminal number-theoretical investigations, Gauss
systematically dealt with cyclotomic equations: x”—1=0 (p>2and prime). Although his new
methods did not solve the general case, Gauss did demonstrate solutions for these particular high-
er-degree equations.

In 1824 the Norwegian mathematician Niels Henrik Abel provided the first valid proof of the im-
possibility of obtaining radical solutions for general equations beyond the fourth degree. However,
this did not end polynomial research; rather, it opened an entirely new field of research since, as
Gauss’s example showed, some equations were indeed solvable. In 1828 Abel suggested two main
points for research in this regard: to find all equations of a given degree solvable by radicals, and to
decide if a given equation can be solved by radicals. His early death in complete poverty, two days
before receiving an announcement that he had been appointed professor in Berlin, prevented Abel
from undertaking this program.

Galois Theory

Rather than establishing whether specific equations can or cannot be solved by radicals, as Abel
had suggested, the French mathematician Evariste Galois pursued the somewhat more general
problem of defining necessary and sufficient conditions for the solvability of any given equation.
Although Galois’s life was short and exceptionally turbulent—he was arrested several times for
supporting Republican causes, and he died the day before his 21st birthday from wounds incurred
in a duel—his work reshaped the discipline of algebra.

Galois’s Work on Permutations

Prominent among Galois’s seminal ideas was the clear realization of how to formulate precise
solvability conditions for a polynomial in terms of the properties of its group of permutations. A
permutation of a set, say the elements a, b, and c, is any re-ordering of the elements, and it is usu-
ally denoted as follows:

abc
cab

This particular permutation takes a to ¢, b to a, and c to b. For three elements, as here, there
are six different possible permutations. In general, for n elements there are n! permutations to
choose from. (Wheren! =n(n— 1)(n— 2)---2.1). Furthermore, two permutations can be combined to
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produce a third permutation in an operation known as composition. (The set of permutations are
closed under the operation of composition). For example,

abc * abc_[abec
cab acb)] \bac

Here a goes first to c (in the first permutation) and then from c to b (in the second permutation),
which is equivalent to a going directly to b, as given by the permutation to the right of the equation.
Composition is associative—given three permutations P, Q, and R, then (P*Q)*R=P*(Q*R).
Also, there exists an identity permutation that leaves the elements unchanged:

I=(37¢)

Finally, for each permutation there exists another permutation, known as its inverse, such that their
composition results in the identity permutation. The set of permutations for n elements is known as the
symmetric group S,. The concept of an abstract group developed somewhat later. It consisted of a set of
abstract elements with an operation defined on them such that the conditions given above were satis-
fied: closure, associativity, an identity element, and an inverse element for each element in the set. This
abstract notion is not fully present in Galois’s work. Like some of his predecessors, Galois focused
on the permutation group of the roots of an equation. Through some beautiful and highly original
mathematical ideas, Galois showed that a general polynomial equation was solvable by radicals if
and only if its associated symmetric group was “soluble.” Galois’s result, it must be stressed, re-
ferred to conditions for a solution to exist; it did not provide a way to calculate radical solutions in
those cases where they existed.

Acceptance of Galois Theory

Galois’s work was both the culmination of a main line of algebra—solving equations by radical
methods—and the beginning of a new line—the study of abstract structures. Work on permuta-
tions, started by Lagrange and Ruffini, received further impetus in 1815 from the leading French
mathematician, Augustin-Louis Cauchy. In a later work of 1844, Cauchy systematized much of this
knowledge and introduced basic concepts. For instance, the permutation,

abcde
b aecd

was denoted by Cauchy in cycle notation as (ab)(ced), meaning that the permutation was obtained
by the disjoint cycles a to b (and back to a) and c to e to d (and back to c).

A series of unusual and unfortunate events involving the most important contemporary French
mathematicians prevented Galois’s ideas from being published for a long time. It was not until
1846 that Joseph Liouville edited and published for the first time, in his prestigious Journal de
Mathématiques Pures et Appliquées, the important memoire in which Galois had presented his
main ideas and that the Paris Academy had turned down in 1831. In Germany, Leopold Kronecker
applied some of these ideas to number theory in 1853, and Richard Dedekind lectured on Galois
theory in 1856. At this time, however, the impact of the theory was still minimal.
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A major turning point came with the publication of Traité des substitutions et des équations alge-
briques by the French mathematician Camille Jordan. In his book and papers, Jordan elaborated
an abstract theory of permutation groups, with algebraic equations merely serving as an illustrative
application of the theory. In particular, Jordan’s treatise was the first group theory book and it served
as the foundation for the conception of Galois theory as the study of the interconnections between
extensions of fields and the related Galois groups of equations—a conception that proved fundamen-
tal for developing a completely new abstract approach to algebra in the 1920s. Major contributions
to the development of this point of view for Galois theory came variously from Enrico Betti in Italy
and from Dedekind, Henrich Weber, and Emil Artin in Germany.

Applications of Group Theory

Galois theory arose in direct connection with the study of polynomials, and thus the notion of
a group developed from within the mainstream of classical algebra. However, it also found im-
portant applications in other mathematical disciplines throughout the 19th century, particularly
geometry and number theory.

Geometry

In 1872 Felix Klein suggested in his inaugural lecture at the University of Erlangen, Germany,
that group theoretical ideas might be fruitfully put to use in the context of geometry. Since the
beginning of the 19th century, the study of projective geometry had attained renewed impe-
tus, and later on non-Euclidean geometries were introduced and increasingly investigated. This
proliferation of geometries raised pressing questions concerning both the interrelations among
them and their relationship with the empirical world. Klein suggested that these geometries
could be classified and ordered within a conceptual hierarchy. For instance, projective geometry
seemed particularly fundamental because its properties were also relevant in Euclidean geom-
etry, while the main concepts of the latter, such as length and angle, had no significance in the
former.

A geometric hierarchy may be expressed in terms of which transformations leave the most relevant
properties of a particular geometry unchanged. It turned out that these sets of transformations
were best understood as forming a group. Klein’s idea was that the hierarchy of geometries might
be reflected in a hierarchy of groups whose properties would be easier to understand. An example
from Euclidean geometry illustrates the basic idea. The set of rotations in the plane has closure:
if rotation I rotates a figure by an angle «, and rotation J by an angle £, then rotation 7*J ro-
tates it by an angle « + . The rotation operation is obviously associative, a +(S+7)=(a+ )+ .
The identity element is the rotation through an angle of 0 degrees, and the inverse of the rotation
through angle a is the angle —« . Thus the set of rotations of the plane is a group of invariant
transformations for Euclidean geometry. The groups associated with other kinds of geometries is
somewhat more involved, but the idea remains the same.

In the 1880s and ’90s, Klein’s friend, the Norwegian Sophus Lie, undertook the enormous task
of classifying all possible continuous groups of geometric transformations, a task that eventual-
ly evolved into the modern theory of Lie groups and Lie algebras. At roughly the same time, the
French mathematician Henri Poincaré studied the groups of motions of rigid bodies, a work that
helped to establish group theory as one of the main tools in modern geometry.
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Number Theory

The notion of a group also started to appear prominently in number theory in the 19th century,
especially in Gauss’s work on modular arithmetic. In this context, he proved results that were lat-
er reformulated in the abstract theory of groups—for instance (in modern terms), that in a cyclic
group (all elements generated by repeating the group operation on one element) there always ex-
ists a subgroup of every order (number of elements) dividing the order of the group.

In 1854 Arthur Cayley, one of the most prominent British mathematicians of his time, was the first
explicitly to realize that a group could be defined abstractly—without any reference to the nature of
its elements and only by specifying the properties of the operation defined on them. Generalizing
on Galois’s ideas, Cayley took a set of meaningless symbols 1, &, £,... with an operation defined on
them as shown in the table below:

1l o 8 ...
1 I o § ...
o a o wf ...
B | B Ba B ...

Cayley demanded only that the operation be closed with respect to the elements on which it was
defined, while he assumed implicitly that it was associative and that each element had an inverse.
He correctly deduced some basic properties of the group, such as that if the group has n elements,
then 6"= 1 for each element . Nevertheless, in 1854 the idea of permutation groups was rather
new, and Cayley’s work had little immediate impact.

Fundamental Concepts of Modern Algebra

Prime Factorization

Some other fundamental concepts of modern algebra also had their origin in 19th-century work
on number theory, particularly in connection with attempts to generalize the theorem of (unique)
prime factorization beyond the natural numbers. This theorem asserted that every natural number
could be written as a product of its prime factors in a unique way, except perhaps for order (e.g.,
24 = 2-2-2-3). This property of the natural numbers was known, at least implicitly, since the time
of Euclid. In the 19th century, mathematicians sought to extend some version of this theorem to
the complex numbers.

One should not be surprised, then, to find the name of Gauss in this context. In his classical inves-
tigations on arithmetic Gauss was led to the factorization properties of numbers of the type a +ib

(a and bintegers and i = Square root of i =~/~1), sometimes called Gaussian integers. In doing
so, Gauss not only used complex numbers to solve a problem involving ordinary integers, a fact
remarkable in itself, but he also opened the way to the detailed investigation of special subdomains
of the complex numbers.

In 1832 Gauss proved that the Gaussian integers satisfied a generalized version of the factorization
theorem where the prime factors had to be especially defined in this domain. In the 1840s the
German mathematician Ernst Eduard Kummer extended these results to other, even more gen-
eral domains of complex numbers, such as numbers of the form a+ b, where &=n for n a fixed
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integer, or numbers of the form a + pb, where p" =1, p#1, and n > 2. Although Kummer did prove
interesting results, it finally turned out that the prime factorization theorem was not valid in such
general domains. The following example illustrates the problem.

Consider the domain of numbers of the form a +b+/-5 and, in particular, thenumber 21 =21+ 0+/-5. 21

can be factored as both 3-7 and as (4+\/—_5 )(4 -3 ). It can be shown that none of the numbers
3,7,4++/-5 could be further decomposed as a product of two different numbers in this domain. Thus,

in one sense they were prime. However, at the same time they violated a property of prime numbers
known from the time of Euclid: if a prime number p divides a product ab, then it either divides a or b.

In this instance, 3 divides 21 but neither of the factors 4 + V-5 or 4 —+/-5.

This situation led to the concept of indecomposable numbers. In classical arithmetic any inde-
composable number is a prime (and vice versa), but in more general domains a number may be
indecomposable, such as 3 here, yet not prime in the earlier sense. The question thus remained
open which domains the prime factorization theorem was valid in and how properly to formulate a
generalized version of it. This problem was undertaken by Dedekind in a series of works spanning
over 30 years, starting in 1871. Dedekind’s general methodological approach promoted the intro-
duction of new concepts around which entire theories could be built. Specific problems were then
solved as instances of the general theory.

Fields

A main question pursued by Dedekind was the precise identification of those subsets of the com-
plex numbers for which some generalized version of the theorem made sense. The first step toward
answering this question was the concept of a field, defined as any subset of the complex numbers
that was closed under the four basic arithmetic operations (except division by zero). The largest of
these fields was the whole system of complex numbers, whereas the smallest field was the ratio-
nal numbers. Using the concept of field and some other derivative ideas, Dedekind identified the
precise subset of the complex numbers for which the theorem could be extended. He named that
subset the algebraic integers.

Ideals

Finally, Dedekind introduced the concept of an ideal. A main methodological trait of Dedekind’s
innovative approach to algebra was to translate ordinary arithmetic properties into properties of
sets of numbers. In this case, he focused on the set I of multiples of any given integer and pointed
out two of its main properties:

« Ifnand m are two numbers in I, then their difference is also in I.
« IfnisanumberinIand ais any integer, then their product is also in I.

As he did in many other contexts, Dedekind took these properties and turned them into defini-
tions. He defined a collection of algebraic integers that satisfied these properties as an ideal in the
complex numbers. This was the concept that allowed him to generalize the prime factorization
theorem in distinctly set-theoretical terms.
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In ordinary arithmetic, the ideal generated by the product of two numbers equals the intersection of the
ideals generated by each of them. For instance, the set of multiples of 6 (the ideal generated by 6) is the
intersection of the ideal generated by 2 and the ideal generated by 3. Dedekind’s generalized versions
of the theorem were phrased precisely in these terms for general fields of complex numbers and their
related ideals. He distinguished among different types of ideals and different types of decompositions,
but the generalizations were all-inclusive and precise. More important, he reformulated what were
originally results on numbers, their factors, and their products as far more general and abstract results
on special domains, special subsets of numbers, and their intersections.

Dedekind’s results were important not only for a deeper understanding of factorization. He also
introduced the set-theoretical approach into algebraic research, and he defined some of the most
basic concepts of modern algebra that became the main focus of algebraic research throughout
the 20th century. Moreover, Dedekind’s ideal-theoretical approach was soon successfully applied
to the factorization of polynomials as well, thus connecting itself once again to the main focus of
classical algebra.

Systems of Equations

In spite of the many novel algebraic ideas that arose in the 19th century, solving equations and
studying properties of polynomial forms continued to be the main focus of algebra. The study of
systems of equations led to the notion of a determinant and to matrix theory.

Determinants

Given a system of n linear equations in n unknowns, its determinant was defined as the result of a
certain combination of multiplication and addition of the coefficients of the equations that allowed
the values of the unknowns to be calculated directly. For example, given the system,

ax+by=c

a,x+b,y=c,
the determinant A of the system is the number A = a,b, —a,b,, and the values of the unknowns are
given by,

x= (¢b,—c,b)/ A

y= (ac,—a,)/ A

Historians agree that the 17th-century Japanese mathematician Seki Kowa was the earliest to use
methods of this kind systematically. In Europe, credit is usually given to his contemporary, the
German coinventor of calculus, Gottfried Wilhelm Leibniz.

In 1815 Cauchy published the first truly systematic and comprehensive study of determinants, and
he was the one who coined the name. He introduced the notation (a,,n) for the system of coeffi-
cients of the system and demonstrated a general method for calculating the determinant.
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Matrices

Closely related to the concept of a determinant was the idea of a matrix as an arrangement of
numbers in lines and columns. That such an arrangement could be taken as an autonomous math-
ematical object, subject to special rules that allow for manipulation like ordinary numbers, was
first conceived in the 1850s by Cayley and his good friend the attorney and mathematician James
Joseph Sylvester. Determinants were a main, direct source for this idea, but so were ideas con-
tained in previous work on number theory by Gauss and by the German mathematician Ferdinand
Gotthold Max Eisenstein.

Given a system of linear equations:
E = ax+ By+yz+ ...

n=ax+py+yz+ ...

¢ =ax+p"y+y'z+ ...
L=+ o+ s+

Cayley represented it with a matrix as follows:
av ﬂ Vo
& mgs )= G (6.

The solution could then be written as:

-1

(x, y, Z,...) (":g’ 77,43)

Il
TR ORR
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The matrix bearing the —1 exponent was called the inverse matrix, and it held the key to solving the
original system of equations. Cayley showed how to obtain the inverse matrix using the determi-
nant of the original matrix. Once this matrix is calculated, the arithmetic of matrices allowed him
to solve the system of equations by a simple analogy with linear equations: ax=b—>x=a"'b.

Cayley was joined by other mathematicians, such as the Irish William Rowan Hamilton, the Ger-
man Georg Frobenius, and Jordan, in developing the theory of matrices, which soon became a
fundamental tool in analysis, geometry, and especially in the emerging discipline of linear algebra.
A further important point was that matrices enlarged the range of algebraic notions. In particular,
matrices embodied a new, mathematically significant instance of a system with a well-elaborated
arithmetic, whose rules departed from traditional number systems in the important sense that
multiplication was not generally commutative.

In fact, matrix theory was naturally connected after 1830 with a central trend in British mathemat-
ics developed by George Peacock and Augustus De Morgan, among others. In trying to overcome
the last reservations about the legitimacy of the negative and complex numbers, these mathema-
ticians suggested that algebra be conceived as a purely formal, symbolic language, irrespective of
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the nature of the objects whose laws of combination it stipulated. In principle, this view allowed
for new, different kinds of arithmetic, such as matrix arithmetic. The British tradition of symbolic
algebra was instrumental in shifting the focus of algebra from the direct study of objects (num-
bers, polynomials, and the like) to the study of operations among abstract objects. Still, in most
respects, Peacock and De Morgan strove to gain a deeper understanding of the objects of classical
algebra rather than to launch a new discipline.

Another important development in Britain concerned the elaboration of an algebra of logic. De
Morgan and George Boole, and somewhat later Ernst Schroder in Germany, were instrumental
in transforming logic from a purely metaphysical into a mathematical discipline. They also added
to the growing realization of the immense potential of algebraic thinking, freed from its narrow
conception as the discipline of polynomial equations and number systems.

Quaternions and Vectors

Remaining doubts about the legitimacy of complex numbers were finally dispelled when their geo-
metric interpretation became widespread among mathematicians. This interpretation, initially
and independently conceived by the Norwegian surveyor Caspar Wessel and the French bookkeep-
er Jean-Robert Argand was made known to a larger audience of mathematicians mainly through
its explicit use by Gauss in his 1848 proof of the fundamental theorem of algebra. Under this inter-
pretation, every complex number appeared as a directed segment on the plane, characterized by
its length and its angle of inclination with respect to the x-axis. The number i thus corresponded to
the segment of length 1 that was perpendicular to the x-axis. Once a proper arithmetic was defined
on these numbers, it turned out that i* = -1, as expected.

An alternative interpretation, very much within the spirit of the British school of symbolic algebra,
was published in 1837 by Hamilton. Hamilton defined a complex number «+5i as a pair (a,b) of
real numbers and gave the laws of arithmetic for such pairs. For example, he defined multiplica-
tion as:

(a,b)(c,d)= (ac—bd,bc+ad).

In Hamilton’s notation i=(0, 1)and by the above definition of complex multiplication
(0, 1)(0, 1)=(-1, 0)—that is, i* =—1 as desired. This formal interpretation obviated the need to

give any essentialist definition of complex numbers.

Starting in 1830, Hamilton pursued intensely, and unsuccessfully, a scheme to extend his idea to
triplets (a, b, ¢), which he expected to be of great utility in mathematical physics. His difficulty lay
in defining a consistent multiplication for such a system, which in hindsight is known to be impos-
sible. In 1843 Hamilton finally realized that the generalization he was looking for had to be found
in the system of quadruplets (a, b, ¢, d), which he named quaternions. He wrote them, in analo-

gy with the complex numbers, as a+bi+cj+dk,and his new arithmetic was based on the rules:
i’=j’=k*=ijk=-1 and ij=k, ji=—k, jk=i,kj= —i,ki=j, and ik=—j. This was the first example of
a coherent, significant mathematical system that preserved all of the laws of ordinary arithmetic,
with the exception of commutativity.

WORLD TECHNOLOGIES




CHAPTER4  Algebra | 103

In spite of Hamilton’s initial hopes, quaternions never really caught on among physicists, who
generally preferred vector notation when it was introduced later. Nevertheless, his ideas had an
enormous influence on the gradual introduction and use of vectors in physics. Hamilton used
the name scalar for the real part a of the quaternion, and the term vector for the imaginary part
bi +cj+dk, and defined what are now known as the scalar (or dot) and vector (or cross) products.
It was through successive work in the 19th century of the Britons Peter Guthrie Tait, James Clerk
Maxwell, and Oliver Heaviside and the American Josiah Willard Gibbs that an autonomous theory
of vectors was first established while developing on Hamilton’s initial ideas. In spite of physicists’
general lack of interest in quaternions, they remained important inside mathematics, although
mainly as an example of an alternate algebraic system.

The Close of the Classical Age

The last major algebra textbook in the classical tradition was Heinrich Weber’s Lehrbuch der Al-
gebra, which codified the achievements and current dominant views of the subject and remained
highly influential for several decades. At its centre was a well-elaborated, systematic conception
of the various systems of numbers, built as a rigorous hierarchy from the natural numbers up to
the complex numbers. Its primary focus was the study of polynomials, polynomial equations, and
polynomial forms, and all relevant results and methods derived in the book directly depended on
the properties of the systems of numbers. Radical methods for solving equations received a great
deal of attention, but so did approximation methods, which are now typically covered instead in
analysis and numerical analysis textbooks. Recently developed concepts, such as groups and fields,
as well as methods derived from Galois’s work, were treated in Weber’s textbook, but only as useful
tools to help deal with the main topic of polynomial equations.

To a large extent, Weber’s textbook was a very fine culmination of a long process that started in
antiquity. Fortunately, rather than bring this process to a conclusion, it served as a catalyst for the
next stage of algebra.

Structural Algebra

At the turn of the 20th century, algebra reflected a very clear conceptual hierarchy based on a sys-
tematically elaborated arithmetic, with a theory of polynomial equations built on top of it. Finally,
a well-developed set of conceptual tools, most prominently the idea of groups, offered a compre-
hensive means of investigating algebraic properties. Then in 1930 a textbook was published that
presented a totally new image of the discipline. This was Moderne Algebra, by the Dutch math-
ematician Bartel van der Waerden, who since 1924 had attended lectures in Germany by Emmy
Noether at Gottingen and by Emil Artin at Hamburg. Van der Waerden’s new image of the disci-
pline inverted the conceptual hierarchy of classical algebra. Groups, fields, rings, and other related
concepts became the main focus, based on the implicit realization that all of these concepts were,
in fact, instances of a more general, underlying idea: the idea of an algebraic structure. Thus, the
main task of algebra became the elucidation of the properties of each of these structures and of the
relationships among them. Similar questions were now asked about all these concepts, and similar
concepts and techniques were used where possible. The main tasks of classical algebra became an-
cillary. The systems of real numbers, rational numbers, and polynomials were studied as particular
instances of certain algebraic structures; the properties of these systems depended on what was
known about the general structures of which they were instances, rather than the other way round.
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Precursors to the Structural Approach

Van der Waerden’s book did not contain many new results or concepts. Its innovation lay in the
unified picture it presented of the discipline of algebra. Van der Waerden brought together, in a
surprisingly illuminating manner, algebraic research that had taken place over the previous three
decades and in doing so he combined the contributions of several leading German algebraists from
the beginning of the 20th century.

Hilbert and Steinitz

Of these German mathematicians, few were more important than David Hilbert. Among his im-
portant contributions, his work in the 1890s on the theory of algebraic number fields was decisive
in establishing the conceptual approach promoted by Dedekind as dominant for several decades.
As the undisputed leader of mathematics at Gottingen, then the world’s premiere research insti-
tution, Hilbert’s influence propagated through the 68 doctoral dissertations he directed as well as
through the many students and mathematicians who attended his lectures. To a significant extent,
the structural view of algebra was the product of some of Hilbert’s innovations, yet he basically
remained a representative of the classical discipline of algebra. It is likely that the kind of algebra
that developed under the influence of van der Waerden'’s book had no direct appeal for Hilbert.

In 1910 Ernst Steinitz published an influential article on the abstract theory of fields that was an
important milestone on the road to the structural image of algebra. His work was highly structural
in that he first established the simplest kinds of subfields that any field contains and established
a classification system. He then investigated how properties were passed from a field to any ex-
tension of it or to any of its subfields. In this way, he was able to characterize all possible fields
abstractly. To a great extent, van der Waerden extended to the whole discipline of algebra what
Steinitz accomplished for the more restricted domain of fields.

Noether and Artin

The greatest influence behind the consolidation of the structural image of algebra was no doubt
Noether, who became the most prominent figure in Gottingen in the 1920s. Noether synthesized
the ideas of Dedekind, Hilbert, Steinitz, and others in a series of articles in which the theory of fac-
torization of algebraic numbers and of polynomials was masterly and succinctly subsumed under
a single theory of abstract rings. She also contributed important papers to the theory of hypercom-
plex systems (extensions, such as the quaternions, of complex numbers to higher dimensions) that
followed a similar approach, further demonstrating the potential of the structural approach.

The last significant influence on van der Waerden’s structural image of algebra was by Artin, above
all for the latter’s reformulation of Galois theory. Rather than speaking of the Galois group of
a polynomial equation with coefficients in a particular field, Artin focused on the group of au-
tomorphisms of the coefficients’ splitting field (the smallest extension of the field such that the
polynomial could be factored into linear terms). Galois theory could then be seen as the study of
the interrelations between the extensions of a field and the possible subgroups of the Galois group
of the original field. In this typical structural reformulation of a classical 19th-century theory of
algebra, the problem of solvability of equations by radicals appeared as a particular application of
an abstract general theory.
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The Structural Approach Dominates

After the late 1930s it was clear that algebra, and in particular the structural approach within
it, had become one of the most dynamic areas of research in mathematics. Structural methods,
results, and concepts were actively pursued by algebraists in Germany, France, the United
States, Japan, and elsewhere. The structural approach was also successfully applied to re-
define other mathematical disciplines. An important early example of this was the thorough
reformulation of algebraic geometry in the hands of van der Waerden, André Weil in France,
and the Russian-born Oscar Zariski in Italy and the United States. In particular, they used the
concepts and approach developed in ring theory by Noether and her successors. Another im-
portant example was the work of the American Marshall Stone, who in the late 1930s defined
Boolean algebras, bringing under a purely algebraic framework ideas stemming from logic,
topology, and algebra itself.

Over the following decades, algebra textbooks appeared around the world along the lines estab-
lished by van der Waerden. Prominent among these was A Survey of Modern Algebra by Saunders
Mac Lane and Garret Birkhoff, a book that was fundamental for the next several generations of
mathematicians in the United States. Nevertheless, it must be stressed that not all algebraists felt,
at least initially, that the new direction implied by Moderne Algebra was paramount. More classi-
cally oriented research was still being carried out well beyond the 1930s. The research of Frobenius
and his former student Issai Schur, who were the most outstanding representatives of the Berlin
mathematical school at the beginning of the 20th century, and of Hermann Weyl, one of Hilbert’s
most prominent students, merit special mention.

Algebraic Superstructures

Although the structural approach had become prominent in many mathematical disciplines, the
notion of structure remained more a regulative, informal principle than a real mathematical con-
cept for independent investigation. It was only natural that sooner or later the question would
arise how to define structures in such a way that the concept could be investigated. For example,
Noether brought new and important insights into certain rings (algebraic numbers and polynomi-
als) previously investigated under separate frameworks by studying their underlying structures.
Similarly, it was expected that a general metatheory of structures, or superstructures, would prove
fruitful for studying other related concepts.

Bourbaki

Attempts to develop such a metatheory were undertaken starting in the 1940s. The first one came
from a group of young French mathematicians working under the common pseudonym of Nicolas
Bourbaki. The founders of the group included Weil, Jean Dieudonné, and Henri Cartan. Over the
next few decades, the group published a collection of extremely influential textbooks, Eléments de
mathématique, that covered several central mathematical disciplines, particularly from a structur-
al perspective. Yet, to the extent that Bourbaki’s mathematics was structural, it was so in a general,
informal way. As van der Waerden extended to all of algebra the structural approach that Steinitz
introduced in the theory of fields, so Bourbaki’s Eléments extended this approach to a truly broad
range of mathematical disciplines. Although Bourbaki did define a formal concept of structure in
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the first book of the collection, their concept turned out to be quite cumbersome and was not pur-
sued further.

Category Theory

The second attempt to formalize the notion of structure developed within category theory. The first
paper on the subject was published in the United States in 1942 by Mac Lane and Samuel Eilen-
berg. The idea behind their approach was that the essential features of any particular mathemat-
ical domain (a category) could be identified by focusing on the interrelations among its elements,
rather than looking at the behaviour of each element in isolation. For example, what character-
ized the category of groups were the properties of its homomorphisms (mappings between groups
that preserve algebraic operations) and comparisons with morphisms for other categories, such as
homeomorphisms for topological spaces. Another important concept of Mac Lane and Eilenberg
was their formulation of “functors,” a generalization of the idea of function that enabled them to
connect different categories. For example, in algebraic topology functors associated topological
spaces with certain groups such that their topological properties could be expressed as algebraic
properties of the groups—a process that enabled powerful algebraic tools to be used on previously
intractable problems.

Although category theory did not become a universal language for all of mathematics, it did be-
come the standard formulation for algebraic topology and homology. Category theory also led to
new approaches in the study of the foundations of mathematics by means of Topos theory. Some of
these developments were further enhanced between 1956 and 1970 through the intensive work of
Alexandre Grothendieck and his collaborators in France, using still more general concepts based
on categories.

New Challenges and Perspectives

The enormous productivity of research in algebra over the second half of the 20th century pre-
cludes any complete synopsis. Nevertheless, two main issues deserve some comment. The first
was a trend toward abstraction and generalization as embodied in the structural approach.
This trend was not exclusive, however. Researchers moved back and forth, studying general
structures as well as classical entities such as the real and rational numbers. The second is-
sue was the introduction of new kinds of proofs and techniques. The following examples are
illustrative.

A subgroup H of a group G is called a normal group if for every element gin G and hin H,
g 'hgis an element of H. A group with no normal subgroups is known as a simple group. Sim-
ple groups are the basic components of group theory, and since Galois’s time it was known that
the general quintic was unsolvable by radicals because its Galois group was simple. However,
a full characterization of simple groups remained unattainable until a major breakthrough in
1963 by two Americans, Walter Feit and John G. Thomson, who proved an old conjecture of
the British mathematician William Burnside, namely, that the order of noncommutative finite
simple groups is always even. Their proof was long and involved, but it reinforced the belief
that a full classification of finite simple groups might, after all, be possible. The completion
of the task was announced in 1983 by the American mathematician Daniel Gorenstein, fol-
lowing the contributions of hundreds of individuals over thousands of pages. Although this
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classification seems comprehensive, it is anything but clear-cut and systematic, since simple
groups appear in all kinds of situations and under many guises. Thus, there seems to be no
single individual who can boast of knowing all of its details. This kind of very large, collective
theorem is certainly a novel mathematical phenomenon.

Another example concerns the complex and involved question of the use of computers in proving
and even formulating new theorems. This now incipient trend will certainly receive increased at-
tention in the 21st century.

Finally, probabilistic methods of proof in algebra, and in particular for solving difficult, open prob-
lems in group theory, have been introduced. This trend began with a series of papers by the Hun-
garian mathematicians Paul Erdés and Paul Turan, both of whom introduced probabilistic meth-
ods into many other branches of mathematics as well.

(C Elementary Algebra ))

Elemetary algebra is the branch of mathematics that deals with the general properties of numbers
and the relations between them. Algebra is fundamental not only to all further mathematics and
statistics but to the natural sciences, computer science, economics, and business. Along with writ-
ing, it is a cornerstone of modern scientific and technological civilization. Earlier civilizations—
Babylonian, Greek, Indian, Chinese, and Islamic—all contributed in important ways to the devel-
opment of elementary algebra. It was left for Renaissance Europe, though, to develop an efficient
system for representing all real numbers and a symbolism for representing unknowns, relations
between them, and operations.

Elementary algebra is concerned with the following topics:

« Real and complex numbers, constants, and variables—collectively known as algebraic
quantities.

« Rules of operation for such quantities.

« Geometric representations of such quantities.

« Formation of expressions involving algebraic quantities.

+ Rules for manipulating such expressions.

« Formation of sentences, also called equations, involving algebraic expressions.

« Solution of equations and systems of equations.

Algebraic Quantities

The principal distinguishing characteristic of algebra is the use of simple symbols to repre-
sent numerical quantities and mathematical operations. Following a system that originated
with the 17th-century French thinker René Descartes, letters near the beginning of the alpha-
bet (a, b, c,...) typically represent known, but arbitrary, numbers in a problem, while letters
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near the end of the alphabet, especially x, y, and z, represent unknown quantities, or variables.
The + and - signs indicate addition and subtraction of these quantities, but multiplication is
simply indicated by adjacent letters. Thus, ax represents the product of a by x. This simple
expression can be interpreted, for example, as the interest earned in one year by a sum of a
dollars invested at an annual rate of x. It can also be interpreted as the distance traveled in
a hours by a car moving at x miles per hour. Such flexibility of representation is what gives
algebra its great utility.

Another feature that has greatly increased the range of algebraic applications is the geometric
representation of algebraic quantities. For instance, to represent the real numbers, a straight
line is imagined that is infinite in both directions. An arbitrary point O can be chosen as the
origin, representing the number 0, and another arbitrary point U chosen to the right of O. The
segment OU (or the point U) then represents the unit length, or the number 1. The rest of the
positive numbers correspond to multiples of this unit length—so that 2, for example, is repre-
sented by a segment OV, twice as long as OU and extended in the same direction. Similarly, the
negative real numbers extend to the left of O. A straight line whose points are thus identified
with the real numbers is called a number line. Many earlier mathematicians realized there was
a relationship between all points on a straight line and all real numbers, but it was the German
mathematician Richard Dedekind who made this explicit as a postulate in his Continuity and
Irrational Numbers.

graphof f graph of f{t)=t*

it}

Graph of a function.

Part A illustrates the general idea of graphing any function: choose a value for the independent
variable, t, calculate the corresponding value for f(t), and repeat this process until the general
shape of the graph is apparent. (In practice, various techniques are available to reduce the number
of values needed to determine the graph’s basic shape). In part B a specific function, the parabola
f(t)= ¢ is graphed for further illustration.

In the Cartesian coordinate system (named for Descartes) of analytic geometry, one horizontal
number line (usually called the x-axis) and one vertical number line (the y-axis) intersect at right
angles at their common origin to provide coordinates for each point in the plane. For example, the
point on a vertical line through some particular x on the x-axis and on the horizontal line through
some y on the y-axis is represented by the pair of real numbers (%, y). A similar geometric represen-
tation exists for the complex numbers, where the horizontal axis corresponds to the real numbers
and the vertical axis corresponds to the imaginary numbers (where the imaginary unit i is equal
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to the square root of —1). The algebraic form of complex numbers is x + iy, where x represents the
real part and iy the imaginary part.

This pairing of space and number gives a means of pairing algebraic expressions, or functions, in
a single variable with geometric objects in the plane, such as straight lines and circles. The result
of this pairing may be thought of as the graph of the expression for different values of the variable.

Algebraic Expressions

Any of the quantities mentioned so far may be combined in expressions according to the usual
arithmetic operations of addition, subtraction, and multiplication. Thus, ax+by and axx+bx+c are
common algebraic expressions. However, exponential notation is commonly used to avoid repeat-
ing the same term in a product, so that one writes x* for xx and * for yyy. (By convention x’=1.)
Expressions built up in this way from the real and complex numbers, the algebraic quantities
a,b,c, ...,x,y,z,and the three above operations are called polynomials—a word introduced in the
late 16th century by the French mathematician Francois Viete from the Greek polys (“many”) and
the Latin nominem (“name” or “term”). One way of characterizing a polynomial is by the number
of different unknown, or variable, quantities in it. Another way of characterizing a polynomial is
by its degree. The degree of a polynomial in one unknown is the largest power of the unknown
appearing in it. The expressions ax+b,ax’ +bx+c, and ax’ +bx’ +cx+d are general polynomials

in one unknown (x) of degrees 1, 2, and 3, respectively. When only one unknown is involved, it
does not matter which letter is used for it. One could equally well write the above polynomials as

ay+b,az’ +bz+c,and at’ +bt* +ct+d.

Because some insight into complicated functions can be obtained by approximating them with sim-
pler functions, polynomials of the first degree were investigated early on. In particular, ax+by =c,
which represents a straight line, and ax + by + ¢z = e, which represents a plane in three-dimension-
al space, were among the first algebraic equations studied.

Polynomials can be combined according to the three arithmetic operations of addition, sub-
traction, and multiplication, and the result is again a polynomial. To simplify expressions
obtained by combining polynomials in this way, one uses the distributive law, as well as the
commutative and associative laws for addition and multiplication. Until very recently a major
drawback of algebra was the extreme tedium of routine manipulation of polynomials, but now
a number of symbolic algebra programs make this work as easy as typing the expressions into

a computer.
Common arithmetic properties

associative laws a+(b+c)=(a+b)+candalbg = (ab)c
commutative laws a+b=>b+aandab=ba

distributive law alb +c)=ab +ac

additive identity O+a=a

multiplicative identity la=a
additive inverse a+(-a=0

multiplicative inverse a(lfa)=1, wherea=0
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By extending the operations on polynomials to include division, or ratios of polynomials, one obtains
the rational functions. Examples of such rational functions are 2/3x and (a +bx’ ) / (c +dx* +ex’ )
Working with rational functions allows one to introduce the expression 1/xand its powers,
1/x*,1/x°, ... (often written x™', x>, x~, ...). When the degree of the numerator of a rational
function is at least as large as that of its denominator, it is possible to divide the numerator by the
denominator much as one divides one integer by another. In this way one can write any rational
function as the sum of a polynomial and a rational function in which the degree of the numerator
is less than that of the denominator. For example,

(X=X +3x+2)/ (=1 =x"+3 + 5/(x=1).

Since this process reduces the degrees of the terms involved, it is especially useful for calculating
the values of rational functions and for dealing with them when they arise in calculus.

Solving Algebraic Equations

For theoretical work and applications one often needs to find numbers that, when substituted for
the unknown, make a certain polynomial equal to zero. Such a number is called a “root” of the
polynomial. For example, the polynomial

—16¢> + 88t + 48

represents the height above Earth at t seconds of a projectile thrown straight up at 88 feet per sec-
ond from the top of a tower 48 feet high. (The 16 in the formula comes from one-half the accelera-
tion of gravity, 32 feet per second per second.) By setting the equation equal to zero and factoring
it as (47 —24)(—4r-2)=0, the equation’s one positive root is found to be 6, meaning that the object
will hit the ground about 6 seconds after it is thrown. (This problem also illustrates the important
algebraic concept of the zero factor property: if ab =0, then either a =0 or b=0).

The theorem that every polynomial has as many complex roots as its degree is known as the fun-
damental theorem of algebra and was first proved in 1799 by the German mathematician Carl
Friedrich Gauss. Simple formulas exist for finding the roots of the general polynomials of degrees
one and two, and much less simple formulas exist for polynomials of degrees three and four. The
French mathematician Evariste Galois discovered, shortly before his death in 1832, that no such
formula exists for a general polynomial of degree greater than four. Many ways exist, however, of
approximating the roots of these polynomials.

Solving Systems of Algebraic Equations

An extension of the study of single equations involves multiple equations that are solved simul-
taneously—so-called systems of equations. For example, the intersection of two straight lines,
ax+by=c and Ax+ By =C, can be found algebraically by discovering the values of x and y that
simultaneously solve each equation. The earliest systematic development of methods for solving
systems of equations occurred in ancient China. An adaptation of a problem from the 1st-centu-
ry-AD Chinese classic Nine Chapters on the Mathematical Procedures illustrates how such systems
arise. Imagine there are two kinds of wheat and that you have four sheaves of the first type and five
sheaves of the second type. Although neither of these is enough to produce a bushel of wheat, you
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can produce a bushel by adding three sheaves of the first type to five of the second type, or you can
produce a bushel by adding four sheaves of the first type to two of the second type. What fraction
of a bushel of wheat does a sheaf of each type of wheat contain?

Using modern notation, suppose we have two types of wheat, respectively, and x and y represent
the number of bushels obtained per sheaf of the first and second types, respectively. Then the
problem leads to the system of equations:

3x+ 5y=1 (bushel)

4x+2y=1 (bushel)

A simple method for solving such a system is first to solve either equation for one of the variables.
For example, solving the second equation for y yields y=1/2—2x. The right side of this equation
can then be substituted for y in the first equation (3x+5y=1), and then the first equation can
be solved to obtain x(=3/14). Finally, this value of x can be substituted into one of the earlier
equations to obtain y (=1/14) . Thus, the first type yields 3/14 bushels per sheaf and the second
type yields 1/14 . Note that the solution (3/14, 1/14) would be difficult to discern by graphing
techniques. In fact, any precise value based on a graphing solution may be only approximate; for

example, the point (0.0000001, 0) might look like (0, 0) on a graph, but even such a small differ-
ence could have drastic consequences in the real world.

Rather than individually solving each possible system of two equations in two unknowns, the gen-
eral system can be solved. To return to the general equations given above:

ax+by=c

Ax+By=C

The solutions are given by x =(Bc—bC)/(aB— A4b) and y=(Ca—cA)/(aB— Ab). Note that the de-

nominator of each solution, (aB - Ab) , is the same. It is called the determinant of the system, and
systems in which the denominator is equal to zero have either no solution (in which case the equa-
tions represent parallel lines) or infinitely many solutions (in which case the equations represent
the same line).

One can generalize simultaneous systems to consider m equations in n unknowns.
In this case, one usually uses subscripted letters x,,x,, ...,x, for the unknowns and

N N AN M Y ...a n for the coefficients of each equation, respectively.

m, 12 m,n 2
When =3 one is dealing with planes in three-dimensional space, and for higher values of n one
is dealing with hyperplanes in spaces of higher dimension. In general, » equations in m unknowns
have infinitely many solutions when m <»n and no solutions when m > n. The case m = n is the only

case where there can exist a unique solution.

Large systems of equations are generally handled with matrices, especially as implemented on
computers.
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(C Abstract Algebra ))

In algebra, which is a broad division of mathematics, abstract algebra (occasionally called mod-
ern algebra) is the study of algebraic structures. Algebraic structures include groups, rings, fields,
modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the early
20th century to distinguish this area of study from the other parts of algebra.

Algebraic structures, with their associated homomorphisms, form mathematical categories. Cat-
egory theory is a formalism that allows a unified way for expressing properties and constructions
that are similar for various structures.

Universal algebra is a related subject that studies types of algebraic structures as single objects.
For example, the structure of groups is a single object in universal algebra, which is called variety

of groups.

The permutations of Rubik’s Cube form a group, a fundamental concept within abstract algebra.

As in other parts of mathematics, concrete problems and examples have played important roles in
the development of abstract algebra. Through the end of the nineteenth century, many — perhaps
most — of these problems were in some way related to the theory of algebraic equations. Major
themes include:

« Solving of systems of linear equations, which led to linear algebra.

» Attempts to find formulas for solutions of general polynomial equations of higher degree
that resulted in discovery of groups as abstract manifestations of symmetry.

» Arithmetical investigations of quadratic and higher degree forms and diophantine equa-
tions, that directly produced the notions of a ring and ideal.

Numerous textbooks in abstract algebra start with axiomatic definitions of various algebraic structures
and then proceed to establish their properties. This creates a false impression that in algebra axioms
had come first and then served as a motivation and as a basis of further study. The true order of histori-
cal development was almost exactly the opposite. For example, the hypercomplex numbers of the nine-
teenth century had kinematic and physical motivations but challenged comprehension. Most theories
that are now recognized as parts of algebra started as collections of disparate facts from various branch-
es of mathematics, acquired a common theme that served as a core around which various results were
grouped, and finally became unified on a basis of a common set of concepts. An archetypical example
of this progressive synthesis can be seen in the history of group theory.
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Early Group Theory

There were several threads in the early development of group theory, in modern language loosely
corresponding to number theory, theory of equations, and geometry.

Leonhard Euler considered algebraic operations on numbers modulo an integer, modular arithme-
tic, in his generalization of Fermat’s little theorem. These investigations were taken much further
by Carl Friedrich Gauss, who considered the structure of multiplicative groups of residues mod n
and established many properties of cyclic and more general abelian groups that arise in this way.
In his investigations of composition of binary quadratic forms, Gauss explicitly stated the associa-
tive law for the composition of forms, but like Euler before him, he seems to have been more in-
terested in concrete results than in general theory. In 1870, Leopold Kronecker gave a definition of
an abelian group in the context of ideal class groups of a number field, generalizing Gauss’s work;
but it appears he did not tie his definition with previous work on groups, particularly permutation
groups. In 1882, considering the same question, Heinrich M. Weber realized the connection and
gave a similar definition that involved the cancellation property but omitted the existence of the
inverse element, which was sufficient in his context (finite groups).

Permutations were studied by Joseph-Louis Lagrange in his 1770 paper Réflexions sur la réso-
lution algébrique des équations (Thoughts on the algebraic solution of equations) devoted to
solutions of algebraic equations, in which he introduced Lagrange resolvents. Lagrange’s goal
was to understand why equations of third and fourth degree admit formulas for solutions,
and he identified as key objects permutations of the roots. An important novel step taken by
Lagrange in this paper was the abstract view of the roots, i.e. as symbols and not as numbers.
However, he did not consider composition of permutations. Serendipitously, the first edition
of Edward Waring’s Meditationes Algebraicae (Meditations on Algebra) appeared in the same
year, with an expanded version published in 1782. Waring proved the fundamental theorem
of symmetric polynomials, and specially considered the relation between the roots of a quartic
equation and its resolvent cubic. Mémoire sur la résolution des équations (Memoire on the
Solving of Equations) of Alexandre Vandermonde developed the theory of symmetric func-
tions from a slightly different angle, but like Lagrange, with the goal of understanding solv-
ability of algebraic equations.

Kronecker claimed in 1888 that the study of modern algebra began with this first paper of Vander-
monde. Cauchy states quite clearly that Vandermonde had priority over Lagrange for this remark-
able idea, which eventually led to the study of group theory.

Paolo Ruffini was the first person to develop the theory of permutation groups, and like his prede-
cessors, also in the context of solving algebraic equations. His goal was to establish the impossi-
bility of an algebraic solution to a general algebraic equation of degree greater than four. En route
to this goal he introduced the notion of the order of an element of a group, conjugacy, the cycle
decomposition of elements of permutation groups and the notions of primitive and imprimitive
and proved some important theorems relating these concepts, such as,

If G is a subgroup of S_ whose order is divisible by 5 then G contains an element of order 5.

However, that he got by without formalizing the concept of a group, or even of a permutation group.
The next step was taken by Evariste Galois in 1832, although his work remained unpublished until
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1846, when he considered for the first time what is now called the closure property of a group of
permutations, which he expressed as:

If in such a group one has the substitutions S and T then one has the substitution ST.

The theory of permutation groups received further far-reaching development in the hands of Au-
gustin Cauchy and Camille Jordan, both through introduction of new concepts and, primarily, a
great wealth of results about special classes of permutation groups and even some general theo-
rems. Among other things, Jordan defined a notion of isomorphism, still in the context of permu-
tation groups and, incidentally, it was he who put the term group in wide use.

The abstract notion of a group appeared for the first time in Arthur Cayley’s papers in 1854. Cayley
realized that a group need not be a permutation group (or even finite), and may instead consist of
matrices, whose algebraic properties, such as multiplication and inverses, he systematically inves-
tigated in succeeding years. Much later Cayley would revisit the question whether abstract groups
were more general than permutation groups, and establish that, in fact, any group is isomorphic
to a group of permutations.

Modern Algebra

The end of the 19th and the beginning of the 20th century saw a tremendous shift in the method-
ology of mathematics. Abstract algebra emerged around the start of the 20th century, under the
name modern algebra. Its study was part of the drive for more intellectual rigor in mathematics.
Initially, the assumptions in classical algebra, on which the whole of mathematics (and major parts
of the natural sciences) depend, took the form of axiomatic systems. No longer satisfied with es-
tablishing properties of concrete objects, mathematicians started to turn their attention to general
theory. Formal definitions of certain algebraic structures began to emerge in the 19th century. For
example, results about various groups of permutations came to be seen as instances of general the-
orems that concern a general notion of an abstract group. Questions of structure and classification
of various mathematical objects came to forefront.

These processes were occurring throughout all of mathematics, but became especially pro-
nounced in algebra. Formal definition through primitive operations and axioms were proposed
for many basic algebraic structures, such as groups, rings, and fields. Hence such things as
group theory and ring theory took their places in pure mathematics. The algebraic investiga-
tions of general fields by Ernst Steinitz and of commutative and then general rings by David
Hilbert, Emil Artin and Emmy Noether, building up on the work of Ernst Kummer, Leopold
Kronecker and Richard Dedekind, who had considered ideals in commutative rings, and of
Georg Frobenius and Issai Schur, concerning representation theory of groups, came to define
abstract algebra. These developments of the last quarter of the 19th century and the first quar-
ter of 20th century were systematically exposed in Bartel van der Waerden’s Moderne algebra,
the two-volume monograph published in 1930-1931 that forever changed for the mathematical
world the meaning of the word algebra from the theory of equations to the theory of algebraic
structures.

Basic Concepts

By abstracting away various amounts of detail, mathematicians have defined various algebraic
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structures that are used in many areas of mathematics. For instance, almost all systems stud-
ied are sets, to which the theorems of set theory apply. Those sets that have a certain binary
operation defined on them form magmas, to which the concepts concerning magmas, as well
those concerning sets, apply. We can add additional constraints on the algebraic structure,
such as associativity (to form semigroups); identity, and inverses (to form groups); and other
more complex structures. With additional structure, more theorems could be proved, but the
generality is reduced. The “hierarchy” of algebraic objects (in terms of generality) creates a
hierarchy of the corresponding theories: for instance, the theorems of group theory may be
used when studying rings (algebraic objects that have two binary operations with certain ax-
ioms) since a ring is a group over one of its operations. In general there is a balance between
the amount of generality and the richness of the theory: more general structures have usually
fewer nontrivial theorems and fewer applications.

Examples of algebraic structures with a single binary operation are:

« Magma, « Semigroup,
e Quasigroup, e Group.
» Monoid,

Examples involving several operations include:

+ Ring, « Associative algebra,
+ Field, « Lie algebra,
«  Module, « Lattice,

«  Vector space « Boolean algebra.

« Algebra over a field,

Applications

Because of its generality, abstract algebra is used in many fields of mathematics and science. For
instance, algebraic topology uses algebraic objects to study topologies. The Poincaré conjecture,
proved in 2003, asserts that the fundamental group of a manifold, which encodes information
about connectedness, can be used to determine whether a manifold is a sphere or not. Algebraic
number theory studies various number rings that generalize the set of integers. Using tools of al-
gebraic number theory, Andrew Wiles proved Fermat’s Last Theorem.

In physics, groups are used to represent symmetry operations, and the usage of group theory
could simplify differential equations. In gauge theory, the requirement of local symmetry can
be used to deduce the equations describing a system. The groups that describe those symme-
tries are Lie groups, and the study of Lie groups and Lie algebras reveals much about the phys-
ical system; for instance, the number of force carriers in a theory is equal to the dimension
of the Lie algebra, and these bosons interact with the force they mediate if the Lie algebra is
nonabelian.
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(C Universal Algebra ))

Universal algebra studies common properties of all algebraic structures, including groups, rings,
fields, lattices, etc. A universal algebra is a pair 4=(4,(f"),. 1), where 4 and [ are sets and for
each iel, f* is an operation on A4.The algebra 4 is finitary if each of its operations is finitary.

A set of function symbols (or operations) of degree n > 0 is called a signature (or type). Let > be
a signature. An algebra A is defined by a domain S (which is called its carrier or universe) and a
mapping that relates a function f: S"—S to each n-place function symbol from Sigma.

Let 4 and B be two algebras over the same signature Sigma, and their carriers are 4 and B, re-
spectively. A mapping ¢: A — B is called a homomorphism from 4 to B if for every fe Z and all

X5 X, € 4,
P (x5 x,)) = f(P(X)s o, B(X,))

If a homomorphism ¢ is surjective, then it is called epimorphism. If ¢ is an epimorphism, then
B is called a homomorphic image of A. If the homomorphism ¢ is a bijection, then it is called an
isomorphism. On the class of all algebras, define a relation ~ by 4~ B if and only if there is an
isomorphism from A onto B. Then the relation ~ is an equivalence relation. Its equivalence classes
are called isomorphism classes, and are typically proper classes.

A homomorphism from A4 to B is often denoted as ¢: 4 - B. Ahomomorphism¢: 4 — A4 is called
an endomorphism. An isomorphism ¢: 4 — 4 is called an automorphism. The notions of homo-
morphism, isomorphism, endomorphism, etc., are generalizations of the respective notions in
groups, rings, and other algebraic theories.

Identities (or equalities) in algebra A over signature Sigma have the form:

s=t,

where s and t are terms built up from variables using function symbols from 2. An identity s = t
is said to hold in an algebra 4 if it is true for all possible values of variables in the identity, i.e., for
all possible ways of replacing the variables by elements of the carrier. The algebra 4 is then said
to satisfy the identity s =+.
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Trigonometry

Pythagorean Triple
Pythagorean Theorem
Trigonometric Functions

Inverse Trigonometric Functions

Applications of Trigonometry

The branch of mathematics which deals with the relation of lines and angles in a triangle is re-
ferred to as trigonometry. Some of its basic principles are Pythagorean triple, Pythagorean the-
orem, trigonometric functions, inverse trigonometric functions, etc. All the diverse principles of
trigonometry have been carefully analyzed in this chapter.

Trigonometry is the branch of mathematics concerned with specific functions of angles and their
application to calculations. There are six functions of an angle commonly used in trigonometry.
Their names and abbreviations are sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant
(sec), and cosecant (csc). These six trigonometric functions in relation to a right triangle are
displayed in the figure. For example, the triangle contains an angle A, and the ratio of the side
opposite to A and the side opposite to the right angle (the hypotenuse) is called the sine of A,
or sin A; the other trigonometry functions are defined similarly. These functions are properties
of the angle A independent of the size of the triangle, and calculated values were tabulated for
many angles before computers made trigonometry tables obsolete. Trigonometric functions are
used in obtaining unknown angles and distances from known or measured angles in geometric
figures.

Trigonometry developed from a need to compute angles and distances in such fields as astronomy,
mapmaking, surveying, and artillery range finding. Problems involving angles and distances in one
plane are covered in plane trigonometry. Applications to similar problems in more than one plane
of three-dimensional space are considered in spherical trigonometry.

Classical Trigonometry

Until about the 16th century, trigonometry was chiefly concerned with computing the numer-
ical values of the missing parts of a triangle (or any shape that can be dissected into triangles)
when the values of other parts were given. For example, if the lengths of two sides of a triangle
and the measure of the enclosed angle are known, the third side and the two remaining angles
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can be calculated. Such calculations distinguish trigonometry from geometry, which mainly
investigates qualitative relations. Of course, this distinction is not always absolute: the Py-
thagorean theorem, for example, is a statement about the lengths of the three sides in a right
triangle and is thus quantitative in nature. Still, in its original form, trigonometry was by and
large an offspring of geometry; it was not until the 16th century that the two became separate
branches of mathematics.

Ancient Egypt and the Mediterranean World

Several ancient civilizations—in particular, the Egyptian, Babylonian, Hindu, and Chinese—pos-
sessed a considerable knowledge of practical geometry, including some concepts that were a pre-
lude to trigonometry. The Rhind papyrus, an Egyptian collection of 84 problems in arithmetic,
algebra, and geometry dating from about 1800 BCE, contains five problems dealing with the seked.
A close analysis of the text, with its accompanying figures, reveals that this word means the slope
of an incline—essential knowledge for huge construction projects such as the pyramids. For exam-
ple, problem 56 asks: “If a pyramid is 250 cubits high and the side of its base is 360 cubits long,
what is its seked?” The solution is given as 51/25 palms per cubit, and, since one cubit equals 7
palms, this fraction is equivalent to the pure ratio 18/25. This is actually the “run-to-rise” ratio of
the pyramid in question—in effect, the cotangent of the angle between the base and face. It shows
that the Egyptians had at least some knowledge of the numerical relations in a triangle, a kind of
“proto-trigonometry.”

run _ 180 cubits 1
sehed =—= =5_
rise 250 cubits 23

palms/cubit

180 cubits
250 cubits

= S f P— — —
The Egyptians defined the seked as the ratio of the run to the rise,
which is the reciprocal of the modern definition of the slope.

Trigonometry in the modern sense began with the Greeks. Hipparchus was the first to construct a
table of values for a trigonometric function. He considered every triangle—planar or spherical—as
being inscribed in a circle, so that each side becomes a chord (that is, a straight line that connects
two points on a curve or surface, as shown by the inscribed triangle ABC in the figure). To compute
the various parts of the triangle, one has to find the length of each chord as a function of the central
angle that subtends it—or, equivalently, the length of a chord as a function of the corresponding arc
width. This became the chief task of trigonometry for the next several centuries. As an astronomer,
Hipparchus was mainly interested in spherical triangles, such as the imaginary triangle formed by
three stars on the celestial sphere, but he was also familiar with the basic formulas of plane trigo-
nometry. In Hipparchus’s time these formulas were expressed in purely geometric terms as rela-
tions between the various chords and the angles (or arcs) that subtend them; the modern symbols
for the trigonometric functions were not introduced until the 17th century.
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Triangle inscribed in a circle this figure illustrates the relationship between a central angle 0
(an angle formed by two radii in a circle) and its chord AB (equal to one side of an inscribed triangle).

Common Trigonometry Formulas

sin®> A+cos’ A=1
Variations on the tan® A+1=sec A
Pythagorean theorem:

l+cot®> A=cos’ 4

. ,(A) l-cos4
Half —angle formules: sin’ (5) =

2
5 A] 1+cos 4
cos’| = |=
2 2

Double—angle formules:  sin(24) =2sin Acos 4
cos(24) = cos® A—sin® 4

Additoion formules : sin(4A+ B) =sin Acos B+ cos Asin B
cos(Ax B) =cos Acos B¥sin Asin B
Lawof sines : a b ¢

sind sinB sinC
¢t =a’+b>-2ab cosC
Lawof cosines : b’ =a*+c* -2ac cos B

a* =b*+c¢* —2bc cos A

The first major ancient work on trigonometry to reach Europe intact after the Dark Ages was the Al-
magest by Ptolemy. He lived in Alexandria, the intellectual centre of the Hellenistic world, but little
else is known about him. Although Ptolemy wrote works on mathematics, geography, and optics, he
is chiefly known for the Almagest, a 13-book compendium on astronomy that became the basis for
humankind’s world picture until the heliocentric system of Nicolaus Copernicus began to supplant
Ptolemy’s geocentric system in the mid-16th century. In order to develop this world picture—the es-
sence of which was a stationary Earth around which the Sun, Moon, and the five known planets move
in circular orbits—Ptolemy had to use some elementary trigonometry. This is essentially a table of
sines, which can be seen by denoting the radius r, the arc A, and the length of the subtended chord c,
to obtain ¢ = 2r sin A/2. Because Ptolemy used the Babylonian sexagesimal numerals and numeral
systems (base 60), he did his computations with a standard circle of radius r = 60 units, so that c =
120 sin A/2. Thus, apart from the proportionality factor 120, his was a table of values of sin A/2 and
therefore (by doubling the arc) of sin A. With the help of his table Ptolemy improved on existing geo-
detic measures of the world and refined Hipparchus’s model of the motions of the heavenly bodies.
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Constructing a table of chords: By labeling the central angle A, the radiir,
and the chord c, it can be shown that ¢ = 2r sin (A/2).

India and the Islamic World

The next major contribution to trigonometry came from India. In the sexagesimal system, multi-
plication or division by 120 (twice 60) is analogous to multiplication or division by 20 (twice 10)

in the decimal system. Thus, rewriting Ptolemy’s formula as /,,,= sinB, where B="/,, the re-
lation expresses the half-chord as a function of the arc B that subtends it—precisely the modern

sine function. The first table of sines is found in the Aryabhatiya. Its author, Aryabhata I, used
the word ardha-jya for half-chord, which he sometimes turned around to jya-ardha (“chord-
half”); in due time he shortened it to jya or jiva.

B
Ptolemy’s formula.

During the Middle Ages, while Europe was plunged into darkness, the torch of learning was kept
alive by Arab and Jewish scholars living in Spain, Mesopotamia, and Persia. The first table of
tangents and cotangents was constructed around 860 by Habash al-Hasib (“the Calculator”), who
wrote on astronomy and astronomical instruments. Another Arab astronomer, al-Battani, gave a
rule for finding the elevation 6 of the Sun above the horizon in terms of the length s of the shadow
cast by a vertical gnomon of height h. Al-Battani’s rule, s = h sin (90° — 0)/sin 0, is equivalent to
the formula s = h cot 0. Based on this rule he constructed a “table of shadows”—essentially a table
of cotangents—for each degree from 1° to 90°. It was through al-Battani’s work that the Hindu
half-chord function—equivalent to the modern sine—became known in Europe.
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Passage to Europe

Until the 16th century it was chiefly spherical trigonometry that interested scholars—a consequence
of the predominance of astronomy among the natural sciences. The first definition of a spherical
triangle is contained in Book 1 of the Sphaerica, a three-book treatise by Menelaus of Alexandria in
which Menelaus developed the spherical equivalents of Euclid’s propositions for planar triangles.
A spherical triangle was understood to mean a figure formed on the surface of a sphere by three
arcs of great circles, that is, circles whose centres coincide with the centre of the sphere. There are
several fundamental differences between planar and spherical triangles. For example, two spher-
ical triangles whose angles are equal in pairs are congruent (identical in size as well as in shape),
whereas they are only similar (identical in shape) for the planar case. Also, the sum of the angles
of a spherical triangle is always greater than 180°, in contrast to the planar case where the angles
always sum to exactly 180°.

Several Arab scholars, notably Nasir al-Din al-Tus1 and al-Battani, continued to develop
spherical trigonometry and brought it to its present form. Tusi was the first to write a work
on trigonometry independently of astronomy. But the first modern book devoted entirely to
trigonometry appeared in the Bavarian city of Niirnberg in 1533 under the title On Triangles of
Every Kind. Its author was the astronomer Regiomontanus. On Triangles contains all the the-
orems needed to solve triangles, planar or spherical—although these theorems are expressed
in verbal form, as symbolic algebra had yet to be invented. In particular, the law of sines is
stated in essentially the modern way. On Triangles was greatly admired by future generations
of scientists; the astronomer Nicolaus Copernicus studied it thoroughly, and his annotated
copy survives.

The final major development in classical trigonometry was the invention of logarithms by the Scot-
tish mathematician John Napier in 1614. His tables of logarithms greatly facilitated the art of nu-
merical computation—including the compilation of trigonometry tables—and were hailed as one
of the greatest contributions to science.

Modern Trigonometry
From Geometric to Analytic Trigonometry

In the 16th century trigonometry began to change its character from a purely geometric discipline
to an algebraic-analytic subject. Two developments spurred this transformation: the rise of sym-
bolic algebra, pioneered by the French mathematician Francois Viete, and the invention of analytic
geometry by two other Frenchmen, Pierre de Fermat and René Descartes. Viéte showed that the
solution of many algebraic equations could be expressed by the use of trigonometric expressions.
For example, the equation x’ =1 has the three solutions:

x=1,

1-i3

cos 120° +isin 120° =_2—, and

~1-i\3

cos 240° +isin 240° = 5

WORLD TECHNOLOGIES




122 | Textbook of Mathematics

(Here i is the symbol for Square root of +/—1, the “imaginary unit.”) That trigonometric expressions
may appear in the solution of a purely algebraic equation was a novelty in Viete’s time; he used it to
advantage in a famous encounter between King Henry IV of France and the Netherlands’ ambassador
to France. The latter spoke disdainfully of the poor quality of French mathematicians and challenged
the king with a problem posed by Adriaen van Roomen, professor of mathematics and medicine at the
University of Leuven (Belgium), to solve a certain algebraic equation of degree 45. The king summoned
Viete, who immediately found one solution and on the following day came up with 22 more.

Viete was also the first to legitimize the use of infinite processes in mathematics. In 1593 he dis-
covered the infinite product,

2 V2@ +\2 @+y2+42)
Im 2 2 2

which is regarded as one of the most beautiful formulas in mathematics for its recursive pattern.
By computing more and more terms, one can use this formula to approximate the value of 7 to any
desired accuracy. In 1671 James Gregory found the power series.

Power series for three trigonometry functions:

3 S 7

. X X
sinX=X——+—-—+
3t 5t 7
2 X4 X6
cosx=l-—+—-——+
20 410 7!
1 38 &7
tan” X =X-——+———
35 7

For the inverse tangent function (arc tan, or tan—1), from which he got, by letting x = 1, the formula:
= 1= =

which demonstrated a remarkable connection between s and the integers. Although the series
converged too slowly for a practical computation of n (it would require 628 terms to obtain just
two accurate decimal places). This was soon followed by Isaac Newton’s discovery of the power se-
ries for sine and cosine. Research, however, has brought to light that some of these formulas were
already known, in verbal form, by the Indian astronomer Madhava.

The gradual unification of trigonometry and algebra—and in particular the use of complex num-
bers (numbers of the form x + iy, where x and y are real numbers and i = V-1) in trigonometric
expressions—was completed in the 18th century. In 1722 Abraham de Moivre derived, in implicit
form, the famous formula:

(cos g+isin g)nz cosng +isinng,

which allows one to find the nth root of any complex number. It was the Swiss mathematician Leon-
hard Euler, though, who fully incorporated complex numbers into trigonometry. Euler’s formula

WORLD TECHNOLOGIES




CHAPTER5  Trigonometry | 123

e’ = cos o +isin o ,where ex= 2.71828 is the base of natural logarithms, appeared in 1748 in his great
work Introductio in analysin infinitorum—although Roger Cotes already knew the formula in its in-

verse form oi=log (cos o +isin o) in 1714. Substituting into this formula the value o =11, one obtains

el e” =cos z+isin 7 =—1+0i=-1 or equivalently, ¢ +1= 0. This most intriguing of all mathematical
formulas contains the additive and multiplicative identities (0 and 1, respectively), the two irrational
numbers that occur most frequently in the physical world (s;t and e), and the imaginary unit (i), and it
also employs the basic operations of addition and exponentiation—hence its great aesthetic appeal.
Finally, by combining his formula with its companion formula:

e’ = cos(—a) +isin (—@) =cos g —isin o,

Euler obtained the expressions:

cos 0 = sin o =
e e
i¢ i¢
+e —e
=4 _ i
2 2i

which are the basis of modern analytic trigonometry.

Application to Science

While these developments shifted trigonometry away from its original connection to triangles, the
practical aspects of the subject were not neglected. The 17th and 18th centuries saw the invention
of numerous mechanical devices—from accurate clocks and navigational tools to musical instru-
ments of superior quality and greater tonal range—all of which required at least some knowledge
of trigonometry. A notable application was the science of artillery—and in the 18th century it was
a science. Galileo Galilei discovered that any motion—such as that of a projectile under the force
of gravity—can be resolved into two components, one horizontal and the other vertical, and that
these components can be treated independently of one another. This discovery led scientists to the
formula for the range of a cannonball when its muzzle velocity vo (the speed at which it leaves the
cannon) and the angle of elevation A of the cannon are given. The theoretical range, in the absence
of air resistance, is given by:

R=L
0

\S]

sin2A4
g

where g is the acceleration due to gravity (about 9.81 metres/second?). This formula shows that,
for a given muzzle velocity, the range depends solely on A; it reaches its maximum value when A =
45° and falls off symmetrically on either side of 45°. These facts, of course, had been known empir-
ically for many years, but their theoretical explanation was a novelty in Galileo’s time.
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Another practical aspect of trigonometry that received a great deal of attention during this time
period was surveying. The method of triangulation was first suggested in 1533 by the Dutch math-
ematician Gemma Frisius: one chooses a base line of known length, and from its endpoints the
angles of sight to a remote object are measured. The distance to the object from either endpoint
can then be calculated by using elementary trigonometry. The process is then repeated with the
new distances as base lines, until the entire area to be surveyed is covered by a network of trian-
gles. The method was first carried out on a large scale by another Dutchman, Willebrord Snell, who
surveyed a stretch of 130 km (80 miles) in Holland, using 33 triangles. The French government,
under the leadership of the astronomer Jean Picard, undertook to triangulate the entire country,
a task that was to take over a century and involve four generations of the Cassini family (Gian,
Jacques, César-Francois, and Dominique) of astronomers. The British undertook an even more
ambitious task—the survey of the entire subcontinent of India. Known as the Great Trigonometric
Survey, it lasted from 1800 to 1913 and culminated with the discovery of the tallest mountain on
Earth—Peak XV, or Mount Everest.

Concurrent with these developments, 18th-century scientists also turned their attention to aspects
of the trigonometric functions that arose from their periodicity. If the cosine and sine functions
are defined as the projections on the x- and y-axes, respectively, of a point moving on a unit circle
(a circle with its centre at the origin and a radius of 1), then these functions will repeat their values
every 360°, or 2n radians. Hence the importance of the sine and cosine functions in describing
periodic phenomena—the vibrations of a violin string, the oscillations of a clock pendulum, or the
propagation of electromagnetic waves. These investigations reached a climax when Joseph Fourier
discovered that almost any periodic function can be expressed as an infinite sum of sine and cosine
functions, whose periods are integral divisors of the period of the original function. For example,
the “sawtooth” function can be written as:

2(sin x—Sin 2x + sin3x —--y,
2 3

as successive terms in the series are added, an ever-better approximation to the sawtooth function
results. These trigonometric or Fourier series have found numerous applications in almost every
branch of science, from optics and acoustics to radio transmission and earthquake analysis. Their
extension to nonperiodic functions played a key role in the development of quantum mechanics in
the early years of the 20th century. Trigonometry, by and large, matured with Fourier’s theorem;
further developments.

Principles of Trigonometry
Trigonometric Functions

A somewhat more general concept of angle is required for trigonometry than for geometry. An
angle A with vertex at V, the initial side of which is VP and the terminal side of which is VQ, is indi-
cated in the figure by the solid circular arc. This angle is generated by the continuous counterclock-
wise rotation of a line segment about the point V from the position VP to the position VQ. A second
angle A’ with the same initial and terminal sides, indicated in the figure by the broken circular
arc, is generated by the clockwise rotation of the line segment from the position VP to the position
VQ. Angles are considered positive when generated by counterclockwise rotations, negative when
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generated by clockwise rotations. The positive angle A and the negative angle A’ in the figure are
generated by less than one complete rotation of the line segment about the point V. All other pos-
itive and negative angles with the same initial and terminal sides are obtained by rotating the line
segment one or more complete turns before coming to rest at VQ.

&

\
A’\\__ //

This figure shows a positive general angle A, as well as a negative general angle A’.

Numerical values can be assigned to angles by selecting a unit of measure. The most common units
are the degree and the radian. There are 360° in a complete revolution, with each degree further
divided into 60’ (minutes) and each minute divided into 60” (seconds). In theoretical work, the
radian is the most convenient unit. It is the angle at the centre of a circle that intercepts an arc
equal in length to the radius; simply put, there are 2I1 radians in one complete revolution. From
these definitions, it follows that 1°="/;, radians.

Equal angles are angles with the same measure; i.e., they have the same sign and the same number
of degrees. Any angle —A has the same number of degrees as A but is of opposite sign. Its measure,
therefore, is the negative of the measure of A. If two angles, A and B, have the initial sides VP and
VQ and the terminal sides VQ and VR, respectively, then the angle A + B has the initial and ter-
minal sides VP and VR. The angle A + B is called the sum of the angles A and B, and its relation to
A and B when A is positive and B is positive or negative is illustrated in the figure. The sum A + B
is the angle the measure of which is the algebraic sum of the measures of A and B. The difference
A — B is the sum of A and -B. Thus, all angles coterminal with angle A (i.e., with the same initial
and terminal sides as angle A) are given by A + 360n, in which 360n is an angle of n complete
revolutions. The angles (180 — A) and (90 — A) are the supplement and complement of angle A,
respectively.

Addition of angles: The figure indicates how to add a positive or negative angle (B) to a positive angle (A).

Trigonometric Functions of an Angle

To define trigonometric functions for any angle A, the angle is placed in position on a rectangu-
lar coordinate system with the vertex of A at the origin and the initial side of A along the positive
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x-axis; r (positive) is the distance from V to any point Q on the terminal side of A, and (x, y) are the
rectangular coordinates of Q.

y-axis
Q=(X,y}

A
_ x-axis

v X P

Angle in standard position: The figure shows an angle A in standard position, that is, with initial side on the x-axis.

The six functions of A are then defined by six ratios exactly as in the earlier case for the triangle
given in the introduction. Because division by zero is not allowed, the tangent and secant are not
defined for angles the terminal side of which falls on the y-axis, and the cotangent and cosecant are
undefined for angles the terminal side of which falls on the x-axis. When the Pythagorean equality
x*+y*=r* isdivided in turn by #*, x*, and »*, the three squared relations relating cosine and sine,
tangent and secant, cotangent and cosecant are obtained.

Negative angles:

sin(—4) =—sin 4 csc(—A)=—csc 4
cos(—A4)=cos A sec(—A4) =sec A
tan(—A4) =—tan 4 cot(—4)=—cot 4

If the point Q on the terminal side of angle A in standard position has coordinates (x, y), this point
will have coordinates (x, —y) when on the terminal side of —A in standard position. From this fact
and the definitions are obtained further identities for negative angles. These relations may also be
stated briefly by saying that cosine and secant are even functions (symmetrical about the y-axis),
while the other four are odd functions (symmetrical about the origin).

It is evident that a trigonometric function has the same value for all coterminal angles. When n is
an integer, therefore, sin (A £ 360n) = sin A; there are similar relations for the other five functions.
These results may be expressed by saying that the trigonometric functions are periodic and have a
period of 360° or 180°.

Complementary angles and cofunctions:

sin(4+90°) =+cos 4 csc(A+90°%) =+sec A
cos(A4+90°) =Fsin 4 sec(4+90°)=Fcsc 4
tan(A4 +90°) =—cot A cot(4£90°) =—tan 4

When Q on the terminal side of A in standard position has coordinates (X, y), it has coordinates (-y, x)

and (y, —x) on the terminal side of A + 90 and A - 90 in standard position, respectively. Consequently,
six formulas equate a function of the complement of A to the corresponding cofunction of A.
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Tables of Natural Functions

To be of practical use, the values of the trigonometric functions must be readily available for any
given angle. Various trigonometric identities show that the values of the functions for all angles
can readily be found from the values for angles from 0° to 45°. For this reason, it is sufficient to
list in a table the values of sine, cosine, and tangent for all angles from 0° to 45° that are integral
multiples of some convenient unit (commonly 1"). Before computers rendered them obsolete in the
late 20th century, such trigonometry tables were helpful to astronomers, surveyors, and engineers.

Table: Common angles for trigonometry functions.

0| 30° |45 | 60° |90°
sin| 0| 1/2 [V2/2]43/2]1
cos| 1|~3/2 [N2/2] 12| 0

tan| 0 [+/3 / 3 1 V3 |underfined

For angles that are not integral multiples of the unit, the values of the functions may be interpolat-
ed. Because the values of the functions are in general irrational numbers, they are entered in the
table as decimals, rounded off at some convenient place. For most purposes, four or five decimal
places are sufficient, and tables of this accuracy are common. Simple geometrical facts alone, how-
ever, suffice to determine the values of the trigonometric functions for the angles 0°, 30°, 45°, 60°,
and 90°. These values are listed in a table for the sine, cosine, and tangent functions.

Plane Trigonometry

In many applications of trigonometry the essential problem is the solution of triangles. If enough
sides and angles are known, the remaining sides and angles as well as the area can be calculated,
and the triangle is then said to be solved. Triangles can be solved by the law of sines and the law
of cosines. To secure symmetry in the writing of these laws, the angles of the triangle are lettered
A, B, and C and the lengths of the sides opposite the angles are lettered a, b, and c, respectively.

C

A C B

Standard lettering of a triangle: In addition to the angles (A, B, C) and sides (a, b, ¢), one of the three
heights of the triangle (h) is included by drawing the line segment from one of the triangle’s
vertices (in this case C) that is perpendicular to the opposite side of the triangle.

The law of sines is expressed as an equality involving three sine functions while the law of co-
sines is an identification of the cosine with an algebraic expression formed from the lengths of
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sides opposite the corresponding angles. To solve a triangle, all the known values are substitut-
ed into equations expressing the laws of sines and cosines, and the equations are solved for the
unknown quantities. For example, the law of sines is employed when two angles and a side are
known or when two sides and an angle opposite one are known. Similarly, the law of cosines is
appropriate when two sides and an included angle are known or three sides are known. Texts
on trigonometry derive other formulas for solving triangles and for checking the solution. Old-
er textbooks frequently included formulas especially suited to logarithmic calculation. Newer
textbooks, however, frequently include simple computer instructions for use with a symbolic
mathematical program.

Spherical Trigonometry

Spherical trigonometry involves the study of spherical triangles, which are formed by the in-
tersection of three great circle arcs on the surface of a sphere. Spherical triangles were sub-
ject to intense study from antiquity because of their usefulness in navigation, cartography,
and astronomy. The angles of a spherical triangle are defined by the angle of intersection of the
corresponding tangent lines to each vertex. The sum of the angles of a spherical triangle is always
greater than the sum of the angles in a planar triangle (7t radians, equivalent to two right angles).
The amount by which each spherical triangle exceeds two right angles (in radians) is known as its
spherical excess. The area of a spherical triangle is given by the product of its spherical excess E
and the square of the radius r of the sphere it resides on—in symbols, Er°.

Common spherical trigonometry formulas:

. sina 'sinb sinc
Lawof sines : — = =—
sind sinB sinC
cosa = cosb cosc+sinb sinccos 4
Lawof cosines : cosb = cosa cosc +sina sinccos B
cosc = cosa cosh+sina sinbcosC
an ( A j _ sm(.s - b) sin(s — c)
2 sin ssin(s —a)
B
Half — angle formulas : \/ sin(s —¢) sm(s a)
sin s sin(s —
tan E sin(s —a)sin(s — b) wheres =2 +b+c
2 sin ssin(s —c)
| —cosScos(S—4)
2 cos(S —B)cos(S—-C)
Half — side formulas : 2 S B Scos(S — B)
2 cos(S — A)cos(S—-C)
tan (Ej - —Cos5eoMS ~C) , where S= —A +B+C
2 cos(S — A)cos(S — B) 2

By connecting the vertices of a spherical triangle with the centre O of the sphere that it resides
on, a special “angle” known as a trihedral angle is formed. The central angles (also known
as dihedral angles) between each pair of line segments OA, OB, and OC are labeled a, 3, and
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y to correspond to the sides (arcs) of the spherical triangle labeled a, b, and c, respectively.
Because a trigonometric function of a central angle and its corresponding arc have the same
value, spherical trigonometry formulas are given in terms of the spherical angles A, B, and
C and, interchangeably, in terms of the arcs a, b, and ¢ and the dihedral angles a, 3, and .
Furthermore, most formulas from plane trigonometry have an analogous representation in
spherical trigonometry. For example, there is a spherical law of sines and a spherical law of
cosines.

As was described for a plane triangle, the known values involving a spherical triangle are substi-
tuted in the analogous spherical trigonometry formulas, such as the laws of sines and cosines, and
the resulting equations are then solved for the unknown quantities.

Napier’s analogies:
a B-C b+c B+C
tan| — |cos = tan cos
2 2 2 2
aj . (B—Cj (b—cj
tan| — |sin =tan
2 2

co
B-C). (b+c
an sin
2 2
Many other relations exist between the sides and angles of a spherical triangle. Worth mentioning

are Napier’s analogies (derivable from the spherical trigonometry half-angle or half-side formu-
las), which are particularly well suited for use with logarithmic tables.
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Analytic Trigonometry

Analytic trigonometry combines the use of a coordinate system, such as the Cartesian coordinate
system used in analytic geometry, with algebraic manipulation of the various trigonometry func-
tions to obtain formulas useful for scientific and engineering applications.

Trigonometric functions of a real variable x are defined by means of the trigonometric functions of
an angle. For example, sin x in which x is a real number is defined to have the value of the sine of
the angle containing x radians. Similar definitions are made for the other five trigonometric func-
tions of the real variable x. These functions satisfy the previously noted trigonometric relations
with A, B, 90°, and 360° replaced by x,y,"/, radians, and 211 radians, respectively. The minimum

period of tan x and cot x isI1, and of the other four functions it is 2IT.

In calculus it is shown that sin x and cos x are sums of power series. These series may be used to
compute the sine and cosine of any angle. For example, to compute the sine of 10°, it is necessary to
find the value of sin"/,;because 10° is the angle containing "/ ,radians. When "/ ¢is substituted in
the series for sin x, it is found that the first two terms give 0.17365, which is correct to five decimal
places for the sine of 10°. By taking enough terms of the series, any number of decimal places can be
correctly obtained. Tables of the functions may be used to sketch the graphs of the functions.
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Graphs of some trigonometric functions. Note that each of these functions is periodic. Thus, the sine
and cosine functions repeat every o1, and the tangent and cotangent functions repeat every ri.

Each trigonometric function has an inverse function, that is, a function that “undoes” the original

function. For example, the inverse function for the sine function is written arcsin or sin™', thus

sin”'(sinx) = sin (sin”' x) =x . The other trigonometric inverse functions are defined similarly.

Coordinates and Transformation of Coordinates
Polar Coordinates

For problems involving directions from a fixed origin (or pole) O, it is often convenient to specify a
point P by its polar coordinates (», ), in which ris the distance OP and & is the angle that the di-
rection of r makes with a given initial line. The initial line may be identified with the x-axis of rect-
angular Cartesian coordinates, as shown in the figure. The point (#, #) is the same as (r, €+ 2nIl)
for any integer n. It is sometimes desirable to allow r to be negative, so that (», 0) is the same as
(—r, 0 + 7).

y-axis .

0 \ x-axis
0] X M

Cartesian and polar coordinates: The point labeled P in the figure resides in the plane. Therefore, it requires two di-
mensions to fix its location, either in Cartesian coordinates (x, y) or in polar coordinates (r, ).

Given the Cartesian equation for a curve, the polar equation for the same curve can be obtained
in terms of the radius r and the angle 6 by substituting r cos ¢ and r sin ¢ for x and y, respec-
tively. For example, the circle x*+y*=a’ has the polar equation (rcos )+ (rsin 8)*=a*, which
reduces to r = a. (The positive value of r is sufficient, if & takes all values from - to i1 or from o
to 211). Thus the polar equation of a circle simply expresses the fact that the curve is independent
of # and has constant radius. In a similar manner, the line y=xtan ¢ has the polar equation
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sin & = cos 6 tan ¢, which reduces to & =¢ . (The other solution, & =¢ +1I1 | can be discarded if r is
allowed to take negative values).

Transformation of Coordinates

A transformation of coordinates in a plane is a change from one coordinate system to another.
Thus, a point in the plane will have two sets of coordinates giving its position with respect to
the two coordinate systems used, and a transformation will express the relationship between the
coordinate systems. For example, the transformation between polar and Cartesian coordinates
discussed in the preceding section is given by x = r cos 6 and y = r sin 0. Similarly, it is possible to
accomplish transformations between rectangular and oblique coordinates.

In a translation of Cartesian coordinate axes, a transformation is made between two sets of axes
that are parallel to each other but have their origins at different positions. If a point P has coordi-
nates (%, y) in one system, its coordinates in the second system are given by (x — h, y — k) where
(h, k) is the origin of the second system in terms of the first coordinate system. Thus, the transfor-
mation of P between the first system (x, y) and the second system (x’, y’) is given by the equations
x =x’ + hand y = y’ + k. The common use of translations of axes is to simplify the equations of
curves. For example, the equation 2x* +y’ —12x-2y+17 =0 can be simplified with the translations
x’=x-3andy’ =y - 1to an equation involving only squares of the variables and a constant term:

4 2 . . . . .
x')’ +0y , = 1. In other words, the curve represents an ellipse with its centre at the point (3, 1) in

the original coordinate system.

A rotation of coordinate axes is one in which a pair of axes giving the coordinates of a point
(%, y) rotate through an angle ¢ to give a new pair of axes in which the point has coordinates
(x’, ¥'), as shown in the figure. The transformation equations for such a rotation are given by
x=x'cos ¢ —y' sin ¢ and y=x"sin ¢ +y’ cos ¢. The application of these formulas with ¢ =45° to
the difference of squares, x*—y”=a*, leads to the equation x’y’ = ¢ (where c is a constant that
depends on the value of a). This equation gives the form of the rectangular hyperbola when its as-

ymptotes (the lines that a curve approaches without ever quite meeting) are used as the coordinate
axes.

y-axis y-axis

X-axis

Rotation of axes: Rotating the coordinate axes through an angle ¢ changes the coordinates of a
point from (x, y) to (x, y).
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C Pythagorean Triple ))

A Pythagorean triple consists of three positive integers a, b, and ¢, such that a® + b = c2. Such a
triple is commonly written (a, b, ¢), and a well-known example is (3, 4, 5). If (a, b, c) is a Pythago-
rean triple, then so is (ka, kb, kc) for any positive integer k. A primitive Pythagorean triple is one in
which a, b and c are coprime (that is, they have no common divisor larger than 1). A triangle whose
sides form a Pythagorean triple is called a Pythagorean triangle, and is necessarily a right triangle.

The name is derived from the Pythagorean theorem, stating that every right triangle has side
lengths satisfying the formula a® + b* = ¢?; thus, Pythagorean triples describe the three integer side
lengths of a right triangle. However, right triangles with non-integer sides do not form Pythago-
rean triples. For instance, the triangle with sidesa=b =1and c= V2 isa right triangle, but (1, 1,
2 ) is not a Pythagorean triple because +/2 is not an integer. Moreover, 1 and ~/2 do not have an
integer common multiple because +/2 is irrational.

Pythagorean triples have been known since ancient times. The oldest known record comes from
Plimpton 322, a Babylonian clay tablet from about 1800 BC, written in a sexagesimal number
system. It was discovered by Edgar James Banks shortly after 1900, and sold to George Arthur
Plimpton in 1922, for $10.

When searching for integer solutions, the equation a? + b* = ¢? is a Diophantine equation.
Thus Pythagorean triples are among the oldest known solutions of a nonlinear Diophantine
equation.

Examples:

Scatter plot of the legs (a,b) of the first Pythagorean triples with a and b less than 6000.
Negative values are included to illustrate the parabolic patterns.

Table: 16 primitive Pythagorean triples with ¢ < 100.

(3,4,5) (5,12,13) (8, 15, 17) (7, 24, 25)
(20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53)
(11, 60, 61) (16, 63, 65) (33, 56, 65) (48, 55, 73)
(13, 84, 85) (36,77, 85) (39, 80, 89) (65, 72, 97)
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For example, that (6, 8, 10) is not a primitive Pythagorean triple, as it is a multiple of (3, 4, 5). Each
of these low-c points forms one of the more easily recognizable radiating lines in the scatter plot.

Table: Additionally these are all the primitive Pythagorean triples with 100 < ¢ < 300.

(20, 99, 101)

(60, 91, 109)

(15, 112, 113)

(44, 117, 125)

(88, 105, 137)

(17, 144, 145)

(24, 143, 145)

(51, 140, 149)

(85,132, 157)

(119, 120, 169)

(52,165, 173)

(19, 180, 181)

(57, 176, 185)

(104, 153, 185)

(95,168, 193)

(28, 195, 197)

(84, 187, 205)

(133, 156, 205)

(21, 220, 221)

(140, 171, 221)

(60, 221, 229)

(105, 208, 233)

(120, 209, 241)

(32, 255, 257)

(23, 264, 265)

(96, 247, 265)

(69, 260, 269)

(115, 252, 277)

(160, 231, 281)

(161, 240, 289)

(68, 285, 293)

Generating a Triple
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The primitive Pythagorean triples. The odd leg a is plotted
on the horizontal axis, the even leg b on the vertical.

A plot of triples generated by Euclid’s formula maps
out part of the z2 = x* + y? cone. A constant m or n
traces out part of a parabola on the cone.

Euclid’s formula is a fundamental formula for generating Pythagorean triples given an arbitrary

pair of integers m and n with m > n > 0. The formula states that the integers:

2 2 2, 2
a=m"—n",b=2mn,c=m"+n

form a Pythagorean triple. The triple generated by Euclid’s formula is primitive if and only if m and
n are coprime and not both odd. When both m and n are odd, then a, b, and c will be even, and the
triple will not be primitive; however, dividing a, b, and c by 2 will yield a primitive triple when m

and n are coprime and both odd.

Every primitive triple arises (after the exchange of a and b, if a is even) from a unique pair of
coprime numbers m, n, one of which is even. It follows that there are infinitely many primitive
Pythagorean triples. This relationship of a, b and ¢ to m and n from Euclid’s formula is referenced

throughout the rest of this topic.
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Despite generating all primitive triples, Euclid’s formula does not produce all triples—for example,
(9, 12, 15) cannot be generated using integer m and n. This can be remedied by inserting an ad-
ditional parameter k to the formula. The following will generate all Pythagorean triples uniquely:

a=k-(m*=n*), b=k-Qmn), c=k-(m* +n°)
where m, n, and k are positive integers with m > n, and with m and n coprime and not both odd.

That these formulas generate Pythagorean triples can be verified by expanding a® + b? using ele-
mentary algebra and verifying that the result equals c2. Since every Pythagorean triple can be di-
vided through by some integer k to obtain a primitive triple, every triple can be generated uniquely
by using the formula with m and n to generate its primitive counterpart and then multiplying
through by k as in the last equation.

Many formulas for generating triples with particular properties have been developed since the
time of Euclid.

Proof of Euclid’s Formula

That satisfaction of Euclid’s formula by a, b, c is sufficient for the triangle to be Pythagorean is ap-
parent from the fact that for positive integers m and n, m > n, the a, b, and ¢ given by the formula
are all positive integers, and from the fact that:

a’+b>=(m’ —n’) +(2mn) =(m* +n°) =c’.

A proof of the necessity that a, b, ¢ be expressed by Euclid’s formula for any primitive Pythagorean
triple is as follows. All such triples can be written as (a, b, c) where a® + b* = c? and a, b, c are co-
prime. Thus a, b, c are pairwise coprime (if a prime number divided two of them, it would be forced
also to divide the third one). As a and b are coprime, one is odd, and one may suppose that it is a,
by exchanging, if needed, a and b. This implies that b is even and ¢ is odd (if b were odd, ¢ would
be even, and c*> would be a multiple of 4, while a2 + b2 would be congruent to 2 modulo 4, as an odd
square is congruent to 1 modulo 4).

(c+a) _  p

=R Since

From q4° + b =c>we obtain ? —4? = p*and hence (c—a)(c+a)=»b>. Then

(e+a) is rational, we set it equal to % in lowest terms. Thus (C+b“) =L, being the reciprocal of

n
m
@. Then solving;:

m

c a C
— 4 —= , -
b b n b

n
m

ST

for %and% gives:

5_1[&1)_ m+n’ ﬁ_l(ﬂ_ij_ m’ —n’

b 2\n m 2mn ~ b 2\n m 2mn

As Zis fully reduced, m and n are coprime, and they cannot both be even. If they were both odd,
n

2 2
m —n

the numerator of would be a multiple of 4 (because an odd square is congruent to 1 modulo

mn
4), and the denominator 2mn would not be a multiple of 4. Since 4 would be the minimum possible

WORLD TECHNOLOGIES




CHAPTER5  Trigonometry | 135

even factor in the numerator and 2 would be the maximum possible even factor in the denomina-
tor, this would imply a to be even despite defining it as odd. Thus one of m and n is odd and the
other is even, and the numerators of the two fractions with denominator 2mn are odd. Thus these
fractions are fully reduced (an odd prime dividing this denominator divides one of m and n but not
the other; thus it does not divide m? + n?). One may thus equate numerators with numerators and
denominators with denominators, giving Euclid’s formula,

a=m’—n’, b=2mn, c=m" +n’ with m and n coprime and of opposite parities.

A longer but more commonplace proof is given in Maor and Sierpinski. Another proof is given in
Diophantine equation § Example of Pythagorean triples, as an instance of a general method that
applies to every homogeneous Diophantine equation of degree two.

Interpretation of Parameters in Euclid’s Formula
Suppose the sides of a Pythagorean triangle have lengths m? — n2, 2mn, and m? + n?, and suppose
the angle between the leg of length m? — n? and the hypotenuse of length m? + n? is denoted as .

. . . 2 2 _p?
Then tang = % and the full-angle trigonometric values are sin 8= 2mn =, Cos p =50
m- +n

and
m?>+n* "’

_ 2mn
tan S == .

A Variant

The following variant of Euclid’s formula is sometimes more convenient, as being more symmetric
in m and n (same parity condition on m and n).

If m and n are two odd integers such that m > n, then:

m’ —n’ m’+n’
a=mn, b= ,C=
2 2
are three integers that form a Pythagorean triple, which is primitive if and only if m and n are co-
prime. Conversely, every primitive Pythagorean triple arises (after the exchange of a and b, if a is

even) from a unique pair m > n > 0 of coprime odd integers.

Elementary Properties of Primitive Pythagorean Triples
General Properties

The properties of a primitive Pythagorean triple (a, b, ¢) with a < b < ¢ (without specifying which
of a or b is even and which is odd) include:

« Isalways a perfect square. As it is only a necessary condition but not a sufficient one, it can
be used in checking if a given triple of numbers is not a Pythagorean triple when they fail
the test. For example, the triple {6, 12, 18} passes the test that (c — a)(c — b)/2 is a perfect
square, but it is not a Pythagorean triple.

»  When a triple of numbers a, b and ¢ forms a primitive Pythagorean triple, then (¢ minus
the even leg) and one-half of (c minus the odd leg) are both perfect squares; however this is
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not a sufficient condition, as the numbers {1, 8, 9} pass the perfect squares test but are not
a Pythagorean triple since 12 + 82 # 92

« At mostoneof a, b, cis a square.

« Theareaof a Pythagorean triangle cannot be the square or twice the square of a natural number.
« Exactly one of a, b is odd; c is odd.

» Exactly one of a, b is divisible by 3.

« Exactly one of a, b is divisible by 4.

« Exactly one of a, b, c is divisible by 5.

« The largest number that always divides abc is 60.

« All prime factors of ¢ are primes of the form 4n + 1. Therefore c is of the form 4n + 1.

« The area (K = ab/2) is a congruent number divisible by 6.

» In every Pythagorean triangle, the radius of the incircle and the radii of the three excircles
are natural numbers. Specifically, for a primitive triple the radius of the incircle is r = n(m
— n), and the radii of the excircles opposite the sides m? — n?, 2mn, and the hypotenuse m?
+ n? are respectively m(m - n), n(m + n), and m(m + n).

« As for any right triangle, the converse of Thales’ theorem says that the diameter of the
circumcircle equals the hypotenuse; hence for primitive triples the circumdiameter is
m? + n?, and the circumradius is half of this and thus is rational but non-integer (since m
and n have opposite parity).

« When the area of a Pythagorean triangle is multiplied by the curvatures of its incircle and 3
excircles, the result is four positive integers w > x > y > z, respectively. Integers —w, x, y, z
satisfy Descartes’s Circle Equation. Equivalently, the radius of the outer Soddy circle of any
right triangle is equal to its semiperimeter. The outer Soddy center is located at D, where
ACBD is a rectangle, ACB the right triangle and AB its hypotenuse.

« Only two sides of a primitive Pythagorean triple can be simultaneously prime because by
Euclid’s formula for generating a primitive Pythagorean triple, one of the legs must be
composite and even. However, only one side can be an integer of perfect power p>2be-
cause if two sides were integers of perfect powers with equal exponent p it would contra-
dict the fact that there are no integer solutions to the Diophantine equation x*” + y*” = 2%,
with x, yand zbeing pairwise coprime.

» There are no Pythagorean triangles in which the hypotenuse and one leg are the legs of another
Pythagorean triangle; this is one of the equivalent forms of Fermat’s right triangle theorem.

« Each primitive Pythagorean triangle has a ratio of area, K, to squared semiperimeter, s,
that is unique to itself and is given by:

K _ n(m-n) —1—c
s> m(m+n) s °
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No primitive Pythagorean triangle has an integer altitude from the hypotenuse; that is,
every primitive Pythagorean triangle is indecomposable.

The set of all primitive Pythagorean triples forms a rooted ternary tree in a natural way; see
Tree of primitive Pythagorean triples.

Neither of the acute angles of a Pythagorean triangle can be a rational number of degrees.
(This follows from Niven’s theorem).

Special Cases

In addition, special Pythagorean triples with certain additional properties can be guaranteed to exist:

Every integer greater than 2 that is not congruent to 2 mod 4 (in other words, every integer
greater than 2 which is not of the form 4k + 2) is part of a primitive Pythagorean triple. (If
the integer has the form 4k, one may take n =1 and m = 2k in Euclid’s formula; if the integer
is 2k + 1, one may take n = kand m = k + 1).

Every integer greater than 2 is part of a primitive or non-primitive Pythagorean triple. For
example, the integers 6, 10, 14, and 18 are not part of primitive triples, but are part of the
non-primitive triples (6, 8, 10), (14, 48, 50) and (18, 80, 82).

There exist infinitely many Pythagorean triples in which the hypotenuse and the longest
leg differ by exactly one. Such triples are necessarily primitive and have the form (2n + 1,
2n? + 2n, 2n? + 2n +1). This results from Euclid’s formula by remarking that the condition
implies that the triple is primitive and must verify (m? + n?) - 2mn = 1. This implies (m — n)?
=1, and thus m = n + 1. The above form of the triples results thus of substituting m for n +
1in Euclid’s formula.

There exist infinitely many primitive Pythagorean triples in which the hypotenuse and the
longest leg differ by exactly two. They are all primitive, and are obtained by putting n = 1in
Euclid’s formula. More generally, for every integer k > 0, there exist infinitely many prim-
itive Pythagorean triples in which the hypotenuse and the odd leg differ by 2k2. They are
obtained by putting n = k in Euclid’s formula.

There exist infinitely many Pythagorean triples in which the two legs differ by exactly one.

For example, 202 + 212 = 292; these are generated by Euclid’s formula when =" is a con-

n
vergent to V2.

For each natural number k, there exist k Pythagorean triples with different hypotenuses
and the same area.

For each natural number k, there exist at least k different primitive Pythagorean triples
with the same leg a, where a is some natural number (the length of the even leg is 2mn, and
it suffices to choose a with many factorizations, for example a = 4b, where b is a product of
k different odd primes; this produces at least 2* different primitive triples).

For each natural number n, there exist at least n different Pythagorean triples with the
same hypotenuse.
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« There exist infinitely many Pythagorean triples with square numbers for both the hypote-
nuse c¢ and the sum of the legs a + b. According to Fermat, the smallest such triple has sides
a = 4,565,486,027,761; b = 1,061,652,293,520; and ¢ = 4,687,298,610,289. Here a + b =
2,372,159 and ¢ = 2,165,0172 This is generated by Euclid’s formula with parameter values
m = 2,150,905 and n = 246,792.

+ There exist non-primitive Pythagorean triangles with integer altitude from the hypotenuse.
Such Pythagorean triangles are known as decomposable since they can be split along this
altitude into two separate and smaller Pythagorean triangles.

Geometry of Euclid’s Formula

Rational Points on a Unit Circle

./_‘ . =N
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© 3 1 3
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3,4,5 maps to x,y point (4/5,3/5) on the unit circle. The rational points on a circle correspond, under stereo-

graphic projection, to the rational points of the line.
Euclid’s formula for a Pythagorean triple:

2 2 2 2
a=2mn, b=m"—-n", c=m"+n

can be understood in terms of the geometry of rational points on the unit circle.

In fact, a point in the Cartesian plane with coordinates (x, y) belongs to the unit circle if x* + y* = 1.
The point is rational if x and y are rational numbers, that is, if there are coprime integers a, b, ¢
such that:

2 2
a1 4 b =1.
C C
By multiplying both members by ¢?, one can see that the rational points on the circle are in one-to-
one correspondence with the primitive Pythagorean triples.

The unit circle may also be defined by a parametric equation:

1-¢ 2t

x= = .
1+¢ Y 147

Euclid’s formula for Pythagorean triples means that, except for (-1, 0), a point on the circle is ra-
tional if and only if the corresponding value of ¢ is a rational number.
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Stereographic Approach

Stereographic projection of the unit circle onto the x-axis. Given a point P on the unit circle, draw a line
from P to the point N = (0, 1) (the north pole). The point P’ where the line intersects the x-axis is the
stereographic projection of P. Inversely, starting with a point P’ on the x-axis, and drawing a line from
P’ to N, the inverse stereographic projection is the point P where the line intersects the unit circle.

There is a correspondence between points on the unit circle with rational coordinates and primi-
tive Pythagorean triples. At this point, Euclid’s formulae can be derived either by methods of trig-
onometry or equivalently by using the stereographic projection.

For the stereographic approach, suppose that P’ is a point on the x-axis with rational coordinates

P’=(E,OJ.
n

Then, it can be shown by basic algebra that the point P has coordinates

(5] (3] [ o)

m2 ’m2 m2+n2’m2+n2'
— | +1 | —| +1
n n

This establishes that each rational point of the x-axis goes over to a rational point of the unit circle.
The converse, that every rational point of the unit circle comes from such a point of the x-axis,
follows by applying the inverse stereographic projection. Suppose that P(x, y) is a point of the unit
circle with x and y rational numbers. Then the point P’ obtained by stereographic projection onto
the x-axis has coordinates

)

which is rational.

In terms of algebraic geometry, the algebraic variety of rational points on the unit circle is bira-
tional to the affine line over the rational numbers. The unit circle is thus called a rational curve,
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and it is this fact which enables an explicit parameterization of the (rational number) points on it
by means of rational functions.

Pythagorean Triangles in a 2D Lattice

A 2D lattice is a regular array of isolated points where if any one point is chosen as the Cartesian
origin (0, 0), then all the other points are at (x, y) where x and y range over all positive and nega-
tive integers. Any Pythagorean triangle with triple (a, b, ¢) can be drawn within a 2D lattice with
vertices at coordinates (0, 0), (a, 0) and (0, b). The count of lattice points lying strictly within the

(a—1)(b-1)—ged(a,b) +1
2

bounds of the triangle is given by , for primitive Pythagorean triples this

interior lattice count is % . The area (by Pick’s theorem equal to one less than the interior

lattice count plus half the boundary lattice count) equals %b .

The first occurrence of two primitive Pythagorean triples sharing the same area occurs with trian-
gles with sides (20, 21, 29), (12, 35, 37) and common area 210 (sequence A093536 in the OEIS). The
first occurrence of two primitive Pythagorean triples sharing the same interior lattice count occurs
with (18108, 252685, 253333), (28077, 162964, 165365) and interior lattice count 2287674594.
Three primitive Pythagorean triples have been found sharing the same area: (4485, 5852, 7373),
(3059, 8580, 9109), (1380, 19019, 19069) with area 13123110. As yet, no set of three primitive Py-
thagorean triples have been found sharing the same interior lattice count.

Enumeration of Primitive Pythagorean Triples

By Euclid’s formula all primitive Pythagorean triples can be generated from integers m and » with

m>n>0, m+noddand ged(m,n)=1.
Hence there is a 1 to 1 mapping of rationals (in lowest terms) to primitive Pythagorean triples

where % is in the interval (0,1) and m +n odd.

The reverse mapping from a primitive triple (a,b,c) where ¢ > b >a >0 to a rational % is achieved

by studying the two sums a +c¢ and b+ c. One of these sums will be a square that can be equated
to (m+n)’ and the other will be twice a square that can be equated to 2m”. It is then possible to

determine the rational % .

In order to enumerate primitive Pythagorean triples the rational can be expressed as an ordered
pair (n,m) and mapped to an integer using a pairing function such as Cantor’s pairing function:

8,18,19,32,33,34,... and gives rationals.

—————— ...these, in turn, generate primitive triples.

(3,4,5),(5,12,13),(8,15,17),(7,24,25),(20,21,29),(12,35,37),...
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Spinors and the Modular Group

Pythagorean triples can likewise be encoded into a matrix of the form:

[c +b a }
X = .
a c¢c-b
A matrix of this form is symmetric. Furthermore, the determinant of X is:

det X =c* —a* -b*

which is zero precisely when (a,b,c) is a Pythagorean triple. If X corresponds to a Pythagorean
triple, then as a matrix it must have rank 1.

Since X is symmetric, it follows from a result in linear algebra that there is a column vector § = [m
n]* such that the outer product:

m
X =2{ }[m n)=2&6"
n

holds, where the T denotes the matrix transpose. The vector € is called a spinor (for the Lorentz group
SO(1, 2)). In abstract terms, the Euclid formula means that each primitive Pythagorean triple can be
written as the outer product with itself of a spinor with integer entries, as in above equation.

The modular group T is the set of 2x2 matrices with integer entries:

a
A= P
y o
with determinant equal to one: a8 — By = 1. This set forms a group, since the inverse of a matrix in
I'is again in T}, as is the product of two matrices in I'. The modular group acts on the collection of

all integer spinors. Furthermore, the group is transitive on the collection of integer spinors with
relatively prime entries. For if [m n]" has relatively prime entries, then:

m —vi1l| |m
nou 0] |n
where u and v are selected (by the Euclidean algorithm) so that mu + nv = 1.

By acting on the spinor § in X :2{"1}[,” n]=2&£" , the action of I" goes over to an action on
n

Pythagorean triples, provided one allows for triples with possibly negative components. Thus
if A is a matrix in T, then:

2(48)(AE)" = AXA"

gives rise to an action on the matrix X'in x = 2{’”}[;% n]=2&£" . This does not give a well-defined
n

action on primitive triples, since it may take a primitive triple to an imprimitive one. It is conve-
nient at this point to call a triple (a,b,c) standard if ¢ > 0 and either (a,b,c) are relatively prime or

WORLD TECHNOLOGIES




142 | Textbook of Mathematics

(a/2,b/2,c/2) are relatively prime with a/2 odd. If the spinor [m n]" has relatively prime entries,
then the associated triple (a,b,c) determined by X = 2[m}[m n]=2&£" is a standard triple. It fol-
n

lows that the action of the modular group is transitive on the set of standard triples.

Alternatively, restrict attention to those values of m and n for which m is odd and n is even. Let the
subgroup I'(2) of I be the kernel of the group homomorphism:

I'=SL(2,Z) »>SL(2,Z,)

where SL(2,Z ) is the special linear group over the finite field Z, of integers modulo 2. Then I'(2) is
the group of unimodular transformations which preserve the parity of each entry. Thus if the first
entry of § is odd and the second entry is even, then the same is true of Ag for all A e I'(2). In fact,
under the action 2(A4£)(4AE)" = AXA" | the group I'(2) acts transitively on the collection of primitive
Pythagorean triples.

The group I'(2) is the free group whose generators are the matrices:

o Rl

Consequently, every primitive Pythagorean triple can be obtained in a unique way as a product of
copies of the matrices U and L.

Parent and Child Relationships

By a result of Berggren, all primitive Pythagorean triples can be generated from the (3, 4, 5) tri-
angle by using the three linear transformations T, T, T, below, where a, b, c are sides of a triple:

new side a new side b new side ¢
T a-2b+2c 2a-b+2c 2a - 2b + 3¢
T,: a+2b+2c 2a+b+2c 2a +2b + 3¢
T.: -a+2b+2c -2a+b+2c -2a+2b+3c

3

In other words, every primitive triple will be a “parent” to three additional primitive triples. Start-
ing from the initial node with a = 3, b = 4, and ¢ = 5, the operation T, produces the new triple:

(3 — (2x4) + (2x5), (2x3) — 4 + (2x5), (2x3) — (2x4) + (3x5)) = (5, 12, 13),
and similarly T, and T, produce the triples (21, 20, 29) and (15, 8, 17).

The linear transformations T , T,, and T, have a geometric interpretation in the language of qua-
dratic forms. They are closely related to (but are not equal to) reflections generating the orthogonal
group of x2 + y? — z* over the integers.

Relation to Gaussian Integers

Alternatively, Euclid’s formulae can be analyzed and proven using the Gaussian integers. Gaussian
integers are complex numbers of the form a = u + vi, where u and v are ordinary integers and i is
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the square root of negative one. The units of Gaussian integers are +1 and +i. The ordinary integers
are called the rational integers and denoted as Z. The Gaussian integers are denoted as Z[i]. The
right-hand side of the Pythagorean theorem may be factored in Gaussian integers:

¢’ =a’ +b’ =(a+bi)(a+bi)=(a+bi)a-bi).

A primitive Pythagorean triple is one in which a and b are coprime, i.e., they share no prime factors
in the integers. For such a triple, either a or b is even, and the other is odd; from this, it follows
that c is also odd.

The two factors z := a + bi and z*:= a — bi of a primitive Pythagorean triple each equal the square of a
Gaussian integer. This can be proved using the property that every Gaussian integer can be factored
uniquely into Gaussian primes up to units. This unique factorization follows from the fact that, roughly
speaking, a version of the Euclidean algorithm can be defined on them. The proof has three steps. First,
if a and b share no prime factors in the integers, then they also share no prime factors in the Gaussian
integers. Assume a = gu and b = gv with Gaussian integers g, u and v and g not a unit. Then u and v lie
on the same line through the origin. All Gaussian integers on such a line are integer multiples of some
Gaussian integer h. But then the integer gh # +1 divides both a and b. Second, it follows that z and z*
likewise share no prime factors in the Gaussian integers. For if they did, then their common divisor &
would also divide z + z* = 2a and z — z* = 2ib. Since a and b are coprime, that implies that § divides 2
= (1+1)(1 —1i) =i(1 — i)% From the formula ¢* = zz*, that in turn would imply that c is even, contrary to
the hypothesis of a primitive Pythagorean triple. Third, since c? is a square, every Gaussian prime in its
factorization is doubled, i.e., appears an even number of times. Since z and z* share no prime factors,
this doubling is also true for them. Hence, z and z* are squares.

Thus, the first factor can be written:
. A2 .
a+b1=5(m+m) , €e{xl, &},

The real and imaginary parts of this equation give the two formulas:

£=+1, a=+(m2—n2), b=+2mn;
g=-1, a=—(m2—n2), b=-2mn;
& =i, a=-2mn, b=+(m2—n2);
&=, a=+2mn, bz—(mz—nz).

For any primitive Pythagorean triple, there must be integers m and n such that these two equations
are satisfied. Hence, every Pythagorean triple can be generated from some choice of these integers.

As Perfect Square Gaussian Integers

If we consider the square of a Gaussian integer we get the following direct interpretation of Eu-
clid’s formulae as representing a perfect square Gaussian integers.

(m+ni)* =(m* —n)+ 2mni.

WORLD TECHNOLOGIES




144 | Textbook of Mathematics

Using the facts that the Gaussian integers are a Euclidean domain and that for a Gaussian integer
p | p[* is always a square it is possible to show that a Pythagorean triples correspond to the square

of a prime Gaussian integer if the hypotenuse is prime.

If the Gaussian integer is not prime then it is the product of two Gaussian integers p and q with
| pand | ¢ [*integers. Since magnitudes multiply in the Gaussian integers, the product must be
pllq|, which when squared to find a Pythagorean triple must be composite. The contrapositive
completes the proof.

Relation to Ellipses with Integral Dimensions

&3/ a4/

F1 F2 ;
AT 65 6

AT

17

Relationship between Pythagorean triples and ellipses with integral linear eccentricity,
and major and minor axes, for the first 3 Pythagorean triples.

With reference to the figure and the definition of the foci of an ellipse, F, and F, for any point P on
the ellipse, F P + PF_ is constant.

As points A and B are both on the ellipse, F A + AF, = F B + BF,. Due to symmetry, F A + AF, =F A’
+AF,=AA’ =2 AC, and F B + BF, = 2 BF,. Hence, AC = BF,.

Thus, if BCF, is a right-angle triangle with integral sides, the separation of the foci, linear eccen-
tricity, minor axis and major axis are all also integers.

Distribution of Triples

45004 - -
4000
3500
3000
2500
2000+
1500

1000

5001

0 IMREIRIAL
0 500 1000 1500 2000 2500 3000 3500 4000 4500

A scatter plot of the legs (a,b) of the first Pythagorean triples with a and b less than 4500.
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There are a number of results on the distribution of Pythagorean triples. In the scatter plot, a num-
ber of obvious patterns are already apparent. Whenever the legs (a,b) of a primitive triple appear
in the plot, all integer multiples of (a,b) must also appear in the plot, and this property produces
the appearance of lines radiating from the origin in the diagram.

Within the scatter, there are sets of parabolic patterns with a high density of points and all
their foci at the origin, opening up in all four directions. Different parabolas intersect at the
axes and appear to reflect off the axis with an incidence angle of 45 degrees, with a third pa-
rabola entering in a perpendicular fashion. Within this quadrant, each arc centered on the
origin shows that section of the parabola that lies between its tip and its intersection with its
semi-latus rectum.

These patterns can be explained as follows - If &’ / 4nis an integer, then (a, |[n—a’ / 4n|, n+a’ / 4n)
is a Pythagorean triple. In fact every Pythagorean triple (a, b, ¢) can be written in this way with in-
teger n, possibly after exchanging a and b, since n=(b+¢)/2 and a and b cannot both be odd. The
Pythagorean triples thus lie on curves given by b=|n—a” /4n|, that is, parabolas reflected at the

a-axis, and the corresponding curves with a and b interchanged. If a is varied for a given n (i.e. on a
given parabola), integer values of b occur relatively frequently if n is a square or a small multiple of
a square. If several such values happen to lie close together, the corresponding parabolas approx-
imately coincide, and the triples cluster in a narrow parabolic strip. For instance, 382 = 1444, 2 x
272 = 1458, 3 x 222 = 1452, 5 x 172 = 1445 and 10 x 122 = 1440; the corresponding parabolic strip
around n = 1450 is clearly visible in the scatter plot.

The angular properties described above follow immediately from the functional form of the parab-
olas. The parabolas are reflected at the a-axis at a = 2n, and the derivative of b with respect to a
at this point is —1; hence the incidence angle is 45°. Since the clusters, like all triples, are repeated
at integer multiples, the value 2n also corresponds to a cluster. The corresponding parabola in-
tersects the b-axis at right angles at b = 2n, and hence its reflection upon interchange of a and b
intersects the a-axis at right angles at a = 2n, precisely where the parabola for n is reflected at the
a-axis. The same is of course true for a and b interchanged.

Special Cases and Related Equations

The Platonic Sequence

The case n = 1 of the more general construction of Pythagorean triples has been known for a long
time. Proclus, in his commentary to the 47th Proposition of the first book of Euclid’s Elements,
describes it as follows:

Certain methods for the discovery of triangles of this kind are handed down, one which
they refer to Plato, and another to Pythagoras. (The latter) starts from odd numbers.
For it makes the odd number the smaller of the sides about the right angle; then it takes
the square of it, subtracts unity and makes half the difference the greater of the sides
about the right angle; lastly it adds unity to this and so forms the remaining side, the
hypotenuse.

WORLD TECHNOLOGIES




146 | Textbook of Mathematics

For the method of Plato argues from even numbers. It takes the given even number and makes it one
of the sides about the right angle; then, bisecting this number and squaring the half, it adds unity to the
square to form the hypotenuse, and subtracts unity from the square to form the other side about the
right angle. Thus it has formed the same triangle that which was obtained by the other method.

In equation form, this becomes:

a is odd:

2 2
a 1:sidec=a +1.
2

side a :side b =

ais even:
aY aY
sidea:sideb=|—| —1l:sidec=| —| +1.
2 2

It can be shown that all Pythagorean triples can be obtained, with appropriate rescaling, from the basic
Platonic sequence (a, (a® — 1)/2 and (a® 4+ 1)/2) by allowing a to take non-integer rational values. If a
is replaced with the fraction m/n in the sequence, the result is equal to the ‘standard’ triple generator
(2mn, m? — n?, m* + n?) after rescaling. It follows that every triple has a corresponding rational a value
which can be used to generate a similar triangle (one with the same three angles and with sides in the
same proportions as the original). For example, the Platonic equivalent of (56, 33, 65) is generated by
a=m/n=17/4as(qa, (a*-1)/2, (a*+1)/2) = (56/32, 33/32, 65/32). The Platonic sequence itself can be
derived by following the steps for ‘splitting the square.
The Jacobi—-Madden Equation
The equation,

at+b' +ct+d =(a+b+c+d)?
Is equivalent to the special Pythagorean triple,

(@ +ab+b)Y +(+cd+d*) =((a+b) +(a+b)(c+d)+(c+d)*)

There is an infinite number of solutions to this equation as solving for the variables involves an
elliptic curve. Small ones are,

a,b,c,d =-2634,955,1770,5400
a,b,c,d =-31764,7590,27385,48150

Equal Sums of Two Squares

One way to generate solutions to a° +b* =¢* +d’is to parametrize q, b, ¢, d in terms of integers m,
n, p, q as follows:

(m* +n*)(p* +4°) = (mp —nq)’ +(np + mq)* = (mp +nq)’ +(np —mq)’.
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Equal Sums of Two Fourth Powers

Given two sets of Pythagorean triples,
(@’ —b*) +(2ab)’ =(a* +b*)’
(c*—d*)’ +(Q2cd)* =(c* +d*)’
the problem of finding equal products of a non-hypotenuse side and the hypotenuse,
(@’ -b*)a* +b*)=(c" -d*) (" +d?)
is easily seen to be equivalent to the equation,
a'—-b*=c*-d*

and was first solved by Euler as a,b,c,d =133,59,158,134 . Since he showed this is a rational point in
an elliptic curve, then there is an infinite number of solutions. In fact, he also found a 7th degree
polynomial parameterization.

Descartes’ Circle Theorem

For the case of Descartes’ circle theorem where all variables are squares,
2@t +b*+ct +d)=(a*+ b+ +d°)

Euler showed this is equivalent to three simultaneous Pythagorean triples,

(2ab)’ +(2cd)’ =(a’ +b* —=c* -d’)
(2ac)* +(2bd)’ =(a’ —b* +c* -d’)
(2ad)* +(2bc)’ =(a* -=b*> —c* +d*)’

There is also an infinite number of solutions, and for the special case when a + b = ¢, then the equa-
tion simplifies to,

Aa* +ab+b)=d’

with small solutions as a,b,c,d =3,5,8,14 and can be solved as binary quadratic forms.

Almost-isosceles Pythagorean Triples

No Pythagorean triples are isosceles, because the ratio of the hypotenuse to either other side is
J2 ,but /2 cannot be expressed as the ratio of 2 integers.

There are, however, right-angled triangles with integral sides for which the lengths of the non-hy-
potenuse sides differ by one, such as,
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3447 =5
20° +21° =29°

and an infinite number of others. They can be completely parameterized as,
(5D +(&H) =y’

where {x, y} are the solutions to the Pell equation x* -2y = 1.

If a, b, c are the sides of this type of primitive Pythagorean triple (PPT) then the solution to the Pell
equation is given by the recursive formula:

a,=6a, —a, ,+2with g, =3and a, =20

b,=6b, ,—b, ,—2with b =4and b, =21
¢, =6¢c,  —c,,with ¢, =5and ¢, =29.

This sequence of PPTs forms the central stem (trunk) of the rooted ternary tree of PPTs.

When it is the longer non-hypotenuse side and hypotenuse that differ by one, such as in:
5% +12% =137
7 +24% =25°

then the complete solution for the PPT a, b, cis:

a=2m+1, b=2m’+2m, c=2m"+2m+1

and

Qm+1)° +Q2m* +2m)* =(2m* +2m +1)°

where integer m > 0 is the generating parameter.

It shows that all odd numbers (greater than 1) appear in this type of almost-isosceles PPT.
This sequence of PPTs forms the right hand side outer stem of the rooted ternary tree of
PPTs.

Another property of this type of almost-isosceles PPT is that the sides are related such that:
a’" +b* =Kc
for some integer X . Or in other words a” + b*is divisible by ¢ such as in:

(5" +12°)/13=18799189 .
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Fibonacci Numbers in Pythagorean Triples

Starting with 5, every second Fibonacci number is the length of the hypotenuse of a right triangle
with integer sides, or in other words, the largest number in a Pythagorean triple. The length of
the longer leg of this triangle is equal to the sum of the three sides of the preceding triangle in this
series of triangles, and the shorter leg is equal to the difference between the preceding bypassed
Fibonacci number and the shorter leg of the preceding triangle.

Generalizations

There are several ways to generalize the concept of Pythagorean triples.

Pythagorean Quadruple

A set of four positive integers a, b, c and d such that a® + b2+ ¢ = d? is called a Pythagorean qua-
druple. The simplest example is (1, 2, 2, 3), since 12 + 22 + 22 = 32, The next simplest (primitive)
example is (2, 3, 6, 7), since 22 + 32 + 62 = 72,

All quadruples are given by the formula:

(m2 +n*— p2 - q2 )2 + (2mgq + 2np)2 + (2nq — 2mp)2 = (m2 +n* + p2 + q2 )2

Pythagorean n-tuple
Using the simple algebraic identity,
(7 =x,)" +(2x,) x, = (x{ +x,)

for arbitrary x, x , it is easy to prove that the square of the sum of n squares is itself the sum of n
squares by letting x, = x,* + x,* + ... + x,* and then distributing terms. One can see how Pythagorean
triples and quadruples are just the particular cases x, = x,*> and x, = x,* + x,*, respectively, and so
on for other n, with quintuples given by:

(a* =b*> —c* —d*)’ +(2ab)* + (2ac)’ + (2ad)* =(a* +b*> +c* +d*)’.
Since the sum F(k,m) of k consecutive squares beginning with m? is given by the formula,

k(k —1)(2k - 1)

F(k,m)=fkm(k—-1+m)+ 6

one may find values (k, m) so that F(k,m) is a square, such as one by Hirschhorn where the number
of terms is itself a square,

4 2 _ 5
me 24y 25,k=v2,F(m,k)=v +47v

48 48

and v > 5 is any integer not divisible by 2 or 3. For the smallest case v = 5, hence k = 25, this yields
the well-known cannonball-stacking problem of Lucas,

0> +1°+2%+...+24* =707
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a fact which is connected to the Leech lattice.

In addition, if in a Pythagorean n-tuple (n > 4) all addends are consecutive except one, one can use
the equation,
F(k,m)+p* =(p+1)’

F(k,m)-1
2
though k, m should be chosen so that p is an integer, with a small example being k = 5, m = 1

Since the second power of p cancels out, this is only linear and easily solved for as p =

yielding,
PP +2° 43 +4°+5 +27° =28’
Thus, one way of generating Pythagorean n-tuples is by using, for various x,

XA+ (g +p = (p 1),

where g = n—2 and where:

q(g+D2g+1D) _,

(q—kl)x2 +q(g+Dx+ 6

p= )

Fermat’s Last Theorem

A generalization of the concept of Pythagorean triples is the search for triples of positive integers a,
b, and c, such that a" + b" = ¢, for some n strictly greater than 2. Pierre de Fermat in 1637 claimed
that no such triple exists, a claim that came to be known as Fermat’s Last Theorem because it took
longer than any other conjecture by Fermat to be proven or disproven. The first proof was given by
Andrew Wiles in 1994.

n — 1 or n nth Powers Summing to an nth Power

Another generalization is searching for sequences of n + 1 positive integers for which the nth power
of the last is the sum of the nth powers of the previous terms. The smallest sequences for known
values of n are:

+ n=3:{3,4,5; 6}

« n=4:{30, 120, 272, 315; 353}

+ n=5:{19, 43, 46, 47, 67; 72}

« n=7:{127, 258, 266, 413, 430, 439, 525; 568}

« n=28:{90, 223, 478, 524, 748, 1088, 1190, 1324; 1409}

For the n=3 case, in which x’ + 3’ + 2z’ =’ called the Fermat cubic, a general formula exists giving
all solutions.
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A slightly different generalization allows the sum of (k + 1) nth powers to equal the sum of (n — k)
nth powers. For example:

(n = 3): 13 + 123 = 93 + 103, made famous by Hardy’s recollection of a conversation with
Ramanujan about the number 1729 being the smallest number that can be expressed as a
sum of two cubes in two distinct ways.

There can also exist n — 1 positive integers whose nth powers sum to an nth power (though, by Fer-
mat’s last theorem, not for n = 3); these are counterexamples to Euler’s sum of powers conjecture.
The smallest known counterexamples are

« n=4:(95800, 217519, 414560; 422481)
« n=5:(27, 84,110, 133; 144)

Heronian Triangle Triples

A Heronian triangle is commonly defined as one with integer sides whose area is also an integer,
and we shall consider Heronian triangles with distinct integer sides. The lengths of the sides of
such a triangle form a Heronian triple (a, b, c) provided a < b < c. Clearly, any Pythagorean triple is
a Heronian triple, since in a Pythagorean triple at least one of the legs a, b must be even, so that the
area ab/2 is an integer. Not every Heronian triple is a Pythagorean triple, however, as the example
(4, 13, 15) with area 24 shows.

If (a, b, c) is a Heronian triple, so is (ma, mb, mc) where m is any positive integer greater than one. The
Heronian triple (a, b, ¢) is primitive provided a, b, ¢ are pairwise relatively prime (as with a Pythago-
rean triple). Here are a few of the simplest primitive Heronian triples that are not Pythagorean triples:

(4, 13, 15) with area 24
(3, 25, 26) with area 36
(7, 15, 20) with area 42
(6, 25, 29) with area 60
(11, 13, 20) with area 66
(13, 14, 15) with area 84
(13, 20, 21) with area 126

By Heron’s formula, the extra condition for a triple of positive integers (a, b, ¢) with a < b < c to be
Heronian is that:

(@ +b*+c?)?-2(a*+ b* + ¢
or equivalently:
2(a*b? + a*c® + b*c?) — (a* + b* + ¢*)

be a nonzero perfect square divisible by 16.

Application to Cryptography

Primitive Pythagorean triples have been used in cryptography as random sequences and for the
generation of keys.
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(C Pythagorean Theorem ))

Pythagorean theorem is the well-known geometric theorem that the sum of the squares on the
legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right
angle)—or, in familiar algebraic notation, a’+b*>=c’. Although the theorem has long been as-
sociated with Greek mathematician-philosopher Pythagoras, it is actually far older. Four Bab-
ylonian tablets from circa 1900—-1600 BCE indicate some knowledge of the theorem, or at least
of special integers known as Pythagorean triples that satisfy it. The theorem is mentioned in the
Baudhayana Sulba-sutra of India, which was written between 800 and 400 BCE. Nevertheless,
the theorem came to be credited to Pythagoras. It is also proposition number 47 from Book I of
Euclid’s Elements.

According to the Syrian historian Iamblichus, Pythagoras was introduced to mathematics by
Thales of Miletus and his pupil Anaximander. In any case, it is known that Pythagoras traveled
to Egypt about 535 BCE to further his study, was captured during an invasion in 525 BCE by
Cambyses II of Persia and taken to Babylon, and may possibly have visited India before re-
turning to the Mediterranean. Pythagoras soon settled in Croton (now Crotone, Italy) and set
up a school, or in modern terms a monastery, where all members took strict vows of secrecy,
and all new mathematical results for several centuries were attributed to his name. Thus, not
only is the first proof of the theorem not known, there is also some doubt that Pythagoras
himself actually proved the theorem that bears his name. Some scholars suggest that the first
proof was the one shown in the figure. It was probably independently discovered in several
different cultures.

Book I of the Elements ends with Euclid’s famous “windmill” proof of the Pythagorean the-
orem. Later in Book VI of the Elements, Euclid delivers an even easier demonstration using
the proposition that the areas of similar triangles are proportionate to the squares of their
corresponding sides. Apparently, Euclid invented the windmill proof so that he could place the
Pythagorean theorem as the capstone to Book I. He had not yet demonstrated (as he would in
Book V) that line lengths can be manipulated in proportions as if they were commensurable
numbers (integers or ratios of integers). The problem he faced is explained in the Sidebar:
Incommensurables.

A great many different proofs and extensions of the Pythagorean theorem have been invented. Tak-
ing extensions first, Euclid himself showed in a theorem praised in antiquity that any symmetrical
regular figures drawn on the sides of a right triangle satisfy the Pythagorean relationship: the fig-
ure drawn on the hypotenuse has an area equal to the sum of the areas of the figures drawn on the
legs. The semicircles that define Hippocrates of Chios’s lunes are examples of such an extension.

In the Nine Chapters on the Mathematical Procedures (or Nine Chapters), compiled in the 1st cen-
tury CE in China, several problems are given, along with their solutions, that involve finding the
length of one of the sides of a right triangle when given the other two sides. In the Commentary of
Liu Hui, from the 3rd century, Liu Hui offered a proof of the Pythagorean theorem that called for
cutting up the squares on the legs of the right triangle and rearranging them (“tangram style”) to
correspond to the square on the hypotenuse. Although his original drawing does not survive, the
next figure shows a possible reconstruction.
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“Tangram” proof of the Pythagorean theorem by Liu Hui, 3rd century AD. This is a reconstruc-
tion of the Chinese mathematican’s proof (based on his written instructions) that the sum of the
squares on the sides of a right triangle equals the square on the hypotenuse. One begins with a2
and b2, the squares on the sides of the right triangle, and then cuts them into various shapes that
can be rearranged to form c2, the square on the hypotenuse.

The Pythagorean theorem has fascinated people for nearly 4,000 years; there are now an estimat-
ed 367 different proofs, including ones by the Greek mathematician Pappus of Alexandria, the
Arab mathematician-physician Thabit ibn Qurrah, the Italian artist-inventor Leonardo da Vinci,
and even U.S. President James Garfield.

C Trigonometric Functions )

In mathematics, the trigonometric functions (also called circular functions, angle functions or go-
niometric functions) are real functions which relate an angle of a right-angled triangle to ratios of
two side lengths. They are widely used in all sciences that are related to geometry, such as naviga-
tion, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest
periodic functions, and as such are also widely used for studying periodic phenomena, through
Fourier analysis.

The most familiar trigonometric functions are the sine, the cosine, and the tangent. Their recip-
rocals are respectively the cosecant, the secant, and the cotangent, which are less used in modern
mathematics.

The oldest definitions of trigonometric functions, related to right-angle triangles, define them only
for acute angles. For extending these definitions to functions whose domain is the whole pro-
jectively extended real line, one can use geometrical definitions using the standard unit circle (a
circle with radius 1 unit). Modern definitions express trigonometric functions as infinite series or
as solutions of differential equations. This allows extending the domain of the sine and the cosine
functions to the whole complex plane, and the domain of the other trigonometric functions to the
complex plane from which some isolated points are removed.
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Right-angled Triangle Definitions

B
(hypotenuse)
h a
(opposite)
A b
(adjacent) sin (r+6) NAsin (2n-6)

Top: Trigonometric function sin 6 for selected angles 0, t — 6, 7t + 0, and 271 — 6 in the four quadrants.
Bottom: Graph of sine function versus angle. Angles from the top panel are identified.

Trigonometric functions

Csc(6)

Sec(6),

Tan(6)
Sin(6)

1.0 >/‘

=08 1.2
Cos(6) 1 Cot(6)

Plot of the six trigonometric functions and the unit circle for an angle of 0.7 radians.

In this topic, the same upper-case letter denotes a vertex of a triangle and the measure of the cor-
responding angle; the same lower case letter denotes an edge of the triangle and its length.

Given an acute angle A of a right-angled triangle the hypotenuse h is the side that connects the two
acute angles. The side b adjacent to A is the side of the triangle that connects A to the right angle.
The third side a is said opposite to A.

If the angle A is given, then all sides of the right-angled triangle are well defined up to a scaling
factor. This means that the ratio of any two side lengths depends only on A. These six ratios define
thus six functions of A, which are the trigonometric functions. More precisely, the six trigonomet-
ric functions are:

_opposite

e Sine: sinAd=

a
h  hypotenuse

. Cosine: cosA =2 —_2djacent
h  hypotenuse
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e Tangent: tan 4= 4- M
b adjacent

o Cosecant: csc 4= ﬁ = w

a  opposite

. Secant: secA = - fypotenuse

adjacent
» Cotangent: cot4= b_ M
a opposite

In a right angled triangle, the sum of the two acute angles is a right angle, that is 90° or % radians.

This induces relationships between trigonometric functions that are summarized in the following
table, where the angle is denoted by @ instead of A.

Function Abbreviation Description Relationship (using radians)
Sine sin Opposite/ sin@ = cos [ﬁ - 09] -
hypotenuse 2 cscd
Cosine | cos Adjacent/ cosf= sin[f - .9) -
hypotenuse 2 secl
. . sin @ V3 1
Tangent | tan (or tg) Opposite/adjacent | tand= o cot(E - 9] =
. . 0 1
Cotangent | cot (or cotan or cotg or ctg or ctn) Adjacent/opposite | cotf= Z?; 0 tan(gﬂ] =g
Secant | sec Hyp(?tenuse/ sect = csc[f - 9] -
adjacent 2 cos@
H 1
Cosecant | csc (or cosec) ypoten.use/ cscd= SBC(ﬁ - 9) ==
opposite 2 sin@

Radians versus Degrees

In geometric applications, the argument of a trigonometric function is generally the measure of an
angle. For this purpose, any angular unit is convenient, and angles are most commonly measured
in degrees.

When using trigonometric function in calculus, their argument is generally not an angle, but rath-
er a real number. In this case, it is more suitable to express the argument of the trigonometric as
the length of the arc of the unit circle delimited by an angle with the center of the circle as vertex.
Therefore, one uses the radian as angular unit: a radian is the angle that delimits an arc of length
1 on the unit circle. A complete turn is thus an angle of 2t radians.

A great advantage of radians is that many formulas are much simpler when using them, typically
all formulas relative to derivatives and integrals.

This is thus a general convention that, when the angular unit is not explicitly specified, the argu-
ments of trigonometric functions are always expressed in radians.
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Unit-circle Definitions

In this illustration, the six trigonometric functions of an arbitrary angle 6 are represented as Cartesian
coordinates of points related to the unit circle. The ordinates of A, B and D are sin 6, tan 0 and csc 6,
respectively, while the abscissas of A, C and E are cos 6, cot 0 and sec 0, respectively.

The six trigonometric functions can be defined as coordinate values of points on the Euclidean
plane that are related to the unit circle, which is the circle of radius one centered at the origin O
of this coordinate system. While right-angled triangle definitions permit the definition of the trig-

onometric functions for angles between 0 and %radian (90°), the unit circle definitions allow to

extend the domain of the trigonometric functions to all positive and negative real numbers.

RY
Quadrant II| Quadrant I
“Science” “All”
sin, cosec + |sin, cosec +
COoS, seC —|[cos, sec  +
tan, cot  —tan, cot +
X
Quadrant III|Quadrant IV
“Teachers” | “Crazy”
sin, cosec — |sin, cosec —
COoS, sec —|cos, sec  +
tan, cot + Itan, cot -
Signs of trigonometric functions in each quadrant. The mnemonic “all science teachers (are) crazy” lists the functions
which are positive from quadrants I to IV. This is a variation on the mnemonic “All Students Take Calculus”.

Rotating a ray from the direction of the positive half of the x-axis by an angle 6 (counterclock-
wise for 6 >0, and clockwise for 6 <0) yields intersection points of this ray with the unit circle:
A=(x,,y,) and, by extending the ray to a line if necessary, with the line "x=1":B =(x;,y;),and
with the line “y=1":C =(x.,y.)-The tangent line to the unit circle in point A, which is orthogonal
to this ray, intersects the y- and x-axis in points D=(0,y,)and E =(x,,0). The coordinate values

of these points give all the existing values of the trigonometric functions for arbitrary real values
of 0 in the following manner.

The trigonometric functions cos and sin are defined, respectively, as the x- and y-coordinate values
of point A, i.e.,

cos(@) =x, and sin(0) =y,
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In the range 0<6 < /2 this definition coincides with the right-angled triangle definition by tak-
ing the right-angled triangle to have the unit radius OA as h